ANALOG

Data Acquisition

0

HARRIS

SEMICONDUCTOR PRODUCTS DIVISION

Harris
 Linear \&
 Data Acquisition Products

Harris Semiconductor Analog Products represent the state of the art in precision and high speed performance. Capitalizing on the advanced linear processing technologies developed over the past 15 years, Harris Semiconductor Analog Products offer high quality and unmatched performance.

This data book describes Harris Semiconductor's complete line of Linear and Data Acquisition products, and includes a complete set of product specifications and data sheets, application notes and a separate section describing our quality and high reliability program.

All specifications in this data book are applicable only to packaged products. Specifications for dice are obtainable in Harris Semiconductor's Chip Data Book.

Please fill out the registration card at the back of this data book and return it to us so we may keep you informed of our latest new product developments over the next year.

If you need more information on these and other Harris products, please contact the nearest Harris sales office listed in the back of this data book.

Harris Semiconductor's products are sold by description only. Harris reserves the right to make changes in circuit design,specifications and other information at any time without prior notice. Accordingly, the reader is cautioned to verify that data sheets and other information in this publication are current before placing orders. Information contained in application notes is intended solely for general guidance; use of the information for user's specific application is at user's risk. Reference to products of other manufacturers are solely for convenience of comparison and do not imply total equivalency of design, performance, or otherwise.

Contents

General Information

$$
\begin{array}{rr}
\text { Alpha-Numeric Product Index } & (1-1) \\
\text { Ordering Information } & (1-3) \\
\text { I. C. Handling Procedures } & (1-4) \tag{1-4}\\
\text { Harris Analog I. C. Technologies } & (1-4) \\
\text { Cross Reference } & (1-7) \\
\text { Advance Product Information } & (1-13)
\end{array}
$$

Operational Amplifiers and Comparators

CMOS Analog Switches and Multiplexers

Data Conversion and Voltage Reference Products

Communications Products

Analog Application Notes

Chip Information

Harris Quality and Reliability Programs

Packaging

Harris Sales Locations

Alpha-Numeric Product Index

PAGE
Advance Product Information 1-13
HA-909/911 Low Noise Operational Amplifiers 2-6
HA-1600/02/05 Precision Voltage Reference 4-2
HA-1610/1615 +10V Precision Voltage Reference 4-6
HA-2400/04/05 PRAM, Four Channel Operational Amplifiers 2-10
HA-2420/2425 Fast Sample and Hold Gated Operational Amplifiers 4-9
HA-2500/02/05 Precision High Slew Rate Operational Amplifiers 2-14
HA-2507/17/27 Epoxy Packaged, High Slew Rate Operational Amplifier Series 2-18
HA-2510/12/15 High Slew Rate Operational Amplifiers 2-20
HA-2520/22/25 High Slew Rate Uncompensated Operational Amplifiers 2-24
HA-2530/2535 Wide Band High Slew Inverting Amplifiers 2-28
HA-2600/02/05 High Performance Operational Amplifiers 2-32
HA-2607/2627 Epoxy Packaged, Wide Band Operational Amplifiers 2-36
HA-2620/22/25 Very Wide Band, Uncompensated Operational Amplifiers 2-38
HA-2630/2635 High Performance Current Booster 2-42
HA-2640/2645 High Voltage Operational Amplifiers 2-46
HA-2650/2655 Dual High Performance Operational Amplifiers 2-50
HA-2700/04/05 Low Power, High Performance Operational Amplifiers 2-54
HA-2720/2725 Low Power, Current Programmable Operational Amplifiers 2-58
HA-2730/2735 Dual Low Power, Current Programmable Operational Amplifiers 2-64
HA-2900/04/05 Chopper Stabilized Operational Amplifers 2-70
HA-4602/4605 Quad High Performance Operational Amplifiers 2-74
HA-4622/4625 Wide Band High Performance Quad Operational Amplifiers 2-81
HA-4741 Quad Operational Amplifier 2-87
HA-4900/4905 Quad Precision Comparator 2-91
HA-4920/4925 High Speed Quad Comparator 2-98
HA-4950 Precision High Speed Comparator 2-103
HA-5100/5105
HA $5110 / 5115$ Wide Band, JFET Input, Operational Amplifiers 2-108
HA-5110/5115 Wide Band, JFET Input, Uncompensated Operational Amplifiers 2-114
HA-5190/5195 Wide Band, Fast Settling Operational Amplifiers 2-120
HC-55516/55532 Delta Modulator (CVSD) 5-2
HD-0165 Keyboard Encoder 5-7
HI-200 Dual SPST Switch 3-4
HI-201 Quad SPST Switch 3-10
HI-506/507 16/Dual 8 Channel Multiplexers 3-28
HI-506A/507A Overvoltage Protected 16/Dual 8 Channel Multiplexers 3-34
HI-508A/509A Overvoltage Protected 8/Dual 4 Channel Multiplexers 3-40
HI-516 16 Channel/Dual 8 Channel CMOS High Speed Multiplexer 3-46
HI-518 8 Channel/Dual 4 Channel CMOS High Speed Multiplexer 3-49
HI-562 12 Bit, High Speed, Precision D to A Converter 4-13
HI-1080/1085 8 Bit Precision D to A Converter 4-18
HI-1800A Dual DPST Low Leakage Switch 3-16
HI-1818A/1828A 8/Dual 4 Channel Multiplexers 3-52
HI-1840 Fail-Safe 16 Channel Multiplexer 3-56
HI-5040 Low Resistance SPST Switch 3-20
HI-5041 Low Resistance Dual SPST Switch 3-20
HI-5042 Low Resistance SPDT Switch 3-20
HI-5043 Low Resistance Dual SPDT Switch 3-20
HI-5044 Low Resistance DPST Switch 3-20
HI-5045 Low Resistance Dual DPST Switch 3-20
HI-5046 Low Resistance DPDT Switch 3-20
HI-5046A Low Resistance DPDT Switch 3-20
HI-5047 Low Resistance 4 PST Switch 3-20
HI-5047A Low Resistance 4 PST Switch 3-20
HI-5048 Low Resistance Dual SPST Switch 3-20
HI-5049 Low Resistance Dual DPST Switch 3-20
HI-5050 Low Resistance SPDT Switch 3-20
HI-5051 Low Resistance Dual SPDT Switch 3-20
HI-5610 10 Bit High Speed Monolithic D to A Converter 4-22
HI-5618A/5618B 8 Bit High Speed Monolithic D to A Converter 4-28
HI-5900 Analog Data Acquisition Signal Processor 4-35

Ordering Information

Harris Products are designated by "Product Code". When ordering please refer to products by the full code. Harris products will always begin with H.

Specific device numbers will always be isolated by hyphens.

PRODUCT CODE EXAMPLE		AMPLE $25-5$
PREFIX: \qquad H (Harris)	PART NUMBER	
FAMILY:		
C-Communications	$10^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}^{*}$	
D -- Digital	$2-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	
I - Interface	4	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
M - Memory		$0^{\circ} \mathrm{C}$ to $+75{ }^{\circ} \mathrm{C}$
PACKAGE:		100\% $25^{\circ} \mathrm{C}$ Probe (Dice Only)
1- Dual-In-Line	7	Dash-7 High Reliability Commercial Product. $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$.
2- TO-5 Type 3- Epoxy Package	8	Dash-8 Program MIL-STD-883 Class B HA2-2700-8 (Example Only)
4- Leadless Carriers	9	$-40^{\circ} \mathrm{C}$ to $+85{ }^{\circ} \mathrm{C}$
9-Flat Pack		Special high temperature testing available on certain product types. Consult factory for availability.
0-Chip Form		

HARRIS DASH 8 PROGRAM

As a service to users of High Rel products Harris makes readily available via the high reliability DASH 8 program many products from our product lines. Parts screened to MIL-STD-883 Method 5004 Class B are simply branded with the postscript " -8 " to the appropriate Harris part numbers, in effect, offering "off the shelf" delivery. For details concerning this special Harris program for High Rel users, see the Dash 8 section of this Data Book.

HARRIS DASH 7 PROGRAM

The Harris DASH 7 High Reliability Commercial Products program extends HARRIS processing for Hi-Rel military components to standard commercial products to provide improved levels of quality and reliability. Details on DASH 7 are included in Section 8 of this Data Book.

SPECIAL ORDERS

For best availability and price, it is urged that standard "Product Code" devices be specified, which are available worldwide from authorized distributors. Where enhanced reliability is needed,
note standard "Dash 8" screening described in this Data Book. Harris application engineers may be consulted for advice about suitability of a part for a given application.
If additional electrical parameter guarantees or reliability screening are absolutely required, a Request for Quotation and Source Control Drawing should be submitted through the local Harris Sales Office or Sales Representative. Since, many electrical parameters may be economically assured through design analysis, characterization, or correlation with other parameters, additionally desired parameters should be labeled, "Vendor will guarantee, but not necessarily test".

Harris reserves the right to decline to quote, or to request modification to special screening requirements.

I. C. Handling Procedures

Harris Analog I.C. processes produce circuits more rugged than similar ones. However, no semiconductor is immune from damage resulting from the sudden application of many thousands of volts of static electricity. While the phenomenon of catastrophic failure of devices containing MOS transistors or capacitors is well known, even bipolar circuits can be damaged by static discharge, with altered electrical properties and diminished reliability. None of the common I.C. internal protection networks operate quickly enough to positively prevent damage.
It is suggested that all semiconductors be handled, tested, and installed using standard "MOS handling techniques" of proper grounding of personnel and equipment. Parts and subassemblies should not be in contact with untreated plastic bags or wrapping material. High impedance I.C. inputs wired to a P.C. connector should have a path to ground on the card.

HANDLING RULES

Since the introduction of integrated circuits with MOS structures and high quality junctions, a safe and effective means of handling these devices has been of primary importance. One method employed to protect gate oxide structures is to incorporate input protection diodes directly on the monolithic chip. However, there is no completely foolproof system of chip input protection in existance in the industry. In addition most compensation networks in linear circuits are located at high impedance nodes, where protection networks would disturb normal circuit operation. If static discharge occurs at sufficient magnitude (2 KV or more), some damage or degradation will usually occur. It has been found that handling equipment and personnel can generate static potentials in excess of 10 KV in a low humidity environment; thus it becomes necessary for additional measures to be implemented to eliminate or reduce static
charge. It is evident, therefore, that proper handling procedures or rules should be adopted.
Elimination or reduction of static charge can be accomplished as follows:

- Use conductive work stations. Metallic or conductive plastic* tops on work benches connected to ground help eliminate static build-up.
- Ground all handling equipment.
- Ground all handling personnel with a conductive bracelet through $1-\mathrm{M}$ ohm to ground. The 1-M ohm resistor will prevent electroshock injury to personnel.
- Smocks, clothing, and especially shoes of certain insulating materials (notably nylon) should not be worn in areas where devices are handled. These materials, highly dielectric in nature, will hold, or aid, in the generation of a static change. Where they cannot be eliminated natural materials such as cotton etc. should be used to minimize charge generation capacity.
- Control relative humidity to as high as a level as practical. (RH 50\%).
- Ionized air blowers reduce charge build-up in areas where grounding is not possible or desirable.
- Devices should be in conductive carriers during all phases of transport. Leads may be shorted by tubular metallic carriers, conductive foam or foil.
- In automated handling equipment, the belts, chutes, or other surfaces should be of conducting material. If this is not possible, ionized air blowers may be a good alternative.
* Supplier 3M Company "Velostat"

Harris Analog I. C. Technologies

JUNCTION ISOLATION (J.I.)

This is the most common integrated circuit proccess. Bipolar I.C.'s generally begin with a p-type wafer into which a buried layer pattern, if used, is first diffused. Then the n-type epitaxial layer is grown, and p-type isolation walls are diffused around each area which is to be electrically isolated from the other circuitry. These isolation walls must be diffused deeply into the wafer in order to
contact the original p-substrate. In operation, the p-substrate and isolation walls are connected to the most negative circuit potential, so that each active area is surrounded on the sides and bottom by a reverse biased junction through which negligible current flows (Figure 1).

To complete the I.C., base and emitter diffusions are performed, the wafer is coated with aluminum and the conductor pattern is etched.

Representative Harris devices using this process are HA-2820, HA-4741 and HD-0165.

DIELECTRIC ISOLATION (D.I.)

A somewhat different process has been proven particularly advantageous for fabricating high performance analog I.C.'s. This is dielectric isolation (D.I.), where each active area is surrounded on the sides and bottom by an insulating layer of silicon dioxide, and for mechanical strength imbedded in polycrystalline silicon. This process for bipolar I.C.'s begins with a wafer of n-type silicon. The side of the wafer which will eventually be the bottom is deeply etched to form the sidewall pattern, then silicon dioxide and polycrystalline silicon are grown to fill the etched "moats". The opposite side of the wafer is then polished until the insulating sidewalls appear at the wafer surface (Figure 2). Conventional diffusion and metallization processes follow to complete the I.C. D.I. for analog I.C.'s has a number of advantages:

1. Almost all op amp designs require at least one PNP transistor in the signal path. Typical J.I. op amps must use a lateral PNP which inherently has very low frequency response, limiting typical compensated bandwidth to 1 MHz . The D.I. process makes it practical to build a vertical PNP with much higher bandwidth making possible compensated op amp bandwidths of 12 MHz or higher (Figure 3). Also, transistor collector to substrate capacitance is $2 / 3$ less using D.I., further enhancing high frequency performance.
2. Other devices such as optimally specified MOS or JFET transistors may be fabricated on the same chip. Isolated diffused and thin film resistors are also practical.
3. The isolation removes the possibility of parasitic SCR's which might create latchup under certain sequences of power and signal application.
4. Leakage currents to the substrate under high temperature conditions are greatly reduced. While the circuits in this data book were not specifically designed for operating temperatures greater than $+125^{\circ} \mathrm{C}$, many have shown superior performance. For I.C.'s requiring the ultimate in radiation resistance, Harris Semiconductor Programs Division should be consulted.

DIELECTRIC ISOLATED CMOS

J.I. processed CMOS Analog I.C.'s, which are generally used in conjunction with several power supplies, are particularly prone to parasitic SCR latchup failures and failures due to input voltage spikes. The D.I. CMOS process, which is compared in detail in Harris Application Note 521, has proved to be the best solution.

Since analog multiplexers are often used at the input of a data acquisition system, particular attention must be paid to the possibility of damaging input overvoltage conditions. Harris has provided an effective answer in the $\mathrm{HI}-506 \mathrm{~A}$ through HI-509A multiplexers with built-in overvoltage protection.

Figure 1 - Structures of various components formed in the junction-isolation process. (a) Topological view. (b) Cross-sectional view.

(a)

(c)

(d)

(g)
(b)

(e)

Figure 2 - Process steps for dielectric isolation. (a) Surface preparation, (b) N-buried layer diffusion, (c) masking oxide, (d) isolation pattern, (e) silicon etch, (f) dielectric oxide, (g) polycrystalline deposition, (h) backlap and polish, (i) finished slice.

(f)

(h)

(i)

Figure 3 - The high-frequency process. (a) Cross-sectional view of P and N islands for PNP and NPN transistors. (b) Topological view showing relative placement of transistor regions. (c) Cross-sectional view of high-frequency PNP device formation in the D.I. process.

USER'S GUIDE TO LINEAR \& DATA ACOUISITION PRODUCTS

MANUFACTURER	PART NUMBER	HARRIS PIN-FOR-PIN REPLACEMENT	HARRIS CLOSEST REPLACEMENT	SUGGESTED FOR NEW DESIGN
AMD	AM118/318 AM715 AM1660			HA-2510/15 HA-2520/25 HA-2500/05 HA-2600/05 HA-2700/05
ANALOG DEVICES	AD505 AD507JH* AD507SH AD509JH* AD509SH AD518 AD562 AD582 AD583KS AD7501 AD7502 AD7503 AD7506TD* AD7507TD* AD7510 AD7511 AD7512 AD7513TH* AD2700U AD2700L	HA2-2625-5 HA2-2620-2 HA2-2525-5 HA2-2520-2 HA1-2425-5 HI1-506-2 HI1-507-2 HI2-200-2	HA-2530/35 $\begin{aligned} & \text { HA-2510/15 } \\ & \text { HI-562 } \\ & \text { HA-2420/25 } \end{aligned}$	HI-1818A HI-1828A HI-1818A HI-201 HI-201 HI-5043 HA-1600-2 HA-1600-5
BURR BROWN	$\begin{aligned} & \text { 3500/3510A } \\ & \text { 3500/3501R } \\ & 3503 \mathrm{~J} \\ & 3506 \mathrm{~J} \\ & \text { 3507J } \\ & \text { 3508J } \\ & \text { 3553AM } \\ & \text { MPC4D } \\ & \text { MPC8S } \\ & \text { MPC8D } \\ & \text { MPC16S } \end{aligned}$	HA2-2505-5 HA2-2605-5 HA2-2525-2 HA2-2625-5 HI1-509A-5 HI1-508A-5 HI1-507A-5 HI1-506A-5		$\begin{aligned} & \text { HA-2605 } \\ & \text { HA-2600 } \end{aligned}$ HA-2630/35
DATEL	AM-450-2 AM-452-2 AM-460-2 AM-462-1 AM-462-2 AM-464-2 AM-490-2A MX-808 MX-1606 MXD-409 MXD-807 SHM-1C-1 DAC-681	HA2-2505-5 HA2-2525-5 HA2-2605-5 HA1-2625-5 HA2-2625-5 HA2-2645-5 HA2-2905-5 HI-508A-5 HI-506A-5 HI-509A-5 HI-507A-5 HA1-2425-5 HI-562		

[^0]USER'S GUIDE TO LINEAR \& DATA ACQUISITION PRODUCTS (Continued)

MANUFACTURER	PART NUMBER	HARRIS PIN-FOR-PIN REPLACEMENT	HARRIS CLOSEST REPLACEMENT	SUGGESTED FOR NEW DESIGN
EXAR	XR4212		HA-4741	
FAIRCHILD	$\mu \mathrm{A} 702$ μ A709 μ A715 μ A725 $\mu \mathrm{A} 727$ μ A740 μ A741 μ A747 μ A748 μ A772 μ A776 μ A791 SH3002 1558/1458		HA-2700/05 HA-2640/45 HA-2510/15 HA-2720/25 HA-2650/55	HA-2620/25 HA-909/911 HA-2520/25 HA-2900/05 HA-5100/5110 HA-909/911 HA-2600/05 HA-2700/05 HA-2650/55 HA-2620/25 HA-2630/35 HI-1800A
INTERSIL	IH2O1 IH200 4250 4250C IH5040MDE IH5040CDE IH5041MDE IH5041CDE IH5042MDE IH5042CDE IH5043MDE IH5043CDE IH5044MDE IH5044CDE IH5045MDE IH5045CDE IH5046MDE IH5046CDE IH5047MDE IH5047CDE IH5048MDE IH5048CDE IH5049MDE IH5049CDE IH5050MDE IH5050CDE IH5051MDE IH5051CDE 8017 8021M 8021C 8022M 8022C IH5110/5111	HI-201 HI-201 HI1-5040-2 HI1-5040-5 HI1-5041-2 HI1-5041-5 HI1-5042-2 HI1-5042-5 HI1-5043-2 HI1-5043-5 HI1-5044-2 HI1-5044-5 HI1-5045-2 HII-5045-5 HI1-5046-2 HI1-5046-5 HI1-5047-2 HI1-5047-5 HI1-5049-2/HI1-5051-2 HI1-5049-5/HI1-5051-5 HI1-5049-2 HI1-5049-5 HI1-5050-2 HI1-5050-5 HI1-5051-2 HI1-5051-5	$\begin{aligned} & \text { HA-2720 } \\ & \text { HA-2725 } \end{aligned}$	HA-2520/25 HA-2730 HA-2735 HA-2420/25

USER'S GUIDE TO LINEAR \& DATA ACQUISITION PRODUCTS (Continued)

MANUFACTURER	PART NUMBER	HARRIS PIN-FOR-PIN REPLACEMENT	HARRIS CLOSEST REPLACEMENT	SUGGESTED FOR NEW DESIGN
	1H5060 IH5070 HA-2500/02/05 HA-2510/12/15 HA-2520/22/25 HA-2600/02/05 HA-2620/22/25	$\begin{aligned} & \text { HA-2500/02/05 } \\ & \text { HA-2510/12/15 } \\ & \text { HA-2520/22/25 } \\ & \text { HA-2600/02/05 } \\ & \text { HA-2620/22/25 } \end{aligned}$	$\begin{aligned} & \text { HI-506A } \\ & \text { HI-507A } \end{aligned}$	
INTRONICS	$\begin{aligned} & \text { A-560 } \\ & \text { A-561 } \\ & \text { A-570 } \\ & \text { CA- } 580 \end{aligned}$	HA2-2525-5 HA2-2625-5 HA2-2535-5 HA2-2905-5		
MOTOROLA	MC1520/1420 MC1530/1531/ 1430/31 MC1533/1433 MC1536/1436 MC1538/1438 MC1539/1439 MC1545/1445 MC1554/1454 MC1556/1456 MC1558/1458 MC3301/3401 MC3302 MC3403/3505 MX4741		HA-2640/45 HA-2650/55 HA-4741 HA-4741	$\begin{aligned} & \text { HA-2600/05 } \\ & \text { HA-2600/05 } \\ & \text { HA-2700/05 } \\ & \text { HA-2620/2635 } \\ & \text { HA-2620/25 } \\ & \text { HA-2400/2505 } \\ & \text { HA-2620/2635 } \\ & \text { HA-2600/05 } \\ & \text { HA-4741 } \\ & \text { HA-4900 } \end{aligned}$
NATIONAL	LF11508/13508 LF11509/13509 LF11201/12201/13201 LF155A/156A/157A LF355A/356A/357A LF 198/398 LH0001 LH0002 LH0003 LH0004 LH0005 LH0022/42/52 LH0023/43 LH0024 LH0032 LH0033/63 LH0062 LH0070-2 LM101/301/ 107/307 LM102/302 LM108/208/308 LM110/310		HI-508A HI-509A HI-201 HA-5100-2 HA-5105-5 HA-5190/95	HA-2420/25 HA-2700 HA-2630 HA-2520 HA-2640 HA-2620 HA-5100/5105 HA-2420/25 HA-2530/35 HA-5190/95 HA-2630/35 HA-1600-5 HA-909/911/ $2600 / 05 /$ HA-2600/05 HA-2700/04/05 HA-2500/05

MANUFACTURER	PART NUMBER	HARRIS PIN-FOR-PIN REPLACEMENT	HARRIS CLOSEST REPLACEMENT	SUGGESTED FOR NEW DESIGN
NATIONAL (Continued)	LM112/212/312 LM118/318 LM124/324 LM139/339 LM143/343 LM144/344 LM148/348 LM149/349 LM199 LM199A LM399A		HA-4741 HA-2640/45 HA-2640/45 HA-4741 HA-4602/05	$\begin{aligned} & \text { HA-2700/04/05 } \\ & \text { HA-2510/15 } \\ & \text { HA-4900/05 } \\ & \\ & \text { HA-1600-2 } \\ & \text { HA-1610-2 } \\ & \text { HA-1600-2 } \\ & \text { HA-1610-2 } \\ & \text { HA-1610-5 } \end{aligned}$
PRECISION MONO.	MUX-08 MUX-09 OP-01 SMP81 MUX-88 OP-15A OP-15E OP-15F OP-17A OP-17E OP-17F REF-01A REF-01E OP-05/07 SSS1558/1458 DAC-12 SSS562	$\begin{aligned} & \text { HI-508A } \\ & \text { HI-509A } \end{aligned}$ HA-2420/25 HI-508A HI1-562-5	HA-5100-2 HA-5100-5 HA-5105-5 HA-5110-2 HA-5110-5 HA-5115-5 HA-1610-2 HA-1610-5 HA-2650/55	$\begin{array}{r} \text { HA-2600/05 } \\ 2500 / 05 \end{array}$ HA-2900/05 HI-562
RCA	CA3020 CA3078 CA3100 CA6078 CD4016			$\begin{aligned} & \text { HA-2630/35 } \\ & \text { HA-2720/2730 } \\ & \text { HA-2520/25 } \\ & \text { HA-2720/2730 } \\ & \text { HI-201 } \end{aligned}$
RAYTHEON	RM/RC1556A RM/RC4131 RM/RC4132 RM/RC4136 RM4156 RC4156 HA1-4741-2 HA1-4741-5 RM/RC4531 RM/RC4558	HA1-4741-2 HA1-4741-5 HA1-4741-2 HA1-4741-5	HA-2650/55	HA-2600/05 HA-2600/05 HA-2700/05 HA-4741 HA-2500/05
SIGNETICS	$\begin{aligned} & 5537 \\ & 531 \\ & 5556 \\ & 5558 \end{aligned}$		HA-2650/55	$\begin{aligned} & \text { HA-2420/25 } \\ & \text { HA-2510/15 } \\ & \text { HA-2600/05 } \end{aligned}$

MANUFACTURER	PART NUMBER	HARRIS PIN-FOR-PIN REPLACEMENT	HARRIS CLOSEST REPLACEMENT	SUGGESTED FOR NEW DESIGN
SILICON GENERAL	$\begin{aligned} & \text { SG741S } \\ & \text { SG741SG } \end{aligned}$			$\begin{aligned} & \text { HA-2500 } \\ & \text { HA-2505 } \end{aligned}$
SILICONIX	DG181* DG184 DG185 DG187 DG188 DG190 DG191 DG200AA DG200BA DG200AK DG200BK DG200CJ DG201AK DG201BK DG201CJ DG506AR DG506BR DG506CJ DG507AR DG507BR DG507CJ DG508 DG509 L140	HI2-200-2 HI2-200-5 HI1-200-2 HI1-200-5 HI3-200-5 HI1-201-2 HI1-201-5 HI3-201-5 HI1-506-2 HI1-506-5 HI1-506-5 HI1-507-2 HI1-507-5 HI3-507-5	HI-5049 HI-5045 HI-5051 HI-5043 HI-508A HI-509A	HI-5048 HI-5050 HI-5042 HA-2720/25
SOLITRON	$\begin{aligned} & \mathrm{CM} 4016 \mathrm{~A} \\ & \mu \mathrm{c} 4000 / 4001 \mathrm{C} / \\ & 4002 \mathrm{C} \\ & \mu \mathrm{c} 4250 \\ & \mu \mathrm{c} 4250 \mathrm{c} \end{aligned}$		$\begin{aligned} & \text { HA- } 2720 \\ & \text { HA-2725 } \end{aligned}$	$\begin{aligned} & \text { HI-201 } \\ & \text { HA-2605 } \end{aligned}$
SPRAQUE	$\mu \mathrm{LS} /$ LN2139 $\mu \mathrm{LS} / \mathrm{LN} 2151$ $\mu \mathrm{LS} / \mathrm{LN} 2156$ μ LS/ LN2157 $\mu \mathrm{LS} / \mathrm{LN} 2158$ $\mu \mathrm{LS} / \mathrm{LN} 2171$ $\mu \mathrm{LS} / \mathrm{LN} 2172$ $\mu \mathrm{LS} / \mathrm{LN} 2173$ $\mu \mathrm{LS} / \mathrm{LN} 2174$ $\mu \mathrm{LS} / \mathrm{LN} 2175$ $\mu \mathrm{LS} / \mathrm{LN} 2176$			HA-2600/05 HA-2600/05 HA-2600/05 HA-2650/55 HA-2650/55 HA-2600/05 HA-2620/25 HA-2600/05 HA-2620/25 HA-2600/05 HA-2600/05
TELEDYNE PHILBRICK	$\begin{aligned} & 1321 \\ & 1321-01 \\ & 1322 \\ & 1322-01 \\ & 1323 \\ & 1323-01 \\ & 1323-02 \end{aligned}$	HA2-2625-5 HA2-2620-2 HA2-2525-5 HA2-2520-2 HA2-2705-5 HA2-2700-2 HA2-2704-4		

USER'S GUIDE TO LINEAR \& DATA ACQUISITION PRODUCTS (Continued)

MANU- FACTURER	PART NUMBER	HARRIS PIN-FOR-PIN REPLACEMENT	HARRIS CLOSEST REPLACEMENT	SUGGESTED FOR NEW DESIGN
TELEDYNE	1332	HA2-2645-5		
PHILBRICK	1339	HA2-2905-5		HA-2625
(Continued)	1340	HI1-507A-5		
	4551	HI1-506A-5		
	4552	HA1-2425-5		HA-5195
	4856		HA-4602	HA-2730/35
	1430			HA-2650/55

Advance Product Information

Advance Data Sheets

HA-1620 Precision 5 Volt Reference 1-14
HA-5130 Precision Operational Amplifier 1-15
HA-5160 Wide band, High Slew Rate JFET Op Amp 1-16
HA-5310/15 Precision Sample and Hold Amplifier 1-17
HI-300/301/302/303 CMOS Analog Switches 1-18
HI-304/305/306/307 CMOS Analog Switches 1-19
HI-381/384/387/390 CMOS Analog Switches 1-20
HI-400/401 High Speed Analog Switches 1-21
HI-5712 High Performance 12 Bit A/D Converter 1-22
HI-5812 12 Bit A/D Converter System 1-23
HC-55536 All-Digital Continuously Variable Slope 1-24
Delta Demodulator (CVSD)
High Temperature Electronics 1-27
Advanced Packaging Techniques 1-27

FEA TURES	DESCRIPTION
- MONOLITHIC CONSTRUCTION - EXCELLENT TEMPERATURE STABILITY $0.3 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ - LOW NOISE $100 \mu \mathrm{Vrms}$ - WIDE INPUT RANGE 11.4-35 - ADJUSTABLE OUTPUT $\pm 0.5 \mathrm{~V}$ APPLICATIONS - external voltage reference for data CONVERTERS - COMPARATOR REFERENCE - regulator reference	The Harris HA-1620 is a monolithic, temperature regulated +5 V Precision Voltage Reference. An on-chip heating element heats the chip to a predetermined point. Once this temperature is reached it is sensed and regulated. Extremely low output temperature coefficients can be achieved by this method. Less than $1 \mathrm{ppm} / \mathrm{OC}^{\mathrm{C}}$ is typical for the HA-1620. The HA-1620 will accept an input voltage of between 11.4 and 35 volts and provide a very stable +5 V output, capable of delivering 10 mA output current. Nominally +5 Volts, $(\pm 5 \mathrm{mV})$ the output can be adjusted $\pm 0.5 \mathrm{~V}$ by external resistors. This reference is ideal for applications requiring precision and stability such as instrumentation and high resolution D/A converters.
PINOUT	FUNCTIONAL DIAGRAM
TOP VIEW	

FEATURES	DESCRIPTION
- ULTRA LOW OFFSET VOLTAGE $<100 \mu \mathrm{~V}$ - ULTRA LOW OFFSET VOLTAGE DRIFT $1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ - EXCELLENT STABILITY - LOW NOISE $10 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ APPLICATIONS - REPLACEMENT FOR CHOPPER AMPLIFIERS - LOW LEVEL SIGNAL APPLICATION - PRECISION SUMMING AMPLIFIERS	The HA-5130 Precision Operational Amplifier offers an economical alternative to modular and monolithic chopper stabilized amplifiers. It presents an excellent combination of low offset voltage, low offset voltage drift and low noise. These characteristics coupled with its dynamic performance make this amplifier suitable for a wide range of applications in low level signal processing. The HA-5130 is internally compensated for unity gain configurations and in addition should reduced offset voltage be required the trimpot can be connected to pins 1 and 5 or 1 and 8 for added versatility.
PINOUT	FUNCTIONAL DIAGRAM
Package Code TO-99 TOP VIEW	

Wideband, High Slew Rate JFET Operational Amplifier

FEATURES

- HIGH SLEW RATE
- unity gain bandwidth
- LARGE VOLTAGE GAIN
- LOW OFFSET VOLTAGE
- FAST SETTING TIME
$140 \mathrm{~V} / \mathrm{sec}$.
120 MHz

2 mV
< 500 nsecs.

APPLICA TIONS

DESCRIPTION

The HA-5160 is a monolithic wideband, high slew rate operational amplifier manufactured using JFET input and dielectric isolation.

Precision laser trimming of the input stage complements the amplifiers' dynamic capabilities with excellent input characteristics.

Outstanding features of this device are very high slew rate and wide bandwidth which make it suitable for a wide range of signal conditioning applications.

- HIGH SPEED DATA ACQUISITION SYSTEMS
- PULSE AMPLIFICATION
- VIDEO FREQUENCY APPLICATIONS

PINOUT

TOP VIEW

HA-5310/5315

FEATURES	DESCRIPTION
- ACCURACY (FULL TEMP) 0.01% - ACQUISITION TIME (.005\%) $6 \mu \mathrm{~s}$ - APERTURE TIME 2 ns - FEEDTHROUGH ERROR Less than 0.005% - FULLY DIFFERENTIAL INPUT - INTERNAL HOLD CAPACITORS - TTL/CMOS COMPATIBLE APPLICATIONS - PRECISION DATA ACQUISITION SYSTEMS - a/D CONVERTER FRONT END	The HA-5310 is a high precision sample and hold, which is capable of tracking the signal appearing at its inputs while presenting the result of the previous hold operation at its output, making the circuit ideally suited to use in time multiplexed systems. The circuit contains a high impedance, fully differential input of the type traditionally employed in instrumentation amplifiers, which affords high common mode rejection, high noise insensitivity, and compatibility with optimized grounding schemes. External feedback networks allow the acquired signal to be amplified by a user-determined factor. The acquisition process employs a technique which provides auto zeroed input operation. The sample/hold capacitor switching is accomplished with a novel bipolar switching technique which results in extremely low charge transfer errors. These provide the ability to hold total error to less than $.01 \%$ over the military temp range. The device is composed of two monolithic bipolar chips, each featuring dielectric isolation. Package is a plastic or ceramic 14 pin DIP.
PINOUT	FUNCTIONAL DIAGRAM

CMOS Analog Switches

FEATURES

- WIDE ANALOG SIGNAL RANGE
- FAST SWITCHING SPEED (TYP)
- LOW ON RESISTANCE (MAX)
- LOW STANDBY POWER (TYP)
- BREAK-BEFORE-MAKE SWITCHING
- TTL COMPATIBLE
- NO LATCH UP
- DIGITAL INPUT OVERVOLTAGE PROTECTION

APPLICATIONS

- HIGH FREQUENCY SWITCHING
- SAMPLE AND HOLD
- battery operated systems
- DIGITAL FILTERS
- OP AMP GAIN SWITCHING

DESCRIPTION

The HI-300 through HI-303 family of monolithic CMOS analog switches offers low power operation combined with fast switching speeds and low ON resistance. These switches typically consume only $0.06 \mu \mathrm{~W}$ in a standby mode and only 7.5 mW while operating. Switching speeds are typically 100 ns and the low ON resistance of 50Ω maximum has little variation over temperature. Their specifications make these switches ideal for use where high performance switching is required over a wide analog signal range. These switches are fabricated with dielectric isolation processing, thereby eliminating latch-ups and reducing leakage currents. Break-before-make switching is insured and these devices are TTL compatible. The HI-300 through HI-303 are direct replacements for the DG 300 through DG 303. Duplications for these switches include signal path switching, sample and hold circuits, op amp gain switching, and battery powered circuits.

PINOUTS

HI-302 DUAL DPST

HI-301 SPDT

HI-303 DUAL SPDT

LOGIC	SW1 SW2	SW3 SW4
0	OFF	ON
1	ON	OFF

FEATURES	DESCRIPTION
- LOW OPERATING POWER (TYP) $0.06 \mu \mathrm{~W}$ - WIDE ANALOG SIGNAL RANGE $\pm 15 \mathrm{~V}$ - LOW ON RESISTANCE (MAX) 50Ω - FAST SWITCHING SPED (TYP) 100 ns - BREAK-BEFORE-MAKE SWITCHING - NO LATCH UP - CMOS COMPATIBLE - DIGITAL INPUT OVERVOLTAGE PROTECTION	The HI-304 through HI-307 family of monolithic CMOS analog switches offers low power operation combined with fast switching speeds and low ON resistance. These switches typically consume only 0.06 mW in both standby and operating modes. Switching speeds are typically 100 ns and the low $O N$ resistance of 50Ω maximum varies little over temperature. These specifications make these switches ideal for use where high performance switching is required over a wide analog signal range. These switches are fabricated with dielectric isolated processing, thereby eliminating latch-ups and reducing leakage currents. Break-beforemake switching is insured and these devices are CMOS compatible. The $\mathrm{HI}-304$ through $\mathrm{HI}-307$ are direct replacements for the DG 304 through DG 307 switches. Applications for these circuits include battery powered circuits, signal path switching, communication systems, and low level switching.
APPL/CATIONS	
- BATTERY OPERATED SYSTEMS - COMMUNICATION SYSTEMS - HIGH FREQUENCY SWITCHING - SAMPLE AND HOLD - LOW LEVEL SWITCHING	

PINOUTS

HI-304 DUAL SPST

HI-305 SPDT
TOP VIEW

LOGIC	SW1	SW2
0	OFF	0 N
1	0 N	0 FF

HI-306 DUAL DPST

HI-307 DUAL SPDT

FEATURES	DESCRIPTION
- WIDE ANALOG SIGNAL RANGE - FAST SWITCHING SPEED (TYP) - LOW ON RESISTANCE (MAX) - LOW STANDBY POWER (TYP) - NO LATCH UP - BREAK-BEFORE-MAKE SWITCHING - TTL/CMOS COMPATIBLE - DIGITAL INPUT OVERVOLTAGE PROTECTION	The HI-381 through HI-390 family of monolithic CMOS analog switches offers low power operation combined with fast switching speeds and low ON resistance. These switches typically consume only $0.06 \mu \mathrm{~W}$ in a standby mode and only 7.5 mW while operating. Switching speeds are typically 100 ns and the low 0 N resistance of 50Ω maximum varies little over temperature. These specifications make these switches ideal for use where high performance switching is required over a wide analog signal range. The switches are fabricated with dielectric isolation processing, thereby eliminating latch-ups and reducing leakage currents. Break-before-make switching is insured and these devices are both TTL and CMOS compatible. The HI- 381 through HI-390 are direct replacements for the DG 381 through DG 390, and are pin compatible with the DG 180 series switches. Applications for these switches include signal path switching, sample and hold circuits, op amp gain switching, and battery powered circuits.
APPLICATIONS	
- HIGH FREQUENCY SWITCHING - SAMPLEAND HOLD - COMmUNICATION SYSTEMS - memory block switching - BATTERY POWER SYSTEMS	

PINOUTS

HI-381 DUAL SPST

HI-387 SPDT
TOP VIEW

LOGIC	SW1	SW2
0	$0 F F$	$O N$
1	$O N$	$0 F F$

HI-384 DUAL DPST

HI-390 DUAL SPDT

LOGIC	SW1	SW3
	SW2	SW4
0	OFF	ON
1	ON	OFF

FEATURES

- VERY FAST SWITCHING SPEED (MAX)

50ns

- LOW ON RESISTANCE (MAX) 50Ω
- WIDE ANALOG SIGNAL RANGE $\pm 15 \mathrm{~V}$
- BREAK-BEFORE-MAKE SWITCHING
- NO LATCH UP
- TRUE TTL COMPATIBILITY
- PIN COMPATIBLE WITH HI-200/201

APPL/CA TIONS

- HIGH FREQUENCY SWITCHING
- VIDEO DISPLAY SYSTEMS
- DIGITAL FILTERS
- SAMPLE AND HOLD
- ECM SYSTEMS

DESCRIPTION

The HI-400 and HI-401 are monolithic CMOS analog switches featuring very fast switching speed and low ON resistance. The HI-400 is a dual SPST switch, and the HI-401 is a quad SPST, with identical pinouts to the HI200/201 switches. Switching speeds of 50 ns max make these devices the fastest monolithic analog switches presently available. The HI-400 and $\mathrm{HI}-401$ are ideal replacements for slower monolithic switches and for discrete devices. These switches also feature a low ON resistance of 5052 and a wide analog signal range of $\pm 15 \mathrm{~V}$, providing high performance switching at fast speeds. The $\mathrm{HI}-400$ and $\mathrm{HI}-401$ are fabricated with dielectric isolation processing, thereby eliminating latch-ups and reducing leakage currents.

PINOUTS

HI-400

HARRIS
SEMICONDUCTOR PRODUCTS DIVISION

DESCRIPTION

The HI-5712 is a high speed 12 bit successive approximation

- $8 \mu \mathrm{~s} 12$ BIT CONVERSION TIME
- 10ppm/0C GAIN TEMPCO
- TRI-STATE, SERIAL AND PARALLEL OUTPUTS
- INTERNAL CLOCK AND +10V REFERENCE
- MICROPROCESSOR COMPATIBLE
- TTL/CMOS COMPATIBLE
- NO MISSING CODES OVER TEMPERATURE.
- MIL-STD-883 PROCESSING AVAILABLE
- SHORT CYCLE CAPABILITY FOR 10,8, OR 6 BIT CONVERSIONS

APPLICATIONS

- military systems
- HIGH PERFORMANCE DATA ACQUISITION

A to D converter, featuring $8 \mu \mathrm{~s}$ conversion time and 12 bit accuracy. Numerous functions can be software controlled or otherwise configured by the user to meet a variety of A to D converter requirements.
Also, Tri-State outputs and necessary signal lines are provided for interface with 8,12 , or 16 bit microprocessor systems.
External pin connections prepare the analog input for unipolar or bipolar range, and 10 V or 20 V full scale. The internal 2 MHz clock may be over-ridden by an external clock signal. The internal +10 V reference offers 10 mA output current and $5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ tempco. It may be left unconnected, jumpered to the internal DAC, or used as a reference elsewhere in the system. A remote sense terminal is provided for this purpose.
Programmable features include: Binary or 2's complement code select (MSB/MSB); Short Cycle for 10, 8, or 6 bit conversion; independent control of the Tri-State function for bit groups 1-8 and 9-12.

Monolithic chips comprising the converter are mounted in leadless chip carriers (LCC's) which are bonded to both sides of a multi-layer ceramic substrate resulting in a compact 40 pin dual-in-line package. Individual LCC's may be screened (to 883/Class B for example) before assembly on the HI-5712 substrate. The finished converter may then undergo further screening for very high levels of reliability.

HARRIS SEMICONDUCTOR
PRODUCTS DIVISION

FEATURES

- 12 BIT ABSOLUTE ACCURACY OVER TEMP.
- 30μ s CONVERSION TIME
- ADVANCED INTERFACE FOR μ PROCESSORS
- SELF-CONTAINED TRACK/HOLD
- DIFFERENTIAL REFERENCE AND ANALOG DATA INPUTS
- UNIPOLAR POS/NEG OR BIPOLAR OPERATION
- THREE-STATE BYTE ORIENTED OUTPUTS
- STRAIGHT BINARY, OFFSET BINARY, OR 2's COMPLEMENT OUTPUT
- TTL/CMOS COMPATIBLE
- MIL-STD-883 SCREENING AVAILABLE

APPLICATIONS

- HIGH PERFORMANCE DATA ACQ. SYSTEMS
- MILITARY AND INDUSTRIAL SYSTEMS
- PRECISION INSTRUMENTATION

PINOUT

TOP VIEW

DESCRIPTION

The HI-5812 is a precision 12 bit A to D converter that is based on a conversion algorithm unique among integrated circuit converters. It offers an unprecedented 12 bit absolute accuracy over temperature, 30 microsecond conversion time, an advanced microprocessor interface, and an internal Track/Hold (T/H) amplifier.

Both the reference and analog voltage inputs offer the high impedance, fully differential configuration found in instrumentation amplifiers. These "floating" inputs allow the user to hookup the converter for optimum interference rejection in a variety of systems. Also, each input is auto-zeroed, which yields a maximum of $1 / 2$ LSB error from all sources for both the Track/Hold and A / D conversion functions combined, over the operating temperature range. To realize this performance a precision 5 V reference is required, such as Harris HA-1620.

Two identical analog processors are included in the HI-5812, each with its own Track/Hold amplifier. These processors alternately compute the relation $\mathrm{V}_{\mathrm{i}}=2\left[\mathrm{~V}_{\mathrm{i}}-1-\mathrm{V}_{\mathrm{r}} \operatorname{Sgn}\left(\mathrm{V}_{\mathrm{i}}-1\right)\right]$, where $\mathrm{V}_{\mathrm{i}}-1$ is the preceding result and V_{r} equals one half the (unipolar) input range. The sign of each computation determines one bit in the output code, beginning with the MSB.
Because a Track/Hold function is inherent in the conversion process, the customary requirement of a T / H amplifier at the converter's input is eliminated. The START CONVERT command results in signal to HOLD and simultaneously initiates a conversion cycle. Before completion of the conversion the T / H has returned to TRACK and reacquired the analog input. This allows a new cycle to begin immediately, provided the user has selected the continuous conversion mode of operation.
INTERRUPT resets the converter at any point in the conversion cycle, and CHIP ENABLE disables all the digital control inputs to allow control of multiple converters by a single processor. Two more pins select positive or negative unipolar input, or bipolar input with the maximum code corresponding to top or bottom of the input range. The microprocessor interface circuitry includes a three state 12 bit parallel output, in which the 8 MSB's and the 4 LSB's are separately enabled to allow multiplexing over an 8 bit data bus.
Finally, the MSB SELECT input permits a choice of Offset Binary or 2's Complement for the bipolar output code. Any number of the above (8 digital inputs) may be changed from one conversion to the next when under software control via a microprocessor. A logic level select input is normally hardwired to accommodate either TTL or CMOS control signals.
The analog power requirements are $\pm 15 \mathrm{~V}$; digital is +5 to +15 V . Package is a 40 pin ceramic DIP.

FUNCTIONAL DIAGRAM

FEATURES

DESCRIPTION

The HC-55536 is a CMOS integrated circuit used to convert serial NRZ digital data to an analog (voice) signal. Conversion is by delta demodulation, using the continuously variable slope (CVSD) method.
While signals are compatible with other CVSD circuits, the internal design is unique. The analog loop filters have been replaced by digital filters which use very low power and require no external timing components. This digital approach allows inclusion of many desirable features. which otherwise would be difficult to implement. Internal time constants are optimized for a 16 K $\mathrm{bit} / \mathrm{sec}$ data rate; the device is usable to 64 K bits $/ \mathrm{sec}$.
The package is a 14 pin DIP, available in plastic $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$ or ceramic $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$. Chips are available, probe tested at $+25^{\circ} \mathrm{C}$.

APPLICATIONS

fUNCTIONAL DIAGRAM

- VOICE OUTPUT FOR DIGITAL SYSTEMS
- AUDIO MANIPULATIONS; DELAY LINES,ECHO generation/Suppression, SPECIAL EfFECTS, ETC.

PINOUT AND PIN DESCRIPTION

POSITIVE SUPPLY VOLTAGE -2
F. Z. FORCED ZERO; NORMALLY HIGH. "LOW" FORCES THE AUDIO OUTPUT AND INTERNAL LOGIC INTO THE "QUIETING" PATTERN.

CLOCK CLOCK IS PHASED WITH DIGITAL INPUT DATA SO THAT LOW-TOhigh transitions occur near the middle of each receivED DATA BIT.

ABSOLUTE MAXIMUM RATINGS

Voltage at Any Pin	-3.0 V to $\mathrm{VDD}_{D D}+0.3 \mathrm{~V}$	Operating Temperature (-5)	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Maximum $\mathrm{V}_{D D}$ Voltage	+7.0 V	(-9)	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Operating $\mathrm{V}_{D D}$ Range	+5.0 V to +7.0 V	Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $V_{D D}=+6.0 \mathrm{~V}$; Bit Rate $=16 \mathrm{~K} \mathrm{Bits} / \mathrm{Sec} ; \mathrm{t}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.

PARAMETER	MIN	TYP	MAX	UNIT
Clock Bit Rate (Note 1)	0		64	K Bits/Sec
Clock Duty Cycle	30		70	$\%$
Supply Voltage	+5.0		+7.0	V
Supply Current		1.0		mA
Digital "1" Input (Note 2)		4.5		V
Digital "0" Input (Note 2)	1.5		V	
Audio Output Voltage (Note 3)		0.5		VRMS
Audio Output Impedance (Note 4)		100		$\mathrm{k} \Omega$
Syllabic Filter Time Constant (Note 5)		0.94	ms	
L. P. Filter Time Constant (Note 5)		24		dB
Step Size Ratio (Note 6)	0.1		$\%$	
Resolution (Note 7)		0.2		
Minimum Step Size (Note 8)				
Slope Overload (Note 9)				
Signal/Noise Ratio (Note 10)				
Quieting Pattern Amplitude (Note 11)				
Clamping Threshold (Note 12)				

NOTES:

1. There is one NRZ data bit per clock period. Clock must be phased with digital data such that a positive clock transition occurs in the middle of each received data bit.
2. Logic inputs are CMOS compatible at supply voltage and are diode protected. Digital data input is NRZ at clock rate.
3. As mentioned elsewhere, this output includes a DC bias of VDD/2. Therefore an AC coupling capacitor (min. $4.7 \mu \mathrm{f}$) is required unless the output filter also includes this bias (as does the circuit in Fig. 2.)
4. Presents 100 kilohms in series with recovered audio voltage. Zero-signal reference is VDD/2.
5. Note that filter time constants are inversely proportional to clock rate.
6. Step size compression ratio of the syllabic filter is defined as the ratio of the filter output, with an equal $1-0$ bit density input to the filter, to its minimum output.
7. Minimum quantization voltage level expressed as a percentage of supply voltage.
8. The minimum step size between levels is twice the resolution.
9. For large signal amplitudes or high frequencies, the encoder may become slope-overloaded. Figure 1 shows the frequency response at various signal levels, measured with a 3 kHz lowpass filter having a $130 \mathrm{~dB} /$ octave roll-off to -50 dB . See Figure 2.
10. Table 1 shows the SNR under various conditions, using the output filter described in Note 9 at a bit rate of 16 K bits $/ \mathrm{sec}$. See Figure 2.
11. The "quieting" pattern or idle-channel audio output steps at $1 / 2$ the bit rate, changing state on negative clock transitions.
12. The recovered signal will be clamped, and the computation will be inhibited, when the recovered signal reaches threequarters of full-scale value, and will unclamp when it falls below this value (positive or negative).

TABLE I

Figure 1. Transfer Function for CVSD at 16K Bits/Sec.

U1, U2 HARRIS HA-4741 QUAD OP AMP
CAPACITORS IN pF UNLESS OTHERWISE STATED

RESISTORS $1 / 20$ WATT
CAP. TOL. 1\% UNLESS OTHERWISE STATED

RES. TOL. 1\% UNLESS OTHERWISE STATED

FILTER FREQUENCY RESPONSE
FREQUENCY
RELATIVE OUTPUT
100 Hz to 1500 Hz
1500 Hz to 3000 Hz
3800 Hz to 100 kHz
$0 \pm 1.5 \mathrm{~dB}$
$0 \pm 2.5 \mathrm{~dB}$
Less Than - 45 dB

Figure 2. Suggested Output Filter for SNR Measurement

High Temperature Electronics

To serve the growing need for electronics that will operate in severe high temperature environments, Harris will offer integrated circuits that have been characterized over elevated temperatures and that have electrical characteristics guaranteed at $200^{\circ} \mathrm{C}$.

Typical applications include:

- Well Logging
- Industrial Process Control
- Engine Control and Testing
- High Temperature Data Acquisition Systems

It is the intention of Harris Semiconductor to make available in the high temperature series (identified by the -1 suffix following the device part number) all the basic elements required for the designer to build a data acquisition system that will function to specified limits at $200^{\circ} \mathrm{C}$.

The devices to be offered:

- Operational Amplifiers
- Comparators
- Analog Switches
- Analog Multiplexers
- Precision Voltage Reference
- 12 Bit Digital to Analog Converter

All parts offered in the -1 series have had their electrical performance parameters characterized up to $250^{\circ} \mathrm{C}$.

Production flow of -1 parts includes screening to MIL-STD-883B, 160 hours burn-in and final electrical test at $2000^{\circ} \mathrm{C}$.

Devices available Now:

- HA-2600-1 Operational Amplifier
- HA-2620-1 Operational Amplifier
- HA-4920-1 Quad Comparator
- HI-200-1 Analog Switch
- HI-201A-1 Analog Switch
- HI-508A-1 Analog Multiplexer

Devices in Process:

- HA-1610-1 Precision 10V Reference
- HI-562-1 12 Bit Digital to Analog Converter

Consult factory for price and availability information.

Advanced Packaging Techniques

Harris Semiconductor is now offering Leadless Chip Carriers (LCC) as a packaging option on various Analog integrated circuits. An LCC is a square or rectangular package for an Integrated Circuit (IC) that is manufactured in the same manner as a conventional side-braze dual-in-line package (DIP). The LCC is essentially comprised of the cavity and seal ring section of a standard DIP. It offers the user a means of achieving high density system configurations while retaining the reliability benefits of hermetic IC packaging. Figure 1 provides a comparison of the construction of an LCC and a conventional side-braze DIP.

The LCC's two principle advantages over conventional side braze DIPs are packaging density and electrical performance. Packaging density is the number one advantage to an LCC over a side braze DIP. The size of a DIP is governed primarily by
the number of leads required and not by the size of the IC. As pin count increases, more and more of the DIP package is used only to provide an electrical trace path to the external leads. The size of an LCC is dependant on the size of the die not on the number of leads. As pin count increases, overall size increases but at a much slower rate. Table 1 provides a comparison between the areas of 18,28 , and 48 lead LCCs to 18,28 , and 48 lead side braze DIPs. The chart indicates a 270% improvement in packaging area for the 18 lead LCC, and 542% improvement for the 48 lead LCC. Obviously, sizable savings in circuit board area can be achieved with this packaging option. The second major advantage of the LCC is in electrical performance. The package size and geometry also dictates trace length and uniformity. Figure 2 provides a comparison between the trace lengths for various LCCs and side braze DIPs. As pin
count goes up, trace lengths get longer, adding resistance and capacitance unequally around the package. As ICs get faster and more complex, these factors start to become a limiting factor on performance. LCCs minimize this effect by maintaining, as close as possible, uniform trace length so that the package is significantly smaller determinant of system performance.

The LCC also offers environmental advantages over "chip-and-wire" manufacturing techniques used in high density hybrid circuits. An IC can be fully tested, burned-in and processed to MIL-STD-883B in an LCC, thereby guaranteeing its performance.

The IC is further protected by small hermetic package in which internal water vapor content can be carefully controlled during production.

In summary, Harris Semiconductor Leadless Chip Carriers use a proven technology to provide a reliable high density, high performance packaging option for today's systems.

A list of products available in LCC form is provided in the Packaging Section on page 9-2. Consult the factory or your Harris sales representative for pricing and availability.

LEAD COUNT	LONGEST TRACE DIP LONGEST TRACE CC	LONGEST TRACE SHORTEST TRACE	
		$\frac{\text { CC }}{}$	$\frac{\text { DIP }}{6: 1}$
18	$2: 1$	$1.5: 1$	$3: 1$
24	$4: 1$	$1.5: 1$	$3: 1$
40	$5: 1$	$1.5: 1$	$6: 1$
54	$6: 1$	$1.5: 1$	$7: 1$

FIGURE 2. Electrical Performance (Resistance and Speed)

FIGURE 1. Exploded view of Chip Carrier and DIP.

TABLE I

	LCC	DIP	DIP AREA LCC AREA
18 Lead	0.10	0.22	270
28 Lead	0.20	0.84	420
48 Lead	0.31	1.68	542

(All units in square inches)

Operational Amplifiers and Comparators

PAGE
Selection Guides 2-2
HA-909/911 Low Noise Operational Amplifiers 2-6
HA-2400/04/05 PRAM, Four Channel Operational Amplifiers 2-10
HA-2500/02/05 Precision High Slew Rate Operational Amplifiers 2-14
HA-2507/17/27 Epoxy Packaged, High Slew Rate Operational Amplifier Series 2-18
HA-2510/12/15 High Slew Rate Operational Amplifiers 2-20
HA-2520/22/25 High Slew Rate Uncompensated Operational Amplifiers 2-24
HA-2530/2535 Wide Band High Slew Inverting Amplifiers 2-28
HA-2600/02/05 High Performance Operational Amplifiers 2-32
HA-2607/2627 Epoxy Packaged, Wide Band Operational Amplifiers 2-36
HA-2620/22/25 Very Wide Band, Uncompensated Operational Amplifiers 2-38
HA-2630/2635 High Performance Current Booster 2-42
HA-2640/2645 High Voltage Operational Amplifiers 2-46
HA-2650/2655 Dual High Performance Operational Amplifiers 2-50
HA-2700/04/05 Low Power, High Performance Operational Amplifiers 2-54
HA-2720/2725 Low Power, Current Programmable Operational Amplifiers 2-58
HA-2730/2735 Dual Low Power, Current Programmable Operational Amplifiers 2-64
HA-2900/04/05 Chopper Stabilized Operational Amplifers 2-70
HA-4602/4605 Quad High Performance Operational Amplifiers 2-74
HA-4622/4625 Wide Band High Performance Quad Operational Amplifiers 2-81
HA-4741 Quad Operational Amplifier 2-87
HA-4900/4905 Quad Precision Comparator 2-91
HA-4920/4925 High Speed Quad Comparator 2-98
HA-4950 Precision High Speed Comparator 2-103
HA-5100/5105 Wide Band, JFET Input, Operational Amplifiers 2-108
HA-5110/5115 Wide Band, JFET Input, Uncompensated Operational Amplifiers 2-114
HA-5190/5195 Wide Band, Fast Settling Operational Amplifiers 2-120

ABSOLUTE MAXIMUM RATINGS

As with all semiconductors, stresses listed under "Absolute Maximum Ratings" may be applied to devices (one at a time) without resulting in permanent damage. This is a stress rating only. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. The conditions listed under "Electrical Characteristics" are the only conditions recommended for satisfactory operation.

Operational Amplifiers Selection Guide

QUAD OPERATIONAL AMPLIFIERS

PARAMETER	HA-2400\|	HA-2404	[HA-2405]	HA-4602	HA-4605]	HA-4622	HA-4625	HA-4741	HA-4741	UNITS
INPUT CHARACTERISTICS										
Offset Voltage	7	7	11	3.0	4.0	3.0	4.0	5.0	6.5	mV
Drift (Typ)	20	20	30	2	2	2	2	5	5	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Bias Current	400	400	500	325	400	325	400	325	400	nA
Offset Current	100	100	100	125	120	125	120	75	100	nA
Common Mode Range	± 9.0	± 9.0	± 9.0	± 12	V					
TRANSFER CHARACTERISTICS										
Large Signal Voltage Gain	25k	25k	25k	100k	75k	100k	75k	25k	15k	V/V
CommonMode Rejection Ratio	80	80	74	86	80	86	80	74	74	dB
Bandwidth (Typ) (1)	40	40	40	8	8	70	70	3.5	3.5	MHz
OUTPUT CHARACTERISTICS										
Output Voltage Swing	± 10	V								
Output Current (1)	± 10	± 10	± 10	± 10	± 8	± 10	± 8	± 5	± 5	mA
Full Power Bandwidth (Typ) (1)	500	500	500	60	60	150	130	25	25	kHz
TRANSIENT RESPONSE										
Rise Time (1) (Typ)	20	20	20	50	50	38	38	75	75	ns
Overshoot (1) (Typ)	25	25	25	30	30	45	45	25	25	\%
Slew Rate (1) (Typ)	± 30	± 30	± 30	± 4	± 4	± 12	± 11	± 1.6	± 1.6	$\mathrm{V} / \mu \mathrm{s}$
Settling Time (Typ) (1)	1.5	1.5	1.5	4.2	4.2	2.5	2.5	12	12	$\mu \mathrm{s}$
POWER SUPPLY CHARACTERISTICS										
Supply Current (1)	6.0	6.0	6.0	5.5	6.5	4.6	5.0	5	7	mA
Power Supply Rejection Ratio	74	74	74	86	80	86	80	80	80	dB
FUNCTIONAL CHARACTERISTICS										
Offset Adjustment	NO									
Compensation Components	OAV>10	OAV>10	OAV>10	0	0	OAV>10	OAV>10	0	0	
Output Protection	YES									
Temperature Range*	(A)	(C)	(B)	(A)	(B)	(A)	(B)	(A)	(B)	

FOOTNOTES: (1) At $+25^{\circ} \mathrm{C}$. (2) Not applicable or not specified. (3) Dependent upon ISET value

* Temperature Range: (A) $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ (B) $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ (C) $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Note: Parameters are minimum or maximum over temperature unless otherwise noted.

SPECIAL-PURPOSE AMPLIFIERS													
PARAMETER	HA-2530	HA-2535	HA-2630	HA-2635	HA-2640	\|HA-2645		HA-2720	HA-2725	HA-2900	HA-2904	HA-2905	UNITS
INPUT CHARACTERISTICS													
Offset Voltage	3	5	300	300	6	7	5	7	06	05	08	mV	
Drift (Typ)	5	5	(2)	(2)	15	15	8 to 10	8 to 10	0.3	0.2	0.2	${ }_{\mu \mathrm{V} /{ }^{\circ} \mathrm{C}}$	
Bias Current	100	200	200	200	50	50	10 to 40	10 to 40	1	1	1	nA	
Offset Current	20	20	(2)	(2)	35	50	7.5 to 20	7.5 to 20	0.5	0.5	0.5	nA	
Common Mode Range	± 0.5	± 0.5	(2)	(2)	± 35	± 35	± 10	V					
TRANSFER CHARACTERISTICS													
Large Signal Voltage Gain	100k	100k	0.85	0.85	75k	75k	25k	20k	10^{6}	10^{6}	10^{6}	V/V	
Common Mode Rejection Ratio	86	80	(2)	(2)	80	74	80	74	120	130	120	dB	
Bandwidth (Typ) (1)	20	20	8	8	4	4	01 to 10	. 01 to 10	3	3	3	MHz	
OUTPUT CHARACTERISTICS													
Output Voltage Swing	± 10	± 10	± 10	± 10	± 35	± 35	± 13.5	± 13.5	± 10	± 10	± 10	V	
Output Current (1)	± 25	± 25	± 400	± 300	± 12	± 10	± 0.5 to 5	± 0.5 to 5	± 10	± 10	± 7	mA	
Full Power Bandwidth (Typ)(1)	5.000	5,000	8.000	8.000	23	23	1.5 to 80	1.5 to 80	40	40	40	kHz	
TRANSIENT RESPONSE													
Rise Time (1)	40	40	30	30	60	60	$200 \text { to }$ 2.000	$200 \text { to }$ 2,000	200	200	200	ns	
Overshoot (1)	45	50	25	25	15	15	5 to. 15	5 to 15	20	20	20	\%	
Slew Rate (1)	± 280	± 250	± 200	± 200	5	5	0.1 to 0.8	0.1 to 0.8	2.5	2.5	2.5	$\mathrm{V} / \mu \mathrm{s}$	
Settling Time (Typ) (1)	0.5	0.5	0.5	0.5	1.5	1.5	(2)	(2)	(2)	(2)	(2)	$\mu \mathrm{S}$	
POWER SUPPLY CHARACTERISTICS (3) (3)													
Supply Current (1)	6	6	20	23	3.8	4.5	02 to 0.2	02 to 0.2	5	5	5	mA	
Power Supply Rejection Ratio	86	80	66	66	80	74	80	76	120	130	120	dB	
FUNCTIONAL CHARACTERISTICS													
Offset Adjustment	NO	NO	NO	NO	YES	YES	YES	YES	NO	NO	NO		
Compensation Components	1	1	0	0	0	0	0	0	3	3	3		
Output Protection	NO	NO	External	External	YES								
Temperature Range*	(A)	(B)	(A)	(B)	(A)	(B)	(A)	(B)	(A)	(C)	(B)		
FOOTNOTES: (1) At $+25^{\circ} \mathrm{C}$. (2) Not applicable or not specified. (3) Dependent upon I SET value. *Temperature Range: $(\mathrm{A})-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ (B) $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ (C) $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$													

Operational Amplifiers Selection Guide

	FET INPUT AMPLIFIERS						FAST SETTLING AMPLIFIER				
PARAMETER	HA-5100	HA-5105	HA-5110	HA-5115	\|HA-5150才		HA-5160+	HA-5190	\|HA-5195		UNITS
INPUT CHARACTERISTICS											
Offset Voltage	2.0	3.5	2.0	3.5	2.0	2.0	10	10	mV		
Drift (Typ)	10	15	10	15	10	10	20	20	${ }_{\mu \mathrm{V} /{ }^{\circ} \mathrm{C}}$		
Bias Current	10	20	10	20	10	10	$20 \mu \mathrm{~A}$	$20 \mu \mathrm{~A}$	nA		
Offset Current	5	10	5	10	5	5	$6 \mu \mathrm{~A}$	$6 \mu \mathrm{~A}$	nA		
Common Mode Range	± 10	± 5	± 5	V							
TRANSFER CHARACTERISTICS											
Large Signal Voltage Gain	60k	40k	60k	40k	50k	50k	5 k	5 k	V/V		
CommonModeRejectionRatio	86	80	86	80	86	86	74	74	dB		
Bandwidth (Typ) (1)	18	18	60	50	50	100	150	150	MHz		
OUTPUT CHARACTERISTICS											
Output Voltage Swing	± 12	± 11	± 12	± 11	± 10	± 10	± 5	± 5	V		
Output Current (1)	± 10	± 8	± 10	± 8	± 10	± 10	± 25	± 25	mA		
Full Power Bandwidth (Typ)(1)	100	80	800	625	750	5.000	6,500	6,500	kHz		
TRANSIENT RESPONSE											
Rise Time (1) (Typ)	15	20	20	20	15	15	13	13	ns		
Overshoot (1) (Typ)							8	8	\%		
Slew Rate (1) (Typ)	± 6	± 5	± 35	± 35	± 60	± 120	± 200	± 200	v / us		
Settling Time (Typ) (1)	1.7	2.0	0.85	1.0	0.7	0.5	0.1	0.1	$\mu \mathrm{s}$		
POWER SUPPLY CHARACTERISTICS											
Supply Current (1)	- 7	8	7	8	7	7	28	28	mA		
Power Supply RejectionRatio	86	80	86	80	86	86	70	70	dB		
FUNCTIONALCHARACTERISTICS											
Offset Adjustment	YES	YES	YES	YES	YES	YES					
Compensation Components	0	0	OAV>10	$\mathrm{OAV}>10$	-	$0 \mathrm{AV}>10$	$0 \mathrm{AV}>5$	$0 \mathrm{AV}>5$			
Output Protection	YES	YES	YES	YES	YES	YES	NO	NO			
Temperature Range*	(A) (B)	(B)	(A) (B)	(B)	(A)	(B)	(A)	(B)			
FOOTNOTES: (1) At $+25^{\circ} \mathrm{C}$. (2) Not applicable or not specified. (3) Dependent upon I SET value. * Temperature Range: (A) $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ (B) $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ (C) $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ \dagger To be introduced.											

PARAMETER	LOW POWER AMPLIFIER			DUAL HIGHPERFORMANCE AMPLIFIERS				UNITS
	HA-2700	HA-2704	HA-2705	HA-2650	HA-2655	HA-2730	HA-2735	
INPUT CHARACTERISTICS						(3) (3)		
Offset Voltage	5	6	7	5	7	5	7	mV
Drift (Typ)	5	5	5	8	8	8 to 10	8 to 10	${ }_{\mu \mathrm{V} /{ }^{\circ} \mathrm{C}}$
Bias Current	50	50	70	200	300	10 to 40	10 to 40	nA
Offset Current	30	30	40	60	100	7.5 to 20	7.5 to 20	nA
Common Mode Range	± 11	± 11	± 11	± 13	± 13	± 10	± 10	V
TRANSFER CHARACTERISTICS						(3) (3)		
Large Signal Voltage Gain	100k	100k	100k	20k	15k	25k	20k	V/V
Common Mode Rejection Ratio	86	86	80	80	74	80	74	dB
Bandwidth (Typ) (1)	1	1	1	8	8	. 01 to 10	01 to 10	MHz
OUTPUT CHARACTERISTICS						(3) (3)		
Output Voltage Swing	± 11	± 11	± 11	± 13	± 13	± 13.5	± 13.5	V
Output Current (1)	+15	+15	+15	± 20	± 18	± 0.5 to 5	± 0.5 to 5	mA
Full Power Bandwidth(Typ)(1)	50	50	50	30	30	1.5 to 80	1.5 to 80	kHz
TRANSIENT RESPONSE								
Rise Time (1)	(2)	(2)	(2)	40	40	200 to	200 to	
						2,000		ns
Overshoot (1)	(2)	(2)	(2)	15	15	5 to 15	5 to 15	\%
Slew Rate (1)	± 10	± 10	± 10	± 2	± 2	0.1 to 0.8	0.1 to 0.8	$\mathrm{V} / \mathrm{\mu s}$
Settling Time (Typ) (1)	5.0	5.0	5.0	1.5	1.5	(2)	(2)	$\mu \mathrm{S}$
POWER SUPPLY CHARACTERISTICS						(3) (3)		
Supply Current (1)	0.15	0.15	0.15	3	4	0.02 to	0.02 to	mA
						0.2	0.2	
Power Supply Rejection Ratio	86	86	80	80	74	80	76	dB
FUNCTIONAL CHARACTERISTICS								
Offset Adjustment	YES	YES	YES	DIP Only	DIP Only	YES	YES	
Compensation Components	0	0	0	0	0	0	0	
Output Protection	YES							
Temperature Range*	(A)	(C)	(B)	(A)	(B)	(A)	(B)	
FOOTNOTES: (1) At $+25^{\circ} \mathrm{C}$. (2) Not applicable or not specified. (3) Dependent upon I SET value. *Temperature Range: (A) $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ (B) $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ (C) $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$								

Note: Parameters are minimum or maximum over temperature unless otherwise noted.

Operational Amplifiers Selection Guide

HIGH SLEW RATE AMPLIFIERS															
PARAMETER	HA-2500	\|HA-2502		HA-2505	HA-2507	\|HA-2510	\|HA-2512	HA-2515	\|HA-2517		HA-2520\|	\|HA-2522	HA-2525	HA-2527	UNITS
INPUT CHARACTERISTICS															
Offset Voltage	8	10	10	10	11	14	14	14	11	14	14	14	mV		
Drift (Typ)	20	20	20	25	20	25	30	30	20	25	20	30	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$		
Bias Current	400	500	500	500	400	500	500	500	400	500	500	500	nA		
Offset Current	50	100	100	100	50	100	100	100	50	100	100	100	nA		
Common Mode Range	± 10	V													
TRANSFER CHARACTERISTICS															
Large Signal Voltage Gain	15k	10k	10k	10k	7.5k	5k	5 k	5k	7.5k	5k	5k	5k	V/V		
Common Mode Rejection Ratio	80	74	74	74	80	74	74	74	80	74	74	74	dB		
Bandwidth (Typ) (1)	12	12	12	12	12	12	12	12	25	25	25	20	MHz		
OUTPUT CHARACTERISTICS															
Output Voltage Swing	± 10	V													
Output Current (1)	± 10	mA													
Full Power Bandwidth (Typ) (1)	500	500	500	500	1000	1000	1000	1000	1500	1200	1200	1200	kHz		
TRANSIENT RESPONSE															
Rise Time (1)	50	50	50	50	50	50	50	50	50	50	50	50	ns		
Overshoot (1)	40	50	50	50	40	50	50	50	40	50	50	50	\%		
Slew Rate (1)	± 25	± 20	± 20	± 15	± 50	± 40	± 40	± 30	± 100	± 80	± 80	± 60	$\mathrm{V} / \mathrm{\mu s}$		
Settling Time (Typ) (1)	0.33	0.33	0.33	0.33	0.25	0.25	0.25	0.25	0.70	0.70	0.70	0.70	$\mu \mathrm{S}$		
POWER SUPPLY CHARACTERISTICS															
Supply Current (1)	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	mA		
Power Supply Rejection Ratio	80	74	74	74	80	74	74	74	80	74	74	74	dB		
FUNCTIONAL CHARACTERISTICS															
Offset Adjustment	YES														
Compensation Components	0	0	0	0	0	0	0	0	OAV>3	OAV>3	OAV>3	OAV>3			
Output Protection	NO														
Temperature Range*	(A)	(A)	(B)	(B)	(A)	(A)	(B)	(B)	(A)	(A)	(B)	(B)			
FOOTNOTES: (1) At $+25^{\circ} \mathrm{C}$. (2) Not applicable or not specified. (3) Dependent upon ISET value. ${ }^{*}$ Temperature Range: (A) $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ (B) $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ (C) $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$															

WIDE BANDWIDTH AMPLIFIERS										
PARAMETER	HA-2600	HA-2602	HA-2605	\|HA-2607		HA-2620\|	HA-2622	HA-2625	HA-2627	UNITS
INPUT CHARACTERISTICS										
Offset Voltage	6	7	7	8	6	7	7	8	mV	
Drift (Typ)	5	5	5	5	5	5	5	5	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	
Bias Current	30	60	40	50	35	60	40	50	nA	
Offset Current	30	60	40	50	35	60	40	50	nA	
Common Mode Range	± 11	± 11	± 11	± 10	± 11	± 11	± 11	± 10	V	
TRANSFER CHARACTERISTICS										
Large Signal Voltage Gain	70k	60k	70k	60k	70k	60k	70k	60k	V/V	
Common Mode Rejection Ratio	80	74	74	74	80	74	74	74	dB	
Bandwidth (Typ) (1)	12	12	12	12	100	100	100	100	MHz	
OUTPUT CHARACTERISTICS										
Output Voltage Swing	± 10	V								
Output Current (1)	± 15	± 10	mA							
Full Power Bandwidth (Typ) (1)	75	75	75	75	600	600	600	600	kHz	
TRANSIENT RESPONSE										
Rise Time (1)	60	60	60	60	45	45	45	45	ns	
Overshoot (1)	40	40	40	40	40	40	40	40	\%	
Slew Rate (1)	± 4	± 4	± 4	± 4	± 25	± 20	± 20	± 17	$\mathrm{V} / \mu \mathrm{s}$	
Setting Time (Typ) (1)	1.5	1.5	1.5	1.5	0.30	0.30	0.30	0.30	$\mu \mathrm{S}$	
POWER SUPPLY CHARACTERISTICS										
Supply Current (1)	3.7	4.0	4.0	4.0	3.7	4.0	4.0	4.0	mA	
Power Supply Rejection Ratio	80	74	74	74	80	74	74	74	dB	
FUNCTIONAL CHARACTERISTICS										
Offset Adjustment	YES									
Compensation Components	0	0	0	0	OAV>5	OAV>5	OAV >5	0AV>5		
Output Protection	YES									
Temperature Range*	(A)	(A)	(B)	(B)	(A)	(A)	(B)	(B)		
FOOTNOTES: (1) At $+25^{\circ} \mathrm{C}$. (2) Not applicable or not specified. (3) Dependent upon I SET value. ${ }^{*}$ Temperature Range: (A) $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ (B) $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ (C) $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$										

Note: Parameters are minimum or maximum over temperature unless otherwise noted.

Comparators Selection Guide

Harris presently manufactures three different comparators:

HA-4900	General Purpose Quad
HA-4920	High Speed Quad
HA-4950	Precision, High Speed Single

The basic characteristics of these devices are shown tabulated below. For complete details refer to individual device specifications.

Parameter	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			Units
	HA-4900	HA-4920	HA-4950	HA-4900	HA-4920	HA-4950	
Input Offset Voltage	4.0	4.0	2.8	10.0	8.0	2.8	mV
Input Sensitivity (Note 1)	0.7	0.6	0.1	0.7	0.6	0.1	mV
Input Bias Current	150	8	7	75	10	7	$\mu \mathrm{A}$
Response Time (At T $=+25^{\circ} \mathrm{C}$)							
Tpd 0	130	45	40	130	45	40	ns
Tpd 1	180	40	20	180	40	20	ns

Note 1. Input sensitivity is the differential voltage required at the input to make the output change state, after the offset has been nulled.

PRAM PROGRAMMABLE AMPLIFIER HA-2400/2404/2405

One of four op amp input stages may be digitally selected to be connected to a single output. Replaces 5 op amps and a four channel multiplexer to obtain programmable gain, signal selection or countless other functions.

CURRENT BOOSTER AMPLIFIER HA-2630/2635

A unity gain amplifier with output current up to $\pm 400 \mathrm{~mA}$, and $600 \mathrm{~V} / \mu \mathrm{s}$ slew rate, designed for use in series with any op amp output. For Coax line drivers, servo amps, audio amps, clock drivers etc.

HARRIS
SEMICONDUCTOR PRODUCTS DIVISION
A DIVISION OF HARRIS CORPORATION

HA-909/911
 Wideband, Low Noise, Operational Amplifiers

FEATURES	DESCRIPTION
- LOW bROADBAND NOISE 1μ V R.M.S. - LOW NOISE VOLTAGE $7 n V / \sqrt{H z}$ - LOW OFFSET VOLTAGE $2 \mathrm{mV}$ - WIDE BANDWIDTH $\mathrm{H} \longrightarrow \quad 7 \mathrm{MHz}$ - SUPPLY RANGE $\pm 5 \mathrm{~V}$ TO $\pm 20 \mathrm{~V}$ - INTERNALLY COMPENSATED APPLICATIONS - HIGH Q, WIDEBAND FILTERS - AUDIO AMPLIFIERS - SIGNAL GENERATORS	HA-909 and HA-911 are monolithic amplifers delivering very low noise and excellent bandwidth specifications without the need for external compensation. Additional features of these dielectrically isolated devices include low offset voltage, offset trim capabitlity (14-pin flat package only), and high output current drive capabitlity. With 7 MHz bandwidth and internal compensation these amplifiers are extremely useful in many active filter designs. In audio circuitry requiring quiet operation these devices offer $1 \mu \mathrm{~V}$ typical broadband noise (10 Hz to 1 kHz) and 20 kHz power bandwidth. 2 mV typical offset voltage, offset trim capability, and 20 mA output current drive capability ($\pm 10.0 \mathrm{~V}$ swing) make these amplifiers useful in signal conditioning circuits. HA-909 and HA-911 are available in metal can (T0-99) and 14 -pin flat packages. HA-909 is specified over the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ range. $\mathrm{HA}-911$ is specified from $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$.
PINOUT	SCHEMAT/C
TOP VIEW CAUTION: These devices are sensitive to electrostatic discharge. Users should follow IC Handling Procedures specified on pg. 1-4.	

ABSOLUTE MAXIMUM RATINGS

Voltage Between V^{+}and V - Terminals	50.0 V
Differential Input Voltage	$\pm 7.0 \mathrm{~V}$
Peak Output Current	$\pm 50 \mathrm{~mA}$
Internal Power Dissipation (Note 10)	300 mW
Operating Temperature Range - HA-909	$-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}$
	HA-911
Storage Temperature Range	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+75^{\circ} \mathrm{C}$
S	$-65^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+150^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

TEST CONDITIONS: $V_{\text {Supply }}= \pm 15.0 \mathrm{~V}$ unless otherwise specified.

PARAMETER	TEMP.	$\begin{gathered} \text { HA-909 } \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$			$\begin{gathered} \text { HA-911 } \\ 0^{\circ} \mathrm{C}+0+75^{\circ} \mathrm{C} \end{gathered}$			UNITS
		MIN.	TYP.	MAX	MIN	TYP.	MAX	
INPUT CHARACTERISTICS * Offset Voltage	$\begin{gathered} +25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$		2.0	$\begin{aligned} & 5.0 \\ & 6.0 \end{aligned}$		2.0	$\begin{aligned} & 6.0 \\ & 7.5 \end{aligned}$	$m V$
Equivalent Input Noise (Note 9)	$+25^{\circ} \mathrm{C}$		1.0	5.0		1.0		$\mu \mathrm{V}$
Input Noise Voltage	$+25^{\circ} \mathrm{C}$		7			7		$n \mathrm{~V}, \sqrt{\mathrm{H}_{2}}$
* Bias Current	$+25^{\circ} \mathrm{C}$		87	300		200	500	nA
	Full			750		300	750	nA
* Offset Current	+250 ${ }_{\text {Full }}$		25 50	$\begin{aligned} & 150 \\ & 300 \end{aligned}$		100 150	300	$n A$ $n A$
Offset Current Average Drift	Full		1.0			1.0		$\mathrm{nA} \mathbf{\prime}^{\circ} \mathrm{C}$
Input Resistance (Note 12)	$\begin{gathered} +25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$	$\begin{aligned} & 200 \\ & 100 \end{aligned}$	$\begin{aligned} & 600 \\ & 300 \end{aligned}$		100	250		$\begin{aligned} & \mathrm{K} \Omega \\ & \mathrm{~K} \Omega \end{aligned}$
Common Mode Range	Full	+12.0			+12.0			V
TRANSFER CHARACTERISTICS * Large Signal Voltage Gain (Notes 1, 4) Full Power BW * Common Mode Rejection Ratio (Note 2) Unity Gain Bandwidth (Note 3)								
	$+25^{\circ} \mathrm{C}$	25K	45K		20K	45 K		V/V
	Full	25K	45K		15K	45K		V / V
	$+25^{\circ} \mathrm{C}$		20			20		KHz
	Full	80	96		74	90		dB
	$+25^{\circ} \mathrm{C}$		7			7		MHz
OUTPUT CHARACTERISTICS Output Voltage Swing (Note 1)	Full	+12.0			+11.0			V
* Output Current (Note 4)	$+25^{\circ} \mathrm{C}$	+20			+15			mA
Output Resistance	$+25^{\circ} \mathrm{C}$		150			500		Ohms
TRANSIENT RESPONSE Rise Time (Notes 1, 5, 6, 8 \& 11) Overshoot (Notes 1, 5, 6, 8 \& 11) * Slew Rate (Notes 1, 5 \& 8)	$+25^{\circ} \mathrm{C}$		40	75		40	75	ns
	$+25^{\circ} \mathrm{C}$		15	40		15	40	\%
	$+25^{\circ} \mathrm{C}$	+3.5	+5.0			+5.0		$\mathrm{v} / \mu \mathrm{s}$
		-1.2	-2.0			-2.0		
POWER SUPPLY CHARACTERISTICS * Supply Current * Power Supply Rejection Ratio (Note 7)				2.5	74		2.5	
	$+25^{\circ} \mathrm{C}$		1.8			1.8		mA
	Full	80	92			90		dB

NOTES:

1. $R_{L}=2 K \Omega$
2. $V_{O}=+200 \mathrm{mV}$
3. $\mathrm{V}_{\mathrm{CM}}= \pm 10 \mathrm{~V}$
4. $\mathrm{V}_{\mathrm{O}}<90 \mathrm{mV}$
5. $V_{O}= \pm 10.0 \mathrm{~V}$
6. $\Delta V_{\text {Sup }}= \pm 5 \mathrm{~V}$
7. $V_{O}= \pm 10.0 \mathrm{~V}$
8. See Transient Response test circuits and waveforms
9. $10-1000 \mathrm{~Hz}, \mathrm{R}_{\mathrm{S}}=10 \mathrm{~K}$
10. Derate by $6.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $105^{\circ} \mathrm{C}$
11. Positive Transitions only.
12. This parameter based on design calculation.
[^1]OPEN LOOP VOLTAGE GAIN VS. SUPPLY VOLTAGE

SUPPLY VOLTAGE - + VOLTS

OUTPUT VOLTAGE SWING VS. SUPPLY VOLTAGE

COMMON MODE INPUT VOLTAGE VS. SUPPLY VOLTAGE

POWER DISSIPATION VS. SUPPLY VOLTAGE

SUPPLY VOLTAGE - . VOLTS

TYPICAL PERFORMANCE CURVES

INPUT RESISTANCE VS. AMBIENT TEMPERATURE

INPUT BIAS CURRENT VS.
AMBIENT TEMPERATURE

INPUT OFFSET CURRENT VS. AMBIENT TEMPERATURE

INPUT BIAS CURRENT VS.
SUPPLY VOLTAGE

OUTPUT VOLTAGE SWING
VS. FREQUENCY

OPEN LOOP FREQUENCY RESPONSE

DEFINITIONS

INPUT OFFSET VOLTAGE - That voltage which must be applied between the input terminals through two equal resistances to force the output voltage to zero.
INPUT OFFSET CURRENT - The difference in the currents into the two input terminals when the output is at zero voltage.
INPUT BIAS CURRENT - The average of the currents flowing into the input terminals when the output is at zero voltage.
INPUT COMMON MODE VOLTAGE - The average referred to ground of the voltages at the two input terminals.
COMMON MODE RANGE - The range of voltages which is exceeded at either input terminal will cause the amplifier to cease operating.
COMMON MODE REJECTION RATIO - The ratio of a specified range of input common mode voltage to the peak-to-peak change in input offset voltage over this range.
OUTPUT VOLTAGE SWING - The peak symmetrical output voltage swing, referred to ground, that can be obtained without clipping.
INPUT RESISTANCE - The ratio of the change in input voltage to the change in input current.

OUTPUT RESISTANCE - The ratio of the change in output voltage to the change in output current. POSITIVE OUTPUT VOLTAGE SWING - The peak positive output voltage swing, referred to ground, that can be obtained without clipping. NEGATIVE OUTPUT VOLTAGE SWING - The peak negative output voltage swing, referred to ground, that can be obtained without clipping.
VOLTAGE GAIN - The ratio of the change in output voltage to the change in input voltage producing it.
BANDWIDTH - The frequency at which the voltage gain is 3dB below its low frequency value.
UNITY GAIN BANDWIDTH - The frequency at which the voltage gain of the amplifier is unity. POWER SUPPLY REJECTION RATIO - The ratio of the change in input offset voltage to the change in power supply voltage producing it.
TRANSIENT RESPONSE - The closed loop step function response of the amplifier under small signal conditions.
PHASE MARGIN - $\left(180^{\circ}-\left(\phi_{1}-\phi_{2}\right)\right)$ where ϕ_{1} is the phase shift at the frequency where the absolute magnitude of gain is unity $\boldsymbol{\phi}_{2}$ is the phase shift at a frequency much lower than the open loop bandwidth.

HARRIS
SEMICONDUCTOR PRODUCTS DIVISION
A DIVISION OF HARRIS CORPORATION
 Users should follow IC Handling Procedures specified on pg. 1-4.

ABSOLUTE MAXIMUM RATINGS

Voltage Between $\mathrm{V}+$ and V - Terminals
Differential Input Voltage
Digital Input Voltage
Output Current
45.0 V
$\pm \mathrm{V}_{\text {Supply }}$ -0.76 V to +10.0 V
Short Circuit Protected (ISC $\leq \pm 33 \mathrm{~mA}$)

Internal Power Dissipation
(Note 13)
Operating Temperature Range
Lerate Reme
Storage Temperature Range

300 mW
$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ (HA-2400)
$-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ (HA-2404)
$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+75^{\circ} \mathrm{C}$ (HA-2405)
$-65^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+150^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

Digital inputs: $\mathrm{V}_{\text {IL }}=+0.5 \mathrm{~V}, \mathrm{~V}_{\text {IH }}=+2.4 \mathrm{~V}$ Limits apply to each of the four channels, when addressed.
PARAME

* Offset Voltage CHARACTERIST
${ }^{*}$ Bias Current (Note 12)
* Offset Current (Note 12)

Input Resistance (Note 12) Common Mode Range
TRANSFER CHARACTERISTICS

* Large Signal Voltage Gain (Note 1,5)
* Common Mode Rejection Ratio (Note 2)

Gain Bandwidth (Note 3)

(Note 3)
(Note

OUTPUT CHARACTERISTICS

Output Voltage Swing (Note 1)
Output Current
Full Power Bandwidth (Notes 3,5)

Overshoot (Notes 4,6)
Slew Rate (Notes 3,7)
(Notes 4,7)
Settling Time (Notes $4,7,8$)
CHANNEL SELECT CHARACTERISTICS
Digital Input Current (VIN $=0 \mathrm{~V}$)
Digital Input Current ($\mathrm{V}_{\mathrm{IN}}=+5.0 \mathrm{~V}$)
Output Delay (Note 9)
Crosstalk (Note 10)
POWER SUPPLY CHARACTERISTICS

* Supply Current
* Power Supply Rejection Ratio (Note 11)

NOTES: 1. $R_{L}=2 K \Omega$
2. $V_{C M}= \pm 5 V . D . C$.
3. $A_{V}=+10, C_{C O M P}=0, R_{L}=2 K \Omega, C_{L}=50 p F$
4. $A_{V}=+1, C_{C O M P}=15 \mathrm{pF}, R_{L}=2 K \Omega, C_{L}=50 \mathrm{pF}$
5. $V_{\text {OUT }}=20 \mathrm{~V}$ peak-to-peak
6. $V_{\text {OUT }}=200 \mathrm{mV}$ peak-to-peak
7. $\mathrm{V}_{\text {OUT }}=10.0 \mathrm{~V}$ peak-to-peak
*100\% Tested For DASH 8

Test Conditions: $V_{\text {Supply }}= \pm 15.0 \mathrm{~V}$ unless otherwise specified.

HA.2400/HA-2404
$\mathrm{V}+=15 \mathrm{VDC}, \mathrm{V}-=15 \mathrm{VDC}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ UNLESS OTHERWISE STATED.

INPUT BIAS CURRENT AND OFFSET CURRENT AS A FUNCTION OF TEMPERATURE

POWER SUPPLY CURRENT DRAIN AS A FUNCTION OF TEMPERATURE

NORMALIZED A.C. PARAMETERS
VS. SUPPLY VOLTAGE

NORMALIZED A.C. PARAMETERS
VS. TEMPERATURE

OPEN LOOP FREQUENCY AND PHASE RESPONSE

FREQUENCY RESPONSE VS. CCOMP

OPEN LOOP VOLTAGE GAIN
VS. TEMPERATURE

EQUIVALENT INPUT NOISE VS. BANDWIDTH

TRANSIENT RESPONSE
SLEW RATE AND SETTLING

TYPICAL APPLICATIONS

AMPLIFIER, NON-INVERTING PROGRAMMABLE GAIN

SAMPLE AND HOLD

Sample charging rate $=\frac{\mathrm{I}_{1}}{\mathrm{C}} \mathrm{V} / \mathrm{sec}$.
Hold drift rate $=\frac{\mathrm{I}_{2}}{\mathrm{C}} \mathrm{V} / \mathrm{sec}$.
Switch pedistal error $=\frac{\mathrm{Q}}{\mathrm{C}}$ Volts
$।_{1} \approx 150 \times 10^{-6} \mathrm{~A}$
$\mathrm{I}_{2} \approx 200 \times 10^{-9} \mathrm{~A} @+25^{\circ} \mathrm{C}$ $\approx 600 \times 10^{-9} \mathrm{~A} @-55^{\circ} \mathrm{C}$ $\approx 100 \times 10^{-9} \mathrm{~A} @+125^{\circ} \mathrm{C}$ $\mathrm{Q} \approx 2 \times 10^{-12}$ Coul.

FOR MORE EXAMPLES, SEE HARRIS APPLICATION NOTE 514

HA-2500/02/05
 Precision High Slew Rate
 Operational Amplifiers

FEATURES	
- HIGH SLEW RATE	
- FAST SETTLING	$30 \mathrm{~V} / \mu \mathrm{S}$
- WIDE POWER BANDWIDTH	330 ns
- HIGH GAIN BANDWIDTH	500 kHz
- HIGH INPUT IMPEDANCE	12 MHz
- LOW OFFSET CURRENT	$100 \mathrm{M} \Omega$
- INTERNALLY COMPENSATED	10 nA

APPLICATIONS

- DATA ACQUISTION SYSTEMS

DESCRIPTION

HA-2500/2502/2505 comprise a series of monolithic operational amplifiers whose designs are optimized to deliver excellent slew rate, bandwidth, and settling time specifications. The outstanding dynamic features of this internally compensated device are complemented with low offset voltage and offset current.

These dielectrically isolated amplifiers are ideally suited for applications such as data acquisition, R.F., video, and pulse conditioning circuits. Slew rate of $\pm 25 \mathrm{~V} / \mu \mathrm{s}$ and 330 ns (0.1%) settling time make these devices excellent components in fast, accurate data acquisition and pulse amplification designs. 12 MHz bandwidth and 500 kHz power bandwidth make these devices well suited to R.F. and video applications. With 2 mV typical offset voltage plus offset trim capability and 10 nA offset current, HA-2500/2502/2505 are particularly useful components in signal conditioning designs.

- R.F.AMPLIFIERS
- VIDEO AMPLIFIERS

The gain and offset voltage figures of the HA-2500 series are optimized by internal component value changes while the similar design of the HA-2510 series is maximized for slew rate.

- SIGNAL GENERATORS
- PULSE AMPLIFICATION
PINOUT

TOP VIEWS

CAUTION: These devices are sensitive to electrostatic discharge. Users should follow IC Handling Procedures specified on pg. 1-4.

HA-2500/2502/2505 are available in metal can (TO-99) packages. HA-2500 and HA-2502 are specified over the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ range. $\mathrm{HA}-2505$ is specified from $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$.

SCHEMATIC

ABSOLUTE MAXIMUM RATINGS

Voltage Between V^{+}and V - Terminals $\quad 40.0 \mathrm{~V}$
Differential Input Voltage
Peak Output Current
Internal Power Dissipation
40.0 V $\pm 15.0 \mathrm{~V}$ 50 mA 300 mW

ELECTRICAL CHARACTERISTICS

$\mathrm{V}+=+15 \mathrm{~V}$ D.C., $\mathrm{V}-=-15 \mathrm{~V}$ D.C.

PARAMETER	TEMP.	$\begin{gathered} \mathrm{HA}-2500 \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$			$\begin{gathered} \text { HA- } 2502 \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$			$\begin{gathered} \text { HA-2505 } \\ 0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \end{gathered}$			UNITS
		LIMITS			LIMITS			LIMITS			
		MIN.	TYP.	MAX.	MIN.	TYP.	MAX	MIN.	TYP.	MAX.	
INPUT CHARACTERISTICS											
* Offset Voltage	$\begin{gathered} +25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$		2	5 8		4	$\begin{gathered} 8 \\ 10 \end{gathered}$		4	$\begin{array}{r} 8 \\ 10 \end{array}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Offset Voltage Average Drift	Full		20			20			20		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
* Bias Current	$\begin{gathered} +25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$		100	$\begin{aligned} & 200 \\ & 400 \end{aligned}$		125	$\begin{aligned} & 250 \\ & 500 \end{aligned}$		125	$\begin{aligned} & 250 \\ & 500 \end{aligned}$	$\begin{aligned} & \text { nA } \\ & \mathrm{nA} \end{aligned}$
* Offset Current	$\begin{gathered} +25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$		10	$\begin{aligned} & 25 \\ & 50 \end{aligned}$		20	$\begin{gathered} 50 \\ 100 \end{gathered}$		20	$\begin{gathered} 50 \\ 100 \end{gathered}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
Input Resistance (Note 10)	$+25^{\circ} \mathrm{C}$	25	50		20	50			50		$\mathrm{M} \Omega$
Common Mode Range	Full	± 10.0			± 10.0			± 10.0			V
TRANSFER CHARACTERISTICS Large Signal Voltage Gain (Note 1,4)	$\begin{gathered} +25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$	$\begin{aligned} & 20 \mathrm{~K} \\ & 15 \mathrm{~K} \end{aligned}$	30K		$\begin{aligned} & 15 \mathrm{~K} \\ & 10 \mathrm{~K} \end{aligned}$	25 K		$\begin{aligned} & 15 \mathrm{~K} \\ & 10 \mathrm{~K} \end{aligned}$	25 K		$\begin{aligned} & \mathrm{V} / \mathrm{V} \\ & \mathrm{~V} / \mathrm{V} \end{aligned}$
* Common Mode Rejection Ratio (Note 2)	Full	80	90		74	90		74	90		dB
Gain Bandwidth Product (Note 3)	$+25^{\circ} \mathrm{C}$		12			12			12		MHz
OUTPUT CHARACTERISTICS Output Voltage Swing (Note 1)	Full	± 10.0	± 12.0		± 10.0	± 12.0		± 10.0	± 12.0		V
* Output Current (Note 4)	$+25^{\circ} \mathrm{C}$	± 10	± 20		± 10	± 20		± 10	± 20		mA
Full Power Bandwidth (Note 4)	$+25^{\circ} \mathrm{C}$	350	500		300	500		300	500		kHz
TRANSIENT RESPONSE Rise Time (Notes 1, 5, 6 \& 8)	$+25^{\circ} \mathrm{C}$		25	50		25	50		25	50	ns
Overshoot (Notes 1, 5, 7 \& 8)	$+25^{\circ} \mathrm{C}$		25	40		25	50		25	50	\%
* Slew Rate (Notes 1,5,8 \& 12)	$+25^{\circ} \mathrm{C}$	± 25	± 30		± 20	± 30		± 20	± 30		$\mathrm{V} / \mu_{\mathrm{s}}$
Settling Time to 0.1% (Notes 1,5,8 \& 12)	$+25^{\circ} \mathrm{C}$		0.33			0.33			0.33		μs
POWER SUPPLY CHARACTERISTICS * Supply Current	$+25^{\circ} \mathrm{C}$		4	6		4	6		4	6	mA
* Power Supply Rejection Ratio (Note 9)	Full	80	90		74	90		74	90		dB

NOTES: 1. $\mathrm{R}_{\mathrm{L}}=2 \mathrm{~K}$
2. $\mathrm{V}_{\mathrm{CM}}= \pm 10 \mathrm{~V}$
3. $A_{V}>10$
4. $V_{O}= \pm 10.0 \mathrm{~V}$
5. $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
6. $V_{O}= \pm 200 \mathrm{mV}$

* 100\% Tested For DASH 8

7. $V_{O} \pm 200 \mathrm{mV}$
8. See transient response test circuits and waveforms page four
9. $\Delta \mathrm{V}= \pm 5.0 \mathrm{~V}$
10. This parameter value is based on design calculations.
11. Full power bandwidth guaranteed based on slew rate measurement using FPBW $=$ S.R. $12 \pi V_{\text {peak }}$
12. $V_{\mathrm{OUT}}= \pm 5 \mathrm{~V}$
$\mathrm{V}+=15 \mathrm{VDC}, \mathrm{V}-=15 \mathrm{VDC}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ UNLESS OTHERWISE STATED

NORMALIZED AC PARAMETERS vs TEMPERATURE

NORMALIZED AC PARAMETERS vs SUPPLY VOLTAGE AT $+25^{\circ} \mathrm{C}$

OPEN LOOP VOLTAGE GAIN vs TEMPERATURE

EQUIVALENT INPUT NOISE
vs BANDWIDTH

OPEN-LOOP FREQUENCY AND PHASE RESPONSE

OPEN LOOP FREQUENCY RESPONSE FOR VARIOUS VALUES OF CAPACITORS FROM BANDWIDTH CONTROL PIN TO GROUND

NOTE: External compensation components are not required for stability, but may be added to reduce bandwidth if desired.

OUTPUT VOLTAGE SWING vs FREQUENCY AT $+25^{\circ} \mathrm{C}$

POWER SUPPLY CURRENT vs TEMPERATURE

$R_{L}=2 K \Omega, C_{L}=50 \mathrm{pF}$
Upper Trace: Input
Lower Trace: Output

Vertical $=5 \mathrm{~V} /$ Div.
Horizontal $=200 \mathrm{~ns} /$ Div.
$T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15.0 \mathrm{~V}$

SLEW RATE AND TRANSIENT RESPONSE

SUGGESTED OFFSET ZERO ADJUST HOOK-UP

DEFINITIONS

INPUT OFFSET VOLTAGE - That voltage which must be applied between the input terminals through two equal resistances to force the output voltage to zero.

INPUT OFFSET CURRENT - The difference in the currents into the two input terminals when the output is at zero voltage.

INPUT BIAS CURRENT - The average of the currents flowing into the input terminals when the output is at zero voltage.

INPUT COMMON MODE VOLTAGE - The average referred to ground of the voltages at the two input terminals.

COMMON MODE RANGE - The range of voltages which is exceeded at either input terminal will cause the amplifier to cease operating.

TRANSIENT RESPONSE - The closed loop step function response of the amplifier under small signal conditions.

GAIN BANDWIDTH PRODUCT - The product of the gain and the bandwidth at a given gain.

SLEW RATE (Rating Limiting) - The rate at which the output will move between full scale stops, measured in terms of volts per unit time. This limit to an ideal step function response is due to the non-linear behavior in an amplifier due to its limited ability to produce large, rapid changes in output voltage (slewing) . . . restricting it to rates of change of voltage lower than might be predicted by observing the small signal frequency response.

SETTLING TIME - Time required for output waveform to remain within 0.1 percent of final value.

HARRIS
SEMICONDUCTOR PRODUCTS DIVISION A DIVISION OF HARRIS CORPORATION

Preliminary

ABSOLUTE MAXIMUM RATINGS

Voltage Between V^{+}and V - Terminals	40.0 V	Operating Temperature Ra	$0^{\circ} \mathrm{C} \leq \mathrm{T} \mathrm{A} \leq+75^{\circ} \mathrm{C}$
Differential Input Voltage	$\pm 15.0 \mathrm{~V}$		
Peak Output Current	50 mA	Storage Temperature Range	$-65{ }^{\circ} \leq{ }^{T} A \leq+150{ }^{\circ} \mathrm{C}$
Internal Power Dissipation	300 mW		

ELECTRICAL CHARACTERISTICS

$\mathrm{V}^{+}=+15 \mathrm{~V}$ D.C., $\mathrm{V}^{-}=-15 \mathrm{~V}$ D.C.

NOTES:

1. $\mathrm{R}_{\mathrm{L}}=2 \mathrm{~K}$
2. $\mathrm{V}_{\mathrm{CM}}= \pm 10 \mathrm{~V}$
3. $A_{V}>10$
4. $\mathrm{V}_{\mathrm{O}}=+10.0 \mathrm{~V}$
5. $C_{L}=50 p F$
6. $V_{O}= \pm 200 \mathrm{mV} V^{\prime}$ for $H A$ -

2507 and HA-2517;
$V_{O}=+200 \mathrm{mV}$ for
HA-2527

HARRIS
SEMICONDUCTOR PRODUCTS DIVISION A DIVISION OF HARRIS CORPORATION

FEATURES	DESCRIPTION
- high slew rate $60 \mathrm{~V} / \mu \mathrm{s}$ - FAST SETTLING - WIDE POWER BANDWIDTH $1,000 \mathrm{kHz}$ - HIGH GAIN BANDWIDTH 12 MHz - HIGH INPUT IMPEDANCE $100 \mathrm{M} \Omega$ - LOW OFFSET CURRENT 10nA - INTERNALLY COMPENSATED APPLICATIONS - DATA ACQUISITION SYSTEMS - R.F. AMPLIFIERS - VIDEO AMPLIFIERS - SIGNAL GENERATORS - PULSE AMPLIFICATION	The HA-2510/2512/2515 are a series of high performance operational amplifiers which set the standards for maximum slew rate, highest accuracy and widest bandwidth for internally compensated monolithic devices. In addition to excellent dynamic characteristics, these dielectrically isolated amplifiers also offer low offset current and high input impedance. The $\pm 60 \mathrm{~V} / \mu$ s slew rate and $250 \mathrm{~ns}(0.1 \%)$ settling time of these amplifiers is ideally suited for high speed $D / A, A / D$, and pulse amplification designs. HA-2510/2512/2515's superior 12 MHz gain bandwidth and 1000 kHz power bandwidth is extremely useful in R.F. and video applications. For accurate signal conditioning these amplifiers also provide 10 nA offset current, coupled with $100 \mathrm{M} \Omega$ input impedance, and offset trim capability. The HA-2510/2512 are available in metal can (T0-99) and 14 -pin flat packages. HA-2510 and HA-2512 are specified from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. HA -2515 is specified over the $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ range, and is available in the T0-99 package.
PINOUT	SCHEMATIC
T0-99 BANOWIDTH CONTROL Package Code 2A, 1N, LA 2A TOP VIEWS CAUTION: These devices are sensitive to electrostatic discharge. Users should follow IC Handling Procedures specified on pg. 1-4.	

ABSOLUTE MAXIMUM RATINGS

Voltage Between V^{+}and V^{-}Terminals	40.0 V	Peak Output Current	50 mA
Differential Input Voltage	$\pm 15.0 \mathrm{~V}$	Internal Power Dissipation	300 mW
Operating Temperature Range			$-65^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+150^{\circ} \mathrm{C}$
HA-2510/HA-2512	$-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}$	Storage Temperature Range	
\quad HA-2515	$0^{\circ} \mathrm{C} \leq T_{A} \leq+75^{\circ} \mathrm{C}$		

ELECTRICAL CHARACTERISTICS

```
V+=+15V D.C.,V-= 15V D.C.
```

PARAMETER	TEMP.	HA. 2510 $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ LIMITS			$\begin{gathered} \text { HA }-2512 \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$LIMITS			$\begin{gathered} H A-2515 \\ 0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \end{gathered}$LIMITS			UNITS
		MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
INPUT CHARACTERISTICS											
* Offset Voltage	$\begin{gathered} +25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$		4	8 11		5	$\begin{aligned} & 10 \\ & 14 \end{aligned}$		5	$\begin{aligned} & 10 \\ & 14 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Offset Voltage Average Drift	Full		20			25			30		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
* Bias Current	$\begin{gathered} +25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$		100	$\begin{aligned} & 200 \\ & 400 \end{aligned}$		125	$\begin{aligned} & 250 \\ & 500 \end{aligned}$		125	$\begin{aligned} & 250 \\ & 500 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
* Offset Current	$\begin{gathered} +25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$		10	$\begin{aligned} & 25 \\ & 50 \end{aligned}$		20	$\begin{gathered} 50 \\ 100 \end{gathered}$		20	$\begin{gathered} 50 \\ 100 \end{gathered}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
Input Resistance (Note 10)	$+25^{\circ} \mathrm{C}$	50	100		40	100		40	100		$m \Omega$
Common Mode Range	Full	± 10.0			± 10.0			± 10.0			V
TRANSFER CHARACTERISTICS											
* Large Signal Voltage Gain (Note 1,4)	$\begin{gathered} +25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$	$\begin{aligned} & 10 \mathrm{~K} \\ & 7.5 \mathrm{~K} \end{aligned}$	15K		$\begin{gathered} 7.5 \mathrm{~K} \\ 5 \mathrm{~K} \end{gathered}$	15K		$\begin{gathered} 7.5 \mathrm{~K} \\ 5 \mathrm{~K} \end{gathered}$	15K		$\begin{aligned} & V / V \\ & V / V \end{aligned}$
* Common Mode Rejection Ratio (Note 2)	Full		90		74	90		74	90		dB
Gain Bandwidth Product (Note 3)	$+25^{\circ} \mathrm{C}$		12			12			12		MHz
OUTPUT CHARACTERISTICS											
Output Voltage Swing (Note 1)	Full	± 10.0	± 12.0		± 10.0	± 12.0		± 10.0	± 12.0		v
* Output Current (Note 4)	$+25^{\circ} \mathrm{C}$	± 10	± 20		± 10	± 20		± 10	± 20		mA
Full Power Bandwidth (Note 4,11)	$+25^{\circ} \mathrm{C}$	750	1000		600	1000		600	1000		kHz
TRANSIENT RESPONSE											
Rise Time (Notes 1, 5, 6 \& 8)	$+25^{\circ} \mathrm{C}$		25	50		25	50		25	50	ns
Overshoot (Notes 1, 5, 7 \& 8)	$+25^{\circ} \mathrm{C}$		25	40		25	50		25	50	\%
* Slew Rate (Notes 1, 5, 8 \& 12)	$+25^{\circ} \mathrm{C}$	± 50	± 65		± 40	± 60		± 40	± 60		$\mathrm{V} / \mu \mathrm{s}$
Settling Time (Notes 1, 5, 8 \& 12)	$+25^{\circ} \mathrm{C}$		0.25			0.25			0.25		$\mu \mathrm{s}$
POWER SUPPLY CHARACTERISTICS											
* Supply Current	$+25^{\circ} \mathrm{C}$		4	6		4	6		4	6	mA
* Power Supply Rejection Ratio (Note 9)	Full	80	90		74	90		74	90		dB

NOTES: 1. $R_{L}=2 K$
2. $V_{C M}= \pm 10 \mathrm{~V}$
3. $A_{V}>10$
4. $\mathrm{V}_{\mathrm{O}}= \pm 10.0 \mathrm{~V}$
5. $C_{L}=50 \mathrm{pF}$
6. $V_{O}^{L}= \pm 200 \mathrm{mV}$

* 100% Tested For DASH 8

7. $v_{0}= \pm 200 \mathrm{mV}$
8. See transient response test
circuits and waveforms
9. $\Delta \mathrm{V}= \pm 5.0 \mathrm{~V}$
$\mathrm{V}+=15 \mathrm{VDC}, \mathrm{T}_{\mathrm{A}}=\mathbf{2 5 0} \mathrm{C}$ UNLESS OTHERWISE STATED.
INPUT BIAS AND OFFSET CURRENT

vs. TEMPERATURE

NORMALIZED AC PARAMETERS vs. TEMPERATURE

NORMALIZED AC PARAMETERS
vs. SUPPLY VOLTAGE

OPEN LOOP VOLTAGE GAIN
vs. TEMPERATURE

EQUIVALENT INPUT NOISE vs. BANDWIDTH

OPEN LOOP FREQUENCY AND PHASE RESPONSE

OPEN LOOP FREQUENCY RESPONSE FOR VARIOUS VALUES OF CAPACITORS FROM BANDWIDTH CONTROL PIN TO GROUND

NOTE: External compensation components are not required for stability, but may be added to reduce bandwidth if desired.

OUTPUT VOLTAGE SWING vs. FREQUENCY AT $+25^{\circ} \mathrm{C}$

POWER SUPPLY CURRENT
vs
TEMPERATURE

VOLTAGE FOLLOWER PULSE RESPONSE

$R_{L}=2 K \Omega, C_{L}=50 p F$
Upper Trace: Input
Lower Trace: Output

Vertical $=5 \mathrm{~V} /$ Div.
Horizontal $=100 \mathrm{n} /$ Div.
$T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15.0 \mathrm{~V}$

SLEW RATE AND
SETTLING TIME

TRANSIENT RESPONSE

SLEW RATE AND TRANSIENT RESPONSE

DEFINITIONS

INPUT OFFSET VOLTAGE - That voltage which must be applied between the input terminals through two equal resistances to force the output voltage to zero.
INPUT OFFSET CURRENT - The difference in the currents into the two input terminals when the output is at zero voltage.
INPUT BIAS CURRENT - The average of the currents flowing into the input terminals when the output is at zero voltage.
INPUT COMMON MODE VOLTAGE - The average referred to ground of the voltages at the two input terminals.
COMMON MODE RANGE - The range of voltages which is exceeded at either input terminal will cause the amplifier to cease operating.

COMMON MODE REJECTION RATIO - The ratio of a specified range of input common mode voltage to the peak-to-peak change in input offset voltage over this range.
OUTPUT VOLTAGE SWING - The peak symmetrical output voltage swing, referred to ground, that can be obtained without clipping.
INPUT RESISTANCE - The ratio of the change in input voltage to the change in input current.
OUTPUT RESISTANCE - The ratio of the change in output voltage to the change in output current.
VOLTAGE GAIN - The ratio of the change in output voltage to the change in input voltage producing it
UNITY GAIN BANDWIDTH - The frequency at which the voltage gain of the amplifier is unity.

Uncompensated High Slew Rate Operational Amplifiers

FEATURES	
- HIGH SLEW RATE	$120 \mathrm{~V} / \mathrm{\mu s}$
- FAST SETTLING	200 ns
- WIDE POWER BANDWIDTH	$2,000 \mathrm{kHz}$
- HIGH GAIN BANDWIDTH	20 MHz
- HIGH INPUT IMPEDANCE	$100 \mathrm{M} \Omega$
- LOW OFFSET CURRENT	10 nA

APPLICATIONS

- DATA ACQUISITION SYSTEMS
- R.F.AMPLIFIERS
- VIDEO AMPLIFIERS
- SIGNAL GENERATORS
- PULSE AMPLIFICATION

DESCRIPTION

HA-2520/2522/2525 comprise a series of monolithic operational amplifiers delivering an unsurpassed combination of specifications for slew rate, bandwidth and settling time. These dielectrically isolated amplifiers are controlled at closed loop gains greater than 3 without external compensation. In additon, these high performance components also provide low offset current and high input impedance.
$120 \mathrm{~V} / \mu \mathrm{s}$ slew rate and $200 \mathrm{~ns}(0.1 \%)$ settling time of these amplifiers make them ideal components for pulse amplification and data acquisition designs. These devices are valuable components for R.F. and video circuitry requiring up to 20 MHz gain bandwidth and 2 MHz power bandwidth. For accurate signal conditioning designs the HA-2520/2522/2525's superior dynamic specifications are complimented by 10 nA offset current, $100 \mathrm{M} \Omega$ input impedance and offset trim capability.

The HA-2520/2522 are available in metal can (TO-99) and 14-pin flat packages. HA-2520 and HA-2522 are specified over $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ range. HA-2525 is specified from $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$, and is available in the $\mathrm{TO-99}$ package.
PINOUT SCHEMATIC

T0-99

OFFSET ADJ.

1N, LA

CAUTION: These devices are sensitive to electrostatic discharge. Users should follow IC Handling Procedures specified on pg. 1-4.

Voltage Between V^{+}and V - Terminals	40.0 V	Peak Output Current	50 mA
Differential Input Voltage	$\pm 15.0 \mathrm{~V}$	Internal Power Dissipation	300 mW
Operating Temperature Range			
HA-2520/2522	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	Storage Temperature Range	$-65^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+150^{\circ} \mathrm{C}$
HA-2525	$0^{\circ} \mathrm{C} \leq T_{A} \leq+75^{\circ} \mathrm{C}$		

ELECTRICAL CHARACTERISTICS

$V+=+15 V$ D.C., $V-=-15 V$ D.C.

PARAMETER	TEMP.	$\begin{gathered} \mathrm{HA}-2520 \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$ LIMITS			HA. 2522 $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ LIMITS			$\begin{gathered} \text { HA-2525 } \\ 0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \\ \text { LIMITS } \\ \hline \end{gathered}$			UNITS
		MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
INPUT CHARACTERISTICS											
* Offset Voltage	$\begin{gathered} +25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$		4	$\begin{gathered} 8 \\ 11 \end{gathered}$		5	$\begin{aligned} & 10 \\ & 14 \end{aligned}$		5	$\begin{aligned} & 10 \\ & 14 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Offset Voltage Average Drift	Full		20			25			30		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
* Bias Current	$\begin{gathered} +25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$		100	$\begin{aligned} & 200 \\ & 400 \end{aligned}$		125	$\begin{aligned} & 250 \\ & 500 \end{aligned}$		125	$\begin{aligned} & 250 \\ & 500 \end{aligned}$	nA
* Offset Current	$\begin{gathered} +25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$		10	$\begin{aligned} & 25 \\ & 50 \end{aligned}$		20	$\begin{gathered} 50 \\ 100 \end{gathered}$		20	$\begin{gathered} 50 \\ 100 \end{gathered}$	$\begin{aligned} & \text { nA } \\ & \text { nA } \end{aligned}$
Input Resistance (Note 9)	$+25^{\circ} \mathrm{C}$	50	100		40	100		40	100		$\mathrm{m} \Omega$
Common Mode Range	Full	± 10.0			± 10.0			± 10.0			v
TRANSFER CHARACTERISTICS											
* Large Signal Voltage Gain (Note 1,4)	$\begin{gathered} +25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$	$\begin{aligned} & 10 \mathrm{~K} \\ & 7.5 \mathrm{~K} \end{aligned}$	15K		$\begin{gathered} 7.5 \mathrm{~K} \\ 5 \mathrm{~K} \end{gathered}$	15K		$\begin{gathered} 7.5 K \\ 5 K \end{gathered}$	15 K		$\begin{aligned} & \mathrm{V} / \mathrm{V} \\ & \mathrm{~V} / \mathrm{V} \end{aligned}$
* Common Mode Rejection Ratio (Note 2)	Full	80	90		74	90		74	90		dB
Gain Bandwidth Product (Note 3)	$+25^{\circ} \mathrm{C}$	10	20		10	20		10	20		MHz
OUTPUT CHARACTERISTICS											
Output Voltage Swing (Note 1)	Full	± 10.0	± 12.0		± 10.0	± 12.0		± 10.0	± 12.0		v
* Output Current (Note 4)	$+25^{\circ} \mathrm{C}$	± 10	± 20		± 10	± 20		± 10	± 20		mA
Full Power Bandwidth (Note 4, 10)	$+25^{\circ} \mathrm{C}$	1500	2000		1200	1600		1200	1600		kHz
TRANSIENT RESPONSE ($\mathrm{AV}_{\mathrm{V}}=+3$)											
Rise Time (Notes 1, 5, 6 \& 8)	$+25^{\circ} \mathrm{C}$		25	50		25	50		25	50	ns
Overshoot (Notes 1, 5, 6 \& 8)	$+25^{\circ} \mathrm{C}$		25	40		25	50		25	50	\%
* Slew Rate (Notes 1, 5, 8 \& 11)	$+25^{\circ} \mathrm{C}$	± 100	± 120		± 80	± 120		± 80	± 120		$\mathrm{V} / \mu \mathrm{s}$
Settling Time (Notes 1, 5, 8 \& 11)	$+25^{\circ} \mathrm{C}$		0.20			0.20			0.20		$\mu \mathrm{s}$
POWER SUPPLY CHARACTERISTICS											
* Supply Current	$+25^{\circ} \mathrm{C}$		4	6		4	6		4	6	mA
* Power Supply Rejection Ratio (Note 7)	Full	80	90		74	90		74	90		dB

NOTES: 1. $\mathrm{R}_{\mathrm{L}}=2 \mathrm{~K}$
4. $\mathrm{V}_{\mathrm{O}}= \pm 10.0 \mathrm{~V}$
7. $\Delta V= \pm 5.0 \mathrm{~V}$
2. $\mathrm{V}_{\mathrm{CM}}= \pm 10 \mathrm{~V}$
3. $A_{V}>10$
5. $C_{L}=50 \mathrm{pF}$
6. $V_{O}= \pm 200 \mathrm{mV}$
8. See transient response test circuits and waveforms
9. This parameter value is based upon design calculations.
10. Full power bandwidth guaranteed based upon slew rate measurement FPBW $=$ S.R. $/ 2 \pi V_{\text {peak }}$.
11. $V_{\text {OUT }}= \pm 5 \mathrm{~V}$
$\mathrm{V}+=15 \mathrm{VDC}, \mathrm{V}-=15 \mathrm{VDC}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ UNLESS OTHERWISE STATED

INPUT BIAS AND OFFSET CURRENT vs TEMPERATURE

NORMALIZED AC PARAMETERS vs TEMPERATURE

NORMALIZED AC PARAMETERS vs SUPPLY VOLTAGE AT $+25^{\circ} \mathrm{C}$

Supply Voltage

OPEN LOOP VOLTAGE GAIN vs TEMPERATURE

POWER SUPPLY CURRENT vs TEMPERATURE

Temperature ${ }^{\circ} \mathrm{C}$

SLEW RATE AND SETTLING TIME

TRANSIENT RESPONSE

SLEW RATE AND TRANSIENT RESPONSE

Horizontal $=100 \mathrm{~ns} /$ Div.
$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$

Upper Trace: Input; 1.67V/Div. Lower Trace: Output; 5V/Div.

SUGGESTED OFFSET ZERO ADJUST HOOK-UP

TYPICAL APPLICATIONS

High Slew Rate, Widehand Inverting Amplifier

FEATURES	DESCRIPTION
- HIGH SLEW RATE $\pm 320 \mathrm{~V} / \mu \mathrm{s}$ - fast settling time 550ns - WIDE POWER BANDWIDTH 5 MHz - HIGH GAIN BANDWIDTH PRODUCT 70 MHz - LOW OFFSET VOLTAGE 0.8 mV - LOW POWER SUPPLY CURRENT 3.5 mA APPLICATIONS - PULSE AMPLIFICATION - SIGNAL CONDITIONING - SIGNAL GENERATORS - COAXIAL CABLE DRIVERS - INTEGRATORS	HA-2530 and HA-2535 are monolithic high speed inverting amplifiers which deliver superior slew rate, bandwidth, and accuracy specificatiens compared to any other amplifier in its class. Designs of these dielectrically isolated amplifiers utilize the feed forward amplifier technique to produce excellent dynamic and DC specifications coupled with low power consumption. These devices require no external compensation at closed loop gains greater than 10. These amplifiers are excellent components for pulse circuits, data acquisition designs, and high speed integrators that can take advantage of the $\pm 320 \mathrm{~V} / \mu$ s slew rate and 550 ns (0.1%) settling time. 70 MHz gain bandwidth product, 5 MHz power bandwidth coupled with 0.8 mV offset voltage and $\pm 50 \mathrm{~mA}$ typical output current levels make these amplifiers ideally suited for signal conditioning, signal generation, and coaxial driver applications. The HA-2530 and HA-2535 are available in metal can (T0-99) packages. HA-2530 is specified over the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ range while HA-2535 is specified from $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$.
PINOUT	SCHEMATIC
TOP VIEW CAUTION: These devices are sensitive to electrostatic discharge.	

CAUTION: These devices are sensitive to electrostatic discharge.

HA-2530 and HA-2535 are monolithic high speed inverting amplifiers which deliver superior slew rate, bandwidth, and accuracy specificatiens compared to any other amplifier in its class. Designs of these dielectrically isolated amplifiers utilize the feed forward amplifier technique to produce excellent dynamic and DC specifications coupled with low power consumption. These devices require no external compensation at closed loop gains greater than 10.

These amplifiers are excellent components for pulse circuits, data acquisition designs, and high speed integrators that can take advantage of the $\pm 320 \mathrm{~V} / \mu$ s slew rate and $550 \mathrm{~ns}(0.1 \%)$ settling time. 70 MHz gain bandwidth product, 5 MHz power bandwidth coupled with 0.8 mV offset voltage and $\pm 50 \mathrm{~mA}$ typical output current levels make these amplifiers ideally suited for signal conditioning, signal generation, and coaxial driver applications.

The HA-2530 and HA-2535 are available in metal can (T0-99) packages. HA-2530 is specified over the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ range while HA-2535 is specified from $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$.

Users should follow IC Handling Procedures specified on pg. 1-4.

Voltage Between V+ and V-Terminals 40 V

Peak Output Current
$\pm 100 \mathrm{~mA}$

550 mW
$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$
(HA-2530)
$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+75^{\circ} \mathrm{C}$
(HA-2535)

Storage Temperature Range $-65^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+150^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

Test Conditions: $V_{\text {Supply }}= \pm 15.0 \mathrm{~V}$ Unless 0 therwise Specified.

PARAMETER	TEMP.	$\begin{gathered} \text { HA-2530 } \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$			$\begin{gathered} \text { HA-2535 } \\ 0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \end{gathered}$			UNITS
		LIMITS			LIMITS			
		MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
INPUT CHARACTERISTICS								
* Offset Voltage	$\begin{aligned} & +25^{\circ} \mathrm{C} \\ & \text { Full } \end{aligned}$		0.8	3		0.8	5	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Average Offset Voltage Drift * Bias Current	Full		5			5		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
	$\begin{aligned} & +25^{\circ} \mathrm{C} \\ & \text { Full } \end{aligned}$		15	100		15	200	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
* Otfset Current	$\begin{aligned} & +25^{\circ} \mathrm{C} \\ & \text { Full } \end{aligned}$		5	20		5	20	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
Input Resistance Input Capacitance	$+25^{\circ} \mathrm{C}$		2			2		$\mathrm{M} \Omega$
	$+25^{\circ} \mathrm{C}$		10			10		pF
Large Signal Voltage Gain (Notes 2,5)	$\begin{aligned} & +25^{\circ} \mathrm{C} \\ & \text { Full } \end{aligned}$	10^{5}	2×10^{6}		10^{5}	2×10^{6}		$\begin{aligned} & \mathrm{V} / \mathrm{V} \\ & \mathrm{~V} / \mathrm{V} \end{aligned}$
* Common-Mode Rejection Ratio (Note 3)	Full	86	100		80	100		dB
Gain Bandwidth Product (Note 4)	$+25^{\circ} \mathrm{C}$		70			70		MHz
* Output Voltage Swing (Note 2) * Output Current (Note 5) Full Power Bandwidth (Note 5)	Full	± 10	± 12		± 10	± 12		V
	$+25^{\circ} \mathrm{C}$	± 25	± 50		± 25	± 50		mA
	$+25^{\circ} \mathrm{C}$	4	5		4	5		MHz
TRANSIENT RESPONSE (NOTES 6\&7)	$+25^{\circ} \mathrm{C}$		20	40		20	40	ns
* Overshoot	$+25^{\circ} \mathrm{C}$		30	45		30	50	\%
* Slew Rate	$+25^{\circ} \mathrm{C}$	± 280	± 320		± 250	± 320		$\mathrm{V} / \mu \mathrm{s}$
Settling Time	$+25^{\circ} \mathrm{C}$		500			500		ns
* PuWER SUPPLY Current	$+25^{\circ} \mathrm{C}$		3.5	6		3.5	6	mA
* Power Supply Rejection Ratio (Note 8)	Full	86	100		80	100		dB

NOTES: 1. Derate at $5.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for Operation at Ambient Temperature Above $75^{\circ} \mathrm{C}$.
2. $R_{L}=2 K$
3. $V_{C M}= \pm 5.0 \mathrm{~V}$
4. $A_{V}>10$
5. $V_{O}= \pm 10 \mathrm{~V}$
6. $C_{L}=50 \mathrm{pF}$
7. See Transient Response Test Circuit and Wave Forms
8. $\Delta V= \pm 5.0 \mathrm{~V}$

[^2]$\mathrm{V}+=15 \mathrm{VDC}, \mathrm{V}-=15 \mathrm{VDC}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ UNLESS OTHERWISE STATED

INPUT BIAS AND OFFSET CURRENT
vs. TEMPERATURE

NORMALIZED AC PARAMETERS
vs. TEMPERATURE

NORMALIZED AC PARAMETERS
vs. SUPPLY VOLTAGE AT $+25^{\circ} \mathrm{C}$

EQUIVALENT INPUT NOISE
vs. BANDWIDTH

OPEN-LOOP FREQUENCY AND PHASE RESPONSE

POWER SUPPLY CURRENT
vs. TEMPERATURE

OUTPUT VOLTAGE SWING
vs. FREQUENCY AT $+25^{\circ} \mathrm{C}$

Frequency Hz

SETTLING TIME MEASUREMENT *1

VERTICAL $=5 \mathrm{mV} /$ DIV. HORIZONTAL $=100 \mathrm{~ns} /$ DIV. $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$

UNITY GAIN PULSE RESPONSE

UPPER TRACE: INPUT VERTICAL = 5V/DIV. LOWER TRACE: OUTPUT HORIZONTAL $=50 \mathrm{~ns} / \mathrm{DIV}$. $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$

SLEW RATE/SETTLING TIME/TRANSIENT RESPONSE TEST CIRCUIT

*1 Settling time (T_{S}) is measured using a high speed high recovery oscilloscope to display the error voltage V_{E}. When V_{E} is within $\pm 5 \mathrm{mV}$ of final value the output V_{O} will be within $\pm 10 \mathrm{mV}$ (0.1%).
*2 S_{1} closed for settling time.

5 MHz VIDEO AMPLIFIER ($\mathrm{A}_{\mathrm{V}}=10$)

HA-2600/2602/2605

Wide Band, High Impedance Operational Amplifier

FEATURES

DESCRIPTION

- WIDE BANDWIDTH
- HIGH INPUT IMPEDANCE
- LOW INPUT BIAS CURRENT
- LOW INPUT OFFSET CURRENT
- LOW INPUT OFFSET VOLTAGE
- HIGH GAIN
- HIGH SLEW RATE
- OUTPUT SHORT CIRCUIT PROTECTION

APPLICATIONS

- VIDEO AMPLIFIER
- PULSE AMPLIFIER
- AUDIO AMPLIFIERS AND FILTERS
- high-Q active filters
- HIGH-SPEED COMPARATORS
- LOW DISTORTION OSCILLATORS

12 MHz
$500 \mathrm{M} \Omega$
1nA

150 K V/V
7V/ $\mu \mathrm{s}$

PINOUT

CAUTION: These devices are sensitive to electrostatic discharge Users should follow IC Handling Procedures specified on pg. 1-4.

HA-2600/2602/2605 are internally compensated bipolar operational amplifiers that feature very high input impedance (500 $\mathrm{M} \Omega, \mathrm{HA}-2600$) coupled with wideband $A C$ performance. The high resistance of the input stage is complemented by low offset voltage ($0.5 \mathrm{mV}, \mathrm{HA}-2600$) and low bias and offset current (1nA, HA-2600) to facilitate accurate signal processing. Input offset can be reduced further by means of an external nulling potentiometer. 12 MHz unity gain-bandwidth product, $7 \mathrm{~V} / \mu \mathrm{s}$ slew rate and $150,000 \mathrm{~V} / \mathrm{V}$ open-loop gain enables HA-2600/ 2602/2605 to perform high-gain amplification of fast, wideband signals. These dynamic characterisitics, coupled with fast settling times, make these amplifiers ideally suited to pulse amplification designs as well as high frequency (e.g. video) applications. The frequency response of the amplifier can be tailored to exact design requirements by means of an external bandwidth control capacitor.

In addition to its application in pulse and video amplifier designs, HA-2600/2602/2605 is particularly suited to other high performance designs such as high-gain low distortion audio amplifiers, high- 0 and wideband active filters and high-speed comparators.

HA-2600 and HA-2602 are guaranteed over $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. HA-2605 is specified from $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$. All devices are available in TO-99 cans, and HA-2600/2602 are available in 10 lead flat packages.

ABSOLUTE MAXIMUM RATINGS

Voltage Between V^{+}and V - Terminals
Differential Input Voltage
Peak Output Current
Internal Power Dissipation
Operating Temperature Range - HA-2600/HA-2602
HA-2605
Storage Temperature Range
45.0 V
$\pm 12.0 \mathrm{~V}$
Full Short Circuit Protection
300 mW
$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$
$0^{0} \leq T_{A} \leq+75^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+150^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS V+=+15VDC, V-=-15VDC

PARAMETER	TEMP.	$\begin{gathered} \text { HA-2600 } \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \hline \end{gathered}$			$\begin{gathered} \text { HA-2602 } \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$			$\begin{aligned} & \text { HA-2605 } \\ & 0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \\ & \hline \end{aligned}$			UNITS
		LIMITS			LIMITS			LIMITS			
		MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
INPUT CHARACTERISTICS											
* Offset Voltage	$\begin{gathered} +25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$		0.5 2	4 6		3	5		3	$\begin{aligned} & 5 \\ & 7 \end{aligned}$	$\begin{aligned} & m V \\ & m V \end{aligned}$
. Offset Voltage Average Drift	Full		5								$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
* Bias Current	$+25^{\circ} \mathrm{C}$		1	10		15	25		5	25	nA
* Bias Current	Full		10	30			60			40	nA
* Offset Current	$\begin{gathered} +25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$		1 5	$\begin{aligned} & 10 \\ & 30 \end{aligned}$		5	$\begin{aligned} & 25 \\ & 60 \end{aligned}$		5	$\begin{aligned} & 25 \\ & 40 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
Input Resistance (Note 10)	$+25^{\circ} \mathrm{C}$	100	500		40	300		40	300		$\mathrm{M} \Omega$
Common Mode Range	Full	± 11.0			± 11.0			± 11.0			V
TRANSFER CHARACTERISTICS											
* Large Signal Voltage Gain (Notes 1, 4)	$\begin{gathered} +25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$	$\begin{aligned} & 100 \mathrm{~K} \\ & 70 \mathrm{~K} \end{aligned}$	150K		80 K 60 K	150K		80 K 70 K	150K		$\begin{aligned} & \mathrm{V} / \mathrm{V} \\ & \mathrm{~V} / \mathrm{V} \end{aligned}$
Common Mode Rejection Ratio (Note 2)	Full	80	100		74	100		74	100		dB
Unity Gain Bandwidth (Note 3)	$+25^{\circ} \mathrm{C}$		12			12			12		MHz
OUTPUT CHARACTERISTICS Output Voltage Swing (Note 1)											
	Full	± 10.0	± 12.0		± 10.0	± 12.0		± 10.0	± 12.0		V
* Output Current (Note 4)	$+25^{\circ} \mathrm{C}$	± 15	± 22		± 10	± 18		± 10	± 18		mA
Full Power Bandwidth (Note 4 \&11)	$+25^{\circ} \mathrm{C}$	50	75		50	75		50	75		kHz
$\frac{\text { TRANSIENT RESPONSE }}{\text { Rise Time (Notes } 155} 688$)											
Rise Time (Notes 1, 5, 6 \& 8)	$+25^{\circ} \mathrm{C}$		30	60		30	60		30	60	ns
Overshoot (Notes 1, 5, 7 \& 8)	$+25^{\circ} \mathrm{C}$		25	40		25	40		25	40	\%
* Slew Rate (Notes 1, 5, 8 \& 12)	$+25^{\circ} \mathrm{C}$	± 4	± 7		± 4	± 7		± 4	± 7		$\mathrm{V} / \mu_{\mathrm{s}}$
Settling Time (Notes 1, 5, 8 \& 12)	$+25^{\circ} \mathrm{C}$		1.5			1.5			1.5		$\mu \mathrm{s}$
POWER SUPPLY CHARACTERISTICS * Supply Current											
	$+25^{0} \mathrm{C}$		3.0	3.7		3.0	4.0		3.0	4.0	mA
* Power Supply Rejection Ratio (Note 9)	Full	80	90		74	90		74	90		dB

TEST CONDITIONS

NOTES: 1. $R_{L}=2 K$

$$
\begin{aligned}
& \text { 1. } R_{L}=2 K \\
& \text { 2. } V_{C M}= \pm 10 \mathrm{~V} \\
& \text { 3. } V_{O}=90 \mathrm{mV} \\
& \text { 4. } V_{O}= \pm 10 \mathrm{~V} \\
& \text { 5. } C_{L}^{L}=100 \mathrm{pF} \\
& \text { 6. } V_{O}= \pm 200 \mathrm{mV}
\end{aligned}
$$

7. $V_{O}= \pm 200 \mathrm{mV}$
8. See Transient response test circuits and waveforms
9. $\Delta \mathrm{VS}= \pm 5 \mathrm{~V}$
10. Th is parameter value guaranteed by design calculations.
11. Full power bandwidth guaranteed by slew rate measurement. FPBW $=$ S.R. $/ 2 \pi V_{\text {peak }}$.
12. $V_{\text {OUT }}= \pm 5 \mathrm{~V}$

[^3]$\mathrm{V}+=15 \mathrm{VDC}, \mathrm{V}-=15 \mathrm{VDC}, \mathrm{T}_{\mathrm{A}}=\mathbf{2 5}^{\circ} \mathrm{C}$ UNLESS OTHERWISE STATED.

INPUT BIAS CURRENT AND OFFSET CURRENT AS A FUNCTION OF TEMPERATURE

UER 3 B TREQEQCN BROADBAND NOISE CHARACTERISTICS

INPUT IMPEDANCE VS. TEMPERATURE, 100 Hz

OUTPUT VOLTAGE SWING VS. FREQUENCY

OPEN-LOOP FREQUENCY RESPONSE FOR VARIOUS VALUES OF CAPACITORS FROM BANDWIDTH CONTROL PIN TO GROUND Note: Externat Compensation Components are not Required for Stability. But May be Added to Reduce Bandwidth if Desired for Stability. But May be Added to Reduce Bandwidth if Desired,
If External Compensation is Used, Also Connect 100pF Capacitor From Output to Ground.

TRANSIENT RESPONSE

NOTE: MEASURED ON BOTH POSITIVE AND NEGATIVE TRANSITIONS.

SLEW RATE AND SETTLING TIME

setting time

SLEW RATE AND TRANSIENT RESPONSE

SUGGESTED OFFSET ZERO ADJUST HOOK-UP

PHOTO-CURRENT TO VOLTAGE CONVERTER

REFERENCE VOLTAGE AMPLIFIER

VOLTAGE FOLLOWER


```
1000 GAIN 0.9999
zin}=-1\mp@subsup{0}{}{12}\textrm{m}\mathrm{ MIN
```

SLEW RATE $=4 \mathrm{~V} / \mathrm{uS}$ MIN
$z_{\text {in }}=10^{12}$ MIN
$z_{\text {out }}=01$ MAX.
B. \mathbf{W} = $12 \mathrm{MH}_{2}$ TYP

OUTPUT.SWING $= \pm 10 \mathrm{~V}$ MIN TO 50 kHz
*A small load capacitance is recommended in all applications where practical to prevent possible high frequency oscillations resulting from external wiring parasitics. Capacitance up to 100 pF has negligible effect on the bandwidth or slew rate.

INPUT OFFSET VOLTAGE - That voltage which must be applied between the input terminals through two equal resistances to force the output voltage to zero.

INPUT OFFSET CURRENT - The difference in the currents into the two input terminals when the output is at zero voltage.
INPUT BIAS CURRENT - The average of the currents flowing into the input terminals when the output is at zero voltage.

INPUT COMMON MODE VOLTAGE - The average referred to ground of the voltages at the two input terminals.

COMMON MODE RANGE - The range of voltages which is exceeded at either input terminal will cause the amplifier to cease operating.

COMMON MODE REJECTION RATIO - The ratio of a specified range of input common mode voltage to the peak-to-peak change in input offset voltage over this range.

OUTPUT VOLTAGE SWING - The peak symmetrical output voltage swing, referred to ground, that can be obtained without clipping.
INPUT RESISTANCE - The ratio of the change in input voltage to the change in input current.
OUTPUT RESISTANCE - The ratio of the change in output voltage to the change in output current.
VOLTAGE GAIN - The ratio of the change in output voltage to the change in input voltage producing it.
BANDWIDTH - The frequency at which the voltage gain is 3dB below its low frequency value.

UNITY GAIN BANDWIDTH - The frequency at which the voltage gain of the amplifier is unity.

POWER SUPPLY REJECTION RATIO - The ratio of the change in input offset voltage to the change in power supply voltage producing it.
TRANSIENT RESPONSE - The closed loop step function response of the amplifier under small signal conditions.
PHASE MARGIN $-\left(180^{\circ}-\left(\phi_{1}-\phi_{2}\right)\right)$ where ϕ_{1} is the phase shift at the frequency where the absolute magnitude of gain is unity $\boldsymbol{\phi}_{2}$ is the phase shift at a frequency much lower than the open loop bandwidth.
SLEW RATE (Rate Limiting) - The rate at which the output will move between full scale stops, measured in terms of volts per unit time. This limit to an ideal step function response is due to the non-linear behavior in an amplifier due to its limited ability to produce large, rapid changes in output voltage (slewing) . . . restricting it to rates of change of voltage lower than might be predicted by observing the small signal frequency response.

SETTLING TIME - Time required for output waveform to remain within 0.1% of final value.

HARRIS
SEMICONDUCTOR PRODUCTS DIVISION A DIVISION OF HARRIS CORPORATION

FEATURES			
	$\frac{\text { HA-2607 }}{12}$	$\frac{\text { HA-2627 }}{100}$	
- Wide Gain-Bandwidth	MHz		
- High Slew Rate	7	35	$\mathrm{~V} / \mu \mathrm{S}$
- Wide Power Bandwidth	75	600	kHz
- High Gain			
- High Input Impedance	$500 \mathrm{KV} / \mathrm{V}$		

DESCRIPTION

HA-2607/2627 bipolar operational amplifiers are high performance, epoxy-packaged monolithic IC's designed to deliver outstanding wideband AC performance. HA-2607 has a specified bandwidth of 12 MHz while HA-2627 has a typical gain-bandwidth of 100 MHz ! ${ }^{*}$ HA-2607 and HA-2627 also offer correspondingly high slew rates of $7 \mathrm{~V} / \mu$ Sec and $35 \mathrm{~V} / \mu$ Sec respectively. These dynamic characteristics, coupled with $150,000 \mathrm{~V} / \mathrm{V}$ open-loop gain enables HA2607/2627 to perform high-gain amplification of very fast, wideband signals. This level of performance is achieved through the use of Harris' unique Dielectric Isolation processing techniques.

The HA-2607 and HA-2627 op amps afford an economical means of designing high performance equipment for industrial and commercial use. These amplifiers are ideally suited to pulse amplification designs as well as high frequency (e.g. RF, video) applications. The frequency response of both amplifiers can be tailored to exact design requirements by means of an external bandwidth control capacitor.

HA-2607/2627 are specified from $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ and are available in 8 -lead epoxy DIP packages that have been extensively tested and qualified to deliver the high level of performance and reliability that are expected of Harris Semiconductor's operational amplifiers.
*HA-2607/2627 are internally compensated - HA-2607 is stable for $A V \geq 1,-H A-2627$ is stable for $A V \geq 5$.

8 LEAD DIP EPOXY

ABSOLUTE MAXIMUM RATINGS

Voltage Between V^{+}and V - Terminals
Differential Input Voltage
Peak Output Current
Internal Power Dissipation (Note 10)
Operating Temperature Range - HA-2607/HA-2627
Storage Temperature Range
45.0 V
$\pm 12.0 \mathrm{~V}$
Full Short Circuit Protection
300 mW
$00 \leq T_{A} \leq+75^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+150^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS V+=+15VDC, V-=-15VDC

PARAMETER	TEMP.	$\begin{gathered} \text { HA-2607 } \\ 0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \end{gathered}$			$\begin{gathered} \mathrm{HA}-2627 \\ 0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \end{gathered}$			
		LIMITS						
		MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	UNITS
INPUT CHARACTERISTICS								
Offset Voltage	$\begin{gathered} +25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$		4	6 8		4	6 8	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Offset Voltage Average Drift	Full		5			5	30	nA
Bias Current	$\begin{gathered} +25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$		5	$\begin{aligned} & 30 \\ & 50 \end{aligned}$		5	$\begin{aligned} & 30 \\ & 50 \end{aligned}$	nA
Offset Current	$\begin{gathered} +25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$		5	$\begin{aligned} & 30 \\ & 50 \end{aligned}$		5	$\begin{aligned} & 30 \\ & 50 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
Input Resistance	$+25^{\circ} \mathrm{C}$	40	300		40	300		M 9
Common Mode Range	Full	± 10.0			± 10.0			V
TRANSFER CHARACTERISTICS								
Large Signal Voltage Gain (Note 1)	$+\underset{\text { Full }}{+25^{\circ} \mathrm{C}}$	$\begin{aligned} & 70 \\ & 60 \end{aligned}$	150K		70 60	150K		$\begin{aligned} & \text { V/V } \\ & \text { V/V } \end{aligned}$
Common Mode Rejection Ratio (Note 2)	Full	74	100		74	100		dB
Gain Bandwidth Product (Note 3, 11)	${ }^{+250} \mathrm{C}$		12			100		MHz
OUTPUT CHARACTERISTICS								
Output Voltage Swing (Note 1)	Full	± 10.0	± 12.0		± 10.0	± 12.0		V
Output Current (Note 4)	$+25^{\circ} \mathrm{C}$	± 10	± 18		± 10	± 18		mA
Full Power Bandwidth (Note 4)	$+25^{\circ} \mathrm{C}$	50	75		290	600		kHz
TRANSIENT RESPONSE								
Rise Time (Notes 1, 5, 6 \& 8)	$+25^{\circ} \mathrm{C}$		30	60		17	45	ns
Overshoot (N otes 1, 5, 7 \& 8)	$+25^{\circ} \mathrm{C}$		25	40		25	40	\%
Slew Rate (Notes 1, 5, 8 \& 12)	$+25^{\circ} \mathrm{C}$	± 4	± 7		± 17	± 35		$\mathrm{V} / \mu \mathrm{s}$
Settling Time (Notes 1, 5, 8\& 12)	$+25^{\circ} \mathrm{C}$		1.5			1.5		$\mu \mathrm{s}$
POWER SUPPLY CHARACTERISTICS								
Supply Current	$+25^{\circ} \mathrm{C}$		3.0	4.0		3.0	4.0	mA
Power Supply Rejection Ratio (Note 9)	Full	74	90		74	90		dB

test conditions
NOTES: 1. $\mathrm{R}_{\mathrm{L}}=2 \mathrm{~K}$
7. $\mathrm{V}_{\mathrm{O}}=+400 \mathrm{mV}$
2. $\mathrm{V}_{\mathrm{CM}}=+5.0 \mathrm{~V}$
8. For $\mathrm{HA}-2607, A V=1$;

For HA-2627, $A V=5$
3. $V_{O}<90 \mathrm{mV}$
9. $V_{S}=+9.0 \mathrm{~V}$ to +15 V
4. $V_{O}=+10 \mathrm{~V}$
5. $C_{L}=100 \mathrm{pF}$
10. Derate by $6.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $105^{\circ} \mathrm{C}$
6. $V_{L}=+200 \mathrm{mV}$

1140 dB gain setting used to measure Gain-Bandwidth for HA-2627
12. $V_{\text {OUT }}= \pm 5 \mathrm{~V}$

HARRIS
SEMICONDUCTOR
PRODUCTS DIVISION
A DIVISION OF HARRIS CORPORATION

HA-2620/2622/2625
 Very Wide Band, Uncompensated Operational Amplifiers

ABSOLUTE MAXIMUM RATINGS

Voltage Between V^{+}and V - Terminals	45.0 V
Differential Input Voltage	$\pm 12.0 \mathrm{~V}$
Peak Output Current	Full Short Circuit Protection
Internal Power Dissipation	300 mW
Storage Temperature Range	$-65^{\circ} \mathrm{C} \leq T_{A} \leq+150^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

$\mathrm{V}^{+}=+15 \mathrm{VDC}$,	$\mathrm{V}^{-}=-15 \mathrm{VDC}$	$\begin{gathered} H A-2620 \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$			$\begin{gathered} \mathrm{HA}-2622 \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$			$\begin{gathered} \mathrm{HA}-2625 \\ 0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \end{gathered}$			UNITS
PARAMETER	TEMPERATURE	MIN.	TYP.	MAX	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
INPUT CHARACTERISTICS * Offset Voltage (Note 1)	$\begin{gathered} +25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$		0.5	$\begin{aligned} & 4 \\ & 6 \end{aligned}$		3	5		3	$\begin{aligned} & 5 \\ & 7 \end{aligned}$	$\begin{aligned} & m V \\ & m V \end{aligned}$
* Bias Current	${ }_{\text {Full }}^{+20^{\circ} \mathrm{C}}$		1 10	$\begin{aligned} & 15 \\ & 35 \end{aligned}$		5	$\begin{aligned} & 25 \\ & 60 \end{aligned}$		5	$\begin{aligned} & 25 \\ & 40 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
* Offset Current	$\begin{gathered} +25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$		$\begin{aligned} & 1 \\ & 5 \end{aligned}$	$\begin{aligned} & 15 \\ & 35 \end{aligned}$		5	$\begin{aligned} & 25 \\ & 60 \end{aligned}$		5	$\begin{aligned} & 25 \\ & 40 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
Input Resistance (Note.11)	$+25^{\circ} \mathrm{C}$	65	500		40	300		40	300		$\mathrm{M} \Omega$
Common Mode Range	Full	± 11.0			± 11.0			± 11.0			V
TRANSFER CHARACTERISTICS * Large Signal Voltage Gain (Notes 2 \& 3)	$\begin{gathered} +25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$	$\begin{aligned} & 100 \mathrm{~K} \\ & 70 \mathrm{~K} \end{aligned}$	150K		$\begin{aligned} & 80 K \\ & 60 \mathrm{~K} \end{aligned}$	150K		$\begin{aligned} & 80 \mathrm{~K} \\ & 70 \mathrm{~K} \end{aligned}$	150K		$\begin{aligned} & \text { V/V } \\ & \text { V/V } \end{aligned}$
* Common Mode Rejection Ratio (Note 4)	Full	80	100			100		74	100		dB
Gain Bandwidth Product (Notes 2, 5, \&6)	$+25^{\circ} \mathrm{C}$		100			100			100		MHz
OUTPUT CHARACTERISTICS Output Voltage Swing (Note 2)	Full	± 10.0	± 12.0		± 10.0	± 12.0		± 10.0	± 12.0		V
* Output Current (Note 3)	$+25^{\circ} \mathrm{C}$	± 15	± 22		± 10	± 18		± 10	± 18		mA
Full Power Bandwidth (Notes 2, 3, 7 \& 12)	$+25^{\circ} \mathrm{C}$	400	600		320	600		320	600		kHz
TRANSIENT RESPONSE Rise Time (Notes 2,7\&8)	$+25^{\circ} \mathrm{C}$		17	45		17	45		17	45	ns
* Slew Rate (Notes 2, 7, 8 \& 10)		± 25	± 35		± 20	± 35		± 20	± 35		V/ $/ \mathrm{s}$
POWER SUPPLY CHARACTERISTICS * Supply Current	$+25^{\circ} \mathrm{C}$		3.0	3.7		3.0	4.0		3.0	4.0	mA
* Power Supply Rejection Ratio (Note 9)	Full	80	90		74	90		74	90		dB

NOTES: 1. Offset may be externally adjusted to zero.
2. $R_{L}=2 K \Omega, C_{L}=50 \mathrm{pF}$
3. $V_{O}= \pm 10.0 \mathrm{~V}$
4. $V_{C M}= \pm 10 \mathrm{~V}$
5. $V_{O}<90 \mathrm{mV}$
6. 40 dB Gain
7. See transient response test circuits and waveforms
8. $A V=5$ (The HA-2620 family is not stable at unity gain without external compensation.)
9. $\Delta V_{\text {Sup }}= \pm 5 \mathrm{~V}$
10. $V_{\text {OUT }}= \pm 5 \mathrm{~V}$
11. This parameter value based upon design calculations.
12. Full power bandwidth guaranteed based upon slew rate measurement FPBW $=S . R . / 2 \pi V_{\text {peak }}$.

input bias current and offset current. AS A FUNCTION OF TEMPERATURE

NPUT IMPEDANCE VS. TEMPERATURE, 100 Hz

BROADBAND NOISE CHARACTERISTICS

OUTPUT VOLTAGE SWING VS. FREQUENCY
 OPEN LOOP FREQUENCY AND PHASE RES PONSE

OPEN-LOOP FREQUENCY RES PONSE FOR VARIOUS VALUES OF CAPACITORS FROM BANDWIOTH CONTROL PIN TO GROUND

Note: External Compensation is Required For Closed Loop Gain <5. If External Compensation is Used. Also Connect 100 pF Capacitor From Output to Ground

TRANSIENT RESPONSE

SLEW RATE

SUGGESTED OFFSET ZERO ADJUST AND BANDWIDTH CONTROL HOOK-UP

SLEW RATE AND TRANSIENT RESPONSE

HIGH IMPEDANCE COMPARATOR

FUNCTION GENERATOR

VIDEO AMPLIFIER

INPUT OFFSET VOLTAGE-That voltage which must be applied between the input terminals through two equal resistances to force the output voltage to zero.

INPUT OFFSET CURRENT-The difference in the currents into the two input terminals when the output is at zero voltage.

INPUT BIAS CURRENT-The average of the currents flowing into the input terminals when the output is at zero voltage.

INPUT COMMON MODE VOLTAGE-The average referred to ground of the voltages at the two input terminals.

COMMON MODE RANGE-The range of voltages which is exceeded at either input terminal will cause the amplifier to cease operatıng.

COMMON MODE REJECTION RATIO-The ratio of a specified range of input common mode voltage to the peak-to-peak change in input offset voltage over this range.

OUTPUT VOLTAGE SWING-The peak symmetrical output voltage swing, referred to ground, that can be obtained without clipping.

INPUT RESISTANCE-The ratio of the change in input voltage to the change in input current.

OUTPUT RESISTANCE-The ratio of the change in output voltage to the change in output current.

VOLTAGE GAIN-The ratio of the change in output voltage to the change in input voltage producing it.

UNITY GAIN BANDWIDTH-The frequency at which the voltage gain of the amplifier is unity.

POWER SUPPLY REJECTION RATIO-The ratio of the change in input offset voltage to the charige in power supply voltage producing it.
TRANSIENT RESPONSE-The closed loop step function response of the amplifier under small signal conditions.

GAIN BANDWIDTH PRODUCT-The product of the gain and the bandwidth at a given gain.

SLEW RATE (Rate Limiting) - The rate at which the output will move between full scale stops, measured in terms of volts per unit time. This limit to an ideal step function response is due to the non-linear behavior in an amplifier due to its limited ability to produce large, rapid changes in output voltage (slewing)...restricting it to rates of change of voltage lower than might be predicted by observing the small signal frequency response.

HARRIS
SEMICONDUCTOR PRODUCTS DIVISION A DIVISION OF HARRIS CORPORATION

HA-2630/2635

High Performance Current Booster

FEATURES	DESCRIPTION
- OUTPUT CURRENT $\pm 400 \mathrm{~mA}$ - SLEW RATE $500 \mathrm{~V} / \mu \mathrm{s}$ - FULL POWER BANDWIDTH 8 MHz - INPUT RESISTANCE $2.0 \times 10^{6} \Omega$ - OUTPUT RESISTANCE 2.0Ω - POWER SUPPLY RANGE $\pm 5 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$ - PACKAGE IS ELECTRICALLY ISOLATED APPLICATIONS - COAXIAL CABLE DRIVERS - AUDIO OUTPUT AMPLIFIERS - SERVO MOTOR DRIVERS - POWER SUPPLIES (BIPOLAR) - PRECISION DATA RECORDING	HA-2630 and HA-2635 are monolithic, unity voltage gain current amplifiers delivering extremely high slew rate, wide bandwidth, and full power bandwidth even under heavy output loading conditions. This dielectrically isolated current booster also offers high input impedance and low output resistance. These devices are intended to be used in series with an operational amplifier and inside the feedback loop whenever additional output current is required. Output current levels are programmable by selecting two optional external resistors. These current amplifiers offer an exceptional $500 \mathrm{~V} / \mu \mathrm{s}$ slew rate and 8 MHz bandwidth which allows them to be used with many high performance op amps in precision data recording and high speed coaxial cable driver designs. 2.0 M ohm input resistance and 2 ohm output resistance coupled with $\pm 400 \mathrm{~mA}$ output current make HA-2630 and HA-2635 ideal components in high fidelity audio output amplifier designs. HA-2630 and HA-2635 are available in an electrically isolated TO-8 type can for ease of mounting with or without a heat sink. HA-2630 is specified over the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ range. HA-2635 is specified from $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$.
PINOUT	SCHEMATIC
TOP VIEW CAUTION: These devices are sensitive to electrostatic discharge. Users should follow IC Handling Procedures specified on pg. 1-4.	

ABSOLUTE MAXIMUM RATINGS

Voltage Between V+ and V-Terminals	40 V
Input Voltage Range	$\pm V$ Supply
Output Current (Note 2)	$\pm 700 \mathrm{~mA}$
Internal Power Dissipation (Note 6) Free Air:	1 W
In Heat Sink:	
	4 W

Operating Temperature Range:

$$
\begin{array}{cc}
-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C} & (\mathrm{HA}-2630) \\
0^{\circ} \mathrm{C} \leq T_{A} \leq+75^{\circ} \mathrm{C} & (H A-2635)
\end{array}
$$

Storage Temperature Range:

$$
-65^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+150^{\circ} \mathrm{C}
$$

ELECTRICAL CHARACTERISTICS

$V_{\text {Supply }}= \pm 15$ Volts $\quad R_{L}=500 \mathrm{hms} \quad R_{1}=R_{2}=00 \mathrm{hms} \quad$ Unless otherwise specified.

PARAMETER	TEMP.	$\begin{gathered} \text { HA-2630 } \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$			$\begin{gathered} \mathrm{HA}-2635 \\ 0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \end{gathered}$			UNITS
		MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
INPUT CHARACTERISTICS								
* Bias Current	$\begin{gathered} +25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$		30	$\begin{aligned} & 150 \\ & 200 \end{aligned}$		30	$\begin{aligned} & 150 \\ & 200 \end{aligned}$	$\begin{aligned} & \mu A \\ & u A \end{aligned}$
Input Resistance	$+25^{\circ} \mathrm{C}$		2.0			2.0		$\mathrm{m} \Omega$
Input Capacitance	$+25^{\circ} \mathrm{C}$		5.0			5.0		pF
TRANSFER CHARACTERISTICS Voltage Gain (Note 1)	Full	. 85	. 95		. 85	. 95		V/V
* Offset Voltage (VOUT - VIN)	$\begin{gathered} +25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$		70	$\begin{aligned} & \pm 200 \\ & \pm 300 \end{aligned}$		70	$\begin{aligned} & \pm 200 \\ & \pm 300 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Bandwidth (-3dB)	$+25^{\circ} \mathrm{C}$		8.0			8.0		MHz
OUTPUT CHARACTERISTICS * Output Voltage Swing	Full	± 10			± 10			V
* Output Current (Note 1)	Full	± 300	± 400		± 300	± 400		mA
Output Resistance	$+25^{\circ} \mathrm{C}$		2.0			2.0		Ω
Full Power Bandwidth (Note 1)	$+25^{\circ} \mathrm{C}$		8.0			8.0		MHz
TRANSIENT RESPONSE								
Rise Time (Note 3)	$+25^{\circ} \mathrm{C}$		30			30		ns
Slew Rate (Note 4)	$+25^{\circ} \mathrm{C}$	200	500		200	500		$\mathrm{V} / \mu \mathrm{s}$
POWER SUPPLY CHARACTERISTICS								
* Supply Current	Full		15	20		15	23	mA
Supply Voltage Range	Full	± 5		± 20	± 5		± 20	V
Power Supply Rejection Ratio (Note 5)	Full		66			66		dB

```
NOTES: 1. }\mp@subsup{V}{O}{}=\pm10\textrm{V
2. Heat sink is required for continuous short circuit protection, regardless of current limit setting.
3. \(V_{O}=0.4 V \mathrm{p}-\mathrm{p}\).
4. \(V_{O}=10 \mathrm{~V}-\mathrm{p}\).
```

5. $\triangle V_{S U P P L Y}=+5 \mathrm{~V}$.
6. Without heat sink, derate by $14 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ ambient temperature above $100^{\circ} \mathrm{C}$ ambient, with heat sink, derate by $67 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ case temperature above $115^{\circ} \mathrm{C}$ case.

* 100% Tested For DASH 8
$\mathrm{V}+=15 \mathrm{VDC}, \mathrm{V}-=15 \mathrm{VDC}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ UNLESS OTHERWISE STATED

OUTPUT CURRENT LIMITING vS. LIMITING RESISTANCE

Limiting Resistance, (Ω)
POWER DISSIPATION vs. LIMITING RESISTANCE WITH OUTPUT SHORTED TO GROUND; $V_{I N}=+10 \mathrm{~V}$

OPEN LOOP FREQUENCY AND
PHASE RESPONSE ($\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}} \approx 10 \mathrm{pf}$)

NORMALIZED AC PARAMETERS vs. SUPPLY VOLTAGE ($\mathrm{R}_{\mathrm{L}}=50 \Omega$)

OUTPUT CURRENT CHARACTERISTIC

MAXIMUM ALLOWABLE INTERNAL POWER DISSIPATION vs. TEMPERATURE

20dB, 5MHz VIDEO COAXIAL LINE DRIVER

LINE DRIVER PULSE RESPONSE

Horizontal Scale $=200 \mathrm{~ns} /$ Div.
Upper Trace: Input, $200 \mathrm{mV} /$ Div.
Lower Trace: Output, 2V/Div.

SOME OTHER APPLICATIONS

- BIPOLAR POWER SUPPLY
- FUNCTION GENERATOR OUTPUT
- DEFLECTION COIL DRIVE
- AUDIO OUTPUT AMPLIFIER

FEATURES	DESCRIPTION

- OUTPUT VOLTAGE SWING
- Supply Voltage
- OFFSET CURRENT
- BANDWIDTH
- SLEW RATE
- COMMON MODE INPUT VOLTAGE SWING
- OUTPUT OVERLOAD PROTECTION
-䨋
$\pm 10 \mathrm{~V}$ TO $\pm 40 \mathrm{~V}$
$5 n A$
4 MHz
$5 \mathrm{~V} / \mu \mathrm{s}$
$\pm 35 \mathrm{~V}$

HA-2640 and HA-2645 are monolithic operational amplifiers which are designed to deliver unprecedented dynamic specifications for a high voltage internally compensated device. These dielectrically isolated devices offer very low values for offset voltage and offset current coupled with large output voltage swing and common mode input voltage.

For maximum reliability, these amplifiers offer unconditional output overload protection through current limiting and a chip temperature sensing circuit. This sensing device turns the amplifier "off", when the chip reaches a certain temperature level.

These amplifers deliver $\pm 35 \mathrm{~V}$ common mode input voltage swing, $\pm 35 \mathrm{~V}$ output voltage swing, and up to $\pm 40 \mathrm{~V}$ supply range for use in such designs as regulators, power supplies, and industrial control systems. 4 MHz gain bandwidth and $5 \mathrm{~V} / \mu$ s slew rate make these devices excellent components for high performance signal conditioning applications. Outstanding input and output voltage swings coupled with a low 5nA offset current make these amplifiers excellent components for resolver excitation designs.

HA-2640 and HA-2645 are available in metal can (TO-99) packages and can be used as high performance pin-to-pin replacements for many general purpose op amps. HA-2640 is specified from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ and HA-2645 is specified over the $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ range.

- INDUSTRIAL CONTROL SYSTEMS
- POWER SUPPLIES
- HIGH VOLTAGE REGULATORS
- RESOLVER EXCITATION
- SIGNAL CONDITIONING

APPLICATIONS

PINOUT

TOP VIEWS
v.
4 \square OFFSET ADJ.
1 N

SCHEMATIC

ABSOLUTE MAXIMUM RATINGS

Voltage Between $V+$ and V - Terminals 100 V
Input Voltage Range $\pm 37 \mathrm{~V}$
Output Current/Full Short Circuit Protection
Internal Power Dissipation
*Derate by $4.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+25^{\circ} \mathrm{C}$

Operating Temperature Range

$$
\begin{align*}
&-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C} \quad(\mathrm{HA}-2640) \\
& 0^{\circ} \mathrm{C} \leq T_{A} \leq+75^{\circ} \mathrm{C} \quad(\mathrm{HA}-2645) \tag{HA-2645}
\end{align*}
$$

Storage Temperature Range $-65^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+150^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

$V_{\text {Supply }}= \pm 40 \mathrm{~V}, \quad R_{L}=5 K, \quad$ Unless 0 therwise Specified.

PARAMETER	TEMP.	$\begin{gathered} \mathrm{HA}-2640 \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$			$\begin{gathered} \mathrm{HA}-2645 \\ 0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \end{gathered}$			UNITS	
		MIN.	TYP.	MAX.	MIN.	TYP.	MAX.		
INPUT CHARACTERISTICS									
* Offset Voltage	$\begin{gathered} +25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$		2	4 6		2	$\begin{aligned} & 6 \\ & 7 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$	
Offset Voltage Average Drift	Full		15			15		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	
* Bias Current	$\begin{gathered} +25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$		10	$\begin{aligned} & 25 \\ & 50 \end{aligned}$		12	$\begin{aligned} & 30 \\ & 50 \end{aligned}$	$\begin{aligned} & \text { nA } \\ & \mathrm{nA} \end{aligned}$	
* Offset Current	$\begin{gathered} +25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$		5	$\begin{aligned} & 12 \\ & 35 \end{aligned}$		15	$\begin{aligned} & 30 \\ & 50 \end{aligned}$	$\begin{aligned} & \text { nA } \\ & \text { nA } \end{aligned}$	
Input Resistance (Note 10)	$+25^{\circ} \mathrm{C}$	50	250		40	200		$\mathrm{M} \Omega$	
Common Mode Range	Full	± 35			± 35			V	
TRANSFER CHARACTERISTICS									
* Large Signal Voltage Gain (Note 8)	$\begin{gathered} +25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$	$\begin{aligned} & 100 \mathrm{~K} \\ & 75 \mathrm{~K} \end{aligned}$	200K		100 K 75 K	200K		$\begin{aligned} & V / V \\ & V / V \end{aligned}$	
* Common Mode Rejection Ratio (Note 1)	Full	80	100		74	100		dB	
Unity Gain Bandwidth (Note 2)	$+25^{\circ} \mathrm{C}$		4			4		MHz	
OUTPUT CHARACTERISTICS									
* Output Voltage Swing	Full	± 35			± 35			V	
* Output Current (Note 9)	$+25^{\circ} \mathrm{C}$	± 12	± 15		± 10	± 12		mA	
Output Resistance	$+25^{\circ} \mathrm{C}$		500			500		Ω	
Full Power Bandwidth (Notes 3 \& 11)	$+25^{\circ} \mathrm{C}$		23			23		kHz	
TRANSIENT RESPONSE (Note 7)									
	$+25^{\circ} \mathrm{C}$		60	100		60	100	ns	
Overshoot (Notes 4, 6)	$+25^{\circ} \mathrm{C}$		15	30		15	40	\%	
Slew Rate (Note 6)	$+25^{\circ} \mathrm{C}$	± 3	± 5		± 2.5	± 5		V/ $/ \mathrm{s}$	
POWER SUPPLY CHARACTERISTICS									
* Supply Current Supply Voltage Range * Power Supply Rejection Ratio (Note 5)	$+25^{\circ} \mathrm{C}$		3.2	3.8		3.2	4.5	mA	
	Full	± 10		± 40	± 10		± 40	V	
	Full	80	90		74	90		dB	
NOTES: 1. $V_{C M}= \pm 20 \mathrm{~V}$ 2. $V_{O}=90 \mathrm{mV}$ 3. $\mathrm{V}_{\mathrm{O}}= \pm 35 \mathrm{~V}$ 4. $V_{O}= \pm 200 \mathrm{mV}$	5. $V_{S}= \pm 10 \mathrm{~V}$ to $\pm 40 \mathrm{~V}$ 6. $A_{V}=1$ 7. $C_{L}=50 \mathrm{pF}$ 8. $V_{O}= \pm 30 \mathrm{~V}$ 9. $R_{L}=1 \mathrm{~K}$				10. Th is parameter based upon design calculations. 11. Full power bandwidth guaranteed based upon slew rate measurement. FPBW $=$ S.R. $/ 2 \pi V_{\text {peak }}$.				

$\mathrm{V}+=\mathrm{V}-=40 \mathrm{VDC}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ UNLESS OTHERWISE STATED
INPUT BIAS AND OFFSET CURRENT vs TEMPERATURE

NORMALIZED AC PARAMETERS vs SUPPLY VOLTAGE AT $+25^{\circ} \mathrm{C}$

OPEN LOOP FREQUENCY AND PHASE RESPONSE

OPEN LOOP FREQUENCY RESPONSE FOR VARIOUS
VALUES OF CAPACITORS FROM BANDWIDTH CONTROL PIN TO GROUND

NOTE: External Compensation Components are not Required for Stability. But May be Added to Reduce Bandwidth if Desided $C_{L}=100 \mathrm{pF}$ is Also Required for Stability Only if External Compensation Capacitor is Used.

OUTPUT VOLTAGE SWING vs FREQUENCY AT $+25^{\circ} \mathrm{C}$

OUTPUT CURRENT CHARACTERISTIC

Output Load Current, mA

VOLTAGE FOLLOWER PULSE RESPONSE

$R_{L}=5 K, C_{L}=50 p F$
Vertical $=10 \mathrm{~V} / \mathrm{Div}$.
Horizontal $=5 \mu \mathrm{~s} /$ Div.
$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$
$V_{S}= \pm 40 \mathrm{~V}$

SLEW RATE AND TRANSIENT RESPONSE TEST CIRCUIT

HARRIS
SEMICONDUCTOR PRODUCTS DIVISION

HA-2650/2655
 Dual High Performance Operational Amplifier

2-50 CAUTION: These devices are sensitive to electrostatic discharge. Users should follow IC Handling Procedures specified on pg. 1-4.

ABSOLUTE MAXIMUM RATINGS
$T_{A}=+25^{\circ} \mathrm{C}$ Unless Otherwise Stated

Voltage Between V+ and V-Terminals 40.0V
Differential Input Voltage
Input Voltage (Note 1)
Output Short Circuit Duration

Power Dissipation (Note 2)	T0-99	300 mW
	T0-116	300 mW

Operating Temperature Range:

HA-2650	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$
HA-2655	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+75^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+150^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $V+=15 \mathrm{~V} \quad V-=-15 \mathrm{~V}$ PARAMETER	TEMP.	$\begin{gathered} \text { HA-2650 } \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$			$\begin{gathered} \text { HA-2655 } \\ 0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \end{gathered}$			UNITS
		MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
INPUT CHARACTERISTICS								
* Offset Voltage	$\begin{aligned} & +25^{\circ} \mathrm{C} \\ & \text { Full } \end{aligned}$		1.5	$\begin{aligned} & 3 \\ & 5 \end{aligned}$		2	$\begin{aligned} & 5 \\ & 7 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Av. Offset Voltage Drift	Full		8			8		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
* Bias Current	$+25^{\circ} \mathrm{C}$		35	100		50	200	nA
	Full			200			300	nA
* Offset Current	$+25^{\circ} \mathrm{C}$		1	30		2	60	nA
	Full			60			100	nA
Common Mode Range	Full	± 13			± 13			V
Differential Input Resistance (Note 9)	$+25^{\circ} \mathrm{C}$	5	20		5	20		$\mathrm{M} \Omega$
Common Mode Input Resistance	$+25^{\circ} \mathrm{C}$		500			500		$\mathrm{M} \Omega$
Input Capacitance	$+25^{\circ} \mathrm{C}$		5			5		pF
TRANSFER CHARACTERISTICS								
* Large Signal Voltage Gain (Note 3ab)	$+25^{\circ} \mathrm{C}$	25K	40K		20K	40K		V/V
	Full	20K			15K			V/V
* Common Mode Rejection Ratio (Note 4)	$+25^{\circ} \mathrm{C}$	80	100		74	100		dB
	Full	80			74			dB
OUTPUT CHARACTERISTICS								
* Output Voltage Swing (Note 3c)	$+25^{\circ} \mathrm{C}$	± 13	± 14		± 13	± 14		
	Full	± 13			± 13			
Full Power Bandwidth (Notes 5 \& 10)	$+25^{\circ} \mathrm{C}$	30	80		30	80		KHz
Output Current (Note 3a)	$+25^{\circ} \mathrm{C}$		± 20			± 18		mA
Output Resistance						100		
TRANSIENT RESPONSE (Note 6)								
Rise Time (Note 7)	$+25^{\circ} \mathrm{C}$		40	80		40	90	ns
Overshoot (Note 7)	$+25^{\circ} \mathrm{C}$		15	30		15	40	\%
Slew Rate		± 2	± 5		± 2	± 5		$\mathrm{V} / \mathrm{\mu s}$
POWER SUPPLY CHARACTERISTICS								
*Supply Current	$+25^{\circ} \mathrm{C}$		2.5	3		3	4	mA
* Power Supply Rejection Ratio (Note 8)	$+25^{\circ} \mathrm{C}$	80	100		74	100		dB
		80			74			dB

9. This parameter value based upon design calculations.
10. Full power bandwidth guaranteed based upon slew rate measurement $F P B W=S . R . / 2 \pi V_{\text {peak }}$.

$$
\text { peratures above }+110^{\circ} \mathrm{C} .
$$

4. $V_{C M}= \pm 5.0 \mathrm{~V}$ the absolute maximum input voltage is equal to the supply voltage.
5. Derate at $4.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ at ambient tem-
6. $A_{V}=1, R_{L}=2 K, V_{O}=20 V_{p p}$
7. See transient response/slew rate circuit.
8. $V_{\text {in }}=200 \mathrm{mV}$
9. $\Delta V= \pm 5.0 \mathrm{~V}$
. (a) $V_{O}= \pm 10 \mathrm{~V}$
(b) $R_{L}=2 K$
(c) $R_{L}=10 K$

* 100% Tested For DASH 8
$\mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ Unless Otherwise Stated.

TRANSIENT RESPONSE/SLEW RATE CIRCUIT

Note: Numbers in parentheses refer to the second half of TO-116 package.

VERTICAL 5V/DIV. HORIZONTAL $1 \mu \mathrm{~s} / \mathrm{DIV}$.

LOW COST HIGH FREQUENCY GENERATOR

ABSOLUTE-VALUE CIRCUIT

HIGH IMPEDANCE
HIGH GAIN HIGH FREQUENCY INVERTING AMP

HA-2700/2704/2705
 Low Power, High Performance Operational Amplifiers

FEA TURES	DESCRIPTION
- LOW POWER DISSIPATION 2.24 mW AT $\pm 15.0 \mathrm{~V}$ - high slew rate - HIGH OPEN LOOP GAIN - LOW input bias current - LOW OFFSET VOLTAGE - HIGH CM ${ }_{\text {rr }}$ - WIDE POWER SUPPLY RANGE $\begin{array}{r} 20 \mathrm{~V} / \mu \mathrm{s} \\ 300 \mathrm{k}\left(\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega\right) \\ 5 \mathrm{nA} \\ 0.5 \mathrm{mV} \\ 106 \mathrm{~dB} \\ \pm 5.5 \mathrm{~V} \text { TO } \pm 20.0 \mathrm{~V} \end{array}$ APPLICATIONS - HIGH GAIN AMPLIFIER - INSTRUMENTATION AMPLIFIERS - ACTIVE FILTERS - TELEMETRY SYSTEMS - bATTERY-POWERED EQUIPMENT	HA-2700/2704/2705 are internally compensated operational amplifiers which employ dielectric isolation to achieve excellent DC and dynamic performance with very low quiescent power consumption. DC performance of the amplifier input is characterized by high CMRR (106 dB), low offset voltage (0.5 mV , HA-2700 and HA-2704; $1 \mathrm{mV}, \mathrm{HA}-2705$) along with low bias and offset current (5.0 nA and 2.5 nA respectively). These input specifications, in conjunction with offset null capability and openloop gain of $300,000 \mathrm{~V} / \mathrm{V}$, enable HA-2700/2704/2705 to provide accurate, high-gain signal amplification. Gain bandwidth 1 MHz and slew rate of $20 \mathrm{~V} / \mu \mathrm{s}$ allow for processing of fast, wideband signals. Input and output signal amplitudes of at least ± 11 volts can be accomodated while providing output drive capability of 10 mA . For maximum reliability, the output is protected in the event of short circuits to ground. These amplifiers operate from a wide range of supplies ($\pm 5.5 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$) with a maximum quiescent supply drain of only $150 \mu \mathrm{~A}$. HA-2700/2704/2705 are, therefore, ideally suited to low-power instrumentation and filtering applications that require fast, accurate response over a wide range of signal frequency. These amplifers are available in three performance grades: HA-2700 is rated for operation from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$; HA2704 is specified over $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$; HA-2705 is specified from $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$. All three devices are available in TO-99 cans or 14 lead D.I.P. packages.
PINOUT	SCHEMA T/C
T0-99 Package Code 2A, 4U Case Connected to V- TOP VIEW T0-116 Case Connected to V-	

ABSOLUTE MAXIMUM RATINGS

Voltage Between V^{+}and V - Terminals	44.0 V
Differential Input Voltage	$\pm 18.0 \mathrm{~V}$
Internal Power Dissipation (Note 7)	300 mW
Storage Temperature	$-65^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+150^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

$$
\mathrm{V}^{+}=+15.0 \text { V.D.C. } \quad \mathrm{V}^{-}=-15.0 \text { V.D.C. }
$$

PARAMETER	TEMP.	$\begin{gathered} \mathrm{HA}-2700 \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$			$\begin{gathered} \text { HA-2704 } \\ -25^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{gathered}$			$\begin{gathered} \mathrm{HA}-2705 \\ 0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \end{gathered}$			UNITS
		MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
INPUT CHARACTERISTICS * Offset Voltage (Note 1)	$\begin{gathered} +25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$		0.5	$\begin{aligned} & 3.0 \\ & 5.0 \end{aligned}$		0.5	$\begin{aligned} & 3.0 \\ & 6.0 \end{aligned}$		1.0	$\begin{aligned} & 5.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
* Bias Current	$\begin{gathered} +25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$		5.0	$\begin{aligned} & 20.0 \\ & 50.0 \end{aligned}$		5.0	$\begin{aligned} & 20.0 \\ & 50.0 \end{aligned}$		5.0	$\begin{aligned} & 40.0 \\ & 70.0 \end{aligned}$	$\begin{aligned} & \text { nA } \\ & \text { nA } \end{aligned}$
* Offset Current	$\begin{gathered} +25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$		2.5	$\begin{aligned} & 10.0 \\ & 30.0 \end{aligned}$		2.5	$\left\lvert\, \begin{aligned} & 10.0 \\ & 30.0 \end{aligned}\right.$		2.5	$\begin{aligned} & 15.0 \\ & 40.0 \end{aligned}$	$\begin{aligned} & \text { nA } \\ & \text { nA } \end{aligned}$
Common Mode Range	Full	± 11.0			± 11.0			± 11.0			V
TRANSFER CHARACTERISTICS * Large Signal Voltage Gain (Notes 2 \& 3)	$\begin{gathered} +25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$	$\begin{aligned} & 200 \mathrm{~K} \\ & 100 \mathrm{~K} \end{aligned}$	300K		$\left\lvert\, \begin{aligned} & 200 \mathrm{~K} \\ & 100 \mathrm{~K} \end{aligned}\right.$	300K		$\begin{array}{\|c\|} 200 \mathrm{~K} \\ 100 \mathrm{~K} \end{array}$	300K		$\begin{aligned} & V / V \\ & V / V \end{aligned}$
* Common Mode Rejection Ratio (Note 4)	Full		106			106			106		dB ,
Gain Bandwidth Product (Note 2)	$+25^{\circ} \mathrm{C}$		1.0			1.0			1.0		MHz
OUTPUT CHARACTERISTICS											
Output Voltage Swing (Note 2)	$\begin{gathered} +25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$	$\begin{gathered} \pm 12.0 \\ \pm 11.0 \end{gathered}$			$\begin{aligned} & \pm 12.0 \\ & \pm 11.0 \end{aligned}$	± 13.0		$\begin{array}{\|l\|} \pm \\ \pm \\ \pm \end{array} 1.0$	± 13.0		$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$
Output Current (Note 3)	$+25^{\circ} \mathrm{C}$		10			10			10		mA
TRANSIENT RESPONSE CHARACTERISTICS * Slew Rate (Notes 2 \& 6)	$+25^{\circ} \mathrm{C}$	10	20		10	20		10	20		$\mathrm{V} / \mu \mathrm{s}$
POWER SUPPLY CHARACTERISTICS * Supply Current	$+25^{\circ} \mathrm{C}$		75	150		75	150		75	150	$\mu \mathrm{A}$
* Power Supply Rejection Ratio (Note 5)	Full	86	100		86	100		80	100		dB

NOTES: 1. Can be adjusted to zero with 1 megohm pot between Pins 1 and 8 with the tap to P in 7 .
2. $R_{L}=2 K, C_{L}=100 p F$
3. $V_{O}= \pm 10.0 \mathrm{~V}$
4. $V_{C M}= \pm 10 \mathrm{~V}$
5. $V_{S}= \pm 10.0 \mathrm{~V}$ to $\pm 20.0 \mathrm{~V}$
6. $A V=5$
7. Derate by $6.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $105^{\circ} \mathrm{C}$.

[^4]OFFSET VOLTAGE AS A FUNCTION OF TEMPERATURE

BIAS CURRENT AS A FUNCTION OF COMMON MODE VOLTAGE

POWER SUPPLY CURRENT AS A FUNCTION OF DIFFERENTIAL INPUT VOLTAGE

INPUT BIAS CURRENT AND OFFSET CURRENT AS A FUNCTION OF TEMPERATURE

BIAS CURRENT AS A FUNCTION OF DIFFERENTIAL INPUT VOLTAGE

POWER SUPPLY CURRENT AS A FUNCTION OF TEMPERATURE

VOLTAGE GAIN AS A FUNCTION OF TEMPERATURE

NOTE: Open loop (comparator) applications are not recommended, because of the above characteristic.

PHASE-FREQUENCY RESPONSE FOR THE HA-2700

TYPICAL APPLICATIONS

HIGH GAIN AMPLIFIER ($100 \mathrm{~V} / \mathrm{V}$)

DIFFERENTIAL INPUT INSTRUMENTATION AMPLIFIER

THE GAIN IS GIVEN BY: $\frac{\left(R_{1}+R_{2}+R_{3}\right)}{R_{2}}=G$

Non-inverting unity gain with a $2 \mathrm{~K} \Omega$ and 100 pF load TOP: $\quad V_{\text {IN }}=10.0 \mathrm{~V}$ Peak to Peak
BOTTOM: VOUT
SCALE: Horizontal $-1 \mu \mathrm{~s} /$ division
Vertical -5.0V/division
NOTE: Faster increase rise and fall time and increase distortion on output wave form.

HARRIS
SEMICONDUCTOR PRODUCTS DIVISION
A DIVISION OF HARRIS CORPORATION

DESCRIPTION

- WIDE PROGRAMMING RANGE

SLEW RATE
BANDWIDTH
BIAS CURRENT
SUPPLY CURRENT

- WIDE POWER SUPPLY RANGE
$\pm 1.2 \mathrm{TO} \pm 18 \mathrm{~V}$
$0.06 \mathrm{TO} 6 \mathrm{~V} / \mu \mathrm{s}$ 5 kHz TO 10 MHz
0.4 TO 50nA
$1 \mu \mathrm{~A}$ TO 1.5 mA
- CONSTANT AC PERFORMANCE OVER SUPPLY RANGE

APPLICATIONS

- ACTIVE FILTERS
- Current controlled oscillators
- VARIABLE ACTIVE FILTERS
- mODULATORS
- BATTERY-POWERED EQUIPMENT

HA-2720/2725 programmable amplifiers are internally compensated monolithic devices offering a wide range of performance, that can be controlled by adjusting the circuits' "set" current (ISET). By means of adjusting an external resistor or current source, power dissipation, slew rate, bandwidth, output current and input noise can be programmed to desired levels. This versatile adjustment capability enables HA-2720/2725 to provide optimum design solutions by delivering the required level of performance with minimum possible power dissipation. HA-2720 and HA-2725 can, therefore, be utilized as the standard amplifier for a variety of designs simply by adjusting their programming current.

A major advantage of HA-2720/2725 is that operating characteristics remain virtually constant over a wide supply range $(\pm 1.2 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$), allowing the amplifiers to offer maximum performance in almost any system including battery-operated equipment. A primary application for HA-2720/2725 is in active filters for a wide variety of signals that differ in frequency and amplitude. Also, by modulating the "set" current, HA2720/2725 can be used for designs such as current controlled oscillators modulators, sample and hold circuits and variable active filters.

HA- 2720 is guaranteed over $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. HA- 2725 is specified from $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$. Both parts are available in TO-99 cans or dice form.

SCHEMATIC

CAUTION: These devices are sensitive to electrostatic discharge.
Users should follow IC Handling Procedures specified on pg. 1-4.

ABSOLUTE MAXIMUM RATINGS

Voltage Between V+ and V - Terminals
Differential Input Voltage Input Voltage (Note 1) ISET (Current at ISET) $\mathrm{V}_{\text {SET }}$ (Voltage to Gnd. at ISET)
45.0 V
$\pm 30.0 \mathrm{~V}$
$\pm 15.0 \mathrm{~V}$
$500 \mu \mathrm{~A}$
$\mathrm{V}+-2.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{SET}} \leq \mathrm{V}_{+}$

Power Dissipation (Note 2) $\quad 300 \mathrm{~mW}$
Operating Temperature Range:
HA-2720 $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$
HA-2725 $\quad 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+75^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+150^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

$\mathrm{V}+=+3.0 \mathrm{~V}, \quad \mathrm{~V}-=-3.0 \mathrm{~V}$

PARAMETER	TEMP.	$\begin{gathered} \text { HA }-2720 \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$						$\begin{gathered} \mathrm{HA}-2725 \\ 0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \end{gathered}$						UNITS
		ISET $=1.5 \mu \mathrm{~A}$			ISET $=15 \mu \mathrm{~A}$			ISET $=1.5 \mu \mathrm{~A}$			ISET $=15 \mu \mathrm{~A}$			
		MIN.	TYP.	MAX.										
INPUT CHARACTERISTICS *Offset Voltage	$\begin{gathered} 25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$		2.0	$\begin{aligned} & 3.0 \\ & 5.0 \end{aligned}$		2.0	$\begin{aligned} & 3.0 \\ & 5.0 \end{aligned}$		2.0	$\begin{aligned} & 5.0 \\ & 7.0 \end{aligned}$		2.0	$\begin{aligned} & 5.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Offset Current	$\begin{gathered} 25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$		0.5	$\begin{aligned} & 3.0 \\ & 7.5 \end{aligned}$		1.0	$\begin{aligned} & 10 \\ & 20 \end{aligned}$		0.5	$\begin{aligned} & 5.0 \\ & 7.5 \end{aligned}$		1.0	$\begin{aligned} & 10 \\ & 20 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
Bias Current	$\begin{gathered} 25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$		2.0	$\begin{aligned} & 5.0 \\ & 10 \end{aligned}$		8.0	$\begin{aligned} & 20 \\ & 40 \end{aligned}$		2.0	$\begin{aligned} & 10 \\ & 10 \end{aligned}$		8.0	$\begin{aligned} & 30 \\ & 40 \end{aligned}$	$\begin{aligned} & \text { nA } \\ & \text { nA } \end{aligned}$
Input Resistance (Note 10)	$25^{\circ} \mathrm{C}$		50			5			50			5		$\mathrm{M} \Omega$
Input Capacitance	$25^{\circ} \mathrm{C}$		3.0			3.0			3.0			3.0		pF
TRANSFER CHARACTERISTICS * Large Signal Voltage Gain (Note 9) *Common Mode Rejection Ratio (Note 4)	$\begin{gathered} 25^{\circ} \mathrm{C} \\ \text { Full } \\ \text { Full } \end{gathered}$	$\begin{gathered} 20 \mathrm{~K} \\ 15 \mathrm{~K} \\ 80 \end{gathered}$	40K		$\begin{gathered} 20 \mathrm{~K} \\ 15 \mathrm{~K} \\ 80 \end{gathered}$	40K		$\begin{gathered} 15 \mathrm{~K} \\ 10 \mathrm{~K} \\ 74 \end{gathered}$	40K		$\begin{gathered} 15 \mathrm{~K} \\ 10 \mathrm{~K} \\ 74 \end{gathered}$	40K		$\begin{aligned} & V / V \\ & V / V \\ & d B \end{aligned}$
OUTPUT CHARACTERISTICS *Output Voltage Swing (Note 3)	$\begin{gathered} 25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$	$\begin{array}{r} \pm 2.0 \\ \pm 2.0 \end{array}$			$\begin{array}{r} \pm 2.0 \\ \pm 1.9 \end{array}$			$\begin{array}{r} \pm 2.0 \\ \pm 2.0 \end{array}$			$\begin{aligned} & \pm 2.0 \\ & \pm 2.0 \end{aligned}$			$\begin{aligned} & V \\ & V \end{aligned}$
Output Current (Note 5)	$25^{\circ} \mathrm{C}$		± 0.2			± 2.0			± 0.2			± 2.0		mA
Output Resistance	$25^{\circ} \mathrm{C}$		2K			500			2K			500		Ω
Output Short-Circuit Current												14		mA
TRANSIENT RESPONSE Rise Time (Note 6)	$25^{\circ} \mathrm{C}$		2.5			0.25			2.5			0.25		$\mu \mathrm{s}$
Overshoot (Note 6)	$25^{\circ} \mathrm{C}$		5			10			5			10		\%
Slew Rate (Note 7)														$\mathrm{V} / \mu \mathrm{s}$
POWE R SUPPLY CHARACTERISTICS Supply Current	$\begin{gathered} 25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$		15	20		170	200		15	20		170	200	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
*Power Supply Rejection Ratio (Note 8)	Full	100			100			150			150			$\mu \mathrm{V} / \mathrm{V}$

*100\% Tested For DASH 8

ELECTRICAL CHARACTERISTICS

$\mathrm{V}+=+15.0 \mathrm{~V}, \quad \mathrm{~V}-=-15.0 \mathrm{~V}$

PARAMETER	TEMP.	$\begin{gathered} \mathrm{HA}-2720 \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$						$\begin{gathered} \mathrm{HA}-2725 \\ 0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \end{gathered}$						UNITS
		ISET $=1.5 \mu \mathrm{~A}$			ISET $=15 \mu \mathrm{~A}$			ISET $=1.5 \mu \mathrm{~A}$			ISET $=15 \mu \mathrm{~A}$			
		MIN.	TYP.	MAX.										
INPUT CHARACTERISTICS														
*Offset Voltage	$\begin{gathered} 25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$		2.0	$\begin{aligned} & 3.0 \\ & 5.0 \end{aligned}$		2.0	$\begin{aligned} & 3.0 \\ & 5.0 \end{aligned}$		2.0	$\begin{aligned} & 5.0 \\ & 7.0 \end{aligned}$		2.0	$\begin{aligned} & 5.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
* Offset Current	$\begin{gathered} 25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$		0.5	$\begin{aligned} & 3.0 \\ & 7.5 \end{aligned}$		1.0	$\begin{aligned} & 10 \\ & 20 \end{aligned}$		0.5	$\begin{aligned} & 5.0 \\ & 7.5 \end{aligned}$		1.0	$\begin{aligned} & 10 \\ & 20 \end{aligned}$	$\begin{aligned} & \mathrm{n} \mathrm{~A} \\ & \mathrm{nA} \end{aligned}$
* Bias Current	$\begin{gathered} 25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$		2.0	$\begin{aligned} & 5.0 \\ & 10 \end{aligned}$		8.0	$\begin{aligned} & 20 \\ & 40 \end{aligned}$		2.0	$\begin{aligned} & 10 \\ & 10 \end{aligned}$		8.0	$\begin{aligned} & 30 \\ & 40 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
Input Resistance (Note 10)	$25^{\circ} \mathrm{C}$		50			5			50			5		$\mathrm{M} \Omega$
Input Capacitance	$25^{\circ} \mathrm{C}$		3.0			3.0			3.0			3.0		pF
TRANSFER CHARACTERISTICS														
* Large Signal Voltage Gain (Notes 3 \& 9)	$\begin{gathered} 25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$	$\begin{aligned} & 40 \mathrm{~K} \\ & 25 \mathrm{~K} \end{aligned}$	$100 \mathrm{~K}$		$\begin{aligned} & 40 \mathrm{~K} \\ & 25 \mathrm{~K} \end{aligned}$	$120 \mathrm{~K}$		$\begin{aligned} & 25 \mathrm{~K} \\ & 20 \mathrm{~K} \end{aligned}$	$100 \mathrm{~K}$		$\begin{aligned} & 25 \mathrm{~K} \\ & 20 \mathrm{~K} \end{aligned}$	$120 \mathrm{~K}$		$\begin{aligned} & V / V \\ & V / V \end{aligned}$
* Common Mode Rejection Ratio (Note 4)	$\begin{array}{r} 25^{\circ} \mathrm{C} \\ \text { Full } \\ \hline \end{array}$	80			80	90		74	90			90		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
OUTPUT CHARACTERISTICS														
* Output Voltage Swing (Note 3)	$\begin{gathered} 25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$	$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$			$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$			$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$			$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	± 13.5		$\begin{aligned} & \text { v } \\ & \text { v } \end{aligned}$
Output Current (Note 5)	$25^{\circ} \mathrm{C}$		± 0.5			± 5.0			± 0.5			± 5.0		mA
Output Resistance	$25^{\circ} \mathrm{C}$		2K			500			2K			500		Ω
Output Short-Circuit Current			3.7						3.7			19		mA
TRANSIENT RESPONSE														
Rise Time (Note 6)	$25^{\circ} \mathrm{C}$		2.0			0.2			2.0			0.2		$\mu \mathrm{s}$
Overshoot (Note 6)	$25^{\circ} \mathrm{C}$		5			15			5			15		\%
Slew Rate (Note 7)	$25^{\circ} \mathrm{C}$		0.1			0.8			0.1			0.8		$\mathrm{V} / \mu \mathrm{s}$
POWER SUPPLY CHARACTERISTICS														
*Supply Current	$\begin{gathered} 25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$		20	25		210	250		20	25		210	250	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
* Power Supply Rejection Ratio (Note 8)	Full	100			100			150			150			$\mu \mathrm{V} / \mathrm{V}$

NOTES: 1. For supply voltages less than $\pm 15.0 \mathrm{~V}$, the absolute maximum input voltage is equal to supply voltage.
2. Derate at $6.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for operation ambient temperatures above $75^{\circ} \mathrm{C}$.
3. $\frac{V_{\text {SUPPLY }}= \pm 3.0 \mathrm{~V}}{T=+25^{\circ} \mathrm{C} \text { and Full }}$
$\begin{aligned} & V_{\text {SUPPLY }}= \pm 15.0 \mathrm{~V} \\ & T=+25^{\circ} \mathrm{C} \\ & T=F \text { Ull }\end{aligned}$

$I_{S E T}$	$=1.5 \mu \mathrm{~A}$
R_{L}	$=75 \mathrm{~K} \Omega$
R_{L}	$=75 \mathrm{~K} \Omega$

${ }^{I_{S E T}}$	$=15 \mu \mathrm{~A}$
R_{L}	$=5 \mathrm{~K} \Omega$
R_{L}	$=75 \mathrm{~K} \Omega$

4. $V_{C M}= \pm 1.5 \mathrm{~V}$
$V_{C M}= \pm 5.0 \mathrm{~V}$
5. $V_{O}= \pm 2.0 \mathrm{~V}$
$V_{O}= \pm 10.0 \mathrm{~V}$
6. $A_{V}=+1, V_{I N}=400 \mathrm{mV}, R_{L}=5 \mathrm{~K}, C_{L}=100 \rho \mathrm{~F}$
7. $V_{O}= \pm 2.0 \mathrm{~V} \quad V_{O}= \pm 10.0 \mathrm{~V} \quad R_{L}=20 \mathrm{~K} \quad R_{L}=5 K$
8. $\Delta V= \pm 1.5 V$
$\Delta V= \pm 5.0 \mathrm{~V}$
9. $V_{O}= \pm 1.0 \mathrm{~V}$
$V_{O}= \pm 10.0 \mathrm{~V}$
10. This parameter based upon design calculations.

* 100% Tested For DASH 8

UNLESS OTHERWISE NOTED: $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{VDC}$

INPUT NOISE VOLTAGE AND CURRENT vs. FREQUENCY

OPTIMUM SET CURRENT FOR MINIMUM NOISE vS. SOURCE RESISTOR

MAXIMUM OUTPUT VOLTAGE SWING vs. LOAD RESISTANCE

GAIN BANDWIDTH PRODUCT
vs. ISET

OPEN LOOP VOLTAGE GAIN vs. TEMPERATURE

STANDBY SUPPLY CURRENT
vs. ISET

SUPPLY CURRENT vS
TEMPERATURE

NORMALIZED BANDWIDTH vs. TEMPERATURE

SLEW RATE vs. ISET

PHASE MARGIN vs. SET CURRENT

FEA TURES	DESCRIPTION
- WIDE PROGRAMMING RANGE SET CURRENT 0.1 TO $100 \mu \mathrm{~A}$ SLEW RATE $0.06 \mathrm{TO} 6 \mathrm{~V} / \mu \mathrm{s}$ BANDWIDTH BANDWIDTH 5 kHz TO 10 MHz BIAS CURRENT 0.4 TO 50nA SUPPLY CURRENT $1 \mu \mathrm{~A}$ TO 1.5 mA - WIDE POWER SUPPLY RANGE $+1.2 \mathrm{TO}{ }^{+18 \mathrm{~V}}$ - CONSTANT AC PERFORMANCE OVER SUPPLY RANGE APPLICATIONS - ACTIVE FILTERS - CURRENT CONTROLLED OSCILLATORS - VARIABLE ACTIVE FILTERS - mODULATORS - BATTERY-POWERED EQUIPMENT	HA-2730/2735 Dual Programmable Amplifiers are internally compensated monolithic devices offering a wide range of performance, that can be controlled by adjusting the circuits' "set" current (ISET). By means of adjusting an external resistor or current source, power dissipation, slew rate, bandwidth, output current and input noise can be programmed to desired levels. Each amplifier on the chip can be adjusted independently. This versatile adjustment capability enables HA-2730/2735 to provide optimum design solutions by delivering the required level of performance with minimum possible power dissipation. HA-2730/2735 can, therefore, be utilized as the standard amplifier for a variety of designs simply by adjusting their programming current. A major advantage of HA-2730/2735 is that operating characteristics remain virtually constant over a wide supply range $(\pm 1.2 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$), allowing the amplifiers to offer maximum performance in almost any system including battery-operated equipement. A primary application for HA-2730/2735 is in active filters for a wide variety of signals that differ in frequency and amplitude. Also, by modulating the "set" current, HA2730/2735 can be used for designs such as current controlled oscillators, modulators, sample and hold circuits and variable active filters. HA-2730 is guaranteed over $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. HA- 2735 is specified from $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$. Both parts are available in 14 lead D.I.P. package or dice form.
PINOUT	SCHEMA T/C
Package Code 4D NOTE: Bottom of package is connected to $\mathrm{V}-$. CAUTION: These devices are sensitive to electrostatic discharge. Users should follow IC Handling Procedures specified on pg. 1-4.	

ABSOLUTE MAXIMUM RATINGS

Voltage Between $\mathrm{V}+$ and V - Terminals
Differential Input Voltage
Input Voltage (Note 1)
ISET (Current at ISET)
VSET (Voltage to Gnd. at ISET)
45.0 V
$\pm 30.0 \mathrm{~V}$
$\pm 15.0 \mathrm{~V}$
$500 \mu \mathrm{~A}$
$\mathrm{V}+-2.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{SET}} \leq \mathrm{V}_{+}$

Power Dissipation (Note 2) $\quad 500 \mathrm{~mW}$
Operating Temperature Range:
HA-2730 $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$
HA-2735 $\quad 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+75^{\circ} \mathrm{C}$
Storage Temperature Range $\quad-65^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+150^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS
(Each Side)
$\mathrm{V}+=+3.0 \mathrm{~V}, \quad \mathrm{~V}-=-3.0 \mathrm{~V}$

$\mathrm{V}+=+15.0 \mathrm{~V}, \quad \mathrm{~V}-=-15.0 \mathrm{~V}$

PARAMETER	TEMP.	$\begin{gathered} \text { HA }-2730 \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$						$\begin{gathered} \text { HA-2735 } \\ 0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \end{gathered}$						UNITS	
		ISET $=1.5 \mu \mathrm{~A}$			ISET $=15 \mu \mathrm{~A}$			ISET $=1.5 \mu \mathrm{~A}$			ISET $=15 \mu \mathrm{~A}$				
		MIN.	TYP.	MAX.											
INPUT CHARACTERISTICS ${ }^{*}$ Offset Voltage	$\begin{gathered} 25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$		2.0	$\begin{aligned} & 3.0 \\ & 5.0 \end{aligned}$		2.0	$\begin{aligned} & 3.0 \\ & 5.0 \end{aligned}$		2.0	$\begin{aligned} & 5.0 \\ & 7.0 \end{aligned}$		2.0	$\begin{aligned} & 5.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$	
*Offset Current	$\begin{gathered} 25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$		0.5	$\begin{aligned} & 3.0 \\ & 7.5 \end{aligned}$		1.0	$\begin{aligned} & 10 \\ & 20 \end{aligned}$		0.0	$\begin{aligned} & 5.0 \\ & 7.5 \end{aligned}$		1.0	$\begin{aligned} & 10 \\ & 20 \end{aligned}$	$\begin{aligned} & \text { nA } \\ & \mathrm{nA} \end{aligned}$	
*Bias Current	$\begin{gathered} 25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$		2.0	$\begin{aligned} & 5.0 \\ & 10 \end{aligned}$		8.0	$\begin{aligned} & 20 \\ & 40 \end{aligned}$		2.0	$\begin{aligned} & 10 \\ & 10 \end{aligned}$		8.0	$\begin{aligned} & 30 \\ & 40 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$	
Input Resistance (Note 10)	$25^{\circ} \mathrm{C}$		50			5			50			5		$\mathrm{M} \Omega$	
Input Capacitance	$25^{\circ} \mathrm{C}$		3.0			3.0			3.0			3.0		pF	
TRANSFER CHARACTERISTICS * Large Signal Voltage Gain (Notes 3 \& 9)	$\begin{gathered} 25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$	$\begin{aligned} & 40 \mathrm{~K} \\ & 25 \mathrm{~K} \end{aligned}$			$\begin{aligned} & 40 \mathrm{~K} \\ & 25 \mathrm{~K} \end{aligned}$	$120 \mathrm{~K}$		$\left.\begin{aligned} & 25 \mathrm{~K} \\ & 20 \mathrm{~K} \end{aligned} \right\rvert\,$	\|100K			$\begin{aligned} & 25 \mathrm{~K} \\ & 20 \mathrm{~K} \end{aligned}$	$120 \mathrm{~K}$		$\begin{aligned} & V / V \\ & V / V \end{aligned}$
*Common Mode Rejection Ratio (Note 4)	$\begin{gathered} 25^{\circ} \mathrm{C} \\ \text { Full } \\ \hline \end{gathered}$	80	90		80	90		74	90		74	90		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \hline \end{aligned}$	
OUTPUT CHARACTERISTICS *Output Voltage Swing (Note 3)	$\begin{gathered} 25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$	$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$			$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	± 13.5		$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$	± 13.5		$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$			$\begin{aligned} & V \\ & V \end{aligned}$	
Output Current (Note 5)	$25^{\circ} \mathrm{C}$		± 0.5			± 5.0			± 0.5			± 5.0		mA	
Output Resistance	$25^{\circ} \mathrm{C}$		2K			500			2K			500		Ω	
Output Short-Circuit Current	$25^{\circ} \mathrm{C}$		3.7			19			3.7			19		mA	
TRANSIENT RESPONSE Rise Time (Note 6)	$25^{\circ} \mathrm{C}$		2.0			0.2			2.0			0.2		$\mu \mathrm{s}$	
Overshoot (Note 6)	$25^{\circ} \mathrm{C}$		5			15			5			15		\%	
Slew Rate (Note 7)	$25^{\circ} \mathrm{C}$		0.1			0.8			0.1			0.8		$\mathrm{V} / \mu \mathrm{s}$	
POWER SUPPLY CHARACTERISTICS ${ }^{*}$ Supply Current (Each Amp)	$\begin{gathered} 25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$		20	25		210	250		20	25		210	250	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$	
* Power Supply Rejection Ratio (Note 8)	Full	100			100			150			150			$\mu \mathrm{V} / \mathrm{V}$	

NOTES: 1. For supply voltages less than $\pm 15.0 \mathrm{~V}$, the absolute maximum input voltage is equal to supply voltage. 2. Derate at $4.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ at ambient temperatures above $68^{\circ} \mathrm{C}$.
$\frac{V_{\text {SUPPLY }}= \pm 3.0 \mathrm{~V}}{\text { 3. } T=+25^{\circ} \mathrm{C} \text { and } \mathrm{Full}}$
$\frac{V_{\text {SUPPLY }}= \pm 15.0 \mathrm{~V}}{T=+25^{\circ} \mathrm{C}}$

${ }^{\prime} \mathrm{SET}^{\prime}$	$=1.5 \mu \mathrm{~A}$
R_{L}	$=75 \mathrm{~K} \Omega$
R_{L}	$=75 \mathrm{~K} \Omega$

${ }^{{ }^{S E T}}=15 \mu \mathrm{~A}$	
R_{L}	$=5 \mathrm{~K} \Omega$
R_{L}	$=75 \mathrm{~K} \Omega$

4. $V_{C M}= \pm 1.5 \mathrm{~V}$
$T=F u l l$
$V_{C M}= \pm 5.0 \mathrm{~V}$
5. $\mathrm{V}_{\mathrm{O}}= \pm 2.0 \mathrm{~V}$
$V_{0}= \pm 10.0 \mathrm{~V}$
6. $\mathrm{A}_{\mathrm{V}}=+1, \mathrm{~V}_{I N}=400 \mathrm{mV}, R_{\mathrm{L}}=5 \mathrm{~K}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$
$\begin{array}{ll}\text { 7. } \mathrm{V}_{\mathrm{O}}= \pm 2.0 \mathrm{~V} & \mathrm{VO}_{\mathrm{O}}= \pm 10.0 \mathrm{~V} \\ \text { 8. } \Delta \mathrm{V}= \pm 1.5 \mathrm{~V} & \Delta \mathrm{~V}= \pm 5.0 \mathrm{~V}\end{array}$
7. $\mathrm{V}_{\mathrm{O}}= \pm 1.0 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{O}}= \pm 10.0 \mathrm{~V}$
8. This parameter value based upon design calculations.

* 100\% Tested For DASH 8

UNLESS OTHERWISE NOTED: $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{VDC}$

UNLESS OTHERWISE NOTED: $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{VDC}$

MAXIMUM OUTPUT VOLTAGE SWING vs. LOAD RESISTANCE

GAIN BANDWIDTH PRODUCT
vs. ISET

OPEN LOOP VOLTAGE GAIN vs. TEMPERATURE

STANDBY SUPPLY CURRENT
vs. ISET

SUPPLY CURRENT vs. TEMPERATURE

NORMALIZED BANDWIDTH vs. TEMPERATURE

HARRIS
SEMICONDUCTOR PRODUCTS DIVISION
A DIVISION OF HARRIS CORPORATION

HA-2900/04/05
 Chopper Stabilized Operational Amplifier

FEATURES	DESCRIPTION
- OFFSET VOLTAGE DRIFT $0.2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ - OFFSET CURRENT DRIFT $1 \mathrm{pA} /{ }^{\circ} \mathrm{C}$ - OPEN LOOP GAIN 5×10^{8} - BANDWIDTH - SLEW RATE - true differential inputs APPLICATIONS	HA-2900/2904/2905 are monolithic chopper-stabilized operational amplifiers that employ dielectric isolation achieving superior offset drift, extremely low input currents and excellent AC performance. Input drift is characterized by offset voltage drift of $0.2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ and offset current drift of $1 \mathrm{pA} /{ }^{\circ} \mathrm{C}$. Initial offset voltage is only $20 \mu \mathrm{~V}$ while offset current is 50 pA . These input specifications make HA-2900/2904/2905 ideally suited to high accuracy applications such as high-gain DC instrumentation, and precision integration. The amplifiers can be used to replace other op amps in designs where much lower errors are required without external adjustments. 3 MHz gain-bandwidth product makes HA-2900/2904/2905 valuable for processing wide band signals as well as for low frequency measurements.
- HIGH-GAIN DC INSTRUMENTATION - HIGH-ACCURACY WEIGHING EQUIPMENT - BIOMEDICAL AMPLIFIERS - PRECISION INTEGRATORS AND TIMERS	In addition to offering high-accuracy performance, these "choppers" also offer versatility by virtue of their symmetrical, differential inputs which permit operation in any op amp configuration - inverting, non-inverting or balanced. These devices require only three external capacitors for proper operation. HA-2900 is guaranteed over $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$; HA-2904 operates from $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$; HA- 2905 operates from $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$. All devices are available in a hermetically sealed metal can.
PINOUT AND SUGGESTED HOOKUP	FUNCTIONAL DIAGRAM
T0-99 Package Code 2E	

ABSOLUTE MAXIMUM RATINGS

Voltage Between V+ and V- Terminals	42.0 V	Operating Temperature Range	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ (HA-2900)
Differential Input Voltage (Note 1)	$\pm 15 \mathrm{~V}$		$-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ (HA-2904)
Output Current/Full Short Circuit Protection		Storage Temperature Range	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+75^{\circ} \mathrm{C}$ (HA-2905)
Internal Power Dissipation	300 mW *		

ELECTRICAL CHARACTERISTICS

Test Conditions: $\quad \mathrm{C} 1=\mathrm{C} 2=0.1 \mu \mathrm{~F}, \mathrm{C} 3=1200 \mathrm{pF}, \mathrm{V}_{\text {Supply }}= \pm 15.0 \mathrm{~V}$ unless otherwise specified.

PARAMETER	TEMP.	$\begin{gathered} \text { HA-2900 } \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$			$\begin{gathered} \mathrm{HA}-2904 \\ -25^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{gathered}$			$\begin{gathered} \text { HA- } 2905 \\ 0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \end{gathered}$			UNITS
		MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
INPUT CHARACTERISTICS											
Offset Voltage	$\begin{gathered} +25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$		20	$\begin{aligned} & 60 \\ & 100 \end{aligned}$		20	50		20	80	$\begin{aligned} & \mu \mathrm{V} \\ & \mu \mathrm{~V} \end{aligned}$
Offset Voltage Average Drift	Full		0.3	0.6		0.2	0.4		0.2		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Bias Current	$\begin{gathered} +25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$		150	$\begin{aligned} & 1,000 \\ & 1,500 \end{aligned}$		150	1,000		150	1,000	$\begin{aligned} & \text { pA } \\ & \text { pA } \end{aligned}$
Offset Current	$\begin{gathered} +25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$		50	$\begin{aligned} & 500 \\ & 800 \end{aligned}$		50	500		50	500	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{pA} \end{aligned}$
Offset Current Average Drift	Full		1	4		1	3		1		$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
Input Resistance	$+25^{\circ} \mathrm{C}$		100			100			100		$\mathrm{M} \Omega$
Input Capacitance	$+25^{\circ} \mathrm{C}$		10			10			10		pF
Common Mode Range	Full	± 10			± 10			± 10			V
TRANSFER CHARACTERISTICS											
Large Signal Voltage Gain (Note 2,5)	$\begin{gathered} +25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$	10^{6}	5×10^{8}		10^{6}			10^{6}	5×10^{8}		$\begin{aligned} & V / V \\ & V / V \end{aligned}$
Chopper Frequency	$+25^{\circ} \mathrm{C}$		750			750			750		Hz
Common Mode Rejection Ratio (Note 3)	$\begin{gathered} +250 \mathrm{C} \\ \text { Full } \end{gathered}$	$\begin{aligned} & 120 \\ & 110 \end{aligned}$	160		120	160		120	160		dB
Gain Bandwidth Product (Note 4)	$+25^{\circ} \mathrm{C}$		3			3			3		MHz
OUTPUT CHARACTERISTICS											
Output Voltage Swing (Note 2)	Full	± 10	± 12		± 10	± 12		± 10	± 12		V
Output Current	$+25^{\circ} \mathrm{C}$	± 10			± 10			± 7			mA
Output Resistance	Full		200			200			200		Ω
Full Power Bandwidth (Note 5)	$+25^{\circ} \mathrm{C}$		40			40			40		
TRANSIENT RESPONSE											
(NOTES 2, 8, and 9)											
Rise Time (Note 6)	$+25^{\circ} \mathrm{C}$		200			200			200		ns
Overshoot (Note 6)	$+25^{\circ} \mathrm{C}$		20			20			20		\%
Slew Rate (Note 10)	$+25^{\circ} \mathrm{C}$		2.5			2.5			2.5		$\mathrm{v} / \mu \mathrm{s}$
POWER SUPPLY CHARACTERISTICS											
Supply Current	$+25^{\circ} \mathrm{C}$		3.5	5.0		3.5	5.0		3.5	5.0	mA
Supply Voltage Range	Full	± 12		± 20	± 10		± 20	± 12		± 20	V
Power Supply Rejection Ratio (Note 7)	+2500	120 110	160		120	160		120	160		dB

$$
\begin{array}{ll}
\text { NOTES: 1. Input terminals should be protected against static } & \text { 5. } V_{O}= \pm 10 \mathrm{~V} \\
\text { discharge during handling and installation. Input } & \text { 6. } V_{O}= \pm 200 \mathrm{mV} \\
\text { voltage should never exceed supply voltages. } & \text { 7. } \Delta V_{S}= \pm 5 \mathrm{~V} \\
\text { 2. } R_{\mathrm{L}}=2 \mathrm{~K} & \text { 8. } C_{L}=50 \mathrm{pF} \\
\text { 3. } V_{C M}= \pm 5.0 \mathrm{~V} & \text { 9. } A_{V}=+1 \text { See transient response test } \\
\text { 4. } A_{V}=10 & \text { circuits and waveforms, page } 4 .
\end{array}
$$

10. $\mathrm{V}_{\text {OUT }}= \pm 5 \mathrm{~V}$

[^5]$\mathrm{V}+=\mathrm{V}-=15 \mathrm{VDC}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ UNLESS OTHERWISE STATED

INPUT VOLTAGE NOISE

Frequency (Hz)

OUTPUT VOLTAGE SWING
vs. FREQUENCY

Frequency (Hz)

NORMALIZED A.C. PARAMETERS
vs. SUPPLY VOLTAGE

OPEN LOOP FREQUENCY AND PHASE RESPONSE

TYPICAL INPUT CHARACTERISTICS vs. TEMPERATURE

NORMALIZED A.C. PARAMETERS vs. TEMPERATURE

Upper Trace: Input: 5V/Div.
Lower Trace: Output; 2V/Div.
Horizontal: $2 \mu \mathrm{~S} /$ Div.

VOLTAGE FOLLOWER TRANSIENT RESPONSE WAVEFORM

				F				
				=				
				F				
					HH	HH	HH	HH
				三				
				F				
				F				

Upper Trace: Input; $100 \mathrm{mV} /$ Div. Lower Trace: Output; $50 \mathrm{mV} /$ Div. Horizontal: 500ns/Div.

APPLICATION TIPS

(1) Device inputs should be protected against exceeding either supply voltage from static discharge or inadvertent connection, particularly when wired directly to a connector or instrument panel.
(2) External capacitors C1, C2, and C3 should have good temperature stability, low leakage, and low dielectric absorption. Polystyrene (below $+85^{\circ} \mathrm{C}$), teflon types or polycarbonate are recommended. C3 could also be silver mica .
(3) Particular care must be exercised in system layout and material and component selection to realize the full performance potential of the HA-2900/2904/2905. External sources of drift error may include the thermocouple and electrochemical EMF's generated at junctions of dissimilar metals, leakage across insulating materials, static charges created by moving air, and improper grounding and shielding practices.
(4) Chopper noise is present chiefly as a common mode input current signal, and may be minimized by matching the impedances at the two inputs. Random noise may be reduced at the expense of bandwidth using active or passive filtering.
(5) Input frequencies near the chopper frequency $(750 \mathrm{~Hz})$ or its harmonics may result in small components of difference frequency in the output. This effect should be checked in the individual application, and if objectionable, a low pass filter may be added in series with the input.
(6) When operating at closed loop gains between 70 dB and 140 dB , compensation networks may be required, because of open loop phase shift in this gain region. In most cases, a capacitor placed in parallel with the feedback resistor to yield a gain-bandwidth product $<2 \mathrm{MHz}$ will be sufficient.

HARRIS
SEMICONDUCTOR PRODUCTS DIVISION
A DIVISION OF HARRIS CORPORATION

FEATURES	DESCRIPTION
- LOW OFFSET VOLTAGE 0.3 mV - HIGH SLEW RATE $\pm 4 \mathrm{~V} / \mu \mathrm{s}$ - WIDE BANDWIDTH 8 MHz - LOW DRIFT $2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ - FAST SETTLING $(0.01 \%, 10 \mathrm{~V}$ STEP) $\quad 4.2 \mu \mathrm{~s}$ - LOW POWER CONSUMPTION $35 \mathrm{~mW} /$ AMP - SUPPLY RANGE $\pm 5 \mathrm{~V} T 0 \pm 20 \mathrm{~V}$ APPLICATIONS - HIGH Q, WIDE BAND FILTERS - INSTRUMENTATION AMPLIFIERS - AUDIO AMPLIFIERS - dATA ACQUISITION SYSTEMS - INTEGRATORS - ABSOLUTE VALUE CIRCUITS - TONE DETECTORS	The HA-4602 and HA-4605 are high performance dielectrically isolated monolithic quad operational amplifiers with superior specifications not previously available in a quad amplifier. These amplifiers offer excellent dynamic performance coupled with low values for offset voltage and drift, input noise voltage and power consumption. A wide range of applications can be achieved by using the features made available by the HA-4602/4605. With wide bandwidth (8 MHz), low power ($35 \mathrm{~mW} / \mathrm{amp}$), and internal compensation, these devices are ideally suited for precision active filter designs. For audio applications these amplifiers offer low noise ($8 \mathrm{nV} / \sqrt{\mathrm{Hz}}$) and excellent full power bandwidth $(60 \mathrm{kHz})$. The HA-4602/4605 is particularly useful in designs requiring low offset voltage $(0.3 \mathrm{mV})$ and drift ($2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$), such as instrumentation and signal conditioning circuits. The high slew rate ($4 \mathrm{~V} / \mu \mathrm{s}$) and fast settling time ($4.2 \mu \mathrm{~s}$ to $0.01 \%, 10 \mathrm{~V}$ step) makes these amplifiers useful components in fast, accurate data acquisition systems. The HA-4602 and 4605's are available in 14 pin CERDIP packages which are interchangeable with most other quad op amps. HA-4602 is specified from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, and HA-4605 is specified over $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ range.
PINOUT	SCHEMATIC
Package Code 4U, LA TOP VIEW CAUTION: These devices are sensitive to electrostatic discharge. Users should follow IC Handling Procedures specified on pg. 1-4.	ONE FOURTH ONLY (HA-4602/4605)

ABSOLUTE MAXIMUM RATINGS (Note 1)
$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ Unless Otherwise Stated
Voltage Between V+ and V-Terminals
Differential Input Voltage
Input Voltage (Note 2)
Output Short Circuit Duration (Note 3)

Power Dissipation (Note 4) Operating Temperature Range HA-4602-2
HA-4605-5
Storage Temperature Range

880 mW
$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+75^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+150^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

[^6]1. Absolute maximum ratings are limiting values, applied individually, beyond which the serviceability of the circuit may be impaired. Functional operability under any of these conditions is not necessarily implied.
2. For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
3. Any one amplifier may be shorted to ground indefinitely.
4. Derate $5.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
5. $\mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=2 \mathrm{~K}$ ohms.
6. Channel separation value is referred to the input of the
amplifier. Input test conditions are: $f=10 \mathrm{kHz} ; \mathrm{V}_{\mathrm{IN}}=$ 200 mV peak-to-peak; $\mathrm{R}_{\mathrm{S}}=1 \mathrm{~K}$ ohms. (Refer to Channel Separation vs. Frequency Curve for test circuits.)
7. Output current is measured with $\mathrm{V}_{\text {OUT }}= \pm 5$ volts.
8. For transient response test circuits and measurement conditions refer to Test Circuits section of the data sheet.
9. $\Delta V= \pm 5.0$ volts.
10. Settling time is measured to 0.1% of final value for a 10 volt input step, $A V=-1$.

TEST CIRCUITS

VERT. 5V/DIV.
HORZ. $5 \mu \mathrm{~s} / \mathrm{DIV}$.
LARGE SIGNAL RESPONSE CIRCUIT
(Volts: 5V/Div., Time: $5 \mu \mathrm{~s} /$ Div.)

SMALL SIGNAL RESPONSE CIRCUIT (Volts: $10 \mathrm{mV} / \mathrm{Div}^{2}$., Time: 50ns/Div.)

SETTLING TIME CIRCUIT

* Shown for av =-1. USE 800Ω AND 400Ω FOR $A V=-5, A V=-10$, RESPECTIVELY.
** THIS IS SUMMING POINT ERROR. OUTPUT ERROR, ϵ, IS GIVEN BY $\epsilon=(1+A V) \mathrm{Ve}$.
* ** MEASUREMENT IS $5 \times$ Ve WHEN GATE INPUT IS "LOW" (-4V). FOR GATE INPUT "HIGH" (OV), MEASUREMENT IGNORES INPUT (Ve) SO THAT SCOPE OVERLOAD IS PRE VENTED DURING LARGE TRANSITIONS. GATE INPUT SIGNAL IS DELAYED WITH RESPECT TO SIGNAL
NPUT TO ALLOW TIME FOR A. U.T SLEWING AND SETTLING TO SMALL ERROR VOLTAGES

> OFFSET VOLTAGE INPUT BIAS AND OFFSET CURRENT VS. TEMPERATURE

SMALL SIGNAL BANDWIDTH AND PHASE MARGIN VS. LOAD CAPACITANCE

INPUT NOISE VS. FREQUENCY

OPEN LOOP FREQUENCY RESPONSE

OUTPUT VOLTAGE SWING VS. FREQUENCY AND SUPPLY VOLTAGE

CHANNEL SEPARATION VS. FREQUENCY

NORMALIZED AC PARAMETERS
VS. SUPPLY VOLTAGE

MAXIMUM OUTPUT VOLTAGE SWING VS. LOAD RESISTANCE AND SUPPLY VOLTAGE

SETTLING TIME VS. OUTPUT
AMPLITUDE (AV = -1)

OUTPUT ERROR VOLTAGE mV

NORMALIZED AC PARAMETERS
VS. TEMPERATURE

POWER SUPPLY CURRENT VS. TEMPERATURE AND SUPPLY VOLTAGE

SETTLING TIME VS. OUTPUT AMPLITUDE AND SIGNAL GAIN (AV $=-5$ AND $A V=-10)$

1. POWER SUPPLY DECOUPLING: Although not absolutely necessary, it is recommended that all power supply lines be decoupled with $.01 \mu \mathrm{~F}$ ceramic capacitors to ground. Decoupling capacitors should be located as near to the amplifier terminals as possible.
2. UNUSED OP AMPS: Unused op amp sections should be connected in a non-inverting follower configuration with
the $(+)$ input tied to ground in order to insure optimum performance of devices being used.
3. In high frequency applications where large value feedback resistors are used, a small capacitor (3pF) may be needed in parallel with the feedback resistor to neutralize the pole introduced by input capacitance.

APPLICATIONS

2ND ORDER STATE VARIABLE FILTER ($1 \mathrm{kHz}, \mathrm{Q}=10$)

The state variable filter is relatively insensitive to component changes (changes can be adjusted out with potentiometers) and also has low sensitivity to amplifier bandwidths. (Amplifier gain bandwidth product should be $\gg 0 \times \mathrm{fc}$). The bandwidth criteria will determine whether a general purpose op amp like Harris HA-4741 or the wide band HA-4602/4605 should be used.

This filter finds wide application because multiple filtering functions are available simultaneously (High pass, Lo pass, Band pass, Band reject). In this circuit the various RC products are matched with pot adjustments allowing for non-interactive
adjustment of Q and fc . This allows capacitors ($\mathrm{C}_{1}, \mathrm{C}_{2}$) with loose tolerances to be used. To tune for $\mathrm{f} C$, apply a sine wave at f_{C} to the input, adjust R_{1} for equal amplitudes at the Hi pass and Band pass terminals (they will be phased 90° apart) then adjust R_{2} for equal amplitudes at the Band pass and Lo pass terminals.

The state variable filter is often used as building blocks in multiple pole Butterworth of Chebyshev filters. Many references contain normalized tables indicating settings for 0 and f_{C} of each pole-pair section.

SALLEN AND KEY 2ND ORDER LO PASS FILTER

NOTES:

1. Make $\mathrm{R}_{\mathbf{1}}=\mathrm{R}_{\mathbf{2}}$
2. $f \mathrm{c}=\frac{1}{2 \pi R_{1} \sqrt{\mathrm{C}_{1} \mathrm{C}_{2}}}$
3. $\mathrm{Q}=1 / 2 \sqrt{\frac{\mathrm{C}_{2}}{\mathrm{C}_{1}}}$

The advantage of using the Sallen and Key filter is simplicity, but in any application this must be weighed against the statevariable type filter for accuracy, practicality, and cost. Amplifier bandwidth limitations are much more apparent at moderate frequencies and 0 values with this filter design. (For accuracy, amplifier gain-bandwidth product should be $\gg \mathrm{f}_{\mathrm{C}} \times \mathrm{Q}^{2}$). The wide bandwidth of the HA-4602/4605 is particularly advantageous in this design even at audio frequencies.

In this filter all component values affect both Q and f . Precision, temperature stable resistors and capacitors must be used.

For economy, this filter could be used in the low 0 stages of multiple-pole filter design, while the state variable type is used in the more critical stages.

INSTRUMENTATION AMPLIFIER

Instrumentation amplifiers (differential amplifiers) are specifically designed to extract and amplify small differential signals from much larger common mode voltages.

To serve as building blocks in instrumentation amplifiers, op amps must have very low offset voltage drift, high gain and wide bandwidth. The HA-4602/4605 is ideally suited for this appli-
cation, delivering superior input and speed characteristics.
The optional circuitry makes use of the fourth amplifier section as a shield driver which enhances the AC common mode rejection by nullifying the effects of capacitance-to-ground mismatch between input conductors.

HARRIS
SEMICONDUCTOR PRODUCTS DIVISION A DIVISION OF HARRIS CORPORATION

$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ Unless otherwise stated.
Voltage between $V+$ and V - Terminals
Differential Input Voltage
Input Voltage (Note 2)
Output Short Circuit Duration (Note 3)
40.0 V
$\pm 7 \mathrm{~V}$
$\pm 15.0 \mathrm{~V}$
Indefinite
Power Dissipation (Note 4)
Operating Temperature Range
HA-4622-2
HA-4625-5
Storage Temperature Range

880 mW
$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+75^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+150^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

$V+=15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}$		$\begin{gathered} \text { HA-4622-2 } \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$			$\begin{aligned} & \text { HA-4625-5 } \\ & 0^{\circ} \mathrm{C} \text { to }+755^{\circ} \mathrm{C} \end{aligned}$			
PARAMETER	TEMP	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
INPUT CHARACTERISTICS								
*Offset Voltage	$\begin{gathered} +250 \mathrm{C} \\ \text { Full } \end{gathered}$		0.3	$\begin{aligned} & 2.5 \\ & 3.0 \end{aligned}$		0.5	$\begin{aligned} & 3.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Av. Offset Voltage Drift	Full		2			2		$\mu \mathrm{V} / \mathrm{O}^{\text {C }}$
*Bias Current	$\begin{gathered} +25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$		130	$\begin{aligned} & 200 \\ & 325 \end{aligned}$		130	$\begin{aligned} & 300 \\ & 400 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
*Offset Current	$\begin{gathered} +25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$		30	$\begin{gathered} 75 \\ 125 \end{gathered}$		30	$\begin{aligned} & 100 \\ & 120 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
Common Mode Range	Full	± 12			± 12			\checkmark
Input Noise Voltage ($\mathrm{f}=\mathbf{1 \mathrm { kHz }}$)	+250 ${ }^{\circ}$		8			8		$n \mathrm{~V} / \sqrt{\mathrm{Hz}}$
Input Resistance	$+25^{\circ} \mathrm{C}$		500			500		$\mathrm{K} \Omega$
TRANSFER CHARACTERISTICS								
*Large Signal Voltage Gain (Note 5)	Full	100K	250K		75K	250K		v/v
*Common Mode Rejection Ratio (Note 6)	Full	86			80			dB
Channel Separation (Note 7)	$+25^{\circ} \mathrm{C}$		-108			-108		dB
Gain Bandwidth Products (Note 8)	$+25^{\circ} \mathrm{C}$		70			70		MHz
OUTPUT CHARACTERISTICS								
*Output Voltage Swing ($\mathrm{R}_{\mathrm{L}}=10 \mathrm{~K}$)	Full	± 12	± 13		± 12	± 13		v
$\left(R_{L}=2 \mathrm{~K}\right)$	Full	± 10	± 12		± 10	± 12		V
Full Power Bandwidth (Note 9)	+250 ${ }^{\circ}$		260			260		kHz
Output Current (Note 10)	Full	± 10	± 15		± 8	± 15		mA
Output Resistance	$+250 \mathrm{C}$		200			200		Ω
TRANSIENT RESPONSE (Note 11)								
Rise Time	+250 ${ }^{\circ}$		38	60		38		ns
Overshoot	$+25^{\circ} \mathrm{C}$		45	60		45		\%
Slew Rate	$+25^{\circ} \mathrm{C}$	± 12	± 20		± 12	± 20		$\mathrm{V} / \mathrm{\mu} \mathrm{~s}$
Setting Time (Note 12)	+250 ${ }^{\circ}$		2.5			2.5		$\mu \mathrm{s}$
POWER SUPPLY CHARACTERISTICS								
*Supply Current (1+ or 1-)	+250 ${ }^{\circ}$		4.6	5.5		5.0	6.5	mA
*Power Supply Rejection Ratio (NOTE 6)	Full	86			80			dB

[^7]1. Absolute maximum ratings are limiting values, applied individually, beyond which the serviceability of the circuit may be impaired. Functional operability under any of these conditions is not necessarily implied.
2. For supply voltages $< \pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
3. Any one amplifier may be shorted to ground indefinitely.
4. Derate $5.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $\mathrm{T}_{\mathrm{A}}=+250 \mathrm{C}$.
$5 \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{~K} \Omega$
5. $\Delta V= \pm 5.0 \mathrm{~V}$.
6. Channel separation value is referred to the input of the ampli-
fier. Input test conditions are: $f=10 \mathrm{kHz} ; \mathrm{V}_{\mathrm{IN}}=200 \mathrm{mV}$ peak to peak; RS $=1 \mathrm{k} \Omega$. (Refer to Channel Separation vs. Frequency Curve for test circuits.)
7. $A_{V}=10 ; R_{L}=2 K ; C_{L} \leq 10 p F$.
8. Full power bandwidth is guaranteed by equation:

Full power bandwidth $=\frac{\text { Slew Rate }}{2 \pi V \text { Peak }}$
10. Output current is measured with $\mathrm{V}_{\text {OUT }}= \pm 5 \mathrm{~V}$.
11. Refer to Test Circuits section of the data sheet.
12. Setting time is measured to 0.1% of final value for a 1 volt input step, and $A V=-10$.

TEST CIRCUITS

INPUT A

VOLTS: Input A: .5V/Div., Output B: 5V/Div. TIME: 500ns/Div.

VOLTS: Input A: .01V/Div., Output B: 50mV/Div. TIME: 50ns/Div.

SETTLING TIME CIRCUIT

$A V=-10$
Feedback and summing resistors should be 0.1\%.

* Clipping diodes are optional. HP 5082-2810 recommended.
$\mathrm{V}+=+15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ Unless otherwise stated.

OFFSET VOLTAGE INPUT BIAS AND OFFSET CURRENT VS. TEMPERATURE

SMALL SIGNAL BANDWIDTH AND PHASE MARGIN VS. LOAD CAPACITANCE

INPUT NOISE VS. FREQUENCY

OPEN LOOP FREQUENCY RESPONSE

OUTPUT VOLTAGE SWING VS. FREQUENCY AND SUPPLY VOLTAGE

CHANNEL SEPARATION VS. FREQUENCY

TOTAL HARMONIC DISTORTION VS. FREQUENCY

NORMALIZED AC PARAMETERS VS. TEMPERATURE

POWER SUPPLY CURRENT VS. TEMPERATURE AND SUPPLY VOLTAGE

NORMALIZED AC PARAMETERS VS. SUPPLY VOLTAGE

MAXIMUM OUTPUT VOLTAGE SWING VS. LOAD RESISTANCE AND SUPPLY VOLTAGE

SETTLING TIME VS. OUTPUT AMPLITUDE (AV = -10)

1. POWER SUPPLY DECOUPLING: Although not absolutely necessary, it is recommended that all power supply lines be decoupled with $.01 \mu \mathrm{~F}$ ceramic capacitors to ground. Decoupling capacitors should be located as near to the amplifier terminals as possible. If several amplifier sections are connected in series, it is recommended that every third or fourth section be decoupled.
2. UNUSED OP AMPS: Unused op amp sections should be connected in a non-inverting $A V=10$ configuration with the (+) input tied to ground in order to optimize performance of de-
vices being used.
3. In high frequency applications where large value feedback resistors are used, a small capacitor (3 pF) may be needed in parallel with the feedback resistor to neutralize the pole introduced by input capacitance.
4. When driving heavy capacitive loads ($>100 \mathrm{pF}$), a small value resistor should be connected in series with the output and inside the feedback loop.

APPLICATIONS

SUGGESTED METHODS FOR OFFSET NULLING

NON-INVERTING AMPLIFIER

INVERTING AMPLIFIER

SUGGESTED COMPENSATION FOR UNITY GAIN STABILITY

LARGE SIGNAL RESPONSE

VOLTS: Input A: 5V/Div., Output B: 2V/Div. TIME: $1 \mu \mathrm{~s} /$ Div.

Quad Operational Amplifier

FEATURES

DESCRIPTION

The HA-4741, which contains four amplifiers on a monolithic chip, provides a new measure of performance for general purpose operational amplifiers. Each amplifier in the HA-4741 has operating specifications that equal or exceed those of the 741type amplifier in all categories of performance.
$1.6 \mathrm{~V} / \mu \mathrm{s}$ (TYP.)
3.5 MHz (TYP.)
$9 n V \sqrt{\mathrm{~Hz}}$ (TYP.)
0.5 mV (TYP.)

60 nA (TYP.)
$\pm 2 \mathrm{~V}$ TO $\pm 20 \mathrm{~V}$

- SLEW RATE
- BANDWIDTH
- input voltage noise
- INPUT OFFSET VOLTAGE
- INPUT BIAS CURRENT
- SUPPLY RANGE
- NO CROSSOVER DISTORTION
- STANDARD QUAD PIN-OUT
- UNIVERSAL ACTIVE FILTERS
- D3 COMMUNICATIONS FILTERS
- AUDIO AMPLIFIERS
- BATTERY-POWERED EQUIPMENT

APPLICATIONS

HA-4741 is well suited to applications requiring accurate signal processing by virtue of its low values of input offset voltage $(0.5 \mathrm{mV})$, input bias current (60 nA) and input voltage noise $(9 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ at 1 kHz). 3.5 MHz bandwidth, coupled with high open-loop gain, allow the HA-4741 to be used in designs requiring amplification of wide band signals, such as audio amplifiers. Audio application is further enhanced by the HA-4741's negligible output crossover distortion. These excellent dynamic characteristics also make the HA-4741 ideal for a wide range of active filter designs. Performance integrity of multi-channel designs is assured by a high level of amplifier-to-amplifier isolation (108 dB at 1 kHz).

A wide range of supply voltages ($\pm 2 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$) can be used to power the HA-4741, making it compatible with almost any system including battery-powered equipment.

The HA-4741 has guaranteed operation over $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ and can be furnished to meet MIL-STD-883 (HA-4741-8). The HA-4741-5 is guaranteed over $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ and is available in ceramic and plastic dual-in-line packages and in dice form.

PINOUT
SCHEMATIC

Package Code 4U, 3M, LA TOP VIEW

CAUTION: These devices are sensitive to electrostatic discharge. Users should follow IC Handling Procedures specified on pg. 1-4.

(1/4) HA-4741

ABSOLUTE MAXIMUM RATINGS

$T_{A}=+25^{\circ} \mathrm{C}$ Unless Otherwise Stated
Voltage Between V+ and V- Terminals
40.0 V

Differential Input Voltage
$\pm 30.0 \mathrm{~V}$
Input Voltage (Note 1)
Output Short Circuit Duration (Note 2)
$\pm 15.0 \mathrm{~V}$
Indefinite

Power Dissipation For Epoxy Package. (Note 3) Operating Temperature Range HA-4741-2 HA-4741-5
Storage Temperature Range

880 mW
$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+125^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+75^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C} \leq T_{A} \leq+150^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

$V-=-15 \mathrm{~V}$PARAMETER	TEMP.	HA-4741-2$-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}$			$\begin{aligned} & \text { HA- } 4741.5 \\ & 0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \end{aligned}$			UNITS
		MIN.	TYP.	MAX.	MIN.	TYP.	MAX	
INPUT CHARACTERISTICS								
* Offset Voltage	$+25^{\circ} \mathrm{C}$		0.5	3.0		1.0	5.0	mV
	Full		4.0	5.0		5.0	6.5	mV
Av. Offset Voltage Drift	Full		5			5		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
* Bias Current	+250\%		60	200		60	300	nA
	Full			325			400	nA
* Offset Current	+250 ${ }^{\circ} \mathrm{C}$		15	30		30	50	nA
	Full			75			100	nA
Common Mode Range	Full	± 12			± 12			\checkmark
Differential Input Resistance	+250\%		5			5		$\mathrm{M} \Omega$
Input Noise Voltage ($f=1 \mathrm{KHz}$)	$+25^{\circ} \mathrm{C}$		9			9		$n \mathrm{~V} / \sqrt{\mathrm{Hz}}$
TRANSFER CHARACTERISTICS								
* Large Signal Voltage Gain (Note 4)	$+25^{\circ} \mathrm{C}$	50K	100K		25K	50K		V/V
	Full	25K			15K			V/V
* Common Mode Rejection Ratio (Note 8)	$+25^{\circ} \mathrm{C}$	80			80			dB
	Full	74			74			dB
Channel Separation (Note 5)	$+25^{\circ} \mathrm{C}$	90	-108		90	-108		dB
Small Signal Bandwidth	$+25^{\circ} \mathrm{C}$	2.5	3.5		2.5	3.5		MHz
OUTPUT CHARACTERISTICS								
* Output Voltage Swing ($\mathrm{R}_{\mathrm{L}}=10 \mathrm{~K}$)	Full	± 12	± 13.7		± 12	± 13.7		v
($\left.\mathrm{R}_{\mathrm{L}}=2 \mathrm{~K}\right)$	Full	± 10	± 12.5		± 10	± 12.5		V
Full Power Bandwidth (Notes 4 \& 9)	+250\%	14	25		14	25		kHz
Output Current (Note 6)	Full	± 5	± 15		± 5	± 15		mA
Output Resistance	$+25^{\circ} \mathrm{C}$		300			300		Ω
TRANSIENT RESPONSE (Notes 7 \& 10)								
Rise Time (Note 11)	$+25^{\circ} \mathrm{C}$		75	140		75	140	ns
Overshoot (Note 11)	+250\%		25	40		25	40	\%
Slew Rate (Note 12)	$+25^{\circ} \mathrm{C}$		± 1.6			± 1.6		$\mathrm{V} / \mu_{\mathrm{s}}$
POWER SUPPLY CHARACTERISTICS								
* Supply Current (1+ or $1-1$	+250 ${ }^{\circ}$			5.0			7.0	mA
* Power Supply Rejection Ratio (Note 8)	Full	80			80			dB

> NOTES: 1. For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage. 2. One amplifier may be shorted to ground indefinitely. 3. Derate $5.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $T_{A}=+25^{\circ} \mathrm{C}$. 4. VOUT $= \pm 10, R_{\mathrm{L}}=2 \mathrm{~K}$ 5. Referred to input; $f=10 \mathrm{KHz}, R_{S}=1 \mathrm{~K}$ 6. VOUT $= \pm 10$
7. See pulse response characteristics
8. $\Delta v= \pm 5.0 \mathrm{~V}$
9. Full power bandwidth guaranteed based upon slew rate measurement $F P B W=S . R . / 2 \pi V$ peak
$10 . R_{L}=2 K, C_{L}=50 \mathrm{pf}$.
$11 . V_{\text {OUT }}= \pm 200 \mathrm{mV}$
12. $V_{\text {OUT }}= \pm 5 \mathrm{~V}$
$\mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+250 \mathrm{C}$
Unless Otherwise Stated.
OUTPUT VOLTAGE SWING VS. FREQUENCY

OPEN LOOP FREQUENCY RESPONSE

NORMALIZED AC PARAMETERS
VS. SUPPLY VOLTAGE

INPUT NOISE VS. FREQUENCY

NORMALIZED AC PARAMETERS VS. TEMPERATURE

SMALL SIGNAL BANDWIDTH AND PHASE MARGIN VS. LOAD CAPACITANCE

CHANNEL SEPARATION VS. FREQUENCY

INPUT BIAS AND OFFSET CURRENT
VS. TEMPERATURE

MAXIMUM OUTPUT VOLTAGE SWING VS. LOAD RESISTANCE

POWER CONSUMPTION
VS. TEMPERATURE

PULSE RESPONSE

TRANSIENT RESPONSE/SLEW RATE CIRCUIT

SLEW RESPONSE
(Volts: $\mathbf{5}^{\mathrm{V}} /$ Div, Time: $5 \mu \mathrm{~s} /$ Div)

TRANSIENT RESPONSE
(Volts: $40 \mathrm{mV} /$ Div. , Time: 100ns/Div.)

HARRIS
SEMICONDUCTOR PRODUCTS DIVISION

ABSOLUTE MAXIMUM RATINGS (Note 1)

```
Voltage Between V+ and V- 33V
Voltage Between V Logic (+) and V Logic (-)18 V
```

Differential Input Voltage $\pm 15 \mathrm{~V}$

```
Peak Output Current }\pm50\textrm{mA
Internal Power Dissipation (Note 7, 8)
                                    880mW
Storage Temperature Range }\quad-65\mp@subsup{0}{}{\circ}\textrm{C}\leq\mp@subsup{T}{A}{}\leq150\mp@subsup{0}{}{\circ}\textrm{C
```

ELECTRICAL CHARACTERISTICS
(Note 9)

[^8]1. Absolute maximum ratings are limiting values, applied individually, beyond which the serviceability of the circuit may be impaired. Functional operability under any of these conditions is not necessarily implied.
2. Minimum differential input voltage required to ensure a defined output state.
3. Input bias currents are essentially constant with differential input voltages up to ± 9 volts. With differential input voltages from ± 9 to ± 15 volts, bias current on the more negative input can rise to approximately $500 \mu \mathrm{~A}$.
4. $\quad R_{S} \leq 200$ ohms. Input sensitivity is the differential voltage required at the input to make the output change state, after the offset has been nulled.
5. See Test Circuit below.
6. For V_{OH} and V_{OL} : $\mathrm{I}_{\text {Sink }}=3.5 \mathrm{~mA}$, $\mathrm{I}_{\text {Source }}=3.0 \mathrm{~mA}$. For other values of $\mathrm{V}_{\text {Logic }} ; \mathrm{V}_{\mathrm{OH}}($ min. $)=\mathrm{V}_{\text {Logic }}+$ -1.5 V .
7. Total Power Dissipation (T.P.D.) is the sum of individual dissipation contributions of $\mathrm{V}+, \mathrm{V}$ - and $\mathrm{V}_{\text {Logic }}$ shown in curves of Power Dissipation vs. Supply Voltages (see page 5). The calculated T.P.D. is then located on the graph of Maximum Allowable Package Dissipation vs. Ambient Temperature (see page 5) to determine ambient temperature operating limits imposed by the calculated T.P.D.. For instance, the combination of $+15 \mathrm{~V},-15 \mathrm{~V},+5 \mathrm{~V}, 0 \mathrm{~V}\left(\mathrm{~V}+, \mathrm{V}-, \mathrm{V}_{\text {Logic }}{ }^{+}, \mathrm{V}_{\text {Logic }}{ }^{-}\right)$ gives a T.P.D. of 350 mW which allows operation to $+125^{\circ} \mathrm{C}$; the combination $+15 \mathrm{~V},-15 \mathrm{~V},+15 \mathrm{~V}, 0 \mathrm{~V}$ gives a T.P.D. of 450 mW and an operating limit of $\mathrm{T}_{\mathrm{A}}=$ $+95^{\circ} \mathrm{C}$.
8. Derate by $5.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$.
9. Electrical characteristics are guaranteed only under supply conditions shown.
10. Supply current (Logic) is guaranteed under either logic high or low state.

RESPONSE TIME TEST CIRCUITS

Input and output voltage waveforms for various input overdrives is shown on page 5.

INPUT BIAS CURRENT vS. TEMPERATURE
INPUT OFFSET CURRENT vs. TEMPERATURE

INPUT BIAS CURRENT vs. COMMON MODE INPUT VOLTAGE
(V DIFF. $=0 \mathrm{~V}$)

SUPPLY CURRENT vs. TEMPERATURE FOR $\pm 15 \mathrm{~V}$ SUPPLIES AND +5 V LOGIC SUPPLY

SUPPLY CURRENT vs. TEMPERATURE FOR SINGLE +5 V OPERATION
 vs. TAMBIENT

MAXIMUM POWER DISSIPATION vs. SUPPLY VOLTAGE (NO LOAD CONDITION)

APPLYING THE HA-4900/4905 COMPARATORS

1. SUPPLY CONNECTIONS: This device is exceptionally versatile in working with most available power supplies. The voltage applied to the $\mathrm{V}+$ and V - terminals determines the allowable input signal range; while the voltage applied to the $\mathrm{V}_{\mathrm{L}}{ }^{+}$and V_{L} - determines the output swing. In systems where dual analog supplies are available, these would be connected to $\mathrm{V}+$ and V -, while the logic supply and return would be connected to $\mathrm{V}_{\text {Logic }}{ }^{+}$and $\mathrm{V}_{\text {Logic }}{ }^{-}$. The analog and logic supply commons can be connected together at one point in the system, since the comparator is immune to noise on the logic supply ground. A negative output swing may be obtained by connecting $\mathrm{V}_{\mathrm{L}}{ }^{+}$to ground and V_{L} to a negative supply. Bipolar output swings (15V P-P, max.) may be obtained using dual supplies. In systems where only a single logic supply is available (+5 V to +15 V), $\mathrm{V}+$ and $\mathrm{V}_{\text {Logic }}{ }^{+}$may be connected together to the positive supply while V - and $\mathrm{V}_{\text {Logic }}{ }^{-}$ are grounded. If an input signal could swing negative with respect the V - terminal, a resistor should be connected in series with the input to limit input current to $<5 \mathrm{~mA}$ since the C-B junction of the input transistor would be forward biased.
2. UNUSED INPUTS: Inputs of unused comparator sections should be tied to a differential voltage source to prevent output "chatter".
3. CROSSTALK: Simultaneous high frequency operation of all other channels in the package will not affect the output logic state of a given channel, provided that its differential input voltage is sufficient to define a given logic state ($\Delta \mathrm{V}_{\mathrm{IN}} \geq \pm \mathrm{V}_{\mathrm{OS}}$). Low level or high impedance input lines should be shielded from other signal sources to reduce crosstalk and interference.
4. POWER SUPPLY DECOUPLING: Decouple all power supply lines with $.01 \mu \mathrm{~F}$ ceramic capacitors to a ground line located near the package to reduce coupling between channnels or from external sources.
5. RESPONSE TIME: Fast rise time ($<200 \mathrm{~ns}$) input pulses of several volts amplitude may result in delay times somewhat longer than those illustrated for 100 mV steps. Operating speed is optimized by limiting the maximum differential input voltage applied, with resistor-diode clamping networks.

DATA ACQUISITION SYSTEM
In this circuit the HA-4900/4905 is used in conjunction with a D to A converter to form a simple, versatile, multi-channel analog input for a data acquisition system. In operation the processor first sends an address to the D to A, then the processor reads the digital word generated by the comparator outputs.

To perform a simple comparison, the processor sets the D to A to a given reference level, then examines one or more comparator outputs to determine if their inputs are above or below the reference. A window comparison consists of two such cycles with 2 reference levels set by the D to A. One way to digitize the inputs would be for the processor to increment the D to A in steps. The D to A address, as each comparator switches, is the digitized level of the input. While stairstepping the D to A is slower than successive approximation, all channels are digitized during one staircase ramp.

LOGIC LEVEL TRANSLATORS
The HA-4900/4905 comparators can be used as versatile logic interface devices as shown in the circuits above. Negative logic devices may also be interfaced with appropriate supply connections.

If separate supplies are used for V - and $V_{\text {Logic }}$-, these logic level translators will tolerate several volts of ground line differential noise.

RS-232 TO CMOS LINE RECEIVER

This RS-232 type line receiver to drive CMOS logic uses a Schmitt trigger feedback network to give about 1 volt input hysteresis for added noise immunity. A possible problem in an interface which connects two equipments, each plugged into a different $A C$ receptacle, is that the power line voltage may appear at the receiver input when the interface connection is made or broken. The two diodes and a 3 watt input resistor will protect the inputs under these conditions.

OSCILLATOR/CLOCK GENERATOR
This self-starting fixed frequency oscillator circuit gives excellent frequency stability. R_{1} and C_{1} comprise the frequency determining network while R_{2} provides the regenerative feedback. Diode D_{1} enhances the stability by compensating for the difference between V_{OH} and $\mathrm{V}_{\text {Supply }}$. In applications where a precision clock generator up to 100 kHz is required, such as in automatic test equipment, C_{1} may be replaced by a crystal.

WINDOW DETECTOR

The high switching speed, low offset current and low offset voltage of the HA-4900/4905 makes this window detector circuit extremely well suited to applications requiring fast, accurate, decision-making. The circuit above is ideal for industrial process system feedback controllers or "out-of-limit" alarm indicators.

SCHMITT TRIGGER (ZERO CROSSING DETECTOR WITH HYSTERESIS)

This circuit has a 100 mV hysteresis which can be used in applications where very fast transition times are required at the output even though the signal input is very slow. The hysteresis loop also reduces false triggering due to noise on the input. The waveforms below show the trip points developed by the hysteresis loop.

High Speed Quad Comparator

FEATURES	DESCRIPTION
- fast response time - LOW OFFSET VOLTAGE - STANDARD POWER SUPPLIES - ACTIVE PULL-UP/PULL-DOWN OUTPUT CIRCUIT - NO EXTERNAL RESISTORS REQUIRED - TTL AND ECL COMPATIBLE APPLICATIONS - A/D CONVERTERS - THRESHOLD DETECTOR - ZERO-CROSSING DETECTOR - LOGIC SYSTEM INTERFACES - HIGH FREQUENCY OSCILLATORS	HA-4920/4925 are monolithic, quad, high speed comparators offering a combination of speed, precision, and flexibility never before available in a quad comparator. 40 ns response time and 2.0 mV offset voltage makes these comparators ideally suited for precise signal level detection and fast response times to large and small input signal levels. These dielectrically isolated devices employ unique input/output stages which prevent troublesome ground coupling inherent in combined analog/ digital systems. The flexibility/speed of HA-4920/4925 assures easy application in fast data acquisition systems, analog to logic interface networks, and test equipment. Both devices are available in 16 pin dual-in-line ceramic packages. The HA-4920 operates from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ and the HA-4925 operates over a $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ temperature range.
PINOUT	SCHEMA T/C
Package Code 4Z QUAD COMPARATOR TOP VIEW	

ABSOLUTE MAXIMUM RATINGS (Note 1)

Voltage between V+ and V-	40 V
Voltage between VLogic ${ }^{(+)}$and V Logic $^{(-)}$	7 V
Differential Input Voltage	$\pm 6 \mathrm{~V}$
Peak Ouput Current	50 mA
Internal Power Dissipation (Note 2)	850 mW
Storage Temperature Range	$-65^{\circ} \mathrm{C} \leq T_{A} \leq 150^{\circ} \mathrm{C}$
Positive and Negative Voltage Clamp	5 V below Supply Voltage

ELECTRICAL CHARACTERISTICS

$\begin{array}{ll}\mathrm{V}+=+15.0 \mathrm{~V} & \mathrm{~V}_{\text {Logic }}(+)=5.0 \mathrm{~V} \\ \mathrm{~V}-=-15.0 \mathrm{~V} & \mathrm{~V}_{\text {Logic }}(-)=\text { GND }\end{array}$								UNITS
PARAMETER	TEMP	HA-4920: -55 ${ }^{\circ} \mathrm{C} /+125^{\circ} \mathrm{C}$			HA-4925: $0^{\circ} \mathrm{C} /+75^{\circ} \mathrm{C}$			
		MIN	TYP	MAX	MIN	TYP	MAX	
Input Offset Voltage (Note 3)	+250 ${ }^{\circ}$		2.0	3.0		4.0	6.0	mV
	Full			4.0			8.0	mV
Input Offset Current	+250\%		. 5	1.5		1.5	2.0	$\mu \mathrm{a}$
	Full			2.0			3.0	
Input Bias Current	+250\%		. 8	6.0		2.0	8.0	$\mu \mathrm{a}$
	Full			8.0			10.0	μ_{a}
Input Sensitivity (Note 4)	Full		. 4	. 6		. 7	. 8	mV
Common Mode Range (CMR)	Full	± 10			± 10			V
Large Signal Voltage Gain	+250 ${ }^{\circ}$		25K			25K		V/V
Response Time Tpd0 (Note 5)	+250 ${ }^{\circ}$		35	50		35	50	ns
Response Time Tpd1 (Note 5)	+250C		30	50		30	50	ns
Output Voltage Level (Note 6) V $\mathrm{OL}^{\text {L }}$	Full		. 15	. 4		. 15	. 4	V
Output Voltage Level (Note 6) V_{OH}	Full	3.5	4.2		3.5	4.2		V
Output Current ISink (Note 7)	Full	3.2			3.2			mA
Output Current ISource (Note 7)	Full	3.2			3.2			mA
Power Supply Current ICC+	+250C		14	20		14	20	mA
Power Supply Current ICC-	$+25^{\circ} \mathrm{C}$		10	20		10	20	mA
Power Supply Current I Logic+	$+25^{\circ} \mathrm{C}$		4.8	8.0		4.8	8.0	mA

NOTES:

1. Absolute maximum ratings are limiting values, applied individually, beyond which the serviceability of the circuit may be impaired. Functional operability under any of these conditions is not necessarily implied.
2. Derate by $5.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+75^{\circ} \mathrm{C}$.
3. Minimum differential input voltage required to ensure a defined output state.
4. $\mathrm{R}_{\mathrm{S}} \leq 200$ ohms; $\mathrm{V}_{\mathrm{in}} \leq$ Common Mode Range. Input sensitivity is the worst case minimum differential input voltage required to guarantee a given output logic state, after offset voltage is nulled. This parameter includes
the effects of offset current, common mode rejection, and voltage gain.
5. For $T_{p d}(1) ; 100 \mathrm{mV}$ input step, -5 mV overdrive. For $\mathrm{T}_{\mathrm{pd}}(0) ;-100 \mathrm{mV}$ input step, +5 mV overdrive. Frequency $\approx 100 \mathrm{~Hz}$; Duty Cycle $\approx 50 \%$; Inverting input driven. See Test Circuit below.
6. For V_{OH} and V_{OL} : $I_{\text {Sink }}=3.5 \mathrm{~mA}$, $I_{\text {Source }}=3.0 \mathrm{~mA}$. For other values of $\mathrm{V}_{\text {Logic }} ; \mathrm{V}_{\mathrm{OH}}(\mathrm{min})=.\mathrm{V}_{\text {Logic }}+$ -1.5V.
7. Per Comparator.

$T_{p d}(0)$
$T_{p d}$ (1)
OVERDRIVE

Input and output voltage waveforms for various input overdrives are shown on the following page.

PERFORMANCE CURVES

$V_{+}=15 \mathrm{~V}, \mathrm{~V}_{-}=-15 \mathrm{~V}, \mathrm{~V}_{\text {Logic }}(+)=5.0 \mathrm{~V}, \mathrm{~V}_{\text {Logic }}(-)=0 \mathrm{~V}, \mathrm{~T}_{A}=+25^{\circ} \mathrm{C}$, Unless Otherwise Stated.

INPUT BIAS CURRENT
VS. TEMPERATURE

INPUT BIAS CURRENT VS.
COMMON MODE VOLTAGE

INPUT OFFSET CURRENT
VS. TEMPERATURE

INPUT BIAS CURRENT VS. DIFFERENTIAL INPUT VOLTAGE

SUPPLY CURRENT VS. TEMPERATURE FOR $\pm 15 \mathrm{~V}$ SUPPLIES AND +5 V LOGIC SUPPLY

RESPONSE TIME FOR VARIOUS INPUT OVERDRIVES

APPLYING THE HA-4920/25

1. SUPPLY CONNECTIONS: This device is exceptionally versatile in working with most available power supplies. The voltage applied to the $\mathrm{V}+$ and V - terminals determines the allowable input signal range; while the voltage applied to the $\mathrm{V}_{\mathrm{L}^{+}}$and $\mathrm{V}_{\mathrm{L}^{-}}$determines the output swing. In systems where dual analog supplies are available, these would be connected to $\mathrm{V}+$ and V -, while the logic supply and return would be connected to $\mathrm{V}_{\text {Logic }}{ }^{+}$ and $\mathrm{V}_{\text {Logic }}$-. The analog and logic supply commons can be connected together at one point in the system, since the comparator is immune to noise on the logic supply ground. A negative output swing may be obtained by connecting $\mathrm{V}_{\mathrm{L}}+$ to ground and V_{L} - to a negative supply. Bipolar output swings (5V P-P, max.) may be obtained using dual supplies. Applied input signals should not exceed $V_{\text {Supply }}$ and the maximum differential input voltage values.
2. UNUSED INPUTS: Inputs of unused comparator sections should be tied to a differential voltage source to prevent output "chatter". Differential voltage values should exceed the offset voltage plus input sensitivity voltage values for a particular device.
3. CROSSTALK: Simultaneous high frequency operation of all other channels in the package will not affect the output logic state of a given channel, provided that its differential input voltage is sufficient to define a given logic state ($\Delta \mathrm{V}_{\text {IN }} \geq \pm \mathrm{V}_{\text {OS }}$). Low level or high impedance input lines should be shielded from other signal sources to reduce crosstalk and interference.
4. POWER SUPPLY DECOUPLING: Decouple all power supply lines with $.01 \mu \mathrm{~F}$ ceramic capacitors to a ground line located near the package to reduce coupling between channels or from external sources.
5. R.F.I.: High speed comparators may generate high frequency oscillations when the applied differential input voltage is less that the offset voltage plus input sensitivity value. This can be minimized by adding positive feedback hysteresis networks (see Harris App. Note 505). Alternately, ferrite beads surrounding the input and output lines will help reduce RF interference to other circuitry.

3 BIT PARALLEL COMPARATOR A/D CONVERTER USING TTL LOGIC

3 BIT PARALLEL COMPARATOR A/D CONVERTER USING 256×4 PROM

LOGIC LEVEL TRANSLATOR
TTL TO ECL

TRUTH TABLE FOR 3 BIT PARALLEL COMPARATOR A/D CONVERTER

ENCODER/PROM INPUTS							OUTPUTS		
$\mathbf{1}$	2	3	4	5	6	7	0	1	2
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	1	1	0
1	1	1	1	0	0	0	0	0	1
1	1	1	1	1	0	0	1	0	1
1	1	1	1	1	1	0	0	1	1
1	1	1	1	1	1	1	1	1	1

Preliminary

FEATURES	DESCRIPTION
- FAST RESPONSE TIME 40 ns - tOTAL UNCERTAINTY BAND 1/8 LSB - LOW OFFSET VOLTAGE 1 mV - Strobe and OUtputs ttl compatible APPLICATIONS - HIGH SPEED A/D CONVERTERS - ZERO-CROSSING DETECTOR - threshold detector - ANALOG INTERFACES FOR MICROPROCESSORS	HA-4950 is a very fast precision comparator incorporating a strobe controlled, digital output buffer. Constructed using the Harris high frequency bipolar dielectric isolation process, this device offers unprecedented specifications for input offset voltage, total uncertainty band ($1 / 8$ LSB, 10 volt full scale output, 12 bit system) and response time, (50 nsec). This monolithic comparator consists of three amplifier stages, a latch, strobe control circuitry and a digital output stage (TTL compatible). In operation and with the strobe input TTL logic level high, both outputs remain high while the amplifiers sense, amplify, and track differential input signals. With a strobe transition of high to low state, the latch is activated and its output is transferred to the complementary output stages, and digital outputs (Q and $\overline{\mathrm{Q}}$) will reflect the polarity of the differential input signal (see Timing Diagram and Truth Table). The HA-4950 is ideally suited for applications requiring accurate and fast detection of low level signals such as high speed A / D converters. Other applications include zero-crossing and threshold detectors. This device is available in a 14 pin dual-in-line ceramic package. HA-4950-2 operates from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ while the HA-4950-5 operates from $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$.
PINOUT	SCHEMATIC

$\begin{array}{lr}\text { Voltage Between V+ and V- } & 40 \mathrm{~V} \\ \text { Logic Supply Voltage } & \mathrm{V}+ \\ \text { Differential Input Voltage } & \pm 6 \mathrm{~V} \\ \text { Strobe Input High } & +7 \mathrm{~V} \\ \text { Low } & -5 \mathrm{~V} \\ \text { Peak Output Current } & \pm 10 \mathrm{~mA}\end{array}$

Power Dissipation (Note 2)
Operating Temperature Range
HA-4950-2
HA-4950-5
Storage Temperature Range

ELECTRICAL CHARACTERISTICS

$\mathrm{V}+=15 \mathrm{~V}$
$\mathrm{V}-=-15 \mathrm{~V}$
$\mathrm{V}_{\mathrm{L}}=5 \mathrm{~V}$

		$\begin{gathered} \text { HA- } 4950-2 \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$			$\begin{aligned} & \text { HA-4950-5 } \\ & 0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \end{aligned}$			
PARAMETER	TEMP	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Input Characteristics Offset Voltage (Note 3)	$\begin{gathered} 250 \mathrm{C} \\ \text { Full } \end{gathered}$		1.0	$\begin{gathered} 2.25 \\ 2.8 \end{gathered}$		1.0	$\begin{gathered} 2.25 \\ 2.8 \end{gathered}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Offset Current	$\begin{gathered} 250 \mathrm{C} \\ \text { Full } \end{gathered}$		0.25	$\begin{aligned} & 1.5 \\ & 3.5 \end{aligned}$		0.25	$\begin{aligned} & 1.5 \\ & 3.5 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Bias Current	$\begin{gathered} 250 \mathrm{C} \\ \text { Full } \end{gathered}$		1.25	$\begin{aligned} & 3.0 \\ & 7.0 \end{aligned}$		1.25	$\begin{aligned} & 3.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
Input Resistance	250 C	15	40		15	40		$\mathrm{K} \Omega$
Analog Input Signal Range (Note 4)	Full			± 0.6			± 0.6	V
Strobe Input Voltage Logic "1" Logic " 0 "	Full Full	2.0		0.8	2.0		0.8	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$
Strobe Input Current Logic "1" Logic " 0 "	$\begin{gathered} 250 \mathrm{C} \\ \text { Full } \\ 250 \mathrm{C} \\ \text { Full } \end{gathered}$		5 -20	$\begin{gathered} 15 \\ 30 \\ -60 \\ -120 \end{gathered}$		5 -20	$\begin{array}{r} 15 \\ 30 \\ -60 \\ -120 \end{array}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
Transfer Characteristics Total Uncertainty Band (Note 5) 12 Bits, 10V	Full			1/8			1/8	LSB
Strobe Response (Note 6) Tpd0 Strobe Recovery (Note 6)	$25^{\circ} \mathrm{C}$ Full		40	$\begin{aligned} & 60 \\ & 65 \end{aligned}$		40	$\begin{aligned} & 60 \\ & 65 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
Tpd1	$\begin{gathered} 250 \mathrm{C} \\ \text { Full } \end{gathered}$		20	$\begin{aligned} & 30 \\ & 35 \end{aligned}$		20	$\begin{aligned} & 30 \\ & 35 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
Response Time Difference 0 to $\overline{\mathrm{Q}}$ (Note 7)	Full			1			1	ns

		$\begin{gathered} \text { HA- } 4950-2 \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$			HA-4950-5$0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C}$			
PARAMETER	TEMP	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
	Full Full Full Full	4.0 5 5		0.45	4.0 5 5		0.45	V V mA mA
Power Supply Characteristics Supply Voltage Range V+ V- V_{L} Supply Current \pm (Strobe High) $I \pm$ (Strobe Low) IL Power Supply Rejection Ratio	Full Full Full 250 C 250 C $25^{\circ} \mathrm{C}$ 250 C	$\begin{gathered} +13.5 \\ -13.5 \\ +4.5 \end{gathered}$	$\begin{aligned} & +15 \\ & -15 \\ & +5 \\ & \\ & 11 \\ & 14 \\ & 1.4 \\ & 100 \end{aligned}$	$\begin{gathered} +16.5 \\ -16.5 \\ +5.5 \\ \\ 14 \\ 18 \\ 1.7 \end{gathered}$	$\begin{gathered} +13.5 \\ -13.5 \\ +4.5 \end{gathered}$	$\begin{gathered} +15 \\ -15 \\ +5 \\ \\ 11 \\ 14 \\ 1.4 \\ 100 \end{gathered}$	$\begin{gathered} +16.5 \\ -16.5 \\ +5.5 \\ \\ 14 \\ 18 \\ 1.7 \end{gathered}$	V V V mA mA mA dB

NOTES:

1. Absolute maximum ratings are limiting values, applied individually, beyond which the serviceability of the circuit may be impaired. Functional operation under any of these conditions is not necessarily implied.
2. No derating neccessary up to $+125^{\circ} \mathrm{C}$.
3. Minimum differential input voltage required to ensure a defined output state.
4. Includes any combination of differential and common mode input signals. With full range differential signal ($\pm 600 \mathrm{mV}$) applied, common mode voltages from OV to -8.4 V can be tolerated.
5. Includes errors induced by dynamic uncertainty (thermal hysteresis) and quasi-static uncertainty (noise, etc.) after offset voltage has been nulled. Maximum value is referred to a 10 V full scale output, 12 bit system.
6. See response time circuit and waveforms section of data sheet for conditions.
7. Time difference due to match between the $\mathrm{Q}, \overline{\mathrm{Q}}$ output stages.

FUNCTIONAL DIAGRAM

TRUTH TABLE

STROBE	INPUTS	OUTPUT	
		0	$\overline{0}$
H	Don't Care	H	H
1	$\mathrm{IN}+>\mathrm{IN}$ -	H	L
1	IN+<IN-	L	H
L	Don't Care	a_{0}	$\overline{\mathrm{a}}_{0}$

a_{0} - The Latched State

RESPONSE TIME TEST CIRCUIT

PERFORMANCE CURVES

$\mathrm{V}+=15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, Unless otherwise stated.

INPUT BIAS CURRENT VS.
DIFFERENTIAL INPUT VOLTAGE

INPUT BIAS CURRENT VS. COMMON MODE INPUT VOLTAGE

INPUT BIAS CURRENT
VS. TEMPERATURE

SUPPLY CURRENT VS. TEMPERATURE FOR $\pm 16.5 \mathrm{~V}, \pm 15 \mathrm{~V}, \pm 13.5 \mathrm{~V} \&+5 \mathrm{~V}$ LOGIC

MAXIMIZED SPEED/PRECISION

For optimized dynamic performance, the grounding and decoupling scheme shown in Figure 1, Applications Section, should be used. Decoupling capacitors should be connected close to the device (preferably to the device pins) and should be Tantalum or Electrolytics bypassed with ceramic types for best noise rejection. Alternately, suppression filters such as Erie 1201-052 can be used for decoupling with excellent results.

(2) INPUT SIGNAL CONDITIONING

In applications where input signals may exceed the input signal range specification, it is recommended that diode clamping schemes be used (see Figures 2 and 3, Applications Section). The diodes used should have low turn-on voltage and high switching speed characteristics such as Schottky Barrier diodes.
(3) STROBE SIGNAL SHIELDING

To ensure HA-4950's maximum performance, point-to-point connections between strobe signal and strobe input should be minimized to prevent external transient interference. Alternately, shielded cable should be used if minimal distances cannot be obtained.

APPLICATIONS

FIGURE 1.

FIGURE 2. ZERO-CROSSING DETECTOR

HA-4950's 1 mV offset voltage and very low total uncertainty band is extremely well suited for high speed zero crossing detection. Figure 2 shows HA-4950 as a simple zero crossing detector with input diode protection. Noise and system transients should be minimized at the reference input for best performance results. The Truth Table shown on page 2 applies to this circuits' operation.

FIGURE 3. THRESHOLD DETECTOR

Similar to the zero crossing detector, this cirucit shows HA-4950 with input diode limiting comparing input signals to a voltage reference other than 0 volts. R_{1} and R_{2} establishes the reference input. Effects of bias current can be minimized by adding a resistor in series with the positive input and equal to R_{2}.

HA-5100/5105

Wideband, JFET Input,
Operational Amplifier

GENERAL DESCRIPTION

- LOW INPUT OFFSET VOLTAGE 0.5 mV
- LOW OFFSET DRIFT $5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
- LOW INPUT bIAS CURRENT 50pA
- LARGE VOLTAGE GAIN 150K V/V
- WIDE BANDWIDTH 18MHz
- HIGH SLEW RATE 8V/ $\mu \mathrm{sec}$
- FAST LARGE SIGNAL SETTLING TIME: $1.7 \mu \mathrm{sec}$

APPLICATIONS

- PRECISION, HIGH SPEED, DATA ACQUISITION SYSTEMS
- PRECISION SIGNAL GENERATION
- PULSE AMPLIFICATION

The HA-5100/5105 are monolithic wideband operational amplifiers manufactured with FET/Bipolar technologies and dielectric isolation. Precision laser trimming of the input stage complements the amplifier high frequency capabilities with excellent input characteristics.

The HA-5100/5105 offer a number of important advantages over similar FET input op amps from other manufacturers. In addition to superior bandwidth and settling characteristics the Harris devices have quite constant slew rate, bandwidth, and settling characteristics over the operating range. This provides the user predictable performance in applications where settling time, full power bandwidth, closed loop bandwidth, or phase shift is critical. The slewing waveform is symmetrical to provide reduced distortion. Note also that Harris specifies all parameters at ambient (rather than junction) temperature to provide the designer meaningful data to predict actual operating performance.

Complementing HA-5100/5105's predictable and excellent dynarric characteristics are very low input offset voltage, very low input bias current, and extremely high input impedance. This ideal combination of features make these amplifiers most suitable for precision, high speed, data acquisition system designs and for a wide variety of signal conditioning applications.*

* -2 denotes a range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ and -5 denotes a $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ range.

Voltage Between V+ and V-
Differential Input Voltage
Peak Output Current
Internal Power Dissipation (Note 2)
Storage Temperature Range

40 V
$+40 \mathrm{~V}$
Full Short Circuit Protection
300 mW
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

[^9]1. Absolute maximum ratings are limiting values, applied individually, beyond which the serviceability of the circuit may be impaired. Functional operability under any of these conditions is not necessarily implied.
2. Derate at $6.8 \mathrm{~mW} / \circ \mathrm{C}$ for operation at ambient temperatures above $+75^{\circ} \mathrm{C}$.
3. $\mathrm{V}_{O U T}= \pm 10 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=2 \mathrm{~K}$.
4. $V_{C M}= \pm 10 \mathrm{~V}$ D.C.
5. $R_{L}=10 K$.
6. $V_{\text {OUT }}=0 \mathrm{~V}$.
7. $\mathrm{R}_{\mathrm{L}}=2 \mathrm{~K}$; Full power bandwidth guaranteed based on slew rate measurement using $\mathrm{FPBW}=\frac{\text { SLEW RATE }}{2 \pi \text { VPEAK }}$.
8. Output resistance measured under open loop conditions.
9. Refer to test circuits section of the data sheet.
10. Settling time is measured to 0.1% of final value for a 10 volt output step and $A V=-1$.
11. $V_{\text {SUPP }}= \pm 10 \mathrm{~V}$ D.C. to $\mp 20 \mathrm{~V}$ D.C.

TEST CIRCUITS

SLEW RATE AND TRANSIENT RESPONSE TEST CIRCUIT

LARGE SIGNAL RESPONSE
Vertical Scale: (Volts: 5V/Div.) Horizonal Scale: (Time: 500ns/Div.)

SMALL SIGNAL RESPONSE
Vertical Scale: (Volts: $100 \mathrm{mV} /$ Div.) Horizonal Scale: (Time: 100ns/Div.)

SETTLING TIME CIRCUIT

$\mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ UNLESS OTHERWISE STATED.

INPUT OFFSET VOLTAGE AND BIAS CURRENT VS TEMPERATURE

OUTPUT VOLTAGE SWING VS FREQUENCY

FREQUENCY - Hz

INPUT VOLTAGE AND CURRENT NOISE VS FREQUENCY

OPEN LOOP FREQUENCY RESPONSE

OPEN LOOP FREQUENCY RESPONSE FOR VARIOUS BANDWIDTH CAPACITANCES

NORMALIZED AC PARAMETERS VS TEMPERATURE

OUTPUT VOLTAGE SWING VS LOAD RESISTANCE

COMMON MODE REJECTION RATIO VS FREQUENCY

SETTLING TIME FOR VARIOUS OUTPUT STEP VOLTAGES

POWER SUPPLY REJECTION RATIO VS FREQUENCY

POWER SUPPLY CURRENT VS TEMPERATURE

1. POWER SUPPLY DECOUPLING: Although not absolutely necessary, it is recommended that all power supply lines be decoupled with $.01 \mu \mathrm{~F}$ ceramic capacitors to ground. Decoupling capacitors should be located as near to the amplifier terminals as possible.
2. STABILITY CONSIDERATIONS: In applications where large value feedback resistors are used, a small capacitor ($\approx 3 \mathrm{pF}$) may be needed in parallel with the feedback resistor to neutralize the pole introduced by the input capacitance.
3. HEAVY CAPACITIVE LOADS: When driving heavy capacitive loads ($\geq 100 \mathrm{pF}$) a small resistor ($\approx 100 \Omega$) should be connected in series with the output and inside the feedback loop.
4. OFFSET VOLTAGE NULLING: Offset nulling, if required, is accomplished with a $100 \mathrm{~K} \Omega$ pot between pins 1 and 5 ; wiper to $\mathrm{V}+$. Alteration of initial offset voltage may affect the temperature coefficient of the offset voltage.

APPLICATIONS

PRECISION INSTRUMENTATION AMPLIFIER (AV = 100)

Experimental Results
Yielded 80dB CMRR.
$V_{\text {IO }}$ drift $<20 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$.

PRECISION/FAST SAMPLE/HOLD CIRCUIT

Experimental Results:
$\mathrm{V}_{\text {IN }}=10$ volt step
$C_{H}=1000 \mathrm{pF}$
Acquisition Time $=0.4 \mu \mathrm{~s}$ (0.1\%)
Charge Injection $=30 \mathrm{pC}$
Drift Current $=320 \mathrm{pA}$
Switching Spikes $\approx \mathbf{2 0 0 m V}$

1KHz SALLEN AND KEY FILTER

Experimental Results:
$\mathrm{FC}=1 \mathrm{KHz}$
Q $=\mathbf{2 0}$
$-3 \mathrm{~dB} \approx 1.1 \mathrm{KHz}$
$-20 \mathrm{~dB} \approx 3.4 \mathrm{KHz}$

HARRIS
SEMICONDUCTOR PRODUCTS DIVISION A DIVISION OF HARRIS CORPORATION

Voltage Between V+ and V-
Differential Input Voltage
Peak Output Current Internal Power Dissipation (Note 2)

Storage Temperature Range

40 V
$\pm 40 \mathrm{~V}$
Full Short Circuit Protection
300 mW
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

[^10]
NOTES:

1. Absolute maximum ratings are limiting values, applied individually, beyond which the serviceability of the circuit may be impaired. Functional operability under any of these conditions is not necessarily implied.
2. Derate at $6.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for operation at ambient temperatures above +750 C .
3. $\mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V} . \mathrm{R}_{\mathrm{L}}=2 \mathrm{~K}$
4. $V_{C M}= \pm 10$ V.D.C.
5. $\mathrm{R}_{\mathrm{L}}=10 \mathrm{~K}$
6. $\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
7. $R_{L}=2 K$; Full power bandwidth guaranteed, based on slew rate measurement using FPBW $=\frac{\text { SLEW RATE }}{2 \pi \text { VPEAK }}$
8. Output resistance measured under open loop conditions.
9. Refer to Test Circuits section of the data sheet.
10. Settling Time is measured to 0.1% of final value for a 10 volt output step and $A V=-10$.
11. $V_{\text {SUPP }}= \pm 10$ V.D.C. to ∓ 20 V.D.C.

TEST CIRCUITS

LARGE AND SMALL SIGNAL RESPONSE CIRCUIT

LARGE SIGNAL RESPONSE
Vertical Scale: (Volts: $A=.5 \mathrm{~V} / \mathrm{Div}, \mathrm{B}=5 \mathrm{~V} /$ Div.) Horizonal Scale: (Time: 500ns/Div.)

SMALL SIGNAL RESPONSE
Vertical Scale: (Volts: $A=10 \mathrm{mV} /$ Div., $B=100 \mathrm{mV} /$ Div.) Horizonal Scale: (Time: 100ns/Div.)
$\mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ Unless Otherwise Stated.

INPUT OFFSET VOLTAGE AND BIAS CURRENT VS TEMPERATURE

OUTPUT VOLTAGE SWING VS FREQUENCY

INPUT NOISE VOLTAGE AND NOISE CURRENT VS FREQUENCY

OPEN LOOP FREQUENCY RESPONSE

OPEN LOOP FREQUENCY RESPONSE FOR VARIOUS BANDWIDTH CONTROL CAPACITANCES

NOTE: External compensation components are not required for closed loop gains >10, but may be added to reduce bandwidth if desired.

NORMALIZED AC PARAMETERS VS TEMPERATURE

OUTPUT VOLTAGE SWING VS LOAD RESISTANCE

COMMON MODE REJECTION RATIO VS FREQUENCY

SETTLING TIME FOR VARIOUS OUTPUT STEP VOLTAGES

POWER SUPPLY REJECTION RATIO VS FREQUENCY

1. POWER SUPPLY DECOUPLING: Although not absolutely necessary, it is recommended that all power supply lines be decoupled with $.01 \mu \mathrm{~F}$ ceramic capacitors to ground. Decoupling capacitors should be located as near to the amplifier terminals as possible.
2. STABILITY CONSIDERATIONS: In applications where large value feedback resistors are used, a small compacitor ($\approx 3 \mathrm{pF}$) may be needed in parallel with the feedback resistor to neutralize the pole introduced by the input capacitance.
3. HEAVY CAPACITIVE LOADS: When driving heavy capacitive loads ($\geq 100 \mathrm{pF}$) a small resistor ($\approx 100 \Omega$) should be connected in series with the output and inside the feedback loop.
4. OFFSET VOLTAGE NULLING: Offset nulling, if required, is accomplished with a $100 \mathrm{~K} \Omega$ pot between pins 1 and 5 ; wiper to $\mathrm{V}+$. Alteration of initial offset voltage may affect the temperature coefficient of the offset voltage.

APPLICATIONS

SUGGESTED COMPENSATION FOR UNITY GAIN STABILITY

Vertical Scale: (Volts: 2V/Div.)
Horizonal Scale: (Time: 500ns/Div.)

40dB, 1 MHz BANDWIDTH AMPLIFIER

CLOSED LOOP FREQUENCY RESPONSE ($A V=100$)

HA-5190/5195

Widehand, Fast Settling Operational Amplifiers

FEATURES

- FAST SETTLING TIME
- VERY HIGH SLEW RATE
- WIDE GAIN-BANDWIDTH
- POWER BANDWIDTH
- LOW OFFSET VOLTAGE
- INPUT VOLTAGE NOISE
- MONOLITHIC BIPOLAR CONSTRUCTION

APPLICATIONS

- FAST, PRECISE D/A CONVERTERS
- HIGH SPEED SAMPLE-HOLD CIRCUITS
- PULSE AND VIDEO AMPLIFIERS
- WIDEBAND AMPLIFIERS

GENERAL DESCRIPTION

HA-5190/5195 are monolithic operational amplifiers featuring an ultimate combination of speed, precision, and bandwidth. Employing monolithic bipolar construction coupled with dielectric isolation, these devices are capable of delivering an unparalleled $200 \mathrm{~V} / \mu \mathrm{s}$ slew rate with a settling time of 70 ns (0.1%, 5 V output step.) These truly differential amplifiers are designed to operate at gains ≥ 5 without the need for external compensation. Other outstanding HA-5190/5195 features are 150 MHz gain-bandwidth-product and 6.5 MHz full power bandwidth. In addition to these dynamic characteristics, these amplifiers also have excellent input characteristics such as 5 mV offset voltage and 15 nV input voltage noise (at 1 kHz).

With $200 \mathrm{~V} / \mu \mathrm{s}$ slew rate and 70 ns settling time, these devices make ideal output amplifiers for accurate, high speed D/A converters or the main components in high speed sample/hold circuits. 150 MHz gain-bandwidth-product, 6.5 MHz power bandwidth, and 5 mV offset voltage make HA-5190/5195 ideally suited for a variety of pulse and wideband video amplifier applications.

At temperatures above $+75^{\circ} \mathrm{C}$, a heat sink is required for HA5190. (See note 2.) HA-5190 is specified over the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ range while HA-5195 is specified from $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$.

PINOUTS

Package Code 6G, 4D

TOP VIEW

CAUTION: These devices are sensitive to electrostatic discharge. Users should follow IC Handling Procedures specified on page 1-4.

ABSOLUTE MAXIMUM RATINGS

Voltage between $\mathrm{V}+$ and V - Terminals	35 V
Differential Input Voltage	6 V
Output Current	50 mA (Peak)
Internal Power Dissipation (Note 2)	870mW (Cerdip); 1W (T0-8) Free Air
Operating Temperature Range: (HA-5190)	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+125^{\circ} \mathrm{C}$
(HA-5195)	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+75{ }^{\circ} \mathrm{C}$
Storage Temperature Range	$-650 \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+150{ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $V_{S U P P L Y}= \pm 15$ Volts; $R_{L}=200$ ohms, unless otherwise specified.

		$\begin{gathered} \text { HA-5190 } \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$			$\begin{gathered} \text { HA-5195 } \\ 0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \end{gathered}$			
PARAMETER	TEMP	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
INPUT CHARACTERISTICS								
Offset Voltage	$\begin{gathered} +25^{\circ} \mathrm{C} \\ \text { FULL } \end{gathered}$		3.0	$\begin{gathered} 5.0 \\ 10.0 \end{gathered}$		3.0	$\begin{gathered} 6 \\ 10.0 \end{gathered}$	$\begin{aligned} & m V \\ & m V \end{aligned}$
Average Offset Voltage Drift	FULL		20			20		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Bias Current	$+25^{\circ} \mathrm{C}$		5	15		5	15	$\mu \mathrm{A}$
	FULL			20			20	$\mu \mathrm{A}$
Offset Current	$+25^{\circ} \mathrm{C}$		1	4		1	4	$\mu \mathrm{A}$
	FULL			6			6	$\mu \mathrm{A}$
Input Resistance	$+25^{\circ} \mathrm{C}$		10			10		Kohms
Input Capacitance	$+25^{\circ} \mathrm{C}$		1.0			1.0		pF
Common Mode Range	FULL	± 5			± 5			\checkmark
Input Noise Voltage ($\mathrm{f}=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{g}}=0 \Omega$)	+250 ${ }^{\circ}$		15			15		$n \mathrm{~V} / \sqrt{\mathrm{Hz}}$
TRANSFER CHARACTERISTICS								
Large Signal Voltage Gain (Note 3)	$\begin{gathered} +25^{\circ} \mathrm{C} \\ \text { FULL } \end{gathered}$	$\begin{gathered} 15 K \\ 5 K \end{gathered}$	30K		$\begin{gathered} 10 K \\ 5 K \end{gathered}$			$\begin{aligned} & V / V \\ & V / V \end{aligned}$
Common-Mode Rejection Ratio (Note 4)	FULL	74	100		74	100		dB
Gain-Bandwidth-Product (Notes 5 \& 6)	+250\%		150			150		MHz
OUTPUT CHARACTERISTICS								
Output Voltage Swing (Note 3)	FULL	± 5	± 8		± 5	± 8		V
Output Current (Note 3)	+250C	25	30		25	30		mA
Output Resistance	$+25^{\circ} \mathrm{C}$		TBD			TBD		Ohms
Full Power Bandwidth (Note 3 \& 7)	$+25^{\circ} \mathrm{C}$	5	6.5		5	6.5		MHz
TRANSIENT RESPONSE (Note 8)								
Rise Time	$+25^{\circ} \mathrm{C}$		13	18		13	18	ns
Overshoot	$+25^{\circ} \mathrm{C}$		8			8		\%
Slew Rate	$+25{ }^{\circ} \mathrm{C}$	160	200		160	200		$\mathrm{V} / \mu \mathrm{s}$
Settling Time:								
5V Step to 0.1\%	$+25^{\circ} \mathrm{C}$		70			70		ns
5 V Step to 0.01\%	$+25^{\circ} \mathrm{C}$		100			100		ns
2.5V Step to 0.1\%	$+25^{\circ} \mathrm{C}$		50			50		ns
2.5V Step to 0.01\%	$+25^{\circ} \mathrm{C}$		80			80		ns
POWER REQUIREMENTS								
Supply Current	FULL		19	28		19	28	mA
Power Supply Rejection Ratio (Note 9)	FULL	70	90		70	90		dB

* 100% tested for DASH 8. All other parameters for design information only.

1. Absolute maximum ratings are limiting values, applied individually, beyond which the serviceability of the circuit may be impaired. Functional operability under any of these conditions is not necessarily implied.
2. Derate at $8.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for operation at ambient temperatures above $+75^{\circ} \mathrm{c}$. Heat sinking required at temperatures above $+75{ }^{\circ} \mathrm{c} . \mathrm{T}_{J A}=1150 \mathrm{C} / \mathrm{W}$; $\mathrm{T}_{\mathrm{JC}}=350 \mathrm{C} / \mathrm{W}$. Thermalloy model 6007 heat sink recommended.
3. $R_{L}=200 \Omega, C_{L}<10 p F, V 0= \pm 5 \mathrm{~V}$.
4. $\mathrm{V}_{\mathrm{CM}}= \pm 5 \mathrm{~V}$.
5. $\mathrm{V}_{0}=90 \mathrm{mV}$.
6. $A V=10$.
7. Full power bandwidth guaranteed based on slew rate measurement using FPBW $=\frac{\text { Slew Rate }}{2 \pi V_{\text {peak }}}$.
8. Refer to Test Circuits section of data sheet.
9. $\operatorname{VSUPPLY}= \pm 10$ V.D.C. to ± 15 V.D.C.

TEST CIRCUITS

LARGE AND SMALL SIGNAL RESPONSE TEST CIRCUIT*

LARGE SIGNAL RESPONSE
Vertical Scale: (Volts: $A=0.5 \mathrm{~V} /$ Div., $B=4.0 \mathrm{~V} /$ Div.) Horizontal Scale: (Time: 100ns/Div.)

SMALL SIGNAL RESPONSE
Vertical Scale: (Volts: $A=50 \mathrm{mV} /$ Div., $B=100 \mathrm{mV} / \mathrm{Div}^{2}$.) Horizontal Scale: (Time: 100ns/Div.)

SETTLING TIME TEST CIRCUIT

* Load Capacitance should be less than 10pF.
** It is recommended that resistors be carbon composition and that feedback and summing network ratios be matched.
*** SETTLE POINT (Summing Node) capacitance should be less than 10pF. For optimum settling time results, it is recommended that the test circuit be constructed directly onto the device pins. A Tektronix 568 Sampling Oscilloscope with S-3A sampling heads is recommended as a settle point monitor.
$\mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise stated.

OUTPUT VOLTAGE SWING
VS. FREQUENCY

NORMALIZED AC PARAMETERS
VS. LOAD CAPACITANCE

OPEN LOOP FREQUENCY RESPONSE

NORMALIZED AC PARAMETERS VS. TEMPERATURE

INPUT NOISE VOLTAGE AND NOISE CURRENT VS. FREQUENCY

OUTPUT VOLTAGE SWING
VS. LOAD RESISTANCE

COMMON MODE REJECTION RATIO
VS. FREQUENCY

SETTLING TIME FOR VARIOUS OUTPUT STEP VOLTAGES

POWER SUPPLY REJECTION RATIO VS. FREQUENCY

POWER SUPPLY CURRENT
VS. TEMPERATURE

1. POWER SUPPLY DECOUPLING: Although not absolutely necessary, it is recommended that all power supply lines be decoupled with $.01 \mu \mathrm{~F}$ ceramic capacitors to ground. Decoupling capacitors should be located as near to the amplifier terminals as possible.
2. STABILITY CONSIDERATIONS: HA-5190/5195 is stable at gains ≥ 5. Gains <5 are covered elsewhere in this data sheet. Feedback resistors should be of carbon composition located as near to the input terminals as possible.
3. WIRING CONSIDERATIONS: Video pulse circuits should be built on a ground plane. Minimum point to point connections directly to the amplifier terminals should be used. When ground planes cannot be used, good single point grounding techniques should be applied.
4. OUTPUT SHORT CIRCUIT: HA-5190/5195 does not have output short circuit protection. Short circuits to ground can be tolerated for approximately 10 seconds. Short circuits to either supply will result in immediate destruction of the device. In applications where short circuiting is possible, current limiting resistors in the supply lines are recommended.
5. HEAVY CAPACITIVE LOADS: When driving heavy capacitive loads ($\geq 100 \mathrm{pF}$) a small resistor ($\approx 100 \Omega$) should be connected in series with the output and inside the feedback loop.

SUGGESTED COMPENSATION FOR UNITY GAIN STABILITY

NON-INVERTING

Vertical Scale: (Volts: 2V/Div.)
Horizontal Scale: (Time: 100ns/Div.)

* Values were determined experimentally for optimum speed and settling time.

R1 and C1 should be optimized for each particular application to ensure best overall frequency response.
INVERTING

Vertical Scale: (Volts: 2V/Div.) Horizontal Scale: (50ns/Div.)

VIDEO PULSE AMPLIFIER/75 Ω COAXIAL DRIVER

VIDEO PULSE AMPLIFIER COAXIAL LINE DRIVER

FAST DAC OUTPUT BUFFER

Vertical Scale: (Volts: 2V/Div.) Horizontal Scale: (Time: 50ns/Div.)

$$
B=V_{\text {OUT }} \quad C=\text { DIGITAL INPUT }
$$

[^11]
CMOS Analog Switches and Multiplexers

PAGE
Selection Guides 3-2
HI-200 Dual SPST Switch 3-4
HI-201 Quad SPST Switch 3-10
HI-1800A Dual DPDT Low Leakage Switch 3-16
HI-5040 thru 5051 Low Resistance Switches 3-20
HI-506/507 16/Dual 8 Channel Multiplexers 3-28
HI-506A/507A Overvoltage Protected 16/Dual 8 Channel Multiplexers 3-34
HI-508A/509A Overvoltage Protected 8/Dual 4 Channel Multiplexers 3-40
HI-516 16 Channel/Dual 8 Channel CMOS High Speed Analog Multiplexers 3-46
HI-518 8 Channel/Dual 4 Channel High Speed Analog Multiplexer 3-49
HI-1818A/1828A 8/Dual 4 Channel Multiplexers 3-52
HI-1840 Fail-Safe 16 Channel Multiplexer 3-56 Characteristics" are the only conditions recommended for satisfactory operation.

CMOS Switches Selection Guide

FUNCTION	DEVICE	$R_{\text {ON }}(\Omega)$ (TYP)	$\begin{gathered} \text { ID(OFF)(NA) } \\ \text { (TYP) } \end{gathered}$	$\begin{aligned} & \mathrm{t}(\mathrm{ON})(\mathrm{NS}) \\ & (\mathrm{TYP}) \end{aligned}$	$\begin{aligned} & \mathbf{t}(\text { OFF)(NS) } \\ & \text { (TYP) } \end{aligned}$	$\begin{gathered} P_{D}(\mathrm{~mW}) \\ \text { (TYP) } \end{gathered}$	PAGE
SPST	HI-5040	50	0.5	370	280	1.5	20
$2 \times$ SPST	HI-200	55	1	240	180	15	4
	HI-5048	25	0.5	370	280	1.5	20
	HI-5041	50	0.5	370	280	1.5	20
$4 \times$ SPST	HI-201	65	2	180	155	15	10
SPDT	HI-5050	25	0.5	370	280	1.5	20
	HI-5042	50	0.5	370	280	1.5	20
$2 \times$ SPDT	HI-5051	25	0.5	370	280	1.5	20
	HI-5043	50	0.5	370	280	1.5	20
DPST	HI-5044	50	0.5	370	280	1.5	20
$2 \times$ DPST	HI-5049	25	0.5	370	280	1.5	20
	HI-5045	50	0.5	370	280	1.5	20
$\begin{aligned} & 2 \times \text { DPST } \\ & (3 \text { ADDRESS) } \end{aligned}$	HI-1800A	125	0.02	500	300	10	16
DPDT	HI-5046A	25	0.5	370	280	1.5	20
	HI-5046	50	0.5	370	280	1.5	20
4PST	HI-5047A	25	0.5	370	280	1.5	20
	HI-5047	50	0.5	370	280	1.5	20

NOTE: All data typical room temperature specifications at $\pm 15 \mathrm{~V}$ supplies. For guaranteed and tested specifications consult the device data sheet.

CMOS Multiplexers Selection Guide

FUNCTION	DEVICE	FEATURE	TTL "HIGH" $\operatorname{MIN}(\mathrm{V})$	$R_{\text {ON }}(\Omega)$ (TYP)	$\begin{aligned} & \text { ID(OFF) } \\ & \text { (nA) } \\ & \text { (TYP) } \end{aligned}$	t(ON) (ns) (TYP)	t(OFF) (ns) (TYP)	$\begin{aligned} & \text { PD }(m W) \\ & (T Y P) \end{aligned}$	PAGE
4-CHANNEL DIFFERENTIAL	HI-1828A	LOW RON LOW LEAKAGE	4.0	250	0.05	350	250	5	52
	HI-509A	ANALOG INPUT OVERVOLTAGE PROTECTION	4.0	1200	1.0	300	300	7.5	40
8-CHANNEL	HI-1818A	LOW RON LOW LEAKAGE	4.0	250	0.1	350	250	5	52
	HI-508A	ANALOG OVERVOLTAGE PROTECTION	4.0	1200	1.0	300	300	7.5	40
8-CHANNEL DIFFERENTIAL	HI-507	LOW R ON	2.4	170	1.0	300	300	30	28
	HI-507A	ANALOG OVERVOLTAGE PROTECTION	4.0	1200	1.0	300	300	7.5	34
16-CHANNEL	HI-506	LOW RON	2.4	170	1.0	300	300	30	28
	HI-506A	ANALOG OVERVOLTAGE PROTECTION	4.0	1200	1.0	300	300	7.5	34
	HI-1840	HIGH-Z OVERVOLTAGE PROTECTION	4.0	2000	1.0	300	300	0.6	56
8-CHANNEL/ 4 DIFFERENTIAL	HI-518	HIGH SPEED LOW LEAKAGE	2.4	620	0.035	100	80	525	49
16-CHANNEL/ 8 DIFFERENTIAL	HI-516	HIGH SPEED LOW LEAKAGE	2.4	480	0.1	80	60	360	46

[^12]HARRIS
SEMICONDUCTOR
PRODUCTS DIVISION
A DIVISION OF HARRIS CORPORATION

Dual SPST CMOS Analog Switch

FEATURES

- ANALOG VOLTAGE RANGE
- ANALOG CURRENT RANGE
- turn-ON time
- LOW RON
- LOW POWER DISSIPATION
- TTL/CMOS COMPATIBLE
- NO DIGITAL INPUT CURRENT SPIKE

DESCRIPTION
 DESCRIPTION

$\mathrm{HI}-200$ is a monolithic device comprising two independently selectable SPST switches which feature fast switching speeds (290 ns) combined with low power dissipation (15 mW at $25^{\circ} \mathrm{C}$). Each switch provides low "ON" resistance operation for input signal voltages up to the supply rails and for signal currents up to 80 mA . Employing Dielectric Isolation and Complementary CMOS processing, $\mathrm{HI}-200$ operates without any applications problems induced by latch-up or SCR mode phenomena.

Alt devices provide break-before-make switching and are TTL and CMOS compatible for maximum application versatility. $\mathrm{HI}-200$ is an ideal component for use in high frequency analog switching. Typical applications include signal path switching, sample and hold circuit, digital filters and op amp gain switching networks.
$\mathrm{HI}-200$ is available in DIP and metal (TO-100) cans. $\mathrm{HI}-200-2$ is specified from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ while $\mathrm{HI}-200-5$ operates from $0^{\circ} \mathrm{C}$ to +750 C . $\mathrm{HI}-200$ is functionally and pin compatible with other available " 200 series" switches.

- HIGH FREQUENCY ANALOG SWITCHING
- SAMPLE AND HOLD CIRCUITS
- DIGITAL FILTERS
- OP AMP GAIN SWITCHING NETWORKS

APPLICATIONS

\rightarrow ass

| PINOUT |
| :--- | :--- |
| Package Code 4U |

FUNCTIONAL DIAGRAM

T0-116

CAUTION: These devices are sensitive to electrostatic discharge. Users should follow IC Handling Procedures specified on pg. 1-4.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage Between Pins 6 and 10
VREF to Ground
Digital Input Voltage:

Analog Input Voltage (One Switch)
$+40 \mathrm{~V}$
$+20 \mathrm{~V},-5 \mathrm{~V}$
$+\mathrm{V}_{\text {Supply }}+4 \mathrm{~V}$
$-\mathrm{V}_{\text {Supply }}$-4V
$+\mathrm{V}_{\text {Supply }}+2.0 \mathrm{~V}$
$-\mathrm{V}_{\text {Supply }}-2.0 \mathrm{~V}$

Total Power Dissipation*
Operating Temperature

$\mathrm{HI}-200-2$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$\mathrm{HI}-200-4$	$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$\mathrm{HI}-200-5$	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
ture	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Storage Temperature

450 mW
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
${ }^{*}$ Derate $6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ Above $\mathrm{T}_{\mathrm{A}}=75^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

Unless Otherwise Specified
Supplies $=+15 \mathrm{~V},-15 \mathrm{~V} ; \mathrm{V}_{\text {REF }}=0$ pen; $\mathrm{V}_{\text {AH }}($ Logic Level High $)=3.0 \mathrm{~V} \mathrm{~V}_{\mathrm{AL}}($ Logic Level Low $)=+0.8 \mathrm{~V}$
For Test Conditions, consult Performance Characteristics

PARAMETER	TEMP.	$\begin{gathered} \mathrm{HI}-200-2 \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \hline \end{gathered}$			$\begin{gathered} \text { HI-200-5 ** } \\ 0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \\ \hline \end{gathered}$			UNITS
		MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
ANALOG SWITCH CHARACTERISTICS * V_{S}, Analog Signal Range	Full	-15		+15	-15		+15	v
* RON, On Resistance (Note 1)	$\begin{gathered} +25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$		$\begin{aligned} & 55 \\ & 80 \end{aligned}$	$\begin{array}{r} 70 \\ 100 \end{array}$		$\begin{aligned} & 55 \\ & 72 \end{aligned}$	$\begin{array}{r} 80 \\ 100 \end{array}$	Ω
* IS (OFF), Off Input Leakage Current (Note 6)	$\begin{gathered} +25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$		$\begin{gathered} 1 \\ 100 \end{gathered}$	500		$\begin{gathered} 1 \\ 10 \end{gathered}$	500	$\begin{aligned} & \text { nA } \\ & \mathrm{nA} \end{aligned}$
*ID(OFF), Off Output Leakage Current (Note 6)	$\begin{gathered} +25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$		$\begin{gathered} 1 \\ 100 \end{gathered}$	500		$\begin{gathered} 1 \\ 10 \end{gathered}$	500	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
* $\mathrm{I}_{\mathrm{D}(\mathrm{ON})}$, On Leakage Current (Note 6)	$\begin{gathered} +25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$		$\begin{aligned} & .02 \\ & 6 \end{aligned}$	500		$\begin{aligned} & .02 \\ & 6 \end{aligned}$	500	$\begin{aligned} & \text { nA } \\ & \text { nA } \end{aligned}$
DIGITAL INPUT CHARACTERISTICS $V_{A L}$ Input Low Threshold $\mathrm{V}_{\text {AH, }}$ Input High Threshold	$\begin{aligned} & \text { Full } \\ & \text { Full } \end{aligned}$	3.0		0.8	3.0		0.8	$\begin{aligned} & \text { v } \\ & \text { v } \end{aligned}$
	Full			1.0			1.0	$\mu \mathrm{A}$
SWITCHING CHARACTERISTICS								
topen, Break - Before Make Delay (Note 3)	$+25^{\circ} \mathrm{C}$		60			60		ns
$\mathrm{t}_{\text {on }}$, Switch on Time	$+25^{\circ} \mathrm{C}$		240	500		240		ns
$\mathrm{t}_{\text {off }}$, Switch off Time	$+25^{\circ} \mathrm{C}$		330	500		500		ns
"Off Isolation" (Note 4)	$+25^{\circ} \mathrm{C}$		70			70		dB
CS (OFF), Input Switch Capacitance	$+25^{\circ} \mathrm{C}$		5.5			5.5		pF
$C_{D}(O F F) \cdot 1$	$+25^{\circ} \mathrm{C}$		5.5			5.5		pF
$\mathrm{C}_{\mathrm{D}(\mathrm{ON}),} \text { \{ Output Switch Capacitance }$	$+25^{\circ} \mathrm{C}$		11			11		pF
${ }^{\text {C }}$, Digital Input Capacitance	$+25^{\circ} \mathrm{C}$		5			5		pF
$C_{\text {DS }}$ (OFF), Drain-To-Source Capacitance	$+25^{\circ} \mathrm{C}$		0.5			0.5		pF
POWER REQUIREMENTS (Note 5)	$+25^{\circ} \mathrm{C}$		15			15		mW
P_{D}, Power Dissipation	Full			60			60	mW
* ${ }^{+}$, Current (Pin 10)	${ }_{+}^{+25^{\circ} \mathrm{C}}$ Full		0.5	2.0		0.5	2.0	mA mA
* 1 - , Current (Pin 6)	$\begin{aligned} & +25^{\circ} \mathrm{C} \\ & \text { Full } \end{aligned}$		0.5	2.0		0.5	2.0	$\mathrm{mA}_{\mathrm{mA}}$

```
NOTES: 1. \(V_{\text {OUT }}= \pm 10 \mathrm{~V} \mathrm{I}_{\mathrm{OUT}}=1 \mathrm{~mA}\)
2. Digital Inputs Are MOS Gates - Typical Leakage is Less Than 1 nA
3. \(V_{A H}=4.0 \mathrm{~V}\)
```

4. $V_{A}=+3 V, R_{L}=1 \mathrm{~K} \Omega, C_{L}=10 p F, V_{S}=3 V R M S$,
f. 100 kHz
5. $V_{A}=+3 V$ or $V_{A}=O V$ For Both Switches
6. Refer to leakage current measurement diagram on page (3-8)

* 100% Tested for Dash 8 at $+25^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$ Only.
** Note: HI-200-4 has same specifications as $\mathrm{HI}-200-5$ over the temperature range $-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

(UNLESS OTHERWISE SPECIFIED $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {SUPPLY }}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{AH}}=3.0 \mathrm{~V} \mathrm{~V}_{\mathrm{AL}}=0.8 \mathrm{~V}$ AND $\mathrm{V}_{\text {REF }}=0$ PEN).

ON RESISTANCE vs. ANALOG SIGNAL LEVEL, SUPPLY VOLTAGE AND TEMPERATURE

ON RESISTANCE vs. TEMPERATURE

(HI-200)
ON RESISTANCE vs. ANALOG SIGNAL LEVEL
AND POWER SUPPLY VOLTAGE

SWITCH LEAKAGE CURRENT vs.
TEMPERATURE (HI-200)

OFF LEAKAGE CURRENT vs. TEMPERATURE

ON LEAKAGE CURRENT
vs. TEMPERATURE

SWITCH CURRENT vs. VOLTAGE

SWITCH CURRENT
vs. VOLTAGE

(HI-200)
SWITCH TIME vs. TTL LOGIC LEVEL

ON/OFF SWITCH TIME vs. LOGIC LEVEL

SWITCHING WAVEFORMS

${ }^{t_{O N}}, t_{0 F F}$ (TTL INPUT)
$\mathrm{V}_{\mathrm{AH}}=+4.0 \mathrm{~V}$

Top: TTL Input Bottom: Output

Vertical: 2V/Div.
Horizontal: 200ns/Div.
$\mathrm{t}_{\mathrm{ON}, \mathrm{t}_{\mathrm{OFF}}(\mathrm{CMOS} \text { INPUT) }}$
$V_{\text {REF }}=0 P E N, V_{A H}=+15 \mathrm{~V}$

Top: CMOS Input Bottom: Output

Vertical: 5V/Div.
Horizontal: 200ns/Div.

Quad SPST CMOS Analog Switch

FEATURES	
- ANALOG VOLTAGE RANGE	$\pm 15 \mathrm{~V}$
- ANALOG CURRENT RANGE	80 mA
- TURN-ON TIME	185 ns
- LOW RON	65Ω
- LOW POWER DISSIPATION	15 mW
- TTL/CMOS COMPATIBLE	
- NO DIGITAL INPUT CURRENT SPIKE	

APPLICATIONS

- HIGH FREQUENCY ANALOG SWITCHING
- SAMPLE AND HOLD CIRCUITS
- DIGITAL FILTERS
- OP AMP GAIN SWITCHING NETWORKS

DESCRIPTION

HI-201 is a monolithic device comprising four independently selectable SPST switches which feature fast switching speeds (185ns) combined with low power dissipation (15 mW at $25^{\circ} \mathrm{C}$). Each switch provides low "ON" resistance operation for input signal voltages up to the supply rails and for sighal currents up to 80 mA . Employing Dielectric Isolation and Complementary CMOS processing, HI-201 operates without any applications problems induced by latch-up or SCR-mode phenomena.

All devices provide break-before-make switching and are TTL and CMOS compatible for maximum application versatility. HI-201 is an ideal component for use in high frequency analog switching. Typical appliations include signal path switching, sample and hold circuit, digital filters and op amp gain switching networks.

HI-201 is available in a 16 lead dual-in-line package. HI-201-2 is specified from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ while $\mathrm{HI}-201-5$ operates from $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$. $\mathrm{HI}-201$ is functionally and pin compatible with other available " 200 series" switches.

PIN OUT

CAUTION: These devices are sensitive to electrostatic discharge. Users should follow IC Handling Procedures specified on pg. 1-4.

TYPICAL SWITCH

ABSOLUTE MAXIMUM RATINGS

Supply Voltage Between Pins 4 and 13
VREF to Ground
Digital Input Voltage:
Analog Input Voltage (One Switch)

$$
\begin{aligned}
& +40 \mathrm{~V} \\
& +20 \mathrm{~V},-5 \mathrm{~V} \\
& \mathrm{~V}_{\text {Supply }}(+)+4 \mathrm{~V} \\
& \mathrm{~V}_{\text {Supply }}(-)-4 \mathrm{~V} \\
& +\mathrm{V}_{\text {Supply }}+2.0 \mathrm{~V} \\
& -\mathrm{V}_{\text {Supply }}-2.0 \mathrm{~V}
\end{aligned}
$$

> Total Power Dissipation*
> Operating Temperature

> $$
> \begin{array}{ll}\text { HI-201-2 } \\ \text { HI-201-4 } \\ \text { HI-201-5 }\end{array}
>
$$

Storage Temperature

750 mW
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ $-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
${ }^{*}$ Derate $8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ Above $\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

Unless Otherwise Specified
Supplies $=+15 \mathrm{~V},-15 \mathrm{~V} ; \quad \mathrm{V}_{\text {REF }}=0$ pen; $\mathrm{V}_{\text {AH }}($ Logic Level High $)=3.0 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{AL}}$ (Logic Level Low) $=+0.8 \mathrm{~V}$
For Test Conditions, consult Performance Characteristics

PARAMETER	TEMP.	$\begin{gathered} \mathrm{HI}-201-2 \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \hline \end{gathered}$			$\begin{aligned} & \mathrm{HI}-201-5^{* *} \\ & 0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \end{aligned}$			UNITS
		MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
ANALOG SWITCH CHARACTERISTICS								
* $V_{\text {S }}$, Analog Signal Range	Full	-15		+15	-15		+15	\checkmark
${ }^{*}$ RoN, On Resistance (Note 1)	$+25^{\circ} \mathrm{C}$		65	80		65	100	Ω
	Full		85	125		75	125	Ω
*IS(OFF), Off Input Leakage Current (Note 6)	$\begin{gathered} +25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$		2	500		2	250	nA
${ }^{*}$ ID (OFF), Off Output Leakage Current (Note 6)	$\begin{gathered} +25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$		2	500		2	250	nA
${ }^{*} \mathrm{I}_{\mathrm{D}(\mathrm{ON})}$, On Leakage Current (Note 6)	$\begin{aligned} & +25^{\circ} \mathrm{C} \\ & \text { Full } \end{aligned}$		2	500		2	250	$\begin{aligned} & \text { nA } \\ & \mathrm{nA} \end{aligned}$
DIGITAL INPUT CHARACTERISTICS $V_{A L}$, Input Low Threshold $V_{\text {AH, I I Input High Threshold }}$ *'IA, Input Leakage Current (High or Low) (Note 2)								
	$\begin{aligned} & \text { Full } \\ & \text { Full } \end{aligned}$	3.0		0.8	3.0		0.8	v
	Full			1.0			1.0	$\mu \mathrm{A}$
SWITCHING CHARACTERISTICS								
tOPEN, Break - Before Make Delay (Note 3)	$+25^{\circ} \mathrm{C}$		30			30		ns
$\mathrm{t}_{\text {on }}$, Switch ON Time	$+25^{\circ} \mathrm{C}$		185	500		185		ns
$t_{0 f f}$, Switch OFF Time	$+25^{\circ} \mathrm{C}$		220	500		220		ns
"Off Isolation" (Note 4)	$+25^{\circ} \mathrm{C}$		80			80		dB
CS (OFF), Input Switch Capacitance	$+25^{\circ} \mathrm{C}$		5.5			5.5		pF
$C_{\text {d (}}$ (OFF).	$+25^{\circ} \mathrm{C}$		5.5			5.5		pF
$C_{D(O N)}\left\{\begin{array}{l} \text { Output Switch Capacitance } \end{array}\right.$	$+25^{\circ} \mathrm{C}$		11			11		pF
C_{A}, Digital Input Capacitance	$+25^{\circ} \mathrm{C}$		5			5		pF
COS (OFF), Drain-To-Source Capacitance	$+25^{\circ} \mathrm{C}$		0.5			0.5		pF
	$+25^{\circ} \mathrm{C}$		15			15		mW
	Full			60			60	mW
	+25011		0.5	20		0.5	20	mA
	$+25^{\circ} \mathrm{C}$		0.5			0.5		mA
*1- Current (Pin 4)	Full			2.0			2.0	mA

NOTES: 1. $V_{O U T}=+10 \mathrm{~V}{ }^{1} \mathrm{OUT}=1 \mathrm{~mA}$.
2. Digital Inputs Are MOS Gates - Typical Leakage is Less Than $1 n A$
3. $V_{A H}=4.0 \mathrm{~V}$
4. $V_{A}=5 \mathrm{~V}, R_{L}=1 \mathrm{k} \Omega, C_{L}=10 \mathrm{pF}, V_{S}=3 \mathrm{VRMS}, f=100 \mathrm{KHz}$
5. $V_{A}=+3 V$ or $V_{A}=0 V$ For all Switches
6. Refer to leakage current measurement diagram on page (3-14)

* 100% Tested for Dash 8 at $+25^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$ Only.
** Note: HI-201-4 has same specifications as HI-201-5 over the temperature range $-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

TTL/CMOS
REFERENCE CIRCUIT

Higher Noise Immunity;
Otherwise Leave Open.

DIGITAL INPUT BUFFER AND LEVEL SHIFTER

SWITCH CELL

all N-CHANNEL BODIES TO VAll P-CHANNEL bODIES TO $\mathrm{V}+$ EXCEPT AS SHOWN.

(UNLESS OTHERWISE SPECIFIED $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {SUPPLY }}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{AH}}=3.0 \mathrm{~V} \mathrm{~V}_{\mathrm{AL}}=0.8 \mathrm{~V}$ AND $\mathrm{V}_{\text {REF }}=0$ PEN).

ON RESISTANCE vs. ANALOG SIGNAL LEVEL, SUPPLY VOLTAGE AND TEMPERATURE

ON RESISTANCE vs. TEMPERATURE

(HI-201)
ON RESISTANCE vs. ANALOG SIGNAL LEVEL AND POWER SUPPLY VOLTAGE

SWITCH LEAKAGE CURRENT vs. TEMPERATURE (HI-201)

OFF LEAKAGE CURRENT vs. TEMPERATURE

ON LEAKAGE CURRENT vs. TEMPERATURE

SWITCH CURRENT vs. VOLTAGE

SWITCH CURRENT
vs. VOLTAGE

Top: TTL Input Bottom: Output

Horizontal: 100ns/Div. Vertical: 2V/Div.
${ }^{t}$ ON, ${ }^{\text {toFF }}$ (CMOS INPUT)
$\mathrm{V}_{\text {REF }}=0 \mathrm{PEN}, \mathrm{V}_{\text {IN }}=+15 \mathrm{~V}$

Top: CMOS Input Bottom: Output

Vertical: 5V/Div. Horizontal: 100ns/Div.

HARRIS
SEMICONDUCTOR PROGRAMS DIVISION
A DIVISION OF HARRIS CORPORATION

HI-1800A

Low Leakage
Dual DPST Analog Switch

ABSOLUTE MAXIMUM RATINGS (Note 1)

Supply Voltage Between Pins 14 and 15	40.0 V	Digital Input Voltage	$\mathrm{V}^{\text {-Supply, }{ }^{\mathrm{V}+\text { Supply }}}$
Logic Supply Voltage, Pin 2	30.0 V	Total Power Dissipation	780 mW (Note 2)
Analog Input Voltage: $\mathrm{V}+$ Supply +2 V	V-Supply -2 V	Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

$\text { Supplies }=+15 \mathrm{~V},-15 \mathrm{~V},+5.0 \mathrm{~V}$ PARAMETER	TEMP.	$\begin{aligned} & \text { HI-1800A-5 } \\ & 0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \end{aligned}$			UNITS
		MIN.	TYP.	MAX.	
ANALOG CHANNEL CHARACTERISTICS					
$V_{\text {IN }}$, Analog Signal Range	Full	-15		+15	V
	$+25^{\circ} \mathrm{C}$		125	200	Ω
RON, ON Resistance (Note 3)	Full			250	Ω
IS (OFF), Input Leakage Current	Full		40	100	nA
I_{D} (OFF), Output Leakage Current	Full		40	100	nA
$I_{\text {D }}$ (ON), On Channel Leakage Current	Full		40	100	nA
DIGITAL INPUT CHARACTERISTICS VIL Input Low Threshold	Full			0.4	V
$V_{\text {IH }}$, Input High Threshold (Note 4)	Full	4.0			v
IIN, Input Leakage Current	Full		. 01	1	$\mu \mathrm{A}$
SWITCHING CHARACTERISTICS					
${ }^{\text {t }}$, Access Time (Note 5)	$+25^{\circ} \mathrm{C}$		500		ns
Break-Before-Make Delay	$+25^{\circ} \mathrm{C}$		200		ns
$\mathrm{C}_{\text {IN }}$, Channel Input Capacitance	$+25^{\circ} \mathrm{C}$		8		pF
$\mathrm{C}_{\text {OUT }}$, Channel Output Capacitance	$+25^{\circ} \mathrm{C}$		8		pF
C_{D}, Digital Input Capacitance	$+25^{\circ} \mathrm{C}$		5		pF
POWER REQUIREMENTS					
P_{D}, Power Dissipation	Full		10		mW
$\mathrm{P}_{\text {DS }}$, Standby Power (Note 6)	Full		10		mW
I_{+}, Current Pin 14	Full		0.001	1	mA
I_, Current Pin 15	Full		0.5	2	mA
$L_{\text {L }}$, Current Pin 2	Full		0.5	2	mA

NOTES: 1. Voltage ratings apply when voltages at all other pins are within their nominal operating ranges.
2. Derate $9.25 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $\mathrm{t}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$
3. $\mathrm{V}_{\mathrm{OUT}}= \pm 10 \mathrm{~V} \mathrm{I}_{\mathrm{OUT}}=-100 \mu \mathrm{~A}$.
4. To drive from DTL/TTL circuits, 1 K pullup resistors to +5.0 V supply are recommended.
5. Time measured to 90% of final output level; $\mathrm{V}_{\text {OUT }}=-5.0 \mathrm{~V}$ to +5.0 V , Digital Inputs $=$ 0.4 V to +4.0 V .
6. Voltage at Pin 3, ENABLE $\geq+4.0 \mathrm{~V}$.

ON RESISTANCE vs ANALOG SIGNAL LEVEL

ON/OFF LEAKAGE CURRENTS vs TEMPERATURE

OFF LEAKAGE
ON LEAKAGE

$\pm 10 \mathrm{O}$
Test Circuit

ON CHANNEL CURRENT vs VOLTAGE

Test Circuit

ACCESS TIME

$\left.\begin{array}{r}+4 \mathrm{~V} \\ +0.4 \mathrm{~V}\end{array}\right] \square$

200ns/DIV.

ADDRESS INPUT BUFFER

ALL N-CHANNEL BODIES TO VALL P-CHANNEL BODIES TO V+ UNLESS OTHERWISE INDICATED

DECODER GATE

MULTIPLEX SWITCH

HARRIS
SEMICONDUCTOR PRODUCTS DIVISION A DIVISION OF HARRIS CORPORATION

CAUTION: These devices are sensitive to electrostatic discharge. Users should follow IC Handling Procedures specified on pg. 1-4.

Supply Voltage ($\mathbf{V}^{+}-\mathrm{V}^{-}$)	36 V	Analog Current (S to D)	80 mA
V_{R} to Ground	$\mathrm{V}^{+}, \mathrm{V}^{-}$	Total Power Dissipation*	450 mW
Digital and Analog	$\mathrm{V}^{+}+4 \mathrm{~V}$	Operating Temperature	
Input Voltage	$\mathrm{V}^{-}-4 \mathrm{~V}$	HI-50XX-2	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
		HI-50XX-5	$0^{0} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
		Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
		*Derate $6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $\mathrm{T}_{\text {A }}$	

ELECTRICAL CHARACTERISTICS

Unless Otherwise Specified
Supplies $=+15 \mathrm{~V},-15 \mathrm{~V} ; \mathrm{V}_{\mathrm{R}}=0 \mathrm{~V} ; \quad \mathrm{V}_{\mathrm{AH}}$ (Logic Level High) $=3.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{AL}}$ (Logic Level Low) $=+0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V}$
For Test Conditions, consult Performance Characteristics

NOTES: 1. $V_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=1 \mathrm{~mA}$
a) For HI-5040 thru HI-5047
b) For $\mathrm{HI}-5048$ thru HI-5051, HI-5046A/5047A
2. $V_{I N}=0 V, C_{L}=10,000 \mathrm{pF}$
3. $R_{L}=100 \Omega, f=100 \mathrm{KHz}, \mathrm{V}_{\mathrm{IN}}=2 \mathrm{~V}_{\mathrm{PP}}, C_{L}=5 \mathrm{pF}$

[^13]SPST
HI-5040 (75 Ω)

DUAL SPDT
HI-5043 (75 Ω)

HI-5046 (75 Ω)
HI-5046A (30Ω)

DUAL DPST
HI-5049 (30 2)

DUAL SPST
HI-5041 (75 Ω)

SPDT
HI-5042 (75 Ω)

DPST
HI-5044 (75 Ω)

DUAL DPST
HI-5045 (75 Ω)

DUAL SPST
HI-5048 (30 Ω)

DUAL SPDT
HI-5051 (30 ת)

(UNLESS OTHERWISE SPECIFIED $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{R}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{AH}}=3.0 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{AL}}=0.8 \mathrm{~V}$

ON RESISTANCE vs. ANALOG SIGNAL LEVEL, SUPPLY VOLTAGE AND TEMPERATURE
$R_{O N}=\frac{V_{2}}{1 \mathrm{~mA}}$

"ON"" RESISTANCE vs. ANALOG SIGNAL LEVEL AND POWER SUPPLY VOLTAGE

NORMALIZED "ON" RESISTANCE vs. ANALOG CURRENT

CROSSTALK vs. FREQUENCY

POWER CONSUMPTION vs. FREQUENCY

DIGITAL＂LOW＂（ V_{AL} ）

SWITCHING WAVEFORMS

TOP：TTL INPUT（IV／DIV）
$\mathrm{V}_{\mathrm{AH}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{AL}}=0.8 \mathrm{~V}$
BOTTOM：OUTPUT（5V／DIV）

				表				
				䒠				
				邫				
$H+H$	HH1	HH1	H1H		H＋1H	H1H	HH	＋1H
		\square		表	\checkmark			
		\bigcirc		䒠				
				表				

TOP：CMOS INPUT（5V／DIV）
$V_{A H}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{AL}}=0 \mathrm{~V}$
BOTTOM：OUTPUT（5V／DIV

				主				
				表				
				青				
HHH	H1H	＋1H	＋11		H1H	＋1＋	HH	HH1
				邫	1			
				表				
				表				

200ns／DIV

TTL/CMOS
REFERENCE CIRCUIT*

*Connect V^{+}to V_{L} for
minimizing power consumption
when driving from CMOS circuits

SWITCH CELL

DIGITAL INPUT BUFFER
AND LEVEL SHIFTER

all p-channel
BODIES TO $\mathrm{V}+$
EXCEPT AS SHOWN

Single 16/Differential 8 Channel CMOS Analog Multiplexers

FEATURES	DESCRIPTION
- LOW ON RESISTANCE (TYP.) 170Ω - WIDE ANALOG SIGNAL RANGE $\pm 15 \mathrm{~V}$ - DIRECTLY TTL/CMOS COMPATIBLE 2.4V (LOGIC " 1 ") - ACCESS TIME (TYP.) 300ns - HIGH CURRENT CAPABILITY (TYP.) 50 mA - BREAK-BEFORE-MAKE SWITCHING - NO LATCH-UP APPLICATIONS - DATA ACQUISITION SYSTEMS - PRECISION INSTRUMENTATION - DEMULTIPLEXING - SELECTOR SWITCH	The HI-506/507 are monolithic high performance CMOS analog multiplexers offering built-in channel selection decoding plus an inhibit input for disabling all channels. Dielectric Isolation (DI) is used to fabricate these devices for enhanced reliability and performance over conventional Junction-Isolated (JI) devices. (See Application Note 521). Substrate leakages and parasitic capacitance are much lower in DI resulting in extremely low static errors and high throughput rates. Low output leakage (typically 0.3 nA) and low channel ON resistance (170Ω) assure Optimum performance in low level or current mode applications. Operation is specified with nominal $\pm 15 \mathrm{~V}$ supplies, however, supplies as low as $\pm 7 \mathrm{~V}$ can be used at somewhat lower performance. The $\mathrm{HI}-506 / 507$ internally develops a +5 V digital logic reference from the positive supply which eliminates an additional supply and provides direct TTL/CMOS compatibility without interface pull-up resistors. The HI-506 is a single-ended 16 channel multiplexer while the $\mathrm{HI}-507$ is a differential 8 channel version. Either device is ideally suited for medical instrumentation, telemetry systems and microprocessor based data acquisition systems. The HI-506-2 and HI-507-2 are specified over $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, while the -5 versions are specified over $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$.
PINOUT	FUNCTIONAL DIAGRAM
HI-506	HI-506
Package Code 1M	

CAUTION: These devices are sensitive to electrostatic discharge. Users should follow IC Handling Procedures specified on pg. 1-4.

Supply Voltage Between Pins 1 and 27
$\mathrm{V}_{\mathrm{EN}}, \mathrm{V}_{\mathrm{A}}$, Digital Input Overvoltage:

$$
\mathrm{V}_{\mathrm{A}}\left\{\begin{array}{l}
\mathrm{V}_{\text {Supply }}(+)+4 \mathrm{~V} \\
\mathrm{~V}_{\text {Supply }}(-)-4 \mathrm{~V}
\end{array}\right.
$$

Analog Input Overvoltage: (Note 6)
V_{D} or $V_{S}\left\{\begin{array}{l}V_{\text {Supply }}(+)+2 V \\ V_{\text {Supply }}(-)-2 V\end{array}\right.$

Total Power Dissipation*
Operating Temperature:
HI-506/HI-507-2
HI-506/HI-507-5
Storage Temperature

1200 mW
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
*Derate $8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $\mathrm{T}_{\mathrm{A}}=+250 \mathrm{C}$
ELECTRICAL CHARACTERISTICS Unless Otherwise Specified: Supplies $=+15 \mathrm{~V},-15 \mathrm{~V} ; \mathrm{V}_{\mathrm{AH}}($ Logic Level High $)=+2.4 \mathrm{~V}$,
V_{AL} (Logic Level Low) $=+0.8 \mathrm{~V}$. For Test Conditions, consult Performance Characteristics section.

[^14]Unless 0 therwise Specified; $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {Supply }}= \pm 15 \mathrm{~V}$, $\mathrm{V}_{\mathrm{AH}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{AL}}=0.8 \mathrm{~V}$.

NORMALIZED ON RESISTANCE vs. SUPPLY VOLTAGE

Supply Voltage (Volts)

TEST CIRCUIT
NO. 1

ON RESISTANCE
vs. ANALOG INPUT VOLTAGE, TEMPERATURE

LEAKAGE CURRENT vs. TEMPERATURE

LOGIC THRESHOLD
vs. POWER SUPPLY VOLTAGE

TEST CIRCUIT
NO. 2

TEST CIRCUIT
NO. 3

POWER SUPPLY CURRENT vs. TEMPERATURE

OFF ISOLATION vs. FREQUENCY

ON CHANNEL CURRENT vs. VOLTAGE

TEST CIRCUIT
NO. 4

TEST CIRCUIT

NO. 5
$Q^{+15 /+10}$
(A) isupply

SUPPLY CURRENT vs. TOGGLE FREQUENCY

Similar connection for HI-507

TEST CIRCUIT
NO. 6
ACCESS TIME

SWITCHING WAVEFORMS

200 NS/DIV

TEST CIRCUIT
NO. 7
BREAK-BEFORE-MAKE DELAY (tOPEN)

Similar connection for HI-507

100 NS/DIV

TEST CIRCUIT

NO. 8

ENABLE DELAY(tON(EN), tOFF(EN))

ENABLE DELAY (ton(EN) , tOFF(EN))

100 NS/DIV

Similar connection for HI-507

SCHEMATIC DIAGRAMS

ADDRESS DECODER

Delete A_{3} or $\overline{\mathrm{A}}_{3}$ Input for $\mathrm{HI}-507$

ADDRESS INPUT BUFFER LEVER SHIFTER

All N-Channel Bodies to V-
All P-Channel Bodies to V+ Unless Otherwise Indicated.

MULTIPLEX SWITCH

SEMICONDUCTOR PRODUCTS DIVISION
PRODUCTS DIVISION

HI-506A/HI-507A 16 Channel CMOS Analog Multiplexer with Overvoltage Protection

FEATURES	DESCRIPTION
- ANALOG/DIgITAL OVERVOLTAGE PROTECTION - FAIL SAFE WITH POWER LOSS (NO LATCHUP) - BREAK-BEFORE-MAKE SWITCHING - DTL/TTL AND CMOS COMPATIBLE - ANALOG SIGNAL RANGE $\pm 15 \mathrm{~V}$ - ACCESS TIME (TYP.) 500ns - SUPPLY CURRENT AT 1 MHz ADDRESS TOGGLE (TYP.) 4 mA - STANDBY POWER (TYP.) 7.5 mW APPLICATIONS - DATA ACQUISITION - INDUSTRIAL CONTROLS - TELEMETRY	The HI-506A and HI-507A are dielectrically isolated CMOS analog multiplexers incorporating an important feature; they withstand analog input voltages much greater than the supplies. This is essential in any system where the analog inputs originate outside the equipment. They can withstand a continuous input up to 10 volts greater than either supply, which eliminates the possibility of damage when supplies are off, but input signals are present. Equally important, they can withstand brief input transient spikes of several hundred volts; which otherwise would require complex external protection networks. Necessarily, ON resistance is somewhat higher than similar unprotected devices, but very low leakage currents combine to produce low errors. Application Notes 520 and 521 further explain these features. The HI-506A-2 and HI-507A-2 are specified over -550 ${ }^{\circ}$ to $+125^{\circ} \mathrm{C}$ while the -5 versions are specified over $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$.
PINOUT	FUNCTIONAL DIAGRAM
	HI-506A
	HI-507A

CAUTION: These devices are sensitive to electrostatic discharge. Users should follow IC Handling Procedures specified on pg. 1-4.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage Between Pins 1 and 27
40 V $+20 \mathrm{~V}$
$V_{\text {REF }}$ to Ground $V+$ to Ground $\mathrm{V}_{\mathrm{EN}}, \mathrm{V}_{\mathrm{A}}$, Digital Input Overvoltage:

$$
\mathrm{V}_{\mathrm{A}}\left\{\begin{array}{l}
\mathrm{V}_{\text {Supply }}(+) \\
\mathrm{V}_{\text {Supply }}(-)
\end{array}\right.
$$

Analog Overvoltage:

$$
\mathrm{V}_{S}\left\{\begin{array}{l}
V_{\text {Supply }}(+) \\
\mathrm{V}_{\text {Supply }}(-)
\end{array}\right.
$$

$$
+20 \mathrm{~V}
$$

$$
-20 \mathrm{~V}
$$

Total Power Dissipation* Operating Temperature

HI-506A/507A-2
HI-506A/507A-5
Storage Temperature
${ }^{*}$ Derate $8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (Unless otherwise specified)
Supplies $=+15 \mathrm{~V},-15 \mathrm{~V} ; \mathrm{V}_{\text {REF }}($ Pin 13 $)=0$ pen; $\mathrm{V}_{\text {AH }}($ Logic Level High $)=+4.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{AL}}($ Logic Level Low $)=+0.8 \mathrm{~V}$
For Test Conditions, consult Performance Characteristics section.

(UNLESS OTHERWISE SPECIFIED $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {SUPPLY }}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{AH}}=+4 \mathrm{~V}, \mathrm{~V}_{\mathrm{AL}}=0.8 \mathrm{~V}$ AND $\mathrm{V}_{\text {REF }}=0$ PEN.)
ON RESISTANCE vs.
test circuit input signal level, supply voltage
NO. 1

$$
R_{O N}=\frac{V_{2}}{100 \mu \mathrm{~A}}
$$

ON RESISTANCE

NORMALIZED ON RESISTANCE

TEST CIRCUIT
off leakage current
NO. 2
vs. TEMPERATURE

ANALOG INPUT
TEST CIRCUIT OVERVOLTAGE CHARACTERISTICS
NO. 4

TEST CIRCUIT
NO. 5
ON CHANNEL CURRENT
vs. VOLTAGE

TEST CIRCUIT
NO. 6

ACCESS TIME vs. LOGIC LEVEL (HIGH)
TEST CIRCUIT NO. 7

SIMILAR CONNECTION FOR HI-507A

SWITCHING WAVEFORMS

200ns/Div.

TEST CIRCUIT

NO. 8
break before make delay (topen)

TEST CIRCUIT
NO. 9

ENABLE DELAY ('ONIEN). 'OFF(EN)'
ENABLE DRIVE

SIMILAR CONNECTION FOR HI-507A

BREAK BEFORE MAKE DELAY (TOPEN)

100ns/Div.

MULTIPLEX SWITCH

HARRIS
SEMICONDUCTOR PRODUCTS DIVISION A DIVISION OF HARRIS CORPORATION

HI-508A/509A

8 Channe/ CMOS Analog Multiplexers with Overvoltage Protection

DESCRIPTION

FEATURES

- ANALOG/DIGITAL OVERVOLTAGE PROTECTION
- FAIL SAFE WITH POWER LOSS (NO LATCHUP)
- BREAK-BEFORE-MAKE SWITCHING
- DTL/TTL AND CMOS COMPATIBLE
- ANALOG SIGNAL RANGE
- ACCESS TIME (TYP.) 500ns
- SUPPLY CURRENT AT 1 MHz
- STANDBY POWER (TYP.)

$$
7.5 \mathrm{~mW}
$$

APPLICATIONS

- dATA ACQUISITION
- INDUSTRIAL CONTROLS
- TELEMETRY

The HI-508A and HI-509A are dielectrically isolated CMOS analog multiplexers incorporating an important feature; they withstand analog input voltages much greater than the supplies. This is essential in any system where the analog inputs originate outside the equipment. They can withstand a continuous input up to 10 volts greater than either supply, which eliminates the possibility of damage when supplies are off, but input signals are present. Equally important, they can withstand brief input transient spikes of several hundred volts; which otherwise would require complex external protection networks. Necesarily, ON resistance is somewhat higher than similar unprotected devices, but very low leakage currents combine to produce low errors. Application Notes 520 and 521 further explain these features.

The HI-508A-2 and HI-509A-2 are specified over -550 to $+125^{\circ} \mathrm{C}$ while the -5 versions are specified over $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$.

FUNCTIONAL DIAGRAM

PINOUT

HI-508A

	TOP VIEW		
$\mathrm{A}_{0}-$		16	$-A_{1}$
E_{N}	2	15	$-\mathrm{A}_{2}$
$-\mathrm{V}_{\text {sup }}$	3	14	- GND
IN1-	4	13	$-+\mathrm{V}_{\text {sup }}$
IN2 -	5	12	-IN5
IN3	6	11	-IN6
N4	7	10	- IN7
OUT-		9	- IN8

HI-508A

HI-509A

TOP VIEW		
	16	
$\mathrm{EN}_{\mathrm{N}}{ }^{2}$	15	- GND
$-\mathrm{V}_{\text {sup }}-3$	14	
INIA-4	13	- IN1B
IN2A-5	12	-
IN3A-6	11	- IN3B
IN4A-7	10	- IN4B
TA		OUTB

CAUTION: These devices are sensitive to electrostatic discharge. Users should follow IC Handling Procedures specified on pg. 1-4.

HI-509A

ABSOLUTE MAXIMUM RATINGS

Voltage between Supply Pins
V+ to Ground
$\mathrm{V}_{\mathrm{EN}}, \mathrm{V}_{\mathrm{A}}$, Digital Input Overvoltage:

$$
\mathrm{V}_{\mathrm{A}}\left\{\begin{array}{l}
\mathrm{V}_{\text {Supply }}(+)+4 \mathrm{~V} \\
\mathrm{~V}_{\text {Supply }}(-)-4 \mathrm{~V}
\end{array}\right.
$$

Analog Input Overvoltage:

$$
\mathrm{V}_{S}\left\{\begin{array}{l}
\mathrm{V}_{\text {Supply }}(+)+20 \mathrm{~V} \\
\mathrm{~V}_{\text {Supply }}(-)-20 \mathrm{~V}
\end{array}\right.
$$

Total Power Dissipation*
725 mW
Operating Temperature:
HI-508A/HI-509A-2
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
${ }^{*}$ Derate $8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $\mathrm{t}_{\mathrm{A}}=75^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (Unless Otherwise Specified)

Supplies $=+15 \mathrm{~V},-15 \mathrm{~V} ; \mathrm{V}_{\mathrm{AH}}($ Logic Level High $)=+4.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{AL}}($ Logic Level Low $)=+0.8 \mathrm{~V}$
For Test Conditions, consult Performance Characterisitcs section.

[^15]UNLESS OTHERWISE SPECIFIED: $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {SUPPLY }}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{AH}}=+4 \mathrm{~V}, \mathrm{~V}_{\mathrm{AL}}=0.8 \mathrm{~V}$

TEST CIRCUIT NO. 1

NORMALIZED ON RESISTANCE
vs. SUPPLY VOLTAGE

ON RESISTANCE vs. INPUT SIGNAL LEVEL, SUPPLY VOLTAGE

ON RESISTANCE
vs. ANALOG INPUT VOLTAGE

TEST CIRCUIT NO. 2

OFF LEAKAGE CURRENT vs. TEMPERATURE

ON LEAKAGE CURRENT vs. TEMPERATURE

TEST CIRCUIT
NO. 3

ANALOG INPUT OVERVOLTAGE CHARACTERISTICS

TEST CIRCUIT
NO. 4

TEST CIRCUIT
NO. 5
ON CHANNEL CURRENT vs. VOLTAGE

TEST CIRCUIT
NO. 6
$Q^{+15 /+10}$
(A) +1 Supply

SUPPLY CURRENT vs. TOGGLE FREQUENCY

TEST CIRCUIT

NO. 7
ACCESS TIME vs.
LOGIC LEVEL(HIGH)

* SIMILAR CONNECTION FOR HI-509A

SWITCHING WAVEFORMS

200ns/Div.

TEST CIRCUIT
NO. 8
BREAK BEFORE MAKE DELAY ($\mathrm{t}_{\text {OPEN }}$)

*SIMILAR CONNECTION FOR HI-509A

BREAK BEFORE MAKE DELAY (t IPEN)

100ns/Div.

TEST CIRCUIT
NO. 9
ENABLE DELAY (ton(EN), $\mathrm{t}_{0 F F}$ (EN) $)$

* SIMILAR CONNECTION FOR HI-509A

ENABLE DELAY (t ON(EN), tOFF(EN)

$100 \mathrm{~ns} /$ Div.

SCHEMATIC DIAGRAMS

MULTIPLEX SWITCH

16 Channel/Differential 8 Channel CMOS High Speed

FEATURES	DESCRIPTION
	The HI-516 is a monolithic dielectrically isolated, high speed, high performance CMOS analog multiplexer. It offers unique built-in channel selection decoding plus an inhibit input for disabling all channels. The dual function of address input A_{3} enables the $\mathrm{HI}-516$ to be user programmed either as a single ended 16 -channel multiplexer by connecting 'out A ' to 'out B^{\prime} and using A_{3} as a digital address input, or as an 8 -channel differential multiplexer by connecting A_{3} to the V^{-}supply. The substrate leakages and parasitic capacitances are reduced substantially using the Harris dielectric isolation process to achieve optimum performances in both high and low level signal applications. The low output leakage current (ID Off $<100 \mathrm{pA} @ 25^{\circ} \mathrm{C}$) and fast settling (tSETTLE $=800$ ns to 0.01%) characteristics of the device make it an ideal choice for high speed data acquisition systems, precision instrumentation, and industrial process controls. The HI-516 is available in a 28 lead dual-in-line package. HI-516-5 is specified for operation over $0^{\circ} \mathrm{C}$ to $+755^{\circ} \mathrm{C}$, and the $\mathrm{HI}-516-2$ over $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. Processing to MIL-STD-883A, Class B screening is available by selecting the $\mathrm{HI}-516-8$.
PINOUT	FUNCTIONAL DIAGRAM
Package Code 1M	

ABSOLUTE MAXIMUM RATINGS

Digital Input Overvoltage:

TTL	$-6 \mathrm{~V}<\mathrm{V}_{\text {AH }}<+6 \mathrm{~V}$	
	A2 VSUPPLY (-)	-2V
	V SUPPLY(+)	+2V
cmos	GND	-2V

Analog Input Voltage:

$$
V_{S} \begin{cases}V_{S U P P L Y}(+) & +2 \mathrm{~V} \\ V_{S U P P L Y(-)} & -2 \mathrm{~V}\end{cases}
$$

Voltage Between Supply Pins
33 V
Total Power Dissipation*
0 perating Temperature Ranges:

$$
\begin{aligned}
& \text { HI-516-2 } \\
& \text { HI-516-5 }
\end{aligned}
$$

Storage Temperature Range
*Derate $8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above t_{A}
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$ $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ $75^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (Unless otherwise specified) Supplies $=+15 \mathrm{~V},-15 \mathrm{~V} ; \mathrm{V}_{\mathrm{AH}}$ (Logic Level High) $=+2.4 \mathrm{~V}$, $\mathrm{V}_{\mathrm{AL}}\left(\right.$ Logic Level Low) $=+0.8 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}} /$ LLS $=0$ pen (Note 6)

PARAMETER		$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$			UNITS
	TEMP	MIN	TYP	MAX	MIN	TYP	MAX	
ANALOG CHANNEL CHARACTERISTICS								
V_{S}, Analog Signal Range	Full	-15		+15	-15		+15	V
R ON, On Resistance (Note 1)	$+25^{\circ} \mathrm{C}$		620	750		620	750	Ω
	Full		770	1,000		700	1,000	Ω
IS (OFF), Off Input Leakage Current	+250\%		0.01			0.01		nA
	Full		0.38	50		0.38	50	nA
$I_{\text {I }}(0 F F)$, Off Output Leakage Current	+250\%		0.035			0.035		nA
	Full		0.48	100		0.48	100	nA
$I_{\text {I }}(0 N)$, On Channel Leakage Current	+250ㄷ		0.04			0.04		nA
	Full		0.56	100		0.56	100	nA
DIGITAL INPUT CHARACTERISTICS								
$\mathrm{V}_{\text {AL }}$ Input Low Threshold (TTL)	Full			0.8			0.8	V
$V_{\text {AH }}$ Input High Threshold (TTL)	Full	2.4			2.4			V
$\mathrm{V}_{\text {AH }}$ Input Low Threshold (CMOS)	Full			$0.3 \mathrm{~V}_{\text {DD }}$			$0.3 \mathrm{~V}_{\text {DD }}$	V
$\mathrm{V}_{\text {AH }}$ Input High Threshold (CMOS)	Full	$0.7 \mathrm{~V}_{\mathrm{DD}}$			$0.7 \mathrm{~V}_{\mathrm{DD}}$			V
${ }^{\text {AH }}$ Input Leakage Current (High)	Full		0.05	1		0.05	1	$\mu \mathrm{A}$
IAL Current (Low)	Full		4	25		4	25	$\mu \mathrm{A}$
SWITCHING CHARACTERISTICS								
${ }^{\text {t }}$, Access Time	$+25^{\circ} \mathrm{C}$		100	150		100	150	ns
	Full		120	200		120	200	ns
tOPEN, Break before make delay	$+25^{\circ} \mathrm{C}$		20			20		ns
ton(EN), Enable Delay (IN)	$+25^{\circ} \mathrm{C}$		100	150		100		ns
tofF(EN), Enable Delay (OFF)	$+25^{\circ} \mathrm{C}$		80	125		80		ns
Settling Time (0.1\%)	$+25^{\circ} \mathrm{C}$		250			250		ns
(0.01\%)	$+25^{\circ} \mathrm{C}$		800			800		ns
Charge Injection (Note 2)	$+25^{\circ} \mathrm{C}$		0.33			0.33		pC
Off Isolation (Note 3)	$+25^{\circ} \mathrm{C}$		90			90		dB
$\mathrm{C}_{\text {S }}(0 \mathrm{FF})$, Channel Input Capacitance	$+25{ }^{\circ} \mathrm{C}$		2.5			2.5		pF
$\mathrm{C}_{\mathrm{D}}(0 \mathrm{FF})$, Channel Output Capacitance	$+25^{\circ} \mathrm{C}$		18			18		pF
$\mathrm{C}_{\text {A }}$, Digital Input Capacitance	$+25^{\circ} \mathrm{C}$		5			5		pF
$\mathrm{C}_{\text {DS }}$ (0FF), Input to Output Capacitance	$+25^{\circ} \mathrm{C}$		0.02			0.02		pF
POWER REQUIREMENTS								
PD, Power Dissipation	Full		525			525		mW
1^{+}, Current (Note 4)	Full		17.5	25		17.5	30	mA
1-, Current (Note 4)	Full		17.5	25		17.5	30	mA
I^{+}, Standby (Note 5)	Full		17.0	25		17.0	30	mA
1^{-}, Standby (Note 5)	Full		17.0	25		17.0	30	mA

NOTES:

1. V IN $= \pm 10 \mathrm{~V}$, IOUT $=-100 \mathrm{~A}$
2. $V E N=+2.4 V$
3. $V_{I A}=O V, C L=100 p F$, Enable input
pulse $=3 \mathrm{~V}, \mathrm{f}=500 \mathrm{kHz}$
4. $V_{E N}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V}$ RMS, $f=500 \mathrm{kHz}$,
$C L=40 p F, R_{L}=1 \mathrm{k}$, Pin 3 grounded
5. $\mathrm{VEN}=0.8 \mathrm{~V}$
6. $V_{D D} /$ LLS Pin $=$ Open or Grounded for TTL Compatibility $V_{D D} /$ LLS Pin $=V_{D D}$ for CMOS Compatibility

HI-516 USED AS A 16-CHANNEL MULTIPLEXER OR 8 CHANNEL DIFFERENTIAL MULTIPLEXER *

USE A3 AS DIGITAL ADDRESS INPUT					ON CHANNEL TO	
ENABLE	A_{3}	A_{2}	A_{1}	A0	OUT A	OUT B
L	X	X	X	X	NONE	NONE
H	L	L	L	L	1A	NONE
H	L	L	L	H	2A	NONE
H	L	L	H	L	3A	NONE
H	L	L	H	H	4A	NONE
H	L	H	L	L	5A	NONE
H	L	H	L	H	6A	NONE
H	L	H	H	L	7A	NONE
H	L	H	H	H	8A	NONE
H	H	L	L	L	NONE	1B
H	H	L	L	H	NONE	2B
H	H	L	H	L	NONE	3B
H	H	L	H	H	NONE	4B
H	H	H	L	L	NONE	5B
H	H	H	L	H	NONE	6B
H	H	H	H	L	NONE	7B
H	H	H	H	H	NONE	8B

* For 16-Channel single-ended function, tle 'out A^{\prime} to 'out B ', for dual 8-channel function use the A_{3} address pin to select between MUX A and MUX B, where MUX A is selected with A_{3} low.

HI-516 USED AS A DIFFERENTIAL 8-CHANNEL MULTIPLEXER

A $_{3}$ CONNECT TO V - SUPPLY		ON CHANNEL TO			
ENABLE	A $_{2}$	A $_{1}$	AO	OUT A	OUT B
L	X	X	X	NONE	NONE
H	L	L	L	1A	$1 B$
H	L	L	H	2A	$2 B$
H	L	H	L	$3 A$	$3 B$
H	L	H	H	$4 A$	$4 B$
H	H	L	L	$5 A$	$5 B$
H	H	L	H	$6 A$	$6 B$
H	H	H	L	$7 A$	$7 B$
H	H	H	H	$8 A$	$8 B$

8 Channel/Differential 4 Channel CMOS High Speed

Preliminary

FEATURES	
- ACCESS TIME (TYP)	80 ns
- SETTLING TIME (0.1\%)	250 ns
- LOW LEAKAGE IS (OFF) (OFF)	50 pA
- LOW CAPACITANCE (TYP) CS (OFF)	
C_{D} (OFF)	
- HIGH OFF ISOLATION @ (1MHz)	100 pA
- SINGLE ENDED TO	10 pF
DIFFERENTIAL MODE SELECTABLE (SDS)	
- LOGIC LEVEL SELECTABLE (LLS)	
- LOW CHARGE INJECTION	

APPLICATIONS

- DATA ACQUISITIONS SYSTEMS
- industrial controls
- TELEMETRY

DESCRIPTION

The HI-518 is a monolithic, high performance, high speed Analog Multiplexer, constructed utilizing the Harris Dielectrically isolated CMOS process.

This device has the added feature that it can be user programmed either as a single ended 8 -channel multiplexer by connecting 'out A^{\prime} to 'out B^{\prime} and using A 2 as a digital address input, or as a 4channel differential multiplexer by connecting A 2 to the V^{-}supply.

TTL or CMOS compatibility is also selectable. Low leakage current, I_{D} off $<100 \mathrm{pA} @ 25^{\circ} \mathrm{C}$, and fast settling, 250 ns to 0.1%, charateristics of this device make it an ideal choice for high speed data acquisition systems, precision instrumentation and industrial process controls.

The HI-518 is available in an 18 lead Dual-in-Line Package. The $\mathrm{HI}-518-5$ is specified for operation over $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$, and the HI-518-2 over $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. Processing to MIL-STD-883A Class B screening is available by selecting the $\mathrm{HI}-518-8$.

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS

Digital Input Overvoltage:

TTL	$\begin{aligned} & -6 \mathrm{~V}<\mathrm{V}_{\text {AH }}<+6 \mathrm{~V} \\ & \text { A2 } \mathrm{V}_{\text {SUPPLY }}(-) \end{aligned}$	-2V
cmos	VSUPPLY(+)	+2V
cmos	GND	-2V
Analog Input Voltage:		
	VSUPPLY(+)	+2V
V_{S}	VSUPPLY(-)	-2V

Voltage Between Supply Pins
33 V
Total Power Dissipation*
Operating Temperature Ranges:

$$
\begin{aligned}
& \mathrm{HI}-518-2 \\
& \mathrm{HI}-518-5
\end{aligned}
$$

Storage Temperature Range
*Derate $8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above t_{A}
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
750 C

ELECTRICAL CHARACTERISTICS
 (Unless otherwise specified) Supplies $=+15 \mathrm{~V},-15 \mathrm{~V} ; \mathrm{V}_{\mathrm{AH}}($ Logic Level High $)=+2.4 \mathrm{~V}$,

 V_{AL} (Logic Level Low) $=+0.8 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}} /$ LLS $=0$ pen (Note 6).| PARAMETER | TEMP | -550 C to +1250 ${ }^{\text {c }}$ | | | 00C to +750C | | | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | MIN | TYP | MAX | MIN | TYP | MAX | |
| ANALOG CHANNEL CHARACTERISTICS | | | | | | | | |
| $V_{\text {S }}$ Analog Signal Range | Full | -15 | | +15 | -15 | | +15 | V |
| RoN On Resistance (Note 1) | $+25^{\circ} \mathrm{C}$ | | 480 | 750 | | 480 | 750 | Ω |
| | Full | | 700 | 1000 | | 700 | 1000 | Ω |
| IS (OFF) Off Input | +250C | | 0.05 | | | 0.05 | | nA |
| Leakage Current | Full | | 0.60 | 50 | | 0.60 | 50 | nA |
| 1 D (OFF) Off Output | +250C | | 0.10 | | | 0.10 | | nA |
| Leakage Current | Full | | 0.30 | 50 | | 0.30 | 50 | nA |
| ID (ON) On Channel | +250 ${ }^{\circ}$ | | 0.10 | | | 0.10 | | nA |
| Leakage Current | Full | | 0.30 | 50 | | 0.30 | 50 | nA |
| DIGITAL INPUT CHARACTERISTICS | | | | | | | | |
| $\mathrm{V}_{\text {AL }}$ Input Low Threshold (TTL) | Full | | | 0.8 | | | 0.8 | V |
| $\mathrm{V}_{\text {AH }}$ Input High Threshold (TTL) | Full | 2.4 | | | 2.4 | | | V |
| $\mathrm{V}_{\text {AL }}$ Input Low Threshold (CMOS) | Full | | | $0.3 \mathrm{~V}_{\text {DD }}$ | | | $0.3 \mathrm{~V}_{\text {DD }}$ | V |
| $\mathrm{V}_{\text {AH }}$ Input High Threshold (CMOS) | Full | 0.7VD | | | 0.7V | | | V |
| $I_{\text {AH }}$ Input Leakage Current (High) | Full | | 0.05 | 1 | | 0.05 | 1 | $\mu \mathrm{A}$ |
| ${ }^{\text {IAH }}$ Input Leakage Current (Low) | Full | | 4 | 20 | | 4 | 20 | $\mu \mathrm{A}$ |
| SWITCHING CHARACTERISTICS | | | | | | | | |
| ${ }^{\text {t } A, ~ A c c e s s ~ T i m e ~}$ | $+25^{\circ} \mathrm{C}$ | | 80 | 125 | | 80 | 125 | |
| | Full | | 110 | 150 | | 110 | 150 | ns |
| tOPEN, Break before make Delay | +250C | | 20 | | | 20 | | ns |
| ton (EN), Enable Delay (ON) | +250C | | 80 | 150 | | 80 | 150 | ns |
| toFF (EN), Enable Delay (OFF) | +2500 | | 60 | 125 | | 60 | 125 | ns |
| Settling Time (0.1\%) | +2500 | | 250 | | | 250 | | ns |
| (0.01\%) | $+25^{\circ} \mathrm{C}$ | | 800 | | | 800 | | |
| Charge Injection (Note 2) | $+25^{\circ} \mathrm{C}$ | | 0.3 | | | 0.3 | | pC |
| Off Isolation (Note 3) | +250\% | | 86 | | | 86 | | dB |
| C_{S} (OFF) Channel Input Capacitance | +2500 | | 1.9 | | | 1.9 | | pF |
| C_{D} (OFF) Channel Output Capacitance | +250C | | 10 | | | 10 | | pF |
| $\mathrm{C}_{\text {A }}$, Digital Input Capacitance | $+25^{\circ} \mathrm{C}$ | | 3 | | | 3 | | pF |
| CDS (OFF) Input to Output Capacitance | $+25^{\circ} \mathrm{C}$ | | 0.02 | | | 0.02 | | pF |
| POWER REQUIREMENTS | | | | | | | | |
| PD_{D}, Power Dissipation | Full | | 360 | 450 | | 360 | 540 | mW |
| 1+, Current (Note 4) | Full | | 12 | 15 | | 12 | 18 | mA |
| 1-, Current (Note 4) | Full | | 12 | 15 | | 12 | 18 | mA |
| It, Standby (Note 5) | Full | | 11.5 | 15 | | 11.5 | 18 | mA |
| 1-, Standby (Note 5) | Full | | 11.5 | 15 | | 11.5 | 18 | mA |

NOTES:

1. $\operatorname{VIN}= \pm 10 \mathrm{~V}$, IOUT $=-100 \mu \mathrm{~A}$
2. $\mathrm{VIN}=O V, C_{L}=100 \mathrm{pF}$, Enable Input pulse $=3 \mathrm{~V}, f=500 \mathrm{kHz}$.
3. $\mathrm{VEN}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=3 \mathrm{VMS}, \mathrm{f}=500 \mathrm{kHz}$, $C_{L}=40 p F, R_{L}=1 \mathrm{k}$. Due to the pin to pin capacitance between IN 8/4B (Pin 3) and Out B (Pin 2) channel $8 / 4 \mathrm{~B}$ exhibits 60 dB of Off Isolation under the above test conditions.
4. $V E N=+2.4 V$.
5. $\mathrm{VEN}=0.8 \mathrm{~V}$.
6. VDD/LLS Pin = Open or grounded for TTL compatibility. VDD/LLS Pin = VDD for CMOS compatibility.

HI-518 USED AS 8 CHANNEL MULTIPLEXER OR 4 CHANNEL DIFFERENTIAL MULTIPLEXER

USE A2 AS DIGITAL ADDRESS INPUT				ON CHANNEL TO	
ENABLE	A $_{2}$	A $_{1}$	A $_{0}$	OUT A	OUT B
L	X	X	X	NONE	NONE
H	L	L	L	1 A	NONE
H	L	L	H	2 A	NONE
H	L	H	L	3 A	NONE
H	L	H	H	4A	NONE
H	H	L	L	NONE	1B
H	H	L	H	NONE	$2 B$
H	H	H	L	NONE	$3 B$
H	H	H	H	NONE	$4 B$

HI-518 USED AS DIFFERENTIAL 4 CHANNEL MULTIPLEXER

A 2 CONNECT TO V-SUPPLY			ON CHANNEL TO	
ENABLE	A_{1}	A_{0}	OUT A	OUT B
L	X	X	NONE	NONE
H	L	L	1A	1B
H	L	H	2A	2B
H	H	L	3A	3B
H	H	H	4A	4B

HARRIS
SEMICONDUCTOR PRODUCTS DIVISION A DIVISION OF HARRIS CORPORATION

8 Channel CMOS Analog Multiplexers

FEATURES	DESCRIPTION
- SIGNAL RANGE $\pm 15 \mathrm{~V}$ - "ON" RESISTANCE (TYP.) 250Ω - INPUT LEAKAGE AT $+125^{\circ} \mathrm{C}$ (TYP.) 20 nA - ACCESS TIME (TYP.) 350 ns - POWER CONSUMPTION (TYP.) 5 mW - DTL/TTL COMPATIBLE ADDRESS - -550 to +1250C OPERATION APPLICATIONS - data acquisition systems - precision instrumentation - demultiplexing - SELECTOR SWitch	The $\mathrm{HI}-1818 \mathrm{~A} / 1828 \mathrm{~A}$ are monolithic high performance CMOS analog multiplexers offering built-in channel selection decoding plus an inhibit (enable) input for disabling all channels. Dielectric Isolation (DI) processing is used for enhanced reliability and performance (see Application Note 521). Substrate leakage and parasitic capacitance are much lower, resulting in extremely low static errors and high throughput rates. Low output leakage (typically $0.1 n \mathrm{~A}$) and low channel ON resistance (250Ω) assure optimum performance in low level or current mode applications. The 1818A is a single-ended 8 channel multiplexer, while the $\mathrm{HI}-1828 \mathrm{~A}$ is a differential 4 channel version. Either device is ideally suited for medical instrumentation, telemetry systems, and microprocessor based data acquisition systems. The $\mathrm{HI}-1818 \mathrm{~A}-2$ and $\mathrm{HI}-1828 \mathrm{~A}$ are specified over $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, while the -5 versions are specified over $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$.
PINOUT	FUNCTIONAL DIAGRAM
	HI-1818A olicrat aopanss
	HI-1828A

ABSOLUTE MAXIMUM RATINGS (NOTE 1)

Supply Voltage Between Pins 14 and 15 Logic Supply Voltage, Pin 2
Analog Input Voltage: $\mathrm{V}_{\text {Supply }}^{+}+2 \mathrm{~V}$
$\mathrm{V}_{\text {Supply }}{ }^{-2 \mathrm{~V}}$
40.0 V 30.0 V

Digital Input Voltage
Total Power Dissipation (Note 2) Storage Temperature Range

V-Supply to V+Supply
780 mW
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

NOTES: 1. Voltage ratings apply when voltages at all other pins are within their normal operating ranges.
2. Derate $9.25 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $75^{\circ} \mathrm{C}$.
3. $V_{\text {OUT }}= \pm 10 \mathrm{~V} I_{\text {OUT }}=-1 \mathrm{~mA}$.
4. To drive from DTL/TTL circuits, 1 K pull-up resistors to +5.0 V supply are recommended.
5. Time measured to 90% of final output level;
$\mathrm{V}_{\text {OUT }}=-5.0 \mathrm{~V}$ to +5.0 V , Digital Inputs $=0 \mathrm{~V}$ to +4.0 V .
6. Voltage at $\operatorname{Pin} 3, \overline{\mathrm{ENABLE}}=+4.0 \mathrm{~V}$.

* 100% Tested for Dash 8 at $+25^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$ Only.

ON RESISTANCE vs ANALOG SIGNAL LEVEL

Test Circuit

ON/OFF LEAKAGE CURRENTS vs TEMPERATURE

ON CHANNEL CURRENT vs VOLTAGE

Test Circuit

ACCESS TIME

$+4 V$
$0 V$

100ns/DIV.

ALL N-CHANNEL BODIES TO V-

ALL P-CHANNEL BODIES TO V+ UNLESS OTHERWISE INDICATED.

MULTIPLEX SWITCH

HARRIS

ABSOLUTE MAXIMUM RATINGS

Supply Voltage Between Pins 1 and 27
VREF to Ground
$V_{E N}, V_{A}$, Digital Input Overvoltage:

$$
\begin{aligned}
& V_{\text {Supply }}(+)+4 \mathrm{~V} \\
& \mathrm{~V}_{\text {A }} \quad \mathrm{V}_{\text {Supply }}^{(-)}-4 \mathrm{~V}
\end{aligned}
$$

Analog Input Overvoltage:

$$
\begin{array}{ll}
\text { VS } & \text { V Supply }^{(+)+10 \mathrm{~V}} \\
\text { V Supply }^{(-)}-10 \mathrm{~V}
\end{array}
$$

Total Power Dissipation* Operating Temperature: $\mathrm{HI}-1840-2$	1200 mW
Storage Temperature	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Sto	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

*Derate $8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

Unless Otherwise Specified:
Supplies $=+15 \mathrm{~V},-15 \mathrm{~V}: \mathrm{V}_{\text {REF }}($ Pin 13 $)=+5 \mathrm{~V} ; \mathrm{V}_{\mathrm{AH}}($ Logic Level High $)=4.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{AL}}($ Logic Level Low $)=+0.8 \mathrm{~V}$
For Test Conditions, consult Performance Characteristics section.

Unless Otherwise Specified: $T_{A}=25{ }^{\circ} \mathrm{C}, \mathrm{V}_{\text {SUPPLY }}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{AH}}=+4 \mathrm{~V}, \mathrm{~V}_{\mathrm{AL}}=0.8 \mathrm{~V}$ and $\mathrm{V}_{\text {REF }}=5 \mathrm{~V}$.
ON RESISTANCE VS. ANALOG INPUT VOLTAGE

ANALOG INPUT OVERVOLTAGE CHARACTERISTICS

ANALOG INPUT OVERVOLTAGE CHARACTERISTICS

ADDRESS DECODER

MULTIPLEX SWITCH

Data Conversion Products \& Voltage References

PAGE

HA-1600/02/05 +10V Precision Voltage Reference 4-2
HA -1610/1615 +10V Precision Voltage Reference 4-6
HA-2420/2425 Fast Sample and Hold Gated Operational Amplifiers 4-9
HI-562 12 Bit High Speed Monolithic Digital to Analog Converter 4-13
HI-1080/1085 Precision Monolithic 8 Bit Digital to Analog Converter 4-18
HI-5610 10 Bit High Speed Monolithic Digital to Analog Converter 4-22
HI-5618A/5618B 8 Bit High Speed Digital to Analog Converter 4-28
HI-5900 Analog Data Acquisition Signal Processor 4-35

As with all semiconductors, stresses listed under "Absolute Maximum Ratings" may be applied to devices (one at a time) without resulting in permanent damage. This is a stress rating only. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. The conditions listed under "Electrical Characteristics" are the only conditions recommended for satisfactory operation.

HA-1600/02/05

FEATURES	DESCRIPTION
- MONOLITHIC CONSTRUCTION - EXCELLENT TEMPERATURE STABILITY - LOW NOISE $\quad 100 \mu \mathrm{~V}_{\text {RMS }}$ - WIDE INPUT RANGE 14 V TO 20V APPLICATIONS - EXTERNAL VOLTAGE REFERENCE FOR DATA CONVERTERS (D/A OR A/D) - COMPARATOR REFERENCE - Voltage regulator reference	HA-1600/02/05 is a monolithic, temperature regulated, +10 V precision voltage reference featuring load regulation accuracies to 1 LSB (12 Bit system) over its operating temperature range. This guaranteed accuracy specification is achieved by employing a high gain differential amplifier to sense and regulate the chip temperature. To enhance accuracy and provide fast warm-up and minimum power drain these devices are thermally isolated from the package. Advanced laser trimming techniques are used to ensure a precision +10 V output. In operation, HA-1600/02/05 will accept an unregulated DC input voltage ranging from +14 V to +20 V and provide a low noise, extremely accurate +10 V DC output at load currents up to 2 mA . For higher output currents an external amplifier may be connected inside the feedback loop of HA-1600/02/05. The outstanding accuracy of these voltage references make them ideal selections for applications requiring maximum precision and minimum drift, such as the external voltage reference for a $12 \mathrm{Bit} \mathrm{D} / \mathrm{A}$ converter. HA-1600/02/05 is packaged in a 14 pin DIP. HA-1600-2 is guaranteed to provide ± 1 LSB accuracy from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ while the HA-1602-2 offers guaranteed accuracy to ± 2 LSB* over the military temperature range. HA-1605-5 is specified to maintain better than ± 1 LSB* accuracy from $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$. * Relative to 12 Bit resolution 1 LSB equals one part in 4096 or 2.44 mV for $\mathrm{a}+10 \mathrm{~V}$ output.
PINOUT	SCHEMA TIC
Package Code 4 T TOP VIEW	

ABSOLUTE MAXIMUM RATINGS (Referred to Ground - Note 1)
Storage Temp. Range $\quad-650^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+150^{\circ} \mathrm{C} \quad$ Operating Temperature Range:

Input Voltage Power Dissipation

35 V 800 mW

HA-1600-2	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$
HA-1602-2	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$
HA-1605-5	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 75^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (Note 2,5) $\quad V_{I N}=+15 \mathrm{~V}, \mathrm{I}_{\mathrm{L}}=0 \mathrm{~mA}$, unless otherwise specified.

PARAMETER	TEMP	$\begin{gathered} \text { HA }-1600-2 \\ -55^{\circ} \mathrm{C} \text { to }+125{ }^{\circ} \mathrm{C} \end{gathered}$			$\begin{gathered} \text { HA-1602-2 } \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$			$\begin{gathered} \text { HA-1605-5 } \\ 0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \end{gathered}$			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
POWER INPUT CHARA.'S											
VIN, Input Voltage Range IQ, Quiescent Current	$\begin{gathered} 250 \mathrm{C} \\ -55^{\circ} \mathrm{C} \\ 250 \mathrm{C} \\ +1250 \mathrm{C} \end{gathered}$	14	15 80 50 10	$\begin{gathered} 20 \\ 130 \\ 80 \\ 20 \end{gathered}$	14	$\begin{aligned} & 15 \\ & 80 \\ & 50 \\ & 10 \end{aligned}$	$\begin{gathered} 20 \\ 130 \\ 80 \\ 20 \end{gathered}$	14 15	15 50	20 80	Volts mA mA mA
REGULATED OUTPUT CHARA.'S											
Output Voltage (V_{0}) Output Load Current (IL) Output Noise Voltage (EN) (0.1 Hz to 1 MHz)	$\begin{aligned} & 250 \mathrm{C} \\ & 25^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} 9.995 \\ 2 \end{gathered}$	$\begin{gathered} 10.000 \\ 200 \end{gathered}$	10.005	$\begin{gathered} 9.995 \\ 2 \end{gathered}$	$\begin{gathered} 10.000 \\ 200 \end{gathered}$	10.005	$\begin{gathered} 9.995 \\ 2 \end{gathered}$	$\begin{gathered} 10.000 \\ 200 \end{gathered}$	10.005	Volts mA $\mu V_{\text {RMS }}$
Line Regulation $\mathrm{V}_{\mathrm{IN}}=14.5 \mathrm{~V} \text { to } 17.5 \mathrm{~V}$	Full		0.001	0.002		0.001	0.002		0.001	0.002	\%/V
Load Reg., $\mathrm{R}_{\mathrm{L}}=0$ pen to $5 \mathrm{~K} \Omega$ Output Voltage Temperature	Full		0.001	0.002		0.001	0.002		0.001	0.002	\%/mA
Coefficient, $\mathrm{R}_{\mathrm{L}}=0$ pen	Full			± 1.35			± 2.7			± 3.25	ppm/oC
Output Voltage Error, Total (Note 3)	Full			$\pm 1 \text { LSB }$			$\pm 2 \text { LSB }$			± 1 LSB	
TURN-ON CHARACTERISTICS											
Turn-on Current (Note 4)	-550 ${ }^{\circ}$		120			120					mA
	+2500		100			100			100		mA
	+1250 ${ }^{\circ}$		20			20					mA
Warm-up Time	$-55^{\circ} \mathrm{C}$		180			180					sec
	$+25^{\circ} \mathrm{C}$		60			60			60		sec
	$+1250{ }^{\circ}$		30			30					sec

NOTES:

1. Absolute maximum ratings are limiting values beyond which the serviceability of the circult may be impaired. Functional operation under any of these conditions is not necessarily implied.
2. Low leakage capacitors are strongly recommended for noise control and other functions. Leaky capacitors can contribute to both accuracy and TC errors.
3. The specified electrical characteristics apply to suggested hook-up only. The 40Ω heater current limiter is mandatory.
4. Specifications relative to 12 bit accuracy.
5. The maximum current drawn from the input supply that is required to heat the chip to its operating temperature at the specified conditions.
6. Output Noise Voltage: The peak-to-peak output noise voltage in a specified frequency band.
7. Quiescent Current, I_{Q} : The current required from the supply to operate the device at no load condition after the device is warmed up.
8. Output Voltage Temperature Coefficient, T_{C} : The ratio of the output voltage change with temperature to the specified temperature range expressed in $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$; $\mathrm{T}_{\mathrm{C}}\left(0^{\circ} \mathrm{C}\right.$ to $\left.75^{\circ} \mathrm{C}\right)=$ $\left(\Delta V_{0} / 10 \mathrm{~V}\right) / 75^{\circ} \mathrm{C}$.
9. Line Regulation: The ratio of the change in output voltage to the change in line voltage producing it; line regulation $(\% / \mathrm{V})=\left[\left(\Delta \mathrm{V}_{0} / 10 \mathrm{~V}\right) \times 100\right] / \Delta \mathrm{V}_{\mathrm{IN}}$.
10. Load Regulation: The ratio of the change in output voltage to the change in load current producing it; load regulation $(\% / \mathrm{mA})=\left[\left(\Delta V_{0} / 10 \mathrm{~V}\right) \times 100\right] / \Delta \mathrm{I}_{\mathrm{L}}$.

PERFORMANCE CURVES

$V_{I N}=+15 \mathrm{~V}, R_{L}=\infty, T_{A}=+25^{\circ} \mathrm{C}$ Unless otherwise specified.

LINE REGULATION VS. FREQUENCY

OUTPUT VOLTAGE VS. LOAD RESISTANCE

OUTPUT BROADBAND NOISE VOLTAGE VS. FREQUENCY
(CCOMP. $=0.01 \mu \mathrm{~F}$)

*Current limiting resistor - See note 2.
FUNCTIONAL DIAGRAM/SUGGESTED HOOK-UP

BOOSTING OUTPUT CURRENT
In this circuit an operational amplifier is tied in the feedback loop of HA-1600. Output current capability can be increased from 2 mA to several hundred milliamps if required. The errors of the op amp are nullified by HA-1600.

12 BIT D/A CONVERTER USING HA-1600

HARRIS
SEMICONDUCTOR PRODUCTS DIVISION A DIVISION OF HARRIS CORPORATION

HA-1610/1615
 +10V Precision Voltage Reference

FEATURES

- MONOLITHIC CONSTRUCTION
- INITIAL ACCURACY
- EXCELLENT TEMP. STABILITY
- LOW NOISE
- WIDE INPUT RANGE
- OUTPUT SHORT CIRCUIT PROTECTION

APPLICATIONS

- EXTERNAL VOLTAGE REFERENCE FOR DATA CONVERTERS (D/A OR A/D)
- comparator reference
- VOLTAGE REGULATOR REFERENCE
- NEGATIVE 10 VOLT REFERENCE

DESCRIPTION

HA-1610/15 is a monolithic +10 V precision voltage reference featuring excellent initial accuracy and temperature stability specifications. A reference zener and buffer amplifier hold HA-1610/15's voltage output constant under varying external conditions while an initial accuracy of $10 \mathrm{~V} \pm 0.05 \%$ and a guaranteed T_{C} as low as $\pm 3 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ (Military Temperature Range) are provided by laser trimmed feedback and zener bias resistors.

An accurate +10 V DC output with 10 mA typical load current capability is provided by HA-1610/15 when supplied with an unregulated DC input ranging from 12 V to 30 V . For higher current output, an external amplifier may be connected inside the feedback loop of HA1610/15.

These devices are most useful as voltage references for 12 bit D / A or A/D converters where high precision and extreme stability are a necessity. High precision voltage output coupled with low power dissipation (30 mW Typ.) makes HA-1610/15 ideal for precision comparator reference and reference stacking circuits. These references are also useful as -10 V references.

HA-1610/15 is packaged in an 8 pin metal can (TO-99). HA-1610-2 and HA-1615-2 are specified for $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ while HA-1515-5 operates from $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$.

PINOUT

SCHEMATIC

HA-1610 Package Code 2A, 4Q, LA HA-1615 Package Code 2A, 40

TOP VIEW

ABSOLUTE MAXIMUM RATINGS
Note 1.

Input Voltage
Output Short Circuit Duration
Power Dissipation
Storage Temperature Range

40 V
Indefinitely
400 mW
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Operating Temperature Range

$\left.\begin{array}{l}\text { HA-1610-2 } \\ \text { HA-1615-2 }\end{array}\right\}$
$\left.\begin{array}{l}\text { HA-1610-5 } \\ \text { HA-1615-5 }\end{array}\right\} \quad-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (Note 2,3$) \quad\left(V_{I N}=+15 \mathrm{~V}, \mathrm{I}_{\mathrm{L}}=0 \mathrm{~mA}\right.$, unless otherwise specified).

PARAMETER		$\begin{aligned} & H A-1610-2,1615-2 \\ & -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$			$\begin{gathered} \text { HA-1610-5, 1615-5 } \\ 0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \end{gathered}$			UNITS
	TEMP	MIN	TYP	MAX	MIN	TYP	MAX	
POWER INPUT CHARACTERISTICS								
Input Voltage Range, VIN	Full	12	15	30	12	15	30	V
Quiescent Current, Io	$\begin{gathered} \hline 250 \mathrm{C} \\ \text { Full } \end{gathered}$		1.9	3.0		1.9	3.0	mA
REGULATED OUTPUT CHARA.'S								
Outputivoltage, V_{0}	$25^{\circ} \mathrm{C}$	9.995	10.00	10.005	9.995	10.00	10.005	V
Output Load Current, IL	Full	10			10			mA
Line Regulation (V IN $=12 \mathrm{~V}$ to 30V)	$\begin{gathered} 25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$		0.001	0.004		0.001	0.004	\%/V
Load Regulation ($\mathrm{L}_{\mathrm{L}}=0$ to 10 mA)	$\begin{gathered} 25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$		0.0015	0.004		0.0015	0.004	\%/mA
$\begin{aligned} & \text { Output Voltage Tempco, } I_{L}=0 \mathrm{~mA} \\ & \qquad \begin{array}{l} \text { (HA-1610) } \\ \text { (HA-1615) } \end{array} \end{aligned}$	Full Full			± 3 ± 5			± 3 ± 5	ppm/ ${ }^{\circ} \mathrm{C}$
Output Noise Voltage, EN (0.1 Hz to 1 MHz)	Full		200			200		$\mu \mathrm{V}$ RMS
$\begin{array}{r} \text { Dynamic Load Settling Time to } \pm 0.1 \% \\ \text { to } \pm 0.01 \% \end{array}$	$\begin{aligned} & 25^{\circ} \mathrm{C} \\ & 25^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & 100 \\ & 400 \end{aligned}$			$\begin{aligned} & 100 \\ & 400 \end{aligned}$		ns
Warm-up Time (to $\pm 0.01 \%$)	$\begin{gathered} 25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$		1 3			1 3		sec

NOTES:

1. Absolute maximum ratings are limiting values beyond which the serviceability of the circuit may be impaired. Functional operation under any of these conditions is not necessarily implied.
2. Low leakage capacitors are strongly recommended for noise control and other functions. Leaky capacitors can contribute to both accuracy and TC errors.
3. The specified electrical characteristics apply to suggested hook-up only.
4. Output Noise Voltage - the root mean square output noise voltage in a specified frequency band.
5. Quiescent Current, I_{Q} - the current required from the supply to operate the device at no load condition after the device is warmed-up.
6. Output Voltage Temperature Coefficient, T_{C} - the ratio of the output voltage change with temperature to the specified temperature range expressed in $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ such as:
$\mathrm{T}_{\mathrm{C}}\left(0^{\circ} \mathrm{C}\right.$ to $\left.75^{\circ} \mathrm{C}\right)=\left(\Delta \mathrm{V}_{0} / 10 \mathrm{~V}\right) / 75^{\circ} \mathrm{C} \times 10^{6}$.
7. Line Regulation (\%/V) - the ratio of the change in output voltage to the change in line voltage producing it; line regulation $(\% / \mathrm{V})=\left[\left(\Delta \mathrm{V}_{0} / 10 \mathrm{~V}\right) \times 100\right] / \Delta \mathrm{V}_{\text {IN }}$.
8. Load Regulation ($\% / \mathrm{mA}$) - the ratio of the change in output voltage to the change in load current producing it; load regulation $(\% / \mathrm{mA})=\left[\left(\Delta \mathrm{V}_{0} / 10 \mathrm{~V}\right) \times 100\right] / \Delta \mathrm{mA}$.
9. Dynamic Load Settling Time - the time required for the output to settle to within the specified error band for a change in the load current of 1 mA (without the bandwidth control capacitor).

APPLICATIONS

PIN FUNCTION/TYPICAL HOOK-UP

HIGH CURRENT OUTPUT WITH CURRENT LIMITING

SUGGESTED HOOKUP FOR LOW NOISE AND OUTPUT TRIM

NEGATIVE 10 VOLT REFERENCE

*Note: The value of R may reduce the output current available to less than that specified on the data sheet.

HARRIS
SEMICONDUCTOR
PRODUCTS DIVISION
A DIVISION OF HARRIS CORPORATION

ABSOLUTE MAXIMUM RATINGS

Voltage Between V+ and V-Terminals 40 V
Differential Input Voltage $\pm 30 \mathrm{~V}$
Digital Input Voltage (Pin 14) . $+8 \mathrm{~V},-15 \mathrm{~V}$
Output Current

Short Circuit Protected

Internal Power Dissipation
Operating Temperature Range
HA-2420-2/8
HA-2425-5
Storage Temperature Range

300 mW (Note 7)
$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+75^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+150^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

Test Conditions $\quad \mathrm{V}_{\text {Supply }}= \pm 15.0 \mathrm{~V}$
Unless Otherwise Specified
Digital Input (Pin 14) $\mathrm{V}_{\mathrm{IL}}=+0.8 \mathrm{~V}$ (Sample)
$\mathrm{V}_{\mathrm{IH}}=+2.0 \mathrm{~V}$ (Hold)

PARAMETER	TEMP.	HA-2420-2			HA-2425-5			UNITS
		MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
INPUT CHARACTERISTICS * Offset Voltage	$\begin{gathered} +25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$		3	4 6		$\begin{aligned} & 3 \\ & 4 \end{aligned}$	6 8	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
* Bias Current	$\begin{gathered} +25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$		50	$\begin{aligned} & 200 \\ & 400 \end{aligned}$		50	$\begin{aligned} & 200 \\ & 400 \end{aligned}$	$\begin{aligned} & \text { nA } \\ & \text { nA } \end{aligned}$
* Offset Current	$\begin{gathered} +25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$		10	$\begin{gathered} 50 \\ 100 \end{gathered}$		10	$\begin{gathered} 50 \\ 100 \end{gathered}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
Input Resistance	$+25^{\circ} \mathrm{C}$	5	10		5	10		$\mathrm{M} \Omega$
Common Mode Range	Full	± 10			± 10			v
TRANSFER CHARACTERISTICS * Large Signal Voltage Gain (Note 1, 4)	Full	25K	50K		25K	50K		V / V
*Common Mode Rejection (Note 2)	Full	80	90		74	90		dB
Gain Bandwidth Product (Note 3)	$+25^{\circ} \mathrm{C}$		2			2		M Hz_{2}
OUTPUT CHARACTERISTICS * Output Voltage Swing (Note 1)	Full	± 10			± 10			\checkmark
Output Current	$+25^{\circ} \mathrm{C}$	± 10			± 10			mA
Full Power Bandwidth (Note 3, 4)	$+25^{\circ} \mathrm{C}$		70			70		kHz
Output Resistance	$+25^{\circ} \mathrm{C}$		5			5		Ω
TRANSIENT RESPONSE Rise Time (Note 3, 5)	$+25^{\circ} \mathrm{C}$		100			100		ns
Overshoot (Note 3, 5)	$+25^{\circ} \mathrm{C}$		20			20		\%
Slew Rate (Note 3, 6)	$+25^{\circ} \mathrm{C}$		5			5		$\mathrm{V} / \mathrm{\mu s}$
DIGITAL INPUT CHARACTE RISTICS Digital Input Current ($\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$)	Full			0.8			0.8	mA
Digital Input Current ($\mathrm{V}_{1 \mathrm{~N}}=+5.0 \mathrm{~V}$)	Full			20			20	$\mu \mathrm{A}$
Digital Input Voltage (Low)	Full			0.8			0.8	v
Digital Input Voltage (High)	Full	2.0			2.0			v
SAMPLE/HOLD CHARACTERISTICS Acquisition Time to $.1 \% 10 \mathrm{~V}$ Step (3)	$+25^{\circ} \mathrm{C}$		4			4		$\mu \mathrm{s}$
Acquisition Time to $0.01 \% 10 \mathrm{~V}$ Step (3)	$+25^{\circ} \mathrm{C}$		5			5		$\mu \mathrm{s}$
Aperture Delay	$+25^{\circ} \mathrm{C}$		50			50		ns
Aperture Uncertainty	$+25^{\circ} \mathrm{C}$		5			5		ns
* Drift Current	$+25^{\circ} \mathrm{C}$ Full		$\begin{array}{r} 5 \\ 0.5 \end{array}$	10		$\begin{gathered} 5 \\ .05 \end{gathered}$	1.0	nA
* Charge Transter	$+25^{\circ} \mathrm{C}$			20		10	20	pC
POWER SUPPLY CHARACTERISTICS * Supply Current	$+25^{\circ} \mathrm{C}$		2.5	5.0		2.5	5.0	mA
* Power Supply Rejection Ratio	Full	80	90		74	90		dB

NOTES: 1. $R_{L}=2 K \Omega$
5. $V_{\text {OUT }}=400 \mathrm{mV}$ peak-to-peak
2. $V_{C M}= \pm 10 \mathrm{VDC}$
6. $\mathrm{V}_{\text {OUT }}=10.0 \mathrm{~V}$ peak-to-peak
3. $A_{V}=+1, R_{L}=2 K \Omega, C_{L}=50 \mathrm{pF}$
7. Derate Power Dissipation by
4. $\mathrm{V}_{\text {OUT }}=20 \mathrm{~V}$ peak-to-peak
$4.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+105^{\circ} \mathrm{C}$
Ambient Temperature.
$V_{\text {SUPPLY }}= \pm 15 \mathrm{VDC}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{H}}=1,000 \mathrm{pF}$ UNLESS OTHERWISE SPECIFIED

TYPICAL SAMPLE-AND-HOLD PERFORMANCE AS A FUNCTION OF HOLDING CAPACITANCE

C_{H} Value

DRIFT CURRENT vs TEMPERATURE

Temperature, (Degrees C)

BROADBAND NOISE CHARACTERISTICS

(Lower 3db Frequency $=10 \mathrm{~Hz}$)

OPEN LOOP FREQUENCY RESPONSE

Frequency, Hz

OPEN LOOP PHASE RESPONSE

Frequency, Hz_{z}

BASIC SAMPLE-AND-HOLD

Figure 1

GUARD RING LAYOUT (BOTTOM VIEW)

Figure 2

NOTES: 1) Figure 1 shows a typical unity gain circuit, with offset zeroing. All of the other normal op amp feedback configurations may be used with the/ HA-2420/2425. The input amplifier may be used as a gated amplifier by utilizing Pin 11 as the output. This amplifier has excellent drive capabilities along with exceptionally low switch leakage.
2) The method used to reduce leakage paths on the P.C. board and the device package is shown in Figure 2. This guard ring is recommended to minimize the drift during hold characteristic.
3) The holding capacitor should have extremely high insulation resistance and low dielectric absorption. Polystyrene (below $+85^{\circ} \mathrm{C}$), Teflon, or Parlene types are recommended.

For more applications, consult Harris Application Note 517.

GLOSSARY OF TERMS

ACQUISITION TIME:

The time required by the device after the "sample" command to reach its final value within $\pm 0.1 \%$ or $\pm 0.01 \%$. This time includes switch delay time, slewing time and settling time. This is the minimum sample time required to obtain a given accuracy.

CHARGE TRANSFER:

The small charge transferred to the holding capacitor from the inter-electrode capacitance of the switch when the unit is switched to the Hold mode. Sample-to-Hold offset error is directly proportional to this charge, where:

$$
\text { Offset Error }(\mathrm{V})=\frac{\text { Charge }(\mathrm{pC})}{\mathrm{C}_{\mathrm{H}}(\mathrm{pF})}
$$

APERTURE DELAY:

The time required after the "hold" command until the switch is fully open. This delays the effective sample timing with rapidly changing input signals.

DRIFT CURRENT:

Leakage currents from the holding capacitor during the Hold mode which cause the output voltage to drift. Drift rate (droop rate) can be calculated from drift current values using the formula:

$$
\frac{\Delta V}{\Delta T}(\text { Volts } / \mathrm{Sec})=\frac{\mathrm{I}(\mathrm{pA})}{C_{H}(\mathrm{pF})}
$$

HARRIS
SEMICONDUCTOR PRODUCTS DIVISION A DIVISION OF HARRIS CORPORATION

12 Bit High Speed Monolithic Digital-to-Analog Converter

FEATURES	
- monolithic construction	
- extremely fast settling	300ns T0 0.01\% (TYP.)
- Low gain drift	$\pm 5 \mathrm{ppm} / 0 \mathrm{C}$ (MAX.)
- excellent linearity	$\pm 1 / 2$ LSB (MAX.)
- designed for minimum glitches	
- monotonic over temperature	

APPLICATIONS

- CRT DISPLAY GENERATION
- high Speed a/D converters
- VIDEO SIGNAL RECONSTRUCTION
- WAVEFORM SYNTHESIZERS
- HIGH SPEED DATA ACQUISITION

DESCRIPTION

The Harris $\mathrm{HI}-562$ is the first monolithic digital-to-analog converter to combine both ultra-high speed performance and 12-bit accuracy on the same chip. The HI-562's fast output current settling of 300 ns to 0.01% is achieved using dielectric isolation processing to reduce internal parasitics for fast rise and fall times during switching. Output glitches are minimized in the HI-562 by incorporating equally weighted current sources switched into an R-2R ladder network for symmetrical turn-ON and turn-0FF switching times. This creates within the chip a very uniform and constant thermal distribution for excellent linearity and also completely eliminates thermal transients during switching. High stability thin film resistor processing together with laser trimming provide the HI-562 with guaranteed true 12-bit linearity to within $\pm 1 / 2$ LSB maximum at $+25^{\circ} \mathrm{C}$ for -4 and -5 parts, and to within $\pm 1 / 4$ LSB maximum at $+25^{\circ} \mathrm{C}$ for -2 and -8 parts. The $\mathrm{HI}-562$ is recommended as a replacement for higher cost hybrid and modular units for increased reliability and accuracy in applications such as CRT displays, precision instruments and data acquisition systems requiring throughput rates as high as 3.3 MHz for full range transitions. Its small size makes it an ideal choice as the heart of high speed A / D converter designs or as a building block in high speed or high resolution industrial process control systems. The HI-562 is also ideally suited for aircraft and space instrumentation where operation over a wide temperature range is required.
The HI-562-5 is specified for operation over $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$, the $\mathrm{HI}-562-4$ over $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ and the $\mathrm{HI}-562-2$ and $\mathrm{HI}-$ $562-8$ over $-55^{\circ} \mathrm{C}$ to $+125^{\circ}$ C. Processing MIL-STD-883A Class B screening is available by selecting the $\mathrm{HI}-562-8$. All are available in a hermetically sealed 24-lead dual-in-line package.

- HIGH-REL APPLICATIONS
- PRECISION INSTRUMENT'S

FUNCTIONAL DIAGRAM

PINOUT

*Pin 3 connected to bottom case

 for high frequency shielding.

ABSOLUTE MAXIMUM RATINGS (Referred to Ground) ${ }^{1}$

Power Supply Inputs	Vps+	+20V
	Vps-	-20V
Reference Inputs	Vref (Hi)	$\pm \mathrm{V}_{\text {s }}$
Digital Inputs	Bits 1-12	-1V, +12V
	CMOS/TTL Logic Select	-1V, +12V
Outputs	Pins 7, 8, 10, 11	$\pm \mathrm{V}_{\text {ps }}$
	Pin 9	+Vps, -5V

Power Dissipation $\quad P_{d}$, Package
Operating Temperature Range

HI-562-2	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
HI-562-4	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$\mathrm{HI}-562-5$	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$

HI-562-5 $\quad 0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
$\mathrm{HI}-562-8 \quad-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
 unless otherwise noted)

PARAMETER	CONDITIONS	HI-562-2/HI-562-8			HI-562-4/HI-562-5			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	

INPUT CHARACTERISTICS

TRANSFER CHARACTERISTICS

Resolution	Over full temp. range		12		12	Bits
Nonlinearity (3)	$@+25^{\circ} \mathrm{C}$ Over full temp. range	$\pm 1 / 2$	$\begin{gathered} \pm 1 / 4 \\ \pm 1 \end{gathered}$	$\pm 1 / 4$	$\begin{gathered} \pm 1 / 2 \\ \pm 1 \end{gathered}$	LSB
Differential Nonlinearity (3)	@ +250ㄷ Over full temp. range		$\begin{gathered} \pm 1 / 4 \\ \text { MONOTO } \end{gathered}$	$\pm 1 / 4$	$\pm 1 / 2$	LSB
Relative Accuracy (6) Gain Error Bipolar Offset Error Unipolar Offset Error	With 24.9Ω (1\%) Trim Resistors	$\begin{aligned} & \pm .024 \\ & \pm .024 \\ & \pm .012 \end{aligned}$	$\begin{aligned} & \pm .10 \\ & \pm 0.25 \\ & \pm 0.05 \end{aligned}$	$\begin{aligned} & \pm .024 \\ & \pm .024 \\ & \pm .012 \end{aligned}$	$\begin{aligned} & \pm 0.25 \\ & \pm 0.25 \\ & \pm 0.05 \end{aligned}$	\% FSR (4)
	All Bits ON					
	All Bits OFF					
Adjustment Range	See Operating Instructions	$\begin{aligned} & \pm 0.3 \\ & \pm 0.6 \end{aligned}$		$\begin{aligned} & \pm 0.3 \\ & \pm 0.6 \end{aligned}$		\% FSR
Gain Bipolar Offset	With 50Ω Trim Potentiometers					
Temperature Stability Gain Drift (3) Offset Drift (3)	Drift specified with internal span resistors for voltage output Over full temp. range	$\pm 6$$\pm 1$	1 ± 10	± 2	± 10	ppm of FSR/0C
Unipolar Offset Bipolar Offset	All Bits OFF		$\begin{aligned} & \pm 2 \\ & \pm 4 \end{aligned}$		$\begin{aligned} & \pm 2 \\ & \pm 4 \\ & \pm 2 \end{aligned}$	
Differential Nonlinearity	Over full temp. range		± 2			
Settling Time (3) to $\pm 1 / 2$ LSB	All Bits ON-to-OFF or OFF-to-ON	300	400	300	400	ns

OUTPUT CHARACTERISTICS

Output Current Unipolar Bipolar			-5.0 ± 2.5			$\begin{aligned} & -5.0 \\ & \pm 2.5 \end{aligned}$		mA
Resistance			1000			1000		ohms
Capacitance			20			20		pF
Output Voltage Ranges Unipolar Bipolar	Using external op amp and internal scaling resistors. See Figure 1 and Table 1 for connections		$\begin{gathered} 0 \text { to }+5 \\ 0 \text { to }+10 \\ \pm 2.5 \\ \pm 5 \\ \pm 10 \end{gathered}$			$\begin{gathered} 0 \text { to }+5 \\ 0 \text { to }+10 \\ \pm 2.5 \\ \pm 5 \\ \pm 10 \end{gathered}$		V
Compliance Limit (3)		-3		+10	-3		+10	V
Compliance Voltage (3)	Over full temp. range		± 1.0	,		± 1.0		V
Output Noise	0.1 to 10 Hz (All Bits ON) 0.1 to 5 MHz (All Bits ON)		$\begin{gathered} 30 \\ 100 \end{gathered}$			$\begin{gathered} 30 \\ 100 \end{gathered}$		$\mu V(p-p)$

POWER REQUIREMENTS

$\begin{aligned} & V_{p s^{+}}(7) \\ & V_{p s^{-}} \end{aligned}$	Over full temp. range	$\begin{gathered} 4.5 \\ 13.5 \end{gathered}$	$\begin{gathered} 5 \\ 15 \end{gathered}$	$\begin{array}{r} 5.5 \\ 16.5 \end{array}$	$\begin{aligned} & 4.75 \\ & 13.5 \end{aligned}$	$\begin{gathered} 5 \\ 15 \end{gathered}$	$\begin{gathered} 5.5 \\ 16.5 \end{gathered}$	V
$\begin{aligned} & I_{\mathrm{ps}^{+}+(5)} \\ & I_{\mathrm{ps}}-(5) \end{aligned}$	All Bits ON or OFF in either TTL or CMOS mode		$\begin{gathered} 9 \\ 28 \end{gathered}$	$\begin{aligned} & 15 \\ & 40 \end{aligned}$		9 28	15 40	mA
$\begin{aligned} & I_{\mathrm{ps}}+(5) \\ & I_{\mathrm{ps}}{ }^{-}(5) \end{aligned}$	Same as above except over full temp. range		11 33	$\begin{aligned} & 20 \\ & 50 \end{aligned}$		11 33	20	mA

1. Absolute maximum ratings are limiting values, applied individually, beyond which the serviceability of the circuit may be impaired. Functional operation under any of these conditions is not necessarily implied.
2. $\mathrm{V}_{\mathrm{ps}}{ }^{+}$tolerance is $\pm 10 \%$ for $\mathrm{HI}-562-2,-8$. and $\pm 5 \%$ for HI-562-4, -5.
3. See Definitions.
4. FSR is "full scale range" and is 20 V for $\pm 10 \mathrm{~V}$ range, 10 V for $\pm 5 \mathrm{~V}$ range, etc.; or $5 \mathrm{~mA}(\pm 20 \%)$ for current output.
5. After 30 seconds warm-up.
6. Using an external op amp with internal span resistors and specified external trim resistors in place of potentiometers R_{1} and R_{2}. Errors are adjustable to zero using R_{1} and R_{2} potentiometers. (See Operating Instructions Figure 2.)
7. Maximum $\mathrm{V}_{\mathrm{ps}}{ }^{+}$is +12 V for high level logic only, i.e. when pin 2 is tied to pin 1.

DEFINITIONS OF SPECIFICATIONS

DIGITAL INPUTS

The HI-562 accepts digital input codes in binary format and may be user connected for any one of three binary codes. Straight Binary, Two's Complement, or Offset Binary, (See Operating Instructions).

	ANALOG OUTPUT		
DIGITAL INPUT	Straight Binary	Offset Binary	Two's Complement*
MSB LSB $000 \ldots 000$	Zero	-FS (Full Scale)	Zero
$100 \ldots 000$	$1 / 2$ FS	Zero	-FS
$111 \ldots 111$	+FS -1 LSB	+FS -1 LSB	$1 / 2 F S-1$ LSB
$011 \ldots 111$	$1 / 2$ FS -1 LSB	Zero -1 LSB	+FS -1 LSB

*Invert MSB with external inverter to obtain Two's Complement Coding

ACCURACY

NONLINEARITY - Nonlinearity of a D/A converter is an important measure of its accuracy. It describes the deviation from an ideal straight line transfer curve drawn between zero (all bits OFF) and full scale (all bits ON).

DIFFERENTIAL NONLINEARITY - For a D/A converter, it is the difference between the actual output voltage change and the ideal (1 LSB) voltage change for a one bit change in code. A Differential Nonlinearity of ± 1 LSB or less guarantees monotonictiy; i.e., the output always increases and never decreases for an increasing input.

SETTLING TIME

Settling time is the time required for the output to settle to within the specified error band for any input code transition. It is usually specified for a full scale or major carry transition.

DRIFT

GAIN DRIFT - The change in full scale analog output over the specified temperature range expressed in parts per million of full scale range per ${ }^{\circ} \mathrm{C}$ (ppm of $\mathrm{FSR} /{ }^{\circ} \mathrm{C}$). Gain error is measured with respect to $+25^{\circ} \mathrm{C}$ at high (T_{H}) and low (T_{L}) temperatures. Gain drift is calculated for both high ($\mathrm{T}_{\mathrm{H}}-25^{\circ} \mathrm{C}$) and low ranges $\left(+25^{\circ} \mathrm{C}-\mathrm{T}_{\mathrm{L}}\right)$ by dividing the gain error by the respective change in temperature. The specification is the larger of the two representing worst case drift.

OFFSET DRIFT - The change in analog output with all bits OFF over the specified temperature range expressed in parts per million of full scale range per ${ }^{\circ} \mathrm{C}$ (ppm of $\mathrm{FSR} /{ }^{\circ} \mathrm{C}$). Offset error is measured with respect to $+25^{\circ} \mathrm{C}$ at high (T_{H}) and low (T_{L}) temperatures. Offset Drift is calculated for both high ($\mathrm{T}_{\mathrm{H}}-25^{\circ} \mathrm{C}$) and low ($+25^{\circ} \mathrm{C}-\mathrm{T}_{\mathrm{L}}$) ranges by dividing the offset error by the respective change in temperature. The specification given is the larger of the two, representing worst-case drift.

POWER SUPPLY SENSITIVITY

Power Supply Sensitivity is a measure of the change in gain and offset of the D/A converter resulting from a change in -15 V , +5 V or +15 V supplies. It is specified under DC conditions and expressed as parts per million of full scale range per percent of change in power supply (ppm of FSR/\%).

COMPLIANCE

Compliance voltage is the maximum output voltage range that can be tolerated and still maintain its specified accuracy. Compliance limit implies functional operation only and makes no claims to accuracy.

GLITCH

A glitch on the output of a D/A converter is a large transient spike resulting from unequal internal ON-OFF switching times. Worst case glitches usually occur at half-scale or the major carry code transition from 011... 1 to $100 . . .0$ or vice versa. For example, if turn $O N$ is greater than turn OFF for $011 \ldots 1$ to $100 \ldots 0$, an intermediate state of $000 \ldots 0$ exists, such that, the output momentarily glitches to zero output. Matched switching times and fast switching will reduce glitches considerably.

DECOUPLING AND GROUNDING

For best accuracy and high frequency performance, the grounding and decoupling scheme shown in Figure 1 should be used. Decoupling capacitors should be connected close to the HI562 (preferrably to the device pins) and should be tantalum or electrolytic bypassed with ceramic types for best high frequency noise rejection.

Figure 1

UNIPOLAR AND BIPOLAR VOLTAGE OUTPUT CONNECTIONS

CONNECTIONS - Using an external resistive load, the output compliance should not exceed $\pm 1 \mathrm{~V}$ to maintain specified accuracy. For higher output voltages, accuracy can be maintained by using an external op amp and the internal span resistors as shown in Figure 2 and defined in Table 1 for unipolar and bipolar modes.

* For TTL and DTL compatibility, connect +5 V to pin 1 and tie pin 2 to pin 12. For CMOS compatibility, connect digital power supply $(+4.85 \mathrm{~V} \leq$ VDD $\leq+12 \mathrm{~V})$ to pin 1 and short pin 2 to pin 1.
** Bias resistor, RB, should be chosen to equalize op amp offset voltage due to bias current. Its value is calculated from the parallel combination of the current source output resistance (1K) and the op amp feedback resistor. See Table 1 for values of RB.

Table 1

	OUTPUT RANGE	CONNECTIONS				BIAS (RB) RESISTOR
		$\begin{array}{\|c} \hline \text { Pin } 7 \\ \text { to } \end{array}$	$\begin{array}{\|c} \hline \text { Pin } 8 \\ \text { to } \end{array}$	$\begin{array}{\|c} \text { Pin } 10 \\ \text { to } \end{array}$	$\begin{array}{\|c} \text { Pin } 11 \\ \text { to } \end{array}$	
Unipolar	0 to +10 V	N.C.	N.C.	A	N.C.	667Ω
Mode	0 to +5 V	N.C.	N.C.	A	9	500Ω
Bipolar Mode	$\pm 10 \mathrm{~V}$	D	9	N.C.	A	667Ω
	$\pm 5 \mathrm{~V}$	D	9	A	N.C.	580Ω
	$\pm 2.5 \mathrm{~V}$	D	9	A	9	444Ω

EXTERNAL GAIN AND ZERO CALIBRATION (See Figure 2)

The input reference resistor (7.975 K) and bipolar offset resistors shown in Figure 2 are both intentionally set low by 25Ω to allow the user to externally trim-out initial errors to a very high degree of precision. The adjustments are made in the voltage output mode using an external op amp as current-to-voltage converter and the HI-562 internal scaling resistors as feedback elements for optimum accuracy and temperature coefficient. For best accuracy over temperature, select an op amp that has good front-end temperature coefficients such as the HA-2600/ 2605 with offset voltage and offset current tempco's of $5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ and $1 \mathrm{nA} /{ }^{\circ} \mathrm{C}$, respectively. For high speed voltage mode applications where fast settling is required, the HA-2510/2515 is recommended for better than $1.5 \mu \mathrm{~s}$ settling to 0.01%. Using either one, potentiometer R_{3} conveniently nulls unipolar offset plus op amp offset in one operation (for HA-2510/2515 and HA-2600/2605 use $\mathrm{R}_{3}=20 \mathrm{~K}$ and 100 K , respectively). For bipolar mode operation, R_{3} should be used to null op amp offset to optimize its tempco (i.e., short 9 to A and adjust R_{3} for zero before calibrating in bipolar mode). The gain and bipolar offset adjustment range using 50Ω potentiometers is ± 12 LSB and ± 25 LSB respectively. If desired, the potentiometers can be replaced with fixed $24.9 \Omega(1 \%)$ resistors resulting in an initial gain and bipolar offset accuracy of typically $\pm 1 / 2$ LSB.

UNIPOLAR CALIBRATION
Step 1: Unipolar Offset - Turn all bits OFF - Adjust R3 for zero volts output Step 2: Gain - Turn all bits 0 N - Adjust R2 for an output of FS -1 LSB That is, adjust for: 9.9976 V for 0 V to +10 V range 4.9988 V for OV to +5 V range
BIPOLAR CALIBRATION
Step 1: Bipolar Offset - Turn all bits OFF - Adjust R1 for an output of: -10 V for $\pm 10 \mathrm{~V}$ range -5 V for $\pm 5 \mathrm{~V}$ range -2.5 V for $\pm 2.5 \mathrm{~V}$ range Step 2: Gain - Turn bit 1 (MSB) ON; all other bits OFF - Adjust R2 for zero volts output

Figure 2

HARRIS
SEMICONDUCTOR PRODUCTS DIVISION
A DIVISION OF HARRIS CORPORATION

HI-1080/1085
 Precision Monolithic 8-Bit D to A Converter

FEATURES	DESCRIPTION
- GUARANTEED ± 1 L.S.B. ACCURACY OVER TEMPERATURE HI-1080 $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ HI-1085 $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ - FAST SETTLING 1.5μ s to $1 / 2$ L.S.B. - EXPANDABLE FOR HIGHER RESOLUTIONS - MONOLITHIC CONSTRUCTION - DTL/TTL COMPATIBLE INPUTS - RELIABLE MONOLITHIC CONSTRUCTION MEETS REQUIREMENTS OF MIL-STD-883 APPLICATIONS - WAVEFORM SYNTHESIZERS - MICROPROCESSOR I/O INTERFACE - high rel applications - A TO D CONVERTER (USING COMPARATOR AND DIGITAL LOGIC) - DATA ACQUISITION SYSTEMS	The HI-1080/1085 is a monolithic 8 bit digital-to-analog converter employing bipolar current switches feeding a thin film R-2R ladder network. Because of the excellent stability of this device, it is practical to specify one all-inclusive accuracy parameter: ± 1 L.S.B. accuracy over the operating temperature range. This means that once the desired full scale output level is set at room temperature by adjustment of the input reference current, each of the 256 output levels will always measure within ± 1 L.S.B. of the corresponding output of a "perfect" DAC. Thus the accuracy specification includes the worst case effects of all of the normally published errors such as non-linearity, zero drift, full scale drift, etc. The device is exceptionally versatile, since it may be used in a voltage or current output mode, and may be offset to produce bipolar operation. Matched auxillary resistors are provided for amplifier feedback or current summing. Provisions are also made for scale factor adjustment and for cascading of additional D/A converters for extended resolution.
PINOUT	FUNCTIONAL DIAGRAM
Package Code 4K TOP VIEW	

ABSOLUTE MAXIMUM RATINGS

Maximum Ratings are limiting values above which permanent circuit damage may occur.

Voltage		Ladder Common:	+8.0 V
V +	+8.0 V	IREF:	1.6 mA
V-	-18.0 V	Storage Temperature:	$-65^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+150^{\circ} \mathrm{C}$
Digital Inputs:	+5.5 V	Power Dissipation:	$450 \mathrm{~mW} *$

*Derate at $4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $85^{\circ} \mathrm{C}$ ambient.

ELECTRICAL CHARACTERISTICS

Unless otherwise stated all measurements taken at $\mathrm{V}+=+5 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}$ $\mathrm{V}_{\text {REF }}=+5 \mathrm{~V}, \mathrm{~V}_{\text {in }}$ High $=+2.4 \mathrm{~V}, \mathrm{~V}_{\text {in }}$ Low $=+0.4 \mathrm{~V}$ Unipolar, zero reference connection (Figure 3)

	TEMP	HI-1080			TEMP	HI-1085			UNITS
		MIN		MAX		MIN		MAX	
Resolution		8				8			Bits
Accuracy	$+25^{\circ} \mathrm{C}$		1/4	1/2					
(Calibrated at $25^{\circ} \mathrm{C}$) (Note 1)	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$				$\begin{aligned} & 0^{\circ} \mathrm{C} \text { to } \\ & +75^{\circ} \mathrm{C} \end{aligned}$		1/2	1	L.S.B.
$V_{\text {Full Scale (}}$ (Note 2) (Uncalibrated)	$+25^{\circ} \mathrm{C}$	-4.5	-4.98	-5.5	$+25^{\circ} \mathrm{C}$	-4.5	-4.98	-5.5	Volts
Power Supply Rejection (Note 3)	$\begin{gathered} -55^{\circ} \mathrm{C} \\ \text { to } \\ +125^{\circ} \mathrm{C} \end{gathered}$. 05	. 001		$\begin{aligned} & 0^{\circ} \mathrm{C} \text { to } \\ & +75^{\circ} \mathrm{C} \end{aligned}$. 05	. 001		$\begin{aligned} & \text { L.S.B. } \\ & \text { per } \\ & \text { Volt } \end{aligned}$
Settling Time (Note 4)	$+25^{\circ} \mathrm{C}$		1.5	3.0	$+25^{\circ} \mathrm{C}$		1.5		$\mu \mathrm{s}$
Digital Inputs: High Threshold Low Threshold (Note 5) $I_{\text {in }}$ High		0.8	. 01	2.0 1	$0^{0} \mathrm{C}$	0.8	. 01	2.0 1	Volts Volts mA
lin Low (Note 6)	$\begin{aligned} & -550 \mathrm{C} \text { to } \\ & +125{ }^{\circ} \mathrm{C} \end{aligned}$		-0.7	-1.0	$\begin{gathered} \text { to } \\ +750 \end{gathered}$		-0.7	-1.0	mA
Supply Current:									
$1+$	$-55^{\circ} \mathrm{C}$		8	10	$0^{00} \mathrm{C}$		8	10	mA
I-	to		8	10	to		8	10	mA
IREF (Note 7)	$+125^{\circ} \mathrm{C}$		0.5	0.6	$+75^{\circ} \mathrm{C}$		0.5	0.6	mA

NOTES: Test Conditions -

1. Any Input Combination
2. Inputs all low
3. $\Delta \mathrm{V}_{\mathrm{OUT}} / \Delta \mathrm{V}_{\text {SUPPLY }}$ $V+=+5 \pm 0.5 \mathrm{~V}$ $\mathrm{V}-=-15 \pm 3 \mathrm{~V}$
4. $\mathrm{To}^{ \pm} \pm 0.2 \%$ of full scale after full scale input step $R_{L}>10 \mathrm{M}$
$C_{L}<5 p F$
5. $\mathrm{V}+=4.5 \mathrm{~V}$
6. $\mathrm{V}_{\text {in }}=2.4$ Volts
7. $\mathrm{V}+=+5.0 \mathrm{~V}$
$\mathrm{V}+=5.5 \mathrm{~V}$
$\mathrm{V}-=-15.0 \mathrm{~V}$
$V_{\text {REF }}=+5.0 \mathrm{~V}$
Inputs all low

TYPICAL OUTPUT ACCURACY vs. TEMPERATURE

TYPICAL SETTLING TIME

D/A CONVERTER OPERATION MODES

MODE	OUTPUT RANGE INPUTS: ALL HIGH TO ALLLOW	CONNECTIONS			
		A*	B*	C	D
$\begin{gathered} \text { UNIPOLAR } \\ \text { ZERO } \\ \text { REFERENCE } \end{gathered}$	0 TO-V $\mathrm{R}^{+-1 L . S . B . ~}$	$\mathrm{V}_{\mathrm{R}^{+}}$	N.C.	GND	GND
UNIPOLAR ZERO F.S.	$+/ \mathrm{V}^{+} / \mathrm{TO} 00+1 \mathrm{~L} . \mathrm{S} . \mathrm{B}$.	$\mathrm{V}_{\mathrm{R}^{+}}$	N.C.	GND	$V_{\text {R }}$
BIPOLAR	$/ \mathrm{V}_{\mathrm{R}}+/ \mathrm{TO}-\mathrm{V}_{\mathrm{R}}+1 \mathrm{LL} . S . \mathrm{B}$.	N.C.	$\mathrm{V}_{\mathrm{R}}{ }^{+}$	GND	$\mathrm{V}^{+}+$

OPERATING MODES

[^16]

INVERTING OUTPUT
(MORE POSITIVE WITH INCREASING COMPLEMENT OF INPUT NUMBER)
(MORE NEGATIVE WITH INCREASING COMPLEMENT OF INPUT NUMBER)

OUTPUT RANGE: SAME AS SHOWN ON 'OPERATING MODE' CHART MULTIPLIED BY $1+\frac{R 1}{R 2}$

•FULL SCALE OUTPUT	OUTPUT FEEDBACK CONNECTED TO	R1
+4.98 V	R SUM	2.5 K
+9.96 V	2 SSUM	3.3 K

CASCADED UNITS FOR 12 BIT RESOLUTION

DIGITAL
INPUTS

FEATURES

APPLICATIONS

- MONOLITHIC CONSTRUCTION
- extremely fast settling. 85ns TO 1 12LSB TYP.
- LOW GAIN DRIFT. $\pm 5 \mathrm{ppm} /$ ºC TYP.
- excellent linearity over temperature $\pm 1 / 2 L$ LSb max.
- DESIGNED FOR MINIMUM GLITCHES
- MONOTONIC OVER TEMPERATURE
- CRT DISPLAY GENERATION - HIGH SPEED A/D CONVERTERS
- VIDEO SIGNAL RECONSTRUCTION
- waveform synthesizers
- high speed data acouisition
- HIGH RELIABILITY APPLICATIONS
- PRECISION INSTRUMENTS

DESCRIPTION

The HI-5610 is an ultra-high speed 10 bit monolithic current output digital-to-analog converter. The fast output current settling of 85 ns to $1 / 2$ LSB of its final value is achieved using dielectric isolation processing to reduce internal parasitics for fast rise and fall times during switching. Output glitches are minimized in the $\mathrm{HI}-5610$ by incorporating equally weighted current sources switched into an R-2R ladder network for symmetrical turn-on and turn-off switching times. This creates within the chip a very uniform and constant thermal distribution for excellent linearity and also eliminates thermal transients during switching. High stability thin film resistor processing, together with laser trimming provide the $\mathrm{HI}-5610$ with true 10 bit linearity to within $\pm 1 / 2$ LSB maximum over operating temperature range. The HI-5610's low offset and gain drift over the operating temperature range assures that its absolute accuracy when referred to a fixed 10 V reference will not deviate more than ± 1 LSB for both unipolar and bipolar operation.

The $\mathrm{HI}-5610$ is recommended as a replacement for high cost hybrid and modular units for increased reliability and accuracy in applications such as CRT Displays, precision instruments and data acquisition system requiring through-put rates as high as 12 mHz for full range transitions. Its small size makes it an ideal choice as the essential part of high speed A / D converter designs or as a building block in high speed or high resolution industrial process control systems. The HI-5610 is also ideally suited for aircraft and space instrumentation where operation over a wide temperature range is required.

The $\mathrm{HI}-5610-5$ is specified for operation over $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$, the $\mathrm{HI}-5610-2$ and $\mathrm{HI}-5610-8$ over $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. Processing to MIL-STD-883A class B screening is available by selecting the HI-5610-8. All are available in a hermetically sealed 24 lead dual-in-line package.

PINOUT	
TOP VIEW	Package Code 1H
$\mathrm{V}_{\text {pst }} 1-\square$	
cmos/tit ${ }^{\text {cosic }}$	
\cdots	-22 BIT3iN
NC ${ }^{4}-$	-21 Bitain
ref (HIN) 5 -	-20 BIT 51 N
$\mathrm{v}_{\text {DS }}{ }^{6}-$	-19 Bitgin
bipolarrin $7-$	-18
BIPOLARROUT 8 -	-17 BIT 8 IN
ldac out ${ }^{9}-$	-16 В1т919
SPAN ${ }^{10}$	- 15
SPAN R $11-$	- 14 NC
*GNO $12-$	-13 comp.cap **

* Pin 3 connected to bottom case for high frequency shielding.
** For high speed operation, connect $0.01 \mu \mathrm{~F}$ between Pin 13 and GND. Otherwise, leave P in 13 open.

FUNCTIONAL DIAGRAM

Power Supply Inputs	$\begin{aligned} & V_{\mathrm{ps}^{+}} \\ & \mathrm{V}_{\mathrm{ps}} \end{aligned}$	$\begin{aligned} & +20 \mathrm{~V} \\ & -20 \mathrm{~V} \end{aligned}$	Power Dissipation Pd, Package	1000 mW
Reference Inputs	Vref (Hi) VREF(Lo)	$\begin{gathered} \pm \mathrm{V}_{\mathrm{ps}} \\ \mathrm{OV} \end{gathered}$	Operating Temperature Range HI-5610-2	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
			HI-5610-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
Digital Inputs	Bits 1-12	$\begin{aligned} & -1 V,+12 V \\ & -1 V,+12 V \end{aligned}$	HI-5610-8	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
			Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Outputs	$\begin{aligned} & \text { Pins 7, 8, 10, } 11 \\ & \text { Pin } 9 \end{aligned}$	$\begin{array}{r} \pm V_{p s} \\ +V_{p s},-5 \mathrm{~V} \end{array}$		

ELECTRICAL CHARACTERISTICS $\quad\left(@+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{ps}}{ }^{+},=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{ps}}=-15 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=+10 \mathrm{~V}\right.$, pin 2 ground unless otherwise noted)

		$\begin{aligned} & \mathrm{HI}-5610-2 \\ & \mathrm{HI}-5610-8 \end{aligned}$			HI-5610-5			
PARAMETER	TEMP	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
INPUT CHARACTERISTICS								
```Digital Inputs (2) TTL Logic Input Voltage (3) Logic "1" Logic "0" Input Current Logic "1" Logic "0"```	Full   Full   Full   Full	2.0	$\begin{gathered} 20 \\ -50 \end{gathered}$	$\begin{gathered} 0.8 \\ \\ 100 \\ -100 \end{gathered}$	2.0	$\begin{gathered} 20 \\ -50 \end{gathered}$	$\begin{gathered} 0.8 \\ \\ 100 \\ -100 \end{gathered}$	V V   nA   $\mu \mathrm{A}$
	Full   Full   Full   Full	$0.7 \mathrm{Vps}^{+}$	$\begin{gathered} 20 \\ -50 \end{gathered}$	$\begin{gathered} 0.3 . \mathrm{V}_{\mathrm{ps}}{ }^{+} \\ 100 \\ -100 \end{gathered}$	$0.7 \mathrm{~V}_{\text {ps }}{ }^{+}$	$\begin{gathered} 20 \\ -50 \end{gathered}$	$\begin{gathered} 0.3 V_{p s}{ }^{+} \\ 100 \\ -100 \end{gathered}$	$\begin{aligned} & V \\ & V \\ & n A \\ & \mu A \end{aligned}$
Reference Input Input Resistance Input Voltage ( $I_{\text {OUT }}=5 \mathrm{~mA}+20 \%$ )			8 K +10			$8 K$ +10		$\checkmark$
TRANSFER CHARACTERISTICS								
Resolution	Full			10			10	Bits
Nonlinearity (5)	$25^{\circ} \mathrm{C}$			$\pm 1 / 2$			$\pm 1 / 2$	LSB
Differential Nonlinearity (5)	$25^{\circ} \mathrm{C}$			$\pm 1 / 2$			$\pm 1 / 2$	LSB
Relative Accuracy (6)   Gain Error   (Input Code 11....1)   Unipolar Offset Error   (Input Code 00....0)   Bipolar Offset Error   (Input Code 00....0)   (Adjustable to zero, see Figure			$\begin{aligned} & \pm 0.05 \\ & \pm 0.05 \\ & \pm 0.05 \end{aligned}$			$\begin{aligned} & \pm 0.05 \\ & \pm 0.05 \\ & \pm 0.05 \end{aligned}$		(9)   \% FSR   \% FSR   \% FSR
Adjustment Range   Gain   Bipolar Offset			$\begin{aligned} & \pm 0.25 \\ & \pm 0.25 \end{aligned}$			$\begin{aligned} & \pm 0.25 \\ & \pm 0.25 \end{aligned}$		$\begin{aligned} & \text { \% FSR } \\ & \% \text { FSR } \end{aligned}$
Temperature Stability   Gain Drift   Unipolar Offset Drift   Bipolar Offset Drift   Differential Nonlinearity	Full   Full   Full   Full		$\pm 5$ $\pm 3$ $\pm 3$ $\pm 2$			$\pm 5$ $\pm 3$ $\pm 3$ $\pm 2$		ppm/ ${ }^{\circ} \mathrm{C}$   ppm/ ${ }^{\circ} \mathrm{C}$   ppm/ ${ }^{\circ} \mathrm{C}$   $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
MONOTONICITY - GUARANTEED OVER FULL OPERATING TEMPERATURE RANGE								
Settling Time to $1 / 2$ LSB (5) From all 0 's to all 1 's From all 1 's to all 0 's			$\begin{aligned} & 85 \\ & 85 \end{aligned}$			$\begin{aligned} & 85 \\ & 85 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
Major Carry Switching to 90\% Complete			40			40		ns


PARAMETER	TEMP	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Power Supply Sensitivity (5) $\begin{gathered} \mathrm{V}_{\mathrm{ps}^{+}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{ps}^{-}}=-13.5 \mathrm{~V} \text { to }-16.5 \mathrm{~V} \\ \text { Gain } \\ \text { (Input Code 11....1) } \\ \text { Unipolar Offset } \\ \text { (Input Code 00....0) } \\ \text { Bipolar Offset } \\ \text { (Input Code 00....0) } \end{gathered}$			$\begin{aligned} & \pm 0.5 \\ & \pm 1.5 \end{aligned}$	$\pm 2$		$\begin{aligned} & \pm 0.5 \\ & \pm 1.5 \end{aligned}$	$\pm 2$	$\begin{gathered} \mathrm{ppm} \text { of } \\ \text { FSR/\%Vps } \end{gathered}$
$\begin{gathered} \mathrm{V}_{\mathrm{ps}^{-}}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{ps}^{+}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \\ \text { Gain } \\ \text { (Input Code 11...1) } \\ \text { Unipolar Offset } \\ \text { (Input Code 00....0) } \\ \text { Bipolar Offset } \\ \text { (Input Code 00....0) } \end{gathered}$			$\begin{aligned} & \pm 0.5 \\ & \pm 1.5 \end{aligned}$	$\pm 1$		$\begin{aligned} & \pm 0.5 \\ & \pm 1.5 \end{aligned}$	$\pm 1$	
OUTPUT CHARACTERISTICS								
Output Current   Unipolar   Bipolar			-5.0 $\pm 2.5$			$\begin{array}{r} -5.0 \\ \pm 2.5 \end{array}$		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Output Resistance			200			200		$\Omega$
Output Capacitance			20			20		pF
Output Voltage Range (7)   Unipolar   Bipolar			$\begin{gathered} +5 \\ +2.5 \\ \pm 2.5 \\ \pm 1.25 \end{gathered}$			$\begin{gathered} +5 \\ +2.5 \\ \pm 2.5 \\ \pm 1.25 \end{gathered}$		$\begin{aligned} & V \\ & v \\ & v \\ & V \\ & V \end{aligned}$
Output Compliance Limit (5)		-3		+10	-3		+10	V
Output Compliance Voltage (5)	Full		$\pm 1.5$			$\pm 1.5$		V
Output Noise Voltage (8) 0.1 Hz to 100 Hz   0.1 Hz to 1 MHz			$\begin{gathered} 10 \\ 100 \end{gathered}$			$\begin{gathered} 10 \\ 100 \end{gathered}$		$\begin{aligned} & \mu V_{p-p} \\ & \mu V_{p-p} \end{aligned}$

POWER REQUIREMENTS

$\mathrm{V}_{\text {ps }}{ }^{(4)}$	Full	4.5	5	15	4.75	5	15	V
$\mathrm{V}_{\mathrm{ps}}{ }^{-}$	Full	13.5	15	16.5	13.5	15	16.5	V
Ips+ (All 1's or all 0's in   (10) either TTL or CMOS Mode)	$\begin{gathered} 25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$		9 20			9 20		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Ips- (Same as above)   (10)	$\begin{gathered} 25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$		25 30			25 30		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$

1. Absolute maximum ratings are limiting values, applied individually, beyond which the serviceability of the circuit may be impaired. Functional operation under any of these conditions is not necessarily implied.
2. The HI-5610 accepts digital input codes in binary format and may be user connected for any one of three binary codes. Straight binary, offset binary, or two's complement binary. (See operating instructions)
3. For TTL and DTL compatibility connect +5 V to pin 1 and ground pin 2. The $\mathrm{V}_{\text {ps }}$ tolerance is $\pm 10 \%$ for $\mathrm{HI}-5610-2,-8$. And $\pm 5 \%$ for $\mathrm{HI}-5610-5$.
4. For CMOS compatibility connect digital power supply $\left(+4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq+10 \mathrm{~V}\right)$ to pin 1 and short pin 2 to pin 1.
5. See definitions.
6. Using an external op amp with internal span resistors and $24.9 \Omega \pm 1 \%$ external trim resistors in place of potentiometers R1 and R2. These errors are adjustable to zero using R1 and R2. (See operating instructions)
7. Using an external op amp and internal span resistors. (See operating instructions for connections)
8. Specified for digital input in all ' 1 's or all ' 0 's.
9. FSR is "Full Scale Range" and is 5 V for $\pm 2.5 \mathrm{~V}$ range, 2.5 V for $\pm 1.25 \mathrm{~V}$ range, etc., or $5 \mathrm{~mA}( \pm 20 \%$ ) for current output.
10. After 30 seconds warm-up.

## DEFINITIONS OF SPECIFICATIONS

## ACCURACY

NONLINEARITY - Nonlinearity of a D/A converter is an important measure of its accuracy. It describes the deviation from an ideal straight line transfer curve drawn between zero (all bits OFF) and full scale (all bits ON).
DIFFERENTIAL NONLINEARITY - For a D/A converter, it is the difference between the actual output voltage change and the ideal (1LSB) voltage change for a one bit change in code. A Differential Nonlinearity of $\pm 1$ LSB or less guarantees monotonicitiy; i.e., the output always increases and never decreases for and increasing input.

## SETTLING TIME

Settling time is the time required for the output to settle to within the specified error band for any input code transition. It is usually specified for a full scale or major carry transition
(01.......... 1 to 10.......... 0 or vice versa)

## DRIFT

GAIN DRIFT - The change in full scale analog output over the specified temperature range expressed in parts per million of full scale range per ${ }^{\circ} \mathrm{C}$ ( ppm of $\mathrm{FSR} /{ }^{\circ} \mathrm{C}$ ). Gain error is measured with respect to $+25^{\circ} \mathrm{C}$ at high ( $\mathrm{T}_{H}$ ) and low ( $\mathrm{T}_{\mathrm{L}}$ ) temperatures. Gain drift is calculated for both high $\left(T_{H}-25^{\circ} \mathrm{C}\right)$ and low ranges $\left(+25^{\circ} \mathrm{C}\right.$ - $T_{L}$ ) by dividing the gain error by the respective change in temperature. The specification is the larger of the two representing worst case drift.
OFFSET DRIFT - The change in analog output with all bits OFF over the specified temperature range expressed in parts per million
of full scale range per ${ }^{\circ} \mathrm{C}$ ( ppm of $\mathrm{FSR} /{ }^{\circ} \mathrm{C}$ ). Offset error is measured with respect to $+25^{\circ} \mathrm{C}$ at high ( $T_{H}$ ) and low ( $T_{L}$ ) temperatures. Offset Drift is calculated for both high ( $T_{H}-25^{\circ} \mathrm{C}$ ) and low $\left(+25^{\circ} \mathrm{C}\right.$ $\left.-T_{L}\right)$ ranges by dividing the offset error by the respective change in temperature. The specification given is the larger of the two, representing worst case drift.

## POWER SUPPLY SENSITIVITY

Power Supply Sensitivity is a measure of the change in gain and offset of the $\mathrm{D} / \mathrm{A}$ converter resulting from a change in $-15 \mathrm{~V},+5 \mathrm{~V}$ or +15 V supplies. It is specified under DC conditions and expressed as parts per million of full scale range per percent of change in power supply (ppm of FSR/\%).

## COMPLIANCE

Compliance voltage is the maximum output voltage range that can be tolerated and still maintain its specified accuracy. Compliance limit implies functional operation only and makes no claims to accuracy.

## GLITCH

A glitch on the output of a $D / A$ converter is a large transient spike resulting from unequal internal ON-OFF switching times. Worst case glitches usually occur at half-scale or the major carry code transition from $011 \ldots . . .1$ to $100 \ldots . . .0$ or vice versa. For example, if turn $0 N$ is greater than turn OFF for $011 \ldots . . .1$ to $100 . . . .0$, an intermediate state of $000 . \ldots . .0$ exists, such that, the output momentarily glitches to zero output. Matched switching times and fast switching will reduce glitches considerably.

## OPERATING INSTRUCTIONS

## DECOUPLING AND GROUNDING

For best accuracy and high speed performance, the grounding and decoupling scheme shown in Figure 1 should be used. Decoupling capacitors should be connected close to the HI-5610 (preferrably to the device pin) and should be tantalum or electrolytic bypassed with ceramic types for best high frequency noise rejection.


## HIGH PERCISION PERFORMANCE

The output accuracy of the $\mathrm{HI}-5610$ depends mainly on the accuracy of the voltage applied to the VREF input of $\mathrm{HI}-5610$ and it can be described roughly as $V$ REF $/ 8 K \Omega=1 / 4$ full scale output current. This means the output of $\mathrm{HI}-5610$ will change whenever VREF varies. For high precision performance a precision +10 V voltage reference with reasonably low temperature coefficient such as HA1600 is highly recommended. For voltage output operation use an external op amp as current-to-voltage converter and the HI-5610 internal scaling resistors as feedback elements for optimum accuracy and temperature coefficient. The selected op amp should have a good front-end temperature coefficient such as HA-2600/2605 with offset voltage and offset current tempco's of $5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ and $1 \mathrm{nA} /{ }^{\circ} \mathrm{C}$, respectively. The input reference resistor ( $7.975 \mathrm{~K} \Omega$ ) and bipolar offset resistor ( $3.975 \mathrm{~K} \Omega$ ) are both intentionally set low by $25 \Omega$ to allow the user to externally trim-out initial errors to a very high degree of precision. For high speed voltage output applications where fast settling is required, the HA-2510/2515 is recommended for better than $1 \mu$ s settling to $1 / 2$ LSB.

## UNIPOLAR VOLTAGE OUTPUT CONNECTIONS AND CALIBRATION

The connections for unipolar +5 V and +2.5 V voltage output using an external op amp and the internal span resistors are shown in Figure 2 and Figure 3, respectively.
CALIBRATION - UNIPOLAR
Step 1 Offset

- Turn all bits off (all 0's)
- Adjust R3 for zero volts output

Step 2 Gain

- Turn all bits on (all 1 's)
- Adjust R1 for an output of FS-1LSB That is, adjust for: 4.99512 V for OV to +5 V range 2.49756 V for OV to +2.5 V range

UNIPOLAR - STRAIGHT BINARY OV TO +5V OUTPUT RANGE

DIGITAL INPUT	ANALOG OUTPUT	
$11 . . .$.	FS - 1LSB	$=4.99512 \mathrm{~V}$
$10 . . .$.	1/2FS	$=2.50000 \mathrm{~V}$
$01 . . .$.	1/2FS-1LSB	$=2.49512 \mathrm{~V}$
$00 . . . . .0$	Zero	$=0.00000 \mathrm{~V}$

FIGURE 2


## UNIPOLAR - STRAIGHT BINARY

 OV TO +2.5V OUTPUT RANGE| DIGITAL <br> INPUT | ANALOG OUTPUT |  |
| :---: | :--- | :--- |
| $11 \ldots \ldots$ | 1 | FS -1 LSB |
| $10 \ldots$. | $=2.49756 \mathrm{~V}$ |  |
| $01 \ldots$ | $\ldots$ | 1 |
| $00 \ldots$ FS | $1 / 2$ FS -1LSB | $=1.25000 \mathrm{~V}$ |



## BIPOLAR VOLTAGE OUTPUT CONNECTIONS AND CALIBRATION

The connections for Bipolar $\pm 2.5 \mathrm{~V}$ and $\pm 1.25 \mathrm{~V}$ voltage output using an external op amp and the internal span resistors are shown in Figure 4 and Figure 5, respectively.

## CALIBRATION - BIPOLAR

Step 10 p Amp Null

- Short op amp output to op amp -input
- Adjust R3 for zero volts output

Step 2 Gain

- Turn all bits on (all 1 's) record output voltage
- Turn all bits off (all 0's) record output voltage
- Adjust R1 till the difference between the readings is equal to:
4.99512 V for $\pm 2.5 \mathrm{~V}$ range
2.49756 V for $\pm 1.25 \mathrm{~V}$ range

Step 3 Offset

- Turn bit 1 (MSB) on, all other bits off (10....0)
- Adjust R2 for zero volts output

BIPOLAR - OFFSET BINARY
$\pm 2.5 \mathrm{~V}$ OUTPUT VOLTAGE RANGE

DIGITAL INPUT	ANALOG OUTPUT
11 .... 1	$+\mathrm{FS}-1$ LSB $=+2.49512 \mathrm{~V}$
$10 \ldots 0$	ZERO $\quad=+0.00000 \mathrm{~V}$
01 .... 1	Zero-1 LSB $=-0.00488 \mathrm{~V}$
$00 \ldots 0$	-FS $\quad=-2.50000 \mathrm{~V}$

BIPOLAR TWO'S COMPLEMENT ** $\pm 2.5 \mathrm{~V}$ OUTPUT VOLTAGE RANGE

DIGITAL   INPUT	ANALOG OUTPUT	
01 .... . 1	+FS - 1LSB	$=+2.49512 \mathrm{~V}$
$00 \ldots 0$	Zero	$=+0.00000 \mathrm{~V}$
$11 \ldots 1$	Zero-1LSB	$=-0.00488 \mathrm{~V}$
$10 \ldots 0$	-FS	$=-2.50000 \mathrm{~V}$

** Invert MSB with external inverter to obtain two's complement coding.

BIPOLAR - OFFSET BINARY
$\pm 1.25 \mathrm{~V}$ OUTPUT VOLTAGE RANGE

DIGITAL   INPUT	ANALOG OUTPUT	
11	$\ldots$	$\ldots$
10	+FS -1 LSB	$=+1.24756 \mathrm{~V}$
10	$\ldots$	0
01	$\ldots$	Zero
00	$\ldots$	1

BIPOLAR - TWO'S COMPLEMENT ** $\pm 1.25 \mathrm{~V}$ OUTPUT VOLTAGE RANGE



FIGURE 4


## DESCRIPTION

- VERY FAST SETTLING CURRENT OUTPUT
- MAXIMUM NONLINEARITY

HI-5618A

- ON-CHIP RESISTORS FOR GAIN AND BIPOLAR OFFSET
- GUARANTEED MONOTONIC OVER TEMPERATURE
- DESIGNED FOR MINIMUM GLITCHES
- CMOS ORTTL INPUT COMPATIBLE


## APPLICATIONS

- HIGH SPEED PROCESS CONTROL
- CRT DISPLAY GENERATION
- HIGH SPEED A/D CONVERTERS
- VIDEO SIGNAL RECONSTRUCTION
- WAVEFORM SYNTHESIZERS
- HIGH RELIABLIITY APPLICATIONS
$\pm 1 / 4$ LSB
$\pm 1 / 2$ LSB
45ns TYP.



The HI-5618A/B are very high speed 8 bit current output D/A converters. These monolithic devices are constructed using dielectrically isolated bipolar processing which reduces internal parasitic capacitances allowing fast rise and fall times. This achieves a typical full scale settling time of 45 ns to $\pm 1 / 2$ LSB. Output glitches are minimized by incorporating equally weighted current sources switched into either an R-2R ladder network or ground for symmetrical turn ON and turn OFF times. High stability thin film resistor processing and laser trimming provide these devices with excellent accuracies over the full operating temperature range. The HI-5618A has a maximum nonlinearity error of $\pm 1 / 4$ LSB and a guaranteed relative accuracy of $\pm 1 / 2$ LSB over the full operating temperature range.

The $\mathrm{HI}-5618 \mathrm{~A} / \mathrm{B}$ are recommended for applications requiring high speed and accurate conversion over the full operating temperature range. These devices can be used in CRT displays and data acquisition systems requiring throughput rates as high as 20 MHz for full range transitions. These 8 bit D/A converters are ideally suited for applications in avionics, space instrumentation and defense systems where high speed and accurate conversions are required. Other applications include high speed process control systems.

The HI-5618A/B in the -5 version are specified for operation from $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$. The $\mathrm{HI}-5618 \mathrm{~A} / \mathrm{B}$ in the -2 and -8 versions are specified from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. Processing to MIL-STD-883A, Class B screening is available by selecting the -8 devices.

FUNCTIONAL DIAGRAM


ABSOLUTE MAXIMUM RATINGS (Referred to Ground) ${ }^{1}$

Power Supply Inputs	$\mathrm{V}_{\mathrm{ps}}{ }^{+}$	+20V	Power Dissipation Pd, Package	700 mW
	$V_{\text {ps }}$	-20V	Operating Temperature Range	
Reference Inputs	$V_{\text {REF }}(\mathrm{Hi})$	$\pm \mathrm{V}_{\mathrm{ps}}$	HI-5618A/B-2	$-55^{\circ} \mathrm{C}$ to $+125{ }^{\circ} \mathrm{C}$
	VREF(Lo)	OV	HI-5618A/B-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
Digital Inputs	Bits 1-8	-1V, +12V	HI-5618A/B-8	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
CMOS/TTL Logic Select		$-1 \mathrm{~V},+12 \mathrm{~V}$	Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $150{ }^{\circ} \mathrm{C}$
Outputs	$\begin{aligned} & \text { Pins 5, 7, } 8 \\ & \text { Pin } 6 \end{aligned}$	$\begin{array}{r}  \pm \mathrm{V}_{\mathrm{ps}} \\ +\mathrm{V}_{\mathrm{ps},},-2.5 \mathrm{~V} \end{array}$		

## ELECTRICAL CHARACTERISTICS

$\left(@+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{ps}^{+}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{ps}}{ }^{-}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=+10 \mathrm{~V}\right.$
Pin 2 to GND, Unless otherwise noted)

PARAMETER	TEMP.	$\begin{aligned} & \mathrm{HI}-5618 \mathrm{~A} / \mathrm{B}-2 \\ & \mathrm{HI}-5618 \mathrm{~A} / \mathrm{B}-8 \end{aligned}$			HI-5618A/B-5			UNITS
		MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	

INPUT CHARACTERISTICS

```Digital Inputs (2) TTL Logic Input Voltage (3) Logic "1" Logic "0"```	Full   Full	2.0		0.8	2.0		0.8	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
$\begin{array}{ll}\text { Input Current } & \text { Logic " } 1 \text { " } \\ \text { Logic " } 0 \text { " }\end{array}$	Full Full		$\begin{gathered} 20 \\ -50 \end{gathered}$	$\begin{gathered} 100 \\ -100 \end{gathered}$		$\begin{gathered} 20 \\ -50 \end{gathered}$	$\begin{gathered} 100 \\ -100 \end{gathered}$	$\begin{aligned} & \mathrm{nA} \\ & \mu \mathrm{~A} \end{aligned}$
$\begin{aligned} \hline \text { CMOS Logic Input Voltage (4) } & \begin{array}{l} \text { Logic " } 1 " \\ \text { Logic " } 0 \text { " } \end{array} \end{aligned}$	Full Full	$0.7 \mathrm{~V}_{\mathrm{ps}}{ }^{+}$		$0.3 \mathrm{~V}_{\text {ps }}{ }^{+}$	$0.7 \mathrm{~V}_{\mathrm{ps}^{+}}$		$0.3 \mathrm{Vps}^{+}$	V
Input Current $\begin{array}{ll}\text { Logic " } 1 \text { " } \\ \text { Logic " } 0 \text { " }\end{array}$	$\begin{aligned} & \text { Full } \\ & \text { Full } \\ & \hline \end{aligned}$		$\begin{gathered} 20 \\ -50 \end{gathered}$	$\begin{gathered} 100 \\ -100 \\ \hline \end{gathered}$		$\begin{gathered} 20 \\ -50 \end{gathered}$	$\begin{gathered} 100 \\ -100 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{nA} \\ & \mu \mathrm{~A} \\ & \hline \end{aligned}$
```Reference Input Input Resistance Input Voltage (IOUT \(=5 \mathrm{~mA}+20 \%\) )```	$\begin{aligned} & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \end{aligned}$		$\begin{gathered} 8 \mathrm{~K} \\ +10 \end{gathered}$			$\begin{array}{r} 8 K \\ +10 \end{array}$		$\Omega$ $V$

TRANSFER CHARACTERISTICS

Resolution	Full		8			8		Bits
Nonlinearity $\quad$ HI-5618A	$25^{\circ} \mathrm{C}$			$\pm 1 / 4$			$\pm 1 / 4$	LSB
	Fuil			$\pm 3 / 8$			$\pm 3 / 8$	LSB
	$25^{\circ} \mathrm{C}$			$\pm 1 / 2$			$\pm 1 / 2$	LSB
	Full			$\pm 5 / 8$			$\pm 5 / 8$	LSB
Initial Accuracy (6)								
Gain	$25^{\circ} \mathrm{C}$			$\pm 2$			$\pm 2$	LSB
Unipolar Zero	$25^{\circ} \mathrm{C}$			$\pm 1 / 8$			$\pm 1 / 8$	LSB
Bipolar Zero	$25^{\circ} \mathrm{C}$			$\pm 2$			$\pm 2$	LSB
Gain Adjustment	$25^{\circ} \mathrm{C}$	$\pm 3$			$\pm 3$			LSB
Bipolar Zero Adjustment	$25^{\circ} \mathrm{C}$	$\pm 3$			$\pm 3$			LSB
Stability								
Gain	Full			$\pm 1 / 8$			$\pm 1 / 8$	LSB
Unipolar Zero	Full			$\pm 1 / 16$			$\pm 1 / 16$	LSB
Bipolar Zero	Full			$\pm 1 / 8$			$\pm 1 / 8$	LSB


PARANETER	TEMP.	$\begin{aligned} & \mathrm{HI}-5618 \mathrm{~A} / \mathrm{B}-2 \\ & \mathrm{HI}-5618 \mathrm{~A} / \mathrm{B}-8 \end{aligned}$			HI-5618A/B-5			UNITS
		MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
Settling Time (5) to 1/2 LSB								
High Impedance (11) (from all 0 's to all 1 's) or (from all 1 's to all 0 's)	$+25^{\circ} \mathrm{C}$		55	75		55	75	ns
$50 \Omega$ Load (12) $\begin{array}{r}\text { (from all } 0 \text { 's to all } 1 \text { 's) } \\ \text { or (from all } 1 \text { 's to all } 0 \text { 's) }\end{array}$	$+25^{\circ} \mathrm{C}$		45			45		ns
Low Impedance (13) (from all 0 's to all 1 's) or (from all 1's to all 0 's)	$+250 \mathrm{C}$		55			55		ns
Major Carry Transition (5)								
Duration, $\mathrm{t}_{0}$	+2500		20			20		ns
Amplitude, $\mathrm{V}_{\mathrm{A}}$	$+250 \mathrm{C}$		350			350		mV
Power Supply Sensitivity (5)								
$\mathrm{V}_{\mathrm{ps}}{ }^{+}=+5 \mathrm{~V}, \mathrm{~V}_{\text {ps }}=-13.5 \mathrm{~V}$ to -16.5 V								
Gain (Input Code 11...1)	$+25^{\circ} \mathrm{C}$			$\pm 3.5$			$\pm 3.5$	
Unipolar Offset (Input Code 00...0)	+250C		$\pm 0.5$			$\pm 0.5$		ppm of
Bipolar Offset (Input Code 00...0)	$+25^{\circ} \mathrm{C}$		$\pm 1.5$			$\pm 1.5$		FSR/\% V ps
$\mathrm{V}_{\mathrm{ps}}{ }^{-}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{ps}}{ }^{+}=4.5 \mathrm{~V}$ to 5.5 V								
Gain   (Input Code 11 . . . 1)	+2500			$\pm 3.5$			$\pm 3.5$	
Unipolar Offset (Input Code 00...0)	$+250 \mathrm{C}$		$\pm 0.5$			$\pm 0.5$		
Bipolar Offset (Input Code 00...0)	+250 ${ }^{\circ}$		$\pm 1.5$			$\pm 1.5$		

## OUTPUT CHARACTERISTICS



POWER REQUIREMENTS (4)

$V_{\text {ps }}{ }^{+}$	Full	4.5	5	15	4.75	5	15	V
$\mathrm{V}_{\mathrm{ps}}{ }^{-}$	Full	13.5	15	16.5	14.25	15	15.75	V
$\mathrm{I}_{\mathrm{ps}}{ }^{+}$(10) (All 1's or all 0's in either TTL or CMOS mode)	$\begin{gathered} +25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$		9	12		9	12	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
$\mathrm{I}_{\mathrm{ps}}$ (10) (All 1's or all 0 's in either TTL or CMOS mode)	$\begin{gathered} +25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$		19	24		19	24	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$

## NOTES:

1. Absolute maximum ratings are limiting values, applied individually, beyond which the serviceability of the circuit may be impaired. Functional operation under any of these conditions is not necessarily implied.
2. The HI-5618 accepts digital input codes in binary format and may be user connected for any one of three binary codes. Straight binary, offset binary, or two's complement binary. (See operating instructions)
3. For TTL and DTL compatibility connect +5 V to pin 1 and ground pin 2. The $\mathrm{V}_{\mathrm{ps}}+$ tolerance is $\pm 10 \%$ for $\mathrm{HI}-5618 \mathrm{~A} / \mathrm{B}$ $2,-8$; and $\pm 5 \%$ for $\mathrm{HI}-5618 \mathrm{~A} / \mathrm{B}-5$.
4. For CMOS compatibility connect digital power supply ( $+4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq+10 \mathrm{~V}$ ) to pin 1 and short pin 2 to pin 1.
5. See definitions.
6. Using an external op amp with internal span resistors and $24.9 \Omega \pm 1 \%$ external trim resistors in place of potentiometers R1 and R2. These errors are adjustable to zero using R1 and R2. (See operating instructions)
7. Using an external op amp and internal span resistors. (See operating instructions for connections)
8. Specified for digital input in all " 1 ' $s$ " or all " 0 ' $s$ ".
9. FSR is "Full Scale Range" and is 5 V for $\pm 2.5 \mathrm{~V}$ range, 2.5 V for $\pm 1.25 \mathrm{~V}$ range, etc., or $5 \mathrm{~mA}( \pm 20 \%$ ) for current output.
10. After 30 seconds warm-up.
11. See Figure 7 for Test Circuit used.
12. See Figure 8 for Test Circuit used.
13. See Figure 9 for Test Circuit used.

## ACCURACY

NONLINEARITY - Nonlinearity of a D/A converter is an important measure of its accuracy. It describes the deviation from an ideal straightline transfer curve drawn between zero (all bits 0FF) and full scale (all bits ON).

DIFFERENTIAL NONLINEARITY - For a D/A converter, it is the difference between the actual output voltage change and the ideal (1 LSB) voltage change for any two adjacent codes. A Differential Nonlinearity of $\pm 1$ LSB or less guarantees monotonicity; i.e., the output always increases and never decreases for an increasing input.

## DRIFT

GAIN DRIFT - The change in full scale analog output over the specified temperature range expressed in parts per million of full scale range per ${ }^{\circ} \mathrm{C}$ ( ppm of $\mathrm{FSR} /{ }^{\circ} \mathrm{C}$ ). Gain error is measured with respect to $+25^{\circ} \mathrm{C}$ at high ( $\mathrm{T}_{\mathrm{H}}$ ) and low ( $\mathrm{T}_{\mathrm{L}}$ ) temperatures. Gain drift is calculated for both high $\left(T_{H}-25^{\circ} \mathrm{C}\right)$ and low ranges $\left(+25^{\circ} \mathrm{C}\right.$ $\left.-T_{L}\right)$ by dividing the gain error by the respective change in temperature. The specification is the larger of the two representing worst case drift.
OFFSET DRIFT - The change in analog output with all bits OFF over the specified temperature range expressed in parts per million of full scale range per ${ }^{\circ} \mathrm{C}$ ( ppm of $\mathrm{FSR} /{ }^{\circ} \mathrm{C}$ ). Offset error is measured with respect to $+25^{\circ} \mathrm{C}$ at high $\left(T_{H}\right)$ and low $\left(T_{L}\right)$ temperatures. Offset Drift is calculated for both high ( $T_{H}-25^{\circ} \mathrm{C}$ ) and low $\left(+25^{\circ} \mathrm{C}\right.$ $-T_{L}$ ) ranges by dividing the offset error by the respective change in temperature. The specification given is the larger of the two, representing worst case drift.
ABSOLUTE ACCURACY - The absolute accuracy error of a $D / A$ converter is defined as the difference between the ideal transfer characteristic and the actual output at the $D / A$ over the full operating temperature range. The absolute accuracy error includes nonlinearity, initial gain and offset errors, and gain and offset drift errors over temperature. For the HI-5618A/B, the absolute accuracy is measured with the gain and bipolar adjustment potentiometers replaced by $24.9 \Omega(1 \%)$ trim resistors.

## SETTLING TIME

Settling time is the time required for the output to settle to within the specified error band for any input code transition. It is usually specified for a full scale or major carry transition ( $01 \ldots . .1$ to $10 \ldots \ldots 0$ or vice versa). D/A settling time may vary depending upon the impedance level being driven. A comparator presents a high impedance level while an op amp connected for current to voltage conversion presents a low impedance level. Figure 7, 8, and 9 show the test circuits used for testing the settling time of the HI-5618A/B

## GLITCH

A glitch on the output of a D/A converter is a large transient spike resulting from unequal internal ON-OFF switching times. Worst case glitches usually occur at half-scale or the major carry code transition from $011 \ldots 1$ to $100 \ldots 0$ or vice versa. For example, if turn $O N$ is greater than furn $0 F F$ for $011 \ldots 1$ to $100 \ldots .0$, an intermediate state of $000 \ldots 0$ exists, such that, the output momentarily glitches to zero output. In general, when a $D / A$ is driven by a set of external logic gates, the unmatched turn on - turn off times at the gates will add to the glitch problem. Test circuits and waveforms for the $\mathrm{HI}-5618 \mathrm{~A} / \mathrm{B}$ are shown in figures 10 and 11.

## POWER SUPPLY SENSITIVITY

Power Supply Sensitivity is a measure of the change in gain and offset of the $\mathrm{D} / \mathrm{A}$ converter resulting from a change in $-15 \mathrm{~V},+5 \mathrm{~V}$ or +15 V supplies. It is specified under DC conditions and expressed as parts per million of full scale range per percent of change in power supply (ppm of FSR/\%).

## COMPLIANCE

Compliance voltage is the maximum output voltage range that can be tolerated and still maintain its specified accuracy.

## OPERATING INSTRUCTIONS

## DECOUPLING AND GROUNDING

For best accuracy and high speed performance, the grounding and decoupling scheme shown in Figure 1 should be used. Decoupling capacitors should be connected close to the $\mathrm{HI}-5618 \mathrm{~A} / \mathrm{B}$; preferably to the device pin. A solid tantalum or electrolytic capacitor in parallel with a smaller ceramic type is recommended.

## HIGH PRECISION PERFORMANCE

The output accuracy of the HI-5618A/B depends mainly on the accuracy of the voltage applied to the $V_{\text {REF }}$ input of $\mathrm{HI}-5618 \mathrm{~A} / \mathrm{B}$ and it can be described roughly as $V_{R E F} / 8 \mathrm{~K} \Omega=1 / 4$ full scale output current. This means the output of $\mathrm{HI}-5618 \mathrm{~A} / \mathrm{B}$ will change whenever VREF varies. For precision performance, a stable +10 V reference with low temperature coefficient such as the HA-1600 is highly recommended. For voltage output operation use an external op amp as current-to-voltage converter and the HI-5618A/B internal scaling resistors as feedback elements for optimum


FIGURE 1
accuracy over temperature. The op amp should have good frontend temperature coefficients. For example, the HA-2600/2605 is well suited to this application, with offset voltage and offset current tempco's of $5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ and $1 \mathrm{nA} /{ }^{\circ} \mathrm{C}$ respectively. The input reference resistor ( $7.975 \mathrm{k} \Omega$ ) and bipolar offset resistor ( $3.975 \mathrm{k} \Omega$ ) are both intentionally set low by $25 \Omega$ to allow the user to externally trimout initial errors to a high degree of precision. For high speed voltage output applications where fast settling is required, the HA-2510/ 25 is recommended for settling times better than 250ns to $1 / 2$ LSB. The HA-5190/95 is recommended for applications requiring settling times less than 150 ns .

## UNIPOLAR VOLTAGE OUTPUT CONNECTIONS AND CALIBRATION

The connections for unipolar +10 V and +5 V voltage output using external op amp and the internal span resistors are shown in Figure 2 and Figure 3, respectively.
CALIBRATION - UNIPOLAR
Step 1 Offset
Turn all bits off (all 0's)
Adjust R3 for zero volts output
Step 2 Gain
Turn all bits on (all 1 's)
Adjust R1 for an output of FS -1 LSB
That is, adjust for:
9.96094 V for OV to +10 V range
4.98047 V for OV to +5 V range

UNIPOLAR - STRAIGHT BINARY OV TO +10V OUTPUT RANGE

DIGITAL   INPUT		ANALOG OUTPUT	
11	$\ldots$	1	FS -1 LSB
10	$\ldots$	0	0
$1 / 2 \mathrm{FS}$	9.96094 V		
01	$\ldots$.	1	$1 / 2 \mathrm{FS}-1 \mathrm{LSB}$
00	$\ldots$.	0	Zero



FIGURE 2

UNIPOLAR - STRAIGHT BINARY OV TO +5V OUTPUT RANGE

DIGITAL INPUT	ANALOG OUTPUT	
11 ..... 1	FS - 1 LSB	$=4.98047 \mathrm{~V}$
10 ..... 0	1/2FS	$=2.50000 \mathrm{~V}$
01 ..... 1	1/2FS-1 LSB	$=2.48047 \mathrm{~V}$
$00 \ldots . .0$	Zero	$=0.00000 \mathrm{~V}$



FIGURE 3

## BIPOLAR VOLTAGE OUTPUT CONNECTIONS AND CALIBRATION

The connections for Bipolar $\pm 10 \mathrm{~V}, \pm 5 \mathrm{~V}$ and $\pm 2.5 \mathrm{~V}$ voltage output using an external op amp and the internal span resistors are shown in Figure 4, 5 and 6, respectively.

## CALIBRATION - BIPOLAR

Step 1 Op Amp Null
Short op amp output to op amp - input
Adjust R3 for zero volts output

## Step 2 Gain

Turn all bits on (all 1's) record output voltage
Turn all bits off (all 0 's) record output voltage
Adjust R1 till the difference between the readings is
equal to: 19.9219 V for $\pm 10 \mathrm{~V}$ range

$$
\begin{aligned}
& 9.96094 \mathrm{~V} \text { for } \pm 5 \mathrm{~V} \text { range } \\
& 4.98047 \mathrm{~V} \text { for } \pm 2.5 \mathrm{~V} \text { range }
\end{aligned}
$$

Step 3 Offset
Turn bit 1 (MSB) on, all other bits off ( $10 \ldots 0$ )
Adjust R2 for zero volts output

BIPOLAR - OFFSET BINARY $\pm 10 \mathrm{O}$ OUTPUT VOLTAGE RANGE

DIGITAL INPUT	ANALOG OUTPUT	
11 ..... 1	+FS -1 LSB	$=+9.92188 \mathrm{~V}$
$10 \ldots 0$	Zero	$=+0.00000 \mathrm{~V}$
$01 \ldots .$.	Zero-1 LSB	$=-0.07813 \mathrm{~V}$
$00 \ldots 0$	-FS	$=-10.0000 \mathrm{~V}$

BIPOLAR - TWO'S COMPLEMENT ** $\pm 10 \mathrm{~V}$ OUTPUT VOLTAGE RANGE

DIGITAL INPUT	ANALOG OUTPUT	
01 ..... 1	+FS - 1 LSB	$=+9.92188 \mathrm{~V}$
$00 \ldots 0$	Zero	$=+0.00000 \mathrm{~V}$
$11 \ldots 1$	Zero-1 LSB	$=-0.07813 \mathrm{~V}$
10 .... . 0	-FS	$=-10.0000 \mathrm{~V}$

** Invert MSB with external inverter to obtain two's complement coding.

BIPOLAR - OFFSET BINARY $\pm 5 \mathrm{~V}$ OUTPUT VOLTAGE RANGE

DIGITAL   INPUT		ANALOG OUTPUT	
11	$\ldots$	1	
10	$\ldots$	+FS -1 LSB	
01	$=+4.96094 \mathrm{~V}$		
01	$\ldots$	Zero	
00	$\ldots$	Zero -1 LSB	


BIPOLAR - TWO'S COMPLEMENT ** $\pm 5 \mathrm{~V}$ OUTPUT VOLTAGE RANGE		
DIGITAL INPUT	ANALOG OUTPUT	
$01 \ldots . .1$	+FS - 1 LSB	$=+4.96094 \mathrm{~V}$
$00 \ldots 0$	Zero	$=+0.00000 \mathrm{~V}$
11 ..... 1	Zero-1 LSB	$=-0.03906 \mathrm{~V}$
10 ..... 0	-FS	$=-5.00000 \mathrm{~V}$

** Invert MSB with external inverter to obtain two's complement coding.

BIPOLAR - OFFSET BINARY $\pm 2.5 \mathrm{~V}$ OUTPUT VOLTAGE RANGE

DIGITAL INPUT	ANALOG OUTPUT	
$11 \ldots .$.	+FS -1 LSB	$=+2.48047 \mathrm{~V}$
$10 \ldots 0$	Zero	$=+0.00000 \mathrm{~V}$
01 ..... 1	Zero-1 LSB	$=-0.01953 \mathrm{~V}$
$00 \ldots 0$	-FS	$=-2.50000 \mathrm{~V}$


BIPOLAR - TWO'S COMPLEMENT ** $\pm 2.5 \mathrm{~V}$ OUTPUT VOLTAGE RANGE		
DIGITAL INPUT	ANALOG OUTPUT	
01 .... . 1	+FS - 1 LSB	$=+2.48047 \mathrm{~V}$
$00 \ldots 0$	Zero	$=+0.00000 \mathrm{~V}$
$11 \ldots .$.	Zero-1 LSB	$=-0.01953 \mathrm{~V}$
$10 \ldots 0$	-FS	$=-2.50000 \mathrm{~V}$



PULSE GENERATOR


FIGURE 7. Settling time test circuit - High Impedance


FIGURE 8. Settling time test circuit - $50 \Omega$ Load


NOTES:

1. Use oscilloscope with minimum 50 MHz bandwidth.
2. Avoid saturation of scope pre-amp.

FIGURE 9. Settling time test circuit - Low Impedance


FIGURE 11

HARRIS
SEMICONDUCTOR PRODUCTS DIVISION

# Analog Data Acquisition Signal Processor 

## FEATURES

## DESCRIPTION

- 50 kHz THOUGHPUT
- 12-BIT ACCURACY
- OUTPUT TRACK/HOLD AMPLIFIER
- DIFFERENTIAL INPUT CHANNELS
- SOFTWARE CONTROLLED GAIN AND CHANNEL SELECT
- 80dB CMRR
- COMPACT 32 PIN DIP
- MIL-STD-883 SCREENING AVAILABLE


## APPLICATIONS

- HIGH PERFORMANCE DATA ACQUISITION
- MILITARY SYSTEMS

PINOUT

The HI-5900 comprises "front end" components of a data acquisition system including an eight channel differential multiplexer, programmable gain instrumentation amplifier (PGA), and track and hold amplifier. Adding a timing circuit and $A$ to $D$ converter forms a complete data acquisition system. A minimum 50 kHz channel-to-channel throughput rate is possible when the HI-5900 is used with a fast 12 bit A to D converter such as HARRIS' HI-5712.

Each output line of the input multiplexer is buffered by a high-quality noninverting amplifier. This isolates each line from source resistance external to the 5900, preserving the high CMRR of the following instrumentation amplifier. Also, the buffers provide a high input impedance for each channel.

The PGA, which includes an op amp, monolithic resistor network and four channel differential multiplexer, offers precision gain values of $1,2,4$, and 8 . This voltage gain is selected by a two bit digital word. Output of the PGA drives the track and hold amplifier, and the low side of the PGA signal path is isolated by a third buffer amplifier, again to preserve the high CMRR in the PGA.
The output track/hold amplifier is a monolithic device, internally connected for non-inverting unity gain. In the sample mode it operates as a high performance buffer amplifier. With an external holding capacitor, it may be switched to HOLD with only 50ns aperture delay and 10pc of charge transfer.

The packaging technique involves monolithic chips mounted in leadless chip carriers (LCC's) and soldered to both sides of a multilayer ceramic substrate. Each LCC may undergo reliability screening such as MIL-STD-883, Method $5004 /$ Class B, before assembly on the substrate. The resulting package is a compact 32 pin DIP; power requirements are $\pm 15 \mathrm{~V}$.
The HI-5900 is offered as a high performance front-end section for military and industrial data acquisition systems. It is designed for interface with computers and is well suited for high-rel applications.

Voltage Between V+ and V- Terminals Digital Input Overvoltage

$$
\begin{array}{lr}
\text { Id } \mathrm{V} \text { - Terminals } & 30 \mathrm{~V} \\
\text { ge } & +4 \mathrm{~V} \\
\text { VSupply (+) } & -20 \mathrm{~V} \\
\text { VSupply }^{(-)} & +20 \mathrm{~V} \\
\text { ge } & -20 \mathrm{~V}
\end{array}
$$

Analog Input Overvoltage

Output Current Operating Temperature Range

$$
\begin{aligned}
& \text { HA-5900-5 } \\
& \text { HA-5900-2 }
\end{aligned}
$$

Storage Temperature Range
Internal Power Dissipation

Short Circuit Protected
$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+75^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C} \leq T_{A} \leq+150^{\circ} \mathrm{C}$
$-65{ }^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+150^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS Unless otherwise specified: $\mathrm{V}_{\mathrm{S}}=+15 \mathrm{~V} ; \mathrm{C}_{\mathrm{H}}=1000 \mathrm{p} ; \mathrm{V}_{\mathrm{IH}}=4.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$

PARAMETER	TEMP	$\begin{gathered} \mathrm{HI}-5900-2 \\ -55^{\circ} \mathrm{C} \text { to }+1250^{\circ} \mathrm{C} \\ \hline \end{gathered}$			$\begin{gathered} \mathrm{HI}-5900-5 \\ 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \hline \end{gathered}$			UNITS
		MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
INPUT CHARACTERISTICS, EACH								
Offset Voltage CHANNEL	$\underset{\text { Full }}{+25^{\circ} \mathrm{C}}$		$\begin{aligned} & 0.5 \\ & 1.0 \end{aligned}$			2.5 3.0		$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Bias Current	$\underset{\text { Full }}{+25{ }^{\circ} \mathrm{C}}$		$\begin{aligned} & 80 \\ & 90 \end{aligned}$			$\begin{aligned} & 80 \\ & 80 \end{aligned}$		$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
Offset Current	$\underset{+25{ }^{\circ} \mathrm{C}}{+2{ }^{+}}$		$\begin{aligned} & 15 \\ & 30 \end{aligned}$			20 30		$\begin{aligned} & n A \\ & n A \end{aligned}$
Common Mode Range	Full	$\pm 10$			$\pm 10$			V
Common Mode Rejection Ratio ( $\mathrm{V}_{\mathrm{CM}}= \pm 10 \mathrm{~V}$ )	Full		85			85		dB
Digital Input Current (High or Low)	Full		1			1		$\mu \mathrm{A}$
TRANSFER CHARACTERISTICS								
Small Signal Bandwidth (Gain $=1$ )	$+25^{\circ} \mathrm{C}$		2			2		MHz
Full Power Bandwidth (Gain =1, $V_{0}= \pm 10 \mathrm{~V}$ )	$+25^{\circ} \mathrm{C}$		70			70		kHz
Slew Rate	$+25^{\circ} \mathrm{C}$		4			4		V/us
Crosstalk (Sample Mode, Gain $=8$, $1 \mathrm{kHz} 20 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ Input on all but Selected Channel)	$+25^{\circ} \mathrm{C}$		-80			-80		dB
"Off Isolation (Hold Mode, Gain = 1,   1kHz 20Vp_p Input)	$+25^{\circ} \mathrm{C}$		-80			-80		dB
Acquisition Time (Note 1), to 0.01\%	$+25^{\circ} \mathrm{C}$		9			9		$\mu \mathrm{s}$
OUTPUT CHARACTERISTICS								
Output Voltage Swing	Full	$\pm 10$			$\pm 10$			v
Output Current	$+25^{\circ} \mathrm{C}$	$\pm 10$			$\pm 10$			mA
Output Resistance	$+25^{\circ} \mathrm{C}$		5			5		S2
Gain - Absolute Error 1	$+25{ }^{\circ} \mathrm{C}$		. 1			. 1		\%
	$+25{ }^{\circ} \mathrm{C}$		1			.1		\%
$\begin{aligned} & 4 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & +250^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \end{aligned}$		. 2			. 2		\%
DYNAMIC CHARACTERISTICS								
ton, Enable (MUX)	$+25^{\circ} \mathrm{C}$		300			300		ns
toff, Enable (MUX)	$+25^{\circ} \mathrm{C}$		300			300		ns
Droop Rate ( $\mathrm{T} / \mathrm{H}$ )	$\begin{gathered} +250^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$		$\begin{aligned} & 1 \\ & 5 \end{aligned}$			1 20		$\begin{aligned} & v / \mu \mathrm{s} \\ & \mathrm{~V} / \mu \mathrm{s} \end{aligned}$
Charge Transfer (T/H)	$+25^{\circ} \mathrm{C}$		10			10		pc
Aperture Delay ( $\mathrm{T} / \mathrm{H}$ )	$+25{ }^{\circ} \mathrm{C}$		100			100		ns
Aperture Uncertainty (T/H)	$+25^{\circ} \mathrm{C}$		5			5		ns
POWER SUPPLY CHARACTERISTICS								
+I-	Full		8.5			8.0		mA
	Full		6.5			6.0		mA
Power Supply Rejection Ratio, $\mathrm{V}_{+}$ Power Supply Rejection Ratio, V-	Full		90			90		dB
	Full		100			100		dB

Note 1: Acquisition Time is defined for a change of channel ( +10 V on chan. 1 to 0 V on chan. 8) with simultaneous change from HOLD to TRACK mode. Gain $=1$.

PIN	SYMBOL	DESCRIPTION
4	1B	
5	$2 B$	
6	$3 B$	
7	$4 B$	Non-Inverting Side of the Eight
8	5B	Differential Input Channels
9	$6 B$	
10	$7 B$	
11	$8 B$	
29	$1 A$	
28	$2 A$	
26	$4 A$	Inverting Side of the Eight
25	$5 A$	Differential Input Channels
24	$6 A$	
23	$7 A$	
22	$8 A$	
31	$A_{0}$	
32	$A_{1}$	Digital Channel Select Inputs*
1	$A_{2}$	
20	$A_{0}$	Digital Gain Select Inputs*
19	$A_{1}$	


PIN	SYMBOL	DESCRIPTION
16	T/H CONTROL	Track/Hold Mode Select*
2	NC	No Connection
3	GND	Signal and Power Ground
12	+V	Positive Supply ( +15 V )
21	-V	Negative Supply (-15V)
18	T/H OUT	Output of the HI-5900
17	$\mathrm{CH}_{\mathrm{H}}$	Hold Capacitor Connection
15	$V_{\text {REF }}$ LOW	Reference for the Output on Pin 18
13	OUT A	"A" Output of the Input Multiplexer (Inverting Side of each Channel)
14	OUT B	"B" Output of the Input Multiplexer (Non-Inverting Side of each Channel)
30	EN	Enable Strobe for the Input Multiplexer; Normally Wired High. EN may be used in Conjunction with OUT A and OUT B, to Poll Additional Channels through an External Multiplexer.

* See Programmable Functions


PROGRAMMABLE FUNCTIONS Input Codes are as follows:

$$
\begin{aligned}
& X=\text { DON'T CARE } \\
& 0=V_{I N} \leq+0.8 \mathrm{~V} ; \\
& 1=V_{I N} \geq+4.0 \mathrm{~V} \text {, where } V_{I N} \text { is the digital input voltage. }
\end{aligned}
$$

1. T/H Control (PIN 16)
2. Gain Select

$A_{0}$   (PIN 20)	A $_{1}$   (PIN 19)	GAIN
0	0	1
0	1	2
1	0	4
1	1	8



$\begin{array}{c}\text { A }_{0} \\ \text { (PIN 20) }\end{array}$	$\begin{array}{c}\text { A }_{1} \\ \text { (PIN 19) }\end{array}$	GAIN
0	0	1
0	1	2
1	0	4
1	1	8

3. Channel Select

$A_{0}$   (PIN 31)	$A_{1}$   (PIN 32)	$A_{2}$   (PIN 1)	EN   (PIN 30)	CHANNEL
X	X	X	0	None
0	0	0	1	0
0	0	1	1	1
0	1	0	1	2
0	1	1	1	3
1	0	0	1	4
1	0	1	1	5
1	1	0	1	6
1	1	1	1	7

ACQUISITION TIME vs. OUTPUT STEP CHANGE


FIGURE 1 vs. HOLD CAPACITANCE Ch


FIGURE 3

INPUT VOLTAGE NOISE vs. FREQUENCY


FIGURE 2

INPUT LEAKAGE, BIAS \& OFFSET CURRENT vs. TEMPERATURE


FIGURE 4

## APPLYING THE HI-5900

## GENERAL CONSIDERATIONS

The HI-5900 was designed to provide a versatile front-end section for a data acquisition system. Both hardwired and computer-controlled systems may be implemented in a variety of configurations. The following general considerations and precautions should be observed.

1. HANDLING - Each digital input is protected by a resis-tor-diode network, to minimize failures due to static discharge through the MOS gate:

For additional protection, it is wise to observe all of the proper shipping and handling procedures customary for CMOS devices.
2. POWER SUPPLY CONNECTIONS - Each of the four active chips in the $\mathrm{HI}-5900$ are bypassed to ground by internal . $01 \mu \mathrm{~F}$ capacitors. These eight nonpolarized capacitors prevent high frequency variations in the supply voltage.

To bypass lower frequencies, connect a polarized capacitor from the ground pin to each supply pin, with value from $10 \mu \mathrm{~F}$ to $50 \mu \mathrm{~F}$.
3. LAYOUT
A. Distributed capacitance between signal paths external to the $\mathrm{HI}-5900$ is a major source of crosstalk. Within the HI-5900, careful substrate design and packaging have ensured that "static" crosstalk will not exceed -80 dB . ("Static") refers to the absence of channel-to-channel switching. Thus, a maximum of 2 mV $\mathrm{p}-\mathrm{p}$ can feed into a selected channel, from $20 \mathrm{~V} \mathrm{p}-\mathrm{p}$ applied to one or more OFF channels.)
When a multiplexer is continuously cycled from channel to channel, two other forms of crosstalk arise. These are dynamic crosstalk and adjacent* channel crosstalk, which are both minimized along with static crosstalk by careful attention to circuit board layout. A strip of ground plane should separate conductors for adjacent channels on a printed circuit board. See Fig. 5. Make these traces (and the conductors) short, and as narrow as practical for maximum separation.
*Adjacent in time - for example, channels 1 and 8 may occupy adjacent time slots during time - division multiplexing.


FIGURE 5 HI-5900 GUARD RING LAYOUT
B. The holding capacitor $C_{H}$ is the only essential external component required for operation of the HI-5900. The value selected determines droop rate, offset error and acquisition time according to curves shown in Fig. 3. Board layout should include a guard ring to prevent voltage-driven leakage at the capacitor terminal. See Fig. 5.

For minimum droop error in the HOLD mode, choose a capacitor with high insulation resistance and low dielectric absorption. Since type of dielectric is the
best performance indicator for hold capacitor applications, consider these guidelines: Teflon is best (especially at high temperature) but the most expensive. In descending order of choice, polystyrene, polypropylene, and polycarbonate are all acceptable. Least acceptable are ceramic and mica, which can allow several percent of change in the held voltage due to dielectric absorption (vs. $.01 \%$ for the other types).

## OFFSET ADJUSTMENT

The VREF LOW input (pin 15) is a convenient point for nulling any DC offset voltage in an HI-5900 system. This can be done with a simple manual trim:


FIGURE 6

With zero volts on the selected input channel, the HI-5900 output ( $T / H$ OUT) may be adjusted to zero. If the system includes an $A$ to $D$ converter, net DC offset may be nulled by adjusting the converter's digital output to zero. In either case, readjustment is required after a change in temperature or a change in the HI-5900 gain. The need for readjustment may be eliminated by using an auto-zero circuit as shown in Fig. 7.

The offset at $\mathrm{V}_{0}$ is driven to zero by application of a voltage at $V_{\text {REF }}$ LOW, opposite in sign and with magnitude ( $G+1$ ) $\mathrm{V}_{0}$, where $\mathbf{G}$ is the digitally selected gain. This voltage is updated each time channel 8 is addressed. Since channel 8 is chosen for the zero (ground) reference input, the SN7420 decoder output is wired to go low only when channel 8 is addressed. The HA-2420 track/hold amplifier acquires a new sample of the offset at $V_{0}$ during this interval. This sample is of opposite sign to $\mathrm{V}_{0}$ and approximately 100 X $(G+1)$ in magnitude, due to the $10 \mathrm{~K} / 100 \Omega$ attenuator. Storing 100X the actual correction value minimizes the percent droop error during hold. Finally, OFFSET TRIM is used to remove any residual offset at $\mathrm{V}_{0}$, introduced by the HA-2420.


FIGURE 7

## TIMING AND CONTROL

The HI-5900 is intended to operate with a fast A to D converter such as HARRIS' 12 bit HI-5712. A single monostable (one-shot) multivibrator such as half of the dual SN74123 provides the necessary timing and control:
The pulse rate at $\overline{\mathrm{Q}}$ is equal to the conversion rate of the A to $D$ converter, since the one-shot is driven by the converter's STATUS output. Polarity of the Q output is correct for initiating a conversion each time the $\mathrm{HI}-5900$ returns to the HOLD mode. For maximum channel-to-channel throughput rate, the $\overline{\mathbf{0}}$ pulse duration (determined by R and C) may be set equal to the HI-5900 acquisition time.


FIGURE 8

## Communications Products

## PAGE

HC-55516/55532 Delta Modulators (CVSD) ..... 5-2
HD-0165 Keyboard Encoder ..... 5-7 Characteristics" are the only conditions recommended for satisfactory operation.

HARRIS HC-55516/55532

# A/I-Digital Continuously Variable Slope Delta Modulator (CVSD) 

FEATURES	DESCRIPTION
- requires fewer external parts   - LOW POWER DRAIN: 6mW FROM SINGLE 5V-7V SUPPLY   - time constants determined by clock FREQUENCY; NO CALIBRATION OR DRIFT PROBLEMS; AUTOMATIC OFFSET ADJUSTMENT   - half duplex operation by digital control   - FILTER RESET BY DIGITAL CONTROL   - automatic overload recovery   - AUTOMATIC "QUIET" PATTERN GENERATION   - agC control signal available	The HC-55516 and HC-55532 are half duplex modulator/ demodulator CMOS integrated circuits used to convert voice signals into serial NRZ digital data, and to reconvert that data into voice. The conversion is by delta modulation, using the continuously variable slope (CVSD) method of companding.   While signals are compatible with other CVSD circuits, internal design is unique. The analog loop filters have been replaced by digital filters, using very low power, and requiring no external timing components. This approach allows inclusion of many desirable features which would be difficult to implement using
A PPLICATIONS	
- VOICE TRANSMISSION OVER DATA CHANNELS   - VOICE ENCRYPTION/SCRAMBLING   - VOICE I/O FOR DIGITAL SYSTEMS   - audio manipulations: delay lines, time COMPRESSION, ECHO GENERATION/ SURPRESSION, SPECIAL EFFECTS, ETC.	bits $/ \mathrm{sec}$ data rate and is usable down to 9 K bits $/ \mathrm{sec}$. The HC55532 is optimized for 32 K bits/sec and is usable beyond 64 K bits/sec. Both units are available in 14 pin D.I.P. (HC1) in two temperature ranges; $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}(-2$ or -8$)$ and $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}(-9)$.
PINOUT	FUNCTIONAL DIAGRAM
14 PIN D.I.P.	


$\begin{gathered} \text { PIN \# } \\ \text { 14-LEAD } \\ \text { F.P. \& D.I.P. } \end{gathered}$	SYMBOL	$\begin{aligned} & \text { ACTIVE* } \\ & \text { LEVEL } \end{aligned}$	DESCRIPTION
1	VDD		Positive supply voltage.
2	Sig. Gnd.		Ground connection to D/A ladders and comparator; i.e. audio ground.
3	Aud. Out		Recovered audio out. May be used as side tone at the transmitter. Presents approximately 100 kilohm source. Zero signal reference is $\mathrm{V}_{\mathrm{DD}} / 2$.
4	AGC		A logic "Low" level will appear at this output when the recovered signal excursion reaches one-half of full scale value.
5	Aud. In		Audio input. Should be externally AC coupled. Presents approximately 100 kilohms in series with VDD/2.
6,7			No internal connection is made to these pins.
8	Gnd.		Logic ground. Negative supply voltage.
9	Clock		Receiver clock must be phased with digital input such that data must be present at the positive clock transition.
10	Encode (Decode)	$\begin{aligned} & \text { Low } \\ & \text { (High) } \end{aligned}$	A single CVSD can provide half-duplex operation. The encode and decode functions are selected by the logic level applied to this input. A low level selects the encode mode, a high level, the decode mode.
11	APT.	Low	Activating this input causes an "alternate plain text" (quieting pattern) to be transmitted without affecting the internal operation of the CVSD.
12	Dig. In		Input for the received digital data.
13	FZ	Low	Activating this input forces the transmitted output, the internal logic, and the recovered audio output into the "quieting" condition.
14	Dig. Out		Output for transmitted digital data.

[^17]
## ABSOLUTE MAXIMUM RATINGS

Voltage At Any Pin	-3.0 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Maximum $\mathrm{V}_{\mathrm{DD}}$ Voltage	+7.0 V


Operating Temperature (-9)	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
(-2)	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
(-8)	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

## ELECTRICAL CHARACTERISTICS @ TA $=25^{\circ} \mathrm{C}$

Test Conditions $V_{D D}=6.0 \mathrm{~V}$, Bit Rate $=16 \mathrm{~Kb} / \mathrm{s}$, ( $\mathrm{HC}-55516$ )
Bit Rate $=32 \mathrm{~Kb} / \mathrm{s},(\mathrm{HC}-55532)$

PARAMETER	MIN.	TYP.	MAX.	UNIT	NOTE
Clock Bit Rate		16/32	64	$\mathrm{Kb} / \mathrm{s}$	(1)
Clock Duty Cycle	30		70	\%	
Supply Voltage	+5.0		+7.0	V	
Supply Current		1.0		mA	
Digital "1" Input		4.5		V	(2)
Digital " 0 " Input		1.5		V	(2)
Digital "1" Output		5.5		V	(3)
Digital "0" Output		0.5		V	(3)
Audio Input Voltage		0.5	1.4	Vrms	(4)
Audio Output Voltage		0.5	1.4	Vrms	(5)
Audio Input Impedance		100		$K \Omega$	(6)
Audio Output Impedance		100		$K \Omega$	(7)
Transfer Gain	-0.5		+0.5	dB	(8)
Syllabic Time Constant		4.0		mS	(9)
L.P. Filter Time Constant (55516)   (55532)		$\begin{aligned} & 0.94 \\ & 0.47 \end{aligned}$		$\begin{aligned} & \mathrm{mS} \\ & \mathrm{mS} \end{aligned}$	(9)
Step Size Ratio (55516)   (55532)		$\begin{aligned} & 24 \\ & 18 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$	(10)
$\begin{array}{r} \text { Resolution (55516) } \\ (55532) \end{array}$		$\begin{aligned} & 0.1 \\ & 0.2 \end{aligned}$		$\begin{aligned} & \% \\ & \% \end{aligned}$	(11)
Min. Step Size (55516) (55532)		$\begin{aligned} & 0.2 \\ & 0.4 \end{aligned}$		$\begin{aligned} & \% \\ & \% \end{aligned}$	(12)
Slope Overload		Fig. 1			(13)
Signal/Noise Ratio			Tab. 1		(14)
Quieting Pattern Amplitude (55516)   (55532)		$\begin{aligned} & 12 \\ & 24 \end{aligned}$		$\begin{aligned} & m V P-P \\ & m V P-P \end{aligned}$	(15)
AGC Threshold		0.5		F.S.	(16)
Clamping Threshold		0.75		F.S.	(17)

1. There is one NRZ (Non-Return Zero) data bit per clock period. Clock must be phased with digital data such that data must be present at the positive clock transition.
2. Logic inputs are CMOS compatible at supply voltage and are diode protected. Digital data input is NRZ at clock rate.
3. Logic outputs are CMOS compatible at supply voltage and withstand short-circuits to $V_{D D}$ or ground. Digital data output is NRZ and changes with negative clock transitions.
4. Recommended voice input range for best voice performance.
5. May be used for side-tone in encode mode.
6. Should be externally AC coupled. Presents 100 Kilohms in series with $V_{D D} / 2$.
7. Presents 100 Kilohms in series with recovered audio voltage. Zero-signal references is $\mathrm{V}_{\mathrm{DD}} / 2$.
8. Unloaded, for linear signals.
9. Note that filter time constants are inversely proportional to clock rate.
10. Step size compression ratio of the syllabic filter is defined as the ratio of the filter output, with an equal $1-0$ bit density input to the filter, to its minimum output.
11. Minimum quantization voltage level expressed as a percentage of supply voltage.
12. The minimum step size between levels is twice the resolution.
13. For large signal amplitudes or high frequencies, the encoder may become slope-overloaded. Figure 1 shows the frequency response at various signal levels,measured with a 3 kHz low-pass filter having a 130 dB /octave rolloff to -50 dB . See Table II.
14. Table I shows the SNR under various conditions, using the output filter described in 13 (above) at a bit rate of $16 \mathrm{~Kb} / \mathrm{s}$. See Table II.
15. The "quieting" pattern or idle-channel audio output steps at one-half the bit rate, changing state on negative clock transitions.
16. A logic " 0 " will appear at the AGC output pin when the recovered signal reaches one-half of full-scale value (positive or negative).
17. The recovered signal will be clamped, and the computation will be inhibited, when the recovered signal reaches three-quarters of full-scale value, and will unclamp when it falls below this value (positive or negative).


Figure 1 - Transfer Function for CVSD at 16KB

TABLE II

INPUT FILTER FREQUENCY RESPONSE		OUTPUT FILTER FREQUENCY RESPONSE	
FREQUENCY	RELATIVE OUTPUT	FREQUENCY	RELATIVE OUTPUT
100 Hz	$0 \pm 0.5 \mathrm{~dB}$	100 Hz to 1500 Hz	$0 \pm 1.5 \mathrm{~dB}$
200 Hz	$0 \pm 0.1 \mathrm{~dB}$	1500 Hz to 3000 Hz	$0 \pm 2.5 \mathrm{~dB}$
1000 Hz	$0 \pm 0.1 \mathrm{~dB}$	3800 Hz to 100 KHz	Less Than -45 dB
3000 Hz	$-3 \pm 0.5 \mathrm{~dB}$		
9000 Hz	$-20 \pm 2.0 \mathrm{~dB}$		



Figure 2 - Suggested Input/Output Audio Filters for SNR Measurement
NOTE: An output filter similar to the input filter section above will generally suffice for good voice intelligibility.

HARRIS
SEMICONDUCTOR PRODUCTS DIVISION

FEATURES	DESCRIPTION
- STROBE OUTPUT   - KEY ROLLOVER OUTPUT   - EXPANDABLE: 2 PACKAGES REQUIRED FOR FULL TELETYPEWRITER, EIGHT-BIT ENCODING   - SINGLE +5.0V SUPPLY REQUIRED   - DTL/TTL OUTPUTS   - MONOLITHIC RELIABILITY   APPLICATIONS   - MICROPROCESSOR DATA ENTRY (16 KEY TO HEX CODE)   - BCD DATA ENTRY   - TYPEWRITER TYPE KEYBOARDS   - CONTROL PANELS	The HD-0165 Keyboard Encoder is a 16 line to four-bit parallel encoder intended for use with manual data entry devices such as calculator or typewriter keyboards. In addition to the encoding function, there is a Strobe output and a Key Rollover output which energizes whenever two or more inputs are energized simultaneously. Any four-bit code can be implemented by proper wiring of the input lines. Inputs are normally wired through the key switches to the +5.0 V power supply. Full typewriter keyboard encoding up to eight bits can be accomplished with two Encoder circuits by the use of double pole key switches or single pole switches with two isolation diodes per key. Outputs will interface with all popular DTL and TTL logic families. The circuit is packaged in a hermetic 24 -pin dual-inline package and operates over the temperature range of $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$.
PINOUT	EQUIVALENT CIRCUITS
Package Code 4K	- equivalent resistors for other INPUTS ARE BETWEEN THESE TWO VALUES

## ABSOLUTE MAXIMUM RATINGS

Supply Voltage	+7.0 V
Input Voltage	+5.5 V
Output Voltage	+5.5 V


Output Current	30 mA
Storage Temperature	$-65^{\circ}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature (Case)	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$

## ELECTRICAL CHARACTERISTICS

$\begin{array}{ll}\text { Test Conditions: } & \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 5 \% \\ & \mathrm{~T}_{\text {Case }}=0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \\ & \text { Unless otherwise specified }\end{array}$

	PARAMETER	SYM.	LIMITS			UNITS	TEST CONDITIONS
			MIN.	TYP.	MAX.		
	Input Current ${ }^{\text {" } 1 \text { " }}$	IIH			17	mA	$\mathrm{V}_{\text {IN }}=+5.0 \mathrm{~V}$
D.C.	Output Voltage ${ }^{\prime \prime} 0 \prime$	$\begin{aligned} & \mathrm{v}_{\mathrm{OL}} \\ & \mathrm{v}_{\mathrm{OH}} \end{aligned}$	+2.4	$\begin{aligned} & +0.2 \\ & +4.0 \end{aligned}$	$\begin{array}{r} +0.4 \\ +0.4 \end{array}$	V	$\begin{array}{ll} \mathrm{V}_{I H}=+4.5 \mathrm{~V} & \mathrm{I}_{\mathrm{OL}}=10 \mathrm{~mA} \\ \mathrm{~V}_{\mathrm{IH}}=+3.5 \mathrm{~V} & \mathrm{I}_{O L}=3.2 \mathrm{~mA} \\ \mathrm{~V}_{\mathrm{IL}}=\text { Open Circuit, } \mathrm{I}_{\mathrm{OH}}=-240 \mu \mathrm{~A} \end{array}$
	Operating   Power Supply Current   Maximum	$\begin{aligned} & \text { ICC } \\ & \text { ICcm } \end{aligned}$			$52$   88	mA   mA	One Input at +5.25 V   All Inputs at +5.25 V
	Skew Time (Note 1)	${ }^{\text {T }}$ SK		80	200	ns	$\begin{aligned} & T_{\text {Case }}=25^{\circ} \mathrm{C} \\ & V_{C C}=V_{I N}=+5.0 \mathrm{~V} \\ & C_{L}<50 \mathrm{pF} \end{aligned}$

NOTE: (1) Skew time is the maximum time differential between propagation delay times of any outputs including strobe and $\overline{\mathrm{K}_{\mathrm{RO}}}$.

TRUTH TABLE

INPUTS																		OUTPUTS			
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	1	2	3	4	$\overline{\mathrm{St}}$.	$\overline{\mathrm{K}_{\mathrm{RO}}}$
L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	H	H	H	H	H	H
H	L	L	L	L	L	L	L	L	L	L	L	L	L	L	$L$	H	H	H	H	L	H
L	H	L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	H	H	H	L	H
L	L	H	L	L	L	L	L	L	L	L	L	L	L	L	L	H	L	H	H	L	H
L	L	L	H	L	L	L	L	L.	L	L	L	L	L	L	L	L	L	H	H	L	H
L	L	L	L	H	L	L	L	L	L	L	L	L	L	L	L	H	H	L	H	L	H
L	L	L	L	L	H	L	L	L	L	L	L	L	L	L	L	L	H	$L$	H	L	H
L	L	L	L	L	L	H	L	L	L	L	L	L	L	L	$L$	H	L	L	H	L	H
し	L	L	L	L	L	L	H	L	L	L	L	L	L	L	L	L	L	L	H	L	H
L	L	L	L	L	L	L	L	H	L	L	L	L	L	L	L	H	H	H	L	L	H
L	L	L	L	L	L	L	L	L	H	L	L	L	L	L	L	L	H	H	L	L	H
L	L	L	L	L	$L$	L	L	L	L	H	L	L	L	L	L	H	$L$	H	L	L	H
L	L	L	L	L	L	L	L	L	L	L	H	L	L	L	L	L	L	H	L	L	H
L	L	L	L	L	L	L	L	L	L	L	L	H	L	L	L	H	H	L	L	L	H
L	L	L	L	L	$L$	L	L	L	L	L	L	L	H	L	L	L	H	L	L	L	H
L	L	L	L	L	L	L	L	L	L	L	L	L	L	H	L	H	L	$L$	L	L	H
L	L	L	L	L	L	L	L	L	L	L	L	L	L	L	H	L	L	L	L	L	H
ANY TWO OR MORE HIGH																X	X	X	X	L	L

$\begin{array}{lll}\text { INPUTS: } & L=0 \text { Open Circuit or }<+1.0 \mathrm{~V} & \mathrm{H}=>+4.5 \mathrm{~V} \text { Current Source } \\ \text { OUTPUTS: } & L=\langle+0.4 \mathrm{~V} & \mathrm{H}=>+2.4 \mathrm{~V}\end{array} \mathrm{X}=$ Erroneous Data


Figure 1. GENERAL CONFIGURATION FOR encoding two to sixteen keys

The Truth Table is used to determine wiring from the key switches to Encoder inputs to produce desired output codes.


Figure 2. SWITCH BOUNCE ELIMINATION
This circuit generates a delayed Strobe pulse ( $\mathrm{St}^{\prime}$ ). Delay time is determined by first monostable and should be about 10 ms . Pulse width is determined by second monostable and should be set according to system requirements. Effect of switch bounce or arcing on make or break is positively eliminated and proper encoding will take place under two key rollover conditions.


Figure 3. ENCODING UP TO 256 KEYS
Use upper Encoder to produce the four most significant output bits; the lower to produce the least significant bits. Use Truth Table and required output codes to determine wiring from each key to the two Encoders.

SHIFT and CONTROL functions can be implemented by logic gates in series with the output lines.

## Analog Application Notes

PAGE
AN 502 HA-909 Operational Amplifiers Performance Tailoring ..... 6-3
AN 505 A High Performance Hysteresis Circuit ..... 6-6
AN 508 Test Procedures for Operational Amplifiers ..... 6-8
AN 509 A Simple Comparator Using the HA-2620 ..... 6-10
AN 510 A Simple Square-Triangle Wave Form Generator ..... 6-11
AN 511 Digital to Analog Converter Applications ..... 6-12
AN 512 Counter Type A to D Converter ..... 6-19
AN 514 The HA-2400 PRAM, 4 Channel Operational Amplifier ..... 6-22
AN 515 Operational Amplifier Stability: Input Capacitance Considerations ..... 6-29
AN 516 The HA-2530/2535 Wide Band High Slew Inverting Amplifier ..... 6-31
AN 517 Applications of a Monolithic Sample-and-Hold/Gated ..... 6-42
Operational Amplifier
AN 518 The HA-2900 Monolithic Chopper Stabilized Amplifier ..... 6-50
AN 519 Operational Amplifier Noise Prediction ..... 6-58
AN 520 CMOS Analog Multiplexers and Switches ..... 6-67
AN 521 CMOS Devices for Analog Switching ..... 6-76
AN 522 Digital to Analog Converter Terminology ..... 6-83
AN 523 Digital to Analog Converter High Speed DAC Family ..... 6-86
AN 524 Digital to Analog Converter High Speed ADC Applications ..... 6-90
AN 525 HA-5190/5195 Fast Settling Amplifier ..... 6-93
AN 607 Delta Modulation for Voice Transmission ..... 6-97

## INTRODUCTION

In most applications, the HA-909 operational amplifier family will approach the theoretical "ideal" op amp requiring only connections to the power supplies and to feedback components determined from classical analog computer theory. This results from the exceptionally wide bandwidth of the HA-909 combined with internally compensated 6 dB per octave frequency rolloff and high impedance, low drift, low noise input characteristics.
Nevertheless, in the unlimited number of possible operational amplifier applications, there are those in which certain performance factors may need to be optimized. These performance factors include offset, power dissipation, bandwidth, large signal bandwidth, slew rate, transient response, and stability with reactive loads. The Harris HA-909 combines a design which minimizes the necessity for added external components with the availability of internal circuit points which allow the altering of performance characteristics.
The schematic of the HA-909 family is shown in Figure 1. The circuit nodes connected to the device pins on the HA-909 for performance tailoring are the Offset Control, the Bandwidth Control, and the Bias Control. The HA2-909, an 8-lead metal can version, has only the Bandwidth Control available.
FIGURE 1.
SCHEMATIC, HA-909


## OFFSET ADJUSTMENT

In many applications, the guaranteed offset voltage of the HA-909 family is sufficiently small that no connection to the offset control pin is required. In some high precision or high gain DC amplifier applications, it may be desired to set the room temperature offset voltage to zero. Figure 2 shows the proper connection of a single 200 K ohm potentiometer to accomplish this. Selected fixed resistors in a voltage divider circuit could also be used; the upper leg between the bias control pin and the offset control pin could be a fixed value of about 120 K ohms and the lower leg between the offset control pin and -V could be a value usually between 50 K and 100 K ohms selected to yield zero offset.
Figure 3 shows offset voltage change with temperature for one unit with and without room temperature offset zeroing. These curves should not be regarded as "typical" since offset can be of either polarity and the temperature slope can be in either direction. In general, room temperature zeroing of offset voltage results in lower temperature coefficients of offset voltage.
figure 2.
OFFSET ADJUSTMENT, HA-909

FIGURE 3.


OFFSET VOLTAGE vs. TEMPERATURE


A unique feature of the HA-909 family of operational amplifiers is wide bandwidth (typically 7 MHz ) combined with internal compensation for 6 dB per octave rolloff. This assures stable operation at any gain with resistive loads, plus superior transient response and full power bandwidth.
In certain instances, such as when driving reactive loads or when the amplifier is part of a servo loop, it may be desirable for stability to reduce the bandwidth while maintaining the 6 dB per octave rolloff characteristic. Also, in certain systems, it may be desirable to attenuate frequencies above a certain value or to limit transient response.
Connection of a capacitor from the bandwidth control pin to ground will move the first break point on the open loop frequency response curve to a lower frequency while retaining the 6 dB per octave rolloff (Figure 4).
The effective built in capacitance is about 10 pF , so the new bandwidth with external capacitance connected is approximately $\mathrm{Bw}=\mathrm{Bwo} \mathrm{X}$ 10 $\overline{C+10}$; where Bwo is the bandwidth without external capacitance and $C$ is the external capacitance in pF . Slew rate and full power bandwidth will be reduced by the same factor as the bandwidth.
The Bandwidth Control pin may also be used to limit the output swing by connecting diodes at this point to reference voltages. This pin is a high impedance point which carries the same voltage swing as the output pin offset by about +1.5 volts.

FIGURE 4.
OPEN LOOP FREQUENCY RESPONSE


FREQUENCY RESPONSE VS. CAPACITANCE FROM BANDWIDTH CONTROL PIN TO GROUND.

Bias Control refers to control of internal device quiescent currents and should not be confused with the Input Bias Current parameter.
Referring to the HA-909 schematic in Figure 1, the current in all stages of the amplifier is determined by the resistor-diode string consisting of R1, Q1, R4, and Q2. The impedance at the collector of Q10 which drives the rolloff capacitor, C1, is directly proportional to the current through R4 and Q2. This current is approximately 1.0 mA at supply voltage of $\pm 15$ volts; 0.65 mA at $\pm 10$ volts; or 1.35 mA at $\pm 20$ volts. As a result, the bandwidth and slew rate measured with supplies of $\pm 20$ volts are nearly double the values measured at $\pm 10$ volts. It is possible to control bandwidth, slew rate, and to some extent open loop gain by adding or subtracting current through R4 and Q2 by connecting a resistor from the supply voltage to the Bias Control pin.
Adding bias control current by connecting a resistor between the positive supply and the Bias Control pin may be desirable to achieve maximum bandwidth or slew rate, particularly when supply voltages less than $\pm 15$ volts must be utilized. Reducing bias control current by connecting a resistor between the negative supply and the bias control pin has much the same effect as adding capacitance to the Bandwidth Control pin but may be desirable to minimize power supply current.
Figure 5 shows the change in D. C. open loop gain with supply voltage and external bias control current normalized to the gain measured at $\pm 15$ volt supplies and the Bias Control pin open.

FIGURE 5.
OPEN LOOP GAIN WITH BIAS CURRENT


FIGURE 6.
OTHER PARAMETER CHANGES WITH BIAS CURRENT


For most applications, no connections are required at the Offset, Bandwidth, or Bias Control pins; they are simply terminated at an isolated solder pad on the PC Card.
The versatility provided by these control points allows the HA-909 to be used in many special applications so that a single op amp type can be used for virtually all op amp requirements in a system.

HA-909 SCHEMATIC
Figure 6 refers to changes in slew rate, bandwidth, large signal bandwidth for a fixed output level, and power supply current with respect to changes in supply voltage and external bias control current. These curves are normalized with respect to the parameters measured at $\pm 15$ volt supplies and the Bias Control pin open. It can be seen that these parameters can be increased to those normal at a higher supply voltage by adding bias control current; 0.35 mA added at $\pm 10$ volts brings the performance up to the normal 15 volt level and 0.35 mA added at $\pm 15$ volts brings the performance up to the normal 20 volt level.
Obviously the maximum output voltage swing cannot be increased by adding bias control current, but actually tends to decrease by about 1 volt at 2 mA bias control current. Bias control currents from 2 to 5 mA increase the parameters even more but instability at unity gain may result from reduced phase margin.
Figure 7 shows the typical external resistance required for various bias control currents at different supply voltage levels.

FIGURE 7.


BIAS RESISTOR SELECTION

External Bias Current mA	Connect R Bias to:	R Bias in Ohms At Supply Voltage:		
		$\pm 10 \mathrm{~V}$	$\pm 15 \mathrm{~V}$	$\pm 20 \mathrm{~V}$
-0.5	-V	1.7K	2K	2.4K
$+0.5$	+V	39 K	57K	77K
+1.0	+V	18K	28K	38 K
+1.5	+V	12K	21K	27K
+2.0	$+V$	9K	14K	19K

## APPLICATION NOTE 505

## A HIGH IMPEDANCE HYSTERESIS CIRCUIT

BY G. G. MILER

A hysteresis amplifier is often needed for Schmitt triggers, analog simulation, differential comparators, and for servomechanisms. Frequently the hysteresis amplifiers used in these circuits are required to have a high input impedance and a low input current to avoid disturbing the input signal. The threshold voltages should be independent of the signal source impedances.

The input current introduces an error in the thresholds, which is equal to the product of the input current and the source resistance. The hysteresis circuit uses positive feedback from the output to the noninverting input of the operational amplifier. Coupling between the output and the source through the input resistance of the operational amplifier can cause multiple triggering unless the differential input resistance of the operational amplifier is large compared with the source resistance. An input impedance of 100 megohms and a bias current of 2 nanoamperes is obtainable with modern high impedance operational amplifiers.

It is frequently necessary to limit the output swing to some convenient levels, such as standard logic levels. The output voltage of current limited devices can be clamped; however, this will create an unnecessary amount of power dissipation.

The output voltage of the circuit can also be limited by using a series resistor between the operational amplifier and a clamp. In this case, the output of the operational amplifier is allowed to swing through its full range. However, this will limit the available output current and will require additional switching time for the output to slew through its full range. On the HA-2520 or HA-2620 the output voltage can be limited by placing a clamp at the bandwidth control point. The bandwidth control point is a high impedance point, which is at the same voltage as the output.

Figure 1 shows a simple hysteresis circuit in which the output voltage is clamped at the bandwidth control point. Let the thresholds, $\mathrm{E}_{\mathrm{T}}$, be defined by:
(1)

$$
\mathrm{E}_{\mathrm{T}}=\mathrm{E}_{10} \pm \frac{\Delta \mathrm{E}_{1}}{2}
$$

Where $E_{10}$ is the input threshold offset voltage. The output voltage limits are $E_{0}$, defined by:
(2)

$$
E_{0}=E_{00} \pm \frac{\Delta E_{0}}{2}
$$

Where $\mathrm{E}_{00}$ is the output offset. The total threshold offset, ETO is defined as:
(3) $E_{T O}=E_{00}-E_{10}$

The voltage at the noninverting input, $\mathrm{E}_{1}$, is given by:
(4)

$$
E_{+}=\frac{R_{1}}{R_{1}+R_{2}} E_{0}
$$

The threshold of the hysteresis circuit occurs when $E_{-}$is equal to $E_{+}$. It can be shown that:
(5)

$$
\Delta E_{+}=\frac{R_{1}}{R_{1}+R_{2}} \Delta E_{0}
$$

Since $\Delta \mathrm{E}_{1}$ is equal to $\Delta \mathrm{E}_{+}$it is obvious that $\mathrm{R}_{1}$ can be found by:
(6) $\quad R_{1}=\frac{\Delta E_{1}}{\Delta E_{0}}\left(R_{1}+R_{2}\right)$
$R_{1}+R_{2}$ is chosen to be some convenient resistance.
The next step is to calculate the reference voltage, $E_{R} . R_{1}$ and $R_{2}$ form a voltage divider between $E_{R}$ and $E_{0}$. Therefore, the reference voltage can be calculated by:
(7)


As an example, let the output swing be between -0.5 and 5.5 volts. The output is diode clamped to these levels as shown in Figure 2. Let the threshold be at $\pm 1.5$ volts and let $R_{1}+R_{2}$ equal $4.4 K$.
(8) $\quad R_{1}=\frac{\Delta E_{1}}{\Delta E_{0}}\left(R_{1}+R_{2}\right)=$

$$
3.0 \times 4.4 \mathrm{~K}=2.2 \mathrm{~K}
$$

Therefore:

$$
\text { (9) } \begin{gathered}
R_{2}=\left(R_{1}+R_{2}\right)-R_{1}= \\
4.4 K-2.2 K=2.2 K
\end{gathered}
$$

The output offset is 2.5 volts and the input offset is zero. Therefore, the total offset voltage is 2.5 volts.

$$
\begin{gather*}
E_{R}=E_{00}-E_{T O}\left(\frac{R_{1}+R_{2}}{R_{2}}\right)=  \tag{10}\\
2.5-2.5\left(\frac{4.4 K}{2.2 K}\right)=2.5 \text { volts }
\end{gather*}
$$

An HA-2620 is used because is has an extremely high input impedance. An HA- 2520 could also be used if faster switching times are desired.

The hysteresis circuit triggers approximately 70 millivolts early because the output voltage begins to drop when the input is within 75 millivolts of the threshold. The maximum current through the diode clamps is only several hundred microamps and remains constant if the differential input voltage is greater than 100 millivolts. Therefore, output voltage remains constant within a few millivolts unless the input is near the threshold. The threshold voltages and the output voltages vary by only a few millivolts from one device to the next. The circuit functions properly with a variation in the threshold voltage of less than ten millivolts when the source resistance is 10 megohms.


Figure 1


Figure 2


Figure 3. Output Voltage vs. Input Voltage for HA-2620 Hysteresis Amplifier


## TEST PROCEDURES FOR OPERATIONAL AMPLIFIERS

## application note 508

The offset voltage of the amplifier under test (A.U.T.) is measured as follows:

1. Set + and $-V$ to the desired supply voltage and close S4 and S5.
2. Measure the voltage at $\mathrm{V}_{\mathrm{OFF}}$.

The offset voltage is equal to $\left(V_{\text {OFF }}\right)\left(10^{-3}\right)$. The feedback amplifier, A1, drives the input of the A.U.T. so that the output is at ground reference, $\mathrm{V}_{\text {OFF }}$ is driven to 1000 times the voltage necessary to compensate for the offset voltage.

The bias current is measured as follows:

1. Measure the offset voltage, $\mathrm{V}_{\mathrm{OFF} 1}$, as above.
2. Open S4 and measure $\mathrm{V}_{\mathrm{OFF}}$.
3. The plus input current is equal to $\mathrm{V}_{\mathrm{OFF}}$ $V_{\text {OFF1 }} \times 10^{-7}$.
4. Close S 4 and open S 5 and measure $\mathrm{V}_{\text {OFF4 }}$.
5. The minus input current is equal to (VOFF4 $\left.-V_{\text {OFF1 }}\right) \times 10^{-7}$.

TEST CIRCUIT FOR MEASUREMENT OF OFFSET VOLTAGE, BIAS CURRENT, AND OFFSET CURRENT $10 \mathrm{~K} \Omega$


The bias current is equal to the average of the plus and minus input currents.

The input offset current is measured as follows:

1. Measure the offset voltage, $\mathrm{V}_{\mathrm{OFF}}$, as above.
2. Open S 4 and S 5 and measure $\mathrm{V}_{\text {OFF2 }}$.
3. The offset current is equal to $\left(V_{\text {OFF2 }}\right.$ $\left.V_{\text {OFF1 }}\right) \times 10^{-7}$.

## TEST CIRCUIT FOR MEASURING OPEN LOOP VOLTAGE GAIN



The open loop voltage gain is measured as follows:

1. Set the $+V$ and $-V$ supply voltages to the desired value and set $-\mathrm{V}_{\text {OUT }}$ to ground.
2. Close S1 so that the sample and hold will null the offset voltage.
3. S1 can be opened when the circuit stabilizes. The sample and hold will maintain the voltage which nulls the offset voltage.
4. Set $-V_{\text {OUT }}$ to the desired output voltage, $-\mathrm{V}_{4}$ and measure $\mathrm{V}_{\text {GAIN4 }}$.
5. Set $-\mathrm{V}_{\text {OUT }}$ to another output voltage, -V 5 and measure $\mathrm{V}_{\text {GAIN5 }}$.
6. The gain is equal to

$$
\left[\frac{\mathrm{V} 4-\mathrm{V}_{5}}{\mathrm{~V}_{\text {GAIN4 }}-\mathrm{V}_{\mathrm{GAIN5}}}\right] \times 20,000 .
$$

$-V_{\text {OUT }}$ can be first set to zero and then to -10 volts. This gives the gain in the plus direction. The gain in the minus direction can be determined by using zero and +10 volts. The average gain can be determined by using output voltages of -10 and +10 volts.

## TEST CIRCUITS FOR MEASUREMENT OF COMMON MODE REJECTION RATIO AND POWER SUPPLY REJECTION RATIO



Common Mode Rejection Ratio:

1. Set +V to $+20 \mathrm{VDC},-\mathrm{V}$ to $-10 \mathrm{VDC}, \mathrm{V}_{\mathrm{OUT}}$ +5 VDC by applying -5 VDC to $-V_{\text {OUT }}$.
2. Measure $\mathrm{V}_{\text {OFF2 }}$
3. Set +V to $+10 \mathrm{VDC},-\mathrm{V}$ to $-20 \mathrm{VDC}, \mathrm{V}_{\mathrm{OUT}}$ to -5 VDC by applying +5 VDC to $-\mathrm{V}_{\text {OUT }}$.
4. Measure $\left|V_{\text {OFF2 }}-V_{\text {OFF4 }}\right|<1.0$ VDC.

The +1.0 volt limit corresponds to a rejection ratio of 80 dB .

Power Supply Rejection Ratio:

1. Set +V to $+20 \mathrm{VDC},-\mathrm{V}$ to $15 \mathrm{VDC}, \mathrm{V}_{\mathrm{OUT}}$ to ground by grounding - $\mathrm{V}_{\text {OUT }}$.
2. Measure $V_{\text {OFF2 }}$.
3. Set +V to +10 VDC.
4. Measure $\left|\mathrm{V}_{\text {OFF2 }}-\mathrm{V}_{\text {OFF4 }}\right|<1.0$ VDC
5. Set $+V$ to +15 VDC, $-V$ to -10 VDC.
6. Measure $\mathrm{V}_{\text {OFF6 }}$.
7. Set $-V$ to -20 VDC .
8. Measure $\left|V_{\text {OFF6 }}-V_{\text {OFF8 }}\right|<1.0$ VDC.

The $\pm 1.0$ volt limit corresponds to a rejection ratio of 80 dB .

## TEST CIRCUITS FOR MEASURING OUTPUT VOLTAGE/CURRENT, POWER DISSIPATION, AND CONTINUITY CHECKS



The output voltage/current is measured by connecting a load resistor, $R_{L}$, to the output of the A.U.T. The value of $R_{L}$ is chosen to yield an output current which is the minimum acceptable output current at the desired output voltage. The amplifier under test is programed to a voltage greater than the desired output voltage by applying an equal but opposite polarity voltage to $=\mathrm{V}_{\text {OUT }}$. The output voltage, $V_{\text {OUT, }}$ is measured to see if it reaches the desired output voltage. This test is performed driving the output positive and driving the output negative.

The power dissipation is measured by driving the output voltage to zero by grounding $-\mathrm{V}_{\text {OUT }}$ and measuring the current in one of the power supply leads.

The continuity of the bandwidth control point is checked by applying -5 V to $-\mathrm{V}_{\text {OUT }}$ and grounding the bandwidth control point through a 100 K resistor. $\mathrm{V}_{\text {OUT }}$ should be less than one volt. There is a known relationship between the voltage at the bandwidth control point and the output voltage, VOUT. This relationship depends on the device type. The continuity of the offset control points is determined by measuring the voltage at these points. These voltages will be slightly less than the positive supply voltage for the HA-2600 and the HA-2500.

## SIMPLIFIED SCHEMATIC OF THE COMPLETE D.C. TEST CIRCUIT FOR OPERATIONAL AMPLIFIERS



# A SIMPLE COMPARATOR USING THE HA-2620 

## APPLICATION NOTE 509

The input current and impedance of a comparator circuit frequently loads the source and reference signals enough to cause significant errors. This problem is frequently eliminated by using a high impedance operational amplifier between the signal and the comparator. Figure 1 shows a simple circuit in which the operational amplifier is used as a comparator which is capable of driving approximately ten logic gates. The input impedance of the HA-2620 is typically $500 \mathrm{M} \Omega$. The input current is typically 1 nA . The minimum output current of 15 mA is obtainable with an output swing of up to $\pm 10$ volts.


FIGURE 1 - HIGH IMPEDANCE COMPARATOR

Figure 2 shows the waveforms for the comparator. The stray capacitance at the bandwidth control point can be reduced considerably below that of the breadboard circuit; this would improve the switching time. The switching time begins to increase more rapidly as the overdrive is reduced below 10 mV and is approximately $1 \mu \mathrm{~s}$ for an overdrive of 5 mV . Dependable switching can be obtained with an overdrive as small as 1 mV . However, the switching time increases to almost $12 \mu \mathrm{~s}$.


FIGURE 2-WAVEFORMS FOR HA-2620 COMPARATOR

A common mode range of $\pm 11$ volts and a differential input range of $\pm 12$ volts makes the HA-2620 a very versatile comparator. The HA-2620 can sink or supply a minimum of 15 mA . The ability to externally clamp the output to any desired range makes the HA-2620 a very flexible comparator which is capable of driving unusual loads.


HARRIS SEMICONDUCTOR PRODUCTS DIVISION A DIVISION OF HARRIS CORPORATION

## A SIMPLE SQUARE-TRIANGLE WAVEFORM GENERATOR

## APPLICATION NOTE 510



Figure 1 shows a very simple function generator which uses only three operational amplifiers. The amplitude of the square and triangular waveforms is variable from 0.2 to 20 volts peak-to-peak. The frequency range is from 2.5 Hz to 250 kHz . The rise time of the square wave is less than 100 nanoseconds. The slope of the triangular waveform is very linear. Very little change in frequency, amplitude, or waveform is observed with changes in supply voltages between 10 and 20 volts.

The square wave generator consists of a simple hysteresis circuit which is triggered by the triangular wave generator. The output voltage of the square wave generator is clamped to the desired level by diodes con-
nected to the bandwidth control point. The circuit shown gives an output of two volts peak-to-peak. The ratio of the amplitude of the square wave to the triangular wave is equal to the ratio of $R_{1}$ to $R_{2}$. An HA-2620 is chosen for the comparator because it has very low input currents, high slew rate and wide bandwidth.

The triangular wave generator consists of an integrator which integrates the output of the square wave generator. The frequency of the function generator is controlled by the ramp rate of the triangular wave and the threshold levels of the hysteresis circuit. $\mathrm{S}_{1}$ selects the integrating capacitor which changes the frequency range in decade steps. $\mathrm{R}_{4}$ is the variable frequency control. The frequency of the function generator, $f$, is given by:

$$
f=\frac{1}{4\left(R_{3}+R_{4}\right) C}\left(\frac{R_{1}}{R_{2}}\right)
$$

Better high frequency operation can be obtained by reducing the value of $R_{3}$ and $R_{4}$. Very long periods can be obtained by increasing the value of R3, R4 and the integrating capacitor. The HA-2600 is chosen because it produces the most accurate integration, having a typical input bias current of inA. The HA-2620 can be used for the integrator. It may be necessary to add some external compensation to prevent ringing if an HA-2620 is used.

The output amplifier consists of a simple non-inverting amplifier using a HA-2510. The HA-2510 is chosen for its high slew rate of 50 volts per microsecond. S3 selects a gain of one or ten. The variable output attenuator, $R_{6}$, sets the input level to the amplifier. R7 serves as an output level calibration control. The maximum output current should be limited to 20 mA . The load impedance should not be less than $600 \Omega$ for a gain of ten and $50 \Omega$ for unity gain.

## APPLICATION NOTE 511

## GENERAL USES

D to A converters are useful in any system where both digital and analog signals are present. Some of the more common applications include:

1. Data processing output interface; driver for displays, plotters, etc.
2. Programmable power supply or function generator in automatic test equipment.
3. Tool interface in numerical controlled machining.
4. Interface for automatic process control to control temperature, flow rates, etc.
5. Digital communications: digital to audio interface.
6. Feedback network in A to D converters.

## TERMINOLOGY

A definition of some of the terms and parameters encountered in D to A conversion will be helpful to those being introduced to the field.

Resolution: An indication of the number of possible analog output levels, usually expressed as the number of input bits that the converter will handle. For example, an eight (8) bit binary weighted converter will have $2^{8}=256$ possible output levels (including zero). This should not be confused with accuracy, which is sometimes also expressed as a number of bits.

Accuracy: A measure of the deviation of the analog output level from its predicted value under any input combination. This can be expressed as a percentage of full scale, a number of bits ( N bits accuracy $=1 / 2 \mathrm{~N}$ possible error,) or a fraction of the least significant bit (if a converter with M bits resolution has $1 / 2$ L.S.B. accuracy the possible error is $\frac{1}{2} \times \frac{1}{2 M}$ ). Accuracy may be of the same, higher, or lower order of magnitude as the resolution. The importance of accuracy vs. resolution depends on the application. Possible errors in individual bit weights which may be cumulative with combinations of bits; errors in the summation of individual bit weights and changes in these due to temperature variations.

Least Significant Bit (L.S.B.): The digital input bit carrying the lowest numerical weight; or the analog level shift associated with this bit, which is the smallest possible analog step.

Most Significant Bit (M.S.B.): The digital input bit carrying the highest numerical weight; or the analog level shift associated with this bit. In a binary weighted converter the M.S.B. creates a half of full scale level shift.

Settling Time: The total time measured from a digital input change to the time the analog output reaches its new value within a specified error band. It should be noted that the transition from one level to another is not always smooth; spikes and ringing may occur.

The Harris Semiconductor $\mathrm{HI}-1080$ is the first monolithic integrated circuit $D$ to $A$ converter complete with the thin film resistor ladder network on the same chip as the switching devices. Along with the advantages of small size and monolithic reliability, this allows higher speed and faster settling. Also it has the advantage over separate switches and ladder networks in that overall performance is guaranteed and there is no need to add the possible errors of separate components.

The functional diagram of the $\mathrm{HI}-1080$ is shown in Figure 1. An external reference supply, usually 5 volts, is connected between the +REF and the -REF pins. The output levels will be directly proportional to the differential reference voltage. Variations of the other +5 volt and the -15 volt power supplies have negligible effect on the analog output. Either the + REF or the -REF pin may be grounded, so reference supplies of either polarity may be accomodated. The smaller value resistors between +REF and $T_{1}$ or between $T_{2}$ and $T_{3}$ may be externally shorted out, or an external trimmer substituted, for fine adjustment of the full scale output level. The positive side of the reference supply may be connected to $T_{2}$ or $T_{3}$ for a 10 volt nominal output swing, which is useful in bipolar operation.


Figure 1. Functional Diagram HI-1080

The reference level is conditioned through the current driver control where the output current of each of the eight current drivers is determined.

The use of current sources to drive the ladder network has several advantages over voltage sources. Within the constant current range of the sources, the current, and hence the differential ladder output voltage, will remain constant regardless of variations in the negative supply voltage and the voltage of the ladder return bus. The ladder bus may be returned to a voltage other than ground if desired for offset or bipolar outputs without affecting its output. The digital and analog grounds can be effectively separated for noise free operation. Also switching of a current source rather than a voltage source generally is faster, creates less ringing at the output, and produces smaller power supply transients.

The digital inputs effectively switch the current source outputs either to the ladder network or to ground. The inputs are fully compatible with any standard 5 volt DTL or TTL logic circuits. A "high" input ( $>+2$ volts) switches the current source to ground; a "low" input (<+0.8 volts) switches the current source to the ladder, creating a more negative output voltage. This polarity convention should be kept in mind when designing with the HI-1080.

The ladder network is constructed from high stability metal film resistors deposited on the same silicon chip. Identical material is used for the resistors in the reference supply network and in the current source circuitry to achieve good temperature stability. The " $R-2 R$ " ladder network is used rather than a weighted resistor network because identical resistors will match better in value and temperature coefficient. Extra resistors are provided at the R Sum and 2R Sum terminals which are very useful for feedback or summing with external amplifiers or comparators, since these resistors will track almost perfectly with the ladder source resistance. Provision is made at the other end of the ladder for cascading converters for higher resolution.

A block diagram is shown in Figure 2 and schematics of the block in Figures 3-5.


Figure 2. 8 Bit D/A Converter Block Diagram


Figure 3. D/A Converter Reference Level Shifter


Figure 4. D/A Converter Current Switch Bias \& Clamp Circuit


Figure 5. D/A Converter Ladder Current Switch

Some of the possible operating modes of the $\mathrm{HI}-1080$ are illustrated in Figure 6. Since both the reference supply terminals and the ladder bus terminal can be connected to any voltage within $\pm 5$ volts with respect to power supply ground, a number of output polarity modes can be achieved. In all cases the ladder output will become more negative with respect to the ladder bus as a digital input is changed from the high to the low state.


MODE	OUTPUTRANGE INPUTS: ALL HIGH TO ALL LOW	CONNECTIONS			
		A	B	C	D
$\begin{aligned} & \text { UNIPOLAR } \\ & \text { ZERO } \\ & \text { REFERENCE } \end{aligned}$	OTO - $\mathrm{V}_{\left.\mathrm{R}^{+}-1 \text { L.S.E. }\right]}$	$\mathrm{V}^{+}{ }^{+}$	N.C.	GND	GND
UNIPOLAR ZERO FS.	$+/ \mathrm{V}_{\mathrm{R}}{ }^{+} /$TO $[\mathrm{O}+1$ L.S.E. $]$	$\mathrm{V}_{\mathrm{R}}{ }^{+}$	N.C.	GND	$V_{R^{+}}$
BIPOLAR	$/ \mathrm{V}_{\mathrm{R}}+1 \mathrm{TO}\left[-\mathrm{V}_{\mathrm{R}}+1 \mathrm{~L} . \mathrm{SB}.\right]$	N.C.	$\mathrm{V}^{+}{ }^{+}$	GND	$V_{R^{+}}$

Figure 6. D/A Converter Operation Modes

In the unipolar - zero reference mode, the ladder bus is grounded. Using negative logic convention (high = 0 , low $=1$ ), the output will increase in the negative direction with increasing input binary number. Either side of the reference supply may be grounded.

In the unipolar - zero full scale mode, the ladder bus is connected to the positive reference voltage, so the output will be always positive with respect to the reference ground. Now, using positive logic convention (low $=0$, high $=1$ ), the output will increase in the positive direction with increasing binary number. It may be necessary to connect $\mathrm{V}_{\mathrm{R}^{+}}$to a lower tap in series with a potentiometer to adjust the zero level.

The bipolar mode connection is similar to the previous mode except the $\mathrm{V}_{\mathrm{R}^{+}}$is connected to $\mathrm{T}_{2}$ (or $T_{3}$ through a pot), so that the full scale excursion is now 10 volts. With all inputs low, the output will be most negative (about -4.96 V ). With only the M.S.B. high, the output will be zero volts. With all inputs high, the output will be at $\mathrm{V}_{\mathrm{R}}{ }^{+}$.

Figure 7 illustrates connections from the converter to an operational amplifier. The inverting connection uses the summing registers provided on the chip for amplifier feedback. Since the ladder impedance is nominally 5 K ohms, connection of the output to $R$ Sum will result in a gain of -1 . Connection to $2_{R}$ Sum will result in a gain of -2 . Any of the operating modes discussed previously may be used.


| FULL SCALE |
| :---: | :---: | :---: |
OUTPUT		OUTPUT FEEDBACK			
CONNECTED TO :	$\mathrm{R}_{1}	$	+4.98 V	$\mathrm{R}_{\text {SUM }}$	2.5 K
:---:	:---:	:---:			
+9.96 V	$2 \mathrm{R}_{\text {SUM }}$	3.3 K			

INVERTING OUTPUT
(MORE POSITIVE WITH INCREASING COMPLEMENT OF INPUT NUMBER,


OUTPUT RANGE: SAME AS SHOWN ON 'OPERATING MODE' CHART

$$
\text { MULTIPLIED BY } \frac{R_{2}}{R_{1}+R_{2}}
$$

NON-INVERTING OUTPUT (MORE NEGATIVE WITH INCREASING COMPLEMENT OF INPUT NUMBER)

Figure 7. Buffer Amplifier Connection

For a noninverting output the operational amplifier is wired in the conventional manner. The R Sum or 2R Sum resistor could be used to sum an external analog signal of opposite polarity at the amplifier input.

The Harris Semiconductor HA-2500 operational amplifier is recommended for high speed applications since its slew rate of $\mathbf{2 5}$ volts per microsecond is sufficient to follow the converter output steps very closely. For more moderate speed applications, the Harris Semiconductor HA-2600 operational amplifier is recommended for better offset drift while retaining a minimum slew rate of 4 volts per microsecond. Booster stages may be added to the amplifier outputs to drive any required load.

## CASCADED D TO A CONVERTERS

Two HI-1080 units may be cascaded to achieve resolutions from 9 to 15 bits, using the ladder extension terminals, as illustrated in Figure 8. Note that input D8 of the higher significant bit unit is not used. This is necessary in order to join the two ladders correctly.


Figure 8. Cascaded Units for 12 Bit Resolution

A person might ask, "Why would anyone want a 12 bit converter with only 8-1/2 bit accuracy?" The answer is that most applications require accuracy expressed as a percentage of actual output rather than as a percentage of full scale output. One feature of the $R-2 R$ ladder network is that errors in terms of millivolt deviation from the predicted output tend to become smaller as the lesser significant bits only are exercised. So for the 12 bit converter shown, with outputs between 1.25 and 5 volts the errors may be on the order of $\pm 10$ millivolts; but for outputs between 0 and 20 millivolts the errors will tend to be less than 0.7 millivolts.

## A TO D CONVERTER; UP-DOWN COUNTER TYPE

A high speed $D$ to $A$ converter can be used as the heart of several very useful types of $A$ to $D$ converters. The up-down counter, or servo type converter is most efficient in monitoring one analog signal continuously, rather than monitoring multiplexed analog signals.

The converter works basically by balancing the input analog signal with the $D$ to $A$ output, adjusting the $D$ to $A$ by running a digital counter up or down as required to balance the signal. When the two analog signals balance, the counter state represents the digital equivalent of the input signal.

In the example shown in Figure 9, the two analog signals are fed differentially into an op-amp. For a positive input signal, the $D$ to $A$ could be run in the positive output mode, or in the negative output mode by summing the two signals at the inverting amplifier input. The amplifier gain should be set at 2 or greater to allow less critical thresholds for the comparators.


Figure 9. "Up-Down Counter" Type A to D Converter

The two comparator thresholds are set up by voltage dividers to correspond to unbalances of approximately $\pm 1 / 2$ L.S.B. When the analog signals are balanced within this range, the comparator outputs are both high, which stops the counters and gives a Data Ready signal to indicate that the digital outputs are correct.

If the analog signals are unbalanced by more than $\pm 1 / 2$ L.S.B., the counter is enabled and driven in the up or down direction depending on the polarity of the unbalance.

If the $D$ to $A$ converter is operated in the negative output mode, the digital outputs will follow negative logic convention.

If the analog input signal varies by less than 1 L.S.B. per clock period, the converter will continuously track the signal.

The Data Ready signal could be useful in adaptive systems for most efficient data transfer, since that signal changes state only when there is a significant change in the analog input. When monitoring a slowly varying input, it would be necessary to read-out the digital output only after a change has taken place. The Data Ready signal could trigger a flip-flop to flag this condition and the flip-flop would be reset after read-out.

The main disadvantage of the up-down counter converter is the time required to initially acquire a signal, which in an 8 bit system, could be up to 256 clock periods. The input signal usually must be filtered so that its rate of change does not exceed the tracking rate of the converter.

## A TO D CONVERTER, SUCCESSIVE APPROXIMATION TYPE

Suppose you were asked to guess a secret number between 0 and 15 by asking the least number of questions answerable by yes or no. One of the most efficient ways might work as follows:
> "Is it 8 or greater?"
> "Yes"
> "Is it 12 or greater?"
> "No"
> "Is it 10 or greater?"
> "Yes"
> "Is it 11?"
> "No"

If you had jotted down a " 1 " for each "yes" and a " 0 " for each "no", you would have 1010, which of course is the binary notation for ten. So it is possible to find one number out of 16 with 4 questions. Likewise 8 questions would be required to find a number between 0 and 255. Obviously this technique is usually much quicker than saying, "Is it zero?", "Is it one?'", etc., or guessing numbers at random.

The successive approximation converter shown in Figure 10 uses the same technique to find which proportional number between 0 and 255 best approximates the input analog voltage.


Figure 10. Successive Approximation Type A to D Converter

This is accomplished in 8 clock cycles - two additional cycles are used in this design to hold the data and to clear the registers, but this could be done during the eighth cycle, if necessary. The measurement starts with all zeros programmed into the $D$ to A and the decade counter set to zero. The decoder enables the first of eight latches and the clock pulse sets a flip-flop composed of two cross-coupled gates setting a " 1 " in the first latch, so the $D$ to $A$ has a $10,000,000$ input. The $D$ to $A$ consequently produces a half-scale output which goes to one side of the comparator. The comparator now effectly asks the question "Is the input greater than half-scale?". If the answer is "yes", the comparator output is high and the flip-flop remains set. If the answer is "no" the comparator resets the flip-flop during the second half cycle of the clock, resetting the first latch to zero.

On the second clock cycle the decoder enables the second latch while the last state of the first latch remains stored in it and remains as the D to A, M.S.B. input. In a similar manner, the state of the second M.S.B. is decided and the decoder moves on to the third. After the eighth clock cycle the conversion is complete, which is signaled by the Data Ready line on the ninth cycle. At the tenth cycle all latches are reset to be ready for the next conversion.

In practice, the delay of the clock pulse through the counter and decoder should be less than the delay through the three gates for proper timing.

Polarities shown are correct for the D to A connected in the negative output mode, and the digital output will be correct in negative logic. A positive analog input can be handled by summing with the $D$ to $A$ output at one comparator input, or by operating the $D$ to $A$ in the positive output mode and shifting the digital polarities as necessary.

It is necessary in any successive approximation converter for the analog input to remain constant during the conversion.

In multiplexed systems this is usually accomplished with a sample-and-hold circuit in the analog line.

It can be seen that the successive approximation type will give the correct output in eight clock cycles while the up-down counter type could take up to 255 cycles to acquire a signal. Once acquired, the up-down counter can indicate a change in a slowly varying signal within one clock cycle, while the successive approximation type must step through another eight cycles. The choice really depends on the type of signals to be monitored.

## APPLICATION NOTE 512

## COUNTER TYPE A TO D CONVERTER

## INTRODUCTION

This paper describes circuit details for a full temperature range eight-bit $A$ to $D$ converter employing a unidirectional digital counter and a $D$ to $A$ converter. As shown in the simplified diagram in Figure 1, circuit operation is quite simple. A multiple stage counter circuit is driven from a clock and the counter output drives a $D$ to $A$ converter producing a staircase voltage ramp. When the D to A output voltage equals the analog input voltage, the comparator changes state, and at that instant, the counter state represents the digital equivalent of the analog input.

The heart of this circuit is the $\mathrm{HI}-1080$ EightBit D to A Converter, which is a monolithic integrated circuit containing both the current switches and the R-2R ladder network. This features good speed and accuracy over $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range. The $\mathrm{HI}-1080$ D to A converter is also very effective in updown counter and successive approximation type A to D converters, which are described in other application notes.


Figure 1. Simplified Diagram, Counter Type A/D

## COUNTER vs. SUCCESSIVE APPROXIMATION TYPE CONVERTERS

The most popular $A$ to $D$ converter employing a $D$ to $A$ circuit is the successive approximation type. This type is useful for high speed conversion, since it requires only N clock cycles for an N -bit conversion, while the counter type requires up to 2 N cycles. One disadvantage, where many conversions per second are not needed, is that a sample-and-hold circuit is nearly always required in the analog signal path. The sample-and-hold circuit is an additional error source which is difficult to control over a wide temperature range. The counter type converter does not require a sample-and-hold circuit, since its output is a parallel digital number taken at the instant that the D to A and input signals are equal, although filtering of the input signal may be desirable in some applications. The counter type converter illustrated here can perform 1,000 conversions per second, which is adequate for many applications.

## CIRCUIT DETAILS

The complete circuit schematic is shown in Figure 2 and typical waveforms are illustrated in Figure 3. The digital circuits shown are 9300 types, but comparable circuits from other TTL families will work equally well if any functional differences are taken into account.

Since the D to A converter normally has a negative output level, a positive input signal is compared by resistive summation at one comparator input, using the summing resistor internal to the $D$ to $A$ which closely matches the $D$ to $A$ equivalent output resistance.


Figure 2. Complete A/D Schematic


Figure 3. Waveforms with +2.50 Volts Analog Input

The comparator is strobed with the clock to prevent any D to A switching spikes from prematurely triggering the comparator. The strobing necessitates the use of the set-reset flip-flop formed by the cross-coupled gates so that the latch receives only one enable pulse per conversion cycle.

Note that the data output from the latch is the complement of the digital value, due to the polarity conventions of the $D$ to $A$.

## CIRCUIT ADJUSTMENT

For 0 to +5 volt input range the input op-amp is first zeroed in the conventional manner. Then +2.500 volts is applied to the input, and the pot between the reference supply and the D to $A$ is adjusted so that the M.S.B. just trips in at this level. The full scale input will then be 1 L.S.B. below +5.000 volts which is +4.980 volts.

For 0 to +10 volts input range, connect the op-amp output to the $2 R$ sum terminal on the D to A .

For 0 to -5 volt range, connect the op-amp output to the negative input of the comparator through a 5 K ohm resistor.

For -5 volt to +5 volt bipolar operation, connect the ladder bus terminal on the D to A to the +5 volt reference, and connect the reference through the potentiometer to the T3 terminal of the $D$ to $A$.

Virtually any other input range is possible by changing the op-amp gain or polarity, or adjusting the reference potentiometer. Zero shift may be accomplished by offsetting the ladder bus, or summing voltages at the opamp or comparator inputs.

## CIRCUIT PERFORMANCE

Accuracy is affected primarily by the $D$ to $A$ accuracy, and to a lesser degree by offsets in the input op-amp and the comparator. This circuit proved to be accurate within $+1 / 2$ L.S.B. at room temperature, and $\pm 1$ L.S.B. from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. This accuracy was maintained at clock rates up to 330 KHz . Clock rates up to 1 MHz could be used with about 1 additional L.S.B. of inaccuracy.

## CIRCUIT VARIATIONS

Using the illustrated circuit as a starting point, many modifications to the digital circuitry are possible to suit the application.

For convert-on-command operation, the circuitry beyond the comparator, including the latch could be eliminated and the comparator output used to gate off the clock signal. The counters will hold their value untit a command to convert again is issued by resetting the counters to zero.

For continuous conversion, a reduction in average (but not maximum) conversion time can be made by resetting the counters immediately after data is entered in the latches.

Another possible improvement in conversion time can be acheived by running the clock at a variable rate - fast while the D to A output is far from the input level and slower when the comparator is about ready to trip. One possibility is to use a VCO as the clock, controlled in frequency by an op-amp with inputs wired across the comparator inputs. Another possibility would be to use a fixed 5 MHz clock and insert a $\div 16$ counter in series with the clock line when the D to $A$ and input voltages are nearly equal. This could be controlled by a second comparator with the trip point offset from that of the main comparator.

## APPLICATION NOTE 514

## INTRODUCTION

Harris Semiconductor has announced a new linear device, the HA-2400/HA-2405 Four Channel Operational Amplifier. This combines the functions of an analog switch and a high performance operational amplifier, and makes practical a large number of new linear circuit applications.


A functional diagram of the HA-2400 is shown above. There are four preamplifier sections, one of which is selected through the DTL/TTL compatible inputs and connected to the output amplifier. The selected analog input terminals and the output terminal form a high performance operational amplifier.

In actuality, the circuit consists of four conventional op-amp input circuits connected in parallel to a conventional op-amp output circuit. The decode/control circuitry furnishes operating current only to the selected input section.

## CIRCUIT CONNECTIONS

These inputs control the selection of the amplifier input channels in accordance with the truth table below:

$\mathrm{D}_{0}$	$\mathrm{D}_{1}$	ENABLE	CHANNEL 1	CHANNEL 2	CHANNEL 3	CHANNEL 4
L	L	H	ON	OFF	OFF	OFF
H	L	H	OFF	$\underline{\mathrm{ON}}$	OFF	OFF
L	H	H	OFF	OFF	ON	OFF
H	H	H	OFF	OFF	OFF	ON
Lor H	L or H	L	OFF	OFF	OFF	OFF

$\mathrm{OV} \leq \mathrm{L} \leq+0.8 \mathrm{~V}$
$+2.0 \mathrm{~V} \geq \mathrm{H} \geq+5.0 \mathrm{~V}$
The digital inputs can be driven with any DTL or TTL circuit which uses a standard +5.0 V supply.

## COMPENSATION

Frequency compensation for closed loop stability is recommended for closed loop gains less than 10. This is accomplished by connection of a single external capacitor from Pin 12 to A.C. ground (the V+ supply is reccommended). The following table shows the minimum suggested compensation for various closed loop gains, with the resultant bandwidth and slew rate. Obviously, when the four channels are connected with different feedback networks, the channel with the lowest closed loop gain will govern the required compensation.

GAIN, VOLTS/VOLT		$\begin{gathered} \text { C.OMP }^{\mathrm{pF}} \\ \hline \end{gathered}$	BANDWIDTH (TYPICAL) (-3dB), MHz	SLEW RATE (TYPICAL) VOLTS/ $\mu \mathrm{s}$
NON-INVERTING	INVERTING			
1	-	15	8.0	15
2	1	7	8.0	20
3	2	4	8.0	22
5	4	3	6.0	25
8	7	2	5.0	30
$>10$	$>9$	0	$40 \div$ GAIN	50

Compensation capacitors of greater value can be used to obtain lower bandwidth, greater
phase margin, and reduced overshoot, at the expense of proportionately reduced slew rate.

External lead-lag networks could also be used to optimize bandwidth and/or slew rate at a particular gain.

## APPLICATIONS

Any circuit function which can be constructed using a conventional operational amplifier can also be constructed using any channel of the HA-2400. Similar or different networks can be wired from the output to each channel input pair. The device can therefore be used to select and condition different input signals, or to select between different op-amp functions to be performed on a single input signal.

To wire a particular op-amp function to a channel, simply connect the appropriate network between the two inputs for that channel and the common output in the same manner as in wiring a conventional op-amp. It is often possible to design with fewer external components than would be required in wiring four separate op-amps (see Application Numbers 2 and 3 on the following pages). It should be remembered that the networks for unselected channels may still constitute a load at the amplifier output and the signal input, as if the unselected input terminals were disconnected from the network.

If offset adjustment is required, it can generally be accomplished by resistive summation at either of the inputs for each channel (see Application Number 8).

The analog input terminals of the OFF channels draw the same bias current as the ON inputs. The maximum differential input voltage of these terminals must be observed and their voltage levels must never exceed the supply voltages.

When the Enable input is held low, all four input channels are disconnected from the output. When this occurs, the output voltage will generally slowly drift towards the negative supply. If a zero volt output condition is required, one channel should be wired as a voltage follower with its positive input grounded.

The amplifier output impedance remains low, even when the inputs are disabled; so it is not
generally practical to wire the outputs of two or more devices directly together. The compensation pins of two devices, however, could be wired together to produce a switch with one output and more than four input channels.

The voltage at the compensation pin is about 0.7 V more positive than the output signal, but has a very high source impedance. Maximum current from this pin is about $300 \mu \mathrm{~A}$, which makes it a convenient point for limiting the output swing through clamping diodes and divider networks (see Application Number 13).

Even if the application only requires a single channel to be switched on and off, it is often more economical to use the HA-2400, rather than a separate analog switch and high performance op-amp. Unused analog channel inputs should be grounded. Unused digital inputs may be wired to ground for a permanent "low" input, or either left open or wired to +5.0 V for a permanent "high" input.

Illustrated on the following pages are a few of the thousands of possible applications for the Four Channel Operational Amplifier. These will give the reader a general impression of how the units can be connected; and probably will help generate many other ideas for applications. Also included are some "challenges" for the reader to modify the illustrated designs to perform different functions.

APPLICATION NO. 1


ANALOG MULTIPLEXER WITH BUFFERED INPUT AND OUTPUT

This circuit is used for analog signal selection or time division multiplexing. As shown, the feedback signal places the selected amplifier channel in a voltage follower (non-inverting unity gain) configuration, and provides very high input impedance and low output impedance. The single package replaces four input buffer amplifiers, four analog switches with decoding, and one output buffer amplifier.

T For low level input signals, gain can be added to one or more channels by connecting the $(-)$ inputs to a voltage divider between output and ground. Bandwidth is approximately 8 MHz , and the output will slew from one level to another at about 15.0 V per microsecond.

Expansion to multiplex 5 to 12 channels can be accomplished by connecting the compensation pins of two or three devices together, and using the output of only one of the devices. The Enable input on the unselected devices must be low.

Expansion to 16 or more channels is accomplished in a straightforward manner by connecting outputs of 4 four-channel multiplexers to the inputs of another four-channel multiplexer.

Differential signals can be handled by two identical multiplexers addressed in parallel.

Inverting amplifier configurations can also be used, but the feedback resistors may cause crosstalk from the output to unselected inputs.

## APPLICATION NO. 2



AMPLIFIER, NON-INVERTING PROGRAMMABLE GAIN
This is a non-inverting amplifier configuration with feedback resistors chosen to produce a gain of $0,1,2,4$, or 8 depending on the Digital Control inputs.

Comparators at the output could be used for automatic gain selection for auto-ranging meters, etc.

CHALLENGE: Design a circuit using only
two HA-2400's which can be programmed to any of 16 different gains.

## APPLICATION NO. 3



AMPLIFIER, INVERTING PROGRAMMABLE GAIN
The circuit above can be programmed for a gain of $0,-1,-2,-4$ or -8 .

This could also have been accomplished with one input resistor and one feedback resistor per channel in the conventional manner, but this would require eight resistors rather than five.

APPLICATION NO. 4


## ATTENUATOR PROGRAMMABLE

This circuit performs the function of dividing the input signal by a selected constant (1, 2, 4,8 , or $\infty$ as illustrated). To multiply by a selected constant, see circuit No. 2. While T, $\boldsymbol{\pi}$, or $L$ sections could be used in the input attenuator, this is not necessary since the amplifier loading is negligible and a constant input impedance is maintained. The circuit is thus much simpler and more accurate than the usual method of constructing a constant impedance ladder and switching sections in and out with analog switches.

Two identical circuits may be used to attenuate a balanced line.

With a low frequency input signal and a high frequency digital control signal, a balanced (surpressed carrier) modulator is formed.

APPLICATION NO. 7


INTEGRATOR/RAMP GENERATOR WITH INITIAL CONDITION RESET

It is difficult in practice to set the initial conditions accurately in an integrator. This usually requires wiring contacts of a mechanical relay across the capacitor - leakage currents of solid state switches produce integration inaccuracy. The scheme shown above eliminates these reliability and accuracy problems.

Channel 1 is wired as a conventional integrator, Channel 2 as a voltage follower. When Channel 2 is switched on, the output will follow VIN, and C will discharge to maintain zero volts across it. When Channel 1 is then switched on the output will initially be at the instantaneous value of VIN, and then will commence integrating towards the opposite polarity. This circuit is particularly suitable for timing ramp generation using a fixed D.C. input. Many variations are possible, such as programmable time constant integrators.

APPLICATION NO. 8


TRACK AND HOLD/SAMPLE AND HOLD

Channel 1 is wired as a voltage follower and

This circuit passes the input signal at unity gain, either unchanged, or inverted depending on the Digital Control input. A buffered input is shown, since low source impedance is essential. Gain can be added by modifications to the feedback networks. Signals up to 100 kHz can be handled with 20.0 V peak-topeak output. The circuit becomes a phase detector by driving the Digital Control input with a reference phase at the same frequency as the input signal, the average D.C. output being proportional to the phase difference, with zero volts at $\pm 90^{\circ}$. By connecting the output to a comparator, which in turn drives the Digital Control, a synchronous full-wave rectifier is formed.
is turned on during the track/sample time. If the product of $\mathrm{R} \times \mathrm{C}$ is sufficiently short compared to the period of maximum output frequency, or sample time, C will charge to the output level. Channel 2 is an integrator with zero input signal. When Channel 2 is then turned on, the output will remain at the voltage across $C$.

An even simpler circuit can be made by wiring one channel as an amplifier, choosing the compensation capacitor to yield the minimum required bandwidth or slew rate. When the Enable input is pulled low, the output will tend to remain at its last level, because of the charge remaining on the compensating capacitor.


SINE WAVE OSCILLATOR PROGRAMMABLE FREQUENCY

APPLICATION NO. 10


MULTIVIBRATOR, FREE RUNNING, PROGRAMMABLE FREQUENCY

This is the simplest of any programmable oscillator circuit, since only one stable timing capacitor is required. The output square wave is about 25.0 V peak-to-peak and has
rise and fall times of about $0.5 \mu \mathrm{~s}$. If a programmable attenuator circuit (No. 4) is placed between the output and the divider network, 16 frequencies can be produced with two HA-2400's and still only one timing capacitor.

A precision programmable square-triangle generator can also be constructed by adapting circuit described in Harris Application Note 507 to the HA-2400.

## APPLICATION NO. 11



ACTIVE FILTER PROGRAMMABLE

Shown above is a second order low pass filter with programmable cutoff frequency. This circuit should be driven from a low source impedance since there are paths from the output to the input through the unselected networks.

Virtually any filter function which can be constructed with a conventional op-amp can be made programmable with the HA- 2400.

A useful variation would be to wire one channel as a unity gain amplifier, so that one could select the unfiltered signal, or the same signal filtered in various manners. These could be cascaded to provide a wide variety of programmable filter functions.

## APPLICATION NO. 12



Many systems require one or more relatively low current voltage sources which can be programmed to a few predetermined levels. It is no longer necessary to purchase a programmable power supply with far more capability than needed. The circuit shown above produces positive output levels, but could be modified for negative or bipolar outputs. Q1 is the series regulator transistor, selected for the required current and power capability. R1, Q2 and Q3 form an optional short circuit protection circuit, with R1 chosen to drop about 0.7 V at the maximum output current. The compensation capacitor, C. should be chosen to keep the overshoot, when switching, to an acceptable level.

CHALLENGE: Design a supply using only two HA-2400's which can be programmed to 16 binary weighted (or 10 BCD weighted) output levels.

APPLICATION NO. 13


COMPARATOR, FOUR CHANNEL

When operated open loop without compensation, the HA-2400 becomes a comparator with four selectable input channels. The clamping network at the compensation pin limits the output voltage to allow DTL or TTL digital circuits to be driven with a fanout of up to ten loads.

Output rise and fall times will be about 100ns for differential input signals of several hundred millivolts, but will be in the microsecond region for small differential signals.

The circuit can be used to compare several signals against each other or against fixed references; or a single signal can be compared against several references. A "window comparator", which assures that a signal is within a voltage range, can be formed by monitoring the output polarity while rapidly switching between two channels with different reference inputs and the same signal input.


MULTIPLYING D TO A CONVERTER

The circuit above performs the function, $V_{\text {OUT }}=V_{\text {IN }} \cdot \frac{N}{16}$, where $N$ is the binary number from 0 to 15 formed by the digital input. If the analog input is a fixed D.C. reference, the circuit is a conventional 4 -bit $D$ to $A$. The input could also be a variable or A.C. signal, in which case the output is the product of the analog signal and the digital signal.

The circuit on the left is a programmable attenuator with weights of $0,1 / 4,1 / 2$ or $3 / 4$. The circuit on the right is a non-inverting adder which adds weights to the first output of $0,1 / 16,1 / 8$ or $3 / 16$.

If four quadrant multiplication is required, place the Phase Selector circuit (No. 6) in series with either the analog input or output. The $\mathrm{D}_{0}$ input of that stage becomes the + or - sign bit of the digital input.

## MORE CHALLENGES

One of our favorite college textbooks paused at each climactic point with a statement to the effect that, "Proof of the following theorem is omitted, and is suggested as an exercise for the student."

The following is a list of some additional applications in which we believe the HA-2400 will prove very valuable. The "proofs", at present, remain as exercises for our ingenious readers.

- A to D Converter, Dual Slope Integrating
- Active Filter, State Variable Type with Programmable Frequency and/or Programmable " $Q^{\prime}$ "
- Amplifier with Programmable D.C. Level Shift
- Chopper Amplifiers
- Crossbar Switches
- Current Source, Programmable
- F.M. Stereo Modulator
- F.S.K. Modem
- Function Generators, Programmable
- Gyrator, Programmable
- Monostable Multivibrator, Programmable
- Multiplier, Pulse Averaging
- Peak Detector with Reset
- Resistance Bridge Amplifier/Comparator with Programmable Range
- Sense Amp/Line Receiver with Programmable Threshold
- Spectrum Analyzer, Scanning Type
- Sweep Generator, Programmable
- Switching Regulator
- Touch-Tone ${ }^{\text {TM }}$ Generator/Detector (Use Harris HD-0165 Keyboard Encoder I.C.)


## FEEDBACK

We believe we have only scratched the surface of possible applications for a multiple channel operational amplifier.

If you have a solution for any of the previous "challenges" or any new application, please let us know. Anything from a one word description to a tested design will be welcome.

## APPLICATION NOTE 515

## OPERATIONAL AMPLIFIER STABILITY: INPUT CAPACITANCE CONSIDERATIONS

BY DON JONES

This is the first in a series of notes dealing with stabilization and optimization of A.C. response in operational amplifiers. One of the more common difficulties in applying operational amplifiers will be discussed.
Let's consider the unity gain inverting amplifier circuit shown below:


This appears to be a straightforward application with reasonable component values.

But, with the input grounded, the circuit output shows an oscillation at about 5 MHz .

Even more surprising, if the same device is connected as a voltage follower with the same load, it is perfectly stable. Since the inverting amplifier has 6 dB less feedback than the voltage follower, shouldn't it be more stable?

The culprit here is capacitance at the amplifier inverting input. The HA-2600 in the TO-99 can has an input capacitance of about 2 or 3 pF . When soldered on a P.C. card, or inserted in a socket, wiring capacitance might add another 3 to 6 pF . With only 5 K effective resistance at this point, 5 to 10 pF seems pretty negligible, doesn't it? But let's find out.

The open loop amplitude and phase response
characteristics of the amplifier between 1 and 10 MHz looks like this:


The characteristics of the feedback network alone with 5 pF capacitance to ground looks like this:


Combining these two graphs by algebraically adding the dB gains together and adding the phase shifts together gives us the open loop response at the summing point:


We can see that on the composite response curves, the phase shift crosses $180^{\circ}$ at 5.5 MHz , and that there is still about +2 dB of gain at this frequency. Therefore, closing the loop automatically creates an oscillator.

How can we overcome this effect? If we add a capacitor across the feedback resistor, we can cancel the effects of the input capacitance:


If the feedback capacitance matches the input capacitance, the response curves of the feedback network alone will be a flat -6 dB and $0^{\circ}$ across the frequency band. The composite curves will then show a bandwidth of 7.5 MHz and a positive phase margin of $33^{\circ}$. So the circuit will now be quite stable. It's amazing how much difference that small capacitance can make.

The general scheme for compensation of various circuit types is shown below:


INVERTING AMPLIFIER


NON-INVERTING AMPLIFIER


FOLLOWER WITH FEEDBACK RESISTOR
It's not really necessary to know the exact value of stray capacitance, $\mathrm{C}_{1}$ - for most layouts, about 5 to 10 pF is a good guess. Unless you are trying to squeeze out the last Hz of frequency response, it doesn't hurt to guess on the high side. At higher gains, where $\mathrm{C}_{2}$ calculates out to less than 1 or 2 pF , it isn't necessary to use $\mathrm{C}_{2}$ - but it won't disturb anything if you do use it.

If you are uncertain about whether compensation is necessary, check the pulse response or frequency response of the closed loop stage. Hook a pulse generator to the input, and adjust the amplitude for about a 200 millivolt step at the output - if the output overshoot is less than $40 \%$ of the step, the circuit will be stable. Alternately, check the small signal frequency response of the stage - if the high frequency peaking is less than +6 dB , more than the low frequency gain, the circuit is stable. Of course, you can increase the compensation capacitor if you need even smoother response.

The phenomena we have described are not peculiar to any one amplifier type. Wideband amplifiers require a little more care in the design of feedback networks; but the same type oscillations will show up on 741 type amplifiers with higher feedback resistor values.

# THE HA-2530/2535 WIDEBAND HIGH SLEW INVERTING AMPLIFIER 

## APPLICATION NOTE

516

## INTRODUCTION

The HA-2530/2535 is a monolithic inverting amplifier constructed using the Harris dielectric isolation process. It incorporates both bipolar and MOS devices on the same chip allowing excellent D.C. characteristics not normally achieved in most high performance A.C. amplifiers. The HA-2530/2535 is a continuation of the HA-2500 family of high slew rate amplifiers and represents a factor of 3 improvement in A.C. performance over the HA-2520 op amp. Its superior A.C. performance is achieved by using a two amplifier feedforward scheme on the same chip. Among the many applications best suited for this device are video amplifiers/linedrivers, high speed integrators, signal separators, waveform generators, A/D, D/A and sampled data systems. This application note will briefly discuss the internal circuitry, show how closed-loop frequency response can be predicted and present a few of the above mentioned applications.

## INSIDE THE HA-2530/2535

The detailed schematic shown in Figure 1 can be simplified with the functional diagram shown in Figure 2.

Amplifier $\mathrm{A}_{1}$ is a low frequency, high gain stage providing high accuracy at low frequencies with excellent D.C. input characteristics while $A_{2}$ is a high frequency, relatively low gain stage that dominates and controls the overall amplifier response at high frequencies. The overall input bias current is the sum of the bias currents of both amplifiers but A2's MOSFET input stage adds little to the overall current. The high offset voltage of the MOSFET is of no significant consequence, since this offset is divided by the high open


Figure 1


Figure 2
loop gain of $A_{1}$. Therefore, the effective D.C. input characteristics of the composite amplifier are that of $A_{1}$ alone.

The overall amplifier gain is given by the algebraic sum of the amplifier transfer functions. That is, referring to Figure 2, the open loop equation can be written as:
$e_{0}=\left[\left(e_{1}-e_{i}\right) A_{1}-e_{i}\right] A_{2} \quad$ Equation (1)


Figure 3


Frequency

For the inverting configuration $\mathrm{e}_{1}=0$ and the total amplifier gain is:

$$
\begin{aligned}
& A_{T}=-\left(A_{1} A_{2}+A_{2}\right) \text { Equation (2) } \\
& \text { Where } A_{1}(S)=\frac{G_{1}}{1+T_{1} S} \text { Equation (3) } \\
& A_{2}(S)=\frac{G_{2}}{1+T_{2} S} \quad \text { Equation (4) }
\end{aligned}
$$

Solving for the overall transfer function results in the following expression:
$A T(S)=\frac{G_{1} G_{2}\left[1+1 / G_{1}+\left(T_{1} / G_{1}\right) S\right]}{\left(1+T_{1} S\right)\left(1+T_{2} S\right)}$ Equation (5)

Since the D.C. voltage gain ( $\mathrm{G}_{1}$ ) of amplifier $\mathrm{A}_{1}$ is typically $20,000 \mathrm{~V} / \mathrm{V}$ then $1 / \mathrm{G}_{1} \ll 1$ resulting in:
$A_{T}(S)=\frac{G_{1} G_{2}\left(1+\frac{T_{1}}{G_{1}} S\right)}{\left(1+T_{1} S\right)\left(1+T_{2} S\right)}$
Equation (6

The composite transfer function reveals a D.C. gain equal to the product of the D.C. gains of each amplifier ( $\mathrm{G}_{1} \mathrm{G}_{2}$ ), a pole at the break frequency of each amplifier and a zero at the unity gain frequency of amplifier $\mathrm{A}_{1}$. The amplifier was designed using the following:

$$
\begin{array}{rr}
\mathrm{G}_{1}=22 \mathrm{~K} \\
\mathrm{G}_{2}=940
\end{array} \quad \text { Poles: } \begin{aligned}
\mathrm{f}_{\mathrm{p} 1} & =48 \mathrm{~Hz} \\
\mathrm{f}_{\mathrm{p} 2} & =100 \mathrm{kHz} \\
& \mathrm{f}_{\mathrm{z} 1}
\end{aligned}=1 \mathrm{MHz} .
$$

A comparison of the calculated open-loop response with the actual under no load and no compensation conditions is shown in Figure 3. The two curves compare very closely up to approximately 6 MHz where higher order effects dominate, causing the response to deviate from the predicted. The effect of adding compensation capacitance is to lower the pole frequency of $A_{2}$ while adding a high frequency zero. Several response curves for different compensation capacitors are shown in Figure 4.

In many instances a closed-form equation defining completely the characteristics of the HA-2530 beyond it's predictable bandwidth given by Equation 6 would be desirable. This would allow modeling the device on a computer or calculator resulting in the prediction of system performance for various closed-loop configurations. Using a trial and error graphical procedure, a close-fit beyond 6 MHz was obtained using several poles and a simple zero as shown below.

$$
A_{0}(S)=\frac{1+T_{6} S}{\left(1+T_{3} S\right)\left(1+T_{4} S\right)\left(1+T_{5} S\right)}
$$

Equation (7)

$$
\text { Poles: } \begin{aligned}
\mathrm{f}_{\mathrm{p} 3} & =6 \mathrm{MHz} \\
f_{p} 4 & =30 \mathrm{MHz} \\
f_{p 5} & =150 \mathrm{MHz}
\end{aligned}
$$

A comparison of the actual uncompensated $\left(\mathrm{C}_{\mathrm{c}}=0\right)$ response with that given by Equation 7 above is shown in Figure 5. Combining Equation 6 and 7, the calculated open-loop transfer function from D.C. to 50 MHz is obtained.

## APPROXIMATION OF HIGH FREQUENCY

 CHARACTERISTIC USING EQUATION (7)

Figure 5
$A T^{\prime}(S)=A_{0}(S) \cdot A_{T}(S)=\frac{G_{1} G_{2}\left(1+T_{1} / G_{1} S\right)\left(1+T_{6} S\right)}{\left(1+T_{1} S\right)\left(1+T_{2} S\right)\left(T+T_{3} S\right)\left(1+T_{4} S\right)\left(1+T_{5} S\right)}$ Equation (8)

This equation represents a working transfer function for the typical HA-2530/2535 and may be useful in many synthesis applications.

## THE INVERTING AMPLIFIER

## GENERAL REPRESENTATION

Consider the general inverting configuration below:


The control system representation of the circuit is:


Where: $\quad \frac{E_{0}}{E_{i}}=\frac{-G^{\prime} G}{1+G H}$
Equation (9)

The transfer functions $\mathrm{G}^{\prime}$ and H can be solved very simply by assuming the ideal operational amplifier and using the principle of superposition. First, $\mathrm{G}^{\prime}$ is calculated by disconnecting the amplifier summing point from the rest of the circuit and calculating the voltage $e_{i}$ with ideal voltage source $E_{i}$ impressed as shown below.

$G^{\prime}=\frac{e_{i}}{E_{i}}=\frac{Z_{c} Z_{f}}{Z_{1} Z_{c}+Z_{1} Z_{f}+Z_{c} Z_{f}}$
Equation (10)

The feedback transfer function is calculated similarly by calculating $e_{o}$ with $E_{o}$ impressed.

$H=\frac{e_{o}}{E_{o}}=\frac{Z_{c} Z_{1}}{Z_{f} Z_{1}+Z_{f} Z_{c}+Z_{c} Z_{1}} \quad$ Equation (11)

Writing $\mathrm{G}^{\prime}$ in terms of H we have:

$$
G^{\prime}=\left(Z_{f} / Z_{1}\right)(H)
$$

Equation (12)

Finally, the closed-loop transfer function is obtained below by combining Equation 9 and Equation 12.

$$
\frac{E_{0}}{E_{i}}=\frac{-Z_{f}}{Z_{1}}\left[\frac{G H}{1+G H}\right]
$$

Equation (13)

As will be seen later, the closed-loop equation is in a very convenient form for the graphical evaluation of closed-loop response.

## PHASE MARGIN DETERMINATION

Phase margin for the unity gain inverting amplifier is not evaluated at the 0 dB crossing of the open loop gain response as might be expected. By definition phase margin is evaluated when the magnitude of the loop gain $|\mathrm{GH}|$ is 1 . For the non-inverting amplifier the feedback factor $(\mathrm{H})$ is unity (full feedback) and phase margin is evaluated at $|\mathrm{G}|=1$ or 0 dB . However, for the unity gain inverting amplifier $H$ is $1 / 2$ (equal voltage division caused by input and feedback resistors) so that phase margin is evaluated at $|\mathrm{G}|=2$ or 6 dB .

In general, for the inverting amplifier, the phase margin would be determined at:
$|G|=\frac{R_{1}+R_{f}}{R_{1}}$
Equation (14)

## EFFECTS OF INPUT CAPACITANCE ON HIGH FREOUENCY STABILITY

The effects of input capacitance $\left(\mathrm{C}_{\mathrm{i}}\right)$ can probably best be illustrated by evaluating phase margin under this condition. Calculating the feedback factor, H , from the circuit below:


We obtain from Equation 11:

$$
H=\frac{R_{1} /\left(R_{f}+R_{1}\right)}{1+S\left(R_{1 f} C_{i}\right)}
$$

where $R_{1 f}=R_{1}| | R_{f}$
Equation (15)

Therefore, the input capacitance creates a pole at $w p=1 / R_{1 f} \mathrm{C}_{i}$ producing additional phase shift about this frequency. This will reduce the phase margin resulting in possible oscillation. For example, if $R_{1}=R_{f}=2 K$ and $C_{i}=10 \mathrm{pF}$, the pole frequency is found to be $\mathrm{fp}=16 \mathrm{MHz}$. The loop gain plot (GH) i in Figure 6 reveals a perfect oscillatory condition at 18 MHz ; i.e. $\mathrm{IGHI}=0 \mathrm{~dB}$ and $\emptyset_{\mathrm{i}}$ (phase margin) $=0$. If input capacitance were neglected, our prediction would have erroneously resulted in a phase margin $\left(\emptyset_{0}\right)$ of $38^{\circ}$.

The effects of input capacitance can be cancelled by adding a feedback capacitor ( $\mathrm{C}_{\mathrm{f}}$ )
across resistor Rf. Recalculating H from the feedback network below:


We have:

$$
H=\frac{\left[R_{1} /\left(R_{1}+R_{f}\right)\right]\left(1+S R_{f} C_{f}\right)}{1+S R_{1 f}\left(C_{i}+C_{f}\right)} \quad \text { Equation (16) }
$$

From this equation we see that adding $\mathrm{C}_{\mathrm{f}}$ creates a zero that can be adjusted to cancel the denominator pole, resulting in a pure resistive feedback factor.

The condition for this cancellation is:

$R_{f} C_{f}=R_{1 f}\left(C_{i}+C_{f}\right)$	Equation (17)
or	
$C_{f}=\left(R_{1} / R_{f}\right) C_{i}$	Equation (18)

For unity gain, the feedback capacitance should equal the input capacitance. Adding $\mathrm{C}_{\mathrm{f}}$ for gains greater than 10 becomes academic, since $\mathrm{C}_{\mathrm{f}}$ calculates to be less than 1 pF . Although adding $\mathrm{C}_{\mathrm{f}}$ alleviates phase shift caused by $\mathrm{C}_{\mathrm{i}}$, it should be noted that it also creates a closed-loop pole at $1 / R_{f} C_{f}$ that could limit the attainable bandwidth. For example, if the 6dB open-loop bandwidth is $30 \mathrm{MHz}, \mathrm{C}_{\mathrm{i}}=\mathrm{C}_{\mathrm{f}}=10 \mathrm{pF}$, and $\mathrm{R}_{1}=\mathrm{R}_{\mathrm{f}}=2 \mathrm{~K}$, the closed-loop pole occurs at 8 MHz causing the frequency response to roll-off prematurely at this frequency. Decreasing the resistor values by a factor of 4 would increase the pole frequency to 32 MHz and the attainable bandwidth would only be limited by the open-loop bandwidth and not the external circuit components. However, care must be taken not to make input and feedback resistors too small, since loading problems may result. That is, the input resistor, $\mathrm{R}_{1}$, represents a load to the
input driving source, since $\mathrm{R}_{1}$ is connected to the amplifier summing point which is at "virtual" ground. Furthermore, the feedback resistor, $\mathrm{Rf}_{\mathrm{f}}$, loads the amplifier output for the same reason.

## EFFECTS OF INPUT CAPACITANCE ON PHASE MARGIN



Figure 6

In summary, the effects of input capacitance can be negated by providing a feedback capacitor according to Equation 18. For closedloop gains greater than 10, no feedback capacitor is required. Finally, trade-offs between maximum bandwidth, circuit component values and stability will have to be made in most cases.

## PREDICTION OF CLOSED-LOOP RESPONSE USING A GRAPHICAL PROCEDURE

The closed-loop response of any amplifier can be graphically determined from its open-loop response curve. The generalized closed-loop transfer function is restated and given below:

$$
\frac{E_{\mathrm{O}}}{E_{i}}=-\frac{Z_{f}}{Z_{1}}\left[\frac{G H}{1+G H}\right]
$$

Equation (19)

The graphical procedure using the Nichols chart (Figure 7) conveniently determines the above function in brackets from the amplifier loop gain (GH) plot. Using the following circuit, let's graphically obtian its closed loop response and compare it with actual experimental results.

${ }^{*}$ Note: $\mathbf{R}_{1}=\mathbf{R}_{\mathrm{f}}=500 \Omega$
Chosen to obtain maximum bandwidth.

The complete procedure is:
(1) Plot both gain and phase of the GH function on semi-log paper (see ideal GH curve Figure 6). The following points were tabulated:

$f(\mathrm{MHz})$	1	2	4	6	10	15
$\|\mathrm{GH}\|(\mathrm{dB})$	33	26	21	17	12	6
$\angle \mathrm{GH}$	$-132^{0}$	$-120^{0}$	$-114^{0}$	$-114^{0}$	$-120^{0}$	$-128^{0}$
$\mathrm{f}(\mathrm{MHz})$	17	20	25	30	38	42
$\|\mathrm{GH}\|(\mathrm{dB})$	5	3	0	-2	-5	-7
$\angle \mathrm{GH}$	$-132^{0}$	$-137^{0}$	$-142^{0}$	$-148^{0}$	$-155^{0}$	$-160^{0}$

(2) Transfer gain/phase points obtained above at selected frequencies to create a smooth curve on the Nichols chart using the rectangular coordinates.
(3) Obtain directly from the chart gain/ phase of the function ( $\frac{G H}{1+G H}$ ) at the selected data points. The following was tabulated:

$f(\mathrm{MHz})$	1	2	4	6	10	15
$\left\|\frac{\mathrm{GH}}{1+\mathrm{GH}}\right\|(\mathrm{dB})$	0.14	0.22	0.3	0.45	0.7	2
$/ \frac{\mathrm{GH}}{1+\mathrm{GH}}$	$-1^{0}$	$-2.5^{0}$	$-5^{0}$	$-8^{0}$	$-15^{0}$	$-30^{0}$
$\frac{\mathrm{f}(\mathrm{MHz})}{}$	17	20	25	30	38	42
$\left.\frac{\mathrm{GH}}{1+\mathrm{GH}} \right\rvert\,(\mathrm{dB})$	2.3	3.2	4.0	3.5	0	-2.5
$/ \frac{\mathrm{GH}}{1+\mathrm{GH}}$	$-35^{0}$	$-45^{0}$	$-70^{0}$	$-75^{0}$	$-130^{0}$	$-145^{0}$



Figure 7
(4) Transfer these points to semi-log paper and add the pole given by $w=\frac{1}{R_{f} C_{f}}$ (or $f_{p}=32 \mathrm{MHz}$ for this case) to obtain the calculated closed-loop response, $\left(\frac{E_{\mathrm{E}}}{\mathrm{E}_{\mathrm{i}}}\right)_{\text {CALC }}$ shown in Figure 8.
(5) Obtain Bandwidth, Peaking and closed: loop phase margin from the closed-loop response given in Figure 8.

Comparing the actual closed-loop response with that of our prediction, we see that favorable results were obtained. The performance specifications are:

PREDICTION OF CLOSED LOOP RESPONSE USING NICHOLS CHART


Figure 8

	ACTUAL	
Bandwidth(OdB)	29 MHz	
Closed Loop	31 MHz	
Phase Margin	390	$42^{\circ}$
Mp (peaking)	2.3 dB	2 dB

## SPECIAL CONSIDERATIONS FOR OPTIMUM PERFORMANCE

## INTRODUCTION

Obtaining the best performance from high frequency amplifiers is not always easy. External components, deoupling, stray wiring capacitance and long lead lengths are a few of the culprits that can take a 30 MHz amplifier and convert it to a 3 MHz amplifier with no effort
at all. However, we can avoid these shortcomings if a few simple rules are followed:
(1) Decouple as close to the amplifier pins as possible. In fact, decoupling the HA-2530 as shown below will give best results.

(2) Know your decoupling caps: At RF frequencies decoupling capacitors may look like an inductor and/or resistor. Select a good H.F. ceramic.
(3) Orient components to minimize stray capacitance.
(4) Keep leads short to minimize inductance and prevent ground loop problems.
(5) Keep input and feedback resistor values as small as practical; they react with stray and input capacitance.
(6) Minimize loading capacitance; it affects settling time and stability (see how in next section).

## CIRCUIT FOR OPTIMUM SETTLING TIME

Before we investigate settling time, let's take a look at phase margin with a capacitive load of $C_{L}=50 \mathrm{pF}$. The effects of load capacitance can be seen by referring to the uncompe ed phase response shown in Figure 9. Note the phase margin reduction from approximately $38^{\circ}$ (Figure 3 ) to only 40 ; a marginally stable condition with a long settling time. The load capacitance effectively causes a high frequency pole whose break frequency is $1 / 2 \pi$ ROUT $C_{L}$, where ROUT is the approximate output resistance of the amplifier. The additional phase shift that $C_{L}$ adds will give us some hint as to the pole location. That is, at 25 MHz , about 340 is added to the unloaded response resulting in a pole frequency of about 40 MHz . Using this break frequency, ROUT calculates to be about 80 ohms. This bit of information may prove useful in evaluating closed-loop response against various capacitive loads. At this point, let's see how we can improve phase margin to improve settling time. Consider the circuit below consisting of the pole-zero compensating network ( $\mathrm{R}_{1}-\mathrm{C}_{1}$ ).


OPEN LOOP RESPONSE USING POLE-ZERO COMPENSATION AND $C_{L}=50 \mathrm{pf}$


Figure 9

CIRCUIT FOR OPTIMUM SETTLING TIME (continued)

The $\mathrm{R}_{1}-\mathrm{C}_{1}$ network will increase phase margin by sacrificing a small amount of bandwidth at no expense to slew rate. Slew rate is not affected as long as the voltage divider made up of the input resistor ( $R$ ) and $R_{1}$ || $R$ provides an instantaneous voltage at the summing point that will be sufficient to slew the amplifier. Assuming a single pole response and a bandwidth of 25 MHz , this voltage to a first approximation should be greater than 1.8 volts.

The network forces an increase in phase margin by rolling-off the amplifier gain response without affecting phase response at the bandwidth frequency. The pole-zero locations are chosen at frequencies where the loop gain is large enough to buffer the error effects caused by the additional phase shift of the network in this region. Component values are chosen to satisfy the slew condition and neutralize high frequency phase shift caused by the input capacitance according to the relationship.
$\left(R_{1} \| R\right) C_{i}=R C_{f}$
Equation (20)

The following values were determined experi-
the conditions mentioned previously.
$\begin{array}{lll}R=2 K \Omega & C_{1}=250 p F & C_{i}=10 p F \\ R_{1}=620 \Omega & C_{f}=3 p F & \end{array}$

The pole-zero locations are approximately:
Pole: $\quad f_{p l}=\frac{1}{2 \pi\left(R / 2+R_{1}\right) C_{1}}=400 \mathrm{kHz}$
Zero: $\quad f_{z l}=\frac{1}{2 \pi R_{1} C_{1}}=1 \mathrm{MHz}$

The compensated open-loop response curve shown in Figure 9 shows the effects of the pole-zero additions. Note how its phase response deviates from the uncompensated at frequencies less than 10 MHz but coincides
above this frequency allowing a phase margin of $48^{\circ}$ to be achieved. From experimental data using a 10 V pulse, a typical settling time to $0.1 \%$ of 550 ns was achieved. Settling times to $0.1 \%$ for various compensation capacitors without the pole-zero network are shown in the table below.

	$\mathrm{C}_{\mathbf{c}}$	0 pF	3 pF	10 pF	20 pF	30 pF
$\mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$	$\mathrm{T}_{\mathrm{S}}(\mathrm{ns})$	500	540	620	760	880
$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	$\mathrm{T}_{\mathrm{S}}(\mathrm{ns})$	Unstable	650	740	840	940

Looking at the table, we see that the best settling time without the pole-zero compensating network is 650 ns with $\mathrm{C}_{\mathrm{c}}=3 \mathrm{pF}$. This will suffice for most pulse applications but optimum settling is still obtained with the pole-zero network.

## APPLICATIONS

## INTRODUCTION

In all the applications to be discussed the HA-2530 is used as an inverting amplifier. Usage as a non-inverting amplifier can be used but the common mode range is limited to about $\pm 0.5 \mathrm{~V}$ because the inverting input is diode-clamped to signal ground. Usable bandwidth in this mode is only about 100 kHz .

## APPLICATION 1

FAST SETTLING COAXIAL DRIVER

The circuit below is intended for use in line driving systems requiring good settling at high output current levels; such as radar pulse drivers, video sync driver, PAM line driver, etc.


The input voltage source supplies only 3 mA at 3 volts into the driver circuit which develops an output current drive of 60 mA into a 50 ohm load. At these low voltage levels, the HA-2530 relies chiefly upon its excellent gain bandwidth product resulting in a $5 \%$ settling time of 60 ns .

Although the HA-2530 is capable of providing high output current, special attention should be given to the input duty cycle so that the maximum power dissipation of the device is not exceeded; especially if operating at high ambient temperatures (consult data sheet for details).

## APPLICATION 2

10MHz COAXIAL LINE DRIVER

The circuit shown below will find excellent usage in high frequency line driving systems that require wide-power bandwidths at high output current levels.


The bandwidth of the circuit is limited only by the single pole response of the feedback components; namely $\mathrm{f}_{-3 \mathrm{~dB}}=1 / 2 \pi \mathrm{R}_{\mathrm{f}} \mathrm{C}_{\mathrm{f}}$. As such, the response is flat with no peaking and yields minimum distortion.

## APPLICATION 3

WIDE RANGE SIGNAL SEPARATOR
The high open-loop gain of the HA-2530 along with its high slew rate will allow a wide variation of input voltages and a wide frequency response as well. The circuit separates the input voltage into its positive and negative components. The diodes steer the positive and negative components to the

respective outputs. When placed in the feedback loop they virtually act as ideal diodes since the output error voltage is only the forward voltage drop divided by the loop gain of the amplifier. The two outputs can be driven into a differential amplifier to produce an absolute value circuit useful in many multiplier and averaging circuits.

Dynamic ranges between 60 dB and 80 dB can be obtained depending upon the maximum operating frequency. For example, in the circuit above a dynamic range from 5 mV to 10 volts peak was easily obtained for a bandwidth of 100 kHz without offset voltage adjustment. For a bandwidth of 1 MHz , the range was 100 mV to 10 volts peak. Dynamic ranges approaching 60 dB at 1 MHz can be obtained with proper offset voltage adjustment.

## APPLICATION 4 <br> HIGH FREQUENCY TRIANGULAR WAVE GENERATOR

Frequency generation well into the megahertz region can be realized with the HA-2530. Assuming circuit operation is not limited by the comparator's speed, operating frequencies between 1 MHz and 5 MHz can be achieved with the circuit below.


The integration time constant and circuit gain is set according to:
(a) $f=\frac{1}{4 R_{1} C_{1}}\left(\frac{R_{2}}{R_{3}}\right)$
(b) $\frac{E_{0}}{E_{i}}=-\frac{R_{3}}{R_{2}}$

For accurate integration, the time constant, $\frac{R_{3}}{R_{2}}\left(R_{1} C_{1}\right)$, should be large compared to the unity gain frequency time constant and the comparator rise time. Also, the integrating capacitor, $\mathrm{C}_{1}$, should be large in relation to the input capacitance of the amplifier while the resistors should be small to avoid reacting with stray and input capacitances. For larger output swings, another HA-2530 could be cascaded for amplification.

## APPLICATION 5

## CURRENT-TO-VOLTAGE CONVERTER

FET amplifiers used as current amplifiers offer the greatest resolution of current input because they have very low input bias currents. However, their input offset voltage and drift characteristics are very poor, sometimes adding to gross inaccuracies over temperature. The HA-2530 offers excellent offset voltage and drift characteristics ( $0.8 \mathrm{mV}, 5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ ) with low bias currents (17nA). The circuit below depicts the HA-2530 used to enhance the speed of an optical isolator interface. Operating the photo-transistor as a diode will increase speed at the expense of decreased current output. In this configuration the maximum current output may vary from $100 \mu \mathrm{~A}$ to $400 \mu \mathrm{~A}$ depending upon the LED pulse duration. At these current levels the errors of the HA-2530 are negligible and speed is limited only by the gain-bandwidth of the amplifier with attainable rise times of 20ns.


# APPLICATION NOTE 

## 517

APPLICATIONS OF A MONOLITHIC

## SAMPLE-AND-HOLD/GATED

 OPERATIONAL AMPLIFIERBY DON JONES

must have low offset drift and sufficient slew rate; a combination satisfied by only a few available amplifiers.

THE HA-2420/2425

The HA-2420/2425 is the first complete monolithic sample-and-hold integrated circuit. A functional diagram is shown in Figure 1.


Figure 1 - HA-2420/2425 Functional Diagram

The input amplifier stage is a high performance operational amplifier with excellent slew rate, and the ability to drive high capacitance loads without instability. The switching element is a highly efficient bipolar transistor stage with extremely low leakage in the OFF condition. The output amplifier is a MOSFET input unity gain follower to achieve extremely low bias current.

MOSFET inputs are generally not used for D.C. amplifiers because their offset voltage
drift is difficult to control. In this configuration, however, negative feedback is generally applied between the output and inputs of the entire device, and the effect of this offset drift at the inputs is divided by the open loop gain of the input amplifier stage.

The schematic of the HA-2420 is in Figure 2. During sampling ( $\mathrm{S} / \mathrm{H}$ control LOW) the signal path through the input amplifier stage starts at Q31-34, through Q45 and Q46, and then to the holding capacitor terminal through Q51-54. The output follower amplifier has its input at MOSFET Q60.

HA-2420/2425
Sample-and-Hold


NOTE: 1. Unless otherwise specified resistance values are in OHMS, capacitance values are in picofarads.


Figure 3 - Holding Capacitor, $\mathbf{C}_{\mathrm{H}}$
TYPICAL SAMPLE-AND-HOLD PERFORMANCE AS A FUNCTION OF HOLDING CAPACITANCE

Figure 2
In the "hold" mode, the S/H control is HIGH, so Q 21 conducts, turning on Q 27 which diverts the signal away from 045 and 046, and passes the signal to V - through 057 . 057 also forces $051-54$ to ride up and down with the output signal, so there is virtually zero potential between these transistor bases and the voltage on $\mathrm{C}_{\mathrm{H}}$; completely eliminating leakage from $\mathrm{C}_{\mathrm{H}}$ back into the input amplifier.

## SAMPLE-AND-HOLD APPLICATIONS

A number of basic applications are shown on the following pages. The device is exceptionally versatile, since it can be wired into any of the hundreds of feedback configurations possible with any operational amplifier. In many applications the device will replace both an operational amplifier and a sample-and-hold module.

The larger the value of the timing capacitor, the longer time it will hold the signal without excessive drift; however, it will also reduce the
charging rate/slew rate and the amplifier bandwidth during sampling. So the capacitance value must be optimized for each particular application. The graph in Figure 3 shows these tradeoffs. Drift during holding tends to double for every $10^{\circ} \mathrm{C}$ rise in ambient temperature. The holding capacitor should have extremely high insulation resistance and low dielectric absorption-polystyrene (below $+85^{\circ} \mathrm{C}$ ), Teflon, or mica types are recommended.

## Guard Ring Layout (Bottom View)



Figure 4

For least drift during holding, leakage paths on the P.C. board and on the device package surface must be minimized. Since the output voltage is nearly equal to the voltage on $\mathrm{C}_{\mathrm{H}}$, the output line may be used as a guard line surrounding the line to $\mathrm{C}_{H}$. Then, since the potentials are nearly equal, very low leakage currents will flow. The two package pins surrounding the $\mathrm{C}_{\mathrm{H}}$ pin are not internally connected, and may be used as guard pins to reduce leakage on the package surface. A suggested P.C. guard ring layout is shown in Figure 4.

GATED OPERATIONAL AMPLIFIER APPLICATIONS

An operational amplifier with a highly efficient analog switch in series with its output is a very useful building block for linear systems. The amplifier can be connected in any of the conventional op amp feedback configurations.

With the switch closed, the circuit behaves as a conventional op amp with excellent bandwidth, slew rate, high output current capability, and is able to drive capacitive loads with good stability. With the switch open, the output node is an almost perfect open circuit.

The output buffer amplifier has extremely high input impedance and exceptionally low bias current, but is not particularly well suited for D.C. applications outside an overall feedback loop, since its offset voltage may be quite high.

A number of possible gated amplifier applications are suggested in the following section.

APPLICATION NO. 1

Feedback is the same as a conventional op amp voltage follower which yields a unity gain, non-inverting output. This hookup also has a very high input impedance.

The only difference between a track-and-hold and a sample-and-hold is the time period during which the switch is closed. In track-andhold operation, the switch is closed for a relatively long period during which the output signal may change appreciably; and the output will hold the level present at the instant the switch is opened. In sample-and-hold opera-

## Basic Track-and-Hold/Sample-and-Hold


tion, the switch is closed only for the period of time necessary to fully charge the holding capacitor.

APPLICATION NO. 2

Sample-and-Hold With Gain


This is the standard non-inverting amplifier feedback circuit.

It illustrates one of the many ways in which the HA-2420 may be used to perform both op amp and sampling functions, eliminating the need for a separate scaling amplifier and sample-and-hold module.

In general, it is usually best design practice to scale the gain such that the largest expected signal will give an output close to + or -10 volts. Drift current is essentially independent of output level, and less percentage drift will occur in a given time for a larger output signal.

APPLICATION NO. 3

This illustrates another application in which the hookup versatility of the HA-2400 often eliminates the need for a separate operational amplifier and sample-and-hold module. This hookup will have somewhat higher input to output feedthrough during "hold," than the non-inverting connection, since output impedance is the open-loop value during "hold," and feedthrough will be:

$$
\frac{V \text { in } R o}{R_{1}+R_{2}+R_{0}}
$$

Inverting Sample-and-Hold


APPLICATION NO. 4

It is often required that a signal be filtered prior to sampling. This can be accomplished with only one device. Any of the inverting and non-inverting filters which can be built with op amps can be implemented. However, it is necessary that the sampling switch be closed for sufficient time for the filter to settle when active filter types are connected around the device.

Filtered Sample-and-Hold


## Cascaded Sample-and-Hold



Short sample times require a low value holding capacitor; while long, accurate hold times require a high value holding capacitor. So, achieving a very long hold with a short sample appears to be contradictory. However, it can be accomplished by cascading two S/H circuits, the first with a low value capacitor, the second with a high value. Then the second $\mathrm{S} / \mathrm{H}$ can sample for as long a time as the first circuit can accurately hold the signal.

APPLICATION NO. 6

Two or more S/H circuits may share a common holding capacitor and output as shown. The only limit to the number of devices to be

Multiplexed Sample-and-Hold

multiplexed is that the leakage currents of all devices add together, which increases drift during holding.

## A/D Converter



Certain analog to digital converters such as the successive approximation type require that the input signal be a steady D.C. level during the conversion cycle. The HA-2420 is ideal for holding the signal steady during conversion; and also functions as a buffer amplifier for the input signal, adding gain, inversion, etc., if required.

The system illustrated is a complete 8 bit successive approximation converter requiring only four I.C. packages and capable of up to 40,000 conversions per second. Interconnection details are shown on the HI-0180 data sheet.

APPLICATION NO. 8

De-Glitcher


The word "glitch" has been a universal slang expression among electronics people for an unwanted transient condition. In D to $A$ converters, the word has achieved semi-official status for an output transient which momentarily goes in the wrong direction when the digital input address is changed.

In the illustration, the HA-2420 does double duty, serving as a buffer amplifier as well as a glitch remover, delaying the output by $1 / 2$ clock cycle.

The HA-2420 may be used to remove many other types of "glitches" in a system. If a delayed sample pulse is required, this can be generated using a dual monostable multivibrator I.C.

## APPLICATION NO. 9

This circuit reconstructs and separates analog signals which have been time division multiplexed.

The conventional method, shown on the left, has several restrictions, particularly when a short dwell time and a long, accurate hold time is required. The capacitors must charge from a low impedance source through the resistance and current limiting characteristics of the multiplexer. When holding, the high impedance lines are relatively long and subject

## De-Multiplexer


to noise pickup and leakage. When FET input buffer amplifiers are used for low leakage, severe temperature offset errors are often introduced.

Use of the HA-2420 greatly diminishes all of these problems.

## Automatic Offset Zeroing



This basic circuit has widespread applications in instrumentation, A/D conversion, DVM's and DPM's to eliminate offset drift errors by periodically rezeroing the system. Basically, the input is periodically grounded, the output offset is then sampled and fed back to cancel the error.

The system illustrated automatically zeros a high gain amplifier. Care in the actual design is necessary to assure that the zeroing loop is dynamically stable. A second sample-and-hold could be added in series with the output to remove the output discontinuity.

Many variations of this scheme are possible to suit the individual system.

## APPLICATION NO. 11

Integrate-Hold-Reset


This circuit accurately computes the functions,

$$
v_{o}=\int_{T_{1}}^{T_{2}} v_{\text {in }} d t
$$

and holds the answer for further processing.


Resetting circuits for integrators have always been a practical design problem. The reset circuit must produce an extremely low leakage current across the integrating capacitor, and must produce a very low offset voltage when turned on. The circuit illustrated has excellent results since the leakage at the switch node is exceptionally low. $R_{C}$ and $C_{C}$ prevent oscillations during reset and their product should be at least 0.02 times $R_{\boldsymbol{l}} \times C_{\rho}$.

For the simpler integrate and reset function without a hold, substitute an ordinary operational amplifier for the upper device.

## APPLICATION NO. 12

This accurate, low drift peak detector circuit combines the basic sample-and-hold connection with a comparator, and will detect 20 V p-p signals up to 50 kHz .

When the input signal level exceeds the voltage being stored in the $\mathrm{S} / \mathrm{H}$, the comparator trips, and a new sample of the input is taken. The S/H offset pot should be adjusted for a slight positive offset, so that the comparator will trip back when the new peak is acquired; otherwise the comparator would remain "on" and the $S / H$ would follow the peak back down.

To make a negative peak detector, reverse the comparator inputs, and adjust the $\mathrm{S} / \mathrm{H}$ for a negative offset.


# MONOLITHIC CHOPPER STABILIZED AMPLIFIER 

## APPLICATION NOTE 518

BY DON JONES and ROBERT W. WEBB

## INTRODUCTION

An operational amplifier should ideally be selected so that, in a given application, performance to the required accuracy is determined only by the external networks. The amplifier should act like a pure, nearly infinite gain block; and not intrude its own personality on the overall circuit performance within the desired accuracy level.

Monolithic integrated circuit operational amplifiers have been quite successful in applications where total input inaccuracies of a few millivolts are acceptable. A new monolithic op amp, the HA-2900, is now available which allows about 100 times improvement in total accuracy.

For about thirty years, the chopper stabilized amplifier has been used when an op amp with the ultimate in DC performance was required. First it was constructed with vacuum tubes and mechanical relay choppers. More recently, it was made with discrete solid state devices in a module or hybrid package. It would be very desirable to achieve the same performance in a monolithic amplifier, with its compactness, higher reliability, and lower cost.

## OFFSET VOLTAGE DRIFT

The one parameter which is probably the most troublesome to the monolithic operational amplifier design is offset voltage drift. This is also the most basic parameter for a DC amplifier - with zero volts differential input, the amplifier ought to have zero volts output. Input offset voltage (the small voltage which would be required between the input terminals to make the output actually go to zero
volts) can generally be adjusted to a very low value using an external potentiometer or selected fixed resistors. The problem is that this adjustment is good only for the ambient temperature (and instant of time) at which it was made. With a few degrees of change in temperature or after a few months passage of time; the offset voltage may again become significant.

## OFFSET CURRENT DRIFT

In many precision op amp specifications, there appears to be a tradeoff between offset voltage drift and offset current drift, each amplifier type being quite good in one category but only average in the other. For precision applications, both drift parameters should be low. For example, a FET input op amp with a quite respectable offset current drift of $10 \mathrm{pA} /{ }^{\circ} \mathrm{C}$, with balanced source resistances of 100K ohms, would have an additional offset voltage drift of $1.0 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ created by the offset current drift.

To maintain precision, the maximum practical source resistance will be determined by the offset voltage drift divided by the offset current drift. In the HA-2900, this computes to 130K ohms.

## CHOPPER STABILIZATION

Stabilization of offset voltage in an amplifier can be accomplished by adding an auxiliary DC amplifier which may have very limited frequency response but which has very low offset voltage drift. In Figure 1, A1 is the main amplifier, and A2 the auxiliary. If the gain of A2 is large, the effective input offset
voltage of the entire circuit will be nearly that of A2 alone. This is because the input offset voltage of A1 is effectively divided by the gain of A2 in determining its contribution to the offset of the entire circuit. The open loop DC gain of the entire circuit is the product of the gains of A1 and A2.


Figure 1
Figure 2 shows a classical chopper amplifier which is often used as an auxiliary DC amplifier. Chopper switch S1 functions as a modulator which changes the incoming DC level to an AC waveform with a proportional amplitude, and phase angle of either $0^{\circ}$ or $180^{\circ}$ depending on input polarity. The chopped signal is then amplified by an AC coupled amplifier. Ground level of the amplified signal is restored by a second chopper switch, S2, which may be regarded as a synchronous demodulator. Filtering then recreates an amplified replica of the incoming DC or low frequency signal.


Figure 2
This circuit, properly constructed, will have extremely low offset voltage drift. The amplifier, being AC coupled, does not contribute to the DC offset. The most critical element is S1, since any coupling, DC or AC, of the drive signal to the contacts may introduce an offset error.

A different chopper amplifier concept is illustrated in Figure 3. This is a DC coupled amplifier scheme in which the amplifier periodically disconnects itself from the input signal and adjusts its offset voltage to zero. With S1 and S3 up, the circuit functions as a DC amplifier. When S1, S2, and S3 go down, the amplifier input is grounded and A2 forces the output of

A1 to ground. S2, and C1 form a sample-andhold, so that the correction signal to zero the offset of A1 is stored on C1 after S2 opens. S3, C2, and A3 form a second sample-andhold, whose function is to store the previous output of A1, while self-zeroing is taking place, thereby removing most of the signal discontinuity.


Figure 3

## THE HA-2900

In choosing a candidate for monolithic integration, the second scheme (Figure 3) is more attractive, although the block diagram seems more complex. This scheme does not require large value resistors. It requires fewer external capacitors, and these have one end grounded, which allows use of a standard 8 pin can.

There are also performance advantages. The absence of coupling capacitors provides much faster recovery from overdriven conditions a notorious problem with traditional chopper stabilized amplifiers. The response of the sam-ple-and-hold filter is flat to one half the chopper frequency which greatly reduces settling times. Also, this scheme may be readily modified to provide a stabilized amplifier with full differential inputs; a highly desirable feature.

A diagram of the HA-2900 is shown in Figure 4. A1 is the main amplifier, and A2 is the auxiliary stabilizing amplifier. A3 is the sample-and-hold amplifier in the self-zeroing loop of A2, and A4 is the sample-and-hold amplifier which holds the previous signal during the zeroing interval.

One obvious difference between this diagram and those previously discussed is that the input circuitry is completely symmetrical with respect to the two input lines. This produces a true differential input, in contrast to most stabilized amplifiers which are designed either


Figure 4
as inverting-only or as non-inverting amplifiers.
During the period in which A2 is stabilizing A1, S1 and S4 are closed while S2 and S3 are open. The DC and low frequency components of the input are amplified by A2 and applied as a correction signal to A1. The effective input offset voltage is nearly that of A2 alone.

To keep the offset voltage of A2 extremely low, it is periodically zeroed. S1 opens and S2 closes, disconnecting A2 from the input terminals and shorting the inputs of A2 together - not at ground level - but to a level equal to the input common mode voltage. This results in an extremely high common mode rejection ratio.

Like most other monolithic op amps, this device does not have a ground terminal; so when S3 closes, the output of A2 is forced to equal an internally generated reference voltage, rather than to ground. Since A4 is referenced to the same voltage, the result is the same. C2 charges to a level which will maintain the offset voltage of A2 at zero. In the meantime, S4 has opened, so that C1 maintains its previous level. The offset of A2 has now been zeroed and A2 then returns to its task of stabilizing A1.

Note that the opening and closing times of S1 through S4 are interleaved. This allows the transient spikes generated when a switch is opened or closed to settle out before other signal paths, which could be affected by these
transients, are actuated. The timing multivibrator generates a triangular waveform (Figure 5). Different levels of this triangle are detected by four comparator circuits referenced to different points on a voltage divider to produce the four desired switch driving signals.


Figure 5
Switches S1 and S2 are each composed of two N-Channel MOSFET's which make excellent no-offset choppers for the low levels and low currents involved. S3 and S4 are complementary bipolar current switches, since appreciable current drive is required and offset voltage is not critical at these points (Figure 6).

A) S1 AND S2

B) SAMPLE-AND-HOLD AMP AND SWITCH (S3 OR S4)

Figure 6

A1 and A2 are each N-Channel MOSFET input amplifiers, which produce the extremely low input currents (Figure 7). Normally, MOSFET's would not be suitable as DC amplifier input stages because of their high offset voltage drift; but chopper stabilization effectively removes that drift; while retaining their high input impedance advantage.


Figure 7
Single ended MOSFET input stages are used in the two sample-and-hold circuits as buffers to sense capacitor voltages. The correction signal from each sample-and-hold circuit alters a current generator which feeds one of the MOSFET sources in the inputs of A1 and A2.

The output stage of A1 is a conventional complementary bipolar follower with short circuit protection.

All of this complex circuitry boils down to the simple functional op amp block shown in Figure 8, packaged with the standard op amp pin-out in the standard TO-99 can. Three external capacitors are required for operation; one for multivibrator timing and two for the sample-and-holds.

The HA-2900 is an LSI linear device, containing 252 active elements on a chip measuring . 093 X . 123 inches.

The chip was designed using the dielectric isolation process, rather than the more conventional junction isolation process, for several reasons. A linear chip can usually be made smaller in dielectric isolation, both because of better packing density and because the high quality active elements can simplify the design - requiring fewer high value resistors and capacitors. The savings in chip area and the consequent higher yields mean that dielectric isolation can be used at little or no cost premium.

The factor which really makes a monolithic chopper stabilized amplifier practical is the high quality NPN, PNP, and FET elements which can be readily fabricated using dielectric isolation. The circuit designer has more freedom in the choice of transistors with desirable parameters, such as high frequency, high gain, vertical PNP transistors; and MOSFET's optimized for chopper service. The superior isolation between elements greatly reduce parasitic capacitance and prevents interaction or latchup due to unwanted fourlayer devices. This also allows accurate circuit modeling - essential in a circuit of this complexity.


Figure 8


Figure 9

## RANDOM NOISE CONSIDERATION

One of the more noticeable characteristics of the HA-2900, particularly when used in high gain circuits, is that the random noise level is 5 to 10 times higher than that seen with conventional bipolar input amplifiers. This is a result of a deliberate design tradeoff - offset current errors vs. noise.

Super gain bipolar input devices or JFET inputs would have lower noise, but have offset current drifts of about $10 \mathrm{pA} /{ }^{\circ} \mathrm{C}$, while the HA-2900 offset current drift is about $1 \mathrm{pA} /{ }^{\circ} \mathrm{C}$. The HA-2900, therefore, may be used with ten times higher input resistors than the other type amplifiers with the same drift errors due
to offset current drift. The important applications fact in making this tradeoff is that noise can easily be averaged, allowing recovery of low level D.C. signals at the expense of response time; however, errors due to offset current drift in moderate to high impedance circuits cannot be recovered.

A curve of total equivalent input noise vs. bandwidth for the HA-2900 is shown in Figure 10. As an example of the use of this curve, suppose that we wished to resolve D.C. changes of 10 microvolts with the amplifier illustrated in Figure 11. From the curve, a maximum bandwidth of 0.6 Hz would be required, which could be achieved with $\mathrm{C}=$ $.0027 \mu \mathrm{~F}$. Response time ( $10 \%$ to $90 \%$ ) would be about $0.35 \div$ B.W., or about 0.6 seconds.

But suppose we need both fast response and low noise. This can be accomplished by utilizing the best characteristics of two operational amplifiers as illustrated in the applications section.

Synchronous noise generated by the choppers is primarily a common mode current noise, which can be minimized by matching the impedances at the two input terminals. With matched impedances up to 100 K ohms, the synchronous noise seen at the output is well below the random noise level; and the effect of random current noise is not discernable at this impedance level.

HA-2900 EQUIVALENT INPUT NOISE (peak-to-peak) AS A FUNCTION OF CLOSED LOOP BANDWIDTH


There are many applications, such as in precise analog computation and in precision DC instrumentation where the low drift of a chopper stabilized amplifier is obviously required.

There are many other applications where the need for this amplifier vs. the more conventional op amps is less obvious. The designer should ask himself these questions:

1. Are there assemblies which require a technician to adjust a pot or select resistors to zero an amplifier? What are the cost and reliability advantages in using an amplifier which requires no circuit adjustments? Trimmer pots are many times less reliable than a monolithic I.C.
2. Does the system require occasional recalibration because of amplifier drift with time? The chopper stabilized amplifier is actually a closed loop system - offset voltage is continuously monitored and adjusted to near zero.
3. Do assemblies ever have to be reworked because of excessive amplifier drift with temperature? In many amplifiers the drift specification may no longer be valid after zeroing. In many low drift amplifiers, the guaranteed drift specifications are not $100 \%$ measured by the manufacturer, so the burden of proof is left to the user.
4. Is the total system performance marginal because of the accumulation of errors? Would the error budget situation improve with the substitution of much more accurate op amps?
5. Is a complex analog-digital system under consideration, simply because of accuracy and drift problems associated with a simpler all analog system?

The decision on whether or not to use a chopper stabilized amplifier in these cases will depend on the analysis of the cost and performance tradeoffs in the individual situation. In any case, the knowledge that a solution is now available, should any of these problems arise, will remove some of the greatest worries of the linear systems designer.

The HA-2900 may be used in virtually any of the hundreds of published operational amplifier applications.

Some care is required in the physical layout of the system to realize the full accuracy potential of an ultra-low drift amplifier. When mounted in a typical breadboard or P.C. card adequate for an ordinary op amp application, drifts on the order of $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ may be expected. If this is good enough, the designer need go no further. But to reach the ultimate device performance, the designer must take into account external effects. These include thermocouple and electrochemical EMF's generated at junctions of dissimilar metals (solder joints, connectors, internal junctions in resistors and capacitors), leakage across insulating materials, static charges created by moving air, and improper grounding and shielding practices. The main layout procedure is to insure that the networks going to the two amplifier inputs are identical and are at the same temperature.

Figure 11 shows a typical high gain amplifier application. Gain is 1,000 ; bandwidth is about 2 KHZ . Either input terminal may be grounded for inverting or non-inverting operation or the inputs may be driven differentially. The symmetrical networks at the device inputs are recommended for any of the three operating modes to eliminate chopper noise and yield the best drift characteristics. Total input noise, with $\mathrm{C}=0$, is about $30 \mu \mathrm{VRMS}$. This noise can be reduced, at the expense of bandwidth by adding capacitors as shown.

A high impedance differential instrumentation amplifier is shown in Figure 12. This well known configuration has excellent common mode rejection of $\pm 10$ volts common mode input signals. Protection diodes are included to prevent the device input terminals from exceeding either power supply.


Figure 12
Integrators have been around as long as op amps, and are used in analog computation, active filters, timers, waveform generators, control systems, and A/D converters. An op amp for a precision integrator should have high gain, low offset voltage, low bias current, and wide bandwidth. So it is evident that the HA-2900 should make the best possible integrator (Figure 13). The gain of the HA-2900 allows accurate integration over eight decades of frequency. Dual slope $A / D$ converters can now easily be made with six digit resolution.

OFFSET ADJ. (OPTIONAL)

The composite amplifier combines the best performance of two different amplifier types. The exceptionally low drift characteristics of the HA-2900 may be added to another amplifier with wide bandwidth and high slew rate or low noise.

Figure 14 illustrates an excellent combination of characteristics for use wherever inverting amplifier applications are required. Features of the composite amplifier include: slew rate: $300 \mathrm{~V} / \mu \mathrm{s}$, gain bandwidth product: $10-500$ MHz, D.C. gain: $10^{13}$, offset voltage drift: $0.3 \mathrm{uV} /{ }^{\circ} \mathrm{C}$, bias current drift: $50 \mathrm{pA} /{ }^{\circ} \mathrm{C}$, input noise ( $0-1 \mathrm{KHz}$ ): 5uV peak to peak.


Figure 14
In most composite amplifiers, to avoid excessively long settling times or instabilities, it is preferable to match the 0 db response of the integrator to the open loop low frequency pole of the main amplifier. However, if the main amplifier has all of the characteristics, except for offset voltage drift, necessary to resolve the lowest required input change; it will be possible to operate the integrator at a much lower bandwidth, greatly reducing its noise contribution. The main amplifier must have very high gain, low bias current, low noise, and very small changes in offset voltage with output voltage changes. Then the integrator needs to remove only the essentially D.C. offset voltage of the main amplifier.

Figure 15 illustrates a hookup for non-inverting amplifier applications, which is useful from gains of unity up to several thousand. Gain bandwidth product is 100 MHz . If the composite amplifier closed loop bandwidth exceeds the unity gain bandwidth of the HA$2900(2.5 \mathrm{MHz})$, then $R$ and $C$ should be added to suppress response peaks and pulse overshoot. Low frequency flicker noise is about $10 \mu \mathrm{~V}$ peak to peak, caused chiefly by the HA-2620.


Figure 15
The circuit shown in Figure 16 where the integrator drives one of the offset adjust terminals of the main amplifier may be adapted to many amplifier types. This hookup has the advantages that the composite amplifier retains differential inputs, and may be used in any normal operational amplifier feedback configuration.


Figure 16

## APPLICATION NOTE

## INTRODUCTION

When working with op amp circuits an engineer is frequently required to predict the total RMS output noise in a given bandwidth for a certain feedback configuration. While op amp noise can be expressed in a number of ways, "spot noise" (RMS input voltage noise or current noise which would pass through 1 Hz wide bandpass filters centered at various discrete frequencies), affords a universal method of predicting output noise in any op amp configuration.

## THE NOISE MODEL

Figure 1 is a typical noise model depicting the noise voltage and noise current sources that are added together in the form of root mean square to give the total equivalent input voltage noise (RMS), therefore:
$E_{n i}=\sqrt{e_{n i}{ }^{2}+I_{n i} R^{2} R^{2}+4 K T R_{g}}$ where,
$E_{n i}$ is the total equivalent input voltage noise of the circuit.
$e_{n i}$ is the equivalent input voltage noise of the amplifier.
$I_{n i}{ }^{2} \mathrm{Rg}^{2}$ is the voltage noise generated by the current noise.
$4 K^{2} R_{g}$ expresses the thermal noise generated by the external resistors in the circuit where $\mathrm{K}=1.23 \times 10-23$ joules $/{ }^{\circ} \mathrm{K} ; \quad \mathrm{T}=300^{\circ} \mathrm{K}$ $(270 \mathrm{C})$ and $R_{g}=\left(\frac{R_{1} R_{3}}{R_{1}+R_{3}}\right)+R^{2}$


Figure 1

The total RMS output noise ( $E_{\text {no }}$ ) of an amplifier stage with gain $=G$ in the bandwidth between $f_{1}$ and $f_{2}$ is:

$$
E_{n o}=G\left({ }_{f 1} \int^{f} 2 E_{n i}{ }^{2} d f^{1 / 2}\right)
$$

Note that in the amplifier stage shown, G is the non-inverting gain $\left(G=1+\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}\right)$ regardless of which input is normally driven.

## PROCEDURE FOR COMPUTING

1. Refer to the voltage noise curves for the amplifier to be used. If the $\mathrm{Rg}_{\mathrm{g}}$ value in the application is close to the $\mathrm{R}_{\mathrm{g}}$ value in one of the curves, skip directly to step 6 , using that curve for values of $E_{n i}{ }^{2}$. If not, go to step 2.
2. Enter values of $\mathrm{e}_{\mathrm{n}}{ }^{2}$ in line (a) of the table below from the curve labeled" $\mathrm{R}_{\mathrm{g}}=0 \Omega$ ".
3. From the current noise curves for the
amplifier, obtain the values of $i_{n i}{ }^{2}$ for each of the frequencies in the table, and multiply each by $\mathrm{Rg}^{2}$, entering the products in line (b) of the table.
4. Obtain the value of $4 K T R g$ from Figure 14, and enter it on line (c) of the table. This is constant for all frequencies. The $4 K T R_{g}$ value must be adjusted for temperatures other than normal room temperature.
5. Total each column in the table on line (d). This total is $E_{n i}{ }^{2}$.

	10 Hz	100 Hz	1 KHz	10 KHz	100 KHz
(a) $\mathrm{eni}^{2}$					
(b) $\mathrm{Ini}^{2} \mathrm{R}_{\mathbf{g}}{ }^{2}$					
(c) $4 \mathrm{KTR}_{\mathbf{g}}$					
(d) $\mathrm{E}_{\mathrm{ni}}{ }^{2}$					

6. On linear scale graph paper enter each of the values for $E_{n i}{ }^{2}$ vs. frequency. In most cases, sufficient accuracy can be obtained simply by joining the points on the graph with straight line segments.
7. For the bandwidth of interest, calculate the area under the curve by adding the areas of trapezoidal segments. This procedure assumes a perfectly square bandpass condition; to allow for the more normal -6db/octave bandpass skirts, multiply the upper ( -3 db ) frequency by 1.57 to obtain the effective bandwidth of the circuit, before computing the area. The total area obtained is equivalent to the square of the.total input noise over the given bandwidth.
8. Take the square root of the area found above and multiply by the gain (G) of the circuit to find the total Output RMS noise.

## A TYPICAL EXAMPLE

It is necessary to find the output noise of the circuit shown below between 1 KHz and 24 KHz .


Figure 2
The HA-2600 In a Typical G $=\mathbf{1 0 0 0}$ Circuit
Values are selected from Figures 5,5a and 14 to fill in the table as shown below. An $\mathrm{R}_{\mathrm{g}}$ of $30 \mathrm{~K} \Omega$ was selected.

	10 Hz	100 Hz	1 KHz	10 KHz	100 KHz
(a) $\mathrm{e}_{\mathrm{ni}}{ }^{2}$	$3.6 \times 10^{-15}$	$1.156 \times 10^{-15}$	$7.84 \times 10^{-16}$	$7.29 \times 10^{-16}$	$7.29 \times 10^{-16}$
(b) $\mathrm{Ini}^{2} \mathrm{Rg}^{2}$	$9.9 \times 10^{-16}$	$1.89 \times 10^{-16}$	$3.15 \times 10^{-17}$	$7.2 \times 10^{-18}$	$7.2 \times 10^{-18}$
(c) $4 \mathrm{KTR}_{9}$	$4.968 \times 10^{-16}$				
(d) $\mathrm{E}_{\mathrm{ni}}{ }^{2}$	$5.09 \times 10^{-15}$	$1.86 \times 10^{-15}$	$1.31 \times 10^{-15}$	$1.23 \times 10^{-15}$	$1.23 \times 10^{-15}$

The totals of the selected values for each frequency is in the form of $\mathrm{Eni}^{2}$. This should be plotted on linear graph paper as shown below:


HA-2600 Total Equivalent Input Noise Squared

Since a noise figure is needed for the frequency of 1 KHz to 24 KHz , it is necessary to calculate the effective bandwidth of the circuit. With $A V=60 \mathrm{db}$ the upper 3 db point is approximately 24 KHz . The product of $1.57(24 \mathrm{KHz})$ is 37.7 KHz and is the effective bandwidth of the circuit.

The shaded area under the curve is approximately $45 \times 10^{-12}$ Volts 2; the total equivalent input noise is $\sqrt{\mathrm{Eni}^{2}}$ or 6.7 microvolts, and the total output noise for the selected bandwidth is $\sqrt{E_{n i}{ }^{2}} \times$ (closed loop gain) or 6.7 millivolts RMS.

## ACTUAL MEASUREMENTS FOR COMPARISON

The circuit shown below was used to actually measure the broadband noise of the HA2600 for the selected bandwidth:


Figure 3
A Typical Test Circuit for Broadband Noise Measurements

The frequencies below the $f_{1}$ point of the bandwidth selected are filtered out by the RC network on the output of HA-2600. The measurement of the broadband noise is observed on the true RMS voltmeter. The measured output noise of the circuit is 4.7 millivolts RMS as compared to the calculated value of 6.7 microvolts RMS.

## ACQUIRING THE DATA FOR CALCULATIONS

Spot noise values must be generated in order to make the output noise prediction. The effects of "Popcorn" noise have been excluded due to the type of measurement system.

The Quan-Tech Control Unit, model no. 2283 and Filter Unit, model no. 2181 were used to acquire spot noise voltage values expressed in ( $\mathrm{V} \sqrt{\mathrm{Hz}}$ ). The test system performs measurements from 10 Hz by orders of magnitude to 100 KHz with an effective bandwidth of 1 Hz at each tested frequency.
used in the measuring system to reveal the effects of $\mathrm{R}_{\mathrm{g}}$ on each type of Harris' op amps and to obtain proper voltage noise values essential for current noise calculations.

## A DISCUSSION ON "POPCORN" NOISE

"Popcorn" noise was first discovered in early 709 type op amps. Essentially it is an abrupt step-like shift in offset voltage (or current) lasting for several milliseconds and having amplitude from less than one microvolt to several hundred microvolts. Occurance of the "pops" is quite random - an amplifier may exhibit several "pops" per second during one observation period and then remain "popless" for several minutes. Worst case conditions are usually at low temperatures with high values of $\mathrm{Rg}_{\mathrm{g}}$. Some amplifier designs and some manufacturer's products are notoriously bad in this respect. Although theories of the popcorn mechanism differ, it is known that devices with surface contamination of the semiconductor chip will be particularly bad "poppers". Advertising claims notwithstanding, the authors have never seen any manufacturer's op amp that was completely free of "popcorn". Some peak detector circuits have been developed to screen devices for low amplitude "pops", but 100\% assurance is impossible because an infinite test time would be required. Some studies have shown that spot noise measurements at 10 Hz and 100 Hz , discarding units that are much higher than typical, is an effective screen for potentially high "popcorn" units.

The vast majority of Harris op amps will exhibit less than $3 \mu \mathrm{~V}$ peak-to-peak "popcorn". Screening can be performed, but it should be noted that the confidence level of the screen could be as low as $60 \%$.

## REFERENCES

Fitchen, F.C. and Motchenbacker, C.D. Low Noise Electronic Design. New York: John Wiley and Sons, 1973.

Instruction Manual, Model 2173C Transistor Noise Analyzer Control Unit. Quan-Tech, Division of KMS Industries. Whippany, New Jersey.

Several source resistance ( $\mathrm{R}_{\mathrm{g}}$ ) values were

Curve 1A

Curve 1
HA-909/911 INPUT NOISE VOLTAGE


Curve 2
HA-2400 INPUT NOISE VOLTAGE


Curve 2A
HA-2400 INPUT NOISE CURRENT


Curve 3
HA-2500/2510/2520 INPUT NOISE VOLTAGE


Curve 4
HA-2530/2535 NOISE VOLTAGE


Curve 3A
HA-2500/2510/2520 INPUT NOISE CURRENT


Curve 4A
HA-2530/2535 NOISE CURRENT


Curve 5
HA-2600/2620 INPUT NOISE VOLTAGE


Curve 6
HA-2640/2645 INPUT VOLTAGE NOISE ( $\mathrm{V}_{\mathrm{S}}= \pm 30 \mathrm{~V}$ )


Curve 5A
HA-2600/2620 INPUT NOISE CURRENT


Curve 6A
HA-2640/45 INPUT NOISE CURRENT ( $\mathrm{V}_{\mathrm{S}}= \pm 30 \mathrm{~V}$ )


Curve 7A

Curve 7
HA-2700 INPUT NOISE VOLTAGE


Curve 8
HA-2720/2730 INPUT NOISE VOLTAGE (ISET $=1 \mu \mathrm{~A}$ )


Curve 9
HA-2720/2730 INPUT NOISE VOLTAGE (ISET $=10 \mu \mathrm{~A}$ )


Curve 9A
HA-2720/2730 INPUT NOISE CURRENT (ISET $=10 \mu \mathrm{~A}$ )


Curve 10
HA-2720/2730 INPUT NOISE VOLTAGE (ISET $=100 \mu \mathrm{~A}$ )


Curve 11
HA-4602/4605 INPUT NOISE VOLTAGE


Curve 12
HA-4741 INPUT NOISE VOLTAGE


Curve 10A
HA-2720/2730 INPUT NOISE CURRENT (ISET $=100 \mu \mathrm{~A}$ )


Curve 11A HA-4602/4605 INPUT NOISE CURRENT


Curve 12A
HA-4741 INPUT NOISE CURRENT


Curve 13


# CMOS ANALOG MULTIPLEXERS AND SWITCHES; APPLICATIONS CONSIDERATIONS 

BY DON JONES

## INTRODUCTION

the signal lines. Signal lines can be accidentally shorted to other voltage sources.
This paper is a mixed collection of answers to questions most frequently asked about CMOS analog multiplexers and switches. It covers selection criteria, parameter definitions, handling and design precautions, typical applications, and special topics such as transient considerations and R.F. switching. Some other devices which perform analog switching functions in particular applications are also discussed.

As a complement to this paper, the article, "Getting the Most Out of CMOS Devices for Analog Switching Jobs" by Ernie Thibodeaux, Electronics, December 25,1975 is recommended reading for any analog CMOS user (reprinted in Application Note 521). This discusses the different CMOS processes used by various manufacturers, showing the performance trade-offs and particularly the different failure modes which may be encountered.

## Choosing the right device

A. MULTIPLEXERS: PROTECTED OR UNPROTECTED?

Harris overvoltage protected multiplexers, HI-506A/ 507A/508A/509A are designed for failure-proof operation in a common class of applications: any system in which the analog input signal lines originate external to the equipment. This includes most data acquisition, telemetry, and process control systems. Overvoltage protection is necessary because the signal lines are commonly subject to a number of potentially destructive situations.

1. Analog signals may be present while the MUX power supplies are off.
2. The signal lines may receive induced voltage spikes from nearby sources.
3. Static electricity may be introduced on the signal lines by personnel or equipment.
4. Grounding problems are frequent; A.C. power line voltages at high impedance can appear on

Harris protected type multiplexers will withstand a continuous voltage on any one input of $\pm 20$ Volts greater than either supply (this limitation is due only to temperature rise considerations at maximum ambient) and have withstood simulated static discharge conditions of greater than 1000 Volts.

It should be emphasized that only the HI-506A through 509A (and exact equivalents from authorized alternate suppliers) will have this kind of protection necessary for inputs from the outside world. Certain CMOS process improvements, such as "floating body" and "buried layer" do help minimize one failure mode (latchup) but will still fail under excess voltage or current conditions prevalent in this type application.

Conventional CMOS multiplexers can be protected against overvoltage destruction by external resistordiode networks to limit input current to a safe level, but it is difficult to prevent another phenomenon with overvoltage; normally-off switching elements will tend to switch on, due to parasitic bipolar transistors in the CMOS structure, so the overvoltage spike will appear at the multiplexer output. The Harris internal protection circuits eliminate the problem by automatically shutting off the parasitic transistor during overvoltage conditions.

A simplified equivalent circuit of the Harris internal protection network is shown in Figure 1.


Figure 1

This will help answer the question of what happens when the supplies are turned off, but input signals are present. If the supplies are shorted to ground, then the inputs will have about $1 \mathrm{~K} \Omega$ impedance to ground. If the supplies are open circuit, then the most positive and most negative inputs will act as supplies to the multiplexer.

In normal operating parameters, internally protected multiplexers have one difference from the unprotected versions-ON resistance is necessarily higher because of the added series current limiting resistor. However, to achieve the same degree of protection with conventional devices, the same resistance must be added externally, plus external diodes which would add to the effective leakage currents.

Conventional unprotected multiplexers are suitable for systems where the MUX inputs come from sources within the equipment, such as from op amps powered by the same $\pm 15$ Volt supplies. The HI-506/ 507/1818A/1828A are intended for this type system. They are entirely free of any latch-up tendency, which have plagued some other types, even in these more benign applications. They are also free of the performance compromises which have accompanied some attempts to cure the latch-up problem.

## B. WHICH SWITCH TO SWITCH TO?

Harris furnishes a complete line of CMOS analog switches, including replacements for most of the available CMOS and JFET switches. All types feature rugged no-latch-up construction, uniform characteristics over the analog signal range, and excellent high frequency characteristics.

The $\mathrm{HI}-200$ and $\mathrm{HI}-201$ replace the popular, low cost DG200 and DG201 types dual and quad switches.

The HI-1800A is a low leakage dual DPST switch with a versatile addressing scheme, allowing use of a single type for many different switching functions.

The HI-5040 through HI-5051 are low resistance types, offering one to four switches in virtually all combinations. These replace the $\mathrm{IH}-5040$ series with significantly better performance, and with both 75 ohm and 30 ohm switches available in all configurations. These are also plug-in replacements for many of the DG180 and DG190 series of FET hybrid switches, offering the advantage of monolithic construction, but with slightly longer switching times.

The analog switches do not contain overvoltage protection on the analog inputs, although they will withstand inputs 2 or 4 Volts greater than the supplies. External current limiting should be provided if higher overvoltages are anticipated, such as a resistor in series with the analog input of value: R (ohms) $\overline{\overline{>}}\left(\mathrm{V}_{I N}-\mathrm{V}_{\text {SUPPLY }}\right) \times 50$ where $\mathrm{V}_{I N}$ is the maximum expected input voltage. All digital inputs do have overvoltage/static charge protection.

## A. ABSOLUTE MAXIMUM RATINGS

As with all semiconductors, these are maximum conditions which may be applied to a device (one at a time) without resulting in permanent damage. The device may, or may not, operate satisfactorily under these conditions-conditions listed under "Electrical Characteristics" are the only ones guaranteed for satisfactory operation.

## B. $\mathrm{V}_{\mathrm{S}}$, ANALOG SIGNAL RANGE

The input analog signal range over which reasonably accurate switching will take place. For supply voltages lower than nominal, $\mathrm{V}_{\mathrm{S}}$ will be equal to the voltage span between the supplies. Note that other parameters such as RON and leakage currents are guaranteed over a smaller input range, and would tend to degrade towards the $\mathrm{V}_{\mathrm{S}}$ limits. All Harris devices can withstand $+\mathrm{V}_{\mathrm{S}}$ applied at an input while $-V_{S}$ is applied to the output (or vice-versa) without switch breakdown-this is not true for some other manufacturers' devices.

## C. RON, ON RESISTANCE

The effective series on-switch resistance measured from input to output under specified conditions. Note that RON changes with temperature (highest at high temp.) and to a lesser degree with signal voltage and current.

## D. IS $(O F F), I_{D}(O F F), I_{D}(O N)$ : LEAKAGE CURRENTS

Currents measured under conditions illustrated on data sheet. Harris prefers to guarantee only worstcase high temperature leakages, because room temperature picoampere levels are virtually impossible to measure repeatably on available automated test equipment. Even under laboratory conditions, fixture and test equipment stray leakages may frequently exceed the device leakage. Leakages tend to double every $10^{\circ} \mathrm{C}$ temperature rise, so it is reasonable to assume that the +250 C figure is about .001 times the $+125^{\circ}$ C measurement; however, in some cases there may be ohmic leakages, such as on the package surface, which would make the $+25^{\circ} \mathrm{C}$ reading higher than calculated.

Each of these leakage figures is the algebraic sum of all currents at the point being measured: to each power supply, to ground, and through the switches; so the current direction cannot be predicted. In making an error analysis it should be assumed that all leakages are in the worst-case direction.

In most systems, ID(ON) has the most effect, creating a voltage offset across the closed switch equal to $I_{D}(O N) \times R O N$.

## E. VAL, VAH; INPUT THRESHOLDS

The lower and upper limits for the digital address input voltage at which the switching action takes place. All other parameters will be valid if all " 0 " address inputs are less than VAL and all " 1 " inputs are greater than $\mathrm{V}_{\mathrm{AH}}$. Logic compatibility will be discussed in detail later in this paper.

## F. IA, INPUT LEAKAGE CURRENT

Current at a digital input, which may be in either direction. Digital inputs on Harris devices are similar to CMOS logic inputs; connection to MOS gates through resistor-diode protection networks. Unlike some other devices, there is no DC negative resistance region which could create an oscillating condition.

## G. TA, TON, TOFF; ACCESS TIME

The logic delay time plus output rise time to the $90 \%$ point of a full scale analog output swing. After this time the output will continue to rise, approaching the $100 \%$ point on an exponential curve determined by $R_{O N} \times C_{D}(O F F)$.

## H. TOPEN, BREAK-BEFORE-MAKE DELAY

The time delay between one switch turning OFF and another switch turning ON; both switches being commanded simultaneously. This prevents a momentary condition of both switches being ON, generally a very minor problem.

## I. CS(OFF), CD(OFF, CD(ON) INPUT/OUTPUT CAPACITANCE

Capacitance with respect to ground measured at the analog input/output terminals. $C_{D}(O N)$ is generally the sum of $C_{S}(O F F)$ and $C_{D}(O F F)$. $C_{D}(O F F)$ is usually the most important term as rise time/ settling characteristics are determined by RON $x$ $C_{D}$ (OFF), as well as the high frequency transmission characteristics.

## J. CDS(OFF), DRAIN TO SOURCE CAPACITANCE

The equivalent capacitance shunting an open switch.

## K. OFF ISOLATION

The proportion of a high frequency signal applied to an open switch input appearing at the output: off isolation $=20 \log \frac{V_{\text {IN }}}{\mathrm{V}_{\text {OUT }}}$. This feedthrough is transmitted through $\mathrm{C}_{\mathrm{DS}}(\mathrm{OFF})$ to a load composed of $C_{D}(O F F)$ in parallel with the external load. The isolation generally decreases by 6 dB /octave with increasing frequency.

## L. $\mathrm{C}_{\mathrm{A}}$, DIGITAL INPUT CAPACITANCE

Capacitance to ground measured at digital input. This chiefly affects propagation delays when driven by CMOS logic.
M. PD, POWER DISSIPATION: I+, I-

Quiescent power dissipation, $P_{D}=(\mathrm{V}+\times \mathrm{I}+)+$ ( $V-\times 1-$ ). This may be specified both operating and standby ("Enable" pin ON/OFF). Note that, as with all CMOS devices, dissipation increases with switching frequency; but that Harris devices exhibit much less of this effect.

## CARE AND FEEDING OF MULTIPLEXERS AND SWITCHES

Dielectrically isolated CMOS I.C.'s require no more care in handling and use than any other semiconduc -tor-bipolar or otherwise. However, they are not indestructible, and reasonable common sense care should be taken.

In a laboratory breadboard, power should be shut off before inserting or removing any I.C.. It is especially important that supply lines have decoupling capacitors to ground permanently installed at the I.C. socket pins, as intermittent supply connections can create high voltage spikes through the inductance of a few feet of wire.

Because each of the major manufacturers of CMOS multiplexers and switches uses a radically different process, it is urged that units from all prospective suppliers be equally tested in breadboards and prototypes. It will be interesting to note which types survive best the hazards of a few weeks of breadboard testing.

Particular care of semiconductors during incoming inspection and installation is quite important, because the cost of reworking finished assemblies with even a small percentage of preventable failures can seriously erode profits. All equipment should be periodically inspected for proper grounding. With these devices, it is not usually necessary to shackle personnel to the nearest water pipe, if reasonable attention is paid to clothing and floor coverings; but be alert for periods of unusually high static electricity. If special lines are already set up for handling MOS devices, it wouldn't hurt to use them.

There are a few good rules for P.C. card layout:

1. Each card or removable subassembly should contain decoupling capacitors for each supply line to ground. This not only helps keep noise away from the analog lines, but gives good protection from static electricity damage when loose cards are handled.
2. When digital inputs come through a card connector, the pull-up resistor should be at the CMOS input. This forces current through the connector and prevents possible dry circuit conditions (see following discussion on digital interface).
3. All unused digital inputs must be tied to logic " 0 " (ground) or logic " 1 "' (logic supply or
device + supply) depending on truth table and action desired. Open inputs tend to oscillate between " 0 " and " 1 ". It would also be best to ground any unused analog inputs/outputs and any uncommitted device pins.

## DIGITAL INTERFACE

## A. REFERENCE CONNECTION

HI-5040 through HI-5051 and HI-1800A/1818A/ 1828A require a connection to the digital logic supply ( +5 V to +15 V ).

The HI-200/201/506A/507A have $V_{\text {REF }}$ pins which are normally left open when driving from +5 Volt logic (DTL or TTL), but may be connected to higher logic supplies (to +15 V ) to raise the threshold levels when driving from CMOS or HNIL. The HI-200/201 will have significantly lower power dissipation when $V_{\text {REF }}$ is connected to a high level supply.

The HI-506/507/508A/509A do not have VREF terminals, but will operate reliably with any logic supplied from +5 to +15 Volts.

## B. DTL/TTL INTERFACE

One major difference found in comparisons of similar devices from different manufacturers is the worst-case digital input high threshold ( $V_{A H}$ or $\mathrm{V}_{\mathrm{IH}}$ ). These range anywhere from +2 V to +5 V ; and anything greater than +2.4 V is obviously not compatible with worst-case TTL output levels. The fact is that no CMOS input is truly TTL compatible unless an external pull-up resistor is added. TTL output stages were not designed with CMOS loads in mind.

The experienced designer will always add a pull-up resistor from the CMOS input to the +5 Volt supply when driving from TTL/DTL:

1. Interchangeability: allows subsititution of similar devices from several manufacturers.
2. Noise immunity: a TTL output in the "high" condition can be quite high impedance. Even when voltage noise immunity seems satisfactory, the line is quite susceptible to induced noise. The pull-up resistor will reduce the impedance while increasing voltage noise immunity.
3. Compatibility: one manufacturer does guarantee +2.0 Volt minimum VAH. However, this is accomplished with circuitry that is anything but TTL compatible: input current vs. voltage shows an abrupt positive then negative resistance region which is not the kind of load recommended for an emitter follower stage. A pull-up resistor will swamp out the negative resistance. Other CMOS inputs capacitively couple internal switching spikes to the input which could cause double-triggering without the pull-up resistor.
4. Reliability: it shouldn't happen with carefully processed I.C.'s; but any possible long term degradation of CMOS devices usually involves threshold voltage shifts. The pullup resistor will help maintain operation if input thresholds drift out of spec. On units without adequate input protection, the resistor will also help protect the device when a loose P.C. card is handled. Where the interface goes through a P.C. connector, the resistor will force current through the connector to break down any insulating film which otherwise might build up and cause erratic dry circuit operation.

A 2 K ohm resistor connected from the CMOS input to the +5 Volt supply is adequate for any TTL type output. If power consumption is critical, open collector TTL/DTL should be used, allowing a higher value resistor-the voltage drop across the resistor is computed from the sum of specified " 1 " level leakage currents at the TTL output and CMOS input.

## C. CMOS INTERFACE

The digital input circuitry on all Harris devices is identical to series 4000 and 54C/74C logic inputs, and is compatible with CMOS logic with supplies between +5 V and +15 V without external pull-up resistors.

## D. ELECTROMECHANICAL INTERFACE

When driving inputs from mechanical switches or relays, either a pull-up or pull-down resistor must be connected at the CMOS input to clear the dry circuit and damp out any spikes, as illustrated in Figure 2, (b) and (c).


Figure 2

## A PRACTICAL MULTIPLEXER APPLICATION

Figure 3 illustrates a practical data acquisition system hookup using an analog multiplexer, a monolithic sample-and-hold and an A/D converter. The HA2420/2425 sample-and-hold is a particularly good choice for this type application because it eliminates the need for a separate high impedance, high slew rate buffer amplifier. Its acquisition time is consistent with CMOS multiplexer settling times and most available A/D conversion times. Errors, after initial
adjustment, are consistent with up to 12 bit absolute accuracy over a wide temperature range.

## A. ACCURACY

D.C. error sources include:

1. Multiplexer:
a. input offset $=R$ source $\times I S(O F F)$
b. output offset $=R(O N) \times(I D(O N)+I$ bias (S/H))
2. Sample-and-hold
a. input offset voltage
b. charge injection; sample-to-hold offset
c. gain error during "hold"
d. drift during hold
3. A/D converter:
a. linearity
b. gain drift
c. offset drift

Item 1(a) and (b), and 2(d) become significant only at very high temperatures. $2(a)$ and (b) are initially adjusted out with the offset adjustment pot on the S/H. 2(c) is usually adjusted out by A/D gain adjustment, but could also be removed by a voltage divider feedback on the $\mathrm{S} / \mathrm{H}$ to give a slightly greater than unity gain during "sample". After initial adjustments, typical S/H errors are less than 0.5 mV over 00 to $+75^{\circ} \mathrm{C}$. Note that after adjustment, there may be an appreciable offset at the $S / H$ output when switching from sample to hold. This is not a problem, since accuracy is required only during "hold", and the system is adjusted for this.

The largest system errors are usually 3(b) and (c), drifts with temperature and time. If two multiplexer channels can be dedicated for stable ( + ) and $(-)$ reference voltage inputs, then the data processor can continuously calibrate the system, effectively removing all errors, except $1(\mathrm{a})$ and 3(a) which are usually negligible.


Figure 3

## B. TIMING

The timing diagram in Figure 3 indicates the necessary system delays for each multiplexer address:
$\mathrm{T}_{1}$ is the combined acquisition time for the multiplexer and $\mathrm{S} / \mathrm{H}$.
$T_{2}$ is the short interval required for the sample-to-hold transient to settle.
$T_{3}$ is the A/D conversion time.
The following table indicates minimum recommended timing for $\pm 10$ Volt input range for acquisition/ settling times to $1 / 2$ L.S.B. accuracy:

	$\frac{\mathrm{T}_{1}}{}$	$\frac{\mathrm{~T}_{2}}{10 \text { bit: }}$
12 bit:	$12 \mu \mathrm{~S}$	$1 \mu \mathrm{~S}$
	$2 \mu \mathrm{~S}$	

The multiplexer, by itself, requires about $2 \mu \mathrm{~s}$ and $9 \mu$ s settling to 10 bit and 12 bit accuracy, respectively; but fortunately this can be concurrent with $\mathrm{S} / \mathrm{H}$ acquisition time. This is longer than would be predicted by the RON $C_{D}$ time constant; probably because of internal distributed capacitance, a rather long period is required to traverse the last few millivolts towards the final value.

It should be noted that impedance conditions at the multiplexer inputs can affect the necessary acquisition time. At the instant the multiplexer switches from one channel to a new one, there is appreciable current pulled through the new channel input in order to charge $C_{D}$ from its old level to its new level. This can cause ringing on signal lines, or glitches at signal conditioning amplifier outputs which require longer periods to settle. It is best for signal conditioning amplifiers to be wide band types, such as HA-2600, so that their high frequency output impedance is low and recovery from load transients is fast; even though the signal to be measured is very low bandwidth.

The $T_{1}$ and $T_{2}$ times could be eliminated by alternating two $\mathrm{S} / \mathrm{H}$ circuits, acquiring a new signal on the second while $A / D$ conversion is taking place. The two S/H circuits would have inputs connected together, and outputs alternately connected to the A/D by an analog switch. Total time, then, would be $T_{3}$ plus the analog switch settling time.

If the MUX input channels are sequentially switched, each channel will be sampled at a rate of
$F_{S}=\frac{1}{N\left(T_{1}+T_{2}+T_{3}\right)}$ samples per second, where $N$ is the number of channels. The frequency spectra of the input signals must then be no higher than $\frac{\mathrm{FS}_{\mathrm{S}}}{2}$

In many systems, however, each channel carries a different maximum frequency of interest, and it may be desirable to depart from simple sequential scanning. Quickly varying signals, for example, could be addressed several times during a scanning period.

## C. ADDING CHANNELS

For more than sixteen channels, several multiplexers may be tied together at the outputs, and addressed in parallel, but with only one "enabled" at a time. The MUX output offset will be increased, since ID (OFF or $O N$ ) is additive. Also, output capacitance, $C_{D}$, is additive, creating increased access times.

These errors can be minimized in large systems by
having several tiered levels of multiplexing; where the outputs of a number of MUX's are individually connected to the inputs of another MUX.

## D. DIFFERENTIAL MULTIPLEXING

When low level analog signals must be conducted over a distance, it is generally better, from a noise pickup standpoint, to use a balanced transmission line carrying signals which are differential with respect to ground.

A dual multiplexer is used for this purpose, as shown in Figure 4. Two sample-and-hold circuits plus an op amp form a high impedance differential sample-and-hold with gain. At gains greater than 4, the minimum sampling time ( $T_{1}$ in previous example) must be increased proportionately to gain to allow for overdamped settling characteristics.

When handling low level, or high impedance signals, consideration should be given to adding signal conditioning amplifiers at the signal sources, since this can often produce less troublesome, more accurate, lower cost systems.


Figure 4

## E. DEMULTIPLEXING

Since the switches in a CMOS MUX conduct equally well in either direction, it is perfectly feasible to use it as a single input-selected multiple output switch. Figure 5 illustrates its use as a demultiplexer, with capacitors to hold the output signal between samples. When the address lines are synchronous with the address of the original multiplexer, the output lines will recreate the original inputs, except level changes will be in steps.

Overvoltage protection is not effective with signals injected at the normal MUX output, so an external network should be added, if necessary.

A more accurate demultiplexer could be constructed using the HA-2420/2425 sample-and-hold for each channel, connecting inputs together and sampling each channel sequentially.


Figure 5

## ANALOG SWITCH APPLICATIONS

## A. HIGH CURRENT SWITCHING

Analog switches are sometimes required to conduct appreciable amounts of current, either continuous, or instantaneous-such as charging or discharging a capacitor. For best reliability, it is recommended that instantaneous current be limited to less than 80 mA peak and that average power over any 100 millisecond period be limited to $1^{2}$ RON $\overline{\overline{<}}$ (absolute max. derated power-quiescent power). Note that RON increases at high current levels, which is characteristic of any FET switch. Switching elements may be connected in parallel to reduce RON.

## B. OP AMP SWITCHING APPLICATIONS

When analog switches are used either to select an op amp input, or to change op amp gain, minor circuit rearrangements can frequently enhance accuracy. In Figure 6 (a), RON of the input selector switch adds to $\mathrm{R}_{1}$, reducing gain and allowing gain to change with temperature. By switching into a non-inverting amplifier (b), gain change becomes negligible. Similarly, in a gain switching circuit, RON is part of the gain determining network in (c), but has negligible effect in (d).


Figure 6

## C. SWITCHING SPIKES AND CHARGE INJECTION

Transient effects when turning a switch off or on are of concern in certain applications. Short duration spikes are generated (Figure 7 (a)) as a result of capacitive coupling between digital signals and the analog output. These have the effect of creating an acquisition time interval during which the output level is invalid even when little or no steady state level change is involved. The total net energy (charge injection) coupled to the analog circuit is of concern when switching the voltage on a capacitor, since the injected charge will change the capacitor voltage at the instant the switch is opened (Figure 7 (b)).


Figure 7
Charge injection is measured in pico Coulombs; the voltage transferred to the capacitor computed by $\mathrm{V}=\frac{\text { Charge }(\mathrm{pC})}{\text { Capacitance }(\mathrm{pF})}$

Both of these effects are, in general, considerably less for CMOS switches than for equivalent resistance JFET or PMOS devices, since the gate drive signals for the two switching transistors are of opposite polarity. However, complete cancellation is not possible, since the N and P channel switches do not receive gate signals quite simultaneously, and their geometrics are necessarily different to achieve the desired D.C. resistance match.

In applications where transients create a problem, it is frequently possible to minimize the effect by cancellation in a differential circuit, similar to Figure 8.


Figure 8
Among the Harris anlog switches, the $\mathrm{HI}-201$ is the best from the transient standpoint, having turn-on spikes of about 100 mV peak, 50 ns width at the $50 \%$ point, and charge injection at turn-off of about 20 pico Coulombs. Transients of the HI-5040 series are several times higher.

## D. HIGH FREQUENCY SWITCHING

When considering a switching element for R.F. or video type information, two factors must be watched: attenuation vs. frequency characteristics of an ON switch, and feedthrough vs. frequency characteristics of the OFF switch. Optimizing the first characteristic requires a low RON $\times C_{D}$ product, and the second a low value of $\mathrm{C}_{\mathrm{DS}}$ (OFF).

The 30 ohm switch types of the HI-5040 series appear to best meet these requirements, and testing at high frequencies has verified this.

Figure 9 illustrates these circuit configurations; (a) is a simple series switch, (b) is a series-shunt configuration to reduce feedthrough, and (c) is a SPDT selector configuration with series-shunt elements. A 1 K ohm load is illustrated, which might be the input impedance of a buffer amplifier stage; a lower load resistance would improve the response characteristics, but would create greater losses in the switch and would tend to distort high level signals.


Figure 9
Figure 10 shows ON and OFF frequency response for each of the above configurations. Arbitrarily, we will define useful frequency response as the
region where ON losses are less than -3 dB and OFF isolation is greater than -40 dB .

The simple configuration (a) has excellent ON response, but OFF isolation limits the useful range to about 1 MHz (the data sheet indicates -80 dB isolation at 100 kHz , but this is measured with 100 ohms load, which accounts for the 20 dB difference).

The circuit in (b) shows a good improvement in isolation produced by the low impedance of the shunt switch. The useful range is about 10 MHz ; which could also be achieved in a simple SPDT 2-switch selector if source impedances are very low.

The selector switch in (c) has excellent characteristics, both ON and OFF curves indicating 40 MHz useful response. Additional switches connected to the same point would reduce the ON response because of added shunt capacitance; but this could be eliminated by feeding separate summing amplifier inputs.

Careful layout is, of course, important for high frequency switching applications to avoid feedthrough paths or excessive load capacitance.


Figure 10

## alternatives to cmos switches AND MULTIPLEXERS

CMOS devices are excellent in many applications. However, there are some other devices which merit consideration in certain analog switching circuits where they may improve performance, reduce parts count, or be more economical.

## A. THE PRAM, PROGRAMMABLE AMPLIFIER

The HA-2400/2405 is a unique monolithic bipolar
circuit which combines analog switching with high performance operational amplifiers. It basically consists of four op amp type input stages, any one of which is connected to a single output by bipolar switches controlled through a TTL compatible address decoder. In a single package, it contains the equivalent of 5 op amps plus a 4 channel mulitplexer. It has literally hundreds of applications in signal selection and programmable signal conditioning.

Figure 11 illustrates a four channel multiplexer. Connections from the output to each input stage are always the same as a comparable op amp circuit; the +1 gain connection is illustrated.

(b) ANALOG MULTIPLEXER WITH BUFFERED INPUT AND OUTPUT

Figure 11
Advantages over a comparable CMOS multiplexer circuit are as follows:

1. High input impedance ( $10^{12}$ ohms), low output impedance ( $<0.1$ ohm) means that ON resistance and leakage currents are no longer of concern. There is negligible transient loading of input lines.
2. Gain filtering, etc. can easily be added with feedback networks.
3. Fast acquisition ( $1.5 \mu \mathrm{~S}$ ).
4. Wide bandwidth ( 8 MHz ).
5. Superior feedthrough characteristics $(-110 \mathrm{~dB}$ at $10 \mathrm{kHz},-60 \mathrm{~dB}$ at 1 MHz ).

Disadvantages include:

1. Less accuracy for low level D.C. signals; the offset voltages of each input stage do not necessarily match or track each other.
2. Cannot be used in reverse as a demultiplexer.
3. Disabling the device (enable pin low) does not open the output line, or drive the output to zero. Adding channels may be accomplished by tieing compensation pins together.

Figure 12 illustrates the PRAM used as a programmable gain amplifier. Any connection possible with op amps can be wired 4 ways to make programmable active filters, oscillators, etc., etc. Harris Application Note 514 shows many possibilities.


AMPLIFIER, NON-INVERTING PROGRAMMABLE GAIN

Figure 12

## B. SAMPLE-AND-HOLD

The sample-and-hold function has often been accomplished with separate analog switches and op amps. These designs always involve performance tradeoffs between acquisition time, charge injection, and droop rate.

The HA-2420/2425 monolithic sample-and-hold, illustrated previously in Figure 3 has many times better tradeoffs, usually at a lower total cost than the other approaches. The switching element is a complementary bipolar circuit with feedback which allows high charging currents ( 30 mA ), low charge injection ( 10 pC ), and ultra low OFF leakage current ( 5 pA ); a combination not approached in any other electronic switch. These factors make it also superior as an integrator reset switch, or as a precision peak detector as shown in Figure 13. Harris Application Note 517 illustrates many other applications.


Figure 13

## C. PROGRAMMABLE SUPPLY CURRENT OP AMPS

The HA-2720/2725 and HA-2730/2735 (dual amp) are op amps with an extra terminal which is used to control quiescent supply current. These are most generally used in low power systems to optimize the power dissipation vs. bandwidth and slew rate tradeoffs. They can also be used with variable set currents to make linearly variable oscillators, filters, etc. Another application is a switchable op amp as shown in Figure 14.


Figure 14
The illustrated transistor could be the output of high voltage open collector gate. The set resistor $R$ is chosen so that the set current is the desired value when the transistor is ON, considering that the voltage at ISET terminal when ON is about 2 forward junction drops ( $\sim 1.5 \mathrm{~V}$ ) below $\mathrm{V}+$. When the transistor is turned OFF, amplifier input, output, and supply terminals become very high impedance, so that two or more amplifier outputs could alternately be switched to the same point.

Off isolation with a 2,000 ohm load is about -80 dB at 10 kHz .

## D. CHOPPER STABILIZED AMPLIFIER

Analog switches are sometimes used as choppers for amplifying low level D.C. signals with low offset errors. The HA-2900/2905 is a monolithic chopper stabilized amplifier in a TO-99 can. Typical offset drifts are $0.2 \mu \mathrm{~V} / \mathrm{O}^{\circ} \mathrm{C}$ and $1 \mathrm{pA} /{ }^{\circ} \mathrm{C}$ with $5 \times 10^{8}$ open loop gain. Harris Application Note 518 describes this device.

## APPLICATION NOTE 521

# GETTING THE MOST OUT OF C-MOS DEVICES FOR ANALOG SWITCHING JOBS 

BY ERNIE THIBODEAUX

## INTRODUCTION

Although most designers appreciate the benefits of the complementary-MOS process for digital design, few realize how effective the technology can be for analog switching. C-MOS analog switches, which consume less power than bipolar devices, exhibit no dc offset voltage and can handle signals up to the supply rails. The C-MOS bilateral property furnishes input and output functions, making multiplexing and demultiplexing possible. In addition, the on-resistance of an MOS switch is as low as 30 ohms-a third as much as a bipolar device.

Unfortunately, C-MOS analog switches, which until recently were built with junction isolation, have been ditticult to design into analog multiplexers and switches. The devices latched up easily, their C-MOS inputs were destroyed by electrostatic charges, and they literally went up in smoke when confronted with input overvoltage spikes and power-supply transients. To prevent destruction, costly external protective circuits were needed, and, even then, the devices latched up unless the power was turned on and off in a set sequence.

Because latch-up problems limited the use of analog switches so severely, device designers focused a great deal of attention on eliminating the condition. Recently, the success has been noteworthy. Indeed, three new technologies now offer latch-free analog switch operation: latch-proof junction isolation (JI), floating-body junction isolation, and dielectric isolation (DI).

Both JI techniques are conventional processes that have been slightly modified to alleviate the old problem of latch-up. However, both of these JI technologies still require costly external protection circuits to guard against burn-out in such applications as analog-signal multiplexing that interface them with the outside world. That is why JI devices are best suited for internal-switching applications where the .electrical environment can be controlled. In contrast, the improved DI technology, by virtue of its construction, offers analog-switching devices suitable for
many inside applications, as well as providing inboard analog protection for devices that interface with the other circuits. Happily, the smaller substrate area of the DI device delivers a better speed-power product than the Jl technology.

## THE BASIC C-MOS SWITCH

The basic C-MOS transistor (Fig. 1) has parasitic junctions that are reverse-biased during normal operation. However, certain overvoltage conditions can forward-bias these junctions to cause high currents that could possibly destroy the devices.


Figure 1. Bad
In the basic C-MOS analog switch, the parasitic junctions are reversed-biased during normal operation. Large overvoltages, however, make them forward-biased and draw large currents.

The parasitic junctions are actually npn and pnp transistors that are normally reverse-biased by the applied body potentials. However, because many analog switches, and especially multiplexers, are connected to their analog sources through long lines, they are highly susceptible to externally induced voltage spikes. For example, these spikes, which can often exceed the p-channel body potential, $\mathrm{V}+$, can inadvertently turn on a normally off switch
through the parasitic pnp transistor (Fig. 1).
The $n$-channel device is similarly affected when the parasitic npn transistor is turned on by a negative overvoltage. This action, commonly known as channel interaction, causes momentary channel-tochannel shorting, which introduces significant errors in the system. This intermittent condition, which is seldom destructive, is rarely isolated because it occurs only randomly.

One of the adverse effects of channel interaction is illustrated in Fig. 2. Channel 1 of an analog multiplexer is selected when all other channels are off. Channel 16 receives an input-noise spike that momentarily exceeds the positive supply. The sequence causes channel 1 read-out to be +16 V because of interaction with channel 16 just before initiating the hold command to the sample-and-hold device. To prevent this annoyance requires additional protective circuits that clamp each channel input to a voltage below the threshold of the parasitics to ensure that the channels remain inactive under any conditions.


Figure 2. Worse
With CMOS devices, noise spikes can cause channel interaction. In this multiplexer, although channel 1 is only one selected, noise spikes cause cross talk in channel 16, which affects reading.

A more serious condition exists when the substrates ( p - or n -) lose their respective potentials to ground (Fig. 3) -a condition that occurs when power to the device is turned off while the analog signals are still present. In this situation, the analog switch, which at that point represents a diode connected through the low impedance of the supply, draws high current from the analog source.

This current turns on the switch through its parasitics and shorts all channels to the output. These shorts can easily be catastrophic in multiplexer systems that have different power supplies for the analog source
and the multiplexer switch. An error during troubleshooting or an inadvertent supply glitch can trigger this fault mode and destroy the whole system. Therefore, there is obviously much more to system reliability than having latch-proof C-MOS devices.


Figure 3. Still Worse
Most serious in CMOS switches is losing substrate potentlal to ground. This condition, which happens when power is lost and the analog signal is present, causes very high currents.

CONSIDERING LATCH-PROOF JI TECHNOLOGY

The standard JI process has been modified by what is claimed to be latch-proof construction through control of the effective betas of the parasitic transistors. A cross section in Fig. 4(a) shows the C-MOS structure along with its parasitic transistors and the equivalent circuit in Fig. 4(b) that gives rise to the silicon-controlled-rectifier latch-up problem.

Under any of the fault conditions previously mentioned, the npn and/or pnp can trigger this quasi-dual-gate SCR into a state of high conduction. If the transistor $\beta$ product is 1 or greater, this configuration is sustained until either the device burns up or all sources of power are removed. By using a buried-layer configuration, as shown in the cross section, the $\beta$ product is reduced to less than 1, eliminating the latch-up conditions.

Again, especially in multiplexer applications, the latch-free devices do not guarantee against destruction, and the Jl multiplexer still requires costly discrete circuits around the device, as shown in Fig 5. If an overvoltage exists, the resistor/diode circuit at each analog input limits the input voltage to the


Figure 4. Latch-Proof. Junction-isolated devices are now made latch-proof with a buried-layer configuration (a), which keeps beta of parasitic transistor under unity. That kills chance for latch-up (b), which plagues devices built with older junction-isolation technology.


Figure 5. Protection still needed. Although new Jl devices won't latch up, they still can be destroyed by large currents. That's why typical Jl multiplexers, like the one shown here, still need to be surrounded by external protective components, which drive up system costs.
supply-voltage range to prevent the parasitic transistor action.

The resistors limit the overvoltage currents through the diodes. The diodes must have a low threshold voltage-much lower than the 0.6 V silicon-junction threshold of the internal parasitic diodes-to ensure that the parasitics do not turn on.

A germanium diode offers a low threshold voltage, but its high leakage current makes it impractical, especially in $0.1 \%$ systems. Therefore, in most applications, more expensive low-leakage diodes are used.

For example, Schottky diodes meet the requirements, but they cost about 50 cents each in volume, and the total cost per multiplexer, including parts and labor,
for the discrete protection circuit may well be double the initial purchase price of the device. Even then, its reliability will never approach that of an IC that has this protection already built in.

## THE FLOATING-BODY JI TECHNOLOGY

Standard JI technology allows another approach to latch-proof device construction: a portion of the SCR continuity is broken by floating the "body" or substrate of the $n$-channel switching device. A cross section of this process is similar to that in Fig. 4(a), excluding the buried layer and the negative supply connection to the p-substrate, so that the dual-gate SCR is changed to a single -gate device that can only be triggered by the pnp parasitic. This, of course, reduces the latch-up probability by $50 \%$.

To completely eliminate latch-up, as before, the $\boldsymbol{\beta}$ product of the transistors is reduced to less than 1. This accomplishment, certainly a significant improvement over the conventional process, offers greater reliability, but certain trade-offs must be made when the body of a MOSFET is floated.

Nominal source-to-drain breakdown voltages are reduced which limit the peak-to-peak signal range. Over-all breakdown is limited by the collectoremitter breakdown voltage, BVCEO, of the npn parasitic transistor of the floating $n$-channel MOSFET. The breakdown voltage increases with the degree of reverse-bias potential applied to the substrate. With a floating body, $\mathrm{BV}_{\mathrm{CEO}}$ is minimum, so particular care is necessary when using these devices in configurations such as single-pole singlethrow, single-pole double-throw, dpst, and dpdt, where each side of the switch connects to opposite polarities. The peak-to-peak handling capability is specified at a minimum of 22 V ; therefore, $30 \mathrm{~V} \mathrm{pk}-\mathrm{pk}$ cannot be switched with $\pm 15 \mathrm{~V}$ supplies, as it can with other C-MOS devices.

What's more, the leakage currents of floating-body Jl devices are higher than other types, simply because the ICEO of the floating base for the npn is much greater than the ICBO of other devices having fixed reversed-biased body potentials. The increased leakage currents in spst switches may not be too significant.

However, in multiplexers that have the outputs of as many as 16 switches tied together in one IC, the total summation of currents can significantly affect system accuracy. For example, the specification for a worstcase 16 -channel floating-body multiplexer is 10 microamperes, and the channel on resistance is 550 ohms. The dc-offset error would be 5.5 millivolts, representing an accuracy to $0.055 \%$.

Other 16-channel types specify worst-case parameters of 500 nanoamperes and channel resistance between 550 ohms and 2 kilohms. Their dc-offset error is between 0.28 mV and 1 mV , respectively, allowing accuracy to $0.01 \%$ or better.

Finally, the effective off impedance of the floatingbody switch is degraded by the floating-body technique. Off-isolation characteristics of a MOSFET are primarily determined by its source-to-drain capacitance. But with the base floating, the effective capacitance from emitter to collector is increased by the series combination of emitter-base and base-collec-tor-junction capacitances (Fig. 6a). This increase degrades the over-all off-isolation characteristics. For example, the off isolation for a typical floatingbody channel at 1 megahertz that has RL $=100$ ohms is specified to be -54 decibels, which compares favorable with other types. However, at lower frequencies such as 1 kHz , the isolation is only -62 dB , compared to more than -110 dB for improved devices. Capacitances $C_{1}$ and $C_{2}$ for them are shunted by the low ac impedance of the supply voltage (Fig. 6b).


Figure 6. Floating Bodies
Floating-body switches have degraded "off" impedance because total capacitance (a) combines two junction capacitances. In DI circuit (b), capacitances are shunted out.

## the linear dielectric-isolation TECHNOLOGY

The linear dielectric-isolation process requires no modifications to guard against latch-up. Its basic construction ensures that the SCR configuration that causes latch-up can not exist. The functional cross section in Fig. 7 reveals the silicon-dioxide isolation barrier fabricated between all parasitic transistors. This isolation allows each active element to be self-contained and independent with no interface junctions. At most, only three-layer structures are permitted for each tub, so that four-layer strucures, or SCRs, are impossible. Also, since the DI technology requires no guard bands, junction capacitances, leakage currents, and size are minimized. The resulting increase in packing density per wafer, together with increased yields, enables these devices to be cost-competitive with other types.


Figure 7. How DI Does It
Dielectric isolation eliminates latch-up by a silicon-dioxide isolation barrier between devices. This separates all active elements, eliminating interface junctions that cause para-sitic SCR's.

In working with DI devices, the IC designer is not burdened with the fixed substrate potentials found in JI devices. He may let the substrate float, fix it to some potential, or even modulate it. Fig. 8 depicts a typical DI analog switch circuit that minimizes the variation of on resistance with the analog signal. Ordinarily, in conventional circuits, the body or
substrate potentials of the $n$ and $p$-channel devices are fixed and the source-to-body bias potentials vary with the analog input voltage. This change in body bias causes a wide variation of on resistance within the analog signal range. However, in the DI circuit, the bodies of $P_{1}$ and $N_{1}$ are connected together through $\mathrm{N}_{3}$ during the on state. This allows the body to follow the input voltage providing a constant source-body bias and therefore a constant on resistance. During the off state, the bodies of $N_{1}$ and $P_{1}$ are at their respective supply potentials through $\mathrm{P}_{2}$ and $\mathrm{N}_{2}$, thereby preserving high off isolation and low leakage currents.


Figure 8. DI Does it
In dielectrically isolated switches, on resistance modulation by the analog input is minimized by connecting $N_{1}$ and $P_{1}$ bodies together through $\mathrm{N}_{3}$.

DESIGNING A FOOLPROOF C-MOS ANALOG MULTIPLEXER

In dielectrically isolated multiplexer circuits, protection can be provided on the chip primarily to eliminate channel interaction. This protection prevents normally off channels from being turned on by parasitics from other channels. And because this interaction is prevented, even worst-case powersupply faults cannot destroy the device. Moreover, since DI structures have no SCR effect, protection against latch-up and power-sequencing are not necessary. In short, DI multiplexers with built-in protection can withstand virtually any conceivable fault from the outside world.

The typical protected DI multiplexer (Fig. 9) benefits from a combined bipolar/C-MOS technology. The illustrated bipolar section is used to sense an analog overvoltage condition and steer current away from the parasitic MOSFET junctions. Each of the switching devices, $N_{1}$ and $P_{1}$, has its own protection circuits. Devices $P_{3}, D_{6}, D_{7}$ and $Q_{6}$ protect $P_{1}$ while $N_{3}, D_{4}, D_{5}$, and $Q_{5}$ protect $N_{1}$. When the switch is off, the substrate of the p-channel FET, $\mathrm{P}_{1}$, is
connected to $\mathrm{V}+$ through $\mathrm{P}_{3}$ and diode $\mathrm{D}_{7}$ for maximum isolation and low leakage currents in the off state. If the input voltage suddenly exceeds V+, the source-body junction, which would normally conduct, is instead clamped by transistor $\mathrm{Q}_{6}$.


Figure 9. Winning Combination
Combining bipolar and MOS technologies in the same multiplexer gives built-in protection. This circuit is typical for each channel in multiplexers $\mathrm{HI}-506 \mathrm{~A}, \mathrm{HI}-507 \mathrm{~A}, \mathrm{HI}-508 \mathrm{~A}$, and HI-509A.

The base-emitter junction conducts to hold the source-body diode off with a saturation voltage $\mathrm{V}_{\mathrm{CE}}(\mathrm{SAT})$ of about 0.2 V . Thus clamped, the switch is protected from the effects of overvoltage.

Clamp $\mathrm{Q}_{6}$ always turns on before the forwardvoltage drop of the source-body diode is exceeded because diode $\mathrm{D}_{6}$ requires an additional forwardvoltage drop for conduction through the parasitic junction. Moreover, resistor $\mathrm{R}_{1}$ limits the current flowing through $\mathrm{Q}_{6}$ when high overvoltages exist. Although $\mathrm{R}_{1}$ adds to the total on-resistance of the channel, its associated error is insignificant, since most systems provide high-impedance buffering anyway. For negative overvoltages, $\mathrm{N}_{1}$ is similarly protected. What's more, the protection circuit, rated at a nominal overvoltage of $\pm 33 \mathrm{~V}$, reveals a cross-talk current of only about 5na (Fig. 10).

When the switch is normally turned on, the substrates of $\mathrm{N}_{1}$ and $\mathrm{P}_{1}$ are connected together through $N_{2}$, which, as described before, results in a constant on resistance.

This condition represents an absolute error from channel interaction of only 6 microvolts (RON $x$ 5NA)-certainly negligible in most systems. In contrast, floating-body types have guarantees only that they won't be burned up by $\pm 25 \mathrm{~V}$ overvoltage. Their manufacturers do not make any claim against channel interaction. In fact, channel interaction occurs readily in these devices when the $n$ - and p-channel thresholds are exceeded by an overvolt-
age. For example, the $n$-channel device, although floating, would be inadvertently turned on if the analog input exceeded the negative supply by its gate-to-source threshold, which is typically 1.5 V .


Figure 10. Blocking Cross Talk
DI switches have minimal cross-talk problems. An overvoltage of 33 V produces a cross-talk current of only 5 nA an absolute error from channel interaction of only $6 \boldsymbol{\mu} \mathrm{~V}$.

## ADDING BENEFITS

RESULTS OF DIGITAL-INPUT PROTECTION TESTS   (20 DIELECTRICALLY ISOLATED UNITS)	
STRESS STEP/VOLTS	FAILURES
	0
	0
1,500	0
2,000	1
2,500	0
3,000	3
3,500	0
4,000	3

Additional DI benefits are passed on to the user in the design of the digital input-protection circuit shown in Fig. 11. The fabrication of all components as isolated silicon islands eliminates any possibility of latch-up. The diodes switch fast and quickly discharge any static charge that may appear at the digital MOS input gates. The table gives the results of a step-stress analysis performed on 20 units. A total of $80 \%$ survived the 3.5 kilovolt level, and only one failed below 2 kV .

The DI technology enables a wide variety of active elements to be integrated on the same chip to provide maximum versatility. For example, in the transistor-transistor-logic/C-MOS reference circuit shown in


Figure 11. Digital Protection
DI devices also protect digital Inputs. For example, the diodes in this circuit quickly discharge any static charge that may appear on an MOS input gate.


Figure 12. Packing it In
DI technology increases chip density of analog switch, allowing more circuit capability per package. For example, DI designs make possible this internal logic reference circuit in $\mathrm{HI}-200$ and $\mathrm{HI}-201$ switches.

Fig. 12, the bipolar technology enables realization of a simple zener reference circuit, consisting of resistor $\mathrm{R}_{2}$ and transistors $\mathrm{Q}_{1}, \mathrm{Q}_{2}$, and $\mathrm{Q}_{3}$.

The circuit develops a stable 5 V reference for interfacing with TTL and eliminates the need for an additional 5 V logic supply. Current for the zener $\left(\mathrm{Q}_{3}\right)$ is supplied through the normally on MOSFET, $\mathrm{P}_{1}$, which can be easily turned off if not needed to minimize power consumption when interfacing with C-MOS-logic circuits. $\mathrm{P}_{1}$ turns off when V+ or supply voltage VDD is applied to the reference terminal VREF to convert the IC's power-consumption from bipolar to $\mathrm{C}-\mathrm{MOS}$ level. If power is not critical, $V_{\text {REF }}$ can be left open to speed switching.

In high-speed data-acquisition systems, the designer is concerned with both quiescent power and dynamic power consumption. If JI devices are used, the capacitance or leakage currents are so high they contribute a major portion of total power consumption. That situation is caused by the large-geometry parasitic junctions formed by the $n$ - junction.

In contrast, the smaller substrate area of the DI device provides much less power drain. Dynamicpower consumption as a function of frequency for several 16 -channel analog multiplexers with $\pm 15 \mathrm{~V}$ supplies is shown in Fig. 13. The DI device consumes only 100 mW at 1 MHz to yield the best speed-power product.


Figure 13. DI Performs
DI devices not only perform well, but do it with less power. Dynamic-power-consumption data for commercial multiplexers shows DI device consuming only 100 mW at 1 MHz .

# DIGITAL TO ANALOG CONVERTER TERMINOLOGY 

## APPLICATION NOTE 522

BY DICK TI TUNG

## INTRODUCTION

In recent years the development and rapid reduction in cost of digital integrated circuits have resulted in an explosion in the applications of digital processing systems in the area of data acquisition and automatic process control. The need for a building block, such as the digital-to-analog converter (DAC), which interfaces the digital system with the analog world, is evident.

The purpose of digital-to-analog conversion is to produce a unique but consistent analog quantity, voltage or current, for a given digital input code. The most commonly used input digital code to a DAC is the natural binary number. A natural binary number is represented as
$N=A_{n} 2^{n}+A_{n-1} 2^{n-1}+\ldots+A_{1} 2^{1}+A_{0} 2^{0}+$ $A_{-1} 2^{-1}+\ldots+A_{-n} 2^{-n}$
where the coefficients $A_{i}$ (for $n \geqslant i \geqslant-n$ ) assume the values of " 0 " or " 1 " and is called a "bit". The left half portion of the binary number $N$
$A_{n} 2^{n}+A_{n-1} 2^{n-1}+\ldots+A_{1} 2^{1}+A_{0} 2^{0}$
constitutes the integer part of the number $N$, whereas the right portion
$A_{-1} 2^{-1}+A_{-} 2^{-2}+\ldots+A_{-n} 2^{-n}$
constitutes the fractional part of the number N . The bit that carries the greatest weight (left most bit) is called the most significant bit, or MSB. Similarly, the bit with the smallest weight (right most bit) is called the least significant bit, or LSB.

The analog output of a $n$-bit binary DAC is related to its binary number in the following manner:
$E_{0}=F S\left(A_{-1} 2^{-1}+A_{-2} 2^{-2}+\ldots+A_{-n} 2^{-n}\right)$
where the term FS is defined as the nominal FullScale output of the DAC and it is known as the unreachable Full-Scale. It is easy to see that the actual Full-Scale output of the DAC, EFS, with all the input bits " 1 " is
$E_{F S}=F S\left(2^{-1}+2^{-2}+\ldots+2^{-n}\right)=F S\left(1-2^{-n}\right)$.

The term $\operatorname{FS}\left(1 / 2^{n}\right)$ is the smallest output level that the DAC can resolve and it is known as the 1 LSB output level change. It is universal practice that the input code of a DAC is written in the form of binary integer with the fractional nature of the corresponding number understood.

As an example, the transfer function of an ideal 3-bit binary DAC is plotted as shown in Figure 1. Since a 3-bit DAC has only 8 discrete input codes which correspond to 8 different output levels (ranging from zero to $7 / 8 \mathrm{FS}$ ), no other output levels can exist and it is plotted as a bar graph. The line that connects the Zero and FS is called the Gain Curve.


Figure 1 - Ideal Transfer Function Straight Binary (Unipolar)

There are two other input codings associated with binary DACs known as Bipolar codes, which are offset binary and two's complement binary codes. The offset binary code is obtained by offsetting the binary code such that the half-scale code, $10 \ldots 0$, becomes zero. And the two's complement code is achieved by inverting the MSB of the offset binary
code such that it is mathematically consistent with computer arithmetic. The transfer functions for the 3-bit DAC with offset binary input code and two's complement input code are plotted as shown in Figure 2 and Figure 3, respectively. (The +FS and -FS limits are used for easy interpretation of Bipolar operations. They are not confined by the previous definition of FS.)

In practical DACs, the zero output level may not be exactly zero (offset error), the range from zero to FS may not be exactly as specified (gain error), the differences in output levels may not be changing uniformly (nonlinearity), and so on. In selecting a DAC for a given application, some characteristics may have to be weighted more than the others. An understanding of some of the terms and characteristics involved in D/A conversion is helpful in choosing the correct part.


Figure 2 - Ideal Transfer Function Offset Binary (Bipolar)


Figure 3 - Ideal Transfer Function Two's Complement (Bipolar)

Least Significant Bit (LSB) - The digital input bit carrying the lowest numerical weight $\left(1 / 2^{n}\right)$; or the analog output level shift associated with this bit (FSR/2n) which is the smallest possible analog output step.

Most Significant Bit (MSB) - The digital input bit carrying the highest numerical weight (1/2); or the analog output level shift associated with this bit. In a binary DAC the MSB creates a $1 / 2$ FSR output level shift.

Resolution - An indication of the number of possible analog output levels a DAC will produce. Usually, it is expressed as the number of input bits. For example, a 12 -bit binary DAC will have $212=4096$ possible output levels (including zero) and it has a resolution of 12 bits.

Absolute Accuracy - A measure of the deviation of the analog output level from the ideal value under any input combination. Accuracy can be expressed as a percentage of full scale range, a number of bits ( n bits accuracy means a magnitude of $1 / 2^{n}$ FSR possible error may exist), or a fraction of the LSB (if a DAC with $n$-bit resolution has $1 / 2$ LSB accuracy the magnitude of the possible error is $1 / 2\left(1 / 2^{n} \mathrm{FSR}\right)$ ). Accuracy may be of the same, higher, or lower order of magnitude as the resolution. Possible error in individual bit weight may be cumulative with combination of bits and may change due to temperature variations. Usually, the accuracy of a DAC is expressed in terms of nonlinearity, differential nonlinearity, and zero and gain drift due to temperature variations.

Nonlinearity (linearity error) - A measure of the deviation of the analog output level from an ideal straight line transfer curve drawn between zero and full scale (commonly referred as endpoint linearity).

Differential Nonlinearity - A measure of the deviation between the actual output level chage from the ideal (1 LSB) output level change for a one bit change in input code. A differential nonlinearity of $\pm 1$ LSB or less guarantees monotonicity; that is the output always increases for an increasing input.

Gain Drift - A measure of the change in full scale analog output, with all bits 1 's, over the specified temperature range expressed in parts per million of full scale range per ${ }^{\circ} \mathrm{C}$ (PPM of FSR/ ${ }^{\circ} \mathrm{C}$ ). It is measured with respect to $+25^{\circ} \mathrm{C}$ at high ( $\mathrm{T}_{\mathrm{H}}$ ) and low ( $T_{L}$ ) temperature, and it is specified the larger of the two representing worst case drift.

Offset Drift (Unipolar or Bipolar) - A measure of the change in analog output, with all bits 0 's, over the specified temperature range expressed in parts per million of full scale range per ${ }^{\circ} \mathrm{C}$ (PPM of FSR/ ${ }^{\circ} \mathrm{C}$ ). It is measured with respect to $+25^{\circ} \mathrm{C}$ at high ( $\mathrm{TH}_{\mathrm{H}}$ ) and low ( $T_{L}$ ) temperature, and it is specified the larger of the two representing worst case drift.

Settling Time - The total time measured from a digital input change to the time the analog output reaches its new value within a specified error band. Usually, the settling time is specified for a DAC to settle for a Full-Scale code change ( 00 . . . 0 to $11 \ldots 1$ or $11 \ldots 1$ to $00 \ldots .0$ ) to within $+1 / 2$ LSB of its final value.

Compliance - Compliance voltage is the maximum output voltage range that can be tolerated and still maintain the specified accuracy.

The effects of gain error, offset error, nonlinearity, and differential nonlinearity on the transfer functions are plotted, respectively, as shown in Figure 4, 5, $6, \& 7$. A conversion chart which shows the number of bits and its resolution is given in Table 1.


Figure 4 - Gain Error


Figure 5 - Offset Error


Figure 6 - Linearity Error


Figure 7 - Differential Linearity Error (Non-Monotonicity)

Table 1 - Conversion Chart

\# OF   BITS	LSB	RESOLUTION		TEMPCO PPM $/{ }^{\circ} \mathrm{C}-1$ LSB DRIFT OVER	
		PPM	$0^{\circ} \mathrm{C} \leqslant{\text { TA } \leqslant 75^{\circ} \mathrm{C}}^{\mathbf{- 5} 5^{\circ} \mathrm{C} \leqslant \text { TA } \leqslant 125^{\circ} \mathrm{C}}$		
6	$\mathrm{FS} / 64$	1.5620	15,625	208.3	86.8
7	$\mathrm{FS} / 128$	0.7812	7.812	104.2	43.4
8	$\mathrm{FS} / 256$	0.3906	3,906	52.1	21.7
9	$\mathrm{FS} / 512$	0.1953	1,953	26.0	10.9
10	$\mathrm{FS} / 1024$	0.0977	977	13.0	5.4
11	$\mathrm{FS} / 2048$	0.0488	488	6.5	2.7
12	$\mathrm{FS} / 4096$	0.0244	244	3.3	1.4
13	$\mathrm{FS} / 8192$	0.0122	122	1.6	0.68
14	$\mathrm{FS} / 16384$	0.00610	61	0.8	0.34
15	$\mathrm{FS} / 32768$	0.00305	31	0.4	0.17
16	$\mathrm{FS} / 65536$	0.00153	15	0.2	0.08

## APPLICATION NOTE 523

BY DICK TI TUNG

## THE HIGH SPEED DAC FAMILY

The Harris Semiconductor high speed DAC family includes the following high speed current output monolithic DAC's:

HI-562	12 bits
HI-5618	8 bits
HI-5610	10 bits

They are especially designed to meet the fast settling requirements of computer graphics, CRT displays, and high speed analog-to-digital converter applications. The high speed DAC's are constructed using the Harris high frequency bipolar dielectric isolation (DI) process. Basically, the DAC's are identical in design and have the same chip size. The operating temperature range and package of the DAC's, and their typical characteristics are tabulated in Table 1 and Table 2, respectively. The functional diagrams are shown in Figure 1 to Figure 3.

Functionally, the high speed DAC's consist of a high performance control amplifier, an array of identical current sources, an R-2R resistor ladder, and an input digital interface network. When an external +10 V reference is applied to the +input of the control amplifier through the internal 8 K resistor, it establishes a reference collector current of 1.25 mA through the first NPN transistor and forces the other transistors to have the same collector current. These constant current sources are controlled by the digital inputs and it will either switch to ground or switch to the output through the resistor ladder network. A portion of the bias is fed back through the 2 K to the control amplifier to maintain the constant current at all times.

The use of current sources to drive the ladder network has several advantages over voltage sources. Within the constant current range of the sources, the current output will remain constant regardless of variations in the negative supply voltage, and also switching of a current source generally is faster, creates less ringing at the output, and produces smaller power supply transients.

The R-2R ladder network is constructed from high stability thin film nichrome resistors deposited on the same silicon chip. Identical material is used for the resistor in the reference supply network, span resistor, and in the current source circuitry to achieve good temperature stability. The current setting resistors and span resistors are LASER trimmed to provide the guaranteed accuracy.

The output accuracy of the high speed DAC's depends mainly on the accuracy of the voltage applied to the $V_{\text {REF }}$ inputs. The output level is directly proportional to the reference voltage. For high precision performance a precision +10 V voltage reference with reasonably low temperature coefficient, such as the Harris HA-1610 is highly recommended.

In addition to an external +10 V reference, the DAC's require a logic power supply ( $\mathrm{V}_{\mathrm{ps}+}$ ) and a -15 V analog power supply ( $\mathrm{V}_{\mathrm{ps}-}$ ) for operation. The digital input logic level is TTL/CMOS selectable. For TTL input operation, connect pin 2 to ground and use +5 V for logic power supply. If CMOS input level is desired, connect pin 2 to pin 1 and use the CMOS power supply as logic power supply. The analog output of a current output DAC can be terminated in a resistive load to ground to produce a voltage output within the specified compliance voltage.

For higher voltage output operation, use an external op amp as a current-to-voltage converter and the internal scaling resistors as feedback elements for optimum accuracy and temperature coefficient. The selected op amp should have a good front-end temperature coefficient such as the HA-2600/2605, with offset voltage and offset current tempco's of $5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ and $1 \mathrm{nA} /{ }^{\circ} \mathrm{C}$, respectively. For high speed voltage output applications where fast settling is required, the HA-5190 op amp is recommended.

As a rule of thumb, when wiring a system consisting of both digital and analog signals, power supply decoupling and single point grounding method should be used. A single point grounding system means that all the ground pins of devices in the system should be connected to a single point. This reduces the effect
of ground level fluctuation between devices. The grounding and decoupling scheme of high speed DAC's is shown in Figure 4. The decoupling capacitors should be connected close to the device pins, and should be tantalum or electrolytic bypassed with ceramic types for high frequency noise rejection.

The input reference resistor ( 7.975 K ) and bipolar offset resistor ( 3.975 K ) are both internally set low by $25 \Omega$ to allow the user to externally trim-out initial errors to a high degree of precision. The simplified operational diagrams for the high speed DAC's together with op amp hookup are given as shown in Figure 5 to Figure 7. The connections for various operations and their corresponding output levels are listed in Table 3 to Table 5. The calibration procedures are given as follows.

## UNIPOLAR CALIBRATION

Step 1 - Offset Adjustment

- Turn all bits off (all 0's)
- Adjust R3 for zero volts output

Step 2 - Gain Adjustment

- Turn all bits on (all 1's)
- Adjust $\mathrm{R}_{1}$ for an output of FS - 1LSB


## BIPOLAR CALIBRATION

## Step 1 - Op amp Null Adjustment

- Short op amp output to inverting input
- Adjust R3 for zero volts output

Step 2 - Gain Adjustment

- Turn all bits on (all 1 's) and all bits off (all 0 's) and record the voltage difference
- Adjust $\mathrm{R}_{1}$ till the output voltage difference equals to actual full scale voltage

Step 3 - Offset Adjustment

- Turn bit 1 (MSB) on, all other bits off (10. . .0)
- Adjust R2 for zero volts output


## MAJOR CARRY TRANSIENT AND GLITCHES

Whenever the digital input to a DAC changes, large transients, called glitches, may appear at the output before it reaches to its final value. These glitches are caused from unequal internal turn-on and turn-off switching times.

If, for example, the turn-on time is longer than turnoff time, an intermediate state of 0's occurs during a transition from binary 7 to binary 8 for a 3-bit DAC. Thus, instead of swinging smoothly from the output corresponding to 7 to that of 8 , the output instantaneously swings towards zero before getting back to where it is supposed to be. It is easy to see that the worst case glitches occur at the half-scale or major carry code transition, from 01. . . 1 to 10. . . 0 or 10. . . 0 to 01. . .1. In this case, the temporary state of all 0 's can cause a half-scale magnitude glitch.

In a specific application, where glitches are highly undesirable, the use of rapid symmetrical switches at digital inputs will reduce glitches considerably. For voltage output, a sample and hold amplifier (HA2425) used as current-to-voltage converter would also provide the deglitching function.

Figure 8 shows the diagrams of a high speed sample and hold circuit designed by Harris linear applications. It is capable of slewing a signal at a rate of $1 \mathrm{~V} / 50 \mathrm{~ns}$ in the sample made, and the droop rate will not exceed $500 \mu \mathrm{~V} / 100 \mathrm{~ns}$. The duration of the "hold" could be user selected by changing the RC constant of the monostable multivibrator; it in turn blanks the undesirable portion of the transient response of the DAC.

Table 1. Operating Temperature Range Selection Chart

SELECTIONS		PACKAGE	OPERATING TEMPERATURE RANGE		
		-2 AND -8	-5		
HI-562	12 Bits		24-Lead DIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to +750 C
H1-5618	8 Bits	18-Lead DIP	$-55^{\circ} \mathrm{C}$ to $+125{ }^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to +750 C	
HI-5610	10 Bits	24-Lead DIP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to +750 C	

Table 2. Typical Characteristics

PARAMETER	TEMP	HI-562	HI-5618	HI-5610	UNITS
Resolution	Full	12	8	10	BITS
Nonlinearity	Full	$1 / 2$	$1 / 4$	$1 / 4$	LSB
Differential Nonlinearity	Full	$1 / 2$	$1 / 4$	$1 / 4$	LSB
Gain Drift	Full	5	5	5	ppm of   FSR/oC
Unipolar Offset Drift	Full	2	3	3	ppm of   FSR/oC
Bipolar Offset Drift	Full	2	3	3	ppm of   FSR/oC
Output Current (Full Scale)	Full	-5	-5	-5	mA



Figure 1. HI-562 Functional Diagram


Figure 2. HI-5618 Functional Diagram


Figure 3. HI-5610 Functional Diagram


Figure 4. Decoupling and Grounding Scheme
Table 3. HI-562 Connection Chart

ANALOG OUTPUT MODE	OUTPUT RANGE	ACTUAL FULL SCALE	CONNECTIONS			$\begin{gathered} \text { RB } \\ \text { BIAS } \\ \text { RESISTORS } \end{gathered}$
			PIN 8 TO	PIN 10 TO	PIN 11 TO	
UNIPOLAR	0 to +10 V	9.9976 V	NC	A	NC	$667 \Omega$
	0 to +5 V	4.9988 V	NC	A	9	$500 \Omega$
BIPOLAR	$\pm 10 \mathrm{~V}$	19.9951V	9	NC	A	$667 \Omega$
	$\pm 5 \mathrm{~V}$	9.9976 V	9	A	NC	$580 \Omega$
	$\pm 2.5 \mathrm{~V}$	4.9988 V	9	A	9	$444 \Omega$



Table 4. HI-5618 Connection Chart

ANALOG OUTPUT MODE	OUTPUT   RANGE	$\begin{aligned} & \text { ACTUAL } \\ & \text { FULL } \\ & \text { SCALE } \end{aligned}$	CONNECTIONS			$\mathrm{R}_{8}$BIASRESISTORS
			PIN 5 TO	PIN 7 TO	PIN 8 TO	
UNIPOLAR	0 to +10 V	9.9609 V	NC	NC	B	400
	0 to +5 V	4.9805 V	NC	B	NC	333
	0 to +2.5 V	2.4902 V	NC	B	6	250
BIPOLAR	$\pm 5 \mathrm{~V}$	4.9609 V	A	NC	B	364
	$\pm 2.5 \mathrm{~V}$	2.4805 V	A	8	NC	307
	$\pm 1.25 \mathrm{~V}$	1.2402 V	A	B	6	235



Figure 6. HI-5618 Operational Diagram

# DIGITAL TO ANALOG CONVERTER 

# HIGH SPEED ADC APPLICATIONS 

BY DICK TI TUNG

## ANALOG-TO-DIGITAL CONVERTER (ADC)

The use of high speed DACs in CRT display, industrial process control, signal regeneration, etc., are well established. Perhaps one of the most important applications is to use the DAC in high speed ADC design. There are two types of ADC design where high speed and high resolution DACs are essential.

## TRACKING ADC OR SERVO TYPE ADC

The tracking ADC is very efficient in monitoring one analog signal continuously, converting it into a sequence of digital codes representing the analog signal in real time.

Functionally, the analog input is compared with the output of a DAC, with the digital input of the DAC being driven by a counter. After the ADC is turned on, the counter increments until the DAC output crosses the analog input value. The counter will then, running up or down, drive the DAC 1 LSB at a time to track the input signal. The counter state represents the digital equivalent of the input signal.

In Figure 1, the analog input is fed into the span resistor of a DAC. The analog input voltage range is selectable in the same way as the output voltage range of the DAC. The net current flow through the ladder termination resistance, i.e. 1 K for $\mathrm{HI}-562$, produces an error voltage at the DAC output. This error voltage is compared with $1 / 2$ LSB by a comparator. When the error voltage is within $\pm 1 / 2$ LSB range, the $Q$ output of the comparators are both low, which stops the counter and gives a data ready signal to indicate that the digital output is correct. If the error exceeds the $\pm 1 / 2$ LSB range, the counter is enabled and driven in an up or down direction depending on the polarity of the error voltage.

Since the digital output changes state only when there is a significant change in the analog input, the data ready signal is then very useful in adaptive systems or computer systems for efficient data transfer. When monitoring a slowly varying input, it is necessary to
read the digital output only after a change has taken place. The data ready signal could be used to trigger a flip-flop to indicate the condition and reset it after read-out.

The main disadvantage of the tracking ADC is that the time required to initially acquire a signal, for a 12 bit ADC, could be up to 4096 clock periods. The input signal usually must be filtered so that its rate of change does not exceed the tracking range of the ADC (1 LSB per clock period).

## SUCCESSIVE-APPROXIMATION ADC

Perhaps the most widely used technique for a high speed analog-to-digital converter design is the successive approximation method. Ideal for interfacing with computers, this type is capable of both high speed and high resolution, and the conversion time is fixed and independent of the magnitude of the input voltage.

Figure 2 shows a block diagram of a successiveapproximation ADC. When a negative going start conversion pulse is applied to the ADC, the internal registers of the successive approximation register (SAR) are set to low except for the MSB, which is set to high. This turns on the MSB of the DAC. The FS output current of the DAC is compared with the current fed through the span resistor by the analog input. The net current flow through the ladder termination resistance produces an error voltage at the DAC output. This error voltage is then compared with a fixed reference by a comparator to determine whether the analog input is greater or less than the present state of the DAC. The result of the comparison is clocked into the SAR at the rising edge of the clock. The MSB of the SAR will be set to high if the analog input is greater; otherwise, it will be set to low. At the same time, the second bit of the SAR is set to high with the remaining bits at their previous states. During the second clock period, the sum of the result of the first choice and the weight of the second bit is compared with the analog input. The second bit is set to high or low in the same manner as the MSB, and so on, until the LSB is updated.

D During this conversion time, the output of a status flip-flop is set to high, indicating that a conversion is taking place. It will return to low at the end of conversion to signify that the output state of the SAR represents the digital equivalent of the input analog voltage.

It is easy to see that in any successive-approximation ADC application, the analog input should remain reasonably constant during the conversion to avoid erroneous results. This is usually accomplished by using a sample-and-hold circuit in the analog line.

## DATA ACQUISITION SYSTEM

The functional diagram of a 16 -channel data acquisition system is shown in Figure 3. Functionally, the outputs of the binary counter are fed to the 16channel analog multiplexer to serve as the channel select signals, and it is also fed to the 4 line to 16 line digital decoder as address inputs. At the rising edge of the clock pulse, an analog input channel is selected, and the sample and hold circuit ( $\mathrm{S} / \mathrm{H}$ ) is set to sample. The duration of the " 1 " state of the clock pulse should be adjusted such that the output of the $\mathrm{S} / \mathrm{H}$ would settle to its required accuracy. At the falling edge of the clock pulse, the $\mathrm{S} / \mathrm{H}$ holds the signal level acquired during the clock " 1 " state, and with one gate delay time, the ADC commences its conversion. Once the conversion is completed, the $\overline{\mathrm{CC}}$ signal from the ADC will enable the decoder to send out a decoded signal to strobe the ADC output into the proper storage register. The duration of the " 0 " state of the clock pulse should be adjusted to allow the proper data entry to the storage register. The next analog input channel will be acquired for the next clock period, and so on. If a 50 kHz clock pulse is used, the data will be refreshed every $320 \mu \mathrm{~s}$.

This 16-channel data acquisition system is applicable to industrial process control, and multi-channel panel display. It can also interface with an intelligent terminal, such as a micro-computer system, to provide multi-channel data conversion function. The offset error and gain error of the data acquisition system over the operating temperature range can be easily compensated by proper programming.

By the same token, a 15-channel data acquisition system with offset correction could be easily incorporated as shown in Figure 4. Consider the case that one of the analog input channels is dedicated to sense the ground level, and its binary equivalent is stored in latch register B in its complementary form to establish a ground reference in real time. All the other analog input channels will then be converted and stored in register A, one at a time. The binary adder will perform the binary subtraction in less than $1 \mu \mathrm{~s}$ for the given pair of $A$ and $B$. This, in fact, eliminates the offset error of the ADC, offset error of the S/H circuit, and excess droop of the $\mathrm{S} / \mathrm{H}$ due to temperature variation.

This circuit is easy to implement and is especially useful when an intelligent terminal is not available. To expand this concept one step further, the gain error of the system due to temperature variations could also be eliminated if a binary multiplier is used to correct the gain facter in real time.


Figure 1. Tracking ADC


Figure 2. Successive-Approximation ADC


Figure 3. 16 Channel Data Acquisition System


Figure 4. 15 Channel Data Acquisition System with Offset Correction

## APPLICATION NOTE

## INTRODUCTION

The military temperature range HA-5190 and its commercial temperature equivalent, HA-5195, are monolithic operational amplifiers featuring $\pm 200 \mathrm{~V} / \mu \mathrm{s}$ slew rate, 150 mHz gain-bandwidth-product, and 70 ns settling time. Similar performance has previously been available only in more costly modular and hybrid amplifiers, which require much higher bandwidth and slew rate to achieve the same settling time as HA$5190 / 5195$. Since it exhibits a classical $-6 \mathrm{~dB} /$ octave rolloff over most of its frequency range, remarkably smooth output wave forms are generated by HA5190 when reasonable care is employed.

Applications for this op amp include pulse, RF, and video amplifiers, wave form generators, high speed data acquisition and instrumentation circuits.

## INSIDE THE HA-5190/5195

Figure 1 shows the schematic of the HA-5190/5195 design. The schematic can be simplified to show the AC signal path as shown in Figure 2.

The input stage consists of two symmetrical differential transistor pairs. The signal path for positive going signals is $Q_{1}, Q_{2}$, and $Q_{3}$, while negative going signals pass through $\mathrm{Q}_{4}, \mathrm{O}_{5}$, and $\mathrm{Q}_{6}$. The signal then goes through the output stage (represented by the voltage follower symbol) consisting of one PNP and two NPN emitter followers.

In Figure 2, the compensation network is $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}$, and $\mathrm{R}_{29}$. This network makes the amplifier system appear as second-order critically damped. The scheme produces the dominant pole plus two zeros. The zeros are positioned to cancel the effects of undesired poles developed by the $F_{t}$ of the transistors.


Figure 1. HA-5190/5195 Schematic.

Figure 2. Simplified HA-5190 Schematic.


(b) Stabilization using $Z_{I N}$.

(c) Gain $=+1$

(d) Stabilization using $Z_{I N}$.

(e) Non-inverting gain stage.

(f) Integrator

Figure 3. Compensation recommended when

For closed loop gains between 1 and 5 , reducing $\mathrm{R}_{1}$ in Figure 3 (a) and (e) will raise the gain with minimum effect on bandwidth. However, in the inverting configuration, $\mathrm{R}_{1}$ determines the input impedance, and it may be more practical to raise $R_{2}$ at the expense of bandwidth. In Figure 3 (e), R4 and $R_{5}$ may be reduced as gain is increased and removed entirely at gains greater than +4 .

For applications requiring $100 \%$ feedback at high frequencies, such as integrators and low pass filters, HA-5190/5195's compensation scheme should be thoroughly evaluated through experimentation. The circuit in Figure 3 (f) is quite stable, using the two 1 K ohm resistors.

## SUGGESTED METHODS FOR PERFORMANCE ENHANCEMENT

To avoid compromising AC performance, the HA5190 design does not include provisions for internal offset adjustment.

The circuits in Figure 4 (a) and (b) show two possible schemes for offset voltage adjustment.

Figure 5 (a) and (b) uses the inherent qualities of the FET to reduce input bias currents by several orders of magnitude and raise input impedance to thousands of megohms. Both circuits are shown in the unity gain follower mode. Circuit gain can be implemented using normal feedback techniques. To optimize for speed, care should be taken in layout. Experimental results yielded slew rates of approximately $130 \mathrm{~V} / \mu \mathrm{s}$.

Figure 5 (c) illustrates a composite inverting amplifier which greatly reduces DC errors due to the HA-5190 input bias current and gain, while retaining superior settling time. The 0 dB frequency of the integrator section approximates the open loop low frequency pole ( $\sim 2.5 \mathrm{kHz}$ ) of the HA-5190. This circuit might also be connected as a current-to-voltage amplifier for use with a high accuracy, high speed DAC.

Figure 6 shows a composite amplifier scheme for boosting output current drive of the HA-5190/5195. The circuit gain (shown $A V=5$ ) can be adjusted using normal feedback systems. HA-5190 used in conjunction with HA-2630 can drive 50 ohm coaxial cable with 10 volt peak-to-peak signals at speeds up to $200 \mathrm{~V} / \mu \mathrm{s}$.

## APPLICATIONS

## INTRODUCTION

HA-5190/5195 represents an ideal building block for .high speed, precision data acquisition systems and for video pulse amplification. Although this amplifier can be used in a wide variety of other applications, the ones to be discussed show where it can be used most advantageously.

(b)

RANGE OF ADJUSTMENT FOR BOTH NON-INVERTING (LEFT) AND INVERTING AMPLIFIERS (RIGHT) DETERMINED BY PRODUCT OF VSUPPLY AND R3/R4 RATIO.

$$
A V=1+\frac{R_{1}}{R_{2}+R_{3}}
$$

Figure 4. Offset Nulling.


Figure 5. Reducing Input Bias Currents.


Figure 6. Boosting Output Current.

## Application 1 Fast DAC Output Buffer

The circuit at right illustrates the HA-5190's usefulness as a high speed DAC buffer.

The amplifier operates as a current-to-voltage converter/output buffer to the HI-5610 which is a precision 10 bit DAC with output current settling time less than 100 ns . The voltage divider on the noninverting input serves to null any DC errors introduced into the system. The amplifier maximizes speed of the system since its dynamic performance exceeds that of the DAC.

## Application 2 High Speed Sample/Hold

Sample/Hold circuits are used in many areas of data acquisition systems such as de-glitchers for D/A converters and input stages for successive approximation A/D converters.

The circuit at right uses the speed and drive capability of the HA-5190 coupled with two high speed DMOS FET switches.

The input amplifier is allowed to operate at a gain of -5 although the overall circuit gain is unity. Acquisition times of less than 100 ns to $0.1 \%$ of a 1 volt input step are possible. Drift current can be appreciably reduced by using FET input buffers on the output stage of the Sample/Hold.

## Application 3 Video Pulse Amplifier/75 ohm

## Coaxial Driver

HA-5190/5195 is also well suited for video pulse applications. The circuit at right could be found in various types of video broadcasting equipment where 75 ohm systems are commonly employed.

HA-5190 can drive the 75 ohm coaxial cable with signals up to 2.5 volts peak-to-peak without the need for current boosting. In this circuit the overall gain of the circuit is approximately unity because of the impedance matching network.

## Application 4 Output Limiter

HA-5190 is rated for $\pm 5$ volt output swing, and saturates at $\pm 7$ volts. As with most op amps, recovery from output saturation is slow compared to the amplifier's normal response time; so some form of limiting, either of the input signal or in the feedback path, is desirable if saturation might occur. The circuit above illustrates a feedback limiter, where gain is reduced if the output exceeds $\pm(\mathrm{Vz}+2 \mathrm{Vf})$. A 5 volt zener with a sharp knee characteristic is recommended.


## APPLICATION NOTE 607

## INTRODUCTION TO DELTAMOD

Delta modulation has evolved into a simple, efficient method of digitizing voice for secure, reliable communications and for voice $1 / O$ in data processing.

To illustrate basic principles, a very simple delta modulator and demodulator are illustrated in Figure 1. The modulator is a sampled data system employing a negative feedback loop. A comparator senses whether or not the instantaneous level of the analog voice input is greater or less than the feedback signal. The comparator output is clocked by a flip-flop to form a continuous NRZ digital data stream. This digital data is also integrated and fed back to the comparator. The feedback system is such that the integrator ramps up and down to produce a rough approximation of the input waveform. An identical integrator in the demodulator produces the same waveform, which when filtered, reproduces the voice.

We can see that the digital data 0 's and 1 's are commands to the integrators to "go up" or "go down" respectively. Another way of looking at it is that the digital data stream also has analog significance; it approximates the differential of the voice, since analog integration of the data reproduces the voice.

Note that the integrator output never stands still; it always travels either up or down by a fixed amount in any clock period. Because of its fixed integrator output slope, the simple delta modulator is less than ideal for encoding human voice which may have a wide dynamic amplitude range.

The integrator cannot track large, high frequency signals with its fixed slope. Fortunately, human speech has statistically smaller amplitudes at higher frequencies, and an integrator time constant of about 1 millisecond will satisfactorily reproduce voice in a 3 kHz bandwidth.

A more serious limitation is that voice amplitude changes which are less than the heighth of the integrator ramp during one clock period cannot be resolved. So dynamic range is proportional to clock frequency, and satisfactory range cannot be obtained at desirable low clock rates.

A means of effectively increasing dynamic range is called "companding" (compressing-expanding); where at the modulator, small signals are given higher relative gain, and an inverse characteristic is produced at the demodulator.

The CVSD: A popular effective scheme for companded delta modulation is known as CVSD (continuously variable slope deltamod) shown in Figure 2. Additional digital logic, a second integrator, and an analog multiplier are added to the simple modulator.

Under small input signal conditions, the second integrator (known as the syllabic filter) has no input, and circuit function is identical to the simple modulator, except that the multiplier is biased to output quite small ramp amplitudes giving good resolution to the small signals.

A larger signal input is characterized by consecutive strings of 1 's or 0 's in the data as the integrator attempts to track the input. The logic input to the syllabic filter actuates whenever 3 or more consecutive 0's or 1's are present in the data. When this happens, the syllabic filter output starts to build up, increasing the multiplier gain, passing larger amplitude ramps to the comparator, enabling the system to track the larger signal. Up to a limit, the more consecutive 1's or 0's generated, the larger the ramp amplitude. Since the larger signals increase the negative feedback of the modulator and the forward gain of the demodulator, companding takes place. By listening tests, the syllabic filter time constant of 4 to 10 milliseconds is generally considered optimum.

An outstanding characteristic of CVSD is its ability, with fairly simple circuitry, to transmit intelligible voice at relatively low data rates. Companded PCM, for telephone quality transmission, requires about 64 K bits $/ \mathrm{sec}$ data rate per channel. CVSD produces equal quality at 32 K bits $/ \mathrm{sec}$. (However, at this rate it does not handle tone signals or phase encoded modern transmissions as well.)

CVSD is useful at even lower data rates. At 16 K bits/sec the reconstructed voice is remarkably natural, but has a slightly "Fuzzy Edge". At 9.6K bits/sec intelligibility is still excellent, although the sound
is reminiscent of a damaged loudspeaker. Of course, very sophisticated speech compression techniques have been used to transmit speech at even lower data
rates; but CVSD is an excellent compromise between circuit simplicity and bandwidth economy.

MODULATOR
DEMODULATOR


Figure 1 - Simple Delta Modulation

MODULATOR DEMODULATOR


Figure 2 - Analog CVSD
summed to the DAC to insure that over a period of time equal numbers of 1 's and 0 's are generated.

Delta modulated data is in a form which can be digitally filtered with fairly simple circuitry. A compatible CVSD can be made using digital integrators and multipliers driving a digital-to-analog converter. The block diagram of the Harris HC-55516/ 55532 monolithic CVSD is shown in Figure 3.

The CMOS digital circuit functions of Figure 3 closely parallel the equivalent analog function in Figure 2. The filters are single pole recursive types using shift registers with feedback. A digital multiplier feeds a 10 bit R-2R DAC which reconstructs the voice waveform. The DAC output is in steps, rather than ramps.


Figure 3 - HC-55516/55532 CVSD Functional Diagram

The digital CVSD has a number of advantages over its analog counterpart, and has desirable features which would otherwise require additional circuitry:

1) The all CMOS device requires only 1 mA current from a single +4.5 V to +7 V supply.
2) No bulky external precision resistors or capacitors are required for the integrators; time constants of the digital filters are set by the clock frequency and do not drift with time or temperature.
3) For best intelligibility and freedom from listener fatigue, it is important that the recovered audio is quiet during the pauses between spoken words. During quiet periods, an alternate " 1 ", " 0 " pattern should be encoded, which when decoded and filtered will be inaudible. Achieving this in the analog CVSD requires that up and down ramp slopes are precisely equal and that offsets in the comparator and amplifiers are adjusted to zero. Improper adjustment or excessive component drift can result in noisy oscillations. In the digital design, comparator offset and drift are adjusted by a long up-down counter

An added feature is automatic quieting, where if the DAC input would be less than 2 LSB's the quieting pattern is generated instead. This has proven to aid intelligibility.
4) To prevent momentary overload when beginning to encode or decode, it is desirable to initialize the integrators. In the analog CVSD, external analog switches would be required to discharge the capacitors.

In the digital CVSD, the filters are reset by momentarily putting the "Force Zero" pin low. At the same time, a quieting pattern is generated without affecting internal encoding by putting the "Alternate Plain Text" pin low.
5) In some analog CVSD designs, transient noise will be generated during recovery from a low frequency overdriven input condition. The digital CVSD has a clipped output with instant recovery, when overdriven.
6) Half-duplex operation (using the same device, switching between the encode and decode functions) requires external circuits with the analog CVSD, while the digital type is switched internally by a logic input.

A possible drawback to the digital CVSD is that, since its filter time constants are proportional to the clock period, a single device will not be optimum for all clock frequencies. For this reason, Harris has two devices, the HC-55516 for clock rates below 24 K bits $/ \mathrm{sec}$, and the HC-55532 for higher clock rates.

## APPLICATIONS OF DELTA MODULATION

1) Telecommunications: Digitized signals are easily routed and multiplexed with low cost digital gates. Voice channels may be easily added to existing multiplexed digital data transmission systems. The digital signals are much more immune to crosstalk and noise when transmitted over long distances by wire, R.F., or optical paths. CVSD has better intelligibility than PCM when random bit errors are introduced during transmission.
2) Secure Communications: Digital data can be quite securely encrypted using fairly simple standard hardware (Figure 4a). Scrambled speech for audio channels may also be accomplished by encoding into a shift register, then selecting different segments of the shifted data in pseudo-random fashion and decoding it (Figure 4b).
3) Audio Delay Lines: Although charge-coupled deviced (CCD) will perform this function, they are still expensive and choice of configurations is quite limited. Also, there is a practical limit
to the number of CCD stages, since each introduces a slight degradation to the signal.

As shown in Figure 5, the delay line consists of a CVSD modulator, a shift register and a demodulator. Delay is proportional to the number of register stages divided by the clock frequency. This can be used in speech scrambling, as explained above, echo supression in PA systems; special echo effects; music enhancement or synthesis; and recursive or nonrecursive filtering.
4) Voice I/O: Digitized speech can be entered into a computer for storage, voice identification, or word recognition. Words stored in ROM's, disc memory, etc. can be used for voice output. CVSD, since it can operate at low data rates, is more efficient in storage requirements than PCM or other A to D conversions. Also, the data is in a useful form for filtering or other processing.


Figure 4a - Digital Transmission Encription


Figure 4b - Voice Transmission Scrambling


Figure 5 - Audio Delay Line


Figure 6 - CVSD Hookup for Evaluation

Figure 6 illustrates a simple evaluation breadboard circuit for the HC-55516/55532. A single device is sufficient to evaluate sound quality, etc. since, when encoding, the feedback signal at pin 3 is identical to the decoded signal from a receiver. The following are some pointers for using the devices:

1) Power supply decoupling is essential with the capacitor (C1 in Figure 6) located close to the I.C.
2) Power to the I.C. must be present before the audio input, the clock, or other digital inputs are applied. Failure to observe this may result in a latchup condition, which is usually not destructive and may be removed by cycling the supply off, then on.
3) Signal ground (pin 2) should be externally connected to pin 8 and power ground. It is recommended for noise-free operation that the audio input and output ground returns connect directly to pin 2 and to no other grounds in the system. Pins 6 and 7 must be open circuited.
4) Digital inputs and outputs are similar to and compatible with standard CMOS logic circuits using the same supply voltage. The illustrated 10K pullup resistors are necessary only with mechanical switches, and are not necessary when driving these pins with CMOS. Unused digital inputs should be tied to the appropriate supply rail for the desired operation. TTL output, however, will require pullup resistors (about 1 K ) to obtain the required CMOS input levels. Pins 4 and 14 will drive CMOS logic, or each can drive one low power TTL input.
5) Capacitor coupling is recommended for the audio in and out (pins 3 and 5) as each pin is internally biased to about $1 / 2$ the supply voltage.
6) The AGC output (pin 4) is a digital output, whose duty cycle is dependent on the average audio level. This may be externally integrated to drive an AGC preamplifier; or it could be used (through a buffer gate) to drive an LED indicator to indicate proper speaking volume.
7) To prevent generation of alias frequencies, the input filter should reduce the audio amplitude at frequencies greater than half the clock rate to less than 12 millivolts peak-to-peak.
8) The complex output filter shown on the data sheet is necessary only when measuring signal to noise ratios where all frequencies above 3 kHz must be removed. Generally a 2 or 3 pole filter is sufficient for acceptable voice quality.
9) A suggested receiver clock circuit is a free running multivibrator, synchronized at each transition of the incoming data. Any synch errors occurring during reception of long strings of zeros or ones will have negligible effect on the decoded voice.

Figures 7 though 11 illustrate some typical audio output (before filtering) and digital output waveforms. To make the scope picture stationary, the audio input generator was synchronized with a submultiple of the clock frequency.

Figure 7 shows the results of a large low frequency sine wave. The somewhat jagged peaks are typical of all CVSD systems. Note that the digital output is continuous "ones" while the waveform is slewing down and continuous "zeros" while slewing up.

Figure 8 shows the excellent recovery from overdriven conditions at low frequency. Some analog type CVSD's have trouble recovering from this condition.

As mentioned previously, CVSD's cannot handle large signals at high frequencies (but these are not generally present in the human voice). Figure 9 shows this limitation where the voice output is slewing at its maximum rate, but cannot catch up with the input. At reduced amplitudes, however, the same signal can be reproduced, as shown in Figure 10.

The transfer function curve on the data sheet shows that at 16 kHz clock rate, a 1.4 V RMS signal can be tracked up to 500 Hz . With a 32 kHz clock, the same curves may be used, but with each of the indicated frequencies doubled. Likewise, each of the SNR figures shown on the data sheet will be 6 dB better with a 32 kHz clock.

Figure 11 shows the 12 millivolt voice output waveform at $1 / 2$ the clock rate, when there is no audio input. After filtering, this signal is inaudible.

$0.5 \mathrm{~ms} / \mathrm{DIV}$.
VOICE IN $=\begin{gathered}250 \mathrm{~Hz}, 4 \mathrm{~V} P-P \text { SINE WAVE } \\ C L O C K=16 \mathrm{kHz}\end{gathered}$

Figure 7 - CVSD Large Signal Sine Wave Reconstruction


Figure 8 - CVSD Large Signal, Low Frequency Clipped Waveform


Figure 9 - CVSD Large Signal, High Frequency Slew Limiting


VOICE IN $=\begin{gathered}0.2 \mathrm{~ms} / \text { DIV. } \\ 1 \mathrm{kHz}, 0.15 \mathrm{~V} \text { P-P SINE WAVE }\end{gathered}$ CLOCK $=16 \mathrm{kHz}$

Figure 10 - CVSD Small Signal Sine Wave Reconstruction

$50 \mu \mathrm{~s} / \mathrm{DIV}$. VOICE IN =0 CLOCK $=16 \mathrm{kHz}$

Figure 11 - CVSD Zero Signal Idle Pattern

## Chip Information

## PAGE

Ordering Information 7-2
Mechanical Information 7-2
Product Code Example 7-2
Chip Geometries 7-3
Analog Chip Data Book 7-9

## GENERAL INFORMATION

Most of the Harris Analog standard products are available in chip form to the hybrid micro circuit designer. The standard chips are DC electrically tested at $+25^{\circ} \mathrm{C}$ to the data sheet limits for the commercial device and are $100 \%$ visually inspected to MIL-STD-883, Method 2010, Condition B criteria. Packaging for shipments consists of waffle pack carriers plus an anti-static cushioning strip for extra protection.

## CHIP DATA BOOK

Harris Semiconductor publishes a data book which provides ordering, processing and performance specifications for various Analog products in dice form. This data book is reprinted for your infor-

Certain products are also available with guaranteed performance specified over an extended temperature range. Harris also has several options additional to standard chip processing available upon request at extra cost. These include: gold backing, SEM, class A visual.
All specifications in this book are applicable only to packaged products. Specifications for dice are obtained in Harris Semiconductor's Analog Chip Data Book or from the factory or authorized sales representatives.
mation and convenience starting on page 7-9. Individual copies of the chip brochure are available from the factory and your local Harris sales office.

## CHIP ORDERING INFORMATION

Standard and special chip sales are direct factory order only. The minimum order on all sales is $\$ 250.00$ per line item. Contact the local Harris Sales Office or Representative for pricing and delivery on special chip requirements.

## MECHANICAL INFORMATION

Dimensions: All chip dimensions nominal with a tolerance of $\pm .003^{\prime \prime}$.
Maximum chip thickness is $.012^{\prime \prime}$.
Bonding Pads: Minimum bonding pad size is .004"
x .004" unless otherwise specified.

PRODUCT CODE EXAMPLE


NOTE: Certain performance guaranteed over $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ or $0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ depending on product. Consult general information statement on page 7-1.

## Chip Geometries

1. All dimensions in inches, millimeters are shown in parentheses.
2. Unless otherwise specified, minimum bonding pad size for all devices is $.004^{\prime \prime} \times .004^{\prime \prime}(.10 \mathrm{~mm} \times .10 \mathrm{~mm})$.

HAO-909/911


HAO-2400/04/05

-1N+3	D0■
CIN-3	D1年
EIN+4	ENABLE
CIN-4	GND
CIN-1	COMP
- IN+1	
-IN-2	
CIN+2	V--

HAO-2500/02/05/07
HAO-1600/02/05


HAO-2510/12/15/17


HAO-1610/15


HAO-2600/02/05/07
HAO-2620/22/25/27


HAO-2630/35


HAO-2640/45


HAO-2650/55


HAO-2700/04/05


HAO-2720/25


HAO-2730/35


HAO-2900/04/05


HAO-4741


HAO-4602/05


HAO-4900/05


HA0-4920/25


HAO-4950


HA0-5100/05/10/15


HA0-5190/95


HIO-200


HIO-201


HIO-1800A


HIO-5040 thru HIO-5051


HIO-506


HIO-506A \& HIO-1840


HIO-507A


HIO-509A


HIO-518


HIO-1818A


HIO-1828A


HAO-2420/25


HIO-562


HIO-5618A/5618B


HIO-5610


HC0-55516/32


HD0-0165


## Analog Chip Data Book


#### Abstract

Harris Semiconductor Analog Integrated Circuits represent the state-of-the-art in linear and data acquisition components. This book presents those integrated circuits that are available as a standard product in chip form. These chips offer precision, reliability, and performance comparable to that of Harris' packaged parts.

The introductory section of this book provides information on product assurance, testing, recommended handling, and ordering information. The characteristics section provides the DC and AC specifications, chip layout, and a functional layout where required.

If you need more information on these or other Harris products, please contact the nearest Harris sales office listed in the back of this chip data book.


Harris Semiconductor's products are sold by description only. Harris reserves the right to make changes in circuit design, specifications and other information at any time without prior notice. Accordingly, the reader is cautioned to verify that data sheets and other information in this publication are current before placing orders. Use of the information for user's specific application is at user's risk.

## Contents

PAGE
General Information
PRODUCT ASSURANCE AT HARRIS ..... 7-14
STANDARD CHIP PROCESSING ..... 7-14
PRODUCT TESTING ..... 7-14
MECHANICAL INFORMATION ..... 7-16
PASSIVATION ..... 7-16
STORAGE ..... 7-16
SHIPPING ..... 7-16
RECOMMENDED HANDLING ..... 7-16
RECOMMENDED DIE ATTACHMENT ..... 7-17
RECOMMENDED BONDING PROCEDURES ..... 7-17
ORDERING INFORMATION ..... 7-18
OPTIONS AVAILABLE ..... 7-18
SPECIAL ORDERS ..... 7-19
RETURN POLICY ..... 7-19
LEADLESS CHIP CARRIERS ..... 7-19
Operational Amplifiers
HA0-2400/05 PRAM Four Channel Programmable Amplifiers ..... 7-22
HA0-2502/05 Precision High Slew Rate Operational Amplifiers ..... 7-23
HA0-2512/15 High Slew Rate Operational Amplifiers ..... 7-24
HA0-2522/25 Uncompensated High Slew Rate Operational Amplifiers ..... 7-25
HA0-2602/05 Wide Band, High Impedance Operational Amplifiers ..... 7-26
HA0-2622/25 Very Wide Band, Uncompensated Operational Amplifers ..... 7-27
HAO-2650/55 Dual High Performance Operational Amplifiers ..... 7-28
HA0-2700/05 Low Power, High Performance Operational Amplifiers ..... 7-29
HA0-2720/25 Wide Range Programmable Operational Amplifiers ..... 7-30
HA0-2730/35 Wide Range Dual Programmable Operational Amplifiers ..... 7-31
HA0-4602/05 High Performance Quad Operational Amplifiers ..... 7-32
HAO-4622/25 Wide Band, High Performance Quad Operational 'Amps ..... 7-33
HAO-4741 Quad Operational Amplifier ..... 7-34
Switches and Multiplexers
HIO-200 Dual SPST CMOS Analog Switch ..... 7-35
HIO-201 Quad SPST CMOS Analog Switch ..... 7-36
HIO-5046/47/ Low Resistance CMOS Analog Switches ..... 7-37
HIO-506/507 CMOS Analog Mux Single 16/Differential 8 Channel ..... 7-38
HIO-506A/507A Overvoltage Protected CMOS Analog Multiplexers ..... 7-39
HIO-508A/509A Overvoltage Protected CMOS Analog Multiplexers ..... 7-40Single 8/Differential 4 Channel
HIO-562 12 Bit High Speed Digital to Analog Converter ..... 7-41Laser Trimmed Chip
HIO-1818A/28A Low Resistance CMOS Analog Multiplexer Single 8/ ..... 7-42
Differential 4 Channel
HIO-1840 16 Channel CMOS Analog Multiplexer with High-Z ..... 7-43Analog Input Protection
Data Conversion Products
HA0-2420/25 Fast Sample and Hold ..... 7-44
Communications Products
HC0-55516/32 All Digital Continuously Variable Slope Delta ..... 7-45 Modulator (CVSD)
Chip Geometries
INDEX ..... 7-47

## Product Assurance at Harris

Our Product Assurance Department strives to ensure that the dice shipped to our customers are reliable, of a high quality level, and consistent with customer requirements. During product processing there are several independent visual and electrical checks performed by Quality Assurance personnel based on various process and control documents. This ensures that the dice meet the specifications controlling fabrication and workmanship, thus enhancing the quality and reliability of the product.

A final inspection prior to shipment is performed at Quality Assurance Plant Clearance to ensure that all requirements of the purchase order and customer specifications are met. The systems procedures implemented are based on MIL-M-38510, MIL-STD-883, and MIL-C-45662.

## Standard Chip Processing

Harris maintains the same processing and control requirements for chips destined for dice sales as for those assembled in packages. This ensures the continued reliability and high performance of Harris chips. The following diagram shows the processing steps for chips once the wafer has been processed.


## Product Testing

All chips offered in the data book are $100 \%$ visually screened to meet the criteria of MIL-STD-883, Method 2010.3, Test Condition B. This is the standard visual test for all chips available from the data book. As an option for all chips, Harris also offers visual testing in compliance with MIL-STD883, Method 2010.3, Test Condition A. The factory should be consulted to determine the additional charges involved for a particular order requiring Condition A visual inspection.

Most of the chips produced by Harris are available in both a commercial and a military grade. Consult the specific data sheet to determine which grades are available for a particular chip. The following electrical tests are applicable to commercial ( -6 ) chips:

1. Chips are $100 \%$ probe tested at $25^{\circ} \mathrm{C}$ to guarantee the maximum/minimum DC characteristics listed in the data sheets at $25^{\circ} \mathrm{C}$.
2. For $A C$ characteristics where a minimum or maximum is shown, the specifications are guaranteed at $25^{\circ} \mathrm{C}$ although the chips are not probed for AC. For those AC characteristics where only typicals are given, the values are for design aid only and are neither tested nor guaranteed.
3. The $D C$ and $A C$ characteristics are guaranteed to the following LTPD's at $25^{\circ} \mathrm{C}$ :
a. Chips will meet an LTPD of 20/2 for DC characteristics.
b. Chips will meet an LTPD fo $20 / 3$ for AC characteristics.

The following electrical tests are applicable to military ( -2 ) chips:

1. Chips are $100 \%$ probe tested to guarantee the maximum/minimum DC characteristics listed in the data sheets. The DC characteristics are guaranteed over the temperature range shown in the individual data sheets, although the chips are not necessarily probed at the temperature limits. Characteristics for -2 parts are guaranteed from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, or from $0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ depending on type of device (see individual data sheets).

Some DC characteristics are guaranteed only at $25^{\circ} \mathrm{C}$ and not over the full temperature range, as indicated in the data sheets. For those DC characteristics where only typicals are given, the values are for design aid only and are not tested or guaranteed.
2. For AC characteristics where a minimum or maximum is shown, the specifications are guaranteed at $25^{\circ} \mathrm{C}$ although the chips are not probed for AC. For those AC characteristics where only typicals are given, the values are for design aid only and are neither tested nor guaranteed.
3. The DC and AC characteristics are guaranteed to the following LTPD's (where applicable):
a. Chips will meet an LTPD of $20 / 2$ for DC characteristics at $25^{\circ} \mathrm{C}$.
b. Chips will meet an LTPD of $20 / 3$ for DC characteristics at $+125^{\circ} \mathrm{C}$.
c. Chips will meet an LTPD of $20 / 3$ for DC characteristics at $-55^{\circ} \mathrm{C}$. (Only where specified)
d. Chips will meet an LTPD of $20 / 3$ for AC characteristics at $250^{\circ} \mathrm{C}$

To assure that the DC and AC specifications are being consistently met, the chips are sampled systematically by Quality Assurance. The dice are assembled in standard packages and tested at the appropriate temperatures to the LTPD's stated above.

Lot acceptance send ahead testing for DC and AC specifications is available as an option at an additional charge when ordering chips. Sample dice are assembled in a standard package and tested to the indicated LTPD's. Consult the factory when placing an order requiring lot acceptance send ahead test data.

Quality Assurance also systematically samples wafer lots using a Scanning Electron Microscope (SEM) for inspection of the metallization. This test is available as an option at an additional charge for most orders. Please consult the factory for additional information.

Military chips are $100 \%$ probe tested to guarantee the maximum/minimum DC specifications over the temperature range indicated. The temperature range for $(-2)$ dice is $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, or $0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ depending on type of device. Dice are not necessarily probed at the temperature limits but the DC characteristics are guaranteed over the applicable temperature range.

Commercial ( -6 ) are $100 \%$ probe tested at $25^{\circ} \mathrm{C}$ to guaranteed the maximum/minimum DC characteristics at $25^{\circ} \mathrm{C}$.

## Mechanical Information

Dimensions:	All chip dimensions given in the layouts in the data sheet section are   nominal with a tolerance of $\pm .003$ inches $( \pm .08 \mathrm{~mm})$. Die thickness is   nominally .011 inches $\pm .002$ inches $(.28 \mathrm{~mm} \pm .05 \mathrm{~mm})$.
Bonding Pads:	Minimum bonding pad size is $.004 \times .004$ inches $(.10 \mathrm{~mm} \times .10 \mathrm{~mm})$.

## Passivation

All Harris dice are passivated with a layer of protective dielectric material to guard against deterioration of the dice. Passivation is applied to all areas of the die except the bonding pads and scribe lines.

## Storage

Harris stores its dice in a dry nitrogen atmosphere and recommends that the customer do the same. If dice are exposed to air the aluminum metallization will slowly oxidize at the bonding pads. The aluminum oxide will make bonding more difficult, especially if thermal compression gold ball bonding is used.

The humidity should be kept as low as possible with a relative humidity of no more than $50 \%$.

## Shipping

Dice are placed in conductive waffle carriers and covered with a layer of bibilious paper and with a layer of mylar. The waffle pack is then sealed and labeled. The label contains the part number of the chips, the quantity, and the lot number. The waffle pack is placed in a polyethelene bag along with a humidity indicating desiccant. The bag is then heat sealed and packaged in a suitable shipping container.

## Recommended Handling

It is suggested that all dice be handled, tested, and installed using standard MOS handling techniques. This includes the use of conductive carriers and grounding of equipment and personnel. It has been found that handling equipment and personnel can generate static potentials in excess of 10 kV in a low humidity environment. Therefore, proper handling procedures must be adopted to reduce static charge. Harris recommends using the following procedures when handling dice:

1. Use conductive work stations. Metallic or conductive plastic* tops on work benches connected to ground help eliminate static build-up.
*Such as 3M "Velostat"
2. Ground all handling equipment. To prevent scratches, it is recommended that a vacuum pick-up with protected tip be used for handling the dice. If tweezers are used, the dice should be gripped only on its sides.
3. Ground all handling personnel with a conductive bracelet through a 1 M ohm resistor to ground. The resistor will prevent electroshock to personnel.
4. Smocks, clothing, and especially shoes of certain insulating materials (notably nylon) should not be worn in areas where devices are handled. These materials, highly dielectric in nature, will hold or aid in the generation of a static charge. Instead, natural materials such as cotton should be used to minimize charge generation.
5. Ionized air blowers reduce charge build-up in areas where grounding is not possible or desirable.
6. Devices should be in conductive carriers during all phases of transport.

## Recommended Die Attachment

Harris uses gold eutectic die-attach for its packaged circuits and recommends this procedure for use with its chips. The die-attach area of the package should be gold plated. Gold preforms are usually not required. The recommended temperature for die-attachment is $420^{\circ} \mathrm{C} \pm 10^{\circ} \mathrm{C}$ and should remain constant throughout the procedure. To prevent oxidation a laminar flow of nitrogen should be provided over the chip sufrace of approximately 30 liters/hour.

The package should be placed on the heater block and allowed to arrive at a uniform temperature. With tweezers, the die should be picked up and placed on the package. Using an orbital motion, the die should be rubbed on the package until eutectic melt is visible along the entire periphery of the die. There should be no evidence of balling or flaking of die-attach material. The die should be level with respect to the package and the die-attach material should be no higher than the top edges of the die.

Although Harris recommends using gold eutectic die-attach, conductive epoxy die-attach may also be used. Specific directions depend upon the epoxy used.

## Recommended Bonding Procedures

Harris uses ultrasonic aluminum wire bonding and recommends this procedure be used by our customers for best results. Harris uses an aluminum-silicon alloy wire, $99 \%$ aluminum and $1 \%$ silicon. The diameter is 0.00125 inches, tensile strength is $22 \pm 2 \mathrm{~g}$, and elongation is 1.0 to $4.5 \%$. Harris recommends similar wire be used by the customer. Actual bonding procedure will be governed by the manufacturer's instructions for the particular bonding equipment being used. A minimum bond pull strength of 3 g is recommended to assure mechanical bond quality.

## Ordering Information

Harris chips are designated by a Product Code. When ordering standard chips from this data book, please refer to the chips by the full product code. Harris chip codes will always begin with an H . Specific device numbers will always be isolated by hyphens.

## Chip Code Example



Specifications are not included in this data book for the parts listed below. For information on the availability and specifications of these products in chip form consult a Harris salesman or Representative or call the factory.

HA-911	HA-4905
HA-2535	HA-5105
HA-2635	HA-5115
HA-2645	HA-5195

Chips are generally available on new Harris IC's at the time of introduction. Consult a salesman, representative or the factory regarding availability and specifications.

## Options Available

1. Visual testing in compliance with MIL-STD-883, Method 2010.1, Test Condition A is available as an option for most chips (military grade only). Consult the factory to determine the additional charges involved and the availability of this option.
2. Lot acceptance send ahead testing is available an an option for most chips. Consult the factory to determine the additional charges involved and the availability of this option.
3. Scanning Electron Microscope (SEM) inspection is also available as an option. Consult the factory regarding this option.
4. Gold backing is available for those chips for which it is not a standard feature. The specification page for each chip indicates whether or not gold backing is standard. If gold backing is required, consult the factory for specific ordering information and pricing.

## Special Orders

For best availability and price, it is urged that standard chips as specified in this data book be orderd. If additional electrical specification guarantees or reliability screening are absolutely required, a Request for Quotation and Source Control Drawing should be submitted through the local Harris Sales Office or Sales Representative.

Harris reserves the right to decline to quote, or to request modification to special screening requirements.

## Return Policy

After customer receipt of the dice, Harris recommends that the customer first perform a visual inspection of the dice. Harris guarantees that the dice will pass the visual inspection based upon the appropriate MIL-STD-883 Condition (A or B) and the specified LTPD limits. Customer inspection must be performed at the power of magnification indicated in the MIL specification.

If the lot fails visual inspection, the containers should be closed and the entire lot must be returned to Harris. If the visual inspection is acceptable, samples should be taken for the electrical testing of the DC and AC parameters. If the sample fails the electrical test based on the specified LTPD, then the entire lot must be returned to Harris. A detailed inspection report must accompany all returns. Harris will accept dice returns only when the entire lot is returned in its original container. The sample dice should be packaged separately and identified by the customer. Harris will not accept rejected dice from a lot that has been inspected $100 \%$ by the customer.

To return dice, the customer should first contact the field salesmen for instructions. Once approved, the customer will be sent a Material Return Authorization (MRA). The material can then be returned to Harris Receiving with the appropriate copies of the MRA attached to the outside of the package.

## Leadless Chip Carriers

Most of our devices will be offered in leadless chip carriers. These packages provide an alternative to conventional chip-and-wire hybrids with many significant advantages. The important characteristics of leadless chip carrier technology include the following:

- High Functional Density
- Hermetic Package for Each Die
- Full AC/DC and Temperature Testing at the Die Level
- Die Level Burn-In Capability
- Compatibility with Automatic Handling Equipment
- Compatible with Reflow Solder Techniques, Resulting in Simple Reworks and High-Yield, Low Cost Assemblies

Consult the factory for additional information.

## Chip Data Sheets

7

## Description

HAO-2400 and HA0-2405 are four-channel programmable amplifiers providing a level of versatility unsurpassed by any other monolithic operational amplifier. Versatility is achieved by employing four input amplifier channels, any one (or none) of which may be electrically selected and connected to a single output stage through DTL/TTL compatible address inputs. The device formed by the output and the selected input is an op amp which delivers excellent slew rate, gain bandwidth, and power bandwidth performance. Other advantages of these dielectrically isolated amplifiers include high voltage gain and high input impedance coupled with low input offset voltage and low offset current.

## Chip Layout and Dimensions



For Chip Geometries see Drawing 1, page 7-49.

## Specifications

ABSOLUTE MAXIMUM RATINGS

Voltage Between $V^{+}$and $V^{-}$-Pads		45.0 V	Operating Temperature Range
Differential Input Voltage	$\pm V_{S U P P L Y}$	$H A 0-2400-2$	$-550 \mathrm{C} \leqslant T_{A} \leqslant+1250 \mathrm{C}$
Digital Input Voltage	-0.76 V to 10.0 V	HAO-2405-5	$0{ }^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+750 \mathrm{C}$
Output Current	Short Circuit Protected	Storage Temperature Range	$-655^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+1500^{\circ} \mathrm{C}$

ELECTRICAL SPECIFICATIONS
guaranteed CHARACTERISTICS
Unless otherwise spec-
ified, Supplies $=+15 \mathrm{~V}$,
$-15 \mathrm{~V} ; \mathrm{V}_{\mathrm{IL}}=+0.5 \mathrm{~V}$,
$V_{I H}=+2.4 \mathrm{~V}$ (Limits
apply to each of the four channels, when addressed).

TYPICAL
CHARACTERISTICS

PARAMETER	TEMPERATURE	HA0-2400-2		HA0-2405-6		UNITS
		MINIMUM	MAXIMUM	MINIMUM	MAXIMUM	
INPUT CHARACTERISTICS						
Offset Voltage	$\begin{gathered} +25^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+1250 \mathrm{C} \end{gathered}$		5		9	$\begin{aligned} & m V \\ & m V \end{aligned}$
Bias Current (12)	$\begin{gathered} +25^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+1250 \mathrm{C} \end{gathered}$		200 400		250	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
Offset Current (12)	$\begin{gathered} +250 \mathrm{C} \\ 00 \mathrm{C} \text { to }+1250 \mathrm{C} \end{gathered}$		$\begin{gathered} 50 \\ 100 \end{gathered}$		50	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
Common Mode Range	$\begin{gathered} +250 \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+1250 \mathrm{C} \end{gathered}$	$\begin{aligned} & \pm 10.0 \\ & \pm 10.0 \end{aligned}$		$\pm 10.0$		$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$
TRANSFER CHARACTERISTICS						
Large Signal Voltage Gain (1, 5)	$\begin{gathered} +25^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+1250 \mathrm{C} \end{gathered}$	$\begin{aligned} & 50 k \\ & 25 k \end{aligned}$		50 k		$\begin{aligned} & V / V \\ & V / V \end{aligned}$
Common Mode Rejection Ratio (2)	$\begin{gathered} +250 \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & 80 \\ & 80 \end{aligned}$		74		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
OUTPUT CHARACTERISTICS						
Output Voltage Swing (1)	$\begin{gathered} +25^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+125{ }^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & \pm 10.0 \\ & \pm 10.0 \end{aligned}$		$\pm 10.0$		$\begin{aligned} & V \\ & V \end{aligned}$
POWER SUPPLY CHARACTERISTICS						
Supply Current	+2500		6.0		6.0	mA
Power Supply Rejection Ratio (11)	$\begin{gathered} +25^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & 74 \\ & 74 \end{aligned}$		74		$\begin{aligned} & d B \\ & d B \end{aligned}$


Input Resistance	$+25^{\circ} \mathrm{C}$	30	30	$\mathrm{M} \Omega$
Gain Bandwidth Product (3)	$+250{ }^{\circ}$	40	40	MHz
(4)	$+25^{\circ} \mathrm{C}$	8	8	MHz
Output Current	+2500	20	20	mA
Full Power Bandwidth (3,5)	$+25^{\circ} \mathrm{C}$	500	500	k Hz
$(4,5)$	+250 ${ }^{\circ}$	200	200	kHz
Rise Time $\quad(4,6)$	$+25^{\circ} \mathrm{C}$	20	20	ns
Overshoot (4, 6)	+250C	25	25	\%
Slew Rate (3,7)	+250C	30	30	$\mathrm{V} / \mu \mathrm{s}$
$(4,7)$	+250 ${ }^{\circ}$	8	8	$\mathrm{V} / \mu \mathrm{s}$
Settling Time ( $4,7,8)$	+250 ${ }^{\circ}$	1.5	1.5	$\mu \mathrm{s}$
Digital Input Current ( $\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ )	+250 ${ }^{\circ}$	1	1	mA
$\left(\mathrm{V}_{\mathrm{IN}}=+5.0 \mathrm{~V}\right)$	+250C	5	5	nA
Output Delay (9)	+250 ${ }^{\circ}$	100	100	ns
Crosstalk (10)	+250 ${ }^{\text {C }}$	90	90	dB

NOTES:

1. $R_{L}=2 k \Omega$.
2. $V_{C M}= \pm 5 \mathrm{VDC}$.
3. $A_{V}=+10, C_{C O M P}$
$=0, R_{L}=2 \mathrm{k} \Omega$,
$C_{L}=50 \mathrm{pF}$.
4. $\mathrm{A}_{\mathrm{V}}=+1, \mathrm{C}_{\mathrm{COMP}}=$ $15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$,
$C_{L}=50 \mathrm{pF}$.
5. $V_{\text {OUT }}=20 \mathrm{~V}$ peak to peak.
6. $\mathrm{V}_{\text {OUT }}=200 \mathrm{mV}$ peak to peak.
7. $V_{\text {OUT }}=10.0 \mathrm{~V}$ peak to peak.
8. To $0.1 \%$ of final value.
9. To $10 \%$ of final value; output then slews at normal rate to final value.
10. Unselected input to output, $V_{\text {IN }}= \pm 10 \mathrm{VDC}$.
11. $V_{S U P P I} Y= \pm 10 \mathrm{VDC}$ to $\pm 20 \mathrm{VDC}$.
12. Unselected channels have approx. the same input parameters.

## Description

HAO-2502 and HAO-2505 are monolithic operational amplifiers whose designs are optimized to deliver excellent slew rate, bandwidth, and settling time specifications. Typical specifications include a slew rate of $\pm 25 \mathrm{~V} / \mu \mathrm{s}$, settling time of 330 ns , power bandwidth of 500 kHz , and gain bandwidth of 12 MHz . These outstanding dynamic features of these internally compensated devices are complemented with a low offset voltage and low offset current. These dielectrically isolated amplifiers are ideally suited for applications such as data acquisition, R.F., video, and pulse conditioning circuits.

## Chip Layout and Dimensions



For Chip Geometries see Drawing 2, page 7-49.

## Specifications

ABSOLUTE MAXIMUM RATINGS $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise stated.

Voltage Between $\mathrm{V}^{+}$and $\mathrm{V}^{-}$Pads	40.0 V	Operating Temp. Range	HA0-2502-2	$-55^{\circ} \mathrm{C} \leqslant \mathrm{T}_{A} \leqslant+125^{\circ} \mathrm{C}$
Differential Input Voltage	$\pm 15.0 \mathrm{~V}$		HAO-2505-6	$0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+75^{\circ} \mathrm{C}$
Peak Output Current	50 mA	Storage Temperature Ra		$-65^{\circ} \mathrm{C} \leqslant \mathrm{T}^{\prime} \mathrm{A} \leqslant+150^{\circ} \mathrm{C}$

ELECTRICAL SPECIFICATIONS

## GUARANTEED

 CHARACTERISTICS$\mathrm{V}^{+}=+15 \mathrm{VDC}$,
$V^{-}=-15 V D C$

## TYPICAL

CHARACTERISTICS

PARAMETER	TEMPERATURE	HA0-2502-2		HA0-2505-6		UNITS
		MINIMUM	MAXIMUM	MINIMUM	MAXIMUM	
INPUT CHARACTERISTICS						
Offset Voltage	$\begin{gathered} +25^{\circ} \mathrm{C} \\ 00 \mathrm{C} \text { to }+1250 \mathrm{C} \end{gathered}$		$\begin{gathered} 8 \\ 10 \end{gathered}$		8	$\begin{aligned} & m V \\ & m V \end{aligned}$
Bias Current	$\begin{gathered} +25^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$		250 500		250	nA
Offset Current	$\begin{gathered} +25^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+1250 \mathrm{C} \end{gathered}$		$\begin{gathered} 50 \\ 100 \end{gathered}$		50	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
Common Mode Range	$\begin{gathered} +25^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & \pm 10.0 \\ & \pm 10.0 \end{aligned}$		$\pm 10.0$		$\begin{aligned} & V \\ & v \end{aligned}$
TRANSFER CHARACTERISTICS						
Large Signal Voltage Gain (1, 4)	$\begin{gathered} +25^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & 15 \mathrm{~K} \\ & 10 \mathrm{~K} \end{aligned}$		15K		$\begin{aligned} & V / V \\ & V / V \end{aligned}$
Common Mode Rejection Ratio (2)	$\begin{gathered} +25^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$	74 74		74		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
OUTPUT CHARACTERISTICS						
Output Voltage Swing (1)	$\begin{gathered} +25^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & \pm 10.0 \\ & \pm 10.0 \end{aligned}$		$\pm 10.0$		$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$
Output Current (4)	$+25^{\circ} \mathrm{C}$	$\pm 10$		$\pm 10$		mA
Full Power Bandwidth (4, 9)	$+25^{\circ} \mathrm{C}$	300				kHz
TRANSIENT RESPONSE						
Rise Time ( $1,5,6$ )	$+25^{\circ} \mathrm{C}$		50			ns
Overshoot (1, 5, 7)	$+25^{\circ} \mathrm{C}$		50			\%
Slew Race (1,5)	$+25^{\circ} \mathrm{C}$	$\pm 20$				$\mathrm{V} / \mu \mathrm{s}$
POWER SUPPLY CHARACTERISTICS						
Supply Current	$+25^{\circ} \mathrm{C}$		6		6	mA
Power Supply Rejection Ratio (8)	$\begin{gathered} +250 \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+125{ }^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & 74 \\ & 74 \end{aligned}$		74		$\begin{aligned} & d B \\ & d B \end{aligned}$
Input Resistance	$+250 \mathrm{C}$		0		0	$M \Omega$
Gain Bandwidth Product (3)	$+25^{\circ} \mathrm{C}$				2	MHz
Full Power Bandwidth (4)	+250 ${ }^{\circ}$		00		00	kHz
Rise Time (1, 5, 6)	+2500		5		5	ns
Overshoot (1,5,7)	$+25^{\circ} \mathrm{C}$				5	\%
Slew Rate (1, 4, 5)	$+25^{\circ} \mathrm{C}$		30		30	$\mathrm{V} / \mu \mathrm{s}$
Settling Time to 0.1\% (1, 4, 5)	$+25^{\circ} \mathrm{C}$		. 8		. 8	$\mu \mathrm{s}$

NOTES:
. $R_{L}=2 k$.
$V_{C M}= \pm 10 \mathrm{~V}$.
$A_{V}>10$.
$v_{O}= \pm 10.0 \mathrm{~V}$.
$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$.
$v_{\mathrm{O}}= \pm 200 \mathrm{mV}$.
$v_{0}= \pm 200 \mathrm{mv}$.
$\Delta v= \pm 5.0 \mathrm{~V}$
9. Guaranteed based
on
FPBW $=\frac{\text { Slew Rate }}{20 \pi}$

## Description

HAO-2512 and HAO-2515 are high performance operational amplifiers designed to provide superior slew rate, settling time, and bandwidth. Typical specifications include a slew rate of $60 \mathrm{~V} / \mu \mathrm{s}$, settling time of 250 ns , power bandwidth of 1000 kHz , and gain bandwidth of 12 MHz . In addition to these outstanding dynamic features, these internally compensated amplifiers offer dielectric isolation and low offset currents. These amplifiers are ideally suited for applications such as high speed $A / D$ and $D / A$ converters, pulse amplification, and R.F. and video circuits.

Chip Layout and Dimensions


For Chip Geometries see Drawing 3, page 7-49.

## Specifications

ABSOLUTE MAXIMUM RATINGS

Voltage Between $\mathrm{V}^{+}$and $\mathrm{V}^{-}$Pads	40.0 V	Operating Temp. Range	HA0-2512-2	$-55^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+120^{\circ} \mathrm{C}$
Differential Input Voltage	$\pm 15.0 \mathrm{~V}$		HAO-2515-6	$0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+75^{\circ} \mathrm{C}$
Peak Output Current	50 mA	Storage Temperature R		$-65^{\circ} \mathrm{C} \leqslant \mathrm{T}_{A} \leqslant+150^{\circ} \mathrm{C}$

## ELECTRICAL SPECIFICATIONS

GUARANTEED CHARACTERISTICS $\mathrm{v}^{+}=+15 \mathrm{VDC}$, $\mathrm{V}^{-}=-15 \mathrm{VDC}$

TYPICAL
CHARACTERISTICS

PARAMETER	TEMPERATURE	HAO-2512-2		HA0-2515-6		UNITS
		MINIMUM	MAXIMUM	MINIMUM	MAXIMUM	
INPUT CHARACTERISTICS						
Offset Voltage	$\begin{gathered} +25^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+1250 \mathrm{C} \end{gathered}$		$\begin{aligned} & 10 \\ & 14 \end{aligned}$		10	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Bias Current	$+25^{\circ} \mathrm{C}$ $0^{\circ} \mathrm{C}$ to +1250 C		250 500		250	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
Offset Current	$\begin{gathered} +25^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$		$\begin{gathered} 50 \\ 100 \end{gathered}$		50	$\begin{aligned} & \text { nA } \\ & \text { nA } \end{aligned}$
Common Mode Range	$\begin{gathered} +25{ }^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+1250 \mathrm{C} \end{gathered}$	$\begin{aligned} & \pm 10.0 \\ & \pm 10.0 \end{aligned}$		$\pm 10.0$		$\begin{aligned} & v \\ & v \end{aligned}$
TRANSFER CHARACTERISTICS						
Large Signal Voltage Gain (1,4)	$\begin{gathered} +25^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} 7.5 \mathrm{~K} \\ 5 \mathrm{~K} \end{gathered}$		7.5 K		$\begin{aligned} & V / V \\ & V / V \end{aligned}$
Common Mode Rejection Ratio (2)	$\begin{gathered} +25^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$	74		74		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
OUTPUT CHARACTERISTICS						
Output Voltage Swing (1)	$\begin{gathered} +250 \mathrm{C} \\ 00 \mathrm{C} \text { to }+1250 \mathrm{C} \end{gathered}$	$\pm 10.0$ $\pm 10.0$		$\pm 10.0$		$\begin{aligned} & v \\ & v \end{aligned}$
Output Current (4)	$+250 \mathrm{C}$	$\pm 10$		$\pm 10$		mA
Full Power Bandwidth $(4,9)$   TRANSIENT RESPONSE	$+250 \mathrm{C}$	600				kHz
Rise Time (1, 5, 6)	+2500		50			ns
Overshoot (1, 5, 7)	+250C		50			\%
Slew Rate (1,5)   POWER SUPPLY CHARACTERISTICS	$+25^{\circ} \mathrm{C}$	$\pm 40$				$\mathrm{V} / \mu \mathrm{s}$
Supply Current	+2500		6		6	mA
Power Supply Rejection Ratio (8)	$\begin{gathered} +250 \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+1250 \mathrm{C} \end{gathered}$	$\begin{aligned} & 74 \\ & 74 \end{aligned}$		74		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
Input Resistance	+250C				0	$\mathrm{M} \Omega$
Gain Bandwidth Product (3)	$+250 \mathrm{C}$				2	MHz
Full Power Bandwidth (4)	$+250 \mathrm{C}$				,000	kHz
Rise Time (1, 5, 6)	$+25^{\circ} \mathrm{C}$				5	ns
Overshoot (1,5,7)	+250 ${ }^{\circ}$				5	\%
Slew Rate (1,5)	+250 ${ }^{\circ}$				60	$\mathrm{V} / \mu \mathrm{s}$
Settling Time (1,4,5)	$+25^{\circ} \mathrm{C}$		25		25	$\mu \mathrm{s}$

NOTES:

1. $R_{L}=2 k$.
2. $V_{C M}= \pm 10 \mathrm{~V}$.
3. $A_{V}<10$.
4. $V_{O}= \pm 10.0 \mathrm{~V}$.
5. $C_{L}=50 \mathrm{pF}$.
6. $V_{O}= \pm 200 \mathrm{mV}$
7. $v_{O}= \pm 200 \mathrm{mV}$.
8. $\Delta V= \pm 5.0 \mathrm{~V}$.
9. Guaranteed based on
FPBW $=\frac{\text { Slew Rate }}{20 \pi}$

## Description

HAO-2522 and HA0-2525 are high performance operational amplifiers designed to provide an unsurpassed combination of specifications for slew rate, bandwidth and settling time. A typical slew rate of $120 \mathrm{~V} / \mu \mathrm{s}$ and settling time of 700 ns make these ideal for use in data acquisition systems and pulse amplification circuits. Typical gain bandwidth is 20 MHz , with a power bandwidth of 2 MHz . These dielectrically isolated amplifiers are controlled at closed loop gains greater than 3 without external compensation, and also provide low offset currents.

## Chip Layout and Dimensions



For Chip Geometries see Drawing 4, page 7-49.

## Specifications

## ABSOLUTE MAXIMUM RATINGS

Voltage Between V+ and V- Pads	40.0 V
Differential Input Voltage	$\pm 15.0 \mathrm{~V}$
Peak Output Current	50 mA


Operating Temperature Range	$-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}$
HAO-2522-2	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+75^{\circ} \mathrm{C}$
HAO-2525-6	$-65^{\circ} \mathrm{C} \leq T_{A} \leq+150^{\circ} \mathrm{C}$

ELECTRICAL SPECIFICATIONS

GUARANTEED CHARACTERISTICS $\mathrm{V}+=+15 \mathrm{VDC}$, $V-=-15 V D C$

TYPICAL
CHARACTERISTICS

PARAMETER	TEMPERATURE	HAO-2522-2		HA0-2525-6		UNITS
		MINIMUM	MAXIMUM	MINIMUM	MAXIMUM	
INPUT CHARACTERISTICS						
Offset Voltage	$\begin{gathered} +25^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$		10 14		10	$\begin{aligned} & m V \\ & m V \end{aligned}$
Bias Current	$\begin{gathered} +25^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$		$\begin{aligned} & 250 \\ & 500 \end{aligned}$		250	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
Offset Current	$\begin{gathered} +25^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$		$\begin{gathered} 50 \\ 100 \end{gathered}$		50	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
Common Mode Range	$\begin{gathered} +250^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & \pm 10.0 \\ & \pm 10.0 \end{aligned}$		$\pm 10.0$		V
TRANSFER CHARACTERISTICS						
Large Signal Voltage Gain (1,4)	$\begin{gathered} +25^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} 7.5 \mathrm{~K} \\ 5 \mathrm{~K} \end{gathered}$		7.5K		$\begin{aligned} & V / V \\ & V / V \end{aligned}$
Common Mode Rejection Ratio (2)	$\begin{gathered} +25^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & 74 \\ & 74 \end{aligned}$		74		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
OUTPUT CHARACTERISTICS						
Output Voltage Swing (1)	$\begin{gathered} +25^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$	$\begin{array}{r}  \pm 10.0 \\ \pm 10.0 \end{array}$		$\pm 10.0$		v
Output Current (4)	$+250 \mathrm{C}$	$\pm 10$		$\pm 10$		mA
Full Power Bandwidth ( 4,8 )	$+25{ }^{\circ} \mathrm{C}$	1200				kHz
TRANSIENT RESPONSE ( $A V=+3$ )						
Rise Time ( $1,5,6$ )	$+25^{\circ} \mathrm{C}$		50			ns
Overshoot (1,5,6)	$+25^{\circ} \mathrm{C}$		50			\%
Slew Rate (1,5)	$+25^{\circ} \mathrm{C}$	$\pm 80$				$\mathrm{V} / \mu \mathrm{s}$
POWER SUPPLY CHARACTERISTICS						
Supply Current	$+25^{\circ} \mathrm{C}$		6		6	mA
Power Supply Rejection Ratio (7)	$\begin{gathered} +25{ }^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & 74 \\ & 74 \end{aligned}$		74		$\mathrm{dB}$ $d \mathrm{~B}$
Input Resistance	250 C	10			0	$\mathrm{M} \Omega$
Gain Bandwidth Product (3)	$25^{\circ} \mathrm{C}$	2			0	MHz
Full Power Bandwidth (4)	250 C				00	kHz
Rise Time (1,5,6)	$25^{\circ} \mathrm{C}$				5	ns
Overshoot (1,5,6)	$25^{\circ} \mathrm{C}$				5	\%
Slew Rate (1,5)	$25^{\circ} \mathrm{C}$	$\pm 1$				$\mathrm{V} / \mu \mathrm{s}$
Settling Time (1,4,5)	250 C		70		70	$\mu \mathrm{s}$

NOTES:

1. $R_{L}=2 K$
2. $V_{C M}= \pm 5.0 \mathrm{~V}$
3. $A V>10$
4. $V_{\mathrm{O}}= \pm 10.0 \mathrm{~V}$.
5. $C_{L}=50 \mathrm{pF}$.
6. $V_{O}= \pm 200 \mathrm{mV}$.
7. $V=10 \mathrm{~V}$.
8. Guaranteed based on

FPBW $=\frac{\text { Slew Rate }}{20 \pi}$

## Description

HA0-2602 and HAO-2605 are internally compensated, dielectrically isolated, bipolar operational amplifiers that feature high input impedance ( $300 \mathrm{M} \Omega$ typ.) and wide band AC performance. Typical specifications include a unity gain bandwidth of 12 MHz , slew rate of $7 \mathrm{~V} / \mu \mathrm{s}$, and 150 K open loop gain enabling these amplifiers to perform high gain amplification of fast wide band signals. The frequency response of the amplifiers can be tailored to exact design requirements by means of an external bandwidth control capacitor. Applications include pulse amplification, high frequency circuits, and high gain, low distortion audio amplifiers.

## Chip Layout and Dimensions



For Chip Geometries see Drawing 5, page 7-49.

## Specifications

## ABSOLUTE MAXIMUM RATINGS

Voltage Between $V^{+}$and $V$-Pads	45.0 V	Operating Temp. Range	$H A 0-2602-2$	$-55^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+125^{\circ} \mathrm{C}$
Differential Input Voltage	$\pm 12.0 \mathrm{~V}$		$H A 0-2605-6$	$00 \mathrm{C} \leqslant T_{A} \leqslant+75^{\circ} \mathrm{C}$
Peak Output Current	Full Short Circuit Protection	Storage Temperature Range	$-655^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+150^{\circ} \mathrm{C}$	

ELECTRICAL SPECIFICATIONS

GUARANTEED CHARACTERISTICS$\begin{aligned} & \mathrm{V}^{+}=+15 \mathrm{VDC} \\ & \mathrm{~V}=-15 \mathrm{VDC} \end{aligned}$	PARAMETER	TEMPERATURE	HAO-2602-2		HA0-2605-6		UNITS			
			MINIMUM	MAXIMUM	MINIMUM	MAXIMUM				
	INPUT CHARACTERISTICS									
	Offset Voltage	$\begin{gathered} +25^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$		5		5	$\begin{gathered} m V \\ m V \end{gathered}$			
	Bias Current	$\begin{gathered} +250 \mathrm{C} \\ 00 \mathrm{C} \text { to }+1250 \mathrm{C} \end{gathered}$		25 60		25	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$			
	Offset Current	$\begin{gathered} +25^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+125{ }^{\circ} \mathrm{C} \end{gathered}$		25 60		25	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$			
	Common Mode Range	$\begin{gathered} +25^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & \pm 11.0 \\ & \pm 11.0 \end{aligned}$		$\pm 11.0$		$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$			
	TRANSFER CHARACTERISTICS									
	Large Signal Voltage Gain (1, 4)	$\begin{gathered} +25^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & 80 \mathrm{~K} \\ & 60 \mathrm{~K} \end{aligned}$		80K		$\begin{aligned} & V / V \\ & V / V \end{aligned}$			
	Common Mode Rejection Ratio (2)	$\begin{gathered} +25^{\circ} \mathrm{C} \\ 0{ }^{\circ} \mathrm{C} \text { to }+1250 \mathrm{C} \end{gathered}$	74 74		74		$\begin{aligned} & d B \\ & d B \end{aligned}$			
	OUTPUT CHARACTERISTICS									
	Output Voltage Swing (1)	$\begin{gathered} +25^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$	$\pm 10.0$ $\pm 10.0$		$\pm 10.0$		$\begin{aligned} & v \\ & v \end{aligned}$			
	Output Current (4)	$+25^{\circ} \mathrm{C}$	$\pm 10$		$\pm 10$		mA			
	Full Power Bandwidth (4, 9)   TRANSIENT RESPONSE	$+25^{\circ} \mathrm{C}$	50				kHz			
	Rise Time (1, 5, 6)	$+25^{\circ} \mathrm{C}$		60			ns			
	Overshoot (1,5,7)	$+25^{\circ} \mathrm{C}$		40			\%			
	Slew Rate (1,5) POWER SUPPLY CHARACTERISTICS	$+25^{\circ} \mathrm{C}$	$\pm 4$				$\mathrm{V} / \mu \mathrm{s}$	NOTES:		
	Supply Current	$+2500$		4.0		4.0	mA	1. $R_{L}=2 k$.		
	Power Supply Rejection Ratio (8)	$\begin{gathered} +25^{\circ} \mathrm{C} \\ 00 \mathrm{C} \text { to }+1250 \mathrm{C} \end{gathered}$	$\begin{aligned} & 74 \\ & 74 \end{aligned}$		74		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$	2. $\mathrm{V}_{\mathrm{CM}}= \pm 5.0 \mathrm{~V}$.   3. $V_{O}<90 \mathrm{mV}$.		
TYPICAL CHARACTERISTICS			300		300			5. $C_{L}=100 \mathrm{pF}$.		
	Input Resistance	$+25^{\circ} \mathrm{C}$			MS	5. $C_{L}=100 \mathrm{pF}$.   6. $V_{\mathrm{O}}= \pm 200 \mathrm{mV}$.				
	Unity Gain Bandwidth (3)	+250 ${ }^{\circ}$	12				12		MHz	7. $V_{S}= \pm 9.0 \mathrm{~V}$ to
	Full Power Bandwidth (4)	+250 ${ }^{\circ}$	75		75		kHz	$\pm 15 \mathrm{~V} .$		
	Rise Time ( $1,5,6$ )	$+25^{\circ} \mathrm{C}$	30		30		ns	8. Guaranteed		
	Overshoot (1, 5, 7)	$+250 \mathrm{C}$	25		25		\%	based on		
	Slew Rate (1,5)	$+25^{\circ} \mathrm{C}$	$\pm 7$		$\pm 7$		$\mathrm{V} / \mu \mathrm{s}$	FPBW $=\frac{\text { Slew Rate }}{}$		
	Settling Time ( $1,4,5)$	$+25^{\circ} \mathrm{C}$	$1.5$		$1.5$			$2 \pi V_{\text {OUT }}$ (Peak)		

HARRIS

## Description

HAO-2622 and HA0-2625 are uncompensated, dielectrically isolated, bipolar operational amplifiers that feature high impedance ( $300 \mathrm{M} \Omega$, typ.) and wide band AC performance. Typical specifications include a gain bandwidth product of 100 MHz , open loop gain of 150 k , and a slew rate of $35 \mathrm{~V} / \mu \mathrm{s}$. These outstanding dynamic features are complemented by low bias and offset currents and a low offset voltage. These amplifiers are ideally suited for pulse amplification and high frequency circuits. The frequency response is adjustable by means of an external capacitor.

## Chip Layout and Dimensions



For Chip Geometries see Drawing 6, page 7-49.

## Specifications

## ABSOLUTE MAXIMUM RATINGS

Voltage Between V+ and V-Pads	45.0 V	Operating Temp. Range	HA0-2622-2	$-55^{\circ} \mathrm{C} \leqslant \mathrm{T}_{A} \leqslant+125^{\circ} \mathrm{C}$
Differential Input Voltage	$\pm 12.0 \mathrm{~V}$		HAO-2625-6	$0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+75^{\circ} \mathrm{C}$
Peak Output Current Full	rotection	Storage Temperature Ra		$-65^{\circ} \mathrm{C} \leqslant \mathrm{T}^{\prime} \leqslant+150^{\circ} \mathrm{C}$

ELECTRICAL SPECIFICATIONS

GUARANTEED CHARACTERISTICS $\mathrm{V}^{+}=+15 \mathrm{VDC}$, $V-=-15 \mathrm{VDC}$.

## TYPICAL

CHARACTERISTICS

PARAMETER		HA0-2622-2		HA0-2625-6		UNITS
	TEMPERATURE	MINIMUM	MAXIMUM	MINIMUM	MAXIMUM	
INPUT CHARACTERISTICS						
Offset Voltage (1)	$\begin{gathered} +25^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$		5 7		5	$\begin{aligned} & m V \\ & m V \end{aligned}$
Bias Current	$\begin{gathered} +25^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+125{ }^{\circ} \mathrm{C} \end{gathered}$		25 60		25	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
Offset Current	$\begin{gathered} +25^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$		25 60		25	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
Common Mode Range	$\begin{gathered} +25^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+125{ }^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & \pm 11.0 \\ & \pm 11.0 \end{aligned}$		$\pm 11.0$		$\begin{aligned} & v \\ & v \end{aligned}$
TRANSFER CHARACTERISTICS						
Large Signal Voltage Gain (2,3)	$\begin{gathered} +25^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & 80 K \\ & 60 K \end{aligned}$		80K		$\begin{aligned} & V / V \\ & V / V \end{aligned}$
Common Mode Rejection Ratio (4)	$\begin{gathered} +25^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & 74 \\ & 74 \end{aligned}$		74		$\begin{aligned} & d B \\ & d B \end{aligned}$
OUTPUT CHARACTERISTICS						
Output Voltage Swing (2)	+250 C 00 C to +1250 C	$\begin{aligned} & \pm 10.0 \\ & \pm 10.0 \end{aligned}$		$\pm 10.0$		$\begin{aligned} & V \\ & V \end{aligned}$
Output Current (3)	+250C	$\pm 10$		$\pm 10$		mA
Full Power Bandwidth $(2,3,10)$   TRANSIENT RESPONSE	$+250 \mathrm{C}$	320				kHz
Rise Time ( $2,5,7)$	$+25^{\circ} \mathrm{C}$		45			ns
Slew Rate (2, 7, 9)   POWER SUPPLY CHARACTERISTICS	$+25^{\circ} \mathrm{C}$	$\pm 20$				$\mathrm{V} / \mathrm{\mu s}$
Supply Current	$+25^{\circ} \mathrm{C}$		4.0		4.0	mA
Power Supply Rejection Ratio (8)	$\begin{gathered} +25^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & 74 \\ & 74 \end{aligned}$		74		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
Input Resistance	$+25^{\circ} \mathrm{C}$				0	$M \Omega$
Gain Bandwidth Product (2, 5, 6)	$+25^{\circ} \mathrm{C}$				0	MHz
Full Power Bandwidth (2, 3)	$+25^{\circ} \mathrm{C}$				0	kHz
Rise Time ( $2,5,7$ )	$+25^{\circ} \mathrm{C}$					ns
Slew Rate ( $2,7,9$ )	$+25^{\circ} \mathrm{C}$				35	$\mathrm{V} / \mu \mathrm{s}$

NOTES:

1. Offset may be externally adjusted to zero.
2. $R_{L}=2 K \Omega$,
$C_{L}=50 \mathrm{pF}$.
3. $V_{O}= \pm 10.0 \mathrm{~V}$.
4. $V_{C M}= \pm 10 \mathrm{~V}$.
5. $V_{\mathrm{O}}<90 \mathrm{mV}$.
6. 40 dB Gain.
7. $A_{V}=5$ (The HA2620 family is not stable at unity gain without external compensation)
8. $V_{\text {SUPPLY }}= \pm 9.0$ to $\pm 15.0 \mathrm{~V}$.
9. $\mathrm{V}_{\mathrm{O}}=5.0 \mathrm{~V}$.
10. Guaranteed based on
FPBW $=\frac{\text { Slew Rate }}{2 \pi V_{\text {OUT }}}$

## Description

HAO-2650 and HAO-2655 contain two internally compensated operational amplifiers offering high slew rate and high frequency performance conbined with exceptional DC characteristics. A $5 \mathrm{~V} / \mu \mathrm{s}$ slew rate and 8 MHz bandwidth make these amplifiers suitable for processing fast, wide band signals extending into video frequencies. Signal processing is further enhanced by front-end performance including a 1.5 mV offset voltage, $8 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ offset voltage drift, and low offset and bias currents. Applications for these dielectrically isolated devices include video circuit designs and active filters.

## Chip Layout and Dimensions



For Chip Geometries see Drawing 7, page 7-50.

## Specifications

ABSOLUTE MAXIMUM RATINGS $T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise stated.

Voltage Between $V^{+}$and $V^{-}$Pads	40.0 V	Operating Temperature Range	
Differential Input Voltage	$\pm 30.0 \mathrm{~V}$	$H A 0-2650-2$	$-55^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+125^{\circ} \mathrm{C}$
Input Voltage (1)	$\pm 15.0 \mathrm{~V}$	HAO-2655-6	$0{ }^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+75^{\circ} \mathrm{C}$
Output Short Circuit Duration (2)	Indefinite	Storage Temperature Range	$-65^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+150^{\circ} \mathrm{C}$

## ELECTRICAL SPECIFICATIONS

## guaranteed

 CHARACTERISTICS$\mathrm{V}^{+}=+15 \mathrm{VDC}$,
$\mathrm{V}^{-}=-15 \mathrm{VDC}$

TYPICAL
CHARACTERISTICS

PARAMETER	TEMPERATURE	HAO-2650-2		HA0-2655-6		UNITS
		MINIMUM	MAXIMUM	MINIMUM	MAXIMUM	
INPUT CHARACTERISTICS						
Offset Voitage	$\begin{gathered} +25^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$		3 5		5	$\begin{aligned} & m V \\ & m V \end{aligned}$
Bias Current	$\begin{gathered} +25^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$		100 200		200	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
Offset Current	$\begin{gathered} +25^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$		30 60		60	$\begin{aligned} & \text { nA } \\ & \text { nA } \end{aligned}$
Common Mode Range	$\begin{gathered} +25^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & \pm 13 \\ & \pm 13 \end{aligned}$		$\pm 13$		$\begin{aligned} & \text { v } \\ & \text { v } \end{aligned}$
TRANSFER CHARACTERISTICS						
Large Signal Voltage Gain (2A, B)	$\begin{gathered} +25^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & 25 \mathrm{~K} \\ & 20 \mathrm{~K} \end{aligned}$		20K		$\begin{aligned} & v / V \\ & v / V \end{aligned}$
Common Mode Rejection Ratio (3)	$\begin{gathered} +25^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$	80 80		74		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
OUTPUT CHARACTERISTICS						
Output Voltage Swing (2C)	$\begin{gathered} +25^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & \pm 13 \\ & \pm 13 \end{aligned}$		$\pm 13$		$\begin{aligned} & \text { v } \\ & \text { v } \end{aligned}$
Full Power Bandwidth $(4,7)$   TRANSIENT RESPONSE	$+25^{\circ} \mathrm{C}$	30		30		kHz
Slew Rate POWER SUPPLY CHARACTERISTICS	$+25^{\circ} \mathrm{C}$	$\pm 2$				$\mathrm{V} / \mu \mathrm{s}$
Supply Current	$+25^{\circ} \mathrm{C}$		3		4	mA
Power Supply Rejection Ratio (6)	$\begin{gathered} +250 \mathrm{C} \\ 00 \mathrm{C} \text { to }+1250 \mathrm{C} \end{gathered}$	$\begin{aligned} & 80 \\ & 80 \end{aligned}$		74		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
Differential Input Resistance	$+25^{\circ} \mathrm{C}$		20		20	$M \Omega$
Common Mode Input Resistance	$+250 \mathrm{C}$		00		00	$M \Omega$
Full Power Bandwidth (4)	$+250 \mathrm{C}$		0		0	kHz
Output Current (2A)	$+25^{\circ} \mathrm{C}$		20		18	mA
Rise Time (5)	$+250 \mathrm{C}$		0		0	ns
Overshoot (5)	$+250 \mathrm{C}$		5		5	\%
Slew Rate	$+250 \mathrm{C}$		5		5	$\mathrm{V} / \mu \mathrm{s}$

NOTES:

1. For supply voltages
$\pm 15 \mathrm{~V}$, the ab.
max. input voltage is equal to the supply voltage.
2. a) $V_{O}= \pm 10 \mathrm{~V}$
b) $R_{L}=2 k$.
c) $R_{L}=10 \mathrm{k}$.
3. $V_{C M}= \pm 10 \mathrm{~V}$.
4. $A_{V}=1, R_{L}=2 k$,
$V_{O}=20 V_{p-p}$.
5. $V_{I N}=200 \mathrm{mV}$.
6. $\Delta V= \pm 5.0 \mathrm{~V}$.
7. Guaranteed based on FPBW $=\frac{\text { Slew Rate }}{2 \pi V_{\text {OUT }}}$

## Description

HAO-2700 and HAO-2705 are internally compensated operational amplifiers employing dielectric isolation to achieve excellent dynamic and DC performance with very low power consumption ( $2.24 \mathrm{~mW} @ \pm 15.0 \mathrm{~V}$ typ.). Accurate high gain signal amplification is provided by an open loop gain of 300 k and a high CMRR ( 106 dB ), low offset voltage, and low offset and bias currents. A gain bandwidth of 1 MHz and a slew rate of $20 \mathrm{~V} / \mu \mathrm{s}$ allow for processing of fast, wide band signals. These amplifiers operate from a wide power supply range and are ideally suited for low power applications requiring a fast, accurate response over a wide frequency signal range.

## Chip Layout and Dimensions



For Chip Geometries see Drawing 8, page 7-50.

## Specifications

## ABSOLUTE MAXIMUM RATINGS

Voltage Between $V$ + and $V$-pads	44.0 V
Differential Input Voltage	$\pm 18.0 \mathrm{~V}$
Storage Temperature Range $\quad-65{ }^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+150^{\circ} \mathrm{C}$	


Operating Temperature Range	
HAO-2700-2	$-55^{\circ} \mathrm{C} \leqslant \mathrm{TA}_{\mathrm{A}} \leqslant+125^{\circ} \mathrm{C}$
HAO-2705-6	$0^{\circ} \mathrm{C} \leqslant \mathrm{TA}_{\mathrm{A}} \leqslant+75^{\circ} \mathrm{C}$

ELECTRICAL SPECIFICATIONS

GUARANTEED CHARACTERISTICS $\mathrm{V}^{+}=+15 \mathrm{VDC}$.
$V^{-}=-15 \mathrm{VDC}$.

TYPICAL CHARACTERISTICS

PARAMETER	TEMPERATURE	HAO-2700-2		HA0-2705-6		UNITS
		MINIMUM	MAXIMUM	MINIMUM	MAXIMUM	
INPUT CHARACTERISTICS						
Offset Voltage (1)	$\begin{gathered} +25^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$		3.0 5.0		5.0	$\begin{aligned} & m V \\ & m V \end{aligned}$
Bias Current	$\begin{gathered} +250 \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$		20 50		40	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
Offset Current	$\begin{gathered} +25^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$		10 30		15	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
Common Mode Range	$\begin{gathered} +25^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & \pm 11.0 \\ & \pm 11.0 \end{aligned}$		$\pm 11.0$		$\begin{aligned} & \text { v } \\ & \text { v } \end{aligned}$
TRANSFER CHARACTERISTICS						
Large Signal Voltage Gain ( 2,3 )	$\begin{gathered} +25^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & 200 \mathrm{~K} \\ & 100 \mathrm{~K} \end{aligned}$		200K		$\begin{aligned} & V / V \\ & V / V \end{aligned}$
Common Mode Rejection Ratio (4)	$\begin{gathered} +25^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & 86 \\ & 86 \end{aligned}$		80		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
OUTPUT CHARACTERISTICS						
Output Voltage Swing (2)	$\begin{gathered} +25^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+1250 \mathrm{C} \end{gathered}$	$\begin{aligned} & \pm 12.0 \\ & \pm 11.0 \end{aligned}$		$\pm 12.0$		$\begin{aligned} & v \\ & v \end{aligned}$
TRANSIENT RESPONSE						
Slew Rate $(2,6)$   POWER SUPPLY CHARACTERISTICS	$+250 \mathrm{C}$	10				$\mathrm{V} / \mathrm{\mu s}$
Supply Current	$+250 \mathrm{C}$		150		150	$\mu \mathrm{A}$
Power Supply Rejection Ratio (5)	$\begin{gathered} +25^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & 86 \\ & 86 \end{aligned}$		80		$\mathrm{dB}$

## Description

HAO-2720 and HAO-2725 are internally compensated programmable amplifiers offering a wide performance range that is adjustable by means of the circuits' set current (ISET). By means of adjusting an external resistor or current source, power dissipation, slew rate, bandwidth, output current, and input noise can be programmed to desired levels. This versatile adjustment capability enables the HAO-2720/25 to provide optimum design solutions by delivering the required level of performance with the minimum power dissipation. HAO-2720/25 also operate over a wide supply range $( \pm 1.2 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$ ).

Chip Layout and Dimensions


For Chip Geometries see Drawing 9, page 7-50.

## Specifications

## ABSOLUTE MAXIMUM RATINGS

ISET (Current at ISET)	$500 \mu \mathrm{~A}$	$\mathrm{V}_{\text {SET }}$ (Voltage to Gnd. at ISET)	$\mathrm{V}^{+}-2.0 \mathrm{~V} \leqslant \mathrm{~V}_{\text {SET }} \leqslant \mathrm{V}^{+}$
Differential Input Voltage	$\pm 30.0 \mathrm{~V}$	Operating Temperature HAO-2720-2	$-55^{\circ} \mathrm{C} \leqslant \mathrm{T}_{A} \leqslant+125^{\circ} \mathrm{C}$
Input Voltage (1)	$\pm 15.0 \mathrm{~V}$	HAO-2725-6	$0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+75^{\circ} \mathrm{C}$
Voltage Between $\mathrm{V}^{+}$and V - Pads	45.0 V	Storage Temperature Range	$-65^{\circ} \mathrm{C} \leqslant \mathrm{T}_{A} \leqslant+150^{\circ} \mathrm{C}$

## ELECTRICAL SPECIFICATIONS

GUARANTEED
CHARACTERISTICS
$\mathrm{V}^{+}=+15 \mathrm{VDC}$,
$V^{-}=-15 \mathrm{VDC}$,
$I_{S E T}=15 \mu \mathrm{~A}$

PARAMETER	TEMPERATURE	HA0-2720-2		HAO-2725-6		UNITS
		MINIMUM	MAXIMUM	MINIMUM	MAXIMUM	
INPUT CHARACTERISTICS						
Offset Voltage	$\begin{gathered} +25^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$		3.0 5.0		5.0	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Offset Current	$\begin{gathered} +25^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$		10 20		10	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
Bias Current	$\begin{gathered} +25^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$		20 40		30	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
TRANSFER CHARACTERISTICS						
Large Signal Voltage Gain (4)	$\begin{gathered} +25^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$	40 K 25 K		25K		$\begin{aligned} & V / V \\ & V / V \end{aligned}$
Common Mode Rejection Ratio (3)	$\begin{gathered} +25^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & 80 \\ & 80 \end{aligned}$		74		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
OUTPUT CHARACTERISTICS						
Output Voltage Swing (2)	$\begin{gathered} +25^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$	$\pm 12$ $\pm 10$		$\pm 12$		$\begin{aligned} & v \\ & v \end{aligned}$
POWER SUPPLY CHARACTERISTICS						
Supply Current (Each Amp)	$\begin{gathered} +250 \mathrm{C} \\ 00 \mathrm{C} \text { to }+1250 \mathrm{C} \end{gathered}$		$\begin{aligned} & 250 \\ & 250 \end{aligned}$		250	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Power Supply Rejection Ratio (7)	$\begin{gathered} +250 \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & 80 \\ & 80 \end{aligned}$		76		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
Input Resistance	$+25^{\circ} \mathrm{C}$					$\mathrm{M} \Omega$
Output Current (4)	$+25^{\circ} \mathrm{C}$				5.0	mA
Rise Time (5)	$+25^{\circ} \mathrm{C}$		2		. 2	$\mu \mathrm{s}$
Overshoot (5)	$+25^{\circ} \mathrm{C}$				5	\%
Slew Rate (6)	$+25^{\circ} \mathrm{C}$		8		. 8	$\mathrm{V} / \mu \mathrm{s}$

NOTES:

1. For supply voltages $< \pm 15.0 \mathrm{~V}$, the ab.
max. input voltage is equal to supply voltage.
2. For $\mathrm{T}=+25^{\circ} \mathrm{C}$
$R_{L}=5 \mathrm{k} \Omega$,
For $T=+125^{\circ} \mathrm{C}$
$R_{L}=75 \mathrm{k} \Omega$.
3. $V_{C M}= \pm 5,0 \mathrm{~V}$.
4. $V_{O}= \pm 10.0 \mathrm{~V}$.
5. $A_{V}=+1, V_{I N}=$
$400 \mathrm{mV}, R_{\mathrm{L}}=5 \mathrm{k} \Omega$
$C_{L}=100 \mathrm{pF}$.
6. $V_{O}=+10.0 \mathrm{~V}$,
$R_{L}=5 \mathrm{k} \Omega$.
7. $\Delta v= \pm 5.0 \mathrm{~V}$.

## Description

HAO-2730 and HAO-2735 are internally compensated programmable amplifiers offering a wide performance range that is adjustable by means of the circuits' set current (ISET). By means of adjusting an external resistor or current source, power dissipation, slew rate, bandwidth, output current, and input noise can be programmed to desired levels. This versatile adjustment capability enables the HAO-2730/35 to provide optimum design solutions by delivering the required level of performance with the minimum power dissipation. HAO-2730/35 also operate over a wide supply range $( \pm 1.2 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$ ).

## Chip Layout and Dimensions



For Chip Geometries see Drawing 10, page 7-50.

## Specifications

## ABSOLUTE MAXIMUM RATINGS



## ELECTRICAL SPECIFICATIONS

GUARANTEED
CHARACTERISTICS
$\mathrm{V}^{+}=+15 \mathrm{VDC}$,
$V^{-}=-15 \mathrm{VDC}$,
${ }^{\prime}$ SET $=15 \mu \mathrm{~A}$

TYPICAL
CHARACTERISTICS

PARAMETER	TEMPERATURE	HA0-2730-2		HA0-2735-6		UNITS
		MINIMUM	MAXIMUM	MINIMUM	MAXIMUM	
INPUT CHARACTERISTICS						
Offset Voltage	$\begin{gathered} +25^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C}+0+125^{\circ} \mathrm{C} \end{gathered}$		3.0 5.0		5.0	$\begin{aligned} & m V \\ & m V \end{aligned}$
Offset Current	$\begin{gathered} +25^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$		10 20		10	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
Bias Current	$\begin{gathered} +25^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$		20		30	nA
TRANSFER CHARACTERISTICS						
Large Signal Voltage Gain (4)	$\begin{gathered} +25^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & 40 \mathrm{~K} \\ & 25 \mathrm{~K} \end{aligned}$		25K		$\begin{aligned} & \text { V/V } \\ & \text { V/V } \end{aligned}$
Common Mode Rejection Ratio (3)	$\begin{gathered} +25^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$	80 80		74		$\begin{aligned} & d B \\ & d B \end{aligned}$
OUTPUT CHARACTERISTICS						
Output Voltage Swing (2)	$\begin{gathered} +25^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}$		$\pm 12$		$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$
POWER SUPPLY CHARACTERISTICS						
Supply Current (Each Amp)	$\begin{gathered} +250 \mathrm{C} \\ 00 \mathrm{C} \text { to }+1250 \mathrm{C} \end{gathered}$		$\begin{aligned} & 250 \\ & 250 \end{aligned}$		250	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Power Supply Rejection Ratio (7)	$\begin{gathered} +25^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & 80 \\ & 80 \end{aligned}$		76		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{dR} \end{aligned}$
Input Resistance	+250 ${ }^{\circ}$					$M \Omega$
Output Current (4)	$+25^{\circ} \mathrm{C}$					mA
Rise Time (5)	+250 ${ }^{\circ}$					$\mu \mathrm{s}$
Overshoot (5)	$+25^{\circ} \mathrm{C}$					\%
Slew Rate (6)	$+25^{\circ} \mathrm{C}$					$\mathrm{V} / \mu \mathrm{s}$

## NOTES

1. For supply voltages

$$
< \pm 15.0 \mathrm{~V} \text {, the } \mathrm{ab} .
$$

max. input voltage is
equal to supply
voltage.
2. For $T=+25^{\circ} \mathrm{C}$
$R_{L}=5 k \Omega$
For $T=+125^{\circ} \mathrm{C}$
$R_{L}=75 \mathrm{k} \Omega$.
3. $V_{C M}= \pm 1.5 \mathrm{~V}$.
4. $V_{O}= \pm 10.0 \mathrm{~V}$.
5. $A_{V}=+1$,
$V_{I N}=400 \mathrm{mV}$,
$R_{L}=5 \mathrm{k} \Omega$,
$C_{L}=100 p F$
6. $V_{\mathrm{O}}= \pm 10.0 \mathrm{~V}$,
$R_{L}=5 \mathrm{k}$.
7. $\Delta V= \pm 1.5 \mathrm{~V}$.

## Description

HAO-4602 and HA0-4605 are high performance quad operational amplifiers offering superior specifications over existing quad amplifiers. These dielectrically isolated devices offer excellent dynamic performance coupled with low value for offset voltage, drift, input noise voltage, and power consumption. A wide bandwidth of 8 MHz , low power of $35 \mathrm{~mW} / \mathrm{amp}$, and internal compensation make these devices ideal for precision active filters. Other applications include audio circuits, instrumentation and signal conditioning, and data acquisition systems.

## Chip Layout and Dimensions



For Chip Geometries see Drawing 11, page 7-50.

## Specifications

ABSOLUTE MAXIMUM RATINGS $T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise stated

Voltage Between $V^{+}$and $V$ - Pads	40.0 V	Operating Temperature Range	
Differential Input Voltage	$\pm 7 \mathrm{~V}$	$H A 0-4602-2$	$-50^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+125^{\circ} \mathrm{C}$
Input Voltage (1)	$\pm 15.0 \mathrm{~V}$	$H A 0-4605-6$	$0^{\circ} \mathrm{C} \leqslant \mathrm{T}_{A} \leqslant+75^{\circ} \mathrm{C}$
Output Short Circuit Duration (2)	Indefinite	Storage Temperature Range	$-650^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+150^{\circ} \mathrm{C}$

## ELECTRICAL SPECIFICATIONS

GUARANTEED
CHARACTERISTICS
$\mathrm{v}^{+}=+15 \mathrm{VDC}$,
$V^{-}=-15 V D C$

*Preliminary, consult factory for final specifications.

HARRIS

## Description

HA0-4622 and HAO-4625 are wide band quad operational amplifiers featuring high slew rate, wide bandwidth and fast settling time. These devices are optimized to provide superior operating characteristics in applications where a gain of 10 or greater is to be used. In addition to 70 MHz gain bandwidth and $20 \mathrm{~V} / \mu$ sec slew rate, HA0-4622/4625 offer low power consumption of $35 \mathrm{~mW} / \mathrm{amp}$ and very low input noise voltage of $8 \mathrm{nV} / \sqrt{\mathrm{Hz}}$.

## Chip Layout and Dimensions



For Chip Geometries see Drawing 12, page 7-50.

## Specifications

ABSOLUTE MAXIMUM RATINGS $T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise stated

Voltage Between $V^{+}$and $V-$ Pads	40.0 V	Operating Temperature Range	
Differential Input Voltage	$\pm 7 \mathrm{~V}$	HA0-4602-2	$-55^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+125^{\circ} \mathrm{C}$
Input Voltage (1)	$\pm 15.0 \mathrm{~V}$	$H, 40-4605-6$	$0^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+75^{\circ} \mathrm{C}$
Output Short Circuit Duration (2)	Indefinite	Storage Temperature Range	$-65^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+150^{\circ} \mathrm{C}$

ELECTRICAL SPECIFICATIONS

GUARANTEED CHARACTERISTICS
$V^{+}=+15 V D C$,
$V^{-}=-15 V D C$.

TYPICAL
CHARACTERISTICS

PARAMETER	TEMPERATURE	HA0-4622-2*		HAO-4625-6		UNITS
		MINIMUM	maximum	MINIMUM	MAXIMUM	
INPUT CHARACTERISTICS						
Offset Voltage	$\begin{gathered} +25{ }^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C}+0+125{ }^{\circ} \mathrm{C} \end{gathered}$		2.5 3.0		3.5	$\begin{aligned} & m V \\ & m V \end{aligned}$
Bias Current	$\begin{gathered} +25^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$		200 325		300	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
Offset Current	$\begin{gathered} +25^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$		$\begin{gathered} 75 \\ 125 \end{gathered}$		100	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
Common Mode Range	$\begin{gathered} +25^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & \pm 12 \\ & \pm 12 \end{aligned}$		$\pm 12$		$\begin{aligned} & v \\ & v \end{aligned}$
TRANSFER CHARACTERISTICS						
Large Signal Voltage Gain (3)	$\begin{gathered} +250 \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & 100 \mathrm{~K} \\ & 100 \mathrm{~K} \end{aligned}$		75K		$\begin{aligned} & V / V \\ & V / V \end{aligned}$
Common Mode Rejection Ratio (6)	$\begin{gathered} +25^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$	86 86		80		$\begin{aligned} & d B \\ & d B \end{aligned}$
OUTPUT CHARACTERISTICS						
Output Voltage Swing $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	$\begin{gathered} +25^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+1250 \mathrm{C} \end{gathered}$	$\pm 12$ $\pm 12$		$\pm 12$		v
$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	+250 ${ }^{\circ}$	$\pm 10$		$\pm 10$		V
	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\pm 10$				V
Output Current (5)	$\begin{gathered} +250{ }^{\circ} \\ 0^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$	$\pm 10$ $\pm 10$		$\pm 8$		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
POWER SUPPLY CHARACTERISTICS						
Supply Current	+250 ${ }^{\circ}$		5.5		6.5	mA
Power Supply Rejection Ratio (6)	$\begin{gathered} +25^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & 86 \\ & 86 \end{aligned}$		80		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
Input Noise Voltage ( $f=1 \mathrm{kHz}$ )	$+250 \mathrm{C}$					$n \mathrm{~V} / \sqrt{\mathrm{Hz}}$
Input Resistance	$+25^{\circ} \mathrm{C}$					$k \Omega$
Channel Separation (4)	+250 ${ }^{\text {C }}$					dB
Gain Bandwidth Product (5)	+250 ${ }^{\circ}$					MHz
Full Power Bandwidth (3)	+250C					kHz
Rise Time	+250 ${ }^{\circ}$					ns
Overshoot	+250 ${ }^{\circ}$					\%
Slew Rate	+250 ${ }^{\circ}$					$\mathrm{V} / \mu \mathrm{s}$
Settling Time (7)	+250C					$\mu s$

NOTES:

1. For supply voltages
$\pm 15 \mathrm{~V}$, the ab
max. input voltage is
equal to the supply
voltage.
2. Any one amplifier
may be shorted to ground indefinltely.
3. $V_{\text {OUT }}= \pm 10 \mathrm{~V}$,
$R_{L}=2 k \Omega$
4. Channel separation value is referred to the input of the amp. Input test conditions
are: $f=10 \mathrm{kHz}$,
$V_{\text {IN }}=200 m V_{p-p}$,
$R_{S}=1 \mathrm{k} \Omega$
5. $V_{\text {OUT }}= \pm 5 \mathrm{~V}$.
6. $\Delta V= \pm 5.0 \mathrm{~V}$
7. To $0.01 \%$ of final value, $\Delta V_{\text {OUT }}=$ $\pm 10 \mathrm{~V}, A_{V}=-1$.
8. $A_{V}=10 ; R_{L}=2 k$; $C_{L} \leqslant 10 p f$.
*Preliminary, consult factory for final specifications.

HARRIS

## Description

The HAO-4741 is a quad operational amplifier with operating characteristics that equal or exceed those of the 741 type amplifier in all categories of performance. The HAO-4741 is well suited for applications requiring accurate signal processing by virtue of its low values of input offset voltage $(0.5 \mathrm{mV}$ typ.), input bias current and input voltage noise. The 3.5 MHz bandwidth, coupled with high open loop gain, allow the HA0-4741 to be used in designs requiring amplification of wide band signals. These amplifiers also feature a wide supply range and a high level of amplifier to amplifier isolation.

## Chip Layout and Dimensions



For Chip Geometries see Drawing 13, page 7-51.

## Specifications

ABSOLUTE MAXIMUM RATINGS $T_{A}=+25^{\circ} \mathrm{C}$ Unless otherwise stated.

Voltage Between V+and V-Pads	40.0 V	Operating Temperature Range	
Differential Input Voltage	$\pm 30.0 \mathrm{~V}$	HA0-4741-2	$-550^{\mathrm{C}} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+125^{\circ} \mathrm{C}$
Input Voltage (1)	$\pm 15.0 \mathrm{~V}$	HAO-4741-6	$00 \mathrm{C} \leqslant \mathrm{T}_{A} \leqslant+75^{\circ} \mathrm{C}$
Output Short Circuit Duration (2)	Indefinite	Storage Temperature Range	$-650^{\circ} \mathrm{C} \leqslant \mathrm{T}_{A} \leqslant+150^{\circ} \mathrm{C}$

## ELECTRICAL SPECIFICATIONS

GUARANTEED CHARACTERISTICS
$\mathrm{V}^{+}=+15 \mathrm{VDC}$
$V^{-}=-15 V D C$

TYPICAL
CHARACTERISTICS

PARAMETER	TEMPERATURE	HA0-4741-2		HA0-4741-6		UNITS	
		MINIMUM	MAXIMUM	MINIMUM	MAXIMUM		
INPUT CHARACTERISTICS							
Offset Voltage	$\begin{gathered} +25^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$		3.0 5.0		5.0	$\begin{aligned} & m V \\ & m V \end{aligned}$	*
Bias Current	$\begin{gathered} +25^{\circ} \mathrm{C} \\ 00 \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$		200 325		300	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$	
Offset Current	$\begin{gathered} +25^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$		$\begin{aligned} & 30 \\ & 75 \end{aligned}$		50	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$	
Common Mode Range	$\begin{gathered} +25^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+1255^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & \pm 12 \\ & \pm 12 \end{aligned}$		$\pm 12$		V	
TRANSFER CHARACTERISTICS							
Large Signal Voltage Gain (3)	$\begin{gathered} +25^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & 50 K \\ & 25 K \end{aligned}$		25K		$\begin{aligned} & V / V \\ & V / V \end{aligned}$	
Common Mode Rejection Ratio (6)	$\begin{gathered} +25^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$	80 74		80		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$	
OUTPUT CHARACTERISTICS							
Output Voltage Swing ( $\left.\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega\right)$	$\begin{gathered} +25^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$	$\pm 10$ $\pm 10$		$\pm 10$		$\begin{aligned} & v \\ & v \end{aligned}$	
Output Current (5)	$\begin{gathered} +25^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$	$\pm 5$ $\pm 5$		$\pm 5$		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$	
POWER SUPPLY CHARACTERISTICS Supply Current ( $1^{+}$or $1^{-}$)	$+25^{\circ} \mathrm{C}$		5.0		7.0	mA	NOTES:   1. For supply voltages
Power Supply Rejection Ratio (6)	$\begin{gathered} +25^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & 80 \\ & 80 \end{aligned}$		80		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$	$< \pm 15 \mathrm{~V}$, the ab. max. input voltage
Differential Input Resistance	$+25^{\circ} \mathrm{C}$				5	$\mathrm{M} \Omega$	voltage.
Input Noise Voltage ( $f=1 \mathrm{kHz}$ )	$+25^{\circ} \mathrm{C}$				9	$n \mathrm{nV} / \sqrt{\mathrm{Hz}} \mid$	2. One amp may be shorted to ground
Channel Separation (4)	$+25^{\circ} \mathrm{C}$		08		08	dB	indefinitely.
Small Signal Bandwidth	$+25^{\circ} \mathrm{C}$		. 5		3.5	MHz	3. $V_{\text {OUT }}= \pm 10$,
Full Power Bandwidth (3)	$+25^{\circ} \mathrm{C}$		5		25	kHz	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k}$.
Rise Time	$+25^{\circ} \mathrm{C}$				75	ns	4. Referred to input:
Overshoot	$+250 \mathrm{C}$		5		25	\%	5. $V_{\text {OUT }}= \pm 10$.
Slew Rate	$+25^{\circ} \mathrm{C}$		1.6		1.6	$\mathrm{V} / \mu \mathrm{s}$	6. $\Delta v= \pm 5.0 \mathrm{~V}$.

HARRIS
HIO-200
SEMICONDUCTOR
PRODUCTS DIVISION
PRODUCTS DIVISION
A OIVISION OF HARRIS CORPORATION

## Description

HIO-200 is a dual SPST CMOS analog switch featuring independently selectable switches and fast switching speeds (240ns typ.). Each switch provides low "ON" resistance operation for input signal voltages up to the supply rails and for signal current up to 80 mA . Employing dielectric isolation and CMOS processing, HIO-200 operates without any problems induced by latchup or SCR mode phenomena.

All devices provide break-before-make switching and are TTL and CMOS compatible. HIO-200 is an ideal component for use in high frequency analog switching. Typical applications include signal path switching, sample and hold circuits, digital filters, and op amp gain switching networks.

## Chip Layout and Dimensions



For Chip Geometries see Drawing 14, page 7-51.

## Specifications

## ABSOLUTE MAXIMUM RATINGS



## ELECTRICAL SPECIFICATIONS

## GUARANTEED

 CHARACTERISTICSUnless otherwise specified, Supplies $=+15 \mathrm{~V}$,
$-15 \mathrm{~V}: \mathrm{V}_{\text {REF }}=0$ pen;
$V_{A H}$ (Logic Level High)
$=3.0 \mathrm{~V}, \mathrm{~V}_{\text {AL }}$ (Logic Level Low) $=+0.8 \mathrm{~V}$.

TYPICAL
CHARACTERISTICS

PARAMETER	TEMPERATURE	H10-0200-2		H10-0200-6		UNITS	
		MINIMUM	MAXIMUM	MINIMUM	MAXIMUM		
ANALOG SWITCH CHARACTERISTICS							
VS, Analog Signal Range	$\begin{gathered} +250 \mathrm{C} \\ -55^{\circ} \mathrm{C} \text { to }+1250 \mathrm{C} \end{gathered}$	$\begin{aligned} & -15 \\ & -15 \end{aligned}$	$\begin{aligned} & +15 \\ & +15 \end{aligned}$	-15	+15	$\begin{aligned} & v \\ & v \end{aligned}$	
R ON, On Resistance (1)	$\begin{gathered} +25^{\circ} \mathrm{C} \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$		$\begin{gathered} 70 \\ 100 \end{gathered}$		80	$\begin{aligned} & \Omega \\ & \Omega \end{aligned}$	
IS (0FF), Off Input Leakage Current	$\begin{gathered} +25^{\circ} \mathrm{C} \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$		500		500	nA	
$I_{\text {I }}$ (OFF), Off Output Leakage Current	$\begin{gathered} +25^{\circ} \mathrm{C} \\ -55^{\circ} \mathrm{C} \text { to }+125{ }^{\circ} \mathrm{C} \end{gathered}$		500 500		500	nA	
ID (ON), On Leakage Current	$\begin{gathered} +25^{\circ} \mathrm{C} \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$		$\begin{aligned} & 500 \\ & 500 \end{aligned}$		500	$\begin{aligned} & \text { nA } \\ & \text { nA } \end{aligned}$	
DIGITAL INPUT CHARACTERISTICS							
VAL, Input Low Threshold	$\begin{gathered} +25^{\circ} \mathrm{C} \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$		$\begin{aligned} & 0.8 \\ & 0.8 \end{aligned}$		0.8	v	
$V_{\text {AH, }}$, Input High Threshold	$\begin{gathered} +25^{\circ} \mathrm{C} \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$		3.0		V	
'A, Input Leakage Current(High or Low) (2)	$\begin{gathered} +25^{\circ} \mathrm{C} \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$		1.0 1.0		1.0	$\mu \mathrm{A}$ $\mu \mathrm{A}$	
SWITCHING CHARACTERISTICS							
ton, Switch ON Time	$+25^{\circ} \mathrm{C}$		500			ns	
toff, Switch OFF Time   POWER REQUIREMENTS (3)	$+25^{\circ} \mathrm{C}$		500			ns	NOTES:
PD, Power Dissipation	$\begin{gathered} +25^{\circ} \mathrm{C} \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$		$\begin{aligned} & 60 \\ & 60 \end{aligned}$		60	$\begin{aligned} & \mathrm{mW} \\ & \mathrm{~mW} \end{aligned}$	1. $V_{\text {OUT }}=+10 \mathrm{~V}$,   IOUT $=1 \mathrm{~mA}$.   2. Digital inputs are
$1+$ Current	$\begin{gathered} +25^{\circ} \mathrm{C} \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$		2.0 2.0		2.0	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$	MOS gates. Typical leakage is $<\ln A$.
1-, Current	$\begin{gathered} +25^{\circ} \mathrm{C} \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$		$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$		2.0	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$	3. $V_{A}=+3 V$ or $V_{A}=$ 0 V for both switches.
Break Before Make Delay (4)	$+25^{\circ} \mathrm{C}$				0	ns	4. $V_{A H}=4.0 \mathrm{~V}$.
ton, Switch ON Time	$+25^{\circ} \mathrm{C}$		40		40	ns	5. $V_{A}=+3 V, R_{L}=$
tOFF, Switch OFF Time	$+25^{\circ} \mathrm{C}$		30		00	ns	$\mathrm{V}_{\mathrm{S}}=3 \mathrm{Vrms},$
Off Isolation (5)	$+25^{\circ} \mathrm{C}$		0		0	dB	

## Description

HIO-201 is a quad SPST CMOS analog switch featuring independently selectable switches and fast switching speeds (185ns typ.). Each switch provides low "ON" resistance operation for input signal voltages up to the supply rails and for signal currents up to 80 mA . Employing dielectric isolation and CMOS processing, HIO-201 operates without any problems induced by latch-up or SCR mode phenomena.

All devices provide break-before-make switching and are TTL and CMOS compatible. HIU-201 is an ideal component for use in high frequency analog switching, sample and hold circuits, digital filters, and op amp gain switching networks.

## Chip Layout and Dimensions



For Chip Geometries see Drawing 15, page 7-51.

## Specifications

## ABSOLUTE MAXIMUM RATINGS



## ELECTRICAL SPECIFICATIONS

## GUARANTEED

 CHARACTERISTICSUnless otherwise specified, Supplies $=+15 \mathrm{~V}$,
-15V: $\mathrm{V}_{\text {REF }}=0$ pen;
$V_{\text {AH }}$ (Logic Level High)
$=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{AL}}$ (Logic
Level Low $=+0.8 \mathrm{~V}$.

PARAMETER	TEMPERATURE	HIO-0201-2		H10-0201-6		UNITS.	
		MINIMUM	MAXIMUM	MINIMUM	MAXIMUM		
ANALOG SWITCH CHARACTERISTICS							
$\mathrm{V}_{\text {S }}$, Analog Signal Range	$\begin{gathered} +25^{\circ} \mathrm{C} \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$	-15 -15	$\begin{aligned} & +15 \\ & +15 \end{aligned}$	-15	+15	v	
R ON, On Resistance (1)	$\begin{gathered} +25^{\circ} \mathrm{C} \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$		$\begin{gathered} 80 \\ 125 \end{gathered}$		100	$\Omega$	
IS (OFF), Off Input Leakage Current (6)	$\begin{gathered} +250 \mathrm{C} \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$		$\begin{aligned} & 250 \\ & 500 \end{aligned}$		250	nA	
1 l (OFF), Off Output Leakage Current (6)	$\begin{gathered} +25^{\circ} \mathrm{C} \\ -55^{\circ} \mathrm{C} \text { to }+1250 \mathrm{C} \end{gathered}$		$\begin{aligned} & 250 \\ & 500 \end{aligned}$		250	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$	
$I_{\mathrm{D}}(0 \mathrm{~N})$, On Leakage Current (6)	$\begin{gathered} +25^{\circ} \mathrm{C} \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$		$\begin{aligned} & 250 \\ & 500 \end{aligned}$		250	$\begin{aligned} & n A \\ & n A \end{aligned}$	
DIGITAL INPUT CHARACTERISTICS							
$\mathrm{V}_{\text {AL }}$, Input Low Threshold	$\begin{gathered} +25^{\circ} \mathrm{C} \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$		$\begin{aligned} & 0.8 \\ & 0.8 \end{aligned}$		0.8	$\begin{aligned} & v \\ & v \end{aligned}$	
$\mathrm{V}_{\text {AH, }}$, Input High Threshold	$\begin{gathered} +25^{\circ} \mathrm{C} \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$		3.0		V	
IA, Input Leakage Current (High or Low)(2)	$\begin{gathered} +250{ }^{\circ} \mathrm{C} \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$		1.0 1.0		1.0	$\mu \mathrm{A}$ $\mu \mathrm{A}$	
SWITCHING CHARACTERISTICS							
ton, Switch ON Time	$+25^{\circ} \mathrm{C}$		500			ns	
toFF, Switch OFF Time	$+25^{\circ} \mathrm{C}$		500			ns	
POWER REQUIREMENTS (3)							
PD, Power Dissipation	$\begin{gathered} +25^{\circ} \mathrm{C} \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$		$\begin{aligned} & 60 \\ & 60 \end{aligned}$		60	$\begin{aligned} & \mathrm{mW} \\ & \mathrm{~mW} \end{aligned}$	1. $\begin{aligned} & V_{\text {OUT }}=+10 \mathrm{~V}, \\ & \text { IOUT }=1 \mathrm{~mA} . \end{aligned}$
$1+$ Current	$\begin{gathered} +25^{\circ} \mathrm{C} \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$		2.0 2.0		2.0	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$	2. Digital inputs are MOS gates. Typical
1-, Current	$\begin{gathered} +25^{\circ} \mathrm{C} \\ -55^{\circ} \mathrm{C} \text { to }+1250 \mathrm{C} \end{gathered}$		$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$		2.0	$\begin{aligned} & m A \\ & m A \end{aligned}$	leakage is $\operatorname{LinA}$.   3. $\mathrm{V}_{\mathbf{A}}=+3 \mathrm{~V}$ or $\mathrm{V}_{\mathbf{A}}=$
							OV for all switches.
TOPEN, Break Before Make Delay (4)	$+25^{\circ} \mathrm{C}$	30		30		ns	4. $V_{A H}=4.0 \mathrm{~V}$.
ton, Switch ON Time	+250 ${ }^{\text {C }}$	185		185		ns	5. $V_{A}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=$
toFF, Switch OFF Time	$+250 \mathrm{C}$	220		220		ns	$\mathrm{V}_{\mathrm{S}}=3 \mathrm{Vrms},$
Off Isolation (5)	+250 ${ }^{\circ}$	80		80		dB	$f=100 \mathrm{kHz}$.

TYPICAL
CHARACTERISTICS

## Description

This family of CMOS switches offers a variety of switching functions featuring low resistance operation for analog voltages up to the supply rails and signal currents up to 80 mA . The " ON " resistance is reasonably constant over variations in temperature, input voltage and input current. RON remains exceptionally constant for input voltages between +5 V and -5 V and currents up to 50 mA .
All devices provide break-before-make switching and are TTL and CMOS compatible. Performance is further enhanced by dielectric isolation processing insuring latch-free operation and very low leakage currents ( 0.8 nA at $25^{\circ} \mathrm{C}$ typ.). These switches also feature very low power operation ( 1.5 mW at 250C typ.).

## Chip Layout and Dimensions



For Chip Geometries see Drawing 16-19, pages 7-51 \& 52.

## Specifications

ABSOLUTE MAXIMUM RATINGS

Supply Voltage ( $\mathrm{V}^{+}, \mathrm{V}^{-}$)	36 V	Operating Temperature Range	
$\mathrm{V}_{\mathbf{R}}$ to Ground	$\mathrm{V}^{+}, \mathrm{v}-$	HIO-5046/47/49/51-2	-550 C to $+125^{\circ} \mathrm{C}$
Digital and Analog Input Voltage	$\mathrm{V}^{-}-4 \mathrm{~V}, \mathrm{~V}^{+}+4 \mathrm{~V}$	HIO-5046/47/49/51-6	$0^{\circ} \mathrm{C}$ to $75{ }^{\circ} \mathrm{C}$
Analog Current ( S to D )	80 mA	Storage Temperature Range	$-65{ }^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

## ELECTRICAL SPECIFICATIONS

GUARANTEED CHARACTERISTICS Unless otherwise specified supplies $=$
$+15 \mathrm{~V},-15 \mathrm{~V}$,
$\mathrm{V}_{\mathrm{R}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{AH}}$ (Logic
Level High) $=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{AL}}$
(Logic Level Low) $=$
$+0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V}$

TYPICAL
CHARACTERISTICS

PARAMETER	TEMPERATURE	$\begin{aligned} & \text { HIO-5046/47-2 } \\ & \text { HIO-5049/51-2 } \end{aligned}$		$\begin{aligned} & \text { HIO-5046/47-6 } \\ & \text { HIO-5049/51-6 } \end{aligned}$		UNITS	
		MINIMUM	MAXIMUM	MINIMUM	MAXIMUM		
ANALOG SWITCH CHARACTERISTICS							
Analog Signal Range	$\begin{gathered} +25^{\circ} \mathrm{C} \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$	-15 -15	$\begin{aligned} & +15 \\ & +15 \end{aligned}$	-15	+15	v	
Ron, On Resistance (1)	$\begin{gathered} +25^{\circ} \mathrm{C} \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$		75 75		75	$\Omega$	
IS (OFF), Off Input Leakage Current	$\begin{gathered} +25^{\circ} \mathrm{C} \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$		500 500		500	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$	
ID (OFF), Off Output Leakage Current	$\begin{gathered} +25^{\circ} \mathrm{C} \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$		$\begin{aligned} & 500 \\ & 500 \end{aligned}$		500	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$	
$I_{\text {D }}(0 N)$, On Leakage Current	$\begin{gathered} +25^{\circ} \mathrm{C} \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$		$\begin{aligned} & 500 \\ & 500 \end{aligned}$		500	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$	
DIGITAL INPUT CHARACTERISTICS							
$\mathrm{V}_{\text {AL }}$, Input Low Threshold	$\begin{gathered} +25^{\circ} \mathrm{C} \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$		$\begin{aligned} & 0.8 \\ & 0.8 \end{aligned}$		0.8	v	
$\mathrm{V}_{\text {AH }}$, Input High Threshold	$\begin{gathered} +25^{\circ} \mathrm{C} \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$		3.0		v	
I A , Input Leakage Current	$\begin{gathered} +25^{\circ} \mathrm{C} \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$		$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$			${ }_{\mu}^{\mu} \mathrm{A}$	
SWITCHING CHARACTERISTICS							
ton, Switch ON Time	+250 ${ }^{\circ}$		1000			ns	
toff, Switch OFF Time POWER REQUIREMENTS	$+25^{\circ} \mathrm{C}$		500			ns	
It, +15V Quiescent Current	$\begin{gathered} +25{ }^{\circ} \mathrm{C} \\ -55^{\circ} \mathrm{C} \text { to }+1250 \mathrm{C} \end{gathered}$		$\begin{aligned} & 0.3 \\ & 0.3 \end{aligned}$		0.5	$\begin{aligned} & m A \\ & m A \end{aligned}$	
1-, -15V Quiescent Current	$\begin{gathered} +25^{\circ} \mathrm{C} \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$		$\begin{aligned} & 0.3 \\ & 0.3 \end{aligned}$		0.5	$\begin{gathered} \mathrm{mA} \\ \mathrm{~mA} \end{gathered}$	
IL, +5 V Quiescent Current	$\begin{gathered} +25^{\circ} \mathrm{C} \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$		$\begin{aligned} & 0.3 \\ & 0.3 \end{aligned}$		0.5	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$	
If, Gnd. Quiescent Current	$\begin{gathered} +25^{\circ} \mathrm{C} \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$		$\begin{aligned} & 0.3 \\ & 0.3 \end{aligned}$		0.5	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$	NOTES:
ton, Switch ON Time	$25^{\circ} \mathrm{C}$		70		370	ns	IOUT $=1 \mathrm{~mA}$.
tOFF, Switch OFF Time	250 C		80		80	ns	2. $V_{I N}=O V$,
Charge Injection (2)	$25^{\circ} \mathrm{C}$				5	mV	
Off Isolation (3)	250 C		0		80	dB	$\mathrm{f}=100 \mathrm{kHz}$,
Crosstalk (3)	250 C		8		88	dB	$v_{I N}=2 v_{p-p} .$

# HIO-506/507 <br> CMOS Analog Multiplexers Single 16/Differential 8 Channel 

## Description

HIO-506/507 are CMOS analog multiplexers employing dielectric isolation processing for high performance and reliability. The DI process yields low leakage currents and low parasitic capacitances resulting in extremely low static errors and high throughput rates. Low output leakage ( 0.3 nA typ.) and low channel $0 N$ resistance ( $170 \Omega$ typ.) assure optimum performance in low level or current mode applications. These multiplexers are TTL/CMOS compatible and require no pull-up resistors.

HIO-506 is a single-ended 16 channel multiplexer while HIO-507 is a differential 8 channel version.

## Chip Layout and Dimensions



For Chip Geometries see Drawings 20, 21, page 7-52.

## Specifications

ABSOLUTE MAXIMUM RATINGS


ELECTRICAL SPECIFICATIONS


HARRIS
SEMICONDUCTOR
PRODUCTS DIVISION
a DIVIIION OF HARRIS CORPORATION

## Overvoltage Protected CMOS Analog Multiplexer Single 16/Differential 8 Channel

## Description

HIO-506A/507A are dielectrically isolated CMOS analog multiplexers featuring analog input overvoltage protection. These devices can withstand a continuous input up to 10 volts greater than either supply, which eliminates the possibilities of damage when supplies are off but input signals are present. Equally important, they can withstand brief input transient spikes of several hundred volts. These multiplexers are also TTL/CMOS compatible.

HIO-506A is a single ended 16 channel multiplexer while HIO-507A is a differential 8 channel version.

Chip Layout and Dimensions


For Chip Geometries see Drawings 22, 23 page 7-52.

## Specifications

ABSOLUTE MAXIMUM RATINGS

$V_{\text {REF }}$ to Ground, $\mathrm{V}^{+}$to Ground   VEN, VA, Digital Input Overvoltage	+20V		Operating Temperature Range		
		$\mathrm{V}^{+}$SUPPLY ${ }^{+4 \mathrm{~V}}$	HIO-0506A/7A-2		C to $+125{ }^{\circ} \mathrm{C}$
		V-SUPPLY -4V	HIO-0506A/7A-6		$3^{\circ} \mathrm{C}$ to $+755^{\circ} \mathrm{C}$
Analog Overvoltage	$\mathrm{V}_{\text {S }}$	$\mathrm{V}^{+}$SUPPLLY +20 V	Storage Temperature Range		${ }^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
		$\mathrm{V}^{-}$SUPPLY -20V	Supply Voltage Between Pad		40 V

ELECTRICAL SPECIFICATIONS

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow{25}{*}{\begin{tabular}{l}
GUARANTEED \\
CHARACTERISTICS \\
Unless otherwise spec- \\
ified, Supplies \(=+15 \mathrm{~V}\), \\
-15 V ; \(\mathrm{V}_{\mathrm{AH}}\) (Logic \\
Level High) \(=+4.0 \mathrm{~V}\), \\
\(\mathrm{V}_{\mathrm{AL}}\) (Logic Level Low) \\
\(=+0.8 \mathrm{v}\).
\end{tabular}} \& \multirow[b]{2}{*}{PARAMETER} \& \multirow[b]{2}{*}{TEMPERATURE} \& \multicolumn{2}{|l|}{H10-0506A/07A-2} \& \multicolumn{2}{|l|}{H10-0506A/07A-6} \& \multirow[b]{2}{*}{UNITS} \\
\hline \& \& \& minimum \& maximum \& minimum \& maximum \& \\
\hline \& ANALOG CHANNEL CHARACTERISTICS \& \& \& \& \& \& \\
\hline \& \(\mathrm{V}_{\text {S }}\) A Analog Signal Range \& \[
\begin{gathered}
+25^{\circ} \mathrm{C} \\
-550^{\circ} \mathrm{Co}+125^{\circ} \mathrm{C}
\end{gathered}
\] \& \[
\begin{aligned}
\& -15 \\
\& -15
\end{aligned}
\] \& \[
\begin{aligned}
\& +15 \\
\& +15
\end{aligned}
\] \& -15 \& +15 \& v \\
\hline \& RON. On Resistance (1) \& \[
\begin{gathered}
+25^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}
\end{gathered}
\] \& \& \[
\begin{aligned}
\& 1.5 \\
\& 2.0
\end{aligned}
\] \& \& 1.8 \& \[
\begin{aligned}
\& \mathrm{k} \Omega \\
\& \mathrm{k} \Omega
\end{aligned}
\] \\
\hline \& IS (OFF), Off Input Leakage Current \& \[
\begin{gathered}
+25{ }^{+} \mathrm{C} \\
-550^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}
\end{gathered}
\] \& \& \[
\begin{aligned}
\& \pm 50 \\
\& \pm 50
\end{aligned}
\] \& \& \(\pm 50\) \& \[
\begin{aligned}
\& n A \\
\& n A
\end{aligned}
\] \\
\hline \& ID (OFF), Off Output Leakage Current HI-0506A \& \[
\begin{gathered}
+255^{\circ} \mathrm{C} \\
-550^{\circ} \mathrm{C} \text { to }+125{ }^{\circ} \mathrm{C}
\end{gathered}
\] \& \& \(\pm 500\)
\(\pm 500\) \& \& \(\pm 500\) \& nA
nA \\
\hline \& HI-0507A \& \[
\begin{gathered}
+250 \mathrm{C} \\
-550 \mathrm{C} \text { to }+1250 \mathrm{C}
\end{gathered}
\] \& \& \[
\begin{array}{r} 
\pm 250 \\
\pm 250
\end{array}
\] \& \& \(\pm 250\) \& \[
\begin{aligned}
\& n A \\
\& n A
\end{aligned}
\] \\
\hline \& ID (ON), On Channel Leakage Current HI-0506A \& \[
\begin{gathered}
+25{ }^{\circ} \mathrm{C} \\
-55{ }^{\circ} \mathrm{C} \text { to }+1250^{\circ} \mathrm{C}
\end{gathered}
\] \& \& \(\begin{array}{r} \pm 500 \\ \pm 500 \\ \hline\end{array}\) \& \& \(\pm 500\) \& nA
\(n \mathrm{~A}\)

A <br>

\hline \& HI-0507A \& $$
\begin{gathered}
+250 \mathrm{C} \\
-550 \mathrm{C} \text { to }+1250 \mathrm{C}
\end{gathered}
$$ \& \& $\pm$

$\pm 250$
$\pm 250$ \& \& $\pm 250$ \& ${ }_{n} \mathrm{nA}$ <br>
\hline \& OIGITAL INPUT CHARACTERISTICS \& \& \& \& \& \& <br>

\hline \& $\mathrm{V}_{\text {AL }}$ I Input Low Threshold (TTL Drive)(2) \& \[
$$
\begin{gathered}
+25^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}
\end{gathered}
$$

\] \& \& \[

$$
\begin{aligned}
& 0.8 \\
& 0.8
\end{aligned}
$$
\] \& \& 0.8 \& v <br>

\hline \& $\mathrm{V}_{\text {AH, }}$, Input High Threshold (TTL Drive)(2) \& \[
$$
\begin{array}{c|c}
+25^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 4.0 \\
& 4.0
\end{aligned}
$$
\] \& \& 4.0 \& \& v <br>

\hline \& $\mathrm{V}_{\text {AL }}$ (MOS Drive) (3) \& $+25^{\circ} \mathrm{C}$ \& \& 0.8 \& \& 0.8 \& $v$ <br>
\hline \& $V_{\text {AH }}$ (MOS Drive( (3) \& $+25^{\circ} \mathrm{C}$ \& 6.0 \& \& 6.0 \& \& $v$ <br>

\hline \& 'A. Input Leakage Current (High or Low) \& $$
\begin{gathered}
+25{ }^{+2} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+1250 \mathrm{C}
\end{gathered}
$$ \& \& \[

$$
\begin{aligned}
& 1.0 \\
& 1.0
\end{aligned}
$$
\] \& \& 5.0 \& $\mu \mathrm{A}$

$\mu \mathrm{A}$ <br>
\hline \& SWITCHING CHARACTERISTICS \& \& \& \& \& \& <br>
\hline \& ${ }^{\text {t }}$ A, Access Time \& $+25^{\circ} \mathrm{C}$ \& \& 1000 \& \& \& ns <br>
\hline \& TON (EN), Enable Delay (ON) \& $+25^{\circ} \mathrm{C}$ \& \& 1000 \& \& \& ns <br>
\hline \& toff (EN), Enable Delay (OFF) \& +250 ${ }^{\circ}$ \& \& 1000 \& \& \& ns <br>
\hline \& POWER REQUIREMENTS \& \& \& \& \& \& <br>

\hline \& 1+, Current (4) \& $$
\begin{gathered}
+25{ }^{+2} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+1250^{\circ} \mathrm{C}
\end{gathered}
$$ \& \& \[

$$
\begin{aligned}
& 2.0 \\
& 2.0
\end{aligned}
$$
\] \& \& 5.0 \& <br>

\hline \& 1-, Current (4) \& $$
\begin{gathered}
+25{ }^{\circ} \mathrm{C} \\
-55^{\circ} \mathrm{C} \text { to }+125{ }^{\circ} \mathrm{C}
\end{gathered}
$$ \& \& \[

$$
\begin{aligned}
& 1.0 \\
& 1.0
\end{aligned}
$$
\] \& \& 2.0 \& <br>

\hline \& It, Standby (5) \& $$
\begin{gathered}
+250 \mathrm{C} \\
-550 \mathrm{C} \text { to }+1250 \mathrm{C}
\end{gathered}
$$ \& \& \[

$$
\begin{aligned}
& 2.0 \\
& 2.0
\end{aligned}
$$
\] \& \& 5.0 \& <br>

\hline \& 1-, Standby (5) \& $$
\begin{gathered}
+1250 \mathrm{C} \\
-550 \mathrm{C} 0+1250 \mathrm{C}
\end{gathered}
$$ \& \& \[

$$
\begin{aligned}
& 1.0 \\
& 1.0
\end{aligned}
$$
\] \& \& 2.0 \& <br>

\hline \multirow[t]{6}{*}{TYPICAL CHARACTERISTICS} \& t A, Access Time \& +250 ${ }^{\text {C }}$ \& \multicolumn{2}{|r|}{500} \& \multicolumn{2}{|r|}{500} \& ns <br>
\hline \& TOPEN, Break-Before Make Delay \& +250 ${ }^{\text {C }}$ \& \multicolumn{2}{|r|}{80} \& \multicolumn{2}{|r|}{80} \& ns <br>
\hline \& ton (EN), Enable Delay (ON) \& +250 ${ }^{\circ}$ \& \multicolumn{2}{|r|}{300} \& \multicolumn{2}{|r|}{300} \& ns <br>
\hline \& toff (EN), Enable Delay (OFF) \& +250 ${ }^{\circ}$ \& \multicolumn{2}{|r|}{300} \& \multicolumn{2}{|r|}{300} \& ns <br>
\hline \& Settling Time (to 0.1\%) (to 0.025\%) \& +250 C

+250 C \& \multicolumn{2}{|r|}{$$
1.3
$$} \& \multicolumn{2}{|r|}{1.3

4.4} \& $\mu \mathrm{s}$
$\mu \mathrm{s}$ <br>
\hline \& Off Isolation (6) \& $+25^{\circ} \mathrm{C}$ \& \multicolumn{2}{|r|}{4.4} \& \multicolumn{2}{|r|}{65} \& dB <br>
\hline
\end{tabular}

[^18]. VOUT $= \pm 10 \mathrm{~V}$ IOUT $=-100 \mu \mathrm{~A}$
2. To drive from DTL/

TTL circuits, 1 k
pull-up resistors to
+5.0 V supply are
recommended.
3. $V_{\text {REF }}=+10 \mathrm{~V}$.
4. $V_{E N}=+4.0 \mathrm{~V}$.
5. $V_{E N}=0.8 \mathrm{~V}$
5. $\mathrm{V}_{\mathrm{EN}}=0.8 \mathrm{~V}$.
$1 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=7 \mathrm{pF}$.
$V_{S}=3 \mathrm{Vrms}$,
$\mathrm{f}=500 \mathrm{kHz}$.

## Description

## Chip Layout and Dimensions

HIO-508A/509A are dielectrically isolated CMOS analog multiplexers featuring analog input overvoltage protection. These devices can withstand a continuous input up to 10 volts greater than either supply, which eliminates the possibilities of damage when supplies are off but input signals are present. Equally important, they can withstand brief input transient spikes of several hundred volts. These multiplexers are also TTL/CMOS compatible.

HIO-508A is a single ended 8 channel multiplexer while HIO-509A is a differential 4 channel version.


For Chip Geometries see Drawings 24, 25, pages 7-52 \& 53.

## Specifications

ABSOLUTE MAXIMUM RATINGS



## 12 Bit High Speed Digital To Analog <br> Converter

## Description

The Harris HIO-562-6 is a monolithic, ultra-high speed, 12 bit, digital to analog converter. The HIO-562-6's fast output of 400 ns max. to $0.01 \%$ is achieved using dielectric isolation processing to reduce internal parasitics for fast rise and fall times. Output glitches are minimized by incorporating equally weighted current sources switched into an R-2R ladder network for symmetrical turn ON and turn OFF times. The HIO-562-6 is especially suited for use in high speed, successive approximation analog to digital converters.

## Chip Layout and Dimensions



For Chip Geometries see Drawing 26, page 7-53.

## Specifications

ABSOLUTE MAXIMUM RATINGS	(referred to Ground) (1)		Outputs Pins 7, 8, 10, 11Pin 9	$\pm \mathrm{V}_{\text {ps }}$
Power Supply Inputs	$\mathrm{V}_{\mathrm{ps}}{ }^{+}$	$+20 \mathrm{~V}$		
	$V_{p s}$	-20V		$+\mathrm{V}_{\mathrm{ps}},-5 \mathrm{~V}$
Reference Inputs	$V_{\text {REF }}(\mathrm{HI})$	$\pm \mathrm{V}_{\mathrm{ps}}$	Operating Temperature Range	$0^{\circ} \mathrm{C}$ to $+755^{\circ} \mathrm{C}$
	VREF (LO)	0	Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Digital Inputs	Bits 1-12	$-1 \mathrm{~V},+12 \mathrm{~V}$		
	CMOS/TTL			
	Logic Select	-1V, +12V		
ELECTRICAL SPECIFICATIONS				



HARRIS
SEMICONDUCTOR
PRODUCTS DIVISION
PRODUCTS DIVISION

## Description

HIO-1818A/1828A are CMOS analog multiplexers employing dielectric isolation processing for high performance and reliability. The DI process yields low leakage currents and low parasitic capacitances resulting in extremely low static errors and high throughput rates. Low output leakage ( 0.1 nA typ.) and low channel ON resistance ( $250 \Omega$ typ.) assure optimum performance in low level or current mode applications. These multiplexers are TTL/CMOS compatible.

HIO-1818A is a single ended 8 channel multiplexer while HIO-1828A is a differential 4 channel version.

Chip Layout and Dimensions


For Chip Geometries see Drawings 27, 28, page 7-53.

## Specifications

ABSOLUTE MAXIMUM RATINGS

	$V^{+}$SUPPLY +2 V	Supply Voltage Between Pads 14 and 15	40.0 V
Analog Input Voltage	$\mathrm{V}^{-}$SUPPLY -2 V	Logic Supply Voltage, Pad 2	30.0 V
	Sigital Input Voltage	$\mathrm{V}^{-}$SUPPLY to $\mathrm{V}^{+}$SUPPLY	Storage Temperature Range

ELECTRICAL SPECIFICATIONS

	PARAMETER	TEMPERATURE	HIO-1818A/28A-2		HI0-1818A/28A-6		UNITS	
			MINIMUM	MAXIMUM	MINIMUM	MAXIMUM		
GUARANTEED CHARACTERISTICS   Unless otherwise specified, Supplies $=+15 \mathrm{~V}$, -15 V .	ANALOG CHANNEL							
	$\mathrm{V}_{\text {S }}$, Analog Signal Range	$\begin{gathered} +25^{\circ} \mathrm{C} \\ -550^{\circ} \mathrm{C} \text { to }+1250 \mathrm{C} \end{gathered}$	-15 -15	$\begin{aligned} & +15 \\ & +15 \end{aligned}$	-15	+15	$\begin{aligned} & \text { v } \\ & \text { v } \end{aligned}$	
	RON, On Resistance (1)	$\begin{gathered} +25^{\circ} \mathrm{C} \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$		400 500		400	$\Omega$ $\Omega$	
	IS (OFF), Off Input Leakage Current	$\begin{gathered} +25^{\circ} \mathrm{C} \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$		$\begin{aligned} & \pm 50 \\ & \pm 50 \end{aligned}$		$\pm 50$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$	
	ID (OFF), Off Output Leakage Current HI-1818A	$\begin{gathered} +25^{\circ} \mathrm{C} \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$		+250 $\pm 250$		$\pm 250$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$	
	HI-1828A	$\begin{gathered} +250^{\circ} \mathrm{C} \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$		$\pm$ $\pm 125$ $\pm 125$		$\pm 125$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$	
	Io (ON), On Channel Leakage Current HI-1818A	$\begin{gathered} +250^{\circ} \mathrm{C} \\ -55^{\circ} \mathrm{C} \text { to }+125{ }^{\circ} \mathrm{C} \end{gathered}$		+250 $\pm 250$		$\pm 250$	$\begin{aligned} & \text { nA } \\ & \text { nA } \end{aligned}$	
	HI-1828A	$\begin{gathered} +25^{\circ} \mathrm{C} \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$		( $\pm 125$ $\pm 125$		$\pm 125$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$	
	DIGITAL INPUT CHARACTERISTICS							
	$\mathrm{V}_{\text {AL }}$, Input Low Threshold	$\begin{gathered} +25^{\circ} \mathrm{C} \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$		$\begin{aligned} & 0.4 \\ & 0.4 \end{aligned}$		0.4	$\begin{aligned} & \text { V } \\ & v \end{aligned}$	
	$\mathrm{V}_{\text {AH }}$, Input High Threshold (2)	$\begin{gathered} +25^{\circ} \mathrm{C} \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$		4.0		v	
	IA, Input Leakage Current	$\begin{gathered} +25^{\circ} \mathrm{C} \\ -55^{\circ} \mathrm{C} \text { to }+1250 \mathrm{C} \end{gathered}$		$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$		1.0	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$	
	POWER REQUIREMENTS							NOTES:
	It, Current	$\begin{gathered} +25^{\circ} \mathrm{C} \\ -550 \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$		0.5 0.5		$1.0$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$	1. VOUT $= \pm 10 \mathrm{~V}$, IOUT $=-1 \mathrm{~mA}$.
	1-, Current	$\begin{gathered} +250 \mathrm{C} \\ -550 \mathrm{C} \text { to }+1250 \mathrm{C} \end{gathered}$		1.0 1.0		2.0	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$	2. To drive from DTL, TTL circuits, 1 k
	IL, Current	$\begin{gathered} +25^{\circ} \mathrm{C} \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$		$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$		2.0	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$	pull-up resistors to +5.0 V supply are recommended.
TYPICAL CHARACTERISTICS	${ }^{\text {t }}$, Access Time (3)	$+25^{\circ} \mathrm{C}$	350		350		ns	3. Time measured to $90 \%$ of final output
	topen, Break-Before Make Delay	$+25^{\circ} \mathrm{C}$	100		100		ns	level. VOUT $=5.0 \mathrm{~V}$
	Settling Time (to 0.1\%) (to 0.025\%)	$\begin{aligned} & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \end{aligned}$	1.082.8		$\begin{gathered} 1.08 \\ 2.8 \end{gathered}$		$\mu \mathrm{s}$	to -5.0 V , Digital inputs $=0 \mathrm{~V}$ to +4.0 V

## Description

HIO-1840 is a dielectrically isolated CMOS analog multiplexer featuring high-Z analog input protection. It is designed to provide a high input impedance to the analog source if device power fails (open) or the analog signal voltage exceeds the supply rails during powered operation. A high impedance exists between active and inactive devices preventing any interaction. Channel selection is controlled by a 4-bit binary address plus an enable-inhibit input for controlling the ON/OFF operation. All digital inputs have electro-static discharge protection.

HIO-1840 is a single ended 16 channel multiplexer.

## Chip Layout and Dimensions



For Chip Geometries see Drawing 29, page 7-53.

## Specifications

ABSOLUTE MAXIMUM RATINGS

Supply Voltage between Pads 1 and $27 \quad+40 \mathrm{~V} \quad V_{E N}, V_{A}$, Digital Input Overvoltage $V_{\text {REF }}$ to Ground +20 V
Operating Temp. H $10-1840-2-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Analog Input Overvoltage

A $\left\{\begin{array}{l}V+\text { SUPPLY } \\ V-\text { SUPPLY }\end{array}\right.$ $\left\{\begin{array}{l}V+S U P P L Y+10 V \\ V-S U P P L Y-10 V\end{array}\right.$

ELECTRICAL SPECIFICATIONS

## GUARANTEED

 CHARACTERISTICSUnless otherwise specified, Supplies $= \pm 15 \mathrm{~V}$; $V_{\text {REF }}=+5 \mathrm{~V}$; $\mathrm{V}_{\text {AH }}$ (Logic Level High) $=40 \mathrm{~V}, \mathrm{~V}_{\text {AL }}$ (Logic Level Low) = +0.8 V .

TYPICAL
CHARACTERISTICS

PARAMETER	TEMPERATURE	HIO-1840-2		UNITS
		MINIMUM	MAXIMUM	
ANALOG CHAN. CHARACTERISTICS				
$\mathrm{V}_{\mathrm{S}}$, Analog Signal Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	-5	+15	V
RON, On Resistance (1) VIN $=+15 \mathrm{~V}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		1.0	$k \Omega$
$V_{\text {IN }}=-5 \mathrm{~V}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		5.0	$k \Omega$
IS (OFF), Off Input Leakage Current	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		$\pm 100$	nA
Is (OFF), with Power Off (2)	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		$\pm 100$	nA
1 l (OFF), Off Output Leakage Current	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		$\pm 1000$	nA
ID(OFF) or IS(OFF) with Input Overvoltage Applied (3)	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		$\pm 1000$	nA
ID (ON), On Leakage Current	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		$\pm 1000$	nA
DIGITAL INPUT CHARACTERISTICS				
$V_{\text {AL }}$, Input Low Threshold (TTL Drive)	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		0.8	$v$
$\mathrm{V}_{\text {AH }}$, Input High Threshold (TTL Drive)(4)	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	4.0		V
$V_{\text {AL }}$ (MOS Drive) (5)	$+25^{\circ} \mathrm{C}$		0.8	V
$V_{\text {AH }}$ (MOS Drive) (5)	$+25^{\circ} \mathrm{C}$	6.0		$\checkmark$
$I_{\text {A }}$, Input Leakage Current (High or Low)	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		1.0	$\mu \mathrm{A}$
SWITCHING CHARACTERISTICS				
$t_{A}$, Access Time	$+25^{\circ} \mathrm{C}$		1000	ns
${ }^{\text {t OPEN, Break Before Make Delay }}$	$+25^{\circ} \mathrm{C}$	20		ns
ton, Enable Delay (ON)	$+25^{\circ} \mathrm{C}$		1000	ns
toff (EN), Enable Delay (OFF)	$+25^{\circ} \mathrm{C}$		1000	ns
POWER REQUIREMENTS				
PD, Power Dissipation (6,7)	$+25^{\circ} \mathrm{C}$		15	mW
$1^{+}$, Current (6)	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		0.5	mA
1-, Current (6)	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		0.5	mA
1+, Standby (7)	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		0.5	mA
1-, Standby (7)	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		0.5	mA
${ }^{\text {t }}$, Access Time	$+25^{\circ} \mathrm{C}$			ns
topen, Break Before Make Delay	$+25^{\circ} \mathrm{C}$			ns
ton (EN), Enable Delay (ON)	$+25^{\circ} \mathrm{C}$			ns
tOFF (EN), Enable Delay (OFF)	$+25^{\circ} \mathrm{C}$			ns
Setting Time (to 0.1\%)	$+25^{\circ} \mathrm{C}$			$\mu s$
ito 0.025\%)	$+25^{\circ} \mathrm{C}$			$\mu s$
Off Isolation (8)	$+25^{\circ} \mathrm{C}$			d8

NOTES:

1. IOUT $=1 \mathrm{~mA}$.
2. All supplies $\left(\mathrm{V}^{+}\right.$,
$\mathrm{V}^{-},+5 \mathrm{~V}$ ) and dig-
ital inputs ( $\mathrm{A}_{0-3}$.
EN) opened. Analog
input $\pm 10 \mathrm{~V}$.
3. Analog overvolt-
age $= \pm 20 \mathrm{~V}$.
4. To drive from DTL/

TTL circuits 1 k pull-
up resistors to +5.0 V
supply are recom-
mended.
5. $V_{\text {REF }}=+10 \mathrm{~V}$.
6. $V_{E N}=0.8 \mathrm{~V}$.
7. $\mathrm{V}_{\mathrm{EN}}=4.0 \mathrm{~V}$.
8. $V_{E N}=4.0 \mathrm{~V}$,
$R_{L}=1 \mathrm{k}$,
$C_{L}=7 \mathrm{pF}$,
$\mathrm{V}_{\mathrm{S}}=3 \mathrm{Vrms}$,
$f=500 \mathrm{kHz}$.

HARRIS
semiconductor
PRODUCTS DIVIIION
A DIVISION OF HARRIS CORPORATIO

## Description

HAO-2420 and HAO-2425 are high performance sample and hold circuits consisting of an operational amplifier whose output is in series with an ultralow leakage analog switch and a MOSFET input unity gain amplifier. With an external holding capacitor connected to the switch output, a versatile high performance sample and hold or track and hold circuit is formed.

Accuracy to better than $0.01 \%$ is achievable over the temperature range. Fast acquisition is coupled with superior droop characteristics, even at high temperatures. High slew rate, wide bandwidth, and low acquisition time produce excellent dynamic characteristics.

## Chip Layout and Dimensions



For Chip Geometries see Drawing 30, page 7-53.

## Specifications

ABSOLUTE MAXIMUM RATINGS

Supply Voltage Between Pads 5 and 9	40 V	Operating Temperature Range	
Differential Input Voltage	$\pm 30 \mathrm{~V}$	HA0-2420-2	$-55^{\circ} \mathrm{C} \leqslant T_{A} \leqslant+125^{\circ} \mathrm{C}$
Digital Input Voltage (Pad 14)	$+8 \mathrm{~V},-15 \mathrm{~V}$	HAO-2420-6	$00^{\circ} \mathrm{C} \leqslant T_{A} \leqslant 75^{\circ} \mathrm{C}$
Output Current	Short Circuit Protected	Storage Temperature Range	$65^{\circ} \mathrm{C} \leqslant T_{A} \leqslant 150^{\circ} \mathrm{C}$

ELECTRICAL SPECIFICATIONS

GUARANTEED CHARACTERISTICS	TEMPERATURE	HA0-2420-2		HA0-2425-6		UNITS	
		MINIMUM	MAXIMUM	MINIMUM	MAXIMUM		
INPUT CHARACTERISTICS							
Offset Voitage	$\begin{gathered} +25^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$		4		6	$\begin{aligned} & m V \\ & m V \end{aligned}$	
Bias Current	$\begin{gathered} +25^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$		200 400		200	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$	
Offset Current	$\begin{gathered} +25^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$		$\begin{gathered} 50 \\ 100 \end{gathered}$		50	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$	
Common	$+25^{\circ} \mathrm{C}$	$\pm 10$		$\pm 10$		$\checkmark$	
Mode Range	$0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\pm 10$				V	
TRANSFER CHARACTERISTICS							
Large Signal Voltage Gain (1, 4)	$\begin{gathered} +25^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$	25 K 25 K		25K		$\begin{aligned} & v / V \\ & v / V \end{aligned}$	
Common Mode Rejection (2)	$\begin{gathered} +25^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+1250 \mathrm{C} \end{gathered}$	$\begin{aligned} & 80 \\ & 80 \end{aligned}$		74		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$	
OUTPUT CHARACTERISTICS							
Output Voltage Swing (1)	$\begin{gathered} +25^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+1250 \mathrm{C} \end{gathered}$	$\pm 10$ +10		$\pm 10$		$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$	
Output Current	$+25^{\circ} \mathrm{C}$	$\pm 10$		$\pm 10$		mA	
DIGITAL INPUT CHARACTERISTICS							
Digital Input Current ( $\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ )	$\begin{gathered} +250 \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+1250 \mathrm{C} \end{gathered}$		0.8 0.8		0.8	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$	
Digital Input Current ( $\mathrm{V}_{1} \mathrm{~N}=+5.0 \mathrm{~V}$ )	$\begin{gathered} +250 \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+1250 \mathrm{C} \end{gathered}$		20	-	20	$\mu A$ $\mu A$	
Digital Input Voltage (Low)	$\begin{gathered} +250 \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+1250 \mathrm{C} \end{gathered}$		0.8 0.8		0.8	$\begin{aligned} & \text { v } \\ & \text { v } \end{aligned}$	
Digital Input Voltage (High)	$\begin{gathered} +25^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$		2.0		$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$	
SAMPLE/HOLO CHARACTERISTICS							
Drift Current	$\begin{gathered} +25^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$		$\begin{aligned} & 1.0 \\ & 10 \end{aligned}$		1.0	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$	
Charge Transfer	$+25^{\circ} \mathrm{C}$		20		20	pc	
POWER SUPPLY CHARACTERISTICS							
Supply Current	$+250 \mathrm{C}$		5.0		5.0	mA	
Power Supply Rejection Ratio	$\begin{gathered} +25^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$		$\begin{aligned} & 80 \\ & 86 \end{aligned}$		74	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$	
Input Resistance	$+25^{\circ} \mathrm{C}$		0		0	$M \Omega$	NOTES:
Gain Bandwidth Product (3)	$+25^{\circ} \mathrm{C}$		2		2	MHz	1. $R_{L}=2 \mathrm{k} \Omega$.
Full Power Bandwidth (3, 4)	$+25^{\circ} \mathrm{C}$		0		0	kHz	2. $V_{C M}= \pm 10 \mathrm{VDC}$.
Rise Time (3,5)	$+250 \mathrm{C}$		00		00	ns	$\text { 3. } \begin{aligned} A_{V} & =+1 \\ R_{L} & =2 k \Omega . \end{aligned}$
Overshoot (3,5)	$+25{ }^{\circ} \mathrm{C}$		20		20	\%	$C_{L}=50 \mathrm{pF}$.
Slew Rate (3,6)	$+25^{\circ} \mathrm{C}$		5		5	$\mathrm{V} / \mu \mathrm{s}$	4. $V_{\text {OUT }}=20 \mathrm{~V}$
Acquisition Time (to 0.1\%, 10V Step)	$+25{ }^{\circ} \mathrm{C}$		4		4	$\mu \mathrm{s}$	peak to peak.   5. $V_{\text {OUT }}=400 \mathrm{mV}$
(to $01 \%, 10 \mathrm{~V}$ Step)	$+25^{\circ} \mathrm{C}$		5		5	$\mu s$	5. $V_{\text {OUT }}=400 \mathrm{mV}$ peak to peak.
Aperture Delay	$+250 \mathrm{C}$		0		0	ns	6. $\mathrm{V}_{\text {OUT }}=10.0 \mathrm{~V}$
Aperture Uncertainty	$+250 \mathrm{C}$		5		5	ns	peak to peak.

# HCO-55516/55532 <br> All Digital Continuously Variable Slope Delta Modulator (CVSD) 

## Description

HCO-55516 and HCO-55532 are half duplex modulator/demodulator CMOS integrated circuits used to convert voice signals into serial NRZ digital data, and to reconvert that data into voice. The conversion is by delta modulation, using the continuously variable slope (CVSD) method of companding.
While signals are compatible with other CVSD circuits, internal design is unique. The analog loop filters have been replaced by digital filters, using very low power, and requiring no external timing components.
The HCO-55516 is optimized for a 16 K bits $/ \mathrm{sec}$ data rate usable down to 9 K bits/sec, while the HCO-55532 is optimized for 32 K bits/sec, usable up to 64 K bits/sec.

Chip Layout and Dimensions


For Chip Geometries see Drawing 31, page 7-54.

## Specifications

## ABSOLUTE MAXIMUM RATINGS

Voltage at any pad	-3.0 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Maximum $\mathrm{V}_{D D}$ Voltage	+7.0 V
Operating $\mathrm{V}_{D D}$ Range	+5.0 V to +7.0 V

Operating Temperature Range HC0-55516/32-6
Storage Temperature Range
$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

ELECTRICAL SPECIFICATIONS
$\mathrm{V}_{\mathrm{DD}}=6.0 \mathrm{~V}$, Bit Rate $=$ 16kb/s for HC-55516, Bit Rate $=32 \mathrm{~kb} / \mathrm{s}$ for HC-55532.

PARAMETER	TEMPERATURE	HCO-55516/32-6			UNITS
		MINIMUM	TYPICAL	MAXIMUM	
Audio Input Voltage (4)	$+25^{\circ} \mathrm{C}$		0.5	1.4	Vrms
Audio Output Voltage (5)	$+25^{\circ} \mathrm{C}$		0.5	1.4	Vrms
Audio Input Impedance (6)	+250 ${ }^{\text {C }}$		100		k $\Omega$
Audio Output Impedance (7)	$+25^{\circ} \mathrm{C}$		100		$k \Omega$
Transfer Gain (8)	$+25^{\circ} \mathrm{C}$	-0.5		+0.5	dB
Supply Voltage	$+25^{\circ} \mathrm{C}$	+5.0		+7.0	V
Supply Current	$+25^{\circ} \mathrm{C}$		1.0		mA
Digital "1" Input (2)	$+25^{\circ} \mathrm{C}$		4.5		V
Digital " 0 " Input (2)	$+25^{\circ} \mathrm{C}$		1.5		$v$
Digital " 1 " Output (3)	+250 ${ }^{\circ}$		5.5		V
Digital " 0 " Output (3)	$+25^{\circ} \mathrm{C}$		0.5		V
$\begin{array}{ll}\text { Step Size Ratio } 55516 \text { (10) } \\ & 55532(10)\end{array}$	$+25^{\circ} \mathrm{C}$		24		dB
	+250 ${ }^{\circ}$		18		dB
$\begin{array}{r} \text { Resolution } 55516 \text { (11) } \\ 55532 \text { (11) } \end{array}$	+250 ${ }^{\circ}$		0.1		\%
	$+25^{\circ} \mathrm{C}$		0.2		\%
$\begin{aligned} & \text { Minimum Step Size } 55516(12) \\ & 55532 \text { (12) } \end{aligned}$	+250 ${ }^{\circ}$		0.2		\%
	$+25^{\circ} \mathrm{C}$		0.4		\%
Quieting Pattern Amplitude 55516 (15)$\mathbf{5 5 5 3 2}$ (15)	+250 ${ }^{\circ}$		12		$m \mathrm{~V}(\mathrm{p}-\mathrm{p})$
	$+250 \mathrm{C}$		24		$m V(p-p)$
AGC Treshold (16)	+250 ${ }^{\circ}$		0.5		F.S.
Clamping Threshold (17)	$+25^{\circ} \mathrm{C}$		0.75		F.S.
AC CHARACTERISTICS					
Clock Bit Rate (1)	+250 ${ }^{\circ}$	0		64	kb/s
Clock Duty Cycle	+250 ${ }^{\circ}$	30		70	\%
Syllabic Time Constant (9)	$+25^{\circ} \mathrm{C}$		4.0		mS
L. P. Filter Time Constant 55516 (9)	$+25^{\circ} \mathrm{C}$		0.94		mS
	$+25^{\circ} \mathrm{C}$		0.47		mS
Signal/Noise Ratio	+250 ${ }^{\circ}$			Table 1	

1. There is one NRZ data bit per clock period. Clock must be phased with digital data such that a positive clock transition occurs in the middle of each received data bit; i.e., the transmitter and receiver clock are in phase.
2. Logic inputs are CMOS compatible at supply voltage and are diode protected. Digital data input is NRZ at clock rate.
3. Logic outputs are CMOS compatible at supply voltage and withstand short-circuits to $V_{D D}$ or ground. Digital data output is NRZ and changes with negative clock transitions.
4. Recommended voice input range for best voice performance.
5. May be used for side-tone in encode mode.
6. Should be externally AC coupled. Presents 100 Kilohms in series with $\mathrm{V}_{\mathrm{DD}} / 2$.
7. Presents $\mathbf{1 0 0}$ Kilohms in series with recovered audio voltage. Zero-signal references is $V_{D D} / 2$.
8. Unloaded, for linear signals.
9. Note that filter time constants are inversely proportional to clock rate.
10. Step size compression ratio of the syllabic filter is defined as the ratio of the filter output, with an equal 1-0 bit density input to the filter, to its minimum output.

TABLE I

| $\begin{array}{c}\text { INPUT } \\ \text { FREQUENCY } \\ \mathrm{Hz}\end{array}$ |  |  |
| :---: | :---: | :---: | \(\left.\begin{array}{c}AMPLITUDE <br>


\mathrm{mV} rms\end{array}\right)\)| OUTPUT |
| :---: | :---: | :---: |
| SNR |
| dB MIN. |$|$| 300 | 1400 | 15 |
| :---: | :---: | :---: |
| 300 | 45 | 14 |
| 1000 | 500 | 9 |
| 1000 | 16 |  |

11. Minimum quantization voltage level expressed as a percentage of supply voltage.
12. The minimum step size between levels is twice the resolution.
13. For large signal amplitudes or high frequencies, the encoder may become slope-overloaded. Figure 1 shows the frequency response at various signal levels, measured with a 3 kHz low-pass filter having a $130 \mathrm{~dB} /$ octave rolloff to - 50 dB . See Table II.
14. Table I shows the SNR under various conditions, using the output filter described in 13 (above) at a bit rate of $16 \mathrm{~Kb} / \mathrm{s}$. See Table II.
15. The "quieting" pattern or idle-channel audio output steps at one-half the bit rate, changing state on negative clock transitions.
16. A logic " 0 " will appear at the AGC output pin when the recovered signal reaches one-half of full-scale value (positive or negative).
17. The recovered signal will be clamped, and the computation will be inhibited, when the recovered signal reaches three-quarters of full-scale value, and will unclamp when it falls below this value (positive or negative).


Figure 1 - Transfer Function for CVSD at 16KB

TABLE II

INPUT FILTER FREQUENCY RESPONSE		OUTPUT FILTER FREQUENCY RESPONSE	
FREQUENCY	RELATIVE OUTPUT	FREQUENCY	RELATIVE OUTPUT
100 Hz	$0 \pm 0.5 \mathrm{~dB}$	100 Hz to 1500 Hz	$0 \pm 1.5 \mathrm{~dB}$
200 Hz	$0 \pm 0.1 \mathrm{~dB}$	1500 Hz to 3000 Hz	$0 \pm 2.5 \mathrm{~dB}$
1000 Hz	$0 \pm 0.1 \mathrm{~dB}$	3800 Hz to 100 KHz	Less Than -45 dB
3000 Hz	$-3 \pm 0.5 \mathrm{~dB}$		
9000 Hz	$-20 \pm 2.0 \mathrm{~dB}$		

Drawing No.
HAO-2400/05 ..... 1
HAO-2502/05 ..... 2
HAO-2512/15 ..... 3
HAO-2522/25 ..... 4
HAO-2602/05 ..... 5
HAO-2622/25 ..... 6
HAO-2650/55 ..... 7
HAO-2700/05 ..... 8
HAO-2720/25 ..... 9
HAO-2730/35 ..... 10
11
HAO-4602/05
HAO-4622/25 ..... 12
HAO-4741 ..... 13
HIO-200 ..... 14
HIO-201 ..... 15
HIO-5047 ..... 17
HIO-5049 ..... 18
HIO-5051 ..... 19
HIO-506 ..... 20
HIO-507 ..... 21
HIO-506A ..... 22
HIO-507A ..... 23
HIO-508A ..... 24
HIO-509A ..... 25
HIO-562 ..... 26
HIO-1818A ..... 27
HIO-1828A ..... 28
HIO-1840 ..... 29
HAO-2420/25 ..... 30
HCO-55516/32 ..... 31
HIO-5046 ..... 16

Drawing No.

NOTE: All chip geometries are top view.







## Harris Quality and Reliability Programs

## PAGE

DASH-8 Program ..... 8-3
DASH-7 Program ..... 8-5
Standard Products Screening and Inspection Procedure ..... 8-6
Harris Commercial Grade Products ..... 8-9
Table I - Group A Electrical Tests ..... 8-10
Table II - Group B Tests (Lot Related) ..... 8-11
Table III -- Group C (Die Related Tests) ..... 8-12
Table IV - Group D (Package Related Tests) ..... 8-13
Moisture Sensor Chip ..... 8-14
Burn-In Circuit Index ..... 8-19
Burn-In Circuits ..... 8-21

## DASH 8 Program

## MIL-STD-883 <br> OFF-THE-SHELF DELIVERY <br> MIL-STD-883/MIL-M-38510 MIL-Q-9858A

## INTRODUCTION

## STATEMENT OF SCOPE

This section establishes the detail requirements for Harris' Circuits screened and tested under the Product Assurance Program.

The Harris DASH 8 Devices pass the screening requirements of the latest issue of MIL-STD-883, Method 5004, Class B, and the requirements as specified in this document. Included in this Section are the quality standards and screening methods for commercial parts which must perform reliably in the field.

## APPLICABLE DOCUMENTS

The following Military documents form a part of this section to the extent referenced herein and provide the foundation for Harris Products Assurance Program.

MIL-M-38510	"General Specification of Microcircuits"
MIL-STD-883	"Test Methods and Procedures for
	Microelectronics"
NASA Publication 200-3	"Inspection System Provisions"

Harris maintains a Product Assurance Program (PAP) using MIL-M-38510 as a guide. Harris Product Assurance Program assures compliance with the requirements and quality standards of control drawings and the requirements of this specification.

The DASH 8 Program will also be found useful by those Harris customers who must generate their own procurement specifications. Use of the enclosed Harris Standard Test Tables, Test Parameters, and Burn-In Circuits will aid in reducing specification negotiation time.

## PRODUCT ASSURANCE AT HARRIS

Our Product Assurance Department strives to assure that the quality and reliability of products shipped to customers is of a high quality level and consistent with customer requirements. During product processing, there are several independent visual and electrical checks performed by Quality Assurance personnel.

Prior to shipment, a final inspection is performed at Quality Assurance Plant Clearance to insure that all requirements of the purchase order and customer specifications are met. The system and procedures used and implemented are in accordance with MIL-M-38510, MIL-STD-883, MIL-C-45662 and MIL-I-45208.

The Harris Semiconductor Reliability and Quality Manual which is available upon request, describes the total function and policies of the organization to assure product reliability and quality.

100\% SCREENING PROCEDURE

	SCREEN	MIL-STD-883 METHOD/COND.
(1)	Internal Visual	2010 Cond. B.
(2)	Stabilization Bake	1008 Cond. C (24 hrs. minimum)
(3)	Temperature Cycling	1010 Cond. C
4	Constant Acceleration	2001 Cond. E; Y1 plane
(5)	Seal: (A) Fine   (B) Gross	1014 Cond. A or B 1014 Cond. C
(6)	Initial Electrical	Harris Specifications
7)	Burn-In Test	1015, 160 hrs. @ $125^{\circ} \mathrm{C}$ (or equivalent) (Burn-In circuits enclosed)
(8)	Final Electrical 100\% go-no-go	Tested at Worst Case Operating Conditions
)	External Visual	2009 Sample Inspection
(10)	Lot Acceptance	Table I, Group A Elect. Tests

Note:
Traceability: All devices are assigned date code identification that provides traceability back to the inspection lot. All devices are branded with the $H X-X X X X-8$ and EIA date code.

Aged Products: Product that has been held for more than 24 months will be reinspected prior to shipment to group $A$ inspection requirements.

Additional: Attributes data will be supplied on Group A Lot Acceptance upon request.
Requirements:
Generic data from Harris' Reliability Add-On Program is available upon request. The objective of Harris Reliability Add-On Program is to provide a continuous life and environmental monitor for all products families in manufacturing. This program provides life test performance results to fullfill reliability data requirements and to verify package integrity. The Reliability Add-On Program is supplemental to customer funded Lot Qualification.

For customers desiring Lot Qualification, Harris Semiconductor will perform Group A, B, C and $D$ inspections to MIL-STD-883, Method 5005 as defined herein for an additional charge.

## DASH 7 Program

## HIGH RELIABILITY COMMERCIAL PRODUCTS OFF-THE-SHELF DELIVERY

## INTRODUCTION

The HARRIS DASH 7 High Reliability Commercial Products program extends HARRIS processing for Hi -Rel military components to standard commercial products to provide improved levels of quality and reliability. DASH 7 is offered on Linear and Data Acquisition products in hermetic cans and dual-in-line packages.

DASH 7 uses procedures and documents described in the DASH 8 military products program with minor modifications applicable to commercial devices.

The DASH 7 program is designed to reduce field service costs and incoming test requirements on commercial parts.

Information on availability and cost of DASH 7 processing can be obtained through HARRIS sales representatives.

## HARRIS SEMICONDUCTOR DASH 7 PRODUCT FLOW MIL-M-38510/MIL-STD-883, METHOD 5004 CLASS B EXCEPT: $\mathrm{TA}_{A}=0^{\circ} \mathrm{C} T O+75^{\circ} \mathrm{C}$ \& BURN-IN $=96$ HRS <br> 100\% SCREENING PROCEDURE

	SCREEN	MIL-STD-883 METHOD/COND.
(1)	Internal Visual	2010 Cond. B.
(2)	Stabilization Bake	1080 Cond. C (24 hrs minimum)
(3)	Temperature Cycling	1001 Cond. C
(4)	Constant Acceleration	2001 Cond. E; Y1 plane
5	Seal: (A) Fine   (B) Gross	1014 Cond. A or B   1014 Cond. C2, no vacuum pre-cond. Step 2.
	Initial Electrical	Harris Specifications
$7$	Burn-In Test	1015, 96 hrs. @ $125^{\circ} \mathrm{C}$ (or equivalent) (Burn-In circuits enclosed)
$8$	Final Electrical 100\% go-no-go	Tested at worst case operating condition Functional tests per Table 1
(9)	External Visual	2009 Sample Inspection
(10)	Lot Acceptance	Table 1, Group A Elect. Tests.

Branding: All devices are branded with the $H X-X X X X-7$ and EIA date code.

## Standard Products Screening and Inspection Procedure

|  |
| :--- | :--- | :--- | :--- | :--- | :--- |





## HARRIS Commercial Grade Products

This product is processed on the same wafer fabrication lines, to the same thorough specification and rigid controls as HI -Rel parts. At wafer electrical probe the product may be categorized for electrical performance, such as temperature range of operation or maximum output (see specific product data sheet for grading details) by utilizing multiple colored inks. Defective die are inked with red ink, but, for example, die meeting the commercial temperature range electrical specifications may be inked with green ink.

The die are then visually inspected and sorted after die separation to a modified Class B visual criteria. They are then assembled in packages on a controlled assembly line. The ink used to categorize product performance, such as the green ink, might not be removed from the commercial grade die. This ink has been chemically characterized as inert and reliability verification confirms there is no effect on performance or operating life of the parts.

Harris invites any interested customer to review our assembly flow and facilities for information, quality survey, or certification.

## Table I-Group A Electrical Tests ${ }^{1}$.

SUBGROUP ${ }^{2}$.	DASH 8 \& 2 LTPD*   MIL-PRODUCT	LTPD* COMM. PRODUCT
Subgroup 1   Static Test at $25^{\circ} \mathrm{C}$	5	5
Subgroup 2   Static Test at Maximum Rated Operating Temperature	7	-
Subgroup 3   Static Tests at Minimum Rated Operating Temperature	7	-
Subgroup 4   Dynamic Tests at $25^{\circ} \mathrm{C}$	5	5
Subgroup 5 Functional Tests at $25^{\circ} \mathrm{C}$	5	5
Subgroup 6   Functional Tests at Maximum and Minimum Rated Operating Temperatures	10	15
Subgroup 7   Switching Tests at $\mathbf{2 5}^{\circ} \mathrm{C}$	7	10

1. The specific parameters to be included for tests in each subgroup shall be as specified in the applicable procurement document or specification sheet. Where no parameters have been identified in a particular subgroup or test within a subgroup, no Group A testing is required for that subgroup or test to satisfy Group A requirements.
2. A single sample may be used for all subgroup testing. Where the required size exceeds the lot size, $100 \%$ inspection shall be allowed.

* Groups A, B, C and D sampling plans are based on standard LTPD tables of MIL-M-38510. Typically, the sample size chosen is based on 1 reject allowed. If necessary, the sample size will be increased once to the quantity not exceeding an acceptance number of 2.

Table II - Group B Tests (Lot Related) ${ }^{1}$.

TEST	MIL-STD-883		LTPD*
	METHOD	CONDITION	
Subgroup 1   Physical Dimensions	2016		2 Devices (No Failures)
Subgroup 2   Resistance to Solvents	2015		4 Devices (No Failures)
Subgroup 3   Solderability 3	2003	Soldering Temperature of $260 \pm 10^{\circ} \mathrm{C}$	15
Subgroup 4   Internal Visual and Mechanical	2014	Failure Criteria from Design and Construction Requirements of Applicable Procurement Document.	1 Device (No Failures)
Subgroup 5   Bond Strength 2   (1) Thermocompression   (2) Ultrasonic or Wedge   (3) Beam Lead	2011	(1) Test Condition C or D   (2) Test Condition $C$ or $D$   (3) Test Condition H	15

NOTES:

1. Electrical reject devices from the same inspection lot may be used for all subgroups when end point measurements are not required.
2. Test samples for bond strength may, at the manufacturer's option unless otherwise specified be randomly selected immediately following internal visual (precap) inspection specified in method 5004, prior to sealing.
3. All devices submitted for solderability test must have been through the temperature/time exposure specified for burn-in. The LTPD for solderability test applies to the number of leads inspected except in no case shall less than 3 devices be used to provide the number of leads required.
4. Generic data from Harris Reliability Add-On Program in the form of Reliability Bulletins are available upon request.
[^19]Table III - Group C (Die Related Tests)

TEST	MIL-STD-883		LTPD*
	METHOD	CONDITION	
Subgroup 1			
Operating Life Test	1005	Test Condition to be specified (1000 Hrs)	5
End Point Electrical Parameters		Table I-Subgroup 1	
Subgroup 2			
Temperature Cycling	1010	Test Condition C	15
Constant Acceleration	2001	Test Condition E $\mathrm{Y}_{1}$ Axis	
Seal	1014	As Applicable	
(a) Fine			
(b) Gross 2.			
Visual Examination	1.		
End Point Electrical Parameters		Table I - Subgroup 1	

## NOTES:

1. Visual examination shall be in accordance with method 1010.
2. When fluorocarbon gross leak testing is utilized, test condition $\mathrm{C}_{2}$ shall apply as minimum.
3. Generic data from Harris Reliability Add-On Program in the form of Reliability Bulletins are available upon request.

* Reference Note - Table 1 *

Table IV - Group D (Package Related Tests)

TEST	MIL-STD-883		
	METHOD	CONDITION	LTPD*
Subgroup 1			
Physical Dimensions	2016		15
Subgroup 2 4.			
Lead Integrity	2004	Test Condition B2 (Lead Fatigue)   Seal   (a) Fine	1014
(b) Gross 6.			

NOTES:

1. Devices used in subgroup 3, "Thermal and Moisture Resistance" may be used in subgroup 4, 'Mechanical".
2. Visual examination shall be in accordance with method 1004.
3. Visual examination shall be performed in accordance with method 2007 for evidence of defects or damage to case, leads, or seals resulting from testing (not fixturing). Such damages shall constitute a failure.
4. Electrical reject devices from that same inspection lot may be used for samples.
5. Visual examination shall be in accordance with paragraph 3.3 .1 for method 1009.
6. When fluorocarbon gross leak testing is utilized, test condition $\mathrm{C}_{2}$ shall apply as minimum.
7. Generic data from Harris Reliability Add-On Program in the form of Reliability Bulletins are available upon request.

* Reference Note - Table 1 *


## Moisture Sensor Chip

Harris Semiconductor manufactures a device designed to make in-situ measurements on internal water vapor content of hermetic enclosures. It is particularly suited for determining moisture content in integrated circuits and hybrid packages as required by most military programs. Specifications and operating information for this device is provided on the succeeding pages.
semiconoucto phoouctrs ovivision

## FEATURES

## APPLICATION

- ACCURACY IS NOMINALLY $\pm 20 \%$ OF THE ACTUAL AMOUNT OF WATER PRESENT
- REPEATABILITY OF READINGS $\pm 2^{\circ} \mathrm{C}$
- NO SPECIAL PRE-CONDITIONING REQUIRED
- USEFUL FOR PACKAGE ASSEMBLY PROCESSING TEMPERATURES UP TO $500^{\circ} \mathrm{C}$

The HI-55001 can be used to make an in-situ determination of internal water vapor content of hermetic enclosures, particularly integrated circuit packages. The moisture sensor may be utilized for packaging technology improvement ${ }^{1}$ and for assembly lot process control. Applied in a relatively simple correlation experiment, it is eligible for DESC certification as a sensing device for supplying package moisture data per the requirements of MIL-STD-883 method 1018 procedure 3.

## DESCRIPTION

The HI-55001 is an integrated circuit moisture sensing element for use in determination of internal water vapor content of hermetic cavities.

The HI-55001 has four independent moisture sensing patterns on chip. Packages of up to one cubic centimeter cavity volume will require use of only one of the quad cells available. For internal cavity volumes in excess of one cubic centimeter, additional cells may be bonded out in parallel to increase the moisture capture area. Paralleling may be achieved by either internal or external package interconnection.
Performance of the HI-55001 has been extensively studied. 2 Correlation experiments with mass spectrometer measurements have been carried out by DESC certified laboratories. The range of useful measurement has been determined to be from $<200 \mathrm{ppmV}$ to at least 25000 ppmV . While mass spectrometry is the reference method for cavity moisture content measurement, there is currently no primary reference method or calibration technique for assuring absolute accuracy of any measurement method. Accuracy and range of useful measurement are therefore approximations based on an extensive program of dual moisture determinations. Data
from both $\mathrm{HI}-55001$ in-situ measurements and from mass spectrometer determinations per MIL-STD-883 method 1018 procedure 1 were used to establish the correlation noted above.

Note that in general the chip may be stored, handled and processed into the test package in the same manner as any conventional integrated circuit.

- Dry nitrogen storage should be utilized.
- Conventional wire bonding and die attach techniques are acceptable.
- The sensor top surface is not glassivated. Care must be taken not to contact this surface to avoid contamination and mechanical damage.

NOTE:

1. Lowry, R.K., VanLeeuwen, C.J., Kennimer, B. L., and Miller, L.A., "A Reliable Dry Ceramic Dual In-Line Package", International Rellabllity Physics Symposium, San Diego, California, April 19, 1978.
2. Lowry, R.K., Miller, L.A., Jonas, A.W., and Bird, J.M., "Characteristics of a Surface Conductivity Molsture Monitor for Hermetic Integrated Circuit Packages", International Reliability Physics Symposium, San Francisco, Callfornia, April 25, 1979.

## CHIP LAYOUT

CELL 4


CELL 1

CELL 3


CELL 2

The HI-55001 has four electrically identical moisture sensing cells on chip. The user may apply any one cell or parallel combination of cells in a moisture measuring experiment. The individual cells are accessed as follows: Cell 1 - pads $2 \& 3$; Cell 2 - pads $4 \& 5$; Cell 3 - pads $8 \& 9$; Cell 4 pads $10 \& 11$ respectively.

Chip Size: 95 mils by 50 mils.

## EQUIPMENT REQUIRED

Moisture sensing element installed in the package type to be analyzed.

Fluid bath temperature chamber/insulating container.
Keithley Model 602.*
X-Y Recorder HP-7004B.*
60V DC Power Supply HP-6128A.*
Thermocouple Cromel/Alumel.
Thermometer CMS $-10^{\circ} \mathrm{C}$ to $+260^{\circ} \mathrm{C}$; FISHER -\#15-030 $-50^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$.*

Immersion Heater.
$\mathrm{CO}_{2}$ or $\mathrm{LN}_{2}$ supply.
3M Fluorinert ${ }^{\circledR}$ FC-43*.
General Electric RTV sealant/adhesive. (\#106 Hi. Temp.).*

* or equivalent


## CONSTRUCTION OF TEMPERATURE CHAMBER

The fluid bath temperature chamber is constructed of double sided copper clad glass board to a dimension of W5" $\times$ L5" $\times$ $H 6^{\prime \prime}$. The detachable top should be bolted to the container via tie down nuts soldered on at least two opposing corners. The use of copper clad board affords ease of sealing the chamber against fluid leakage in addition to providing shielding from external fields.

The cooling coil is constructed by winding ten coil turns using $3 / 8^{\prime \prime}$ OD copper tubing. Two holes are drilled on opposite sides of the fluid container to accept the inlet and outlet of the coil. The coil is secured by soldering the inlet and outlet to the copper clad board. The inlet side of the tubing must be provided with adequate fixturing to enable connection to a $\mathrm{CO}_{2}$ or $\mathrm{LN}_{2}$ source. The chamber, when in use should be inside of an insulating container for economy of coolant usage.

## SAMPLE PREPARATION

Install moisture sensing element in package to be analyzed.
Wire bond moisture sensor cell pads to package pins and seal package using routine processing methods.

Perform fine and gross leak to determine proper hermeticity.
Special considerations need to be addressed when evaluating metal lidded or capped packages because of their tendency to allow water condensation onto the metal surfaces before that of the moisture sensor. RTV (thermal insulating) sealant/adhesive should be applied to the following package types then subjected to a 10 minute $100^{\circ} \mathrm{C}$ curing bake:

- Can type packages: coat circumference and top with sealant/adhesive.
- Flat metal lid packages: coat lid surface with sealant/adhesive.
- All hybrid packages: coat entire lid surface with sealant/adhesive.
- Ceramic packages: no preparation is needed.


Figure 1 - Measurement Apparatus


Test Setup - This photograph shows the complete test setup for implementation of a moisture measurement.


Temperature Chamber - This photograph illustrates the configuration of the fluid bath temperature chamber. The test device is positioned in the center of the cooling coil below the fluid level when the cover is attached to the base.

## CALIBRATION

Calibrate thermocouple using the X -input of recorder and position pen to secure convenient Y -position.

Insert thermocouple into bath along with the thermometer.
Heat bath with immersion heater to $+100^{\circ} \mathrm{C}$.
Drop pen recorder on the X-axis momentarily and record reading of thermometer.

Turn on $\mathrm{CO}_{2} / \mathrm{LN}_{2}$ and repeat above at $10^{\circ} \mathrm{C}$ intervals down to $-40^{\circ} \mathrm{C}$.

## MEASUREMENT

Solder the test device (with the moisture sensing element installed) to the two leads of the underside of the bath chamber lid.
Adjust thermocouple to close proximity to the underside of the test device.

Heat the bath to $+100^{\circ} \mathrm{C}$ with immersion heater while monitoring the fluid temperature with the thermometer.

Remove heater and thermometer and secure lid to container with screws.

Install insulating top. Turn Servo on.


Figure 2 - Shows no moisture peak down to $-40^{\circ} \mathrm{C}$. This indicates a moisture content of less than 320 ppmV for a cavity pressure of 0.41 atmosphere.

Check the X -axis to verify that the temperature point will correspond to $+100^{\circ} \mathrm{C}$.

Turn on power supply set 50 V and adjust Keithley scale $\left(1 \times 10^{-8}\right.$ to $1 \times 10^{-10}$ to give the least deflection. $10^{-10}$ or $10^{-9}$ at start, then as possible dew point is attained $10^{-8}$ may be required for $Y$ peak).
Drop pen.
Turn on $\mathrm{CO}_{2} / \mathrm{LN}_{2}$ and chill the bath down to $-40^{\circ} \mathrm{C}$ over a time period of not less than 0.25 hours.

An example measurement is as follows: A Y -axis peak is detected at $-27^{\circ} \mathrm{C}$. For a package cavity pressure of 0.5 atmosphere, this translates to moisture content of 1000 ppm V on the nomograph.
If no $Y$-axis peak is noted over the range $+100^{\circ} \mathrm{C}$ to $-40^{\circ} \mathrm{C}$, it is desirable to corroborate the data by two methods.

- Run one or more additional package samples from the same package/sealing run, expecting correlating test results.
- De-lid the test sample and examine for anomalies such as scratched open metal or an open bond, or bonding to the wrong package/moisture sensor pads.


Figure 3 - Shows a moisture peak at approximately $-18^{\circ} \mathrm{C}$ for a package cavity pressure of 0.45 atmosphere. This translates to approximately $\mathbf{2 8 0 0} \mathbf{~ p p m V}$ moisture.

## USE OF THE NOMOGRAPH

From the temperature of the peak current and the pressure of the sealed cavity (reasonably estimated from Gay Lussac's law: $\mathrm{P} \boldsymbol{\alpha} \mathrm{T}, \mathrm{V}$ constant), the nomograph in Figure 4 will yield package moisture content in parts per million by volume.
As an example, assume the package in Figure 3 (moisture peak at $-18^{\circ} \mathrm{C}$ ) was sealed at a temperature of $300^{\circ} \mathrm{C}$; the internal cavity pressure can then be calculated using the formula:
$\frac{P_{1}}{T_{1}}=\frac{P_{2}}{T_{2}}$ or $\frac{1}{300+273^{\circ} \mathrm{C}}=\frac{P_{2}}{(-18)+273^{\circ} \mathrm{C}}$ or $\frac{1}{573^{\circ} \mathrm{C}}=\frac{P_{2}}{255^{\circ} \mathrm{C}}$
Solving for $\mathrm{P}_{2} ; \mathrm{P}_{2}=0.45$ atmosphere.
${ }^{*} \mathrm{P}_{1}=$ Pressure at time of seal (1 atmosphere unless vacuum sealed.
$P_{2}=$ Unknown pressure.
$\mathrm{T}_{1}=$ Temperature (absolute) at time of seal.
$T_{2}=$ Temperature of conductivity peak maximum.
With the internal cavity pressure and the temperature of the conductivity maximum known, the nomograph in Figure 4 will yield the internal moisture ppm by V .

MOISTURE CONTENT, PPM BY VOLUME



Figure 4 - Nomograph for Dewpoints \& ppm as a Function of $\mathbf{P}$

## Burn-In Circuit Index

HA-909/911	Low Noise, Operational Amplifier	1, 2
HA-1600/02/05	Precision Voltage Reference	3
HA-1610/1615	10V Precision Voltage Reference	4
HA-2400/04/05	PRAM, Four Channel Operational Amplifier	5
HA-2420/25	Sample \& Hold	6
HA-2500/02/05	Precision High Slew Rate Operational Amplifier	2
HA-2507/17/27	Epoxy Packaged, High Slew Rate Op Amp	7
HA-2510/12/15	High Slew Rate Operational Amplifier	2
HA-2520/22/25	High Slew Rate Uncompensated Op Amp	2
HA-2530/35	Wide Band High Slew Inverting Amplifier	8
HA-2600/02/05	High Performance Operational Amplifier	2
HA-2607/27	Epoxy Packaged, High Slew Rate Op Amp	7
HA-2620/22/25	Very Wide Band, Uncompensated Op Amp	2,9
HA-2630/35	High Performance Current Booster	10
HA-2640/45	High Voltage Operational Amplifier	2
HA-2650/55	Dual High Performance Op Amp	11, 12
HA-2700/04/05	Low Power, High Performance Op Amp	13, 14
HA-2720/25	Low Power, Current Programmable Op Amp	15
HA-2730/35	Dual Low Power, Current Programmable Op Amp	16
HA-2900/04/05	Chopper Stabilized Operational Amplifier	17
HA-4602/05	Quad High Performance Op Amp	18
HA-4622/25	Wide Band High Performance Quad Op Amp	19
HA-4741	Quad Operational Amplifier	18
HA-4900/05	Quad Precision Comparator	20
HA-4920/25	High Speed Quad Comparator	20
HA-4950	Precision High Speed Comparator	21
HA-5100/05	Wide Band, JFET Input, Operational Amplifier	22
HA-5110/15	Wide Band, JFET Input, Uncompensated Op Amp	22
HA-5190/95	Wide Band Fast Settling Op Amp	23, 24
HC-55516/32	Delta Modulator (CVSD)	25
HI-200	Dual SPST Switch	26, 27
HI-201	Quad SPST Switch	28
HI-506	16/Dual 8 Channel Multiplexer	29
HI-506A	Overvoltage Protected 16/Dual 8 Channel Mux	29
HI-507	16/Dual 8 Channel Multiplexer	29
HI-507A	Overvoltage Protected 16/Dual 8 Channel Mux	29
HI-508A	Overvoltage Protected 8/Dual 4 Channel Mux	30
HI-509A	Overvoltage Protected 8/Dual 4 Channel Mux	31
HI-516	16 Channel/Dual 8 Channel CMOS High Speed Mux	32
HI-518	8 Channel/Dual 4 Channel CMOS High Speed Mux	33
HI-562	12 Bit, High Speed, Precision D/A Converter	34
HI-1080/85	8 Bit Precision D/A Converter	35
HI-1800A	Dual DPST Low Leakage Switch	36
HI-1818A	8/Dual 4 Channel Multiplexer	37
HI-1828A	8/Dual 4 Channel Multiplexer	38
HI-1840	Fail-Safe 16 Channel Multiplexer	29
HI-5040	Low Resistance SPST Switch	39
HI-5041	Low Resistance Dual SPST Switch	39
HI-5042	Low Resistance SPDT Switch	39
HI-5043	Low Resistance Dual SPDT Switch	39
HI-5044	Low Resistance SPDT Switch	39
HI-5045	Low Resistance SPDT Switch	39

HI-5046 Low Resistance DPDT Switch ..... 39
HI-5046A Low Resistance DPDT Switch ..... 39
HI-5047 Low Resistance 4 PST Switch ..... 39
HI-5047A Low Resistance 4 PST Switch ..... 39
HI-5048 Low Resistance Dual SPST Switch ..... 39
HI-5049 Low Resistance Dual DPST Switch ..... 39
HI-5050 Low Resistance SPDT Switch ..... 39
HI-5051 Low Resistance Dual SPDT Switch ..... 39
HI-5618A/B 8 Bit High Speed Monolithic D/A Converter ..... 40
HI-5610 10 Bit High Speed Monolithic D/A Converter ..... 41

## Burn-In Circuits

1 HA-909/911

NOTES:

$\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$
$R_{1}=1$ Megohm
$C_{1}=0.01 \mu \mathrm{~F}, 100 \mathrm{~V}$

3 HA-1600/02/05


HA-909/911, HA-2500/02/05, HA-2510/12/15, HA-2520/22/25, HA-2600/02/05, HA-2620/22/25

NOTES: HA-2640/45

TO-99

$\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$
$\mathrm{R}_{1}=1 \mathrm{Megohm}$
$\mathrm{C}_{1}=0.01 \mu \mathrm{~F}, 100 \mathrm{~V}$
$* V_{\text {SUPPLY }}= \pm 40 \mathrm{~V}$
4
HA-1610/15


NOTE:
Each device draws $\sim 12 \mathrm{~mA} \sim$ Junction Temp. $156^{\circ} \mathrm{C}$

6
HA-2420/25
14 LEAD CERDIP


NOTE:
$\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$


NOTES:
$D_{1}, D_{2}=1$ N4002 or similar $R_{1}=1 M \Omega 5 \% 1 / 4$ or $1 / 2$ Watt $C_{1}=0.01 \mu \mathrm{~F} . \mathrm{BV} \geq 30 \mathrm{~V}$

One Pair per Board
One per Socket
One per Socket

9
HA-2620/22/25


NOTES:
$T_{A}=+125^{\circ} \mathrm{C}$
$R_{1}=1$ Megohm
$c_{1}=0.01 \mu \mathrm{~F}, 100 \mathrm{~V}$


NOTE:
$\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$

10 HA-2630/35
TO-8

NOTE:
$\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$


NOTES:
$R_{1}, R_{2}=2 k \Omega \quad 1 / 4$ or $1 / 2$ Watt $5 \%$
$c_{1}, c_{2}=0.1 \mu \mathrm{~F}, \mathrm{~V}_{\mathrm{BR}} \geq 30 \mathrm{~V}$
One Set per Socket
$D_{1}, D_{2}=$ IN4002 or similar

12 HA-2650/55

NOTES:
$\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$, Supplies $= \pm 15 \mathrm{VDC}$
Resistors $=2 \mathrm{k} \Omega \pm 10 \% 1 / 4$. Watt
Capacitors $=0.01$ to $0.1 \mu \mathrm{~F}$ Nonelectrolytic


NOTES:
$\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$
$\mathrm{R}_{1}=1 \mathrm{Megohm}$

NOTES:
$\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$

$T_{A}=+125^{\circ} \mathrm{C}$
$C_{1}, C_{2}=0.01$ to $0.1 \mu \mathrm{~F}$
$R_{1}=1 \mathrm{k} \Omega \quad \quad R_{3}=10 \mathrm{k} \Omega$
$R_{2}=2 M \Omega \quad R_{4}=5 k \Omega$
17


NOTES:
$T_{A}=+125^{\circ} \mathrm{C}$
$\mathrm{R}_{1}=1$ Megohm

16 HA-2730/35
TO-116

18 HA-4602/05, HA-4741
8 HA-4602/05, HA-4741 14 LEAD CERDIP




NOTES:
$R_{1}, R_{2}, R_{4}, R_{5}, R_{7}, R_{8}, R_{10}, R_{11}=1 \mathrm{k} \Omega 5 \% 1 / 4$ or $1 / 2$ Watt
$R_{3}, R_{6}, R_{9}, R_{12}=10 k \Omega$
$5 \% 1 / 4$ or $1 / 2$ Watt
$C_{1}, C_{2}=0.1 \mu \mathrm{~F}, \mathrm{~V}_{\mathrm{BR}} \geq 30 \mathrm{~V}$
One per Socket
$D_{1}, D_{2}=$ IN4002 or similar
One per Board
NOTES:

$\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}=0.1 \mu \mathrm{~F}$
$D_{1}, D_{2}, D_{3}=$ IN4002
DRIVE SIGNAL FREQ. $=2000 \mathrm{~Hz}$
DRIVE SIGNAL AMP $= \pm 0.6 \mathrm{~V}$

## 21

HA-4950
14 PIN DIP


NOTES:
$\mathrm{R}_{1}=1 \mathrm{k} \Omega$
$R_{2}=50 \mathrm{k} \Omega$
$5 \% 1 / 4$ or $1 / 2$ Watt
$\mathrm{D}_{1}=1 \mathrm{~N} 4002$ or similar
$\mathrm{D}_{2}=$ IN4002 or similar
$D_{3}=$ IN4002 or similar
One Set per Board
$\mathrm{c}_{1}, \mathrm{c}_{2}, \mathrm{c}_{3}=0.1 \mu \mathrm{~F}$
One Set per Socket Breakdown Voltage $\geq 30 \mathrm{~V}$
$f_{1}=100 \mathrm{kHz}$ TTL Levels ( $50 \%$ Duty Cycle)


NOTES:
$R_{1}, R_{2}=1 \mathrm{k} \Omega \quad 1 / 2$ or $1 / 2$ Watt $5 \%$
$R_{3}=10 k \Omega 1 / 4$ or $1 / 2$ Watt $5 \%$
$\mathrm{C}_{1}, \mathrm{C}_{2}=0.1 \mu \mathrm{~F}, \mathrm{~V}_{\mathrm{BR}} \geq 30 \mathrm{~V}$
$D_{1}, D_{2}=$ IN4002 or similar

22
HI-5100/05, HI-5110/15
TO-99

NOTES:

$R_{1}, R_{2}=10 \mathrm{k} \Omega \quad 1 / 4$ or $1 / 2$ Watt $5 \%$
$R_{3}=100 \mathrm{k} \Omega 1 / 4$ or $1 / 2$ Watt $5 \%$
$c_{1}=0.01 \mu \mathrm{~F}, \mathrm{~V}_{\mathrm{BR}} \geq 30 \mathrm{~V}$
$C_{2}, c_{3}=0.1 \mu \mathrm{~F}, \mathrm{~V}_{\mathrm{BR}} \geq 30 \mathrm{~V}$
$D_{1}, D_{2}=$ IN4002 or similar
One Set per Socket
One Set per Board


NOTES:
$R_{1}, R_{2}=1 \mathrm{k} \Omega 1 / 4$ or $1 / 2$ Watt $5 \%$
$R_{3}=10 k \Omega \quad 1 / 4$ or $1 / 2$ Watt $5 \%$
$\mathrm{c}_{1}, \mathrm{c}_{2}=0.1 \mu \mathrm{~F}, \mathrm{~V}_{\mathrm{BR}} \geq 30 \mathrm{~V}$
$D_{1}, D_{2}=$ IN4002 or similar $\}$ One per Board


NOTES:
$\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$
$V_{D D}=+7.0 \mathrm{~V}$
$\mathrm{f}_{\mathrm{c}}=16 \mathrm{kHz}$


NOTES:
$\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$
$R_{1}=10 k \Omega$
$D_{1}, D_{2}, D_{3}=1 N 4002$
FREQ. $=100 \mathrm{kHz}$

28
HI-201
16 LEAD CERDIP


NOTES:
$\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$
$D_{1}, D_{2}=1 N 4002$
FREQ. $=100 \mathrm{kHz}$

HI-508A
16 LEAD CERDIP HI-507A, HI-1840


NOTES:


NOTES
$A_{0}=100 \mathrm{kHz}$
$A_{1}=50 \mathrm{kHz}$
$A_{2}=25 k H z$
TEMP: $+125^{\circ} \mathrm{C}$

NOTES:

$\mathrm{A}_{0}=100 \mathrm{kHz}$
TEMP: $+125^{\circ} \mathrm{C}$

NOTES:

$-15 \mathrm{~V}$


$R_{1}, R_{2}=10 \mathrm{k} \Omega \quad 5 \% 1 / 4$ or $1 / 2$ Watt
$D_{1}, D_{2}=1 N 4002$ or similar $\} \quad$ One Set per Board TTL Levels
$\overbrace{f_{1}=100 \mathrm{kHz} \quad f_{2}=50 \mathrm{kHz} \quad f_{3}=25 \mathrm{kHz}}^{(50 \% \text { Duty Cycle) }}$
$\mathrm{f}_{4}=12.5 \mathrm{kHz} \quad \mathrm{f}_{5}=6.25 \mathrm{kHz}$
$34 \quad \mathrm{HI}-562$
24 PIN DIP


NOTES:
$T_{A}=+125^{\circ} \mathrm{C}$
$\mathrm{D}_{1}, \mathrm{D}_{2}, \mathrm{D}_{3}=1 \mathrm{~N} 4002$
$\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}=0.01 \mu \mathrm{~F}$

36
HI-1800A
16 LEAD CERDIP


NOTES:
$T_{A}=+125^{\circ} \mathrm{C}$
$A_{1}=100 \mathrm{kHz}$
$A_{2}=50 \mathrm{kHz}$
$A_{3}=25 \mathrm{kHz}$
$E N=12.5 \mathrm{kHz}$


NOTES:
$\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$
$A_{0}=100 \mathrm{kHz}$
$A_{1}=50 \mathrm{kHz}$
$A_{2}=25 \mathrm{kHz}$
$E N=12.5 \mathrm{kHz}$

39
HI-5040 thru HI-5051
16 LEAD CERDIP


NOTES:
$\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$
$\mathrm{D}_{1}, \mathrm{D}_{2}, \mathrm{D}_{3}=$ IN4004


NOTES:
$\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$
$A_{0}=100 \mathrm{kHz}$
$A_{1}=50 \mathrm{kHz}$
$E N=25 k H z$

40
HI-5618A/5618B
18 PIN DIP


NOTES:
$D_{1}, D_{2}, D_{3}=$ IN4002 or similar $\}$
$\mathrm{c}_{1}, \mathrm{c}_{2}, \mathrm{c}_{3}=0.1 \mu \mathrm{~F}$
One Set per Board
One Set per Socket Breakdown Voltage $\geq 30 \mathrm{~V}$
$\mathrm{f}_{1}=1 \mathrm{MHz}$ TTL Level ( $50 \%$ Duty Cycle)


NOTES:
$R_{1}=50 \mathrm{k} \Omega$
$D_{2}, D_{3}, D_{11}=1 N 4002$
$C_{2}, C_{3}, C_{11}=0.01 \mu \mathrm{~F}$

## Packaging

## PAGE

Harris Package Selection Guide9-2Package Dimensions ..... 9-3

Harris Package Selection Guide

PART NUMBER	PACKAGE CODE (SEE NOTE)			
	DIP			$\begin{aligned} & \text { LEADLESS } \\ & \text { CHIP CARRIERS* } \end{aligned}$
	CAN	CERAMIC	PLASTIC	
HA-909/911	2A			
HA-1600/02/05		4 T		
HA-1610	2A	40		LA
HA-1615	2A	40		
HA-2400/2404/2405		5X		
HA-2420/2425		4 U		LA
HA-2500/2502/2505	2A	1N		LA
HA-2507/2517/2527			3A	
HA-2510/2512/2515	2A	1 N		LA
HA-2520/2522/2525	2A	1N		LA
HA-2530/2535	2A			
HA-2600/2602/2605	2A	1N		LA
HA-2607/2627			3A	
HA-2620/2622/2625	2A	IN,4U		LA
HA-2630/2635	6G			
HA-2640/2645	2A	1 N		
HA-2650/2655	2A	4 U	3A	LA
HA-2700/2704/2705	2A	4 U		
HA-2720/2725	2A	1 N		
HA-2730/2735		4D		
$\begin{aligned} & \text { HA-2900/2904/2905 } \\ & \text { HA-4602/4605 } \end{aligned}$	2E			LA
HA-4622/4625		4 U		
HA-4741		4 U	3M	LA
HA-4900/4905		42		
HA-4920/4925		42		
HA-4950		4D		LA
HA-5100/5105	2A			
HA-5110/5115	2A			
HA-5190/5195	6G	4D		
HC-55516/55532		40		
HD-0165		4K		
HI-200	2D	4 U	3M	LA
HI-201		4B	3 C	LA
HI-506/507/506A/507A		1M	3 P	LC
HI-508A, 509A		4B	3L	LA
HI-516		1M		
HI-518		4 N		
HI-562		1 H		LC
HI-1080/1085		4 K		
HI-1800A		4B		LA
HI-1818A/1828A		4B	3C	LA
HI-1840		1M		
HI-5040 thru HI-5051		4B		
HI-5618A/5618B		5E	3D	LA
HI-5610				
HI-5900		MB		

NOTE: "Package Code" references drawings on the following pages. Note that these do not correspond with the general package designations to be used in constructing the part number, which is explained in Ordering Information at the front of this book.

Code " 3 " plastic DIP packages are not available for military temperature range.
*Leadless Chip Carrier packages are available on the products indicated in the chart. Consult factory for information on ordering and availability.

## Package Dimensions

1. All dimensions in inches; millimeters are shown in parentheses.
2. All dimensions $\pm .010( \pm 0.25 \mathrm{~mm})$ unless otherwise shown.
3. Package codes are shown in black squares.


8 LEAD DIP EPOXY


3M 3R
14 LEAD DIP EPOXY
3P





4S
18 LEAD SIDE DIP BRAZE

$4 U$
14 LEAD CERDIP


5 E
18 LEAD CERDIP


## Harris Sales Locations

## OEM Sales

## NORTHEASTERN REGION

Suite 301
117 Worcester Street
Wellesley Hills, MA 02181
(617) 237-5430

Suite 273
555 Broadhollow Road
Melville, L.I., N.Y. 11747
(516) 249-4500

## SOUTHEASTERN REGION

Suite 115
2020 W. McNab Road
Ft. Lauderdale, FL 33309
(305) 971-3200

Suite 325
650 Swedesford Road
Wayne, PA 19087
(215) 687-6680

CENTRAL REGION
16001 Dallas Parkway
Mail Stop 47
Dallas, TX 75240
(214) 386-2090

Suite 206
5250 Far Hills Avenue
Kettering, OH 45429
(513) 433-5770

571 W. Golf Rd.
Arlington Heights, IL 60005
(312) 437-4712

## WESTERN REGION

Suite 227
21243 Ventura Boulevard
Woodland Hills, CA 91364
(213) 992-0686

Suite 320
1503 South Coast Drive
Costa Mesa, California 92626
(714) 540-2176

Suite 300
625 Ellis Street
Mountain View, CA 94043 (415) 964-6443

33919 9th Avenue South
Federal Way, Washington 98003
(206) 838-4878

## International Sales

## Europe

## HEADQUARTERS

Harris S. A.
Harris Semiconductor European
Headquarters, C/O Harris S.A.
6 Av Charles de Gaulle, Hall A
F-78150 Le Chesnay
Tel: 954-90-77
TWX: 842696514 F

## SALES OFFICES

## ENGLAND

Harris Systems Ltd.
Harris Semiconductor Div.
P.O. Box 27, 145 Farnham Rd.

Slough SL1 4XD
Tel: (Slough) 34666
TWX: 848174 HARRIS G
FRANCE
Harris S. A.
Harris Semiconductor
6 Avenue Charles de Gaulle, Hall A
F-78150 Le Chesnay
Tel: 954-90-77
TWX: 842696514 F HARRISP

## WEST GERMANY

Harris GmbH
Harris Semiconductor Div.
Einsteinstrasse 127
D-8 Munich 80
Tel: 089-47-30-47
TWX: 524126 HARMU D

## EUROPEAN DISTRIBUTORS

## AUSTRIA

Kontron GmbH
Industriestrasse B 13
2345 Brunn am Gebirge
Tel: 02236/86631
TWX: 79337 KONIN A

## BELGIUM

Betea S. A.
775 Chee de Louvain
B-1140 Brussels
Tel: 02-7368050
TWX: 23188 BETEA B

## DENMARK

Ditz Schweitzer A. S.
Vallensbaekvej 41
DK-2600 Glostrup
Tel: 02-453044
TWX: 33257 SCHWEI DK

## FINLAND

Finn Metric $O Y$
Ahertajantie 6 D/PL 35
SF-02101 Espoo 10
Finland
Tel: 460844
TWX: 122018

## FRANCE

Almex S. A.
48 rue de l'Aubepine
F-92160 Antony
Tel: 666-21-12
TWX: 250067 ALMEX
A 2 M
18 Avenue Dutartre
F-78150 Le Chesnay
Tel: 955-32-49
TWX: 698376 AMM
Spetelec
Tour Europa-III
94532 Rungis Cedex
Tel: 6865665
TWX: 250801 THAI

## GERMANY

Alfred Neye-Enatechnik GmbH
Schillerstrasse 14
2085 Quickborn b. Hamburg
Tel: 041066121
TWX: 02-13 590 ENA D

EUROPEAN DISTRIBUTORS
(Continued)

Kontron Elektronik GmbH
Breslauer Str. 2
D-8057 Eching b. Munich
Tel: 089319011
TWX: 0522122 KONEL D
Jermyn GmbH
Schulstrasse 36
D-6277 Carnberg-Wurges
Tel: (06434) 6005
TWX: 484426 JERM D

## ITALY

Erie Elettronica SpA
Via Melchiorre Gioia 66
I-20125 Milano
Tel: (2) 6884833/4/5
TWX: 36385 ERIEMIL

Lasi Elettronica
Via le Lombardia, 6
I-20092 Cinisello Balsamo
Tel: (2) 9273578
TWX: 37612 LASI MIL

## NETHERLANDS

Techmation Electronics B. V.
Nieuwe Meerdijk, 31
P.O. Box 31

NL-1170 AA Badhoevedorp
Tel: 02968-6451
TWX: 18612 TELCO NL

## NORWAY

EGA A. S.
Ulvenveien 75
P.O. Box 53

Oekern, N-Oslo 5
Tel: +472221900
TWX: 11 265A EGA N

## SPAIN \& PORTUGAL

Instrumentos Electronicos de Precision
Alcalde Sainz de Baranda 33
Madrid 9, Spain
Tel: 2741007
TWX: 22961 SAIEP E

## SWEDEN

A B Betoma
Box 3005
S-171 03 Solna 3
Tel: 08-82 0280
TWX: 19389 BETOMA S

## SWITZERLAND

Stolz A. G.
Bellikonerstrasse 218
CH-8968 Mutschellen
Tel: 05754655
TWX: 54070 STLZ CH

## UNITED KINGDOM \& IRELAND

Macro Marketing Ltd.
396 Bath Road
Slough, Berks, U. K.
Tel: (06286) 63741
TWX: 847945 APEX G
Jermyn Holdings Ltd.
Vestry Estate
Sevenoaks, Kent, U. K.
Tel: 073250144
TWX: 95142 JERMYN G
Memec Ltd.
Thame Park Ind. Estate
Thame, Oxon OX9 3RS, U. K.
Tel: 0844213146
TWX: 837508 MEMEC G
Phoenix Electronics Ltd.
Western Buildings
Vere Road
Kirkmuirhill, Lanksh.
ML11 9RP, Scotland
Tel: 055589-2393
TWX: 777404 FENIX G

## Far East

## OEM SALES OFFICE

## JAPAN

Harris Semiconductor Inc.
Far East Branch
Suzuya Bldg., 2F
8-1 Shinsen-cho
Shibuya-ku, Tokyo 150
Tel: 03-476-5581
TWX: J 26525 HARRISFE

## FAR EAST DISTRIBUTORS

## AUSTRALIA

CEMA (Distrb.) Pty. Ltd.
21 Chandos Street
Crows Nest, N. S. W. 2065
Tel: 439-4655
TWX: A22846 CEMA AA

FAR EAST DISTRIBUTORS

## (Continued)

## INDIA

American Components Inc.
For Sujata Sales and Exports Ltd.
3350 Scott Blvd., Bldg. 15
Santa Clara, CA, U.S.A. 95051
Tel: (408) 727-2440
TLX: $\quad 352073$ EL COMP SNTA

## South America

ROW Inc.
3421 Lariat Drive
Shingle Springs, CA, U.S.A. 95682
Tel: (916) 677-2827

## HOME OFFICE

P.O. Box 883

Melbourne, FL 32901
(305) 724-7000

TWX: 510-959-6259

## Analog Data Book

HARRIS


[^0]:    * " $K$ " equivalent is either military or selected commercial

[^1]:    * 100\% Tested For DASH 8

[^2]:    * $100 \%$ Tested For DASH 8

[^3]:    * 100\% Tested For DASH 8

[^4]:    * 100\% Tested For DASH 8

[^5]:    *100\% Tested For DASH 8

[^6]:    * 100\% tested for HA1-4602-8

[^7]:    *100\% tested for HA1-4622-8

[^8]:    *100\% tested for HA1-4900-8.

[^9]:    * 100\% tested for Dash 8. All other parameters for design information only.

[^10]:    *100\% tested for Dash 8. All other parameters for design information only.

[^11]:    * Time delay between B and C represents total time delay for $0 V$ to +5 V full scale coded change.

[^12]:    NOTE: All data typical room temperature specifications at $\pm 15 \mathrm{~V}$ supplies. For guaranteed and tested specifications consult the device data sheet.

[^13]:    * $\mathbf{1 0 0 \%}$ Tested for Dash 8 at $\mathbf{+ 2 5}{ }^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$ Only.

[^14]:    * $100 \%$ Tested for Dash 8 at $+25^{\circ} \mathrm{C}$ and $+125^{\circ}$ C Only.

[^15]:    * $100 \%$ Tested for Dash 8 at $+25^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$ Only.

[^16]:    * Tap 1 or Tap 3 with selected external series resistors may be substituted for points A or B, respectively, for fine adjustment of output range.

[^17]:    *Note: No active input should be left in a "floating condition".

[^18]:    NOTES

[^19]:    * Reference Note - Table 1 *

