
-tn
:z: 0 mz
en
zC
-:11
>< :II
*m cnz
~
-tm me
l:n .. r-,. _
zP
a ...
c
z -en

:z:
0 -..

CONCURRENT EUCLID,
THE UNIX*SYSTEM,
AND TUNIS

R.C. Holt

Computer Systems Research Group
University of Toronto

•
ADDISON-WESLEY PUBLISttlNG COMPANY
Reading, Massachusetts I Menlo Park, California
London I Amsterdam I Don Mills, Ontario I Sydney

This book is in the Addison-Wesley Series in Computer Science

Consulting Editor
Michael A. Harrison

Holt, R. C. (Richard C.), 1941-
Concurrent Euclid, UNIX, and TUNIS.

Bibliography: p.
1. Concurrent Euclid (Computer program language)

2. UNIX (Computer system) 3. TUNIS (Computer program)
I. Title
QA76.73.C64H64 1983 001.64'2 82-13742
ISBN 0-201-10694-9

*Unix is a trademark of Bell Laboratories.

SCRABBLE® is the registered trademark of Selchow & Righter
Company for its line of word games and entertainment services.
Reprinted with permission.

Diagrams in this book were prepared by the Media Centre,
University of Toronto.

Reproduced by Addison-Wesley from camera-ready copy
prepared by the authors.

Copyright© 1983 by Addison-Wesley Publishing Company, Inc.

All rights reserved. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted,
in any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the prior
written permission of the publisher. Printed in the
United States of America. Published simultaneously in
Canada.
ISBN 0-201-10694-9

BCDEFGHIJ-AL-89876543

PREFACE

This book introduces the art of concurrent programming. This partic­
ular type of programming, with several activities progressing in parallel, is
intellectually intriguing and is essential in the design of operating systems.
Unix is used as a case study for exploring operating system structures. The
Tunis implementation of Unix's nucleus (kernel) is presented as an exam­
ple of a large concurrent program. Although the emphasis is on operating
systems, the design and implementation techniques presented apply as well
to other high performance, highly reliable software such as that in computer
networks, real time control and embedded microprocessor systems.

The first two chapters overview concurrent programming and operat­
ing systems. Chapters 3 and 4 introduce the Concurrent Euclid (CE)
language. Chapter 5 presents standard concurrency problems and their
solutions. Chapters 6, 7 and 8 concentrate on Unix. Chapter 9 gives the
structure of Tunis, a Unix-compatible nucleus written in CE. The last
chapter shows how to construct a small kernel to support concurrent
processes. An appendix gives the detailed specification of the Concurrent
Euclid language.

The required background of the reader is a familiarity with a high­
level language such as Pascal or Fortran as well as some familiarity with
computer architecture. The programs presented in this book are written in
Concurrent Euclid. This is a language that is suited for developing high
performance system software as well as for teaching. Student's CE pro­
grams that use parallel processes are conveniently executable under systems
such as Unix/11 and Unix/VAX. Alternatively, these programs can be
down-loaded and executed on microprocessors such as the MC68000 and
MC6809. The CE compiler is available from the CE Distribution

Manager, Computer Systems Research Group, University of Toronto,
Toro:qto, MSS 1A4, Canada.

This book can serve as the main or subsidiary text for a course on
operating systems or systems programming. Alternately, it may be used as
a text book in a specialized course such as one on concurrent programming.

Acknowledgements. This book has evolved from an earlier book
"Structured Concurrent Programming with Operating Systems Applications",
which I co-authored with G.S. Graham, E.D. Lazowska and M.A. Scott.
The present book has been made possible due to their essential contribu­
tions to its predecessor. I want to thank the people who have taken the
trouble to suggest improvements in the earlier book; in particular the
detailed comments by S.S. Toscani have been helpful to me in preparing
this new book. J.C. Weber, S.G. Perelgut, D.R. Galloway, M.P. Mendell
and D.T. Barnard have helped by reading drafts of the new book.

The Concurrent Euclid language was designed by J.R. Cordy and
myself. This language is based on the Euclid language designed by B.W.
Lampson, J.J. Horning, R.L. London, J.G. Mitchell and G.J. Popek with
assistance from J.V. Guttag. B.A. Spinney, C.R. Lewis, B.W. Thomson,
and C.D. Mccrosky contributed to the CE language design and/or its com­
piler. D.B. Wortman, D.R. Crowe and l.H. Griggs helped inspire CE's
design by their roles as implementors (with J.R. Cordy and myself) of the
Toronto Euclid compiler.

P. Cardozo, M.P. Mendell, l.J. Davis and G.L. Dudek have done MSc
projects involving Tunis design and implementation. S.W.K. Tjiang, D.R.
Galloway and D.T. Barnard have also contributed to the Tunis work. The
continuing interest of P.l.P. Boulton and E.S. Lee in the CE and Tunis
work has been important to its progress. The following have been students
in my graduate course in which we studied and evolved the Tunis design:
P. Cardozo, A. Curley, R.S. Gornitsky, J.S. Hogg, S.A. Ho-Tai, P.M.
McKenzie, J.L. More, B.A. Spinney, B.W. Down, G.L. Dudek, D.R. lngs,
P. Kates, P.A. Matthews, M.P. Mendell, L.M. Merrill, R. Parker, B.R.J.
Walstra, H.E. Briscoe, D. Chan, L. DeMaine, E.L. Fiume, R.D. Hill, L.Z.
Zhou, S.G. Perelgut, and Y.C.L. Wong.

The terms VAX and PDP-11 are trademarks of the Digital Equipment
Corporation. Unix is a trademark of Bell Laboratories.

The information on Unix in this book is based upon widely available
materials, particularly upon excellent articles by the authors of Unix (D.M.
Ritchie and K. Thompson). As they have stated, "The success of Unix lies
not so much in new inventions but rather in the full exploitation of a care­
fully selected set of fertile ideas ... "

l.S. Weber has prepared the book for publication using a computer
text editor and phototypesetter.

The research leading to CE and Tunis would not have been possible
without the financial support of the Canadian Natural Sciences and
Engineering Research Council and of Bell Northern Research Ltd.

R.C. Holt
May 1982
Toronto

CONTENTS

1. CONCURRENT PROGRAMMING AND
OPERA TING SYSTEMS 1

EXAMPLES OF CONCURRENCY 1
OPERATING SYSTEMS 4
COMMUNICATION IN OPERATING SYSTEMS 5
OPERATING SYSTEMS AND MONOLITHIC MONITORS 7
BASING AN OPERATING SYSTEM ON A KERNEL 8
AN EXAMPLE OPERATING SYSTEM 10
PROCESSES, PROCESSORS AND PROCEDURES 11
SUMMARY 12
BIBLIOGRAPHY 13
EXERCISES 14

2. CONCURRENCY PROBLEMS AND LANGUAGE FEATURES 17

SPECIFYING CONCURRENT EXECUTION 17
DISJOINT AND OVERLAPPING PROCESSES 19
CRITICAL SECTIONS 23
MUTUAL EXCLUSION BY BUSY WAITING 24
SYNCHRONIZATION PRIMITIVES: SEMAPHORES 28
OTHER SYNCHRONIZATION PRIMITIVES 32
MESSAGE PASSING 33
THE BLOCKING SEND 36
THE RENDEZVOUS 37
COMMUNICATING SEQUENTIAL PROCESSES 39
MONITORS 41
THE DEADLOCK PROBLEM 43
DETECTING DEADLOCK 45
SUMMARY 51
BIBLIOGRAPHY 51
EXERCISES 53

3. CONCURRENT EUCLID: SEQUENTIAL FEATURES 59

HISTORY 59
GOALS OF CONCURRENT EUCLID 60
COMPARISON WITH PASCAL 61
BASIC DAT A TYPES 61
STRUCTURED DATA TYPES 62
LITERAL VALUES 63
THE 1/0 PACKAGE 64
A COMPLETE CE PROGRAM 66
OTHER CONTROL CONSTRUCTS 67
RUNNING UNDER UNIX 69
A SIMPLE PROCEDURE 70
NESTING OF CONSTRUCTS 70
AN EXAMPLE MODULE 71
NAMING CONVENTIONS 73
RUNNING ON A BARE MICROPROCESSOR 74
NON-MANIFEST ARRAY BOUNDS 75
FUNCTIONS AND SIDE EFFECTS 76
POINTERS AND COLLECTIONS 78
ALIASING AND THE BIND STATEMENT 80
TYPE CONVERTERS 81
SEPARATE COMPILATION 84
LINKING PROGRAMS UNDER UNIX 85
SUMMARY 86
BIBLIOGRAl>HY 88
EXERCISES 89

4. CONCURRENT EUCLID: CONCURRENCY FEATURES 93

SPECIFYING CONCURRENCY 93
RE-ENTRANT PROCEDURES 94
MUTUAL EXCLUSION 96
WAITING AND SIGNALING 98
DETAILS OF SIGNALING, WAITING

AND CONDITIONS 99
ASSERT STATEMENTS 100
PRIORITY CONDITIONS 100
AN EXAMPLE PROGRAM:

MANAGING A CIRCULAR BUFFER 101
SIMULATION MODE AND KERNELS 103
BASIC DEVICE MANAGEMENT 104

SIMULATION AND THE BUSY STATEMENT 105
SIMULATED TIME AND PROCESS UTILIZATION 107
PROCESS ST A TISTICS 108
SUMMARY 109
BIBLIOGRAPHY 110
EXERCISES 112

5. EXAMPLES OF CONCURRENT PROGRAMS 115

DINING PHILOSOPHERS 115
READERS AND WRITERS 122
SCHEDULING DISKS 127
A DISK ARM SCHEDULER 129
BUFFER ALLOCATION FOR LARGE MESSAGES 134
SUMMARY 137
BIBLIOGRAPHY 138
EXERCISES 139

6. UNIX: USER INTERFACE AND FILE SYSTEM 145

HISTORY AND OVERVIEW OF UNIX 145
TYPICAL CONFIGURATIONS 147
MAJOR LAYERS OF UNIX 147
SYSTEMS THAT ARE UNIX-COMPATIBLE 148
LOGGING IN AND SIMPLE COMMANDS 148
CREATING, LISTING AND DELETING FILES 149
THE DIRECTORY HIERARCHY 151
SPECIAL FILES 153
FILE PROTECTION 154
SYSTEM CALLS TO MANIPULATE FILES 155
INTERNAL FORMAT OF FILES 157
MOUNTING DISK PACKS 158
SUMMARY 159
BIBLIOGRAPHY 161
EXERCISES 162

7. UNIX: USER PROCESSES AND THE SHELL 163

THE ADDRESS SP ACE OF A USER PROCESS 163
MANIPULATION OF USER PROCESSES 165
IMPLEMENTING THE SHELL 167
INPUT/OUTPUT RE-DIRECTION 168

BACKGROUND PROCESSING 169
PIPES AND FILTERS 170
SYSTEM CALLS TO SUPPORT PIPES 170
FILES CONTAINING COMMANDS 171
SYSTEM INITIALIZATION 172
SUMMARY 173
BIBLIOGRAPHY 174
EXERCISES 175

8. IMPLEMENTATION OF THE UNIX NUCLEUS 177

LAYOUT OF DAT A ON DISKS 177
THE FLAT FILE SYSTEM VS. THE

TREE FILE SYSTEM 178
FORMAT OF DIRECTORIES 178
FORMAT OF I-NODES 178
BLOCK LISTS 179
DESCRIPTORS FOR USER PROCESSES 181
LINKAGE FROM USER PROCESSES TO

DISK FILES 181
LINKAGE FROM USER PROCESSES TO

SPECIAL FILES 184
LINKAGE FROM USER PROCESSES TO

MOUNTED DISK PACKS 185
FILE SYSTEM CONSISTENCY 185
CONCURRENCY IN THE UNIX NUCLEUS 188
HANDLING INTERRUPTS 189
SUMMARY 191
BIBLIOGRAPHY 192
EXERCISES 192

9. TUNIS: A UNIX-COMPATIBLE NUCLEUS 195

WHY TUNIS? 195
TENETS OF SOFTWARE ENGINEERING 196
THE LAYER STRUCTURE OF TUNIS 198
THE MAJOR LAYERS 199
THE ABSTRACTION OF ADDRESS SPACES 202
THE ASSASSIN PROCESS 202
AN EXAMPLE MODULE 203
PROGRAMMING CONVENTIONS 206
ENTRY POINTS OF THE TUNIS KERNEL 206

THE ENVELOPE AS GUARDIAN ANGEL 207
SUMMARY 208
BIBLIOGRAPHY 209

EXERCISES 210

10. IMPLEMENTING A KERNEL 213

STRUCTURE OF A KERNEL 213
PROCESS/DEVICE COMMUNICATION 215
QUEUE MANAGEMENT 216
ENTRIES INTO THE KERNEL 218
SIMPLIFYING ASSUMPTIONS 219
A KERNEL FOR SINGLE CPU SYSTEMS 220
HANDLING INPUT AND OUTPUT 224
A KERNEL FOR THE PDP-11 225
A KERNEL FOR MULTIPLE CPU SYSTEMS 230
SUPPORTING THE KERNEL'S VIRTUAL PROCESSOR 233
IMPLEMENTING KERNEL ENTER/EXIT 234
KERNELS FOR CE AND TUNIS 236
SUMMARY 237
BIBLIOGRAPHY 238
EXERCISES 238

APPENDIX: SPECIFICATION OF CONCURRENT EUCLID 243

THE SE LANGUAGE 245
CONCURRENCY FEATURES 264
SEPARATE COMPILATION 269
COLLECTED SYNTAX OF CONCURRENT EUCLID 272
KEYWORDS AND PREDEFINED IDENTIFIERS 283
INPUT/OUTPUT IN CONCURRENT EUCLID 284
PDP-11 IMPLEMENTATION NOTES 290
CE IMPLEMENTATION NOTES 294

INDEX 299

Chapter 1

CONCURRENT
PROGRAMMING
AND OPERATING
SYSTEMS

Concurrent programming means writing programs that have several
parts in execution at a given time. The concept of concurrent or parallel
execution is intellectually intriguing and is essential in the design of com­
puter operating systems. This book covers the fundamentals of concurrent
programming using structured techniques. After an introduction to the
need for concurrent programming and its basic concepts, a notation called
monitors is presented and used for solving problems involving asynchro­
nous program interactions. The concurrent algorithms in the book are
presented in the Concurrent Euclid (CE) programming language. It is a
language designed to support the development of highly reliable, high per­
formance systems programs.

After giving examples of concurrency, this chapter concentrates on
operating systems. Operating systems implement concurrent programs by
sharing CPU time among several programs and use concurrent programs to
control resources and serve users.

EXAMPLES OF CONCURRENCY

In programming, and in other activities, concurrency problems can
arise when an activity involves several people, processes or machines
proceeding in parallel. We will give several examples of concurrency,
beginning with one that does not involve computers.

2 CONCURRENT PROGRAMMING AND OPERATING SYSTEMS

An example: activities in a large project. A large project such as the
construction of a building is accomplished by many workers carrying out
different tasks. These tasks must be scheduled, and one method of doing
this uses precedence charts, as shown here.

This example chart shows that in the beginning tasks Tl and T2 can both
be started. After Tl is done, T3 and T4 can be started, and when both of
them are done, TS can be started. The whole project is finished when T2
and TS are done. As the next example will show, precedence charts can be
used to specify concurrency in computer programs.

There are two main reasons for using parallel tasks in this example.
First, there are many workers available and they must be allowed to work at
the same time (in parallel). Second, the project can be completed in less
elapsed time if tasks are allowed to overlap. In computer systems, analo­
gous reasons (many asynchronous devices and the need to shorten elapsed
time) may result in concurrent programming.

An example: independent program parts. Precedence charts can describe
possible concurrency in a computation. The expression (2* A) + ((C-D) 13)
can be evaluated sequentially (one operation at a time) by finding the pro­
duct, difference, quotient and sum, in that order. But parallelism is possi­
ble, because some parts of the expression are independent, as is shown in
this precedence chart.

EXAMPLES OF CONCURRENCY 3

Groups of statements, as well as expressions, may have independent
parts that can be executed in parallel. For example, the following loop writ­
ten in Pascal determines if 'Jones' is in a list by testing name[l] then
name[2] and so on.

for i : = 1 to size do
if name [i] = 'Jones' then

found : = true

This loop could be executed by checking all of the names at the same time,
because the tests are independent. For a large computation, parallelism
such as this can minimize the elapsed time for completion.

As computing elements such as microprocessors become cheaper, it
becomes more and more attractive to split programs into several parallel
tasks. In the future we may find that computers are built as huge collec­
tions of tiny processing elements, analogous to building an elephant out of
a swarm of mosquitoes or bees, and we will need to know how to program
such contraptions.

An example: a simulation. Sometimes programs are written to simulate
parallel activities. For example, a program might simulate boats entering a
harbor; this program could predict the effects of increased boat traffic. A
good way to program this simulation is to have an asynchronous program
activity (a process) corresponding to each simulated activity (each boat).
Each process mimics its boat, and the interaction of these processes models
the interaction of boats entering the harbor. Programming the simulation is
done by writing the constituent concurrent programs.

An example: control of external activities. Special purpose computer sys­
tems are used to control chemical processes such as the manufacture of
cement. Sensors transmit signals to the computer to report temperature,
pressure, rate of flow, etc. The computer in turn transmits signals that set
valves, control speeds, sound alarms, etc. The computer system also keeps
a log of its actions and prints reports. A computer system such as this
keeps track of many interrelated concurrent activities. One good way to
program such a system is to have a concurrent software process in the com­
puter for each external activity. A software process tracks its corresponding
activity; it is responsible for sending and receiving signals to and from the
activity. Programming this computer system is done by writing the con­
current programs that observe and control the activities.

These examples have given various practical uses of concurrency.
One of the most important examples of concurrent programming arises in
operating systems. The next sections explain why this concurrency arises
and how it is handled.

4 CONCURRENT PROGRAMMING AND OPERATING SYSTEMS

OPERATING SYSTEMS

Modern computer installations have many asynchronous hardware
components, such as operator consoles, card readers, printers, disk drives,
tape drives and CPUs. The operating system must ensure that these com­
ponents are used efficiently and that they provide convenient service for the
users.

An operating system consists of a collection of software modules.
These modules receive requests from users (for example, to execute the
users' programs) and must schedule the system's components to satisfy
these requests.

The operating system may support multiprogramming, that is, it may
allow more than one user's program to be in execution at a given time. To
support multiprogramming, the operating system must share the system's
resources among the executing programs. Some resources, such as tape
drives, are exclusively allocated to a program, until the program terminates
or no longer needs the resource.

Other resources, such as the CPU, are shared dynamically, in a way
that gives the appearance that each program has its own virtual resource.
For example, the operating system may allocate a "slice" of CPU time to
one program, then to another program, and so on. This is called time slicing
and gives the appearance that each program has a virtual CPU, which is like
the physical CPU but somewhat slower. As a second example, the operat­
ing system may provide each program with a virtual memory. This is done
with the help of special hardware (for "paging" or "segmenting") that allows
the operating system to allocate physical memory only to the active parts of
programs.

There are two basic reasons why multiprogramming is needed in com­
puter systems. The first is for efficient use of hardware resources and the
second is for quick response to users' requests. First we will consider
efficiency. The system's hardware components run in parallel at vastly
different speeds. For example, the time to process a single character may
vary from a tenth of a second for a slow console, to a thousandth of a
second for a printer, to a millionth of a second for a CPU. Clearly, the
CPU should not be forced to waste time (100,000 of its operations) while a
console transmits a character. While a user is typing messages to a running
job, another job should be given the CPU. If a job is 110 bound, spending
most of its time waiting for input/output devices, the spare CPU time can
be used by a compute bound job, which spends most of its time using the
CPU. If the system has a variety of equipment, a job that uses only a few
of the devices should not prevent concurrent use of other devices. These
examples show how multiprogramming provides more efficient use of

COMMUN/CATION IN OPERATING SYSTEMS 5

computer equipment.

Apart from efficiency, multiprogramming allows the computer system
to respond quickly to users' needs. Suppose a user has a short, urgent job
but a long-running job is already in the system. With multiprogramming,
the short job can run in parallel with the long one and can finish hours
before it. In interactive systems, a form of multiprogramming is necessary,
with one program for each user. The system is shared among the interac­
tive users and their programs so that each receives good response; this is
called time sharing. These examples show how multiprogramming allows
prompt attention to users' needs.

COMMUNICATION IN OPERATING SYSTEMS

Operating systems must be organized so as to control hardware dev­
ices and run users' programs. This section gives a simplified model of how
communication occurs among the devices, the operating system and the
users' programs; the next two sections describe how operating systems are
organized to handle this communication.

An operating system controls an 1/0 device by sending it a start 110
command. If the device is a tape drive, the command may cause it to read a
record, putting the record's characters into main memory. When the dev­
ice has carried out the command, it can send an interrupt signal back to the
CPU indicating that it is free to carry out another operation. This signal
can switch the CPU from a user's job to the operating system; this allows
the operating system to send another command to the device before return­
ing the CPU to a user's job.

Operating

System

Meanwhile, each user's job occasionally makes requests to the operat­
ing system, for example, to read from a terminal or to write a disk track.
The job makes a request by a trap or a system call instruction; this

6 CONCURRENT PROGRAMMING AND OPERATING SYSTEMS

instruction is like a subroutine call and transfers control from the user to
the operating system. Having received such a request, the system blocks
the job (gives it no more CPU time) until the requested action has been
completed. Then the job is unblocked and allowed to continue executing.

There is usually an interrupting clock; it sends interrupt signals that
transfer control from a user's job to the operating system. This allows the
system to implement time slicing by passing the CPU from user to user,
and to cancel a user's job that is using excessive CPU time. Without the
interrupting clock, an infinite loop in one user's job could prevent other
users (and the operating system) from using the CPU.

When a program is actually using the CPU, we say it is running.
When it is waiting for a request to be serviced, we say it is blocked. When a
program would be running except that the CPU is allocated to another pro­
gram, we say it is ready. The operating system maintains a queue of the
programs that are ready. This transition diagram shows how the states of a
program change:

Dispatch System call

Interrupt

We say the operating system dispatches a program when it lets it run, by
giving it the CPU.

A trap generally causes a program to be blocked; however in some
instances (not shown in the diagram) if the operating system can immedi­
ately satisfy the request, the user program is again dispatched and no block­
ing occurs. Other than by a trap, the only way a running program loses the
CPU is by an interrupt. A clock interrupt may signal the end of the
program's time slice, or an 1/0 interrupt may allow another program to run.
In a system with only one CPU, at most one program can be in the running

OPERATING SYSTEMS AND MONOLITHIC MONITORS 7

state, but with several CPUs there can be as many simultaneously running
programs as there are CPUs.

OPERATING SYSTEMS AND MONOLIT'HIC MONITORS

There is a particularly simple method of handling asynchronism, and
of building operating systems, based on the concept of a monolithic monitor.
Essentially this technique implies that the users' programs and the devices
do not communicate directly and that all their interactions are passed
through an operating system that cannot be interrupted. We will now
explain this idea in more detail.

The interrupt signals are provided by hardware; they allow the operat­
ing system to give immediate attention to changes in device status so the
devices can be kept usefully active. When the operating system is engaged
in some critical activity, for example, updating the queue of ready pro­
grams, it must not be interrupted, because the interruption might cause
another update of the half-updated queue. The result could be a hopelessly
tangled set of pointers and subsequently a system crash. To handle these
critical situations, a CPU usually provides a method of disabling or masking
interrupt signals. When interrupts are disabled the hardware holds the sig­
nals pending until interrupts are again enabled.

The monolithic monitor approach uses disabling/enabling in the fol­
lowing way. Every trap (from the user to the operating system) and every
interrupt (from a device or the clock to the operating system) immediately
disables interrupts. This means that whenever the operating system begins
executing, interrupts have been masked. They remain masked until the
operating system dispatches a user program. As a result the operating sys­
tem is never interrupted, and it gives up control only by handing the CPU
to a user program (by dispatching).

The beauty of this approach lies in its simplicity and in the straightfor­
ward handling of asynchronism. It is quite easy to build a very small operat­
ing system on this basis that correctly schedules devices and manages users.
But a monolithic monitor is not suitable for most operating systems because
of two fundamental problems.

The first is that activity in any part of the operating system disables
interrupts from all devices. This means that devices are held up waiting for
new commands. For computer systems of any appreciable size, this loss of
response to devices can not be tolerated. For certain devices, information
is lost if the response is too slow. Inevitably some method must be intro­
duced to allow parts of the operating system to be interrupted, although

8 CONCURRENT PROGRAMMING AND OPERATING SYSTEMS

with great care to avoid scrambling critical data.

The second problem is that tables must be maintained in the monol­
ithic monitor to record the status of each and every device. For example, if
a user requests a disk read, the system must know from its tables whether
the disk is busy. The size and complexity of these tables can become
excessive.

The concept of a monolithic monitor underlies a variety of operating
systems. In too many cases the system has outgrown the concept; to
improve performance more and more activity is moved outside of the unin­
terrupted monitor. This gradual evolution of an operating system tends to
lead to system errors, as ad hoc tricks are used to try to maintain the con­
sistency of critical shared data. These problems suggest that the responsi­
bility for the various devices should be decentralized and moved out of the
monolithic monitor in the initial design.

There is an alternate approach that recognizes these difficulties; it
minimizes the system's uninterrupted activities and concentrates these in a
module called the kernel.

BASING AN OPERATING SYSTEM ON A KERNEL

The alternative to a monolithic monitor moves the various activities
in an operating system out into asynchronous, interruptable software enti­
ties called processes. Each process is similar to a user's program in a mul­
tiprogramming system, in that it shares the CPU's time and is in one of the
states: running, ready, or blocked.

One elegant way to structure the operating system is to have a
software process (a device manager) corresponding to each device. This
manager process has sole responsibility for starting the device and observ­
ing when the device becomes free; this means the software process tracks
the hardware device. This approach simplifies the operating system's tables
because the status of a device is implicitly given by the status of its
manager process. For example, a tape drive device is busy exactly when its
manager has sent it a command and has not yet been notified of the com­
pletion.

Each user's program can be managed and executed by a process.
When the the program has an 1/0 request, it is sent by the user's process
to the corresponding manager process. The user's process must then be
blocked until the manager notifies it that the 1/0 has been performed.

BASING AN OPERATING SYSTEM ON A KERNEL 9

Of course there must be mechanisms for interprocess communication, so
the users' processes can transmit requests and wait for completions. There
must also be a mechanism for a device manager to start up its device and to
wait for its interrupt, and a mechanism to share CPU time among all the
software processes. All these responsibilities are absorbed by a fundamental
operating system modl:lle called the kernel.

The kernel can be implemented like a very small monolithic monitor,
which schedules the CPU among the processes, receives 1/0 interrupts and
transmits them to device manager processes, and supports interprocess
communication. The kernel uses clock interrupts to help it share CPU time
among the processes.

Outside the kernel all interrupts are invisible and do not affect the logi­
cal progress of the processes. An interrupt can slow down a process by
causing its CPU to be temporarily removed, but this is the only effect on
the process. The device manager processes observe 1/0 interrupts, but
these appear to the managers as synchronous replies from queries to the
kernel, not as asynchronous signals.

The kernel gives each process the appearance of having its own CPU.
Each of these virtual CPUs behaves like a real CPU except that it has a vari­
able rate of progress. This rate is determined by interrupts, the kernel's
CPU scheduling policy, and the use of CPU time by other processes.

The kernel's responsibilities can be implemented by hardware or
microprogramming, with the efficiency advantage of making interprocess
communication and process/device communication quite fast. Such an
implementation has the structural advantage of making asynchronous inter­
rupts invisible to all software modules; this simplifies system design.

Two extremes in organizing operating systems are a huge monolithic
monitor versus a minimal kernel that supports only one type of process.
Many variations lie between these extremes, and these are greatly
influenced by the specific nature of the computer's architecture. Often the
processes that manage devices are quite different from those that execute
user jobs; on CDC 6000 systems the device managers do not even run on
the CPU - they use special "peripheral processors". Use of multiple CPUs,
called multiprocessing for historical reasons, does not necessarily cause
difficulties. In the case of a monolithic monitor, the only additional compli­
cation of multiple CPUs is guaranteeing that only one CPU at a time can
enter the monitor. Since the kernel in a kernel-based system is imple­
mented as a very small monolithic monitor, the same technique (limiting
entry into the kernel to one CPU at a time) applies. Processes (and user
programs) outside of the monitoror kernel have their own virtual CPUs, so
the presence of multiple CPUs should speed up execution without affecting

I 0 CONCURRENT PROGRAMMING AND OPERATING SYSTEMS

system correctness.

AN EXAMPLE OPERATING SYSTEM

The T.H.E. operating system nicely illustrates a system based on a
kernel. It is a small system that multiprograms several users' Algol pro­
grams. It has a hierarchical organization with five levels. The lowest level
is the kernel, which implements the concept of processes. In the T.H.E.
system, the kernel provides interprocess communication by operations on
"semaphores". These operations, called synchronization primitives, give each
process the ability to block itself and wake up other processes, and the
means to guarantee mutually exclusive access to data shared among
processes. Semaphore operations will be discussed in detail in the next
chapter.

This table lists the functions of the levels in the T.H.E. system:

Level 5 Job managers Read control language and
execute users' programs

Level 4 Device managers

Level 3 Console Manager

Level 2 Page Manager

Level 1 Kernel

Handle devices and provide
buffering

Implements virtual consoles
for the above processes

Implements virtual memories
for the above processes

Implements a virtual CPU for
each process

Level 2 of the T.H.E. system is a process that manages a drum and imple­
ments automatic paging for all the other processes. After level 2 each pro­
cess has a large virtual memory which is implemented by automatically
moving pages between main memory and the drum.

Level 3 is a process that manages the system console and enables
processes on higher levels to communicate with the operator. Level 4 con­
sists of one process per remaining 1/0 device; there are manager processes
for each of the system's readers, printers, plotters and so on.

Finally, level 5 consists of one process per allowed user program.
Each of these processes is a job manager. When a job manager completes a

CHAPTER 1 SUMMARY 11

user job it searches for a reader that is not occupied. It then reads the con­
trol language for another job from the reader and proceeds to execute that
user's job. Typically this means compiling the user's program and running
it. The job manager is responsible for reserving any 1/0 devices needed by
the job and eventually releasing them.

PROCESSES, PROCESSORS AND PROCEDURES

We have presented operating system structures to demonstrate the
necessity of concurrent programming. The concept of a kernel allows us to
use concurrent processes even though there is only one CPU (or only a few
CPUs). Before going further, we should define precisely some of the basic
terminology of concurrent programming.

Process. A process is an asynchronous activity. It can be thought of
as the execution of a program by a CPU. However, the CPU may actually
be a virtual CPU that is implemented by multiplexing one or more physical
CPUs among many processes. A process is, in general, guaranteed to pro­
gress through its computation unless it is explicitly blocked. However, its
rate of progress may vary considerably.

Processor. A processor is a physical (hardware) mechanism that exe­
cutes instructions, proceeding from instruction to instruction. A CPU is
the prime example of a processor. Some computer systems have special //0
processors (or channels) whose responsibility is to pass commands to dev­
ices.

Procedure. Procedures are sequences of instructions that direct the
execution of a processor. Procedures are sometimes called programs. Gen­
erally we can separate the data used by a procedure from the procedure
itself (the code). If this separation allows the procedure to be executed by
more than one process at a time, by setting up a separate data area for each
process, we say the procedure is re-entrant (or pure). This is analogous to
having two cooks simultaneously using the same cookbook (procedure) but
using separate pots and ingredients (data).

These three definitions are fundamental to the understanding of both
concurrent programming and operating systems. The next chapter begins
by giving language features for specifying that several processes are to be
executed concurrently.

12 CONCURRENT PROGRAMMING AND OPERATING SYSTEMS

CHAPTER 1 SUMMARY

This chapter gave several examples of concurrency. Then it presented
reasons for using concurrent programming and methods of supporting it.
The following important vocabulary was introduced.

Process - an asynchronous activity such as the execution of a program by
CPU.

Processor - a hardware mechanism, such as a CPU, that executes instruc­
tions, one after another.

Procedure - a sequence of instructions to be executed by· a processor; some­
times called code.

Reentrant procedure - a procedure that can be executed by several
processes at the same time. It consists of pure code (no writeable
data) and each process provides its own data area.

Precedence chart - a diagram that gives the required ordering of several
activities.

Multiprogramming - having several programs active at the same time in a
computer system. (Each of these activities is a process.)

Time slicing - sharing CPU time among several processes by alternately giv­
ing each a short time interval (a slice) of time.

Compute bound - a job that does little input/output but uses a lot of CPU
time; an 1/0 bound job does the opposite.

Start 1/0 command - a command sent from a CPU (or other processor) to
request an operation by a device.

Interrupt - a signal sent from a device to a CPU (or other processor) to
indicate that a requested operation is complete. A clock may also
send an interrupt to a CPU. An interrupt causes the CPU to switch
to execute the operating system.

Trap or system call - a special instruction that a program can execute to
switch control to the operating system, for example, when request­
ing the next input.

CHAPTER 1 EXERCISES 13

Dispatching - giving the CPU to a job so the job can run.

Disabling and enabling interrupts - when a CPU has interrupts disabled, it
can not receive interrupts; they remain pending (queued by the
hardware) until the CPU is again enabled.

Running, ready and blocked - a process (or job) is running when it is actu­
ally using a CPU, ready when it would be using a CPU but none is
available, and blocked when it can not use a CPU because the pro­
cess is waiting, for example, for an 1/0 completion.

Monolithic monitor - a method of implementing an operating system; all
interrupts are disabled whenever any part of the operating system is
active. The operating system handles all input/output.

Kernel - a module that implements processes and provides them with a
mechanism for interprocess communication. If the kernel is imple­
mented by hardware or microprogramming then the software may
not need to de&! with interrupts, because device starting/completion
is done by the interprocess communication mechanism.

CHAPTER 1 BIBLIOGRAPHY

Hoare gives a brief survey of the function of operating systems.
Dijkstra's description of the organization of the T.H.E. system is a classic,
well worth reading. Holt's survey of program structures provides a catalog
of software structuring mechanisms, including monolithic monitors and ker­
nels.

Dijkstra, E.W. The structure of the T.H.E. multiprogramming system.
Comm. ACM 11,5 (May 1968), 341-346.

Hoare, C.A.R. Operating systems: their purpose, objectives, functions and
scope. In Operating Systems Techniques (C.A.R. Hoare and
R.H.Perrott, editors), Academic Press (1972), 11-19.

Holt, R.C. Structure of computer programs: a survey. Proceedings of the
IEEE 63, 6 (June 1975), 876-893.

14 CONCURRENT PROGRAMMING AND OPERATING SYSTEMS

CHAPTER 1 EXERCISES

1. Give a precedence chart that specifies the maximum concurrency for the
following program segment. Allow each sub-expression to be computed
separately. Be careful not to allow a variable to be assigned a value before
its old value is used.

k := i+7
j := 7-(5+(3*i))
i := j+(S*k)

2. Suppose a multiprogramming system is running one compute bound job
and one 1/0 bound job. Which of the jobs should be given priority for
using the CPU? Explain why.

3. In certain situations, the throughput of a computer system can be max­
imized by avoiding multiprogramming and running only one user job at a
time. Characterize these situations, taking into consideration the job mix,
types of jobs, types and number of peripherals and use of files.

4. As processors (microprocessors in particular) become cheaper, it
becomes desirable to decentralize certain operating system responsibilities,
moving them away from the CPU and out into channels, devices and termi­
nals. Characterize the types of computational responsibilities that can be
moved into each of those locations.

5. Consider a corp.puter system that supports two types of processes: sys­
tem processes and job processes. Each job process is controlled by a system
process. This manager process can suspend (put to sleep) and reactivate
(re-awaken) its job process. This results in a new process state that a
suspended job process enters, besides the usual three states (running, ready
and blocked). Draw the transition diagram showing how job processes can
change states.

6. Characterize the sorts of systems in which a monolithic monitor would
or would not serve as a good basis for an operating system.

7. Make a list of the visible and invisible interrupts that an executing user
job experiences.

8. In the T.H.E. system, if there is a hardware error in reading a memory
page, it is impossible for the page manager to notify the operator. Explain
why. The solution to this problem seems to be to switch the console
manager to level 2 and the page manager to level 3. Explain why such a
switch would have a heavy efficiency penalty.

9. Some procedures are "serially re-usable" but not re-entrant. This means
that the procedure cannot be used by two processes at once, but can be re-

CHAPTER 1 EXERCISES 15

used after a completed execution without refreshing the procedure. Give
examples of program constructs that cause this situation.

10. [E. Lazowska] In Chapter 5 you will be introduced to the problem of
the dining philosophers, a well known synchronization problem in which a
group of philosophers must cooperatively share forks in an attempt to con­
sume spaghetti. In the following problems we shall consider a more elegant
gastronomic enterprise, the Snooty Clam seafood restaurant.

(a) We begin our study of the Snooty Clam restaurant in the kitchen.
Earlier in this chapter, we showed how a pair of cooks can be viewed as two
processes sharing a common procedure (a recipe). Kitchen facilities (such
as the oven) and utensils (such as spoons) can be viewed as resources.

After spending a fortune to create the proper atmosphere in the din­
ing room, the owners of the Snooty Clam found themselves so strapped for
cash that they were only able to buy a single saucepan and wire whip. This,
of course, means that only one chef at a time can make sauce. The prob­
lem is compounded by the arrangement of the kitchen. All pots and pans
are hung against one wall, and all stirring implements against another. So
in order to acquire the resources required to make a sauce, a chef must
visit first one wall, then the other.

Consider the problems that might arise if two chefs simultaneously
decide to make sauce, but head for opposite walls in their quest for
resources. (Chefs are notoriously temperamental, and refuse to relinquish
an acquired resource until they have finished using it.) Devise an allocation
policy for the saucepan and wire whip that will prevent the problem you
have observed.

(b) The wine cellar in the Snooty Clam lies at the end of a long, nar­
row tunnel which, unfortunately, is not illuminated. After a recent colli­
sion that resulted in three broken bottles, the manager decided that only
one of the restaurant's four wine stewards should be allowed in the tunnel
at a time, although several can simultaneously use the cellar given that they
enter it via the tunnel at different times.

To implement this policy, the manager installed red lights above the
entrances at both ends of the tunnel. At each entrance is a switch that
turns on or off all these lights. Before entering the tunnel, a wine steward
checks to see that the light is off. If so, he first switches it on and enters
the tunnel. Upon emerging at the opposite end, he switches the light off.

The manager was very proud of this rather ingenious solution. Unfor­
tunately, though, during its second day of operation a collision occurred in
the tunnel. How?

16 CONCURRENT PROGRAMMING AND OPERATING SYSTEMS

(c) The Snooty Clam restaurant does not take reservations. The din­
ing room contains a single table seating twenty patrons. When space
becomes free, parties are seated in the order in which they arrived, except
that a party that cannot be seated in the available space is passed over.

What is the effect of this seating policy on large parties? If parties are
seated strictly in the order in which they arrive, how will this affect the util­
ization of the table?

Chapter 2

CONCURRENCY
PROBLEMS AND
LANGUAGE FEATURES

To solve problems in concurrent programming, we need a good nota­
tion for concurrent algorithms. This chapter presents a number of basic
concurrency problems and gives programming language features for dealing
with them.

SPECIFYING CONCURRENT EXECUTION

To use parallelism in programming we need to be able to specify two
or more concurrent activities. The following language feature is sometimes
used.

co begin
Stmtl
Stmt2
Stmt3

StmtN
coend

18 CONCURRENCY PROBLEMS AND LANGUAGE FEATURES

This specifies that the constituent statements can be executed in parallel, as
shown in the corresponding precedence chart. Of course, each of these
statements may actually be groups of statements. We can think of the
cobegin/end construct as creating N concurrent processes, each of which
must execute to completion before the creating process is allowed to con­
tinue.

There is another notation that can be used to initiate a new activity (a
process). It has this form:

FORK label FORK label.r---

label: stmt

Essentially, the fork statement is a goto statement which simultaneously
branches and continues on, as shown in the precedence chart. Fork can be
thought of as cobegin without coend. There are additional statements
called quit and join that allow the two branches of activity to merge. The
newly created activity that started at the specified label executes a quit
statement when it has completed its work.

FORK label

JOIN

label: stmt

QUIT

When the original activity, proceeding from the fork, needs to wait until
the created activity is complete, it executes a join statement. The process
executing join is blocked until the quit has been executed.

DISJOINT AND OVERLAPPING PROCESSES 19

We can use fork, join and quit to simulate cobegin/end, just as goto
and if statements can simulate a while loop. But cobegin/end is preferred
because it is better structured and leads to more understandable algorithms.

DISJOINT AND OVERLAPPING PROCESSES

When concurrent processes use no common data, they are said to be
di!ijoint (or independent). Here is a concurrent program to find the max­
imum of a, b, c and d.

1 co begin
2 ml : = max(a, b)
3 m2 := max(c, d)
4 coend
5 m := max(ml, m2)

Since statements 2 and 3 are disjoint, we have no difficulty understanding
the program.

When the parallel statements have overlapping data that is changed,
things can get confusing. Here statements 3 and 4 are not disjoint.

1 j := 10
2 co begin
3 Print j
4 j := 1000
5 coend

At first it appears that statement 3 will print 10, because j is set to 10 in
statement 1. But a closer inspection reveals that statement 4 changes j to
1000. If statements 3 and 4 are to be done simultaneously, will j be printed
as 10, or as 1000, or maybe as some other value? This presents a problem:
just what does parallelism mean when some processes change a variable
while others are using it?

The unfortunate answer to this question is that the results depend on
relative speeds, and in general we can not predict the speeds of processes.
Constructs such as cobegin/end make no guarantee about speeds. Kernels
that share time among processes do not control the precise timing of inter­
rupt signals. Hardware processors do not in general execute at precisely
defined rates. Even if we could determine the speed of a process for a
given execution, each successive execution might be different.

When the outcome of a computation depends on the speeds of
processes, we say there is a race condition, and that parts of the computation
are time critical. Operating systems use concurrency to max1m1ze
throughput and convenience; but they must be carefully designed to

20 CONCURRENCY PROBLEMS AND LANGUAGE FEATURES

prevent race conditions that could destroy the system or the results of
users' programs.

We will give two more examples of processes with overlapping data to
illustrate the danger of race conditions. Suppose one process, called the
observer, is responsible for observing and counting certain events; for
example, it may observe the number of jobs submitted to a computer
center. It executes this program:

Observer: loop
Observe an event
count : = count + 1

end loop

Another process, called the reporter, occasionally prints reports about the
observed events. The reporter executes this program:

Reporter: loop
Print count
count:= 0

end loop

As soon as the reporter prints the count of events, it sets the count to zero,
because the events have been reported.

The observer and reporter are overlapping in that they both use the
variable called count. This overlap causes a problem. Suppose that the
observer has increased count to 6 and the reporter prints 6. Suppose that
before the reporter sets count to zero, the observer increases count to 7.
Now suppose the reporter continues and changes count from 7 to O; the
unfortunate result is that an event goes unreported. In general, the
reporter may fail to report any number of events because increments to
count may occur between printing count and setting it to zero.

There is another problem in this example that is less obvious, and has
to do with the statement that increments count. An implementation of the
statement count : = count+ 1 may involve more than one machine instruc­
tion, such as:

LOAD COUNT
ADD 1
STORE COUNT

(Put COUNT in accumulator)
(Add 1 to accumulator)
(Store accumulator into COUNT)

When the observer process is executing this sequence, it may be overtaken
by the reporter. Suppose count is 15, and this value is loaded into the
accumulator. Then the reporter may print 15 and set count to zero. Next
the observer adds 1 to its accumulator and stores the result 16 into count.
The unfortunate result is that 15 events were reported, but count is left

DISJOINT AND OVERLAPPING PROCESSES 21

indicating that 16 events are yet to be reported.

From this example we conclude that when processes update shared
data, the results can be unpredictable and not at all what is desired. In the
next section we will show how to deal with this problem, but first we will
give another typical example of race conditions.

In operating systems there are often queues, for example, queues of
processes ready to use the CPU. Consider a singly linked queue:

NEXT NEXT

As shown this queue has two elements. To insert a new element e into the
queue, the following is executed:

node (e) .next : = first
first := e

This changes the queue to the following:

NEXT NEXT

22 CONCURRENCY PROBLEMS AND LANGUAGE FEATURES

Suppose that while e is being inserted, another process is trying to insert
element f by executing

node (f) .next : = first
first := f

Suppose the two processes simultaneously set node (e) .next and
node(f).next to first. Now suppose the variable first is set to f by one pro­
cess and then immediately re-set to e by the other. The resulting messed­
up queue has this form:

Unfortunately, element f has been lost; it cannot be found by following
links from first. This would be disastrous if. for example, element f
represented a job to be executed.

The race conditions given in these examples have the same disastrous
results whether the processes execute physically or logically in parallel. By
physically parallel we mean that each process has a processor (CPU) and
these are simultaneously running. When processes are implemented by
time slicing of a single CPU and only one process at a time can be running,
the processes execute logically in parallel. In the case of time slicing, race
conditions occur as a result of the unpredictable transfer of the CPU from
one process to another.

The solution to these race conditions is to make sure that only one
process at a time gains access to the shared data that is updated. Each of
these accesses occurs in a part of the program called a "critical section"; we
will now discuss methods of guaranteeing "mutually exclusive" access to
these critical sections.

CRITICAL SECTIONS 23

CRITICAL SECTIONS

As we have seen, when a process is updating variables, it is generally
unreasonable to allow any other process to access the same variables. The
required control of access can be accomplished by the mutexbegin/end con­
struct, as illustrated here:

Process Pl:
loop

Compute
mutexbegin

Access shared variables
mutexend
Compute

end loop

Process P2:
loop

Compute
mutexbegin

Access shared variables
mutexend
Compute

end loop

The mutexbegin/end construct, with its brackets mutexbegin and mutex­
end, guarantees that a process will have mutually e.xc:lusive access to the
sections of programs within the brackets. At a particular time, Pl or P2,
but not both, are allowed to execute the part of their program, called a criti­
cal section, within the brackets. A process is allowed to use several
mutexbegin/end constructs, but these cannot be nested.

A generalization of mutexbegin/end would have a parameter specify­
ing a particular set of shared variables. For example, we could have:

mutexbegin (v)
Access to shared variables in collection v

mutexend(v)

But we will keep this discussion simple by ignoring the parameterized con­
struct.

One of the fundamental problems in concurrent programming is how
to implement mutexbegin/end. Its two brackets must accomplish the fol­
lowing:

Mutexbegin. Must determine if there is any other process in a criti­
cal section: has another passed a mutexbegin but not the
corresponding mutexend? If so, the entering process must wait.
When no other process is in a critical section, the process proceeds
beyond mutexbegin, setting an indicator so that other processes
reaching a mutexbegin will wait.

Mutexend. Must allow a waiting process, if there is one, to enter its
critical section.

It seems easy enough to implement mutexbegin and mutexend. A flag
called occupied can be initialized to false to indicate that no process is in a

24 CONCURRENCY PROBLEMS AND LANGUAGE FEATURES

critical section. Then mutexbegin can be written as:

1 loop
2 exit when not occupied
3 end loop
4 occupied : = true

The flag called occupied is repeatedly tested until it is found to be false,
then it is set true and the process enters its critical section. Mutexend can
be written as:

occupied : = false

These implementations seem to accomplish our goal of allowing only one
process at a time into a critical section. But appearances are deceiving in
concurrent programming.

Our implementation is just plain wrong. Suppose process Pl tests
occupied in statement 2 and finds that it is false. At the same time, or very
shortly before or after, P2 may make the same test. Both processes, exe­
cuting in parallel, will conclude that occupied is false, will proceed to exe­
cute statement 4, and will enter their critical sections at the same time. In
the next section we will be more careful when we try to develop a solution
for the mutual exclusion problem.

MUTUAL EXCLUSION BY BUSY WAITING

In computer systems with more than one (hardware) processor, the
processors may occasionally need to have mutually exclusive access to cer­
tain data. When one processor is using the data, another processor wanting
to use the data must wait; this waiting can be accomplished by repeated
execution of a test to see when the critical section can be entered. This
repeated testing is called a busy wait and is clearly a waste of processor time.
This can be tolerated when the critical sections are used only a small frac­
tion of the time, say five per cent, or when processor time is not considered
particularly valuable.

Sometimes busy waiting is necessary; one of the prime examples is in
a multiple CPU system. In such a system there is usually a set of queues,
including the ready queue, that maintains the status of processes. The ker­
nel manages these queues, and to keep the queues from becoming tangled,
only one CPU at a time should enter the kernel. The kernel should be
designed to be very fast so that a negligible amount of processor time is lost
via busy waiting. In the rest of this section we show how busy waiting and
a property of memory called "interlock" can be used to guarantee mutual

MUTUAL EXCLUSION BY BUSY WAITING 25

exclusion.

There is special circuitry that controls the accessing of the memory by
processors. This circuitry makes the memory act like a device that receives
commands from the processors to fetch and store words or bytes; this
memory device carries out only one command at a time. (Systems with
multiple banks of memory may support memory interleaving, in which each
bank carries out only one command at a time.) This "one command at a
time" access is called memory interlock.

If one processor is the CPU and the other is a channel (an
input/output processor) then the channel is usually given priority by the
memory circuitry; we say the channel steals cycles from the CPU because
the CPU must wait (and lose memory cycles) while the channel transfers
data to or from the memory.

In the absence of memory interlock we cannot be sure that concurrent
execution of the assignment statements j:=lO and j:=lOOO will leave j as
either 10 or 1000; j might end up as a random bit pattern. With memory
interlock, j ends up as either 10 or 1000, but we may not be able to predict
which.

Given memory interlock we can implement mutexbegin/end in the
following manner. We initialize a shared variable called turn to either 1 or
2. We use separate local copies of myTurn and hisTurn for Pl and P2; for
Pl they are initialized to 1 and 2, and for P2 to 2 and 1, respectively.
Mutexbegin is implemented as:

loop
exit when turn = myTurn

end loop

And mutexend is:

turn : = hisTurn

This "solution" has an awful shortcoming; it requires that Pl enter its
critical section, then P2, then Pl and so on. If P2 is ready to use its critical
section first, too bad! It must wait until Pl catches up, and this strict alter­
nation continues.

We will now give an implementation of mutexbegin/end that avoids
strict alternation, but still uses busy waiting. We will also use a shared vari­
able called turn that is initialized to either 1 or 2 (to myTurn or hisTurn),
and shared variables called need(l) and need(2) that are initialized to false.
Each process has local variables me and other; these are initialized to 1 and
2 for the first process and to 2 and 1 for the second. This implementation

26 CONCURRENCY PROBLEMS AND LANGUAGE FEATURES

is called Dekker's algorithm, after Dekker, the Dutch mathematician who
devised the original version of it.

mutexbegin:
need(me) :=true
turn : = hisTurn
loop

exit when not need(other) or turn = myTurn
end loop

mutexend:
need(me) :=false

When critical sections are not being used heavily, mutexbegin usually
finds that need(other) is false, signifying that the other process has not
requested entry. Entry into the critical section is therefore immediate, with
no repetitions of the loop. The variable turn is used to decide which pro­
cess is to enter only when both processes have requested entry.

The logic of Dekker's algorithm is subtle and can be appreciated by
attempting to program another solution. The algorithm can be generalized
to handle any number of processes, but becomes even harder to under­
stand.

The main point about Dekker's algorithm is that it demonstrates that
with only memory interlock and busy waiting, mutual exclusion can be
guaranteed. The algorithm satisfies the following requirements for mutual
exclusion.

(1) Only one process at a time is allowed in a critical section.

(2) A process will be allowed to enter its critical section if no
other process is using a critical section.

(3) No set of timings can keep a process waiting indefinitely as it
tries to enter its critical section.

We now demonstrate that Dekker's algorithm meets these requirements.
Point (1) would be violated if both processes somehow got into their critical
sections, which would set both need(me) and need(other) to be true. Both
could not enter by being in their testing loops at the same time, because
"turn" can favor only one. So the second process must have set turn to be
hisTurn before entering the testing loop, in which case the test fails and
mutual exclusion is maintained! So point (1) is satisfied.

Point (2) is clearly satisfied because the entering process finds
neect(other) =false. Point (3) can be violated only if a process is blocked
forever in its testing loop. In this event, the other process is necessarily
doing one of three things: (a) not trying to enter, (b) cycling through the

MUTUAL EXCLUSION BY BUSY WAITING 27

testing loop or (c) repeatedly entering and leaving critical sections. Case
(a) cannot cause blocking because need(other) is false. Case (b) is impos­
sible because "turn" necessarily selects one process to enter. Case (c) can­
not continue because the other process will set turn to favor the first pro­
cess. So point (3) is satisfied.

There is a simpler implementation of mutexbegin/end, given that the
processor has an instruction that both tests and sets (modifies) a word. For
example, if the processor has a condition code called oldFlag, the operation
could be:

1 TestAndSet (flag, oldFlag):
2 oldFlag : = flag {Test the value of flag}
3 flag : = true {Set the value of flag}

Lines 2 and 3 must be carried out by a single, uninterruptable machine
instruction. If there are multiple processors, memory interlock must
prevent another processor from accessing the flag between the test (line 2)
and the set (line 3). Note that each processor has its own condition code
(oldFlag).

We use a shared variable called occupied that is initialized to false and
we implement mutexbegin/end as follows.

mutexbegin:
loop

{See if occupied is true; set it false}
TestAndSet(occupied, wasOccupied)
exit when not wasOccupied

end loop

mutexend:
occupied : = false

Not only is this solution simpler than Dekker's algorithm, it also handles
any number of processes. Even when there is no instruction called "test
and set", there may be an instruction with the desired properties. For
example, we may be able to use a DECREMENT instruction which sub­
tracts one from a word and sets the condition code if the result is negative.

In this section we used busy waiting to solve the mutual exclusion
problem. We developed an unsatisfactory solution that implied strict alter­
nation among processes entering a critical section, and two good solutions:
Dekker's algorithm and the test-and-set method. Generally, busy waiting is
an unacceptable waste of CPU time. Even when each process has a CPU
dedicated to it, and waiting necessarily wastes CPU time, busy waiting may
be impractical. The problem is that busy waiting can saturate the electronic

28 CONCURRENCY PROBLEMS AND LANGUAGE FEATURES

path to memory; this memory contention slows down all the CPUs. Busy
waiting can be avoided by using special operations called synchronization
primitives.

SYNCHRONIZATION PRIMITIVES: SEMAPHORES

Constructs such as cobegin/end and mutexbegin/end can be thought
of as primitive operations (or primitives) because they have a simple meaning,
and because we can use them without knowing their implementation. One
of the best known sets of primitive operations for process synchronization is
based on special variables called semaphores.

In a programming language, we might declare a semaphore called s
this way:

vars: semaphore initial(l)

The only valid operations on semaphores are P (sometimes called Wait)
and V (sometimes called Signal). These operations were developed by
Dijkstra; P and V are abbreviations of the Dutch words for waiting and sig­
naling. The two semaphore operations allow a process to block itself to wait
for a certain event and then to be awakened by another process when the
event occurs. P and V have the following meaning.

P(s): Wait until s > 0 and then subtract 1 from s.
V(s): Add 1 to s.

Both P and V must be done indivisibly. The P operation potentially blocks
the executing process and V potentially wakes up a blocked process. The
process executing the V operation is not blbcked and continues execution.

A semaphore can be thought of as a bowl to hold marbles. The
numeric value of the semaphore corresponds to the number of marbles in
the bowl. The initial attribute in the semaphore's declaration gives the ori­
ginal number of marbles in the bowl. Each executed V operation puts a
marble into the bowl. Each executed P operation attempts to remove a
marble. If none is available, P causes the process to wait. The process
waits until a marble is available, removes the marble, and continues execu­
tion.

Typically, semaphores are implemented by a software kernel. Some
systems, notably the VENUS operating system, have a kernel that is imple­
mented in micro-code. When a process becomes blocked by the P opera­
tion, the kernel allocates the CPU to another process that is ready to run.
This allocation avoids busy waiting and so avoids wasting CPU time.

SYNCHRONIZATION PRIMITIVES: SEMAPHORES 29

Although busy waiting is not generally practical, we will show how it
can be used with mutexbegin/end to implement P and V. In the following,
local (separate) variables called blocked are used by each process.

V (s): mutexbegin
s := s+ 1

mutexend

P(s): begin

end

var blocked: Boolean : = true
loop {Busy wait}

mutexbegin
ifs > 0 then

s := s - 1
blocked: =false

end if
mutexend
exit when not blocked

end loop

Note that the test to see ifs is greater than zero must be in the same criti­
cal section with the statement that decrements s; otherwise two P opera­
tions might erroneously decrement s when its value is found to be 1. This
would correspond to two processes erroneously grabbing the same marble
from the semaphore bowl.

Given that semaphores are available - and that we can assume they
have been implemented by the kernel - we can use them for synchronizing
processes. If two processes want to update the same variable without
interference, they can use a semaphore, which we will call mutex.

var mutex: semaphore initial (1)

Before updating the critical variable, a process executes:

P(mutex) {Implements mutexbegin}

After the update, the process executes:

V (mutex) {Implements mutexend}

The semaphore called mutex originally "contains a single marble" because
of initial (1) in the declaration. The P operation removes the marble and V
puts it back. When a process is updating the critical variable, the marble is
gone, so any further P operations are blocked until the update is complete.

30 CONCURRENCY PROBLEMS AND LANGUAGE FEATURES

Notice that this implementation shows that semaphores can be used to
solve the mutual exclusion problem; If there are several independent criti­
cal variables (or critical data structures or resources) then a semaphore can
be declared for each one to provide separate mutually exclusive access.

Semaphores can also be used to provide processes with the
block/wakeup facility, which allows each process to wait until certain events
occur. For example, suppose process R must wait until process Q has com­
pleted a certain action.

Q:Compute
Wakeup process R
Compute

R:Compute
Block until awakened by Q
Compute

The wakeup and block operations can be supported by having a private
semaphore for each process, provided by a vector privateSem of semaphores
initialized to zero. Each process has a distinct process number, and this is
held in the process's local variable called me. The block/wakeup operations
are implemented as:

Wakeup (processNo):
V (privateSem (processNo))

Block:
P (privateSem (me))

Each private semaphore corresponds to a bowl that initially has no marbles
in it. The wakeup operation deposits a marble in the bowl, and the block
operation attempts to remove a marble. Notice that this implementation
works in our example when Q does the wakeup before R blocks and as well
when R blocks before Q does the wakeup.

We gave implementations of block/wakeup and mutexbegin/end that
use semaphores requiring only the values 0 and 1, corresponding to zero or
one marbles. Such semaphores are called binary semaphores. They are
somewhat simpler than general or counting semaphores, whose values can be
any non-negative integer.

Block/wakeup and mutexbegin/end are sufficient by themselves to
synchronize processes in an operating system. Since these operations can
be implemented by binary semaphores, binary semaphores are also
sufficient. Although binary semaphores are sufficient, they are not particu­
larly convenient or well structured; for this reason this book will concen­
trate on a more sophisticated synchronization method based on monitors.
But before introducing monitors, we will complete our discussion of syn­
chronizati_on primitives such as semaphores.

SYNCHRONIZATION PRIMITIVES: SEMAPHORES 31

To illustrate the use of binary semaphores in solving synchronization
problems, consider a set of processes that share a resource having several
identical units. The units might be, for example, tape drives or data
buffers. When a process needs a unit (or another unit) of the resource, it
executes Request, and when done with a unit, it executes Release. The
Request operation blocks the process when all the units are already allo­
cated. To implement these operations we will use a variable called avail
that is initialized to the total number of units, is decremented by Request,
and is incremented by Release. Here is the implementation:

Request:
mutexbegin {Implemented by P(mutex)}

blocked:= (avail=O)
if blocked then

Put integer me on queue to wait for a unit
else

avail : = avail - 1
end if

mutexend {Implement by V (mutex)}
if blocked then

Block {Implemented by P (privateSem (me))}
end if

Release:
mutexbegin {Implemented by P (mutex)}

avail:= avail + 1
Determine u such that process u is waiting for a unit
if waiting process u exists then

end if

Remove u from queue waiting for a unit
avail : = avail - 1
Wakeup(u) {Implemented by V(privateSem(u))}

mutexend {Implemented by V (mutex)}

This implementation can clearly be done with binary semaphores
because the only synchronization operations used are for mutexbegin/end
and block/wakeup. Interestingly enough, this implementation demonstrates
that counting semaphores can be provided using binary· semaphores; this
follows from the observation that Request and Release behave just like P
and V and the value of avail corresponds to the value of a counting sema­
phore. If we had counting semaphores available, the Request and Release
operations could be implemented simply as P(r) and V(r) where r is a
semaphore initialized to the total number of units.

32 CONCURRENCY PROBLEMS AND LANGUAGE FEATURES

OTHER SYNCHRONIZATION PRIMITIVES

There are other primitive operations, besides P and V, that have
roughly the same capabilities. For example, the lock and unlock primitives
are used in some systems to guarantee mutually exclusive access to a partic­
ular object or data structure. A programming language could provide
"gates"; for example, a declaration might appear as:

var g: gate

We can consider that a shared object is surrounded by a fence with a gate in
it. Before using the object, a program should lock its corresponding gate,
and afterwards should unlock it:

Lock(g) {Similar to mutexbegin}
Unlock(g) {Similar to mutexend}

These two primitive operations are like the parameterized version of
mutexbegin/end. A variation of lock/unlock used in IBM 360/370 operat­
ing systems is called enqueue/dequeue; these allow specification of either
shared or exclusive access. Exclusive access is just what we have already
discussed. Shared access means many processes at a time can access the
object, typically for read-only usage. Enqueue/dequeue prevent overlap of
shared and exclusive access.

Lock/unlock and enqueue/dequeue provide a generalized version of
mutexbegin/end. Other primitives provide a facility similar to
block/wakeup. These are often based on synchronization variables called
"events", which are declared in PL/I as:

DECLARE E EVENT;

The declaration implicitly initializes E to false. In PL/I the following state­
ments operate on events.

WAIT(E);
COMPLETION(E) =TRUE;
COMPLETION (E) = FALSE;

Blocks process until E is true
Sets event E to true
Sets event E to false

Events in PL/I are different from semaphores in that the wait operation
does not change the value of the event; by comparison, the P semaphore
operation decrements a semaphore. The lack of change of the event's
value by wait is inconvenient in the common case of repeated use of an
event; this situation requires explicit resetting of the event to false after the
process wakes up, and this must be done with great care to avoid losing the
next wakeup signal.

Events can be used in PL/I to provide a facility similar to
fork/quit/join. A new process can be started up by executing:

MESSAGE PASSING 33

CALL P EVENT (E);

This is like a fork operation and it starts up a new "child" process executing
procedure P. The calling process can be thought of as the parent. When
the child process has completed its job, it can terminate by executing an
EXIT statement. This sets E to true, so the parent can wait for the comple­
tion by executing:

WAIT(E);

The child's EXIT statement corresponds to QUIT and the parent's
WAIT(E) corresponds to JOIN. As we will see in a later chapter, the Unix
operating system supports this kind of WAIT and EXIT.

We will now leave primitive synchronization operations, as typified by
P and V, to consider more sophisticated interprocess communication
methods such as message passing. In some operating systems a method
such as message passing is directly supported by the kernel; in others, the
kernel supports only primitive synchronization operations and these may be
used to implement the more sophisticated operations.

MESSAGE PASSING

One of the principal uses of synchronization primitives is to allow
processes to exchange information. This fact suggests that these primitives
should be generalized to become communication operations that provide
both synchronization and data transmission.

The Send and Receive operations are such mechanisms. A process
executes Send to pass a message (some information) to another process; the
other process accepts the information by executing Receive. For example,
suppose a user process wants to have the disk manager read a certain track
from the disk. The user might execute:

Send command to disk manager

The command specifies the desired disk input/output operation. The disk
manager executes this program:

loop
Receive user command {Wait for next command}
Start up the disk to carry out the command
Wait until the disk is finished with the command
Send user the status of command

end loop

A more complicated manager might accept and queue several requests
while the disk is busy. When the user program wants to wait until the

34 CONCURRENCY PROBLEMS AND LANGUAGE FEATURES

command is complete, it executes:

Receive status of command

This blocks the user until the command is complete and the manager sends
the status.

There are many different types of Send and Receive operations.
These differences arise from the various methods of storing messages and
routing them from sender to receiver. In most systems the sender of a
message continues executing after executing Send. This implies that the
message must be stored until received in some special place, and this place
is called a mailbox. In a programming language, mailboxes called c and s
might be set up by:

var c: mailbox
var s: mailbox

The mailbox called c could hold commands and s could hold status.
Assuming each process has local variables called command and status, the
sends and receives of our example could be:

Send command to c {User puts command in mailbox c}
Receive command from c {Manager gets command}
Send status to s {Manager puts reply in mailbox s}
Receive status from s {User gets reply}

The programming language TOPPS has constructs that are equivalent to
this type of send/receive.

One of the problems with mailboxes is deciding upon an appropriate
size for messages. The simplest solution is to force all messages
throughout the system to have the same length. The RC4000 operating
system takes this approach and uses a system-wide length of 24 characters.
Messages that are shorter than 24 characters must be padded out to the
required length. Some "messages", such as input/output transfers, will be
too long to fit in a mailbox. This difficulty is called the large message prob­
lem; it is solved by using messages to transmit control information (such as
input/output commands) and using a separate mechanism to transfer the
large amount of data.

The mailbox scheme designed for the SUE/360 operating system is
extremely general. It allows multiple-slot mailboxes, which can hold several
messages (one per slot). Mailboxes are created dynamically and the size of
a mailbox's slots are specified at creation. The slots are arranged so that
messages are received in the order they are sent (first-in-first-out). Each
mailbox has an input port for accepting messages, and an output port for
transmitting messages. Each process has a number of input ports and a
number of output ports, attached to corresponding mailbox ports. This

MESSAGE PASSING 35

rather elaborate scheme was never implemented. Instead, a simpler
mechanism was adopted; the adopted scheme is similar to monitors, which
will be presented in detail later.

The Unix operating system provides an elegant form of mailboxes.
These are called "pipes" because they provide a channel that streams data
from one process to another. Suppose a person types the command "ls" on
a Unix console. The "ls" stands for "list" and causes the names of the files
in the user's directory to be printed by the console. The flow of informa­
tion is from the directory via the "ls" program to the console:

I directory r----0---1 console I

The user can specify that the list of names is to appear on the offiine printer
instead of the console by typing:

ls I opr

"Opr" is a program that takes a stream of information and prints it. The
symbol "1' specifies that a pipe is to channel the output of "ls" so it becomes
the input to "opr". The flow of information now becomes:

directory printer

In Unix all transmission to/from devices, files, and pipes is done by a
standard set of operations called read and write. The number of bytes to be
transmitted is specified in each operation. These read/write operations can
be considered to be special forms of receive and send. They provide a
powerful software tool by allowing software modules to be connected easily
in various configurations. Each module is written without consideration of
whether its input or output is to or from a device, file, or process. Later
chapters discuss Unix and its pipes in more detail.

Whenever one process produces a sequence of outputs that is used by

36 CONCURRENCY PROBLEMS AND LANGUAGE FEATURES

another process as input, we say there is a producer/consumer relationship. In
the Unix example, the "ls" program produces lines that are consumed by
the "opr" program. In general, mailboxes and message passing are used to
facilitate such relationships.

There are some simplifications that can make message passing more
efficient than is possible for an elaborate scheme such as that proposed for
the SUE/360 operating system. For example, the system may support only
single-slot mailboxes; this simplifies the administration of mailboxes, but
decreases the ability of the mailboxes to provide buffering against differing
speeds of the sender and receiver. Ultimately, all the slots of a mailbox can
be eliminated, leaving only a "zero-slot" connection between the processes.
In this arrangement if the Send occurs first, the sender is blocked until the
Receive occurs; then the transmission of the message takes place and both
processes are allowed to proceed. Conversely, if the Receive occurs first,
the receiver is blocked until the Send occurs. Another simplification is to
shorten all messages to zero characters (to null messages) and to use Send
and Receive only for synchronization - not for communication. When this
is done, receive and send revert to being synchronization primitives similar
to P and V.

Message passing has been used as a structuring tool for handling asyn­
chronism in various operating systems, notably the RC4000 system and the
Thoth system. However, unless great care is taken, the Send and Receive
operations are too slow, commonly requiring on the order of 1000 machine
instructions each. Besides, mailboxes tend to impose a network structure
on an operating system, with each process being a node connected by mail­
boxes to other nodes. Such a network does not encourage the hierarchical
organization of an operating system.

THE BLOCKING SEND

Message passing can be simplified if the sending process is blocked
until it receives an answer to its message. The idea is to combine Send and
Receive into a new operation, which we will call BlockingSend. In terms of
our example of a user process that sends a request to the disk manager, the
user executes

BlockingSend command, status to manager

This sends the command as a message to the manager; the user process is
blocked until the manager sends back a message giving the status.

The manager executes the same program as before, but now we re­
name its Receive as Accept, and its Sen,d as Reply:

THE RENDEZVOUS 37

loop
Accept command {Wait for next command}
Start up disk to carry out command
Wait until the disk is finished with the command
Reply with status

end loop

The "blocking send scheme" eliminates Send and Receive and replaces
them by the three new operations: BlockingSend, Accept and Reply.
Accept can only receive a message sent by BlockingSend, and Reply can
only answer a message received by Accept.

This scheme offers various advantages. A process that initiates a
conversation (by BlockingSend) cannot start a new conversation until it
receives a reply. Therefore we can allocate the storage for each message
and reply as a part of the initiating process's data. This answers several
problematic questions about how to implement mailboxes, such as how
many slots to provide and how large to make slots. Essentially, the mes­
sage and reply are parameters to the procedure BlockingSend. Another
advantage of the scheme is that it is easy for the manager to know where to
send its reply. The reply obviously goes back to the sender, and the
sender's address can be implicitly included as a part of the message.

THE RENDEZVOUS

The Ada language takes the blocking send scheme a step farther with
its language construct called the "rendezvous". In Ada, a process that
wishes to behave as a manager has "entry points" corrresponding to each
kind of request that it is willing to carry out. Our disk manager accepts
only one kind of request; its only entry point could be declared by:

entry DiskRequest (command: in CommandType,
status: out StatusType)

The keyword "in" means the command comes into the manager and "out"
means the status is passed back out.

To request a disk operation, the user executes:

DiskRequest (command,status)

This appears to be a procedure call, and behaves like one in that the caller
is blocked until the requested action is complete. The manager now has the
form:

38 CONCURRENCY PROBLEMS AND LANGUAGE FEATURES

loop
accept DiskRequest(command: in CommandType,

status: out StatusType) do

end

Start up the disk to carry out command
Assign result to "status"

end loop

This loop contains an "accept" block of the form:

accept ... entry name and parameters ... do
... carry out request...

end

The first line of the block, from "accept" to "do", has the same meaning as
our previous Accept operation. But now we do not have a Reply operation
because there is an implicit completion of the request when we reach the
"end" of the accept block. We say the user has a "rendezvous" with the
manager; the user process remains blocked from the time it executes
DiskRequest until the manager reaches the "end" of the accept block. The
manager is blocked at "accept" until the user executes DiskRequest. This is
similar to the BlockingSend scheme except that now the effect of Reply is
syntactically attached to the keyword "end".

One obvious difficulty with the rendezvous is that a manager does not
in general wish to reply to requests in the same order in which they are
received. For example the manager may wish to receive several requests
and order them to optimize disk performance; the requests will not be com­
pleted in FIFO order. Unfortunately, Ada's accept blocks imply FIFO ord­
ering.

To write a manager in Ada that re-orders its requests requires an
involved program. The manager has an entry that accepts requests, but
immediately replies, telling the user to submit a new request to another
entry point. The user is queued at the other entry point while the manager
carries out the request. The manager must keep track of these pending
requests, and must eventually rendevous with waiting users at these other
entry points.

A difficulty with blocking sends and with rendezvouses is that the
manager may wish to conditionally accept a request, or possibly to re-queue
a request that cannot be immediately handled. Some versions of blocking
send schemes allow re-queueing. Ada supports conditional rendezvouses
by means of a "select" statement that resembles an elaborate "case" state­
ment:

COMMUNICATING SEQUENTIAL PROCESSES 39

select
when ... Boolean expression ... = >

accept ... entry name and parameters ... do
... carry out request...

end

when ... Boolean expression ... = >
accept ... entry name and parameters ... do

... carry out request...
end

end select

This "select" statement contains several "accept blocks" each of which is pre­
ceded by a "guard" contained in the form:

when ... Boolean expression ... = >
The manager executes a select statement to conditionally accept requests.
The Boolean expressions (guards) are evaluated in random order. Each
one that is true allows its corresponding "accept" to be executed, given that
a user process is attempting to rendezvous at that entry point. Only one of
the accept blocks will be executed.

The idea of a "guard" to implement conditional acceptance of mes­
sages was introduced in "communicating sequential processes", which will
now be described.

COMMUNICATING SEQUENTIAL PROCESSES

Hoare introduced a notation called CSP (communicating sequential
processes). The notation is intended to facilitate the combination of con­
current algorithms into larger programs. CSP uses a blocking send, whose
form is:

processName ! message

The executing process sends a message to the named process, and is
blocked until the message is received.

The receiving process executes a "receive" operation of the form:

processName ? message

The receiving process is blocked by this statement until the sender executes
the "!" statement.

The scheme is similar to an Ada rendezvous between sending and
receiving processes. However, it is different from a rendezvouz in that the

40 CONCURRENCY PROBLEMS AND LANGUAGE FEATURES

sender is unblocked as soon as the message is transmitted to the receiving
process. It is also different in that a message is sent to a process rather
than to an entry point of a process.

Message passing in CSP uses a "zero slot" mailbox, meaning that no
storage is necessary to store the message between the time it is sent and
received. This is because the message is copied directly from the sender's
storage to the receiver's storage.

The CSP notation uses special characters, such as [, instead of key­
words such as "ir'. To give an idea of how CSP is used, we will give an
example process. This process reads characters from a process called "west"
and writes characters to a process called "east". The stream from "west" is
simply copied to "east", except that each pair of adjacent asterisks is
translated to a single "up arrow" character. The CSP notation is given on
the left and more traditional notation is given on the right.

*[loop
west?c ->
[c:¢asterisk ->

east!c
lc=asterisk ->

west?c
[c:¢ asterisk ->

east!asterisk;
east!c

I c =asterisk ->
east!upArrow

Receive c from west
if c not= asterisk then

Send c to east
else

Receive c from west
if c not= asterisk then

Send asterisk to east
Send c to east

else
Send upArrow to east

end if
end if

end loop

In CSP, a "guard" appears between [and ->; this guard determines the set
of alternatives which can be executed. For example, on the second line,
"west?c" is a guard which blocks execution until a character is received
from the "west" process.

One difficulty with the CSP scheme is that messages must be sent to
particular processes. Consider a manager process that serves several custo­
mer processes. Any message from a customer process to the manager pro­
cess must include the customer process's name. Otherwise the manager
would not know what customer to reply to.

We now consider a different scheme, called monitors, that overcomes
many of the shortcomings of message passing.

MONITORS 41

MONITORS

The concept of a monolithic monitor, discussed in Chapter 1, can be
generalized into a programming language feature for handling synchroniza­
tion. The feature is called a monitor and provides convenient facilities for
guaranteeing mutual exclusion and for blocking and waking up processes.
We will now give an introduction to monitors; later, in Chapter 4, we will
cover monitors in detail as a feature of the language Concurrent Euclid.

Previously the lock/unlock synchronization primitives were described
in terms of a fence around critical data; a gate in the fence controls access
to the data. The code executed between lock and unlock corresponds to
the critical section for that particular data. A monitor can also be thought
of in terms of a fence around critical data. One difference from lock/unlock
is that all sequences of statements that manipulate the data are collected
and moved inside the fence. The fence has several gates, one correspond­
ing to each sequence of statements. Each of these sequences becomes a
special purpose procedure called an "entry". This means that all the critical
sections for a particular set of shared data are collected into one place.

Whenever one of these entries is invoked, exclusive access to the
shared data is automatically provided, so only one process at a time is
allowed inside the enclosure. The enforcement of mutual exclusion is
implicit: the programmer needs only to invoke the entry. Given that moni­
tors are a construct in a high level language, it is up to the language transla­
tor to generate code to implement mutual exclusion.

Monitors provide a block/wakeup facility in the following way. If a
process enters a monitor and finds that a required condition (such as the
availability of a free resource) is not true, it executes a wait statement.
This removes the process from the monitor, blocks its progress, and places
it on a queue waiting for the condition to become true. When another pro­
cess enters the monitor and finds the condition to be true, it executes a sig­
nal statement that removes a waiting process (if there is one) from the
condition's queue and wakes it up.

The following illustration shows a monitor with three gates, for entries
E, F and G, and two conditions, C and D. There is one process, PS, inside
the enclosure; PS has entered gate E to access the critical data. Processes
Pl and P2 are blocked at gate E and P4 at gate G; these three processes
must wait until no process is inside. Processes P3 and P6 have executed
wait statements for condition C. Condition D currently has no processes
waiting for it.

42 CONCURRENCY PROBLEMS AND LANGUAGE FEATURES

Fence

@®il Entry E ® Condition C fl§{§
I I
D Entry F Condition D n
I I 8D Entry G Waiting n

Signalers lJ

~~~~~~~~~~~--/ 

If process P5 now leaves the monitor, one of the processes Pl, P2 or P4 
will be allowed to enter. If, instead, P5 executes a signal statement for con­
dition C, one process, either P3 or P6, will be allowed to enter. Assuming 
P3 enters, the situation changes to this: 

Fence 

®®fl Entry E 

I 
fl Entry F 

I 
(§) n Entry G ®> 

Condition C fl® 
I 

Condition D fl 
I 

Waiting nQ 
Signalers lJ~ 

We are assuming that P3 was in entry G when it executed a wait for condi­
tion C. The signal by P5 causes P3 to continue executing in entry G. 
Since only one process at a time is allowed inside the enclosure, P5 is 
forced to step outside while other processes are inside. If P3 next signals 
condition C, then P6 enters the enclosure and P3 steps out to join P5. If a 
process signals a condition that has no processes waiting for it, such as D, 
then nothing happens (good or bad). However, the signaling process may 
temporarily step out of the enclosure even when there are no waiting 
processes. 



THE DEADLOCK PROBLEM 43 

In Hoare's formal definition of monitors, he assumes that the critical 
data for each monitor has associated with it a consistency criterion. This 
criterion is called an invariant, or I for short, and means that the data 
should be accurate and up-to-date. For example, the critical data used in 
allocating a particular resource should accurately represent the current 
status of the resource. A process enters the monitor to test or update the 
critical data, but must always leave the data so it corresponds to the 
resource's current status. When the monitor is created, the initial status of 
the resource is recorded in the critical data, so the invariant I is initially 
true. Before a process leaves an entry or signals a condition, it must make 
sure that the critical data is consistent and up-to-date, so I is left true. As a 
result, any process that enters the monitor knows that I is true, and can use 
the critical data knowing that it is consistent and up-to-date. The require­
ment for consistent critical data is easy to attain with monitors, and conse­
quently monitors are a useful and understandable mechanism for dealing 
with concurrency. 

This brief introduction to monitors is intended to give the general 
idea of how they are used. Details about monitors, as supported by the 
Concurrent Euclid language, are covered in later chapters, where it is 
shown how monitors are a convenient feature for structuring operating sys­
tems. 

Monitors have been used as the basis of the SUE/11 operating sys­
tem; this is a small special purpose system used to run PL/I subset (SP/k) 
jobs on a PDP-11 minicomputer. Compilers have been implemented that 
support the Pascal language augmented by monitors. The most notable 
extended versions of Pascal are called Concurrent Pascal, Modula and Pas­
cal Plus. Interesting special purpose operating systems have been written in 
Concurrent Pascal and used on PDP-11 minicomputers. Tunis, which is an 
operating system that is compatible with Unix, has been written using mon­
itors as supported by the CE language; this is described in a later chapter. 

We have discussed mutual exclusion, the block/wakeup facility, and 
message passing as fundamental problems and constructs in concurrent pro­
gramming. We will now consider another fundamental concurrency prob­
lem: deadlock. 

THE DEADLOCK PROBLEM 

In concurrent programming, a process sometimes must wait until a 
particular event occurs. If the event takes place and the waiting process is 
awakened, then there is no problem. But if the event never occurs, the 
process will be blocked forever! We say a process is deadlocked when it is 



44 CONCURRENCY PROBLEMS AND LANGUAGE FEATURES 

waiting for an event that can never occur. 

A simple example of deadlock can occur in a system with two 
processes, Pl and P2, and two resources, Rl and R2. Suppose process Pl 
acquires resource Rl and P2 acquires R2. Then Pl requests R2. Since R2 
is already allocated, Pl is blocked until R2 becomes available; presumably 
R2 will eventually be released by P2. But now P2 requests resource Rl. 
Since Rl is already allocated, P2 is blocked until Rl becomes available. 
The situation is illustrated in this diagram. 

Allocation Request 

We are assuming that a resource cannot be pre-empted from a process -
which means that once a resource is acquired by a process, it will not 
become available to another process until the acquiring process releases it. 
The result is that the cycle of waiting conditions illustrated in the diagram 
can never be satisfied. Processes Pl and P2 are deadlocked. They will 
remain blocked until special action is taken by an "external force" such as 
the operator or the operating system. 

Unfortunately, not all deadlocks are as simple as this example. More 
complex cases can arise when there are many processes and many 
resources. The blocking that results in a deadlock can arise from any of the 
synchronization operations that allow processes to wait; for example, the 
semaphore P operation, the Lock operation, the Receive operation, and 
attempting to enter a monitor. 

In operating systems, deadlocks can be expensive or disastrous. We 
will give two examples that are taken from production operating systems. 
The first example involves spooling, which means temporarily storing input 
and output records on disk, to provide buffering for devices such as card 



DETECTING DEADLOCK 45 

readers and printers. In spooling systems, deadlock can occur due to com­
petition for disk space. The problem occurs when the space becomes com­
pletely filled with input records for jobs waiting to execute and output 
records for jobs not finished executing. If there is no way to recover the 
space from a partially executed job (and there is not in many systems), 
then the only way to recover from such a deadlock is to restart the system. 
A crude but usually effective solution to this problem is to prohibit the 
spooling of new jobs when too much spooling space is occupied, say, mere 
than 80%. 

The second example of deadlock can easily be caused by a hostile 
user, given that the system supports PL/I with multitasking (concurrent 
programming). The following four-line PL/I program does the trick. 

REVENGE: PROCEDURE OPTIONS(MAIN,TASK); 
DECLARE(E) EVENT; 
WAIT(E); 
END; 

This program does nothing but wait for an event that will never occur. The 
user will not be charged for CPU or I/O because the program uses neither. 
However, any resources allocated to this program, such as the memory it 
occupies, will remain idle until the deadlock is detected and removed,· 
either by the operating system or by a keen-witted operator. The next sec­
tion explains how certain types of deadlock can be automatically detected. 

DETECTING DEADLOCK 

In a multiprogramming system, users' jobs compete for the available 
resources. For example, two jobs may simultaneously need to use a tape 
drive. Resources such as tape drives are called re-usable, because after they 
have been used by one process, they can be re-used by another process. In 
this section we will show how deadlock can be detected when processes 
share re-usable resources. Each re-usable resource has the following pro­
perties: 

There is a fixed total number of identical units of the resource. 
Each unit of the resource is either available (not allocated) or has 
been acquired by (allocated to) a particular process. A particular 
unit of a resource can be allocated to at most one process at a time. 
A process can release a unit of a resource only if the process has 
been allocated that unit. Units cannot be pre-empted; once a pro­
cess has acquired a unit, the unit will not become available until 
released by the process. 



46 CONCURRENCY PROBLEMS AND LANGUAGE FEATURES 

The t1hysical devices of the computer system, such as memory, tape 
drives and disks, can be thought of as re-usable resources. The number of 
units of some of these resources will depend on the allocation strategies of 
the computer system; for example, disks may be allocated in units of 
tracks, or cylinders or even entire disks. Certain information structures, 
such as files or linkage pointers for buffers, are re-usable resources. The 
process must request, acquire and release access to these information struc­
tures to guarantee that the structure can be inspected or updated without 
interference from other processes. Previously, we showed that mutually 
exclusive access to certain data was required in critical sections; we are now 
pointing out that such critical data is equivalent to a re-usable resource 
(with a single unit). 

We can represent a system of processes and re-usable resources by a 
graph having nodes for each process and resource. The units of a resource 
are shown by small circles inside the resource nodes, as illustrated here: 

Allocation 

R1 R2 

Allocation 

This graph shows a ·system with two processes and two resources. Resource 
Rl has two units and R2 has one unit. One of the units of Rl has been 
allocated to Pl. P2 has acquired the unit of R2 and has requested both 
units of Rl. P2 will be blocked until Pl releases its unit of Rl. 

As processes request, acquire and release units of resources, the graph 
changes. Suppose the system has two processes and a single resource with 
three units, one of which is allocated to process P2, as shown here. 



DETECTING DEADLOCK 47 

Now process Pl requests two units of the resource: 

Since two units are available, Pl acquires them: 

Next process Pl releases one of the units: 

In these graphs, an arrow is drawn from a process to a resource for each 
request of a unit and an arrow is drawn from a unit of a resource to a pro­
cess for each allocated unit. 

What we would like is a method of analyzing a graph to determine if 
there is a deadlock; that is, to see if some processes can never be granted 
their requests. It turns out that there is a relatively easy way to do this, 
using "graph reductions". We say a graph can be reduced by a process if all 
the process's requests for units can be granted. For example, in this graph 
we can reduce by process Pl because its request for a unit of R2 can be 
granted. 



48 CONCURRENCY PROBLEMS AND LANGUAGE FEATURES 

R1 

We reduce a graph by a process by deleting all arrows to or from the 
process. For example, when the above graph is reduced by Pl, we get this 
graph: 

R1 

Since the requests by P2 can now be granted, we can further reduce the 
graph to the following: 

We say this graph is completely reduced because there are no more arrows 
and thus no more allocations or requests. 

Essentially, the reductions determine whether processes can release 
their resources so other processes can receive their requests. The reduc­
tions will either delete all arrows, or they will leave certain processes not 
reduced. The processes that could not be reduced are those that are 
deadlocked. The following theorem can be proved: 



DETECTING DEADLOCK 49 

There are no deadlocked processes if and only if the graph is com­
pletely reducible. 

The order of reductions -- when different orders are possible -- is imma­
terial because the same final graph is obtained regardless of the order. The 
reason is that each reduction can allow new reductions (because new units 
are released), but can never prevent other reductions from taking place. 

We can now give the algorithm for seeing if processes are deadlocked. 
The algorithm repeatedly checks to see if processes can be reduced, until 
none can be. Then it sees if all processes were reduced, i.e., if the graph 
was completely reduced. If all processes were reduced, there was no 
deadlock. Before the algorithm begins, each element of the Boolean vector 
called reduced is set to false, indicating that no processes are initially 
reduced. 

{Algorithm to detect deadlock} 
1 reducedProcesses : = 0 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 

reduction : = true 
{Repeat until no more reductions are possible} 
loop 

exit when not reduction 
reduction : = false 
p := 1 
loop {Try to reduce each process} 

if not reduced(p) then 
if process p can be reduced then 

reduced(p) : = true 
reducedProcesses : = reducedProcesses + 1 
reduction : = true 
Reduce by process p 

end if 
end if 
exit when p = numberOfProcesses 
p := p + 1 

19 end loop 
20 endloop 
21 completelyReduced := (reducedProcesses=numberOfProcesses) 

Lines 10 and 14 of this algorithm require that we define a particular data 
structure to represent the graph. If there is only one resource, which has 
several units, the graph can be represented by the following variables: 

req: a vector with a subscript range from 1 to numberOfProcesses, giving 
the present request by each process. 

alloc: a vector with a subscript range from 1 to numberOfProcesses, giving 



50 CONCURRENCY PROBLEMS AND LANGUAGE FEATURES 

the present allocation to each process. 
avail: an integer giving the present number of available units. 

Assuming these are appropriately initialized before our algorithm is exe­
cuted, line 10 can be written this way: 

if req (p) < = avail then 

Line 14 can be written as: 

avail := avail + alloc(p) 

If there are several resources, each with several units, then req, alloc 
and avail must additionally be subscripted by a resource number. In this 
case we introduce the flag reduceByP and replace line 10 by: 

reduceByP : = true 
r := 1 
loop {For each resource} 

if req (p )(r) > avail (r) then 
reduceByP : = false 

end if 
exit when r = numberOfResources 
r := r + 1 

end loop 
if reduceByP then 

Note that req (p)(r) is an example of Euclid notation for double subscript­
ing. Now line 14 is written as: 

r := 1 
loop {For each resource} 

avail(r) := avail(r) + alloc(p)(r) 
exit when r = numberOfResources 
r := r + 1 

end loop 

If the graph is represented by a linked list, different replacements for lines 
10 and 14 would be required. 

Our algorithm can be used each time a request is made that cannot be 
immediately granted. Alternatively, the algorithm might be invoked only 
when there is reason to suspect a deadlock, for example, when a process 
has been blocked for a long time. An algorithm much like this one was 
used in the TOPPS language processor to detect deadlocks and to remove 
deadlocks similar to those that occur with events in PL/I. In many systems 
it is not practical to automatically detect deadlocks in this way because not 
enough information is available about the interactions among processes. 



CHAPTER 2 BIBLIOGRAPHY 51 

CHAPTER 2 SUMMARY 

In this chapter we have introduced programming language features 
that support the following basic concurrency requirements: 

Concurrent execution (cobegin/end, fork/quit/join). 

Mutual exclusion (mutexbegin/end, lock/unlock, semaphores, moni­
tors). 

Block/wakeup (events, semaphores, wait/signal in monitors). 

Message passing (send/receive, mailboxes, pipes). 

The following additional important terms were discussed in this 
chapter: 

Disjoint processes (independent processes) - processes that have no shared 
data. 

Busy waiting - continual testing and re-testing of a condition until it 
becomes true. Generally, busy waiting is an unacceptable waste of 
CPU time. 

Test and set instruction - an instruction that both tests and changes a value 
in an indivisible action; allows simple implementation of mutual 
exclusion via busy waiting. 

Synchronization primitives - simple operations, such as P and V for sema­
phores, that allow processes to synchronize their activities. These 
can be used to implement mutual exclusion and block/wakeup. 

Reusable resources - devices, files, or data structures that can be used by 
one process, then re-used by another, and so on. A process must 
request, acquire and then release such resources. 

Deadlock - the situation in which one or more processes are blocked wait­
ing for something that can never occur. Processes can become 
deadlocked when competing for re-usable resources. 

CHAPTER 2 BIBLIOGRAPHY 

This chapter has referred to several operating systems, namely, Tunis, 
Unix [Ritchie and Thompson], RC4000 [Brinch Hansen 1970), Thoth 
[Cheriton], VENUS [Liskov], SUE/11 [Greenblatt and Holt], and SUE/360 
[Sevcik et al.]. The articles on Unix and RC4000 are especially interesting. 



52 CONCURRENCY PROBLEMS AND LANGUAGE FEATURES 

The TOPPS language is specified in detail by Czarnik et al. Dijkstra's basic 
work [1968) introduced semaphores, mutual exclusion and techniques for 
concurrent programming. Dekker's algorithm as presented in this chapter 
is based on Peterson's ingeniously simple solution (19811. Hoare's article 
(1974) on monitors contains their formal definition along with an imple­
mentation in terms of semaphores and several interesting examples of mon­
itors. Cashin [1980) describes the trade offs in designing message passing 
schemes. Hoare's article [1978) defines the CSP notation and gives a 
number of examples of their use. Examples of Ada rendezvouses are given 
by lchbiah et al [1979). Concurrent Pascal and Modula are described by 
Brinch Hansen (1975) and Wirth [19771. More on the theory of deadlock 
can be found in Holt's article (19721. 

Brinch Hansen, P. The nucleus of a multiprogramming system. Comm. 
ACM 13,4 (April 1970), 238-241, 250. 

Brinch Hansen, P. The programming language Concurrent Pascal. IEEE 
Trans. on Software Engineering SE-1,2 (June 1975), 199-207. 

Cashin, P.M. Inter-process communication. Report 8005014, Bell­
Northern Research, Ottawa, Canada, June, 1980. 

Cheriton, D.R., Malcolm, M.A., Melen, L.S., Sager, G.R. Thoth, a port­
able real-time operating system. Comm. ACM 22,2 (February 
1979), 105-115. 

Czarnik, B. (editor), Tsichritzis, D., Ballard, A.J., Dryer, M., Holt, R.C., 
and Weissman, L. A student project for an operating systems 
course. CSRG-29, Computer Systems Research Group, University 
of Toronto (1973). 

Dijkstra, E.W. Cooperating sequential processes. In Programming 
Languages. (F. Genuys, editor), Academic Press (1968). 

Greenblatt, I.E. and Holt, R.C. The SUE/11 operating system. JNFOR, 
Canadian Journal of Operational Research and Information Process­
ing 14,3 (October 1976), 227-232. 

Hoare, C.A.R. Monitors: an operating system structuring concept. Comm. 
ACM 17,10 (October 1974), 549-557. 

Hoare, C.A.R. Communicating sequential processes. Comm. ACM 21,8 
(Aug. 1978), 666-677. 



CHAPTER 2 EXERCISES 53 

Holt, R.C. Some deadlock properties of computer systems. Computing Sur­
veys 4,3 (September 1972), 179-196. 

lchbiah, J.D., Barnes, J.G.P., Heliard, J.C., Krieg-Breuckner, B., Roubine, 
0., Wichman, B.A. Rationale for the design of the Ada program­
ming language. ACM SIGPLAN Notices 14,6 (June 1979). 

Liskov, B.H. The design of the VENUS operating system. Comm. ACM 
15,3 (March 1972), 144-149. 

Peterson, G.L. Myths about the mutual exclusion problem, Information 
Processing Letters 12,3 (June 81), 115-116. 

Ritchie, D.M. and Thompson, K. The Unix time-sharing system. Comm. 
ACM 17,7 (July 1974), 365-375. 

Sevcik, K.C.; Atwood, J.W., Clark, B.L., Grushcow, M.S., Holt, R.C., 
Horning, J.J., Tsichritzis, D. Project SUE as a learning experience. 
Proc. FJCC 1972, Vol. 39, 331-337. 

Wirth, N. MODULA: a language for modular programming. Software 
Practice and Experience Vol. 7, 1 (January-February 1977), 3-35. 

CHAPTER 2 EXERCISES 

1. Generalize Dekker's algorithm to handle n processes. 

2. One method of implementing semaphores has the P operation decre­
ment the semaphore count before testing the count's value. The result is 
that the count is sometimes negative, and the absolute value of the nega­
tive count gives the number of processes waiting. Give such an implemen­
tation of P and V in terms of mutexbegin/end and block/wakeup. 

3. The parameterized version of mutexbegin/end is very similar to 
lock/unlock. The difference is that mutexbegin and mutexend are syntacti­
cally (statically) balanced brackets. Give the advantages and disadvantages 
of parameterized mutexbegin/end versus lock/unlock. 

4. The parameterized version of mutexbegin/end allows separate mutual 
exclusion for separate collections of critical data. Show how, in certain 
cases, nesting of these constructs can lead to deadlock. Give a rule which a 
programmer can follow to prevent such deadlocks. 



54 CONCURRENCY PROBLEMS AND LANGUAGE FEATURES 

5. Implementing mutual exclusion by busy waiting can be very tricky. Is 
the following implementation correct? Explain. 

mutexbegin: 
need(me) :=true 
loop 

exit when not need(other) 
end loop 

mutexend: 
need(me) := false 

6. Implementing mutual exclusion by busy waiting can be very tricky. Is 
the following implementation correct? Explain. 

mutexbegin: 
need(me) :=true 
loop 

exit when not need(otqer) 
need(me) :=false 
loop 

exit when not need (other) 
end loop 
need (me) : = true 

end loop 

mutexend: 
need(me) :=false 

7. The "banker's algorithm" is a method of preventing deadlock due to 
competition for re-usable resources. The method assumes that each process 
has a "claim" on resources, specifying its maximum need for resources. For 
example, process Pl might need at most i units of resource Rl and 5 units 
of resource R2. The operating system (the banker) receives requests from 
processes, and temporarily blocks any requests that could lead to deadlock. 
The operating system determines if a request is safe (cannot leac:l to 
deadlock) by seeing if an immediate request by all processes for the 
remainder of their daims leads to deadlock. Show how the deadlock detec­
tion algorithm given in this cpapter can be used to see if requests are safe. 

8. In some operating systems, notably the RC4000 system, there is exactly 
one mailbox per process. This means that messages are sent to processes 
rather than to mailboxes, because mailboxes have no separate identity. 
Give the advanta~es and disadvantages of separating mailboxes from 
processes. 



CHAPTER 2 EXERCISES 55 

9. High-level concurrent programming features can be based on the idea of 
resources. Essentially, a resource is anything that a process can wait for. 
"Reusable resources" were described in this chapter, and they can be used 
for mutual exclusion, as well as for allocation of physical devices. "Con­
sumable resources" are like mailboxes; a release (send) operation to a con­
sumable resource gives it another unit (a message) and a request (receive) 
operation retrieves a unit. Implement request/release for re-usable and 
consumable resources, using mutexbegin/end and block/wakeup. 

10. Jn some systems deadlock can be prevented by pre-arranged conven­
tions. One of the simplest and most effective of these is based on ordered 
(or hierarchic) re-usable resources. Each resource is in one of the classes 
1, 2, up ton. A process must always request resources in order, from class 
1 up to class n. Putting this another way, a process that holds a resource 
from class i is not allowed to request a resource from the same class or a 
lower numbered class. Prove that this convention prevents deadlock. 

11. The deadlock detection algorithm in this chapter requires maximum 
time proportional tom times n 2, where mis the number of resources and n 
is the number of processes. Develop an algorithm that requires time pro­
portional tom times n. (Hint: for each resource use a queue of processes 
ordered by request size.) 

12. Jn a system with one resource type, find an algorithm to detect 
deadlock whose execution time is independent of the number of processes. 
Do not restrict requests to be for only one unit. 

13. Explain why non-parameterized mutexbegin/end cannot be nested. 
Note that parameterized mutexbegin/end can be nested, given different 
parameters. Give a rule the compiler can enforce that prevents deadlock 
due to nested parameterized mutexbegin/end. Here is an example that can 
lead to such a deadlock. 

Pl: ... 
mutexbegin (a) 

mutexbegin (b) 

mutexend (b) 
mutexend (a) 

P2: ... 
mutexbegin (b) 

mutexbegin (a) 

mutexend (a) 
mutexend (b) 

14. High in the Andes Mountains, there are two circular railroad lines. As 
shown in the diagram, one line is in Peru, the other in Bolivia. They share 
a section of track, where the lines cross a mountain pass that lies on the 
international border. 



56 CONCURRENCY PROBLEMS AND LANGUAGE FEATURES 

Peru Bolivia 

Unfortunately, the Peruvian and Bolivian trains occasionally collide when 
simultaneously entering the critical section of track (the mountain pass). 
The trouble is, alas, that the drivers of the two trains are blind and deaf, so 
they can neither see nor hear each other. 

The two drivers agreed on the following method of preventing colli­
sions. They set up a large bowl at the entrance to the pass. Before entering 
the pass, a driver must stop his train, walk over to the bowl, and reach into 
it to see if it contains a pebble. If the bowl is empty, the driver finds a peb­
ble and drops it in the bowl, indicating that his train is entering the pass; 
once his train has cleared the pass, he must walk back to the bowl and 
remove his pebble, indicating that the pass is no longer being used. Finally 
he walks back to the train and continues down the line. If a driver arriving 
at the pass finds a pebble in the bowl, he leaves the pebble there; he 
repeatedly takes a siesta and re-checks the bowl until he finds it empty. 



CHAPTER 2 EXERCISES 57 

Then he drops a pebble in the bowl and drives his train into the pass. A 
smart aleck college graduate from the University at La Paz (Bolivia) 
claimed that subversive train schedules made up by Peruvian officials could 
block the Bolivian train forever. (Explain). The Bolivian driver just 
laughed and said that could not be true because it never happened. 
(Explain). Unfortunately, one day the two trains crashed. (Explain). 

Following the crash, our college graduate was called in as a consultant 
to ensure that no more crashes would occur. He explained that the bowl 
was being used in the wrong way. The Bolivian driver must wait at the 
entry until the bowl is empty, drive through the pass and walk back to put a 
pebble in the bowl. The Peruvian driver must wait at the entry until the 
bo";'.l contains a pebble, drive through the pass and walk back to remove the 
pebble from the bowl. Sure enough, his method prevented crashes. Prior 
to this arrangement, the Peruvian train ran twice a day and the Bolivian 
train ran once a day. The Peruvians were very unhappy with the new 
arrangement. (Why?) 

Our college graduate was called in again and was told to prevent 
crashes while avoiding the problem of his previous method. He suggested 
that two bowls be used, one for each driver. When a driver reaches the 
entry, he first drops a pebble in his bowl, then checks the other bowl to see 
if it is empty. If so, he drives his train through the pass, stops it and walks 
back to remove his pebble. But if he finds a pebble in the other bowl he 
goes back to his bowl and removes his pebble. Then he takes a siesta, 
again drops a pebble in his bowl and re-checks the other bowl, and so on, 
until he finds the other bowl empty. This method worked fine until late in 
May, when the two trains were simultaneously blocked at the entry for 
many siestas. (Explain.) 





Chapter 3 

CONCURRENT EUCLID: 
SEQUENTIAL 
FEATURES 

Chapter 2 discussed various notations for handling concurrency, 
including monitors. The rest of this book uses the Concurrent Euclid (CE) 
language, which supports monitors. 

CE is an important example of a high-level language that is well­
suited for writing operating systems, including basic software such as device 
management. CE is a higher level language than Unix's -C language, which 
does not support strong type checking or concurrency. Given a language 
like CE, we do not need to resort to the complexity and unreliability of 
assembly language except for highly specialized purposes, such as saving 
registers following an interrupt. 

This chapter introduces the sequential features of CE and the next 
chapter gives its concurrency features. The appendix "Specification of Con­
current Euclid" defines the language in detail. 

HISTORY 

Euclid was designed in 1976 as a language for developing verifiable 
systems software, i.e., system software that can be proven correct. In a two 
year effort beginning in 1977 a subset called Toronto Euclid was imple­
mented jointly by the University of Toronto and I.P. Sharp Associates with 
the support of the USA Department of Defense and the Canadian Depart­
ment of National Defense. Toronto Euclid was used experimentally at the 
University of Toronto for implementing compilers and for developing the 



60 CONCURRENT EUCLID: SEQUENTIAL FEATURES 

Tunis operating system, which is compatible with Unix. This research lead 
to the design and implementation of the language Concurrent Euclid in 
1980-81. Concurrent Euclid omits the complex features of Euclid and adds 
features not in Toronto Euclid that were found necessary for systems pro­
gramming. The most notable additions were concurrency and separate 
compilation. 

GOALS OF CONCURRENT EUCLID 

Concurrent Euclid inherits constructs from Euclid that were designed 
with verification in mind. Generally these constructs not only aic\ 
verification; they also enhance reliability and understandability. These con­
structs sometimes make a program harder to write. This is because the 
construct requires the programmer to document his program more 
thoroughly; for example with each procedure he must give a list of vari­
ables accessed by the procedure. It is sometimes not so easy to get the CE 
compiler to accept a program, because CE imposes many restrictions on the 
program such as strong type checking. The philosophy of Euclid is that the 
compiler should detect as many errors as possible; this is done by disallow­
ing dangerous or unlikely constructs. Thus the compiler helps increase reli­
ability and decrease maintenance by locating bugs at compile time. This is 
better than leaving these bugs to be located by the relatively costly and 
undependable process of testing. It is vastly superior to leaving these bugs 
in a software product that is delivered to a user community. 

Since CE is intended for writing system software, it provides "escape" 
features to override compile-time checks; for example, "converters" can be 
used to explicitly defeat strong type checking. The programmer uses these 
escape features at his own risk, presumably only when they are actually 
needed. 

CE is designed to allow efficient generated code and small, fast, highly 
portable compilers. The CE compiler implemented at the University of 
Toronto consists of four passes and runs in about SOK bytes. The last pass 
is a replaceable code generator with versions that generate high quality code 
for various computers including the PDP-11, VAX, MC68000 and MC6809. 

In summary, CE was designed to support implementation of highly 
reliable, high performance software, such as operating systems, compilers 
and embedded microprocessor software. 



BASIC DAT A TYPES 61 

COMPARISON WITH PASCAL 

Euclid is based on Pascal and borrows Pascal's elegant data structures. 
Various features of Pascal were "purified" to allow easier verification; for 
example in Euclid and CE, functions are prevented (by the compiler) from 
having side effects. CE can be thought of as a cleaned up version of Pascal 
that adds features needed for systems programming. The major features 
CE adds to Pascal are: 

(1) Separate compilation. Procedures, functions and modules can be 
separately compiled and later linked together. Under Unix, these use the 
standard linker (ld) and are easily interfaced to programs written in 
languages like C and assembler. 

(2) Modules. A module is a syntactic packaging of data together with 
procedures/functions that access the data. 

(3) Concurrency. Monitors and processes are supported. There is a signal 
statement and a wait statement. A "busy" statement allows CE to be used 
as a simulation language. 

(4) Control of scope. Names of variables, types, etc. are not automatically 
inherited by scopes. Import and export lists are used to control the scope 
of names. 

(5) Systems programming constructs. These include variables at absolute 
addresses; such variables can be device registers in computers with memory 
mapped input/output. 

There are some Pascal features, such as enumerated types, that CE 
does not support. CE does not allow procedures and functions to be nested 
inside procedures and functions. 

BASIC DATA TYPES 

CE has the traditional basic data types of Pascal, except float and 
enumerated types. There are several ranges of integers to reflect hardware 
data types. These basic types are: 



62 CONCURRENT EUCLID: SEQUENTIAL FEATURES 

Name Values 

Shortlnt 0 .. 255 
Signedlnt -32768 .. 32767 
Unsignedlnt 0 .. 65535 
Longlnt signed integer 
Boolean false .. true 
Char a character 
AddressType integer 
Pointer address 

Allocation 

byte 
16-bit 
16-bit 
32-bit 
byte 
byte 
address size 
address size 

Besides these, there are subranges, for example, the type 1..10, which is an 
integer subrange. The values and allocations are those used by the CE 
compilers for the PDP-11, VAX, Motorola 68000 and Motorola 6809. 
Implementations for other computers provide at least as much range as this 
table specifies for Shortlnt, Signedlnt and Unsignedlnt. Other implementa­
tions are not restricted to use the same space allocation for these basic 
types. 

STRUCTURED DATA TYPES 

CE inherits the structured types of Pascal, namely (1) arrays, (2) 
records and (3) sets. The following are example declarations using these 
types. 

(1) Arrays. These are vectors of elements. 

var a: array 1..10 of Signedlnt 
var str: packed array 1..5 of Char : = 'Hello' 
var matrix: array 1..5 of array 1..5 of Longlnt 

Variable a is an array of 10 Signedlnt elements. Variable str is a "string". 
CE inherits from Pascal the definition that a "packed" array of characters 
with lower bound of 1 is considered to be a string. 

A quoted value, such as 'Hello', is a value of type string. As can be 
seen in this example, CE allows a variable to be initialized in its declaration. 

CE does not provide multi-dimensioned arrays, but it allows arrays of 
arrays, which are equivalent. For example, the variable declared as matrix 
has five "rows" each of which has five Longlnt elements. Row three of the 
matrix is written as "matrix(3)". Note that CE uses parentheses, and not 
square brackets, around subscripts. Element five of row three is written as 



LITERAL VALUES 63 

matrix(3)(5). It is not legal to write matrix(3,5). 

(2) Records. These are equivalent to Pascal records and PL/I's structures. 

var r: 
record 

var status: Boolean 
var count: Signedlnt 

end record 

This example declares r to be a record with fields called status and count. 
A field is accessed using a dot, so "r.count:=2" assigns two to the count 
field. Fields of records cannot be initialized as a part of the record's 
declaration. 

(3) Sets. These are essentially bit strings. 

var s: set of 0 .. 2 

Set variable s is implemented on a PDP-11 as bits number 0, 1 and 2 in a 
byte. These bits can be individually changed and inspected. 

LITERAL VALUES 

We call an item such as 211 a literal because it denotes its own value. 
Other languages use the term "constant" to mean what we will call a literal. 
We will use the term constant in a different sense, namely to denote a value 
that cannot change in a particular scope. We now give examples of literals. 

(1) Integer literals. There are three kinds: 

decimal, e.g., 921 and 483649215 
octal, e.g., 11#8 
hexadecimal, e.g., OE4F#l6 

A hexadecimal literal must begin with a decimal digit, so we write 
OE4F#l6 instead of E4F#l6. 

(2) Booleans. The literals are true and false. 

(3) Characters. A character literal is a dollar sign followed by the 
character's value. For example, this declaration initializes variable c to the 



64 CONCURRENT EUCLID: SEQUENTIAL FEATURES 

value X. 

var c: Char : = $X 

Similarly, $a, $q and $? represent small a, small q and question mark. 
Peculiar characters require double dollar signs, for example, 

$$S means a space (a blank) 
$$N means a new line character 
$$T means a tab character 
$$E means an end-of-file character (octal zero in ASCII) 
$$$ means a dollar sign 

(4) Strings. A string literal consists of characters inside single quote marks. 
Here are two string literals. 

'Here is a new line $N and an EOF $E' 
'And here is a quote $' too' 

Any of the peculiar characters such as end-of-file characters are written 
inside a string using a dollar sign. If an actual dollar sign is wanted, it is 
written as two dollar signs. 

(5) Sets. Properly speaking, sets do not have literals. Instead they have 
"set constructors", which are analogous to literals. 

type S = set of 0 .. 2 
var x: S 
x := S(0,2) 

Variable x's value has three bits numbered 0, 1 and 2. S(0,2) is a set con­
structor. The assignment gives x a value with bits 0 and 2 on, but with bit 
1 off. 

THE 1/0 PACKAGE 

Since CE is a system language, it is adept at implementing basic sup­
port such as 1/0. The CE language does not define input/output opera­
tions, but relies on the programmer to implement these. A standard 1/0 
package has been defined (and programmed in CE) to support convenient, 
portable 1/0. 



THE 110 PACKAGE 65 

To use this 1/0 package, its definition must be copied into the pro­
gram at hand. To include this definition as a part of a program, one writes: 

include '%I01' 

More features of the I/O package are available by changing IOl to I02, I03 
or I04. See the appendices for details. The 1/0 package includes pro­
cedures for reading and writing characters, integers and strings. (Note: the 
percent sign in '%I01' tells the compiler to search a particular library to 
find the file called IO 1.) 

For example, here is a statement that writes a string and one that 
writes a character. 

IO.PutString ('Hi$N$E') 
IO.PutChar($H) 

The first prints the string "Hi" and starts a new line as denoted by $N. The 
final $E is required by PutString to mark the end of the string to be written. 
The second statement prints the character H. 

The input/output package is implemented as a CE module named IO 
that contains the procedures PutString, GetString, etc. We write 
IO.PutString to mean: use the procedure PutString in the module named 
IO. 

We can read character variable ch as follows: 

IO. Get Char (ch) 

Under an operating system like Unix, the Get and Put operations by default 
read from and write to the user's terminal. 

Integer i can be read and written as follows: 

IO.Getlnt(i) 
IO.Putlnt(i,4) 

After reading i, this prints i right justified in a field of width 4. If the width 
specified in Putlnt is not sufficient to print i's value, the field is automati­
cally widened. So the statement IO.Putlnt(i, 1) writes only as many charac­
ters as it takes to give i's value. 

The complete 1/0 package provides a rich set of procedures; under an 
operating system such as Unix these support all the system's file operations, 
including open, close, seek, accessing multiple files, etc. On a bare 



66 CONCURRENT EUCLID: SEQUENTIAL FEATURES 

machine, say an unadorned MC6809, the 1/0 package is implemented by 
procedures that access device registers to directly implement physical 
input/output. 

A COMPLETE CE PROGRAM 

Enough features of CE have been introduced so that we can give an 
example program that actually accomplishes something. The following 
example reads and prints a file. We show numbers in the left margin of the 
program so we can refer to parts of the program, but in an actual program 
these numbers would not be present. 

1 var Example: 
2 module 

3 include '%101' 

4 { Print characters up to a period } 

5 initially 
6 imports (var IO) 
7 begin 

8 var ch: Char 
9 IO.PutString ('Test starts$N$E') 

10 loop 
11 IO.GetChar(ch) 
12 IO.PutChar(ch) 
13 exit when ch = $. 
14 end loop 

15 end {of initially} 

16 end module 

The name of our program is "Example" as given in line 1. Lines 1, 2 
and 16 are useless and are analogous to the useless "program" header in 
Pascal and the useless "procedure options(main)" in PL/I. These lines are 
required in CE so that a program has the same format as a "module". Line 
3 allows us to use the 1/0 package. Line 4 is a comment. In general a 
comment is any character sequence enclosed in braces, just like the Pascal 
convention. However, Pascal's convention of (* and *) as alternatives for 



OTHER CONTROL CONSTRUCTS 67 

braces is not allowed. 

Technically speaking our program executes by initializing the data in 
its module. That is why lines 5 through 7 and 15 enclose the logic of our 
program. In this example there is no data to initialize, and the "initially" 
procedure simply executes the logic of our program. 

Line 6 states that the "initially" procedure is going to use the IO 
module. If line 6 were omitted, the compiler would consider the calls to 
Get and Put procedures in lines 11 and 12 to be illegal. The IO module is 
imported as a variable (var) meaning that it is going to be changed. It may 
come as a surprise that the IO module can be changed, but technically this 
is true because it "contains" the input/output files and those are modified by 
Puts. 

Finally we are down to the meat of the program, which is lines 8-14. 
Line 8 declares character variable ch which is read in line 11 and written in 
line 12. Line 9 prints "Test starts" and begins a new line. 

Lines 10 and 14 are the loop construct that specifies that the enclosed 
statements are to be repeatedly executed. This looping will continue until 
an exit statement (or return statement) terminates the loop. Statement 13 
terminates the loop when ch is a period. A loop may contain several exit 
statements and these exits may be nested inside other statements. For 
example, we could insert the following if statement just before "end loop" 
to handle a premature end-of-file. 

if ch = $$E then 
10.PutString ('$NMissing period$N$E') 
exit 

end if 

Note that the exit statement inside the if statement does not use a "when" 
clause. 

OTHER CONTROL CONSTRUCTS 

We have seen examples of the use of the loop statement and the if 
statement. The only other control constructs are the else and elseif clauses 
of an if statement and the case statement. The use of else and elseif is 
illustrated by the following loop that counts digits, white space (blanks, tabs 
and new-line characters), and other characters up to an end-of-file. 

var digits: Signedlnt : = 0 
var whites: Signedlnt : = 0 



68 CONCURRENT EUCLID: SEQUENTIAL FEATURES 

var others: Signedlnt : = 0 
var ch: char 
loop 

10.GetChar(ch) 
exit when ch = $$E {Stop on end-of-file} 
if ch > = $0 and ch < = $9 then 

digits : = digits + 1 
elseif ch = $$S or ch = $$T or ch = $$N then 

whites : = whites + 1 {Spaces, tabs and new lines} 
else 

others : = others + 1 
end if 

end loop 

An if statement can contain any number of elseif clauses, followed by an 
optional else clause; these are followed by "end ir'. The tests following if 
and elseif are evaluated in sequence until one is found to be true; the state­
ments in the clause corresponding to the true test are executed and then 
control skips to just beyond "end ir'. If none of the tests are true, then the 
else clause if present is executed. 

Using the same variables as above, we now re-write the loop using a 
case statement. 

loop 
IO.GetChar(ch) 
exit when ch = $$E {Stop on end-of-file} 
case ch of 

$0, $1, $2, $3, $4, $5, $6, $7, $8, $9 = > 
digits : = digits + 1 
end $0 

$$S, $$T, $$N = > 
whites : = whites + 1 
end $$S 

otherwise = > 
others : = others + 1 

end case 
end loop 

The case statement is much like an if statement containing elseirs, except 
that it is generally faster when there are several values to test. On the 
other hand, the case statement may be larger, because it is typically imple­
mented using a run-time table containing as many addresses as the range of 
the case labels. (The "otherwise" label does not affect the table size.) The 



RUNNING UNDER UNIX 69 

otherwise clause of a case statement is optional. If it is omitted then the 
selector (ch) is required to match one of the labels. 

RUNNING UNDER UNIX 

CE can be compiled and run under the Unix operating system using 
conventions similar to those for other languages such as C. Suppose that 
the example program of the last section is in a Unix file named "example.e" 
and that a file named "data" contains the line: 

File contents. 

The following Unix session might take place: 

% cec example.e 
% example.out < data 
Test starts 
File contents. 
% 

In the first line, Unix types its prompt character %. The user types "cec" 
(Concurrent Euclid compiler) and the name of the file to be compiled 
(example.e). If the compiler finds errors in the program, it prints appropri­
ate messages on the terminal. But if the program is cleanly compiled, as is 
the case here, the compiler remains silent. The compiler produces an exe­
cutable version of the program and puts it into a file named example.out. 

Following the next prompt character, the user types "example.out < 
data" meaning that Unix should execute the program, using the contents of 
the file named "data" as input. When the program executes it prints "Test 
starts", followed by a new line. Next it reads and prints characters up to a 
period, thus producing the output "File contents." Unix again prints its 
prompt character and waits for the user's next command. 

CE uses a suffix naming convention to distinguish various kinds of 
files. For example, the ".e" suffix signifies a source CE file. The various 
suffixes for the example program are now illustrated. 

example.e 
example.s 
example.o 
example.out 

source CE program 
assembly language version 
linkable object version (object module) 
executable object version (load module) 



70 CONCURRENT EUCLID: SEQUENTIAL FEATURES 

These assembly and object versions are for a PDP-11 or VAX. There are 
other forms for different target machines, for example: 

example.t 
example.sout 
example.u 
example.tout 

assembly for MC68000 
executable object for MC68000 
assembly for MC6809 
executable object for MC6809 

The various options for using the compiler to produce such forms can be 
found out under Unix by typing "cec -help". 

A SIMPLE PROCEDURE 

CE has procedures that are essentially the same as those in Pascal. 
Here is one that increments its argument. 

procedure Inc(var i: Signedlnt) = 
begin 

i := i + 1 
end Inc 

If variable k has the value 4 then the statement "lnc(k)" sets k to 5. The 
"var" in the declaration of i specifies that i can be changed, and that any 
change to i changes its corresponding actual parameter (k in this example). 
If this "var" were omitted, the compiler would consider the assignment 
"i: =i + l" to be illegal. This is different from Pascalin which this assign­
ment would still be legal, and would change i but not k. In CE, a parame­
ter declared without var is called a "constant" parameter, meaning that 
within its scope (down to "end Inc") its value will not change. 

NESTING OF CONSTRUCTS 

Generally, nested constructs in CE are bracketed at their start by the 
construct name and terminally by "end" followed by the construct name, for 
example: 

record end record 
module end module 
loop end loop 
if end if 
case end case 



AN EXAMPLE MODULE 71 

The exception to this rule is "begin". When "begin" is an executable state­
ment, it ends with just "end". Similarly, the "begin" of an "initially" pro­
cedure is terminated with just "end". But when begin-end is used to bracket 
the body of a named procedure (or function), such as the "Inc" procedure, 
then the name of the procedure must follow "end", as in "end Inc". 

AN EXAMPLE MODULE 

One of the most important language constructs of CE is the "module", 
which is used to package data together with procedures and functions that 
use the data. A typical example of this is the implementation of a stack 
where the data consists of variables representing the stack's top and con­
tents. 

A stack of integers with maximum depth 10 can be programmed in 
CE this way: 

1 var Stack: 
2 module 
3 exports (Push, Pop) 

4 const depth : = 10 
5 var top: O .. depth 
6 var contents: array l..depth of Signedint 

7 procedure Push(i: Signedint) = 
8 imports(var top, var contents) 
9 begin 

10 top:= top + 1 
11 contents(top) : = i 
12 end Push 

13 procedure Pop(var i: Signedint) 
14 imports(var top, contents) 
15 begin 
16 i := contents(top) 
17 top : = top - 1 
18 end Pop 

19 initially 
20 imports(var top) 
21 begin 



72 CONCURRENT EUCLID: SEQUENTIAL FEATURES 

22 top:= 0 
23 end 

24 end module 

Again we have numbered the lines of this example so we can refer to them 
easily, but the actual CE program does not have these numbers. 

The first thing to notice is that this module has the same form as a 
main program, because a main program is actually a module. 

Lines 1, 2 and 24 serve to bracket the construct and give it the name 
"Stack". Line 3 states that outside of these brackets, the only observable 
parts of the stack are its procedures Push and Pop. For example, outside 
the module we can use the statement "Stack.Push(6)" to put value 6 onto 
the stack. 

Lines 4-6 declare the module's data. The value "depth" is a canst 
(constant). It is called a manifest constant because its value is known at 
compile time. Manifest constants (and manifest expressions) can be used 
to declare the ranges of integers and of array subscripts as is done on lines 
5 and 6. 

Lines 19-23 are the initializing procedure for the module; they set top 
to zero. In a production program this initialization procedure would prob­
ably be omitted, because it is easier to re-write line 5 as: 

var top: o .. depth : = 0 

However, we have used the "initially" procedure in this example to illustrate 
the use of this construct. 

Lines 7-18 contain the Push and Pop procedures. Push has a non-var 
(constant) parameter, while Pop requires a var parameter to return the 
stack's top value. The Push procedure imports top and contents as vari­
ables (as var) because it modifies both. Without this import list, the com­
piler would disallow the assignments on lines 10 and 11. The import list of 
Pop is similar, but contents is imported non-var, because it is not modified. 

We can put our Stack module to use to read a list of positive numbers 
(at most 10 of them) and print them in reverse order. 

{Read integers up to a zero and print in reverse order} 
var Reverse: 

module 
include '%IO 1' 



include 'stack.e' 
initially 

imports(var IO, var Stack) 
begin 

var x: Signedlnt 
stack.Push(O) 
loop 

10.Getlnt(x) 
exit when x = 0 
Stack.Push (x) 

end loop 
loop 

Stack.Pop(x) 
exit when x = 0 
10.Putlnt(x, 8) 

end loop 
end 

end module 

NAMING CONVENTIONS 73 

This program pushes a zero onto the stack and then pushes input integers 
onto the stack till it finds a zero. Then it pops and prints these values. 

As shown here, we have assumed that the Stack module is in a file 
called "stack.e" and we have copied it into our program by an "include" 
statement. Alternatively, we could actually place the stack module in our 
program and not use an include statement. 

Notice that our main program, called Reverse, is a module that con­
tains another module, Stack. In general, modules can contain modules 
which can contain modules, etc. The "initially" procedures of modules in a 
program are executed in textual order from the top to the bottom of the 
program. 

The initially procedure of our main program imports Stack as "var". 
This is required because Push and Pop are used and they change values 
representing the stack. Actually, the rule is that a module must be 
imported var wherever one of its procedures is to be invoked. 

NAMING CONVENTIONS 

Our example programs illustrates the style of capitalization that is 
encouraged in CE. Names of procedures, functions, converters, types, 
modules and monitors begin with capital letters. Names of constants and 
variables begin with small letters. A name, such as PutString, that consists 



74 CONCURRENT EUCLID: SEQUENTIAL FEATURES 

of multiple words has the first letter of each word capitalized, except for the 
first word of constants and variables. (Note: this style is not enforced by 
the compiler; it considers capital and small letters in identifiers to be 
equivalent.) 

Names should be chosen to be meaningful; a name like 
BufferManager is far better then Bfmg. CE names can be long (up to 50 
characters) so it is relatively easy to invent good ones. Unfortunately, 
externally known names, in particular the names of external procedures, 
functions and modules (see below), are truncated by some operating system 
utilities. The Unix (version 7) linker uses only the first 7 characters of 
these external names, so we must use care when inventing these names. 

RUNNING ON A BARE MICROPROCESSOR 

As has been mentioned, the 110 package for CE can be implemented 
to operate on a bare microprocessor. The simplest version of such a pack­
age does synchronous input/output; that is, it does a "busy wait" wasting 
the processor's power whenever input/output is in progress. Here is a par­
tial implementation for running on an MC6809 microprocessor. 

var IO: 
module 

exports(PutChar, ... etc ... ) 

var ttyData (at 9001#16): Char 
var ttyStatus (at 9000#16): set of 0 .. 7 
pervasive const outputReady : = 1 

procedure PutChar(c: Char) = 
imports(var ttyData, ttyStatus) 
begin 

loop 
exit when outputReady in ttyStatus 

end loop 
ttyData := c 

end PutChar 

... other procedures ... 

end module 



NON-MANIFEST ARRAY BOUNDS 75 

We can use this module to print a character; for example, 
"IO.PutChar($H)" prints "H". 

The data declared in the module consists of device registers. At hexa­
decimal locations 9001 and 9000 on the microprocessor's bus are the data 
and status registers for the terminal. When the terminal hardware is ready 
to receive another character, it turns on bit number 7 in its status register. 
So our loop burns up processor time until this bit is turned on. Assigning a 
character to the hardware data register (ttyData) causes the character to be 
transmitted to the terminal. 

The declaration of the constant outputReady specifies that it is "per­
vasive". This means that it can be used in inner scopes such as that of 
PutChar without being explicitly imported. CE allows constants and type 
names to be pervasive, but variables must always be explicitly imported. 

In many uses of microprocessors (and miniprocessors and maxiproces­
sors) it is not reasonable to waste processor time while input/output is in 
progress. When running on a bare machine, this can be avoided by using 
special procedures called BeginlO, WaitlO and EndIO. But this will have to 
wait till we get to CE's concurrency features. 

NON-MANIFEST ARRAY BOUNDS 

In CE, arrays must have manifest size, meaning that their bounds 
must be computable at compile-time. But there is an exception. When an 
array is the formal parameter of a procedure or function then its upper 
bound can be given as the keyword "parameter". This is done here in the 
PutString procedure. 

procedure PutString 
(str: packed array !..parameter of Char) 
imports (Put Char) 

begin 
var i: Signedlnt : = 1 
loop 

exit when str(i) = $$E 
PutChar (str (i)) 
i:=i+l 

end loop 
end PutString 

This procedure can be used as a part of the IO module. It accepts a string, 
i.e., a value that is a packed array of characters with lower bound of one. It 



76 CONCURRENT EUCLID: SEQUENTIAL FEATURES 

prints characters of the string until it encounters the end-of-file character 
($$E). This character had better exist in the string or else this implementa­
tion of PutString is in trouble. 

Notice that the PutChar procedure is imported because it is called by 
PutString. Procedures and functions are always imported non-var. 

FUNCTIONS AND SIDE EFFECTS 

In some programming languages there are operators that explicitly 
produce side effects in expressions, for example, 

j := (i := i-1) + (i := 3*i) {Not allowed in CE} 

In this statement i is decremented by one and also multiplied by three. (In 
the C language, this would have"=" instead of":=" to mean assignment.) 
Unfortunately, it is ambiguous whether the decrement or multiply is done 
first, and so we do not know what values j or i will be left with. Versions of 
C compilers for different machines produce different results. Obviously this 
is not a good state of affairs. 

Here is another example of the danger of side effects: 

j := i + f(x) 

Suppose that function f changes the value of i. Apparently this expression 
should use the original value of i. Many compilers that do code optimiza­
tion will compile this statement as if it is 

j := f(x) + i 

because this saves putting the value of i in a temporary location during the 
execution of f. This will use the modified value of i. Unfortunately the 
resulting value of j is ambiguous. In languages like Pascal, C, Fortran and 
PL/I, different compilers may produce different results. 

The decision in CE was to ban side effects in expressions so 
verification and understanding would be easier, and so optimization would 
not change results. We will give an example of a function and then will 
explain how this ban is enforced. 

function Max(a: Signedint, b: Signedint) 
returns m: Signedint = 
begin 



if a > b then 
return(a) 

else 
return(b) 

end if 
end Max 

FUNCTIONS AND SIDE EFFECTS 77 

This function returns the larger of a and b. As in PL/I, the function result 
is given in return statements. 

A function must return by executing a return statement that gives a 
value, as in "return(b)". A procedure can return either by "falling off' its 
end or by executing "return" (without the parenthesized return value). 

In CE the name of the returned value, "m" in this example, cannot be 
accessed. This is different from Pascal where the function's result is set by 
assigning to the function's name. The only use of m in CE is to give the 
formal specification of a function. For example, Max can be specified by 
the following relation between a, b and m: 

m > = a and m > = b and (m = a or m = b) 

In other words, m=max(a,b). Such a specification can be used in proving 
the function correct. 

Now back to side effects. CE has no operators that cause side effects 
inside expressions. So functions are the only possible source of side effects. 
The following constraints are imposed on functions to prevent side effects 
in them. They are not allowed to have var parameters or to import any­
thing var, so they cannot directly cause side effects external to themselves. 
Neither are they allowed to import procedures that import anything var, or 
to import procedures that import procedures that import anything var, etc. 
The compiler checks to prevent these things. 

These constraints make functions behave beautifully, like honest 
mathematical functions! But there is some penalty for this beauty; for 
example in side-effect languages like C, one often sees constructs similar to: 

loop 
exit when GetC = $. {Not legal in CE!} 

end loop 

This loop skips characters till it reads a period. The GetC function has the 
side effect of changing the input stream (by reading a character). It is 
impossible to write GetC in CE, because it would need to access the IO 



78 CONCURRENT EUCLID: SEQUENTIAL FEATURES 

package "var", which would be prevented by the compiler. In CE, GetC 
must be programmed as a procedure (not a function) that reads a character, 
as is done in IO.GetChar(c). The value of c must be tested in a separate 
statement. This seems a relatively minor inconvenience, which is incurred 
to avoid the danger of lurking bugs due to side effects. 

POINTERS AND COLLECTIONS 

CE has pointers that are implemented as addresses, similar to pointers 
in C, Pascal and PL/I. However, the pointers are safer in CE than in Pas­
cal, safer in Pascal than in PL/I and safer in PL/I than in C. The danger of 
pointers is that since they are represented as machine addresses, an assign­
ment to something pointed to may accidently destroy any variable (or 
code). 

CE avoids some of this danger by defining "collections" as array-like 
objects, whose elements are located by pointers. For example if c is a col­
lection and p is a pointer then c(p) accesses an element of c. We now give 
an example of a collection. 

type R = 
record 

var kind: Shortlnt 
var id: packed array 1.. 3 of Char 

end record 

var c: collection of R 
var p: Ac 

c.New(p) {Allocates element of c, i.e., a record} 
c(p).id :='ABC' {Written pA.id :='ABC' in Pascal} 

c.Free(p) {De-allocates element of c} 

We declare c as a collection of records with fields called kind and id. This 
declaration does not allocate any space for c or its elements, so c starts out 
as an empty collection. The declaration of p specifies that p can subscript c, 
i.e., that p can point to elements of c. The "New" statement is used to allo­
cate elements of a collection; in this example, space is found for record R 
and the address of this space is placed in p. If space cannot be found, p is 
set to the collection's null value, which is written "c.nil". When an element 
of a collection is no longer needed, its space can be de-allocated by the 



ALIASING AND THE BIND STATEMENT 79 

"Free" statement. 

Pointers and allocations in CE behave like the analogous constructs in 
Pascal, and space for all collections can come from the same storage "heap". 
The difference is that in CE, it is always obvious that a pointer locates a 
value not just in the heap, but in a particular collection. In terms of 
correctness proofs this means that pointers behave like subscripts (except 
for problems of allocating and de-allocating elements). So, the proof tech­
niques used for arrays can be applied to pointers (actually, to collections). 

There is another advantage of collections. Since an access to an array 
element and a collection element has the same syntax, we can write algo­
rithms without being concerned about whether we are using arrays or col­
lections. This similarity is sometimes called uniform referents to data 
objects. Array subscripting is relatively safe because runtime checks can 
keep arrays in bounds; so the programmer may choose to test his algorithm 
using arrays. Later if he needs somewhat faster execution, he may change 
his declarations and allocations and use the unchanged algorithm with 
pointers. 

CE requires that all identifiers be declared textually preceding their 
use. This can cause problems in a linked list that has elements that point 
to each other. It would seem that it is impossible to declare such a list 
because its declaration is circular (it references itself). We will use an 
example to show how CE solves this circularity problem. 

type Element = forward 
var list: collection of Element 
type Element = 

record 
var id: Char 
var next: ~list 

end record 

Our list has elements, each containing a subscript (pointer) to another ele­
ment. We need to declare "list" using the type "Element", but we also need 
to declare "Element" using the collection "list". To break this vicious circle, 
CE allows a type to be declared as forward. Between the time the type is 
declared as forward and its actual declaration appears, it can be used only as 
the element type of a collection. 



80 CONCURRENT EUCLID: SEQUENTIAL FEATURES 

ALIASING AND THE BIND STATEMENT 

When a programmer sees the statements 

x := 1 
y := 2 

he expects that x ends up as 1 and y as 2. It only makes sense. But in 
most programming languages, such as Pascal and PL/I, this is not 
guaranteed to be true. The following Pascal fragment illustrates this 
unpleasant possibility. 

{This is Pascal, not CE} 
var x: integer; 
procedure P(var y: integer); 

begin 
x := 1; 
y := 2 {Now x becomes 2!} 

end; 

P(x) 

In this example, variable x is passed to var parameter y, but procedure P 
also directly accesses variable x as a global variable. Since P has accessed a 
particular variable (shall we call it x or shall we call it y?) by more than one 
name, we say there is aliasing. 

The trouble with aliasing is that things change (in this example, x 
changes) in ways that surprise us. This kind of nasty surprise is a source of 
elusive bugs. Besides that, aliasing makes it extremely difficult to formally 
define what a statement such as y: = 2 means. 

To avoid these problems, CE bans aliasing. This is done by placing 
constraints on those constructs of the language where a variable (or part of 
a variable) can be renamed. In CE there are only two such constructs, 
namely reference parameters and the "bind" statement. Before explaining 
these constraints we need to discuss the bind statement. 

We can re-name a variable (or a component of a variable) by doing a 
bind, for example: 

bind var x to v (i) 

This is a declaration that specifies that x is a new name for element i of 
array v. (This construct is similar to Pascal's "with" statement, but gives a 



TYPE CONVERTERS 81 

name to the variable or component.) The bind statement is (usually) imple­
mented by computing the address of the component v (i), assigning this to 
x and then treating x as a pointer. The "var" in the bind statement is 
optional and allows assignments to x. If v(i) is accessed often in a group of 
statements, binding to it typically results in smaller faster code because the 
subscripting is done only once, in the bind. 

To prevent aliasing, CE causes v to disappear until the end of the 
current scope. Since it is sometimes desirable to bind to more than one 
element of an array, CE allows multiple binds, as in 

bind(var x to v(i), vary to vG)) 

If i and j are the same value then we are again in trouble, because x and y 
will be aliases. This aliasing cannot in general be prevented by the com­
piler, because the values of i and j are not known until run-time. However, 
the CE compiler does issue a warning (and some day may optionally emit 
code to check that i and j are different). 

We have seen how aliasing due to the bind statement is avoided. 
Similar techniques are used to keep parameters from causing aliasing. The 
call to the procedure named P in the Pascal example would not be allowed 
in CE because the compiler would detect that P both imports and receives 
as a var parameter the same variable. There remains the difficulty, analo­
gous to multiple binds, of several var parameters representing the same 
variable. For example, suppose procedure Q has var parameters x and y 
and is called by the statement "Q(v(i),vG))". If i and j are equal, then x 
and y are aliases. As in the case of multiple binds, the CE compiler prints a 
warning when it detects this possibility. 

TYPE CONVERTERS 

CE has strong type checking; this means that the compiler disallows 
unlikely combinations of types such as adding the integer 14 to the Boolean 
value "true" or multiplying a set value times a character. (See the 
"Specification of Concurrent Euclid" in the appendix for details of the type 
checking rules.) 

However, there are circumstances where a less rigorous approach to 
checking is appropriate. This is the case when a tightly packed data struc­
ture already exists and is to be manipulated by a CE program. We will take 
as an example the analysis of the PDP-11 processor status (PS) word. The 
PS is a 16-bit word on a PDP-11 giving certain information about the CPU. 
The bits in the PS are as follows, where bit 0 is the lower order bit. 



82 CONCURRENT EUCLID: SEQUENTIAL FEATURES 

Bits 0-3: Condition code, consisting of the 4 bits CVZN where: 

Bit 4: 

C=carry, V=overflow, Z=zero and N=negative. 
These are set according to the result of the instruction. 

Trace bit. If set, every instruction traps. 

Bits 5-7: Unused. 

Bits 8-10: Priority. This is a priority number in the range 
0 to 7, that determines which hardware devices 
can interrupt the CPU. 

Bits 11-15: These bits specify which register set to use and 
the current and previous machine mode (kernel, 
supervisor or user mode). 

It is not our purpose to give the details of the PS, but instead to show how 
it can be manipulated. Suppose we want to turn on the trace bit; we 
accomplish this as follows: 

type WordSet = set of 0 .. 15 
const traceBit : = 4 
var PS (at 177776#8): WordSet 

PS:= PS + WordSet(traceBit) 

The"+" in the assignment statement means set union (also known as bit­
wise inclusive "or"). This turns on bit 4 of the PS, which is located on the 
PDP-11 bus at octal location 177776. Inspecting or setting a particular bit 
in the PS is straight forward using the set operations "in", "not in", set 
union ( +), set subtraction (-) and set intersection (*). 

Suppose we want to print the value of the priority. This can be done 
by turning off the five high order bits (line 5 below) and shifting to the 
right (line 6). 

1 converter WordSetToUnsigned(WordSet) returns Unsignedlnt 
2 var prtyBits: WordSet 
3 const shift8 : = 256 {2**8} 
4 var prty: 0 .. 7 
5 prtyBits :=PS - WordSet(ll,12,13,14,15) 
6 prty := WordSetToUnsigned(prtyBits) div shift8 
7 IO.Putlnt(prty,4) {Print 0 to 7 in field 4 wide} 



TYPE CONVERTERS 83 

Line 1 declares WordSetToUnsigned to be a converter, which changes a 
WordSet to be an Unsignedlnt. Line 3 defines the constant shift8 which we 
use to shift the priority eight bits to the right, to get a value in the range 0 
to 7. Lines 5 assigns to prtyBits the value of PS with high order bits 11 to 
15 turned off. Line 6 converts prtyBits to an integer, so that it becomes 
legal to divide it by shift8. This division moves the priority bits to the 
three lower order bits of the word, so it becomes an integer value in the 
range 0 to 7. 

A converter, such as WordSetTolnteget, allows us to violate the usual 
type checking rules of CE. A converter does not generate any code; it sim­
ply allows the bit pattern representing a value to be considered to be a 
value of another type. In analyzing the PS, we used a converter because 
the PS word contains both set-like and integer-like parts. Except in special 
situations like this, we should avoid converters, because their use is 
machine dependent and does not have the clean mathematical basis sup­
ported by strong type checking. In this example, we assumed that the types 
Unsignedlnt and WordSet have the same size and alignment. This is true 
for CE on a PDP-11, but might not be true for other implementations of 
CE. 

As another use of converters, consider the problem of inspecting and 
changing an arbitrary byte in memory. For historical reasons, these two 
operations are called Peek (inspect) and Poke (change). Poke is quite 
dangerous because it can wreck any byte that the hardware allows us to 
address. 

Our implementation depends on the fact that CE defines 
AddressType, an integer subrange, to be the same size as a pointer. In the 
following, we define a converter from AddressType to a pointer. We define 
a collection called memory for the sole purpose of peeking and poking at 
arbitrary locations. 

var memory: collection of Shortlnt 
type MemPtr = A memory 
converter AddrToPtr (AddressType) returns MemPtr 

function Peek(location: AddressType) 
returns result: Shortlnt = 
imports (memory, AddrToPtr) 
begin 

return (memory (AddrToPtr(location))) 
end Peek 



84 CONCURRENT EUCLID: SEQUENTIAL FEATURES 

procedure Poke(location: AddressType, 
value: Shortlnt) = 
imports(var memory, AddrToPtr) 
begin 

memory(AddrToPtr(location)) :=value 
end Poke 

As can be seen, we never allocate or free the elements of the collection 
called memory. Instead, we convert the integer rtamed location and treat it 
as a pointer. The pointer accesses what seems to be an element of a collec­
tion but is really the byte whose address is "location". 

Peek and Poke work for architectures that supports byte addressing, 
but may not work for an architecture such as the PDP-10 which allows 
direct addressing of words but not of bytes. In general, one should use 
converters and routines such as Poke only when they are really needed, as 
they are dangerous and machine dependent. 

SEPARATE COMPILATION 

CE allows procedures, functions, modules and monitors to be com­
piled separately and later linked together. For example, the IO module is 
pre-compiled and is linked with most CE programs. 

Suppose that the Max function has been previously compiled and its 
object code has been saved in a file. When we want to use it, we place the 
following stub (or interface) for Max in our program: 

function Max (a: Signedlnt, b: Signedlnt) 
returns m: Signedlnt = 
external 

x : = Max(i,O) {use of the Max function} 

This stub for Max is just like the actual Max function except that its body is 
replaced by the keyword external. The stub is required in any program that 
calls Max. It is used by the compiler to determine the types of the parame­
ters and result of Max. 

Separate compilation of procedures is done analogously to functions, 
namely, the stub for a procedure has the body replaced by the keyword 
external. 

The stub for a separately compiled module (or monitor) is marked as 
"external" and omits the declarations of the module's variables and 



LINKING PROGRAMS UNDER UNIX 85 

unexported procedures; also, the bodies of its entry points are replaced by 
the keyword external. For example, the Stack module, which was 
presented previously, would have the following stub: 

var Stack: 
external module 

exports (Push, Pop) 
procedure Push(i: Signedlnt) = external 
procedure Pop(var i: Signedlnt) = external 

end module 

The stub for a module or monitor can contain declarations of manifest con­
stants, collections, types, and converters; these can be exported and/or 
used to define the types of the parameters and results of exported functions 
and procedures. 

When linking with a separately compiled module, the module's stub 
must occur inside exactly one other module (typically the main module) 
that is being linked. The occurrence of the stub marks the place the 
separately compiled module would be located, had it not been separately 
compiled. At that location a call is emitted to execute the module's initiali­
zation code. 

LINKING PROGRAMS UNDER UNIX 

Combining pre-compiled CE programs is easy under Unix. We will 
illustrate the method using our stack example. Assuming that the stack 
module (implementation, NOT stub) is in a file named stk.e, we produce 
its object module by giving the cec command the c flag, as in: 

cec -c stk.e 

This produces the object module in the file stk.o. As has been described 
before, the ".o" suffix means a linkable object file while the ".out" suffix 
means an executable load module. 

Next, we place the stub for the stack module in the file "stack.e". A 
program that uses the stack module should contain the line: 

include 'stack.e' 

to get a copy of stack's stub. Our earlier example, called Reverse, contains 
exactly this line, and can be compiled as follows: 



86 CONCURRENT EUCLID: SEQUENTIAL FEATURES 

cec -c reverse.e 

This creates the linkable object module reverse.o, which has external refer­
ences to the stack module. We can link reverse.o and stk.o to create 
reverse.out by typing: 

cec reverse.o stk.o 

The cec command recognizes the ".o" suffixes, bypasses compilation and 
proceeds to link the two modules. The name of the resulting executable 
object module is derived from the first file name in the list. 

In general, the cec command compiles files with the ".e" suffix, and 
links the result with ".o" files, so the line 

cec reverse.e stk.o 

compiles reverse.e and links it with s~k.o to create reverse.out. 

If a program has been written in assembly language or the language C 
then it is straightforward to link it with CE. Suppose the object module for 
the program is in file prog.o. All that is required for linkage with a CE pro­
gram is to include prog.o in the list of files given to the cec command. 
Details of the conventions for linking CE to/from assembler or C are 
described in an appendix. 

CHAPTER 3 SUMMARY 

This chapter has presented the sequential part of Concurrent Euclid 
(CE), which is known as Sequential Euclid (SE). SE is an important 
language in its own right, and is used for implementing sequential programs 
such as the CE compiler. The next chapter introduces the concurrency 
features of CE. CE is a language designed to support high performance, 
highly reliable software. The language disallows dangerous or unlikely con­
structs. At the same time, generated code for CE is quite efficient. The 
sequential constructs of CE presented in this chapter are now summarized. 

Basic data types - These are integers (Shortlnt, Signedlnt, Unsignedlnt, 
Longlnt and AddressType), Booleans, characters and pointers. 

Structured types - These are arrays, records and sets. 

Strings - A string is a packed array of characters with lower bound one. 



CHAPTER 3 SUMMARY 87 

Literals - There are integer literals (e.g., 10, 17 # 8, OE8# 16), character 
literals (e.g., $H, $$T) and string literals (e.g., 'Hello$N$E'). 

Constants - In CE, a constant is a value that does not change in a given 
scope. Assuming x and y are variables, "average" is computed at 
runtime, when the begin statement is entered, and does not change 
up to "end": 

begin 
const average: Signedlnt : = (x +y) div 2 

end 

A constant whose value is known at compile time is said to be man­
ifest. 

1/0 package - This is a module that supports input/output such as: 

IO.PutString('Hello$N$E') {Prints: Hello} 

Parameters - Procedures have parameters that are var or constant (non­
var). Var formal parameters can be assigned to, and the change 
occurs in the corresponding actual parameter. Constant parameters 
cannot be changed. The parameters of a function are required to be 
constant. 

Modules - These are syntactic units that control visibility and enforce 
modularity. From outside a module, only its exported components 
can be accessed. 

Absolute address variables - The "at" clause can be used to place variables 
at absolute locations. For example, 

var ttyData (at 9001#16): Char 

places ttyData at hexadecimal location 9001. 

Side effects - An expression has a side effect when it changes the value of a 
variable. Functions and expressions in CE do not have side effects. 

Collections - A collection is much like an array. It differs from an array in 
that its elements are individually allocated (by New) and de-



88 CONCURRENT EUCLID: SEQUENTIAL FEATURES 

allocated (by Free). Here p is a pointer that is used as a subscript 
of collection c: 

var c: collection of Longlnt 
var p: ~c 
c.New(p) 
c(p) := 14 

Return statements - The value of a function must be returned explicitly, as 
in the statement 

return (a+ b) 

A return statement without the parenthesized result expression can 
be used to return from a procedure. 

Aliasing - This means having more than one name for a variable. CE 
prevents aliasing by placing constraints on var parameters and on 
binding. 

Binding - A special declaration is used for re-naming a (part of a) variable. 
For example, v(i) is renamed x: 

bind var x to v(i) 

To avoid aliasing, the name v becomes invisible until the end of x's 
scope. 

Type converters - These have an appearance much like functions. They are 
used to over-ride the strong type checking of CE. 

CHAPTER 3 BIBLIOGRAPHY 

The philosophy behind full Euclid [Lampson 1977] is well described 
by Popek et al (1977,19811. Welsh et al (1977] describe ambiguities and 
insecurities of Pascal, which are cleaned up in the design of Euclid. The 
implementation of the Toronto Euclid subset of Euclid is described by Holt 
et al (19811. Guttag (1980] describes how to use Euclid modules to imple­
ment abstract data types and how to prove Euclid modules correct. Ottawa 
Euclid is an extension of Toronto Euclid intended for formal specification 
and verification [Crowe 19811. 



CHAPTER 3 EXERCISES 89 

Crowe, David R. Ottawa Euclid language specification, Report TR-5613-
81-7, LP. Sharp Associates, 156 Front Str. W., Toronto, Canada, 
November, 1981. 

Guttag, J.V. Notes on type abstraction (version 2). IEEE Transactions on 
Software Engineering, vol. SE-6, no. 1 (Jan. 1980), 13-23. 

Holt, R.C., Wortman, D.B., Cordy, J.R., Crowe, D.R., Griggs, l.H., Euclid: 
A language for producing quality software. Proceedings of National 
Computer Conference, Chicago, May 1981. 

Lampson, B.W., Horning, J.J., London, R.L., Mitchell, J.G., Popek, G.J., 
Report on the programming language Euclid. SIGPLAN Notices, 
12, 1 (February 1977). The revised language is described by report 
CSL-81-12 (Oct. 1981), Xerox Palo Alto Research Center, 3333 
Coyote Hill Road, Palo Alto, CA, 94304. 

Popek, G.J., Horning, J.J., Lampson, B.W., Mitchell, J.G., London, R.L., 
Notes on the design of Euclid. Proceedings of ACM Conference on 
Language Design for Reliable Software, SIGPLAN Notices 12,3 
(March 77), 11-18. 

Welsh, J., Sneeringen, W.J., Hoare, C.A.R., Ambiguities and insecurities 
in Pascal. Software Practice and Experience 7, 6 (Nov. -Dec. 1977) , 
685-696. 

CHAPTER 3 EXERCISES 

1. Write a CE program called Number that reads and prints lines of text, 
with the number of each line printed on the left. Assume that each line is 
ended by a new line character ($$N) and that an end-of-file character ($$E) 
occurs at the end. 

2. Write a CE function that is passed a string of digits and returns the posi­
tive integer value of the string. Assume the string is terminated by a non­
digit character. Hint: the expression Ord(ch)-Ord('O') gives the numeric 
value corresponding to digit character ch. 

3. Consider the following: 

const c: array 1..10 of Signedlnt := (1,2,3,4,5,6,7,8,9,10) 
var a: array 1..10 of Signedlnt : = c 
procedure Sum(var m: Signedlnt) = 



90 CONCURRENT EUCLID: SEQUENTIAL FEATURES 

imports(a) 
begin 

var i: 1..10 := 1 
m:= 0 
loop 

m := m + a(i) 
exit when i = 10 
i := i + 1 

end loop 
end Sum 

Sum(a(5)) 

What is the apparent purpose of Sum? If this program is translated to an 
equivalent one in Pascal, what would be the value of a(lO) after the call to 
Sum. What restriction of CE makes this program illegal? Why does CE 
have this restriction? 

4. Consider the following: 

const s: array 1..5 of Signedint := (1,2,3,4,5) 
function GetNext(var i: Signedint) returns r: Signedint = 

imports(s) 
begin 

i := i + 1 
return (s (i)) 

end GetNext 
function GetPrevious(var i: Signedint) returns r: Signedint = 

imports(s) 
begin 

i := i. 1 
return (s (i)) 

end GetPrevious 
var i: Signedlnt : = 2 
var a: array 1..10 of Signedint 
a(i) := GetNext(i) + GetPrevious(i) 

What is the apparent purpose of the GetNext function? In most languages 
(Pascal, Fortran, C, PL/I, etc) the order of evaluation of functions in an 
expression is not specified. Given a translatiop of our program into one of 
those languages, what are the possible differdnt effects of the assignment 
statement? What restriction of CE makes the program illegal? Why does 
CE have this restriction? 



CHAPTER 3 EXERCISES 91 

5. Write a CE module that has entries Allocate and DeAllocate to manage 
the blocks on a disk. Allocate is called to get a presently unallocated block 
and DeAllocate is called to give back an allocated block. Assume the 
blocks are numbered 0 to maxDiskBlock. Use a bit map to manage the 
blocks. This bit map can be implemented as an array of sets, each set rang­
ing from say, 0 to 15. A bit will be on when the block has been allocated. 
Always allocate the available block with the smallest block number. If no 
more blocks are available, Allocate returns the value nullBlock, which is 
maxDiskBlock + 1. 

6. Write a disk block manager module as per the previous exercise, but pro­
vide a new entry called HeadPosition. The procedure HeadPosition does 
nothing but inform the module where the read-write head of the disk is 
positioned. Using this information, minimize head motion by allocating the 

block nearest the present head position. 

7. Write a CE procedure that produces a dump of a certain area of memory. 
Your procedure has the stub: 

const binary : = 2 
const octal : = 8 
const decimal : = 10 
const hexadecimal : = 16 
procedure Dump(location: AddressType, 

areaSize: AddressType, 
numberBase: Shortlnt) = external 

The procedure prints out the value of areaSize bytes using the specified 
base, such as octal. Hint: The Peek function given in this chapter accesses 
arbitrary bytes in memory. 

8. Implement a module called Logger, described as follows: 

pervasive const trace : = 0 
pervasive const profile : = 1 
pervasive const silence : = 2 
var Logger: 

external module 
exports(Log, Report, Option) 
procedure Log(action: Unsignedlnt, 

message: packed array !..parameter of Char) = 
external 

procedure Report = external 
procedure Option (setting: trace .. silence) = 

external 



92 CONCURRENT EUCLID: SEQUENTIAL FEATURES 

end module 

The Log procedure is called to log (record) an event, which is described by 
an event number and a string. The Option procedure sets the option to be 
trace, profile or silence. When the option setting is trace, all actions are 
printed as logged. When Report is called, if the option is silence, then the 
most recent ten actions are printed, and if the profile option is set, a count 
of the occurrences of each action number is printed. 



Chapter 4 

CONCURRENT EUCLID: 
CONCURRENCY 
FEATURES 

This chapter introduces the concurrency features of Concurrent 
Euclid. These features are processes (to support concurrent activity), mon­
itors (to gain mutually exclusive access to data) and signal/wait statements 
(to allow processes to block and to be waked up). There is also the busy 
statement, which allows us to use CE as a simulation language. 

SPECIFYING CONCURRENCY 

We begin with a simple example of two processes, named Hi and Ho, 
that repeatedly print their own names. As can be seen, a process in CE is 
written as the keyword "process" followed by the name of the process (Hi or 
Ho in this example); then the rest of the process is like a procedure. 

var HiHo: 
module 

include '%101' 

process Hi 
imports (var IO) 
begin 

loop 
IO.PutString ('Hi$N$E') 

end loop 
end Hi 



94 CONCURRENT EUCLID: CONCURRENCY FEATURES 

process Ho 
imports (var IO) 
begin 

loop 
IO.PutString ('Ho$N$E') 

end loop 
end Ho 

end module 

The Hi and Ho processes execute in parallel at undefined relative 
speeds. The output of the program is an unpredictable sequence of Hi's 
and Ho's: 

Ho 
Ho 
Hi 
Ho 
Hi 
Hi 
Hi 
Hi 
Ho 
... etc ... 

The order of Hi's and Ho's may vary from execution to execution. It is 
even possible that a part of the string Hi Gust the H) might be printed, 
then Ho and then the rest of Hi. We have not shown this possibility; we 
have assumed that the IO module has been implemented such that it com­
pletely prints one string before starting another. 

In CE, any module can contain processes. These must appear at the 
end of the module, following the module's "initially" procedure (if present). 
After the module has been initialized, all these processes begin to execute. 
Note that processes in CE are similar to the cobegin/end construct 
described in Chapter 2. 

RE-ENTRANT PROCEDURES 

Sometimes several processes execute similar algorithms. For exam­
ple, in a computer configuration with three terminals, the operating system 
may use three almost identical processes to manage these terminals. In CE, 
processes can share algorithms by calling the same procedure. 

We can factor out the common parts of Hi and Ho from our previous 



example, creating a procedure called Speak: 

var HiHo2: 
module 

include '%101' 

MUTUAL EXCLUSION 95 

procedure Speak( word: packed array 1..4 of Char) 
imports (var IO) 
begin 

loop 
IO.PutString(word) 

end loop 
end Speak 

process Hi 
imports(Speak) 
begin 

Speak('Hi$N$E') 
end Hi 

process Ho 
imports (Speak) 
begin 

Speak ('Ho$N$E') 
end Ho 

end module 

HiHo2 behaves like the old HiHo module, but now there is only one 
copy of the loop and the call to PutString. The Speak procedure is re­
entrant, meaning that it can be called concurrently by several processes. In 
CE, all procedures and functions are re-entrant. Parameters, such as the 
string called "word" and local variables, are distinct from process to process. 
For example, Hi's activation of Speak has word set to 'Hi$N$E' while Ho's 
activation of Speak has word set to 'Ho$N$E'. 

Re-entrant procedures are essential for software such as operating sys­
tems because (1) they make the software easier to understand, and (2) they 
make the code smaller. 



96 CONCURRENT EUCLID: CONCURRENCY FEATURES 

MUTUAL EXCLUSION 

When processes need to update common data, the data may be cor­
rupted if more than one update takes place in parallel. In the preceding 
chapters, monitors were introduced as a feature for guaranteeing mutually 
exclusive access to common data. A monitor can be considered to be a 
fence around the data; all code accessing the data is gathered into 
procedures/functions and moved inside the fence. Processes wishing to 
access the data do so by entering a gate or entry in the fence, to execute one 
of these procedures or functions. The monitor guarantees that only one 
process is active inside the fence at a given time. 

Chapter 2 illustrates the danger of concurrently updating data by an 
example involving observer and reporter processes. The following program 
shows how this example can be safely programmed using a monitor. 

The CE program contains two processes, named Observer and 
Reporter, and a monitor named Update. The shared data is the variable 
called count. The monitor is initialized before the processes are "born", so 
count starts out with the value zero. 

var Counting: 
module 

include '%IOI' 

var Update: 
monitor 

imports(var IO) 
exports (Observe, Report) 

var count: Signedint : = 0 

procedure Observe = 
imports (var count) 
begin 

count : = count + 1 
end Observe 

procedure Report = 
imports(var IO, var count) 
begin 

IO.Putlnt(count, 8) 
count := 0 

end Report 



end monitor 

process Observer 
imports(var Update) 
begin 

Update.Observe 

end Observer 

process Reporter 
imports(var Update) 
begin 

Update.Report 

end Reporter 

end module 

MUTUAL EXCLUSION 97 

The Observer process calls the entry Update.Observe, which adds one 
to count. The Reporter process calls Update.Report, which prints the value 
of count and sets it to zero. If the Reporter tries to enter the monitor while 
the Observer is inside the monitor, the Reporter is held up at the entry 
point until the Observer leaves the monitor. Similarly, the Observer is 
prevented from entering the monitor while the Reporter is inside. The 
mutexbegin/end construct, described in Chapter 2, is an analogous feature 
for guaranteeing mutually exclusive access to shared data. 

The data in a monitor (count in this example) is static in that it 
remains intact from invocation to invocation of the monitor. By contrast, 
the entries to the monitor are re-entrant procedures/functions, and their 
parameters and local variables are private to the invoking process. These 
parameters and local variables are allocated when the procedure/function is 
called and de-allocated upon return. 

A monitor in CE is similar in form to a module and can have an "ini­
tially" procedure. This initially procedure is executed before any processes 
enter the monitor. A monitor cannot contain modules, monitors or 
processes. Scope rules for monitors are the same as those for modules: the 
monitor and its procedures/functions must import any identifiers they use. 
The only internal parts of the monitor that are externally visible are those 
names that the monitor exports. A monitor is not allowed to export vari­
ables. An entry to a monitor must not be called from inside a monitor. 



98 CONCURRENT EUCLID: CONCURRENCY FEATURES 

WAITING AND SIGNALING 

It is common that processes must synchronize their activities. A typi­
cal situation is that processes compete for shared resources. Once a 
resource is allocated to one process, another process needing the resource 
should be blocked until the first process releases it. The following monitor 
allocates a single resource among processes sharing it. Each process 
"acquires" the resource, then uses it, and finally "releases" it. In the 
Acquire procedure, the process blocks itself by the wait statement if the 
resource is not available. In the Release procedure, the signal statement 
wakes up one waiting process (if there is one). If there is no waiting pro­
cess, the signaler just continues. 

var Resource: 
monitor 

exports (Acquire, Release) 

var in Use: Boolean : = false 
var available: condition {Signaled when not inUse} 

procedure Acquire = 
imports(var inUse, var available) 
begin 

if in Use then 
wait (available) 

end if 
inUse := true 

end Acquire 

procedure Release = 

imports(var inUse, var available) 
begin 

inUse := false 
signal (available) 

end Release 

end monitor 

The signal and wait statement apply to conditions, which are queues of 
processes. A process that executes a wait statement is blocked and "steps 
out" of the monitor until a signaling process wakes it up. When a process 
executes a signal statement, the corresponding condition queue is checked. 
If it contains processes, one is removed and allowed to continue immedi­
ately. The signaler "steps out" of the monitor and is not allowed to 



DETAILS OF SIGNALING, WAITING AND CONDITIONS 99 

continue until no more processes are in the monitor. If the signaled condi­
tion has no processes waiting for it, no process is awakened, and the sig­
naler continues to execute. However, before the signaler continues, other 
processes may enter and leave the monitor. Note that at most one process 
is active in the monitor, so mutually exclusive access to the monitor's data 
is guaranteed. 

The signal and wait statements of CE are analogous to the block and 
wakeup statements described in Chapter 2. The Acquire and Release 
entries of the Resource monitor behave like P and V operations on a binary 
semaphore. This illustrates the fact that monitors are as powerful as sema­
phores, and that they can be used to implement semaphores. 

DETAILS OF SIGNALING, WAITING AND CONDITIONS 

We will now explain signal/wait statements and conditions in more 
detail. A condition is a queue of processes, which is implicitly initialized to 
be empty. A wait statement adds a process to the queue and stops the pro­
cess from executing. A signal statement removes a waiting process and 
causes it to continue execution immediately. The signaling process is put 
to sleep until no other process is active in the monitor. 

The reason the awakened process proceeds before the signaling pro­
cess is so that the awakened process can be sure that the situation it was 
waiting for is true. It is the responsibility of the signaler to guarantee that 
the desired situation exists before doing the signal. 

We can test to see if a condition queue is empty, as in this example. 

if empty(available) then ... 

Empty is a pre-defined function used to determine if there are processes 
waiting for a condition. 

The signal statement wakes up one process (when one or more 
processes are waiting on the condition). If no processes are waiting on the 
condition, the signaler simply continues. However, before continuing, the 
signaler may step out of the monitor and allow other processes to enter it. 

The only place a condition can be declared is as a field of a monitor. 
We can have arrays of conditions. Conditions cannot be assigned, com­
pared or passed as parameters. 

The scheduling for conditions is fair, meaning that given enough sig­
nals, every waiting process will eventually be waked up. It is typical for an 
implementation to use FIFO scheduling, which is obviously fair. However, 
in general we are not guaranteed that the order is FIFO. 



100 CONCURRENT EUCLID: CONCURRENCY FEATURES 

ASSERT STATEMENTS 

Along with condition declarations, we generally give a comment speci­
fying the awaited situation. For example, the declaration of the inUse con­
dition specifies that it is signaled when "not inUse". The situation is 
expressed as a logical relation among the values of monitors variables. In 
the Concurrent Pascal language a condition is called a "queue", but CE uses 
the term "condition" to emphasize that a particular situation (condition) is 
being waited for. 

A common usage pattern for conditions is to check to see if a situa­
tion exists and if not, to wait for it, as in: 

if in Use then 
wait (available) 

end if 
assert(not inUse) 

Here we have added an assert statement to document the fact that once we 
pass the "end if' we know that the resource is "not inUse". 

The assert statement can be thought of as an "executable comment". 
It specifies a relationship that is necessary for the program to be correct. By 
default, the relationship is checked at run time and the program is aborted 
if it is not true. The overhead required by this check can be eliminated by 
a compiler option that effectively tells the compiler to ignore assert state­
ments. Typically a program is tested with the checking active; later, if per­
formance is critical, the program is re-compiled to remove the run-time 
checking. 

PRIORITY CONDITIONS 

There is another kind of condition that allows processes to be waked 
up in a specified order. We call these priority conditions. They are used 
just like ordinary conditions except that a wait on a priority condition must 
specify a non-negative Signedint priority, for example: 

var c: priority condition 

wait(c, 13) 

signal(c) 

A signal of priority condition c will wake up the waiting process (if any) 
with the lowest specified priority. Since priorities must be non-negative, 
processes with zero priority will be waked up first. 



AN EXAMPLE PROGRAM: MANAGING A CIRCULAR BUFFER IOI 

Scheduling for priority conditions is not fair in that a process with a 
large valued priority may be indefinitely overtaken by a sequence of waits 
by processes with low numbered priorities. 

AN EXAMPLE PROGRAM: MANAGING A CIRCULAR BUFFER 

We will use monitors with signaling and waiting to solve a typical 
problem in concurrent software. Two processes, a producer and a consu­
mer, are communicating by means of a shared buffer. The producer sends 
data (messages) to the consumer. The buffer is used as a queue to hold 
these messages, so either process may occasionally slow down without 
impacting the speed of the other. This queue will be managed in FIFO 
order so that messages are always received in the same order they were 
sent. 

This problem can be efficiently solved using a multi-slot buffer, where 
each slot can hold one message. The slots are re-used cyclically and hence 
the arrangement is called a circular buffer. The producer fills slots, stopping 
when there are no more free slots. The consumer empties slots, stopping 
when there are no more full slots. 

We will use a monitor, called Mai!Box, with entries Send and 
Receive. The following variables will represent the queue: 

buffer: array 1..numberSlots of MessageType 
numberFull: O .. numberSlots {How many full slots} 
slotToFill: 1..numberSlots {Slot for next send} 
slotToEmpty: 1..numberSlots {Slot for next receive} 

Waiting occurs in the monitor for two reasons: (1) when all slots are 
full, the producer must wait for a slot to become empty, and (2) when all 
slots are empty, the consumer must wait for a slot to pecome full. These 
awaited situations are represented by the two conditions: 

var emptySlot: condition {When numberFull < numberSlots} 
var fullSlot: condition {When numberFull > O} 

The Send entry of Mai!Box tests to see if there is a free slot; if not, it waits 
for one. Next, it adds the new message to the queue. Finally, it signals the 
fullSlot condition, in case the consumer is waiting for a message. The 
Receive entry is analogous: it conditionally waits for a full slot, empties the 
slot and signals the emptySlot condition. 

var Mai!Box: 
monitor 

imports (Message Type) 
exports (Send, Receive) 



102 CONCURRENT EUCLID: CONCURRENCY FEATURES 

pervasive const numberSlots : = 5 
var buffer: array 1..numberSlots of MessageType 
var number Full: O .. numberSlots : = 0 {Full slots} 
var slotToFill: 1..numberSlots : = 1 {Slot for send} 
var slotToEmpty: 1..numberSlots : = 1 {Slot for receive} 
var emptySlot: condition {When numberFull<numberSlots} 
var fullSlot: condition {When numberFull>O} 

procedure Send(msg: MessageType) = 
imports(var buffer, var numberFull, var slotToFill, 

var emptySlot, var fullSlot) 
begin 

if number Full = numberSlots then 
wait (emptySlot) 

end if 
assert(numberFull < numberSlots) 
buffer(slotToFill) : = msg 
slotToFill : = (slotToFill mod numberSlots) + 1 
numberFull := numberFull + 1 
signal (f ullSlot) 

end Send 

procedure Receive(var msg: MessageType) 
imports(buffer, var numberFull, var slotToEmpiy, 

var emptySlot, var fullSlot) 
begin 

if number Full = 0 then 
wait (fullSlot) 

end if 
assert(numberFull > 0) 
msg : = buff er (slotT oEmpty) 
slotToEmpty : = (slotToEmpty mod numberSlots) + 1 
number Full : = number Full - 1 
signal (emptySlot) 

end Receive 

end {MailBox} monitor 

The MailBox monitor buffers messages of whatever type is specified 
by MessageType. Assuming that this monitor is in the file mailbox.e, we 
can test it with MessageType set to Char as follows: 



SIMULATION MODE AND KERNELS 103 

var TestMailBox: 
module 

type MessageType = Char 
include 'mailbox.e' 
include '%IOI' 

process Producer 
imports(var IO, var MailBox) 
begin 

var c: Char 
loop 

IO.GetChar(c) 
MailBox.Send (c} 
exit when c = $$E 

end loop 
end Producer 

process Consumer 
imports(var IO, var MailBox) 
begin 

var c: Char 
loop 

MailBox.Receive (c) 
IO.PutChar(c) 
exit when c = $$E 

end loop 
end Consumer 

end {TestMailBox} module 

Our test uses messages that are single characters. It copies the input stream 
into the output stream until an end-of-file character is found. 

This example illustrates the fact that monitors can be used to imple­
ment message passing (described in Chapter 2). 

SIMULATION MODE AND KERNELS 

A CE program, such as our test of the MailBox monitor, can be run 
as an ordinary job under an operating system. This type of execution is 
called simulation mode. It is supported by a simulation kernel that shares the 
job's CPU time among the processes of the CE program. Simulation mode 
is particularly valuable for initial testing of low level software, such as 



104 CONCURRENT EUCLID: CONCURRENCY FEATURES 

device drivers. Eventually this software will be run without operating sys­
tem support using a bare machine kernel that handles interrupts and shares 
CPU time among processes. The next section shows how a device driver 
can manage peripheral 1/0 devices using a bare machine kernel. The last 
chapter of the book explains how kernels are implemented. 

BASIC DEVICE MANAGEMENT 

In the last chapter, we gave an example of driving a device, namely 
the keyboard of a terminal. This was done by having the processor do a 
busy wait until the input/output was completed. This wastes processor 
power and is unacceptable in many situations. 

To avoid busy waiting, one can use procedures called BeginlO, WaitIO 
and EndlO. These procedures are not part of the CE language, but are sup­
ported by the bare machine kernel. This will be explained by an example 
from Tunis, a Unix-compatible operating system written in CE. Its driver 
for reading from terminal number 1 has this form: 

loop 
TtyDolO.GetCharl (c) 
TerminalMonitor.BufferCharl (c) 

end loop 

This repeatedly gets character c from the device and calls a monitor to store 
the character in a buffer. 

The procedure GetCharl is machine dependent and so it is isolated in 
a module called TtyDoIO; it can be written as follows for a PDP-11. 

procedure GetCharl (var c: Char) = 
imports(BeginlO, WaitlO, EndIO) 
begin 

const inputCharReady : = 7 
var ttyllnputStatus (at 176500#8): set of 0 .. 7 
var ttyllnputBuffer (at 176502#8): Char 
BeginlO 

if inputCharReady not in ttyllnputStatus then 
WaitIO(ttyllnputld) 

end if 
c : = ttyllnputBuffer 

EndIO 
end GetCharl 

This procedure uses device registers at octal locations 176500 and 176502; 
the first gives the status of the device and the second holds the most 



SIMULATION AND THE BUSY STATEMENT 105 

recently received character from the keyboard. The BeginIO entry of the 
kernel disables all interrupts. The WaitlO procedure blocks the executing 
process until the read operation is complete, i.e., until the device interrupts 
the CPU. During the wait, the interrupts are re-enabled and other 
processes are executed. When WaitIO returns, the next character from the 
keyboard is in ttyllnputBuffer; the interrupts are again disabled and remain 
disabled until EndIO is called. The execution of the WaitIO is conditional 
in this procedure to avoid the overhead of waiting when the next character 
is already available. 

This approach to basic device management, using Begin/Wait/EndIO, 
provides a fast, clean interface to devices. Of course, basic procedures such 
as GetCharl are machine dependent and must be replaced when porting to 
a new machine. Fortunately they can be written in CE for machines like 
the PDP-11 with memory mapped device registers, such as ttyllnputStatus. 
But for non-mapped architectures such as the IBM System/360, support of 
new devices entails modifying the kernel to emit explicit "Start IO" machine 
instructions. 

SIMULATION AND THE BUSY STATEMENT 

CE provides a statement called "busy" that allows us to simulate the 
passage of time when running in simulation mode. Suppose we are testing 
low level software such as the device managers of the Tunis operating sys­
tem. We can execute these programs in simulation mode by replacing 
those parts that activate the 1/0 devices. For example, we would replace 
the TtyDoIO module by an equivalent module or monitor that uses files to 
simulate terminals. Each 1/0 device can be simulated by a process; for 
example, the following simulates the printer of terminal number one: 

process TtyPrintl {Simulate printer of a teletype} 
imports(var TtyDoIO, var IO) 
begin 

var c: Char 
loop 

TtyDoIO.FetchToPrintl (c) 
busy(lO) {Simulate 10 time units to print char} 
IO.PutChar(c) 

end loop 
end TtyPrintl 

The busy statement causes this process to be held up until the specified 
number of units of simulated time have passed. The size of a unit of time 
is arbitrary and is chosen by the programmer. In this simulation our unit is 



106 CONCURRENT EUCLID: CONCURRENCY FEATURES 

a hundredth of a second, and we are simulating an old-style teletype that 
takes about a tenth of a second to print a character. In the next section we 
will discuss simulated time in more detail. 

The TtyDoIO module will be replaced by a monitor that has entries 
named PutCharl, GetCharl, etc., that simulate output and input to the ter­
minals. PutCharl places its character in a buffer named outBufl, and 
FetchToPrintl removes the character. 

var TtyDoIO: {Simulates interface to tty hardware} 
monitor 

exports(GetCharl, PutCharl, ... , FetchToPrintl, .. .) 

var outBufl: Char 
var outBufFu111: Boolean : = false 
var fullOutBufl: condition {when outBufFu111} 
var emptyOutBufl: condition {when not outBufFulll} 

procedure PutCharl(c: Char) = 
imports (var outBufl, var outBufFu111, 

var fullOutBufl, var emptyOutBufl) 
begin 

if outBufFulll then 
wait(emptyOutBufl) 

end if 
assert(not outBufFu111) 
outBufl := c 
outBufFu111 : = true 
signal (full Ou tBufl) 

end PutCharl 

procedure FetchToPrintl (var c: Char) = 
imports (outBufl, var outBufFu111, 

var fullOutBufl, var emptyOutBufl) 
begin 

if not outBufFu111 then 
wait(fullOutBufl) 

end if 
assert (outBufFull 1) 
c := outBufl 
outBufFu111 : = false 
signal (emptyOutBufl) 

end FetchToPrintl 



SIMULATED TIME AND PROCESS UTILIZATION I07 

end module 

As you may have noticed, this monitor implements a simple mailbox where 
the producer calls PutCharl and the consumer (TtyPrintl) calls FetchTo­
Printl. The algorithm is very similar to the one used in our circular buffer 
implementation of mailboxes. 

Since there is only one slot in the buffer, the producer and consumer 
do not execute in parallel. They execute in strict alternation, like alternate 
runners in a relay race. The monitor solves the baton passing problem, 
which is the problem of passing control from one process to another and 
back repeatedly. From a conceptual point of view, the producer and consu­
mer act as a single process (a coroutine) that produces, then consumes, 
then produces, and so on. 

If there are several terminals to be simulated, we would make 
PutCharl into PutCharN and pass an extra parameter giving the terminal 
number. FetchToPrintl would similarly be modified. OutBufl and OutBuf­
Fulll would become arrays indexed by terminal numbers. Similarly the two 
conditions would become arrays. In general we can use arrays inside a 
monitor to make the monitor behave like an array of monitors. 

SIMULATED TIME AND PROCESS UTILIZATION 

The busy statement causes a process to be blocked for a given amount 
of simulated time. Simulated time can be understood in terms of a special 
clock maintained by the simulation kernel. Before a CE program begins 
executing, this clock is set to zero. It operates (ticks) only as a result of 
processes executing busy statements. As long as processes are executing 
other statements, the clock does not change. What this means is that the 
(simulated) time to execute statements other than busy is considered to be 
negligible. Of course the programmer can cause his code to use simulated 
time by sprinkling in busy statements at appropriate places. 

The simulation kernel can implement the busy statement and update 
the simulated clock in the following manner. A queue of busy processes is 
kept in ascending order of the simulated time at which the process is to 
wake up from executing "busy". If at simulated clock time t, a process exe­
cutes a busy statement with parameter b, then its time to wakeup is t + b; 
this value is used for merging the process into the queue. 

When no more processes are ready to execute (due to blocking by 
busy, by wait or by trying to enter a monitor), the first process on the busy 
queue is made ready and the clock is set forward to the process's wakeup 



108 CONCURRENT EUCLID: CONCURRENCY FEATURES 

time. This is the only circumstance in which the clock is advanced. As this 
process executes, it may in turn wake up other processes (via signaling or 
exiting monitors) thereby making them ready, and it will probably eventu­
ally become blocked. The manipulation of the busy queue and the clock 
continues in this manner to simulate the passage of time. 

The busy statement implies an ordering among the execution of 
processes, and it allows us to compute the utilization of each process. This 
utilization is defined as the fraction of the total simulated time that the pro­
cess was held up at a busy statement. The idea is that useful work done by 
the process is simulated by execution of busy statements. To understand 
this, look at the process named TtyPrintl that simulates the printer of a 
teletype. The simulated printer consumes ten units of time whenever it 
prints a character. If the simulated printer runs at full speed then the only 
thing that slows it down (in simulated time) is the execution of busy, and 
so the process's utilization is 100%. But if the process is held up in the 
TtyDoIO monitor waiting for another character, and simulated time passes, 
then its utilization drops. At a minimum the utilization of a process is zero 
per cent, meaning it has executed no busy statements. 

PROCESS STATISTICS 

The simulation kernel for CE under Unix produces process statistics, 
including the utilization of each process. For example, when a CE program 
is stopped (by a quit character) under Unix a table similar to the following 
is printed: 

process 

1 
2 

maxmem 

370 
222 

O/outil 

29 
84 

state 

ready 
blocked 

at line 27 of file 1 
at line 49 of file 1 

The numbers in the left column give the number of the process, counting 
processes in textual order. The percent utilization is as described in the 
previous section. The state of the process is given: at the time the example 
program was stopped, process 1 was ready and process 2 was blocked. The 
statement being executed by each process is given in terms of the line 
number within source file, where files are counted starting with one for the 
main module and increasing by one for each included file. 

The column labeled maxmem tells how much space was used for the 
process's local data. This space is allocated on the process's stack and 
includes space for parameters and local variables that are allocated at 
procedure/function entry and de-allocated upon return. There is a default 
amount of space, 2000 bytes in a typical implementation, set aside for each 



CHAPTER 4 SUMMARY 109 

process's stack. If this is too small, or overly generous, then the amount 
can be explicitly specified. For example, only 400 bytes are specified here: 

process TtyPrintl (400) 

The actual amount used by the process is recorded under "maxmem" and 
can be used as a guide for explicitly specifying the size. 

This concludes our introduction of the concurrency features of CE. 
We have given basic examples that handle problems of mutual exclusion 
and process synchronization. The next chapter gives more examples of CE 
programs that solve concurrency problems. 

CHAPTER 4 SUMMARY 

In this chapter we introduced the concurrency features of CE. Here is 
a summary of these features. 

Processes - These execute in parallel at undefined relative speeds. 
Processes can call procedures and functions, which are re-entrant in 
CE. The process header can specify the size of stack needed for the 
process's local data. 

Monitors - These are fences enclosing critical data shared among processes. 
This data inside a monitor is static and retains its values between 
calls to the monitor. A monitor has the same form as a module, 
but cannot contain internal modules, monitors or processes. 
Modules and monitors are initialized in textual order in the pro­
gram. 

The wait statement - A wait statement is executed in a monitor to block the 
process and remove it from the monitor. 

The signal statement - A signal statement is executed in a monitor to 
specify that an awaited situation exists. The signal immediately 
wakes up one waiting process (if any are waiting). The signaling 
process is blocked until no other processes are active in the moni­
tor. 

Conditions - These are the operands of wait and signal statements. Condi­
tions represent awaited situations. Priority conditions require a 
non-negative priority parameter for wait; signaling a priority condi­
tion wakes up low priority processes first. 

Empty - This is a pre-defined function that tests if there are processes 



110 CONCURRENT EUCLID: CONCURRENCY FEATURES 

waiting for a condition. 

The busy statement - This statement is used in simulation mode to simu­
late the passage of time. A process executing busy (b) is delayed 
until b units of simulated time have passed. 

Process statistics - The simulation kernel gathers statistics during program 
execution and prints them at program termination. These statistics 
include process utilization (percentage time in busy statements) and 
stack usage. 

The example CE programs in this chapter solve several interesting 
problems. The Resource monitor shows how a single resource can be 
managed and how monitors can implement semaphores. The MailBox 
monitor shows how a circular buffer is used to implement message passing 
and Send and Receive operations. The Begin/Wait/EndIO operations sup­
ported by a bare machine kernel provide a clean, efficient method of driving 
peripheral devices. The purpose of a DoIO module, such as TtyDoIO, is to 
isolate low level machine dependencies, so the rest of the software is rela­
tively portable and can be tested in simulation mode. The simulation ver­
sion of TtyDoIO solves the baton passing problem, in which one process 
runs then blocks and passes control to another process, and so on as in a 
relay race. 

CHAPTER 4 BIBLIOGRAPHY 

The monitor as a language feature was invented when it was realized 
that concurrent programs are simplified by gathering code accessing critical 
data into one place. See Hoare and Perrott's book [1972, pages 91 and 109] 
for early discussions of monitor-like constructs. 

Concurrent Pascal was the first language to incorporate monitors, and 
Brinch Hansen's articles and books listed below are important references. 
The "queues" of Concurrent Pascal are like the conditions of CE except that 
at most one process at a time is allowed to be waiting for a queue, and a 
signaling process implicitly returns from the enclosing monitor. Concurrent 
Pascal is notable in that its compiler prohibits processes from accessing 
shared data except in monitors. This is not the case in CE. Brinch 
Hansen's new language, Edison[l981], does not prevent processes from 
sharing data. 

Hoare [1974] formalized monitors, giving proof rules for signal and 
wait. He also gave examples of monitors and the implementation of moni­
tors in terms of semaphores. It appears that SUE/11 was the first 



CHAPTER 4 BIBLIOGRAPHY I 11 

production operating system to be based on monitors [Greenblatt 1976]. 

Wirth's Modula language [1977] has monitor-like constructs. His 
later language Modula-2 [1980] does not incorporate monitors as a language 
feature; it provides more primitive constructs from which monitors can be 
implemented. The book by Welsh and McKeag [1980] gives examples of 
the use of monitors in the Pascal Plus language. 

The book you are reading evolved from the book Structured Con­
current Programming with Operating Systems Applications [Holt et al 1978]. 
That book uses Concurrent SP/k (CSP/k), which is a PL/I subset (SP/k) 
extended with processes and monitors. 

Brinch Hansen, P. Structured multiprogramming. Comm. ACM 15, 7 (July 
1972), 574-577. 

Brinch Hansen, P. The programming language Concurrent Pascal. IEEE 
Trans. on Software Engineering SE-1,2 (June 1975), 199-207. 

Brinch Hansen, P. The Architecture of Concurrent Programs. Prentice-Hall 
(1977). 

Brinch Hansen, P. Edison: a multiprocessor language. Software Practice 
and Experience 11,4 (April 1981), 325-361. 

Greenblatt, I.E. and Holt, R.C. The SUE/11 operating system. INFOR, 
Canadian Journal of Operational Research and Information Process­
ing 14,3 (October 1976), 227-232. 

Hoare, C.A.R. Monitors: an operating system structuring concept. Comm. 
ACM 17, 10 (October 1974), 549-557. 

Hoare, C.A.R. and Perrott, R.M. (editors) Operating Systems Techniques, 
Academic Press, 1972. 

Holt, R.C., Graham, G.S., Lazowska, E.D., Scott, M.A., Structured con­
current programming with operating systems applications. Addison­
Wesley, 1978. 

Welsh, J. and McKeag, M. Structured System Programming. Prentice-Hall 
1980. 

Wirth, N. Modula: a language for modular programming. Software Practice 
and Experience Vol. 7, 1 (January-February 1977), 3-35. 



112 CONCURRENT EUCLID: CONCURRENCY FEATURES 

Wirth, N. Modula-2. Report number 36, Institut fur Informatik, Eidgenos­
sische Technische Hochschule, Zurich, March 1980. 

CHAPTER 4 EXERCISES 

1. Re-write the Speak procedure of the HiHo2 program so that the charac­
ters of each word are not necessarily printed contiguously. Hint: break up 
PutString into components. 

2. Suppose there were several reporter processes using the Update module 
in the counting program. Will any events be lost or multiply reported? 
Explain why or why not. 

3. Write a program that generates sentences of the form 
<subject, verb,object > as follows. There is a phrase allocator monitor with 
entries Acquire and Release. These entries have two parameters: phrase 
type (subject, verb or object) and a string (the phrase). There are several 
sentence generator processes that repeatedly acquire a subject, a verb and 
an object, print the resulting sentence and release the three phrases. A 
sentence printing monitor has a single entry; it accepts three strings (sub­
ject, verb and object) and prints the corresponding sentence on a line. The 
store of phrases managed by the allocator monitor might be as follows: 

Subjects Verbs Objects 

John Wayne tamed the dappled stallion 
The green Edsel generates a lot of smoke 
Ronald Reagan underfinanced California universities 

4. Write a CE program with two processes that use busy statements. 
Arrange things so one process has a utilization of 25% and the other has a 
utilization of 75%. 

5. The Resource monitor can be modified to have Acquire accept an extra 
parameter giving the importance of the requesting process. How would the 
monitor be changed to give a released resource to the most important pro­
cess. What is the disadvantage of this arrangement (when the resource is 
being heavily utilized). 

6. Suppose the pre-defined function empty were not present. How would 
you simulate it using other CE features. 

7. For a condition C, implement a parameterless function CPriority that 
gives the priority of the first process waiting for C. If no processes are wait­
ing for C, the named constant infinity is returned. All waits on C should be 
via a procedure CWait and all signals via CSignal, which you are to imple­
ment. Your implementation should work with a fixed amount of storage 



CHAPTER 4 EXERCISES J13 

(no arrays) for any number of processes. 

8. Implement and run the single resource monitor named Resource in CE 
with three processes (using the busy statement) and include output state­
ments to show the progress of the processes and the state of the resource. 

9. In the Acquire entry of the Resource monitor, why does a process not 
retest to see if in Use has become false when the process resumes execution 
following its wait? 

10. FIFO was described as a fair scheduling policy for resuming a process 
waiting on a non-priority condition, in that it did not allow a waiting process 
to be postponed indefinitely. Are the following scheduling policies fair? 

a) LIFO (last-in first-out) 
b) LRR (least-recently-run) 
c) MRR (most-recently-run) 
d) LFR (least-frequently-run) 
e) MFR (most-frequently-run) 

11. The monitor concept is at least as powerful as the semaphore concept 
because it can be used to implement semaphores; this is what the single 
resource monitor showed. Show the converse: the semaphore concept is at 
least as powerful as the monitor concept because a monitor can be simu­
lated using semaphores and their associated operations. You should 
guarantee that mutual exclusion is present in the execution of monitor 
entries. The equivalent of the signal operation should allow some waiting 
process (if there is one) to execute in the monitor. Do not support priority 
conditions. 

12. Suppose the Resource monitor is required to enforce an upper bound 
of N processes accessing the resource, instead of just 1. Exclusive access is 
not required now, but an upper limit on the number of active processes 
accessing the resource must be imposed. How should the monitor be 
changed? 

13. What would happen if the Consumer or the Producer process of the 
Mai!Box program was omitted? 





Chapter 5 

EXAMPLES OF 
CONCURRENT 
PROGRAMS 

This chapter presents solutions in CE to concurrent programming 
problems of a more substantial nature than those encountered earlier in this 
book. The purpose is to teach more about both concurrency and CE, 
through examples. The concurrency issues discussed include synchroniza­
tion, mutual exclusion, deadlock, and indefinite postponement. 

DINING PHILOSOPHERS 

Suppose several processes are continually acquiring, using, and releas­
ing a set of shared resources. We want to be sure that a process cannot be 
deadlocked (blocked so that it can never be signaled) or indefinitely post­
poned (continually denied a request). 

A colorful version of this problem can be stated in terms of a group of 
philosophers eating spaghetti. It goes like this: 

There are N philosophers who spend their lives either eating or 
thinking. Each philosopher has his own place at a circular table, in 
the center of which is a large bowl of spaghetti. To eat spaghetti 
requires two forks, but only N forks are provided, one between 
each pair of philosophers. The only forks a philosopher can pick up 
are those on his immediate right and left. Each philosopher is 
identical in structure, alternately eating then thinking. The prob­
lem is to simulate the behavior of the philosophers while avoiding 
deadlock (the request by a philosopher for a fork can never be 
granted) and indefinite postponement (the request by a philosopher 
for a fork is continually denied). 



116 EXAMPLES OF CONCURRENT PROGRAMS 

We will concentrate on the case of five philosophers. Here is a picture of a 
table setting with five plates and forks. 

F3 

F4 F2 

F1 



DINING PHILOSOPHERS 117 

Several points should be clear from the problem description. Adjacent 
philosophers can never be eating at the same time. Also, with five forks 
and the need for two forks to eat, at most two philosophers can be eating at 
any one time. Any solution we develop should allow maximum parallelism. 

Consider the following proposed solution. A philosopher acquires his 
forks one at a time, left then right, by calling a monitor entry PickUp, giv­
ing as a parameter the appropriate fork number. Similarly, a philosopher 
returns his forks one at a time, left then right, by calling a monitor entry 
PutDown. The philosopher's activity is represented by a process that 
repeatedly executes the statements: 

Pick Up (left) 
PickUp(right) 
Busy eating 
PutDown (left) 
PutDown (right) 
Busy thinking 

The entries are part of a monitor that controls access to the forks. The data 
of the monitor includes the one-dimensional Boolean array idleForks, 
where idleForks(i) gives the availability of fork number i. Only when a 
philosopher acquires his two forks does he begin eating. Periods of eating 
and thinking by a philosopher can be represented by busy statements of 
appropriate duration. 

Unfortunately, this simple solution suffers from a serious defect, 
namely deadlock. Consider a sequence of process executions in which the 
philosophers each acquire a left fork, then each attempt to pick up a right 
fork. Each philosopher will be blocked in the PickUp entry on a condition 
that can never be signaled; the request for a right fork can never be 
granted. Deadlock occurs in this situation because processes hold certain 
resources while requesting others. Clearly, we need a solution that 
prevents deadlock. 

We now discuss a solution that prevents deadlock. Each philosopher 
is represented by a process that repeatedly executes the statements 

PickUp(i) 
Busy eating 
PutDown(i) 
Busy thinking 

where i is the number of the philosopher. Picking up the forks is now 
represented as a single monitor entry call. 

We will develop a monitor named Forks with two entries, PickUp and 
PutDown, which acquire and release the forks. The structure of these 



118 EXAMPLES OF CONCURRENT PROGRAMS 

entries differs from that of the previous entries. The monitor must have 
variables that keep track of the availability of the five forks. This could be 
done by having an array of five elements; this is the earlier idleForks 
method. We will use a different approach. There is still an array of five 
elements, but the elements will correspond to the five philosophers. The 
array will be called freeForks, where freeForks(i) is the number of forks 
available to philosopher i: either 0, 1, or 2. In the PickUp entry, philoso­
pher i is allowed to pick up his forks only when freeForks(i) =2. Other­
wise, he waits on the condition ready(i); each philosopher thus has his own 
condition for which he waits. When he succeeds in picking up his forks, he 
must decrease the fork counts of his neighbor philosophers. He then leaves 
the monitor and commences eating. 

The neighbors of philosopher i are numbered Left (i) and Right (i). 
Based on our earlier diagram, Left(3) is 2 and Right(3) is 4. It is important 
to note that Right(5) is 1 and Left(l) is 5. Left and Right could be imple­
mented as vectors initialized to the appropriate values or as functions using 
the mod pre-defined function to calculate the proper neighbor number. 

var Spaghetti: {Solution to the dining philosopher's problem} 
module 

var Forks: 
monitor 

exports(Pickup, PutDown) 
pervasive const numberPhilos : = 5 
var freeForks: array 1..numberPhilos of 0 .. 2 
var ready: array 1..numberPhilos of condition 

{ready(i) when freeForks(i) = 2} 

... define Left and Right... 

procedure PickUp(me: 1..numberPhilos) = 
imports(var freeForks, var ready, left, right) 
begin 

if freeForks(me) not= 2 then 
wait (ready (me)) 

end if 
assert(freeForks(me) = 2) 
freeForks(Right (me)): =freeForks(Right(me) )-1 
free Forks (Left (me)): =freeForks (Left (me) )-1 

end PickUp 



DINING PHILOSOPHERS l/9 

procedure PutDown (me: 1..numberPhilos) = 
imports (var freeForks, var ready, left, right) 
begin 

free Forks (Right (me)): =free Forks (Right (me))+ 1 
freeForks (Left (me)): =freeForks (Left(me)) + 1 
if free Forks (Right (me)) = 2 then 

signal (ready (Right (me))) 
end if 
if freeForks (Left (me)) = 2 then 

signal (ready(Left (me))) 
end if 

end PutDown 

initially 
imports(var freeForks) 
begin 

var j: 1..numberPhilos := 1 
loop 

freeForksG) := 2 
exit when j = numberPhilos 
j:= j + 1 

end loop 
end 

end {Forks) monitor 

procedure CommonPhilosopher(i: 1..numberPhilos) = 
imports (var Forks) 
begin 

loop 
Forks.PickUp(i) 
Busy eating 
Forks.PutDown (i) 
Busy thinking 

end loop 
end CommonPhilosopher 

process Philosopherl 
imports ( CommonPhilosopher) 
begin 

CommonPhilosopher(l) 
end Philosopherl 



120 EXAMPLES OF CONCURRENT PROGRAMS 

process Philosopher2 
imports ( CommonPhilosopher) 
begin 

CommonPhilosopher (2) 
end Philosopher2 

... other philosophers ... 

end {Spaghetti} module 

When a philosopher returns his forks in the PutDown entry, he 
should increase the fork counts of his neighbors. If the philosopher then 
finds that either (or both) of his neighbors has two forks available, he 
should signal the appropriate neighbor. The philosophers therefore pass the 
ability to access the forks among themselves using signal statements. 

In our CE solution to the dining philosophers problem, each philoso­
pher process calls a common procedure, supplying his number as the argu­
ment. This CE program illustrates several language features, among them 
an array of conditions (ready). 

We now examine the solution for deadlock and indefinite postpone­
ment. Deadlock would occur if a philosopher became blocked and could 
not continue executing regardless of the future of the system. Let us look 
at the program to see where this might occur. A philosopher cannot 
become blocked forever when eating or thinking. Therefore, we look at 
execution in the two monitor entries to see if deadlock can occur there. 
The PickUp entry shows that a requesting philosopher suspends his execu­
tion when his two forks are not available. The philosopher does not pick 
up one fork and wait for the other. This means that the system can never 
get into the state where each philosopher holds one fork (his left one, say) 
and is waiting for the other -- this is deadlock, brought about by holding 
resources while requesting others. The rest of the PickUp entry shows that 
the fork counts are correctly decreased. The PutDown entry increases the 
fork counts and correctly signals'other waiting philosophers. 

The above discussion shows informally that deadlock cannot occur in 
our solution. Indefinite postponement is a different matter. 

Indefinite postponement occurs if a philosopher becomes blocked and 
there exists a future execution sequence in which he will remain forever 
blocked. Consider the following situation for philosophers l, 2, and 3 in 
which philosopher 2 is indefinitely postponed. 



READERS AND WRITERS 121 

F3 F5 

Suppose philosopher 1 picks up his two forks (forks 5 and 1). Next, 
philosopher 3 picks up his two forks (forks 2 and 3). Next, philosopher 2 
enters PickUp and finds that his required forks are being used, so he waits. 
Next, the following unfortunate sequence occurs repeatedly. Philosopher 1 
puts down his forks, thinks, and then picks them up again; then, philoso­
pher 3 puts down his forks, thinks, and picks them up again, and so on. 
During this repeated sequence, at least one of the forks of philosopher 2 is 
always being used. Given that it is possible for this sequence to repeat 
indefinitely, we see that philosopher 2 can suffer indefinite postponement. 
We have not solved the problem! 

There are several ways to overcome this defect. The most obvious 
one keeps track of the "age" of requests for forks, and when one request 
gets too old, other requests are held up until the oldest request can be 
satisfied. This could be done, for example, by counting the number of 
meals enjoyed by a philosopher's two neighbors while he is waiting for his 
forks. If he is bypassed more than, say, 10 times, his neighbors are blocked 
until he gets a chance to pick up his forks. (Does this solution allow max­
imum parallelism?) We leave this extension to the reader (see the Exer­
cises at the end of this chapter). 

This concludes our discussion of the dining philosophers problem. 
We saw that deadlock was avoided, but our simple solution unfortunately 
did not rule out indefinite postponement. 



122 EXAMPLES OF CONCURRENT PROGRAMS 

READERS AND WRITERS 

We will now consider the problem of several processes concurrently 
reading and writing the same file. Any number of reader processes 
(processes accessing but not altering information) may access the file simul­
taneously. However, any writer process updating the file must have 
exclusive access to the file; otherwise, inconsistent data may result. 

This problem arises in an airline reservations system, for example. 
Several ground personnel, each using a computer terminal, are issuing 
boarding passes for a flight. Reservations for the flight have been stored in 
a file. Reading the file allows an attendant to verify a passenger's reserva­
tion. Writing the file allows an attendant to add a new passenger to the 
flight when a customer arrives at the counter without a prior booking. 

The problem, as stated so far, is an extension of the mutual exclusion 
example (Counting) given in Chapter 3. There still must be mutually 
exclusive access to the reservations file, but the new feature is that any 
number of reader processes may be accessing the file simultaneously. Writ­
ers still need exclusive access, however. The enqueue/dequeue feature dis­
cussed in Chapter 2 can solve the problem as stated. 

A simple solution to this problem using monitors might be developed 
as follows. A reader wishing to access the file calls a monitor entry named 
StartRead. If there is no active writer (there may be several active 
readers), the number of active readers is increased by 1 and the new reader 
accesses the file. If there is an active writer, the reader waits. When a 
reader is waked up from a wait in StartRead, it signals other waiting readers 
that they also may access the file. A reader finishing accessing the file calls 
a monitor entry EndRead. It decreases the number of active readers by 1, 
and if this number reaches zero, it signals a writer that the file is available. 
(Readers cannot be waiting.) A writer wishing to access the file calls a mon­
itor StartWrite. If there is an active writer or at least one active reader, the 
writer waits. A writer that is finished with the file calls EndWrite, and sig­
nals waiting readers or writers that the file is now available. 

This simple solution unfortunately has an important defect. Once one 
reader begins accessing the file, the writers may be indefinitely postponed 
by a heavy stream of reader processes accessing the file. Some additional 
restriction on the problem must be made to remove the possibility of 
indefinite postponement. 

We will impose the following requirements on the order of accessing 
the file. (They make the example more realistic and indefinite postpone­
ment is avoided.) We require that a new reader not be permitted to start if 
there is a writer waiting for the currently active readers to finish. Similarly, 



READERS AND WRITERS 123 

we require that all readers waiting at the end of a writer execution be given 
priority over the next writer. This latter restriction avoids the danger of the 
indefinite postponement of readers because of many active writers. 

We now discuss a solution to the readers and writers problem with 
these restrictions. We will use a monitor with four entries (the names of 
these entries are the same as those above, but their structure is different): a 
reader process calls StartRead before reading and EndRead after reading; a 
writer process calls StartWrite before writing and EndWrite after writing. 
The following rules for the entries satisfy our ordering requirements. 

StartRead. If there is an active writer or a waiting writer, the reader waits. 
When a waiting reader is awakened, it signals other readers 
to become active. 

EndRead. If the finishing reader finds that it is the last active reader, it sig­
nals a waiting writer. 

StartWrite. If there are active readers or if there is an active writer, the 
new writer waits. 

EndWrite. If there are readers waiting, the finishing writer signals a reader. 
Otherwise, it signals another writer. 

We will now consider these rules for these entries in more detail. In 
StartRead, a reader waits if either of two situations exists: there is an active 
writer (obviously) or there is a waiting writer. Because a reader in Star­
tRead needs to distinguish between readers and writers in waiting to access 
the file, there should be separate conditions on which the readers 
(okToRead) and writers (okToWrite) wait. The empty pre-defined function 
can be used to test whether there are processes waiting on these conditions. 
Once a waiting reader in StartRead is resumed, it increases the number of 
active readers (numberReading) by one. This reader knows that the file is 
now available for reading, so it signals another reader that was waiting for 
access to the file. A resumed reader in StartRead thus contributes to a cas­
cade of signaling readers which are waiting. No other process (such as an 
arriving reader or writer) can enter the monitor while this cascade is in pro­
gress. In time, all readers that were waiting for access after a writer are sig­
naled. This version of StartRead differs from our previous version because 
now a reader waits if there is a waiting writer. 

In EndRead, a reader decreases the number of active readers by one. 
If it finds that it is the last reader accessing the file, it signals a waiting 
writer. The logic of this entry is therefore identical to that of the previous 



124 EXAMPLES OF CONCURRENT PROGRAMS 

version of EndRead. 

In StartWrite, a writer waits if either of two situations exists: there is 
at least one active reader or there is an active writer. The Boolean variable 
active Writer records whether writing is taking place. The logic of this entry 
is therefore identical to that of the previous version of Start Write. 

In EndWrite, a writer first checks if there are readers waiting to access 
the file. If there are, the writer signals a waiting reader. If there are not, 
the writer signals a waiting writer. This again illustrates the need for 
separate condition variables for readers and writers. EndWrite differs from 
our previous version because here a writer tries to signal a reader before it 
signals a writer. 

Here is this solution to the readers and writers problem implemented 
in CE: 

var ReadersAndWriters: 
module 

var FileAccess: 
monitor 

exports(StartRead, EndRead, StartWrite, EndWrite) 

var number Reading: Unsignedlnt : = 0 
var active Writer: Boolean : = false 
var okToRead: condition {When not activeWriter} 
var okToWrite: condition {When not activeWriter 

and numberReading = O} 

procedure StartRead = 
imports(var numberReading, activeWriter, 

var okToRead, okToWrite) 
begin 

if active Writer or not empty(okToWrite) then 
wait(okToRead) 

end if 
assert (not active Writer) 
number Reading : = number Reading + 1 
signal ( okToRead) {Allow other readers in} 

end StartRead 

procedure EndRead = 
imports(var numberReading, var okToWrite) 
begin 



READERS AND WRITERS 125 

number Reading : = number Reading - 1 
if number Reading = 0 then 

signal (okTo Write) 
end if 

end EndRead 

procedure StartWrite= 
imports(numberReading, var activeWriter, 

var okToWrite) 
begin 

if active Writer or numberReading not = 0 then 
wait(okToWrite) 

end if 
assert(not activeWriter and numberReading=O) 
activeWriter :=true 

end StartWrite 

procedure EndWrite= 
imports (var active Writer, 

var okToRead, var okToWrite) 
begin 

active Writer : = false 
if not empty(okToRead) then 

signal (okToRead) 
else 

signal (okToWrite) 
end if 

end EndWrite 

end {FileAccess} monitor 

process Reader 
imports(var FileAccess, .. .) 
begin 

loop 

FileAccess.StartRead 
Busy reading 
FileAccess.EndRead 

end loop 
end Reader 



126 EXAMPLES OF CONCURRENT PROGRAMS 

process Writer 
imports(var FileAccess, ... ) 
begin 

loop 

FileAccess.StartWrite 
Busy writing 
FileAccess.EndWrite 

end loop 
end Writer 

end {ReadersAndWriters} module 

The restrictions of the readers and writers problem require that: (1) 
waiting readers are given priority over waiting writers after a writer finishes, 
and (2) a waiting writer is given priority over waiting readers after all 
readers finish. It is interesting to note that this form of "precedence" 
scheduling using signal statements is accomplished without priority condi­
tions. Simple tests on numberReading, activeWriter, empty(okToRead) 
and empty(okToWrite) suffice to achieve the desired order of file access. 

Finally, we discuss the signal statement in StartRead. A reader exe­
cuting this signal suspends execution and allows a waiting reader to enter 
the monitor; this creates the cascade of resuming waiting readers. When 
the last waiting reader is resumed, it will signal an empty condition. The 
semantics of the signal statement in this situation are that the signaling pro­
cess continues execution, possibly after other monitor entries are entered. 
The correctness of our solution is not affected, however. No writer can 
intervene during any of the suspended reader executions because the writer 
first checks on numberReading in the StartWrite entry. In these cases, 
numberReading is greater than 0, thanks to the increment of numberRead­
ing in StartRead before signaling okToRead. 

A reader attempting to enter the monitor by a statement during the 
cascade of resuming readers will be blocked until the monitor becomes free. 
At that point, if the reader finds that there is a waiting writer, it will wait; if 
there is not a waiting writer, it will proceed. Although we have not shown 
it, the FileAccess monitor can support multiple readers and writers. 

This concludes our discussion of the readers and writers problem. We 
saw that some complex scheduling decisions could be made without the 
need for priority conditions. The next example shows that priority condi­
tions are sometimes convenient. 



SCHEDULING DISKS 127 

SCHEDULING DISKS 

Good scheduling algorithms can greatly improve the performance of 
operating systems. For example, the average turnaround time for jobs can 
be minimized by running short jobs before long jobs. 

In this section, we want to minimize the time that processes wait for 
disk input and output. Before discussing disk scheduling algorithms, we 
need to know how disks access their data. A disk consists of a collection of 
platters, each with a top and bottom surface, attached to a central spindle 
and rotating at constant speed. There is usually a single arm, with a set of 
read/write heads, one per surface; the arm moves in or out, across the disk 
surfaces. This type of disk is called a movable head disk. When the arm is 
at a given position, the data passing under all read/write heads on all 
platters constitutes a cylinder. At a given cylinder position, the data passing 
under a particular read/write head constitutes a track. 

Files of data are stored on a disk. A file consists of records; a record 
consists of fields of data. Some disks allow many records on a track. On 
other disks, a record must correspond exactly to a track. A program 
requests a data transfer to or from a disk by giving the cylinder number, 
track number, and record number. 

TRACK t 

I 
I 

CYLINDER------+! 
I 
I 
I 

~ 
ROTATION 

TIME T 

READ/ 
WRITE 
HEADS 

ARM 

RANGE OF 

1~SITIONS 

k 



128 EXAMPLES OF CONCURRENT PROGRAMS 

There are various delay factors associated with accessing data on a 
movable head disk. Seek time is the time needed to position the arm at the 
required cylinder. Rotational delay is the time needed for the disk to rotate 
so that the desired record is under the read/write head. Transmission time is 
the time needed to transfer data between the disk and main memory. 

Seek time increases with the number of cylinders that the arm is 
moved. Rotational delay can vary from zero to the time needed to com­
plete one revolution; on the average, it is one-half the rotation time. 
Transmission time is dependent on the rotation time and recording density, 
and these factors vary from disk to disk. The following table shows that the 
seek time delay is the dominant factor in a typical transfer of a 1000-
character record on a movable head disk. 

Factor 
Seek time 
Rotational delay 
Transmission time 

Length of Time 
30.0 ms (milliseconds) 
8.3 ms 
1.2 ms 

Generally, a simple scheduling algorithm can do nothing to decrease 
rotational delay or transmission time. But ordering of disk read/write 
requests can decrease the average seek time. This can be accomplished by 
favoring those requests that do not require much arm motion. 

Perhaps the simplest scheduling algorithm to implement is the FIFO 
algorithm; it moves the disk arm to the cylinder with the oldest pending 
request. With light disk traffic, the FIFO algorithm does a good job. But 
when the queue of disk requests starts building up, the simple nature of 
FIFO results in unnecessary arm motion. For example, suppose a sequence 
of disk requests arrives to read cylinders 12, 82, 12, 82, 12, and 82, in that 
order. (Such a sequence can easily occur if several jobs are using a file on 
cylinder 12 while others are using a file on cylinder 82.) The FIFO algo­
rithm will unfortunately cause the disk to seek back and forth from cylinder 
12 to 82 several times. A clever scheduling algorithm could minimize arm 
motion by servicing all the requests for cylinder 12 and then all the 
requests for cylinder 82. We will discuss two scheduling algorithms that are 
more sophisticated than FIFO. 

One such algorithm is the shortest seek time first (SSTF) algorithm. 
It operates as follows: the request chosen to be serviced next is the one that 
will move the disk arm the shortest distance from its current cylinder. The 
SSTF algorithm thus attempts to reduce disk arm .motion. However, it can 
exhibit unwanted behavior; requests for certain cylinder regions on the disk 
may be indefinitely overtaken by requests for other cylinder regions closer 
to the current disk arm position. This results in certain disk requests not 
being serviced a~ all. 



A DISK ARM SCHEDULER 129 

The SCAN algorithm is another scheduling algorithm that achieves 
short waiting times but prevents indefinite postponement. It attempts to 
reduce excessive disk arm motion and average waiting time by minimizing 
the frequency of change of direction of the disk arm. The SCAN algorithm 
operates as follows: while there remain requests in the current direction, 
the disk arm continues to move in that direction, servicing the request (s) at 
the nearest cylinder; if there are no pending requests in that direction (pos­
sibly because an edge of the disk surface has been encountered), the arm 
direction changes, and the disk arm begins its sweep across the surfaces in 
the opposite direction. This algorithm has also been called the elevator 
algorithm because of the analogy to the operation of an elevator, that runs 
up and down, receiving and discharging passengers. 

A DISK ARM SCHEDULER 

We will now give an implementation of the SCAN disk scheduling 
algorithm. SCAN gives good performance and illustrates the use of priority 
conditions. We will assume that there is a single disk and access to it is 
controlled by a monitor. The monitor has two entries: 

Acquire (destCyl). Called by a process prior to transferring data to or from 
cylinder destCyl. 

Release. Called by a process after it has completed data transfer on the 
current cylinder. 

The monitor must guarantee that only one process at a time uses the 
disk. The local data of the monitor keeps track of the current state of the 
disk. There must be a current disk arm position, armPosition (which can 
vary from 0 to the maximum cylinder number, maxCylNumber), the 
current direction of the arm sweep, direction (up or down), and a Boolean 
variable called inUse indicating whether the disk is currently busy. The up 
direction corresponds to increasing cylinder numbers, the down direction to 
decreasing cylinder numbers. A process using the disk executes the follow­
ing: 

Acquire (destination cylinder) 
Read from or write to disk 
Release 

Here is the monitor implementing the SCAN algorithm: 

1 const maxCylNumber : = 400 

2 var Scan: '{Disk scheduling by SCAN (elevator) algorithm} 



130 EXAMPLES OF CONCURRENT PROGRAMS 

3 monitor 
4 imports(maxCylNumber) 
5 exports(Acquire, Release) 

6 var armPosition: 0 .. maxCylNumber : = 0 
7 var in Use: Boolean : = false 
8 pervasive const down : = 0 
9 pervasive const up : = 1 

10 var direction: down .. up : = up 
11 var downSweep: priority condition 

{When not in Use and direction =down} 
12 var upSweep: priority condition 

{When not in Use and direction =up} 

13 procedure Acquire(destCyl: O .. maxCylNumber) = 
14 imports(maxCylNumber, var armPosition, var lnUse, 
15 direction, var downSweep, var upSweep) 
16 begin 
17 if in Use then 
18 if armPosition < destCyl or 

(armPosition =destCyl and direction =down) then 
19 wait(upSweep, destCyl) 
20 assert(not inUse and direction=up) 
21 else 
22 wait(downSweep, maxCylNumber-destCyl) 
23 assert(not inUse and direction=down) 
24 end if 
25 end if 
26 inUse := true 
27 armPosition : = destCyl {Record arm position} 
28 end Acquire 

29 procedure Release= 
30 imports(var inUse, 
31 var direction, var downSweep, var upSweep) 
32 begin 
33 inUse := false 
34 if direction = up then 
35 if empty(upSweep) then 
36 direction : = down 
37 signal (downSweep) 
38 else 



A DISK ARM SCHEDULER 131 

39 signal (upSweep) 
40 endif 
41 else 
42 if empty(downSweep) then 
43 direction : = up 
44 signal(upSweep) 
45 else 
46 signal (downSweep) 
47 end if 
48 end if 
49 end Release 

50 end {Scan} monitor 

It is particularly enlightening to discuss the SCAN monitor in detail. 
In the Acquire entry, if the disk is free the arm is moved to the desired 
cylinder and the process leaves the monitor. Otherwise, the process waits. 
It is not sufficient to use a single condition for waiting. (Why?) What we 
need is a set of conditions that relate the priority of a waiting request to the 
distance the requested cylinder is from the current cylinder. We could use 
an array of conditions, one for each cylinder. Then, when a process 
releases the disk, it would determine the "closest" non-empty condition 
waiting list in the current arm direction and signal that condition. This 
approach is clumsy and we will use priority conditions instead. 

There are two priority conditions, each corresponding to a given arm 
direction (upSweep or downSweep). In the Acquire entry, a process waits 
on upSweep if its destination cylinder has a larger number than the current 
cylinder. A process waits on downSweep if its destination cylinder has a 
lower number than the current cylinder. Two questions arise: What hap­
pens if the destination cylinder equals the current cylinder? What priorities 
are specified in these waits? 

We answer the priority question first. The priorities must indicate the 
distance the destination cylinder is from one end of the disk. For example, 
suppose the current arm position is at cylinder 25 and the direction is up. 
What happens with processes that request cylinders 100 and 200? Both 
requests are ahead of the disk arm and therefore will wait on upSweep. The 
request for cylinder 100 is closer than the request for cylinder 200, so 
cylinder 100 has priority over cylinder 200 (and therefore has a lower prior­
ity number). In our example, the request for cylinder 100 has a priority 
value of 100, while the one for cylinder 200 has a priority value of 200. 
Cylinder 100 will therefore be serviced before cylinder 200 on the upsweep. 



132 EXAMPLES OF CONCURRENT PROGRAMS 

Consider another example. Suppose the current cylinder is 250, and 
the direction is up. What happens with processes that request cylinders 150 
and 50? Both requests are behind the disk arm and therefore will wait on 
downSweep. When the disk arm begins its sweep in the down direction, 
cylinder 150 is closer to it than cylinder 50. Assuming maxCylNumber is 
400, cylinder 150 has priority over cylinder 50 (and should have a lower 
priority number). This can be accomplished by subtracting the destination 
cylinder from the maximum cylinder number to produce the priority value; 
the result .will always be in the range from zero to maxCylNumber and will 
indicate the relative distance of arm motion. Cylinder 150 will have a prior­
ity value of 250 and cylinder 50 will have a priority value of 350. Cylinder 
150 will therefore be serviced before cylinder 50 on the down sweep. 

In our example, the priority values are specified in the wait statements 
in lines 19 and 22. We have been careful in our discussion here to be 
explicit about the arm direction, because the correct condition to wait on 
and the correct priority depend on that direction. But the arm direction is 
only tested (in line 18) when the destination cylinder equals the current 
cylinder. 

The answer to this apparent mystery is that the arm direction gen­
erally does not matter. If the arm position is less than the destination 
cylinder, the process should wait on upSweep regardless of the arm direc­
tion. If the arm position is greater than the destination cylinder, the pro­
cess should wait on downSweep regardless of the arm direction. Only when 
the arm position equals the destination cylinder does the arm direction 
matter. We are back to the first question we asked, so it is appropriate to 
answer it now. 

To see what happens if the destination cylinder equals the current 
cylinder, we will discuss an alternative to line 18, showing that it can lead 
to indefinite postponement. (Questions 10 and 11 in the Exercises mention 
other alternatives.) 

Consider the following alternative to line 18: 

if armPosition < destCyl then 

A process with a destination cylinder equal to the current cylinder will wait 
on downSweep in line 22. Suppose the current direction of the disk is 
down. A process releasing the disk will signal downSweep in line 46 
because there is a process waiting on it. If there is a stream of processes 
similar to the first one in this example, all with requests for the current 
cylinder, the disk arm will remain at the current cylinder servicing all these 
requests. Indefinite postponement results because requests for other 
cylinders are being continually denied. 



A DISK ARM SCHEDULER 133 

The alternatives here and in the Exercises show that implementing 
the SCAN algorithm is a tricky matter. How does the current line 18 pre­
clude indefinite postponement? 

if armPosition < destCyl or 
(armPosition = destCyl and direction = down) then 

A process with a destination cylinder equal to the current cylinder will wait 
on upSweep when the direction is down. When the direction is up, such a 
process will wait on downSweep. Thus, in the original line 18, a process 
with a destination cylinder equal to the current cylinder waits on the condi­
tion variable associated with the opposite of the current arm direction. 
Such a request does not cause the disk arm to remain at the current 
cylinder because it does not wait on the condition associated with that 
direction. The request will not be serviced on the current sweep, but on 
the next sweep in the opposite direction. Indefinite postponement is pre­
cluded in this way. 

There is another benefit in the way we organized our solution. All 
requests waiting for a cylinder before the arm gets to that cylinder will be 
served on the same sweep. This benefit comes from the priority values. 
All requests for the same cylinder have the same priority value. When the 
destination cylinder equals the current cylinder, the priority value associated 
with the destination cylinder is the smallest priority value in the current 
arm direction. Thus, the signals in lines 39 and 46 will resume all 
processes that requested the current cylinder and were waiting before the 
arm got to that cylinder, before going on to another cylinder in the same 
direction or changing directions. This improves performance because it 
reduces waiting time. 

In the Release entry, control of the disk is returned and the process to 
be serviced next is signaled. ·If there is a waiting request in the current 
direction, it is signaled Oines 39 and 46). If there is no waiting request in 
the current direction, the arm direction is changed (lines 36 and 43) and a 
waiting request in the new direction is signaled (lines 37 and 44). In all 
cases, the process to be serviced next is the one that has the closest request 
in the current arm direction. 

We have devoted much space to considerations of indefinite postpone­
ment. Deadlock is a simpler matter. 

Deadlock cannot occur in our solution. Processes are never blocked 
in their process code. In the monitor code, only a single resource (the 
disk) is being used; processes can never hold some resource units while 
requesting others. Finally, processes wait on the correct conditions and 
specify the correct priority values. 



134 EXAMPLES OF CONCURRENT PROGRAMS 

This concludes our discussion of the SCAN disk scheduling algorithm. 
Priority conditions were used to advantage for scheduling. We showed that 
indefinite postponement was prevented in our solution. 

BUFFER ALLOCATION FOR LARGE MESSAGES 

In this section we discuss an example that builds upon the circular 
buffer manager (MailBox) of Chapter 4. In that example, a producer wish­
ing to add information to the queue called the monitor entry Send. The 
buffers were represented by an array, and the information to be added was 
stored in an array element. A consumer wishing to remove information 
from the queue of buffers called the monitor entry Receive. 

That example was suitable for the case of low-volume information 
(e.g., message queues), where the copying of information into and out of 
the buffers did not seriously degrade process performance. Such a design is 
not suitable for the transmission of high-volume information (e.g., files of 
records) because of the large amount of data movement. For large mes­
sages, we can use a MailBox monitor to store the locations of the buffers of 
information, rather than the actual information. Data movement will be 
reduced because only locations will be added to or removed from the 
queue. 

We now describe the large message or "pipeline" environment in more 
detail. There are several pairs of producers and consumers, each producer 
generating data for its consumer through a queue unique to the pair. 
Shared among all the producer/consumer pairs is a pool of free buffers. 
(The shared pool allows more efficient use of buffers.) A producer repeat­
edly acquires a free buffer (and notes its buffer location), fills the buffer, 
and adds the buffer location to the queue shared with its consumer. A con­
sumer repeatedly removes a buff er from the queue, empties the buff er, and 
releases the buffer (by returning its buffer location to the pool of free buffer 
locations). . 

A producer and consumer need mutually exclusive access to their 
common queue, so accesses to the queue will go through a monitor. We 
can use the MailBox monitor from Chapter 4; each producer/consumer pair 
will have its own MailBox monitor, with entries Send and Receive. Produc­
ers and consumers must go through a monitor (named BufferManager) to 
Acquire and Release buffer locations. 

The code for the producer and consumer processes appears below. 
Send and Receive are entries of a MailBox monitor local to a 
producer/consumer pair. Acquire and Release are entries of BufferManager 
common to all processes. The BufferManager allocates buffer locations 



BUFFER ALLOCATION FOR LARGE MESSAGES 135 

from the pool and returns them to the pool. 

process Producer 
imports (var MailBox, var Buff er Manager, var buffers) 
begin 

var bufferNumber: Bufferlndex 
loop 

Buffer Manager.Acquire (buffer Number) 
Fill buffer(bufferNumber) 
MailBox. Send (buff er Number) 

end loop 
end Producer 

process Consumer 
imports(var MailBox, var BufferManager, var buffers) 
begin 

var bufferNumber: Bufferlndex 
loop 

MailBox.Receive (buffer Number) 
Empty buffer(bufferNumber) 
Buff er Manager. Release (buff er Number) 

end loop 
end Consumer 

The BufferManager follows next. It contains the Acquire and Release 
entries which the Producer and Consumer processes, given above, call. 
The list of buffer locations is kept in an array named pool. This array is 
managed as a stack, which uses top to point to the next free buffer location. 
When a producer finds that top= 0, the free list has been exhausted and the 
producer must wait (on the condition bufferFree). Note the way in which 
the buffer pool is initialized. 

1 pervasive const pool Size : = 100 
2 pervasive type Bufferlndex = l..poolSize 

3 var BufferManager: 
4 monitor 
5 exports(Acquire, Release) 

6 var pool: array Bufferlndex of Bufferlndex 

7 var top: O .. poolSize : = poolSize 
8 var bufferFree: condition {When top > O} 



136 EXAMPLES OF CONCURRENT PROGRAMS 

9 procedure Acquire(var buflLoc: Bufferlndex) = 
10 imports(pool, var top, var bufferFree) 
11 begin 
12 if top = 0 then 
13 wait(bufferFree) 
14 end if 
15 buflLoc := pool(top) 
16 top : = top - 1 
17 end Acquire 

18 procedure Release(buflLoc: Bufferlndex) = 
19 imports(var pool, var top, var bufferFree) 
20 begin 
21 top : = top + 1 
22 pool (top) : = buflLoc 
23 signal (buffer Free) 
24 end Release 

2 5 initially 
26 imports (var pool) 
27 begin 
28 var i: Bufferlndex : = 1 
29 loop 
30 pool (i) : = i 
31 exit when i = poolSize 
32 i := i + 1 
33 end loop 
34 end 

35 end {BufferManager} monitor 

If the pool of free buffers is empty and several producer/consumer 
pairs are operating at widely different speeds, the scheduling policy in the 
BufferManager can degrade the performance of the process pairs. The typi­
cal FIFO policy of CE conditions will allocate alternate buffers to two com­
peting producers; this seems reasonable at first glance. But if two compet­
ing consumers are a 2000 line/minute line printer and a 15 line/minute 
console typewriter, all buffers will eventually be allocated to the pair having 
the slower consumer (the console). The pair having the faster consumer 
will be reduced to the speed of the slower pair. (We do not consider pairs 
in which the consumer is always faster than the producer, because such 
pairs will only have a small number of buffers allocated to them.) 



CHAPTER 5 SUMMARY 137 

Under heavy load conditions, the pool of free buffers should be 
shared among the producer/consumer pairs in a reasonable manner. One 
scheduling policy that achieves a compromise between fast and slow pairs of 
processes is to allocate a free buff er location to the producer whose pair 
currently has the smallest number of buffers allocated to it. This method 
tries to keep a balanced system of competing pairs, operating far away from 
the undesirable situation of too many buffers committed to slow consumers. 

This scheduling policy can be implemented using priority conditions. 
Two additional items are needed in the BufferManager monitor: a new 
parameter to Acquire, named pair, giving the pair number of the requesting 
process and a tally of the number of the buffers currently allocated to a 
pair, count(pair). Count(pair) is increased by one in the Acquire entry and 
is decreased by one in the Release entry. The priority wait appears in lines 
12 through 14 as: 

if top = 0 then 
wait(bufferFree, count(pair)) 

end if 

The signal statement in the Release entry will activate the process having 
the smallest priority value; this allocates a free buffer to the pair currently 
having the smallest number of buffers allocated to it. 

This completes our discussion of the buffer allocator for large mes­
sages. This allocator uses the circular buffer monitor of Chapter 4 to 
transmit large amounts of information; it avoids the overhead of copying by 
passing locations of data rather than the data itself. 

CHAPTER 5 SUMMARY 

In this chapter we stated four problems in concurrent programming 
and gave solutions to them in CE. 

The dining philosophers problem involved the concurrent accessing of 
a set of common resources. A naive solution of picking up one fork and 
then the other fork can lead to deadlock. A solution of picking up both 
forks at once cannot lead to deadlock. Our solution avoided deadlock but 
did not avoid indefinite postponement (starvation). We showed an execu­
tion sequence in which a philosopher could be indefinitely overtaken by his 
neighbors. 

The readers and writers problem involved the concurrent reading and 
writing of a file. Without putting additional restrictions on the simple prob­
lem, the indefinite postponement of writers was a possibility. We imposed 
restrictions that specified the desired order of accessing the file. Deadlock 



138 EXAMPLES OF CONCURRENT PROGRAMS 

and indefinite postponement were not possible in our solution. The com­
plex scheduling rules followed after a signal statement were implemented 
using two conditions, one for readers and one for writers. 

The disk scheduling problem involved the priority ordering of 
accesses to a movable head disk. Following a discussion of disks and disk 
scheduling, we developed a SCAN algorithm. We showed how priority 
conditions were used to service the next closest request in the current arm 
direction. We also showed that several ways of ordering pending requests 
lead to indefinite postponement. Our solution avoided indefinite postpone­
ment and deadlock, and gives good performance to batches of requests for 
the same cylinder. 

The large message problem involved the transmission of high volume 
information without the overhead of data movement. We used a circular 
buffer manager to store the locations of the buffers of information, rather 
than the actual information. The locations were acquired from and released 
to a pool of free buffer locations, controlled by a monitor. When pairs of 
producers and consumers operate at widely different speeds, our initial solu­
tion could produce undesirable performance. We amended the solution by 
introducing priority waits to achieve improved resource allocation. 

CHAPTER 5 BIBLIOGRAPHY 

Our version of the dining philosophers problem and solution is based 
on material from Brinch Hansen [1973] arid Kaubisch et al [1976]. The 
readers and writers problem and the disk arm scheduler come from Hoare 
(197 4]. An early version of the readers and writers problem was given by 
Courtois et al [1971]. Material on numerical and simulation studies of disk 
scheduling can be found in Teorey and Pinkerton (1972]. The large mes­
sage problem was first studied by Dijkstra [1972]. Further comments on it 
were made by Brinch Hansen (1973] and Hoare [19741. Dijkstra's article 
[1968] remains a good treatment of concurrency issues, although monitors 
are not used. 

Brinch Hansen, P. Operating Systems Principles. Prentice-Hall (1973). 

Brinch Hansen, P. Concurrent programming concepts. Computing Surveys 
5,4 (December 1973), 223-245. 

Courtois, P.J., Heymans, F., and Parnas, D.L. Concurrent control with 
readers and writers. Comm. ACM 14,10 (October 1971), 667-668. 



CHAPTER 5 EXERCISES 139 

Dijkstra, E.W. Cooperating sequential processes. In Programming 
Languages (F. Genuys, editor), Academic Press (1968). 

Dijkstra, E.W. Information streams sharing a finite buffer. Information 
Processing Letters 1,5 (October 1972), 179-180. 

Hoare, C.A.R. Monitors: an operating system structuring concept. Comm. 
ACM 17,10 (October 1974), 549-557. 

Kaubisch, W.H., Perrott, R.H., and Hoare, C.A.R. Quasiparallel program­
ming. Software-Practice and Experience, Vol. (1976), 341-356. 

Teorey, T.J. and Pinkerton, T.B. A comparative analysis of disk schedul­
ing policies. Comm. ACM 15,3 (March 1972), 177-184. 

CHAPTER 5 EXERCISES 

1. Implement and run all examples given in this chapter in CE. Insert out­
put statements at appropriate places in the examples to show the progress of 
the processes and the states of the resources. 

Questions 2-7 refer to the dining philosophers problem. 

2. Discuss the effects of changing the PutDown entry to have the following 
form: increase left count, if left philosopher has two forks then signal him, 
increase right count, if right philosopher has two forks then signal him. 

3. Discuss the following proposed solution: a hungry philosopher first 
attempts to pick up his left fork through a monitor call; he then attempts to 
pick up his right fork through another monitor call; holding both forks, he 
begins eating. 

4. Discuss the following proposed solution: a hungry philosopher first 
attempts to pick up his left fork through a monitor call; he then attempts to 
pick up his right fork through another monitor call; if the right fork is avail­
able, he picks it up and begins eating; otherwise, he puts down his left fork 
and repeats his cycle. 

5. Discuss the following proposed solution: all philosophers are initially 
thinking; each philosopher waits until both his neighbors are thinking; he 
then stops thinking, picks up both his forks, and starts eating; when 
finished eating, he puts down the forks and starts thinking. 

6. Discuss the following proposed solution: 

if right fork is taken then 
wait for right fork 



140 EXAMPLES OF CONCURRENT PROGRAMS 

else 

if left fork is taken then 
wait for left fork 

end if 

if left fork is taken then 
wait for left fork 

elseif right fork is taken then 
wait for right fork 

end if 
end if 

7. [S.S. Toscani] What happens if the following rule is observed by the phi­
losophers: all philosophers, except one that is unconventional, acquire first 
the left fork and then the right. The unconventional one does the opposite, 
acquiring the right and then the left. Can deadlock occur? Can indefinite 
postponement occur? 

Questions 8-9 refer to the readers and writers problem. 

8. Discuss the solution proposed by Kaubisch et al [19761. In particular, 
compare their StartRead entry with our StartRead entry and their use of a 
counting variable for the number of writers with our use of a Boolean vari­
able. 

9. Courtois et al. [1971) considered two variants of the simple readers and 
writers problem. These variants differed from our version in the restric­
tions they imposed on the order of accessing the file. 

a) No reader should be kept waiting unless a writer has already 
obtained permission to use the file. That is, no reader should wait 
simply because a writer is waiting for other readers to finish. 

b) Once a writer is ready to write, it performs its write as soon as 
possible. That is, no writer should wait simply because there is a 
stream of reader requests waiting after an active writer. 

Why is a solution to problem b) not a solution to problem a)? Show that it 
is possible for a writer to be indefinitely postponed in problem a). Show 
that it is possible for a reader to be indefinitely postponed in problem b). 
Develop solutions to these variants in CE and compare them to the solu­
tion given in this chapter. 

Questions 10-14 refer to the disk arm scheduling problem. 

10. Show that the following alternative to line 18 in the SCAN monitor 
allows indefinite postponement. 

if armPosition < = destCyl then 



CHAPTER 5 EXERCISES 141 

11. Show that the following alternative to line 18 in the SCAN monitor 
allows indefinite postponement. 

if armPosition < destCyl or 
(armPosition = destCyl and direction =up) then 

12. Implement the FIFO disk scheduling algorithm in CE and test it using 
a sequence of disk requests. 

13. Implement the SSTF disk scheduling algorithm in CE and test it using 
a sequence of disk requests. 

14. A disk can be simulated by a process that executes the following state­
ments. 

loop 
GetCylToSeek (destCyl) 
if destCyl > currentCyl then 

distance : = destCyl - currentCyl 
else 

distance : = currentCyl - destCyl 
end if 
busy (distance) 

end loop 

Compare the average waiting time for disk 1/0 using the SCAN, SSTF, and 
FIFO algorithms. Note: the simulation (busy) feature of CE provides utili­
zation statistics automatically. 

Questions 15-16 refer to the buffer allocator for large messages. 

15. In the large message problem, what steps can be taken to overcome the 
difficulties caused by a consumer stopping altogether. 

16. Discuss methods different from that in the text for achieving reason­
able resource allocation in a heavy-load condition. 

Questions 17-19 are new problems. 

17. Develop a simulation of the sleeping barber problem [Dijkstra 1968] in 
CE: There is a barbershop with two rooms, one with the barber's chair, the 
other a waiting room. Customers enter from the outside into the waiting 
room one at a time; from the waiting room, they can proceed into the 
barber's room. The entrances to the two rooms are side-by-side and share 
a sliding door (which always closes one of them). When the barber 
finishes, the customer leaves by a separate exit and the barber inspects the 
waiting room by opening the door to it. If the waiting room is not empty, 
he invites the next customer in; otherwise, he goes to sleep in one of the 
waiting room chairs. When an entering customer finds a sleeping barber, 
he wakes up the barber; otherwise, he waits his turn. 



142 EXAMPLES OF CONCURRENT PROGRAMS 

Barber's Chair 

r-J-i+-Waiting room 

18. Develop a solution to the alarm clock problem in CE and discuss its 
overhead: A program wishes to delay itself a specified number of time 
units, or "clock ticks". Assume that a hardware clock can update a simu­
lated software clock which is available for program inspection. The 
hardware clock can be simulated by a process that executes the following: 

loop 
tick 
busy(l) 

end loop 

19. "Spoons" is a card game that is played by a group of N people sitting in 
a circle around N-1 spoons. Initially each player is dealt four cards. A 
player alternately discards to a pile to his left and draws from a pile to his 
right. When his hand has four of a kind, he grabs a spoon. Whenever a 
spoon is grabbed, the remaining players each attempt to grab a spoon. 
When the dust settles, the loser is the person who did not get a spoon. (In 
an actual game, this is repeated, each round eliminating one person until 
only the winner remains.) 

Program a simulation of Spoons in CE. Each process (player) exe­
cutes the following program: 

loop 
exit when (hand contains four of a kind) or 

(someone has grabbed a spoon) 
Discard a card to the left-hand pile 
Pick up a card from the right-hand pile 

end loop 
Attempt to grab a spoon 
Loser : = (Did not get a spoon) 

You may wish to use a deck of 24 cards, split into 6 different kinds, four 
cards of each kind. Assume four players, each holding four cards. Between 
each pair of players is a pile that initially holds two cards. 







Chapter 6 

UNIX: 
USER INTERFACE 
AND FILE SYSTEM 

In the preceding chapters we have discussed programming techniques 
and the Concurrent Euclid language with an emphasis on concurrency. 
These techniques are useful in the construction of operating systems, real 
time systems, and special purpose microprocessor systems. The rest of the 
book is concerned with the design and implementation of operating sys­
tems, concentrating on Unix. The Unix operating system is being used on 
thousands of computer systems. Because of its widespread acceptance and 
its simple but powerful facilities, it is an excellent example to study in order 
to learn about operating systems. 

This chapter introduces Unix's interface to interactive users and 
discusses the organization of its file system. Readers who are users of Unix 
will be familiar with much of this material. The following two chapters dis­
cuss the Unix system calls to control user processes and the major data 
structures in the Unix nucleus. Following these is a chapter giving the 
design of Tunis, which is a compatible replacement for the Unix nucleus 
written in CE. 

HISTORY AND OVERVIEW OF UNIX 

Unix was designed and implemented by two people, D.M. Ritchie and 
K. Thompson, at Bell Laboratories during 1969-71. It is a medium to small 
scale operating system. It works well on computer configurations having as 
little as 128K bytes of main memory and typically occupies about 60K bytes 
of such a system. It has proven to be a practical system that is particularly 
good at supporting text manipulation and program development. 

Although not originally designed for portability, Unix has proved to 
be relatively easy to move to new computer architectures. It was first 
widely used on the Digital Equipment PDP-11. It has been ported to 



146 UNIX: USER INTERFACE AND FILE SYSTEM 

various architectures including the Interdata 8/32, the Digital Equipment 
VAX and the Zilog Z8000. 

Unix is flexible and convenient to use, especially for the sophisticated 
user. Its file system and command language allow the user to easily solve 
problems which were painful to handle in many predecessor operating sys­
tems. 

It has a rather small and secure nucleus. In Unix terminology, this 
nucleus is called a "kernel". Unfortunately, this is at odds with the present 
book, which reserves the word "kernel" to mean a small module (e.g., 2K 
bytes) that does little more than handle interrupts and share CPU time 
among processes. When you read other material on Unix, be warned that 
what we call the Unix nucleus is elsewhere called the Unix kernel. 

Unix is a process-based system meaning that all activities outside the 
nucleus run as processes. One of the main purposes of the nucleus is to 
implement multiprogramming to support these processes. 

Unix was originally implemented in assembly language. It was later 
re-written in the programming language C. Several functions were added to 
Unix during this re-write. As a result of the re-write and the new func­
tions, Unix grew in size by about one third. This is a modest price to pay 
for the resultant cleanliness, modifiability and portability gained by using a 
higher level language. As was mentioned in the chapter introducing Con­
current Euclid, C lacks many of the constructs of other high level 
languages. For example, it does not support array subscript checking or 
tight constraints on pointer use. It is because of these shortcomings that 
this book uses Concurrent Euclid instead of C. 

Unix provides a clean, flexible interface to the user, and this interface 
is available on various different computers because Unix is relatively port­
able. This provides a great advantage to the user: he can easily move his 
skills, programs and data among different computer systems without learn­
ing new command languages and system conventions. This is analogous to 
the great advance that Fortran provided in the 1950's, in providing a 
convenient-to-use notation that could be used on different manufacturers' 
machines. By analogy, we are tempted to call Unix the "Fortran of operat­
ing systems." Unix is apparently destined to become the standard operating 
system for various application areas. 



MAJOR LAYERS OF UNIX 147 

TYPICAL CONFIGURATIONS 

Unix was first widely used at Bell Laboratories and at universities. 
Inevitably, there have evolved various, somewhat incompatible versions of 
Unix. Among the most widely used outside Bell Laboratories have been 
Version 6, Version 7 and Berkeley Unix; Berkeley Unix runs on the Digital 
Equipment VAX. A newer version of Unix, called System III, is expected 
to become widespread. For Versions 6 and 7, typical hardware 
configurations for Unix include: 

CPU (PDP-11, Z8000, or similar processor) 
256K bytes of main memory 
10 CRT terminals 
4 30-megabyte disk drives 
1 tape drive (used for file backups and transporting 

programs and data among installations) 

With the continuing drop in hardware costs, we will see more main 
memory and disk memory per terminal, and more single-user Unix sys­
tems. 

MAJOR LAYERS OF UNIX 

Unix is constructed of two major software layers. The lower layer is 
the nucleus. The higher layer consists of user processes, which are sup­
ported by the nucleus. We can consider that the people who use Unix form 
a layer outside the user process layer. The hardware, especially the disk 
drives, can be considered as another layer, which is lower than and supports 
the nucleus. Proceeding from outside to inside, these layers are: 

(1) Interactive users. These are people typing at terminals. A user types 
commands to Unix's command processor, which is called the shell. It is 
called the shell because from the interactive user's point of view, it sur­
rounds the rest of Unix and gives access to it, while from the system's 
point of view it surrounds the interactive user, handling interactions with 
him. There are other programs, such as Unix's editor, that also accept 
user's commands. 

(2) User processes. These communicate with interactive users and invoke 
the nucleus. Programs such as the shell and the editor execute as user 
processes. Some so-called user processes carry out system functions such 
as creating file directories and listing files on the printer. Each user process 
has its own virtual memory or address space that does not overlap other 
processes or the nucleus. The only way a user process can communicate 
with another user process or the nucleus is via a system call (trap) to the 



148 UNIX: USER INTERFACE AND FILE SYSTEM 

nucleus. The nucleus swaps or pages inactive user processes out to disk. 

(3) The nucleus. This implements user processes and a disk resident file 
system. It carries out requests (system calls) by user processes. It handles 
interrupts and controls peripheral devices. The Tunis implementation of 
the nucleus is discussed in a later chapter. 

(4) Disks and peripheral devices. The disks contain data structures that 
represent users' files. Access to other peripherals is supported by the 
nucleus, which makes them behave like "special" files. 

SYSTEMS THAT ARE UNIX-COMPATIBLE 

The interfaces to the two major software layers of Unix can be sup­
ported by non-Unix software. A system that supports shell commands, edi­
tor commands, etc. is Unix-compatible at the command interface. Operating 
systems that are quite different from Unix can support this interface. This 
is done by providing a program that behaves like the shell, another that 
behaves like the editor, and so on for other standard Unix programs. 

A computer system that supports the same system calls as Unix's 
nucleus is Unix-compatible at the system call interface. Such a system allows 
user processes to execute as if they are running under a true Unix nucleus. 
For example, there is a software package called Eunice which approximately 
supports this interface under Digital Equipment's VMS operating system. 
A different approach is to replace the Unix nucleus from the ground up 
with an equivalent nucleus supporting Unix's system calls. This is done by 
the Tunis nucleus, which is described in a following chapter. Tunis is also 
Unix-compatible at the disk interface, meaning that disk packs containing files 
can be used interchangeably by Unix and Tunis. 

In the rest of this chapter, we overview the command interface of 
Unix and the Unix file system. 

LOGGING IN AND SIMPLE COMMANDS 

When an interactive user wants to use Unix, he types his account 
name and password, as in this example: 

login: rch 
passwd: secret 
Any news printed at login time 
% 

Unix types "login:" and the user types his account name, "rch" in this exam­
ple. Then Unix types "passwd:" and the user types his password. The 



CREA TING, LISTING AND DELETING FILES 149 

password, which is "secret" here, is not actually printed. Next, Unix may 
print various news, followed by a prompt character, which is shown as "%" 
here. The prompt character means that the shell is ready to accept com­
mands from the interactive user. In the next chapter, we will explain how 
this protocol is implemented via process creation and the "exec" system call. 

Unix maintains a file of the names of accounts (user IDs) along with 
an encryption of their respective passwords. It uses this file to verify that 
the login is for a legitimate account and password. 

Once a user has logged in, he can type commands to the shell, such as 

%who 

The who command lists the set of users currently logged in, for example, 
the following might be printed: 

mckenzie ttyd 
jrc 
rch 

ttyp 
ttyi 

Feb 28 
Feb 28 
Feb 28 

12:56 
14:13 
14:23 

From this we can tell that users with the accounts mckenzie, jrc and rch are 
presently logged in; we are also told the times of their logins. 

As an example of another command, here is the way to put a message 
on another user's terminal: 

% write jrc 
Don't forget our squash game at 16:00 
<control D> 
% 

This causes the line about the squash game to be printed on jrc's terminal. 
The <control D > is a character that specifies the end of the message. 
Although we will not go into details here, it is possible for two users to 
hold a (clumsy) conversation by writing on each other's terminals. The 
percent signs are again prompt characters printed by the shell. 

CREATING, LISTING AND DELETING FILES 

The usual way of creating a text (ASCII) file under Unix is by using 
an editor. A number of different full screen editors are used under Unix. 
The original Unix editor, called ed, is line oriented. Here is a session using 
a version of ed to create a Concurrent Euclid program. 

% ed copy.e 
?copy.e 
*a 



150 UNJX: USER JNTERFACE AND FILE SYSTEM 

*w 
*q 
% 

{This is a CE program that reads and prints 
characters up to a period} 

var copy: 
module 

... body of module ... 
end module 

The editor is invoked by typing its name, ed, and the name of the file to be 
edited, copy.e. The editor types "?copy.e" meaning that there is no existing 
file by that name, but that the file will be created. The editor's prompt 
character is "*", which is printed in the next line. Some versions of the edi­
tor do not use a prompt character and some differ in the information they 
print. 

The user types "a" following the "*" to signify that he wants to append 
to the file. He then types the contents of the new file followed by a single 
period on a line, signifying the end of the text. The editor provides facili­
ties for modifying the text, but we will not be going into these. Following 
the next editor prompt "*", the user types "w" meaning to write the text into 
the file copy.e. After the next prompt "*", he types q for quit; this ter­
minates the editing session and the shell again types its prompt "%". 

There are various ways of listing a file under Unix, the simplest being: 

% cat copy.e 

The name "cat" is short for catenate and is a misnomer for this use, which 
simply lists the text in copy.e on the screen. We can compile copy.e, as fol­
lows: 

% cec copy.e 

Assuming copy.e contains no compile time errors, this command creates a 
file named copy.out, which can be executed by: 

% copy.out 

The Concurrent Euclid program will now begin executing. Assuming this 
program is similar to the copying program presented in Chapter 3, it reads 
and writes a character by the statements: 

IO.GetChar(ch) 
IO.PutChar (ch) 



THE DIRECTORY HIERARCHY 151 

and halts when ch is a period. So if we type: 

This is the end. 

the program will read this line and have it printed on the screen (again): 

This is the end. 

Next, the shell prints "%". Under Unix, a complete line is read from the 
terminal before giving any characters to the executing program (copy.out). 
That is why all of the first copy of "This is the end." is printed before its 
copy is printed. 

If we want to list a copy of copy.e on the printer, we run a program 
such as !pr: 

% !pr copy.e 

where !pr means "line printer". 

When we have no more use for copy.e, we can remove (rm) it by: 

% rm copy.e 

This destroys the file and recovers the disk space allocated to it. 

THE DIRECTORY HIERARCHY 

The files of Unix are arranged into a tree or hierarchic structure of 
directories. Each user has his own "home" directory in the tree. When the 
user logs on, he has immediate access to files in his own directory. If he 
wants to create a set of related files, he can create a sub-directory (a new 
node in the directory tree) to hold these files. For example, suppose that 
an author is a user of a Unix system and his account name is rch. His 
home directory (as well as his account) is named rch. Suppose he is writing 
a book, so he has created a sub-directory called book. In the book directory 
are individual files named chl, ch2, etc. containing chapters of the book. 
(The sentence you are presently reading is located in file ch6 of R. C. 
Holt's book directory.) Here is an example directory structure for a Unix 
system. 



152 UNIX: USER INTERFACE AND FILE SYSTEM 

Each user, such as rch, has his own home directory in the tree of direc­
tories. In this example, the directory for rch contains four entries: bin, t.e, 
t.out and book. The bin and book nodes are directories while t.e and t.out 
are ordinary user files. Since t.e has the suffix ".e", we can assume that it is 
a Concurrent Euclid program. 

If the book directory and its contents do not yet exist, rch can create 
them by: 

% mkdir book 
% cd book 
% ed chi 
... etc ... 

The mkdir (make directory) command creates the book directory, which 
initially has no entries. To move from the rch directory to the book direc­
tory, we use the cd (change directory) command. We create the file chi in 
the book directory using the Unix editor ed. 

In thi directory tree, rch is a sub-directory in the usr (user) directory. 
In turn, the usr directory is a sub-directory of the root of the directory tree, 
which has the name I (slash). Each file or directory has a path name that 
starts at the root; the path name includes the sub-directories down to the 
file. For example, the path name for chi is 

/usr/rch/book/chl 



SPECIAL FILES I 53 

The path name for the rch directory is 

/usr/rch 

When a path name begins with slash, this means the path starts at the root 
directory. If the path starts with a non-slash, then the path starts in the 
currently active directory. For example, when user rch logs into Unix, his 
active directory is rch and the path name for chl will be book/chl. If he 
types "cd book" then the active directory becomes book and the path name 
for chl becomes simply chl. 

There is a special entry in each directory named " .. " (dot dot) that 
specifies the father of the active directory. For example, if the current 
directory is "book" then we have: 

This specifies /usr/rch 
. ./t.e This specifies /usr/rch/t.e 

If we are in the book directory and wish to move to rch's bin directory, we 
type: 

cd . ./bin 

There is also a "." (dot) entry in each directory that specifies the directory 
itself. 

Both the root directory and the rch directory contain sub-directories 
called bin. (The name "bin" is historically derived from "binary code.") 
These bin directories are searched for commands that the user types. For 
example, suppose rch is in his home directory and types the command 
"list"; then the directories to be searched for the list command will include 
both /usr/rch/bin and /bin. The /bin directory contains standard programs 
such as the "ed" editor. In the case of "list", there is a file named list in 
/usr/rch/bin, so it will be executed. Each user of Unix can explicitly 
specify the set of directories to be searched to find commands. 

SPECIAL FILES 

Unix supports compatible input/output, meaning that peripheral devices 
and files are accessed by the same set of system calls. The devices are con­
sidered to be "special" files, and are accessed via entries in directories. By 
convention, the directory /dev has entries for devices. For example, 
/dev/mtO may correspond to a tape drive. To use this tape drive, a user 
process simply opens /dev/mtO and reads or writes as if using an ordinary 
file. Control of access to devices is done by the same method that is used 
for protecting files. 



154 UNIX: USER INTERFACE AND FILE SYSTEM 

FILE PROTECTION 

Unix provides a simple, but useful scheme of file protection. Each 
user of Unix has an account name or user ID, say rch, and belongs to a 
group, say osdevel (operating system development group). Each file is con­
sidered to belong to an account, and has a string of bits specifying access 
rights for the file. These bits are represented by a string of letters: 

d rwx rwx rwx. 

The leftmost rwx triple consists of three bits specifying whether the 
owner is allowed to read (r), write (w) or execute (x) the file. The middle 
rwx gives the rights of users within the group to read, write or execute the 
file. The rightmost rwx gives the rights of users that are not in the group. 
The chmod (change mode) command is used by the owner of a file to set 
its protection flags. For example, the owner can set the access rights to file 
copy.e by 

% chmod 640 copy.e 

This uses the octal string 0640, which in binary is: 

110 100 000 

This gives read/write access to the file's owner, read access to the group 
and no access to others. If we now type the command "ls -1 copy.e", we are 
given the long (-0 listing (ls) for the file named copy.e. This will print the 
access rights "-rw-r-----". If you have access to a Unix system, you should 
try this. 

Besides the nine bits for specifying read/write/execute, there are three 
bits called: (1) set user ID, (2) set group ID and (3) sticky. The third, the 
so-called sticky bit, informs the system that the file is frequently executed 
and so a copy of it should be saved in the swap area. 

The "set user ID" bit is used primarily to allow critical operating sys­
tem functions to be executed by user processes. When a file having its set 
user ID bit on is executed, the user process's account is switched to be that 
of the owner of the file. If the file owner is the super user, an account recog­
nized specially by the nucleus, then the process gains the ability to execute 
privileged system calls. Seemingly, the original user gains the ability to use 
these privileged system calls for any purpose, perhaps to the detriment of 
the system and other users. This is not the case, because the process is 
now executing a program belonging to the super user; by executing the 
super user's program, the process carries out the super user's instructions. 
An example of the use of this technique is in the creation of directories; 
this is done by a user process that becomes the super user by executing a 



SYSTEM CALLS TO MANIPULATE FILES 155 

file with the set user ID bit on. Then the process executes a privileged sys­
tem call (mknod) to create the directory. The set group ID bit is analogous 
to the set user ID bit. 

Any user can turn on the set user ID bit of one of his files. This file 
can be executed by other users and can give controlled access to the rest of 
the first user's files, using whatever access control algorithm is imple­
mented in the file having the set user id bit on. 

SYSTEM CALLS TO MANIPULATE FILES 

Unix supports communication with files, devices and processes in a 
simple, consistent manner. Each user process has a number of channels, 
which can be read from or written to. These channels are numbered 0, 1, 2 
and so on. There is a maximum number of channels per process; this 
number is fixed at the time the Unix nucleus is compiled and is typically set 
to 15. 

A process's channels are connected to files and devices by the "open" 
and "create" system calls. The "pipe" system call connects a channel to 
another channel to support inter-process communication. The "close" sys­
tem call is used to disconnect channels. 

By Unix convention, channel zero of each user process is its standard 
input channel and channel one is its standard output channel. A process 
that is interacting with a terminal has channel zero connected to the user's 
keyboard and channel one connected to his terminal screen. When a pro­
cess is created, its standard input and output channels are already con­
nected; the process can immediately begin reading from channel zero and 
writing to channel one without opening them. 

For the rest of this section, we will concentrate on the case of chan­
nels attached to disk files, but most of what will be said applies as well to 
channels that are attached to devices or that are attached via pipes to 
processes. 

When a user process opens a file, the nucleus finds one of the 
process's idle channels, connects it to the file, and returns the channel 
number (called a "file descriptor" in Unix terminology). When the process 
reads or writes the file it does so by invoking the nucleus and passing the 
nucleus the channel number. 

Each read or write is a system call (trap) that invokes the Unix 
nucleus. The nucleus carries out the requested action and then returns 
control to the user process. We will now describe Unix system calls used to 
access files. We will give the calls using the syntax of the C language. 



156 UNIX: USER INTERFACE AND FILE SYSTEM 

Open. A user process gains access to an existing file by executing: 

channelNo = open(fileName, accessMode) 

The accessMode specifies reading, writing or updating. (Updating means 
both reading and writing.) The returned channelNo is the number of one of 
the process's channels not previously in use. The fileName is the "path 
name" of the file. 

Close. A user process disconnects itself from a file and frees the asso­
ciated channel by executing: 

close (channelNo) 

Read. Once a file is open, it can be read as follows: 

bytesTransferred = read(channelNo, memoryLoc, byteCount) 

The specified number of bytes are to be read from the given channel into 
the process's virtual memory, starting at the address: memoryLoc. The fol­
lowing values of bytesTransferred are important: (a) if bytesTransferred = 
byteCount then the requested transfer was done; (b) if bytesTransferred = 
0 then the end of the file had been reached and no bytes were transferred; 
or (c) if bytesTransferred < byteCount then bytes were transferred until 
end-of-file or end-of-line was encountered. Case (c) commonly happens 
when a channel is connected to a terminal keyboard; a read fr-0m a key­
board transmits at most one line of input. 

Write. An open file is written to this way: 

write(channelNo, memoryLoc, byteCount) 

This is similar to the read system call and transfers the specified bytes. 

Seek. Random access to a file is accomplished by explicitly specifying 
the next location in the file to read or write, as in: 

lseek(channelNo, offset, base) 

The operation is called "lseek" (long seek) for historical reasons: there used 
to be an operation called "seek", that allowed offsets only up to 32K bytes. 
This system call moves the position in the file so it becomes "offset" bytes 
from the given base. The base can be specified as the beginning of the file, 
the end of the file, or the current position in the file. 

We use the operations just described (open, close, read, write and 
lseek) to manipulate existing files. We use the following operations (create, 
link and unlink) for creating new files, giving them alternate names and 
deleting them. 

Create. A new file with null contents is created by: 

channelNo = create(fileName, accessMode) 



INTERNAL FORMAT OF FILES I57 

This performs the same action as "open", but creates the file if it does not 
already exist. (Note: the Unix system call is actually spelled "creat".) If it 
already exists, it is truncated to zero length. Unlike most other operating 
systems, Unix does not allocate disk space for a file when it is created. 
Instead, space is implicitly allocated when a write adds to the end of the 
file. 

Link. An existing file is given an alternate name by linking to it: 

link (fileName, alternateFileName) 

The contents of the file are unaltered. The file may be opened using any of 
its names. Both names are given as paths. 

Unlink. The "unlink" system call deletes one of a file's alternate 
names: 

unlink(fileName) 

When all of the file's names have been deleted and no processes have the 
file open, it is destroyed. So, a file that was never linked to is destroyed by 
an unlink. 

Some of these operations do not make sense for certain attachments 
to channels. For example, a channel that is attached to a terminal keyboard 
can be read from, but cannot be written to. Operations fail for other rea­
sons as well: for example, an open of a non-existent file necessarily fails. 
When Unix receives a request it cannot carry out, it ignores the request and 
returns a failure status code. To keep the descriptions simple, we have 
ignored these status codes. 

INTERNAL FORMAT OF FILES 

It is typical for an operating system to provide a mechanism for struc­
turing individual files. For example, the operating system may be 
requested to keep track of the fact that a file represents 80-byte records. 
Unix's approach is different. It supports only one kind of file: a sequence 
of bytes. If a user process wants to read 80 bytes at a time from a Unix 
file, then he does so by the read system call. But the Unix nucleus does 
not enforce the convention. 

There are conventions for internal file formats in Unix, but these are 
followed by user processes and ignored by the nucleus. For example, an 
ASCII text file consists of lines, where each line is a sequence of bytes fol­
lowed by a new-line byte. Conceptually, the ASCII text file consists of a 
sequence of varying length records; this concept is represented only by the 
new-line characters in the file and is not enforced by the nucleus. 



158 UNIX: USER INTERFACE AND FILE SYSTEM 

Another convention is used for files containing executable machine 
code. Each such file starts with a special word value. This value is unprint­
able and is unlikely to occur by accident as a file's first bytes; it is used to 
check if a file that is to be executed actually contains machine code. 

Other operating systems distinguish between various internal file 
organization techniques such as sequential vs. random access vs. indexed 
sequential. Unix ignores these distinctions and supports only one kind of 
file, leaving the question of organization to the users. The result is that 
there is less for the user to learn and less for the operating system to imple­
ment. 

MOUNTING DISK PACKS 

The Unix file system resides on a set of disks. (Actually it could as 
well reside on other dat.a storage media, such as bubble memory, but we 
will only refer to disks.) The root directory resides on a particular disk, and 
the tree of directories begins with directories stored on this device. Access 
to files on another disk requires a system call to "mount" the other disk; 
this call effectively replaces a node in the original file system by the tree 
residing on the disk being mounted. This is accomplished by the system 
call 

mount(nodeName, deviceName, readWriteFlag) 

If the nodeName is /usr/rch/test and the deviceName is /dev/disk2, this 
replaces the test file with the directory tree on disk2. The readWriteFlag 
specifies whether the device will be allowed to be written on. Once the 
mount is done, the files on the new disk are accessed as if they were on the 
original disk. To reverse the effect of mount, we use: 

umount(deviceName) 

If the deviceName is /dev/disk2, then the file /user/rch/test again becomes 
accessible. When Unix is initializing itself, it must "mount" any disks that 
are by default part of its file system. 

Each disk pack is initialized to a clean, empty state by a utility pro­
gram that writes directly to the device, for example, to /dev/disk2. This 
initialization sets aside space for all files that are to be created on the disk. 
Unix has a restriction that the space for a file must be allocated on its own 
disk and cannot use space on another disk. 

The link system call (described above) makes an entry in a directory 
to give an alternate path name for an already existing file. Links are 
allowed to leaf files but not to directories. Unix has the restriction that all 
links to a file must be within the same disk. 



CHAPTER 6 SUMMARY 159 

These restrictions to allocate space strictly within the disk and to keep 
links within the disk are very helpful for simplifying maintenance. They 
imply that each disk pack is a self-contained unit that can be mounted, 
dismounted and checked for consistency without reference to other disk 
packs. This avoids a considerable amount of housekeeping that would be 
required to keep track of links and files spanning packs. 

We have assumed that each mountable directory sub-tree corresponds 
to a disk. Although this was originally true, later versions of Unix have 
allowed single disks to contain several of these mountable sub-trees. In 
Unix terminology these sub-trees are called "file systems". We have 
avoided this confusing terminology because the whole of the directory tree 
together with the algorithms that manipulate files is also called the "file sys­
tem". 

CHAPTER 6 SUMMARY 

This chapter has introduced Unix, with an emphasis on its user 
interface and its file system. Unix is a process-based operating system writ­
ten in a language called C. It is a small to medium-sized system that is 
portable and flexible. 

Th e following important terms were introduced. 

Interactive users - People who use Unix via terminals. 

Commands - Requests that an interactive user can type to a system such as 
Unix. 

Prompt character - The system prints a prompt character on a terminal to 
signal that it is ready to receive another command. 

User processes - Asynchronous tasks that can carry out requests (com­
mands) from interactive users. 

Shell - This is a program that interprets users' commands. It executes as a 
user process. It prints prompt characters and reads commands. 

Nucleus - The basic software of Unix that implements user processes and 
system calls. (In Unix terminology, the Unix nucleus is called the 
Unix "kernel".) 

System calls - These are requests by user processes to the nucleus. For 
example, a user process can execute a system call to "open" a file. 

Accounts - To use Unix, a person needs an account, denoted by a user ID. 
This user ID is given to Unix when the user logs in at a terminal. 

Password - The user must give his secret password when logging in. 



160 UNIX: USER INTERFACE AND FILE SYSTEM 

Directory hierarchy - The files of Unix are arranged in a tree of directories. 

Root directory - The base or root of the directory hierarchy is named"/". 

Home directory - Each account has a home directory in the directory tree. 
By default, the user's files are located in this directory. 

Current directory - A user process (and also an interactive user) is con­
sidered to be active in a particular directory, which is by default the 
user's home directory. 

Path name - Each file or directory has a "rooted" path, for example 
/usr/rch/book/chl, which starts with "/". Alternately, the file or 
directory can be located relative to the current directory, for exam­
ple, from the directory /usr/rch we have the path book/chl. 

Search path - The user can specify the directories (search paths) to be 
searched to find commands. 

File protection - Unix uses a string of bits, usually written as d rwx rwx 
rwx, to specify allowed access to each file. These allow read, write 
and execute access to the owner, to the group and to others. 

Special file - Unix provides compatible I/O between files and peripheral 
devices by treating peripheral devices as "special files". 

Set user ID bit - One of a file's protection bits specifies that a process exe­
cuting the file is to have its user ID set to be that of the file's 
owner. 

Channel - A user process has a number (typically 15) of potential attach­
ments to files. These "channels" are numbered 0, 1, 2, .. . Opening 
a file attaches it to a channel and closing a file detaches the channel. 

Mounting disk packs - A formatted Unix disk pack contains its own direc­
tory hierarchy. When a disk pack is placed on a disk drive, it is 
"mounted" to become a subtree in the system's directory tree. 

Following is a list of important Unix commands (which can be typed 
at a terminal) : 

who - Types a list of active users. 

write - Writes a message on another user's terminal. 

ed - Basic line editor, used to create and modify files. 

cat - Prints a file on the terminal. 

lpr - Prints a file on the line printer. 

cec - Concurrent Euclid compiler. This compiles a CE program prog.e, 
creating an executable version of the program which can be exe­
cuted by typin~ prog.out. 



CHAPTER 6 BIBLIOGRAPHY 161 

cc - C compiler. This compiles a C program prog.c creating an executable 
version of the program that can be executed by typing a.out. 

rm - Removes (deletes) a file. 

ls - Lists contents of a directory. 

cd - Change directories to be in a new directory. 

mkdir - Create a new directory. 

rmdir - Remove (delete) a directory. 

chmod - Change mode (change protection bits) of a file. 

man - Display manual entry for a given command, system call, etc. 

Following are the Unix system calls that a user process can execute to 
manipulate files. 

open - Attach a file to a channel. 

close - Detach a file from a channel. 

read - Read bytes from a channel. 

write - Write bytes to a channel. The file grows implicitly when a write 
extends the file. 

seek - Change the read/write position (offset) in a file attached to a chan­
nel. 

ioctl - This is a catch-all used to "control" a device, for example, to change 
the speed for a terminal. 

create - Create a new, empty file, and attach it to a channel. 

link - Give a file an alternate name. 

unlink - Delete one of a file's names. A file with no more names is 
deleted. 

CHAPTER 6 BIBLIOGRAPHY 

Ritchie and Thompson's article [1974] gives an excellent overview of 
their design of Unix. Thomas and Yates [1982] give a good introduction to 
Unix as well as collected references to Unix materials. 

Ritchie, D.M. and Thompson, K. The Unix Time-Sharing System. Comm. 
ACM 17, 7 (July 1974), 365-375. A revised version of this article 
and related articles appear in the Bell System Journal 56,6 part 2 
(July-Aug. 1978). 

Thomas, R. and Yates, J. A user guide to the Unix system. Osborne 
McGraw/Hill, 1982. 



162 UNIX: USER INTERFACE AND FILE SYSTEM 

CHAPTER 6 EXERCISES 

1. If you have access to a Unix system, try out each of the commands listed 
in the Summary of this chapter. 

2. List the system calls of an operating system other than Unix. Compare 
the system calls for manipulating files with those of Unix. 

3. If you have access to a Unix system, read the manual entries for the 
commands listed in the chapter summary. Note that, for example, "man 
who" is a command to display the manual entry for "who" on the terminal. 

4. Discuss the advantages and disadvantages of Unix's scheme for file pro­
tection. Contrast it with simpler schemes, as used on small minicomputer 
systems, and with more complex schemes such, as Multics' file protection. 

5. Unix provides compatible 1/0, meaning that file 1/0 operations also 
apply to devices. This compatibility is sometimes only partially possible. 
For example, it is not possible to read from a line printer, or to seek on a 
terminal. Give a list of such restrictions of compatible 1/0 applied to "spe­
cial files". 

6. Unix files are created empty, without specifying how large they may 
grow. What would be gained by knowing the eventual maximum size of a 
file when it is created. Why did the designers of Unix not require max­
imum file size at file creation time? Suggest a scheme for allocation of 
space to Unix-like files as they grow. 

7. Give a carefully worded argument explaining how the "set user ID" 
mechanism allows parts of an operating system to safely execute as user 
processes. 

8. The file containing the encrypted passwords of users can be read by any 
Unix user. Explain why this does not compromise security. 

9. Early versions of Unix did not restrict the directory structure to be a 
tree. The structure was allowed to be an arbitrary directed graph. Suggest 
reasons why the designers of Unix decided to restrict it to be a tree. 



Chapter 7 

UNIX: USER PROCESSES 
AND THE SHELL 

In this chapter we discuss the system calls provided by the Unix 
nucleus for the creation and deletion of user processes. We show how the 
command processor (the shell) is implemented using these system calls. 
The next chapter explains how the nucleus implements system calls. 

THE ADDRESS SPACE OF A USER PROCESS 

We need to examine Unix's concept of a user process in some detail 
in order to understand how the shell carries out commands. We start by 
describing the memory segments addressable by the user process. 

Each user process in Unix has its own partition or virtual memory, 
which we shall call its address space. The process can address the bytes in 
its address space but cannot address other processes' address spaces or the 
nucleus. A process's address space consists of three parts, called segments. 
These are 

1. The text (or code) segment, which holds the instructions (program) 
being executed. 

2. The data segment, which has an initialized part called ".data" and an 
uninitialized part that starts out cleared to zeroes. 

3. The stack segment, which is used to hold the runtime stack of the 
user process. 

The process is not expected to modify its text segment. Given appropriate 
memory protection hardware to prevent this modification, several processes 
can share the same text segment. This is done on architectures such as the 
PDP-11/70. 

The initialized part of the data area holds items such as string literals, 
for example, the string in Concurrent Euclid: 

const s : = 'ABC' 



164 UNIX: USER PROCESSES AND THE SHELL 

or the initialized array in C: 

char s [] = "ABC" 

The initialized part of the data segment is stored in a file along with the 
executable code for the program. This file is called a load module. This file 
does not contain the uninitialized part, but instead just contains a count giv­
ing the number of bytes to be allocated and cleared when the program is 
loaded for execution. 

The data segment can be explicitly extended or contracted by the user 
process by the "break" system call. This system call is used to implement 
dynamic creation of variables as in the statement: 

coll.New(p) {Concurrent Euclid} 

The stack segment is used primarily to hold data (activation records) 
required when the user process calls procedures and functions. The stack 
segment starts out small and implicitly grows as more space is required by 
the process's activated procedures. The stack segment grows but does not 
shrink during the execution of a particular program. 

An explanation about stacks is in order here. A C program or a 
Sequential Euclid program uses one run-time stack, which corresponds 
exactly to the stack segment. However, a Concurrent Euclid program with 
N processes has N stacks. A CE program is run under Unix as a single 
Unix user process that shares its user processes' time among the CE 
processes. Its N stacks are implemented as parts of the data area. A CE 
program running under Unix does not use its partition's stack segment for 
any of its process's stack. 

Besides these three addressable segments Unix uses a fourth segment 
to hold system data local to the process. This segment is called the system 
segment. This system segment is outside of the user process's address space 
and the process cannot address or modify it. 

Early versions of Unix support memory management by swapping, 
which transfers a user's segments between main memory and the swapping 
area on disk. Originally, a swap transferred all four segments contiguously 
out to disk (or back into memory). In later versions of Unix, the text area 
is shareable among processes, so text segments are swapped separately from 
the other three segments, which are swapped as a unit. 

In paging versions of Unix, only the active pages of a process's parti­
tion are kept in memory. (A page is a fixed-size block of information; in 
typical systems the page size is lK bytes.) Fortunately, the method of 
memory management (swapping or paging) is immaterial to the user pro­
cess, which continues to consider that it has an address space consisting of 



MANIPULATION OF USER PROCESSES 165 

three segments (text, data and stack). 

Swapping works well as long as each process's address space remains 
relatively small. Since architectures such as the PDP-11 limit addresses to 
16-bits, address spaces necessarily remain relatively small. However, with 
architectures such as the MC68000 and the VAX, addresses are 32-bits, and 
address spaces can be many megabytes. When address spaces reach this 
size, paging becomes highly desirable, as it avoids unnecessary transfers of 
large amounts of information between main memory and disk. 

MANIPULATION OF USER PROCESSES 

The Unix nucleus supports a set of system calls that allow user 
processes to be created, destroyed, etc. An existing user process creates a 
new process by executing: 

processNo = fork() 

The creating process receives a number in processNo which uniquely 
identifies the new process. Here we are using the C language syntax for 
system calls. 

Unix's fork is different from the fork described in Chapter 2 in that in 
Unix, the fork does not specify where the new process is to begin execut­
ing. In Unix, the son continues executing at the same place in the same 
program as its father. The only difference between the father and the son is 
that the processNo returned to the son is zero. 

Essentially, fork means "clone me". It creates a son user process 
which has a separate but equal address space, and is identical to the father 
in all essential aspects except for the value of processNo. In order that 
these two processes can tell which of them is the father, the fork is used in 
this manner: 

processNo = fork() {Zero is returned to the son} 
if processNo not=O then 

Carry out father's responsibility 
else 

Carry out son's responsibility 
end if 

In this way, the father and son execute the same text segment but they 
behave differently. The son has fresh copies of the father's data and stack 
segments and thus has access to any values which the father had. The son 
also has the same set of open files as the father. 

In many cases, the son process will want to start executing a new pro­
gram that is stored in a file. To do this, the process executes: 



166 UNIX: USER PROCESSES AND THE SHELL 

exec(fileName, argl, arg2, arg3, .. .) 

This is a system call to the Unix nucleus. It replaces the process's text and 
data segments with those given by the file. It re-initializes the process's 
stack segment and places the arguments (argl, arg2, .. .) in this segment. 
These arguments are null-terminated strings that parameterize the program 
about to be executed. The father's files remain open for use by both father 
and son. Exec does not create a new process; it just replaces a process's 
program and data, allowing the process to execute a new program. 

When a father process wants to wait for a son process to terminate, it 
executes: 

processNo = wait (status) 

This is a Unix system call and is not the same concept as the wait statement 
of Concurrent Euclid. It blocks the father process until one of its son 
processes terminates. The identity of the son is returned in processNo. 
The reason for the termination (an integer) is given by the word pointed to 
by status. 

When a process wishes to terminate its execution (to destroy itself) it 
executes: 

exit (status) 

Note that this is a Unix system call and has nothing to do with the Con­
current Euclid exit statement, which terminates a loop. Following the exit, 
the process ceases to exist; the status is returned to a wait executed by its 
father. If the father has not yet executed a wait, the son's status is saved 
until this happens. 

The exit system call is used by a process to terminate itself. A 
different system call, kill, is used to terminate another process: 

kill (processNo, signalNo) 

The processNo specifies the process to be killed. A process is allowed to 
kill another process only if it is the super user or if the assassin and victim 
processes belong to the same account. 

Actually, kill is a misnomer and should be called "notify", because in 
many circumstances, the victim process survives. The signalNo gives an 
integer which specifies the type of notification. A process that is expecting 
to receive a notification can execute: 

signal (signalNo, procedureAddress) 

This is a Unix system call and has nothing to do with the Concurrent 
Euclid statement "signal". Even worse, it is poorly named; perhaps it 
should be called "contingency", because it specifies what action is to be 
taken when the process receives a particular notification (i.e. kill). The 



IMPLEMENTING THE SHELL 167 

action to be taken when notification occurs is one of: 

(1) Ignore the notification, 

(2) Call a procedure at a specified address, or 

(3) Destroy this process when the notification arrives. 

By default, action (3) is taken, destroying the process. 

The kill and signal system calls are rather crude, but they are useful 
tools for handling simple synchronization among processes. 

IMPLEMENTING THE SHELL 

A person using Unix from a terminal types commands to a program 
called the shell. The shell is a command processor which interprets the 
lines that the user types, and sees that the requested actions are carried out. 
From the person's point of view, the shell seems to be Unix. But from the 
nucleus's point of view the shell is just a user process, which executes 
instructions and requests service from the nucleus via system calls. 

If the user wants the shell to list the names of files in the current 
directory, he types the line "ls". If he wants a "long" form of the listing he 
types the line 

ls -1 

The "-1" is the argument given to the ls command. It specifies that additional 
information is to be printed including the last date of modification and the 
protection bits. Some commands can accept several arguments. 

The shell reads this line, separates the command name (ls) from the 
argument (-1) and searches for a file with the name ls. By default, the 
search looks in the user's "bin" directory and in the system's "bin" directory. 
If the command is not found, the shell writes "ls: not found". Since ls is a 
standard command, we can assume that it will be found. 

The shell will have it executed by creating a son process (by forking) 
and waiting until the son has executed the command. The following is a 
simplified version of the shell's program: 

{Shell reads a command and has it executed} 
Read command line 
Parse command line, isolating commandName and arguments 
sonNo = fork() 
if sonNo not= 0 then 

{Father shell continues here and waits 
for son to complete} 

processNo = wait (status) 



168 UNIX: USER PROCESSES AND THE SHELL 

else 
{Son shell continues here} 
Search for file named commandName 
if search was successful then 

else 

exec (commandName, arguments) 
{When son shell does this exec, it stops being 

a shell and starts executing the command. 
When the command has completed, the son 
exits and its process is destroyed} 

Print message saying command not found 
exit(failureCode) {Son dies} 

end if 
end if 
{Shell is ready to read a new command} 

Essentially, the father shell calls its son process as a subroutine to execute 
the command. 

The command name and arguments are passed to the son as follows: 
the father's entire data segment is copied to make the son's data segment. 
When the son "execs" the command, it replaces its current data, text and 
stack segments by those for the command. The convention of completely 
copying the father's data segment by "fork" is straightforward for the 
nucleus to implement, but it is rather inefficient as most of the father's data 
is of no use to the son. This copying is avoided in Berkeley's VAX version 
of Unix by providing a variant of fork that has the son share the father's 
data and blocks the father until the son does the exec. 

INPUT/OUTPUT RE-DIRECTION 

When a command such as ls is executed, it assumes that certain of its 
channels are already initialized. In particular, a command assumes these 
connections: 

Channel 0. This is the standard input and is commonly attached to the 
· interactive user's keyboard. 

Channel 1. This is the standard output and is commonly attached to the 
interactive user's screen. 

In addition the following is often used: 

Channel 2. This is the error output and is commonly attached to the interac­
tive user's screen. 



BACKGROUND PROCESSING 169 

The error stream is useful for separating error messages from standard out­
put, especially when the standard output is attached to a file. 

An interactive user can easily re-direct the standard output, for exam-
ple: 

ls> names 

This runs the ls command and instead of printing the file list on the user's 
screen puts the list into a file called "names". If the command accepts 
input, its standard input can be re-directed, for example: 

ed filex < script 

This runs the Unix editor "ed" to update the file named "filex" using the 
editor commands in the file named "script". 

The shell implements input/output re-direction as follows. When it 
parses a command line, it recognizes the symbols ">" and "< ". The strings 
following these symbols are taken as the names of output and input files. 
Before the command is executed, the process's standard output (channel 
one) and standard input (channel zero) are attached as specified by the 
command line. When the command executes, it is unaware of this re­
direction and in general considers its standard input and output to be a key­
board and screen. 

This convenient method of input/output re-direction supported by 
Unix is particularly powerful in that it allows a program to be easily used 
either interactively or non-interactively. 

BACKGROUND PROCESSING 

By default, the shell waits for a command to finish before reading the 
user's next command. When a command takes more than a few seconds, 
the wait is tedious and can be avoided. For example, 

cec test.e > errors & 

runs the Concurrent Euclid compiler (cec) on the program test.e and puts 
the error messages in the file "errors". (Note that compilers under Unix do 
not in general produce source listings, so the output stream from cec con­
tains only error messages.) The final "&" means that the command is to be 
done in the background and the shell will immediately accept new com­
mands. 

It is very easy for the shell to implement background processing. It 
simply treats the command as any other command, but does not wait until 
the son process carrying out the command terminates. The result is that 
the shell and the son process carrying out the command continue in 



170 UNIX: USER PROCESSES AND THE SHELL 

parallel. 

PIPES AND FILTERS 

The output stream from a process can be made to be the input stream 
of another process by connecting the processes via a pipe. For example, 
the command line 

ls I lpr 

means to take the output from the directory lister (ls) and to feed it to the 
printer (lpr, for line printer). This could be done less conveniently by: 

ls > tempfile 
lpr < tempfile 

followed by the removal of the file "tempfile". Several commands can be 
strung together, as in 

ls lpr -2 llpr 

In this case, the output of ls is consumed by pr. The pr program paginates 
its input, using double columns (the "-2" argument to pr means double 
columns). The output of pr is then fed to lpr which prints it. 

We call pr a filter, because it copies its input to its output, with certain 
modifications. Many Unix programs, such as the "sort" routine, are useful 
filters. 

SYSTEM CALLS TO SUPPORT PIPES 

We now show in some detail how Unix system calls are used by the 
shell to support pipes. We will concentrate on the case of a father process 
(the shell) arranging things so two of his sons communicate via a pipe. 

To create a pipe, the father executes the system call: 

pipe (pi peChannels) 

The Unix nucleus picks two of the father's unattached channels, connects 
them to the newly created pipe, and returns the channel numbers to the 
father. "PipeChannels" is an array indexed from 0 to 1; pipeChannels[l] is 
set to the channel number to be used for writing to the pipe, and pipeChan­
nels[O] is set to the channel number for reading from the pipe. This seem­
ingly useless arrangement would allow the father to send a message to the 
pipe and later read it back, but this is not what we want to do. 

The reason for creating the pipe is for use by son processes. The 
father creates two sons, each of which inherits the father's connections to 
the pipe. By a pre-established convention, one son will produce data and 



FILES CONTAINING COMMANDS 171 

write it to the pipe, while the other son will consume data from the pipe. 
This arrangement is established in the following program: 

{Father executes, creating a pipe and two sons} 
pipe(pipeChannels) {Create pipe} 
sonA =fork() 
if sonA not= 0 {Father and sonA execute test} then 

{Father continues here} 

else 

end if 

sonB =fork() 
if sonB not= 0 {Father and sonB execute test} then 

{Father continues here} 

else 

{Father closes pipe channels, waits for sons} 
close(pipeChannels[O]) 
close (pipeChannels [ 1]) 
sonldent = wait(status) {One son dies} 
sonldent = wait(status) {Another son dies} 

{SonB continues here, consuming from pipeChannels[OJ} 
close (pipeChannels [ 1]) 
... read from pipe ... 
exit(status) {SonB dies} 

end if 

{SonA continues here, producing into pipeChannels[lJ} 
close (pipeChannels [OJ) 
... write to pipe .... 
exit(status) {SonA dies} 

{Father continues here after death of sons} 

Recall that a fork in Unix copies all of the father's data for the son. Each 
of the three processes will have its own array called pipeChannels whose 
value is assigned in the father's call to create the pipe. When the first son 
is created, its variable sonA is set to zero, while the father's version of this 
variable is set by fork to be the process identity of the first son. 

FILES CONTAINING COMMANDS 

Sometimes it is convenient to collect a sequence of commands and 
have them executed as a unit. For example, suppose the following com­
mands are in a file called testx: 

cec x.e 
x.out 



172 UNIX: USER PROCESSES AND THE SHELL 

This compiles the Concurrent Euclid program x.e putting the compiled pro­
gram into file x.out, and then executes x.out. Assuming the protection bits 
for testx specify that it is executable we can type 

testx 

and the sequence will be carried out. 

We call a file such as testx a command file or a shell file, and we say it 
is written in shell language. A shell file can contain any commands or 
operations (such as "<" for input re-direction) that can be entered interac­
tively. Although we will not go into it here, shell language is reasonably 
general, supporting loops, selection (case and if), parameter substitution 
and other features. What this means is that under Unix, the notations of 
an interactive command language and a job control language (JCL) have 
been merged to form a single convenient notation: shell language. 

The shell executes shell files in an elegant manner, which may seem 
confusing at first. Basically, the shell calls itself recursively to handle a 
shell file. Consider the case of testx. When the shell reads a line contain­
ing the string "testx", it creates a son shell to carry out the testx command. 
When the son attempts to "exec" testx, it may fail for one of two reasons: 
(1) the file is not executable due to the setting of its protection bits, or (2) 
the protection bits allow the file to be executed, but the file does not start 
with a peculiar unique word indicating that the file contains machine code. 
In the first case, an error message is printed and the command is ignored. 
In the second case the son shell assumes that instead of machine code, the 
file contains commands. So the son shell process simply continues to exe­
cute as a shell, reading commands from the file. Once the son shell reaches 
the end of the shell file, it terminates. One of the beauties of this recursive 
scheme is that the shell file may in turn contain names of other shell files, 
which are executed by creating yet another son (a grandson) to handle the 
new shell file, and so on. 

SYSTEM INITIALIZATION 

A Unix system is started up, or bootstrapped, by loading the nucleus 
from a specified Unix file. Once the nucleus has initialized itself, it creates 
a single user process, the "ultimate ancestor" of the family tree of user 
processes. This first process executes a program called "init". Init opens a 
file containing a description of each terminal attached to the system. For 
each such terminal, a son process is created to handle that terminal. The 
son tries to read from the terminal's keyboard; in the case of a dial-up line, 
the open blocks the process until the line is actually dialed up. Next the 
son prints "login:" on the terminal and issues a read to get the user's 



CHAPTER 7 SUMMARY 173 

account name. Once the account name is read, "passwd:" is printed and the 
password is read. Assuming that the account name and password are legiti­
mate, the process sets its user identification and home directory to those of 
the person logging in, and executes the shell. Then the shell accepts and 
carries out commands from the terminal until the interactive session is 
complete. At completion, the shell exits, destroying its process. The origi­
nal init process waits for its sons to terminate, and when this happens, it 
creates a new son process to handle the next interactive session. 

The init process's account name is the super user. This allows it to 
execute privileged system calls, such as "setuid" to change the process's 
acco!-Jnt name. This is called by a son of init before it exec's the shell. 
Intriguingly, the shell does not execute as the super user and has no special 
privileges, beyond those implied by the user's account. 

Since the shell has no special privileges, it can easily be replaced by 
another program. For example, if a word processor operator is using Unix, 
his default "shell" can be changed to be the word processing program. This 
technique has two advantages. First, it eliminates the need for certain users 
to need to learn how to communicate with the real shell. Second, it can be 
used to prevent certain users from having full access to the system, because 
all commands can be "audited" by the substitute shell. 

CHAPTER 7 SUMMARY 

This chapter has discussed the Unix system calls that are used to con­
trol user processes. Each user process has a distinct address space, which 
consists of a text (code) segment, a data segment and a stack segment. 
User processes may share the same (read only) text segment, for example, 
when both processes are executing the shell. 

The system calls for controling user processes are: 

fork - Creates a son process with a copy of its father's address space. The 
return code from a fork call distinguishes the father from the son. 

wait - Blocks a father process until one of its son processes terminates. 
(This is not the same concept as the CE wait statement.) 

exit - Executed by a process to terminate itself. (This is not the same as 
the CE exit statement.) 

exec - Causes a process to start executing a new program. New data and 
text segments are loaded and the stack segment is re-initialized. 
Arguments are passed in the new stack segment. 

kill - Sends a notification (signal) to another process. By default this ter­
minates the other process. 



174 UNIX: USER PROCESSES AND THE SHELL 

signal - Informs the nucleus of what action to take when a kill or trap 
occurs. 

The shell (command interpreter) is implemented using these system 
calls. When it receives a command, it creates a son process to carry out the 
command. The father shell waits for the son to complete, unless an amper­
sand (&) specifies that the command is to be done in the background. 1/0 
redirection via > and < is implemented by attaching 1/0 standard channels 
(O=input, 1 =output, 2=error output) before exec'ing a command. 

Pipes are implemented using the pipe system call; the shell uses this 
system call to interconnect the channels of son processes. 

A sequence of commands to the shell stored in a file are called a shell 
file (or shell script). The shell executes a shell file by creating a son to read 
the script, which in turn creates son processes to carry out individual com­
mands. 

Unix initializes itself by creating a single user process, which executes 
a program called init. Init creates (and re-creates) son processes which con­
trol each of the system's interactive terminals. 

CHAPTER 7 BIBLIOGRAPHY 

The implementation of the shell and "init'" is described by Ritchie and 
Thompson (19741. A number of the concepts used in Unix are adapted 
from Multics [Organick 19721. Mcilroy et al [1978] discuss the Unix style 
of software development using software tools such as shell language. 
Bourne [1978] describes the shell language of Version 7 Unix. 

Bourne, S.R. The Unix shell. Bell System Technical Journal, 15,6 Part 2 
(July-Aug. 1978), pp.1971-1990. 

Mcilroy, M.D., Pinson, E.N. and Tague, E.G. Unix time-sharing system: 
foreword. Bell System Technical Journal, 15,6 (July-Aug. 1978), 
pp.1899-1904. 

Organick, E.I. The Multics system: an examination of its structure. The MIT 
Press, Cambridge, Mass., 1972. 

Ritchie, D.M. and Thompson, K. The Unix time-sharing system. Comm. 
ACM 17,7 (July 1974), 365-375; revised version in Bell System 
Journal 56,6 part 2 (July-Aug. 1978). 



CHAPTER 7 EXERCISES 175 

CHAPTER 7 EXERCISES 

1. Unix's fork system call is surprising in that the son process continues 
executing the same program as the father. Consider a more elaborate ver­
sion of fork that combines the function of Unix's fork and exec system 
calls. Why do you think the designer's of Unix's chose the simpler version 
of fork? What are its advantages and disadvantages. Describe a more ela­
borate version of fork that allows the shell to be more efficient. 

2. The pipe system call attaches one of a process's channels to another of 
its channels. This seems useless. Explain why the designers of Unix 
implemented this system call, rather then the more obvious concept of 
attaching one son's channel to another son's channel. 

3. Assuming you have access to Unix or a Unix-like system, write demons­
tration programs that invoke these system calls: fork, exec, exit, signal and 
kill. 

4. There is one kind of signal (kill) that always terminates a process 
(assuming the killer process has the same user ID or is the super user). 
Describe ways of creating "process cancer", i.e., processes that create other 
processes rapidly and recursively in such a way that it is hard to destroy all 
these processes. Describe anti-cancer treatment. 

5. A pipe is limited in size (typically 4k bytes). A process that fills up a 
pipe to this maximum size is blocked on its next write to the pipe. 
Describe the various kinds of deadlocks that can arise when using pipes. 
Can any of these arise from using the "1' shell notation, or do all of them 
require explicit use of the pipe system call? 





Chapter 8 

IMPLEMENTATION OF 
THE UNIX NUCLEUS 

The previous two chapters discussed Unix as seen by interactive users 
and the Unix nucleus as seen by user processes. (Recall that what we call 
the Unix nucleus is elsewhere called the Unix kernel.) This chapter looks 
inside the Unix nucleus to see how it is implemented. We will consider the 
major data structures manipulated by the nucleus, including i-nodes and 
user descriptors. The chapter following this one goes into more detail, 
showing how the Tunis nucleus can be implemented in CE. 

LAYOUT OF DATA ON DISKS 

Unix's files reside on disks. Each disk is divided into five areas: 

Boot block: The Unix system can be started up by loading and executing 
this block. 

Super block: This block specifies the boundaries of the following three areas 
on the disk. It also contains the head of the free list of blocks 
available to be allocated to files. 

I-node area: This contains descriptors 0-nodes) for each file or directory on 
the disk. Each i-node is the same size (64 bytes in Version 7 
Unix). By convention, the second i-node represents the disk's root 
directory. 

File contents area: This is used to store the contents of files. The free list 
head in the super block keeps track of unallocated space in the file 
contents area. 

Swap area: This holds user processes when they have been swapped out of. 
main memory. In Version 7 of Unix, swaps are to a single disk, so 
only one disk needs to contain a non-null swap area. 



178 IMPLEMENTATION OF THE UNIX NUCLEUS 

Some Unix installations arrange things so one physical disk contains more 
than one logical disk. With this arrangement, a single physical disk con­
tains more than one of the layouts just described. 

THE FLAT FILE SYSTEM VS. THE TREE FILE SYSTEM 

The implementation of Unix's file system is divided into two distinct 
layers. We will call the inner layer the flat file system (or i-node file system) 
because it has no directories; flat files on a particular disk have as their 
names: 1, 2, 3, etc. Each number tells which i-node defines the file. Files 
in the flat file system are created empty and grow when they are extended 
by "writes", consuming space from the file contents area of the disk. 

The outer layer is the tree file system (or directory file system). This 
layer uses the flat file system to implement Unix's hierarchic file directory. 
It uses each flat file to represent: (1) a directory in Unix's file hierarchy or 
(2) a user's ordinary disk file. 

FORMAT OF DIRECTORIES 

A directory is a flat file and consists of 16-byte entries. Each entry 
consists of a 2-byte i-node number and a 14-byte file name. For example, 
here is a directory: 

i-node 
number 

152 
18 

216 
4 

File name 

myfile 
oldfile 

Each entry is used to map a file name to its corresponding i-node. In this 
example, oldfile is represented by flat file number 4 on this disk. The dot­
dot ( .. ) entry locates the i-node for the father directory of this directory. 
The dot (.) entry locates the i-node for the present directory, i.e., it is a self 
reference. 

FORMAT OF I-NODES 

The contents of a file are kept separate from its control information, 
which means that a file's contents and its i-node are not adjacent on the 
disk. 



BLOCK LISTS 179 

Each i-node consists of fields giving information such as the file's 
owner, its size and its date of creation. Here are the fields of an i-node: 

User number: uniquely determines the owner's account name (user ID). 

Group number: used for file protection. 

Protection rights: the string of protection bits. 

Times: when file was last read and last updated and when i-node was last 
updated. 

File code: specifies if the i-node represents a directory, an ordinary user file 
or a special file. (A special file is typically a peripheral device.) 

Size: length of file in bytes. 

Block list: locates contents of file. 

Link count: gives number of directories referencing this i-node. 

All of these fields except for the file code and the link count can be 
considered to belong to the flat file system. It is the tree file system's 
responsibility to decide whether an i-node represents a directory and to 
record how many directory entries reference (are linked to) a particular file. 

If the file code indicates a special file, then the i-node does not 
represent a disk file. Instead, the i-node is being used for a special purpose, 
typically for accessing a peripheral device. For example, each terminal on a 
Unix system is accessed via an i-node. 

BLOCK LISTS 

The block list of an i-node consists of pointers to blocks in the file 
contents area of the disk. In Version 7 of Unix, there are thirteen of these 
pointers (Version 6 uses a different arrangement). This table shows an i­
node's block list. 



180 IMPLEMENTATION OF THE UNIX NUCLEUS 

Disk 
Accesses 

1 

2 

3 

4 

Byte 
Range 

To 5120 

To 70,656 

To 8,459,264 

To 1,082,201,087 

Block 
Pointer 

1 
2 
3 

10 

11 

12 

13 

I-NODE BLOCK LIST 

Direct 

Indirect 

Double indirect 

Triple indirect 

The first ten pointers directly locate file content blocks on the disk. 
Each block is 512 bytes, and these pointers locate the first 5120 bytes of the 
file. The eleventh pointer is used when the file size exceeds 5120 bytes. It 
locates a block which in turn contains pointers to blocks containing the 
file's data. Thus, bytes of the file that are located via the eleventh pointer 
require an extra disk reference. Beyond byte number 70,656 we use the 
twelfth pointer, which has double indirection; it locates a block containing 
pointers to blocks of pointers to blocks of data. Beyond byte number 
8,459,264 we go to pointer number thirteen and triple indirection, which 
supports an absolute maximum file size of 1,082,201,087 bytes. 

The amount of indirection increases with the size of the file; for very 
large files, in principle we require up to four disk accesses instead of one for 
small files. Fortunately, there is a software cache that holds recently refer­
enced blocks, so in many cases the required intermediate pointer blocks are 
already in memory. (Note: Berkeley Unix has used a similar arrangement 
but its block size is 1024 bytes.) 

Before discussing the file system's data structures in more detail, we 
need to examine the descriptors used to represent user processes. 



LINKAGE FROM USER PROCESSES TO DISK FILES 181 

DESCRIPTORS FOR USER PROCESSES 

The Unix nucleus manages certain information about each user pro­
cess. This "per process" information is kept in a pair of data structures: 

(1) Process descriptor. This is permanently resident in memory. 

(2) User descriptor. This contains information that is needed only when 
the user process is in main memory. This descriptor occupies the sys­
tem segment, one of a process's four segments, which is swapped 
between memory and disk. Recall that the other three segments 
(text, code and stack) constitute the process's address space. 

The size of the process descriptor is minimized in Unix so that inactive 
processes, such as those waiting for log-ins, occupy little memory. 

Each user process has a number (its process ID) which is a pointer 
into the table of process descriptors. When a fork is executed, the father 
process is given the number of its son. In the kill system call, the victim is 
specified by giving its process number. From each process descriptor we 
can locate its user descriptor, which will be either in memory or swapped 
out to disk. 

There are fields in the user descriptor for the process's user ID, 
current directory, general registers and status of files. We will now trace 
the path from the file status fields in the user descriptor to i-nodes on disk. 

LINKAGE FROM USER PROCESSES TO DISK FILES 

Each user process has a number of channels which can be attached via 
i-nodes to disk files, special files or pipes. Each user descriptor contains a 
channel table (also called the "per user open file table"). When the process 
executes an open or create system call, an entry in this table is filled in and 
the number of this entry is returned as the channel number. This entry 
contains a pointer to an entry in another data structure, called the open file 
table. In turn, the open file table entry has a pointer to an entry in the 
memory resident i-node table. This chain of pointers is illustrated here: 



182 IMPLEMENTATION OF THE UNIX NUCLEUS 

Process Descriptor 
(Memory Resident) 

User Descriptor 
(Swapped) 

User1 

Channel 
Table 

Per Process Information 

User 2 

••• 

User 3 

----- -- . 
••• 

• • 

We will trace this chain from bottom to top starting with i-nodes. 
Consider the case when a disk file is opened. An entry is allocated in the 
memory resident i-node table and the disk resident i-node is read into this 
entry. The memory resident version of the i-node will be updated to reflect 
any changes in the disk file and does not need to be written back onto disk 
until the file is no longer active. When a user process opens a file that is 
already active, it shares the existing entry in the memory resident i-node 
table. 

When the file is opened, an entry is also allocated in the open file 



LINKAGE FROM USER PROCESSES TO DISK FILES 183 

table. In one field of this entry, a pointer is created to locate the 
corresponding memory resident i-node. In another field is the entry's file 
offset (or file pointer); it is set to zero. It locates the next byte of the file to 
be read or written. Each read, write or seek accesses this open file table 
entry and updates its offset field. 

The flat file system does only random access 1/0; it is passed this 
offset field with each read or write. A seek on a file changes this offset 
field, without accessing the i-node. 

When a user process forks, its son process inherits the father's open 
files. This is implemented by making a copy of the father's channel table 
for the son. As a result, the father and son share the same open file table 
entries. Whenever either process does a read, write or seek on one of these 
files, the shared offset field in the open file table is updated. This rather 
surprising arrangement has been set up for a purpose. It makes it possible 
for the father to begin processing a file, to give it to a son for further pro­
cessing, and then for the father to continue with the remainder of the file. 
Unfortunately, if either process does internal read-ahead buffering of the 
file, this arrangement does not work. 

The items along the path from the channel table to the file are de­
allocated when no longer needed. There are usage counts for the various 
table entries that record the number of activities that require the entry. 
When a usage count goes to zero, the table entry is freed. 

An open file table entry is de-allocated when a close sets its usage 
count to zero. Similarly, a close may reduce the activity of a memory 
resident i-node to zero. As a result, the updated i-node is written to disk 
and the entry in the memory resident i-node table is freed. When a file is 
removed (unlinked), the link count of its i-node may go to zero. If so, the 
disk resident i-node is freed; it is written to disk with a zero link count. 

Things get confusing when an open file is unlinked. In this case the 
i-node's link count can go to zero, but the file's i-node is still being used. 
As long as the file stays open, the memory resident i-node's usage 
(activity) count remains positive. Therefore, the file remains in the flat file 
system, in spite of the fact that the file is no longer part of the tree file sys­
tem (because it has no path name). This anomaly is resolved when the file 
is closed and is removed from the flat file system by writing its defunct i­
node to disk. 

We have thus far glossed over the buffering that makes the file system 
efficient. There is a software cache of recently read/written disk blocks. If 
a requested block is already in memory, it is used, thereby avoiding physi­
cal input/output. Analogously, there is a cache of unused i-nodes, so it is 



184 IMPLEMENTATION OF THE UNIX NUCLEUS 

not usually necessary to access the disk when creating a new file. The free 
list of available blocks for each disk consists of a linked list whose elements 
are blocks, each containing 50 pointers to free blocks. The first such block 
for each disk is kept in memory. As a result, a new block can usually be 
assigned to a file without accessing the disk. 

LINKAGE FROM USER PROCESSES TO SPECIAL FILES 

The compatible input/output of Unix provides access to peripheral 
devices as if they were files. If the file is special, the block list is meaning­
less, so the block list fields are used for other purposes. In particular, new 
fields record the device's ID, which consists of two parts: 

Major device number: specifies the class of device, e.g., the controller 
managing a set of tape drives. 

Minor device number: specifies the device within the class, e.g., the partic­
ular tape drive. 

A special file is opened much like an ordinary file. Its disk resident i­
node is brought into memory, an open file table entry is pointed to it, and a 
channel table entry is pointed to the open file table entry. When the user 
process executes an operation such as read or write on the special file, the 
nucleus notices from the memory-resident i-node that the file is special. 
So, the nucleus extracts from the i-node the device ID and uses the major 
device number as an index into a data structure called the con.figuration 
table. This table locates a procedure within the nucleus that carries out the 
desired operation for the particular special file. This procedure is called 
with the minor device number as a parameter; it carries out the requested 
operation and returns. 

This method of handling special files is powerful and flexible. It 
allows new peripheral devices to be attached to Unix system with little 
difficulty. The new device driver code is written, entries for its procedures 
are added to the configuration table, and the Unix nucleus is re-compiled. 
Also, an i-node must be created with the appropriate device ID; this is 
done by the mknod system call. 

In addition to the obvious use of special files to represent peripheral 
devices, they serve other important functions. For example, a user process 
can use a special file to by-pass the file system and access each disk as a 
sequence of blocks. Of course, the protection bits prohibit all but a few 
users from this dangerous access. But this direct access is important for 
several purposes. It allows a Unix utility program executing as a user 



FILE SYSTEM CONSISTENCY 185 

process to layout new disk packs so they can be used to contain Unix files. 
It also allows a user process to check a Unix disk pack to see if its file sys­
tem data structures are in a consistent, non-corrupt state. 

Special files are also used to implement pseudo-devices. For example, 
the file /dev/mem by convention represents main memory. A user process 
with access to this file can read or write any byte in the computer's physical 
memory. Obviously this ability is not to be used casually, and writing is 
rarely done. Reading provides a sneak path to the nucleus's data struc­
tures. This path is used by some programs to gather system statistics. For 
example, the ps (process status) program runs as a user process and reads 
the nucleus's process descriptors to print the status of user processes. Of 
course, a program such as ps depends intimately on details inside the 
nucleus and will fail if the nucleus is significantly modified. The ps pro­
gram would have to be re-written if the Unix nucleus were replaced, for 
example, by Tunis. 

LINKAGE FROM USER PROCESSES TO MOUNTED DISK 
PACKS 

When Unix is started up, it has access to only one disk. It assumes a 
particular i-node on this disk represents the file system's root directory. 
Further disks are made part of the directory tree by mounting each new 
disk on a leaf of the existing tree. The mount system call marks the leafs 
memory-resident i-node as "mounted". When the nucleus is following the 
path of a file name (e.g. to open the file), it may encounter an i-node 
flagged as mounted. When this occurs, the nucleus searches the mount 
table to find the device ID of the disk whose directory tree is mounted on 
the i-node. (The mount table contains entries that map mounted i-nodes to 
corresponding disk device IDs.) The root directory of the new disk 
effectively replaces the mounted i-node. The open system call may 
encounter several mounted i-nodes in the course of following a path 
through the directory tree. Once the desired file is located, its i-node is 
brought into memory. Subsequent high frequency operations, such as read­
ing, directly reference the memory resident i-node without concern for the 
path by which it was located. 

FILE SYSTEM CONSISTENCY 

Ideally the hardware and software for a Unix installation never fail, 
and there is no difficulty with lost or corrupted files. Unfortunately, life is 
not this simple and problems do occur. For example, a dip in the electric 



186 IMPLEMENTATION OF THE UNIX NUCLEUS 

power voltage may cause the CPU and/or its bus hardware to fail. Such a 
failure is particularly insidious in Unix because key parts of the structure of 
the file system are cached in memory. When a sudden failure occurs, these 
parts are not written out to disk, leaving block lists and directories in an 
inconsistent state on the disk. 

There is a system call (sync) that forces memory resident disk infor­
mation to be written out to disk. This operation is invoked about every 15 
seconds, so that the disk is never far out of date. Sync is also called before 
shutting down the system to guarantee that the disks are left in a consistent 
state. 

An unexpected hardware failure does not generally permit a sync to 
be completed. For some failures, such as traps inside the nucleus, it is pos­
sible to write cached information to disk. Unfortunately, this is not always 
a good strategy, because the software failure may have corrupted the 
memory resident data, and writing this to disk only compounds the prob­
lem. 

When a Unix system starts up, or when disks are considered suspi­
cious, programs are run to check the disks' consistency. We will discuss 
two of these programs, called i-check and d-check. The first checks the 
consistency of the flat G-node) file system and the second checks the tree 
(directory) file system. Since each disk is self contained (there are no 
cross-disk links or multiple disk files), these programs can check one disk at 
a time. 

Among other things, i-check tests to see: Is each block on exactly one 
list? In more detail: Does the free list together with the block lists of allo­
cated i-nodes contain exactly the blocks in the file contents area, with no 
repeats? This check can be carried out efficiently using a bit vector initial­
ized to zero, where each bit represents a disk block. The free list and the 
i-node block lists are followed. Each time a block is encountered, its bit is 
inspected. If the bit is off, it is turned on. If the bit is already on, there is 
a serious problem because the block is on multiple lists. A block that is 
both on the free list and allocated to a file can be removed from the free list 
with no harm done. A block that is allocated to more than one i-node file 
represents a serious corruption of the file system; this problem has no gen­
eral, fool-proof cure. Once all lists have been followed, the bit vector is 
scanned for remaining zeros. Each zero represents a block that is not on a 
list. This problem is not so serious, because it can be cleared up by adding 
the block to the free list, on the presumption that it was a free block lost 
when the cache of free blocks was lost. 

The d-check program verifies that the directory structure is legitimate. 
Among other checks it asks the questions: 



FILE SYSTEM CONSISTENCY I87 

Do the directories form a tree? 

Does the link count of each file equal the number of directory links to it? 

These questions can be answered by a single traversal of the directory tree 
followed by sequentially reading the i-nodes. We use a zero-initialized vec­
tor of counters, one counter for each i-node. 

When the traversal encounters a reference to a file named dot dot 
( .. ), it verifies that this is a link to the father (or a self link in the case of 
the root). When dot (.) is encountered, this is checked to verify that it is a 
self reference. When the directory entry references a son directory, the 
corresponding counter is inspected. If it is zero, things are as they should 
be. If it is not zero, there is a problem, because we have previously found 
a father for this son directory. This inconsistency can be cleared up by 
deleting all but one father, but this has the risk of losing the legitimate path 
to the son directory. For all directory entries (including dot and dot dot) 
we increment the corresponding counter in our vector. 

Once the tree traversal is complete, we sequentially read the i-nodes 
from disk to verify that their link counts are equal to the corresponding 
counters in our vector. A match indicates consistency. If the vector's 
counter is non-zero and does not agree with the link count, we restore con­
sistency by setting the link count to vector's counter, with little danger of 
losing valuable information. But if the vector's counter is zero and the link 
count is non-zero, then apparently the i-node has gotten detached from the 
directory tree. We can restore consistency by freeing the i-node and its 
disk blocks, but this has the danger of destroying valuable files. We will 
not go into strategies for recovering these orphan files and directories. 

Anytime a file is lost or corrupted, the reliability of the system is 
degraded. Even though Unix provides software tools for patching up tan­
gled data structures on disk, these require a sophisticated system program­
mer to clean up the mess without losing valuable files. 

Much of the danger of file corruption could be avoided by doing away 
with software caches and immediately updating the disks whenever a 
change occurs. Unfortunately, the loss of performance implied by this stra­
tegy is prohibitive. A more sophisticated strategy is to allow caching but to 
impose an ordering on the writing of blocks to disk. This ordering should 
imply that files are never lost or corrupted. Due to caching, after a crash, a 
particular file may not be completely up to date, but should be in a state 
such as the file had a few seconds before the failure. (Even this degree of 
reliability is not sufficient for certain applications such as data bases; to 
improve reliability in these applications, Unix could provide new system 
calls to specify the order of file updates.) Newer versions of Unix such as 



I88 IMPLEMENTATION OF THE UNIX NUCLEUS 

Berkeley Unix, attempt to minimize file damage by taking care in the order 
of disk writes. 

CONCURRENCY IN THE UNIX NUCLEUS 

The Unix nucleus must handle two sources of concurrency: the peri­
pheral devices that run in parallel with the CPU and the user processes that 
share the system's resources. The devices interrupt the CPU at unpredict­
able times. The user processes are logically concurrent, meaning that they 
appear to execute in parallel. Since there is only one CPU, this appearance 
is supported by time slicing the CPU to share it among the user processes. 

In Chapter 2 we suggested two extremes of handling concurrency in 
operating systems. In the first, a monolithic monitor is used that disables 
all interrupts while the operating system is executing. Interrupts are 
enabled only when user processes are executing. The result is that con­
currency is easy to manage, because the operating system is only entered at 
well defined times, namely, when a user process is executing. Unfor­
tunately, this arrangement is not workable for a system of the size of Unix 
because interrupts would be disabled too long, causing poor response and 
poor resource utilization. 

The second extreme is to have a small synchronization kernel, as is 
used by CE, and to disable interrupts only in this kernel. Essentially, this 
is the approach taken by the Tunis kernel, described in the following 
chapter. The Tunis approach uses CE processes and the DoIO operation to 
handle devices. Tunis uses CE processes called envelopes to track the exe­
cution of user processes and to carry out their requests. 

The situation of the Unix nucleus falls somewhere between these 
extremes. There are no true processes in its nucleus (although they are 
called "processes" in Unix terminology). Rather, there are second-class 
processes, which are actually coroutines. When a user process executes a 
trap, it enters the nucleus and. becomes a coroutine. What distinguishes 
coroutines from true processes is the fact that a coroutine never gives up the 
CPU except by an explicit action on its part. So coroutines do not execute 
logically in parallel. Since Unix supports only one CPU, an executing 
coroutine knows that no other activity can interfere with it until it gives up 
the CPU. Unfortunately, this is not really true, because an interrupt can 
pre-empt the CPU. For the minute, we will ignore the unpleasant reality of 
interrupts. 

There are operations that coroutines execute to put themselves to 
sleep and to wake up other coroutines. These are: 



HANDLING INTERRUPTS 189 

sleep(E): Wait for event E. The coroutine remains inactive until the event 
is signaled (by a wakeup) by another coroutine. Following the sig­
nal, the highest priority ready coroutine begins to execute. 

wakeup (E): All coroutines waiting for event E are moved to the list of 
ready processes. If no processes are waiting for E, the wakeup has 
no effect. 

The explicit transfer of control by coroutines, as is done by sleep, is some­
times called a resume. 

Each event E is simply an integer value, for example, we could have 
sleep (14). When a coroutine executes sleep (E), an entry is made in the 
nucleus's event list. This entry records the identity of the coroutine and the 
value of E. When a coroutine executes wakeup (E), the event list is 
searched for all occurrences of value E; each such entry is removed and the 
corresponding coroutines are transferred to the priority-ordered list of ready 
coroutines. When a coroutine resumes execution it does not in general 
know if the status it was waiting for holds. The problem is that the wakeup 
may activate several coroutines, and besides, higher priority processes may 
have previously executed. A common pattern of waiting is the following: 

loop 
exit when status is as required 
sleep(E) 

end loop 

Jn CE, this looping pattern is not necessary, because signaling a condi­
tion immediately wakes up exactly one of the waiting processes; so the 
waked up process is assured that the awaited status holds. While Unix's 
sleep and wakeup operations allow coroutines to interact, they do not pro­
vide a mechanism for handling interrupts, so we now consider this problem. 

HANDLING INTERRUPTS 

In the Unix nucleus, each source of interrupt has an interrupt handling 
procedure that is called when the interrupt occurs. By convention, when 
this procedure is activated, further interrupts from the same source are dis­
abled. This allows the procedure to handle the interrupt and update associ­
ated data structures without fear of interference from another related inter­
rupt. Essentially, this disabling provides the procedure with a critical sec­
tion. 

Since interrupts directly or indirectly serve the needs of user 
processes, the associated data structures are shared with user processes' 



I90 IMPLEMENTATION OF THE UNIX NUCLEUS 

coroutines. A coroutine that accesses these data structures must be wary of 
race conditions due to unpredictable invocation of interrupt handling pro­
cedures. This problem is solved by providing operations so coroutines can 
explicitly disable and enable selected interrupts. Essentially these opera­
tions implement critical sections to guard against unwanted concurrency. 

The interaction of coroutines and interrupt handling procedures can 
become complex. For example, consider the following situation: 

A coroutine representing a user process needs a character from a dev­
ice. It inspects the data structure that holds such characters and con­
cludes that a character is not available. Then it sleeps until it is 
waked up by an interrupt handling procedure. 

The question is, exactly when should the coroutine disable interrupts. If 
the data structure is non-trivial, its inspection requires a critical section and 
hence interrupt disabling. If the interrupts are enabled after the inspection 
and before the sleep, then this allows the interrupt handling procedure to 
receive the character and do the wakeup before the sleep occurs. This 
would be unfortunate because the coroutine would then go to sleep, having 
missed the character. 

Apparently, the coroutine must execute the sleep with the interrupt 
disabled, with the assumption that the sleep enables the interrupt. The 
waiting loop must be bracketed by operations that disable and enable the 
interrupt. We end up with a structure that looks a little like 
mutexbegin/end as discussed in Chapter 2. However, now we have a sleep 
in the middle that is a bit like a monitor wait in that it allows other activi­
ties to enter critical sections. This rather complex arrangement would be 
easier to understand and get correct by incorporating it in to a programming 
language. It has been a goal of languages like CE to formalize these 
arrangements into reliable programming language constructs. 

The strategy of carefully turning on and off interrupts has been used 
in many programs such as operating systems that manage peripheral dev­
ices. Certainly the strategy can be made to work, and it does work in the 
Unix nucleus. However, it requires a great deal of programmer discipline 
and sophistication. It is an error-prone strategy that leads to programs that 
are difficult to understand and maintain. The trouble is that it is not easy 
to see from the structure of the program what is happening. 

By comparison, when using language constructs like those provided by 
CE, the program structure makes obvious the units of concurrency (CE 
processes) and the critical sections (monitors). Besides greatly simplifying 
the structure of the nucleus, this organization has other advantages. One is 
that concurrency and critical sections are expressed in a machine 



CHAPTER 8 SUMMARY 191 

independent manner. As a result, concurrent system software can be easily 
tested in a machine independent manner using a simulation kernel. This 
machine independence implies that the software will be more easily portable 
to other computer architectures. Another advantage is that with logically 
concurrent processes (instead of coroutines) it is easy to support multiple 
CPUs. The reason is that process-based software already presumes that 
each process has a virtual CPU. Adding more physical CPUs just increases 
the speed of processes without affecting the correctness of the system. By 
contrast, a program such as the Unix nucleus that explicitly disables and 
enables interrupts is difficult to adapt to a multiple-CPU environment. 

CHAPTER 8 SUMMARY 

This chapter has concentrated on the major data structures that are 
used in implementing the Unix nucleus. These structures are: 

Layout of disk data. Each (logical) disk has five areas: boot block, super 
block, i-node area, file contents area and swap area. 

Free list. This locates the unallocated blocks in the file contents area. Its 
header lies in the super block. 

I-nodes. These are fixed length descriptors for flat files. The fields in an i­
node include: user and group numbers, protection bits, times of file 
activity, file code (ordinary, directory or special), file size, block list 
and link count. 

Block list. For each i-node, this locates the blocks containing the file's 
data. 

Directories. Each directory is a "flat file". A directory consists of 16-byte 
entries that map file names to i-node numbers. 

Descriptors for user processes. Each user process has a permanently 
memory resident "process descriptor" and a swappable "user descrip­
tor". 

Channel table. This is located in the process's user descriptor. Each entry 
represents a potential attachment to a file. An active entry points 
to an open file table entry. 

Open file table. An "open" system call creates an entry in this table. The 
entry contains the current "offset" into the file and a pointer to the 
corresponding entry of the memory resident i-node table. 

Memory resident i-node table. Each active file has its disk-resident i-node 
copied into an entry in this table. This entry is written back onto 
disk when the file is no longer active. 



192 IMPLEMENTATION OF THE UNIX NUCLEUS 

Configuration table. Locates procedures (open, read, write, close and ioctl) 
that support 1/0 for each special file. The major device number, 
stored in the special file's i-node, is used as an index into this table. 

Mount table. This maps each "mounted i-node" to a corresponding device 
(usually a disk). The directory tree on the device effectively 
replaces the mounted i-node. 

Event table. Within the Unix nucleus, concurrency is handled by corou­
tines. These coroutines can wait (sleep) by waiting on "events" that 
are recorded as entries in this table. 

CHAPTER 8 BIBLIOGRAPHY 

The data structures of the Unix nucleus are described in articles by 
Ritchie and Thompson [1974,1978]. Analogous data structures for other 
operating systems are discussed in books such as those by Shaw [1974] and 
Lister [1975]. 

Lister, A.M. Fundamentals of operating systems. MacMillan Press, 1975. 

Ritchie, D.M. and Thompson, K. The Unix time-sharing system. Comm. 
ACM 17,7 (July 1974), 365-375; revised version in Bell System 
Technical Journal 56,6 part 2 (July-Aug. 1978). 

Shaw, A.C. The logical design of operating systems. Prentice-Hall, 1974. 

Thompson, K. Unix implementation. Bell System Technical Journal 56,6 
part 2 (July-Aug. 1978). pp.1931-1946. 

CHAPTER 8 EXERCISES 

1. Many operating system try to allocate files contiguously on disk to cut 
down on time for disk head movement. Invent algorithms and data struc­
tures that attempt to keep Unix files somewhat contiguous. 

2. Describe difficulties that would be encountered if i-check and d-check 
were run on a disk that is actively being updated. Give guidelines for 
designing a disk consistency algorithm that allows concurrent updating. 
(This is not trivial!) 

3. Describe advantages and disadvantages of (1) multiple-disk files and (2) 
cross-disk file links. 

4. It has been proposed that the first part of a Unix file should be adjacent 
to its i-node. What are the advantages of this scheme? 

5. The link count in an i-node is redundant because it simply records the 
existing number of links to the file. Since this count is redundant, why 



CHAPTER 8 EXERCISES 193 

does it appear in the i-node? 

6. What are the reasons that all openings of a particular file share the same 
memory resident i-node, rather than making a new copy? 

7. Attempt to design a method of adapting Unix's scheme of coroutines to 
support a multiple-CPU, shared memory version of Unix. What are the 
main problems with making this adaption? 





Chapter 9 

TUNIS: 
A UNIX-COMPATIBLE 
NUCLEUS 

In the preceding chapters we presented Unix without explaining how 
its nucleus is implemented. We discussed Unix's command language, its 
hierarchic file system, its method of user process manipulation and various 
system calls implemented by its nucleus. In this chapter we present the 
internal structure of a Unix-compatible nucleus: Tunis. 

The Unix nucleus (or as it is called elsewhere, the Unix kernel) was 
originally written in assembly language and then re-implemented in the C 
language. It was first used widely on the PDP-11. The fact that it is writ­
ten in C has allowed it to be ported to new architectures including the 
Interdata 832, the VAX and the Z8000. The function of the Unix nucleus 
is defined primarily by the system calls it supports for user processes and by 
the disk resident data structures it manipulates. The Tunis nucleus sup­
ports the same system calls and uses the same disk resident data structures 
so we say it is Unix-compatible at those two interfaces. However, Tunis is 
written in Concurrent Euclid rather than C, and its internal structure is 
completely different from that of the original Unix nucleus. 

WHY TUNIS? 

Tunis (Toronto UNiversity System) evolved out of a project in a gra­
duate course on operating systems at the University of Toronto. The first 
course project, in Fall 1979, produced a design and a preliminary imple­
mentation written in the Toronto Euclid language. In Fall 1980, a more 
ambitious version of Tunis was designed, this time with the goal of being 



196 TUNIS: A UNIX-COMPATIBLE NUCLEUS 

compatible with Unix. Much of the system was implemented, and inevit­
ably it was discovered that some internal interfaces were ill-conceived. 
Meantime, this effort lead to the design of the Concurrent Euclid language, 
which is essentially the full Euclid language as trimmed down to decrease 
complexity and ease implementation, and beefed up to handle real systems 
programming problems such as those encountered in the Tunis work. 
Patrick Cardozo and Mark Mendell designed and implemented major parts 
of Tunis as a part of their M.Sc. research. Tunis has continued to provide 
the focus of graduate research; for example, in Fall 1981, a course project 
investigated running Tunis on the VAX using paging. This type of work 
continues. 

One of the purposes of the Tunis project has been to develop high 
level software structuring techniques. These techniques include: tightly dis­
ciplined programming constructs as in Pascal-like strong type checking; con­
currency as in CE's processes and monitors; and enforced modularity as 
provided by CE's modules. 

TENETS OF SOFTWARE ENGINEEfHNG 

Designing a program such as the Tunis nucleus is not easy. The trad­
itional challenges to the software engineer are present, including these 
questions: 

How do we divide a large program so that it can be developed in 
parallel by more than one person? (The development question) 

How can we make the program efficient enough for its purposes? 
(The performance ques!tion) 

How can we keep the program understandable so that it is easy to 
maintain? (The maintenance question) 

How can we make the program portable so that it can be used on a 
new computer architecture? (The portability question) 

These issues are important to many large programs, but are particularly 
challenging in the case of an operating system nucleus because performance 
is critical and because so much concurrency is present. 

The traditional tools used to design software include the following. 
We attempt to divide the program into "good" modules, where a module is 
considered good when its specification can be simply stated, independent of 
its implementation. Perhaps the best way to discover good modularity is by 
functional decomposition, which means dividing the program into parts based 
on the various functions the program is to perform. For example, the part 



TENETS OF SOFTWARE ENGINEERING 197 

of Tunis that implements file updating should be in a separate module from 
the part that implements process forking. 

From module to module, we strive for limited visibility, so each 
module knows as little as possible about other modules. In CE, this means 
we try to shorten import/export lists as well as limiting the complexity of 
imported/exported items. This is called information hiding and means that 
the interfaces between the different parts of a program are kept simple. 
Sometimes we are faced with a trade-off between narrower interfaces and 
better performance. This trade-off occurs when access to more information 
allows more effective scheduling/optimization. This trade-off decision is 
quite difficult because in a system like Tunis, both modularity and perfor­
mance are essential. 

Within an implementation we strive for textual isolation of design deci­
sions. For example, in Tunis the scheduling algorithm that allocates CPU 
time among processes is located completely within the kernel. If we make a 
new decision to schedule the processes by a different algorithm, we know 
that the kernel program is the only text we need to modify. 

We should design a program such as an operating system nucleus as 
layers, much as Unix consists of layers. In Unix, the interactive user deals 
only with the outermost software layer; the interface to this layer is defined 
by shell commands, editor commands and other terminal oriented interac­
tions. This outermost software layer consists of user processes. These 
processes access the next layer of Unix, which is the nucleus. The Tunis 
nucleus is implemented as a number of layers, which are implemented as 
CE modules. 

A layered system, such as the T.H.E. operating system or the Tunis 
nucleus, can be thought of as levels of abstraction. This means that each 
new layer, from the inside out, implements new operations that can be used 
by successive layers. For example, the nucleus provides operations to 
create, read, write and destroy files; given the nucleus layers, we can reason 
in terms of the "file" abstraction. Without the nucleus we would have to 
reason in terms of lower level abstractions such as blocks of bytes on disk 
packs. When we design each new layer, we can treat the operations pro­
vided by the lower levels as instructions of an abstract machine. The new 
level is not concerned with how this abstract machine is implemented, but 
rather only with what it does. 

The Tunis nucleus must manage the concurrency of asynchronous 
devices and user processes. The software structuring technique used inside 
the Tunis nucleus to control this concurrency is the CE process. These CE 
processes inside the nucleus are called system processes. Since Tunis is writ­
ten in CE, the obvious way to handle concurrency is to use one process for 



198 TUNIS: A UNIX-COMPATIBLE NUCLEUS 

each unit of asynchronism. For example, each terminal keyboard operates 
asynchronously, so each keyboard is controlled by a CE process. 

Thes~ basic concepts of software engineering, including information 
hiding, levels of abstraction, and handling concurrency by processes, were 
used to guide the design of Tunis. This can be seen in the structure of 
Tunis; it consists of layers of modules, each optionally containirtg processes, 
all based on a kernel that supports CE concurrency features. 

THE LAYER STRUCTURE OF TUNIS 

The Tunis nucleus consists of a CE program supported by a kernel 
written mostly in assembly language. This CE program consists of layers 
that are CE modules. It is compiled in parts, module by module. The com­
piled modul~s are linked with the kernel to make an executable nucleus. 

We will present a somewhat idealized version of Tunis's layer struc­
ture. Its major layers starting from the outside are: 

User manager. Interprets systems calls from user processes and makes calls 
to lower levels to carry out the user's requests. 

File manager. Implements the file system, using devices supported by a 
lower level. 

Memory manager. Shares the available physical memory among 11ser 
processes to support their address spaces (virtual memories) and 
uses disk support provided by the next lower level to store inactive 
user processes' address spaces. 

Device manager. Contains device drivers for each peripheral device 
attached to the system. 

Utility layer. Supports common facilities needed by the above layers, in 
particular; 

Clock manager: allows delaying and reading the time. 
Physical Memory manager: supports transfers of 

strings of bytes within physical memory. 
Panic manager: shuts down system following disasters. 

Kernel. Handle!! interrupts and supports concurrency as implied by CE 
language constructs. 



THE MAJOR LAYERS 199 

We will discuss these layers starting with the bottom. 

The kernel is relatively small (between 2K and 4K bytes) and is 
inherently machine dependent. Its speed is critical to the efficient execution 
of the system. For these reasons it is written mostly in assembly language. 
The techniques for constructing a kernel are given in the last chapter of this 
book. We can think of the kernel as extending the existing hardware to 
support the concurrency constructs of CE. It is as if we are building a 
better version of the hardware with more convenient handling of 
process/process and process/device interactions. Once we have imple­
mented the kernel, we can ignore it and reason more conveniently in terms 
of CE's concurrency constructs. 

The utility layer of Tunis can be thought of as a subroutine package 
that supports operations needed by upper layers. Its Clock manager is rela­
tively simple, allowing system processes to read or re-set the clock and to 
wait a given number of seconds. Most entries to the Panic manager simply 
record the nature of the disaster on the system console and halt the system. 
The Tunis nucleus executes in a permanently memory resident address 
space. Depending on the underlying hardware, addresses in this space may 
or may not be the same as physical addresses. The Physical Memory 
manager implements transfers between this system address space and physi­
cal memory, and from physical memory to physical memory. 

THE MAJOR LAYERS 

Ignoring the kernel and the utility layer, Tunis has the following 
structure. 



200 TUNIS: A UNIX-COMPATIBLE NUCLEUS 

Assassin 
User Mgr 

File Mgr 

~--~ 

Family 
Mgr 

.----'-----. 

Mem Mgr 

Device 
Mgr 

Tree Mgr 

Cache Mgr 

Major Layers of Tunis 

••• 

RunUser, 
Manipulate 
Spaces 



THE ABSTRACTION OF ADDRESS SPACES 201 

As can be seen in the diagram, the major layers have internal structure. 
Inside the Device manager layer there is a Router that accepts all 1/0 
requests and passes them to the appropriate submanager, such as the Disk 
manager. Within these submanagers 1/0 is performed via a 
Begin/Wait/EndIO as described in Chapter 4. 

Inside the Memory manager is a Lock manager that forces all or part 
of a user's address space into memory. This is necessary, for example, 
when a DMA (direct memory access) device does 1/0 directly to/from a 
user process. 

Inside the File manager are three submanagers. The lowest one is the 
Cache manager, which avoids disk access when a recently accessed disk 
block ·is still available in its pool of buffers. Next is the Flat File manager, 
which uses i-nodes to implement a non-hierarchic file system. Next is the 
Tree File manager, which uses flat files to implement Unix's hierarchic file 
system. The Tree File manager determines if a request is to manipulate an 
ordinary file or a special file. If the file is ordinary, the request is passed to 
the Flat File manager. If the file is special, then its request is shunted 
around the Flat File manager. It is passed to the Memory manager, which 
locks down user address space as needed and subsequently passes the 
request on to the Device manager. 

The highest layer is the User manager. It contains a number of 
envelope processes. Each envelope acts as a "guardian angel" for a user 
process. The envelope process waits for a user process to be "born" via a 
fork. When this happens, the envelope takes control and ushers the user 
process through its lifetime, handling any system calls it makes to the 
nucleus. When the user process dies, the envelope handles its legacy 
including closing any files that it had open and informing the Memory 
manager that the address space is defunct. If the user process's father is 
waiting for the death, the son's envelope wakes up the father's envelope. 
Once this clean up is finished, the envelope waits for a new user process to 
be born. It is the Family manager inside the User manager that handles 
relationships among processes as implied by the fork and wait system calls. 

Most of the Tunis nucleus is machine independent. Its largest and 
most complex layer, the File manager, should not require any changes 
when porting the nucleus to a new machine. 



202 TUNIS: A UNIX-COMPATIBLE NUCLEUS 

THE ABSTRACTION OF ADDRESS SPACES 

One of the key abstractions implemented by Tunis is that of an 
address space for each user process. This abstraction is implemented by the 
Memory manager using physical memory and disk space. Above the 
Memory manager the User and File managers assume that address spaces 
exist. They pass dow.n each 1/0 request in terms of an address descriptor, 
consisting of a pair: (space number, virtual address). The User and File 
managers are not concerned with whether the users are swapped, paged or 
permanently memory resident. These concerns are isolated in the Memory 
manager. Below the Memory manager, the concepts of user address spaces 
and of user processes have disappeared. The individual device drivers deal 
only in physical memory addresses. As a result, a device driver is relatively 
easy to implement, because it does not depend on mechanisms such as 
swapping and paging. Nor does a device driver depend on details of the 
Unix file system. In brief, a device driver is neutral to its intended usage, 
and once written, could be used for other purposes besides supporting 
Tunis. 

THE ASSASSIN PROCESS 

When an interactive user of Unix types an "interrupt character" or a 
"quit character", the user processes associated with the terminal are notified, 
as if another process had executed a kill system call. The Teletype manager 
inside the Device manager layer detects these characters. It has no way to 
kill user processes because the concept of a user process does not extst- at 
this level. The Teletype manager solves this problem by providing an entry 
called GetVictim. Whenever this is called, the Teletype manager returns 
the identity of a terminal that has received one of these characters. 

This entry is called only from a process named the Assassin, which is 
inside the User manager. When the Assassin receives the terminal's iden­
tity, it sets a flag to notify each envelope whose user process is associated 
with the terminal. It is the envelope's responsibility to regularly check to 
see if his user process has been notified (assassinated). If so, the envelope 
takes the appropriate action, which often means destroying the user process. 

Some system calls, such as a read from an inactive terminal, can block 
a user process for hours. When a process is killed during one of these 
long-lasting calls, it is not acceptable for the death to wait for the comple­
tion of the 1/0. Tunis handles this difficulty by putting time limits on 
potentially long lasting 1/0 calls. When one of these calls does a time out, 
control is returned to the envelope in the User manager. This allows a test 
to see if the user process was assassinated. If not, the 1/0 request is re-



AN EXAMPLE MODULE 203 

issued. If so, the envelope completes the assassination of the user process. 

AN EXAMPLE MODULE 

The implementation of Tunis will now be explored in more detail by 
considering one module, the Clock manager, in some depth. This module 
is chosen because it has an obvious function and a small implementation. 
A slightly simplified version of it has the following interface, as specified in 
CE. Its interface, specified by its CE stub, serves as a replacement for the 
actual Clock manager and allows separate compilation. It also contains 
comments that specify the actions of its exported procedures. 

var Clock: 
external module 

exports(GetTime, SetTime, Delay) 

procedure GetTime(var t: Longlnt) = external 
{Reads clock. Sets t to time in seconds} 

procedure SetTime(t: Longlnt) = external 
{Changes clock. Set time to bet seconds} 

procedure Delay(t: Longlnt) = external 
{Calling process is blocked fort seconds} 

end {Clock} module 

The only externally visible parts of the Clock manager are its exported 
entry points GetTime, SetTime and Delay. An example of using the Clock 
manager is: 

Clock.Delay(3) 

This puts the caller to sleep for three seconds. 

The actual implementation of the Clock manager has this form: 

var Clock: 
module 

exports(GetTime, SetTime, Delay) 

{1} var ClockDolO: {Machine dependent part} 
module 

exports (W aitOneSecond) 
procedure WaitOneSecond = 

... body of WaitOneSecond ... 



204 TUNIS: A UNIX-COMPATIBLE NUCLEUS 

end module 

{2} var ClackManitar: {Encapsulates shared data} 
monitor 

exports(GetTime, SetTime, Delay, Tick) 

var now: Langlnt : = 0 {Value of clack} 
... other declarations ... 

procedure GetTime (var t: Langlnt) = 
imparts (now) 
begin 

t :=now 
end SetTime 

procedure SetTime(t: Langlnt) 
... body of SetTime ... 

procedure DeLay(t: Langlnt) = 
... body of DeLay, 

including wait statements ... 

procedure Tick = {Called by Ticker process} 
... body far Tick, which updates "now", and 

wakes up delayers ... 

end monitor 

{3} {Entries ta Clack module} 
procedure GetTime(var t: Langlnt) 

imparts(var ClackManitar) 
begin 

ClackManitar .GetTime (t) 
end GetTime 

... analogous procedures SetTime and Delay ... 

{4} {A process internal ta the Clack manager} 
process Ticker 

imparts(var ClackManitar, var ClackDalO) 
begin 

loop 



PROGRAMMING CONVENTIONS 205 

ClockDoIO.WaitOneSecond 
ClockMoni tor. Tick 

end loop 
end Ticker 

end {Clock} module 

The Clock module contains four major parts, as numbered in the 
module's left margin. Many Tunis modules have this general form; the 
parts are: 

1. A DoIO module. This contains machine dependencies and activates a 
particular device. In the case of the Clock manager, the device is the 
hardware clock. When Tunis is ported to a new machine the various DoIO 
modules in general must be re-written, because the devices of the new 
machine will require different logic to drive them. Each DoIO module 
should be textually isolated from its surroundings by placing its implemen­
tation in an include file; when porting Tunis, these include files are re­
implemented. 

2. A monitor. This contains data shared among processes. In the case of 
the Clock manager this data is the variable "now" which maintains the value 
of the clock. A monitor contains "conditions" to allow processes to wait for 
certain events, such as completion of an interval of sleep. 

3. Module entries. These are the procedures and functions that are 
exported from the module and represent the interface to the Manager. In 
the case of the Clock manager, these entries simply route requests directly 
to the Clock monitor, which carries out the requests. 

4. An internal process. There are typically one or more processes that call 
the monitor occasionally. These processes may be device drivers, as in the 
case of the Ticker process in the Clock Manager. In some cases, an inter­
nal process is an "ager"; for example the Cache manager has a process that 
repeatedly sleeps via "Clock.Delay" and then enters its monitor to consider 
re-allocation of the buffers in its pool. In other cases an internal process 
may be a courier or slave process; for example, the Memory manager may 
have a Swapper process that repeatedly enters its monitor to get a request 
for swapping and calls the Disk manager to perform the swap. 



206 TUNIS: A UNIX-COMPATIBLE NUCLEUS 

PROGRAlllMINO CONVENTIONS 

The programming of the modules of Tunis is highly disciplined in that 
they are written in CE and they conform to the following conventions. 

1. There are no interrupts. Interrupts are hidden in the kernel. 

2. All 1/0 is synchronous with its invoking process. This means that a sys­
tem process that activates a device waits until the device completes its 
requested action. Of course other processes are free to continue during the 
1/0. 

3. System processes are never killed. All system processes in Tunis are 
created at system start-up and continue to exist until Tunis is shut down. 
The concept of dynamic creation and deletion of user processes is imple­
mented by allocating and de-allocating envelope processes within the Fam­
ily rJanager. Killing a user process causes its envelope to wait for a fork. 

4. Unpredicted errors and exceptions in Tunis are fatal. However, predicted 
errors are handled by programming in CE. (Note that attempting to handle 
unpredicted error conditions in basic system software is at best extreinely 
risky.) 

These conventions make the programming of Tunis relatively straight­
fotward. They disailow practices that make many systems difficult to under­
stand and maintain. 

ENTRY POINTS OF THE tUNIS KERNEL 

In an ideal world the hardware processor directly supports the func­
tions of Tunis's kernel. But in an actua1 implementation, the kernel is pro­
grammed mostly in assembler. The kernel provides the following func­
tions: 

1. Process synchronization. The CE compiler automatically generates calls 
to kernel entries for each entry to or exit from a monitor, for each signal 
and wait statement, and for the empty function that tests if a condition 
queue is empty. The compiler also generates calls to initialize descriptors 
for monitors and for condition queues. 

2. 1/0 control. The kernel implements the BeginIO, WaitIO and EndIO 
routines, which support synchronous device operations. As explained in 
Chapter 4 in the section "Basic Device Management", a system process that 
wants to control a device first executes BeginIO to prevent premature inter­
rupts from the device. Next it starts up the device and uses WaitIO to 
block itself until the device's irlterrupt occurs. During this waiting, other 
processes execute. When the ihterrupt occurs, the waiting process is 
dispatched with interrupts disabled. The process does any required post-



THE ENVELOPE AS GUARDIAN ANGEL 207 

interrupt clean up and re-enables interrupts by executing EndIO. 

3. User process control. The kernel supports an operation called RunUser 
that transfers control from an envelope process to its corresponding user 
process. This transfer implies a change in "protection domains", i.e., reset­
ting the hardware protection registers. The user process continues to exe­
cute until it returns to the envelope via a trap. This return implies resetting 
the protection status to that of Tunis. There is a "time slice" parameter to 
RunUser that gives the maximum time the user process is to execute 
before returning to its envelope. 

THE ENVELOPE AS GUARDIAN ANGEL 

Each envelope process in the User manager successively ushers user 
processes through their lives from birth to death. When an envelope is in 
charge of a user process, it repeatedly executes the user process by calling 
the RunUser entry in the Memory manager. 

The Memory manager sees that the user's address space is available to 
be executed; this may require swapping it into memory. Once this has been 
done, the Memory manager calls the RunUser entry in the kernel. This 
call changes the hardware memory mapping registers to locate the user's 
address space, loads the user's registers and status and executes the user 
process. When the user process traps, or when its time slice expires, the 
call to the kernel returns to the Memory manager. Eventually the Memory 
manager returns to the calling envelope. The envelope is given access to 
the trap number and parameters to the system call. In most systems, these 
parameters are passed as values in the user's general registers, which the 
envelope accesses. 

Eventually, either the user process terminates itself by the exit system 
call or it is terminated by a "kill". When termination occurs, the envelope 
informs the Family manager via the procedure ReleaseUser. Here is a 
simplified version of the re-entrant procedure concurrently executed by all 
the envelope processes. 

loop {For each user process to run, i.e., forever} 
Family.GetNewUser {Birth of user process} 

loop {For each user process's request} 

Memory.RunUser {User process runs} 
case trapNumber of 

getUid = > ... return user's Id .. end getUid 
kill = > ... set flag to kill process ... end kill 



208 TUNIS: A UNIX-COMPATIBLE NUCLEUS 

hiccup = > {End of time slice} 
if user was killed then 

exit {From request loop} 
end if 
end hiccup 

processExit = > {Suicide} 
exit {From request loop} 
end processExit 

fork=> 
Family.Fork {Wake up another envelope} 
end fork 

... other requests ... 
end case 

end loop 

Family.ReleaseUser {Death of user process} 
end loop 

From the envelope's viewpoint, the user process is a subroutine that 
is invoked in order to get a new request. From the user process's 
viewpoint, the envelope is a subroutine that carries out requests given in 
the form of system calls (traps). In reality, the two behave as a coroutine 
passing control back and forth as they switch between the system domain 
(Tunis) and the user domain (the user address space). 

CHAPTER 9 SUMMARY 

This chapter has overviewed the organization of Tunis. It is intended 
to be a high performance operating system nucleus that is compatible with 
Version 7 of Unix. It is intended to be portable and to have a clean inter­
nal structure. 

Tunis has a layer structure, where the layers are as follows: 

User manager. Contains the Envelope processes, which interpret user 
processes' system calls. The Envelopes call lower levels of the 
nucleus to carry out system calls. The User manager contains the 
Family Manager, which handles interactions among user processes. 

File manager. Implements the Unix file system in a machine independent 
way. The File manager contains the Tree manager (supports the 
directory hierarchy), the Flat manager (supports flat files using i­
nodes) and the Cache manager (contains buffers to minimize physi­
cal disk 1/0). The Memory manager is called to access user 



CHAPTER 9 EXERCISES 209 

processes address spaces. 

Memory manager. Implements the concept of "address spaces" for user 
processes; locks down user memory as required for purposes such 
as OMA (direct memory access) from peripheral devices. The 
Memory manager does swapping for small systems such as the 
PDP-11 and paging for larger systems such as the VAX. The 
Memory manager translates virtual addresses within address spaces 
into physical addresses. 

Device manager. Receives all requests for physical 1/0 and routes these 
requests to internal managers for disks, terminals, tapes, etc. These 
requests are in terms of physical addresses (not virtual addresses) 
because the concept of an address space does not exist at this level 
in Tunis. 

Utility layers. Contains support software for higher layers. This software 
consists of the Clock manager, the Physical Memory manager and 
the Panic manager. 

Kernel. Supports (1) process synchronization as implied by language 
features of CE, (2) 1/0 control via the Begin/Wait/EndIO opera­
tions, and (3) user process control via the RunUser operation. 

The layers of Tunis are generally implemented as modules that con­
tain monitors, sub-modules and processes. Machine dependencies are tex­
tually isolated; for example, a DoIO module contains the machine depen­
dencies of each device manager. Processes (envelopes, agers, tickers, etc.) 
are used to manage concurrency. 

CHAPTER 9 BIBLIOGRAPHY 

Cardozo's thesis records work on the design and implementation of an 
earlier version of Tunis. Mendell's thesis records later work, with an 
emphasis on portability. Davis's thesis describes techniques for improving 
the reliability of Unix-like file systems. 

Cardozo, P. Tunis-2: A Unix-like portable operating system, M.Sc. thesis, 
Computer Science Department, University of Toronto, 1980. 

Davis, I.J. Towards reliable file systems. M.Sc. thesis, Department of 
Computer Science, University of Toronto, 1982. 

Mendell, M.P. Toward portable operating systems. M.Sc. thesis, Depart­
ment of Computer Science, University of Toronto, expected 1982. 



210 TUNIS: A UNIX-COMPATIBLE NUCLEUS 

CHAPTER 9 EXERCISES 

1. In the Tunis nucleus, a system process is never killed. Describe the 
difficulties involved in killing system processes (e.g., when they are updat­
ing critical data). 

2. Why does Tunis use an Assassin process (rather than having the termi­
nal manager directly call the Family manager to kill user processes)? 

3. Write a Clock manager in CE that meets the specification given in this 
chapter. Test it using a WaitOneSecond procedure whose body is the state­
ment: Busy (1). 

4. Write a simple Cache manager in CE. Its only entry point is: 

procedure Transfer(request: IORequest) = ... 

IORequest is a record with fields specifying: 

Operation (read or write) 
Disk number 
Block number 
Substring (length and displacement from start of block) 
Address descriptor (space number and virtual address). 

Each request to the Cache manager is for the transfer of a substring of a 
256-byte block. The Cache manager contains an array of buffers holding 
recently accessed disk blocks. The Cache manager does disk 1/0 via the 
call Memory.Transfer. This passes an 1/0 request for a whole block down 
to the Memory manager. The Cache manager transfers a substring of a 
buffer to/from a user's address space via the call Memory.Move. 

5. Some operating systems swap or page major parts of themselves. Discuss 
strategies for doing this to parts of the Tunis nucleus. 

6. In Unix, tapes are (usually) considered to be "block devices" meaning 
that 1/0 is a block (256 bytes) at a time and that these blocks are buffered 
in a software cache. Discuss potential problems with this arrangement. 

7. In Tunis, the details of process scheduling are hidden in the kernel and 
are not accessible to the memory manager. Discuss the advantages and 
disadvantages of this information hiding. 

8. Consider the problem of printing out information about the internal state 
of the Unix or Tunis nucleus. There are two obvious ways to access the 
internal information. The first is to add new system calls that provide the 
information. The second is to read the nucleus's data using the sneak path 
provided by the special file that represents the nucleus's memory. (Unix 
uses this second strategy.) Gives the advantages of each of these two 
methods. 



CHAPTER 9 EXERCISES 211 

9. Some systems are structured by implementing each major layer as a pro­
cess (rather than as a module as is done in Tunis). Contrast this structur­
ing technique with the one used in Tunis. 

10. List the abstractions or abstract machine operations supported by each 
of the major layers of Tunis. 





Chapter 10 

IMPLEMENTING 
A KERNEL 

In previous chapters we have used processes and monitors without 
worrying about their implementation. We were content to treat them as 
well-defined abstractions, supported by the operating system, the language 
processor, or perhaps by some special hardware. This idea of an abstraction 
implemented by underlying software and hardware is one of the most 
powerful program structuring tools available, and is used constantly in 
software engineering. This concept has allowed us to concentrate on con­
currency algorithms and operating system structures without the confusion 
of low-level, machine-dependent mechanisms such as interrupts. 

But now we will confront the implementation problem, and take a 
close look at the "next lower level". Exactly how do we implement 
processes and concurrency constructs? The module (software or micropro­
gram or hardware) that supports processes is called a kernel, and this 
chapter explains how to build a kernel. We give the design of a simple ker­
nel for single CPU systems and show how this design can be implemented 
using production hardware (a PDP-11). We also give the design of a kernel 
for multiple CPU systems. 

STRUCTURE OF A KERNEL 

The main purpose of a kernel is to share CPU time among processes, 
so that each process has its own "virtual CPU". The kernel must also pro­
vide the process/process interface (to support interprocess communication) 
and the process/device interface (to support device management). 

As the following diagram shows, the kernel receives traps from 
processes, dispatches processes (gives them the CPU), receives interrupts 
from devices, and issues Start 1/0 commands to devices. The kernel also 
receives interrupts from a clock. 



214 IMPLEMENTING A KERNEL 

The kernel is the only module in the system that is aware of interrupts. All 
software activity outside the kernel is performed by processes, whose virtual 
CPUs are slowed down but otherwise unaffected by interrupts. In place of 
interrupts, the kernel provides special procedures that device manager 
processes use for controlling devices. 

The kernel uses process descriptors, one per process, to keep track of 
the status of the processes and to allocate CPU time among them. When a 
process has not been allocated a CPU, its descriptor contains all the infor­
mation needed to restart it. Typically, the descriptor will have fields for the 
process's instruction counter, general registers, floating point registers, 
addressing registers, and so on. The kernel dispatches a process (gives the 
process a CPU) by loading the CPU's registers from the process's descrip­
tor. The loading of the CPU's instruction counter causes transfer of control 
to the process and the process resumes execution. 

The kernel maintains a ready queue by linking together the descrip­
tors of those processes that would be executing, except that a CPU is not 
available. The kernel also keeps track of blocked processes; to support 
monitors, it maintains a queue of process descriptors for each condition. A 
kernel might support any of the concurrency schemes described in Chapter 
2, but in this chapter we will concentrate on the support of monitor features 
such as those in CE. 



PROCESS/DEVICE COMMUNICATION 215 

PROCESS/DEVICE COMMUNICATION 

The process/device communication that must be supported by the 
kernel can be either synchronous or asynchronous. The synchronous 
method is conceptually simpler and is based on the DoIO operation. A 
device manager directs its device to perform a particular operation by exe­
cuting 

DoIO(deviceNo, command, status) 

The status parameter is optional and can be used to indicate whether the 
operation was successful. The process executing DoIO is blocked until the 
requested 1/0 is complete. 

DoIO can be implemented as an entry in the kernel; this was done in 
the Concurrent Pascal system. After the kernel starts up the device, using 
the given command, the kernel can allocate the CPU to another process. 
When the device completes the operation, it notifies the kernel (by an 
interrupt) and the kernel can again dispatch the device manager. 

Chapter 4 showed how DoIO for each device can be implemented 
using three kernel operations: BeginIO, WaitIO and EndIO. The advantage 
of providing these three operations rather than supplying DoIO as a kernel 
entry is that new devices can be handled without modifying the kernel. 

The DoIO operation is conceptually simple because it makes the dev­
ice manager process synchronous with its device. The device is active only 
when the manager is blocked waiting for the DoIO operation. Conceptu­
ally, the manager and the device are one process, executing part of the time 
as a software process (the manager) and part of the time as a hardware pro­
cess (the device). 

The problem with DoIO is that the manager may need to continue 
execution while the 1/0 is in progress. For example, the manager may 
need to accept further user 1/0 requests and sort these requests by priority 
before the device completes. This problem can always be solved by split­
ting the manager into two processes. The first uses DoIO to control the 
device and the second receives users' requests and transfers them to the 
first. This is a good solution when using CE, because its processes are 
quite efficient. But if processes and interprocess communication are costly, 
an alternative to DoIO may be required. 

The alternative method allows the device and its manager process to 
be asynchronous. It uses the following commands. 

SignalDevice (deviceNo, command) 
WaitDevice (deviceN o, status) 



216 IMPLEMENT/NG A KERNEL 

Executed one immediately after the other, these two commands are 
equivalent to DoIO. When executed separately, they allow the manager 
process to continue execution during the 1/0. A variation of WaitDevice 
could allow the manager to test the device to see if the operation is com­
pleted, without being forced to wait for the completion. Signal/WaitDevice 
is somewhat more costly than DoIO to implement, because the kernel is 
forced to maintain a descriptor to record the status of each device. With 
DoIO, these descriptors can be avoided because the status of a completing 
device can be immediately transferred to the device's waiting manager. In 
this chapter we will ignore Signal/WaitDevice in favor of the simpler DoIO. 

QUEUE MANAGEMENT 

The kernel manages several queues of process descriptors, including 
the ready queue. To support monitors, there must also be a queue for each 
of the conditions. We will use the following notation for queue removal 
and insertion operations: 

Remove item from queue 
Insert item into queue 

For process queues, each item can be located by a pointer to its process 
descriptor. The queues in the kernel are typically priority ordered or FIFO 
(first-in-first-out). Either method of ordering can be accomplished by very 
simple programs, which we will now develop. Persons well acquainted with 
queuing algorithms may choose to skip the rest of this section. 

FIFO queues can be represented by pointers called first and last and a 
field named next in each item, as shown here. 

NEXT 

The dotted arrows show how a new item is inserted at the end of the 
queue. When the FIFO queue is empty, it has this form: 



QUEUE MANAGEMENT 217 

e------.? (undefined) 

~ 
-::- (null pointer) 

The test to see if the queue is empty is accomplished by comparing the 
value of first to the null pointer. Here are the programs for removing and 
inserting nodes in FIFO queues: 

Remove item from queue: 
item : = first 
first : = node (first) .next 

Insert item into queue: 
if first = null then {Is queue empty?} 

first : = item 
else 

node (last) .next : = item 
end if 
node(item).next :=null 
last:= item 

The operations for priority queues are only slightly more complicated, and 
we will now develop them. 

Priority queues can be represented by a pointer called first together 
with fields called next and prty in each item, as shown here: 

NEXT 

PRTY =5 
\ , 

\ I 
\ I 
I I 
I I 
I I 
I I 

I I 
I \ 

.L \ 

NEXT ~ 

PRTY=6 

! 

NEXT 

PRTY=9 

Inserted 
Item 

NEXT 

PRTY=OO 

Dummy 
Item 

We are· assuming that low-numbered priorities come first in the queue. 
The dotted arrows show how a new item with priority 6 would be inserted 
between items with priorities 5 and 9. The dummy item has a priority that 
is larger than any real item; its purpose is to simplify insertion, so there is 



218 IMPLEMENTING A KERNEL 

no special case for inserting at the tail (just before the dummy). The test 
to see if the queue is empty is accomplished by comparing the value of first 
to the pointer to the dummy item. Here are the programs for removing 
and inserting items. 

Remove item from queue: 
item : = first 
first : = node (first) .next 

Insert item into queue: 
if node(item).prty < node(first).prty then 

{Insert item first in queue} 
node (item) .next : = first 
first : = item 

else {Find place to insert item} 
previous : = first 
loop 

link : = node (previous) .next 
exit when node(item).prty < node(iink).prty 
previous : = link 

end loop 
node (previous) .next : = item 
node (item) .next : = link 

end if 

In a following section we describe how a kernel can use queues to support 
monitors. 

ENTRIES INTO THE KERNEL 

The kernel can be entered due to action on the part of a process, a 
device or a clock, as was shown in the diagram of the kernel's structure. 
These are the types of entries: 

Traps - calls from processes, requesting operations such as the wait state­
ment. 

Device interrupts - signaling that requested operations are complete. 

Clock interrupts - signaling the end of a process's time slice. 

To implement a kernel, we will need a program for each of these entries. 
Given that the kernel supports monitors, we also need entries for: 

EnterMonitor(m): The process is entering monitor m and exclusive access 



SIMPLIFYING ASSUMPTIONS 219 

to m must be guaranteed. 

ExitMonitor(m): The process is leaving monitor m, and another process 
may be allowed to enter m. 

Signal (c): The process is inside a monitor and signals condition c; if a pro­
cess is waiting for c, it must be awakened. 

Wait(c): The process is inside a monitor and waits for condition c; this 
releases the monitor. The CPU can be allocated to another process. 

DolO(deviceNo, command, status): The command is to be passed to the 
specified device, and the executing process is to be blocked until 
the device completes its operation; this releases the CPU so it can 
be re-allocated. 

Rather than directly supporting DoIO, the kernel may have entries for 
Begin/Wait/EndIO. If monitors are embedded in a high-level language, it is 
the responsibility of the compiler to generate code to invoke the entries. If 
the programmer is using a language that does not support monitors, for 
example, assembly language, he can still use monitors by using macros or 
procedures that invoke the kernel. 

Before giving programs to implement these entries, we will discuss 
some assumptions that can make implementation of monitors easier. 

SIMPLIFYING ASSUMPTIONS 

A kernel can be small and fast, or large and inefficient, depending on 
the hardware's interrupt structure and addressing mechanisms. The com­
plexity of the kernel also depends on how much support it must provide for 
the operating system's memory allocation, accounting and protection poli­
cies. It also depends on details of process/process and process/device com­
munication; for example, message passing is inherently more complex than 
semaphores. 

In this chapter we will largely ignore the problems of memory alloca­
tion, accounting and protection. Since those problems are handled simply 
in niany small operating systems, the kernel designs we will give are 
directly applicable to such systems. Simple solutions to these problems are 
also typically used in the inner layers of large operating systems; ih these 
our designs are of immediate use to support activities such as device 
management. 



220 IMPLEMENTING A KERNEL 

Previous chapters have explained how more elaborate facilities, such 
as swapping of user processes, can be implemented using the CE language's 
concurrency features. 

The architecture that the hardware provides for controlling devices 
can make or break an operating system. If these mechanisms, primarily the 
Start I/O instruction and device interrupts, are unstructured and imply 
extensive interactions among channels and devices, no reasonable structure 
may be possible. In such a case it will be hopeless to try to impose the 
elegance of a mechanism such as DoIO. We will assume for our kernel 
implementation that the architecture is relatively clean. 

A KERNEL FOR SINGLE CPU SYSTEMS 

A kernel that supports multiple processes, monitor entry and exit, and 
signal/wait can be quite small. For example, the kernel developed in a fol­
lowing section for a PDP-11 consists of less than 50 machine instructions. 
In the present section we will give a detailed design for a simple kernel that 
could be implemented on typical production computer systems. We will 
assume that there is only one CPU because this makes the design simpler, 
but in a later section we will show how to handle multiple CPUs. 

The reason a single CPU system is particularly easy to handle is that 
mutual exclusion can be guaranteed simply by disabling interrupts. Taking 
this idea to extremes leads to the monolithic monitor, as discussed in 
Chapter 1, in which all operating system activities are performed with inter­
rupts disabled. By contrast, our first design will disable interrupts only 
while the kernel or a monitor is active. This design will impose the restric­
tion that at most one monitor can be active at any given time. 

The following diagram illustrates the queues of process descriptors 
that the kernel manages. The diagram shows one running process, three 
ready processes, two processes waiting for condition condl, none for cond2, 
one for cond3, none for devicel, and one for device2. 



A KERNEL FOR SINGLE CPU SYSTEMS 221 

IDLE 
PROCESS 

Each rectangle in this diagram represents a process descriptor. The links to 
descriptors can be represented as machine addresses. If priority-ordered 
queues are used, the null pointer can correspond to the address of the 
dummy descriptor. 

When all processes are blocked, the CPU becomes idle. This special 
situation can be handled in an elegant way by using an "idle process", which 
has a lower priority (larger number) than any other process. In the diagram 
the idle process is shown last on the ready queue. When all "real" processes 
become blocked, the idle process is dispatched (becomes the running pro­
cess). Any "real" process that becomes ready will immediately be given the 
CPU because its priority is greater than the idle process. With this arrange­
ment, the kernel needs no special logic to handle the case of the idle CPU. 
If desired, the idle process can absorb CPU time by executing a non-urgent 
program, such as computing the digits of the irrational number pi. Note: 
the priority of the idle process must be less urgent than (a smaller number 
than) the priority in the dummy descriptor, which always marks the end of 
the ready queue. 



222 IMPLEMENTING A KERNEL 

The speed of the kernel depends largely on the time taken to save and 
restore process status. This saving and restoring is called task switching or 
process switching. Some computers have facilities for process switching in a 
single instruction; in others, there may be multiple register sets and the 
saving or restoring is accomplished simply by changing the pointer to the 
register set. Unfortunately, on some computers, status saving and restoring 
is relatively slow. For ex:ample, on the System 360/370, the process status 
consists of over 100 bytes of information (program status word, float and 
general registers), and several instructions must be ex:ecuted to do the pro­
cess switch. 

In many computer systems, the Ente.rMonitor operation, which dis­
ables interrupts, can be implemented by a single machine instruction. We 
will assume that a special register determines whether interrupts are 
enabled; this register is part of a process's status and must be saved in the 
process's descriptor. 

With these preliminaries out of the way we now give the program for 
each of the entries into the kernel. In these programs, we use a pointer 
called "running" to locate the process descriptor of the running process. For 
example, the line "Remove running from ready" means to remove a process 
descriptor from the reaqy queue and to place the descriptor's location in the 
pointer called "running", 

EnterMonitor: Disable interrupts 

ExitMonitor: 

Wait(c): 

Signal(c): 

if first ready priority < running priority then 
Save status of running · 
Insert running into ready 
Remove running from ready 
Restore status of running 

end if 
Enable interrupts 

Save status of running 
Insert running into c 
Remove running from ready 
Restore status of running 

if not empty(c) then 
{Give CPU to waiting process} 
Save status of running 
Insert running into ready 
Remove running from c 



Slice: 

A KERNEL FOR SINGLE CPU SYSTEMS 223 

Restore status of running {Interrupts stay disabled} 
end if 

{Clock interrupt} 
Save status of running then disable interrupts 
Insert running into ready 
Remove running from ready 
Restore status of running {Enables interrupts} 

The program for ExitMonitor checks to see if the CPU should be 
given to another process (this would be a process that did a signal). If so, 
the program does a process switch, transferring the CPU to the other pro-
cess. 

The program for Wait saves the running process's status, puts its 
descriptor on the queue for condition c, takes another process's descriptor 
from the ready queue, and dispatches that process. The line "Save status of 
running" uses the pointer called running to locate a process descriptor, and 
saves the current status of the CPU in that descriptor. The line "Insert run­
ning into c" places this pointer in the queue for condition c. The line 
"Remove running from ready" changes the pointer called running so it 
locates another process descriptor. The line "Restore status of running" 
includes resetting the instruction pointer and thus transferring control to 
the new process. In our simple monitor, Wait and Signal can only be exe­
cuted inside a monitor; we know interrupts have been disabled by Enter­
Monitor. This disabling guarantees mutually exclusive access to the queues 
of processes. 

The program for Signal does nothing unless it finds a process waiting 
for the condition. If one is found, the running process has its status saved 
and its descriptor placed on the ready queue. Then a waiting process's 
descriptor is removed from the condition queue and that process is 
dispatched. 

A time slice allows another process to run. We are assuming that the 
ready queue is priority-ordered, and that within a given priority, it is FIFO; 
this corresponds to the implementation of priority queues we have given 
earlier in this chapter. The program for Slice saves the status of the run­
ning process and puts its descriptor on the ready queue; then it takes a 
descriptor from the ready queue and dispatches that process. If all 
processes have the same priority, this results in round-robin scheduling. If 
the interrupted process has a higher priority than any ready process, the 
Slice program causes the interrupted process to be re-dispatched. In this 
last case, status saving and restoring could be avoided by first comparing 
the running priority to the first ready priority, and immediately re-



224 IMPLEMENTING A KERNEL 

dispatching if appropriate. An expanded version of the Slice program with 
this extra test would be more efficient in computers that have slow process 
switching. 

Our kernel allows a low priority process in the ready queue to be 
indefinitely overtaken by higher priority processes. If this situation can 
arise (for other than the idle process) in a particular system, it can be 
avoided by having the kernel dynamically decrease the priority of processes 
that use a lot of CPU time. 

We have now given all of the kernel except the p~rt that allows 
processes to control devices. 

HANDLING INPUT AND OUTPUT 

We can augment our kernel to handle input and output by giving it an 
entry point called DolO and a handler for input/output interrupts. We will 
assume that processes can call DolO only from outside monitors. The 
implementations are as follows. 

DoIO(deviceNo, command): 
Save status of running then disable interrupts 
Insert running into queue(deviceNo) 
StartlO(deviceNo, command) {Hardware instruction} 
Remove running from ready 
Restore status of running 

IODone(deviceNo): {Handle 1/0 interrupt} 
Save status of running then disable interrupts 
Insert running into ready 
Remove running from queue(deviceNo) 
Restore status of running {Enables interrupts} 

The DolO operation causes the kernel to place the executing process on a 
queue waiting for the device to finish, start up the device, and then find a 
new process to dispatch. We will assume that only one process will request 
1/0 for a particular device. That process will be the device's manager and 
may receive I/O requests from other processes. There are a number of 
advantages of using a separate manager process, such as providing 1/0 
buffering and protection. 

The IODone routine handles I/O interrupts. First it saves the status 
of the running process and puts its descriptor on the ready queue. Then it 
removes the waiting process from the device's queue and dispatches that 
process. The IODone routine could be made a bit more sophisticated by 



A KERNEL FOR THE PDP-11 225 

checking to see if the waiting process has a higher priority than the inter­
rupted process. On the other hand, if all device manager processes are rela­
tively simple and fast, IODone as given is probably best because it allows 
the manager to re-start the device immediately. If there is device status 
associated with the 1/0 interrupt, it would be passed by the kernel to the 
managing process in an extra parameter of DoIO. 

The Begin/Wait/EndlO operations can be implemented in an analo­
gous fashion. Assuming these are used only outside of monitors, BeginIO 
and EndlO can be implemented the same way as EnterMonitor and Exit­
Monitor, respectively. WaitIO can be implemented the same as a Wait on a 
condition queue for the device. Interrupts are handled exactly as in 
IODone above. 

The kernel design we have presented implies the restriction that mon­
itors cannot call each other. If this kernel were used to support CE, we 
would have to impose the same restriction on CE. Alternatively, we could 
extend our kernel design to handle the more general case of monitors cal­
ling monitors, which CE allows. We will not go into this extension, but 
will point out that the multi-CPU kernel given later in this chapter can han­
dle a single CPU in which monitors call each other. 

Unfortunately, some current computer architectures have a relatively 
complex 1/0 structure, with external channels, controllers and devices that 
must be managed from the CPU. The elegant handling of 1/0 that we have 
just developed may not be directly adaptable to those systems, especially if 
an error on a device can be reported by an interrupt separate from the one 
for device completion. Since the PDP-11 architecture is clean and widely 
used, we will show how our kernel design can be translated into its machine 
language. Persons who are not familiar with machine language may choose 
to skip the following section. 

A KERNEL FOR THE PDP-11 

The two preceding sections have given the design of a kernel that sup­
ports monitors, time-slicing and process/device communication for a single 
CPU system. We can implement a kernel for a particular computer by 
translating this design into machine instructions. For the PDP-11 this 
translation is particularly simple, and we will now give it. 

On the PDP-11, process status consists of a processor status word 
(PS), a program counter (PC), a stack pointer (SP), and six general pur­
pose registers called RO, RI, up to RS. All these must be saved when the 
process is interrupted. Each process has a stack (a contiguous allocation of 
memory) whose currently last active word is pointed to by its SP register. 



226 IMPLEMENTING A KERNEL 

The PS contains a hardware priority with values from 0 to 7. This 
priority is not the priority used in ordering the ready queue. Rather, the 
hardware priority determines the disabling of device interrupts. When the 
PS priority is 7, no device can interrupt. When it is n, only devices with a 
hardware priority greater than n can interrupt. For our kernel we will use 
this disabling mechanism in the simplest possible way: we will use only 
priority 7 (to disable all interrupts) and priority 0 (to enable all interrupts). 
Whenever an interrupt or trap occurs, the PDP-11 hardware stores the 
current PS and PC on the current stack and loads a new PS and PC 
corresponding to the interrupt or trap. The remainder of a process's status 
(SP and six registers) can then be saved by the kernel. 

We will assume that the kernel maintains a descriptor for each process 
that has the following fields: 

NEXT - pointer to next process descriptor 
PR TY - priority for ready queue 
SA VERl - saves status of Rl 

SAVERS - saves status of RS 
SA VESP - saves status of SP 

Since the PS and PC are automatically saved on the process's stack, they do 
not require fields in the process descriptor. 

We will assume that whenever a process is running, register RO is 
pointing to the process's descriptor. We will use the mnemonic RRUN as a 
synonymn for RO. Following an interrupt, these following instructions 
complete the saving of the interrupted process's status: 

MOV Rl,SAVERl(RRUN); 
MOV R2,SAVER2(RRUN); 

MOV 
MOV 

RS,SA VERS (RRUN); 
SP,SAVESP(RRUN); 

When a process is to be dispatched, these registers can be restored by load­
ing RO, i.e., RRUN, with the address of the appropriate descriptor and exe­
cuting: 

MOV 
MOV 

MOV 
MOV 
RTI; 

SA VERl (RRUN) ,Rl; 
SAVER2(RRUN),R2; 

SAVERS (RRUN) ,RS; 
SA VESP(RRUN) ,SP; 



A KERNEL FOR THE PDP-11 227 

The R TI (return from interrupt) instruction restores the PC and PS from 
the top of the process's stack, and the process resumes execution. Note 
that the d~scriptor does not require a field for RO (RRUN) because the link 
field pointing to the descriptor will hold RO's value. 

The following diagram gives the descriptors of a system having five 
processes and a single condition queue. 

NEXT 
PRTY= 3 
SAVER1 

SAVERS 
SAVESP 

stack 

Running 
Process 

NEXT 
PRTY=2 
SAVER1 

SAVERS 
SAVESP 

stack 

PS 
PC 

Blocked 
Process 

NEXT 
PRTY=8 
SAVER1 

SAVERS 
SAVESP 

stack 

PS 
PC 

Ready 
Process 

NEXT 
PRTY=10 
SAVER1 

SAVERS 
SAVESP 

stack 

PS 
PC 

Ready 
Process 

NEXT 
PRTY=OO 7 

SAVER1 

SAVERS 
SAVESP 

stack 
PS 
PC 

Ready (idle) 
Process 

As shown, one process is running and another is waiting for a condition. 
Three processes, including the idle process, are in the ready queue. 

There are two assumptions we will make to simplify our PDP-11 ker­
nel. First, we will assume that a process calls the kernel by executing a trap 
instruction, and when it does so, it is not currently using registers Rl 
through RS. This assumption eliminates the need to save and restore these 
registers before and after traps. Second, we will assume that each condition 
will have at most one process waiting for it. This second assumption is too 
severe for many systems including CE, but it simplifies our kernel. It is 
always possible to program using only single process conditions by using 
arrays of conditions; this must be done in the language Concurrent Pascal 
which supports only single process condition queues. If required, our 
implementation can be expanded to handle the more general case. 

With these preliminaries out of the way, we will give the actual code 
for the PDP-11 kernel. Interrupts can be disabled by a single instruction 
that sets the PS priority to 7, as follows. 



228 IMPLEMENTING A KERNEL 

Enter Monitor: BIS # PBITS,PS; Set priority bits to ones 

The BIS (bit set) instruction sets the three-bit hardware priority field to 
ones (octal 7). This instruction can be emitted in-line whenever a monitor 
is to be entered. Analogously, the following instruction enables interrupts: 

BIC #PBITS,PS; Clear priority bits to zeroes 

This instruction is used in the implementation of ExitMonitor, which is 
given below. 

The code to implement Wait and Signal is a bit longer, so we will fac­
tor it out into kernel routines that are called by traps. Each call to the Wait 
routine is done by this in-line code: 

Call Wait: 
MOV #COND,RCOND; Put number of condition in a register 
TRAP #WAITNO; Trap, passing number of wait routine 

A similar calling sequence is used for Signal. Recall that we are assuming 
that at the call, registers Rl to RS (except RCOND) are not in use, so the 
kernel will not need to save them. 

The trap causes the hardware to save the process's PC and PS and to 
pick up a new PC and PS from a fixed location in low memory. The new 
PS will be set up to have priority 7, so interrupts will remain disabled. The 
new PC points to the following segment of code, called ROUTER, that in 
turn transfers control to the appropriate trap handler. 

ROUTER: 
MOV (SP),RTEMP; 
MOVB -l(RTEMP),RTEMP; 
JMP @VECTOR (RTEMP); 

Locate trap instruction 
Load trap no. from instruction 
Jump to correct handler 

The jump to the correct trap handler is done indirectly using a "transfer 
vector", which is a sequence of words in memory that holds the addresses 
of the handlers. 

The Wait and Signal routines, which gain control from ROUTER, are 
pleasingly small: only 11 instructions for Wait and 9 instructions for Signal. 
The Signal routine includes a call to an INSERT routine (16 instructions) 
that inserts a process descriptor into the priority-ordered ready queue. The 
INSERT routine is also called by the SLICE routine. Here is the code for 
these routines. 

WAIT: 
MOV SP,SAVESP(RRUN); 
MOV RRUN,(RCOND); 

DISPCH: 
MOV READY,RRUN; 

Saves status of running 
Insert running into C 

Remove running 



A KERNEL FOR THE PDP-11 229 

MOY NEXT(RRUN) ,READY; from ready 
MOY SA YERl (RRUN) ,Rl; Restore registers of running 
MOY SAYER2(RRUN),R2; Restore registers of running 
MOY SA YER3 (RRUN) ,R3; Restore registers of running 
MOY SAYER4(RRUN),R4; Restore registers of running 
MOY SA YER5 (RRUN) ,RS; Restore registers of running 
MOY SAYESP(RRUN),SP; Restore registers of running 
RTI; Restore PC and PS 

SIGNAL: 
TST (RCOND); if empty ( C) then 
BNE SWAP; Cause return to signaler 
RTI; else 

SWAP: 
MOY SP,SAYESP(RRUN); Save status of running 
JSR PC,INSERT; Insert running into ready 
MOY (RCOND),RRUN; Remove running 
CLR (RCOND); from C 
MOY SAYESP(RRUN),SP; Restore status of running 
RTI; end if {Restore PC, PS} 

SLICE: 
MOY Rl,SAYERl (RRUN); Save registers of running 
MOY R2,SAYER2(RRUN); Save registers of running 
MOY R3,SAYER3(RRUN); Save registers of running 
MOY R4,SAYER4(RRUN); Save registers of running 
MOY R5,SAYER5(RRUN); Save registers of running 
MOY SP,SAYESP(RRUN); Save registers of running 
JSR PC, INSERT; Insert running into ready 
BR DISPCH; Remove running from ready and 

dispatch running 
INSERT: 

MOY READY,RLINK; link: =ready 
CMP PRTY(RRUN),PRTY(RLINK); if prty(running) > prty(link) 
BLE MERGE; then 
MOY RLINK,NEXT(RRUN); next (running):= link 
MOY RRUN,READY; ready: =running 
RTS PC else 

MERGE: 
MOY RLINK,RPREY; prev:=link 
MOY NEXT(RLINK) ,RLINK; link: =next Oink) 

LOOP: loop 
CMP PRTY(RRUN),PRTY(RLINK); exit when prty(running) 
BGT HOOKUP; > prty (link) 



230 IMPLEMENTING A KERNEL 

MOV 
MOV 
BR 

HOOKUP: 

RLINK,RPREV; 
NEXT(RLINK) ,RLINK; 
LOOP; 

MOV RRUN,NEXT(RPREV); 
MOV RLINK,NEXT(RRUN); 
RTS PC; 

prev:=link 
link: =next Oink) 

end loop 

next (prev): =running 
next (running): =link 

end if 

We can implement ExitMonitor as a conditional trap to SLICE fol­
lowed by enabling interrupts: 

ExitMonitor: 
MOV READY,RREADY; if prty(ready) <prty(running) 
CMP PRTY (RREADY) ,PRTY (RRUN); 
BGE CONTINUE; then 

TRAP #SLICENO; 
CONTINUE: 

BIC #PBITS,PS; 

Invoke SLICE in kernel 
end if 
Enable interrupts 

This code can be emitted in-line whenever a process returns from a moni­
tor. We will not give the routines for handling 1/0. The DoIO routine can 
be modeled after Wait and the 1/0 interrupt handler can be modeled after 
SLICE. The PDP-11 kernel we have given can be expanded in many ways; 
in the exercises we suggest a number of improvements and expansions. 

A KERNEL FOR MULTIPLE CPU SYSTEMS 

We have given a simple, efficient kernel that is based on traditional, 
interrupt-oriented, single CPU architecture. In this section we will give the 
design of a kernel that implements processes and supports monitors when 
there are several CPUs. The implementation will be quite small, but 
requires some study to be well understood. 

We will present the design in terms of an abstraction (a virtual 
machine) which is not directly supported by currently available hardware. 
Then we will show how this abstraction can be implemented by a few 
machine instructions. 

Our abstraction allows the logic of the kernel to be quite elegant, 
because it lets us assume that the kernel runs on its own machine (a virtual 
processor). Since this processor executes only the kernel and it does not 
accept interrupts, mutually exclusive access to queues of descriptors is 
guaranteed. Whenever a process wishes to execute a primitive, such as 
Wait, the process's request is delayed until the kernel is idle; then the ker­
nel is activated by invoking its appropriate routine, and is handed a pointer 



A KERNEL FOR MULTIPLE CPU SYSTEMS 231 

to the calling process's descriptor. It is assumed that the calling process has 
stopped running and its status has been saved. Once activated, the kernel 
is free to manipulate whatever queues it maintains. 

The kernel's ready queue gains a very special significance. Whenever 
the kernel inserts a process descriptor into the ready queue, the kernel's 
virtual processor allocates a CPU to the process. This convenient assump­
tion means the kernel does not need to worry about the mechanics of 
dispatching processes or sharing CPUs. When a running process calls the 
kernel or is interrupted, the process is no longer on the ready queue and 
the virtual processor has saved the process's status. The kernel is con­
cerned only with making processes ready (by putting them on the ready 
queue). Later we will show how these convenient assumptions are sup­
ported. 

To implement monitors, the kernel has a queue for each condition. It 
also has an entry queue for each monitor, and allows more than one moni­
tor to be active at once. Of course, at any given time it does not allow 
more than one process to be active in a particular monitor. Associated with 
each monitor is a flag called occupied which records whether the monitor is 
currently busy. 

Given these data structures and our delightfully powerful virtual pro­
cessor, the kernel can be implemented in the following few lines. 

EnterMonitor(m): 
if occupied (m) then 

Insert caller into m 
else 

occupied(m) : = true 
Insert caller into ready 

end if 

ExitMonitor(m): 
if empty(m) then 

occupied (m) : = false 
else {Transfer process from m's queue to ready queue} 

Remove p from m 
Insert p into ready 

end if 
Insert caller into ready 

Wait(c): 
if empty(m) then 

occupied (m) : = false 



232 IMPLEMENTING A KERNEL 

else {Transfer process from m's queue to ready queue} 
Remove p from m 
Insert p into ready 

end if 
Insert caller into c 

Signal (c): 
if empty(c) then 

Insert caller into ready 
else {Transfer process from e's queue to ready queue} 

Remove p from c 
Insert p into ready 
Insert caller into m 

end if 

The FnterMonitor routine tests to see if the monitor is busy. If so the cal­
ling process, whose descriptor is pointed to by "caller", is placed on a queue 
waiting for the monitor to be free. If not, the busy flag is set to true, and 
the process is re-activated by placing its descriptor on the ready queue. The 
other routines are straightforward and we will not discuss them. 

The handling of I/O is also straightforward, and can be implemented 
as follows: 

DolO(deviceNo, command): 
StartIO(deviceNo, command) {Actually start the device} 
Insert caller into queue (device No) 

IODone(deviceNo): {I/O interrupt handler} 
Remove p from queue (deviceNo) 
Insert p into ready 

The Start I/O instruction activates the device, and the interrupt signals that 
the device is again idle. One of the beauties of this arrangement is that 
processes and devices are very similar from the point of view of the kernel. 
The analog of the Start I/O for a device is the insertion of a process descrip­
tor into the ready queue. The analog of a device interrupt is a process trap. 
The interrupt (trap) tells the kernel that the device (process) requires 
attention. The device (process) remains idle until re-started by the kernel. 
The device (process) is restarted by a Start I/O instruction (by insertion 
into the ready queue). 



SUPPORTING THE KERNEL 233 

SUPPORTING THE KERNEL'S VIRTUAL PROCESSOR 

We have now designed the multiple CPU kernel, but we have not yet 
shown how to support its virtual processor. We might ask a hardware 
designer or a microprogrammer to implement the special processor. There 
would be a bonus to such an implementation: it could as well be used to 
implement other synchronization schemes such as semaphores or message 
passing. So, the virtual processor would be useful on its own right, 
independent of monitors. If special hardware or microprogramming are not 
available, we can still easily and efficiently implement the kernel's proces­
sor, as we will now show. 

We will make the following assumptions about the system's architec­
ture. There are n identical CPUs, and each CPU has its own interrupting 
clock. We will use n idle processes to sop up idle CPU time. All the CPUs 
can address the same memory, so each CPU can run any process and each 
CPU can access the kernel's data structures. Each device can interrupt any 
CPU. The hardware is constructed such that the interrupted CPU is the 
one currently running with the lowest (highest numbered) priority. There 
is a special instruction called PreemptCPU, which any CPU can execute; it 
interrupts another CPU (the one running the lowest priority process). 

We will not dedicate a CPU to the kernel (that would be an awful 
waste). Instead, we give the kernel the appearance of having a dedicated 
CPU by temporarily borrowing whatever CPU received the interrupt (or 
trap). 

The following three code segments implement the special virtual pro­
cessor. They share the n CPUs among the processes that have been put on 
the ready queue, giving CPUs to the n highest priority processes. These 
segments make sure that only one CPU at a time enters the kernel. They 
use two routines called FnterKernel and ExitKernel to save process status, 
gain mutual exclusion and dispatch processes. These two routines will be 
shown later. 

Trap(trapNo): {Process invokes the kernel} 
FnterKernel {Save status and gain mutual exclusion} 
TrapHandler(trapNo,running) {Handle trap, such as 

FnterMonitor, and return here. The handler may 
insert the process into ready} 

ExitKernel {Release mutual exclusion and dispatch} 

Slice: {CPU interrupted by clock or by Preempt CPU} 
FnterKernel {Save status and gain mutual exclusion} 
Insert running into ready 
ExitKernel {Release mutual exclusion and dispatch} 



234 IMPLEMENTING A KERNEL 

IOinterrupt(deviceNo): {CPU interrupted by device} 
EnterKernel {Save status and gain mutual exclusion} 
Insert running into ready 
Call IODone(deviceNo) {Wakes up device manager process} 
ExitKernel {Release mutual exclusion and dispatch} 

For these routines, each CPU must have private variables (these could be 
registers) called trapNo, running, and deviceNo. 

A process invokes the kernel (for example, to enter a monitor) by 
executing Trap. This saves the process's status and passes a pointer to the 
process's descriptor to the appropriate trap handler. The process's descrip­
tor is no longer on the ready queue, so the process will remain blocked 
until the kernel inserts the descriptor into the ready queue. For example, 
ExitMonitor, which is a trap handler, always inserts the calling process's 
descriptor into the ready queue. 

Slice is invoked when a CPU's clock causes an interrupt. The inter­
rupted process's status is saved and its descriptor re-inserted into the ready 
queue. As was the case for the single CPU kernel, this results in round­
robin scheduling within priorities. 

IOlnterrupt is like Slice but additionally removes the device manager's 
descriptor from the device queue and inserts it into the ready queue. As a 
side effect, this reschedules the executing process behind other processes of 
the same priority. If this rescheduling is considered undesirable, then the 
interrupted process can be inserted first in the ready queue. 

IMPLEMENTING KERNEL ENTER/EXIT 

On a single CPU system, we can implement EnterKernel by simply 
saving the process's status and disabling interrupts. ExitKernel removes 
the highest priority process from the ready queue, restores its status and 
enables interrupts. Here are these two operations: 

EnterKernel: {For single CPU} 
Save status of running and disable interrupts 

ExitKernel: {For single CPU} 
Remove running from ready 
Restore status of running {This enables interrupts} 

These operations can be made faster for particular computer architectures 
by such tricks as avoiding saving a process's status when it is executing a 
non-blocking trap. With these implementations of Enter/ExitKernel, the 
kernel we have just given can be used on a single CPU system. This single 



IMPLEMENTING KERNEL ENTER/EXIT 235 

CPU kernel has the advantage that it allows more than one monitor to be 
active at once and allows a monitor to call another monitor (this is not pos­
sible with the previous single CPU kernel). The disadvantage of this new 
single CPU kernel is that it is somewhat more complex and slower than our 
previous design. 

In a multiple CPU system we must guarantee that only one of the 
several CPUs is allowed into the kernel at a given time. This can be done 
by a test-and-set loop, which was described in Chapter 2. For the multiple 
CPU system, the following instruction sequences implement 
Enter /Exi tKernel. 

Enter Kernel: 
Save status of running and disable interrupts 
loop 

TestAndSet (kernel Occupied, wasOccupied) 
exit when not wasOccupied {Test old flag value} 

end loop 

ExitKernel: 
Remove running from ready 
needCPU := 

(first ready priority < lowest running priority) 
kernel Occupied : = false {Release control of kernel} 
if needCPU then {Important process was readied} 

Preempt CPU 
end if 
Restore status of running {This enables interrupts} 

EnterKernel begins by saving the process's status. Then it disables 
interrupts, which effectively captures the process's CPU, so it cannot be 
pre-empted by an interrupt. Finally, this CPU is used to execute a test­
and-set loop, which eventually gains control of the kernel. ExitKernel is 
essentially the inverse of this: the kernel is released by resetting kernelOc­
cupied to false, the status of the new running process is restored and inter­
rupts are enabled thereby allowing pre-emption of the CPU. A slight com­
plication arises from the fact that the processes that are waked up may have 
higher priorities than processes already running on CPUs. When this 
occurs, the PreemptCPU instruction is used to force another CPU to exe­
cute Slice. 

We have now given code segments that implement the virtual proces­
sor required by the kernel, and we have given the code segments that 
comprise the kernel. Together these support monitors for a multiple CPU 
computer system. Such a system has obvious advantages in terms of 



236 IMPLEMENT/NG A KERNEL 

reliability and expandability. Reliability is improved because any failing 
CPU can simply be retired with its current process transferred to the ready 
queue. (Hopefully, the failing CPU does not destroy any critical data such 
as the kernel's queues.) Since all CPUs are the same, loss of any particular 
CPU only slows down the system without causing a disaster. Expandability 
is improved because when the system needs more computing power, 
another CPU can be added without affecting the software. Adding or 
removing a CPU changes system throughput, but does not affect the 
system's correctness. 

KERNELS FOR CE AND TUNIS 

The first kernel for CE was constructed in assembly language for the 
MC68000. This kernel is similar to the multiple CPU kernel described in 
this chapter. The MC68000 kernel was later re-written to support other 
computers, notably the PDP-11 and the MC6809 microprocessor. 

Writing one of these kernels is straightforward, but it requires consid­
erable care to avoid bugs. The problem is that the handling of interrupts 
and process switching is inherently complex, and assembly language is not 
an easy language to deal with. 

CE programs can be run under Unix or other operating systems. This 
is done by sharing the time of a Unix user process among the CE processes. 
This sharing is accomplished by a simulation kernel, which does the CE 
process switching. Unix remains unaware of the fact that a single user pro­
cess is made to behave like multiple CE processes. CE's simulation kernel 
is very similar to its corresponding bare machine kernel. One of the 
differences is that the simulation kernel does not use a clock device to do 
time slicing. Instead, the CE program includes calls to the kernel to tell the 
kernel when to do time slicing. These calls are implicitly emitted by the 
compiler for CE programs to be run in simulation mode. If these calls are 
not emitted, the simulation kernel still works. However, without them, it 
cannot regularly gain control from a long running process, and so it cannot 
do fair scheduling of the available CPU time. 

The kernel for Tunis is a CE kernel that supports Begin/Wait/EndlO 
instead of DolO. The Tunis kernel has entries that increase and decrease a 
process's software priority. These priorities are used to make some CE 
processes in the Tunis nucleus run faster to improve Tunis's performance; 
however, they do not affect correctness. In particular, they are not used to 
gain mutual exclusion; monitors are used for mutual exclusion. The Tunis 
kernel also has entries to associate an envelope process (a system process) 
with its corresponding user process. The kernel is responsible for changing 



CHAPTER 10 BIBLIOGRAPHY 237 

the memory protection registers when an envelope becomes 1 user process 
and vice versa. 

The first chapter of this book described the techniques of basing an 
operating system on a kernel. The main responsibilities of the kernel were 
defined as the support of processes along with process/process and 
process/device communication. From Chapter 1 until the present chapter, 
we used processes without being concerned about how they were supported. 
In this chapter we have returned to the subject of kernels, and have shown 
how the concurrent algorithms presented throughout this book can be sup­
ported by a kernel using traditional computer hardware. 

CHAPTER 1 0 SUMMARY 

In this chapter we have seen that a kernel is entered when the follow­
ing occur: 

Trap - a process requests a service. When the service has been provided, 
the process can be dispatched (given a CPU). 

1/0 interrupt - a device completes an operation. When the device is to be 
restarted, a Start 1/0 instruction is executed. 

Clock interrupt - may signal the end of a process's time slice. 

The traps are used to invoke primitive operations; to support monitors, the 
kernel may have entries for traps corresponding to: 

Entering a monitor. 
Exiting a monitor. 
Signaling a condition. 
Waiting for a conditon. 

In addition, traps may be used to support synchronous 1/0 (DoIO) or asyn­
chronous I/O. 

We developed a simple kernel to support monitors on single CPU sys­
tems. The simplicity of this kernel is largely due to the technique of disa­
bling interrupts to enforce mutual exclusion inside monitors. This tech­
nique implies that at most one monitor at a time can be active. 

We also developed a multiple CPU kernel that allows more than one 
monitor to be active at once. This kernel is based on a virtual processor 
that prevents multiple simultaneous activations of the kernel. 



238 IMPLEMENTING A KERNEL 

CHAPTER 10 BIBLIOGRAPHY 

The single CPU kernel presented in this chapter was developed from 
work on the SUE/11 operating system [Greenblatt and Holt] and from an 
unpublished design by C.A.R. Hoare. The multiple CPU kernel was 
developed from work on the SUE/360 operating system. Barnard describes 
the implementation of a multiple microprocessor kernel based on an earlier 
version of the design given in this chapter. Wirth describes another kernel 
for the PDP-11 that supports monitors and processes, without time slicing. 
Wirth's kernel supports Modula, a concurrent dialect of Pascal. 

Barnard, D.T., Kulick, J.H., MacMillan, D. Hardware support for a mul­
tiprocessing kernel. Proceedings of Seventh International Sympo­
sium on Computer Systems, IEEE, Anahiem (January 1979), 47-
52. 

Greenblatt, I.E. and Holt, R.C. The SUE/11 operating system. INFOR, 
Canadian Journal of Operational Research and Information Process­
ing 14,3 (October 1976), 227-232. 

Wirth, N. Modula: a language for modular programming (and two other 
articles by Wirth in the same issue). Software Practice and Experi­
ence Vol. 7,1 (January-February 1977), 3-35. 

CHAPTER 10 EXERCISES 

1. The kernel designs presented in this chapter have no provision for error 
checking. For example, if a process passes the number of a nonexistent 
condition to the wait routine, the kernel may crash. What error checking is 
appropriate for a kernel? Estimate the increase in CPU time required in 
primitives (e.g., in wait) if error checking is incorporated. What error 
checking can be done at compile time to avoid run time checking by the 
kernel? 

2. It has been suggested that the signal operation should imply an immedi­
ate return of the signaling process from the monitor. This is the case in the 
Concurrent Pascal language. Modify the single and multiple CPU designs 
for kernels to support this interpretation of signals. What effect does this 
have on monitor entries that return values (i.e., entries that behave like 
function procedures). 

3. Augment the PDP-11 kernel given in this chapter to support multiple 
process priority conditions. 



CHAPTER 10 EXERCISES 239 

4. Implement a kernel for the System/360 (or some other computer) by 
translating the design of the single CPU kernel to assembly language. 

5. Use a PDP-11 processor handbook and determine the time to execute 
wait and signal as implemented for the PDP-11 in this chapter. You will 
need to make certain assumptions, e.g., model of PDP-11 and average 
number of executions of the INSERT loop. 

6. C.A.R. Hoare suggests that when a process wakes up another process 
using signal, the signaler should be placed on a special "urgent" queue, 
waiting to get back into the monitor. Each time a process exits the moni­
tor, the urgent queue is checked and, if non-empty, a waiting signaler is 
given control of the monitor. The implementation of monitors for a single 
CPU system given in this chapter does not use an urgent queue. Instead, 
the signaler is put on the ready queue. Give the design of a kernel that 
uses an urgent queue. What logical difference (if any) does the urgent 
queue make to processes? What difference is there in the kernel's size and 
speed? What difference is there in terms of the performance of processes? 

7. Throughout this chapter, we have made no mention of changing the 
priorities of processes (used in ordering the ready queue). In many single 
systems, fixed priorities may be sufficient, because the relative importance 
to performance of each process may be known at system construction time. 
However, changing the priorities dynamically can be important. Specify a 
primitive that allows a process to change its priority. The kernel can 
improve performance by giving priority to 1/0 bound jobs. This is 
equivalent to decreasing the priority of processes that use a lot of CPU 
time. Since the kernel can observe which jobs use most of the CPU time, 
it can decrease their priorities. Give a simple change to the single CPU 
kernel's design that automatically adjusts priorities, so 1/0 bound jobs are 
favored. 

8. In the design of the multiple CPU kernel it was assumed that 1/0 inter­
rupts favor those CPUs that are running low priority processes. Why was 
this assumption made and what would happen if it were not true? 

9. What would be the result of using the following versions of enter and 
exit kernel: 

Enter Kernel: 
Save status of running 
loop 

TestAndSet (kernel Occupied, wasOccupied) 
exit when not wasOccupied 

end loop 
Disable interrupts 



240 IMPLEMENTING A KERNEL 

ExitKernel: 
needCPU := 

(first ready priority < lowest running priority) 
Enable interrupts 
if needCPU then 

PreemptCPU 
end if 
kernelOccupied : = false 
Restore status of running 

10. The first kernel design (for single CPU systems) allows only one moni­
tor to be active at a given time. The second kernel design allows multiple 
monitors to be active concurrently. What are the implications for operating 
system organization of the restriction of a single active monitor at a time? 

11. The design of the single CPU kernel implements mutual exclusion in 
monitors by disabling and enabling interrupts. What implication does this 
implementation technique have for the use of monitors in organizing 
operating systems? (Note that the design allows only one monitor at a time 
to be active.) 

12. A virtual processor was defined for use by the multiple CPU system. 
That processor gives the kernel mechanisms that are similar to the mechan­
isms provided by a monitor, namely, mutual exclusion and the ability to 
block/wakeup calling processes. Specify as a language feature a modified 
version of a monitor that is like this virtual processor. Give the implemen­
tation of these modified monitors in terms of the kernel's virtual processor. 
Note that this is equivalent to the (recursive) implementation of virtual 
processors in terms of a virtual processor. 

13. Use the virtual processor defined for the multiple CPU system to 
implement semaphores. 

14. Suppose your operating system supports semaphores. Show how these 
semaphores can be used to support monitors, without the need of a kernel 
(other than the one that supports semaphores). 

15. Specify the functional characteristics for a multiple CPU system that 
supports (in the hardware) the virtual processor needed for the multiple 
CPU kernel. 

16. Implement Signal/WaitDevice for the PDP-11 (or other computer). 

17. Implement a kernel for a single CPU PDP-11 system that is based on 
the multiple CPU kernel given in this chapter. Your kernel will allow 
several monitors to be active at once. Compare the speed of your kernel 
with the single CPU kernel given in this chapter. 



CHAPTER 10 EXERCISES 241 

18. The single CPU kernel for the PDP-11 that was given in this chapter 
was made smaller and faster by the following assumption. When a process 
executes a trap instruction it is not currently using registers Rl to RS. 
Consequently, some saving and restoring of registers was avoided. What 
are the security implications of sometimes avoiding this saving and restor­
ing? If your process works for (or against) the KGB and another process 
works against (or for) the KGB, how might your process try to spy on the 
other process, given the knowledge that saving/restoring registers is some­
times avoided? 





Appendix 
SPECIFICATION OF 
CONCURRENT EUCLID 
By J.R. Cordy and R.C. Holt 

CONTENTS OF APPENDIX 

I. THE SE LANGUAGE 

Iden ti tiers and Literals 
Source Program Format 
Syntactic Notation 
Programs 
Modules 
Declarations 
Constant Declarations 
Variable Declarations 
Types and Type Declarations 
Type Equivalence and Assignability 
Variable Gndings 
Collections 
Procedures and Functions 
Type Converters 
Statements 
Variables and Constants 
Expressions 
Built-in Functions 
Standard Components 
Manifest Expressions 
Precision of Arithmetic 
Source Inclusion Facility 

II. CONCURRENCY FEATURES 

Processes 
Monitors 
Conditions 
The Busy Statement 

245 

245 
246 
246 
247 
247 
248 
249 
249 
250 
252 
253 
254 
254 
257 
257 
260 
260 
262 
262 
263 
263 
264 

264 

264 
265 
267 
269 



244 SPECIFICATION OF CONCURRENT EUCLID 

III. SEPARATE COMPILATION 

External Declarations 
Compilations 
Linking of Compilations 

COLLECTED SYNTAX OF CONCURRENT EUCLID 

KEYWORDS AND PREDEFINED IDENTIFIERS 

INPUT/OUTPUT IN CONCURRENT EUCLID 

IO/I: Terminal Formatted Text I/O 
I0/2: Sequential Argument Ftle I/O 
I0/3: Temporary and Non-Argument Files 
IO/ 4: Structure Input/Output and 

Random Access Ftles 
Interfacing to Unix 

PDP-11 IMPLEMENTATION NOTES 

Data Representation 
Register Usage 
Calling Conventions 
External Names 
Parameter Passing 
Run -time Checking 

CE IMPLEMENTATION NOTES 

Data Representation 
Storage Layout 
Register Usage 

269 

269 
271 
272 

272 

283 

284 

284 
285 
287 

288 
289 

290 

290 
291 
292 
292 
292 
293 

294 

294 
296 
297 



IDENTIFIERS AND LITERALS 245 

This report defines the programmming language Concurrent Euclid, 
or CE. CE is designed for implementing software, and is particularly suited 
to implementing operating systems, compilers and specialized microproces­
sor applications. It can also serve as the basis for implementing software 
which is to be formally verified. 

CE consists of a subset of the Euclid programming language called 
Sequential Euclid or SE and a set of concurrency extensions to Euclid based 
on monitors. The first section of this document defines the SE language 
independently of Euclid. The second section describes the concurrency 
features added to form CE. The last section describes CE features that sup­
port separate compilation of procedures, functions, modules and monitors. 
Attached is material describing input/output and implementation considera­
tions. 

THE SE LANGUAGE 
This section describes the SE subset of Euclid. SE is defined indepen­

dently of Euclid and no previous knowledge of the Euclid programming 
language is required. An understanding of the basic concepts of the Pascal 
family of programming languages is assumed. 

IDENTIFIERS AND LITERALS 
An identifier consists of any string of at most 50 letters, digits and 

underscores l) beginning with a letter. Upper and lower case letters are 
considered identical in identifiers and keywords, hence aa, aA, Aa and AA 
all represent the same identifier. Keywords and predefined identifiers of 
Euclid, SE and CE must not be redeclared. A list of these is given in "Key­
words and Predefined Identifiers". 

A string literal is any sequence of one or more characters not including 
a quote (') surrounded by quotes. Within strings, the characters quote, 
dollar sign, new line and end of file are represented as $', $$, $N and $E 
respectively. As well, $T, $Sand $F may be used for tab, space, and form 
feed respectively. 

A character literal is a dollar sign ($) followed by any single character. 
The character literals corresponding to quote, dollar sign, space, tab, form 
feed, new line and end of file are $$', $$$, $$S, $$T, $$F, $$N and $$E 
res pecti vel y. 

Jn every implementation, the character set for string and character 
literals will contain at least the upper and lower case letters A-Z and a-z, 
the digits 0-9 and the special characters ".,:;!?()[]{}+-*/<=>'$#A&%", 
space, tab, form feed, new line and end of file. Olaracter values are 
ordered such that A<B<C< ... <Z, a<b<c< ... <z and 0<1<2< ... <9. 
Ordering of character values is implementation dependent otherwise. 



246 SPECIFICATION OF CONCURRENT EUCLID 

An integer literal is a decimal number, an octal number or a hexade­
cimal number. A decimal number is any sequence of decimal digits. An 
octal number is any sequence of octal digits followed by #8. A hexade­
cimal number is any sequence of hexadecimal digits (represented as the 
decimal digits plus the capital letters A through F) beginning with a decimal 
digit and followed by #16. Negative values are obtained using the unary -
operator; see "Expressions". 

SOURCE PROGRAM FORMAT 
A comment is any sequence of characters not including comment 

brackets surrounded by the comment brackets { and }. Comments may 
cross line boundaries. 

A separator is a comment, blank, tab, form feed or source line boun­
dary. Programs are free-format; that is, the identifiers, keywords, literals, 
operators and special characters which make up a program may have any 
number of separators between them. Separators cannot be embedded in 
identifiers, keywords, literals or operators, except that blanks may appear as 
part of the value of a string literal. Identifiers, keywords and literals must 
not cross line boundaries. At least one separator must appear between adja­
cent identifiers, keywords and literals. 

SYNTACTIC NOTATION 
The following sections define the syntax of SE. 

The following notation is used: 

{item} means zero or more of the item 
~tern] means the item is optional 

Keywords and special symbols are given in bold face. 

The following abbreviations are used: 

id for identifier 
expn for expression 
typeDefn for typeDefinition 

Semicolons are not required, but they may optionally appear following 
statements, declarations and import, export and checked clauses. 



MODULES 247 

PROGRAMS 
A main program consists of a module declaration. 

A program is: 

module Declaration 

Execution of a program consists of initializing the main module, see 
"Modules". 

Modules, procedures and functions can be compiled separately; see 
"Separate Compilation". 

MODULES 

A moduleDeclaration is: 

var id : 
module 

[imports ([var] id{, [var] id})] 
[exports (id {, id} ) ] 
[[not] checked] 
{declaration In Module} 
[initially 

procedure Body] 
end module 

Execution of a module declaration consists of executing the declara­
tions in the module and then the initially procedure of the module. Exe­
cution of a program consists of executing the main module declaration in 
this way. 

Module declarations may be nested inside other modules but must not 
be nested inside procedures and functions. 

A module defines a package of variables, constants, types, procedures 
and functions. The interface of the module to the rest of the program is 
defined by its imports and exports clauses. 

The imports clause lists the global identifiers which are to be visible 
inside the module. Variable, collection and module identifiers may be 
imported var (or not). Imported variables can be assigned to or passed as 
var parameters within the module only if they are imported var. Elements 
of an imported collection can be allocated, freed, assigned to or passed as 
var parameters only if the collection is imported var. Procedures of an 
imported module can be called only if the module is imported var. 
Imported identifiers must not be redeclared inside the module. 



248 SPECIFICATION OF CONCURRENT EUCLID 

The exports clause lists those identifiers defined inside the module 
which may be accessed outside the module using the . operator. Exported 
variables cannot be assigned to or passed as var parameters outside the 
module. Elements of exported collections cannot be allocated, freed, 
assigned to or passed as var parameters outside the module. Unexported 
identifiers cannot be referenced outside the module. 

Named types declared inside a module are opaque outside the module, 
that is, they are not considered equivalent to any other type. Variables and 
constants whose type is opaque cannot be subscripted, field selected or 
compared. 

Modules may be checked; this causes all assert statements, subscripts 
and case statements in the module to be checked for validity at run-time. 
In addition, a particular implementation may check other conditions such as 
ranges in assignments and overflow in expressions. Modules not already 
nested inside an unchecked module are checked by default and must be 
explicitly declared not checked to turn off run-time checking. 

Even though declared like variables, modules are not variables and 
cannot be assigned, compared, passed as parameters or exported. 

Modules can be separately compiled if desired; see "Separate Compila­
tion". 

DECLARATIONS 
A dec/arationlnModule is one of the following: 

a. constantDeclaration 
b. variableDeclaration 
c. typeDeclaration 
d. variableBinding 
e. module Declaration 
f. collectionDeclaration 
g. procedureDeclaration 
h. functionDeclaration 
i. converter Declaration 
j. assert [ ( expn ) ] 

Forms (a) through (i) are declarations for new identifiers as explained in 
the following sections. Form G) is an assert statement; see "Statements". 
An identifier must be declared textually preceding any references to it. 



CONSTANT DECLARATIONS 
A constantDeclaration is one of: 

VARIABLE DECLARATIONS 249 

a. [pervasive] const id : = manifestExpn 
b. [pervasive] const id : typeDefn : = expn 
c. [pervasive] const id : typeDefn : = 

( manifestExpn {, manifestExpn} ) 
d. [pervasive] const id : = stringLiteral 

A constantDeclaration gives a name to a value which is constant 
throughout the scope of the declaration. The value of a scalar constant can 
be manifest or nonmanifest. A manifest expression is one whose value is 
known at compile-time (see "Manifest Expressions"). A nonmanifest 
expression must be evaluated at run-time. Non-scalar values are always 
considered nonmanifest. 

Form (a) defines a manifest named constant. The type of the constant 
is the type of the value expression, which must be manifest. Manifest 
named constants are not represented at run time since their values are 
always known at compile time. 

Form (b) declares a nonmanifest named constant of the specified type. 
The value of the expression may be manifest or nonmanifest, and must be 
assignable to the constant's type. References to nonmanifest named con­
stants are always considered nonmanifest even if their value is manifest. 

Form (c) declares an array constant. The typeDefn must be an array 
type or named array type whose component type is scalar. The list of 
expressions gives the values of the elements of the array constant. The ele­
ment values must be manifest expressions assignable to the element type of 
the array. The number of element values specified must be exactly the 
number of elements in the array. 

Form (d) allows declaration of an array constant using a string literal 
value. The type of the constant is packed array 1..n of Char where n is the 
length of the string literal. 

Constants declared using pervasive are automatically imported into all 
subscopes of the scope in which they are declared. Such constants need not 
be explicitly imported. 

VARIABLE DECLARATIONS 
A variableDeclaration is: 

[register] var id [ ( at manifestExpn ) ] : typeDefn 
[:= expn] 

A variableDeclaration declares a variable of the specified type. The at 
clause declares a variable at an absolute machine location. Variables may 



250 SPECIFICATION OF CONCURRENT EUCLID 

optionally be declared with an initial value which is assigned to the variable 
when the declaration is executed. The initial value expression must be 
assignable to the variable's type. 

Local variables in procedures and functions may optionally be declared 
register. This is a hint to the compiler that it should attempt to allocate the 
variable to a register. Register variables cannot be bound to nor passed to a 
reference parameter. A register variable declaration cannot have an at 
clause. 

TYPES AND TYPE DECLARATIONS 
A typeDeclaration is: 

[pervasive] type id = typeBody 

The typeBody is one of: 

a. typeDefn 
b. forward 

A typeDeclaration gives a name to a type. The type name can subse­
quently be used in place of the full type definition. A named type is 
equivalent to the type that it names (except when exported, see "Type 
Equivalence and Assignability"). 

Named types may optionally be declared pervasive. Type names 
declared using pervasive are automatically imported into all subscopes of 
the scope in which they are declared. Such types need not be explicitly 
imported. 

Form (b) declares a forward type. A forward type declares a type 
name whose definition will be given in a later type declaration in the scope. 
A forward type can be used only as the element type of a collection until its 
real type definition is given. This allows the declaration of collections 
whose elements contain pointers to other elements in the collection. 

A typeDefn is one of the following: 

a. standardType 
b. manifestConstant .. manifestExpn 
c. [packed] array indexType of typeDefn 
d. set of baseType 
e. [packed] recordType 
f. pointerType 
g. namedType 

The standardTypes are: 



Signedlnt 

Unsignedlnt 

Longlnt 

Shortlnt 

Boolean 
Char 
Storage Unit 

AddressType 

TYPES AND TYPE DECLARATIONS 251 

- signed integer, implementation 
defined range (at least -32768 .. 32767) 

- unsigned integer, implementation 
defined range (at least 0 .. 65535) 

- signed integer, implementation 
defined range (typically 32 bits) 

- unsigned integer, implementation 
defined range (typically a byte) 

- values are "true" and "false" 
- single character 
- no operations or literals, smallest 

addressable memory unit (typically a byte) 
- implementation defined integer range 

The standard types and the constants true and false are implicitly 
declared pervasive in the global scope and need not be imported. 

Form (b) is a subrange type. The leading constant must be a (possibly 
negated) literal or manifest named constant and gives the lower bound of 
the range of values of the type. The expression, which must be manifest, 
gives the upper bound of the range. The bounds must be both integer 
values or both character values. The lower bound must be less than or 
equal to the upper bound. 

A scalar type is a subrange, pointer or one of the standard types. 

Form (c) is an array type. The indexType must be a subrange type, 
Char or a named type which is an indexType. The indexType gives the 
range of subscripts. The typeDefn gives the type of the elements of the 
array. 

Elements of an array variable are referenced using subscripts (see 
"Variables and Constants") and themselves used as variables. Array vari­
ables and constants may be assigned (but not compared) as a whole. 

Arrays can be packed, which allows the compiler to pack the elements 
more efficiently. The type of string literals is "packed array 1..n of Char" 
where n is the length of the string. 

Form (d) is a set type. The baseType of the set must be a subrange of 
integer with lower bound 0 or a namedType which is a baseType. An 
implementation may limit the upper bound of a set type to insure efficient 
code; this limit will be at least 15. 

A recordType is: 

record 
var id : typeDefn 
{var id : typeDefn} 

end record 



252 SPECIFICATION OF CONCURRENT EUCLID 

Variables declared using a record type have the fields given by the 
variable declarations in the recordType. Fields of a record variable may be 
referenced using the . operator (see "Variables and Constants") and them­
selves used as variables. Record variables may be assigned (but not com­
pared) as a whole. 

The variable declarations in a record type must not have initial values 
and cannot be declared using register or at clauses. 

Records can be packed, which allows the compiler to pack the ele­
ments more efficiently. 

A pointerType is: 

~ collection Id 

Variables declared using a pointerType are pointers to dynamically 
allocated and freed elements of the specified collection; see "Collections". 
Pointer variables are used as subscripts of the specified collection to select 
the element to which they point. The selected element can be used as a 
variable. Pointer variables may be assigned, compared for equality and 
passed as parameters. 

A named Type is: 

l!noduleld .] typeld 

The typeld must be a previously declared type name. Type names 
exported from a module are referenced outside the module using the . 
operator. 

TYPE EQUIVALENCE AND ASSIGNABILITY 
Two types are defined to be equivalent if they are 

(a) subranges with equal first and last values 
(b) arrays (both packed or both unpacked) with 

equivalent index types and equivalent component types 
(c) sets with equivalent base types 
(d) pointers to the same collection 

A declared type identifier is equivalent to the type it names, with the 
following exception. When an exported type identifier is used outside its 
module, as "moduleld.typeld", it is a unique type, equivalent to no other 
type. 

Each type definition for a record type creates a new type that is not 
equivalent to any other record type definition. 



COLLECTIONS 253 

An array value can be assigned to an array variable, a record value 
assigned to a record variable, a set value assigned to a set variable and a 
pointer value assigned to a pointer variable only if the source and target of 
the assignment have equivalent types. 

An expression can be assigned to a scalar variable only if (i) the "root" 
type of the expression and the "root" type of the variable are equivalent, 
and (ii) the value of the expression is in the range of the variable's type. 
The "root" type of Char and character subrange types is Char. The root 
type of Signedlnt, Unsignedlnt, Longlnt, Shortlnt, AddressType and 
integer subranges is integer. The root type of any other type is the type 
itself. 

A variable can be passed to a reference parameter only if its type is 
equivalent to the parameter type. An expression can be passed to a value 
parameter only if it is assignable to the parameter type; see "Procedures and 
Functions". 

VARIABLE BINDINGS 

A variableBinding is one of: 

a. bind [register) [var) id to variable 
b. bind ( [register) [var) id to variable 

{, [register) [var) id to variable} ) 

A variableBinding declares a new identifier for an arbitrary variable 
reference which may contain subscripts and . operators. The new identifier 
is subsequently used in place of the variable reference within the scope in 
which the binding appears. If the bound variable is to be assigned to or 
passed to a var parameter, the binding must be declared using "var". SE 
does not allow "aliasing" of variables (i.e., having two names for the same 
variable in a scope). Hence the "root" variable (the first identifier in the 
variable reference) becomes inaccessible for the scope of the binding. 

Form (b) allows bindings to different elements or fields of the same 
variable or module. Since SE does not allow aliasing of variables, bindings 
to the same field, element or variable are not allowed. 

Local binds in procedures and functions may optionally be declared 
register. This is a hint to the compiler to attempt to allocate the bind to a 
register. 

Elements of packed arrays and fields of packed records cannot be 
bound to. 



254 SPECIFICATION OF CONCURRENT EUCLID 

COLLECTIONS 
A collectionDeclaration is: 

var id : collection of typeDefn 

A collection is essentially an array whose elements are dynamically 
allocated and freed at run-time. Elements of a collection are referenced by 
subscripting the collection name with a variable of the collection's pointer 
type. This subscripting selects the particular element of the collection 
located by the pointer variable. 

Elements of a collection are allocated and freed dynamically by calls to 
the built-in operations New and Free. "C.New(p)" allocates a new element 
in the collection C and sets p to point at it. If no more space is available 
then p is set to "C.nil". "C.Free(p)" frees the element of C pointed at by p 
and sets p to "C.nil". In each case p is passed as a var parameter and must 
be a variable of the pointer type of C. These operations are invoked as 
statements in procedures, see "Statements". They cannot be used in func­
tions. 

The built-in constant "C.nil" is the null pointer value for the collec­
tion. 

Collections themselves cannot be assigned, compared or pas~ed as 
parameters. 

PROCEDURES AND FUNCTIONS 
A procedureDeclaration is: 

procedure id [( [var] id : parameterType 
{, [var] id : parameterType} ) ] = 

procedure Body 

A functionDeclaration is: 

function id [ ( id : parameterType 
{, id : parameterType} ) ] 

returns id : resultType = 
procedure Body 

A procedure is invoked· by a procedure call statement, with actual 
parameters if required. A function is invoked by using its name, with 
actual parameters if required, in an expression. 

A procedure may return explicitly by executing a return statement or 
implicitly by reaching the end of the procedure body. A function must 
return via "return(expn)". 

Procedures and functions may optionally take parameters, the types of 
which are defined in the header. The parameters can be referred to inside 



PROCEDURES AND FUNCTIONS 255 

the procedure or function using the names declared in the header. Parame­
ters to a procedure may be declared using var, which means the parameter 
may be assigned to or further passed as a var parameter inside the pro­
cedure. Parameters declared without using var are constants and cannot be 
assigned to or passed as var parameters. Functions are not allowed to have 
any side-effects and cannot have var parameters. Only variable references 
can be passed to var parameters. 

A parameter is a reference parameter if it is declared using "var" or if 
its type is an array or record. Other parameters are value parameters. 
Hence, a value parameter is a non-var parameter whose type is a scalar or 
set. 

A parameterType is one of: 

a. typeDefn 
b. [packed] array manifest Constant .. parameter of 

typeDefn 
c. universal 

The type of a variable, record or array passed to a reference parameter 
must be equivalent to the parameter's type with the following exceptions. 
(1) The upper bound of the index type of an array parameter can be 
declared using the keyword parameter in which case any array whose ele­
ment type and index type lower bound are equivalent to the parameter's 
can be passed to the parameter. (2) The type of a parameter can be 
specified as universal, in which case a variable or non-manifest named con­
stant of any type can be passed to the parameter. Inside the procedure, a 
universal parameter is equivalent to a parameter of type array l..parameter 
of StorageUnit, where the upper bound is the size of the actual parameter 
in StorageUnits. Parameters declared using parameter or universal do not 
have the ".size" standard component and cannot be assigned or compared as 
a whole. (Note: Full Euclid does not allow forms (b) and (c).) 

The type of an expression passed to a value parameter must be assign­
able to the parameter's type. 

SE does not allow "aliasing" of variables (i.e., having two names for a 
given variable or part of a given variable in the same scope). Hence a vari­
able or part of a variable which is imported directly or indirectly into a pro­
cedure cannot be passed to a reference parameter of the procedure. (A 
variable is directly imported if it appears in the procedure's import list. It is 
indirectly imported if an imported module or procedure directly or 
indirectly imports it.) 

Elements of packed arrays and fields of packed records cannot be 
passed to reference parameters. 

The returns clause defines the result type of a function. The return 
identifier is required for compatibility with full Euclid but cannot be 



256 SPECIFICATION OF CONCURRENT EUCLID 

referenced. 

A resu/tType is one of: 

a. standardType 
b. manifestConstant .. manifestExpn 
c. set of baseType 
d. pointerType 
e. namedType 

The result type of a function must be a scalar type or set. The expres­
sion in a function's return statement must be assignable to the result type. 

A procedureBody is: 

[imports ([var] id{, [var] id})] 
begin 

[[not] checked] 
{ declarationlnRoutine} 
{statement} 

end [id] 

The identifier following the end must be the procedure or function 
identifier. If the procedure is the initially procedure of a module then the 
end identifier must not be present. 

The imports clause of a procedure or function specifies those global 
identifiers which are to be visible inside the procedure or function. Only 
those variables imported into a procedure using var may be assigned to or 
passed to a var parameter inside the procedure. Functions are not allowed 
to have side-effects and cannot import anything var. This restriction is 
transitive; hence a function cannot import a procedure which imports any­
thing var. A procedure or function which is recursive must explicitly 
import itself. 

Procedures and functions may be checked; this causes assert state­
ments, subscripts and case statements to be checked for validity at run­
time. In addition, a particular implementation may check other conditions, 
such as ranges in assignments and overflow in expressions. Procedures and 
functions not nested inside an unchecked module are checked by default 
and must be explicitly declared not checked to turn off run-time checking. 

A procedure returns when it executes a return statement or reaches 
the end of the procedure. A function is executed similarly but must return 
via return (expn). 

Procedures and functions can be separately compiled; see "Separate 
Compilation". 

A declarationlnRoutine is one of: 

a. constantDeclaration 



STATEMENTS 257 

b. variableDeclaration 
c. typeDeclaration 
d. variableBinding 
e. collectionDeclaration 
f. converterDeclaration 
g. assert [(expn)] 

Modules, procedures and functions cannot be nested inside a pro­
cedure or function. Form (g) allows assert statements to appear in declara­
tion lists. 

TYPE CONVERTERS 

A converterDec/aration is: 

converter id ( typeld ) returns typeld 

A converterDeclaration declares a type converter. A type converter 
can be used to convert a variable or nonmanifest named constant to a type 
other than its declared type. Both the parameter and result type of a type 
converter must be named or standard types. An implementation is not 
expected to generate any code for a type conversion. 

The type of a converted variable or constant must be equivalent to the 
converter's parameter type. Expressions, literals, manifest values, elements 
of packed arrays and fields of packed records cannot be type converted. 

If the size of the target type is larger than the size of the source type, 
or the alignment of the target type is more constrained than the alignment 
of the source type, then the conversion may be meaningless. 

STATEMENTS 

A statement is one of: 

a. variable : = expn 
b. [moduleld.] procedureld [( expn {, expn} )] 
c. assert [ (expn)] 
d. return [ (expn)] 
e. if expn then 

{statement} 
{elseif expn then 

{statement}} 
[else 

{statement}] 
end if 

f. loop 
{statement} 

end loop 



258 SPEC/FICA TION OF CONCURRENT EUCLID 

g. exit [when expn] 
h. case expn of 

manifestExpn {, manifestExpn} = > 
{statement} 
end manifestExpn 

{manifestExpn {, manifestExpn} = > 
{statement} 
end manifestExpn} 

[otherwise = > 
{statement}] 

end case 
i. begin 

end 

{ declarationlnRoutine} 
{statement} 

j. collectionld . New ( variable ) 
k. collectionld . Free ( variable ) 

Form (a) is an assignment statement. The expression is evaluated 
and the value assigned to the variable. The expression must be assignable 
to the variable type; see "Type Equivalence and Assignability". 

Form (b) is a procedure call. An exported procedure is called outside 
the module in which it was declared using the . operator. 

The type of an expression passed to a value parameter must be assign­
able to the parameter's type. The type of a variable or value passed to a 
reference parameter must be equivalent to the parameter's type. If the 
upper bound of the type of an array parameter is declared using parameter, 
any array whose element type and index type lower bound are equivalent to 
the parameter's can be passed to the parameter. 

An actual parameter passed to a var parameter must be a variable, a 
bound variable or a var formal parameter. If it is an imported variable, it 
must have been imported using var. Since SE does not allow aliasing of 
variables, a variable or part of a variable which is passed to a reference 
parameter cannot be passed to another reference parameter of the same 
call. 

Form (c) is an assert statement. The parenthesized expression is 
optional; if it is omitted, it can be replaced by a comment. If present, it 
must be of type Boolean. The expression is evaluated and checked at run 
time if it appears in a checked scope. Assert statements may appear in both 
statement lists and declaration lists. They cannot appear inside records. 

Form (d) is a return statement. The return statement causes an 
immediate return from the procedure or function when executed. The 
optional parenthesized expression gives the value to be returned from a 
function. The return expression must be assignable to the function's result 
type. The return expression is required for function returns. It is 



VARIABLES AND CONSTANTS 259 

forbidden for procedure returns. A function must return via a return state­
ment and not implicitly by reaching the end of the function body. A pro­
cedure may return either via a return statement or implicitly by reaching 
the end of the procedure body. 

Form (e) is an if statement. The conditional expression following if 
and each elseif is evaluated until one of them is found to be true, in which 
case the statements following the corresponding then are executed. If none 
of the expressions evaluates to true then the statements following else are 
executed; if no else is present then execution continues following the if 
statement. The conditional expressions must be of type Boolean. 

Form (f) is the looping construct. The statements within the loop are 
repeated until one of its exit statements or a return statement is executed. 

Form (g) is a loop exit. When executed, it causes an immediate exit 
from the nearest enclosing loop. The optional when expression makes the 
exit conditional. If the expression, which must be Boolean, evaluates to 
true then the exit is executed, otherwise execution of the loop continues. 
An exit statement cannot appear outside a loop. 

Form (h) is a case statement. The case expression is evaluated and 
used to select one of the alternative labels. The statements which follow 
the matching label value are executed. If the case expression value does 
not match any of the label values then the statements following otherwise 
are executed. If no otherwise is present, the case expression must match 
one of the label values. When execution of the statements following the 
selected label is completed, execution continues following the case state­
ment. 

The root type of the case expression must be integer or Char. All of 
the label expressions must have the same root type as the case expression. 
Label expressions must be manifest, i.e., their values must be known at 
compile time. The values of all label expressions in a given case statement 
must be distinct. The value of the manifest expression following the end of 
an alternative must be equal to the first label expression of the alternative. 

An implementation may limit the range of case label expression 
values to insure efficient code; this range will include at least the ranges of 
Char and Shortlnt. -

Form (i) is a begin block. Begin blocks can be used to group local 
declarations within a procedure or function. In particular, they can be used 
to make local binds. 

Forms G) and (k) are the built-in collection operations New and Free 
(see "Collections"). 



260 SPECIFICATION OF CONCURRENT EUCLID 

VARIABLES AND CONSTANTS 
A variable is: 

[moduleld .] id {componentSelector} 

The syntax for variables includes variable and constant references. 
An exported variable or constant is referenced outside the module in which 
it is declared using the . operator. 

A componentSelector is one of: 

a. ( expn) 
b. . id 

Form (a) allows subscripting of variable and constant arrays. The 
type of the subscript expression must be assignable to the index type of the 
array. The value of the subscript expression must be in the declared range 
of the index type of the array. Subscripts which appear in checked scopes 
are checked for validity at run-time. 

Form (a) also allows references to elements of a collection. In this 
case, the subscript expression must be a pointer to an element of the collec­
tion. 

Form (b) allows record field selection. Fields of a record variable are 
referenced using the . operator. 

Form (b) also allows standard component references (see "Standard 
Components"). 

EXPRESSIONS 

An expn is one of the following: 

a. variable 
b. literalConstant 
c. setTypeld ( elementList ) 
d. collectionld . nil 
e. [moduleld .] functionld [ ( expn {, expn} ) ] 
f. [moduleld .] converterld ( expn) 
g. ( expn) 
h. - expn 
i. expn arithmeticOperator expn 
j. expn comparisonOperator expn 
k. not expn 
1. expn booleanOperator expn 
m. expn setOperator expn 



EXPRESSIONS 261 

The arithmeticOperators are +, -, * (multiply), div (truncating 
integer divide) and mod (integer remainder). The mod operator is defined 
by "x mod y = x - y*(x div y)". Operands of the arithmetic operators and 
unary minus must be integers or expressions having root type integer. The 
arithmetic operators yield an integer result. (Note: +, - and * are also set 
operators; see below.) 

The comparisonOperators are <, >, =, < =, > = and "not =". 
Operands of comparison operators must either have equivalent types or the 
same root type; see "Type Equivalence and Assignability". The comparison 
operators yield a Boolean result. Arrays and records cannot be compared. 
Sets and Boolean expressions can be compared for equality only. (Note: 
< = and > = are also set operators; see below.) 

The booleanOperators are and (intersection), or (union) and -> 
(implication). The Boolean operators and the not operator take Boolean 
operands and yield a Boolean result. The Boolean operators are condi­
tional; that is, if the result of the operation can be determined from the 
value of the first operand then the second operand is not evaluated. 

The set operators are + (set union), - (set difference), * (set inter­
section), < = and > = (set inclusion), and in and not in (element con­
tainment). The set operators +, - and * take operands of equivalent set 
types and yield a set result. The set operators < = and > = take operands 
of equivalent set types and yield a Boolean result. The operators in and not 
in take a set as right operand and an integer expression as left operand. 
They yield a Boolean result. 

The order of precedence is among the following classes of operators 
(most binding first): 

1. unary -
2. *,div, mod 
3. +, -
4. 
5. 
6. 
7. 
8. 

<, >, =, < =, >=,not =,in, not in 
not 
and 
or 
-> 

Expression form (a) includes references to constants and variables 
including elements of arrays and collections, fields of records, and constants 
and variables exported from a module. 

Form (b) includes integer, character and string literal constants. 

Form (c) is a set constructor. The setTypeld must be the name of a 
set type. The set constructor returns a set containing the specified ele­
ments. 



262 SPECIFICATION OF CONCURRENT EUCLID 

An elementList is one of: 

a. [expn {, expn}] 
b. all 

The element list is a (possibly empty) list of expressions of the base 
type of the set, or all. If all is specified, the constructor returns the com­
plete set. If no elements are specified, the constructor returns the empty 
set. 

Expression form (d) is the null pointer value of the specified collec-
ti on. 

Form (e) is a function call. Functions exported from a module are 
referenced outside the module using the . operator. An actual parameter to 
a function must be an expression assignable to the parameter type. 

Form (f) is a type conversion. The type of the actual parameter is 
changed to the result type of the type converter. The actual parameter 
must be a variable or nonmanifest named constant whose type is equivalent 
to the source type of the converter. Type converters exported from a 
module are referenced outside the module using the . operator. 

BUILT-IN FUNCTIONS 

SE has three built-in functions, Chr, Ord and Long. "Chr(i)" returns 
the character whose machine representation is the positive integer value i. 
"Ord(c)" returns the positive integer machine representation of the charac­
ter c. Chr and Ord are defined such that for all characters "c" in the 
machine character set, Chr(Ord(c)) = c. "Long(i)" forces the integer 
expression i to be extended to Longlnt precision; see "Precision of Arith­
metic". (Note: In full Euclid, the Ord built-in function is called 
"Char.Ord".) 

STANDARD COMPONENTS 

SE defines two standard components, size and address. "T.size" returns 
the length in StorageUnits (typically bytes) of the machine representation 
of the variable or type T. "V.address" returns the AddressType machine 
address of the variable V. The size and address standard components are 
not allowed for elements of packed arrays and fields of packed records. The 
address standard component is not allowed for variables declared register. 



PRECISION OF ARITHMETIC 263 

MANIFEST EXPRESSIONS 

A manifest expression is an expression whose value can be computed 
as a literal constant at compile time. The extent of such compile-time com­
putation is implementation dependent, but every implementation will con­
sider at least the following to be manifest: 

1. Integer and Char literal constants 
2. The Boolean values "true" and "false" 
3. Manifest named constants 
4. The arithmetic operations unary -, +, -, *, div 

and mod when both operands are manifest and both 
the operands and result lie in the range of 
Signedlnt (at least -32768 .. 32767) 

5. The built-in functions Chr and Ord when 
the actual parameter is manifest 

A manifestExpn is an expression whose value is manifest. A mani­
festConstant is a (possibly negated) literal constant or manifest named con­
stant. 

PRECISION OF ARITHMETIC 

The precision of an arithmetic operation or comparison is determined 
by the precision of the operands. Operands have one of three precisions 
which correspond to the standard types Signedlnt, Unsignedlnt and Lon­
glnt. 

The precision of a variable or non-manifest named constant operand is 
determined by its declared type. If its type is Signedlnt, Shortlnt or any 
subrange whose bounds both lie in the range of Signedlnt then its operand 
precision is Signedlnt. If its type is Unsignedlnt or any subrange whose 
bounds both lie in the range of Unsignedlnt but not in Signedlnt then its 
precision is Unsignedlnt. Otherwise, its precision is Longlnt. 

The precision of a literal or manifest named constant operand is Sig­
nedlnt if its value lies in the range of Signedlnt, Unsignedlnt if its value 
lies in the range of Unsignedlnt but not of Signedlnt, and Longlnt other­
wise. 

The precision of an arithmetic operation or comparison is Longlnt if 
at least one operand has Longlnt precision, Unsignedlnt if at least one 
operand has Unsignedlnt precision and neither has Longlnt precision, and 
Signedlnt otherwise. 

The precision of the result of an arithmetic operation is the precision 
of the operation. Every implementation will guarantee to obtain the arith­
metically correct result if the result of an operation lies within the range of 
the result precision. If the arithmetically correct result lies outside the 



264 SPECIFICATION OF CONCURRENT EUCLID 

range of the result precision then the result may be meaningless. 

Note that the precision of an operation or comparison can always be 
forced to Longlnt by extending the precision of one or both of the operands 
using the Long built-in function (see "Built-in Functions"). 

SOURCE INCLUSION FACILITY 
Other source files may be included as part of a program using the 

include statement. 

An includeStatement is: 

include stringLiteral 

The stringLiteral gives the name of a source file to be included in the 
compilation. The include statement is replaced in the program source by 
the contents of the specified file. 

Include statements can appear anywhere in a program and can contain 
any valid source fragment. Included source files can themselves contain 
include statements. 

CONCURRENCY FEATURES 
The Concurrent Euclid (CE) language is an extension of SE designed 

to allow concurrent programming with monitors. SE is a subset of Euclid 
but CE is not, because concurrency and monitors are not features of Euclid. 

The concurrency features of CE will be presented in the following 
order: 

(1) processes, reentrant procedures and modules; 
(2) monitors, entry procedures and functions; 
(3) conditions, signalling and waiting; 
(4) simulation and the busy statement. 

PROCESSES 
Each CE module (including the main module) can have any number 

of concurrent processes in it. 

A moduleDeclaration is: 

var id: 
module 

[imports ( [var] id {, [var] id} ) ] 



[exports ( id {, id} ) ] 
[[not] checked] 
{declaration In Module} 
[initially 

procedure Body] 
{process id [ (memory Requirement ) ] 

procedure Body} 
end module 

MONITORS 265 

Each process is like a parameterless procedure. Concurrent execution 
of the processes of the module begins following execution of the initially 
procedure of the module. A process terminates by executing its last state­
ment or by executing a return statement in its body. The process identifier 
is for documentation only since processes cannot be called. 

Processes can communicate with each other by changing and inspect­
ing variables declared in the module or imported into it. Generally, how­
ever, processes communicate by means of monitors. 

Each process requires a certain amount of memory space for its vari­
ables. When the process calls a procedure or function, the requirement 
increases to provide space for the new local variables. When the procedure 
or function returns, the requirement decreases to its former amount. The 
programmer can provide his own estimate of the process's required space as 
a parenthesized manifest integer expression following the keyword process. 
This estimate is in Storage Units (normally bytes) and can be based on pre­
vious program executions. If this estimate is omitted, the implementation 
provides a default space allocation. 

All procedures and functions declared in a CE program are reentrant, 
meaning that they can be executed simultaneously by more than one pro­
cess. 

Modules, monitors, procedures and functions cannot be nested inside 
a process. 

MONITORS 
A monitor is essentially a special kind of module which implements 

inter-process communication with synchronization. 

A declarationlnModule is one of the following: 

a. constantDeclaration 
b. variableDeclaration 
c. typeDeclaration 
d. variableBinding 
e. moduleDeclaration 
f. monitorDeclaration 



266 SPECIFICATION OF CONCURRENT EUCLID 

g. collectionDeclaration 
h. procedureDeclaration 
i. functionDeclaration 
j. converterDeclaration 
k. assert [ ( expn ) ] 

Monitors may only be declared inside modules. Monitors cannot be 
nested inside procedures, functions or other monitors. 

A monitorDeclaration is: 

var id: 
monitor 

[imports ( [var] id{, [var] id})] 
[exports ( id {, id} ) ] 
Unotl checked] 
{ declarationlnMonitor} 
[initially 

procedure Body] 
end monitor 

The imports list of a monitor specifies the global identifiers which are 
accessible inside the monitor, exactly like the imports list in a module. 

The exports list of a monitor specifies those identifiers defined inside 
the monitor which may be accessed outside the monitor using the . opera­
tor. Unlike modules, monitors cannot export variables. 

Procedures and functions which are exported from a monitor are 
called monitor entries. Entry procedures and functions of a monitor cannot 
be invoked inside the monitor. Outside the monitor, entry procedures and 
functions can be invoked exactly like the procedures and functions of a 
module, using the . operator. 

Procedures and functions which are entries of a monitor cannot be 
separately compiled except as part of the entire monitor. 

It is guaranteed that only one process at a time will be executing 
inside a monitor. As a result, mutually exclusive access to a monitor's 
variables is implicitly provided, since a monitor cannot export any variables. 
If a process calls an entry of a monitor while another process is executing in 
the monitor, the calling process will be blocked and not allowed in the 
monitor until no other process is executing in the monitor. 

A declarationlnMonitor is one of the following: 

a. constantDeclaration 
b. variableDeclaration 
c. typeDeclaration 
d. variableBinding 
e. conditionDeclaration 



CONDITIONS 267 

f. collectionDeclaration 
g. procedureDeclaration 
h. functionDeclaration 
i. converterDeclaration 
j. assert [ ( expn ) ] 

Modules and monitors cannot be declared inside a monitor. A moni­
tor cannot contain a nested process. 

Monitors can be separately compiled; see "Separate Compilation". 

CONDITIONS 

A conditionDeclaration is one of: 

a. var id : [priority] condition 
b. var id : array indexType of [priority] condition 

The only place a condition can be declared is as a field of a monitor. 
The only allowed use of conditions is in the wait and signal statements and 
in the "empty" built-in function. Conditions cannot be assigned, compared 
or passed as parameters. Arrays of conditions are allowed. Conditions may 
be imported var (or not). An imported condition can be used in a wait or 
signal statement only if it is imported var. 

Two new statements are introduced: 

wait ( conditionVar [, priorityValue] ) 
signal ( conditionVar) 

Where a condition Var is: 

conditionld [( expn ) ] 

The wait and signal statements each specify a conditionVar. Each of 
these must be a conditionld or a subscripted condition array. These state­
ments can appear only in monitors, but not in a monitor's initially pro­
cedure. 

When a process executes a wait statement for condition C it is 
blocked and is removed from the monitor. When a process executes a sig­
nal statement for condition C, one of the processes (if there are any) wait­
ing for condition C is unblocked and allowed immediately to continue exe­
cuting the monitor. The signalling process is temporarily removed from the 
monitor and is not allowed to continue execution until no processes are in 
the monitor. If no processes were waiting for condition C, the only effect 
of the signal statement is that the signalling process may be removed from 
the monitor. The signalling process cannot in general know whether other 
processes have entered the monitor before the signaller continues in the 



268 SPECIFICATION OF CONCURRENT EUCLID 

monitor. 

If the condition variable is declared with the priority option, the wait 
statement must specify a priority value; otherwise the priority value is not 
allowed in wait. The priority Value is a Signedlnt expression that must 
evaluate to a nonnegative integer value. The processes waiting for a prior­
ity condition are ranked in order of their specified priority values, and the 
process with the smallest priority value is the first to be unblocked by a sig­
nal statement. 

In the case of processes waiting for non-priority conditions, or waiting 
with identical priorities for a priority condition, the scheduling is "fair", 
meaning that a particular waiting process will eventually be unblocked given 
enough signals on the condition. 

A predefined function named "empty" accepts a condition as a param­
eter. It returns the Boolean value "true" if no processes are waiting for the 
condition, otherwise "false". Like wait and signal, "empty" can appear only 
inside a monitor, but not in the initially procedure of a monitor. 

The variables in a monitor represent its state. For example, if a mon­
itor allocates a single resource, only one variable inside the monitor is 
needed and it can be declared as Boolean. When this variable is true, it 
represents the state in which the resource is available, when false it 
represents the state of being allocated. When a process enters the monitor 
and finds that it does not have the desired state, the process leaves the 
monitor and becomes blocked by executing a wait statement on a condi­
tion. The condition corresponds to the state that the process is waiting for. 
Suppose a process enters a monitor and changes its state to a state that may 
be waited for by other processes. The process should execute a signal 
statement for the condition corresponding to the new state. If there are 
processes waiting for this state transition, then they will be blocked on the 
condition, and one of them will immediately resume execution in the moni­
tor. Because of this immediate resumption, the signalled process knows the 
monitor is in the desired state, without testing monitor variables. The sig­
nalling process is allowed to continue executing only when no other 
processes are in the monitor. If no processes were waiting on the condi­
tion, the only effect of the signal statement is to temporarily remove the 
signaller from the monitor. 

As specified by Hoare, monitors and conditions are intended to be 
used in the following manner. The programmer should associate with the 
monitor's variables a consistency criterion. The consistency criterion is a 
Boolean expression that should be true between monitor activations, or 
whenever a process enters or leaves a monitor. Hence, the programmer 
should see that it is made true before each signal or wait statement in the 
monitor and before each return from an entry of the monitor. The pro­
grammer should also associate a Boolean expression, call it Ei, with each 
condition Ci. The expression Ei should be true whenever a signal is 



EXTERNAL DECLARATIONS 269 

executed for condition Ci. A process that is unblocked after waiting for a 
condition knows that Ei is true because the signalled process (not the sig­
nalling process) executes first. (The consistency criterion and each Ei for a 
condition do not necessarily appear as executable code in the monitor.) In 
general, when a process changes the monitor's state so that one of the 
awaited relations Ei becomes true, the corresponding condition Ci should 
be signalled. 

THE BUSY STATEMENT 

A statement is introduced to allow simulation using timing delays: 

busy (time) 

The time must be a nonnegative Signedlnt expression. The busy 
statement can be understood in terms of simulated time recorded by a sys­
tem clock. This clock is set to zero at the beginning of execution of a pro­
gram. With the exception of the busy statement (or wait statements caus­
ing an indirect delay for a busy statement), statements take negligible simu­
lated time to execute. When the programmer wants to specify that a certain 
action takes time to complete, the busy statement is used. The process that 
executes the busy statement is delayed until the system clock ticks (counts 
off) the specified number of time units. 

SEPARATE COMPILATION 

This section describes the extensions made to CE to allow separate 
compilation of procedures, functions, modules and monitors. 

EXTERNAL DECLARATIONS 

Procedures, functions, modules and monitors may be declared "exter­
nal", which means that they are to be separately compiled and joined with 
the program at link time. Due to linker restrictions, a particular implemen­
tation may be forced to place a limit on the number of significant characters 
in external module, monitor, procedure and function identifiers. 

An externa/ProcedureDeclaration is: 

procedure id [ ( [var] id : parameterType 
{, [var] id : parameterType} ) ] 

external 

An externa/FunctionDeclaration is: 



270 SPECIFICATION OF CONCURRENT EUCLID 

function id [ ( id : parameterType 
{, id : parameterType} ) ] 

returns id : resultType = 
external 

An externa/ModuleDeclaration is: 

var id: 
external module 

[imports ( [var] id{, [var] id})] 
[exports ( id {, id} ) ] 
{ declarationlnExternalModule} 

end module 

A declarationlnExterna/Module is one of: 

a. manif estConstantDeclaration 
b. typeDeclaration 
c. collectionDeclaration 
d. converterDeclaration 
e. externalProcedureDeclaration 
f. externalFunctionDeclaration 

An externa/MonitorDeclaration is: 

var id: 
external monitor 

[imports ( [var] id {, [var] id} ) ] 
[exports ( id {, id} ) ] 
{ declarationlnExternalMonitor} 

end monitor 

A declarationlnExterna/Monitor is one of: 

a. manifestConstantDeclatation 
b. typeDeclaration 
c. collectionDeclaratiort 
d. converterDeclaration 
e. externalProcedureDeclaration 
f. externalFunctionDeclaration 

An external declaration can appear in place of the real declaration and 
specifies that the corresponding procedure, function, module or monitor is 
to be compiled separately. 

Processes and initially procedures of modules cannot be declared 
external. Procedures and functions which are entries of a monitor cannot 



LINKING OF COMPILATIONS 271 

be declared external except as part of an external monitor declaration. 
Nonmanifest and array named constants cannot be declared in an external 
module or monitor. 

COMPILATIONS 

A compilation can consist of a main program (see "Programs") or a 
separate compilation. 

A separateCompilation is: 

{separateDeclaration} 

Each separateDeclaration is one of the following: 

a. manifestConstantDeclaration 
b. typeDeclaration 
c. collectionDeclaration 
d. converterDeclaration 
e. procedureDeclaration 
f. f unctionDeclaration 
g. moduleDeclaration 
h. monitorDeclaration 

Each separateDeclaration can be a manifest constant declaration, a 
type declaration, a collection declaration, a converter declaration, a pro­
cedure or function declared as external in another compilation, or a module 
or monitor declared as external in another compilation. 

Separately compiled procedures, functions, modules and monitors can 
be linked to form a complete program. Variables cannot be separately com­
piled and are not linked across compilations. Consistency of constants, 
types and collections is not automatically checked across compilations. 
Consistency of the type and number of formal parameters and function 
results between the external declaration and the separate compilation of 
separately compiled procedures and functions is not automatically checked. 

Separately compiled modules and monitors will be initialized at the 
point of the corresponding external declaration. Note that since execution 
of a program consists of initializing the main module (see "Programs"), only 
those modules and monitors which are declared in the main module or a 
module nested within it will be initialized. 



272 SPECIFICATION OF CONCURRENT EUCLID 

LINKING OF COMPILATIONS 
A complete program will typically consist of a main module compila­

tion linked together with the separate compilations of any procedures, func­
tions, modules and monitors declared as external in it. The compilations 
must be linked such that the entry point of the program is the beginning of 
the main module compilation. (Under many systems, this means simply 
that the main module compilation must be the first in the list of object 
modules to be linked together.) 

COLLECTED SYNTAX OF CONCURRENT EUCLID 
The syntax of SE is given first. Throughout the following, {item} 

means zero or more of the item, and ~tern] means the item is optional. 

The following abbreviations are used: 

id for identifier 
expn for expression 
typeDefn for typeDefinition 

Semicolons are not required, but they may optionally appear following 
statements, declarations and import, export and checked clauses. 

A program is : 

module Declaration 

A moduleDeclaration is: 

var id : 
module 

[imports ([var] id{, [var] id})] 
[exports (id {, id} ) ] 
[[not] checked] 
{declaration Jn Module} 
[initially 

procedure Body] 
end module 

A declarationlnModule is one of the following: 

a. constantDeclaration 
b. variableDeclaration 
c. typeDeclaration 
d. variableBinding 
e. moduleDeclaration 
f. collectionDeclaration 
g. procedureDeclaration 



COLLECTED SYNTAX OF CONCURRENT EUCLID 273 

h. functionDeclaration 
i. converterDeclaration 
j. assert [ ( expn ) ] 

A constantDeclaration is one of: 

a. [pervasive] const id : = manifestExpn 
b. [pervasive] const id : typeDefn : = expn 
c. [pervasive] const id : typeDefn : = 

( manifestExpn {, manifestExpn} ) 
d. [pervasive] const id : = stringLiteral 

A manifestExpn is: 

expn 

A variableDeclaration is: 

[register] var id [ ( at manifestExpn ) ] : typeDefn 
[:= expn] 

A typeDeclaration is: 

[pervasive] type id = typeBody 

The typeBody is one of: 

a. typeDefn 
b. forward 

A typeDefn is one of the following: 

a. standardType 
b. manifestConstant .. manifestExpn 
c. [packed] array indexType of typeDefn 
d. set of baseType 
e. [packed] recordType 
f. pointerType 
g. namedType 

A standardType is one of: 

a. Signedlnt 
b. Unsignedlnt 
c. Longlnt 
d. Shortlnt 
e. Boolean 
f. Char 
g. Storage Unit 
h. AddressType 



274 SPECIFICATION OF CONCURRENT EUCLID 

A manifestConstant is one of: 

a. [-] literalConstant 
b. [-] [moduleld] . manifestConstantld 

A manifestConstantld is: 

id 

An index Type is one of: 

a. Char 
b. manifestConstant .. manifestExpn 
c. namedType 

A baseType is one of: 

a. 0 .. manifestExpn 
b. namedType 

A recordType is: 

record 
var id : typeDefn 
{var id : typeDefn} 

end record 

A pointerType is: 

A collectionld 

A collectionld is: 

id 

A namedType is: 

[moduleld .] typeld 

A moduleld is: 

id 

A type/dis: 

id 

A variableBinding is one of: 

a. bind [register] [var] id to variable 
b. bind ( [register] [var] id to variable 

{, [register] [var] id to variable} ) 



COLLECTED SYNTAX OF CONCURRENT EUCLID 275 

A collectionDeclaration is: 

var id : collection of typeDefn 

A procedureDeclaration is: 

procedure id [( [var] id : parameterType 
{, [var] id: parameterType} )] -

procedureBody 

A functionDeclaration is: 

function id [ ( id : parameterType 
{, id : parameterType} ) ] 

returns id : resultType -
procedure Body 

A parameterType is one of: 

a. typeDefn 
b. [packed] array manifestConstant •. parameter of 

typeDefn 
c. universal 

A resultType is one of: 

a. standardType 
b. manifestConstant .. manifestExpn 
c. set of baseType 
d. pointerType 
e. namedType 

A procedureBody is: 

[imports ( [var] id{, [var] id})] 
begin 

[[not] checked] 
{ declarationlnRoutine} 
{statement} 

end [id] 

A declarationlnRoutine is one of: 

a. constantDeclaration 
b. variableDeclaration 
c. typeDeclaration 
d. variableBinding 
e. collectionDeclaration 
f. converterDeclaration 
g. assert [ (expn) 1 



276 SPECIFICATION OF CONCURRENT EUCLID 

A converterDeclaration is: 

converter id ( typeld ) returns typeld 

A statement is one of: 

a. variable : = expn 
b. [moduleld.] procedureld [ ( expn {, expn} ) ] 
c. assert [ (expn)] 
d. return [ (expn)] 
e. if expn then 

{statement} 
{elseif expn then 

{statement}} 
[else 

{statement}] 
end if 

f. loop 
{statement} 

end loop 
g. exit [when expn] 
h. case expn of 

manife.stExpn {, manifestExpn} = > 
{statement} 
end manifestExpn 

{manifestExpn {, manifestExpn} = > 
{statement} 
end manifestExpn} 

[otherwise = > 
{statement}] 

end case 
i. begin 

end 

{ declarationlnRoutine} 
{statement} 

j. collectionld . New ( variable) 
k. collectionld . Free ( variable ) 

A procedureld is: 

id 

A variable is: 

[moduleld .] id {componentSelector} 

A componentSelector is one of: 



COLLECTED SYNTAX OF CONCURRENT EUCLID 277 

a . ( expn) 
b. . id 
c. . size 
d. . address 

An expn is one of the following: 

a. variable 
b. litera!Constant 
c. setTypeld ( elementList ) 
d. collectionld . nil 
e. [moduleld .] functionld [( expn {, expn} )] 
f. [moduleld .] converterld ( expn) 
g. ( expn) 
h. - expn 
i. expn arithmeticOperator expn 
j. expn comparisonOperator expn 
k. not expn 
I. expn booleanOperator expn 
m. expn setOperator expn 

A setType is: 

id 

A elementList is one of: 

a. [expn {, expn}] 
b. all 

A functionld is one of: 

a. id 
b. Chr 
c. Ord 
d. Long 

A converterld is: 

id 

An arithmeticOperator is one of: 

a. + 
b. -
c. * 
d. div 
e. mod 



278 SPECIFICATION OF CONCURRENT EUCLID 

A comparison Operator is one of: 

a. < 
b. > 
c. 
d. <= 
e. >= 
f. not= 

A boolean()peratoris one of: 

a. and 
b. or 
c. -> 

A set()peratoris one of: 

a. 
b. 
c. 
d. 

+ 

* 
<= 

e. >= 
f. in 
g. notin 

Note: The order of precedence is among the following classes of operators 
(most binding first): 

1. unary -
2. *, div, mod 
3. +, -
4. <, >, =, < =, >=,not =,in, not in 
5. not 
6. and 
7. or 
8. -> 

An include Statement is: 

include stringLlteral 

Note: Include statements can appear anywhere in a program. 

The following changes and additions are made to form CE: 

A module Declaration is: 

var id : 
module 

[imports ( [var] id {, [var] id} ) ] 
[exports (id {,id} ) ] 



COLLECTED SYNTAX OF CONCURRENT EUCLID 279 

[[not] checked] 
{ declarationlnModule} 
[initially 

procedureBody] 
{process id [ ( memory Requirement ) ] 

procedure Body} 
end module 

A memoryRequirement is: 

manifestExpn 

A declarationlnModule is one of the following: 

a. constantDeclaration 
b. variableDeclaration 
c. typeDeclaration 
d. variableBinding 
e. moduleDeclaration 
f. monitor Declaration 
g. collectionDeclaration 
h. procedureDeclaration 
i. functionDeclaration 
j. converter Declaration 
k. assert [ ( expn ) ] 

A monitorDeclaration is: 

var id : 
monitor 

[imports ( [var] id {, [var] id} ) ] 
[exports ( id {, id} ) ] 
[[not] checked] 
{ declarationlnMonitor} 
[initially 

procedureBody] 
end monitor 

A declarationlnMonitor is one of the following: 

a. constantDeclaration 
b. variableDeclaration 
c. type Declaration 
d. variableBinding 
e. conditionDeclaration 
f. collectionDeclaration 
g. procedureDeclaration 
h. functionDeclaration 



280 SPECIFICATION OF CONCURRENT EUCLID 

i. converterDeclaration 
j. assert [ ( expn ) ] 

A conditionDeclaration is one of: 

a. var id : [priority] condition 
b. var id : array indexType of [priority] condition 

A statement is one of: 

a. variable : == expn 
b. [moduleld.] procedureld [( expn {, expn})] 
c. assert [ (expn)] 
d. return [ (expn)] 
e. if expn then 

{statement} 
{else if expn then 

{statement}} 
[else 

{statement}] 
end if 

f. loop 
{statement} 

end loop 
g. exit [when expn] 
h. case expn of 

manifestExpn {, manifestExpn} == > 
{statement} 
end manifestExpn 

{manifestExpn {, manifestExpn} == > 
{statement} 
end manifestExpn} 

[otherwise == > 
{statement}] 

end case 
i. begin 

end 

{ declarationlnRoutine} 
{statement} 

j. collectionld . New ( variable ) 
k. collectionld . Free ( variable ) 
l. wait ( conditionVar [, priorityValue] ) 
m. signal ( conditionVar) 
n. busy ( time ) 

A moduleld is: 

moduleOrMonitorld 



COLLECTED SYNTAX OF CONCURRENT EUCLID 281 

A moduleOrMonitorld is: 

id 

A condition Var is: 

conditionld [( expn)] 

A conditionld is: 

id 

A priority Value is: 

expn 

A time is: 

expn 

A functionld is one of: 

a. id 
b. Chr 
c. Ord 
d. Long 
e. empty 

The following extensions allow separate compilation of procedures, 
functions, modules and monitors: 

An externalProcedureDeclaration is: 

procedure id [( [var] id : parameterType 
{, [var] id: parameterType} )] = 

external 

An externalFunctionDeclaration is: 

function id [ ( id : parameterType 
{, id : parameterType} ) ] 

returns id : resultType = 
external 

An externa/ModuleDeclaration is: 

var id: 
external module 

[imports ( [var] id{, [var] id})] 
[exports ( id {, id} ) ] 
{ declarationlnExternalModule} 

end module 



282 SPECIFICATION OF CONCURRENT EUCLID 

A declarationlnExterna/Modu/e is one of: 

a. manifestConstantDeclaration 
b. typeDeclaration 
c. collectionDeclaration 
d. converterDeclaration 
e. externalProcedureDeclaration 
f. externalFunctionDeclaration 

An externa/MonitorDeclaration is: 

var id: 
external monitor 

[imports ( [var] id {, [var] id} ) ] 
[exports ( id {, id} ) ] 
{ declarationlnExternalMonitor} 

end monitor 

A declarationlnExterna/Monitor is one of: 

a. manifestConstantDeclaration 
b. typeDeclaration 
c. collectionDeclaration 
d. converterDeclaration 
e. externalProcedureDeclaration 
f. externalFunctionDeclaration 

Note: An external declaration can appear in place of the real declaration 
anywhere in a program. 

A manifestConstantDeclaration is: 

[pervasive] const id : = manifestExpn 
A separateCompilation is: 

{separateDeclaration} 

Each separateDeclaration is one of the following: 

a. manifestConstantDeclaration 
b. typeDeclaration 
c. collectionDeclaration 
d. converterDeclaration 
e. procedureDeclaration 
f. functionDeclaration 
g. moduleDeclaration 
h. monitorDeclaration 



KEYWORDS AND PREDEFINED IDENTIFIERS 283 

KEYWORDS AND PREDEFINED IDENTIFIERS 
The following are reserved words of Euclid. These must not be used 

as identifiers in SE and CE programs. Those which are not in the SE sub­
set are marked with an *. 

*abstraction 
*any 
begin 
case 
collection 
*decreasing 
else 
exports 
*from 

*aligned 
array 
bind 
*checkable 
const 
*default 
elseif 
*finally 
function 
include 
loop 

all 
assert 
*bits 
checked 
converter 
*dependent 
end 
*for 
if 
initially 
machine 

and 
at 
*bound 
*code 
*counted 
div 
exit 
forward 
imports 
*inline 
mod 

in 
*invariant 
not 
packed 
*pre 
return 
*thus 

of or otherwise 
parameter pervasive *post 
procedure *readonly record 
returns set then 
to type *unknown 

var when *with *xor 
The following are additional reserved words of SE and CE. These also 

must not be used as identifiers in SE and CE programs. 

busy condition empty 
priority process register 
universal wait 

monitor 
signal 

The following are predefined identifiers of Euclid. Jn general, these 
are pervasive and must not be redeclared in SE and CE programs. Those 
which are not in the SE subset are marked with an *. 

*Abs address AddressType 
*Base Type Boolean Olar 
*ComponentType false *first 
*Index *Index Type *Integer 
*Its Type *last *Max 
New nil *Object Type 
Ord *Pred *ref Count 
size *size Jn Bits Storage Unit 
*Stringlndex *stringMaxLength *Succ 
*System Zone true Unsigned Int 

*alignment 
Oir 
Free 
*its Tag 
*Min 
*Odd 
Signed Int 
*String 

The following are additional predefined identifiers of SE and CE. 
These also must not be redeclared in SE and CE programs. 

Long Longln.t Short Int 



284 SPEC/FICA TION OF CONCURRENT EUCLID 

INPUT/OUTPUT IN CONCURRENT EUCLID 
This paper presents the standard input/output package for SE and CE. 

The user can access the I/O facility by including in his program the stub 
input/output module which corresponds to the level of I/O which his pro­
gram requires. In this way, the user's compiled and linked program will 
include code only for the I/O facilities required. 

The package provides four levels of sophistication, which are called 
"IO/l" through "I0/4". Each level includes all the facilities of the previous 
levels plus certain new features. The levels are as follows: 

1011: Terminal (standard) input and output; Formatted text input/output of 
integers, characters and strings (Get and Put). 

1012: Program argument sequential files; Open and close on argument files; 
Formatted text input/output of integers, characters and strings to 
files (FGet and FPut); Internal representation input/output of 
integers, characters and strings to files (Read and Write); End of 
file detection (EndFile). 

1013: Temporary and non-argument sequential files (Assign, Deassign, 
Delete); Program arguments (FetchArg); Program error exit 
(SysExit). 

1014: Record, array and storage input/output (Read and Write); Random 
access files (Tell and Seek); Error detection (Error). 

The procedures and functions of the input/output system are all part 
of the module "IO" and must be referenced using "IO.". The types and con­
stants which form the interface to the module are global. The user can 
access the level n facilities of the input/output module by including the 
statement 

include '/usr/lib/coneuc/IOn' 

as the first declaration in his main module. 

We now describe the input/output facilities in detail. 

1011: Terminal Formatted Text 110 

pervasive const new Line : = $$N 
pervasive const endOfFile : = $$E 
pervasive const maxStringLength : = 

{Implementation defined; > = 128 } 
Strings read and written by the input/output routines may be up to 
maxStringLength characters in length. 

IO.PutChar (c: Char) 
Prints the character c on the terminal. 



INPUT/OUTPUT IN CONCURRENT EUCLID 285 

10.Putlnt (i: Signedlnt, w: Signedlnt) 
Prints the integer i on the terminal, right justified in a field of w 
characters. Leading blanks are supplied to fill the field. If w is an 
insufficient width, the value is printed in the minimum possible 
width with no leading blanks. In particular, if w is 1 then the exact 
number of characters needed is used. The specified width must be 
greater than zero and less than maxStringLength. 

10.PutLong (i: Longlnt, w: Signedlnt) 
Same as 10.Putlnt for long integers. 

10.PutString (s: packed array 1..parameter of Char) 
Prints the string s on the terminal. The string must be terminated 
by an endOfFile character ('$E'), which is not output. It can con­
tain embedded newLines ('$N') if desired. (Note: An endOfFile 
character ($$E) can be output using PutChar.) 

10.GetChar (var c:Char) 
Gets the next input character from the terminal. End of file is indi­
cated by a return of endOfFile ($$E). 

10.Getlnt (var i: Signedlnt) 
Gets an integer from the terminal. The input must consist of any 
number of optional blanks, tabs and newlines, followed by an 
optional minus sign, followed by any number of decimal digits. 

10.GetLong (var i: Longlnt) 
Same as 10.Getlnt for long integers. 

10.GetString (vars: packed array !..parameter of Char) 
Gets a line of character input from the terminal. The returned 
string may be up to maxStringLength characters in length. The 
string returned is ended with the newLine character ('$N') followed 
by an endOfFile character ('$E') if it is a complete line, and by the 
endOfFile character only if it is a partial line (i.e., if the input line 
exceeds maxStringLength characters in length). End of file is indi­
cated by returning a string containing endOfFile ('$E') as the first 
character. 

1012: Sequential Argument File 110 

pervasive const stdlnput : = -2 
pervasive const stdOutput : = -1 
pervasive const stdError : = 0 
pervasive const maxArgs : = { Implementation defined; > = 9 } 
pervasive const maxFiles : = 



286 SPECIFICATION OF CONCURRENT EUCLID 

{ Implementation defined; > = maxArgs + 5 } 
type File = stdlnput. .maxFiles 

Concurrent Euclid input/output refers to files using a file number. 
Certain file numbers are preassigned as follows: -2 refers to the ter­
minal input; -1 is the terminal output; 0 is the standard diagnostic 
output. The file numbers 1..maxArgs refer to the program argu­
ments. The remaining file numbers (maxArgs + 1..maxFiles) can 
be dynamically assigned to files using the "IO.Assign" operation; see 
"10/3". 

pervasive const inFile : = 0 
pervasive const outFile : = 1 
pervasive const inOutFile : = 2 
type FileMode = inFile .. inOutFile 

Files can be opened for input, output, or input/output using modes 
inFile, outFile and inOutFile respectively. (Note: The input/output 
mode is not available under Unix V6.) · 

IO.Open (f: File, m: FileMode) 
IO.Close (f: File) 

With the exception of terminal input/output and the standard diag­
nostic output, files must be opened before they are used and closed 
before the program returns. Open opens an existing file for the 
operations specified by the mode. If the opened file does not exist, 
it is created. The file number specified must be a preassigned file 
number or a file number returned from a call to "IO.Assign"; see 
"10/3". 

10.FPutChar (f: File, c: Char) 
10.FPutlnt (f: File, i: Signedlnt, w: Signedlnt) 
10.FPutLong (f: File, i: Longlnt, w: Signedlnt) 
IO.FPutString (f: File, s: packed array l..parameter of Char) 
IO.FGetChar (f: File, var c: Char) 
IO.FGetlnt (f: File, var i: Signedlnt) 
IO.FGetLong (f: File, var i: Longlnt) 
IO.FGetString (f: File, vars: packed array 1..parameter of Char) 

These operations are identical to the terminal input/output opera­
tions of I0/1 except that the put or get is done on the specified file. 

IO.WriteChar (f: File, c: Char) 
Writes the internal representation of character c to the specified file. 

10.Writelnt (f: File, i: Signedlnt) 
Writes the internal representation of integer i to the specified file. 



INPUT/OUTPUT IN CONCURRENT EUCLID 287 

IO.WriteLong (f: File, i: Longlnt) 
Writes the internal representation of long integer i to the specified 
file, 

IO.WriteString (f:File, s: packed array !..parameter of Char) 
Writes the internal representations of the characters in the string s 
to the specified file. 

IO.ReadChar (f: File, var c: Char) 
Reads a character in internal representation from the specified file 
into c. 

IO.Readlnt (f: File, var i: Signedlnt) 
Reads an integer in internal representation from the specified file 
into i. 

IO.ReadLong (f: File, var i: Longlnt) 
Reads a long integer in internal representation from the specified 
file into i. 

IO.ReadString (f: File, vars: packed array 1..parameter of Char) 
Reads a string of characters terminated by a newLine character 
('$N') in internal representation from the specified file into s. The 
returned string may be up to maxStringLength characters in length. 
The string returned is ended with the newLine character ('$N') fol­
lowed by an endOfFile character ('$E') if it is a complete line, and 
by the endOfFile character only if it is a partial line (i.e., if the 
input line exceeds maxStringLength characters in length). End of 
file is indicated by returning a string containing endOfFile ('$E') as 
the first character. 

10.EndFile (f: File) 
A function which returns true if the last operation on the specified 
input file encountered end of file and false otherwise. 

1013: Temporary and Non-argument Files 

pervasive const maxArgLength : = 
{ Implementation defined; > = 32 } 

File names and arguments to a program may be up to maxAr­
gLength characters in length. 

IO.Assign (var f: File, s: packed array l..parameter of Char) 
A file number is assigned to the file name supplied in s. The file 
name is given as a string terminated by the endOfFile character 
('$E'), which is not part of the name. Before the file can be used it 
must be opened using "IO.Open". 



288 SPECIFICATION OF CONCURRENT EUCLID 

IO.Deassign (f: File) 
The specified file number is freed for assignment to another file 
name. An open file cannot be deassigned. 

IO.Delete (f: File) 
The specified file is destroyed. An open file cannot be deleted. 
Note that a program can have temporary files using "IO.Assign" and 
"IO.Delete". 

IO.FetchArg (n: l..maxArgs, vars: packed array l..parameter of Char) 
The program argument specified by "n" is returned in string s. The 
returned string is terminated by the endOfFile character ('$E') and 
may be up to maxArgLength characters in length. 

IO.SysExit (n: Signedlnt) 
Terminate program execution with the specified return code. (CE 
programs return 0 by default.) 

1014: Structure Input/Output and Random Access Files 

IO.Write (f: File, u: universal, n: Signedlnt) 
The number of StorageUnits specified by "n" are written to the file 
from u. Write can be used to write out whole arrays and records 
using a call of the form "IO.Write (f, v, v.size)". The value of n 
must be positive or zero. 

IO.Read (f: File, var u: universal, n: Signedlnt) 
The number of StorageUnits specified by "n" are read from the file 
into u. Read can be used to read in whole arrays and records using 
a call of the form "IO.Read (f, v, v.size)". The value of n must be 
positive or zero. 

type Filelndex = Longlnt 
IO. Tell (f: File, var x: Filelndex) 
IO.Seek (f: File, x: Filelndex) 

These operations provide random access input/output by allowing 
the program to sense a file position, represented as a long integer, 
and reset the file to a remembered position. Tell returns the 
current position of the specified file. Seek sets the current position 
of the specified file to the position specified by the value of x. The 
representation of file indices is implementation-dependent. (Note: 
"IO.Tell" and "IO.Seek" are not supported under Unix V6.) 

IO.Error (f: File) 
A function which returns true if the last operation on the specified 
file encountered an error and false otherwise. 



INPUT/OUTPUT JN CONCURRENT EUCLID 289 

Interfacing to Unix 

The input/output package is based on standard Unix input/output and 
is designed to be interfaced to Unix with a minimum of overhead. The 
Unix implementation is written in C and uses only facilities of the C "stdio" 
package. This implementation can be compiled unchanged under both V6 
and V7 Unix. 



290 SPECIFICATION OF CONCURRENT EUCLID 

PDP-11 IMPLEMENTATION NOTES 

This section gives details of the implementation of CE for the PDP-11 
under Unix and provides information necessary for interfacing with CE pro­
grams. 

DATA REPRESENTATION 
The following gives the storage representations of the various CE data 

types used by the PDP-11 implementation. 

Type Representation 

Signedlnt and 
subranges contained 
in -32768 .. 32767 

Unsignedlnt and 
subranges contained 
in 0 .. 65535 but 
outside -32768 .. 32767 

Longlnt and 
subranges outside 
the above 

Shortlnt and 
packed subranges 
in 0 .. 255 

Boolean 

Char 

Storage Unit 

AddressType, 
pointers and binds 

sets of 0 .. 7 

sets of 0 .. 15 

16-bit signed 

16-bit unsigned 

32-bit signed 16-bit 
aligned; high order word has 
the lower address 

8-bit unsigned 

8-bit unsigned true = 1, 
false = 0 

8-bit unsigned 

8-bit unsigned 

16-bit unsigned 

8-bit unsigned; element 0 
is low order bit, element 7 is 
high order bit 

16-bit unsigned; element 0 
is low order bit, element 15 is 
high order bit 



REGISTER USAGE 291 

REGISTER USAGE 
The following register assignments are used by the PDP-11 implemen­

tation. 

Register 

RO, Rl 

R2, R3 

R4 
and binds 

R5 

Use 

function results, scratch 

scratch 

line number, register variables 

register variables and binds 

Since the CE implementation uses the stack pointer register (SP) to address 
local variables in procedures and functions, there is no local base register. 

Function results whose data representation is a byte or word are 
returned in RO. Doubleword results are returned in RO and Rl, with the 
high order word in RO. 

In order to attain highly efficient code for non-scalar assignments, 
subscripting and Longlnt arithmetic, the CE compiler uses four scratch 
registers rather than the two used by the C compiler. In particular, CE uses 
R2 and R3 for scratch and hence does not save and restore them at pro­
cedure and function entry and exit. Since the PDP-11 C compiler uses R2 
and R3 for register variables, C routines which call CE procedures and 
functions can use at most one register variable. There is no such restric­
tion on C routines called from CE programs. 

Register R5 (and R4 when line numbering is turned off, see below) 
are used for user variables and binds which are explicitly declared register. 

When run-time line numbering is turned on (which is the default), 
the CE compiler generates code to maintain the source file and line number 
in the line number register (R4) during execution. This aids in debugging 
since the "cedb" program can obtain the source file name and line number 
from the core dump following a run-time program failure (e.g., assertion 
failure, subscript or case tag out of range, etc.). 

The contents of the line number register is interpreted as a 5 digit 
unsigned decimal number, the first two digits of which give the source 
include file number and the last three of which give the source line number 
within file. Source file numbers are assigned sequentially starting with 1 for 
the main source file. Source files longer than 999 lines are assigned a new 
file number for each 1000 lines of source. 

Run time line numbering can be turned off using the "-1" compiler 
toggle. 



292 SPECIFICATION OF CONCURRENT EUCLID 

CALLING CONVENTIONS 
CE procedures and functions which are (a) declared external, (b) 

separately compil(1d, or (c) exported from a separately compiled module or 
monitor, are called using the C calling convention. A more efficient calling 
convention is used for calls between CE routines within a single compila­
tion. 

Unlike C routines, CE procedures and functions do not save and 
restore all of the caller's registers, but rather save and restore only those 
registers which they actually use. Note that since registers RO-R3 are con­
sidered scratch registers by the CE compiler, CE routines never save and 
restore RO-R3. This means that C routines which call CE routines can use 
at most one register variable. C routines which are called from CE may of 
course use as many register variables as they wish. Assembly routines 
called from CE can use RO-R3 as scratch and need not save and restore 
them. (Exception: the CE built-in routines are called using a special calling 
convention and must save and restore all registers which they use). 

EXTERNAL NAMES 
CE procedures and functions which are (a) declared "external", (b) 

separately compiled, or (c) exported from a separately compiled module or 
monitor, are assigned external names so that they may be linked with 
and/or called from other compilations and programs. On the PDP-11 under 
Unix, these names consist of the routine name preceded by an underscore 
character. Because of Unix linker restrictions, only the first seven charac­
ters of external names are significant and hence care must be taken to avoid 
confilicts. The initially routine of an external module or monitor is given 
the name of the module/monitor. 

PARAMETER PASSING 
Like C, CE passes parameters on the PDP-11 stack. Unlike C, how­

ever, CE pushes parameters onto the stack in the order in which they 
appear in the call ( C reverses this order). Hence C procedures and func­
tions which are called from CE (and CE procedures and functions which are 
called from C) must declare their formal parameters in reversed order. 

Value parameters as defined in the CE language specification are 
passed as values on the stack. Byte values are passed in the low order byte 
of a 16-bit word. Reference parameters are passed as 16-bit word addresses. 

A parameter passed to an array formal parameter declared using the 
parameter keyword as its upper bound is passed with an extra unsigned 
word parameter following the array address. This extra parameter gives the 
number of elements in the array minus one. A parameter passed to a 
universal formal parameter is passed as an address only. 



RUN-TIME CHECKING 293 

RUN-TIME CHECKING 

When run-time checking is turned on (which is the default), the CE 
compiler will generate code to check assert statements, subscript ranges 
and case selector ranges during execution. It will not generate code to 
check ranges in assignments and overflow in expressions at run-time. The 
checking code uses an illegal instruction of the form "jsr rO,rN" to abort the 
program when a run-time check fails. The second register number in the 
instruction is an abort code indicating the reason for the abort. The follow­
ing table gives the abort codes used by the PDP-11 implementation. 

Aborting instruction Reason for abort 

jsr rO,rO assertion failure 

jsr rO,rl subscript out of range 

jsr r0,r2 case selector out of range 

jsr r0,r3 function failed to return a value 

The "cedb" utility will automatically determine the source file name, 
source line number and reason for abort from the core file produced by a 
run-time abort. 

All run-time checking can be turned off using the "-k" compiler tog-
gle. 



294 SPECIFICATION OF CONCURRENT EUCLID 

CONCURRENT EUCLID IMPLEMENTATION NOTES 
This section gives the details of the implementation of CE for the 

PDP-11, VAX, MC68000 and MC6809 and provides information necessary 
for interfacing with CE programs on these machines. 

DATA REPRESENTATION 
Sets and the predefined types (except AddressType) have the same 

representations across the four machines. 
Type Representation 

Shortlnt 8-bit unsigned 

Signedlnt 16-bit signed 

Unsignedlnt 16-bit unsigned 

Longlnt 32-bit signed 

set of 0 .. n, n < 8 8-bit 

set of 0 .. n, n > 7 16-bit 

Boolean 8-bit (O=false, 1 =true) 

Char and 8-bit unsigned 
subranges of Char 

AddressType and pointers have sizes the same as the target machine's 
address size (16 bits for the PDP-11 and MC6809 and 32 bits for the 
MC68000 and VAX). Register variables which are actually allocated to 
registers use the most efficient (fastest) representation for their range on 
the target machine (16-bit words are favored on the PDP-11, MC68000 and 
MC6809 and 32-bit longwords on the VAX). Subrange elements of packed 
arrays and records have the same representations across the four machines; 
if the subrange is within Shortlnt, an unsigned byte is used; otherwise if it 
is within Signedlnt, a 16-bit signed word is used; otherwise if it is within 
Unsignedlnt, a 16-bit unsigned word is used; otherwise a 32-bit signed 
longword is used. Subrange elements of unpacked arrays and records have 
the same representations as packed subranges except ·that· unsigned bytes 
are not used. The MC6809 treats all records and arrays as packed. 

The following table summarizes the data representations of the vari­
ous CE data types used by the implementations. 



DATA REPRESENTATION 295 

Type PDP-11 VAX MC68000 MC6809 

Shortlnt 8-bit 8-bit 8-bit 8-bit 
unsigned unsigned unsigned unsigned 

Signedlnt 16-bit 16-bit 16-bit 16-bit 
signed signed signed signed 

Unsignedlnt 16-bit 16-bit 16-bit 16-bit 
unsigned unsigned unsigned unsigned 

Longlnt 32-bit 32-bit 32-bit 32-bit 
signed signed signed signed 

Boolean 8-bit 8-bit 8-bit 8-bit 

Char and unsigned unsigned unsigned unsigned 
Char subranges 8-bit 8-bit 8-bit 8-bit 

Storage Unit 8-bit 8-bit 8-bit 8-bit 

AddressType, 16-bit 32-bit 32-bit 16-bit 
pointers and unsigned signed signed unsigned 
bind pointers 

sets of 0 .. 7 8-bit 8-bit 8-bit 8-bit 

sets of 0 . .15 16-bit 16-bit 16-bit 16-bit 

Packed subrange 8-bit 8-bit 8-bit 8-bit 
in 0 .. 255 unsigned unsigned unsigned unsigned 

Unpacked subrange 16-bit 16-bit 16-bit 8-bit 
in 0 .. 255 signed signed signed unsigned 

Packed/unpacked 16-bit 16-bit 16-bit 16-bit 
subrange in signed signed signed signed 
-32768 .. 32767 

Packed/unpacked 16-bit 16-bit 16-bit 16-bit 
subrange in unsigned unsigned unsigned unsigned 
0 .. 65535 

Subrange not 32-bit 32-bit 32-bit 32-bit 
in any of above signed signed signed signed 



296 SPECIFICATION OF CONCURRENT EUCLID 

Register variable 16-bit 32-bit 16-bit (Not 
in -32768 .. 32767 signed signed signed Applicable) 

Register variable 16-bit 32-bit 16-bit (Not 
in 0 .. 65535 unsigned signed unsigned Applicable) 

Register variable (Not 32-bit 32-bit (Not 
not in any of above Applicable) signed signed Applicable) 

STORAGE LAYOUT 
Data types have different storage layouts on different machines. The 

following table gives the byte offsets from the base address (x.address) of 
the sub-bytes and sub-words of the data representation types. 

Data representation PDP-11 VAX MC68000 MC6809 

16-bit word 

high order byte 1 1 0 0 
low order byte 0 0 1 1 

32-bit longword 

high order word 0 2 0 0 
low order word 2 0 2 2 

high order byte 1 3 0 0 
2nd highest order byte 0 2 1 1 
2nd lowest 3 1 2 2 
low order byte 2 0 3 3 

Set elements are represented using one bit per element. Element 0 is 
represented by the low order bit, element 1 by the next bit and so on. 

Alignment of the data representations also varies among the 
machines. The following table gives the alignments of the various 
representations. 

Data representation PDP-11 VAX MC6800 MC6809 

byte byte byte byte byte 

16-bit word 16-bit 16-bit 16-bit byte 

32-bit longword 16-bit 32-bit 16-bit byte 



REGISTER USAGE 297 

REGISTER USAGE 

The following register assignments are used by the various implemen­
tations. 

Register use PDP-11 VAX MC68000 MC6809 

Data scratch RO-R3 RO-RS DO-D2 A,B,D,X 

Address scratch " Al-A3 X,Y 

Function result RO,Rl RO DO D,X 

Line number R4 R6 D3 u 

Register variables R5,R4[*] R7-Rll, D4-D7, (not 
R6[*] D3[*] applicable) 

Register binds A4-A5 (not 
applicable) 

[*] - when line numbering is turned off 





INDEX 

INDEX 

Aborts, 293 
Absolute address, 249 

variables, 88 
Abstract machine, 197 
Abstraction, levels of, 197 
Accept, 36, 38 
Accept blocks, 39 
Account, 148, 159 
Accounting, 219 
Acquire, 46, 129 
Ada, 37, 52 
Address descriptor, 202 
Address component, 262 
Address space, 147, 164, 198, 202, 209 
AddressType, 62, 83, 251, 290, 294 
Addressing limitations, 165 
Age, 121 
Airline reservations system, 122 
Alarm clock problem, 142 
Aliasing, 80, 88, 253, 255 
Alignment, 296 
All, 262, 276 
Allocate, 78 
Allocation, of buffers, 134 
And operator, 261 
Andes Mountains, 55 
Argument, to command, 167 
ArithmeticOperator, 261, 277 
Array, 62, 252, 273 
Array, of monitors, 107 

constant, 249 
of conditions, 267 

Assassin, 202, 209 



300 INDEX 

~sembly language, 86, 146, 195, 292 
~sembly program, 69 
~Sert, 100, 248, 258, 266, 267, 273, 275, 276, 280 

aborts, 293 
~sign, file, 287 
~signment statement, 258 
At clause, 88, 249, 252, 273 

Background processing, 169 
Banker's algorithm, 54 
Barnard, 238 
Bare machine kernel, 104 
BaseType, 251, 274 
Baton passing problem, 107, 110 
Begin, 259, 276, 280 
BeginIO, WaitIO, FndIO, 75, 104, 110, 201, 206, 209, 

215, 219, 225, 236 
Bell Laboratories, 145, 147 
BIC, 228 
Bin, 152, 153, 167 
Binary semaphores, 30 
Bind, 80, 88, 253, 274 
BIS, 228 
Blind and deaf, ~6 
Block, 30 
Block list, 179, 191 
Block pointer, 180 
Block/wakeup, 30, 41, 53 
Blocked, 6 
Blocking send, 36, 39 
Boat, 3 
Bold face, 246 
Bolivia, 55 
l3oolean, 62, 63, 251, 290, 294 
BooleanOperator, 261, 278 
Boot block, 177 
Bowl, 56 
Bowl of marbles, 28 

of spaghetti, 115 
Bounds, 251 
Bourne, 174 
Break, system call, 164 



Brinch Hansen, 52, 110, 138 
Buffer, multiple slot, 101 
Built-in functions, 262 
Busy, 93, 105, 107, 110, 269, 280 
Busy wait, 24, 51, 74, 104 

C language, 59, 69, 76, 86, 146, 155, 195, 292 
Cache, software, 183, 187 
Cache manager, 205, 210 
Calling conventions, 292 
Canadian Department of National Defense, 59 
Cancer, process, 17 5 
Capitalization, 73 
Cardozo, 196, 209 
Case, 67-68, 259, 280 
Case selector, out of range, 293 
Cashin, 52 
Cat, 150, 160 
Cc, 161 
Qi, 161 
CE, 1 
CE, specification, 243 
Cec, 69, 85, 150, 160, 171 
Cedb, 293 
Olannel, 11, 160 
Olannel table, 181, 191 
Character, interrupt, 202 

literal, 245 
quit, 202 

Olar, 62-4, 251, 290, 294 
Olecked, 248, 256, 272, 275, 279 
Checking, strong type, 60 
Oiefs, 15 
Chemical process, 3 
Ourtod, 154, 161 
Oir, 262 
Orcular buffer, 101, 110 
Oock interrupt, 218, 237 
Oock manager, 198, 199, 203-205, 209, 210 
Oose, 65, 155-6, 161, 286 
Cobegin, 17, 194 
Code optimization, 76 

INDEX 301 



302 INDEX 

Collating sequence, 245 
Collection, 78, 87, 248, 250, 252, 254, 259, 260, 275 
CollectionDeclaration, 254, 275 
Collectionld, 274 
Command, 147, 148, 159 
Command interface, 148 
Command processor (shell), 147 
Command, list of Unix, 160 

argument, 167 
interpreter, 173 

Comment, 246 
Communicating sequential processes, 39 
ComparisonOperator, 261, 278 
Compatible 1/0, 153, 160, 162 
Completely reduced, 48 
Completion, 32 
ComponentSelector, 260, 276 
Compute bound, 4, 12, 14 
Concurrency, 60 

features of CE, 93 
in Unix nucleus, 188 

Concurrent Euclid, 1 
Concurrent Euclid, sequential features, 93 

specification, 243 
Concurrent Pascal, 52, 100, 110, 238 
Concurrent SP/k, 111 
Condition, 41, 98, 267 
Condition, priority, 100, 109 
Conditional rendezvous, 38 
Condition Declaration, 267, 280 
Configuration table, 184, 192 
Consistency, of file system, 185, 192 
Const, 273 
Constant, 87, 260 
ConstantDeclaration, 249, 273 
Consumer, 36, 107, 134 
Control D, 149 
Control, constructs, 67 

scope, 61 
Converter, 81-84, 87, 257, 276 
ConverterDeclaration, 276 
Converterld, 277 



Cordy, 243 
Coroutine, 107, 188, 193 
Correctness, proof of, 59 
Corruption, of file system, 186 
Counting, monitor, 96 
Counting semaphores, 30 
Courtois, 138, 140 
CPU, virtual, 213 
Current directory, 160 
Create, 156, 161 
Creating files, 149 
Critical data, 109 
Critical sections, 23 
Crowe, 88 
CSP, 39, 52 
CSP/k, 111 
Cycle of waiting conditions, 44 
Cycle stealing, 25 
Cylinder, 127 
C:Zamik, 52 

D-check, 186, 192 
Data representation, CE values, 290, 294 
Data type, 61, 86 
Data type, structured, 62 
Davis, 209 
Deadlock, 43, 115, 175 
Deadlock detection algorithm, 55 
De-allocate, 78 
Deassign, 288 
Decimal, 246 
DeclarationlnModule, 248, 272 
DeclarationlnMonitor, 266 
DeclarationlnRoutine, 256 
Default shell, 173 
Defense, department, 59 
Dekker's algorithm, 26, 52 
Dekker, 53 
Delete, 288 
Dequeue, 32 
Descriptor, 191 

Unix user, 181 

INDEX 303 



304 INDEX 

Unix process, 181 
Dev Directory, 153 
Dev, mem directory, 185 
Device, interrupts, 218 
Device, manager, 198-201, 209 
Device, management, 104, 206 
Device, memory mapped registers, 105 
Device, number, 184 

registers, 75 
Drwxrwxrwx, 154 
Dijkstra, 13, 52, 138 
Dining philosophers, 115, 137-139 
Directory, 191 

bin, 152, 153, 167 
book, 151 
dev, 153 
hierarchy, 151 
home, 151, 160 
path name, 152 
rch, 151 
root, 153, 158, 160 
tree, 151 
format of entries, 178 

Disabled, 7 
Disk, accesses, 180 

files, 155 
initialization, 158 
manager, 33, 37 
pack, 148, 158, 160, 185, 191 
scheduling, 127, 129, 138 

Disjoint processes, 19, 51 
Dispatching, 6, 13, 228 
Div, 261, 277 
DoIO, 10, 205, 215, 219, 224, 231, 236, 106, 110 
Dot dot, 152, 178 
Dollar sign, 245 
Dump, 91 

Eating, 117 
Ed, 149, 152, 160 
Edison language, 110 
Editor, 149 



Bementlist, 262, 277 
Bse, 67-68, 276, 280 
Bseif, 67-68, 259, 276, 280 
Embedded software, 60 
Empty, function, 99, 109, 112, 268 
Enabled, 7 
En.closure, 41 
Encrypted passwords, 162 
EndFHe, 287 
End of file, 103, 245, 284 
End of file, character, 76 
Enqueue, 32 
EnterKernel, 234, 239 
Enter Monitor, 218, 222, 231 
Entry, 41, 96 
Enumerated type, 61 
Envelope, 207, 208, 236 
Equality, comparison, 261 
Error, conditions, 206 

file, 288 
output, 168 

Escape features, 60 
Euclid, 59, 87, 255 
Euclid Toronto, 195 
Eunice, 148 
Event, 32, 45 
Event list, 189 
Event table, 192 
Exception, handling, 206 
Exclusive access, 32 
Exec, 149, 166, 173 
Executable, 86 
Executable, comment, 100 

object, 69 
Exit, 67, 166, 173, 207, 259, 276 
ExitKernel, 234, 240 
ExitMonitor, 219, 222, 230, 231 
Expn, 260, 277 
Exports, 71, 97, 247, 272 
Expressions, 260 
External, 84, 269, 271, 281, 292 
External, force, 44 

INDEX 305 



306 INDEX 

reference, 86 
ExternalFunctionDeclaration, 269, 281 
ExternalModuleDeclaration, 270, 281 
External Monitor Declaration, 270, 282 
ExternalProcedureDeclaration, 269, 281 

Fair, scheduling, 99, 101, 268 
Family, manager, 207 
Fence, 41, 96, 109 
Fetch Arg, 288 
FGetChar, 286 
FGetlnt, 286 
FGetLong, 286 
FGetString, 286 
Reld, record, 63 

selection, 260 
FIFO, 99, 113, 128, 136, 141, 216 
Rle, code in i-node, 179 

consistency, 185 
contents area, 177 
descriptor, 155 
internal format, 157 
manipulation, 155 
oflSet, 183 
owner, 154 
pointer, 183 
protection, 154, 160 
special, 153, 160, 184 
Unix, 149 
Unix terminology, 159 
users', 148 

Rle manager, 198-201, 208 
Rlelndex, 288 
RleMode, 286 
Rlters, 170 
Flat file system, 178 
Flexible upper bounds, 258 
Fork, 18, 32, 165, 167, 173, 175, 201, 207 
Fork, eating implement, 115, 139 
Form Feed, 246 
Formal specification, 77 
Fortran, 76 



Fortran, of operating systems, 146 
Forward, 79, 273, 250 
FPutOlar, 286 
FPut Int, 286 
FPutLong, 286 
FPutString, 286 
Free, 78, 88, 254, 259, 280 
Free list, of blocks, 184, 191 
R.lnction, 254 
R.lnction, call, 262 
R.lnction, CE, 76 

results, 291 
R.lnctionDeclaration, 254, 275 
R.lnctionID, 277 
R.lnctional decomposition, 196 

Gate, 32, 96 
General semaphore, 30 
GetC, 77 
GetOlar, 104, 285 
Getlnt, 65, 285 
GetLong, 285 
GetString, 65, 285 
GetVictim, 202 
Good modules, 196 
Graph reductions, 47 
Greenblatt, 111, 238 
Group number, 179 
GrouplD, 154 
Guard, 39 
Guardian angel, 201, 207, 208 
Guttag, 88 

Hansen, see Brin ch Hansen 
Hardware, teletype, 106 

configuration for Unix, 147 
priority, 226 
protection registers, 207 

Heap, 79 
Heavy loading, 137 
Help, 70 
Hexadecimal, 75, 88, 246 

INDEX 307 



308 INDEX 

Hierarchic re-usable resources, 55 
Hierarchy, directory, 151, 160 
HiHo, 112, 193 
History, of Unix, 145 
Hoare, 13, 52, 110, 238, 239, 268 
Holt, 13, 52, 88, 243 
Home directory, 151 

IBM360,370 operating systems; 32 
I-check, 186, 192 
Identifier, in CE, 245 
If statement, 259, 280 
Imports, 66, 247, 256, 264, 272, 275 
In, operator, 261 
Include statement, 65, 264 
IncludeStatement, 278 
Indefinite postponement, 115, 132-133, 137 
Independent processes, 51 
Indexed sequential, 158 
JndexType, 274 
InFlle, 286 
Information hiding, 197 
Init, 172 
Initial value, 250 
Initially, procedure, 67, 72, 94, 97, 247, 267, 272, 279 
Initialization, of disks, 158 

Unix start up, 172 
I-node, 177, 191 

contents of, 178 
InOutFlle, 286 
Input port, 34 
Input/Output, CE, 244, 284 

channel, 154 
compatible, 153, 162 
package, 64 
re-direction, 168 
time outs, 202 

Insert, into queue, 216 
Integer, literals, 63 
Interactive users, 147, 159 
Internal process, 205 
Interprocess communication, 9, 155, 213 



Interdata, 32, 146 
Interrupt, 5, 12 
Interrupt, character, 202 

clock, 6, 218, 237 
device, 218, 237 
handling by Unix, 189 
procedure for handling, 189 

Intersection, 84 
Invisible interrupt, 9 
1/0 bound, 4, 14 
1/0 control, 206 
Ioctl, 161 
IODone, 224, 231 
1/0, interrupt, 6, 234, 237 

package, 64, 74, 87 
processors, 11 

IO/I, I0/2, I0/3, IOI 4, 284 
IO/I, 65 
I0/2, 285 
I0/3, 287 
I0/4, 288 
IPC Unterprocess communication), 9 
J.P. Sharp Associates, 59 

JCL, 172 
Job control language, 172 
Join, 18, 32 
Jrc, 149 

Kaubisch, 138, 140 
Kernel, 8, 9, 13 
Kernel, bare machine, 104 

entry, 218 
Fntry, Exit, 234 
for CE and Tunis, 236 
for MC68000, 236 
for simulation, 236 
for multiple CPU, 230, 239 
for PDP-11, 225 
implementation, 213 
of Tunis, 198, 209 
simulation, 103 

INDEX 309 



310 INDEX 

single CPU system, 220 
Unix terminology, 146 
virtual processor for, 232 

Keywords, 283 
Keywords, of CE, 245 
KGB, 241 
Kill, 166, 173, 175, 207 

processes, 206 
Kernel, for Tunis, 206 

Lampson, 87 
LaPaz, 57 
Large message problem, 34, 134, 138 
Layer, software, 197 

structure of Tunis, 198, 208 
Layers, of Unix, 147 
Lazowska, 15 
Levels of abstraction, 197 
Limited visibility, 197 
Line number register, 291 
Linkable object, 69 
Linker, Unix, 74 
Linking, compilations, 272 

under Unix, 85 
Literal, 63-4, 87 
Literal, character, 245 

hexadecimal, 246 
integer, 246 
octal, 246 
string, 245 

Load module, 69 
Lock primitives, 32 
Long, function, 262 
Longlnt, 62, 251, 290, 294 
Loop, 67, 276, 280 
Lower Bound, 251 
Lower case letters, 245 
LIFO, 113 
Link, 156, 158, 161, 
Link, count, 179, 192 
Lister, 192 
Listing fies, 149 



Load module, 164 
Logging in, 148, 172 
LFR, 113 
Lpr, 151, 160 
LRR, 113 
Ls, 35, 154, 161, 167 
Lseek, 156 

Mail box, 34, 101, 107, 110, 134 
Main module, 85 
Major device number, 184 
Man, 161 
Manager, teletype, 202 

Tunis resources, 198-201, 208-209 
Manifest, 87 
Manifest constant, 72, 249 
ManifestConstant, 274 
ManifestExpn, 273 
ManifestExpression, 263 
Marble, 28 
Mathematical functions, 77 
Matrix, 62 
Max, 19, 76 
MaxArgs, 285 
MaxFiles, 285 
Maxmem, 108 
MaxStringLength, 284 
McKenzie, 149 
MC6809, 60, 62, 66, 70, 294 
MC68000, 60, 62, 165 
MC68000, kernel for, 236 
Mem, 185 
Memory, contention, 28 

device registers, 105 
i-node table, 181, 191, 193 

Memory, interlock, 24 
manager, 198-201, 209 
physical, 185 

MemoryRequirement, 279 
Mendell, 196, 209 
MFR, 113 
Message passing, 33, 110 

INDEX 311 



312 INDEX 

Microprocessor, 74 
Microprocessor, systems, 146 

software, 60 
Minor device number, 184 
Mkdir, 152, 161 
Mknod, system call 184 
Mod, 261, 277 
Modula, 52, 111, 238 
Module, 60, 87, 272 
Module, example CE, 71 

good, 196 
main, 85 

ModuleDeclaration, 247, 264, 272, 278 
ModulelD, 274 
Monitors, 41, 265 
Monitor, array of, 107 

CE, 93, 96, 109 
entries, 266 
invention, 110 
resource, 110, 112, 113 
similar constructs, 110 

MonitorDeclaration, 266, 279 
Monolithic monitor, 7, 13 
Mount, 158, 160, 185 
Mount, table, 185, 192 
MRR, 113 
Multi-dimensional arrays, 62 
Multiple CPU kernel, 230, 239 
Multiple-slot mailboxes, 34 
Multiprocessing, 9 
Multiprogramming, 4, 12 
Mutex, 29 
MutexBegin/End, 23, 53 
Mutual exclusion, 23, 26, 96 

Named constant, 249 
NamedType, 252, 274 
Naming convention, 69, 73 
Nesting, CE constructs, 70 

procedures, 61 
New, 78, 87, 254, 259, 280 
New line, 245 



Newline, 284 
Nil, 254 
Nonmanifest array bounds, 75 
Not, 276 
Not in, operator, 261 
Not operator, 261 
None, 42 
Nucleus, 159 
Nucleus, of Unix, 148 
Null messages, 36 
Null pointer, 262 
Number, of include file, 291 

Object module, 69, 86 
Observer, 20, 96 
Octal' 104, 246 
OflSet, 156, 183 
Opaque type, 248, 252 
Open, 65, 155-6, 161, 286 
Open file table, 181, 191 
Opr, 35 
Or, operator, 261 
Ord, 89, 262 
Order of precedence, 261 
Ordered reusable resources, 55 
Ordering of characters, 245 

. Otherwise, 68, 276, 280 
Otherwise clause, 259 
Ottawa Euclid, 88 
OutRle, 286 
Output port, 34 
Overlapping processes, 19 

P, 28, 51, 53 
Packed, 249, 250, 251, 252, 262, 273 
Paging, 4, 164 
Panic manager, 198, 199, 209 
Parameter, 75, 87, 254, 292 
ParameterType, 275 
Pascal, 61, 76, 245 
Pascal, Pascal Plus (see also Concurrent Pascal), 111 
Password, 148, 159, 173 

INDEX 313 



314 INDEX 

Password, encrypted, 162 
Path name, 152, 160 
PC, 228 
PDP-11, 60, 62, 70, 81, 105, 145, 163, 165, 239, 294 
PDP-11, CE implementation, 290 

kernel for, 220, 225 
minicomputer, 43 
stack, 292 
Unix, 195 

Pebble, 56 
Peek, 83, 91 
Percent sign, 149 
Peripheral device, 110, 147 
Per user open file table, 181 
Perrott, 110 
Peru, 55 
Pervasive, 249, 250, 273 
Peterson, 52 
Philosophers, 115, 139 
Physical memory, 185 
Physical memory manager, 198, 199, 209 
Physical parallel, 22 
Pinkerton, 138 
PickUp, 117 
Pipe, 35, 154, 170, 175 
Pipeline, 134 
Plate, spaghetti, 116 
Platter, 127 
PL/I, 32, 43, 45, 76 
Pointer, 62, 78, 252, 294 
PointerType, 252, 274 
Poke, 83-84 
Pop, 71, 85 
Popek, 87 
Port, 34 
Precedence chart, 2, 12 
Precision of arithmetic, 263 
Pre-defined functions, 262 
Pre-defined identi tiers, 283 
Preempt CPU, 233, 235 
Primitive, 28 
Priorities, dynamically changing, 239 



Priority, condition, 100, 109, 267, 268 
hardware, 226 
queue, 217 
readers and writers, 126 
zero, 100 

PriorityValue, 268, 281 
Private semaphore, 30 
Procedure, 11, 12, 134 
Procedure, CE, 70 
ProcedureBody, 256, 275 
Procedure call, 258 
ProcedureDeclaration, 254, 275 
Procedureld, 276 
Procedures, 254 
Process, 8, 11, 12, 264 
Process, cancer, 175 

control, 3 
descriptor, 214 

Process/device communication, 215 
Process header, 109 
Process, ID, 181 

of CE, 193 
in CE, 109 
stack, 108, 265 
statistics, 108, 110 
switching, 222 
termination, 166, 206, 210 

Processor, 11, 12 
Processor status, Bi 
Producer, 107 
Producer/consumer relationship, 36 
Program, 247, 272 
Programming conventions, 206 
Prompt character, 149, 159 
Proof of correctness, 59 
Protection, bits, 179, 184 

domain, 207 
hardware registers, 207 
file, 160 

Protection policy, 219 
Ps, 185, 228 
PS, 81 

INDEX 315 



316 INDEX 

Pseudo-devices, 185 
Pure procedure, 11 
Push, 71, 85 
PutChar, 65, 74, 284 
PutDown, 117 
Put fut, 65, 285 
PutLong, 285 
PutString, 65, 75, 87, 285 

Queue, FIFO, 216 
priority, 217 

Queue management, 216 
Quit, 18, 32 
Quit character, 108, 202 
Quote, 245 

Race condition, 19 
Random access, 156, 158 
Reh, 149 
RC4000 system, 36, 54 
Read, 155-6,, 161, 288 
ReadChar, 287 
Readfut, 287 
ReadLong, 287 
Readers and writers, 122-126, 138, 140 
ReadString, 287 
Read/write head, 127 
Ready, 6 
Ready queue, 6, 214 
Receive, 33, 39, 101, 110, 134 
Record, 63 
Record, type, 252 
RecordType, 251, 274 
Records, in files, 157 

varying length, 157 
Re-direction, of input/output, 168 
Re-entrant, 11, 12, 14, 94, 109, 265 
Reference parameter, 255 
Register, 249, 250, 252, 253, 260, 273, 274 
Register, device, 75 

memory mapped, 105 
usage, 291, 297 



Release, 31, 46, 129 
Remainder, 261 
Remove, from queue, 216 
Rendezvous, 37 
Reply, 36 
Reporter, 20, 96 
Request, 31, 46 
Resource, monitor, 110, 112, 113 
Result of function, 77 
ResultType, 256, 275 
Resume, 189 
Return, 77, 88, 256, 258, 259, 276, 280 
Returns, 254, 255 
Re-usable resources, 45, 51, 55 
Reverse module, 72 
Ritchie, 145, 161, 174, 192 
Rm, 151, 161 
Rmdir, 161 
Root directory, 152, 158 
Root type, 252, 259 
Rotational delay, 128 
Router, 201, 228 
Running, 6 
Running, ready and blocked, 13 
Run User, 207 
Run-time checking, 293 
RTI, 227 

Scalar type, 251 
SCAN, 129, 138, 140, 141 
Scheduling, disks, 127, 129, 138 

fair, 99, 101 
FIFO, 99 

Scope, control, 61 
Scratch registers, 291 
Script, 169, 172, 174 
~E, 86 
SE language, 245 
Search path, 160 
Seek, 65, 156, 161, 288 
Seek time, 127 
Segmenting, 4 

INDEX 317 



318 INDEX 

Segment, data, 163, 173 
stack, 163, 173 
system, 164 
text (code), 163, 173 

Select statement, 39 
Semaphores, 10, 28, 113 
Semaphore, bowl, 29 
Semicolon, 246, 272 
Send, 33, 101, 110, 134 
Sending, 39 
Separate compilation, 61, 84, 269, 271, 282 
SeparateDeclaration, 282 
Separator, 246 
Sequential access, 158 
Sequential Euclid, 86 
Serially re-usable, 14 
Set, 63, 64, 252 

constructor, 261 
in, 82 
intersection, 82 
not in, 82 
operators, 261 
subtraction, 82 
type, 251, 276, 290, 294 
uniori, 82 

Set user ID, 154, 162 
SetOperator, 278 
Setuid, 173 
Shared access, 32 
Shared variables, 23 
Sharp, LP., 59 
Shaw, 192 
Shell, 147, 159, 173 
Shell, default, 173 

file, 172 
implementation of, 167 
language, .172 
script, 172 
structure of, 164 

Shortlnt, 62, 251, 290, 294 
Side effect, 76, 87, 256 
Siesta, 56 



Signal, 41, 93, 109, 166, 173, 219, 222, 229, 231, 267, 280 
SignalDevice, 215, 240 
Signedlnt, 62, 251, 290, 294 
Simulated time, 107, 269 
Simulation, 3, 105, 269 
Simulation, kernel, 103, 236 

language, 93 
mode, 103 

Single-slot mailboxes, 36 
Singly linked queue, 21 
Size, component, 262 

in i-node, 179 
Sleep, 98, 189 
Sleeping barber problem, 141 
Slice, 223, 229, 233 
Smart aleck college graduate, 57 
Snooty Oam restaurant, 15 
Software, cache, 183, 187 

embedded, 60 
engineering, 196 
layer, 197 
microprocessor, 60 
verifiable, 59 

Source inclusion, 264 
Source program, 69 
SP, 291 
Spaghetti, 115 
Spaghetti, module, 118 
Special files, 153, 160, 184 
Specification of CE, 243 
SP/k, 43, 
Spooling, 44 
Spoons, card game, 142 
SSTF, 128, 141 
Stack, of user process, 164 

module, 71, 85 
Standard, components, 260, 262 

input/output, 155, 168 
StandardType, 250, 273 
Start 1/0, 5, 12, 105, 231 
StartRead, 122 
StartWrite, 122 

INDEX 319 



320 INDEX 

Starvation, 137 
State, transition diagram, 6 
Statement, 257, 280 
Statistics, process, 108, 110 
Std Error, 285 
Stdlnput, 285 
StdOutput, 285 
Sticky bit, 154 
Storage layout, 296 
StorageUnit, 251, 290 
Strict alternation, 25 
String, 64, 86 
String, literal, 249, 251 
Strong type checking, 60 
Stub, 84 
Structured Concurrent Programming, 111 
Style, of naming, 73 

Unix, 174 
Subrange, 62, 251-252 
Subscript, ranges, 293 
Subscripting, 260 
SUE/11 operating system, 43, 110, 238 
Suffix, module name, 85 
Super user, 154, 173 
Swap area, 177 
Swapper process, 205 
Swapping, 164 
Sync, system call, 186 
Synchronization primitive, 10, 28, 32, 51 
Syntax of CE, 272 
SysExit, 288 
System call, 5, 146, 147, 159, 207 
System call, interface, 148 

list for Unix, 161 
System processes, 197 
Systems programming, 60 
System 360/370, 222, 239 

Table, 16 
Tape drives, 210 
Task switching, 222 
Teletype, 104, 105 



Teletype manager, 202 
Tell, 288 
Temporary Files, 287 
Teorey, 138 
Terminal input/output, 284 
Termination, of process, 166 
Test and set instruction, 27, 51 
Textual isolation, 197 
T.H.E., 13, 14, 197 
Then, 259, 276, 280 
Thomas and Yates, 161 
Thompson, 145, 161, 174, 192 
Thoth system, 36 
Ticker process, 204 
Time, 280 
Time critical, 19 
Time outs for 1/0, 202 
Time, simulated, 107 
Time slicing, 4, 12, 207 
TOPPS language processor, 50, 52 
Toronto Euclid, 59, 88, 195 
Toronto, University of, 60 
Toscani, 140 
Track, 127 
Transmission time, 128 
Trap, 5, 12, 147, 207, 218, 233, 237 
Tree, directory structure, 151 
Tree file system, 178 
Tree, of directories, 160 
Tunis, 43, 60, 148 
Tunis, compatibility with Unix, 148 

kernel for, 206, 236 
purpose, 195 

Type assignability, 252 
Type converter, 81~84, 87, 257, 262 
TypeBody, 250, 273 
TypeDeclaration, 250, 273 
Type Defn, 250, 273 
Type equivalent, 252 
Typeld, 274 

Ultimate ancestor, 172 

INDEX 321 



322 INDEX 

Umount, 158 
Underscores in identifiers, 245 
Uniform referents, 79 
Unit of asynchronism, 198 
Universal, 275, 292 
Universal, parameter, 255 
Unix, 35, 43, 65 
Unix, CE under, 69 

command processor, 147 
compatibility with, 148 
concurrency in nucleus, 188 
hardware configurations, 147 
list of commands, 161 
list of system calls, 161 
major layer, 147 
nucleus, 195 
nucleus implementation, 177 
running CE under, 108 
shell, 147 
style of software, 174 
user interface, 159 

Unlink, 156, 161 
Unlock primitives, 32 
Unsignedlnt, 62, 251, 290, 294 
Upper bound, 251 
Upper bound, flexible, 258 
Upper case letters, 245 
Urgent, 239 
USA, Department of Defense, 59 
User, descriptor, 177, 191 
User ID, setting it, 154 
User ID, 159, 179 
User manager, 198-201, 208 
User processes, 147, 159 
Uility layer, 198, 209 

v, 28, 51, 53 
Value parameter, 255 
Var, 273 
Var bind, 253 
VariableBinding, 274 
Variable, 260, 276 



VariableDeclaration, 249, 273 
Varying lengli records, 157 
VAX, 60, 62, 70, 146, 165, 293 
VAX, Tunis, 196 
VENUS operating system, 28 
Verifiable, 59 
Verification, 60 
Virtual CPU, 9, 213 
Virtual memory, 4, 147, 198, 209 
Virtual resource, 4 
Visibility, control, 87 
Visibility, limited, 197 
VMS, 148 

Wait, 41, 93, 98, 109, 166, 173, 219, 222, 228, 229, 231 
WaitDevice, 215, 240 
Wait statement, 267, 280 
Wakeup, 30, 189 
Welsh, 88 
When clause, 259 
White space, 67-68 
Wine cellar, 15 
Wirth, 52, 111, 238 
With statement, 80 
Who, 149, 160 
Write, 155-6, 160, 161, 288 
Write, Unix command, 149 
Write Char, 286 
Writelnt, 286 
WriteLong, 287 
WriteString, 287 

Yates, 161 

7.ero priority, 100 
7.ero-slot mailboxes, 36 
Z8000, 146, 195 

{ ... },syntax notation, 246 
[ ... ],syntax notation 
>, 169 
<, 169 

INDEX 323 





• "'"' ADDISON-WESLEY PUBLISHING COMPANY 

ISBN 0-201-10694-9 




