

AMICopyright© 1980 American Microsystems, Inc. (All rights reserved) Trade Marks Registered ${ }^{\oplus}$

Information furnished by AMI in this catalog is believed to be accurate and reliable. Devices sold by AMI are covered by the warranty and patent indemnification provisions appearing in its Terms of Sale. AMI makes no warranty, express, statutory,implied, or by description regarding the information set forth herein or regarding the freedom of the described devices from patent infringement. AMI reserves the right to change specifications and prices at any time and without notice.

Advanced Product Description means that this product has not been produced in volume, the specifications are preliminary and subject to change, and device characterization has not been done. Therefore, prior to designing this product into a system, it is necessary to check with AMI for current information.

Preliminary means that this product is in limited production, the specifications are preliminary and subject to change. Therefore, prior to designing this product into a system, it is necessary to check with AMI for current information.

This product is intended for use in normal commercial applications. Applications requiring extended temperature range, unusual environmental requirements, or high reliability applications, such as military, medical life-support or life-sustaining equipment are specifically not recommended without additional processing by AMI for such application.

AMI
1980
MOS Products Catalog

American Microsystems, Inc., the first commercial producer of MOS/LSI beginning in 1966, is a major designer, manufacturer and marketer of circuits for the consumer, EDP and communications markets.

AMI is the leading designer of custom LSI, makes and markets its proprietary S2000 family of 4-bit microcomputers, is a major alternate source for the $\mathbf{S 6 8 0 0} 8$-bit microprocessor family and the only alternate source for the $\mathbf{S} 9900$ 16 -bit family of microprocessors. The Company provides the market with selected 1 K and 4 K low power CMOS Static RAMs, 16K and 32K ROMs.

The most experienced designer of systems-oriented MOS/LSI communication circuits, AMI provides components for station equipment, PABX and Central Office Switching systems, data communications and advanced signal processing applications.

AMI is pioneering in same-chip integration of digital and analog circuitry, and is a recognized leader in switched capacitor filter technology.

Processing capability includes N-Channel, advanced silicon gate CMOS and the largest production capability available in P-Channel.

Headquartered in Santa Clara, California, AMI has design centers in Santa Clara, Pocatello, Idaho and Swindon, England. Wafer fabricating plants are in Santa Clara and Pocatello, and assembly facilities are in Seoul, Korea and the Philippines.

Field sales offices are located throughout the United States, in Europe and in the Far East. Their listing, plus those of domestic and international representatives and distributors appear on pages B. 27 through B. 31 of this publication.
A. Indices
\square Numerical
\square Functional
\square Cross-Reference

1. Custom Capabilities
2. Communication Products
3. Consumer Products
4. S2000 Family
5. S6800 Family
6. S9900 Family
7. Microprocessor/Microcomputer Development Systems Products
8. Random Access Memories (RAMs)
9. Read Only Memories (ROMs)
10. UV EPROMs
11. Uncommitted Logic Arrays
12. Application Note Summary
B. General InformationMOS Handling
\square MOS Processes
\square Product Assurance
\square Military Products Screening Program
. Packaging
\square Ordering Information
\square Terms of Sale
\square AMI Sales Offices
\square Domestic Representatives
\square Domestic Distributors
\square European Representatives and Distributors

Device	Page	Device	Page
AMI Cross Support	7.2	S3503	2.70
AMI Pascal	7.3	S3504	2.70
S10110	3.45	S3525A	2.92
S10111	3.49	S3525B	2.92
S10129	3.52	S4264	9.8
S10130	3.54	S50240	3.85
S10131	3.56	S50241	3.85
S10377	3.58	S50242	3.85
S10430	3.62	S50243	3.2
S1103A	8.2	S50244	3.2
S1602	5.101	S50245	3.2
S1856	3.32	S5101L	8.3
S2000	4.4	S5101L-1	8.3
S2000A	4.4	S5101L-3	8.3
S2150	4.4	S5101L-8	8.3
S2150A	4.4	S5101-8	8.3
S2152	4.4	S5204A	10.2
S2200	4.6	S6504	8.8
S2200A	4.6	S6508	8.9
S2210	4.6	S6508A	8.9
S2350	5.112	S6508A-1	8.9
S2400	4.6	S6508-1	8.9
S2400A	4.6	S6514	8.14
S2559A	2.3	S6800	5.3
S2559B	2.3	S68A00	5.3
S2559C	2.3	S68B00	5.3
S2559D	2.3	S68H00	5.7
S2560A	2.30	S6801	5.10
S2561	2.39	S6801(E)	5.10
S2561A	2.39	S6802	5.46
S2561C	2.39	S68A02	5.46
S2562	2.47	S6803	5.2
S2567	3.68	S6803N/R	5.2
S2600	3.3	S68045	5.135
S2601	3.3	S68047	5.156
S2688	3.70	S6805	5.50
S2709	3.37	S6808	5.73
S2742	3.9	S68A08	5.73
S2743	3.9	S6809(E)	5.74
S2809	3.41	S68A09(E)	5.74
S2811	2.71	S68B09(E)	5.74
S2814	2.90	S6810 .	5.190
S2859	2.13	S68A10	5.190
S2860	2.21	S68B10	5.190
S2861A	2.27	S6810-1	5.2
S2861B	2.27	S6821 .	5.120
S3501	2.57	S68A21	5.120
S3501A	2.57	S68B21	5.120
S3502	2.57	S68H21	5.126

Device	Page
S6831B	9.2
S68332	9.5
S6834	10.4
S6834-1	10.4
S68364	8.2
S6840	5.130
S68A40	5.130
S68B40	5.130
S6846	5.150
S68488	5.183
S6850	5.168
S68A50	5.168
S68B50	5.168
S6852	5.173
S68A52	5.173
S68B52	5.173
S6854	5.178
S68A54	5.178
S68B54	5.178
S6894	5.188
S8890	3.73
S9260	3.14
S9261	3.14
S9262	3.21
S9263	3.14
S9264	3.14
S9265	3.14
S9266	3.21
S9660	3.80
S9900	6.3
S9901	6.15
S9902	6.18
S9940	6.7
S9980A	6.11
S9981	6.11
SES2000/S2150	7.6
TCK-100	3.28

Communication Products

Codes	(D) - Direct Replacement	(C) - Codec Only, No Filters			(F) - Functional Replacement	
AMI	General Instruments	Intel	Mitel	Mostek	Motorola	National
S2559A	-	-	-	MK-5086(D)	-	-
S2559B	-	-	-	-	-	-
S2559C	-	-	-	$\begin{aligned} & \text { MK-5086(D), } \\ & \text { MK-5087(F) } \end{aligned}$	-	-
S2559D	-	-	-	-	-	-
S2560A	AY-5-9151(F), AY-5-9152(F)	-	MT-4320(F)	$\begin{aligned} & \text { MK-5098(F), } \\ & \text { MK-5099(F) } \end{aligned}$	-	MM-5393(F), MM-53190(F)
S2561	-	-	-	-	-	-
S2561A	-	-	ML-8204(F)	-	-	-
S2561C	-	-	-	-	-	-
S2562	TZ-2001(F)	-	-	MK-5170(F)	-	-
S2859	-	-	-	-	-	-
S2860	-	-	-	MK-5089(F)	-	-
S2861A	-	-	-	MK-5087(F)	-	-
S2861B	-	-	-	-	-	-
S3501/S3502	-	2910/2912(F)	-	MK-5151(FC)	$\begin{gathered} \mathrm{MC}-14406 / \\ 14414(\mathrm{~F}) \end{gathered}$	-
S3503/S3504	-	2911/2912(F)	-	MK-5156(FC)	$\begin{gathered} \mathrm{MC}-14407 / \\ 14414(\mathrm{~F}) \end{gathered}$	-
S3525A/B	-	-	MT-8865(F)	-	-	-

Memory Products

Vendor	CMOS RAMs				NMOS ROMs		
	256×4	$1 \mathrm{~K} \times 1$	$1 \mathrm{~K} \times 4$	$4 \mathrm{~K} \times 1$	$2 \mathrm{~K} \times 8$	$4 \mathrm{~K} \times 8$	$8 \mathrm{~K} \times 8$
AMI	S5101	S6508	S6514*	S6504*	S6831B	S68332	S68364*
AMD	-	-	-	-	9216	9232	-
EA	-	-	-	-	8316	2332	-
FSC	-	-	-	-	3516	-	-
FUJITSU	-	-	8414	8404	-	-	-
GI	-	-	-	-	9316	9332	9364
HARRIS	6561	6508	6514	6504	-	-	-
HITACHI	435101	-	4334	4315	-	-	-
INTEL	5101	-	-	-	2316	2332	2364
INTERSIL	6551	6508	6514	6504	-	-	-
MARUMAN	-	-	-	-	2316	2332	2364
MITSUBISHI	-	-	-	-	58731	58733	-
MOSTEK	-	-	-	-	34000	-	37000
MOTOROLA	145101	146508	-	146504	68316	68332	68364
NATIONAL	74C920	74 C 929	-	6504	2316	52132	52164
NEC	5101	6508	444	-	2316	2332	2364
OKI	573	574	-	-	3870	-	-
RCA	5101	1821	1825	5104	-	-	-
ROCKWELL		-	-	-	2316	-	-
SIEMENS	-	-	-	-	8316	8332	-
SIGNETICS	-	-	-	-	2600	2632	2664
SGS	-	-	-	-	2316	-	-
SSS	5101	5102	-	-	-	-	-
SYNERTEK	5101	5102	-	-	2316	2332	2364
TI	-	-	-	-	8316	4732	4764
TOSHIBA	5101	5508	5514	5504	331	333	-

*To Be Announced

AMI	Fairchild	General Instruments	Hitachi	Motorola	National	Texas Instruments
S1602	-	AY-3-1014	-	-	MM5303N	TMS6011
S2350	-	-	-	-	-	-
S6800	F6800	-	HD46800	MC6800	-	-
S6801	-	-	-	MC6801	-	-
S6802	F6802	-	HD46802	MC6802	-	-
S6805	-	-	HD46805	MC6805	-	-
S6808	F6808	-	HD46808	MC6808	-	-
S6809	-	-	MC6809	-	-	
S6810	F6810	-	HD46810	MC6810	-	-
S6821	F6821	-	HD46821	MC6821	-	-
S6840	F6840	-	HD46840	MC6840	-	-
S6846	F6846	-	HD46846	MC6846	-	-
S6850	F6850	-	HD46850	MC6850	-	-
S6852	F6852	-	HD46852	MC6852	-	-
S6854	F6854	-	HD46854	MC6854	-	-
S68488	F68488	-	HD468488	MC68488	-	-
S6894	-	-	-	-	-	
S68045	-	-	-	-	-	-
S68047	-	-	-	-	-	

S9900 Family

AMI	Texas Instruments
S9900	TMS9900
S9901	TMS9901
S9902	TMS9902
S9903	TMS9903
S9940	TMS9940
S9980	TMS9980
S9981	TMS9981

AMI's Six Step Program for Success in Custom LSI.

No other company can match AMI's track record in developing state-of-the-art custom MOS products. With more than 1,400 custom devices designed and manufactured since 1967, AMI has more experience than any other integrated circuit company in building a wide variety of custom microcircuits.
AMI not only has the experience but the design engineering organization and the advanced production and testing facilities to produce the highest quality MOS/LSI circuits. Because AMI also offers standard memory, microprocessor, telecommunication and consumer products and the widest variety of custom LSI processes in the industry, we're able to be objective in helping customers determine their most cost effective approach.

AMI can participate at any level of the custom LSI process.

We participate at any level in the design of the custom IC, from the classic "we'll-design-and-produce-it-for-you" approach where we have complete responsibility, to the "Customer Tooling" cooperative approach for customers who do their own design but want us to do the manufacturing. We will even enter into long-term, fully-funded joint development agreements, designing ICs for families of end products, joining together your systems designers with our circuit designers.
We've developed a six step program in which you, the customer, can work with us to successfully develop the custom IC for your product by:

1. Considering All the Factors.
2. Looking At the Custom Options.
3. Selecting the Right MOS/LSI Process.
4. Designing The Best Circuit.
5. Fabricating the Optimum Device.
6. Testing For Reliable Performance.

The results are a unique product designed to your complete satisfaction.

Step One: Considering all the Factors.

There are many ways to build your product, so, why do we believe the custom MOS/LSI approach is right for you? For the answer let's look at the alternatives:
Electromechanical. These assemblies suffer compared to MOS circuits: in reliability because moving parts wear; in convenience because of the greater space needed; and because of their limits in handling highly complex functions.
Hardwired Logic. This is more expensive due to the high labor and material cost involved. Much space is needed and power is much higher than for MOS/LSI circuits.
Standard Circuits. Standard ICs perform the same jobs as custom ICs but require more devices, higher assembly costs, more power and space with lower reliability.
Microprocessors. Using standard microprocessors requires several microcircuits, and much of the device's capability may not be needed. A custom circuit, however, can combine all your needed functions on one IC, conserving space and cost.

The custom MOS/LSI decision

The advantages of custom MOS/LSI circuits become more apparent when considered in relation to IC complexity, component count, power consumption and confidentiality (it's your circuit exclusively).
Complexity. An application suitable for custom LSI is usually one needing moderately complex circuits or functions; i.e., more than 100 to 500 gates. Fewer than this might not justify the engineering, design, and manufacturing effort required for the custom IC.
Custom LSI may be the only way technically to achieve a desired result, no matter what the development cost.
Component Count. An important consideration affecting cost is the number of components in a system that are eliminated by the substitution of a single custom LSI circuit. A reduction in component count significantly lowers the number of electrical interconnections and increases product reliability.
This factor often reduces troubleshooting problems at the board, subsystem and system levels, minimizes field
repairs and usually reduces warranty costs. The reduction in component count also decreases assembly and initial checkout costs.
Power Consumption. The amount of power required to operate an end product is increasingly an important consideration. MOS/LSI circuits require much less power than the electro-mechanical and hardwired logic alternatives. A custom MOS/LSI solution usually requires less power than the multi-chip alternatives offered by standard circuits and microprocessors. For battery operated designs, we offer custom, high performance/ultra-low power complementary MOS (CMOS) capability.
Confidentiality. Of prime concern in any highly competitive market situation is confidentiality of design. AMI treats each circuit assignment as a highly proprietary project insuring complete security to, and through, the product's manufacturing life.

Step Two: Looking at the Custom Options.

There are two basic ways AMI teams up with its customers, although we are very flexible:

AMI designs and makes the circuit to meet customer requirements; or,
\square the customer designs the IC with AMI assistance and AMI produces it.

The total AMI approach

AMI's custom capability encompasses the entire development sequence of a product. The services we provide start with five conceptual planning steps:
\square System Definition;
\square System Design and Partitioning;
\square Preliminary Logic Design/Simulation;
\square Final Logic Design; and
\square LSI Circuit Design.
First, system definition requires the customer to have full knowledge of the system requirements for the custom IC. Working with AMI's application engineers, the two companies form a team to develop a final system which not only meets the needs, but optimizes performance and economics.
Second, system partitioning follows the joint development of system definition. This involves the cataloging of functions into MOS subfunctions, and then into chip
functions. At this step the optimum MOS process for the application is chosen. Usually, functional flow charts and timing diagrams are generated at this time as a preliminary step in logic design.
Once partitioning is complete, preliminary logic design and simulation can be done. The chip functions are translated into MOS logic diagrams. Traditional breadboarding techniques are quite often used to verify these logic designs. AMI uses proprietary computerized simulation programs for verification. These programs check the design as well as help reduce time and cost factors for design verification.
Final logic design is next. First, system errors discovered through breadboarding or simulation are corrected. Earlier partitioning may be refined if the final logic design indicates the need. During the final logic design step all system design objectives are analyzed again. MOS logic diagrams are finalized, the chip sizes are estimated, and testing procedures are generated.
And then-the chip design. The topological chip layout is a precise science. The exact dimensions and placement for each transistor and other components must be determined. Here again AMI uses computerized circuit analysis programs to validate chip designs and verify that the design meets the performance objectives. The computerized analysis not only substantiates logic, it is an integral part of the on-going quality assurance program at AMI.

The cooperative approach

In this approach, the customer designs the circuit and has complete control over the logic and electrical requirements, the design budget and schedule, and the design changes prior to tooling.
Design workshops, consultation and information documentation packages are provided by us depending on the needs of the customer. We divide our customer interfacing into four phases: Phase 1 is a feasibility study; Phase 2 is a preliminary wafer fabrication or sample run; Phase 3, pre-production yield evaluation; and Phase 4, production.
Phase 1 begins before MOS logic is drawn. AMI customer tooling engineers provide suggestions on MOS design, discuss process and design rule parameters, provide a standard device, help plan ahead for testing, and provide information on packaging and tooling interface. Our experience has shown that the customer tooling interface works best when the customer is aware from the
start of how we will make the device. If it's already been designed, Phase 1 begins when AMI provides a process and design rule questionnaire. This gives us information about packaging requirements, testing needs and tooling interface level. Our customer tooling experts review the data to see if AMI can meet all the requirements. At the end we supply at no charge a program plan, a firm quotation for the next two phases, and a budget quote for production.
During Phase 2 we'll process one wafer lot and then map, optically inspect, package and ship sample quantities of untested ICs, and, if the customer requires them, several untested wafers. Furthermore, AMI guarantees these samples will be within the agreed parameters and will meet our standards of quality and workmanship. The customer can supply working plates for Phase 2, or AMI will accept pattern generator tapes or 10 x reticles.
After the customer approves the Phase 2 sample devices, AMI moves to Phase 3: pre-production yield evaluation. Here we guarantee the required manufacturing documentation, run acceptances on the test program, and build the wafer probe cards and the program board for AMI testers. We then make several reproducibility runs of wafers and sort them for yield information.
From these runs AMI engineers will assemble and final test a number of good devices. The unit cost for them will be based on the costs of assembly, type of package and final test. These units provide the customer with a low volume production run for additional evaluation and start-up production commitments.
Pre-production deliveries actually start during Phase 3. Initial production deliveries during Phase 4 usually begin 9 to 11 weeks after approval of the pre-production units.

... But there are other options

We're not biased particularly in favor of custom LSI, especially if it becomes clear it's not the best way to solve a customer problem. AMI is also a major microprocessor supplier in the 4 -, 8-, and 16-bit categories: our own family of S2000 single chip microcomputers, the Motoroladesigned 6800, and Texas Instrument's 9900 product line, respectively.
By having available both custom LSI and standard microprocessors, we can offer customers alternatives that can also combine the two. For example, to test the market for a new product, we can design a micropro-cessor-based system which provides a relatively quick, though not necessarily cost effective way to get a product to market. As part of the approach, we customize the microprocessor program or "software," and then, if
the product is successful, design and make a custom LSI circuit dedicated to that particular application.
But if a microprocessor-ours or anyone else's-is the best solution, custom LSI is still useful, for microprocessors can't operate alone. They need interface devices. To achieve a system with a minimum chip count, custom devices can be designed to allow the customer to efficiently interface standard microprocessors with the customer's system.

Step Three: Choosing the right MOS/LSI process.

One of the most important decisions to be made in the custom LSI approach is determining the right MOS/LSI process.
Where many of our competitors offer one, and possibly two MOS processes with which to build devices, AMI offers seven custom MOS process options, more than any other company supplying custom circuits. They are:

P-channel high voltage metal gate

This is the most mature process in the industry and because of its relative simplicity, has the lowest cost per wafer. It provides high noise immunity, making it ideal for applications involving mechanical equipment which can generate RF noise and where low power dissipation is not a prime requirement.

P-channel ion implanted metal gate

This is very similar to its high voltage P -channel process, with two additional processing steps. An ion implantation of the gate areas reduces the device thresholds to levels consistent with the low voltage P-channel process while at the same time retaining the high field thresholds of the high voltage process.
A second ion implant in selected gate regions reduces those thresholds to the point of forcing depletion mode transistor operation. The use of depletion mode devices as load transistors greatly increases device speed per unit area, can lower power, improve noise margins, makes bipolar interfacing easier, permits the use of unregulated power supplies, and allows generation of full amplitude signals on chip with only one power supply. This latter feature can be especially useful in converting certain logic implementations to much simpler forms which thereby reduce chip area significantly. This process has been used in several different standard memory products as well as many custom chip applications where speed, noise im. munity and wide power supply tolerances are specified.

P-channel silicon gate (SiGate)

This process has two main features: (1) somewhat smaller transistor structures due to a self-aligning fabrication technique that eliminates certain masking tolerance problems, and (2) a partial third layer of interconnect which can sometimes significantly reduce cell area and interconnections between cells. The self-aligning gate structure lowers the effective gate capacitance. The circuit response is faster than regular P-channel low voltage devices, but slower than ion implanted circuits with depletion mode load devices. This process has been mostly used in memory applications and in customer tooled circuits. AMI no longer designs products in this process.

N -channel silicon gate

This process uses ion implantation in the field areas to achieve high field threshold without having to resort to thick field oxides. Then the gate regions are implanted to establish the required control of device thresholds. This process is designed for single supply circuits that do not have stringent performance requirements but must have significant packing densities. This packing density results from the following: (1) for a given device N-channel can charge or discharge a mode faster than P-channel, (2) the self-aligning feature of the process, and, (3) the extra layer of interconnect inherent in silicon gate which can be used to reduce chip interconnect area.

N -channel ion implanted SiGate with depletion loads

This is a high performance process; it offers all the advantages of the N-channel, ion implanted SiGate process plus the increased speed associated with depletion loads. The drawback to this process lies in the increased complexity of the additional processing steps.

Complementary MOS (CMOS)

The CMOS technology has many advantages. Its biggest asset is that CMOS draws very little power. The majority of the power is consumed when switching occurs. Under static conditions or during power down CMOS dissipates virtually no DC power. CMOS is also very fast, and it has very high noise immunity, comparable to ion implanted circuits using depletion mode transistors. Like ion implanted depletion mode circuits, CMOS can work over a very wide single supply power range. The area used per logic function has been larger than with
other processes, but this is decreasing with advanced CMOS techniques. CMOS chips are currently used in low power, often battery operated applications such as electronic watches, clocks, and memories where the ability to work at very low power is an absolute requirement, and in automotive electronics, where low standby current and high noise immunity are important. CMOS is also making important inroads into microprocessors and communications circuitry.
Present CMOS technologies include both standard metal gate and silicon gate, as well as a high density, isoplanar silicon gate process.

Five-Micron CMOS

AMI's major second generation 5 -micron CMOS process uses an $\mathrm{n}+$ only ubiquitous P -well approach to improve performance, simplify layout and reduce circuit size. This process permits implanting in the field oxide region, thus eliminating guard rings. AMI's process also reduces P-well doping levels below alternative 5 -micron processes and consequently lowers junction capacitances and increases switching speeds.
We use this 5 -micron process to design and produce switched capacitor circuits for analog and digital functions. Among the kinds of circuits that can benefit enormously from mixed digital-analog approaches are low-noise, high-gain op amps, high-speed offset-cancelled comparators and high-current line buffers. CMOS linear subsystems have appeared on AMI-designed circuits to perform A to D and D to A conversion, switched capacitor filtering and quasi-adaptive phase lock and auto-zero loops. System level integrated circuits have been designed and fabricated for complex filter functions, DTMF, MF and SF receivers, low and medium speed modems, codecs, voice compression, industrial control and voice synthesis.

Step Four: Designing the best circuit.

A key to AMI's success in the custom LSI business is its Computer-Aided Design (CAD) capability. Our CAD capabilities, the most advanced in the semiconductor industry, are based on a wealth of experience in custom MOS/LSI circuit design work. CAD software and hardware aids are employed throughout the custom IC development cycle, from the early logic design stage to creation of production tooling.

Logic Simulation

Early in the design phase logic simulation is used to verify that the logic is sound. The circuit is extensively simulated to verify logical correctness as well as timing and signal propagation characteristics. Logic simulation is used throughout the design cycle from hierarchical block-level logic design to test program generation.
SIMAD is an MOS oriented four-state logic simulator which supports assignable rise and fall switching delay. It includes such features as:
\square block-oriented input notation, including macros, Boolean expressions, and array notation;basic logic gates, several types of MOS transmission gates, RAMs, ROMs, shift-registers, and user specified combinational logic gates;
\square four-state ($\phi, 1, \mathrm{u}, \mathrm{z}$) simulation;multi-phase user specified clocking schemes;assignable rise and fall delay;race detection and inertial delay simulation;versatile input, output, and simulation control options;
\square checkpoint-restart capability;accurate initialization algorithm;extensive compression and formating of simulation results for automatic test equipment.

Circuit simulation

At the circuit design phase, a circuit simulator containing semiconductor device models is used to identify undesirable circuit behavior. Exact circuit behavior is simulated and the results are used to insure the circuit will operate within allowable tolerances.
The ASPEC circuit simulator can perform non-linear DC, non-linear DC transfer function, non-linear transient and small signal (linear) AC circuit analysis. Built-in component models include independent voltage and current sources; linear elements such as resistance, inductance, capacitance, transconductance, voltage controlled switches and coupled-inductors. Non-linear transistor models for junction field effect transistors (JFETs), MOSFETs, and bipolar junction transistors (BJT) are also available. The MOSFET model simulates linear and saturation
region DC operation; body effect as a function of substrate bias; channel length modulation in saturation; mobility reduction at elevated gate voltages; channel pinchoff; short channel effects; weak inversion; as well as full non-linear voltage-dependent modeling of the MOS capacitors which determine device transient behavior.

Symbolic mask design using SIDS

AMI has developed an advanced symbolic mask design system for MOS ICs. This Symbolic Interactive Design System (SIDS) reduces the total mask design cycle time as much as 50 percent, with half the manpower effort and half the cost of the hand drawn approach. SIDS eliminates hand drafting by using symbols to represent complex multi-level circuit elements.
SIDS circuit masks are designed symbolically on an interactive color CRT terminal. The mask design process is supported by such checking aids as:
\square Design Rule Checking (DRC) which checks for all symbol-to-symbol layout violations;
\square TRACE, which traces a circuit node and visually highlights the node on the color CRT terminal so the user can observe circuit continuity errors.
CONTINUITY, which generates a net list from a logic description file, compares it to a net list traced from the symbolic layout, and prints out any continuity differences.
The final SIDS step is the conversion from symbols to polygons (STP) and the generation of the pattern generation (PATGEN) tape.

Hardware design aids

\square On-site Burroughs 7765 large scale computer with multiprocessing capability.
\square Prime minicomputers in Santa Clara, Pocatello and Swindon, England.
\square A Calma GDSII interactive graphics system for digitizing and editing of composite drawings; includes 3 digitizing surfaces and 4 CRT edit stations.
\square High speed, high resolution Electromask pattern generator.
\square Versatec 42 inch high speed electrostatic plotter.
\square Calcomp 748 Flatbed Plotter.

Software design aids

\square ASPEC Circuit Simulator
\square Semiconductor device models tailored to AMI processes
\square Tides Logic Simulator for:

- Logic Validation
- Pattern Validation
- Test Word Generation

SIDS for mask design
\square Geometrical Design Rule Checking (DRC) for hand drawn circuits
\square Trace and continuity checking for hand drawn circuits
\square Device test program development aids

Step Five: Fabricating the optimum device.

A partnership

AMI's long history of success in the custom MOS/LSI business is the result of a close, working partnership between AMI and each of our customers.
These customers have taken advantage of orders of magnitude increases in circuit complexity over the years, thereby reducing even further the component count in their systems.
The flexibility of AMI's development program allows the customer to select the interface point best suited to his particular needs. The most common interface points are noted as (${ }^{*}$) in the review of the sequence of steps involved in developing a custom MOS/LSI circuit below:

1. System Definition Design (${ }^{*}$)
2. Preliminary logic design and simulation(*)
3. Final logic design and system design review
4. Chip circuit design
5. Topological design
6. Artwork generation (*)
7. Mask fabrication $\left(^{*}\right.$)
8. Wafer fabrication and map test
9. Wafer sort test (${ }^{*}$)
10. Final test and characterization
11. Product assurance tests

Step Six: Testing for reliable performance

Currently more than 50% of the custom LSI circuits designed by AMI work the first time. The key to this impressive record is a comprehensive program of quality assurance, rigorous testing and constant double checking of each step.
It starts at the initial stages of logic design, with the custom LSI chip designed to incorporate facilities for ease of testing and ends with prototype debugging.

Common test data base

To facilitate the processing of vast quantities of test data, a base of parametric and functional information with run, wafer or die resolution has been created by AMI engineers.
With this data analysis system, each user creates a personal data base secured by user code and information inputted from magnetic tape, cards or remote terminals. Using an interactive command language for manipulation of data, subsets of test information can be retrieved and listed through the use of key attributes-test group, process, product number, test date, test time at start, operator ID, save data, run or lot number. The retrieved data base subset can be analyzed statistically as: histograms, scatter plots, wafer maps, trend charts, tabulations of percentiles, means, standard deviations and correlation coefficients.

Extensive test facilities

AMI maintains fourteen Fairchild Sentry II and 600 automated test systems, plus a wide range of other testers for debugging of protypes, solving design and testing problems and production testing.

Quality assurance

An on-going activity that pervades the entire design and manufacturing process is AMI's quality assurance program. This includes a special group of inspectors organizationally separate from the production group, whose main responsibility is to examine and test the custom LSI circuits and all the raw materials that go into them. Some of the quality control checkpoints include:
\square final logic design where system objectives are reviewed;
\square chip circuit design, where it is verified that performance meets objectives;working plates check;mask fabrication check;wafer fabrication check;wafer sort;scribe and break with 100% optical inspection;die attach checks;lead bonding followed by 100% preseal optical inspection;seal checks;final tests; and,final electrical/environmental tests.
At each one of these pre-production steps meticulous checks of both design and workmanship are made. And only after the checks at each of these steps are completed is a device considered fully manufacturable. It is then turned over to production with its yield history. In production a similar series of quality control checks is made.

Custom MOS/LSI from AMI

The information in this section has been presented to show not only how and why custom can be used, but also to explain the types of custom services available at AMI, and the level of commitment at AMI to total custom circuit development and to customer tooling processing. If your application can benefit from high quality custom MOS/LSI circuits, AMI is the place to go for design, engineering, manufacturing, and testing capability. To get in contact with AMI Custom, just complete the inquiry card at the back of this catalog.

Communication Products
AMERICAN MICROSYSTEMS, INC.

AMERICAN MICROSYSTEMS, INC.

STATION PRODUCTS

Part No.	Description	Process	Power Supplies	Packages
S2559A/B	Digital Tone Generator	CMOS	3.5 V to 13 V	16 Pin
S2559C/D	Digital Tone Generator	CMOS	2.75 V to 10V	16 Pin
S2859	Digital Tone Generator	CMOS	3.0 V to 10.0 V	16 Pin
S2860	Digital Tone Generator	CMOS	3.5 V	16 Pin
S2861A/B	Digital Tone Generator	CMOS	2.5 V to 10.0 V	16 Pin
S2560A/B	Pulse Dialer	CMOS	1.5 V to 3.5 V	18 Pin
S2561, S2561C	Tone Ringer	CMOS	4.0 V to 12.0 V	18 Pin
S2561A	Tone Ringer	CMOS	4.0 V to 12.0 V	8 Pin
S2562	Repertory Dialer	CMOS	3.5 V to 7.5 V	40 Pin

PCM PRODUCTS

Part No.	Description	Process	Power Supplies	Packages
S3501/S3501A	μ-Law Encoder with Filter	CMOS	$\pm 5 \mathrm{~V}$	18 Pin
S3502/S3502A	μ-Law Decoder with Filter	CMOS	$\pm 5 \mathrm{~V}$	16 Pin
S3503	A-Law Encoder with Filter	CMOS	$\pm 5 \mathrm{~V}$	18 Pin
S3504	A-Law Decoder with Filter	CMOS	$\pm 5 \mathrm{~V}$	16 Pin

OTHER PRODUCTS

S2811	Signal Processing Peripheral	VMOS	5 V	28 Pin
S2814	Fast Fourier Transformer	VMOS	5 V	28 Pin
S3525A/B	DTMF Bandsplit Filter	CMOS	10.0 V to 13.5V	

DIGITAL TONE GENERATOR

Features

\square Wide Operating Supply Voltage Range: 3.5 to 13.0 Volts (A, B) 2.75 to 10 Volts (C, D)
\square Low Power CMOS Circuitry Allows Device Power to be Derived Directly from the Telephone Lines or from Small Batteries, e.g., 9V
\square Uses TV Crystal Standard (3.58 MHz) to Derive all Frequencies thus Providing Very High Accuracy and Stability
\square Mute Drivers On Chip
\square Interfaces Directly to a Standard Telephone Push-Button or Calculator Type X-Y Keyboard
\square The Total Harmonic Distortion is Below Industry Specification
\square On Chip Generation of a Reference Voltage to Assure Amplitude Stability of the Dual Tones Over the Operating Voltage and Temperature Range
\square Dual Tone as Well as Single Tone Capability
\square Four Options Available:
A:3.5 to 13.0V Mode Select B:3.5 to 13.0V Chip Disable C: 2.75 to 10V Mode Select D: 2.75 to 10 V Chip Disable

General Description

The S2559 Digital Tone Generator is specifically designed to implement a dual tone telephone dialing system. The device can interface directly to a standard pushbutton telephone keyboard or calculator type X-Y keyboard and operates directly from the telephone lines. All necessary dual-tone frequencies are derived from the widely used TV crystal standard providing very high accuracy and stability. The required sinusoidal waveform for the individual tones is digitally synthesized on the chip. The waveform so generated has very low total harmonic distortion. A voltage reference is generated on the chip which is stable over the operating voltage and temperature range and regulates the signal levels of the dual tones to meet the recommended telephone industry specifications. These features permit the S2559 to be incorporated with a slight modification of the standard 500 type telephone basic circuitry to form a pushbutton dual-tone telephone. Other applications of the device include radio and mobile telephones, remote control, Point-of-Sale, and Credit Card Verification Terminals and process control.

Absolute Maximum Ratings

S2559A \& B Electrical Characteristics:

(Specifications apply over the operating temperature range of $-25^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ unless otherwise noted. Absolute values of measured parameters are specified.)

Symbol	Parameter/Conditions			$\underset{\text { Volts }}{\left(\mathbf{V}_{\mathrm{DD}}-\mathbf{V}_{\mathbf{S S}}\right)}$	Min.	Typ.	Max.	Units	
	Supply Voltage								
V_{DD}	Tone Out Mode (Valid Key Depressed)				3.5		13.0	V	
	Non Tone Out Mode (No Key Depressed)				3.0		13.0	V	
Supply Current									
IDD	Standby (No Key Selected, Tone, XMIT and MUTE Outputs Unloaded)			3.5		0.4	40	$\mu \mathrm{A}$	
				13.0		1.5	130	$\mu \mathrm{A}$	
	Operating (One Key Selected, Tone, XMIT and MUTE Outputs Unloaded)			3.5		0.95	2.9	mA	
				13.0		11	33	mA	
	Tone Output								
Vor	Single Tone Mode Output Voltage		$\mathrm{R}_{\mathrm{L}}=390 \Omega$	5.0	417	596	789	mVrms	
		Row	$\mathrm{R}_{\mathrm{L}}=240 \Omega$	12.0	378	551	725	mVrms	
$\mathrm{dB}_{\mathrm{CR}}$	Ratio of Column to Row Tone			3.5-13.0	1.75	2.54	3.75	dB	
\%DIS	Distortion*			3.5-13.0			10	\%	
	XMIT, MUTE Outputs								
$\mathrm{VOH}^{\text {O }}$	XMIT, Output Voltage, High (No Key Depressed)(Pin 2)		$\left(\mathrm{I}_{\mathrm{OH}}=15 \mathrm{~mA}\right)$	3.5	2.0	2.3		V	
			$\left(\mathrm{I}_{\mathrm{OH}}=50 \mathrm{~mA}\right)$	13.0	12.0	12.3		V	
$\mathrm{I}_{\text {OF }}$	XMIT, Output Source Leakage Current, $\mathrm{V}_{\mathrm{OF}}=0 \mathrm{~V}$			13.0			100	$\mu \mathrm{A}$	
	MUTE (Pin 10) Output Voltage, Low, (No Key Depressed), No Load			3.5		0	0.4	V	
VOL				13.0		0	0.5	V	
	MUTE, Output Voltage, High, (One Key Depressed) No Load			3.5	3.0	3.5		V	
V_{OH}				13.0	13.0	13.5		V	
IOL	MUTE, Output Sink Current		$\mathrm{V}_{\text {OL }}=0.5 \mathrm{~V}$	3.5	0.66	1.7		mA	
OL			13.0	3.0	8.0		mA		
IOH	MUTE, Output Source Current			$\mathrm{V}_{\mathrm{OH}}=2.5 \mathrm{~V}$	3.5	0.18	0.46		mA
			$\mathrm{VOH}=9.5 \mathrm{~V}$	13.0	0.78	1.9		mA	
	Oscillator Input/Output								
IOL	Output Sink Current One Key Selected		$\mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{~V}$	3.5	0.26	0.65		mA	
			$\mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{~V}$	13.0	1.2	3.1		mA	
IOH	Output Source Current One Key Selected		$\mathrm{VOH}^{2}=2.5 \mathrm{~V}$	3.5	0.14	0.34		mA	
			$\mathrm{V}_{\mathrm{OH}}=9.5 \mathrm{~V}$	13.0	0.55	1.4		mA	

*Distortion measured in accordance with the specifications described in Ref. 1 as the "ratio of the total power of all extraneous frequencies in the voiceband above 500 Hz accompanying the signal to the total power of the frequency pair".

S2559A \& B Electrical Characteristics: (Continued)

Symbol	Parameter/Conditions			$\underset{\left.\mathbf{V o l t s}^{\left(\mathbf{V}_{\mathrm{DD}}\right.}-\mathbf{V}_{\mathrm{SS}}\right)}{ }$	Min.	Typ.	Max.	Units
Input Current								
$\mathrm{I}_{\text {IL }}$	Leakage Sink Current, One Key Selected		$\mathrm{V}_{\text {IL }}=13.0 \mathrm{~V}$	13.0			1.0	$\mu \mathrm{A}$
I_{IH}	Leakage Source Current One Key Selected		$\mathrm{V}_{\mathrm{IH}}=0.0 \mathrm{~V}$	13.0			1.0	$\mu \mathrm{A}$
I_{LL}	Sink Current No Key Selected		$\mathrm{V}_{\text {IL }}=0.5 \mathrm{~V}$	3.5	24	93		$\mu \mathrm{A}$
			$\mathrm{V}_{\text {IL }}=0.5 \mathrm{~V}$	13.0	27	130		$\mu \mathrm{A}$
$\mathrm{t}_{\text {START }}$	Oscillator Startup Time			3.5		3	6	mS
				13.0		0.8	1.6	mS
$\mathrm{C}_{\text {I/O }}$	Input/Output Capacitance					12	16	pF
						10	14	pF
Input Currents								
$\mathrm{I}_{\text {IL }}$	 Column Inputs		Sink Current, 5 V (Pull-down)	3.5	7	17		$\mu \mathrm{A}$
			Sink Current OV (Pull-down)	13.0	150	400		$\mu \mathrm{A}$
I_{IH}			ource Current, 3.0 V (Pull-up)	3.5	90	230		$\mu \mathrm{A}$
			ource Current, 2.5V (Pull-up)	13.0	370	960		$\mu \mathrm{A}$
I_{IH}	Mode Select Input (S2559C)		ource Current, 0.0 V (Pull-up)	3.5	1.5	3.6		$\mu \mathrm{A}$
			ource Current, 0.0 V (Pull-up)	13.0	23	74		$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Chip Disable Input (S2559D)		ource Current, 5V (Pull-down)	3.5	4	10		$\mu \mathrm{A}$
		$\mathrm{V}_{\text {IL }}$	Sink Current, 0V (Pull-down)	13.0	90	240		$\mu \mathrm{A}$

S2559C \& D Electrical Characteristics:

(Specifications apply over the operating temperature range of $-25^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ unless otherwise noted. Absolute values of measured parameters are specified.)

Symbol	Parameter/Conditions		$\frac{\left(\mathbf{V}_{\text {DD }}-\mathbf{V}_{\text {SS }}\right)}{\text { Volts }}$	Min.	Typ.	Max.	Units
Supply Voltage							
$\mathrm{V}_{\text {D }}$	Tone Out Mode (Valid Key Depressed)			2.75		10.0	V
	Non Tone Out Mode (No Key Depressed)			2.5		10.0	V
Supply Current							
I_{DD}	Standby (No Key Selected, Tone, XMIT and MUTE Outputs Unloaded)		3.0		0.3	30	$\mu \mathrm{A}$
			10.0		1.0	100	$\mu \mathrm{A}$
	Operating (One Key Selected, Tone, XMIT and MUTE Outputs Unloaded)		3.0		1.0	2.0	mA
			10.0		8	16.0	mA
Tone Output							
$\mathrm{V}_{\text {OR }}$	Single Tone Mode Output Voltage	Row Tone, $\mathrm{R}_{\mathrm{L}}=3908$	3.5	250	362	474	
		Row Tone, $\mathrm{R}_{\mathrm{L}}=2408$	10.0	328	501	675	mVrms

S2559C \& D Electrical Characteristics: (Continued)

Symbol	Parameter/Conditions			$\underset{\text { Volts }}{\left(\mathbf{V}_{\mathbf{D D}}-\mathbf{V}_{\mathbf{S S}}\right)}$	Min.	Typ.	Max.	Units
$\mathrm{dB}_{\mathrm{CR}}$	Ratio of Column to Row Tone			3.0-10.0	1.75	2.54	3.75	dB
\%DIS	Distortion*			3.0-10.0			10	\%
XMIT, MUTE Outputs								
VOH	XMIT, Output Voltage, High (No Key Depressed)(Pin 2)		$\left(\mathrm{I}_{\mathrm{OH}}=15 \mathrm{~mA}\right)$	3.0	1.5	1.8		V
			$\left(\mathrm{I}_{\mathrm{OH}}=50 \mathrm{~mA}\right)$	10.0	8.5	8.8		V
I_{OF}	XMIT, Output Source Leakage Current,$\mathrm{V}_{\mathrm{OF}}=0 \mathrm{~V}$			10.0			100	$\mu \mathrm{A}$
	MUTE (Pin 10) Output Voltage, Low, (No Key Depressed), No Load			2.75		0	0.5	V
VOL				10.0		0	0.5	V
	MUTE, Output Voltage, High, (One Key Depressed) No Load			2.75	2.5	2.75		V
VOH				10.0	9.5	10.0		V
IOL	MUTE, Output Sink Current		$\mathrm{V}_{\text {OL }}=0.5 \mathrm{~V}$	3.0	0.53	1.3		mA
OL				10.0	2.0	5.3		mA .
I_{OH}	MUTE, Output Source Current		$\mathrm{V}_{\mathrm{OH}}=2.5 \mathrm{~V}$	3.0	0.17	0.41		mA
			$\mathrm{V}_{\mathrm{OH}}=9.5 \mathrm{~V}$	10.0	0.57	1.5		mA
	Oscillator Input/Output							
IOL	Output Sink Current One Key Selected		$\mathrm{V}_{\text {OL }}=0.5 \mathrm{~V}$	3.0	0.21	0.52		mA
			$\mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{~V}$	10.0	0.80	2.1		mA
I_{OH}	Output Source Current One Key Selected		$\mathrm{V}_{\mathrm{OH}}=2.5 \mathrm{~V}$	3.0	0.13	0.31		mA
			$\mathrm{V}_{\mathrm{OH}}=9.5 \mathrm{~V}$	10.0	0.42	1.1		mA
	Input Current							
$\mathrm{I}_{\text {IL }}$	Leakage Sink Current, One Key Selected		$\mathrm{V}_{\mathrm{IL}}=10.0 \mathrm{~V}$	10.0			1.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IH }}$	Leakage Source Current One Key Selected		$\mathrm{V}_{\mathrm{IH}}=0.0 \mathrm{~V}$	10.0			1.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Sink Current No Key Selected		$\mathrm{V}_{\text {IL }}=0.5 \mathrm{~V}$	3.0	24	93		$\mu \mathrm{A}$
			$\mathrm{V}_{\text {IL }}=0.5 \mathrm{~V}$	10.0	27	130		$\mu \mathrm{A}$
$\mathrm{t}_{\text {START }}$	Oscillator Startup Time			$\begin{gathered} \hline 3.5 \\ 10.0 \end{gathered}$		$\begin{gathered} 2 \\ 0.25 \end{gathered}$	$\begin{aligned} & 5 \\ & 4 \end{aligned}$	$\begin{aligned} & \mathrm{mS} \\ & \mathrm{mS} \end{aligned}$
$\mathrm{C}_{\text {I/O }}$	Input/Output Capacitance			3.0		12	16	pF
				10.0		10	14	pF
Input Currents								
$\mathrm{I}_{\text {IL }}$	Row \& Column Inputs	$\mathrm{V}_{\mathrm{IL}}=3$	Sink Current, 0V (Pull-down)	3.0	6.5	16		$\mu \mathrm{A}$
		$V_{I L}=10$	Sink Current 0V (Pull-down)	10.0	9.2	24		$\mu \mathrm{A}$
I_{IH}			Source Current, 2.5 V (Pull-up)	3.0	85	210		$\mu \mathrm{A}$
		V_{IH}	ource Current, 9.5 V (Pull-up)	10.0	280	740		$\mu \mathrm{A}$
I_{IH}	Mode Select Input (S2559C)	V_{IH}	ource Current, 0.0 V (Pull-up)	3.0	1.4	3.3		$\mu \mathrm{A}$
		V_{IH}	ource Current, 3.0 V (Pull-up)	10.0	18	46		$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Chip Disable Input (S2559D)	$\mathrm{V}_{\mathrm{IL}}=3$	ource Current, 0V (Pull-down)	3.0	3.9	9.5		$\mu \mathrm{A}$
		$V_{I L}=10$	Sink Current OV (Pull-down)	10.0	55	143		$\mu \mathrm{A}$

[^0]Table 1. Comparisons of Specified vs Actual Tone Frequencies Generated by S2559

ACTIVE INPUT	OUTPUT FREQUENCY Hz		$\%$ ERROR
	SPECIFIED	ACTUAL	
R1	697	699.1	+0.30
R2	770	766.2	-0.49
R3	852	847.4	-0.54
R4	941	948.0	+0.74
C1	1,209	$1,215.9$	+0.57
C2	1,336	$1,331.7$	-0.32
C3	1,477	$1,471.9$	-0.35
C4	1,633	$1,645.0$	+0.73

NOTE: \% Error does not include oscillator drift.

Circuit Description

The S2559 is designed so that it can be interfaced easily to the dual tone signaling telephone system and that it will more than adequately meet the recommended telephone industry specifications regarding the dual tone signaling scheme.

Design Objectives

The specifications that are important to the design of the Digital Tone Generator are summarized below: the dual tone signal consists of linear addition of two voice frequency signals. One of the two signals is selected from a group of frequencies called the "Low Group" and the other is selected from a group of frequencies called the "High Group". The low group consists of four frequencies $697,770,852$ and 941 Hz . The high group consists of four frequencies 1209, 1336, 1477 and 1633 Hz . A keyboard arranged in a row, column format (4 rows 3 or 4 columns) is used for number entry. When a push button corresponding to a digit (0 thru 9) is pushed, one appropriate row (R 1 thru R4) and one appropriate column (C1 thru C4) is selected. The active row input selects one of the low group frequencies and the active column input selects one of the high group frequencies. In standard dual tone telephone systems, the highest high group frequency of 1633 Hz (Col. 4) is not used. The frequency tolerance must be $\pm 1.0 \%$. However, the S2559 provides a better than $.75 \%$ accuracy. The total harmonic and intermodulation distortion of the dual tone must be less than 10% as seen at the telephone terminals. (Ref. 1.) The high group to low group signal amplitude ratio should be $2.0 \pm 2 \mathrm{~dB}$ and the absolute amplitude of the low group and high group tones must be within the allowed range. (Ref. 1.) These requirements apply when the telephone is used over a short loop or long loop and over the operating temperature range. The design of the S2559 takes into account these considerations.

Table 2. XMIT and MUTE Output Functional Relationship

OUTPUT	'DIGIT' KEY RELEASED	'DIGIT' KEY DEPRESSED	COMMENT
XMIT	$V_{D D}$	High Impedance	Can source at least 50 mA at 10V with 1.5 V max. drop
MUTE	$V_{S S}$	$V_{D D}$	Can source or sink current

Oscillator

The device contains an oscillator circuit with the necessary parasitic capacitances on chip so that it is only necessary to connect a $10 \mathrm{M} \Omega$ feedback resistor and the standard 3.58 MHz TV crystal across the OSCI and OSCO terminals to implement the oscillator function. The oscillator functions whenever a row input is activated. The reference frequency is divided by 2 and then drives two sets of programmable dividers, the high group and the low group.

Keyboard Interface

The S2559 employs a calculator type scanning circuitry to determine key closures. When no key is depressed, active pull-down resistors are "on" on the row inputs and active pull-up resistors are "on" on the column inputs. When a key is pushed a high level is seen on one of the row inputs, the oscillator starts and the keyboard scan logic turns on. The active pull-up or pull-down resistors are selectively switched on and off as the keyboard scan logic determines the row and the column inputs that are selected. The advantage of the scanning technique is that a keyboard arrangement of SPST switches are shown in Figure 2 without the need for a common line, can be used. Conventional telephone push button keyboards as shown in Figure 1 or X-Y keyboards with common can also be used. The common line of these keyboards can be left unconnected or wired "high".

Logic Interface

The S2559 can also interface with CMOS logic outputs directly. The S2559 requires active "High" logic levels. Since the active pull-up resistors present in the S2559 are fairly low value (500Ω typ), diodes can be used as shown in Figure 3 to eliminate excessive sink current flowing into the logic outputs in their "Low" state.

Tone Generation

When a valid key closure is detected, the keyboard logic programs the high and low group dividers with appropriate divider ratios so that the output of these dividers cycle at 16 times the desired high group and low group frequencies. The outputs of the programmable dividers drive two 8 -stage Johnson counters. The symmetry of the clock input to the two divide by 16 Johnson counters allows 32 equal time segments to be generated within each output cycle. The 32 segments are used to digitally
synthesize a stair-step waveform to approximate the sinewave function (see Figure 3). This is done by connecting a weighted resistor ladder network between the outputs of the Johnson counter, V_{DD} and $\mathrm{V}_{\text {REF }} . \mathrm{V}_{\text {REF }}$ closely tracks V_{DD} over the operating voltage and temperature range and therefore the peak-to-peak amplitude $\mathrm{V}_{\mathrm{P}}\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{REF}}\right)$ of the stairstep function is fairly constant. $\mathrm{V}_{\text {REF }}$ is so chosen that V_{P} falls within the allowed range of the high group and low group tones.

Figure 1. Standard Telephone Push Button Keyboard

Figure 2. SPST Matrix Keyboard Arranged in the 2 of 8 Row, Column Format

SPST MATRIX KEYSORTED

N. 0.

Figure 3. Logic Interface for Keyboard Inputs of the S2559

Figure 4. Stairstep Waveform of the Digitally Synthesized Sinewave

The individual tones generated by the sinewave synthesizer are then linearly added and drive a bipolar NPN transistor connected as emitter follower to allow proper impedance transformation, at the same time preserving signal level.

Dual Tone Mode

When one row and one column is selected dual tone output consisting of an appropriate low group and high group tone is generated. If two digit keys, that are not either in the same row or in the same column, are depressed, the dual tone mode is disabled and no output is provided.

Single Tone Mode

Single tones either in the low group or the high group can be generated as follows. A low group tone can be generated by activating the appropriate row input or by depressing two digit keys in the appropriate row. A high group tone can be generated by depressing two digit keys in the appropriate column, i.e., selecting the appropriate column input and two row inputs in that column.

Mode Select

S2559A and S2559C have a Mode Select (MDSL) input (Pin 15). When MDSL is left floating (unconnected) or connected to VDD, both the dual tone and single tone modes are available. If MDSL is connected to V_{SS}, the single tone mode is disabled and no output tone is produced if an attempt for single tone is made. The S2559B and S2559D do not have the Mode Select option.

Chip Disable

The S2559B and S2559D have a Chip Disable input at Pin 15 instead of the Mode Select input. The chip disable for the S2559B and S2559D is active "high." When the chip disable is active, the tone output goes to V_{SS}, the row, column inputs go into a high impedance state, the oscillator is inhibited and the MUTE and XMIT outputs go into active states. The effect is the device essentially disconnects from the keyboard. This allows one keyboard to be shared among several devices.

Crystal Specification

A standard television color burst crystal is specified to have much tighter tolerance than necessary for
tone generation application. By relaxing the tolerance specification the cost of the crystal can be reduced. The recommended crystal specification is as follows:

Frequency: $3.579545 \mathrm{MHz} \pm 0.02 \%$
$\mathrm{R}_{\mathrm{S}} \leqslant 100 \Omega, \mathrm{~L}_{\mathrm{M}}=96 \mathrm{MHY}$
$\mathrm{C}_{\mathrm{M}}=0.02 \mathrm{pF} \mathrm{C}_{\mathrm{h}}=5 \mathrm{pF}$

MUTE, XMIT Outputs

The S2559 A, B, C, D have a CMOS buffer for the MUTE output and a bipolar NPN transistor for the XMIT output. With no keys depressed, the MUTE output is "low" and the XMIT output is in the active state so that substantial current can be sourced to a load. When a key is depressed, the MUTE output goes high, while the XMIT output goes into a high impedance state. When Chip Disable is "high" the MUTE output is forced "low" and the XMIT output is in active state regardless of the state of the keyboard inputs.

Amplitude/Distortion Measurements

Amplitude and distortion are two important parameters in all applications of the Digital Tone Generator. Amplitude depends upon the operating supply voltage as well as the load resistance connected on the Tone Output pin. The on-chip reference circuit is fully operational when the supply voltage equals or exceeds 5 volts and as a consequence the tone amplitude is regulated in the supply voltage range above 5 volts. The load resistor value also controls the amplitude. If R_{L} is low the reflected impedance into the base of the output transistor is low and the tone output amplitude is lower. For R_{L} greater than $5 \mathrm{~K} \Omega$ the reflected impedance is sufficiently large and highest amplitude is produced. Individual tone amplitudes can be measured by applying the dual tone signal to a wave analyzer (H-P type 3581A) and amplitudes at the selected frequencies can be noted. This measurment also permits verification of the preemphasis between the individual frequency tones.
Distortion is defined as "the ratio of the total power of all extraneous frequencies in the voiceband above 500 Hz accompanying the signal to the power of the frequency pair." This ratio must be less than 10% or when expressed in dB must be lower than -20 dB . (Ref. 1.) Voiceband is conventionally the frequency band of 300 Hz to 3400 Hz . Mathematically distortion can be expressed as:

$$
\text { Dist. }=\frac{\sqrt{\left(\mathrm{V}_{1}\right)^{2+}\left(\mathrm{V}_{2}\right)^{2+}++\left(\mathrm{V}_{\mathrm{n}}\right)^{2}}}{\sqrt{\left(\mathrm{~V}_{\mathrm{L}}\right)^{2+\left(\mathrm{V}_{\mathrm{H}}\right)^{2}}}}
$$

where $\left(\mathrm{V}_{1}\right) \ldots\left(\mathrm{V}_{\mathrm{n}}\right)$ are extraneous frequency (i.e., intermodulation and harmonic) components in the 500 Hz to 3400 Hz band and V_{L} and V_{H} are the individual frequency components of the DTMF signal. The expression can be expressed in dB as:

$$
\begin{array}{r}
\operatorname{DIST}_{\mathrm{dB}}=20 \log \frac{\sqrt{\left.\left(\mathrm{~V}_{1}\right)^{2+(} \mathrm{V}_{2}\right)^{2}+\ldots\left(\mathrm{V}_{\mathrm{n}}\right)^{2}}}{\sqrt{\left(\mathrm{~V}_{\mathrm{L}}\right)^{2+(}\left(\mathrm{V}_{\mathrm{H}}\right)^{2}}} \\
=10\left\{\log \left[\left(\mathrm{~V}_{1}\right)^{2+} \ldots\left(\mathrm{V}_{\mathrm{n}}\right)^{2}\right]-\log \left[\left(\mathrm{V}_{\mathrm{L}}\right)^{\left.\left.2+\left(\mathrm{V}_{\mathrm{H}}\right)^{2}\right]\right\}}\right.\right. \tag{1}
\end{array}
$$

An accurate way of measuring distortion is to plot a spectrum of the signal by using a spectrum analyzer ($\mathrm{H}-\mathrm{P}$ type 3580A) and an X-Y plotter (H-P type 7046A). Individual extraneous and signal frequency components are then noted and distortion is calculated by using the expression (1) above. Figure 6 shows a spectrum plot of a typical signal obtained from a S2559D device operating from a fixed supply of 4 Vdc and $R_{\mathrm{L}}=10 \mathrm{k} \Omega$ in the test circuit of Figure 5. Mathematical analysis of the spectrum shows
distortion to be $-30 \mathrm{~dB}(3.2 \%)$. For quick estimate of distortion, a rule of thumb as outlined below can be used.
"As a first approximation distortion in dB equals the difference between the amplitude (dB) of the extraneous component that has the highest amplitude and the amplitude (dB) of the low frequency signal." This rule of thumb would give an estimate of -28 dB as distortion for the spectrum plot of Figure 6 which is close to the computed result of -30 dB .

In a telephone application amplitude and distortion are affected by several factors that are interdependent. For detailed discussion of the telephone application and other applications of the 2559 Tone Generator, refer to the applications note "Applications of Digital Tone Generator."

Ref. 1: Bell System Communications Technical Reference, PUB 47001, "Electrical Characteristics of Bell System Network Facilities at the Interface with Voiceband Ancillary and Data Equipment," August 1976.

Figure 5. Test Circuit for Distortion Measurement

Figure 6. A Typical Spectrum Plot

DIGITAL TONE GENERATOR

Features

\square Wide Operating Supply Voltage Range: 3.0 to 10 Volts
\square Low Power CMOS Circuitry Allows Device Power to be Derived Directly from the Telephone Lines or from Small Batteries, e.g., 9V
\square Uses TV Crystal Standard ($\mathbf{3 . 5 8} \mathbf{~ M H z}$) to Derive all Frequencies thus Providing Very High Accuracy and Stability
\square Timing Sequence for XMIT, REC MUTE Outputs
\square Interfaces Directly to a Standard Telephone Push-Button or Calculator Type X-Y Keyboard with Common Terminal
\square The Total Harmonic Distortion is Below Industry Specification
\square On Chip Generation of a Reference Voltage to Assure Amplitude Stability of the Dual Tones Over the Operating Voltage and Temperature Range
\square Dual Tone as Well as Single Tone Capability
\square Darlington Configuration Tone Output

General Description

The S2859 Digital Tone Generator is specifically designed to implement a dual tone telephone dialing system. The device can interface directly to a standard pushbutton telephone keyboard or X-Y keyboard with common terminal connected to V_{SS} and operates directly from the telephone lines. All necessary dual-tone frequencies are derived from the widely used TV crystal standard providing very high accuracy and stability. The required sinusoidal waveform for the individual tones is digitally synthesized on the chip. The waveform so generated has very low total harmonic distortion. A voltage reference is generated on the chip which is stable over the operating voltage and temperature range and regulates the signal levels of the dual tones to meet the recommended telephone industry specifications. These features permit the S 2859 to be incorporated with a slight modification of the standard 500 type telephone basic circuitry to form a pushbutton dual-tone telephone. Other applications of the device include radio and mobile telephones, remote control, point-of-sale, and credit card verification terminals and process control.

Absolute Maximum Ratings:

Electrical Characteristics:

(Specifications apply over the operating temperature range of $-25^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ unless otherwise noted. Absolute values of measured parameters are specified.)

Symbol	Parameter/Conditions			$\underset{\text { Volts }}{\left(\mathbf{V}_{\mathrm{DD}}-\mathbf{V}_{\mathbf{S S}}\right)}$	Min.	Typ.	Max.	Units
Supply Voltage								
V_{DD}	Tone Out Mode (Valid Key Depressed)				3.0	-	10.0	V
	Non Tone Out Mode (Mute Outputs Toggle With Key Depressed)				2.2	-	10.0	V
V_{Z}	Internal Zener Diode Voltage, $\mathrm{I}_{\mathrm{Z}}=5 \mathrm{~mA}$			-	-	12.0	-	V
Supply Current								
	Standby (No Key Selected, Tone and Mute Outputs Unloaded)			$\begin{gathered} 3.0 \\ 10.0 \end{gathered}$	-	$\begin{aligned} & 0.001 \\ & 0.003 \end{aligned}$	$\begin{aligned} & 0.3 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
IDD	Operating (One Key Selected, Tone and Mute Outputs Unloaded)			$\begin{gathered} 3.0 \\ 10.0 \\ \hline \end{gathered}$	$-$	$\begin{aligned} & 1.3 \\ & 11 \\ & \hline \end{aligned}$	$\begin{gathered} 2.0 \\ 18 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Tone Output								
$\mathrm{V}_{\text {OR }}$	Single Tone Mode Output Voltage		$\mathrm{R}_{\mathrm{L}}=100 \Omega$	5.0	366	462	581	mVrms
		Tone	$\mathrm{R}_{\mathrm{L}}=100 \Omega$	10.0	370	482	661	mVrms
$\mathrm{dB}_{\mathrm{CR}}$	Ratio of Column to Row Tone			$3.0-10.0$	1.0	2.0	3.0	dB
\%DIS	Distortion*			3.0-10.0	-	-	10	\%
REC, XMIT MUTE Outputs								
I_{OH}	Output Source	rrent	$\mathrm{V}_{\mathrm{OH}}=1.2 \mathrm{~V}$	2.2	0.43	1.1	-	mA
			$\mathrm{V}_{\mathrm{OH}}=2.5 \mathrm{~V}$	3.0	1.3	3.1	-	mA
			$\mathrm{V}_{\mathrm{OH}}=9.5 \mathrm{~V}$	10.0	4.3	11	-	mA

*Distortion measured in accordance with the specifications described in Ref. 1 as the "ratio of the total power of all extraneous frequencies in the voiceband above 500 Hz accompanying the signal to the total power of the frequency pair".

Electrical Characteristics: (Continued)

Symbol	Parameter/Conditions	$\left(\mathbf{V}_{\text {DD }}-\mathbf{V}_{\text {VSS }}\right)$	Min.	Typ.	Max.	Units

OSCILLATOR Input/Output

$\overline{\mathrm{I}} \mathrm{OL}$	One Key Selected Output Sink Current	$\mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{~V}$	3.0	0.21	0.52	-	mA
		$\mathrm{V}_{\text {OL }}=0.5 \mathrm{~V}$	10.0	0.80	2.1	-	mA
I_{OH}	Output Source Current One Key Selected	$\mathrm{V}_{\mathrm{OH}}=2.5 \mathrm{~V}$	3.0	0.13	0.31	-	mA
		$\mathrm{V}_{\mathrm{OH}}=9.5 \mathrm{~V}$	10.0	0.42	1.1	-	mA
IIL	Input Current Leakage Sink Current One Key Selected	$\mathrm{V}_{\mathrm{IL}}=10.0 \mathrm{~V}$	10.0	-	-	1.0	$\mu \mathrm{A}$
I_{IH}	Leakage Source Current One Key Selected	$\mathrm{V}_{\mathrm{IH}}=0.0 \mathrm{~V}$	10.0	-	-	1.0	$\mu \mathrm{A}$
I_{IL}	Sink Current	$\mathrm{V}_{\text {IL }}=0.5 \mathrm{~V}$	3.0	24	58	-	$\mu \mathrm{A}$
	No Key Selected	$\mathrm{V}_{\text {IL }}=0.5 \mathrm{~V}$	10.0	27	66	-	$\mu \mathrm{A}$
$\mathrm{t}_{\text {START }}$	Oscillator Time		$\begin{array}{r} 3.0 \\ 10.0 \\ \hline \end{array}$	-	$\begin{array}{r} 2 \\ 0.25 \\ \hline \end{array}$	$\begin{gathered} 5 \\ 0.75 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$
$\mathrm{C}_{\mathrm{I} / \mathrm{O}}$	Input/Output Capacitance		$\begin{gathered} \hline 3.0 \\ 10.0 \end{gathered}$	-	$\begin{aligned} & 12 \\ & 10 \end{aligned}$	$\begin{aligned} & 16 \\ & 14 \end{aligned}$	$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$

Row, Column and Chip Enable Inputs

$\mathrm{V}_{\text {IL }}$	Input Voltage, Low		$\begin{array}{r} 3.0 \\ 10.0 \end{array}$	-	-	$\begin{gathered} 0.75 \\ 3.0 \end{gathered}$	V
V_{IH}	Input Voltage, High		$\begin{array}{r} 3.0 \\ 10.0 \end{array}$	$\begin{aligned} & 2.4 \\ & 7.0 \end{aligned}$		-	V
I_{IH}	Input Current (Pull up)	$\mathrm{V}_{\text {IH }}=0.0 \mathrm{~V}$	3.0	20	60	100	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {IH }}=0.0 \mathrm{~V}$	10.0	66	200	336	$\mu \mathrm{A}$

Circuit Description

The S2859 is designed so that it can be interfaced easily to the dual tone signaling telephone system and that it will more than adequately meet the recommended telephone industry specifications regarding the dual tone signaling scheme.

Design Objectives

The specifications that are important to the design of the Digital Tone Generator are summarized below: the dual tone signal consists of linear addition of two voice frequency signals. One of the two signals is selected from a group of frequencies called the "Low Group" and the other is selected from a group of frequencies called the "High Group". The low group consists of four frequencies $697,770,852$ and 941 Hz . The high group consists of four frequencies $1209,1336,1477$ and 1633 Hz . A keyboard arranged in a row, column format (4 rows x

3 or 4 columns) is used for number entry. When a push button corresponding to a digit (0 thru 9) is pushed, one appropriate row (R1 thru R4) and one appropriate column (C 1 thru C 4) is selected. The active row input selects one of the low group frequencies and the active column input selects one of the high group frequencies. In standard dual tone telephone systems, the highest high group frequency of 1633 Hz (Col. 4) is not used. The frequency tolerance must be $\pm 1.0 \%$. However, the S2859 provides a better than $.75 \%$ accuracy. The total harmonic and intermodulation distortion of the dual tone must be less than 10% as seen at the telephone terminals. (Ref. 1.) The high group to low group signal amplitude ratio should be $2.0 \pm 2 \mathrm{~dB}$ and the absolute amplitude of the low group and high group tones must be within the allowed range. (Ref. 1.) These requirements apply when the telephone is used over a short loop or long loop and over the operating temperature range. The design of the S 2859 takes into account these considerations.

Oscillator

The device contains an oscillator circuit with the necessary parasitic capacitances on chip so that it is only necessary to connect a $10 \mathrm{M} \Omega$ feedback resistor and the standard 3.58 MHz TV crystal across the OSCI and OSCO terminals to implement the oscillator function. The oscillator functions whenever a row input is activated. The reference frequency is divided by 2 and then drives two sets of programmable dividers, the high group and the low group.

Keyboard Interface

The S2859 can interface with either the standard telephone pushbutton keyboard (see Figure 1) or an X-Y keyboard with common. The common of the keyboard must be connected to V_{SS}.
Figure 1. Standard Telephone Push Button Keyboard

Logic Interface

The S2859 can also interface with CMOS logic ouputs directly. (See Figure 2.) The S2859 requires active "Low" logic levels. Low levels on a row and a column input corresponds to a key closure. The pull-up resistors present on the row and column inputs are in the range of $33 \mathrm{k} \Omega-150 \mathrm{k} \Omega$.

Tone Generation

When a valid key closure is detected, the keyboard logic programs the high and low group dividers with appropriate divider ratios so that the output of these dividers cycle at 16 times the desired high group and low group frequencies. The outputs of the programmable dividers drive two 8 -stage Johnson counters. The symmetry of
the clock input to the two divide by 16 Johnson counters allows 32 equal time segments to be generated within each output cycle. The 32 segments are used to digitally synthesize a stair-step waveform to approximate the sinewave function (see Figure 3). This is done by connecting a weighted resistor ladder network between the outputs of the Johnson counter, V_{DD} and $\mathrm{V}_{\text {REF }}$. $\mathrm{V}_{\text {REF }}$ closely tracks V_{DD} over the operating voltage and temperature range and therefore the peak-to-peak amplitude VP ($\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{REF}}$) of the stair-step function is fairly constant. $V_{\text {REF }}$ is so chosen that VP falls within the allowed range of the high group and low group tones.

Table 1. Comparisons of Specified Vs. Actual Tone Frequencies Generated by S2859

ACTIVE INPUT	OUTPUT FREQUENCY Hz		\% ERROR
	SPECIFIED	ACTUAL	SEE NOTE
R1	697	699.1	+0.30
R2	770	766.2	-0.49
R3	852	847.4	-0.54
R4	941	948.0	+0.74
C1	1209	1215.9	+0.57
C2	1336	1331.7	-0.32
C3	1477	1471.9	-0.35
C4	1633	1645.0	+0.73

NOTE: \%ERROR DOES NOT INCLUDE OSCILLATOR DRIFT

Figure 2. Logic Interface for Keyboard Inputs of the S2859

G1 THRU G8 ANY TYPE CMOS GATE

Figure 3. Stairstep Waveform of the Digitally Synthesized Sinewave

The individual tones generated by the sinewave synthesizer are then linearly added and drive a Darlington NPN transistor connected as an emitter follower to allow proper impedance transformation at the same time preserving signal level.

Dual Tone Mode

When one row and one column is selected dual tone output consisting of an appropriate low group and high group tone is generated. If two digit keys, that are not either in the same row or in the same column, are depressed, the dual tone mode is disabled and no output is provided.

Single Tone Mode

Single tones either in the low group or the high group can be generated as follows. A low group tone can be generated by depressing two digit keys in the appropriate row. A high group tone can be generated by depressing two digit keys in the appropriate column, i.e., selecting the appropriate column input and two row inputs in that column.

Chip Enable

The S2859 has a chip enable input at pin 15. The chip enable for the S2859 is active "High". When the chip enable is "Low", the tone output goes to V_{SS}, the oscillator is inhibited and the MUTE outputs go into an open state.

Crystal Specification

A standard television color burst crystal is specified to have much tighter tolerance than necessary for tone generation application. By relaxing the tolerance specification the cost of the crystal can be reduced. The recommended crystal specification is as follows:

Frequency: $3,579545 \mathrm{MHz} \pm 0.02 \%$

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{S}} \quad 100 \Omega, \mathrm{~L}_{\mathrm{M}}=96 \mathrm{MHY} \\
& \mathrm{C}_{\mathrm{M}}=0.02 \mathrm{pF} \mathrm{C}_{\mathrm{H}}=5 \mathrm{pF} \mathrm{C} \\
& \mathrm{~L}
\end{aligned}=12 \mathrm{pF} \text {. }
$$

MUTE Outputs

The S2859 has P-Channel buffers for the REC MUTE and XMIT MUTE outputs. With no keys depressed,
the MUTE outputs are open. When a key is depressed, the MUTE outputs go high. When chip enable is "Low" the MUTE outputs are forced in the "open" state regardless of the state of the keyboard.

Timing Sequence

Figure 4 illustrates the sequence in which the MUTE outputs operate when a key is depressed and released. When a valid key is depressed the REC MUTE output goes high first. The XMIT MUTE output goes high after a delay of about 1.6 ms . This allows the receiver to be muted prior to the muting of the transmitter and generation of the dual tone. This prevents an undesirable click to be heard in the earpiece due to the momentary interruption of the direct current flowing through the network during the transition time when the transmitter is disconnected and dual tone applied. On release of the key the XMIT MUTE output goes open first, simultaneously the dual tone output is removed. The receiver at this time is still muted so that the click due to the momentary interruption of the direct current during the release of the key is not heard at the earpiece. The REC MUTE output goes open after a delay of about 1.7 ms which reconnects the receiver to the network. The leading and trailing edge delays are guaranteed for supply voltages exceeding 3.0 volts. Below 3.0 volts the REC, XMIT MUTE outputs and tone output coincide with each other.

Amplitude/Distortion Measurements

Amplitude and distortion are two important parameters in all applications of the digital tone generator. Amplitude depends upon the operating supply voltage as well as the load resistance connected on the tone output pin. The on-chip reference circuit is fully operational
when the supply voltage equals or exceeds 4 volts and as a consequence the tone amplitude is regulated in the supply voltage range above 4 volts. The load resistor value also controls the amplitude. If R_{L} is low the reflected impedance into the base of the output transistor is low and the tone output amplitude is lower. For R_{L} greater than $1 \mathrm{~K} \Omega$ the reflected impedance is sufficiently large and highest amplitude is produced. Individual tone amplitudes can be measured by applying the dual tone signal to a wave analyzer (H-P type 3580A) and amplitudes at the selected frequencies can be noted. This measurement also permits verification of the preemphasis between the individual frequency tones.
Distortion is defined as "the ratio of the total power of all extraneous frequencies in the voiceband above 500 Hz accompanying the signal to the power of the frequency pair'. This ratio must be less than 10% or when expressed in dB must be lower than -20 dB . (Ref. 1.) Voiceband is conventionally the frequency band of 300 Hz to 3400 Hz . Mathematically distortion can be expressed as:

$$
\text { Dist. }=\frac{\sqrt{\left(\mathrm{V}_{1}\right)^{2}+\left(\mathrm{V}_{2}\right)^{2}+\ldots+\left(\mathrm{V}_{\mathrm{N}}\right)^{2}}}{\sqrt{\left(\mathrm{~V}_{\mathrm{L}}\right)^{2}+\left(\mathrm{V}_{\mathrm{H}}\right)^{2}}}
$$

where $\left(\mathrm{V}_{1}\right) \ldots\left(\mathrm{V}_{\mathrm{N}}\right)$ are extraneous frequency (i.e., intermodulation and harmonic) components in the 500 Hz to 3400 Hz band and V_{L} and V_{H} are the individual frequency components of the DTMF signal. The expression can be expressed in dB as:

$$
\begin{aligned}
& \operatorname{DIST}_{\mathrm{dB}}=20 \log \frac{\sqrt{\left(\mathrm{~V}_{1}\right)^{2}+\left(\mathrm{V}_{2}\right)^{2}+\ldots+\left(\mathrm{V}_{\mathrm{N}}\right)^{2}}}{\sqrt{\left(\mathrm{~V}_{\mathrm{L}}\right)^{2}+\left(\mathrm{V}_{\mathrm{H}}\right)^{2}}} \\
& =10\left\{\log \left[\left(\mathrm{~V}_{1}{ }^{2}+\ldots\left(\mathrm{V}_{\mathrm{N}}\right)^{2}\right]-\log \left[\left(\mathrm{V}_{\mathrm{L}}\right)^{2}+\left(\mathrm{V}_{\mathrm{H}}\right)^{2}\right]\right\} \ldots(1)\right.
\end{aligned}
$$

Table 2. Truth Table

INPUTS				OUTPUTS		
KEYS DEPRESSED	NUMBER OF COLUMNS LOW	NUMBER OF ROWS LOW	CHIP ENABLE	TONE	REC MUTE	XMIT MUTE
X	X	X	0	0	OPEN	OPEN
NONE	0	0	1	0	OPEN	OPEN
ONE	1	1	1	$\mathrm{R}+\mathrm{C}$	1	1
TWO OR MORE KEYS IN COLUMN	1	2 OR 3 OR 4	1	C	1	1
TWO OR MORE KEYS IN ROW	2 OR 3 OR 4	1	1	R	1	1
MULTI KEY	OTHER COMBINATIONS	OTHER COMBINATIONS	1	0	OPEN	OPEN
NOTE 1	4	3	1	$\mathrm{R}+\mathrm{C}$	A	B
X DON'T CARE A: 16 (ROW	W FREQ) B: 16 (COL FR					

NOTE 1: THIS MODE IS USED FOR TEST PURPOSES ONLY. IT IS INITIATED BY CONNECTING ALL COLUMN INPUTS AND THREE OUT OF FOUR ROW INPUTS TO VSS. THE ROW INPUT THAT IS CONNECTED TO VDD ROUTES THE CORRESPONDING 16 TIMES ROW FREQUENCY TO THE REC MUTE OUTPUT AND THE APPROPRIATE 16 TIMES COLUMN FREQUENCY (i.e., R_{1} SELECTS C_{1} etc.) TO THE XMIT MUTE OUTPUT.

Figure 4. Timing Diagram for $\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}\right) \geqslant 3.0 \mathrm{~V}$

$$
\begin{aligned}
& t_{4} \\
& \cong 1.7 \mathrm{mS} \\
& 1.3 \mathrm{mS} \leqslant \mathrm{t}_{5} \leqslant 1.6 \mathrm{mS} \quad 0<\mathrm{t}_{6} \leqslant 1.7 \mathrm{mS}
\end{aligned}
$$

(EXTERNAL PULL-DOWN RESISTOR ASSUMED ON MUTE OUTPUTS)

Figure 5. Test Circuit for Distortion Measurement

An accurate way of measuring distortion is to plot a spectrum of the signal by using a spectrum analyzer (H-P type 3580A) and an X-Y plotter (H-P type 7046A). Individual extraneous and signal frequency components are then noted and distortion is calculated by using the expression (1) above. Figure 6 shows a spectrum plot of a typical signal obtained from S2859 device operating from a fixed supply of 4 VDC and $\mathrm{R}_{\mathrm{L}}=100 \Omega$ in the test circuit of Figure 5. Mathematical analysis of the spectrum shows distortion to be $-30 \mathrm{~dB}(3.2 \%)$. For quick estimate of distortion, a rule of thumb as outlined below can be used.
"As a first approximation distortion in dB equals the difference between the amplitude (dB) of the extraneous component that has the highest amplitude and the amplitude (dB) of the low frequency signal." This rule of thumb would give an estimate of -28 dB as distortion for the spectrum plot of Figure 6 which is close to the computed result of -30 dB .
In a telephone application amplitude and distortion are affected by several factors that are interdependent. For detailed discussion of the telephone application and other applications of the S2859 Tone Generator, refer to the applications note "Applications of Digital Tone Generator."

Ref. 1: Bell System Communications Technical Reference, PUB 47001, "Electrical Characteristics of Bell System Network Facilities at the Interface with Voiceband Ancillary and Data Equipment," August 1976.

Figure 6. A Typical Spectrum Plot

DEVICE: S2859	$R_{L}=100 \Omega$
TEMP: ROOM	TEST CKT: FIGURE 5
$\left(V_{D D}-V_{S S}\right): 4 V$ DC FIXED	DUAL TONE: R_{4}, C_{1}
HORIZONTAL SCALE	$=0.5 \mathrm{KHz} /$ DIV
VERTICAL SCALE	$=10 \mathrm{~dB} /$ DIV

DIGITAL TONE GENERATOR

Features

\square Optimized for Constant Operating Supply Voltages, Typically 3.5V
\square Tone Amplitude Stability is Within $\pm 1.3 \mathrm{~dB}$ of Nominal Over Operating Temperature Range
\square Low Power CMOS Circuitry Allows Device Power to be Derived Directly from the Telephone Lines or from Small Batteries
\square Uses TV Crystal Standard (3.58 MHz) to Derive all Frequencies thus Providing Very High Accuracy and Stability
\square Specifically Designed for Electronic Telephone Applications
\square Interfaces Directly to a Standard Telephone Push-Button or Calculator Type X-Y Keyboard with Common Terminal
\square The Total Harmonic Distortion is Below Industry Specification
\square Dual Tone as Well as Single Tone Capability

General Description

The S2860 Digital Tone Generator is specifically designed to implement a dual tone telephone dialing system in applications requiring fixed supply operation and high stability tone output level, making it well suited for electronic telephone applications. The device can interface directly to a standard pushbutton telephone keyboard or X-Y keyboard with common terminal connected to VSS and operates directly from the telephone lines. All necessary dual-tone frequencies are derived from the widely used TV crystal standard providing very high accuracy and stability. The required sinusoidal waveform for the individual tones is digitally synthesized on the chip. The waveform so generated has very low total harmonic distortion. A voltage reference is generated on the chip which is very stable over the operating temperature range and regulates the signal levels of the dual tones to meet the recommended telephone industry specifications.

Absolute Maximum Ratings:

DC Supply Voltage ($\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}$)	$+10.5 \mathrm{~V}$
Operating Temperature	$30^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Power Dissipation at $25^{\circ} \mathrm{C}$	500 mW
Input Voltage	$-0.6 \leqslant V_{\text {IN }} \leqslant V_{\text {DD }}+0.6$
Input/Output Current (except tone output)	$\begin{aligned} & \ldots 15 \mathrm{~mA} \\ & \ldots 50 \mathrm{~mA} \end{aligned}$
Tone Output Current	50 mA

Electrical Characteristics:

(Specifications apply over the operating temperature range of $-30^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ unless otherwise noted. Absolute values of measured parameters are specified.)

Symbol	Parameter/Conditions			$\left(\mathbf{V}_{\mathbf{D D}}-\mathbf{V}_{\mathbf{S S}}\right)$	Min.	Typ.	Max.	Units
Supply Voltage								
V_{DD}	Tone Out Mode (Valid Key Depressed) Non Tone Out Mode (AKD Outputs toggle with key depressed)				3.0	-	10.0	V
					1.8	-		V
V_{Z}	Internal Zener Diode Voltage, $\mathrm{I}_{\mathrm{Z}}=5 \mathrm{~mA}$			-	-	12.0	-	V
Supply Current								
I_{DD}	Standby (No Key Selected, Tone and AKD Outputs Unloaded)			$\begin{array}{r} 3.5 \\ 10.0 \end{array}$	$-$	$\begin{aligned} & 1 \\ & 5 \end{aligned}$	$\begin{gathered} 20 \\ 100 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \\ & \hline \end{aligned}$
	Operating (One Key Selected, Tone and AKD Outputs Unloaded)			$\begin{gathered} \hline 3.5 \\ 10.0 \end{gathered}$	-	$\begin{gathered} .9 \\ 3.6 \end{gathered}$	$\begin{gathered} 1.25 \\ 5 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Tone Output								
V_{OR}	Dual Tone Mode Output	Row	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	3.5	305	350	412	mVrms
		Tone	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	3.5	272	350	412	mVrms
	Ratio of Column to Row Tone			$3.0-10.0$	1.0	2.0	3.0	dB
$\% \text { DIS }$	Distortion			3.0-10.0	-	-	10	\%
	AKD Outputs							
I_{OH}	Output Sink Current		VOL $=.7 \mathrm{~V}$	3.5	0.1	1.0	-	mA
OSCILLATOR Input/Output								
I_{OL}	One Key Selected Output Sink Current		$\mathrm{V}_{\text {OL }}=0.5 \mathrm{~V}$	3.0	0.21	0.52	-	mA
			$\mathrm{V}_{\text {OL }}=0.5 \mathrm{~V}$	10.0	0.80	2.1	-	mA
$\overline{\mathrm{I}_{\mathrm{OH}}}$	Output Source Current One Key Selected		$\mathrm{V}_{\mathrm{OH}}=2.5 \mathrm{~V}$	3.0	0.13	0.31	-	mA
			$\mathrm{V}_{\mathrm{OH}}=9.5 \mathrm{~V}$	10.0	0.42	1.1	-	mA
IIL	Input Current Leakage Sink Current One Key Selected		$\mathrm{V}_{\mathrm{IL}}=10.0 \mathrm{~V}$	10.0	-	-	1.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IH }}$	Leakage Source Current One Key Selected		$\mathrm{V}_{\mathrm{IH}}=0.0 \mathrm{~V}$	10.0	-	-	1.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Sink Current No Key Selected		$\mathrm{V}_{\text {IL }}=0.5 \mathrm{~V}$	3.0	24	58	-	$\mu \mathrm{A}$
			$\mathrm{V}_{\text {IL }}=0.5 \mathrm{~V}$	10.0	27	66	-	$\mu \mathrm{A}$

*Distortion measured in accordance with the specifications described in Ref. 1 as the "ratio of the total power of all extraneous frequencies in the voiceband above 500 Hz accompanying the signal to the total power of the frequency pair".

Electrical Characteristics: (Continued)

Symbol	Parameter/Conditions		$\underset{\text { Volts }}{\left(\mathbf{V}_{\mathbf{D D}}-V_{S S}\right)}$	Min.	Typ.	Max.	Units
$\mathrm{t}_{\text {START }}$	Oscillator Time		$\begin{array}{r} 3.0 \\ 10.0 \\ \hline \end{array}$	-	$\begin{array}{r} 2 \\ 0.25 \\ \hline \end{array}$	$\begin{gathered} 5 \\ 0.75 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$
$\mathrm{C}_{\mathrm{I} / \mathrm{O}}$	Input/Output Capacitance		$\begin{gathered} \hline 3.0 \\ 10.0 \\ \hline \end{gathered}$	-	$\begin{aligned} & 12 \\ & 10 \\ & \hline \end{aligned}$	$\begin{aligned} & 16 \\ & 14 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$
Row, Column and Chip Enable Inputs							
V_{IL}	Input Voltage, Low		-	$\mathrm{V}_{\text {SS }}-0.6$		$\begin{aligned} & .2(\mathrm{VDD} \\ & \left.-\mathrm{V}_{\mathrm{SS}}\right) \end{aligned}$	V
$\mathrm{V}_{\text {IH }}$	Input Voltage, High		-	$\begin{aligned} & .8(\mathrm{VDD} \\ & \left.-\mathrm{V}_{\mathrm{SS}}\right) \end{aligned}$	-	$\mathrm{V}_{\mathrm{DD}}+0.6$	V
I_{IH}	Input Current (Pull up)	$\mathrm{V}_{\mathrm{IH}}=0.0 \mathrm{~V}$	3.0	20	60	100	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{IH}}=0.0 \mathrm{~V}$	10.0	66	200	336	$\mu \mathrm{A}$

Oscillator

The S2860 contains an oscillator circuit with the necessary parasitic capacitances on chip so that it is only necessary to connect a $10 \mathrm{M} \Omega$ feedback resistor and the standard 3.58 MHz TV crystal across the OSCI and OSCO terminals to implement the oscillator function. The oscillator functions whenever a row input is activated. The reference frequency is divided by 2 and then drives two sets of programmable dividers, the high group and the low group.

Crystal Specification

A standard television color burst crystal is specified to have much tighter tolerance than necessary for tone generation application. By relaxing the tolerance specification the cost of the crystal can be reduced. The recommended crystal specification is as follows:

$$
\begin{aligned}
& \text { Frequency: } 3,579545 \mathrm{MHz} \pm 0.02 \% \\
& \mathrm{R}_{\mathrm{S}} 100 \Omega, \mathrm{~L}_{\mathrm{M}}=96 \mathrm{MHY} \\
& \mathrm{C}_{\mathrm{M}}=0.02 \mathrm{pF} \mathrm{C}_{\mathrm{H}}=5 \mathrm{pF} \mathrm{C}_{\mathrm{L}}=12 \mathrm{pF}
\end{aligned}
$$

Keyboard Interface

The S2860 can interface with either the standard telephone pushbutton keyboard (see Figure 1) or an X-Y keyboard with common. The common of the keyboard must be connected to V_{SS}.

Figure 1. Standard Telephone Push Button Keyboard

Logic Interface

The S2860 can also interface with CMOS logic outputs directly. (See Figure 2.) The S2860 requires active "Low" logic levels. Low levels on a row and a column input corresponds to a key closure. The pull-up resistors present on the row and column inputs are in the range of $33 \mathrm{k} \Omega-150 \mathrm{k} \Omega$.

Tone Generation

When a valid key closure is detected, the keyboard logic

Tone Generation (Continued)

programs the high and low group dividers with appropriate divider ratios so that the output of these dividers cycle at 16 times the desired high group and low group frequencies. The outputs of the programmable dividers drive two 8 -stage Johnson counters. The symmetry of the clock input to the two divide by 16 Johnson counters allows 32 equal time segments to be generated within each output cycle. The 32 segments are used to digitally synthesize a stair-step waveform to approximate the sinewave function (see Figure 3). This is done by connecting a weighted resistor ladder network between the outputs of the Johnson counter, VDD and VREF. VREF closely tracks VDD over the operating voltage and temperature range and therefore the peak-to-peak amplitude VP (VDD - $\mathrm{V}_{\text {REF }}$) of the stair-step function is fairly constant. VREF is so chosen that VP falls within the allowed range of the high group and low group tones.

The individual tones generated by the sinewave synthesizer are then linearly added and drive an NPN transistor connected as an emitter follower to allow proper impedance transformation at the same time preserving signal level. This allows the device to drive varying resistive loads without significant variation in tone amplitude. For example, a load resistor change from $10 \mathrm{k} \Omega$ to $1 \mathrm{k} \Omega$ causes a decrease in tone amplitude of less than 1 dB .

Dual Tone Mode

When one row and one column is selected dual tone output consisting of an appropriate low group and high group tone is generated. If two digit keys, that are not either in the same row or in the same column, are depressed, the dual tone mode is disabled and no output is provided.

Single Tone Mode

Single tones either in the low group or the high group can be generated as follows. A low group tone can be generated by depressing two digit keys in the appropriate row. A high group tone can be generated by depressing two digit keys in the appropriate column, i.e., selecting the appropriate column input and two row inputs in that column.

Table 1. Comparisons of Specified Vs. Actual Tone Frequencies Generated by $\mathbf{S 2 8 5 9}$

ACTIVE NPUT	OUTPUT FREQUNCY Hz		\% ERROR SPECIFIED
	SEE NOTE		
R1	697	699.1	+0.30
R2	770	766.2	-0.49
R3	852	847.4	-0.54
R4	941	948.0	+0.74
C1	1209	1215.9	+0.57
C2	1336	1331.7	-0.32
C3	1477	1471.9	-0.35
C4	1633	1645.0	+0.73

NOTE: \%ERROR DOES NOT INCLUDE OSCILLATOR DRIFT

Figure 2. Logic Interface for Keyboard Inputs of the S2860

Figure 3. Stairstep Waveform of the Digitally Synthesized Sinewave

Reference Voltage

The structure of the reference voltage employed in the S2860 is shown in Figure 4. It has the following characteristics:
a) $\mathrm{V}_{\mathrm{REF}}$ is proportional to the supply voltage. Output tone amplitude, which is a function of (V_{DD} $-\mathrm{V}_{\mathrm{REF}}$), increases with supply voltage (Figure 5).
b) The temperature coefficient of $V_{\text {REF }}$ is low due to a single V_{BE} drop. Use of a resistive divider also provvides an accuracy of better than 1%. As a result, tone amplitude variations over temperature and unit to unit are held to less than $\pm 1.3 \mathrm{~dB}$ over nominal.
c) Resistor values in the divider network are so chosen that $\mathrm{V}_{\mathrm{REF}}$ is above the V_{BE} drop of the tone output transistor even at the low end of the supply voltage range. The tone output clipping at low supply voltages is thus eliminated, which improves distortion performance.

AKD (Any Key Down or Mute) Outputs

The AKD outputs (pin 15 and pin 10) are identical and consist of open drain N channel devices (see Figure 6.)

When no key is depressed the AKD outputs are open. When a key is depressed the AKD outputs go to V_{SS}. The devices are large enough to sink a minimum of $100 \mu \mathrm{~A}$ with voltage drop of 0.2 V at a supply voltage of 3.5 V .

Figure 4. Structure of the Reference Voltage

Figure 5. Typical Tone Output Amplitude Vs Supply Voltage ($\mathrm{R}_{\mathrm{L}}=\mathbf{1 0 k}$)

Figure 6. AKD Output Structure

Features

\square Replaces S2559 Family with Reduced Tone Output Distortion
\square Wide Operating Supply Voltage Range: 2.5 to 10 Volts
\square Low Power CMOS Circuitry Allows Device Power to be Derived Directly from the Telephone Lines or from Small Batteries. e.g., 9V
\square Uses TV Crystal Standard ($\mathbf{3 . 5 8} \mathbf{~ M H z}$) to Derive all Frequencies thus Providing Very High Accuracy and Stability
\square Oscillator Bias Resistor On Chip
\square Interfaces Directly to a Standard Telephone Pushbutton or Calculator Type X-Y Keyboard
\square The Total Harmonic Distortion is Below Industry Specification
\square On Chip Generation of a Reference Voltage to Assure Amplitude Stability of the Dual Tones Over the Operating Voltage and Temperature Range
\square Dual Tone as Well as Single Tone Capability
\square Two Options Available on Pin 15: S2861A: Mode Select (Replaces S2559A/C) S2861B: Chip Disable (Replaces S2559B/D)

General Description

The S2861A/B devices are improved versions of the S2559 family and are recommended for use in new designs or as replacements for S2559 devices. Functionally the S2861A is identical to S2559A and S2559C. The S2861B is functionally identical to S2559B and S2559D. An exception is the built in oscillator bias resistor across the oscillator input/output pins of S2861 so that the external $10 \mathrm{M} \Omega$ resistor is no longer necessary.

Certain major differences in electrical performance should be noted. Preemphasis, the ratio of the column tone to the row tone, is changed to $2 \mathrm{~dB} \pm 1 \mathrm{~dB}$ in the S2861 and the reference voltage circuit has been improved. These modifications substantially lower distortion in the tone output, especially at low operating voltages, with only a small decrease in available tone output level. Electrical specifications other than tone amplitude and preemphasis are nearly identical to their S2559 counterparts, except for maximum operating voltage, which is higher in the S2559A/B.

S2861A \& B Electrical Characteristics:

(Specifications apply over the operating temperature range of $-25^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ unless otherwise noted. Absolute values of measured parameters are specified.)

Symbol	Parameter/Conditions			$\begin{gathered} \left(\mathbf{V}_{\mathrm{DD}}-\mathbf{V}_{\mathbf{S S}}\right) \\ \text { Volts } \end{gathered}$	Min.	Typ.	Max.	Units
Supply Voltage								
$V_{\text {DD }}$	Tone Out Mode (Valid Key Depressed)				2.75		10.0	V
	Non Tone Out Mode (No Key Depressed)				2.5		10.0	V
Supply Current								
I_{D}	Standby (No Key Selected, Tone, XMIT and MUTE Outputs Unloaded)			3.0		0.3	30	$\mu \mathrm{A}$
				10.0		1.0	100	$\mu \mathrm{A}$
	Operating (One Key Selected, Tone, XMIT and MUTE Outputs Unloaded)			3.0		1.0	2.0	mA
				10.0		8	16.0	mA
Tone Output								
${ }^{\text {OR }}$	Single Tone Mode Output Voltage	Row	$\mathrm{R}_{\mathrm{L}}=390 \Omega$	$\begin{aligned} & 3.5 \\ & 5.0 \end{aligned}$				mVrms mVrms
		Row	$\mathrm{R}_{\mathrm{L}}=2408$	10.0				mVrms
$\mathrm{dB}_{\mathrm{CR}}$	Ratio of Column to Row Tone			3.5-13.0	1.0	2.0	3.0	dB
\%DIS	Distortion*			3.5-13.0			10	\%
XMIT, MUTE Outputs								
VOH	XMIT, Output Voltage, High (No Key Depressed)(Pin 2)		$\left(\mathrm{I}_{\mathrm{OH}}=15 \mathrm{~mA}\right)$	3.0	1.5	1.8		V
			$\left(\mathrm{I}_{\mathrm{OH}}=50 \mathrm{~mA}\right)$	10.0	8.5	8.8		V
I_{OF}	XMIT, Output Source Leakage Current,$\mathrm{V}_{\mathrm{OF}}=0 \mathrm{~V}$			10.0			100	$\mu \mathrm{A}$
V_{OL}	MUTE.(Pin 10) Output Voltage, Low, (No Key Depressed), No Load			2.75		0	0.5	V
				10.0		0	0.5	V
V_{OH}	MUTE, Output Voltage, High, (One Key Depressed) No Load			2.75	2.5	2.75		V
				10.0	9.5	10.0		V
$\mathrm{I}_{\text {OL }}$	MUTE, Output Sink Current		VOL $=0.5 \mathrm{~V}$	3.0	0.53	1.3		mA
			$\mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{~V}$	10.0	2.0	5.3		mA
$\mathrm{IOH}^{\text {O }}$	MUTE, Output Source Current		$\mathrm{V}_{\mathrm{OH}}=2.5 \mathrm{~V}$	3.0	0.17	0.41		mA
			$\mathrm{V}_{\mathrm{OH}}=9.5 \mathrm{~V}$	10.0	0.57	1.5		mA
Oscillator Input/Output								
I_{OL}	Output Sink Current One Key Selected		$\mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{~V}$	3.0	0.21	0.52		mA
			$\mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{~V}$	10.0	0.80	2.1		mA
$\mathrm{IOH}_{\mathrm{OH}}$	Output Source Current One Key Selected		$\mathrm{V}_{\mathrm{OH}}=2.5 \mathrm{~V}$	3.0	0.13	0.31		mA
			$\mathrm{V}_{\mathrm{OH}}=9.5 \mathrm{~V}$	10.0	0.42	1.1		mA
	Input Current							
$\mathrm{I}_{\text {IL }}$	Leakage Sink One Key Select		$\mathrm{V}_{\mathrm{IL}}=10.0 \mathrm{~V}$	10.0			1.0	$\mu \mathrm{A}$
I_{IH}	Leakage Source One Key Select	rrent	$\mathrm{V}_{\mathrm{IH}}=0.0 \mathrm{~V}$	10.0			1.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Sink Current No Key Selected		$\mathrm{V}_{\text {IL }}=0.5 \mathrm{~V}$	3.0	24	93		$\mu \mathrm{A}$
			$\mathrm{V}_{\text {IL }}=0.5 \mathrm{~V}$	10.0	27	130		$\mu \mathrm{A}$
${ }^{\text {t START }}$	Oscillator Startup Time			$\begin{gathered} 3.5 \\ 10.0 \end{gathered}$		$\begin{gathered} 2 \\ 0.25 \end{gathered}$	$\begin{aligned} & 5 \\ & 4 \end{aligned}$	$\begin{aligned} & \hline \mathrm{mS} \\ & \mathrm{mS} \\ & \hline \end{aligned}$

[^1]S2861A \& B Electrical Characteristics: (Continued)

Symbol	Parameter/Conditions		$\underset{\text { Volts }}{\left(\mathbf{V}_{\mathrm{DD}}-\mathbf{V}_{\mathbf{S S}}\right)}$	Min.	Typ.	Max.	Units
$\mathrm{C}_{\mathrm{I} / \mathrm{O}}$	Input/Output Capacitance		3.0		12	16	pF
			10.0		10	14	pF
Input Currents							
IIL	 Column Inputs	Sink Current, $\mathrm{V}_{\mathrm{IL}}=3.0 \mathrm{~V}$ (Pull-down)	3.0	6.5	16		$\mu \mathrm{A}$
		Sink Current $\mathrm{V}_{\mathrm{IL}}=10.0 \mathrm{~V}$ (Pull-down)	10.0	9.2	24		$\mu \mathrm{A}$
I_{IH}		Source Current, $\mathrm{V}_{\mathrm{IH}}=2.5 \mathrm{~V}$ (Pull-up)	3.0	85	210		$\mu \mathrm{A}$
		Source Current, $\mathrm{V}_{\mathrm{IH}}=9.5 \mathrm{~V}$ (Pull-up)	10.0	280	740		$\mu \mathrm{A}$
I_{IH}	Mode Select Input S2861A	Source Current, $\mathrm{V}_{\mathrm{IH}}=0.0 \mathrm{~V}$ (Pull-up)	3.0	1.4	3.3		$\mu \mathrm{A}$
		$\begin{gathered}\text { Source Current, } \\ \mathrm{V}_{\mathrm{IH}}=3.0 \mathrm{~V} \text { (Pull-up) }\end{gathered}$	10.0	18	46		$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Chip Disable Input S2861B	Source Current, $\mathrm{V}_{\text {IL }}=3.0 \mathrm{~V}$ (Pull-down)	3.0	3.9	9.5		$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{IL}}=10.0 \mathrm{~S} \text { Sink Current }(\text { Pull-down })$	10.0	55	143		$\mu \mathrm{A}$

PULSE DIALER

Features

\square Low Voltage CMOS Process for Direct Operation From Telephone Lines
$\square \quad$ Inexpensive R-C Oscillator Design Provides Better than $\pm 5 \%$ Accuracy Over Temperature and Unit to Unit VariationsDialing Rate Can Be Varied By Changing the Dial Rate Oscillator FrequencyDial Rate Select Input Allows Changing of the Dialing Rate by a $2: 1$ Factor Without Changing Oscillator ComponentsTwo Selections of Mark/Space Ratios (33-1/3/66-2/3 or 40/60)
\square Twenty Digit Memory for Input Buffering and for Redial With Access Pause Capability

Mute and Dial Pulse Drivers on Chip

\square Accepts DPCT Keypad with Common Arranged in a 2 of 7 Format; Also Capable of Interface to SPST Switch Matrix

General Description

The S2560A Pulse Dialer is a CMOS integrated circuit that converts pushbutton inputs to a series of pulses suitable for telephone dialing. It is intended as a replacement for the mechanical telephone dial and can operate directly from the telephone lines with minimum interface. Storage is provided for 20 digits, therefore, the last dialed number is available for redial until a new number is entered. IDP is scaled to the dialing rate such as to produce smaller IDP at higher dialing rates. Additionally, the IDP can be changed by a $2: 1$ factor at a given dialing rate by means of the IDP select input.

Absolute Maximum Ratings:

Electrical Characteristics:

Specifications apply over the operating temperature and $1.5 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{DD}}$ to $\mathrm{V}_{\mathrm{SS}} \leqslant 3.5 \mathrm{~V}$ unless otherwise specified.

Symbol	Parameter	$\left\lvert\, \begin{gathered} \mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}} \\ \text { (Volts) } \end{gathered}\right.$	Min.	Max.	Units	Conditions
	Output Current Levels					
$\mathrm{I}_{\text {OLDP }}$	$\overline{\mathrm{DP}}$ Output Low Current (Sink)	3.5	125		$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=0.4 \mathrm{~V}$
$\mathrm{I}_{\text {OHDP }}$	$\overline{\overline{D P}}$ Output High Current (Source)	$\begin{aligned} & 1.5 \\ & 3.5 \\ & \hline \end{aligned}$	$\begin{gathered} 20 \\ 125 \end{gathered}$		$\begin{array}{r} \mu \mathrm{A} \\ \mu \mathrm{~A} \\ \hline \end{array}$	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=1 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}=2.5 \mathrm{~V} \end{aligned}$
$\mathrm{I}_{\text {OLM }}$	MUTE Output Low Current (Sink)	3.5	125		$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=0.4 \mathrm{~V}$
$\mathrm{I}_{\text {OHM }}$	MUTE Output High Current (Source)	$\begin{aligned} & 1.5 \\ & 3.5 \end{aligned}$	$\begin{gathered} 20 \\ 125 \end{gathered}$		$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=1 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}=2.5 \mathrm{~V} \end{aligned}$
$\mathrm{I}_{\text {OLT }}$	Tone Output Low Current (Sink)	1.5	20		$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=0.4 \mathrm{~V}$
$\mathrm{I}_{\text {OHT }}$	Tone Output High Current (Source)	1.5	20		$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=1 \mathrm{~V}$
I_{DD}	Quiescent Current	1.5		750	nA	"On Hook" $\overline{\mathrm{HS}}=\mathrm{V}_{\mathrm{DD}}$
$\mathrm{I}_{\mathrm{IL}}, \mathrm{I}_{\text {IH }}$	Input Current Average (Keyboard Inputs)	3.5		60	$\mu \mathrm{A}$	One row end one col. input connected to V_{DD}. Other keyboard inputs open.
$\mathrm{I}_{\mathrm{IL}}, \mathrm{I}_{\text {IH }}$	Input Current Any Other Pin	3.5		100	nA	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}$ or $\mathrm{V}_{\text {DD }}$
I_{DD}	Operating Current	$\begin{aligned} & 1.5 \\ & 3.5 \end{aligned}$.	$\begin{aligned} & 100 \\ & 500 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$	$\overline{\mathrm{DP}}, \overline{\mathrm{MUTE}}$ open, $\overline{\mathrm{HS}}=\mathrm{V}_{\mathrm{SS}}$ ("Off Hook') Keyboard processing and dial pulsing at 10 pps at conditions as above
fo	Oscillator Frequency	1.5		10	kHz	
$\Delta \mathrm{fo} / \mathrm{fo}$	Frequency Deviation	$\left\|\begin{array}{l} 1.5 \text { to } 2.5 \\ 2.5 \text { to } 3.5 \end{array}\right\|$	$\begin{aligned} & -3 \\ & -3 \end{aligned}$	$\begin{aligned} & +3 \\ & +3 \end{aligned}$	$\%$ $\%$	$\begin{aligned} & \text { Fixed R-C oscillator components } \\ & 50 \mathrm{k} \Omega \leqslant \mathrm{R}_{\mathrm{D}} \leqslant 750 \mathrm{k} \Omega ; 100 \mathrm{pF} \leqslant \mathrm{C}_{\mathrm{D}}{ }^{*} \leqslant 1000 \mathrm{pF} ; \\ & 750 \mathrm{k} \Omega \leqslant \mathrm{R}_{\mathrm{E}} \leqslant 5 \mathrm{M} \Omega \\ & { }^{3} 300 \mathrm{pF} \text { most desirable value for } \mathrm{C}_{\mathrm{D}} \end{aligned}$
	Input Voltage Levels					
$\mathrm{V}_{\text {IH }}$	Logical " 1 "		$\begin{gathered} 0.8 \\ \left(\mathrm{~V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}\right) \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{v}_{\mathrm{DD}} \\ & +0.3 \\ & \hline \end{aligned}$	V	
V_{IL}	Logical "0"		$\begin{gathered} \mathrm{v}_{\mathrm{SS}} \\ -0.3 \end{gathered}$	$\begin{array}{\|c\|} 0.2 \\ \left(\mathrm{v}_{\mathrm{DD}}-\mathrm{v}_{\mathrm{SS}}\right) \end{array}$	V	
$\mathrm{C}_{\text {IN }}$	Input Capacitance Any. Pin			7.5	pF	

The device power supply should always be turned on before the input signal sources, and the input signals should be turned off before the power supply is turned off $\left(V_{S S} \leqslant V_{I} \leqslant V_{D D}\right.$ as a maximum limit). This rule will prevent over-dissipation and possible damage of the inputprotection diode when the device power supply is grounded. When power is first applied to the device, the device should be in "On Hook" condition ($\overline{H S}=1$). This is necessary because there is no internal power or reset on chip and for proper operation all internal latches must come up in a known state. In applications where the device is hard wired in "Off Hook" (HS)=0) condition, a momentary "On Hook" condition can be presented to the device during power up by use of a capacitor resistor network as shown in Figure 6.

Functional Description

The pin function designations are outlined in Table 1.

Oscillator

The device contains an oscillator circuit that requires three external components: two resistors (R_{D} and R_{E}) and one capacitor (CD). All internal timing is derived from this master time base. To eliminate clock interference in the talk state, the oscillator is only enabled during key closures and during the dialing state. It is disabled at all other times including the "on hook" condition. For a dialing rate of 10 pps the oscillator should be adjusted to 2400 Hz . Typical values of external components for this are R_{D} and $\mathrm{R}_{\mathrm{E}}=750 \mathrm{k} \Omega$ and $\mathrm{CD}_{\mathrm{D}}=270 \mathrm{pF}$. It is recommended that the tolerance of resistors to be 5% and capacitor to be 1% to insure a $\pm 10 \%$ tolerance of the dialing rate in the system.

Keyboard Interface (2560A)

The S2560A employs a scanning technique to determine a key closure. This permits interface to a DPCT keyboard with common connected to VDD (Figure 1), logic interface (Figure 2) and interface to a SPST switch matrix (Figure 7). A high level on the appropriate row and column inputs constitutes a key closure for logic interface. When using a SPST switch matrix, it is necessary to add small capacitors (30 pF) from the column inputs to VSS to insure that the oscillator is shut off after a key is released or after the dialing is complete.

OFF Hook Operation: The device is continuously powered through a $150 \mathrm{k} \Omega$ resistor during Off hook operation. The DP output is normally high and sources base drive to transistor Q_{1} to turn ON transistor Q_{2}. Transistor Q_{2} replaces the mechanical dial contact used in the rotary dial phones. Dial pulsing begins when the user enters a number through the keyboard. The $\overline{\mathrm{DP}}$ output goes low shutting the base drive to Q_{1} OFF causing Q_{2} to open during the pulse break. The MUTE output also goes low during dial pulsing allowing muting of the receiver through transistors Q_{3} and Q_{4}. The relationship of dial pulse and mute outputs are shown in Figure 3.
ON Hook Operation: The device is continuously powered through a $10-20 \mathrm{M} \Omega$ resistor during the ON hook operation. This resistor allows enough current from the tip and ring lines to the device to allow the internal memory to hold and thereby providing storage of the last number dialed.

The dialing rate is derived by dividing down the dial rate oscillator frequency. Table 2 shows the relation-
ship of the dialing rate with the oscillator frequency and the dial rate select input. Different dialing rates can be derived by simply changing the external resistor value. The dial rate select input allows changing of the dialing rate by a factor of 2 without the necessity of changing the external component values. Thus, with the oscillator adjusted to 2400 Hz , dialing rates of 10 or 20 pps can be achieved. Dialing rates of 7 and 14 pps similarly can be achieved by changing the oscillator frequency to 1680 Hz .
The Inter-Digit Pause (IDP) time is also derived from the oscillator frequency and can be changed by a factor of 2 by the IDP select input. With IDP select pin wired to $V_{S S}$, an IDP of 800 ms is obtained for dial rates of 10 and 20 pps . IDP can be reduced to 400 ms by wiring the IDP select pin to V_{DD}. At dialing rates of 7 and 14 pps , IDP's of 1143 ms and 572 ms can be similarly obtained. If the IDP select pin is connected to the dial rate select pin, the IDP is scaled to the dial rate such that at 10 pps an IDP of 800 ms is obtained and at 20 pps an IDP of 400 ms is obtained.
The user can enter a number up to 20 digits long from a standard 3×4 double contact keypad with common (Figure 1). It is also possible to use a logic interface as shown in Figure 2 for number entry. Antibounce protection circuitry is provided on chip (min .20 ms .) to prevent false entry.
Any key depressions during the on-hook condition are ignored and the oscillator is inhibited. This insures that the current drain in the on-hook condition is very low and used to retain the memory.

Normal Dialing

The user enters the desired numbers through the keyboard after going off hook. Dial pulsing starts as soon as the first digit is entered. The entered digits are stored sequentially in the internal memory. Since the device is designed in a FIFO arrangement, digits can be entered at a rate considerably faster than the output rate. Digits can be entered approximately once every 50 ms while the dialing rate may vary from 7 to 20 pps . The number entered is retained in the memory for future redial. Pauses may be entered when required in the dial sequence by pressing the "\#" key, which provides access pauses for future redial. Any number of access pauses may be entered as long as the total entries do not exceed twenty.

Auto Dialing

The last number dialed is retained in the memory and therefore can be redialed out by going off hook and pressing the "\#" key. Dial pulsing will start when the key is depressed and finish after the entire number is dialed out unless an access pause is detected. In such a case, the dial pulsing will stop and will resume again only after the user pushes the "\#" key.

Table 1. S2560A Pin/Function Descriptions

Pin	Number	Function
Keyboard $\left(\mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{R}_{3}, \mathrm{R}_{4}, \mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}\right)$	7	These are 4 row and 3 column inputs from the keyboard contacts. These inputs are open when the keyboard is inac- tive. When a key is pushed, an appropriate row and column input must go to V VD or connect with each other. A logic interface is also possible as shown in Figure 3. Active pull up and pull down networks are present on these inputs when the device begins keyboard scan. The keyboard scan begins when a key is pressed and starts the oscillator. De- bouncing is provided to avoid false entry (typ. 20ms).
One programmable line is available thatallows selection of		
the pause duration that exists between dialed digits. It is		
programmed according to the truth table shown in Table		
3. Note that preceding the first dialed pulse is an inter-		
digit time equal to the selected IDP. Two pauses either		
400ms or 800ms are available for dialing rates of 10 and 20		
pps. IDP's corresponding to other dialing rates can be		
determined from Tables 2 and 3.		

Table 1. (Continued)

Pin	Number	Function
Dial Pulse Out $(\overline{\mathrm{DP}})$	1	Output drive is provided to turn on a transistor at the dial pulse rate. The normal output will be "low" during "space" and "high" otherwise.
Dial Rate Oscillator	3	These pins are provided to connect external resistors R_{D}, R_{E} and capacitor CD to form an R-C oscillator that generates the time base for the Key Pulser. The output dialing rate and IDP are derived from this time base.
Hook Switch $(\overline{\mathrm{HS})}$	1	This input detects the state of the hook switch contact; "off hook" corresponds to $V_{S S}$ condition.
Power $\left(\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{SS}}\right)$	2	These are the power supply inputs. The device is de- signed to operate from 1.5V to 3.5V.

Figure 1. Standard Telephone Pushbutton Keyboard

Figure 2. Logic Interface For the S2560

G1 through G7 any CMOS type logic gates

877292

Figure 3. Timing

Table 2. Table for Selecting Oscillator Component Values for Desired Dialing Rates and Inter-Digit Pauses

Dial Rate Desired	Osc. Freq. (Hz)	$\underset{(\mathbf{k} \Omega)}{\mathbf{R}_{\mathrm{D}}}$	$\underset{(\mathbf{k} \Omega)}{\mathbf{R}_{\mathrm{E}}}$	$\underset{(\mathbf{p F})}{\mathbf{C}_{\mathbf{D}}}$	Dial Rate (pps)		IDP (ms)	
					DRS $=\mathrm{V}_{\text {SS }}$	DRS $=\mathrm{V}_{\text {DD }}$	IPS $=V_{\text {SS }}$	IPS $=\mathrm{V}_{\text {DD }}$
5.5/11	1320	Select components in the ranges indicated in table of electrical specifications			5.5	11	1454	727
6/12	1440				6	12	1334	667
6.5/13	1560				6.5	13	1230	615
7/14	1680				7	14	1142	571
7.5/15	1800				7.5	15	1066	533
8/16	1920				8	16	1000	500
8.5/17	2040				8.5	17	942	471
9/18	2160				9	18	888	444
9.5/19	2280				9.5	19	842	421
10/20	2400	750	750	270	10	20	800	400
$\begin{aligned} & \left(\mathrm{f}_{\mathrm{d}} / 240\right) / \\ & \left(\mathrm{f}_{\mathrm{d}} / 120\right) \end{aligned}$	f_{d}				$\left(\mathrm{f}_{\mathrm{d}} / 240\right)$	($\mathrm{f}_{\mathrm{d}} / 120$)	$\left(\frac{1920}{\mathrm{f}_{\mathrm{i}}} \times 10^{3}\right)$	$\left(\frac{960}{\mathrm{f}_{\mathrm{i}}} \times 10^{3}\right)$

Notes:

1. IDP is dependent on the dialing rate selected. For example, for a dialing rate of 10 pps , an IDP of either 800 ms or 400 ms can be selected. For a dialing rate of 14 pps , and IDP of either 1142 ms or 571 ms can be selected.

Table 3.

Function	Pin Designation	Input Logic Level	Selection
Dial Pulse Rate Selection	DRS	$\mathrm{V}_{\text {SS }}$	$(\mathrm{f} / 240) \mathrm{pps}$ $(\mathrm{f} / 120) \mathrm{pps}$
Inter-Digit Pause Selection	IPS	V_{DD}	$\frac{960}{\mathrm{f}} \mathrm{s}$
		V_{SS}	$\frac{1920}{\mathrm{f}} \mathrm{s}$
Mark/Space Ratio	M / S	V_{SS}	$33-1 / 3 / 66-2 / 3$ $\quad \overline{\mathrm{VS}}$
On Hook/Off Hook		V_{DD}	$40 / 60$

Note: f is the oscillator frequency and is determined as shown in Figure 5.

Figure 4. Pulse Dialer Circuit with Redial

$R_{0}=10-20 \mathrm{M} \Omega, R_{1}=150 \mathrm{k} \Omega, R_{2}=2 \mathrm{k} \Omega$
$R_{3}=470 \mathrm{k} \Omega, R_{4}, R_{5}=10 \mathrm{k} \Omega, R_{10}=47 \mathrm{k} \Omega$
$R_{6}, R_{8}=2 \mathrm{k} \Omega, R_{7}, R_{9}=30 \mathrm{k} \Omega, R_{11}=20 \Omega, 2 \mathrm{~W}$
$Z_{1}=3.9 \mathrm{~V}, D_{1}-D_{4}=\operatorname{IN} 4004, D_{5}, D_{6}=$ IN $914, C_{1}=15 \mu \mathrm{~F}$
$R_{E}=R_{D}=750 \mathrm{k} \Omega, C_{D}=270 \mathrm{pF}, \mathrm{C}_{2}=0.01 \mu \mathrm{~F}$
$\mathbf{Q}_{1}, \mathbf{Q}_{\mathbf{4}}=\mathbf{2 N 5 5 5 0}$ TYPE $\mathbf{Q}_{2}, \mathbf{Q}_{\mathbf{3}}=\mathbf{2 N 5 4 0 1}$ TYPE
$\mathbf{Z}_{\mathbf{2}}=1 \mathrm{~N} 5379110 \mathrm{~V}$ ZENER OR 2X1N4758
Figure 5. Pulse Dialer Circuit with Redial (Single Hook Switch Contact Application for PABX)

$R_{1}=10-20 \mathrm{M} \Omega, R_{2}=2 \mathrm{k} \Omega$
$R_{3}=470 \mathrm{k} \Omega, R_{4}, R_{5}=10 \mathrm{k} \Omega$
$R_{3}=470 \mathrm{k} \Omega, R_{4}, R_{5}=10 \mathrm{k} \mathrm{\Omega}$ $R_{10}=47 \mathrm{kR}, R_{11}=20 \Omega, 2 \mathrm{~W}$
$Z_{1}=3.9 \mathrm{~V}, D_{1}-D_{4}=\operatorname{IN} 4004$
$D_{5}, D_{6}=1 N 914, C_{1}=15 \mu F$
$R_{E}, R_{D}=750 \mathrm{k} \Omega, C_{D}=270 \mathrm{pF}$
$C_{2}=0.01 \mu F, Q_{1}, Q_{4}=2 N 5550$
$\mathrm{Q}_{2}, \mathrm{Q}_{3}=2 \mathrm{~N} 5401$
$Z_{2}=150 \mathrm{~V}$ ZENER OR VARISTOR TYPE GE MOV150

Figure 6. Circuit for Applying Momentary "On Hook" Condition During Power Up

Figure 7. SPST Switch Matrix Interface

TONE RINGER

Features

CMOS Process for Low Power OperationOperates Directly from Telephone Lines with Simple Interface\square Also Capable of Logic Interface for Non-Telephone Applications
\square Provides a Tone Signal that Shifts Between Two Predetermined Frequencies at Approximately 16 Hz to Closely Simulate the Effects of the Telephone Bell
\square Push-Pull Output Stage Allows Direct Drive, Eliminating Capacitive Coupling and Provides Increased Power Output
$\square \mathbf{2 5 m W}$ Output Drive Capability at 10V Operating Voltage

> Auto Mode Allows Amplitude Sequencing such that the Tone Amplitude Increases in Each of the First Three Rings and Thereafter Continues at the Maximum Level
> \square Single Frequency Tone Capability

General Description

The S2561 Tone Ringer is a CMOS integrated circuit that is intended as a replacement for the mechanical telephone bell. It can be powered directly from the telephone lines with minimum interface and can drive a speaker to produce sound effects closely simulating the telephone bell.

Data subject to change at any time without notice. These sheets transmitted for information only.

Absolute Maximum Ratings

Supply Voltage	$+12.0 \mathrm{~V}^{*}$
Operating Temperature Range	$-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Voltage at any Pin	$\mathrm{V}_{\mathrm{SS}}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Lead Temperature (Soldering, 10 sec)	$300^{\circ} \mathrm{C}$

*This device incorporates a 12 V internal zener diode across the VDD to VSS pins. Do NOT connect a low impedance power supply directly across the device unless the supply voltage can be maintained below 12 V or current limited to $<25 m \mathrm{~A}$.

Electrical Characteristics

Specifications apply over the operating temperature and $3.5 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{DD}}$ to $\mathrm{V}_{\mathrm{SS}}<12.0 \mathrm{~V}$ unless otherwise specified.

Symbol	Parameter	Min.	Max.	Units	Conditions
$\mathrm{V}_{\text {DS }}$	Operating Voltage (V_{DD} to V_{SS})	8.0	12.0	V	Ringing, THC pin open
$\mathrm{V}_{\text {DS }}$	Operating Voltage	4.0		V	"Auto" mode, non-ringing
I_{DS}	Operating Current		500	$\mu \mathrm{A}$	Non-ringing, $\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$, THC pin open, DI pin open or V_{SS}
$\mathrm{I}_{\mathrm{OHC}}$	Output Drive Output Source Current (OUT $_{\mathrm{H}}$, OUT $_{\mathrm{C}}$ outputs)	5		mA	$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=8.75 \mathrm{~V}$
$\mathrm{I}_{\text {OLC }}$	Output Sink Current (OUT $_{\mathbf{H}}$, OUT $_{C}$ outputs)	5		mA	$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0.75 \mathrm{~V}$
$\mathrm{I}_{\text {OHM }}$	Output Source Current ($\mathrm{Out}_{\mathrm{M}}$ output)	2		mA	$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=8.75 \mathrm{~V}$
$\mathrm{I}_{\text {OLM }}$	Output Sink Current (OUT ${ }_{\text {M }}$ output)	2		mA	$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0.75 \mathrm{~V}$
$\mathrm{I}_{\text {OHL }}$	Output Source Current (OUT ${ }_{L}$ output)	1		mA	$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=8.75 \mathrm{~V}$
$\mathrm{I}_{\text {OLL }}$	Output Sink Current (OUT ${ }_{\text {L }}$ output)	1		mA	$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0.75 \mathrm{~V}$
	CMOS to CMOS				
$\mathrm{V}_{\text {IH }}$	Input Logic "1" Level	$0.7 \mathrm{~V}_{\mathrm{DD}}$	$\mathrm{V}_{\mathrm{DD}}+0.3$	V	All inputs
V_{IL}	Input Logic " 0 " Level	$\mathrm{V}_{\text {SS }-0.3}$	$0.3 \mathrm{~V}_{\text {DD }}$	V	All inputs
$\mathrm{V}_{\text {OHR }}$	Output Logic "1" Level (Rate output)	$0.9 \mathrm{~V}_{\mathrm{DD}}$		V	$\mathrm{I}_{\mathrm{O}}=10 \mu \mathrm{~A}$ (Source)
$\mathrm{V}_{\text {OLR }}$	Output Logic "0" Level (Rate output)		0.5	V	$\mathrm{I}_{\mathrm{O}}=10 \mu \mathrm{~A}$ (Sink)
V_{OZ}	Output Leakage Current (OUT $_{H}$, OUT $_{\mathrm{M}}$ outputs in high impedance state)		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=10 \mathrm{~V} \end{aligned}$
$\mathrm{C}_{\text {IN }}$	Input Capacitance		7.5	pF	Any pin
$\Delta \mathrm{fo} / \mathrm{fo}$	Oscillator Frequency Deviation	-5	+5	\%	Fixed RC component values $1 \mathrm{M} \Omega \leqslant \mathrm{R}_{\mathrm{ri}}$, $\mathrm{R}_{\mathrm{ti}} \leqslant 5 \mathrm{M} \Omega$; $100 \mathrm{k} \Omega \leqslant \mathrm{R}_{\mathrm{rm}}, \mathrm{R}_{\mathrm{tm}} \leqslant 750 \mathrm{k} \Omega ; 150 \mathrm{pF} \leqslant \mathrm{C}_{\mathrm{ro}}$, $\mathrm{C}_{\text {to }} \leqslant 3000 \mathrm{pF} ; 330 \mathrm{pF}$ recommended value of C_{ro} and $\mathrm{C}_{\text {to }}$, supply voltage varied from $9 \mathrm{~V} \pm 2 \mathrm{~V}$ (over temperature and unit-unit variations)
$\mathrm{R}_{\text {LOAD }}$	Output Load Impedance Connected Across $\mathrm{OUT}_{\mathrm{H}}$ and $\mathrm{OUT}_{\mathrm{C}}$	600		Ω	Tone Frequency Range $=300 \mathrm{~Hz}$ to 3400 Hz
$\mathrm{I}_{\mathrm{IH}}, \mathrm{I}_{\mathrm{L}}$	Leakage Current, $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {DD }}$ or $\mathrm{V}_{\text {SS }}$		100	nA	Any input, except DI pin $\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$
$\mathrm{V}_{\text {TH }}$	POE Threshold Voltage	6.5	8	V	
V_{Z}	Internal Zener Voltage	11	13	V	$\mathrm{I}_{\mathrm{Z}}=5 \mathrm{~mA}$

The device power supply should always be turned on before the input signal sources, and the input signals should be turned off before the power supply is turned off ($V_{S S} \leqslant V_{I} \leqslant V_{D D}$ as a maximum limit). This rule will prevent over-dissipation and possible damage of the input-protection diode when the device power supply is grounded

Functional Description

The S2561 is a CMOS device capable of simulating the effects of the telephone bell. This is achieved by producing a tone that shifts between two predetermined frequencies (512 and 640 Hz) with a frequency ratio of 5:4 at a 16 Hz rate.
Tone Generation: The output tone is derived from a tone oscillator that uses a 3 pin R-C oscillator design consisting of one capacitor and two resistors. The oscillator frequency is divided alternately by 4 or 5 at the shift rate. Thus, with the oscillator adjusted for 5120 Hz , a tone signal is produced that alternates between 512 Hz and 640 Hz at the shift rate. The shift rate is derived from another 3 pin R-C oscillator which is adjusted for a nominal frequency of 5120 Hz . It is divided down to 16 Hz which is used to produce the shift in the tone frequency. It should be noted that in the special case where both oscillators are adjusted for 5120 Hz , it is only necessary to have one external R-C network for one oscillator with the other oscillator driven from it. The oscillators are designed such that for fixed R-C component values an accuracy of $\pm 5 \%$ can be obtained over the operating supply voltage, temperature and unit-unit variations. See Table 1 for component and frequency selections. In the single frequency mode, activated by connecting the SFS input to VSS only the higher frequency continuous tone is produced by using a fixed divider ratio of 4 and by disabling the shift operation.

Ring Signal Detection: In the following description it is assumed that both the tone and rate oscillators are adjusted for a frequency of 5120 Hz . Ringing signal (nominally 42 to $105 \mathrm{VAC}, 20 \mathrm{~Hz}, 2 \mathrm{sec}$ on $/ 4 \mathrm{sec}$ off duty cycle) applied by the central office between the telephone line pair is capacitively coupled to the tone ringer circuitry as shown in Figure 2. Power for the device is derived from the ringing signal itself by rectification (diodes D1 thru D4) and zener diode clamping $\left(Z_{2}\right)$. The signal is also applied to the EN input after limiting and clamping by a resistor (R_{2}) and internal diodes to VDD and VSS supplies. Internally the signal is first squared up and then processed thru a 2 ms filter followed by a dial pulse reject filter. The 2 ms filter is a two stage shift register clocked by a 512 Hz signal derived from the rate oscillator by a divide by 10 circuit. The squared ring signal (typically a square wave) is applied to the D input of the first stage and also to reset inputs of both stages. This provides for rejection of spurious noise spikes. Signals exceeding a duration of 2 ms only can pass through the filter. The dial pulse reject filter is clocked at 8 Hz derived from the rate oscillator by a divide by 640 circuit. This circuit is designed
to pass any signal that has at least two transitions in a given 125 ms time period. This insures that signals below 8 Hz will be rejected with certainty. Signals over 16 Hz will be passed with certainty and between 8 Hz and 16 Hz there is a region of uncertainty. By adjusting the rate oscillator to a different frequency the break points in frequencies can be varied. For instance for break points of 10 Hz and 20 Hz the rate oscillator can be adjusted to 6400 Hz . Of course this also increases the tone shift rate to 20 Hz . The action of the dial pulse reject filter minimizes the dial pulse interference during dialing although it does not completely eliminate it due to the rather large region of uncertainty associated with this type of discrimination circuitry. The dial pulse filter also has the characteristic that an input signal is not detected unless its duration exceeds 125 ms . This insures that the tone ringer will not respond to momentary bursts of ringing less than 125 milliseconds in duration (Ref 1).
In logic interface applications, the 2 ms filter and the dial pulse reject filter can be inhibited by wiring the Det. INHIBIT pin to VDD. This allows the tone ringer to be enabled by a logic ' 1 ' level applied at the "ENABLE" input without the necessity of a 20 Hz ring signal.

Voltage Sensing: The S2561 contains a voltage sensing circuit that enables the output stage and the rate and tone oscillators, only when the supply voltage exceeds a predetermined value. Typical value of this threshold is 7.3 volts. This produces two benefits. First, it insures that the audible intensity of the output tone is fairly constant throughout the ringing period; and secondly, it insures proper circuit operation during the "auto" mode operation by reducing the power consumption to a minimum when the supply voltage drops below 7.3 volts. This extends the supply voltage decay time beyond 4 seconds (off period of the ring signal) with an adequate filter capacitor and insures the proper functioning of the "amplitude sequencing" counter. It is important to note that the operating supply voltage should be well above the threshold value during the ringing period and that the filter capacitor should be large enough so that the ripple on the supply voltage does not fall below the threshold value. A supply voltage of 10 to 12 volts is recommended.

In applications where the tone ringer is continuously powered and below the threshold level, the internal threshold can be bypassed by connecting the THC pin to V_{DD}. The internal threshold can also be reduced

Functional Description (Continued)

by connecting an external zener diode between the THC and $V_{D D}$ pins.

Auto Mode: In the "auto" mode, activated by wiring the "auto/manual" input to V_{SS}, an amplitude sequencing of the output tone can be achieved. Resistors R_{L} and R_{M} are inserted in series with the $\mathrm{Out}_{\mathrm{L}}$ and Out $_{\mathrm{M}}$ outputs, respectively, and paralleled with the Out $_{\mathrm{H}}$ output (Figure 1). Load is connected across Out $_{H}$ and Out ${ }_{C}$ pins. R_{L} is chosen to be higher than R_{M}. In this manner the first ring is of the lowest amplitude, second ring is of medium amplitude and the third and consecutive rings thereafter are at maximum amplitude. For the proper functioning of the "amplitude sequencing'" counter the device must have at least 4.0 volts across it throughout the ring sequence. The filter capacitor is so chosen that the supply voltake will not drop below 4.0 volts during the off period. At the end of a ring sequence when the off period substantially exceeds the 4 second duration, the counter will be reset. This will insure that the amplitude sequencing will start correctly beginning a new ring sequence. The counter is held in reset during the "manual" mode operation. This produces a maximum ring amplitude at all times.

Output Stage: The output stage is of push-pull type
consisting of buffers $\mathrm{L}, \mathrm{M}, \mathrm{H}$ and C . The load is connected across pins $\mathrm{Out}_{\mathrm{H}}$ and $\mathrm{Out}_{\mathrm{C}}$ (Figure 2). During ringing, the $\mathrm{Out}_{\mathrm{H}}$ and $\mathrm{Out}_{\mathrm{C}}$ outputs are out of phase with each other and pulse at the tone rate. During a non-ringing state, all outputs are forced to a known level such as ground which insures that there is no DC component in the load. Thus, direct coupling can be used for driving the load. The major benefit of the push-pull arrangement is increased power output. Four times as much power can be delivered to the load for the same operating voltage. Buffers M and H are three-state. In the "auto" mode buffer M is active only during the second ring and in the "high impedance" state at all other times. Buffer H is active beginning the third ring. In the "manual" mode buffers H, L and C are active at all times while buffer M is in a high impedance state. The output buffers are so designed that they can source or sink 5 mA at a $V_{D D}$ of 10 volts without appreciable voltage drop. Care has been taken to make them symmetrical in both source and sink configurations. Diode clamping is provided on all outputs to limit the voltage spikes associated with transformer drive in both directions V_{DD} and V_{SS}.

Normal protection circuits are present on all inputs.

Table 1. S2561/S2561C Pin/Function Descriptions

Pin	Number	Function
Power ($\mathrm{V}_{\mathrm{DD}}{ }^{*}$, $\mathrm{V}_{\mathrm{SS}}{ }^{*}$)	2	These are the power supply pins. The device is designed to operate over the range of 3.5 to 12.0 volts. A range of 10 to 12 volts is recommended for the telephone application.
Ring Enable (EN*, $\overline{\mathrm{EN}}$)	2	These pins are for the 20 Hz ring enable input. They can also be used for DC level enabling by wiring the DI pin to V_{DD}. EN is available for the S2561 only.
Auto/Manual (A/M)	1	"Auto" mode for amplitude sequencing is implemented by wiring this pin to V_{SS}. "Manual" mode results when connected to V_{DD}. The amplitude sequencing counter is held in reset during the "manual" mode.
Outputs ($\left.\mathrm{Out}_{\mathrm{L}}, \mathrm{Out}_{\mathrm{M}}, \mathrm{Out}_{\mathrm{H}}^{*} \mathrm{Out}_{\mathrm{C}}^{*}\right)$	4	These are the push-pull outputs. Load is directly connected across $\mathrm{Out}_{\mathrm{H}}$ and Out ${ }_{C}$ outputs. In the "auto" mode, resistors R_{L} and R_{M} can be inserted in series with the $\mathrm{Out}_{\mathrm{L}}$ and $\mathrm{Out}_{\mathrm{M}}$ outputs for amplitude sequencing (see Figure 1).
Oscillators		
$\begin{aligned} & \text { Rate Oscillator } \\ & \text { (OSCR } \left.{ }_{1}^{*}, \mathrm{OSCR}_{\mathrm{m}}^{*} \mathrm{OSCR}_{0}^{*}\right) \end{aligned}$	3	These pins are provided to connect external resistors RR_{i}, RR_{m} and capacitor CR_{0} to form an R -C oscillator with a nominal frequency of 5120 Hz . See Table 2 for components selection.

Table 1 (Continued)

Pin	Number	Function
Tone Oscillator $\left(\mathrm{OSCT}_{\mathrm{i}}, \mathrm{OSCT}_{\mathrm{m}}, \mathrm{OSCT}_{\mathbf{o}}\right)$	3	These pins are provided to connect external resistors $R T_{i}$, RT_{m} and capacitor CT_{O} to form an R-C oscillator from which the tone signal is derived. With the oscillator adjusted to 5120 Hz , a tone signal with frequencies of 512 Hz and 640 Hz results. See Table 2 for components selection.
Threshold Control (THC)	1	The internal threshold voltage is brought out to this pin for modification in non-telephone applications. It should be left open for telephone applications. For power supplies less than 9 V connect to V_{DD}.
Rate	1	This is an optional output for the S2561C version which replaces the EN output. This is a 16 Hz output that can be used by external logic as shown in Figure 3-A to produce a 2 sec on/4sec off waveform.
Detector Inhibit (DI)	1	When this pin is connected to V_{DD}, the dial pulse reject filter is disabled to allow DC level enabling of the tone ringer. This pin should be hardwired to V_{SS} in normal telephone-type applications.
Single Frequency Select ($\overline{\text { SFS }}$)	1 $\overline{18}$	When this pin is connected to V_{SS}, only a single frequency continuous tone is produced as long as the tone ringer is enabled. In normal applications this pin should be hardwired to V_{DD}.

*Pinouts of 8 pin S2561A package.

Table 2. Selection Chart for Oscillator Components and Output Frequencies

Tone/Rate Oscillator	Oscillator Components			Rate (Hz)	Tone (Hz)
Frequency (Hz)	$\underset{(\mathbf{k} \Omega)}{\mathbf{R}_{\mathbf{I}}}$	$\underset{(\mathbf{k} \Omega)}{\mathbf{R}_{\mathbf{M}}}$	$\begin{gathered} \mathrm{C}_{0} \\ (\mathrm{pF}) \end{gathered}$		
5120	1000	200	330	16	512/640
6400	Select components in the ranges indicated in the table of electrical charateristics			20	640/800
3200				10	320/400
8000				25	800/1000
fo				$\frac{\mathrm{fo}}{320}$	$\frac{\mathrm{fo}}{10} / \frac{\mathrm{fo}}{8}$

Applications

Typical Telephone Application: Figure 2 shows the schematic diagram of a typical telephone application for the S2561 tone ringer circuit. Power is derived from the telephone lines by the network formed by capacitor C_{1}, resistor R_{1}, diode bridge d_{1} through d_{4}, and filter capacitor $\mathrm{C}_{2} . \mathrm{C}_{2}$ is chosen to be large enough so as to insure that the power supply ripple during ringing does not fall below the internal threshold level (typ. 7.3 volts) and to provide large enough decay time during the off period. A typical value of C_{2} may be $47 \mu \mathrm{~F}$. C1 and R_{1} are chosen to satisfy the Ringer Equivalence Number (REN) specification (Ref. 1). For REN = 1 the resistor should be a minimum of $8.2 \mathrm{k} \Omega$. It must be noted that the amount of power that can be delivered to the load depends upon the selection of C_{1} and R_{1}.
The device is enabled by limiting the incoming ring signal through resistors $\mathrm{R}_{2}, \mathrm{R}_{3}$ and diodes d_{5} and d6. Zener diode Z_{1} (typ. 9-27 volts) may be required in certain applications where large voltage transients may occur on the line during dial pulsing. The internal 2 ms filter and the dial pulse reject filter will suppress any undesirable components of the signal and will only respond to the normal 20 Hz ring signal. Ring signals with frequencies above 16 Hz will be detected.

The configuration shown will produce a tone with frequency components of 512 Hz and 540 Hz with a shift rate of approximately 16 Hz and deliver at least 25 mW to an 8Ω speaker through a $2000 \Omega: 8 \Omega$ transformer. If "manual" mode is used, a potentiometer may be inserted in series with the transformer primary to provide volume control. If "automatic" mode is used, resistors R_{L} and R_{M} can be chosen to provide desired amplitude sequencing. Typically, signal power will be down $20 \log \left(\frac{R_{\text {LOAD }}}{R_{L}+R_{\text {LOAD }}}\right) d B$ during the first ring, and down $20 \log \left(\frac{R_{\text {LOAD }}}{R_{M}+R_{\text {LOAD }}}\right) d B$ during the second ring with maximum power delivered to the load beginning the third and consecutive rings.

In applications where dial pulse rejection is not necessary, such as in DTMF telephone systems, the ENABLE pin may be connected directly to V_{DD}. Det. Inh pin must be connected to VDD to allow DC level enabling of the ringer.

Non-Telephone Applications: The configuration shown in Figure 3-A may be used in non-telephone applications where it is desired to simulate the telephone bell. The internal threshold is bypassed by wiring THC to VDD. The rate output (16 Hz) is divided down by a 7 stage divider type 4024 to produce two signals: a 2 second on $/ 2$ second off signal and a 4 second on $/ 4$ second off signal. The first signal is connected to the EN pin and the second to the DI pin to produce a 2 second on $/ 4$ second off telephone-type ring signal. The ring sequence is initiated by removing the reset on the divider. If "auto" mode is used, a reset signal must be applied to the "amplitude sequencing" counter at the end of a ring sequence so that the circuit will respond correctly to a new ring sequence. This is done by temporarily connecting the "auto/manual" input to VSS.

Figure 3-B shows a typical application for alarms, buzzers, etc. Single frequency mode is used by connecting the SFS input to VSS. A suitable on/off rate can be determined by using the 7 stage divider circuit. If continuous tone is not desired, the 16 Hz output can be used to gate the tone on and off by wiring it into the ENABLE input.

Many other configurations are possible depending upon the user's specific application.

Reference 1. Bell system communications technical reference:
PUB 47001 of August 1976
"Electrical characteristics of Bell System Network Facilities at the interface with Voiceband Ancillary and Data Equipment" - Sections 2.6.1 and 2.6.3.

AMI.

Figure 1-A. Output Stage Connected for Auto Mode Operation

Figure 1-B. Output Stage Connected for Manual Mode Operation.

Figure 2. Typical Telephone Application of the S2561 and S2561A

Figure 3-A. Simulation of the Telephone Bell in Non-Telephone Applications.

Figure 3-B. Single Frequency Tone Application in Alarms, Buzzers, Etc.
 S2562

AMERICAN MICROSYSTEMS, INC.

REPERTORY DIALER

Features

CMOS Process Achieves Low Power Operation$\square 8$ or 16 Digit Number Capability (Pin Programmable)
\square Dial Pulse and Mute Output
\square Tone Outputs Obtained by Interfacing with Standard AMI S2559 Tone Generator
\square Two Selections of Dial Pulse Rate
\square Two Selections of Inter-Digit Pause
\square Memory Storage of 328 -Digit Numbers or 16 16-Digit Numbers with Standard AMI S5101 RAM
\square 16-Digit Memory for Input Buffering and for Redial with Access Pause Capability
\square Accepts the Standard Telephone DPCT Keypad or SPST Switch X-Y Matrix Keyboards; Also Capable of Logic Interface
$\square \quad$ Ignores Multi Key Entries
\square Inexpensive, but Accurate R-C Oscillator Design

Provides Better Than $\pm 3 \%$ Accuracy Over Supply Voltage, Temperature and Unit-Unit Variations and Allows Different Dialing Rates, IDP and Tone Drive Timing by Changing the Time Base
Power Fail Detection
BCD Output with Update for Number Display Applications

General Description

The S2562 Repertory Dialer is a CMOS integrated circuit that can perform storing or retrieving, normal dialing, redialing or auto dialing and displaying of one of several telephone numbers. It is intended to be used with the AMI standard S5101-256x4 RAM that functions as telephone number storage. With one S5101 up to 328 -digit or 1616 -digit numbers can be stored. It can provide either dial pulses or DTMF tones with the addition of the AMI S2559 tone generator for either the dial or tone line applications.

Data subject to change at any time without notice. These sheets transferred for information only.

Pin Configuration

Absolute Maximum Ratings:

Supply Voltage 13.5 V
Operating Supply Voltage Range ($\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}$) 3.5 V to 7.5 V
Operating Temperature Range $-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range

$$
-40^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}
$$

Voltage at any Pin $\mathrm{V}_{\mathrm{SS}}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$Lead Temperature (Soldering, 10sec)$200^{\circ} \mathrm{C}$

Electrical Characteristics:

Specifications apply over the operating temperature range and $4.5 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{DD}}$ to $\mathrm{V}_{\mathrm{SS}} \leqslant 5.5 \mathrm{~V}$ unless otherwise specified. Absolute values of measured parameters are specified.

Symbol	Characteristics	Min.	Max.	Units	Conditions
	Output Drive				
I ${ }_{\text {LLDP }}$	$\overline{\text { DP Output Sink Current }}$	400		$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}$
$\mathrm{I}_{\text {OHDP }}$	$\overline{\text { DP }}$ Output Source Current	400		$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}$
$\mathrm{I}_{\text {OLM }}$	MUTE Output Sink Current	400		$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=0.4 \mathrm{~V}, \mathrm{~V}_{\text {DD }}=5 \mathrm{~V}$
$\mathrm{I}_{\text {OHM }}$	MUTE Output Source Current	400		$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}$
$\mathrm{I}_{\text {OHPF }}$	$\overline{\mathrm{PF}}$ Output Source Current	100		$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}$
	CMOS to CMOS				
$\mathrm{V}_{\text {IL }}$	Logic " 0 " Input Voltage		1.5	V	All inputs, $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$
$\mathrm{V}_{\text {IH }}$	Logic " 1 " Input Voltage	3.5		V	All inputs, $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$
$\mathrm{V}_{\text {OL }}$	Logic "0" Output Voltage		0.5	V	All outputs except $\overline{\mathrm{DP}}, \overline{\mathrm{MUTE}}$, $\overline{\mathrm{PF}}, \mathrm{I}_{\mathrm{O}}=-10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}$
V_{OH}	Logic "1" Output Voltage	4.5		V	$\begin{aligned} & \text { All outputs except } \overline{\overline{\mathrm{DP}}, \overline{\mathrm{MUTE}},} \\ & \mathrm{PF}, \mathrm{I}_{\mathrm{O}}=-10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \hline \end{aligned}$
	Current Levels				
I_{DD}	Quiescent Current		25	$\mu \mathrm{A}$	Standby, $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$
I_{DD}	Operating Current		500	$\mu \mathrm{A}$	All valid input combinations, $\overline{\mathrm{DP}}$, $\overline{\text { MUTE }}, \overline{\mathrm{PF}}$ outputs open $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$
I_{HH}	Input Current Any Pin (keyboard inputs)	10	100	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$
$\mathrm{I}_{\text {IL }}, \mathrm{I}_{\text {IH }}$	Input Current All Other Pins		100	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}$ or $\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$
I_{OZ}	Output Current in High Impedance State		1	$\mu \mathrm{A}$ $\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}$ data outputs (D1-D4) $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}$
fo	Oscillator Frequency	4	10	kHz	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$ (min. duty cycle 30/70)
$\Delta \mathrm{fo} / \mathrm{fo}$	Frequency Deviation	-3	+3	\%	$\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}$ from 4.5 V to 5.5 V . Fixed R-C oscillator components $50 \mathrm{k} \Omega \leqslant \mathrm{R}_{\mathrm{M}} \leqslant 750 \mathrm{k} \Omega$; $1 \mathrm{M} \Omega \leqslant \mathrm{R}_{\mathrm{I}} \leqslant 5 \mathrm{M} \Omega:$ $150 \mathrm{pF} \leqslant \mathrm{C}_{\mathrm{O}} 3000 \mathrm{pF} ; 330 \mathrm{pF}$ most desirable value for C_{O}, fo $<10 \mathrm{kHz}$ over the operating temperature and unit-unit variations
$\mathrm{C}_{\text {IN }}$	Input Capacitance, Any Pin		7.5	pF	
$\mathrm{V}_{\text {TRIP }}$	Supply Voltage at which $\overline{\mathrm{PF}}$ Output Goes Low	2.5	4.5	V	

The device power supply should always be turned on before the input signal sources, and the input signals should be turned off before the power supply is turned off ($V_{S S} \leqslant V_{I} \leqslant V_{D D}$ as a maximum limit). This rule will prevent over-dissipation and posible damage of the input-protection diode when the device power supply is grounded. Power should be applied to the device in "on hook" condition.

Functional Description

The S2562 is a CMOS controller designed for storing or retrieving, normal dialing, redialing or auto dialing and displaying of one of several telephone numbers. It is intended to be used with the AMI standard S5101 256x4 RAM that functions as a telephone number storage. A single S5101 RAM will store up to 328 -digit or 16 16 -digit telephone numbers. The $\mathbf{S} 2562$ can be programmed to work with either 8 -digit or 16 -digit numbers by means of the Number Length Select (NLS) input.
The S2562 uses an inexpensive, but accurate R-C oscillator as a time base from which the dialing rate and inter-digit pause duration (IDP) are derived. Different dialing rates and IDP durations can be implemented by simply adjusting the oscillator frequency. The dialing rate and IDP can be further changed by a $2: 1$ factor by means of the dialing rate select (DRS) and inter-digit pause select (IPS) inputs. Thus, for the oscillator frequency of 8 kHz , dialing rates of 10 and 20 pps and IDP's of 400 and 800 ms can be achieved. The mark/ space ratio is fixed independent of the time base at $40 / 60$. Over supply voltage ($5 \mathrm{~V} \pm 10 \%$), operating temperature range and unit-unit variations, timing accuracy of $\pm 3 \%$ can be achieved. A mute output is also available for muting of the receiver during dial pulsing. See Figure 5 for timing relationship.
The S2562 can be programmed by means of the MODE input for dual tone signaling applications as well. In this mode, it can interface directly with the AMI standard S2559 Tone Generator to produce the required DTMF signals. The tone on/off rate during an auto dial operation in this mode is derived from the time base. For the oscillator frequency of 8 kHz , a tone drive rate of 50 ms on, 50 ms off is obtained. Different rates can be implemented by adjusting the time base as desired. See Tables 2 and 3 for the various combinations. In the tone mode, the mute output is used to gate the tone generator on and off. The 8 address lines that are normally used for addressing the RAM are also used to address the tone generator row, column inputs. Figure 6 shows a typical system application.
The S2562 can perform the following functions:

Normal Dialing

The user enters the desired number digits through the keyboard after going off hook. Dial pulsing starts as soon as the first digit is entered. The entered digits are stored sequentially in the internal memory. Since the device is designed in a FIFO arrangement, digits can be entered at a rate considerably faster than the output rate. Digits can be entered approximately once every 50 ms while the dialing rate may vary from 7 to 20 pps . Debouncing is provided on the keyboard entries to avoid false entries. The number entered is retained for
future redial. Pauses may be entered when required in the dial sequence by pressing the "\#" key, which provides access pauses for future redial. Any number of access pauses may be entered as long as the total entries do not exceed the total number of digits (8 or 16).
An update pulse is generated to update the display digit as a new entry is made.

Redialing

The last number entered is retained in the internal memory and can be redialed by going "off hook" and depressing the "redial" (RDL) key. The RDL key is a unique 2 of 12 matrix location (R5, C3). The number being redialed out is displayed as it is dialed out.
In the tone mode, the redial tone drive rate depends upon the time base as discussed before.

Storing of a Normally Dialed or Redialed Number into the External Memory
After the normal dialing or redialing operation, the telephone number can be stored in the external memory for future repertory dialing use by going on hook and initiating the following key sequence.

1. Push "store" (ST) button.
2. Depress the single digit key corresponding to the desired address location.
Note that the "ST" key is a unique 2 of 12 matrix location ($\mathrm{R}_{5}, \mathrm{C}_{1}$).

Storing of a Telephone Number into the External Memory

This operation is performed "on hook" and no outdialing occurs. A telephone number can be stored in the desired address location by initiating the following key sequence.

1. Push the "*" key (This instructs the device to accept a new number for storage into the internal memory).
2. Enter the digits (including any access pauses) corresponding to the desired number. Digits will be displayed as they are entered.
3. Push the "ST" key.
4. Push the single digit key corresponding to the desired address location.

The entire sequence can be repeated to store as many numbers as desired. However, any memory locations not addressed with a telephone number "store" operation must be addressed with the following sequence.

1. Push the "*" key.
2. Push the "ST" key.
3. Push the single digit key corresponding to the first unused memory location.
4. Push the "ST" key.
5. Push the single digit key corresponding to the next unused memory location.
Steps 4. and 5. are repeated until all remaining memory locations have been addressed.
It should be noted that accessing all memory locations is required only for initial system set-up. This insures that no memory location will contain invalid data from memory power-up. If a memory location were to have invalid, power-up induced data and that location was addressed by the S2562, the S2562 would enter a "Halt" state and cease its normal program activities. To exit from this condition it is necessary to go "on hook" and perform a "store" operation.

Displaying of a Stored Telephone Number

This is an "on hook" operation Either the last dialed number or the number stored in the external memory can be displayed one digit at a time. The key sequence for displaying the last dialed number is as follows:

Push the "RDL" key.
The number in the external memory can be displayed as follows:

1. Push the " R " key.
2. Push the single digit key corresponding to the desired address location.

Note that the " R " key is a unique 2 of 12 matrix location $\left\langle\mathrm{R}_{5}, \mathrm{C}_{2}\right.$).
The number is displayed one digit at a time at a rate determined by the time base. With a time base of 8 kHz the display will be on 500 ms , off 500 ms . The display is updated by producing an update pulse. The update pulse must be decoded with external logic (one inverter and one 2-input gate) as shown in Figure 6.
The display is blanked by outputting an illegal (non BDC) code such as 1111 . The 4511-type BCD to 7 segment decoder driver latch will blank the display when the illegal code is detected. When other driver circuits are employed, external logic must be used to detect the illegal code. Table 4 gives a list of display codes used by S2562.

Repertory Dialing

This is the most common mode of usage and allows the user to dial automatically any number stored in the memory. This mode is initiated by the following key sequence after going off hook.

1. Push the "*" key.
2. Push the single digit key corresponding to the desired address location.

The number is displayed as it is dialed out. In the tone mode, the tone driver rate is dependent on the time base as described earlier.

Pause

Note that the out dialing in the repertory or redial operation continues unless an access pause is detected. The outpulsing will stop and resume only when the user terminates the access pause by pushing the "*". key again.

Power Fail Detection

This output is normally high. When the supply voltage falls below a predetermined value, it goes low. The output can then drive a suitable latching device that will switch the memory to either the tip and ring or an auxiliary battery supply.

Memory Expansion

The memory can be expanded by paralleling additional S5101 RAM's. External logic must be used to enable the desired RAM corresponding to a desired address location. The S2562 can drive up to 2 RAM's without the need of buffering address and data lines.

Keybounce Protection

When a key closure is detected by the S2562, an internal timeout (4 ms at $\mathrm{fo}=8 \mathrm{kHz}$) is started. Any transitions that occur during this timeout will reset the timer to zero so that a key will only be accepted as valid after a noise free timeout period. The key must remain closed for an additional 16 ms before released. Thus, the total make time of the key must be at least 20 ms . The key must be released for at least 1 ms before a new key is activated. Any transitions occurring when the key is released are ignored as long as the make time does not exceed 4 ms .

Keyboard Entry Options

Figure 4 shows two options for arrangement of a keyboard for dialing of 32,8 digit or 16,16 digit numbers. A single S 5101 memory is sufficient for number storage in the basic scheme.

Increasing Number Capacity

To increase the capacity from 16,16 digit numbers to 32, 16 digit numbers, an additional memory must be used. Since in the 16 digit mode, the S2562 decodes keys in locations 17 through 32 as locations 1 through 16 , the additional memory can be simply paralleled with the first memory. Note that keys 17 through 32 are in row 6 and columns 5 and 6. This permits use of a simple decoder to separate the keys into two address fields. A latch then can be set or reset depending upon the location of the key. The outputs of the latch can then directly select the appropriate memory via CE_{2} pin of each memory. Capacity can also be increased to 64,8 digit numbers by paralleling of two 32 key keyboards and two 5101 RAM's selection of appropriate memory can be done as indicated above.

Table 1. Pin/Function Descriptions

Pin	Number	Function
Power (VDD, VSS)	2	These are the power supply inputs. The device is designed to operate from 3.5 V to 7.5 V .
Keyboard ($\mathrm{R}_{1}-\mathrm{R}_{6}, \mathrm{C}_{1}-\mathrm{C}_{6}$)	12	These are 6 row and 6 column inputs from the keyboard contacts. When a key is pushed, an appropriate row and column input must go to $V_{D D}$ or connect to each other. Figures 1 and 2 depict the standard telephone DPCT and X-Y matrix keyboard arrangements that can be used. A logic, interface is also possible as shown in Figure 3. Debouncing is provided to avoid false entry. Key pad entry options are shown in Figure 4.
Number Length Select (NLS)	1	This input permits programming of the device to accept either 8 -digit numbers or 16 -digit numbers.
Mode Select (MODE)	1	This input allows the use of the device in either dial pulsing applications or tone drive applications.
Dial Rate Select (DRS)	1	This input allows selection of two different dialing rates such as 10 or $20 \mathrm{pps}, 7$ or 14 pps , etc. See Tables 2 and 3.
Inter-Digit Pause Select (IPS)	1	This allows selection of the pause duration that exists between dialed digits. It is programmed according to the truth table shown in Table 3. Note that preceeding the first dialed digit is an inter-digit time equal to the selected IDP. Two pause durations, either 400 ms or 800 ms are available at dialing rates of 10 and 20 pps . IDP's corresponding to other dialing rates can be determined from Tables 2 and 3.
Test Input (TEST)	1	This input is used for test purposes. For normal operation it must be tied to $V_{D D}$.
Mute Output ($\overline{\text { MUTE }}$)	1	A pulse is available that can provide drive to turn on an external transistor to mute the receiver during dial pulsing. See Figure 5 for mute and dial pulse output relationship. It is also used as a keyboard disable in the tone drive applications. See Figure 6.
Dial Pulse Output ($\overline{\mathrm{DP}}$)	1	Output drive is provided to turn on a transistor at the dial pulse rate. This output will be normally high and go low during "space" or "break."
Display Memory I/O Data ($\mathrm{D}_{1}-\mathrm{D}_{4}$)	4	These are 4 bidirectional pins for inputting and outputting data to the external memory and display driver.

Table 1. (Continued)

Pin	Number	Function
Memory Enable ($\overline{\mathrm{CE}}$)	1	This line controls the external memory operation.
Memory Read/Write (R/W)	1	This line controls the read or the write operation of the external memory. This output along with the $\overline{\mathrm{CE}}$ output can be used to produce a pulse to update the external display. See Figure 6.
Tone Generator/Memory Address ($\mathrm{A}_{0}-\mathrm{A}_{7}$)	8	These are 8 output lines that carry the external memory address and tone generator row/column information.
Hook Switch ($\overline{\mathrm{HS}}$)	1	This input conveys the state of the subset. "Off hook" corresponds to VSS condition.
Power Fail Detect ($\overline{\mathrm{PF}}$)	1	This output is normally high and goes low when the power supply falls below a certain predetermined value.
Oscillator ($\mathrm{OSC}_{\mathrm{i}}, \mathrm{OSC}_{\mathrm{m}}, \mathrm{OSC}_{\mathrm{o}}$)	3	These pins are provided to connect external resistors R_{I}, R_{M} and capacitor C_{O} to form an $\mathrm{R}-\mathrm{C}$ oscillator that generates the time base for the repertcry dialer. The output dialing rate, tone drive rate and IDP are derived from this time base.
	40	

Table 2. Table for Selection of Oscillator Component Values for Desired Dialing Rate, I_{DP} or Tone Drive Rate

Dial Rate Desired (PPS)	$\begin{gathered} \text { Osc. Freq. } \\ \text { fo } \\ (\mathbf{H z}) \end{gathered}$	Oscillator Components			Dial Rate (PPS)		IDP (ms)		Tone Drive On/Off Time (ms)
		$\begin{aligned} & \mathbf{R}_{M} \\ & (\mathbf{k} \Omega) \end{aligned}$	$\begin{aligned} & \left(\mathbf{R}_{\mathrm{I}}\right) \\ & (\mathbf{k} \Omega) \end{aligned}$	$\begin{gathered} \mathbf{C}_{\mathbf{O}} \\ (\mathbf{p F}) \end{gathered}$	DRS $=\mathrm{V}_{\text {SS }}$	$D R S=V_{D D}$	IPS $=\mathrm{V}_{\text {SS }}$	IPS $=\mathrm{V}_{\mathrm{DD}}$	
5.5/11	4400	TBD	1000	300	5.5	11	1454	727	90/90
6/12	4800	220			6	12	1334	667	83.3/83.3
6.5/13	5200	190			6.5	13	1230	615	77/77
7/14	5600				7	14	1142	571	71/71
7.5/15	6000				7.5	15	1066	533	66.7/66.7
8/16	6400				8	16	1000	500	62.5/62.5
8.5/17	6800	TBD			8.5	17	942	471	59/59
9/18	7200				9	18	888	444	55.5/55.5
9.5/19	7600				9.5	19	842	421	52.6/52.6
10/20	8000	110			10	20	800	400	$50 / 50$
$\begin{aligned} & \text { (fo/800/ } \\ & \text { (fo/400) } \end{aligned}$	fo				fo/800	fo/400	$\frac{6400}{\text { fo }} \times 10^{3}$	$\frac{3200}{\mathrm{fo}} \times 10^{3}$	$\frac{400}{\text { fo }} \times 10^{3 / 400} \frac{10}{\text { fo }} \times 10^{3}$

Figure 1. Standard Telephone Pushbutton Kevboard

Figure 2. SPST Matrix Keyboard Arranged in the 2 of 12 Row, Column Format

SPST MATRIX KEYBOARD:

877285

$$
\Longrightarrow \overbrace{140} \equiv
$$

Figure 3. Logic Interface For the $\mathbf{S} 2562$

G_{1} through G_{12} any CMOS type logic gates. D_{1} through D_{12} DIODES type 1 N 914 . (Optional)

A valid key closure corresponds to a logic high level on one row and one column

Figure 4. Example of Keypad Entry - Options

Table 3

Function	Pin Designation	Input Logic Level	Selection
Dial Rate Selection	DRS	V_{SS} V_{DD}	$(\mathrm{fo} / 800) \mathrm{pps}$ $(\mathrm{fo} / 400) \mathrm{pps}$
Inter-Digit Pause Selection	IPS	V_{DD} V_{SS}	$(3200 / \mathrm{fo)} \mathrm{~S}$ $(6400 / \mathrm{fo}) \mathrm{S}$
Test Input	TEST	V_{SS} V_{DD}	Test Mode Normal Mode
Hook Switch	$\overline{\mathrm{HS}}$	V_{DD}	On Hook Off hook
Mode Selection	MODE	V_{SS}	V_{SS}
Number Length Selection	NLS	V_{DD}	Dial pulse Tone Drive*

*For tone mode also set $\mathrm{DRS}=\mathrm{V}_{\mathrm{SS}}$, $\mathrm{IPS}=\mathrm{V}_{\mathrm{SS}}$ and Test $=\mathrm{V}_{\text {DD }}$.
Note: fo is the oscillator frequency and is determined as shown in Table 2.

Figure 5A. Mute and Dial Pulse Output Timing Relationship

Mute will reset i) when the number of digits dialed out equals either the number of digits entered or the maximum selected (8 or 16) or ii) when an access pause is detected.

Figure 5B. Mute and Tone Output Timing Relationship

Mute output will reset i) when the number of digits dialed out equals the number of digits entered or equals the maximum selec ted (8 or $\mathbf{1 6}$) or ii) when an access pause is detected. In the normal dialing mode when digits are entered one at a time the mute output will reset between digits provided the time between entered digits exceeds $\frac{400}{70}$. In both the normal dialing or automatic dialing mode tone will be output for a fixed duration of $\frac{400}{f \overline{0}}\left(50 \mathrm{msec}\right.$ for $\left.\mathrm{f}_{-}=8 \mathrm{kHz}\right)$.

Figure 6. Typical Application of the S2562

Table 4. Display Codes

$\mathbf{D}_{\mathbf{4}}$	$\mathbf{D}_{\mathbf{3}}$	$\mathbf{D}_{\mathbf{2}}$	$\mathbf{D}_{\mathbf{1}}$	
0	0	0	0	0
0	0	0	1	1
0	0	1	0	2
0	0	1	1	3
0	1	0	0	4
0	1	0	1	5
0	1	1	0	6
0	1	1	1	7
1	0	0	0	8
1	0	0	1	9
1	0	1	0	Not Used
1	0	1	1	Not Used
1	1	0	0	\# (Pause)
1	1	0	1	Not Used
1	1	1	0	Beginning of Number
1	1	1	1	Blank

μ-LAW PCM CODEC/FILTER SET

\square CCIS* Compatible A/B Signaling OptionS3501A/S3502A

General Description

The S3501 and S3502 form a monolithic CMOS Companding Encoder/Decoder chip set designed to implement the per channel voice frequency CODECS used in PCM Channel Bank and PBX systems requiring a $\mu-255$ law transfer characteristic. Each chip contains two sections: (1) a band-limiting filter, and (2) an analog \leftrightarrow digital conversion circuit that conforms to the μ-255 law transfer characteristic. Transmission and reception of 8 -bit data words containing the analog information is performed at $1.544 \mathrm{Mb} / \mathrm{s}$ rate with analog sampling occurring at 8 kHz rate. A strobe input is provided for synchronizing the transmission and reception of time multiplexed PCM information of several channels over a single transmission line.
*Common Channel Interoffice Signaling

S3501 Encoder with Filter Functional Description

S3501 Encoder with Filter chip consists of (1) a bandpass filter with D3 filter characteristic, (2) an analog to digital converter that uses a capacitor array, (3) a phaselock loop that generates all internal timing signals from the externally supplied strobe signal and (4) control logic that performs miscellaneous logic functions.
The band-limiting filter is a fifth order low pass elliptic filter followed by a third order Chebyshev high pass filter. The combined response characteristic (Figure 3) exceeds the D3 filter specifications. The loss below 65 Hz is at least 25 dB which helps minimize the effect of power frequency induced noise.
The analog to digital converter utilizes a capacitor array based on charge redistribution technique (Ref. 1) to perform the analog to digital conversion with a μ-255 law transfer characteristic (see Figure 4).
The timing signals required for the band-pass filter $(128 \mathrm{kHz}$ and 8 kHz$)$ and analog to digital converter $(1.024 \mathrm{MHz})$ are generated by a phase-lock loop comprising a VCO, a frequency divider, a loop filter and a lock detector. The loop locks to the externally supplied 8 kHz strobe pulses. In the absence of the strobe pulses, the lock detector detects the unlocked condition and forces the device into a power-down mode thereby reducing power dissipation to a minimum. Thus power-down mode is easily implemented by simply gating the strobe pulses "off" when the channel is idle. The lock-up time, when strobe pulses are gated "on", is approximately 20 ms . During this time the device outputs an idle code (all 1's) until lock-up is achieved. Note that signaling information is not transmitted during this time.
The control logic implements the loading of the output shift register, gating and shifting of the data word, signaling logic and other miscellaneous functions. A new analog sample is acquired on the rising edge of the strobe pulse. The data word representing the previous analog sample is loaded into the output shift register at this time and shifted out on the positive transitions of the shift clock during the strobe "on" time. (See Figure 1.) The signaling information is latched immediately after the A/B select input makes a transition. The " A " signaling input is selected after a positive transition and the " B "signaling input is selected after a negative transition. Signaling information is transmitted in the eighth bit position (LSB) of the next frame. (See Figures 1 and 2.) In the CCIS compatible A / B signaling option, the A bit is transmitted during the first data bit time. B bit is transmitted during the remaining 7-bit times. (See Figures 1 and 2.)
"All zero" code suppression is provided so that negative input signal values between the decision value numbers 127 and 128 are encoded as " 00000010 ".

S3501 Encoder with Filter

Pin Function Descriptions

Strobe: (Refer to Figure 1 for timing diagram.) This TTL compatible input is typically driven by a pulse stream of 8 kHz rate. Its active state is defined as a logic 1 level and should be active for a duration of 8 clock cycles of the shift clock. A logic " 1 " initiates the following functions: (1) instructs the device to acquire a new analog sample on the rising edge of the signal (logic 0 to logic 1 transition); (2) instructs the device to output the data word representing the previous analog sample onto the PCM-out pin serially at the shift clock rate during its active state; (3) forces the PCM-out buffer into an active state. A logic " 0 " forces the PCM-out buffer into a high impedance state if the Out Control pin is wired to V_{DD}. This input provides the sync information to the phase-lock loop from which all internal timing is developed. The absence of the strobe conveys power-down status to the device. (See functional description of the phase-lock loop for details.)

Shift Clock: This TTL compatible input is typically a square wave signal at 1.544 MHz . The device can operate with clock rates from 56 kHz (as in the single channel 7 -bit PCM system) to 3.152 MHz (as in the T1-C carrier system). Data is shifted out of the PCM-out buffer on the rising edges of the clock after a valid logic 0 to logic 1 transition of the strobe signal.

PCM-Out: This is an open drain buffer capable of driving one low power Schottkey (741s) TTL load with a suitable external pull-up resistor (2 k)). This buffer is in active state (as controlled by the value of the data bit) whenever the strobe signal is a logic 1 and is in a high impedance state when the strobe input is a logic 0 , if the out control pin is wired to $V_{D D}$ supply. When the out control is wired to V_{SS} the state of the output buffer is controlled by the value of the data bit being shifted out. For 56 kHz and 64 kHz PCM systems where output data is continuous bit stream, the out control pin should be connected to V_{SS}.

A/B Select: (S3051 only) (Refer to Figure 2 for timing diagram.) This TTL compatible input is provided in order to select the path for the signaling information. It is a transition sensitive input. A positive transition on this input prior to the negative transition of the strobe input selects the " A " signaling input and is transmitted as the eighth bit in the subsequent frame. Similarly, a negative transition causes selection and transmission of information on the " B " signaling input.

A SIG IN，B SIG IN：These two TTL compatible inputs are provided to allow multiplexing of signaling informa－ tion into the transmitted PCM data word in the eighth bit position in accordance with the timing diagram of Figure 2.

A／B Out：（S3501A only）This is an open drain buffer capable of driving one low power Schottkey（74ls）TTL load with a suitable external pull－up resistor（ $5 \mathrm{k} \Omega$ ）．This is an optional output for implementing CCIS compatible A／B signaling．（See Figure 2b．）During data bit 1 time，A signaling bit is output．During remaining 7 －bit times，B signaling bit is output．This output is in a high impedance state when strobe is not present．

Out Control：This is a CMOS compatible input and must be wired to either the V_{DD} or V_{SS}（except in＇test＇mode）． When connected to the V_{DD} supply，it allows the strobe input to control the active／high impedance state of the PCM－out buffer．When connected to V_{SS} ，the PCM－out buffer is always in the active state（corresponding to the data bit being shifted out）．
$\mathbf{V}_{\text {IN }}, \mathbf{V}_{\text {IN }+}, \mathbf{V}_{\text {INF }}$ ：These three pins are provided for connecting analog signals in the range of $-\mathrm{V}_{\text {REF }}$ to $+\mathrm{V}_{\text {REF }}$ to the device． $\mathrm{V}_{\text {IN }}$ and $\mathrm{V}_{\text {IN }}$ are the inputs of a high input impedance op amp and $V_{\text {INF }}$ is the output of this op amp．These three pins allow the user complete control over the input stage so that the input stage can be connected as a unity gain amplifier，amplifier with gain， amplifier with adjustable gain or as a differential input amplifier．The adjustable gain configuration will facilitate calibration of the transmit channel and testing of the encoder in a stand alone situation．The input stage also allows the user to construct an anti－aliasing filter to provide sufficient suppression at 128 kHz ．（See Figure 7） $-\mathbf{V}_{\mathbf{R E F}}$ ：The input provides the conversion reference for the analog to digital conversion circuit．a value of -3 volts is required．The reference must maintain
$100 \mathrm{ppM} /{ }^{\circ} \mathrm{C}$ regulation over the operating temperature range．A high input impedance buffer is provided on this input which facilitates bussing of the same reference voltage to several devices as well as local R－C filtering（a series resistance of $400 \mathrm{k} \Omega$ with $0.1 \mu \mathrm{~F}$ connected to analog ground）at the input of the device．
AZ Filter：A capacitor C_{AZ}（nominal $0.1 \mu \mathrm{~F}$ ）is required from this pin to analog ground for the functioning of the on－chip auto zero circuit．The most significant bit（sign bit）is filtered by the auto zero circuit and fed back to the input of the A／D converter to compensate for filter out－ put offset variations．This technique insures that the long term average of the sign bit will be zero．
Analog Ground，Digital Ground：Two separate pins are provided for connection of analog signals referenced to analog ground and digital signals referenced to digital ground．This minimizes switching noise associated with the digital signals from affecting the analog signals．
$\mathbf{V}_{\mathbf{D D}}, \mathbf{V}_{\mathbf{S S}}$ ：These are power supply pins．The device is designed to operate from power supply voltages of ± 4.75 to ± 6.0 volts．（Decoupling capacitors to analog ground should be as close to pins as possible）．
Loop Filter：A capacitor CLOOP（nominal $0.1 \mu \mathrm{~F}$ ）is re－ quired from this pin to digital ground to provide filter－ ing of the phase comparator output．Care should be taken to install the capacitor as close to the pin as possible．
Test：This pin is provided to allow for separate testing of the filter and encoder sections of the circuit．The circuit functions normally when this pin is connected to V_{SS} ． When this pin is connected to V_{DD} ，test mode results．In this mode when A SIG IN and B SIG IN inputs are con－ nected to V_{SS} the filter output is disconnected from the encoder input．The encoder input is instead connected to the Out Control pin．For other logical combinations of the A SIG IN and B SIG IN inputs the filter output is connected to the Out Control pin．

Figure 1-A. Typical Waveforms in a Time Multiplexed System

note 2: idle channel noise can be reduced by avoiding coincidence between the falling edge of the shift clock and rising edge of strobe signal.
Figure 1-B. Waveform Detail

Figure $1-\mathrm{C} .64 \mathrm{kHz}$ Continuous Bit Stream Application (Out Control Wired to V_{SS})

Figure 2-A. Encoder A/B Signalling Waveforms

A/b Select

Figure 2-B. CODEC System Timing Diagram

$\underbrace{}_{B_{(n-1)}} \overbrace{\text { RECEIVED }}^{4}$

${\underset{B}{(n+1)}}_{\substack{A_{(n+2)}}}^{4}$

Figure 3. S3501 Encoder Filter Loss Response

Figure 4. $\mu-255$ Law Transfer Characteristics

S3501 Absolute Maximum Ratings

DC Supply Voltage V_{DD}	$+6.5 \mathrm{~V}$
DC Supply Voltage $\mathrm{V}_{\text {SS }}$	$-6.5 \mathrm{~V}$
Operating Temperature	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Power Dissipation at $25^{\circ} \mathrm{C}$	250 mW
Digital Input	$-0.3 \leqslant V_{\text {IN }} \leqslant V_{\text {DD }}+0.3$
Analog Input	$-\mathrm{V}_{\mathrm{REF}} \leqslant \mathrm{V}_{\text {IN }} \leqslant+\mathrm{V}_{\text {REF }}$
$-\mathrm{V}_{\text {REF }}$	$\ldots . . . V_{S S} \leqslant \mathrm{~V}_{\text {REF }} \leqslant 0$

S3501 Electrical Operating Characteristics ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)
Power Supply Requirements

Symbol	Parameter	Min.	Typ.	Max.	Units	Conditions
V_{DD}	Positive Supply	4.75	5.0	6.0	V	
$\mathrm{V}_{\text {SS }}$	Negative Suppply	-4.75	-5.0	-6.0	V	
$-\mathrm{V}_{\text {REF }}$	Negative Reference	-2.4	-3	-3.25	V	
$\mathrm{P}_{\text {OPR }}$	Power Dissipation (Operating)		70	100	mW	$\begin{gathered} \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}, \\ \mathrm{VSS}_{2}=-5.0 \mathrm{~V}, \\ -\mathrm{V}_{\mathrm{REF}}=-3.0 \mathrm{~V} \end{gathered}$
$\mathrm{P}_{\text {STBY }}$	Power Dissipation (Standby)		15		mW	

S3501 AC Characteristics (Refer to Figures 1 and 2)

Symbol	Parameter	Min.	Typ.	Max.	Units	Conditions
$\mathrm{f}_{\text {SC }}$	Shift Clock Frequency	0.056	1.544	3.152	MHz	
D_{SC}	Shift Clock Duty Cycle	40	50	60	$\%$	
t_{rc}	Shift Clock Rise Time			100	ns	
t_{fc}	Shift Clock Fall Time			100	ns	
t_{rs}	Strobe Rise Time			100	ns	
t_{fs}	Strobe Fall Time			100	ns	
$\mathrm{t}_{\text {sc }}(\mathrm{On})$	Shift Clock to Strobe (On) Delay	$0+$		$(1 / 2 \mathrm{CP})-$	Shift Clock Period	
t_{sc} (Off)	Shift Clock to Strobe (Off) Delay	$0+$		$(1 / 2 \mathrm{CP})-$	Shift Clock Period	
t_{d} (On)	Shift Clock to PCM Out (On) Delay		100	125	ns	
t_{d} (Off)	Shift Clock to PCM Out (Off) Delay		100	125	ns	
t_{rd}	PCM Output Rise Time C $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		100	125	ns	Resistive Pull-Up on PCM Out selected for desired rise time
t_{fd}	PCM Output Fall Time C $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		50	70	ns	
$\mathrm{t}_{\mathrm{dss}}$	A/B Select to Strobe Trailing Edge Set Up Time	100			ns	
t_{L}	Phase-Lock Loop Lock Up Time		20	35	ms	
t_{j}	P-P Jitter of Strobe Rising Edge			5	$\mu \mathrm{~m}$	

S3501 DC Characteristics ($\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-5 \mathrm{~V},-\mathrm{V}_{\mathrm{REF}}=-3.0 \mathrm{~V}$ unless otherwise specified)

Symbol	Parameter	Min.	Typ.	Max.	Units	Conditions
$\mathrm{R}_{\text {INA }}$	Analog Input Resistance	10			M 2	$\mathrm{V}_{\text {IN - , }} \mathrm{V}_{\text {IN + }}$ Inputs
$\mathrm{C}_{\text {IN }}$	Input Capacitance			10	pF	All Logic and Analog Input ${ }^{\text {c }}$
$\mathrm{I}_{\text {INL }}$	Logic Input Low Current (Shift Clock, Strobe)			1	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$
$\mathrm{I}_{\text {INH }}$	Logic Input High Current			1	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IH}}=2.0 \mathrm{~V}$
$\mathrm{V}_{\text {IL }}$	Logic Input "Low" Voltage			0.8	V	
$\mathrm{V}_{\text {IH }}$	Logic Input "High" Voltage	2.0			V	
$\mathrm{I}_{\text {REF- }}$	Negative Reference Current			100	nA	
$\mathrm{R}_{\text {REF - }}$	Negative Reference Input Resistance	10			M Ω	
$\mathrm{V}_{\text {OL }}$	Logic Output "Low" Voltage (PCM Out)			0.4	V	$\mathrm{I}_{\mathrm{OL}}=5 \mathrm{~mA}$
$\mathrm{V}_{\text {OL }}$	Logic Output "Low" Voltage (A/B Out)			0.8	V	$\mathrm{I}_{\mathrm{OL}}=1 \mathrm{~mA}$
I_{OH}	PCM Output Off Leakage Current			100	nA	$\mathrm{V}_{\mathrm{O}}=0$ to 5 V

S3502 Decoder with Filter Functional Description

S3502 Decoder with Filter consists of (1) a digital to analog converter that uses a capacitor array; (2) a low pass filter with D3 filter characteristic; (3) a phase-lock loop that generates all internal timing signals from the externally supplied strobe signal and (4) control logic that performs miscellaneous logic functions.
The digital to analog converter uses a capacitor array based on charge redistribution technique (Ref. 1) to perform the D/A conversion with a $\mu-255$ law transfer characteristic (See Figure 4).

The timing signals required for the low pass filter $(128 \mathrm{kHz})$ digital to analog converter (1.024 MHz) are generated by a phase-lock loop comprised of a VCO, a frequency divider, a loop filter and a lock detector. The loop locks to the externally supplied 8 kHz strobe pulses. In the absence of the strobe pulses, the lock detector detects the unlocked condition and forces the device into a power-down mode thereby reducing power dissipation to a minimum. Thus, power-down mode is easily implemented by simply gating the strobe pulses "off" when the channel is idle. During the power-down mode the output amplifier is forced to a high impedance state and the A, B outputs are forced to inactive state. The lock-up time, when strobe pulses are gated "on", is approximate-
ly 20 ms . During this time the A / B outputs and the analog output stage are held in the idle state.
The control logic implements the loading of the input shift register, signaling logic and other miscellaneous functions. A new data word is shifted into the input register on a positive transition of the strobe signal at the shift clock rate. The received data is decoded by the D/A converter and applied to the sample and hold circuit. The output sample and hold circuit is filtered by a low pass filter. The low pass filter is a sixth order elliptic filter. The combined response of the sample and hold and the low pass filter is shown in Figure 5.

Signaling information is received and latched immediately after the A / B select input makes a positive or negative transition. On the positive transition of the A / B select input information received in the eighth bit of the data word is routed to the $\mathrm{A}_{\text {OUT }}$ pin and latched until updated again after the next positive transition of the A / B select input. Similarly "B" signaling information is routed and latched at the $\mathrm{B}_{\text {OUT }}$ pin after each negative transition of the A / B select input. The A and B outputs are designed such that either relay or TTL compatibility can be achieved (see detailed description under Pin/Function descriptions). In the CCIS compatible A / B signaling option " A " bit is latched during the data bit 1 time and " B " bit is latched during the data bit 8 time.

S3502 Decoder with Filter Pin/Functions Descriptions

Strobe: (Refer to Figure 1 for timing diagram.) This TTL compatible input is typically driven by a pulse stream of 8 kHz rate. Its active state is defined as a logic 1 level and is normaly active for a duration of 8 clock cycles of the shift clock. It initiates the following functions: (1) instructs the device to receive a PCM data word serially on PCM IN pin at the shift clock rate; (2) supplies sync information to the phase-lock loop from which all internal timing is generated; (3) conveys power-down mode to the device by its absence. (See functional description of the phase-lock loop for details.)
Shift Clock: This TTL compatible input is typically a square wave signal at 1.544 MHz . The device can operate with clock rates from 56 kHz (as in the single channel 7 -bit PCM system) to 3.152 MHz (as in the T1-C carrier system). Data is shifted in the PCM IN buffer on the falling edges of the clock after the strobe signal makes a logic 0 to logic 1 transition.
PCM IN: This is a TTL compatible input on which time multiplexed PCM data is received serially at the shift clock rate during the active state of the strobe signal.
A/B Select: (S3502 only) (Refer to Figure 6 for timing diagram.) This TTL compatible input is provided in order to select the path for the signaling information. It is a transition sensitive input. A positive transition on this input routes the received signaling bit to the "A" output and a negative transition routes it to the "B" output.
A Out, B Out: These two open drain outputs are provided to output received signaling information. These outputs are designed in such a way that either LS TTL or relay drive compatibility can be achieved. With a suitable pullup resistor (47 K)) connected to the LS TTL logic supply, the output voltage will swing between digital ground and the LS TTL logic supply when the polarity pin is connected to digital ground. (See Figure 6.) The output polarity is the same as the received signaling bit polarity. If the polarity pin is connected to the $\mathrm{V}_{\text {SS }}$ supply, the output voltage will swing between V_{SS} and V_{DD} supplies with a suitable pull-up resistor. This facilitates driving a relay by a PNP emitter grounded transistor in -48 V systems. The output polarities are inverted from the received signaling bit polarity to facilitate relay driving.
Polarity: This pin is provided for testing purposes and for controlling the A/B output polarities and TTL/relay
drive compatibilities. For TTL compatibility this pin is connected to digital ground. The A/B output polarities are then the same as the received signaling bit polarities. For relay drive capability this pin is connected to the $V_{S S}$ supply. The A / B output polarities then are inverted from the received signaling bit polarities. Test mode results when this pin is connected to V_{DD}. In this mode the decoder output (S\&H output) is connected to the B-Out pin while the filter input is connected to the A-Out pin.
$-\mathbf{V}_{\text {REF }}$: The input provides the conversion reference for the digital to analog conversion circuit. and the phaselock loop. A value of -3 volts is required. The reference must maintain $100 \mathrm{ppM} /{ }^{\circ} \mathrm{C}$ regulation over the operating temperature range. A high input impedance buffer is provided on this input which facilitates bussing of the same reference voltage to several devices as well as local R-C filtering at the input of the device.
$\mathbf{V}_{\text {OUTH: }}$ This is the output of the low pass filter which represents the recreated voice signal from the received PCM data words. This is a high impedance output which can be used by itself or connected to the output amplifier stage which has a low output impedance.
Voutl, IN-: These two pins are the output and input of the uncommitted output amplifier stage. Signal at the $\mathrm{V}_{\text {OUTH }}$ pin can be connected to this amplifier to realize a low output impedance with the unity gain, increased gain or reduced gain. This allows easier calibration of the receive channel and testing of the decoder in a stand alone situation.

Analog Ground, Digital Ground: Two separate pins are provided for connection of analog signals referenced to analog ground and digital signals referenced to digital ground. This minimizes switching noise associated with the digital signals from affecting the analog signals.
$\mathbf{V}_{\mathbf{D D}}, \mathbf{V}_{\mathbf{S S}}$: These are power supply pins. The device is designed to operate from power supply voltages of ± 4.75 to ± 6.0 volts.
Loop Filter: A capacitor $\mathrm{C}_{\text {LOOP }}$ (nominal $0.1 \mu \mathrm{~F}$ is required from this pin to digital ground to provide filtering of the phase comparator output.

A/B IN: (S3502A only) This optional TTL compatible input is provided to implement CCIS compatible A/B signaling scheme. Time multiplexed A / B signaling information is applied at this input and recovered by the decoder as shown in Figure 2-b.

S3502 Absolute Maximum Ratings

DC Supply Voltage V DD	$+6.5 \mathrm{~V}$
DCSupply Voltage $\mathrm{V}_{\text {SS }}$	$-6.5 \mathrm{~V}$
Operating Temperature	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Power Dissipation at $25^{\circ} \mathrm{C}$	250 mW
Digital Input	$-0.3 \leqslant V_{\text {IN }} \leqslant \mathrm{V}_{\text {DD }}+0.3$
Analog Input	$-\mathrm{V}_{\text {REF }} \leqslant \mathrm{V}_{\text {IN }} \leqslant+\mathrm{V}_{\text {REF }}$
$-\mathrm{V}_{\text {REF }}$	$\ldots . . . V_{S S} \leqslant \mathrm{~V}_{\mathrm{REF}} \leqslant 0$

S3502 Electrical Operating Characteristics ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)
Power Supply Requirements

Symbol	Parameter	Min.	Typ.	Max.	Units	Conditions
V_{DD}	Positive Supply	4.75	5.0	6.0	V	
$\mathrm{V}_{\text {SS }}$	Negative Suppply	-4.75	-5.0	-6.0	V	
$-\mathrm{V}_{\text {REF }}$	Negative Reference	-2.4	-3	-3.25	V	
$\mathrm{P}_{\text {OPR }}$	Power Dissipation (Operating)		55	100	mW	$\begin{gathered} \mathrm{VDD}=5.0 \mathrm{~V} \\ \mathrm{VSS}=-5.0 \mathrm{~V} \\ -\mathrm{VREF}=-3.0 \mathrm{~V} \\ \hline \end{gathered}$
$\mathrm{P}_{\text {STBY }}$	Power Dissipation (Standby)		15		mW	

S3502 AC Characteristics (Refer to Figures 1 and 6)

Symbol	Parameter	Min.	Typ.	Max.	Units	Conditions
f_{SC}	Shift Clock Frequency	0.056	1.544	3.152	MHz	
D_{SC}	Shift Clock Duty Cycle	40	50	60	$\%$	
t_{rc}	Shift Clock Rise Time			100	ns	
t_{fc}	Shift Clock Fall Time			100	ns	
t_{rs}	Strobe Rise Time			100	ns	
t_{fs}	Strobe Fall Time	$0+$		100	ns	
$\mathrm{t}_{\mathrm{sc}}(\mathrm{On})$	Shift Clock to Strobe (On) Delay				Shift Clock Period	
t_{sc} (Off)	Shift Clock to Strobe (Off) Delay	$0+$		$(1 / 2 \mathrm{CP})-$	Shift Clock Period	
t_{rd}	PCM Input Rise Time			100	ns	
t_{fd}	PCM Input Fall Time		20	35	ms	
t_{L}	Phase-Lock Loop Lock Up Time			5	$\mu \mathrm{~s}$	
t_{j}	P-P Jitter of Strobe Rising Edge			100	ns	
t_{d} (On)	Shift Clock to PCM Input $($ On) Delay			100	ns	
t_{d} (Off)	Shift Clock to PCM Input (Off) Delay	100		ns		
$\mathrm{t}_{\text {A/BS }}$	A/B Select Set Up Time to Strobe Trailing Edge			200	ns	
$\mathrm{t}_{\text {AO }}, \mathrm{t}_{\mathrm{BO}}$	Strobe Falling Edge to A/B Out Delay					

Figure 5. S3502 Decoder Filter with Sample \& Hold Loss Response

Figure 6. Decoder A/B Output Timing

S3502 Decoder with Filter DC Characteristics
$\left(\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-5 \mathrm{~V},-\mathrm{V}_{\mathrm{REF}}=-3.0 \mathrm{~V}\right.$ unless otherwise specified)

Symbol	Parameter	Min.	Typ.	Max.	Units	Conditions
$\mathrm{R}_{\mathrm{L}}\left(\mathrm{V}_{\text {OUTL }}\right)$	Output Load Resistance	600			Ω	
$\mathrm{R}_{\text {INA }}$ (IN-)	Analog Input Resistance	10			$\mathrm{M} \Omega$	
$\mathrm{C}_{\text {INA }}$ (IN-)	Analog Input Capacitance			10	pF	
$\mathrm{I}_{\text {REF- }}$	Negative Reference Current			100	nA	
$\mathrm{R}_{\text {REF- }}$	Negative Reference Input Resistance	10			$\mathrm{M} \Omega$	
V_{IL}	Logic Input (Shift Clock, Strobe, PCM In) "Low" Voltage			0.8	V	
$\mathrm{~V}_{\mathrm{IH}}$	Logic Input "High" Voltage	2.0			V	
$\mathrm{I}_{\mathrm{INL}}$	Logic Input "Low" Current			1	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}$
$\mathrm{I}_{\mathrm{INH}}$	Logic Input "High" Current			1	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IH}}=2.0 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{OL}}$	A, B Output "Low" Voltage			0.8	V	Polarity $=\mathrm{Dig}$. Gnd, IOL $=1 \mathrm{~mA}$
$\mathrm{~V}_{\mathrm{OL}}$	A, B Output "Low" Voltage			$\mathrm{V}_{\mathrm{SS}}+1.0$	V	Polarity $=\mathrm{V}_{\mathrm{SS}}, \mathrm{I}_{\mathrm{OL}}=1 \mathrm{~mA}$

S3501/S3502 System Characteristics
Typical Group Delay Characteristic

Device	Abs. Gr. Delay $\mu \mathrm{s}$		Relative Gr. Delay Distortion (Over Band of 1000 Hz to 2600 Hz wrt 1000 Hz) $\mu \mathrm{s}$
	$\mathrm{f}=1000 \mathrm{~Hz}$	$\mathrm{f}=2600 \mathrm{~Hz}$	
Encoder Low Pass Filter	132	220	88
Encoder High Pass Filter	104	22	-82
Encoder Filter Total	236	242	6
Decoder Low Pass Filter	153	250	97
Encoder + Decoder Filters (Total)	389	492	103
End to End Group Delay (Encoder Analog Input to Decoder Analog Output)	639	742	103

Parameter	Min.	Typ.	Max.	Units	Conditions
Signal-to-Distortion		$\begin{aligned} & 38 \\ & 27 \\ & 22 \end{aligned}$		dB	Analog Input $=0$ to -30 dBm 0 Analog Input $=-30$ to -40 dBm 0 Analog Input $=-40$ to -45 dBm 0
Gain Tracking		$\begin{gathered} \pm .25 \\ \pm .5 \\ \pm 1.5 \\ \hline \end{gathered}$		dB	Analog Input $=+3$ to -40 dBm 0 Analog Input $=-40$ to -50 dBm 0 Analog Input $=-50$ to -55 dBm 0
Idle Channel Noise a) End to End b) Decoder only		$\begin{gathered} 17 \\ 7 \end{gathered}$	$\begin{aligned} & 20 \\ & 10 \\ & \hline \end{aligned}$	dBrnc0	Analog Input=Analog Ground thru 600Ω PCM In to $V_{D D}$
Transmission Level Point		+5.2		dBm	With $-3 V V_{\text {REF }}$ and $\mathrm{R}_{\mathrm{L}}=600 \Omega$

Figure 7. Suggested Anti-Aliasing Filter for Encoder

SINGLE CHANNEL A-LAW PCM CODEC/FILTER SET

Features

\square CMOS Process, for Low Power Dissipation and Wide Supply Voltage Range
\square Full Independent Encoder with Filter and Decoder with Filter Chip Set
\square Meets or Exceeds CCITT G. 711, G. 712 and G. 733 Specifications
\square On-Chip Dual Band Width Phase-Lock Loop Derives All Timing and Provides Automatic Power Down
\square Low Absolute Group and Relative Delay Distortion
\square Single Negative Polarity Voltage Reference Input
\square Encoder with Filter Chip Has Built-In Dual Speed Auto Zero Circuit with Rapid Acquisition During Power Up that Eliminates Long Term Drift Errors and Need for Trimming
\square Serial Data Rates from $56 \mathrm{~kb} / \mathrm{s}$ to $3.152 \mathrm{Mb} / \mathrm{s}$ at $8 \mathbf{k H z}$ Nominal Sampling Rate
\square Programmable Gain Input/Output Amplifier Stage

General Description

The S3503 and S3504 form a monolithic CMOS Companding Encoder/Decoder chip set designed to implement the per channel voice frequency CODECS used in PCM systems requiring an A-law transfer characteristic. Each chip contains two sections: (1) a band-limiting filter, and (2) an analog \leftrightarrow digital conversion circuit that conforms to the A-law transfer characteristic. Typical transmission and reception of 8 -bit data words containing the analog information is performed at $2.048 \mathrm{Mb} / \mathrm{s}$ rate with analog sampling occurring at 8 kHz rate. A strobe input is provided for synchronizing the transmission and reception of time multiplexed PCM information of several channels over a single transmission line. These chips are pin-for-pin replacements for the S3501/ S3502 chip set with the exception of the A-law transfer characteristic conforming to CCITT G. 711 and the unused signaling capability which remains available for special applications.

SIGNAL PROCESSING PERIPHERAL

Features

High Speed VMOS Technology

\square Programmable for Digital Processing of Signals in Voice-Grade Communications Systems and Other Applications with Signal in the Audio Frequency Range
\square Extremely Fast 12-Bit Parallel Multiplier On-Chip (300ns Max. Multiplication Time)
\square Built-in Program ROM (256x17)*, 3-Port Data Memory (256x16) and Add/Subtract Unit (ASU)
\square Pipeline Structure for High Speed Instruction Execution (300ns Max. Cycle Time)
\square Bus-Oriented Parallel I/O for Easy Microprocessor Interface
\square Additional Double Buffered I/O for Ease of Asynchronous Serial Interface
\square On-Chip Crystal Oscillator (20MHz) Circuit
\square Pre-Programmed Standard Parts to Be Announced Shortly

General Description

The S2811 Signal Processing Peripheral (SPP) is a high speed special purpose arithmetic processor with on-chip ROM, RAM, multiplier, adder/subtractor, accumulator and I/O organized in a pipeline structure to achieve an effective operation of one multiply, add and store of up to 12 bit numbers in 300 nanoseconds.

User Support

A real time in circuit emulator, the RTDS2811 is under development. This is a fully compatible hardware emulator with software assembler/disassembler and editor for rapid program development and debugging.
*Out of the 256 instruction locations of the ROM, 250 are usable by the user program. Six instruction locations are reserved for in-house testing.

Absolute Maximum Ratings

Supply VoltageOperating Temperature Range. .. $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range. $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Voltage at any Pin $\mathrm{V}_{\mathrm{SS}}-0.3$ to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
Lead Temperature (soldering, 10 sec .). $200^{\circ} \mathrm{C}$

Electrical Specifications $\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \% ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\right.$ to $+70^{\circ} \mathrm{C}$ unless otherwise specified)

Symbol	Parameter	Min.	Typ.	Max.	Units	Conditions
V_{IH}	Input HIGH Logic " 1 " Voltage	2.0		$\mathrm{~V}_{\mathrm{CC}}+0.3$	V	$\mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{IL}}$	Input LOW Logic " 0 " Voltage	-0.3		0.8	V	$\mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
I_{IN}	Input Logic Leakage Current		1.0	2.5	$\mu \mathrm{Adc}$	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ to 5.25 V
C_{I}	Input Capacitance			7.5	pF	
V_{OH}	Output HIGH Voltage	2.4			V	$\mathrm{I}_{\mathrm{LOAD}}=-100 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{min}$, $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$
V_{OL}	Output LOW Voltage			0.4	V	$\mathrm{I}_{\mathrm{LOAD}}=1.6 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{min}$, $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$
$\mathrm{f}_{\mathrm{CLK}}$	Clock Frequency	5.0	20		MHz	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
P_{D}	Power Dissipation		0.5	1.0	W	$\mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

SPP Pin/Function Descriptions

Microprocessor Interface ($\mathbf{1 6}$ pins)

D0 through D7 (Input/Output) Bi-directional 8-bit data bus.
F0 through F3 (Input) Control Mode/Operation decode. Four microprocessor address leads are used for this purpose. See "SPP CONTROL MODES AND OPERATIONS." (Table 1)
$\overline{\mathrm{IE}} \quad$ (Input) Interface enable. A low level on this pin enables the SPP microprocessor interface. Generated by microprocessor address decode logic.
$\mathrm{R} / \overline{\mathrm{W}} \quad$ (Input) Read/write select. When HIGH, output data from the SPP is available on the data bus. When LOW, data can be written into SPP.
$\overline{\text { IRQ }} \quad$ (Output) Interrupt request. This open-drain output will go LOW when the SPP needs service from the microprocessor.
$\overline{\text { RST }}$ (Input) When LOW, clears all internal registers and counters, clears all modes and initiates program execution at location 00 .

Serial Interface ($\mathbf{6}$ pins)

SICK, SOCK Serial Input/Output clocks. Used to shift data into/out of the serial port.
$\overline{\text { SI }} \quad$ (Input) Serial input. Serial data input port. Data is entered MSB first and is inverted.
SIEN (Input) Serial input enable. A HIGH on this input enables the serial input port. The length of the serial input word (16 bits maximum) is determined by the width of this strobe.
$\overline{\text { SO }} \quad$ (Output) Serial output. Three-state serial output port. Data is output MSB first and is inverted.
SOEN (Input) Serial output enable. A HIGH on this input enables the serial output port. The length of the serial output (16 bits maximum) is determined by the width of this strobe.

Miscellaneous

$\mathrm{OSC}_{\mathrm{i}}, \mathrm{OSC}_{0} \quad$ An external 20 MHz crystal with suitable capacitors to ground can be connected across these pins to form the time base for the SPP. An external clock can also be applied to $\mathrm{OSC}_{\mathrm{i}}$ input if the
$\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{SS}} \quad$ Power supply pins $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0$ volt (ground).

Functional Description

The main functional elements of the SPP (see Block Diagram) are:

1. a 256×17 ROM which contains the user program,
2. a 3 -port 256×16 data memory (one input and two output ports) which allows simultaneous readout of two words,
3. a 12 -bit high-speed parallel multiplier
4. an Add/Subtract unit (ASU),
5. an accumulator register, and,
6. I/O and control circuits.

The SPP is implemented in a combination of clocked and static logic which allows complete overlap of the multiply operation with the read, accumulate, and write operations. The basic instruction cycle is "Read, Modify, Write" where the "Read" brings the operands from the RAM to the multiplier and/or the ASU, the "Modify" operates on those operands and/or the product of the previous operands, and the "Write" stores the result of the "Modify." The cycle time for the instruction is 300 nanoseconds. This results in an arithmetic throughput of about 3.3 multiply and accumulate operations per microsecond. Figure 1 illustrates the SPP Instruction Formats. The OP1 and 0P2 instructions are listed in Tables 2 and 3 and Figure 2 illustrates the basic instuction timing.

The SPP is intended to be used as a microprocessor peripheral. The SPP control interface is directly compatible with the 6800 microprocessor bus, but can be adapted to other 8 -bit microprocessors with the addition of a few MSI packages.

The high-speed number crunching capability of the SPP gives a standard microprocessor system the necessary computational speed to implement complex digital algorithms in real time.

Operating in a microprocessor system, the SPP can be viewed as a "hardware subroutine" module. The microprocessor can call up a "subroutine" by giving a command to the SPP. A powerful instruction set (including conditional branching and one level of subroutine) permits the SPP to function independently of the microprocessor once the initial command is given. The SPP will interrupt the microprocessor upon completion of its task. The microprocessor is free to perform other operations in the interim.

The SPP contains a high-speed serial port for direct interface to an analog-to-digital (A/D) converter. In many applications, real-time processing of sampled analog data can be performed within the SPP without tying up the main microprocessor. Data transfer to the microprocessor occurs upon completion of the SPP processing. The SPP interface environment is summarized in Figure 3.

Separate input and ouput registers exchange data with the SPP data ports. Serial interface logic converts the parallel 2's complement data to serial 2's complement or sign + magnitude format. Data format and source (serial or parallel port) is software selectable.

Table 1 summarizes direct commands given to the SPP from the control processor. These control modes are specified via four address lines brought to the SPP. The SPP is a memory-mapped peripheral, occupying 16 locations of the microprocessor memory space. Providing the proper SPP address will activate the corresponding control mode.

The control modes and the LIBL command enable realtime modification of the SPP programs. This permits a single SPP program to be used in several different applications. For example, an SPP might be programmed as a "universal" digital filter, with cutoff frequency, filter order, and data source (serial or parallel port) selected at execution time by the control microprocessor.

Figure 1. S2811 Object Code Instruction Formats.

Addressing Mode	Effective Address		Multiplier Operands
	U	V/S	
	$(\mathrm{BAS})+0_{1}$	$\mathrm{~V}=(\mathrm{BAS})+0_{2}$	
US	$(\mathrm{BAS})+0_{1}$	$\mathrm{~S}=\mathrm{O}_{2}$	$\mathrm{P}=\mathrm{A} \cdot \mathrm{V}$
D	-	$O H$	

NOTE: \mathbf{O} indicates an octal digit (3 bits) and \mathbf{H} indicates a hexadecimal digit (4 bits)

Table 1. SPP Control Modes and Operations

Input leads $F_{0}-F_{3}$ define several control modes and operations to facilitate the interface between the SPP and a control processor. In general, these inputs are derived from the control processor address leads. The SPP will therefore occupy 16 memory locations, being a memory mapped peripheral.

Control Modes and Operations

F-Bus ($\mathrm{F}_{3}-\mathrm{F}_{0}$)

Hex Value	Mnemonic	Operation/Function
0	CLR (Clear)	Resets control modes to normal operation.
1	RST (Reset)	Software master reset. Clears all SPP registers and starts execution at location 00.
2	DUH (Data U/H)	Specifies MSByte of data word. DUH terminates data word transfer.
3	DLH (Data L/H)	Specifies LSBs of data word.
4	XEQ (Execute)	Starts execution at location specified on data lines.
5	SRI (Ser. Inp.)	Enables serial input port.
6	SRO (Ser. Out)	Enables serial output port.
7	SMI (S/M Inp.)	Converts sign-magnitude serial input data to 2's complement form.
8	SMO (S/M Out)	Converts 2's complement internal data to sign-magnitude serial output.
9	BLK (Block)	Enables block data transfer.
A	XRM (Ext. ROM)	Permits control of SPP using external instruction ROM. A special mode used primarily
		for testing.
B	SOP	Set Overflow Protect.
C	COP	Clear Overflow Protect.
D,E,F		Not Used.

Figure 2. SPP Instruction Timing Diagram

EACH TIME SLOT $=50 \mathrm{~ns}$

Figure 3. SPP Interface Environment

Figure 3-A. SPP to 6800 Interface

Figure 3-B.

Note 1. μ law \rightarrow linear conversion is performed by the SPP software.
*Note 2. The input and output clocks and strobe generators may be realized with two (2) CMOS packages.

Figure 3-C. SPP Serial Port to PCM BUS Interface

Figure 3-D. SPP Serial Interface Timing

> SERIAL INPUT
> 1. SIEN must be synchronized to the falling edge of SICK such that the rise and fall of SIEN follow falling edge of SICK.
> 2. Data may contain $\mathbf{1}$ to $\mathbf{1 6}$ bits defined by width of SIEN. SPP will left justify data words <16 bits.
> 3. Data are sampled on the trailing edge of SICK.
> 4. Minimum 16 SICK pulses $+4 \mu$ sec. are required between SEEN rising edges.
> 5. If serial input buffer is full, SPP will ignore new input samples.
> 6. The serial data is inverted and may be either in sign + magnitude or two's complement code.
> serial output
> 1. Rise and fall of SOEN must follow falling edge of SOCK.
> 2. Output data will be $\mathbf{1}$ to $\mathbf{1 6}$ bits defined by width of SOEN.
> 3. Data are valid from rising edge to rising edge of SOCK so that the receiving system can sample data on tralling edge.
> 4. It the serial output buffer is empty, all ones will be output.
> 5. SO will be in a high impedance state when not enabled by serial output sequence.
> 6. The serial data is inverted and maybe either in sign + magnitude or two's complement code.

Figure 3-E. SPP Parallel Interface Timing

parallel mead

Table 2. OP1 Instructions

TYPE	MNEMONIC	HEX CODE 111-18	ADDRESS MODES	OPERATIONS	DESCRIPTION
No Operation	NOP	0	-. -	None	No OPeration
Accumulator Operations	ABS	C	- -	ABS (A) \rightarrow A	ABSolute value of accumulator is placed in accumulator.
	NEG	D	-.	$-(A) \rightarrow A$	NEGate accumulator contents (two's complement) and replace in accumulator.
	SHR	E	- -	(A) $/ 2 \rightarrow A$	SHift Right accumulator contents 1-bit position. Equivalent to dividing contents by two.
	SGV	F	UV/US, D	$(A) \rightarrow A$, if $\operatorname{sign}(A)=\operatorname{sign} V / S$ $-(A) \rightarrow A$, if $\operatorname{sign}(A) \neq \operatorname{sign} V / S$	SiGn of RAM output \mathbf{V} is the sign of accumulator contents. Accumulator contents are negated (two's complement) if different sign from V. Useful in implementing hard limiter function.
Addition	AUZ	2	UV/US	$(\mathrm{U})+0 \rightarrow \mathrm{~A}$	Add \mathbf{U} and Zero. Loads RAM output U into the accumulator.
Operations					
	AVZ	1	UV/US, D	$(\mathrm{V} / \mathrm{S})+0 \rightarrow \mathrm{~A}$	Add V/S and Zero. Loads RAM output V/S into the accumulator.
	AVA	8	UV/US,D	$(V / S)+(A) \rightarrow A$	Add V/S and Accumulator contents. Sum is placed back into accumulator.
	AUV	4	UV/US	$(\mathrm{U})+(\mathrm{V} / \mathrm{S}) \rightarrow \mathrm{A}$	Add RAM outputs \mathbf{U} and \mathbf{V} /S and place sum in accumulator.
Subtraction	SVA	9	UV/US,D	$(\mathrm{V} / \mathrm{S})-(\mathrm{A}) \rightarrow \mathrm{A}$	Subtract V/S and Accumulator contents. The difference $(V-A)$ is placed in the accumulator.
	SVU	5	UV/ US	$(\mathrm{V} / \mathrm{S})-(\mathrm{U}) \rightarrow \mathrm{A}$	Subtract RAM outputs \mathbf{V} and \mathbf{U} and place difference $(V-U)$ in the accumulator.
Multiply/ Add Operations	APZ	3	- . - (current inst.) UV/US, D (prec. instr)	$(P)+0 \rightarrow A$	Add Product and Zero. Loads multiplier product into the accumulator. The multiplier inputs were set up in the preceding instruction by addressing mode.
	APA	A	-- (current inst.) UV/US, D (prec. instr)	$(P)+(A) \rightarrow A$	Add Product and Accumulator contents. Result is placed in the accumulator. The mutliplier inputs were set up in the preceding instructions by addressing mode.
	APU	6	UV (current instr) UV/US, D (prec. instr)	$(P)+(U)-A$	Add Product and RAM output \mathbf{U}. Sum is placed in accumulator. The multiplier inputs were set up in preceding instruction by addressing mode.
Multiply/ Subtract Operations	SPA	B	- - (current instr) UV/US, D (prec. instr)	$(P)-(A) \rightarrow A$	Subtract Product and Accumulator contents. Difference ($P-A$) is placed in accumulator. The multiplier inputs were set up in preceding instruction by addressing mode.
	- SPU	7	UV/US (current instr) UV/US, D (prec. instr)	$(P)-(U) \rightarrow A$	Subtract Product and RAM output U. Difference $(P-U)$ is placed in accumulator. The multiplier inputs were set up in preceding instruction by addressing mode.

Table 3. SPP Instruction Set

OP2 Instructions

TYPE	MNEMONIC	HEX CODE I16-II2	ADDRESS MODES	OPERATIONS

Table 3. SPP Instruction Set (Continued)

OP2 Instructions

TYPE	MNEMONIC	HEX CODE 116-112	ADDRESS MODES	OPERATIONS	DESCRIPTION
Conditional Branch Instructions	JMCD	16	DT	$\begin{aligned} & H H \rightarrow P C \text {, if } L C \neq 0 \\ & (L C)-1 \rightarrow L C \end{aligned}$	JuMp Conditionally Direct to location indicated by 8-bit (two hex digits) literal HH, if loop counter is not zero. Loop Counter is decremented after the test.
	JMPZ	19	DT	$\mathrm{HH} \rightarrow \mathrm{PC}$ if $(\mathrm{A})=0$	JuMP to location specified if accumulator contents are Zero as a result of previous instruction.
	JMPN	1 A	DT	$\mathrm{HH} \rightarrow \mathrm{PC}$ if $(\mathrm{A})<0$	JuMP to location specified if accumulator contents are Negative as a result of previous instruction.
	JMPO	1B	DT	$\mathrm{HH} \rightarrow \mathrm{PC}$ if (A) Overflows	JuMP to location specified if accumulator Overflows as a result of previous instruction.
	JMIF	1 C	DT	$\mathrm{HH} \rightarrow \mathrm{PC}$ if IF $=0$	JuMp if Input Flag is low to location specitied (Note 4).
	JMOF	1 D	DT	$H H \rightarrow P C$ if $O F=1$	JuMp if Output Flag is high to location specified (Note 4).
Subroutine Instruction	JMSR	14	DT	$(\mathrm{PC})+1 \rightarrow \mathrm{RAR}, \mathrm{HH} \rightarrow \mathrm{PC}$	JuMp to SubRoutine. Execution jumps unconditionally to location indicated by 8 -bit (two hex digits) literal HH. Return address is stored in RAR. Cannot be used with an OP1 instruction requiring specified address mode.
	RETN	13	-	$(R A R) \rightarrow P C$	RETurN from subroutine. Execution continues at instruction following the JMSR instruction.
Complex Instructions	JCDT	18	DT	$\begin{aligned} & H H \rightarrow P C \text { if } L C \neq 0,(L C)-1 \rightarrow L C \\ & (B A S)+1 \rightarrow B A S,(I X)+1 \rightarrow I X \end{aligned}$	Jump Conditionally Direct Dual Tracking. Increment base and Index registers. Loop Counter is decremented after test.
	JCDI	17	DT	$\begin{aligned} & H H \rightarrow P C \text { if } L C \neq 0,(B A S)+1 \rightarrow B A S \\ & (L C)-1 \rightarrow L C \end{aligned}$	Jump Conditionally Direct and Increment base register, Loop Counter is decremented after test.
	TVIB	OA	UV/US	$(\mathrm{VP}) \rightarrow \mathrm{V} / \mathrm{S},(\mathrm{BAS})+1 \rightarrow$ BAS	Transfer contents of VP register to RAM location \mathbf{V} / S and Increment Base register.
	MODE	1 F	- -	Control mode replaces 0P1	OP1 code in this instruction can select any one of the several control MODEs/operations specified in Table 1.
	REPT	12	---	PC inhibited if $L C \neq 0$ (next instruction) (LC) $-1 \rightarrow$ LC (each iteration of next instruction.)	REPeat next instruction until $L C=0$. Increment PC to access next instruction, then suppresses increment of PC if $L C \neq 0$. Loop Counter is decremented with each iteration of the repeated instruction.

NOTES:

1. Whenever the Index register is selected by an instruction OP2 it controls the entire line of code.
2. Loop Counter cannot underflow.
3. S refers to scratchpad.
4. Input flag is low if SPP has not received a new input word. Output flag is high if processor has not read previous output word.
5. (A) represents truncation of the accumulator to 5 most significant bits (sign and 4 MSB).
6. Multiplier input latches and the VP register are not updated when either the DT or L addressing modes are used in conjunction with an OP2 instruction.
7. ... indicates don't care address mode.

SPP Addressing Modes

The SPP provides four methods of data access (see Figure 1). In the direct mode, the full address of the data is specified. Due to limitations in the instruction word size, only one data word at a time may be accessed in this manner, and only even displacement addresses.
In the relative (to base) mode the base register is set up using a LLTI/LIBL sequence, or LABV, and two data words are accessed simultaneously by specifying U and V displacements in the instruction word.
Data may be stored/retrieved from the scratchpad memory by specifying the scratchpad mode and providing scratchpad and U port displacements. The U port data is accessed relative to the base register. The scratchpad data is treated exactly the same as data accessed via the U and V RAM ports, except the 8 -word scratchpad block is substituted for the V data block.
The fourth addressing mode is dual-tracking base addressing. This mode greatly increases throughput in matrix operations.
The JMIF and JMOF instructions provide the capability to synchronize the SPP when operating in synchronous sampled data systems. When executed these commands cause the SPP to set the $\overline{\mathrm{IRQ}}$ output low, thus requesting service from the microprocessor. The SPP can be put in a wait loop until a new data sample is available at the IR or has been read from the OR, as appropriate. The TIRV and LIBL commands facilitate transfer of input data from the IR to data memory or the base register and loop counter respectively. LACO command provides for data transfer to the OR.
External ROM Mode (Figure 4)- The external ROM mode is primarily intended for testing the SPP; however, it can be used in the program development stage or in certain low speed applications for running the SPP with an off-chip PROM.

In this mode the SPP operates as a state machine. Selecting the XRM command initializes the state machine to the idle state (State 1). A HIGH level on the $\overline{\mathrm{IE}}$ input following the entry into the idle state prepares the SPP (State 2) for sequential operation. When IE goes LOW the SPP will output PC on the $\mathrm{D}_{0}-\mathrm{D}_{7}$ lines (State 3). When $\overline{\mathrm{IE}}$ goes HIGH, the LOW to HIGH transition can be used by the external logic to latch the PC. The HIGH level of $\overline{I E}$ forces SPP to State 4. A LOW level following this takes it to State 5 . States 4 and 5 can be used for accessing the lower 8 significant bits of the instruction from the external PROM. SPP enters the lower order instruction bits from $\mathrm{D}_{0}-\mathrm{D}_{7}$ lines on the LOW-to-HIGH transition of $\overline{I E}$. The HIGH level of $\overline{\mathrm{IE}}$ takes SPP to State 6. The new LOW of $\overline{\mathrm{IE}}$ takes it to State 7. States 6 and 7 are used to access the higher order instruction bits from the external PROM on D_{0} - D_{7} lines. At the same time the 17th bit of the instruction word can be entered on the $\overline{\mathrm{IRQ}}$ line. These instruction bits are latched by the SPP on the LOW-to-HIGH transition if $\overline{\mathrm{IE}}$. The HIGH level of $\overline{\mathrm{IE}}$ takes SPP to State 8 which is the execution cycle for the SPP. $\overline{\mathrm{IE}}$ must be held HIGH throughout the execution cycle ($\approx 300 \mathrm{~ns}$). This sequence can be repeated as long as there is no requirement for data transfer to or from the SPP. (See Figure 4.) If the SPP requires service from the microprocessor, the $\overline{\mathrm{IRQ}}$ output will be set LOW during State 8 (execution cycle). If the $\overline{\mathrm{IE}}$ is taken to a LOW level within 250 ns from the beginning of the execution cycle, the SPP will stay in State 1 and allow for data transfer to or from the SPP as normal mode. When $\overline{\mathrm{IE}}$ goes back HIGH after completion of data transfer SPP advances to State 2 and the sequence can start again. When transferring two bytes of data the second transfer (DUH) must be initiated ($\overline{\mathrm{IE}}$ LOW) within the 250 ns limit.

Figure 4. External ROM Cycle Timing Diagram

Table 4. OP1, OP2 Code Cross-Compatibility Table

Notes: X indicates the OP1, OP2 combination cannot be used

1. index register provides "base" information
2. CLAC overrides OP2 instruction
3. OP 1 bits provide function code--see Table 1
4. address is not used with MODE and is available for setting up multiplier and VP register

Circuit Description

Instruction ROM - The SPP program is stored in a 256×17 bit ROM. The 17 -bit wide instruction word (See Figure 1) facilitates multiple operations per instruction. Addresses 250-255 are reserved for chip testing.
Data Memory - The 256×16 bit data memory is organized to provide two operands (U, V) in a single fetch cycle. The 256 data words are structured in a 32 -base' by 8 -displacement' word matrix. Memory is further partitioned such that each base group contains 4 words of RAM (displacements 0 through 3) and 4 words of ROM (displacements 4 through 7). Only the base information is fed to the RAM/ROM core. All eight displacement words associated with that base are accessed in parallel. Two independent displacement multiplexers select the two operands (U, V) from the eight output words. Within an 8 -word base, therefore, the memory appears to have three ports.

Scratchpad Memory - An 8-word scratchpad memory (all RAM) is provided so that common data may be accessed with the full efficiency of data contained within an 8 -word base. An additional multiplexer on the " V " memory port accesses the scratchpad data instead of data from the main memory core. Since this is independent of the base group, the scratchpad contents may be considered as a "floating" base group. This feature doubles the efficiency of equalizer tap update and similar programs.

VP Register - The VP register provides a one-instruction delay of data accessed from the memory " V " port. The memory read cycle precedes the write cycle (see Figure 2). The VP register consists of two portions. Data from the n-th read cycle first enters the master portion. During the next cycle, data from instruction $n+1$ enters the master portion while the instruction n data shifts to the slave portion. The data in the slave portion may be returned to the memory during the instruction $\mathrm{n}+1$ write cycle by use of the commands TVPV or TVIB. thus digital filter z^{-1} delays are implemented with minimal software overhead.
RAR - A return address register allows one level of subroutine nesting. This facilitates repeated use of universal subroutines such as a second order digital filter routine, SIN/COS routine, etc., thus minimizing the program size.

Loop Counter - A loop counter is provided to handle iteration loops up to 32 iterations. Special jump instructions conditional on this loop counter to be zero, provide the iteration test without adding program steps. The
loop counter can be loaded from the Input Register as well as the Accumulator.

Index Register - The index register is 5 bits wide and is used to access lookup tables. This register can be incremented by a software command. Lookup table instructions cause the index contents to be used as the data memory base. Table contents may be used either as data or as jump addresses for computed GO-TO operations. Special instructions allow the base and the index register to work together, providing a dual base addressing scheme. The index is also used to step through the data memory during block transfer operations.

ASU - The heart of the SPP is a 16 -bit adder/subtractor unit (ASU). The ASU operates with two's complement arithmetic, and is provided with zero, negative and overflow detect circuits. The basic adder cell includes look-ahead carry logic to improve speed. The ASU will deliver a 16 -bit sum in 40 nanoseconds. An accumulator latch follows the ASU. A shifter is available to shift the accumulator contents 1 bit to the right, providing a precision divide-by-two.

Multiplier - The SPP incorporates a parallel modified Booth's algorithm multiplier. The multiplier inputs are truncated to 12 bits and the multiplier output is rounded to 16 bits. These truncations produce a product with a resolution of >15 bits. The 16 MSBs of the product are retained. This implies that all numbers in the SPP are represented as fractions less than one in magnitude. The imaginary binary point is to the left of the MSB. This fractional representation and the fixed-point arithmetic requires proper scaling of equations to realize the full accuracy of the SPP. A benefit of fractional representation of numbers is that the multiplier cannot overflow. The propogation delay through the multiplier is 300 nanoseconds. A 300 -nanosecond SPP instruction cycle is achieved by pipelining the multiplier. Data entered into the multiplier during instruction n will result in a product available during instruction $\mathrm{n}+1$. (See Figure 2.) The one instruction delay removes the multiplier propogation delay from the overall instruction cycle.

Multiplication is automatically set up by the address mode (see Figure 1). The multiplier is always active. Products are utilized by specifying one of the multiplier OP1 operators (APZ, APA, APU, SPA, SPU). The multiplier latches are updated wherever the instruction operand is a D or UV/S address. They are not updated if the operand is a Literal or DT, and the product of the previous set-up is retained until one of the multiplier OP1 operators is used to read it out.

Programming Examples

In this section two programming examples are provided to illustrate the use of some of the instructions and the power of the instruction set. The first example is that of a second order digital filter section. This can be implemented as a subroutine in the SPP such that the main program can access it repeatedly to implement higher order filter sections. The second example is that of a SINCOS subroutine that computes the values of $\sin \omega$ and $\cos \omega$ using an approximation formula. This routine was chosen as it illustrates the use of some of the complex instructions and because it is useful in applications that require carrier generation.

1. A Second Order IIR Digital Filter Section: Figure 5 shows a block diagram, filter equations and the computational process involved in the implementation of this filter. It is clear that storage must be provided for the fixed coefficients a_{1}, a_{2}, b_{1} and b_{2} and previous two intermediate results $\mathrm{W}_{\mathrm{n}-1}$ and $\mathrm{W}_{\mathrm{n}-2}$. Figure 7 illustrates the memory configuration at the beginning of the subroutine. Fixed coefficients are conveniently stored in the ROM portion of the data memory in displacements 4 through 7 while displacements 0 and 1 are used
for storage of past values. It is assumed that the present input sample X_{n} is loaded in the accumulator by the main program prior to accessing the subroutine. At the end of the subroutine output $Y n$ is left in the accumulator while $\mathrm{W}_{\mathrm{n}-1}$ and $\mathrm{W}_{\mathrm{n}-2}$ are replaced by W_{n} and $\mathrm{W}_{\mathrm{n}-1}$ so that the next input sample $\mathrm{X}_{\mathrm{n}+1}$ can be processed. Note that only one base value is used by the filter for the storage and main program must load this value in the base register prior to execution.
Figure 6 illustrates the instruction sequence of the subroutine. Only five instructions are needed to completely process the section. This corresponds to a processing time of 1.5 microseconds. Figure 7 illustrates how the memory map gets modified during the execution. A higher order filter is implemented by cascading of the second order sections. The main program can increment the base register and decrement the loop counter after each iteration until the required number of iterations of this subroutine take place. Since the accumulator holds the output of the filter after each iteration, no storage is required in memory. Figure 8 illustrates the program and memory allotment for implementation of a sixth order filter.

Figure 5. Digital Filter Example
A. Second Order Recursive IIR Digital Filter Section

B. Computation Process

Sampling Instants $\cdots \cdots, \mathbf{t}_{(n-2)}, \quad \mathbf{t}_{(n-1)}, \quad \mathbf{t}_{n}, \cdots$

C. Digital Filter Equations

$$
\begin{aligned}
& W_{n}=X_{n}+a_{1} W_{(n-1)}+a_{2} W_{(n-2)} \\
& Y_{n}=W_{n}+b_{1} W_{(n-1)}+b_{2} W_{(n-2)}
\end{aligned}
$$

Figure 6. Digital Filter Subroutine

LINE \#	LABEL	OP1	OP2	OPERAND	COMMENTS
0	DFIL	NOP	NOOP	UV(4,0)	$a_{1}, W_{n-1} \rightarrow$ MULT. ACC $=X_{n}$
1		APA	NOOP	UV(5,1)	$a_{2}, W_{n-2} \rightarrow$ MULT. $X_{n}+a_{1} W_{n-1} \rightarrow$ ACC
2		APA	TACV	UV(6,0)	$\begin{aligned} & b_{1}, W_{n-1} \rightarrow \text { MULT. } \\ & W_{n}=X_{n}+a_{1} W_{n-1}+a_{2} W_{n-2} \rightarrow A C C \\ & A C C \rightarrow(0)\left(\text { replace } W_{n-1}\right) \\ & W_{n-1} \rightarrow(V P) \end{aligned}$
3		APA	TVPV	UV(7,1)	$\begin{aligned} & b_{2}, W_{n-2} \rightarrow \text { MULT. } W_{n}+b_{1} W_{n-1} \rightarrow A C C \\ & W_{n-1} \rightarrow V(1)\left(\text { replaces } W_{n-2}\right) \end{aligned}$
4		APA	RETN	-	$Y_{n}=w_{n}+b_{1} w_{n-1}+b_{2} w_{n-2} \rightarrow A C C$ Return to main program

Figure 7. Memory Maps for the Digital Filter

$\substack{\text { DISPL } \\ \perp \\ 0}$	BASE $=\mathbf{N}$
1	W_{n-1}
2	W_{n-2}
3	-
4	-
5	a_{1}
6	a_{2}
7	b_{1}
	b_{2}

Initial

End of line 2

End of line 3

Final

Figure 8-A. Main Program Instructions for a Sixth Order Filter

LABEL	OP1	OP2	OPERAND	COMMENTS
		\bullet		
		-		
		\bullet		
	NOP	LLTI	002	$(\mathrm{R})=002$
	NOP	LIBL	-	$\begin{aligned} & 0 \rightarrow \text { BAS, } 2 \rightarrow \text { LC } \\ & \text { Initialize base register and loop counter } \end{aligned}$
L00P	-	JMSR	DFIL	Jump to DFIL subroutine
	-	JCDI	LOOP	Increment base, Test if LC $=0$
		-		If non zero go to LOOP
		\bullet		Decrement LC after test
		-		Output of the filter is in accumulator at the end of iterations.

Figure 8-B. Memory Map for the Sixth Order Filter

	0	1	2	-
	$W_{0(n-1)}$	$W_{1(n-1)}$	$W_{2(n-1)}$	
1	$W_{0(n-2)}$	$W_{1(n-2)}$	$W_{2(n-2)}$	
2	-			
3	-			
4	a_{01}	a_{11}	a_{21}	
5	a_{02}	a_{12}	a_{22}	
6	b_{01}	b_{11}	b_{21}	
7	b_{02}	b_{12}	b_{22}	

Implementation of Second Order Digital Filter with Coefficients >1 in the S2811

In order to be able to implement a digital filter with coefficients in the range of -2 to +2 it is necessary to scale the coefficients by a factor of 2 to bring them into the permissible range of -1 and +1 . However, in order to restore the "loop gain" of the recursive section of the filter it is necessary to correct for this in the signal flow network. The easiest way to do this is to double the signal level at the point A in Figure 5. The modified second order filter subroutine is shown below, together with the basic subroutine. Note that in the modified subroutine all the coefficients must be halved.

Basic Subroutine $(\mid$ coefficients $\mid<1)$

0 NOP NOOP UV(4,0) $a_{1}, W_{n-1} \rightarrow$ MULT. $\mathrm{ACC}=\mathrm{X}_{\mathrm{n}}$
1 APA NOOP UV(5,1) $\mathrm{a}_{2}, \mathrm{~W}_{\mathrm{n}-2} \rightarrow$ MULT.
$\mathrm{X}_{\mathrm{n}}+\mathrm{a}_{1} \mathrm{~W}_{\mathrm{n}-1} \rightarrow \mathrm{ACC}$
2 APA TACV UV(6,0) $b_{1}, W_{n-1} \rightarrow$ MULT
$\mathrm{W}_{\mathrm{n}}=\mathrm{X}_{\mathrm{n}}+\mathrm{a}_{1} \mathrm{~W}_{\mathrm{n}-1}+\mathrm{a}_{2}$
$\mathrm{W}_{\mathrm{n}-2} \rightarrow \mathrm{ACC}$
$\mathrm{ACC} \rightarrow \mathrm{V}(0)$ (replace $\mathrm{W}_{\mathrm{n}-1}$) $\mathrm{W}_{\mathrm{n}-1} \rightarrow$ (VP)
$3 \quad \operatorname{TVPV} \operatorname{UV}(7,1) \quad b_{2}, W_{n-2} \rightarrow$ MULT.
$W_{n}+b_{1} W_{n-1} \rightarrow A C C$
$\mathrm{W}_{\mathrm{n}-1} \rightarrow \mathrm{~V}(1)\left(\right.$ replaces $\left.\mathrm{W}_{\mathrm{n}-2}\right)$
4 APA RETN
$\mathrm{Y}_{\mathrm{n}}=\mathrm{W}_{\mathrm{n}}+\mathrm{b}_{1} \mathrm{~W}_{\mathrm{n}-1}+\mathrm{b}_{2}$ $\mathrm{W}_{\mathrm{n}-2} \rightarrow \mathrm{ACC}$
Return to main program

Modified Subroutine (|coefficients $\mid<2$)

0	NOP	NOOP	$\operatorname{UV}(4,0)$	
1	APA	NOOP	$\operatorname{UV}(5,1)$	as above
2	APA	TACV	$\operatorname{UV}(6,0)$	
3	APA	TVPV	$\operatorname{UV}(7,1)$	
4	APA	TACV	US $(-, 0)$	$Y_{n}=W_{n}+b_{1} W_{n-1}+$
				$b_{2} W_{n-2 \rightarrow A C C \rightarrow S(0)}$
5	AUV	TACV	UV $(0,0)$	$\mathrm{U}(0)+V(0) \rightarrow A C C \rightarrow V(0)$
				$=2 W_{n-1}$
6	AVZ	RETN	US $(-, 0)$	$S(0) \rightarrow A C C=Y_{n}$

2. SINCOS: SINCOS is a subroutine that provides the $\sin \omega$ values for values of ω satisfying the condition $-\pi \leq \omega<\pi$. Since all numbers in the SPP are represented as fractions less than 1 it is first necessary to scale by a factor π such that $-1 \leq \frac{\omega}{\pi}<1$. The value $\omega^{\prime}=\frac{\omega}{\pi}$ is assumed to be in the accumulator at the beginning of the subroutine. In a practical application the control processor can enter ω^{\prime} into the SPP before the computation begins. If the control processor does not have scaled values of ω available, an alternative method can be used. In this method the control processor can enter $\frac{\omega}{4}$ into the SPP. $\frac{\omega}{4}$ can be easily obtained by a 2 -bit right shift operation. The SPP can then convert $\frac{\omega}{4}$ to $\frac{\omega}{\pi}$ by first multiplying $\frac{\omega}{4}$ by $\frac{2}{\pi}$ and then adding the result to itself. In any event it is assumed that $\omega^{\prime}=\frac{\omega}{\pi}$ is available in the accumulator when the subroutine is accessed. When the control is returned to the main program $\sin \omega$ is available in $s(0)$ and $\cos \omega$ is available is $s(1)$ while ω^{\prime} remains in the accumulator as well as $s(2)$. The subroutine computes the $\sin \omega$ and $\cos \omega$ values by use of the following approximation:
For small values of $\Delta \omega$:

$$
\begin{aligned}
& \sin \Delta \omega \cong \Delta \omega \\
& \cos \Delta \omega \cong 1 \\
& \sin \omega=\sin (\hat{\omega}+\Delta \omega)=\sin \hat{\omega} \cos \Delta \omega+\cos \hat{\omega} \sin \Delta \omega \\
& \cong \sin \hat{\omega}+\Delta \omega \cos \hat{\omega} \\
& \cos \omega=\cos (\hat{\omega}+\Delta \omega)=\cos \hat{\omega} \cos \Delta \omega-\sin \hat{\omega} \sin \Delta \omega \\
& \cong \cos \hat{\omega}-\Delta \omega \sin \hat{\omega}
\end{aligned}
$$

ω represents the nearest quantized value to ω. In the subroutine the quantized value is obtained by truncating $2\left|\omega^{\prime}\right|=\left(\frac{2}{\pi}|\omega|\right)$. The truncation results in five
most significant bits including the sign bit. Since absolute value is truncated, sign bit is zero. The four most significant magnitude bits provide sixteen quantized angles $2\left|\hat{\omega}^{\prime}\right|=\omega_{\mathrm{q}} \cdot \omega_{\mathrm{q}}$ is loaded in the index register. Use of SWAP command allows the index register to access the appropriate block of data memory corresponding to ω_{q}. Sin $\hat{\omega}$ and $\cos \hat{\omega}$ values corresponding to ω_{q} are stored in displacements 4 and 5 (ROM portion) of the appropriate block addressed by ω_{q}. Figure $10-\mathrm{A}$ illustrates the organization of the lookup table.

Figure 9 shows a detailed sequence of instructions for the SINCOS routine. The routine is nineteen instructions long and takes 5.7 microseconds to execute. As seen from Figure 9, the first objective of the program is to transform the input angle to the first quadrant. This transformation process is graphically illustrated in Figure $10-\mathrm{B}$. The input angle ω^{\prime} is stored in $s(0)$ and a number $\left[1 / 2-\left|\omega^{\prime}\right|\right]$ is stored in $s(1)$. The signs of these numbers are used to assign the sign to the magnitudes of $\sin \omega$ and $\cos \omega$ computed by the approximation formulae. Table 10-C illustrates how the sign of $\sin \omega$ can be taken from the sign of the angle ω^{\prime} and sign of $\cos \omega$ can be taken from the sign of the number $\left[1 / 2-\left|\omega^{\prime}\right|\right]$. The
signs are assigned by use of the SGV instruction at the end of the subroutine. The quantized angle ω_{q} is computed by truncation of the number $2\left|\omega^{\prime}\right|$. The truncated value (five most significant bits including sign bit) are loaded in the index register by the LAXV instruction and allows direct access of the $\sin \hat{\omega}$ and $\cos \hat{\omega}$ values from the appropriate block. $\Delta \omega$ is computed simply as a difference between the input and the quantized angle. The $\sin \omega$ and $\cos \omega$ values are stored in $s(0)$ and $s(1)$ respectively while the angle ω^{\prime} is retained in the accumulator as well as $s(2)$ when the program exits.
The SINCOS subroutine ilustrates the following operations:

- Scaling
- Table Lookup
- Use of SWAP command
- Use of SCRATCHPAD
- All Data Addressing Modes
- Use of SGV command
- Use of TVPV command
- Truncation of the accumulator using LAXV command.

Figure 9. SINCOS Subroutine

SINCOS Routine

LINE \#	LABEL	OP1	OP2	OPERAND	COMments
0	SINCOS	NOP	TACV	UA(-, 0)	$\omega^{\prime}=\stackrel{\omega}{\pi} \rightarrow s(0), A C C$
1		ABS	SWAP	-	$\left\|\omega^{\prime}\right\| \rightarrow$ ACC, SWAP roles of base and index
2		SVA	NOOP	$D(1 / 2)$	$1 / 2^{-}\left\|\omega^{\prime}\right\| \rightarrow A C C, D(1 / 2)$ refers to the address of location containing the constant $1 / 2$
3		NOP	TACV	US(,- 1)	$1 / 2-\left\|\omega^{\prime}\right\|-s(1), A C C$
4		AVA	NOOP	US(-, 1)	$s(1)+A C C \rightarrow A C C=\left(1-2\left\|\omega^{\prime}\right\|\right)$
5		ABS	NOOP	--	$\left\|\left(1-2\left\|\omega^{\prime}\right\|\right)\right\| \rightarrow$ ACC
6		SVA	NOOP	$D(1)$	$2\left\|\omega^{\prime}\right\| \rightarrow A C C$
7		NOP	LAXV	US($(-, 2)$	$2\left\|\omega^{\prime}\right\| \rightarrow \mathrm{s}(2) . \hat{\omega}^{\prime} \rightarrow \mathrm{ACC}, \mathrm{IX} . \hat{\omega}^{\prime}=$ quantized value corresponding to ω
8		SVA	TACV	US (-,2)	$2\left\|\omega^{\prime}\right\|-\hat{\omega}^{\prime}=2 \Delta \omega^{\prime} \rightarrow \mathrm{ACC}, \mathrm{s}(2)$
9		AVA	NOOP	US(-,2)	$\mathrm{s}(2)+\mathrm{ACC}=\rightarrow \mathrm{ACC}\left(4 \Delta \omega^{\prime}\right)$
10		NOP	NOOP	$\mathrm{D}(\pi / 4)$	$\frac{\pi}{4}, 4 \Delta \omega^{\prime} \rightarrow \text { MULT. }$
11		APZ	TACV	US (-, 2)	$\pi \Delta \omega^{\prime} \rightarrow \mathrm{ACC}, \mathrm{s}(2)\left(\pi \Delta \omega^{\prime}=\Delta \omega\right)$
12		NOP	NOOP	US(4,2)	$\sin \hat{\omega}, \Delta \omega \rightarrow$ MULT. Index register contents $\hat{\omega}^{\prime}$ point to $\sin \hat{\omega}$ in displacement 4 of the appropriate block.
13		SPU	TACV	US(5,2)	$\begin{aligned} & \Delta \omega \sin \hat{\omega}-\cos \hat{\omega}=-\cos \omega \rightarrow A C C, s(2) . \\ & \Delta \omega, \cos \hat{\omega} \rightarrow \text { MULT. } \end{aligned}$
14		APU	SWAP	US(4,2)	$\sin \hat{\omega}+\Delta \omega \cos \hat{\omega}=\sin \omega \rightarrow A C C$. Transfer control back to base register.
15		SGV	TACV	US (-, 0)	Assign the sign of ω^{\prime} to $(\sin \omega)$ and store result in $\mathrm{s}(0)$. $\sin \omega \rightarrow \mathrm{s}(0), \omega^{\prime} \rightarrow(V P)$
16		AVZ	TVPV	US (-,2)	$-\cos \omega \rightarrow A C C$. (VP) $=\omega^{\prime} \rightarrow s(2)$. Refer to the description of the VP register for explanation of TVPV instruction.
17		SGV	TACV	US(-, 1)	Assign the sign of $\left[1 / 2-\left\|\omega^{\prime}\right\|\right]$ to $\cos \omega$ and store result in $\mathrm{s}(1) \cdot \cos \omega \rightarrow \mathrm{s}(1)$
18		AVZ	RETN	US(-,2)	$\omega^{\prime}=\frac{\omega}{\pi} \rightarrow$ ACC. Return to main program.

Figure 10-A. Organization of the Lookup Table for SINCOS Routine

Figure 10-B. Graphical Angle Transformation Process

Figure 10-C. Table for Computing Sign of $\boldsymbol{\operatorname { s i n }} \omega, \boldsymbol{\operatorname { c o s }} \omega$ QUANDRANTS

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
Range of ω	$0 \rightarrow \pi / 2$	$\pi / 2 \rightarrow \pi^{\prime}$	$-\pi \rightarrow-\pi / 2$	$-\pi / 2 \rightarrow 0$
Range of ω^{\prime}	$0 \rightarrow 1 / 2$	$1 / 2 \rightarrow 1$	$-1 \rightarrow-1 / 2$	$-1 / 2 \rightarrow 0$
Range of $\left[1 / 2-\left\|\omega^{\prime}\right\|\right]$	$1 / 2 \rightarrow 0$	$0 \rightarrow-1 / 2$	$-1 / 2 \rightarrow 0$	$0 \rightarrow 1 / 2$
Sign of ω^{\prime}	+	+	-	-
Sign of $\sin \omega$	+	+	-	-
Sign of $\left[1 / 2-\left\|\omega^{\prime}\right\|\right]$	+	-	-	+
Sign of $\cos \omega$	+	-	-	+

FAST FOURIER TRANSFORMER

Features

\square Performs 32 Complex or 64 Real Point Forward or Inverse FFT in 1.5 msec Using Decimation in Frequency
\square Transform Expandable Either by Using Multiple S2814s for Minimum Processing Time or a Single S2814 for Minimum Hardware
\square Operates with S6800 Microprocessor and 6844 DMA Controller, or S9900 Microprocessor and AM2940 DMA Controller for Higher Speed
\square Block Data Transfer and I/O Carried Out on Microprocessor Data Bus
\square Optional Conditional Array Scaling Gives Over 70dB Dynamic Range With 57 dB resolution on Transforms Up to 2048 Points.
\square Optional Windowing Algorithm Permits Use of Arbitrary Weighting
\square Coefficient Generation On Chip, With Rotation Algorithm for Transform Expansion
\square Uses AMI's VMOS Technology to Achieve High Speed and Low Power Dissipation

General Description

The AMI S2814 Fast Fourier Transformer calculates FFTs using a decimation in frequency technique for minimum distortion. The S2814 calculates a basic 32-point FFT using internal coefficients. A coefficient rotation algorithm is provided so that larger FFT's may be implemented (in blocks of 32 -points). The S2814 includes optional conditional array scaling for maximum range.
The S2814 is intended for use in a microprocessor system (see Figure 1) including a microprocessor, ROM, RAM and a DMA controller. The microprocessor controls the flow of signal processing by selectively calling routines in the S2814. Data points are stored in RAM, and are block transferred into and out of the S2814 using the DMA controller. Windowing weights and setup data are loaded into the S2814 prior to processing. A 6800 -compatible source listing of a suitable control program, complete with description, will be available to the S2814 user at no charge. This control program will also be available as a pre-programmed ROM.

Absolute Maximum Ratings:

Supply Voltage	+7V D.C.
Operating Temperature Range	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Voltage on any Pin	$\mathrm{V}_{\mathrm{SS}}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
Lead Temperature (Soldering, 10sec) $200^{\circ} \mathrm{C}$

Abbreviated Electrical Specifications

$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}+5 \% . \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} . \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

FFT Performance Data

\# Of Points (Complex)	\# Of 32 Point Transforms		
		Using Single $\mathbf{S 2 8 1 4}$	Using N S2814s
32	1	1.5	-
64	2	3.35	2.25
128	4	8.2	2.25
256	8	19.4	2.62
512	16	44.8	3.0
1024	32	101.6	3.35
2048	64	225.2	3.5

Note: Executions assume 2Mbyte/sec DMA transfer rate.

ADVANCED PRODUCT DESCRIPTION
S3525A/S3525B

DTMF BANDSPLIT FILTER

Features

CMOS Technology for Wide Operating Single Supply Voltage Range (10.0 V to 13.5 V). Dual Supplies ($\pm 5.0 \mathrm{~V}$ to $\pm 6.75 \mathrm{~V}$) Can Also Be Used.\square Uses Standard $\mathbf{3 . 5 8 M H z}$ Crystal as Time Base.
\square Ground Reference Internally Derived and Brought Out.
\square Programmable Gain Input Amplifier Stage
\square Limiter and Filter Outputs Separately Available

General Description

The S3525 DTMF Bandsplit Filter is a 18 -pin monolithic CMOS integrated circuit designed to implement a high quality DTMF tone receiver system in conjunction with a suitable receiver circuit. The device includes a dial tone filter, high group and low group separation filters and limiters for squaring of the filtered signals. An uncommitted input amplifier allows a programmable gain stage. An overall signal gain of 6 dB is provided for the low group and high group signals in the circuit. The dial tone filter is designed to provide a rejection of at least 52 dB in the frequency band of 300 Hz to 500 Hz . The only difference between the S3525A and the S3525B is the frequency of output clock signal at the CKOUT pin. In the S3525B, it is a 894.89 kHz square wave while in the S 3525 A , it is a 3.58 MHz buffered oscillator signal. The S3525A can be used with digital DTMF receiver chips that need the TV crystal time base allowing use of only one crystal between the filter and receiver chips.

Absolute Maximum Ratings:

Analog Input $\ldots \ldots \ldots\left(V_{D D}-V_{S S}\right) \leqslant V_{I N} \leqslant 3 / 4\left(V_{D D}-V_{S S}\right)$
Operating Supply Voltage $\left(\mathrm{V}_{\mathrm{DD}} \cdot \mathrm{V}_{\mathrm{SS}}\right) \ldots .$.

Electrical Operating Characteristics: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter/Conditions	Min.	Typ.	Max.	Units
V_{DD}	Positive Supply (Ref to $\mathrm{V}_{\text {SS }}$)	10.0	12.0	13.5	V
$\mathrm{V}_{\text {OL }}^{\text {(CKOUT }}$)	Logic Output "Low" Voltage $\mathrm{I}_{\mathrm{OL}}=160 \mu \mathrm{~A}$	$\mathrm{V}_{\text {SS }}$		$\mathrm{V}_{\mathrm{SS}}+0.4$	
V_{OH}	Logic Output"High" Voltage $\mathrm{I}_{\mathrm{OH}}=4 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{DD}}-1.0$			V
$\mathrm{R}_{\text {INA (IN-,.IN+) }}$	Analog Input Resistance	10			$\mathrm{M} \Omega$
$\mathrm{C}_{\text {INA (INA }- \text {, IN+) }}$	Analog Input Capacitance			15	pF
$\mathrm{V}_{\text {REF }}$	Reference Voltage Out	$\begin{gathered} 0.49 \\ \left(\mathrm{~V}_{\mathrm{DD}}-\mathrm{v}_{\mathrm{SS}}\right) \end{gathered}$	$\begin{gathered} 0.50 \\ \left(\mathrm{~V}_{\mathrm{DD}}-\mathrm{v}_{\mathrm{SS}}\right) \end{gathered}$	$\begin{gathered} 0.51 \\ \left(\mathrm{~V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}\right) \end{gathered}$	V
$\mathrm{V}_{\mathrm{OR}}=\left\|\mathrm{BV}_{\text {REF }}-\mathrm{V}_{\mathrm{REF}}\right\|$	Offset Reference Voltage			50	mV
P_{D}	Power Dissipation $\mathrm{V}_{\mathrm{DD}}=12.5 \mathrm{~V}$		400		mW
	$\mathrm{V}_{\mathrm{DD}}=13.5 \mathrm{~V}$ and $0^{\circ} \mathrm{C}$			650	mW

Typical Op Amp Characteristics (On Chip)

G_{BW}	Unity Gain Bandwidth	1.2	1.8		MHz
$\mathrm{f}_{3 \mathrm{~dB}}$	3dB Point (wrt $\left.\mathrm{A}_{\mathrm{O}}\right)$		70		Hz
$\mathrm{~A}_{\mathrm{O}}$	DC Open Loop Gain	80	86		dB
ϕ	Phase Margin	60	65		deg
CMRR	Common Mode Rejection	60	70		dB
$\mathrm{~V}_{\mathrm{OS}}$	Offset Voltage		10	25	mV
WN	Wideband Noise Over 3 MHz		25	50	$\mu \mathrm{~V}_{\mathrm{rms}}$
P_{D}	Power Dissipation $\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}\right)=10 \mathrm{~V}$		5	7.5	mW

S3525A/S3525B

System Specifications

Symbol	Parameter/Conditions	Min.	Typ.	Max.	Units
THD	Total Harmonic Distortion Total Harmonic Distortion (dB). Dual tone of 770Hz and 1336 Hz sinewave applied at the input of the filter at a level of 3dBm each. Distortion measured at the output of each filter over the band of 300 Hz to $10 \mathrm{kHz}\left(\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V}\right)$	40			dB
ICN	Idle Channel Noise Idle Channel Noise measured at the output of each filter with C-message weighting with input of the filter termi- nated to BV REF		1	mV rms	
GD_{L}	Group Delay Low Group Filter Delay over the band of 50 Hz to 3 kHz		4.5	6.0	ms
GD_{H}	High Group Filter Delay over the band of 50 Hz to 3 kHz		4.5	6.0	ms

Pin/Function Descriptions

CKOUT (S3525A) Oscillator output is buffered and brought out at this pin. This output can be used to drive the oscillator input of a receiver chip that uses the TV crystal as time base. This allows use of only one crystal between the filter and receiver chips.
CKOUT (S3525B) This is a divide by 4 output from the oscillator and is provided to supply a clock to receiver chips that use 895 kHz as time base.
IN-, IN + , Feedback These three pins provide access to the input operational amplifier on chip. The feedback pin in conjunction with the IN - and IN + pins allow a programmable gain stage. (See Note.)

FH OUT, FL OUT These are outputs from the high group and low group filters. These can be used as inputs to analog receiver circuits.

HI IN - , HI IN $+\quad$ These are inputs of the high group and low group limiters. These are used for squaring of LO IN-, LO IN+

FHSQ,
FLSQ
$\mathbf{V}_{\mathrm{DD}}, \mathbf{V}_{\mathbf{S S}}$
$V_{\text {REF }} \quad$ An internal ground reference is derived from the $V_{D D}$ and $V_{S S}$ supply pins and brought out to this pin. Typically $\mathrm{V}_{\text {REF }}$ is $1 / 2\left(\mathrm{~V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}\right)$ above V_{SS}.
$\mathbf{B V}_{\text {REF }} \quad$ Buffered $\mathrm{V}_{\text {REF }}$ is brought out to this pin

Note: Because the overall signal gain is approximately $6 d B$, in order to maintain performance, the MAXIMUM signal voltage developed at "feedback" (pin 13) should be $3 / 8\left(V_{D D^{-}} V_{S S}\right)<V_{I N}<5 / 8\left(V_{D D^{-}} V_{S S}\right)$.

Figure 1. DTMF Bandsplit Filter Loss/Delay Characteristics

Consumer Products
AMERICAN MICROSYSTEMS, INC.
\square

REMOTE CONTROL CIRCUITS

Part No.	Description	Process	Power Supplies	I/O Bits	Packages
S2600	Remote Control Transmitter	CMOS	+7 V to +10 V	11	16 Pin
S2601	Remote Control Receiver	P-I 2	+10 V to +18 V	5	22 Pin
S2742	Remote Control Decoder	PMOS	+9 V		18 Pin
S2743	Remote Control Encoder	PMOS	+9 V	16 Pin	

TOUCHCONTROL ${ }^{\text {TM }}$ INTERFACE CIRCUITS

Part No.	Description	Process	Power Supplies	Input/Output	Packages
S9260/61	Seven-Switch Interface	P-I ${ }^{2}$	-13.5 V to -18 V	CMOS/TTL	22 Pin
S9263/64/65	Sixteen-Switch Interface	PI^{2}	-13.5 V to -18 V	CMOS/MOS/TTL	40 Pin
S9262	Fourteen-Switch Interface	PI^{2}	-13.5 V to -18 V	MOS/TTL	22 Pin
S9266	Thirty-Two-Switch Interface	$\mathrm{P}^{2} \mathrm{I}^{2}$	-13.5 V to -18 V	MOS/TTL	40 Pin
TCK-100	Touch Control Evaluation Kit				

CONSUMER CIRCUITS

Part No.	Description	Process	Power Supplies	Digits	Packages
S1856	Digital Clock Circuit - LED/LCD Fluorescent Auto Clock	P-I ${ }^{2}$	-6 V to -22 V	$31 / 2$	40 Pin
S2709	Fluorescent Automotive Digital Clock	P-I ${ }^{2}$	+12 V	4	22 Pin

Part No.	Description	Process	Power Supplies	Outputs	Packages
S2809	Universal Display Driver	P-I ${ }^{2}$	+8 V to +22 V	32	40 Pin

ORGAN CIRCUITS

Part No.	Description	Process	Power Supplies	Power Dissipation	Packages
S10110	Analog Shift Register	P-I ${ }^{2}$	-24V		8 Pin
S10111	Analog Shift Register	P-I ${ }^{2}$	-24V		8 Pin
S10129	Six-Stage Frequency Divider	P-I ${ }^{2}$	-14 V to -27 V	350 mW	14 Pin
S10130	Six-Stage Frequency Divider	P-I ${ }^{2}$	-14 V to -27 V	350 mW	14 Pin
S10131	Six-Stage Frequency Divider	P-I ${ }^{2}$	-14 V to -27 V	350 mW	14 Pin
S10377	Analog Shift Register	P. I^{2} MOS	-14 V to -27 V	350 mW	8 Pin
S10430	Divider-Keyer	P-12 MOS	-14 V to -27 V	350 mW	40 Pin
S2567	Rhythm Counter	HI V ${ }_{\text {T }}$	-15 V to -27 V	400 mW	14 Pin
S2688	Noise Generator	P-I ${ }^{2}$	-14 V to -27 V	350 mW	8 Pin
S8890	Rhythm Generator	P-I ${ }^{2}$	-12V	400 mW	40 Pin
S9660	Rhythm Generator	P-I ${ }^{2}$	-12V	400 mW	28 Pin
S50240	Top Octave Synthesizer	P-I ${ }^{2}$	-11 V to -16 V	360 mW	16 Pin
S50241	Top Octave Synthesizer	P-I ${ }^{2}$	-11 V to -16 V	360 mW	16 Pin
S50242	Top Octave Synthesizer	P-I ${ }^{2}$	-11 V to -16 V	360 mW	16 Pin
S50243	Top Octave Synthesizer	P-I ${ }^{2}$	-11 V to -16 V	360 mW	16 Pin
S50244	Top Octave Synthesizer	P-I ${ }^{2}$	-11 V to -16 V	360 mW	16 Pin
S50245	Top Octave Synthesizer	P-I ${ }^{2}$	-11V to -16V	360 mW	16 Pin

ENCODER/DECODER REMOTE-CONTROL 2-CHIP SET

Features

\square Small Parts Count - No Crystals Required
\square Easily Used in LED, Ultrasonic, RF, or Hardwire Transmission Schemes
\square Very Low Reception Error
\square Low Power Drain CMOS Transmitter for Portable and Battery Operation

- 31 Commands - 5-bit Output Bus with Data Valid

Functional Description

The S2600/S2601 is a set of two LSI circuits which allows a complete system to be implemented for remote control of televisions, toys, security systems, industrial controls, etc. The choice of transmission medium is up to the user and can be ultrasonic, infrared radio frequency, or hardwire such as twisted pair or telephone.
The use of a synchronizing marker technique has eliminated the need for highly accurate frequencies generated by crystals. The S2600 Encoder typically generates a 40 kHz carrier which it amplitude-modulates with a base-band message of 12 bits, each bit preceded by a synchronizing marker pulse.
Bits 1 and 12 denote sync and end-of-message, respectively, bits 2 thru 6 constitute a fixed preamble which must be received correctly for the command bits to be received, and bits 7 thru 11 contain the command data. The S2601 Decoder produces an output only after two complete, consecutive, identical, 12 -bit transmissions. Marker pulses, preamble bits, and redundant transmissions, have given the S2600/ S2601 system a very high immunity to noise, without a large number of discrete components.

S2600 Encoder

The S2600 is a CMOS device with an on-chip oscillator, 11 keyboard inputs, a keyboard encoder, a shift register, and some control logic. The oscillator requires only an external resistor and capacitor, and to conserve power, runs only during transmission. Keyboard inputs are active-low, and have internal pull-up resistors to $V_{D D}$. When one keyboard input from the group A thru E is activated with one from the group F thru K, the keyboard encoder generates a 5 -bit code, as given in the table entitled ((S2600/ S2601 CODING," below. This code is loaded into a shift register in parallel with the sync, preamble, and end bits, to form the 12 -bit message.
The transmitter output is a 40 kHz square wave of 50% duty factor which has been pulse-code-modulated by (i.e., ANDed with) a signal having a recurring pattern, a bit frame of 3.2 millisecond duration. This bit frame is comprised of three signals: the Start signal which is 0.4 milliseconds of logic " 1 ", followed by the Data signal which is 1.2 milliseconds of the lowest-order shift register bit; followed by the Mark signal which is 1.6 milliseconds of logic " 0 " (except in the first bit frame where Mark $=1$ to facilitate receiver synchronization).

The shift register is clocked once per bit frame, so that its 12 -bit message is transmitted once in 38.4 milliseconds. The minimum number of tranmissions that can occur is two, but if the keyboard inputs are active after the first 3.6 milliseconds of any 12 -bit transmission, one more 12 -bit transmission will result. Transmissions are always complete, never truncated, regardless of the keyboard inputs.
The Test Input is used for functional testing of the device. A low level input will cause the oscillator frequency to be gated to the Data Output pin. This input has an internal pull-up resistor to $V_{D D}$.

S2601 Decoder

The S2601 is a PMOS LSI device with an on-chip oscillator, five keyboard inputs, a 40 kHz signal input, and 11 outputs. The oscillator requires only an external R and C. The five keyboard inputs are activelow with internal pull-up resistors to $\mathrm{V}_{\text {SS }}$; activation of any two causes one of 10 possible 5 -bit codes to be generated and fed to the outputs of the S2601, overriding any 40 kHz signal input.
Two counters, the signal counter and the local counter, are clocked respectively by the signal input and a 40 kHz signal from the local RC oscillator timing chain. A 40 kHz input lasting 3.2 milliseconds (i.e., an initial bit frame) causes the signal counter to overrun and reset both itself and the local counter. At specific intervals thereafter, the local counter generates pulses used to interrogate the contents of the signal counter. Resynchronization of the counters occurs every bit frame so that the interrogation yields valid data bits even if the transmitter oscillator frequency has deviated up to $\pm 24 \%$ with respect to the receiver oscillator frequency.
Decoded data bits from the next five bit frames following the initial synchronizing frame are compared with the fixed preamble code. The next five decoded bits, the command bits, are converted to a parallel format and are compared against the command bits saved from the prior transmission. If they match, and if the preamble bits are correct, the command bits are gated to the receiver outputs. However, a mismatch causes the receiver outputs to be immediately disabled, and the new command bits are saved for comparison against the command bits from the next 12 -bit transmission. In the case where 2 identical, proper, 12 -bit transmissions are immediately followed either by transmissions with erroneous preamble codes or by
nothing, the receiver outputs will be activated during the end-frame of the second transmission, and will be disabled 45 milliseconds thereafter. In the rest (disabled) state the five Binary Outputs are at a " 1 " logic level; when not in the rest state, one or more of the open-sourced output transistors will conduct to $V_{D D}$. The Data Valid output is low during the rest state, and high whenever data is present at the Binary Outputs.
The S2601 has five other outputs: Pulse Train, On/Off, Analog A, Analog B, and Analog C. The states of these outputs are controlled by the 10 particular Binary Output codes which the receiver Keyboard Inputs can cause to be generated. The Pulse Train output provides a 2.44 Hz square wave (50% duty factor) whenever 11011 appears at the Binary Outputs, but otherwise it remains at a logic " 0 ". This pulse train can be used for indexing, e.g., for stepping a TV channel selector. The On/Off ("mains") output changes state each time 01111 appears at the Binary Outputs. In TV applications the On/Off output is most often used to kill and restore the main power supply.
Analog Outputs A, B, and C are 10 kHz pulse trains whose duty factors are independently controllable. With a simple low-pass filter each of these outputs
can provide 64 distinct DC levels suitable for control of volume, color saturation, brightness, motor speed, etc. Each Analog Output increases its duty factor in response to a particular Binary Output code and decreases its duty factor in response to another code -6 codes in all. The entire range of 0% to 100% duty factor can be traversed in 26 seconds or at a rate of the oscillator frequency divided by 262,144 . All three Analog Outputs are set to 50% duty factor whenever 01011 appears at the Binary Outputs. Analog A is mutable; 01100 sets it to 0% duty factor. If 01100 then disappears and reappears, the original duty factor is restored. This of course implements the TV "sound killer" feature.
The S2601 has an on-chip power-on reset (POR) circuit which sets the Pulse Train and On/Off Outputs to " 0 ," sets the Analog Outputs at 50\% duty factor, and insures that Analog A is muted. No external components are required to implement POR, but a POR input has been provided for applications where externally controlled reset is desirable, e.g., where the power supply voltage rise time is extremely slow. The POR input has an internal resistor pull-up to V_{SS}; pulling it low causes a reset.

S2600/S2601 Coding

Electrical Specifications - 2600 Encoder

All voltages measured with respect to V_{SS}.

Absolute Maximum Ratings

Storage temperature $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Positive voltage on any pin . +14 l
Negative voltage on any pin . - 0.3 V

Electrical Characteristics

Unless otherwise noted, $\mathrm{V}_{\mathrm{DD}}=8.5 \pm 1.5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$.

Symbol	Parameter	Min.	Typ.	Max.	Units	Conditions
$\mathrm{f0}$	Oscillator frequency	7	640	2000	kHz	$\mathrm{R}_{\mathrm{OSC}}=12 \mathrm{~K}, \mathrm{C}_{\mathrm{OSC}}=100 \mathrm{pF}$
$\overline{\Delta \mathrm{fO} / \mathrm{f0} 0}$	Frequency deviation	-10		+10	$\%$	Fixed $_{\mathrm{OSC}}, \mathrm{C}_{\mathrm{OSC}}, \mathrm{V}_{\mathrm{DD}} \pm 10 \%$
I_{DD}	Supply current			2	mA	During transmission, Data Output $=1 \mathrm{~mA}$
	Standby			10	$\mu \mathrm{~A}$	No transmission $\left(25^{\circ} \mathrm{C}\right)$
V_{IH}	Input " 1 " threshold	25	50		$\% \mathrm{~V}_{\mathrm{DD}}$	
V_{IL}	Input "0" threshold		50	75	$\% \mathrm{~V}_{\mathrm{DD}}$	
I_{IL}	Input source currrent	50		200	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$
I_{OH}	Output source current	1	1.5		mA	$\mathrm{~V}_{0}=\mathrm{V}_{\mathrm{DD}}-3 \mathrm{~V}$
I_{OL}	Output sink current	-.2	-.5		mA	$\mathrm{~V}_{0}=+0.5 \mathrm{~V}$

Note: Circuit operates with $V_{D D}$ from 3.0 V to 12.0 V .

Electrical Specifications - S2601 Decoder

All voltages measured with respect to $V_{D D}$.

Absolute Maximum Ratings

Storage temperature . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
VSS power supply voltage . +31 C
Positive voltage on any pin . V V $_{\text {SS }}+0.3 \mathrm{C}$
Negative voltage on any pin . V ${ }_{\text {SS }}$ - 22V

Electrical Characteristics

Unless otherwise noted, $\mathrm{V}_{\mathrm{SS}}=14 \pm 4 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$

Symbol	Parameter	Min.	Typ.	Max.	Units	Conditions
$\mathrm{f0}$	Oscillator frequency	7	640	2000	kHz	$\mathrm{R}_{\mathrm{OSC}}=71 \mathrm{~K}, \mathrm{C}_{\mathrm{OSC}}=25 \mathrm{pF}$
$\triangle \mathrm{f0} / \mathrm{f0} 0$	Frequency deviation	-10		+10	$\%$	${\text { Fixed } \mathrm{R}_{\mathrm{OSC}}, \mathrm{C}_{\mathrm{OSC}}, \mathrm{V}_{\mathrm{SS}}}$
I_{SS}	Supply current		34	50	mA	No loads, $\mathrm{V}_{\mathrm{DD}}=18 \mathrm{~V}$
			28			$\mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V}$

Signal Input:

V_{IH}	" 1 " threshold		70	85	$\% \mathrm{~V}_{\mathrm{SS}}$	
V_{IL}	"0" threshold	30	48		$\% \mathrm{~V}_{\mathrm{SS}}$	
$\mathrm{V}_{\mathrm{IH}}-\mathrm{V}_{\mathrm{L}}$	Voltage hysteresis	5		35	$\% \mathrm{~V}_{\mathrm{SS}}$	

Keyboard and POR Inputs:

V_{IH}	" 1 " voltage	$\mathrm{V}_{\mathrm{SS}}-.5$	$\mathrm{~V}_{\mathrm{SS}}-5.5$		V	
$\mathrm{~V}_{\mathrm{IL}}$	" 0 " voltage			$\mathrm{V}_{\mathrm{SS}}-5.5$	V	
I_{IL}	Source current	50	150	300	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{SS}}-10 \mathrm{~V}$
	Debounce delay (Keyboard inputs only)	1.45		2.2	msec	

Binary Outputs (open source):

$\mathrm{I}_{\text {OL }}$	Sink current	-1.28			mA	$\mathrm{~V}_{0}=\mathrm{V}_{\mathrm{SS}}-5.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=18 \mathrm{~V}$
		-0.50	-0.60		mA	$\mathrm{~V}_{0}=\mathrm{V}_{\mathrm{SS}}-5.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=10 \mathrm{~V}$
	Duration	34.9			msec	$\mathrm{f} 0=\mathrm{Max}=704 \mathrm{kHz}$

Analog Outputs (open drain):

$\triangle \mathrm{V}_{\text {step }}$	Step Voltage change		$\mathrm{V}_{\text {SS }} / 64$		V	
I_{OH}	Source current		1.04		mA	$\mathrm{~V}_{0}=\mathrm{V}_{\mathrm{SS}}=0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=10 \mathrm{~V}$
			1.15		mA	$\mathrm{~V}_{0}=\mathrm{V}_{\text {SS }}-0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=18 \mathrm{~V}$
		1.0	1.2		mA	$\mathrm{~V}_{0}=\mathrm{V}_{\mathrm{SS}}-1 \mathrm{~V}$
			10		kHz	$(\mathrm{f0} \div 64)$

Data Valid, Pulse Train, and On/Off Outputs:

I_{OH}	Source current	1	1.5		mA	$\mathrm{~V}_{0}=\mathrm{V}_{\mathrm{SS}}-2 \mathrm{~V}$
I_{OL}	Sink current	-40	-50		$\mu \mathrm{~A}$	$\mathrm{~V}_{0}=.7 \mathrm{~V}$
$\mathrm{t}_{\mathbf{r}}$	Risetime $\left(.1 \mathrm{~V}_{\mathrm{SS}}\right.$ to $\left..9 \mathrm{~V}_{\mathrm{SS}}\right)$			10	$\mu \mathrm{sec}$	$\mathrm{R}_{\mathrm{L}}=\infty, \mathrm{C}_{\mathrm{L}} 50 \mathrm{pF}$
t_{f}	Fallime $\left(.9 \mathrm{~V}_{\mathrm{SS}}\right.$ to $\left..1 \mathrm{~V}_{\mathrm{SS}}\right)$			10	$\mu \mathrm{sec}$	$\mathrm{R}_{\mathrm{L}}=\infty, \mathrm{C}_{\mathrm{L}} 50 \mathrm{pF}$

[^2]
Circuit Application

RIPPLE ON FILTER OUTPUT < 10 mV p.p USING $R_{2}=10 \mathrm{~K}, \mathrm{R}_{3}=100 \mathrm{~K}, \mathrm{C}_{3}=0.47 \mu \mathrm{~F}, \mathrm{~V}_{\mathrm{SS}}=14 \mathrm{VDC}$

ENCODER/DECODER REMOTE-CONTROL 2-CHIP SET

Features

RC Oscillator Used - No Crystal RequiredPhase Locked Loop on Decoder for Reliable Operation512 User Selectable Address CodesSupply - Suitable for Inexpensive and Convenient Battery Operation
\square User Can Determine the Type of Transmission Medium to Use

Applications

Entry Access Systems\square Remote Engine Starting for Vehicles and Standby Generators
\square Security Systems
\square Traffic ControlPaging Systems
\square Remote Control of Domestic Appliances

General Description - Encoder/Decoder

This two-chip PMOS set includes a user-programmable serial data encoder for use in a simple low-power transmitter and a serial data decoder for use in a user addressable receiver. The user can select the transmission medium (RF , infrared ultrasonic, or hardwire). The externally selectable message allows up to 512 codes or addresses; this is done with the nine binary inputs on each device. An additional 3 bits of address can be programmed on chip as a fixed preamble.
The serial data encoder encodes by means of a frequency-shift-keyed trinary data pattern composed of 16 data bits. Each data bit will have a length equivalent to 32 cycles of high frequency clock (20 kHz typical). Each trinary data pattern will be 512 cycles of $1 / 2$ the oscillator frequency length. The encoder frequency oscillator reference is controlled with an external RC network. The encoder transmitter can be powered by a single 9 volt battery so that a single momentary push button will activate the encoder and transmitter. In the off position there is no current flow.

The serial data decoder in conjunction with a receiver amplifier decodes the transmitted 16 -bit coded signal. The on-chip phase-locked-loop locks in on the 20 kHz signal even if the transmitted frequency differs from the receiver by up to $\pm 15 \%$. The coded signal input is compared with the externally selected code. The serial decoder looks at the transmitted signal a minimum of three times before validating a good message. A 3 -bit "good" code counter or a 3 -bit "bad" code counter accumulates the number of successive good and bad codes being received.

The decoder has an on-chip one-shot which is user programmed by an external RC combination. Whenever three complete good codes are received in the "good" counter a signal enables the one-shot which controls the signal valid output. If a series of three sequencial bad codes enter the "bad" code counter the "bad" counter resets the "good" code counter and one-shot period and will not allow an active output until the end of the oneshot period. Any "good" code resets the "bad" code counter. If the "good" counter has accumulated three good codes and activated the output one-shot, any occasional "good" code (occurring within the one-shot period) will maintain the output by retriggering the one-shot. The output appears like a single switch, on when "good" codes are received, off when not, with the minimum total period being determined by twice the one-shot
period. The one-shot can be used to prevent the output from switching on and off too rapidly due to system noise. The typical RC components shown in the block diagram give a period of about one second.

Functional Description - Serial Data Encoder

The AMI serial data encoder is comprised of three sections: Oscittator, Programming Logie, and Control Logic. Specifically it will provide logical ones " 1 ", logical zeroes " 0 ", and synchronization pulses " S " and arrange them into a trinary data pattern composed of 16 data bits. Each data bit will be 32 cycles of the high frequency (HF-1/2 Oscillator Frequency) in length. Each trinary data pattern will be 512 cycles of $1 / 2$ the Oscillator Frequency length.

A logical " 1 " is represented by 32 cycles of the high frequency.
A logical " 0 " is represented by 16 cycles of the high frequency followed directly by 8 cycles of the low frequency ($\mathrm{LF}=1 / 2 \mathrm{HF}$).

A synchronization pulse " S " is represented by 16 cycles of the low frequency.

A 16-bit data pattern will be encoded in the device in such a manner as to have three (3) bits programmed internally and nine (9) bits programmed externally.

The Oscillator Frequency equals twice that of the High Frequency, and the High Frequency equals twice that of the Low Frequency.

The Oscillator circuit will require a maximum of three (3) external components (refer to Figure 2).

External programming inputs connected to the device - V_{DD} supply will be considered as a logical " 1 ." The bit programming current will not exceed $50 \mu \mathrm{~A}$. The programming resistance should not exceed $1 \mathrm{k} \Omega$. Unconnected external bit programming inputs will be considered at a logical " 0 ."

A " 1 " ($-5 \mathrm{~V} \leq$ " 1 " $\leq \mathrm{V}_{\mathrm{DD}}$) presented to the "Test" input sets the Internal counter and maintains the output of the device "On." The input impedance of the test input is greater than $5 \mathrm{M} \Omega$.

For portable operation a 9 V transistor battery can be used for the DC voltage supply. Proper circuit polarity must be observed ($-\mathrm{V}_{\mathrm{DD}},+\mathrm{V}_{\mathrm{SS}}$).

S2743 Absolute Maximum Ratings

DC Supply Voltage . 15 V
Input Voltage $\mathrm{V}_{\mathrm{SS}}+.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{SS}}-15 \mathrm{~V}$
Operating Temperature Range . $-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (During Soldering) $300^{\circ} \mathrm{C}$ for Max. 10 sec.

S2743 Electrical Characteristics $\left(25^{\circ} \mathrm{C}\right.$ Air Temperature Unless Otherwise Specified)

Symbol	Parameter	Min.	Typ.	Max.	Units	Conditions
	Operating Supply Voltage	-6.65	-9.5	-15	V	V_{DD}
	Operating Power Dissipation		27	40	MW	$-8 \mathrm{~V},-5 \mathrm{~mA}$
	Operating Frequency	2	40	60	kHz	Oscillator
	Programming Bits 1-9, Current			50	$\mu \mathrm{A}$	Programming Input, $\mathrm{R} \leq 1 \mathrm{k} \Omega$
	External Programming Resistance			1	k Ω	Bits 1-9
	(DC Bits 1-9) Program Logical "1"	-5	-6.05	V_{DD}	V	
	Input Levels Logical "0"		-0.4		V	
	Bits 1-9 Current		55		$\mu \mathrm{A}$	Input R 9V $>1.5 \mathrm{M}$ @ 5V
	Test and $\mathrm{R}+\mathrm{C}$ Input Impedance	5		75	$\mathrm{M} \Omega$	Input Resistance $5 \mathrm{M} \Omega$
	(DC) Test Input Levels Test ON	-5		V_{DD}	V	Maintains Output Device ON
	Test OFF (See Note 1)	$\mathrm{V}_{\text {SS }}$		-1	V	Permits Normal Operation
	R, C Resistance Logical "1"		12		$\mathrm{k} \Omega$	Resistance to $\mathrm{V}_{\mathrm{DD}}, \pm 20 \%$
	Logical "0" (See Fig.)		3		$\mathrm{k} \Omega$	Resistance to $\mathrm{V}_{\text {SS }},+20 \%-30 \%$
	Output Current (See Note 2)	-7V	5		mA	Output Voltage $=.8 \mathrm{~V}$ W/V VD

Notes: 1. Effect noted at Pin 15 to $V_{S S} \quad$ 2. Output Voltage Pin 15 to $V_{S S} \quad$ All Voltages measured with respect to $V_{S S}$

External Oscillator Components

The Astable Multivibrator Circuit employed here required three (3) external components.
R_{1} aids in keeping the operating frequency independent of variators in supply voltage. R_{2} and C_{1} form the RC time constant which controls the oscillator frequency. In this case, R_{1} will be specified at $270 \mathrm{k} \Omega$ regardless of the oscillator operating frequency. Typically it will be found that $R_{1} \geq 2 \mathrm{~T}_{2} . \mathrm{R}_{2}$ should not be greater than $80 \mathrm{k} \Omega$ or less than $20 \mathrm{k} \Omega ; \mathrm{C}_{1}$ should not be less than 100 pF . A method for determining the approximate value of R_{2} and C_{1} is:

Start with the approximate formula for oscillator frequency

$$
\text { osc. } \text { freq }=\frac{1}{2 \mathrm{RC}}
$$

It must be noted that the oscillator frequency must be set at twice the desired device high frequency value.
Using a set value of R or C and a known, desired oscillator frequency:
To solve for C; w/osc. freq. $=30 \mathrm{kHz} ; \mathrm{R}=60 \mathrm{k} \Omega$

$$
\mathrm{C} \frac{1}{2 \mathrm{Rf}} \approx \frac{1}{2\left(60 \times 10^{3}\right)\left(30 \times 10^{3}\right)} \approx 2.77 \times 10^{-10} 277 \mathrm{pF}
$$

In this case, solve for $\mathrm{R}_{2} ; 2 /$ osc. freq. $=30 \mathrm{kHz} ; \mathrm{C}_{1}=500 \mathrm{pF}$

$$
\mathrm{R} \frac{1}{2 \mathrm{cf}} \approx \frac{1}{2\left(500 \times 10^{-12)\left(30 \times 10^{3}\right)}\right.} \approx 3.33 \times 10^{4} \mathrm{R}_{2}=33 \mathrm{k} \Omega
$$

General Description - Serial Data Decoder
The AMI serial data decoder is comprised of four sections: Phase Locked Loop (PLL). 16-Bit Digital Decoder, Good/Bad Code Logic and the Retriggerable Output One-Shot.
The decoder is always on and the phase locked loop is running. A small external capacitor determines the center frequency while an external low pass filter smooths out and generates the ICO control current. The typical center frequency of the PLL is 20 kHz allowing the received signal to slightly off frequency and the PLL will still "lock in."

The 16 -bit trinary data pattern includes:
3 " 1 " bits (fixed) 32 cycles of 20 kHz each
1 Sync bit 16 cycles at 10 kHz
3 Mask programmable bits either " 1 " or " 0 "
9 User-selectable bits externally programmed.
The PLL locks on the " 1 " bits present in the data pattern. Once locked, the PLL generates a clock which controls the digital decoder section (DDS). The DDS waits for a sync bit and then compares the ineoming data pattern bits, one by one, to make sure all the bits are correct; fixed ones are ones; mask programmable bits match; and finally verifies that the user-selectable 9 -bit pattern is correct.
Bit Position $\begin{array}{llllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 1011 & 1213141516\end{array}$ Data Pattern I I MMMUUUUUUUUUIS

I = Fixed " 1 " (32 cycles at 20 kHz)
M = Mask Programmable Bits
$\mathrm{U}=$ User-Selectable Bits
$\mathrm{S}=$ Sync Bit (16 cycles at 10 kHz)
Time for One Pattern $=16 \times 32 \times \frac{1}{20 \mathrm{kHz}} \approx 25 \mathrm{mS}$
If the pattern was correct, a good count (GC) is stored in a "Good Pattern Counter" (GPC). If the pattern match did not occur, a bad count (BC) is stored in a "Bad Pattern Counter" (BPC). Then:

1. Any GC resets the BPC.
2. Three (3) BCs in a row will reset the GPC.
3. When the GPC reaches four (4) the one-shot is triggered and an output will occur, i.e., three (3) good codes completed.
4. Any one GC after an output, occurring within the one-shot time will retrigger the one-shot and maintain the output on.
The retriggerable one-shot stabilizes the systems operation by introducing hysterisis.
5. It takes more good pattern counts to turn the output on than to maintain it on.
6. After the output goes off, it will stay off for the oneshot period regardless of any good patterns being received.
An external RC is used to control the one-shot period.

S2742 Absolute Maximum Ratings

DC Supply Voltage $-20 \mathrm{~V}$Input Voltage
Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
Storage Temperature Range $-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Lead Temperature (During Soldering) $300^{\circ} \mathrm{C}$ for Max. 10 sec .

S2742 Electrical Characteristics $\left(25^{\circ} \mathrm{C}\right.$ Air Temperature Unless Otherwise Specified)

Symbol	Parameter	Min.	Typ.	Max.	Units	Conditions
	Operating Supply Voltage	-15 V		-20	V	$\mathrm{~V}_{\mathrm{DD}}$
	Operating Power Dissipation			200	MW	
	Operating Frequency	2	20	75	kHz	Oscillator
	Operating Current Static			-10	$\mu \mathrm{~A}$	No Signal, No Bit
	(DC Bits 1-9) Program Logical " 1 "			-20	V	
	Input Levels Logical "0"			0	V	
	ICO Input Voltage		$\approx 4 \mathrm{~V}$		V	At Pin 12
	Output Voltage		-1		V	
	Output Current (V OUT = -1V)		10		mA	@1V P-P Output Voltage
	Signal Input, AC Coupled	0.025	0.05	1.0	$\mathrm{~V} / \mathrm{pk}-\mathrm{pk}$	
	Input Impedance, AC Coupled Amplifier		20		$\mathrm{k} \Omega$	

Figure 2. Typical Bench Test Setup

FEATURES

- Interfaces with up to 16 touch switches
- Eliminates contact noise
- Comparator sensing permits use with wide variety of touch switch configurations
- Momentary or toggle operation electrically selectable
- Outputs are TTL/CMOS/MOS compatible
- Simplifies design of touch-sensitive switches

FUNCTIONAL DESCRIPTION

Fabricated with P-channel ion implanted MOS/LSI technology, the S9260 family* of TouchControl integrated circuits has been designed to interface with a variety of touch panel switches and provide a high degree of flexibility in the selection of touch panel materials, layout of touch pad configurations, and design of switching functions. These circuits can interface directly with either seven TouchControl switches (22 lead versions) or sixteen TouchControl switches (40 lead ver-

GENERAL DESCRIPTION

The S9260 series of MOS TouchControl interface circuits permits almost any control panel containing mechanical switches to be easily replaced by a flat-surface capacitive control panel providing superior styling, reliability, ease of cleaning, and safety. Connecting directly to a screened or etched pattern on the panel's reverse side, these MOS circuits provide outputs to drive a variety of logic systems from household appliances to industrial controls. All system functions are then selected by merely touching the flat conductive TouchControl "switch" areas that have been deposited on the panel's front surface in practically any configuration desired.

These circuits provide an individual output for each of up to 16 TouchControl switches. For applications requiring more switches or encoded outputs, refer to AMI's S9262 and S9266, which can interface with up to 32 switches.
sions). For each TouchControl switch input there is a corresponding output that may be used to interface with various logic families such as CMOS or TTL.

Both momentary and "push on - push off" (toggle) switching operations are available on all AMI TouchControl circuits and are electrically selected by the logic levels of one input pin. To ensure reliable switch action, a built-in delay is incorporated in all circuits requiring a minimum touch time for switch response.

TYPICAL APPLICATIONS

- Appliance Control Panels
- Home Entertainment Systems
- Power Tool Controls
- Televisions
- Automotive Controls
- Telephones
- Games
- Fast Food Waterproof Keyboards
- Moisture Proofing
- Industrial Controllers
- Computer Terminals
- Keyboards
- Instrumentation
- $\quad 16$ to 1 Multiplexers
- Microprocessor Interface
- Vending Machines
- Cash Registers

ABSOLUTE MAXIMUM RATINGS

Voltage on any pin relative to $\mathrm{V}_{\mathrm{SS}}:$	+0.3 V to -20 V	Storage temperature (Ambient)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating temperature range:	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$		

[^3]
ELECTRICAL CHARACTERISTICS

$\left(0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}=-13.5 \mathrm{~V}\right.$ to -18.0 V unless otherwise specified.)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	CONDITIONS
$\mathrm{V}_{\text {IL }}$	Input logic 0 level - all except "I' inputs.	+ 0.3	0	- 1.5	Volts	Note: M/T input is internally pulled up to $V_{S S}$
V_{IH}	Input logic 1 level - all except "I" inputs	- 10.0	-12.0	- 18.0	Volts	
f_{RC}	Internal oscillator frequency measured at RC input.	50		100	kHz	
T_{S}	Switch delay time	65		135	msec	Frequency measur-
$\mathrm{T}_{\text {RST }}$	Time to reset all latches using M/T input.		100	135	msec	ed at RC Input $=50 \mathrm{kHz}$
V_{OL} $\mathrm{VOH}_{\mathrm{OH}}$	Output low voltage Output high voltage	$\mathrm{V}_{S S}$		$\begin{gathered} -1.0 \\ V_{D D} \end{gathered}$	Volts	$V_{B B}=V_{S S} ; 10 K$ resistive load to $V_{D D}$
V_{OL} V_{OH}	Output low voltage Output high voltage	$\begin{gathered} \mathrm{V}_{\mathrm{SS}} \\ \mathrm{~V}_{\mathrm{BB}}+0.4 \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{SS}}-0.5 \\ \mathrm{~V}_{\mathrm{BB}} \end{gathered}$	Volts	$\begin{aligned} & V_{\mathrm{SS}}=+5 \mathrm{~V} ; \mathrm{V}_{\mathrm{BB}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=12 \mathrm{~V} ; 2800 \Omega \\ & \text { resistive load to } \mathrm{V}_{\mathrm{SS}} \end{aligned}$
SC1	Scan clock output: Output low voltage Output high voltage	$\mathrm{V}_{\text {SS }}$		$\begin{aligned} & -1.5 \\ & V_{D D} \end{aligned}$		Max. capacitive loading $<150 \mathrm{pF}$
I_{DD}	Supply Current		7.0	15.0	ma	Outputs unconnected

OPERATION

Device operation can be understood by referring to Figure 1, depicting a typical application of the S9263. Each of the sixteen pairs of series capacitors labeled $\mathrm{S} 1-\mathrm{S} 16$ is one touch switch located on a TouchControl panel. (For details on touch panel configuration and operation, see the TouchControl application note included in this APD.) In each capacitor pair, the two common plates represent the conductive area on the control panel surface that is to be touched. The other two plates are formed by two conductive surfaces parallel to the touched surface and located directly under it on the reverse side of the panel. Referring again to Figure 1, the S9263 generates a clock signal on output SC 1 that is applied to one plate of each capacitor pair; this signal passes through the two
series capacitors and is detected in the MOS circuit. When a panel switch surface is touched, the signal level into the chip dimishes, and the on-chip differential amplifier senses the change and performs the appropriate switching function. For example, if surface S 1 is touched, the signal at input 13 decreases, and output 03, normally open, now becomes active and drives the Sl input to the TTL circuitry toward voltage level V_{BB}.

I INPUTS

Inputs from the touch switch pads to the TouchControl circuit are labeled I0 through I15 (S9263, S9264, and S9265) or I0 through I6 (S9260 and S9261). Each I input relates directly to an 0 output of identical numeral.

FIGURE 1. 16 SWITCH APPLICATION USING S9263

RC INPUT

A resistor connected to VDD and a capacitor connected to VSS are connected to the RC input pin to establish the onchip clock frequency that controls the touch switch delay time. Nominal values for these components are suggested in Figure 1, but they may be varied to change clock frequency over a range of 50 kHz to 100 kHz .

REF INPUT

In order to allow flexibility in the choice of TouchControl panel materials, switch layout, and switch size, AMI Touch Control inputs have been designed to detect a differential change rather than an absolute change in level. To obtain a reference level, two resistors are connected to input REF, one to VSS and the other to VDD.

O OUTPUTS

Each output pin labeled " O " corresponds to an input pin labeled " 1 ." Whenever an input is selected, the output becomes active and will drive an external load toward supply voltage VBB. When outputs are not active, they are high impedance open drain.

VBB SUPPLY

The sources of all output devices are common and connected to pin VBB. This allows TTL compatibility as shown in Figure 1, as well as the ability to drive higher level signals. For instance, if $V_{S S}=0$ volts, $V_{D D}=-16$ volts, and $V_{B B}=$ $V_{S S}$, then active outputs would drive a load connected to VDD towards VSS. The VBB pin can be used also to switch analog signals; in this configuration the analog signals are applied to the " O " pins and VBB is the output pin.

FIGURE 2. 7 SWITCH APPLICATION USING S9260

M/T INPUT

The M / T input pin selects the mode of switch operation, either momentary or toggle. With no connection to the M / T pin momentary operation is selected, and appropriate outputs are active only for the duration of touching a switch. In this mode, no output is active when no switch is touched. $\mathrm{A} \mathrm{V}_{\mathrm{DD}}$

SCI OUTPUT

The SC1 output provides the clock signal for the TouchControl panel. Its frequency is determined by the RC time con-

MOMENTARY AND TOGGLE COMBINATION

The S 9261 , S9264, and S 9265 contain several outputs that are permanently in the momentary mode of operation.
level applied to M / T causes the circuit to operate in the toggle mode. In this condition, the brief touch of any switch will turn on the appropriate output, which will remain latched on until the switch is touched again. Subsequent activations of the switch will toggle the corresponding output on and off alternately. To reset all outputs when the toggle mode is selected, a pulse of $V_{S S}$ level may be applied to the M / T input.
stant, and it is connected in common with one of each of the two common conductive surfaces on the reverse side of the touch panel.

With the M / T input at V_{SS} these parts function identically to the S9260 and S9263. With M/T at a logic 1 level, however, the S9261 has four momentary and three toggle inputs. Table 1 shows the combinations available on all three parts.

TABLE 1. COMPARISON OF FEATURES

Part Number	Pin Count	Total Touch Switch Interface Capability	Touch Switch Capacity Selectable For Either Momentary Or Toggle Operation Through Use of M/T Input	Touch Switch Inputs Fixed In Momentary Operation (Not affected by state of M/T input)	Number of Outputs
	22	7			0

TOUCHCONTROL APPLICATION NOTES

PANEL CONSTRUCTION

A TouchControl switch panel consists of a single sheet of a rigid material with conductive surfaces applied on both sides as shown in Figure 3.

A number of materials may be used for touch panels, the selection of the material most suited for a particular application being dependent on such things as durability, appearance, ease of assembly, cost, and dielectric constant of the material.

Regardless of the selected panel material, a touch switch is formed by applying a single conductive surface to its front surface with two other conductive surfaces applied directly in line on the reverse side of the panel. Figure 3 shows three views of a typical touch panel containing two TouchControl switches. On switch one, conductive surface A is applied to the front of
the panel and is the surface to be touched to effect a switch closure. Surfaces B and C are applied directly in line with A on the opposite side of the panel. A should cover completely and may overlap surfaces B and C.

The application of the conductive surfaces depends on selection of the panel materials. If glass is used, for example, it is common to apply a coating of tin oxide, which is then fired on for durability; rear surface conductors may be screened on with a conductive ink. Touch panels may be made more simply from double-sided printed circuit boards in which the conductive TouchControl surfaces are created by standard etching. For breadboarding purposes, a number of conductive tapes and paints are available and may be applied to a variety of touch panel materials.

FIGURE 3. CONSTRUCTION OF A TWO SWITCH TOUCHCONTROL PANEL WITH EQUIVALENT ELECTRICAL CIRCUIT.

ELECTRICAL OPERATION

The three conductive surfaces in a TouchControl switch combine to form two capacitors connected in series, as shown in the schematic diagram of Figure 3. An AC signal generated in the MOS circuit is applied to the rear conductive surface labeled C. This signal is coupled through to surface A by the capacitor formed by C and A . The signal is then coupled to surface B by the capacitor formed by A and B and applied to one of the inputs of the MOS circuit, which detects the signal's presence. When surface A is touched, the amplitude of the signal is significantly decreased because of body capacitance. This is sensed by the MOS circuit, and the appropriate switching function is performed.

TOUCH SWITCH LAYOUT GUIDELINES

AMI TouchControl circuits have been designed to interface with a variety of touch switch configurations. However, there are several guidelines that must be observed to insure a satisfactory TouchControl system.

The size of a TouchControl switch is dependent on the amount of capacitance needed to couple the clock signal to the " I " inputs of the MOS circuits. Because the input capacitance associated with the circuit input is typically five picofarads, it is advisable that each of the two series capacitors formed by the three conductive TouchControl panel surfaces be no less than seven picofarads. Since the capacitance in picofarads can be calculated by $\mathrm{C}=0.22 \in \mathrm{~A} \div \mathrm{d}$, where \in is the dielectric constant, A is area, and d is the material's thickness, it is apparent that minimum switch size is dependent on the thickness and dielectric constant of the panel material. If, for example, the panel is made from $1 / 8^{\prime \prime}$ thick glass with a dielectric constant of 8 , then the minimum area of each of the two rear surface conductors is 0.5 sq. inches. Since the touch
surface must cover the entire area of the two rear conductors, it must, then, be at least 1.0 sq . inch. It is desirable to separate the two rear-surface conductors by at least 0.125 inches, so the touch surface would be somewhat larger than 1.0 sq. inch. Higher capacitance, and thus smaller touch switches, can be obtained by using epoxy printed circuit material; though the dielectric constant is lower (around 5.0) the thickness can be decreased substantially.

CIRCUIT TO PANEL CONNECTIONS

There are a number of ways to make the necessary connections between TouchControl circuits and panels. A simple approach is to use a printed circuit board for the touch panel. In this case, the connections to the circuit are made by the etched copper pattern. In laying out a printed circuit, it is important to keep the copper traces running to the individual touch pads separated from each other as much as possible. In most instances a minimum spacing of $0.125^{\prime \prime}$ between traces is acceptable, though wider spacing might be necessary in cases where traces will run parallel to each other for distances of over six inches. It is also important to keep the clock output (SC1) at least 0.75 inches away from any input trace. These spacing requirements are guidelines to be followed regardless of the touch panel material.

With glass touch panels, a simple method for breadboarding systems is to fasten individual wires onto the conductive surfaces with a conductive epoxy. For production situations, it is possible to locate the electronic circuitry on a separate printed circuit board. Contact to the glass touch panel can be made through spring contacts mounted in the appropriate locations on the circuit board. An alternate approach is to route the traces on the glass to an edge of the glass, making connection through an edge connector, keeping in mind the spacing requirements between traces.

FEATURES

- Simplifies design of Touch-sensitive switches
- Interfaces with up to 32 touch switches
- Eliminates contact noise
- Comparator sensing permits use with wide variety of touch switch configurations
- Binary outputs provided
- Outputs are TTL compatible
- Permits design of totally isolated touch surfaces, facilitating UL approval

ELECTRICAL CHARACTERISTICS

$\left(0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant 70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}=-13.5 \mathrm{~V}\right.$ to -18.0 V unless otherwise specified. $)$

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNITS	CONDITIONS
VIL	Input logic 0 level - all except "I' inputs.	+ 0.3	0	- 1.5	Volts	Note: M/T and ENA inputs are internally pulled
V_{IH}	Input logic 1 level - all except "I" inputs.	- 10.0	- 12.0	- 18.0	Volts	up to $\mathrm{V}_{\text {SS }}$.
f_{RC}	Internal oscillator frequency measured at RC input.	50		100	kHz	
$\mathrm{T}_{\text {S }}$	Switch delay time	65		135	msec	Frequency measured at
$\mathrm{T}_{\text {RST }}$	Time to reset all latches using M/T input.		100	135	msec	RC Input $=50 \mathrm{kHz}$.
VOL V_{OH}	Output low voltage. Output high voltage	$\mathrm{V}_{S S}$		$\begin{aligned} & -1.0 \\ & V_{D D} \end{aligned}$	Volts	$\mathrm{V}_{\mathrm{BB}}=\mathrm{V}_{\mathrm{SS}} ; 10 \mathrm{~K}$ resistive load to $V_{D D}$.
V ${ }_{\text {OL }}$ V_{OH}	Output low voltage. Output high voltage	$\begin{gathered} \mathrm{V}_{\mathrm{SS}} \\ \mathrm{~V}_{\mathrm{BB}}+0.4 \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{SS}}-0.5 \\ \mathrm{~V}_{\mathrm{BB}} \end{gathered}$	Volts	$\begin{aligned} & \mathrm{V}_{\mathrm{SS}}=+5 \mathrm{~V} ; \mathrm{V}_{\mathrm{BB}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=-12 \mathrm{~V} ; 2800 \Omega \\ & \text { resistive load to } \mathrm{V}_{\mathrm{SS}} . \end{aligned}$
SC1, SC2	Scan clock output. Output low voltage Output high voltage. Supply Current	$V_{\text {SS }}$		$\begin{gathered} -1.5 \\ \mathrm{~V}_{\mathrm{DD}} \\ 15.0 \end{gathered}$		Max. capacitive loading $\leqslant 150 \mathrm{pF}$. Outputs unconnected
I_{DD}	Supply Current		7.0	15.0	ma	Outputs unconnected

OPERATION

Device operation can be understood by referring to Figure 1, depicting a typical application of the S9266. Each of the 32 pairs of series capacitors labeled $\mathrm{S} 1-\mathrm{S} 32$ is one touch switch located on a TouchControl panel constructed of glass, printed circuit board, epoxy, or other dielectric material. (For details on touch panel configuration and operation, see the TouchControl application note included in this APD.) In each capacitor pair, the two common plates represent the conductive area on the control panel surface that is to be touched. The other two plates are formed by two conductive surfaces parallel to the touched surface and located directly under it on the reverse side of the panel. Referring again to Figure 1, the S9266 generates a clock signal on output SC 1 and a similar signal on output SC2. The SC1 clock output is connected to the common
conductors of 16 of the 32 touch switches; the SC 2 clock connects to the remaining 16 switches. For each touch switch the clock signal passes through the two series capacitors and is detected in the MOS circuit. When a panel switch surface is touched, the signal level into the chip diminishes, and the onchip differential amplifier senses the change and performs the appropriate switching function.

I INPUTS

Inputs from the touch switch pads to the TouchControl circuit are labeled I0 through I15 (S9266), or I0 through I6 (S9262). The I inputs in conjunction with SC 1 and SC 2 outputs form a touch switch matrix of 2×16 or 2×7, respectively. In both these parts the outputs are binary coded and will be described later.

RC INPUT

A resistor connected to V_{DD} and a capacitor connected to $V_{S S}$ are connected to the RC input pin to establish the onchip clock frequency that controls the rate of multiplexing and the touch switch delay time. Nominal values for these components are suggested in Figure 1, but they may be varied to change clock frequency over a range of 50 kHz to 100 kHz .

REF INPUT

In order to allow flexibility in the choice of TouchControl panel materials, switch layout, and switch size, AMI TouchControl inputs have been designed to detect a differential change rather than an absolute change in level. To obtain a reference level, two resistors are connected to input REF, one connected to input REF, one connected to VSS and the other to VDD.

$V_{B B}$ SUPPLY

The sources of all output devices (both " O " and " B " outputs) are common and connected to pin V_{BB}. This allows TTL compatibility as shown in Figure 1, as well as the ability to drive higher level signals. For instance, if $\mathrm{V}_{\mathrm{SS}}=0$ volts, $\mathrm{V}_{\mathrm{DD}}=$ -16 volts, and $V_{B B}=V_{S S}$, then active outputs would drive a load connected to $V_{D D}$ towards $V_{S S}$.

M/T INPUT

The M / T input pin selects the mode of switch operation, either momentary or toggle. Applying V_{SS} to the M / T pin selects momentary operation in which appropriate outputs are active only for the duration of touching a switch. In this mode, no output is active when no switch is touched. $A V_{D D}$ level applied to M / T causes the circuit to operate in the toggle mode

FIGURE 2. 14 SWITCH APPLICATION USING S9262

for "push-on, push-off" operation. Subsequent activation of the switch will toggle the corresponding output on and off alternately. It should be noted that each input should be cleared to the off state before selecting a new input to obtain meaningful data from the binary outputs. To reset all outputs when the toggle mode is selected, a pulse of V_{SS} level may be applied to the M / T input.

SC1 and SC2 OUTPUTS

The S9262 and S9266 have multiplexed inputs, using 2×7 and 2×16 matrices, respectively, to provide 14 and 32 input states. Clock signals SC1 and SC2 are used along with the " I " inputs to form these matrices as connected in the schematic of Figure 1.

O OUTPUTS

Each output pin labeled ' O " corresponds to an input pin labeled " I ". Whenever an input is selected, the output becomes active and will drive an external load toward supply voltage V_{BB}. This is true for momentary operation only; toggle operation is described in the section labeled "MT input." When "O" outputs are not active, they are high impedance open drain.

B AND AK OUTPUTS

The S9262 has four and the S9266 has five outputs labeled "B." These supply a binary code relating to the state of the inputs. Fourteen unique states are available on S9262 and thirty-two on S9266. The output configuration is identical to the " O " outputs. An extra output labeled AK is available on the S9266 and is active whenever any key is selected.

ENA INPUT

Available on the S9266, the $\overline{\text { ENA }}$ input allows the outputs to be bussed and may be gated off by application of a logic 1 level. VSS applied to the input enables all five outputs and AK.

EXT

The EXT pin is used in the output circuitry and should be connected to VDD.

SCAN OUTPUT	TOUCHED INPUT	"8" OUTPUTS				"0' OUTPUTS	
		B0	B1	82	B3	00	01
SC1	10	0	0	0	0	1	0
SCl	11	1	0	0	0	0	1
SC1	12	0	1	0	0	0	0
SC1	13	1	1	0	0	0	0
SC1	14	0	0	1	0	0	0
SCl	15	1	0	1	0	0	0
SCl	16	0	1	1	0	0	0
SC2	10	1	1	1	0	0	0
SC2	11	0	0	0	1	0	0
SC2	12	1	0	0	1	0	0
SC2	13	0	1	0	1	0	0
SC2	14	1	1	0	1	0	0
SC2	15	0	0	1	1	0	0
SC2	16	1	0	1	1	0	0
-	None	1	1	1	1	0	0

TABLE 1. OUTPUT ENCODING
$\left(\mathrm{V}_{\mathrm{BB}}=0 \mathrm{VOLTS}\right)$

SCAN OUTPUT	TOUCHED INPUT	"B" OUTPUTS					"O" OUTPUTS							$\begin{gathered} \text { AK } \\ \text { OUTPUT } \\ \hline \end{gathered}$
		B0	B1	B2	B3	B4	00	01	02	03	04	05	06	
Scl	10	0	0	0	0	0	1	0	0	0	0	0	0	1
SC1	11	1	0	0	0	0	0	1	0	0	0	0	0	1
SCl	12	0	1	0	0	0	0	0	1	0	0	0	0	1
SC1	13	1	1	0	0	0	0	0	0	1	0	0	0	1
Sc1	14	0	0	1	0	0	0	0	0	0	1	0	0	1
SC1	15	1	0	1	0	0	0	0	0	0	0	1	0	1
SC1	16	0	1	1	0	0	0	0	9	0	0	0	1	1
SCl	17	1	1	1	0	0	0	0	0	0	0	0	0	1
SC1	18	0	0	0	1	0	0	0	0	0	0	0	0	1
SC1	19	1	0	0	1	0	0	0	0	0	0	0	0	1
SC1	110	0	1	0	1	0	0	0	0	0	0	0	0	1
SC1	111	1	1	0	1	0	0	0	0	0	0	0	0	1
SC1	112	0	0	1	1	0	0	0	0	0	0	0	0	1
SC1	113	1	0	1	1	0	0	0	0	0	0	0	0	1
SC1	114	0	1	1	1	0	0	0	0	0	0	0	0	1
SC1	115	1	\dagger	1	1	0	0	0	0	0	0	0	0	1
SC2	10	0	0	0	0	1	0	0	,	0	0	0	0	1
SC2	11	1	0	0	0	1	0	0	0	0	0	0	0	1
SC2	12	0	1	0	0	1	0	0	0	0	0	0	0	1
SC2	13	1	1	0	0	1	0	0	0	0	0	0	0	,
SC2	14	0	0	1	0	1	0	0	0	0	0	0	0	,
SC2	15	1	0	1	0	1	0	0	0	0	0	0	0	,
SC2	16	0	1	1	0	1	0	0	0	0	0	0	0	,
SC2	17	,		1	0	1	0	0	0	0	0	0	0	,
SC2	18	0	0	0	1	1	0	0	0	,		0	0	,
SC2	19	1	0	0	1	1	0	0		,	0	0	0	1
SC2	110	0	1	0	1	1	0	0	0	0	0	0	0	\dagger
SC2	111	1	1	0	1	1	0	0	0	0		0	0	1
SC2	112	0	0	1	1	1	0	0	0	0	0		0	1
SC2	113		0	,	1	1	0	0	0	0	0	0	0	1
SC2	114	0	1	,	1	1	0	0	0	0	0	0	0	1
SC2	115	1	1	1	1	1	0	0	0	0	0	0	0	1
--	None	1	1	1	1	1	0	0	0	0	0	0	0	0

TOUCHCONTROL APPLICATION NOTES

PANEL CONSTRUCTION

A TouchControl switch panel consists of a single sheet of a rigid material with conductive surfaces applied on both sides as shown in Figure 3.

A number of materials may be used for touch panels, the selection of the material most suited for a particular application being dependent on such things as durability, appearance, ease of assembly, cost, and dielectric constant of the material.

Regardless of the selected panel material, a touch switch is formed by applying a single conductive surface to its front
surface with two other conductive surfaces applied directly in line on the reverse side of the panel. Figure 3 shows three views of a typical touch panel containing two TouchControl switches. On switch one, conductive surface A is applied to the front of the panel and is the surface to be touched to effect a switch closure. Surfaces B and C are applied directly in line with A on the opposite side of the panel. A should cover completely and may overlap surfaces B and C.

FIGURE 3. CONSTRUCTION OF A TWO SWITCH TOUCHCONTROL PANEL WITH EQUIVALENT ELECTRICAL CIRCUIT.

The application of the conductive surfaces depends on selection of the panel materials. If glass is used, for example, it is common to apply a coating of tin oxide, which is then fired on for durability; rear surface conductors may be screened on with a conductive ink. Touch panels may be made more simply from double-sided printed circuit boards in which the conductive TouchControl surfaces are created by standard etching. For breadboarding purposes, a number of conductive tapes and paints are available and may be applied to a variety of touch panel materials.

ELECTRICAL OPERATION

The three conductive surfaces in a TouchControl switch combine to form two capacitors connected in series, as shown in the schematic diagram of Figure 3. An AC signal generated in the MOS circuit is applied to the rear conductive surface labeled C. This signal is coupled through to surface A by the capacitor formed by \mathbf{C} and A . The signal is then coupled to surface B by the capacitor formed by A and B and applied to one of the inputs of the MOS circuit, which detects the signal's presence. When surface A is touched, the amplitude of the signal is significantly decreased because of body capacitance. This is sensed by the MOS circuit, and the appropriate switching function is performed.

TOUCH SWITCH LAYOUT GUIDELINES

AMI TouchControl circuits have been designed to interface with a variety of touch switch configurations. However, there are several guidelines that must be observed to insure a satisfactory TouchControl system.

The size of a TouchControl switch is dependent on the amount of capacitance needed to couple the clock signal to the "I" inputs of the MOS circuits. Because the input capacitance associated with the circuit input is typically five picofarads, it is advisable that each of the two series capacitors formed by the three conductive TouchControl panel surfaces be no less than seven picofarads. Since the capacitance in picofarads can be calculated by $\mathrm{C}=0.22 \in \mathrm{~A} \div \mathrm{d}$, where \in is the
dielectric constant, A is area, and d is the material's thickness, it is apparent that minimum switch size is dependent on the thickness and dielectric constant of the panel material. If, for example, the panel is made from $1 / 8^{\prime \prime}$ thick glass with a dielectric constant of 8 , then the minimum area of each of the two rear surface conductors is 0.5 sq . inches. Since the touch surface must cover the entire area of the two rear conductors, it must, then, be at least 1.0 sq. inch. It is desirable to separate the two rear-surface conductors by at least 0.125 inches, so the touch surface would be somewhat larger than 1.0 sq. inch. Higher capacitance, and thus smaller touch switches, can be obtained by using epoxy printed circuit material; though the dieiectric constant is lower (around 5.0) the thickness can be decreased substantially.

CIRCUIT TO PANEL CONNECTIONS

There are a number of ways to make the necessary connections between TouchControl circuits and panels. A simple approach is to use a printed circuit board for the touch panel. In this case, the connections to the circuit are made by the etched copper pattern. In laying out a printed circuit, it is important to keep the copper traces running to the individual touch pads separated from each other as much as possible. In most instances a minimum spacing of $0.125^{\prime \prime}$ between traces is acceptable, though wider spacing might be necessary in cases where traces will run parallel to each other for distances of over six inches. It is also important to keep the clock output (SC1) at least 0.75 inches away from any input trace. These spacing requirements are guidelines to be followed regardless of the touch panel material.

With glass touch panels, a simple method for breadboarding systems is to fasten individual wires onto the conductive surfaces with a conductive epoxy. For production situations, it is possible to locate the electronic circuitry on a separate printed circuit board. Contact to the glass touch panel can be made through spring contacts mounted in the appropriate locations on the circuit board. An alternate approach is to route the traces on the glass to an edge of the glass, making connection through an edge connector, keeping in mind the spacing requirements between traces.

The AMI TouchControl Kit TCK-100

Instructions for Assembly and Operation

INTRODUCTION

The AMI TouchControl kit demonstrates the ease with which this unique system of capacitive switching may be implemented. Included in the kit are a printed circuit board and AMI's newly developed S9263 TouchControl circuit. The printed wiring board, which has 16 touch switches etched onto its top surface, contains on its reverse side all the interconnection necessary to interface the S9263 inputs with the 16 touch switches and the S9263 outputs with 16 light emitting diodes. As the touch switches
are activated, the corresponding diodes are lighted to indicate the output states of the S9263. If desired, external logic may be operated by connecting a cable directly to the S9263 outputs.

Additional components required for the kit are readily available, and assembly of the kit should take less than an hour's time. The circuit board may be mounted either on standoffs or on a standard aluminum chassis box.

PARTS LIST FOR AMI TOUCHCONTROL KIT:

QUANTITY REQUIRED
1 S9263 TouchControl circuit (Included)
1 Printed wiring board (Included)
1 Transformer, 12.6 volt 300 mA Radio Shack P/N 273-1385 or equivalent Line cord

QUANTITY REQUIRED

DESCRIPTION
3.3K Ω Resistor $1 / 4$ Watt

Transistor 2N3569 or equivalent $500 \mu \mathrm{~F}$ capacitor $/ 20$ volts
$0.33 \mu \mathrm{~F}$ capacitor
220 pF capacitor
Light emitting diode - MV5023
or equivalent
Aluminum chassis box $-15^{\prime \prime} \times 9^{\prime \prime}$ Bud \# AC1421 or equivalent (optional)

OPERATION

The AMI TouchControl kit provides sixteen touch switches that interface with the S9263 to activate sixteen light emitting diodes. Each of the switches numbered from one to fifteen has a light associated with it which is labeled with the same number. The switch labeled " T " is used to select the mode of operation of the S9263, either momentary or toggle. When the LED labeled " T " is off, touch pads one through fifteen operate as momentary switches, and any switch's corresponding LED will turn on when the switch is touched, remaining on only for the duration of touching the switch. If " T " is touched, the " T " LED will turn on and stay on even after " T " is untouched. The S 9263 is now operating in a toggle mode, and the brief touch of any switch from one through fifteen will cause its corresponding LED to turn on and latch. Subsequent activations of the switch will turn the LED

Abstract

ASSEMBLY The circuit board may be assembled easily by referring to Figure 2, a view of the reverse side of the board. For appearance, it is recommended that all components except the LED's and the S9263 be mounted on the reverse side of the board, with all leads cut off flush with the board's top surface.

For convenience, a 15 volt power supply is provided on the circuit board, so that the system may be plugged into a standard 110 volt outlet. If desired, an external DC supply of 15 volts may be used, connecting the positive and negative outputs to the corresponding holes designated for C 1 . If a DC supply is used, the transformer, diode, and C1 may be eliminated.
off and on alternately. Touching " T " once again causes the " T " LED to turn off, and the S9263 once again operates in the momentary mode. By removing the $0.33 \mu \mathrm{~F}$ capacitor, it is possible to use the " T " pad as a clear switch. In this mode, all numbered pads function as "push on, push off" switches. Touching the "T" pad turns off all LED's corresponding to the numbered switches.

To operate external logic systems with the TouchControl kit, a cable may be soldered, using a grounded soldering iron, directly to the outputs of the S9263. The voltage on an output that is turned off (corresponding LED is off) is -15 volts (or V_{DD}). When turned on, the output will rise towards ground (V_{SS}). Appropriate loading conditions are specified in the advanced product description for this part.

67650

Figure 1. Schematic Diagram of TCK-100

PARTS LIST FOR ASSEMBLING TCK -100 KIT:

PART NUMBER	PART DESCRIPTION	PART NUMBER	PART DESCRIPTION
R1, R4	$100 \mathrm{~K} \Omega 1 / 4$ Watt resistor	Q1	NPN transistor 2N3569 or equivalent
R2	$10 \mathrm{~K} \Omega 1 / 4 \mathrm{Watt}$ resistor	D1	Diode IN920 or equivalent
R3	$47 \mathrm{~K} \Omega 1 / 4$ Watt resistor	L1 thru L16	Light emitting diode - MV5023 or
R5	$15 \mathrm{~K} \Omega 1 / 4$. Watt resistor		equivalent
R6 thru R21	$3.3 \mathrm{~K} \Omega 1 / 4$ Watt resistor	IC1	AMI integrated circuit S9263
C1	$500 \mu \mathrm{~F}$ capacitor 20 Volts	T1	Transformer 12.6VAC@300 mA.
C2	220 pF capacitor		Radio Shack P/N 273-1385
C3	$0.33 \mu \mathrm{~F}$ capacitor		or equivalent

Figure 3. Front of Panel

MOS DIGITAL CLOCK

Features

262,144 External Quartz Crystal

Has 20 Hr. Resettable Elapsed Time CounterDirect LCD or Tung-sol DT1704 Tube InterfaceElectrically Selectable Multiplexed LED OutputMinute and Hour SET ControlsSeparate Display Supply Allows Display Turn Off for Reduced Battery Current Drain
$\square \mathbf{1 0 2 4 H z}$ Outputs for Voltage Doubler
\square Calendar Advancing or AM/PM Output

General Description

The S1856 Digital Clock provides the circuitry to implement a 4 -digit time keeper with separate elapsed time counter. It is an MOS/LSI circuit consisting of down counters, combinational logic, BCD to 7 -segment decoder and output buffer transistors
in a 40 -pin DIP. The circuit has a separate output pin to drive each segment of a Liquid Crystal Display directly. However if the LED mode of operation is selected, only the HRS $\times 10$ and F3 through A3 outputs are used to provide segment drive current. In this mode of operation segment drivers F3 through A3 are multiplexed at 25% duty cycle to provide MINUTES, 10's of MINUTES and HOURS information.
The ELAPSED TIME COUNTER can be reset and displayed separately without affecting the state of the time keeper. The ELAPSED TIME COUNTER has the added feature of displaying SECONDS, 10's of SECONDS and MINUTES automatically during the first 10 minutes after a reset has occurred. The counter will then display MINUTES, 10's of MINUTES, HOURS and 10's of HOURS for the remainder for its 20 hours capacity.

Absolute Maximum Ratings

Operating Temperature

$$
-40^{\circ} \mathrm{C} \text { to }+100^{\circ} \mathrm{C}
$$

Dynamic Characteristics: $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}-6 \mathrm{~V}$ to $-16 \mathrm{~V}, \mathrm{~V}_{\mathrm{OD}}-5 \mathrm{~V}$ to -28 V

Symbol	Min.	Typ.	Max.	Units	Conditions
$\mathrm{V}_{\mathrm{IL}}($ OSC X $)$	V_{DD}		$\mathrm{V}_{\mathrm{SS}}-6$	V	An Internal resistor of 700K Ω
V_{IH}	$\mathrm{V}_{\mathrm{SS}}-1$		$\mathrm{~V}_{\mathrm{SS}}+0.3$	V	(typical) to V_{DD} is provided
V_{IH} (Control)	$\mathrm{V}_{\mathrm{SS}}-0.5$		$\mathrm{~V}_{\mathrm{SS}}+0.3$	V	for all control inputs.
V_{IL}	V_{DD}		$\mathrm{V}_{\mathrm{SS}}-6$	V	
$\mathrm{~V}_{\mathrm{OH}}$ (Outputs)	$\mathrm{V}_{\mathrm{SS}}-1$			V	Open circuit
V_{OL}			V_{DD}	V	Open circuit
I_{DD}			15	mA	$\mathrm{~V}_{\mathrm{DD}}-14 \mathrm{~V}$
I_{DD}		10	15	mA	$\mathrm{~V}_{\mathrm{DD}}-6 \mathrm{~V}$

Figure 1. Typical Performance Characteristics

Typical Applications

Automotive Clock
\square Household Clock With Auxiliary Battery for Accurate Time Keeping During Power Interruptions
\square Appliance Timers
\square Industrial Timers
\square Photographic Timers
\square Avionics Timers
\square Portable Clock

Operational Description

The Clock circuit block diagram is shown on the previous page. The input transistor of the circuit forms an oscillator circuit with an external quartz crystal and a few other components (see application drawings). The resultant 262.144 kHz signal is amplified and clipped in the input stage. A chain of binary down counters divides the square wave frequency by 256 to supply two complemen-
tary outputs, $\phi 1$ and $\phi 2$ at 1024 Hz . These low impedance outputs can drive an external voltage doubler as well as allow an accurate frequency tuning on the oscillator.

Next a divide by four stage produces a 64 Hz signal from which the three strobes $\mathrm{Sbl}, \mathrm{Sb} 2$, and Sb 3 are generated. The strobe generator also contains logic to synchronize the display outputs with the external strobes as well as control the segments for Liquid Crystal Display operation. The 64 Hz signal also inputs to a divide by 64 -stage to produce a 1 Hz signal which inputs to both the TIME COUNTER and the ELAPSED TIME COUNTER.

The TIME COUNTER contains the binary stages and the decoding logic to generate the BCD code for MINUTES, HOURS and HRS $\times 10$. This data is strobed into the BCD to 7 -segment DECODER and loaded into the output buffers in synchronization with the appropriate strobe, $\mathrm{Sb} 1, \mathrm{Sb} 2$ or Sb 3 .

The ELAPSED TIME COUNTER functions similarly to the TIME COUNTER with the additional decoding of SECONDS and 10's of SECONDS to the display instead of HRS and HRS $\times 10$ during the first 10 minutes after reset.

An internal connection to V_{DD} supply at pin 37 holds the clock in the liquid crystal mode and the outputs are interfaced directly with the LCD as shown in Figure 2.

Figure 2. LCD Output Drive
19:8

To assure longevity of the LCD display, a 64 Hz signal is applied to the individual segments. When the applied segment signal is in-phase with the 64 Hz backplane (LCD common terminal) voltage, no visibility occurs. When the applied signal is 180° out of phase with the backplane voltage, visibility occurs. The waveforms shown in Figure 2 represent these conditions.

The backplane voltage is generated by buffering the signal which drives the timing counters. This assures that visibility of the display will not occur through synchronizing problems or rise and fall time differences.

The phase of the segment outputs is generated from the contents of data latches and buffer circuits. This provides an active pull-up or pull-down to both terminals of the segments at all times, thus eliminating the effect of capacitive coupling across the LCD segment. (See Figure 2.)

When pin 37 is connected to V_{SS} the multiplexed mode of operation is selected. An ON segment in this mode is driven by a pull-down to V_{SS} which is true during its appropriate strobe time as shown in Figure 3 below.

Figure 3. Strobe Time

A typical LED interface circuit is shown below in Figure 4. In this mode the HRS $\times 10$-digit is a steady state DC output and can be used at any of the 3 strobe times.

Figure 4. MOSILED Interface

Functional Description of Inputs

$\mathbf{V}_{\text {SS }}$	Positive voltage supply return line for circuit.
Y	Oscillator pull-up resistor connection. A $10 \mathrm{~K} \Omega$ resistor to V_{CC} from this pin serves as the 262.144 kHz oscillator load.
X	Oscillator input pin. Provides amplification at oscillation frequency of the output from the external crystal and RC network.
CLR	Master Clear. Resets all counters to zero when connected to V_{SS}.
ADV. MIN.	Sets MINUTES with carry to MINUTES $\times 10$ at a one per second rate when connected to V_{S}
RST ET	Displays contents of ELAPSED TIME COUNTER when connected to $\mathrm{V}_{\text {SS }}$, otherwise time of day displayed.
$\mathbf{V}_{\text {OD }}$	Negative power supply input for output buffers only. Allows display to be turned off while internal clock counters continue to operate.
ADV. HRS.	Sets HRS, with carry to HRS $\times 10$, at a one per second rate connected to $\mathrm{V}_{\text {SS }}$.
LED/LQ	Mode select pin. When connected to $\mathrm{V}_{\text {SS }}$ the LED mode is selected. In this mode the three strobe outputs are used to multiplex outputs A3 through F3 to drive MINUTES, MINUTES $\times 10$ and HRS $\times 10$ digits. This occurs at $64 \mathrm{~Hz} 25 \%$ duty rate. In this mode outputs A1 through F1 and A2 through F2 remain off at negative supply level, V_{OD}.
$V_{\text {DD }}$	Negative power supply input for internal logic can be connected to V_{OD} for single supply operation.
TEST BYPASS	When connected to $\mathrm{V}_{\text {SS }}$ time counters advance at $1024 \times$ normal rate. Used for automatic testing of the clock circuitry.

Functional Description of Outputs

$\phi 1 \quad$ Voltage doubler and frequency check output. This supplies a 1024 Hz square wave signal which swings between the $V_{S S}$ and $V_{D D}$ voltage levels.
$\phi 2 \quad$ Same as $\phi 1$ but 180° out of phase.
Sb3 Strobe signal for HRS digit. $64 \mathrm{~Hz} 25 \%$ duty cycle with voltage swing from V_{SS} to V_{OD}. Used only in LED mode.
$\overline{\text { CM }}$ Sb2 Drives colon in Liquid Crystal mode and serves as MIN $\times 10$ digit strobe in LED mode. Voltage swing V_{SS} to V_{OD}.
CAL OUT Calendar advance output. This pin has internal pull-down to V_{SS} only for stepping motor interface. An external $30 \mathrm{k} \Omega$ resistor may be connected to V_{OD} to drive an external latch for AM-PM display.
CM Sb1 Drives display backplane in LIQUID CRYSTAL mode and serves as MINUTES digit strobe in LED mode. Voltage swing V_{SS} to V_{OD}.

Figure 5. 7-Segment Call Out

Figure 6. Application Data

HOUSEHOLD CLOCK WITH AUXILIARY BATTERY

S2709

AMERICAN MICROSYSTEMS, INC.

VACUUM FLUORESCENT DIGITAL CLOCK FOR AUTOMOTIVE APPLICATIONS

Features

Uses Inxpensive 4MHz CrystalDirect Drive to Green or Blue Vacuum Fluorescent DisplayLow Standby Power Dissipation When Display is Switched Off With IgnitionVariable Brightness Tracks Other Dash Lights
Applications

In Dash Automobile ClocksTape Players, CB Radio UnitsAutomotive After Market ClocksAircraft, Marine Panel ClocksPortable Instrumentation Clocks
Functional Description

The S2709 vacuum fluorescent clock is a monolithic MOS integrated circuit utilizing P-Channel low threshold, enhancement mode and ion-implanted depletion mode devices. The circuit interfaces directly with 4 digit multiplexed vacuum fluorescent displays and requires only a single nominal 12 V power supply. The timekeeping function operates from a 4 MHz crystal controlled input. The display format is 12 hours with colon and leading zero blanking. An up-converter output is provided by the circuit to generate increased display driving voltage. A brightness control input allows variation of the display intensity. An ignition monitor input controls the upconverter operation and inhibits time setting. The S2709 is normally supplied in a 22 -lead plastic dual-inline package.

Operational Description

Refer to the block diagram and Figure 1, Typical Application.
Oscillator Input (Pin 21) and Output (Pin 22)-The crystal controlled oscillator operates at a frequency of 4.194304 MHz to increase accuracy and reduce external component costs due to the less expensive quartz crystal. The frequency is controlled by a quartz crystal and fixed capacitor upconverter output (pin 13). This method allows accurate frequency tuning of the crystal oscillator without loading down the oscillator circuit. The feedback and phase shift resistors are integrated to further reduce external component costs. The internal oscillator inverter drives a counter chain that performs the timekeeping function.
Time Setting Input (Pin 20)-To prevent tampering, time setting is inhibited until the ignition monitor (pin 16) is held at a logic high level (V_{SS}).
Normal timekeeping is provided by allowing the time set pin to float externally. (Unloaded, this pin will alternate between V_{DD} and V_{SS} in phase with the unit minutes digit strobe [pin 12] during normal timekeeping.) If the time set pin is held at a logic high level $\left(\mathrm{V}_{\mathrm{SS}}\right)$ the minutes counter advances at a 2 Hz rate without carry to hours. If the time set pin is held at a logic low level $\left(\mathrm{V}_{\mathrm{DD}}\right)$ the hours counter advances at a 2 Hz rate.
It is possible to reset the hours, minutes and internal seconds counter by applying a logic low level (V_{DD}) to the test input (pin 18) during the time that the ignition monitor input is at a logic low level (V_{SS}). This reset state (time 1:00) is used for testing purposes.
Upconverter Pulse Output (Pin 13) - The clock circuit and vacuum fluorescent display drive normally operate at 25 V when the ignition monitor pin is held at a logic high level (V_{SS}). The automobile battery voltage (12 V) is doubled by an external upconverter circuit triggered by an 8 kHz output pulse having a 28% duty cycle. The voltage, whether 12 V or 25 V , is applied to the circuit via the V_{SS} input (pin 17).
When the ignition monitor pin is held at a logic low level $\left(\mathrm{V}_{\mathrm{DD}}\right)$ the upconverter is disabled. This drops the $\mathrm{V}_{\mathrm{SS}}{ }^{-}$ supply to 12 V allowing the clock to operate while the display drive is decreased, lowering power dissipation. At the battery voltage drops (due to engine starting, cold temperature, or aging) timekeeping is maintained down to approximately 7 V with no loss of the memory down to 5V. However, below 9V the upconverter will not be inhibited by the ignition monitor input.

Note that low standby power dissipation (60 mW typical $@ \mathrm{~V}_{\mathrm{SS}}=12 \mathrm{~V}$, and no output loads) is accomplished by turning off the filament voltage to the display when the auto ignition switch is off.
Ignition Monitor (Pin 16)-Along with preventing the already mentioned time setting function, the ignition monitor when held at a logic low level (V_{DD}) inhibits the 8 kHz upconverter output pulse (pin 13) as long as the supply $\left(\mathrm{V}_{\mathrm{SS}}\right)$ is above 9 V . This pin is normally connected to the auto accessory switch.

The ignition monitor input can be protected against power supply transients by using $47 \mathrm{~K} \Omega$ external series resistance (see Figure 1).
Day/Night Display Control Input (Pin 15)-As seen in Figure 2, the display brightness is controlled via both pin 15 and the dimming control input (pin 14). The day/night input is connected to the automobile parking or headlights switch such that when these lights are off ($\mathrm{V}_{\text {IN }}$ low) the decoded segment and the digit outputs are from V_{SS} to $\mathrm{V}_{\mathrm{SS}}-2.0$ volts. When the parking or headlights are switched on ($\mathrm{V}_{\text {IN }}$ high) the internal day/night logic enables the dimming input to control the segment and digit output voltage and brightness by allowing adjustable current to flow as controlled by the dash lights rheostat.

The day/night input can be protected from power supply transients by using $47 \mathrm{~K} \Omega$ external series resistance (See Figure 1).
Display Dimming Control Input (Pin 14)-The display dimming input is connected to the automobile dashboard light dimming rheostat through a series resistor. This allows the fluorescent display to track the dimming characteristics of the incandescent dashboard light (see Figure 2). The display dimming control is inhibited unless the day/night input (pin 15) is held at a logic high level (V_{SS}).
Display Drivers (Pins 1 through 12)-The 12 hour display format is comprised of four digits with leading zero blanking and a flashing colon. Each digit contains 7 segments with individual segments coded in the conventional manner (see Figure 1). The display is multiplexed with each digit output (G1, G2, G3 and G4) being strobed for a time period of approximately 0.5 ms . Figure 3 shows the minimum output current as a function of output voltage for the digit (grid) and segment outputs.
The colon output (pin 11) is designed to have an unobtrusive flash while still indicating that the clock is functioning normally. The colon flash is accomplished in a 2 second period of 1-1/2 seconds on the $1 / 2$ second off.

Electrical Characteristics

Symbol	Characteristics/Conditions	$\mathbf{v}_{\mathbf{D D}}$	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$			Unit
			Min.	Typ.	Max.	
$\mathrm{V}_{\text {SS }}$	Operating Supply Range $\mathrm{V}_{\mathrm{DD}}=0.0 \mathrm{~V}$ (Refer to Upconverter Pulse Output)		7.0		28	V
$\mathrm{I}_{\text {SS }}$	Supply Current (No loads on Outputs)	$\begin{aligned} & 12 \\ & 25 \end{aligned}$			$\begin{aligned} & 12 \\ & 15 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
	Oscillator Frequency			4.194304		MHz
	Display Outputs					
$\begin{aligned} & \mathrm{I}_{\mathrm{OH}} \\ & \mathrm{I}_{\mathrm{OL}} \\ & \mathrm{I}_{\mathrm{OH}} \\ & \mathrm{I}_{\mathrm{OL}} \\ & \hline \end{aligned}$	```Multiplex Rate Duty Cycle (Each Digit Per Cycle) Output Current (Day/Night=LOW) Digits, \(\mathrm{V}_{\mathrm{OH}}=24 \mathrm{~V}\) \(\mathrm{V}_{\mathrm{OL}}=2 \mathrm{~V}\) Segments \& Colon, \(\mathrm{V}_{\mathrm{OH}}=24 \mathrm{~V}\) \(\mathrm{V}_{\mathrm{OL}}=2 \mathrm{~V}\)```	$\begin{aligned} & 25 \\ & 25 \\ & 25 \\ & 25 \\ & \hline \end{aligned}$	$\begin{aligned} & 40 \\ & 10 \end{aligned}$	$\begin{aligned} & 512 \\ & 18.8 \end{aligned}$	$\begin{aligned} & -6.0 \\ & -1.5 \end{aligned}$	$\begin{aligned} & \mathrm{Hz} \\ & \% \\ & \mathrm{~mA} \\ & \mu \mathrm{~A} \\ & \mathrm{~mA} \\ & \mu \mathrm{~A} \\ & \hline \end{aligned}$
	Output Voltage (V[Pin 14]-V(Digit or Seg)					
$\begin{gathered} \Delta \mathrm{V}_{\mathrm{O}} \\ \Delta \mathrm{~V}_{\mathrm{O}} \\ \hline \end{gathered}$	Day/Night $=$ High, V(Pin $14 \geqslant / 4 \mathrm{~V}$) Digits ($\mathrm{R}_{\mathrm{L}}=8.2 \mathrm{~K} \Omega$ to V_{DD}) Segment ($\mathrm{R}_{\mathrm{L}}=100 \mathrm{~K} \Omega$ to V_{DD})	$\begin{aligned} & 25 \\ & 25 \end{aligned}$			1	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
	Upconverter Pulse Output					
$\begin{aligned} & \mathrm{I}_{\mathrm{OH}} \\ & \mathrm{I}_{\mathrm{OH}} \end{aligned}$$\mathrm{I}_{\mathrm{OL}}$	Pulse Frequency Duty Cycle Output Current $\begin{aligned} & \mathrm{V}_{\mathrm{OH}}=7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{OH}}=23 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{OL}}=1 \mathrm{~V} \end{aligned}$	$\begin{gathered} 9 \\ 25 \\ 25 \end{gathered}$	6.0	$\begin{gathered} 8192 \\ 25 \end{gathered}$	$\begin{aligned} & -1.5 \\ & -3.0 \end{aligned}$	$\begin{aligned} & \mathrm{Hz} \\ & \% \\ & \mathrm{~mA} \\ & \mathrm{~mA} \\ & \mu \mathrm{~A} \\ & \hline \end{aligned}$
	Time Set Input/Output					
$\begin{aligned} & \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IL}} \end{aligned}$	Input Voltage (No Load) High Low	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{gathered} 24 \\ 0 \end{gathered}$		1	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
	Output Current					
I_{OH}	$\mathrm{V}_{\mathrm{OH}}=18 \mathrm{~V}$	25	-6.0		-2.0	mA
	Output Frequency Duty Cycle			$\begin{gathered} 512 \\ 25 \\ \hline \end{gathered}$		$\begin{gathered} \mathrm{Hz} \\ \% \end{gathered}$
	Ignition Monitor Input and Day/Night Input					
$\begin{aligned} & \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IL}} \\ & \mathrm{I}_{\mathrm{IH}} \\ & \hline \end{aligned}$	Input Voltage High Low Input Current (Pull Down) $\mathrm{V}_{\text {IH }}=12 \mathrm{~V}$	9.0 to 25 9.0 to 25 25	$\begin{aligned} & 6.5 \\ & 0 \\ & 2 \end{aligned}$		$\begin{aligned} & \mathrm{V}_{\mathrm{SS}} \\ & 2.0 \\ & 20 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{~V} \\ \mu \mathrm{~A} \end{gathered}$

Figure 1. Typical Application

UNIVERSAL DISPLAY DRIVER

Features

32 Bit Data Storage Register\square Drives LED, LCD, or Vacuum Fluorescent Displays
$\square \mathbf{3 2}$ Output Buffers
\square Drives up to 4 Digits
$\square \quad$ Expansion Capability for More Digits
$\square \quad$ Reduced RFI Emanation
$\square \quad$ Wired OR Capability for Higher Current

General Description

The S2809 Universal Display Driver is a P-channel MOS integrated circuits capable of driving LED, vacuum fluorescent, and liquid crystal displays. Data is clocked serially into a 32 -bit master-slave static shift register. This provides static parallel drive to the display segments through display drive buffers. To reduce RFI emanation, capacitors have been integrated on the circuit for reduction of output switching speeds. Serial interconnection of circuits is made possible by the Data Out Output, allowing additional digits to be driven.
Two or more outputs may be wired together for higher sourcing currents; useful in applications such as triac triggering or low voltage incandescent displays. The S2809 can also be used as a parallel output device for μ C's such as AMI's S2000 series single chip microcomputer.

Absolute Maximum Ratings

Operating Ambient Temperature T_{A}	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {SS }}$ Supply Voltage	$+25 \mathrm{~V}$
Positive Voltage on Any Pin	$\mathrm{V}_{\text {SS }}+0.3 \mathrm{~V}$

Electrical Characteristics ($\mathrm{V}_{\mathrm{DD}}=0 \mathrm{~V}, 8 \mathrm{~V}<\mathrm{V}_{\mathrm{SS}}<22 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ unless otherwise noted)

Symbol	Parameter	Min.	Typ.	Max.	Units	Conditions
V_{IH}	Logic 1 Level (Data, Clock, Invert, Chip Select Inputs)	$\mathrm{V}_{\text {SS }}-0.7$		$\mathrm{V}_{\text {SS }}+0.3$	V	
V_{IL}	Logic 0 Level (Data, Clock Invert, Chip Select Inputs)			$\mathrm{V}_{\text {SS }}-7$	V	
$\mathrm{V}_{\text {BH }}$	Logic 1 Level (Blank Input)	$\mathrm{V}_{\text {SS }}-4.0$		$\mathrm{V}_{\text {SS }}+0.3$	V	
$\mathrm{V}_{\text {BL }}$	Logic 0 Level (Blank Input)	V_{DD}		$\mathrm{V}_{\text {SS }}-7$	V	
I_{B}	Current Sinked or Sourced by Blank Input			1.0	$\mu \mathrm{A}$	Voltage applied to Blank Input between V_{DD} \& V_{SS}
$\mathrm{C}_{\text {B }}$	Capacitance of Blank Input			12	pF	
I_{OH}	Output Source Current	9.0			mA	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {SS }}-3$.
I_{OH}	Output Source Current	4.0			mA	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {SS }}-1$
I_{OH}	Output Source Current		1.0		mA	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {SS }}-0$
I_{OH}	Output Source Current	10.0			$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {SS }}-50$
$\mathrm{I}_{0 \mathrm{~S}}$	Sink Current Output Load Device			50	$\mu \mathrm{A}$	Output voltage $=\mathrm{V}_{\text {SS }}$
$\mathrm{I}_{0 S}$	Sink Current Output Load Device	10			$\mu \mathrm{A}$	Output voltage $\leq+3 \mathrm{~V}$
I_{L}	Output Leakage Currrent (Output Off)			10.0	$\mu \mathrm{A}$	
I_{DD}	Supply Current			3.0	mA	Not including output source and sink current
$\mathrm{I}_{0 \mathrm{M}}$	Maximum Total Output Loading			300	mA	All outputs on
f_{c}	Clock Frequency	DC		100K	Hz	
$\mathrm{t}_{\text {on }}$	Clock Input Logic/Level Duration	3.0			$\mu \mathrm{s}$	
$\mathrm{t}_{\text {off }}$	Clock Input Logic 0 Level Duration	6.5			$\mu \mathrm{S}$	
$\mathrm{tro}_{\text {ro }}, \mathrm{t}_{\mathrm{fo}}$	Display Output Current Rise and Fall Times	10		150	$\mu \mathrm{S}$	*Measured between 10% and 90% of output current $\mathrm{V}_{\mathrm{SS}}<+11 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=9 \mathrm{ma}$

*NOTE: With supply voltages higher than 11 volts, delay exists before an output rise or fall. This delay will not exceed $100 \mu s$ with a 22 volt supply.

Functional Description

The 32 -bit static shift register stores data to be used for driving 32 output buffers, which may be used to drive display segments or other circuitry. Data is clocked serially into the register by the signal applied to the Clock Input whenever a logic 1 level is applied to the Chip Select Input; during this time, outputs are not driven by the shift register but will go to the logic level of the invert input. With a logic 0 level applied to the Chip Select Input, the 32 outputs are driven in parallel by the 32 -bit register. It is possible to connect S 2809 circuits in series to drive additional displays by use of the Data Output.

Clock Input

The Clock Input is used to clock data serially into the 32 -bit shift register. The signal at the Clock Input may be continuous, since the shift register is clocked only when a logic 1 level is applied to the Chip Select Input. As indicated in Table 1, data is transferred from QN-1 to QN on the negative transition of the Clock Input.

Data Input

Whenever a logic 1 level is applied to the Chip Select Input, data present at the Data Input is clocked into the 32-bit master-slave shift register. Data present at the input to the register is clocked into the master element during the logic 1 clock level and thus must be valid for the duration of the positive clock pulsewidth. This information is transferred to the slave section of each register bit during the clock logic 0 level.

Chip Select

The Chip Select Input is used to enable clocking of the shift register. When a logic 1 level is applied to this input, the register is clocked as described above. During this time, the output buffers are not driven by the register outputs, but will be driven to the logic level present at the Invert Input. With a logic 0 level at the Chip Select Input, clocking of the register is disabled, and the output buffers are driven by the 32 shift register elements.

Blank Input

This input may be used to control display intensity by varying the output duty cycles. With a logic 0 level at the Blank Input, all outputs will turn off (i.e., outputs will go the the logic level of the Invert Input). With a logic 1 level at the Blank Input, outputs are again driven in parallel by the 32 shift register elements (assuming the Chip Select Input is at logic 0).
The Blank Input has been designed with a high threshold to allow the use of a simple RC time constant to control the display intensity. This has been shown in Figure 1.

Invert Input

The Invert Input is used to invert the state of the outputs, if required. With a logic 0 level on this input, the logic level of the outputs is the same as the data clocked into the 32 -bit shift register. A logic 1 level on the Invert Input causes all outputs to invert.
This input may also be used when driving liquid crystal displays, as shown in Figure 5.

Data Output

The Data Out signal is a buffered output driven by element 32 of the shift register. It is of the same polarity as this last register bit and may be used to drive the Data Input of another S2809. In this manner, S2809 circuits may be cascaded to drive additional display digits.
Table 1. Logic Truth Table

$\begin{aligned} & \text { 르́ } \\ & \frac{\mathbb{I}}{a} \end{aligned}$	恙	$\begin{aligned} & \text { 늘 } \\ & \text { 3 } \\ & \text { H } \\ & \text { 롶 } \end{aligned}$	葆	$\stackrel{\text { 눌 }}{\stackrel{y}{3}}$	$\bar{\sigma}$	증	
X	X	0	0	0			0
X	X	0	0	1			1
X	X	0	1	0		NO CHANGE	QN
Z	X	0	1	1			$\overline{Q N}$
0	5	1	X	0	0	QN-1 \rightarrow QN	0
1	\checkmark	1	X	0	1	QN-1 \rightarrow QN	0
0	\lrcorner	1	X	1	0	$\mathrm{QN}-1 \rightarrow \mathrm{QN}$	0
1	Γ	1	X	1	1	$\mathrm{QN}-1 \rightarrow \mathrm{QN}$	0

Figure 1. Typical Display Intensity Control

Figure 2. LED Drive - Series

Figure 3. LED Drive - Shunt

Figure 5. Liquid Crystal Drive

Figure 6. Clock Input Waveform

ANALOG
 SHIFT REGISTER

Features

$\square 185$ Stage "Bucket Brigade" Delay Line
\square Delays Audio Signals
\square Accepts Clock Inputs up to 500 kHz
\square Variable Delay
\square Alternate to TCA 350

General Description

The S10110 analog shift register is a monolithic circuit fabricated with P-channel ion-implanted MOS technology. The part differs from a digital shift register, which is capable of only digital input and output information, in that an audio signal is typically supplied as the data input to the analog register, and the output is the same audio signal delayed in time. The amount of signal delay is dependent on the number of bits of delay (185) and the frequency of the two symmetrical clock inputs. Since each negativegoing clock edge transfers data from one stage to the next, the analog signal delay equals $185 \div 2 \times$ clock frequency.

Operation

Device operation may be understood by referring to Figure 1. This is an actual schematic diagram of the analog shift register, or "bucket brigade," showing typical external bias techniques.

Data In Input:

The analog signal, or audio signal, to be delayed is applied to pin 3. This input must be biased to a negative voltage of approximately -8 volts, and two resistors may be used as a voltage divider to provide this bias. They must be chosen so that $\left(\mathrm{R}_{1}\right) \pm\left(\mathrm{R}_{2}\right) \div\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)$ is less than 20 KQ . The input signal applied to this input through series capacitor $\mathrm{C}_{\text {IN }}$ may be as high as 6 volts peak to peak.

Clock 1 and Clock 2 Inputs:

Applied respectively to pins 5 and 2, Clock 1 and Clock 2 are two symmetrical non-overlaping negative-going clocks used to transfer the analog data along the 185 bit delay line. Although these clocks may have a duty cycle as low as 25% (i.e.: each clock signal is at a negative level for 25% of its period), better output signals will be obtained with both clock duty cycles closer to 50%. It is important, however, that no overlap of the clock signals occurs at a level more negative than $\mathrm{V}_{\mathrm{SS}}-0.8$ volts.

Referring again to Figure 1, it can be seen that when Clock 1 is negative, data is transferred from the data
input to capacitor C 1 ; likewise, data is transferred from each even-numbered capacitor to the capacitor to its right. When Clock 2 is negative, data is transferred from C 1 to C 2 and from each other odd-numbered capacitor to the capacitor to its right. In this manner, data is shifted from the input to C185 after a total of 185 negative clock pulses has occurred (i.e.: 93 periods of Clock 1 and 92 periods of Clock 2).

Data Out Output:

The output of the S10110 analog shift register is a single device, T187, with its drain at $\mathrm{V}_{\text {DD }}$ and its source connected to pin 6 . If a 47 K resistor to V_{SS} is supplied at this pin, T187 functions as a source follower.

Referring to Figure 3, it can be seen that the output potential during Clock 2 is a constant value near - 10 volts. When Clock 1 switches on (negative), the output instantaneously drops to a level of approximately-30 volts; this is caused by the 20 volt swing of Clock 1 and C185. As Clock 1 remains on, device T185 transfers charge from C184 to C185, and the output voltage becomes more positive, depending on the charge previously stored on C184. It is during this part of Clock 1 that the output reflects the analog data stored on C1 185 bits earlier. Since the clock signal now appears on the output, it is necessary to apply the appropriate filtering to obtain the delayed analog signal.

Figure 1. Schematic Diagram and Pinouts of S10110

Applications

Delay of Audio SignalsRotating Speaker Simulation
Electronic Chorus
Electronic Vibrato
String Ensemble
Reverberation

Absolute Maximum Ratings

Voltage on any pin relative to $\mathrm{V}_{\mathrm{SS}} \quad+0.3 \mathrm{~V}$ to -30 V
Operating temperature range: $\quad 0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage temperature (ambient): $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Electrical Characteristics

$\left(0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=-24 \mathrm{~V} \pm 2 \mathrm{~V} ; \mathrm{V}_{\mathrm{SS}}=\mathrm{OV}.\right)$

Symbol	Parameter	Min	Typ	Max	Units	Conditions
$\mathrm{V}_{\mathrm{CLK}_{\mathrm{L}}}$	CLOCK 1 and CLOCK 2 Inputs Logic Level "0"	VSS		$\begin{aligned} & \mathrm{V}_{\mathrm{SS}} \\ & -0.8 \end{aligned}$	Volts	No overlap of signals more negative than $\mathrm{V}_{\mathrm{SS}}-0.8 \mathrm{~V}$
$\mathrm{V}_{\text {CLK }}{ }_{\mathrm{H}}$	$\left.\begin{array}{l} \text { CLOCK } 1 \text { and } \\ \text { CLOCK } 2 \text { Inputs } \\ \text { Logic Level "1" } \end{array}\right\}$	-18		-20	Volts	See Figure 2
$\mathrm{tCLK}_{\mathrm{H}}$	Duration of CLOCK Logic "1" Level	$\begin{aligned} & 0.2 \times \\ & \mathrm{T}_{\mathrm{CLK}} \end{aligned}$				See Figure 2
$\mathrm{f}_{\text {CLK }}$	CLOCK Input Frequency	5		500	kHz	
$\mathrm{V}_{\text {BIN }}$	Input Bias Voltage	-7.5		-8.5	Volts	See Figure 1
$\mathrm{R}_{\text {BIN }}$	Resistance of the Bias Voltage Source at Input			20	$\mathrm{K} \Omega$	$\begin{aligned} & R_{\text {BIN }}=(R 1) \times(R 2) \div(R 1 \\ & +R 2) \text { See Figure } 1 \end{aligned}$
$\mathrm{V}_{\text {DIN }}$	Signal Level at Data In Input			6	Volts P-P	
a	Analog Signal Attenuation			4	dB	
t_{D}	Signal Delay		185			
$\mathrm{f}_{3 \mathrm{~dB}}$	3dB Response Point		$\begin{aligned} & 2 \times \mathrm{f} \\ & 0.1 \times \end{aligned}$			

Figure 2. Timing Diagram of Clock 1 and Clock 2 Signals

Figure 3. S10110 Output Waveform

ANALOG SHIFT REGISTER

Features

185 Stage "Bucket Brigade" Delay LineDelays Analog Signals
Single Phase TTL Compatible Clock Input
Accepts Clock Inputs up to 500 KHz
Variable Delay

Typical Applications

\square Delay of Audio SignalsElectronic Chorus
Electronic Vibrato
ReverberationString Ensemble
\square Rotating Speaker SimulationDelay of Analog SignalsMusical Phasing Effects

General Description

The S10111 analog shift register is a monolithic circuit fabricated with P-channel ion-implanted MOS technology. The part differs from a digital shift register, which is capable of only digital input and output information, in that an analog signal is typically supplied as the data input to the register. The register's output is that analog signal delayed in time. Because the two phase driver required to clock this shift register is integrated onto this circuit, the part can be easily driven by a single-phase low capacitance TTL compatible clock signal. Because each level transition of the clock input transfers data to a successive delay element, the amount of delay is equal to the number of delay elements (185) multiplied by half the clock period.

Absolute Maximum Ratings

Voltage on any pin relative to V_{SS} : +0.3 V to -30 V
Operating temperature range: . $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage temperature (ambient): . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Electrical Characteristics

$$
\left(-20^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<60^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=-24 \mathrm{~V} \pm 2 \mathrm{~V} ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{BB}}=+10 \mathrm{~V} \pm 7 \mathrm{~V}\right)
$$

Symbol	Parameter	Min.	Typ.	Max.	Units	Conditions
$\mathrm{V}_{\mathrm{CLK}_{\mathrm{L}}}$	CLOCK Input Logic Level "0"	VSS		$\begin{gathered} \mathrm{V}_{\mathrm{SS}} \\ -0.8 \end{gathered}$	Volts	
$\mathrm{V}_{\mathrm{CLK}_{\mathrm{H}}}$	CLOCK Input Logic Level " 1 "	-4.0		-20	Volts	
$\mathrm{t}_{\mathrm{CLK}_{\mathrm{H}}}$	Duration of CLOCK Logic " 1 " Level	48		52	\% of Clock Period	
$\mathrm{f}_{\text {CLK }}$	CLOCK Input Frequency	5		500	kHz	
VBIN	Input Bias Voltage	-7.5		-8.5	Volts	
$\mathrm{R}_{\text {BIN }}$	Resistance of the Bias Voltage Source at Input			20	K Ω	$\mathrm{R}_{\mathrm{BIN}}=(\mathrm{R} 1) \times(\mathrm{R} 2) \div(\mathrm{R} 1+\mathrm{R} 2)$ See Figure 2
$V_{\text {DIN }}$	Signal Level at Data In Input			6	$\begin{aligned} & \text { Volts } \\ & \text { P-P } \end{aligned}$	
a	Analog Signal Attenuation			4	dB	
$t_{\text {D }}$	Signal Delay		$\frac{185}{2 \mathrm{xf}_{\mathrm{CLK}}}$			
$\mathrm{f}_{3 \mathrm{~dB}}$	3dB Response Point		0.1 xf CLK			

Figure 1. Schematic Diagram

Functional Description

Device operation may be understood by referring to Figure 1, a schematic diagram of the S10111 analog shift register. A suggested connection diagram for the part is shown (Figure 2) along with typical output waveforms (Figure 3).

Data In Input: The analog signal to be delayed is applied to pin 3. This input must be biased to a negative voltage of $\mathrm{V}_{\text {BIN }}$, which may be accomplished by a simple resistive divider network. The input peak-topeak signal level may be as high as $V_{\text {DIN }}$.

Clock Input: The Clock input, pin 5, is used to transfer the analog data from each delay element to the subsequent stage. Because the two-phase clock divider required to operate the delay line is integrated on the circuit, it is not necessary to generate a two-phase clock externally. The single-phase clock is a high impedance input and may be driven with either MOS or TTL voltage levels.
Referring to Figure 1, it can be seen that when the clock input is negative (i.e., $\phi 1$ is negative), data is
transferred from the data input to capacitor C 1 ; likewise, data is transferred from each even-numbered capacitor to the odd-numbered capacitor to its right. When the clock input is positive (and, hence $\phi 2$ is negative), data is transferred from C1 to C2 and from each other odd-numbered capacitor to the capacitor to its right. In this manner, data is shifted from the input to C185 after a total of 185 half periods of the clock input.
Data Out Output: The output stage of the S10111 analog shift register is a single device, T187, with its drain at VDD and source connected to pin 6. Connecting a 47 K resistor between the output and V_{SS} causes T187 to function as a source follower.
Typical output waveforms are shown in Figure 3. It is during the negative portion of the clock input that the data on the output reflects the analog information that was present at the data input. Because the clock signal now appears on the output, it is necessary to apply the appropriate filtering to obtain the delayed analog signal.

Figure 2.
Typical External Biasing Method

977316

Figure 3.
Typical Output Waveforms (device connected as in Figure 2)

SEVEN STAGE FREQUENCY DIVIDER

Features

\square Contains Seven Binary Dividers
\square Triggers on Negative-Going EdgeHigh Impedance Inputs
\square Schmidt Trigger on Inputs
\square No Minimum Input Rise or Fall Time RequirementsLow Impedance Push-Pull OutputsLow Power Dissipation
\square Resettable

Applications

Electronic organ frequency generator, organ pedal frequency generator, electronic music synthesizers, N stage dividers, low frequency generation, binary counters.

General Description

The S10129 is a monolithic frequency divider circuit fabricated with P-Channel ion-implanted MOS technology. The circuit provides seven stages of binary division in a 3-2-1-1 configuration; the S10129 is ideally suited for tone generation in electronic organs.
All inputs to the device are buffered to permit easy triggering of the divider stages. Outputs of each divider are buffered to provide low output impedance in both logic states to drive external circuitry as well as other dividers. The buffers have low standby current and are powered by V_{DD}. This voltage functions as a clamp voltage and thus sets the output amplitudes. Buffering the outputs also provides complete isolation between the dividers and the loads. If a buffer output is shortcircuited, the divider will continue to function.
All divider outputs may be reset to a logic low level ($\mathrm{V}_{\text {SS }}$) by momentarily applying a logic low level to the V_{GG} supply input. This is particularly desirable in some electronic organs in which phase relationships are important.

Absolute Maximum Ratings

Storage Temperature . $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature (ambient) ... $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Electrical Characteristics $\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=-11 \mathrm{~V}\right.$ to $-16 \mathrm{~V} ; \mathrm{V}_{\mathrm{GG}}=-25 \mathrm{~V}$ to -29 V unless otherwise specified)

Symbol	Parameter	Min.	Typ.	Max.	Unit	Condition
V_{IL}	Input Clock Low	$\mathrm{V}_{\mathrm{SS}}+0.3$		$\mathrm{~V}_{\mathrm{SS}}-2.0$	V	
$\mathrm{~V}_{\mathrm{IH}}$	Input Clock High	$\mathrm{V}_{\mathrm{SS}}-8$		$\mathrm{~V}_{\mathrm{GG}}$	V	
f_{IN}	Input Clock Frequency	DC		250	kHz	
$\mathrm{T}_{\mathrm{H}}, \mathrm{T}_{\mathrm{L}}$	Input Clock On and Off Times	1.5			$\mu \mathrm{~s}$	
$\mathrm{~V}_{\mathrm{R}}$	Voltage Applied to V_{GG} Input to Cause a Reset Condition	V_{SS}		$\mathrm{V}_{\mathrm{SS}}-0.5$	V	
$\mathrm{~T}_{\mathrm{R}}$	Duration of V_{R} to Cause Reset	10			$\mu \mathrm{~s}$	50% to 50% point
V_{OH}	Output High Level	-11		$\mathrm{~V}_{\mathrm{DD}}$	V	$\mathrm{V}_{\mathrm{DD}}=-12 \mathrm{~V}$ $\mathrm{~V}_{\mathrm{GG}}=-26 \mathrm{~V}$ $5.5 \mathrm{~K} \Omega$ load to V_{SS}
V_{OL}	Output Low Level	V_{SS}		-1	V	$\mathrm{V}_{\mathrm{DD}}=-12 \mathrm{~V}$ $\mathrm{~V}_{\mathrm{GG}}=-26 \mathrm{~V}$ $5.5 \mathrm{~K} \Omega$ load to V_{DD}
C_{IN}	Input Capacitance		5	10	pF	Applies to clock inputs

SIX STAGE FREQUENCY DIVIDER

Features

\square Contains Six Binary DividersTriggers on Negative-Going EdgeHigh Impedance Inputs
\square Schmidt Trigger on Inputs
\square No Minimum Input Rise or Fall Time RequirementsLow Impedance Push-Pull OutputsLow Power Dissipation
\square Resettable

Applications

Electronic organ frequency generator, organ pedal frequency generator, electronic music synthesizers, N stage dividers, low frequency generation, binary counters.

General Description

The S10130 is a monolithic frequency divider circuit fabricated with P-Channel ion-implanted MOS technology. The circuit provides six stages of binary division in a 3-2-1 configuration; the S10130 is ideally suited for tone generation in electronic organs.
All inputs to the device are buffered to permit easy triggering of the divider stages. Outputs of each divider are buffered to provide low output impedance in both logic states to drive external circuitry as well as other dividers. The buffers have low standby current and are powered by V_{DD}. This voltage functions as a clamp voltage and thus sets the output amplitudes. Buffering the outputs also provides complete isolation between the dividers and the loads. If a buffer output is shortcircuited, the divider will continue to function.
All divider outputs may be reset to a logic low level ($\mathrm{V}_{\text {SS }}$) by momentarily applying a logic low level to the V_{GG} supply input. This is particularly desirable in some electronic organs in which phase relationships are important.

Absolute Maximum Ratings

Voltage on Any Pin Relative to V_{SS}	+0.3 V to -20 V
Voltage on V_{GG} Relative to V_{SS}	+0.3 V to -30 V
Storage Temperature	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature (amb	$\ldots 0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Electrical Characteristics $\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=-11 \mathrm{~V}\right.$ to $-16 \mathrm{~V} ; \mathrm{V}_{\mathrm{GG}}=-25 \mathrm{~V}$ to -29 V unless otherwise specified)

Symbol	Parameter	Min.	Typ.	Max.	Unit	Condition
V_{IL}	Input Clock Low	$\mathrm{V}_{\mathrm{SS}}+0.3$		$\mathrm{~V}_{\mathrm{SS}}-2.0$	V	
$\mathrm{~V}_{\mathrm{IH}}$	Input Clock High	$\mathrm{V}_{\mathrm{SS}}-8$		$\mathrm{~V}_{\mathrm{GG}}$	V	
f_{IN}	Input Clock Frequency	DC		250	kHz	
$\mathrm{T}_{\mathrm{H}}, \mathrm{T}_{\mathrm{L}}$	Input Clock On and Off Times	1.5			$\mu \mathrm{~s}$	
$\mathrm{~V}_{\mathrm{R}}$	Voltage Applied to V_{GG} Input to Cause a Reset Condition	V_{SS}		$\mathrm{V}_{\mathrm{SS}}-0.5$	V	
$\mathrm{~T}_{\mathrm{R}}$	Duration of V_{R} to Cause Reset	10			$\mu \mathrm{~s}$	50% to 50% point
V_{OH}	Output High Level	-11		$\mathrm{~V}_{\mathrm{DD}}$	V	$\mathrm{V}_{\mathrm{DD}}=-12 \mathrm{~V}$ $\mathrm{~V}_{\mathrm{GG}}=-26 \mathrm{~V}$ $5.5 \mathrm{~K} \Omega$ load to V_{SS}
V_{OL}	Output Low Level	V_{SS}		-1	V	$\mathrm{V}_{\mathrm{DD}}=-12 \mathrm{~V}$ $\mathrm{~V}_{\mathrm{GG}}=-26 \mathrm{~V}$ $5.5 \mathrm{~K} \Omega$ load to V_{DD}
C_{IN}	Input Capacitance		5	10	pF	Applies to clock inputs

Timing Characteristics

Features

\square Contains Six Binary Dividers
\square Triggers on Negative-Going Edge
\square High Impedance Inputs
\square Schmidt Trigger on Inputs
$\square \quad$ No Minimum Input Rise or Fall Time Requirements
\square Low Impedance Push-Pull Outputs
\square Low Power Dissipation
Resettable

Applications

Electronic organ frequency generator, organ pedal frequency generator, electronic music synthesizers, N stage dividers, low frequency generation, binary counters.

General Description

The S10131 is a monolithic frequency divider circuit fabricated with P-Channel ion-implanted MOS technology. The circuit provides six stages of binary division in a 2-2-1-1 configuration; the S 10131 is ideally suited for tone generation in electronic organs.
All inputs to the device are buffered to permit easy triggering of the divider stages. Outputs of each divider are buffered to provide low output impedance in both logic states to drive external circuitry as well as other dividers. The buffers have low standby current and are powered by $V_{D D}$. This voltage functions as a clamp voltage and thus sets the output amplitudes. Buffering the outputs also provides complete isolation between the dividers and the loads. If a buffer output is shortcircuited, the divider will continue to function.
All divider outputs may be reset to a logic low level $\left(\mathrm{V}_{\mathrm{SS}}\right)$ by momentarily applying a logic low level to the V_{GG} supply input. This is particularly desirable in some electronic organs in which phase relationships are important.

Absolute Maximum Ratings

Storage Temperature ... $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature (ambient)... $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Electrical Characteristics $\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=-11 \mathrm{~V}\right.$ to $-16 \mathrm{~V} ; \mathrm{V}_{\mathrm{GG}}=-25 \mathrm{~V}$ to -29 V unless otherwise specified)

Symbol	Parameter	Min.	Typ.	Max.	Unit	Condition
V_{IL}	Input Clock Low	$\mathrm{V}_{\mathrm{SS}}+0.3$		$\mathrm{~V}_{\mathrm{SS}}-2.0$	V	
$\mathrm{~V}_{\mathrm{IH}}$	Input Clock High	$\mathrm{V}_{\mathrm{SS}}-8$		$\mathrm{~V}_{\mathrm{GG}}$	V	
f_{IN}	Input Clock Frequency	DC		250	kHz	
$\mathrm{T}_{\mathrm{H}}, \mathrm{T}_{\mathrm{L}}$	Input Clock On and Off Times	1.5			$\mu \mathrm{~S}$	
$\mathrm{~V}_{\mathrm{R}}$	Voltage Applied to V_{GG} Input to Cause a Reset Condition	V_{SS}		$\mathrm{V}_{\mathrm{SS}}-0.5$	V	
$\mathrm{~T}_{\mathrm{R}}$	Duration of V_{R} to Cause Reset	10			$\mu \mathrm{~s}$	50% to 50% point
V_{OH}	Output High Level	-11		$\mathrm{~V}_{\mathrm{DD}}$	V	$\mathrm{V}_{\mathrm{DD}}=-12 \mathrm{~V}$ $\mathrm{~V}_{\mathrm{GG}}=-26 \mathrm{~V}$ $5.5 \mathrm{~V} \Omega$ load to V_{SS}
V_{OL}	Output Low Level	V_{SS}		-1	V	$\mathrm{V}_{\mathrm{DD}}=-12 \mathrm{~V}$ $\mathrm{~V}_{\mathrm{GG}}=-26 \mathrm{~V}$ $5.5 \mathrm{~V} \Omega$ load to V_{DD}
C_{IN}	Input Capacitance		5	10	pF	Applies to clock inputs

AMII

ANALOG SHIFT REGISTER

Features

186 Stage "Bucket Brigade" Delay LineDelays Analog Signals
\square Noise Cancellation Output
\square
Accepts Clock Inputs Up to 500 KHz
\square Variable Delay

Typical Applications

Delay of Audio SignalsElectronic Chorus
Electronic Vibrato
\square String Ensemble
\square Rotating Speaker Simulation
Delay of Analog Signals
\square Musical Phasing Effects

General Description

The S10377 analog shift register is a monolithic circuit fabricated with P-Channel ion-implanted MOS technology. The part differs from a digital shift register, which is capable of only digital input and output information, in that an analog signal is typically supplied as the data input to the register. The register's output is that analog signal delayed in time. To enable cancellation of the clock signal from the analog output, two outputs of opposite phase are provided. Because each level transition of the clock input transfers data to a successive delay element, the amount of delay is equal to the number of delay elements (186) multiplied by half the clock frequency.

Block Diagram

Pin Configuration

Figure 1. Schematic Diagram

Functional Description

Device operation may be understood by referring to Figure 1. This is an actual schematic diagram of the analog shift register, or "bucket brigade."

Data In Input

The analog, or audio, signal to be delayed is applied to pin 3. This input must be biased to a negative voltage of approximately -8 volts, and two resistors may be used as a voltage divider to provide this bias. They must be chosen so that (R1) $\times(R 2) \div(R 1+R 2)$ is less than $20 \mathrm{k} \Omega$. The signal applied to this input through series capacitor C_{IN} may be as high as 6 volts peak to peak. A typical input biasing circuit is shown in Figure 2.

Clock 1 and Clock 2 Inputs

Applied respectively to pins 5 and 2, Clock 1 and Clock 2 are two symmetrical non-overlapping negativegoing clocks used to transfer the analog data along the 186 -bit delay line. Although these clocks may have a duty cycle as low as 25% (i.e., each clock signal is at a negative level for 25% of its period), better output signals will be obtained with both clock duty
cycles closer to 50%. It is important, however, that no overlap of the clock signals occurs at a level more negative than $\mathrm{V}_{\mathrm{SS}}-0.8$ volts.
Referring again to Figure 1, it can be seen that when Clock 1 is negative, data is transferred from the data input to capacitor C1; likewise, data is transferred from each even-numbered capacitor to the capacitor to its right. When Clock 2 is negative, data is transferred from C1 to C2 and from each other odd-numbered capacitor to the capacitor to its right. In this manner, data is shifted from the input to C186 after a total of 186 negative clock pulses have occurred.

Data Out Outputs

Each output of the S10377 analog shift register is a single device with its drain at $V_{D D}$ and its source connected to an output pin. If used separately, each output would provide the delayed analog waveform superimposed on a larger signal which is the clock frequency. This output would need to be low pass filtered to eliminate clock noise. However, since the S10377 provides two output signals that are 180° out of phase, this undesirable clock noise can be cancelled by connecting the outputs as shown in Figure 2. Adjustment of the 5 K ohm potentiometer balances the output, eliminating the need for excessive low pass filtering.

Absolute Maximum Ratings

Electrical Characteristics ($\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=-24 \mathrm{~V} \pm 2 \mathrm{~V} ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$)

Symbol	Parameter	Min.	Typ.	Max.	Units	Conditions
$\mathrm{V}_{\mathrm{CLK}_{\mathrm{L}}}$	CLOCK 1 and CLOCK 2 Inputs, Logic Level "0"	$\mathrm{V}_{\text {SS }}$		$\mathrm{V}_{\text {SS }}{ }^{-0.8}$	Volts	No overlap of signals more negative than $\mathrm{V}_{\mathrm{SS}}-0.8 \mathrm{~V}$
$\mathrm{V}_{\mathrm{CLK}_{\mathrm{H}}}$	CLOCK 1 and CLOCK 2 Inputs, Logic Level " 1 "	-18		-20	Volts	See Figure 4
$\mathrm{t}_{\mathrm{CLK}_{\mathrm{H}}}$	Duration of CLOCK Logic "1" Level	$\begin{array}{\|l} 0.4 \mathrm{X} \\ \mathrm{t}_{\text {CLK }} \end{array}$				See Figure 4
$\mathrm{f}_{\text {CLK }}$	CLOCK Input Frequency	20		500	kHz	
$\mathrm{V}_{\text {BIN }}$	Input Bias Voltage	-7.5		-8.5	Volts	See Figure 1
$\mathrm{R}_{\text {BIN }}$	Resistance of the Bias Voltage Source at Input			20	$\mathrm{k} \Omega$	$\begin{aligned} & \mathrm{R}_{\mathrm{BIN}}=(\mathrm{R} 1) \times(\mathrm{R} 2) \div \\ & (\mathrm{R} 1+\mathrm{R} 2), \text { see Figure } 1 \end{aligned}$
$\mathrm{V}_{\text {DIN }}$	Signal Level at Data In Input			6	$\begin{aligned} & \text { Volts } \\ & \mathrm{P}-\mathrm{P} \end{aligned}$	
a	Analog Signal Attenuation			4	dB	
$t_{\text {D }}$	Signal Delay		$\begin{gathered} 185 \\ 2 \mathrm{xf}_{\mathrm{CLK}} \end{gathered}$			
$\overline{F_{3 d B}}$	3dB Response Point		0.1 xfCLK			Frequency whose amplitude is 3 dB below maximum output amplitude.

Figure 2. Schematic Diagram of Typical Input Biasing and Output Configuration

Figure 3. Schematic Diagram of Vibrato Oscillator, VCO, and Clock Drivers for S10377 Analog Delay Line

Figure 4. Timing Diagram of Clock 1 and Clock 2 Signals

AMERICAN MICROSYSTEMS, INC.

DIVIDER-KEYER

Features

$\begin{array}{ll}\square & \text { 22 Keyboard Inputs } \\ \square & 88 \text { DC Keyer Circuits } \\ \square & 34 \text { Binary Dividers } \\ \square & \text { Provides Four Pitch Outputs } \\ \square & \text { All Key Inputs Sustainable for Percussion } \\ \square & \text { All Dividers Resettable } \\ \square & \text { Provides "Any Key Down" Indication } \\ \square & \text { Eliminates Multiple-Contact Key Switches } \\ & \\ \text { Typical Applications } \\ \square & \text { Generation and Keying of Musical Tones } \\ \square & \text { Standard Spinet Organ Keying (37 or 44 note } \\ \quad \text { keyboards) } \\ \square & \text { Keying of Sustained Tones } \\ \square & \text { Percussive Effects } \\ \square & \text { Generating Stair-stepped Waveforms } \\ \square & \text { Electronic Piano }\end{array}$

General Description

The S10430 divider-keyer is a monolithic integrated circuit fabricated with P-Channel ion-implanted MOS technology. It is intended for use in spinet organs or other electronic musical instruments having keyboards of up to 44 keys. This device has 22 key inputs, allowing all keying functions for a 44 note manual to be performed by two S10430 circuits. Each S10430 accepts six frequencies from a top octave synthesizer, such as an S50240, and provides squarewave outputs at 16 foot, 8 foot, 4 foot, and 2 foot pitches. For example, if a C key is depressed by itself a low C frequency appears at the 16 foot output, and a C frequency one octave higher appears at the 8 foot output; similarly, the 4 foot and 2 foot outputs provide C frequencies one and two octaves higher, respectively, than the C frequency of the 8 foot output. All appropriate frequency division is performed by the S10430, eliminating the need for external dividers.

General Description (Continued)

The circuitalsoeliminates the need for multiple-contact key switches and discrete diode or transistor keyers. Because of the high input impedance of the MOS
keyers used in this circuit, long sustain envelopes may be obtained by connecting low-value capacitors to the keying inputs.

Absolute Maximum Ratings

Voltage on any pin relative to V_{SS}. 0.3 Cl to -27.0 V
Operating temperature (ambient) . $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage temperature . $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

Electrical Characteristics

$0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant 70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}=-12.6 \mathrm{~V}$ to $-15.4 \mathrm{~V} ; \mathrm{V}_{\mathrm{KEY}}=-4.75 \mathrm{~V}$ to -5.25 V (unless otherwise specified)
$\left.\begin{array}{l|l|c|c|c|c|l}\hline \text { Symbol } & \text { Parameter } & \text { Min. } & \text { Typ. } & \text { Max. } & \text { Units } & \text { Conditions } \\ \hline \mathrm{V}_{\mathrm{IL}} & \begin{array}{l}\text { Logic Low Level TOS and } \\ \text { Reset Inputs }\end{array} & 0.0 & & 0.8 & \mathrm{~V} & \\ \hline \mathrm{~V}_{\mathrm{IH}} & \begin{array}{l}\text { Logic High Level TOS and } \\ \text { Reset Inputs }\end{array} & -4.2 & & \mathrm{~V}_{\mathrm{DD}} & \mathrm{V} & \\ \hline \mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}} & \begin{array}{l}\text { Rise and Fall Times } \\ \text { TOS Inputs }\end{array} & & & 50 & \mu \mathrm{sec} & \begin{array}{l}\text { Measured between } 10 \% \text { and } \\ 90 \% \text { points }\end{array} \\ \hline \mathrm{V}_{\mathrm{OL}} & \text { Logic Low Level AK Output } & & -0.5 & -1.0 & \mathrm{~V} & 100 \mathrm{~K} \Omega \text { load to } \mathrm{V}_{\mathrm{DD}} \\ \hline \mathrm{tfo}_{\mathrm{fo}} & \begin{array}{l}\text { Transition of AK Output to } \\ 10 \% \text { of } \mathrm{V}_{\mathrm{DD}}\end{array} & & & 10 & \mu \mathrm{~s} & 100 \mathrm{pF} \text { and } 100 \mathrm{~K} \Omega \text { load to } \mathrm{V}_{\mathrm{DD}} \\ \hline \mathrm{F}_{\mathrm{T}} & \begin{array}{l}\text { Operating Frequency TOS } \\ \text { Inputs }\end{array} & \mathrm{DC} & & 50 \mathrm{~K} & \mathrm{~Hz} & \\ \hline \mathrm{D}_{\mathrm{O}} & \begin{array}{l}\text { Output Duty Factor }\end{array} & 48 & & 52 & \% & \begin{array}{l}\text { Measured between } 10 \% \text { and } \\ 90 \% \text { points }\end{array} \\ \hline \mathrm{I}_{\mathrm{PA}} & \begin{array}{l}\text { Peak Output Current } \\ \text { Absolute (any pitch } \\ \text { output with 1 keyer on) }\end{array} & 350 & & 650 & \mu \mathrm{~A} & \begin{array}{l}\mathrm{V}_{\mathrm{DD}}=-14 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{KEY}}=-5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{EN}}=-25 \mathrm{~V} \\ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\end{array} \\ \hline \mathrm{I}_{\mathrm{P}} & \text { Peak Output Current } & 85 & & 115 & \% \mathrm{I}_{\mathrm{AVE}} * & \begin{array}{l}\mathrm{V}_{\mathrm{DD}}=-14 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{KEY}}=-5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{EN}}=-25 \mathrm{~V} \\ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\end{array} \\ \hline \mathrm{I}_{\mathrm{P}} & \text { Peak Output Current } & 50 & & 75 & \% \mathrm{I}_{\mathrm{AVE}} * & \begin{array}{l}\mathrm{V}_{\mathrm{DD}}=-14 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{KEY}}=-5 \mathrm{~V}\end{array} \\ \mathrm{~V}_{\mathrm{EN}}=-15 \mathrm{~V} \\ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\end{array}\right]$

[^4]
Electrical Characteristics (Continued)

Symbol	Parameter		Typ.	Max:		Conditions
I_{P}	Peak Output Current	0.5			$\mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{DD}}=-14 \mathrm{~V}$
					$\mathrm{VEY}=-5 \mathrm{~V}$ $\mathrm{~V}_{\mathrm{EN}}=-3.0 \mathrm{~V}$	
						$\mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
I_{P}	Peak Output Current			0.5	$\mu \mathrm{~A}$	$\mathrm{VDD}=-14 \mathrm{~V}$
					$\mathrm{~V}_{\mathrm{KEY}}=-5 \mathrm{~V}$	
					$\mathrm{~V}_{\mathrm{EN}}=-1.0 \mathrm{~V}$	
					$\mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	

Functional Description

The S10430 Divider-Keyer circuit accepts six frequencies as inputs and uses these to clock six binary divider chains. Four of these chains consist of six binary dividers each and the remaining two have five. The six chains generate all frequencies necessary to obtain $2^{\prime}, 4^{\prime}, 8^{\prime}$, and 16^{\prime} pitches for half of a 44 key keyboard.

Figure 1: Typical Time Constants For Sustain Keying

N Inputs
Six of the twelve tempered scale frequencies are applied to the inputs N1 through N6. Typically, these frequencies would be six of the outputs of a top octave synthesizer, such as an S50240. In general, it doesn't matter which frequencies are applied to the N inputs, although this affects which keyboard keys should be connected to the K inputs. One exception to this arises from the fact that a 44 note keyboard contains more of some keys than others. Specifically, there are only three each of the keys, C\#, D, D\#, and

The outputs of the divider chains are routed to chopper keyer circuits like the one shown in Figure 2. When a negative voltage is applied to any " K " input, four of these keyer circuits are turned on to route the appropriate frequencies to each of the four pitch outputs.

Figure 2: Schematic Diagram of Chopper Keyer Circuit

E, but there are four each of the keys F, F\#, G, G\#, $\mathrm{A}, \mathrm{A} \#, \mathrm{~B}$ and C. This results in the requirement that each of the two S10430 divider keyers in a system take two frequencies from the first group, and four from the second group. Stating this another way, the N1, N2, N3, and N4 inputs must have frequencies chosen from the group, F, F\#, G, G\#, A, A\#, B, and C. The N5 and N6 inputs are chosen from the group, C\#, D, D\#, and E. The example in Figure 4 shows one divider keyer handling the notes, A, A\#, B, C, CH , and D while the other does the keying for DH, E, F, F\#, G, and G\#.

Table 1: Relationship between K and N Inputs

*To determine outputs for 4^{\prime} pitch: multiply 8^{\prime} pitch output by 2 .
To determine outputs for 2^{\prime} pitch: multiply 8^{\prime} pitch output by 4 .
To determine outputs for 16^{\prime} pitch: divide 8^{\prime} pitch output by 2 .

K Inputs

The twenty-two inputs are connected either directly to key switches or to an attack/decay circuit, such as the one shown in Figure 1. When a negative voltage is applied to any K input, four chopper keyer circuits are turned on, and the appropriate frequencies appear at the four pitch outputs. The amount of current at the output is determined by the voltage at the K input. As the voltage becomes more negative, more current appears at the output. This will be discussed further in the section on "Pitch Outputs."
Connection of the K inputs to the key switches is dependent on which frequencies are applied to which N inputs. Table 1 shows the relationship between the K and N inputs. If, for example, the top octave frequency $\mathrm{F}, 5588 \mathrm{~Hz}$, is applied to the N 2 input, K 5 should then be connected to the highest F key on the keyboard, K6 to the next highest, K7 to the next, and K 8 to the lowest F . If the highest F key is depressed, then $\mathrm{N} 2 \div 4$, or 1397 Hz would appear at the 8^{\prime} Pitch Output. At the same time, the 16^{\prime} pitch, 4^{\prime} pitch and 2^{\prime} pitch outputs would provide, respectively, $699 \mathrm{~Hz}, 2794 \mathrm{~Hz}$, and 5588 Hz . An example of K and N input connections is given in Figure 4.
To control attack, decay, and sustain times, a circuit such as the one shown in Figure 1 may be used. When a keyswitch is closed, the K input charges to -25 volts through the time constant of R2 and C1. This causes the attack time to be about 1 ms . If the sustain is on
(sustain switch open), when the keyswitch is opened, the K input will charge slowly back to V_{SS} through the time constant of C1, R1, and R2. This results in a sustain envelope of 271 ms . Longer sustains can be obtained with larger capacitors. If the sustain switch is closed, then the decay time is governed by the time constant of C1, R2, and R3\| R1. In this example, this non-sustain decay is about 3 ms .

Pitch Outputs

The outputs labeled 2^{\prime} pitch, 4^{\prime} pitch, 8^{\prime} pitch, and 16^{\prime} pitch provide the appropriate frequencies for these four pitches depending on which K inputs have been selected. The selected frequencies of the outputs are shown in Table 1. The highest octave of frequencies is obtained directly from the N inputs. Although these top octave frequencies are buffered internally, their duty cycle depends on the duty cycle of the N inputs.
Each output is connected to the outputs of 22 of the chopper keyer circuits shown in Figure 2. The chopper device, D1 is much lower in impedance than the keyer device D2. The output voltage amplitude is dependent, therefore, on the ratio of D2 to the output load. Higher output sink resistor values result in higher output signal amplitudes. However, it is important to keep the output sink resistor low in order to minimize the effects of intermodulation distortion between keyers. Figure 3 shows a typical output waveform
with a 100Ω sink resistor. Because of the need for a low value sink resistor and the usual desirability of a high signal amplitude, it may be advisable in some cases to load the pitch outputs with operational amplifiers instead of resistors.

$V_{\text {KEY }}$ Input

This supply input is used exclusively for the chopper keyer circuits (Figure 2). It is important that this be a low impedance supply in order to minimize intermodulation distortion between keyer circuits.
The voltage on the supply is kept low relative to $V_{D D}$ and the K inputs to insure linear operation of the MOS keying circuits.

Reset Input

Applying a V_{SS} level to this input causes all binary
dividers to be held in the reset state. A logic 1 applied to Reset causes the dividers to function normally. To prevent possible phase cancellation between upper and lower manual systems, it is suggested that an RC network be connected to this input so that the musical instrument will be locked into proper phase relationships when power is first applied. When in the reset condition, all chopper devices are turned on to facilitate testing.

AK Output

Whenever any key input is selected, the AK output is actively pulled to $V_{S S}$ to indicate that a key is played. This output is open ended (i.e., no pull-up device is provided), and may be left unconnected if not needed.

Figure 3. Typical Keyer Output

Figure 4. Schematic Diagram of Typical Divider - Keyer Application

$$
\begin{aligned}
& v_{S S}=0 \\
& V_{\text {DD }}=-14 \text { VOLTS } \\
& V_{K E Y}=-5 \text { VOLTS }
\end{aligned}
$$

NOTE: ON ALL K INPUTS, THE LETTER REFERS TO THE KEY NAME, AND THE NUMBER TO ITS LOCATION ON THE KEYBOARD. FOR EXAMPLE, F1 WOULD BE THE LOWEST KEY ON A 44 NOTE MANUAL, AND C4 WOULD BE THE HIGHEST.

RESETTABLE RHYTHM COUNTER

Features

\square Pin for Pin Equivalent to GEM 567 and MC1181L
\square Organ Rhythm Sections
\square Portable Rhythm Sections
\square Automatic Rhythm Organs

General Description

The S2567 Resettable Rhythm Counter is a six-stage asychronous binary counter designed for driving the count-address inputs of the S2566 Rhythm Generator. The internal partitioning and multiple-reset capability of the S2567 permit simultaneous generation of different meter rhythms. The S2567 Resettable Rhythm Counter is made by P-channel enhancement mode technology and is supplied in a 16 -lead dual in-line package.

Absolute Maximum Ratings: $@ 25^{\circ} \mathrm{C}$, unless otherwise noted Logic Supply Voltages:

V_{GG}	+0.3 V to -33 V
$V_{\text {DD }}$	+0.3 V to -25 V
$\mathrm{V}_{\text {I }}$ Trigger Voltage	+0.3 V to -18 V
P_{D} Power Dissipation	250 mW
T_{S} Storage Temperature	$-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
T_{A} Operating Temperature	$-0^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$

Dynamic Characteristics: $\mathrm{T}_{\mathrm{A}}=-25^{\circ} \mathrm{C}$
Operating Voltage Ranges:

Symbol	Parameter	Min.	Typ.	Max.	Units
V_{GG}		-25	-27	-29	V
$\mathrm{~V}_{\mathrm{DD}}$		-14	-15	-16	V

Inputs: (Pins 2 thru 7, and 16)

f_{I}	Input Frequency	DC		100	kHz
V_{IH}	Logic "0" Level	+0.3		-2.0	V
$\mathrm{~V}_{\mathrm{IL}}$	Logic "1" Level	-8.0		-18	V
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Rise and Fall Times			25	$\mu \mathrm{~s}$
PW_{I}	Pulse Width	2			$\mu \mathrm{~s}$
I_{IL}	Leakage Current ($\left.\mathrm{V}_{\mathrm{ILT}}=-18 \mathrm{~V}\right)$			1	$\mu \mathrm{~A}$

Outputs: (Pins 10 thru 15, each loaded 20K to GND and 20K to $V_{\text {DD }}$)

V_{OH}	Logic " 0 "' Level	0		-1.5	V
$\mathrm{~V}_{\mathrm{OL}}$	Logic " 1 " Level	-9.0		$\mathrm{~V}_{\mathrm{DD}}$	V
Reset Propagation Delay			2.0	$\mu \mathrm{~A}$	
Supply Currents: (no output loads)					
I_{GG}			4	6	mA
I_{DD}				20	$\mu \mathrm{~A}$

DIGITAL NOISE GENERATOR

Features

\square Internal Oscillator
\square Consistent Noise Quality
\square Consistent Noise Amplitude
\square Zero State Lockup Prevention
\square Zeros Can Be Externally Forced Into The Register
\square Oscillator Can Be Driven Externally
\square Operates With Single or Dual Power Supplies
\square Eliminates Noise Preamps
\square Alternate to MM5837

General Description

The S2688 noise generator circuit is fabricated in P-Channel ion implanted MOS technology and supplied in an eight-lead dual in-line plastic package. The device contains a 17 -bit shift register which is continuously clocked by an internal oscillator. Exclusive OR feedback from the 14th and 17th stages causes the register to generate a pseudo-random noise pattern, and an internal gate is included to prevent the register from reaching an all zero lockup state. To facilitate testing, the device can be easily clocked by an external source.

Absolute Maximum Ratings
Positive Voltage on any Pin . $\mathrm{V}_{\mathrm{SS}}+0.3 \mathrm{~V}$
Negative Voltage on any pin except V_{GG}.. $\mathrm{V}_{\text {SS }}$ - 28V
Negative Voltage on $V_{G G}$ Supply Pin . $V_{S S}$ - 33V
Storage Temperature . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Ambient Temperature . $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Electrical Specifications $\left(0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{SS}}=0\right.$ volts; $\mathrm{V}_{\mathrm{DD}}=-14.0 \mathrm{~V} \pm 1.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{GG}}=27.0 \mathrm{~V} \pm 2 \mathrm{~V} ;$ unless otherwise noted)

Symbol	Parameter	Min.	Typ.	Max.	Units	Conditions
V_{OH}	Output Logic 1 Level	$\mathrm{V}_{\mathrm{SS}}-1.5$		$\mathrm{~V}_{\mathrm{SS}}$	Volts	$20 \mathrm{~K} \Omega$ load to V_{DD}
V_{OL}	Output Logic 0 Level	V_{DD}		$\mathrm{V}_{\mathrm{DD}}+1.5$	Volts	$20 \mathrm{~K} \Omega$ load to V_{SS}
V_{OL}	Output Logic 0 Level	V_{DD}		$\mathrm{V}_{\mathrm{DD}}+3.5$	Volts	$20 \mathrm{~K} \Omega$ load to V_{SS} $\mathrm{V}_{\mathrm{GG}}=\mathrm{V}_{\mathrm{DD}}=-14 \mathrm{~V} \pm 1.0 \mathrm{~V}$
Z_{IN}	Input Impedance (Test Inputs)		10		pF	
I_{L}	Leakage Current (Test Inputs)			500	nA	
f_{O}	Frequency of Internal Oscillator		100		kHz	
I_{DD}	V_{DD} Supply Current			4.0	mA	No output load
I_{GG}	V_{GG} Supply Current			500	$\mu \mathrm{~A}$	
$\mathrm{f}_{\mathrm{TEST}}$	Test Frequency	80		105	kHz	

Operation

The S 2688 is a 17 -bit digital shift register driven by an internal oscillator circuit. Outputs from the 14th and 17 th stages are connected to an Exclusive OR circuit whose output provides the data input for the register. The 17th stage of the register is connected to a push-pull buffer, which is the circuit's output. This output provides continuous constant amplitude pseudo-random noise; that is, for any time slot, ones and zeroes have an almost equal probability of occurrence.

Typical Applications

[^5]
Power Supplies

The S2688 noise generator may be operated with either one or two power supplies. In applications where a high output drive level is not critical, or where the output is loaded with a resistive load connected to $V_{D D}$, it is possible to operate the device from a single supply voltage; in this case, the V_{GG} supply pin is connected to the $V_{D D}$ supply voltage. If a low impedance logic " 0 " level output is required, this can be achieved by connecting the V_{GG} supply pin to a more negative voltage.

Zero State Lockup Prevention

If the outputs of all 17 stages of the shift register were simultaneously to reach a " 0 " logic level, and no logic were provided to prevent this state from occuring, then the register would remain in the "all-zero" state.

In this condition, the output would lockup and remain at a logic " 0 " level. This situation could occur when power is initially applied, or when triggered by noise spikes. To prevent this condition, a 17 input NOR gate is provided internally to decode the "all-zero" state and feed a logic " 1 " level into the register's data input.

Test Inputs

The S2688 has been designed to facilitate testing of the part. In the normal mode of operation, pins 6 and 7 are not used and appear to be open circuits. However, when the V_{GG} pin is connected to V_{SS}, these pins become test pins. Pin 7 (Test A) is used to force zeroes into the register, and pin 6 (Test B) becomes the clock input, driving the internal oscillator network. During the entire test period a $20 \mathrm{~K} \Omega$ load must be tied to $V_{D D}$.

RHYTHM GENERATOR

Features

Drives 9 Instruments64 Bit Pattern10 Rhythm Patterns per Instrument5 Mask Programmable Reset Counts7 Segment Count Display OutputInternal OscillatorTypical Applications
\square Organ Rhythm Sections
\square Portable Rhythm SectionsAutomatic Rhythm OrgansMusic Synthesizer

General Description

The rhythm generator is a counter-ROM specifically designed for electronic organ and other electronic instruments. This product contains an internal oscillator, a 6 bit counter, and a ROM that drives nine rhythm instruments and also drives a seven segment sequence count display.

The oscillator frequency is determined by an external network. The 6 bit counter has control inputs that allow the counter to reset at any one of five counts. Five reset counts are mask programmed to user requirements. The 64 th count is normally programmed as the 5 th reset selection option. The counter contains

a start input that holds the system in the reset mode until a start command is impressed.

The counter outputs drive a 64 word ROM. The ROM has two types of rhythm instrument outputs and a rhythm count output. The rhythm instrument outputs provide a trigger with up to 64 counts. One of the instrument outputs contains only one rhythm pattern for each reset option. This output can be programmed to generate a downbeat trigger at the beginning of each measure. The remaining eight instrument outputs each contain 10 rhythm patterns which may be simultaneously selected to overlay multiple rhythm patterns.

The rhythm count outputs a seven segment code that can be used as a visual display of the musical timing. For example, if $4 / 4$ timing is provided by the programmable option, and the appropriate control lined (I_{R}) are activated then the seven segment display will provide the pattern in Figure 2. Four numbers (1, 2, 3 or 4) will be displayed, one for each group of four quarter notes in a 16 note measure. The pattern will repeat for subsequent measures. Other sequences can be programmed for alternate timing schemes.

Internal input pull-up resistors to V_{DD} are provided on all inputs except the oscillator input. Output buffers consist of a single ended device to V_{SS}. The product is fabricated with $\mathrm{I}^{2 \mathrm{TM}}$ technology and is packaged in a 40 lead dual in-line package.

Functional Description of Input/Output Pins

DUMP CHARGE

Provides base current when required through an RC delay of approximately 25 msec to a PNP transistor which should be connected across the capacitor in the oscillator.
Input
A
B
D
K
Default
Rhythm
$3 / 4$
$5 / 4$
$6 / 8$
$3 / 4$
$4 / 4$
Bits/Beat
3
4
4
4
4

RESET:

C Input

When allowed to approach V_{DD}, the outputs are held disabled and the system is held ready to begin with the first bit of the First measure. The system starts when V_{SS} is applied.

PATTERN SELECT:

H1-H10 Inputs

V_{SS} applied to one enables one combination of the voices in a specific rhythm pattern. Any combination of patterns may be enabled at the same time. The customer must provide the voice pattern as a function of each pattern selected and of each bit time.

OUTPUT DUTY CYCLE:

P Input

When allowed to approach V_{DD}, the voice inputs are held off for one half of each bit time. When held at $\mathrm{V}_{\text {SS }}$, the voice outputs are constantly valid. Note that neither option hides the short ($<80 \mu \mathrm{sec}$) decode spikes.

The chip output functions are as follows.

VOICE DRIVERS:

F1-F8

When selected, internally, the outputs provide a low resistance path to V_{SS} which is suitable for driving a transistor interface. The chip input functions are as follows.

METER:

$\mathrm{V}_{\text {SS }}$ applied to the following inputs sets up the chip with a programmable number of bits per beat, beats per measure and measures before reset. A currently programmed example follows.

Beats/Measure	Measure/Reset	Bits/Reset
3	4	36
5	2	40
6	2	48
3	4	48
4	4	64

BEAT NUMBER DISPLAY:

G1-G8 (less 6)

When selected, internally, the outputs provide a low resistance path to $V_{\text {SS }}$ suitable for sinking the current required to drive a GE7 segment display tube. The ROM driving these outputs must be programmed to match the meter program.

DOWNBEAT:

$\overline{\mathbf{E}}$

When selected internally, the output provides a low resistance path to V_{SS}.

The Oscillator Interconnects are as follows.

RC PAD:

A $25 \mu \mathrm{~F}$ capacitor to V_{SS} and a series combination of a $20 \mathrm{~K} \Omega$ potentiometer and a $1 \mathrm{~K} \Omega$ resistor to V_{DD} will allow a range of about 1.5 to $15 \mathrm{bits} / \mathrm{sec}$ end.

P-ROM PROGRAMMING FORMATS

Programming the Rhythm Generator requires 132 IBM cards punched with the data outlined below. Each card should end with CXXXX-NNN where XXXX is a number provided by AMI and NNN is the card number.

DOWNBEAT ROM:

Columns Contents
1-64 Enter ' 1 ' for the first bit of each measure of the given meter. (No gate = ' 1 ')
72-80 CXXXX-NNN per above.

Card Meter

001 N
002 K
003 D
004 B
005 A

RESET ROM:

Columns Contents
1-64 Enter ' 1 ' for the last bit before a reset and for all subsequent bits. (No gate $=$ ' 1 ')
72-80 CXXXX-NNN per above.
Card Meter
$006 \quad \mathrm{~N}$ (Meter N must not have a reset before 64)

007
K
008
009
010
D
B
NOTE: ' 1 ' always means an activated output and thus, may represent a gate or a lack of one.

BEAT NUMBER ROM:

Card	Column	Content		
A	$1-50$	Enter '1' for each bit where the NUMBER should be on. (No gate $=$ ' 1 '. Enter the first		
B	$1-14$	50 bits on Card A, last 14 bits on Card B.		
B	$16-20$	Meter bit pattern B		
A\&B	$22-28$	$72-80$		CXXXX Sent Display Pattern
:---				

Enter the beat number data on adjacent cards starting with 011 for A and 012 for B and ending on or before 052.

Order data by Meter bit patterns as follows:

first	N	$' 00001 '$
first	K	$' 00010$
first	D	$' 00100$
first	B	$' 01000$
last	A	$' 10000$
unused		00000

Group beat numbers in order within each meter using the following decode for numerical compatibility with GE7 Segment tubes.

Beat Number to be displayed

		1	2	3	4	5	6	7	None
	G1 col. 22	0	1	1	0	1	1	1	0
	G2 col. 23	0	0	0	1	1	1	0	0
Segments to	G3 col. 24	0	1	0	0	0	1	0	0
be activated	G4 col. 25	0	1	1	1	1	1	0	0
(Gate='1')	G5 col. 26	0	1	1	0	1	1	0	0
	G7 col. 27	1	0	1	1	1	1	1	0
	G8 col. 28	1	1	1	1	0	0	1	0

notes:

VOICE ENABLE ROM:		Card	Input	Outputs
		$053-060$	H1	F1 through F8 in order
		$061-068$	H2	F1 through F8 in order
Column	Contents	$069-076$	H3	F1 through F8 in order
$1-64$		$077-084$	H4	F1 through F8 in order
	Enter a '1' for each bit where	$085-092$	H5	F1 through F8 in order
	the selected H should turn	$093-100$	H6	F1 through F8 in order
	on the selected F. (No	$101-108$	H7	F1 through F8 in order
67-68	gate=‘1')	$109-116$	H8	F1 through F8 in order
$72-80$	Voice (f) number (2 digit)	$117-124$	H9	F1 through F8 in order
	CXXXX-NNN per above.	$125-132$	H10	F1 through F8 in order

Absolute Maximum Ratings

Positive Voltage on any Pin
Negative Voltage on any Pin
Storage Temperature
Operating Ambient Temperature

$$
\begin{array}{r}
\mathrm{V}_{\text {SS }}+0.3 \mathrm{~V} \\
\mathrm{~V}_{\text {SS }}-28 \mathrm{~V} \\
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}
\end{array}
$$

Static Characteristics

$\left(\mathrm{V}_{\mathrm{DD}}=-12.1 \pm 5 \%, \mathrm{~V}_{\mathrm{SS}}=\mathrm{GRD}, \mathrm{T}=0^{\circ}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$

Symbol	Parameters	Min	Typ	Max	Units	Conditions
V_{IH}	Input high level	$\mathrm{V}_{\text {SS }}-0.7$			Volts	Internal
$\mathrm{V}_{\text {IL }}$	Input low level			$\mathrm{V}_{\mathrm{DD}}+2.0$	Volts	Resistor to V_{D}
V_{OH}	Output high level	$\mathrm{V}_{\text {SS }}-2.0$			Volts	$\mathrm{I}_{0}=2 \mathrm{~mA}$
$\mathrm{V}_{\text {OL }}$	Output low level			$\mathrm{V}_{\mathrm{DD}}+1.0$	Volts	External $30 \mathrm{~K} \Omega$ to V_{DD}
I_{DC}	Dump charge output current	1.0			mA	
V_{RC}	Discharge enable voltage	$\mathrm{V}_{\text {SS }}-7.0$			Volts	

Application Data

Figure 2. Beat Number Display ROM

S8890 ROM Program Contents

Voice Enable ROM*

*NOTE: Card Data is Presented in a Sequence That Differs from Program Instructions.

Down Beat ROM

81	1										1			
82	1		1			1			1					
83	1		1			1			1					
84	1			1				1			1			
85	1	1			1		1							
									Res	$1 F$	M			
86														1
87											111	11111	11111	1111
88											111	11111	11111	1111
89													1	1111
90									11111	11111	11111	11111	11111	1111

Beat Number ROM

RHYTHM GENERATOR

Features

Drives 7 Instruments64 Bit Patterns$\square 9$ Rhythm Patterns
$\square 4$ Feature Outputs
$\square 5$ Programmable Feature Selections
\square All Rhythm Patterns Additive
$\square 5$ Programmable Resets
\square All Counters and Decoders Internal
\square All Patterns User Programmable

General Description

The S9660 rhythm generator is a counter-ROM specifically designed for use in rhythm sections of electronic organs and independent electronic rhythm units. This product contains a six stage counter, all internal ROM decoding, a 4 K bit pattern ROM, and a 1 K bit feature ROM. A total of nine distinct 64 -bit rhythm patterns are generated and may be used to control up to seven rhythm instruments. In addition, the feature ROM provides four outputs that may be used for automatic chord gating, walking bass, or to create rhythm pattern variation.

The 6 -bit counter may be reset at any bit from 1

through 64 to obtain any desired counter cycle. This counter cycle control is determined by the user's individually programmed ROM pattern, which allows the electrical selection of up to five different counter cycle lengths in one $\mathbf{S} 9660$.

The counter outputs drive a 64×63 bit rhythm pattern ROM and a 64×20 bit feature ROM. The rhythm pattern ROM drives seven instrument outputs and generates nine rhythm patterns which may be simultaneously selected to overlay multiple rhythm patterns. The feature ROM drives four outputs; depending on which of the five reset conditions is selected, the four outputs each contain five distinct 64 bit patterns. These may be used to drive such features as walking bass, automatic chording, or rhythm variation.

Internal input pull-up resistors to V_{DD} are provided on all inputs, and output buffers consist of open drain devices with source connected to V_{SS}. The product is fabricated with P-channel ion implanted MOS technology and is packaged in a 28 lead dual in-line plastic package.

Typical Applications

Organ Rhythm Sections, Portable Rhythm Units, Automatic Chording Systems, Walking Bass.

Operational Description

A block diagram of the S9660 appears on page 4, along with a typical timing diagram. All rhythm patterns, feature patterns, and counter cycle lengths are user programmable, and detailed instructions for this are given on page 5 .

CLK Input (pin 11):

A clock frequency from an external oscillator is supplied to this pin to provide the timing information to the 6 bit rhythm counter. As this frequency is varied, the speed, or tempo, of the generated rhythm is varied.

As indicated in the block diagram, the CLK input is divided by two and then applied to the 6 stage counter. This means that each of the output bit periods is equal to two input clock periods. For example, if the rhythm counter is programmed to recycle every 48 bits, and the cycle is divided into two measures of 4 beats each, then each beat contains 6 bits; if. the CLK input frequency is 30 Hz , then, rhythm timing will be 15 bits per second, or 900 bits per minute, or 150 beats per minute.

H Inputs (pins 13 through 21):

Normally pulled to V_{DD}, application of a $\mathrm{V}_{\text {SS }}$ level to any of the 9 H inputs enables one combination of voices that comprise a specific rhythm pattern. Any combination of patterns may be enabled simultaneously by applying $V_{S S}$ to other H inputs. The user must provide the desired voice pattern as a function of each H pattern selected and of each bit time. This is programmed in the Voice Enable ROM.

RST Input (pin 12):

Normally pulled to V_{DD}, application of a $\mathrm{V}_{\text {SS }}$ level to the RST input enables the rhythm counter. When RST is left unconnected, the binary divider $(\div 2)$ and the rhythm counter chain are reset to count one, and all " F " outputs are held in an off condition. When $V_{S S}$ is applied, the bit pattern selected for the first address of the ROM (count one) will activate the appropriate " F " outputs. Subsequent clock pulses at the CLK input will cause the counter to advance its count as indicated in the timing diagram.

A, B, C, D Inputs (pins 9, 8, and 6):

These inputs control two functions, the selection of cycle length (or counter reset bit) and the bit patterns of the four G outputs. Normally pulled to $V_{D D}$, these outputs may be selected (only one at a time) by applying $\mathrm{V}_{\text {SS }}$. A fifth condition called "default," or " N ", occurs when none of the four $\mathrm{A}, \mathrm{B}, \mathrm{C}$, or D inputs is selected.
Up to five reset bits (or counter lengths) may be programmed so that five different counter lengths may be selected by use of A, B, C, or D. These resets are programmed by the Reset ROM. This allows a $4 / 4$ rhythm to contain 64 bits and a $3 / 4$ rhythm to contain 48 bits, for example, so that when switching from a swing beat to a jazz waltz it is not necessary for the player to adjust the tempo control.

For each of the five A, B, C, D, or Default conditions there is a unique pattern supplied on the four G outputs. This information is programmed into the Feature ROM.

F Outputs (pins 22 through 28):

When selected internally by the Voice Enable ROM, these seven open drain outputs provide a low resistance path to $\mathrm{V}_{\text {SS }}$. These outputs are suitable for driving a transistor interface to electronic rhythm voice generators. Decode spikes may appear at the F
outputs, though they are of short enough duration ($<80 \mu \mathrm{~s}$) that most instrument voice generators would be unaffected.

G Outputs (pins 1, 2, 3, and 4):

When selected internally by the Feature ROM, the four open drain G outputs provide a low resistance path to $\mathrm{V}_{\text {SS }}$. Five distinct patterns are available on each of the outputs and are selected by the A, B, C, D,
inputs. The decode spikes mentioned in the " F " output paragraph may also be present in the " G " outputs.

Absolute Maximum Ratings

Positive voltage on any pin	$\mathrm{V}_{\mathrm{SS}}+0.3$ Volts
Negative voltage on any pin	$\mathrm{V}_{\text {SS }}-28$ Volts
Storage temperature	-65° to $+150^{\circ} \mathrm{C}$
Operating Ambient Temperature	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Negative voltage on any pin
Storage temperature
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Electrical Specifications

$\left(0^{\circ} \mathrm{C} \leq \mathrm{t}_{\mathrm{a}} \leq 70^{\circ} \mathrm{C} ;-10\right.$ Volts $\geq \mathrm{V}_{\mathrm{DD}} \geq-14$ Volts unless otherwise specified)

Symbol	Parameter	Min	Max	Units	Conditions
$\mathrm{V}_{\text {IL }}$	Input logic " 0 "	$\mathrm{V}_{\text {DD }}$	$\mathrm{V}_{\mathrm{DD}}+2.0$ Volts		See Note 1
$\mathrm{V}_{\text {IH }}$	Input logic " 1 "	V ${ }_{\text {SS }}-0.7$	VSS	Volts	
$\mathrm{V}_{\text {CLK }}$	Input logic " 0 " (CLK input)	$\mathrm{V}_{\text {DD }}$	$\mathrm{V}_{\mathrm{DD}}+1.0$ Volts		
$\mathrm{V}_{\mathrm{CLK}_{\mathrm{H}}}$	Input logic " 1 " (CLK input)	$\mathrm{V}_{\text {SS }}-0.7$	VSS	Volts	
$\mathrm{t}_{\mathrm{trr}} \mathrm{t}_{\mathrm{cf}}$	CLK input rise and fall time		100	$\mu \mathrm{s}$	Measured at 10% to 90% of $V_{D D}$
f_{c}	Clock frequency (CLK input)	DC	5K	Hz	
VoL	Output logic " 0 "				See Note 2
VOH	Output logic " 1 "	$\mathrm{V}_{\text {SS }}-2.0$	$\mathrm{V}_{\text {SS }}$	Volts	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=-12.0 \text { Volts } \\ & \mathrm{I} \text { out }=1 \mathrm{~mA} \text { maximum } \end{aligned}$
P	Average power dissipation		300	MW	Measured at $25^{\circ} \mathrm{C}$

NOTES: 1. Internal $5 \mu A$ minimum pullup to $V D D$ is provided.
2. External load to $V_{D D}$ is required.

Programming Instructions

Programming of the S 9660 is a straightforward process requiring the user to supply a total of 110 cards. There are three ROM sections to be programmed, the Reset ROM, the Feature ROM, and the Voice Enable ROM. Detailed instructions for punching the cards required to program these three ROMs are supplied below. In column 72-80 of each card, as described below, two numbers appear-CXXXX and NNN. The CXXXX is a number to be given to the user by AMI prior to punching the card deck, and NNN is the sequence number of the card.

RESET ROM:

A total of five cards are required to program the reset ROM. Their card numbers are 001 through 005. Each card determines at what bit the rhythm counter will
reset (i.e., the number of bits per cycle) for one of the five electrically selected conditions, A, B, C, D, or N (N $=\mathrm{ABCD})$. Card 001 corresponds to N, 002 to D, 003 to $\mathrm{C}, 004$ to B, and 005 to A.

Columns Contents

1-64 Enter a " 1 " for the last bit before an internal reset occurs and for all subsequent bits through 64.
72-76 CXXXX-To be assigned by AMI, as stated above.
78-80 Enter number of the card (001 through 005).

Example: If card 003 has all ones in columns 48 through 64, then whenever the C input is selected, the rhythm generator will reset at the end of bit 48 , giving a 48 bit cycle length.

Timing Diagram

Detailed Block Diagram

FEATURE ROM:

A total of 42 cards are required to program the feature ROM. The cards are grouped in pairs, and each pair determines the bit pattern that will appear on a given G output for a given A, B, C, D, or N input selection. The G1 output is programmed by cards $6-15$, G2 by cards $16-25$, G3 by cards $26-35$, and G4 by cards 36-45. Cards 46 and 47 must be present, but they are not used to program any G outputs.

The five pairs of cards corresponding to each output are arranged so that the bit pattern programmed by the first pair will be selected by the A input, the second by B, and the third, fourth and fifth by C, D, and N , respectively. For example, if input C is selected, the bit pattern appearing at the G2 output would be that programmed by cards 20 and 21 .

First card in pair (21 cards: 6, 7, 10, ..., 44):
Column 1-50- First 50 bits of 64 ; enter a " 1 " at the location of each bit where an active output is desired.
Second card in pair (21 cards: $7,9,11, \ldots, 45$):
Column 1-14- Last 14 bits of 64 ; enter a " 1 " at the
location of each bit where an active output is desired.
Card 46:
Columns 1-50-Enter nothing.
Card 47:
Columns 1-14-Enter nothing.
Column 16-20:
Cards 7, 17, 27, 37- Enter " 10000. "
Cards 9, 19, 29, 39- Enter "01000."
Cards 11, 21, 31, 41- Enter "00100."
Cards 13, 23, 33, 43- Enter "00010."
Cards 15, 25, 35, 45- Enter "00001."
Card 47- . Enter " 00000 ."
Column 22-28:
Cards 7, 9, 11, 13, 15-Enter "1000000."
Cards 17, 19, 21, 23, 25 - Enter "0100000."
Cards 27, 29, 31, 33, 35- Enter "0010000."
Cards 37, 39, 41, 43, 45-Enter "10001000."
Column 72-76 (all cards)- Enter CXXXX (as assigned by AMI).
Column 78-80 (all cards)- Enter card number
(006 through 047).

VOICE ENABLE ROM:

This ROM is programmed by a total of 63 cards, numbered 048 through 110. The cards are in nine groups (H1, H2, . .., H9) of seven cards each (F1, F2, ..., F7).

Card	Input	Outputs	Column	
$048-054$	H1	F1 through F7 in order	$1-64$	Enter a "1" for each bit where the selected H should turn on the desired
$055-061$	H2	F1 through F7 in order		F output.
$062-068$	H3	F1 through F7 in order		Voice number (F1, F2, F3, F4, F5, F6,
$069-075$	H4	F1 through F7 in order	$67-68$	
$076-082$	H5	F1 through F7 in order		or F7).
$083-089$	H6	F1 through F7 in order	$72-76$	Enter CXXXX (as assigned by AMI).
$090-096$	H7	F1 through F7 in order		
$097-103$	H8	F1 through F7 in order	$78-80$	Enter card number (046 through 110).
$104-110$	H9	F1 through F7 in order		

CUSTOMIZING THE S9660:

The S 9660 has been designed to offer a wide variety of features for use in both low cost rhythm units and electronic organs. It is possible, however, in many circumstances to modify this part to fix particular applications.

A few examples of such modifications are the addition of an additional F output in place of an H pattern input
and vice versa, the blanking of 50% of the output pulsewidth, and the addition of more G outputs. To minimize cost, this circuit may be supplied in a smaller package if some of the existing features are not needed.

These modifications may be readily accomplished by minor changes to the bonding of the circuit. To determine if a proposed feature set is feasible, consult AMI's Application Department.

TOP OCTAVE SYNTHESIZER

Features

Single power supplyBroad supply voltage operating range
\square Low power dissipation
$\square \quad$ High output drive capability
$\square \quad$ S50240- 50% output duty cycle
$\square \quad$ S50241-30\% output duty cycle
$\square \quad$ S50242-50\% output duty cycle

General Description

The S5024 is one of a family of ion-implanted, P-channel MOS, synchronous frequency dividers.

Each output frequency is related to the others by a multiple $12 \sqrt{ } 2$ providing a full octave plus one note on the equal tempered scale.

Low threshold voltage enhancement-mode, as well as depletion mode devices, are fabricated on the same chip allowing the S 5024 family to operate from a single, wide tolerance supply. Depletion-mode technology also allows the entire circuit to operate on less than 360 mW of power. The circuits are packaged in 16 pin plastic dual-in-line packages.
Block Diagram

RFI emination and feed-through are minimized by placing the input clock between the V_{DD} and V_{SS} pins. Internally the layout of the chip isolates the output buffer circuitry from the divisor circuit clock lines. Also, the output buffers limit the minimum rise time under no load conditions to reduce the R.F. harmonic content of each output signal.

Absolute Maximum Ratings

Voltage on any pin relative to $\mathrm{V}_{\mathrm{SS}} \quad+0.3 \mathrm{~V}$ to -20 V
Operating Temperature (Ambient)
$0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$
Storage Temperature (Ambient)

Recommended Operating Conditions
$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 50^{\circ} \mathrm{C}\right)$

Symbol	Parameter	Min	Typ	Max	Units	Figure
V $_{\text {SS }}$	Supply Voltage	0		0	V	
$\mathrm{~V}_{\mathrm{DD}}$	Supply Voltage	-11.0	-14.0	-16.0	V	

Electrical Characteristics

$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 50^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=-11\right.$ to -16 V unless otherwise specified $)$

Symbol	Parameter	Min	Typ	Max	Units	Figure
$\mathrm{V}_{\text {IL }}$	Input Clock, Low	0		-1.0	V	Figure 1
$\mathrm{V}_{\text {IH }}$	Input Clock, High	-10.0		$\mathrm{V}_{\text {DD }}$	V	Figure 1
f_{1}	Input Clock Frequency	100	2000.240	2500	kHz	
t_{r}, t_{f}	Input Clock			50	nsec	Figure 1
	Rise \& Fall Times					
	10\% to 90% @ 2.5 MHz					
$\mathrm{t}_{\text {ON }}, \mathrm{t}_{\text {OFF }}$	Input Clock On and Off Times @ 2.5 MHz		200		nsec	Figure 1
$\mathrm{C}_{\text {I }}$	Input Capacitance		5	10	pF	
V_{OH}	Output, High @ 1.0mA	$\mathrm{V}_{\mathrm{DD}}+1.5$		V_{DD}	V	Figure 2
$\mathrm{V}_{\text {OL }}$	Output, Low @ 1.0 mA	$\mathrm{V}_{\mathrm{SS}}-1.0$		V_{SS}	V	Figure 2
$\mathrm{t}_{\text {ro }}, \mathrm{t}_{\mathrm{fo}}$	Output Rise \& Fall Times, 500 pF Load 10% to 90%	250		2500	nsec	Figure 3
t_{ON}	Output Duty Cycle-S50240, S50242		50		\%	
	S50241		30		\%	
$I_{\text {DD }}$	Supply Current		14	22	mA	Outputs Unloaded

Figure 1. Input Clock Waveform

Figure 2. Output Signal DC Loading

Figure 3. Output Rise and Fall Times

S2000
AMERICAN MICROSYSTEMS, INC.

Single-Chip Microcomputer Family

Product Features	S2000	S2000A	S2150	S2150A	S2152(1)	S2200 ${ }^{(2)}$	S2200A	S2210 ${ }^{(3)}$	S2400	S2400A
ROM (Bytes)	1K	1 K	1.5 K	1.5 K	1.5 K	2 K	2 K	2K	4 K	4 K
RAM (Nibbles)	64	64	80	80	80	128	128	128	128	128
A/D Converter (8-Bit)	-	-	-	-	-	YES	YES	YES	YES	YES
Timer	$50 / 60 \mathrm{~Hz}$	Prog \div N	Prog 8Bit							
Interrupts	-	-	-	-	-	2	2	2	2	2
Power Fail Detect	-	-	-	-	-	Yes	Yes	Yes	Yes	Yes
High Voltage Outputs	-	Yes	-	Yes	-	-	Yes	-	-	Yes
Crystal Clock Option	-	-	Yes	Yes	-	Yes	Yes	Yes	Yes	Yes
TouchControl Inputs	Yes	Yes	Yes	Yes	-	Yes	Yes	Yes	Yes	Yes
Levels of Subroutine	3	3	3	3	3	3-5	3-5	3-5	3-5	3-5
\# of Flags	2	2	2	2	2	262	262	262	262	262
Table Look-up	-	-	-	-	-	Yes	Yes	Yes	Yes	Yes
Power-Down RAM Option	-	-	-	-	-	Yes	Yes	Yes	Yes	Yes
D/A Converter Option	-	-	-	-	-	Yes	Yes	Yes	Yes	Yes
Zero-Crossing Detect	Yes									
Cycle Time ($\mu \mathrm{sec}$)	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
Instructions - Total	51	51	51	51	51	63	63	63	63	63
Single Cycle \& Byte	49	49	49	49	49	52	52	52	52	52
Voltage (volts)	9	9/32	9	9/35	9	5	5/35	5	5	5/35
User Definable 7-Segment PLA	No	No	No	No	No	Yes	Yes	Yes	Yes	Yes
Development Support										
Tektronix 8002A ${ }^{(4)}$	Yes									
In-Circuit Emulator	-	-	-	-	-	Yes	Yes	Yes	Yes	Yes
Hardware Emulator	SES									
	2150	2150A	2150	2150A	2150	2400	2400A	2400	2400	2400A

1. Has digital-to-frequency converter (4-bit) for enhanced sound generation.
2. Also available in an 8 -bit bus-compatible version -S 2220 .
3. CMOS
4. Motorola Exorcisor and Intel Intellec Development System Support for the S2000 Family also available.

AMI's S2000 Family of single-chip microcomputers brings the advantages of microprocessor control to lowcost, multi-feature keyboard/display systems. These circuits are optimized to reduce systems cost while at the same time providing the user with the ability to select from a variety of architectural features. Versatile input/output and an instruction set optimized for its intended applications make an S2000 Family member preferable to expensive multiple-chip solutions. Dramatic cost reductions are possible during product design, manufacture, testing, and maintenance. Two versions are available for the members of the S2000 Family: The standard version for direct drive of LED displays and the " A " version for direct drive of fluorescent displays.

Features

The S2000 Family members are entire computers on a chip, suitable for volume keyboard/display applications which require control in a minimum space at a minimum cost.
They are ideally suited for systems with the following requirements:

Analog-to-digital and digital-to-analog conversion

Time-of-day and interval timer control
AC line synchronization
Display drive
Keyboard inputs (ohmic or TouchControl)Arithmetic operations
\square Single power supplyProgram expandability and testabilityTriac drive

S2000 Microcomputer Overview

Applications

The S2000 can lower the cost and enhance the performance of control circuits in applications such as the following:

Vehicle instrumentation and systems control
Major household appliances
CB radios, stereo receivers, tape decks
Electronic scales
Toys and games
Lab instruments
Telephone equipment
Programmable calculators
Data sampling devices
Data logging devices
Test equipment
Keyboard devices
Display devices
Remote monitors
Security systems
Set-back thermostats

Functional Description

The basic S2000 has an on-chip 1024-instruction ROM; other family members have ROMs ranging up to 4096 instructions (see tables). If necessary, additional program memory can be added externally up to a maximum of 8192 instructions. The Program Counter is a pointer to the next instruction to be executed. The Program Counter Stack holds return addresses during execution of subroutines or interrupts.

The scratchpad RAM holds the temporary values of 4-bit data words, typically numeric quantities. The BA, BU and BL registers are used to access RAM words. The E Register can be used as a general purpose register or as an index limit register for controlling RAM access.
The ALU-Arithmetic Logic Unit-performs data operations, using the Accumulator and the Carry Register. Software can set reset and test Flags as temporary indicators.

The Control Logic includes three inputs and three outputs for interfacing external devices. The Oscillator generates all clocking signals and needs only an external RC circuit to set its rate. Optionally a crystal may be used to precisely control the oscillator frequency.

The K Lines range from a voltage comparator, Schmitttrigger, and timer inputs on the S2000, to a full bidirectional port on the S2200 supporting A/D and D/A converters, interrupts, and a programmable counter/timer.

The eight bi-directional three-state D Lines are generalpurpose data signals. The thirteen A Lines are outputs for displays, keyboard strobes, control signals, or address lines for external ROM.

"A" Versions for Vacuum Fluorescent Display

The " A " versions of the S2000 Family provide high voltage fluorescent display capability but are otherwise identical to their non-"A", LED counterparts. The output buffer drive (V_{DD}) is changed to a vacuum fluorescent drive (V_{FD}) and typically tied to 35 volts. The D_{0} through D_{7} and A_{0} through A_{4} are changed from LED drivers (nominal 5 volts) to vacuum fluorescent drivers (nominal 26 to 35 volts).

CMOS Version-S2210

For those applications which require micropower, the S2210 is a CMOS version of the S2200. The S2210 is functionally identical and software compatible to the S2200.

Microprocessor Bus-Compatible Version-S2220

The S2220 bus-compatible version of the S2200 can be used as a user programmable peripheral or multiprocessor systems. This processor is software compatible with all the other members of the family and is functionally identical (with the exception of some control lines and the D-line interface) to all the other members.

Development Support Tools

For information on support tools, both hardware and software, see the Development System Support section of this catalog.

SINGLE-CHIP
 MICROCOMPUTERS

Features

$\square \quad 1024 \times 8$ Program ROM On-Chip; Externally Expandable to $8192 \times 8-$ S2000
$\square \quad 1536 \times 8$ Program ROM On-Chip; Externally Expandable to $8192 \times 8-\mathbf{S} 2150$
$\square \quad 64 \times 4$ Scratchpad RAM On-Chip-S2000
$\square \quad 80 \times 4$ Scratchpad RAM On-Chip-S2150
$\square 14$ Outputs, 8 Inputs, Plus 8 Bi-Directional Three-State Lines
\square TouchControl Capacitive Touchplate InterfaceSeconds Timer for Both $\mathbf{6 0 H z}$ and 50 Hz Lines
$\square \quad$ 7-Segment Decoder
$\square \quad$ LED Display Drivers-S2000/S2150
\square Vacuum Fluorescent Display DriversS2000/S2150A
$\square \quad$ Single +9 V Supply
$\square \quad$ Fast 4.5 $\mu \mathrm{s}$ Execution Cycle
\square Three-Level Subrouting Stack
\square TTL-Compatible Outputs
\square Reset, Test, and Single Step Modes
\square Crystal Input for Accurate Clocking-S2150
\square S2152:D-To-F Converter Programmable Divide-by-N Counter/Timer

Functional Description

The S2000/S2150 are ideal for a wide range of appliance and process control designs. Versatile input/output and an instruction set optimized for its intended applications make the S2000 preferable to expensive multiple-chip solutions with dramatic cost reductions during product design, manufacture, testing, and maintenance.
The S2000/S2150 have an on-chip 1024/1536 instruction ROM. If necessary, additional program memory can be added externally up to a maximum of 8192 instructions. The Program Counter is a pointer to the next instruction to be executed. The Subroutine Stack holds return addresses during execution of subroutines.
The scratchpad RAM holds the temporary values of 64/80 4 -bit data words, typically numeric quantities. The BU and BL registers are used to access RAM words. The E Register can be used as a general purpose register or as an index limit register for controlling RAM accesses.
The ALU-Arithmetic Logic Unit-performs data operations, using the Accumulator and the Carry Register. Software can set and test two Flags as temporary indicators.

S2000/S2150/A/S2152 Instruction Set Summary

ADCS	ACC + RAM + CARRY, Skip if Sum $\leqslant 15$
ADD	ACC+RAM
ADIS X	ACC + X, Skip if Sum $\leqslant 15$
AND	ACC "AND" RAM
CMA	Complement ACC
DISB	Display Number in Binary Format
DISN	Display Number in Seven Segment Format
EUR	(European) SET $50 / 60 \mathrm{~Hz}$ and Display Latch Polarity
INP	Input 8 Bits from D Lines
JMP X	Jump
JMS X	Jump to Subroutine
LAB	Load ACC with BL
LAE	Load ACC with E
LAI X	LOAD ACC with X
LAM Y	LOAD ACC with RAM then BU "XOR"Y
LBE Y	Load BL with E and BU with Y
LBF Y	Load BL with 15 and BU with Y
LBEP Y	Load BL with E+1 and BU with Y
LBZ Y	Load BL with 0 and BU with Y
MVS	Move Master Latch to Slave Latch
NOP	No Operation
OUT	Output 8 Bits to D Lines
PP X	Prepare Page (or Bank)
PSH	Preset Master Strobe High
PSL	Preset Master Strobe Low

The Control Logic includes three inputs and three outputs for interfacing external devices. The Oscillator generates all clocking signals and needs only an external RC circuit to set its rate. The KREF Input is the analog reference for TouchControl and similar interfaces. Software decision-making instructions sample the four K Inputs and the four I Inputs, one of which can be used as a line-frequency counter.
The eight bi-directional three-state D Lines are generalpurpose data signals. The thirteen A Lines are outputs for displays, keyboard strobes, control signals, or address lines for external ROM.

General Description for S2152

The S2152 is an extension of the S2000/S2150 and is software compatible with them. It has the following enhanced features:
\square Digital-To-Frequency Converter (4-Bit)
\square Programmable Divide-by-N Counter/Timer
15 Outputs, 4 Inputs, and 8 Bi-Directional Three-
State Lines
\square One Open Drain Output, and
\square High Current Outputs

RF1	Reset Flag 1
RF2	Reset Flag 2
RSC	Reset Carry
RSM Z	Reset RAM Bit Z
RT	Return from Subroutine
RTS	Return from Subroutine and Skip
SAM	Skip if ACC=RAM
SBE	Skip if BL=E
SF1	Set Flag1
SF2	Set Flag2
SOS	Skip if Seconds Flag Set
STC	Set Carry
STM Z	Set RAM Bit Z
SZC	Skip if Carry =0
SZI	Skip if I=0
SZK	Skip if K=0
SZM Z	Skip if RAM Bit Z=0
TF1	Skip if Flag1=1
TF2	Skip if Flag2=1
XAB	Exchange ACC with BL
XABU	Exchange ACC with BU
XAE	Exchange ACC with E
XC Y	Exchange ACC with RAM then BU
"XOR"Y	
XCD Y	Exchange ACC and RAM, BU "XOR"Y,
	Decrement BL, and Skip if BL=0 Before
XCI Y	Decrementing
	Exchange ACC and RAM, BU "XOR"Y,
	Increment BL, and Skip if BL=0 After
XOR	Incrementing
ACC "Exclusive-OR" RAM	

SINGLE-CHIP MICROCOMPUTERS

Features

8-Bit A/D Converter with 8 Inputs8-Bit D/A Converter2048×8 Program ROM On-Chip and Expandable to 8192×8 (S2200/S2200A/S2210)4096×8 Program ROM On-Chip and Expandable to 8192×8 (S2400/S2400A)128×4 Scratchpad RAM On-Chip with Power-Down Mode\square Two-Level Maskable Priority Interrupt System with Provision for Software InterruptProgrammable 8-Bit Timer/Event Counter On-Chip
$\square 14$ Outputs, 8 Bidirectional Three-State Lines, TTL-Compatible, Plus 8 Independently Soft-ware-Defined I/O LinesTouchControl Capacitive Switch Interface
Seven-Segment Display Decoder/Drivers:

S2200/S2400/S2210-LED
S2200A/S2400A--Vacuum FluorescentSingle +5V Power Supply 4.5 μ s Cycle Time
$\square 63$ Instructions-52 Single Byte and Single Cycle3-Level Subroutine Stack (5-Level if Interrupts Not Used)2-Level Interrupt StackBuilt-In Production Test ModeSingle Step CapabilityPower Failure Detection and Power-On-Reset Circuitry
$\square \quad$ Up to 256 General Purpose Flags (RAM Bank 1) 6 Special Flags
Table Look-Up Ability
S2210-CMOS Version of the S2200
S2220-Microprocessor Bus-Compatible Version of $S 2200$

General Description

The S2200/S2400 provides a quantum jump in chip features beyond the S2000. In addition to all the features the S 2000 offers, the S 2200 gives the added flexibility of interrupts and the sophistication of an on-chip A/D and/or D/A converter capable of analog data making it suitable for a wide range of applications.
The 128×4 scratchpad RAM holds the temporary values of 4 -bit data words, typically numeric quantities. The BA, BU and BL registers are used to access RAM words. The E Register can be used as a general purpose register or as an index limit register for controlling RAM access.
The ALU-Arithmetic Logic Unit-performs data operations, using the Accumulator and the Carry Register. Software can set reset and test Flags as temporary indicators.
S2200/S2400/A/S2210
Instruction Set Summary

ADCS	ACC+RAM + CARRY, Skip if Sum $\leqslant 15$
ADD	ACC + RAM
ADIS X	ACC + X, Skip if Sum $\leqslant 15$
AND	ACC "AND" RAM
CMA	
DEmplement ACC	
DEV	Skip Always
DISB	Display Number in Binary Format
DISN	Display Number in Seven Segment Format
IBLS	Increment BL and Skip if BL=0 after
	Incrementing
IND	Input 8 Bits from D Lines
INK	Input 8 Bits from K Lines
JMP X	Jump
JMS X	Jump to Subroutine
JMSI	Jump to Subroutine Indexed
LAB	Load ACC from BL
LAE	Load ACC from E
LAI X	LOAD ACC with X
LAM Y	LOAD ACC with RAM then BU "'XOR"'Y
LAM Y	Load ACC from RAM then BU "XOR"'Y
LANG	Load Analog Reg
LBE Y	Load BL with E and BU with Y
LBZ Y	Load BL with 0 and BU with Y
LMOD	Load Modules Reg
LRAI W	Modify RAM Address
MVS	Move Master Latch to Slave Latch
NOP	
No Operation	
OUTD	Output 8 Bits to D Lines
OUTK	Output 8 Bits to K Lines
PP X	Prepare Page (or Bank)
PSH	Preset Master Strobe High
PSL	Preset Master Strobe Low

The PLA which defines the 7 -segment outputs of a DISN is user definable. The Control Logic includes three inputs and three outputs for interfacing external devices. The Oscillator generates all clocking signals and needs only an external RC circuit to set its rate. Optionally a crystal may be used to precisely control the oscillator frequency.
The K Lines are a full bi-directional port on the S2200 supporting A / D and D / A converters, interrupts, and a programmable counter/timer.
The eight bi-directional three-state D Lines are generalpurpose data signals. The $\overline{\mathrm{EXT}}$ signal is an output data strobe for the D Lines. On the S2220, the D Lines become the data bus interface. The thirteen A Lines are outputs for displays, keyboard strobes, control signals, or address lines for external ROM.

RANG	Read Analog Reg
RAR	Rotate ACC Right
RBIN	Read Binary Counter
RCTL	Read Control Reg
RFLG W	Reset Flag W
RSC	Reset Carry
RSM Z	Reset RAM Bit Z
RSMI W	Reset RAM Bit W in Bank 1
RT	Return from Subroutine
RTI	Return from Interrupt
RTS	Return from Subroutine and Skip
SAM	Skip if ACC=RAM
SANG	Start A/D Conversion
SBE	Skip if BL=E
SCTL	Set Control Reg
SFLG W	Set Flag W
STA	Store ACC in RAM
STC	Set Carry
STM Z	Set RAM Bit Z
STMI Z	Set RAM Bit W in Bank 1
SWI	Software Interrupt
SZC	Skip if Carry =0
SZK	Skip if K=0
SZMI W	Skip if RAM Bit W in Bank 1=0
SZM Z	Skip if RAM Bit Z=0
TFLG W	Test Flag W
TLU	Table Look-Up
XAB	Exchange ACC and BL
XABU	Exchange ACC and BA, BU
XAE	Exchange ACC and E
XAK	Exchange ACC and KSR
XC Y	Exchange ACC and RAM, then BU "XOR"Y
XCD Y	Exchange ACC and RAM, Decrement BL, BU
	"XOR"Y, and Skip if BL=0 Before
XOR	Decrementing
ACC "Exclusive-OR" RAM	

S2000/S2150 Appliance/Outlet Controller

S2200A Microwave Oven Controller

The S2000/S2200 Family has several options which need to be specified before an order can be placed. The forms on the following two pages call out by part number which options are available and what must be specified, e.g., package type, operating temperature range, pin count, etc. For most options, simply circle the appropriate response. However, for the 28 pin package option, Table 1 details which pins cannot be deleted and which pins may be deleted. To assure that the customer's pin configuration can be bonded within the package, always consult with Microcomputer Product Marketing before placing an order.
\qquad
S2000 Family
Mask Option Specification Form
For the S2000/S2000A, S2150/S2150A/S2152
DATE

\qquad
$\mathrm{T} 1=0^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C} ; \mathrm{T} 2=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{T} 3=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C} ; \mathrm{T} 4=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
II. S2150/S2150A/S2152:

D. Clock (circle one): Crystal

R-C
Table 1. Optional/Required Pin Table for \$2000/S2200 Families

S2000/S2150				S2200				CONDITTONS/REASONS
P1N/	NAME	REQ.	OPT.	PNN\#	NAME	REQ.	OPT.	
1	$V_{S S}$	x		1	$V_{S S}$	X		Power supply-Ground
29	$V_{G G}$	X		28	$V_{\text {CC }}$	X		Power supply-most positive: +9 V or +5 V
$\begin{aligned} & 2.3,4 \\ & 36-40 \end{aligned}$	$\mathrm{D}_{0}-\mathrm{D}_{7}$	X		30-37	$\mathrm{D}_{0}-\mathrm{D}_{7}$	X		Internal ROM Test
$\begin{aligned} & 7-11, \\ & 36-40 \end{aligned}$	$A_{0}-A_{12}$		X	15-27	$A_{0}-A_{11}$. A_{12}		X	Program Counter Monitor, comprises skip, stack \& jump test cannot reliably test if all lines deleted
5	ROMS	X		39	ROMS	X		Internal ROM test
6	$\overline{\text { EXT }}$		X	40	$\overline{\text { EXT }}$		X	Optional if SOS, OUTD instructions not used
35	SYNC	X		4	SYNC	X		Required
34	RUN	x		38	RUN	X		Required
22	POR	X		29	POR/	X		Required
					VRAM		X	Mask Option
23	CLK	X		2	CLK	X		
				3	$\overline{\text { CLK }}$		X	Required only if crystal option is exercised
21	Status		X	6	Status/VFD		X	
24	$K_{\text {REF }}$		X	5	$V_{\text {REF }}$		X	
				7-14	$\mathrm{K}_{0}-\mathrm{K}_{7}$	X		
12	$V_{D D} / V_{F D}$	X						Cannot be internally bonded to $V_{G G}$
25-28	$\mathrm{I}_{1}-\mathrm{I}_{8}$		x	30-33	$K_{1}-K_{8}$		X	
30-33	$\mathrm{K}_{1}-\mathrm{K}_{8}$		X					

[^6] possible, pins should be deleted in as even a manner as possible to facilitate bonding the die to lead frame.

S2000 Family
 Mask Option Specification Form
 For the S2200/S2210/S2220/S2400

DATE \qquad

P.O.\# S.O.\#_(For Factory Use Only) _

FILE NAME (For Diskette Only)
m. s2200/S2210/S2200/S2400
A. PACKAGE (circle one): PLASTIC
CERAMIC
DIE
B. PIN COUNT (circle one): 28

40
IF 28, SPECIFY PINS (see Table 1): \qquad
\qquad

NAME OF OPTION	CODE		
RAM POWER	R	$\begin{gathered} R=1 \text { T0 } 16: \\ R=0: \end{gathered}$	RAM power is supplied from the $\overline{\mathrm{POR}} / V_{\text {RAM }}$ Pin (see S2200 PDS) RAM is supplied from $V_{C C}$.
POWER-FAIL DETECTION	P	$\begin{aligned} & P=1: \\ & P=0: \end{aligned}$	A non-maskable interrupt (jump to address 0400 HEX) occurs when $V_{C C}<V_{\text {POR }}$ No interrupt for low $V_{C C}$
LOW-PRIORITY INTERRUPT-K ${ }_{7}$ HI-PRIORITY INTERRUPT - K ${ }_{6}$	1	$\begin{aligned} & 1=0: \\ & I=1: \\ & I=2: \\ & I=3: \end{aligned}$	$K_{6} \& K_{7}$ not connected to interrupt logic K_{6} only connected to interrupt logic K_{7} only connected to interrupt logic Both $K_{6} \& K_{7}$ connected to interrupt logic
D/A OUTPUT	D	$0=1$:	Digital-to-analog converter output appears at K_{5}
CLOCK OSCILLATOR	C	$\begin{aligned} & C=1 \\ & C=0 \end{aligned}$	On-chip master oscillator configured to accept a piezoelectric crystal; can be driven by an external oscillator On-chip oscillatory uses an external resistor and capacitor; or can be driven by an exiernal oscillator
RESET STATE OF A-LINE	w	$\begin{aligned} & W=1: \\ & W=0: \end{aligned}$	Whenever the chip enters power-on reset, the " A " outputs are all set to ones " A " outputs are all zeroes after POR.
BUS COMPATIBILITY	B	$\begin{aligned} & B=1: \\ & B=0: \end{aligned}$	Bus compatible option (S2220) Standard See Chapter 3 of PDS for S2200/S2400 et al.

Choice of wide operating temperature ranges may require slight derating of some electrical parameters; please consult with the factory.

Microprocessor
 Component Family

AMERICAN MICROSYSTEMS, INC.

MICROPROCESSORS

S6800/S68A00/S68B00	8-Bit Microprocessor (1.0/1.5/2.0MHz XTAL)
S68H00	High Speed S6800 (2MHz Clock)
S6801/S6801E	Single Chip Microcomputer 2K ROM, 128×8 RAM, 31 I/O Lines, Enhanced Instruction Set (External [E] or Internal Clock)
S6802/S68A02	Microprocessor with Clock and RAM (1.0/1.5MHz Clock)
S6803/S6803N/R	S6801 Without ROM (N/R Model - No ROM and/or RAM)
S6805	Single Chip Microcomputer 1,152 $\times 8$ ROM, 64 $\times 8$ RAM, Clock, Pre-scaler, Bit Level Instructions.
S6808/S68A08	S6800 with Clock (1.0/1.5MHz Clock)
S6809(E)/S68A09(E)/S68B09(E)	Pseudo 16-Bit Microprocessor (1.0/1.5/2.0MHz Clock) (E Models - External Clock Mode)

PERIPHERALS

S1602	Universal Asynchronous Receiver/Transmitter (UART)
S2350	Universal Synchronous Receiver/Transmitter (USRT)
S6821/S68A21/S68B21	Peripheral Interface Adapter (PIA) (1.0/1.5/2.0MHz Clock)
S68H21	High Speed Peripheral Interface Adapter (PIA) (2.5MHz Clock)
S6840/S68A40/S68B40	Programmable Timer (1.0/1.5/2.0MHz)
S68045	CRT Controller (CRTC)
S6846	2K ROM, Parallel I/O, Programmable Timer
S68047	Video Display Generator (VDG)
S6850/S68A50/S68B50	Asynchronous Communication Interface Adapter 800 Bus Compatible
S6852/S68A52/S68B52	Asynchronous Communication Interface (1.0/1.5/2.0MHz Clock) (ACIA)
S6854/S68A54/S68B54	Advanced Data Link Controller (ADLC) (1.0/1.5/2.0MHz Clock)
S68488	IEEE - 488 Bus Interface
S6894	Data Encryption Unit (DEU)

MEMORIES

S6810/S68A10/S68B10	128×8 Static RAM (450/360/250ns Access Time)
S6810-1	Low Cost S6810 (575ns Access Time)

8-BIT
 MICROPROCESSOR

Features

Eight-Bit Parallel ProcessingBi-Directional Data BusSixteen-Bit Address Bus - 65536 Bytes of Addressing$\square \quad 72$ Instructions - Variable Length
\square Seven Addressing Modes - Direct, Relative Immediate, Indexed, Extended, Implied and Accumulator
$\square \quad$ Variable Length StackVectored Restart
$\square 2$ Microsecond Instruction Execution
\square Maskable Interrupt Vector
$\square \quad$ Separate Non-Maskable Interrupt - Internal Registers Saved in Stack
\square Six Internal Registers - Two Accumulators, Index Register, Program Counter, Stack Pointer and Condition Code Register
\square Direct Memory Access (DMA) and Multiple Processor Capability
\square Clock Rates - S6800 - $\mathbf{1 . 0 M H z}$

$$
-\mathrm{S} 68 \mathrm{~A} 00-1.5 \mathrm{MHz}
$$

$$
-\mathbf{S 6 8 B} 00-2.0 \mathrm{MHz}
$$

\square Simple Bus Interface Without TTL

Absolute Maximum Ratings

Storage Temperature Range $\mathrm{T}_{\text {stg }} \ldots \ldots{ }^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Electrical Characteristics

($\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \pm 5 \%, \mathrm{~V}_{\mathrm{SS}}=0, \mathrm{~T}_{\mathrm{A}}$ unless otherwise noted.)

\begin{tabular}{|c|c|c|c|c|c|}
\hline Symbol \& Characteristics \& Min. \& Typ. \& Max. \& Unit \\
\hline \[
\begin{aligned}
\& \hline \mathrm{V}_{\mathrm{IH}} \\
\& \mathrm{~V}_{\mathrm{IHC}} \\
\& \hline
\end{aligned}
\] \& \(\begin{array}{ll}\text { Input High Voltage (Normal Operating Leveis) } \& \begin{array}{l}\text { Logic } \\ \$ 1, \phi 2\end{array}\end{array}\) \& \[
\begin{aligned}
\& \mathrm{V}_{\mathrm{SS}}+2.0 \\
\& \mathrm{v}_{\mathrm{CC}}-0.6 \\
\& \hline
\end{aligned}
\] \& - \& \[
\begin{gathered}
\mathrm{v}_{\mathrm{CC}} \\
\mathrm{v}_{\mathrm{CC}}+0.3 \\
\hline
\end{gathered}
\] \& Vdc \\
\hline \[
\begin{aligned}
\& \hline \mathrm{V}_{\mathrm{IL}} \\
\& \mathrm{~V}_{\mathrm{ILC}} \\
\& \hline
\end{aligned}
\] \& Input Low Voltage (Normal Operating Levels) \(\begin{aligned} \& \text { Logic } \\ \& \$ 1, \$ 2\end{aligned}\) \& \[
\begin{aligned}
\& \mathrm{V}_{S S}-0.3 \\
\& \mathrm{~V}_{\mathrm{SS}}-0.3
\end{aligned}
\] \& - \& \[
\begin{gathered}
\mathrm{V}_{\mathrm{SS}}+0.8 \\
\mathrm{~V}_{\mathrm{SS}}+0.4
\end{gathered}
\] \& Vdc \\
\hline \(\mathrm{I}_{\text {IN }}\) \& \begin{tabular}{rr}
Input Leakage Current \& \\
\(\left(\mathrm{V}_{\text {IN }}=0\right.\) to \(\left.5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Max}\right)\) \& Logic* \\
\(\left(\mathrm{V}_{\mathrm{IN}}=0\right.\) to \(\left.5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=0.0 \mathrm{~V}\right)\) \& \(\phi 1, \phi 2\)
\end{tabular} \& - \& \[
1.0
\] \& \[
\begin{array}{r}
2.5 \\
100 \\
\hline
\end{array}
\] \& \(\mu \mathrm{Adc}\) \\
\hline \(\mathrm{I}_{\text {TSI }}\) \& \begin{tabular}{rr}
Three-State (Off State) Input Current \& D0 - D7 \\
\(\mathrm{V}_{\text {IN }}=0.4\) to \(2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Max}\) \& \(\mathrm{A} 0-\mathrm{A} 15, \mathrm{R} / \mathrm{W}\)
\end{tabular} \& - \& \[
2.0
\] \& \[
\begin{gathered}
10 \\
100 \\
\hline
\end{gathered}
\] \& \(\mu \mathrm{Ade}\) \\
\hline \(\mathrm{V}_{\mathrm{OH}}\) \& \begin{tabular}{lr}
Output High Voltage \& \\
\(\left(\mathrm{I}_{\text {LOAD }}=205 \mu \mathrm{Adc}, \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}\right)\) \& \(\mathrm{D} 0-\mathrm{D} 7\) \\
\(\left(\mathrm{I}_{\text {LOAD }}=145 \mu \mathrm{Adc}, \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}\right)\) \& \(\mathrm{A} 0-\mathrm{A} 15, \mathrm{R} / \mathrm{W}, \mathrm{VMA}\) \\
\(\left(\mathrm{I}_{\text {LOAD }}=-100 \mu \mathrm{Adc}, \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}\right)\) \& BA
\end{tabular} \& \[
\begin{aligned}
\& \mathrm{V}_{\mathrm{SS}}+2.4 \\
\& \mathrm{v}_{\mathrm{SS}}+2.4 \\
\& \mathrm{v}_{\mathrm{SS}}+2.4
\end{aligned}
\] \& - \& - \& Vdc \\
\hline \(\mathrm{v}_{\text {OL }}\) \& \[
\begin{aligned}
\& \text { Output Low Voltage } \\
\& \left(\mathrm{I}_{\mathrm{LOAD}}{ }^{5} 1.6 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}\right)
\end{aligned}
\] \& - \& - \& \(\mathrm{V}_{\mathrm{SS}}+0.4\) \& Vdc \\
\hline \(\mathrm{P}_{\mathrm{D}}\) \& Power Dissipation \& - \& 0.5 \& 1.0 \& W \\
\hline CIN

$\mathrm{C}_{\text {OUT }}$ \& \& \[
$$
\begin{aligned}
& - \\
& \text { - } \\
& \text { - }
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
- \\
- \\
10 \\
6.5
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
35 \\
70 \\
12.5 \\
10 \\
12
\end{gathered}
$$

\] \& | pF |
| :--- |
| pF |

\hline f \& Frequency of Operation $\begin{array}{lr}\text { S6800 } \\ & \text { S68A00 } \\ \text { S68B00 }\end{array}$ \& \[
$$
\begin{aligned}
& \hline 0.1 \\
& 0.1 \\
& 0.1
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& - \\
& - \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1.0 \\
& 1.5 \\
& 2.0
\end{aligned}
$$
\] \& MHz

\hline $\mathrm{t}_{\mathrm{CYC}}$ \& | Clock Timing (Figure 1) | S6800 |
| :--- | ---: |
| Cycle Time | S68A00 |
| | S68B00 | \& \[

$$
\begin{gathered}
\hline 1.000 \\
0.666 \\
0.50
\end{gathered}
$$

\] \& - \& \[

$$
\begin{aligned}
& 10 \\
& 10 \\
& 10
\end{aligned}
$$
\] \& μs

\hline $\mathrm{PW}_{\phi \mathrm{H}}$ \& | Clock Pulse Width | $\$ 1, \phi 2-\mathrm{S} 6800$ |
| :--- | ---: |
| Measured at $V_{\mathrm{CC}}-0.6 \mathrm{~V}$ | $\$ 1, \$ 2-\mathrm{S} 68 \mathrm{~A} 00$ |
| | $1, \phi 2-\mathrm{S} 68 \mathrm{~B} 00$ | \& \[

$$
\begin{aligned}
& 400 \\
& 230 \\
& 800
\end{aligned}
$$

\] \& - \& \[

$$
\begin{aligned}
& 9500 \\
& 9500 \\
& 9500
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \text { ns } \\
& \text { ns }
\end{aligned}
$$
\]

\hline $\mathrm{t}_{\text {UT }}$ \& $\begin{array}{lr} \\ \text { Total } \phi 1 \text { and } \phi 2 \text { Up Time } & \text { S6800 } \\ & \text { S68A00 } \\ \text { S68B00 }\end{array}$ \& $$
\begin{aligned}
& 900 \\
& 600 \\
& 440
\end{aligned}
$$ \& - \& - \& ns

\hline $\mathrm{t}_{\phi \mathrm{r}}, \mathrm{t}_{\text {¢ }}$ \& Measured between $\mathrm{V}_{\mathrm{SS}}+0.4$ and $\mathrm{V}_{\mathrm{CC}}-0.6 \quad$ Rise and Fall Times \& 5.0 \& - \& 100 \& ns

\hline t_{d} \& Measured at $\mathrm{V}_{\mathrm{OV}}=\mathrm{V}_{\mathrm{SS}}+0.6 \mathrm{~V} \quad$ Delay Time or Clock Separation \& 0 \& - \& 9100 \& ns

\hline
\end{tabular}

[^7]
Read/Write Timing

Symbol	Characteristics	S6800			S68A00			S68B00			Unit
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
t_{AD}	Address Delay $\begin{aligned} & \mathrm{C}=90 \mathrm{pF} \\ & \mathrm{C}=30 \mathrm{pF} \\ & \hline \end{aligned}$		-	$\begin{array}{r} 270 \\ 250 \\ \hline \end{array}$		-	$\begin{aligned} & 180 \\ & 165 \\ & \hline \end{aligned}$	-	$-$	$\begin{array}{r} 150 \\ 135 \\ \hline \end{array}$	ns
$\mathrm{t}_{\text {ACC }}$	Periph. Read Access Time $\mathrm{t}_{\mathrm{AC}}=\mathrm{t}_{\mathrm{UT}}-\left(\mathrm{t}_{\mathrm{AD}}+\mathrm{t}_{\mathrm{DSR}}\right)$	-	-	530	-	-	360	-	-	250	ns
$\mathrm{t}_{\text {DSR }}$	Data Setup Time (Read)	100	-	-	60	-	-	40	-	-	ns
t_{H}	Input Data Hold Time	10	-	-	10	-	-	10	-	-	ns
t_{H}	Output Data Hold Time	10	25	-	10	25	-	10	25	-	ns
$\mathrm{t}_{\text {AH }}$	Address Hold Time (Address, R/W, VMA)	30	50	-	10	75	-	10	75	-	ns
t_{EH}	Enable High Time for DBE Input	450	-	-	280	-	-	220	-	-	ns
$\mathrm{t}_{\text {DDW }}$	Date Delay Time (Write)	-	-	225	-	165	200	-	-	160	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PCS}} \\ & \mathrm{t}_{\mathrm{PC}_{\mathbf{r}}} ; \mathrm{t}_{\mathrm{PC}_{\mathrm{f}}} \end{aligned}$	Processor Controls Proc. Control Setup Time Processor Control Rise and Fall Time	200 -	-	- 100	200	-	- 100	200	-	- 100	ns
t_{BA}	Bus Available Delay	-	-	250	-	-	270	-	-	270	ns
$\mathbf{t}_{\mathrm{TSE}}$	Three-State Enable	$-$	-	270	-	-	40	-	-	40	ns
$\mathrm{t}_{\text {TSD }}$	Three-State Delay	-	-	-	-	-	270	-	-	270	ns
$\mathrm{t}_{\overline{\mathrm{DBE}}}$	Data Bus Enable Down Time During $\phi 1$ Up Time	150	-	-	150	-	-	70	-	-	ns
$\mathrm{t}_{\mathrm{DBE}_{\mathrm{r}}}$, $t_{\text {DBE }_{f}}$	Data Bus Enable Rise and Fall Times	-	-	25	-	-	25	-	-	25	ns

Figure 1. Clock Timing Waveform
Measurement point for $\phi 1$ and $\phi 2$ are shown below. Other measurements are the same as for MC6800.

Figure 2. Read/Write Timing Waveform

Figure 4. Write Data In Memory or Peripherals

Figure 5. Initialization of MPU After Restart

8-BIT
 HIGH SPEED MICROPROCESSOR

Features

\square Eight-Bit Parallel ProcessingBi-Directional Data Bus Sixteen-Bit Address Bus - 65536 Bytes of Addressing
$\square 72$ Instructions - Variable LengthSeven Addressing Modes - Direct, Relative Immediate, Indexed, Extended, Implied and Accumulator
\square Variable Length Stack
Vectored Restart
400nsec Instruction Execution
\square Maskable Interrupt Vector
\square Separate Non-Maskable Interrupt - Internal Registers Saved in Stack
\square Six Internal Registers - Two Accumulators, Index Register, Program Counter, Stack Pointer and Condition Code Register
\square Direct Memory Access (DMA) and Multiple Processor Capability
\square Clock Rate 2.5 MHz
\square Simple Bus Interface Without TTL
\square Halt and Single Instruction Execution Capability

Absolute Maximum Ratings

Supply Voltage $\mathrm{V}_{\text {CC }}$	-0.3 to +7.0 V
Input Voltage $\mathrm{V}_{\text {IN }}$	-0.3 V to +7.0 V
Operating Temperature Range T_{A}	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range $\mathrm{T}_{\text {stg }}$	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Electrical Characteristics

($\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \pm 5 \%, \mathrm{~V}_{\mathrm{SS}}=0, \mathrm{~T}_{\mathrm{A}}$ unless otherwise noted.)

\begin{tabular}{|c|c|c|c|c|c|}
\hline Symbol \& Characteristics \& Min. \& Typ. \& Max. \& Unit \\
\hline \begin{tabular}{l}
\(\mathrm{V}_{\mathrm{IH}}\) \\
\(\mathrm{V}_{\mathrm{IHC}}\)
\end{tabular} \& Input High Voltage (Normal Operating Levels) \(\begin{array}{ll}\text { Logic } \\ \$ 1, \phi 2\end{array}\) \& \[
\begin{gathered}
\mathrm{V}_{\mathrm{SS}}+2.0 \\
\mathrm{~V}_{\mathrm{CC}}-0.6 \\
\hline
\end{gathered}
\] \& - \& \[
\begin{gathered}
\mathrm{v}_{\mathrm{CC}} \\
\mathrm{v}_{\mathrm{CC}}+0.3
\end{gathered}
\] \& Vdc \\
\hline \[
\begin{aligned}
\& \mathrm{V}_{\mathrm{IL}} \\
\& \mathrm{~V}_{\mathrm{ILC}} \\
\& \hline
\end{aligned}
\] \& Input Low Voltage (Normal Operating Levels) \(\quad \begin{aligned} \& \text { Logic } \\ \& \$ 1, \phi 2\end{aligned}\) \& \[
\begin{aligned}
\& \mathrm{v}_{\mathrm{SS}}-0.3 \\
\& \mathrm{v}_{\mathrm{SS}}-0.3 \\
\& \hline
\end{aligned}
\] \& - \& \[
\begin{gathered}
\mathrm{v}_{\mathrm{SS}}+0.8 \\
\mathrm{v}_{\mathrm{SS}}+0.4
\end{gathered}
\] \& Vdc \\
\hline \(\mathrm{I}_{\text {IN }}\) \& \begin{tabular}{l}
Input Leakage Current \\
\(\begin{array}{lr}\left(\mathrm{V}_{\text {IN }}=0 \text { to } 5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Max}\right) \& \text { Logic }^{*} \\ \left(\mathrm{~V}_{\text {IN }}=0 \text { to } 5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=0.0 \mathrm{~V}\right) \& \phi 1, \phi 2\end{array}\)
\end{tabular} \& - \& \& \[
\begin{array}{r}
2.5 \\
100 \\
\hline
\end{array}
\] \& \(\mu \mathrm{Adc}\) \\
\hline \(\mathrm{I}_{\text {TSI }}\) \& \begin{tabular}{cr}
Three-State (Off State) Input Current \& D0 - D7 \\
\(\mathrm{V}_{\text {IN }}=0.4\) to \(2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Max}\) \& \(\mathrm{A} 0-\mathrm{A} 15, \mathrm{R} / \mathrm{W}\)
\end{tabular} \& \[
-
\] \& \[
2.0
\] \& \[
\begin{gathered}
10 \\
100
\end{gathered}
\] \& \(\mu \mathrm{Adc}\) \\
\hline \(\mathrm{V}_{\mathrm{OH}}\) \& \begin{tabular}{lr}
Output High Voltage \& \\
\(\left(\mathrm{I}_{\text {LOAD }}=205 \mu \mathrm{Adc}, \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}\right)\) \& \(\mathrm{D} 0-\mathrm{D} 7\) \\
\(\left(\mathrm{I}_{\text {LOAD }}=145 \mu \mathrm{Adc}, \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}\right)\) \& \(\mathrm{A} 0-\mathrm{A} 15, \mathrm{R} / \mathrm{W}, \mathrm{VMA}\) \\
\(\left(\mathrm{I}_{\text {LOAD }}=-100 \mu \mathrm{Adc}, \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}\right)\) \& BA
\end{tabular} \& \[
\begin{aligned}
\& \mathrm{v}_{\mathrm{SS}}+2.4 \\
\& \mathrm{v}_{\mathrm{SS}}+2.4 \\
\& \mathrm{v}_{\mathrm{SS}}+2.4 \\
\& \hline
\end{aligned}
\] \& - \& - \& Vdc \\
\hline \(\mathrm{v}_{\mathrm{OL}}\) \& Output Low Voltage \(\left(\mathrm{I}_{\text {LOAD }}=1.6 \mathrm{mAdc}, \mathrm{v}_{\mathrm{CC}}=\mathrm{Min}\right)\) \& - \& - \& \(\mathrm{V}_{\mathrm{SS}}+0.4\) \& Vdc \\
\hline \(\mathrm{P}_{\mathrm{D}}\) \& Power Dissipation \& - \& 0.5 \& 1.0 \& W \\
\hline C IN

$\mathrm{C}_{\text {OUT }}$ \& \[
$$
\begin{array}{cr}
\hline \text { Capacitance\# } & \\
\left(\mathrm{V}_{\mathrm{IN}}=0, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}\right) & \phi 1 \\
& \phi 2 \\
& \mathrm{D} 0-\mathrm{D} 7 \\
& \text { Logic Inputs } \\
& \mathrm{A} 0-\mathrm{A} 15, \mathrm{R} / \mathrm{W}, \mathrm{VMA}
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& - \\
& - \\
& - \\
& -
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
- \\
10 \\
6.5
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
35 \\
70 \\
12.5 \\
10 \\
12 \\
\hline
\end{gathered}
$$

\] \& | pF |
| :--- |
| pF |

\hline f \& Frequency of Operation \quad S68H00 \& 0.1 \& - \& 2.5 \& MHz

\hline $\mathrm{t}_{\text {CYC }}$ \& Clock Timing (Figure 1)

Cycle Time \quad S68H00 \& \[
0.4

\] \& - \& \[

$$
\begin{aligned}
& 10 \\
& 10 \\
& \hline
\end{aligned}
$$
\] \& $\mu \mathrm{s}$

\hline $\mathrm{PW}_{\phi H}$ \& | Clock Pulse Width | $\phi 1, \phi 2-\mathrm{S} 68 \mathrm{H} 00$ |
| :--- | :--- |
| Measured at $\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$ | | \& \[

165

\] \& \& \[

$$
\begin{aligned}
& 9500 \\
& 9500 \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \text { ns } \\
& \text { ns }
\end{aligned}
$$
\]

\hline $\mathrm{t}_{\text {UT }}$ \& Total $\phi 1$ and $\phi 2$ Up Time \quad S68H00 \& 4.20 \& - \& - \& ns

\hline $\mathrm{t}_{\text {dr }}, \mathrm{t}_{\text {df }}$ \& Measured between $\mathrm{V}_{\mathrm{SS}}+0.4$ and $\mathrm{V}_{\mathrm{CC}}-0.6 \quad$ Rise and Fall Times \& 5.0 \& - \& 100 \& ns

\hline $t_{\text {d }}$ \& | Delay Time or Clock Separation |
| :--- |
| Measured at $\mathrm{V}_{\mathrm{OV}}=\mathrm{V}_{\mathrm{SS}}+0.6 \mathrm{~V}$ | \& 0 \& - \& 9100 \& ns

\hline
\end{tabular}

[^8]
Read/Write Timing

Measurement point for $\phi 1$ and $\phi 2$ are shown below. Other measurements are the same as for MC6800.

Figure 1. Clock Timing Waveform
Figure2. Read/Write Timing Waveform

ANI

SINGLE CHIP MICROCOMPUTER

Features

$\begin{array}{ll}\square & \text { Instruction and Addressing Compatible } \\ \square & \text { Object Code Compatible }\end{array}$
\square 16-Bit Programmable Timer
\square Single Chip or Expandable to 65K Words
\square On-Chip Serial Communications Interface (SCI)

- Simplex
- Half Duplex
- Mark/Space (NRZ)
- Biphase (FM)
- Port Expansion
- Full/Half Duplex
\square Four Internal Baud Rates Available: $\phi 2 \div 16,128,1024,4096$
$\square \quad 2 \mathrm{~K}$ Bytes of ROM
$\square \quad 128$ Bytes of RAM
(64 Bytes Power Down Retainable)

31 Parallel I/O Lines

Divide-by-Four Internal Clock
Hardware 8×8 Multiply
Three Operating Modes

- Single Chip
- Expanded Multiplex (up to 65K Addressing)
- Expanded Non-Multiplex

S6801E Operating Modes

- Peripheral Controller
- Expanded Non-Multiplexed
- Expanded Multiplex
\square Expanded Instruction Set
\square Interrupt Capability
\square Low Cost Versions
- S6803-No ROM Version
- S6803NR-No ROM or RAM

TTL-Compatible with Single 5 Volt Supply

General Description

The S6801 MCU is an 8 -bit single-chip microcomputer system which is compatible with the S6800 family of parts. The S 6801 is object code compatible with the S6800 instruction set.
The S6801 features improved execution times of key S6800 instructions including Jump to Subroutine (JSR) and all Conditioned Branches (BRA, etc.). In addition, several new 16 -bit and 8 -bit instructions have been added including Push/Pull to/from Stack, Hardware 8×8 Multiply, and store concatenated A and B accumulators (D accumulator).
The S6801 MCU can be operated in three modes: SingleChip, Expanded Multiplex (up to 65K Byte Addressing), and Expanded Non-Multiplex. In addition, the S6801 is available with two mask options: an on-chip $(\div 4)$ Clock, or an external $(\div 1)$ Clock. The external mode is especially useful in Multiprocessor Applications. The S6801E can be configured as a peripheral by using the Read/Write $(\mathrm{R} / \overline{\mathrm{W}})$, Chip Select (CS), and Register Select (RS). The Read/Write line controls the direction of data on Port 3
and the Register Select (RS) allows for access to either Port 3 data register or control register.
The S6801 Serial Communications Interface (SCI) permits full serial communication using no external components in several operating modes-Full and/or Half Duplex operation-and two formats-Standard Mark/ Space for typical Terminal/Modem interfaces and the BiPhase (FM, F2F, and Manchester) Format primarily for use between processors. Four software addressable registers are provided to configure the Serial Port; to provide status information; and as transmit/receive data buffers.

The S6801 includes a 16 -bit timer with three effectively independent timing functions: (1) Variable pulse width measurement, (2) Variable pulse width generation, and (3) A Timer Overflow-Find Time Flag. This makes the S6801 ideal for applications such as Industrial Controls, Automotive Systems, A/D or D/A Converters, Modems, Real-Time Clocks, and Digital Voltage Controlled Oscillators (VCO).

The S6801 is fully TTL-compatible and requires only a single +5 volt supply.

Absolute Maximum Ratings

Supply Voltage, $\mathrm{V}_{\text {CC }}$	-0.3 V to +7.0 V
Input Voltage, $\mathrm{V}_{\text {IN }}$	-0.3 V to +7.0 V
Operating Temperature Range, T_{A}	0° to $+70^{\circ} \mathrm{C}$
Storage Temperature Range, $\mathrm{T}_{\text {stg }}$	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Thermal Resistance, $\theta_{\text {JA }}$	
Plastic	$100^{\circ} \mathrm{C} / \mathrm{W}$
Ceramic $50^{\circ} \mathrm{C} / \mathrm{W}$

This device contains circuitry to protect the inputs against damage due to high static voltage or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit. For proper operation it is recommended that $V_{I N}$ and $V_{\text {OUT }}$ be constrained to the range $V_{S S}\left(V_{I N}\right.$ or $\left.V_{\text {OUT }}\right) V_{D D}$.

Electrical Characteristics: $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{SS}}=0, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{L}}$ to T_{H} unless otherwise noted

Symbol	Characteristic	Min.	Typ.	Max.	Unit
V_{IH}	Input High Voltage	$\mathrm{V}_{\mathrm{SS}}+2.0$		$\mathrm{~V}_{\mathrm{CC}}$	Vdc
	Reset	$\mathrm{V}_{\mathrm{SS}}+4.0$		$\mathrm{~V}_{\mathrm{CC}}$	
V_{IL}	Input Low Voltage	$\mathrm{V}_{\mathrm{SS}}-0.3$		$\mathrm{~V}_{\mathrm{SS}}+0.8$	Vdc
$\mathrm{I}_{\mathrm{TSI}}$	Three-State (Off State) Input Current P10-P17		2.0	10	$\mu \mathrm{Adc}$
$\mathrm{I}_{\mathrm{TSI}}$	$\left(\mathrm{V}_{\mathrm{IN}}=0.4\right.$ to 2.4 Vdc) P20-P24, P30-P37		2.0	10	$\mu \mathrm{Adc}$
V_{OH}	Output High Voltage All Outputs Except XTAL 1 and EXTAL 2 $\mathrm{I}_{\text {LOAD }}=-200 \mu A d c$				Vdc
V_{OL}	Output Low Voltage All Outputs Except XTAL 1 and EXTAL 2 $\mathrm{I}_{\text {LOAD }}=1.6 m A d c$				

Electric Characteristics (Continued)

Symbol	Characteristic	Min.	Typ.	Max.	Unit
P_{D}	Power Dissipation			1200	mW
$\mathrm{C}_{\text {IN }}$	```Capacitance \(\mathrm{V}_{\mathrm{IN}}=0, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}\) P10-P17, P20-P24, P40-P47, P30-P37 Reset SC1, SC2, IRQ```			$\begin{gathered} 12.5 \\ 10 \\ 7.5 \end{gathered}$	pF
$\mathrm{t}_{\text {PDSU }}$	Peripheral Data Setup Time (Figure 3)	200			ns
$\mathrm{t}_{\text {PDH }}$	Peripheral Data Hold Time (Figure 3)	0			ns
tosd1	Delay Time, Enable negative transition to OS3 Neg. Trans.			1.0	$\mu \mathrm{s}$
tosD2	Delay Time, Enable neg. trans. to OS3 positive transition			1.0	$\mu \mathrm{S}$
$t_{\text {PWD }}$	Delay Time, Enable negative transition to Peripheral Data Valid (Figure 4)			350	ns
$\mathrm{t}_{\text {Cmos }}$	Delay Time, Enable negative transition to Peripheral Data Valid ($\mathrm{V}_{\mathrm{SS}}-30 \% \mathrm{~V}_{\mathrm{CC}}$, P20-P24 (Figure 4)			2.0	$\mu \mathrm{S}$
I_{OH}	Darlington Drive Current $\mathrm{V}_{\mathrm{O}}=1.5 \mathrm{Vdc}-\mathrm{P} 10-\mathrm{P} 17$	-1.0	-2.5	-10	mAdc
$\begin{aligned} & \hline \mathrm{V}_{\mathrm{SBB}} \\ & \mathrm{~V}_{\mathrm{SB}} \\ & \hline \end{aligned}$	Standby Voltage (Not Operating) (Operating)	$\begin{aligned} & 4.00 \\ & 4.75 \\ & \hline \end{aligned}$		$\begin{aligned} & \hline 5.25 \\ & 5.25 \\ & \hline \end{aligned}$	Vdc

NOTE: The above electricals satisfy Ports 1 and 2 always, and Ports 3 and 4 in the single chip mode only.

Bus Timing (Figure 7)

Symbol	Characteristic	Min.	Typ.	Max.	Unit
$\mathrm{t}_{\mathrm{CYC}}$	Cycle Time	1000			ns
$\mathrm{P}_{\mathrm{WASH}}$	Address Strobe Pulse Width High	220			ns
$\mathrm{t}_{\mathrm{ASR}}$	Address Strobe Rise Time			50	ns
$\mathrm{t}_{\mathrm{ASF}}$	Address Strobe Fall Time			50	ns
$\mathrm{t}_{\mathrm{ASD}}$	Address Strobe Delay Time	60			ns
t_{ER}	Enable Rise Time			50	ns
t_{EF}	Enable Fall Time			50	ns
$\mathrm{P}_{\mathrm{WEH}}$	Enable Pulse Width High Time	450			ns
$\mathrm{P}_{\mathrm{WEL}}$	Enable Pulse Width Low Time	450			ns
$\mathrm{t}_{\mathrm{ASED}}$	Address Strobe to Enable Delay Time	60			ns
t_{AD}	Address Delay Time			270	ns
$\mathrm{t}_{\mathrm{DDW}}$	Data Delay Write Time			225	ns
$\mathrm{t}_{\mathrm{DSR}}$	Data Set-up Time	100			ns
t_{HR}	Hold Time Read	20		100	ns
t_{HW}	Hold Time Write	20			ns
$\mathrm{t}_{\mathrm{ADL}}$	Address Delay Time for Latch			200	ns
$\mathrm{t}_{\mathrm{AHL}}$	Address Hold Time for Latch	20			ns
PW_{O}	Pulse Width	370	370		ns
t_{AH}	Address Hold Time	20			ns
t_{UT}	Total Up Time	750			ns

MCU Signal Description

This section gives a description of the MCU signals for the various modes. General pin assignments for the signals are shown on page 1 . SC1 and SC2 are signals which vary with the mode that the chip is in. Table 1 gives a summary of their function.

Table 1. Mode and Port Summary

MODE	PORT 1 EIGHT LINES	PORT 2 FIVE LINES	PORT 3 EIGHT LINES	PORT 4 EIGHT LINES	SC1	SC2
SINGLE CHIP	1/0	1/0	1/0	1/0	IS3(1)	OS3(0)
EXPANDED MUX	1/0	1/0	ADDRESS BUS (A0-A7) DATA BUS DO-D7	ADDRESS BUS* (A8-A15)	AS(0)	$R / \bar{W}(0)$
EXPANDED NON-MUX	1/0	1/0	DATA BUS DO-D7	$\begin{gathered} \hline \text { ADDRESS BUS* } \\ (\mathrm{AO}-\mathrm{A}) \end{gathered}$	$\overline{\mathrm{TOS}}(0)$	$R / \bar{W}(0)$

*THESE LINES CAN BE SUBSTITUTED FOR I/O (INPUT ONLY) STARTING WITH THE MOST SIGNIFICANT ADDRESS LINE.
I = INPUT
IS = INPUT STROBE
SC = STROBE CONTROL
$0=$ OUTPUT $\quad O S=$ OUTPUT STROBE
AS = ADDRESS STROBE
$R / \bar{W}=$ READ $/ \overline{W R I T E}$
$10 S=1 / 0$ SELECT

Read/Write Timing for Ports 3 and 4 (Figures 1-2)

Symbol	Characteristic	Min.	Typ.	Max.	Unit
t_{AD}	Address Delay			270	ns
$\mathrm{t}_{\mathrm{ACC}}$	Peripheral Read Access Time $\mathrm{t}_{\mathrm{ACC}}=\mathrm{t}_{\mathrm{UT}}-\left(\mathrm{t}_{\mathrm{AD}}+\mathrm{t}_{\mathrm{DSR}}\right)$			530	ns
$\mathrm{t}_{\mathrm{DSR}}$	Data Setup Time (Read)	100			ns
t_{HR}	Input Data Hold Time	10			ns
t_{HW}	Output Data Hold Time	20			ns
t_{AH}	Address Hold Time (Address, R/W)	20			ns
$\mathrm{t}_{\mathrm{DDW}}$	Data Delay Time (Write)		165	225	ns
$\mathrm{t}_{\mathrm{PCS}}$	Processor Controls Processor Control Setup Time Processor Control Rise and Fall Time (Measured between 0.8V and 2.0V)	200			ns
$\mathrm{t}_{\text {PCr }}, \mathrm{t}_{\mathrm{PCf}}$		100	ns		

Port 3 Strobe Timing (Figures 5-6)

Symbol	Characteristic	Min.	Typ.	Max.	Unit
$\mathrm{t}_{\mathrm{DSD} 1}$	Output Strobe Delay 1			100	$\mu \mathrm{~s}$
$\mathrm{t}_{\text {OSD2 }}$	Output Strobe Delay 2			100	$\mu \mathrm{~s}$
$\mathrm{PW}_{\mathrm{IS}}$	Input Strobe Pulse Width	200			ns
t_{IH}	Input Data Hold Time	20			ns
t_{IS}	Input Data Setup Time	100			ns

Figure 1. Read Data From Memory or Peripherals Expanded Non-Multiplexed

DATA NOT VALID

Figure 2. Write Data In Memory or Peripherals Expanded Non-Multiplexed

dATA NOT VALID

Ports 1 and 2, and Ports 3 and 4 in the Single Chip Mode

Figure 3. Peripheral Data Setup and Hold Times (Read Mode)

Figure 4. Peripheral CMOS Data Delay Times (Write Mode)

Figure 5. Output Strobe Timing - Single Chip Mode

Figure 6. Input Strobe Timing - Single Chip Mode

Figure 7. Multiplexed Bus Timing

Figure 8. CMOS Load

Figure 9. Bus Timing Test Load and
Ports 1, 3 and 4 for Single Chip Mode

C = 90pF FOR P30-P37, P40-P47, E, SC1, SC2 $R=16.5 \mathrm{~K} \Omega$ FOR P30.P37, P40-P47, E, SC1, SC2

Figure 11. Typical Data Bus Output Delay versus Capacitive Loading

Figure12. Typical Read/Write, VMA, and Address Output Delay Versus Capacitive Loading

Signal Descriptions

$\mathbf{V}_{\mathbf{C C}}$ and $\mathbf{V}_{\mathbf{S S}}$
These two pins are used to supply power and ground to the chip. The voltage supplied will be +5 volts $\pm 5 \%$.
XTAL 1 and EXTAL 2
These connections are for a parallel resonant fundamental crystal, AT cut. Divide by 4 circuitry is included with the internal clock, so a 4 MHz crystal may be used to run the system at 1 MHz . The divide by 4 circuitry allows for use of the inexpensive 3.56 MHz Color TV crystal for non-time critical applications. Two 27pF capacitors are needed from the two crystal pins to ground to insure reliable operation. EXTAL 2 may be driven by an external clock source at a 4 MHz rate to run at 1 MHz with a $40 / 60 \%$ duty cycle. It is not restricted to 4 MHz . XTAL 1
must be grounded if an external clock is used. The following are the recommended crystal parameters:

AT $=$ Cut Parallel Resonance Crystal
$\mathrm{C}_{\mathrm{o}}=7 \mathrm{pF}$ Max
$\mathrm{FREQ}=4.0 \mathrm{MHz} @ \mathrm{C}_{\mathrm{L}}=24 \mathrm{pF}$
$\mathrm{R}_{\mathrm{S}}=50$ ohms Max
Frequency Tolerance $= \pm 5 \%$ to $\pm 0.02 \%$
The best E output "Worst Case
Design" tolerance is $\pm 0.05 \%$ (500 ppM)
using a $\pm 0.02 \%$ crystal.

\mathbf{V}_{CC} Standby

This pin will supply +5 volts $\pm 5 \%$ to the standby RAM on the chip. The first 64 bytes of RAM will be maintained in the power down mode with 8 mA current max in the ROM version. The circuit of Figure 15 can be utilized to assure that V_{CC} Standby does not go below $\mathrm{V}_{\mathrm{SBB}}$ during power down.
To retain information in the RAM during power down the following procedure is necessary:

1) Write " 0 " into the RAM enable bit, RAM E. RAM E is bit 6 of the RAM Control Register at location $\$ 0014$. This disables the standby RAM, thereby protecting it at power down.
2) Keep V_{CC} Standby greater than $\mathrm{V}_{\mathrm{SBB}}$.

Figure 13. Battery Backup for V_{CC} Standby

Reset

This input is used to reset and start the MPU from a power down condition, resulting from a power failure or an initial startup of the processor. On power up, the reset must be held low for at least 20 ms . During operation, Reset, when brought low, must be held low at 3 clock cycles.

When a high level is detected, the MPU does the following:
a) All the higher order address lines will be forced high.
b) I/O Port 2 bits, 2, 1 , and 0 are latched into programmed control bits PC2, PC1 and PC0.
c) The last two (FFFE, FFFF) locations in memory will be used to load the program addressed by the program counter.
d) The interrupt mask bit is set, must be cleared before the MPU can recognize maskable interrupts.

Enable (E)

This supplies the external clock for the rest of the system when the internal oscillator is used. It is a single phase, TTL compatible clock, and will be the divide by 4 result of the crystal frequency. It will drive one TTL load and 90 pF .

Non-Maskable Interrupt (NMI)

A low-going edge on this input requests that a non-maskable-interrupt sequence be generated within the processor. As with the Interrupt Request signal, the processor will complete the current instruction that is being executed before it recognizes the $\overline{\mathrm{NMI}}$ signal. The interrupt mask bit in the Condition Code Register has no effect on NMI.

In response to an $\overline{\text { NMI }}$ interrupt, the Index Register, Program Counter, Accumulators, and Condition Code Register are stored on the stack. At the end of the sequence, a 16 -bit address will be loaded that points to a vectoring address located in memory locations FFFC and FFFD. An address loaded at these locations causes the MPU to branch to a non-maskable interrupt service routine in memory.
A $3.3 \mathrm{~K} \Omega$ external resistor to V_{CC} should be used for wire-OR and optimum control of interrupts.

Inputs $\overline{\mathrm{IRQ}}$ and $\overline{\mathrm{NMI}}$ are hardware interrupt lines that are sampled during E and will start the interrupt routine on the clock bar following the completion of an instruction.

Interrupt Request ($\overline{\mathbf{I R Q}}$)

This level sensitive input requests that an interrupt sequence be generated within the machine. The processor will wait until it completes the current instruction that is being executed before it recognizes the request. At that time, if the interrupt mask bit in the Condition Code Register is not set, the machine will begin an interrupt sequence. The Index Register, Program Counter, Accumulators, and Condition Code Register are stored on the
stack. Next the MPU will respond to the interrupt request by setting the interrupt mask bit high so that no further maskable interrupts may occur. At the end of the cycle, a 16 -bit address will be loaded that points to a vectoring address which is located in memory locations FFF8 and FFF9. An address loaded at these locations causes the MPU to branch to an interrupt routine in memory.

The IRQ requires a $3.3 \mathrm{~K} \Omega$ external resistor to V_{CC} which should be used for wire-OR and optimum control of interrupts. Internal Interrupts will use an internal interrupt line (IRQ2). This Interrupt will operate the same as IRQ except that it will use the vector address of FFF0 and FFF7. IRQ1 will have priority over IRQ2 if both occur at the same time. The Interrupt Mask Bit in the condition mode register masks both interrupts. (See Figure 23.)
The following pins are available in the Single Chip Mode, and are associated with Port 3 only.

Input Strobe ($\overline{\mathrm{IS} 3}$) (SC1)

This sets an interrupt for the processor when the IS3 Enable bit is set. As shown in Figure 6 Input Strobe Timing, IS3 will fall $\mathrm{T}_{\text {IS }}$ minimum after data is valid on Port 3. If IS3 Enable is set in the I/O Port Control/Status Register, an interrupt will occur. If the latch enable bit in the I/O Control Status Register is set, this strobe will latch the input data from another device when that device has indicated that it has valid data.

Output Strobe ($\overline{\mathrm{OS} 3}$) (SC2)

This signal is used by the processor to strobe an external device, indicating valid data is on the I/O pins. The timing for the Output Strobe is shown in Figure 5. I/O Port Control/Status Register is discussed in the following section.
The following pins are available in the Expanded Modes.

Read Write (R/W) (SC2)

This TTL compatible output signals the peripherals and memory devices whether the MPU is in a Read (high) or a Write (low) state. The normal standby state of this signal is Read (high). This output is capable of driving one TTL load and 90 pF .

I/O Strobe ($\overline{\mathbf{I O S}}$) (SC1)

In the expanded non-multiplexed mode of operation, $\overline{\mathrm{IOS}}$ internally decodes A9 through A15 as zero's and A8 as a one. This allows external access of the 256 locations from $\$ 0100$ to $\$ 01 \mathrm{FF}$. The timing diagrams are shown as Figures 1 and 2.

Address Strobe (AS) (SC1)

In the expanded multiplexed mode of operation address strobe is output on this pin. This signal is used to latch the 8 LSB's of address which are multiplexed with data on Port 3. An 8 -bit latch is utilized in conjunction with Address Strobe, as shown in Figure 27. Expanded Multiplexed Mode. Address Strobe signals the latch when it is time to latch the address lines so the lines can become data bus lines during the E pulse. The timing for this signal is shown in the MC6801 Bus Timing Figure 7. This signal is also used to disable the address from the multiplexed bus allowing a deselect time, $\mathrm{T}_{\mathrm{ASD}}$ before the data is enabled to the bus.

S6801 Ports

There are four I/O ports on the S6801MCU; three 8 -bit ports and one 5 -bit port. There are two control lines associated with one of the 8 -bit ports. Each port has an associated write only Data Direction Register which allows each I/O line to be programmed to act as an input or an output. *A " 1 " in the corresponding Data Direction Register bit will cause that I/O line to be an output A " 0 " in the corresponding Data Direction Register bit will cause the I/O line to be an input. There are four ports: Port 1, Port 2, Port 3, and Port 4. Their addresses and the addresses of their Data Direction registers are given in Table 2.
*The only exception is bit 1 of Port 2 , which can either be data input or Timer output.

Table 2. Port and Data Direction Register Addresses

Ports	Port Address	Data Direction Register Address
1/0 Port 1	$\$ 0002$	$\$ 0000$
$1 / 0$ Port 2	$\$ 0003$	$\$ 0001$
$1 / 0$ Port 3	$\$ 0006$	$\$ 0004$
$1 / 0$ Port 4	$\$ 0007$	$\$ 0005$

I/O Port 1

This is an 8-bit port whose individual bits may be defined as inputs or outputs by the corresponding bit in its data direction register. The 8 output buffers have three-state capability, allowing them to enter a high impedance state when the peripheral data lines are used as inputs. In
order to be read properly, the voltage on the input lines must be greater than 2.0 volts for a logic " 1 " and less than 0.6 volt for a logic " 0 ". As outputs, these lines are TTL compatible and may also be used as a source of up to 1 mA at 1.5 volts to directly drive a Darlington base. After Reset, the I/O lines are configured as inputs. In all three modes, Port 1 is always parallel I/O.

I/O Port 2

This port has five lines that may be defined as inputs or outputs by its data direction register. The 5 output buffers have three-state capability, allowing them to enter a high impedance state when used as an input. In order to be read properly, the voltage on the input lines must be greater than 2.0 volts for a logic " 1 " and less than 0.8 volt for a logic " 0 ". As outputs, this port has no internal pullup resistors but will drive TTL inputs directly. For driving CMOS inputs, external pullup resistors are required. After Reset, the I/O lines are configured as inputs. Three pins on Port 2 (pins 10, 9 and 8 of the chip) are used to program the mode of operation during reset. The values of these pins at reset are latched into the three MSB's (bits 7, 6, and 5) of Port 2 which are read only. This is explained in the Mode Selection Section.
In all three modes, Port 2 can be configured as I/O and provides access to the Serial Communications Interface and the Timer. Bit 1 is the only pin restricted to data input or Timer output.

I/O Port 3

This is an 8 -bit port that can be configured as I/O, a data bus, or an address bus multiplexed with the data bus depending on the mode of operation hardware programmed by the user at reset. As a data bus, Port 3 is bidirectional. As an input for peripherals, it must be supplied regular TTL levels, that is, greater than 2.0 volts for a logic " 1 " and less than 0.5 volt for a logic " 0 ".
Its TTL compatible three-state output buffers are capable of driving one TTL load and 90 pF . In the Expanded Modes, after reset, the data direction register is inhibited and data flow depends on the state of the R/W line. The input strobe (IS3) and the output strobe (OS3) used for handshaking are explained later.

In the three modes Port 3 assumes the following characteristics:

Single Chip Mode: Parallel Inputs/Outputs as programmed by its associated Data Direction Register. There are two control lines associated with this port in
this mode, an input strobe and an output strobe, that can be used for handshaking. They are controlled by the I/O Port Control/Status Register explained at the end of this section.

Expanded Non-Multiplexed Mode: In this mode Port 3 become the data bus (D7-D0).
Expanded Multiplexed Mode: In this mode Port 3 becomes both the data bus (D7-D0) and lower bits of the address bus (A7-A0). An address strobe output is true when the address is on the port.

I/O Port 3 Control/Status Register

Bit 0 Not used.
Bit 1 Not used.
Bit 2 Not used.
Bit 3 Latch Enable. This controls the input latch for I/O Port 3. If this bit is set high the input data will be latched with the falling edge of the Input Strobe, IS3. This bit is cleared by reset, or CPU Read Port 3.
Bit 4 (OSS) Output Strobe Select. This bit will select if the Output Strobe should be generated by a write to I/O Port 3 or a read of I/O Port 3. When this bit is cleared the strobe is generated by a read Port 3. When this bit is set the strobe is generated by a write Port 3.
Bit 5 Not used.
Bit 6. IS3 ENABLE. This bit will be the interrupt caused by IS3. When set to a low level the IS3 FLAG will be set by input strobe but the interrupt will not be generated. This bit is cleared by reset.
Bit 7 IS3 FLAG. This is a read only status bit that is set by the failing edge of the input strobe, IS3. It is cleared by a read of the Control/Status Register followed by a read or write of I/O Port 3. Reset will clear this bit.

I/O Port 4

This is an 8-bit port that can be configured as I/O or as address lines depending on the mode of operation. In order to be read properly, the voltage on the input lines must be greater than 2.0 volts for a logic " 1 " and less
than 0.8 volt for a logic " 0 ". As outputs, each line is TTL compatible and can drive 1 TTL load and 90 pF . After reset, the lines are configured as inputs. To use the pins as addresses, therefore, they should be programmed as outputs in the three modes. Port 4 assumes the following characteristics.

Single Chip Mode: Parallel Inputs/Outputs as programmed by its associated Data Direction Register.
Expanded Non-Multiplexed Mode: In this mode Port 4 is configured as the lower order address lines (A7-A0) by writing one's to the data direction register. When all eight address lines are not needed, the remaining line starting with the most significant bit, may be used as I/O (inputs only).

Expanded Multiplexed Mode: In this mode Port 4 is configured as the high order address lines (A15-A8) by writing one's to the data direction register. When all eight address lines are not needed, the remaining line, starting with the most significant bit, may be used as I/O (inputs only).

Mode Selection

The mode of operation that 6801 will operate in after Reset is determined by hardware that the user must wire on pins 10,9 , and 8 of the chip. These pins are the three LSB's (I/O2, I/O1, and I/O0 respectively) of Port 2. They are latched into programmed control bits PC2, PC1, and PC0 when reset goes high. I/O Port 2 Register is shown below.

$\$ 0003$	7 PC2	6	5	4	3	2	1
PC1	PCO	$V 04$	$V 03$	$V 02$	$V 01$	$V 00$	

An example of external hardware that could be used in the Expanded Non-Multiplexed Mode is given in Figure 14. In the Expanded Non-Multiplexed Mode, pins 10, 9 and 8 are programmed Hi , Lo, Hi respectively as shown.
Couplers between the pins on Port 2 and the peripherals attached may be required. If the lines go to devices which require signals at power up differing from the signals needed to program the 6801's mode, couplers are necessary.
The 14066B can be used to provide this isolation between the peripheral device and the MCU during reset. Figure 15 shows the logic diagram and xxxxx? for the MC14066B. It is bidrectional and requires no external logic to determine the direction of the information flow.

The logic shown insures that the data on the peripheral will not change before it is latched into the MCU and the MCU has started the reset sequence.

Figure 14. Diode Configuration for the Expanded Non-Multiplexed Mode

Figure 15. Quad Analog, Switch/Multiplexer In a Typical S6801 Circuit

S6801 Basic Modes

The S 6801 is capable of operating n three basic modes, (1) Single Chip Mode, (2) Expanded Multiplexed Mode (compatible with S6800 peripheral family, (3) Expanded Non-Multiplexed Mode.

Single Chip Mode

Both mask options will operate in this mode. In the Single Chip Mode the parts are configured for I/O.
Internal Clock/Divide-by-Four (S6801)-This mask op-
Figure 16. S6801 MCU Single Chip Mode

Expanded Non-Multiplexed Mode

In this mode the S 6801 will directly address S 6800 peripherals with no external logic. In this mode Port 3 becomes the data bus. Port 4 becomes the A7-A0 address bus or partial address and I/O (inputs only). Port 2 can be parallel I/O, serial only. In this mode the S6801 is expandable to 256 locations. The eight address lines associated with Port 4 may be substituted for I/O (inputs only) if a fewer number of address lines will satisfy the application.
Internal Clock/Divide-by-Four-This mask option is shown in Figure 17. The Internal Clock requires only the addition of a crystal for operation. This input will also accept an external TTL or CMOS input, but in either case, the clock frequency will be divided by four for this mask option.
tion is shown in Figure 16. In this mode, Port 3 has two associated control lines, an input strobe and an output strobe for handshaking data.
External Clock/Divide-by-One (S6801E)-This mask option is shown in Figure 16a. The Read/Write (R/W) line, Chip Select (CS), and Register Select (RS) are associated with Port 3 only. The Read/Write (R / W) line controls the direction of data on Port 3 and Chip Select (CS) enables Port 3. The Register Select (RS) allows for the access of Port 3 data register or Port 3 control register.

Figure 16a. S6801E MCU Single-Chip Mode

External Clock/Divide-by-One-This mask option is shown in Figure 17a. The External Clock/Divide-by-One allows for an external clock to be applied to the Enable Pin. This is a divide-by-one input only.

Expanded Multiplexed Mode

In this mode Port 4 becomes higher order address lines with an alternative of substituting some of the address lines for I/O (inputs only). Port 3 is the data bus multiplexed with the lower order address lines differentiated by an output called Address Strobe. Port 2 is 5 lines of Parallel I/O, SC1, Timer, or any combination thereof. Port 1 is 8 Parallel I/O lines. In this mode it is expandable to 65 K words.

Internal Clock/Divide-by-Four-This mask option is shown in Figure 18. Only an external crystal is required for operation.

Figure 17. S6801 MCU Expanded Non-Multiplexed Mode

Figure 18. S6801 MCU Expanded Multiplexed Mode

External Clock/Divide-by-One-This mask option is shown in Figure 18a. This accepts an external clock input to the enable pin.

Figure 17a. S6801E MCU Expanded Non-Multiplexed-Mode

Figure 18a. S6801E MCU Expanded Multiplexed-Mode

Table 3. Mode Selects

Lower Order Address Bus Latches

Since the data bus is multiplexed with the lower order address bus in Port 3, latches are required to latch those address bits. The SN74LS373 Transparent octal D-type
latch can be used with the S 6801 to latch the least significant address byte. Figure 19 shows how to connect the latch to the S6801. The output control to the LS373 may be connected to ground.

Figure 19. Latch Connection

Programmable Timer

The S6801 contains an on-chip 16-bit programmable timer which may be used to perform measurements on an input waveform while independently generating an output waveform. Pulse widths for both input and output signals may vary from a few microseconds to many seconds. The timer hardware consists of

- an 8-bit control and status register
- a 16 -bit free running counter
- a 16 -bit output compare register, and
- a 16-bit input capture register

A block diagram of the timer registers is shown in Figure 20.

Figure 20. Block Diagram of Timer Registers
timer controlistatus register

OUTPUT COMPARE		HIGH BYTE	OUTPUT COMPARE		LOW BYTE
\$09					
COUNTER		HIGH BYTE	COUNTER	SOA	
	SOD		SOW BYTE		
INPUT CAPTURE		HIGH BYTE	INPUT CAPTURE		

*the characters above the registers represent their address in hex.

Free Running Counter ($\mathbf{\$ 0 0 0 9 : 0 0 0 A)}$

The key element in the programmable timer is a 16 -bit free running counter which is driven to increasing values by the MPU ϕ. The counter value may be read by the MPU software at any time. The counter is cleared to zero on RESET and may be considered a read-only register with one exception. Any MPU write to the counter's address (\$09) will always result in a preset value of $\$ F F F 8$ being loaded into the counter regardless of the value involved in the write. The preset feature is intended for testing operation of the part, but may be of value in some applications.

Output Compare Register (\$000B:000C)

The Output Compare Register is a 16 -bit read/write register which is used to control an output waveform. The contents of this register are constantly compared with the current value of the free running counter. When a match is found a flag is set (OCF) in the Timer Control and Status Register (TCSR) and the current value of the Output Level bit (OLVL) in the TCSR is clocked to the output level register. Providing the

Data Direction Register for Port 2, Bit 1 contains a "1" (output), the output level register value will appear on the pin for Port 2 Bit 1. The values in the Output Compare Register and Output level bit may then be changed to control the output level on the next compare value. The Output Compare Register is set to \$FFFF during RESET. The Compare function is inhibited for one cycle following a write to the high byte of the Output Compare Register to insure a valid 16-bit value is in the register before a compare is made.

Input Capture Register (\$000D:000E)

The Input Capture Register is a 16 -bit read-only register used to store the current value of the free running counter when the proper transition of an external input signal occurs. This input transition change required to trigger the counter transfer is controlled by the input Edge bit (EDG) in the TOSR. The Data Direction Register bit for Port 1 Bit 0 should *be clear (zero) in order to gate in the external input signal to the edge defect unit in the timer.
*With Port 2 Bit 0 configured as an output and set to " 1 ". the external input will still be seen by the edge detect unit.

Timer Control and Status Register (TCSR) (\$0008)
The Timer Control and Status Register consists of an 8 -bit register of which all 8 bits are readable but only the low order 5 bits may be written. The upper three bits contain read-only timer status information and indicate that:

- a proper transition has taken place on the input pin with a subsequent transfer of the current counter value to the input capture register.
- a match has been found between the value in the free running counter and the output compare register, and
- when $\$ 0000$ is in the free running counter.

Each of the flags may be enabled onto the S6801 internal bus (RO2) with an individual Enable bit in the tCSR. If the 1-bit in the S6801 Condition Code Register has been cleared, a priority vectored interrupt will occur corresponding to the flag bit(s) set. A description for each bit follows: for Port 2 bit 1 is set, the value will appear on the output pin.
Bit 1 IEDG Input Edge-This bit controls which transition of an input will trigger a transfer of the counter to the input capture register. The DDR for Port 2 Bit 0 must be clear for this function to operate. IEDG $=0$ Transfer takes place on a negative (high-to-low transition).
IEDG $=1$ Transfer takes place on a positive edge (low-to-high transition).
Bit 2 ETOI Enable Timer Overflow Interrupt-When set, this bit enables IRQ2 to occur on the internal bus for a TOF Interrupt; when clear the interrupt is inhibited.
Bit 3 EOCI Enable Output Compare Interrupt—When set, this bit enables IRQ2 to appear on the internal bus for an input capture interrupt; when clear the interrupt is inhibited.
Bit 4 EICI Enable Input Capture Interrupt-When set, this bit enables IRQ2 to occur on the internal bus for an input capture interrupt; when clear the interrupt is inhibited.

Bit 5 TOF Timer Overflow Flag-This read-only bit is set when the counter contains $\$ 0000$. It is cleared by a read of the TCSR (with TOF set) followed by an MPU read of the Counter (\$09).
Bit 6 OCF Output Compare Flag-This read-only bit is set when a match is found between the output compare register and the free running counter. It is cleared by a read of the TCSR (with ODF set) followed by an MPU write to the output compare register (\$0B or $\$ 0 \mathrm{C}$).
Bit 7 CF Input Capture Flag-This read-only status bit is set by a proper transition on the input to the edge detect unit; it is cleared by a read of the TCSR (with ICF set) followed by an MPU read of the input Capture Register (\$0D).

Serial Communications Interface

The S6801 contains a full-duplex asynchronous serial communications interface (SCI) on board. Two serial data formats (standard mark/space [NRZ] or Bi-phase) are provided at several different data rates. The controller comprises a transmitter and a receiver which operate independently or each other but in the same data format and at the same data rate. Both transmitter and receiver
communicate with the MPU via the data bus and with the outside world via pins 2,3 , and 4 of Port 2. The hardware, software, and registers are explained in the following paragraphs.

Wake-up Feature

In a typical multi-processor application, the software protocol will usually contain a destination address in the initial byte(s) of the message. In order to permit non-
selected MPU's to ignore the remainder of the message, a wake-up feature is included whereby all further interrupt processing may be optionally inhibited until the beginning of the next message. When the next messge appears, the hardware re-enables (or "wakes-up") for the next message. The "wake-up" is automatically triggered by a string of ten consecutive 1's which indicates an idle transmit line. The software protocol must provide for the short idle period between any two consecutive messages.

Programmable Options

The following features of the S 6801 serial I/O section have programmable:

- format-standard mark/space (NRZ) or Bi-phase
- clock-external or internal
- baud rate-one of 14 per given MPU $\phi 2$ clock frequency or external clock X8 input
- wake-up feature-enabled or disabled
- interrupt requests-enabled or masked indivually for transmitter and receiver data registers
- clock output-internal clock enabled or disabled to Port 2 (Bit 2)
- Port 2 (bits 3 and 4)-dedicated or not dedicated to serial I/O individually for transmitter and receiver

Serial Communications Hardware

The serial communications hardware is controlled by 4 registers as shown in Figure 21. The registers include:

- an 8 -bit control and status register
- a 4-bit rate and mode control register (write only)
- an 8-bit read-only receive data register and
- an 8-bit write-only transmit data register

In addition to the four registers, the serial I/O section utilizes bit 3 (serial input) and bit 4 (serial output) or Port 2. Bit 2 of Port 2 is utilized if the internal-clock-out or external-clock-in options are selected.

Figure 21. Serial I/O Registers
CONTROL AND STATUS REGISTER SO011, READ/WRITE
EXCEPT "*" (READ ONLY)

RATE AND MODE REGISTER S0010, WRITE ONLY

P22
EXt CLK In/int clk OUt
PORT 2 BIT 4
(NOT USER ADDRESSABLE)

Transmit/Receive Control and Status (TRCS) Register

The TRCS register consists of an 8 -bit register of which all 8 bits may be read while only bits $0-4$ may be written. The register is initialized to $\$ 20$ on RESET. The bits in the TRCS register are defined as follows:

7	6	5	4	3	1		1
RDRE	ORFE	TDRE	RIE	RE	TIE	TE	WU

Bit 0 WU "Wake-up on Next Message-set by S6801 software cleared by hardware on receipt of ten consecutive 1's.
Bit 1 TE Transmit Enable-set by S6801 to produce preamble of nine consecutive 1's and to enable gating of transmitter output to Port 2, bit 4 regardless of the DDR value corresponding to this bit; when clear, serial I/O has no effect on Port 2 bit 4.
Bit 2 TIE Transmit Interrupt Enable-when set, will permit an $\overline{\text { IRQ2 }}$ interrupt to occur when bit 5 (TDRE) is set; when clear, the TDRE value is masked from the bus.
Bit 3 RE Receiver Enable—when set, gates Port 2 bit 3 to input of receiver regardless of DDR value for this bit; when clear, serial I/O has no effect on Port 2 bit 3.
Bit 4 RIE Receiver Interrupt Enable-when set, will permit an $\overline{\text { IRQ2 }}$ interrupt to occur when bit 7 (RDRF) or bit $6(\mathrm{OR})$ is set; when clear, the interrupt is masked.
Bit 5 TDRE Transmit Data Register Empty-set by hardware when a transfer is made from the transmit data register to the output shift register. The TDRE bit is cleared by reading the status register, then writing a new byte into the transmit data register, TDRE is initialized to 1 by RESET.
Bit 6 ORFE Over-Run-Framing Error-set by hardware when an overrun or framing error occurs (receive only). An overrun is defined as a new byte received with last byte still in Data Register/Buffer. A framing error has occured when the byte boundaries in bit stream are not synchronized to bit counter. The ORFE bit is cleared by reading the status register, then reading the Receive Data Register, or by RESET.
Bit 7 RDRF Receiver Data Register Full-set by hardware when a transfer from the input shift register to the receiver data register is made. The RDRF bit is cleared by reading the status register, then reading the Receive Data Register, or by RESET.

Rate and Mode Control Register

The Rate and Mode Control register controls the following serial I/O variables:

- Baud rate
- format
- Clocking source, and
- Port 2 bit 2 configuration

The register consists of 4 bits all of which are write-only and cleared on $\widetilde{\text { RESET. The }} 4$ bits in the register may be considered as a pair of 2 -bit fields. The two low order bits control the bit rate for internal clocking and the remaining two bits control the format and clock select logic. The register definition is as follows:

Bit 0 S0
Bit 1 S1
Bit 2 CC0
Bit 3 CC1

Speed Select-These bits select the Baud rate for the internal clock. The four rates which may be selected are a function of the MPU $\$ 2$ clock frequency. Table 4 lists the available Baud rate.
Clock Control and Format Select-This 2-bit field controls the format and clock select logic. Table 5 defines the bit field.

Table 4. SCI Internal Baud Rates

s1, so	xTAL	$\mathbf{4 . 0 M H z}$	$\mathbf{4 . 9 1 5 2 \mathrm { MHz }}$	$\mathbf{2 . 5 4 7 6 \mathrm { MHz }}$
	$\phi 2$	1.0 MHz	1.2288 MHz	0.6144 MHz
00	$\phi 2 \div 16$	62.5 K BITS $/ \mathrm{S}$	76.8 K BITS $/ \mathrm{S}$	38.4 K BITS $/ \mathrm{S}$
01	$\phi 2 \div 128$	$7.812 .5 \mathrm{BITS} / \mathrm{S}$	$9,600 \mathrm{BITS} / \mathrm{S}$	$4,800 \mathrm{BITS} / \mathrm{S}$
10	$\phi 2 \div 1024$	$976.6 \mathrm{BITS} / \mathrm{S}$	$1,200 \mathrm{BITS} / \mathrm{S}$	$600 \mathrm{BITS} / \mathrm{S}$
11	$\phi 2 \div 4096$	$244.1 \mathrm{BITS} / \mathrm{S}$	$300 \mathrm{BITS} / \mathrm{S}$	$150 \mathrm{BITS} / \mathrm{S}$

Table 5. Bit Field

CC1, CCO	FORMAT	CLOCK SOURCE	PORT 2 BIT 2	PORT 2 BIT 3	PORT 2 BIT 4
00	BI-PHASE	INTERNAL	NOT USED	$* *$	$* *$
01	NRZ	INTERAL	NOT USED	$* *$	$* *$
10	NRZ	INTERNAL	OUTPUT*	SERIAL INPUT	SERIAL OUTPUT
11	NRZ	EXTERNAL	INPUT	SERIAL INPUT	SERIAL OUTPUT

*CLOCK OUTPUT IS AVAILABLE REGARDLESS OF VALUES FOR BITS RE AND TE.
**BIT 3 IS USED FOR SERIAL INPUT IF RE = " 1 " IN TRCS; BIT 4 IS USED FOR SERIAL OUTPUT IF TE = " 1 " IN TRCS.

Internally Generated Clock

If the user wishes for the serial I/O to furnish a clock, the following requirements are applicable:

- the values of RE and TE are immaterial
- CC1, CC0 must be set to 10
- the maximum clock rate will be $\phi \div 16$
- the clock will be at $1 \times$ the bit rate and will have a rising edge at mid-bit

Externally Generated Clock

If the user wishes to provide an external clock for the serial I/O, the following requirements are applicable:

- the CC1, CC0, field in the Rate and Mode Control Register must be set to 11 .
- the external clock must be set to 8 times $(\times 8)$ the desired baud rate and
- the maximum external clock frequency is 1.2 MHz .

Serial Operations

The Serial I/O hardware should be initialized by the S6801 software prior to operation. This sequence will normally consist of:

- writing the desired operation control bits to the Rate and Mode Control Register and
- writing the desired operational control bits in the Transmit/Receive Control and Status Register.
The Transmitter Enable (TE) and Receiver Enable (RE) bits may be left set for dedicated operations.

Transmit Operations

The transmit operation is enabled by the TE bit in the Transmit/Receive Control and Status Register. This bit when set, gates the output of the serial transmit shift register to Port 2 Bit 4 and takes unconditional control
over the Data Direction Register value for Port 2, Bit 4. Following a $\overline{R E S E T}$, the user should configure both the Rate and Mode Control Register and the Transmit/ Receiver Control and Status Register for desired operation. Setting the TE bit during this procedure initiates the serial output by first transmitting a ten-bit preamble of 1's. Following the preamble, internal synchronization is established and the transmitter section is ready for operation.
At this point one of two situations exist:
a) if the Transmit Data Register is empty (TDRE = 1), a continuous string of ones will be sent indicating an idle line, or
b) if data has been loaded into the Transmit Data Register (TDRE $=0$), the word is transferred to the output shift register and transmission of the data word will begin.
During the transfer itself, the 0 start bit is first transmitted. Then the 8 data bits (beginning with bit 0) followed by the stop bit, are transmitted. When the Transmitter Data Register has been emptied, the hardware sets the TDRE flag bit.
If the S 6801 fails to respond to the flag within the proper time, (TDRE is still set when the next normal transfer from the parallel data register to the serial output register should occur) then a 1 will be sent (instead of a 0) at "Start" bit time, followed by more 1 's until more data is supplied to the data register. No 0 's will be sent while TDRE remains a 1.
The Bi-phase mode operates as described above except that the serial output toggles each bit time, and on $1 / 2$ bit times when a 1 is sent.

Receive Operation

The receive operation is enabled by the RE bit which gates in the serial input through Port 2 Bit 3. The receiver section operation is conditioned by the contents of the Transmit/Receive Control and Status Register and the Rate and Mode Control Register.
The receiver bit interval is divided into 8 sub-intervals for internal synchronization. In the standard, non-Bi-phase mode, the received bit stream is synchronized by the first 0 (space) encountered.
The approximate center of each bit time is strobed during the next 10 bits. If the tenth bit is not a 1 (stop bit) a framing error is assumed, and bit ORFE is set. If the tenth bit is 1 , the data is transferred to the Receiver Data Register, and interrupt flag RDRF is set. If RDRF is still set at the next tenth bit time, ORFE will be set, indica-
ting an over-run has occurred. When the S 6801 responds to either flag (RDRF or ORFE) by reading the status register followed by reading the Data Register RDRF (or ORFE) will be cleared.

Ram Control Register

This register, which is addressed at $\$ 0014$, gives status information about the standby RAM. A 0 in the RAM enable bit (RAM E) will disable the standby RAM, thereby protecting it at power down if V_{CC} is held greater than $\mathrm{V}_{\text {SBB }}$ volts, as explained previously in the signal description for V_{CC} Standby.

Bit 1 Not used.
Bit 2 Not used.
Bit 3 Not used.
Bit 4 Not used.
Bit 5 Not used
Bit 6 The RAM ENABLE control bit allows the user the ability to disable the standby RAM. This bit is set to a logic "one" by reset which enables the standby RAM and can be written to or zero under program control. When the RAM is disabled, logic "zero", data is read from external memory.
Bit 7 The STANDBY BIT of the control register, $\$ 0014$, is cleared when the standby voltage is removed. This bit is a read/write status flag that the user can read which indicates that the standby RAM voltage has been applied, and the data in the standby RAM is valid.
The S6801 provides up to 65 K bytes of memory for program and/or data storage. The memory map is shown in Figure 22.
Locations $\$ 0020$ through $\$ 007 \mathrm{~F}$ access external RAM or I/O Internal RAM is accessed at $\$ 0080$ through $\$ 00 \mathrm{FF}$. The RAM may be alternately selected by mask programming at location $\$ A 000$. However, if the user desires to access external RAM at those locations he may do so by clearing the RAM ENABLE control bit of the RAM Control Register. In this way an extra 126 bytes of external RAM are available. The first 64 bytes of the 128 bytes of on-chip RAM are provided with a separate power supply. This will maintain the 64 bytes of RAM in the power down mode as explained in the pin description for V_{CC} Standby.

Figure 22. Memory Map

Locations $\$ 0100$ through $\$ 01 \mathrm{FF}$ are available in the Expanded Non-Multiplexed Mode. The eight address lines of Port 4 make this 256 word expandability possible. Those not needed for address lines can be used as input lines instead.
The full range of addresses available to the user is in the Expanded Multiplexed Mode. Locations $\$ 0200$ through $\$$ F7FF can be used as external RAM, external ROM, or I/O. Any higher order bit not required for addressing can be used as I/O as in the Expanded Non-Multiplexed Mode.
The internal ROM is located at $\$ F 800$ through $\$ F F F F$. The decoder for the ROM may be mask programmed on A12, and A13 as zeros or one's to provide for $\$ \mathrm{C} 800$, $\$ \mathrm{D} 800, \$ \mathrm{E} 800$ for the ROM address. A12 and A13 may also be don't care in this decoder. The primary address for the ROM will be $\$ F 800$.

The first 32 bytes are for the special purpose registers as shown in Table 6.

Table 6. Special Registers

HEX ADDRESS	REGISTER
00	DATA DIRECTION 1
01	DATA DIRECTION 2
02	I/0 PORT 1
03	I/O PORT 2
04	DATA DIRECTION 3
05	DATA DIRECTION 4
06	I/O PORT 3
07	I/O PORT 4
08	TCSR
09	COUNTER HIGH BYTE
04	COUNTER LOW BYTE
$0 B$	OUTPUT COMPARE HIGH BYTE
$0 C$	OUTPUT COMPARE LOW BYTE
00	INPUT CAPTURE HIGH BYTE
$0 E$	INPUT CAPTURE LOW BYTE
$0 F$	I/O PORT 3 C/S REGISTER
10	SERIAL RATE AND MODE REGISTER
11	SERIAL CONTROL AND STATUS REGISTER
12	SERIAL RECEIVER DATA REGISTER
13	SERIAL TRANSMIT DATA REGISTER
14	RAM/EROM CONTROL REGISTER
$15-1 F ~ R E S E R V E D ~$	

Figure 23. Memory Map for Interrupt Vectors

Highest Prionty	VECTOR		deschiption
	MS	LS	
	FFFE,		Restart
	FFFC,		Non-Maskable Intemupt
	FFFA,		Sotware Interupt
	FFF8,		1RO1/ntemupt Strobe S
	FFF6,		1RO2/Timer Input Capture
	FFF4,		1R02/Timer Output Compare
	FFF2,		IRO2/Timer Overflow
Lowest Priority	FFFO,	FFF1	IRO2/Serial V0 Interupt

General Description of Instruction Set

The S6801 is upward object code compatible with the S6800 as it implements the full S6800 instruction set. The execution times of key instructions have been reduced to increase throughput. In addition, new instructions have been added; these include 16 -bit operations and a hardware multiply.
Included in the instruction set section are the following:

- MPU Programming Model (Figure 24)
- Addressing modes
- Accumulator and memory instructions-Table 7
- New instructions
- Index register and stack manipulations-Table 8
- Jump and branch instructions-Table 9
- Special operations-Figure 25
- Condition code register manipulation instructionsTable 10
- Instruction Execution times in machine cyclesTable 11
- Summary of cycle by cycle operation-Table 12

MPU Programming Model

The programming model for the S6801 is shown in Figure 24. The double (D) accumulator is physically the same as the A Accumulator concatenated with the B Accumulator so that any operation using accumulator D will destroy information in A and B.

Figure 24. MCU Programming Model

MPU Addressing Modes

The S6801 eight-bit microcomputer unit has seven address modes that can be used by a programmer, with the addressing mode a function of both the type of instruction and the coding within the instruction. A summary of the addressing modes for a particular instruction can be found in Table 11 along with the associated instruction execution time that is given in machine cycles. With a clock frequency of 4 MHz , these times would be microseconds.
Accumulator (ACCX) Addressing-In accumulator only addressing, either accumulator A or accumulator B is specified. These are one-byte instructions.
Immediate Addressing-In immediate addressing, the operand is contained in the second byte of the instruction except LDS and LDX which have the operand in the second and third bytes of the instruction. The MCU addresses this location when it fetches the immediate instruction for execution. These are two or three-byte instructions.
Direct Addressing-In direct addressing, the address of the operand is contained in the second byte of the instruction. Direct addressing allows the user to directly address the lowest 256 bytes in the machine i.e., locations zero through 255. Enhanced execution times are achieved by storing data in these locations. In most configurations, it should be a random access memory. These are two-byte instructions.
Extended Addressing-In extended addressing, the address contained in the second byte of the instruction is used as the higher eight-bits of the address of the operand. The third byte of the instruction is used as the lower eightbits of the address for the operand. This is an absolute address in memory. These are threebyte instructions.
Indexed Addressing-In indexed addressing, the address contained in the second byte of the instruction is added to the index register's lowest eight bits in the MCU. The carry is then added to the higher order eight bits of the index register. This result is then used to address memory. The modified address is held in a temporary address register so there is no change to the index register. These are two-byte instructions.
Implied Addressing-In the implied addressing mode the instruction gives the address (i.e., stack pointer, index register, etc.). These are one-byte instructions.
Relative Addressing-In relative addressing, the address contained in the second byte of the instruction is added to the program counter's lowest eight bits plus two. The carry or borrow is then added to the high eight bits. This allows the user to address data within a range of -125 to +120 bytes of the present instruction. These are two-byte instructions.

Table 7. Accumulator \& Memory Instructions

The Condition Code Register notes are listed after Table 10.

Table 7. Accumulator \& Memory Instructions (Continued)

ACCUMULATOR AND MEMORY		IMMED.			ADDRESSING MODES										INHERENT				5	4	3	2	1	
Operations	MNEMONIC	OP	\sim	\#	OP	\sim	\#	OP	\sim	\#	OP	P	\sim	\#	OP	\sim	\#	Boolean/Arithmetic Operation	H	1	N	Z	V	C
PUSH DATA	PSHA														36	3	1	$\mathrm{A} \rightarrow \mathrm{M}_{\text {Sp }} \mathrm{SP}-1 \rightarrow \mathrm{SP}$	-	-	-	-	-	-
	PSHB														37	3	1	$B \rightarrow M_{\text {SP }} \mathrm{SP}-1 \rightarrow \mathrm{SP}$	-	-	-	-	-	-
PULL DATA	PULA														33	4	1	$\mathrm{SP}+1 \rightarrow \mathrm{SP}, \mathrm{M}_{\text {Sp }} \rightarrow \mathrm{A}$	-	-	-	-	-	-
	PULB														33	4	1	$S P+1 \rightarrow S P, M_{\text {Sp }} \rightarrow B$	-	-	-	-	-	-
ROTATE LEFT	ROL							69	6	2	79		6	3					-	-	\downarrow	\uparrow	(6)	\downarrow
	ROLA														49	2	1		-	-	\downarrow	\downarrow	(6)	\downarrow
	ROLB														59	2	1		-	-	\downarrow	\uparrow	(6)	1
ROTATE RIGHT	ROR							66	6	2	76		6	3					-	-	\downarrow	\downarrow	(6)	\downarrow
	RORA														46	2	1		\bullet	-	\uparrow	\downarrow	(6)	\downarrow
	RORB														56	2	1		-	-	\uparrow	\downarrow	(6)	\uparrow
SHIFT LEFT Arithmetic	ASL							66	6	2	78		6	3					\bullet	-	\downarrow	\uparrow	(6)	\uparrow
	ASLA														48	2	1		-	-	\uparrow	\uparrow	(6)	\uparrow
	ASLB														58	2	1		-	-	\uparrow	\uparrow	(6)	$\hat{1}$
DOUBLE SHIFT LEFT, Arithmetic	ASLD														05	3	1		-	-	\uparrow	\uparrow	(6)	-
SHIFT RIGHT Arithmetic	ASR							67	6	2	77		6	3				$\begin{gathered} \mathbf{M} \\ \mathbf{A} \\ \mathbf{B} \end{gathered} \underset{\mathrm{B}_{1}}{\vec{\square}} \underset{\mathrm{~B}_{0}}{\longrightarrow}-\square_{\mathrm{C}}$	-	-	\uparrow	\uparrow	©	\uparrow
	ASRA														47	2	1		-	-	\uparrow	\uparrow	(6)	\uparrow
	ASRB														57	2	1		-	-	\uparrow	\uparrow	(6)	1
SHIFT RIGHT, LOGICAL	LSR							64	6	2	74		6	3				$\begin{gathered} \mathbf{M} \\ \mathbf{A} \end{gathered} \mathbf{B}_{0} \xrightarrow[\mathrm{~B}_{7}]{\longrightarrow \prod_{B_{0}}}-\square_{C}$	\bullet	-	\downarrow	\uparrow	(6)	\uparrow
	LSRA														44	2	1		\bullet	-	\uparrow	\uparrow	(6)	\uparrow
	LSRB														54	2	1				\uparrow	\uparrow		\uparrow
DOUBLE SHIFT RIGHT LOGICAL	LSRD														04	3	1		-	-	R	1 \dagger \uparrow	(6)	$\hat{\imath}$ $\hat{1}$
STORE ACCUMULATOR	STAA				97	3	2	A7	4	2	B		4	3				$A \rightarrow M$	-	-	\uparrow	\uparrow	R	-
	STAB				D7	3	2	E7	4	2	B7		4	3				$B \rightarrow M$	-	-	\uparrow	\dagger	R	-
STORE DOUBLE ACCUMULATOR	STAD				DD	4	2	ED	5	2	2 FD		5	3				$\begin{gathered} A \rightarrow M \\ B \rightarrow M+1 \end{gathered}$	-	-	1 1 	\uparrow	R	-
SUBTRACT	SUBA	80	2	2	90	3	2	AO	4	2	B		4	3				$A-M \rightarrow A$	-	-	\uparrow	\uparrow	\uparrow	\uparrow
	SUBB	CO	2	2	DO	3	2	E0	4	2	F0	0	4	3				$B-M \rightarrow B$	\bullet	-	\downarrow	1	\downarrow	\uparrow
DOUBLE SUBTRACT	SUBD	83	4	3	93	5	2	A3	6	2	B3	3	6	3				$\mathrm{A}: \mathrm{B}-\mathrm{M}: \mathrm{M}+1 \rightarrow \mathrm{AB}$	-	-	\uparrow	\uparrow	\uparrow	\uparrow
SUBTRACT ACCUMULATORS	SBA														10	2	1	$A-B \rightarrow A$	-	-	\downarrow	\uparrow	\uparrow	\downarrow
SUBTRACT WITH CARRY	SBCA	82	2	2	92	3	2	A2	4	2	2 B2	2	4	3				$A-M-C \rightarrow A$	-	-	\downarrow	\downarrow	\downarrow	\downarrow
	SBCD	C2	2	2	D2	2	2	E2	4	2	2 F	2	4	3				$B-M-C \rightarrow B$	-	-	\uparrow	\uparrow	\uparrow	\downarrow
TRANSFER ACCUMULATORS	TAB														16	2	1	$\mathrm{A} \rightarrow \mathrm{B}$	-	-	\uparrow	\uparrow	R	-
	TBA														16	2	1	$A \rightarrow B$	\bullet	-	\uparrow	\uparrow	R	-
TEST ZERO OR MINUS	TST							6 D	6	2	270	D	6	3				M - 00	-	-	\downarrow	\uparrow	R	R
	TSTB														50	2	1	B - 00	-	-	\uparrow	\uparrow	R	R

The Condition Code Register notes are listed after Table 10.

Added Instructions

In addition to the existing S6800 Instruction Set, the following new instructions are incorporated in the S6801 Microcomputer.
ABX Adds the 8-bit unsigned accumulator B to the 16-bit X-Register taking in to account the possible carry out of the low order byte of the X-Register.
ADDD Adds the double precision ACCD* to the double precision value M:M+1 and places the results in ACCD.
ASLD Shifts all bits of ACCAB one place to the left. Bit 0 is loaded with zero. The C bit is loaded from the most significant bit of ACCD.

$\downarrow(\mathrm{IXL}), \mathrm{SP} \leftarrow(\mathrm{SP})-1$
\downarrow (IXL), SP↔(SP)-1
SP↔(SP)+1; IXH
$\mathrm{SP} \leftarrow(\mathrm{SP})+1 ;$ IHL
$\mathrm{M}: \mathrm{M}+1 \leftarrow(\mathrm{ACCD})$
$\mathrm{M}: \mathrm{M}+1 \leftarrow(\mathrm{ACCD})$ of ACCD remain unchanged.
*ACCD is the 16 -bit register ($A: B$) formed by concatenating the A and B accumulators. The A-accumulator is the most significant byte.

Table 8. Index Register and Stack Manipulation Instructions

Table 9. Jump and Branch Instructions

OPERATIONS	MNEMONIC	RELATIVE			INDEX			EXTND			IMPLIED			BRANCH TEST	COND. CODE REG.										
					5	4	3				2	1	0												
		OP	\sim	\#				OP	\sim	\#				OP	\sim	\#	OP	\sim	\#	H	1	N	Z	V	C
Branch Always	BRA	20	4	2											None		-	-	-	-	-				
Branch If Carry Clear	BCC	24	4	2										$C=0$		-	-	-	-	-					
Branch If Carry Set	BCS	25	4	2										$C=1$		-	-	-	-	-					
Branch If $=0$	BEO	27	4	2										$Z=1$		-	-	-	-	-					
Branch If \geqslant Zero	BGE	2 C	4	2										$N \oplus V=0$		-	-	-	-	-					
Branch If $>$ Zero	BGT	2E	4	2										$Z+(N \oplus V)=0$		-	-	-	-	-					
Branch if Higher	BHI	22	4	2										$C+Z=0$		-	-	-	-	-					
Branch It \leqslant Zero	BLE	2 F	4	2										$Z+(N \oplus V)=1$		-	-	-	-	-					
Branch If Lower Or Same	BLS	23	4	2										$C+Z=1$		-	-	-	-	-					
Branch It < Zero	BLT	2D	4	2										$N \oplus V=1$		-	-	-	-	-					
Branch If Minus	BMI	28	4	2										$N=1$		-	-	-	-	-					
Branch If Not Equal Zero	BNE	20	4	2										$Z=0$		-	-	-	-	-					
Branch If Overflow Clear	BVC	28	4	2										$V=0$		-	-	-	-	-					
Branch If Overflow Set	BVS	29	4	2										$V=1$		-	-	-	-	-					
Branch if Plus	BPL	2 A	4	2										$N=0$		-	-	-	-	-					
Branch To Subroutine	BSR	80	8	2												-	-	-	-						
Jump	JMP				6 E	4	2	7 E	3	3				See Special Operation		-	\bullet	-	-	-					
Jump To Subroutine	JSR				AD	8	2	8D	9	3						-	-	-	-	-					
No Operation	NOP										01	2	1	Advances Prog. Cntr. Only	-	-	-	-	-	-					
Return From Interrupt	RTI										3B	10	1												
Return From Subroutine	RTS										39	5	1			-	-	-	-	-					
Software Interrupt	SWI										3 F	12	1	See Special Operations		-	-	-	-	-					
Wait For Interrupt *	WAI										3 E	9	1			(11)	-	\bullet	-	-					

Table 10. Condition Code Register Manipulation Instructions

OPERATIONS	MNEMONIC	IMPLIED			BOOLEAN OPERATION	COND. CODE REG.						
					5	4	3	2	1	0		
		OP	\sim	\#		H	1	N	Z	V	C	
Clear Carry	CLC	0 C	2	1		$0 \rightarrow$ C	-	-	-	-	-	R
Clear Interrupt Mask	CLI	OE	2	1	$0 \rightarrow 1$	-	R	-	-	-	-	
Clear Overfiow	CLV	OA	2	1	$0 \rightarrow \mathrm{~V}$	-	-	-	-	R	-	
Set Carry	SEC	0 D	2	1	$1 \rightarrow$ C	-	-	-	-	-	S	
Set Interrupt Mask	SEI	OF	2	1	$1 \rightarrow 1$	-	S	-	-	-	-	
Set Overflow	SEV	OB	2	1	$1 \rightarrow V$	-	-	-	-	S	-	
Accumulator $\mathrm{A} \rightarrow \mathrm{CCR}$	TAP	06	2	1	$A \rightarrow C C R$							
CCR \rightarrow Accumulator A	TPA	07	2	1	CCR \rightarrow A	-	-	-			-	

CONDITION CODE REGISTER NOTES: (Bit set if test is true and cleared otherwise).

1	(Bit V)	Test Result $=10000000$?
2	(Bit C)	Test Result $=00000000$?
3	(Bit C)	Test: Decimal value of most significant BCD Character greater
4	(Bit V)	Than nine? (Not cleared if previously set.)
5	(Bit V)	Test: Operand $=10000000$ prior to execution? $=01111111$ prior to execution?
6	(Bit V$)$	Test: Set equal to result of $\mathrm{N} \oplus \mathrm{C}$ after shift has occurred.

7	(Bit N)	Test: Sign Bit of most significant (MS) byte $=1$?
8	(Bit V)	Test: 2's complement overflow from subtraction of MS bytes?
9	(Bit N)	Test: Result less than zero? (Bit $15=1$)
10	(AlI)	Load Condition Code Register from Stack. Load
(See Special Operations)		

Figure 25. Special Operations

JSR, JUMP TO SUBROUTINE

BSR, BRANCH TO SUBROUTINE:

JMP, JUMP;

RTS, RETURN FROM SUBROUTINE:

RTI, RETURN FROM INTERRUPT:

Table 11．Instruction Execution Times in Machine Cycle

	苃	$\begin{aligned} & \text { 宸 } \\ & \text { 言 } \\ & \text { 를 } \end{aligned}$	$\begin{aligned} & \text { 눌 } \\ & \text { 菅 } \end{aligned}$			$\begin{aligned} & \text { 氙 } \\ & \text { (} \\ & \text { 풒} \end{aligned}$	$\begin{aligned} & \text { 崔 } \\ & \text { 花 } \end{aligned}$		苞	$\begin{aligned} & \text { 宸 } \\ & \text { 言 } \\ & \text { 妾 } \end{aligned}$		$\begin{aligned} & \text { 䓣 } \\ & \text { 妾 } \end{aligned}$	를 学	$\begin{aligned} & \text { 空 } \\ & \text { 莹 } \\ & \text { 空 } \end{aligned}$	宸
ABA	－	－	－	－	－	2	－	inX	－	－	－	－	－	3	－
ABX	－	－	－	－	－	3	－	JMP	－	－	－	3	3	－	－
ADC	－	2	3	4	4	－	－	JSR	－	－	5	6	6	－	－
ADD	\bullet	2	3	4	4	\bullet	－	LDA	\bullet	2	3	4	4	－	－
ADDD	－	4	5	6	6	－	－	LDD	－	3	4	5	5	－	－
AND	－	2	3	4	4	－	－	LDS	－	3	4	5	5	－	\bullet
ASL	2	－	－	6	6	－	－	LDX	－	3	4	5	5	－	－
ASLD	－	－	－	－	－	3	－	LSR	2	－	－	6	6	－	－
ASR	2	－	－	6	6	－	－	LSRD	－	－	－	－	－	3	－
BCC	－	－	－	－	－	－	3	MUL	－	－	－	－	－	10	－
BCS	－	－	－	－	－	－	3	NEG	2	－	－	6	6	－	－
BEO	－	－	－	－	－	－	3	NOP	－	－	－	－	－	2	－
BGE	－	－	－	－	\bullet	－	3	ORA	－	2	3	4	4	－	－
BGT	－	－	－	－	－	－	3	PSH	3	－	－	－	－	－	－
BHI	－	－	－	－	－	－	3	PSHX	－	－	－	－	－	4	－
BIT	－	2	3	4	4	－	－	PUL	4	－	－	－	\square	－	－
BLE	－	－	－	－	－	－	3	PULX	－	－	－	－	，	5	－
BLS	\bullet	－	－	－	－	－	3	ROL	2	－	－	6	6	－	－
BLT	－	－	－	－	－	－	3	RoR	2	－	－	6	6	－	－
BMI	－	－	－	－	－	－	3	RTI		－	－	．	．	10	－
BNE	－	－	－	－	－	－	3	RTS	－	－	－	－	－	6	－
BPL	－	－	－	－	－	－	3	SBA	－	－	－	－	－	2	－
BRA	－	－	－	－	－	－	3	SBC	－	2	3	4	4	－	－
BSR	－	－	－	－	－	－	6	SEC	－	－	－	．	－	2	－
BVC	－	－	－	－	－	－	3	SEI	－	－	－	－	－	2	－
BVS	－	－	－	－	－	－	3	SEV	－	－	－	－	－	2	－
CBA	－	－	\bullet	－	－	2	－	STA	－	－	3	4	4	－	－
CLC	－	－	－	－	－	2	－	STD	－	－	4	5	5	－	－
CLI	－	－	－	－	－	2	－	STS	－	－	4	5	6	－	－
CLR	2	－	－	6	6	－	－	STX	－	－	4	5	5	－	－
CLV	－	－	－	－	－	2	－	SUB	－	4	5	6	6	－	－
CMP	－	2	3	4	4	－	－	SUBD	－		5	6	6	\bullet	－
COM	2	－	－	6	6	－	－	SWI	－	－	－	－	－	12	－
CPX	－	4	5	6	6	－	－	TAB	－	－	－	－	－	2	－
DAA	－	－		－	－	2	－	tap	－	－	－	\bullet	－	2	－
DEC	2	－	－	6	6	－	－	tBA	－	－	－	－	－	2	－
DES	－	－	\bullet	－	－	3	－	TPA	－	－	－	－	－	2	－
DEX	－	－	－	－	－	3	－		－	－	－	6	．		－
EOR	－	2	3	4	4	－	－	TSX	－	－	－	－	－	2	－
INC	2	－	－	6	6	－	－	TXS	－	\bullet	－	－	－	3	－
INS	－	－	－	－	－	3	－	WAI	－	－	－	－	－	9	－

Summary of Cycle by Cycle Operation

Table 12 provides a detailed description of the information present on the Address Bus, Data Bus, and the Read/Write line (R / W) during each cycle for each instruction.
This information is useful in comparing actual with expected results during debug of both software and hardware as the control program is executed. The information is categorized in groups according to addressing mode and number of cycles per instruction. (In general, instructions with the same addressing mode and number of cycles execute in the same manner; exceptions are indicated in the table).
Table 12. Cycle by Cycle Operation

ADDRESS MODE \& INSTRUCTIONS	CYCLE	$\begin{gathered} \text { CYCLE } \\ \# \end{gathered}$	ADDRESS BUS	$\begin{aligned} & \text { R/W } \\ & \text { LINE } \end{aligned}$	DATA BUS
IMMEDIATE					
ADC EOR ADD LDA AND ORA BIT SBC CMP SUB	2	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	OP CODE ADDRESS OP CODE ADDRESS + 1	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline \text { OP CODE } \\ & \text { OPERAND DATA } \end{aligned}$
$\begin{aligned} & \text { LDS } \\ & \text { LDX } \end{aligned}$	3	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	OP CODE ADDRESS OP CODE ADDRESS + 1 OP CODE ADDRESS + 2	1 1 1	OP CODE OPERAND DATA (High Order Byte) OPERAND DATA (Low Order Byte)
$\begin{aligned} & \hline \text { CPX } \\ & \text { SUBD } \\ & \text { ADDD } \end{aligned}$	4	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	OP CODE ADDRESS OP CODE ADDRESS + 1 OP CODE ADDRESS + 2 ADDRESS BUS FFFF	1 1 1 1	OP CODE OPERAND DATA (High Order Byte) OPERAND DATA (Low Order Byte) LOW BYTE OF RESTART VECTOR
DIRECT					
ADC EOR ADD LDA AND ORA BIT SBC CMP SUB	3	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	OP CODE ADDRESS OP CODE ADDRESS + 1 ADDRESS OF OPERAND	1 1 1	OP CODE ADDRESS OF OPERAND OPERAND DATA
STA	3	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	OP CODE ADDRESS OP CODE ADDRESS + 1 DESTINATION ADDRESS	1 1 0	OP CODE DESTINATION ADDRESS DATA FROM ACCUMULATOR
$\begin{aligned} & \text { LDS } \\ & \text { LDX } \\ & \text { LDD } \end{aligned}$	4	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	OP CODE ADDRESS OP CODE ADDRESS + 1 ADDRESS OF OPERAND OPERAND ADDRESS + 1	1 1 1 1	OP CODE ADDRESS OF OPERAND OPERAND DATA (High Order Byte) OPERAND DATA (Low Order Byte)
$\begin{aligned} & \hline \text { STS } \\ & \text { STX } \\ & \text { STD } \end{aligned}$	4	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	OP CODE ADDRESS OP CODE ADDRESS + 1 ADDRESS OF OPERAND ADDRESS OF OPERAND + 1	1 1 0 0	OP CODE ADDRESS OF OPERAND REGISTER DATA (High Order Byte) REGISTER DATA (Low Order Byte)
$\begin{aligned} & \hline \text { CPX } \\ & \text { SUBD } \\ & \text { ADDD } \end{aligned}$	5	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$	OP CODE ADDRESS OP CODE ADDRESS + 1 OPERAND ADDRESS OPERAND ADDRESS + 1 ADDRESS BUS FFFF	1 1 1 1 1	OP CODE ADDRESS OF OPERAND OPERAND DATA (High Order Byte) OPERAND DATA (Low Order Byte) LOW BYTE OF RESTART VECTOR
JSR	5	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$	OP CODE ADDRESS OP CODE ADDRESS + 1 SUBROUTINE ADDRESS STACK POINTER STACK POINTER + 1	1 1 1 0 0	OP CODE IRRELEVANT DATA FIRST SUBROUTINE OP CODE RETURN ADDRESS (High Order Byte) RETURN ADDRESS (Low Order Byte)

Table 12. Cycle by Cycle Operation (continued)

ADDRESS MODE \& INSTRUCTIONS	CYCLE	$\begin{gathered} \text { CYCLE } \\ \# \end{gathered}$	ADDRESS BUS	$\begin{aligned} & \text { R/W } \\ & \text { LINE } \end{aligned}$	DATA BUS
INDEXED					
JMP	3	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	OP CODE ADDRESS OP CODE ADDRESS + 1 ADDRESS BUS FFFF	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	OP CODE OFFSET LOW BYTE OF RESTART VECTOR
ADC EOR ADD LDA AND ORA BIT SBC CMP SUB	4	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	OP CODE ADDRESS OP CODE ADDRESS + 1 ADDRESS BUS FFFF INDEX REGISTER PLUS OFFSET	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	OP CODE OFFSET LOW BYTE OF RESTART VECTOR OPERAND DATA
STA	4	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	OP CODE ADDRESS OP CODE ADDRESS + 1 ADDRESS BUS FFFF INDEX REGISTER PLUS OFFSET	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 0 \end{aligned}$	OP CODE OFFSET LOW BYTE OF RESTART VECTOR OPERAND DATA
$\begin{aligned} & \text { LDS } \\ & \text { LDX } \\ & \text { LDD } \end{aligned}$	5	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$	OP CODE ADDRESS OP CODE ADDRESS + 1 ADDRESS BUS FFFF INDEX REGISTER PLUS OFFSET INDEX REGISTER + 1	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { OP CODE } \\ & \text { OFFSET } \end{aligned}$ LOW BYTE OF RESTART VECTOR OPERAND DATA (High Order Byte) OPERAND DATA (Low Order Byte)
$\begin{aligned} & \text { STS } \\ & \text { STX } \\ & \text { STD } \end{aligned}$	5	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$	OP CODE ADDRESS OP CODE ADDRESS + 1 ADDRESS BUS FFFF INDEX REGISTER PLUS OFFSET INDEX REGISTER PLUS OFFSET	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	OP CODE OFFSET LOW BYTE OF RESTART VECTOR OPERAND DATA (High Order Byte) OPERAND DATA (Low Order Byte)
ASL LSR ASR NEG CLR ROL COM ROR DEC TST (1) INC	6	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	OP CODE ADDRESS OP CODE ADDRESS + 1 ADDRESS BUS FFFF INDEX REGISTER PLUS OFFSET ADDRESS BUS FFFF INDEX REGISTER PLUS OFFSET	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 0 \end{aligned}$	OP CODE OFFSET LOW BYTE OF RESTART VECTOR CURRENT OPERAND DATA CURRENT OPERAND DATA NEW OPERAND DATA
$\begin{aligned} & \text { CPX } \\ & \text { SUBD } \\ & \text { ADDD } \end{aligned}$	6	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	OP CODE ADDRESS OP CODE ADDRESS + 1 ADDRESS BUS FFFF INDEX REGISTER + OFFSET INDEX REGISTER + OFFSET ADDRESS BUS FFFF	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { OP CODE } \\ & \text { OFFSET } \end{aligned}$ LOW BYTE OF RESTART VECTOR OPERAND DATA (High Order Byte) OPERAND DATA (Low Order Byte) LOW BYTE OF RESTART VECTOR
JSR	6	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	OP CODE ADDRESS OP CODE ADDRESS + 1 ADDRESS BUS FFFF INDEX REGISTER + OFFSET STACK POINTER STACK POINTER + 1	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { OP CODE } \\ & \text { OFFSET } \end{aligned}$ LOW BYTE OF RESTART VECTOR FIRST SUBROUTINE OP CODE RETURN ADDRESS (Low Order Byte RETURN ADDRESS (High Order Byte)
EXTENDED					
JMP	3	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	OP CODE ADDRESS OP CODE ADDRESS + 1 OP CODE ADDRESS	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { OP CODE } \\ & \text { JUMP ADDRESS (High Order Byte) } \\ & \text { JUMP ADDRESS (Low Order Byte) } \end{aligned}$

Table 12. Cycle by Cycle Operation (continued)

ADDRESS MODE \& INSTRUCTIONS	CYCLE	CYCLE \#	ADDRESS BUS	$\begin{aligned} & \hline \text { R/W } \\ & \text { LINE } \end{aligned}$	DATA BUS
EXTENDED					
ADC EOR ADD LDA AND ORA BIT SBC CMP SUB	4	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	OP CODE ADDRESS OP CODE ADDRESS + 1 OP CODE ADDRESS + 2 ADDRESS OF OPERAND	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	OP CODE ADDRESS OF OPERAND ADDRESS OF OPERAND (Low Order Byte) OPERAND DATA
$\begin{aligned} & \text { STA A } \\ & \text { STA B } \end{aligned}$	4	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	OP CODE ADDRESS OP CODE ADDRESS + 1 OP CODE ADDRESS + 2 OPERAND DESTINATION ADDRESS	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \\ & 0 \end{aligned}$	OP CODE DESTINATION ADDRESS (High Order Byte) DESTINATION ADDRESS (Low Order Byte) DATA FROM THE ACCUMULATOR
$\begin{aligned} & \text { LDS } \\ & \text { LDX } \\ & \text { LDD } \end{aligned}$	5	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$	OP CODE ADDRESS OP CODE ADDRESS + 1 OP CODE ADDRESS + 2 ADDRESS OF OPERAND ADDRESS OF OPERAND + 1	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	OP CODE ADDRESS OF OPERAND (High Order Byte) ADDRESS OF OPERAND (Low Order Byte) OPERAND DATA (High Order Byte) OPERAND DATA (Low Order Byte)
$\begin{aligned} & \hline \text { STS } \\ & \text { STX } \\ & \text { STD } \end{aligned}$	5	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$	OP CODE ADDRESS OP CODE ADDRESS + 1 OP CODE ADDRESS + 2 ADDRESS OF OPERAND ADDRESS OF OPERAND	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	OP CODE ADDRESS OF OPERAND (High Order Byte) ADDRESS OF OPERAND (Low Order Byte) OPERAND DATA (High Order Byte) OPERAND DATA (Low Order Byte)
ASL LSR ASR NEG CLR ROL COM ROR DEC TST (1) INC	6	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	OP CODE ADDRESS OP CODE ADDRESS + 1 OP CODE ADDRESS + 2 ADDRESS OF OPERAND ADDRESS BUS FFFF ADDRESS OF OPERAND	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 0 \end{aligned}$	OP CODE ADDRESS OF OPERAND (High Order Byte) ADDRESS OF OPERAND (Low Order Byte) CURRENT OPERAND DATA LOW BYTE OF RESTART VECTOR NEW OPERAND DATA
$\begin{aligned} & \hline \text { CPX } \\ & \text { SUBD } \\ & \text { ADDD } \end{aligned}$	6	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	OP CODE ADDRESS OP CODE ADDRESS + 1 OP CODE ADDRESS + 2 OPERAND ADDRESS OPERAND ADDRESS + 1 ADDRESS BUS FFFF	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	OP CODE OPERAND ADDRESS OPERAND ADDRESS (Low Order Byte) OPERAND DATA (High Order Byte) OPERAND DATA (Low Order Byte) LOW BYTE OF RESTART VECTOR
JSR	6	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	OP CODE ADDRESS OP CODE ADDRESS + 1 OP CODE ADDRESS + 2 SUBROUTINE STARTING ADDRESS STACK POINTER STACK POINTER - 1	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	OP CODE ADDRESS OF SUBROUTINE (High Order Byte) ADDRESS OF SUBROUTINE (High Order Byte) OP CODE OF NEXT INSTRUCTION RETURN ADDRESS (Low Order Byte ADDRESS OF OPERAND (High Order Byte)
INHERENT					
ABA DAA SEC ASL DEC SEI ASR INC SEV CBA LSR TAB CLC NEG TAP CLI NOP TBA CLR ROL TPA CLV ROR TST COM SBA	2	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	OP CODE ADDRESS OP CODE ADDRESS + 1	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { OP CODE } \\ & \text { OP CODE OF NEXT INSTRUCTION } \end{aligned}$

Table 12. Cycle by Cycle Operation (continued)

ADDRESS MODE \& INSTRUCTIONS	CYCLE	$\begin{gathered} \text { CYCLE } \\ \# \end{gathered}$	ADDRESS BUS	$\begin{aligned} & \text { R/W } \\ & \text { LINE } \end{aligned}$	DATA BUS
INHERENT					
ABX	3	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	OP CODE ADDRESS OP CODE ADDRESS + 1 ADDRESS BUS FFFF	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	OP CODE IRRELEVANT DATA LOW BYTE OF RESTART VECTOR
$\begin{aligned} & \hline \text { ASLD } \\ & \text { LSRD } \end{aligned}$	3	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	OP CODE ADDRESS OP CODE ADDRESS + 1 ADDRESS BUS FFFF	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	OP CODE IRRELEVANT DATA LOW BYTE OF RESTART VECTOR
$\begin{aligned} & \hline \text { DES } \\ & \text { INS } \end{aligned}$	3	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	OP CODE ADDRESS OP CODE ADDRESS + 1 PREVIOUS REGISTER CONTENTS	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \end{aligned}$	OP CODE OP CODE OF NEXT INSTRUCTION IRRELEVANT DATA
$\begin{aligned} & \hline \text { INX } \\ & \text { DEX } \end{aligned}$	3	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	OP CODE ADDRESS OP CODE ADDRESS + 1 ADDRESS BUS FFFF	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	OP CODE OP CODE OF NEXT INSTRUCTION LOW BYTE OF RESTART VECTOR
$\begin{aligned} & \text { PSHA } \\ & \text { PSHB } \end{aligned}$	3	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	OP CODE ADDRESS OP CODE ADDRESS + 1 STACK POINTER	$\begin{aligned} & \hline 1 \\ & 1 \\ & 0 \\ & \hline \end{aligned}$	OP CODE OP CODE OF NEXT INSTRUCTION ACCUMULATOR DATA
ISX	3	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	OP CODE ADDRESS OP CODE ADDRESS + 1 STACK POINTER	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { OP CODE } \\ & \text { OP CODE OF NEXT INSTRUCTION } \\ & \text { IRRELEVANT DATA } \end{aligned}$
TXS	3	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	OP CODE ADDRESS OP CODE ADDRESS + 1 ADDRESS BUS FFFF	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	OP CODE OP CODE OF NEXT INSTRUCTION LOW BYTE OF RESTART VECTOR
$\begin{aligned} & \text { PULA } \\ & \text { PULB } \end{aligned}$	4	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	OP CODE ADDRESS OP CODE ADDRESS + 1 STACK POINTER STACK POINTER	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	OP CODE OP CODE OF NEXT INSTRUCTION IRRELEVANT DATA
PSHX	4	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	OP CODE ADDRESS OP CODE ADDRESS + 1 STACK POINTER STACK POINTER - 1	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	OP CODE IRRELEVANT DATA INDEX REGISTER (Low Order Byte) INDEX REGISTER (High Order Byte)
PULX	5	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$	OP CODE ADDRESS OP CODE ADDRESS + 1 STACK POINTER STACK POINTER + 1 STACK POINTER + 2	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	OP CODE IRRELEVANT DATA IRRELEVANT DATA INDEX REGISTER (High Order Byte) INDEX REGISTER (Low Order Byte)
BCC BHT BNE BCS BLE BPL BEO BLS BRA BGE BLT BVC BGT BMT BVS	3	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	OP CODE ADDRESS OP CODE ADDRESS + 1 ADDRESS BUS FFFF	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	OP CODE BRANCH OFFSET LOW BYTE OF RESTART VECTOR
BSR	6	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	$\begin{aligned} & \text { OP CODE ADDRESS } \\ & \text { OP CODE ADDRESS }+1 \\ & \text { ADDRESS BUS FFFF } \\ & \text { SUBROUTINE STARTING ADDRESS } \\ & \text { STACK POINTER } \\ & \text { STACK POINTER - } 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	OP CODE BRANCH OFFSET LOW BYTE OF RESTART VECTOR RETURN ADDRESS (Low Order Byte) RETURN ADDRESS (Low Order Byte) RETURN ADDRESS (High Order Byte)

Figure 26. S6801E MCU Single-Chip Mode

Figure 27. S6801 MCU Single-Chip Dual Processor Configuration

Figure 28. S6801 MCU Expanded Non-Multiplexed Mode

Figure 30. S6801E Expanded
Non-Multiplexed Mode

Figure 31. S6801 MCU Expanded I Multiplexed Mode

Figure 31. S6801E Expanded Multiplexed Mode

Table 13. Mode and Port Summary

MCU	MODE	PORT 1 Eight Lines	PORT 2 Five Lines	PORT 3 Eight Lines	PORT 4 Eight Lines	CC1	CC2	SC1	SC2
	SINGLE CHIP	1/0	1/0	1/0	1/0	XTAL1(1)	XTAL2(1)	IS3(0)	OS3(0)
	EXPANDED MUX	1/0	1/0	ADDRESS BUS (AO-A7) DATA BUS (DO-D7)	ADDRESS BUS* (A8-A15)	XTAL1(1)	XTAL2(1)	AS(0)	$\mathrm{R} / \overline{\mathrm{W}}(0)$
	EXPANDED NON-MUX	1/0	1/0	$\begin{aligned} & \hline \text { DATA BUS } \\ & (\mathrm{DO}-\mathrm{D7}) \end{aligned}$	ADDRESS BUS* (AO-A7)	XTAL1(I)	XTAL2(I)	10S(0)	$\mathrm{R} / \overline{\mathrm{W}}(0)$
山	SINGLE CHIP	1/0	1/0	$\begin{aligned} & \hline \text { DATA BUS } \\ & \text { (DO-D7) } \end{aligned}$	1/0	$\mathrm{R} / \overline{\mathrm{W}}(1)$	RSO(l)	CS3(1)	OS3(0)
	EXPANDED MUX	1/0	1/0	ADDRESS BUS (AO-A7) dATA BUS (D0-D7)	ADDRESS BUS* (A8-A15)	$\overline{\operatorname{HALT}}(\mathrm{I})$	$\mathrm{BA}(0)$	AS(0)	$\mathrm{R} / \overline{\mathrm{W}}(0)$
	EXPANDED NON-MUX	1/0	1/0	$\begin{aligned} & \text { DATA BUS } \\ & \text { (DO-D7) } \end{aligned}$	ADDRESS BUS* (A0-A7)	$\overline{\text { HALT }}$ ($)$	$\mathrm{BA}(0)$	IOS(0)	$\mathrm{R} / \overline{\mathrm{W}}(0)$

*These lines can be substituted for I/0 (Input Only) starting with the most significant address line.

I = Input
$0=$ Output
$B A=$ Bus Available
R $/ \bar{W}=$ Read $/ \overline{\text { Write }}$
$C C=$ Crystal Control

IS = Input Strobe
OS = Output Strobe
$10 \mathrm{~S}=1 / 0$ Select
$C S=$ Chip Select
AS = Address Strobe
SC=Strobe Control

MICROPROCESSOR WITH CLOCK AND RAM

Features

On-Chip Clock Circuit$\square 128 \times 8$ Bit On-Chip RAM
$\square 32$ Bytes of RAM Are Retainable
\square Software-Compatible with the S6800
\square Expandable to 65 K Words
\square Standard TTL-Compatible Inputs and Outputs8-Bit Word Size
\square 16-Bit Memory Addressing
\square Interrupt Capability
\square Clock Rates:
S6802 - 1.0 MHz
S68A02-1.5MHz

General Description

The S6802/S68A02 are monolithic 8 -bit microprocessors that contain all the registers and accumulators of the present 56800 plus an internal clock oscillator and driver on the same chip. In addition, the S6802/ S68A02 both have 128 bytes of RAM on board located at hex addresses 0000 to 007 E . The first 32 bytes of RAM, at addresses 0000 to 001 F , may be retained in a low power mode by utilizing V_{CC} standby, thus facilitating memory retention during a power-down situation.
The S6802/S68A02 are completely software compatible with the S 6800 as well as the entire S 6800 family of parts. Hence, the S6802/S68A02 are expandable to 65 K words. When the S 6802 is interfaced with the S6846 ROM - I/O - Timer chip, as shown in the Block Diagram below, a basic 2 -chip microcomputer system is realized.

Absolute Maximum Ratings

Supply Voltage, V_{CC}	-0.3 V to +7.0 V
Input Voltage, $\mathrm{V}_{\text {IN }}$	-0.3 V to +7.0 V
Operating Temperature Range, T_{A}	0° to $+70^{\circ} \mathrm{C}$
Storage Temperature Range, $\mathrm{T}_{\text {stg }}$	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Thermal Resistance, $\theta_{\text {JA }}$	
Plastic	$100^{\circ} \mathrm{C} / \mathrm{W}$
Ceramic	.. $50^{\circ} \mathrm{C} / \mathrm{W}$

D.C. Electrical Characteristics ($\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{SS}}=0, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ unless otherwise noted.)

Symbol	Parameter		Min.	Typ.	Max.	Unit
V_{IH}	Input High Voltage	$\text { Logic, } \frac{\text { EXtal }}{\text { Reset }}$	$\begin{array}{\|l} \\ \mathrm{V}_{\mathrm{SS}}+2.0 \\ \mathrm{~V}_{\mathrm{SS}}+4.0 \end{array}$	$-$	V_{CC} V_{CC}	V
$\overline{\mathrm{V}_{\text {IL }}}$	Input Leakage Voltage	Logic, EXtal, $\overline{\text { Reset }}$	$\mathrm{V}_{\text {SS }}-0.3$	-	$\mathrm{V}_{\text {SS }}+0.8$	V
I_{N}	Input Leakage Current $\left(\mathrm{V}_{\mathrm{IN}}=0 \text { to } 5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Max}\right)$	Logic*	-	1.0	2.5	$\mu \mathrm{A}$
$\overline{\mathrm{V}_{\mathrm{OH}}}$	Output High Voltage $\left(\mathrm{I}_{\text {LOAD }}=-205 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}\right)$ $\left(I_{\text {LOAD }}=-145 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}\right)$ $\left(\mathrm{I}_{\text {LOAD }}=-100 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}\right)$	$\begin{aligned} & \text { D0-D7 } \\ & \text { A0-A15, R/ } \overline{\mathrm{W}}, \mathrm{VMA}, \mathrm{E} \\ & \text { BA } \end{aligned}$	$\begin{array}{\|l} \mathrm{V}_{S S}+2.4 \\ \mathrm{~V}_{\mathrm{SS}}+2.4 \\ \mathrm{~V}_{\mathrm{SS}}+2.4 \\ \hline \end{array}$	-	- - -	$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
$\overline{\mathrm{V}} \mathrm{OL}$	Output Low Voltage $\left(\mathrm{I}_{\mathrm{LOAD}}=1.6 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}\right)$		-	-	$\mathrm{V}_{\text {SS }}+0.4$	V
$\overline{\mathrm{P}}^{* *}$	Power Dissipation		-	0.600	1.2	W
$\mathrm{C}_{\text {IN }}$	Capacitance \# $\left(\mathrm{V}_{\mathrm{IN}}=0, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}\right.$	D0 - D7 Logic Inputs, EXtal	-	$\begin{gathered} 10 \\ 6.5 \\ \hline \end{gathered}$	$\begin{gathered} 12.5 \\ 10 \\ \hline \end{gathered}$	pF
$\underline{C O U T}^{\text {Col }}$		A 0 - A $15, \mathrm{R} / \overline{\mathrm{W}}, \mathrm{VMA}$	-	-	12	pF
V_{CC} Standby	VCC Standby		4.0	-	5.25	V
IDD Standby	IDD RAM Standby		-	-	8.0	mA

Clock Timing ($\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{SS}}=0, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ unless otherwise noted)

Symbol	Parameter	S6802			S68A02			
		Min.	Typ.	Max.	Min.	Typ.	Max.	Unit
f	Frequency of Operation Input Clock $\div 4$	0.1	-	1.0	0.1	-	1.5	MHz
${ }^{\text {fXtal }}$	Crystal Frequency	1.0	-	4.0	1.0	-	6.0	
${ }_{\text {t }}$	Cycle Time	1.0	-	10	1.0	-	6.6	$\mu \mathrm{s}$
$\mathrm{PW}_{\phi \mathrm{Hs}}$ $\mathrm{PW}_{\phi \mathrm{L}}$	Clock Pulse Width Measured at 2.4 V	450	-	4500	300	-	3000	ns
\bar{t}_{ϕ}	Fall Time Measured between $\mathrm{V}_{S S}+0.4 \mathrm{~V}$ and $V_{S S}-2.4 \mathrm{~V}$	-	-	25	-	-	25	ns

[^9]Read/Write Timing (Figures 1 through 5; Load Circuit of Figure 3).
($\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{SS}}=0, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ unless otherwise noted.)

Symbol	Parameter	S6802			S68A02			Unit
		Min.	Typ.	Max.	Min.	Typ.	Max.	
t_{AD}	Address Delay $\begin{aligned} & \mathrm{C}=90 \mathrm{pF} \\ & \mathrm{C}=30 \mathrm{pF} \end{aligned}$		100	270			$\begin{aligned} & 180 \\ & 165 \\ & \hline \end{aligned}$	ns
$\mathrm{t}_{\text {ACC }}$	Peripheral Read Access Time $t_{A C}=t_{U T}-\left(t_{A D}+t_{D S R}\right)$			575			360	ns
t ${ }_{\text {DSR }}$	Data Setup Time (Read)	100			60			ns
t_{H}	Input Data Hold Time	10	30		10			ns
t_{AH}	Address Hold Time (Address, R/W, VMA)	20			10	75		ns
$\mathrm{t}_{\text {DDW }}$	Data Delay Time (Write) Processor Controls		165	225		165	200	ns
tPCS	Processor Control Setup Time			200	200			ns
$\mathrm{tPC}_{\mathrm{P}_{\mathrm{r}} ; \mathrm{tPC}_{\mathrm{f}}}$	Processor Control Rise and Fall Time						100	ns

Figure 1. Read Data From Memory or Peripherals

Figure 2. Write Data In Memory or Peripherals

Figure 3. Bus Timing Test Load

C $=130 \mathrm{pF}$ FOR DO - D7, E
$=90 \mathrm{p} F$ FOR AO - A15, R/W, ANO VMA
$=30 p F F O R B A$
$R=11.7 \mathrm{~K} \Omega$ FOR DO - D7, E
$=16.5 \mathrm{~K} \Omega \mathrm{FOR} A O-\mathrm{A} 15, \mathrm{R} / \bar{W}$. AND VMA
$=24 \mathrm{~K} \Omega$ FOR BA

Figure 4. Typical Data Bus Output Delay Versus Capacitive Loading

Figure 5. Typical Read/Write, VMA, and Address Output Delay Versus Capacitive Loading

Figure 6. S6802 Expanded Block Diagram

MICROCOMPUTER

Features

\square Hardware

- 8-Bit Architecture
- 64 Bytes RAM
- 1100 Bytes ROM
- 116 Bytes of Self Check ROM
- 28 Pin Package
- Memory Mapped I/O
- Internal 8-Bit Timer with 7-Bit Prescaler
- Vectored Interrupts - External, Timer, Software, Reset
- 20 TTL/CMOS Compatible I/O Line 8 Lines LED Compatible
- On-Chip Clock Circuit
- Self-Check Capability
- Low Voltage Inhibit
- 5 Vdc Single Supply
\square Software
- Similar to 6800
- Byte Efficient Instruction Set
- Versatile Interrupt Handling
- True Bit Manipulation
- Bit Test and Branch Instruction
- Indexed Addressing for Tables
- Memory Usable as Registers/Flags
- 10 Addressing Modes
- Powerful Instruction Set
- All 6800 Arithmetic Instructions
- All 6800 Logical Instructions
- All 6800 Shift Instructions
- Single Instruction Memory Examine/Change
- Full Set of Conditional Branches

General Description

The S6805 is an 8-bit single chip microcomputer. It is the first member of the growing microcomputer family that contains a CPU, on-chip clock, ROM, RAM, I/O and timer. A basic feature of the 6805 is an instruction set
very similar to the S 6800 family of microprocessors. Although the 6805 is not strictly source nor object code compatible, an experienced 6800 user can easily write 6805 code. Also a 6805 user will have no trouble moving up to the 6801 or 6809 for more complex tasks.

Absolute Maximum Ratings

Supply Voltage, $\mathrm{V}_{\text {CC }}$	-0.3 V to +7.0 V
Input Voltage, $\mathrm{V}_{\text {IN }}$	-0.3 V to +7.0 V
Operating Temperature Range, T_{A}	.. 0° to $+70^{\circ} \mathrm{C}$
Storage Temperature Range, $\mathrm{T}_{\text {stg }}$	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Thermal Resistance, $\theta_{\text {JA }}$	
Plastic	.. $85^{\circ} \mathrm{C} / \mathrm{W}$
Ceramic	.. $50^{\circ} \mathrm{C} / \mathrm{W}$
CerDIP	$\ldots{ }^{51}{ }^{\circ} \mathrm{C} / \mathrm{W}$

This device contains circuitry to protect the inputs against damage due to high static voltage or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit. For proper operation it is recommended that $V_{\text {IN }}$ and $V_{\text {OUT }}$ be constrained to the range $V_{S S} \leq\left(\mathrm{V}_{\text {IN }}\right.$ or $\left.V_{\text {OUT }}\right) \mathrm{V}_{\text {CC }}$
Electrical Characteristics: $\mathrm{V}_{\mathrm{CC}}=+5.25 \mathrm{Vdc} \pm \mathrm{Vdc}, \mathrm{V}_{\mathrm{SS}}=\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=0^{\circ}-70^{\circ} \mathrm{C}$ unless otherwise noted

Symbol	Characteristic		Min.	Typ.	Max.	Unit
V_{IH}	Input High Voltage	RESET	4.0	-	V_{CC}	Vdc
V_{IH}		$\overline{\text { INT }}$	-	2.2	-	Vdc
V_{IH}		All Other	$\mathrm{V}_{\text {SS }}+2.0$	-	V_{CC}	Vdc
V_{IH}	Input High Voltage Timer	Timer Mode	$\mathrm{V}_{\mathrm{SS}}+2.0$	-	V_{CC}	Vdc
V_{IH}		Self-Check Mode	-	9.0	15.0	Vdc
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	RESET	$\mathrm{V}_{\mathrm{SS}}-0.3$	-	0.8	Vdc
V_{IL}		$\overline{\text { INT }}$	-	2.0	-	Vdc
V_{IL}		All Other	$\mathrm{V}_{\mathrm{SS}}-0.3$	-	$\mathrm{V}_{\mathrm{SS}}+0.8$	Vdc
V_{H}	$\overline{\text { INT Hysteresis }}$		-	100	-	$\mathrm{mV}_{\mathrm{CC}}$
P_{D}	Power Dissipation		-	350	-	mW
$\mathrm{C}_{\text {IN }}$	Input Capacitance	EXTL	-	20	-	pF
		All Other	-	10	-	pF
LVR	Low Voltage Recover		-	-	4.75	Vdc
LVI	Low Voltage Inhibit		-	4.5	-	

Switching Characteristics: $\mathrm{V}_{\mathrm{CC}}=+5.25 \mathrm{~V} \pm 0.5 \mathrm{Vdc}, \mathrm{V}_{\mathrm{SS}}=\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=0^{\circ}-70^{\circ} \mathrm{C}$ unless otherwise noted

Symbol	Characteristic	Min.	Typ.	Max.	Unit
f_{Cl}	Clock Frequency	0.4	-	4.0	MHz
$\mathrm{t}_{\mathrm{CYC}}$	Cycle Time	1.0	-	10	$\mu \mathrm{~s}$
$\mathrm{t}_{\text {IWL }}$	$\overline{\text { INT Pulse Width }}$	$\mathrm{t}_{\mathrm{CYC}}+250$	-	-	ns
$\mathrm{t}_{\text {RWL }}$	$\overline{\text { RESET Pulse Width }}$	$\mathrm{t}_{\mathrm{CYC}}+250$	-	-	ns
$\mathrm{t}_{\text {RHL }}$	Delay Time Reset (External Cap. $=0.47 \mu \mathrm{~F})$	20	50	-	ms

Port Electrical Characteristics: $\mathrm{V}_{\mathrm{CC}}=+5.25 \mathrm{Vdc} \pm 0.5 \mathrm{Vdc}, \mathrm{V}_{\mathrm{SS}}=\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=0^{\circ}-70^{\circ} \mathrm{C}$ unless otherwise noted

Symbol	Characteristic	Min.	Typ.	Max.	Unit	Condition
			Port A			
V_{OL}	Output Low Voltage	-	-	0.4	Vdc	$\mathrm{I}_{\mathrm{LOAD}}=1.6 \mathrm{mAdc}$
V_{OH}	Output High Voltage	2.4	-	-	Vdc	$\mathrm{I}_{\mathrm{LOAD}}=100 \mu \mathrm{Adc}$
V_{OH}	Output High Voltage	3.5	-	-	Vdc	$\mathrm{I}_{\mathrm{LOAD}}=-10 \mu \mathrm{Adc}$
V_{IH}	Input High Voltage	$\mathrm{V}_{\mathrm{SS}}+2.0$	-	V CC	Vdc	$\mathrm{I}_{\mathrm{LOAD}}=-300 \mu \mathrm{Adc}$ (\max)
V_{IL}	Input Low Voltage	$\mathrm{V}_{\mathrm{SS}}-0.3$	-	$\mathrm{V}_{\mathrm{SS}}+0.8$	Vdc	$\mathrm{I}_{\mathrm{LOAD}}=-500 \mu \mathrm{Adc}$ (\max)

Port B

V_{OL}	Output Low Voltage	-	-	0.4	Vdc	$\mathrm{I}_{\mathrm{LOAD}}=3.2 \mathrm{mAdc}$
V_{OL}	Output Low Voltage	-	-	1.0	Vdc	$\mathrm{I}_{\mathrm{LOAD}}=10 \mathrm{mAdc}(\operatorname{sink})$
V_{OH}	Output High Voltage	2.4	-	-	Vdc	$\mathrm{I}_{\mathrm{LOAD}}=-200 \mu \mathrm{Adc}$
I_{OH}	Darlington Current Drive (Source)	-1.0	-	-10	mAdc	$\mathrm{V}_{\mathrm{O}}=1.5 \mathrm{Vdc}$
V_{IH}	Input High Voltage	$\mathrm{V}_{\mathrm{SS}}+2.0$	-	V_{CC}	Vdc	
V_{IL}	Input Low Voltage	$\mathrm{V}_{\mathrm{SS}}-0.3$	-	$\mathrm{V}_{\mathrm{SS}}+0.8$	Vdc	

Port C

V_{OL}	Output Low Voltage	-	-	0.4	Vdc	$\mathrm{I}_{\mathrm{LOAD}}=1.6 \mathrm{mAdc}$
V_{OH}	Output High Voltage	2.4	-	-	Vdc	$\mathrm{I}_{\mathrm{LOAD}}=-100 \mu \mathrm{Adc}$
V_{IH}	Input High Voltage	$\mathrm{V}_{\mathrm{SS}}+2.0$	-	V_{CC}	Vdc	
V_{IL}	Input Low Voltage	$\mathrm{V}_{\mathrm{SS}}-0.3$	-	$\mathrm{V}_{\mathrm{SS}}+0.8$	Vdc	

Off-State Input Current

$\mathrm{I}_{\mathrm{TSI}}$	Three-State Ports B \& C	-	2	20	$\mu \mathrm{Adc}$	

Input Current

I_{IN}	Timer at $\mathrm{V}_{\mathrm{IN}}=(0.4$ to $2.4 \mathrm{Vdc})$	-	-	20	$\mu \mathrm{Adc}$	

Figure 1. TTL Equiv. Test Load (Port B)

Figure 2. CMOS Equiv. Test Load
(Port A)

Figure 3. TTL Equiv. Test Load (Ports A and C)
(

Pin Description

Pin	Symbol	Description
1 and 3	V_{CC} and $\mathrm{V}_{\text {SS }}$	Power is supplied to the MCU using these two pins. V_{CC} is $5.25 \mathrm{~V} \pm .5 \mathrm{~V}$, and V_{SS} is the ground connection.
2	$\overline{\text { INT }}$	External Interrupt provides capability to apply an external interrupt to the MCU.
4 and 5	XTL and EXTL	Provide control input for the on-chip clock circuit. The use of crystal (at cut 4 MHz maximum), a resistor or a wire jumper is sufficient to drive the internal oscillator with varying degrees of stability. (See Internal Oscillator Options for recommendations) An internal divide by 4 prescaler scales the frequency down to the appropriate $\phi 2$ clock rate (1 MHz maximum).
6	NUM	This pin is not for user application and should be connected to ground.
7	TIMER	Allows an external input to be used to decrement the internal timer circuitry. See TIMER for detailed information about the timer circuitry.
8-11	C0-C3	Input/Output lines (A0-A7, B0-B7, C0-C3). The 20 lines are arranged into two
12-19	B0-B7	8 -bit ports (A and B) and one 4 -bit port (C). All lines are programmed as either
20-27	A0-A7	inputs or outputs under software control of the data direction registers. See Inputs/Outputs for additional information.
28	$\overline{\text { RESET }}$	This pin allows resetting of the MCU. A low voltage detect feature responds to a dip in voltage by forcing a RESET condition to clear all Data Direction Registers, so that all I/O pins are set as inputs.

Memory

The MCU memory is configured as shown in Figure 4. During the processing of an interrupt, the contents of the MCU registers are pushed onto the stack in the order shown in Figure 5. Since the stack pointer decrements during pushes, the low order byte (PCL) of the program counter is stacked first, then the high order three bits
(PCH) are stacked first, then the high order three bits (PCH) are stacked. This ensures that the program counter is loaded correctly as the stack pointer increments when it pulls data from the stack. A subroutine call will cause only the program counter (PCH, PCL) contents to be pushed onto the stack.

Figure 4. MCU Memory Configuration

Figure 5. Interrupt Stacking Order

Figure 6. Programming Model

Registers

The S6805 MCU contains two 8-bit registers (A and X), one 11-bit register (PC), two 5 -bit registers (SP and CC) that are visible to the programmer (see Figure 6).

Accumulator (A)

The A-register is an 8-bit general purpose accumulator used for arithmetic calculations and data manipulation.

Index Register (X)

This 8-bit register is used for the indexed addressing mode. It provides an 8 -bit address that may be added to an offset to create an effective address. The index register can also be used for limited calculations and data manipulations when using the read/modify/write instructions. In code sequences not employing the index register it can be used as a temporary storage area.

Program Counter (PC)

This 11-bit register contains the address of the next instruction to be executed.

Stack Pointer (SP)

The stack pointer is an 11-bit register that contains the address of the next free location on the stack. Initially, the stack pointer is set to location $\$ 07 \mathrm{~F}$ and is decremented as data is being pushed onto the stack and incremented as data is being pulled from the stack. The six most significant bits of the stack pointer are permanently set to 000011 . During an MCU reset or the reset stack pointer (RSP) instruction, the stack pointer is set
to location $\$ 07 \mathrm{~F}$. Subroutines and interrupts may be nested down to location $\$ 061$ which allows the programmer to use up to 15 levels of subroutine calls. A 16 th subroutine call would save the return address correctly, but the stack pointer would not remain pointing into the stack area and there would be no way to return from any of the subroutines.

Condition Code Register (CC)

The condition code register is a 5 -bit register in which each bit is used to indicate or flag the results of the instruction just executed. These bits can be individually tested by a program and specific action taken as a result of their state. Each individual condition code register bit is explained in the following paragraphs.

HALF CARRY (H)-Used during arithmetic operations (ADD and ADC) to indicate that a carry occurred between bits 3 and 4.

INTERRUPT (I)-This bit is set to mask the timer and external interrupt ($\overline{\text { INT }}$). If an interrupt occurs while this bit is set it is latched and will be processed as soon as the interrupt bit is reset.
NEGATIVE (N)-USED TO INDICATE that the result of the last arithmetic, logical or data manipulation was negative (bit 7 in result equal to a logical one).

ZERO (Z) - Used to indicate that the result of the last arithetic, logical or data manipulation was zero.
CARRY/BORROW (C)—Used to indicate that a carry or borrow out of the arithmetic logic unit (ALU) occurred during the last arithmetic operation. This bit is also affected during bit test and branch instructions, shifts and rotates.

Timer

The MCU timer circuitry is shown in Figure 7. The 8-bit counter is loaded under program control and counts down toward zero as soon as the clock input is applied. When the timer reaches zero the timer interrupt request bit (bit 7) in the timer control register is set. The MCU redsponds to this interrupt by saving the present MCU state in the stack, fetching the timer interrupt vector from locations $\$ 7 \mathrm{~F} 8$ and $\$ 7 \mathrm{~F} 9$ and executing the interrupt routine. The timer interrupt can be masked by setting the timer interrupt mask bit (bit 6) in the timer control register. The interupt bit (bit 1) in the condition code register will also prevent a timer interrupt from being processed.

The clock input to the timer can be from an external source applied to the TIMER input pin or it can be the internal $\phi 2$ signal. Note that when $\phi 2$ signal is used as the source it can be gated by an input applied to the TIMER
input pin allowing the user to easily perform pulse-width measurements. The source of the clock input is one of the options that has to be specified before manufacture of the MCU. A prescaler option can be applied to the clock input that extends the timing interval up to a maximum of 128 counts before being applied to the counter. This prescaling option must also be specified before manufacturing begins. The timer continues to count past zero and its present count can be monitored at any time by monitoring the timer data register. This allows a program to determine the length of time since a timer interrupt has occurred and not disturb the counting process.
At power up or reset the prescaler and counter are initialized with all logical ones; the timer interrupt request bit (bit 7) is cleared and the timer request mask bit (bit 6) is set.

Self Check Mode:

The MCU includes a non-user mode pin that replaces the normal operating mode with one in which the internal data and address buses are available at the I/O ports. The ports are configured as follows in the test mode (some multiplexing of the address and data lines is necessary):

- The internal ROM and RAM are disabled and Port A becomes the input data bus on the $\phi 2$ of the clock and can be used to supply instructions of data to the MCU.
- Port B is also multiplexed. When $\phi 2$ is high, Port B is the output data bus, and when $\phi 2$ is low Port B is the address lines. The output data bus can be used to monitor the internal ROM or RAM.
- Port C becomes the last three address lines and a read/write control line.
The MCU incorporates a self test program within a 116 byte non-user accessable test program and some control logic on-chip. These 116 bytes of ROM test every addressing mode and nearly every CPU instruction 195% of the total microprocessor capability) while only adding 1% to the total overall die size.

To perform the self test, the MCU output lines of Port A and B must be externally interconnected (Figure 7) and LED's are connected to Port C to provide both a pass/fail indication (3 Hz square wave).
The flowchart for the self test program (Figure 8) runs four tests:

- I/O TEST: Tests for I/O lines that are stuck in high, low, shorted state, or are missing a connection. The I/O lines are all externally wired together so that the program can look for problems by testing for the correct operation of the lines as inputs and outputs and for shorts between two adjacent lines.
- ROM ERROR: (Checksum wrong). The checksum value of the user program must be masked into the self check ROM when the microcomputer is built. The self check program then tests the user ROM by computing the checksum value, which should be equal to the masked checksum if all the bits in the ROM are properly masked. Address and data lines that are stuck high, low or to each other are also detected by this test. An inoperable ROM will (in most cases) prevent the running of the self check program.

Figure 7. Timer Block Diagram

- RAM Bits Non-Functional: The RAM is tested by the use of a walking bit pattern that is written into memory and then verified. Every in RAM is set to one and then to zero by using 9 different patterns as shown in Figure 9.

Figure 8. Interconnected Ports for Self Check Mode. Port C Gives Go/No Go and Diagnostic Information.

Self Test Routines

Program performs four main tests in the major loops and provides an output signal to indicate that the part is functional.

Interrupt Logic Failure: Using an I/O line the interrupt pin is toggled to create an interrupt. The main program runs long enough to allow the timer to underflow and causes the timer interrupt to be enabled.
If all of these tests are successful the program, then loops back to the beginning and starts testing again.
The self check program initially tries to get the MCU out of the reset state to indicate that the processor is at least working. The non-functional parts are thus immediately eliminated, and if the part fails at this first stage the program provides a means of determining the faulty section.
To place the MCU in the self check mode the voltage on the timer input (Figure 7) is raised to 8 volts which causes several operations to take place:

- The clocking source for the timer is shunted to the MCU internal clock to insure that the timer will run an underflow during the course of the program, no matter which clocking rate is masked.
- The address of the interrupt vectors (including the reset vector) are mapped into the self check ROM area. This allows the self check to test the interrupt structure.

Figure 9. Flowchart of Self Test Routines

The self check program is started by the reset signal instead of the normal program because the vectors (including the reset vector) have been overlaid. The self check program runs in an endless loop testing and retesting the processor as long as there are no errors. Signals on the I/O lines indicate that the test has passed, and if any test fails, the program stops by executing a branch to self instruction. The output lines then cease to toggle and two of the I/O lines will indicate the cause of failure.

RAM Test Pattern

"Walking bit" patterns test sequence sets and resets every bit in memory. (See Figure 10.)

Low Voltage Inhibit

As soon as the voltage at pin $3\left(\mathrm{~V}_{\mathrm{CC}}\right)$ falls to 4.5 volts, all I/O lines are put into a high impedance state. This prevents erroneous data from being given to an external device. When V_{CC} climbs back up to 4.6 volts a vectored reset is performed.

Table 1. Cause of Chip Failure as Shown in Bits 0 and 1 of I/O Port C

BIT 1	BIT 0	REASON FOR FAILURE
0	0	INTERRUPTS
0	1	I/O PORTS A OR B
1	0	RAM
1	1	ROM

Figure 10. RAM Test Pattern

PATTERN \#1								PATTERN \#2									
0	0	0	0	0	0	0	0	1	0		0	0	0	0		0	0
1	0	0	0	0	0	0	0	0	1		0	0	0	0		0	0
0	1	0	0	0	0	0	0	0	0		1	0	0	0		0	0
0	0	1	0	0	0	0	0	0	0		0	1	0	0		0	0
0	0	0	1	0	0	0	0	0	0		0	0	1	0		0	0
			-									-	-				
0	0	0	0	0	0	1	0	0	0		0	0	0	0		0	1
0	0	0	0	0	0	0	1	0	0		0	0	0	0		0	0
0	0	0	0	0	0	0	0	1			0	0	0	0		0	0

PATTERN \#8

0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0
				0			
0	0	0	0	1	0	0	0
0	0	0	0	0	1	0	0
0	0	0	0	0	0	1	0

PATTERN \#9

Figure 11. Power Up and Reset Timing

Resets

The MCU can be reset three ways; by the external reset input ($\overline{\text { RESET }})$, by the internal low voltage detect circuit already mentioned, and during the power up time. (See Figure 11.)
Upon power up, a minimum of 20 milliseconds is needed before allowing the reset input to go high. This time allows the internal oscillator to stabilize. Connecting a capacitor to the $\overline{\text { RESET }}$ input as shown in Figure 12 will provide sufficient delay.

Internal Oscillator Options

The internal oscillator circuit has been designed to require a minimum of external components. The use of a crystal (AT cut, 4 MHz max) or a resistor is sufficient to drive the internal oscillator with varying degrees of stability. A manufacturing mask option is available to provide better matching between the external components and the internal oscillator.
The different connection methods are shown in Figure 13. Crystal specifications are given in Figure 14. A resistor selection graph is given in Figure 15.

Figure 12. Power Up Reset Delay Circuit

Figure 13. Internal Oscillator Options

Figure 14. Crystal Parameters

at - Cut parallel resonance crystal.
$\mathrm{C}_{0}=7 \mathrm{pF}$ MAX
FREQ $=4.0 \mathrm{MHz} @ \mathrm{C}_{\mathrm{L}}=24 \mathrm{pF}$
$\mathrm{R}_{\mathrm{S}}=50 \mathrm{OHMS}$ MAX

Figure 15. Typical Resistor Selection Graph

Interrupts

The MCU can be interrupted three different ways; through the external interrupt ($\overline{\mathrm{INT}}$) input pin, the internal timer interrupt request, and a software interrupt instruction (SWI). When any interrupt occurs, processing is suspended, the present MCU state is pushed onto the stack, the interrupt bit (I) in the condition code register is set, the address of theinterrupt routine is obtained from the appropriate interrupt vector address, and the interrupt routine is executed. The interrupt service routines normally end with a return from interrupt (RTI) instruction which allows the MCU to resume processing of the program prior to the interrupt. Table 1 provides a listing of the interrupts, their priority, and the vector address that contain the starting address of the appropriate interrupt routine.
A sinusodial signal (1 kHz maximum) can be used to generate an external interrupt ($\overline{\mathrm{INT}}$) as shown in Figure 16.

A flowchart of the interrupt processing sequence is given in Figure 17.

Table 1. Interrupt Priorities

Interrupt	Priority	Vector Address
$\overline{\text { RESET }}$	1	\$7FE AND \$7FF
$\frac{\text { SWI }}{\text { INT }}$	2	\$7FC AND \$7FD
TIMER	3	\$7FA AND \$7FB

Input/Output

There are 20 input/output pins. All pins are programmable as either inputs or outputs under software control of the data direction registers. When programmed as outputs, all I/O pins read latched output data regardless of the logic level at the output pin due to output loading (see Figure 18). When port B is programmed for outputs, it is capable of sinking 10 milliamperes on each pin (one volt maximum). All input/output lines are TTL compatible as both inputs and outputs. Port A lines are CMOS compatible as outputs while Port B and C lines are CMOS compatible as inputs. Figure 19 provides some examples of port connections.

Figure 16. Typical Sinusodial Interrupt Circuits

Figure 17. Interrupt Processing Flowchart

Figure 18. Typical Port I/O Circuitry

Figure 19. Typical Port Connections

Bit Manipulation

The MCU has the ability to set or clear any single random access memory or input/output bit (except the data direction registers) with a single instruction (BSET, BCLR). Any bit in the page zero read only memory can be tested, using the BRSET and BRCLR instructions, and the program branches as a result of its state. This capability to work with any bit in RAM, ROM or I/O allows the user to have individual flags in RAM or to handle single I/O bits as control lines. The example in Figure 20 illustrates the usefulness of the bit manipulation and test instructions. Assume that bit 0 of port A is connected to a zero crossing detector circuit and that bit 1 of port A is connected to the trig. ger of a TRIAC which powers the controlled hardware. This program, which uses only seven ROM locations, provides turn-on of the TRIAC within 14 microseconds of the zero crossing. The timer could also be incorporated to provide turn-on at some later time which would permit pulse-width modulation of the controlled power.

Addressing Modes

The MCU has ten addressing modes available for use by the programmer. They are explained and illustrated briefly in the following paragraphs.

Figure 20. Bit Manipulation Example

Immediate-Refer to Figure 21. The immediate addressing mode accesses constants which do not change during program execution. Such instructions are two bytes long. The effective address (EA) is the PC and the operand is fetched from the byte following the opcode.
Direct-Refer to Figure 22 in direct addressing, the address of the operand is contained in the second byte of the instruction. Direct addressing allows the user to directly address the lowest 256 bytes in memory. All RAM space, I/O registers and 128 bytes of ROM are located in page zero to take advantage of this efficient memory addressing mode.
Extended-Refer to Figure 23. Extended addressing is used to reference any location in memory space. The EA is the contents of the two bytes following the opcode. Extended addressing instructions are three bytes long.
Relative-Refer to Figure 24. The relative addressing mode applies only to the branch instructions. In this mode the contents of the byte following the opcode is added to the program counter when the branch is taken. $\mathrm{EA}=(\mathrm{PC})+2+$ Rel. Rel is the contents of the location following the instruction opcode with bit 7 being the sign bit. If the branch is not tken $\operatorname{Rel}=0$, when a branch takes place, the program goes to somewhere within the range of +129 bytes to -127 of the present instruction. These instructions are two bytes long.
Indexed (No Offset)-Refer to Figure 25. This mode of addressing accesses the lowest 256 bytes of memory. These instructions are one byte long and their EA is the contents of the index register.
Indexed (8-Bit Offset)-Refer to Figure 26. The EA is calculated by adding the contents of the byte following
the opcode to the contents of the index register. In this mode, 511 low memory locations are accessable. These instructions occupy two bytes.
Indexed (16-Bit Offset)-Refer to Figure 27. This addressing mode calculates the EA by adding the contents of the two bytes following the opcode to the index register. Thus, the entire memory space may be accessed. Instructions which use this addressing mode are three bytes long.
Bit Set/Clear-Refer to Figure 28. This mode of addressing applies to instructions which can set or clear any bit on page zero. The lower three bits in the opcode specify the bit to be set or cleared while the byte following the opcode specifies the address in page zero
Bit Test and Branch - Refer to Figure 29. This mode of addressing applies to instructions which can test any bit in the first 256 locations ($\$ 00-\$ F F$) and branch to any location relative to the PC. The byte to be tested is addressed by the byte following the opcode. The individual bit within that byte to be tested is addressed by the lower three bits of the opcode. The third byte is the relative address to be added to the program counter if the branch condition is met. These instructions are three bytes long. The value of the bit tested is written to the carry bit in the condition code register.
Inherent-Refer to Figure 30. The inherent mode of addressing has no EA. All the information necessary to execute an instruction is contained in the opcode. Direct operations on the accumulator and the index register are included in this mode of addressing. In addition, control instructions such as SWI. RTI belong to this group. All inherent addressing instructions are one byte long.

Figure 21. Immediate Addressing Example

Figure 22. Direct Addressing Example

Figure 23. Extended Addressing Example

Figure 24. Relative Addressing Example

Figure 25. Indexed (No Offset) Addressing Example

Figure 26. Indexed (8-Bit Offset) Addressing Example

Figure 27. Indexed (16-Bit Offset) Addressing Example

Figure 28. Bit Set/Clear Addressing Example

Figure 29. Bit Test and
Branch Addressing Example

Figure 30. Inherent Addressing Example

Instruction Set

The MCU has a set of 59 basic instructions. They can be divided into five different types: register/memory, read/ modify/write, branch, bit manipulation, and control. The following paragraphs briefly explain each type. All the instructions within a given type are presented in individual tables.

Register/Memory Instructions-Most of these instructions use two operands. One operand is either the accumulator or the index register. The other operand is obtained from memory using one of the addressing modes. The jump unconditional (JMP) and jump to subroutine (JSR) instructions have no register operand. Refer to Table 2.
Read/Modify/Write Instructions-These instructions read a memory location or a register, modify or test its contents, and write the modified value back to memory or to the register. The test for negative or zero (TST) instruc-
tion is an exception to the read/modify/write instructions since it does not perform the write. Refer to Table 3.
Branch Instructions-The branch instructions cause a branch from the program when a certain condition is met. Refer to Table 4.
Bit Manipulation Instructions-These instructions are used on any bit in the first 256 bytes of the memory. One group either sets or clears. The other group performs the bit test and branch operations. Refer to Table 5.
Control Instructions-The control instructions control the MCU operations during program execution. Refer to Table 6.
Alphabetical Listing-The complete instruction set is given in alphabetical order in Table 7.
Opcode Map-Table 8 is an opcode map for the instructions used on the MCU.

Table 2. Register/Memory Instructions

Function	Mnemonic	ADDRESSING MODES																	
		IMMEDIATE			DIRECT			EXTENDED			INDEXED (No Offset)			$\begin{aligned} & \text { INDEXED } \\ & \text { (8-Bit Offset) } \end{aligned}$			INDEXED 16-Bit Offset)		
		$\begin{gathered} \text { OP } \\ \text { Code } \end{gathered}$	$\begin{gathered} \# \\ \text { Bytes } \end{gathered}$		$\begin{gathered} \text { OP } \\ \text { Code } \end{gathered}$	$\begin{gathered} \# \\ \text { Bytes } \end{gathered}$		$\begin{gathered} \text { OP } \\ \text { Code } \end{gathered}$			$\begin{gathered} \text { OP } \\ \text { Code } \end{gathered}$	$\begin{gathered} \# \\ \text { Bytes } \end{gathered}$	$\begin{gathered} \# \\ \text { cycies } \end{gathered}$	$\begin{gathered} \text { OP } \\ \text { Code } \end{gathered}$	$\begin{gathered} \# \\ \text { Bytes } \end{gathered}$	$\begin{gathered} \# \\ \text { Cycles } \end{gathered}$	$\begin{gathered} \text { OP } \\ \text { Code } \end{gathered}$	$\begin{gathered} " \\ \text { Bytes } \end{gathered}$	$\begin{gathered} \# \\ \text { Cyctes } \end{gathered}$
LOAD A FROM MEMORY	LDA	A6	2	2	B6	2	4	C6	3	5	F6	1	4	E6	2	5	D6	3	6
LOAD X FROM MEMORY	LDX	AE	2	2	BE	2	4	CE	3	5	FE	1	4	EE	2	5	DE	3	6
STORE A IN MEMORY	STA	-	-	-	B7	2	5	C7	3	6	F7	1	5	E7	2	6	D7	3	7
STORE X IN MEMORY	STX	-	-	-	BF	2	5	CF	3	6	FF	1	5	EF	2	6	DF	3	7
ADD MEMORY TO A	ADD	AE	2	2	8 B	2.	4	CB	3	5	FB	1	4	EB	2	5	DB	3	6
ADD MEMORY AND CARRY TO A	ADC	A9	2	2	B9	2	4	C9	3	5	F9	1	4	E9	2	5	09	3	6
SUBTRACT MEMORY	SUB	A0	2	2	B0	2	4	C0	3	5	F0	1	4	EO	2	5	D0	3	6
SUBTRACT MEMORY FROM A WITH BORROW	SBC	A2	2	2	B2	2	4	C2	3	5	F2	1	4	E2	2	5.	D2	3	6
AND MEMORY TO A	ANO	A4	2	2	B4	2	4	C4	3	5	F4	1	4	E4	2	5	D4	3	6
OR MEMORY WITH A	ORA	AA	2	2	BA	2	4	CA	3	5	FA	1	4	EA	2	5	DA	3	6
EXCLUSIVE OR MEMORY WITH A	EOR	A8	2	2	B8	2	4	C8	3	5	F8	1	4	E8	2	5	D8	3	6
ARITHMETIC COMPARE A WITH MEMORY	CMP	A1	2.	2	B1	2	4	C1	3	5	F1	1	4	E1	2	5	D1	3	6
ARITHMETIC COMPARE X WITH MEMORY	CPX	A3	2	2	B3	2	4	C3	3	5	F3	1	4	E3	2	5	D3	3	6
BIT TEST MEMORY WITH A (Logical Compare)	BIT	A5	2	2	B5	2	4	C5	3	5	F5	1	4	E5	2	5	D5	3	6
JUMP UNCONDITIONAL	JMP	-	-	-	BC	2	3	CC	3	4	FC	1	3	EC	2	4	DC	3	5
JUMP TO SUBROUTINE	JSR	-	-	-	BD	2	7	CD	3	8	FD	1	7	ED	2	8	DD	3	9

Table 3. Read/Modify/Write Instructions

		ADDRESSING MODES														
		iNHERENT (A)			WHERENT (X)			DREECT			WDEXED (No Offset)			INDEXED(8.Bit Offset)		
Function	Mnemonic	$\begin{gathered} \text { OP } \\ \text { Code } \end{gathered}$	$\underset{\text { Bytes }}{\prime \prime}$	$\begin{gathered} * \\ \text { Cycles } \end{gathered}$	$\begin{aligned} & \text { OP } \\ & \text { code } \end{aligned}$	"	$\begin{gathered} \# \\ \text { Cycles } \end{gathered}$	$\begin{gathered} \text { OP } \\ \text { code } \end{gathered}$	"	Cycles	$\begin{gathered} \text { OP } \\ \text { code } \end{gathered}$	"	$\begin{gathered} \text { OP } \\ \text { Cycles } \end{gathered}$	$\underset{\text { code }}{\#}$	"	Cycles
INCREMENT	INC	4 C	1	4	5 C	1	4	3 C	2	6	7 C	1	6	6C	2	7
DECREMENT	DEC	4A	1	4	5A	1	4	3 A	2	6	7 A	1	6	6A	2	7
CLEAR	CLR	4 F	1	4	5 F	1	4	3 F	2	6	7F	1	6	6 F	2	7
COMPLEMENT	COM	43	1	4	53	1	4	33	2	6	73	1	6	63	2	7
NEGATE (2's COMPLEMENT)	NEG	40	1	4	50	1	4	30	2	6	70	1	6	60	2	7
ROTATE LEFT THRU CARRY	ROL	49	1	4	59	1	4	39	2	6	79	1	6	69	2	7
ROTATE RIGHT THRU CARRY	ROR	46	1	4	56	1	4	36	2	6	76	1	6	66	2	7
LOGICAL SHIFT LEFT	LSL	48	1	4	58	1	4	38	2	6	78	1	6	68	2	7
LOGICAL SHIFT RIGHT	LSR	44	1	4	54	1	4	34	2	6	74	1	6	64	2	7
ARITHMETIC SHIFT RIGHT	ASR	47	1	4	57	1	4	37	2	6	77	1	6	67	2	7
TEST FOR NEGATIVE OR ZERO	TST	4D	1	4	50	1	4	3 D	2	6	70	1	6	60	2	7.

Table 4. Branch Instructions

Function	Mnemanic	helative ADDRESSENG MODE		
		$\begin{aligned} & \text { OP } \\ & \text { Code } \end{aligned}$	$\begin{gathered} " \\ \text { Bytes } \end{gathered}$	$\begin{gathered} * \\ \text { Cycles } \end{gathered}$
BRANCH ALWAYS	BRA	20	2	4
BRANCH NEVER	BRN	21	2	4
BRANCH IFF HIGHER	BHI	22	2	4
BRANCH IFF LOWER OR SAME	BLS	23	2	4
BRANCH IFF CARRY CLEAR	BCC	24	2	4
(BRANCH IFF HIGHER OR SAME)	(BHS)	24	2	4
BRANCH IFF CARRY SET	BCS	25	2	4
(BRANCH IFF LOWER)	(BLO)	25	2	4
BRANCH IFF NOT EOUAL	BNE	26	2	4
BRANCH IFF EQUAL	BEO	27	2	4
BRANCH IFF HALF CARRY CLEAR	BHCC	28	2	4
BRANCH IFF HALF CARRY SET	BHCS	29	2	4
BRANCH IFF PLUS	BPL	2 A	2	4
BRANCH IFF MINUS	BMI	2 B	2	4
BRANCH IFF INTERRUPT MASK BIT IS CLEAR	BMC	2 C	2	4
BRANCH IFF INTERRUPT MASK BIT IS SET	BMS	2 D	2	4
BRANCH IFF INTERRUPT LINE IS LOW	BIL	2 E	2	4
BRANCH IFF INTERRUPT LINE IS HIGH	BIH	2 F	2	4
BRANCH TO SUBROUTINE	BSR	AD	2	8

Table 5. Bit Manipulation Instructions

Table 6. Control Instructions

Table 7. Instruction Set

	Addressing Modes										Condition Code				
Mnemonic	Inherent	Immediate	Direct	Extended	Relative	Indexed (No Offset)	Indexed (8 Bits)	$\begin{aligned} & \text { Indexed } \\ & \text { (16 Bits) } \end{aligned}$	$\begin{gathered} \text { Bit } \\ \text { Set/ } \\ \text { Clear } \end{gathered}$		H	1	N	Z	C
ADC		x	x	x		X	X	X			\wedge	\bullet	\wedge	\wedge	\wedge
ADD		x	\times	x		x	x	x			\wedge	\bullet	\wedge	\wedge	\wedge
AND		x	X	X		x	x	X			\bullet	\bullet	\wedge	\wedge	\bullet
ASt	x		\times			\times	\times				\bullet	\bullet	\wedge	\wedge	\wedge
ASR	X		\times			\times	X				\bullet	\bullet	\wedge	\wedge	\wedge
BCC					x						\bullet	\bullet	\bullet	\bullet	\bullet
BCLR									x		\bullet	-	-	\bullet	\bullet
BCS					X						\bullet	\bullet	\bullet	\bullet	\bullet
BEO					x						\bullet	\bullet	\bullet	\bullet	\bullet
BHCC					x						\bullet	\bullet	\bullet	\bullet	\bullet
BHCS					x						-	\bullet	\bullet	\bullet	\bullet
BHI					X						\bullet	\bullet	\bullet	\bullet	\bullet
BHS					x						\bullet	\bullet	\bullet	\bullet	\bullet
BIH					X						\bullet	\bullet	-	\bullet	\bullet
BIL					\times						\bullet	\bullet	\bullet	\bullet	\bullet
BIT		X	X	\times		X	X	\times			\bullet	\bullet	\wedge	\wedge	\bullet
BLO					X						\bullet	\bullet	\bullet	\bullet	\bullet
BLS					x						\bullet	\bullet	\bullet	\bullet	\bullet
BMC					\times						-	\bullet	\bullet	-	\bullet

CONDITION CODE SYMBOLS

Table 7. Instruction Set (Continued)

		Addressing Modes									Condition Code				
Mnemonic	Interent	Immediate	Direct	Extended	Relative	Indexed (No Offset)	Indexed (8 Bits)	$\begin{aligned} & \text { Indexed } \\ & \text { (16 Bits) } \end{aligned}$	$\begin{gathered} \hline \text { Bit } \\ \text { Set/ } \\ \text { Clear } \end{gathered}$		H	1	N	z	C
BMI											\bullet	\bullet	\bullet	\bullet	\bullet
BMS											-	\bullet	\bullet	-	\bullet
BNE											\bullet	\bullet	\bullet	\bullet	\bullet
BPL											\bullet	\bullet	\bullet	\bullet	\bullet
BRA											-	\bullet	\bullet	-	\bullet
BRN											-	\bullet	\bullet	\bullet	\bullet
BRCLR										X	\bullet	\bullet	\bullet	\bullet	\wedge
BRSET										\times	\bullet	\bullet	\bullet	\bullet	\wedge
BSET									X		\bullet	\bullet	-	\bullet	-
BSR					X						\bullet	\bullet	\bullet	\bullet	-
CLC	X										-	\bullet	-	-	-
CLI	x										-	\bullet	\bullet	-	\bullet
CLR	X		x			X	X				-	\bullet	\bullet	1	\bullet
CMP		X	X	X		x	x	X			\bullet	\bullet	\wedge	\wedge	\wedge
COM	X		x			X	X				\bullet	\bullet	\wedge	\wedge	1
CPX		X	x	x		x	x	X			\bullet	\bullet	\wedge	\wedge	\wedge
DEC	X		x			X	x				-	\bullet	\wedge	\wedge	-
EOR		X	x	X		X	X	X			-	\wedge	\wedge	\bullet	\bullet
INC	X		x			X	x				\bullet	\bullet	\wedge	\wedge	-
JMP			x	X		x	x	X			\bullet	\bullet	\bullet	-	\bullet
JSR			x	X		x	x	X			\bullet	\bullet	-	-	\bullet
LOA		X	x,	X		x	X	X			\bullet	\bullet	\wedge	\wedge	-
LDX		x	X	X		x	X	X			\bullet	\bullet	\wedge	\wedge	\bullet
LSL	x		X			X	X				\bullet	\bullet	\wedge	\wedge	\wedge
LSR	x		X			X	x				-	\bullet	\bullet	\wedge	\wedge
NEQ	x		X			X	X				\bullet	\bullet	\wedge	\wedge	\wedge
NOP	\times										\bullet	\bullet	\bullet	\bullet	\bullet
ORA		X	X	X		X	x	X			-	\bullet	\wedge	\wedge	-
ROL	x		X			X	X				-	\bullet	\wedge	\wedge	\wedge
RSP	X										-	\bullet	-	\bullet	\bullet
RTI	X										?	?	?	?	?
RTS	X										\bullet	\bullet	\bullet	\bullet	\bullet
SBC		X	X	x		X	X	X			-	\bullet	\wedge	\wedge	\wedge
SEC	X										\bullet	\bullet	\bullet	\bullet	1
SEI	X										\bullet	1	\bullet	\bullet	\bullet
STA			X	X		X	X	X			\bullet	\bullet	\wedge	\wedge	\bullet
STX			X	X		X	X	X			\bullet	\bullet	\wedge	\wedge	\bullet
SUB		X	X	X		X	X	X			\bullet	\bullet	\wedge	\wedge	\wedge
SWI	x										\bullet	1	\bullet	\bullet	\bullet
TAX	X										\bullet	\bullet	\bullet	\bullet	\bullet
TST	X		X			X	X				-	\bullet	\wedge	\wedge	-
TXA	X										\bullet	\bullet	\bullet	\bullet	-
CONDITION CODE H HALF CARRY 1 INTERRUPT N negative (S	LS: M BIT 3) IT)		$\begin{array}{cc} Z & \text { ZERO } \\ \text { C } & \text { CARRY } \\ ? & \text { LOAD } \end{array}$	BORROW CC REGISTER	FROM STA	CK	TEST AND CLEARED NOT AFFEC	SET IF TRUE OTHERWISE TED							

Table 8. Opcode Map

	Bit Manipulation		Bmah	Read/Modity/Write					Control		Register/Memory						$\leftarrow \quad \mathrm{HIGH}$	
	 Branch	SetClear	Rel	DIR	A	X	. X 1	. 0	INH	INH	IMM	DIR	EX	. $\times 2$. X 1	. X 0		
	0	1	2	3	4	5	6	7	8	8	A	B	C	D	E	F		
	BRSET0	BSET0	BRA	NEQ					RTI*	-	SUB						0	
1	BRCLR0	BCLR0	BRN	-					RIS*	-	CMP						1	
2	BRSET1	BSET1	BHI	-					-	-	SBC						2	
3	BRCLR1	BCLR1	BLS	COM					SWI*	-	CMPX/CPX						3	L
4	BRSET2	BSET2	BCC	LSR					-	-	AND						4	0
5	8RCLR2	BCLR2	BCS	-					-	-	BIT						5	w
6	BRSET3	BSET3	BNE	ROR					-	-	LDA						6	
7	BRCLR3	BCLR3	BEO	ASR					-	TAX	STA(+1)						7	
8	BRSET4	BSET4	BHCC	LSL/ASL					-	CLC	EOR						8	
9	BRCLR4	BCLR4	BHCS	ROL					-	SEC	ADC						9	
A	BRSET5	BSET5	BPL	DEC					--	CLI	ORA						A	
B	BRCLR5	BCLR5	BMI	-					-	SEI	ADD						B	
C	BRSET6	BSET6	BMC	INC					-	RSP	$\operatorname{JMP}\{-1)$						C	
D	BRCLR6	BCLR6	BMS	IST					-	NOP	$\begin{array}{ll} \mathrm{BSR}^{*} & \mathrm{JSR}(+3) \\ \hline \end{array}$						D	
E	BRSET7	BSET7	BIL	-					-	-	LDX						E	
F	BRCLR7	BCLR7	BIH	CLR					-	TXA	$\operatorname{sTx}(+1)$						F	
	3/10	2/7	2/4	2/6	1/4	1/4	$2 / 7$	1/6	1/*	1/2	$2 / 2$	$2 / 4$	$3 / 5$	$3 / 6$	$2 / 5$	1/40		

NOTES:
UNDEFINED OPCODES ARE MARKED WITH "- - "
THE NUMBERS AT THE BOTTOM OF EACH COLUMN DENOTE THE NUMBER OF BYTES AND THE NUMBER OF CYCLES REOUIRED (BYTES/CYCLES) NMEMONICS FOLLOWED BY A "." REQUIRE A DIFFERENT NUMBER OF CYCLES AS FOLLOWS

RTI	9
RTS	6
SWI	11
BSR	8

() INDICATE THAT THE NUMBER IN PARENTHESIS MUST BE ADDED TO THE CYCLE COUNT FOR THAT INSTRUCTION.

Table 9. S6805 Family of Microprocessors

	S6805	S6805C	S6805N	S6805C1
TECHNOLOGY	NMOS	CMOS	NMOS	CMOS
NUMBER OF PINS	28	40	40	40
ON-CHIP RAM (BYTES)	64	112	64	112
ON CHIP USER ROM (BYTES)	1.1 K	NONE	2 K	2.2 K
EXPANSION BUS	NONE	YES	NONE	NONE
BIDIRECTIONAL I/O LINES	20	16	32	32
1/0 OPTIONS	NONE	NONE	A/D CONVERTER	NONE
SOFTWARE COMPATIBILITY	YES	YES	YES	YES
TRUE BIT MANIPULATION	YES	YES	YES	YES
INSTRUCTIONS	59	61	59	61
TEN ADDRESSING MODES	YES	YES	YES	YES

Ordering Information

Option List - Select the options for your MCU from the following list. A manufacturing mask will be generated from this information.

Timer Clock Source

- Internal $\phi 2$ clockTIMER input, pin 7$2^{3}$ (divide by 8)2^{6} (divide by 64)2^{4} (divide by 16)2^{5} (divide by 32)

Timer Prescaler

$\square 2^{0}$ (divide by 1)
2^{1} (divide by 2)
2^{2} (divide by 4)

Internal Oscillator Input

Resistor
Low Voltage Inhibit

EnableDisable

KOM Specifications

How are the records specified?
\square AMI Hex
Intellec Hex
BPNF
Anything else (include precise description of format)

What form will the data be transmitted in?
I. 9-track NRZ unlabeled magnetic tape?

If you choose mag tape, please answer the following questions:
A. Which is it coded in?

- EBCDICASCII
B. What is the parity?

EVEN
C. What is the recording density?556 BPI
$\square 800 \mathrm{BPI}$ 1600 BPI
D. Is is unblocked? (One record per block) \square YES \square NO

If blocked, how many records per block?
II. FDOS floppy disk file?
III. Paper tape?
IV. Card deck
V. EPROM?

No matter what physical means is chosen, try to include two machine readable forms along with a listing. If only one form of the data is available, a listing is imperative.
Two blank EPROM's should be included with the ordering information. These EPROM's will be programmed from the mask tapes and returned for approval before the first silicon trial run.

MICROPROCESSOR WITH CLOCK

Features

On-Chip Clock
Software-Compatible with the S6800
Expandable to 65K Words
Standard TTL-Compatible Inputs and Outputs 8-Bit Word Size
$\square \quad$ 16-Bit Memory Addressing
\square Interrupt Capability

General Description

The S 6808 is a monolithic 8 -bit microprocessor that contains all the registers and accumulators of the present S6800 plus an internal clock oscillator and driver on the same chip.
This very cost-effective MPU allows the designer to use the S 6808 in consumer as well as industrial applications without sacrificing industrial specifications.

S6809/S68A09/S68B09

8-BIT MICROPROCESSING UNIT

Features

Interfaces with All S6800 Peripherals
\square Upward Compatible Instruction Set and Addressing Modes

Upward Source Compatible Instruction Set and Addressing Modes

Two 8-Bit Accumulators Can Be Concatenated Into One 16-Bit Accumulator

On-Chip Crystal Oscillator (4 Time XTAL)

General Description

The S6809 is an advanced processor within the S6800 family offering greater throughput, improved byte efficiency, and increased adaptability to various software disciplines. These include position independence, reentrancy, recursion, block structuring, and high level language generation.

Because the S6809 generates position-independent code, software can be written in modular form for easy user expansion as system requirements increase. The S6809 is hardware compatible with all S6800 peripherals, and any assembly language code prepared for the S6800 can be passed through the S6809 assembler to produce code which will run on the S6809.

S6809 Hardware Features

\square On-Chip OscillatorMRDY Input Extends Access Time DMA/BREQ for DMA and Memory Refresh Fast Interrupt Request Input: Stacks Only Program Counter and Condition Code
\square Interrupt Acknowledge Output Allows Vectoring by Devices
\square Three Vectored Priority Interrupt Levels
SYNC Acknowledge Output Allows for Synchronization to External Event
\square NMI Blocked after RESET until after First Load of Stack Pointer
\square Early Address Valid Allows Use with Slow Memories
S6809E Hardware Features
\square Last Instruction Cycle Output (LIC) for Identification Output Fetch
\square Busy Output Eases Multiprocessor Design Instruction Set
\square Extended Range BranchesLoad Effective Address
\square 16-Bit Arithmetic
8x8 Unsigned Multiply (Accumulator A*B)
\square SYNC Instruction - Provides Software Sync with an External Hardware Process
\square Push and Pull on 2 StacksPush/Pull Any or All Registers
\square Index Registers May Be Used as Stack Pointer
\square Transfer/Exchange All Registers

Addressing Modes

\square All 6800 Modes Plus PC Relative, Extended Indirect, Indexed Indirect, and PC Relative Indirect
\square Direct Addressing Available Anywhere in Memory Map
\square PC Relative Addressing: Byte Relative $1 \pm 32,768$ Bytes from PC)
\square Complete Indexed Addressing Including Automatic Increment and Decrement, Register Offsets, and Four Indexable Registers (X,Y, U and S)
\square Expanded Index Addressing - 0, 5, 8, 16-Bit Constant Offset

- 8, 16-Bit Accumulator Offsets

The S6809 gives the user 8 and 16 -bit word capability with several hardware enhancements in the design such as the Fast Interrupt ($\overline{\mathrm{FIRQ}}$), Memory Ready (MRDY), and Quadrature (Qout) and System Clock Outputs (Eout). With the Fast Interrupt Request ($\overline{\mathrm{FIRQ}}$) the S6809 places only the Program Counter and Condition Code Register on the stack prior to accessing the FIRQ vector location. The Memory Ready ($\overline{M R D Y}$) input allows extension of the data access time for use with slow memories. The System Clock (Eout) operates at the basic processor frequency and can be as the synchronization signal for the entire system. The Quadrature Output (Qout) provides additional system timing by signifying that address and data are stable.
The External Clock mode of the S6809E is particularly useful when synchronizing the processor to an externally generated signal. The Three-State Control input (TSC) places the Address and $\mathrm{R} / \overline{\mathrm{W}}$ line in the high impedance state for DMA or Memory Refresh. The last Instruction Cycle (LIC) is activated during the last cycle of any instruction. This signifies that the next instruction cycle is the opcode fetch. The Processor Busy signal (BUSY) facilitates multiprocessor applications by allowing the designer to insure that flags being modified by one processor are not accessed by another simultaneously.
The S6809 features a family of addressing capabilities which can use any of the four index registers and stack pointers as a pointer to the operand (or the operand address). This pointer can have a fixed or variable signed offset that can be automatically incremented or decremented. The eight-bit direct page register permits a user to determine which page of memory is accessed by the instructions employing "page zero" addressing. This quick access to any page is especially useful in Multitasking Applications.
The S6809 has three vectored priority-interrupt levels, each of which automatically disables the lower priority interrupt while leaving the higher priority interrupt enabled.
The S 6809 gives the system designer greater flexibility (through modular relocatable code) to enable the user to reduce system software costs while at the same time increasing software reliability and efficiency.

Absolute Maximum Ratings

Supply Voltage, $\mathrm{V}_{\text {CC }}$	-0.3 V to +7.0 V
Input Voltage, $\mathrm{V}_{\text {IN }}$	-0.3 V to +7.0 V
Operating Temperature Range, T_{A}	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range, $\mathrm{T}_{\text {stg }}$	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Thermal Resistance, $\theta_{\text {JA }}$	
Plastic	$100^{\circ} \mathrm{C} / \mathrm{W}$
Ceramic	$50^{\circ} \mathrm{C} / \mathrm{W}$

[^10]Electrical Characteristics $\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \% ; \mathrm{V}_{\mathrm{SS}}=0, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\right.$ to $+70^{\circ} \mathrm{C}$ unless otherwise noted)

Symbol	Parameter	Min.	Typ.	Max.	Unit	Condition
V_{IH}	Input High Voltage \quad Logic, EXtal	$\begin{aligned} & \mathrm{V}_{\mathrm{SS}}+2.0 \\ & \mathrm{~V}_{\mathrm{SS}}+4.0 \end{aligned}$		$\begin{aligned} & \mathrm{V}_{\mathrm{DD}} \\ & \mathrm{~V}_{\mathrm{DD}} \\ & \hline \end{aligned}$	Vdc	
V_{IL}	Input Low Voltage Logic EXtal, $\overline{\text { RESET }}$	$\mathrm{V}_{\mathrm{SS}}-0.3$		$\mathrm{V}_{\mathrm{SS}}+0.8$	Vdc	
$\mathrm{I}_{\text {in }}$	Input Leakage Current Logic		1.0	2.5	$\mu \mathrm{Adc}$	$\mathrm{V}_{\text {in }}=0$ to $5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=$ max
V_{OH}	Output High VoltageD0-D7 A0-A15, R/W, Q, E BA, BS	$\begin{aligned} & \mathrm{v}_{\mathrm{SS}}+2.4 \\ & \mathrm{~V}_{\mathrm{SS}}+2.4 \\ & \mathrm{v}_{\mathrm{SS}}+2.4 \\ & \hline \end{aligned}$			Vdc	$\begin{aligned} & \mathrm{I}_{\text {Load }}=-205 \mu \mathrm{Adc}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{min} \\ & \mathrm{I}_{\text {Load }}=-145 \mu \mathrm{Adc}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{min} \\ & \mathrm{I}_{\text {Load }}=-100 \mu \mathrm{Adc}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{min} \end{aligned}$
$\mathrm{V}_{\text {OL }}$	Output Low Voltage			$\mathrm{V}_{\mathrm{SS}}+0.5$	Vde	$\mathrm{I}_{\text {Load }}=2.0 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CC}}=\mathrm{min}$
P_{D}	Power Dissipation			1.0	W	
Cin $\mathrm{C}_{\text {out }}$	Capacitance \# $\mathrm{D}_{0}-\mathrm{D}_{7}$ Logic Inputs, EXtal $\mathrm{A}_{0}-\mathrm{A}_{15}, \mathrm{R} / \overline{\mathrm{W}}$		$\begin{gathered} 10 \\ 7 \end{gathered}$	$\begin{aligned} & 15 \\ & 10 \\ & 12 \\ & \hline \end{aligned}$	pF	$\mathrm{V}_{\text {in }}=0, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$
$\begin{aligned} & \mathrm{f} \\ & \mathrm{f}_{\mathrm{XTAL}} \\ & \mathrm{f}_{\mathrm{XTAL}} \end{aligned}$	Frequency of Operation S6809 S68A09 (Crystal or External Input) S68B09			4 6 8	MHz	
$\mathrm{I}_{\mathrm{TSI}}$	Three-State (Off State) Input Current $\mathrm{D}_{0}-\mathrm{D}_{7}$ $\mathrm{A}_{0}-\mathrm{A}_{15}, \mathrm{R} / \mathrm{W}$		2.0	$\begin{gathered} 10 \\ 100 \end{gathered}$	$\mu \mathrm{Adc}$	$\mathrm{V}_{\text {in }}=0.4$ to $2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\max$

Read/Write Timing (Reference Figures 1 and 2)

Symbol	Parameter	S6809			S68A09			S68B09			Unit	Condition
		Min.	Typ.	Max.	Min.	Typ.	Max.	Min.	Typ.	Max.		
$\mathrm{t}_{\mathrm{CYC}}$	Cycle Time	1000			667			500			ns	
$\mathrm{t}_{\text {UT }}$	Total Up Time	975			640			480			ns	$\mathrm{tacc}_{\text {ace }}=\mathrm{t}_{\mathrm{ut}}-\mathrm{t}_{\mathrm{AD}}-\mathrm{t}_{\text {DSR }}$
$\mathrm{t}_{\mathrm{ACC}}$	Peripheral Read Access Time	695			440			320			ns	$\mathrm{t}_{\mathrm{ut}}=\mathrm{t}_{\mathrm{CYC}}-\mathrm{t}_{\text {EF }}$
$\mathrm{t}_{\text {DSR }}$	Data Setup Time (Read)	80			60			40			ns	
$\mathrm{t}_{\text {DHR }}$	Input Data Hold Time	10			10			10			ns	
$\mathrm{t}_{\text {DHW }}$	Output Data Hold Time	30			30			30			ns	
t_{AH}	Address Hold Time (Address, R/W)	30			30			30			ns	
t_{AD}	Address Delay			200			140			110	ns	
$\mathrm{t}_{\text {DDW }}$	Data Delay Time (Write)			225			180			145	ns	
$\mathrm{t}_{\text {AVS }}$	$\mathrm{E}_{\text {low }}$ to Q $\mathrm{Q}_{\text {high }}$ Time			250			165			125	ns	
$t_{A Q}$	Address Valid to $\mathrm{Q}_{\text {high }}$	25			25			15			ns	
$\mathrm{t}_{\text {PWEL }}$	Processor Clock Low	450			295			210			ns	
$\mathrm{t}_{\text {PWEH }}$	Processor Clock High	450			280			220			ns	
$\mathrm{t}_{\text {PCSR }}$	MRDY Set Up Time	60			60			60			ns	
$\mathrm{t}_{\text {PCS }}$	Interrupts Set Up Time	200			140			110			ns	
$\mathrm{t}_{\text {PCSH }}$	$\overline{\text { HALT }}$ Set Up Time	200			140			110			ns	
$\mathrm{t}_{\text {PCSR }}$	RESET Set Up Time	200			140			110			ns	
$\mathrm{t}_{\text {PCSD }}$	DMA/BREQ Set Up Time	125			125			125			ns	
t_{rc}	Crystal Ose Start Time	100			100			100			ms	
$\mathrm{t}_{\mathrm{ER}}, \mathrm{t}_{\text {EF }}$	E Rise and Fall Time	5		25	5		25	5		20	ns	
$\mathrm{t}_{\text {PCR, } \mathrm{t}_{\text {PLF }}}$	Processor Control Rise/Fall			100			100			100	ns	
$\mathrm{t}_{\text {QR }}, \mathrm{t}_{\text {QF }}$	Q Rise and Fall Time	5		25	5		25	5		20	ns	
$\mathrm{t}_{\text {PWQH }}$	Q Clock High	450			280			220			ns	

Figure 1. Read Data From Memory or Peripherals

Figure 2. Write Data to Memory or Peripherals

Figure 3. Bus Timing Test Load

Programming Model

As shown in Figure 4, the S6809 adds three registers to the set available in the S6800. The added registers include a direct page register, the User Stack pointer and a second Index Register.

Accumulators (A, B, D)
The A and B registers are general purpose accumulators which are used for arithmetic calculations and manipulation of data.
Certain instructions concatenate the A and B registers to form a single 16 -bit accumulator. This is referred to as the D register, and is formed with the A register as the most significant byte.

Direct Page Register (DP)

The Direct Page Register of the S 6809 serves to enhance the Direct Addressing Mode. The content of this register appears at the higher address outputs ($\mathrm{A}_{8}-\mathrm{A}_{15}$) during direct Addressing Instruction execution. This

Figure 4. Programming Model of the Microprocessing Unit

Figure 5. Condition Code Register Format

allows the direct mode to be used at any place in memory, under program control. To allow 6800 compatibility, all bits of this register are cleared during Processor Reset.

Index Registers (\mathbf{X}, \mathbf{Y})

The Index Registers are used in indexed mode of addressing. The 16 -bit address in this register takes part in the calculation of effective addresses. This address may be used to point to data directly or may be modified by an optional constant or register offset. During some indexed modes, the contents of the index register are incremented and decremented to point to the next item of tabular type data. All four pointer registers (X, Y, U, S) may be used as index registers.

Stack Pointers (U, S)

The Hardware Stack Pointer (S) is used automatically by the processor during subroutine calls and interrupts. The stack pointers of the S6809 point to the top of the stack, in contrast to the S 6800 stack pointer which pointed to the next free location on the stack. The User Stack Pointer (U) is controlled exclusively by the programmer thus allowing arguments to be passed to and from subroutines with ease. Both Stack Pointers have the same indexed mode addressing capabilities as the X and Y registers, but also support Push and Pull instructions. This allows the S6809 to be used efficiently as a stack processor, greatly enhancing its ability to support higher level languages and modular programming.

Program Counter

The Program Counter is used by the processor to point to the address of the next instruction to be executed by the processor. Relative Addressing is provided allowing the Program Counter to be used like an index register in some situations.

Condition Code Register

The condition code register defines the State of the Processor at any given time, see Figure 5.

Bit 0 (C)

Bit 0 is the Carry Flag, and is usually the carry from the binary ALU. C is also used to represent a 'borrow' from subtract like instructions (CMP, NEG, SUB, SBC). Here the carry flag is the complement of the carry from the binary ALU.

Bit 1 (V)

Bit 1 is the overflow flag, and is set to a one by an operation which causes a signed two's complement arithmetic overflow. This overflow is detected in an operation in which the carry from the MSB in the ALU does not match the carry from the MSB-1.

Bit 2 (Z)

Bit 2 is the zero flag, and is set to a one if the result of the previous operation was identically zero.

Bit 3 (N)

Bit 3 is the negative flag, which contains exactly the value of the MSB of the result of the preceding operation. Thus, a negative two's-complement result will leave N set to a one.

Bit 4 (I)

Bit 4 is the $\overline{\operatorname{IRQ}}$ mask bit. The processor will not recognize interrupts from the IRQ line if this bit is set to a one. $\overline{\text { NMI }}, \overline{\text { FIRQ }}, \overline{I R Q}, \overline{R E S E T}$, and SWI all set I to a one; SWI2 and SWI3 do not affect I.

Bit 5 (H)

Bit 5 is the half-carry bit, and is used to indicate a carry from bit 3 in the ALU as a result of an 8-bit addition only (ADC or ADD). This bit is used by the DAA instruction to perform a BCD decimal add adjust operation. The state of this flag is undefined in all subtract-like instructions.

Bit 6 (F)

Bit 6 is the $\overline{F I R Q}$ mask bit. The processor will not recognize interrupts from the FIRQ line if this bit is a one. $\overline{\text { NMI, }} \overline{\text { FIRQ, SWI, and }} \overline{\text { RESET }}$ all set F to a one. $\overline{\mathrm{IRQ}}$, SWI2 and SWI3 do not affect F.

Bit 7 (E)

Bit 7 is the entire flag, and when set to a one indicates that the complete machine state (all the registers) was stacked, as opposed to the subset state (PC and CC). The E bit of the stacked CC is used on a return from interrupt (RTI) to determine the extent of the unstacking. Therefore, the current E left in the Condition Code Register represents past action.

S6809 MPU Signal Description

Power (Vss, $\mathbf{V}_{\mathbf{C C}}$)

Two pins are used to supply power to the part: V_{SS} is ground or 0 volts, while V_{CC} is $+5.0 \mathrm{~V} \pm 5 \%$.

Address Bus ($\mathbf{A}_{\mathbf{0}}-\mathbf{A}_{15}$)

Sixteen pins are used to output address information from the MPU onto the Address Bus. When the processor does not require the bus for a data transfer, it will output address $\mathrm{FFFF}_{16}, \mathrm{R} / \mathrm{W}=1$, and $\mathrm{BS}=0$. Addresses are valid on the rising edge of Q (see Figures 1 and 2). All address bus drivers are made high-impedance when output Bus Available (BA) is high. Each pin will drive one Schottky TTL load and typically 90 pF .

Data Bus ($\left.\mathbf{D}_{\mathbf{0}}-\mathrm{D}_{7}\right)$

These eight pins provide communication with the system bi-directional data bus. Each pin will drive one Schottky TTL load and typically 130 pF .

Read/Write ($\mathbf{R} / \overline{\mathbf{W}}$)

This signal indicates the direction of the data transfer on the data bus. A low indicates that the MPU is writing data onto the data bus. R / \bar{W} is made high impedance when $B A$ is high. R / \bar{W} is valid on the rising edge of Q, refer to Figures 1 and 2.

RESET

A low level on this Schmitt-trigger input for greater than one bus cycle will reset the MPU as shown in Figure 6. The Reset vectors are fetched from locations FFFE_{16} and FFFF_{16} (Table 1) when Interrupt Acknowledge is true, $(\mathrm{BA} \wedge \mathrm{BS}=1)$. During initial poweron, the Reset line should be held low until the clock oscillator is fully operational; see Figure 7.
Because the S6809 Reset pin has a Schmitt-trigger input with a threshold voltage higher than that of standard peripherals, a simple R/C network may be used to reset the entire system. This higher threshold voltage insures that all peripherals are out of the reset state before the Processor.

$\overline{\text { HALT }}$

A low level on this input pin will cause the MPU to stop running at the end of the present instruction and remain halted indefinitely without loss of data. When Halted, the BA output is driven high indicating the buses are high-impedance. BS is also high which indicates the processor is in the Halt or Bus Grant state. While halted, the MPU will not respond to external real-time requests ($\overline{\mathrm{FIRQ}}, \overline{\mathrm{IRQ}}$) although $\overline{\mathrm{DMA} / \mathrm{BREQ}}$ will always be accepted, and $\overline{\mathrm{NMI}}$ or $\overline{\mathrm{RESET}}$ will be latched for later response. During the Halt state Q and E continue to run normally. If the MPU is not running ($\overline{\operatorname{RESET}}, \overline{\mathrm{DMA} /}$ $\overline{\mathrm{BREQ}}$), a halted state (BA and $\mathrm{BS}=1$) can be achieved by pulling $\overline{H A L T}$ low while $\overline{\text { RESET }}$ is still low. If DMA/ $\overline{\mathrm{BREQ}}$ and $\overline{\mathrm{HALT}}$ are both pulled low, the processor will reach the last cycle of the instruction (by reverse cycle stealing) where the machine will then become halted. See Figure 8.

Bus Available, Bus Status (BA, BS)

The Bus Available output is an indication of an internal control signal which makes the MOS buses of the MPU high-impedance. This signal does not imply that the bus will be available for more than one cycle. When BA goes low, an additional dead cycle will elapse before the MPU acquires the bus.
The Bus Status output signal, when decoded with BA, represents the MPU state (valid with leading edge of Q):

MPU State		
BA	BS	
0	0	Normal (Running)
0	1	Interrupt Acknowledge
1	0	SYNC Acknowledge
1	1	HALT or Bus Grant

Figure 6. $\overline{\text { RESET }}$ Timing

*Note: parts with date codes prefixed by ff wile come out of beset one cycle soomer than shown

Figure 7. Crystal Connections and Oscillator Start Up

Figure 8. $\overline{\text { HALT }}$ and Single Instruction Execution for System Debug

Interrupt Acknowledge is indicated during both cycles of a hardware-vector-fetch ($\overline{\text { RESET, }} \overline{\text { NMII, }} \overline{\text { FIRQ }}, \overline{\text { IRQ }}$, SWI, SWI2, SWI3). This signal, plus decoding of the lower 4 address lines can provide the user with an indication of which interrupt level is being serviced and allow vectoring by device (see Table 1).
Sync Acknowledge is indicated while the MPU is waiting for external synchronization on an interrupt line.
Halt/Bus Grant is true when the S6809 is in a Halt or Bus Grant condition.
Table 1. Memory Map for Interrupt Vectors

Memory Vector Map foction		Interupt Vector Description
MS	LS	
FFFE	FFFF	$\overline{\text { RESET }}$
FFFC	FFFD	$\overline{\text { NMI }}$
FFFA	FFFB	SWI
FFF8	FFF9	$\overline{\text { RQ }}$
FFF6	FFF7	$\overline{\text { FIRQ }}$
FFF4	FFF5	SWI2
FFF2	FFF3	SWI3
FFF0	FFF1	Reserved

*NOTE: $\overline{\text { NMI, }} \overline{\mathrm{FIRa}}$ and $\overline{\mathrm{Ra}}$ requests are latched by the falling edge of every Q ex cept during cycle stealing operations (e.g., DMA) where only $\overline{\mathrm{NM}}$ is latched. From this point, a delay of at least one bus cycle will occur before the interrupt is serviced by the MPU.

Non-Maskable Interrupt ($\overline{\mathbf{N M I})}$

A negative edge on this input requests that a nonmaskable interrupt sequence be generated. A nonmaskable interrupt cannot be inhibited by the program, and also has a higher priority than $\overline{\text { FIRQ }}, \overline{\mathrm{I} R Q}$ or software interrupts. During recognition of an NMI, the entire machine state is saved on the hardware stack. After reset, an NMI will not be recognized until the first program load of the Hardware Stack Pointer (S). The pulse width of NMI low must be at least one E cycle. If the $\overline{\text { NMI }}$ input does not meet the minimum set up with respect to Q, the interrupt will not be recognized until the next cycle. See Figure 9.

Fast-Interrupt Request ($\overline{\mathbf{F I R Q})}$

A low level on this input pin will initiate a fast interrupt sequence, provided its mask bit (F) in the CC is clear. This sequence has priority over the standard Interrupt Request ($\overline{\mathrm{IRQ}}$), and is fast in the sense that it stacks only the contents of the condition code register and the program counter. The interrupt service routine should clear the source of the interrupt before doing an RTI. See Figure 10.

Figure 9. $\overline{\mathrm{IRQ}}$ and $\overline{\mathrm{NMI}}$ Interrupt Timing

Figure 10. $\overline{\text { FIRQ }}$ Interrupt Timing

Interrupt Request (IRQ)

A low level input on this pin will initiate an Interrupt Request sequence provided the mask bit (I) in the CC is clear. Since $\overline{\mathrm{IRQ}}$ stacks the entire machine state it provides a slower response to interrupts than FIRQ. IRQ also has a lower priority than FIRQ. Again, the interrupt service routine should clear the source of the interrupt before doing an RTI. See Figure 9.

XTAL, EXTAL

These input pins are used to connect the on-chip oscillator to an external parallel-resonant crystal. Alternately, the pin EXTAL may be used as a TTL level input for external timing by grounding XTAL. The crystal or external frequency is 4 times the bus frequency, see Figure 7. Proper RF layout techniques should be observed in the layout of printed circuit boards.

\mathbf{E}, \mathbf{Q}

E is similar to the S 6800 bus timing signal $\phi 2 ; \mathrm{Q}$ is a quadrature clock signal which leads E. Q has no parallel on the S 6800 . Addresses from the MPU will be valid with the leading edge of Q . Data is latched on the falling edge of E. Timing for E and Q is shown in Figure 11.

MRDY

This input control signal allows stretching of E to extend data-access time. When MRDY is high, E will be in normal operation. When MRDY is low, E may be stretched
integral multiples of quarter ($1 / 4$) bus cycles, thus allowing interface to slow memories as shown in Figure 12. A maximum stretch is 10 microseconds. During non-valid memory accesses (VMA cycles). MRDY has no effect on stretching E. This inhibits slowing the processor speed during "don't care" bus accesses.

$\overline{\text { DMA/BREQ }}$

The DMA/BREQ input provides a method of suspending execution and acquiring the MPU bus for another use as shown in Figure 13. Typical uses include DMA and dynamic memory refresh.
Transition of $\overline{\text { DMA/BREQ }}$ should occur during Q. A low level on this pin will stop instruction execution at the end of the current cycle. The MPU will acknowledge $\overline{\mathrm{DMA} / \mathrm{BREQ}}$ by setting BA and BS to a one. The requesting device will now have up to 15 bus cycles before the MPU retrieves the bus for self-refresh. Self-refresh requires one bus cycle with a leading and trailing dead cycle, see Figure 14.

Typically, the DMA controller will request to use the bus by asserting the $\overline{\mathrm{DMA} / \mathrm{BREQ}}$ pin low on the leading edge of E . When the MPU replies with $\mathrm{BA}=\mathrm{BS}=1$, that cycle will be a dead cycle used to transfer control to the DMA controller.

False memory accesses should be prevented during any dead cycles. When BA is cleared (either as a result of

Figure 11. E/Q Relationship

Figure 12. MRDY Timing

Figure 13. Typical DMA Timing (<14 Cycles)

ADDR(DMAC)

note:
OMFVYMA IS A SIGNAL WHICH
IS DEVFLOPFD EXTERMALYY, bIt
IS A SSSTEM REOUIREMENT FOR OMA

Figure 14. Auto-Refresh DMA Timing (<14 Cycles)

$\overline{\mathrm{DMA} / \mathrm{BREQ}}=\mathrm{HIGH}$ or MPU self-refresh), the DMA device should be taken off the bus.
Another dead cycle will elapse before the MPU is allowed a memory access to transfer control without contention.

MPU Operation

During normal operation, the MPU fetches an instruction from memory and then executes the requested function. This sequence begins at $\overline{\mathrm{RESET}}$ and is repeated indefinitely unless altered by a special instruction or hardware occurrence. Software instructions that alter normal MPU operation are: SWI, SWI2, SWI3, CWAI, RTI and SYNC. An interrupt, $\overline{\text { HALT }}$ or DMA/ $\overline{\mathrm{BREQ}}$ can also alter the normal execution of instructions. Figure 15 illustrates the flowchart for the S 6809. The left-half of the flowchart represents normal operation; the right-half represents the flow when an interrupt when an interrupt or special instruction occurs.

Addressing Modes

The basic instructions of any computer are greatly enhanced by the presence of powerful addressing modes. The 56809 has the most complete set of addressing modes available on any microcomputer today. For example, the S 6809 has 59 basic instructions, however it recognizes 1464 different variations of instructions and addressing modes. The new addressing modes support modern programming techniques. The following addressing modes are available on the S 6809 :

Inherent (Includes Accumulator)
Immediate
Extended
Extended Indirect
Direct
Register
Indexed
Zero-Offset
Constant Offset
Accumulator Offset
Auto Increment/Decrement
Indexed Indirect
Relative
Short/Long Relative Branching
Program Counter Relative Addressing

Inherent (Includes Accumulator)

In this addressing mode, the opcode of the instruction contains all the address information necessary. Examples of Inherent Addressing are: ABX, DAA, SWI, ASRA, and CLRB.

Immediate Addressing

In Immediate Addressing, the effective addressing of the data is the location immediately following the opcode; the data to be used in the instruction immediately follows the opcode of the instruction. The S6809 uses both 8 and 16 -bit immediate values depending on the size of argument specified by the opcode. Examples of instructions with Immediate Addressing are:

LDA \#\$20
LDX \#\$F000
LDY \#CAT
Note: \# signifies Immediate addressing, \$ signifies hexadecimal value.

Extended Addressing

In Extended Addressing the contents of the two bytes immediately following the opcode fully specify the 16 -bit effective address used by the instruction. Note that the address generated by an extended instruction defines an absolute address and is not position independent. Examples of Extended Addressing include:

```
LDA CAT
STX MOUSE
LDD $2000
```


Extended Indirect

As a special case of indexed addressing (discussed below), one level of indirection may be added to Extended Addressing. In Extended Indirect, the two bytes following the postbyte of an Indexed instruction contains the address of the address of the data.

```
LDA [CAT]
LDX [$FFFE]
STU [DOG]
```


Direct Addressing

Direct addressing is similar to extended addressing except that only one byte of address follows the opcode. This byte specifies the lower 8 bits of the address to be used. The upper 8 bits of the address are supplied by the direct page register. Since only one byte of address is required in direct addressing, this mode requires less memory and executes faster than extended addressing. Of course, only 256 locations (one page) can be accessed without redefining the contents of the DP register. Since the DP register is set to $\$ 00$ on Reset, direct addressing on the S 6809 is compatible with direct addressing on the S6800. Indirection is not allowed in direct addressing. Some examples of direct addressing are:

LDA	$\$ 30$
SETDP	$\$ 10$ (Assembler directive)
LDB	$\$ 1030$
LDD	$<$ CAT

Note: < is an assembler directive which forces direct addressing.

Figure 15. MPU Flow Chart

Register Addressing

Some opcodes are followed by a byte that defines a register or set of registers to be used by the instruction, this is called a POSTBYTE. Some examples of register addressing are:

TFR	X,Y	Transfers X into Y
EXG	A,B	Exchanges A with B
PSHS	A,B,X,Y	Push onto S Y,X,B, then A
PULU	X,Y,D	Pull from U D,X, then Y

Indexed Addressing

In all indexed addressing one of the pointer registers (X , $\mathrm{Y}, \mathrm{U}, \mathrm{S}$, and sometimes PC) is used in a calculation of the effective address of the operand to be used by the instruction. Five basic types of indexing are available and are discussed below. The postbyte of an indexed instruction specifies the basic type and variation of the addressing mode as well as the pointer register to be used. Figure 16 lists the legal formats for the postbyte. Table 2 gives the assembler form and the number of cycles and bytes added to the basic values for indexed addressing for each variation.

Zero-Offset Indexed - In this mode, the selected pointer register contains the effective address of the data to be used by the instruction. This is the fastest indexing mode.
Examples are:
LDD 0,X

LDA 0,S
Constant Offset Indexed - In this mode a two's-complement offset and the contents of one of the pointer registers are added to form the effective address of the operand. The pointer register's initial content is unchanged by the addition.
Three sizes of offsets are available:

$$
\begin{aligned}
& \pm 4 \text {-bit }(-16 \text { to }+15) \\
& \pm 7 \text {-bit }(-128 \text { to }+127) \\
& \pm 15 \text {-bit }(-32768 \text { to }+32767)
\end{aligned}
$$

The two's complement 5 -bit offset is included in the postbyte and therefore is most efficient in use of bytes and cycles. The two's complement 8 -bit offset is contained in a single byte following the postbyte. The two's complement 16 -bit offset is in the two bytes following the postbyte. In most cases the programmer need not be concerned with the size of this offset since the assembler will select the optional size automatically.
Examples of constant-offset indexing are:
LDA 23,X
LDX -2,S
LDY 300,X
LDU CAT,Y

Figure 16. Indexed Addressing Postbyte Register Bit Assignments

POST-BYTE REGISTER BIT								$\begin{aligned} & \text { INDEXED } \\ & \text { ADDRESSING } \\ & \text { MODE } \end{aligned}$
7	6	5	4	3	2	1	0	
0	R	R	X	X	X	X	X	$E A=, R \pm 4-$ BIT OFFSET
1	R	R	0	0	0	0	0	, $\mathrm{B}+$
1	R	R	1	0	0	0	1	,R++
1	R	R	0	0	0	1	0	, -R
1	R	R	1	0	0	1	1	, - - R
1	R	R	1	0	1	0	0	$E A=, R \pm 0$ OFFSET
1	R	R	1	0	1	0	1	$E A=, R \pm A C C B$ OFFSET
1	A	R	1	0	1	1	0	$E A=, R \pm A C C A ~ O F F S E T ~$
1	R	R	1	1	0	0	0	$E A=, \mathrm{R} \pm 7$-BIT OFFSET
1	R	R	1	1	0	0	1	$E A=, R \pm 15-$ IIT OFFSET
1	R	R	1	1	0	1	1	$E A=, R \pm D$ OFFSET
1	X	X	1	1	1	0	0	$E A=, P C \pm 7 \cdot$ BIT OFFSET
1	X	X	1	1	1	0	1	$E A=, P C \pm 15-$ BIT OFFSET
1	R	R	1	1	1	1	1	$E A=, A D D R E S S$
								ADDRESSING MODE FIELD \qquad INDIRECT FIELD SIGN BIT WHEN B7 $=0$ \qquad REGISTER FIELD $00: R=X$ $01: R=Y$ $10: R=U$ $11: R=S$ $\mathbf{X}=$ DONT CARE

Accumulator-Offset Indexed - This mode is similar to constant offset indexed except that the two's complement value in one of the accumulators (A, B or D) and the content of one of the pointer registers are added to form the effective address of the operand. The contents of both the accumulator and the pointer register are unchanged by the addition. The postbyte specifies which accumulator to use as an offset and no additional bytes are required. The advantage of an accumulator offset is that the value of the offset can be calculated by a program at run-time.
Some examples are:

> LDA B,Y
> LDX D,Y
> LEAX B,X

Auto Increment/Decrement Indexed - In the auto increment addressing mode, the pointer register contains the address of the operand. Then, after the pointer register is used it is incremented by one or two. This addressing mode is useful in stepping through tables, moving data, or for the creation of software stacks. In auto

Table 2. Indexed Addressing Modes

Type	Forms	Non Indirect				Indirect			
		Assembler Form	Postbyte OP Code	$\stackrel{+}{\sim}$	+	Assembler Form	Postbyte OP Code	$+$	+
Constant Offset From R (Signed Offsets)	No Offset	,R	1RR00100	0	0	[,R]	1RR10100	3	0
	5-Bit Offset	n, R	ORRnnnnnn	1	0	defaults to 8-bit			
	8-Bit Offset	n, R	1 RR01000	1	1	[n, R]	1RR11000	4	1
	16-Bit Offset	n, R	1RR01001	4	2	[n, R]	1RR11001	7	2
Accumulator Offset From R (Signed Offsets)	A - Register Offset	A, R	1RR00110	1	0	[A, R]	1RR10110	4	0
	B - Register Offset	B, R	1RR00101	1	0	[B, R]	1RR10101	4	0
	D - Register Offset	D, R	1RR01011	4	0	D, R]	1RR11011	7	0
Auto Increment/Decrement R	Increment By 1	, R+	1 RR00000	2	0	not allowed			
	Increment By 2	, R++	1RR00001	3	0	[,R++]	1RR10001	6	0
	Decrement By 1	, -R	1 RR00010	2	0	not allowed			
	Decrement By 2	, - - R	1RR00011	3	0	[, - - R]	1RR10011	6	0
Constant Offset From PC	8-Bit Offset	n, PCR	$1 \times \times 01100$	1	1	[n, PCR]	$1 \times \times 11100$	4	1
	16-Bit Offset	n, PCR	1XX01101	5	2	[n, PCR]	1XX11101	8	2
Extended Indirect	16-Bit Address	-	-	-	-	[n]	10011111	5	2
$\stackrel{+}{\sim}{ }^{\text {and }}{ }^{+}$indicate the number of additional cycles and bytes for the particular variation.				$\begin{aligned} & R=X, Y, U \text { or } S \\ & X=\text { Don't Care } \end{aligned}$			$\begin{aligned} & X=00 \\ & U=10 \end{aligned}$	$\begin{aligned} & Y=01 \\ & S=11 \end{aligned}$	

decrement, the pointer register is decremented prior to use as the address of the data. The use of auto decrement is similar to that of auto increment but the tables, etc. are scanned from the high to low addresses. The size of the increment/decrement can be either one or two to allow for tables of either 8 or 16 -bit data to be accessed and is selectable by the programmer. The predecrement, post-increment nature of these modes allow them to be used to create additional software stacks that behave identically to the U and S stacks.
Some examples of the auto increment/decrement addressing modes are:

LDA , $\mathrm{X}+$
STD , $\mathrm{Y}++$
LDBL , - Y
LDX ,--S

Indexed Indirect

All of the indexing modes with the exception of auto increment/decrement by one, or a ± 4-bit offset may have an additional level of indirection specified. In Indirect addressing, the effective address is contained at the
location specified by the content of the Index register plus any offset. In the example below, the A accumulator is loaded indirectly using an effective address calculated from the Index register and an offset.

Before Execution
$\mathrm{A}=\mathrm{XX}$ (don't care)
$\mathrm{X}=\$ \mathrm{~F} 000$
$\$ 0100$ LDA
\$F010 \$F1
\$F011 \$50
\$F150 \$AA
[10,X] EA is now $\$ \mathrm{~F} 010$
F150 is now the new EA

After Execution A $=$ \$AA Actual Data Loaded

All modes of indexed indirect are included except those which are meaningless (e.g., auto increment/decrement by 1 indirect). Some examples of indexed indirect are:

LDA	$[, \mathrm{X}]$
LDD	$[10, \mathrm{~S}]$
LDA	$[\mathrm{B}, \mathrm{Y}]$
LDD	$[, \mathrm{X}++]$

LDD [10,S]
LDD [, $\mathrm{X}++$]

Relative Addressing

The byte(s) following the branch opcode is (are) treated as a signed offset which is added to the program counter. If the branch condition is true then the calculated address ($\mathrm{PC}+$ signed offset) is loaded into the program counter. Program execution continues at the new location as indicated by the PC; Short (1 byte offset) and long (2 bytes offset) relative addressing modes are available. All of memory can be reached in long relative addressing as an effective address is interpreted modulo 2^{16}. Some examples of relative addressing are:

	BEQ	CAT	(short)
	BGT	DOG	(short
CAT	LBEQ	RAT	(long)
DOG	LBGT	RABBIT	(long)
	!		
	-		
RAT	NOP		
RABBIT			

Program Counter Relative

The PC can be used as the pointer register with 8 or 16 -bit signed offsets. As in relative addressing the offset is added to the current PC to create the effective address. The effective address is then used as the address of the operand or data. Program Counter Relative Addressing is used for writing position independent programs. Tables related to a particular routine will maintain the same relationship after the routine is moved, if referenced relative to the Program Counter. Examples are:

$$
\begin{array}{ll}
\text { LDA } & \text { CAT,PCR } \\
\text { LEAX } & \text { TABLE, PCR }
\end{array}
$$

Since program counter relative is a type of indexing, an additional level of indirection is available.

$$
\begin{array}{ll}
\text { LDA } & \text { [CAT,PCR] } \\
\text { LDU } & \text { (DOG,PCR] }
\end{array}
$$

S6809 Instruction Set

The instruction set of the S 6809 is similar to that of the S6800 and is upward compatible at the source code level. The number of opcodes has been reduced from 72 to 59 , but because of the expanded architecture and additional addressing modes, the number of available opcodes (with different addressing modes) has risen from 197 to 1464.

Some of the new instructions and addressing modes are described in detail below:

PSHU/PSHS

The push instructions have the capability of pushing onto either the hardware stack (S) or user stack (U) any or all of the MPU registers with a single instruction.

PULU/PULS

The pull instructions have the same capability of the push instruction, in reverse order. The byte immediately following the push or pull opcode determines which register or registers are to be pushed or pulled. The actual PUSH/PULL sequence is fixed; each bit defines a unique register to push or pull as shown in Figure 17.

TFR/EXG

Within the S 6809 , any register may be transferred to or exchanged with another of like-size, i.e., 8 -bit to 8 -bit or 16 -bit to 16 -bit. Bits $4-7$ of postbyte define the source register, while bits $0-3$ represent the destination register. These are denoted as follows:

$$
\begin{array}{ll}
0000-\mathrm{D} & 0101-\mathrm{PC} \\
0001-\mathrm{X} & 1000-\mathrm{A} \\
0010-\mathrm{Y} & 1001-\mathrm{B} \\
0011-\mathrm{U} & 1010-\mathrm{CC} \\
0100-\mathrm{S} & 1011-\mathrm{DP}
\end{array}
$$

Note: All other combinations are undefined and INVALID.

Load Effective Address

The LEA works by calculating the effective address used in an indexed instruction and stores that address value, rather than the data at that address, in a pointer register. This makes all the features of the internal addressing hardware available to the programmer. Some of the implications of this instruction are illustrated in the following table of examples:
The LEA Instruction also allows the user to access data in a position independent manner. For example:

$$
\begin{aligned}
\text { LEAX } & \text { MSG1, PCR } \\
\text { LBSR } & \text { PDATA (Print message routine) } \\
\text { MSG1 FCC } & \text { 'MESSAGE' }
\end{aligned}
$$

Figure 17. Push/Pull Postbyte

Table 3. LEA Examples

Instruction		Operation		Comment
LEAX	$10, X$	$X+10$	$-X$	Adds 5-bit constant 10 to X
LEAX	$500, X$	$X+500$	$\rightarrow X$	Adds 6 -bit constant 500 to X
LEAY	A, Y	$Y+A$	$-Y$	Adds 8-bit accumulator to Y
LEAY	D, Y	$Y+D$	$-Y$	Adds 16-bit D accumulator to Y
LEAU	$-10, U$	$U-10$	$\rightarrow U$	Subtracts 10 from U
LEAS	$-10, S$	$S-10$	$\rightarrow S$	Used to reserve area on stack
LEAS	10, S	$S+10$	$\rightarrow S$	Used to 'clean up' stack
LEAX	$5, S$	$S+5$	$-X$	Transfers as well as adds

This sample program prints "message." By writing MSG1,PCR, the assembler computes the distance between the present address and MSG1. This result is placed as a constant into the LEAX instruction which will be indexed from the PC value at the time of execution. No matter where the code is located, when it is executed, the computed offset from the PC will put the absolute address of MSG1 into the X pointer register. This code is totally position independent.

MUL

Multiplies the unsigned binary numbers in the A and B accumulator and places the unsigned result into the 16 -bit D accumulator. This unsigned multiply also allows multiple-precision multiplications.

Long and Short Relative Branches

The S 6809 has the capability of program counter relative branching throughout the entire memory map. In this mode, if the branch is to be taken, the 8 or 16 -bit signed offset is added to the value of the program counter to be used as the effective address. This allows the program to branch anywhere in the 64 K memory map. Position independent code can be easily generated through the use of relative branching. Both short (8-bit) and long (16-bit) branches are available.

Sync

After encountering a Sync operation, the MPU enters a Sync state, stops processing instructions and waits for an interrupt. If the pending interrupt is non-maskable ($\overline{\mathrm{NMI}}$) or maskable ($\overline{\mathrm{FIRQ}}, \overline{\mathrm{IRQ}}$) with its mask bit (F or I) clear, the processor will clear the Sync state and perform the normal interrupt stacking and service routine. Since $\overline{F I R Q}$ and $\overline{I R Q}$ are not edge-triggered, a low level with a minimum duration of three cycles is required to assure that the interrupt will be taken. If the pending interrupt is maskable ($\overline{\mathrm{FIRQ}}, \overline{\mathrm{IRQ}}$) with its mask bit (F
or I) set, the processor will clear the Sync state and continue processing in sequence. Figure 18 depicts Sync timing.

Software Interrupts

A Software Interrupt is an instruction which will cause an interrupt, and its associated vector fetch. These Software Interrupts are useful in operating system calls, software debugging, trace operations, memory mapping, and software development systems. Three levels of SWI are available on this S6809, and are prioritized in the following order: SWI, SWI2, SWI3.

16-Bit Operations

The S6809 has the capability of processing 16 -bit data. These instructions include loads, stores, compares, adds, subtracts, transfers, exchanges, pushes and pulls.

Cycle-by-Cycle Operation

The address bus cycle-by-cycle performance chart illustrates the memory-access sequence corresponding to each possible instruction and addressing mode in the S6809. Each instruction begins with an opcode fetch. While that opcode is being internally decoded, the next program byte is always fetched. (Most instructions will use the next byte, so this technique considerably speeds throughput). Next, the operation of each opcode will follow the flowchart. $\overline{\mathrm{VMA}}$ is an indication of FFFF_{16} on the address bus, $\mathrm{R} / \overline{\mathrm{W}}=1$ and $\mathrm{BS}=0$. The following examples illustrate the use of the chart; see Figure 19.
LBSR (Branch taken)
Cycle \#

1 \quad opcode Fetch \quad| 2 | opcode + |
| :--- | :--- |
| 3 | opcode + |
| 4 | $\overline{\mathrm{VMA}}$ |
| 5 | $\overline{\mathrm{VMA}}$ |
| 6 | ADDR |
| 7 | $\overline{\mathrm{VMA}}$ |
| 8 | STACK (write) |
| 9 | STACK (write) |

DEC (Extended)

1 opcode Fetch
2 opcode +
3 opcode +
4 VMA
5 ADDR (read)
$6 \quad \overline{\mathrm{VMA}}$
7 ADDR (write)

Figure 18. SYNC Timing

Figure 19. Address Bus Cycle-by-Cycle Performance

Figure 19. Address Bus Cycle-by-Cycle Performance (Continued)

Figure 19. Address Bus Cycle-by-Cycle Performance (Cont.)

S6809 Instruction Set Tables

The instructions of the S 6809 have been broken down into six different categories. They are as follows:
8 -Bit Operation (Table 4)
16-Bit Operation (Table 5)
Index Register/Stack Pointer Instructions (Table 6)
Relative Branches (Long and Short) (Table 7)
Miscellaneous Instructions (Table 8)
Hexadecimal Value Instructions (Table 9)

Table 4. 8-Bit Accumulator and Memory Instructions

Mnemonic(s)	Operation
ADCA, ADCB	Add memory to accumulator with carry
ADDA, ADDB	Add memory to accumulator
ANDA, ANDB	And memory with accumulator
ASL, ASLA, ASLB	Arithmetic shift of accumulator or memory left
ASR, ASRA, ASRB	Arithmetic shift of accumulator or memory right
BITA, BITB	Bit test memory with accumulator
CLR, CLRA, CLRB	Clear accumulator or memory location
CMPA, CMPB	Compare memory from accumulator
COM, COMA, COMB	Complement accumulator or memory location
DAA	Decimal adjust A-accumulator
DEC, DECA, DECB	Decrement accumulator or memory location
EORA, EORB	Exclusive OR memory with accumulator
EXG R1, R2	Exchange R1 with R2 (R1, R2 $=$ A, B, CC, DP)
INC, INCA, INCB	Increment accumulator or memory location
LDA, LDB	Load accumulator from memory
LSL, LSLA, LSLB	Logical shift left accumulator or memory location
LSR, LSRA, LSRB	Logical shift right accumulator or memory location
MUL	Unsigned multiply (A \times B \rightarrow D)
NEG, NEGA, NEGB	Negate accumulator or memory
ORA, ORB	OR memory with accumulator
ROL, ROLA, ROLB	Rotate accumulator or memory left
ROR, RORA, RORB	Rotate accumulator or memory right
SBCA, SBCB	Subtract memory from accumulator with borrow
STA, STB	Store accumulator to memory
SUBA, SUBB	Subtract memory from accumulator
TST, TSTA, TSTB	Test accumulator or memory location
TFR, R1, R2	Transfer R1 to R2 (R1, R2 =A, B, CC, DP)

NOTE: A, B, CC, or DP may be pushed to (pulled from) either stack with PSHS, PSHU, (PULS, PULU) instructions.

Table 5. 16-Bit Accumulator and Memory Instructions

Mnemonic(s)	Operation
ADDD	Add memory to D accumulator
CMPD	Compare memory from D accumulator
EXG D, R	Exchange D with X, Y, S, U or PC
LDD	Load D accumulator from memory
SEX	Sign Extend B accumulator into A accumulator
STD	Store D accumuator to memory
SUBD	Subtract memory from D accumulator
TFR D, R	Transfer D to X, Y, S, U or PC
TFR R, D	Transfer X, Y, S, U or PC to D

Table 6. Index Register/Stack Pointer Instructions

Mnemonic(s)	Operation
CMPS, CMPU	Compare memory from stack pointer
CMPX, CMPY	Compare memory from index register
EXG R1, R2	Exchange D, X, Y, S, U or PC with D, X, Y, S, U or PC
LEAS, LEAU	Load effective address into stack pointer
LEAX, LEAY	Load effective address into index register
LDS, LDU	Load stack pointer from memory
LDX, LDY	Load index register from memory
PSHS	Push any register(s) onto hardware stack (except S)
PSHU	Push any register(s) onto user stack (except U)
PULS	Pull any register(s) from hardware stack (except S)
PULU	Pull any register(S) from hardware stack (except U)
STS, STU	Store stack pointer to memory
STX, STY	Store index register to memory
TFR R1, R2	Transfer D, X, Y, S. U or PC to D, X, Y, S, U or PC
ABX	Add B accumulator to X (unsigned)

Table 7. Branch Instructions

Mnemonic(s)	
BCC, LBCC	Branch if carry clear
BCS, LBCS	Branch if carry set
BEQ, LBEQ	Branch is equal
BGE, LBGE	Branch if greater than or equal (signed)
BGT, LBGT	Branch if greater (signed)
BHI, LBHI	Branch if higher (unsigned)
BHS, LBHS	Branch is higher or same (unsigned)
BLE, LBLE	Branch if less than or equal (signed)
BLO, LBLO	Branch if lower (unsigned)
BLS, LBLS	Branch if lower or same (unsigned)
BLT, LBLT	Branch if less than (signed)
BMI, LBM	Branch if minus
BNE, LBNE	Branch if not equal
BPL, LBPL	Branch is plus
BRA, LBRA	Branch always
BRN, LBRN	Branch never
BSR, LBSR	Branch to subroutine
BVC, LBVC	Branch if overflow clear
BVS, LBVS	Branch if overflow set

Table 8. Miscellaneous Instructions

Mnemonic(s)	Operation
ANDCC	AND condition code register
CWAI	AND conditon code register, then wait for interrupt
NOP	No operation
ORCC	OR condition code register
JMP	Jump
JSR	Jump to subroutine
RTI	Return from interrupt
RTS	Return from subroutine
SWI, SWI2, SWI3	Software interrupt (absolute indirect)
SYNC	Synchronize with interrupt line

Table 9. Hexadecimal Values of Machine Codes

NOTE: All unused opcodes are both undefined and illegal
Legend

- Number of MPU cycles (less possible push/pull or indexed-mode cycles)
\# Number of program bytes
* Denotes unused opcode

Table 9. Hexadecimal Values of Machine Codes (Continued)

Table 9. Hexadecimal Values of Machine Codes (Continued)

NOTE: All unused opcodes are both undefined and illegal

UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER

Features

$\square \quad$ Full or Half Duplex Operation - Can Receive and Transmit Simultaneously at Different Baud Rates.
\square Completely Programmable - Data Word Length, Number of Stop Bits, Parity.
\square Start Bit Generated Automatically
$\square \quad$ Data and Clock Synchronization Performed Automatically
$\square \quad$ Double Buffered-Eliminates Timing Difficulties
$\square \quad$ Completely Static Circuitry
$\square \quad$ Fully TTL Compatible.
$\square \quad$ Three-state Output Capability
\square Single Power Supply: +5V
$\square \quad$ Standard 40-Pin Dual-in-Line Package
$\square \quad$ Plug In Compatible with Western Digital TR1602A, TR1863, Fujitsu 8868A

General Description

The AMI S1602 is a programmable Universal Asynchronous Receiver/Transmitter (UART) fabricated with N -Channel silicon gate MOS technology. All control pins, input pins and output pins are TTL compatible, and a single +5 volt power supply is used. The UARTinterfaces asynchronous serial data from terminals or other peripherals, to parallel data for a microprocessor, computer, or other terminal. Parallel data is converted by the trans-
mitter section of the UARTinto a serial word consisting of the data as well as start, parity, and stop bit(s). Serial data is converted by the receiver section of the UART into parallel data. The receiver section verifies correct code transmission by parity checking and receipt of a valid stop bit. The UART can be programmed to accept word lengths of $5,6,7$, or 8 bits. Even or odd parity can be set. Parity generation checking can be inhibited. The number of stop bits can be programmed for one, two, or one and one-half when transmitting a 5-bit code.

Absolute Maximum Ratings*

V_{CC} Pin Potential to V_{SS} Pin	-0.3 V to ++7.0 V
Input Voltage	-0.3 V to +7.0 V
Operating Temperature	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

*Note: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheets. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Capacitance: $\mathrm{T}_{\mathrm{A}}=25^{\circ} ; \mathrm{f}=1 \mathrm{MHz} ; \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$

Symbol	Parameter	Typ.	Max.	Unit
$\mathrm{C}_{\text {IN }}$	Input Capacitance for all Inputs	10	-	pF

Guaranteed Operating Conditions (Referenced to V_{SS})

Symbol	Parameter	Operating Temperature	Min.	Typ.	Max.	Unit
V_{CC}	Supply Voltage	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	4.75	5.0	5.25	V
$\mathrm{~V}_{\mathrm{SS}}$		0.0	0.0	0.0	V	
$\mathrm{~V}_{\mathrm{IH}}$	Logic Input High Voltage	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	2.2	-	V_{CC}	V
V_{IL}	Logic Input Low Voltage	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	-0.3	-	+0.8	V

D.C. Characteristics (Guaranteed Operating Ranges Unless Otherwise Noted.)

Symbol	Parameter	Min.	Typ.	Max.	Unit
I_{IL}	Input Leakage Current $\left(\mathrm{V}_{\mathrm{IN}}=0\right.$ to $\left.5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{~V}\right)$	-	-	1.4	mA
I_{LZ}	Output Leakage Current for 3-State $\left(\mathrm{V}_{\mathrm{OUT}}=0 \mathrm{~V}\right.$ to V_{CC}, $\left.\mathrm{SFD}=\mathrm{RRD}=\mathrm{V}_{\mathrm{IH}}\right)$	-20	-	+20	$\mu \mathrm{~A}$
$\mathrm{~V}_{\mathrm{OL}}$	Output Low Voltage $\left(\mathrm{I}_{\mathrm{OL}}=1.8 \mathrm{~mA}\right)$	-	-	0.4	V
$\mathrm{~V}_{\mathrm{OH}}$	Output High Voltage $\left(\mathrm{I}_{\mathrm{OL}}=-200 \mu \mathrm{~A}\right)$	2.4	-	-	V
I_{CC}	V_{CC} Supply Current	-	70	-	mA

A.C. Characteristics (Guaranteed Operating Ranges Unless Otherwise Noted.)

Symbol	Parameter	Min.	Typ.	Max.	Unit
f_{C}	Clock Frequency for RRC and TRC (Duty Cycle $=50 \%$)	DC	-	800	kHz
$\mathrm{t}_{\text {PWC }}$	CRL Pulse Width, High	200	-	-	ns
$\mathrm{t}_{\text {PWT }}$	THRL Pulse Width, Low	180	-	-	ns
$\mathrm{t}_{\text {PWR }}$	DRR Pulse Width, Low	180	-	-	ns
$\mathrm{t}_{\text {PWM }}$	MR Pulse Width, High	150	-	-	ns
t_{C}	Coincidence Time (Figure 3 and Figure 8)	180	-	-	ns
$\mathrm{t}_{\mathrm{HOLD}}$	Hold Time (Figure 3 and Figure 8)	20	-	-	ns
$\mathrm{t}_{\text {SET }}$	Setup Time (Figure 3 and Figure 8)	0	-	-	ns
$\mathrm{t}_{\text {PD0 }}$	Propagation Delay Time High to Low, Output ($\mathrm{C}_{\mathrm{L}}=130 \mathrm{pF}+1 \mathrm{TTL}$)	-	-	350	ns
$\mathrm{t}_{\text {PD1 }}$	Propagation Delay Time Low to High, Output ($\mathrm{C}_{\mathrm{L}}=130 \mathrm{pF}+1 \mathrm{TTL}$)	-	-	350	ns

Pin Description

Pin	Label	Function
1	$\mathrm{V}_{\text {CC }}$	Power Supply - normally at +5 V .
2	N.C.	No connection. On the S1602 this is an unconnected pin. On the TR1602A this is a -12 V supply. -12 V is not needed on the S1602 and thus the N.C. pin allows the S1602 to be compatible with the TR1602A.
3	$\mathrm{V}_{\text {SS }}$	This is normally at 0 V or ground.
4	RRD	Receive Register Disconnect. A high logic level, V_{IH}, on this pin disconnects the Receiver Holding Register outputs from the data outputs $\mathrm{RR}_{8}-\mathrm{RR}_{1}$ on pin 5-12.
5-12	$\mathrm{RR}_{8}-\mathrm{RR}_{1}$	Receiver Holding Register Data. These are the parallel outputs from the Receiver Holding Register if the RRD input is low (V_{IL}). Data is (LSB) right justified for character formats of less than eight bits, with RR_{1} being the least significant bit. Unused MSBs are forced to a low logic output level, V_{OL}.
13	PE	Parity Error. This output pin goes to a high level if the received parity does not agree with that programmed by the Even Parity Enable input (pin 39). This output is updated as each character is transferred to the Receiver Holding Register. The Status Flag Disconnect input (pin 16) allows additional PE lines to be tied together by providing an output disconnect capability.
14	FE	Framing Error. This output pin goes high if the received character has no valid stop bit. Each time a character is transferred to the Receiver Holding Register, this output is updated. The Status Flag Disconnect input (pin 16) allows additional FE lines to be tied together by providing an output disconnect capability.
15	OE	Overrun Error. This output pin goes high if the Data Received Flag (pin 19) did not get reset before the next character was transferred to the Receive Holding Register. The Status Flag Disconnect input (pin 16) allows additional OE lines to be tied together providing an output disconnect capability.
16	SFD	Status Flag Disconnect. When this input is high, PE, FE, OE, DR and THRE outputs are forced to high impedance Three State allowing bus sharing capability.

Pin Description (Continued)

Pin	Label	Function
17	RRC	Receive Register Clock. This clock input is 16x the desired receiver shift rate.
18	$\overline{\text { DRR }}$	Data Received Reset. A low level input, $\mathrm{V}_{\text {IL }}$, clears the Data Received (DR) line.
19	DR	Data Received. When a complete character has been received and transferred to the Receiver Holding Register, this output goes to the high level, V_{OH} -
20	RI	Receiver Input. Serial input data enters on this line. It is transfered to the Receiver Register as determined by the character length, parity and number of stop bits. When data is not being received, this input must remain high, V_{IH}.
21	MR	Master Reset. A high level pulse, V_{IH}, on this input clears the internal logic. The transmitter and Receive Registers, Receiver Holding Registers, FE, OE, PE, DRR are reset. In addition, the serial output line is set to a high level, V_{OH}.
22	THRE	Transmitter Holding Register Empty. This output will go high when the Transmitter Holding Register completes transfer of its contents to the Transmitter Register. The high level indicates a new character may be loaded into the Transmitter Holding Register.
23	$\overline{\text { THRL }}$	Transmitter Holding Register Load. When a low level, V_{IL}, is applied to this input, a character is loaded into the Transmitter Holding Register. The character is transferred to the Transmitter Register on a low to high level, V_{IH}, transition as long as the Transmitter Register is not currently in the process of transmitting a character. If a character is being transmitted, the transfer is delayed until the transmission is completed. The new character is then transferred simultaneously with the start of the serial transmission of the new character.
24	TRE	Transmitter Register Empty. Goes high when the Transmitter Register has completed the serial transmission of a full character including the required number of stop bits. A high will be maintained until the start of transmission of the next character.
25	TRO	Transmitter Register Output. Transmits the Transmitter Register contents (Start bit, Data bits, Parity bit and Stop bit(s)) serially. Remains high, V_{OH}, when no data is being transmitted. Therefore, start of transmission is determined by transition of the Start bit from high to low level voltage, V_{OL}.
26-33	$\mathrm{TR}_{1}-\mathrm{TR}_{8}$	Transmitter Register Data Inputs. The THRL strobe loads the character on these lines into the Transmitter Holding Register. If WLS_{1} and WLS_{2} have selected a character of less than 8 bits, the character is right justified to the least significant bit, TR_{1} with the excess bits not used. A high input level, V_{IH}, will cause a high output level, V_{OH}, to be transmitted.
34	CRL	Control Register Load. The control bits, (WLS ${ }_{1}$, WLS 2 , EPE, PI, SBS), are loaded into the Control Register when the input is high. This input may be either strobed or hard wired to the high level.
35	PI	Parity Inhibit. Parity generation and verification circuitry are inhibited when this input is high. The PE output will be held low as well. When in the inhibit condition the Stop bit(s) will follow the last data bit on transmission.
36	SBS	Stop Bit(s) Select. A high level will select two Stop bits, and a low level selects one Stop bit. If 5 -bit words are selected, a high level will generate one and one-half Stop bits.

Pin Description (Continued)

Pin	Label	Function	
37,38	WLS $_{2}, \mathrm{WLS}_{1}$	Word Length Select. The state of these two (2) inputs determines the character length (exclusive of parity) as follows:	
		WLS_{2}	WLS $_{1}$

Figure 1. Receiver Operating Timing

Figure 2. Timing for Status Flags, RR_{1} thru RR_{8} and DR

Figure 3. Transmitter Operating Timing

SEE FIG. 5
FOR DETAIL

Figure 4. Data Input Load Cycle

Figure 5. Transmitter Output Timing(1)

NOTES:

1. When the positive transition of THRL is 500 ns or more before the falling edge of TRC (CF2 in the figure), TRE is enabled at CF2. But, when $500 \mathrm{~ns}>(1)>0 \mathrm{~ns}$, TRE is invalid between CF2 and CF3.
2. THRE goes to low during 500 ns Max. from the positive transition of THRL.
3. TRE goes to low during 500 ns Max. from the first falling edge of TRC after THRE goes to low with TRE high.
4. TRO goes to low (START BIT) during 500ns Max. from the first rising edge of TRC after TRE goes to low.
5. THRE goes to high during 500 ns Max. from the falling edge of TRC after START BIT is enabled.

Figure 6. Transmitter Output Timing (2)

2.5, refer to Figure 5.
6. TRANSMITTER REGISTER EMPTY goes to high during 500ns Max. from the 15 th rising edge of TRC after STOP BIT is enables.

Figure 7. Input After Master Reset

Figure 8. Control Register Load Cycle

Figure 9. Status Flag Output

Figure 10. Data Output

S1602

Figure 11. Transmitting Sequence Flowchart (Note that the S1602 can simultaneously transmit and receive at two different baud rates)

Figure11a.

Figure 11b.
(A)

This example illustrates how to string the inputs to several 1602 's together in a wiredOR situation, using a function enable pin as chip select.
A lay-out much like this one can be used to string the output signals (either data or status messages) from several 1602 's together on a common bus.

Figure 12. Receiving Sequence Flowchart
(Note that the S1602 can simultaneously transmit and receive at two different baud rates)

Universal Synchronous Receiver/Transmitter

Features

500 kHz Data RatesInternal Sync DetectionFill Character RegisterDouble Buffered Input/OutputBus Oriented Outputs5-8 Bit CharactersOdd/Even or No Parity\square Error Status Flags
\square Single Power Supply $\mathbf{1}+\mathbf{5 V}$)
\square Input/Output TTL-Compatible

General Description

The S2350 Universal Synchronous Receiver Transmitter (USRT) is a single chip MOS/LSI device that totally replaces the serial-to-parallel and parallel-to-serial conversion logic required to interface a word parallel controller or data terminal to a bit-serial, synchronous communication network.

The USRT consists of separate receiver and transmitter sections with independent clocks, data lines and status. Common with the transmitter and receiver are word length and parity mode. Data is transmitted and received in a NRZ format at a rate equal to the respective input clock frequency.

Data messages are transmitted as a contiguous character stream, bit synchronous with respect to a clock and character synchronous with respect to framing or "sync" characters initializing each message. The USRT receiver compares the contents of the internal Receiver Sync Register with the incoming data stream in a bit transparent mode. When a compare is made, the receiver becomes character synchronous formatting a 5 , 6,7 , or 8 -bit character for output each character time. The receiver has an output buffer register allowing a full character time to transfer the data out. The receiver status outputs indicate received data available (RDA), receiver overrun (ROR), receive parity error (RPE) and sync character received (SCR). Status bits are available on individual output lines and can also be multiplexed onto the output data lines for bus organized systems. The data lines have tri-state outputs.
The USRT transmitter outputs $5,6,7$, or 8 -bit characters with correct parity at the transmitter serial output
(TSO). The transmitter is buffered to allow a full character time to respond to a transmitter buffer empty (TBMT) request for data. Data is transmitted in a NRZ format changing on the positive transition of the transmitter clock (TCP). The character transmitter fill register is inserted into the data message if a data character is not loaded into the transmitter after a TBMT request.

Typical Applications

\square Computer Peripherals

\square Communication Concentrators
\square Integrated Modems
\square High Speed Terminals
\square Time Division Multiplexing
\square Industrial Data Transmission

Absolute Maximum Ratings

Ambient Temperature Under Bias	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Positive Voltage on any Pin with Respect to GROUND	$+7 \mathrm{~V}$
Negative Voltage on any Pin with Respect to GROUND	$-0.5 \mathrm{~V}$
Power Dissipation	0.75W

D.C. (Static) Electrical Characteristics* $\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \% ; \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\right.$ to $+70^{\circ} \mathrm{C}$ unless otherwise noted)

Symbol	Parameter	Min.	Typ.	Max.	Unit	Condition
V_{IH}	Input High Voltage	2.0		$\mathrm{~V}_{\mathrm{CC}}$	V	
V_{IL}	Input Low Voltage	-0.5		+0.8	V	
I_{IL}	Input Leakage Current			10	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IN}}=\mathrm{O}_{\mathrm{TO}} \mathrm{V}_{\mathrm{CC}} \mathrm{V}$
V_{OH}	Output High Voltage	2.4			V	$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$
$\mathrm{~V}_{\mathrm{OL}}$	Output Low Voltage			+0.4	V	$\mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA}$
C_{IN}	Input Capacitance			10	pF	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V} ; \mathrm{f}=1.0 \mathrm{MHz}$
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance			12	pF	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V} ; \mathrm{f}=1.0 \mathrm{MHz}$
I_{CC}	V_{CC} Supply Current			100	mA	No Load; $\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$

[^11]A.C. (Dynamic) Electrical Characteristics* $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \% ; \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ unless otherwise noted)

Symbol	Parameter	Min.	Typ.	Max.	Unit	Condition
TCP, RCP	Clock Frequency	DC		500	kHz	

Input Pulse Widths

$\mathrm{P}_{\mathrm{TCP}}$	Transmit Clock	900			nsec	CL $=20 \mathrm{pF}$
$\mathrm{P}_{\mathrm{RCP}}$	Receive Clock	900			nsec	1TTL Load
$\mathrm{P}_{\mathrm{RST}}$	Reset	500			nsec	
$\mathrm{P}_{\mathrm{TDS}}$	Transmit Data Strobe	200			nsec	
$\mathrm{P}_{\mathrm{TFS}}$	Transmit Fill Strobe	200			nsec	
$\mathrm{P}_{\mathrm{RSS}}$	Receive Sync Strobe	200			nsec	
P_{CS}	Control Strobe	200			nsec	
$\mathrm{P}_{\mathrm{RDE}}$	Receive Data Enable	400			nsec	Note 1
$\mathrm{P}_{\mathrm{SWE}}$	Status Word Enable	400			nsec	Note 1
P_{RR}	Receiver Restart	500			nsec	

Switching Characteristics

$\mathrm{T}_{\mathrm{TS} 0}$	Delay, TCP Clock to Serial Data Out			700	nsec	
$\mathrm{T}_{\mathrm{TBMT}}$	Delay, TCP Clock to TBMT Output			1.4	$\mu \mathrm{sec}$	
$\mathrm{T}_{\mathrm{TBMT}}$	Delay, TDS to TBMT			700	nsec	
$\mathrm{T}_{\mathrm{STS}}$	Delay, SWE to Status Reset			700	nsec	
$\mathrm{T}_{\mathrm{RDO}}$	Delay, SWE, RDE to Data Outputs			400	nsec	1TTL Load
$\mathrm{T}_{\mathrm{HRD}}$	Hold Time SWE, RDE to Off State			400	nsec	$\mathrm{C}_{\mathrm{L}}=130 \mathrm{pF}$
$\mathrm{T}_{\mathrm{DTS}}$	Data Set Up Time TDS, TFS, RSS, CS	0			nsec	
$\mathrm{T}_{\mathrm{DTH}}$	Data Hold Time TDS	700			nsec	
$\mathrm{T}_{\mathrm{DTI}}$	Data Hold Time TFS, RSS	200			nsec	
$\mathrm{T}_{\mathrm{CNS}}$	Control Set Up Time NDB1, NDB2, NPB, POE	0			nsec	
$\mathrm{T}_{\mathrm{CNH}}$	Control Hold Time NDB1, NDB2, NPB, POE	200			nsec	
$\mathrm{T}_{\mathrm{RDA}}$	Delay RDE to RDA Output	700			nsec	

NOTE 1: Required to reset status and flags.

Figure 1. Timing Waveform

Figure 2. Timing Waveform

Figure 3. Transmitter Timing Diagram

NOTE 1 DATA TRANSMISIION WILL START ON THE FAST LOW TO HGH TRANSTTON OF TCP AFTEA RESET IS LOW. THE MMTIAL RESET PULSE SHOULD NOT OCCUR UWTL 100 MACROSECONOS
AFTER POWER IS APPLLED.

Figure 4. Receiver Timing Diagram

Pin Definitions

Pin Definitions (continued)

Pin	Label	Function
(35)	$\overline{\mathrm{RDE}}$	RECEIVE DATA ENABLE. A V_{IL} enables the data in the Receiver Output Register onto the output data lines RD0-RD7. The trailing edge (V_{IL} to V_{IH} transition) of $\overline{\mathrm{RDE}}$ resets RDA to the V_{OL} condition.
(7)	FCT	FILL CHARACTER TRANSMITTED. A V_{OH} on FCT indicates data from the Transmitter Fill Register has been transferred to the Transmitter Shift Register. FCT is reset to $V_{\text {OL }}$ when data is transferred from the Transmitter Holding Register to the Transmitter Shift Register, or on the trailing edge (V_{IL} to V_{IH}) of the SWE pulse, or when RESET is V_{IH}. FCT is multiplexed onto the RD6 output (27) when $\overline{\mathrm{SWE}}$ is at V_{IL} and $\overline{\mathrm{RDE}}$ is at V_{IH}.
(25)	RSI	RECEIVER SERIAL INPUT. Serial data is clocked into the Receiver Shift Register, least significant bit first, on RSI at a rate equal to the Receive Clock frequency RCP.
(37)	RCP	RECEIVE CLOCK. Data is transferred from RSI input to the Receiver Shift Register at the frequency of the RCP input. Each data bit is entered on the positive to negative transition (V_{IH} to V_{IL}) of RCP.
(12)	RDA	RECEIVED DATA AVAILABLE. A V_{OH} indicates a character has been transferred from the Receiver Shift Register to the Receiver Output Register. RDA is reset to $\mathrm{V}_{\text {OL }}$ on the trailing edge (V_{IL} to V_{IH} transition) of $\overline{\mathrm{RDE}}$, by a V_{IL} on $\overline{\mathrm{RR}}$ or a V_{IH} on RESET. RDA is multiplexed onto the RD0 output (33) when $\overline{\operatorname{SWE}}$ is V_{IL} and $\overline{\mathrm{RDE}}$ is V_{IH}.
(8)	SCR	SYNC CHARACTER RECEIVED. A V_{OH} indicates the data in the Receiver Shift Register is identical to the data in the Receiver Sync Register. SCR is reset to a $V_{\text {OL }}$ when the character in the Receiver Shift Register does not compare to the Receiver Sync Register, on the trailing edge (V_{IL} to V_{IH} transition) of $\overline{S W E}$, by a $V_{I L}$ on $\overline{R R}$ or a $V_{I H}$ on RESET. SCR is multiplexed onto the RD3 output (30) when $\overline{\operatorname{SWE}}$ is a $V_{\text {IL }}$ and $\overline{\mathrm{RDE}}$ is V_{IH}.
(34)	$\overline{\text { SWE }}$	STATUS WORD ENABLE. A $\mathrm{V}_{\text {IL }}$ enables the internal status conditions onto the output data lines RD0-RD7. The trailing edge of $\overline{\text { SWE }}$ pulse resets FCT, ROR, RPE, and SCR to $\mathrm{V}_{\text {OL }}$.
(11)	ROR	RECEIVER OVERRUN. A V_{OH} indicates data has been transferred from the Receiver Shift Register to the Receiver Output Register when RDA was still set to V_{OH}. The last data in the Output Register is lost. ROR is reset by the trailing edge (V_{IL} to V_{IH}) of $\overline{\mathrm{SWE}}$, a V_{IL} on $\overline{\mathrm{RR}}$, a V_{IH} on RESET or a $V_{\text {OL }}$ to $V_{O H}$ transition of RDA. ROR is multiplexed onto the RD1 output (32) when $\overline{S W E}$ is $V_{I L}$ and $\overline{\operatorname{RDE}}$ is $V_{I H}$.
(10)	RPE	RECEIVER PARITY ERROR. A V_{OH} indicates the accumulated parity on the received character transferred to the Output Register does not agree with the parity selected by POE. RPE is reset with the next received character with correct parity, the trailing edge $\left(V_{I L}\right.$ to $\left.V_{I H}\right)$ of $\overline{S W E}$, a $V_{I L}$ on $\overline{\mathrm{RR}}$ or a V_{IH} on RESET. RPE is multiplexed onto the RD2 output (31) when $\overline{\mathrm{SWE}}$ is V_{IL} and $\overline{\mathrm{RDE}}$ is V_{IH}.

Pin Definitions (continued)

Pin	Label	Function
(13)	$\overline{\mathrm{RR}}$	RECEIVER RESTART. A $V_{I L}$ resets the receiver section by clearing the status RDA, SCR, ROR, and RPE to $V_{O L}$. The trailing edge of $\overline{R R}\left(V_{I L}\right.$ to $\left.V_{I H}\right)$ also puts the receiver in a bit transparent mode to search for a comparison, each bit time, between the contents of the Receiver Shift Register and the Receiver Sync Register. The number of data bits per character for the comparison is set by NDB1 and NDB2. After a compare is made SCR is set to V_{OH}, the sync character is transferred to the Receiver Output Register, and the receiver enters a word synchronous mode framing an input character each word time.

NOTE: Parity is not checked on the first sync character but is enabled for every succeeding character.
(39) NDB1 NUMBER DATA BITS. The number of Data Bits per character are determined by NDB1 and NDB2. The number of data bits does not include the parity bit.

NDB2	NDB1	CHARACTER LENGTH
V_{IL}	V_{IL}	5 Bits
V_{IL}	V_{IH}	6 Bits
V_{IH}	V_{IL}	7 Bits
V_{IH}	V_{IH}	8 Bits

For character length less than 8 bits, unused inputs are ignored and unused outputs are held to V_{OL}. Data is always right justified with D 0 and RD0 being the least significant bits.
(3) NPB NO PARITY BIT. A $\mathrm{V}_{\text {IH }}$ eliminates generation of a parity bit in the transmitter and checking of parity in the receiver. With parity disabled, the RPE status bit is held at $V_{0 L}$.
(4) POE PARITY ODD/EVEN. A $\mathrm{V}_{\text {IH }}$ directs both the transmitter and receiver to operate with even parity. A $V_{\text {IL }}$ forces parity operation. NPB must be $V_{I L}$ for parity to be enabled.
(5)
$\overline{\mathrm{CS}}$ CONTROL STROBE. A V_{IL} loads the control inputs NDB1, NDB2, POE, and NPB into the Control Register. For static operation, $\overline{\mathrm{CS}}$ can be tied directly to ground.

PERIPHERAL INTERFACE ADAPTER (PIA)

Features

\square 8-Bit Bidirectional Bus for Communication with the MPU
\square Two Bidirectional 8-Bit Buses for Interface to Peripherals
\square Two Programmable Control Registers
\square Two Programmable Data Direction Registers
\square Four Individually-Controlled Interrupt Input Lines: Two Usable as Peripheral Control Outputs
\square Handshake Control Logic for Input and Output Peripheral Operation
\square High-Impedance Three-State and Direct Transistor Drive Peripheral Lines
\square Program Controlled Interrupt and Interrupt Disable Capability

CMOS Compatible Peripheral Lines
\square Two TTL Drive Capability on all A and B Side Buffers
\square TTL Compatible
\square Static Operation

General Description

The S6821/S68A21/S68B21 are peripheral Interface Adapters that provide the universal means of interfacing peripheral equipment to the $\mathrm{S} 6800 / \mathrm{S} 68 \mathrm{~A} 00 / \mathrm{S} 68 \mathrm{~B} 00$ Microprocessing Units (MPU). This device is capable of interfacing the MPU to peripherals through two 8 -bit bidirectional peripheral data buses and four control lines. No external logic is required for interfacing to most peripheral devices.
The functional configuration of the PIA is programmed by the MPU during system initialization Each of the peripheral data lines can be programmed to act as an

General Description (Continued)

input or output, and each of the four control/interrupt lines may be programmed for one of several control modes. This allows a high degree of flexibility in the overall operation of the interface.
The PIA interfaces to the S6800/S68A00/S68B00 MPUs with an eight-bit bidirectional data bus, three
chip select lines, two register select lines, two interrupt request lines, read/write line, enable line and reset line. These signals, in conjunction with S6800/S68A00/ S68B00 VMA output, permit the MPU to have complete control over the PIA. VMA may be utilized to gate the input signals to the PIA.

Absolute Maximum Ratings:

Symbol	Rating	Value	Unit
V_{CC}	Supply Voltage	-0.3 to +7.0	Vdc
$\mathrm{V}_{\text {IN }}$	Input Voltage	-0.3 to +7.0	Vdc
T_{A}	Operating Temperature Range	0° to $+70^{\circ}$	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range	-55° to $+150^{\circ}$	${ }^{\circ} \mathrm{C}$
θ_{ja}	Thermal Resistance	82.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Note:
This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

Electrical Characteristics

$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{SS}}=0, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{L}}$ to T_{H} unless otherwise noted.

Symbol	Characteristic	Min.	Typ.	Max.	Unit	Conditions

Bus Control Inputs (R/W, Enable, $\overline{\text { Reset, }}$, RS0, RS1, CS0, CS1, $\overline{\mathrm{CS}} 2$)

V_{IH}	Input High Voltage	$\mathrm{V}_{\mathrm{SS}}+2.0$	-	V_{CC}	Vdc
V_{IL}	Input Low Voltage	$\mathrm{V}_{\mathrm{SS}}-0.8$	-	$\mathrm{V}_{\mathrm{SS}}+0.8$	Vdc
I_{IN}	Input Leakage Current	-	1.0	2.5	$\mu \mathrm{Adc}$
C_{IN}	Capacitance	-	-	$\mathrm{V}_{\mathrm{IN}}=0$ to 5.25 Vdc	

Interrupt Outputs $(\overline{\overline{I R Q A}}, \overline{\mathrm{IRQB}})$

V_{OL}	Output Low Voltage	-	-	$\mathrm{V}_{\mathrm{SS}}+0.4$	Vdc	$\mathrm{I}_{\mathrm{LOAD}}=3.2 \mathrm{mAdc}$
$\mathrm{I}_{\mathrm{LOH}}$	Output Leakage Current (Off State)	-	1.0	10	$\mu \mathrm{Adc}$	$\mathrm{V}_{\mathrm{OH}}=2.4 \mathrm{Vdc}$
$\mathrm{C}_{\text {OUT }}$	Capacitance	-	-	5.0	pF	$\mathrm{V}_{\mathrm{IN}}=0, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, $\mathrm{f}=1.0 \mathrm{MHz}$

Data Bus (D0-D7)

V_{IH}	Input High Voltage	$\mathrm{V}_{\mathrm{SS}}+2.0$	-	V_{CC}	Vdc	
V_{IL}	Input Low Voltage	$\mathrm{V}_{\mathrm{SS}}-0.3$	-	$\mathrm{V}_{\mathrm{SS}}+0.8$	Vdc	
$\mathrm{I}_{\mathrm{TSI}}$	Three State (Off State) Input Current	-	2.0	10	$\mu \mathrm{Adc}$	$\mathrm{V}_{\mathrm{IN}}=0.4$ to 2.4 Vdc
V_{OH}	Output High Voltage	$\mathrm{V}_{\mathrm{SS}}+2.4$	-	-	Vdc	$\mathrm{I}_{\mathrm{LOAD}}=-205 \mu \mathrm{Adc}$
V_{OL}	Output Low Voltage	-	-	$\mathrm{V}_{\mathrm{SS}}+0.4$	Vdc	$\mathrm{I}_{\mathrm{LOAD}}=1.6 \mathrm{mAdc}$
C_{IN}	Capacitance	-	-	12.5	pF	$\mathrm{V}_{\mathrm{IN}}=0, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ $\mathrm{f}=1.0 \mathrm{MHz}$

Electrical Characteristics (Continued)

Symbol	Characteristic	Min.	Typ.	Max.	Unit	Conditions

Peripheral Bus (PA0-PA7, PB0-PB7, CA1, CA2, CB1, CB2)

$\mathrm{I}_{1 \mathrm{~N}}$	Input Leakage Current	$\mathrm{R} / \overline{\mathrm{W}}, \overline{\overline{\text { Reset}}, ~ R S 0, ~ C S 0, ~ C S 1, ~}$,		1.0	2.5	$\mu \mathrm{Adc}$	$\mathrm{V}_{\text {IN }}=0$ to 5.25 Vdc
$\mathrm{I}_{\text {TSI }}$	Three-State (Off State) Input Current	PB0-PB7. CB2		2.0	10	$\mu \mathrm{Adc}$	$\mathrm{V}_{\text {IN }}=0.4$ to 2.4 Vdc
$\mathrm{I}_{\text {IH }}$	Input High Current	PA0-PA7, CA2	-200	-400		μ Adc	$\mathrm{V}_{\text {IH }}=2.4 \mathrm{Vdc}$
I_{OH}	Darlington Drive Current	PB0-PB7, CB2	-1.0		. 10	mAdc	$\mathrm{V}_{\mathrm{O}}=1.5 \mathrm{Vdc}$
$\mathrm{I}_{\text {IL }}$	Input Low Current	PA0-PA7, CA2		-1.3	-2.4	mAdc	$\mathrm{V}_{\text {IL }}=0.4 \mathrm{Vdc}$
V_{OH}	Output High Voltage	PA0-P7, PB0-PB7, CA2, CB2 PA0-PA7, CA2	$\begin{aligned} & \mathrm{v}_{\mathrm{SS}}+2.4 \\ & \mathrm{v}_{\mathrm{CC}}-1.0 \end{aligned}$			Vdc	$\begin{aligned} & \mathrm{I}_{\mathrm{LOAD}}=-200 \mu \mathrm{Adc} \\ & \mathrm{I}_{\mathrm{LOAD}}=-10 \mu \mathrm{Adc} \\ & \hline \end{aligned}$
V_{OL}	Output Low Voltage				$\mathrm{V}_{\mathrm{SS}}+0.4$	Vdc	$\mathrm{I}_{\mathrm{LOAD}}=3.2 \mathrm{mAdc}$
$\mathrm{C}_{\text {IN }}$	Capacitance				10	pF	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & \mathrm{f}=1.0 \mathrm{MHz} \end{aligned}$

Power Requirements

\mathbf{P}_{D}	Power Dissipation			550	mW

A.C. (Dynamic) Characteristics Loading $=30 \mathrm{pF}$ and one TTL load for PA0-PA7, PB0-PB7, CA2, CB2
$=130 \mathrm{pF}$ and one TTL load for D0-D7, IRQA, $\overline{\text { IRQB }}$
$\left(\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\right.$ to $+70^{\circ} \mathrm{C}$ unless otherwise noted)
Peripheral Timing Characteristics: $\quad \mathrm{V}_{\mathrm{CC}}-5.0 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{L}}$ to T_{H} unless otherwise specified

Symbol	Parameter	S6821		S68A21		S68B21		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{t}_{\text {PDSU }}$	Peripheral Data Setup Time	200		135		100		ns
$\mathrm{t}_{\text {PDH }}$	Peripheral Data Hold Time	0		0		0		ns
$\mathrm{t}_{\mathrm{CA} 2}$	Delay Time, Enable Negative Transition to CA2 Negative Transition		1.0		0.670		0.5	$\mu \mathrm{s}$
$\mathrm{t}_{\mathrm{RS} 1}$	Delay Time, Enable Negative Transition to CA2 Positive Transition		1.0		0.670		0.50	$\mu \mathrm{S}$
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Rise and Fall Times for CA1 and CA2 Input Signals		1.0		1.0		1.0	$\mu \mathrm{s}$
$\mathrm{t}_{\text {RS2 }}$	Delay Time from CA1 Active Transition to CA2 Positive Transition		2.0		1.35		1.0	$\mu \mathrm{s}$
$\mathrm{t}_{\text {PDW }}$	Delay Time, Enable Negative Transition to Peripheral Data Valid		1.0		0.670		0.5	$\mu \mathrm{S}$
$\mathrm{t}_{\mathrm{CmOS}}$	Delay Time, Enable Negative Transition to Peripheral CMOS Data Valid PA0-PA7, CA2		2.0		1.35		1.0	$\mu \mathrm{S}$

Peripheral Timing Characteristics (Continued)

Symbol	Parameter	S6821		S68A21		S68B21		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{t}_{\mathrm{CB} 2}$	Delay Time, Enable Positive Transition to CB2 Negative Transition		1.0		0.670		0.5	$\mu \mathrm{s}$
t_{DC}	Delay Time, Peripheral Data Valid to CB2 Negative Transition	2.0		20		20		ns
$\mathrm{t}_{\text {RS1 }}$	Delay Time, Enable Positive Transition to CB2 Positive Transition		1.0		0.670		0.5	$\mu \mathrm{s}$
$\mathrm{PWCT}^{\text {c }}$	Peripheral Control Output Pulse Width, CA2/CB2	550		550		550		ns
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Rise and Fall Times for CB1 and CB2 Input Signals		1.0		1.0		1.0	$\mu \mathrm{s}$
$\mathrm{t}_{\text {RS2 }}$	Delay Time, CB1 Active Transition to CB2 Positive Transition		2.0		1.35		1.0	$\mu \mathrm{S}$
$\mathrm{t}_{\text {IR }}$	Interrupt Release Time, IRQA and IRQB		1.60		1.1		0.85	$\mu \mathrm{S}$
$\mathrm{t}_{\mathrm{RS} 3}$	Interrupt Response Time		1.0		1.0		1.0	$\mu \mathrm{S}$
PW_{I}	Interrupt Input Pulse Width	500		500		500		ns
t_{RL}	Reset Low Time*	1.0		0.66		0.5		$\mu \mathrm{s}$

*The Reset line must be high a minimum of $1.0 \mu \mathrm{~s}$ before addressing the PIA.

Figure 1. Enable Signal Characteristics

Figure 3. Bus Write Timing Characteristics (Write Information into PIA)

Figure 2. Bus Read Timing Characteristics (Read Information from PIA)

Figure 4. Bus Timing Test Loads

Bus Timing Characteristics $\left(\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{SS}}=0, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{L}}\right.$ to T_{H} unless otherwise noted.)

Symbol	Parameter	S6821		S68A21		S68B21		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{t}_{\mathbf{c} \mathbf{y c}(\mathrm{E})}$	Enable Cycle Time	1000		666		500		ns
$\mathrm{PW}_{\text {EH }}$	Enable Pulse Width, High	450		280		220		ns
$\mathrm{PW}_{\text {EL }}$	Enable Pulse Width, Low	430		280		210		ns
${ }^{\text {Er }}$, t_{Ef}	Enable Pulse Rise and Fall Times		25		25		25	ns
$\mathrm{t}_{\text {AS }}$	Setup Time, Address and R/W Valid to Enable Positive Transition	160		140		70		ns
$\mathrm{t}_{\text {AH }}$	Address Hold Time	10		10		10		ns
$\mathrm{t}_{\text {DDR }}$	Data Delay Time, Read		320		220		180	ns
$\mathrm{t}_{\text {DHR }}$	Data Hold Time, Read	10		10		10		ns
$\mathrm{t}_{\text {DSW }}$	Data Setup Time, Write	195		80		60		ns
${ }^{\text {t }}$ DHW	Data Hold Time, Write	10		10		10		ns

Figure 5. TTL Equiv. Test Load

Figure 8. Peripheral Data Setup and Hold Times (Read Mode)

Figure 6. CMOS Equiv. Test Load
(PA0 - PA7, PBO - PB7, CA2 CB2)

Figure 7. NMOS Equiv. Test Load

Figure 9. CA2 Delay Time
(Read Mode; CRA-5 $=C R A-3=1, C R A-4=0$)

*Assumes part was deselected during the previous E pulse.

Figure 10. CA2 Delay Time

$$
\text { (Read Mode; CRA }-5=1, \text { CRA }-3=\text { CRA }-4=0)
$$

Figure 12. Peripheral Data and CB2 Delay Times (Write Mode; CRB-5 = CRB-3 = 1, CRB-4 = 0)

CB2 Note:
CB2 goes low as a result of the positive transition of Enable.
Figure 14. CB2 Delay Time (Write Mode; $\mathrm{CRB}-5=1, \mathrm{CRB}-3=\mathrm{CRB}-4=0$)

*Assumes part was deselected during any previous E pulse.
Figure 16. $\overline{\mathrm{IRQ}}$ Release Time

Figure 11. Peripheral CMOS Data Delay Times (Write Mode; CRA-5 = CRA-3 $=1$, CRA-4 $=0$)

Figure 13. CB2 Delay Time
(Write Mode; CRB-5 = CRB-3 = 1. CRB-4 = 0)

Figure 15. Interrupt Pulse Width and IRQ Response

*Assumes Interrupt Enable Bits are set.

[^12]
PERIPHERAL INTERFACE ADAPTER (PIA)

Features

\square 8-Bit Bidirectional Bus for Communication with the MPU
\square Two Bidirectional 8-Bit Buses for Interface to Peripherals
\square Two Programmable Control Registers
\square Two Programmable Data Direction Registers
\square Four Individually-Controlled Interrupt Input Lines: Two Usable as Peripheral Control Outputs
\square Handshake Control Logic for Input and Output Peripheral Operation
\square High-Impedance Three-State and Direct Transistor Drive Peripheral Lines
\square Program Controlled Interrupt and Interrupt Disable Capability
\square CMOS Compatible Peripheral Lines

General Description

The S 68 H 21 is a peripheral Interface Adapter that provides the universal means of interfacing peripheral equipment to the S 68 H 00 Microprocessing Unit (MPU). This device is capable of interfacing the MPU to peripherals through two 8 -bit bidirectional peripheral data buses and four control lines. No external logic is required for interfacing to most peripheral devices.
The functional configuration of the PIA is programmed by the MPU during system initialization. Each of the peripheral data lines can be programmed to act as an input or output, and each of the four control/interrupt lines may be programmed for one of several control modes. This allows a high degree of flexibility in the overall operation of the interface.

General Description (Continued)

The PIA interfaces to the S 68 H 00 with an eight-bit bidirectional data bus, three chip chip select lines, two interrupt request lines, read/write line, enable line and
reset line. These signals, in conjunction with the S68H00 output, permit the MPU to have complete control over the PIA. VMA may be utilized to gate the input signals to the PIA.

Absolute Maximum Ratings

Note:

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

Electrical Characteristics

$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{SS}}=0, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ unless otherwise noted.

Symbol	Parameter	Min.	Typ.	Max.	Unit	Conditions
V_{IH}	Input High Voltage	$\mathrm{V}_{\mathrm{SS}}+2.0$		V_{CC}	Vdc	
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	$\mathrm{V}_{\mathrm{SS}}-0.8$		$\mathrm{V}_{\mathrm{SS}}+0.8$	Vdc	
$\mathrm{I}_{\text {IN }}$	Input Leakage Current R/W, $\overline{\text { Reset, RS0, }}$ RS1, CS0, CS2, CS1, CA1, CB1, Enable		1.0	2.5	$\mu \mathrm{Adc}$	$\mathrm{V}_{\mathrm{IN}}=0$ to 5.25 Vdc
$\mathrm{I}_{\text {TSI }}$	Three State (Off State) Input Current D0-D7, PB0-PB7, CB2		2.0	10	$\mu \mathrm{Adc}$	$\mathrm{V}_{\mathrm{IN}}=0.4$ to 2.4 Vdc
I_{IH}	Input High Current PA0-PA7, CA2	-200	-400		$\mu \mathrm{Adc}$	$\mathrm{V}_{\mathrm{IH}}=2.4 \mathrm{Vdc}$
$\mathrm{I}_{\text {IL }}$	Input Low Current . PA0-PA7, CA2		-1.3	-2.4	mAdc	$\mathrm{V}_{\mathrm{IL}}=0.4 \mathrm{Vdc}$
V_{OH}	Output High Voltage D0-D7 Other Output	$\begin{aligned} & \mathrm{V}_{\mathrm{SS}}+2.4 \\ & \mathrm{~V}_{\mathrm{SS}}+2.4 \\ & \hline \end{aligned}$			Vdc Vdc	$\begin{aligned} & \mathrm{I}_{\text {LOAD }}=-205 \mu \mathrm{Adc} \\ & \mathrm{I}_{\text {LOAD }}=-200 \mu \mathrm{Adc} \end{aligned}$
$\mathrm{v}_{\text {OL }}$	Output Low VoltageD0-D7 Other Outputs			$\begin{aligned} & \mathrm{V}_{\mathrm{SS}}+0.4 \\ & \mathrm{~V}_{\mathrm{SS}}+0.4 \\ & \hline \end{aligned}$	Vdc Vdc	$\begin{aligned} & \mathrm{I}_{\mathrm{LOAD}}=1.6 \mathrm{mAdc} \\ & \mathrm{I}_{\mathrm{LOAD}}=3.2 \mathrm{mAdc} \\ & \hline \end{aligned}$
I_{OH}	Output High Current Sourcing	$\begin{aligned} & -205 \\ & -100 \\ & -1.0 \end{aligned}$	-2.5	-10	$\mu \mathrm{Adc}$ $\mu \mathrm{Adc}$ mAdc	$\mathrm{V}_{\mathrm{OH}}=2.4 \mathrm{Vdc}$ $\mathrm{V}_{0}=1.5 \mathrm{Vdc}$, the current for driving other than TTL, e.g., Darlington Base
$\mathrm{I}_{\mathrm{LOH}}$	Output Leakage Current $\overline{\text { IRQA, }} \overline{\text { IRQB }}$		1.0	10	μ Adc	$\mathrm{V}_{\mathrm{OH}}=2.4 \mathrm{Vdc}$
P_{D}	Power Dissipation			550	mW	
$\mathrm{C}_{\text {IN }}$	Capacitance PA0-PA7, PB0-PB7, CA2, CB2 Enable, R/W, Reset, RS0, RS1, CS0, CS1,	-		$\begin{gathered} 12.5 \\ 10 \\ 7.5 \end{gathered}$	$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \\ & \mathrm{f}=1.0 \mathrm{MHz} \end{aligned}$
Cout	$\overline{\overline{I R Q A}}, \overline{\mathrm{IRQB}}$			5.0	pF	

Note: The PA0-PA7 Peripheral Data lines and the CA2 Peripheral Control line can drive two standard TTL loads. In the input mode, the internal pullup resistor on these lines represents a maximum of 1.5 standard TTL loads.

A.C. (Dynamic Characteristics

Loading $=30 \mathrm{pF}$ and one TTL load for PA0-PA7, PB0-PB7, CA2, CB2

$$
=130 \mathrm{pF} \text { and one TTL load for D0-D7, IRQA, } \overline{\text { IRQB }}
$$

($\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ unless otherwise noted.)

Read Timing Characteristics (Figure 1)

Timing Characteristics $\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{SS}}=0, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\right.$ to $+70^{\circ} \mathrm{C}$ unless otherwise noted.)

Symbol	Parameter	Min.	Max.	Units	Conditions
$\mathrm{t}_{\text {PDSU }}$	Peripheral Data Setup Time	90		ns	
$\mathrm{t}_{\text {PDH }}$	Peripheral Data Hold Time	0		ns	
$\mathrm{t}_{\mathrm{CA} 2}$	Delay Time, Enable Negative Transition to CA2 Negative Transition		0.4	$\mu \mathrm{s}$	
$\mathrm{t}_{\mathrm{RS} 1}$	Delay Time, Enable Negative Transition to CA2 Positive Transition		0.4	$\mu \mathrm{S}$	
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Rise and Fall Times for CA1 and CA2 Input Signals		1.0	$\mu \mathrm{S}$	
$\mathrm{t}_{\text {RS2 }}$	Delay Time from CA1 Active Transition to CA2 Positive Transition		0.85	$\mu \mathrm{s}$	
$\mathrm{t}_{\text {PDW }}$	Delay Time, Enable Negative Transition to Peripheral Data Valid		0.4	$\mu \mathrm{s}$	
$\mathrm{t}_{\text {CMOS }}$	Delay Time, Enable Negative Transition to Peripheral CMOS PA0-PA7, CA2 Data Valid		0.85	$\mu \mathrm{S}$	$\mathrm{V}_{\mathrm{CC}}-30 \% \mathrm{~V}_{\mathrm{CC}}$ Figure 6, Load C
$\mathrm{t}_{\mathrm{CB} 2}$	Delay Time, Enable Positive Transition to CB2 Negative Transition	*	0.4	$\mu \mathrm{S}$	
$\mathrm{t}_{\text {DC }}$	Delay Time, Peripheral Data Valid to CB2 Negative Transition	2.0		ns	
$\mathrm{t}_{\text {RS1 }}$	Delay Time, Enable Positive Transition to CB2 Positive Transition		0.4	$\mu \mathrm{s}$	
$\mathrm{PW}_{\text {CT }}$	Peripheral Control Output Pulse Width, CA2/CB2	550		ns	
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Rise and Fall Times for CB1 and CB2 Input Signals		1.0	$\mu \mathrm{S}$	
$\mathrm{t}_{\text {RS2 }}$	Delay Time, CB1 Active Transition to CB2 Positive Transition		0.85	$\mu \mathrm{s}$	
$\mathrm{t}_{\text {IR }}$	Interrupt Release Time, $\overline{\mathrm{IRQA}}$ and $\overline{\text { IRQB }}$		0.70	$\mu \mathrm{s}$	
$\mathrm{t}_{\mathrm{RS} 3}$	Interrupt Response Time		1.0	$\mu \mathrm{s}$	
PW_{1}	Interrupt Input Pulse Width	500		ns	
t_{RL}	Reset Low Time*	0.4		$\mu \mathrm{s}$	

[^13]
Bus Timing Characteristics

($\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ unless otherwise noted.)
Read

Symbol	Parameter	Min.	Max.	Units
$\mathrm{t}_{\text {CYC(E) }}$	Enable Cycle Time	0.4		$\mu \mathrm{s}$
$\mathrm{PW}_{\text {EH }}$	Enable Pulse Width, High	0.18		$\mu \mathrm{S}$
$\mathrm{PW}_{\text {EL }}$	Enable Pulse Width, Low	0.18		ns
t_{AS}	Setup Time, Address and R/W to Enable Positive Transition	55		ns
$\mathrm{t}_{\text {DDR }}$	Data Delay Time		160	ns
t_{H}	Data Hold Time	10		ns
$\mathrm{t}_{\text {AH }}$	Address Hold Time	10		ns
$\mathrm{t}_{\mathrm{Er}}, \mathrm{t}_{\text {Ef }}$	Rise and Fall Time for Enable Input		25	ns
Write				
Symbol	Parameter	Min.	Max.	Units
$\mathrm{t}_{\text {CYC(E) }}$	Enable Cycle Time	0.4		$\mu \mathrm{S}$
$\mathrm{PW}_{\text {EH }}$	Enable Pulse Width, High	0.18		$\mu \mathrm{s}$
PW ${ }_{\text {EL }}$	Enable Pulse Width, Low	0.18		ns
t_{AS}	Setup Time, Address and R/W to Enable Positive Transition	55		ns
$\mathrm{t}_{\text {DSW }}$	Data Setup Time	50		ns
t_{H}	Data Hold Time	10		ns
t_{AH}	Address Hold Time	10		ns
$\mathrm{t}_{\mathrm{Er}}, \mathrm{t}_{\mathrm{Ef}}$	Rise and Fall Time for Enable Input		25	ns

Figure 1. Peripheral Data Setup Time (Read Mode)

Figure 2. CA2 Delay Time
(Read Mode; CRA-5 = CRA-351, CRA-4 $=0$)

*Assumes part was deselected during the previous E pulse.

PROGRAMMABLE TIMER

Features

Operates from a Single 5 Volt SupplyFully TTL CompatibleSingle System Clock Required (Enable)Selectable Prescaler on Time 3 Capable of 4 MHz for the $\mathbf{S 6 8 4 0}, 6 \mathrm{MHz}$ for the $\mathbf{S 6 8 A 4 0}$ and 8 MHz for the S68B40\square Programmable Interrupts $(\overline{\mathbf{I R Q}})$ Output to MPU
\square Readable Down Counter Indicates Counts to Go to Time-Out
\square Selectable Gating for Frequency or Pulse-Width Comparison
\square RESET InputThree Asynchronous External Clock and Gate/ Trigger Inputs Internally Synchronized
\square Three Maskable Outputs

General Description

The S 6840 is a programmable subsystem component of the S6800 family designed to provide variable system time intervals.
The S6840 has three 16-bit binary counters, three corresponding control registers and a status register. These counters are under software control and may be used to cause system interrupts and/or generate output signals. The S6840 may be utilized for such tasks as frequency measurements, event counting, interval measuring and similar tasks. The device may be used for square wave generation, gated delay signals, single pulses of controlled duration, and pulse width modulation as well as system interrupts.

Absolute Maximum Ratings

Supply Voltage V_{CC}	-0.3 to +7.0 V
Input Voltage $\mathrm{V}_{\text {IN }}$	-0.3 to +7.0 V
Operating Temperature Range T_{A}	0° to $+70^{\circ} \mathrm{C}$
Storage Temperature Range $\mathrm{T}_{\text {stg }}$	-55° to $+150^{\circ} \mathrm{C}$
Thermal Resistance $\theta_{\text {JA }}$... $82.5{ }^{\circ} \mathrm{C} / \mathrm{W}$

Note:
This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

Electrical Characteristics

$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{SS}}=0, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ unless otherwise noted.

Symbol	Parameter		Min.	Typ.	Max.	Unit	Conditions
V_{IH}	Input High Voltage		$\mathrm{V}_{\mathrm{SS}}+2.0$		V_{CC}	V	
$\mathrm{V}_{\text {IL }}$	Input Low Voltage		$\mathrm{V}_{\mathrm{SS}}-0.3$		$\mathrm{V}_{\mathrm{SS}}+0.8$	V	
$\mathrm{I}_{\text {IN }}$	Input Leakage Current			1.0	2.5	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=0$ to 5.25 V
$\mathrm{I}_{\mathrm{TSI}}$	Three State (Off State) Input Current	D0-D7		2.0	10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=0.4$ to 2.4 V
V_{OH}	Output High Voltage	D0-D7 Other Outputs	$\begin{aligned} & \mathrm{V}_{\mathrm{SS}}+2.4 \\ & \mathrm{~V}_{\mathrm{SS}}+2.4 \end{aligned}$			$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\text {LOAD }}=-205 \mu \mathrm{~A} \\ & \mathrm{I}_{\text {LOAD }}=-200 \mu \mathrm{~A} \end{aligned}$
v_{OL}	Output Low Voltage	$\begin{array}{r} \mathrm{D} 0-\mathrm{D} 7 \\ 01-03, \overline{\mathrm{IRQ}} \\ \hline \end{array}$			$\begin{aligned} & \mathrm{V}_{\mathrm{SS}}+0.4 \\ & \mathrm{~V}_{\mathrm{SS}}+0.4 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{LOAD}}=1.6 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{LOAD}}=3.2 \mathrm{~mA} \end{aligned}$
$\mathrm{I}_{\mathrm{LOH}}$	Output Leakage Current (Off State)	$\overline{\text { IRQ }}$		1.0	10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{OH}}=2.4 \mathrm{~V}$
P_{D}	Power Dissipation				550	mW	
$\mathrm{C}_{\text {IN }}$	Capacitance	$\begin{array}{r} \text { D0-D7 } \\ \text { All Others } \\ \hline \end{array}$			$\begin{gathered} 12.5 \\ 7.5 \end{gathered}$	pF	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \\ & \mathrm{f}=1.0 \mathrm{MHz} \end{aligned}$
$\mathrm{C}_{\text {OUT }}$		$\begin{array}{r} \overline{\mathrm{IRQ}} \\ 01,02,03 \end{array}$			$\begin{gathered} 5.0 \\ 10 \end{gathered}$	pF	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \\ & \mathrm{f}=1.0 \mathrm{MHz} \end{aligned}$

Bus Timing Characteristics

Read (See Figure 1)

Symbol	Characteristic	S6840		S68A40		S68B40		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{t}_{\text {CYCE }}$	Enable Cycle Time	1.0	10	0.666	10	0.5	10	$\mu \mathrm{s}$
PW ${ }_{\text {EH }}$	Enable Pulse Width, High	0.45	4.5	0.280	4.5	0.22	4.5	$\mu \mathrm{s}$
$\mathrm{PW}_{\text {EL }}$	Enable Pulse Width, Low	0.43		0.280		0.21		$\mu \mathrm{S}$
$\mathrm{t}_{\text {AS }}$	Setup Time, Address and R/W Valid to Enable Positive Transition	160		140		70		ns
$\mathrm{t}_{\text {DDR }}$	Data Delay Time		320		220		180	ns
t_{H}	Data Hold Time	10		10		10		ns
t_{AH}	Address Hold Time	10		10		10		ns
$\mathrm{t}_{\mathrm{Er}}, \mathrm{t}_{\mathrm{Ef}}$	Rise and Fall Time for Enable Input		25		25		25	ns

Bus Timing Characteristics (Continued)

Read (See Figure 1)

Symbol	Characteristic	S6840		S68A40		S68B40		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{t}_{\text {CYCE }}$	Enable Cycle Time	1.0	10	0.666	10	0.5	10	$\mu \mathrm{s}$
PW ${ }_{\text {EH }}$	Enable Pulse Width, High	0.45	4.5	0.280	4.5	0.22	4.5	$\mu \mathrm{s}$
$\mathrm{PW}_{\text {EL }}$	Enable Pulse Width, Low	0.43		0.280		0.21		$\mu \mathrm{s}$
$\mathrm{t}_{\text {AS }}$	Setup Time, Address and R/W Valid to Enable Positive Transition	160		140		70		ns
$\mathrm{t}_{\text {DSW }}$	Data Setup Time	195		80		60		ns
t_{H}	Data Hold Time	10		10		10		ns
t_{AH}	Address Hold Time	10		10		10		ns
$\mathrm{t}_{\mathrm{Er}}, \mathrm{t}_{\mathrm{Ef}}$	Rise and Fall Time for Enable Input		25		25		25	ns

AC Operating Characteristics

(See Figures 3 and 7)

		S6840		S68A40		S68B40		
Symbol	Characteristic	Min.	Max.	Min.	Max.	Min.	Max.	Unit
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Input Rise and Fall Times (Figures 4 and 5) $\overline{\mathrm{C}}, \overline{\mathrm{G}}$ and Reset		1.0		0.666*		0.500*	$\mu \mathrm{S}$
PW ${ }_{\text {L }}$	Input Pulse Width (Figure 4) (Asynchronous Mode) $\overline{\mathrm{C}}, \overline{\mathrm{G}}$ and $\overline{\text { Reset }}$	$\mathrm{t}_{\text {CYCE }}+\mathrm{t}_{\text {su }}+\mathrm{t}_{\text {hd }}$		$\mathrm{t}_{\mathrm{CYCE}}+\mathrm{t}_{\mathrm{su}}+\mathrm{t}_{\mathrm{hd}}$		$\mathrm{t}_{\mathrm{CYCE}}+\mathrm{t}_{\text {su }}+\mathrm{t}_{\text {hd }}$		ns
PW_{H}	Input Pulse Width (Figure 5) (Asynchronous Mode) $\overline{\mathrm{C}}, \overline{\mathrm{G}}$ and $\overline{\text { Reset }}$	$\mathrm{t}_{\mathrm{CYCE}}+\mathrm{t}_{\text {su }}+\mathrm{t}_{\text {hd }}$		$\mathrm{t}_{\text {CYCE }}+\mathrm{t}_{\text {su }}+\mathrm{t}_{\text {hd }}$		$\mathrm{t}_{\text {CYCE }}+\mathrm{t}_{\text {su }}+\mathrm{t}_{\text {hd }}$		ns
$\mathrm{t}_{\text {su }}$	Input Setup Time (Figure 6) (Synchronous Mode) $\overline{\mathrm{C}}, \overline{\mathrm{G}}$ and $\overline{\text { Reset }}$ $\overline{\mathrm{C} 3}$ ($\div 8$ Prescaler Mode only)	200		120		75		ns
$t_{\text {hd }}$	Input Hold Time (Figure 6) (Synchronous Mode) $\overline{\mathrm{C}}, \overline{\mathrm{G}}$ and $\overline{\text { Reset }}$ $\overline{\mathrm{C} 3}$ ($\div 8$ Prescaler Mode only)	50		50		50		ns
$\begin{aligned} & \mathrm{PW}_{\mathrm{L}}, \\ & \mathrm{PW}_{\mathrm{H}} \end{aligned}$	Input Pulse Width (Synchronous Mode) $\overline{\mathrm{C} 3}$ ($\div 8$ Prescaler Mode only)	125		84		62.5		ns
$\begin{gathered} \mathrm{t}_{\mathrm{co}} \\ \mathrm{t}_{\mathrm{cm}} \\ \mathrm{t}_{\mathrm{cmos}} \\ \hline \end{gathered}$	Output Delay, O1-O3 (Figure 7) $\left(\mathrm{V}_{\mathrm{OH}}=2.4 \mathrm{~V}\right.$, Load B$)$ TTL $\left(\mathrm{V}_{\mathrm{OH}}=2.4 \mathrm{~V}\right.$, Load D$)$ MOS $\left(\mathrm{V}_{\mathrm{OH}}=0.7 \mathrm{~V}_{\mathrm{DD}}\right.$, Load D) CMOS		$\begin{aligned} & 700 \\ & 450 \\ & 2.0 \\ & \hline \end{aligned}$		$\begin{array}{r} 460 \\ 450 \\ 1.35 \\ \hline \end{array}$		$\begin{array}{r} 340 \\ 340 \\ 1.0 \\ \hline \end{array}$	
$\mathrm{t}_{\text {IR }}$	Interrupt Release Time		1.2		0.9		0.7	$\mu \mathrm{s}$

[^14]Figure 1. Bus Read Timing Characteristics (Read Information from PTM)

Figure 3. Input Pulse Width Low

Figure 5. Input Setup and Hold Times

Figure 2. Bus Write Timing Characteristics (Write Information into PTM)

Figure 6. Output Delay
enable

Figure 7. $\overline{\mathbf{R} \bar{Q}}$ Release Time

Figure 8. Bus Timing Test Loads

LOADC
(iRO ONLY)

LOAD B
(01, 02, 03)

CRT CONTROLLER (CRTC)

Features

Generates Refresh Addresses and Row Selects\square Generates Video Monitor Inputs: Horizontal and Vertical Sync and Display Enable
\square Low Cost; MC6845/SY6545 Pin Compatible
\square Text Can Be Scrolled on a Character, Line or Page Basis
\square Addresses 16K Bytes of Memory
\square Screen Can Be Up to 128 Characters Tall By 256 Wide
\square Character Font Can Be $\mathbf{3 2}$ Lines High With Any Width
\square Two Complete ROM Programs
\square Cursor and/or Display Can Be Delayed 0, 1 or 2 Clock Cycles
\square Four Cursor Modes:

- Non-Blink
- Slow Blink
- Fast Blink
- Reverse Video With Addition of a Single TTL Gate
\square Three Interlace Modes
- Normal Sync
- Interlace Sync
- Interlace Sync and Video
\square Full Hardware Scrolling
\square NMOS Silicon Gate Technology
\square TTLCompatible, Single +5 Volt Supply

General Description

The S68045 CRT Controller performs the complex interface between an S6800 Family microprocessor and a raster scan display CRT system. The S 68045 is designed to be flexible yet low cost. It is configured to both simplify the development and reduce the cost of equipment such as intelligent terminals, word processing, and information display devices.
The CRT Controller consists of both horizontal and vertical counting circuits, a linear address counter, and control registers. The horizontal and vertical counting circuits generate the Display Enable, HSYNC, VSYNC, and RA0-RA4 signals. The RA0-RA4 lines are scan line count signals to the external character generator ROM. The number of characters per character row, scan lines per character row, character rows per screen, and the
horizontal and vertical SYNC position and width are all mask programmable. The S 68045 is capable of addressing 16 K of memory for display. The CRT may be scrolled or paged through the entire display memory under MPU control. The cursor control register determines the cursor location on the screen, and the cursor format can be programmed for fast blink, slow-blink, or non-blink appearance, with programmable size. By adding a single TTL gate, the cursor can even be reversed video. The device features two complete, independent programs implemented in user-specified ROM. Either set of programmable variables $(50 / 60 \mathrm{~Hz}$ refresh rate, screen format, etc.) is available to the user at any time.

The S68045 is pin compatible with the MC6845, operates from a single 5 -volt supply, and is designed using the latest in minimum-geometry NMOS technology.

Absolute Maximum Ratings

Supply Voltage V_{CC}	$-0.3^{\circ} \mathrm{C}$ to $+7.0^{\circ} \mathrm{C}$
Input Voltage $\mathrm{V}_{\text {IN }}$	-0.3 V to +7.0 V
Operating Temperature Range T_{A}	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range TStg	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Bus Timing Characteristics

Symbol	Parameter	Min.	Typ.	Max.	Unit	Condition
$\mathrm{t}_{\mathrm{CYCE}}$	Enable Cycle Time	1.0			$\mu \mathrm{~s}$	
$\mathrm{PW}_{\mathrm{EH}}$	Enable Pulse Width, High	0.45		25	$\mu \mathrm{~s}$	
$\mathrm{PW}_{\mathrm{EL}}$	Enable Pulse Width, Low	0.43			$\mu \mathrm{~s}$	
t_{AS}	Setup Time, CS and RS Valid to Enable Positive Transition	160			ns	
t_{H}	Data Hold Time	10			ns	
t_{AH}	Address Hold Time	10			ns	
$\mathrm{t}_{\mathrm{Er}}, \mathrm{t}_{\mathrm{Ef}}$	Rise and Fall for Enable Input			25	ns	
$\mathrm{t}_{\mathrm{DSW}}$	Data Setup Time	195			ns	

Electrical Characteristics

$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \% ; \mathrm{V}_{\mathrm{SS}}=0, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ unless otherwise noted

Symbol	Parameter	Min.	Typ.	Max.	Unit	Condition
$\mathrm{V}_{\text {IH }}$	Input High Voltage	2.0		V_{CC}	Vdc	
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	-0.3		0.8	Vdc	
$\mathrm{I}_{\text {IN }}$	Input Leakage Current		1.0	2.5	$\mu \mathrm{Adc}$	
V_{OH}	Output High Voltage	2.4			Vdc	$\mathrm{I}_{\text {LOAD }}=-100 \mu \mathrm{~A}$
$\mathrm{V}_{\text {OL }}$	Ouput Low Voltage			0.4	Vdc	$\mathrm{I}_{\text {LOAD }}=1.6 \mathrm{~mA}$
P_{D}	Power Dissipation		600		mW	
$\mathrm{C}_{\text {IN }}$	Input CapacitanceD0-D7 All Others			$\begin{gathered} 12.5 \\ 10 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$	
COUT	Output Capacitance All Outputs			10	pF	
$\mathrm{P}_{\text {WCL }}$	Minimum Clock Pulse Width, Low	160			ns	
$\mathrm{P}_{\mathrm{WCH}}$	Clock Pulse Width, High	200		10,000	ns	
f_{c}	Clock Frequency			2.5	MHz	
$\mathrm{tcr}_{\text {cr }} \mathrm{t}_{\text {cf }}$	Rise and Fall Time for Clock Input			20	ns	
$\mathrm{t}_{\text {MAD }}$	Memory Address Delay Time			160	ns	
$\mathrm{t}_{\text {RAD }}$	Raster Address Delay Time			160	ns	
$\mathrm{t}_{\text {DTD }}$	Display Timing Delay Time			300	ns	
$\mathrm{t}_{\text {HSD }}$	Horizontal Sync Delay Time			300	ns	
tvSD	Vertical Sync Delay Time			300	ns	
$t_{\text {CDD }}$	Cursor Display Timing Delay Time			300	ns	

Systems Operation

The S68045 CRTC generates all of the signals needed for the proper operation of a CRT system including HSYNC, VSYNC, Display Enable, Cursor control signals (refer to Figure 1), the refresh memory addresses (MA0-MA13) and row addresses (RA0-RA4). The CRTC's timing is derived from the CLK input, which is divided down from the dot rate counter.
The CRTC, which is compatible with the 6800 family, communicates with the MPU by means of the standard 8 -bit data bus. This primary data bus uses a buffered interface for writing information to the display refresh RAM by means of a separate secondary data bus. This arrangement allows the MPU to forget about the display except for those time periods when data is actually being changed on the screen. The address bus for the refresh RAM is continuously multiplexed between the MPU and the CRTC.

Since the MPU is allowed transparent read/write access to the display memory, the refresh RAM appears as just another RAM to the processor. This means that the refresh memory can also be used for program storage. Care should be taken by the system designer, however, to insure that the portion of memory being used for program storage is not actively displayed.

Displayed Data Control

Display Refresh Memory Addresses (MA0-MA13) - 14 bits of address provide the CRTC with access of up to 16 K of memory for use in refreshing the screen.
Row Addresses (RA0-RA4) - 5 bits of data that provide the output from the CRTC to the character generator ROM. They allow up to 32 scan lines to be included in a character.
Cursor - This TTL compatible, active high output indicates to external logic that the cursor is being displayed.

Figure 1. Typical CRT Controller System

The character address of the cursor is held in a register, so the cursor's position is not lost even when scrolled off the screen.

CRT Control

All three CRT control signals are TTL compatible, active high outputs.
Display Enable - Indicates that valid data is being clocked to the CRT for the active display area.
Vertical Sync (VSYNC) - Makes certain the CRTC and the CRT's vertical timing are synchronized so the picture is vertically stable.
Horizontal Sync (HSYNC) - Makes certain the CRTC and the CRT's horizontal timing are synchronized so the picture is horizontally stable.

Processor Interface

All processor interface lines are three state, TTL/MOS compatible inputs.
Chip Select ($\overline{\mathbf{C S}}$)-The $\overline{\mathrm{CS}}$ line selects the CRTC when low to write to the internal Register File. This signal should only be active when there is a valid stable address being decoded from the processor.

Register Select - The RS line selects either the Address Register ($\mathrm{RS}=$ " 0 ") or one of the Data Registers ($\mathrm{RS}=$ " 1 ") of the internal Register File.

To address one of the software programmable registers (R12, R13, R14 or R15 in Table 2) first access the Address Register ($\overline{\mathrm{CS}}=0, \mathrm{RS}=0$) and write the number of the desired register. Then write into the actual register by addressing the data register section ($\overline{\mathrm{CS}}=0, \mathrm{RS}=1$) and enter the appropriate data.
Write $(\overline{\mathrm{W}})$ - The $\overline{\mathrm{W}}$ line allows a write to the internal Register File.
Data Bus (D0-D7) - The data bus lines (D0-D7) are write-only and allow data transfers to the CRTC internal register file.
Enable (E) - The Enable signal enables the data bus input buffers and clocks data to the CRTC. This signal is usually derived from the processor clock, and the high to low transition is the active edge.
S68045 Control Clock (CLK) - The clock signal is a high impedance, TTL/MOS compatible input which assures the CRTC is synchronized with the CRT itself. The CLK signal is divided down by external circuitry from the dot rate counter. The CLK frequency is equal to
the dot rate frequency divided by the width of a single character block (including framing) expressed in dots, CLK is equal to the character rate.

Program (PROG) - The voltage on this pin determines whether the screen format in ROM 0 (PROG LOW) or ROM 1 (PROG HIGH) is being used.
Reset ($\overline{\mathbf{R E S}}$) - The $\overline{\mathrm{RES}}$ input resets the CRTC. An (active) low input on this line forces these actions:
a) MA0-MA13 are loaded with the contents of R12/R13 (the start address register).
b) The horizontal, vertical, and raster address counter are reset to the first raster line of the first displayed character in the first row.
c) All other outputs go low.

Note that none of the internal registers are affected by RES.
$\overline{\text { RES }}$ on the CRTC differs from the reset for the rest of the 6800 family in the following aspects:
a) MA0-MA13 and RA0-RA4 go to the start addresses, instead of FFFF.
b) Display recommences immediately after RES goes high.
Internal Register Description - There is a bank of 15
control registers in the 68045, most of which are mask programmed. The exceptions are the Address Register, the two Start Address Registers (R12 \& R13) and the Cursor Location Registers (R14 \& R15). All software programmable registers are write only. The Address Register is 5 bits long. The software programmable registers are made available to the data lines whenever the chip select ($\overline{\mathrm{CS}}$) goes low. When $\overline{\mathrm{CS}}$ goes high, the data lines show a high impedance to the microprocessor.
Horizontal Total Register ($\mathbf{R 0} 0$) - The full horizontal period, expressed in character times, is masked in R0. (See Figure 2a.)
Horizontal Displayed Register (R1) - This register contains the number of characters to be actually displayed in a row. (See Figure 2a.)
Horizontal SYNC Position Register (R2) - The contents of R2 (also in character times) should be slightly larger than the value in R1 to allow for a non-displayed right border. (See Figure 2a.)
Sync Width Register (R3) - The width of the HSYNC pulse expressed in character times is masked into the lower four bits of R3. The width of the HSYNC pulse has to be non-zero.

The width of the VSYNC pulse is masked into the upper

Figure 2a. Approximate Timing Diagram

[^15] DISPLAY ENABLE AT PIN 18. NOTE THE (a) FIGURE IS TIMED IN TERMS OF INDIVIDUAL CHARACTERS, WHEREAS THE (b) FIGURE IS TIMED IN TERMS OF CHARACTER ROWS.
four bits of R3 without any modification, with the exception that all zeroes will make VSYNC 16 characters wide.
Vertical Total Register (R4) - This register contains the total number of character rows - both displayed and non-displayed - per screen. This number is just the total number of scan lines used divided by the number of scan lines in a character row. If there is a remainder, it is placed in R5. (See Figure 2b).
Vertical Total Adjust Register (R5) - See description of R4. A fractional number of character row times is used to obtain a refresh rate which is exactly $50 \mathrm{HZ}, 60 \mathrm{HZ}$, or some other desired frequency. (See Figure 2b).
Vertical Displayed Register (R6) - This register contains the total number of character rows that are actually displayed on the CRT screen. (See Figure 2b).
Vertical SYNC Position (R7) - R7 contains the position of the vertical SYNC pulse in character row times with respect to the top character row. Increasing the value shifts the data up. (See Figure 2b).
Interlace Mode Register (R8) - R8 controls which of the three available raster scan modes will be used (See Figure 3).

- Non-interlace or Normal sync mode
- Interlaced sync mode
- Interlaced sync and Video mode

The Cursor and Display Enable outputs can be delayed (skewed) 0,1 or 2 clock cycles with respect to the refresh memory address outputs (MA0-MA13). The amount the cursor is delayed is independent of how much the Display

Enable signal is delayed. This feature allows the system designer to account for memory address propagation delay through the RAM, ROM, etc.
Maximum Scan Line Register (R9) - Determines the number of scan lines per character row including top and bottom spacing.
Cursor Start Register (R10) - Contains the raster line where the cursor start (see Figure 4). The cursor start line can be anywhere from line 0 to line 31 .

The cursor can be in one of the following formats.

- Non-blinking
- Slow blinking (1/16) the vertical refresh rate)
- Fast blinking ($1 / 32$ the vertical refresh rate)
- Reverse video (non-blinking, slow blinking, or fast blinking)

The reverse video cursor needs an external TTL XOR gate to be placed in the video circuit.
To implement the reverse video cursor, the cursor start line (R10) should be set to line 0 and the cursor end line (R 11) should be set to whatever is in R 9 so that the cursor covers the entire block. On the circuit level, the output from the Cursor pin (pin 19) should be taken through the XOR gate along with the output from the shift register. (See Figure 5.) With this setup the character whose memory address is in the cursor register (R14/ R15) will have it's background high (because Cursor along is high) but the character itself will be off (because both cursor and the character are both high.

Figure 2b. Approximate Timing Diagram

Figure 3. Interiace Control

Figure 4. Cursor Control

MODE	CuASOR DISPLAY MODE
1	Non-Blink
2	Cursor Non-Display
3	Blink. $1 / 16$ Field Rate
4	Bink. $1 / 32$ Field Rate

Memory Start Address Register (R12/R13) - These two software programmable, write-only registers taken together contain the memory address of the first character displayed on the screen. Register R12 contains the upper six bits of the fourteen refresh memory address bits, while R13 contains the lower eight bits. The Linear Address Generator begins counting from the address in R12/R13. By changing the starting address, the display
can be scrolled up or down through the 16 K memory block by character, line or page. If the value in R12/R13 is near the end of the 16 K block the display will wrap around to the front.

Cursor Address Register (R14/R15) - These two software programmable, write-only registers, taken together, contain the address in memory of the cursor character.

Figure 5. Implementation of a Reversed Video Cursor

Register R14 contains the upper six bits and register R15 contains the lower eight bits of the character. Cursor position is associated with an address in memory rather than with a position on the screen. This way cursor position is not lost when the display is scrolled.
Address Register - The five bit address register is unique in that it does not store any CRT-related information, but is used as the address storage register in an indirect access of the other registers. When the Register Select pin (RS) is low, the address register is accessed by D0-D4. When RS is high, the register whose address is in the address register is accessed.

CRTC Internal Description

There are four counters which determine what the CRTC's output will be (see Block Diagram):

1) Horizontal Counter
2) Vertical Counter
3) Row Address Counter
4) Linear Address Counter

The first two counters, and to some extent the third, take care of the physical operation of the monitor. The Linear Address Counter, on the other hand, is responsible for the data that is displayed on the screen.
Surrounding these counters are the registers R0-R15. Coincidence logic continuously compares the contents of each counter with the contents of the register(s) associated with it. When a match is found, appropriate action is taken; the counter is reset to a fixed or dynamic value, or a flag (such as VSYNC) is set, or both.

Two sets of registers - The start Address Register (R12) R13) and the Cursor Position Register (R14/R15) - are programmable via the Data lines (D0-D7). The other registers are all mask programmed. There are two ROM programs available on each chip. Selection of which ROM program will be accessed is performed by the PROG pin.

Horizontal Counter

The Horizontal Counter produces four output flags: HSYNC, Horizontal Display Enable, Horizontal Reset to the Linear Address Counter, and the horizontal clock.
The Horizontal Counter is driven by the character rate clock, which was derived from the dot rate clock (see Table 1). Immediately after the valid display area is entered the Horizontal Counter is reset to zero but continues incrementing.
HSYNC is the only one of the four signals which is fed to an external device (the CRT). The Horizontal Counter is compared to registers R0, R2 and R3 to give an HSYNC of the desired frequency (R 0), position (R2) and width (R3). (See Figure 2a.)
Horizontal Display Enable is an internal flag which, when ANDed with Vertical DE, is output at the Display Enable pin. The Horizontal Counter determines the proper frequency (R 0), and width (R 1).
The Horizontal Reset and the horizontal clock are actually identical signals: the only difference is the way they are used. Both are pulsed once for each scan line, so their frequency is equal to the character rate clock frequency divided by the entire horizontal period (display, non-display and retrace) expressed in character times

Table 1. Comparison of all CRTC Clocks

NAME	LOCATION OF CLOCK	DIVIDED BY:	CONTROLLING REGISTER	PRODUCES
DOT RATE CLOCK	EXTERNAL	TOTAL WIDTH OF A CHARACTER BLOCK IN DOTS	EXTERNAL	CHARACTER RATE CLOCK
CHARACTER RATE CLOCK	EXTERNAL INPUT	TOTAL NUMBER OF CHARACTERS IN A ROW	RO	HORIZONTAL CLOCK
HORIZONTAL CLOCK	INTERNAL	TOTAL NUMBER OF SCAN LINES IN A CHARACTER ROW	R9	ROW ADDRESS CLOCK
ROW ADDRESS CLOCK	INTERNAL	TOTAL NUMBER OF CHARACTER ROWS PER SCREEN	R4, R5	VERTICAL CLOCK

Table 2. CRTC Internal Register Assignment

$\overline{\mathrm{cs}}$	RS	address register					REGISTER\#	REGISTER FILE
		4	3	2	1	0		
		ASK	OGR	ABLE			R0 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11	HORIZONTAL TOTAL HORIZONTAL DISPLAYED HORIZONTAL SYNC POSITION HORIZONTAL SYNC WIDTH VERTICAL TOTAL vertical total adjust VERTICAL DISPLAYED VERTICAL SYNC POSITION INTERLACE MODE MAX SCAN LINE ADDRESS CURSOR START CURSOR END
0	1	0	1	1	0	0	R12	START ADDRESS (H)
0	1	0	,	1	0	1	R13	START ADDRESS (L)
0	1	0	1	1	1	0	R14	CURSOR (H)
0	1	0	1	1	1	1	R15	CURSOR (L)
0	0	X	X	x	X	X	X	ADDRESS REGISTER

(which is stored in R0). The horizontal clock drives the Vertical and Row address Counters. The horizontal reset is discussed with the Linear Address Counter.

Vertical Counter

The Vertical Counter produces three output flags: VSYNC, Vertical Display Enable, and Vertical Reset to the Linear Address Counter. The Vertical Counter is driven by the horizontal clock. Immediately after vertical retrace the Vertical Counter is reset to zero but continues incrementing.
VSYNC is the only one of the three signals which is fed to an external device (the CRT). The Vertical Counter
is compared to registers R3, R4, R5 and R7 to give a VSYNC of the desired frequency (R4, R5), position (R7) and width (R3). (See Figure 2b.)
Vertical Display Enable is an internal flag which, when ANDed with Horizontal DE, is output at the Display Enable pin. The Vertical Counter determines the proper frequency (R4, R5) and width (R6).

Vertical Reset is pulsed once for each screen. The frequency of Vertical Reset is equal to the horizontal clock frequency divided by the total number of scan lines in a screen (which is equal to ($\mathrm{R} 4 \times \mathrm{R} 9$) +R 5). It will be discussed with the Linear Address Counter.

Figure 6. Bus Write Timing

Row Address Counter

The Row Address Counter produces three sets of output: the five Row Address lines (RA0-RA4), the Row Address Cursor Enable flag and the Row Address Reset flag. The Row Address Counter is driven by the horizontal clock. Immediately after a full character row has been completed by the Row Address Counter is reset to zero but continues incrementing. Note that the Row Address Counter actually counts scan lines, which are different from character rows. A full character row consists of however many scan lines are in register R 9 .

The Row Address Lines, RA0-RA4, are the only data lines from the Row Address Counter that are fed to an external device (the character generator ROM). The Row Address lines just carry the count that is currently in the Row Address Counter. The counter is reset whenever the count equals the contents of the Maximum Scan Line Register (R9.)

Row Address Cursor Enablel is a flag going to the Cursor output AND gate. The Row Address Cursor Enable flag goes high whenever the count in the Row Address Counter is greater than or equal to the Cursor Start Register (R10) but less than or equal to the Cursor End Register (R11). The other input to the Cursor output AND gate goes high whenever the address in the Linear

Address Counter is equal to the address in the Cursor Position Reister (R14/R15).

Row Address Reset is pulsed whenever the Row Address Counter is reset. It will be discussed with the Linear Address Counter.

Linear Address Counter

The Linear Address Counter (LAC) produces only one set of outputs: The Refresh Memory Address lines (MA0MA13). These fourteen bits are fed externally to the Refresh RAM and internally to the Cursor Position coincidence circuit. The LAC is driven by the character rate clock and continuously increments during the display, non-display and retrace portions of the screen. It contains an internal read/write register which stores the memory address of the first displayed character in the current row.

When any of the three Reset flags already mentioned (Horizontal, Row Address and Vertical) is pulsed, the value in the internal register is loaded into the counter. If the reset is a Horizontal Reset the value in the internal register is not modified before the load. If the reset is a Row Address Reset, the value in the internal "first character" register is first increased by the number of characters displayed on a single character row (register

R1). The new contents of the internal register are then loaded into the Linear Address Counter.

If the reset is a Vertical Reset, the value in Start Address Register (R12/R13) is first loaded into the internal register, and then into the Linear Address Counter.

Figure 7. Bus Timing Character

Figure 8. Refresh Memory Addressing (MAO-MA13) State Chart

[^16]Figure 9. CRTC Horizontal Timing

* Timing is shown for first displayed scan row only.

See Chart in Figure 16 for other rows. The initial
MA is determined by the contents of Start Address
Register, R12/R13. Timing is shown for R12/R13=0.

Figure 10. CRTC Vertical Timing

* Nht - there must be an even number of character times for both interlace modes.
** Initial MA is determined by R12/R13 (Start Address Register), which is zero in this timing example.
*** Nht must be an even number of scan lines for Interlace Sync and Video Mode.

Figure 11. Cursor Timing

* Timing is shown for non-interiace and interlace sync modes.
* Timing is shown for non-interiace and interiace
ple shown has cursor programm
Cursor Register $=$ Nhd +2
Cursor Start $=1$
Cursor End $=3$
** The initial MA is determined by the contents of Start
Address Register, R12/R13. Timing is shown for
R12/R13 $=0$.

S68045 ROM Program Worksheet

The value in each register of the MC6845 or SY6545 should be entered without any modifications. AMI will take care of translating into the appropriate format.
\square All numbers are in decimal.
ROM
Program
Zero

ROM
Program One
\qquad
\qquad
R2
\qquad
R3 \qquad
R4 \qquad
\qquad
R5 \qquad
\qquad
R6 \qquad
\qquad
R7 \qquad
\qquad
\qquad
\qquad
R9 \qquad
\qquad
R10 \qquad
\qquad
R11 \qquad
\qquad

Which controller was used to develop the system?
Synertek or Rockwell 6545
Motorola MC6845 Original
R VersionS Version

Features

- 2048x 8-Bit Bytes of Mask-Programmable ROM
- 8-Bit Bidirectional Data Port for Parallel Interface Plus Two Control Lines
\square Programmable Interval Timer-Counter Functions
\square Programmable I/O Peripheral Data, Control and Direction Registers
\square Compatible with the Complete S6800 Microcomputer Product Family
\square TTL-Compatible Data and Peripheral LinesSingle 5 Volt Power Supply

General Description

The S6846 combination chip provides the means, in conjunction with the S6802, to develop a basic 2-chip microcomputer system. The S6846 consists of 2048 bytes of mask-programmable ROM, an 8 -bit bidirectional data port with control lines, and a 16 -bit programmable timer-counter.
This device is capable of interfacing with the $\mathbf{S} 6802$ (basic S6800, clock and 128 bytes of RAM) as well as the S6800 if desired. No external logic is required to interface with most peripheral devices.
The S6846 combination chip may be partitioned into three functional operating sections: programmed storage, timer-counter functions, and a parallel I/O port.

General Description (Continued)

Programmed Storage

The mask-programmable ROM section is similar to other AMI ROM products. The ROM is organized in a 2048 by 8 -bit array to provide read only storage for a minimum microcomputer system. Two maskprogrammable chip selects are available for user definition.
Address inputs A0-A10 allow any of the 2048 bytes of ROM to be uniquely addressed. Internal registers associated with the I/O functions may be selected with A0, A1 and A2. Bidirectional data lines (D0-D7) allow the transfer of data between the MPU and the S6846.

Timer-Counter Functions

Under software control this 16 -bit binary counter may be programmed to count events, measure frequencies and time intervals, or similar tasks. It may also be used for square wave generation, single pulses of controlled duration, and gated delayed signals. Interrupts may be generated from a number of conditions selectable by software programming.
The timer-counter control register allows control of
the interrupt enables, output enables, and selection of an internal or external clock source. Input pin CTC (counter-timer clock) will accept an asynchronous pulse to be used as a clock to decrement the internal register for the counter-timer. If the divide-by- 8 prescaler is used, the maximum clock rate can be four times the master clock frequency with a maximum of 4 MHz . Gate input ($\overline{\mathrm{CTG}}$) accepts an asynchronous TTL-compatible signal which may be used as a trigger or gating function to the counter-timer. A countertimer output ($\overline{\mathrm{CTO}}$) is also available and is under software control via selected bits in the timer-counter control register. This mode of operation is dependent on the control register, the gate input, and the external clock.

Parallel I/O Port

The parallel bidirectional I/O port has functional operational characteristics similar to the B port on the S6821 PIA. This includes 8 bidirectional data lines and two handshake control signals. The control and operation of these lines are completely software programmable.
The interrupt input (CP1) will set the interrupt flags of the peripheral control register. The peripheral control (CP2) may be programmed to act as an interrupt input or as a peripheral control output.

Figure 1. Typical Microcomputer

Figure 1 is a block diagram of a typical cost effective microtemputer.
The MPU is the center of the microcomputer system and is shown in a
minimum system interfacing with a ROM combination chip. It is not
intended that this system be limited to this function but that it be
expandable with other parts in the $\mathbf{S 6 8 0 0}$ Microcomputer family if
desired.

Absolute Maximum Ratings

Supply Voltage	-0.3 Vdc to +7.0 Vdc
Input Voltage	-0.3 Vdc to +7.0 Vdc
Operating Temperature Range	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Thermal Resistance	$70^{\circ} \mathrm{C} / \mathrm{W}$

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields: however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this highimpedance circuit.

Electrical Characteristics ($\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{SS}}=0, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ unless otherwise noted.)

Symbol	Parameter	Min.	Typ.	Max.	Unit	Conditions
$\mathrm{V}_{\text {IH }}$	Input High Voltage	$\mathrm{V}_{\mathrm{SS}}+2.0$		V_{CC}	Vdc	
$\mathrm{V}_{\text {IL }}$	Input Low Voltage All Inputs	$\mathrm{V}_{\text {SS }}-0.3$		$\mathrm{V}_{\mathrm{SS}}+0.8$	Vdc	
VOS	$\begin{array}{r} \text { Clock Overshoot/Undershoot - Input High Level } \\ \text { - Input Low Level } \end{array}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}-0.5 \\ & \mathrm{~V}_{\mathrm{SS}}-0.5 \end{aligned}$		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}+0.5 \\ & \mathrm{~V}_{\mathrm{SS}}+0.5 \end{aligned}$	Vdc	
Iin	Input Leakage Current \quad CP1, $\frac{\mathrm{R} / \overline{\mathrm{CTG}}, \overline{\text { Reset }}, \mathrm{CS} 0, \mathrm{CS} 1}{\mathrm{CTC}, \mathrm{E}, \mathrm{A} 0 \cdot \mathrm{~A} 11}$		1.0	$\begin{array}{r} 2.5 \\ 100 \\ \hline \end{array}$	$\mu \mathrm{Adc}$	$\mathrm{V}_{\text {in }}=0$ to 5.25 Vdc
ITSI	$\begin{array}{lr}\text { Three-State (Off State) Input Current } & \text { D0-D7 } \\ & \text { PP0-PP7, CR2 }\end{array}$		2.0	$\begin{gathered} 10 \\ 100 \\ \hline \end{gathered}$	$\mu \mathrm{Adc}$	$\mathrm{V}_{\text {in }} 0.4$ to 2.4 Vdc
VOH	Output High Voltage D0-D7 CP2, PP0-PP7 Other Outputs	$\begin{aligned} & \mathrm{V}_{\mathrm{SS}}+2.4 \\ & \mathrm{~V}_{\mathrm{SS}}+2.4 \\ & \mathrm{~V}_{\mathrm{SS}}+2.4 \end{aligned}$			$\begin{aligned} & \text { Vdc } \\ & \text { Vdc } \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\text {Load }}=-205 \mu \mathrm{Adc}, \\ & \mathrm{I}_{\text {Load }}=-145 \mu \mathrm{Adc}, \\ & \mathrm{I}_{\text {Load }}=-100 \mu \mathrm{Adc} \end{aligned}$
$\mathrm{v}_{\text {OL }}$	Output Low Voltage			$\begin{gathered} \mathrm{VSS}+0.4 \\ \mathrm{~V}_{\mathrm{SS}}+0.4 \end{gathered}$	Vdc	$\begin{aligned} & \mathrm{I}_{\text {Load }}=1.6 \mathrm{mAdc} \\ & \mathrm{I}_{\text {Load }}=3.2 \mathrm{mAdc} \end{aligned}$
I_{OH}	Output High Current (Sourcing)D0-D7 Other Outputs CP2, PP0-PP7	$\begin{gathered} -205 \\ -200 \\ -1.0 \end{gathered}$		-10	$\begin{aligned} & \overline{\mu \mathrm{Adc}} \\ & \mathrm{mADC} \end{aligned}$	$\mathrm{V}_{\mathrm{OH}}=2.4 \mathrm{Vdc}$ $\mathrm{V}_{\mathrm{O}}=1.5 \mathrm{Vdc}$, the current for driving other than TTL, e.g., Darlington Base
IOL	Output Low Current (Sinking)	$\begin{aligned} & 1.6 \\ & 3.2 \end{aligned}$			mAdc	$\mathrm{V}_{\text {OL }}=0.4 \mathrm{Vdc}$
$\mathrm{I}_{\mathrm{LOH}}$	Output Leakage Current (Off State) $\overline{\text { IRQ }}$			10	μ Adc	$\mathrm{V}_{\mathrm{OH}}=2.4 \mathrm{Vdc}$
$P_{\text {D }}$	Power Dissipation			1000	mW	
$\mathrm{C}_{\text {in }}$				$\begin{gathered} 20 \\ 12.5 \\ \\ 10 \\ 7.5 \end{gathered}$	pF	$\begin{aligned} & \mathrm{V}_{\mathrm{in}}=0, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & \mathrm{f}=1.0 \mathrm{MHz} \end{aligned}$
Cout	PP0-PP7, CP2, CTO			$\begin{aligned} & 5.0 \\ & 10 \\ & \hline \end{aligned}$	pF	
1	Frequency of Operation	0.1		1.0	MHz	
$\begin{aligned} & \mathrm{t}_{\text {cycE }} \\ & \mathrm{t}_{\mathrm{RL}} \\ & \mathrm{t}_{\mathrm{IR}} \end{aligned}$	Clock Timing Cycle Time Reset Low Time Interrupt Release	$\begin{gathered} 1.0 \\ 2 \end{gathered}$		1.6	$\mu \mathrm{s}$ $\mu \mathrm{s}$ $\mu \mathrm{s}$	

Read/Write Timing

Symbol	Parameter	Min.	Typ.	Max.	Unit	Conditions
PW $_{\mathrm{EL}}$	Enable Pulse Width, Low	430			ns	
$\mathrm{PW}_{\mathrm{EH}}$	Enable Pulse Width, High	430			ns	
t_{AS}	Set Up Time (Address CS0, CS1, R/W)	160			ns	
$\mathrm{t}_{\mathrm{DDR}}$	Data Delay Time			320	ns	
t_{H}	Data Hold Time	10			ns	
t_{AH}	Address Hold Time	10			ns	
$\mathrm{t}_{\mathrm{Ef}}, \mathrm{t}_{\mathrm{Er}}$	Rise and Fall Time			25	ns	
$\mathrm{t}_{\mathrm{DSW}}$	Data Set Up Time	195			ns	

Bus Timing

Peripheral I/O Lines

Symbol	Parameter	Min.	Typ.	Max.	Unit	Conditions
t $_{\text {PDSU }}$	Peripheral Data Setup	200			ns	
$\mathrm{t}_{\text {Pr }}, \mathrm{t}_{\mathrm{Pc}}$	Rise and Fall Times CP1, CP2			1.0	$\mu \mathrm{~s}$	
$\mathrm{t}_{\mathrm{CP} 2}$	Delay Time E to CP2 Fall			1.0	$\mu \mathrm{~s}$	
t_{DC}	Delay Time I/O Data CP2 Fall	20			$\mu \mathrm{~s}$	
$\mathrm{t}_{\text {RS1 }}$	Delay Time E to CP2 Rise			1.0	$\mu \mathrm{~s}$	
$\mathrm{t}_{\mathrm{RS} 2}$	Delay Time CP1 to CP2 Rise			2.0	$\mu \mathrm{~s}$	
$\mathrm{t}_{\text {PDW }}$	Peripheral Data Delay			1.0	$\mu \mathrm{~s}$	

Timer-Counter Lines

$\mathrm{t}_{\mathrm{CR}}, \mathrm{t}_{\mathrm{CF}}$	Input Rise and Fall Time CTC and CTG			100	ns	
$\mathrm{t}_{\text {PWH }}$	Input Pulse Width High (Asynchronous Mode)	$\mathrm{t}_{\text {cyc }}+250$			ns	
$\mathrm{t}_{\text {PWL }}$	Input Pulse Width Low (Asynchronous Mode)	$\mathrm{t}_{\text {cyc }}+250$			ns	
t_{su}	Input Setup Time (Synchronous Mode)	200			ns	
t_{hd}	Input Hold Time (Synchronous Mode)	50			ns	
$\mathrm{t}_{\mathrm{CTO}}$	Output Delay			1.0	$\mu \mathrm{~s}$	

Figure 2. Bus Read Timing
(Read Information from S6846)

Figure 4. Peripheral Data and CP2 Delay
(Control Mode PCR5 = 1, PCR4 = 0, PCR3 = 1)

Figure 6. Peripheral Port Setup Time

Figure 3. Bus Write Timing (Write Information from MPU)

Figure 5. IRO Release Time

Figure 7. CP2 Delay Time $($ PCR5 $=1$, PCR4 $=0$, PCR3 $=0)$

Figure 8. Input Pulse Widths

Figure 9. Input Setup and Hold Times

Figure 11. Bus Timing Test Loads
LOAD A
(DO-D7, CTO, CP2, PPI.PP7)

VIDEO DISPLAY

 GENERATOR
Features

$\square \quad 32 \times 16$ (512 total) Alphanumeric Two Color Display on Black Background with Internal or External Character Generator ROM.
\square Two Semigraphics Modes with Display Densities Ranging from 64×32 to 64×48 in 8 and 4 Color Sets Respectively, plus Black.
\square Full Graphics Modes with Display Densities Ranging from 64×64 to 256×192 in 2 and 4 Colors.
\square Full NTSC Compatible Composite Video with Choice of Interlaced and Non-interlaced Display Versions.
\square Provides Microprocessor Compatible Interface Signals.
\square Generates Display Refresh RAM Addresses.
\square NMOS Device, Single 5V Supply, TTL Compatible Logic Levels.
\square Color Set Select Pin Can Give 8 Color Displays in Full Graphics Mode.

General Description

The S68047 Video Display Generator (VDG) is designed to produce composite video suitable for display on a standard American NTSC compatible black/white television or color televison or monitor.

There are three major types of display which the S68047 can generate. These include an alphanumerics mode of which there are two types, each with normal or inverted video; a semigraphics mode of which there are also two types; and full graphics mode of which there are eight types.

Alphanumeric Modes

The alphanumeric modes, internal and external, enable the S68047 to display a matrix of 32×16 (512 total) characters. The internal mode utilizes an on-chip 64 ASCII character ROM to display each character in a 5×7 dot matrix font. In the external alphanumeric

General Description (Continued)

mode, an external memory is required, either ROM or RAM, which is used to display the 32×16 character matrix with each character located within an 8×12 dot matrix of customized font. Switching between internal and external alphanumerics modes and normal and inverted video can be accomplished on a character by character basis.

Semigraphic Modes

The two semigraphic modes, semigraphic 4 (SG4) and semigraphic 6 (SG6), subdivide each of the 512 (32×16) character blocks of 8×12 dots each into 2×2 and 2×3 smaller blocks respectively. In SG4 each block is created from 4×6 dots and in SG6 each block consists of 4×4 dots. In addition the SG4 and SG6 modes can each be displayed in 8 and 4 colors plus black.
Display switching from alphanumerics to semigraphics modes or vice versa during a raster display is called minor mode switching and can take place on a character basis.

Graphics Modes

The eight full graphics modes are divided into two major groups, 4 color and 2 color. The 4 color graphics provide 4 display densities ranging from 64×64 for Graphics 0 through to 128×192 elements for Graphics 6. The 2 color graphics also provide 4 display densities ranging from 128×64 for Graphics 1 through to 256 x 192 elements for Graphics 7. The latter display has the highest density of the eight graphics modes. The amount of display memory increases proportionately with increasing density of display to a maximum of 6 K bytes for Graphics 7. Switching between either the alphanumeric modes or semigraphics modes and any of the full graphics modes is called major mode switch ing. Major mode switching can only occur at the end of every twelfth raster line scan.

Applications

Anywhere data can be more usefully presented graphically on a CRT and for a minimum cost, the VDG in conjunction with a microprocessor based controller
can utilize a standard American NTSC compatible TV or monitor for such a purpose. Applications are extremely broad ranging from educational systems, video games, small low cost business/home computers to process control monitors and medical diagnostic displays.
The different modes of operation permit various cost/ display presentation tradeoffs. The alphanumerics modes allow use of the TV screen as a video teletype at the most limited level of operation. Only 512 bytes, one for each character, need to be stored, each byte being a minimum of six bits wide per the ASCII code. If video inversion switching or alpha to semigraphics switching is required per character then two extra bits are required in the display RAM as shown in Fig. 5. The semigraphics modes each offer an intermediate range of graphics densities with tradeoffs in density versus color. Typical semigraphics display capabilities are bar graphs, charts, mini displays, etc. which with minor mode switching to alphanumerics modes allow annotation or captioning of the resultant display. The various graphics modes provide greater density displays with greater freedom of display presentations. The tradeoffs in increasing density are with increasing display memory size and color versus density. A minimum Graphics 0 provides a display density of 64×64 (4096) elements, each element being composed of a matrix of $12(4 \times 3)$ dots with a selection of four colors per element. Since each of the even numbered 4 color graphics modes map two bits of the data word to one picture element, each data word of memory provides four picture elements. Thus Graphics 0 requires $4096 / 4=1024$ bytes of display RAM, Graphics 2 requires $8192 / 4=2048$ and so on. Graphics 1, like all the odd numbered 2 color graphics modes, maps one bit of data word to one picture element. Each data word therefore maps eight elements. Graphics 1 density of 128×8 (8192) elements therefore requires $8192 / 8=1024$ bytes of display RAM and Graphics 7, the densest display, requires $49,152 / 8=$ 6144 bytes of RAM. At the higher density graphics displays, the rate of change of elements approaches the maximum dot frequency of 6 MHz . This video rate taxes the capabilities of most commercially available television sets and thus the quality of the display system (television or monitor) should be commensurate with the highest video rate to be used.

Electrical Specifications

Absolute Maximum Ratings

[^17]DC (Static) Characteristics ($\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \% ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified).

Symbol	Parameter	Min.	Typ.	Max.	Unit	Conditions
V_{IH}	Input Voltage High	2.0		V_{CC}	V	
V_{IH}	Input Voltage High (Color Clock only)	4.0		V_{CC}	V	
$\mathrm{V}_{\text {IL }}$	Input Voltage Low	-0.3		+0.6	V	
$\mathrm{I}_{\text {IN }}$	Input Leakage Current (all inputs)		1.0	2.5	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0-5.25 \mathrm{~V} ; \\ & \mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V} \end{aligned}$
$\mathrm{I}_{\mathrm{L}(\mathrm{TS})}$	Tri-State Output Leakage Current (A0 - A11)			10	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V} ; \overline{\mathrm{MS}}=0 \mathrm{~V} ; \\ & \mathrm{V}_{\mathrm{IN}}=0.4-2.4 \mathrm{~V} \end{aligned}$
I_{LO}	Output Leakage Current ($\overline{\mathrm{HS}}, \overline{\mathrm{FS}}, \overline{\mathrm{RP}}$)			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=2.4 \mathrm{~V} ; \mathrm{V}_{\text {CC }}=0 \mathrm{~V}$
V_{OH}	Output Voltage High (A0 - A11, $\overline{\mathrm{HS}}, \overline{\mathrm{FS}}, \overline{\mathrm{RP}}$)	2.4			V	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}(\overline{\mathrm{HS}}, \overline{\mathrm{FS}}, \overline{\mathrm{RP}}) ; \\ & 0 \mu \mathrm{~A}\left(\mathrm{~A}_{0}-\mathrm{A}_{11}\right) ; \mathrm{CL}=30 \mathrm{pF} \end{aligned}$
$\mathrm{V}_{\text {OL }}$	Output Voltage Low ($\mathrm{A} 0-\mathrm{A} 11, \overline{\mathrm{HS}}, \overline{\mathrm{FS}}, \overline{\mathrm{RP}}$)			0.4	V	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA}(\overline{\mathrm{HS}}, \overline{\mathrm{FS}}, \overline{\mathrm{RP}}) ; \\ & 0 \mathrm{~mA}\left(\mathrm{~A}_{0}-\mathrm{A}_{11}\right) ; \mathrm{CL}=30 \mathrm{pF} \end{aligned}$
I_{CC}	$\mathrm{V}_{\text {CC }}$ Supply Current		45		mA	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
$\mathrm{C}_{\text {IN }}$	Input Capacitance			10	pF	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \\ & \mathrm{f}=1.0 \mathrm{MHz} \end{aligned}$
Cout	Output Capacitance			12	pF	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \\ & \mathrm{f}=1.0 \mathrm{MHz} \end{aligned}$

AC Electrical Characteristics ($\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \% ; \mathrm{T}_{\mathrm{A}}=0-70^{\circ} \mathrm{C}$ except where noted).
Alpha Internal Mode (Figure 1)

Symbol	Parameter	Min.	Typ.	Max.	Unit	Conditions
f_{vc}	Video Clock Frequency	5.6	6.0	6.4	MHz	
t_{ch}	Character Time	1.43	1.33	1.25	$\mu \mathrm{~s}$	
$\mathrm{t}_{\mathrm{ACC}}$	Access-Time of External Refresh RAM			0.7	$\mu \mathrm{~s}$	
$\mathrm{t}_{\text {dot }}$	Dot Time	178	166	156	ns	

Alpha External Mode (Figure 1)
NOTE: All parameters are the same as in Alpha Internal Mode except $t_{A C C}$

| $\mathrm{t}_{\mathrm{ACC}}$ | Access-time of Refresh
 RAM + Access-time of
 External ROM | $\mu \mathrm{s}$ | |
| :--- | :--- | :---: | :---: | :---: | :---: |

Semigraphics Mode (Figure 1)

$\mathrm{t}_{\text {pic }}$	Picture Element Duration	712	664	624	ns	

NOTE: All other parameters are the same as in Alpha Internal Mode.

Color Sub-carrier Input

Symbol	Parameter	Min.	Typ.	Max.	Units	Conditions
f_{CC}	Frequency		3.579545 $\pm 10 \mathrm{~Hz}$		MHz	
t_{r}	Rise Time			10	ns	
t_{f}	Fall Time			10	ns	
$\mathrm{PW}_{\mathrm{CC}}$	Pulse Width		140		ns	
$\mathrm{~V}_{\mathrm{IL}}$	Zero Level			0.6	V	
$\mathrm{~V}_{\mathrm{IH}}$	One Level	4.0			V	
DR	Duty Ratio	40%	50%	60%		

Figure 1. Refresh RAM Interface Timing

Composite Video Timing (Figure 2)

Symbol	Parameter	Min.	Typ.	Max.	Units	Conditions
$\mathrm{t}_{\text {SYNC }}$	Sync duration		4.888889		$\mu \mathrm{~s}$	
t_{fp}	Front Porch duration		1.536508		$\mu \mathrm{~s}$	
$\mathrm{t}_{\text {BLANK }}$	Horizontal Blank Duration			11.44	$\mu \mathrm{~s}$	
$\mathrm{t}_{\mathrm{rs}}, \mathrm{t}_{\mathrm{fs}}$	Rise time and Fall time of Horizontal Sync			250	ns	
$\mathrm{t}_{\mathrm{rv}}, \mathrm{t}_{\mathrm{fv}}$	Rise time and Fall time of Horizontal Blank			340	ns	

Figure 2. Composite Video Timing on Y Pin

Chroma R and Chroma B Output Timing; $C_{L}=10 p F ; 1 K$ Load (Figure 3.)

Symbol	Parameter	Min.	Typ.	Max.	Units	Conditions
$\begin{aligned} & \mathrm{t}_{\mathrm{rB}}, \mathrm{t}_{\mathrm{fB}} \\ & \mathrm{t}_{\mathrm{rR}}, \mathrm{t}_{\mathrm{fR}} \end{aligned}$	Color Signals rise and fall time		50		ns	$\begin{aligned} & \text { Load = R-Y, B-Y } \\ & \text { input of LM1889 } \end{aligned}$
$\mathrm{t}_{\text {SCB }}$	Color Burst to Sync lag		410		ns	
$\mathrm{t}_{\text {BURST }}$	Color Burst Duration		2.45		$\mu \mathrm{s}$	
$\mathrm{t}_{\mathrm{fcB}}, \mathrm{trcB}$	Color Burst rise and fall times		175		ns	
$\mathrm{t}_{\mathrm{CL} 1}, \mathrm{t}_{\mathrm{cL} 2}$	Video to color signals lag		75		ns	

Voltage Levels
Video (Y) and Chroma ($\mathrm{R}-\mathrm{Y}, \mathrm{B}-\mathrm{Y}$) Output Levels (Figure 3.) $\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$; Video Clock $=5.6 \mathrm{MHz} ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$; $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$

Symbol	Parameter	Min.	Typ.	Max.	Units	Conditions
$\mathrm{V}_{\text {SYNC }}$	Sync Voltage	0	0.1	0.5	V	
$\mathrm{~V}_{\text {BLANK }}$	Blanking Level		1.5		V	
$\mathrm{~V}_{\text {BLACK }}$	Black Level		1.7		V	
$\mathrm{~V}_{\text {WHITE }}$	White level	2.4	4.0	$\mathrm{~V}_{\mathrm{CC}}$	V	
$\mathrm{V}_{\mathrm{B} 1}, \mathrm{~V}_{\mathrm{R} 1}$		2.4	4.0	$\mathrm{~V}_{\mathrm{CC}}$	V	
$\mathrm{V}_{\mathrm{B} 0}, \mathrm{~V}_{\text {R0 }}$			2.0		V	
$\mathrm{~V}_{\text {B3 }}, \mathrm{V}_{\text {R3 }}$		0	0.1	0.5	V	
$\mathrm{~V}_{\text {BURST }}$			0.4		V	
$\mathrm{~V}_{\mathrm{CHROMA}}$			2.0		V	

Figure 3. Chroma Timing

Video Display Format Timing (Figure 4.)

Symbol	Parameter	Typ.	Units	Conditions
H	Horizontal Scan Time	63.55557	$\mu \mathrm{~s}$	
V	Field Time	16.683337	ms	
F	Frame Time	33.366674	ms	
I / V	Field Rate	59.94004	sec^{-1}	
$\mathrm{t}_{\text {ACTIVE }}$	Active Display Duration	41	$\mu \mathrm{~s}$	
$\mathrm{t}_{\text {VIDEO }}$	Active Display + Border Duration	52.8	$\mu \mathrm{~s}$	
t_{RP}	Row Preset Period $(12$ Horizontal Scans $)$	762.66684	$\mu \mathrm{~s}$	

Figure 4. Video Display Format

Pin Description (Figure 2.)

V_{CC}	$+5 \mathrm{~V}$
$\mathrm{V}_{\text {SS }}$	0 V
CC	(Color Burst Clock 3.579545 MHz)
VC	(Video Clock Oscillator $\cong 6 \mathrm{MHz}$)
A0-A11	(Address Lines to Display Memory; high-impedance during $\overline{\mathrm{MS}}$ low)
D0-D5	(Data from Display Memory RAM or ROM; D4 - D6 - Color Data in Semigraphics)
D6, D7	(Data from Display Memory in GRAPHIC Mode; Data also in ALPHANUMERIC Mode; Color Data in ALPHA SEMIGRAPHIC - 6)
$\mathrm{R}-\mathrm{Y}, \mathrm{B}-\mathrm{Y}, \mathrm{Y}$	(Color and Composite Video)
CHB	(Chroma Bias; References R - Y and B - Y Levels)
$\overline{\mathrm{RP}}$	(Row Preset in any ALPHA Mode; goes low in all modes every 12 lines)
$\overline{\mathrm{HS}}$	(Horizontal Sync)
INV	(Inverts Video in all FULL ALPHA Modes; no effect in Semigraphics or Graphics Mode)
EXT/INT	(Switches to External ROM in ALPHA Mode; between SEMIG - 4 and SEMIG - 6 in Semigraphics; no effect in all Graphics Modes)
$\overline{\mathrm{A}} / \mathrm{S}$	(Alpha/Semigraphics: Selects between FULL ALPHA and SEMIGRAPHICS in ALPHA Modes; no effect in all Graphics Modes)
$\overline{\text { MS }}$	(Memory Select; forces VDG Address Buffers to high-impedance state; also used as a strobe in TEST and RESET functions). The TV screen is forced black when $\overline{\mathrm{MS}}=$ low
$\overline{\mathrm{A}} / \mathrm{G}$	(Switches between ALPHA and GRAPHIC Modes)
$\overline{\mathrm{FS}}$	(Field Synchronization; LOW during vertical blanking time)
CSS	(Color Set Select: Selects between two ALPHA Display Colors; between two Color Sets in SEMIGRAPHICS - 6 and FULL GRAPHICS: selects Border Color in 8 Graphic Modes)
$\begin{aligned} & \text { GM1, GM2 } \\ & \text { GM4 } \end{aligned}$	(Graphics Mode Select; select one of eight Graphic Modes; no affect in Alpha and Semigraphic Modes; GM1, GM2 select TEST and RESET mode when $\overline{\mathrm{A}} / \mathrm{G}=0$ and $\overline{\mathrm{MS}}$ pin is strobed low)

Internal Description

Internally the VDG is the combination of four integrated subsystems (timing and control, MUX, address buffers and shift registers to form the VDG function. A block diagram of the VDG is shown on Page 1. Each subsystem is described below.

Timing and Control

The timing and control subsystem of the VDG uses the 3.58 MHz color frequency to generate timing information. It accepts the color clock (generated off-chip) (CC) input and generates timing for the horizontal sync, horizontal blank, field sync, vertical blank and row preset signal ($\overline{\mathrm{RP}}$) for external character generator ROM. The video clock is generated on-chip by ex-
ternal RC and generates addresses $\mathrm{A} 0-\mathrm{A} 11$ to address the external refresh RAM.
The color-set-select (CSS) input to the Timing and Control subsystem of the VDG is used to determine the color-set of the display.
The EXT//̄TNT input has two functions. In the full alphanumeric mode, it is used to select either internal ROM or external ROM. It is also used to select between semigraphic 4 and semigraphic 6 mode in semigraphic modes ($\overline{\mathrm{A}} / \mathrm{S}=1$).
The INV input is utilized by the timing and control subsystem to invert the display while in full alpha mode.

Internal Description (Continued)

$\overline{\mathrm{A}} / \mathrm{G}, \overline{\mathrm{A}} / \mathrm{S}, \mathrm{GM} 1, \mathrm{GM} 2, \mathrm{GM} 4$ inputs to the timing and control subsystem determine which of the fourteen VDG modes is to be used (Table 1).

MUX

The MUX provides the function of selecting the data source to be displayed. The source can be either internal ROM or external ROM or RAM. For the internal alphanumeric mode, the data source is the internal ROM. For all other modes (semigraphic and graphics) the data source is external ROM/RAM.

Address Buffers

The address buffers provide the buffering required for external drive (ROM/RAM). The buffers are tristated when the MS pin goes low and tri-states the buffers so that VDG does not interfere with the MPU operation. The $\overline{\mathrm{FS}}$ pin (output) from the VDG signals to the MPU that the TV is in the vertical retrace mode and the MPU can directly change the data in the display memory during that time with no interruption to displayed data.

Shift Registers

The two shift registers serialize bytes coming from internal/external ROM/RAM for conversion to data
on the TV screen. The shift registers output also goes to the chroma encoder circuitry to determine the color of each individual dot. Each shift register has 4-bits.

VDG

The VDG has fourteen modes, grouped in three sets. They are:

4 Alphanumerics Modes 2 Semigraphics Modes
\square Normal internal alpha \square Semigraphics 4
\square Inverted internal alpha \square Semigraphics 6
\square Normal external alpha
\square Inverted external alpha
8 Full-graphics Modes
$\square 4$ Graphics four-color modes
$\square 4$ Graphics two-color modes
The six alphanumeric modes can be switched among themselves on a character-by-character basis. Switching within the six alphanumeric modes is referred to as minor-mode switching. All other mode switching is referred to as major-mode switching.

The display can be major-mode switched on after any multiple of twelve rows have been completed. This is signalled to the MPU by $\overline{\mathrm{RP}}$ output going low. Switching among the full-graphics modes is permitted at the end of every twelfth row just as in majormode switching.

Table 1 tabulates the modes of the VDG. The data structures for each mode are listed in Table 7. Table 2 and Table 3 show the Alpha Select Mode and Graphic Select Mode configurations respectively. Table 4 gives the Two-color Graphics and Full-alpha Color Specification. Table 5 shows the semigraphics and Four-color Graphics Color Specification.
Table 1. VDG Modes

	Mode	Description	Memory
II.	ALPHA INTERNAL ALPHA INTERNAL INVERTED	$32 \times 16 \text { BOXES: } 5 \times 7 \text { CHARACTER }$ $\text { IN } 8 \times 12 \mathrm{BOX}$	512×7-8
$\begin{aligned} & \text { III. } \\ & \text { IV. } \end{aligned}$	ALPHA EXTERNAL ALPHA EXTERNAL INVERTED	32×16 BOXES: 5×7 OR 7×9 CHARACTERS IN 8×12 BOX OR FULL 8×12 LIMITED GRAPHICS	$512 \times 7-8$
V .	ALPHA SEMIGRAPHICS 4	32×16 BOXES: 2×2 ELEMENTS PER BOX; EIGHT COLORS PLUS BLACK	$512 \times 4-7$
VI.	ALPHA SEMIGRAPHICS 6	32×16 BOXES 2×3 ELEMENTS PER BOX; FOUR COLORS PLUS BLACK	$512 \times 6-8$
VII.	GRAPHICS 0	64×64 ELEMENTS: FOUR COLORS PER ELEMENT	$1 \mathrm{~K} \times 8$
VIII.	GRAPHICS 1	128×64 ELEMENTS: TWO COLORS PER ELEMENT	$1 \mathrm{~K} \times 8$
IX.	GRAPHICS 2	128×64 ELEMENTS: FOUR COLORS PER ELEMENT	2K $\times 8$
X .	GRAPHICS 3	128×96 ELEMENTS: TWO COLORS PER ELEMENT	$1.5 \mathrm{~K} \times 8$
XI.	GRAPHICS 4	128×96 ELEMENTS: FOUR COLORS PER ELEMENT	$3 \mathrm{~K} \times 8$
XII.	GRAPHICS 5	256×96 ELEMENTS: TWO COLORS PER ELEMENT	$3 \mathrm{~K} \times 8$
XIII.	GRAPHICS 6	128×192 ELEMENTS: FOUR COLORS PER ELEMENT	$6 \mathrm{~K} \times 8$
XIV.	GRAPHICS 7	256×192 ELEMENTS: TWO COLORS PER ELEMENT	$6 \mathrm{~K} \times 8$

Table 7. Detailed Description of VDG Model

VOG PINS								COLOR			ty screen		VDG DATA BUS	COMMENTS
$\overline{\text { A/G }}$	$\overline{\text { A/S }}$	WT/EXT	GM4	GM2	GM1	css	INV	ChARACTER COLOR	BACK. GROUND	BORDER	DISPLAY MODE	detall		
0	0	0	X	0	0	0 1	$\begin{aligned} & \frac{0}{1} \\ & \frac{0}{1} \end{aligned}$	Green Black Blue Black	Black Green Black Blue	$\left\{\begin{array}{l} \text { Black } \\ \text { Black } \end{array}\right.$	32 Characters in columns 16 Characters in rows			ALPHANUMERIC INTERNAL mode uses internal character generator with on-chip 64 ASCII character ROM to display each character in 5×7 dot matrix font.
0	0	1	X	0	0	0 1	$\frac{0}{\frac{1}{0}}$	Green Black Green Black	Black Green Black Green	$\left\{\begin{array}{l} \text { Black } \\ \text { Black } \end{array}\right.$	32 Characters in columns 16 Characters in rows			ALPHANUMERIC EXTERNAL mode uses external ROM or RAM to display 512 characters in cus. tom fonts each in 8×12 dot matrix.
0	1	0	X	0	0	x	X	$\begin{array}{llll} \hline L_{x} & C_{2} & C_{1} & C \\ 0 & x & X & x \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & & & \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \\ \hline \end{array}$	C_{0} Color \times Black 0 Green 1 Yellow 0 Cyan 1 Red Blue 1 Cyan/ Blue Magenta 1 Orange	Black	64 Display elements in columns 32 Display elements in rows	17 60 13 62		SEMIGRAPHICS 4 mode subdivides each of the $512(32 \times 16)$ character blocks of 8×12 dots into tour equal parts. The dominance of each block is determined by the corresponding bit (LO-L3) on the VDG data bus. Color of each block is determined by 3 bits (C0-C2).
0	1	1	X	0	0	0 1	x	$\begin{array}{lll} \hline \mathrm{L}_{\times} & \mathrm{C}_{1} & \mathrm{C}_{0} \\ 0 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & & \\ 1 & 1 & 0 \\ 1 & 1 & 1 \\ \hline \end{array}$	Black Green Yellow Cyan Red Blue Cyan/ Blue Magenta Orange	Black	64 Display elements in columns 48 Display elements in rows	1. (0) 13 12 15 14	$\underbrace{$ C1 CO $L 5$ $L 4$ $L 3$ $L 2$ $L 1$$\underbrace{}_{\text {LUMMENCE }}}_{\text {COLOR }}$	SEMIGRAPHICS 6 mode subdivides each of the 512 (32×16) character blocks of 8×12 dots into six equal parts. The tuminance of each part is determined by the corresponding bits (LO-L5) on the VDG bus. Color of each block is determined by 2 bits (C0, C1).
\dagger	x	X	0	0	0	$\frac{0}{1}$	x	$\begin{array}{ll} C_{1} & C \\ 0 & 0 \\ 0 & 1 \\ 1 & 0 \\ 1 & 1 \\ 0 & 0 \\ 0 & 1 \\ & 0 \\ 1 & 0 \\ 1 & 1 \end{array}$	C_{0} 0 Green 1 Yellow 0 Cyan 1 Red 0 Blue 1 Cyan/ Blue Bagenta 1 Orange	Green Cyan/ Blue	64 Display elements in columns 64 Display elements in rows	E3 E2 E1 WHEO WHE EX C1CO		GRAPHICS 0 mode uses a maximum of 1024 bytes of display RAM in which one pair of bits (CO, C1) specifies on picture element. (Ex.).
1	x	X	0	0	1	$\frac{0}{1}$	x	$\begin{aligned} & L_{\mathrm{L}} \\ & 0 \\ & 1 \\ & \hline 0 \\ & 1 \end{aligned}$	Color Black Green - Black Cyan/ Blue	Green Cyan/ Blue	128 Display elements in columns 64 Display elements in rows	$L 7$ $L 6$ $L 5$ $L 4$ $L 3$ $L 2$ 11	17 $L 6$ $L 5$ $L 4$ $L 3$ $\mathbf{L 2}$ $L 0$	GRAPHICS 1 mode uses a maximum of 1024 bytes of display RAM in which one bit (Lx) specifies one picture element.
1	x	x	1	0	0	$\frac{0}{1}$	x	Same color Graphics 0		Green Cyan/ Blue	128 Display elements in columns 64 Display elements in rows	E3 $\mathbf{E 2} \times \mathbf{E 1}$ E0	c_{1} c_{0} c_{1} c_{0} c_{1} c_{0} c_{1} $c 0$	GRAPHICS 2 mode uses a maximum of 2048 byles of display RAM in which one pair of bits (C0, C1) specities one picture element (Ex.).
1	x	x	0	1	1	$\frac{0}{1}$	X	Same color Graphics 1		Green Cyan/ Blue	128 Display elements in columns 96 Display elements in rows	$L 7$ $L 6$ $L 5$ $L 4$ $L 3$ $L 2$ $1+$ $L 0$		GRAPHICS 3 mode uses a maximum of 1536 bytes of display RAM in which one bit (Lx) specifies one picture element.
1	x	X	0	1	0	$\frac{0}{1}$	x	Same color Graphics 0		$\begin{array}{\|l} \hline \text { Green } \\ \hline \text { Cyan/ } \\ \text { Blue } \\ \hline \end{array}$	128 Display elements in columns 96 Display elements in rows			GRAPHICS 4 mode uses a maximum of 3072 bytes of display RAM in which one pair of bits (C0, C1 specifies one picture element (Ex.)
1	X	x	1	0	1	$\frac{0}{1}$	X	Same color Graphics 1		Green Cyan/ Blue	256 Display elements in columns 96 Display elements in rows			GRAPHICS 5 mode uses a maximum of 3072 bytes of display RAM in which one bit (Lx) specifies one picture element.
1	x	x	1	1	0	$\frac{0}{1}$	x	Same color Graphics 0		Green Cyan/ Blue	128 Display elements in columns 192 Display elements in rows			GRAPHICS 6 mode uses a maximum of 6144 bytes of display RAM in which one pair of bits (C0, C1) specities one picture element (Ex .)
1	x	x	1	1	1	$\frac{0}{1}$	x	Same color Graphics 1		Green Cyan/ Blue	256 Display elements in columns 192 Display elements in rows		17 $L 6$ $L 5$ $L 4$ $L 3$ 12 $L 1$ $L 0$	GRAPHICS 7 mode uses a maximum of 6144 bytes of display RAM in which one bit (Lx) specifies one picture element.

S68047

Table 2. Alpha Mode Select

GM2	GM1	\bar{A} / G	$\overline{\mathrm{A}} / \mathrm{S}$	$\overline{\text { INT } / E X T ~}$	INV	$\overline{M S}$	MODE
X	0	0	0	0	0		INTERNAL ALPHANUMERICS
X	0	0	0	0	1		INTERNAL INV. ALPHA
X	0	0	0	1	0		EXTERNAL ALPHA
x	0	0	0	1	1		EXTERNAL INV. ALPHA
X	0	0	1	0	x		SEMIGRAPHICS - 4
X	0	0	1	1	x		SEMIGRAPHICS - 6
0	1	0	x	X	x	STROBED LOW	TEST ROM
1	1	0	X	X	x	STROBED LOW	RESET

NOTES: 1) GM4 pin has no effect when $\bar{A} / G=0$.
2) Invert pin has no effect except in Internal Alpha or External Alpha.
3) Under normal operation, care should be taken not to take GM1 pin HIGH, when \bar{A} / G pin is LOW. If this happens, any of the following conditions will occur depending on the status of $\overline{\mathrm{MS}}$ and GM2 pin:
a) The VDG might go to TEST mode.
b) The VDG might be reset.

The VDG will not return to normal operation unless $\overline{\mathrm{A}} / \mathrm{G}$ and GM1 pins are returned to LOW level and $\overline{\mathrm{MS}}$ pin is strobed.
4) $X=$ Don't care.

Table 3. Graphic Mode Select

	\bar{A} / G	GM4	GM2	GM1	MODE
GRAPHICS 0	1	0	0	0	$64 \times 644-$ COLOR
GRAPHICS 1	1	0	0	1	$128 \times 642-$ COLOR
GRAPHICS 2	1	0	1	0	$128 \times 644-$ COLOR
GRAPHICS 3	1	0	1	1	$128 \times 962-$ COLOR
GRAPHICS 4	1	1	0	0	$128 \times 964-$ COLOR
GRAPHICS 5	1	1	0	1	$256 \times 962-$ COLOR
GRAPHICS 6	1	1	1	0	$128 \times 1924-$ COLOR
GRAPHICS 7	1	1	1	1	$256 \times 1922-$ COLOR

NOTE: $\quad \bar{A} / \mathrm{S}, \overline{\mathrm{INT}} / \mathrm{EXT}$, INV pins have no effect when $\overline{\mathrm{A}} / \mathrm{G}=1$.

Table 4. Two-Color Graphics and Full-Alpha Color Specification

CSS PIN	COLOR OF 'ON' DOTS	
	0	GREEN
CYAN-BLUE		

Table 5. Semigraphics and Four-Color Graphics Color Specification

$\begin{aligned} & \text { 4.COLOR } \\ & \text { GRAPHICS } \end{aligned}$	$\begin{gathered} \text { SEMI- } \\ \text { GRAPHICS - } 6 \end{gathered}$	SEMI- $\text { GRAPHICS - } 4$			
EVEN BIT	D6	D4			
ODD BIT	D7	D5			
CSS	CSS	CSS		$\downarrow \downarrow$	
			COLOR	$1 \begin{array}{lll}0 & 0\end{array}$	GREEN
			SET	$\begin{array}{lll}0 & 0 & 1\end{array}$	YELLOW
			1	O 010	CYAN
				$1 \begin{array}{lll}0 & 1\end{array}$	RED
				$\left(\begin{array}{lll}1 & 0 & 0\end{array}\right.$	BLUE
			COLOR	101	CYAN/BLUE
			SET	$1 \begin{array}{lll}1 & 1 & 0\end{array}$	MAGENTA
			2	$\begin{array}{ll}1 & 1\end{array}$	ORANGE

NOTE: In Semigraphics-6, if any bit DO-U5 is ' 0 ', then the picture element corresponding to that bit would be black. In Semigraphics-4, if any bit DO-D3 is zero, then the picture element corresponding to that dot will be black.

Table 6. Two-Color Graphics and Four-Color Graphics Border Color Specification

CSS PIN	BORDER COLOR
0	GREEN
CYAN-BLUE	

Typical System: A typical S6800 microprocessor based S68047 system is shown on Figure 6. This system has the capability of displaying internally and externally generated characters, semigraphics 4 and 6 modes with mode switching control from the microcomputer input/ output ports. A full graphics system configuration would be similar in complexity with possibly additional display RAM for the denser graphics modes. The National Semiconductor LM1889RF modulator shown, has an on-chip
3.58 MHz oscillator which can provide the microcomputer system clock as well as the color burst reference for the S68047. Other RF modulators are available through various commercial channels. Only 512 bytes are needed to display the 512 character blocks on a TV screen. However, because of current static RAM configurations (i.e., $1 \mathrm{Kxl} \& 1 \mathrm{Kx} 4$) the extra 512 bytes available in the 1 Kx 9 RAM shown can be used as scratchpad by the host microcomputer system.

Figure 5.

GRAPHICS 6 AND GRAPHICS 7 REQUIRE CK OF OISPLAY RAM. THUS THIRTEEN ADDRESS LINES THE VDG PROVIDES $A_{0}-A_{11}$. HOWEVER A_{12} MUST BE GENERATED EXTERNALLY AS SHOWN IN FIGURE 5.

Ordering Information

Ordering Number	Number Pins	Package	Temp. Range	Description
S68047	40	Ceramic	$0-70^{\circ} \mathrm{C}$	VDG non-interlaced
S68047P	40	Plastic	$0-70^{\circ} \mathrm{C}$	VDG non-interlaced
S68047Y	40	Ceramic	$0-70^{\circ} \mathrm{C}$	VDG interlaced
S68047YP	40	Plastic	$0-70^{\circ} \mathrm{C}$	VDG interlaced

Figure 6. Typical System (Alphanumeric Internal/External \& Semigraphics 4 and 6 Modes.)

Physical Dimensions
40-Pin Plastic

it

ASYNCHRONOUS COMMUNICATION INTERFACE ADAPTER (ACIA)

Features

- 8 Bit Bidirectional Data Bus for Communication with MPU
- False Start Bit Deletion
- Periphera/Modem Control Functions
- Double Buffered Receiver and Transmitter
- One or Two Stop Bit Operation
- Eight and Nine-Bit Transmission with Optional Even and Odd Parity
- Parity, Overrun and Framing Error Checking
- Programmable Control Register
- Optional $\div 1, \div 16$, and $\div 64$ Clock Modes
- Up to $\mathbf{5 0 0 , 0 0 0} \mathbf{~ b p s ~ T r a n s m i s s i o n ~}$

General Description

The S6850/S68A50/S68B50 Asynchronous Communications Interface Adapater (ACIA) provices the data formatting and control to interface serial asynchronous data communications to bus organized systems such as the S6800/S68A00/S68B00 Microprocessing Units.
The S6850/S68A50/S68B50 includes select enable, read/ write, interrupt and bus interface logic to allow data transfer over an eight-bit bidirectional data bus. The parallel data of the bus system is serially transmitted and received by the asynchronous data interface, with proper formatting and error checking. The functional configuration of the ACIA is programmed via the data bus during system initialization. Word lengths, clock division ratios and transmit control through the Request-to-Send output may be programmed. For modem operation three control lines are provided.

Absolute Maximum Ratings

Supply Voltage	-0.3 V to +7.0 V
Input Voltage	-0.3 V to +7.0 V
Operating Temperature Range	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note:

This device contains circuitry to protect the inputs against damage due to high static voltages or electrical fields, however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

Electrical Characteristics ($\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{SS}}=0, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ unless otherwise noted.)

Symbol	Parameter	Min.	Typ.	Max.	Units	Conditions
$\mathrm{V}_{\text {IH }}$	Input High Voltage (normal operating level)	$\mathrm{V}_{\text {SS }}+2.0$		$\mathrm{V}_{\text {CC }}$	Vdc	
$\mathrm{V}_{\text {IL }}$	Input Low Voltage (normal operating level)	$\mathrm{V}_{\text {SS }}{ }^{-0.3}$		$\mathrm{V}_{\text {SS }}+0.8$	Vdc	
I IN	Input Leakage Current R/W, ES, CS0, CS1, © $\overline{\text { CS2 }}$, Enable		1.0	2.5	$\mu \mathrm{Adc}$	$\mathrm{V}_{\text {IN }}=0 \mathrm{Vdc}$ to 5.25 Vdc
$\mathrm{I}_{\text {TSI }}$	Three-State (Off State) Input Current \quad D0-D7		2.0	10	$\mu \mathrm{Adc}$	$\mathrm{V}_{\text {IN }}=0.4 \mathrm{Vdc}$ to 2.4 Vdc
V_{OH}	Output High Voltage (all outputs except IRQ) D0-D7 Tx Data, $\overline{\text { RTS }}$	$\left\|\begin{array}{c} \mathrm{v}_{\mathrm{SS}}+2.4 \\ \mathrm{v}_{\mathrm{SS}}+2.4 \end{array}\right\|$			Vdc Vdc	$\begin{aligned} & \mathrm{I}_{\text {LOAD }}=-205 \mu \mathrm{Adc}, \\ & \text { Enable Pulse Width }<25 \mu \mathrm{~s} \\ & \mathrm{I}_{\text {LOAD }}=-100 \mu \mathrm{Adc}, \\ & \text { Enable Pulse Width }<25 \mu \mathrm{~s} \end{aligned}$
V_{OL}	Output Low Voltage (Enable pulse width $<25 \mu \mathrm{~s}$)			$\mathrm{V}_{\text {SS }}{ }^{+0.4}$	Vdc	$\begin{aligned} & \mathrm{I}_{\mathrm{LOAD}}=1.6 \mathrm{mAdc}, \\ & \text { Enable Pulse Width }<25 \mu \mathrm{~s} \end{aligned}$
$\mathrm{I}_{\mathrm{LOH}}$	Output Leakage Current (Off State) $\overline{\overline{\mathrm{IRQ}}}$		1.0	10	$\mu \mathrm{Adc}$	$\mathrm{V}_{\mathrm{OH}}=2.4 \mathrm{Vdc}$
P_{D}	Power Dissipation		300	525	mW	
$\mathrm{C}_{\text {IN }}$			$\begin{aligned} & 10 \\ & 7.0 \end{aligned}$	$\begin{gathered} 12.5 \\ 7.5 \end{gathered}$	pF pF	$\mathrm{V}_{\text {IN }}=0, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$,
COUT	Output Capacitance $\quad \overline{\text { RTS }}$,Tx Data			$\begin{aligned} & \hline 10 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$	$\mathrm{f}=1.0 \mathrm{MHz}$
$\mathrm{PW}_{\mathrm{CL}}$	Minimum Clock Pulse Width, Low $\quad \div 16, \div 64$ Modes	600			ns	
$\mathrm{PW}_{\mathrm{CH}}$	Minimum Clock Pulse Width, High $\quad \div 16, \div 64$ Modes	600			ns	
f_{C}	Clock Frequency $\quad \div \begin{array}{r}\text { a } \\ \\ \div 16, \div 64 \text { Modes }\end{array}$			$\begin{aligned} & \hline 500 \\ & 800 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{kHz} \\ & \mathrm{kHz} \end{aligned}$	
${ }^{\text {tDD }}$	Clock-to-Data Delay for Transmitter			1.0	$\mu \mathrm{s}$	
${ }^{\text {t RDSU }}$	Receive Data Setup Time $\div 1$ Mode	500			ns	
$\mathrm{t}_{\mathrm{RDH}}$	Receive Data Hold Time $\quad \div 1$ Mode	500			ns	
$\mathrm{t}_{\text {IR }}$	Interrupt Request Release Time			1.2	$\mu \mathrm{s}$	
$\mathrm{t}_{\text {RTS }}$	Request-to-Send Delay Time			1.0	$\mu \mathrm{s}$	
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Input Transition Times (Except Enable)			1.0*	$\mu \mathrm{s}$	

* 1.0μ or 10% of the pulse width, whichever is smaller.

Bus Timing Characteristics $\left(\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{SS}}=0, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\right.$ to $+70^{\circ} \mathrm{C}$ unless otherwise noted.) Read

,	Characteristic	S6850		S68A50		S68B50		Unit
Symbol		Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{t}_{\mathrm{CYCF}}$	Enable Cycle Time	1.0		0.666		0.50		$\mu \mathrm{S}$
$\mathrm{PW}_{\text {EH }}$	Enable Pulse Width, High	0.45		0.28		0.22	25	$\mu \mathrm{S}$
$\mathrm{PW}_{\text {EL }}$	Enable Pulse Width, Low	0.43		0.28		0.21		$\mu \mathrm{S}$
$\mathrm{t}_{\text {AS }}$	Setup Time, Address and R/W Valid to Enable Positive Transition	160		140		70		ns
$\mathrm{t}_{\text {DDR }}$	Data Delay Time		320		220		180	ns
t_{H}	Data Hold Time	10		10		10		ns
t_{AH}	Address Hold Time	10		10		10		ns
$\mathrm{t}_{\mathrm{Er}}, \mathrm{t}_{\mathrm{Ef}}$	Rise and Fall Time for Enable Input		25		25		25	ns

Write

Symbol	Characteristic	S6850		S68A50		S68B50		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{t}_{\text {CYCE }}$	Enable Cycle Time	1.0		0.666		0.50		$\mu \mathrm{S}$
$\mathrm{PW}_{\text {EH }}$	Enable Pulse Width, High	0.45		0.28		0.22	25	$\mu \mathrm{s}$
$\mathrm{PW}_{\text {EL }}$	Enable Pulse Width, Low	0.43		0.28		0.21		$\mu \mathrm{S}$
$\mathrm{t}_{\text {AS }}$	Setup Time, Address and R/W Valid to Enable Positive Transition	160		140		70		ns
$\mathrm{t}_{\text {DSW }}$	Data Setup Time	195		80		60		ns
t_{H}	Data Hold Time	10		10		10		ns
t_{AH}	Address Hold Time	10		10		10		ns
$\mathrm{t}_{\mathrm{Er},}, \mathrm{t}_{\mathrm{Ef}}$	Rise and Fall Time for Enable Input		25		25		25	ns

Figure 1. Clock Pulse Width, Low State

Figure 2. Clock Pulse Width, High State

Figure 4. Receive Data Setup Time ($\div 1$ Mode)

Figure 6. Request-to Send Delay and Interrupt-Request Release Times
enable

Figure 8. Bus Write Timing Characteristics (Write Information into ACIA)

Bus Timing Test Loads

$$
\begin{aligned}
\mathrm{C} & =130 \mathrm{pF} F O R D O .07 & & R=11.7 \mathrm{k} \Omega \text { FOR DO.D7 } \\
& =30 \mathrm{pFFOR} \overline{\text { RTS AND T× OATA }} & & =24 \mathrm{k} \Omega \text { FOR RTS AND T× DATA }
\end{aligned}
$$

Expanded Block Diagram

SYNCHRONOUS SERIAL DATA ADAPTER (SSDA)

Features

Programmable Interrupts from Transmitter, Receiver, and Error Detection Logic
\square Character Synchronization on One or Two Sync Codes
\square External Synchronization Available for Parallel-Serial Operation
\square Programmable Sync Code Register
\square Up to 600 kbps Transmission
\square Peripheral/Modem Control Functions
\square Three Bytes of FIFO Buffering on Both Transmit and Receive
\square Seven, Eight, or Nine Bit Transmission
\square Optional Even and Odd Parity
\square Parity, Overrun, and Underflow Status
\square Clock Rates:
1.0 MHz
1.5 MHz
2.0 MHz

General Description

The $\mathbf{S} 6852$ Synchronous Serial Data Adapter provides a bi-directional serial interface for synchronous data information interchange. It contains interface logic for simultaneously transmitting and receiving standard synchronous communications characters in bus organized systems such as the S6800 Microprocessor systems.
The bus interface of the $\mathbf{S} 6852$ includes select, enable, read/write, interrupt, and bus interface logic to allow data transfer over an 8 -bit bi-directional data bus. The parallel data of the bus system is serially transmitted and received by the synchronous data interface with synchronization, fill character insertion/deletion, and error checking. The functional configuration of the SSDA is programmed via the data bus during system initialization. Programmable control registers provide control for variable word lengths, transmit control, receive control, synchronization control, and interrupt control. Status, timing and control lines provide peripheral or modem control.
Typical applications include floppy disk controllers, cassette or cartridge tape controllers, data communications terminals, and numerical control systems.

Absolute Maximum Ratings:

Note:
This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.
Electrical Characteristics ($\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{SS}}=0, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ unless otherwise noted.)

Symbol	Characteristic	Min.	Typ.	Max.	Unit
$\mathrm{V}_{\text {IH }}$	Input High Voltage	$\mathrm{V}_{\text {SS }}+2.0$			Vdc
V_{IL}	Input Low Voltage			$\mathrm{V}_{\mathrm{SS}}+0.8$	Vdc
$\mathrm{I}_{\text {IN }}$	Input Leakage Current $\left(\mathrm{V}_{\mathrm{IN}}=0\right.$ to 5.25 Vdc$)$ TxClk, Rx Clk, Rx Data, Enable Reset, RS, R $/ \overline{\mathrm{W}}, \overline{\mathrm{CS}}, \overline{\mathrm{DCD}}, \overline{\mathrm{CTS}}$		1.0	2.5	$\mu \mathrm{Adc}$
$\mathrm{I}_{\mathrm{TSI}}$	Three State (Off State) Input Current $\left(\mathrm{V}_{\text {IN }}=0.4\right.$ to $\left.2.4 \mathrm{Vdc}, \mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{Vdc}\right)$ D0-D7		2.0	10	$\mu \mathrm{Adc}$
V_{OH}	Output High Voltage $\mathrm{I}_{\text {LOAD }}=-205 \mu \mathrm{Adc}$, Enable Pulse Width $<25 \mu \mathrm{~s}$ D0-D7 $\mathrm{I}_{\text {LOAD }}=-100 \mu \mathrm{Adc}$, Enable Pulse Width $<25 \mu \mathrm{~s}$ Tx Data, DTR, TUF	$\begin{aligned} & \mathrm{v}_{\mathrm{SS}}+2.4 \\ & \mathrm{v}_{\mathrm{SS}}+2.4 \end{aligned}$			Vdc Vdc
v_{OL}	Output Low Voltage $\mathrm{I}_{\text {LOAD }}=1.6 \mathrm{mAdc}$, Enable Pulse Width $<25 \mu \mathrm{~s}$			$\mathrm{v}_{\mathrm{SS}}+0.4$	Vdc
$\mathrm{I}_{\mathrm{LOH}}$	Output Leakage Current (Off State) $\mathrm{V}_{\mathrm{OH}}=2.4 \mathrm{Vdc}$ IRQ		1.0	10	$\mu \mathrm{Adc}$
$P_{\text {D }}$	Power Dissipation		300	525	mW
$\mathrm{C}_{\text {IN }}$	Input Capacitance $\left(\mathrm{V}_{\mathrm{IN}}=0, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}\right)$			$\begin{gathered} 12.5 \\ 7.5 \\ \hline \end{gathered}$	pF
$\mathrm{C}_{\text {OUT }}$	Output Capacitance $\left(\mathrm{V}_{\mathrm{IN}}=0, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}\right)$			$\begin{aligned} & 10 \\ & 5.0 \\ & \hline \end{aligned}$	pF

Electrical Characteristics ($\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{L}}$ to T_{H} unless otherwise noted.)

Symbol	Characteristic	S6852		S68A52		S68B52		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{PW}_{\text {CL }}$	Minimum Clock Pulse Width, Low (Figure 1)	700		400		280		ns
$\mathrm{PW}_{\mathrm{CH}}$	Minimum Clock Pulse Width, High (Figure 2)	700		400		280		ns
f_{C}	Clock Frequency		600		1000		1500	kHz
$\mathrm{t}_{\text {RDSU }}$	Receive Data Setup Time (Figure 3, 7)	350		200		160		ns
$\mathrm{t}_{\mathrm{RDH}}$	Receive Data Hold Time (Figure 3)	350		200		160		ns
$\mathrm{t}_{\text {SM }}$	Sync Match Delay Time (Figure 3)		1.0		0.666		0.500	$\mu \mathrm{s}$
$\mathrm{t}_{\text {TDD }}$	Clock-to-Data Delay for Transmitter (Figure 4)		1.0		0.666		0.500	$\mu \mathrm{s}$

* $10 \mu \mathrm{~s}$ or 10% of the pulse width, whichever is smeller.

Figure 1. Clock Pulse Width, Low-State

Figure 2. Clock Pulse Width, High-State

Electrical Characteristics-Continued ($\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{L}}$ to T_{H} unless otherwise noted.)

Symbol	Characteristic	S6852		S68A52		S68B52		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{t}_{\text {TUF }}$	Transmitter Underflow (Figure 4, 6)		1.0		0.666		0.500	$\mu \mathrm{S}$
$\mathrm{t}_{\text {DTR }}$	$\overline{\text { DTR }}$ Delay Time (Figure 5)		1.0		0.666		0.500	$\mu \mathrm{s}$
$\mathrm{t}_{\text {IR }}$	Interrupt Request Release Time (Figure 5)		1.2		0.800		0.600	$\mu \mathrm{s}$
$\mathrm{t}_{\text {Res }}$	$\overline{\text { Reset Minimum Pulse Width }}$	1.0		0.666		0.500		$\mu \mathrm{S}$
$\mathrm{t}_{\mathrm{CTS}}$	$\overline{\text { CTS Setup Time (Figure 6) }}$	200		150		120		ns
$\mathrm{t}_{\text {DCD }}$	$\overline{\text { DCD }}$ Setup Time (Figure 7)	500		350		250		ns
$\mathrm{t}_{\mathbf{r}}, \mathrm{t}_{\mathrm{f}}$	Input Rise and Fall Times (except Enable) (0.8V to 2.0 V)		1.0		1.0		1.0	$\mu \mathrm{s}$

Bus Timing Characteristics

Symbol	Characteristic	S6852		S68A52		S68B52		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
Read								
$\mathrm{t}_{\mathrm{CYCE}}$	Enable Cycle Time	1.0		0.666		0.5		$\mu \mathrm{s}$
$\mathrm{PW}_{\text {EH }}$	Enable Pulse Width, High	0.45	25	0.28	25	0.22	25	$\mu \mathrm{s}$
$\mathrm{PW}_{\text {EL }}$	Enable Pulse Width, Low	0.43		0.28		0.21		$\mu \mathrm{s}$
$\mathrm{t}_{\text {AS }}$	Setup Time, Address and R/W Valid to Enable Positive Transition	160		140		70		ns
$\mathrm{t}_{\text {DDR }}$	Data Delay Time		320		220		180	ns
t_{H}	Data Hold Time	10		10		10		ns
t_{AH}	Address Hold Time	10		10		10		ns
$\mathrm{t}_{\mathrm{Er}}, \mathrm{t}_{\mathrm{Ef}}$	Rise and Fall Time for Enable Input		25		25		25	ns
Write								
$\mathrm{t}_{\text {CYCE }}$	Enable Cycle Time	1.0		0.666		0.5		$\mu \mathrm{s}$
$\mathrm{PW}_{\text {EH }}$	Enable Pulse Width, High	0.45	25	0.28	25	0.22	25	$\mu \mathrm{s}$
$\mathrm{PW}_{\text {EL }}$	Enable Pulse Width, Low	0.43		0.28		0.21		$\mu \mathrm{s}$
$\mathrm{t}_{\text {AS }}$	Setup Time, Address and R/W Valid to Enable Positive Transition	160		140		70		ns
$\mathrm{t}_{\text {DSW }}$	Setup Time	195		80		60		ns
t_{H}	Data Hold Time	10		10		10		ns
t_{AH}	Address Hold Time	10		10		10		ns
$\mathrm{t}_{\mathrm{Er}}, \mathrm{t}_{\mathrm{Ef}}$	Rise and Fall Time for Enable Input		25		25		25	ns

Figure 3. Receive Data Setup and Hold Times and Sync Delay Time

Figure 10. Bus Timing Test Loads

Expanded Block Diagram

ADVANCED DATA LINK CONTROLLER

Features

S6800 Compatible
\square Protocol Features
\square Automatic Flag Detection and Synchronization
Zero Insertion and DeletionExtendable Address, Control and Logical Control Fields (Optional)Variable Word Length Info Field - 5, 6, 7, or 8-bitsAutomatic Frame Check Sequence Generation and Check
Abort Detection and TransmissionIdle Detection and Transmission
\square Loop Mode Operation
Loop Back Self-Test Mode
NRZ/NRZI Modes

Quad Data Buffers for Each Rx and Tx
Prioritized Status Register (Optional)
MODEM/DMA/Loop Interface

General Description

The S6854 ADLC performs the complex MPU/data communication link function for the "Advanced Data Communication Control Procedure" (ADCCP). High Level Data Link Control (HDLC) and Synchronous Data Link Control (SDLC) standards. The ADLC provides key interface requirements with improved software efficiency. The ADLC is designed to provide the data communications interface for both primary and secondary stations in stand-alone, polling, and loop configurations.

Absolute Maximum Ratings*

*This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

Electrical Characteristics $\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{SS}}=0, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\right.$ to $+70^{\circ} \mathrm{C}$ unless otherwise noted.)

Symbol	Parameter	Min.	Typ.	Max.	Unit	Conditions
V_{IH}	Input High Voltage	$\mathrm{V}_{\mathrm{SS}}+2.0$		Vdc		
$\mathrm{V}_{\text {IL }}$	Input Low Voltage			$\mathrm{V}_{\mathrm{SS}}+0.8$	Vdc	
$\mathrm{I}_{\text {IN }}$	Input Leakage Current All Inputs Except D0-D7		1.0	2.5	$\mu \mathrm{Adc}$	$\mathrm{V}_{\mathrm{IN}}=0$ to 5.25 Vdc
$\mathrm{I}_{\mathrm{TSI}}$	Three State (Off State) Input Current D0-D7		2.0	10	$\mu \mathrm{Adc}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0.4 \text { to } 2.4 \mathrm{Vdc} \\ & \mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{Vdc} \end{aligned}$
V_{OH}	Output High VoltageD0-D7 All Others	$\begin{aligned} & \mathrm{V}_{\mathrm{SS}}+2.4 \\ & \mathrm{v}_{\mathrm{SS}}+2.4 \\ & \hline \end{aligned}$			Vdc Vdc	$\begin{aligned} & \mathrm{I}_{\mathrm{LOAD}}=-205 \mu \mathrm{Adc} \\ & \mathrm{I}_{\mathrm{LOAD}}=-100 \mu \mathrm{Adc} \end{aligned}$
$\mathrm{V}_{\text {OL }}$	Output Low Voltage			$\mathrm{V}_{\mathrm{SS}}+0.4$	Vdc	$\mathrm{I}_{\text {LOAD }}=1.6 \mathrm{mAdc}$
$\mathrm{I}_{\mathrm{LOH}}$	Output Leakage Current (Off State) I $\overline{\mathrm{RQ}}$		1.0	10	$\mu \mathrm{Adc}$	$\mathrm{V}_{\mathrm{OH}}=2.4 \mathrm{Vdc}$
P_{D}	Power Dissipation			850	mW	
$\mathrm{C}_{\text {IN }}$	Capacitance \quad Dll Other Inputs			$\begin{gathered} 12.5 \\ 7.5 \end{gathered}$	$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \\ & \mathrm{f}=1.0 \mathrm{MHz} \end{aligned}$
Cout	$\begin{array}{r} \overline{\mathrm{IRQ}} \\ \text { All Others } \end{array}$			$\begin{aligned} & 5.0 \\ & 10 \end{aligned}$	pF	

Symbol	Characteristic	S6854		S68A54		S68B54		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{PW}_{\text {CL }}$	Minimum Clock Pulse Width, Low	700		450		280		ns
$\mathrm{PW}_{\mathrm{CH}}$	Minimum Clock Pulse Width, High	700		450		280		ns
f_{C}	Clock Frequency		0.66		1.0		1.5	MHz
$\mathrm{t}_{\text {RDSU }}$	Receive Data Setup Time	250		200		120		ns
$\mathrm{t}_{\text {RDH }}$	Receive Data Hold Time	120		100		60		ns
$\mathrm{t}_{\text {RTS }}$	Request-to-Send Delay Time		680		460		340	ns
$\mathrm{t}_{\text {TDD }}$	Clock-to-Data Delay for Transmitter		460		320		250	ns
$\mathrm{t}_{\text {FD }}$	Flag Detect Delay Time		680		460		340	ns
$\mathrm{t}_{\text {DTR }}$	DTR Delay Time		680		460		340	ns
$\mathrm{t}_{\mathrm{LOC}}$	Loop On-Line Control Delay Time		680		460		340	ns
$\mathrm{t}_{\text {RDSR }}$	RDSR Delay Time		540		400		340	ns
$\mathrm{t}_{\text {TDSR }}$	TDSR Delay Time		540		400		340	ns
$\mathrm{t}_{\text {IR }}$	Interrupt Request Release Time		1.2		0.9		0.7	$\mu \mathrm{s}$
$t_{\text {RES }}$	Reset Minimum Pulse Width	1.0		0.65		0.40		$\mu \mathrm{S}$
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Input Rise and Fall Times except Enable $(0.8 \mathrm{~V}$ to 2.0 V$)$		1.0*		1.0*		1.0*	$\mu \mathrm{S}$

[^18]Bus Timing Characteristics $\left(\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{SS}}=0, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\right.$ to $+70^{\circ} \mathrm{C}$ unless otherwise noted.)
Read

Symbol	Characteristic	S6854		S68A54		S68B54		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{t}_{\mathrm{CYC}}$	Enable Cycle Time	1.0		0.666		0.50		$\mu \mathrm{s}$
$\mathrm{PW}_{\text {EH }}$	Enable Pulse Width, High	0.45		0.28		0.22	25	$\mu \mathrm{s}$
$\mathrm{PW}_{\text {EL }}$	Enable Pulse Width, Low	0.43		0.28		0.21		$\mu \mathrm{S}$
$\mathrm{t}_{\text {AS }}$	Setup Time, Address and R/W Valid to Enable Positive Transition	160		140		70		ns
$\mathrm{t}_{\text {DDR }}$	Data Delay Time		320		220		180	ns
t_{H}	Data Hold Time	10		10		10		ns
t_{AH}	Address Hold Time	10		10		10		ns
$\mathrm{t}_{\mathrm{Er}}, \mathrm{t}_{\mathrm{Ef}}$	Rise and Fall Time for Enable Input		25		25		25	ns

Write

Symbol	Characteristic	S6850		S68A50		S68B50		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{t}_{\text {CYCE }}$	Enable Cycle Time	1.0		0.666		0.50		$\mu \mathrm{s}$
$\mathrm{PW}_{\text {EH }}$	Enable Pulse Width, High	0.45		0.28		0.22		$\mu \mathrm{S}$
$\mathrm{PW}_{\text {EL }}$	Enable Pulse Width, Low	0.43		0.28		0.21		$\mu \mathrm{S}$
t_{AS}	Setup Time, Address and R/W Valid to Enable Positive Transition	160		140		70		ns
$\mathrm{t}_{\text {DSW }}$	Data Setup Time	195		80		60		ns
t_{H}	Data Hold Time	10		10		10		ns
t_{AH}	Address Hold Time	10		10		10		ns
$\mathrm{t}_{\mathrm{Er}}, \mathrm{t}_{\mathrm{Ef}}$	Rise and Fall Time for Enable Input		25		25		25	ns

Figure 1. Bus Timing Test Loads

Figure 2. Receiver Data Setup/Hold, Flag Detect and Loop On-Line Control Delay Timing

Figure 3. Transmit Data Output Delay and Request to Send Delay Timing

Figure 4. TDSR/RDSR Delays, IRO Release Delay, RTS and DTR Delay Timing

Figure 5. Bus Read/Write Timing Characteristics

GENERAL PURPOSE INTERFACE ADAPTER

Features

Single or Dual Primary Address RecognitionSecondary Address Capability
Complete Source and Acceptor Handshakes
Programmable Interrupts
RFD Holdoff to Prevent Data Overrun
Operates with DMA ControllerSerial and Parallel Polling CapabilityTalk-Only or Listen-Only CapabilitySelectable Automatic Features to Minimize Software
\square Synchronization Trigger Output
\square S6800 Bus Compatible

General Description

The S68488 GPIA provides the means to interface between the IEEE488 standard instrument bus and the S6800. The 488 instrument bus provides a means for controlling and moving data from complex systems of multiple instruments.
The S68488 will automatically handle all handshake protocol needed on the instrument bus.

Block Diagram

NOTE 1:

TYP 16 PLACES
*The 3 -wire handshake described is the subject of patents owned by Hewlett-Packard Co.

Pin Configuration

Functional Description

The IEEE 488 instrument bus standard is a bit-parallel, byte-serial bus structure designed for communiation to and from intelligent instruments. Using this standard, many instruments may be interconnected and remotely and automatically controlled or programmed. Data may be taken from, sent to, or transferred between instruments. A bus controller dictates the role of each device by making the attention line true and sending talk or listen addresses on the instrument bus data lines; those devices which have matching addresses are activated. Device addresses are set into each GPIA from switches or jumpers on a PC board by a microprocessor as a part of the initialization sequence.
When the controller makes the attention line true, instrument bus commands may also be sent to single or multiple GPIAs.
Information is transmitted on the instrument bus data lines under sequential control of the three handshake lines. No step in the sequence can be initiated
until the previous step is completed. Information transfer can proceed as fast as the devices can respond, but no faster than the slowest device presently addressed as active. This permits several devices of different speeds to receive the same data concurrently.
The GPIA is designed to work with standard 488 bus driver Ics (S3448As) to meet the complete electrical specifications of the IEEE488 bus. Additionally, a powered-off instrument may be powered-on without disturbing the 488 bus. With some additional logic, the GPIA could be used with other microprocessors. The S68488 GPIA has been designed to interface between the S6800 microprocessor and the complex protocol of the IEEE488 instrument bus. Many instrument bus protocol functions are handled automatically by the GPIA and require no additional MPU action. Other functions require minimum MPU response due to a large number of internal registers conveying information on the state of the GPIA and the instrument bus.

Maximum Ratings

Supply Voltage . - 0.3 Vdc to +7.0 Vdc
Input Voltage . 0.3 Mdc to +7.0 Vdc
Operating Temperature Range . $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range . $55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Thermal Resistance . $+82.5^{\circ} \mathrm{C} / \mathrm{W}$
This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields, however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

Electrical Characteristics ($\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{SS}}=0, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ unless otherwise noted)

Symbol	Parameter	Min.	Typ.	Max.	Unit	Conditions
$\mathrm{V}_{\text {IH }}$	Input High Voltage	$\mathrm{V}_{\text {SS }}+2.0$		V_{CC}	Vdc	
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	$\mathrm{V}_{\text {SS }}-0.3$		$\mathrm{V}_{\mathrm{SS}}+0.8$		
$\mathrm{I}_{\text {IN }}$	Input Leakage Current		1.0	2.5	$\mu \mathrm{Adc}$	$\mathrm{V}_{\text {IN }}=0$ to 5.25 V
$\mathrm{I}_{\text {TSI }}$	Three-State (Off State) Input Current D0-D7		2.0	10	$\mu \mathrm{Adc}$	$\mathrm{V}_{\text {IN }}=0.4$ to 2.4 V
V_{OH}	Output High Voltage D0-D7	$\mathrm{V}_{\mathrm{SS}}+2.4$			Vdc	$\mathrm{I}_{\text {load }}=-205 \mu \mathrm{~A}$
$\mathrm{V}_{\text {OL }}$	Output Low Voltage $\begin{array}{r} \text { D0-D7 } \\ \hline \text { IRQ } \end{array}$			$\begin{aligned} & \mathrm{V}_{\mathrm{SS}}+0.4 \\ & \mathrm{~V}_{\mathrm{SS}}+0.4 \end{aligned}$	Vdc	$\begin{aligned} \mathrm{I}_{\text {load }} & =1.6 \mathrm{~mA} \\ \mathrm{I}_{\text {load }} & =3.2 \mathrm{~mA} \end{aligned}$
$\mathrm{I}_{\mathrm{LOH}}$	Output Leakage Current (Off State)		1.0	10	$\mu \mathrm{Adc}$	$\mathrm{V}_{\mathrm{OH}}=2.4 \mathrm{Vdc}$
P_{D}	Power Dissipation		600		mW	
CIN	Input Capacitance D0-D7 All Others			$\begin{gathered} 12.5 \\ 7.5 \end{gathered}$	pF	$\begin{aligned} & \mathrm{V}_{\text {IN }}=0, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & \mathrm{f}=1.0 \mathrm{MHz} \end{aligned}$

Figure 2. Source and Acceptor Handshake

Bus Timing Characteristics

Read (See Figure 3)

Symbol	Parameter	Min.	Typ.	Max.	Unit	Conditions
$\mathrm{t}_{\text {cycE }}$	Enable Cycle Time	1.0			$\mu \mathrm{s}$	See Figure 3
PWEH	Enable Pulse Width, High	0.45			$\mu \mathrm{s}$	
PWEL	Enable Pulse Width, Low	0.43			$\mu \mathrm{s}$	
t_{AS}	Setup Time, Address and R / \bar{W} valid to enable positive transition	160			ns	
$\mathrm{t}_{\text {DDR }}$	Data Delay Time			320	ns	
t_{H}	Data Hold Time	10			ns	
$\mathrm{t}_{\text {AH }}$	Address Hold Time	10			ns	
$\mathrm{tEr}^{\text {, }}$ tef	Rise and Fall Time for Enable input			25	ns	

Write (See Figure 4)

$\mathrm{t}_{\text {cycE }}$	Enable Cycle Time	1.0			μ_{s}	
$\mathrm{PW}_{\mathrm{EH}}$	Enable Pulse Width, High	0.45			$\mu \mathrm{~s}$	
$\mathrm{PW}_{\text {EL }}$	Enable Pulse Width, Low	0.43			$\mu \mathrm{~s}$	
t_{AS}	Setup Time, Address and $R / \overline{\mathrm{W}}$ valid to enable positive transition	160			ns	
	See Figure 4					
$\mathrm{t}_{\mathrm{DSW}}$	Data Setup Time	195			ns	
t_{H}	Data Hold Time	10			ns	
$\mathrm{t}_{\text {AH }}$	Address Hold Time	10			ns	
$\mathrm{t}_{\mathrm{Er}}, \mathrm{t}_{\mathrm{Ef}}$	Rise and Fall Time for Enable input			25	ns	

Output (See Figure 5)

t_{HD}	Output Delay Time			400	ns	$\overline{\mathrm{DAV}}, \mathrm{DAC}, \mathrm{RFD}$, $\overline{\mathrm{EOI}}, \overline{\mathrm{ATN}}$ valid

Figure 3. Bus Read Timing Characteristics (Read Information from GPIA)

Figure 4. Bus Write Timing Characteristics (Write Information into GPIA)

Figure 5. Output Bus Timing

A.C. Time Values

Symbol*	Parameter		Min.	Typ.	Max.	Unit	Conditions
T_{1}	Settling Time for Multiple Messa	SH		$\geqslant 2$		$\mu \mathrm{s} * *$	
t_{2}	Response to $\overline{\text { ATN }}$	SH, AH, T, L		$\leqslant 200$		ns	
T_{3}	Interface Message Accept Time \dagger	AH		>0		ϕ	
t_{4}	Response to $\overline{\text { IFC }}$ or $\overline{\text { REN }}$ False	T, TE, L, LE		<100		$\mu \mathrm{s}$	
t_{5}	Response to $\overline{\text { ATN }} \cdot \overline{\text { EOI }}$	PP		$\leqslant 200$		ns	

* Time values specified by a lower case t indicate the maximum time allowed to make a state transition. Time values specified by an upper case T indicate the minimum time that a function must remain in a state before exiting.
** If three -state drivers are used on the $\overline{\mathrm{DIO}}-\overline{\mathrm{DAV}}$ and $\overline{\mathrm{EOI}}$ lines, T_{1} may be:
(1) $\geqslant 1100 \mathrm{~ns}$
(2) $\mathrm{Or} \geqslant 700 \mathrm{~ns}$ if it is known that within the controller $\overline{\mathrm{ATN}}$ is driven by a three-state driver.
(3) Or $\geqslant 500 \mathrm{~ns}$ for all subsequent bytes following the first sent after each false transition of $\overline{\text { ATN }}$ [the first byte must be sent in accordance with (1) or (2)].
\dagger Time required for interface functions to accept, not necessarily respond to interface messages.
\oint Implementation dependent.
MPU bus clock rate - The current 6800 bus clock is $\leqslant 1 \mathrm{MHz}$ but part should operate at 1.5 MHz (design goal), with appropriate settling times (T1).

DATA ENCRYPTION UNIT

Features

\square Full Implementation of the NBS DES Algorithm
\square A Complete Set of Operations, Including Encrypt Data, Decrypt Data, Enter New Key, Return Status, and Partial and Full Resets

\square High-Speed Operation - Full Encryption or Decryption of a 64-Bit Data Block, Including All Command and Data Transfers, in $\mathbf{1 4 . 0} \mathbf{m s}$.
\square 64-Bit Key Entry and Processing in 11.0 ms , Including Odd Parity Checking of 8-Bit Key Data Bytes
\square Simple Interface Through a General Purpose 8-Bit Paralled Digital I/O Port

General Description

In addition, the AMI S6894 DEU offers an on-chip clock circuit, TTL-compatible I/O, single +5 V power supply, in a two-chip set.
The 14.0 ms data encryption/decryption time provided by the AMI DEU corresponds to a data rate in excess of 4600 bits-per-second in sustained operation. Allowing only 5% overhead for communications protocol control and checksum bits, this data rate is adequate to support a 4800 baud synchronous data link operated at 100% utilization. For start-stop asynchronous communications, the S 6894 data rate is adequate to support lines with an aggregate transmission capacity in excess of 5700 baud. Two or more S6894 DEUs can be operated in parallel where higher data rates are required.
The encryption key is processed separately at the time it is entered. Once entered into S6894 DEU, an encryption key cannot be accessed by external means in either its original or processed form. Thus, security of the encryption key is fully protected. Each encryption key is entered only once - following a DEU reset, at DEU initialization, or when the key is to be changed. The entered key is then used for all subsequent data encryption and decryption operations.

Interface to the S 6894 DEU is through a conventional general purpose 8 -bit parallel I/O port. This allows the unit to be used with a wide range of host processors having different bus structures.

Other DEU Products

Although the S6894 DEU is the primary AMI NBS DES hardware product, other versions can be supplied at customer request. These include:
S6894-2 - Features and performance are identical to the S6894 DEU except that two encryption keys are accommodated. DEU encrypt and decrypt commands explicitly designate which key is to be used. Thus, the DEU-2 can serve two data paths having different encryption keys, can be used in the Master Key/Session Key mode, and so forth. Two new commands - Enter and Decrypt New Key, and Process New Key - are provided. These allow a new encrypted key to be decrypted under control of either existing key and then to replace either key, while prohitibing external access to the intermediate decrypted key value. The S6894-2 is implemented as a threechip set that includes an S6810 RAM.

S6894-3 - Features and performances are identical to the S6894-2 DEU except that three encryption keys are accommodated. The S6894-3 consists of a four-chip set that includes two S5101 CMOS RAMs. An added feature is low power key data retention. During powerdown conditions, all three encryption key values can be preserved using battery backup with only 0.1 mW power drain. Preserved encryption keys are restored during power-on reset processing.
S6894-3A - Features are identical to the S6894-3 DEU in a two-chip set implementation. Data encryption and decryption times are 22.5 ms , corresponding to a data rate in excess of 2800 bits-per-second in sustained operation. Low power data retention power requirements are less than 40 mW .
Prices and delivery for all of the above DEUs will be quoted on request.

Customized Data Encryption Units

AMI DEU products can be customized to specific customer requirements in a number of ways. Protocols and conventions for transfer of data and command words between the controlling host processor and the

DEU can be modified, and commands can be added or modified. For example, commands can be modified and added to facilitate Master/Session Key and/or Cypher Feedback (CFB) modes of operation. Further, the hardware interface can be modified or customized to meet specific application requirements. For example, the general purpose 8 -bit parallel I/O port interface can be replaced - e.g., by a DMA interface or a custom LSI circuit - to precisely match the bus interface requirements of a particular host processor, to simplify DEU control and minimize host processor overhead, and/or to achieve maximum efficiency and speed in data and command word transfers.

AMI can also make available high-speed versions of any of the above DEUs. Because the object of such an implementation of the NBS DES is high performance, AMI plans at this time to offer high speed DEU products only in versions specifically customized to individual user requirements.
AMI will be pleased to work with interested customers in specifying and implementing customized versions of DEU products that meet requirements of specific applications.

128 X 8 STATIC READ/WRITE MEMORY

Features

\square Organized as 128 Bytes of 8 Bits
\square Static Operation
\square Bidirectional Three-State Data Input/Output
\square Six Chip Enable Inputs (Four Active Low, Two Active High
\square Single 5 Volt Power Supply
\square TTL Compatible
\square Maximum Access Time 450ns for $\mathbf{S 6 8 1 0}$
360 ns for S68A10
250ns for S68B10

General Description

The S6810/S68A10 and S 68 B 10 are static 128×8 Read/Write Memories designed and organized to be compatible with the S6800/S68A00 and S68B00 Microprocessors. Interfacing to the S6810/S68A10 and S68B10 consists of an 8 -bit bidirectional data bus, seven address lines, a single Read/Write control line, and six chip enable lines, four negative and two positive.
For ease of use, the S6810/S68A10 and S68B10 are a totally static memory requiring no clocks or cell refresh. The S6810/S68A10 and S68B10 are fabricated with N -channel silicon gate depletion load technology to be fully DTL/TTL compatible with only a single +5 volt power supply required.

Absolute Maximum Ratings

Supply Voltage	-0.3 V to +7.0 V
Input Voltage	-0.3 V to +7.0 V
Operating Temperature Range	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

D.C. Characteristics:

($\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{SS}}=0, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ unless otherwise noted.)

Symbol	Parameter	Min.	Typ.	Max.	Units	Conditions
I_{IN}	Input Current $\left(\mathrm{A}_{\mathrm{n}}, \mathrm{R} / \mathrm{W}, \mathrm{CS}_{\mathrm{n}}, \overline{\left.\mathrm{CS}_{\mathrm{n}}\right)}\right.$			2.5	$\mu \mathrm{Adc}$	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ to 5.25 V
$\mathrm{~V}_{\mathrm{OH}}$	Output High Voltage	2.4			Vdc	$\mathrm{I}_{\mathrm{OH}}=-205 \mu \mathrm{~A}$
$\mathrm{~V}_{\mathrm{OL}}$	Output Low Voltage			0.4	Vdc	$\mathrm{I}_{\mathrm{OL}}=1.0 \mathrm{~mA}$
I_{LO}	Output Leakage Current (Three State)			10	$\mu \mathrm{Adc}$	$\mathrm{CS}=0.8 \mathrm{~V}$ or $\overline{\mathrm{CS}}=2.0 \mathrm{~V}$, $\mathrm{V}_{\mathrm{OUT}}=0.4 \mathrm{~V}$ to 2.4 V
I_{CC}	Supply Current S6810 S68A10/S68B10			80 100	mAdc mAdc	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$, all other pins grounded, $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$

A.C. Characteristics:

Read Cycle

$\left(\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{SS}}=0, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\right.$ to $70^{\circ} \mathrm{C}$ unless otherwise noted.)

Symbol	Parameter	S6810		S68A10		S68B10		
		Max.	Min.	Max.	Min.	Max.	Units	
$\mathrm{t}_{\text {cyc }(\mathrm{R})}$	Read Cycle Time	450		360		250		ns
$\mathrm{t}_{\mathrm{acc}}$	Access Time		450		360		250	ns
t_{AS}	Address Setup Time	20		20		20		ns
t_{AH}	Address Hold Time	0		0		0		ns
$\mathrm{t}_{\mathrm{DDR}}$	Data Delay Time (Read)		230		220		180	ns
$\mathrm{t}_{\mathrm{RCS}}$	Read to Select Delay Time	0		0		0		ns
$\mathrm{t}_{\mathrm{DHA}}$	Data Hold from Address	10		10		10		ns
t_{H}	Output Hold Time	10		10		10		ns
$\mathrm{t}_{\mathrm{DHW}}$	Data Hold from Write	10	60	10	60	10	60	ns
t_{RH}	Read Hold from Chip Select	0		0		0		ns

Write Cycle

$\left(\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{SS}}=0, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\right.$ to $70^{\circ} \mathrm{C}$ unless otherwise noted.)

Symbol	Parameter	S6810		S68A10		S68B10		
		Max.	Min.	Max.	Min.	Max.	Units	
$\mathrm{t}_{\text {cyc }(\mathrm{W})}$	Write Cycle Time	450		360		250		ns
t_{AS}	Address Setup Time	20		20		20		ns
t_{AH}	Address Hold Time	0		0		0		ns
t_{CS}	Chip Select Pulse Width	300		250		210		ns
$\mathrm{t}_{\mathrm{WCS}}$	Write to Chip Select Delay Time	0		0		0		ns
$\mathrm{t}_{\mathrm{DSW}}$	Data Setup Time (Write)	100		80		60		ns
t_{H}	Input Hold Time	10		10		10		ns
t_{WH}	Write Hold Time from Chip Select	0		0		0		ns

AC Test Load

ANII
AMERICAN MICROSYSTEMS, INC.

MICROPROCESSORS

S9900	16-Bit Microprocessor
S9940	Single Chip Microcomputer 2K ROM, 128×8 RAM
S9980A/S9981	16-Bit Microprocessor 8-Bit Data Bus (S9981 has Internal Clock)
PERIPHERALS	
S9901	
Programmable Systems Interface (PSI)	

16-BIT
 MICROPROCESSOR

Features

16-Bit Instruction WordFull Minicomputer Instruction Set Capability including Multiply and DivideUp to 65,536 Bytes of Memory3.3MHz SpeedAdvanced Memory-to-Memory ArchitectureSeparate Memory, I/O and Interrupt-Bus Structures16 General Registers16 Prioritized Interrupts
Programmed and DMA I/0 CapabilityN-Channel Silicon-Gate Technology

General Description

The S 9900 microprocessor is a single-chip 16 -bit central processing unit (CPU) produced using N-channel silicon-gate MOS technology. The instruction set of the S9900 includes the capabilities offered by full minicomputers. The unique memory-to-memory architecture features multiple register files, resident in memory, which allow faster response to interrupts and increased programming flexibility. The separate bus structure simplifies the system design effort. AMI provides a compatible set of MOS memory and support circuits to be used with an S9900 system. The system is fully supported by software and complete prototyping systems.

S9900 Electrical and Mechanical Specifications
 Absolute Maximum Ratings Over Operating Free-Air Temperature Range (unless otherwise noted)*

Abstract

 Supply Voltage, V_{DD} (See Note 1)... 0.3 V to +20 V All Input Voltages (See Note 1) . -0.3 V to +20 V Operating Free-Air Temperature Range . .. $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ Storage Temperature Range... $55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ *Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the "Recommended Operating Conditions" section of this specification is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTE 1: Under absolute maximum ratings voltage values are with respect to the most negative supply, $V_{B B}$ (substrate), unless otherwise noted. Throughout the remainder of this section, voltage values are with respect to $V_{S S}$.

Recommended Operating Conditions

Symbol	Parameter	Min.	Nom.	Max.	Unit	Conditions
V_{BB}	Supply voltage	-5.25	-5	-4.75	V	
$\mathrm{~V}_{\mathrm{CC}}$	Supply voltage	4.75	5	5.25	V	
$\mathrm{~V}_{\mathrm{DD}}$	Supply voltage	11.4	12	12.6	V	
$\mathrm{~V}_{\mathrm{SS}}$	Supply voltage		0		V	
$\mathrm{~V}_{\mathrm{IH}}$	High-level input voltage (all inputs except clocks)	2.2	2.4	$\mathrm{~V}_{\mathrm{CC}}{ }^{+1}$	V	
$\mathrm{~V}_{\mathrm{IH}(\phi)}$	High-level clock input voltage	$\mathrm{V}_{\mathrm{DD}}-2$		$\mathrm{~V}_{\mathrm{DD}}$	V	
V_{IL}	Low-level input voltage (all inputs except clocks)	-1	0.4	0.8	V	
$\mathrm{~V}_{\mathrm{IL}(\phi)}$	Low-level clock input voltage	-0.3	0.3	0.6	V	
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature	0		70	${ }^{\circ} \mathrm{C}$	

Timing Requirements Over Full Range of Recommended Operating Conditions (See Figures 1 and 2)

Symbol	Parameter	Min.	Nom.	Max.	Unit	Conditions
$\mathrm{t}_{\mathbf{c}(\phi)}$	Clock cycle time	0.3	0.333	0.5	$\mu \mathrm{~s}$	
$\mathrm{t}_{\mathrm{r}(\phi)}$	Clock rise time	10	12		ns	
$\mathrm{t}_{\mathrm{f}(\phi)}$	Clock fall time	10	12		ns	
$\mathrm{t}_{\mathrm{w}(\phi)}$	Pulse width, any clock high	40	45	100	ns	
$\mathrm{t}_{\phi 1 \mathrm{~L}, \phi 2 \mathrm{~L}}$	Delay time, clock 1 low to clock 2 low (time between clock pulses)	0	5		ns	
$\mathrm{t}_{\phi 2 \mathrm{~L}, \phi 3 \mathrm{~L}}$	Delay time, clock 2 low to clock 3 low (time between clock pulses)	0	5		ns	
$\mathrm{t}_{\phi 3 \mathrm{~L}, \phi 4 \mathrm{~L}}$	Delay time, clock 3 low to clock 4 low (time between clock pulses)	0	5		ns	
$\mathrm{t}_{\phi 4 \mathrm{~L}, \phi 1 \mathrm{~L}}$	Delay time, clock 4 low to clock 1 low (time between clock pulses)	0	5		ns	
$\mathrm{t}_{\phi 1 \mathrm{H}, \phi 2 \mathrm{H}}$	Delay time, clock 1 high to clock 2 high (time between leading edges)	73	83		ns	
$\mathrm{t}_{\phi 2 \mathrm{H}, \phi 3 \mathrm{H}}$	Delay time, clock 2 high to clock 3 high (time between leading edges)	73	83		ns	
$\mathrm{t}_{\phi 3 \mathrm{H}, \phi 4 \mathrm{H}}$	Delay time, clock 3 high to clock 4 high (time between leading edges)	73	83		ns	
$\mathrm{t}_{\phi 4 \mathrm{H}, \phi 1 \mathrm{H}}$	Delay time, clock 4 high to clock 1 high (time between leading edges)	73	8		ns	
t_{su}	Data or control setup time before clock 1	30			ns	
t_{h}	Data hold time after clock 1	10			ns	

Electrical Characteristics Over Full Range of Recommended Operating Conditions (unless otherwise noted)

Symbol	Parameter		Min.	Typ. \dagger	Max.	Unit	Conditions
$\mathrm{I}_{\text {I }}$	Input current	Data Bus during DBIN		± 50	± 100	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {SS }}$ to V_{CC}
		$\overline{\text { WE }}, \overline{M E M E N}$, DBIN, Address bus, Data bus during HOLDA		± 50	± 100		$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{SS}}$ to $\mathrm{V}_{\text {CC }}$
		Clock*		± 25	± 75		$\mathrm{V}_{\mathrm{I}}=-0.3$ to 12.6 V
		Any other inputs		± 1	± 10		$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {SS }}$ to V_{CC}
VOH	High-level output voltage		2.4		V_{CC}	V	$\mathrm{I}_{\mathrm{O}}=-0.4 \mathrm{~mA}$
VOL	Low-level output voltage				$\begin{aligned} & 0.65 \\ & 0.50 \\ & \hline \end{aligned}$	V	$\begin{aligned} & \mathrm{I}_{\mathrm{O}}=32 . \mathrm{mA} \\ & \mathrm{I}_{\mathrm{O}}=2 \mathrm{~mA} \end{aligned}$
I_{BB}	Supply current from V_{BB}			0.1	1	mA	
I_{CC}	Supply current from V_{CC}			50	75	mA	
IDD	Supply current from VDD			25	45	mA	
C_{i}	Input capacitance (any inputs except clock and data bus)			10	15	pF	$V_{B B}=-5, f=1 M H z$ unmeasured pins at $V_{S S}$
$\mathrm{C}_{\mathrm{i}(\phi 1)}$	Clock-1 input capacitance			100	150	pF	$\begin{aligned} & \mathrm{V}_{\mathrm{BB}}=-5, \mathrm{f}=1 \mathrm{MHz}, \\ & \text { unmeasured pins at } V_{\mathrm{SS}} \end{aligned}$
$\mathrm{C}_{\mathbf{i}(\phi 2)}$	Clock-2 input capacitance			150	200	pF	$V_{\mathrm{BB}}=-5, \mathrm{f}=1 \mathrm{MHz}$ unmeasured pins at $V_{S S}$
$\mathrm{C}_{\mathrm{i}(\phi 3)}$	Clock-3 input capacitance			100	150	pF	$\begin{aligned} & \mathrm{V}_{\mathrm{BB}}=-5, \mathrm{f}=1 \mathrm{MHz}, \\ & \text { unmeasured pins at } V_{S S} \end{aligned}$
$\mathrm{C}_{\mathbf{i}(\phi 4)}$	Clock-4 input capacitance			100	150	pF	$V_{B B}=-5, f=1 \mathrm{MHz}$ unmeasured pins at $V_{S S}$
CDB	Data bus capacitance			15	25	pF	$V_{B B}=-5, f=1 M H z,$ unmeasured pins at $V_{S S}$
Co_{0}	Output capacitance (any output except data bus)			10	15	pF	$\begin{aligned} & \mathrm{V}_{\mathrm{BB}}=-5, \mathrm{f}=1 \mathrm{MHz}, \\ & \text { unmeasured pins at } V_{\mathrm{SS}} \end{aligned}$

\dagger All typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and nominal voltages.
*D.C. Component of Operating Clock.

Switching Characteristics Over Full Range of Recommended Operating Conditions (See Figure 2)

Symbol	Parameter	Min.	Typ.	Max.	Unit	Conditions
$\mathrm{t}_{\text {PLH }}$ or $\mathrm{t}_{\text {PHL }}$	Propagation delay time, clocks to outputs					$\mathrm{C}_{\mathrm{L}}=200 \mathrm{pF}$
	CRUCLK, WE, MEMEN, WAIT, DBIN			20	ns	
	All other outputs		20	40	ns	

Figure 1. Clock Timing

Note: All timing and voltage levels shown on $\phi 1$ apply to $\phi 2, \phi 3$, and $\phi 4$ in the same manner.
Figure 2. Signal Timing

\dagger The number of cycles over which input/output data must/will remain valid can be determined from the number of wait states required for memory access. Note that in all cases data should not change during $\phi \mathbf{1}$.

MICROPROCESSOR

Features

16-Bit Instruction Word
Minicomputer Instruction Set Including Multiply and Divide2048 Bytes of ROM on Chip128 Bytes of RAM on Chip
16 General Purpose Registers
4 Prioritized Interrupts On Chip Timer/Event Counter 32 Bits General Purpose I/O 256 Bits I/O ExpansionMultiprocessor System Interface
Single 5 Volt Power SupplyPower Down Capability for Low Stand-by Power
N-Channel Silicon Gate MOS

General Description

The S 9940 is a single-chip, 16 -bit microcomputer containing a CPU, memory (RAM and ROM), and extensive I/O. The instruction set of the S 9940 is a subset of the S9900 instruction set and includes capabilities offered by minicomputers. The unique memory-to-memory architecture features multiple register files, resident in the RAM, which allow faster response to interrupts, and increased programming flexibility. The memory consists of 128 bytes of RAM and 2048 bytes of ROM. The S9940 implements four levels of interrupts, including an internal decrementer which can be programmed as a timer or an event counter. All members of the S9900 family of peripheral circuits are compatible with the S9940.

S9940 Electrical Specifications

Absolute Maximum Ratings Over Operating Free-Air Temperature Range (unless otherwise noted)*

Supply Voltage, $\mathrm{V}_{\mathrm{CC1}}(1)$	-0.3 V to +20 V
Supply Voltage, $\mathrm{V}_{\mathrm{CC} 2}(1)$	-0.3 V to +20 V
Programming Voltage, PE (1)	-0.3 V to +35 V
All Input Voltages (1)	-0.3 V to +20 V
Output Voltage (1)	-2 V to +7 V
Continuous Power Dissipation	1.5 W
Operating Free-Air Temperature Range	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature Range	$55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

*Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the "Recommended Operating Conditions' section of this specification is not implied. Exposure to absolute maximum rated conditions for extended periods may affect device reliability.
(1) All voltage values are with respect to $V_{S S}$

Recommended Operating Conditions

Symbol	Parameter	Min.	Nom.	Max.	Unit	Condition
$\mathrm{V}_{\mathrm{CC} 1}$	Supply Voltage		5		V	
$\mathrm{~V}_{\mathrm{CC} 2}$	Supply Voltage		5		V	
$\mathrm{~V}_{\mathrm{SS}}$	Supply Voltage		0		V	
$\mathrm{~V}_{\mathrm{IH}}$	High-Level Input Voltage	2.0			V	
$\mathrm{~V}_{\mathrm{IL}}$	Low-Level Input Voltage			0.8	V	
$\mathrm{~V}_{\mathrm{IP}}$	Test Input Voltage		26		V	
$\mathrm{~T}_{\mathrm{A}}$	Operating Free-Air Temperature	0		+70	${ }^{\circ} \mathrm{C}$	

Electrical Characteristics

Symbol	Parameter	Min.	Nom.	Max.	Unit	Condition
I_{I}	Input Current, All Inputs		± 10		$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{SS}}$ to V_{CC}
V_{OH}	High-Level Output Voltage, All Inputs		2.4		V	$\mathrm{I}_{\mathrm{O}}=-0.4 \mathrm{~mA}$
$\mathrm{~V}_{\mathrm{OL}}$	Low-Level Output Voltage, All Outputs		0.4		V	$\mathrm{I}_{\mathrm{O}}=2 \mathrm{~mA}$
$\mathrm{I}_{\mathrm{CC} 1}$	Supply Current from $\mathrm{I}_{\mathrm{CC} 1}$		10		mA	
$\mathrm{I}_{\mathrm{CC} 2}$	Supply Current from $\mathrm{I}_{\mathrm{CC} 2}$		150		mA	
C_{1}	Input Capacitance, All Inputs		15		pF	$\mathrm{f}=1 \mathrm{MHz}$ unmeasured pins at V_{SS}
C_{0}	Output Capacitance, All Outputs		15		pF	$\mathrm{f}=1 \mathrm{MHz}$ unmeasured pins at V_{SS}

Clock Characteristics

The S9940 has an internal oscillator and 2-phase clock generator controlled by an external crystal. The user may also disable the oscillator and directly inject a frequency source into the XTAL2 input. The crystal frequency and the external frequency source must be 2 times the desired system frequency.

Ynternal Clock Option

The internal oscillator is enabled by connecting a crystal across XTAL1 and XTAL2. The system frequency is one-half the crystal frequency.

Symbol	Parameter	Min.	Typ.	Max.	Unit	Condition
	Crystal Frequency		5.0		MHz	$0^{\circ} \mathrm{C} \leq \mathrm{T} \leq+70^{\circ} \mathrm{C}$

External Clock Options

An external frequency source can be used by injecting the frequency directly into XTAL2 with XTAL1 left unconnected. The external frequency must conform to the following specifications:

Symbol	Parameter	Min.	Typ.	Max.	Unit	Condition
$\mathrm{f}_{\mathrm{ext}}$	External Source Frequency		5		MHz	
$\mathrm{C}_{\text {OUT }}$	Output capacitance of External Source		15		pF	
V_{H}	External Source High-Level		4.5		V	
$\mathrm{~V}_{\mathrm{L}}$	External Source Low-Level		0.4		V	
$\mathrm{t}_{\mathrm{w}(\mathrm{H})}$	External Source High-Level Pulse Width		90		ns	
$\mathrm{t}_{\mathrm{w}(\mathrm{L})}$	External Source Low-Level Pulse Width		90		ns	

Switching Characteristics Over Full Range of Recommended Operating Conditions

All external signal timings are with reference to ϕ (see Figure 1).

Symbol	Parameter	Min.	Typ.	Max.	Unit	Condition
$\mathrm{t}_{\mathrm{R} \phi}$	Rise Time of ϕ		20		ns	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$
$\mathrm{t}_{\text {f }}$	Fall Time of ϕ		20		ns	
$\mathrm{t}_{\mathrm{w} \phi}$	Pulse Width of ϕ		350		ns	
${ }^{\text {d } 1}$	Output Delay Time		100		ns	
$\mathrm{t}_{\mathrm{D} 2}$	Output Delay Time		400		ns	
$\mathrm{t}_{\text {su }}$	Input Set Up Time		10		ns	
t_{H}	Input Hold Time		0		ns	

Programıning Characteristics (see Figure 2).

Symbol	Parameter	Min.	Typ.	Max.	Unit	Condition
$\mathrm{t}_{\text {RPE }}$	Rise Time of PE		50		ns	
$\mathrm{t}_{\text {FPE }}$	Fall Time of PE		50		ns	
$\mathrm{t}_{\text {SUDA }}$	Data Set Up Time		0		ns	
$\mathrm{t}_{\text {HDA }}$	Data Hold Time		0		ns	
$\mathrm{t}_{\mathrm{RPR}}$	Data Time of PROG		50		ns	
$\mathrm{t}_{\mathrm{FPR}}$	Fall Time of PROG		50		ns	
$\mathrm{t}_{\text {WPR }}$	PROG Pulse Width		100		ms	
$\mathrm{t}_{\text {HPE }}$	PE Hold Time		30		tp	
$\mathrm{t}_{\text {supR }}$	PROG Set Up Time		30		$\mathrm{tp} *$	
$\mathrm{t}_{\text {rst }}$	Reset Time		800		ns	

*tp $=$ System Clock Time Period

Figure 1. External Signal Timing Diagram

Figure 2. Programming Signal Timing Diagram

16-BIT MICROPROCESSOR

Features

16-Bit Instruction Word

\square Full Minicomputer Instruction Set Capability Including Multiply and Divide
\square Up to 16,384 Bytes of Memory
\square 8-Bit Memory Data Bus
\square Advanced Memory-to-Memory Architecture
\square Separate Memory, I/0, and Interrupt-Bus Structures
$\square 16$ General Registers
$\square 4$ Prioritized Interrupts
Programmed and DMA I/O Capability
On-Chip 4-Phase Clock Generator 40-Pin Package
\square N-Channel Silicon-Gate Technology
The S9980A and the S 9981 although very similar, have several differences which are:

1. The S 9980 A requires a V_{BB} supply (pin 21) while the S 9981 has an internal charge pump to generate $V_{B B}$ from $V_{C C}$ and $V_{D D}$.
2. The S9981 has an optional on-chip crystal oscillator in addition to the external clock mode of the S9980A.
3. The pin-outs are not compatible for D0-D7, INT0INT2, and $\bar{\phi} 3$.

Description

The S9980A/S9981 is a software-compatible member of AMI's 9900 family of microprocessors. Designed to minimize the system cost for smaller systems, the S9980A/S9981 is a single-chip 16 -bit central processing unit (CPU) which has an 8 -bit data bus, on-chip clock, and is packaged in a 40 -pin package (see Figure 1). The instruction set of the S9980A/S9981 includes the capabilities offered by full minicomputers and is exactly the same as the 9900 's. The unique memory-to-memory architecture features multiple register files, resident in memory, which allow faster response to interrupts and increased programming flexibility. The separate bus structure simplifies the system design effort.

S9980A/S9981 Electrical and Mechanical Specifications Absolute Maximum Ratings Over Operating Free-Air Temperature Range (unless otherwise noted)*

Supply voltage, $\mathrm{V}_{\mathrm{BB}}($ see Note 1) (9980A only) . 5.25 V to 0 OV

Output voltage (see Note 1) . 2 e 2V to 7V
Continuous power dissipation .. 1.4W
Operating free-air temperature range . $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

*Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the "Recommended Operating Conditions" section of this specification is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: Under absolute maximum ratings voltage values are with respect to $\mathrm{V}_{\text {SS }}$.

Recommended Operating Conditions

Symbol	Parameter	Min.	Nom.	Max.	Unit	Conditions
V_{BB}	Supply voltage (9980A only)	-5.25	-5	-4.75	V	
$\mathrm{~V}_{\mathrm{CC}}$	Supply voltage	4.75	5	5.25	V	
$\mathrm{~V}_{\mathrm{DD}}$	Supply voltage	11.4	12	12.6	V	
$\mathrm{~V}_{\mathrm{SS}}$	Supply voltage		0		V	
$\mathrm{~V}_{\mathrm{IH}}$	High-level input voltage	2.2	2.4	$\mathrm{~V}_{\mathrm{CC}}+1$	V	
$\mathrm{~V}_{\mathrm{IL}}$	Low-level input voltage	-1	0.4	0.8	V	
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature	0	20	70	${ }^{\circ} \mathrm{C}$	

Electrical Characteristics Over full Range of Recommended Operating Conditions (unless otherwise noted)

Symbol	Parameter		Min.	Typ.*	Max.	Unit	Conditions
$\mathrm{I}_{\text {I }}$	Input current	Data bus during DBIN			± 75	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {SS }}$ to $\mathrm{V}_{\text {CC }}$
		WE, MEMEN, $\overline{\text { DBIN }}$ during HOLDA			± 75	${ }_{\mu} \mathrm{A}$	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {SS }}$ to V_{CC}
		Any other inputs			± 10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {SS }}$ to V_{CC}
V_{OH}	High-level output voltage		2.4			V	$\mathrm{I}_{\mathrm{O}}=-0.4 \mathrm{~mA}$
$\mathrm{V}_{\text {OL }}$	Low-level output voltage				$\begin{gathered} \hline 0.5 \\ 0.65 \end{gathered}$	V	$\begin{aligned} & \mathrm{I}_{\mathrm{O}}=2 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{O}}=3.2 \mathrm{~mA} \end{aligned}$
I_{BB}	Supply current from $\mathrm{V}_{\text {BB }}$ (9980A only)				1	mA	
I_{CC}	Supply current from $\mathrm{V}_{\text {CC }}$			$\begin{aligned} & 50 \\ & 40 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 60 \\ & 50 \\ & \hline \end{aligned}$	mA	$\begin{aligned} & 0^{\circ} \mathrm{C} \\ & 70^{\circ} \mathrm{C} \end{aligned}$
I_{DD}	Supply current from V_{DD}			$\begin{aligned} & \hline 70 \\ & 65 \\ & \hline \end{aligned}$	$\begin{aligned} & 80 \\ & 75 \end{aligned}$	mA	$\begin{aligned} & \hline 0^{\circ} \mathrm{C} \\ & 70^{\circ} \mathrm{C} \end{aligned}$
$\mathrm{C}_{\text {I }}$	Input capacitance (any inputs except data bus)			15		pF	$\mathrm{f}=1 \mathrm{MHz}$, unmeasured pins at $V_{S S}$
$\mathrm{C}_{\text {DB }}$	Data bus capacitance			25		pF	$\mathrm{f}=1 \mathrm{MHz} \text {, unmea- }$ $\text { sured pins at } \mathrm{V}_{\mathrm{SS}}$
C_{0}	Output capacitance (any output except data bus)			15		pF	$\mathrm{f}=1 \mathrm{MHz}$, unmeasured pins at $V_{S S}$

${ }^{*}$ All typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and nominal voltages.

Clock Characteristics

The S9980A and S9981 have an internal 4-phase clock generator/driver. This is driven by an external TTL compatible signal to control the phase generation. In addition, the S 9981 provides an output (OSCOUT) that in conjunction with CKIN forms an on-chip crystal oscillator. This oscillator requires an external crystal and two capacitors as shown in Figure 1. The external signal or crystal must be 4 times the desired system frequency.

Figure 1. Crystal Oscillator Circuit

Internal Crystal Oscillator (9981 Only)

The internal crystal oscillator is used as shown in Figure 1. The crystal should be a fundamental series
resonant type. C_{1} and C_{2} represent the total capacitance on these pins including strays and parasitics.

Symbol	Parameter	Min.	Typ.	Max.	Unit	Conditions
	Crystal frequency	6		10	MHz	$0^{\circ} \mathrm{C}-70^{\circ} \mathrm{C}$
	$\mathrm{C}_{1}, \mathrm{C}_{2}$	10	15	25	pF	$0^{\circ} \mathrm{C}-70^{\circ} \mathrm{C}$

External Clock

The external clock on the S9980A and optional on the clock source must conform to the following specificaS9981, uses the CKIN pin. In this mode the OSCOUT tions. pin of the S9981 must be left floating. The external

Symbol	Parameter	Min.	Typ.	Max.	Unit	Conditions
$\mathrm{f}_{\text {ext }}$	External source frequency*	6		10	MHz	
V_{H}	External source high level	2.2			V	
$\mathrm{~V}_{\mathrm{L}}$	External source low level			0.8	V	
$\mathrm{~T}_{\mathrm{r}} / \mathrm{T}_{\mathrm{f}}$	External source rise/fall time	10		ns		
$\mathrm{~T}_{\mathrm{WH}}$	External source high level pulse width	40			ns	
$\mathrm{~T}_{\mathrm{WL}}$	External source low level pulse width	40			ns	

*This allows a system speed of 1.5 MHz to 2.5 MHz

Switching Characteristics Over Full Range of Recommended Operating Conditions

The timing of all the inputs and outputs is controlled by the internal 4 phase clock; thus all timings are based on the width of one phase of the internal clock. This is $1 / \mathrm{f}_{\text {(CKIN) }}$ (whether driven or from a crystal). This is also $1 / 4 \mathrm{f}_{\text {system }}$. In the following table this phase time is denoted t_{w}.

All external signals are with reference to $\phi 3$ (see Figure 2).

Symbol	Parameter	Min.	Typ.	Max.	Unit	Conditions
$\mathrm{t}_{\mathbf{T}}\left(\right.$ ¢ ${ }^{\text {(}}$)	Rise time of $\phi 3$	3	5	10	ns	$\begin{aligned} & \mathrm{tw}=\mathbf{1 / f (\text { CKIN })} \\ & =1 / 4 \mathrm{f}_{\text {system }} \end{aligned}$
$\mathrm{t}_{\mathrm{f}}(\phi 3)$	Fall time of $\phi 3$	5	7.5	15	ns	
$\mathrm{t}_{\mathrm{w}}(\phi 3)$	Pulse width of $\phi 3$	$\mathrm{t}_{\mathrm{w}}-15$	$\mathrm{t}_{\mathrm{w}}-10$	$\mathrm{t}_{\mathrm{w}}+10$	ns	
$\mathrm{t}_{\text {su }}$	Data or control setup time*	$\mathrm{t}_{\mathrm{w}}-30$			ns	
t_{h}	Data hold time*	$2 \mathrm{t}_{\text {tw }}+10$			ns	
$\mathrm{t}_{\text {PHL }}(\overline{\mathrm{WE}})$	Propagation delay time WE high to low	$\mathrm{t}_{\mathrm{w}}-10$	t_{w}	$\mathrm{t}_{\mathrm{w}}+20$	ns	
$\mathrm{t}_{\text {PLH }}(\overline{\mathrm{WE}})$	Propagation delay time WE low to high	t_{w}	$\mathrm{t}_{\mathrm{w}}+10$	$\mathrm{t}_{\mathrm{w}}+30$	ns	
$t_{\text {PHL }}$ (CRUCLK)	Propagation delay time, CRUCLK high to low	-20	- 10	+ 10	ns	$\mathrm{C}_{\mathrm{L}}=200 \mathrm{pf}$
$\mathrm{t}_{\mathrm{PLH}}$ (CRUCLK)	Propagation delay time, CRUCLK low to high	$2 \mathrm{t}_{\mathrm{w}}-10$	$2 \mathrm{t}_{\mathrm{w}}$	$2 \mathrm{t}_{\mathrm{w}}+20$	ns	
tov	Delay time from output valid to $\phi 3$ low	$\mathrm{t}_{\mathrm{w}}-50$	$\mathrm{t}_{\mathrm{w}}-30$		ns	
tox	Delay time from output invalid to $\phi 3$ low		$\mathrm{t}_{\mathrm{w}}-20$	t_{w}	ns	

*All inputs except IC0-IC2 must be synchronized to meet these requirements. IC0-IC2 may change asynchronously.

Figure 2. External Signal Timing Diagram

PROGRAMMABLE SYSTEMS INTERFACE CIRCUIT

Features

- N-Channel Silicon-Gate Process
- 9900 Series CRU Peripheral
- Performs Interrupt and I/O Interface Functions
- 6 Dedicated Interrupt Input Lines
- 7 Dedicated I/O Ports
- 9 Ports Programmable as Interrupts or I/O
- Easily Stacked for Interrupt and I/O Expansion
- Interval and Event Timer
- Single 5V Supply

General Description

The S9901 Programmable Systems Interface is a multifunctioned component designed to provide low cost interrupts and I/O ports in a 9900/9980 microprocessor system. It is fabricated with N -channel silicon-gate technology and is completely TTL compatible on all inputs including the power supply $(+5 \mathrm{~V})$ and single-phase clock. Figure 1 is a block diagram of the S9901. The Programmable Systems Interface provides a $9900 / 9980$ system with interrupt control, I/O ports, and a real-time clock as shown in Figure 2.

Figure 2. 9900/9980 System

S9901 Electrical Specifications

Absolute Maximum Ratings Over Operating Free Air Temperature Range (Unless Otherwise Noted)*

All Input and Output Voltages . 0.0 .3 V to +10 V
Continuous Power Dissipation . 0.75 W
Operating Free-Air Temperature Range .. $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range . $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
*Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the "Recommended Operating Conditions" section of this specification is not implied. Exposure to absolute maximum rated conditions for extended period may affect device reliability.

Recommended Operating Conditions

Parameter	Min.	Nom.	Max.	Unit
Supply Voltage, V_{CC}	4.75	5	5.25	V
Supply Voltage, V_{SS}		0		V
High-Level Input Voltage, V_{IH}		2		V
Low-Level Input Voltage, V_{IL}		0.8		V
Operating Free-Air Temperature, T_{A}	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics Over Full Range of Recommended Operating Conditions (Unless Otherwise Noted)

Symbol	Parameter	Min.	Typ.	Max.	Unit	Conditions
I_{I}	Input Current (Any Input)		± 10		$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ to V_{CC}
V_{OH}	High Level Output Voltage		2.4		V	$\mathrm{I}_{\mathrm{OH}}=100 \mu \mathrm{~A}$
			2		V	$\mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$
$\mathrm{~V}_{\mathrm{OL}}$	Low Level Output Voltage		0.4		V	$\mathrm{I}_{\mathrm{OL}}=3.2 \mathrm{~mA}$
I_{CC}	Supply Current from V_{CC}		100		mA	
I_{SS}	Supply Current from V_{SS}		200		mA	
$\mathrm{I}_{\mathrm{CC}(a v)}$	Average Supply Current from V_{CC}		60		mA	$\mathrm{t}_{\mathrm{c}(\phi)}=333 \mathrm{~ns}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
C_{i}	Capacitance, Any Input		10		pF	$\mathrm{f}=1 \mathrm{MHz}$,
$\mathrm{C}_{\mathbf{o}}$	Capacitance, Any Output		20		pF	All Other Pins at 0 V

Timing Requirements Over Full Range of Operating Conditions

Symbol	Parameter	Min.	Nom.	Max.
$\mathrm{t}_{\mathrm{c}(\phi)}$	Clock Cycle Time		Unit	
$\mathrm{t}_{\mathrm{r}(\phi)}$	Clock Rise Time	333		ns
$\mathrm{t}_{\mathrm{f}(\phi)}$	Clock Fall Time	10		ns
$\mathrm{t}_{\mathrm{w}(\phi \mathrm{L})}$	Clock Pulse Low Width	10		ns
$\mathrm{t}_{\mathrm{w}(\phi \mathrm{H})}$	Clock Pulse High Width	55		ns
t_{su}	Setup Time for S0-S4, CE, or CRUOUT before CRUCLK		240	ns
t_{su}	Setup Time, Input Before Valid CRUIN	200	ns	
t_{su}	Setup Time, Interrupt Before ϕ Low	200		ns
$\mathrm{t}_{\mathrm{w}(\mathrm{CRUCLK})}$	CRU Clock Pulse Width	40		ns
t_{h}	Address Hold Time		100	

Switching Characteristics Over Full Range of Recommended Operating Conditions

Symbol	Parameter	Min.	Typ.	Max.	Unit	Test Conditions
t $_{\text {PD }}$	Propagation Delay, $\bar{\phi}$ Low to Valid INTREQ, $\mathrm{I}_{\mathrm{C} 0}-\mathrm{I}_{\mathrm{C} 3}$		80		ns	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$, 2 TTL Loads
$\mathrm{t}_{\text {PD }}$	Propagation Delay, S0-S4 or $\overline{\mathrm{CE}}$ to Valid CRUIN	400		ns	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$	

Figure 3. Switching Characteristics

NOTE 1: ALL TIMING MEASUREMENTS ARE FROM 10% and 90% POINTS

ASYNCHRONOUS COMMUNICATIONS CONTROLLER (ACC)

Features

- 5- to 8 -Bit Character Length
- $1,11 / 2$, or 2 Stop Bits
- Even, Odd, or No Parity
- Fully Programmable Data Rate Generation
- Interval Timer with Resolution from 64 to 16,320 $\mu \mathrm{s}$
- Fully TTL Compatible, Including Single Power Supply.

General Description

The S9902 Asynchronous Communication Controller (ACC) is a peripheral device for the S 9900 family of microprocessors. The ACC provides an interface between the microprocessor and a serial asynchronous communication channel, performing the timing and data serialization and deserialization, thus facilitating the control of the asynchronous channel by the microprocessor.

Figure 1. Block Diagram

Figure 2. Pin Configuration

S9902 Electrical Specifications

Absolute Maximum Ratings Over Operating Free Air Temperature Range (Unless Otherwise Noted)*

*Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the "Recommended Operating Conditions" section of this specification is not implied. Exposure to Absolute Maximum Rated conditions for extended periods may affect device reliability.

Recommended Operating Conditions

Parameter	Min.	Nom.	Max.	Unit
Supply Voltage, V_{CC}	4.75	5	5.25	V
Supply Voltage, V_{SS}		0		V
High-Level Input Voltage, V_{IH}	2.2	2.4	$\mathrm{~V}_{\mathrm{CC}}$	V
Low-Level Input Voltage, V_{IL}		0.4	0.8	V
Operating Free-Air Temperature, T_{A}	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics Over Full Range of Recommended Operating Conditions (Unless Otherwise Noted)

Symbol	Parameter	Min.	Typ.	Max.	Unit	Conditions
I_{I}	Input Current (Any Input)			± 10	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ to V_{CC}
V_{OH}	High-Level Output Voltage	2.2	3.0		V	$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$
		2.0	2.5			$\mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$
$\mathrm{~V}_{\mathrm{OL}}$	Low-Level Output Voltage		0.4	0.85	V	$\mathrm{I}_{\mathrm{OL}}=3.2 \mathrm{~mA}$
$\mathrm{I}_{\mathrm{CC}(\mathrm{AV})}$	Average Supply Current from V_{CC}		2.5	100	mA	$\mathrm{t}_{\mathrm{c}(\phi)}=250 \mathrm{~ns}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
C_{i}	Capacitance, Any Input		10		pF	$\mathrm{f}=1 \mathrm{MHz}$, All other pins at 0 V
C_{O}	Capacitance, Any Output		20			

Timing Requirements Over Full Range of Recommended Operating Conditions

Symbol	Parameter	Min.	Typ.	Max.	Unit
$\mathrm{t}_{\mathrm{c}(\phi)}$	Clock Cycle Time	300	333	2000	ns
$\mathrm{t}_{\mathrm{r}(\phi)}$	Clock Rise Time		10	12	ns
$\mathrm{t}_{\mathrm{f}(\phi)}$	Clock Fall Time		10	12	ns
$\mathrm{t}_{\mathrm{H}(\phi)}$	Clock Pulse Width (High Level)		225	240	ns
$\mathrm{t}_{\mathrm{L}(\phi)}$	Clock Pulse Width (Low Level)		45	55	ns
$\mathrm{t}_{\text {su(ad })}$	Setup Time for Address and CRUOUT Before CRUCLK		220		ns
$\mathrm{t}_{\mathrm{su}(\mathrm{CE})}$	Setup Time for CE Before CRUCLK		190		ns
t_{HD}	Hold Time for Address, CE and CRUOUT After CRUCLK		90		ns
$\mathrm{t}_{\mathrm{wcc}}$	CRUCLK Pulse Width		120		ns

S9902 Pin Description

Table 1 defines the S 9902 pin assignments and describes the function of each pin as shown in Figure 2.
Table 1

Signature	Pin	I/O	Description
$\overline{\overline{\text { INT }}}$	1	O	Interrupt - when active (low), the $\overline{\mathrm{INT}}$ output indicates that at least one of the interrupt conditions has occured.
XOUT	2	0	Transmitter serial data output line - XOUT remains inactive (high) when S9902 is not transmitting.
RIN	3	I	Receiver serial data input line - RCV - must be held in the inactive (high) state when not receiving data. A transition from high to low will activate the receiver circuitry.
CRUIN	4	0	Serial data output pin from S9902 to CRUIN input pin of the CPU.
$\overline{\text { RTS }}$	5	O	Request-to-send output from S 9902 to modem. This output is enabled by the CPU and remains active (low) during transmission from the S9902.
$\overline{\text { CTS }}$	6	I	Clear-to-send input from modem to S9902. When active (low), it enables the transmitter section of S9902.
$\overline{\mathrm{DSR}}$	7	I	Data set ready input from modem to S9902. This input generates an interrupt when going On or Off.
CRUOUT	8	I	Serial data input line to S9902 from CRUOUT line of the CPU.
VSS	9	I	Ground reference voltage.
S4 (LSB)	10	I	
S3	11	I	
S2	12	I	
S1	13	I	Address bus S0-S4 are the lines that are addressed by the CPU to select a
S0	14	I	particular S9902 function.
CRUCLK	15	I	CRU Clock. When active (high), S9902 from CRUOUT line of the CPU.
$\bar{\phi}$	16	I	TTL Clock.
$\overline{\mathrm{CE}}$	17	I	Chip enable - when CE is inactive (high), the S9902 address decoding is inhibited which prevents execution of any S9902 command function. CRUIN remains at high-impedance when $\overline{\mathrm{CE}}$ is inactive (high).
V_{CC}	18	I	Supply voltage (+5 V nominal).

Device Interface

The relationship of the ACC to other components in the system is shown in Figures 4 and 5. The ACC is connected to the asychronous channel through level shifters which translate the TTL inputs and outputs to the appropriate levels (e.g., RS-232C, TTY current loop, etc.). The microprocessor transfers data to and from the ACC via the Communication Register Unit (CRU).

CPU Interface

The ACC interfaces to the CPU through the Communication Register Unit (CRU). The CRU interface consists of five address-select lines (S0-S4), chip enable ($\overline{\mathrm{CE}}$), and three CRU control lines (CRUIN, CRUOUT, and CRUCLK). When $\overline{\mathrm{CE}}$ becomes active (low), the five select lines address the CRU bit being accessed. When data is being transferred to the ACC from the CPU, CRUOUT contains the valid datum which is strobed by CRUCLK. When ACC data is being read, CRUIN is the datum output by the ACC.

Microprocessor/Microcomputer Development Systems Products

AMI CROSS SUPPORT

\square AMI Pascal ${ }^{\text {TM }}$ Based
\square Increase Programmer Productivity
\square Extends Usefulness of Microprocessor Development Hardware
\square Shortens Programmer Learning Time
\square Shortens System Development Time
\square Low Cost Means of Evaluating a Variety of MPUs Including S2200, S6800, S9900, 8080 and Z80
\square Provides Common Software Base for All Support Packages
\square Enhances Software Portability
\square Simple Upgrade to Include AMI Pascal
\square Software Warranty Included
\square Software Maintenance Available

AMI cross support is part of the Advanced Support Tools concept which permits users to learn one common software base for use throughout the various packages. The software system will operate on many of the most popular development systems and extends the usefulness of development hardware through additional development software and cross compatibility with application software packages planned by AMI.

The AMI cross support relies on a common software base. This commonality extends to the pseudo-operations of the assemblers. Included in each assembler are:

INCLUDE directs assembler to get source from a file EQU allows values to be equated to a symbol
DEF defines a label for global usage
REF defines a label to be outside current code or data segment
PAGE perform page eject
TITLE print a title heading

The assemblers are each a full macro assembler supporting local and global labels. Arithmetic and logic operations include plus, minus, ones complement, exclusive-or, multiplication, truncating division, remainder division,
or, and, equal, and not equal. Many of the assemblers' features are normally found only in larger systems.

Software simulators are available for the S2200 family of microcomputers as a development tool. Basic capabilities supported are similar to those available with in circuit emulation but without the hardware interaction. Software facilities include: breakpoint, dump memos, alter memory, single step, set-up I/O and observe I/O. When coupled with the appropriate SES module a complete harware-software integration can be performed.

AMI Cross Support is part of our Advanced Support Tools package designed to increase your profitability through systems solutions.

American Microsystems, Inc.
The material contained in this data sheet remains the property of American Microsystems, Inc. ("AMI") and is copyright. It may only be used in accordance with the terms of the AMI Single User Program License Agreement. It may not be reproduced, adapted, merged, translated, or used except in accordance with such Agreement.

\square USCD Level II. 0 Compatible

$\square \quad$ Replaces Host Operating System and Results in One-Stop Software Service
\square Pascal Compiler for Easy Systems Programming
$\square \quad$ Wide Range of Assemblers Available Including S2200, S6800, S9900, 8080, and Z80
$\square \quad$ Floppy Disk Based with Minimal Swapping
$\square \quad$ CRT or TTY Oriented Editors with Menu Select
$\square \quad$ Linker
\square Optimized for Use on the Host Machine
\square Easy to Transport to Many Different Systems based on S6800, S9900, 8080, Z80 or PDP-11
$\square \quad$ Extensive Programming Examples

The AMI Pascal system is part of the AMI Advanced Support Tools concept in which the users learn only one common operating system and editor. The package will operate on most of the popular development systems and extends the usefulness of development hardware through development software for numerous microprocessors and cross compatibility with application software packages planned by AMI.

AMI Pascal is a complete software system intended to run on a stand alone micro or minicomputer. It is compatible with the UCSD Pascal ${ }^{\circledR}$ version 2.0 and features fault-tolerant software intended to increase programmer productivity. This is accomplished by sophisticated error recovery mechanisms built into the software package and by informative user prompts. The system is intended as an interactive programming tool and therefore relies on a CRT for user display. Hard copy (TTY) terminals may be used with the system but at a slower output rate.

AMI Pascal can be broken down into three logical groupings: general support, cross-assemblers and systems support. General support includes a disk based operating system, screen oriented editor and utility programs. Cross-assemblers are available at a low incremented cost for the AMI Pascal system. All assemblers use a common format and pseudo-
operations for ease of use. Systems support derives from the Pascal compiler coupled with the operating system. The basic Pascal compiler produces an intermediate code suitable for interpretation or native code generation. It is suggested that the interpretive option be used to develop software tools like assemblers and compilers since this form uses the least memory.

AMI Pascal can be used as a system implementation language to investigate algorithm design and debug. Production software can be produced by recoding the Pascal version in assembly language. The overall result is less expensive software with higher reliability.

AMI Pascal is part of our Advanced Support Tools package designed to increase your profitability through systems solutions.

American Microsystems, Inc.

The material contained in this data sheet remains the property of American Microsystem, Inc. ("AMI') and is copyright. It may only be used in accordance with the terms of the AMI Single User Program License Agreement. It may not be reproduced, adapted, merged, translated, or used except in accordance with such Agreement.

Software Service Subscription

AMI will provide a software service subscription ('Subscription Service") to LICENSEES of Licensed Programs, in accordance with the terms of the License Agreement. This Subscription Service entitles the LICENSEE to free updates of Class 2 and 3 , as described below, for a period of six months. The Subscription Service also provides the LICENSEE with a special discount rate specified in the Agreement on prices for Class 1 software updates, as described below.

The LICENSEE may renew the software Subscription Service in accordance with the terms of the Agreement.

Software Updates

There are three clases of software updates which vary according to the nature and scope of the update.

Class 1-Software updates in which new languages
(compilers) or operating systems are added to existing software packages. The scope of the update is far different from the previous existing software packages. This type of update may change the first significant digit of the software revision level. For example, the integration of a new high level language into an operating system will bring the rev. level from 1.5 to 2.0 .

Class 2-Software updates which are improvements on existing software packages. These updates will correct design deficiencies or produce minor improvements in the use of the programs. If the scope of the change in the software is large enough, the software revision level may be updated to the first significant digit. If the improvement is minor, it will only change the decimal revision level.

Class 3-Software updates which are corrections of software problems (bugs) reported by users of the software packages. These updates will make minor changes in the packages and will always be related to software problems. The decimal fraction of the software revision level will be changed only by this update.

CA2000 BOSTON SYSTEMS OFFICE CROSS ASSEMBLER FOR S2000 MICROPROCESSORS BY AMI (and all compatible devices)

This cross assembler, one of a family of cross assemblers produced by The Boston Systems Office, is a powerful programming tool used to develop microprocessor software. It allows the user to take full advantage of a larger computer, whether in a timesharing or in-house mode, thereby significantly reducing the number of man-hours spent in program development. The advantages of a larger computer include:
-Faster processing speeds
-More powerful editors
-Higher speed peripherals
These cross assemblers are written in the assembly language of the host computer. They require only 8 K words of memory to assemble practically any size program. The symbol table can be expanded to fit any program or can be shrunk to fit into a smaller machine if required. The assemblers require much less CPU time to execute, even at this reduced memory requirement, when compared to manufacturer supplied cross assemblers. Benchmarks against competitive products in a time-sharing environment have shown that savings of over 85% are common. Similar efficiencies are realized when using an in-house computer.

The instruction set of each cross assembler is the same as documented in the manuals supplied by the microprocessor manufacturer. Mnemonics exist for data manipulation, binary arithmetic, jumps to subroutines, etc. In addition, all of the BSO cross assemblers have full macro and conditional assembly
capabilities. The assembler outputs to disk, which may then be punched on paper tape, loaded into a PROM burner or down line loaded into memory, depending on your facilities.

Cross assemblers are now available for the following microprocessors:

AMD 9080A
AMI S2000, S6800 \&
S9900
Fairchild 6800 \& F8
Hitachi 6800
Intel 8080, 8080A, 8085,
4040, 4004, 8008
8048, 8748, 8035
8049 \& 8039
Intersil 8048
MOS Technology
6500 series
Mostek F8 \& Z80
Motorola M6800

Nat'l Semiconductor IMP-8, SC/MP, 8080 \& PACE
NEC uPD8080AF \& uPD8080A
RCA CDP 1800 series (COSMAC)
Rockwell R6500, PPS-8 \& PPS-4
Signetics 8048 \& 8035
Synertek 6500 series
Thomson-CSF 6800
Texas Instruments
TMS $1000,8080, \&$ TMS9900
Zilog Z80

Please feel free to contact The Boston Systems Office for further information on any microprocessor not mentioned above, as we are constantly adding to our product line. BSO will also produce custom assemblers and other application and system software on a contract basis.

S2150 Emulator Module

\square Full Microcomputer Emulation
\square Erasable Program Memory
\square Fully-tested Operational System
\square System Socket Compatible

The SES Series of boards provide pin for pin emulation of single-chip microcomputers. The board offers the full operational capabilities of the single-chip microcomputer coupled with the flexibility of board level design. The Series incorporates on-board Erasable PROM to provide ease of program modification in a prototype environment.

SES2000/S2150

The SES2000/S2150 is an emulator board for the popular S2000/S2150 single-chip microcomputer. This board level unit is configured to plug directly into the system socket that would normally hold the mask programmed S2000 /S2150. Through the use of the SES2000/S2150, system hardware and program configurations can be quickly and efficiently accomplished in the prototype stages. The board is also suited for integration into pre-production systems allowing full freedom of modification through memory changes in standard EPROM's.

Incorporated onto the SES2000/S2150 Emulator Module are latches and buffers which allow the S2000/S2150
microcomputer to access user programmed EPROM also located on the module. A separate source of power for the additional circuits eliminates the possibility of altering the users system characteristics. Thus to the system circuitry the SES module appears as a single-chip microcomputer operating from its internally programmed ROM.

General Description:

The S2000/S2150 Static Emulator provides a means of trying a user's program without committing the program to ROM within the S2000/S2150.

This is accomplished by using a S2000/S2150 that is placed into the multiplex mode and providing EPROM as the memory. The EPROM ($2716-2 \mathrm{~K} \times 8$) can be programmed with a user's program

It is intended that the emulator can be plugged into a socket that would normally be used by the S2000/S2150 in its finished form (the S2000/S2150 ROM would contain a user defined program).

Specifications

Power Requirements		
External Clip (V_{CC}) . ${ }^{\text {a }}$ +9V $\pm 5 \%$ @ 350mA (max)		
Interface Signals ${ }^{(2)}\left(\mathrm{V}_{\mathrm{SS}}=\mathrm{O}_{\mathrm{V}}, \mathrm{V}_{\mathrm{GG}} 9 \pm 0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{CC}}=5 \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$		
Inputs		
$\mathrm{K}_{1}-\mathrm{K}_{8}$	Low Level High Level	$\begin{aligned} & 0.0-\left(\mathrm{K}_{\mathrm{REF}}-0.5 \mathrm{~V}\right) \\ & \left(\mathrm{K}_{\mathrm{REF}}+0.5\right)-\mathrm{V}_{\mathrm{GG}} \mathrm{~V} \end{aligned}$
$\mathrm{K}_{\text {REF }}$		$0.28 \mathrm{~V}_{\mathrm{GG}}-0.32 \mathrm{~V}_{\mathrm{GG}} \mathrm{V}$
$\mathrm{I}_{1}-\mathrm{I}_{8}, \mathrm{ROMs}$,	Low Level	$0.0-0.5 \mathrm{~V}^{(3)}$
Run, POR	High Level	$5.3-\mathrm{V}_{\mathrm{GG}} \mathrm{V}^{(3)}$
$\mathrm{D}_{0}-\mathrm{D}_{7}$	Low Level	$0.0-0.8 \mathrm{~V}$
	High Level	$4.5-\mathrm{V}_{\mathrm{GG}} \mathrm{V}$
Outputs		
$\mathrm{A}_{0}-\mathrm{A}_{3}$	Low Level	$0.0-0.6 \mathrm{~V}(\mathrm{I}=30 \mathrm{~mA})$
	High Level	$3.5-\mathrm{V}_{\mathrm{DD}} \mathrm{V}(\mathrm{I}=-3 \mathrm{~mA})$
$\mathrm{A}_{4}-\mathrm{A}_{12}, \overline{\mathrm{EXT}}$	Low Level	$0.0-0.6 \mathrm{~V}(\mathrm{I}=4.35 \mathrm{~mA})$
$\mathrm{SYNC}+\mathrm{S}$	High Level	$3.5-\mathrm{V}_{\mathrm{DD}} \mathrm{V}(\mathrm{I}=-2 \mathrm{~mA})$
$\mathrm{D}_{0}-\mathrm{D}_{7}$	Low Level	$0.0-1.0 \mathrm{~V}(\mathrm{I}=9 \mathrm{~mA})$
	High Level	$3.5-\mathrm{V}_{\mathrm{DD}} \mathrm{V}(\mathrm{I}=-4 \mathrm{~mA})$
Operating Temperature		$0-70^{\circ} \mathrm{C}$
Physical Dimensions	WxHxT	$3.4 \times 4.375 \times 1.75$ in.
Connector	40 Pin DIP	

Notes:

1. V_{DD} may be connected to V_{GG} if single power supply operation is desired.
2. Some minor variations exist in interface levels and currents between the SES 2000/S2150 and the S2000/S2150. Consult the S2000/S2150 data sheet for a full description and values.
3. A $100 \mu \mathrm{~A}$ pull up to V_{GG} internal to the $\mathrm{S} 2000 / \mathrm{S} 2150$ is connected to these inputs.

ANII

AMERICAN MICROSYSTEMS, INC.

STATIC MOS RANDOM ACCESS MEMORIES

Part No.	Organization	Process	Max. Access Time(ns)	Max. Active Power(mW)	Max. Standby Power(mW)	Power Supplies	Package
S68B10	128×8	NMOS	250	420	N/A	+5 V	24 Pin
S68A10	128×8	NMOS	360	420	N/A	+5 V	24 Pin
S6810	128×8	NMOS	450	400	N/A	+5 V	24 Pin
S6810-1	128×8	NMOS	575	500	N/A	+5 V	24 Pin

STATIC CMOS RANDOM ACCESS MEMORIES

Part No.	Organization	Max. Access Time(ns)	Max. Active Power(mW)	Max. Standby Power(mW)	Power Supplies	Package
S5101L-1	256×4	450	115	. 055	$+5 \mathrm{~V}$	22 Pin
S5101L	256×4	650	115	. 055	$+5 \mathrm{~V}$	22 Pin
S5101L-3	256×4	650	115	. 735	$+5 \mathrm{~V}$	22 Pin
S5101-8	256×4	800	115	2.7	$+5 \mathrm{~V}$	22 Pin
S6504 ${ }^{2}$	4096×1	300	75	0.5	$+5 \mathrm{~V}$	18 Pin
S6508-1	1024×1	300	13	. 055	$+5 \mathrm{~V}$	16 Pin
S6508	1024×1	460	13	. 55	$+5 \mathrm{~V}$	16 Pin
S6508A-1	1024×1	275/115 ${ }^{2}$	12.5/50 ${ }^{2}$	1.15	+4 V to +11 V	16 Pin
S6508A	1024×1	460/185 ${ }^{2}$	$12.5 / 50^{2}$	1.1	+4 V to +11 V	16 Pin
S65142	1024×4	300	75	0.25	$+5 \mathrm{~V}$	18 Pin

UV ERASABLE ELECTRICALLY PROGRAMMABLE READ ONLY MEMORIES

Part No.	Organization	Process	Max. Access Time(ns)	Max. Active Power(mW)	Max. Standby Power(mW)	Power Supplies	Package
S5204A 1	512×8	PMOS	750	750	N/A	$+5 /-12$	
S6834 ${ }^{1}$	512×8	PMOS	575	750	N/A	$+5 /-12$	
S6834-1 1	512×8	PMOS	750	750	N/A	$+5 /-12$	

MOS READ ONLY MEMORIES

Part No.	Description	Organization	Process	Max. Access Time(ns)	Max. Active Power(mW)	Power Supplies
S6831B	16,384 Bit Static ROM	2048×8	NMOS	450	420	+5
S68332	32,768 Bit Static ROM	4096×8	NMOS	450	24 Pin	
S4264	65,536 Bit Static ROM	8192×8	NMOS	450	370	55
S68364	65,536 Bit Static ROM	8192×8	NMOS	450	24 Pin	

[^19]
1024 BIT (256×4) STATIC CMOS RAM

Features

\square Ultra Low Standby PowerData Retention at 2V (L Version)
\square Single +5 Volt Power Supply
\square Completely Static Operation
\square Completely TTL Compatible Inputs
\square Three-State TTL Compatible Outputs

General Description

The AMI S5101 family of 256×4-bit ultra low power CMOS RAMs offers fully static operation with a single +5 volt power supply. All inputs and outputs are directly TTL compatible. With data inputs and outputs on adjacent pins, either separate or common data I/O operations can easily be implemented for maximum design flexibility. The three-state outputs will drive one full TTL load and are disabled (high impedance state) by output disable (OD), either chip enable (CE1 or CE2), or in a write cycle ($\mathrm{R} / \mathrm{W}=\mathrm{LOW}$). This facilitates the control of common data I/O systems.

Block Diagram							Logic Symbol		Pin Configuration	
							877302			
Truth Table							Pin Names			
$\overline{\text { CEI }}$	CE2	OD	R/W	DIN	Output	Mode	$\begin{aligned} & \mathrm{AO}_{\mathrm{O}} \cdot \mathrm{~A}_{7} \\ & \mathrm{DI}_{1} \cdot \mathrm{DI}_{4} \\ & \mathrm{DO}_{1} \cdot \mathrm{DO}_{4} \\ & \mathrm{OD} \end{aligned}$	Address Inputs Data Inputs Data Outputs Output Disable	$\overline{\text { CE1 }}$	Chip Enable
н	x	x	x	x	High Z	Not selected			CE2	Chip Enable
x	L	x	x	x	High Z	Not Selected			R/W	Read/Write Input
¢	${ }_{\text {X }}^{\text {¢ }}$	${ }_{\text {H }}^{\mathrm{H}}$	L	${ }^{\mathrm{x}}$	High Z High Z	Output Disabled Write				+5 Volt Power Supply
L	${ }_{\mathrm{H}}^{\mathrm{H}}$		${ }_{\text {L }}$	x x	${ }_{\text {High }}$	Write				
L	H	L	H	x	Dout	Read				

General Description (Continued)

The stored data is read out nondestructively and is the same polarity as the original input data. The S5101 is totally static, making clocks unnecessary for a new address to be accepted. The device has two chip enable inputs ($\overline{\mathrm{CE}} 1$ and CE2) allowing easy system expansion. CE2 disables the entire device but CE1 does not disable the address buffers and decoders. Thus, minimum power dissipation is achieved when CE2 is low.

The L version of the S 5101 has the additional feature of guaranteed data retention with the power supply as low as 2 volts. This makes the device an ideal choice when battery augmented non-volatile RAM storage is mandatory.
The S5101 is fabricated using a silicon gate CMOS process suitable for high volume production of ultra low power, high performance memories.

Absolute Maximum Ratings*

Ambient Temperature Under Bias	$10^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Voltage on Any Pin with Respect to Ground	-0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
Maximum Power Supply Voltage	8V
Power Dissipation	1W

*COMMENT: Stresses above those listed under "Absolute Maximum Rating" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
D.C. Characteristics: $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$ (Unless otherwise specified)

Symbol	Parameter		Limits		Units	Conditions
			Min.	Max.		
ILI	Input Leakage Current			1	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to V_{CC}
I_{LO}	Output Leakage Current			1	$\mu \mathrm{A}$	$\begin{aligned} & \overline{\mathrm{CE1}}=\mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{OUT}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} \end{aligned}$
I_{CC}	Operating Supply Current			22	mA	Outputs = Open, $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}$ to V_{CC}
$\mathrm{I}_{\mathrm{CCL}}$	Standby Supply Current	S5101L1, S5101L		10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ to V_{CC} except $\mathrm{CE} 2 \leqslant 0.2 \mathrm{~V}$
		S5101L3		140	$\mu \mathrm{A}$	
		S5101L8, S5101-8		500	$\mu \mathrm{A}$	
$\mathrm{V}_{\text {IL }}$	Input Low Voltage		-0.3	0.65	V	
$\mathrm{V}_{\text {IH }}$	Input High Voltage		2.2	V_{CC}	V	
$\mathrm{V}_{\text {OL }}$	Output Low Voltage			0.4	V	$\mathrm{I}_{\mathrm{OL}}=2 \mathrm{~mA}$
V_{OH}	Output High Voltage		2.4		V	$\mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}$

Capacitance

		Limits		Symbol	Parameter
			Max.		
C_{IN}	Input Capacitance		8	pF	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$, on all Input Pins
C_{O}	Output Capacitance		12	pF	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$

A.C. Characteristics for Read Cycle: $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$ (Unless otherwise specified)

Symbol	Parameter	$\begin{gathered} \text { S5101L1 } 1 \\ \text { Limits } \\ \hline \end{gathered}$		$\begin{aligned} & \text { S5101L } \\ & \text { S5101L3 } \\ & \text { Limits } \\ & \hline \end{aligned}$		$\begin{gathered} \hline \mathrm{S} 5101 \mathrm{~L} 8 \\ \mathrm{~S} 5101-8 \\ \text { Limits } \\ \hline \end{gathered}$		Units	Conditions
		Min.	Max.	Min.	Max.	Min.	Max.		
TRC	Read Cycle Time	450		650		800		ns	See A.C. Conditions of Test and A.C. Test Load
TACC	Access Time		450		650		800	ns	
$\mathrm{T}_{\mathrm{CO} 1}$	$\overline{\text { CE1 }}$ to Output Delay		400		600		800	ns	
TCO 2	CE2 to Output Delay		500		700		850	ns	
TOD	Output Disable to Enabled Output Delay		250		350		450	ns	
$\overline{\mathrm{T}} \mathrm{DF}$	Output Disable to Output H-Z State Delay	0	130	0	150	0	200	ns	
TOH1	Output Data Valid Into Next Cycle with respect to Address	0		0		0		ns	
TOH2	Output Data Valid Into Next Cycle with respect to Chip Enable	0		0		0		ns	

Read Cycle

1076145

Note:

1. OD may be tied low for seaprate I / O information.
2. The output will go into a high impedance state if either CE1 is high, CE2 is low, OD is high or R/W is low.
A.C. Characteristics for Write Cycle - Separate or Common Data I/O Using Output Disable
$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$ (Unless otherwise specified)

Symbol	Parameter	S5101L1		$\begin{gathered} \text { S5101L } \\ \text { S5101L3 } \\ \text { Limits } \end{gathered}$		$\begin{gathered} \text { S5101L8 } \\ \text { S5101-8 } \\ \text { Limits } \end{gathered}$		Units	Conditions
		Min.	Max.	Min.	Max.	Min.	Max.		
TWC	Write Cycle Time	450		650		800		ns	See A.C. Conditions of Test and A.C. Test Load
TAW	Address To Write Delay	130		150		200		ns	
$\mathrm{T}_{\text {CW1 }}$	CE1 to Write Delay	350		550		650		ns	
TCW2	CE2 to Write Delay	350		550		650		ns	
TDW	Data Set-Up to End of Write Time	250		400		450		ns	
TDH	Data Hold After End of Write Time	50		100		100		ns	
TWP	Write Pulse Width	250		400		450		ns	
TWR	End of Write to New Address Recovery Time	50		50		100		ns	
TDS	Output Disable to Data-In Set-Up Time	130		150		200		ns	

Write Cycle - For Separate or Common Data I/O

Low VcC Data Retention Characteristics for S5101L, S5101L1, S5101L3 and S5101L8 ${ }^{[1]}$
$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

Symbol	Parameter			Limits		Conditions
			Min.	Max.	Units	
V_{DR}	$\mathrm{V}_{\text {CC }}$ for Data Retention		2.0		V	$\mathrm{CE} 2 \leq 0.2 \mathrm{~V}$
$\mathrm{I}_{\mathrm{CCDR}}$	Data Retention Supply Current	S5101L1, S5101L		10	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{DR}} \\ & \mathrm{~T}_{\mathrm{R}}=\mathrm{T}_{\mathrm{F}}=20 \mathrm{~ns} \\ & \mathrm{CE} 2 \leq 0.2 \mathrm{~V} \end{aligned}$
		S5101L3		140	$\mu \mathrm{A}$	
		S5101L8		500	$\mu \mathrm{A}$	
$\mathrm{T}_{\text {CRD }}$	Chip Deselect to Data Retention Time		0		ns	
T_{R}	Operation Recovery Time		$\mathrm{T}_{\mathrm{RC}}{ }^{[2]}$		ns	

Notes:

[1] For guaranteed low VCC Data Retention @ 2.0V, order must specify S5101L, S5101L1, S5101L3 or S5101L8.
[2] $\mathrm{T}_{\mathrm{RC}}=$ Read Cycle Time.

Low V_{Cc} Data Retention Wave Form

$$
\begin{array}{ll}
\text { 1. } & 4.75 \mathrm{~V} \\
\text { 2. } & \mathrm{V}_{\mathrm{DR}} \\
\text { 3. } & \mathrm{V}_{I \mathrm{H}} \\
\text { 4. } & 0.2 \mathrm{~V}
\end{array}
$$

477215

A.C. Test Load

A.C. Conditions of Test

Input Levels	0.65 V to 2.2 V
Input Rise and Fall Time	20 ns
Timing Measurement Reference Level	1.5 V

4096 BIT (4096×1) STATIC CMOS RAM

Features

Low Standby Power-10 $\mu \mathrm{W}$ Typ.
Low Operating Power-20mW Typ.
Low Voltage Data Retention - 2.0 VHigh Density Standard 18 Pin Package
\square Fast Access Time 300ns
\square On Chip Address Latches
\square SiGate CMOS Technology

General Description

The AMI S6504 is a 4096×1 bit low power CMOS RAM offering static operation with a single +5 V power supply. All inputs and outputs are fully TTL compatible. The addresses are buffered by on-chip address latches. These internal registers are latched by the HIGH to LOW transition of the $\overline{\mathrm{CE}}$. The write enable and chip enable functions are designed such that either separate or common data 110 operat ons can be easily implemented for maximum design flexibility.
(

1024 BIT (1024×1) STATIC CMOS RAM

Features

Ultra Low Standby PowerS6508 Completely TTL CompatibleS6508A Completely CMOS Compatible$4 V$ to 11 V Operation (S6508A)Data Retention at 2VThree-State OutputLow Operating Power: 10mW @ $1 \mathrm{MHz}(5 \mathrm{~V})$Fast Access Time: 115ns @ 10V
General Description

The AMI S6508 family of 1024×1 bit static CMOS RAMs offers ultra low power dissipation with a single power supply. The device is available in two versions. The basic part (S 6508) operates on 5 V and is directly TTL compatible on all inputs and the three-state output. The $\$ 6508$ " A " operates from 4 V to 11 V and is fully CMOS compatible. The data is stored in ultra low power CMOS static RAM cells (six transistor). The stored data is read out nondestructively and is the same polarity as the original input data. The address is buffered by on-chip address registers. These internal registers are latched by the HIGH to LOW transition of chip enable ($\overline{\mathrm{CE}})$. The write enable and chip enable functions are designed such that either separate or common data I/O operations can be easily implemented for maximum design flexibility.

General Description (Continued)

The S6508 is fabricated using a silicon gate CMOS process suitable for high volume production of high performance, ultra low power memories. When deselected ($\overline{\mathrm{CE}}=\mathrm{HIGH}$), the S6508-1 draws less than 10 microamps from the 5 V supply. In addition, it
offers guaranteed data retention with the power supply as low as 2 volts. This process makes the device an ideal choice where battery augmented nonvolatile RAM storage is mandatory.

CMOS to TTL - S6508/S6508-1

Absolute Maximum Ratings

Supply Voltage 8.0 V
Input or Output Voltage SuppliedGND -0.5 V to $\mathrm{VCC}+0.5 \mathrm{~V}$
.......
$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Storage Temperature Range
Operating Temperature Range, Commercial $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
D.C. Characteristics ($\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$)

Symbol	Parameter	Min.	Max.	Units	Conditions
V_{IH}	Logical " 1 " Input Voltage	$\mathrm{V}_{\mathrm{CC}}-2.0$		V	
$\mathrm{~V}_{\mathrm{IL}}$	Logical " 0 " Input Voltage		0.8	V	
I_{IL}	Input Leakage	-1.0	1.0	$\mu \mathrm{~A}$	$0 \mathrm{~V}<\mathrm{V}_{\mathrm{IN}}<\mathrm{V}_{\mathrm{CC}}$
$\mathrm{V}_{\mathrm{OH} 2}$	Logical " 1 " Output Voltage	$\mathrm{V}_{\mathrm{CC}}-0.01$		V	$\mathrm{I}_{\mathrm{OUT}}=0$
$\mathrm{~V}_{\mathrm{OH} 1}$	Logical " 1 " Output Voltage	2.4		V	$\mathrm{I}_{\mathrm{OH}}=-0.2 \mathrm{~mA}$
$\mathrm{~V}_{\mathrm{OL} 2}$	Logical " 0 " Output Voltage		$\mathrm{GND}+0.01$	V	$\mathrm{I}_{\mathrm{OUT}}=0$
$\mathrm{~V}_{\mathrm{OL} 1}$	Logical " 0 " Output Voltage		0.45	V	$\mathrm{I}_{\mathrm{OL}}=2.0 \mathrm{~mA}$
I_{O}	Output Leakage	-1.0	1.0	$\mu \mathrm{~A}$	$0 \mathrm{~V}<\mathrm{V}_{\mathrm{O}}<\mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IH}}$
$\mathrm{I}_{\mathrm{CCL}}$	Standby Supply Current	$\mathrm{S6508}$		100	$\mu \mathrm{~A}$

A.C. Characteristics ($\mathrm{VCC}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (One TTL Load), $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$)

Symbol	Parameter	S6508-1		S6508		Units	Conditions
		Min.	Max.	Min.	Max.		
$\mathrm{t}_{\text {ACC }}$	Access Time from $\overline{\mathrm{CE}}$		300		460	ns	See A.C. conditions of test and A.C. test load.
ten	Output Enable Time		180		285	ns	
$\mathrm{t}_{\text {DIS }}$	Output Disable Time		180		285	ns	
$\mathrm{t}_{\text {CEH }}$	$\overline{\text { CE }} \mathrm{HIGH}$	200		300		ns	
tCEL	CE LOW	300		460		ns	
twP	Write Pulse Width (LOW)	200		300		ns	
t_{AS}	Address Setup Time	7		15		ns	
taH	Address Hold Time	90		130		ns	
t ${ }_{\text {dS }}$	Data Setup Time	200		300		ns	
tDH	Data Hold Time	0		0		ns	
tMOD	Data Modify Time	0		0		ns	

CMOS to CMOS - S6508A/S6508A-1

Absolute Maximum Ratings

Supply Voltage 12.0V
Input or Output Voltage Applied . -0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Operating Temperature Range, Commercial $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
D.C. Characteristics $\left(\mathrm{V}_{\mathrm{CC}}=4 \mathrm{~V}\right.$ to $11 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $\left.70^{\circ} \mathrm{C}\right)$

Symbol	Parameter		Min.	Max.	Units	Conditions
$\mathrm{V}_{\text {IH }}$	Logical " 1 " Input Voltage		$70 \% \mathrm{~V}_{\mathrm{CC}}$		V	
$\mathrm{V}_{\text {IL }}$	Logical " 0 " Input Voltage			$20 \% \mathrm{~V}_{\mathrm{CC}}$	V	
I_{IL}	Input Leakage		-1.0	1.0	$\mu \mathrm{A}$	$0 \mathrm{~V}<\mathrm{V}_{\text {IN }}<\mathrm{V}_{\text {CC }}$
VOH	Logical " 1 " Output Voltage		$\mathrm{V}_{\mathrm{CC}}{ }^{-0.01}$		V	$\mathrm{I}_{\text {OUT }}=0$
$\mathrm{V}_{\text {OL }}$	Logical " 0 "' Output Voltage			GND + 0.01	V	$\mathrm{I}_{\text {OUT }}=0$
I_{O}	Output Leakage		-1.0	1.0	$\mu \mathrm{A}$	$0 \mathrm{~V}<\mathrm{V}_{\mathrm{O}}<\mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IH}}$
$\mathrm{I}_{\mathrm{CCL}}$	Standby Supply Current	S6508A		500	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$
		S6508A-1		100	$\mu \mathrm{A}$	
I_{CC}	Supply Current(S6508A/S6508A-1)	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$		2.5	mA	$\mathrm{f}=1 \mathrm{MHz}$
		$\mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V}$		5.0	mA	
$\mathrm{C}_{\text {IN }}$	Input Capacitance			7.0	pF	
C_{O}	Output Capacitance			10.0	pF	

A.C. Characteristics ($\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CC}} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$)

Symbol	Parameter	VCC	S6508A-1		S6508A		Units	Conditions
			Min.	Max.	Min.	Max.		
$\mathrm{t}_{\text {ACC }}$	Access Time from $\overline{\mathrm{CE}}$	5V		275		460	ns	
		10 V		115		185	ns	
ten	Output Enable Time	5 V		165		285	ns	
		10 V		75		120	ns	
tDIS	Output Disable Time	5 V		165		285	ns	
		10V		75		120	ns	
$\mathrm{t}_{\mathrm{CEH}}$	$\overline{\mathrm{CE}} \mathrm{HIGH}$	5 V	175		300		ns	
		10V	80		125		ns	
${ }^{\text {c }}$ CEL	$\overline{\mathrm{CE}}$ LOW	5 V	275		460		ns	
		10V	115		185		ns	
tWP	Write Pulse Width (LOW)	5 V	175		300		ns	See A.C. conditions
		10V	80		125		ns	of test and A.C. test
${ }^{\text {t }}$ AS	Address Setup Time	5 V	7		15		ns	load.
		10V	7		15		ns	
$\mathrm{t}_{\text {AH }}$	Address Hold Time	5 V	80		130		ns	
		10 V	40		60		ns	
tDS	Data Setup Time	5V	175		300		ns	
		10V	80		125		ns	
tDH	Data Hold Time	5 V	0		0		ns	
		10 V	0		0		ns	
$\mathrm{t}_{\mathrm{MOD}}$	Data Modify Time	5 V	0		0		ns	
		10V	0		0		ns	

Read Cycle

Write Cycle

Read Modify Write Cycle

NOTES:

1. The write operation is terminated on any positive edge of Chip Enable ($\overline{\mathrm{CE}}$) or Write Enable ($\overline{\mathrm{WE}}$).
2. The data output will be in the high impedance state whenever $\overline{\mathrm{WE}}$ is LOW.
3. $\overline{\mathrm{WE}}$ is HIGH during a read operation.
4. Rise and fall times of V_{CC} equal 20 ns .

Low V_{CC} Data Retention Characteristics ($\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$)

Symbol	Parameter	Min.	Max.	Units	Conditions	
V_{DR}	V_{CC} for Data Retention	2.0		V	$\overline{\mathrm{CE}}=2.0 \mathrm{~V}$	
$\mathrm{I}_{\mathrm{CCDR}}$	Data Retention	S6508, S6508A		10	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{DR}}$ Min.
	Supply Current	$\mathrm{S} 6508-1, \mathrm{S6508A-1}$		1.0	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$
$\mathrm{t}_{\mathrm{CDR}}$	Deselect Setup Time	$\mathrm{t}_{\mathrm{CEH}}$		ns		
t_{R}	Recovery Time	$\mathrm{t}_{\mathrm{CEH}}$		ns		

Low Vcc Data Retention Waveform (note 4)

877243
A.C. Test Load

A.C. Test Conditions

Input Levels	V_{IL} to V_{IH}
Input Rise \& Fall	20 ns
Timing Measurement Reference Level	
S6508/S6508-1	1.5 V
S6508A/S6508-1	$50 \% \mathrm{~V}_{\mathrm{CC}}$

877244

4096 BIT (1024×4)
 STATIC CMOS RAM

Features

Low Power Standby-1mW MAXTTL Compatible Inputs/Outputs\square Three-State Outputs
\square On-Chip Address RegistersData Retention @ 2VStandard 18 pin Package/Pinouts

General Description

The AMI S6514 is a 1024×4 static CMOS RAM offering low power and static operation with a single +5 volt power supply. All inputs and outputs are TTL compatible. The common Data I/O pins allow direct interface with common bus systems.

Battery-backup design is simplified by use of $\overline{\mathrm{CE}}$, which when HIGH, allows the other inputs to float.

Absolute Maximum Ratings

Supply Voltage - VCC . -0.3 V to +7.0 V

Input/Output Voltage Applied . -0.3 V to VCC +0.3 V
Storage Temperature-Tstg $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

DC Electrical Characteristics: $\mathrm{TA}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{VCC}=+5 \mathrm{~V} \pm 10 \%$

Symbol	Parameter	Min.	Typ.	Max.	Units	Conditions
ILI	Input Leakage Current	-1		1	$\mu \mathrm{~A}$	Vin=GND to VCC
ILO	Output Leakage Current			1	$\mu \mathrm{~A}$	Vin=GND toVCC
ISB	Standby Supply Current			50	$\mu \mathrm{~A}$	Vin=GND orVCC
ICC	Operating Supply Current			7	mA	Vin=GND or VCC,f=1MHz
VIL	Input Voltage LOW	-0.3		0.8	V	
VIH	Input Voltage HIGH	2.4		$\mathrm{VCC}+0.3$	V	
VOL	Output Voltage LOW			0.4	V	IOL $=1.6 \mathrm{~mA}$
VOH	Output Voltage HIGH	2.4			V	IOH $=0.4 \mathrm{~mA}$

Capacitance: $\mathrm{TA}=25^{\circ} \mathrm{C}, \mathrm{t}=1 \mathrm{MHz}$. Capacitance is sampled and guaranteed.

Symbol	Parameter	Min.	Typ.	Max.	Units	Conditions
Cin	Input Capacitance			8	p^{F}	
Cout	Output Capacitance			10	p	

Low VCC Data Retention Characteristics:

Symbol	Parameter	Min.	Typ.	Max.	Units	Conditions
ICCDR	ICC For Data Retention			25	$\mu \mathrm{~A}$	Vin=GND or VCC
VCCDR	VCC for Data Retention	2.0			V	
tCDR	Chip Deselect to Data Retention Time	0			ns	
tR	Operation Recovery Time	TELEL				

Low Vcc Data Retention Wave Form

1. 4.75 V
2. $V_{D R}$
3. $V_{I H}$
4. 0.2 V

AC Test Conditions

t rise/t fall 20ns
Output Load 50pF
All Timing 1.5 V

AC Electrical Characteristics: $\mathrm{TA}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{VCC}=5 \mathrm{~V} \pm 10 \%$

Symbol	Parameter	Min.	Typ.	Max.	Units	Conditions
TELQV	Chip Enable Access Time			300	ns	
TAVQV	Address Access Time			320	ns	
TWLQZ	Write Enable Output Disable Time			100	ns	
TEHQZ	Chip Enable Output Disable Time			100	ns	
TELEH	Chip Enable Pulse Negative Width	300			ns	
TEHEL	Chip Enable Pulse Positive Width	120			ns	
TAVEL	Address Setup Time	20			ns	
TELAX	Address Hold Time	50			ns	
TWLWH	Write Enable Pulse Width	300			ns	
TWLEH	Write Enable Pulse Setup Time	300			ns	
TELWH	Write Enable Pulse Hold Time	300			ns	
TDVWH	Data Setup Time	200			ns	
TWHDZ	Data Hold Time	0			ns	
TWHEL	Write Enable Read Setup Time	0			ns	
TQVWL	Output Data Valid to Write Time	0			ns	
TWLDV	Write Data Delay Time	100			ns	
TELWL	Early Output High-Z Time			0	ns	
TWHEH	Late Output High-Z Time			0	ns	
TELEL	Read or Write Cycle Time	420			ns	

Read Modify Write Cycle

Note 1: TELEL \& TELEH are longer than the minimum given for Read or Write cycle.

Read Cycle: $\overline{\text { WE }}=$ HIGH

Write Cycle

.

16,384 BIT (2048x8) STATIC NMOS ROM

Features

\square Single $+5 V$ Power Supply
\square Directly TTL Compatible Inputs
\square Three-State TTL Compatible Outputs
\square Three Programmable Enables
\square Access Time: 450ns Maximum
[2716 EPROM Pin Compatible
\square Low Power: Supply Current is 80 mA Maximum

General Description

The AMI S6831B is a 16,384 bit mask programmable Read-Only-Memory offering fully static operation with a single +5 V power supply. The device is fully TTL compatible on all inputs and three-state outputs. The three enables are mask programmable, the active level is specified by the user.
The S6813B is pin compatible with the 2708 and 2716 EPROMs. Software developed in EPROMs can be put in low cost ROM for high volume production.
The device is organized as 2048 words by 8 bits, a configuration particularly suitable for microprocessors. The S6831B is manufactured with an N-channel silicon gate depletion load technology.

Absolute Maximum Ratings

Ambient Temperature Under Bias	$-0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Output or Supply Voltages	-0.5 V to 7V
Input Voltages	-0.5 V to 7V
Power Dissipation 1W

*COMMENT: Stresses above those listed under "Absolute Maximum Rating" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may effect device reliability.
D.C. Characteristics: $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

Symbol	Parameter	Min.	Typ.	Max.	Units	Conditions
V_{OL}	Output LOW Voltage			0.4	V	$\mathrm{I}_{\mathrm{OL}}=3.2 \mathrm{~mA}$
$\mathrm{~V}_{\mathrm{OH}}$	Output HIGH Voltage	2.4			V	$\mathrm{I}_{\mathrm{OH}}=-220 \mu \mathrm{~A}$
$\mathrm{~V}_{\mathrm{IL}}$	Input LOW Voltage	-0.5		0.8	V	
$\mathrm{~V}_{\mathrm{IH}}$	Input HIGH Voltage	2.0		$\mathrm{~V}_{\mathrm{CC}}$	V	
I_{LI}	Input Leakage Current			10	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$ to 5.25 V
I_{LO}	Output Leakage Current			10	$\mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$ to 5.25 V Chip Deselected
I_{CC}	Power Supply Current			70	mA	$\mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$

Capacitance: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$

Symbol	Parameter	Min.	Typ.	Max.	Units	Conditions
$\mathrm{C}_{\text {IN }}$	Input Capacitance			7	pF	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$
$\mathrm{C}_{\text {OUT }}$	Output Capacitance			10	pF	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$

A.C. Characteristics: $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

Symbol	Parameter	Min.	Typ.	Max.	Units	Conditions
$\mathrm{t}_{\mathrm{CYC}}$	Read Cycle Time	450			ns	See Test Circuit and Waveforms
t_{AA}	Address Access Time			450	ns	
t_{AE}	Enable Access Time			200	ns	
$\mathrm{t}_{\text {OFF }}$	Output Disable Time	10		150	ns	

Propagation Delay from Address Inputs

Propagation Delay From Chip Enable

S6831B

A.C. Test Conditions

Input Pulse Levels	0.4 V to 2.4 V
Input Rise and Fall Times	$\leqslant 20 \mathrm{~ns}$
Input Timing Level	1.5 V
Output Timing Levels	0.8 V and 2.0 V
Output Load	1 TTL Gate and $\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$

Custom Programming

The preferred method of pattern submission is the AMI Hex format as described below, with its built-in address space mapping and error checking. This is the format produced by the AMI Assembler. The format is as follows and may be on paper tape, punched cards or other media readable by AMI.
\(\left.$$
\begin{array}{ll}\text { Position } & \begin{array}{l}\text { Description } \\
1\end{array} \\
\begin{array}{l}\text { Start of record (Letter S) } \\
\text { Type of record } \\
\text { 0- Header record (comments) } \\
\text { 1- Data record }\end{array}
$$

9- End of file record

Byte Count\end{array}\right]\)| Since each data byte is represented as two hex characters, the byte count must be multiplied |
| :--- |
| by two to get the number of characters to the end of the record. (This includes checksum and |
| address data.) Records may be of any length defined in each record by the byte count. |

Example: \quad S113000049E9F10320F0493139F72000F5E0F00126 S9030000 FC

NOTES:

1. Only positive logic formats for $\mathrm{E}_{0}, \mathrm{E}_{1}, \mathrm{E}_{2}$ are accepted. $1=\mathrm{V}_{\mathrm{HIGH}} ; 0=\mathrm{V}_{\text {LOW }}$
2. A " 0 " indicates the chip is enabled by a logic 0 .

A " 1 " indicates the chip is enabled by a logic 1 .
3. Paper tape format is the same as the card format above except:
a. The record should be a maximum of 80 characters.
b. Carriage return and line feed after each record followed by another record.
c. There should NOT be any extra line feed between records at all.
d. After the last record, four (4) $\$ \$ \$ \$$ (dollar) signs should be punched with carriage return and line feed indicating end of file.

32,768 BIT (4096x8) STATIC NMOS ROM

Features

Fast Access Time: S68332: 450ns Maximum S68A332: 350ns Maximum

Fully Static Operation

\square Single $+5 \mathrm{~V} \pm 5 \%$ Power Supply
\square Directly TTL Compatible Inputs
\square Three-State TTL Compatible Outputs
\square Two Programmable Chip Selects
\square EPROM Pin Compatible

General Description

The AMI S68332 is a 32,768 bit static mask programmable NMOS ROM organized as 4096 words by 8 bits. The device is fully TTL compatible on all inputs and outputs and has a single +5 V power supply. The three state outputs facilitate memory expansion by allowing the outputs to be OR-tied to other devices.
The S68332 is pin compatible with UV EPROMs making system development much easier and more cost effective. It is fully static, requiring no clocks for operation. The two chip selects are mask programmable, the active level for each being specified by the user.
The S68332 is fabricated using AMI's N-Channel MOS technology. This permits the manufacture of very high density, high performance mask programmable ROMs.

Block Diagram	Logic Symbol		Pin Configuration
*PRogrammable chip selects	Pin Names		

*COMMENT: Stresses above those listed under "Absolute Maximum Rating" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may effect device reliability.
D.C. Characteristics: $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

Symbol	Parameter	Min.	Typ.	Max.	Units	Conditions
V_{OL}	Output LOW Voltage			0.4	V	$\mathrm{I}_{\mathrm{OL}}=3.2 \mathrm{~mA}$
$\mathrm{~V}_{\mathrm{OH}}$	Output HIGH Voltage	2.4			V	$\mathrm{I}_{\mathrm{OH}}=-220 \mu \mathrm{~A}$
$\mathrm{~V}_{\mathrm{IL}}$	Input LOW Voltage	-0.5		0.8	V	
$\mathrm{~V}_{\mathrm{IH}}$	Input HIGH Voltage	2.0		$\mathrm{~V}_{\mathrm{CC}}$	V	
I_{LI}	Input Leakage Current			10	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$ to 5.25 V
I_{LO}	Output Leakage Current			10	$\mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$ to 5.25V Chip Deselected
I_{CC}	Power Supply Current			70	mA	$\mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$

Capacitance: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$

Symbol	Parameter	Min.	Typ.	Max.	Units	Conditions
C_{IN}	Input Capacitance			7	pF	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$
$\mathrm{C}_{\text {OUT }}$	Output Capacitance			10	pF	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$

A.C. Characteristics: $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

Symbol	Parameter		Min.	Typ.	Max.	Units	Conditions
t_{AA}	Address Access Time	S68332			450	ns	See. A.C. Test Conditions and Waveform
		S68A332			350	ns	
$\mathrm{t}_{\mathrm{ACS}}$	Chip Select Access Time	S68332			150	ns	
		S68A332			150	ns	
$\mathrm{t}_{\text {OFF }}$	Chip Deselect Time	S68332	0		150	ns	
		S68A332	0		150	ns	

Waveforms

Propagation From Chip Select

Propagation From Address
A.C. Test Conditions

Input Pulse Levels	0.4V to 2.4 V
Input Rise and Fall Times	$\leqslant 20 \mathrm{~ns}$
Input Timing Level	1.5 V
Output Timing Levels	0.8 V and 2.0 V
Output Load	1 TTL Load and 100pF

Custom Programming

The preferred method of pattern submission is the AMI Hex format as described below, with its built-in address space mapping and error checking. This is the format produced by the AMI Assembler. The format is as follows and may be on paper tape, punched cards or other media readable by AMI.
\(\left.$$
\begin{array}{ll}\text { Position } & \begin{array}{l}\text { Description } \\
1\end{array} \\
\begin{array}{l}\text { Start of record (Letter S) } \\
\text { Type of record } \\
\text { 0- Header record (comments) } \\
\text { 1- Data record }\end{array}
$$

9- End of file record\end{array}\right]\)| Byte Count |
| :--- |
| Since each data byte is represented as two hex characters, the byte count must be multiplied |
| by two to get the number of characters to the end of the record. (This includes checksum and |
| address data.) Records may be of any length defined in each record by the byte count. |

Example:
S113000049E9F10320F0493139F72000F5E0F00126 S9030000 FC

[^20]
65,536 BIT (8192x8) STATIC NMOS ROM

Features

Single $+5 \mathrm{~V} \pm 10 \%$ Power SupplyHigh Performance:Maximum Access Time: 450ns
$\square \quad$ EPROM Compatible for Cost Effective System Development
\square Completely Static Operation
\square Directly TTL Compatible Inputs
\square Three-State TTL Compatible Outputs
\square Industry Standard 24 Pin Package

General Description

The AMI S4264 is a 65,536 bit fully static NMOS mask programmable ROM organized as 8192 words by 8 bits. The device is fully TTL compatible on all inputs and outputs and has a single +5 V power supply. The three-state outputs facilitate memory expansion by allowing the outputs to be OR-tied to other devices.
The S4264 is fully static requiring no clocks for operation. Data access is simple as no address setup times are required. The byte organization of the S4264 makes it ideal for microprocessor applications.
The S4264 is fabricated using AMI's proprietary NMOS technology. This process permits the manufacture of very high density, high performance mask programmable ROMs.

Absolute Maximum Ratings*

Ambient Temperature Under Bias	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Output or Supply Voltages	0.5 V to 7 V
Input Voltages	-0.5 V to 7 V
Power Dissipation 1W

*COMMENT: Stresses above those listed under "Absolute Maximum Rating" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
D.C. Characteristics: $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%$

Symbol	Parameter	Min.	Typ.	Max.	Units	Conditions
V_{OL}	Output LOW Voltage			0.4	V	$\mathrm{I}_{\mathrm{OL}}=3.2 \mathrm{~mA}$
$\mathrm{~V}_{\mathrm{OH}}$	Output HIGH Voltage	2.4			V	$\mathrm{I}_{\mathrm{OH}}=-220 \mu \mathrm{~A}$
$\mathrm{~V}_{\mathrm{IL}}$	Input LOW Voltage	-0.5		0.8	V	
$\mathrm{~V}_{\mathrm{IH}}$	Input HIGH Voltage	2.0		$\mathrm{~V}_{\mathrm{CC}}$	V	
I_{LI}	Input Leakage Current			10	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$ to 5.5 V
I_{LO}	Output Leakage Current			10	$\mu \mathrm{~A}$	$\overline{\mathrm{CS}} \geqslant 2.4 \mathrm{~V}$, $\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$ to 5.5 V I_{CC} Power Supply Current
			100	mA	$\mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	

Capacitance: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$

Symbol	Parameter	Min.	Typ.	Max.	Units	Conditions
$\mathrm{C}_{\text {IN }}$	Input Capacitance			7	pF	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$
$\mathrm{C}_{\text {OUT }}$	Output Capacitance			10	pF	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$

A.C. Characteristics: $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{VCC}=+5 \mathrm{~V} \pm 10 \%$

Symbol	Parameter	Min.	Typ.	Max.	Units	Conditions
t_{AA}	Address Access Time			450	ns	See Test Circuit and Waveforms
$\mathrm{t}_{\mathrm{ACS}}$	Chip Select Access Time			150	ns	
$\mathrm{t}_{\mathrm{OFF}}$	Chip Deselect Time	0		150	ns	

Wave Forms

A.C. Test Conditions

Input Pulse Levels	0.4 V to 2.4 V
Input Rise and Fall Times	$\leqslant 20 \mathrm{~ns}$
Input Timing Levels	. 1.5 V
Output Timing Levels	0.8 V to 2.0 V
Output Load	1 TTL Load and 100pF

Custom Programming

The preferred method of pattern submission is the AMI Hex format as described below, with its built-in address space mapping and error checking. This is the format produced by the AMI Assembler. The format is as follows and may be on paper tape, punched cards or other media readable by AMI (see NOTES at bottom of page).

Position	Description
1	Start of record (Letter S)
2	Type of record
	0 - Header record (comments)
	1 - Data record
	9 - End of file record
3, 4	Byte Count
	Since each data byte is represented as two hex characters, the byte count must be multiplied by two to get the number of characters to the end of the record. (This includes checksum and address data.) Records may be of any length defined in each record by the byte count.
5, 6, 7, 8	Address Value
	The memory location where the first data byte of this record is to be stored. Addresses should be in ascending order.
9, . ., N	Data
	Each data byte is represented by two hex characters. Most significant character first.
$\mathrm{N}+1, \mathrm{~N}+2$	Checksum
	The one's complement of the additive summation (without carry) of the data bytes, the address, and the byte count.

Example: \quad S 113000049 E 9 F 10320 F 0493139 F 72000 F 5 E 0 F 00126 S9030000 FC

NOTES:

1. Paper tape format is the same as the card format above except:
a. The record should be a maximum of 80 characters.
b. Carriage return and line feed after each record followed by another record.
c. There should NOT be any extra line feed between records at all.
d. After the last record, four (4) $\$ \$ \$ \$$ (dollar) signs should be punched with carriage return and line feed indicating end of file.

UV EPROMs
AMERICAN MICROSYSTEMS, INC.
\square

512×8 BIT ERASABLE AND ELECTRICALLY REPROGRAMMABLE READ ONLY MEMORY

Features

On-Board Programmability\square Fast Access Time - 750ns Max.
\square High Speed Programming - Less than 1 Minute for all 4096 Bits
\square Programmed with R/W, CS and $V_{\text {PROG }}$ Pins
\square Completely TTL Compatible - Excluding the $\mathrm{V}_{\text {PROG }}$ Pin during Read or Write
\square Ultraviolet Light Erasable - Less than 10 Minutes
\square Static Operation - No Clocks Required
\square Three-State Data I/O
ㅁ Standard Power Supplies -+5 V and $-\mathbf{1 2 V}$
\square Mature P-Channel Process

General Description

The S5204A is a high speed, static, 512×8 bit, erasable and electrically programmable read only memory designed for use in bus-organized systems. Both input and output are TTL compatible during both read and write modes. Packaged in a 24 -pin hermetically sealed dual in-line package, the bit pattern can be erased by exposing the chip to an ultraviolet light source through the transparent lid, after which a new pattern can be written.
Block Diagram

ABSOLUTE MAXIMUM RATINGS

NOTE:
This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields, however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

DC (STATIC) CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{GG}}=-12.0 \mathrm{~V} \pm 5 \% \mathrm{~T}_{\mathrm{A}}=0-70^{\circ} \mathrm{C}\right.$ unless otherwise noted).

SYMBOL	CHARACTERISTIC	MIN	MAX	UNIT
$\mathrm{V}_{\text {IL }}$	INPUT VOLTAGE LOW		$\overline{0.8}$	V
V_{IH}	INPUT VOLTAGE HIGH	$\mathrm{V}_{\mathrm{CC}}-2.25$	$\mathrm{V}_{\mathrm{CC}}{ }^{+.3}$	V
V_{OL}	OUTPUT VOLTAGE LOW $\mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{ma}$		0.4	V
V_{OH}	OUTPUT VOLTAGE HIGH $\mathrm{I}_{\mathrm{OH}}=200 \mu \mathrm{~A}$	2.4		V
I_{LI}	INPUT LEAKAGE CURRENT		10	$\mu \mathrm{a}$
$\mathrm{I}_{\text {LO }}$	OUTPUT LEAKAGE CURRENT $\mathrm{CS}=5 \mathrm{~V}$		20	$\mu \mathrm{a}$
I_{GG}	V_{GG} SUPPLY CURRENT		45	ma
I_{CC}	$\mathrm{V}_{\text {CC }}$ SUPPLY CURRENT		50	ma
P_{D}	POWER DISSIPATION		750	mw

NOTE: Program input $\mathrm{V}_{\text {PROG }}$ may be tied to V_{CC} during the Read.

AC (DYNAMIC) CHARACTERISTICS (Loading is as shown in Figure 1 unless otherwise noted).

SYMBOL	CHARACTERISTIC	MIN	MAX	UNIT
$\mathrm{T}_{\text {ACC }}$	ACCESS TIME		750	ns
$\mathrm{~T}_{\text {CO }}$	CHIP SELECT TO OUTPUT DELAY CHIP DESELECT TO OUTPUT DELAY		400	ns
$\mathrm{~T}_{\text {DD }}$				

ERASABLE AND ELECTRICALLY PROGRAMMABLE READ ONLY MEMORY

Features

On-Board ProgrammabilityFast Access Time - 575ns Typ.Pin Configuration Similar to the $\mathbf{S 6 8 3 0} 1 \mathrm{~K} \times$ 8 Bit ROM\square High Speed Programming - Less than 1 Minute for All 4096 Bits
\square Programmed with R/W, CS and Vprog PinsCompletely TTL Compatible - Excluding the Vprog PinUltraviolet Light Erasable - Less than 10 MinutesStatic Operation - No Clocks RequiredThree-State Data I/OStandard Power Supplies +5 V and -12 VMature P-Channel Process

General Description

The $\mathbf{S 6 8 3 4}$ is a high speed, static, 512×8 bit, erasable and electrically programmable read only memory designed for use in bus-organized systems. Both input and output are TTL compatible during both read and write modes. Packaged in a 24 pin hermetically sealed dual in-line package the bit pattern can be erased by exposing the chip to an ultra-violet light source through the transparent lid, after which a new pattern can be written.

ABSOLUTE MAXIMUM RATINGS

NOTE:

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields, however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

DC (STATIC) CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{GG}}=-12.0 \mathrm{~V} \pm 5 \% \mathrm{~T}_{\mathrm{A}}=0-70^{\circ} \mathrm{C}\right.$ unless otherwise noted).

SYMBOL	CHARACTERISTIC	MIN	MAX	UNIT
$\mathrm{V}_{\text {IL }}$	INPUT VOLTAGE LOW		0.8	V
$\mathrm{V}_{\text {IH }}$	INPUT VOLTAGE HIGH	$\mathrm{V}_{\mathrm{CC}}-2.25$	$\mathrm{V}_{\mathrm{CC}}{ }^{+.3}$	V
V_{OL}	OUTPUT VOLTAGE LOW $\mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{ma}$		0.4	V
V_{OH}	OUTPUT VOLTAGE HIGH $\mathrm{I}_{\mathrm{OH}}=200 \mu \mathrm{~A}$	2.4		V
$\mathrm{I}_{\text {LI }}$	INPUT LEAKAGE CURRENT		10	$\mu \mathrm{a}$
$\mathrm{I}_{\text {LO }}$	OUTPUT LEAKAGE CURRENT $\mathrm{CS}=5 \mathrm{~V}$		20	$\mu \mathrm{a}$
I_{GG}	V_{GG} SUPPLY CURRENT		45	ma
${ }^{\text {I CC }}$	V_{CC} SUPPLY CURRENT		50	ma
P_{D}	POWER DISSIPATION		750	mw

NOTE: Program input $\mathrm{V}_{\mathrm{PROG}}$ may be tied to V_{CC} during the Read.

AC (DYNAMIC) CHARACTERISTICS (Loading is as shown in Figure 1 unless otherwise noted).

SYMBOL	CHARACTERISTIC	MIN	MAX		UNIT
			(6834)	(6834-1)	
$\mathrm{T}_{\text {ACC }}$	ACCESS TIME		575	750	ns
T_{CO}	CHIP SELECT TO OUTPUT DELAY		300	400	ns
T_{DD}	CHIP DESELECT TO OUTPUT DELAY		250	325	ns

Uncommitted Logic Arrays
AMERICAN MICROSYSTEMS, INC.

UNCOMMITTED LOGIC ARRAYS

Features

\square Arrays of uncommitted C-MOS devices "programmed" by metal layer interconnect to implement arbitrary digital logic functions.
\square Six array configurations-from $\mathbf{3 0 0}$ to $\mathbf{1 2 6 0}$ gates.
\square Quick Turn Prototypes.
\square Advanced oxide-isolated C-MOS technology.
\square High Performance-5 to 10 ns typical gate delay.Broad Power Supply Range-2.5V to 12V.
\square TTL Compatible I/O.
\square Up to 76 I/O connections.
\square Numerous package options.
\square Full Military temperature range $\left(-55^{\circ} \mathrm{C}\right.$ to $125^{\circ} \mathrm{C}$).

Description

AMI's Uncommitted Logic Array (ULA) products consist of arrays of C-MOS devices whose interconnections are initially unspecified. By "programming" interconnect at the metal layer mask level, virtually arbitrary configurations of digital logic can be realized in an LSI implementation.

AMI ULA designs are based on topological cells-i.e., groups of uncommitted silicon-gate N-channel and P-channel transistors-that are placed at regular intervals along the X and Y axes of the chip with intervening polysilicon underpasses. Pads, input protection circuitry, and uncommitted output drivers are placed around the periphery.

A family of C-MOS ULA products is offered in six configurations, summarized in Table I, with circuit complexities equivalent to $300,400,540,770,1000$, and 1260 two-input gates, respectively. All pads (except the two pre-assigned power supply connections) can be individually configured as inputs, outputs, or I/O's. Input switching characteristics can be programmed for either C-MOS or TTL compatibility. LS Buffer output drivers will support C-MOS levels or two low power schottky TTL loads. TTL Buffer outputs will also provide C-MOS levels and are capable of driving

TABLE I

Circuit	Equivalent Two-Input Gates	Pads	LS Output Drivers	TTL Output Drivers	Low Drive I/O
UA-1	300	40	17	20	1
UA-2	400	46	23	20	1
UA-3	540	52	25	24	1
UA-4	770	62	31	28	1
UA-5	1000	70	35	32	1
UA-6	1260	78	39	36	1

two standard TTL loads. One low drive (C-MOS level) output driver is provided. All output drivers can be programmed for tri-state or open drain (open collector) operation as required.

Pinout or lead count varies with die size and array complexity as shown in Table I. The arrays are offered in standard 40 -pin, 48 -pin, and 64 -pin DIPs (plastic, ceramic or cerdip). Lower lead count DIPs can be provided on request, as can JEDEC-Standard Leadless Chip Carrier (LCC) packages. AMI ULA products are also offered in wafer or unpackaged die form where required.

The C-MOS technology used for these products is AMI's state-of-the-art 5 -micron, oxide-isolated, silicongate C-MOS process. This process offers all the conventional advantages of C-MOS-i.e., very low power consumption, broad power supply voltage range $(2.5 \mathrm{~V}$ to 12 V), and high noise immunity-as well as dense circuits with high performance. Gate propagation delays are in the five to ten ns range for room temperature operation. AMI ULA products operate over the full military temperature range $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.125^{\circ} \mathrm{C}\right)$.

In conjunction with these arrays, AMI has developed a set of "functional overlays." These are basic logic element building blocks-e.g. two input and larger gates of various types, flip-flops, and so forth-from which complete logic designs can be developed. Each functional overlay corresponds to a metal interconnect pattern that is superimposed on a set of uncommitted transistors (and polysilicon underpasses) in the array to implement the logic element. Typical functional overlay logic elements and the number of two-input
gate equivalents they utilize are shown in Table II.
AMI will convert customer designed logic to metal interconnect patterns using functional overlays and its proprietary Symbolic Interactive Design System (SIDS). SIDS is a computer aided design tool for layout using on-line color graphics terminals. Interested customers should submit logic diagrams for evaluation and a quotation.

For programs involving multiple ULA patterns from customers with suitable MOS design and layout experience, AMI will also support arrangements in which the customer designs the ULA metal interconnect patterns and furnishes AMI with corresponding metal mask PG tapes to AMI specifications.

TABLE II

Logic Element	2-Input Gate Equivalent
2-Input NOR	1
2-Input NAND	1
3-Input NOR	1.5
3-Input NAND	1.5
INVERTER	.5
D FLIP-FLOP	4
D FLIP-FLOP W/RESET	5
D FLIP-FLOP W/SET-RESET	6
J-K FLIP-FLOP	6.5
CLOCKED LATCH	2
EXCLUSIVE OR	2.5
SCHMITT TRIGGER	5.5
4-BIT BCD CNTR W/RESET	27

DC Characteristics-TTL Interface

Specified @ $\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V} \pm 5 \%$
Temperature $=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Symbol	Parameter	Min.	Typ.	Max.	Unit
$\mathrm{V}_{\text {IH }}$	Input High Voltage	2.0			V
$\mathrm{V}_{\text {IL }}$	Input Low Voltage			0.8	V
V_{OH}	Output High Voltage (LS Buffer $10 \mathrm{H}=-700 \mu \mathrm{a}$) (T-Buffer $\mathrm{IOH}=-1.5 \mathrm{ma}$)	$\begin{aligned} & 2.7 \\ & 2.4 \end{aligned}$			$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
$\mathrm{I}_{\text {OL }}$	Output Low Voltage (T Buffer IOL $=3.2 \mathrm{ma}$) (LS Buffer IOL $=0.8 \mathrm{ma}$)			$\begin{aligned} & 0.4 \\ & 0.4 \end{aligned}$	$\stackrel{\mathrm{V}}{\mathrm{~V}}$
I_{OZ}	3-State Output Leakage $\mathrm{Vo}_{\mathrm{o}}=0$ or V_{DD}	-10	0.001	10	$\mu \mathrm{a}$

D.C. Characteristics - CMOS Interface

Sym.	Parameter	$\begin{aligned} & \mathbf{V}_{\mathrm{DD}} \\ & (\mathbf{V d c}) \end{aligned}$	Condition	Limits							Units
				* T Low		$25^{\circ} \mathrm{C}$			* T High		
				Min	Max	Min	Typ	Max	Min	Max	
IDD	Quiescent Device Current	$\begin{array}{r} 5 \mathrm{~V} \\ 10 \mathrm{~V} \end{array}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}$		$\begin{aligned} & 0.1 \\ & 0.2 \end{aligned}$		$\begin{aligned} & .005 \\ & .01 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.2 \end{aligned}$		$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\mu \mathrm{A} / \mathrm{gate}$ $\mu \mathrm{A} /$ gate
$\mathrm{v}_{\text {OL }}$	Low Level Output Voltage		$\mathrm{I}_{\mathrm{O}}=1 \mu \mathrm{~A}$		0.05			0.05		0.05	V
V_{OH}	High Level Output Voltage	$\begin{array}{r} 5 \mathrm{~V} \\ 10 \mathrm{~V} \end{array}$	$\mathrm{I}_{\mathrm{O}}=1 \mu \mathrm{~A}$	$\begin{aligned} & 4.95 \\ & 9.95 \end{aligned}$		$\begin{aligned} & 4.95 \\ & 9.95 \end{aligned}$			$\begin{aligned} & 4.95 \\ & 9.95 \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	$\begin{array}{r} 5 \mathrm{~V} \\ 10 \mathrm{~V} \end{array}$			$\begin{aligned} & 1.5 \\ & 3.0 \end{aligned}$			$\begin{aligned} & 1.5 \\ & 3.0 \end{aligned}$		$\begin{aligned} & 1.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
V_{IH}	Input High Voltage	$\begin{array}{r} 5 \mathrm{~V} \\ 10 \mathrm{~V} \end{array}$		$\begin{aligned} & 3.5 \\ & 7.0 \end{aligned}$		$\begin{aligned} & 3.5 \\ & 7.0 \end{aligned}$			$\begin{aligned} & 3.5 \\ & 7.0 \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
$\mathrm{I}_{\text {OL }}$	Output Low (Sink) Current T Buffer LS Buffer	$\begin{array}{r} 5 \mathrm{~V} \\ 10 \mathrm{~V} \\ \\ 5 \mathrm{~V} \\ 10 \mathrm{~V} \end{array}$	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V} \\ & \mathrm{v}_{\mathrm{O}}=0.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 4 \\ & 7 \\ & \\ & 1.0 \\ & 1.8 \end{aligned}$		$\begin{aligned} & 4 \\ & 7 \\ & \\ & 1.0 \\ & 1.8 \end{aligned}$	$\begin{array}{r} 6.5 \\ 12.5 \\ 1.6 \\ 3.1 \end{array}$		$\begin{aligned} & 3.2 \\ & 4.0 \\ & \\ & 0.8 \\ & 1.0 \end{aligned}$		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$
I_{OH}	Output High (Source) Current T Buffer LS Buffer	$\begin{array}{r} 5 \mathrm{~V} \\ 10 \mathrm{~V} \\ \\ 5 \mathrm{~V} \\ 10 \mathrm{~V} \end{array}$	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=4.6 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{O}}=9.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{O}}=4.6 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{O}}=9.5 \mathrm{~V} \end{aligned}$		$\begin{aligned} & -400 \\ & -750 \\ & -200 \\ & -375 \end{aligned}$			$\begin{aligned} & -400 \\ & -750 \\ & -200 \\ & -375 \end{aligned}$		$\begin{aligned} & -400 \\ & -750 \\ & -200 \\ & -375 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \\ & \mu \mathrm{~A} \\ & \mu \mathrm{~A} \end{aligned}$
I_{IN}	Input Current		$\begin{array}{r} \mathrm{V}_{\mathrm{IN}}=0 \text { or } \\ \mathrm{V}_{\mathrm{DD}} \end{array}$		1			1		1	$\mu \mathrm{A}$
I_{OZ}	3 State Output Leakage Current Input Capacitance		$\begin{array}{r} \mathrm{V}_{\mathrm{O}}=0 \text { or } \\ \mathrm{V}_{\mathrm{DD}} \end{array}$ Any Input		± 1		5	± 1		± 10	$\mu \mathrm{A}$ $\mathbf{p F}$

[^21]Application Note Summary
AMERICAN MICROSYSTEMS, INC.
Communications Products
S2559 Digital Tone Generator $79 T 01$
Describes design considerations, test methods, and results obtained using the S2559 Tone Generator family inDTMF pushbutton telephones. Interface with type 500 and 2500 networks are discussed. Use in ancillary equipmentis also covered.
Consumer Products
Useful Noise 79C01
The S2688 Noise Generator is useful in many applications where digital noise is required for audio effects.
Programming the S8890 Rhythm Generator 79C02
Explains the program format and how to submit data for ROM programming.
Touch MOS for Capacitive Switching $79 \mathrm{C03}$
Explains the circuit operation and the design formulas needed to determine system parameters of pad areas, scanclock frequency and reference level adjustments.
18 Touchy Questions 79C04
Answers many of the common questions which may arise when using TouchControl. This note should provideassistance for the successful design of a TouchControl system.
MOS Music 79C05
MOS Music is a primer on the application of standard MOS/LSI circuits in creating electronic music. This notediscusses the key elements of music production in an electronic organ.
Real Remote Control 79C06A remote control system using the S2742 and S2743 with infrared transmission is shown. A simple but effectivealignment technique is demonstrated which will ensure successful operation.
S2000 Family
Extended Memory 792K01
This note describes the necessary circuitry needed to extend the program memory (ROM) beyond an S2000/S2150'snormal amount.
Musical Application for an S2000 Microcomputer 792K02This note describes some theory and the application of a microcomputer to generate musical notes. Applicationsmight include electronic games, alarm clock, door bells and telephones.
Repertory Dialers/Feature Phones Using S2000/S2150 792K05This note describes how an S2000/S2150 can be used in a repertory dialer circuit and how to communicate with exter-nal RAM.
S2000 Software TouchControl Keyboard Scan and Display Output 792K06
This note describes programs for typical display output with delay and a keyboard scan and debounce. This programwill handle eight digits and up to 32 keys.
S2000 Software Seconds Timing and Display 792K07
This note describes several useful software timing/display routines and the associated hardware.
Analog-to-Digital Conversion Using the S2000 Family 792K10
This note describes several A/D schemes using the S2000 family, e.g., from a simple single slope integration method with an S2000 to a complex scheme using the S2200's on-chip A/D converter.
S2000 Family Technical Articles 792K11
This brochure contains several reprints of articles on S2000 family members.
Programmable Appliance/Outlet Controller Using the S2000/S2150 792K14
This note describes an intelligent programmable appliance/outlet controller.
S6800 Family
S68047 Video Display Generator 796801
Describes a low cost link between an MPU and a standard black and white or color television set.
A Minimal S6802/S6846 System Design 796802
Details how to make an $\mathrm{S} 6802 / \mathrm{S} 6846$ version of the EVK in a minimal systems application.
Microprocessor Crystal Specification 796803
Aids the MPU system designer in specifying and ordering the crystal required for the S 6802 microprocessor.
S9900 Family
S9900 Simplifies Design of Bi-Directional I/O Module 799901
Illustrates use of the CPU. The design can be used for simple TTL logic testers. (Reprint form Electronics)
Minimum System Design with the S9900 16-Bit Microprocessor 799902
This design uses just the CPU, a 1K ROM, a 2K RAM, a clock and six smaller IC's.
Controlled Dot Matrix Printer - S9900 799903
Shows how to control a 7040 series dot matrix printer.
S9900 Technical Article Reprints 799904A compilation of 6 technical articles covering: a comparison of the $9900, \mathrm{Z} 8000$ and 8086 ; an 8 -page description of the9900; a real-time control software design using the 9900; a multiprocessor system design using the 9900 ; the bi-directional I/O module identical to the above application note; using the 9940 to implement the NBS data encryptionstandard.

AMII

General Information

AMERICAN MICROSYSTEMS, INC.

Guide to MOS Handling

At AMI we are continually searching for more effective methods of providing protection for MOS devices. Present configurations of protective devices are the result of years of research and review of field problems.

In the normal course of producing integrated circuits however, there occasionally occur variations in oxide thickness which may allow a condition where gate oxide breakdown voltage is less than the protective device breakdown. Although the oxide breakdown voltage may still be far beyond normal voltage levels encountered in operation, excessive voltages may cause permanent damage. Even though AMI has evolved the best designed protective device possible, we recognize that it is not 100% effective.

A large number of failed returns have been due to misapplication of biases. In particular, forward bias conditions cause excessive current through the protective devices, which in turn will vaporize metal lines to the inputs. Careful inspection of the device data sheets and proper pin designation should help reduce this failure mode.

Gate ruptures caused by static discharge also account for a large percentage of device failures in customers' manufacturing areas. Precautions should be taken to minimize the possibility of static charges occurring during handling and assembly of MOS circuits.

To assist our customers in reducing the hazards which may be detrimental to MOS circuits, the following guidelines for handling MOS are offered. The precautions listed here are used at AMI.

1. All benches used for assembly or test of MOS circuits are covered with conductive sheets. WARNING: Never expose an operator directly to a hard electrical ground. For safety reasons, the operator must have a resistance of at least 100 K Ohms between himself and hard electrical ground.
2. All entrances to work areas have grounding plates on door and/or floor, which must be contacted by people entering the area.
3. Conductive straps are worn inside and outside of employees' shoes so that body charges are grounded when entering work area.
4. Anti-static neutralized smocks are worn to eliminate the possibility of static charges being generated by friction of normal wear. Two types are available; Dupont anti-static nylon and Dupont neutralized 65% polyester $/ 35 \%$ cotton.
5. Cotton gloves are worn while handling parts. Nylon gloves and rubber finger cots are not allowed.
6. Humidity is controlled at a minimum of 35% to help reduce generation of static voltages.
7. All parts are transported in conductive trays. Use of plastic containers is forbidden. Axial leaded parts are stored in conductive foam, such as Velofoam\#7611.
8. All equipment used in the assembly area must be thoroughly grounded. Attention should be given to equipment that may be inductively coupled and generate stray voltages. Soldering irons must have grounded tips. Grounding must also be provided for solder posts, reflow soldering equipment, etc.
9. During assembly of I.C.'s to printed circuit boards, it is advisable to place a grounding clip across the fingers of the board to ground all leads and lines on the board.
10. Use of carpets should be discouraged in work areas, but in other areas may be treated with anit-static solution to reduce static generation.
11. MOS parts should be handled on conductive surfaces and the handler must touch the conductive surface before touching the parts.
12. In addition, no power should be applied to the socket or board while the MOS device is being inserted. This permits any static charge accumulated on the MOS device to be safely removed before power is applied.
13. MOS devices should not be handled by their leads unless absolutely necessary. If possible, MOS devices should be handled by their packages as opposed to their leads.
14. In general, materials prone to static charge accumulation should not come in contact with MOS devices.

These precautions should be observed even when an MOS device is suspected of being defective. The true cause of failure cannot be accurately determined if the device is damaged due to static charge build-up.

It should be remembered that even the most elaborate physical prevention techniques will not eliminate device failure if personnel are not fully trained in the proper handling of MOS.

This is a most important point and should not be overlooked.

More information can be obtained by contacting the Product Assurance Department.

American Microsystems, Inc.
3800 Homestead Road
Santa Clara, California 95051
Telephone (408) 246-0330
TWX 910-338-0024 or 910-338-0018

PROCESS DESCRIPTIONS

Each of the major MOS processes is described on the following pages. First, the established production proven processes are described, followed by those advanced processes, which are starting to go into volume production now. In each case, the basic processes is described first, followed by an explanation of its advantages, applications, etc.

P-CHANNEL METAL GATE PROCESS

Of all the basic MOS processes, P-Channel Metal Gate is the oldest and the most completely developed. It has
served as the foundation for the MOS/LSI industry and still finds use today in some devices. Several versions of this process have evolved since its earliest days. A thin slice (8 to 10 mils) of lightly doped N -type silicon wafer serves as the substrate or body of the MOS transistor. Two closely spaced, heavily doped P-type regions, the source and drain, are formed within the substrate by selective diffusion of an impurity that provides holes as majority electrical carriers. A thin deposited layer of aluminum metal, the gate, covers the area between the source and drain regions, but is electrically insulated from the substrate by a thin layer ($1000-15000 \AA$) of silicon dioxide. The P-Channel transistor is turned on by a negative gate voltage and conducts current between

Figure B.1. Summary of MOS Process Characteristics

the source and the drain by means of holes as the majority carriers.

The basic P-Channel metal gate process can be subdivided into two general categories: High-threshold and low-threshold. Various manufacturers use different techniques (particularly so with the low threshold process) to achieve similar results, but the difference between them always rests in the threshold voltage V_{T} required to turn a transistor on. The high threshold V_{T} is typically -3 to -5 volts and the low threshold V_{T} is typically -1.5 to -2.5 volts.

The original technique used to achieve the difference in threshold voltages was by the use of substrates with different crystalline structures. The high V_{T} process used [111] silicon whereas, the low V_{T} process used [100] silicon. The difference in the silicon structure causes the surface charge between the substrate and the silicon dioxide to change in such a manner that it lowers the threshold voltages.

One of the main advantages of lowering V_{T} is the ability to interface the device with TTL circuitry. However, the use of [100] silicon carries with it a distinct disadvantage also. Just as the surface layer of the [100] silicon can be inverted by a lower V_{T}, so it also can be inverted at other random locations-through the thick oxide layers-by large voltages that may appear in the metal interconnections between circuit components. This is undesirable because it creates parasitic transistors, which interfere with circuit operation. The maximum voltage that can be carried in the interconnections is called the parasitic field oxide threshold voltage V_{TF}, and generally limits the overall voltage at which a circuit can operate. This, then, is the main factor that limits the use of the [100] low V_{T} process. A drop in V_{TF} between a high V_{T} and low V_{T} process may, for example, be from -28 V to -17 V .

The low V_{T} process, because of its lower operating voltages, usually produces circuits with a lower operating speed than the high V_{T} process, but is easier to interface with other circuits, consumes less power, and therefore is more suitable for clocked circuits. Both P-Channel metal gate processes yield devices slower in speed than those made by other MOS processes, and have a relatively poor speed/power product. Both processes require two power supplies in most circuit designs, but the high V_{T} process, because it operates at a high threshold voltage, has excellent noise immunity.

Ion Implanted P-Channel Metal Gate Process

The P-Channel Ion Implanted process uses essentially the same geometrical structure and the same materials as the high V_{T} P-Channel process, but includes the ion implantation step. The purpose of ion implantation is to introduce P-type impurity ions into the substrate in the limited area under the gate electrode. By changing the characteristics of the substrate in the gate area, it is possible to lower the threshold voltage V_{T} of the transistor, without influencing any other of its properties.

Figure B.2. shows the ion implantation step in a diagrammatic manner. It is performed after the gate oxide is grown, but before the source, gate, and drain metallization deposition. The wafer is exposed to an ion beam which penetrates through the thin gate oxide layer and implants ions into the silicon substrate. Other areas of the substrate are protected both by the thicker oxide layer and sometimes also by other masking means. Ion implantation can be used with any process and, therefore could, except for the custom of the industry, be considered a special technique, rather than a process in itself.

Figure B.2. Diagram of Ion Implantation Step

The implantation of P-type ions into the substrate, in effect, reduces the effective concentration of N-type ions in the channel area and thus lowers the V_{T} required to turn the transistor on. At the same time, it does not alter the N -type ion concentration elsewhere in the substrate and therefore, does not reduce the parasitic field oxide threshold voltage V_{TF} (a problem with the low V_{T} P-Channel Metal Gate process, described above). The [111] silicon usually is used in ion-implanted transistors.

In fact, if the channel area is exposed to the ion beam long enough, the substrate in the area can be turned into P-type silicon (while the body of the substrate still re-
mains N -type) and the transistor becomes a depletion mode device. In any circuit some transistors can be made enhancement type, while others are depletion type, and the combination is a very useful circuit design tool.

The Ion-implanted P-Channel Metal Gate process is very much in use toady. Among all the processes, it represents a good optimization between cost and performance and thus is the logical choice for many common circuits, such as memory devices, data handling (communication) circuits, and others.

Because of its low V_{T}, it offers the designer a choice of using low power supply voltages to conserve power or increase supply voltages to get more driving power and thus increase speed. At low power levels it is more feasible to implement clock generating and gating circuits on the chip. In most circuit designs only a single power supply voltage is required.

N-CHANNEL PROCESS

Historically, N-Channel process and its advantages were known well at the time when the first P-Channel devices were successfully manufactured; however, it was much more difficult to produce N -Channel. One of the main reasons was that the polarity of intrinsic charges in the materials combined in such a way that a transistor was on at 0 V and had a V_{T} of only a few tenths of a volt (positive). Thus, the transistor operated as a marginal depletion mode device without a well-defined on/off biasing range. Attempts to raise V_{T} by varying gate oxide thickness, increasing the substrate doping, and back biasing the substrate, created other objectionable results and it was not until research into materials, along with ion implantation, silicon gates, and other improvements came about that N-Channel became practical for high density circuits.

The N-Channel process gained its strength only after the P-Channel process, ion implantation, and silicon gate all were already well developed. N-Channel went into volume productions with advent of the 4 K dynamic RAM and the microprocessor, both of which required speed and high density. Because P-Channel processes were nearing their limits in both of these respects, N -Channel became the logical answer.

The N-Channel process is structurally different from any
of the processes described so far, in that the source, drain, and channel all are N-type silicon, whereas the body of the substrate is P -type. Conduction in the N -Channel is by means of electrons, rather than holes.

The main advantage of the N -Channel process is that the mobility of electrons is about three times greater than that of holes and, therefore, N -Channel transistors are faster than P-Channel . In addition, the increased mobility allows more current flow in a channel of any given size, and therefore N-Channel transistors can be made smaller. The positive gate voltage allows an N -Channel transistor to be completely compatible with TTL.

Although metal gate N -Channel processes have been used, the predominant N -Channel process is a silicon gate process. Among the advantages of silicon gate is the possibility of a buried layer of interconnect lines, in addition to the normal aluminum interconnections deposited on the surface of the chip. This gives the circuit designer more latitude in layout and often allows the reduction of the total chip size. Because the polysilicon gate electrode is deposited in a separate step, after the thick oxide layer is in place, the simultaneous deposition of additional polysilicon interconnect lines is only a matter of masking. These interconnect lines are buried by later steps, as shown in Figure B.3.

Figure B.3. Crosssection of an N -Channel Silicon Gate MOS Transistor

One minor limitation associated with the buried interconnect lines is their location. Because the source and drain diffusions are done after the polysilicon is deposited [see (a) of Figure B.3] the interconnect lines cannot be located over these diffusion regions.

A second advantage of a silicon gate is associated with the reduction of overlap between the gate and both the source and drain. This reduces the parasitic capacitance at each location and improves speed, as well as power consumption characteristics. Whereas in the metal gate process, the P region source and drain diffusion must be done prior to deposition of the gate electrode, in silicon gate process, the electrode is in place during diffusion, see (a) of Figure B.3. Therefore, no planned overlap for manufacturing tolerance purposes need exist and the gate is said to be self-aligned. The only overlap that occurs is due to the normal lateral extension of the source and drain regions during the diffusion process.

The silicon-gate process produces devices that are more compact than metal gate, and are slightly faster because of the reduced gate overlap capacitance. Because the basic silicon gate process is relatively simple, it is also economical. It is a versatile process that is used in memory devices and most any other circuit.

N -Channel development continues at a vigorous pace, resulting in all kinds of process variations, production techniques and applications. The combination of high speed, TTL compatibility, low power requirements, and compactness have already made N -Channel the most widely used process. The cost of N -Channel has been coming down also.

In addition to its use in large memory chips and microprocessors, N -Channel has become a good general purpose process for circuits in which compactness and high speed are important.

CMOS

The basic CMOS circuit is an inverter, which consists of two adjacent transistors - one an N -Channel, the other a P-Channel, as shown in Figure B.4. The two are fabricated on the same substrate, which can be either N or P type.

The CMOS inverter in Figure B. 4 is fabricated on an N-type silicon substrate in which a P "tub" is diffused to form the body for the N -Channel transistor. All other steps, including the use of silicon gates and ion implantation, are much the same as for other processes.

The main advantage of CMOS is extremely low power consumption. When the common input to both gate electrodes is at a logic 1 (a positive voltage) the N-Channel
transistor is biased on, the P-Channel is off, and the output is near ground potential. Conversely, when the input is at a logic 0 level, its negative voltage biases only the P-Channel transistor on and the output is near the drain voltage $+V_{D D}$. In either case, only one of the two transistors is on at a time and thus, there is virtually no current flow and no power consumption. Only during the transition from one logic level to the other are both transistors on and current flow increases momentarily.

Silicon Gate CMOS is also fast, approaching speeds of bipolar TTL circuits. On the other hand, the use of two transistors in every gate makes CMOS slightly more complex and costly, and requires more chip size. For these reasons, the original popularity of CMOS was in SSI logic elements and MSI circuits-logic gates, inverters, small shift registers, counters, etc. These CMOS devices consititute a logic family in the same way as TTL, ECL, and other bipolar circuits do; and in the areas of very low power consumption, high noise immunity, and simplicity of operation, are still widely accepted by discrete logic circuit designers.

Low power CMOS circuits made the watch circuit possible and also have been used in space exploration, battery operated consumer products, and automotive control devices. As experience was gained with CMOS, tighter design rules and reduced device sizes have been implemented and now LSI circuits, such as 1K RAM memories and microprocessors, are being manufactured in volume.

CMOS circuits can be operated on a single power supply voltage, which can be varied from +2.5 to about +15 volts, with a higher voltage giving more speed and higher noise immunity.

The first implementation of an inverting gate is a process that uses both $n+$ and $p+$ polysilicon. The basic structure is a first-generation approach to which a selective field-oxidation process has been added. (At American Microsystems, Inc., the selective field-oxidation process is used only to shrink existing designs down to 5-micrometer rules; it is not applied to new designs.)

Figure B. 5 shows the plan and section views of the threedevice gate portion. Because the P-Well in the top view spans both N -Channel devices, it is referred to as ubiquitous, and the process is called Ubiquitous P-Well.

In this planar process, $p+$ guard rings are used to reduce surface leakage. Polysilicon cannot cross the rings, however, so that bridges must be built. Note the use of
p+ polysilicon in the P-Channel areas. The plan view shows the construction of the bridges linking $p+$ to metal to $n+$. (Were the process to be used for a lowvoltage, first-generation application like a watch circuit, the guard rings would not be necessary and polysilicon could directly connect N -Channel and P-Channel devices; however, to ensure good ohmic contact from one type of polysilicon to another, polysilicon-diode contacts must be capped with metal.)
This process provides a buried contact ($\mathrm{n}+$ polysilicon to $\mathrm{n}+$ diffusion) that can yield a circuit-density advantage. However, neither of the other two second-generation approaches provides buried contacts. Therefore, if a layout in this process is to be compatible with the others, the buried contact must be eliminated. Though there will be a penalty in real estate, the gain for custom applications is a great increase in the number of available CMOS vendors.
The n+-Only Polysilicon Aproach
Both of the second-generation CMOS processes that
follow are variants of the $n+$-only, selective-field-oxide approach. One closely resembles the $\mathrm{p}+\mathrm{n}+$ Ubiquitous-P-Well process, since it, too, has a Ubiquitous P-Well that is implanted before the field oxidation and thus runs under the field oxide. The other, called isolated P-Well, has separate wells for each N -Channel device that are implanted after field oxidation.

Figure B. 6 shows the section and plan views of the n+-only Ubiquitous-P-Well approach used to build the gate of Figure B.4. This is the $5 \mu \mathrm{~m}$ process recommended by AMI and others for new, high-performance CMOS designs. The layout is simpler than with the $n+/ \mathrm{p}^{+}$ polysilicon Ubiquitous-Well approach (there are no buried contacts and no polysilicon diode contacts), and it occupies less area for the same line widths. Also, since the process permits implanting in the field region, no guard rings are required. Polysilicon can thus cross directly from P- to N-Channel device areas without the need for bridges or polysilicon-dioxide contacts.

Figure B.4. Crossection and Schematic Diagram of a CMOS Inverter

Figure B.5. $\mathrm{n}+/ \mathrm{p}+$ Polysilicon Approach

[^22]Figure B.6. $n+$-Only Polysilicon Approach

ALL NEW HIGH-PERFORMANCE CMOS CRRCUITS WILL USE ONE TYPE OF POLYSILICON. THIS VERSION HAS A UBIGUITOUS
p-WELL: THAT IS, SERIES N-CHANNEL DEVICES SÍt in a COMmON P-WELL, WHECH, IMPLANTED BEFORE FIELD OXIDATION, RUNS under the field oxide. this is amr's preferred cmos proCESS FORMAT FOR ALL NEW DESIGNS.

Figure B.7. Isolated Wells.

the thiro cmos approach isolates all n-channel devices in SEPARATE P-WELLS. SINCE THE ISOLATED WELLS MUST BE DOPED MUCH MORE HEAVILY THAN THOSE OF THE UBIOUITOUS WELL APPROACH, $n+$.TO P-WELL CAPACITANCE IS GREATER AND SWITCHING SPEEDS LOWER. THIS IS AN $n+$-ONLY POLYSILICON PROCESS.

A variant of the all $\mathrm{n}+$ (See Figure B.7) polysilicon process just discussed uses basically the selective field-oxide approach except that the P-Wells are not continuous under the field-oxide areas; they are instead bounded by field-oxide edges. Since the P-Wells are naturally isolated from one another, the process is called $n+$ poly-isolated P-Well. The isolated wells must all be connected to ground; if they are left floating, circuit malfunctions are bound to occur. The grounding is done either with $p+$ diffusions or with top-side metalization that covers a p $^{+}$-to-P-Well contact diffusion.

In the Isolated-Well process, the P-Wells must be doped much more heavily than in the Ubiquitos-Well process. One result is a higher junction capacitance between the $\mathrm{n}+$ areas and the wells that both slows switching speeds and raises the power dissipation of a device. Even though the speed loss could be compensated for by slightly shorter channel lengths, the operating power still remains high.

Although currently available from AMI and other manufacturers, the Isolated-Well process is in fact not recommended for new designs by AMI. Its layout takes up more area than does one using the Ubiquitous-Well approach, even though its P -Well to $\mathrm{p}+$-area spacing is slightly less.

Table 1. Layout Compatibility Concerns

 for CMOS Processes| layout feature | $\begin{aligned} & n+i p+\text { PoLr-SLICON } \\ & \text { UBBuUITOUS P-WELL } \end{aligned}$ | n+ ONLY POLYSILICON uBioutrous P.WELL | n+-oncy POLY SILICON isolated p.well |
| :---: | :---: | :---: | :---: |
| BURIED CONTACT | x | NO | NO |
| POLYSILICON DIODE CONTACT | YES | χ | x |
| P-WELL ISOLATION WITH DIFFUSION MASK | NO | NO | YES |
| TIGHT P-WELL-TO$p+$ SPACING | NO | NO | YES |
| Layout care required FOR P-WELL electrical contacts | NO | NO | YES |

Figure B.8. Comparative Data on Major MOS Processes

INTRODUCTION

Quality is one of the most used, least understood, and variously defined assets of the semiconductor industry. At AMI we have always known just how important effective quality assurance, quality control, and reliability monitoring are in the ability to deliver a repeatably reliable product. Particularly, through the manufacture of custom MOS/LSI, experience has proved that one of the most important tasks of quality assurance is the effective control and monitoring of manufacturing processes. Such control and monitoring has a twofold purpose: to assure a consistently good product, and to assure that the product can be manufactured at a later date with the same degree of reliability.

To effectively achieve these objectives, AMI has developed a Product Assurance Program consisting of three major functions:
Quality Control
Quality Assurance Reliability

Each function has a different area of concern, but all share the responsibility for a reliable product.

The AMI Product Assurance Program

The program is based on MIL-STD-883, MIL-M-38510, and MIL-Q-9858A methods. Under this program, AMI manufactures highest quality MOS devices for all segments of the commercial and industrial market and, under special adaptations of the basic program, also manufactures high reliability devices to full military specifications for specific customers.

The three aspects of the AMI Product Assurance Pro-gram-Quality Control, Quality Assurance, and Reliability - have been developed as a result of many years of experience in MOS device design and manufacture.
Quality Control establishes that every method meets or fails to meet, processing or production standards $-Q C$ checks methods.
Quality Assurance establishes that every method meets, or fails to meet, product parameters $-Q A$ checks results.
Reliability establishes that QA and QC are effec-tive-Reliability checks device performance.

One indication that the AMI Product Assurance Program has been effective is that NASA has endorsed AMI products for flight quality hardware since 1967. The Lunar Landers and Mars Landers all have incorporated

AMI circuits, and AMI circuits have also been utilized in the Viking and Vinson programs, as well as many other military airborne and reconnaissance hardware programs.

QUALITY CONTROL

The Quality Control function in AMI's Product Assurance Program involves constant monitoring of all aspects of materials and production, starting with the raw materials purchased, through all processing steps, to device shipment. There are three major areas of Quality Control:
\square Incoming Materials Control
\square Microlithography Control
\square Process/Assembly Control

Incoming Materials Control

All purchased materials, including raw silicon, are checked carefully to various test and sampling plans. The purpose of incoming materials inspection is to ensure that all items required for the production of AMI MOS circuits meet such standards as are required for the production of high quality, high reliability devices.

Incoming inspection is performed to specifications agreed to by suppliers of all materials. The Quality Control group continuously analyzes supplier performance, performs comparative analysis of different suppliers, and qualifies the suppliers.

Tests are performed on all direct material, including packages, wire, lids, eutectics, and lead frames. These tests are performed using a basic sampling plan in accordance with MIL-S-19500, generally to a Lot Tolerance Percent Defective (LTPD) level of 10%. The AQL must be below 1% overall.

Two incoming material inspection sequences illustrate the thoroughness of AMI Quality Control:
\square Purchased packages are first inspected visually. Then, dimensional inspections are performed, followed by a full functional inspection, which subjects the packages to an entire production run simulation. Finally, a full electrical evaluation is made, including checks of the insulation, resistance, and lead-to-lead isolation. A package lot which passes these tests to an acceptable LTPD level is accepted.
\square Raw silicon must also pass visual and dimensional checks. In addition, a preferential etch quality inspection is performed. For this inspection, the underlayers
of bulk silicon are examined for potential anomalies such as dislocation, slippage or etch pits. Resistivity of the silicon is also tested.

Microlithography Control

Microlithography involves the processes which result in finished working plates, used for the fabrication of wafers. These processes are pattern or artwork generation, photo-reduction, and the actual printing of the working plates.

Pattern generation now is the most common practice at AMI. The circuit layout is digitized and stored on a tape, which then is read into an automated pattern generator which prints a highly accurate 10 x reticle directly.

In cases where the more traditional method of artwork generation is used whether Rubylith, Gerber Plots, AMI generated or customer generated-the artwork is throughly inspected. It is checked for level-to-level registration and dimensional tolerances. Also, a close visual inspection of the workmanship is made. AMI artwork is usually produced at 200x magnification and must conform to stringent design rules, which have been developed over a period of years as part of the process control requirements.

Acceptable artwork is photographically reduced to a 20 x magnification, and then further to a 10 x magnification. The resulting 10x reticles are then used for producing 1 x masters. The masters undergo severe registration comparisons to a registration master and all dimensions are checked to insure that reductions have been precise. During this step, image and geometry are scrutinized for missing or faded portions and other possible photographic omissions.

For a typical N-Channel silicon gate device, master sets are checked at all six geometry levels in various combinations against each other and against a proven master set. Allowable deviations within the die are limited to 0.5 micron, deviations within a plate are limited to 1 micron, and all plate deviations are considered cumulatively.

Upon successful completion of a device master set, it is released to manufacturing where the 1 x plates are printed. A sample inspection is performed by manufacturing on each 30 -plate lot and the entire lot is returned to Quality Control for final acceptance. Quality Control performs audits on each manufacturing inspector daily, by sample inspection techniques.

The plates can be rejected first by manufacturing, when the 30 -plate lots are inspected, or by Quality Control when the lots are submitted for final acceptance. If either group rejects the plates, they are rescreened and then undergo the same inspection sequence. In the rescreening process, the plates undergo registration checks; visual checks for pin holes, protrusions, and faded or missing images, as well as all critical dimension checks.

Process Control

Once device production has started in manufacturing, AMI Quality Control becomes involved in one of the most important aspects of the Product Assurance Pro-gram-the analysis and monitoring of virtually all production processes, equipment, and devices.

Process controls are performed in the fabrication area, by the Quality Control Fabrication Group, to assure adherence to specifications. This involves checks on operators, equipment and environment. Operators are tested for familiarity with equipment and adherence to procedure. Equipment is closely checked both through calibration and maintenance audits. Environmental control involves close monitoring of temperature, relative humidity, water resistivity and bacteria content, as well as particle content in ambient air. All parameters are accurately controlled to minimize the possiblity of contamination or adverse effects due to temperature or humidity excesses.

Experience has proven that such close control of the operators, equipment, and environment is highly effective towards improved quality and increased yields.

In addition to the specification adherence activities of the QC Fabrication Group, a QC Laboratory performs constant process monitoring of virtually every step of all processes. Specimens are taken from all production steps and critically evaluated. Sampling frequency varies, depending on the process, but generally, oxidation, diffusion, masking, and evaporization are the most closely monitored steps.

Results are supplied both to manufacturing and engineering. When evidence of a problem occurs, QC provides recommendations for corrections and follows up the corrective action taken.

Optical Inspections are performed at several steps; quality control limits are based on a 10% LTPD. The chart in Figure 1 shows process steps and process control points.

Figure 1. Flowchart of Product Assurance Program Implementation

QUALITY ASSURANCE

The Quality Assurance function in the Product Assurance Program involves checking the ability of manufactured parts to meet specifications. In addition, the QA group also is responsible for calibration of all equipment, and for the maintenance of AMI internal product specifications, to assure that they are always in confor-
mance with customer specifications or other AMI specifications.

After devices undergo 100% testing in manufacturing, they are sent to Quality Assurance for acceptance. Lots are defined, and using the product specifications, sample sizes are determined, along with the types of tests to be performed and the test equipment to be used. Lots must pass QA testing either with an LTPD of 10%, or less, if the specification requires tighter limits. Lots with quantities greater than 2000 are checked to a 1% AQL.

Three types of tests are performed on the samples: visual/mechanical, parametric, and functional. All tests are performed both at room temperature and at elevated temperature. In addition, a number of other special temperature tests may be performed if required by the specification. Generally, high temperature tests are at $125^{\circ} \mathrm{C}$.

To perform the tests, QA uses AMI PAFT test systems, ROM test systems, Macrodata testers, Fairchild Sentry, Sentinel, XINCOM systems, Teradyne test systems, and various bench test units. In special instances a part may also be tested in a real life environment in the equipment which is to finally utilize it.

If a lot is rejected during QA testing, it is returned to the production source for an electrical rescreening. It is then returned to QA for acceptance but is identified as a resubmitted lot. If it fails again, corrective action in engineering is initiated. As evidence of the problem is detected, the parts may also be traced all the way back to the wafer run to analyze the cause.

When a lot is acceptable, it is sent to packaging and then to finished goods. When parts leave finished goods, they are again checked by the QA group to a 10% LTPD with visual/mechanical tests. Also, all supporting documentation for the parts is verified, including QA acceptance, special customer specifications, certificates of compliance, etc. Only after this last check are devices considered ready for plant clearance.

If there are customer returns, they are first sample tested by QA to determine the cause of the return. (Many times an invalid customer test will incorrectly cause returns.) Selected return samples are sent to Reliability for failure analysis.

RELIABILITY

The Reliability function in the Product Assurance Program involves process qualification, device qualification,
package qualification, reliability program qualification and failure analysis. To perform these functions AMI Reliability group is organized into two major areas:
\square Reliability Laboratory
\square Failure Analysis

Reliability Laboratory

AMI Reliability Laboratory is responsible for the following functions.

New Process Qualification
Process Change Qualification
Process Monitoring
New Device Qualification
Device Change Qualification
New Package Qualification
Device Monitoring
Package Change Qualification
Package Monitoring
\square High Reliability Programs

There are various closely interrelated and interactive phases involved in the development of a new process, device, package or reliability program. A process change may affect device performance, a device change may affect process repeatability, and a package change may affect both device performance and process repeatability. To be effective. the Reliability Laboratory must monitor and analyze all aspects of new or changed processes, devices, and packages. It must be determined what the final effect is on product reliability, and then evaluate the merits of the innovation or change.

Process Qualification

For example, AMI Research and Development group recommends a new process or process alteration when it feels that the change can result in product improvement. The Reliability Laboratory then performs appropriate environmental and electrical evaluations of a new process. Typically, a special test vehicle, or "rel chip", generated by R\&D during process development, is used to qualify the recommended new process or process change.

The rel chip is composed of circuit elements similar to those that may be required under worst-case circuit design conditions. The rel chip elements are standard for any given process, and thus allow precise comparisons between diffusion runs. The following is an example of what is included on a typical rel chip:
\square A discrete inverter and an MOS capacitor
\square A large P-N junction covered by an MOS capacitor.
\square A large P-N junction area (identical to the junction area above, but without the MOS capacitor) A large area MOS capacitor over substrate
Several long contact strings with different contact geometries
\square Several long conductor geometries, which cross a series of eight deeply etched areas

Each circuit element of a rel chip allows a specific test to be performed. As an example, the discrete inverter and MOS load device accommodate power life tests. As a consequence, any type of parameter drift can be observed. The MOS capacitor, covering the large P-N junction, can serve to indicate the presence of contamination in the oxide, under the oxide, or in the bulk silicon. If unusual drift is evidenced, the location of contamination can be determined through analysis of the additional MOS capacitor and the large P-N junction area. The metal conductor interconnecting contacts is useful for life testing under relatively high current conditions. It facilitates the detection of metal separation when moisture or other contaminants are present.

The conductors crossing deeply etched areas allow the checking of process control. Rather than depending upon optical inspection of metal quality, burned out areas caused by high currents are readily identified and provide a quantitative measure of metal quality.

If the Reliability Laboratory determines that a recommended new process or process change is viable for manufacturing purposes, further analysis is necessary to determine that production devices can be manufactured in high volume, in a repeatable and reliable manner.

Process Monitoring

In addition to process qualification, the Reliability group also conducts ongoing process monitoring programs. Once every 90 days each major production process is evaluated using rel chips as test vehicles. The resulting test data is analyzed for parameter limits and process stability. In this manner AMI can help assure repeatability and high product quality.

Package Qualification

New packages are also qualified before they are adopted. To analyze packages, a qualification matrix is designed, according to which the new package and an established package (used for control) are tested concurrently. The test matrix consists of a full spectrum of electrical and environmental stress tests, in accordance with MIL-STD-883.

Failure Analysis

Another important function of the Reliability group is failure analysis. Scanning electron microscopes, high power optical microscopes, diagnostic probe stations, and other equipment is used in failure analysis of devices submitted from various sources. It is the function of the Reliability group to determine the cause of failure and recommend corrective action.

The Reliability group provides a failure analysis service for the previously mentioned in-house programs and for the evaluation of customer returns. All AMI customers are provided a failure analysis service for any part that fails within one year from date of purchase and the
results of the analysis are returned in the form of a written report.

SUMMARY

The Product Assurance Program at AMI is oriented towards process control and monitoring, and the evaluation of devices. The Program consists of three major functions: Quality Control, Quality Assurance, and Reliability. Constant monitoring of all phases of production, with information feedback at all levels, allows fast and efficient detection of problems, evaluation and analysis, correction, and verification of the correction. The overall result is a line of products which are highly repeatable and reliabile, with a very low reject level.

Aerospace and defense equipments generally require LSI microcircuits capable of superior product reliability and performance. To meet these needs, AMI offers three standard screening options patterned after MIL-STD-883, Method 5004. Please note that two Class B flows are available:

One per Method 5004.5, the current official revision. This Class B level requires temperature extreme electrical testing on both a 100% and on a Group A sampling basis.
\square A more economical Class B flow patterned after a much earlier and officially obsolete revision . . . Method " 5004.0 ". Temperature extreme electrical testing is performed only on a Group A sampling basis.

Operation/MYLSTD-883 Test Method	Class B Method 5004.5 MIL-STD-883	Class B Method 5004.0 MIL_STD-883	Class C Method 5004.5 MIL-STD-883
Internal Visual/2010	Cond. B	Cond. B	Cond. B
Final Seal	100\%	100\%	100\%
Stabilization Bake/1008	Cond. C, 24 Hrs	Cond. C, 24 Hrs	Cond. C, 24 Hrs
Temperature Cycle/1010, 10 Cycles	Cond. C	Cond. C	Cond. C
Constant Acceleration/2001(1)	Y_{1} Axis	Y_{1} Axis	Y ${ }_{1}$ Axis
Seal Test/1014 -Fine Leak -Gross Leak	Cond. A or B Cond. C	Cond. A or B Cond. C	Cond. A or B Cond. C
Pre-burn-in Electrical Test	@AMI Option(2)	@AMI Option(2)	- \quad
Burn-in/1015(3)	$125^{\circ} \mathrm{C}$ Min, 160 Hrs.	$125^{\circ} \mathrm{C} \mathrm{Min}$,160 Hrs .	-
```Final Electrical Test/5004(4) - Static Tests, \(25^{\circ} \mathrm{C}\) -Static Tests, Maximum Rated Operating Temperature -Static Tests, Minimum Rated Operating Temperature - Switching Tests, \(25^{\circ} \mathrm{C}\) -Functional Tests, \(25^{\circ} \mathrm{C}\)```	$\begin{aligned} & 100 \% \\ & 100 \% \\ & 100 \% \\ & 100 \% \\ & 100 \% \\ & \hline \end{aligned}$	$\begin{aligned} & 100 \% \\ & - \\ & - \\ & 100 \% \\ & 100 \% \\ & \hline \end{aligned}$	$100 \%$   -   $-$   $-100 \%$
$\begin{aligned} & \text { Group A Electricals/5005 } \\ & -55^{\circ} \mathrm{C}, 25^{\circ} \mathrm{C}, 125^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \hline \text { Sample(5) } \\ & \text { Table I } \end{aligned}$	$\begin{aligned} & \text { Sample(5) } \\ & \text { Table I } \end{aligned}$	$\begin{aligned} & \hline \text { Sample }{ }^{(5)} \\ & \text { Table I } \\ & \hline \end{aligned}$

## Notes:

(1) Stress level (g) applied is dependent on package size/lead count.
(2) Per paragraph 3.5 .1 of MIL-STD-883, Method 5004.
(3) Per MIL-STD-883, Method 1015 and Method 5004, paragraph 3.4.2, accelerated testing (Test Condition F of Method 1015) may be used at AMI's option.
(4) Final test electrical measurements per the applicable AMI data sheet.
(5) Group $A$ is performed on each lot.

## PLASTIC PACKAGE

The AMI plastic dual-in-line package is the equivalent of the widely accepted industry standard, refined by AMI for MOS/LSI applications. The package consists of a plastic body, transfer-molded directly onto the assembled lead frame and die. The lead frame is Kovar or Alloy 42, with external pins tin plated. Internally, there is a $50 \mu \mathrm{in}$. gold spot on the die attach pad and on each bonding fingertip. Gold bonding wire is attached with the thermocompression gold ball bonding technique.

Materials of the lead frame, the package body, and the die attach are all closely matched in thermal expansion coefficients, to provide optimum response to various thermal conditions. During manufacture every step of the process is rigorously monitored to assure maximum
 quality of the AMI plastic package.

Available in: 8, 14, 16, 18, 22, 24, 28, 40 and 64 pin configurations.

## Cerdip PACKAGE

The Cerdip dual-in-line package has the same high performance characteristics as the standard three-layer ceramic package yet is a cost-effective alternative. It is a military approved type package with excellent reliability characteristics.

The package consists of an Alumina $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)$ base and the same material lid, hermetically fused onto the base with low temperature solder glass. Inert gasses are sealed inside the die cavity.

Available in $14,16,18,22,24,28$ and 40 pin configurations.


## CERAMIC PACKAGE

Industry standard high performance, high reliability package, made of three layers of $\mathrm{Al}_{2} \mathrm{O}_{3}$ ceramic and nickel-plated refractory metal. Either a low temperature glass sealed ceramic lid or a gold tin eutectic sealer Kovar lid is used to form the hermetic cavity of this package. Package leads are available with gold over nickel or tin plating for socket insertion or soldering.


Available in 14,16,18,22,24,28,40 and 64 pin configurations.


16-Pin Cerdip	16-Pin Ceramic
18-Pin Plastic	18-Pin Ceramic
18-Pin Cerdip	22-Pin Plastic



28-Pin Cerdip	28-Pin Ceramic
40-Pin Plastic	40-Pin Ceramic


40-Pin Cerdip	64-Pin Ceramic
	NOTE A. Eact pin centerline is located within 0.010 of its true langitudinal position.
64-Pin Plastic	

## Standard Products:

Any product in this MOS Products Catalog can be ordered using the simple system described below. With this system it is possible to completely specify any standard device in this catalog in a manner that is compatible with AMI's order processing methods. The example below shows how this ordering system works and will help you to order your parts in a manner that can be expedited rapidly and accurately.

All orders (except those in sample quantities) are normally shipped in plastic carriers or aluminum tube containers, which protect the devices from static elec-
tricity damage under all normal handling conditions. Either container is compatible with standard automatic IC handling equipment.

Any device described in this catalog is an AMI Standard Product. However, ROM devices that require mask preparation or programming to the requirements of a particular user, devices that must be tested to other than AMI Quality Assurance standard procedures, or other devices requiring special masks are sold on a negotiated price basis.


Package Type - a single letter designation which identifies the basic package type. The letters are coded as follows:
P - Plastic package
D - Cerdip package
C - Ceramic (three-layer) package

## Custom Circuits:

Consult your local sales office.

Consult your local sales office.

## Military Products:

Parts Numbering Format

Examples<br>MBC 6802<br>MEC 5101L-1<br>LBC 68A00<br>MBL UA-3



Designates the operating temperature range and utilizes one of the letters $M$ or L. Definitions:
$\mathrm{M}-$ Full military temperature range, $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
L -Limited military temperature range, $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

## Ordering Information

Please specify part numbers in accordance with the parts numbering format above.

1. ACCEPTANCE: THE TERMS OF SALE CONTAINED HEREIN APPLY TO ALL QUOTATIONS MADE AND PURCHASE ORDERS ENTERED INTO BY THE SELLER. SOME OF THE TERMS SET OUT HERE MAY DIFFER FROM THOSE IN BUYER'S PURCHASE ORDER AND SOME MAY BE NEW. THIS ACCEPTANCE IS CONDITIONAL ON BUYER'S ASSENT TO THE TERMS SET OUT HERE IN LIEU OF THOSE IN BUYER'S PURCHASE ORDER. SELLER'S FAILURE TO OBJECT TO PROVISIONS CONTAINED IN ANY COMMUNICATION FROM BUYER SHALL NOT BE DEEMED A WAIVER of the provisions of This acceptance. ANY changes in the TERMS CONTAINED HEREIN MUST SPECIFICALLY BE AGREED TO IN TERMS CONTAINED HEREIN MUST SPECIFICALLY BE AGREED TO IN WRITING BY AN OFFICER OF THE SELLER BEFORE BECOMING BIND-
ING ON EITHER THE SELLER OR THE BUYER. All orders or contracts must be approved and accepted by the Seller at its home office. These terms shall be applicable whether or not they are attached to or enclosed with the products to be sold or sold hereunder. Prices for the items described above and acknowledged hereby are firm and not subject to audit, price revision, or price redetermination.
2. PAYMENT:
(a) Unless otherwise agreed, all invoices are due and payable thirty (30) days from date of invoice. No discounts are authorized. Shipments, deliveries, and performance of work shall at all times be subject to the approval of the Seller's credit department and the Seller may at any time decline to make any shipments or deliveries or perform any work except upon receipt of payment or upon terms and conditions or security satisfactory to such department.
(b) If, in the judgment of the Seller, the fiñancial condition of the Buyer at any time does not justify continuation of production or shipment on the terms of payment originally specified, the Seller may require full or partial payment in advance and, in the event of the bankruptcy or insolvency of the Buyer or in the event any proceeding is brought by or against the Buyer under the bankruptcy or insolvency laws, the Seller shall be entitled to cancel any order then outstanding and shall receive reimbursement for its canceliation charges.
(c) Each shipment shall be considered a separate and independent transaction, and payment therefor shall be made accordingly. If shipments are delayed by and payment therefor shall be made accordingly. If shipments are delayed by the Buyer, payments shall become due on the date when the Seller is prepared
to make shipment. If the work covered by the purchase order is delayed by the Buyer, payments shall be made based on the purchase price and the percentage of completion. Products held for the Buyer shall be at the risk and expense of the Buyer.
3. TAXES: Unless otherwise provided herein, the amount of any present or future sales, revenue, excise or other taxes, fees, or other charges of any nature, imposed by any public authority, (national, state, local or other) applicable to the products covered by this order, or the manufacturer or sale thereof, shall be added to the purchase price and shall be paid by the Buyer, or in lieu thereof, the Buyer shall provide the Seller with a tax exemption certificate acceptable to the taxing authority.
4. F.O.B. POINT: All sales are made F.O.B. point of shipment. Seller's title passes to Buyer, and Seller's liability as to delivery ceases upon making delivery of material purchased hereunder to carrier at shipping point, the carrier acting as Buyer's agent. All claims for damages must be filed with the carrier. Shipments will normally be made by Parcel Post, Railway Express, Air Express, or Air Freight. Unless specific instructions from Buyer specify which of the foregoing methods of shipment is to be used, the Seller will exercise his own discretion.
5. DELIVERY: Shipping dates are approximate and are based upon prompt receipt from Buyer of all necessary information. In no event will Seller be liable for any re-procurement costs, nor for delay or non-delivery, due to causes beyond its reasonable control including, but not limited to, acts of God, acts of civil or military authority, priorities, fires, strikes, lock-outs, slow-downs, shortages, factory or labor conditions, errors in manufacture, and inability due to causes beyond the Seller's reasonable control to obtain necessary labor, materials, or manufacturing facilities. In the event of any such delay, the date of delivery shall, at the request of the Seller, be deferred for a period equal to the time lost by reason of the delay.

In the event Seller's production is curtailed for any of the above reasons so that Seller cannot deliver the full amount released hereunder, Seller may allocate production deliveries among its various customers then under contract for similar goods. The allocation will be made in a commercially fair and reasonable manner. When allocation has been made, Buyer will be notified of the estimated quota made available.
6. PATENTS: The Buyer shall hold the Seller harmless against any expense or loss resulting from infringement of patents, trademarks, or unfair competition arising from compliance with Buyer's designs, specifications, or instructions. The sale of products by the Seller does not convey any license, by implication, estoppel or otherwise, under patent claims covering combinations of said products with other devices or elements..

Except as otherwise provided in the preceding paragraph, the Selier shall defend any suit or proceeding brought against the Buyer, so far as based on a claim that any product, or any part thereof, furnished under this contract constitutes an infringement of any patent of the United States, if notified promptly in writing and given authority, information, and assistance (at the Seller's expense) for defense of same, and the Seller shail pay all damages and costs awarded therein against the Buyer. In case said product, or any part thereof, is, in such suit, held to constitute infringement of patent, and the use of said product is enjoined, the Seller shali, at its own expense, either procure for the Buyer the right to continue using said product or part, replace same with non-infringing product, modify it so it becomes non-infringing, or remove said product and refund the purchase price and the transportation and installation costs thereof. In no event shall Seller's total liability to the Buyer under or as a result of compliance with the provisions of this paragraph exceed the aggregate sum paid by the Buyer for the allegedly infringing product. The foregoing states the entire liability of the Seller for patent infringement by the said products or any part thereof. THIS

PROVISION IS STATED IN LIEU OF ANY OTHER EXPRESSED, IMPLIED, OR STATUTORY WARRANTY AGAINST INFRINGEMENT AND SHALL BE THE SOLE AND EXCLUSIVE REMEDY FOR PATENT INFRINGEMENT OF ANY KIND.
7. INSPECTION: Unless otherwise specified and agreed upon, the material to be furnished under this order shall be subject to the Seller's standard inspection at the place of manufacture. If it has been agreed upon and specified in this order that Buyer is to inspect or provide for inspection at place of manufacture such inspection shall be so conducted as to not interfere unreasonably with Seller's operations and consequent approval or rejection shall be made before shipment of the material. Notwithstanding the foregoing, if, upon receipt of such material by Buyer, the same shall appear not to conform to the contract, the Buyer shall immediately notify the Seller of such conditions and afford the Seller a reasonable opportunity to inspect the material. No material shall be returned without Seller's consent. Selter's Return Material Authorization form must accompany such returned material.
8. WARRANTY: The Seller warrants that the products to be delivered under this purchase order will be free from defects in material and workmanship under normal use and service. Seller's obligations under this Warranty are limited to replacing or repairing or giving credit for, at its option, at its factory, any of said products which shall, within one (1) year after shipment, be returned to the Seller's factory of origin, transportation charges prepaid, and which are, after examination, disclosed to the Selfer's satisfaction to be thus defective. THIS WARRANTY IS EXPRESSED IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, STATUTORY, OR IMPLIED, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, AND OF ALL OTHER OBLIGATIONS OR LIABILITIES ON THE SELLER'S PART, AND IT NEITHER ASSUMES NOR AUTHORIZES ANY OTHER PERSON TO ASSUME FOR THE SELLER ANY OTHER LIABILITIES IN CONNECTION WITH THE SALE OF THE SAID ARTICLES. This Warranty shall not apply to any of such products which shall have been repaired or altered, except by the Seller, or which shall have been subjected to misuse, negligence, or accident. The aforementioned provisions do not extend the original warranty period of any product which has either been repaired or replaced by Seller.
It is understood that if this order callis for the delivery of semiconductor devices which are not finished and fully encapsulated, that no warranty, statutory, expressed or implied, including the implied warranty of merchantability and fitness for a particular purpose, shall apply. All such devices are sold as is where is.
9. GENERAL:
(a) The validity, performance and construction of these terms and all sales hereunder shall be governed by the laws of the State of California.
(b) The Seller represents that with respect to the production of articles and/ or performance of the services covered by this order it will fully comply with all requirements of the Fair Labor Standards Act of 1938, as amended, Williams Steiger Occupational Safety and Health Act of 1970, Executive Orders 11375 and 11246, Section 202 and 204.
(c) In no event shall Seller be liable for consequential or special damages.
(d) The Buyer may not unilaterally make changes in the drawings, designs or specifications for the items to be furnished hereunder without Seller's prior consent.
(e) Except to the extent provided in Paragraph 10, below, this order is not subject to cancellation or termination for convenience.
(f) Buyer acknowledges that all or part of the products purchased hereunder may be manufactured and/or assembled at any of Seller's facilities, domestic or foreign.
(g) In the event that the cost of the products are increased as a result of increases in materials, labor costs, or duties, Seller may raise the price of the products to cover the cost increases.
(h) If Buyer is in breach of its obligations under this order, Buyer shall remain liable for all unpaid charges and sums due to Seller and will reimburse Seller for all damages suffered or incurred by Seller as a result of Buyer's breach The remedies provided herein shall be in addition to all other legal means and remedies available to Seller.
10. GOVERNMENT CONTRACT PROVISIONS: If Buyer's original purchase order indicates by contract number, that it is placed under a government contract, only the following provisions of the current Armed Services Procurement Regulation are applicabie in accordance with the terms thereof, with an appropriate substitution of parties, as the case may be - i.e., "Contracting Officer" shall mean "Buyer", "Contractor" shall mean "Seller", and the term "Contract" shall mean this order:

7-103.1, Definitions; 7-103.3, Extras; 7-103.4, Variation in Quantity; 7-103.8, Assignment of Claims; 7-103.9, Additional Bond Security; 7-103.13, Renegotiation; 7-103.15, Rhodesia and Certain Communist Areas; 7-103.16, Contract Work Hours and Safety Standards Act - Overtime Compensation; 7-103.17, Walsh-Healey Public Contracts Act; 7-103.18, Equal Opportunity Clause; 7-103.19, Officials Not to Benefit; 7-103.20, Covenant Against Contingent Fees; 7-103.21, Termination for Convenience of the Government (only to the extent that Buyer's contract is terminated for the convenience of the government); 7-103.22, Authorization and Consent; 7-103.23, Notice and Assistance Regarding Patent Infringement; 7-1.03.24 Responsibility for Inspection; 7-103.25, Commercial Bills of Lading Covering Shipments Under FOB Origin Contracts; 7-103.27, Listing of Employment Openings; 7-104.4, Notice to the Government of Labor Disputes; 7-104.11, Excess Profit; 7-104.15, Examination of Records by Comptroller General; 7-104.20, Utilization of Labor Surplus Area Concerns.

## Worldwide Sales Offices

## DOMESTIC

WESTERN AREA
100 East Wardlow Rd., Suite 203
Long Beach, California 90807
Tel: (213) 595-4768
TWX: 910-341-7668
2960 Gordon Avenue
Santa Clara, California 95051
Tel: (408) 738-4151
TWX: 910-338-2022
20709 N.E. 232nd Avenue
Battle Ground, Washington 98604
Tel: (216) 687-3101
CENTRAL AREA
500 Higgins Road, Suite 210
Elk Grove Village, Illinois 60007
Tel: (312) 437-6496
TWX: 910-222-2853
408 South 9 th Street
Suite Number 201
Noblesville, Indiana 46060
Tel: (317) 773-6330
TWX: 810-260-1753
3850 Second Street
Suite Number 110
Wayne, Michigan 48184
Tel: (313) 729-1520
TWX: 810-242-2919
725 So. Central Expressway,
Suite A-9, Richardson, Texas 75080
Tel: (214) 231-5721
(214) 231-5285

TWX: 910-867-4766

EASTERN AREA
237 Whooping Loop
Altamonte Springs, Florida 32701
Tel: (305) 830-8889
TWX: 810-853-0269
24 Muzzey St.
Lexington, Massachusetts 02173
Tel: (617) 861-6530
20F Robert Pitt Drive, Suite 208
Monsey, New York 10952
Tel: (914) 352-5333
TWX: 710-577-2827
Axe Wood East
Butler \& Skippack Pikes, Suite 230
Ambler Pennsylvania 19002
Tel: (215) 643-0217
TWX: 510-661-3878

## INTERNATIONAL

## England

AMI Microsystems, Ltd.
Princes House, Princes St,
Swindon, SN1 2HU
Tel: (793) 37852
TLX: 851-449349

France
AMI Microsystems, S.A.R.L.
124 Avenue de Paris
94300 Vincennes, France
Tel: (01) 3740090
TLX: 842-670500

## Holland

AMI Microsystems, Ltd.
Calandstraat 62
Rotterdam, Holland
Tel: 010-36 1483
TLX: 844-27402
Italy
AMI Microsystems, S.p.A.
Via Pascoli 60
20133 Milano
Tel: 293745 or 2360154
TLX: 84332644
Japan
AMI Japan Ltd.
502 Nikko Sanno Building
2-5-3, Akasaka
Minato-ku, Tokyo 107
Tel: Tokyo 586-8131
TLX: 781-242-2180 AMI J
West Germany
AMI Microsystems, GmbH
Rosenheimer Strasse 30/32, Suite 237
8000 Munich 80 , West Germany
Tel: (89) 483081
TLX: 841-522743
Rapifax: (89) 486591

## Domestic Representatives

ALABAMA
Huntsville
Rep, Inc.
Tel: (205) 881-9270
TWX: 810-726-2101

## ARIZONA

## Phoenix

Hecht, Henschen \& Assoc., Inc.
Tel: (602) 275-4411
TWX: 910-951-0635
CALIFORNIA
Los Angeles
Ed Landa Co.
Tel: (213) 879-0770
TWX: 910-342-6343
Mt. View
Thresum Associates, Inc.
Tel: (415) 965-9180
TWX: 910-379-6617
San Diego
Hadden Associates
Tel: (714) 565-9445
TWX: 910-335-2057

CANADA
Quebec
Vitel Electronics
Tel: 514-331-7393
TWX: 610-421-3124
COLORADO
Englewood
$\mathrm{R}^{2}$ Marketing
Tel: (303) 771-7580
Parker
R2Marketing
Tel: (303) 841-5822
CONNECTICUT
Essex
Eastern Technology
Tel: (203)767-8505
GEORGIA
Tucker
Rep, Inc.
Tel: (404) 938-4358

ILLINOIS
Elk Grove Village
Oasis Sales
Tel: (312) 640-1850
TWX: 910-222-2170
IOWA
Cedar Rapids
Comstrand, Inc.
Tel: (319) 377-1575
MASSACHUSETTS
Lexington,
Circuit Sales Company
Tel: (617) 861-0567

## MINNESOTA

Minneapolis
Comstrand, Inc.
Tel: (612) 788-9234
TWX: 910-576-0924
MISSOURI
Grandview
Beneke \& McCaul
Tel: (816) 765-2998

## Domestic Representatives (continued)

NEW YORK
Clinton
Advanced Components
Tel: (315) 853-6438
Endicott
Advanced Components
Tel: (607) 785-3191
North Syracuse
Advanced Components
Tel: (315) 699-2671
TWX: 710-541-0439
Rochester
Advanced Components
Tel: (716) 554-7017
Scottsville
Advanced Components
Tel: (716) 889-1429
W. Babylon

Astrorep
Tel: (516) 422-2500; (201) 624-4408; (203) $324-4208$

TWX: 510-227-8114
NORTH CAROLINA
Raleigh
Rep, Inc.
Tel: (919) 851-3007
OHIO
Centerville
S.A.I. Marketing

Tel:(513) 435-3181
TWX: 810-459-1647

## Shaker Heights

S.A.I. Marketing

Tel: (216) 751-3633
TWX: 810-421-8289
Zanesville
S.A.I. Marketing

Tel: (614) 454-8942
OKLAHOMA
Oklahoma City
Ammon \& Rizos
Tel: (405) 942-2552
Tel: (919) 851-300'

## OREGON

Portland
SD-R ${ }^{2}$ Products \& Sales
Tel: (503) 246-9305
PENNSYLVANIA

## Monroeville

S.A.I. Marketing

Tel: (412) 856-6210
SOUTH CAROLINA
Greenville
Rep., Inc.
Tel: (803) 233-8595
TEXAS
Austin
Ammon \& Rizos
Tel: (512) 454-5131
TWX: 910-374-1369
Dallas
Ammon \& Rizos
Tel: (214) 233-5591
TWX: 910-860-5137
Houston
Ammon \& Rizos
Tel: (713) 781-6240
TWX: 910-881-6382

## TENNESSEE

Jefferson City
Rep, Inc.
Tel: (615) 475-4105
TWX: 810-570-4203

## UTAH

North Salt Lake
R2Marketing
Tel: (801) 298-2631
TWX: 910-925-5607
Parker
$\mathrm{R}^{2}$ Marketing
Tel: (303) 841-5822
Salt Lake City
$\mathrm{R}^{2}$ Marketing
Tel: (801) 290-2631
TWX: 910-925-5607

San Diego
Anthem Electronics
(714) 279-5200

Kierulff Electronics (714) 278-2112
Sunnyvale
Anthem Electronics (408) 738-1111

Tustin
Anthem Electronics
(714) 730-8000
or (213) 582-2122
Kierulff (714) 731-5711
COLORADO
Denver
Kierulff Electronics (303) 371-6500
Wheatridge
Bell Electronics (303) 424-1985

## VIRGINIA

Charlottesville
Coulbourn DeGreif, Inc.
Tel: (804) 977-0031

## WASHINGTON

## Bellevue

SD-R2 Products \& Sales
Tel: (206) 747-9424 or
(206) 624-2621

TWX: 810-443-2483
WISCONSIN
Menomonee Falls
Oasis Sales
Tel: (414) 251-9431
CANADA
Ottowa, Ontario
Vitel Electronics
Tel: 613-236-0396
TWX: 053-3198
Cantec Reps, Inc.
Tel: (613) 725-3704
TWX: 610-562-8967
Rexdale, Ontario
Vitel Electronics
Tel: 416-245-8528
TWX: 610-491-3728
Ste. Genevieve, Quebec
Cantec Reps, Inc.
Tel: (514) 626-3856
TWX: 610-422-3985
St. Laurent, Quebec
Vitel Electronics
Tel: 514-331-7393
TWX: 610-421-3124
Toronto, Ontario
Tel: (416)d 675-2460 or 2461
TWX: 610-492-2655

## Domestic Distributors

## ARIZONA

Phoenix
Kierulff (602) 243-4101
Sterling Electronics (602) 258-4531
CALIFORNIA
Cupertino
Western Microtechnology
(408) 725-1660

Irvine
Schweber Electronics
(213) $537-4320$ or
(714) 556-3880

Los Angeles
Kierulff Electronics (213) 725-0325
Los Gatos
ROW Int'l, Inc.
(408) 354-7698

Palo Alto
Kierulff Electronics (415) 968-6292

## CONNECTICUT

Danbury
Schweber Electronics (203) 792-3500

Hamden
Arrow Electronics (203) 248-3801
Wallingford
Arrow Electronics (203) 265-7741 FLORIDA
Ft. Lauderdale
Arrow Electronics (305) 776-7790
Hollywood
Schweber Electronics
(305) 927-0511

## Palm Bay

Arrow Electronics (305) 725-1480
St. Petersburg
Kierulff Electronics (813) 576-1966

## Domestic Distributors (continued)

## GEORGIA

Atlanta
Schweber Electronics
(404) 449-9170

Norcross
Arrow Electronics (404) 449-8252
ILLINOIS
Elk Grove Village
Kierulff (312) 640-0200
Schweber Electronics
(312) 593-2740

Lombard
R/M Electronics (312) 932-5150
Schaumburg
Arrow Electronics (312) 893-9420
INDIANA
Indianapolis
R/M Electronics (317) 247-9701
MARYLAND
Baltimore
Arrow Electronics (301) 247-5200
Gaithersburg
Schweber Electronics
(301) 247-5200

MASSACHUSETTS
Bedford
Schweber Electronics
(617) 275-5100

Billerica
Kierulff (617) $667-8331$ or
(617) 935-5134

Woburn
Arrow Electronics (617) 933-8130
MICHIGAN
Ann Arbor
Arrow Electronics (313) 971-8220
Livonia
Schweber Electronics
(313) 525-8100

Wyoming
R/M Electronics (616) 531-9300
minnesota
Bloomington
Arrow Electronics (612) 830-1800
Edina
Arrow Electronics (612) 830-1800
Eden Prairie
Schweber Electronics
(612) $941-5280$

NEW HAMPSHIRE
Manchester
Arrow Electronics (603) 668-6968

## NEW JERSEY

## Fairfield

Kierulff (201) 575-6750
Schweber Electronics
(201) 227-7880

Moorestown
Arrow Electronics (215) 928-1800 or (609)235-1900
Saddlebrook
Arrow Electronics (201) 797-5800
NEW MEXICO
Albuquerque
Bell Electronics (505) 292-2700
NEW YORK

## Farmingdale

Arrow Electronics (516) 694-6800
Fishkill
Arrow Electronics (914) 896-7530
Hauppauge
Arrow Electronics (516) 231-1000
Liverpool
Arrow Electronics (315) 652-1000
Rochester
Arrow Electronics (716) 275-0300
Schweber Electronics
(716) 424-2222

Westbury
Schweber Electronics
(516) 334-7474

NORTH CAROLINA
Winston Salem
Arrow Electronics (919) 725-8711

## OHIO

Beechwood
Schweber Electronics
(216) 464-2970

Kettering
Arrow Electronics (513) 435-5563
Reading
Arrow Electronics (513) 761-5432
Solon
Arrow Electronics (216) 248-3990
OREGON
Portland
Kierulff Electronics (503) 641-9150
PENNSYLVANIA
Horsham
Schweber Electronics
(215) 441-0600

Pittsburgh
Arrow Electronics (412) 351-4000
texas
Dallas
Arrow Electronics (214) 386-7500
R.M. Dallas, Inc. (214) 263-8361

Schweber Electronics
(214) 661-5010

Houston
Schweber Electronics
(713) 784-3600

UTAH
Salt Lake City
Bell Electronics (801) 972-6969
Kierulff Electronics (801) 973-6913
WASHINGTON

## Seattle

Kierulff Electronics (206) 575-4420
Tukwila
Arrow Electronics (206) 575-0907
WISCONSIN
Oak Creek
Arrow Electronics (414) 764-6600
Waukesha
Kierulff Electronics (414) 784-8160
CANADA
Alberta
Edmonton
Bowtek Electric Co. (403) 452-9050
British Columbia
Vancouver
Bowtek Electric Co. (604) 736-1141
Future Electronics, Inc. (604) 438-5545
Manitoba
Winnepeg
Bowtek Electric Co. (204) 633-9525
Ontario
Downsview
Cesco Electronics, Ltd. (416) 661-0220

Future Electronics, Inc. (416) 663-5563

Ottawa
Cesco Electronics, Ltd.
(613) 729-5118

Future Electronics, Inc. (613) 820-8313

Quebec
Montreal
Cesco Electronics, Ltd. (514) 735-5511

Future Electronics, Inc. (514) 731-7441

Quebec
Cesco Electronics, Ltd.
(418) $524-4641$

International Representatives and Distributors


FRANCE
Bernard Marchal
16 Avenue du General De Gaulle
67000 Strasbourg, France
Produits Electronique
Professionals S.A.R.L. (P.E.P.)
2-4 Rue Barthelemy
92120 Montrouge
Tel: (01) 7353320
TLX: 204534
Tekelec Airtronic
B.P. No. 2

Cite des Bruyeres
Rue Carle Vernet
93210 Sevres, France
Tel: (01) 0277535
TLX: 204552

## holland

Techmation Electronics NV
Nieuve Meerdijk 31
P.O. Box 31

1170 AA Badhoevedorp
Schipol, Holland SC 421
Tel: 02968-6451
TLX: 13427
HONGKONG
Electrocon Products Limited 1020 Star House
Kowloon
Tel: 3-679557 or 3-679269
TLX: 84996 TGRAF HX

## INDIA

ROW International, Inc.
22 West Central Ave
Los Gatos, Calif. 94030
Tel: (408) 354-7698
TLX: 352042 ROW INTL LSGTS

## ISRAEL

R.N. Electronics, Ltd.

Hagolan 103 Ramat-Hachayal
Tel Aviv
ITALY
C.I.D. s.r.l.

Viale Degli Ammiragli 67, 00136 Roma
Tel: (06) 63-81-981
TWX: 680474
Cefra s.r.l.
Via Giovanni Pascoli 60
20133 Milano
Tel: (02) 235264 or
(02) 2360154

TLX: 311644
Mesa Spa
Viale Monterosa 13
20135 Milano
Tel: 434333
TLX: 334022

## JAPAN

Kyokuto Boeki Kaisha, Ltd. (KBK) 7th Floor, New Otemachi Bldg. 2-1, 2-Chome, Otemachi Chiyoda-ku, Tokyo, 100-91
Logic House, Inc.
7-2-8 Nishishinjuku, Shinjuku-ku Tokyo 160

Logic Systems International, Inc. Ltd.
Moriden Bldg. 5th Floor
3-9-9 Mita, Minato-Ku
Tokyo, Japan 108
Tel: (03) 454-3261
Matsushita Electric
Trading Company, Ltd.
71, 5-Chome, Kawaramachi
Higashi-ku
Osaka
Tel: (06) 204-5510
TLX: 781-63417
Taiyo Electric Co.
Nakazawa Bldg.
Shibuya-ku, Tokyo
Tel: (03) 379-2926
TLX: 24904
MEXICO
ROW, Inc.
3421 Lariat Drive
Shingle Springs, Calif. 95682
Tel: (916) 677-2827
TLX: 171373 ROW INCSHSG
Dicopel S.A.
Augusto Rodin No. 20
Col Napoles
Mexico 18 D.F.
NETHERLANDS
Techmation Electronics BV
Nieuwe Meerdikj 31
P.O. Box 31

1170AA Badhoevedorp
Schipol, Holland SC 421
Tel: (02968) 6451
TLX: 13427
NEW ZEALAND
David P. Reid (NZ) Ltd.
Box 2630, Auckland 1
Tel: 492-189
TLX: 7912612
SINGAPORE
Dynamar International Ltd.
Cuppage Center, Suite 526
55 Cuppage Road
Singapore 9
Tel: 235-1139
TLX: RS 26283 DYNAMA
SOUTH AFRICA
Radiokom Pty, Ltd.
P.O. Box 56310

Pinegowrie 2123, Transvaal
Johannesburg
Tel: 48-5712
TLX: 960-80838
Tecnetics
P.O. Box 56310

Pinegowrie 2123, Transvaal
Johannesburg
Tel: 48-5712
TLX: 960-80838
SPAIN
Interface S.A.
Ronda San Pedro 22, 3-3
Barcelona 10, Spain
Tel: (03) 3017851
TLX: 51508

## AMI.

## International Representatives and Distributors (continued)

SWEDEN	Ditronic, GmbH	Mikrotec, GmbH
A.B. Rifa	IM Asemwald 48	Johannesstr. 91
Fack, S-16300 Spanga	D-7000 Stuttgart 70	D-7000 Stuttgart 1
Tel: (08) 7510020	Tel: (0711) 724844	Tel: (0711) 228027
TLX: 13690	TLX: 725-5638	TLX: 722818
SWITZERLAND	Gustav Beck KG	Onmi-Ray GmbH
W. Moor AG	Eltersdorfer Strasse 7	Ritzbruch 41
8105 Regensdorf ZH	8500 Nurnberg 15	Postfach 3175
Bahnstrasse 58	Tel: (0911) 34966	D-4054 Nettetal 1
Zurich	TLX: 622334	Tel: 02153/7961
Tel: (01) 8406644	Microscan GmbH	TLX: 854245
TLX: 52042	Uberseering 31	Yugoslavia
TAIWAN	Postfach 601705	Iskra Standard/Iskra IEZE
Promotor Co., Ltd.	2000 Hamburg 60	Stegne 15D PP 312
2nd Flr., 33 Lane	Tel: (040) 6305067	61000 Ljubljana
395 Fu -Yuan Street	TLX: 213288	Tel: (051) 551-353
Taipei, Taiwan ROC		TLX: 31351 YU-ISELEM
Tel: Taipei 7689743		
TLX: TAIPEI 27271 COMMOTEK		
WEST GERMANY		
Aktiv Elektronik GmbH		
Ballinstrasse 12-14		
D-1000 Berlin 47		
Tel: (030) 6845088		
TLX: 185327		

## AMII.

AMERIC AN MICROSY STE MS, INC . , 3800 Homestead Rd. . Santa Clara CA 95051 Telephone: (408) 246-0330
TWX: 910-338-0018


[^0]:    *Distortion measured in accordance with the specifications described in Ref. 1 as the "ratio of the total power of all extraneous frequencies in the voiceband above 500 Hz accompanying the signal to the total power of the frequency pair".

[^1]:    *Distortion measured in accordance with the specifications described in Ref. 1 as the "ratio of the total power of all extraneous frequencies in the voiceband above 500 Hz accompanying the signal to the total power of the frequency pair".

[^2]:    Note: Circuit operates with VSS from 7.0 V to 30.0 V

[^3]:    *FOR MULTIPLEXED TOUCHCONTROL CIRCUITS SEE AMI S9262 and S9266.

[^4]:    ${ }^{*} \mathrm{I}_{\mathrm{AVE}}$ is the average of all peak output current values within one circuit.

[^5]:    $\square$ Percussion Instrument Voice Generators for Rhythm Units
    $\square$ Electronic Music Synthesizers
    $\square$ Simulated Pipe "Wind" Noise
    $\square$ Acoustics Testing

[^6]:    This table shows which pins are required and optional for $\mathrm{S} 2000 / \mathrm{S} 2200$ family devices. Those pins which are optional may be deleted in any mix to make a 28 -pin package. If

[^7]:    ${ }^{*}$ Except $\overline{I R Q}$ and $\overline{N M I}$, Which require $K \Omega$ pullup load resistor for wire-OR capability at optimum operation.
    \#Capacitances are periodically sampled rather than $100 \%$ tested.

[^8]:    *Except $\overline{I R Q}$ and $\overline{N M I}$, Which require $K \Omega$ pullup load resistor for wire-OR capability at optimum operation.
    \#Capacitances are periodically sampled rather than $100 \%$ tested.

[^9]:    *Except $\overline{\mathrm{IRQ}}$ and $\overline{\mathrm{NMI}}$, which require $3 \mathrm{~K} \Omega$ pullup load resistors for wire-OR capability at optimum operation. Does not include EXtal and Xtal, which are crystal inputs.
    **In power-down mode, maximum power dissipation is less than 40 mW .
    \# Capacitances are periodically sampled rather than $100 \%$ tested.

[^10]:    This device contains circuitry to protect the inputs against damage due to high static voltage or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

[^11]:    *Electrical characteristics included in this advanced product description are objective specifications and may be subject to change.

[^12]:    *The $\overline{\text { Reset }}$ line must be a $V_{I H}$ for a minimum of $1.0 \mu \mathrm{~s}$ before addressing the PIA.

[^13]:    *The Reset line must be high a minimum of $1.0 \mu \mathrm{~s}$ before addressing the PIA.

[^14]:    * $\mathrm{t}_{\mathrm{r}}$ and $\mathrm{t}_{\mathrm{f}} \leqslant \mathrm{t}_{\mathrm{CYCE}}$

[^15]:    for more exact diagrams refer to the back of the data sheet. the horizontal display enable is anded with the vertical display enable to produce the

[^16]:    NOTE 1 The initial MA is determined by the contents
    start address register, Ri2. 13 . Timing is
    shown for R12/R13 $=0$. Only Non-Interlac
    and Interlace Sync Modes are shown.

[^17]:    Supply Voltage ....................................................................................................... 7.0V
    Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to +7.0 V
    Operating Temperature ............................................................................ . . . $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
    Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

[^18]:    * $1.0 \mu \mathrm{~s}$ or $10 \%$ of the pulse width, whichever is smaller.

[^19]:    ${ }^{1}$ Not recommended for new designs
    2 To be announced

[^20]:    NOTES:

    1. Only positive logic formats for $\mathrm{CS}_{1}$ and $\mathrm{CS}_{2}$ are accepted. $1=\mathrm{V}_{\text {HIGH }} ; 0=\mathrm{V}_{\text {LOW }}$
    2. A " 0 " indicates the chip is enabled by a logic 0 .

    A" 1 " indicates the chip is enabled by a logic 1 .
    3. Paper tape format is the same as the card format above except:
    a. The record should be a maximum of 80 characters.
    b. Carriage return and line feed after each record followed by another record.
    c. There should NOT be any extra line feed between records at all.
    d. After the last record, four (4) $\$ \$ \$ \$$ (dollar) signs should be punched with carriage return and line feed indicating end of file.

[^21]:    * Military Temperature Range is $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

    Commercial Temperature Range is $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

[^22]:    THE FRRST HIGH-PEAFORMANCE COMPLEMENTARY-MOS PLANAR PROCESS. ITS DRAWBACKS: TWO TYPES OF POLYSLLCON ARE USED, AND THE UNAVAKLABLITY OF FELD MPLANT DOPNG TEE feLD Threshold to device thresholos.

