
Proprietary Information

SST-1(a.k.a. Voodoo Graphics™)

HIGH PERFORMANCE
GRAPHICS ENGINE

FOR
3D GAME ACCELERATION

Revision 1.61

December 1, 1999
Copyright 1995 3Dfx Interactive, Inc. All Rights Reserved

3dfx Interactive, Inc.
4435 Fortran Drive
San Jose, CA 95134

Phone: (408) 935-4400
Fax: (408) 262-8602

www.3dfx.com

 SST-1 Graphics Engine for 3D Game Acceleration

Copyright 1995 3Dfx Interactive, Inc. Revision 1.60
Proprietary and Preliminary 2 Printed 12/1/99

Copyright Notice:
[English translations from legalese in brackets]

©1996-1999, 3Dfx Interactive, Inc. All rights reserved

This document may be reproduced in written, electronic or any other form of expression only in its entirety.

[If you want to give someone a copy, you are hereby bound to give him or her a complete copy.]

This document may not be reproduced in any manner whatsoever for profit.

[If you want to copy this document, you must not charge for the copies other than a modest amount sufficient to
cover the cost of the copy.]

No Warranty

THESE SPECIFICATIONS ARE PROVIDED BY 3DFX "AS IS" WITHOUT ANY REPRESENTATION
OR WARRANTY, EXPRESS OR IMPLIED, INCLUDING ANY WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT OF THIRD-PARTY
INTELLECTUAL PROPERTY RIGHTS, OR ARISING FROM THE COURSE OF DEALING BETWEEN
THE PARTIES OR USAGE OF TRADE. IN NO EVENT SHALL 3DFX BE LIABLE FOR ANY
DAMAGES WHATSOEVER INCLUDING, WITHOUT LIMITATION, DIRECT OR INDIRECT
DAMAGES, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF
INFORMATION) ARISING OUT OF THE USE OF OR INABILITY TO USE THE SPECIFICATIONS,
EVEN IF 3DFX HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

[You're getting it for free. We believe the information provided to be accurate. Beyond that, you're on your own.]

 SST-1 Graphics Engine for 3D Game Acceleration

Copyright 1995 3Dfx Interactive, Inc. Revision 1.60
Proprietary and Preliminary 3 Printed 12/1/99

COPYRIGHT NOTICE: ... 2

NO WARRANTY ... 2

1. GENERAL DESCRIPTION .. 6

2. PERFORMANCE... 7

3. ARCHITECTURAL AND FUNCTIONAL OVERVIEW... 8

3.1 SYSTEM LEVEL DIAGRAMS... 8
3.2 ARCHITECTURAL OVERVIEW .. 12
3.3 FUNCTIONAL OVERVIEW .. 13

4. SST-1 ADDRESS SPACE... 17

5. MEMORY MAPPED REGISTER SET .. 18

5.1 STATUS REGISTER... 24
5.2 VERTEX AND FVERTEX REGISTERS ... 25
5.3 STARTR, STARTG, STARTB, STARTA, FSTARTR, FSTARTG, FSTARTB, AND FSTARTA REGISTERS....................... 26
5.4 STARTZ AND FSTARTZ REGISTERS ... 26
5.5 STARTS, STARTT, FSTARTS, AND FSTARTT REGISTERS.. 26
5.6 STARTW AND FSTARTW REGISTERS... 27
5.7 DRDX, DGDX, DBDX, DADX, FDRDX, FDGDX, FDBDX, AND FDADX REGISTERS 27
5.8 DZDX AND FDZDX REGISTERS... 27
5.9 DSDX, DTDX, FDSDX, AND FDTDX REGISTERS.. 28
5.10 DWDX AND FDWDX REGISTERS .. 28
5.11 DRDY, DGDY, DBDY, DADY, FDRDY, FDGDY, FDBDY, AND FDADY REGISTERS ... 28
5.12 DZDY AND FDZDY REGISTERS... 29
5.13 DSDY, DTDY, FDSDY, AND FDTDY REGISTERS ... 29
5.14 DWDY AND FDWDY REGISTERS .. 29
5.15 TRIANGLECMD AND FTRIANGLECMD REGISTERS .. 30

5.15.1 Caveats... 30
5.16 FBZCOLORPATH REGISTER ... 31
5.17 FOGMODE REGISTER.. 37
5.18 ALPHAMODE REGISTER.. 39

5.18.1 Alpha function .. 40
5.18.2 Alpha Blending ... 41

5.19 FBZMODE REGISTER .. 42
5.19.1 Depth-buffering function... 46

5.20 LFBMODE REGISTER .. 46
5.20.1 Linear Frame Buffer Writes... 49
5.20.2 Linear Frame Buffer Reads ... 52

5.21 CLIPLEFTRIGHT AND CLIPLOWYHIGHY REGISTERS .. 53
5.22 NOPCMD REGISTER .. 54
5.23 FASTFILLCMD REGISTER ... 54
5.24 SWAPBUFFERCMD REGISTER ... 55
5.25 FOGCOLOR REGISTER .. 55
5.26 ZACOLOR REGISTER... 55
5.27 CHROMAKEY REGISTER ... 56

 SST-1 Graphics Engine for 3D Game Acceleration

Copyright 1995 3Dfx Interactive, Inc. Revision 1.60
Proprietary and Preliminary 4 Printed 12/1/99

5.28 STIPPLE REGISTER.. 56
5.29 COLOR0 REGISTER... 56
5.30 COLOR1 REGISTER... 56
5.31 FBIPIXELSIN REGISTER... 57
5.32 FBICHROMAFAIL REGISTER .. 57
5.33 FBIZFUNCFAIL REGISTER.. 57
5.34 FBIAFUNCFAIL REGISTER ... 57
5.35 FBIPIXELSOUT REGISTER ... 58
5.36 FOGTABLE REGISTER ... 58
5.37 VRETRACE REGISTER ... 58
5.38 HSYNC REGISTER... 58
5.39 VSYNC REGISTER... 59
5.40 BACKPORCH REGISTER... 59
5.41 VIDEODIMENSIONS REGISTER ... 59
5.42 FBIINIT0 REGISTER .. 59
5.43 FBIINIT1 REGISTER .. 60
5.44 FBIINIT2 REGISTER .. 61
5.45 FBIINIT3 REGISTER .. 61
5.46 FBIINIT4 REGISTER .. 62
5.47 CLUTDATA REGISTER ... 62
5.48 DACDATA REGISTER... 63
5.49 MAXRGBDELTA REGISTER .. 63
5.50 TEXTUREMODE REGISTER .. 63
5.51 TLOD REGISTER ... 66
5.52 TDETAIL REGISTER .. 68
5.53 TEXBASEADDR, TEXBASEADDR1, TEXBASEADDR2, AND TEXBASEADDR38 REGISTERS............................... 68
5.54 TREXINIT0 REGISTER... 69
5.55 TREXINIT1 REGISTER... 69
5.56 NCCTABLE0 AND NCCTABLE1/PALETTE REGISTERS ... 69

5.56.1 NCC Table .. 69
5.56.2 8-Bit Palette (not revision 0 TMU) .. 70

6. PCI CONFIGURATION REGISTER SET ... 72

6.1 VENDOR_ID REGISTER .. 72
6.2 DEVICE_ID REGISTER.. 72
6.3 COMMAND REGISTER... 72
6.4 STATUS REGISTER .. 73
6.5 REVISION_ID REGISTER... 73
6.6 CLASS_CODE REGISTER ... 73
6.7 CACHE_LINE_SIZE REGISTER.. 73
6.8 LATENCY_TIMER REGISTER.. 74
6.9 HEADER_TYPE REGISTER ... 74
6.10 BIST REGISTER... 74
6.11 MEMBASEADDR REGISTER ... 74
6.12 INTERRUPT_LINE REGISTER.. 74
6.13 INTERRUPT_PIN REGISTER.. 74
6.14 MIN_GNT REGISTER .. 75
6.15 MAX_LAT REGISTER .. 75
6.16 INITENABLE REGISTER... 75
6.17 BUSSNOOP0 AND BUSSNOOP1 REGISTERS ... 76

 SST-1 Graphics Engine for 3D Game Acceleration

Copyright 1995 3Dfx Interactive, Inc. Revision 1.60
Proprietary and Preliminary 5 Printed 12/1/99

6.18 CFGSTATUS REGISTER .. 76
6.19 NOP COMMAND.. 76
6.20 TRIANGLE COMMAND .. 76
6.21 FASTFILL COMMAND .. 76
6.22 SWAPBUFF COMMAND .. 77

7. LINEAR FRAME BUFFER ACCESS... 78

7.1 LINEAR FRAME BUFFER WRITES .. 78
7.2 LINEAR FRAME BUFFER READS.. 79

8. TEXTURE MEMORY ACCESS... 80

9. PROGRAMMING CAVEATS ... 84

9.1 I/O ACCESSES ... 84
9.2 MEMORY ACCESSES... 84
9.3 DETERMINING SST IDLE CONDITION .. 84
9.4 TRIANGLE SUBPIXEL CORRECTION ... 84
9.5 LOADING THE INTERNAL COLOR LOOKUP TABLE ... 85

10. VIDEO TIMING .. 86

11. SCANLINE INTERLEAVING... 88

12. SST-1 REVISION 2.0 CHANGES ... 89

13. REVISION HISTORY.. 90

 SST-1 Graphics Engine for 3D Game Acceleration

Copyright 1995 3Dfx Interactive, Inc. Revision 1.60
Proprietary and Preliminary 6 Printed 12/1/99

1. General Description
The SST-1 Graphics Engine from 3Dfx Interactive is the first video subsystem that enables personal computers and
low cost video game platforms to host true 3D entertainment applications. Optimized for real-time texture-mapped
3D games and educational titles, SST-1 provides acceleration for advanced 3D features including true-perspective
texture mapping with trilinear mipmapping and lighting, detail and projected texture mapping, texture anti-
aliasing, and high precision sub-pixel correction. In addition, SST-1 supports general purpose 3D pixel processing
functions including polygonal-based Gouraud shading, depth-buffering, alpha blending, and dithering.

Features
• Triangle raster engine
• Linearly interpolated Gouraud-shaded rendering
• Perspective-corrected (divide-per-pixel) texture-mapped rendering with iterated RGB

modulation/addition
• Detail and Projected Texture mapping
• Linearly interpolated 16-bit Z-buffer rendering
• Perspective-corrected 16-bit floating point W-buffer rendering (patent pending)
• Texture filtering: point-sampling, bilinear, and trilinear filtering with mipmapping
• Texture formats: 8-bit RGB(3-3-2), 8-bit intensity, 8-bit alpha, 8-bit narrow channel YIQ(4-2-2), 8-

bit alpha-intensity(4-4), 16-bit RGB(5-6-5), 16-bit ARGB (1-5-5-5), 16-bit ARGB (4-4-4-4), 16-bit
ARGB (8-3-3-2), 16-bit narrow channel AYIQ (8-4-2-2), 16-bit alpha-intensity (8-8)

• Texture decompression: 8-bit “narrow channel” YIQ (patent pending)
• Transparency with dedicated color mask
• Source/Destination pixel alpha blending
• Sub-pixel correction to .4 x .4 resolution
• 24-bit color dithering to native 16-bit RGB buffer using 4x4 or 2x2 ordered dither matrix
• Gamma-correction color lookup table
• Advanced memory architecture utilizing 1+ GByte/sec bandwidth
• 2-4 MBytes of EDO DRAM frame buffer memory
• 1-4 MBytes of EDO DRAM texture memory
• Resolution Support:

 Frame Buffer
Memory

Double Buffered,
no Depth-Buffering

Triple Buffered,
no Depth-Buffering

Double Buffered,
16-bit Depth-Buffering

 2 MBytes 800x600x16 640x480x16 640x480x16
 4 MBytes 800x600x16 800x600x16 800x600x16

• Direct memory-mapped access to frame buffer and texture memories via linear address mapping
• PCI Bus 2.1 compliant

Benefits

• Real-time, true-perspective, texture-mapped rendering with lighting support at low cost
• Eases software porting, as SST-1 only accelerates the inner rasterization loop
• Lowest cost solution designed expressly for use in the entertainment markets
• Patent pending techniques result in reduced texture memory requirements

 SST-1 Graphics Engine for 3D Game Acceleration

Copyright 1995 3Dfx Interactive, Inc. Revision 1.60
Proprietary and Preliminary 7 Printed 12/1/99

2. Performance
The following tables show the estimated performance of SST-1. Performance is calculated assuming that the PCI
Bus master is supplying data at its peak bandwidth. Thus, the performance levels are the maximum sustainable
rates of SST-1, not necessarily the system performance. If a particular operation is CPU limited or a particular PCI
bus master is not supplying data at its peak rate, then the effective system performance level will decrease. All
numbers are represented in 16-bit MPixels/sec unless otherwise specified with the optional memory FIFO is
disabled, and are measured assuming 640x480 resolution @ 60 Hz with a 50 MHz graphics clock frequency
driving 50-ns Extended-Data-Out (EDO) DRAMs.

Flat shaded triangles (no fogging, alpha-blending, Z-buffering, or sub-
pixel correction)

Ktriangles/sec

10-pixel, right-angled, horizontally oriented 1911
25-pixel, right-angled, horizontally oriented 1096
50-pixel, right-angled, horizontally oriented 644
1000-pixel, right-angled, horizontally oriented 42

Gouraud shaded, sub-pixel corrected triangles with fogging, alpha-
blending and Z-buffering

Ktriangles/sec

10-pixel, right-angled, randomly oriented 1231
25-pixel, right-angled, randomly oriented 968
50-pixel, right-angled, randomly oriented 550
1000-pixel, right-angled, randomly oriented 37

Bilinear filtered, Mipmapped, fogged, texture-mapped Gouraud
shaded, sub-pixel corrected triangles (no alpha-blending or Z-buffering)

Ktriangles/sec

10-pixel, right-angled, randomly oriented 828
25-pixel, right-angled, randomly oriented 823
50-pixel, right-angled, randomly oriented 655
1000-pixel, right-angled, randomly oriented 43

Bilinear filtered, Mipmapped, fogged, texture-mapped Gouraud
shaded, sub-pixel corrected triangles with alpha-blending and Z-
buffering

Ktriangles/sec

10-pixel, right-angled, randomly oriented 826
25-pixel, right-angled, randomly oriented 807
50-pixel, right-angled, randomly oriented 549
1000-pixel, right-angled, randomly oriented 37

Screen Clears msec
RGB Buffer 3.45
Depth Buffer 3.45
RBG and Depth Buffer simultaneously 3.45

 SST-1 Graphics Engine for 3D Game Acceleration

Copyright 1995 3Dfx Interactive, Inc. Revision 1.60
Proprietary and Preliminary 8 Printed 12/1/99

3. Architectural and Functional Overview

3.1 System Level Diagrams
In its entry level configuration, a SST-1 graphics solution consists of two rendering ASICS: TREX and FBI. FBI
(“Frame Buffer Interface”) serves as a PCI slave device, and all communication from the host CPU to the SST-1
graphics subsystem is performed through FBI. FBI implements basic 3D primitives including Gouraud shading,
alpha blending, depth-buffering, and dithering. FBI also includes logic for the programmable fog table, and
incorporates logic to handle all linear frame buffer accesses. Additionally, FBI includes a video display controller
which controls output to the display monitor. TREX (“Texture Raster Engine”) implements all texture mapping
capabilities of the SST-1 graphics subsystem. TREX includes logic to support true-perspective texture mapping
(dividing by W every pixel), level-of-detail (LOD) mipmapping, and bilinear filtering. Additionally, TREX
implements advanced texture mapping techniques such as detail texture mapping, projected texture mapping, and
trilinear texture filtering. Both FBI and TREX support various memory types including standard, Extended-Data-
Out (EDO), and Synchronous DRAM to provide a wide range of price/performance options. Note in the single
TREX SST-1 solution, the advanced texture mapping techniques of detail texture mapping, projected texture
mapping, and trilinear texture filtering are two-pass operations. There is no performance penalty, however, for
point-sampled or bilinear filtered texture mapping with mipmapping with the single TREX solution. The diagram
below illustrates a base-level SST-1 graphics solution.

PCI System Bus

FBI
Frame
Buffer

Interface

Frame
Buffer

Memory

DAC

monitor

TREX
Texture
Mapping
Engine

Texture
Memory

no connect

2-4 MBytes EDO DRAM

1-8 MBytes EDO DRAM

TREX includes a dedicated expansion bus which allows multiple TREX ASICs to be chained together. By
chaining together multiple TREX ASICs, the performance of advanced texture mapping features such as detailed
texture mapping, projected texture mapping, and trilinear filtering can be doubled. A two TREX SST-1 graphics
solution allows single pass, full-speed, detail texture mapping, projected texture mapping, or trilinear filtering.
The diagram below illustrates a two TREX graphics solution.

 SST-1 Graphics Engine for 3D Game Acceleration

Copyright 1995 3Dfx Interactive, Inc. Revision 1.60
Proprietary and Preliminary 9 Printed 12/1/99

Three TREX ASICs can also be chained together to provide single-pass, full-speed rendering of all supported
advanced texture mapping features including projected texture mapping. The diagram below illustrates the three
TREX SST-1 graphics architecture:

FBI
Frame
Buffer

Interface

Frame
Buffer

Memory

DAC

monitor

TREX
Texture
Mapping
Engine

Texture
Memory

TREX
Texture
Mapping
Engine

Texture
Memory

TREX
Texture
Mapping
Engine

Texture
Memory

no connect

2-4 MBytes EDO DRAM 1-8 MBytes EDO DRAM

1-8 MBytes EDO DRAM

1-8 MBytes EDO DRAM

PCI System Bus

The chart below provides performance characterization of advanced texture mapping rendering functionaltity for
various SST-1 configurations.

 SST-1 Graphics Engine for 3D Game Acceleration

Copyright 1995 3Dfx Interactive, Inc. Revision 1.60
Proprietary and Preliminary 10 Printed 12/1/99

 Texture Mapping
Functionality

 TREX
Performance

 One TREX Two TREX Three TREX
 Point-sampled with mipmapping One-Pass One-Pass One-Pass
 Bilinear filtering with mipmapping One-Pass One-Pass One-Pass
 Bilinear filtering with mipmapping

and projected textures
Two-Pass One-Pass One-Pass

 Bilinear filtering with mipmapping
and detail textures

Two-Pass One-Pass One-Pass

 Bilinear filtering with mipmapping,
projected and detail textures

Not supported Two-Pass One-Pass

 Trilinear filtering with mipmapping Two-Pass One-Pass One-Pass
 Trilinear filtering with mipmapping

and projected textures
Not supported Two-Pass One-Pass

 Trilinear filtering with mipmapping
and detail textures

Not supported Two-Pass One-Pass

 Trilinear filtering with mipmapping,
projected and detail textures

Not supported Two-Pass Two-Pass

For the highest possible rendering performance, multiple FBI/TREX subsystems can be chained together utilizing
scan-line interleaving to effectvely double the rendering rate of a single FBI/TREX subsystem. The figure below
illustrates this high-performance SST-1 architecture:

 SST-1 Graphics Engine for 3D Game Acceleration

Copyright 1995 3Dfx Interactive, Inc. Revision 1.60
Proprietary and Preliminary 11 Printed 12/1/99

PCI System Bus

FBI

TREX

TREX

TREX

FBI

TREX

TREX

TREX

Memory

Memory

Memory

Memory

Memory

Memory

Memory

Memory

To DAC

 SST-1 Graphics Engine for 3D Game Acceleration

Copyright 1995 3Dfx Interactive, Inc. Revision 1.60
Proprietary and Preliminary 12 Printed 12/1/99

3.2 Architectural Overview
The diagram below illustrates the abstract rendering engine of the SST-1 graphics subsystem. The rendering
engine is structured as a pipeline through which each pixel drawn to the screen must pass. The individual stages
of the pixel pipeline modify pixels or make decisions about them.

Color Combine

Iterator
ARGB

Color0

Fog

Alpha Blend

Frame
Buffer

Src Dst

RGB Mask,
Apply Visibility

Z, A
Compare

Dither

FBI

Texture

TREX0

Texture Combine

Texture
Memory

TREX1

Texture Combine

Texture
Memory

TREX2

Texture Combine

Texture
Memory

0

Color1

Linear
Frame
Buffer
Access

Chroma
Key

 SST-1 Graphics Engine for 3D Game Acceleration

Copyright 1995 3Dfx Interactive, Inc. Revision 1.60
Proprietary and Preliminary 13 Printed 12/1/99

3.3 Functional Overview
Bus Support: SST-1 implements the PCI bus protocol, and conforms to PCI bus specification 2.1. SST-1 is a slave
only device, and supports zero-wait-state and burst transfers.

PCI Bus Write Posting: SST-1 uses an asynchronous FIFO 64 entries deep which allows sufficient write posting
capabilities for high performance. The FIFO is asynchronous to the graphics engine, thus allowing the memory
interface to operate at maximum frequency regardless of the frequency of the PCI bus. Zero-wait-state writes are
supported for maximum bus bandwidth.

Memory FIFO: SST-1 can optionally use off-screen frame bufffer memory to increase the effective depth of the PCI
Bus FIFO. The depth of this memory FIFO is programmable, and when used as an addition to the regular 64 entry
host FIFO, allows up to 65536 host writes to be queued without stalling the PCI interface.

Memory Architecture: SST-1(FBI) contains a 64-bit wide interleaved datapath to RGB and alpha/depth-buffer
memory with support for up to 50 MHz EDO DRAMs. For Gouraud-shaded or textured-mapped polygons with
depth buffering enabled, one pixel is written per clock. This results in a 50 Mpixels/sec peak fill rate with an EDO
DRAM configuration. For screen/depth-buffer clears, two pixels are written per clock, resulting in a 100
Mpixels/sec fill rate. 2 MBytes of memory is required to support 640x480x16 resolution with 16-bit depth
buffering. Additionally, non-depth-buffered modes are supported with the 2 MByte RGB/depth-buffer
configuration, including 640x480x16 triple-buffered and 800x600x16 double-buffered. 800x600x16 double-
buffered with depth-buffering is supported with 4 MBytes of RGB/depth-buffer memory. The minimum amount of
RGB/depth-buffer memory is 2 MBytes, with a maximum of 4 MBytes supported.

For storing texture bitmaps, SST-1(TREX) also contains a separate 64-bit wide datapath to texture memory.
TREX provides support for EDO DRAM memory to be used as texture memory. The texture memory datapath is
fully interleaved, which allows an individual bank to access data irrespective of the address used to access data in
other banks. This interleaved architecture allows SST-1 to perform bilinear texture filtering with no performance
penalty relative to point sampling. Another advantage of the interleaved architecture is that it imposes no
additional memory cost, since texels are not duplicated in texture memory. The minimum amount of texture
memory required is 1 MByte, with a maximum of 8 MBytes of texture memory supported.

Host Bus Addressing Schemes: SST-1 occupies 16 Mbytes of memory mapped address space. SST-1 does not
utilize I/O mapped address space. The register space of SST-1 occupies 4 Mbytes of address space, the linear
frame buffer access port occupies 4 Mbytes of address space, and the texture memory access port occupies the last 8
Mbytes of address space.

Linear Frame Buffer and Texture Access: SST-1 supports linear frame buffer and texture memory accesses for
software ease and regular porting. Multiple color formats are supported for linear frame buffer writes, and all
pixels written may optionally be passed through the normal SST-1 pixel pipeline for fogging, lighting, alpha
blending, dithering, etc. of linear frame buffer writes. All texture maps are downloaded to local SST-1 texture
memory through the texture memory access address space.

Triangle-based Rendering: SST-1 supports a triangle drawing primitive -- spans (both horizontal and vertical) and
lines are rendered as special case triangles. Complex primitives such as quadrilaterals must be decomposed into
triangles before they can be rendered by SST-1.

 SST-1 Graphics Engine for 3D Game Acceleration

Copyright 1995 3Dfx Interactive, Inc. Revision 1.60
Proprietary and Preliminary 14 Printed 12/1/99

Gouraud-shaded Rendering: SST-1 supports Gouraud shading by providing RGBA iterators with rounding and
clamping. The host provides starting RGBA and ∆RGBA information, and SST-1 automatically iterates RGBA
values across the defined span or trapezoid.

Texture-mapped Rendering: SST-1 supports texture mapping for trapezoids and spans. The host provides starting
texture S/W, T/W, 1/W, and their slopes ∆(S/W), ∆(T/W), and ∆(1/W) information. SST-1 automatically performs
proper iteration and perspective correction necessary for true-perspective texture mapping. During each iteration
of span/trapezoid walking, a division is performed by 1/W to correct for perspective distortion. Texture image
dimensions must be powers of 2 and less than or equal to 256. Rectilinear and square texture bitmaps are
supported.

Texture-mapped Rendering with Lighting: Texture-mapped rendering can be combined with Gouraud shading to
introduce lighting effects during the texture mapping process. The host provides the starting Gouraud shading
RGBA and slope ∆RGBA information, as well as the starting texture S/W, T/W, 1/W, and slope ∆(S/W), ∆(T/W),
and ∆(1/W) information. SST-1 automatically performs the proper iteration and calculations required to
implement the lighting models and texture lookups. A texel is either modulated (multiplied by), added, or blended
to the Gouraud shaded color. The selection of color modulation or addition is programmable.

Texture Mapping Anti-aliasing: SST-1 allows for anti-aliasing of texture-mapped rendering with support for
texture filtering and mipmapping. SST-1 supports point-sampled, bilinear, and trilinear texture filters. While
point-sampled and bilinear are single pass operations, single TREX SST-1 graphics solutions require two-passes
for trilinear texture filtering. Multiple TREX SST-1 graphics solutions support trilinear texture filtering as a
single-pass operation. Note that regardless of the number of TREX ASICs in a given SST-1 graphics solution,
there is no performance difference between point-sampled and bilinear filtered texture-mapped rendering.

In addition to supporting texture filtering, SST-1 also supports texture mipmapping. SST-1 automatically
determines the mipmap level based on the mipmap equation, and selects the proper texture image to be accessed.
When performing point-sampled or bilinear filtered texture mapping, dithering of the mipmap levels can
optionally be used to remove mipmap “banding” during rendering. Using dithered mipmapping with bilinear
filtering results in images almost indistinguishable from full trilinear filtered images.

Texture-space Decompression: Texture data compression is accomplished using a patent-pending “narrow
channel” YIQ compression scheme. 8-bit YIQ format is supported. The compression is based on an algorithm
which compresses 24-bit RGB to a 8-bit YIQ format with little loss in precision. This YIQ compression algorithm
is especially suited to texture mapping, as textures typically contain very similar color components. The algorithm
is performed by the host CPU, and YIQ compressed textures are passed to SST-1 The advantages of using
compressed textures are increased effective texture storage space and lower bandwidth requirements to perform
texture filtering.

Depth-Buffered Rendering: SST-1 supports hardware accelerated depth-buffered rendering with no performance
penalty when enabled. With 2 MBytes of frame buffer memory, 640x480x16 resolution, double buffered with a 16-
bit Z-buffer is supported. To eliminate many of the Z-aliasing problems typically found on 16-bit Z-buffer graphics
solutions, SST-1 allows the (1/W) parameter to be used as the depth component for hardware-accelerated depth-
buffered rendering. When the (1/W) parameter is used for depth-buffering, a16-bit floating point format is
supported. A 16-bit floating point (1/W)-buffer provides much greater precision and dynamic range than a
standard 16-bit Z-buffer, and reduces many of the Z-aliasing problems found on 16-bit Z-buffer systems. An
additional benefit of using the (1/W) component for depth-buffering is that the host CPU no longer needs to setup
the Z component for a given polygon -- the (1/W) component must be setup to perform perspective-corrected
texture mapping anyway, and using this parameter for depth-buffering eliminates the need for a separate Z
parameter.

 SST-1 Graphics Engine for 3D Game Acceleration

Copyright 1995 3Dfx Interactive, Inc. Revision 1.60
Proprietary and Preliminary 15 Printed 12/1/99

Whether to use an integer-Z or floating-point-(1/W) is software programmable. If hardware-accelerated depth-
buffering is not required, additional memory may be used to increase screen resolution. With 2 MBytes of frame
buffer memory, 800x600x16, double buffered resolutions may be used if hardware-accelerated depth-buffering is
not required.

Pixel Blending Operations: SST-1 supports alpha blending functions which allow incoming source pixels to be
blended with current destination pixels with no performance penalty when enabled. An alpha channel (i.e.
destination alpha) stored in offscreen memory is only supported when depth-buffering is disabled. [TO BE

COMPLETED]. The alpha blending function is as follows:
Dnew ⇐ (S ⋅ α) + (Dold ⋅ β)

where
Dnew The new destination pixel being written into the frame buffer
S The new source pixel being generated
Dold The old (current) destination pixel about to be modified
α The source pixel alpha function.
β The destination pixel alpha function.

Special Effects: TO BE COMPLETED (e.g. translucent billboards, spotlights, diffuse lighted texture, translucent
cellophane [translucent filter]).

FOG: SST-1 supports a 64-entry lookup table to support atmospheric effects such as fog and haze. When enabled,
a 6-bit floating point representation of (1/W) is used to index into the 64-entry lookup table. The output of the
lookup table is an “alpha” value which represents the level of blending to be performed between the static fog/haze
color and the incoming pixel color. Low order bits of the floating point (1/W) are used to blend between multiple
entries of the lookup table to reduce fog “banding.” The fog lookup table is loaded by the host CPU, so various fog
equations, colors, and effects are supported.

Color Modes: SST-1 supports 16-bit RGB buffer displays only. The host may transfer 24-bit pixels to SST-1, and
color dithering is utilized to convert the input pixels to native 16-bit format with no performance penalty.

Chroma-Key Operation: SST-1 supports a chroma-key operation used for transparent object effects. When
enabled, an outgoing pixel is compared with the chroma-key register. If a match is detected, the outgoing pixel is
invalidated in the pixel pipeline, and the frame buffer is not updated.

Color Dithering Operations: All operations internal to SST-1 operate in native 24-bit pixel mode. However, color
dithering from 24-bit pixels to 16-bit pixels is provided on the back end of the pixel pipeline. Using the color
dithering option, the host can pass 24-bit pixels to SST-1, which converts the 24-bit incoming pixels to 16-bit
pixels which are then stored in the 16-bit RGB buffer. The 16-bit color dithering allows for the generation of
photorealistic images without the additional cost of a true color frame buffer storage area.

Programmable Video Timing: SST-1 uses a programmable video timing controller which allows for very flexible
video timing. Any monitor type may be used with SST-1 , with 76+ Hz vertical refresh rates supported at 800x600
resolution, and 100+ Hz vertical refresh rates supported at 640x480 resolution.

Gamma Correction: SST-1 uses a programmable color lookup table to allow for programmable gamma correction.
The 16-bit dithered color data from the frame buffer is used an an index into the gamma-correction color table --
the 24-bit output of the gamma-correction color table is then fed to the monitor.

 SST-1 Graphics Engine for 3D Game Acceleration

Copyright 1995 3Dfx Interactive, Inc. Revision 1.60
Proprietary and Preliminary 16 Printed 12/1/99

External DAC Support: SST-1 is compatible with industry standard RAMDACs and DACs. The DAC interface is
identical to that provided by popular graphics accelerators such as the S3 864 and the Tseng Labs W32p.

 SST-1 Graphics Engine for 3D Game Acceleration

Copyright 1995 3Dfx Interactive, Inc. Revision 1.60
Proprietary and Preliminary 17 Printed 12/1/99

4. SST-1 Address Space
SST-1 requires 16 Mbytes of memory mapped address space. SST-1 does not utilize I/O mapped memory. The
memory mapped address space is shown below:

 Address Description
 0x000000-0x3fffff SST-1 memory mapped register set (4 MBytes)
 0x400000-0x7fffff SST-1 linear frame buffer access (4 MBytes)
 0x800000-0xffffff SST-1 texture memory access (8 MBytes)

The physical memory address for SST-1 accesses is calculated by adding the SST-1 address offset (0-16 MBytes) to
the SST-1 base address register. The SST-1 base address register, memBaseAddr, is located in PCI configuration
space. memBaseAddr is setup by the PCI System BIOS during system poweron and initialization and should not
be modified by software. See section 5 for more information on the memory mapped register set, section 6 for
more information on the PCI configuration space, section 8 for more information on linear frame buffer access, and
section 9 for more information on texture memory access.

 SST-1 Graphics Engine for 3D Game Acceleration

Copyright 1995 3Dfx Interactive, Inc. Revision 1.60
Proprietary and Preliminary 18 Printed 12/1/99

5. Memory Mapped Register Set
A 4 Mbyte (22-bit) SST-1 memory mapped register address is divided into the following fields:

 Wrap Chip Register Byte
 8 4 8 2

The wrap field aliases multiple 14-bit register maps. The wrap field is useful for processors such as the Digital
Alpha AXP which contains large writebuffers which collapse multiple writes to the same address into a single
write (an undesirable effect when programming SST-1). By writing to different wraps, software can guarantee
that writes are not collapsed in the write buffer. Note that SST-1 functionality is identical regardless of which
wrap is accessed. The chip field selects one or more of the SST-1 chips (FBI and/or TREX) to be accessed. Each
bit in the chip field selects one chip for writing, with FBI controlled by the lsb of the chip field, and TREX#2
controlled by the msb of the chip field. Note the chip field value of 0x0 selects all chips. The following table
shows the chip field mappings:

 Chip Field SST-1 Chip Accessed
 0000 FBI + all TREX chips
 0001 FBI
 0010 TREX #0
 0011 FBI + TREX #0
 0100 TREX #1
 0101 FBI + TREX #1
 0110 TREX #0 + TREX #1
 0111 FBI + TREX #0 + TREX #1
 1000 TREX #2
 1001 FBI + TREX #2
 1010 TREX #0 + TREX #2
 1011 FBI + TREX #0 + TREX #2
 1100 TREX #1 + TREX #2
 1101 FBI + TREX #1 + TREX #2
 1110 TREX #0 + TREX #1 + TREX #2
 1111 FBI + all TREX chips

Note that TREX #0 is always connected to FBI in the system level diagrams of section 3, and TREX #1 is attached
to TREX #0, etc. By utilizing the different chip fields, software can precisely control the data presented to
individual chips which compose the SST-1 graphics subsystem. Note that for reads, the chip field is ignored, and
read data is always read from FBI. The register field selects the register to be accessed from the table below. All
accesses to the memory mapped registers must be 32-bit accesses. No byte (8-bit) or halfword (16-bit) accesses are
allowed to the memory mapped registers, so the byte (2-bit) field of all memory mapped register accesses must be
0x0. As a result, to modify individual bits of a 32-bit register, the entire 32-bit word must be written with valid bits
in all positions.

The table below shows the SST-1 register set. The register set shown below is the address map when triangle
registers address aliasing (remapping) is disabled(fbiinit3(0)=0). When The chip column illustrates which
registers are stored in which chips. For the registers which are stored in TREX, the % symbol specifies that the
register is unconditionally written to TREX regardless of the chip address. Similarly, the * symbol specifies that
the register is only written to a given TREX if specified in the chip address. The R/W column illustrates the

 SST-1 Graphics Engine for 3D Game Acceleration

Copyright 1995 3Dfx Interactive, Inc. Revision 1.60
Proprietary and Preliminary 19 Printed 12/1/99

read/write status of individual registers. Reading from a register which is “write only” returns undefined data.
Also, reading from a register that is TREX specific returns undefined data.. Reads from all other memory mapped
registers only contain valid data in the bits stored by the registers, and undefined/reserved bits in a given register
must be masked by software. The sync column indicates whether the graphics processor must wait for the current
command to finish before loading a particular register from the FIFO. A “yes” in the sync column means the
graphics processor will flush the data pipeline before loading the register -- this will result in a small performance
degradation when compared to those registers which do not need synchronization. The FIFO column indicates
whether a write to a particular register will be pushed into the PCI bus FIFO. Care must be taken when writing to
those registers not pushed into the FIFO in order to prevent race conditions between FIFOed and non-FIFOed
registers. Also note that reads are not pushed into the PCI bus FIFO, and reading FIFOed registers will return the
current value of the register, irrespective of pending writes to the register present in the FIFO.

Register Name Address Bits Chip R/W Sync?

/Fifo?
Description

status 0x000(0) 31:0 FBI R/W No / Yes SST-1 Status
reserved 0x004(4) n/a n/a n/a n/a
vertexAx 0x008(8) 15:0 FBI+TREX% W No / Yes Vertex A x-coordinate location (12.4 format)
vertexAy 0x00c(12) 15:0 FBI+TREX% W No / Yes Vertex A y-coordinate location (12.4 format)
vertexBx 0x010(16) 15:0 FBI+TREX% W No / Yes Vertex B x-coordinate location (12.4 format)
vertexBy 0x014(20) 15:0 FBI+TREX% W No / Yes Vertex B y-coordinate location (12.4 format)
vertexCx 0x018(24) 15:0 FBI+TREX% W No / Yes Vertex C x-coordinate location (12.4 format)
vertexCy 0x01c(28) 15:0 FBI+TREX% W No / Yes Vertex C y-coordinate location (12.4 format)

startR 0x020(32) 23:0 FBI W No / Yes Starting Red parameter (12.12 format)
startG 0x024(36) 23:0 FBI W No / Yes Starting Green parameter (12.12 format)
startB 0x028(40) 23:0 FBI W No / Yes Starting Blue parameter (12.12 format)
startZ 0x02c(44) 31:0 FBI W No / Yes Starting Z parameter (20.12 format)
startA 0x030(48) 23:0 FBI W No / Yes Starting Alpha parameter (12.12 format)
startS 0x034(52) 31:0 TREX* W No / Yes Starting S/W parameter (14.18 format)
startT 0x038(56) 31:0 TREX* W No / Yes Starting T/W parameter (14.18 format)
startW 0x03c(60) 31:0 FBI+TREX* W No / Yes Starting 1/W parameter (2.30 format)

dRdX 0x040(64) 23:0 FBI W No / Yes Change in Red with respect to X (12.12 format)
dGdX 0x044(68) 23:0 FBI W No / Yes Change in Green with respect to X (12.12 format)
dBdX 0x048(72) 23:0 FBI W No / Yes Change in Blue with respect to X (12.12 format)
dZdX 0x04c(76) 31:0 FBI W No / Yes Change in Z with respect to X (20.12 format)
dAdX 0x050(80) 23:0 FBI W No / Yes Change in Alpha with respect to X (12.12 format)
dSdX 0x054(84) 31:0 TREX* W No / Yes Change in S/W with respect to X (14.18 format)
dTdX 0x058(88) 31:0 TREX* W No / Yes Change in T/W with respect to X (14.18 format)
dWdX 0x05c(92) 31:0 FBI+TREX* W No / Yes Change in 1/W with respect to X (2.30 format)

dRdY 0x060(96) 23:0 FBI W No / Yes Change in Red with respect to Y (12.12 format)
dGdY 0x064(100) 23:0 FBI W No / Yes Change in Green with respect to Y (12.12 format)
dBdY 0x068(104) 23:0 FBI W No / Yes Change in Blue with respect to Y (12.12 format)
dZdY 0x06c(108) 31:0 FBI W No / Yes Change in Z with respect to Y (20.12 format)
dAdY 0x070(112) 23:0 FBI W No / Yes Change in Alpha with respect to Y (12.12 format)
dSdY 0x074(116) 31:0 TREX* W No / Yes Change in S/W with respect to Y (14.18 format)
dTdY 0x078(120) 31:0 TREX* W No / Yes Change in T/W with respect to Y (14.18 format)
dWdY 0x07c(124) 31:0 FBI+TREX* W No / Yes Change in 1/W with respect to Y (2.30 format)

triangleCMD 0x080(128) 31 FBI+TREX% W No / Yes Execute TRIANGLE command (floating point)
reserved 0x084(132) n/a n/a W n/a

 SST-1 Graphics Engine for 3D Game Acceleration

Copyright 1995 3Dfx Interactive, Inc. Revision 1.60
Proprietary and Preliminary 20 Printed 12/1/99

fvertexAx 0x088(136) 31:0 FBI+TREX% W No / Yes Vertex A x-coordinate location (floating point)
fvertexAy 0x08c(140) 31:0 FBI+TREX% W No / Yes Vertex A y-coordinate location (floating point)
fvertexBx 0x090(144) 31:0 FBI+TREX% W No / Yes Vertex B x-coordinate location (floating point)
fvertexBy 0x094(148) 31:0 FBI+TREX% W No / Yes Vertex B y-coordinate location (floating point)
fvertexCx 0x098(152) 31:0 FBI+TREX% W No / Yes Vertex C x-coordinate location (floating point)
fvertexCy 0x09c(156) 31:0 FBI+TREX% W No / Yes Vertex C y-coordinate location (floating point)

fstartR 0x0a0(160) 31:0 FBI W No / Yes Starting Red parameter (floating point)
fstartG 0x0a4(164) 31:0 FBI W No / Yes Starting Green parameter (floating point)
fstartB 0x0a8(168) 31:0 FBI W No / Yes Starting Blue parameter (floating point)
fstartZ 0x0ac(172) 31:0 FBI W No / Yes Starting Z parameter (floating point)
fstartA 0x0b0(176) 31:0 FBI W No / Yes Starting Alpha parameter (floating point)
fstartS 0x0b4(180) 31:0 TREX* W No / Yes Starting S/W parameter (floating point)
fstartT 0x0b8(184) 31:0 TREX* W No / Yes Starting T/W parameter (floating point)
fstartW 0x0bc(188) 31:0 FBI+TREX* W No / Yes Starting 1/W parameter (floating point)

fdRdX 0x0c0(192) 31:0 FBI W No / Yes Change in Red with respect to X (floating point)
fdGdX 0x0c4(196) 31:0 FBI W No / Yes Change in Green with respect to X (floating

point)
fdBdX 0x0c8(200) 31:0 FBI W No / Yes Change in Blue with respect to X (floating point)
fdZdX 0x0cc(204) 31:0 FBI W No / Yes Change in Z with respect to X (floating point)
fdAdX 0x0d0(208) 31:0 FBI W No / Yes Change in Alpha with respect to X (floating

point)
fdSdX 0x0d4(212) 31:0 TREX* W No / Yes Change in S/W with respect to X (floating point)
fdTdX 0x0d8(216) 31:0 TREX* W No / Yes Change in T/W with respect to X (floating point)
fdWdX 0x0dc(220) 31:0 FBI+TREX* W No / Yes Change in 1/W with respect to X (floating point)

fdRdY 0x0e0(224) 31:0 FBI W No / Yes Change in Red with respect to Y (floating point)
fdGdY 0x0e4(228) 31:0 FBI W No / Yes Change in Green with respect to Y (floating

point)
fdBdY 0x0e8(232) 31:0 FBI W No / Yes Change in Blue with respect to Y (floating point)
fdZdY 0x0ec(236) 31:0 FBI W No / Yes Change in Z with respect to Y (floating point)
fdAdY 0x0f0(240) 31:0 FBI W No / Yes Change in Alpha with respect to Y (floating

point)
fdSdY 0x0f4(244) 31:0 TREX* W No / Yes Change in S/W with respect to Y (floating point)
fdTdY 0x0f8(248) 31:0 TREX* W No / Yes Change in T/W with respect to Y (floating point)
fdWdY 0x0fc(252) 31:0 FBI+TREX* W No / Yes Change in 1/W with respect to Y (floating point)

ftriangleCMD 0x100(256) 31 FBI+TREX% W No / Yes Execute TRIANGLE command (floating point)
fbzColorPath 0x104(260) 27:0 FBI+TREX% R/W No / Yes FBI Color Path Control
fogMode 0x108(264) 5:0 FBI R/W No / Yes Fog Mode Control
alphaMode 0x10c(268) 31:0 FBI R/W No / Yes Alpha Mode Control
fbzMode 0x110(272) 20:0 FBI R/W Yes / Yes RGB Buffer and Depth-Buffer Control
lfbMode 0x114(276) 16:0 FBI R/W Yes / Yes Linear Frame Buffer Mode Control
clipLeftRight 0x118(280) 31:0 FBI R/W Yes / Yes Left and Right of Clipping Register
clipLowYHighY 0x11c(284) 31:0 FBI R/W Yes / Yes Top and Bottom of Clipping Register

nopCMD 0x120(288) 0 FBI+TREX% W Yes / Yes Execute NOP command
fastfillCMD 0x124(292) n/a FBI W Yes / Yes Execute FASTFILL command
swapbufferCMD 0x128(296) 8:0 FBI W Yes / Yes Execute SWAPBUFFER command
fogColor 0x12c(300) 23:0 FBI W Yes / Yes Fog Color Value
zaColor 0x130(304) 31:0 FBI W Yes / Yes Constant Alpha/Depth Value
chromaKey 0x134(308) 23:0 FBI W Yes / Yes Chroma Key Compare Value

 SST-1 Graphics Engine for 3D Game Acceleration

Copyright 1995 3Dfx Interactive, Inc. Revision 1.60
Proprietary and Preliminary 21 Printed 12/1/99

reserved 0x138(312) n/a n/a n/a n/a
reserved 0x13c(316) n/a n/a n/a n/a

stipple 0x140(320) 31:0 FBI R/W Yes / Yes Rendering Stipple Value
color0 0x144(324) 31:0 FBI R/W Yes / Yes Constant Color #0
color1 0x148(328) 31:0 FBI R/W Yes / Yes Constant Color #1
fbiPixelsIn 0x14c(332) 23:0 FBI R n/a Pixel Counter (Number pixels processed)
fbiChromaFail 0x150(336) 23:0 FBI R n/a Pixel Counter (Number pixels failed Chroma test)
fbiZfuncFail 0x154(340) 23:0 FBI R n/a Pixel Counter (Number pixels failed Z test)
fbiAfuncFail 0x158(344) 23:0 FBI R n/a Pixel Counter (Number pixels failed Alpha test)
fbiPixelsOut 0x15c(348) 23:0 FBI R n/a Pixel Counter (Number pixels drawn)

fogTable 0x160(352)

to
0x1dc(476)

31:0 FBI W Yes / Yes Fog Table

reserved 0x1e0(480)

to
0x1fc(508)

n/a n/a n/a n/a

fbiInit4 0x200(512) 12:0 FBI R/W (n/a) / No FBI Hardware Initialization (register 4)
vRetrace 0x204(516) 11:0 FBI R (n/a) / No Vertical Retrace Counter
backPorch 0x208(520) 23:0 FBI R/W (n/a) / No Video Backporch Timing Generator
videoDimensions 0x20c(524) 25:0 FBI R/W (n/a) / No Video Screen Dimensions
fbiInit0 0x210(528) 31:0 FBI R/W (n/a) / No FBI Hardware Initialization (register 0)
fbiInit1 0x214(532) 31:0 FBI R/W (n/a) / No FBI Hardware Initialization (register 1)
fbiInit2 0x218(536) 31:0 FBI R/W (n/a) / No FBI Hardware Initialization (register 2)
fbiInit3 0x21c(540) 31:0 FBI R/W (n/a) / No FBI Hardware Initialization (register 3)

hSync 0x220(544) 25:0 FBI W (n/a) / No Horizontal Sync Timing Generator
vSync 0x224(548) 27:0 FBI W (n/a) / No Vertical Sync Timing Generator
clutData 0x228(552) 29:0 FBI W (n/a) / No Internal Color Lookup Table Initialization
dacData 0x22c(556) 31:0 FBI W (n/a) / No External DAC Initialization
maxRgbDelta 0x230(560) 23:0 FBI W (n/a) / No Max. RGB difference for Video Filtering
reserved 0x234(564)

to
0x2fc(764)

n/a n/a n/a n/a

textureMode 0x300(768) 30:0 TREX* W No / Yes Texture Mode Control
tLOD 0x304(772) 23:0 TREX* W No / Yes Texture LOD Settings
tDetail 0x308(776) 16:0 TREX* W No / Yes Texture LOD Settings
texBaseAddr 0x30c(780) 18:0 TREX* W No / Yes Texture Base Address
texBaseAddr_1 0x310(784) 18:0 TREX* W No / Yes Texture Base Address (supplemental LOD 1)
texBaseAddr_2 0x314(788) 18:0 TREX* W No / Yes Texture Base Address (supplemental LOD 2)
texBaseAddr_3_8 0x318(792) 18:0 TREX* W No / Yes Texture Base Address (supplemental LOD 3-8)
trexInit0 0x31c(796) 31:0 TREX* W Yes / Yes TREX Hardware Initialization (register 0)
trexInit1 0x320(800) 31:0 TREX* W Yes / Yes TREX Hardware Initialization (register 1

nccTable0 0x324(804)

to
0x350(848)

31:0
or
26:0

TREX* W Yes / Yes Narrow Channel Compression Table 0 (12
entries)

 SST-1 Graphics Engine for 3D Game Acceleration

Copyright 1995 3Dfx Interactive, Inc. Revision 1.60
Proprietary and Preliminary 22 Printed 12/1/99

nccTable1 0x354(852)
to
0x380(896)

31:0
or
26:0

TREX* W Yes / Yes Narrow Channel Compression Table 1 (12
entries)

reserved 0x384(900)

to
0x3fc(1020)

n/a n/a n/a n/a

 SST-1 Graphics Engine for 3D Game Acceleration

Copyright 1995 3Dfx Interactive, Inc. Revision 1.60
Proprietary and Preliminary 23 Printed 12/1/99

When fbiinit3(0)=1, the triangle parameter registers can be aliased to a different address mapping to improve PCI
bus throughput. When fbiinit3(0)=1 and the upper bit of the wrap field in the pci address is 0x1 (pci_ad[21]=1),
the following table shows the addresses for the triangle parameter registers. Note that enabling triangle parameter
remapping (fbiinit3(0)=1) has no affect any registers not specified in the table below.

Register Name Address Bits Chip R/W Sync?

/Fifo?
Description

status 0x000(0) 31:0 FBI R/W No / Yes SST-1 Status
reserved 0x004(4) n/a n/a n/a n/a
vertexAx 0x008(8) 15:0 FBI+TREX% W No / Yes Vertex A x-coordinate location (12.4 format)
vertexAy 0x00c(12) 15:0 FBI+TREX% W No / Yes Vertex A y-coordinate location (12.4 format)
vertexBx 0x010(16) 15:0 FBI+TREX% W No / Yes Vertex B x-coordinate location (12.4 format)
vertexBy 0x014(20) 15:0 FBI+TREX% W No / Yes Vertex B y-coordinate location (12.4 format)
vertexCx 0x018(24) 15:0 FBI+TREX% W No / Yes Vertex C x-coordinate location (12.4 format)
vertexCy 0x01c(28) 15:0 FBI+TREX% W No / Yes Vertex C y-coordinate location (12.4 format)

startR 0x020(32) 23:0 FBI W No / Yes Starting Red parameter (12.12 format)
dRdX 0x024(36) 23:0 FBI W No / Yes Change in Red with respect to X (12.12 format)
dRdY 0x028(40) 23:0 FBI W No / Yes Change in Red with respect to Y (12.12 format)
startG 0x02c(44) 23:0 FBI W No / Yes Starting Green parameter (12.12 format)
dGdX 0x030(48) 23:0 FBI W No / Yes Change in Green with respect to X (12.12 format)
dGdY 0x034(52) 23:0 FBI W No / Yes Change in Green with respect to Y (12.12 format)
startB 0x038(56) 23:0 FBI W No / Yes Starting Blue parameter (12.12 format)
dBdX 0x03c(60) 23:0 FBI W No / Yes Change in Blue with respect to X (12.12 format)
dBdY 0x040(64) 23:0 FBI W No / Yes Change in Blue with respect to Y (12.12 format)
startZ 0x044(68) 31:0 FBI W No / Yes Starting Z parameter (20.12 format)
dZdX 0x048(72) 31:0 FBI W No / Yes Change in Z with respect to X (20.12 format)
dZdY 0x04c(76) 31:0 FBI W No / Yes Change in Z with respect to Y (12.12 format)
startA 0x050(80) 23:0 FBI W No / Yes Starting Alpha parameter (12.12 format)
dAdX 0x054(84) 23:0 FBI W No / Yes Change in Alpha with respect to X (12.12 format)
dAdY 0x058(88) 23:0 FBI W No / Yes Change in Alpha with respect to Y (12.12 format)
startS 0x05c(92) 31:0 TREX* W No / Yes Starting S/W parameter (14.18 format)
dSdX 0x060(96) 31:0 TREX* W No / Yes Change in S/W with respect to X (14.18 format)
dSdY 0x064(100) 31:0 TREX* W No / Yes Change in S/W with respect to Y (14.18 format)
startT 0x068(104) 31:0 TREX* W No / Yes Starting T/W parameter (14.18 format)
dTdX 0x06c(108) 31:0 TREX* W No / Yes Change in T/W with respect to X (14.18 format)
dTdY 0x070(112) 31:0 TREX* W No / Yes Change in T/W with respect to Y (14.18 format)
startW 0x074(116) 31:0 FBI+TREX* W No / Yes Starting 1/W parameter (2.30 format)
dWdX 0x078(120) 31:0 FBI+TREX* W No / Yes Change in 1/W with respect to X (2.30 format)
dWdY 0x07c(124) 31:0 FBI+TREX* W No / Yes Change in 1/W with respect to Y (2.30 format)

triangleCMD 0x080(128) 31 FBI+TREX% W No / Yes Execute TRIANGLE command (sign bit)
reserved 0x084(132) n/a n/a W n/a
fvertexAx 0x088(136) 31:0 FBI+TREX% W No / Yes Vertex A x-coordinate location (floating point)
fvertexAy 0x08c(140) 31:0 FBI+TREX% W No / Yes Vertex A y-coordinate location (floating point)
fvertexBx 0x090(144) 31:0 FBI+TREX% W No / Yes Vertex B x-coordinate location (floating point)
fvertexBy 0x094(148) 31:0 FBI+TREX% W No / Yes Vertex B y-coordinate location (floating point)
fvertexCx 0x098(152) 31:0 FBI+TREX% W No / Yes Vertex C x-coordinate location (floating point)
fvertexCy 0x09c(156) 31:0 FBI+TREX% W No / Yes Vertex C y-coordinate location (floating point)

fstartR 0x0a0(160) 31:0 FBI W No / Yes Starting Red parameter (floating point)

 SST-1 Graphics Engine for 3D Game Acceleration

Copyright 1995 3Dfx Interactive, Inc. Revision 1.60
Proprietary and Preliminary 24 Printed 12/1/99

fdRdX 0x0a4(164) 31:0 FBI W No / Yes Change in Red with respect to X (floating point)
fdRdY 0x0a8(168) 31:0 FBI W No / Yes Change in Red with respect to Y (floating point)
fstartG 0x0ac(172) 31:0 FBI W No / Yes Starting Green parameter (floating point)
fdGdX 0x0b0(176) 31:0 FBI W No / Yes Change in Green with respect to X (floating

point)
fdGdY 0x0b4(180) 31:0 FBI W No / Yes Change in Green with respect to Y (floating

point)
fstartB 0x0b8(184) 31:0 FBI W No / Yes Starting Blue parameter (floating point)
fdBdX 0x0bc(188) 31:0 FBI W No / Yes Change in Blue with respect to X (floating point)
fdBdY 0x0c0(192) 31:0 FBI W No / Yes Change in Blue with respect to Y (floating point)
fstartZ 0x0c4(196) 31:0 FBI W No / Yes Starting Z parameter (floating point)
fdZdX 0x0c8(200) 31:0 FBI W No / Yes Change in Z with respect to X (floating point)
fdZdY 0x0cc(204) 31:0 FBI W No / Yes Change in Z with respect to Y (floating point)
fstartA 0x0d0(208) 31:0 FBI W No / Yes Starting Alpha parameter (floating point)
fdAdX 0x0d4(212) 31:0 FBI W No / Yes Change in Alpha with respect to X (floating

point)
fdAdY 0x0d8(216) 31:0 FBI W No / Yes Change in Alpha with respect to Y (floating

point)
fstartS 0x0dc(220) 31:0 TREX* W No / Yes Starting S/W parameter (floating point)
fdSdX 0x0e0(224) 31:0 TREX* W No / Yes Change in S/W with respect to X (floating point)
fdSdY 0x0e4(228) 31:0 TREX* W No / Yes Change in S/W with respect to Y (floating point)
fstartT 0x0e8(232) 31:0 TREX* W No / Yes Starting T/W parameter (floating point)
fdTdX 0x0ec(236) 31:0 TREX* W No / Yes Change in T/W with respect to X (floating point)
fdTdY 0x0f0(240) 31:0 TREX* W No / Yes Change in T/W with respect to Y (floating point)
fstartW 0x0f4(244) 31:0 FBI+TREX* W No / Yes Starting 1/W parameter (floating point)
fdWdX 0x0f8(248) 31:0 FBI+TREX* W No / Yes Change in 1/W with respect to X (floating point)
fdWdY 0x0fc(252) 31:0 FBI+TREX* W No / Yes Change in 1/W with respect to Y (floating point)

ftriangleCMD 0x100(256) 31 FBI+TREX% W No / Yes Execute TRIANGLE command (floating point)

5.1 status Register
The status register provides a way for the CPU to interrogate the graphics processor about its current state and
FIFO availability. The status register is read only, but writing to status clears any SST-1 generated PCI interrupts.

Bit Description
5:0 PCI FIFO freespace (0x3f=FIFO empty). Default is 0x3f.
6 Vertical retrace (0=Vertical retrace active, 1=Vertical retrace inactive). Default is 1.
7 FBI graphics engine busy (0=engine idle, 1=engine busy). Default is 0.
8 TREX busy (0=engine idle, 1=engine busy). Default is 0.
9 SST-1 busy (0=idle, 1=busy). Default is 0.
11:10 Displayed buffer (0=buffer 0, 1=buffer 1, 2=auxiliary buffer, 3=reserved). Default is 0.
27:12 Memory FIFO freespace (0xffff=FIFO empty). Default is 0xffff.
30:28 Swap Buffers Pending. Default is 0x0.
31 PCI Interrupt Generated. Default is 0x0. (not currently implemented).

Bits(5:0) show the number of entries available in the internal host FIFO. The internal host FIFO is 64 entries
deep. The FIFO is empty when bits(5:0)=0x3f. Bit(6) is the state of the monitor vertical retrace signal, and is used
to determine when the monitor is being refreshed. Bit(7) of status is used to determine if the graphics engine of
FBI is active. Note that bit(7) only determines if the graphics engine of FBI is busy -- it does not include
information as to the status of the internal PCI FIFOs. Bit(8) of status is used to determine if TREX is busy. Note

 SST-1 Graphics Engine for 3D Game Acceleration

Copyright 1995 3Dfx Interactive, Inc. Revision 1.60
Proprietary and Preliminary 25 Printed 12/1/99

that bit(8) of status is set if any unit in TREX is not idle -- this includes the graphics engine and all internal TREX
FIFOs. Bit(9) of status determines if all units in the SST-1 system (including graphics engines, FIFOs, etc.) are
idle. Bit(9) is set when any internal unit in SST-1 is active (e.g. graphics is being rendered or any FIFO is not
empty). Bits(11:10) show which RGB buffer is used for monitor refresh. SST-1 uses the values of bits(11:10) to
determine the source of the RGB data that is sent to the monitor. When the Memory FIFO is enabled, bits(27:12)
show the number of entries available in the Memory FIFO. Depending upon the amount of frame buffer memory
available, a maximum of 65,536 entries may be stored in the Memory FIFO. The Memory FIFO is empty when
bits(27:12)=0xffff. Bits (30:28) of status track the number of outstanding SWAPBUFFER commands. When a
SWAPBUFFER command is received from the host cpu, bits (30:28) are incremented -- when a SWAPBUFFER
command completes, bits (30:28) are decremented. Bit(31) of status is used to monitor the status of the PCI
interrupt signal. If SST-1 generates a vertical retrace interrupt (as defined in pciInterrupt), bit(31) is set and the
PCI interrupt signal line is activated to generate a hardware interrupt. An interrupt is cleared by writing to status
with “dont-care” data. NOTE THAT BIT(31) IS CURRENTLY NOT IMPLEMENTED IN HARDWARE, AND WILL ALWAYS

RETURN 0X0.

5.2 vertex and fvertex Registers
The vertexAx, vertexAy, vertexBx, vertexBy, vertexCx, vertexCy, fvertexAx, fvertexAy, fvertexBx, fvertexBy,
fvertexCx, and fvertexCy registers specify the x and y coordinates of a triangle to be rendered. There are three
vertices in an SST-1 triangle, with the AB and BC edges defining the minor edge and the AC edge defining the
major edge. The diagram below illustrates two typical triangles:

(vertexAx, vertexAy)

(vertexBx,
 vertexBy)

(vertexCx, vertexCy)

Major Edge

Minor Edge

Minor Edge

(vertexAx, vertexAy)

(vertexBx,
 vertexBy)

(vertexCx, vertexCy)

Major Edge

Minor Edge

Minor Edge

The fvertex registers are floating point equivalents of the vertex registers. SST-1 automatically converts both the
fvertex and vertex registers into an internal fixed point notation used for rendering.

vertexAx, vertexAy, vertexBx, vertexBy, vertexCx, vertexCy
Bit Description
15:0 Vertex coordinate information (fixed point two’s complement 12.4 format)

fvertexAx, fvertexAy, fvertexBx, fvertexBy, fvertexCx, fvertexCy
Bit Description
31:0 Vertex coordinate information (IEEE 32-bit single-precision floating point format)

 SST-1 Graphics Engine for 3D Game Acceleration

Copyright 1995 3Dfx Interactive, Inc. Revision 1.60
Proprietary and Preliminary 26 Printed 12/1/99

5.3 startR, startG, startB, startA, fstartR, fstartG, fstartB, and fstartA Registers
The startR, startG, startB, startA, fstartR, fstartG, fstartB, and fstartA registers specify the starting color
information (red, green, blue, and alpha) of a triangle to be rendered. The start registers must contain the color
values associated with the A vertex of the triangle. The fstart registers are floating point equivalents of the start
registers. SST-1 automatically converts both the start and fstart registers into an internal fixed point notation
used for rendering.

startR, startG, startB, startA
Bit Description
23:0 Starting Vertex-A Color information (fixed point two’s complement 12.12 format)

fstartR, fstartG, fstartB, fstartA
Bit Description
31:0 Starting Vertex-A Color information (IEEE 32-bit single-precision floating point

format)

5.4 startZ and fstartZ registers
The startZ and fstartZ registers specify the starting Z information of a triangle to be rendered. The startZ
registers must contain the Z values associated with the A vertex of the triangle. The fstartZ register is a floating
point equivalent of the startZ registers. SST-1 automatically converts both the startZ and fstartZ registers into
an internal fixed point notation used for rendering.

startZ
Bit Description
31:0 Starting Vertex-A Z information (fixed point two’s complement 20.12 format)

fstartZ
Bit Description
31:0 Starting Vertex-A Z information (IEEE 32-bit single-precision floating point format)

5.5 startS, startT, fstartS, and fstartT Registers
The startS, startT, fstartS, and fstartT registers specify the starting S/W and T/W texture coordinate information
of a triangle to be rendered. The start registers must contain the texture coordinates associated with the A vertex
of the triangle. Note that the S and T coordinates used by SST-1 for rendering must be divided by W prior to being
sent to SST-1 (i.e. SST-1 iterates S/W and T/W prior to perspective correction). During rendering, the iterated S
and T coordinates are (optionally) divided by the iterated W parameter to perform perspective correction. The
fstart registers are floating point equivalents of the start registers. SST-1 automatically converts both the start
and fstart registers into an internal fixed point notation used for rendering.

startS, startT
Bit Description
31:0 Starting Vertex-A Texture coordinates (fixed point two’s complement 14.18 format)

fstartS, fstartT
Bit Description

 SST-1 Graphics Engine for 3D Game Acceleration

Copyright 1995 3Dfx Interactive, Inc. Revision 1.60
Proprietary and Preliminary 27 Printed 12/1/99

31:0 Starting Vertex-A Texture coordinates (IEEE 32-bit single-precision floating point
format)

5.6 startW and fstartW registers
The startW and fstartW registers specify the starting 1/W information of a triangle to be rendered. The startW
registers must contain the W values associated with the A vertex of the triangle. Note that the W value used by
SST-1 for rendering is actually the reciprocal of the 3D-geometry-calculated W value (i.e. SST-1 iterates 1/W prior
to perspective correction). During rendering, the iterated S and T coordinates are (optionally) divided by the
iterated W parameter to perform perspective correction. The fstartW register is a floating point equivalent of the
startW registers. SST-1 automatically converts both the startW and fstartW registers into an internal fixed point
notation used for rendering.

startW
Bit Description
31:0 Starting Vertex-A W information (fixed point two’s complement 2.30 format)

fstartW
Bit Description
31:0 Starting Vertex-A W information (IEEE 32-bit single-precision floating point format)

5.7 dRdX, dGdX, dBdX, dAdX, fdRdX, fdGdX, fdBdX, and fdAdX Registers
The dRdX, dGdX, dBdX, dAdX, fdRdX, fdGdX, fdBdX, and fdAdX registers specify the change in the color
information (red, green, blue, and alpha) with respect to X of a triangle to be rendered. As a triangle is rendered,
the d?dX registers are added to the the internal color component registers when the pixel drawn moves from left-
to-right, and are subtracted from the internal color component registers when the pixel drawn moves from right-to-
left. The fd?dX registers are floating point equivalents of the d?dX registers. SST-1 automatically converts both
the d?dX and fd?dX registers into an internal fixed point notation used for rendering.

dRdX, dGdX, dBdX, dAdX
Bit Description
23:0 Change in color with respect to X (fixed point two’s complement 12.12 format)

fdRdX, fdGdX, fdBdX, fdAdX
Bit Description
31:0 Change in color with respect to X (IEEE 32-bit single-precision floating point format)

5.8 dZdX and fdZdX Registers
The dZdX and fdZdX registers specify the change in Z with respect to X of a triangle to be rendered. As a
triangle is rendered, the dZdX register is added to the the internal Z register when the pixel drawn moves from
left-to-right, and is subtracted from the internal Z register when the pixel drawn moves from right-to-left. The
fdZdX registers are floating point equivalents of the dZdX registers. SST-1 automatically converts both the dZdX
and fdZdX registers into an internal fixed point notation used for rendering.

dZdX
Bit Description
31:0 Change in Z with respect to X (fixed point two’s complement 20.12 format)

 SST-1 Graphics Engine for 3D Game Acceleration

Copyright 1995 3Dfx Interactive, Inc. Revision 1.60
Proprietary and Preliminary 28 Printed 12/1/99

fdZdX
Bit Description
31:0 Change in Z with respect to X (IEEE 32-bit single-precision floating point format)

5.9 dSdX, dTdX, fdSdX, and fdTdX Registers
The dXdX, dTdX, fdSdX, and fdTdX registers specify the change in the S/W and T/W texture coordinates with
respect to X of a triangle to be rendered. As a triangle is rendered, the d?dX registers are added to the the internal
S and T registers when the pixel drawn moves from left-to-right, and are subtracted from the internal S/W and
T/W registers when the pixel drawn moves from right-to-left. Note that the delta S/W and T/W values used by
SST-1 for rendering must be divided by W prior to being sent to SST-1 (i.e. SST-1 uses ∆S/W and ∆T/W). The
d?dX registers are floating point equivalents of the fd?dX registers. SST-1 automatically converts both the d?dX
and fd?dX registers into an internal fixed point notation used for rendering.

dSdX, dTdX
Bit Description
31:0 Change in S and T with respect to X (fixed point two’s complement 14.18 format)

fdSdX, fdTdX
Bit Description
31:0 Change in Z with respect to X (IEEE 32-bit single-precision floating point format)

5.10 dWdX and fdWdX Registers
The dWdX and fdWdX registers specify the change in 1/W with respect to X of a triangle to be rendered. As a
triangle is rendered, the dWdX register is added to the the internal 1/W register when the pixel drawn moves from
left-to-right, and is subtracted from the internal 1/W register when the pixel drawn moves from right-to-left. The
fdWdX registers are floating point equivalents of the dWdX registers. SST-1 automatically converts both the
dWdX and fdWdX registers into an internal fixed point notation used for rendering.

dWdX
Bit Description
31:0 Change in W with respect to X (fixed point two’s complement 2.30 format)

fdWdX
Bit Description
31:0 Change in W with respect to X (IEEE 32-bit single-precision floating point format)

5.11 dRdY, dGdY, dBdY, dAdY, fdRdY, fdGdY, fdBdY, and fdAdY Registers
The dRdY, dGdY, dBdY, dAdY, fdRdY, fdGdY, fdBdY, and fdAdY registers specify the change in the color
information (red, green, blue, and alpha) with respect to Y of a triangle to be rendered. As a triangle is rendered,
the d?dY registers are added to the the internal color component registers when the pixel drawn in a positive Y
direction, and are subtracted from the internal color component registers when the pixel drawn moves in a negative
Y direction. The fd?dY registers are floating point equivalents of the d?dY registers. SST-1 automatically
converts both the d?dY and fd?dY registers into an internal fixed point notation used for rendering.

dRdY, dGdY, dBdY, dAdY
Bit Description
23:0 Change in color with respect to Y (fixed point two’s complement 12.12 format)

 SST-1 Graphics Engine for 3D Game Acceleration

Copyright 1995 3Dfx Interactive, Inc. Revision 1.60
Proprietary and Preliminary 29 Printed 12/1/99

fdRdY, fdGdY, fdBdY, fdAdY
Bit Description
31:0 Change in color with respect to Y (IEEE 32-bit single-precision floating point format)

5.12 dZdY and fdZdY Registers
The dZdY and fdZdY registers specify the change in Z with respect to Y of a triangle to be rendered. As a
triangle is rendered, the dZdY register is added to the the internal Z register when the pixel drawn moves in a
positive Y direction, and is subtracted from the internal Z register when the pixel drawn moves in a negative Y
direction. The fdZdY registers are floating point equivalents of the dZdY registers. SST-1 automatically converts
both the dZdY and fdZdY registers into an internal fixed point notation used for rendering.

dZdY
Bit Description
31:0 Change in Z with respect to Y (fixed point two’s complement 20.12 format)

fdZdY
Bit Description
31:0 Change in Z with respect to Y (IEEE 32-bit single-precision floating point format)

5.13 dSdY, dTdY, fdSdY, and fdTdY Registers
The dYdY, dTdY, fdSdY, and fdTdY registers specify the change in the S/W and T/W texture coordinates with
respect to Y of a triangle to be rendered. As a triangle is rendered, the d?dY registers are added to the the internal
S/W and T/W registers when the pixel drawn moves in a positive Y direction, and are subtracted from the internal
S/W and T/W registers when the pixel drawn moves in a negative Y direction. Note that the delta S/W and T/W
values used by SST-1 for rendering must be divided by W prior to being sent to SST-1 (i.e. SST-1 uses ∆S/W and
∆T/W). The d?dY registers are floating point equivalents of the fd?dY registers. SST-1 automatically converts
both the d?dY and fd?dY registers into an internal fixed point notation used for rendering.

dSdY, dTdY
Bit Description
31:0 Change in S and T with respect to Y (fixed point two’s complement 14.18 format)

fdSdY, fdTdY
Bit Description
31:0 Change in Z with respect to Y (IEEE 32-bit single-precision floating point format)

5.14 dWdY and fdWdY Registers
The dWdY and fdWdY registers specify the change in 1/W with respect to Y of a triangle to be rendered. As a
triangle is rendered, the dWdY register is added to the the internal 1/W register when the pixel drawn moves in a
positive Y direction, and is subtracted from the internal 1/W register when the pixel drawn moves in a negative Y
direction. The fdWdY registers are floating point equivalents of the dWdY registers. SST-1 automatically
converts both the dWdY and fdWdY registers into an internal fixed point notation used for rendering.

dWdY
Bit Description
31:0 Change in W with respect to Y (fixed point two’s complement 2.30 format)

 SST-1 Graphics Engine for 3D Game Acceleration

Copyright 1995 3Dfx Interactive, Inc. Revision 1.60
Proprietary and Preliminary 30 Printed 12/1/99

fdWdY
Bit Description
31:0 Change in W with respect to Y (IEEE 32-bit single-precision floating point format)

5.15 triangleCMD and ftriangleCMD Registers
The triangleCMD and ftriangleCMD registers execute the triangle drawing command. Writes to triangleCMD
or ftriangleCMD initiate rendering a triangle defined by the vertex, start, d?dX, and d?dY registers. Note that
the vertex, start, d?dX, and d?dY registers must be setup prior to writing to triangleCMD or ftriangleCMD.
The value stored to triangleCMD or ftriangleCMD is the area of the triangle being rendered -- this value
determines whether a triangle is clockwise or counter-clockwise geometrically. If bit(31)=0, then the triangle is
oriented in a counter-clockwise orientation (i.e. positive area). If bit(31)=1, then the triangle is oriented in a
clockwise orientation (i.e. negative area). To calculate the area of a triangle, the following steps are performed:

1. The vertices (A, B, and C) are sorted by the Y coordinate in order of increasing Y (i.e. A.y <= B.y <= C.y)
2. The area is calculated as follows:
 AREA = ((dxAB * dyBC) - (dxBC * dyAB)) / 2
 where
 dxAB = A.x - B.x
 dyBC = B.y - C.y
 dxBC = B.x - C.x
 dyAB = A.y - B.y

Note that SST-1 only requires the sign bit of the area to be stored in the triangleCMD and ftriangleCMD
registers -- bits(30:0) written to triangleCMD and ftriangleCMD are ignored.

5.15.1 Caveats

5.15.1.1 Area

If the sign of the value sent t the triangleCMD and ftriangleCMD registers is not the same as the triangle
stored in the vertex registers, FBI will go into an infinite rendering loop.

5.15.1.2 Chip Field Transitions

Under certain circumstances, FBI can lose chip field changes in successive writes. This often occurs when
sending data to the chip for triangle rendering. The solution is to write one DWORD of data to the lowest
texture address in TMU number 3. This is a legal texture address, but since the SST1 architecture only
supports up to three TMUs, there can never be a TMU number 3 (4th TMU). \

5.15.1.3 Write Combining

In situations where out-of-order I/O is possible, a fencing operation of some sort must occur both before and
after the triangleCMD register is written.

triangleCMD
Bit Description
31 Sign of the area of the triangle to be rendered

 SST-1 Graphics Engine for 3D Game Acceleration

Copyright 1995 3Dfx Interactive, Inc. Revision 1.60
Proprietary and Preliminary 31 Printed 12/1/99

ftriangleCMD
Bit Description
31 Sign of the area of the triangle to be rendered (IEEE 32-bit single-precision floating

point format)

5.16 fbzColorPath Register
The fbzColorPath register controls the color and alpha rendering pixel pipelines. Bits in fbzColorPath control
color/alpha selection and lighting. Individual bits of fbzColorPath are set to enable modulation, addition, etc. for
various lighting effects including diffuse and specular highlights.

Bit Description
1:0 RGB Select (0=Iterated RGB, 1=TREX Color Output, 2=Color1 RGB, 3=Reserved)
3:2 Alpha Select (0=Iterated A, 1=TREX Alpha Output, 2=Color1 Alpha, 3=Reserved)
4 Color Combine Unit control (cc_localselect mux control: 0=iterated RGB, 1=Color0

RGB)
6:5 Alpha Combine Unit control (cca_localselect mux control: 0=iterated alpha, 1=Color0

alpha, 2=iterated Z, 3=reserved)
7 Color Combine Unit control (cc_localselect_override mux control: 0=cc_localselect,

1=Texture alpha bit(7))
8 Color Combine Unit control (cc_zero_other mux control: 0=c_other, 1=zero)
9 Color Combine Unit control (cc_sub_clocal mux control: 0=zero, 1=c_local)
12:10 Color Combine Unit control (cc_mselect mux control: 0=zero, 1=c_local, 2=a_other,

3=a_local, 4=texture alpha, 5-7=reserved)
13 Color Combine Unit control (cc_reverse_blend control)
14 Color Combine Unit control (cc_add_clocal control)
15 Color Combine Unit control (cc_add_alocal control)
16 Color Combine Unit control (cc_invert_output control)
17 Alpha Combine Unit control (cca_zero_other mux control: 0=a_other, 1=zero)
18 Alpha Combine Unit control (cca_sub_clocal mux control: 0=zero, 1=a_local)
21:19 Alpha Combine Unit control (cca_mselect mux control: 0=zero, 1=a_local, 2=a_other,

3=a_local, 4=texture alpha, 5-7=reserved)
22 Alpha Combine Unit control (cca_reverse_blend control)
23 Alpha Combine Unit control (cca_add_clocal control)
24 Alpha Combine Unit control (cca_add_alocal control)
25 Alpha Combine Unit control (cca_invert_output control)
26 Parameter Adjust (1=adjust parameters for subpixel correction)
27 Enable Texture Mapping (1=enable)

Note that the color channels are controlled separately from the alpha channel. There are two primary color
selection units: the Color Combine Unit(CCU) and the Alpha Combine Unit (ACU). Bits(1:0), bit(4), and
bits(16:8) of fbzColorPath control the Color Combine Unit. The diagram below illustrates the Color Combine
Unit controlled by the fbzColorPath register:

 SST-1 Graphics Engine for 3D Game Acceleration

Copyright 1995 3Dfx Interactive, Inc. Revision 1.60
Proprietary and Preliminary 32 Printed 12/1/99

8

9 1.8.0

9 1.8.08 0.8.0

8 Color

10 1.9.0

Clamp 0-FF

8

0.8

cc_invert_output

9 signed x
9 unsigned
multiply

Trunc. LSBs
No Round

9 1.8.0

2 ’ s C o m p

c_other

cc_sub_clocal

8 0.8.0

0

0 1

c_local

8

9 0.9.0

+1

8

cc_mselect[2:0]

0

a_local

texture alpha

cc_reverse_blend

{cc_add_clocal, cc_add_alocal}

8

0

00 10

cc_zero_other

0

0 1

a_local

01

iterated RGBcolor0 RGB

Chroma-Key
Check

chromaKey

Invalidate Pixel

rgbselect[1:0]

texture RGB

iterated RGB

color1 RGB

Linear frame
buffer RGB

cc_localselect

a_other

01
10 2

0 1 42 3

1 0

texture alpha bit(7)

cc_localselect_override

 SST-1 Graphics Engine for 3D Game Acceleration

Copyright 1995 3Dfx Interactive, Inc. Revision 1.60
Proprietary and Preliminary 33 Printed 12/1/99

 SST-1 Graphics Engine for 3D Game Acceleration

Copyright 1995 3Dfx Interactive, Inc. Revision 1.60
Proprietary and Preliminary 34 Printed 12/1/99

Bits(3:2), bits(6:5), and bits(25:17) of fbzColorPath control the Alpha Combine Unit. The diagram below
illustrates the Alpha Combine Unit controlled by the fbzColorPath register:

 SST-1 Graphics Engine for 3D Game Acceleration

Copyright 1995 3Dfx Interactive, Inc. Revision 1.60
Proprietary and Preliminary 35 Printed 12/1/99

8

9 1.8.0

9 1.8.08 0.8.0

8 alpha

10 1.9.0

Clamp 0-FF

8

0.8

cca_invert_output

9 signed x
9 unsigned
multiply

Trunc. LSBs
No Round

9 1.8.0

2’s Comp

a_other

cca_sub_clocal

8 0.8.0

0

0 1

a_local

8

9 0.9.0

+1

8

cca_mselect[2:0]

0

cca_reverse_blend

{cca_add_clocal, cca_add_alocal}

8

0

00 10

cca_zero_other

0

0 1

a_local

01

iterated alpha

color0 alpha

aselect[1:0]

texture alpha

iterated alpha

color1 alpha

Linear frame
buffer alpha

cca_localselect[1:0]

iterated Z(27:20)

a_local

texture alpha

a_other

10 2
0 2

0 1 42 3

1

Alpha-Mask
Check

Alpha-Mask Enable

 SST-1 Graphics Engine for 3D Game Acceleration

Copyright 1995 3Dfx Interactive, Inc. Revision 1.60
Proprietary and Preliminary 36 Printed 12/1/99

Bit(26) of fbzColorPath enables subpixel correction for all parameters. When enabled, SST-1 will automatically
subpixel correct the incoming color, depth, and texture coordinate parameters for triangles not aligned on integer
spatial boundaries. Enabling subpixel correction decreases the on-chip triangle setup performance from 7 clocks to
16 clocks, but as the triangle setup engine is separately pipelined from the triangle rasterization engine, little if any
performance penalty is seen when subpixel correction is enabled.

Important Note: When subpixel correction is enabled, the correction is performed on the start registers as they are
passed into the triangle setup unit from the PCI FIFO. As a result, the host must pass down new starting
parameter information for each new triangle -- if new starting parameter information is not passed down for a new
triangle, the starting parameters will be subpixel corrected starting with the start registers already subpixel
corrected for the last rendered triangle [in effect the parameters will be subpixel corrected twice, resulting in
inaccuracies in the starting parameter values].

Bit(27) of fbzColorPath is used to enable texture mapping. If texture-mapped rendering is desired, then bit(27) of
fbzColorPath must be set. When bit(27)=1, then data is transfered from TREX to FBI. If texture mapping is not
desired (i.e. Gouraud shading, flat shading, etc.), then bit(27) may be cleared and no data is transfered from TREX
to FBI.
NOTE: The nopCMD register must be written before any write to fbzColorPath that changes the state of Bit(27).

 SST-1 Graphics Engine for 3D Game Acceleration

Copyright 1995 3Dfx Interactive, Inc. Revision 1.60
Proprietary and Preliminary 37 Printed 12/1/99

5.17 fogMode Register
The fogMode register controls the fog functionality of SST-1.

Bit Description
0 Enable fog (1=enable)
1 Fog Unit control (fogadd control: 0=fogColor, 1=zero)
2 Fog Unit control (fogmult control: 0=Color Combine Unit RGB, 1=zero)
3 Fog Unit control (fogalpha control: 0=fog table alpha, 1=iterated alpha)
4 Fog Unit control (fogz control: 0=fogalpha mux, 1=iterated z(27:20))
5 Fog Unit control (fogconstant control: 0=fog multiplier output, 1=fogColor)

The diagram below shows the fog unit of SST-1:

 SST-1 Graphics Engine for 3D Game Acceleration

Copyright 1995 3Dfx Interactive, Inc. Revision 1.60
Proprietary and Preliminary 38 Printed 12/1/99

Color Channel
(from Color
 Combine Unit)

fogmult
0 1

0

fogColor

fogadd0 1

0

9

2’s Comp

8

8 unsigned x
8 unsigned
 multiply

iterated w
(floating point)

64x8 RAM
(fog alpha)

6 {4 bits exponent,
 mantissa(11:10)}

64x8 RAM
(fog delta alpha)

6 {4 bits exponent,
 mantissa(11:10)}

8 (.008 format)

8

6 (.006 format)

fog table alpha

iterated Z(27:20)

iterated alpha

8

9 signed x
8 unsigned
 multiply

9

8

fogColor

fogconstant

Clamp FF

8 Color

fogenable

fogenable

fogalpha

fogz

0 1

0 1

1 0

1

mantissa(9:2)
8

(8.0 format) 8

9 (1.8 format)

Bit(0) of fogMode is used to enable fog and atmospheric effects. When fog is enabled, the fog color specified in
the fogColor register is blended with the source pixels as a function of the fogTable values and iterated W. SST-1
supports a 64-entry lookup table (fogTable) to support atmospheric effects such as fog and haze. When enabled,
the MSBs of a normalized floating point representation of (1/W) is used to index into the 64-entry fog table. The
ouput of the lookup table is an “alpha” value which represents the level of blending to be performed between the
static fog/haze color and the incoming pixel color. 8 lower order bits of the floating point (1/W) are used to blend
between multiple entries of the lookup table to reduce fog “banding.” The fog lookup table is loaded by the Host
CPU, so various fog equations, colors, and effects can be supported.

 SST-1 Graphics Engine for 3D Game Acceleration

Copyright 1995 3Dfx Interactive, Inc. Revision 1.60
Proprietary and Preliminary 39 Printed 12/1/99

The following table shows the mathematical equations for the supported values of bits(2:1) of fogMode when
bits(5:3)=0:
Bit(0) - Enable
Fog

Bit(1) - fogadd
mux control

Bit(2) - fogmult
mux control

Fog Equation

0 ignored ignored Cout = Cin
1 0 0 Cout = Afog*Cfog + (1-Afog)*Cin
1 0 1 Cout = Afog*Cfog
1 1 0 Cout = (1-Afog)*Cin
1 1 1 Cout = 0

where:
 Cout = Color output from Fog block
 Cin = Color input from Color Combine Unit Module
 Cfog = fogColor register
 AFog = alpha value calculated from Fog table

When bit(3) of fogMode is set, the integer part of the iterated alpha component is used as the fog alpha instead of
the calculated fog alpha value from the fog table. When bit(4) of fogMode is set, the upper 8 bits of the iterated Z
component are used as the fog alpha instead of the calculated fog alpha value from the fog table. If both bit(3) and
bit(4) are set, then bit(4) takes precedence, and the upper 8 bits of the iterated Z component are used for the fog
alpha value. Bit(5) of fogMode takes precedence over bits(4:3) and enables a constant value(fogColor) to be added
to incoming source color.

5.18 alphaMode Register
The alphaMode register controls the alpha blending and anti-aliasing functionality of SST-1.

Bit Description
0 Enable alpha function (1=enable)
3:1 Alpha function (see table below)
4 Enable alpha blending (1=enable)
5 Enable anti-aliasing (1=enable)
7:6 reserved
11:8 Source RGB alpha blending factor (see table below)
15:12 Destination RGB alpha blending factor (see table below)
19:16 Source alpha-channel alpha blending factor (see table below)
23:20 Destination alpha-channel alpha blending factor (see table below)
31:24 Alpha reference value

Bits(3:1) specify the alpha function during rendering operations. The alpha function and test pipeline is shown
below:

 SST-1 Graphics Engine for 3D Game Acceleration

Copyright 1995 3Dfx Interactive, Inc. Revision 1.60
Proprietary and Preliminary 40 Printed 12/1/99

<? =?

1 1

afunc_eqafunc_lt

afunc_gt

Alpha test pass

Alpha Test
enable

Alpha from Alpha
 Combine Unit

alphaMode(31:24)

When alphaMode bit(0)=1, an alpha comparison is performed between the incoming source alpha and bits(31:24)
of alphaMode. Section 5.18.1 below further describes the alpha function algorithm.

Bit(4) of alphaMode enables alpha blending. When alpha blending is enabled, the blending function is performed
to combine the source color with the destination pixel. The blending factors of the source and destinations pixels
are individually programmable, as determined by bits(23:8). Note that the RGB and alpha color channels may
have different alpha blending factors. Section 5.18.2 below further describes alpha blending.

Bit(5) of alphaMode is used to enable anti-aliasing of triangle edges. Anti-aliasing is currently not implemented
in SST-1.

5.18.1 Alpha function
When the alpha function is enabled (alphaMode bit(0)=1), the following alpha comparison is performed:
 AlphaSrc AlphaOP AlphaRef
where AlphaSrc represents the alpha value of the incoming source pixel, and AlphaRef is the value of bits(31:24)
of alphaMode. A source pixel is written into an RGB buffer if the alpha comparison is true and writing into the
RGB buffer is enabled (fbzMode bit(9)=1. If the alpha function is enabled and the alpha comparison is false, the
fbiAfuncFail register is incremented and the pixel is invalidated in the pixel pipeline and no drawing occurs to the
color or depth buffers. The supported alpha comparison functions (AlphaOPs) are shown below:

Value AlphaOP Function
0 never
1 less than
2 equal
3 less than or equal

 SST-1 Graphics Engine for 3D Game Acceleration

Copyright 1995 3Dfx Interactive, Inc. Revision 1.60
Proprietary and Preliminary 41 Printed 12/1/99

4 greater than
5 not equal
6 greater than or equal
7 always

5.18.2 Alpha Blending
When alpha blending is enabled (alphaMode bit(4)=1), incoming source pixels are blended with destination
pixels. The alpha blending function for the RGB color components is as follows:

Dnew ⇐ (S ⋅ α) + (Dold ⋅ β)
where

Dnew The new destination pixel being written into the frame buffer
S The new source pixel being generated
Dold The old (current) destination pixel about to be modified
α The source pixel alpha blending function.
β The destination pixel alpha blending function.

The alpha blending function for the alpha components is as follows:

Anew ⇐ (AS ⋅ αd) + (Aold ⋅ βd)
where

Anew The new destination alpha being written into the alpha buffer
AS The new source alpha being generated
Aold The old (current) destination alpha about to be modified
αd The source alpha alpha-blending function.
βd The destination alpha alpha-blending function.

Note that the source and destination pixels may have different associated alpha blending functions. Also note that
RGB color components and the alpha components may have different associated alpha blending functions. The
alpha blending factors of the RGB color components are defined in bits(15:8) of alphaMode, while the alpha
blending factors of the alpha component is specified in bits(23:16) of alphaMode. The following table lists the
alpha blending functions supported:

Alpha Blending Function Alpha Blending Function Pneumonic Alpha Blending Function Description
0x0 AZERO Zero
0x1 ASRC_ALPHA Source alpha
0x2 A_COLOR Color
0x3 ADST_ALPHA Destination alpha
0x4 AONE One
0x5 AOMSRC_ALPHA 1 - Source alpha
0x6 AOM_COLOR 1 - Color
0x7 AOMDST_ALPHA 1 - Destination alpha
0x8-0xe Reserved
0xf (source alpha blending function) ASATURATE MIN(Source alpha, 1 - Destination

alpha)
0xf (destination alpha blending function) A_COLORBEFOREFOG Color before Fog Unit

When the value 0x2 is selected as the destination alpha blending factor, the source pixel color is used as the
destination blending factor. When the value 0x2 is selected as the source alpha blending factor, the destination
pixel color is used as the source blending factor. Note also that the alpha blending function 0xf is different
depending upon whether it is being used as a source or destination alpha blending function. When the value 0xf is
selected as the destination alpha blending factor, the source color before the fog unit (“unfogged” color) is used as

 SST-1 Graphics Engine for 3D Game Acceleration

Copyright 1995 3Dfx Interactive, Inc. Revision 1.60
Proprietary and Preliminary 42 Printed 12/1/99

the destination blending factor -- this alpha blending function is useful for multi-pass rendering with atmospheric
effects. When the value 0xf is selected as the source alpha blending factor, the alpha-saturate anti-aliasing
algorithm is selected -- this MIN function performs polygonal anti-aliasing for polygons which are drawn front-to-
back.

*** Note that the first silicon spin of SST-1 only supports AZERO and AONE for the alpha blending functions for
the alpha channel. All alpha blending functions for the RGB color channels are supported in the first silicon spin.

5.19 fbzMode Register
The fbzMode register controls frame buffer and depth buffer rendering functions of the SST-1 processor. Bits in
fbzMode control clipping, chroma-keying, depth-buffering, dithering, and masking.

Bit Description
0 Enable clipping rectangle (1=enable)
1 Enable chroma-keying (1=enable)
2 Enable stipple register masking (1=enable)
3 W-Buffer Select (0=Use Z-value for depth buffering, 1=Use W-value for depth

buffering)
4 Enable depth-buffering (1=enable)
7:5 Depth-buffer function (see table below)
8 Enable dithering (1=enable)
9 RGB buffer write mask (0=disable writes to RGB buffer)
10 Depth/alpha buffer write mask (0=disable writes to depth/alpha buffer)
11 Dither algorithm (0=4x4 ordered dither, 1=2x2 ordered dither)
12 Enable Stipple pattern masking (1=enable)
13 Enable Alpha-channel mask (1=enable alpha-channel masking)
15:14 Draw buffer (0=Front Buffer, 1=Back Buffer, 2-3=Reserved)
16 Enable depth-biasing (1=enable)
17 Rendering commands Y origin (0=top of screen is origin, 1=bottom of screen is origin)
18 Enable alpha planes (1=enable)
19 Enable alpha-blending dither subtraction (1=enable)
20 Depth buffer source compare select (0=normal operation, 1=zaColor[15:0] [fbzMode

bit(20) is not present in FBI revision 1.0]

Bit(0) of fbzMode is used to enable the clipping register. When set, clipping to the rectangle defined by the
clipLeftRight and clipBottomTop registers inclusive is enabled. When clipping is enabled, the bounding clipping
rectangle must always be less than or equal to the screen resolution in order to clip to screen coordinates. Also
note that if clipping is not enabled, rendering may not occur outside of the screen resolution. Bit(1) of fbzMode is
used to enable the color compare check (chroma-keying). When enabled, any source pixel matching the color
specified in the chromaKey register is not written to the RGB buffer. The chroma-key color compare is performed
immediately after texture mapping lookup, but before the color combine unit and fog in the pixel datapath.

Bit(2) of fbzMode is used to enable stipple register masking. When enabled, bit(12) of fbzMode is used to
determine the stipple mode -- bit(12)=0 specifies stipple rotate mode, while bit(12)=1 specifies stipple pattern
mode.

When stipple register masking is enabled and stipple rotate mode is selected, bit(31) of the stipple register is used
to mask pixels in the pixel pipeline. For all triangle commands and linear frame buffer writes through the pixel

 SST-1 Graphics Engine for 3D Game Acceleration

Copyright 1995 3Dfx Interactive, Inc. Revision 1.60
Proprietary and Preliminary 43 Printed 12/1/99

pipeline, pixels are invalidated in the pixel pipeline if stipple bit(31)=0 and stipple register masking is enabled in
stipple rotate mode. After an individual pixel is processed in the pixel pipeline, the stipple register is rotated from
right-to-left, with the value of bit(0) filled with the value of bit(31). Note that the stipple register is rotated
regardless of whether stipple masking is enabled (bit(2) in fbzMode) when in stipple rotate mode.

When stipple register masking is enabled and stipple pattern mode is selected, the spatial <x,y> coordinates of a
pixel processed in the pixel pipeline are used to lookup a 4x8 monochrone pattern stored in the stipple register --
the resultant lookup value is used to mask pixels in the pixel pipeline. For all triangle commands and linear frame
buffer writes through the pixel pipeline, a stipple bit is selected from the stipple register as follows:
 switch(pixel_Y[1:0]) {
 case 0: stipple_Y_sel[7:0] = stipple[7:0];
 case 1: stipple_Y_sel[7:0] = stipple[15:8];
 case 2: stipple_Y_sel[7:0] = stipple[23:16];
 case 3: stipple_Y_sel[7:0] = stipple[31:24];
 }
 switch(pixel_X[2:0] {
 case 0: stipple_mask_bit = stipple_Y_sel[7];
 case 1: stipple_mask_bit = stipple_Y_sel[6];
 case 2: stipple_mask_bit = stipple_Y_sel[5];
 case 3: stipple_mask_bit = stipple_Y_sel[4];
 case 4: stipple_mask_bit = stipple_Y_sel[3];
 case 5: stipple_mask_bit = stipple_Y_sel[2];
 case 6: stipple_mask_bit = stipple_Y_sel[1];
 case 7: stipple_mask_bit = stipple_Y_sel[0];
 }
If the stipple_mask_bit=0, the pixel is invalidated in the pixel pipeline when stipple register masking is enabled
and stipple pattern mode is selected. Note that when stipple pattern mode is selected the stipple register is never
rotated.

Bits(4:3) specify the depth-buffering function during rendering operations. The depth buffering pipeline is shown
below:

 SST-1 Graphics Engine for 3D Game Acceleration

Copyright 1995 3Dfx Interactive, Inc. Revision 1.60
Proprietary and Preliminary 44 Printed 12/1/99

iterated W component

wfloat_select1 0

16

iterated Z component

48

16

16 (integer only)

Clamp

zaColor[15:0]
zbias_enable

16

<? =?

1 1

old Depth
(from Depth Buffer)

zfunc_eqzfunc_lt

zfunc_gt

Depth test pass

Depth Buffer
enable

cin wfloat_select

1. Sign extend 16-bit zaColor to 18 bits
2. Convert 16-bit depth to 18-bit
 {underflow,underflow,depth}
3. Add 18-bit values
4. Clamp to 0-FFFF

wfloat format:
 1.<mant> * 2^exp

Clamp

cin = 1

To Fog Unit

4 12

12 mantissaexponent 4

if(|w_iter[47:32]) {
 mant = 0, exp = 0xf, underflow = 1
} else if(!|w_iter[31:16]) {
 mant = 1, exp = 0xf, underflow = 0
} else {
 exp = find_first_one(w_iter[31:16])
 mant = (w_iter[30:16] << exp), underflow = 0
}

underflow 1

To adder logic

Bit(4) of fbzMode is used to enable depth-buffering. When depth buffering is enabled, a depth comparison is
performed for each source pixel as defined in bits(7:5). When bit(3)=0, the z iterator is used for the depth buffer

 SST-1 Graphics Engine for 3D Game Acceleration

Copyright 1995 3Dfx Interactive, Inc. Revision 1.60
Proprietary and Preliminary 45 Printed 12/1/99

comparison. When bit(3)=1, the w iterator is used for the depth buffer comparison. When bit(3)=1 enabling w-
buffering, the inverse of the normalized w iterator is used for the depth-buffer comparison. This in effect
implements a floating-point w-buffering scheme utilizing a 4-bit exponent and a 12-bit mantissa. The inverted w
iterator is used so that the same depth buffer comparisons can be used as with a typical z-buffer. Section 5.19.1
below further describes the depth-buffering algorithm.

Bit(8) of fbzMode enables 16-bit color dithering. When enabled, native 24-bit source pixels are dithered into 16-
bit RGB color values with no performance penalty. When dithering is disabled, native 24-bit source pixels are
converted into 16-bit RGB color values by bit truncation. When dithering is enabled, bit(11) of fbzMode defines
the dithering algorithm -- when bit(11)=0 a 4x4 ordered dither algorithm is used, and when bit(11)=1 a 2x2
ordered dither algorithm is used to convert 24-bit RGB pixels into 16-bit frame buffer colors.

Bit(9) of fbzMode enables writes to the RGB buffers. Clearing bit(9) invalidates all writes to the RGB buffers, and
thus the RGB buffers remain unmodified for all rendering operations. Bit(9) must be set for normal drawing into
the RGB buffers. Similarly, bit(10) enables writes to the depth-buffer. When cleared, writes to the depth-buffer are
invalidated, and the depth-buffer state is unmodified for all rendering operations. Bit(10) must be set for normal
depth-buffered operation.

Bit(13) of fbzMode enables the alpha-channel mask. When enabled, bit(0) of the incoming alpha value is used to
mask writes to the color and depth buffers. If alpha channel masking is enabled and bit(0) of the incoming alpha
value is 0, then the pixel is invalidated in the pixel pipeline, the fbiAfuncFail register is incremented, and no
drawing occurs to the color or depth buffers. If alpha channel masking is enabled and bit(0) of the incoming alpha
value is 1, then the pixel is drawn normally subject to depth function, alpha blending function, alpha test, and
color/depth masking.

Bits(15:14) of fbzMode are used to select the RGB draw buffer for graphics drawing. For typical 3D-rendered
applications, drawing is only performed into a back buffer. However, some applications may desire to write into
the buffer that is being displayed by the monitor (the front buffer). Bit(16) of fbzMode is used to enable the Depth
Buffer bias. When bit(16)=1, the calculated depth value (irrespective of Z or 1/W type of depth buffering selected)
is added to bits(15:0) of zaColor. Depth buffer biasing is used to elimate aliasing artifacts when rendering co-
planar polygons.

Bit(17) of fbzMode is used to define the origin of the Y coordinate for rendering operations (FASTFILL and
TRIANGLE commands) and linear frame buffer writes when the pixel pipeline is bypassed for linear frame buffer
writes (lfbMode bit(8)=0). Note that bit(17) of fbzMode does not affect linear frame buffer writes when the pixel
pipeline is bypassed for linear frame buffer writes (lfbMode bit(8)=0), as in this situation bit(13) of lfbMode
specifies the Y origin for linear frame buffer writes. Also note that fbzMode bit(17) is never used to determine the
Y origin for linear frame buffer reads, as lfbMode bit(13) always specifies the Y origin for linear frame buffer
reads. When cleared, the Y origin (Y=0) for all rendering operations and linear frame buffer writes when the pixel
pipeline is enabled is defined to be at the top of the screen. When bit(17) is set, the Y origin is defined to be at the
bottom of the screen.

Bit(18) of fbzMode is used to enable the destination alpha planes. When set, the auxiliary buffer will be used as
destination alpha planes. Note that if bit(18) of fbzMode is set that depth buffering cannot be used, and thus bit(4)
of fbzMode (enable depth buffering) must be set to 0x0.

Bit(19) of fbzMode is used to enable dither subtraction on the destination color during alpha blending. When
dither subtraction is enabled (fbzMode bit(19)=1), the dither matrix used to convert 24-bit color to 16-bit color is
subtracted from the destination color before applying the alpha-blending algorithm. Enabling dither subtraction is
used to enhance image quality when performing alpha-blending.

 SST-1 Graphics Engine for 3D Game Acceleration

Copyright 1995 3Dfx Interactive, Inc. Revision 1.60
Proprietary and Preliminary 46 Printed 12/1/99

Bit(20) of fbzMode is used to select the source depth value used for depth buffering. When fbzMode bit(20)=0,
the source depth value used for the depth buffer comparison is either iterated Z or iterated W (as selected by
fbzMode bit(3)) and may be biased (as controlled by fbzMode bit(16)). When fbzMode bit(20)=1, the constant
depth value defined by zaColor[15:0] is used as the source depth value for the depth buffer comparison.
Regardless of the state of fbzMode bit(20), the biased iterated Z/W is written into the depth buffer if the depth
buffer function passes. Note that fbzMode bit(20) is not implemented in FBI revision 1.0.

5.19.1 Depth-buffering function
When the depth-buffering is enabled (fbzMode bit(4)=1), the following depth comparison is performed:
 DEPTHsrc DepthOP DEPTHdst
where DEPTHsrc and DEPTHdst represent the depth source and destination values respectively. A source pixel is
written into an RGB buffer if the depth comparison is true and writing into the RGB buffer is enabled (fbzMode
bit(9)=1). The source depth value is written into the depth buffer if the depth comparison is true and writing into
the depth buffer is enabled (fbzMode bit(10)=1). The supported depth comparison functions (DepthOPs) are
shown below:

Value DepthOP Function
0 never
1 less than
2 equal
3 less than or equal
4 greater than
5 not equal
6 greater than or equal
7 always

5.20 lfbMode Register
The lfbMode register controls linear frame buffer accesses.

Bit Description
3:0 Linear frame buffer write format (see table below)
5:4 Linear frame buffer write buffer select (0=front buffer, 1=back buffer, 2-3=reserved).
7:6 Linear frame buffer read buffer select (0=front buffer, 1=back buffer, 2=depth/alpha

buffer, 3=reserved).
8 Enable SST-1 pixel pipeline-processed linear frame buffer writes (1=enable)
10:9 Linear frame buffer RGBA lanes (see tables below)
11 16-bit word swap linear frame buffer writes (1=enable)
12 Byte swizzle linear frame buffer writes (1=enable)
13 LFB access Y origin (0=top of screen is origin, 1=bottom of screen is origin)
14 Linear frame buffer write access W select (0=LFB selected, 1=zacolor[15:0]).
15 16-bit word Swap linear frame buffer reads (1=enable)
16 Byte swizzle linear frame buffer reads (1=enable)

The following table shows the supported SST-1 linear frame buffer write formats:

Value Linear Frame Buffer Write Format

 SST-1 Graphics Engine for 3D Game Acceleration

Copyright 1995 3Dfx Interactive, Inc. Revision 1.60
Proprietary and Preliminary 47 Printed 12/1/99

 16-bit formats
0 16-bit RGB (5-6-5)
1 16-bit RGB (x-5-5-5)
2 16-bit ARGB (1-5-5-5)
3 Reserved

 32-bit formats
4 24-bit RGB (x-8-8-8)
5 32-bit ARGB (8-8-8-8)
7:6 Reserved
11:8 Reserved
12 16-bit depth, 16-bit RGB (5-6-5)
13 16-bit depth, 16-bit RGB (x-5-5-5)
14 16-bit depth, 16-bit ARGB (1-5-5-5)
15 16-bit depth, 16-bit depth

When accessing the linear frame buffer, the cpu accesses information from the starting linear frame buffer (LFB)
address space (see section 4 on SST-1 address space) plus an offset which determines the <x,y> coordinates being
accessed. Bits(3:0) of lfbMode define the format of linear frame buffer writes. Bits(5:4) of lfbMode select which
buffer is written when performing linear frame buffer writes (either front or back buffer). Bits(7:6) of lfbMode
select which buffer is read when performing linear frame buffer reads. Note that for linear frame buffer reads,
values from the depth/alpha buffer can be read by setting bits(7:6)=0x2.

When writing to the linear frame buffer, lfbMode bit(8)=1 specifies that LFB pixels are processed by the normal
SST-1 pixel pipeline -- this implies each pixel written must have an associated depth and alpha value, and is also
subject to the fog mode, alpha function, etc. If bit(8)=0, pixels written using LFB access bypass the normal SST-1
pixel pipeline and are written to the specified buffer unconditionally and the values written are unconditionally
written into the color/depth buffers except for optional color dithering [depth function, alpha blending, alpha test,
and color/depth write masks are all bypassed when bit(8)=0]. If bit(8)=0, then only the buffers that are specified in
the particular LFB format are updated. Also note that if lfbMode bit(8)=0 that the color and Z mask bits in
fbzMode(bits 9 and 10) are ignored for LFB writes. For example, if LFB modes 0-2, or 4 are used and bit(8)=0,
then only the color buffers are updated for LFB writes (the depth buffer is unaffected by all LFB writes for these
modes, regardless of the status of the Z-mask bit fbzMode bit 10). However, if LFB modes 12-14 are used and
bit(8)=0, then both the color and depth buffers are updated with the LFB write data, irrespective of the color and Z
mask bits in fbzMode. If LFB mode 15 is used and bit(8)=0, then only the depth buffer is updated for LFB writes
(the color buffers are unaffected by all LFB writes in this mode, regardless of the status of the color mask bits in
fbzMode).

If lfbMode bit(8)=0 and a LFB write format is selected which contains an alpha component (formats 2, 5, and 14)
and the alpha buffer is enabled, then the alpha component is written into the alpha buffer. Conversely, if the alpha
buffer is not enabled, then the alpha component of LFB writes using formats 2, 5, and 14 when bit(8)=0 are
ignored. Note that anytime LFB formats 2, 5, and 14 are used when bit(8)=0 that blending and/or chroma-keying
using the alpha component is not performed since the pixel-pipeline is bypassed when bit(8)=0.

If lfbMode bit(8)=0 and LFB write format 14 is used, the component that is ignored is determined by whether the
alpha buffer is enabled -- If the alpha buffer is enabled and LFB write format 14 is used with bit(8)=0, then the
depth component is ignored for all LFB writes. Conversely, if the alpha buffer is disabled and LFB write format is
used with bit(8)=0, then the alpha component is ignored for all LFB writes.

 SST-1 Graphics Engine for 3D Game Acceleration

Copyright 1995 3Dfx Interactive, Inc. Revision 1.60
Proprietary and Preliminary 48 Printed 12/1/99

If lfbMode bit(8)=1 and a LFB write access format does not include depth or alpha information (formats 0-5), then
the appropriate depth and/or alpha information for each pixel written is taken from the zaColor register. Note that
if bit(8)=1 that the LFB write pixels are processed by the normal SST-1 pixel pipeline and thus are subject to the
per-pixel operations including clipping, dithering, alpha-blending, alpha-testing, depth-testing, chroma-keying,
fogging, and color/depth write masking.

Bits(10:9) of lfbMode specify the RGB channel format (color lanes) for linear frame buffer writes. The table
below shows the SST-1 supported RGB lanes:

Value RGB Channel Format
0 ARGB
1 ABGR
2 RGBA
3 BGRA

Bit(11) of lfbMode defines the format of 2 16-bit data types passed with a single 32-bit writes. For linear frame
buffer formats 0-2, two 16-bit data transfers can be packed into one 32-bit write -- bit(11) defines which 16-bit
shorts correspond to which pixels on screen. The table below shows the pixel packing for packed 32-bit linear
frame buffer formats 0-2:

lfbMode bit(11) Screen Pixel Packing
0 Right Pixel(host data 31:16), Left Pixel(host data 15:0)
1 Left Pixel(host data 31:16), Right Pixel(host data 15:0)

For linear frame buffer formats 12-14, bit(11) of lfbMode defines the bit locations of the 2 16-bit data types passed.
The table below shows the data packing for 32-bit linear frame buffer formats 12-14:

lfbMode bit(11) Screen Pixel Packing
0 Z value(host data 31:16), RGB value(host data 15:0)
1 RGB value(host data 31:16), Z value(host data 15:0)

For linear frame buffer format 15, bit(11) of lfbMode defines the bit locations of the 2 16-bit depth values passed.
The table below shows the data packing for 32-bit linear frame buffer format 15:

lfbMode bit(11) Screen Pixel Packing
0 Z Right Pixel(host data 31:16), Z Left Pixel(host data 15:0)
1 Z left Pixel(host data 31:16), Z Right Pixel(host data 15:0)

Note that bit(11) of lfbMode is ignored for linear frame buffer writes using formats 4 or 5.

Bit(12) of lfbMode is used to enable byte swizzling. When byte swizzling is enabled, the 4-bytes within a 32-bit
word are swizzled to correct for endian differences between SST-1 and the host CPU. For little endian CPUs (e.g.
Intel x86 processors) byte swizzling should not be enabled, however big endian CPUs (e.g. PowerPC processors)
should enable byte swizzling. For linear frame buffer writes, the bytes within a word are swizzled prior to being
modified by the other control bits of lfbMode. When byte swizzling is enabled, bits(31:24) are swapped with
bits(7:0), and bits(23:16) are swapped with bits(15:8). Note the status of bit(12) of lfbMode has no affect on linear
frame buffer reads.

 SST-1 Graphics Engine for 3D Game Acceleration

Copyright 1995 3Dfx Interactive, Inc. Revision 1.60
Proprietary and Preliminary 49 Printed 12/1/99

Very Important Note: The order of swapping and swizzling operations for LFB writes is as follows: byte
swizzling is performed first on all incoming LFB data, as defined by lfbMode bit(12) and irrespective of the LFB
data format. After byte swizzling, 16-bit word swapping is performed as defined by lfbMode bit(11). Note that
16-bit word swapping is never performed on LFB data when data formats 4 and 5 are used. Also note that 16-bit
word swapping is performed on the LFB data that was previously optionally swapped. Finally, after both swizzling
and 16-bit word swapping are performed, the individual color channels are selected as defined in lfbMode
bits(10:9). Note that the color channels are selected on the LFB data that was previously swizzled and/or swapped

Bit(13) of lfbMode is used to define the origin of the Y coordinate for all linear frame buffer reads and linear
frame buffer writes when the pixel pipeline is bypassed (lfbMode bit(8)=0). Note that bit(13) of lfbMode does not
affect rendering operations (FASTFILL and TRIANGLE commands) -- bit(17) of fbzMode defines the origin of
the Y coordinate for rendering operations. Note also that if the pixel pipeline is enabled for linear frame buffer
writes (lfbMode bit(8)=1), then fbzMode bit(17) is used to determine the location of the Y origin. For linear
frame buffer reads, however, lfbMode bit(13) is always used to determine the Y origin, regardless of the setting of
lfbMode bit(8). When cleared, the Y origin (Y=0) for all linear frame buffer accesses is defined to be at the top of
the screen. When bit(13) is set, the Y origin for all linear frame buffer accesses is defined to be at the bottom of
the screen.

Bit(14) of lfbMode is used to select the W component used for LFB writes processed through the pixel pipeline. If
bit(14)=0, then the MSBs of the fractional component of the 48-bit W value passed to the pixel pipeline for LFB
writes through the pixel pipeline is the 16-bit Z value associated with the LFB write. [Note that the 16-bit Z value
associated with the LFB write is dependent on the LFB format, and is either passed down pixel-by-pixel from the
CPU, or is set to the constant zaColor(15:0)]. If bit(14)=1, then the MSBs of the fractional component of the 48-
bit W value passed to the pixel pipeline for LFB writes is zacolor(15:0). Regardless of the setting of bit(14), when
LFB writes go through the pixel pipeline, all other bits except the 16 MSBs of the fractional component of the W
value are set to 0x0. Note that bit(14) is ignored if LFB writes bypass the pixel pipeline.

5.20.1 Linear Frame Buffer Writes

Linear frame buffer writes -- format 0:
When writing to the linear frame buffer with 16-bit format 0 (RGB 5-6-5), the RGB channel format specifies the
RGB ordering within a 16-bit word. If the SST-1 pixel pipeline is enabled for LFB accesses (lfbMode bit(8)=1),
then alpha and depth information for LFB format 0 is taken from the zaColor register. The following table shows
the color channels for 16-bit linear frame buffer access format 0:

RGB Channel
Format Value

16-bit Linear frame
buffer access bits

RGB Channel

0 15:0 Red (15:11), Green(10:5), Blue(4:0)
1 15:0 Blue (15:11), Green(10:5), Red(4:0)
2 15:0 Red (15:11), Green(10:5), Blue(4:0)
3 15:0 Blue (15:11), Green(10:5), Red(4:0)

Linear frame buffer writes -- format 1:
When writing to the linear frame buffer with 16-bit format 1 (RGB 5-5-5), the RGB channel format specifies the
RGB ordering within a 16-bit word. If the SST-1 pixel pipeline is enabled for LFB accesses (lfbMode bit(8)=1),
then alpha and depth information for LFB format 1 is taken from the zaColor register. The following table shows
the color channels for 16-bit linear frame buffer access format 1:

 SST-1 Graphics Engine for 3D Game Acceleration

Copyright 1995 3Dfx Interactive, Inc. Revision 1.60
Proprietary and Preliminary 50 Printed 12/1/99

RGB Channel
Format Value

16-bit Linear frame
buffer access bits

RGB Channel

0 15:0 Ignored(15), Red (14:10), Green(9:5), Blue(4:0)
1 15:0 Ignored(15), Blue (14:10), Green(9:5), Red(4:0)
2 15:0 Red (15:11), Green(10:6), Blue(5:1), Ignored(0)
3 15:0 Blue (15:11), Green(10:6), Red(5:1), Ignored(0)

Linear frame buffer writes -- format 2:
When writing to the linear frame buffer with 16-bit format 2 (ARGB 1-5-5-5), the RGB channel format specifies
the RGB ordering within a 16-bit word. If the SST-1 pixel pipeline is enabled for LFB accesses (lfbMode
bit(8)=1), then depth information for LFB format 2 is taken from the zaColor register. Note that the 1-bit alpha
value passed when using LFB format 2 is bit-replicated to yield the 8-bit alpha used in the pixel pipeline. The
following table shows the color channels for 16-bit linear frame buffer access format 2:

RGB Channel
Format Value

16-bit Linear frame
buffer access bits

RGB Channel

0 15:0 Alpha(15), Red (14:10), Green(9:5), Blue(4:0)
1 15:0 Alpha(15), Blue (14:10), Green(9:5), Red(4:0)
2 15:0 Red (15:11), Green(10:6), Blue(5:1), Alpha(0)
3 15:0 Blue (15:11), Green(10:6), Red(5:1), Alpha(0)

Linear frame buffer writes -- format 3:
Linear frame buffer format 3 is an unsupported format.

Linear frame buffer writes -- format 4:
When writing to the linear frame buffer with 24-bit format 4 (RGB x-8-8-8), the RGB channel format specifies the
RGB ordering within a 24-bit word. Note that the alpha/A channel is ignored for 24-bit access format 4. Also
note that while only 24-bits of data is transfered for format 4, all data access must be 32-bit aligned -- packed 24-
bit writes are not supported by SST-1. If the SST-1 pixel pipeline is enabled for LFB accesses (lfbMode bit(8)=1),
then alpha and depth information for LFB format 4 is taken from the zaColor register. The following table shows
the color channels for 24-bit linear frame buffer access format 4:

RGB Channel
Format Value

24-bit Linear frame
buffer access bits

(aligned to 32-bits)

RGB Channel

0 31:0 Ignored(31:24), Red (23:16), Green(15:8), Blue(7:0)
1 31:0 Ignored(31:24), Blue(23:16), Green(15:8), Red(7:0)
2 31:0 Red(31:24), Green(23:16), Blue(15:8), Ignored(7:0)
3 31:0 Blue(31:24), Green(23:16), Red(15:8), Ignored(7:0)

Linear frame buffer writes -- format 5:
When writing to the linear frame buffer with 32-bit format 5 (ARGB 8-8-8-8), the RGB channel format specifies
the ARGB ordering within a 32-bit word. If the SST-1 pixel pipeline is enabled for LFB accesses (lfbMode
bit(8)=1), then depth information for LFB format 5 is taken from the zaColor register. The following table shows
the color channels for 32-bit linear frame buffer access format 5.

 SST-1 Graphics Engine for 3D Game Acceleration

Copyright 1995 3Dfx Interactive, Inc. Revision 1.60
Proprietary and Preliminary 51 Printed 12/1/99

RGB Channel
Format Value

24-bit Linear frame
buffer access bits

(aligned to 32-bits)

RGB Channel

0 31:0 Alpha(31:24), Red (23:16), Green(15:8), Blue(7:0)
1 31:0 Alpha(31:24), Blue(23:16), Green(15:8), Red(7:0)
2 31:0 Red(31:24), Green(23:16), Blue(15:8), Alpha(7:0)
3 31:0 Blue(31:24), Green(23:16), Red(15:8), Alpha(7:0)

Linear frame buffer writes -- formats 6-11:
Linear frame buffer formats 6-11 are unsupported formats.

Linear frame buffer writes -- format 12:
When writing to the linear frame buffer with 32-bit format 12 (Depth 16, RGB 5-6-5), the RGB channel format
specifies the RGB ordering within the 32-bit word. If the SST-1 pixel pipeline is enabled for LFB accesses
(lfbMode bit(8)=1), then alpha information for LFB format 12 is taken from the zaColor register. Note that the
format of the depth value passed when using LFB format 12 must precisely match the format of the type of depth
buffering being used (either 16-bit integer Z or 16-bit floating point 1/W). The following table shows the 16-bit
color channels within the 32-bit linear frame buffer access format 12:

RGB Channel
Format Value

16-bit Linear frame
buffer access bits

RGB Channel

0 15:0 Red (15:11), Green(10:5), Blue(4:0)
1 15:0 Blue (15:11), Green(10:5), Red(4:0)
2 15:0 Red (15:11), Green(10:5), Blue(4:0)
3 15:0 Blue (15:11), Green(10:5), Red(4:0)

Linear frame buffer writes -- format 13:
When writing to the linear frame buffer with 32-bit format 13 (Depth 16, RGB x-5-5-5), the RGB channel format
specifies the RGB ordering within the 32-bit word. If the SST-1 pixel pipeline is enabled for LFB accesses
(lfbMode bit(8)=1), then alpha information for LFB format 13 is taken from the zaColor register. Note that the
format of the depth value passed when using LFB format 13 must precisely match the format of the type of depth
buffering being used (either 16-bit integer Z or 16-bit floating point 1/W). The following table shows the 16-bit
color channels within the 32-bit linear frame buffer access format 13:

RGB Channel
Format Value

16-bit Linear frame
buffer access bits

RGB Channel

0 15:0 Ignored(15), Red (14:10), Green(9:5), Blue(4:0)
1 15:0 Ignored(15), Blue (14:10), Green(9:5), Red(4:0)
2 15:0 Red (15:11), Green(10:6), Blue(5:1), Ignored(0)
3 15:0 Blue (15:11), Green(10:6), Red(5:1), Ignored(0)

Linear frame buffer writes -- format 14:
When writing to the linear frame buffer with 32-bit format 14 (Depth 16, ARGB 1-5-5-5), the RGB channel format
specifies the RGB ordering within the 32-bit word. Note that the format of the depth value passed when using LFB
format 14 must precisely match the format of the type of depth buffering being used (either 16-bit integer Z or 16-
bit floating point 1/W). Also note that the 1-bit alpha value passed when using LFB format 14 is bit-replicated to
yield the 8-bit alpha used in the pixel pipeline. The following table shows the 16-bit color channels within the 32-
bit linear frame buffer access format 14:

 SST-1 Graphics Engine for 3D Game Acceleration

Copyright 1995 3Dfx Interactive, Inc. Revision 1.60
Proprietary and Preliminary 52 Printed 12/1/99

RGB Channel
Format Value

16-bit Linear frame
buffer access bits

RGB Channel

0 15:0 Alpha(15), Red (14:10), Green(9:5), Blue(4:0)
1 15:0 Alpha(15), Blue (14:10), Green(9:5), Red(4:0)
2 15:0 Red (15:11), Green(10:6), Blue(5:1), Alpha(0)
3 15:0 Blue (15:11), Green(10:6), Red(5:1), Alpha(0)

Linear frame buffer writes -- format 15:
When writing to the linear frame buffer with 32-bit format 15 (Depth 16, Depth 16), the format of the depth values
passed must precisely match the format of the type of depth buffering being used (either 16-bit integer Z or 16-bit
floating point 1/W). If the SST-1 pixel pipeline is enabled for LFB accesses (lfbMode bit(8)=1), then RGB color
information is taken from the color1 register, and alpha information for LFB format 15 is taken from the zaColor
register.

5.20.2 Linear Frame Buffer Reads
When reading from the linear frame buffer, all data returned is in 16/16 format, with two 16-bit pixels returned for
every 32-bit doubleword read. The RGB channel format of the 16-bit pixels read is defined by the rgb channel
format field of lfbMode bits(12:9). The alpha/depth buffer can also be read by selecting lfbMode bits(7:6)=0x2.
The mapping of the screen space pixels to the two 16-bit words within a 32-bit read are defined by lfbMode bit(15)
as shown in the following table:

lfbMode bit(15) Screen Pixel Packing
0 Right Pixel(host data 31:16), Left Pixel(host data 15:0)
1 Left Pixel(host data 31:16), Right Pixel(host data 15:0)

The value of bit(16) of lfbMode also affects the byte positioning of linear frame buffer reads -- if bit(16)=1, then
the LFB read data output from the 16-bit word swap logic is byte-swizzled. Note that byte swizzling (if enabled) is
performed after 16-bit word swapping (if enabled) for linear frame buffer reads. Also note that byte swizzling
and/or word swapping are performed on reads from the depth/alpha buffer (selected when lfbMode bits(7:6)=0x2)
if either or both are enabled. The value of bit(13) of lfbMode selects the position of the Y origin for all linear
frame buffer reads. The order of frame buffer read data formatting is illustrated below:

 SST-1 Graphics Engine for 3D Game Acceleration

Copyright 1995 3Dfx Interactive, Inc. Revision 1.60
Proprietary and Preliminary 53 Printed 12/1/99

Data from Frame Buffer

64

Color Buffer/
Depth Buffer select lfbMode(7:6)

32

Color Lane Select
(for colors only) lfbMode(10:9)

32

16-bit Word Swap lfbMode(15)

32

Byte Swizzle lfbMode(16)

32

Data to CPU

See section 8 for more information on linear frame buffer accesses.

5.21 clipLeftRight and clipLowYHighY Registers
The clip registers specify a rectangle within which all drawing operations are confined. If a pixel is to be drawn
outside the clip rectangle, it will not be written into the RGB or depth buffers. Note that the specified clipping
rectangle defines a valid drawing area in both the RGB and depth/alpha buffers. The values in the clipping
registers are given in pixel units, and the valid drawing rectangle is inclusive of the clipleft and clipLowY register
values, but exclusive of the clipRight and clipHighY register values. clipLowY must be less than clipHighY, and
clipLeft must be less than clipRight. The clip registers can be enabled by setting bit(0) in the fbzMode register.
When clipping is enabled, the bounding clipping rectangle must always be less than or equal to the screen
resolution in order to clip to screen coordinates. Also note that if clipping is not enabled, rendering must not be
specified to occur outside of the screen resolution.

Important Note: The clipLowYHighY register is defined such that y=0 always resides at the top of the monitor
screen. Changing the value of the Y origin bits (fbzMode bit(17) or lfbMode bit(13)) has no affect on the
clipLowYHighY register orientation. As a result, if the Y origin is defined to be at the bottom of the screen (by
setting one of the Y origin bits), care must be taken in setting the clipLowYHighY register to ensure proper
functionality. In the case where the Y origin is defined to be at the bottom of the screen, the value of
clipLowYHighY is usually set as the number of scan lines in the monitor resolution minus the desired Y clipping
values.

 SST-1 Graphics Engine for 3D Game Acceleration

Copyright 1995 3Dfx Interactive, Inc. Revision 1.60
Proprietary and Preliminary 54 Printed 12/1/99

The clip registers are also used to define a rectangular region to be drawn during a FASTFILL command. Note
that when clipLowYHighY is used to specify a rectangular region for the FASTFILL command, the orientation of
the Y origin (top or bottom of the screen) is defined by the status of fbzMode bit(17). See section 7 and the
fastfillCMD register description for more information on the FASTFILL command.

clipLeftRight Register
Bit Description
9:0 Unsigned integer specifying right clipping rectangle edge
15:10 reserved
25:16 Unsigned integer specifying left clipping rectangle edge
31:26 reserved

clipLowYHighY Register
Bit Description
9:0 Unsigned integer specifying high Y clipping rectangle edge
15:10 reserved
25:16 Unsigned integer specifying low Y clipping rectangle edge
31:26 reserved

5.22 nopCMD Register
Writing any data to the nopCMD register executes the NOP command. Executing a NOP command flushes the
graphics pipeline. The lsb of the data value written to nopCMD is used to optionally clear the fbiPixelsIn,
fbiChromaFail, fbiZfuncFail, fbiAfuncFail, and fbiPixelsOut registers. Writing a ‘1’ to the lsb of nopCMD will
clear the aforementioned registers. Writing a ‘0’ to the lsb of nopCMD will not modify the values of the
aforementioned registers.

Bit Description
0 Clear fbiPixelsIn, fbiChromaFail, fbiZfuncFail, fbiAfuncFail, and fbiPixelsOut

registers (1=clear registers)

5.23 fastfillCMD Register
Writing any data to the fastfill register executes the FASTFILL command. The FASTFILL command is used to
clear the RGB and depth buffers as quickly as possible. Prior to executing the FASTFILL command, the
clipLeftRight and clipLowYHighY are loaded with a rectangular area which is the desired area to be cleared.
Note that clip registers define a rectangular area which is inclusive of the clipLeft and clipLowY register values,
but exclusive of the clipRight and clipHighY register values. The fastfillCMD register is then written to initiate
the FASTFILL command after the clip registers have been loaded. FASTFILL will optionally clear the color
buffers with the RGB color specified in the color1 register, and also optionally clears the depth buffer with the
depth value taken from the zaColor register. Note that since color1 is a 24-bit value, either dithering or bit
truncation must be used to translate the 24-bit value into the native 16-bit frame buffer -- dithering may be
employed optionally as defined by bit(8) of fbzMode. Disabling clearing of the color or depth buffers is
accomplished by modifying the rgb/depth mask bits(10:9) in fbzMode. This allows individual or combined
clearing of the RGB and depth buffers.

 SST-1 Graphics Engine for 3D Game Acceleration

Copyright 1995 3Dfx Interactive, Inc. Revision 1.60
Proprietary and Preliminary 55 Printed 12/1/99

5.24 swapbufferCMD Register
Writing to the swapbufferCMD register executes the SWAPBUFFER command. If the data written to
swapbufferCMD bit(0)=0, then the frame buffer swapping is not synchronized with vertical retrace. If frame
buffer swapping is not synchronized with vertical retrace, then visible frame “tearing” may occur. If
swapbufferCMD bit(0)=1 then the frame buffer swapping is synchronized with vertical retrace. Synchronizing
frame buffer swapping with vertical retrace eliminates the aforementioned frame “tearing.” When a
swapbufferCMD is received in the front-end PCI host FIFO, the swap buffers pending field in the status register is
incremented. Conversely, when an actual frame buffer swapping occurs, the swap buffers pending field in the
status register (bits(30:28)) is decremented. The swap buffers pending field allows software to determine how
many SWAPBUFFER commands are present in the SST-1 FIFOs. Bits(8:1) of swapbufferCMD are used to
specify the number of vertical retraces to wait before swapping the color buffers. An internal counter is
incremented whenever a vertical retrace occurs, and the color buffers are not swapped until the internal vertical
retrace counter is greater than the value of swapbufferCMD bits(8:1) -- After a swap occurs, the internal vertical
retrace counter is cleared. Specifying values other than zero for bits(8:1) are used to maintain constant frame rate.
Note that if vertical retrace synchronization is disabled for swapping buffers (swapbufferCMD(0)=0), then the
swap buffer interval field is ignored. TO BE COMPLETED: SWAPBUFFER command and triple buffering. Note that
syncing to vertical retrace must be enabled and the swapbuffer interval must be 0x0 when using triple buffering.

Bit Description
0 Synchronize frame buffer swapping to vertical retrace (1=enable)
8:1 Swap buffer interval

5.25 fogColor Register
The fogColor register is used to specify the fog color for fogging operations. Fog is enabled by setting bit(0) in
fogMode. See the fogMode and fogTable register descriptions for more information fog.

Bit Description
7:0 Fog Color Blue
15:8 Fog Color Green
23:16 Fog Color Red
31:24 reserved

5.26 zaColor Register
The zaColor register is used to specify constant alpha and depth values for linear frame buffer writes, FASTFILL
commands, and co-planar polygon rendering support. For certain linear frame buffer access formats, the alpha and
depth values associated with a pixel written are the values specified in zaColor. See the lfbMode register
description for more information. When executing the FASTFILL command, the constant 16-bit depth value
written into the depth buffer is taken from bits(15:0) of zaColor. When fbzMode bit(16)=1 enabling depth-
biasing, the constant depth value required is taken from zaColor bits(15:0).

Bit Description
15:0 Constant Depth
23:16 reserved
31:24 Constant Alpha

 SST-1 Graphics Engine for 3D Game Acceleration

Copyright 1995 3Dfx Interactive, Inc. Revision 1.60
Proprietary and Preliminary 56 Printed 12/1/99

5.27 chromaKey Register
The chromaKey register specifies a color which is compared with all pixels to be written into the RGB buffer. If a
color match is detected between an outgoing pixel and the chromaKey register, and chroma-keying is enabled
(bit(1)=1 in the fbzMode register), then the pixel is not written into the frame buffer. An outgoing pixel will still
be written into the RGB buffer if chroma-keying is disabled or the chromaKey color does not equal the outgoing
pixel color. Note that the alpha color component of an outgoing pixel is ignored in the chroma-key color match
circuitry. The chroma-key comparison is performed immediately after texture lookup, but before lighting, fog, or
alpha blending. See the description of the fbzColorPath register for further information on the location of the
chroma-key comparison circuitry. The format of chromaKey is a 24-bit RGB color.

Bit Description
7:0 Chroma-key Blue
15:8 Chroma-key Green
23:16 Chroma-key Red
31:24 reserved

5.28 stipple Register
The stipple register specifies a mask which is used to enable individual pixel writes to the RGB and depth buffers.
See the stipple functionality description in the fbzMode register description for more information.

Bit Description
31:0 stipple value

5.29 color0 Register
The color0 register specifies constant color values which are used for certain rendering functions. In particular,
bits(23:0) of color0 are optionally used as the c_local input in the color combine unit. In addition, bits(31:24) of
color0 are optionally used as the c_local input in the alpha combine unit. See the fbzColorPath register
description for more information.

Bit Description
7:0 Constant Color Blue
15:8 Constant Color Green
23:16 Constant Color Red
31:24 Constant Color Alpha

5.30 color1 Register
The color1 register specifies constant color values which are used for certain rendering functions. In particular,
bits(23:0) of color1 are optionally used as the c_other input in the color combine unit selected by bits(1:0) of
fbzColorPath. The alpha component of color1(bits(31:24)) are optionally used as the a_other input in the alpha
combine unit selected by bits(3:2) of fbzColorPath. The color1 register bits(23:0) are also used by the FASTFILL
command as the constant color for screen clears. Also, for linear frame buffer write format 15(16-bit depth, 16-bit
depth), the color for the pixel pipeline is taken from color1 if the pixel pipeline is enabled for linear frame buffer
writes (lfbMode bit(8)=1).

Bit Description
7:0 Constant Color Blue

 SST-1 Graphics Engine for 3D Game Acceleration

Copyright 1995 3Dfx Interactive, Inc. Revision 1.60
Proprietary and Preliminary 57 Printed 12/1/99

15:8 Constant Color Green
23:16 Constant Color Red
31:24 Constant Color Alpha

5.31 fbiPixelsIn Register
The fbiPixelsIn register is a 24-bit counter which is incremented for each pixel processed by the SST-1 triangle
walking engine. fbiPixelsIn is incremented irrespective if the triangle pixel is actually drawn or not as a result of
the depth test, alpha test, etc. fbiPixelsIn is used primarily for statistical information, and in essence allows
software to count the number of pixels in a screen-space triangle. fbiPixelsIn is reset to 0x0 on power-up reset,
and is reset when a ‘1’ if written to the lsb of nopCMD.

Bit Description
23:0 Pixel Counter (number of pixels processed by SST-1 triangle engine)

5.32 fbiChromaFail Register
The fbiChromaFail register is a 24-bit counter which is incremented each time an incoming source pixel (either
from the triangle engine or linear frame buffer writes through the pixel pipeline) is invalidated in the pixel pipeline
because of the chroma-key color match test. If an incoming source pixel color matches the chomaKey register,
fbiChromaFail is incremented. fbiChromaFail is reset to 0x0 on power-up reset, and is reset when a ‘1’ if
written to the lsb of nopCMD.

Bit Description
23:0 Pixel Counter (number of pixels failed chroma-key test)

5.33 fbiZfuncFail Register
The fbiZfuncFail register is a 24-bit counter which is incremented each time an incoming source pixel (either
from the triangle engine or linear frame buffer writes through the pixel pipeline) is invalidated in the pixel pipeline
because of a failure in the Z test. The Z test is defined and enabled in the fbzMode register. fbiZfuncFail is reset
to 0x0 on power-up reset, and is reset when a ‘1’ if written to the lsb of nopCMD.

Bit Description
23:0 Pixel Counter (number of pixels failed Z test)

5.34 fbiAfuncFail Register
The fbiAfuncFail register is a 24-bit counter which is incremented each time an incoming source pixel (either
from the triangle engine or linear frame buffer writes through the pixel pipeline) is invalidated in the pixel pipeline
because of a failure in the alpha test. The alpha test is defined and enabled in the alphaMode register. The
fbiAfuncFail register is also incremented if an incoming source pixel is invalidated in the pixel pipeline as a result
of the alpha masking test (bit(13) in fbzMode). fbiAfuncFail is reset to 0x0 on power-up reset, and is reset when
a ‘1’ if written to the lsb of nopCMD.

Bit Description
23:0 Pixel Counter (number of pixels failed Alpha test)

 SST-1 Graphics Engine for 3D Game Acceleration

Copyright 1995 3Dfx Interactive, Inc. Revision 1.60
Proprietary and Preliminary 58 Printed 12/1/99

5.35 fbiPixelsOut Register
The fbiPixelsOut register is a 24-bit counter which is incremented each time a pixel is written into a color buffer
during rendering operations (rendering operations include triangle commands, linear frame buffer writes, and the
FASTFILL command). Pixels tracked by fbiPixelsOut are therefore subject to the chroma-test, Z test, Alpha test,
etc. that are part of the regular SST-1 pixel pipeline. fbiPixelsOut is used to count the number of pixels actually
drawn (as opposed to the number of pixels processed counted by fbiPixelsIn). Note that the RGB mask (fbzMode
bit(9) is ignored when determining fbiPixelsOut. fbiPixelsOut is reset to 0x0 on power-up reset, and is reset
when a ‘1’ if written to the lsb of nopCMD.

Bit Description
23:0 Pixel Counter (number of pixels drawn to color buffer)

5.36 fogTable Register
The fogTable register is used to implement fog functions in SST-1. The fogTable register is a 64-entry lookup
table consisting of 8-bit fog blending factors and 8-bit ∆fog blending values. The ∆fog blending values are the
difference between successive fog blending factors in fogTable and are used to blend between fogTable entries.
Note that the ∆fog blending factors are stored in 6.2 format, while the fog blending factors are stored in 8.0 format.
For most applications, the 6.2 format ∆fog blending factors will have the two LSBs set to 0x0, with the six MSBs
representing the difference between successive fog blending factors. Also note that as a result of the 6.2 format for
the ∆fog blending factors, the difference between successive fog blending factors cannot exceed 63. When storing
the fog blending factors, the sum of each fog blending factor and ∆fog blending factor pair must not exceed 255.
When loading fogTable, two fog table entries must be written concurrently in a 32-bit word. A total of 32 32-bit
PCI writes are required to load the entire fogTable register.

fogTable[n] (0 ≤ n ≤ 31)
Bit Description
7:0 FogTable[2n] ∆Fog blending factor
15:8 FogTable[2n] Fog blending factor
23:16 FogTable[2n+1] ∆Fog blending factor
31:24 FogTable[2n+1] Fog blending factor

5.37 vRetrace Register
The vRetrace register is used to determine the position of the monitor vertical refresh beam. The vRetrace
register allows software to read the status of the internal vSync_off counter used for vertical video timing. The
vRetrace register allows an application to determine the amount of time before the next vertical sync. Note that
vRetrace is read only. See section 11 for more information on video timing.

Bit Description
11:0 internal vSync_off counter value

5.38 hSync Register
The hSync register specifies the timing values used to generate the horizontal sync (hsync) signal. See section 11
for more information on video timing.

Bit Description

 SST-1 Graphics Engine for 3D Game Acceleration

Copyright 1995 3Dfx Interactive, Inc. Revision 1.60
Proprietary and Preliminary 59 Printed 12/1/99

7:0 Horizontal sync on (internal hSync_on register)
15:8 reserved
25:16 Horizontal sync off (internal hSync_off register)

5.39 vSync Register
The vSync register specifies the timing values used to generate the vertical sync (vsync) signal. See section 11 for
more information on video timing.

Bit Description
11:0 Vertical sync on (internal vSync_on register)
15:12 reserved
27:16 Vertical sync off (internal vSync_off register)

5.40 backPorch Register
The backPorch register specifies the timing values used to define the video backporch area. See section 11 for
more information on video timing.

Bit Description
7:0 Horizontal backporch (internal hBackPorch register)
15:8 reserved
23:16 Vertical backporch (internal vBackPorch register)

5.41 videoDimensions Register
The videoDimensions register specifies the dimensions used to generate video timing values. See section 11 for
more information on video timing.

Bit Description
9:0 X (width) dimension (internal xWidth register)
15:10 reserved
25:16 Y (height) dimension (internal yHeight register)

5.42 fbiInit0 Register
The fbiInit0 register is used for hardware initialization and configuration of the FBI chip. Writes to fbiInit0 are
ignored unless PCI configuration register initWrEnable bit(0)=1. Writes to fbiInit0 are not put into the PCI bus
FIFO and are written immediately, so care must be taken when writing to fbiInit0 if data is in the PCI bus FIFO or
the graphics engine is busy.

Bit Description
 Miscellaneous Control
0 VGA passthrough (controls external pins vga_pass and vga_pass_n). Default is

defined by strapping pin fb_addr[4].
1 FBI Graphics Reset (0=run, 1=reset). Default is 0.
2 FBI FIFO Reset (0=run, 1=reset). Default is 0. [resets PCI FIFO and the PCI data

packer]
3 Byte swizzle incoming register writes (1=enable). [Register byte data is swizzled if

fbiInit0[3]==1 and pci_address[21]==1]. Default is 0.

 SST-1 Graphics Engine for 3D Game Acceleration

Copyright 1995 3Dfx Interactive, Inc. Revision 1.60
Proprietary and Preliminary 60 Printed 12/1/99

 FIFO Control
4 Stall PCI enable for High Water Mark (0=disable, 1=enable). Default is 1.
5 reserved
10:6 PCI FIFO Empty Entries Low Water Mark. Valid values are 0-31. Default is 0x10.
11 Linear frame buffer accesses stored in memory FIFO (1=enable). Default is 0.
12 Texture memory accesses stored in memory FIFO (1=enable). Default is 0.
13 Memory FIFO enable (0=disable, 1=enable). Default is 0.
24:14 Memory FIFO High Water Mark (bits [15:5]). Default is 0x0.
30:25 Memory FIFO Write Burst High Water Mark (Range 0-63 -- must be greater than

fbiinit4[7:2]). Default is 0x0.
31 reserved

5.43 fbiInit1 Register
The fbiInit1 register is used for hardware initialization and configuration of the FBI chip. Writes to fbiInit1 are
ignored unless PCI configuration register initWrEnable bit(0)=1. Writes to fbiInit1 are not put into the PCI bus
FIFO and are written immediately, so care must be taken when writing to fbiInit1 if data is in the PCI bus FIFO or
the graphics engine is busy.

Bit Description
 PCI Bus Controller Configuration
0 PCI Device Function Number, specifed with power-on latched values (0=pass-thru

SST-1 only, 1=combo board with VGA dev #0 and SST-1 dev#1). Read only.
1 Wait state cycles for PCI write accesses (0=no ws, 1=one ws). Default is 1.
2 Multi-SST configuration detect (0=one SST-1 configuration, 1=two SST-1

configuration). Read only.
3 Enable linear frame buffer reads (1=enable). Default is 0. This bit is included so that

SST-1 potentially won’t hang the system during random reads during powerup.

 Video Controller Configuration (1)
7:4 Number of 64x16 video tiles in X dimension divided by 2 (3.1 format). Default is 0.
8 Video Timing Reset (0=run, 1=reset). Default is 1.
9 Software override of HSYNC/VSYNC (0=normal operation, 1=software override).

Default is 0.
10 Software override HSYNC value. Default is 0.
11 Software override VSYNC value. Default is 0.
12 Software blanking enable (0=normal operation, 1=Always blank monitor). Default is 1.
13 Drive video timing data outputs (0=tristate, 1=drive outputs). Default is 0.
14 Drive video timing blank output (0=tristate, 1=drive output). Default is 0.
15 Drive video timing hsync/vsync outputs (0=tristate, 1=drive outputs). Default is 0.
16 Drive video timing dclk output (0=tristate, 1=drive output). Default is 0.
17 Video timing vclk input select (0=vid_clk_2x, 1=vid_clk_slave). Default is 0.
19:18 Vid_clk_2x delay select (0=no delay, 1=4 ns, 2=6 ns, 3=8 ns). Default is 0.
21:20 Video timing vclk source select (0=vid_clk_slave, 1=vid_clk_2x [divided by 2],

2,3=vid_clk_2x_sel). Default is 2.
22 Enable 24 Bits-per-pixel video output (1=enable). Default is 0.
23 Enable scan-line interleaving (1=enable). Default is 0.

 SST-1 Graphics Engine for 3D Game Acceleration

Copyright 1995 3Dfx Interactive, Inc. Revision 1.60
Proprietary and Preliminary 61 Printed 12/1/99

24 reserved
25 Enable video edge detection filtering (1=enable). Default is 0.
26 Invert vid_clk_2x (0=pass-thru vid_clk_2x, 1=invert vid_clk_2x). Default is 0.
28:27 Vid_clk_2x_sel delay select (0=no delay, 1=4 ns, 2=6 ns, 3=8 ns). Default is 0.
30:29 Vid_clk delay select (0=no delay, 1=4 ns, 2=6 ns, 3=8 ns). Default is 0.
31 Disable fast Read-Ahead-Write to Read-Ahead-Read turnaround (1=disable). Default is

0.

5.44 fbiInit2 Register
The fbiInit2 register is used for hardware initialization and configuration of the FBI chip. Writes to fbiInit2 are
ignored unless PCI configuration register initWrEnable bit(0)=1. Writes to fbiInit2 are not put into the PCI bus
FIFO and are written immediately, so care must be taken when writing to fbiInit2 if data is in the PCI bus FIFO or
the graphics engine is busy. TO BE COMPLETED.

Bit Description
 DRAM Memory Controller Configuration
0 Enable video dither subtraction (1=enable). Default is 0x0.
1 DRAM banking configuration (0=128Kx16 banking, 1=256Kx16 banking)
3:2 reserved
4 Triple Buffering Enable (1=enable). Default is 0x0.
5 Enable fast RAS read cycles [bring RAS high early on reads] (1=enable). Default is

0x0.
6 Enable generated dram OE signal (1=enable). Default is 0x1.
7 Enable fast Read-Ahead -Write turnaround [bit(6) must be set]. (1=enable). Default is

0x0.
8 Enable pass-through dither mode [For 8 BPP apps only] (1=enable). Default is 0x0.
10:9 Swap buffer algorithm (0=based on dac_vsync, 1=based on dac_data(0), 2=based on

pci_fifo_stall, 3=reserved). Default is 0x0.

 Video/DRAM Controller Configuration (2)
19:11 Video Buffer Offset (=150 for 640x480, =297 for 832x608). Default is 0x0.
20 Enable DRAM banking (1=enable). Default is 0x0.
21 Enable DRAM Read Ahead FIFO (1=enable). Default is 0x0.

 DRAM Refresh Control
22 Refresh Enable (0=disable, 1=enable). Default is 0.
31:23 Refresh_Load Value. (Internal 14-bit counter 5 LSBs are 0x0). Default is 0x100.

5.45 fbiInit3 Register
The fbiInit3 register is used for hardware initialization and configuration of the FBI chip. Writes to fbiInit3 are
ignored unless PCI configuration register initWrEnable bit(0)=1. Writes to fbiInit3 are not put into the PCI bus
FIFO and are written immediately, so care must be taken when writing to fbiInit3 if data is in the PCI bus FIFO or
the graphics engine is busy. TO BE COMPLETED.

Bit Description
 Miscellaneous Control

 SST-1 Graphics Engine for 3D Game Acceleration

Copyright 1995 3Dfx Interactive, Inc. Revision 1.60
Proprietary and Preliminary 62 Printed 12/1/99

0 Triangle register address remapping (0=use normal register mapping, 1=use aliased
register mapping). Default is 0x0.

5:1 Video Fifo threshold. Default is 0x0.
6 Disable Texture Mapping (0=normal, 1=disable Trex-to-FBI Interface). Default is 0x0.
7 reserved

 FBI power-on configuration bits (read only)
10:8 FBI memory type (000=EDO DRAM, 001=Synch. DRAM)
11 VGA_PASS reset value
12 Hardcode PCI base address 0x1f000000 (1=enable, 0=normal operation).

 TREX interface configuration bits
16:13 fbi-to-trex bus clock delay selections (0-15). Default is 0x2.
21:17 trex-to-fbi bus fifo full threshold (0-31). Default is 0xf.

 Y Origin Definition bits
31:22 Y Origin Swap subtraction value (10 bits). Default is 0x0.

5.46 fbiInit4 Register
The fbiInit4 register is used for hardware initialization and configuration of the FBI chip. Writes to fbiInit4 are
ignored unless PCI configuration register initWrEnable bit(0)=1. Writes to fbiInit4 are not put into the PCI bus
FIFO and are written immediately, so care must be taken when writing to fbiInit4 if data is in the PCI bus FIFO or
the graphics engine is busy. TO BE COMPLETED.

Bit Description
 Miscellaneous Control
0 Wait state cycles for PCI read accesses (0=1 ws, 1=2 ws). Default is 1.
1 Enable Read-ahead logic for linear frame buffer reads (1=enable). Default is 0.
7:2 Memory FIFO low water mark for PCI Fifo. [Dump PCI fifo contents to memory if PCI

fifo freespace falls below this level]. Default is 0.
17:8 Memory FIFO row start (base row address for beginning of memory FIFO). Default is

0.
27:18 Memory FIFO row rollover (row value when fifo counters rollover). Default is 0.
31:28 reserved

5.47 clutData Register
The clutData register is used the load values into the internal Color Lookup table. The FBI internal Color Lookup
table is used for gamma correction of 16-bit RGB values during video refresh. The 16-bit RGB values read from
the frame buffer are used to index into the internal Color Lookup table. The output of the Color Lookup table is
then fed to an external DAC. The Color Lookup Table is stored internally as a 33x24 RAM. As RGB values are
input from memory, the 5 MSBs of a particular color channel are used to index into the Color Lookup Table. The
3 LSBs of a particular color channel are then used to linearly interpolate between multiple Color Lookup Table
entries. As a result of the linear interpolation performed, smooth transitions from one Color Lookup Table index to
surrounding indices results. To modify an entry in the Color Lookup Table, writes are performed to the clutData
register. Notice that the index of the Color Lookup Table entry to be modified is stored in the data passed to the
clutData register.

 SST-1 Graphics Engine for 3D Game Acceleration

Copyright 1995 3Dfx Interactive, Inc. Revision 1.60
Proprietary and Preliminary 63 Printed 12/1/99

Bit Description
7:0 Blue color component to be written to Color Lookup Table
15:8 Green color component to be written to Color Lookup Table
23:16 Red color component to be written to Color Lookup Table
29:24 Index of Color Lookup Table to be written (Range 0-32 only).

5.48 dacData Register
The dacData register is write to the external DAC. Writes to the external DAC are only allowed when the
memory bus is idle, as the external DAC register bus is time-multiplexed with the DRAM data lines. Thus,
software must guarantee that there are no conflicts between the DRAM memory controller and exteranal DAC
accesses. This can be accomplished either by holding the video control unit in reset (fbiinit1 bit(8)=1) and
flushing the pixel pipeline with a NOP command, or by waiting for VSYNC to be active and also flushing the pixel
pipeline. Writes to the external DAC are performed by writing the dacData register, with bits(7:0) specifying the
register data, bits (10:8) specifying the register address, and bit(11) cleared to 0. Bit(11) of dacData must be
cleared when performing external DAC writes. Reads from the External DAC are performed by writing to the
dacData register with the register address specified in bits (10:8) and bit(11) set to 1. Bit(11) of dacData must be
set when performing external DAC reads. The data read from the External DAC is stored in an internal register of
FBI, and is read by setting bit(2) in the PCI Configuration register initEnable and reading from the fbiinit2
register. When fbiinit2/fbiinit3 address remapping is enabled (PCI Configuration register initEnable bit(2)=1),
reading from fbiinit2 bits (7:0) returns the last value read from the external DAC (fbiinit2 bits(31:8) are undefined
when address remapping is enabled). Note that reading from the external DAC is a two-step process: first the read
is initiated by writing to the dacData register with bit(11) set to 1; the read data is then read by the CPU by reading
from fbinit2 bits(7:0) with fbiinit2/fbinit3 address remapping is enabled.

Bit Description
7:0 External DAC register write data
10:8 External DAC register address
11 External DAC read command (1=read external DAC, 0=write external DAC)

5.49 maxRgbDelta Register
TO BE COMPLETED.
Bit Description
7:0 Maximum blue delta for video filtering
15:8 Maximum green delta for video filtering
23:16 Maximum red delta for video filtering

5.50 textureMode Register
The textureMode register controls texture mapping functionality including perspective correction, texture
filtering, texture clamping, and multiple texture blending.

Bit Name Description
0 tpersp_st Enable perspective correction for S and T iterators (0=linear interploation of S,T, force

W to 1.0, 1=perspective correct, S/W, T/W)
1 tminfilter Texture minification filter (0=point-sampled, 1=bilinear)
2 tmagfilter Texture magnification filter (0=point-sampled, 1=bilinear)
3 tclampw Clamp when W is negative (0=disabled, 1=force S=0, T=0 when W is negative)

 SST-1 Graphics Engine for 3D Game Acceleration

Copyright 1995 3Dfx Interactive, Inc. Revision 1.60
Proprietary and Preliminary 64 Printed 12/1/99

4 tloddither Enable Level-of-Detail dithering (0=no dither, 1=dither)
5 tnccselect Narrow Channel Compressed (NCC) Table Select (0=table 0, 1=table 1)
6 tclamps Clamp S Iterator (0=wrap, 1=clamp)
7 tclampt Clamp T Iterator (0=wrap, 1=clamp)
11:8 tformat Texture format (see table below)
 Texture Color Combine Unit control (RGB):
12 tc_zero_other Zero Other (0=c_other, 1=zero)
13 tc_sub_clocal Subtract Color Local (0=zero, 1=c_local)
16:14 tc_mselect Mux Select (0=zero, 1=c_local, 2=a_other, 3=a_local, 4=LOD, 5=LOD_frac, 6-

7=reserved)
17 tc_reverse_blend Reverse Blend (0=normal blend, 1=reverse blend)
18 tc_add_clocal Add Color Local
19 tc_add_alocal Add Alpha Local
20 tc_invert_output Invert Output
 Texture Alpha Combine Unit control (A):
21 tca_zero_other Zero Other (0=c_other, 1=zero)
22 tca_sub_clocal Subtract Color Local (0=zero, 1=c_local)
25:23 tca_mselect Mux Select (0=zero, 1=c_local, 2=a_other, 3=a_local, 4=LOD, 5=LOD_frac, 6-

7=reserved)
26 tca_reverse_blend Reverse Blend (0=normal blend, 1=reverse blend)
27 tca_add_clocal Add Color Local
28 tca_add_alocal Add Alpha Local
29 tca_invert_output Invert Output
30 trilinear Enable trilinear texture mapping (0=point-sampled/bilinear, 1=trilinear)
31 seq_8_downld Sequential 8-bit download (0=even 32-bit word addresses, 1=sequential addresses)

(Must be set to 0 for revision 0 TMU)

tpersp_st bit of textureMode enables perspective correction for S and T iterators. Note that there is no
performance penalty for performing perspective corrected texture mapping.

tminfilter, tmagfilter bits of textureMode specify the filtering operation to be performed. When point sampled
filtering is selected, the texel specified by <s,t> is read from texture memory. When bilinear filtering is selected,
the four closet texels to a given <s,t> are read from memory and blended together as a function of the fractional
components of <s,t>. tminfilter is referenced when LOD>=LODmin, otherwise tmagfilter is referenced.

tclampw bit of textureMode is used when projecting textures to avoid projecting behind the source of the
projection. If this bit is set, S, T are each forced to zero when W is negative. Though usually desireable, it is not
necessary to set this bit when doing projected textures.

tloddither bit of textureMode enables Level-of-Detail (LOD) dither. Dithering the LOD calculation is useful when
performing texture mipmapping to remove the LOD bands which can occur from with mipmapping without
trilinear filtering. This adds an average of 3/8 (.375) to the LOD value and needs to compensated in the amount of
lodbias.

tnccselect bit of textureMode selects the NCC lookup table to be used when decompressing 8-bit NCC textures.

tclamps, tclampt bits of textureMode enable clamping of the S and T texture iterators. When clamping is
enabled, the S iterator is clamped to [0, texture width) and the T iterator is clamped to [0, texture height). When
clamping is disabled, S coordinates outside of [0, texture width) are allowed to wrap into the [0, texture width)

 SST-1 Graphics Engine for 3D Game Acceleration

Copyright 1995 3Dfx Interactive, Inc. Revision 1.60
Proprietary and Preliminary 65 Printed 12/1/99

range using bit truncation. Similarly when clamping is disabled, T coordinates outside of [0, texture height) are
allowed to wrap into the [0, texture height) range using bit truncation.

tformat field of textureMode specifies the texture format accessed by TREX. Note that the texture format field is
used for both reading and writing of texture memory. The following table shows the texture formats and how the
texture data is expanded into 32-bit ARGB color:

tforma
t Value

Texture format 8-bit Alpha 8-bit Red 8-bit Green 8-bit Blue

0 8-bit RGB (3-3-2) 0xff {r[2:0],r[2:0],r[2:1]} {g[2:0],g[2:0],g[2:1]} {b[1:0],b[1:0],b[1:0],b[1:0]}

1 8-bit YIQ (4-2-2) 0xff ncc _red[7:0] ncc _green[7:0] ncc _blue[7:0]

2 8-bit Alpha a[7:0] a[7:0] a[7:0] a[7:0]

3 8-bit Intensity 0xff i [7:0] i[7:0] i[7:0]

4 8-bit Alpha, Intensity (4-4) {a[3:0],a[3:0]} {i[3:0],i[3:0]} {i[3:0],i[3:0]} {i[3:0],i[3:0]}

5 8-bit Palette
(not revisoin 0 TMU)

0xff palette r[7:0] palette g[7:0] palette b[7:0]

6-7 Reserved

8 16-bit ARGB (8-3-3-2) a[7:0] {r[2:0],r[2:0],r[2:1]} {g[2:0],g[2:0],g[2:1]} {b[1:0],b[1:0],b[1:0],b[1:0]}

9 16-bit AYIQ (8-4-2-2) a[7:0] ncc _red[7:0] ncc _green[7:0] ncc _blue[7:0]

10 16-bit RGB (5-6-5) 0xff {r[4:0],r[4:2]} {g[5:0],r[5:4]} {b[4:0],b[4:2]}

11 16-bit ARGB (1-5-5-5) {a[0],a[0],a[0],a[0],
 a[0],a[0],a[0],a[0]}

{r[4:0],r[4:2]} {g[4:0],g[4:2]} {b[4:0],b[4:2]}

12 16-bit ARGB (4-4-4-4) {a[3:0},a[3:0]} {r[3:0},r[3:0]} {g[3:0},g[3:0]} {b[3:0},b[3:0]}

13 16-bit Alpha, Intensity (8-8) a[7:0] i[7:0] i[7:0] i[7:0]

14 16-bit Alpha, Palette (8-8)
(not revision 0 TMU)

a[7:0] palette r[7:0] palette g[7:0] palette b[7:0]

15 Reserved

where a, r, g, b, and i(intensity) represent the actual values read from texture memory. YIQ texture and palette
formats are detailed later in the nccTable description and palette description.

There are three Texture Color Combine Units (RGB) and one Texture Alpha Combine Unit(A), all four are
identical, except for the bit fields that control them. The tc_* fields of textureMode control the Texture Color
Combine Units; the tca_* fields control the Texture Alpha Combine Units. The diagram below illustrates the
Texture Color Combine Unit/Texture Alpha Combine Unit:

 SST-1 Graphics Engine for 3D Game Acceleration

Copyright 1995 3Dfx Interactive, Inc. Revision 1.60
Proprietary and Preliminary 66 Printed 12/1/99

Blend with Incoming Color

8

9 1.8.0

9 1.8.08 0.8.0

8 Color

10 1.9.0

Clamp 0-FF

8

0.8

tc/tca_invert_output

9 signed x
9 unsigned

multiply

Trunc. LSBs
No Round

9 1.8.0

2’s Comp

tc/tca_ c_other

tc/tca_sub_c_local

8 0.8.0

0

0 1

c_local

8

9 0.9.0

+1

8

tc/tca_ mselect[2:0]

LODB[0]

0

a_local
a_other

detail_factor
LODB_frac[7:0]

trilinear_enable

tc/tca_reverse_blend

{tc/tca_ add_c_local, tc/tca_ add_a_local}

8

0

00 10

Combined in
common unit

Unique for a,r,g,b

1

For trilinear:
0: odd TREX
1: even TREX

tc/tca_ zero_other

0

0 1

alpha_inv

a_local

01

tc_ prefix applies to R,G and B channels. tca_ prefix applies to A channel.

[0,0x100]

5.51 tLOD Register
The tLOD register controls the texture mapping LOD calculations.

 SST-1 Graphics Engine for 3D Game Acceleration

Copyright 1995 3Dfx Interactive, Inc. Revision 1.60
Proprietary and Preliminary 67 Printed 12/1/99

Bit Name Description
5:0 lodmin Minimum LOD. (4.2 unsigned)
11:6 lodmax Maximum LOD. (4.2 unsigned)
17:12 lodbias LOD Bias. (4.2 signed)
18 lod_odd LOD odd (0=even, 1=odd)
19 lod_tsplit Texture is Split. (0=texture contains all LOD levels, 1=odd or even levels only, as

controlled by lod_odd)
20 lod_s_is_wider S dimension is wider, for rectilinear texture maps. This is a don’t care for square

textures. (1=S is wider than T).
22:21 lod_aspect Aspect ratio. Equal to 2^n. (00 is square texture, others are rectilinear: 01 is

2x1/1x2, 10 is 4x1/1x4, 10 is 8x1/1x8)
23 lod_zerofrac LOD zero frac, useful for bilinear when even and odd levels are split across two

TREXs (0=normal LOD frac, 1=force fraction to 0)
24 tmultibaseaddr Use multiple texbaseAddr registers
25 tdata_swizzle Byte swap incoming texture data (bytes 0<->3, 1<->2).
26 tdata_swap Short swap incoming texture data (shorts 0<->1).
27 tdirect_write Enable raw direct texture memory writes (1=enable). seq_8_downld must equal 0.

lodbias is added to the calculated LOD value, then it is clamped to the range [lodmin, min(8.0, lodmax)]. Note
that whether the LOD is clamped to lodmin is used to determine whether to use the minification or magnification
filter, selected by the tminfilter and tmagfilter bits of textureMode:

LOD bias, clamp

0
256x256

8
1x1

LOD

LODmaxLODmin

tmagfilter
tminfilter

The tdata_swizzle and tdata_swap bits in tLOD are used to modify incoming texture data for endian dependencies.
The tdata_swizzle bit causes incoming texture data bytes to be byte order reversed, such that bits(31:24) are
swapped with bits(7:0), and bits(23:16) are swapped with bits(15:8). Short-word swapping is performed after byte
order swizzling, and is selected by the tdata_swap bit in tLOD. When enabled, short-word swapping causes the
post-swizzled 16-bit shorts to be order reversed, such that bits(31:16) are swapped with bits(15:0). The following
diagram shows the data manipulation functions perfomed by the tdata_swizzle and tdata_swap bits:

 SST-1 Graphics Engine for 3D Game Acceleration

Copyright 1995 3Dfx Interactive, Inc. Revision 1.60
Proprietary and Preliminary 68 Printed 12/1/99

3

Incoming Texture Data

2 1 0 (Bytes 0-3)

1 01 00 10 1 tdata_swizzle

1 0 (Shorts 0-1)

0 1 1 0 tdata_swap

32

8888

8888

16

1616

16

Texture Memory
Data [15:0]

Texture Memory
Data [31:16]

5.52 tDetail Register
The tDetail register controls the detail texture.

Bit Name Description
7:0 detail _max Detail texture LOD clamp (8.0 unsigned)
13:8 detail_bias Detail texture bias (6.0 signed)
16:14 detail_scale Detail texture scale shift left

detail_factor is used in the Texture Combine Unit to blend between the main texture and the detail texture.
detail_factor (0.8 unsigned) = max(detail_max, ((detail_bias - LOD) << detail_scale))

5.53 texBaseAddr, texBaseAddr1, texBaseAddr2, and texBaseAddr38 Registers
The texBaseAddr register specifies the starting texture memory address for accessing a texture, at a granularity of
8 bytes. It is used for both texture writes and rendering. Calculation of the texbaseaddr is described in the Texture
Memory Access section. Selection of the base address is a function of tmultibaseaddr and LODBI.

Bit Name Description
18:0 texbaseaddr Texture Memory Base Address, tmultibaseaddr==0 or LODBI==0

 SST-1 Graphics Engine for 3D Game Acceleration

Copyright 1995 3Dfx Interactive, Inc. Revision 1.60
Proprietary and Preliminary 69 Printed 12/1/99

18:0 texbaseaddr1 Texture Memory Base Address, tmultibaseaddr==1 and LODBI==1
18:0 texbaseaddr2 Texture Memory Base Address, tmultibaseaddr==1 and LODBI==2
18:0 texbaseaddr38 Texture Memory Base Address, tmultibaseaddr==1 and LODBI>=3
.

5.54 trexInit0 Register
The trexInit0 register is used for hardware initialization and configuration of the TREX chip(s). TO BE

COMPLETED. See TREX spec.

5.55 trexInit1 Register
The trexInit1 register is used for hardware initialization and configuration of the TREX chip(s). TO BE

COMPLETED. See TREX spec.

5.56 nccTable0 and nccTable1/Palette Registers
The nccTable0 and nccTable1 registers contain two Narrow Channel Compression (NCC) tables used to store
lookup values for compressed textures (used in YIQ and AYIQ texture formats as specified in tformat of
textureMode). These registers are also used to write the palette.

5.56.1 NCC Table
Two tables are stored so that they can be swapped on a per-triangle basis when performing multi-pass rendering,
thus avoiding a new download of the table. Use of either nccTable0 or nccTable1 is selected by the Narrow
Channel Compressed (NCC) Table Select bit of textureMode. nccTable0 and nccTable1 are stored in the format
of the table below, and are write only.

nccTable Address Bits Contents

0 31:0 {Y3[7:0], Y2[7:0], Y1[7:0], Y0[7:0]}
1 31:0 {Y7[7:0], Y6[7:0], Y5[7:0], Y4[7:0]}
2 31:0 {Yb[7:0], Ya[7:0], Y9[7:0], Y8[7:0]}
3 31:0 {Yf[7:0], Ye[7:0], Yd[7:0], Yc[7:0]}
4 26:0 {I0_r[8:0], I0_g[8:0], I0_b[8:0]}
5 26:0 {I1_r[8:0], I1_g[8:0], I1_b[8:0]}
6 26:0 {I2_r[8:0], I2_g[8:0], I2_b[8:0]}
7 26:0 {I3_r[8:0], I3_g[8:0], I3_b[8:0]}
8 26:0 {Q0_r[8:0], Q0_g[8:0], Q0_b[8:0]}
9 26:0 {Q1_r[8:0], Q1_g[8:0], Q1_b[8:0]}
10 26:0 {Q2_r[8:0], Q2_g[8:0], Q2_b[8:0]}
11 26:0 {Q3_r[8:0], Q3_g[8:0], Q3_b[8:0]}

Undefined MSB’s must be written as 0’s, or the writes may be interpreted as palette writes.

The following figure illustrates how compressed textures are decompressed using the NCC tables:

 SST-1 Graphics Engine for 3D Game Acceleration

Copyright 1995 3Dfx Interactive, Inc. Revision 1.60
Proprietary and Preliminary 70 Printed 12/1/99

(2x16)x8 Lookup
RAM

4 Y

8

(2x4)x27 Lookup
RAM

2 I

27

(2x4)x27 Lookup
RAM

2 Q

27

8

8 9 Red 9 Red 8 9 Grn 9 Grn 8 9 Blu 9 Blu

8 Red 8 Green 8 Blue

11

Clamp 0-FF

8

11

Clamp 0-FF

8

11

Clamp 0-FF

8

0.8 1.8 1.8

0.8

nccTable register
Select

From Memory Data Alignment

5.56.2 8-Bit Palette (not revision 0 TMU)
The 8-bit palette is used for 8-bit P and 16-bit AP modes. The palette is loaded with register writes. During
rendering, four texels are looked up simultaneously, each an independent 8-bit address.

Palette Write

The palette is written through the NCC table 0 I and Q register space when the MSB of the register write data is
set. The NCC table write is inhibited.

 SST-1 Graphics Engine for 3D Game Acceleration

Copyright 1995 3Dfx Interactive, Inc. Revision 1.60
Proprietary and Preliminary 71 Printed 12/1/99

Palette Load Mechanism

nccTable0 I0

31 0

G[7:0] B[7:0]1 R[7:0]P[7:1]P[0]=0

Register Write Data
Register
Address LSB of P

nccTable0 I1 G[7:0] B[7:0]1 R[7:0]P[7:1]P[0]=1

nccTable0 I2 G[7:0] B[7:0]1 R[7:0]P[7:1]P[0]=0

nccTable0 I3 G[7:0] B[7:0]1 R[7:0]P[7:1]P[0]=1

nccTable0 Q0 G[7:0] B[7:0]1 R[7:0]P[7:1]P[0]=0

nccTable0 Q1 G[7:0] B[7:0]1 R[7:0]P[7:1]P[0]=1

nccTable0 Q2 G[7:0] B[7:0]1 R[7:0]P[7:1]P[0]=0

nccTable0 Q3 G[7:0] B[7:0]1 R[7:0]P[7:1]P[0]=1

Note that the even addresses alias to the same location, as well as the odd ones. It is recommended that
the table be written as 32 sets of 8 so that PCI bursts can be 8 transfers long.

 SST-1 Graphics Engine for 3D Game Acceleration

Copyright 1995 3Dfx Interactive, Inc. Revision 1.60
Proprietary and Preliminary 72 Printed 12/1/99

6. PCI Configuration Register Set

Register Name Addr Bits Description
Vendor_ID 0 (0x0) 15:0 3Dfx Interactive Vendor Identification
Device_ID 2 (0x2) 15:0 Device Identification
Command 4 (0x4) 15:0 PCI bus configuration
Status 6 (0x6) 15:0 PCI device status
Revision_ID 8 (0x8) 7:0 Revision Identification
Class_code 9 (0x9) 23:0 Generic functional description of PCI device
Cache_line_size 12 (0xc) 7:0 Bus Master Cache Line Size
Latency_timer 13 (0xd) 7:0 Bus Master Latency Timer
Header_type 14 (0xe) 7:0 PCI Header Type
BIST 15 (0xf) 7:0 Build In Self-Test Configuration
memBaseAddr 16 (0x10) 31:0 Memory Base Address
Reserved 20-59 (0x14-0x3b) Reserved
Interrupt_line 60 (0x3c) 7:0 Interrupt Mapping
Interrupt_pin 61 (0x3d) 7:0 External Interrupt Connections
Min_gnt 62 (0x3e) 7:0 Bus Master Minimum Grant Time
Max_lat 63 (0x3f) 7:0 Bus Master Maximum Latency Time
initEnable 64 (0x40) 31:0 Allow writes to hardware initialization

registers
busSnoop0 68 (0x44) 31:0 FBI bus snooping address 1 (write only)
busSnoop1 72 (0x48) 31:0 FBI bus snooping address 0 (write only)
cfgStatus 76 (0x4c) 31:0 Aliased memory-mapped status register
Reserved 80-255 (0x50-0xff) n/a Reserved

6.1 Vendor_ID Register
The Vendor_ID register is used to identify the manufacturer of the PCI device. This value is assigned by a central
authority that will control issuance of the values. This register is read only.

Bit Description
7:0 3Dfx Interactive Vendor Identification. Default is 0x121a.

6.2 Device_ID Register
The Device_ID register is used to identify the particular device for a given manufacturer. This register is read
only.

Bit Description
15:0 SST-1 Device Identification. Default is 0x1.

6.3 Command Register
The Command register is used to control basic PCI bus accesses. See the PCI specification for more information.
Bit 1 is R/W, and bits 0, 15:2 are read only.

Bit Description

 SST-1 Graphics Engine for 3D Game Acceleration

Copyright 1995 3Dfx Interactive, Inc. Revision 1.60
Proprietary and Preliminary 73 Printed 12/1/99

0 I/O Access Enable. Default is 0.
1 Memory Access Enable (0=no response to memory cycles). Default is 0.
2 Master Enable. Default is 0.
3 Special Cycle Recognition. Default is 0.
4 Memory Write and Invalidate Enable. Default is 0.
5 Palette Snoop Enable. Default is 0.
6 Parity Error Respond Enable. Default is 0.
7 Wait Cycle Enable. Default is 0.
8 System Error Enable. Default is 0.
15:9 reserved. Default is 0x0.

6.4 Status Register
The Status register is used to monitor the status of PCI bus-related events. This register is read only and is
hardwired to the value 0x0.

Bit Description
7:0 Reserved. Default is 0x0.
8 Data Parity Reported. Default is 0.
10:9 Device Select Timing. Default is 0x0.
11 Signalled Target Abort. Default is 0.
12 Received Target Abort. Default is 0.
13 Received Master Abort. Default is 0.
14 Signalled System Error. Default is 0.
15 Detected Parity Error. Default is 0.

6.5 Revision_ID Register
The Revision_ID register is used to identify the revision number of the PCI device. This register is read only.

Bit Description
7:0 SST-1 Revision Identification. Value represents the current revision number.

6.6 Class_code Register
The Class_code register is used to identify the generic functionality of the PCI device. See the PCI specification
for more information. This register is read only.

Bit Description
23:0 Class Code. Default is 0x0.

6.7 Cache_line_size Register
The Cache_line_size register specifies the system cache line size in doubleword increments. It must be
implemented by devices capable of bus mastering. This register is read only and is hardwired to 0x0.

Bit Description
7:0 Cache Line Size. Default is 0x0.

 SST-1 Graphics Engine for 3D Game Acceleration

Copyright 1995 3Dfx Interactive, Inc. Revision 1.60
Proprietary and Preliminary 74 Printed 12/1/99

6.8 Latency_timer Register
The Latency_timer register specifies the latency of bus master timeouts. It must be implemented by devices
capable of bus mastering. This register is read only and is hardwired to 0x0.

Bit Description
7:0 Latency Timer. Default is 0x0.

6.9 Header_type Register
The Header_type register defines the format of the PCI base address registers (memBaseAddr in SST-1). Bits
0:6 are read only and hardwired to 0x0. Bit 7 of Header_type specifies SST-1 as a single function PCI device.

Bit Description
6:0 Header Type. Default is 0x0.
7 Multiple-Function PCI device (0=single function, 1=multiple function). Default is 0x0.

6.10 BIST Register
The BIST register is implemented by those PCI devices that are capable of built-in self-test. SST-1 does not
provide this capability. This register is read only and is hardwired to 0x0.

Bit Description
7:0 BIST field and configuration. Default is 0x0.

6.11 memBaseAddr Register
The memBaseAddr register determines the base address for all PCI memory mapped accesses to SST-1. Writing
0xffffffff to this register will reset it to its default state. Once memBaseAddr has been reset, it can be probed by
software to determine the amount of memory space required for SST-1. A subsequent write to memBaseAddr will
set the memory base address for all PCI memory accesses. See the PCI specification for more details on memory
base address programming. SST-1 requires 16 MBytes of address space for memory mapped accesses. For
memory mapped accesses on the 32-bit PCI bus, the contents of memBaseAddr are compared with the pci_ad bits
31..24 (upper 8 bits) to determine if SST-1 is being accessed. This register is R/W.

Bit Description
31:0 Memory Base Address. Default is 0xff000000.

6.12 Interrupt_line Register
The Interrupt_line register is used to map PCI interrupts to system interrupts. In a PC environment, for example,
the values of 0 to 15 in this register correspond to IRQ0-IRQ15 on the system board. The value 0xff indicates no
connection. This register is R/W.

Bit Description
0:7 Interrupt Line. Default is 0x5 (IRQ5)

6.13 Interrupt_pin Register
The Interrupt_pin register defines which of the four PCI interrupt request lines, INTA* - INTRD*, the PCI device
is connected to. This register is read only and is hardwired to 0x1.

 SST-1 Graphics Engine for 3D Game Acceleration

Copyright 1995 3Dfx Interactive, Inc. Revision 1.60
Proprietary and Preliminary 75 Printed 12/1/99

Bit Description
0:7 Interrupt Pin. Default is 0x1 (INTA*)

6.14 Min_gnt Register
The Min_gnt register specifies the burst period a PCI bus master requires. It must be implemented by devices
capable of bus mastering. This register is read only and is hardwired to 0x0 since SST-1 does not support bus
mastering.

Bit Description
7:0 Minimum Grant. Default is 0x0.

6.15 Max_lat Register
The Max_lat register specifies the maximum request frequency a PCI bus master requires. It must be implemented
by devices capable of bus mastering. This register is read only and is hardwired to 0x0 since SST-1 does not
support bus mastering.

Bit Description
7:0 Maximum Latency. Default is 0x0.

6.16 initEnable Register
The initEnable register controls write access to the fbiinit registers and also controls the FBI PCI bus snooping
functionality. Bit(0) of initEnable enables writes to the FBI hardware initialization registers fbiInit0, fbiInit1,
fbiInit2, and fbiInit3. By default writes to the hardware initialization registers are not allowed. Writes to the
hardware initialization registers when initEnable bit(0)=0 are ignored. Bit(1) of initEnable enables writes to the
PCI FIFO. Bit(1) of initEnable must be set for normal SST-1 operation. Bits (9:4) of initEnable control the FBI
PCI bus snooping functionality. See the busSnoop register description for more information on FBI bus snooping.
Bit(10) of initEnable determines which scanline interleave device (master or slave) drives the PCI bus during scan
line interleaving. When scanline interleaving is enabled (fbiInit1(23)=1), then initEnable(11) determines if FBI
is the master or slave for scanline interleaving. If initEnable(11) and initEnable(10) are set to the same value,
then the programmed FBI will drive the PCI bus during scanline interleaving.

Bit Description
0 Enable writes to hardware initialization registers. (1=enable writes to the hardware

initialization registers). Default is 0.
1 Enable writes to PCI FIFO (1=enable writes to PCI FIFO). Default is 0.
2 Remap {fbiinit2, fbiinit3} to {dacRead, videoChecksum} (1=enable). Default is 0.
3 reserved.
4 FBI snooping register 0 enable (1=enable). Default is 0.
5 FBI snooping register 0 memory matching type (0=memory access, 1=IO access).

Default is 0.
6 FBI snooping register 0 read/write matching type (0=write access, 1=read access).

Default is 0.
7 FBI snooping register 1 enable (1=enable). Default is 0.
8 FBI snooping register 1 memory matching type (0=memory access, 1=IO access).

Default is 0.

 SST-1 Graphics Engine for 3D Game Acceleration

Copyright 1995 3Dfx Interactive, Inc. Revision 1.60
Proprietary and Preliminary 76 Printed 12/1/99

9 FBI snooping register 1 read/write matching type (0=write access, 1=read access).
Default is 0.

10 Scan-line interleaving PCI bus ownership. (0=SLI master owns PCI bus, 1=SLI slave
owns PCI bus). Default is 0.

11 Scan-line interleaving master/slave determination (0=master/even scan lines,
1=slave/odd scan lines). Default is 0.

31:12 reserved

6.17 busSnoop0 and busSnoop1 Registers
The busSnoop0 and busSnoop1 registers control the FBI PCI bus “snooping” functionality. When bus snooping is
enabled, a PCI cycle with characteristics (i.e. write/read type, io/mem type, etc). and address matching those
characteristics and address specified in the initEnable and busSnoop registers will set the vga_pass FBI external
pin. Note that the snooping functionality does not affect the PCI data transfer, as FBI does not own the address
space specified in the snooping registers. busSnoop bits(1:0) are only used for IO PCI access types, as bits(1:0) of
the PCI address are used to uniquely map IO space for PCI devices -- bits(1:0) of the busSnoop registers are
ignored for PCI memory access types. The FBI snooping functionality is useful for making sure VGA passthrough
capability does not drive the video monitor upon soft and hard resets. Note that the busSnoop0 and busSnoop1
registers are write-only, and will return 0x0 when read.

Bit Description
1:0 PCI Snooping address register bits 1:0. (ignored for memory access types).
31:2 PCI Snooping address registers bits 31:2. Used for all PCI access types.

6.18 cfgStatus Register
The cfgStatus register is an alias to the normal memory-mapped status register. See section 5.1 for a description
of the status register. Reading the configuration-space cfgStatus register will return the same data as if reading
from the memory-mapped status register.

6.19 NOP Command
The NOP command performs no operation other than to flush the graphics pipeline. This command is used
primarily for debugging and verification purposes.

6.20 Triangle Command
TO BE COMPLETED.

6.21 FASTFILL Command
The FASTFILL command is used for screen clears. When the FASTFILL command is executed, the depth-buffer
comparison, alpha test, alpha blending, and all other special effects are bypassed and disabled. The FASTFILL
command uses the status of the RGB write mask (bit(9) of fbzMode) and the depth-buffer write mask (bit(10) of
fbzMode) to access the RGB/depth-buffer memory. The FASTFILL command also uses bits (15:14) of fbzMode to
determine which RGB buffer (front or back) is written. Prior to executing the FASTFILL command, the
clipLeftRight and clipLowYHighY registers must be loaded with a rectanglar area which is desired to be cleared
-- -- the fastfillCMD register is then written to initiate the FASTFILL command. Note that clip registers define a
rectangular area which is inclusive of the clipLeft and clipLowY register values, but exclusive of the clipRight
and clipHighY register values. Note also that the relative position of the Y origin (either top of bottom of the

 SST-1 Graphics Engine for 3D Game Acceleration

Copyright 1995 3Dfx Interactive, Inc. Revision 1.60
Proprietary and Preliminary 77 Printed 12/1/99

screen) is defined by fbzMode bit(17). The 24-bit color specified in the Color1 register is written to the RGB
buffer (with optional dithering as specified by bit(8) of fbzMode), and the depth value specified in bits(15:0) of the
zaColor register is written to the depth buffer.

6.22 SWAPBUFF Command
The SWAPBUFF command is used to swap the drawing buffers for smooth animation. When the SWAPBUFF
command is executed, swapbufferCMD bit(0) determines whether the drawing buffer swapping is synchronized
with vertical retrace. Typically, it is desired that buffer swapping be synchronized with vertical retrace to eliminate
frame “tearing” typically found on single buffered displays. If vertical retrace synchronization is enabled for
double buffered applications, the graphics command processor will block on a SWAPBUFF command until the
monitor vertical retrace signal is active. If the number of vertical retraces seen exceeds the value stored in bits(8:1)
of swapbufferCMD, then the pointer used by the monitor refresh control logic is changed to point to another
drawing buffer. If vertical retrace synchronization is enabled for triple buffered applications, the graphics
processor does NOT block on a SWAPBUFF command. Instead, a flag is set in the monitor refresh control logic
that automatically causes the data pointer to be modified in the monitor refresh control logic during the next active
vertical retrace period. Using triple buffering allows rendering operations to occur without waiting for the vertical
retrace active period.

When a swapbufferCMD is received in the front-end PCI host FIFO, the swap buffers pending field in the status
register is incremented. Conversely, when an actual frame buffer swapping occurs, the swap buffers pending field
in the status register (bits(30:28)) is decremented. The swap buffers pending field allows software to determine
how many SWAPBUFFER commands are present in the SST-1 FIFOs. Note that for triple buffered applications, if
a new SWAPBUFFER command is received and the swap buffers pending field is greater than zero, then the
graphics processor must block until vertical retrace is active in order to ensure rendering does not occur over the
frontbuffer.

 SST-1 Graphics Engine for 3D Game Acceleration

Copyright 1995 3Dfx Interactive, Inc. Revision 1.60
Proprietary and Preliminary 78 Printed 12/1/99

7. Linear Frame Buffer Access
The SST-1 linear frame buffer base address is located at a 8 Mbyte offset from the memBaseAddr PCI
configuration register and occupies 4 Mbytes of SST-1 address space (see section 4 for an SST-1 address map).
Regardless of actual frame buffer resolution, all linear frame buffer accesses assume a 1024-pixel logical scan line
width. The number of bytes per scan line depends on the format of linear frame buffer access format selected in
the lfbMode register. Note for all accesses to the linear frame buffer, the status of bit(16) of fbzMode is used to
determine the Y origin of data accesses. When bit(16)=0, offset 0x0 into the linear frame buffer address space is
assumed to point to the upper-left corner of the screen. When bit(16)=1, offset 0x0 into the linear frame buffer
address space is assumed to point to the bottom-left corner of the screen. Regardless of the status of fbzMode
bit(16), linear frame buffer addresses increment as accesses are performed going from left-to-right across the
screen. Also note that clipping is not automatically performed on linear frame buffer writes if scissor clipping is
not explicitly enabled (fbzMode bit(0)=1). Linear frame buffer writes to areas outside of the monitor resolution
when clipping is disabled will result in undefined behavior.

7.1 Linear frame buffer Writes
The following table shows the supported linear frame buffer write formats as specified in bits(3:0) of lfbMode:

Value Linear Frame Buffer Access Format
 16-bit formats
0 16-bit RGB (5-6-5)
1 16-bit RGB (x-5-5-5)
2 16-bit ARGB (1-5-5-5)
3 Reserved

 32-bit formats
4 24-bit RGB (8-8-8)
5 32-bit ARGB (8-8-8-8)
7:6 Reserved
11:8 Reserved
12 16-bit depth, 16-bit RGB (5-6-5)
13 16-bit depth, 16-bit RGB (x-5-5-5)
14 16-bit depth, 16-bit ARGB (1-5-5-5)
15 16-bit depth, 16-bit depth

When writing to the linear frame buffer with a 16-bit access format (formats 0-3 and format 15 in lfbMode), each
pixel written is 16-bits, so there are 2048 bytes per logical scan line. Remember when utilizing 16-bit access
formats, two 16-bit values can be packed in a single 32-bit linear frame buffer write -- the location of each 16-bit
component in screen space is defined by bit(11) of lfbMode. When using 16-bit linear frame buffer write formats
0-3, the depth components associated with each pixel is taken from the zaColor register. When using 16-bit
format 3, the alpha component associated with each pixel is taken from the 16-bit data transfered, but when using
16-bit formats 0-2 the alpha component associated with each pixel is taken from the zaColor register. The format
of the individual color channels within a 16-bit pixel is defined by the RGB channel format field in lfbMode
bits(12:9). See the lfbMode description in section 5 for a detailed description of the rgb channel format field.

When writing to the linear frame buffer with 32-bit access formats 4 or 5, each pixel is 32-bits, so there are 4096
bytes per logical scan line. Note that when utilizing 32-bit access formats, only a single pixel may be written per
32-bit linear frame buffer write. Also note that linear frame buffer writes using format 4 (24-bit RGB (8-8-8)),

 SST-1 Graphics Engine for 3D Game Acceleration

Copyright 1995 3Dfx Interactive, Inc. Revision 1.60
Proprietary and Preliminary 79 Printed 12/1/99

while 24-bit pixels, must be aligned to a 32-bit (doubleword) boundary -- packed 24-bit linear frame buffer writes
are not supported by SST-1. When using 32-bit linear frame buffer write formats 4-5, the depth components
associated with each pixel is taken from the zaColor register. When using format 4, the alpha component
associated with each pixel is taken from the zaColor register, but when using format 5 the alpha component
associated with each pixel is taken from the 32-bit data transfered. The format of the individual color channels
within a 24/32-bit pixel is defined by the rgb channel format field in lfbMode bits(12:9).

When writing to the linear frame buffer with a 32-bit access formats 12-14, each pixel is 32-bits, so there are 4096
bytes per logical scan line. Note that when utilizing 32-bit access formats, only a single pixel may be written per
32-bit linear frame buffer write. If depth or alpha information is not transfered with the pixel, then the depth/alpha
information is taken from the zaColor register. The format of the individual color channels within a 24/32-bit
pixel is defined by the rgb channel format field in lfbMode bits(12:9). The location of each 16-bit component of
formats 12-15 in screen space is defined by bit(11) of lfbMode. See the lfbMode description in section 5 for more
information about linear frame buffer writes.

7.2 Linear frame buffer Reads
When reading from the linear frame buffer, all data returned is in 16-bit format, so there are 2048 bytes per logical
scan line. Note that when reading from the linear frame buffer, data is returned in 16/16 format, with two 16-bit
pixels returned for every 32-bit doubleword read -- the location of each pixel read packed into the 32-bit host read
is defined by bit(11) of lfbMode. The RGB channel format of the 16-bit pixels read is defined by the rgb channel
format field of lfbMode bits(12:9).

It is important to note that reads from the linear frame buffer bypass the PCI host FIFO (as well as the memory
FIFO if enabled) but are blocking. If the host FIFO has numerous commands held, then the read will take
potentially a very long time before data is returned, as data is not read from the frame buffer until the PCI host
FIFO is empty and the graphics pixel pipeline has been flushed. One way to minimize linear frame buffer read
latency is to guarantee that the SST-1 graphics engine is idle and the host FIFOs are empty (in the status register)
before attempting to read from the linear frame buffer.

 SST-1 Graphics Engine for 3D Game Acceleration

Copyright 1995 3Dfx Interactive, Inc. Revision 1.60
Proprietary and Preliminary 80 Printed 12/1/99

8. Texture Memory Access
The SST-1 texture memory base address is located at an 8 Mbyte offset from the memBaseAddr PCI configuration
register and occupies 8 Mbytes of SST-1 address space (see section 4 for an SST-1 address map). Note that the
texture memory is write only -- reading from the texture memory address space returns undefined data.

The following section is copied in from the TREX specification. Modifications should be made there and copied
over this (initially, trex may sometimes be more current).

Textures are write only. Actual order of write doesn’t matter. The texel data can be indirectly read by rendering a
texture into the FBI frame buffer, though color dithering alters the values.

Textures are stored as if mipmapped, even for textures containing only one level of detail. The largest texel map
(LOD=0) is stored first, and the others are packed contiguously after. texbaseaddr points to where the texture
would start if it contained LOD level 0 (256x* dimension), in a granularity of 8 bytes. When only some or one of
the LOD levels are used, lodmin and lodmax are used to restrict texture lookup to the levels that were loaded.

texbaseaddr can be set below zero, such that the offset to the texture wraps to a positive number. When two
memory banks are used (8 DRAMs), a texture can not span both banks because each bank has one RAS.

Texture Base Address Example

texbaseaddr (may wrap below zero)

LOD 0 (virtual)

LOD 1

LOD 2

LOD3 (virtual)
LOD4,5,6,7,8 (virtual)

Other
Textures

Other
Textures

This
Texture

lodmin >= 1.0
lodmax <= 2.0

Loaded texture contains only LOD levels 1 and 2

Texture Mem. Address 0

 SST-1 Graphics Engine for 3D Game Acceleration

Copyright 1995 3Dfx Interactive, Inc. Revision 1.60
Proprietary and Preliminary 81 Printed 12/1/99

Addresses are generated by adding texbaseaddr and an offset that is a function of LOD, S, T, tclamps, tclampt,
tformat, lod_odd, lod_tsplit, lod_aspect, lod_s_is_wider, trexinit0, trexinit1. Except for tclamps and tclampt, all of
these values must be valid for texture load.

The size of each level must be known to calculate the texbaseaddr and the amount of memory used by the texture.
The size can be looked up from a table.

 SST-1 Graphics Engine for 3D Game Acceleration

Copyright 1995 3Dfx Interactive, Inc. Revision 1.60
Proprietary and Preliminary 82 Printed 12/1/99

Texture map sizes for 16-bit texel modes, in units of 8 bytes:

 lod_aspect
LOD Size 00

1:1
01
2:1

10
4:1

11
8:1

0 256x* 2^14 2^13 2^12 2^11
1 128x* 2^12 2^11 2^10 2^9
2 64x* 2^10 2^9 2^8 2^7
3 32x* 2^8 2^7 2^6 2^5
4 16x* 2^6 2^5 2^4 2^3
5 8x* 2^4 2^3 2^2 2^2
6 4x* 2^2 2^1 2^1 2^1
7 2x* 1 1 1 1
8 1x* 1 1 1 1

For 8-bit textures, the sizes are half as much as 16-bit. In cases where a half location is used for a level,
subsequent levels use the next free half, but a remaining half can not be used as part of the subsequent texture.

In the following examples, sizes and addresses are shown in units of 8 bytes, which is the granularity texbaseaddr.

Example 1

16-bit tformat, aspect ratio is 1:1, lod_tsplit = 0, only LOD levels 1 and 2 are used, start address is 0x00010.

size of level 0 = 2^14 = 0x04000

texbaseaddr = 0x00010 - 0x04000 = 0xfc010

Note that the base wrapped below zero, but lodmin restricts addresses to >= 0x00010.

texture size = size of level 1,2 = 2^12 + 2^10 = 0x01400

next available start address = 0x00010 + 0x01400 = 0x01410

Example 2

8-bit tformat, aspect ratio is 8:1, lod_tsplit = 0, S is wider, LOD levels 4-8 are used, start address is 0x10000.

size of levels 0,1,2,3 = (2^11 + 2^9 + 2^7 + 2^5) / 2 = 0x00550

texbaseaddr = 0x10000 - 0x00550 = 0x0fab0

texture size = size of levels 4,5,6,7,8 = (2^3 + 2^1 + 1 + 1 + 1) / 2 = 0x00006 + 1/2 -> 0x00007

next available start address = 0x10000 + 0x00007 = 0x10007

Example 3

8-bit tformat, aspect ratio is 8:1, lod_tsplit = 1, lod_odd = 0, S is wider, LOD levels 4-8 are used, start address is
0x10000.

size of levels 0, 2 = (2^11 + 2^7) / 2 = 0x00440

texbaseaddr = 0x10000 - 0x00440 = 0x0fbc0

texture size = size of levels 4,6,8 = (2^3 + 1 + 1) / 2 = 0x00005 + 0/2 -> 0x00005

next available start address = 0x10000 + 0x00005 = 0x10005

Texture Load

 SST-1 Graphics Engine for 3D Game Acceleration

Copyright 1995 3Dfx Interactive, Inc. Revision 1.60
Proprietary and Preliminary 83 Printed 12/1/99

Two 16-bit or four 8-bit texels are written at a time. For maps that are less than 4 texels wide in the S dimension,
the upper texels are inhibited from being written. Only 32-bit accesses are valid, at byte addresses that are a
multiple of 4 (2 LSBs are 0).

Texture Load Format

S[7:1]T[7:0]LOD[3:0] 0 0

Byte AddressPCI Byte Address (2M 32-bit Words = 8M Bytes)
289161720

31 0

16-bit Texture Write Data:

S[0]=0S[0]=1

31 0

8-bit Texture Write Data:

S[1:0]
=10

S[1:0]
=11

S[1:0]
=01

S[1:0]
=00

For 2xN textures, write of the upper 2 bytes is inhibited.
For 1xN textures, write of the upper 3 bytes is inhibited.

For 1xN textures, write of the upper 2 bytes is inhibited.

For 8-bit textures, s[1] is set to 0.
For textures smaller than 256x256, S is right aligned to bit 2 and T is right aligned to bit 9. Alignment is
 the same for 8- and 16-bit textures.

2122 01

TREX

seq_8_downld==0 or 16-bit texture:

S[7:2]T[7:0]LOD[3:0] 0 0

Byte AddressPCI Byte Address (2M 32-bit Words = 8M Bytes)
289161720

For textures smaller than 256x256, S is right aligned to bit 2 and T is right aligned to bit 9.

2122 01

TREX

seq_8_downld==1 and 8-bit texture (not revision 0):

0

 SST-1 Graphics Engine for 3D Game Acceleration

Copyright 1995 3Dfx Interactive, Inc. Revision 1.60
Proprietary and Preliminary 84 Printed 12/1/99

9. Programming Caveats
The following is a list of programming guidelines which are detailed elsewhere but may have been overlooked or
misunderstood:

9.1 I/O Accesses
SST-1 does not support I/O accesses. All I/O accesses to SST-1 are ignored.

9.2 Memory Accesses
All Memory accesses to SST-1 registers must be 32-bit word accesses only. Linear frame buffer accesses may be
32-bit or 16-bit accesses, depending upon the linear frame buffer access format specified in lfbMode. Texture
memory accesses must be 32-bit word accesses. Byte(8-bit) accesses are not allowed to SST-1 register, linear frame
buffer, or texture memory space.

9.3 Determining SST Idle Condition
After certain SST operations, and specifically after linear frame buffer acceses, there exists a potential deadlock
condition between internal SST state machines which is manifest when determining if the SST subsystem is idle.
To avoid this problem, always issue a NOP command before reading the status register when polling on the SST
busy bit. Also, to avoid asynchronous boundary conditions when determing the idle status, always read SST
inactive in status three times. A sample code segment for determining SST idle status is as follows:

/***
 * SST_IDLE:
 * returns 0 if SST is not idle
 * returns 1 if SST is idle
 ***/
SST_IDLE()
{
 ulong j, i;

 // Make sure SST state machines are idle
 PCI_MEM_WR(NOPCMD, 0x0);
 i = 0;
 while(1) {
 j = PCI_MEM_RD(STATUS);
 if(j & SST_BUSY)
 return(0);
 else
 i++;
 if(i > 3)
 return(1);
 }
}

9.4 Triangle Subpixel Correction
Triangle subpixel correction is performed in the on-chip triangle setup unit of SST-1. When subpixel correction is
enabled (fbzColorPath(26)=1), the incoming starting color, depth, and texture coordinate parameters are all

 SST-1 Graphics Engine for 3D Game Acceleration

Copyright 1995 3Dfx Interactive, Inc. Revision 1.60
Proprietary and Preliminary 85 Printed 12/1/99

corrected for non-integer aligned starting triangle <x,y> coordinates. The subpixel correction in the triangle setup
unit is performed as the starting color, depth, and texture coordinate parameters are read from the PCI FIFO. As a
result, the exact data sent from the host CPU is changed to account for subpixel alignments. If a triangle is
rendered with subpixel correction enabled, all subsequent triangles must resend starting color, depth, and texture
coordinate parameters, otherwise the last triangle’s subpixel corrected starting parameters will be subpixel
corrected (again!), and inaccuracies will result.

9.5 Loading the internal Color Lookup Table
When loading the color lookup table by writing data to clutData, the software video reset bit must be disabled
(fbiinit1(8)=0). If the software video reset bit is enabled (fbiinit1(8)=1), the data written to clutData will be
ignored.

 SST-1 Graphics Engine for 3D Game Acceleration

Copyright 1995 3Dfx Interactive, Inc. Revision 1.60
Proprietary and Preliminary 86 Printed 12/1/99

10. Video Timing
SST-1 video timing is defined by the hSync, vSync, backPorch, and videoDimensions registers. The following
diagram illustrates the video timing parameters of SST-1:

The screen resolution is defined in the videoDimensions register. Note that regardless of whether SST-1 is in
MODE_640 or MODE_800 (see fbiInit0 register description), smaller monitor resolutions may be programmed in
videoDimension.

The hSync register is used to control the horizontal sync period. The values of hSync are specified in VCLK
units, which is the video dot clock.

 SST-1 Graphics Engine for 3D Game Acceleration

Copyright 1995 3Dfx Interactive, Inc. Revision 1.60
Proprietary and Preliminary 87 Printed 12/1/99

 hSync_on = (Number VCLKs of active horizontal Sync) - 1
 hSync_off = (Number VCLKs of inactive horizontal Sync) - 1

The vSync register is used to control the vertical sync period. The values of vSync are specified in horizontal scan
line units. The width of a horizontal scan line is defined by the hSync register.
 vSync_on = (Number horizontal scan lines of active vertical Sync)
 vSync_off = (Number horizontal scan lines of inactive vertical Sync)

The area between the left hand side of the monitor and the active video region, known as the horizontal back
porch, is defined by the hBackPorch field in the backPorch register. The register value is specified in VCLK
units.
 hBackPorch = (Number VCLKs of active horizontal back porch Blank) - 2

The area between the right hand side of the monitor and the active video region, known as the horizontal front
porch, is inferred from the horizontal Sync and the horizontal display resolution information. The area between
the top of the monitor and the active video region, known as the vertical back porch, is defined by the vBackPorch
field in the backPorch register. The register value is specified in horizontal scan line units.
 vBackPorch = (Number Horizontal Scan Lines of active vertical back porch Blank)

 The area between the bottom of the monitor and the active video region, known as the vertical front porch, is
inferred from the vertical Sync and the vertical display resolution information.

When generating PCI interrupts, the status of the internal vSync_off counter is compared to bits(27:16) of the
pciInterrupt register. Note that the value of the internal vSync_off counter may be probed in software by reading
the vRetrace register.

 SST-1 Graphics Engine for 3D Game Acceleration

Copyright 1995 3Dfx Interactive, Inc. Revision 1.60
Proprietary and Preliminary 88 Printed 12/1/99

11. Scanline Interleaving
This section to be completed.
Functions and support which change when scanline interleaving is enabled:

• Polling Status (use status and cfgStatus)
• Y-Origin bit (must use even yorigin_swapval value if want to swap y-origin)
• Linear frame buffer reads (must change who controls PCI bus)
• Setting up Scanline interleaving
• Flushing PCI Packer (use read from status register)

 SST-1 Graphics Engine for 3D Game Acceleration

Copyright 1995 3Dfx Interactive, Inc. Revision 1.60
Proprietary and Preliminary 89 Printed 12/1/99

12. SST-1 Revision 2.0 Changes
The following describes the silicon differences between the silicon revision 1.0 chipset and revision 2.0:

FBI (revision 2.0, second silicon):
n Updated PCI configuration register field revision_id to 0x2
n Split meaning of reset strapping pin fb_addr_a[5]. fb_addr_a[5] is now used to hardcode the PCI address to

0x1f000000 (1=enable), and fb_addr_a[4] is used to specify the reset/default vga_pass output value
n fb_addr_a[8] configures PCI configuration status register to specify fast pci_devsel timing and specifies

capability of handling fast back-to-back PCI requests (1=enable fast PCI timing)
n Added fix for flow control problem (FBI drops texels) when texture mapping
n Added proper decoding of PCI configuration cycles
n Added proper driving of pci_fifo_stall signal
n Added proper swap interval determination
n Added capability to read lfbMode[16:15]
n Added better busy detection for pixel_pack module
n Changed dac_hsync and dac_vsync output drivers to 12 mA
n Changed tf_stall output driver to 8 mA
n Changed fb_cas[3:0] output drivers to 8 mA
n TREX busy bit in status is cleared if fbiinit3[6]=1 (disables texture mapping functionality)
n Added capability to always guarantee writes to TREX occur even if ft_stall is asserted
n Added pseudo-stencil capability for cockpits (fbzMode[20])

TREX (revision 1.0, second silicon):
n Changed revision number to 0x1
n Added proper software reset functionality (trexInit1: reset_FIFOs, reset_graphics)
n Changed tex_ras[1:0], tex_we, and tex_cas[3:0] outputs from 4mA to 8mA drive
n Fixed performance problem when texturing (generated page miss every 13-14 cycles)
n Added support for 8-bit paletted textures, AP and P tformat’s (write timing adjust trexInit1: palette_del)
n Added fast download capability for 8-bit textures (textureMode: seq_8_downld)
n Added two-memory support (trexInit0: mem2)
n Added more config. sense modes, backward compatible with rev. 0 (see trex spec., trexInit1)

 SST-1 Graphics Engine for 3D Game Acceleration

Copyright 1995 3Dfx Interactive, Inc. Revision 1.60
Proprietary and Preliminary 90 Printed 12/1/99

13. Revision History
0.7 Updated to version 1.1a of sst.h
0.8 Added proper SST-1 address space
 Added Spatial and parameter iterators for new edge walking algorithm
 Updated to latest (4/2/95) version of sst.h
0.9 Added further descriptions of TREX-specific registers
 Added SST-1 1st Silicon Functionality section
 Modified system level diagrams to show 1-8 Mbytes of TREX memory support
0.95 Numerous miscellaneous typos and changes
 Added byte swizzling bit(12) in lfbMode
 Added triangle area formula in triangleCMD register description
 Writing ‘1’ to lsb of nopCMD now clears the fbiPixelsIn, fbiChromaFail, fbiZfuncFail, fbiAfuncFail,
 and fbiPixelsOut registers
 Added clutData, dacData, fbiInit2, and fbiInit3 registers
 Renamed clipTopBottom to clipLowYHighY
 Changed encoding values for chip field of SST-1 address space
1.00 PCI write wait states now only 0 or 1 (specified in fbiinit1)
1.10 Moved enabled alpha-planes bit to fbzMode
 Miscellaneous changes to the fbiinit registers
 Updated Depth-buffering diagram
1.20 Updated tDetail with bias size 6.0 signed
 Changed PCI configuration register name initWrEnable to initEnable
 Added PCI configuration registers busSnoop0 and busSnoop1, and added PCI snooping bits in
initEnable
 Removed pciInterrupt register
 Added fbiInit4 register
 Added description of dacData register
 Revised depth generation diagram
 Added description of idiosyncrasies of subpixel correction in the triangle setup unit
 Added stipple pattern mode
 Removed 1st silicon spin functionality section
1.30 Added cc_localselect_override bit in fbzColorPath
 Added cfgStatus configuration register
 Fixed typo in definition of dacData register for specifying read/write command
 Removed definition in trexInit registers. Temporarily in TREX spec only.
 Updated ACU diagram to show alpha-mask test.
 Fbi-to-trex bus clock delay default now 0x2.
 Added dither subtraction for alpha-blending (fbzMode(19))
 Moved PCI bus owner for scanline interleaving to Configuration initEnable(10)
 Added PCI read wait states and linear frame buffer readahead in fbiInit4
 Added separate control bits in lfbMode for word swapping and byte swizzling for lfb reads
 Removed TREX initialization bits from fbiInit3
 Added section on scanline interleaving support
 Added triangle parameter address remapping support (fbiinit3(0)=1)
1.40 Changed triangle parameter address remapping to RGBZASTW order
 Added Vendor ID 0x121a in PCI configuration register space
 Added maxRgbDelta register
 Moved scan_interleave_slv to Pci configuration register initEnable

 SST-1 Graphics Engine for 3D Game Acceleration

Copyright 1995 3Dfx Interactive, Inc. Revision 1.60
Proprietary and Preliminary 91 Printed 12/1/99

 Added disable texture mapping bit in fbiinit3(6)
 Added memory FIFO configuration bits in fbiinit4
 Changed performance charts
1.50 Fixed typos in PCI register address map and added hex addresses
 Added performance estimates
 Added more SST-1 revision 2.0 changes
1.60 Added seq_8_downld functionality for TREX revision 1.0 in textureMode
 Added 8-bit palette format descriptions in textureMode description
 Added 8-bit palette download description in NCC description

?? Added details to trex rev. 1 changes
 seq_8_downld must equal 0 for direct writes.

