

MAGNETIC

C

 \mathbf{O}

C

DEFINITIONS

SEC	CTION	PAGE
۱.	Ferromagnetic Material	3
2.	Flux	3
З.,	Induction	4
4,	Magnetic Field	6
5.	Permeability	8
6.	Inductance	10
7.	Losses	12
8.	Memory Cores	13
9.	Miscellaneous	16
10.	Units	19

FERRITES IN FIRST

 \mathbf{O}

-2-

I. FERROMAGNETIC MATERIAL

Ferromagnetic Material	A material which, like iron, generally exhibits hysteresis, i.e. the induction fails to follow the magnetic field, it lags: See fig. 1.
Fe rrit e	A ceramic material that is sintered at about 1300°C. It mainly consists of iron oxide with a certain additive of usually, two metal oxides. Most current are the Manganese-Zinc, Nickel- Zinc, Manganese-Magnesium and Manganese-Copper ferrites. These are called soft magnetic mate- rials because of comparatively low coercive forces, say smaller than 20 oersteds (e.g. Ferroxcube). See fig. 1. Barium ferrites have a very high coercive force (say 1000 0e) and are called hard magnetic materials (e.g. Magnadur). See fig. 11.

2, FLUX

 \mathbf{C}

C

SYMBOL UNIT	TERM	DESCRIPTION
ø maxwells (Magnefic) Flux	The cause of the electromotive force (voltage) induced in the secondary windings of a core (see fig. 2), magnetized by an A.C. current in the primary windings. In the c.g.s. system:
		$e_{ind} = -N_2 \times \frac{d\theta}{dt} \times 10^{-8}$
		where e induced e.m.f. in volts;
		N ₂ = number of secondary windings;
CURRENT	FLUX PATH	dø e change of flux per second in maxwells/sec.
	DuceD e.m.f.	Ø itself is in maxwells. Note: If Ø is an alternating flux with frequency f, then, the more times per second that Ø reverses its direction, e_{ind} will be proportionally larger. In case of a sinus wave:
N,=4	N ₂ =9	where: e_{1} and \hat{g} indicate the peak-values
FIGURE 2	-	of e_{ind} and $ø_{\bullet}$
		f = frequency in cycles per sec.

-3-

3. INDUCTION

SYMBOL	UNIT	TERM	DESCRIPTION
B CORE SEGM		(Magnetic) Induction (Magnetic) Flux Density	Magnetic flux per unit area in an area element at right angles to the direction of the flux lines. In the c.g.s. system: $B = \frac{d\emptyset}{dA}, \text{ Here } d\emptyset \text{ denotes a very small}$ fraction of the total flux passing through a very small fraction of the area at a right angle: theoretically B changes from place to place in a material. In practice, when B is constant across the area, we use: $B = \frac{\emptyset}{A}$ Where: B = induction in gausses $\emptyset = \text{flux in maxwells}$ A = area in cm ² .
	dA M LINES		
THROUGH A FLUX	9, TOGE $d\phi$, PAS $B = \frac{d\phi}{d\phi}$	THER AMOUNTING S THROUGH dA.	
	F I GURE	3	
Br	gauss	Residual Induction	Induction that remains, when the magnetizing force H = 0. Compare with B, and see fig. 1.
			
B _d	gauss	Remanent Induction Remenence	Induction that remains in a magnetic circuit of any shape after removal of an applied magnetomotive force, \mathcal{R}_{s} In a permanent magnet with an air gap the magnetomotive force = 0, but the magnetic field in the magnet itself, H, is not zero, its value de- pending on the form of its hysteresis loop (energy product, see page 19) and width of the air-gap.
B _d B _i	gauss gauss	Remanent Induction Remenence Intrinsic Induction	Induction that remains in a magnetic circuit of any shape after removal of an applied magnetomotive force, \mathcal{F}_{9} In a permanent magnet with an air gap the magnetomotive force = 0, but the magnetic field in the magnet itself, H, is not zero, its value de- pending on the form of its hysteresis loop (energy product, see page 19) and width of the air-gap. The induction in the magnetic material minus the induction in air at the existing magnetic field, H. The induction in air = μ_{air}^{H} . In

-4-

C

C

C

SYMBOL	UNIT	TERM	DESCRIPTION
B _{max} or B _m	gauss	Maximum Induction	Maximum instantaneous value of the in- duction on a hysteresis loop. It can be measured by means of an integrating network, which converts the induced A.C. e.m.f. into an A.C. voltage V proportional to B. The peak value of V yields: $\hat{B} = \frac{RC}{N_2 A} gauss$
			where RC = time constant of the inte- grator in sec., V = the peak value of the inte- grated e.m.f. in volts, $N_2 =$ the number of secondard windings, A = the area in cm ² . See fig. 1 and 2.
BA	gauss	Incremental Induction	Amplitude (= peak value) of the varying part of the induction, when the core is operated with a biasing magnetizing force. See fig. 1.
Brs	gauss	Ret e ntivity	The maximum value of the residual in- duction, B _r or the value of B _r on the saturation loop. See fig. 1.
B _{sat} or B _s	gauss	Saturation Induction	The maximum Intrinsic induction possible in a material. It is usually reached at magnetic fields of thousands of oersteds, while at the point where the saturation loop is closed, B; is 10 to 30 percent lower than B; and H is roughly 10 oersteds. See fig. 1.

4. MAGNETIC FIELD

0

 \mathbb{O}

SYMBOL	UNIT	TERM	DESCRIPTION
Jo	gî I ber*ts	Magnetomotive Force Magnetic Potentiat Difference	That which tends to produce a magnetic field. In magnetic testing It is most commonly produced by a current flowing through a coil of wire around the core. Its magnitude is proportional to the number of turns and the current. In the c.g.a. unit-system it is expressed in gilberts and thus defined by: $\mathcal{P}=0.4$ TT N I, where I = current in amperes Magnetomotive force also results from a magnetized body, e.g. a permanent magnet.
H VALUES	OF MAGNET	Magnetizing Force Magnetic Field (Intensity) OMOTIVE FORCE FIEL MAGNETIC PATH CORE SEGMENT FIGURE 4	Magnetomotive force per unit length. In the c.g.s. unit-system it is expressed in cersteds and is defined by $H = \frac{d}{dt}$. Here differences a very small change of \mathcal{F} along a very small path length; gen- erally H changes from point to point in direction and intensity. H has the same direction as dl. In practice H has at all points the same value in most app- lications. We can then use: $H = \frac{\mathcal{F}}{\mathcal{F}}$ where $H =$ magnetizing force in cersteds, $\mathcal{F} =$ magnetomotive force in gilberts, l = path length in cm. See fig. 4. In the case of a toroid, l = 2 TI r where $r =$ the average of inside and outside radii of the ring : $H = \frac{0.4 \text{ TI NT}}{2 \text{ TI r}} = \frac{0.2 \text{ NT}}{r}$
нь	oersteds	Biasing (Magnetic) Field	A constant (D.C.) magnetizing force superposed on an atternating (A.C.) magnetizing force. This is realized by applying an extra D.C. current to the same magnetizing windings or to a special coll around the same sample. See fig. 1.

C

ſ

C

,

SYMBOL	UNIT	TERM	DESCRIPTION
Hc	oersteds	Coercive Force	The magnetizing force required to bring the induction to zero: the larger the H _c ; the larger are the hysteresis losses. See fig. 1.
Hcs	oersteds	Coercivity	The maximum value of the coercive force, H _c , or the value of H _c on the saturation loop. See fig. 1.
н _d	oersteds	Demagnetizing Force	A magnetizing force applied in such a direction as to reduce the remanent in- duction, B _d , in a magnetized body.
			Fig. 1, upper left, and fig. 11 give examples of a demagnetization curve.
нд	oersteds	Incremental Magnetizing Force	Amplitude of the varying part of the magnetizing force, when the core is operated with a biasing field, H _b o See Fig. 1.
H _{max} or H _m	oersteds	Maximum Magnetizing Force	Maximum instantaneous value of the magnetic field on a hysteresis loop. H _m (and B _m) are found on the "tip" of the hysteresis loop.

5. PERMEABILITY

٠

SYMBOL	UNIT	TERM	DESCRIPTION
U	numeric	Permeability Au	The slope of the line, which connects the "tip" of a hysteresis loop (H max,
			B_{Max}) with the origin, or $\mu = \frac{max}{H}$
			(usually whitten $\mu = \overline{H}$). See Fig. 1.
			be performed, depending on the amplitude of the applied magnetic field, H _{max} , are
			situated on the so-called virginal curve. This curve is straight near the origin; its slope corresponds to the permeability at low values of H or initial perm- eability, N.
			Note 1: Depending on the method of measurement and the practical application, the <i>p</i> can also be defined as the R.M.S.
			value of the A.C. induction divided by the R.M.S. value of the A.C. magnetic
			field or $\mu = \frac{D_{R_*M_*S_*}}{H_{R_*M_*S_*}}$. Now the results
			are dependent among others on the wave shape of the magnetic field and the form of the hysteresis loop.
			Note 2: In such non-isotropic materials as Magnadur and Ferroxplane, Ju depends on
			the direction of H with respect to the sample: there is a direction or a plane in the sample where μ is maximal.
Max Max Nr. Na	numeric	Maximum Permeability	Maximum value of the permeability. It is the slope of the line which just touches the "knee" in the virginal curve. See Fig. 1.
^{Ju} o	numerîc	Initial Permeability	The permeability at low inductions, say 10 gauss or less. See Fig. 1.
ru A	numeric	Incremental Permeability	The ratio of the incremental induction to the incremental magnetizing force or
			$/4 \Delta = \frac{2}{H_{\Delta}}$, When H _{{\Delta} and consequently B _{{\Delta} become very small, then μ_{Δ} approaches
/ ^u rev	numeric	Reversible Permeability	a limiting value, the reversible perm- eability // rev (See Fig. 1) // rev decreases
			from $\mu_{rev} = \mu_0 (H_b = 0)$ down to $\mu_{rev} = 1$ when H_b is very high.

-8-

	FERRC	XCUBE ENGINE	ERING BULLETIN No. FC-5119
SYMBOL	UNIT	TERM	DESCRIPTION
/ ^u ef f	numeric	Effective Permeability	The lowered value of A caused by in- terruptions in the flux path. If a mag- netic circuit, e.g. a toroid, contains an air-gap, then the effective induction B_{eff} has a lower value than in the case without an air-gap at a given value of H. The effective permeability is defined as: B
			$/^{U}$ eff $=$ $\frac{eff}{H}$
			μ_{eff} is always smaller than μ and can be calculated as follows: $\frac{\mu_{eff}}{\mu} = \frac{1}{1 + \mu(g/\ell)}$
	(11		where:
			g = width of the air-gap in cm, L = magnetic path length of the core in cm. See figure 5.
MAGN ABC	ETIZING W	VI ND INGS GURE 5	Gaps caused by dirt aften cause diffi- culties when testing U cores. In practice they are designed into pot cores in order to reduce both the temp- erature coefficient of the pot core assembly and the effects of non-linearity
۳1	numeric	Intrinsic Permeability	The ratio of the intrinsic induction to the corresponding magnetizing force:
			$\mu_i = \frac{B_i}{H}$. Because $B_i = B - H_i$ we see
			that $\mu_1 = \frac{B-H}{H} = \mu = 1$. The use of μ_1
			becomes important for materials with very low μ_{2} say $\mu = 10$. The μ_{1} in this case is 9.
יע	numeric	/u prîme	Real part of the so-called complex perm- eability. At low inductions it is identical with the initial permeability.
" س	numeric	u double prime	This is the imaginary part of the complex permeability (,u' = j ,u"). This is only
			a formal way of appreciating the core losses relative to the initial permeabilit / or /u**

-9-

C

C

6. INDUCTANCE

0

٠

٠

١

 \square

SYMBOL	UNIT	TERM	DESCRIPTION
L	henries	Self Induc= tance	1) Electrically defined by: $e_{ind} = -L \frac{d\Gamma}{dt}$,
			where e = induced e.m.f. across the coil windings in volts, L = self inductance in henries,
			df = change of current per sec- ond in amperes per sec.
			Measurement of L is based on this principle.
			2) An equivalent definition is:
	ı.		$L = \frac{N\mathscr{I} \times 10^{-8}}{2},$
			where $N \phi = flux$ linkage in maxwell- tukns,
			<pre>I = magnetizing current in amperes,</pre>
			L = self inductance in henries.
			"Flux-linkage" means the total flux that is "caught" by the conductor as a whole (usually a coil around a core). If the wire is homogeneously wound around the whole circumference of a toroid, then N equals the total number of turns. With the help of the definition (2) we can derive for the toroid the formula:
			3) L = $\frac{0.4 \text{ fr}}{\ell/A}$ $\times \text{ N}^2 \times 10^{-8}$,
			where $\mu_{\perp} = initial permeability$
			N = number of fu rns
			A = cross section of toroid
			<pre></pre>
			At high inductions /u cannot be considered
			a constant (fig. 1) bence 1 is then not

FERROXCUBE ENGINEERING BULLETIN No. FC-5119

C

C

C

4

SYMBOL	. UNIT	TERM	DESCRIPTION
Lo	henries	Air Induc- tance	Defined as L under (3), except that /u is put = 1 (permeability of air). This pro- vides a method of measuring /u _o :
			or $\mu_0 = \frac{L}{L_0}$,
			where L is measured and L is calculated
			from the physical dimensions of the core. The general formula for cores with non- uniform cross section is:
			$L_0 = \frac{0.4 \text{ TY} \times N^2 \times 10^{-8}}{\sum l/A}$
			Zor sigma" denotes that one takes the sum of the \mathcal{U}/A 's for the different parts of the magnetic circuit (e.g. E core, pot core).
L	henries	Mutual Inductance	If we have a transformer (see fig. 2) with N ₁ primary windings and N ₂ secondary
M			windings, then both coils are linked mag- netically by the core. This property is characterized by the mutual inductance:
			N_ Ø × 10 ⁸ N, Ø × 10 ⁸
			Where:
			L _m = mutual inductance in henries,
			$N_2 (N_1 \beta) = flux linkage "caught" by the secondary (primary) windings$
			$I_1 (I_2) = current in the primary (sec-ondary) windings in amperes.$
			in an ideal transformer (no flux escaping through surrounding air)
			$L_m^2 = L_1 \times L_2$, L_1 and L_2 being the
			the Individual self-inductances of the primary and secondary windings.

FERROXCUBE ENGINEERING BULLETIN No. FC 5119

0

٨

Ŧ

		7.	LOSSES
SYMBOL	UNIT	TERM	DESCRIPTION
Р С	watts	Ĉore Loss	Energy per second (= power) dissipated in a core when magnetized by an alter- nating magnetic field. The dissipated power is identical with the developed heat per second, power (heat per sec.) being in watts. $P_c = P_e + P_h + P_r$:
0	weithe	Edd. August	See belowe
re e	Watts	Eddy Current	Power dissipated due to currents cir- culating in the core as a result of e.m.f.'s in the material induced by the varying induction. P can be calculated
			from $P_e = \frac{\omega^2 B^2 \delta^2 V}{\$} \times 10^{-14} \times C_c$ watts
			<pre>where: ω= angular frequency, B= R.M.S. value of the induction in gauss, d= smallest dimension in cm of core perpendicular to the flux, V= volume of the core in cm³. f= resistivity in ohm cm, C = shape constant, which is 1/8 for cores with a uniformly round or square cross-section.</pre>
Ph	watts	Hysteresis Loss	Power dissipated in a ferromagnetic core as a result of its hysteresis. It is proportional to the product of the area of the loop x frequency x volume of the core. P can be calculated from: h
			h 411 x loop area x 10 warts:
			where: f = frequency in cycles/sec, V = volume of the core in cm ³ Loop area is in gauss-oersteds.
Pr	waits	Residual Loss	Part of the total core losses which is due neither to P nor to P It is
			e h the most important source of losses in ferrites. The residual losses cannot be precisely calculated, but should be measured.
P	watts	Incremental Core Loss	The core loss in a ferromagnetic mat- erial when subjected simultaneously to a blasing and an incremental magnetizing force.
Pa	watts	Apparent Core Loss	The product of the R.M.S. induced e.m.f. and R.M.S. magnetizing current for a coll containing a ferromagnetic core. The induced e.m.f. must be approximately sinusoidal.

-12-

C

C

C

SYMBOL	UNIT	TERM	DESCRIPTION
Ρςυ	Watts	Copper Loss	Power dissipated in the coil windings due to the electrical resistance of the copper wire. The resistance increases with the frequency due to the so-called skin effect, when the current flows mainly through the outmost part of the wire. These losses are considerable in pot core applications at high frequencies and have a large influence on the maximum attainable Q. These losses can be reduced by using Litz wire.
Q	numerio	Quality(Factor)	Q = <u>WL</u> R _s where: R _s represents the effective series- resistance in ohms in which the magnetizing current dissipates a power equal to total core losses, L= pure self-inductance of the core in henries, $\omega = 2Tif \pi angular$ frequency at which the core resonates with a series or parallel capacitor. The smaller the losses, the larger the Q. Q usually decreases with increasing frequency. At low inductions we can also write:Q* <u>/u¹</u> .
б		Loss Angle	$\frac{1}{Q} = \frac{R_s}{\omega L} = \tan \delta$, where: $\delta =$ the loss-angle. δ is actually the phase angle with which the magnetizing current lags the induced e.m.f. across the coil at low inductions.
/ ¹ ,0		Loss Factor	The loss factor is defined as $\frac{1}{\sqrt{u_0}Q} = (\frac{\sqrt{u^n}}{\sqrt{u_0}Q})_{\circ}$ $\frac{1}{\sqrt{u_0}Q}$ is an important characteristic for $\frac{1}{\sqrt{u_0}Q}$ both the losses and the $\sqrt{u_0}Q$
		Core Material Losses	A quantity which is of interest for losses at low inductions. It is written: (compare with $\frac{1}{\mu_0} = \frac{R_s}{\mu_0 2 \text{ fl} \text{ fl}}$) as $\frac{R_s}{\mu_0 \text{ fl}}$, where: R = effective series resistance, $\mu = \text{ initial permeability,}$ f = frequency in cycles/sec, L = inductance in henries. The formula can be divided into three parts: $\frac{R}{\mu_0 \text{ fl}} = C_h B_{max,s} + C_e \text{ fl} + C_r$, where: Ch, Ce and Cr are the hysteresis, eddy current and residual loss

8. MEMORY CORES

MEMORY CORE

A small size toroid of square loop material. If when operated with an a.c. magnetic field with peak values greater than the coercivity H , the induction jumps between the positive, $+B_{c}$, and the negative, $-B_{c}$, saturation induction, then the core is a ferromagnetic switch. Therefore, when the core receives a sufficiently strong positive magnetizing current pulse, it will jump into +B and stay in its positive retentivity, +B : it "remembers" the positive pulse。 _"B_{rs} might be called the "O" or zero state and +B the "I" state of the core. Memory cores are used in digital computers as storage elements of information or in shift registers. See Fig. 6.

PULSES

A memory core is tested with a succession of magnetizing current pulses of which the repetition frequency, peak values and individual forms are specified by the customer. The pulses are applied via a single wire or probe through the centerhole of the core and cause induced voltages. Their limits are also specified. The same succession is repeated for each core. See fig. 7 and 9.

PULSE SEQUENCE

Succession of pulses, whether write ("1") or read ("0") and whether full or partial. This determines the change of induction (flux) per second, $\frac{dq}{dt}$, and therefore the response ("answer" of the core in terms of the induced e.m.f. in the probe) on a pulse. See Fig. 9.

-14-

FIGURE 8

C

THE GENERAL SHAPE OF THE PULSES USED

SYMBOL	UNIT	TERM	DESCRIPTION
I	mA	Peak Current	Peak value (I) of current pulse in milliamperes, See fig. 8. The drawing is exaggerated for clarity.
Tr	/ sec	Rise Time	Time for the pulse current to rise from 0.1 I to 0.9 I. See fig. 8.
Td	n sec	Duration	Time for the pulse current to stay above 0.9 I. See Fig. 8.
T _f	/u sec	Fall Time	Time for the pulse current to drop from 0.9 I down to 0.1 I. See fig. 8.

 \bigcirc

		FULL WRITE PU	LSE, I _w
		FULL READ PULSE, I	PARTIAL WRITE PULSE, I
, ,			
SYMBO		TWO CHARACTERISTIC P	DESCRIPTION
I,	mA	Full Write Pulse	Peak value of pulse, that brings core into the "!" state or + B The magnetizing
			force corresponding to T_W is H_W . See Figs. 6 and 7.
I _{pw}	mA	Partial Write Pulse	Peak value of pulse, that does not manage to bring core from the "O" to the "I", but that changes "O" only to a slightly dif- ferent value (disturbs it). The magnet- izing force corresponding to I is H pw pw
I _r	mA	Full Read Pulse	Peak value of negative pulse, that brings core into "O" from "I". In order to ex- plain the form of uv, or rv, we must assume that not the static bysteresis loop, but a
			loop with curved sides (fig. 6 XYZ) is performed by B and H.
Ipr	mA	Partial Read Puise	Peak value of negative pulse, that disturbs the "l" state of the core. In upper left of figure 6, B, and B2 indicate the re-
			sidual induction after one and two Ipr's
			respectively. If more I_{pr's} are applied, the final residual induction will be very little different from B ₁ or B ₂ .
ľ	mA	Threshold Current	The peak value of the current pulse, whether positive or negative, that brings the residual induction, B _p , a certain
			amount below the retentivity, B _{rs} , say 20%. These values are indicated in Fig. 6.

C

Ó

C

SYMBOL	UNIT	TERM	DESCRIPTION
uV	mV (peak value)	Undisturbed Voltage One	Response (see fig. 10) of core measured when an I_w is followed immediately by and $I_{p^{\circ}}$. See fig. 9a: 1-2.
rv _i or dv _i	mV (peak value)	Disturbed Voltage One	Peak response of core measured, when an I is disturbed by a certain number of I followed by an I. See fig. 92: 3-047
ď ^V z	mV (peak value)	Disturbed Voltage Zero	Peak response, when an I_{μ} is disturbed by a certain number of $I_{\mu\nu}$ followed by an I_{μ} . See fig. 9a: $8 \rightarrow 9 \rightarrow 12 \rightarrow 13$.
rVh	mV (peak value)	Disturbed Half- Selected One	Response of the <u>second</u> I_{pr} after an I_w . See fig. 9b. $I \rightarrow 2 \rightarrow 3$
rVhz	mV (peak value)	Disturbed Half- Selected Zero	Response of the <u>second</u> I _{pr} after an I _{pw} . See fig. 9b: 789.
T p	Jusec	Peaking Time	Time for rV ₁ to rise from reference voltage level to its peak-value. See fig. 10.
Ts	AUS OC	Switching Time	Time for rV_i to rise from and drop back to the reference voltage level. See fig. 10.

SYMBOL	UNIT	TERM	DESCRIPTION
T _c	°C	Curie Temperature	Temperature in degrees centigrade at which a material becomes non-magnetic, actually indistinguishable from air ($\mu_0 = 1$).
			Generally the M will increase with
			rising temperature but will decrease quickly to I at the Curle temperature, Further, the higher the pu, the lower the
			T will be. If for ferrites $\mu \approx 10$, then
			T _c is about 500°C; if $\mu \approx 1000$, then T _c is about 150°C.
T.C.	percent	Temperature	The relative change of a quantity Y
	°C	Coeffic ien t	$(e_{\bullet}g_{\bullet} / u_{0}, / u_{\Delta}, B_{s}, \frac{Tan \delta}{\nu_{0}})$ per degree
			centigrade or:
			$T.C. = \frac{1}{Y} \times \frac{\Delta Y}{\Delta T}$
			<pre>where: \Delta Y = change (increase or decrease)</pre>
			$\frac{1}{Y} \times \frac{\Delta Y}{\Delta T} \times 100\%$ gives the percentage change
			per degree centigrade.
			for self inductances is desirable. A negative T.C. for the losses would prevent excessive heating up of core.
9	gr/cm ³	Density Specific	This is defined as total mass (weight) divided by the volume of a body:
	We	Weight	? <u>total mass</u> in grams per cubic
		A A	centimeter.
		Disaccomo- dation	The decrease of A immediately following
. .			The demagnetization of the core. In the course of 24 hours, the lower limit, say 3% lower, is approached. The same seems to happen with the reversible permeability, /urev. This results that, where the biasing field is changed, a ferrite cannot
			be used for precision applications. Its effect can be reduced by air gaps.

9. MISCELLANEOUS

SYMBOL	UNIT	TERM	DESCRIPTION
ę	Ωcm	(Volume) Resistivity Specific Resistance	The d.c. resistance of a cylindrical conductor (bar) with a length of 1 cm and a perpendicular cross-section = 1 cm ² . It is measured between the two cross-sections which are wholly contacted by the measuring electrodes. With the resistivity known, we can calculate the d.c. resistance of a bar with a length 2 cm and a cross-section A cm ² from R = $9 \times \frac{1}{A}$.
f	c/sec	Freq uenc y	The number of times that a periodic quantity (e.g. alternating current) repeats itself during I second. It is expressed in cycles per second. I Kc/sec.=I kilocycle per second = 10^3 c/sec. $\omega = 2 \Pi$ f is called the angular frequency in radians per sec.
λ(lambda) numeric	Magneto- striction	When a ferromagnetic rod is magnetized by the coil around it, the length of the rod will change by a small amount Δg . The magnetostriction at a given induction B is defined as $\lambda = \frac{Ag}{g}$. Al can also be negative. Magnetostric- tion can be used to convert mechanical vibrations into electrical.
		Permanent	Hard (high H) magnetic materials
HYSTERESIS LOOP	400 300 200	Magnets (BH) _{MAX} = 2.2 × 10 00 	can be used as permanent magnets (Magnadur), as, for example, in moving coll meters, where we need a strong magnetic field in the air-gap for the moving coll. The maximum possible field H is determined by the maximum value of the energy product, (BH) _{max} .
1000 -500		10 ⁶ 2 × 10 ⁶	The <u>energy product</u> curve is obtained by multiplying H with B at every point of the hysteresis-loop where B is positive and H is negative and plotting these values against B. See Fig. 11
H (OERSTED)	FIGURE II	BH(GAUSS- OERSTED)	

FERROXCUBE ENGINEERING BULLETIN No. FC-5119

C

C

.

C

-19-

SYMBOL	UNIT	TERM	DESCRIPTION
R	i/cm	(Magnetic) Reluctance	The reluctance of a magnetic circuit is defined as:
			$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
			with uniform cross-section $A(cm^2)$, length $l(cm)$ and a permeability u_{\bullet} If not, $\frac{l}{\mu A}$ has to be replaced by the sum of $\frac{l}{\mu A}$ for the different parts of the circuit (e.g. pot core) or generally:
	ŗ		$\sum_{j \in A} \frac{l}{j \in A}$ R can be expressed in $\frac{1}{cm}$ or gilbert/ maxwell. Note: Compare definition of electrical resistance. R = <u>electromotive force</u> = $\frac{V}{T} = \sum_{A} \frac{l}{A}$.

10. UNITS IN THE CENTIMETER-GRAM-SECOND (C.g.s.) SYSTEM AND THE METER-KILOGRAM-SECOND (m.k.s.) SYSTEM

ABBREV.	QUALITY	DESCRIPTION
A	× 10 ⁶	Mega * times one million * $\times 10^6$ written before a unit, it means that the unit is multiplied by 10^6 and thus has become a more practical unit depending on the application. (e.g. $3_{a2} \ M\Omega = 3_{*2} \ megohms = 3_{*2} \times 10^6 \Omega$: 7 MV * 7 megavolts = 7 $\times 10^6 V$ (volts).
ĸ	× 10 ³	Kilo ⇒ fimes one thousand = x 10 ³ . 8 KG ≈ 8 kilograms ⇔ 8000 g (grams).
m	× 10 ⁻³	Milli = times one thousandth = $\times 10^{-3}$. 1 mV = 1 millivolt = 10^{-3} V.
<u>^u</u>	х 10 ^{е6}	Micro = times one millionth = $\times 10^{-6}$, 9 µV = 9 microvolts = 9 $\times 10^{-6}$ V.
ען ען אן ען	x 10 ⁻¹²	Pico Micro-micro} = x 10 ⁻¹² 1 / u/uA=1 micro-micro ampere=10 ⁻¹² A (amperes). Usually one writes 1 mmA instead of / u/uA which is actually incorrect
	ABBREV. A K m / ¹ P / ¹ / ¹	ABBREV.QUALITYM $\times 10^6$ K $\times 10^3$ m $\times 10^{-33}$ m $\times 10^{-33}$ /u $\times 10^{-66}$ p $\times 10^{-12}$ /u/u

UNIT	ABBREV,	QUALITY	DESCRIPTION
Centimeter	cm	Lenath	Unit of length, originally defined as a certain fraction of the earth's
Square Centimeter	cm ²	Area	circumference. Consequently we have
Cubic Centimeter	cm ³	Volume	I cm ⁻ and I cm ⁻ as units of area and volume respectively. I inch = $2,54$ cm; I square inch = 6.45 cm ² ; I cubic inch = 16.4 cm ³ . M.k.s. system: I meter = 100 cm; I m ² = 10^4 cm ² ; I m ³ = 10^6 cm ³ .
Ampere	A	Current	Unit of current defined as the unit of positive electrical charge p er second. The same unit is used in the m.k.s. system.
Erg		Work	See Watt
Farad	F	Capa c ītance	Unit of capacitance, defined as the constant ratio between electrical charge on, and voltage between, two neighboring conductors (plates of a condenser). Same in m.k.s.:
			1 / uF = 10 -6 F.
Gauss	G	Induction	The unit of magnetic induction or magnetic flux density. Definition: See "Induction". In the makes system; the unit of induction is I Weber per square meter or I voltsecond per square meter.
			1 weber/m ² = 1 voltsec/m ² = 10 ⁴ gauss.
Gilbert		Magnetomotive Force	The unit of magnetomotive force. It is seldom used.
Gram	g	Mass (Weight)	Unif of mass, Kilogram and milligram
	gr		are also much used. M.K.s. system: 1 kilogram = 1000 grams.
Henry	НS	elf Inductance	The unit of self inductance and mutual inductance. Definition, see under
	pa A	lutual Induc- tance	"Inductance". M.k.s. system: same unit. I mH = I millihenry = 10 ⁻³ H.
Maxwell		Flux	The units of flux. M.k.s. system: I weber (= I voltsec)= 10 ⁸ maxwells. Description: see under "Flux". (In the m.k.s. system the formula of induced e.m.f. is;
			$e_{ind} = \frac{a(N\emptyset)}{dt}$
			where: NØ = flux linkage in weber-turns, e ind = induced voltage in volts.

C

C

4

C

-21-

UNIT	ABBREV	OUALITY	DESCRIPTION
Ohm	τΩ	Resistance	Unit of resistance, defined as : $R = \frac{V}{I}$ where: $V = voltage \ across \ conductor$ with the resistance in V, $I = current \ in \ A,$ $R = resistance \ in \ ohms.$ M.k.s. system same unit.
Oersted	Oe	Magnetizing Force	Unit of magnetizing force. Definition: see under "Agnetic Field". M.k.s. system: 1 ampere turn per meter = 1 At/m = 40 TY Oe = 1.257 × 10 ² Oe. In the m.k.s. system the formula for H In a homogeneously wound toroid Is: H = NI/L where: N = number of turns, I = current in A L = pathlength in m, $H = in At/m_o$
Second	SOC	Time	Unit of time in both systems. Defined as a certain fraction of the time of revolution of the earth around the sun.
Volf	V	Electromotive Force	Unit of voltage。 Can be defined as work per unit charge。
Watt	W Joule/sec	Power Work per sec. Energy per sec. (Heat dissipated per sec.)	Unit of power. The power of a motor is the work it can achieve in one sed- ond. Power = Work . Unit of work is the erg, therefore unit of power = I erg/sec. One usually uses the watt of joule/sec from the m.k.s. system: I watt = 107 ergs/sec.

-22-

FERROXCUBE CORPORATION OF AMERICA

SAUGERTIES, NEW YORK