DICITAL PRODUCT DATA BOOK

H HARRIS

Harris Semiconductor Sector Capabilities

Harris Semiconductor, one of the top ten U.S. merchant semiconductor suppliers, is a sector of Harris Corporation - a producer of advanced information processing, communication and microelectronic products for the worldwide information technology market.

Harris Semiconductor is organized to address the standard products, custom products, and gallium arsenide semiconductor markets.

SEMICONDUCTOR PRODUCTS DIVISION:

Harris Semiconductor offers a wide selection of standard analog and digital circuits through its Semiconductor Products Division:

Analog Products

Harris is a major force in analog integrated circuitry, offering a broad line of products including: analog-to-digital converters, digital-to-analog converters, sample-and-hold circuits, multiplexers, switches, operational amplifiers, telecommunications and speech processing products and active filters. (See complete analog product listing, page 13-2.)

Digital Products

Harris is a pioneer in developing and producing digital CMOS products including: CMOS RAMs, CMOS PROMs, CMOS microprocessors, CMOS peripherals, CMOS data communications products, and a full line of 80 C 286 and $80 \mathrm{C} 86 / 88$ microprocessors and peripherals. Semicustom solutions are accomplished using a combination of fully characterized cells, macros, complex megacells and compilable functions. (See complete digital product listing, page 1-2.)

CUSTOM INTEGRATED CIRCUITS DIVISION (CICD)

CICD is dedicated to the development and production of custom/semi-custom and specialized integrated circuits for use in such areas as tactical/strategic radiation environments and secure communications. CICD employs high performance CMOS and bipolar technologies to meet the needs of high-end major military and hi-reliability programs.

CICD is oriented to engineering and manufacturing to specific customer requirements. The division also has its own dedicated manufacturing operation and engineering, product assurance, and program manager representation to insure close customer interaction and tight control of the design and quality aspects of individual programs.

Data sheet products include devices that have a wider appeal, including those designed to operate in very severe environments. CICD's experience with radiation-hardened devices has made Harris Semiconductor the leading producer of circuits that meet a variety of Department of Defense environmental specifications. (See complete CICD product listing, page 13-7 \& 13-8.)

MICROWAVE SEMICONDUCTOR SECTION

Harris Microwave Semiconductor Division develops and manufactures gallium arsenide field effect transistors (GaAs FETs), digital integrated circuits and monolithic microwave integrated circuits. Custom design and fabrication services are available whereby customers can design or specify specialized digital, MMIC or FET devices for manufacture at HMS. (See complete Microwave product listing, page 13-9.)

Harris Digital Products

Harris Semiconductor continues to lead the way in offering advanced CMOS digital products for the most demanding system applications in this world - and beyond. Total control of system operation is now possible with Harris' static CMOS 80C86/88-based microprocessor and peripheral family.

In addition, use Harris' advanced 80C286 static CMOS 16-Bit CPU for multitasking and multi procesor applications. True low power Programmable Logic, the world's largest library of LSI Standard Cells, and advanced CMOS Memory and Memory modules are all available at Harris - just turn the pages for more on these and other advanced CMOS digital products.

This data book fully describes Harris Semiconductor's line of CMOS digital products by including a complete set of data sheets for product specifications; application notes with design details for specific applications of Harris products; and a description of Harris' quality and reliability program.

If you need more information on these and other Harris products, please contact the nearest Harris sales office listed in the back of this data book. Or return the reply card attached inside back cover.

Harris Semiconductor products are sold by description only. All specifications in this data book are applicable only to packaged products; specifications for dice are available upon request. Harris reserves the right to make changes in circuit design, specifications and other information at any time without prior notice. Accordingly, the reader is cautioned to verify that data sheets and other information in this publication are current before placing orders. Information contained in the application notes is intended solely for general guidance; use of the information for user's specific application is at user's risk. Reference to products of other manufacturers are solely for convenience of comparison and do not imply total equivalency of design, performance, or otherwise.

10 HARRIS

General Information
CMOS Microprocessors 3
CMOS Peripherals 4
CMOS Data Communications 5
Digital Standard Cell Capability 6
CMOS Harris Programmable Logic 7
64XX Bus Interface Circuits 8
Article Reprints 9
Harris Quality and Reliability 10
Hi-Reliability Products 11
Ordering and Packaging 12
Appendices 13
Analog Products 13-2
CMOS Digital Products 13-6
CICD Rad Hard Products 13-7
Harris Microwave Semiconductor 13-9
Gallium Arsenide/Microwave Products
Harris Sales Locations 13-10

Table of Contents

SECTION 1 GENERAL INFORMATION PAGE
CMOS Alpha-Numeric Index 1-2
CMOS Devices by Families 1-3
SECTION 2 CMOS MEMORY
CMOS Memory Product Index 2-1
Low Voltage Data Retention 2-2
Harris CMOS RAM Cross-Reference 2-3
1K CMOS RAM Data Sheets 2-4
4K CMOS RAM Data Sheets 2-40
16K CMOS RAM Data Sheets 2-70
$64 K$ CMOS RAM Data Sheet 2-104
CMOS RAM Module Data Sheets 2-113
CMOS PROM Data Sheets 2-269
Data Entry Formats for Harris Custom Programming 2-181
SECTION 3 CMOS MICROPROCESSORS
CMOS Microprocessor Product Index 3-1
Industry CMOS Microprocessor Cross Reference 3-2
CMOS Microprocessors Data Sheets 3-3
SECTION 4 CMOS PERIPHERALS
CMOS Peripherals Product Index 4-1
Industry CMOS Peripheral Cross Reference 4-2
CMOS Peripherals Data Sheets 4-3
SECTION 5 CMOS DATA COMMUNICATIONS
CMOS Data Communications Product Index 5-1
CMOS Data Communications Data Sheets 5-2
SECTION 6 DIGITAL STANDARD CELL CAPABILITY
Digital Standard Cell Capability Index 6-1
Standard Cell Data Sheet 6-2
SECTION 7 CMOS HARRIS PROGRAMMABLE LOGIC
CMOS Harris Programmable Logic Product Index 7-1
CMOS Harris Programmable Logic Data Sheets 7-2
SECTION 8 64XX BUS INTERFACE CIRCUITS
CMOS 64XX Bus Interface Product Index 8-1
CMOS Bus Driver Data Sheets 8-2
SECTION 9 ARTICLE REPRINTS
Article Reprints Index 9-1
SECTION 10 HARRIS QUALITY AND RELIABILITY
Harris Quality and Reliability Index 10-1
SECTION 11 HI-RELIABILITY PRODUCTS
Hi-Reliability Products Index. 11-1
SECTION 12 ORDERING AND PACKAGING
Ordering and Packaging Index 12-1
Dice Information 12-3
SECTION 13 APPENDICES
Analog Products 13-2
CMOS Digital Products 13-6
CICD Rad Hard Products 13-7
Harris Microwave/Gallium Arsenide Microwave Products 13-9
Harris Sales Locations 13-10

General Information

CMOS ALPHA-NUMERIC INDEX
 1-2

CMOS DEVICES BY FAMILIES . 1-3

CMOS Alpha-Numeric Index

PRODUCT DESCRIPTION PAGE
HD-15530 Manchester Encoder-Decoder 5-38
HD-15531 Manchester Encoder-Decoder 5-45
HD-4702 Programmable Bit Rate Generator 5-2
HD-6402 Universal Asynchronous Receiver Transmitter 5-7
HD-6406 Programmable Asynchronous Communication Interface 5-13
HD-6408 Asynchronous Serial Manchester Adapter 5-24
HD-6409 Manchester Encoder-Decoder 5-29
HD-6431 Hex Latching Bus Driver 8-2
HD-6432 Hex Bi-Directional Bus Driver 8-3
HD-6433 Quad Bus Separator/Driver 8-4
HD-6434 Octal Resettable Latched Bus Driver 8-5
HD-6436 Octal Bus Buffer/Driver 8-6
HD-6440 Latched 3 to 8 Line Decoder-Driver 8-7
HD-6495 Hex Bus Driver 8-8
HM-6504 4K $\times 1$ Synchronous RAM 2-40
HM-6508 1K $\times 1$ Synchronous RAM 2-4
HM-6514 1K x 4 Synchronous RAM 2-55
HM-6516 2K x 8 Synchronous RAM 2-70
HM-65162 2K x 8 Asynchronous RAM 2-78
HM-6518 $1 \mathrm{~K} \times 1$ Synchronous RAM 2-13
HM-65262 16K x 1 Asynchronous RAM 2-89
HM-6551 256×4 Synchronous RAM 2-22
HM-6561 256×4 Synchronous RAM 2-31
HM-6564 64K Synchronous RAM Module 2-113
HM-65642 8K x 8 Asynchronous RAM 2-104
HM-6617 $2 \mathrm{~K} \times 8$ Fuse Link PROM 2-175
HM-6642 512×8 Fuse Link PROM 2-169
HM-8808/08A $8 \mathrm{~K} \times 8$ Asynchronous RAM Modules 2-122
HM-8816H 16K x 8 Asynchronous RAM Module 2-134
HM-8832 32K x 8 Asynchronous RAM Module 2-139
HM-92560 256K Synchronous RAM Module 2-146
HM-92570 256K Buffered Synchronous RAM Module 2-153
HM-91M2 1M-Bit Asynchronous RAM Module 2-160
HPL ${ }^{\text {TM }}$-16LC8 Programmable Logic 7-2
HPL-16RC8/6/4 Programmable Logic 7-9
HPL-82C138 Programmable Chip Select Decoder (PCSD ${ }^{\text {M }}$) 7-34
HPL-82C139 Programmable Chip Select Decoder (PCSD) 7-29
HPL-82C338 Programmable Chip Select Decoder (PCSD) 7-24
HPL-82C339 Programmable Chip Select Decoder (PCSD) 7-19
80 C 86 Static 16-Bit Microprocessor 3-58
80C88 Static 8/16-Bit Microprocessor 3-81
80C286 Static 16-Bit Microprocessor 3-3
82C37A High Performance Programmable DMA Controller 4-3
82C50A Asynchronous Communications Element 4-21
82C52 Serial Controller Interface 4-41
82C54 Programmable Interval Timer 4-51
82C55A Programmable Peripheral Interface 4-66
82C59A Priority Interrupt Controller 4-86
82 C 82 Octal Latching Bus Driver 4-100
82C83H Octal Latching Inverting Bus Driver 4-105
82C84A Clock Generator Driver 4-110
82C85 Static Clock Controller/Generator 4-117
82C86H/87H Octal Bus Transceivers 4-134
82C88 Bus Controller 4-139
82C89 Bus Arbiter 4-146
Standard Cell HSC 250 CMOS Cell Library 6-2

CMOS Devices by Families

PAGE
8/16-BIT MICROPROCESSORS
80C286 Static 16-Bit Microprocessor 3-3
80C86 Static 16-Bit Microprocessor 3-58
80C88 Static 8/16-Bit Microprocessor 3-81
80C86/88 PERIPHERAL CIRCUITS
82C37A High Performance Programmable DMA Controller 4-3
82C50A Asynchronous Communications Element 4-21
82C52 Serial Controller Interface 4-41
82C54 Programmable Interval Timer 4-51
82C55A Programmable Peripheral Interface 4-66
82C59A Priority Interrupt Controller 4-86
App Note 109 82C59A Priority Interrupt Controller. 4-156
80C86/88 BUS SUPPORT CIRCUITS
82C82 Octal Latching Bus Driver 4-100
82C83H Octal Latching Inverting Bus Driver 4-105
82C84A Clock Generator Driver 4-110
82C85 Static Clock Controller/Generator 4-117
82C86H/87H Octal Bus Transceivers. 4-134
82C88 Bus Controller 4-139
82C89 Bus Arbiter 4-146
64XX BUS INTERFACE CIRCUITS
HD-6431 Hex Latching Bus Driver 8-2
HD-6432 Hex Bi-Directional Bus Driver 8-3
HD-6433 Quad Bus Separator/Driver. 8-4
HD-6434 Octal Resettable Latched Bus Driver 8-5
HD-6436 Octal Bus Buffer/Driver 8-6
HD-6440 Latched 3 to 8 Line Decoder-Driver. 8-7
HD-6495 Hex Bus Driver 8-8
SERIAL COMMUNICATIONS CIRCUITS
HD-4702 Programmable Bit Rate Generator. 5-2
HD-6402 Universal Asynchronous Receiver Transmitter. 5-7
HD-6406 Programmable Asynchronous Communication Interface 5-13
HD-6408 Asynchronous Serial Manchester Adapter. 5-24
HD-6409 Manchester Encoder-Decoder 5-29
HD-15530 Manchester Encoder-Decoder 5-38
HD-15531 Manchester Encoder-Decoder 5-45
App Note 108 HD-6406 Software Applications 5-54

CMOS Devices by Families

PAGE
CMOS STATIC RAMs1K - SYNCHRONOUS
HM-6508 $1 \mathrm{~K} \times 1$ Synchronous RAM 2-4
HM-6518 1K $\times 1$ Synchronous RAM 2-13
HM-6551 256×4 Synchronous RAM 2-22
HM-6561 256×4 Synchronous RAM 2-31
4K - SYNCHRONOUS
HM-6504 4K $\times 1$ Synchronous RAM 2-40
HM-6514 1K x 4 Synchronous RAM 2-55
16K - SYNCHRONOUS
HM-6516 $2 \mathrm{~K} \times 8$ Synchronous RAM 2-70
16K - ASYNCHRONOUS
HM-65162 2K x 8 Asynchronous RAM 2-78
HM-65262 16K $\times 1$ Asynchronous RAM 2-89
64K - ASYNCHRONOUS
HM-65642 8K x 8 Asynchronous RAM 2-104
CMOS RAM MODULE
HM-6564 64K Synchronous RAM Module 2-113
HM-8808/08A $8 \mathrm{~K} \times 8$ Asynchronous RAM Modules 2-122
HM-8816H 16K $\times 8$ Asynchronous RAM Module 2-134
HM-8832 32×8 Asynchronous RAM Module. 2-139
HM-92560 256K Synchronous RAM Module 2-146
HM-92570 256K Buffered Synchronous RAM Module 2-153
HM-91M2 1M-Bit Asynchronous RAM Module 2-160
CMOS FUSE LINK PROMs
HM-6642 512×8 Fuse Link PROM 2-169
HM-6617 2K x 8 Fuse Link PROM 2-175
CMOS PROGRAMMABLE LOGIC
HPL ${ }^{\text {TM }}$-16LC8 Programmable Logic 7-2
HPL-16RC8/6/4 Programmable Logic 7-9
HPL-82C339 Programmable Chip Select Decoder (PCSD) 7-19
HPL-82C338 Programmable Chip Select Decoder (PCSD) 7-24
HPL-82C139 Programmable Chip Select Decoder (PCSD) 7-29
HPL-82C138 Programmable Chip Select Decoder (PCSD) 7-34
STANDARD CELL LIBRARY
Standard Cell HSC 250 CMOS Cell Library 6-2

[^0]PAGE
LOW VOLTAGE DATA RETENTION 2-2
INDUSTRY CMOS RAM CROSS REFERENCE 2-3
1K CMOS RAM DATA SHEETS
HM-6508 $1 \mathrm{~K} \times 1$ Synchronous RAM 2-4
HM-6518 $1 \mathrm{~K} \times 1$ Synchronous RAM 2-13
HM-6551 256×4 Synchronous RAM 2-22
HM-6561 256×4 Synchronous RAM 2-31
4K CMOS RAM DATA SHEETS
HM-6504 $4 \mathrm{~K} \times 1$ Synchronous RAM 2-40
HM-6514 1K x 4 Synchronous RAM 2-55
16K CMOS RAM DATA SHEETS
HM-6516 2K x 8 Synchronous RAM 2-70
HM-65162 $2 \mathrm{~K} \times 8$ Asynchronous RAM 2-78
HM-65262 16K x 1 Asynchronous RAM 2-89
64K CMOS RAM DATA SHEET
HM-65642 8K x 8 Asynchronous RAM 2-104
CMOS RAM MODULE DATA SHEETS
HM-6564 64K Synchronous RAM Module 2-113
HM-8808/08A 8K x 8 Asynchronous RAM Modules 2-122
HM-8816H $\quad 16 \mathrm{~K} \times 8$ Asynchronous RAM Module 2-134
HM-8832 $32 \mathrm{~K} \times 8$ Asynchronous RAM Module 2-139
HM-92560 256K Synchronous RAM Module 2-146
HM-92570 256K Buffered Synchronous RAM Module 2-153
HM-91M2 1M Bit Asynchronous RAM Module 2-160
CMOS PROM DATA SHEETS
HM-6642 512×8 Fuse Link PROM 2-169
HM-6617 2K x 8 Fuse Link PROM 2-175
DATA ENTRY FORMATS FOR HARRIS CUSTOM PROGRAMMING 2-181

Low Voltage Data Retention

HARRIS CMOS RAMs are designed with battery backup in mind. Data retention voltage and supply current are guaranteed over temperature. The following rules insure data retention:

1. Chip Enable (\bar{E}) must be held high during data retention; within VCC to VCC +0.3 V
2. On RAMs which have selects or output enables (e.g. $\overline{\mathrm{S}}, \overline{\mathrm{G}}$), one of the selects or output enables should be held in the deselected state to keep the RAM outputs high impedance, minimizing power dissipation.
3. All other inputs should be held either high (at CMOS VCC) or at ground to minimize ICCDR.
4. Inputs which are to be held high (e.g. $\overline{\mathrm{E}}$) must be kept between VCC +0.3 V and 70% of VCC during the power up and power down transitions.
5. The RAM can begin operation one TEHEL (for synchronous RAMs) and $>55 \mathrm{~ns}$ (for asynchronous RAMs) after VCC reaches the minimum operating voltage (4.5 volts).

DATA RETENTION TIMING

HARRIS CMOS RAMs

DESCRIPTION	HARRIS	Avs	EDI	$\begin{aligned} & \text { FUS: } \\ & \text { risu } \end{aligned}$	$\begin{aligned} & \text { HIT- } \\ & \text { ACHI } \end{aligned}$	IRT	MITSUBISHI	$\begin{gathered} \text { wor } \\ \text { ororat } \end{gathered}$	NATIONAL	see	OKI	Fex	SMOS	$\begin{gathered} \text { rasin } \\ \text { 13A: } \end{gathered}$	NMOS, OTHER
1K CMOS RAMs															
1Kx1, 16 Pin Synchronous	HM-6508			8401				6588	$\begin{gathered} 6508 \\ 74 C 929 \end{gathered}$	443		$\begin{gathered} \text { s5e8 } \\ 1821 \end{gathered}$		5508	2125, 4015
1Kx1, 18 Pin Synchronous	HM-6518							6518	6518 $74 C 930$						
$256 \times 4,22 \text { Pin }$ Synchronous	HM-6551								6551 $74 C 920$			$\begin{aligned} & 1822 \\ & 5101 \end{aligned}$			2101
256x4, 18 Pin Synchronous	HM-6561														2111
4K CMOS RAMs															
4Kx1, 18 Pin Synchronous	HM-6504	S2L44		8104	$\begin{aligned} & 4315 \\ & 6147 \end{aligned}$			5s34	6504		5104		6504	5514	$\begin{gathered} 2141,2147 \\ 315 \mathrm{D}, 4104 \\ 4404 \\ \hline \end{gathered}$
1Kx4, 18 Pin Synchronous	HM-6514	911.4 91124 8		an 14	$\begin{aligned} & 4334 \\ & 6148 \end{aligned}$		58981	6514	6514	44	$\begin{aligned} & 5114 \\ & 5115 \end{aligned}$	8114	6514	5514	$\begin{gathered} 2114,2148 \\ 2149,4045 \\ 314 \mathrm{~A} \\ \hline \end{gathered}$
16K CMOS RAMs															
2Kx8, 24 Pin Synchronous	HM-6516							2	6516						
2Kx8, 24 Pin Asynchronous	HM-65162			8415	6116	6116	5117	65116	6116	446	5128	6116	2016	8517\%	$\begin{array}{r} 4802,2116 \\ 2016,4016 \\ \hline \end{array}$
16Kx1, 20 Pin Asynchronous	HM-65262				6167	6161							$\begin{array}{r} 2267 \\ 2367 \\ \hline \end{array}$		$\begin{gathered} 2167,8167 \\ 1400 \\ \hline \end{gathered}$
64K CMOS RAMs															
8Kx8, 28 Pin Asynchronous	$\begin{aligned} & \text { HM-65642 } \\ & \text { HM-8808A* } \\ & \text { HM-8808* } \end{aligned}$	$99 \mathrm{csB}$	$\begin{gathered} \text { 8808A } \\ 8808 \\ \hline \end{gathered}$		6264	$\begin{aligned} & 7164 \\ & 71864 \\ & 8 M 864 \\ & \hline \end{aligned}$	5164	6164	6164	4454		62.4	$\begin{aligned} & 2064 \\ & 2264 \end{aligned}$	$\begin{aligned} & 5534: \\ & 5585= \\ & \hline \end{aligned}$	
128K CMOS RAM MODULE															
16Kx8, 28 Pin Asynchronous	HM-8816H*		8816H												
256K CMOS RAM MODULE															
32Kx8/16Kx16 48 Pin Module Asynchronous	$\begin{aligned} & \text { HM-92560* } \\ & \text { HM-92570* } \end{aligned}$														
32K×8 28 Pin Module Asynchronous	HM-8832*		8832												
1M CMOS MODULE															
128x8/64Kx 16	HM-91M2*							4						\%	

* CMOS RAM Module

Features

- Low Standby Power 50μ W Max.
- Low Operating Power . 20mW/MHz Max.
- Fast Access Time 180ns Max.
- Data Retention Voltage 2.0V Min.
- TTL Compatible In/Out
- High Output Drive - 2 TTL Loads
- High Noise Immunity
- On Chip Address Register
- Wide Operating Temperature Ranges:

```
- HM-6508-5
``` \(\qquad\)
``` \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\)
- HM-6508-9 .
``` \(\qquad\)
``` \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\)
- HM-6508-8 \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)
```


Description

The HM-6508 is a 1024 by 1 static CMOS RAM fabricated using selfaligned silicon gate technology. Synchronous circuit design techniques are employed to achieve high performance and low power operation.
On chip latches are provided for address allowing efficient interfacing with microporcessor systems. The data output buffers can be forced to a high impedance state for use in expanded memory arrays.
The HM-6508 is a fully static RAM and may be maintained in any state for an indefinite period of time. Data retention supply voltage and supply current are guaranteed over temperature.

Pinout
TOP VIEW

A-Address Input	D-Data Input
E-Chip Enable	Q-Data Output
W-Write Enable	

Logic Symbol

Functional Diagram

Absolute Maximum Ratings

Supply Voltage	+7.0V
Input, Output or I/O Voltage Applied	GND -0.3V to VCC +0.3V
Storage Temperature Range .	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Package Power Dissipation	1 Watt
$\theta_{\text {jc }}$	$15^{\circ} \mathrm{C} / \mathrm{W}$ (CERDIP Package)
$\theta_{\text {ja }}$	$75^{\circ} \mathrm{C} / \mathrm{W}$ (CERDIP Package)
Gate Count	1925 Gates
Junction Temperature	$+150^{\circ} \mathrm{C}$
Lead Temperatue (Soldering, Ten Seconds)	$\ldots . .275{ }^{\circ} \mathrm{C}$
CAUTION: Stresses above those listed in the "Ab stress only rating and operation of the device at th specification is not implied.	t damage to the device. This is a in the operation section of this

Operating Conditions

Operating Voltage Range	+4.5 V to +5.5 V
Operating Temperature Ranges:	
HM-6508B-9	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
HM-6508B-8	$5^{\circ}{ }^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

D.C. Electrical Specifications $\mathrm{VCC}=5 \mathrm{~V} \pm 10 \%$; $\mathrm{T}_{\mathrm{A}}=\mathrm{HM}-6508 \mathrm{~B}-9-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$T_{A}=H M-6508 B-8 \quad-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
ICCSB	Standby Supply Current	-	10	$\mu \mathrm{~A}$	$10=0, \mathrm{VI}=\mathrm{VCC}$ or GND
ICCOP	Operating Supply Current (Note 3)	-	4	mA	$\overline{\mathrm{E}}=1 \mathrm{MHz}, \mathrm{IO}=0, \mathrm{VI}=\mathrm{VCC}$ or GND
ICCDR	Data Retention Supply Current	-	5	$\mu \mathrm{~A}$	$\mathrm{VCC}=2.0,1 \mathrm{O}=0, \mathrm{VI}=\mathrm{VCC}$ or GND $\mathrm{E}=\mathrm{VCC}$
VCCDR	Data Retention Supply Voltage	2.0	-	V	
II	Input Leakage Current	-1.0	+1.0	$\mu \mathrm{~A}$	$\mathrm{VI}=\mathrm{VCC}$ or GND
IOZ	Output Leakage Current	-1.0	+1.0	$\mu \mathrm{~A}$	$\mathrm{VO}=\mathrm{VCC}$ or GND
VIL	Input Low Voltage	-0.3	0.8	V	
VIH	Input High Voltage	$\mathrm{VCC}-2.0$	$\mathrm{VCC}+0.3$	V	
VOL	Output Low Voltage	-	0.4	V	$\mathrm{IO}=3.2 \mathrm{~mA}$
VOH	Output High Voltage	2.4	-	V	$10=-0.4 \mathrm{~mA}$

Capacitance

SYMBOL	PARAMETER	MAX	UNITS	TEST CONDITIONS
CI	Input Capacitance (Note 2)	6	pF	$\mathrm{VI}=\mathrm{VCC}$ or GND, $\mathrm{f}=1 \mathrm{MHz}$
CO	Output Capacitance (Note 2)	10	pF	$\mathrm{VO}=\mathrm{VCC}$ or GND, $\mathrm{f}=1 \mathrm{MHz}$

NOTES:

1. Input pulse levels: 0 to 3.0 V ; Input rise and fail times: 5 ns (max); Input and output timing reference level: 1.5 V ; Output load: 1 TLL gate equivalent $\mathrm{CL}=50 \mathrm{pF}(\mathrm{min})-$ for CL greater than 50 pF , access time is derated by 0.15 ns per pF .
2. Tested at initial design and after major design changes.
3. Typical derating $1.5 \mathrm{~mA} / \mathrm{MHz}$ increase in ICCOP.
4. $\mathrm{VCC}=4.5 \mathrm{~V}$ and 5.5 V .
A.C. Electrical Specifications $\mathrm{VCC}=5 \mathrm{~V} \pm 10 \% ; \top_{\mathrm{A}}=\mathrm{HM}-6508 \mathrm{~B}-9-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ $T_{A}=H M-6508 B-8 \quad-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
(1) TELQV	Chip Enable Access Time	-	180	ns	(Notes 1, 4)
(2) TAVQV	Address Access Time	-	180	ns	(Notes 1, 4)
(3) TELQX	Chip Enable Output Enable Time	5	120	ns	(Notes 2,4)
(4) TWLQZ	Write Enable Output Disable Time	-	120	ns	(Notes 2, 4)
(5) TEHQZ	Chip Enable Output Disable Time	-	120	ns	(Notes 2, 4)
(6) TELEH	Chip Enable Pulse Negative Width	180	-	ns	(Notes 1,4)
(7) TEHEL	Chip Enable Pulse Positive Width	100	-	ns	(Notes 1,4)
(8) TAVEL	Address Setup Time	0	-	ns	(Notes 1,4)
(9) TELAX	Address Hold Time	40	-	ns	(Notes 1, 4)
(10) TDVWH	Data Setup Time	80	-	ns	(Notes 1,4)
(11) TWHDX	Data Hold Time	0	-	ns	(Notes 1,4)
(12) TWLEH	Chip Enable Write Pulse Setup Time	100	-	ns	(Notes 1, 4)
(13) TELWH	Chip Enable Write Pulse Hold Time	100	-	ns	(Notes 1, 4)
(14) TWLWH	Write Enable Pulse Width	100	-	ns	(Notes 1,4)
(15) TELEL	Read or Write Cycle Time	280	-	ns	

NOTES:

1. Input pulse levels: 0 to 3.0 V ; Input rise and fall times: 5 ns (max); Input and output timing reference level: 1.5 V ; Output load: 1 TTL gate equivalent $\mathrm{CL}=$ $50 \mathrm{pF}(\mathrm{min})$ - for CL greater than 50pF, access time is derated by 0.15 ns per pF.
2. Tested at initial destgn and after major design changes.
3. Typical derating $1.5 \mathrm{~mA} / \mathrm{MHz}$ increase in ICCOP.
4. $V C C=4.5 \mathrm{~V}$ and 5.5 V .

Absolute Maximum Ratings

Supply Voltage	+7.0V
Input, Output or I/O Voltage Applied	GND -0.3V to VCC +0.3V
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Package Power Dissipation	1 Watt
$\theta_{\text {jc }}$	$15^{\circ} \mathrm{C} / \mathrm{W}$ (CERDIP Package)
$\theta_{\text {ja }}$	$75^{\circ} \mathrm{C} / \mathrm{W}$ (CERDIP Package)
Gate Count	1925 Gates
Junction Temperature	$\ldots . .450^{\circ} \mathrm{C}$
Lead Temperatue (Soldering, Ten Seconds)	$+275{ }^{\circ} \mathrm{C}$

CAUTION: Stresses above those listed in the "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operation section of this specification is not implied.

Operating Conditions

Operating Voltage Range . +4.5 V to +5.5V Operating Temperature Ranges:	
HM-6508-9	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
HM-6508-8	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

D.C. Electrical Specifications $\mathrm{VCC}=5 \mathrm{~V} \pm 10 \% ; T_{A}=\mathrm{HM}-6508-9-40^{\circ} \mathrm{C}$ to $+85{ }^{\circ} \mathrm{C}$ $\mathrm{T}_{\mathrm{A}}=\mathrm{HM}-6508-8 \quad-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
ICCSB	Standby Supply Current	-	10	$\mu \mathrm{~A}$	$\mathrm{IO}=0, \mathrm{VI}=\mathrm{VCC}$ or GND
ICCOP	Operating Supply Current (Note 3)	-	4	mA	$\overline{\mathrm{E}=1 \mathrm{MHz}, \mathrm{IO}=0, \mathrm{VI}=\mathrm{VCC} \text { or GND }}$
ICCDR	Data Retention Supply Current	-	10	$\mu \mathrm{~A}$	$\mathrm{VCC}=2.0, \mathrm{IO}=0, \mathrm{VI}=\mathrm{VCC}$ or GND $\mathrm{E}=\mathrm{VCC}$
VCCDR	Data Retention Supply Voltage	2.0	-	V	
II	Input Leakage Current	-1.0	+1.0	$\mu \mathrm{~A}$	$\mathrm{VI}=\mathrm{VCC}$ or GND
IOZ	Output Leakage Current	-1.0	+1.0	$\mu \mathrm{~A}$	$\mathrm{VO}=\mathrm{VCC}$ or GND
VIL	Input Low Voltage	-0.3	0.8	V	
VIH	Input High Voltage	$\mathrm{VCC}-2.0$	$\mathrm{VCC}+0.3$	V	
VOL	Output Low Voltage	-	0.4	V	$10=3.2 \mathrm{~mA}$
VOH	Output High Voltage	2.4	-	V	$10=-0.4 \mathrm{~mA}$

Capacitance

SYMBOL	PARAMETER	MAX	UNITS	TEST CONDITIONS
CI	Input Capacitance (Note 2)	6	pF	$\mathrm{VI}=\mathrm{VCC}$ or GND, $\mathrm{f}=1 \mathrm{MHz}$
CO	Output Capacitance (Note 2)	10	pF	$\mathrm{VO}=\mathrm{VCC}$ or GND, $\mathrm{f}=1 \mathrm{MHz}$

NOTES:

1. Input pulse levels: 0 to 3.0 V ; Input rise and fall times: 5 ns (max); Input and output timing reference level: 1.5 V ; Output load: 1 TTL gate equivalent $\mathrm{CL}=50 \mathrm{pF}(\mathrm{min})-$ for CL greater than 50 pF , access time is derated by 0.15 ns per pF .
2. Tested at initial design and after major design changes.
3. Typical derating $1.5 \mathrm{~mA} / \mathrm{MHz}$ increase in ICCOP.
4. $\mathrm{VCC}=4.5 \mathrm{~V}$ and 5.5 V .

A.C. Electrical Specifications $\mathrm{vCC}=5 \mathrm{~V} \pm 10 \%$; $\mathrm{T}_{\mathrm{A}}=\mathrm{HM}-6508-9-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
 $\mathrm{T}_{\mathrm{A}}=\mathrm{HM}-6508-8 \quad-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
(1) TELQV	Chip Enable Access Time	-	250	ns	(Notes 1, 4)
(2) TAVQV	Address Access Time	-	250	ns	(Notes 1, 4)
(3) TELQX	Chip Enable Output Enable Time	5	160	ns	(Notes 2, 4)
(4) TWLQZ	Write Enable Output Disable Time	-	160	ns	(Notes 2, 4)
(5) TEHQZ	Chip Enable Output Disable Time	-	160	ns	(Notes 2, 4)
(6) TELEH	Chip Enable Pulse Negative Width	250	-	ns	(Notes 1, 4)
(7) TEHEL	Chip Enable Pulse Positive Width	100	-	ns	(Notes 1, 4)
(8) TAVEL	Address Setup Time	0	-	ns	(Notes 1, 4)
(9) TELAX	Address Hold Time	50	-	ns	(Notes 1, 4)
(10) TDVWH	Data Setup Time	110	-	ns	(Notes 1, 4)
(11) TWHDX	Data Hold Time	0	-	ns	(Notes 1, 4)
(12) TWLEH	Chip Enable Write Pulse Setup Time	130	-	ns	(Notes 1, 4)
(13) TELWH	Chip Enable Write Pulse Hold Time	130	-	ns	(Notes 1, 4)
(14) TWLWH	Write Enable Pulse Width	130	-	ns	(Notes 1, 4)
(15) TELEL	Read or Write Cycle Time	350	-	ns	(Notes 1, 4)

NOTES:

1. Input pulse levels: 0 to 3.0 V ; Input rise and fall times: 5 ns (max); Input and output timing reference level: 1.5 V ; Output load: 1 TLL gate equivalent $\mathrm{CL}=$ $50 \mathrm{pF}(\mathrm{min})$ - for CL greater than 50 pF , access time is derated by 0.15 ns per pF .
2. Tested at initial design and after major design changes.
3. Typical derating $1.5 \mathrm{~mA} / \mathrm{MHz}$ increase in ICCOP.
4. $V C C=4.5 \mathrm{~V}$ and 5.5 V .

Absolute Maximum Ratings

Supply Voltage	+7.0V
Input, Output or I/O Voltage Applied	GND -0.3V to VCC +0.3V
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Package Power Dissipation	1 Watt
$\theta_{\text {jc }}$	$15^{\circ} \mathrm{C} / \mathrm{W}$ (CERDIP Package)
$\theta_{\text {ja }}$	$75^{\circ} \mathrm{C} / \mathrm{W}$ (CERDIP Package)
Gate Count	1925 Gates
Junction Temperature	$+150^{\circ} \mathrm{C}$
Lead Temperatue (Soldering, Ten Seconds)	. $+275{ }^{\circ} \mathrm{C}$
CAUTION: Stresses above those listed in the "Ab stress only rating and operation of the device at th specification is not implied.	damage to the device. This is a din the operation section of this

Operating Conditions

Operating Voltage Range $+4.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V}$ Operating Temperature Ranges: HM-6508-5 $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	

D.C. Electrical Specifications $\mathrm{VCC}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=\mathrm{HM}-6508-50^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
ICCSB	Standby Supply Current	-	100	$\mu \mathrm{~A}$	$\mathrm{IO}=0, \mathrm{VI}=\mathrm{VCC}$ or GND
ICCOP	Operating Supply Current (Note 3)	-	4	mA	$\overline{\mathrm{E}=1 \mathrm{MHz}, \mathrm{IO}=0, \mathrm{VI}=\mathrm{VCC} \text { or GND }}$
ICCDR	Data Retention Supply Current	-	100	$\mu \mathrm{~A}$	$\mathrm{VCC}=2.0, \mathrm{IO}=0, \mathrm{VI}=\mathrm{VCC}$ or GND $\overline{\mathrm{E}}=\mathrm{VCC}$
VCCDR	Data Retention Supply Voltage	2.0	-	V	
II	Input Leakage Current	-1.0	+1.0	$\mu \mathrm{~A}$	$\mathrm{VI}=\mathrm{VCC}$ or GND
IOZ	Output Leakage Current	-1.0	+1.0	$\mu \mathrm{~A}$	$\mathrm{VO}=\mathrm{VCC}$ or GND
VIL	Input Low Voltage	-0.3	0.8	V	
VIH	Input High Voltage	$\mathrm{VCC}-2.0$	$\mathrm{VCC}+0.3$	V	
VOL	Output Low Voltage	-	0.4	V	$\mathrm{IO}=1.6 \mathrm{~mA}$
VOH	Output High Voltage	2.4	-	V	$\mathrm{IO}=-0.2 \mathrm{~mA}$

Capacitance

SYMBOL	PARAMETER	MAX	UNITS	TEST CONDITIONS
CI	Input Capacitance (Note 2)	6	pF	$\mathrm{VI}=\mathrm{VCC}$ or GND, $\mathrm{f}=1 \mathrm{MHz}$
CO	Output Capacitance (Note 2)	10	pF	$\mathrm{VO}=\mathrm{VCC}$ or GND, $\mathrm{f}=1 \mathrm{MHz}$

NOTES:

1. Input pulse levels: 0 to 3.0 V ; Input rise and fall times: 5 ns (max); Input and output timing reference level: 1.5 V ; Output load: 1 TTL gate equivalent $\mathrm{CL}=50 \mathrm{pF}(\mathrm{min})-$ for CL greater than 50 pF , access time is derated by 0.15 ns per pF .
2. Tested at initial design and after major design changes.
3. Typical derating $1.5 \mathrm{~mA} / \mathrm{MHz}$ increase in ICCOP.
4. $\mathrm{VCC}=4.5 \mathrm{~V}$ and 5.5 V .
A.C. Electrical Specifications $\mathrm{VCC}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=\mathrm{HM}-6508-50^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
(1) TELQV	Chip Enable Access Time	-	300	ns	(Notes 1, 4)
(2) TAVQV	Address Access Time	-	310	ns	(Notes 1, 4)
(3) TELQX	Chip Enable Output Enable Time	5	200	ns	(Notes 2, 4)
(4) TWLQZ	Write Enable Output Disable Time	-	200	ns	(Notes 2, 4)
(5) TEHQZ	Chip Enable Output Disable Time	-	200	ns	(Notes 2, 4)
(6) TELEH	Chip Enable Pulse Negative Width	300	-	ns	(Notes 1, 4)
(7) TEHEL	Chip Enable Pulse Positive Width	150	-	ns	(Notes 1, 4)
(8) TAVEL	Address Setup Time	10	-	ns	(Notes 1, 4)
(9) TELAX	Address Hold Time	70	-	ns	(Notes 1, 4)
(10) TDVWH	Data Setup Time	130	-	ns	(Notes 1, 4)
(11) TWHDX	Data Hold Time	0	-	ns	(Notes 1, 4)
(12) TWLEH	Chip Enable Write Pulse Setup Time	160	-	ns	(Notes 1, 4)
(13) TELWH	Chip Enable Write Pulse Hold Time	160	-	ns	(Notes 1, 4)
(14) TWLWH	Write Enable Pulse Width	160	-	ns	(Notes 1, 4)
(15) TELEL	Read or Write Cycle Time	450	-	ns	(Notes 1, 4)

NOTES:

1. Input pulse levels: 0 to 3.0 V ; Input rise and fall times: 5 ns (max); Input and output timing reference level: 1.5 V ; Output load: 1 TTL gate equivalent $\mathrm{CL}=$ $50 \mathrm{pF}(\mathrm{min})$ - for CL greater than 50 pF , access time is derated by 0.15 ns per pF .
2. Tested at initial design and after major design changes.
3. Typical derating $1.5 \mathrm{~mA} / \mathrm{MHz}$ increase in ICCOP.
4. $\mathrm{VCC}=4.5 \mathrm{~V}$ and 5.5 V .

Read Cycle

TRUTH TABLE

time REFERENCE	INPUTS				OUTPUTS Q	FUNCTION
	\bar{E}	\bar{W}	A	D		
-1	H	x	X	x	z	Memory Disabled
0	2	H	v	x	z	Cycle Begins, Addresses are Latched
1	L	H	X	X	X	Output Enabled
2	L	H	X	X	V	Output Valid
3	\sim	H	x	x	v	Read Accomplished
4	H	X	X	X	z	Prepare for Next Cycle (Same as -1)
5	2	H	V	X	Z	Cycle Ends, Next Cycle Begins (Same as 0)

In the HM-6508 Read Cycle, the address information is latched into the on chip registers on the falling edge of $\bar{E}(T=0)$. Minimum address setup and hold time requirements must be met. After the required hold time, the addresses may change state without affecting device operation. During time ($T=1$) the data output becomes
enabled; however, the data is not valid until during time ($T=2$). \bar{W} must remain high for the read cycle. After the output data has been read, $\overline{\mathrm{E}}$ may return high $(T=3)$. This will disable the chip and force the output buffer to a high impedance state. After the required $\overline{\mathrm{E}}$ high time (TEHEL) the RAM is ready for the next memory cycle ($T=4$).

Write Cycle

TRUTH TABLE

TIME REFERENCE	$\overline{\mathrm{E}}$	INPUTS			OUTPUTS Q	FUNCTION
		\bar{W}	A	D		
-1	H	X	X	X	z	Memory Disabled
0	2	X	v	X	Z	Cycle Begins, Addresses are Latched
1	L	2	x	x	z	Write Period Begins
2	L	\sim	x	v	z	Data is Written
3	-r	H	x	x	z	Write Completed
4	H	X	x	x	z	Prepare for Next Cycle (Same as -1)
5	2	X	v	X	z	Cycle Ends, Next Cycle Begins (Same as 0)

The write cycle is initiated by the falling edge of \bar{E} which latches the address information into the on chip registers. The write portion of the cycle is defined as both \bar{E} and \bar{W} being low simultaneously. $\overline{\mathrm{W}}$ may go low anytime during the cycle provided that the write enable pulse setup time (TWLEH) is met. The write portion of the cycle is terminated by the first rising edge of either \bar{E} or \bar{W}. Data setup and hold times must be referenced to the terminating signal.

If a series of consecutive write cycles are to be performed, the \bar{W} line may remain low until all desired locations have been written. When this method is used, data setup and hold times must be referenced to the rising edge of \bar{E}. By
positioning the \bar{W} pulse at different times within the \bar{E} low time (TELEH), various types of write cycles may be performed.
If the \bar{E} low time (TELEH) is greater than the \bar{W} pulse (TWLWH) plus an output enable time (TELQX), a combination read write cycle is executed. Data may be modified an indefinite number of times during any write cycle (TELEH). The data input and data output pins may be tied together for use with a common I/O data bus structure. When using the RAM in this method allow a minimum of one output disable time (TWLQZ) after \bar{W} goes low before applying input data to the bus. This will insure that the output buffers are not active.

Features

- HM-6100 Compatible
- Low Standby Power

50 μ W Max.

- Low Operating Power . 20mW/MHz Max.
- Fast Access Time 180ns Max.
- Data Retention Voltage 2.0V Min.
- TTL Compatible In/Out
- High Output Drive - 2 TTL Loads
- High Noise Immunity
- On Chip Address Register
- Two Chip Selects for Easy Array Expansion
- Three-State Outputs
- Wide Operating Temperature Ranges:

Description

The HM-6518 is a 1024 by 1 static CMOS RAM fabricated using selfaligned silicon gate technology. Synchronous circuit design tecniques are employed to achieve high performance and low power operation.

On chip latches are provided for address and data outputs allowing efficient interfacing with microprocessor systems. The data output buffers can be forced to a high impedance state for use in expanded memory arrays.
The HM-6518 is a fully static RAM and may be maintained in any state for an indefinite period of time. Data retention supply voltage and supply current are guaranteed over temperature.

Pinout

TOP VIEW

$\overline{11}$	
E \square^{2}	17
${ }_{\text {A } 0}$	16
$\mathrm{Al}^{1} 4$	15
$\mathrm{A}_{2} \mathrm{C}_{5}$	14
${ }^{4}{ }^{5}$	13
${ }_{44}{ }_{7}$	12
- \square_{8}	11
GND \square^{9}	10

A-Address Input	\bar{W}-Write Enable
E-Chip Enable	D-Data Input
S-Chip Select	Q-Data Output

Logic Symbol

Functional Diagram

Absolute Maximum Ratings

CAUTION: Stresses above those listed in the "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operation section of this specification is not implied.

Operating Conditions

Operating Voltage Range	+4.5V to +5.5V
Operating Temperature Ranges:	
HM-6518-9	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
HM-6518-8	$55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

D.C. Electrical Specifications $V C C=5 \mathrm{~V} \pm 10 \% ; T_{A}=H M-6518-9-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

$$
\mathrm{T}_{\mathrm{A}}=\mathrm{HM}-6518-8 \quad-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}
$$

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
ICCSB	Standby Supply Current	-	10	$\mu \mathrm{A}$	$1 \mathrm{O}=0, \mathrm{VI}=\mathrm{VCC}$ or GND
ICCOP	Operating Supply Current (Note 3)	-	4	mA	$\bar{E}=1 \mathrm{MHz}, \mathrm{IO}=0, \mathrm{VI}=\mathrm{VCC}$ or GND
ICCDR	Data Retention Supply Current	-	10	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{VCC}=2.0,10=0, \mathrm{VI}=\mathrm{VCC} \text { or GND } \\ & \overline{\mathrm{E}}=\mathrm{VCC} \end{aligned}$
VCCDR	Data Retention Supply Voltage	2.0	-	V	
11	Input Leakage Current	-1.0	+1.0	$\mu \mathrm{A}$	$\mathrm{VI}=\mathrm{VCC}$ or GND
IOZ	Output Leakage Current	-1.0	+1.0	$\mu \mathrm{A}$	$\mathrm{VO}=\mathrm{VCC}$ or GND
VIL	Input Low Voltage	-0.3	0.8	V	
VIH	Input High Voltage	VCC-2.0	VCC+0.3	V	
VOL	Output Low Voltage	-	0.4	V	$10=3.2 \mathrm{~mA}$
VOH	Output High Voltage	2.4	-	V	$10=-0.4 \mathrm{~mA}$

Capacitance

SYMBOL	PARAMETER	MAX	UNITS	TEST CONDITIONS
CI	Input Capacitance (Note 2)	6	pF	$\mathrm{VI}=\mathrm{VCC}$ or GND, $\mathrm{f}=1 \mathrm{MHz}$
CO	Output Capacitance (Note 2)	10	pF	$\mathrm{VO}=\mathrm{VCC}$ or GND, $\mathrm{f}=1 \mathrm{MHz}$

NOTES:

1. Input pulse levels: 0 to 3.0 V ; Input rise and fall times: 5 ns (max); Input and output timing reference level: 1.5 V ; Output load: 1 TTL gate equivalent $\mathrm{CL}=50 \mathrm{pF}(\mathrm{min})-$ for CL greater than 50 pF , access time is derated by 0.15 ns per pF .
2. Tested at initial design and after major design changes.
3. Typical derating $1.5 \mathrm{~mA} / \mathrm{MHz}$ increase in ICCOP.
4. $\mathrm{VCC}=4.5 \mathrm{~V}$ and 5.5 V .

Specifications HM-6518-8/HM-6518-9

A.C. Electrical Specifications $\mathrm{VCC}=5 \mathrm{~V} \pm 10 \% ; T_{A}=H M-6518-9-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ $\mathrm{T}_{\mathrm{A}}=\mathrm{HM}-6518-8 \quad-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
(1) TELQV	Chip Enable Access Time	-	250	ns	(Notes 1, 4)
(2) TAVQV	Address Access Time	-	250	ns	(Notes 1, 4)
(3) TSLQX	Chip Select Output Enable Time	5	160	ns	(Notes 2, 4)
(4) TWLQZ	Write Enable Output Disable Time	-	160	ns	(Notes 2, 4)
(5) TSHQZ	Chip Select Output Disable Time	-	160	ns	(Notes 2, 4)
(6) TELEH	Chip Enable Pulse Negative Width	250	-	ns	(Notes 1, 4)
(7) TEHEL	Chip Enable Pulse Positive Width	100	-	ns	(Notes 1, 4)
(8) TAVEL	Address Setup Time	0	-	ns	(Notes 1, 4)
(9) TELAX	Address Hold Time	50	-	ns	(Notes 1, 4)
(10) TDVWH	Data Setup Time	110	-	ns	(Notes 1, 4)
(11) TWHDX	Data Hold Time	0	-	ns	(Notes 1, 4)
(12) TWLSH	Chip Select Write Pulse Setup Time	130	-	ns	(Notes 1, 4)
(13) TWLEH	Chip Enable Write Pulse Setup Time	130	-	ns	(Notes 1, 4)
(14) TSLWH	Chip Select Write Pulse Hold Time	130	-	ns	(Notes 1, 4)
(15) TELWH	Chip Enable Write Pulse Hold Time	130	-	ns	(Notes 1, 4)
(16) TWLWH	Write Enable Pulse Width	130	-	ns	(Notes 1,4)
(17) TELEL	Read or Write Cycle Time	350	-	ns	(Notes 1, 4)

NOTES:

1. Input pulse levels: 0 to 3.0 V ; Input rise and fall times: 5 ns (max); Input and output timing reference level: 1.5 V ; Output load: 1 TTL gate equivalent $\mathrm{CL}=$ 50 pF (min) - for CL greater than 50pF, access time is derated by 0.15 ns per pF .
2. Tested at initial design and after major design changes.
3. Typical derating $1.5 \mathrm{~mA} / \mathrm{MHz}$ increase in ICCOP.
4. $\mathrm{VCC}=4.5 \mathrm{~V}$ and 5.5 V .

Absolute Maximum Ratings

CAUTION: Stresses above those listed in the "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operation section of this specification is not implied.

Operating Conditions

Operating Voltage Range $\ldots \ldots .$.	
Operating Temperature Ranges:	
HM-6518B-9	$-40^{\circ} \mathrm{C}$ to $+85{ }^{\circ} \mathrm{C}$
HM-6518B-8	$55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

D.C. Electrical Specifications $V C C=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=\mathrm{HM}-6518 \mathrm{~B}-9-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

$$
\mathrm{T}_{\mathrm{A}}=\mathrm{HM}-6518 \mathrm{~B}-8 \quad-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}
$$

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
ICCSB	Standby Supply Current	-	10	$\mu \mathrm{~A}$	$\mathrm{IO}=0, \mathrm{VI}=\mathrm{VCC}$ or GND
ICCOP	Operating Supply Current (Note 3)	-	4	mA	$\overline{\mathrm{E}}=1 \mathrm{MHz}, \mathrm{IO}=0, \mathrm{VI}=\mathrm{VCC}$ or GND
ICCDR	Data Retention Supply Current	-	5	$\mu \mathrm{~A}$	$\mathrm{VCC}=2.0, \mathrm{IO}=0, \mathrm{VI}=\mathrm{VCC}$ or GND $\mathrm{E}=\mathrm{VCC}$
VCCDR	Data Retention Supply Voltage	2.0	-	V	
II	Input Leakage Current	-1.0	+1.0	$\mu \mathrm{~A}$	$\mathrm{VI}=\mathrm{VCC}$ or GND
IOZ	Output Leakage Current	-1.0	+1.0	$\mu \mathrm{~A}$	$\mathrm{VO}=\mathrm{VCC}$ or GND
VIL	Input Low Voltage	-0.3	0.8	V	
VIH	Input High Voltage	$\mathrm{VCC}-2.0$	$\mathrm{VCC}+0.3$	V	
VOL	Output Low Voltage	-	0.4	V	$10=3.2 \mathrm{~mA}$
VOH	Output High Voltage	2.4	-	V	$1 \mathrm{O}=-0.4 \mathrm{~mA}$

Capacitance

SYMBOL	PARAMETER	MAX	UNITS	TEST CONDITIONS
CI	Input Capacitance (Note 2)	6	pF	$\mathrm{VI}=\mathrm{VCC}$ or $\mathrm{GND}, \mathrm{f}=1 \mathrm{MHz}$
CO	Output Capacitance (Note 2)	10	pF	$\mathrm{VO}=\mathrm{VCC}$ or GND, $\mathrm{f}=1 \mathrm{MHz}$

NOTES:

1. Input pulse levels: 0 to 3.0 V ; Input rise and fall times: 5 ns (max); Input and output timing reference level: 1.5 V ; Output load: 1 TTL gate equivalent $\mathrm{CL}=50 \mathrm{pF}(\mathrm{min})-$ for CL greater than 50 pF , access time is derated by 0.15 ns per pF .
2. Tested at initial design and after major design changes.
3. Typical derating $1.5 \mathrm{~mA} / \mathrm{MHz}$ increase in ICCOP.
4. $V C C=4.5 \mathrm{~V}$ and 5.5 V .
A.C. Electrical Specifications VCC $=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=\mathrm{HM}-6518 \mathrm{~B}-9-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

$$
\mathrm{T}_{\mathrm{A}}=\mathrm{HM}-6518 \mathrm{~B}-8 \quad-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}
$$

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
(1) TELQV	Chip Enable Access Time	-	180	ns	(Notes 1, 4)
(2) TAVQV	Address Access Time	-	180	ns	(Notes 1, 4)
(3) TSLQX	Chip Select Output Enable Time	5	120	ns	(Notes 2, 4)
(4) TWLQZ	Write Enable Output Disable Time	-	120	ns	(Notes 2, 4)
(5) TSHQZ	Chip Select Output Disable Time	-	120	ns	(Notes 2, 4)
(6) TELEH	Chip Enable Pulse Negative Width	180	-	ns	(Notes 1, 4)
(7) TEHEL.	Chip Enable Pulse Positive Width	100	-	ns	(Notes 1, 4)
(8) TAVEL	Address Setup Time	0	-	ns	(Notes 1, 4)
(9) TELAX	Address Hold Time	40	-	ns	(Notes 1, 4)
(10) TDVWH	Data Setup Time	80	-	ns	(Notes 1, 4)
(11) TWHDX	Data Hold Time	0	-	ns	(Notes 1, 4)
(12) TWLSH	Chip Select Write Pulse Setup Time	100	-	ns	(Notes 1, 4)
(13) TWLEH	Chip Enable Write Pulse Setup Time	100	-	ns	(Notes 1, 4)
(14) TSLWH	Chip Select Write Pulse Hold Time	100	-	ns	(Notes 1, 4)
(15) TELWH	Chip Enable Write Pulse Hold Time	100	-	ns	(Notes 1, 4)
(16) TWLWH	Write Enable Pulse Width	100	-	ns	(Notes 1, 4)
(17) TELEL	Read or Write Cycle Time	280	-	ns	(Notes 1, 4)

NOTES:

1. Input pulse levels: 0 to 3.0 V ; Input rise and fall times: 5 ns (max); Input and output timing reference level: 1.5 V ; Output load: 1 TL gate equivalent $\mathrm{CL}=50 \mathrm{pF}(\mathrm{min})-$ for CL greater than 50 pF , access time is derated by 0.15 ns per pF .
2. Tested at initial design and after major design changes.
3. Typical derating $1.5 \mathrm{~mA} / \mathrm{MHz}$ increase in ICCOP.
4. $V C C=4.5 \mathrm{~V}$ and 5.5 V .

Absolute Maximum Ratings

Supply Voltage	+7.0V
Input, Output or I/O Voltage Applied	GND -0.3V to VCC +0.3V
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Package Power Dissipation	1 Watt
$\theta_{\text {jc }}$	180${ }^{\circ} \mathrm{C} / \mathrm{W}$ (CERDIP Package)
$\theta_{\text {ja }}$	$75^{\circ} \mathrm{C} / \mathrm{W}$ (CERDIP Package).
Gate Count	. 1936 Gates
Junction Temperature	.$+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, Ten Seconds)	. $+275{ }^{\circ} \mathrm{C}$
CAUTION: Stresses above those listed in the "Abs stress only rating and operation of the device at the specification is not implied.	t damage to the device. This is a in the operation section of this

Operating Conditions

Operating Voltage Range Operating Temperature Ranges: HM-6518-5	$\begin{aligned} & +4.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V} \\ & 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$

D.C. Electrical Specifications $\mathrm{VCC}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=\mathrm{HM}-6518-50^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
ICCSB	Standby Supply Current	-	100	$\mu \mathrm{~A}$	$\mathrm{IO}=0, \mathrm{VI}=\mathrm{VCC}$ or GND
ICCOP	Operating Supply Current (Note 3)	-	4	mA	$\overline{\mathrm{E}}=1 \mathrm{MHz}, \mathrm{IO}=0, \mathrm{VI}=\mathrm{VCC}$ or GND
ICCDR	Data Retention Supply Current	-	100	$\mu \mathrm{~A}$	$\mathrm{VCC}=2.0, \mathrm{IO}=0, \mathrm{VI}=\mathrm{VCC}$ or GND $\overline{\mathrm{E}}=\mathrm{VCC}$
VCCDR	Data Retention Supply Voltage	2.0	-	V	
II	Input Leakage Current	-1.0	+1.0	$\mu \mathrm{~A}$	$\mathrm{VI}=\mathrm{VCC}$ or GND
IOZ	Output Leakage Current	-1.0	+1.0	$\mu \mathrm{~A}$	$\mathrm{VO}=\mathrm{VCC}$ or GND
VIL	Input Low Voltage	-0.3	0.8	V	
VIH	Input High Voltage	$\mathrm{VCC}-2.0$	$\mathrm{VCC}+0.3$	V	
VOL	Output Low Voltage	-	0.4	V	$\mathrm{IO}=1.6 \mathrm{~mA}$
VOH	Output High Voltage	2.4	-	V	$\mathrm{IO}=-0.2 \mathrm{~mA}$

Capacitance

SYMBOL	PARAMETER	MAX	UNITS	TEST CONDITIONS
CI	Input Capacitance (Note 2)	6	pF	$\mathrm{VI}=\mathrm{VCC}$ or GND, $\mathrm{f}=1 \mathrm{MHz}$
CO	Output Capacitance (Note 2)	10	pF	$\mathrm{VO}=\mathrm{VCC}$ or GND, $\mathrm{f}=1 \mathrm{MHz}$

NOTES:

1. Input pulse levels: 0 to 3.0 V ; Input rise and fall times: 5 ns (max); Input and output timing reference level: 1.5 V ; Output load: 1 TTL gate equivalent $C L=50 \mathrm{pF}(\mathrm{min})-$ for CL greater than 50 pF , access time is derated by 0.15 ns per pF .
2. Tested at initial design and after major design changes.
3. Typical derating $1.5 \mathrm{~mA} / \mathrm{MHz}$ increase in ICCOP.
4. $V C C=4.5 \mathrm{~V}$ and 5.5 V .

Specifications HM-6518-5
A.C. Electrical Specifications $\mathrm{VCC}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=\mathrm{HM}-6518-50^{\circ} \mathrm{C}$ to $+70{ }^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
(1) TELQV	Chip Enable Access Time	-	300	ns	(Notes 1, 4)
(2) TAVQV	Address Access Time	-	310	ns	(Notes 1, 4)
(3) TSLQX	Chip Select Output Enable Time	5	200	ns	(Notes 2, 4)
(4) TWLQZ	Write Enable Output Disable Time	-	200	ns	(Notes 2, 4)
(5) TSHQZ	Chip Select Output Disable Time	-	200	ns	(Notes 2, 4)
(6) TELEH	Chip Enable Pulse Negative Width	300	-	ns	(Notes 1, 4)
(7) TEHEL	Chip Enable Pulse Positive Width	150	-	ns	(Notes 1, 4)
(8) TAVEL	Address Setup Time	10	-	ns	(Notes 1, 4)
(9) TELAX	Address Hold Time	50	-	ns	(Notes 1, 4)
(10) TDVWH	Data Setup Time	130	-	ns	(Notes 1, 4)
(11) TWHDX	Data Hold Time	0	-	ns	(Notes 1, 4)
(12) TWLSH	Chip Select Write Pulse Setup Time	160	-	ns	(Notes 1, 4)
(13) TWLEH	Chip Enable Write Pulse Setup Time	160	-	ns	(Notes 1, 4)
(14) TSLWH	Chip Select Write Pulse Hold Time	160	-	ns	(Notes 1, 4)
(15) TELWH	Chip Enable Write Pulse Hold Time	160	-	ns	(Notes 1, 4)
(16) TWLWH	Write Enable Pulse Width	160	-	ns	(Notes 1, 4)
(17) TELEL	Read or Write Cycle Time	450	-	ns	(Notes 1, 4)

NOTES:

1. Input pulse levels: 0 to 3.0 V ; Input rise and fall times: 5 ns (max); Input and output timing reference level: 1.5 V ; Output load: 1 TTL gate equivalent $\mathrm{CL}=$ $50 \mathrm{pF}(\mathrm{min})$ - for CL greater than 50 pF , access time is derated by 0.15 ns per pF .
2. Tested at initial design and after major design changes.
3. Typical derating $1.5 \mathrm{~mA} / \mathrm{MHz}$ increase in ICCOP.
4. $V C C=4.5 \mathrm{~V}$ and 5.5 V .

Read Cycle

TIME REFERENCE	INPUTS					$\begin{gathered} \text { OUTPUT } \\ \text { Q } \end{gathered}$	FUNCTION
	\bar{E}	S1	\bar{W}	A	D		
-1	H	H	X	X	X	Z	Memory Disabled
0		X	H	V	X	Z	Cycle Begins, Addresses are Latched
1	L	L	H	X	X	X	Output Enabled
2	L	L	H	X	X	V	Output Valid
3	\cdots	L	H	X	X	V	Output Latched
4	H	H	X	X	X	Z	Device Disabled, Prepare for Next Cycle (Same as -1)
5	2	X	H	V	X	Z	Cycle Ends, Next Cycle Begins (Same as 0)

NOTE: 1. Device selected only if both $\overline{\mathrm{S} 1}$ and $\overline{\mathrm{S} 2}$ are low, and deselected if either $\overline{\mathrm{S} 1}$ or $\overline{\mathrm{S} 2}$ are high

In the HM-6518 read cycle the address information is latched into the on chip registers on the falling edge of $\bar{E}(T=0)$. Minimum address setup and hold time requirements must be met. After the required hold time the addresses may change state without affecting device operation. In order for the output to be read $\overline{\mathrm{S} 1}, \overline{\mathrm{~S} 2}$ and $\overline{\mathrm{E}}$ must
be low, \bar{W} must be high. When \bar{E} goes high the output data is latched into an on chip register. Taking either or both $\overline{\mathrm{S} 1}$ or $\overline{\mathrm{S} 2}$ high forces the output buffer to a high impedance state. The output data may be re-enabled at any time by taking $\overline{\mathrm{S} 1}$ and $\overline{\mathrm{S} 2}$ low. On the falling edge of $\overline{\mathrm{E}}$ the data will be unlatched.

Write Cycle

TIME REFERENCE	INPUTS					OUTPUT	
	\bar{E}	$\overline{51}$	$\overline{\text { w }}$	A	D	Q	FUNCTION
-1	H	X	X	X	X	Z	Memory Disabled
0	2	X	X	V	X	z	Cycle Begins, Addresses are Latched
1	L	L	L	X	v	z	Write Mode has Begun
2	L	\sim	L	X	V	Z	Data is Written
3	-	X	x	X	x	z	Write Completed
4	${ }^{\mathrm{H}}$	X	x	x	x	z	Prepare for Next Cycle (Same as -1)
5	1	X	X	V	X	Z	Cycle Ends, Next Cycle Begins (Same as 0)

NOTE: 1. Device selected only if both $\overline{\mathrm{S} 1}$ and $\overline{\mathrm{S} 2}$ are low, and deselected if either $\overline{\mathrm{S} 1}$ or $\overline{\mathrm{S} 2}$ are high.

The write cycle is initiated by the falling edge of \bar{E} which latches the address information into the on chip registers. The write portion of the cycle is defined as $\overline{\mathrm{E}}, \overline{\mathrm{W}}, \overline{\mathrm{S} 1}$ and $\overline{\mathrm{S} 2}$ being low simultaneously. \bar{W} may go low anytime during the cycle provided that the write enable pulse setup time (TWLEH) is met. The write portion of the cycle is terminated by the first rising edge of either $\overline{\mathrm{E}}, \overline{\mathrm{W}}, \overline{\mathrm{S} 1}$ or $\overline{\mathrm{S} 2}$. Data setup and hold times must be referenced to the terminating signal.

If a series of consecutive write cycles are to be performed, the $\overline{\mathrm{W}}$ line may remain low until all desired locations have been written. When this method is used, data setup and hold times must be referenced to the rising edge of $\overline{\mathrm{E}}$. By
positioning the \bar{W} pulse at different times within the \bar{E} low time (TELEH), various types of write cycles may be performed. If the \bar{E} low time (TELEH) is greater than the \bar{W} pulse (TWLWH) plus an output enable time (TSLQX), a combination read write cycle is executed. Data may be modified an indefinite number of times during any write cycle (TELEH).

The data input and data output pins may be tied together for use with a common I/O data bus structure. When using the RAM in this method allow a minimum of one output disable time (TWLQZ) after \bar{W} goes low before applying input data to the bus. This will insure that the output buffers are not active.

Features

- Low Standby Power 50 μ W Max.
- Low Operating Power . 20mW/MHz Max.
- Fast Access Time 220ns Max.
- Data Retention Voltage 2.0V Min.
- TTL Compatible In/Out
- High Output Drive - 1 TTL Load
- Internal Latched Chip Select
- High Noise Immunity
- On Chip Address Registers
- Latched Outputs
- Three-State Outputs
- Wide Operating Temperature Ranges:

> - HM-6551-5 $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
> - HM-6551-9 ... $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ - HM-6551-8 $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

The HM-6551 is a 256 by 4 static CMOS RAM fabricated using selfaligned silicon gate technology. Synchronous circuit design techniques are employed to achieve high performance and low power operation.
On chip latches are provided for addresses and data outputs allowing efficient interfacing with microprocessor systems. The data output buffers can be forced to a high impedance state for use in expanded memory arrays.

The HM-6551 is a fully static RAM and may be maintained in any state for an indefinite period of time. Data retention supply voltage and supply current are guaranteed over temperature.

Pinout

TOP VIEW

A3 \square_{1}	22 p vcc
$\mathrm{A}_{2} \mathrm{Cl}_{2}$	${ }_{21} \square^{\text {a4 }}$
$A_{1}{ }^{3}$	20 F w
${ }_{\text {a } 04}$	${ }_{19}{ }^{\text {s1 }}$
${ }_{45} \mathrm{C}_{5}$	18 E
${ }_{\text {a }} \mathrm{C}_{6} 6$	${ }_{17} \overline{51}$
A \square^{7}	$16 \square{ }^{\text {Q }}$
and [8	15 D3
D0 09	${ }_{14} \square^{\circ} 2$
00.10	${ }_{13}{ }^{\text {D2 }}$
014	12 O

A-Address Input	\bar{W}-Write Enable
$\overline{\mathrm{E}}$-Chip Enable	D-Data Input
$\overline{\mathrm{S}}$-Chip Select	Q-Data Output

Logic Symbol

Functional Diagram

CAUTION: These devices are sensitive to electrostatic discharge. Proper I.C. handling procedures should be followed.

Absolute Maximum Ratings

Supply Voltage	+7.0V
Input, Output or I/O Voltage Applied	GND -0.3V to VCC +0.3V
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Package Power Dissipation	1 Watt
$\theta_{\text {jc }}$	$15^{\circ} \mathrm{C} / \mathrm{W}$ (CERDIP Package)
$\theta_{\text {ja }}$	$60^{\circ} \mathrm{C} / \mathrm{W}$ (CERDIP Package)
Gate Count 1930 Gates
Junction Temperature	.$+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering $+275{ }^{\circ} \mathrm{C}$

CAUTION: Stresses above those listed in the "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operation section of this specification is not implied.

Operating Conditions

Operating Voltage Range +4.5 V to +5.5 V Operating Temperature Ranges:	
HM-6551B-9.	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
HM-6551B-8.	$5^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

D.C. Electrical Specifications $\mathrm{VCC}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=\mathrm{HM}-6551 \mathrm{~B}-9-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

$$
\mathrm{T}_{\mathrm{A}}=\mathrm{HM}-6551 \mathrm{~B}-8 \quad-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}
$$

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
ICCSB	Standby Supply Current	-	10	$\mu \mathrm{~A}$	$\mathrm{IO}=0, \mathrm{VI}=\mathrm{VCC}$ or GND
ICCOP	Operating Supply Current (Note 3)	-	4	mA	$\overline{\mathrm{E}}=1 \mathrm{MHz}, \mathrm{IO}=0, \mathrm{VI}=\mathrm{VCC}$ or GND, $\mathrm{W}=\mathrm{GND}$
ICCDR	Data Retention Supply Current	-	10	$\mu \mathrm{~A}$	$\mathrm{VCC}=2.0, \mathrm{IO}=0, \mathrm{VI}=\mathrm{VCC}$ or GND, $\mathrm{E}=\mathrm{VCC}$
VCCDR	Data Retention Supply Voltage	2.0	-	V	
II	Input Leakage Current	-1.0	+1.0	$\mu \mathrm{~A}$	$\mathrm{VI}=\mathrm{VCC}$ or GND
IOZ	Output Leakage Current	-1.0	+1.0	$\mu \mathrm{~A}$	$\mathrm{VO}=\mathrm{VCC}$ or GND
VIL	Input Low Voltage	-0.3	0.8	V	
VIH	Input High Voltage	$\mathrm{VCC}-2.0$	$\mathrm{VCC}+0.3$	V	
VOL	Output Low Voltage	-	0.4	V	$10=1.6 \mathrm{~mA}$
VOH	Output High Voltage	2.4	-	V	$10=-0.4 \mathrm{~mA}$

Capacitance

SYMBOL	PARAMETER	MAX	UNITS	TEST CONDITIONS
Cl	Input Capacitance (Note 2)	6	pF	$\mathrm{VI}=\mathrm{VCC}$ or GND, $\mathrm{f}=1 \mathrm{MHz}$
CO	Output Capacitance (Note 2)	10	pF	$\mathrm{VO}=\mathrm{VCC}$ or GND, $\mathrm{f}=1 \mathrm{MHz}$

NOTES:

1. Input puise levels: 0 to 3.0 V ; Input rise and fall times: 5 ns (max); Input and output timing reference level: 1.5 V ; Output load: 1 TLL gate equivalent $\mathrm{CL}=50 \mathrm{pF}(\mathrm{min})-$ for CL greater than 50 pF , access time is derated by 0.15 ns per pF .
2. Tested at initial design and after major design changes.
3. Typical derating $1.5 \mathrm{~mA} / \mathrm{MHz}$ increase in ICCOP.
4. $\mathrm{VCC}=4.5 \mathrm{~V}$ and 5.5 V .

Specifications HM-6551B-8/HM-6551 B-9
A.C. Electrical Specifications $\mathrm{VCC}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=\mathrm{HM}-6551 \mathrm{~B}-9-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$,

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
(1) TELQV	Chip Enable Access Time	-	220	ns	(Notes 1, 4)
(2) TAVQV	Address Access Time	-	220	ns	(Notes 1, 4)
(3) TS1LQX	Chip Select 1 Output Enable Time	5	130	ns	(Notes 2, 4)
(4) TWLQZ	Write Enable Output Disable Time	-	130	ns	(Notes 2, 4)
(5) TS1 HQZ	Chip Select 1 Output Disable Time	-	130	ns	(Notes 2, 4)
(6) TELEH	Chip Enable Pulse Negative Width	220	-	ns	(Notes 1, 4)
(7) TEHEL	Chip Enable Pulse Positive Width	100	-	ns	(Notes 1, 4)
(8) TAVEL	Address Setup Time	0	-	ns	(Notes 1, 4)
(9) TS2LEL	Chip Select 2 Setup Time	0	-	ns	(Notes 1, 4)
(10) TELAX	Address Hold Time	40	-	ns	(Notes 1, 4)
(11) TELS2X	Chip Select 2 Hold Time	40	-	ns	(Notes 1, 4)
(12) TDVWH	Data Setup Time	100	-	ns	(Notes 1, 4)
(13) TWHDX	Data Hold Time	0	-	ns	(Notes 1, 4)
(14) TWLS1H	Chip Select 1 Write Pulse Setup Time	120	-	ns	(Notes 1, 4)
(15) TWLEH	Chip Enable Write Pulse Setup Time	120	-	ns	(Notes 1, 4)
(16) TS1LWH	Chip Select 1 Write Pulse Hold Time	120	-	ns	(Notes 1, 4)
(17) TELWH	Chip Enable Write Pulse Hold Time	120	-	ns	(Notes 1, 4)
(18) TWLWH	Write Enable Pulse Width	120	-	ns	(Notes 1, 4)
(19) TELEL	Read or Write Cycle Time	320	-	ns	(Notes 1, 4)

NOTES:

1. Input pulse levels: 0 to 3.0 V ; Input rise and fall times: 5 ns (max); Input and output timing reference level: 1.5 V ; Output load: 1 TTL gate equivalent $\mathrm{CL}=50 \mathrm{pF}$ (min) - for CL greater than 50 pF , access time is derated by 0.15 ns per pF .
2. Tested at initial design and after major design changes.
3. Typical derating $1.5 \mathrm{~mA} / \mathrm{MHz}$ increase in ICCOP.
4. $V C C=4.5 \mathrm{~V}$ and 5.5 V .

Absolute Maximum Ratings

CAUTION: Stresses above those listed in the "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operation section of this specification is not implied.

Operating Conditions

Operating Voltage Range	+4.5 V to +5.5 V
Operating Temperature Ranges:	
HM-6551-9	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
HM-6551-8	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

D.C. Electrical Specifications $\mathrm{VCC}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=\mathrm{HM}-6551-9-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ $\mathrm{T}_{\mathrm{A}}=\mathrm{HM}-6551-8 \quad-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
ICCSB	Standby Supply Current	-	10	$\mu \mathrm{~A}$	$\mathrm{IO}=0, \mathrm{VI}=\mathrm{VCC}$ or GND
ICCOP	Operating Supply Current (Note 3)	-	4	mA	$\overline{\mathrm{E}}=1 \mathrm{MHz}, \mathrm{IO}=0, \mathrm{VI}=\mathrm{VCC}$ or GND, $\overline{\mathrm{W}}=\mathrm{GND}$
ICCDR	Data Retention Supply Current	-	10	$\mu \mathrm{~A}$	$\mathrm{VCC}=2.0, \mathrm{IO}=0, \mathrm{VI}=\mathrm{VCC}$ or GND, $\overline{\mathrm{E}}=\mathrm{VCC}$
VCCDR	Data Retention Supply Voltage	2.0	-	V	
II	Input Leakage Current	-1.0	+1.0	$\mu \mathrm{~A}$	$\mathrm{VI}=\mathrm{VCC}$ or GND
IOZ	Output Leakage Current	-1.0	+1.0	$\mu \mathrm{~A}$	$\mathrm{VO}=\mathrm{VCC}$ or GND
VIL	Input Low Voltage	-0.3	0.8	V	
VIH	Input High Voltage	$\mathrm{VCC}-2.0$	$\mathrm{VCC}+0.3$	V	
VOL	Output Low Voltage	-	0.4	V	$\mathrm{IO}=1.6 \mathrm{~mA}$
VOH	Output High Voltage	2.4	-	V	$\mathrm{IO}=-0.4 \mathrm{~mA}$

Capacitance

SYMBOL	PARAMETER	MAX	UNITS	TEST CONDITIONS
CI	Input Capacitance (Note 2)	6	pF	$\mathrm{VI}=\mathrm{VCC}$ or GND, $\mathrm{f}=1 \mathrm{MHz}$
CO	Output Capacitance (Note 2)	10	pF	$\mathrm{VO}=\mathrm{VCC}$ or $\mathrm{GND}, \mathrm{f}=1 \mathrm{MHz}$

NOTES:

1. Input pulse levels: 0 to 3.0 V ; Input rise and fall times: 5 ns (\max); Input and output timing reference level: 1.5 V ; Output load: 1 TTL gate equivalent $C L=50 \mathrm{pF}(\mathrm{min})-$ for CL greater than 50 pF , access time is derated by 0.15 ns per pF .
2. Tested at initial design and after major design changes.
3. Typical derating $1.5 \mathrm{~mA} / \mathrm{MHz}$ increase in ICCOP.
4. $\mathrm{VCC}=4.5 \mathrm{~V}$ and 5.5 V .

Specifications HM-6551-8/HM-6551-9
A.C. Electrical Specifications $\mathrm{VCC}=5 \mathrm{~V} \pm 10 \% ; \begin{array}{rll}\mathrm{T}_{\mathrm{A}} & =H M-6551-9 & -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{T}_{\mathrm{A}} & =H M-6551-8 & -550^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}\end{array}$

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
(1) TELQV	Chip Enable Access Time	-	300	ns	(Notes 1, 4)
(2) TAVQV	Address Access Time	-	300	ns	(Notes 1, 4)
(3) TS1LQX	Chip Select 1 Output Enable Time	5	150	ns	(Notes 2, 4)
(4) TWLQZ	Write Enable Output Disable Time	-	150	ns	(Notes 2, 4)
(5) TS1HQZ	Chip Select 1 Output Disable Time	-	150	ns	(Notes 2, 4)
(6) TELEH	Chip Enable Pulse Negative Width	300	-	ns	(Notes 1, 4)
(7) TEHEL	Chip Enable Pulse Positive Width	100	-	ns	(Notes 1, 4)
(8) TAVEL	Address Setup Time	0	-	ns	(Notes 1, 4)
(9) TS2LEL	Chip Select 2 Setup Time	0	-	ns	(Notes 1, 4)
(10) TELAX	Address Hold Time	50	-	ns	(Notes 1, 4)
(11) TELS2X	Chip Select 2 Hold Time	50	-	ns	(Notes 1, 4)
(12) TDVWH	Data Setup Time	150	-	ns	(Notes 1, 4)
(13) TWHDX	Data Hold Time	0	-	ns	(Notes 1, 4)
(14) TWLS1H	Chip Select 1 Write Pulse Setup Time	180	-	ns	(Notes 1, 4)
(15) TWLEH	Chip Enable Write Pulse Setup Time	180	-	ns	(Notes 1, 4)
(16) TS1LWH	Chip Select 1 Write Pulse Hold Time	180	-	ns	(Notes 1, 4)
(17) TELWH	Chip Enable Write Pulse Hold Time	180	-	ns	(Notes 1, 4)
(18) TWLWH	Write Enable Pulse Width	180	-	ns	(Notes 1, 4)
(19) TELEL	Read or Write Cycle Time	400	-	ns	(Notes 1, 4)

NOTES:

1. Input pulse levels: 0 to 3.0 V ; Input rise and fall times: 5 ns (max); Input and output timing reference level: 1.5 V ; Output load: 1 TTL gate equivalent $C L=50 \mathrm{pF}(\mathrm{min})-$ for CL greater than 50 pF , access time is derated by 0.15 ns per pF .
2. Tested at initial design and after major design changes.
3. Typical derating $1.5 \mathrm{~mA} / \mathrm{MHz}$ increase in ICCOP.
4. $V C C=4.5 \mathrm{~V}$ and 5.5 V .

Absolute Maximum Ratings

Operating Conditions

Operating Voltage R	+5.5V
Operating Temperature Ranges:	
HM-6551-5	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

D.C. Electrical Specifications $\mathrm{VCC}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=\mathrm{HM}-6551-50^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
ICCSB	Standby Supply Current	-	100	$\mu \mathrm{~A}$	$I O=0, \mathrm{VI}=\mathrm{VCC}$ or GND
ICCOP	Operating Supply Current (Note 3)	-	4	mA	$\overline{\mathrm{E}}=1 \mathrm{MHz}, \mathrm{IO}=0, \mathrm{VI}=\mathrm{VCC}$ or GND, $\mathrm{W}=\mathrm{GND}$
ICCDR	Data Retention Supply Current	-	100	$\mu \mathrm{~A}$	$\mathrm{VCC}=2.0, \mathrm{IO}=0, \mathrm{VI}=\mathrm{VCC}$ or GND, $\overline{\mathrm{E}}=\mathrm{VCC}$
VCCDR	Data Retention Supply Voltage	2.0	-	V	
II	Input Leakage Current	-1.0	+1.0	$\mu \mathrm{~A}$	$\mathrm{VI}=\mathrm{VCC}$ or GND
IOZ	Output Leakage Current	-1.0	+1.0	$\mu \mathrm{~A}$	$\mathrm{VO}=\mathrm{VCC}$ or GND
VIL	Input Low Voltage	-0.3	0.8	V	
VIH	Input High Voltage	$\mathrm{VCC}-2.0$	$\mathrm{VCC}+0.3$	V	
VOL	Output Low Voltage	-	0.4	V	$10=1.6 \mathrm{~mA}$
VOH	Output High Voltage	2.4	-	V	$10=-0.2 \mathrm{~mA}$

Capacitance

SYMBOL	PARAMETER	MAX	UNITS	TEST CONDITIONS
CI	Input Capacitance (Note 2)	6	pF	$\mathrm{VI}=\mathrm{VCC}$ or GND, $\mathrm{f}=1 \mathrm{MHz}$
CO	Output Capacitance (Note 2)	10	pF	$\mathrm{VO}=\mathrm{VCC}$ or GND, $\mathrm{f}=1 \mathrm{MHz}$

NOTES:

1. Input pulse levels: 0 to 3.0 V ; Input rise and fall times: 5 ns (max); Input and output timing reference level: 1.5 V ; Output load: 1 TTL gate equivalent $\mathrm{CL}=50 \mathrm{pF}(\mathrm{min})-$ for CL greater than 50 pF , access time is derated by 0.15 ns per pF .
2. Tested at initial design and after major design changes.
3. Typical derating $1.5 \mathrm{~mA} / \mathrm{MHz}$ increase in ICCOP.
4. $\mathrm{VCC}=4.5 \mathrm{~V}$ and 5.5 V .

Specifications HM-6551-5
A.C. Electrical Specifications $\mathrm{VCC}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=\mathrm{HM}-6551-50^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
(1) TELQV	Chip Enable Access Time	-	350	ns	(Notes 1, 4)
(2) TAVQV	Address Access Time	-	360	ns	(Notes 1, 4)
(3) TS1LQX	Chip Select 1 Output Enable Time	5	180	ns	(Notes 2, 4)
(4) TWLQZ	Write Enable Output Disable Time	-	180	ns	(Notes 2, 4)
(5) TS1HQZ	Chip Select 1 Output Disable Time	-	180	ns	(Notes 2, 4)
(6) TELEH	Chip Enable Pulse Negative Width	350	-	ns	(Notes 1, 4)
(7) TEHEL	Chip Enable Pulse Positive Width	150	-	ns	(Notes 1, 4)
(8) TAVEL	Address Setup Time	10	-	ns	(Notes 1, 4)
(9) TS2LEL	Chip Select 2 Setup Time	10	-	ns	(Notes 1, 4)
(10) TELAX	Address Hold Time	70	-	ns	(Notes 1, 4)
(11) TELS2X	Chip Select 2 Hold Time	70	-	ns	(Notes 1, 4)
(12) TDVWH	Data Setup Time	170	-	ns	(Notes 1, 4)
(13) TWHDX	Data Hold Time	0	-	ns	(Notes 1, 4)
(14) TWLS1H	Chip Select 1 Write Pulse Setup Time	210	-	ns	(Notes 1, 4)
(15) TWLEH	Chip Enable Write Pulse Setup Time	210	-	ns	(Notes 1, 4)
(16) TS1LWH	Chip Select 1 Write Pulse Hold Time	210	-	ns	(Notes 1, 4)
(17) TELWH	Chip Enable Write Pulse Hold Time	210	-	ns	(Notes 1, 4)
(18) TWLWH	Write Enable Pulse Width	210	-	ns	(Notes 1, 4)
(19) TELEL	Read or Write Cycle Time	500	-	ns	(Notes 1, 4)

NOTES:

1. Input pulse levels: 0 to 3.0 V ; Input rise and fall times: 5 ns (max); Input and output timing reference level: 1.5 V ; Output load: 1 TTL gate equivalent $\mathrm{CL}=50 \mathrm{pF}(\mathrm{min})-$ for $C L$ greater than 50 pF , access time is derated by 0.15 ns per pF .
2. Tested at initial design and after major design changes.
3. Typical derating $1.5 \mathrm{~mA} / \mathrm{MHz}$ increase in ICCOP.
4. $\mathrm{VCC}=4.5 \mathrm{~V}$ and 5.5 V .

Read Cycle

TIME	INPUTS					OUTPUTS	
REFERENCE	\bar{E}	$\overline{\mathbf{S 1}}$	$\overline{\mathbf{S 2}}$	$\overline{\text { W }}$	A	D	Q

The HM-6551 Read Cycle is initiated by the falling edge of $\overline{\mathrm{E}}$. This signal latches the input address word and $\overline{\mathrm{S} 2}$ into on chip registers providing the minimum setup and hold times are met. After the required hold time, these inputs may change state without affecting device operation. $\overline{\mathrm{S} 2}$ acts as a high order address and simplifies decoding. For the output to be read, $\overline{\mathrm{E}}, \overline{\mathrm{S} 1}$ must be low and $\overline{\mathrm{W}}$ must be high. $\overline{\mathrm{S} 2}$ must have been latched low on the falling edge of \bar{E}. The output data will be valid at access time (TELQV).

The HM-6551 has output data latches that are controlled by \bar{E}. On the rising edge of \bar{E} the present data is latched and remains in that state until \bar{E} falls. Also on the rising edge of \bar{E}, $\overline{\mathrm{S} 2}$ unlatches and controls the outputs along with $\overline{\mathrm{S} 1}$. Either or both $\overline{\mathrm{S} 1}$ or $\overline{\mathrm{S} 2}$ may be used to force the output buffers into a high impedance state.

Write Cycle

TRUTH TABLE

TIME REFERENCE	\bar{E}	INPUTS			A	D	OUTPUTS Q	FUNCTION
		$\overline{51}$	$\overline{52}$	$\overline{\text { w }}$				
-1	H	H	X	X	X	X	z	Memory Disabled
0	2	X	L	x	v	X	Z	Cycle Begins, Addresses and $\overline{\mathbf{S 2}}$ are Latched
1	L	L	X		X	X	z	Write Period Begins
2	L	L	X	\cdots	x	V	Z	Data in is Written
3	-	X	X	H	X	X	Z	Write is Completed
4		H	X	X	x	x	z	Prepare for Next Cycle (Same as -1)
5		X	L	X	V	X	Z	Cycle Ends, Next Cycle Begins (Same as 0)

In the Write Cycle the falling edge of $\overline{\mathrm{E}}$ latches the addresses and $\overline{\mathrm{S} 2}$ into on chip registers. $\overline{\mathrm{S} 2}$ must be latched in the low state to enable the device. The write portion of the cycle is defined as $\overline{\mathrm{E}}, \overline{\mathrm{W}}, \overline{\mathrm{S} 1}$ being low and $\overline{\mathrm{S} 2}$ being latched simultaneously. The \bar{W} line may go low at any time during the cycle providing that the write pulse setup times (TWLEH and TWLS1H) are met. The write portion of the cycle is terminated on the first rising edge of either \bar{E}, \bar{W}, or $\overline{S 1}$.

If a series of consecutive write cycles are to be executed, the \bar{W} line may be held low until all desired locations have been written. If this method is used, data setup and hold times must be referenced to the first rising edge of $\overline{\mathrm{E}}$ or $\overline{\mathrm{S} 1}$.

By positioning the write pulse at different times within the \bar{E} and $\overline{\mathrm{S} 1}$ low time (TELEH), various types of write cycles may be performed. If the $\overline{\mathrm{S} 1}$ low time (TS1LS1H) is greater than the \bar{W} pulse plus an output enable time (TS1LQX), a combination read-write cycle is executed. Data may be modified an indefinite number of times during any write cycle (TELEH).

The HM-6551 may be used on a common I/O bus structure by tying the input and output pins together. The multiplexing is accomplished internally by the \bar{W} line. In the write cycle, when \bar{W} goes low, the output buffers are forced to a high impedance state. One output disable time delay (TWLQZ) must be allowed before applying input data to the bus.

Features

- HM-6100 Compatible
- Low Standby Power \qquad 50 WW Max.
- Low Operating Power 20mW/MHz Max.
- Fast Access Time 220ns Max
- Data Retention Voltage 2.0V Min.
- TTL Compatible In/Out
- High Output Drive - 1 TTL Loads
- On Chip Address Registers
- Common Data In/Out
- Three-State Outputs
- Easy Microprocessor Interfacing
- Wide Operating Temperature Ranges:
- HM-6561 5
- HM-6561-9
\qquad
- HM-6561-8
$0{ }^{\circ}$ to $+70{ }^{\circ} \mathrm{C}$

Description

The HM-6561 is a 256 by 4 static CMOS RAM fabricated using selfaligned silicon gate technology. Synchronous circuit design techniques are employed to achieve high performance and low power operation.
On chip latches are provided for address and data outputs allowing efficient interfacing with microprocessor systems. The data output buffers can be forced to a high impedance state for use in expanded memory arrays. The data inputs and outputs are multiplexed internally for common I/O bus compatibility.
The HM-6561 is a fully static RAM and may be maintained in any state for an indefinite period of time. Data retention supply voltage and supply current are guaranteed over temperature.

Pinout
TOP VIEW

A-Address Input \quad W-Write Enable E-Chip Enable DQ-Data In/Out S-Chip Select

Logic Symbol

Absolute Maximum Ratings

Supply Voltage	+7.0V
Input, Output or I/O Voltage Applied	GND -0.3V to VCC +0.3V
Storage Temperature Range	. ${ }^{-65}{ }^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Package Power Dissipation	1 Watt
$\theta_{\text {jc }}$	$18^{\circ} \mathrm{C} / \mathrm{W}$ (CERDIP Package)
$\theta_{\text {ja }}$	$74{ }^{\circ} \mathrm{C} / \mathrm{W}$ (CERDIP Package)
Gate Count	. 1944 Gates
Junction Temperature	$+150^{\circ} \mathrm{C}$
	+275

CAUTION: Stresses above those listed in the "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operation section of this specification is not implied.

Operating Conditions

Operating Temperature Ranges:	
HM-6561B-9.	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
HM-6561B-8	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

D.C. Electrical Specifications VCC $=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=\mathrm{HM}-6561 \mathrm{~B}-9 \quad-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ $\mathrm{T}_{\mathrm{A}}=\mathrm{HM}-6561 \mathrm{~B}-8 \quad-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
ICCSB	Standby Supply Current	-	10	$\mu \mathrm{A}$	$1 \mathrm{O}=0, \mathrm{VI}=\mathrm{VCC}$ or GND
ICCOP	Operating Supply Current (Note 3)	-	4	mA	$\begin{aligned} & \overline{\mathrm{E}}=1 \mathrm{MHz}, \mathrm{IO}=0, \mathrm{VI}=\mathrm{VCC} \text { or } \mathrm{GND}, \\ & \overline{\mathrm{~W}}=\mathrm{GND} \end{aligned}$
ICCDR	Data Retention Supply Current	-	10	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{VCC}=2.0, \mathrm{IO}=0, \mathrm{VI}=\mathrm{VCC} \text { or } \mathrm{GND}, \\ & \mathrm{E}=\mathrm{VCC} \end{aligned}$
VCCDR	Data Retention Supply Voltage	2.0	-	V	
II	Input Leakage Current	-1.0	+1.0	$\mu \mathrm{A}$	$\mathrm{VI}=\mathrm{VCC}$ or GND
IIOZ	Input/Output Leakage Current	-1.0	+1.0	$\mu \mathrm{A}$	$\mathrm{VIO}=\mathrm{VCC}$ or GND
VIL	Input Low Voltage	-0.3	0.8	V	
VIH	Input High Voltage	VCC-2.0	VCC+0.3	V	
VOL	Output Low Voltage	-	0.4	V	$10=1.6 \mathrm{~mA}$
VOH	Output High Voltage	2.4	-	V	$10=-0.4 \mathrm{~mA}$

Capacitance

SYMBOL	PARAMETER	MAX	UNITS	TEST CONDITIONS
CI	Input Capacitance (Note 2)	6	pF	$\mathrm{VI}=\mathrm{VCC}$ or GND, $\mathrm{f}=1 \mathrm{MHz}$
CIO	Input/Output Capacitance (Note 2)	10	pF	$\mathrm{VIO}=\mathrm{VCC}$ or GND, $\mathrm{f}=1 \mathrm{MHz}$

NOTES:

1. Input pulse levels: 0 to 3.0 V ; Input rise and fall times: 5 ns (max); Input and output timing reference level: 1.5 V ; Output load: 1 TTL gate equivalent $C L=50 \mathrm{pF}(\mathrm{min})-$ for CL greater than 50 pF , access time is derated by 0.15 ns per pF .
2. Tested at initial design and after major design changes.
3. Typical derating $1.5 \mathrm{~mA} / \mathrm{MHz}$ increase in ICCOP.
4. $\mathrm{VCC}=4.5 \mathrm{~V}$ and 5.5 V .

Specifications HM-6561B-8/HM-6561B-9
A.C. Electrical Specifications $V C C=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=\mathrm{HM}-6561 \mathrm{~B}-9-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

$$
\mathrm{T}_{\mathrm{A}}=\mathrm{HM}-6561 \mathrm{~B}-8 \quad-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}
$$

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
(1) TELQV	Chip Enable Access Time	-	220	ns	(Notes 1, 4)
(2) TAVQV	Address Access Time	-	220	ns	(Notes 1, 4)
(3) TSLQX	Chip Select Output Enable Time	5	120	ns	(Notes 2, 4)
(4) TSHQZ	Chip Select Output Disable Time	-	120	ns	(Notes 2, 4)
(5) TELEH	Chip Enable Pulse Negative Width	220	-	ns	(Notes 1, 4)
(6) TEHEL	Chip Enable Pulse Positive Width	100	-	ns	(Notes 1, 4)
(7) TAVEL	Address Setup Time	0	-	ns	(Notes 1, 4)
(8) TELAX	Address Hold Time	40	-	ns	(Notes 1, 4)
(9) TDVWH	Data Setup Time	100	-	ns	(Notes 1, 4)
(10) TWHDX	Data Hold Time	0	-	ns	(Notes 1, 4)
(11) TWLDV	Write Data Delay Time	20	-	ns	(Notes 1, 4)
(12) TWLSH	Chip Select Write Pulse Setup Time	120	-	ns	(Notes 1, 4)
(13) TWLEH	Chip Enable Write Pulse Setup Time	120	-	ns	ns
(14) TSLWH	Chip Select Write Pulse Hold Time	120	-	ns	(Notes 1, 4)
(15) TELWH	Chip Enable Write Pulse Hold Time	120	-	ns	(Notes 1, 4)
(16) TWLWH	Write Enable Pulse Width	120	-	ns	(Notes 1, 4)
(17) TWLSL	Early Output High Z Time	0	-	ns	(Notes 1, 4)
(18) TSHWH	Late Output High Z Time	0	-	ns	(Notes 1, 4)
(19) TELEL	Read or Write Cycle Time	(Notes 1, 4)			

NOTES:

1. Input pulse levels: 0 to 3.0 V ; Input rise and fall times: 5 ns (max); Input and output timing reference level: 1.5 V ; Output load: 1 TTL gate equivalent $C L=50 \mathrm{pF}(\mathrm{min})-$ for $C L$ greater than 50 pF , access time is derated by 0.15 ns per pF .
2. Tested at initial design and after major design changes.
3. Typical derating $1.5 \mathrm{~mA} / \mathrm{MHz}$ increase in ICCOP
4. $V C C=4.5 \mathrm{~V}$ and 5.5 V .

Absolute Maximum Ratings

Operating Conditions

Operating Temperature Ranges:	
HM-6561-9	.$^{-40}{ }^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
HM-6561-8	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

D.C. Electrical Specifications $V C C=5 \mathrm{~V} \pm 10 \% ; T_{A}=H M-6561-9-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{A}}=\mathrm{HM}-6561-8 \quad-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
ICCSB	Standby Supply Current	-	10	$\mu \mathrm{~A}$	$\mathrm{IO}=0, \mathrm{VI}=\mathrm{VCC}$ or GND
ICCOP	Operating Supply Current (Note 3)	-	4	mA	$\overline{\mathrm{E}}=1 \mathrm{MHz}, \mathrm{IO}=0, \mathrm{VI}=\mathrm{VCC}$ or GND, $\mathrm{W}=\mathrm{GND}$
ICCDR	Data Retention Supply Current	-	10	$\mu \mathrm{~A}$	$\mathrm{VCC}=2.0, \mathrm{IO}=0, \mathrm{VI}=\mathrm{VCC}$ or GND, $\mathrm{E}=\mathrm{VCC}$
VCCDR	Data Retention Supply Voltage	2.0	-	V	
II	Input Leakage Current	-1.0	+1.0	$\mu \mathrm{~A}$	$\mathrm{VI}=\mathrm{VCC}$ or GND
IIOZ	Input/Output Leakage Current	-1.0	+1.0	$\mu \mathrm{~A}$	$\mathrm{VIO}=\mathrm{VCC}$ or GND
VIL	Input Low Voltage	-0.3	0.8	V	
VIH	Input High Voltage	$\mathrm{VCC}-2.0$	$\mathrm{VCC}+0.3$	V	
VOL	Output Low Voltage	-	0.4	V	$1 \mathrm{O}=1.6 \mathrm{~mA}$
VOH	Output High Voltage	2.4	-	V	$10=-0.4 \mathrm{~mA}$

Capacitance

SYMBOL	PARAMETER	MAX	UNITS	TEST CONDITIONS
CI	Input Capacitance (Note 2)	6	pF	$\mathrm{VI}=\mathrm{VCC}$ or GND, $\mathrm{f}=1 \mathrm{MHz}$
CIO	Input/Output Capacitance (Note 2)	10	pF	$\mathrm{VIO}=\mathrm{VCC}$ or GND, $\mathrm{f}=1 \mathrm{MHz}$

NOTES:

1. Input pulse levels: 0 to 3.0 V ; Input rise and fall times: 5 ns (max); Input and output timing reference level: 1.5 V ; Output load: 1 TTL gate equivalent $C L=50 \mathrm{pF}(\mathrm{min})-$ for $C L$ greater than 50 pF , access time is derated by 0.15 ns per pF .
2. Tested at initial design and after major design changes.
3. Typical derating $1.5 \mathrm{~mA} / \mathrm{MHz}$ increase in ICCOP.
4. $\mathrm{VCC}=4.5 \mathrm{~V}$ and 5.5 V .

Specifications HM-6561-8/HM-6561-9
A.C. Electrical Specifications $\mathrm{VCC}=5 \mathrm{~V} \pm 10 \% ; \begin{array}{ll}T_{A} & =H M-6561-9 \\ T_{A} & -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ T_{A} & =H-6561-8 \\ -555^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}\end{array}$

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
(1) TELQV	Chip Enable Access Time	-	300	ns	(Notes 1, 4)
(2) TAVQV	Address Access Time	-	300	ns	(Notes 1, 4)
(3) TSLQX	Chip Select Output Enable Time	5	150	ns	(Notes 2, 4)
(4) TSHQZ	Chip Select Output Disable Time	-	150	ns	(Notes 2, 4)
(5) TELEH	Chip Enable Pulse Negative Width	300	-	ns	(Notes 1, 4)
(6) TEHEL	Chip Enable Pulse Positive Width	100	-	ns	(Notes 1, 4)
(7) TAVEL	Address Setup Time	0	-	ns	(Notes 1, 4)
(8) TELAX	Address Hold Time	50	-	ns	(Notes 1, 4)
(9) TDVWH	Data Setup Time	150	-	ns	(Notes 1, 4)
(10) TWHDX	Data Hold Time	0	-	ns	(Notes 1, 4)
(11) TWLDV	Write Data Delay Time	30	-	ns	(Notes 1, 4)
(12) TWLSH	Chip Select Write Pulse Setup Time	180	-	ns	(Notes 1, 4)
(13) TWLEH	Chip Enable Write Pulse Setup Time	180	-	ns	(Notes 1, 4)
(14) TSLWH	Chip Select Write Pulse Hold Time	180	-	ns	(Notes 1, 4)
(15) TELWH	Chip Enable Write Pulse Hold Time	180	-	ns	(Notes 1, 4)
(16) TWLWH	Write Enable Pulse Width	180	-	ns	(Notes 1, 4)
(17) TWLSL	Early Output High Z Time	0	-	ns	(Notes 1, 4)
(18) TSHWH	Late Output High Z Time	0	-	ns	(Notes 1, 4)
(19) TELEL	Read or Write Cycle Time	400	-	ns	(Notes 1, 4)

NOTES:

1. Input pulse levels: 0 to 3.0 V ; Input rise and fall times: 5 ns (max); Input and output timing reference level: 1.5 V ; Output load: 1 TTL gate equivalent $\mathrm{CL}=50 \mathrm{pF}(\mathrm{min})-$ for CL greater than 50 pF , access time is derated by 0.15 ns per pF .
2. Tested at initial design and after major design changes.
3. Typical derating $1.5 \mathrm{~mA} / \mathrm{MHz}$ increase in ICCOP.
4. $\mathrm{VCC}=4.5 \mathrm{~V}$ and 5.5 V .

Absolute Maximum Ratings

CAUTION: Stresses above those listed in the "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operation section of this specification is not implied.

Operating Conditions

D.C. Electrical Specifications VCC $=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=\mathrm{HM}-6561-5 \quad 0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
ICCSB	Standby Supply Current	-	100	$\mu \mathrm{~A}$	$\mathrm{IO}=0, \mathrm{VI}=\mathrm{VCC}$ or GND
ICCOP	Operating Supply Current (Note 3)	-	4	mA	$\overline{\mathrm{E}}=1 \mathrm{MHz}, \mathrm{IO}=0, \mathrm{VI}=\mathrm{VCC}$ $\mathrm{W}=\mathrm{GND}$
ICCDR	Data Retention Supply Current	-	100	$\mu \mathrm{~A}$	$\mathrm{VCC}=2.0, \mathrm{IO}=0, \mathrm{VI}=\mathrm{VCC}$ or GND, $\mathrm{E}=\mathrm{VCC}$
VCCDR	Data Retention Supply Voltage	2.0	-	V	
II	Input Leakage Current	-1.0	+1.0	$\mu \mathrm{~A}$	$\mathrm{VI}=\mathrm{VCC}$ or GND
IIOZ	Input/Output Leakage Current	-1.0	+1.0	$\mu \mathrm{~A}$	$\mathrm{VIO}=\mathrm{VCC}$ or GND
VIL	Input Low Voltage	-0.3	0.8	V	
VIH	Input High Voltage	$\mathrm{VCC}-2.0$	$\mathrm{VCC}+0.3$	V	
VOL	Output Low Voltage	-	0.4	V	$\mathrm{IO}=1.6 \mathrm{~mA}$
VOH	Output High Voltage	2.4	-	V	$\mathrm{IO}=-0.2 \mathrm{~mA}$

Capacitance

SYMBOL	PARAMETER	MAX	UNITS	TEST CONDITIONS
CI	Input Capacitance (Note 2)	6	pF	$\mathrm{VI}=\mathrm{VCC}$ or GND, $\mathrm{f}=1 \mathrm{MHz}$
CIO	Input/Output Capacitance (Note 2)	10	pF	$\mathrm{VIO}=\mathrm{VCC}$ or GND, $\mathrm{f}=1 \mathrm{MHz}$

NOTES:

1. Input pulse levels: 0 to 3.0 V ; Input rise and fall times: 5 ns (max); Input and output timing reference level: 1.5 V ; Output load: 1 TTL gate equivalent $\mathrm{CL}=50 \mathrm{pF}(\mathrm{min})-$ for CL greater than 50 pF , access time is derated by 0.15 ns per pF .
2. Tested at initial design and after major design changes.
3. Typical derating $1.5 \mathrm{~mA} / \mathrm{MHz}$ increase in ICCOP.
4. $\mathrm{VCC}=4.5 \mathrm{~V}$ and 5.5 V .

Specifications HM-6561-5
A.C. Electrical Specifications $\mathrm{VCC}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=\mathrm{HM}-6561-5 \quad-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
(1) TELQV	Chip Enable Access Time	-	350	ns	(Notes 1, 4)
(2) TAVQV	Address Access Time	-	360	ns	(Notes 1, 4)
(3) TSLQX	Chip Select Output Enable Time	5	180	ns	(Notes 2, 4)
(4) TSHQZ	Chip Select Output Disable Time	-	180	ns	(Notes 2, 4)
(5) TELEH	Chip Enable Pulse Negative Width	350	-	ns	(Notes 1, 4)
(6) TEHEL	Chip Enable Pulse Positive Width	150	-	ns	(Notes 1, 4)
(7) TAVEL	Address Setup Time	10	-	ns	(Notes 1, 4)
(8) TELAX	Address Hold Time	70	-	ns	(Notes 1, 4)
(9) TDVWH	Data Setup Time	170	-	ns	(Notes 1, 4)
(10) TWHDX	Data Hold Time	0	-	ns	(Notes 1, 4)
(11) TWLDV	Write Data Delay Time	40	-	ns	(Notes 1, 4)
(12) TWLSH	Chip Select Write Pulse Setup Time	210	-	ns	(Notes 1, 4)
(13) TWLEH	Chip Enable Write Pulse Setup Time	210	-	ns	(Notes 1, 4)
(14) TSLWH	Chip Select Write Pulse Hold Time	210	-	ns	(Notes 1, 4)
(15) TELWH	Chip Enable Write Pulse Hold Time	210	-	ns	(Notes 1, 4)
(16) TWLWH	Write Enable Pulse Width	210	-	ns	(Notes 1, 4)
(17) TWLSL	Early Output High Z Time	0	-	ns	(Notes 1, 4)
(18) TSHWH	Late Output High Z Time	0	-	ns	(Notes 1, 4)
(19) TELEL	Read or Write Cycle Time	500	-	ns	(Notes 1, 4)

NOTES:

1. Input pulse levels: 0 to 3.0 V ; Input rise and fall times: 5 ns (max); Input and output timing reference level: 1.5 V ; Output load: 1 TTL gate equivalent $\mathrm{CL}=50 \mathrm{pF}(\mathrm{min})-$ for CL greater than 50 pF , access time is derated by 0.15 ns per pF .
2. Tested at initial design and after major design changes.
3. Typical derating $1.5 \mathrm{~mA} / \mathrm{MHz}$ increase in ICCOP.
4. $V C C=4.5 \mathrm{~V}$ and 5.5 V .

Read Cycle

TRUTH TABLE

TIME	INPUTS				OUTPUT	
REFERENCE	\bar{E}	$\overline{51}$	\bar{W}	A	DQ	FUNCTION
-1	H	H	X	X	Z	Memory Disabled
0	2	X	H	V	Z	Cycle Begins, Addresses are Latched
1	L	L	H	X	X	Output Enabled
2	L	L	H	X	V	Output Valid
3	\sim	L	H	X	V	Output Latched
4	H	H	X	X	Z	Device Disabled, Prepare for Next Cycle (Same as -1)
5	2	X	H	V	Z	Cycle Ends, Next Cycle Begins (Same as 0)

NOTES: 1. Device selected only if both $\overline{\mathrm{S} 1}$ and $\overline{\mathrm{S} 2}$ are low, and deselected if either $\overline{\mathrm{S} 1}$ or $\overline{\mathrm{S} 2}$ are high.

The HM-6561 Read Cycle is initiated on the falling edge of $\overline{\mathrm{E}}$. This signal latches the input address word into on chip registers. Minimum address setup and hold times must be met. After the required hold time, the address lines may change state without affecting device operation. In order to read the output data $\overline{\mathrm{E}}, \overline{\mathrm{S} 1}$ and $\overline{\mathrm{S} 2}$ must be low and $\overline{\mathrm{W}}$ must
be high. The output data will be valid at access time (TELQV).
The HM-6561 has output data latches that are controlled by \bar{E}. On the rising edge of \bar{E} the present data is latched and remains latched until $\overline{\mathrm{E}}$ falls. Either or both $\overline{\mathrm{S} 1}$ or $\overline{\mathrm{S} 2}$ may be used to force the output buffers into a high impedance state.

Write Cycle

TRUTH TABLE

TIME REFERENCE	$\overline{\mathrm{E}} \quad \overline{S N 1}^{\text {INPUTS }} \overline{\mathbf{W}}^{\text {a }}$ A DQ					FUNCTION
-1	H	H	X	X	X	Memory Disabled
0	2	X	X	V	X	Cycle Begins, Addresses are Latched
1	L	L	L	X	X	Write Period Begins
2	L	L	\sim	X	V	Data In is Written
3	\sim	X	H	X	X	Write is Completed
4	H	H	X	X	X	Prepare for Next Cycle (Same as -1)
5	2	X	X	V	X	Cycle Ends, Next Cycle Begins (Same as 0)

NOTES: 1. Device selected only if both $\overline{\mathrm{S} 1}$ and $\overline{\mathrm{S} 2}$ are low, and deselected if either $\overline{\mathrm{S} 1}$ or $\overline{\mathrm{S} 2}$ are high.

The write cycle begins with the \bar{E} falling edge latching the address. The write portion of the cycle is defined by $\overline{\mathrm{E}}, \overline{\mathrm{S} 1}$, $\overline{\mathrm{S} 2}$ and $\overline{\mathrm{W}}$ all being low simultaneously. The write portion of the cycle is terminated by the first rising edge of any control line, $\overline{\mathrm{E}}, \overline{\mathrm{S}}, \overline{\mathrm{S} 2}$ or $\overline{\mathrm{W}}$. The data setup and data hold times (TDVWH and TWHDX) must be referenced to the terminating signal. For example, if $\overline{\mathrm{S} 2}$ rises first, data setup and hold times become TDVS2H and TS2HDX; and are numerically equal to TDVWH and TWHDX.

Data input/output multiplexing is controlled by $\overline{\mathrm{W}}$. Care must be taken to avoid data bus conflicts, where the RAM outputs become enabled when another device is driving the data inputs. The following two examples illustrate the timing required to avoid bus conflicts.

Case 1: Both $\overline{\mathbf{S} 1}$ and $\overline{\mathbf{S} 2}$ Fall Before $\overline{\mathbf{W}}$ Falls.

If both selects fall before \bar{W} falls, the RAM outputs will become enabled. \bar{W} is used to disable the outputs, so a disable time (TWLQZ $=$ TWLDV) must pass before any other device can begin to drive the data inputs. This method of operation requires a wider write pulse, because TWLDV + TDVWH is greater than TWLWH. In this case TWLSL and TSHWH are meaningless and can be ignored.

Case 2: $\overline{\mathbf{W}}$ Falls Before Both $\overline{\mathbf{S} 1}$ and $\overline{\mathbf{S} 2}$ Fall.

If one or both selects are high until \bar{W} falls, the outputs are guaranteed not to enable at the beginning of the cycle. This
eliminates the concern for data bus conflicts and simplifies data input timing. Data input may be applied as early as convenient, and TWLDV is ignored. Since \bar{W} is not used to disable the outputs it can be shorter than in Case 1; TWLWH is the minimum write pulse. At the end of the write period, if \bar{W} rises before either select the outputs will enable, reading the data just written. They will not disable until either select goes high (TSHQZ).

	IF	ObSERVE	IGNORE
CASE 1	Both $\overline{\mathrm{S} 1}$ and $\overline{\mathrm{S} 2}=$ Low Before $\bar{W}=$ Low	TWLQZ TWLDV TDVWH	TWLWH TWLSL TSHWH
CASE 2	$\begin{aligned} & \overline{\mathrm{W}}=\text { Low Before Both } \\ & \overline{\mathrm{S} 1} \text { and } \overline{\mathrm{S} 2}=\text { Low } \end{aligned}$	TWLWH TDVWH TWLSL TSHWH	TWLQZ TWLDV

If a series of consecutive write cycles are to be performed, \bar{W} may remain low until all desired locations are written. This is an extension of Case 2.

Read-Modify-Write cycles and Read-Write-Read cycles can be performed (extension of Case 1). In fact, data may be modified as many times as desired with $\overline{\mathrm{E}}$ remaining low.

Features

- Low Power Standby 125μ W Max.
- Low Power Operation 35mW/MHz Max.
- Extremely Low Speed-Power Product
- Data Retention
@ 2.0V Min.
- TTL Compatible Input/Output
- Three-State Output
- Standard JEDEC Pinout
- Fast Access Time . 120/200ns Max.
- Wide Operating Temperature Ranges:
- HM-6504-9
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- HM-6504-8 $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
- 18 Pin Package for High Density
- On-Chip Address Register
- Gated Inputs-No Pull Up or Pull Down Resistors Required

Description

The HM-6504 is a 4096×1 static CMOS RAM fabricated using selfaligned silicon gate technology. The device utilizes synchronous circuitry to achieve high performance and low power operation.

On chip latches are provided for addresses, data input and data output allowing efficient interfacing with microprocessor systems. The data output can be forced to a high impedance state for use in expanded memory arrays.
Gated inputs allow lower operating current and also eliminates the need for pull-up or pull-down resistors. The HM-6504 is a fully static RAM and may be maintained in any state for an indefinite period of time.
Data retention supply voltage and supply current are guaranteed over temperature.

Pinouts
TOP VIEW

LCC TOP VIEW

PIN NAMES
$\begin{array}{ll}\text { A - Address Input } & \text { D - Data Input } \\ \frac{\text { E }}{} \text { - Chip Enable } & \text { Q - Data Output } \\ \overline{\text { W }} \text { - Write Enable } & \end{array}$

Functional Diagram

CAUTION: Electronic devices are sensitive to electrostatic discharge. Proper I.C. handling procedures should be followed.

Absolute Maximum Ratings

Supply Voltage	+7.0V
Input, Output or I/O Voltage Applied	GND -0.3V to VCC +0.3V
Storage Temperature Range .	$-65{ }^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Package Power Dissipation	1 Watt
$\theta_{\text {jc }}$	$12^{\circ} \mathrm{C} / \mathrm{W}$ (CERDIP Package), TBD ${ }^{\circ} \mathrm{C} / \mathrm{W}$ (LCC Package)
θ_{ja}	$66^{\circ} \mathrm{C} / \mathrm{W}$ (CERDIP Package), $\mathrm{TBD}^{\circ} \mathrm{C} / \mathrm{W}$ (LCC Package)
Gate Count.	7000 Gates
Junction Temperature	$+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, Ten Se	+2750

CAUTION: Stresses above those listed in the "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operation section of this specification is not implied.

Operating Conditions

D.C. Electrical Specifications $\mathrm{VCC}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=\mathrm{HM}-6504 \mathrm{~S}-8-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
ICCSB	Standby Supply Current	-	50	$\mu \mathrm{~A}$	$1 \mathrm{O}=0, \overline{\mathrm{E}}=\mathrm{VCC}-\mathrm{O} .3 \mathrm{~V}$
ICCOP	Operating Supply Current (Note 3)	-	7	mA	$\overline{\mathrm{E}}=1 \mathrm{MHz}, \mathrm{IO}=0, \mathrm{VI}=\mathrm{GND}$
ICCDR	Data Retention Supply Current	-	25	$\mu \mathrm{~A}$	$\mathrm{IO}=0, \mathrm{VCC}=2.0 \mathrm{~V}, \overline{\mathrm{E}}=\mathrm{VCC}$
VCCDR	Data Retention Supply Voltage	2.0	-	V	
II	Input Leakage Current	-1.0	+1.0	$\mu \mathrm{~A}$	$\mathrm{VI}=\mathrm{VCC}$ or GND
IOZ	Output Leakage Current	-1.0	+1.0	$\mu \mathrm{~A}$	$\mathrm{VO}=\mathrm{VCC}$ or GND
VIL	Input Low Voltage	-0.3	0.8	V	
VIH	Input High Voltage	$\mathrm{VCC}-2.0$	$\mathrm{VCC}+0.3$	V	
VOL	Output Low Voltage	-	0.4	V	$1 \mathrm{O}=2.0 \mathrm{~mA}$
VOH 1	Output High Voltage	2.4	-	V	$1 \mathrm{O}=-1.0 \mathrm{~mA}$
VOH 2	Output High Voltage (Note 2)	$\mathrm{VCC}-0.4$	-	V	$1 \mathrm{O}=-100 \mu \mathrm{~A}$

Capacitance

SYMBOL	PARAMETER	MAX	UNITS	TEST CONDITIONS
Cl	Input Capacitance (Note 2)	8	pF	$\mathrm{VI}=\mathrm{VCC}$ or $\mathrm{GND}, \mathrm{f}=1 \mathrm{MHz}$
CO	Output Capacitance (Note 2)	10	pF	$\mathrm{VO}=\mathrm{VCC}$ or $\mathrm{GND}, \mathrm{f}=1 \mathrm{MHz}$

NOTES:

1. Input pulse levels: 0 to 3.0 V ; Input rise and fall times: 5 ns (max); Input and output timing reference level: 1.5 V ; Output load: 1 TLL gate equivalent $C L=50 \mathrm{pF}(\mathrm{min})-$ for $C L$ greater than 50 pF , access time is derated by 0.15 ns per pF .
2. Tested at initial design and after major design changes.
3. Typical derating $5 \mathrm{~mA} / \mathrm{MHz}$ increase in ICCOP.
4. $\mathrm{VCC}=4.5 \mathrm{~V}$ and 5.5 V .

Specifications HM-6504S-8
A.C. Electrical Specifications $\mathrm{VCC}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=\mathrm{HM}-6504 \mathrm{~S}-8 \quad-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
(1) TELQV	Chip Enable Access Time	-	120	ns	(Notes 1, 4)
(2) TAVQV	Address Access Time	-	120	ns	(Notes 1, 4)
(3) TELQX	Chip Enable Output Enable Time	5	-	ns	(Notes 2, 4)
(4) TEHQZ	Chip Enable Output Disable Time	-	50	ns	(Notes 2, 4)
(5) TELEH	Chip Enable Pulse Negative Width	120	-	ns	(Notes 1, 4)
(6) TEHEL	Chip Enable Pulse Positive Width	50	-	ns	(Notes 1, 4)
(7) TAVEL	Address Setup Time	0	-	ns	(Notes 1, 4)
(8) TELAX	Address Hold Time	40	-	ns	(Notes 1, 4)
(9) TWLWH	Write Enable Pulse Width	20	-	ns	(Notes 1, 4)
(10) TWLEH	Write Enable Pulse Setup Time	70	-	ns	(Notes 1, 4)
(11) TWLEL	Early Write Pulse Setup Time	0	-	ns	(Notes 1, 4)
(12) TWHEL	Write Enable Read Mode Setup Time	0	-	ns	(Notes 2, 4)
(13) TELWH	Early Write Pulse Hold Time	40	-	ns	(Notes 1, 4)
(14) TDVWL	Data Setup Time	0	-	ns	(Notes 1, 4)
(15) TDVEL	Early Write Data Setup Time	0	-	ns	(Notes 1, 4)
(16) TWLDX	Data Hold Time	25	-	ns	(Notes 1, 4)
(17) TELDX	Early Write Data Hold Time	25	-	ns	(Notes 1, 4)
(18) TELEL	Read or Write Cycle Time	170	-	ns	(Notes 1, 4)

NOTES:

1. Input pulse levels: 0 to 3.0 V ; Input rise and fall times: 5 ns (max); Input and output timing reference level: 1.5 V ; Output load: 1 TTL gate equivalent $\mathrm{CL}=50 \mathrm{pF}(\mathrm{min})-$ for CL greater than 50 pF , access time is derated by 0.15 ns per pF .
2. Tested at initial design and after major design changes.
3. Typical derating $5 \mathrm{~mA} / \mathrm{MHz}$ increase in ICCOP.
4. $\mathrm{VCC}=4.5 \mathrm{~V}$ and 5.5 V .

Absolute Maximum Ratings

Supply Voltage	+7.0V
Input, Output or I/O Voltage Applied	GND -0.3V to VCC +0.3 V
Storage Temperature Range	${ }^{-650}{ }^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Package Power Dissipation	1 Watt
$\theta \mathrm{jc}$	$.120^{\circ} \mathrm{C} / \mathrm{W}$ (CERDIP Package), TBD $^{\circ} \mathrm{C} / \mathrm{W}$ (LCC Package)
	$66^{\circ} \mathrm{C} / \mathrm{W}$ (CERDIP Package), TBD $^{\circ} \mathrm{C} / \mathrm{W}$ (LCC Package)
Gate Count.	7000 Gates
Junction Temperature	$+150^{\circ} \mathrm{C}$
 $+275{ }^{\circ} \mathrm{C}$

CAUTION: Stresses above those listed in the "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operation section of this specification is not implied.

Operating Conditions

D.C. Electrical Specifications $\mathrm{VCC}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=\mathrm{HM}-6504 \mathrm{~S}-9-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
ICCSB	Standby Supply Current	-	25	$\mu \mathrm{~A}$	$10=0, \overline{\mathrm{E}}=\mathrm{VCC}-0.3 \mathrm{~V}$
ICCOP	Operating Supply Current (Note 3)	-	7	mA	$\overline{\mathrm{E}}=1 \mathrm{MHz}, \mathrm{IO}=0, \mathrm{VI}=\mathrm{GND}$
ICCDR	Data Retention Supply Current	-	15	$\mu \mathrm{~A}$	$10=0, \mathrm{VCC}=2.0 \mathrm{~V}, \overline{\mathrm{E}}=\mathrm{VCC}$
VCCDR	Data Retention Supply Voltage	2.0	-	V	
II	Input Leakage Current	-1.0	+1.0	$\mu \mathrm{~A}$	$\mathrm{VI}=\mathrm{VCC}$ or GND
IOZ	Output Leakage Current	-1.0	+1.0	$\mu \mathrm{~A}$	$\mathrm{VO}=\mathrm{VCC}$ or GND
VIL	Input Low Voltage	-0.3	0.8	V	
VIH	Input High Voltage	$\mathrm{VCC}-2.0$	$\mathrm{VCC}+0.3$	V	
VOL	Output Low Voltage	-	0.4	V	$10=2.0 \mathrm{~mA}$
VOH1	Output High Voltage	2.4	-	V	$10=-1.0 \mathrm{~mA}$
VOH2	Output High Voltage (Note 2)	$\mathrm{VCC}-0.4$	-	V	$10=-100 \mu \mathrm{~A}$

Capacitance

SYMBOL	PARAMETER	MAX	UNITS	TEST CONDITIONS
Cl	Input Capacitance (Note 2)	8	pF	$\mathrm{VI}=\mathrm{VCC}$ or $\mathrm{GND}, \mathrm{f}=1 \mathrm{MHz}$
CO	Output Capacitance (Note 2)	10	pF	$\mathrm{VO}=\mathrm{VCC}$ or $\mathrm{GND}, \mathrm{f}=1 \mathrm{MHz}$

NOTES:

1. Input pulse levels: 0 to 3.0 V ; Input rise and fall times: 5 ns (max); Input and output timing reference level: 1.5 V ; Output load: 1 TTL gate equivalent $C L=50 \mathrm{pF}(\mathrm{min})-$ for $C L$ greater than 50 pF , access time is derated by 0.15 ns per pF .
2. Tested at initial design and after major design changes.
3. Typical derating $5 \mathrm{~mA} / \mathrm{MHz}$ increase in ICCOP.
4. $V C C=4.5 \mathrm{~V}$ and 5.5 V .

Specifications HM-6504S-9
A.C. Electrical Specifications $\mathrm{VCC}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=\mathrm{HM}-6504 \mathrm{~S}-9-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
(1) TELQV	Chip Enable Access Time	-	120	ns	(Notes 1, 4)
(2) TAVQV	Address Access Time	-	120	ns	(Notes 1, 4)
(3) TELQX	Chip Enable Output Enable Time	5	-	ns	(Notes 2, 4)
(4) TEHQZ	Chip Enable Output Disable Time	-	50	ns	(Notes 2, 4)
(5) TELEH	Chip Enable Pulse Negative Width	120	-	ns	(Notes 1, 4)
(6) TEHEL	Chip Enable Pulse Positive Width	50	-	ns	(Notes 1, 4)
(7) TAVEL	Address Setup Time	0	-	ns	(Notes 1, 4)
(8) TELAX	Address Hold Time	40	-	ns	(Notes 1, 4)
(9) TWLWH	Write Enable Pulse Width	20	-	ns	(Notes 1, 4)
(10) TWLEH	Write Enable Pulse Setup Time	70	-	ns	(Notes 1, 4)
(11) TWLEL	Early Write Pulse Setup Time	0	-	ns	(Notes 1, 4)
(12) TWHEL	Write Enable Read Mode Setup Time	0	-	ns	(Notes 2, 4)
(13) TELWH	Early Write Pulse Hold Time	40	-	ns	(Notes 1, 4)
(14) TDVWL	Data Setup Time	0	-	ns	(Notes 1, 4)
(15) TDVEL	Early Write Data Setup Time	0	-	ns	(Notes 1, 4)
(16) TWLDX	Data Hold Time	25	-	ns	(Notes 1, 4)
(17) TELDX	Early Write Data Hold Time	25	-	ns	(Notes 1, 4)
(18) TELEL	Read or Write Cycle Time	170	-	ns	(Notes 1, 4)

NOTES:

1. Input pulse levels: 0 to 3.0 V ; Input rise and fall times: 5 ns (max); Input and output timing reference level: 1.5 V ; Output load: 1 TTL gate equivalent $\mathrm{CL}=50 \mathrm{pF}(\mathrm{min})-$ for CL greater than 50 pF , access time is derated by 0.15 ns per pF .
2. Tested at initial design and after major design changes.
3. Typical derating $5 \mathrm{~mA} / \mathrm{MHz}$ increase in ICCOP.
4. $\mathrm{VCC}=4.5 \mathrm{~V}$ and 5.5 V .

Absolute Maximum Ratings

Operating Conditions

 Operating Temperature Ranges:

HM-6504B-8 ... $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
D.C. Electrical Specifications $\mathrm{VCC}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=\mathrm{HM}-6504 \mathrm{~B}-8-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
ICCSB	Standby Supply Current	-	50	$\mu \mathrm{~A}$	$10=0, \overline{\mathrm{E}}=\mathrm{VCC}-0.3 \mathrm{~V}$
ICCOP	Operating Supply Current (Note 3)	-	7	mA	$\overline{\mathrm{E}}=1 \mathrm{MHz}, \mathrm{IO}=0, \mathrm{VI}=\mathrm{GND}$
ICCDR	Data Retention Supply Current	-	25	$\mu \mathrm{~A}$	$10=0, \mathrm{VCC}=2.0 \mathrm{~V}, \overline{\mathrm{E}}=\mathrm{VCC}$
VCCDR	Data Retention Supply Voltage	2.0	-	V	
II	Input Leakage Current	-1.0	+1.0	$\mu \mathrm{~A}$	$\mathrm{VI}=\mathrm{VCC}$ or GND
IOZ	Output Leakage Current	-1.0	+1.0	$\mu \mathrm{~A}$	$\mathrm{VO}=\mathrm{VCC}$ or GND
VIL	Input Low Voltage	-0.3	0.8	V	
VIH	Input High Voltage	$\mathrm{VCC}-2.0$	$\mathrm{VCC}+0.3$	V	
VOL	Output Low Voltage	-	0.4	V	$10=2.0 \mathrm{~mA}$
VOH1	Output High Voltage	2.4	-	V	$10=-1.0 \mathrm{~mA}$
VOH 2	Output High Voltage (Note 2)	$\mathrm{VCC}-0.4$	-	V	$10=-100 \mu \mathrm{~A}$

Capacitance

SYMBOL	PARAMETER	MAX	UNITS	TEST CONDITIONS
Cl	Input Capacitance (Note 2)	8	pF	$\mathrm{VI}=\mathrm{VCC}$ or $\mathrm{GND}, \mathrm{f}=1 \mathrm{MHz}$
CO	Output Capacitance (Note 2)	10	pF	$\mathrm{VO}=\mathrm{VCC}$ or GND, $\mathrm{f}=1 \mathrm{MHz}$

NOTES:

1. Input pulse levels: 0 to 3.0 V ; Input rise and fall times: 5 ns (max); Input and output timing reference level: 1.5 V ; Output load: 1 TTL gate equivalent $C L=50 \mathrm{pF}(\mathrm{min})$ - for CL greater than 50 pF , access time is derated by 0.15 ns per pF .
2. Tested at initial design and after major design changes.
3. Typical derating $5 \mathrm{~mA} / \mathrm{MHz}$ increase in ICCOP.
4. $\mathrm{VCC}=4.5 \mathrm{~V}$ and 5.5 V .

Specifications HM-6504B-8
A.C. Electrical Specifications $V C C=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=\mathrm{HM}-6504 \mathrm{~B}-8-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
(1) TELQV	Chip Enable Access Time	-	200	ns	(Notes 1, 4)
(2) TAVQV	Address Access Time	-	220	ns	(Notes 1, 4)
(3) TELQX	Chip Enable Output Enable Time	5	-	ns	(Notes 2, 4)
(4) TEHQZ	Chip Enable Output Disable Time	-	80	ns	(Notes 2, 4)
(5) TELEH	Chip Enable Pulse Negative Width	200	-	ns	(Notes 1, 4)
(6) TEHEL	Chip Enable Pulse Positive Width	90	-	ns	(Notes 1, 4)
(7) TAVEL	Address Setup Time	20	-	ns	(Notes 1, 4)
(8) TELAX	Address Hold Time	50	-	ns	(Notes 1, 4)
(9) TWLWH	Write Enable Pulse Width	60	-	ns	(Notes 1, 4)
(10) TWLEH	Write Enable Pulse Setup Time	150	-	ns	(Notes 1, 4)
(11) TWLEL	Early Write Pulse Setup Time	0	-	ns	(Notes 1, 4)
(12) TWHEL	Write Enable Read Mode Setup Time	0	-	ns	(Notes 2, 4)
(13) TELWH	Early Write Pulse Hold Time	60	-	ns	(Notes 1, 4)
(14) TDVWL	Data Setup Time	0	-	ns	(Notes 1, 4)
(15) TDVEL	Early Write Data Setup Time	0	-	ns	(Notes 1, 4)
(16) TWLDX	Data Hold Time	60	-	ns	(Notes 1, 4)
(17) TELDX	Early Write Data Hold Time	60	-	ns	(Notes 1, 4)
(18) TELEL	Read or Write Cycle Time	290	-	ns	(Notes 1, 4)

NOTES:

1. Input pulse levels: 0 to 3.0 V ; Input rise and fall times: 5 ns (max); Input and output timing reference level: 1.5 V ; Output load: 1 TTL gate equivalent $\mathrm{CL}=50 \mathrm{pF}(\mathrm{min})-$ for CL greater than 50 pF , access time is derated by 0.15 ns per pF .
2. Tested at initial design and after major design changes.
3. Typical derating $5 \mathrm{~mA} / \mathrm{MHz}$ increase in ICCOP.
4. $V C C=4.5 \mathrm{~V}$ and 5.5 V .

Absolute Maximum Ratings

Supply Voltage	+7.0V
Input, Output or I/O Voltage Applied	GND -0.3V to VCC +0.3V
Storage Temperature Range	${ }^{-650}{ }^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Package Power Dissipation	1 Watt
$\theta_{\text {jc }}$	$12^{\circ} \mathrm{C} / \mathrm{W}$ (CERDIP Package), TBD $^{\circ} \mathrm{C} / \mathrm{W}$ (LCC Package)
$\theta_{\text {ja }}$	$66^{\circ} \mathrm{C} / \mathrm{W}$ (CERDIP Package), $\mathrm{TBD}^{\circ} \mathrm{C} / \mathrm{W}$ (LCC Package)
Gate Count .	7000 Gates
Junction Temperature	$+150^{\circ} \mathrm{C}$
	$+275{ }^{\circ} \mathrm{C}$

CAUTION: Stresses above those listed in the "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operation section of this specification is not implied.

Operating Conditions

Operating Temperature Ranges:	
HM-6504B-9	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

D.C. Electrical Specifications $\mathrm{VCC}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=\mathrm{HM}-6504 \mathrm{~B}-9-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
ICCSB	Standby Supply Current	-	25	$\mu \mathrm{~A}$	$10=0, \overline{\mathrm{E}}=\mathrm{VCC}-0.3 \mathrm{~V}$
ICCOP	Operating Supply Current (Note 3)	-	7	mA	$\overline{\mathrm{E}}=1 \mathrm{MHz}, \mathrm{IO}=0, \mathrm{VI}=\mathrm{GND}$
ICCDR	Data Retention Supply Current	-	15	$\mu \mathrm{~A}$	$10=0, \mathrm{VCC}=2.0 \mathrm{~V}, \overline{\mathrm{E}}=\mathrm{VCC}$
VCCDR	Data Retention Supply Voltage	2.0	-	V	
II	Input Leakage Current	-1.0	+1.0	$\mu \mathrm{~A}$	$\mathrm{VI}=\mathrm{VCC}$ or GND
IOZ	Output Leakage Current	-1.0	+1.0	$\mu \mathrm{~A}$	$\mathrm{VO}=\mathrm{VCC}$ or GND
VIL	Input Low Voltage	-0.3	0.8	V	
VIH	Input High Voltage	$\mathrm{VCC}-2.0$	$\mathrm{VCC}+0.3$	V	
VOL	Output Low Voltage	-	0.4	V	$10=2.0 \mathrm{~mA}$
VOH1	Output High Voltage	2.4	-	V	$10=-1.0 \mathrm{~mA}$
VOH2	Output High Voltage (Note 2)	$\mathrm{VCC}-0.4$	-	V	$10=-100 \mu \mathrm{~A}$

Capacitance

SYMBOL	PARAMETER	MAX	UNITS	TEST CONDITIONS
Cl	Input Capacitance (Note 2)	8	pF	$\mathrm{VI}=\mathrm{VCC}$ or GND, $\mathrm{f}=1 \mathrm{MHz}$
CO	Output Capacitance (Note 2)	10	pF	$\mathrm{VO}=\mathrm{VCC}$ or GND, $\mathrm{f}=1 \mathrm{MHz}$

NOTES:

1. Input pulse levels: 0 to 3.0 V ; Input rise and fall times: 5 ns (max); Input and output timing reference level: 1.5 V ; Output load: 1 TTL gate equivalent $C L=50 \mathrm{pF}(\mathrm{min})$ - for CL greater than 50 pF , access time is derated by 0.15 ns per pF .
2. Tested at initial design and after major design changes.
3. Typical derating $5 \mathrm{~mA} / \mathrm{MHz}$ increase in ICCOP.
4. $V C C=4.5 \mathrm{~V}$ and 5.5 V .

Specifications HM-6504B-9
A.C. Electrical Specifications $\mathrm{VCC}=5 \mathrm{~V} \pm 10 \%$; $\mathrm{T}_{\mathrm{A}}=\mathrm{HM}-6504 \mathrm{~B}-9 \quad-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
(1) TELQV	Chip Enable Access Time	-	200	ns	(Notes 1, 4)
(2) TAVQV	Address Access Time	-	220	ns	(Notes 1, 4)
(3) TELQX	Chip Enable Output Enable Time	5	-	ns	(Notes 2, 4)
(4) TEHQZ	Chip Enable Output Disable Time	-	80	ns	(Notes 2, 4)
(5) TELEH	Chip Enable Pulse Negative Width	200	-	ns	(Notes 1, 4)
(6) TEHEL	Chip Enable Pulse Positive Width	90	-	ns	(Notes 1, 4)
(7) TAVEL	Address Setup Time	20	-	ns	(Notes 1, 4)
(8) TELAX	Address Hold Time	50	-	ns	(Notes 1, 4)
(9) TWLWH	Write Enable Pulse Width	60	-	ns	(Notes 1, 4)
(10) TWLEH	Write Enable Pulse Setup Time	150	-	ns	(Notes 1, 4)
(11) TWLEL	Early Write Pulse Setup Time	0	-	ns	(Notes 1, 4)
(12) TWHEL	Write Enable Read Mode Setup Time	0	-	ns	(Notes 2, 4)
(13) TELWH	Early Write Pulse Hold Time	60	-	ns	(Notes 1, 4)
(14) TDVWL	Data Setup Time	0	-	ns	(Notes 1, 4)
(15) TDVEL	Early Write Data Setup Time	0	-	ns	(Notes 1, 4)
(16) TWLDX	Data Hold Time	60	-	ns	(Notes 1, 4)
(17) TELDX	Early Write Data Hold Time	60	-	ns	(Notes 1, 4)
(18) TELEL	Read or Write Cycle Time	290	-	ns	(Notes 1, 4)

NOTES:

1. Input pulse levels: 0 to 3.0 V ; Input rise and fall times: 5 ns (max); Input and output timing reference level: 1.5 V ; Output load: 1 TTL gate equivalent $\mathrm{CL}=50 \mathrm{pF}(\mathrm{min})$ - for CL greater than 50 pF , access time is derated by 0.15 ns per pF .
2. Tested at initial design and after major design changes.
3. Typical derating $5 \mathrm{~mA} / \mathrm{MHz}$ increase in ICCOP.
4. $V C C=4.5 \mathrm{~V}$ and 5.5 V .

Absolute Maximum Ratings

Supply Voltage	+7.0V
Input, Output or I/O Voltage Applied.	GND -0.3V to VCC +0.3V
Storage Temperature Range	${ }^{6} 5^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Package Power Dissipation	1 Watt
$\theta_{\text {jc }}$	$12^{\circ} \mathrm{C} / \mathrm{W}$ (CERDIP Package), TBD $^{\circ} \mathrm{C} / \mathrm{W}$ (LCC Package)
$\theta_{\text {ja }}$	$66^{\circ} \mathrm{C} / \mathrm{W}$ (CERDIP Package), $\mathrm{TBD}^{\circ} \mathrm{C} / \mathrm{W}$ (LCC Package)
Gate Count	7000 Gates
Junction Temperature	$+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering,	. $+275{ }^{\circ} \mathrm{C}$

CAUTION: Stresses above those listed in the "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operation section of this specification is not implied.

Operating Conditions

+4.5 V to +5.5 V
Operating Voltage Range
Operating Temperature Ranges HM-6504-8
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
D.C. Electrical Specifications $V C C=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=\mathrm{HM}-6504-8-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
ICCSB	Standby Supply Current	-	50	$\mu \mathrm{~A}$	$10=0, \overline{\mathrm{E}}=\mathrm{VCC}-\mathrm{O} .3 \mathrm{~V}$
ICCOP	Operating Supply Current (Note 3)	-	7	mA	$\overline{\mathrm{E}}=1 \mathrm{MHz}, \mathrm{IO}=0, \mathrm{VI}=\mathrm{GND}$
ICCDR	Data Retention Supply Current	-	25	$\mu \mathrm{~A}$	$1 \mathrm{O}=0, \mathrm{VCC}=2.0 \mathrm{~V}, \overline{\mathrm{E}}=\mathrm{VCC}$
VCCDR	Data Retention Supply Voltage	2.0	-	V	
II	Input Leakage Current	-1.0	+1.0	$\mu \mathrm{~A}$	$\mathrm{VI}=\mathrm{VCC}$ or GND
IOZ	Output Leakage Current	-1.0	+1.0	$\mu \mathrm{~A}$	$\mathrm{VO}=\mathrm{VCC}$ or GND
VIL	Input Low Voltage	-0.3	0.8	V	
VIH	Input High Voltage	$\mathrm{VCC}-2.0$	$\mathrm{VCC}+0.3$	V	
VOL	Output Low Voltage	-	0.4	V	$1 \mathrm{O}=2.0 \mathrm{~mA}$
VOH1	Output High Voltage	2.4	-	V	$10=-1.0 \mathrm{~mA}$
VOH2	Output High Voltage (Note 2)	$\mathrm{VCC}-0.4$	-	V	$10=-100 \mu \mathrm{~A}$

Capacitance

SYMBOL	PARAMETER	MAX	UNITS	TEST CONDITIONS
Cl	Input Capacitance (Note 2)	8	pF	$\mathrm{VI}=\mathrm{VCC}$ or $\mathrm{GND}, \mathrm{f}=1 \mathrm{MHz}$
CO	Output Capacitance (Note 2)	10	pF	$\mathrm{VO}=\mathrm{VCC}$ or $\mathrm{GND}, \mathrm{f}=1 \mathrm{MHz}$

NOTES:

1. Input pulse levels: 0 to 3.0 V ; Input rise and fall times: 5 ns (max); Input and output timing reference level: 1.5 V ; Output load: 1 TTL gate equivalent $C L=50 \mathrm{pF}(\mathrm{min})-$ for CL greater than 50 pF , access time is derated by 0.15 ns per pF .
2. Tested at initial design and after major design changes.
3. Typical derating $5 \mathrm{~mA} / \mathrm{MHz}$ increase in ICCOP.
4. $\mathrm{VCC}=4.5 \mathrm{~V}$ and 5.5 V .

Specifications HM-6504-8
A.C. Electrical Specifications $\mathrm{VCC}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=\mathrm{HM}-6504-8 \quad-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
(1) TELQV	Chip Enable Access Time	-	300	ns	(Notes 1, 4)
(2) TAVQV	Address Access Time	-	320	ns	(Notes 1, 4)
(3) TELQX	Chip Enable Output Enable Time	5	-	ns	(Notes 2, 4)
(4) TEHQZ	Chip Enable Output Disable Time	-	100	ns	(Notes 2, 4)
(5) TELEH	Chip Enable Pulse Negative Width	300	-	ns	(Notes 1, 4)
(6) TEHEL	Chip Enable Pulse Positive Width	120	-	ns	(Notes 1, 4)
(7) TAVEL	Address Setup Time	20	-	ns	(Notes 1, 4)
(8) TELAX	Address Hold Time	50	-	ns	(Notes 1, 4)
(9) TWLWH	Write Enable Pulse Width	80	-	ns	(Notes 1, 4)
(10) TWLEH	Write Enable Pulse Setup Time	200	-	ns	(Notes 1, 4)
(11) TWLEL	Early Write Pulse Setup Time	0	-	ns	(Notes 1, 4)
(12) TWHEL	Write Enable Read Mode Setup Time	0	-	ns	(Note 2, 4)
(13) TELWH	Early Write Pulse Hold Time	80	-	ns	(Notes 1, 4)
(14) TDVWL	Data Setup Time	0	-	ns	(Notes 1, 4)
(15) TDVEL	Early Write Data Setup Time	0	-	ns	(Notes 1, 4)
(16) TWLDX	Data Hold Time	80	-	ns	(Notes 1, 4)
(17) TELDX	Early Write Data Hold Time	80	-	ns	(Notes 1, 4)
(18) TELEL	Read or Write Cycle Time	420	-	ns	(Notes 1, 4)

NOTES:

1. Input pulse levels: 0 to 3.0 V ; Input rise and fall times: 5 ns (max); Input and output timing reference level: 1.5 V ; Output load: 1 TTL gate equivalent $\mathrm{CL}=50 \mathrm{pF}(\mathrm{min})$ - for CL greater than 50 pF , access time is derated by 0.15 ns per pF .
2. Tested at initial design and after major design changes.
3. Typical derating $5 \mathrm{~mA} / \mathrm{MHz}$ increase in ICCOP.
4. $\mathrm{VCC}=4.5 \mathrm{~V}$ and 5.5 V .

Absolute Maximum Ratings

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
ICCSB	Standby Supply Current	-	25	$\mu \mathrm{~A}$	$10=0, \overline{\mathrm{E}}=\mathrm{VCC}-0.3 \mathrm{~V}$
ICCOP	Operating Supply Current (Note 3)	-	7	mA	$\overline{\mathrm{E}}=1 \mathrm{MHz}, \mathrm{IO}=0, \mathrm{VI}=\mathrm{GND}$
ICCDR	Data Retention Supply Current	-	15	$\mu \mathrm{~A}$	$10=0, \mathrm{VCC}=2.0 \mathrm{~V}, \overline{\mathrm{E}}=\mathrm{VCC}$
VCCDR	Data Retention Supply Voltage	2.0	-	V	
II	Input Leakage Current	-1.0	+1.0	$\mu \mathrm{~A}$	$\mathrm{VI}=\mathrm{VCC}$ or GND
IOZ	Output Leakage Current	-1.0	+1.0	$\mu \mathrm{~A}$	$\mathrm{VO}=\mathrm{VCC}$ or GND
VIL	Input Low Voltage	-0.3	0.8	V	
VIH	Input High Voltage	$\mathrm{VCC}-2.0$	$\mathrm{VCC}+0.3$	V	
VOL	Output Low Voltage	-	0.4	V	$10=2.0 \mathrm{~mA}$
VOH 1	Output High Voltage	2.4	-	V	$10=-1.0 \mathrm{~mA}$
VOH 2	Output High Voltage (Note 2)	$\mathrm{VCC}-0.4$	-	V	$10=-100 \mu \mathrm{~A}$

Capacitance

SYMBOL	PARAMETER	MAX	UNITS	TEST CONDITIONS
Cl	Input Capacitance (Note 2)	8	pF	$\mathrm{VI}=\mathrm{VCC}$ or GND, $\mathrm{f}=1 \mathrm{MHz}$
CO	Output Capacitance (Note 2)	10	pF	$\mathrm{VO}=\mathrm{VCC}$ or $\mathrm{GND}, \mathrm{f}=1 \mathrm{MHz}$

NOTES:

1. Input pulse levels: 0 to 3.0 V ; Input rise and fall times: 5 ns (max); Input and output timing reference level: 1.5 V ; Output load: 1 TTL gate equivalent $C L=50 \mathrm{pF}(\mathrm{min})-$ for CL greater than 50 pF , access time is derated by 0.15 ns per pF .
2. Tested at initial design and after major design changes.
3. Typical derating $5 \mathrm{~mA} / \mathrm{MHz}$ increase in ICCOP.
4. $V C C=4.5 \mathrm{~V}$ and 5.5 V .

Specifications HM-6504-9
A.C. Electrical Specifications $V C C=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=\mathrm{HM}-6504-9-40^{\circ} \mathrm{C}$ to $+85{ }^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
(1) TELQV	Chip Enable Access Time	-	300	ns	(Notes 1, 4)
(2) TAVQV	Address Access Time	-	320	ns	(Notes 1, 4)
(3) TELQX	Chip Enable Output Enable Time	5	-	ns	(Notes 2, 4)
(4) TEHQZ	Chip Enable Output Disable Time	-	100	ns	(Notes 2, 4)
(5) TELEH	Chip Enable Pulse Negative Width	300	-	ns	(Notes 1,4)
(6) TEHEL	Chip Enable Pulse Positive Width	120	-	ns	(Notes 1, 4)
(7) TAVEL	Address Setup Time	20	-	ns	(Notes 1, 4)
(8) TELAX	Address Hold Time	50	-	ns	(Notes 1, 4)
(9) TWLWH	Write Enable Pulse Width	80	-	ns	(Notes 1, 4)
(10) TWLEH	Write Enable Pulse Setup Time	200	-	ns	(Notes 1, 4)
(11) TWLEL	Early Write Pulse Setup Time	0	-	ns	(Notes 1, 4)
(12) TWHEL	Write Enable Read Mode Setup Time	0	-	ns	(Notes 2, 4)
(13) TELWH	Early Write Pulse Hold Time	80	-	ns	(Notes 1, 4)
(14) TDVWL	Data Setup Time	0	-	ns	(Notes 1, 4)
(15) TDVEL	Early Write Data Setup Time	0	-	ns	(Notes 1, 4)
(16) TWLDX	Data Hold Time	80	-	ns	(Notes 1, 4)
(17) TELDX	Early Write Data Hold Time	80	-	ns	(Notes 1, 4)
(18) TELEL	Read or Write Cycle Time	420	-	ns	(Notes 1, 4)

NOTES:

1. Input pulse levels: 0 to 3.0 V ; Input rise and fall times: 5 ns (max); Input and output timing reference level: 1.5 V ; Output load: 1 TTL gate equivalent $C L=50 \mathrm{pF}(\mathrm{min})$ - for CL greater than 50 pF , access time is derated by 0.15 ns per pF .
2. Tested at initial design and after major design changes.
3. Typical derating $5 \mathrm{~mA} / \mathrm{MHz}$ increase in ICCOP.
4. $V C C=4.5 \mathrm{~V}$ and 5.5 V .

Read Cycle

TRUTH TABLE

TIME REFERENCE	INPUTS			E	$\overline{\text { W }}$

The address information is latched in the on chip registers on the falling edge of $\bar{E}(T=0)$. Minimum address set up and hold time requirements must be met. After the required hold time, the addresses may change state without affecting device operation. During time ($\mathrm{T}=1$) the output becomes
enabled but data is not valid until during time ($T=2$). \bar{W} must remain high until after time ($\mathrm{T}=2$). After the output data has been read, \bar{E} may return high $(T=3)$. This will disable the output buffer and all inputs and ready the RAM for the next memory cycle ($\mathrm{T}=4$).

Early Write Cycle

TRUTH TABLE

TIME REFERENCE	INPUTS				OUTPUT	FUNCTION
	\bar{E}	\bar{W}	A	D	Q	
-1	H	X	X	X	Z	Memory Disabled
0		L	V	V	Z	Cycle Begins, Addresses are Latched
1	-	X	X	X	Z	Write in Progress Internally
2	,	X	x	X	Z	Write Completed
3	H	X	X	X	Z	Prepare for Next Cycle (Same as - 1)
4		L	V	V	Z	Cycle Ends, Next Cycle Begins (Same as 0)

The early write cycle is the only cycle where the output is guaranteed not to become active. On the falling edge of $E(T=0)$, the addresses, the write signal, and the data input are latched in on chip registers. The logic value of \bar{W} at the time $\overline{\mathrm{E}}$ falls determines the state of the output buffer for that cycle. Since \bar{W} is low when \bar{E} falls, the output buffer is latched into the high impedance state and will remain in that
state until \bar{E} returns high ($T=2$). For this cycle, the data input is latched by \vec{E} going low; therefore data set up and hold times should be referenced to $\overline{\mathrm{E}}$. When $\overline{\mathrm{E}}(\mathrm{T}=2)$ returns to the high state the output buffer and all inputs are disabled and all signals are unlatched. The device is now ready for the next cycle.

Late Write Cycle

TRUTH TABLE

TIME REFERENCE	INPUTS				OUTPUTS Q	FUNCTION
	\bar{E}	\bar{W}	A	D		
-1	H	X	X	X	Z	Memory Disabled
0	2	H	V	X	Z	Cycle Begins Addresses are Latched
1	L		X	V	X	Write Begins, Data is Latched
2	L	H	X	X	X	Write in Progress Internally
3	-	H	X	X	X	Write Completed
4	H	X	X	X	Z	Prepare for Next Cycle (Same as -1)
5		H	V	X	Z	Cycle Ends, Next Cycle Begins (Same as 0)

The late write cycle is a cross between the early write cycle and the read-modify-write cycle.

Recall that in the early write the output is guaranteed to remain high impedance, and in the read-modify-write the output is guaranteed valid at access time. The late write is
between these two cases. With this cycle the output may become active, and may become valid data, or may remain active but undefined. Valid data is written into the RAM if data setup, data hold, write setup and write pulse widths are observed.

- Wide Operating Temperature Ranges:
- HM-6514-9 . $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- HM-6514-8 . $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
- 18 Pin Package for High Density
- On-Chip Address Register
- Gated Inputs-No Pull Up or Pull Down Resistors Required

Description

The HM-6514 is a 1024×4 static CMOS RAM fabricated using selfaligned silicon gate technology. The device utilizes synchronous circuitry to achieve high performance and low power operation.
On chip latches are provided for the addresses allowing efficient interfacing with microprocessor systems. The data output can be forced to a high impedance state for use in expanded memory arrays. Gated inputs allow lower operating current and also eliminates the need for pull-up or pull-down resistors.

The HM-6514 is a fully static RAM and may be maintained in any state for an indefinite period of time. Data retention supply voltage and supply current are guaranteed over temperature.

- Low Power Standby
$.125 \mu$ W Max.
- Low Power Operation 35mW/MHz Max.
- Data Retention @ 2.0V Min.
- TTL Compatible Input/Output
- Common Data In/Out
- Three-State Outputs
- Standard JEDEC Pinout
- Fast Access Time

120/200ns Max.

- HM-6514-9
$550^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Functional Diagram

CAUTION: These devices are sensitive to electrostatic discharge. Proper I.C. handling procedures should be followed.

Absolute Maximum Ratings

CAUTION: Stresses above those listed in the "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operation section of this specification is not implied.

Operating Conditions

Operating Voltage Range
+4.5 V to +5.5 V
Operating Temperature Ranges:
HM-6514S-8 $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
D.C. Electrical Specifications $\mathrm{VCC}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=\mathrm{HM}-6514 \mathrm{~S}-8-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
ICCSB	Standby Supply Current	-	50	$\mu \mathrm{~A}$	$\mathrm{IO}=0, \overline{\mathrm{E}}=\mathrm{VCC}-0.3 \mathrm{~V}$
ICCOP	Operating Supply Current (Note 3)	-	7	mA	$\overline{\mathrm{E}}=1 \mathrm{MHz}, \mathrm{IO}=0, \mathrm{VI}=\mathrm{GND}$
ICCDR	Data Retention Supply Current	-	25	$\mu \mathrm{~A}$	$\mathrm{IO}=0, \mathrm{VCC}=2.0 \mathrm{~V}, \overline{\mathrm{E}}=\mathrm{VCC}$
VCCDR	Data Retention Supply Voltage	2.0	-	V	
II	Input Leakage Current	-1.0	+1.0	$\mu \mathrm{~A}$	$\mathrm{VI}=\mathrm{VCC}$ or GND
IIOZ	Input/Output Leakage Current	-1.0	+1.0	$\mu \mathrm{~A}$	$\mathrm{VIO}=\mathrm{VCC}$ or GND
VIL	Input Low Voltage	-0.3	0.8	V	
VIH	Input High Voltage	$\mathrm{VCC}-2.0$	$\mathrm{VCC}+0.3$	V	
VOL	Output Low Voltage	-	0.4	V	$\mathrm{IO}=2.0 \mathrm{~mA}$
VOH 1	Output High Voltage	2.4	-	V	$\mathrm{IO}=-1.0 \mathrm{~mA}$
VOH 2	Output High Voltage (Note 2)	$\mathrm{VCC}-0.4$	-	V	$\mathrm{IO}=-100 \mu \mathrm{~A}$

Capacitance

SYMBOL	PARAMETER	MAX	UNITS	TEST CONDITIONS
Cl	Input Capacitance (Note 2)	8	pF	$\mathrm{VI}=\mathrm{VCC}$ or GND, $\mathrm{f}=1 \mathrm{MHz}$
CIO	Input/Output Capacitance (Note 2)	10	pF	$\mathrm{VIO}=\mathrm{VCC}$ or $\mathrm{GND}, \mathrm{f}=1 \mathrm{MHz}$

NOTES:

1. Input pulse levels: 0 to 3.0 V ; Input rise and fall times: 5 ns (max); Input and output timing reference level: 1.5 V ; Output load: 1 TTL gate equivalent $C L=50 \mathrm{pF}$ (min) - for CL greater than 50 pF , access time is derated by 0.15 ns per pF .
2. Tested at initial design and after major design changes.
3. Typical derating $5 \mathrm{~mA} / \mathrm{MHz}$ increase in ICCOP.
4. $\mathrm{VCC}=4.5 \mathrm{~V}$ and 5.5 V .
A.C. Electrical Specifications $\mathrm{VCC}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=\mathrm{HM}-6514 \mathrm{~S}-8 \quad-55^{\circ} \mathrm{C}$ to $+125{ }^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
(1) TELQV	Chip Enable Access Time	-	120	ns	(Notes 1, 4)
(2) TAVQV	Address Access Time	-	120	ns	(Notes 1, 4)
(3) TELQX	Chip Enable Output Enable Time	5	-	ns	(Notes 2, 4)
(4) TEHQZ	Chip Enable Output Disable Time	-	50	ns	(Notes 2, 4)
(5) TELEH	Chip Enable Pulse Negative Width	120	-	ns	(Notes 1, 4)
(6) TEHEL	Chip Enable Pulse Positive Width	50	-	ns	(Notes 1,4)
(7) TAVEL	Address Setup Time	0	-	ns	(Notes 1,4)
(8) TELAX	Address Hold Time	40	-	ns	(Notes 1, 4)
(9) TWLWH	Write Enable Pulse Width	120	-	ns	(Notes 1, 4)
(10) TWLEH	Write Enable Pulse Setup Time	120	-	ns	(Notes 1, 4)
(11) TELWH	Write Enable Pulse Hold Time	120	-	ns	(Notes 1, 4)
(12) TDVWH	Data Setup Time	50	-	ns	(Notes 1, 4)
(13) TWHDX	Data Hold Time	0	-	ns	(Notes 1, 4)
(14) TWLDV	Write Data Delay Time	70	-	ns	(Notes 1,4)
(15) TWLEL	Early Output High-Z Time	0	-	ns	(Notes 1, 4)
(16) TEHWH	Late Output High-Z Time	0	-	ns	(Notes 1, 4)
(17) TELEL	Read or Write Cycle Time	-	(Notes 1, 4)		

NOTES:

1. Input pulse levels: 0 to 3.0 V ; Input rise and fall times: 5 ns (max); Input and output timing reference level: 1.5 V ; Output load: 1 TTL gate equivalent $C L=50 \mathrm{pF}(\mathrm{min})-$ for $C L$ greater than 50 pF , access time is derated by 0.15 ns per pF .
2. Tested at initial design and after major design changes.
3. Typical derating $5 \mathrm{~mA} / \mathrm{MHz}$ increase in ICCOP.
4. $V C C=4.5 \mathrm{~V}$ and 5.5 V .

Absolute Maximum Ratings

Operating Conditions

D.C. Electrical Specifications $\mathrm{VCC}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=\mathrm{HM}-6514 \mathrm{~S}-9 \quad-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
ICCSB	Standby Supply Current	-	25	$\mu \mathrm{~A}$	$1 \mathrm{O}=0, \overline{\mathrm{E}}=\mathrm{VCC}-0.3 \mathrm{~V}$
ICCOP	Operating Supply Current (Note 3)	-	7	mA	$\overline{\mathrm{E}}=1 \mathrm{MHz}, \mathrm{IO}=0, \mathrm{VI}=\mathrm{GND}$
ICCDR	Data Retention Supply Current	-	15	$\mu \mathrm{~A}$	$1 \mathrm{O}=0, \mathrm{VCC}=2.0 \mathrm{~V}, \overline{\mathrm{E}}=\mathrm{VCC}$
VCCDR	Data Retention Supply Voltage	2.0	-	V	
II	Input Leakage Current	-1.0	+1.0	$\mu \mathrm{~A}$	$\mathrm{VI}=\mathrm{VCC}$ or GND
IIOZ	Input/Output Leakage Current	-1.0	+1.0	$\mu \mathrm{~A}$	$\mathrm{VIO}=\mathrm{VCC}$ or GND
VIL	Input Low Voltage	-0.3	0.8	V	
VIH	Input High Voltage	$\mathrm{VCC}-2.0$	$\mathrm{VCC}+0.3$	V	
VOL	Output Low Voltage	-	0.4	V	$1 \mathrm{O}=2.0 \mathrm{~mA}$
VOH 1	Output High Voltage	2.4	-	V	$1 \mathrm{O}=-1.0 \mathrm{~mA}$
VOH 2	Output High Voltage (Note 2)	$\mathrm{VCC}-0.4$	-	V	$1 \mathrm{O}=-100 \mu \mathrm{~A}$

Capacitance

SYMBOL	PARAMETER	MAX	UNITS	TEST CONDITIONS
Cl	Input Capacitance (Note 2)	8	pF	$\mathrm{VI}=\mathrm{VCC}$ or $\mathrm{GND}, \mathrm{f}=1 \mathrm{MHz}$
ClO	Input/Output Capacitance (Note 2)	10	pF	$\mathrm{VIO}=\mathrm{VCC}$ or $\mathrm{GND}, \mathrm{f}=1 \mathrm{MHz}$

NOTES:

1. Input pulse levels: 0 to 3.0 V ; Input rise and fall times: 5 ns (max); Input and output timing reference level: 1.5 V ; Output load: 1 TTL gate equivalent $C L=50 \mathrm{pF}(\mathrm{min})$ - for CL greater than 50 pF , access time is derated by 0.15 ns per pF .
2. Tested at initial design and after major design changes.
3. Typical derating $5 \mathrm{~mA} / \mathrm{MHz}$ increase in ICCOP.
4. $V C C=4.5 \mathrm{~V}$ and 5.5 V .

Specifications HM-6514S-9
A.C. Electrical Specifications VCC $=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=\mathrm{HM}-6514 \mathrm{~S}-9 \quad-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
(1) TELQV	Chip Enable Access Time	-	120	ns	(Notes 1, 4)
(2) TAVQV	Address Access Time	-	120	ns	(Notes 1, 4)
(3) TELQX	Chip Enable Output Enable Time	5	-	ns	(Notes 2, 4)
(4) TEHQZ	Chip Enable Output Disable Time	-	50	ns	(Notes 2, 4)
(5) TELEH	Chip Enable Pulse Negative Width	120	-	ns	(Notes 1, 4)
(6) TEHEL	Chip Enable Pulse Positive Width	50	-	ns	(Notes 1, 4)
(7) TAVEL	Address Setup Time	0	-	ns	(Notes 1, 4)
(8) TELAX	Address Hold Time	40	-	ns	(Notes 1, 4)
(9) TWLWH	Write Enable Pulse Width	120	-	ns	(Notes 1, 4)
(10) TWLEH	Write Enable Pulse Setup Time	120	-	ns	(Notes 1, 4)
(11) TELWH	Write Enable Pulse Hold Time	120	-	ns	(Notes 1, 4)
(12) TDVWH	Data Setup Time	50	-	ns	(Notes 1, 4)
(13) TWHDX	Data Hold Time	0	-	ns	(Notes 1, 4)
(14) TWLDV	Write Data Delay Time	70	-	ns	(Notes 1, 4)
(15) TWLEL	Early Output High-Z Time	0	-	ns	(Notes 1, 4)
(16) TEHWH	Late Output High-Z Time	0	-	ns	(Notes 1, 4)
(17) TELEL	Read or Write Cycle Time	170	-	ns	(Notes 1, 4)

NOTES:

1. Input pulse levels: 0 to 3.0 V ; Input rise and fall times: 5 ns (max); Input and output timing reference level: 1.5 V ; Output load: 1 TTL gate equivalent $\mathrm{CL}=50 \mathrm{pF}$ (min) - for CL greater than 50 pF , access time is derated by 0.15 ns per pF .
2. Tested at initial design and after major design changes.
3. Typical derating $5 \mathrm{~mA} / \mathrm{MHz}$ increase in ICCOP.
4. $\mathrm{VCC}=4.5 \mathrm{~V}$ and 5.5 V .

Absolute Maximum Ratings

Supply Voltage.	+7.0V
Input, Output or I/O Voltage Applied	. GND -0.3V to VCC +0.3V
Storage Temperature Range	$-65{ }^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Package Power Dissipation	1 Watt
$\theta_{\text {ic }}$	$12^{\circ} \mathrm{C} / \mathrm{W}$ (CERDIP Package), TBD $^{\circ} \mathrm{C} / \mathrm{W}$ (LCC Package)
$\theta_{\text {ja }}$	$.660^{\circ} \mathrm{C} / \mathrm{W}$ (CERDIP Package), ${ }^{\text {, }}$ (BDO${ }^{\circ} \mathrm{C} / \mathrm{W}$ (LCC Package)
Gate Count	. 69910 Gates
Junction Temperature	.$^{+150}{ }^{\circ} \mathrm{C}$
Lead Temperature (Soldering, Ten Secores	$+275{ }^{\circ} \mathrm{C}$

CAUTION: Stresses above those listed in the "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operation section of this specification is not implied.

Operating Conditions

Operating Voltage Range	5 V
Operating Temperature Ranges:	
HM-6514B-8	$5^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

D.C. Electrical Specifications $\mathrm{VCC}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=\mathrm{HM}-6514 \mathrm{~B}-8 \quad-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
ICCSB	Standby Supply Current	-	50	$\mu \mathrm{~A}$	$1 \mathrm{O}=0, \overline{\mathrm{E}}=\mathrm{VCC}-0.3 \mathrm{~V}$
ICCOP	Operating Supply Current (Note 3)	-	7	mA	$\overline{\mathrm{E}}=1 \mathrm{MHz}, \mathrm{IO}=0, \mathrm{VI}=\mathrm{GND}$
ICCDR	Data Retention Supply Current	-	25	$\mu \mathrm{~A}$	$1 \mathrm{O}=0, \mathrm{VCC}=2.0 \mathrm{~V}, \overline{\mathrm{E}}=\mathrm{VCC}$
VCCDR	Data Retention Supply Voltage	2.0	-	V	
II	Input Leakage Current	-1.0	+1.0	$\mu \mathrm{~A}$	$\mathrm{VI}=\mathrm{VCC}$ or GND
IIOZ	Input/Output Leakage Current	-1.0	+1.0	$\mu \mathrm{~A}$	$\mathrm{VIO}=\mathrm{VCC}$ or GND
VIL	Input Low Voltage	-0.3	0.8	V	
VIH	Input High Voltage	$\mathrm{VCC}-2.0$	$\mathrm{VCC}+0.3$	V	
VOL	Output Low Voltage	-	0.4	V	$\mathrm{IO}=2.0 \mathrm{~mA}$
VOH 1	Output High Voltage	2.4	-	V	$1 \mathrm{O}=-1.0 \mathrm{~mA}$
VOH 2	Output High Voltage (Note 2)	$\mathrm{VCC}-0.4$	-	V	$1 \mathrm{O}=-100 \mu \mathrm{~A}$

Capacitance

SYMBOL	PARAMETER	MAX	UNITS	TEST CONDITIONS
CI	Input Capacitance (Note 2)	8	pF	$\mathrm{VI}=\mathrm{VCC}$ or $\mathrm{GND}, \mathrm{f}=1 \mathrm{MHz}$
CIO	Input/Output Capacitance (Note 2)	10	pF	$\mathrm{VIO}=\mathrm{VCC}$ or GND, $\mathrm{f}=1 \mathrm{MHz}$

NOTES:

1. Input pulse levels: 0 to 3.0 V ; Input rise and fall times: 5 ns (max); Input and output timing reference level: 1.5 V ; Output load: 1 TTL gate equivalent $\mathrm{CL}=50 \mathrm{pF}$ (min) - for CL greater than 50 pF , access time is derated by 0.15 ns per pF .
2. Tested at initial design and after major design changes.
3. Typical derating $5 \mathrm{~mA} / \mathrm{MHz}$ increase in ICCOP.
4. $V C C=4.5 \mathrm{~V}$ and 5.5 V .

Specifications HM-6514B-8
A.C. Electrical Specifications $\mathrm{VCC}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=\mathrm{HM}-6514 \mathrm{~B}-8 \quad-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
(1) TELQV	Chip Enable Access Time	-	200	ns	(Notes 1, 4)
(2) TAVQV	Address Access Time	-	220	ns	(Notes 1, 4)
(3) TELQX	Chip Enable Output Enable Time	5	-	ns	(Notes 2, 4)
(4) TEHQZ	Chip Enable Output Disable Time	-	80	ns	(Notes 2, 4)
(5) TELEH	Chip Enable Pulse Negative Width	200	-	ns	(Notes 1, 4)
(6) TEHEL	Chip Enable Pulse Positive Width	90	-	ns	(Notes 1, 4)
(7) TAVEL	Address Setup Time	20	-	ns	(Notes 1, 4)
(8) TELAX	Address Hold Time	50	-	ns	(Notes 1, 4)
(9) TWLWH	Write Enable Pulse Width	200	-	ns	(Notes 1, 4)
(10) TWLEH	Write Enable Pulse Setup Time	200	-	ns	(Notes 1, 4)
(11) TELWH	Write Enable Pulse Hold Time	200	-	ns	(Notes 1, 4)
(12) TDVWH	Data Setup Time	120	-	ns	(Notes 1, 4)
(13) TWHDX	Data Hold Time	0	-	ns	(Notes 1, 4)
(14) TWLDV	Write Data Delay Time	80	-	ns	ns
(15) TWLEL	Early Output High-Z Time	0	-	(Notes 1, 4)	
(16) TEHWH	Late Output High-Z Time	0	-	ns	(Notes 1, 4)
(17) TELEL	Read or Write Cycle Time	(Notes 1, 4)			

NOTES:

1. Input pulse levels: 0 to 3.0 V ; Input rise and fall times: 5 ns (max); Input and output timing reference level: 1.5 V ; Output load: 1 TTL gate equivalent $C L=50 \mathrm{pF}(\mathrm{min})-$ for CL greater than 50 pF , access time is derated by 0.15 ns per pF .
2. Tested at initial design and after major design changes.
3. Typical derating $5 \mathrm{~mA} / \mathrm{MHz}$ increase in ICCOP.
4. $\mathrm{VCC}=4.5 \mathrm{~V}$ and 5.5 V .

Absolute Maximum Ratings

Operating Conditions

Operating Temperature Ranges:	

HM-6514B-9
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
D.C. Electrical Specifications VCC $=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=\mathrm{HM}-6514 \mathrm{~B}-9 \quad-40^{\circ} \mathrm{C}$ to $+85{ }^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
ICCSB	Standby Supply Current	-	25	$\mu \mathrm{~A}$	$10=0, \overline{\mathrm{E}}=\mathrm{VCC}-\mathrm{O} .3 \mathrm{~V}$
ICCOP	Operating Supply Current (Note 3)	-	7	mA	$\overline{\mathrm{E}}=1 \mathrm{MHz}, \mathrm{IO}=0, \mathrm{VI}=\mathrm{GND}$
ICCDR	Data Retention Supply Current	-	15	$\mu \mathrm{~A}$	$10=0, \mathrm{VCC}=2.0 \mathrm{~V}, \overline{\mathrm{E}}=\mathrm{VCC}$
VCCDR	Data Retention Supply Voltage	2.0	-	V	
II	Input Leakage Current	-1.0	+1.0	$\mu \mathrm{~A}$	$\mathrm{VI}=\mathrm{VCC}$ or GND
IIOZ	Output Leakage Current	-1.0	+1.0	$\mu \mathrm{~A}$	$\mathrm{VIO}=\mathrm{VCC}$ or GND
VIL	Input Low Voltage	-0.3	0.8	V	
VIH	Input High Voltage	$\mathrm{VCC}-2.0$	$\mathrm{VCC}+0.3$	V	
VOL	Output Low Voltage	-	0.4	V	$10=2.0 \mathrm{~mA}$
VOH1	Output High Voltage	2.4	-	V	$10=-1.0 \mathrm{~mA}$
VOH2	Output High Voltage (Note 2)	$\mathrm{VCC}-0.4$	-	V	$10=-100 \mu \mathrm{~A}$

Capacitance

SYMBOL	PARAMETER	MAX	UNITS	TEST CONDITIONS
Cl	Input Capacitance (Note 2)	8	pF	$\mathrm{VI}=\mathrm{VCC}$ or GND, $\mathrm{f}=1 \mathrm{MHz}$
CIO	Input/Output Capacitance (Note 2)	10	pF	$\mathrm{VIO}=\mathrm{VCC}$ or $\mathrm{GND}, \mathrm{f}=1 \mathrm{MHz}$

notes:

1. Input pulse levels: 0 to 3.0 V ; Input rise and fall times: 5 ns (max); Input and output timing reference level: 1.5 V ; Output load: 1 TTL gate equivalent $C L=50 \mathrm{pF}(\mathrm{min})-$ for CL greater than 50 pF , access time is derated by 0.15 ns per pF .
2. Tested at initial design and after major design changes.
3. Typical derating $5 \mathrm{~mA} / \mathrm{MHz}$ increase in ICCOP.
4. $\mathrm{VCC}=4.5 \mathrm{~V}$ and 5.5 V .

Specifications HM-6514B-9
A.C. Electrical Specifications $\mathrm{VCC}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=\mathrm{HM}-6514 \mathrm{~B}-9 \quad-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
(1) TELQV	Chip Enable Access Time	-	200	ns	(Notes 1, 4)
(2) TAVQV	Address Access Time	-	220	ns	(Notes 1, 4)
(3) TELQX	Chip Enable Output Enable Time	5	-	ns	(Notes 2, 4)
(4) TEHQZ	Chip Enable Output Disable Time	-	80	ns	(Notes 2, 4)
(5) TELEH	Chip Enable Pulse Negative Width	200	-	ns	(Notes 1, 4)
(6) TEHEL	Chip Enable Pulse Positive Width	90	-	ns	(Notes 1, 4)
(7) TAVEL	Address Setup Time	20	-	ns	(Notes 1, 4)
(8) TELAX	Address Hold Time	50	-	ns	(Notes 1, 4)
(9) TWLWH	Write Enable Pulse Width	200	-	ns	(Notes 1, 4)
(10) TWLEH	Write Enable Pulse Setup Time	200	-	ns	(Notes 1, 4)
(11) TELWH	Write Enable Pulse Hold Time	200	-	ns	(Notes 1, 4)
(12) TDVWH	Data Setup Time	120	-	ns	(Notes 1, 4)
(13) TWHDX	Data Hold Time	0	-	ns	(Notes 1, 4)
(14) TWLDV	Write Data Delay Time	80	-	ns	(Notes 1, 4)
(15) TWLEL	Early Output High-Z Time	0	-	ns	(Notes 1, 4)
(16) TEHWH	Late Output High-Z Time	0	-	ns	(Notes 1, 4)
(17) TELEL	Read or Write Cycle Time	(Notes 1, 4)			

NOTES:

1. Input pulse levels: 0 to 3.0 V ; Input rise and fall times: 5 ns (max); Input and output timing reference level: 1.5 V ; Output load: 1 TTL gate equivalent $C L=50 \mathrm{pF}(\mathrm{min})$ - for CL greater than 50 pF , access time is derated by 0.15 ns per pF .
2. Tested at initial design and after major design changes.
3. Typical derating $5 \mathrm{~mA} / \mathrm{MHz}$ increase in ICCOP.
4. $V C C=4.5 \mathrm{~V}$ and 5.5 V .

Absolute Maximum Ratings

Supply Voltage	+7.0V
Input, Output or I/O Voltage Applied	GND -0.3V to VCC +0.3V
Storage Temperature Range.	${ }^{-650} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Package Power Dissipatio	1 Watt
$\theta_{\text {jc }}$	$12^{\circ} \mathrm{C} / \mathrm{W}$ (CERDIP Package), TBD $^{\circ} \mathrm{C} / \mathrm{W}$ (LCC Package)
	$66^{\circ} \mathrm{C} / \mathrm{W}$ (CERDIP Package), $\mathrm{TBD}^{\circ} \mathrm{C} / \mathrm{W}$ (LCC Package)
Gate Count	6910 Gates
Junction Temperature	$+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, Ten S	$+275{ }^{\circ} \mathrm{C}$

CAUTION: Stresses above those listed in the "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operation section of this specification is not implied.

Operating Conditions

> Operating Voltage Range Operating Temperature Ranges:

HM-6514-8
+4.5 V to +5.5 V
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
D.C. Electrical Specifications $\mathrm{VCC}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=\mathrm{HM}-6514-8-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
ICCSB	Standby Supply Current	-	50	$\mu \mathrm{~A}$	$\mathrm{IO}=0, \overline{\mathrm{E}}=\mathrm{VCC}-0.3 \mathrm{~V}$
ICCOP	Operating Supply Current (Note 3)	-	7	mA	$\overline{\mathrm{E}}=1 \mathrm{MHz}, \mathrm{IO}=0, \mathrm{VI}=\mathrm{GND}$
ICCDR	Data Retention Supply Current	-	25	$\mu \mathrm{~A}$	$\mathrm{IO}=0, \mathrm{VCC}=2.0 \mathrm{~V}, \overline{\mathrm{E}}=\mathrm{VCC}$
VCCDR	Data Retention Supply Voltage	2.0	-	V	
II	Input Leakage Current	-1.0	+1.0	$\mu \mathrm{~A}$	$\mathrm{VI}=\mathrm{VCC}$ or GND
IIOZ	Input/Output Leakage Current	-1.0	+1.0	$\mu \mathrm{~A}$	$\mathrm{VIO}=\mathrm{VCC}$ or GND
VIL	Input Low Voltage	-0.3	0.8	V	
VIH	Input High Voltage	$\mathrm{VCC}-2.0$	$\mathrm{VCC}+0.3$	V	
VOL	Output Low Voltage	-	0.4	V	$\mathrm{IO}=2.0 \mathrm{~mA}$
VOH1	Output High Voltage	2.4	-	V	$\mathrm{IO}=-1.0 \mathrm{~mA}$
VOH2	Output High Voltage (Note 2)	$\mathrm{VCC}-0.4$	-	V	$10=-100 \mu \mathrm{~A}$

Capacitance

SYMBOL	PARAMETER	MAX	UNITS	TEST CONDITIONS
Cl	Input Capacitance (Note 2)	8	pF	$\mathrm{VI}=\mathrm{VCC}$ or $\mathrm{GND}, \mathrm{f}=1 \mathrm{MHz}$
CIO	Input/Output Capacitance (Note 2)	10	pF	$\mathrm{VIO}=\mathrm{VCC}$ or $\mathrm{GND}, \mathrm{f}=1 \mathrm{MHz}$

NOTES:

1. Input pulse levels: 0 to 3.0 V ; Input rise and fall times: 5 ns (max); Input and output timing reference level: 1.5 V ; Output load: 1 TTL gate equivalent $C L=50 \mathrm{pF}(\mathrm{min})-$ for CL greater than 50 pF , access time is derated by 0.15 ns per pF .
2. Tested at initial design and after major design changes.
3. Typical derating $5 \mathrm{~mA} / \mathrm{MHz}$ increase in ICCOP.
4. $\mathrm{VCC}=4.5 \mathrm{~V}$ and 5.5 V .
A.C. Electrical Specifications $V C C=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=\mathrm{HM}-6514-8-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
(1) TELQV	Chip Enable Access Time	-	300	ns	(Notes 1, 4)
(2) TAVQV	Address Access Time	-	320	ns	(Notes 1, 4)
(3) TELQX	Chip Enable Output Enable Time	5	-	ns	(Notes 2, 4)
(4) TEHQZ	Chip Enable Output Disable Time	-	100	ns	(Notes 2, 4)
(5) TELEH	Chip Enable Pulse Negative Width	300	-	ns	(Notes 1, 4)
(6) TEHEL	Chip Enable Pulse Positive Width	120	-	ns	(Notes 1, 4)
(7) TAVEL	Address Setup Time	20	-	ns	(Notes 1, 4)
(8) TELAX	Address Hold Time	50	-	ns	(Notes 1,4)
(9) TWLWH	Write Enable Pulse Width	300	-	ns	(Notes 1, 4)
(10) TWLEH	Write Enable Pulse Setup Time	300	-	ns	(Notes 1, 4)
(11) TELWH	Write Enable Pulse Hold Time	300	-	ns	(Notes 1, 4)
(12) TDVWH	Data Setup Time	200	-	ns	(Notes 1,4)
(13) TWHDZ	Data Hold Time	0	-	ns	(Notes 1, 4)
(14) TWLDV	Write Data Delay Time	100	-	ns	(Notes 1, 4)
(15) TWLEL	Early Output High-Z Time	0	-	ns	(Notes 1, 4)
(16) TEHWH	Late Output High-Z Time	0	-	ns	(Notes 1, 4)
(17) TELEL	Read or Write Cycle Time	-	(Notes 1, 4)		

NOTES:

1. Input pulse levels: 0 to 3.0 V ; Input rise and fall times: 5 ns (max); input and output timing reference level: 1.5 V ; Output load: 1 TTL gate equivalent $C L=50 \mathrm{pF}(\mathrm{min})$ - for CL greater than 50 pF , access time is derated by 0.15 ns per pF .
2. Tested at initial design and after major design changes.
3. Typical derating $5 \mathrm{~mA} / \mathrm{MHz}$ increase in ICCOP.
4. $\mathrm{VCC}=4.5 \mathrm{~V}$ and 5.5 V .

Absolute Maximum Ratings

CAUTION: Stresses above those listed in the "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operation section of this specification is not implied.

Operating Conditions

Operating Voltage Range	+4.5 V to +5.5 V
Operating Temperature Ranges:	
HM-6514-9	$40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

D.C. Electrical Specifications $\mathrm{VCC}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=\mathrm{HM}-6514-9-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
ICCSB	Standby Supply Current	-	25	$\mu \mathrm{~A}$	$1 \mathrm{O}=0, \overline{\mathrm{E}}=\mathrm{VCC}-0.3 \mathrm{~V}$
ICCOP	Operating Supply Current (Note 3)	-	7	mA	$\overline{\mathrm{E}}=1 \mathrm{MHz}, \mathrm{IO}=0, \mathrm{VI}=\mathrm{GND}$
ICCDR	Data Retention Supply Current	-	15	$\mu \mathrm{~A}$	$1 \mathrm{O}=0, \mathrm{VCC}=2.0 \mathrm{~V}, \overline{\mathrm{E}}=\mathrm{VCC}$
VCCDR	Data Retention Supply Voltage	2.0	-	V	
II	Input Leakage Current	-1.0	+1.0	$\mu \mathrm{~A}$	$\mathrm{VI}=\mathrm{VCC}$ or GND
IIOZ	Input/Output Leakage Current	-1.0	+1.0	$\mu \mathrm{~A}$	$\mathrm{VIO}=\mathrm{VCC}$ or GND
VIL	Input Low Voltage	-0.3	0.8	V	
VIH	Input High Voltage	$\mathrm{VCC}-2.0$	$\mathrm{VCC}+0.3$	V	
VOL	Output Low Voltage	-	0.4	V	$1 \mathrm{O}=2.0 \mathrm{~mA}$
VOH1	Output High Voltage	2.4	-	V	$1 \mathrm{O}=-1.0 \mathrm{~mA}$
VOH2	Output High Voltage (Note 2)	$\mathrm{VCC}-0.4$	-	V	$1 \mathrm{O}=-100 \mu \mathrm{~A}$

Capacitance

SYMBOL	PARAMETER	MAX	UNITS	TEST CONDITIONS
Cl	Input Capacitance (Note 2)	8	pF	$\mathrm{VI}=\mathrm{VCC}$ or $\mathrm{GND}, \mathrm{f}=1 \mathrm{MHz}$
CIO	Input/Output Capacitance (Note 2)	10	pF	$\mathrm{VIO}=\mathrm{VCC}$ or $\mathrm{GND}, \mathrm{f}=1 \mathrm{MHz}$

NOTES:

1. Input pulse levels: 0 to 3.0 V ; Input rise and fall times: 5 ns (max); Input and output timing reference level: 1.5 V ; Output load: 1 TL gate equivalent $C L=50 \mathrm{pF}(\mathrm{min})-$ for CL greater than 50 pF , access time is derated by 0.15 ns per pF .
2. Tested at initial design and after major design changes.
3. Typical derating $5 \mathrm{~mA} / \mathrm{MHz}$ increase in ICCOP.
4. $\mathrm{VCC}=4.5 \mathrm{~V}$ and 5.5 V .

Specifications HM-6514-9
A.C. Electrical Specifications $\mathrm{VCC}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=\mathrm{HM}-6514-9-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
(1) TELQV	Chip Enable Access Time	-	300	ns	(Notes 1, 4)
(2) TAVQV	Address Access Time	-	320	ns	(Notes 1, 4)
(3) TELQX	Chip Enable Output Enable Time	5	-	ns	(Notes 2, 4)
(4) TEHQZ	Chip Enable Output Disable Time	-	100	ns	(Notes 2, 4)
(5) TELEH	Chip Enable Pulse Negative Width	300	-	ns	(Notes 1, 4)
(6) TEHEL	Chip Enable Pulse Positive Width	120	-	ns	(Notes 1, 4)
(7) TAVEL	Address Setup Time	20	-	ns	(Notes 1, 4)
(8) TELAX	Address Hold Time	50	-	ns	(Notes 1, 4)
(9) TWLWH	Write Enable Pulse Width	300	-	ns	(Notes 1, 4)
(10) TWLEH	Write Enable Pulse Setup Time	300	-	ns	(Notes 1, 4)
(11) TELWH	Write Enable Pulse Hold Time	300	-	ns	(Notes 1, 4)
(12) TDVWH	Data Setup Time	200	-	ns	(Notes 1, 4)
(13) TWHDX	Data Hold Time	0	-	ns	(Notes 1, 4)
(14) TWLDV	Write Data Delay Time	100	-	ns	ns
(15) TWLEL	Early Output High-Z Time	0	-	(Notes 1, 4)	
(16) TEHWH	Late Output High-Z Time	0	-	ns	(Notes 1, 4)
(17) TELEL	Read or Write Cycle Time	420	-	ns	(Notes 1, 4)

NOTES:

1. Input pulse levels: 0 to 3.0 V ; Input rise and fall times: 5 ns (max); Input and output timing reference level: 1.5 V ; Output load: 1 TTL gate equivalent $C L=50 \mathrm{pF}(\mathrm{min})$ - for CL greater than 50 pF , access time is derated by 0.15 ns per pF .
2. Tested at initial design and after major design changes.
3. Typical derating $5 \mathrm{~mA} / \mathrm{MHz}$ increase in ICCOP.
4. $\mathrm{VCC}=4.5 \mathrm{~V}$ and 5.5 V .

Read Cycle

TIME REFERENCE	\bar{E}	$\frac{\text { INPUTS }}{\mathbf{W}}$	A	$\begin{gathered} \text { DATA I/O } \\ \text { DQ } \end{gathered}$	FUNCTION
-1	H	X	X	Z	Memory Disabled
0	L	H	V	Z	Cycle Begins, Addresses are Latched
1	L	H	X	X	Output Enabled
2	L	H	X	V	Output Valid
3	T	H	X	V	Read Accomplished
4	H	X	X	Z	Prepare for Next Cycle (Same as - 1)
5		H	V	Z	Cycle Ends, Next Cyle Begins (Same as 0)

The address information is latched in the on chip registers on the falling edge of $\bar{E}(T=0)$. Minimum address set up and hold time requirements must be met. After the required hold time, the addresses may change state without affecting device operation. During time ($\mathrm{T}=1$) the output becomes
enabled but data is not valid until during time $(T=2) . \bar{W}$ must remain high throughout the read cycle. After the output data has been read, $\overline{\mathrm{E}}$ may return high $(\mathrm{T}=3)$. This will disable the output buffer and all inputs and ready the RAM for the next memory cycle $(T=4)$.

Write Cycle

TIME REFERENCE	\bar{E}	$\overline{\mathbf{w}}$	A	DQ	FUNCTION
-1	H	X	X	Z	Memory Disabled
0		X	V	Z	Cycle Begins, Addresses are Latched
1	L	L	X	Z	Write Period Begins
2	L	1	X	V	Data In is Written
3		H	X	Z	Write Completed
4	H	X	X	Z	Prepare for Next Cycle (Same as -1)
5	-	X	V	Z	Cycle Ends, Next Cycle Begins (Same as 0)

The write cycle is initiated by the falling edge of $\bar{E}(T=0)$, This \bar{E} and \bar{W} control timing will guarantee that the data which latches the address information in the on-chip registers. There are two basic types of write cycles, which differ in the control of the common data-in/data-out bus.

Case 1: \bar{E} falls before \bar{W} falls

The output buffers may become enabled (reading) if \bar{E} falls before \bar{W} falls. \bar{W} is used to disable (three-state) the outputs so input data can be applied. TWLDV must be met to allow the \bar{W} signal time to disable the outputs before applying input data. Also, at the end of the cycle the outputs may become active if \bar{W} rises before $\overline{\mathrm{E}}$. The RAM outputs and all inputs will three-state after \bar{E} rises (TEHQZ). In this type of write cycle TWLEL and TEHWH may be ignored.

Case 2: \bar{E} falls equal to or after \bar{W} falls, and \bar{E} rises before or equal to \bar{W} rising
outputs will stay disabled throughout the cycle, thus simplifying the data input timing. TWLEL and TEHWH must be met, but TWLDV becomes meaningless and can be ignored. In this cycle TDVWH and TWHDX become TDVEH and TEHDX. In other words, reference data setup and hold times to the $\overline{\mathrm{E}}$ rising edge.

	IF	OBSERVE	IGNORE
Case 1	$\overline{\text { E}}$ falls before \bar{W}	TWLDV	TWLEL
Case 2	\bar{E} falls after \bar{W} and	TWLEL	TWLDV
	\bar{E} rises before \bar{W}	TEHWH	TWHDX

If a series of consecutive write cycles are to be performed, \bar{W} may be held low until all desired locations have been written (an extension of Case 2).

Features

- Low Power Standby $275 \mu \mathrm{~W} / \mathrm{MHz}$ Max.
- Low Power Operation 55mW/MHz Max.
- Fast Access 120/200ns Max.
- Industry Standard Pinout
- TTL Compatible
- Static Memory Cells
- High Output Drive
- On Chip Address Latches
- Easy Microprocessor Interfacing
- Wide Operating Temperature Ranges:
- HM-6516-5 $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
- HM-6516-9 .. . $40^{\circ} \mathrm{C}$ to +850 C
- HM-6516-8... $-55^{\circ} \mathrm{C}$ +1250C

Description

The HM-6516 is a CMOS 2048×8 Static Random Access Memory. Extremely low power operation is achieved by the use of complementary MOS design techniques. This low power is further enhanced by the use of synchronous circuit techniques that keep the active (operating) power low, and also give fast access times. The pinout of the HM-6516 is the popular 24 pin, 8 bit wide JEDEC standard which allows easy memory board layouts, flexible enough to accomodate a variety of PROMs, RAMs, EPROMs, and ROMs.

The HM-6516 is ideally suited for use in microprocessor based systems. The byte wide organization simplifies the memory array design, and keeps operating power down to a minimum because only one device is enabled at a time. The address latches allow very simple interfacing to recent generation microprocessors which employ a multiplexed address/data bus. The convenient output enable control also simplifies multiplexed bus interfacing by allowing the data outputs to be controlled independent of the chip enable.

Pinouts
TOP VIEW

A7 1	24.
A6 2	23 A8
A5 3	22.4
A4 4	21.
A3 5	$20 \sim \overline{\mathrm{G}}$
A2 6	19 A10
A1 7	18 E
$A 08$	17 D 07
DQO 9	16 D06
DQ1 10	$15 \bigcirc 0.5$
DQ2 11	14 DO4
GND 12	$13{ }^{\text {P D 3 }}$

PIN NAMES	
A - Address Input	\bar{G} - Output Enable
DQ - Data Input/Output	W- Write Enable

Functional Diagram

CAUTION: These devices are sensitive to electrostatic discharge. Proper I.C. handling procedures should be followed.

Specifications HM-6516B-8/HM-6516B-9

Absolute Maximum Ratings

Supply Voltage	. 0 V
Input, Output or I/O Voltage Applied	GND -0.3V to VCC +0.3V
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Package Power Dissipation	1 Watt
$\theta_{\text {jc }}$	$8^{\circ} \mathrm{C} / \mathrm{W}$ (CERDIP Package), TBD $^{\circ} \mathrm{C} / \mathrm{W}$ (LCC Package)
	$47^{\circ} \mathrm{C} / \mathrm{W}$ (CERDIP Package), TBD${ }^{\circ} \mathrm{C} / \mathrm{W}$ (LCC Package)
Gate Count	25953 Gates
Junction Temperature.	$+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, Ten Seconds)	. $+275{ }^{\circ} \mathrm{C}$
CAUTION: Stresses above those listed in the "Ab stress only rating and operation of the device at the specification is not implied.	Ratings" may cause permanent damage to the device. This is a conditions above those indicated in the operation section of this

Operating Conditions

Operating Voltage Range	+4.5 V to +5.5 V
Operating Temperature Ranges:	
HM-6516B-9	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
HM-6516B-8	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

D.C. Electrical Specifications $\mathrm{VCC}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=\mathrm{HM}-6516 \mathrm{~B}-9-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ $T_{A}=H M-6516 B-8 \quad-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
ICCSB	Standby Supply Current	-	50	$\mu \mathrm{~A}$	$10=0, \mathrm{VI}=\mathrm{VCC}$ or GND
ICCOP	Operating Supply Current (Note 3)	-	10	mA	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{IO}=0, \overline{\mathrm{G}}=\mathrm{VCC}$, $\mathrm{VI}=\mathrm{VCC}$ or GND
ICCDR	Data Retention Supply Current	-	25	$\mu \mathrm{~A}$	$\mathrm{VCC}=2.0, \mathrm{IO}=0, \mathrm{VI}=\mathrm{VCC}$ or GND, $\mathrm{E}=\mathrm{VCC}$
VCCDR	Data Retention Supply Voltage	2.0	-	V	
II	Input Leakage Current	-1.0	+1.0	$\mu \mathrm{~A}$	$\mathrm{VI}=\mathrm{VCC}$ or GND
IIOZ	Input/Output Leakage Current	-1.0	+1.0	$\mu \mathrm{~A}$	$\mathrm{VIO}=\mathrm{VCC}$ or GND
VIL	Input Low Voltage	-0.3	0.8	V	
VIH	Input High Voltage	2.4	$\mathrm{VCC}+0.3$	V	
VOL	Output Low Voltage	-	0.4	V	$10=3.2 \mathrm{~mA}$
VOH1	Output High Voltage	2.4	-	V	$10=-1.0 \mathrm{~mA}$
VOH2	Output High Voltage (Note 2)	$\mathrm{VCC}-0.4$	-	V	$10=-100 \mu \mathrm{~A}$

Capacitance

SYMBOL	PARAMETER	MAX	UNITS	TEST CONDITIONS
Cl	Input Capacitance (Note 2)	8	pF	$\mathrm{VI}=\mathrm{VCC}$ or GND, $\mathrm{f}=1 \mathrm{MHz}$
CIO	Input/Output Capacitance (Note 2)	10	pF	$\mathrm{VIO}=\mathrm{VCC}$ or GND, $\mathrm{f}=1 \mathrm{MHz}$

NOTES:

1. Input pulse levels: 0 to 3.0 V ; Input rise and fall times: 5 ns (max); Input and output timing reference level: 1.5 V ; Output load: 1 TTL gate equivalent $C L=50 \mathrm{pF}(\mathrm{min})-$ for $C L$ greater than 50 pF , access time is derated by 0.15 ns per pF .
2. Tested at initial design and after major design changes.
3. Typical derating $5 \mathrm{~mA} / \mathrm{MHz}$ increase in ICCOP.
4. $\mathrm{VCC}=4.5 \mathrm{~V}$ and 5.5 V .

Specifications HM-6516B-8/HM-6516B-9
A.C. Electrical Specifications $\mathrm{VCC}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=\mathrm{HM}-6516 \mathrm{~B}-9 \quad-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$T_{A}=H M-6516 B-8 \quad-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
(1) TELQV	Chip Enable Access Time	-	120	ns	(Notes 1, 4)
(2) TAVQV	Address Access Time	-	120	ns	(Notes 1, 4)
(3) TELQX	Chip Select Output Enable Time	10	-	ns	(Notes 2, 4)
(4) TWLQZ	Write Enable Output Disable Time	-	50	ns	(Notes 2, 4)
(5) TEHQZ	Chip Enable Output Disable Time	-	50	ns	(Notes 2, 4)
(6) TGLQV	Output Enable Output Valid Time	-	80	ns	(Notes 1, 4)
(7) TGLQX	Output Enable Output Enable Time	10	-	ns	(Notes 2, 4)
(8) TGHQZ	Output Enable Output Disable Time	-	50	ns	(Notes 2, 4)
(9) TELEH	Chip Enable Pulse Negative Width	120	-	ns	(Notes 1, 4)
(10) TEHEL	Chip Enable Pulse Positive Width	50	-	ns	(Notes 1, 4)
(11) TAVEL	Address Setup Time	0	-	ns	(Notes 1, 4)
(12) TELAX	Address Hold Time	30	-	ns	(Notes 1, 4)
(13) TWLWH	Write Enable Pulse Width	120	-	ns	(Notes 1, 4)
(14) TWLEH	Write Enable Pulse Setup Time	120	-	ns	(Notes 1, 4)
(15) TELWH	Write Enable Pulse Hold Time	120	-	ns	(Notes 1, 4)
(16) TDVWH	Data Setup Time	50	-	ns	(Notes 1, 4)
(17) TWHDX	Data Hold Time	10	-	ns	(Notes 1, 4)
(18) TWLDV	Write Data Delay Time	(Notes 1, 4)			
(19) TELEL	Read or Write Cycle Time	ns	(Notes 1, 4)		

NOTES:

1. Input pulse levels: 0 to 3.0 V ; Input rise and fall times: 5 ns (max); Input and output timing reference level: 1.5 V ; Output load: 1 TTL gate equivalent $C L=50 \mathrm{pF}(\mathrm{min})-$ for $C L$ greater than 50 pF , access time is derated by 0.15 ns per pF .
2. Tested at initial design and after major design changes.
3. Typical derating $5 \mathrm{~mA} / \mathrm{MHz}$ increase in ICCOP.
4. $\mathrm{VCC}=4.5 \mathrm{~V}$ and 5.5 V .

Absolute Maximum Ratings

Supply Voltage	+7.0V
Input, Output or I/O Voltage Applied	GND -0.3V to VCC +0.3V
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Package Power Dissipatio	1 Watt
$\theta_{\text {jc }}$	$8^{\circ} \mathrm{C} / \mathrm{W}$ (CERDIP Package), TBD $^{\circ} \mathrm{C} / \mathrm{W}$ (LCC Package)
	$47^{\circ} \mathrm{C} / \mathrm{W}$ (CERDIP Package), TBD ${ }^{\circ} \mathrm{C} / \mathrm{W}$ (LCC Package)
Gate Count	25953 Gates
Junction Temperature.	$+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, Ten S	+2750

CAUTION: Stresses above those listed in the "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operation section of this specification is not implied.

Operating Conditions

Operating Temperature Ranges:	
HM-6516-9	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
HM-6516-8	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

D.C. Electrical Specifications $\mathrm{VCC}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=\mathrm{HM}-6516-9-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

$$
\mathrm{T}_{\mathrm{A}}=\mathrm{HM}-6516-8 \quad-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}
$$

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
ICCSB	Standby Supply Current	-	100	$\mu \mathrm{A}$	$10=0, \mathrm{VI}=\mathrm{VCC}$ or GND
ICCOP	Operating Supply Current (Note 3)	-	10	mA	$\begin{aligned} & f=1 \mathrm{MHz}, \mathrm{IO}=0, \overline{\mathrm{G}}=\mathrm{VCC}, \\ & \mathrm{VI}=\mathrm{VCC} \text { or } G N D \end{aligned}$
ICCDR	Data Retention Supply Current	-	50	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{VCC}=2.0,1 O=0, \mathrm{VI}=\mathrm{VCC} \text { or GND, } \\ & \mathrm{E}=\mathrm{VCC} \end{aligned}$
VCCDR	Data Retention Supply Voltage	2.0	-	V	
11	Input Leakage Current	-1.0	+1.0	$\mu \mathrm{A}$	$\mathrm{VI}=\mathrm{VCC}$ or GND
IIOZ	Input/Output Leakage Current	-1.0	+1.0	$\mu \mathrm{A}$	$\mathrm{VIO}=\mathrm{VCC}$ or GND
VIL	Input Low Voltage	-0.3	0.8	V	
ViH	Input High Voltage	2.4	VCC +0.3	V	
VOL	Output Low Voltage	-	0.4	V	$10=3.2 \mathrm{~mA}$
VOH1	Output High Voltage	2.4	-	V	$10=-1.0 \mathrm{~mA}$
VOH2	Output High Voltage (Note 2)	VCC-0.4	-	V	$10=-100 \mu \mathrm{~A}$

Capacitance

SYMBOL	PARAMETER	MAX	UNITS	TEST CONDITIONS
CI	Input Capacitance (Note 2)	8	pF	$\mathrm{VI}=\mathrm{VCC}$ or GND, $\mathrm{f}=1 \mathrm{MHz}$
CIO	Input/Output Capacitance (Note 2)	10	pF	$\mathrm{VIO}=\mathrm{VCC}$ or GND, $\mathrm{f}=1 \mathrm{MHz}$

NOTES:

1. Input pulse levels: 0 to 3.0 V ; Input rise and fall times: 5 ns (max); Input and output timing reference level: 1.5 V ; Output load: 1 TTL gate equivalent $C L=50 \mathrm{pF}(\mathrm{min})-$ for CL greater than 50 pF , access time is derated by 0.15 ns per pF .
2. Tested at initial design and after major design changes.
3. Typical derating $5 \mathrm{~mA} / \mathrm{MHz}$ increase in ICCOP.
4. $\mathrm{VCC}=4.5 \mathrm{~V}$ and 5.5 V .

Specifications HM-6516-8/HM-6516-9
A.C. Electrical Specifications $\mathrm{VCC}=5 \mathrm{~V} \pm 10 \%$; $\mathrm{T}_{\mathrm{A}}=\mathrm{HM}-6516-9-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ $\mathrm{T}_{\mathrm{A}}=\mathrm{HM}-6516-8 \quad-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
(1) TELQV	Chip Enable Access Time	-	200	ns	(Notes 1, 4)
(2) TAVQV	Address Access Time	-	200	ns	(Notes 1, 4)
(3) TELQX	Chip Enable Output Enable Time	10	-	ns	(Notes 2, 4)
(4) TWLQZ	Write Enable Output Disable Time	-	80	ns	(Notes 2, 4)
(5) TEHQZ	Chip Enable Output Disable Time	-	80	ns	(Notes 2, 4)
(6) TGLQV	Output Enable Output Valid Time	-	80	ns	(Notes 1, 4)
(7) TGLQX	Output Enable Output Enable Time	10	-	ns	(Notes 2, 4)
(8) TGHQZ	Output Enable Output Disable Time	-	80	ns	(Notes 2, 4)
(9) TELEH	Chip Enable Pulse Negative Width	200	-	ns	(Notes 1, 4)
(10) TEHEL	Chip Enable Pulse Positive Width	80	-	ns	(Notes 1, 4)
(11) TAVEL	Address Setup Time	0	-	ns	(Notes 1, 4)
(12) TELAX	Address Hold Time	50	-	ns	(Notes 1, 4)
(13) TWLWH	Write Enable Pulse Width	200	-	ns	(Notes 1, 4)
(14) TWLEH	Write Enable Pulse Setup Time	200	-	ns	(Notes 1, 4)
(15) TELWH	Write Enable Pulse Hold Time	200	-	ns	(Notes 1, 4)
(16) TDVWH	Data Setup Time	80	-	ns	(Notes 1, 4)
(17) TWHDX	Data Hold Time	10	-	ns	(Notes 1, 4)
(18) TWLDV	Write Data Delay Time	80	-	ns	(Notes 1, 4)
(19) TELEL	Read or Write Cycle Time	280	-	ns	(Notes 1, 4)

NOTES:

1. Input pulse levels: 0 to 3.0 V ; Input rise and fall times: 5 ns (max); Input and output timing reference level: 1.5 V ; Output load: 1 TTL gate equivalent $\mathrm{CL}=50 \mathrm{pF}(\mathrm{min})-$ for CL greater than 50 pF , access time is derated by 0.15 ns per pF .
2. Tested at initial design and after major design changes.
3. Typical derating $5 \mathrm{~mA} / \mathrm{MHz}$ increase in ICCOP.
4. $\mathrm{VCC}=4.5 \mathrm{~V}$ and 5.5 V .

Absolute Maximum Ratings

CAUTION: Stresses above those listed in the "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operation section of this specification is not implied.

Operating Conditions

Operating Temperature Ranges:	
HM-6516-5	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

D.C. Electrical Specifications $\mathrm{VCC}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=\mathrm{HM}-6516-50^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
ICCSB	Standby Supply Current	-	500	$\mu \mathrm{~A}$	$\mathrm{IO}=0, \mathrm{VI}=\mathrm{VCC}$ or GND
ICCOP	Operating Supply Current (Note 3)	-	10	mA	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{IO}=\mathrm{O}, \overline{\mathrm{G}}=\mathrm{VCC}$, $\mathrm{VI}=\mathrm{VCC}$ or GND
ICCDR	Data Retention Supply Current	-	250	$\mu \mathrm{~A}$	$\mathrm{VCC}=2.0, \mathrm{IO}=0, \mathrm{VI}=\mathrm{VCC}$ or GND, $\mathrm{E}=\mathrm{VCC}$
VCCDR	Data Retention Supply Voltage	2.0	-	V	
II	Input Leakage Current	-5.0	+5.0	$\mu \mathrm{~A}$	$\mathrm{VI}=\mathrm{VCC}$ or GND
IIOZ	Input/Output Leakage Current	-5.0	+5.0	$\mu \mathrm{~A}$	$\mathrm{VIO}=\mathrm{VCC}$ or GND
VIL	Input Low Voltage	-0.3	0.8	V	
VIH	Input High Voltage	2.4	$\mathrm{VCC}+0.3$	V	
VOL	Output Low Voltage	-	0.4	V	$10=3.2 \mathrm{~mA}$
VOH1	Output High Voltage	2.4	-	V	$10=-1.0 \mathrm{~mA}$
VOH2	Output High Voltage (Note 2)	$\mathrm{VCC}-0.4$	-	V	$10=-100 \mu \mathrm{~A}$

Capacitance

SYMBOL	PARAMETER	MAX	UNITS	TEST CONDITIONS
Cl	Input Capacitance (Note 2)	8	pF	$\mathrm{VI}=\mathrm{VCC}$ or GND, $\mathrm{f}=1 \mathrm{MHz}$
CIO	Input/Output Capacitance (Note 2)	10	pF	$\mathrm{VIO}=\mathrm{VCC}$ or $\mathrm{GND}, \mathrm{f}=1 \mathrm{MHz}$

NOTES:

1. Input pulse levels: 0 to 3.0 V ; Input rise and fall times: 5 ns (max); Input and output timing reference level: 1.5 V ; Output load: 1 TTL gate equivalent $C L=50 \mathrm{pF}(\mathrm{min})-$ for $C L$ greater than 50 pF , access time is derated by 0.15 ns per pF .
2. Tested at initial design and after major design changes.
3. Typical derating $5 \mathrm{~mA} / \mathrm{MHz}$ increase in ICCOP.
4. $\mathrm{VCC}=4.5 \mathrm{~V}$ and 5.5 V .

Specifications HM-6516-5
A.C. Electrical Specifications $\mathrm{VCC}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=\mathrm{HM}-6516-50^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
(1) TELQV	Chip Enable Access Time	-	200	ns	(Notes 1, 4)
(2) TAVQV	Address Access Time	-	200	ns	(Notes 1, 4)
(3) TELQX	Chip Select Output Enable Time	10	-	ns	(Notes 2, 4)
(4) TWLQZ	Write Enable Output Disable Time	-	80	ns	(Notes 2, 4)
(5) TEHQZ	Chip Enable Output Disable Time	-	80	ns	(Notes 2, 4)
(6) TGLQV	Output Enable Output Valid Time	-	80	ns	(Notes 1, 4)
(7) TGLQX	Output Enable Output Enable Time	10	-	ns	(Notes 2, 4)
(8) TGHQZ	Output Enable Output Disable Time	-	80	ns	(Notes 2, 4)
(9) TELEH	Chip Enable Pulse Negative Width	200	-	ns	(Notes 1, 4)
(10) TEHEL	Chip Enable Pulse Positive Width	80	-	ns	(Notes 1, 4)
(11) TAVEL	Address Setup Time	0	-	ns	(Notes 1, 4)
(12) TELAX	Address Hold Time	50	-	ns	(Notes 1, 4)
(13) TWLWH	Write Enable Pulse Width	200	-	ns	(Notes 1, 4)
(14) TWLEH	Write Enable Pulse Setup Time	200	-	ns	(Notes 1, 4)
(15) TELWH	Write Enable Pulse Hold Time	200	-	ns	(Notes 1, 4)
(16) TDVWH	Data Setup Time	80	-	ns	(Notes 1, 4)
(17) TWHDX	Data Hold Time	10	-	ns	(Notes 1, 4)
(18) TWLDV	Write Data Delay Time	80	-	ns	(Notes 1, 4)
(19) TELEL	Read or Write Cycle Time	280	-	ns	(Notes 1, 4)

NOTES:

1. Input pulse levels: 0 to 3.0 V ; Input rise and fall times: 5 ns (max); Input and output timing reference level: 1.5 V ; Output load: 1 TTL gate equivalent $\mathrm{CL}=50 \mathrm{pF}(\mathrm{min})$ - for CL greater than 50 pF , access time is derated by 0.15 ns per pF .
2. Tested at initial design and after major design changes.
3. Typical derating $5 \mathrm{~mA} / \mathrm{MHz}$ increase in ICCOP
4. $\mathrm{VCC}=4.5 \mathrm{~V}$ and 5.5 V .

Read Cycle

TIME REFERENCE	$\overline{\mathrm{E}}$	\bar{W}	$\mathbf{I N P U T S}_{\overline{\mathbf{G}}}$	A	DQ	FUNCTION
-1	H	X	X	X	Z	Memory Disabled
0	\underline{L}	H	X	V	Z	Cycle Begins, Addresses are Latched
1	L	H	L	X	X	Output Enabled
2	L	H	L	X	V	Output Valid
3	-	H	X	X	V	Read Accomplished
4	H	X	X	X	Z	Prepare for Next Cycle (Same as -1)
5		H	X	V	Z	Cycle Ends, Next Cycle Begins (Same as 0)

The address information is latched in the on chip registers on the falling edge of $\bar{E}(T=0)$, minimum address setup and hold time requirements must be met. After the required hold time, the addresses may change state without affecting device operation. During time ($\mathrm{T}=1$), the outputs become enabled but data is not valid until time ($T=2$), \bar{W} must remain
high throughout the read cycle. After the data has been read, \bar{E} may return high $(T=3)$. This will force the output buffers into a high impedance mode at time $(T=4)$. \bar{G} is used to disable the output buffers when in a logical "1" state ($T=-1,0,3,4,5$). After ($T=4$) time, the memory is ready for the next cycle.

Write Cycle

TRUTH TABLE

TIME REFERENCE	\bar{E}	$\overline{\mathbf{w}}$	${ }_{\overline{\mathbf{G}}}^{\text {INPUTS }}$	A	DQ	FUNCTION
-1	H	X	H	X	X	Memory Disabled
0	1	X	H	V	X	Cycle Begins, Addresses are Latched
1	L	L	H	X	X	Write Period Begins
2	L	\sim	H	X	V	Data In is Written
3	-	H	H	x	X	Write Completed
4	${ }^{\text {H }}$	X	H	X	X	Prepare for Next Cycle (Same as -1)
5	7	X	H	V	X	Cycle Ends, Next Cycle Begins (Same as 0)

The write cycle is initiated on the falling edge of $\bar{E}(T=0)$, erence data setup and hold times to the \bar{E} rising edge. The which latches the address information in the on chip registers. If a write cycle is to be performed where the output is not to become active, \bar{G} can be held high (inactive). TDVWH and TWHDX must be met for proper device operation regardless of $\overline{\mathrm{G}}$. If $\overline{\mathrm{E}}$ and $\overline{\mathrm{G}}$ fall before $\overline{\mathrm{W}}$ falls (read mode), a possible bus conflict may exist. If \bar{E} rises before \bar{W} rises, ref-
write operation is terminated by the first rising edge of \bar{W} ($T=2$) or $\bar{E}(T=3)$. After the minimum \bar{E} high time (TEHEL), the next cycle may begin. If a series of consecutive write cycles are to be performed, the W line may be held low until all desired locations have been written. In this case, data setup and hold times must be referenced to the rising edge of \bar{E}.

Features

- Fast Access Time \qquad 55/70/90ns Max.
- Low Standby Current $.50 \mu \mathrm{~A}$ Max.
- Low Operating Current 70mA Max.
- Data Retention at 2.0 Volts . $20 \mu \mathrm{~A}$ Max.
- TTL Compatible Inputs and Outputs
- JEDEC Approved Pinout (2716, 6116 Type)
- No Clocks or Strobes Required
- Wide Temperature Range \qquad -550 C to +1250 C
- Equal Cycle and Access TIme
- Single 5 Volt Supply
- Gated Inputs - No Pull-up or Pull-down Resistors Required

Description

The HM-65162 is a CMOS 2048×8 bit Static Random Access Memory manufactured using the Harris advanced SAJI VI process. The device utilizes asynchronous circuit design for fast cycle times and ease of use. The pinout is the JEDEC 24 pin, 8 -bit wide standard which allows easy memory board layouts with the flexibility to accommodate a variety of industry standard PROMs, RAMs, ROMs and EPROMs. The HM-65162 is ideally suited for use in microprocessor based systems with its 8 -bit word length organization. The convenient output enable also simplifies the bus interface by allowing the data outputs to be controlled independent of the chip enable: Gated inputs lower operating current and also eliminate the need for pull-up or pull-down resistors.

Pinouts
DIP
TOP VIEW

A7 1	24 vcc
A6 2	${ }^{23}$ A8
A5 3	22 PA
A4 4	21.
A3 5	$20 . \overline{\mathrm{G}}$
A2 6	19 A10
A1 7	18 E
AO 8	17 D07
DQO 9	$16 \bigcirc$ D06
DQ1 10	15 Das
DQ2 11	14.004
GND 12	$13{ }^{\text {DO3 }}$

a7 nc nc nc vce nc nc

A - Address Input $\quad \mathbf{G}$ - Output Enable
DQ - Data Input/Output \bar{W} - Write Enable
\bar{E} - Chip Enable
NC - No Connect

Functional Diagram

CAUTION: These devices are sensitive to electrostatic discharge. Proper I.C. handling procedures should be followed.

Specifications HM-65162S-9

Absolute Maximum Ratings

Supply Voltage (VCC - GND)
.-0.3 V to +7.0 Volts
Input or Output Voltage Applied
(GND -0.3V) to (VCC +0.3 V)
Storage Temperature Range
\qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Package Power Dissipation \qquad $70^{\circ} \mathrm{C} / \mathrm{W}$ (CERDI.. Watt θ_{jc} $47^{\circ} \mathrm{C} / \mathrm{W}$ (CERDIP Package), TBD (LCC Package) θ_{ja}
Gate Count 26000 Gates
Junction Temperature $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, Ten Seconds)
$+275^{\circ} \mathrm{C}$
CAUTION: Stresses above those listed in the "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operation sections of this specification is not implied.

Operating Conditions

Operating Voltage Range.
+4.5 V to +5.5 V
Operating Temperature Range HM-65162S-9..
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
D.C. Electrical Specifications ADVANCE INFORMATION VCC $=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=\mathrm{HM}-65162 \mathrm{~S}-9 \quad-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
ICCSB1	Standby Supply Current	-	100	$\mu \mathrm{A}$	$10=0, \overline{\mathrm{E}}=\mathrm{VCC}-0.3 \mathrm{~V}$
ICCSB	Standby Supply Current	-	8	mA	$\overline{\mathrm{E}}=2.2 \mathrm{~V}, 10=0$
ICCEN	Enabled Supply Current	-	70	mA	$\overline{\mathrm{E}}=0.8 \mathrm{~V}, 10=0$
ICCOP	Operating Supply Current (Note 3)	-	70	mA	$\overline{\mathrm{E}}=0.8 \mathrm{~V}, 1 \mathrm{O}=0, \mathrm{f}=1 \mathrm{MHz}$
ICCDR	Data Retention Supply Current	-	40	$\mu \mathrm{A}$	$10=0, V C C=2.0 \mathrm{~V}, \overline{\mathrm{E}}=\mathrm{VCC}-0.3 \mathrm{~V}$
VCCDR	Data Retention Supply Voltage	2.0	-	V	
II	Input Leakage Current	-1.0	+1.0	$\mu \mathrm{A}$	$\mathrm{VI}=\mathrm{VCC}$ or GND
IIOZ	Input/Output Leakage Current	-1.0	+1.0	$\mu \mathrm{A}$	$\mathrm{VIO}=\mathrm{VCC}$ or GND
VIL	Input Low Voltage	-0.3	0.8	V	
VIH	Input High Voltage	2.2	$\mathrm{VCC}+0.3 \mathrm{~V}$	V	
VOL	Output Low Voltage	-	0.4	V	$10=4.0 \mathrm{~mA}$
VOH1	Output High Voltage	2.4	-	V	$10=-1.0 \mathrm{~mA}$
VOH2	Output High Voltage (Note 2)	VCC-0.4	-	V	$10=-100 \mu \mathrm{~A}$

Capacitance

SYMBOL	PARAMETER	MAX	UNITS	TEST CONDITIONS
CI	Input Capacitance (Note 2)	8	pF	$\mathrm{VI}=\mathrm{VCC}=\mathrm{GND}, \mathrm{f}=1 \mathrm{MHz}$
CIO	Input/Output Capacitance (Note 2)	10	pF	$\mathrm{VIO}=\mathrm{VCC}=\mathrm{GND}, \mathrm{f}=1 \mathrm{MHz}$

NOTES:

1. Input pulse levels: 0 to 3.0 V ; Input rise and fall times: $5 \mathrm{~ns}(\max)$; Input and output timing reference level: 1.5 V ; Output load: 1 TTL gate equivalent and $\mathrm{CL}=50 \mathrm{pF}(\mathrm{min})-$ for $C L$ greater than 50 pF , access time is derated by 0.15 ns per pF .
2. Tested at initial design and after major design changes.
3. Typical derating: $5 \mathrm{~mA} / \mathrm{MHz}$ increase in ICCOP.
4. $\mathrm{VCC}=4.5 \mathrm{~V}$ and 5.5 V .

Specifications HM-65162S-9
A.C. Electrical Specifications ADVANCE INFORMATION VCC $=5 \mathrm{~V} \pm 10 \% ; T_{A}=H M-65162 \mathrm{~S}-9 \quad-40{ }^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
READ CYCLE					
(1) TAVAX	Read Cycle Time	55	-	ns	(Notes 1, 4)
(2) TAVQV	Address Access Time	-	55	ns	(Notes 1, 4)
(3) TELQV	Chip Enable Access Time	-	55	ns	(Notes 1, 4)
(4) TELQX	Chip Enable Output Enable Time	5	-	ns	(Notes 2,4)
(5) TGLQV	Output Enable Access Time	-	35	ns	(Notes 1, 4)
(6) TGLQX	Output Enable Output Enable Time	5	-	ns	(Notes 2, 4)
(7) TEHQZ	Chip Enable Output Disable Time	-	35	ns	(Notes 2, 4)
(8) TGHQZ	Output Enable Output Disable Time	-	30	ns	(Notes 2, 4)
(9) TAVQX	Output Hold From Address Change	5	-	ns	(Notes 1, 4)
WRITE CYCLE					
(10) TAVAX	Write Cycle Time	55	-	ns	(Notes 1, 4)
(11) TELWH	Chip Selection to End of Write	45	-	ns	(Notes 1, 4)
(12) TAVWL	Address Setup Time	5	-	ns	(Notes 1, 4)
(13) TWLWH	Write Enable Pulse Width	40	-	ns	(Notes 1, 4)
(14) TWHAX	Write Enable Read Setup Time	10	-	ns	(Notes 1, 4)
(15) TGHQZ	Output Enable Output Disable Time	-	30	ns	(Notes 2, 4)
(16) TWLQZ	Write Enable Output Disable Time	-	30	ns	(Notes 2, 4)
(17) TDVWH	Data Setup Time	25	-	ns	(Notes 1, 4)
(18) TWHDX	Data Hold Time	10	-	ns	(Notes 1, 4)
(19) TWHQX	Write Enable Output Enable Time	0	-	ns	(Notes 1, 4)
(20) TWLEH	Write Enable Pulse Setup Time	45	-	ns	(Notes 1, 4)
(21) TDVEH	Chip Enable Data Setup Time	25	-	ns	(Notes 1, 4)
(22) TAVWH	Address Valid to End of Write	45	-	ns	(Notes 1, 4)

NOTES:

1. Input pulse levels: 0 to 3.0 V ; Input rise and fall times: 5 ns (max); Input and output timing reference level: 1.5 V ; Output load: 1 TTL gate equivalent and $C L=50 \mathrm{pF}(\mathrm{min})-$ for $C L$ greater than 50 pF , access time is derated by 0.15 ns per pF .
2. Tested at initial design and after major design changes.
3. Typical derating: $5 \mathrm{~mA} / \mathrm{MHz}$ increase in ICCOP.
4. $\mathrm{VCC}=4.5 \mathrm{~V}$ and 5.5 V .

Absolute Maximum Ratings

D.C. Electrical Specifications $\quad \mathrm{VCC}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=\mathrm{HM}-65162 \mathrm{~B}-8-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ HM-65162B-9 $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
ICCSB1	Standby Supply Current	-	50	$\mu \mathrm{~A}$	$10=0, \overline{\mathrm{E}}=\mathrm{VCC}-0.3 \mathrm{~V}$
ICCSB	Standby Supply Current	-	8	mA	$\overline{\mathrm{E}}=2.2 \mathrm{~V}, 10=0$
ICCEN	Enabled Supply Current	-	70	mA	$\overline{\mathrm{E}}=0.8 \mathrm{~V}, 10=0$
ICCOP	Operating Supply Current (Note 3)	-	70	mA	$\overline{\mathrm{E}}=0.8 \mathrm{~V}, 10=0, \mathrm{f}=1 \mathrm{MHz}$
ICCDR	Data Retention Supply Current	-	20	$\mu \mathrm{~A}$	$10=0, \mathrm{VCC}=2.0, \overline{\mathrm{E}}=\mathrm{VCC}-0.3 \mathrm{~V}$
VCCDR	Data Retention Supply Voltage	2.0	-	V	
II	Input Leakage Current	-1.0	+1.0	$\mu \mathrm{~A}$	$\mathrm{VI}=\mathrm{GND}$ or VCC
IIOZ	Output Leakage Current	-1.0	+1.0	$\mu \mathrm{~A}$	$\mathrm{VIO}=\mathrm{GND}$ or VCC
VIL	Input Low Voltage	-0.3	0.8	V	
VIH	Input High Voltage	2.2	$\mathrm{VCC}+0.3$	V	
VOL	Output Low Voltage	-	0.4	V	$10=4.0 \mathrm{~mA}$
VOH1	Output High Voltage	2.4	-	V	$10=-1.0 \mathrm{~mA}$
VOH2	Output High Voltage (Note 2)	$\mathrm{VCC}-0.4$	-	V	$10=-100 \mu \mathrm{~A}$

Capacitance

SYMBOL	PARAMETER	MAX	UNITS	TEST CONDITIONS
CI	Input Capacitance (Note 2)	8	pF	$\mathrm{VI}=\mathrm{VCC}$ or GND, $\mathrm{f}=1 \mathrm{MHz}$
CIO	Output Capacitance (Note 2)	10	pF	$\mathrm{VIO}=\mathrm{VCC}$ or GND, $\mathrm{f}=1 \mathrm{MHz}$

NOTES:

1. Input pulse levels: 0 to 3.0 V ; Input rise and fall times: 5 ns (max); Input and output timing reference level: 1.5 V ; Output load: 1 TTL gate equivalent and $C L=50 \mathrm{pF}(\mathrm{min})$ - for $C L$ greater than 50 pF , access time is derated by 0.15 ns per pF .
2. Tested at initial design and after major design changes.
3. Typical derating: $5 \mathrm{~mA} / \mathrm{MHz}$ increase in ICCOP.
4. $\mathrm{VCC}=4.5 \mathrm{~V}$ and 5.5 V .
A.C. Electrical Specifications $\quad \mathrm{VCC}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=\mathrm{HM}-65162 \mathrm{~B}-8 \quad-55^{\circ} \mathrm{C}$ to $+125{ }^{\circ} \mathrm{C}$
$\mathrm{HM}-65162 \mathrm{~B}-9-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
READ CYCLE					
(1) TAVAX	Read Cycle Time	70	-	ns	(Notes 1, 4)
(2) TAVQV	Address Access Time	-	70	ns	(Notes 1, 4)
(3) TELQV	Chip Enable Access Time	-	70	ns	(Notes 1, 4)
(4) TELQX	Chip Enable Output Enable Time	5	-	ns	(Notes 2, 4)
(5) TGLQV	Output Enable Access Time	-	50	ns	(Notes 1, 4)
(6) TGLQX	Output Enable Output Enable Time	5	-	ns	(Notes 2, 4)
(7) TEHQZ	Chip Enable Output Disable Time	-	35	ns	(Notes 2, 4)
(8) TGHQZ	Output Enable Output Disable Time	-	35	ns	(Notes 2, 4)
(9) TAVQX	Output Hold from Address Change	5	-	ns	(Notes 1, 4)
WRITE CYCLE					
(10) TAVAX	Write Cycle Time	70	-	ns	(Notes 1, 4)
(11) TELWH	Chip Selection to End of Write	45	-	ns	(Notes 1, 4)
(12) TAVWL	Address Setup Time	10	-	ns	(Notes 1, 4)
(13) TWLWH	Write Enable Pulse Width	40	-	ns	(Notes 1, 4)
(14) TWHAX	Write Enable Read Setup Time	10	-	ns	(Notes 1, 4)
(15) TGHQZ	Output Enable Output Disable Time	-	35	ns	(Notes 2, 4)
(16) TWLQZ	Write Enable Output Disable Time	-	40	ns	(Notes 2, 4)
(17) TDVWH	Data Setup Time	30	-	ns	(Notes 1, 4)
(18) TWHDX	Data Hold Time	10	-	ns	(Notes 1, 4)
(19) TWHQX	Write Enable Output Enable Time	0	-	ns	(Notes 2, 4)
(20) TWLEH	Write Enable Pulse Setup Time	40	-	ns	(Notes 1, 4)
(21) TDVEH	Chip Enable Data Setup Time	30	-	ns	(Notes 1, 4)
(22) TAVWH	Address Valid to End of Write	50	-	ns	(Notes 1, 4)

NOTES:

1. Input puise levels: 0 to 3.0 V ; Input rise and fall times: 5 ns (max); Input and output timing reference level: 1.5 V ; Output load: 1 TTL gate equivalent and $C L=50 \mathrm{pF}(\mathrm{min})-$ for $C L$ greater than 50 pF , access time is derated by 0.15 ns per pF .
2. Tested at initial design and after major design changes.
3. Typical derating: $5 \mathrm{~mA} / \mathrm{MHz}$ increase in ICCOP.
4. $\mathrm{VCC}=4.5 \mathrm{~V}$ and 5.5 V .

Absolute Maximum Ratings

CAUTION: Stresses above those listed in the "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operation sections of this specification is not implied.

Operating Conditions

Operating Voltage Range \qquad +4.5 V to +5.5 V Operating Temperature Range	
HM-65162-8	$5^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
HM-65162-9	$40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

D.C. Electrical Specifications $\quad v C C=5 V \pm 10 \% ; \quad T_{A}=\begin{array}{ll}H M-65162-8 & -550^{\circ} \mathrm{C} \text { to }+1250^{\circ} \mathrm{C} \\ H M-65162-9 & -40^{\circ} \mathrm{C} \text { to }+855^{\circ} \mathrm{C}\end{array}$

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
ICCSB1	Standby Supply Current	-	100	$\mu \mathrm{~A}$	$10=0, \overline{\mathrm{E}}=\mathrm{VCC}-0.3 \mathrm{~V}$
ICCSB	Standby Supply Current	-	8	mA	$\overline{\mathrm{E}}=2.2 \mathrm{~V}, 10=0$
ICCEN	Enabled Supply Current	-	70	mA	$\overline{\mathrm{E}}=0.8 \mathrm{~V}, 10=0$
ICCOP	Operating Supply Current (Note 3)	-	70	mA	$\overline{\mathrm{E}}=0.8 \mathrm{~V}, 10=0, f=1 \mathrm{MHz}$
ICCDR	Data Retention Supply Current	-	40	$\mu \mathrm{~A}$	$10=0, \mathrm{VCC}=2.0 \mathrm{~V}, \overline{\mathrm{E}}=\mathrm{VCC}-0.3 \mathrm{~V}$
VCCDR	Data Retention Supply Voltage	2.0	-	V	
II	Input Leakage Current	-1.0	+1.0	$\mu \mathrm{~A}$	$\mathrm{VI}=\mathrm{VCC}$ or GND
IIOZ	Input/Output Leakage Current	-1.0	+1.0	$\mu \mathrm{~A}$	$\mathrm{VIO}=\mathrm{VCC}$ or GND
VIL	Input Low Voltage	-0.3	0.8	V	
VIH	Input High Voltage	2.2	$\mathrm{VCC}+0.3 \mathrm{~V}$	V	
VOL	Output Low Voltage	-	0.4	V	$10=4.0 \mathrm{~mA}$
VOH1	Output High Voltage	2.4	-	V	$10=-1.0 \mathrm{~mA}$
VOH2	Output High Voltage (Note 2)	$\mathrm{VCC}-0.4$	-	V	$10=-100 \mu \mathrm{~A}$

Capacitance

SYMBOL	PARAMETER	MAX	UNITS	TEST CONDITIONS
Cl	Input Capacitance (Note 2)	8	pF	$\mathrm{VI}=\mathrm{VCC}=\mathrm{GND}, \mathrm{f}=1 \mathrm{MHz}$
CIO	Input/Output Capacitance (Note 2)	10	pF	$\mathrm{VIO}=\mathrm{VCC}=\mathrm{GND}, \mathrm{f}=1 \mathrm{MHz}$

NOTES:

1. Input pulse levels: 0 to 3.0 V ; Input rise and fall times: 5 ns (max); Input and output timing reference level: 1.5 V ; Output load: 1 TTL gate equivalent and $C L=50 \mathrm{pF}(\mathrm{min})-$ for $C L$ greater than 50 pF , access time is derated by 0.15 ns per pF .
2. Tested at initial design and after major design changes.
3. Typical derating: $5 \mathrm{~mA} / \mathrm{MHz}$ increase in ICCOP.
4. $\mathrm{VCC}=4.5 \mathrm{~V}$ and 5.5 V .

Specifications HM-651 62-8/HM-65162-9
A.C. Electrical Specifications $\quad V C C=5 \mathrm{~V} \pm 10 \% ; \quad T_{A}=H M-65162-8-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

HM-65162-9 $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
READ CYCLE					
(1) TAVAX	Read Cycle Time	90	-	ns	(Notes 1, 4)
(2) TAVQV	Address Access Time	-	90	ns	(Notes 1, 4)
(3) TELQV	Chip Enable Access Time	-	90	ns	(Notes 1, 4)
(4) TELQX	Chip Enable Output Enable Time	5	-	ns	(Notes 2, 4)
(5) TGLQV	Output Enable Access Time	-	65	ns	(Notes 1, 4)
(6) TGLQX	Output Enable Output Enable Time	5	-	ns	(Notes 2, 4)
(7) TEHQZ	Chip Enable Output Disable Time	-	50	ns	(Notes 2, 4)
(8) TGHQZ	Output Enable Output Disable Time	-	40	ns	(Notes 2, 4)
(9) TAVQX	Output Hold From Address Change	5	-	ns	(Notes 1, 4)

WRITE CYCLE

(10) TAVAX	Write Cycle Time	90	-	ns	(Notes 1, 4)
(11) TELWH	Chip Selection to End of Write	55	-	ns	(Notes 1, 4)
(12) TAVWL	Address Setup Time	10	-	ns	(Notes 1, 4)
(13) TWLWH	Write Enable Pulse Width	55	-	ns	(Notes 1, 4)
(14) TWHAX	Write Enable Read Setup Time	10	-	ns	(Notes 1, 4)
(15) TGHQZ	Output Enable Output Disable Time	-	40	ns	(Notes 2, 4)
(16) TWLQZ	Write Enable Output Disable Time	-	50	ns	(Notes 2, 4)
(17) TDVWH	Data Setup Time	30	-	ns	(Notes 1, 4)
(18) TWHDX	Data Hold Time	15	-	ns	(Notes 1, 4)
(19) TWHQX	Write Enable Output Enable Time	0	-	ns	(Notes 2, 4)
(20) TWLEH	Write Enable Pulse Setup Time	55	-	ns	(Notes 1, 4)
(21) TDVEH	Chip Enable Data Setup Time	30	-	ns	(Notes 1, 4)
(22) TAVWH	Address Valid to End of Write	65	-	ns	(Notes 1, 4)

NOTES:

1. Input pulse levels: 0 to 3.0 V ; Input rise and fall times: 5 ns (max); Input and output timing reference level: 1.5 V ; Output load: 1 TTL gate equivalent and $C L=50 \mathrm{pF}(\mathrm{min})-$ for $C L$ greater than 50 pF , access time is derated by 0.15 ns per pF .
2. Tested at initial design and after major design changes.
3. Typical derating: $5 \mathrm{~mA} / \mathrm{MHz}$ increase in ICCOP.
4. $\mathrm{VCC}=4.5 \mathrm{~V}$ and 5.5 V .

Absolute Maximum Ratings

Operating Conditions

Operating Voltage Range... 4.4 .5 V to +5.5V	
Operating Temperature Range	
HM-65162C-8	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
HM-65162C-9	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

D.C. Electrical Specifications $\quad V C C=5 \mathrm{~V} \pm 10 \% ; T_{A}=H M-65162 \mathrm{C}-8-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ HM-65162C-9 $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
ICCSB1	Standby Supply Current	-	900	$\mu \mathrm{~A}$	$10=0, \overline{\mathrm{E}}=\mathrm{VCC}-0.3 \mathrm{~V}$
ICCSB	Standby Supply Current	-	8	mA	$\overline{\mathrm{E}}=2.2 \mathrm{~V}, 10=0$
ICCEN	Enabled Supply Current	-	70	mA	$\overline{\mathrm{E}}=0.8 \mathrm{~V}, 10=0$
ICCOP	Operating Supply Current (Note 3)	-	70	mA	$\overline{\mathrm{E}}=0.8 \mathrm{~V}, 10=0, \mathrm{f}=1 \mathrm{MHz}$
ICCDR	Data Retention Supply Current	-	300	$\mu \mathrm{~A}$	$10=0, \mathrm{VCC}=2.0 \mathrm{~V}, \overline{\mathrm{E}}=\mathrm{VCC}-0.3 \mathrm{~V}$
VCCDR	Data Retention Supply Voltage	2.0	-	V	
II	Input Leakage Current	-5.0	+5.0	$\mu \mathrm{~A}$	$\mathrm{VI}=\mathrm{VCC}$ or GND
IIOZ	Input/Output Leakage Current	-5.0	+5.0	$\mu \mathrm{~A}$	$\mathrm{VIO}=\mathrm{VCC}$ or GND
VIL	Input Low Voltage	-0.3	0.8	V	
VIH	Input High Voltage	2.2	$\mathrm{VCC}+0.3 \mathrm{~V}$	V	
VOL	Output Low Voltage	-	0.4	V	$10=4.0 \mathrm{~mA}$
VOH1	Output High Voltage	2.4	-	V	$10=-1.0 \mathrm{~mA}$
VOH2	Output High Voltage (Note 2$)$	$\mathrm{VCC}-0.4$	-	V	$10=-100 \mu \mathrm{~A}$

Capacitance

SYMBOL	PARAMETER	MAX	UNITS	TEST CONDITIONS
Cl	Input Capacitance (Note 2)	8	pF	$\mathrm{VI}=\mathrm{VCC}=\mathrm{GND}, \mathrm{f}=1 \mathrm{MHz}$
CIO	Input/Output Capacitance (Note 2)	10	pF	$\mathrm{VIO}=\mathrm{VCC}=\mathrm{GND}, \mathrm{f}=1 \mathrm{MHz}$

NOTES:

1. Input pulse levels: 0 to 3.0 V ; Input rise and fall times: 5 ns (max); Input and output timing reference level: 1.5 V ; Output load: 1 TTL gate equivalent and $C L=50 \mathrm{pF}(\mathrm{min})$ - for CL greater than 50 pF , access time is derated by 0.15 ns per pF .
2. Tested at initial design and after major design changes.
3. Typical derating: $5 \mathrm{~mA} / \mathrm{MHz}$ increase in ICCOP.
4. $\mathrm{VCC}=4.5 \mathrm{~V}$ and 5.5 V .

Specifications HM-65162C-8/HM-65162C-9
A.C. Electrical Specifications $\quad V C C=5 \mathrm{~V} \pm 10 \% ; T_{A}=H M-65162 \mathrm{C}-8-50^{\circ} \mathrm{C}$ to $+125{ }^{\circ} \mathrm{C}$

HM-65162C-9 $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
READ CYCLE					
(1) TAVAX	Read Cycle Time	90	-	ns	(Notes 1, 4)
(2) TAVQV	Address Access Time	-	90	ns	(Notes 1, 4)
(3) TELQV	Chip Enable Access Time	-	90	ns	(Notes 1, 4)
(4) TELQX	Chip Enable Output Enable Time	5	-	ns	(Notes 2, 4)
(5) TGLQV	Output Enable Access Time	-	65	ns	(Notes 1, 4)
(6) TGLQX	Output Enable Output Enable Time	5	-	ns	(Notes 2, 4)
(7) TEHQZ	Chip Enable Output Disable Time	-	50	ns	(Notes 2, 4)
(8) TGHQZ	Output Enable Output Disable Time	-	40	ns	(Notes 2, 4)
(9) TAVQX	Output Hold From Address Change	5	-	ns	(Notes 1, 4)
WRITE CYCLE					
(10) TAVAX	Write Cycle Time	90	-	ns	(Notes 1, 4)
(11) TELWH	Chip Selection to End of Write	55	-	ns	(Notes 1, 4)
(12) TAVWL	Address Setup Time	10	-	ns	(Notes 1, 4)
(13) TWLWH	Write Enable Pulse Width	55	-	ns	(Notes 1, 4)
(14) TWHAX	Write Enable Read Setup Time	10	-	ns	(Notes 1, 4)
(15) TGHQZ	Output Enable Output Disable Time	-	40	ns	(Notes 2, 4)
(16) TWLQZ	Write Enable Output Disable Time	-	50	ns	(Notes 2, 4)
(17) TDVWH	Data Setup Time	30	-	ns	(Notes 1, 4)
(18) TWHDX	Data Hold Time	15	-	ns	(Notes 1, 4)
(19) TWHQX	Write Enable Output Enable Time	0	-	ns	(Notes 2, 4)
(20) TWLEH	Write Enable Pulse Setup Time	55	-	ns	(Notes 1, 4)
(21) TDVEH	Chip Enable Data Setup Time	30	-	ns	(Notes 1, 4)
(22) TAVWH	Address Valid to End of Write	65	-	ns	(Notes 1, 4)

NOTES:

1. Input pulse levels: 0 to 3.0 V ; Input rise and fall times: 5 ns (max); Input and output timing reference level: 1.5 V ; Output load: 1 TTL gate equivalent and $C L=50 \mathrm{pF}(\mathrm{min})-$ for $C L$ greater than 50 pF , access time is derated by 0.15 ns per pF .
2. Tested at initial design and after major design changes.
3. Typical derating: $5 \mathrm{~mA} / \mathrm{MHz}$ increase in ICCOP.
4. $\mathrm{VCC}=4.5 \mathrm{~V}$ and 5.5 V .

Read Cycle

NOTE: \bar{W} IS HIGH FOR A READ CYCLE

Addresses must remain stable for the duration of the read cycle. To read, \bar{G} and \bar{E} must be $\leqslant V I L$ and $\bar{W} \geqslant V I H$. The output buffers can be controlled independently by \bar{G} while $\overline{\mathrm{E}}$ is low. To execute consecutive
read cycles, E may be tied low continuously until all desired locations are accessed. When Eis low, addresses must be driven by stable logic levels and must not be in the high impedance state.

Write Cycles

WRITE CYCLE I

NOTE: \bar{G} IS LOW THROUGHOUT WRITE CYCLE

To write, addresses must be stable, $\overline{\mathrm{E}}$ low and $\overline{\mathrm{W}}$ falling low for a period no shorter than TWLWH. Data in is referenced with the rising edge of \bar{W}. (TDVWH and TWHDX). While addresses are changing, \bar{W} must be high. When \bar{W} falls low, the I/O pins are still in the output state for a period of TWLQZ and input data of the opposite phase to
the outputs must not be applied. (Bus contention). If \bar{E} transitions low simultaneously with the \bar{W} line transitioning low or after the \bar{W} transition, the output will remain in a high impedance state. \bar{G} is held continuously low.

WRITE CYCLE II

In this write cycle \bar{G} has control of the output after a period, TGHQZ. $\overline{\mathrm{G}}$ switching the output to a high impedance state allows data in to be applied without bus contention after TGHQZ. When \bar{W} transitions high, the data in can change after TWHDX to complete the write cycle.

Features

- Low Standby Current... $50 \mu \mathrm{~A}$
- Low Operating Current...50mA
- Fast Access Time..55/70/85ns
- Low Voltage Data Retention at 2.0 V
- CMOS/TTL Compatible Inputs and Outputs
- JEDEC Approved Pinout
- Equal Cycle and Access Times
- No Clocks or Strobes Required
- Single 5 Volt Supply
- Gated Inputs - No Pull-up or Pull-down Resistors Required
- Wide Temperature Range.
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
- Easy Microprocessor Interfacing

Description

The HM-65262 is a CMOS 16384×1 bit Static Random Access Memory manufactured using the Harris advanced SAJI VI process. The device utilizes asynchronous circuit design for fast cycle times and ease of use. The HM-65262 is available in both the JEDEC standard $20-\mathrm{pin}, 0.300$ inch wide dual-in-line and 20 pad LCC packages, providing high board-level packing density. Gated inputs lower standby current, and also eliminate the need for pull-up or pull-down resistors.
The HM-65262, a full CMOS RAM, utilizes an array of six transistor (6T) memory cells for the most stable and lowest possible standby supply current over the full military temperature range. In addition to this, the high stability of the 6T RAM cell provides excellent protection against soft errors due to noise and alpha particles. This stability also improves the radiation tolerance of the RAM over that of four transistor (4T) devices.

Pinouts

Logic Symbol

$$
\begin{array}{ll}
\text { A - Address Input } & \text { D - Data Input } \\
\bar{E}-\text { Chip Enable } & \text { Q - Data Output } \\
\bar{W}-\text { Write Enable } &
\end{array}
$$

Functional Diagram

Absolute Maximum Ratings

Operating Conditions

D.C. Electrical Specifications $\quad \mathrm{VCC}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=\mathrm{HM}-65262 \mathrm{~B}-8 \quad-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
ICCSB1	Standby Supply Current (CMOS)	-	50	$\mu \mathrm{~A}$	$10=0, \overline{\mathrm{E}}=\mathrm{VCC}-0.3 \mathrm{~V}$
ICCSB	Standby Supply Current (TTL)	-	5	mA	$10=0, \overline{\mathrm{E}}=2.2 \mathrm{~V}$
ICCEN	Enabled Supply Current	-	50	mA	$10=0, \overline{\mathrm{E}}=0.8 \mathrm{~V}$
ICCOP	Operating Supply Current (Note 3)	-	50	mA	$10=0, \overline{\mathrm{E}}=0.8 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
ICCDR	Data Retention Supply Current	-	20	$\mu \mathrm{~A}$	$\mathrm{VCC}=2.0 \mathrm{~V}, \overline{\mathrm{E}}=\mathrm{VCC}$
ICCDR1	Data Retention Supply Current	-	30	$\mu \mathrm{~A}$	$\mathrm{VCC}=3.0 \mathrm{~V}, \overline{\mathrm{E}}=\mathrm{VCC}$
II	Input Leakage Current	-1.0	+1.0	$\mu \mathrm{~A}$	$\mathrm{VI}=\mathrm{GND}$ or VCC
IOZ	Output Leakage Current	-1.0	+1.0	$\mu \mathrm{~A}$	$\mathrm{VIO}=\mathrm{GND}$ or VCC
VCCDR	Data Retention Supply Voltage	2.0	-	V	
VOL	Output Low Voltage	-	0.4	V	$1 \mathrm{O}=8.0 \mathrm{~mA}$
VOH1	Output High Voltage	2.4	-	V	$10=-4.0 \mathrm{~mA}$
VOH2	Output High Voltage (Note 2)	$\mathrm{VCC}-0.4$	-	V	$\mathrm{IO}=-100 \mu \mathrm{~A}$
VIL	Input Low Voltage	-0.3	0.8	V	
VIH	Input High Voltage	2.2	$\mathrm{VCC}+0.3$	V	

Capacitance

SYMBOL	PARAMETER	MAX	UNITS	TEST CONDITIONS
CI	Input Capacitance (Note 2)	8	pF	$\mathrm{VI}=\mathrm{VCC}$ or GND, $\mathrm{f}=1 \mathrm{MHz}$
CO	Output Capacitance (Note 2)	10	pF	$\mathrm{VIO}=\mathrm{VCC}$ or $\mathrm{GND}, \mathrm{f}=1 \mathrm{MHz}$

NOTES:

1. Input pulse levels: 0 to 3.0 V ; Input rise and fall times: 5 ns (max); Input and output timing reference level: 1.5 V ; Output load: 1 TTL gate equivalent and $\mathrm{CL}=50 \mathrm{pF}(\mathrm{min})$ - for CL greater than 50 pF , access time is derated by 0.15 ns per pF .
2. Tested at initial design and after major design changes.
3. Typical derating: $5 \mathrm{~mA} / \mathrm{MHz}$ increase in ICCOP.
4. $\mathrm{VCC}=4.5 \mathrm{~V}$ and 5.5 V .

Specifications HM-65262B-8

A.C. Electrical Specifications

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
READ CYCLE					
(1) TAVAX	Read Cycle Time	70	-	ns	(Notes 1, 4)
(2) TAVQV	Address Access Time	-	70	ns	(Notes 1, 4)
(3) TELQV	Chip Enable Access Time	-	70	ns	(Notes 1, 4)
(4) TELQX	Chip Enable Output Enable Time	5	-	ns	(Notes 2, 4)
(5) TEHQX	Chip Disable Output Hold Time	5	-	ns	(Notes 2, 4)
(6) TAXQX	Address Invalid Output Hold Time	5	-	ns	(Notes 2, 4)
(7) TEHQZ	Chip Disable Output Disable Time	-	40	ns	(Notes 2, 4)
WRITE CYCLE					
(8) TAVAX	Write Cycle Time	70	-	ns	(Notes 1, 4)
(9) TELWH	Chip Enable to End of Write	55	-	ns	(Notes 1, 4)
(10) TWLWH	Write Enable Pulse Width	40	-	ns	(Notes 1, 4)
(11) TAVWL	Address Setup Time	0	-	ns	(Notes 1, 4)
(12) TWHAX	Address Hold Time	0	-	ns	(Notes 1, 4)
(13) TDVWH	Data Setup Time	30	-	ns	(Notes 1, 4)
(14) TWHDX	Data Hold Time	0	-	ns	(Notes 1, 4)
(15) TWLQZ	Write Enable Output Disable Time	-	40	ns	(Notes 2, 4)
(16) TWHQX	Write Disable Output Enable Time	0	-	ns	(Notes 2, 4)
(17) TAVWH	Address Valid to End of Write	55	-	ns	(Notes 1, 4)
(18) TAVEL	Address Setup Time	0	-	ns	(Notes 1, 4)
(19) TEHAX	Address Hold Time	0	-	ns	(Notes 1, 4)
(20) TAVEH	Address Valid to End of Write	55	-	ns	(Notes 1, 4)
(21) TELEH	Enable Pulse Width	55	-	ns	(Notes 1, 4)
(22) TWLEH	Write to End of Write	40	-	ns	(Notes 1, 4)
(23) TDVEH	Data Setup Time	30	-	ns	(Notes 1, 4)
(24) TEHDX	Data Hold Time	0	-	ns	(Notes 1, 4)

NOTES:

1. Input pulse levels: 0 to 3.0 V ; Input rise and fall times: 5 ns (max); Input and output timing reference level: 1.5 V ; Output load: 1 TTL gate equivalent and $\mathrm{CL}=50 \mathrm{pF}(\mathrm{min})-$ for CL greater than 50 pF , access time is derated by 0.15 ns per pF .
2. Tested at initial design and after major design changes.
3. Typical derating: $5 \mathrm{~mA} / \mathrm{MHz}$ increase in ICCOP.
4. $\mathrm{VCC}=4.5 \mathrm{~V}$ and 5.5 V .

Absolute Maximum Ratings

Operating Conditions

D.C. Electrical Specifications $\quad \mathrm{VCC}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=\mathrm{HM}-65262-8 \quad-55^{\circ} \mathrm{C}$ to $+125{ }^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
ICCSB1	Standby Supply Current (CMOS)	-	50	$\mu \mathrm{~A}$	$10=0, \overline{\mathrm{E}}=\mathrm{VCC}-0.3 \mathrm{~V}$
ICCSB	Standby Supply Current (TTL)	-	5	mA	$10=0, \overline{\mathrm{E}}=2.2 \mathrm{~V}$
ICCEN	Enabled Supply Current	-	50	mA	$10=0, \overline{\mathrm{E}}=0.8 \mathrm{~V}$
ICCOP	Operating Supply Current (Note 3)	-	50	mA	$10=0, \overline{\mathrm{E}}=0.8 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
ICCDR	Data Retention Supply Current	-	20	$\mu \mathrm{~A}$	$\mathrm{VCC}=2.0 \mathrm{~V}, \overline{\mathrm{E}}=\mathrm{VCC}$
ICCDR1	Data Retention Supply Current	-	30	$\mu \mathrm{~A}$	$\mathrm{VCC}=3.0 \mathrm{~V}, \overline{\mathrm{E}}=\mathrm{VCC}$
II	Input Leakage Current	-1.0	+1.0	$\mu \mathrm{~A}$	$\mathrm{VI}=\mathrm{GND}$ or VCC
IOZ	Output Leakage Current	-1.0	+1.0	$\mu \mathrm{~A}$	$\mathrm{VIO}=\mathrm{GND}$ or VCC
VCCDR	Data Retention Supply Voltage	2.0	-	V	
VOL	Output Low Voltage	-	0.4	V	$10=8.0 \mathrm{~mA}$
VOH1	Output High Voltage	2.4	-	V	$10=-4.0 \mathrm{~mA}$
VOH2	Output High Voltage (Note 2)	$\mathrm{VCC}-0.4$	-	V	$10=-100 \mu \mathrm{~A}$
VIL	Input Low Voltage	-0.3	0.8	V	
VIH	Input High Voltage	2.2	$\mathrm{VCC}+0.3$	V	

Capacitance

SYMBOL	PARAMETER	MAX	UNITS	TEST CONDITIONS
CI	Input Capacitance (Note 2)	8	pF	$\mathrm{VI}=\mathrm{VCC}$ or GND, $\mathrm{f}=1 \mathrm{MHz}$
CO	Output Capacitance (Note 2)	10	pF	$\mathrm{VIO}=\mathrm{VCC}$ or GND, $\mathrm{f}=1 \mathrm{MHz}$

NOTES:

1. Input pulse levels: 0 to 3.0 V ; Input rise and fall times: 5 ns (max); Input and output timing reference level: 1.5 V ; Output load: 1 TTL gate equivalent and $C L=50 \mathrm{pF}(\mathrm{min})-$ for $C L$ greater than 50 pF , access time is derated by 0.15 ns per pF .
2. Tested at initial design and after major design changes.
3. Typical derating: $5 \mathrm{~mA} / \mathrm{MHz}$ increase in ICCOP.
4. $\mathrm{VCC}=4.5 \mathrm{~V}$ and 5.5 V .

A.C. Electrical Specifications

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
READ CYCLE					
(1) TAVAX	Read Cycle Time	85	-	ns	(Notes 1, 4)
(2) TAVQV	Address Access Time	-	85	ns	(Notes 1, 4)
(3) TELQV	Chip Enable Access Time	-	85	ns	(Notes 1, 4)
(4) TELQX	Chip Enable Output Enable Time	5	-	ns	(Notes 2, 4)
(5) TEHQX	Chip Disable Output Hold Time	5	-	ns	(Notes 2, 4)
(6) TAXQX	Address Invalid Output Hold Time	5	-	ns	(Notes 2, 4)
(7) TEHQZ	Chip Disable Output Disable Time	-	40	ns	(Notes 2, 4)
WRITE CYCLE					
(8) TAVAX	Write Cycle Time	85	-	ns	(Notes 1, 4)
(9) TELWH	Chip Enable to End of Write	65	-	ns	(Notes 1, 4)
(10) TWLWH	Write Enable Pulse Width	45	-	ns	(Notes 1, 4)
(11) TAVWL	Address Setup Time	0	-	ns	(Notes 1, 4)
(12) TWHAX	Address Hold Time	0	-	ns	(Notes 1, 4)
(13) TDVWH	Data Setup Time	35	-	ns	(Notes 1, 4)
(14) TWHDX	Data Hold Time	0	-	ns	(Notes 1, 4)
(15) TWLQZ	Write Enable Output Disable Time	-	40	ns	(Notes 2, 4)
(16) TWHQX	Write Disable Output Enable Time	0	-	ns	(Notes 2, 4)
(17) TAVWH	Address Valid to End of Write	65	-	ns	(Notes 1, 4)
(18) TAVEL	Address Setup Time	0	-	ns	(Notes 1, 4)
(19) TEHAX	Address Hold Time	0	-	ns	(Notes 1, 4)
(20) TAVEH	Address Valid to End of Write	65	-	ns	(Notes 1, 4)
(21) TELEH	Enable Pulse Width	65	-	ns	(Notes 1, 4)
(22) TWLEH	Write to End of Write	45	-	ns	(Notes 1, 4)
(23) TDVEH	Data Setup Time	35	-	ns	(Notes 1, 4)
(24) TEHDX	Data Hold Time	0	-	ns	(Notes 1, 4)

NOTES:

1. Input pulse levels: 0 to 3.0 V ; Input rise and fall times: 5 ns (max); Input and output timing reference level: 1.5 V ; Output load: 1 TTL gate equivalent and $C L=50 \mathrm{pF}(\mathrm{min})-$ for $C L$ greater than 50 pF , access time is derated by 0.15 ns per pF .
2. Tested at initial design and after major design changes.
3. Typical derating: $5 \mathrm{~mA} / \mathrm{MHz}$ increase in ICCOP.
4. $\mathrm{VCC}=4.5 \mathrm{~V}$ and 5.5 V .

Absolute Maximum Ratings

Operating Conditions

Operating Voltage Range ... +4.5 V to +5.5 V
Operating Temperature Range
HM-65262S-9..40으 to +850 C
D.C. Electrical Specifications (Note 1) $\quad V C C=5 \mathrm{~V} \pm 10 \% ; \quad T_{A}=H M-65262 \mathrm{~S}-9 \quad-40^{\circ} \mathrm{C}$ to $+85{ }^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
ICCSB1	Standby Supply Current (CMOS)	-	50	$\mu \mathrm{A}$	$10=0, \bar{E}=V C C-0.3 V$
ICCSB	Standby Supply Current (TTL)	-	5	mA	$10=0, \overline{\mathrm{E}}=2.2 \mathrm{~V}$
ICCEN	Enabled Supply Current	-	50	mA	$1 \mathrm{O}=0, \overline{\mathrm{E}}=0.8 \mathrm{~V}$
ICCOP	Operating Supply Current (Note 3)	-	50	mA	$\mathrm{IO}=0, \overline{\mathrm{E}}=0.8 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
ICCDR	Data Retention Supply Current	-	20	$\mu \mathrm{A}$	$V C C=2.0 \mathrm{~V}, \overline{\mathrm{E}}=\mathrm{VCC}$
ICCDR1	Data Retention Supply Current	-	30	$\mu \mathrm{A}$	$V C C=3.0 \mathrm{~V}, \overline{\mathrm{E}}=\mathrm{VCC}$
11	Input Leakage Current	-1.0	+1.0	$\mu \mathrm{A}$	$\mathrm{VI}=\mathrm{GND}$ or VCC
102	Output Leakage Current	-1.0	+1.0	$\mu \mathrm{A}$	$\mathrm{VIO}=\mathrm{GND}$ or VCC
VCCDR	Data Retention Supply Voltage	2.0	-	V	
VOL	Output Low Voltage	-	0.4	V	$10=8.0 \mathrm{~mA}$
VOH 1	Output High Voltage	2.4	-	V	$10=-4.0 \mathrm{~mA}$
VOH 2	Output High Voltage (Note 2)	VCC-0.4	-	V	$10=-100 \mu \mathrm{~A}$
VIL	Input Low Voltage	-0.3	0.8	V	
VIH	Input High Voltage	2.2	VCC+0.3	V	

Capacitance

SYMBOL	PARAMETER	MAX	UNITS	TEST CONDITIONS
CI	Input Capacitance (Note 2)	8	pF	$\mathrm{VI}=\mathrm{VCC}$ or GND, $\mathrm{f}=1 \mathrm{MHz}$
CO	Output Capacitance (Note 2)	10	pF	$\mathrm{VIO}=\mathrm{VCC}$ or GND, $\mathrm{f}=1 \mathrm{MHz}$

NOTES:

1. Input pulse levels: 0 to 3.0 V ; Input rise and fall times: 5 ns (\max); Input and output timing reference level: 1.5 V ; Output load: 1 TTL gate equivalent and $C L=50 \mathrm{pF}(\mathrm{min})-$ for $C L$ greater than 50 pF , access time is derated by 0.15 ns per pF .
2. Tested at initial design and after major design changes.
3. Typical derating: $5 \mathrm{~mA} / \mathrm{MHz}$ increase in ICCOP.
4. $\mathrm{VCC}=4.5 \mathrm{~V}$ and 5.5 V .

Specifications HM-65262S-9

A.C. Electrical Specifications

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS

READ CYCLE

(1) TAVAX	Read Cycle Time	55	-	ns	(Notes 1, 4)
(2) TAVQV	Address Access Time	-	55	ns	(Notes 1, 4)
(3) TELQV	Chip Enable Access Time	-	55	ns	(Notes 1, 4)
(4) TELQX	Chip Enable Output Enable Time	5	-	ns	(Notes 2, 4)
(5) TEHQX	Chip Disable Output Hold Time	5	-	ns	(Notes 2, 4)
(6) TAXQX	Address Invalid Output Hold Time	5	-	ns	(Notes 2, 4)
(7) TEHQZ	Chip Disable Output Disable Time	-	30	ns	(Notes 2, 4)
WRITE CYCLE					

WRITE CYCLE

(8) TAVAX	Write Cycle Time	55	-	ns	(Notes 1, 4)
(9) TELWH	Chip Enable to End of Write	45	-	ns	(Notes 1, 4)
(10) TWLWH	Write Enable Pulse Width	35	-	ns	(Notes 1, 4)
(11) TAVWL	Address Setup Time	0	-	ns	(Notes 1, 4)
(12) TWHAX	Address Hold Time	0	-	ns	(Notes 1, 4)
(13) TDVWH	Data Setup Time	25	-	ns	(Notes 1, 4)
(14) TWHDX	Data Hold Time	0	-	ns	(Notes 1, 4)
(15) TWLQZ	Write Enable Output Disable Time	-	30	ns	(Notes 2, 4)
(16) TWHQX	Write Disable Output Enable Time	0	-	ns	(Notes 2, 4)
(17) TAVWH	Address Valid to End of Write	45	-	ns	(Notes 1, 4)
(18) TAVEL	Address Setup Time	0	-	ns	(Notes 1, 4)
(19) TEHAX	Address Hold Time	0	-	ns	(Notes 1, 4)
(20) TAVEH	Address Valid to End of Write	45	-	ns	(Notes 1, 4)
(21) TELEH	Enable Pulse Width	45	-	ns	(Notés 1, 4)
(22) TWLEH	Write to End of Write	35	-	ns	(Notes 1, 4)
(23) TDVEH	Data Setup Time	25	-	ns	(Notes 1, 4)
(24) TEHDX	Data Hold Time	0	-	ns	(Notes 1, 4)

NOTES:

1. Input puise levels: 0 to 3.0 V ; Input rise and fall times: 5 ns (max); Input and output timing reference level: 1.5 V ; Output load: 1 TTL gate equivalent and $\mathrm{CL}=50 \mathrm{pF}(\mathrm{min})-$ for CL greater than 50 pF , access time is derated by 0.15 ns per pF .
2. Tested at initial design and after major design changes.
3. Typical derating: $5 \mathrm{~mA} / \mathrm{MHz}$ increase in ICCOP.
4. $\mathrm{VCC}=4.5 \mathrm{~V}$ and 5.5 V .

Absolute Maximum Ratings

Operating Conditions

Operating Voltage Range Operating Temperature Range HM-65262B-9

D.C. Electrical Specifications (Note 1) $\quad \mathrm{VCC}=5 \mathrm{~V} \pm 10 \% ; \quad T_{A}=H M-65262 \mathrm{~B}-9 \quad-40^{\circ} \mathrm{C}$ to $+85{ }^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
ICCSB1	Standby Supply Current (CMOS)	-	50	$\mu \mathrm{A}$	$10=0, \overline{\mathrm{E}}=\mathrm{VCC}-0.3 V$
ICCSB	Standby Supply Current (TTL)	-	5	mA	$1 \mathrm{O}=0, \overline{\mathrm{E}}=2.2 \mathrm{~V}$
ICCEN	Enabled Supply Current	-	50	mA	$1 \mathrm{O}=0, \overline{\mathrm{E}}=0.8 \mathrm{~V}$
ICCOP	Operating Supply Current (Note 3)	-	50	mA	$1 \mathrm{O}=0, \overline{\mathrm{E}}=0.8 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
ICCDR	Data Retention Supply Current	-	20	$\mu \mathrm{A}$	$V C C=2.0 V, \bar{E}=V C C$
ICCDR1	Data Retention Supply Current	-	30	$\mu \mathrm{A}$	$\mathrm{VCC}=3.0 \mathrm{~V}, \overline{\mathrm{E}}=\mathrm{VCC}$
II	Input Leakage Current	-1.0	+1.0	$\mu \mathrm{A}$	$\mathrm{VI}=\mathrm{GND}$ or VCC
IOZ	Output Leakage Current	-1.0	+1.0	$\mu \mathrm{A}$	$\mathrm{VIO}=\mathrm{GND}$ or VCC
VCCDR	Data Retention Supply Voltage	2.0	-	V	
VOL	Output Low Voltage	-	0.4	V	$10=8.0 \mathrm{~mA}$
VOH 1	Output High Voltage	2.4	-	V	$10=-4.0 \mathrm{~mA}$
VOH2	Output High Voltage (Note 2)	VCC-0.4	-	V	$10=-100 \mu \mathrm{~A}$
VIL	Input Low Voltage	-0.3	0.8	V	
VIH	Input High Voltage	2.2	VCC+0.3	V	

Capacitance

SYMBOL	PARAMETER	MAX	UNITS	TEST CONDITIONS
CI	Input Capacitance (Note 2)	8	pF	$\mathrm{VI}=\mathrm{VCC}$ or $\mathrm{GND}, \mathrm{f}=1 \mathrm{MHz}$
CO	Output Capacitance (Note 2)	10	pF	$\mathrm{VIO}=\mathrm{VCC}$ or $\mathrm{GND}, \mathrm{f}=1 \mathrm{MHz}$

NOTES:

1. Input pulse levels: 0 to 3.0 V ; Input rise and fall times: 5 ns (max); Input and output timing reference level: 1.5 V ; Output load: 1 TTL gate equivalent and $C L=50 \mathrm{pF}(\mathrm{min})$ - for $C L$ greater than 50 pF , access time is derated by 0.15 ns per pF .
2. Tested at initial design and after major design changes.
3. Typical derating: $5 \mathrm{~mA} / \mathrm{MHz}$ increase in ICCOP.
4. $\mathrm{VCC}=4.5 \mathrm{~V}$ and 5.5 V .

A.C. Electrical Specifications

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
READ CYCLE					
(1) TAVAX	Read Cycle Time	70	-	ns	(Notes 1, 4)
(2) TAVQV	Address Access Time	-	70	ns	(Notes 1, 4)
(3) TELQV	Chip Enable Access Time	-	70	ns	(Notes 1, 4)
(4) TELQX	Chip Enable Output Enable Time	5	-	ns	(Notes 2, 4)
(5) TEHQX	Chip Disable Output Hold Time	5	-	ns	(Notes 2, 4)
(6) TAXQX	Address Invalid Output Hold Time	5	-	ns	(Notes 2, 4)
(7) TEHQZ	Chip Disable Output Disable Time	-	30	ns	(Notes 2, 4)
WRITE CYCLE					
(8) TAVAX	Write Cycle Time	70	-	ns	(Notes 1, 4)
(9) TELWH	Chip Enable to End of Write	55	-	ns	(Notes 1, 4)
(10) TWLWH	Write Enable Pulse Width	40	-	ns	(Notes 1, 4)
(11) TAVWL	Address Setup Time	0	-	ns	(Notes 1, 4)
(12) TWHAX	Address Hold Time	0	-	ns	(Notes 1, 4)
(13) TDVWH	Data Setup Time	30	-	ns	(Notes 1, 4)
(14) TWHDX	Data Hold Time	0	-	ns	(Notes 1, 4)
(15) TWLQZ	Write Enable Output Disable Time	-	30	ns	(Notes 2, 4)
(16) TWHQX	Write Disable Output Enable Time	0	-	ns	(Notes 2, 4)
(17) TAVWH	Address Valid to End of Write	55	-	ns	(Notes 1, 4)
(18) TAVEL	Address Setup Time	0	-	ns	(Notes 1, 4)
(19) TEHAX	Address Hold Time	0	-	ns	(Notes 1, 4)
(20) TAVEH	Address Valid to End of Write	55	-	ns	(Notes 1, 4)
(21) TELEH	Enable Pulse Width	55	-	ns	(Notes 1, 4)
(22) TWLEH	Write to End of Write	40	-	ns	(Notes 1, 4)
(23) TDVEH	Data Setup Time	30	-	ns	(Notes 1, 4)
(24) TEHDX	Data Hold Time	0	-	ns	(Notes 1, 4)

NOTES:

1. Input pulse levels: 0 to 3.0 V ; Input rise and fall times: 5 ns (max); Input and output timing reference level: 1.5 V ; Output load: 1 TTL gate equivalent and $\mathrm{CL}=50 \mathrm{pF}(\mathrm{min})$ - for CL greater than 50 pF , access time is derated by 0.15 ns per pF .
2. Tested at initial design and after major design changes.
3. Typical derating: $5 \mathrm{~mA} / \mathrm{MHz}$ increase in ICCOP.
4. $\mathrm{VCC}=4.5 \mathrm{~V}$ and 5.5 V .

Absolute Maximum Ratings

Operating Conditions

Operating Voltage Range ... +4.5 V to +5.5 V
Operating Temperature Range
HM-65262-9 ... ${ }^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
D.C. Electrical Specifications (Note 1) $V C C=5 V \pm 10 \% ; \quad T_{A}=H M-65262-9-40^{\circ} \mathrm{C}$ to $+85{ }^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
ICCSB1	Standby Supply Current (CMOS)	-	50	$\mu \mathrm{~A}$	$10=0, \overline{\mathrm{E}}=\mathrm{VCC}-0.3 \mathrm{~V}$
ICCSB	Standby Supply Current (TTL)	-	5	mA	$10=0, \overline{\mathrm{E}}=2.2 \mathrm{~V}$
ICCEN	Enabled Supply Current	-	50	mA	$10=0, \overline{\mathrm{E}}=0.8 \mathrm{~V}$
ICCOP	Operating Supply Current (Note 3)	-	50	mA	$10=0, \overline{\mathrm{E}}=0.8 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
ICCDR	Data Retention Supply Current	-	20	$\mu \mathrm{~A}$	$\mathrm{VCC}=2.0 \mathrm{~V}, \overline{\mathrm{E}}=\mathrm{VCC}$
ICCDR1	Data Retention Supply Current	-	30	$\mu \mathrm{~A}$	$\mathrm{VCC}=3.0 \mathrm{~V}, \overline{\mathrm{E}}=\mathrm{VCC}$
II	Input Leakage Current	-1.0	+1.0	$\mu \mathrm{~A}$	$\mathrm{VI}=\mathrm{GND}$ or VCC
IOZ	Output Leakage Current	-1.0	+1.0	$\mu \mathrm{~A}$	$\mathrm{VIO}=\mathrm{GND}$ or VCC
VCCDR	Data Retention Supply Voltage	2.0	-	V	
VOL	Output Low Voltage	-	0.4	V	$10=8.0 \mathrm{~mA}$
VOH1	Output High Voltage	2.4	-	V	$10=-4.0 \mathrm{~mA}$
VOH2	Output High Voltage (Note 2)	$\mathrm{VCC}-0.4$	-	V	$10=-100 \mu \mathrm{~A}$
VIL	Input Low Voltage	-0.3	0.8	V	
VIH	Input High Voltage	2.2	$\mathrm{VCC}+0.3$	V	

Capacitance

SYMBOL	PARAMETER	MAX	UNITS	TEST CONDITIONS
CI	Input Capacitance (Note 2)	8	pF	$\mathrm{VI}=\mathrm{VCC}$ or GND, $\mathrm{f}=1 \mathrm{MHz}$
CO	Output Capacitance (Note 2)	10	pF	$\mathrm{VIO}=\mathrm{VCC}$ or GND, $\mathrm{f}=1 \mathrm{MHz}$

NOTES:

1. Input pulse levels: 0 to 3.0 V ; Input rise and fall times: 5 ns (max); Input and output timing reference level: 1.5 V ; Output load: 1 TTL gate equivalent and $C L=50 \mathrm{pF}(\mathrm{min})$ - for $C L$ greater than 50 pF , access time is derated by 0.15 ns per pF .
2. Tested at initial design and after major design changes.
3. Typical derating: $5 \mathrm{~mA} / \mathrm{MHz}$ increase in ICCOP.
4. $\mathrm{VCC}=4.5 \mathrm{~V}$ and 5.5 V .

Specifications HM-65262-9

A.C. Electrical Specifications

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
READ CYCLE					
(1) TAVAX	Read Cycle Time	85	-	ns	(Notes 1, 4)
(2) TAVQV	Address Access Time	-	85	ns	(Notes 1, 4)
(3) TELQV	Chip Enable Access Time	-	85	ns	(Notes 1, 4)
(4) TELQX	Chip Enable Output Enable Time	5	-	ns	(Notes 2, 4)
(5) TEHQX	Chip Disable Output Hold Time	5	-	ns	(Notes 2, 4)
(6) TAXQX	Address Invalid Output Hold Time	5	-	ns	(Notes 2, 4)
(7) TEHQZ	Chip Disable Output Disable Time	-	30	ns	(Notes 2, 4)
WRITE CYCLE					
(8) TAVAX	Write Cycle Time	85	-	ns	(Notes 1, 4)
(9) TELWH	Chip Enable to End of Write	65	-	ns	(Notes 1, 4)
(10) TWLWH	Write Enable Pulse Width	45	-	ns	(Notes 1, 4)
(11) TAVWL	Address Setup Time	0	-	ns	(Notes 1, 4)
(12) TWHAX	Address Hold Time	0	-	ns	(Notes 1, 4)
(13) TDVWH	Data Setup Time	35	-	ns	(Notes 1, 4)
(14) TWHDX	Data Hold Time	0	-	ns	(Notes 1, 4)
(15) TWLQZ	Write Enable Output Disable Time	-	30	ns	(Notes 2, 4)
(16) TWHQX	Write Disable Output Enable Time	0	-	ns	(Notes 2, 4)
(17) TAVWH	Address Valid to End of Write	65	-	ns	(Notes 1, 4)
(18) TAVEL	Address Setup Time	0	-	ns	(Notes 1, 4)
(19) TEHAX	Address Hold Time	0	-	ns	(Notes 1, 4)
(20) TAVEH	Address Valid to End of Write	65	-	ns	(Notes 1, 4)
(21) TELEH	Enable Pulse Width	65	-	ns	(Notes 1, 4)
(22) TWLEH	Write to End of Write	45	-	ns	(Notes 1, 4)
(23) TDVEH	Data Setup Time	35	-	ns	(Notes 1, 4)
(24) TEHDX	Data Hold Time	0	-	ns	(Notes 1, 4)

NOTES:

1. Input pulse levels: 0 to 3.0 V ; Input rise and fall times: 5 ns (max); Input and output timing reference level: 1.5 V ; Output load: 1 TTL gate equivalent and $\mathrm{CL}=50 \mathrm{pF}(\mathrm{min})$ - for CL greater than 50 pF , access time is derated by 0.15 ns per pF .
2. Tested at initial design and after major design changes.
3. Typical derating: $5 \mathrm{~mA} / \mathrm{MHz}$ increase in ICCOP.
4. $\mathrm{VCC}=4.5 \mathrm{~V}$ and 5.5 V .

Absolute Maximum Ratings

Operating Conditions

```
Operating Voltage Range
4.5V to +5.5V
Operating Temperature Range
    HM-65262C-9
    -400}\textrm{C}\mathrm{ to +850}\textrm{C
```

D.C. Electrical Specifications (Note 1) $\mathrm{VCC}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=\mathrm{HM}-65262 \mathrm{C}-9 \quad-40^{\circ} \mathrm{C}$ to $+85{ }^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
ICCSB1	Standby Supply Current (CMOS)	-	900	$\mu \mathrm{~A}$	$10=0, \overline{\mathrm{E}}=\mathrm{VCC}-0.3 \mathrm{~V}$
ICCSB	Standby Supply Current (TTL)	-	5	mA	$10=0, \overline{\mathrm{E}}=2.2 \mathrm{~V}$
ICCEN	Enabled Supply Current	-	50	mA	$10=0, \overline{\mathrm{E}}=0.8 \mathrm{~V}$
ICCOP	Operating Supply Current (Note 3)	-	50	mA	$10=0, \overline{\mathrm{E}}=0.8 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
ICCDR	Data Retention Supply Current	-	400	$\mu \mathrm{~A}$	$\mathrm{VCC}=2.0 \mathrm{~V}, \overline{\mathrm{E}}=\mathrm{VCC}$
ICCDR1	Data Retention Supply Current	-	550	$\mu \mathrm{~A}$	$\mathrm{VCC}=3.0 \mathrm{~V}, \overline{\mathrm{E}}=\mathrm{VCC}$
II	Input Leakage Current	-1.0	+1.0	$\mu \mathrm{~A}$	$\mathrm{VI}=\mathrm{GND}$ or VCC
IOZ	Output Leakage Current	-1.0	+1.0	$\mu \mathrm{~A}$	$\mathrm{VIO}=\mathrm{GND}$ or VCC
VCCDR	Data Retention Supply Voltage	2.0	-	V	
VOL	Output Low Voltage	-	0.4	V	$10=8.0 \mathrm{~mA}$
VOH1	Output High Voltage	2.4	-	V	$10=-4.0 \mathrm{~mA}$
VOH2	Output High Voltage (Note 2)	$\mathrm{VCC}-0.4$	-	V	$10=-100 \mu \mathrm{~A}$
VIL	Input Low Voltage	-0.3	0.8	V	
VIH	Input High Voltage	2.2	$\mathrm{VCC}+0.3$	V	

Capacitance

SYMBOL	PARAMETER	MAX	UNITS	TEST CONDITIONS
CI	Input Capacitance (Note 2)	8	pF	$\mathrm{VI}=\mathrm{VCC}$ or GND, $\mathrm{f}=1 \mathrm{MHz}$
CO	Output Capacitance (Note 2)	10	pF	$\mathrm{VIO}=\mathrm{VCC}$ or GND, $\mathrm{f}=1 \mathrm{MHz}$

NOTES:

1. Input pulse levels: 0 to 3.0 V ; Input rise and fall times: $5 \mathrm{~ns}(\mathrm{max}$); Input and output timing reference level: 1.5 V ; Output load: 1 TTL gate equivalent and $\mathrm{CL}=50 \mathrm{pF}(\mathrm{min})-$ for CL greater than 50 pF , access time is derated by 0.15 ns per pF .
2. Tested at initial design and after major design changes.
3. Typical derating: $5 \mathrm{~mA} / \mathrm{MHz}$ increase in ICCOP.
4. $\mathrm{VCC}=4.5 \mathrm{~V}$ and 5.5 V .

Specifications HM-65262C-9

A.C. Electrical Specifications

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
READ CYCLE					
(1) TAVAX	Read Cycle Time	85	-	ns	(Notes 1, 4)
(2) TAVQV	Address Access Time	-	85	ns	(Notes 1, 4)
(3) TELQV	Chip Enable Access Time	-	85	ns	(Notes 1, 4)
(4) TELQX	Chip Enable Output Enable Time	5	-	ns	(Notes 2, 4)
(5) TEHQX	Chip Disable Output Hold Time	5	-	ns	(Notes 2, 4)
(6) TAXQX	Address Invalid Output Hold Time	5	-	ns	(Notes 2, 4)
(7) TEHQZ	Chip Disable Output Disable Time	-	30	ns	(Notes 2, 4)
WRITE CYCLE					
(8) TAVAX	Write Cycle Time	85	-	ns	(Notes 1, 4)
(9) TELWH	Chip Enable to End of Write	65	-	ns	(Notes 1, 4)
(10) TWLWH	Write Enable Pulse Width	45	-	ns	(Notes 1, 4)
(11) TAVWL	Address Setup Time	0	-	ns	(Notes 1, 4)
(12) TWHAX	Address Hold Time	0	-	ns	(Notes 1, 4)
(13) TDVWH	Data Setup Time	35	-	ns	(Notes 1, 4)
(14) TWHDX	Data Hold Time	0	-	ns	(Notes 1, 4)
(15) TWLQZ	Write Enable Output Disable Time	-	30	ns	(Notes 2, 4)
(16) TWHQX	Write Disable Output Enable Time	0	-	ns	(Notes 2, 4)
(17) TAVWH	Address Valid to End of Write	65	-	ns	(Notes 1, 4)
(18) TAVEL	Address Setup Time	0	-	ns	(Notes 1, 4)
(19) TEHAX	Address Hold Time	0	-	ns	(Notes 1, 4)
(20) TAVEH	Address Valid to End of Write	65	-	ns	(Notes 1, 4)
(21) TELEH	Enable Pulse Width	65	-	ns	(Notes 1, 4)
(22) TWLEH	Write to End of Write	45	-	ns	(Notes 1, 4)
(23) TDVEH	Data Setup Time	35	-	ns	(Notes 1, 4)
(24) TEHDX	Data Hold Time	0	-	ns	(Notes 1, 4)

NOTES:

1. Input pulse levels: 0 to 3.0 V ; Input rise and fall times: 5 ns (max); Input and output timing reference level: 1.5 V ; Output load: 1 TTL gate equivalent and $C L=50 \mathrm{pF}(\mathrm{min})$ - for CL greater than 50 pF , access time is derated by 0.15 ns per pF .
2. Tested at initial design and after major design changes.
3. Typical derating: $5 \mathrm{~mA} / \mathrm{MHz}$ increase in ICCOP.
4. $\mathrm{VCC}=4.5 \mathrm{~V}$ and 5.5 V .

READ CYCLE 1: CONTROLLED BY \bar{E}

NOTE: \bar{W} is held high for entire cycle and D is ignored. Address is stable by the time \bar{E} goes low and remains valid until \bar{E} goes high.

READ CYCLE 2: CONTROLLED BY ADDRESS

NOTE: \bar{W} is high for the entire cycle and D is ignored. \bar{E} is stable prior to A becoming valid and after A becomes invalid.

WRITE CYCLE 1 TIMING: CONTROLLED BY \bar{W} (LATE WRITE)

NOTE: In this mode, $\overline{\mathrm{E}}$ rises after $\overline{\mathrm{W}}$. The address must remain stable whenever both $\overline{\mathrm{E}}$ and \bar{W} are low.

WRITE CYCLE 2: CONTROLLED BY E (EARLY WRITE)

NOTE: In this mode, \bar{W} rises after $\overline{\mathrm{E}}$. If \bar{W} falls before $\overline{\mathrm{E}}$ by a time exceeding TWLQZ (Max) TELQX (Min), and rises after \bar{E} by a time exceeding TEHQZ (Max) - TWHQZ (Min), then Q will remain in the high impedance state throughout the cycle.

The address must remain stable whenever $\overline{\mathrm{E}}$ and $\overline{\mathrm{W}}$ are both low.

Features

- Full CMOS Design

- Six Transistor Memory Cell
- Low Standby Supply Current.. $100 \mu \mathrm{~A}$
- Low Operating Supply Current .. 20 mA
- Fast Address Access Time...150ns
- Low Data Retention Supply Voltage...2.0V
- CMOS/TTL Compatible Inputs/Outputs
- JEDEC Approved Pinout
- Equal Cycle and Access Times
- No Clocks or Strobes Required
- Gated Inputs - No Pull-Up or Pull-Down Resistors Required
- Wide Temperature Range \qquad $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
- Easy Microprocessor Interfacing
- Dual Chip Enable Control

Description

The HM-65642 is a CMOS 8192×8 bit Static Random Access Memory. The pinout is the JEDEC 28 pin, 8 bit wide standard, which allows easy memory board layouts which accomodate a variety of industry standard ROM, PROM, EPROM, EEPROM and RAMs. The HM-65642 is ideally suited for use in microprocessor based systems. In particular, interfacing with the Harris 80 C 86 and 80 C 88 microprocessors is simplified by the convenient output enable (\bar{G}) input.

The HM-65642 is a full CMOS RAM which utilizes an array of six transistor (6T) memory cells for the most stable and lowest possible standby supply current over the full military temperature range. In addition to this, the high stability of the $6 T$ RAM cell provides excellent protection against soft errors due to noise and alpha particles. This stability also improves the radiation tolerance of the RAM over that of four transistor or MIX-MOS (4T) devices.

Pinouts

TOP VIEW		
NC 1	28	VCC
A12 2	27	\bar{W}
A7 [3	26	E2
A6 - 4	25	A8
A5 5	24	A9
A4 66	23	A11
A3 [7	22	$\overline{\mathrm{G}}$
A2 [8	21	A10
A1 9	20	E1
A0 10	19	D07
D00 C11	18	DO6
D01 - 12	17	D05
D02 C13	16	D04
GND C 14	15	D03
LCC		

Functional Diagram

TRUTH TABLE

MODE	$\overline{\text { E1 }}$	E2	$\overline{\text { W }}$	$\overline{\mathbf{G}}$
Standby (CMOS)	X	GND	X	X
Standby (TTL)	VIH	X	X	X
	X	VIL	X	X
Enable (High Z)	VIL	VIH	VIH	VIH
Write	VIL	VIH	VIL	X
Read	VIL	VIH	VIH	VIL

PIN DESCRIPTION

PIN	DESCRIPTION
A	Address Input
$\frac{D Q}{E 1}$	Data Input/Output
Chip Enable	
$\overline{E 2}$	Chip Enable
\bar{W}	Write Enable
\bar{G}	Output Enable

[^1]
Absolute Maximum Ratings*

Operating Conditions

Operating Voltage Range	+4.5V to +5.5 V
Input Voltage High (VIH)	2.2 to VCC +0.3V
Input Voltage Low (VIL)	-0.3V to +0.8V
Operating Temperature Range	
HM-65642B-8...	${ }^{-550}{ }^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
HM-65642B-9...	$\ldots . .40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

D.C. Electrical Specifications $\quad \mathrm{VCC}=5 \mathrm{~V} \pm 10 \% ; \quad T_{A}=\mathrm{HM}-65642 \mathrm{~B}-8-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ HM-65642B-9 $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
ICCSB1	Standby Supply Current (CMOS)	-	100	$\mu \mathrm{~A}$	$\mathrm{E} 2=\mathrm{GND}, \mathrm{VCC}=5.5 \mathrm{~V}$
ICCSB2	Standby Supply Current (TTL)	-	5	mA	$\mathrm{E} 2=0.8 \mathrm{~V}$ or $\overline{\mathrm{E} 1}=2.2 \mathrm{~V}, \mathrm{VCC}=5.5 \mathrm{~V}$
ICCDR	Data Retention Supply Current	-	75	$\mu \mathrm{~A}$	$\mathrm{E} 2=\mathrm{GND}, \mathrm{VCC}=2.0 \mathrm{~V}$
ICCEN	Enabled Supply Current	-	5	mA	$\mathrm{E} 2=2.2 \mathrm{~V}, \overline{\mathrm{E} 1}=0.8 \mathrm{~V}, \mathrm{VCC}=5.5 \mathrm{~V}$, $\mathrm{IIO}=0$
ICCOP	Operating Supply Current (Note 3)	-	20	mA	$\mathrm{f}=1 \mathrm{MHz}, \overline{\mathrm{E} 1}=0.8 \mathrm{~V}, \mathrm{E} 2=2.2 \mathrm{~V}$, $\mathrm{VCC}=5.5 \mathrm{~V}, \mathrm{IIO}=0$
II	Input Leakage Current	-1.0	+1.0	$\mu \mathrm{~A}$	$\mathrm{VIN}=\mathrm{VCC}$ or GND, VCC $=5.5 \mathrm{~V}$
IIOZ	Input/Output Leakage Current	-1.0	+1.0	$\mu \mathrm{~A}$	$\mathrm{E} 2=\mathrm{GND}, \mathrm{VIO}=\mathrm{VCC}$ or GND, $\mathrm{VCC}=5.5 \mathrm{~V}$
VCCDR	Data Retention Supply Voltage	2.0	-	V	
VOH1	Output High Voltage	2.4	-	V	$\mathrm{IOH}=-1.0 \mathrm{~mA}, \mathrm{VCC}=4.5 \mathrm{~V}$
VOH2	Output Voltage High (Note 2)	$\mathrm{VCC}-0.4$	-	V	$\mathrm{IOH}=-100 \mu \mathrm{~A}, \mathrm{VCC}=4.5 \mathrm{~V}$
VOL	Output Low Voltage	-	0.4	V	$\mathrm{IOL}=4.0 \mathrm{~mA}, \mathrm{VCC}=4.5 \mathrm{~V}$

Capacitance

SYMBOL	PARAMETER	MAX	UNITS	TEST CONDITIONS
CI	Input Capacitance (Note 2)	10	pF	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{VIN}=$ VCC or GND
CIO	Input/Output Capacitance (Note 2)	12	pF	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{VIN}=$ VCC or GND

NOTES:

1. Input pulse levels: 0 to 3.0 V ; Input rise and fall times: 5 ns (max); Input and output timing reference level: 1.5 V ; Output load: 1 TTL gate equivalent and $C L=50 \mathrm{pF}(\mathrm{min})$ - for CL greater than 50 pF , access time is derated by 0.15 ns per pF .
2. Tested at initial design and after major design changes.
3. Typical derating: $5 \mathrm{~mA} / \mathrm{MHz}$ increase in ICCOP.
4. $\mathrm{VCC}=4.5 \mathrm{~V}$ and 5.5 V .

Specifications HM-65642B-8/HM-65642B-9
A.C. Electrical Specifications $\mathrm{VCC}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=\begin{gathered}\text { HM-65642B-8 }-550^{\circ} \mathrm{C} \text { to }+125{ }^{\circ} \mathrm{C} \\ \mathrm{HM}-65642 \mathrm{~B}-9-40^{\circ} \mathrm{C} \text { to }+85{ }^{\circ} \mathrm{C}\end{gathered}$

PARAMETER	DESCRIPTION	MIN	MAX	UNITS	TEST CONDITIONS

READ CYCLE

(1)	TAVAX	tRC	Read Cycle Time	150		ns	(Note 1, 4)
(2)	TAVQV	tAA	Address Access Time		150	ns	(Note 1, 4)
(3)	TE1LQV	tCE1	Chip Enable Access Time	$\overline{\mathrm{E} 1}$		150	ns
(4)	TE2HQV	tCE2	Chip Enable Access Time	E2		150	ns
(5)	TGLQV	tOE	Output Enable Access Time	(Note 1, 4)			
(6)	TE1LQX	tLZ1	Chip Enable Valid to Output On		70	ns	(Note 1, 4)
(7)	TE2HQX	tLZ2	Chip Enable Valid to Output On	$\overline{\mathrm{E} 1}$	10		ns
(8)	TGLQX	tOLZ	Output Enable Valid to Output On	10		ns	(Note 2, 4)
(9)	TE1HQZ	tHZ1	Chip Enable Not Valid to Output Off				
(10)	TE2LQZ	tHZ2	Chip Enable Not Valid to Output Off	$\overline{E 1}$		50	ns
(11)	TGHQZ	tOHZ	Output Enable Not Valid to Output Off	E2		60	ns
(12)	TAXQX	tOH	Output Hold From Address Change	(Note 2, 4)			

WRITE CYCLE

(13) TAVAX	tWC	Write Cycle Time			150		ns	(Note 1, 4)
(14) TWLWH	tWP	Write Pulse Width			90		ns	(Note 1, 4)
(15) TE1LE1H	tCW	Chip Enable to End of Write		E1	90		ns	(Note 1, 4)
(16) TE2HE2L	tCW	Chip Enable to End of Write		E2	90		ns	(Note 1, 4)
(17) TAVWL	tAS	Address Setup Time	Late Write		0		ns	(Note 1, 4)
(18) TAVE1L	tAS	Address Setup Time	Early Write,	E1	0		ns	(Note 1, 4)
(19) TAVE2H	tAS	Address Setup Time	Early Write,	E2	0		ns	(Note 1, 4)
(20) TWHAX	tWR	Write Recovery Time	Late Write		10		ns	(Note 1, 4)
(21) TE1HAX	tWR	Write Recovery Time	Early Write,	E1	10		ns	(Note 1, 4)
(22) TE2LAX	tWR	Write Recovery Time	Early Write,	E2	10		ns	(Note 1, 4)
(23) TDVWH	tDW	Data Setup Time	Late Write		60		ns	(Note 1, 4)
(24) TDVE1H	tDW	Data Setup Time	Early Write,	E1	60		ns	(Note 1, 4)
(25) TDVE2L	tDW	Data Setup Time	Early Write,	E2	60		ns	(Note 1, 4)
(26) TWHDX	tDH	Data Hold Time	Late Write		5		ns	(Note 1, 4)
(27) TE1HDX	tDH	Data Hold Time	Early Write	E1	10		ns	(Note 1, 4)
(28) TE2LDX	tDH	Data Hold Time	Early Write	E2	10		ns	(Note 1, 4)
(29) TWLQZ	tWHZ	Write Enable Low to Output Off				50	ns	(Note 2, 4)
(30) TWHQX	tOW	Write Enable High to Output On			5		ns	(Note 2, 4)

NOTES:

1. Input pulse levels: 0 to 3.0 V ; Input rise and fall times: 5 ns max; Input and output timing reference level: 1.5 V ; Output load: 1 TTL gate equivalent and $\mathrm{CL}=50 \mathrm{pF}(\mathrm{min})-$ for CL greater than 50 pF , access time is derated by 0.15 ns per pF .
2. Tested at initial design and after major design changes.
3. Typical derating: $5 \mathrm{~mA} / \mathrm{MHz}$ increase in ICCOP.
4. $\mathrm{VCC}=4.5 \mathrm{~V}$ and 5.5 V .

Absolute Maximum Ratings*

Operating Conditions

Operating Voltage Range	+4.5V to +5.5 V
Input Voltage High (VIH)	2.2 to VCC +0.3V
Input Voltage Low (VIL).	-0.3V to +0.8 V
Operating Temperature Range	
HM-65642-8.	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
HM-65642-9	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

D.C. Electrical Specifications $\quad \mathrm{VCC}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=\mathrm{HM}-65642-8-55{ }^{\circ} \mathrm{C}$ to $+125{ }^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
ICCSB1	Standby Supply Current (CMOS)	-	250	$\mu \mathrm{~A}$	$\mathrm{E} 2=\mathrm{GND}, \mathrm{VCC}=5.5 \mathrm{~V}$
ICCSB2	Standby Supply Current (TTL)	-	5	mA	$\mathrm{E} 2=0.8 \mathrm{~V}$ or $\overline{\mathrm{E} 1}=2.2 \mathrm{~V}, \mathrm{VCC}=5.5 \mathrm{~V}$
ICCDR	Data Retention Supply Current	-	150	$\mu \mathrm{~A}$	$\mathrm{E} 2=\mathrm{GND}, \mathrm{VCC}=2.0 \mathrm{~V}$
ICCEN	Enabled Supply Current	-	5	mA	$\mathrm{E} 2=2.2 \mathrm{~V}, \overline{\mathrm{E} 1}=0.8 \mathrm{~V}, \mathrm{VCC}=5.5 \mathrm{~V}$, $\mathrm{IIO}=0$
ICCOP	Operating Supply Current (Note 3)	-	20	mA	$\mathrm{f}=1 \mathrm{MHz}, \overline{\mathrm{E} 1}=0.8 \mathrm{~V}, \mathrm{E} 2=2.2 \mathrm{~V}$, $\mathrm{VCC}=5.5 \mathrm{~V}, \mathrm{IIO}=0$
II	Input Leakage Current	-1.0	+1.0	$\mu \mathrm{~A}$	$\mathrm{VIN}=\mathrm{VCC}$ or GND, VCC $=5.5 \mathrm{~V}$
IIOZ	Input/Output Leakage Current	-1.0	+1.0	$\mu \mathrm{~A}$	$\mathrm{E} 2=\mathrm{GND}, \mathrm{VIO}=\mathrm{VCC}$ or GND,
VCCDR	Data Retention Supply Voltage	2.0	-	V	
VOH1	Output High Voltage	2.4	-	V	$1 \mathrm{OH}=-1.0 \mathrm{~mA}, \mathrm{VCC}=4.5 \mathrm{~V}$
VOH2	Output Voltage High (Note 2)	$\mathrm{VCC}-0.4$	-	V	$\mathrm{IOH}=-100 \mu \mathrm{~A}, \mathrm{VCC}=4.5 \mathrm{~V}$
VOL	Output Low Voltage	-	0.4	V	$\mathrm{IOL}=4.0 \mathrm{~mA}, \mathrm{VCC}=4.5 \mathrm{~V}$

Capacitance

SYMBOL	PARAMETER	MAX	UNITS	TEST CONDITIONS
Cl	Input Capacitance (Note 2)	10	pF	$\mathrm{f}=1 \mathrm{MHz}$, VIN = VCC or GND
CIO	Input/Output Capacitance (Note 2)	12	pF	$\mathrm{f}=1 \mathrm{MHz}$, VIN = VCC or GND

NOTES:

1. Input pulse levels: 0 to 3.0 V ; Input rise and fall times: 5 ns (max); Input and output timing reference level: 1.5 V ; Output load: 1 TTL gate equivalent and $C L=50 \mathrm{pF}(\mathrm{min})-$ for $C L$ greater than 50 pF , access time is derated by 0.15 ns per pF .
2. Tested at initial design and after major design changes.
3. Typical derating: $5 \mathrm{~mA} / \mathrm{MHz}$ increase in ICCOP.
4. $\mathrm{VCC}=4.5 \mathrm{~V}$ and 5.5 V .

Specifications HM-65642-8/HM-65642-9
A.C. Electrical Specifications $\quad \mathrm{VCC}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=\mathrm{HM}-65642-8-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ HM-65642-9 $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

PARAMETER			DESCRIPTION		MIN	MAX	UNITS	TEST CONDITIONS
READ CYCLE								
(1)	TAVAX	tRC	Read Cycle Time		150		ns	(Note 1, 4)
(2)	TAVQV	tAA	Address Access Time			150	ns	(Note 1, 4)
(3)	TE1LQV	tCE1	Chip Enable Access Time	$\overline{\mathrm{E}}$		150	ns	(Note 1, 4)
(4)	TE2HQV	tCE2	Chip Enable Access Time	E2		150	ns	(Note 1, 4)
(5)	TGLQV	tOE	Output Enable Access Time			70	ns	(Note 1, 4)
(6)	TE1LQX	tLZ1	Chip Enable Valid to Output On	E1	10		ns	(Note 2, 4)
(7)	TE2HQX	tLZ2	Chip Enable Valid to Output On	E2	10		ns	(Note 2, 4)
	TGLQX	tOLZ	Output Enable Valid to Output On		5		ns	(Note 2, 4)
(9)	TE1HQZ	thZ1	Chip Enable Not Valid to Output Off	E1		50	ns	(Note 2, 4)
	TE2LQZ	tHZ2	Chip Enable Not Valid to Output Off	E2		60	ns	(Note 2, 4)
(11)	TGHQZ	tohz	Output Enable Not Valid to Output Off			50	ns	(Note 2, 4)
(12)	TAXQX	tor	Output Hold From Address Change		10		ns	(Note 2, 4)
WRITE CYCLE								

(13)	tavax	twc	Write Cycle Time			150		ns	(Note 1, 4)
(14)	TWLWH	tWP	Write Pulse Width			90		ns	(Note 1, 4)
(15)	TE1LE1H	tCW	Chip Enable to End of Write		E1	90		ns	(Note 1, 4)
(16)	TE2HE2L	tCW	Chip Enable to End of Write		E2	90		ns	(Note 1, 4)
(17)	TAVWL	tAS	Address Setup Time	Late Write		0		ns	(Note 1, 4)
(18)	TAVE1L	tAS	Address Setup Time	Early Write,	E1	0		ns	(Note 1, 4)
(19)	TAVE2H	tAS	Address Setup Time	Early Write,	E2	0		ns	(Note 1, 4)
(20)	TWHAX	tWR	Write Recovery Time	Late Write		10		ns	(Note 1, 4)
(21)	TE1HAX	tWR	Write Recovery Time	Early Write,	E1	10		ns	(Note 1, 4)
(22)	TE2LAX	tWR	Write Recovery Time	Early Write,	E2	10		ns	(Note 1, 4)
(23)	TDVWH	tDW	Data Setup Time	Late Write		60		ns	(Note 1, 4)
(24)	TDVE1H	tDW	Data Setup Time	Early Write,	E1	60		ns	(Note 1, 4)
(25)	TDVE2L	tDW	Data Setup Time	Early Write,	E2	60		ns	(Note 1, 4)
(26)	TWHDX	tDH	Data Hold Time	Late Write		5		ns	(Note 1, 4)
(27)	TE1HDX	tDH	Data Hold Time	Early Write,	E1	10		ns	(Note 1, 4)
(28)	TE2LDX	tDH	Data Hold Time	Early Write,	E2	10		ns	(Note 1, 4)
(29)	TWLQZ	tWHZ	Write Enable Low to Output Off				50	ns	(Note 2, 4)
(30)	TWHQX	tow	Write Enable High to Output On			5		ns	(Note 2, 4)

notes:

1. Input pulse levels: 0 to 3.0 V ; Input rise and fall times: 5 ns max; Input and output timing reference level: 1.5 V ; Output load: 1 TTL gate equivalent and $C L=50 \mathrm{pF}(\mathrm{min})-$ for $C L$ greater than 50 pF , access time is derated by 0.15 ns per pF .
2. Tested at initial design and after major design changes.
3. Typical derating: $5 \mathrm{~mA} / \mathrm{MHz}$ increase in ICCOP.
4. $\mathrm{VCC}=4.5 \mathrm{~V}$ and 5.5 V .

Absolute Maximum Ratings*

```
Supply Voltage
+7.0V
Input, Output or I/O Voltage Applied
GND -0.3 to VCC +0.3V
Storage Temperature
```

\qquad

```GND - \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\) Storage Temperature
``` \(\qquad\)
\(\qquad\)
``` Maximum Package Power Dissipation
``` \(\qquad\)
```

0jc
0ja

```
```\(\theta_{j}\) Gate Count \(45^{\circ} \mathrm{C} / \mathrm{W}\) (CERDIP Package), TBD (LCC Package)
Junction Temperature 10100 Lead Temperature (Soldering, Ten Seconds) \(+150^{\circ} \mathrm{C}\)
```

\qquad

```
CAUTION: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and functional operation of the device at these or at any other conditions above those indicated in the operational sections of this specification is not implied.
```


Operating Conditions

Operating Voltage Range.. +4.5 V to +5.5 V	
Input Voltage High (VIH)	2.2 to VCC +0.3V
Input Voltage Low (VIL) ...-0.3V to +0.8V	
Operating Temperature Range	
HM-65642C-8.	. $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
HM-65642C-9	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

D.C. Electrical Specifications $\mathrm{VCC}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=\mathrm{HM}-65642 \mathrm{C}-8-55^{\circ} \mathrm{C}$ to $+125{ }^{\circ} \mathrm{C}$ $\mathrm{HM}-65642 \mathrm{C}-9-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
ICCSB1	Standby Supply Current (CMOS)	-	400	$\mu \mathrm{~A}$	$\mathrm{E} 2=\mathrm{GND}, \mathrm{VCC}=5.5 \mathrm{~V}$
ICCSB2	Standby Supply Current (TTL)	-	5	mA	$\mathrm{E} 2=0.8 \mathrm{~V}$ or $\overline{\mathrm{E} 1}=2.2 \mathrm{~V}, \mathrm{VCC}=5.5 \mathrm{~V}$
ICCDR	Data Retention Supply Current	-	250	$\mu \mathrm{~A}$	$\mathrm{E} 2=\mathrm{GND}, \mathrm{VCC}=2.0 \mathrm{~V}$
ICCEN	Enabled Supply Current	-	5	mA	$\mathrm{E} 2=2.2 \mathrm{~V}, \overline{\mathrm{E} 1}=0.8 \mathrm{~V}, \mathrm{VCC}=5.5 \mathrm{~V}$, $\mathrm{IIO}=0$
ICCOP	Operating Supply Current (Note 3)	-	20	mA	$\mathrm{f}=1 \mathrm{MHz}, \overline{\mathrm{E} 1}=0.8 \mathrm{~V}, \mathrm{E} 2=2.2 \mathrm{~V}$, $\mathrm{VCC}=5.5 \mathrm{~V}, ~ I I O=0$
II	Input Leakage Current	-2.0	+2.0	$\mu \mathrm{~A}$	$\mathrm{VIN}=\mathrm{VCC}$ or GND, VCC $=5.5 \mathrm{~V}$
IIOZ	Input/Output Leakage Current	-2.0	+2.0	$\mu \mathrm{~A}$	$\mathrm{E} 2=\mathrm{GND}, \mathrm{VIO}=\mathrm{VCC}$ or GND, $\mathrm{VCC}=5.5 \mathrm{~V}$
VCCDR	Data Retention Supply Voltage	2.0	-	V	
VOH1	Output High Voltage	2.4	-	V	$\mathrm{IOH}=-1.0 \mathrm{~mA}, \mathrm{VCC}=4.5 \mathrm{~V}$
VOH2	Output Voltage High (Note 2)	$\mathrm{VCC}-0.4$	-	V	$\mathrm{IOH}=-100 \mu \mathrm{~A}, \mathrm{VCC}=4.5 \mathrm{~V}$
VOL	Output Low Voltage	-	0.4	V	$\mathrm{IOL}=4.0 \mathrm{~mA}, \mathrm{VCC}=4.5 \mathrm{~V}$

Capacitance

SYMBOL	PARAMETER	MAX	UNITS	TEST CONDITIONS
CI	Input Capacitance (Note 2)	10	pF	$\mathrm{f}=1 \mathrm{MHz}$, VIN $=$ VCC or GND
CIO	Input/Output Capacitance (Note 2)	12	pF	$\mathrm{f}=1 \mathrm{MHz}$, VIN $=$ VCC or GND

NOTES:

1. Input pulse levels: 0 to 3.0 V ; Input rise and fall times: 5 ns (max); Input and output timing reference level: 1.5 V ; Output load: 1 TTL gate equivalent and $C L=50 \mathrm{pF}(\mathrm{min})$ - for CL greater than 50 pF , access time is derated by 0.15 ns per pF .
2. Tested at initial design and after major design changes.
3. Typical derating: $5 \mathrm{~mA} / \mathrm{MHz}$ increase in ICCOP.
4. $\mathrm{VCC}=4.5 \mathrm{~V}$ and 5.5 V .
A.C. Electrical Specifications $\mathrm{VCC}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=\mathrm{HM}-65642 \mathrm{C}-8-55^{\circ} \mathrm{C}$ to $+125{ }^{\circ} \mathrm{C}$

HM-65642C-9 $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

PARAMETER		DESCRIPTION			MIN	MAX	UNITS	TEST CONDITIONS
READ CYCLE								
(1) TAVAX	tRC	Read Cycle Time			200		ns	(Note 1, 4)
(2) TAVQV	tAA	Address Access Time				200	ns	(Note 1, 4)
(3) TE1LQV	tCE1	Chip Enable Access Time		E1		200	ns	(Note 1, 4)
(4) TE2HQV	tCE2	Chip Enable Access Time		E2		200	ns	(Note 1, 4)
(5) TGLQV	tOE	Output Enable Access Time				70	ns	(Note 1, 4)
(6) TE1LQX	tLZ1	Chip Enable Valid to Output On		$\overline{E 1}$	10		ns	(Note 2, 4)
(7) TE2HQX	tLZ2	Chip Enable Valid to Output On		E2	10		ns	(Note 2, 4)
(8) TGLQX	tOLZ	Output Enable Valid to Output On			5		ns	(Note 2, 4)
(9) TE1HQZ	tHZ1	Chip Enable Not Valid to Output Off		$\overline{\mathrm{E} 1}$		70	ns	(Note 2, 4)
(10) TE2LQZ	tHZ2	Chip Enable Not Valid to Output Off		E2		70	ns	(Note 2, 4)
(11) TGHQZ	tOHZ	Output Enable Not Valid to Output Off				60	ns	(Note 2, 4)
(12) TAXQX	tOH	Output Hold From Address Change			10		ns	(Note 2, 4)
WRITE CYCLE								
(13) TAVAX	tWC	Write Cycle Time			200		ns	(Note 1, 4)
(14) TWLWH	tWP	Write Pulse Width			120		ns	(Note 1, 4)
(15) TE1LE1H	tCW	Chip Enable to End of Write		$\overline{\mathrm{E} 1}$	120		ns	(Note 1, 4)
(16) TE2HE2L	tCW	Chip Enable to End of Write		E2	120		ns	(Note 1, 4)
(17) TAVWL	tAS	Address Setup Time	Late Write		0		ns	(Note 1, 4)
(18) TAVE1L	tAS	Address Setup Time	Early Write,	$\overline{\mathrm{E} 1}$	0		ns	(Note 1, 4)
(19) TAVE2H	tAS	Address Setup Time	Early Write,	E2	0		ns	(Note 1, 4)
(20) TWHAX	tWR	Write Recovery Time	Late Write		10		ns	(Note 1, 4)
(21) TE1HAX	tWR	Write Recovery Time	Early Write,	$\overline{\mathrm{E} 1}$	10		ns	(Note 1, 4)
(22) TE2LAX	tWR	Write Recovery Time	Early Write,	E2	10		ns	(Note 1, 4)
(23) TDVWH	tDW	Data Setup Time	Late Write		80		ns	(Note 1, 4)
(24) TDVE1H	tDW	Data Setup Time	Early Write,	$\overline{\mathrm{E} 1}$	80		ns	(Note 1, 4)
(25) TDVE2L	tDW	Data Setup Time	Early Write,	E2	80		ns	(Note 1, 4)
(26) TWHDX	tDH	Data Hold Time	Late Write		5		ns	(Note 1, 4)
(27) TE1HDX	tDH	Data Hold Time	Early Write,	$\overline{\mathrm{EF}}$	10		ns	(Note 1, 4)
(28) TE2LDX	tDH	Data Hold Time	Early Write,	E2	10		ns	(Note 1, 4)
(29) TWLQZ	tWHZ	Write Enable Low to Output Off				70	ns	(Note 2, 4)
(30) . TWHQX	tOW	Write Enable High to Output On			5		ns	(Note 2, 4)

NOTES:

1. Input pulse levels: 0 to 3.0 V ; Input rise and fall times: 5 ns max; Input and output timing reference level: 1.5 V ; Output load: 1 TTL gate equivalent and $\mathrm{CL}=50 \mathrm{pF}(\mathrm{min})-$ for CL greater than 50 pF , access time is derated by 0.15 ns per pF .
2. Tested at initial design and after major design changes.
3. Typical derating: $5 \mathrm{~mA} / \mathrm{MHz}$ increase in ICCOP.
4. $\mathrm{VCC}=4.5 \mathrm{~V}$ and 5.5 V .

Low Voltage Data Retention

Harris CMOS RAMs are designed with battery backup in mind. Data retention voltage and supply current are guaranteed over the operating temperature range. The following rules ensure data retention:

1. The RAM must be kept disabled during data retention. This is accomplished by holding the E2 pin between -0.3V and GND.
2. During power-up and power-down transitions, E2 must be held between -0.3 V and 10% of VCC.
3. The RAM can begin operating one TAVAX after VCC reaches the minimum operating voltage of 4.5 V

Read Cycles

READ CYCLE I: $\overline{\mathbf{W}}$, E2 HIGH; $\overline{\mathbf{G}}, \overline{\mathrm{E}} 1$ LOW

READ CYCLE II: \bar{W} HIGH

Write Cycles

WRITE CYCLE I: LATE WRITE

WRITE CYCLE II: EARLY WRITE - CONTROLLED by E1

WRITE CYCLE III: EARLY WRITE - CONTROLLED BY E2

Features

- Low Power Standby \qquad .4mW Maximum
- Low Power Operation...280mW/MHz Maximum
- Data Retention \qquad ut
- TTL Compatible In/Out
- Three State Outputs
- Fast Access Time
.350ns Maximum
- Wide Operating Temperature Ranges
- HM-6564-5 $.0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
- HM-6564-9... -400C to +850C
- HM-6564-2/-8 $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
- On Chip Address Registers
- Organizable $8 \mathrm{~K} \times 8$ or 16K $\times 4$
- 40 Pin DIP Pinout - 2.000" x 0.900"

Description

The HM-6564 is a 64 K bit CMOS RAM. It consists of $16 \mathrm{HM}-65044 \mathrm{~K} \times 1 \mathrm{CMOS}$ RAMs, in leadless carriers, mounted on a ceramic substrate. The HM-6564 is configured as an extra wide, standard length 40 pin DIP. The memory appears to the system as an array of $164 \mathrm{~K} \times 1$ static RAMs. The array is organized as two 8 K by 4 blocks of RAM sharing only the address bus. The data inputs, data outputs, chip enables and write enables are seperate for each block of RAM. This allows the user to organize the HM-6564 RAM as either an 8 K by 8 or a 16 K by 4 array.
This 64 K memory provides a unique blend of low power CMOS semiconductor technology and advanced packaging techniques. The HM-6564 is intended for use in any application where a large amount of RAM is needed, and where power consumption and board space are prime concerns. The guaranteed low voltage data retention characteristics allow easy implementation of non-volatile read/write memory by using very small batteries mounted directly on the memory circuit board. Example applications include digital avionic instrumentation, remote data acquisition, and portable or hand held digital communications devices.

Pinout
TOP VIEW

*GND ${ }^{1}$	\checkmark	40	$\square \mathrm{vcc}$
$04{ }^{-1}$		39	Q0
04.3		38	صDO
$05-4$		37	ص01
05 5		36	ص11
AO \square^{6}		35	Al1
AI 7		34	A10
A2 \square^{8}		33	$\square \mathrm{A} 9$
E3 \square^{9}		32	『 $\overline{\text { E }}$
*W2 10	HM5-6564	31	$\square \bar{W}^{\text {W }}$
W2 11		30	W1*
E4 12		29	E2
A6 \square^{13}		28	A5
A7 14		27	$\square \mathrm{A} 4$
A8 ${ }^{15}$		26	- ${ }^{\text {a }}$
D6 - 16		25	D2
Q6 17		24	Q2
07.18		23	$\square 03$
Q7-19		22	$\square 0^{1}$
VCC 20	N	21	$\square \mathrm{GND}{ }^{}$

*NOTES:
Pins 20 and 40 (VCC) are internally connected. Similarly pins 1 and 21 (Ground) are connected. The user is advised to connect all four VCC pins and Ground pins to his board busses. This will improve power distribution across the array and will enhance decoupling.

Pin 10 is internally connected to pin 11 , and pin 30 is connected to pin 31.

Functional Diagram

CAUTION: These devices are sensitive to electrostatic discharge. Proper I.C. handling procedures should be followed.

Organization Guide

To Organize 8K x 8:

Connect: \bar{E}_{1} with \bar{E}_{3}
E2 with E4
$\bar{W} 1$ with $\bar{W} 2$

$($ Pins $9+32)$
$($ Pins $12+29)$
$($ Pins $11+31)$

To Organize 16K x 4:
Connect: Q0 with Q4
D0 with D4
Q1 with Q5
D1 with D5
D2 with D6
Q2 with Q6
D3 with D7 Q3 with Q7
Optional $\overline{\mathrm{W}} 1$ may be common with $\overline{\mathrm{W}} 2$

Concerns for Proper Operation of Chip Enables:

The transition between blocks of RAM requires a change in the chip enable being used. When operating in the $8 \mathrm{~K} \times 8$
mode, use the chip enables as if there were only two, $\overline{\mathrm{E}} 1$ and $\bar{E} 2$. In the $16 \mathrm{~K} \times 4$ mode, all chip enables must be treated separately. Transitions between chip enables must be treated with the same timing constraints that apply to any one chip enable. All chip enables must be high at least one chip enable high time (TEHEL) before any chip enable can fall. More than one chip enable low simultaneously, for devices whose outputs are tied common either internally or externally, is an illegal input condition and must be avoided.

Printed Circuit Board Mounting:

The leadless chip carrier packages used in the HM-6564 have conductive lids. These lids are electrically floating, not connected to VCC or GND. The designer should be aware of the possiblity that the carriers on the bottom side could short conductors below if pressed completely down against the surface of the circuit board. The pins on the package are designed with a standoff feature to help prevent the leadless carriers from touching the circuit board surface.

Board Size Tradeoffs

Printed circuit board real estate is a costly commodity. Actual board costs depend on layout tolerances, density, complexity, number of layers, choice of board material, and other factors.

The following table compares board space for 16 standard DIP 4K RAMs to the HM-6564 RAM array. Both fine line, close tolerance layout and standard "easy" layout board sizes are shown in the comparison.

64K ARRAY OR 16 4K RAMs ON A PC BOARD vs. THE HM-6564

PACKAGE	CIRCUIT SUBSTRATE	SIZE
18 Pin DIP	Standard Two Sided PCB	12 to 15 square inch
18 Pin DIP	Fine Line or Multilayer PCB	9 to 11 square inch
18 Pin Leadless Carrier	Multilayer Alumina Substrate	3 to 5 square inch
HM-6564	Two Sided Mounting Multilayer Alumina Substrate	2 square inch

The cost of semiconductor circuits decline with time. If actual costs were included, they would be out of date in a very short time. We urge you to contact your local Harris office of sales representative for accurate pricing allowing cost tradeoff analysis. In your cost analysis, also consider
the advantages of a lighter, smaller overall package for your system. Consider how much more valuable your system will be when the memory array size is decreased to about $1 / 6$ of normal size.

Specifications HM-6564-8

Absolute Maximum Ratings*

Operating Range

Operating Voltage Range
+4.5 V to +5.5 V
Operating Temperature Range
HM-6564-8
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
D.C. Electrical Specifications $\quad V C C=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=\mathrm{HM}-6564-8 \quad-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
ICCSB	Standby Supply Current	-	800	$\mu \mathrm{A}$	$10=0, \mathrm{VI}=\mathrm{VCC}$ or GND
ICCOP1	Operating Supply Current ($8 \mathrm{~K} \times 8$) (Note 3)	-	56	mA	$\overline{\mathrm{E}}=1 \mathrm{MHz}, \mathrm{IO}=0, \mathrm{VI}=\mathrm{VCC}$ or GND
ICCOP2	Operating Supply Current (16K x 4) (Notes 2, 3)	-	28	mA	$\overline{\mathrm{E}}=1 \mathrm{MHz}, \mathrm{IO}=0, \mathrm{VI}=\mathrm{VCC}$ or GND
ICCDR	Data Retention Supply Current	-	400	$\mu \mathrm{A}$	$1 \mathrm{O}=0, \mathrm{VCC}=2.0, \mathrm{VI}=\mathrm{VCC}$ or GND
VCCDR	Data Retention Supply Voltage	2.0	-	V	
IIA	Address Input Leakage	-20	+20	$\mu \mathrm{A}$	$\mathrm{VI}=\mathrm{VCC}$ or GND
IID1	Data Input Leakage ($8 \mathrm{~K} \times 8$)	-3	+3	$\mu \mathrm{A}$	$\mathrm{VI}=\mathrm{VCC}$ or GND
IID2	Data Input Leakage (16K x 4)) (Note 2)	-5	+5	$\mu \mathrm{A}$	$\mathrm{VI}=\mathrm{VCC}$ or GND
IIE1	Enable Input Leakage ($8 \mathrm{~K} \times 8$)	-10	+10	$\mu \mathrm{A}$	$\mathrm{VI}=\mathrm{VCC}$ or GND
IIE2	$\begin{aligned} & \text { Enable Input Leakage (} 16 \mathrm{~K} \times 4 \text {) } \\ & \text { (Note 2) } \end{aligned}$	-5	+5	$\mu \mathrm{A}$	$\mathrm{VI}=\mathrm{VCC}$ or GND
IIW	Write Enable Input Leakage (Each)	-10	+10	$\mu \mathrm{A}$	$\mathrm{VI}=\mathrm{VCC}$ or GND
IOZ1	Output Leakage (8K $\times 8$)	-5	+5	$\mu \mathrm{A}$	$\mathrm{VO}=\mathrm{VCC}$ or GND
IOZ2	Output Leakage (16K $\times 4$) (Note 2)	-10	+10	$\mu \mathrm{A}$	$\mathrm{VO}=\mathrm{VCC}$ or GND
VIL	Input Low Voltage	-0.3	0.8	V	
VIH	Input High Voltage	VCC-2.0	VCC+0.3	V	
VOL	Output Low Voltage	-	0.4	V	$10=2.0 \mathrm{~mA}$
VOH 1	Output High Voltage	2.4	-	V	$10=-1.0 \mathrm{~mA}$
VOH2	Output High Voltage (Note 2)	VCC-0.4	-	V	$10=-100 \mu \mathrm{~A}$
CIA	Address Input Capacitance (Note 2)	-	200	pF	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{VI}=\mathrm{VCC}$ or GND
CID1	Data Input Capacitance ($8 \mathrm{~K} \times 8$) (Note 2)	-	50	pF	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{VI}=\mathrm{VCC}$ or GND
CID2	Data Input Capacitance (16K x 4) (Note 2)	-	100	pF	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{VI}=\mathrm{VCC}$ or GND
CIE1	Enable Input Capacitance ($8 \mathrm{~K} \times 8$) (Note 2)	-	160	pF	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{VI}=\mathrm{VCC}$ or GND
CIE2	Enable Input Capacitance (16K x 4) (Note 2)	-	80	pF	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{VI}=\mathrm{VCC}$ or GND
CIW	Write Enable Input Capacitance (Each) (Note 2)	-	100	pF	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{VI}=\mathrm{VCC}$ or GND
CO1	Output Capacitance ($8 \mathrm{~K} \times 8$) (Note 2)	-	50	pF	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{VO}=\mathrm{VCC}$ or GND
CO 2	Output Capacitance (16K x 4) (Note 2)	-	100	pF	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{VO}=\mathrm{VCC}$ or GND

NOTES: 1. Input pulse levels: 0 to 3.0 V ; Input rise and fall times: 5 ns max; Input and output timing reference level: 1.5 V ; Output load: 1 TTL gate equivalent and $C L=50 \mathrm{pF}(\mathrm{Min})$ - for CL greater than 50 pF , access time is derated by 0.15 ns per pF .
2. Tested at initial design and after major design changes.
3. ICCOP is proportional to operating frequency.
4. $\mathrm{VCC}=4.5 \mathrm{~V}$ and 5.5 V

Absolute Maximum Ratings*

Operating Conditions

Operating Voltage Range \qquad +4.5 V to +5.5 V Operating Temperature Range	
HM-6564-9	$0^{\circ} \mathrm{C}$ to +85

D.C. Electrical Specifications $\quad \mathrm{VCC}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=\mathrm{HM}-6564-9-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
ICCSB	Standby Supply Current	-	800	$\mu \mathrm{A}$	$1 \mathrm{O}=0, \mathrm{VI}=\mathrm{VCC}$ or GND
ICCOP1	Operating Supply Current ($8 \mathrm{~K} \times 8$) (Note 3)	-	56	mA	$\overline{\mathrm{E}}=1 \mathrm{MHz}, 1 \mathrm{O}=0, \mathrm{VI}=\mathrm{VCC}$ or GND
ICCOP2	Operating Supply Current (16K x 4) (Notes 2, 3)	-	28	mA	$\overline{\mathrm{E}}=1 \mathrm{MHz}, \mathrm{IO}=0, \mathrm{VI}=\mathrm{VCC}$ or GND
ICCDR	Data Retention Supply Current	-	400	$\mu \mathrm{A}$	$\mathrm{IO}=0, \mathrm{VCC}=2.0, \mathrm{VI}=\mathrm{VCC}$ or GND
VCCDR	Data Retention Supply Voltage	2.0	-	V	
IIA	Address Input Leakage	-20	+20	$\mu \mathrm{A}$	$\mathrm{VI}=\mathrm{VCC}$ or GND
IID1	Data Input Leakage ($8 \mathrm{~K} \times 8$)	-3	+3	$\mu \mathrm{A}$	$\mathrm{VI}=\mathrm{VCC}$ or GND
IID2	Data Input Leakage (16K x 4)) (Note 2)	-5	+5	$\mu \mathrm{A}$	$\mathrm{VI}=\mathrm{VCC}$ or GND
IIE1	Enable Input Leakage (8K $\times 8$)	-10	+10	$\mu \mathrm{A}$	$\mathrm{VI}=\mathrm{VCC}$ or GND
IIE2	Enable Input Leakage ($16 \mathrm{~K} \times 4$) (Note 2)	-5	+5	$\mu \mathrm{A}$	$\mathrm{VI}=\mathrm{VCC}$ or GND
IIW	Write Enable Input Leakage (Each)	-10	+10	$\mu \mathrm{A}$	$\mathrm{VI}=\mathrm{VCC}$ or GND
IOZ1	Output Leakage (8K $\times 8$)	-5	+5	$\mu \mathrm{A}$	$\mathrm{VO}=\mathrm{VCC}$ or GND
IOZ2	Output Leakage (16K \times 4) (Note 2)	-10	+10	$\mu \mathrm{A}$	$\mathrm{VO}=\mathrm{VCC}$ or GND
VIL	Input Low Voltage	-0.3	0.8	V	
VIH	Input High Voltage	VCC-2.0	VCC +0.3	V	
VOL	Output Low Voltage	-	0.4	V	$10=2.0 \mathrm{~mA}$
VOH1	Output High Voltage	2.4	-	V	$10=-1.0 \mathrm{~mA}$
VOH2	Output High Voltage (Note 2)	VCC-0.4	-	V	$10=-100 \mu \mathrm{~A}$
CIA	Address Input Capacitance (Note 2)	-	200	pF	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{VI}=\mathrm{VCC}$ or GND
CID1	Data Input Capacitance ($8 \mathrm{~K} \times 8$) (Note 2)	-	50	pF	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{VI}=\mathrm{VCC}$ or GND
CID2	Data Input Capacitance (16K x 4) (Note 2)	-	100	pF	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{VI}=\mathrm{VCC}$ or GND
CIE1	Enable Input Capacitance (8K x 8) (Note 2)	-	160	pF	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{VI}=\mathrm{VCC}$ or GND
CIE2	Enable Input Capacitance (16K x 4) (Note 2)	-	80	pF	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{VI}=\mathrm{VCC}$ or GND
CIW	Write Enable Input Capacitance (Each) (Note 2)	-	100	pF	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{VI}=\mathrm{VCC}$ or GND
CO1	Output Capacitance ($8 \mathrm{~K} \times 8$) (Note 2)	-	50	pF	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{VO}=\mathrm{VCC}$ or GND
CO2	Output Capacitance (16K x 4) (Note 2)	-	100	pF	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{VO}=\mathrm{VCC}$ or GND

NOTES: 1. Input pulse levels: 0 to 3.0 V ; Input rise and fall times: 5 ns max; Input and output timing reference level: 1.5 V ; Output load: 1 TTL gate equivalent and $C L=50 \mathrm{pF}(\mathrm{Min})$ - for CL greater than 50 pF , access time is derated by 0.15 ns per pF .
2. Tested at initial design and after major design changes.
3. ICCOP is proportional to operating frequency.
4. $\mathrm{VCC}=4.5 \mathrm{~V}$ and 5.5 V
A.C. Electrical Specifications (Note 1) $\mathrm{VCC}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=$

HM-6564-8 $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ HM-6564-9 $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

	SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITION
(1)	TELQV	Chip Enable Access	-	350	ns	(Notes 1, 4)
(2)	TAVQV	Address Access (TAVQV = TELQV + TAVEL)	-	400	ns	(Notes 1, 4)
(3)	TELQX	Output Enable	5	-	ns	(Notes 2, 4)
(4)	TEHQZ	Output Disable	-	120	ns	(Notes 2, 4)
(5)	TELEL	Read or Write Cycle	480	-	ns	(Notes 1, 4)
(6)	TELEH	Chip Enable Low	350	-	ns	(Notes 1, 4)
(7)	TEHEL	Chip Enable High	130	-	ns	(Notes 1, 4)
(8)	TAVEL	Address Setup	50	-	ns	(Notes 1, 4)
(9)	TELAX	Address Hold	50	-	ns	(Notes 1, 4)
(10)	TWLWH	Write Enable Low	150	-	ns	(Notes 1, 4)
(11)	TWLEH	Write Enable Setup	250	-	ns	(Notes 1, 4)
(12)	TWLEL	Early Write Setup (Write Mode)	10	-	ns	(Notes 1, 4)
(13)	TELWH	Early Write Hold (Write Mode)	100	-	ns	(Notes 1, 4)
(14)	TDVWL	Data Setup	10	-	ns	(Notes 1, 4)
(15)	TDVEL	Early Write Data Setup	10	-	ns	(Notes 1, 4)
(16)	TWLDX	Data Hold	100	-	ns	(Notes 1, 4)
(17)	TELDX	Early Write Data Hold	100	-	ns	(Notes 1, 4)

NOTES: 1. Input pulse levels: 0 to 3.0 V ; Input rise and fall times: 5 ns max; Input and output timing reference level: 1.5 V ; Output load: 1 TTL gate equivalent and $\mathrm{CL}=50 \mathrm{pF}(\mathrm{Min})$ - for $C L$ greater than 50 pF , access time is derated by 0.15 ns per pF .
2. Tested at initial design and after major design changes.
3. ICCOP is proportional to frequency.
4. $\mathrm{VCC}=4.5 \mathrm{~V}$ and 5.5 V

Absolute Maximum Ratings*

Operating Conditions

Operating Voltage Range... +4.5 V to +5.5 V
Operating Temperature Range
HM-6564-5... $0{ }^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
D.C. Electrical Specifications $\quad V C C=5 \mathrm{~V} \pm 10 \% ; T_{A}=H M-6564-50^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST
CONDITIONS					

ICCSB	Standby Supply Current	-	5.6	mA	$10=0, \mathrm{VI}=\mathrm{VCC}$ or GND
ICCOP1	Operating Supply Current ($8 \mathrm{~K} \times 8$) (Note 3)	-	60	mA	$\overline{\mathrm{E}}=1 \mathrm{MHz}, \mathrm{IO}=0, \mathrm{VI}=\mathrm{VCC}$ or GND
ICCOP2	Operating Supply Current (16K x 4) (Notes 2, 3)	-	30	mA	$\overline{\mathrm{E}}=1 \mathrm{MHz}, \mathrm{IO}=0, \mathrm{VI}=\mathrm{VCC}$ or GND
ICCDR	Data Retention Supply Current	-	3.2	mA	$\mathrm{VCC}=2.0,1 \mathrm{O}=0, \mathrm{VI}=\mathrm{VCC}$ or GND
VCCDR	Data Retention Supply Voltage	2.0	-	V	
IIA	Address Input Leakage	-20	+20	$\mu \mathrm{A}$	$\mathrm{VI}=\mathrm{VCC}$ or GND
IID1	Data Input Leakage (8K x 8)	-3	+3	$\mu \mathrm{A}$	VI $=$ VCC or GND
IID2	Data Input Leakage (16K $\times 4$)) (Note 2)	-5	+5	$\mu \mathrm{A}$	$\mathrm{VI}=\mathrm{VCC}$ or GND
IIE1	Enable Input Leakage ($8 \mathrm{~K} \times 8$)	-10	+10	$\mu \mathrm{A}$	$\mathrm{VI}=\mathrm{VCC}$ or GND
IIE2	Enable Input Leakage ($16 \mathrm{~K} \times 4$) (Note 2)	-5	+5	$\mu \mathrm{A}$	$\mathrm{VI}=\mathrm{VCC}$ or GND
IIW	Write Enable Input Leakage (Each)	-10	+10	$\mu \mathrm{A}$	$\mathrm{VI}=\mathrm{VCC}$ or GND
IOZ1	Output Leakage ($8 \mathrm{~K} \times 8$)	-5	+5	$\mu \mathrm{A}$	$\mathrm{VO}=\mathrm{VCC}$ or GND
IOZ2	Output Leakage (16K \times 4) (Note 2)	-10	+10	$\mu \mathrm{A}$	$\mathrm{VO}=\mathrm{VCC}$ or GND
VIL	Input Low Voltage	-0.3	0.8	V	
VIH	Input High Voltage	VCC-2.0	VCC+0.3	V	
VOL	Output Low Voltage	-	0.4	V	$10=1.6 \mathrm{~mA}$
VOH1	Output High Voltage	2.4	-	V	$10=-0.4 \mathrm{~mA}$
VOH2	Output High Voltage (Note 2)	VCC-0.4	-	V	$10=-100 \mu \mathrm{~A}$
CIA	Address Input Capacitance (Note 2)	-	200	pF	$f=1 \mathrm{MHz}, \mathrm{VI}=\mathrm{VCC}$ or GND
CID1	Data Input Capacitance ($8 \mathrm{~K} \times 8$) (Note 2)	-	50	pF	$f=1 \mathrm{MHz}, \mathrm{VI}=$ VCC or GND
CID2	Data Input Capacitance (16K x 4) (Note 2)	-	100	pF	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{VI}=\mathrm{VCC}$ or GND
CIE1	Enable Input Capacitance (8K $\times 8$) (Note 2)	-	160	pF	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{VI}=\mathrm{VCC}$ or GND
CIE2	Enable Input Capacitance (16K x 4) (Note 2)	-	80	pF	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{VI}=\mathrm{VCC}$ or GND
CIW	Write Enable Input Capacitance (Each) (Note 2)	-	100	pF	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{VI}=\mathrm{VCC}$ or GND
CO1	Output Capacitance ($8 \mathrm{~K} \times 8$) (Note 2)	-	50	pF	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{VO}=\mathrm{VCC}$ or GND
CO2	Output Capacitance (16K x 4) (Note 2)	-	100	pF	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{VO}=\mathrm{VCC}$ or GND

NOTES: 1. Input pulse levels: 0 to 3.0 V ; Input rise and fall times: 5 ns max; Input and output timing reference level: 1.5 V ; Output load: 1 TTL gate equivalent and $\mathrm{CL}=50 \mathrm{pF}(\mathrm{Min})-$ for CL greater than 50 pF , access time is derated by 0.15 ns per pF .
2. Tested at initial design and after major design changes.
3. ICCOP is proportional to operating frequency.
4. $\mathrm{VCC}=4.5 \mathrm{~V}$ and 5.5 V
A.C. Electrical Specifications (Note 1) $\quad \mathrm{VCC}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=\mathrm{HM}-6564-5-0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

	SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITION
(1)	TELQV	Chip Enable Access	-	450	ns	(Notes 1, 4)
(2)	TAVQV	Address Access (TAVQV = TELQV + TAVEL)	-	500	ns	(Notes 1, 4)
(3)	TELQX	Output Enable	5	-	ns	(Notes 2, 4)
(4)	TEHQZ	Output Disable	-	150	ns	(Notes 2, 4)
(5)	TELEL	Read or Write Cycle	600	-	ns	(Notes 1, 4)
(6)	TELEH	Chip Enable Low	450	-	ns	(Notes 1, 4)
(7)	TEHEL	Chip Enable High	150	-	ns	(Notes 1, 4)
(8)	TAVEL	Address Setup	50	-	ns	(Notes 1, 4)
(9)	TELAX	Address Hold	50	-	ns	(Notes 1, 4)
(10)	TWLWH	Write Enable Low	150	-	ns	(Notes 1, 4)
(11)	TWLEH	Write Enable Setup	250	-	ns	(Notes 1, 4)
(12)	TWLEL	Early Write Setup (Write Mode)	10	-	ns	(Notes 1, 4)
(13)	TELWH	Early Write Hold (Write Mode)	100	-	ns	(Notes 1, 4)
(14)	TDVWL	Data Setup	10	-	ns	(Notes 1, 4)
(15)	TDVEL	Early Write Data Setup	10	-	ns	(Notes 1, 4)
(16)	TWLDX	Data Hold	100	-	ns	(Notes 1, 4)
(17)	TELDX	Early Write Data Hold	100	-	ns	(Notes 1, 4)

NOTES: 1. Input pulse levels: 0 to 3.0 V ; Input rise and fall times: $5 n \mathrm{~m}$ max; Input and output timing reference level: 1.5 V ; Output load: 1 TTL gate equivalent and $C L=50 \mathrm{pF}(\mathrm{Min})-$ for $C L$ greater than 50 pF , access time is derated by 0.15 ns per pF .
2. Tested at initial design and after major design changes.
3. ICCOP is proportional to operating frequency.
4. $\mathrm{VCC}=4.5 \mathrm{~V}$ and 5.5 V

Read Cycle

TRUTH TABLE

TIME REFERENCE	$\overline{\mathbf{E}}$	INPUTS \bar{W}	\mathbf{A}	OUTPUT \mathbf{Q}	FUNCTION
-1	H	X	X	Z	Memory Disabled
0	Z	H	V	Z	Cycle Begins, Addresses are Latched
1	L	H	X	X	Output Enabled
2	L	H	X	V	Output Valid
3	H	H	X	V	Read Accomplished
4	H	X	X	Z	Prepare for Next Cycle (Same as -1)
5	L	H	V	Z	Cycle Ends, Next Cycle Begins (Same as 0)

The address information is latched in the on chip registers on the falling edge of $\bar{E}(T=0)$. Minimum address set up and hold time requirements must be met. After the required hold time, the addresses may change state without affecting device operation. During time ($\mathrm{T}=1$) the
output becomes enabled but data is not valid until during time ($T=2$). \bar{W} must remain high until after time ($T=2$). After the output data has been read, $\overline{\mathrm{E}}$ may return high ($T=3$). This will disable the output buffer and ready the RAM for the next memory cycle ($T=4$).

Early Write Cycle

TRUTH TABLE

TIME REFERENCE	INPUTS				$\begin{gathered} \text { OUTPUT } \\ \text { Q } \end{gathered}$	FUNCTION
	\bar{E}	\bar{W}	A	D		
-1	H	X	X	X	z	Memory Disabled
0	2	L	V	V	Z	Cycle Begins, Addresses are Latched
1	L	X	X	X	Z	Write in Progress Internally
2	r	X	X	X	z	Write Complete
3	H	X	X	X	Z	Prepare for Next Cycle (Same as -1)
4	7	L	V	V	Z	Cycle Ends, Next Cycle Begins (Same as 0)

The early write cycle is the only cycle where the output is guaranteed not to become active. On the falling edge of \bar{E} ($\mathrm{T}=0$), the addresses, the write signal, and the data input are latched in on chip registers. The logic value of \bar{W} at the time \bar{E} falls determines the state of the output buffer for the cycle. Since \bar{W} is low when \bar{E} falls, the output buffer is latched into the high impedance state and will remain in
that state until $\overline{\mathrm{E}}$ returns high ($\mathrm{T}=2$). For this cycle, the data input is latched by \bar{E} going low; therefore data set up and hold times should be referenced to $\overline{\mathrm{E}}$. When $\overline{\mathrm{E}}(\mathrm{T}=2)$ returns to the high state the output buffer disables and all signals are unlatched. The device is now ready for the next cycle.

Late Write Cycle

TIME REFERENCE	INPUTS				OUTPUT	FUNCTION
	\bar{E}	\bar{W}	A	D	Q	
-1	H	X	X	X	Z	Memory Disabled
0	7	H	V	X	Z	Cycle Begins, Addresses are Latched
1	L	2	X	V	X	Write Begins, Data is Latched
2	L	H	x	X	X	Write in Progress Internally
3	f	H	x	X	X	Write Completed
4	H	X	X	X	Z	Prepare for Next Cycle (Same as -1)
5	7	H	V	X	Z	Cycle Ends, Next Cycle Begins (Same as 0)

The late write cycle is a cross between the early write cycle and the read-modify-write cycle. Recall that in the early write the output is guaranteed to remain high impedance, and in the read-modify-write the output is guaranteed valid at access time. The late write is between
these two cases. With this cycle the output may become active, and may become valid data, or may remain active but undefined. Valid data is written into the RAM if data set up, data hold, write setup and write pulse widths are observed.

NOTES: In the above descriptions the numbers in parenthesis ($T=n$) refers to the respective timing diagrams. The numbers are located on the time reference line below each diagram. The timing diagrams shown are only examples and are not the only valid method of operation.

HM-6504 (One of Sixteen)

0 HARRIS HM-8808/08A

8K x 8 Asynchronous CMOS Static RAM Module

Abstract

Features - Full CMOS Design - 6 Transistor Memory Cell - Low Standby Current. .250/900 $\mu \mathrm{A}$ - Low Operating Current .70 mA - Fast Address Access Time 100/120/150ns - Low Voltage Data Retention 2.0V - CMOS/TTL Compatible Inputs/Outputs - JEDEC Approved Pinout - Equal Cycle and Access Time - No Clocks or Strobes Required - Single 5 Volt Supply - Gated Inputs - No Pull-Up or Pull-Down Resistors Required - Wide Temperature Range $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ - Easy Microprocessor Interfacing - Dual Chip Enable Control (HM-8808A)

\section*{Description}

The HM-8808 and HM-8808A are $8 \mathrm{~K} \times 8$ Asynchronous CMOS Static RAM Modules, based on multi-layered, co-fired, dual-in-line substrates. Mounted on each substrate are four HM-65162 $2 \mathrm{~K} \times 8$ CMOS SRAMS, a high speed CMOS decoder, and a ceramic decoupling capacitor, all packaged in leadless chip carriers. The capacitor is added to reduce noise and the need for external decoupling. The HM-65162 RAMs used in these modules are full CMOS devices, utilizing arrays of six transistor (6T) memory cells for the most stable and lowest possible standby supply current over the full military temperature range. In addition to this, the high stability of the 6T cell provides excellent protection against soft errors due to noise and alpha particles. This stability also improves the radiation tolerance of the RAM over that of four transistor devices. The HM-8808 and HM-8808A have gated inputs to simplify system design for optimum standby supply current. The pinouts of these modules conform to the JEDEC 28 -pin 8 -bit wide standard, which is compatible with a variety of industry standard memories. The HM-8808A is pin-compatible with many standard $8 \mathrm{~K} \times 8$ RAMs, adding the advantage of high performance over the full military temperature range. Also, because of the second chip enable (E2), the HM-8808A simplifies the design of low-power battery back-up memory systems.

Functional Diagram

PIN DESCRIPTION

PIN	DESCRIPTION
A	Address Input
DQ	Data Input/Output
\bar{E}	Chip Enable (HM-8808)
$\bar{E} 1$	Chip Enable (HM-8808A)
$E 2$	Chip Enable (HM-8808A)
\bar{W}	Write Enable
\bar{G}	Output Enable

SELECTION GUIDE

PART NUMBER	TELQV	ICCSB
HM-8808S/HM-8808AS	100 ns	$250 \mu \mathrm{~A}$
$\mathrm{HM}-8808 \mathrm{~B} / \mathrm{HM}-8808 \mathrm{AB}$	120 ss	$250 \mu \mathrm{~A}$
$\mathrm{HM}-8808 / \mathrm{HM}-8808 \mathrm{~A}$	150 ns	$900 \mu \mathrm{~A}$

Absolute Maximum Ratings

Operating Conditions

Operating Supply Voltage \qquad .4.5V to 5.5 V
Operating Temperature HM-8808S/HM-8808AS-8 HM-8808S/HM-8808AS-9 \qquad $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
D.C. Electrical Specifications VCC $=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=\mathrm{HM}-8808 \mathrm{~S} / \mathrm{HM}-8808 \mathrm{AS}-8-55^{\circ} \mathrm{C}$ to $+125{ }^{\circ} \mathrm{C}$ HM-8808S/HM-8808AS-9 $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
ICCSB1	Standby Supply Current (CMOS)	-	250	$\mu \mathrm{A}$	$\begin{aligned} & 1 \mathrm{O}=0, \overline{\mathrm{E}}=\mathrm{VCC}-0.3 \mathrm{~V} \text { (Note 7), } \\ & \mathrm{E} 2=0.3 \mathrm{~V} \text { (Note 8) } \end{aligned}$
ICCSB	Standby Supply Current (TTL)	-	35	mA	$\begin{aligned} & \mathrm{IO}=0, \overline{\mathrm{E}}=\mathrm{VIH}(\text { Note } 7), \\ & \mathrm{E} 2=\text { VIL }(\text { Note } 8) \end{aligned}$
ICCEN	Enabled Supply Current	-	60	mA	$\begin{aligned} & 10=0, \bar{E}=\text { VIL }(\text { Note } 7), \\ & E 2=\text { VIH (Note 8) } \end{aligned}$
ICCOP	Operating Supply Current	-	70	mA	$\begin{aligned} & \mathrm{IO}=0, \mathrm{f}=1 \mathrm{MHz}, \overrightarrow{\mathrm{E}}=\mathrm{VIL}(\text { Note } 7), \\ & \mathrm{E} 2=\mathrm{VIH}(\text { Notes } 8,2) \end{aligned}$
ICCDR	Data Retention Supply Current	-	125	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{VCC}=2.0 \mathrm{~V}, \overline{\mathrm{E}}=\mathrm{VCC}-0.3 \mathrm{~V} \text { (Note } 7 \text {), } \\ & \mathrm{E} 2=0.3 \mathrm{~V} \text { (Note 8) } \end{aligned}$
11	Input Leakage Current	-1.0	+1.0	$\mu \mathrm{A}$	$\mathrm{VI}=\mathrm{GND}$ or VCC
IIOZ	Input/Output Leakage Current	-1.0	+1.0	$\mu \mathrm{A}$	VIO $=$ GND or VCC
VCCDR	Data Retention Supply Voltage	2.0	-	V	$\begin{aligned} & \text { VCC=2.0V, } \overline{\mathrm{E}}=\mathrm{VCC}(\text { Note } 7), \\ & \text { E2=GND (Note 8) } \end{aligned}$
VOL	Output Low Voltage	-	0.4	V	$10=4.0 \mathrm{~mA}$
VOH1	Output High Voltage	2.4	-	V	$10=-1.0 \mathrm{~mA}$
VOH2	Output High Voltage	VCC-0.4	-	V	$10=-100 \mu \mathrm{~A}($ Note 3)
VIL	Input Low Voltage	-0.3	0.8	V	
VIH	Input High Voltage	2.4	VCC+0.3	V	

Capacitance (Note 3)

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
CE	Enable Input Capacitance	-	15	pF	VE $=\mathrm{VCC}$ or GND, $\mathrm{f}=1 \mathrm{MHz}$ (Note 3)
CW	Write Enable Capacitance	-	48	pF	$\mathrm{VW}=\mathrm{VCC}$ or GND, $\mathrm{f}=1 \mathrm{MHz}$ (Note 3)
CI	Input Capacitance: $\overline{\mathrm{G}}, \mathrm{A}$	-	35	pF	VI=VCC or GND, $\mathrm{f}=1 \mathrm{MHz}$ (Note 3)
CIO	Input/Output Capacitance	-	43	pF	VIO $=\mathrm{VCC}$ or $\mathrm{GND}, \mathrm{f}=1 \mathrm{MHz}$ (Note 3)

NOTES: 1. All devices tested at worst case temperature and supply voltage limits.
2. Typical derating $=5 \mathrm{~mA} / \mathrm{MHz}$ increase in $\mathrm{ICCOP}, \mathrm{VI}=\mathrm{VCC}$ or GND .
3. Guaranteed but not tested.
4. Input pulse levels: VIL $=0.0 \mathrm{~V}, \mathrm{VIH}=3.0 \mathrm{~V}$ Input rise and fall times: 5 ns (max.) $\mathrm{VCC}=4.5 \mathrm{~V}$ and 5.5 V . Input and output timing reference levels: 1.5 V Output load: 1 TTL gate equivalent and 50 pF (min , including scope and jig).
5. "EL" (enable input valid) equivalent to EL on the HM-8808. EIL and E2H on the HM-8808A
6. "EH" (enable input invalid) equivalent to:

EH on the HM-8808. EIH or E2L on the HM-8808A
7. Relevant to the HM-8808 only.
8. Relevant to the HM-8808A only.

Specifications HM-8808S/HM-8808AS
A.C. Electrical Specifications $\mathrm{VCC}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=\mathrm{HM}-8808 \mathrm{~S} / \mathrm{HM}-8808 \mathrm{AS}-8-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ HM-8808S/HM-8808AS-9 $-40^{\circ} \mathrm{C}$ to ${ }^{+85^{\circ} \mathrm{C}}$

	SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
	READ CYCLE					
(1)	TAVAX	Read Cycle Time	100	-	ns	
(2)	TAVQV	Address Access Time	-	100	ns	
(3)	TELQV	Chip Enable Access Time	-	100	ns	(Note 5)
(4)	TGLQV	Output Enable Access Time	-	50	ns	
(5)	TELQX	Chip Enable Output Enable Time	20	-	ns	(Notes 3, 5)
(6)	TGLQX	Output Enable Output Enable Time	5	-	ns	(Note 3)
(7)	TAXQX	Address Output Hold Time	5	-	ns	
(8)	TEHQZ	Chip Disable Output Disable Time	0	60	ns	(Notes 3, 6)
(9)	TGHQZ	Output Disable Time	0	40	ns	(Note 3)
	WRITE CYCLE					
(10)	tavax	Write Cycle Time	100	-	ns	
(11)	TELWH	Chip Enable to End of Write	70	-	ns	(Note 5)
(12)	TWLWH	Write Enable Pulse Width	40	-	ns	
(13)	TELEH	Enable Pulse Width (Early Write)	40	-	ns	(Notes 3, 5, 6)
(14)	TAVWL	Address Setup Time (Late Write)	15	-	ns	
(15)	TAVEL	Address Setup Time (Early Write)	0	-	ns	(Notes 3, 5)
(16)	twhax	Address Hold Time (Late Write)	10	-	ns	
(17)	TEHAX	Address Hold Time (Early Write)	30	-	ns	(Note 3)
(18)	TDVWH	Data Setup Time (Late Write)	30	-	ns	
(19)	TDVEH	Data Setup Time (Early Write)	30	-	ns	(Note 6)
(20)	TWHDX	Data Hold Time (Late Write)	10	-	ns	
(21)	TEHDX	Data Hold Time (Early Write)	30	-	ns	(Notes 3, 6)
(22)	TWLEH	Write Enable Pulse Setup Time	40	-	ns	(Note 6)
(23)	TWLQZ	Write Enable Output Disable Time	-	40	ns.	(Note 3)
(24)	TWHQX	Write Disable Output Enable Time	0	-	ns	(Note 3)

NOTES: 1. All devices tested at worst case temperature and supply voltage limits.
2. Typical derating $=5 \mathrm{~mA} / \mathrm{MHz}$ increase in $I C C O P, \mathrm{VI}=\mathrm{VCC}$ or GND.
3. Guaranteed but not tested.
4. Input pulse levels: VIL $=0.0 \mathrm{~V}, \mathrm{VIH}=3.0 \mathrm{~V}$

Input rise and fall times: 5 ns (max.) VCC $=4.5 \mathrm{~V}$ and 5.5 V .
Input and output timing reference levels: 1.5 V
Output load: 1 TTL gate equivalent and 50 pF (min , including scope and jig).
5. "EL" (enable input valid) equivalent to: EL on the HM-8808. EIL and E2H on the HM-8808A
6. "EH" (enable input invalid) equivalent to: EH on the HM-8808. EIH or E2L on the HM-8808A.
7. Relevant to the HM-8808 only.
8. Relevant to the HM-8808A only.

Absolute Maximum Ratings

Operating Conditions

Operating Supply Voltage \qquad 4.5 V to 5.5 V Operating Temperature \qquad $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	

D.C. Electrical Specifications $V C C=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=\begin{array}{cc}\mathrm{HM}-8808 \mathrm{~B} / \mathrm{HM}-8808 \mathrm{AB}-8 & -55^{\circ} \mathrm{C} \text { to }+125{ }^{\circ} \mathrm{C} \\ \mathrm{HM}-8808 \mathrm{~B} / \mathrm{HM}-8808 \mathrm{AB}-9 & -40^{\circ} \mathrm{C} \text { to }+85{ }^{\circ} \mathrm{C}\end{array}$

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
ICCSB1	Standby Supply Current (CMOS)	-	250	$\mu \mathrm{A}$	$\begin{aligned} & 10=0, \overline{\mathrm{E}}=\mathrm{VCC}-0.3 \mathrm{~V}(\text { Note } 7), \\ & \mathrm{E} 2=0.3 \mathrm{~V}(\text { Note } 8) \end{aligned}$
ICCSB	Standby Supply Current (TTL)	-	35	mA	$\begin{aligned} & \text { IO }=0, \overline{\mathrm{E}}=\mathrm{VIH}(\text { Note } 7), \\ & \mathrm{E} 2=\mathrm{VIL}(\text { Note } 8) \end{aligned}$
ICCEN	Enabled Supply Current	-	60	mA	$10=0, \overline{\mathrm{E}}=\mathrm{VIL}($ Note 7), E2=VIH (Note 8)
ICCOP	Operating Supply Current	-	70	mA	$10=0, \mathrm{f}=1 \mathrm{MHz}, \overline{\mathrm{E}}=\mathrm{VIL}(\text { Note } 7),$ $E 2=\text { VIH (Notes 8, 2) }$
ICCDR	Data Retention Supply Current	-	125	$\mu \mathrm{A}$	$\begin{aligned} & \text { VCC }=2.0 \mathrm{~V}, \overline{\mathrm{E}}=\mathrm{VCC}-0.3 \mathrm{~V} \text { (Note 7), } \\ & \mathrm{E} 2=0.3 \mathrm{~V} \text { (Note 8) } \end{aligned}$
11	Input Leakage Current	-1.0	+1.0	$\mu \mathrm{A}$	$\mathrm{VI}=\mathrm{GND}$ or VCC
IIOZ	Input/Output Leakage Current	-1.0	+1.0	$\mu \mathrm{A}$	VIO $=$ GND or VCC
VCCDR	Data Retention Supply Voltage	2.0	-	V	$\begin{aligned} & \text { VCC=2.0V, } \bar{E}=\text { VCC (Note 7), } \\ & \text { E2=GND (Note 8) } \end{aligned}$
VOL	Output Low Voltage	-	0.4	V	$10=4.0 \mathrm{~mA}$
VOH1	Output High Voltage	2.4	-	v	$10=-1.0 \mathrm{~mA}$
VOH2	Output High Voltage	vcc-0.4	-	V	$10=-100 \mu \mathrm{~A}$ (Note 3)
VIL	Input Low Voltage	-0.3	0.8	V	
VIH	Input High Voltage	2.4	VCC +0.3	V	

Capacitance (Note 3)

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
CE	Enable Input Capacitance	-	15	pF	VE=VCC or GND, $\mathrm{f}=1 \mathrm{MHz}$ (Note 3)
CW	Write Enable Capacitance	-	48	pF	VW=VCC or GND, $\mathrm{f}=1 \mathrm{MHz}$ (Note 3)
Cl	Input Capacitance: $\overline{\mathrm{G}}, \mathrm{A}$	-	35	pF	$\mathrm{VI}=\mathrm{VCC}$ or $\mathrm{GND}, \mathrm{f}=1 \mathrm{MHz}$ (Note 3)
CIO	Input/Output Capacitance	-	43	pF	VIO $=\mathrm{VCC}$ or $\mathrm{GND}, \mathrm{f}=1 \mathrm{MHz}$ (Note 3)

NOTES: 1. All devices tested at worst case temperature and supply voltage limits
2. Typical derating $=5 \mathrm{~mA} / \mathrm{MHz}$ increase in $\mathrm{ICCOP}, \mathrm{VI}=\mathrm{VCC}$ or GND.
3. Guaranteed but not tested.
4. Input pulse levels: $\mathrm{VIL}=0.0 \mathrm{~V}, \mathrm{VIH}=3.0 \mathrm{~V}$

Input rise and fall times: 5 ns (max.) $\mathrm{VCC}=4.5 \mathrm{~V}$ and 5.5 V .
input and output timing reference levels: 1.5 V
Output load: 1 TTL gate equivalent and 50 pF (min , including scope and jig).
5. "EL" (enable input valid) equivalent to: EL on the HM-8808. EIL and E2H on the HM-8808A.
6. "EH" (enable input invalid) equivalent to: EH on the HM-8808. EIH or E2L on the HM-8808A.
7. Relevant to the HM-8808 only.
8. Relevant to the HM-8808A only.
A.C. Electrical Specifications VCC $=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=\mathrm{HM}-8808 \mathrm{~B} / \mathrm{HM}-8808 \mathrm{AB}-8-55^{\circ} \mathrm{C}$ to $+125{ }^{\circ} \mathrm{C}$ HM-8808B/HM-8808AB-9 -40 ${ }^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

	SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
	READ CYCLE					
(1)	TAVAX	Read Cycle Time	120	-	ns	
(2)	TAVQV	Address Access Time	-	120	ns	
(3)	TELQV	Chip Enable Access Time	-	120	ns	(Note 5)
(4)	TGLQV	Output Enable Access Time	-	65	ns	
(5)	TELQX	Chip Enable Output Enable Time	20	-	ns	(Notes 3, 5)
(6)	TGLQX	Output Enable Output Enable Time	5	-	ns	(Note 3)
(7)	TAXQX	Address Output Hold Time	5	-	ns	
(8)	TEHQZ	Chip Disable Output Disable Time	0	70	ns	(Notes 3, 6)
(9)	TGHQZ	Output Disable Time	0	40	ns	(Note 3)
	WRITE CYCLE					
(10)	TAVAX	Write Cycle Time	120	-	ns	
(11)	TELWH	Chip Enable to End of Write	80	-	ns	(Note 5)
(12)	TWLWH	Write Enable Pulse Width	55	-	ns	
(13)	TELEH	Enable Pulse Width (Early Write)	60	-	ns	(Notes 3, 5, 6)
(14)	TAVWL	Address Setup Time (Late Write)	15	-	ns	
(15)	TAVEL	Address Setup Time (Early Write)	0	-	ns	(Notes 3, 5)
(16)	TWHAX	Address Hold Time (Late Write)	10	-	ns	
(17)	TEHAX	Address Hold Time (Early Write)	30	-	ns	(Note 3)
(18)	TDVWH	Data Setup Time (Late Write)	30	-	ns	
(19)	TDVEH	Data Setup Time (Early Write)	30	-	ns	(Note 6)
(20)	TWHDX	Data Hold Time (Late Write)	15	-	ns	
(21)	TEHDX	Data Hold Time (Early Write)	30	-	ns	(Notes 3, 6)
(22)	TWLEH	Write Enable Pulse Setup Time	55	-	ns	(Note 6)
(23)	TWLQZ	Write Enable Output Disable Time	-	40	ns	(Note 3)
(24)	TWHQX	Write Disable Output Enable Time	0	-	ns	(Note 3)

NOTES: 1. All devices tested at worst case temperature and supply voltage limits.
2. Typical derating $=5 \mathrm{~mA} / \mathrm{MHz}$ increase in $I C C O P, V I=V C C$ or GND.
3. Guaranteed but not tested.
4. Input pulse levels: VIL $=0.0 \mathrm{~V}, \mathrm{VIH}=3.0 \mathrm{~V}$

Input rise and fall times: 5 ns (max.) VCC $=4.5 \mathrm{~V}$ and 5.5 V .
Input and output timing reference levels: 1.5 V
Output load: 1 TTL gate equivalent and 50 pF (min , including scope and jig).
5. "EL" (enable input valid) equivalent to EL on the HM-8808. EIL and E2H on the HM-8808A.
6. "EH" (enable input invalid) equivalent to: EH on the HM-8808. EIH or E2L on the HM-8808A.
7. Relevant to the HM-8808 only.
8. Relevant to the HM-8808A only.

Absolute Maximum Ratings

Operating Conditions

D.C. Electrical Specifications VCC $=5 \mathrm{~V} \pm 10 \% ; T_{A}=H M-8808 / H M-8808 A-8-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ HM-8808/HM-8808A-9 $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
ICCSB1	Standby Supply Current (CMOS)	-	900	$\mu \mathrm{A}$	$\begin{aligned} & 10=0, \overline{\mathrm{E}}=\mathrm{VCC}-0.3 \mathrm{~V} \text { (Note } 7 \text {), } \\ & \mathrm{E} 2=0.3 \mathrm{~V} \text { (Note } 8 \text {) } \end{aligned}$
ICCSB	Standby Supply Current (TTL)	-	35	mA	$\begin{aligned} & 1 \mathrm{O}=0, \overline{\mathrm{E}}=\mathrm{VIH}(\text { Note } 7), \\ & \mathrm{E} 2=\mathrm{VIL}(\text { Note 8) } \end{aligned}$
ICCEN	Enabled Supply Current	-	70	mA	$\begin{aligned} & I \mathrm{O}=0, \overline{\mathrm{E}}=\mathrm{VIL}(\text { Note } 7), \\ & \mathrm{E} 2=\mathrm{VIH} \text { (Note 8) } \end{aligned}$
ICCOP	Operating Supply Current	-	70	mA	$\begin{aligned} & 1 \mathrm{O}=0, \mathrm{f}=1 \mathrm{MHz}, \overline{\mathrm{E}}=\mathrm{VIL} \text { (} \text { Note } 7 \text {), } \\ & \mathrm{E} 2=\mathrm{VIH} \text { (Notes } 8,2 \text {) } \end{aligned}$
ICCDR	Data Retention Supply Current	-	400	$\mu \mathrm{A}$	$\begin{aligned} & \text { VCC }=2.0 \mathrm{~V}, \overline{\mathrm{E}}=\mathrm{VCC}-0.3 \mathrm{~V} \text { (Note } 7), \\ & \mathrm{E} 2=0.3 \mathrm{~V}(\text { Note } 8) \end{aligned}$
11	Input Leakage Current	-5.0	+5.0	$\mu \mathrm{A}$	VI = GND or VCC
l1OZ	Input/Output Leakage Current	-5.0	+5.0	$\mu \mathrm{A}$	$\mathrm{VIO}=\mathrm{GND}$ or VCC
VCCDR	Data Retention Supply Voltage	2.0	-	V	VCC=2.0V, $\bar{E}=V C C$ (Note 7), E2=GND (Note 8)
VOL	Output Low Voltage	-	0.4	V	$10=4.0 \mathrm{~mA}$
VOH1	Output High Voltage	2.4	-	V	$1 \mathrm{O}=-1.0 \mathrm{~mA}$
VOH2	Output High Voltage	VCC-0.4	-	V	$10=-100 \mu \mathrm{~A}($ Note 3$)$
VIL	Input Low Voltage	-0.3	0.8	V	
VIH	Input High Voltage	2.4	VCC+0.3	V	

Capacitance (Note 3)

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
CE	Enable Input Capacitance	-	15	pF	VE=VCC or GND, $\mathrm{f}=1 \mathrm{MHz}(\mathrm{Note} 3)$
CW	Write Enable Capacitance	-	48	pF	$\mathrm{VW}=\mathrm{VCC}$ or GND, $\mathrm{f}=1 \mathrm{MHz}(\mathrm{Note} 3)$
CI	Input Capacitance: $\overline{\mathrm{G}}, \mathrm{A}$	-	35	pF	VI=VCC or GND, $\mathrm{f}=1 \mathrm{MHz}(\mathrm{Note} \mathrm{3)}$
CIO	Input/Output Capacitance	-	43	pF	VIO $=\mathrm{VCC}$ or GND, $\mathrm{f}=1 \mathrm{MHz}(\mathrm{Note} \mathrm{3)}$

NOTES: 1. All devices tested at worst case temperature and supply voltage limits.
2. Typical derating $=5 \mathrm{~mA} / \mathrm{MHz}$ increase in $I C C O P, \mathrm{VI}=\mathrm{VCC}$ or GND.
3. Guaranteed but not tested.
4. Input pulse levels: $\mathrm{VIL}=0.0 \mathrm{~V}, \mathrm{VIH}=3.0 \mathrm{~V}$

Input rise and fall times: 5 ns (max.) $\mathrm{VCC}=4.5 \mathrm{~V}$ and 5.5 V .
Input and output timing reference levels: 1.5 V
Output load: 1 TTL gate equivalent and 50 pF (min , including scope and jig)
5. "EL" (enable input valid) equivalent to: EL on the HM-8808. EIL and E2H on the HM-8808A.
6. "EH" (enable input invalid) equivalent to: EH on the HM-8808. EIH or E2L on the HM-8808A.
7. Relevant to the HM-8808 only.
8. Relevant to the HM-8808A only.
A.C. Electrical Specifications $V C C=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=\mathrm{HM}-8808 / \mathrm{HM}-8808 \mathrm{~A}-8-55{ }^{\circ} \mathrm{C}$ to $+125{ }^{\circ} \mathrm{C}$ HM-8808/HM-8808A-9
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

NOTES: 1. All devices tested at worst case temperature and supply voltage limits.
2. Typical derating $=5 \mathrm{~mA} / \mathrm{MHz}$ increase in $\mathrm{ICCOP}, \mathrm{VI}=\mathrm{VCC}$ or GND.
3. Guaranteed but not tested.
4. Input pulse levels: VIL $=0.0 \mathrm{~V}, \mathrm{VIH}=3.0 \mathrm{~V}$

Input rise and fall times: 5 ns (max.) $\mathrm{VCC}=4.5 \mathrm{~V}$ and 5.5 V .
Input and output timing reference levels: 1.5 V
Output load: 1 TTL gate equivalent and 50 pF (min , including scope and jig).
5. "EL" (enable input valid) equivalent to: EL on the HM-8808. EIL and E2H on the HM-8808A.
6. "EH" (enable input invalid) equivalent to: EH on the HM-8808. EIH or E2L on the HM-8808A.
7. Relevant to the HM-8808 only.
8. Relevant to the HM-8808A only.

HM-8808/ HM-8808A

Truth Table

MODE		HM-8808	HM-8808A		HM-8808/8808A	
		$\overline{\mathbf{E 1}}$	E2	$\overline{\mathbf{W}}$	$\overline{\text { G }}$	
Standby (CMOS)	VCC	X	GND	X	X	
Standby (TTL)	VIH	VIH	VIL	X	X	
Enabled (High Z)	VIL	VIL	VIH	VIH	VIH	
Write	VIL	VIL	VIH	VIL	X	
Read	VIL	VIL	VIH	VIH	VIL	

READ CYCLE II (Note 1)

NOTES: 1. In a read cycle, \bar{W} is held high.
2. In read cycle I, the module is kept continuously enabled. $\overline{\mathrm{G}}$, and $\overline{\mathrm{E}}$ are held at VIL.

HM-8808 Timing Diagrams: Write Cycles
WRITE CYCLE I: (Notes 1, 3, 4)

WRITE CYCLE II: (Notes 2, 4)

NOTES:

1. In Write Cycle I, the module is first enabled and then data is strobed into the RAM with a pulse on Write Enable (\bar{W}). Because \bar{W} becomes valid after the part is enabled, this is sometimes referred to as a "Late Write" cycle.
2. In Write Cycle II, Address (A) and Write Enable (\bar{W}) are first set up, and then data is strobed into the RAM with a pulse on \bar{E}. Because \bar{W} is valid before the module is enabled, this is sometimes referred to as an "Early Write" cycle.
3. Output Enable (\bar{G}) is normally held stable throughout the entire cycle. If $\overline{\mathrm{G}}$ is held high, then the outputs (Q) remain in the high impedance state. If \bar{G} is held low, then it may be necessary to lengthen the cycle to prevent bus contention. This would occur if TWLQZ and TDVWH overlapped.

4 Data Inputs (D) and Data Outputs (Q) are connected internally at the DQ pins.

HM-8808A Timing Diagrams: Read Cycles

READ CYCLE I (Note 1, 2)

READ CYCLE II (Note 1)

NOTES:

1. In a read cycle, \bar{W} is held high.
2. In read cycle I, the module is kept continuously enabled: \bar{G} and $\bar{E} 1$ are held at VIL. E2 is held at VIH.
3. The $A C$ timing of $E 2$ is the same as that of $\bar{E} 1$. Only the polarity is reversed. While $\bar{E} 1$ is active low, $E 2$ is active high. Therefore AC parameters that refer to the falling edge of enable, such as TELQV, can be applied to the rising edge of E2, and parameters that refer to the rising edge of enable, such as TEHQZ, can be applied to the falling edge of E2.

HM-8808A Timing Diagrams: Write Cycles

WRITE CYCLE I: Controlled by $\overline{\mathbf{W}}$ (Notes 1, 3, 4)

WRITE CYCLE II: Controlled by $\overline{\mathrm{E} 1}$ (Notes 2, 4)

WRITE CYCLE III: Controlled by E2 (Notes 2, 4)
(10)

NOTES:

1. In Write Cycle I, the module is first enabled and then data is strobed into the RAM with a pulse on Write Enable (\bar{W}). Because \bar{W} becomes valid after the part is enabled, this is sometimes referred to as a "Late Write" cycle.
2. In Write Cycle II and III, Address (A) and Write Enable (\bar{W}) are first set up, and then data is strobed into the RAM with a pulse on E1 or E2. Because \bar{W} is valid before the module is enabled, this is sometimes referred to as an "Early Write" cycle.
3. Output Enable $(\overline{\mathrm{G}})$ is normally held stable throughout the entire cycle. If $\overline{\mathrm{G}}$ is held high, then the outputs (Q) remain in the high impedance state. If \bar{G} is held low, then it may be necessary to lengthen the cycle to prevent bus contention. This would occur if TWLQZ and TDVWH overlapped.
4 Data Inputs (D) and Data Outputs (Q) are connected internally at the DQ pins.
4. The $A C$ timing of $E 2$ is the same as that of \bar{E}. Only the polarity is reversed. While $\overline{E 1}$ is active low, $E 2$ is active high. Therefore $A C$ parameters that refer to the falling edge of enable, such as TELQV, can be applied to the rising edge of E2, and parameters that refer to the rising edge of enable, such as TEHQZ, can be applied to the falling edge of E2.

Low Voltage Data Retention

Harris CMOS RAMs are designed with battery backup in mind. Data retention voltage and supply current are guaranteed over temperature. The following rules insure data retention:

1. The module must be kept disabled during data retention. The Chip Enable (\bar{E}) on the HM-8808 must be held between VCC-0.3V and VCC+0.3V. Chip Enable 2 (E2) on the HM-8808A must be held between -0.3 V and GND +0.3V.
2. During power-up and power-down transitions, \bar{E} (HM-8808) must be held between 90% of VCC and VCC +0.3 V ; E2 (HM-8808A) must be held above -0.3 V and below 10% of VCC.
3. The RAM module can begin operation one TAVAX after VCC reaches the minimum operating voltage (4.5V).

HM-8808A Data Retention Timing

Features

- Low Standby Supply Current $800 \mu \mathrm{~A}$
- Low Operating Supply Current 400 mA
- Fast Access Time 70 ns
- Low Data Retention Supply Voltage 2.0 V
- Wide Operating Temperature Range $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
- CMOS/TTL Compatible Inputs/Outputs
- JeDEC Approved Pinout
- Full CMOS - Six Transistor RAM Cells- No Clocks or Strobes Required- Single 5V Power Supply- Standard DIP Size.$0.6 " \times 1.5$ "
- Easy Microprocessor Interfacing
- Gated Inputs

Description

The HM-8816H is a high speed, asynchronous CMOS static RAM module, based on a multi-layer, co-fired, dual-in-line ceramic substrate and eight HM-65262 $16 \mathrm{~K} \times 1$ asynchronous CMOS static RAMs packaged in leadless chip carriers. The $\mathrm{HM}-8816 \mathrm{H}$ uses on-substrate decoupling capacitors packaged in leadless chip carriers to reduce electrical noise and improve reliability. The pinout of the HM-8816H conforms to the JEDEC 8-bit wide, 28 pin RAM standard, which allows the system designer to design sockets that will accomodate a variety of industry standard RAMs and EPROMs. The HM-8816H also has gated inputs to simplify system design for optimum standby supply current.
The HM-65262 RAMs used in this module are full CMOS devices, utilizing arrays of six transistor (6 T) memory cells for the most stable and lowest possible standby supply current over the full military temperature range. In addition to this, the high stability of the 6 T cell provides excellent protection against soft errors due to electrical noise and alpha particles. This stability also improves the radiation tolerance of the RAMs over that of four transistor devices.

TOP VIEW

NC	28
A12 -	27
A7	26
A6 - 4	25
A5	24
A4	23
A3	22
A2	21
${ }^{\text {A } 18}$	20
AO - 10	19
OQO - 11	18
DQ1-12	17
DQ2 - 13	16
GND 14	15

Functional Diagram

TRUTH TABLE

MODE	$\overline{\mathbf{E}}$	$\overline{\text { W }}$
Standby (CMOS)	VCC	X
Standby (TTL)	VIH	X
Read	VIL	VIH
Write	VIL	VIL

PIN DESCRIPTIONS

PIN	FUNCTION
AO-A13	Address Inputs
DQ0-DQ7	Data Input/Outputs
$\overline{\mathrm{E}}$	Chip Enable
\bar{W}	Write Enable
VCC	Power (+5V)
GND	Ground

Absolute Maximum Ratings*

Operating Conditions

Supply Voltage \qquad Operating Temperature Range	4.5 V to 5.5 V
	HM-8816H-8...-550 ${ }^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
	HM-8816H-9..-40 ${ }^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

D.C. Electrical Specifications $V C C=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=\mathrm{HM}-8816 \mathrm{H}-8-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ $\mathrm{HM}-8816 \mathrm{H}-9 \quad-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
ICCSBI	Standby Supply Current (CMOS)	-	800	$\mu \mathrm{A}$	$10=0, \overline{\mathrm{E}}=\mathrm{VCC}-0.3 \mathrm{~V}$
ICCSB	Standby Supply Current (TTL)	-	40	mA	$10=0, \bar{E}=V I H$
ICCEN	Enabled Supply Current	-	400	mA	$10=0, \bar{E}=$ VIL, VIN $=$ VIH or VIL
ICCOP	Operating Supply Current (Note 3)	-	400	mA	$10=0, f=1 \mathrm{MHz}, \overline{\mathrm{E}}=\mathrm{VIL}, \mathrm{VIN}=\mathrm{VCC}$ or GND
ICCDR	Data Retention Supply Current	-	320	$\mu \mathrm{A}$	$\mathrm{VCC}=2.0 \mathrm{~V}, \overrightarrow{\mathrm{E}}=\mathrm{VCC}-0.3 \mathrm{~V}, 1 \mathrm{O}=0$
11	Input Leakage Current	-1	+1	$\mu \mathrm{A}$	VIN $=\mathrm{VCC}$ or GND
IIOZ	1/O Leakage Current	-1	+1	$\mu \mathrm{A}$	VIO = VCC or GND
VCCDR	Data Retention Supply Voltage	2.0	-	V	$\overline{\mathrm{E}}=\mathrm{VCC}$
VOL	Output Voltage Low	-	0.4	V	$1 \mathrm{OL}=8.0 \mathrm{~mA}$
VOH1	Output Voltage High	2.4	-	V	$1 \mathrm{OH}=-4.0 \mathrm{~mA}$
VOH2	Output Voltage High (Note 2)	VCC-0.4	-	V	$1 \mathrm{OH}=100 \mu \mathrm{~A}$
VIL	Input Voltage Low	-0.3	0.8	v	
VIH	Input Voltage High	2.4	vcc +0.3	V	

Capacitance (Note 2)

SYMBOL	PARAMETER	MAX	UNITS	TEST CONDITIONS
CI	Input Capacitance	70	pF	$\mathrm{f}=1 \mathrm{MHz}$, VIN $=$ VCC or GND
CIO	Input/Output Capacitance	25	pF	$\mathrm{f}=1 \mathrm{MHz}$, VIO $=$ VCC or GND

NOTES: 1. Input pulse levels: 0 to 3.0 V ; Input rise and fall times: 5 ns max.; Input and output timing reference level: 1.5 V ; Output Load: 1 TTL gate equivalent and $\mathrm{CL}=50 \mathrm{pF}(\mathrm{min})-$ for CL greater than 50 pF , access time is derated by 0.15 ns per pF.
2. Tested at initial design and after major design changes.
3. Typical derating: $40 \mathrm{~mA} / \mathrm{MHz}$ increase in ICCOP.
4. $\mathrm{VCC}=4.5 \mathrm{~V}$ and 5.5 V .
A.C. Electrical Specifications $\mathrm{VCC}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=\mathrm{HM}-8816 \mathrm{H}-8-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

HM-8816H-9 $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

NO.	SYMBOL	PARAMETER	HM-8816HB		HM-8816H		UNITS	NOTES
			MIN	MAX	MIN	MAX		

READ CYCLE									
(1)	TAVAX	tRC	Read Cycle Time	70		85		ns	1,4
(2)	TAVQV	tAA	Address Access Time		70		85	ns	1,4
(3)	TELQV	tCE	Chip Enable Access Time		70		85	ns	1,4
(4)	TELQX	tLZ	Chip Enable Output Enable Time	5		5		ns	2,4
(5)	TEHQX		Chip Enable Output Hold Time	5		5		ns	2,4
(6)	TAXQX	tOH	Address Output Hold Time	5		5		ns	2,4
(7)	TEHQZ	tHZ	Chip Disable Output Disable Time	0	40	0	40	ns	2,4

WRITE CYCLE

(8)	TAVAX	tWC	Write Cycle Time		70		85		ns	1, 4
(9)	TELWH	tCW	Chip Enable to End of Write	\bar{W} Controlled	65		75		ns	1, 4
(10)	TELEH	tCW	Chip Enable to End of Write	\bar{E} Controlled	65		75		ns	2, 4
(11)	TWLWH	tWP	Write Pulse Width		55		60		ns	1,4
(12)	TAVWL	tAS	Address Setup Time	\bar{W} Controlled	0		0		ns	1, 4
(13)	tavel	tAS	Address Setup Time	$\overline{\mathrm{E}}$ Controlled	0		0		ns	2, 4
(14)	TWHAX	tWR	Write Recovery Time	\bar{W} Controlled	10		10		ns	1,4
(15)	TEHAX	tWR	Write Recovery Time	$\overline{\text { E Controlled }}$	10		10		ns	2, 4
(16)	TDVWH	tDW	Data Setup Time	\bar{W} Controlled	30		35		ns	1,4
(17)	TDVEH	tDW	Data Setup Time	$\overline{\text { E Controlled }}$	30		35		ns	2, 4
(18)	TWHDX	tDH	Data Hold Time	\bar{W} Controlled	5		5		ns	1, 4
(19)	TEHDX	tDH	Data Hold Time	\bar{E} Controlled	10		10		ns	1, 4
(20)	TWLQZ	tWZ	Write Enable Low to Output Off			40		40	ns	2, 4
(21)	TWHQX	tow	Write Enable High to Output On				0		ns	2, 4

NOTES: 1. Input pulse levels: 0 to 3.0 V ; Input rise and fall times: 5 ns max.; Input and output timing reference level: 1.5 V ; Output Load: 1 TTL gate equivalent and $\mathrm{CL}=50 \mathrm{pF}(\mathrm{min})-$ for CL greater than 50 pF , access time is derated by 0.15 ns per pF .
2. Tested at initial design and after major design changes.
3. Typical derating: $40 \mathrm{~mA} / \mathrm{MHz}$ increase in ICCOP.
4. $\mathrm{VCC}=4.5 \mathrm{~V}$ and 5.5 V .

Timing Diagrams, Read Cycles
read cycle 1: Controlled by Ē

NOTE: \bar{W} is held high for entire cycle and D is ignored. Address is stable by the time \bar{E} goes low and remains valid until \bar{E} goes high.

READ CYCLE 2: CONTROLLED BY ADDRESS

Timing Diagrams, Write Cycles
WRITE CYCLE 1 timing: CONTROLLED by \bar{W} (LATE WRITE)
(8)

Timing Diagrams, Write Cycles

WRITE CYCLE 2 TIMING: CONTROLLED BY E (EARLY WRITE)

NOTE: In this mode, \bar{W} rises after \bar{E}. If \bar{W} falls before \bar{E} by a time exceeding TWLQZ (Max) - TELQX (Min), and rises after E by a time exceeding TEHQZ (Max) - TWHQZ (Min), then Q will remain in the high impedance state throughout the cycle.
The address must remain stable whenever $\overline{\mathrm{E}}$ and $\overline{\mathrm{W}}$ are both low.

Features

- Full CMOS SIx Transistor Memory Cell
- Low Standby Supply Current

250~A

- Low Operating Supply Current 15mA
- Fast Address Access Time...................... . . 180ns
- Low Data Retention Supply Voltage 2.0V
- CMOS/TTL Compatible Inputs/Outputs
- JEDEC Approved Pinout
- Equal Cycle and Access Times
- No Clocks or Strobes Required
- Single 5V Power Supply
- Easy Microprocessor Interfacing
- Wide Operating Temperature Ranges:

- Standard DIP Size - $0.6^{\prime \prime} \times 1.4^{\prime \prime}$
Pinout
TOP VIEW

	TOP VIEW	
A14 1	28	VCC
A12 2	27	\bar{W}
A7 3	26	A13
A6 4	25	A8
A5 5	24	A9
A4 6	23	A11
АЗ 7	22	$\overline{\mathrm{G}}$
A2 8	21	A10
A1 9	20	E
AO 10	19	DQ7
DQ0 11	18	$] \mathrm{DQ6}$
DQ1 12	17	DQ5
DQ2 13	16	$\square \mathrm{DQ4}$
GND 14	15	DQ3

Description

The HM-8832 is a $32 \mathrm{~K} \times 8$ Bit Asynchronous CMOS Static RAM Module based on a multi-layered, co-fired, dual-inline ceramic substrate, four HM-65642 CMOS Asynchronous Static RAMs, and an HCT-138 high-speed CMOS decoder, all mounted in ceramic leadless chip carriers. In addition to this, each module is equipped with a ceramic capacitor to minimize power supply noise and reduce the need for external decoupling. Furthermore, this capacitor is sealed in a ceramic leadless carrier for maximum reliability, even in extreme environments. All inputs on the $\mathrm{HM}-8832$ are gated by the $\overline{\mathrm{E}}$ input to simplify system design requirements to obtain the minimum standby and data retention supply current. The pinout of the HM-8832 conforms with the JEDEC standard for eight-bit wide, 28 pin RAMs, which
allows the module to be pin compatible with future generations of high density RAMs and EPROMs.

The HM-65642 RAMs used on the HM-8832 module are full CMOS devices, utilizing arrays of six-transistor (6T) memory cells for the most stable and lowest possible standby and data retention supply current over the full military operating temperature range. In addition to this, the high stability of the 6 T cell provides excellent protection against soft errors due to power supply noise and alpha particles. This stability also improves the radiation tolerance of the module over that of RAMs utilizing four transistor (4T) Mix-MOS memory cells.

Functional Diagram

TRUTH TABLE

MODE	$\overline{\mathbf{E}}$	$\overline{\mathbf{W}}$	$\overline{\mathbf{G}}$
Standby (CMOS)	VCC	X	X
Standby (TTL)	VIH	X	X
Enabled (High Z)	VIL	VIH	VIH
Read	VIL	VIH	VIL
Write	VIL	VIL	X

pin description

PIN	FUNCTION
AO-A14	Address Inputs
DQ0-DQ7	Data Input/Output
$\frac{\mathrm{E}}{\mathrm{G}}$	Chip Enable
$\overline{\mathrm{G}}$	Output Enable
VCC	Write Enable
GND	Power (+5V)
	Ground

Absolute Maximum Ratings

Supply Voltage.	7.0V
Input, Output or I/O Voltage Applied	GND -0.3V to VCC +0.3 V
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Power Dissipation	$83 \mathrm{~mW} / \mathrm{MHz}$
$\theta_{\text {jc }}$	TBD ${ }^{\circ} \mathrm{C} / \mathrm{W}$ (Module Package)
$\theta_{\text {ja }}$	TBDO${ }^{\circ} \mathrm{C} / \mathrm{W}$ (Module Package)
Gate Count	405,230 Gates
Junction Temperature	${ }^{+150}{ }^{\circ} \mathrm{C}$
Lead Temperature (Soldering, Ten Seconds)	$+275{ }^{\circ} \mathrm{C}$

CAUTION: Stresses above those listed in the "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operation section of this specification is not implied.

Operating Conditions

Operating Voltage Range	+4.5 V to +5.5 V
Operating Temperature Ranges:	
HM-8832-9	$.40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
HM-8832-8	$-55^{\circ} \mathrm{C}$ to $+125{ }^{\circ} \mathrm{C}$

D.C. Electrical Specifications (Notes 4) $\quad \mathrm{VCC}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=\mathrm{HM}-8832-9 \quad-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ $\mathrm{T}_{\mathrm{A}}=\mathrm{HM}-8832-8-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
ICCSBI	Standby Supply Current (CMOS)	-	900	$\mu \mathrm{~A}$	$I O=0, \overline{\mathrm{E}}=\mathrm{VCC}-0.3 \mathrm{~V}$
ICCSB	Standby Supply Current (TTL)	-	10	mA	$\mathrm{IO}=0, \overline{\mathrm{E}}=\mathrm{VIH}$
ICCEN	Enable Supply Current	-	10	mA	$\mathrm{IO}=0, \overline{\mathrm{E}}=\mathrm{VIL}$
ICCOP	Operating Supply Current (Note 3)	-	15	mA	$\mathrm{IO}=0, \mathrm{f}=1 \mathrm{MHz}, \overline{\mathrm{E}}=\mathrm{VIL}$, $\mathrm{VI}=\mathrm{VCC} \mathrm{or} \mathrm{GND}$
ICCDR	Data Retention Supply Current	-	750	$\mu \mathrm{~A}$	$\mathrm{VCC}=2.0 \mathrm{~V}, \overline{\mathrm{E}}=\mathrm{VCC}-0.3 \mathrm{~V}$
VCCDR	Data Retention Supply Voltage	2.0	-	V	$\overline{\mathrm{E}}=\mathrm{VCC}$
II	Input Leakage Current	-1.0	+1.0	$\mu \mathrm{~A}$	$\mathrm{VI}=\mathrm{VCC}$ or GND
IIOZ	Input/Output Leakage Current	-1.0	+1.0	$\mu \mathrm{~A}$	$\mathrm{VIO}=\mathrm{VCC}$ or GND
VIL	Input Low Voltage	-0.3	0.8	V	
VIH	Input High Voltage	2.4	$\mathrm{VCC}+0.3$	V	
VOL	Output Low Voltage	-	0.4	V	$\mathrm{IOL}=4.0 \mathrm{~mA}$
VOH1	Output High Voltage	2.4	-	V	$\mathrm{IO}=-1.0 \mathrm{~mA}$
VOH2	Output High Voltage (Note 2)	$\mathrm{VCC}-0.4$	-	V	$\mathrm{IO}=-100 \mu \mathrm{~A}$

Capacitance (Note 2)

SYMBOL	PARAMETER	MAX	UNITS	TEST CONDITIONS
CA	Address Input Capacitance	40	pF	VA $=\mathrm{VCC}$ or $\mathrm{GND}, \mathrm{f}=1 \mathrm{MHz}$
CDQ, CG	Data, Output Enable Capacitance	45	pF	VDQ, VG $=\mathrm{VCC}$ or $\mathrm{GND}, \mathrm{f}=1 \mathrm{MHz}$
CEN	Chip Enable Capacitance	15	pF	VEN $=\mathrm{VCC}$ or $\mathrm{GND}, \mathrm{f}=1 \mathrm{MHz}$
CW	Write Enable Capacitance	60	pF	$\mathrm{VW}=\mathrm{VCC}$ or $\mathrm{GND}, \mathrm{f}=1 \mathrm{MHz}$

NOTES:
 $C L=100 \mathrm{pF}(\mathrm{min})$ including scope and jig - for CL greater than 100 pF , access time is derated by 0.15 ns per pF .
2. Guaranteed but not tested.
3. Typical derating $5 \mathrm{~mA} / \mathrm{MHz}$ increase in ICCOP.
4. All devices tested at worst case temperature and supply voltage limits.

Specifications HM-8832-8/HM-8832-9
A. C. Electrical Specifications (Notes 1, 4) $\quad \mathrm{VCC}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=\mathrm{HM}-8832-9-40^{\circ} \mathrm{C}$ to $+855^{\circ} \mathrm{C}$

$$
T_{A}=H M-8832-8 \quad-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}
$$

PIN NO.	SYMBOL		PARAMETER		MIN	MAX	UNITS	TEST CONDITIONS
READ CYCLE								
(1)	TAVAX	tRC	Read Cycle Time		180	-	ns	
(2)	TAVQV	tAA	Address Access Time		-	180	ns	
(3)	TELQV	tCE	Chip Enable Access Time		-	180	ns	
(4)	TGLQV	tOE	Output Enable Access Time		-	75	ns	
(5)	TELQX	tLZ	Chip Enable Output Enable Time		10	-	ns	(Note 2)
(6)	TGLQX	tOLZ	Output Enable Time		5	-	ns	(Note 2)
(7)	TAXQX	tOH	Address Output Hold Time		10	-	ns	(Note 2)
(8)	TEHQZ	tHZ	Chip Disable Output Disable Time		0	80	ns	(Note 2)
(9)	TGHQZ	tOZ	Output Disable Time		0	55	ns	(Note 2)
WRITE CYCLE								
(10)	TAVAX	tWC	Write Cycle Time		180	-	ns	
(11)	TWLWH	tWP	Write Pulse Width		95	-	ns	
(12)	TELWH	tCW	Chip Enable to End of Write	$\overline{\text { W }}$ Controlled	95	-	ns	
(13)	TELEH	tCW	Chip Enable to End of Write	$\overline{\text { E Controlled }}$	90	-	ns	(Note 2)
(14)	TAVWL	tAS	Address Setup Time	$\overline{\text { W }}$ Controlled	30	-	ns	
(15)	TAVEL	tAS	Address Setup Time	$\overline{\text { E Controlled }}$	30	-	ns	(Note 2)
(16)	TWHAX	tWR	Write Recovery Time	$\overline{\text { W }}$ Controlled	10	-	ns	
(17)	TEHAX	tWR	Write Recovery Time	$\overline{\text { E Controlled }}$	40	-	ns	(Note 2)
(18)	TDVWH	tDW	Data Setup Time	$\overline{\text { W }}$ Controlled	65	-	ns	
(19)	TDVEH	tDW	Data Setup Time	$\overline{\mathrm{E}}$ Controlled	65	-	ns	(Note 2)
(20)	TWHDX	tDH	Data Hold Time	$\overline{\text { W }}$ Controlled	10	-	ns	
(21)	TEHDX	tDH	Data Hold Time	$\overline{\mathrm{E}}$ Controlled	40	-	ns	(Note 2)
(22)	TWLQZ	tWZ	Write Enable Output Disable Time		-	55	ns	(Note 2)
(23)	TWHQX	tow	Write Disable Output Enable Time		5	-	ns	(Note 2)

NOTES:

1. Input pulse levels: 0 to 3.0 V ; Input rise and fall times: 5 ns (max); Input and output timing reference level: 1.5 V ; Output load: 1 TL gate equivalent $\mathrm{CL}=100 \mathrm{pF}(\mathrm{min})$ including scope and jig - for CL greater than 100 pF , access time is derated by 0.15 ns per pF .
2. Guaranteed but not tested.
3. Typical derating $5 \mathrm{~mA} / \mathrm{MHz}$ increase in ICCOP.
4. All devices tested at worst case temperature and supply voltage limits.

Absolute Maximum Ratings

Operating Conditions

Operating Temperature Ranges:	
HM-8832B-9	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
HM-8832B-8	$55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

D.C. Electrical Specifications (Note 4) $\quad \mathrm{VCC}=5 \mathrm{~V} \pm 10 \% ; \begin{array}{ll}T_{A} & =H M-8832 \mathrm{~B}-9 \\ T_{A} & -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & \end{array}$

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
ICCSB]	Standby Supply Current (CMOS) HM-8832B-8 HM-8832B-9		$\begin{aligned} & 250 \\ & 150 \\ & \hline \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 10=0, \bar{E}=V C C-0.3 V \\ & 10=0, \bar{E}=V C C-0.3 V \end{aligned}$
ICCSB	Standby Supply Current (TTL)	-	2	mA	$10=0, \bar{E}=\mathrm{VIH}$
ICCEN	Enable Supply Current	-	10	mA	$10=0, \overline{\mathrm{E}}=\mathrm{VIL}$
ICCOP	Operating Supply Current (Note 3)	-	15	mA	$\begin{aligned} & 10=0, f=1 \mathrm{MHz}, \overline{\mathrm{E}}=\mathrm{VIL}, \\ & \mathrm{VI}=\mathrm{VCC} \text { or } \mathrm{GND} \end{aligned}$
ICCDR	Data Retention Supply Current $\begin{aligned} & \text { HM-8832B-8 } \\ & \text { HM-8832B-9 } \end{aligned}$		$\begin{aligned} & 200 \\ & 125 \end{aligned}$	$\begin{aligned} & \mu A \\ & \mu A \end{aligned}$	$\begin{aligned} & V C C=2.0 \mathrm{~V}, \overline{\mathrm{E}}=\mathrm{VCC}-0.3 \mathrm{~V} \\ & \mathrm{VCC}=2.0 \mathrm{~V}, \bar{E}=\mathrm{VCC}-0.3 \mathrm{~V} \end{aligned}$
VCCDR	Data Retention Supply Voltage	2.0	-	V	$\overline{\mathrm{E}}=\mathrm{VCC}$
11	Input Leakage Current	-1.0	+1.0	$\mu \mathrm{A}$	$\mathrm{VI}=\mathrm{VCC}$ or GND
IIOZ	Input/Output Leakage Current	-1.0	+1.0	$\mu \mathrm{A}$	$\mathrm{VIO}=\mathrm{VCC}$ or GND
VIL	Input Low Voltage	-0.3	0.8	V	
VIH	Input High Voltage	2.4	VCC +0.3	V	
VOL	Output Low Voltage	-	0.4	V	$1 \mathrm{OL}=4.0 \mathrm{~mA}$
VOH1	Output High Voltage	2.4	-	V	$10=-1.0 \mathrm{~mA}$
VOH2	Output High Voltage (Note 2)	VCC-0.4	-	V	$10=-100 \mu \mathrm{~A}$

Capacitance (Note 2)

SYMBOL	PARAMETER	MAX	UNITS	TEST CONDITIONS
CA	Address Input Capacitance	40	pF	VA $=\mathrm{VCC}$ or $\mathrm{GND}, \mathrm{f}=1 \mathrm{MHz}$
CDQ, CG	Data, Output Enable Capacitance	45	pF	$\mathrm{VDQ}, \mathrm{VG}=\mathrm{VCC}$ or $\mathrm{GND}, \mathrm{f}=1 \mathrm{MHz}$
CEN	Chip Enable Capacitance	15	pF	$\mathrm{VEN}=\mathrm{VCC}$ or $\mathrm{GND}, \mathrm{f}=1 \mathrm{MHz}$
CW	Write Enable Capacitance	60	pF	$\mathrm{VW}=\mathrm{VCC}$ or $\mathrm{GND}, \mathrm{f}=1 \mathrm{MHz}$

NOTES:

1. Input pulse levels: 0 to 3.0 V ; Input rise and fall times: 5 ns (max); Input and output timing reference level: 1.5 V ; Output load: 1 TTL gate equivalent $C L=100 \mathrm{pF}(\mathrm{min})$ including scope and jig - for CL greater than 100 pF , access time is derated by 0.15 ns per pF .
2. Guaranteed but not tested.
3. Typical derating $5 \mathrm{~mA} / \mathrm{MHz}$ increase in ICCOP.
4. All devices tested at worst case temperature and supply voltage limits.

Specifications HM-8832B-8/HM-8832B-9
A. C. Electrical Specifications (Notes 1, 4) $\quad V C C=5 \mathrm{~V} \pm 10 \% ; \quad T_{A}=H M-8832 B-9-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{A}}=\mathrm{HM}-8832 \mathrm{~B}-8 \quad-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

PIN NO.	SYMBOL		PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
READ CYCLE							
(1)	TAVAX	tRC	Read Cycle Time	180	-	ns	
(2)	TAVQV	tAA	Address Access Time	-	180	ns	
(3)	TELQV	tCE	Chip Enable Access Time	-	180	ns	
(4)	TGLQV	tOE	Output Enable Access Time	-	75	ns	
(5)	TELQX	tLZ	Chip Enable Output Enable Time	10	-	ns	(Note 2)
(6)	TGLQX	tOLZ	Output Enable Time	5	-	ns	(Note 2)
(7)	TAXQX	tOH	Address Output Hold Time	10	-	ns	(Note 2)
(8)	TEHQZ	thZ	Chip Disable Output Disable Time	0	80	ns	(Note 2)
(9)	TGHQZ	tOZ	Output Disable Time	0	55	ns	(Note 2)

WRITE CYCLE

(10)	TAVAX	tWC	Write Cycle Time		180	-	ns	
(11)	TWLWH	tWP	Write Pulse Width		95	-	ns	
(12)	TELWH	tCW	Chip Enable to End of Write	$\overline{\text { W Controlled }}$	95	-	ns	
(13)	TELEH	tCW	Chip Enable to End of Write	$\overline{\text { E Controlled }}$	90	-	ns	(Note 2)
(14)	TAVWL	tAS	Address Setup Time	W Controlled	30	-	ns	
(15)	TAVEL	tAS	Address Setup Time	$\overline{\text { E Controlled }}$	30	-	ns	(Note 2)
(16)	TWHAX	tWR	Write Recovery Time	$\overline{\text { W }}$ Controlled	10	-	ns	
(17)	TEHAX	tWR	Write Recovery Time	$\overline{\text { E Controlled }}$	40	-	ns	(Note 2)
(18)	TDVWH	tDW	Data Setup Time	$\overline{\text { W }}$ Controlled	65	-	ns	
(19)	TDVEH	tDW	Data Setup Time	$\overline{\text { E Controlled }}$	65	-	ns	(Note 2)
(20)	TWHDX	tDH	Data Hold Time	$\overline{\text { W }}$ Controlled	10	-	ns	
(21)	TEHDX	tDH	Data Hold Time	$\overline{\mathrm{E}}$ Controlled	40	-	ns	(Note 2)
(22)	TWLQZ	tWZ	Write Enable Output Disable Time		-	55	ns	(Note 2)
(23)	TWHQX	tOW	Write Disable Output Enable Time		5	-	ns	(Note 2)

NOTES:

1. Input pulse levels: 0 to 3.0 V ; Input rise and fall times: 5 ns (max); Input and output timing reference level: 1.5 V ; Output load: 1 TTL gate equivalent $C L=100 \mathrm{pF}(\mathrm{min})$ including scope and jig - for CL greater than 100 pF , access time is derated by 0.15 ns per pF .
2. Guaranteed but not tested.
3. Typical derating $5 \mathrm{~mA} / \mathrm{MHz}$ increase in ICCOP.
4. All devices tested at worst case temperature and supply voltage limits.

Timing Diagrams: Read Cycles

 READ CYCLE I: ADDRESS CONTROLLED (Notes 1, 2)

READ CYCLE II: $\overline{\mathbf{E}}$ OR $\overline{\mathrm{G}}$ CONTROLLED (Note 1)

READ CYCLE NOTES

1. In a read cycle, \bar{W} is held high.
2. In read cycle 1, the module is kept continuously enabled: $\overline{\mathrm{E}}$ and $\overline{\mathrm{G}}$ are held low.

Timing Diagrams: Write Cycles WRITE CYCLE I: \bar{W} CONTROLLED (Note 1)

WRITE CYCLE II: \bar{E} CONTROLLED (Note 2)

WRITE CYCLE NOTES:

1. In Write Cycle I, the module is first enabled, and then data is strobed into the RAM with a pulse on \bar{W}. If \bar{G} is held high for the entire cycle, the outputs will remain in the high impedance state. If \bar{G} is held low, it may be necessary to lengthen the cycle to prevent bus contention. This would occur if TWLQZ and TDVWH overlapped.
2. In Write Cycle II, Address (A) and Write Enable (\bar{W}) are first set up and then data is strobed into the RAM with a pulse on $\overline{\mathrm{E}}$.

Features

- Low Standby Current ... 500..
- Fast Address Access Time. 170ns
- Data Retention. 2.0V Min VCC
- Three-State Outputs
- Organizable as $32 \mathrm{~K} \times 8$ or $16 \mathrm{~K} \times 16$ Array
- On Chip Address Registers
- 48 Pin DIP Pinout - 2.66 " $\times 1.30$ " $\times 0.29$ "
- Synchronous Operation Yields Low Operating Power . . 30mA/MHz
- Wide Operating Temperature Ranges:
- HM-92560-5 \qquad $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
- HM-92560-9 \qquad $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- HM-92560-8 \qquad $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Description

The HM-92560 is a high density 256K bit CMOS RAM module. Sixteen synchronous HM-6516 2K x 8 CMOS RAMs in Leadless Chip Carriers are mounted on a multilayer ceramic substrate. The HM-92560 RAM module is organized as two 16K $\times 8$ CMOS RAM arrays sharing a common address bus. Separate data input/output buses and chip enables allow the user to format the HM-92560 as either a $16 \mathrm{~K} \times 16$ or $32 \mathrm{~K} \times 8$ array. Ceramic capacitors are included on the substrate to reduce noise and to minimize the need for additional external decoupling.
The synchronous design of the HM-92560 provides low operating power along with address latches for ease of interface to multiplexed address/ data bus microprocessors.

The HM-92560 is physically constructed as an extra wide 48 pin dual-in-line package with standard 0.1 " centers between pins. This package technique combines the high packing density of CMOS and Leadless Chip Carriers with the ease of use of DIP packaging.

Pinout

TOP VIEW

GND	$\sqrt{1 \mathrm{H}}$	48	VCC
A7	2	47	A0
A8	3	46	A1
A9	4	45	A2
A10	5	44	A3
E1	6	43	A4
E2	7	42	A5
E3	8	41	A6
E4	9	40	E16
E5	10	39	E15
E6	11	38	E14
E7	12	37	\bar{W}
$\overline{\mathrm{GA}}$	13	36	$\overline{\mathrm{GB}}$
E8	14	35	E13
E9	15	34	E12
DOO	16	33	D08
D01	17	32	D09
D02	18	31	D010
D03	19	30	D011
D04	20	29	D012
D05	21	28	D013
D06	22	27	D014
D07	23	26	0015
E10	24	25	E11

Functional Diagram

[^2]CONNECT: PIN 16 (DQO) to PIN 33 (DQ8) PIN 17 (DQ1) to PIN 32 (DQ9) PIN 18 (DQ2) to PIN 31 (DQ10) PIN 19 (DQ3) to PIN 30 (DQ11) PIN 20 (DQ4) to PIN 29 (DQ12) PIN 21 (DQ5) to PIN 28 (DQ13) PIN 22 (DQ6) to PIN 27 (DQ14) PIN 23 (DQ7) to PIN 26 (DQ15)

FOR $16 \mathrm{~K} \times 16$ CONFIGURATION

CONNECT: PIN $6(\overline{\mathrm{E} 1})$ to PIN 15 ($\overline{\mathrm{Eg}})$ PIN 7 (E2) to PIN 24 ($\overline{E 10}$)
PIN 8 (E3) to PIN 25 (E11)
PIN 9 (E4) to PIN 34 (E12)
PIN 10 (E5) to PIN 35 ($\overline{\mathrm{E} 13}$)
PIN 11 (E6) to PIN 38 (E14)
PIN 12 (E7) to PIN 39 (E15)
PIN 14 ($\overline{\mathrm{E} 8}$) to PIN 40 ($\overline{\mathrm{E} 16}$)
PIN $13(\overline{\mathrm{GA}})$ to PIN $36(\overline{\mathrm{~GB}})$

Concerns for Proper Operation of Chip Enables:

The transition between blocks of RAM requires a change in the chip enable being used. When operating in the $16 \mathrm{~K} \times 16$ mode use the chip enables as if there were only eight, $\overline{\mathrm{E}} 1$ thru E8. In the $32 \mathrm{~K} \times 8$ mode, all chip enables must be treated separately. Transitions between chip enables must be treated with the same timing constraints that apply to any one chip enable. All chip enables must be high at least one chip enable high time (TEHEL) before any chip enable can fall. As the HM-92560 is a synchronous memory every address transition must be accompanied by a chip enable transition (see timing diagrams). More than one chip enable low simultaneously, for devices whose outputs are tied common either internally or externally, is an illegal input condition and must be avoided.

Printed Circuit Board Mounting:
The leadless chip carrier packages used in the HM-92560 have conductive lids. These lids are electrically connected to GND. The designer should be aware of the possibility that the carriers on the bottom side could short conductors below if pressed completely down against the surface of the circuit board. The pins on the package are designed with a standoff feature to help prevent the leadless carriers from touching the circuit board surface.

Absolute Maximum Ratings

Operating Conditions

Operating Voltage Range Operating Temperature Ranges: $\begin{aligned} & \text { HM-92560-9. } \\ & \text { HM-92560-8. } \end{aligned}$		
Electrical Specifications $\mathrm{VCC}=5 \mathrm{~V} \pm 10 \%$;	$\begin{aligned} & T_{A}=H M-92560-9 \\ & T_{A}=H M-92560-8 \end{aligned}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
ICCSB	Standby Supply Current	-	500	$\mu \mathrm{A}$	$\mathrm{IO}=0, \mathrm{VI}=\mathrm{VCC}$ or GND
ICCOP	Operating Supply Current $16 \mathrm{~K} \times 16$ (Note 3)	-	30	mA	$\begin{aligned} & \overline{\overline{\mathrm{E}}}=1 \mathrm{MHz}, \mathrm{IO}=0, \mathrm{VI}=\mathrm{VCC} \text { or } \mathrm{GND} \\ & \overline{\mathrm{G}}=\mathrm{VCC} \end{aligned}$
ICCOP	Operating Supply Current 32K x 8 (Note 3)	-	15	mA	$\begin{aligned} & \overline{\mathrm{E}}=1 \mathrm{MHz}, \mathrm{IO}=0, \mathrm{VI}=\mathrm{VCC} \text { or } \mathrm{GND} \\ & \overline{\mathrm{G}}=\mathrm{VCC} \end{aligned}$
ICCDR	Data Retention Supply Current	-	350	$\mu \mathrm{A}$	$\begin{aligned} & 10=0, \mathrm{VCC}=2.0, \mathrm{VI}=\mathrm{VCC} \text { or } \mathrm{GND}, \\ & \mathrm{E}=\mathrm{VCC} \end{aligned}$
VCCDR	Data Retention Supply Voltage	2.0	-	V	
II	Input Leakage Current	-5	+5	$\mu \mathrm{A}$	$\mathrm{VI}=\mathrm{VCC}$ or GND
11 OZ	Input/Output Leakage Current	-5	+5	$\mu \mathrm{A}$	$\mathrm{VIO}=\mathrm{VCC}$ or GND
VIL	Input Low Voltage	-0.3	0.8	V	
VIH	Input High Voltage	VCC-2.0	VCC+0.3	V	
VOL	Output Low Voltage	-	0.4	V	$10=3.2 \mathrm{~mA}$
VOH1	Output High Voltage	2.4	-	V	$10=-1.0 \mathrm{~mA}$
VOH2	Output High Voltage (Note 2)	VCC-0.4	-	V	$10=-100 \mu \mathrm{~A}$

Capacitance

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
CIA	Address Input Capacitance (Note 2)	-	200	pF	$\mathrm{VI}=\mathrm{VCC}$ or GND, $\mathrm{f}=1 \mathrm{MHz}$
CIE1	Enable Input Capacitance $16 \mathrm{~K} \times 16$ (Note 2)	-	100	pF	$\mathrm{VI}=\mathrm{VCC}$ or GND, $\mathrm{f}=1 \mathrm{MHz}$
CIE2	Enable Input Capacitance 32K $\times 8$ (Note 2)	-	50	pF	$\mathrm{VI}=\mathrm{VCC}$ or GND, $\mathrm{f}=1 \mathrm{MHz}$
CIG1	Output Enable Input Capacitance $16 \mathrm{~K} \times 16$ (Note 2)	-	150	pF	$\mathrm{VI}=\mathrm{VCC}$ or GND, $\mathrm{f}=1 \mathrm{MHz}$
CIG2	Output Enable Input Capacitance $32 \mathrm{~K} \times 8$ (Note 2)	-	100	pF	$\mathrm{VI}=\mathrm{VCC}$ or GND, $\mathrm{f}=1 \mathrm{MHz}$
CIO1	Input/Output Capacitance $16 \mathrm{~K} \times 16$ (Note 2)	-	150	pF	$\mathrm{VI} / \mathrm{O}=\mathrm{VCC}$ or $\mathrm{GND}, \mathrm{f}=1 \mathrm{MHz}$
ClO 2	Input/Output Capacitance $32 \mathrm{~K} \times 8$ (Note 2)	-	250	pF	$\mathrm{VI} / \mathrm{O}=\mathrm{VCC}$ or $\mathrm{GND}, \mathrm{f}=1 \mathrm{MHz}$
CIW	Write Input Capacitance (Note 2)	-	200	pF	$\mathrm{VI}=\mathrm{VCC}$ or GND, $\mathrm{f}=1 \mathrm{MHz}$
$\mathrm{CV}_{\mathrm{CC}}$	Decoupling Capacitance	0.5	-	$\mu \mathrm{F}$	$\mathrm{f}=1 \mathrm{MHz}$

NOTES:

1. Input pulse levels: 0 to 3.0 V ; Input rise and fall times: 10 ns (max); Input and output timing reference level: 1.5 V ; Output load: 1 TLL gate equivalent $\mathrm{CL}=50 \mathrm{pF}(\mathrm{min})-$ for CL greater than 50 pF , access time is derated by 0.15 ns per pF .
2. Tested at initial design and after major design changes.
3. Typical derating $5 \mathrm{~mA} / \mathrm{MHz}$ increase in ICCOP.
4. $\mathrm{VCC}=4.5 \mathrm{~V}$ and 5.5 V .

Specifications HM-92560-8/HM-92560-9
A.C. Electrical Specifications $\mathrm{VCC}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=\mathrm{HM}-92560-9-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

$$
\mathrm{T}_{\mathrm{A}}=\mathrm{HM}-92560-8 \quad-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}
$$

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
(1) TELQV	Chip Enable Access Time	-	150	ns	(Notes 1, 4)
(2) TAVQV	Address Access Time	-	170	ns	(Notes 1, 4)
(3) TELQX	Chip Enable Output Enable Time	10	-	ns	(Notes 2, 4)
(4) TEHQZ	Chip Enable Output Disable Time	-	70	ns	(Notes 2, 4)
(5) TGLQX	Output Enable Output Enable Time	10	-	ns	(Notes 2, 4)
(6) TGLQV	Output Enable Output Valid Time	-	70	ns	(Notes 1, 4)
(7) TGHQZ	Output Enable Output Disable Time	-	70	ns	(Notes 2,4)
(8) TELEH	Chip Enable Pulse Negative Width	150	-	ns	(Notes 1, 4)
(9) TEHEL	Chip Enable Pulse Positive Width	80	-	ns	(Notes 1, 4)
(10) TAVEL	Address Setup Time	20	-	ns	(Notes 1, 4)
(11) TELAX	Address Hold Time	50	-	ns	(Notes 1, 4)
(12) TWLWH	Write Enable Pulse Width	150	-	ns	(Notes 1, 4)
(13) TWLEH	Write Enable Pulse Setup Time	150	-	ns	(Notes 1, 4)
(14) TELWH	Write Enable Pulse Hold Time	150	-	ns	(Notes 1, 4)
(15) TDVWH	Data Setup Time	80	-	ns	(Notes 1, 4)
(16) TWHDX	Data Hold Time	20	-	ns	(Notes 1, 4)
(17) TWLDV	Write Data Delay Time	70	-	ns	(Notes 1, 4)
(18) TELEL	Read or Write Cycle Time	230	-	ns	(Notes 1, 4)

NOTES:

1. Input pulse levels: 0 to 3.0 V ; Input rise and fall times: 10 ns (max); Input and output timing reference level: 1.5 V ; Output load: 1 TTL gate equivalent $\mathrm{CL}=50 \mathrm{pF}(\mathrm{min})-$ for CL greater than 50 pF , access time is derated by 0.15 ns per pF .
2. Tested at initial design and after major design changes.
3. Typical derating $5 \mathrm{~mA} / \mathrm{MHz}$ increase in ICCOP.
4. $V C C=4.5 \mathrm{~V}$ and 5.5 V .

Absolute Maximum Ratings

Operating Conditions

Operating Temperature Range: HM-92560-5

D.C. Electrical Specifications $\mathrm{VCC}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=\mathrm{HM}-92560-50^{\circ} \mathrm{C}$ to $+70{ }^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
ICCSB	Standby Supply Current	-	3.5	$\mu \mathrm{A}$	$10=0, \mathrm{VI}=\mathrm{VCC}$ or GND
ICCOP	Operating Supply Current 16K x 16 (Note 3)	-	35	mA	$\begin{aligned} & \overline{\mathrm{E}}=1 \mathrm{MHz}, \mathrm{IO}=0, \mathrm{VI}=\mathrm{VCC} \text { or } \mathrm{GND} \\ & \overline{\mathrm{G}}=\mathrm{VCC} \end{aligned}$
ICCOP	Operating Supply Current 32K x 8 (Note 3)	-	20	mA	$\begin{aligned} & \overline{\mathrm{E}}=1 \mathrm{MHz}, \mathrm{IO}=0, \mathrm{VI}=\mathrm{VCC} \text { or } \mathrm{GND} \\ & \overline{\mathrm{G}}=\mathrm{VCC} \end{aligned}$
ICCDR	Data Retention Supply Current	-	2.5	mA	$\begin{aligned} & 10=0, \mathrm{VCC}=2.0, \mathrm{VI}=\mathrm{VCC} \text { or } \mathrm{GND}, \\ & \overline{\mathrm{E}}=\mathrm{VCC} \end{aligned}$
VCCDR	Data Retention Supply Voltage	2.0	-	V	
II	Input Leakage Current	-10	+10	$\mu \mathrm{A}$	$\mathrm{VI}=\mathrm{VCC}$ or GND
IIOZ	Input/Output Leakage Current	-10	+10	$\mu \mathrm{A}$	$\mathrm{VIO}=\mathrm{VCC}$ or GND
VIL	Input Low Voltage	-0.3	0.8	V	
VIH	Input High Voltage	VCC-2.0	VCC+0.3	V	
VOL	Output Low Voltage	-	0.4	V	$10=3.2 \mathrm{~mA}$
VOH1	Output High Voltage	2.4	-	V	$10=-1.0 \mathrm{~mA}$
VOH2	Output High Voltage (Note 2)	VCC-0.4	-	V	$10=-100 \mu \mathrm{~A}$

Capacitance

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
CIA	Address Input Capacitance (Note 2)	-	200	pF	$\mathrm{VI}=\mathrm{VCC}$ or GND, $\mathrm{f}=1 \mathrm{MHz}$
CIE1	Enable Input Capacitance $16 \mathrm{~K} \times 16$ (Note 2)	-	100	pF	$\mathrm{VI}=\mathrm{VCC}$ or GND, $\mathrm{f}=1 \mathrm{MHz}$
CIE2	Enable Input Capacitance 32K $\times 8$ (Note 2)	-	50	pF	$\mathrm{VI}=\mathrm{VCC}$ or GND, $\mathrm{f}=1 \mathrm{MHz}$
CIG1	Output Enable Input Capacitance $16 \mathrm{~K} \times 16$ (Note 2)	-	150	pF	$\mathrm{VI}=\mathrm{VCC}$ or GND, $\mathrm{f}=1 \mathrm{MH}$
CIG2	Output Enable Input Capacitance $32 \mathrm{~K} \times 8$ (Note 2)	-	100	pF	$\mathrm{VI}=\mathrm{VCC}$ or $\mathrm{GND}, \mathrm{f}=1 \mathrm{MHz}$
ClO 1	Input/Output Capacitance $16 \mathrm{~K} \times 16$ (Note 2)	-	150	pF	$\mathrm{V} / \mathrm{O}=\mathrm{VCC}$ or GND, $\mathrm{f}=1 \mathrm{MHz}$
ClO 2	Input/Output Capacitance 32K x 8 (Note 2)	-	250	pF	$\mathrm{VI} / \mathrm{O}=\mathrm{VCC}$ or $\mathrm{GND}, \mathrm{f}=1 \mathrm{MHz}$
CIW	Write Input Capacitance (Note 2)	-	200	pF	$\mathrm{VI}=\mathrm{VCC}$ or GND, $\mathrm{f}=1 \mathrm{MHz}$
$\mathrm{CV}_{\mathrm{CC}}$	Decoupling Capacitance	0.5	-	$\mu \mathrm{F}$	$\mathrm{f}=1 \mathrm{MHz}$

NOTES:

1. Input pulse levels: 0 to 3.0 V ; Input rise and fall times: 10 ns (max); Input and output timing reference level: 1.5 V ; Output load: 1 TTL gate equivalent $\mathrm{CL}=50 \mathrm{pF}(\mathrm{min})-$ for CL greater than 50 pF , access time is derated by 0.15 ns per pF .
2. Tested at initial design and after major design changes.
3. Typical derating $5 \mathrm{~mA} / \mathrm{MHz}$ increase in ICCOP.
4. $\mathrm{VCC}=4.5 \mathrm{~V}$ and 5.5 V .

Specifications HM-92560-5
A.C. Electrical Specifications $\mathrm{VCC}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=\mathrm{HM}-92560-50^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
(1) TELQV	Chip Enable Access Time	-	250	ns	(Notes 1, 4)
(2) TAVQV	Address Access Time	-	270	ns	(Notes 1, 4)
(3) TELQX	Chip Enable Output Enable Time	10	-	ns	(Notes 2, 4)
(4) TEHQZ	Chip Enable Output Disable Time	-	80	ns	(Notes 2, 4)
(5) TGLQX	Output Enable Output Enable Time	10	-	ns	(Notes 2, 4)
(6) TGLQV	Output Enable Output Valid Time	-	70	ns	(Notes 1, 4)
(7) TGHQZ	Output Enable Output Disable Time	-	80	ns	(Notes 2,4)
(8) TELEH	Chip Enable Pulse Negative Width	250	-	ns	(Notes 1, 4)
(9) TEHEL	Chip Enable Pulse Positive Width	100	-	ns	(Notes 1, 4)
(10) TAVEL	Address Setup Time	20	-	ns	(Notes 1, 4)
(11) TELAX	Address Hold Time	50	-	ns	(Notes 1, 4)
(12) TWLWH	Write Enable Pulse Width	250	-	ns	(Notes 1, 4)
(13) TWLEH	Write Enable Pulse Setup Time	250	-	ns	(Notes 1, 4)
(14) TELWH	Write Enable Pulse Hold Time	250	-	ns	(Notes 1, 4)
(15) TDVWH	Data Setup Time	100	-	ns	(Notes 1, 4)
(16) TWHDX	Data Hold Time	20	-	ns	(Notes 1, 4)
(17) TWLDV	Write Data Delay Time	150	-	ns	(Notes 1, 4)
(18) TELEL	Read or Write Cycle Time	350	-	(Notes 1, 4)	

NOTES:

1. Input pulse levels: 0 to 3.0 V ; Input rise and fall times: 10 ns (max); Input and output timing reference level: 1.5 V ; Output load: 1 TTL gate equivalent $C L=50 \mathrm{pF}(\mathrm{min})-$ for $C L$ greater than 50 pF , access time is derated by 0.15 ns per pF .
2. Tested at initial design and after major design changes.
3. Typical derating $5 \mathrm{~mA} / \mathrm{MHz}$ increase in ICCOP.
4. $V C C=4.5 \mathrm{~V}$ and 5.5 V .

Read Cycle

TIME REFERENCE	INPUTS					FUNCTION
-1	H	X	X	X	z	Memory Disabled
0	1	H	X	v	z	Cycle Begins, Addresses are Latched
1	L	H	L	X	X	Output Enabled
2	L	H	L	X	V	Output Valid
3	r	H	X	X	v	Read Accomplished
4	${ }^{\mathrm{H}}$	x	x	x	z	Prepare for Next Cycle (Same as - 1)
5		H	X	V	z	Cycle Ends, Next Cycle Begins (Same as 0)

The address information is latched in the on chip registers on the falling edge of $\bar{E}(T=0)$, minimum address setup and hold time requirements must be met. After the required hold time, the addresses may change state without affecting device operation. During time ($\mathrm{T}=1$), the outputs become
enabled but data is not valid until time ($T=2$). \bar{W} must remain high throughout the read cycle. After the data has been read, $\overline{\mathrm{E}}$ may return high ($\mathrm{T}=3$). This will force the output buffers into a high impedance mode at time ($\mathrm{T}=4$).

Write Cycle

TIME REFERENCE	$\overline{\mathrm{E}}$	$\overline{\mathbf{W}}$	$\frac{\mathrm{PUV}}{\mathbf{G}}$	A	DQ	FUNCTION
-1	H	X	H	X	X	Memory Disabled
0		X	H	V	X	Cycle Begins, Addresses are Latched
1	L	L	H	X	X	Write Period Begins
2		\checkmark	H	X	V	Data In Is Written
3	r	H	H	X	X	Write Completed
4	H	X	H	X	X	Prepare For Next Cycle (Same As -1)
5		X	H	V	X	Cycle Ends. Next Cycle Begins (Same As 0)

The write cycle is initiated on the falling edge of $\overline{\mathrm{E}}(\mathrm{T}=0)$, which latches the address information in the on chip registers. If a write cycle is to be performed where the output is not to become active, \bar{G} can be held high (inactive). TWHDX and TDVWH must be met for proper device operation regardless of \bar{G}. If \bar{E} and \bar{G} fall before \bar{W} falls (read mode), a possible bus conflict may exist. If \bar{E} rises before \bar{W} rises, reference data setup and hold times to the \bar{E}
rising edge. The write operation is terminated by the first rising edge of $\bar{W}(T=2)$ or $\bar{E}(T=3)$. After the minimum \bar{E} high time (TEHEL), the next cycle may begin. If a series of consecutive write cycles are to be performed, the \bar{W} line may be held low until all desired locations have been written. In this case, data setup and hold times must be referenced to the rising edge of $\overline{\mathrm{E}}$.

Features

－Fast Access Time ．．250ns
－Data Retention． 2．0V
－Three State Outputs
－Organizable As 32K x 8 or 16K x 16 Array
－Buffered Address And Control Lines
－On Chip Address Registers
－ 48 Pin DIP Pinout $-2.66^{\prime \prime} \times 1.30^{\prime \prime} \times 0.29^{\prime \prime}$
－Wide Operating Temperature Ranges：
－HM－92570－5 ．． 00 C to $+70^{\circ} \mathrm{C}$
－HM－92570－9 ．． $40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
－HM－92570－8
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Description

The HM－92570 is a fully buffered 256 K bit CMOS RAM Module consisting of sixteen HM－6516 $2 \mathrm{~K} \times 8$ CMOS RAMs，two 82C82 CMOS octal latch－ ing bus drivers，and two HCT－138 CMOS $3: 8$ decoders in leadless chip carriers mounted on a multilayer ceramic substrate．The HM－92570 RAM Module is organized as two $16 \mathrm{~K} \times 8$ CMOS RAM arrays sharing a common address bus．Separate data input／output buses allow the user to format the HM－92570 as either a $16 \mathrm{~K} \times 16$ or $32 \mathrm{~K} \times 8$ array．
On－board buffers and decoders reduce external package count require－ ments．Write enable，output enable and chip enable control signals are buffered along with address inputs．Ceramic capacitors sealed in leadless carriers are included on the substrate to reduce power supply noise and to reduce the need for external decoupling．
The synchronous design of the HM－92570 provides low operating power along with address latches for ease of interface to multiplexed address／data bus microprocessors．

The HM－92570 is physically constructed as an extra wide 48 pin dual－in－ line package with standard $0.1^{\prime \prime}$ centers between pins．This package technique combines the high packing density of CMOS and leadless chip carriers with the ease of use of DIP packaging．

Pinout

top VIEw

GND 1	48	$\square \mathrm{VCC}$
A7 2	47	ص A0
A8 3	46	صA1
A9 4	45	$\square \mathrm{A} 2$
A10 5	44	ص A3
A11 6	43	صA4
A12 7	42	$\square \mathrm{A} 5$
A13 8	41	ص A6
E1A 9	40	E1B
E2A 10	39	］E2B
E3A 11	38	民 E3B
NC 12	37	صW
GA 13	36	曰 $\overline{\mathrm{GB}}$
NC 14	35	曰 NC
NC 15	34	曰 NC
DOO 16	33	® DQ8
D01 17	32	ص D09
D02 18	31	ص DQ10
D03 19	30	ص DQ11
D04 20	29	D DQ12
DQ5 S^{21}	28	ص D013
D06 22	27	ص D014
DQ7 23	26	ص DQ15
vcc 24	25	GND

PIN NAMES

A－Address Input
DQ－Data Input／Output
GX－Output Enable
EXX－Chip Enable
\bar{W}－Write Enable
NC－No Connection

Functional Diagram

CAUTION：These devices are sensitive to electrostatic discharge．Proper I．C．handling procedures shouid be followed．

Organizational Guide

FOR 32K X 8 CONFIGURATION

CONNECT: PIN 16 (DQO) to PIN 33 (DQ8)
PIN 17 (DQ1) to PIN 32 (DQ9)
PIN 18 (DQ2) to PIN 31 (DQ10)
PIN 19 (DQ3) to PIN 30 (DQ11)
PIN 20 (DQ4) to PIN 29 (DQ12)
PIN 21 (DQ5) to PIN 28 (DQ13)
PIN 22 (DQ6) to PIN 27 (DQ14)
PIN 23 (DQ7) to PIN 26 (DQ15)

FOR 16K X 16 CONFIGURATION

CONNECT: Pin $9(\overline{\mathrm{E} 1 \mathrm{~A}})$ to PIN $40(\overline{\mathrm{E} 1 \mathrm{~B}})$ PIN 10 (E2A) to PIN 39 (E2B) PIN 11 (E3A) to PIN 38 (E3B) PIN 13 ($\overline{\mathrm{GA}})$ to PIN 36 ($\overline{\mathrm{GB}})$

Concerns for Proper Operation of Chip Enables:

The transition between blocks of RAM requires a change in the chip enable being used. When operating in the $16 \mathrm{~K} \times 16$ mode, use the chip enables as if there were only three, E1 thru E3. In the 32K x 8 mode, all chip enables must be treated separately. Transitions between chip enables must be treated with the same timing constraints that apply to any one chip enable. All chip enables must be high at least one chip enable high time (TEHEL) before any chip enable can fall. As the HM-92570 is a synchronous memory, every address transition must be accompanied by a chip enable transition (see timing diagrams). More than one chip enable low simultaneously, for devices whose outputs are tied common either internally or externally, is an illegal input condition and must be avoided. To properly decode the chip enables, addresses A11, A12, and A13 must be valid for the duration of TAVAV.

Printed Circuit Board Mounting:

The leadless chip carrier packages used in the HM-92570 have conductive lids. These lids are electrically connected to GND.The designer should be aware of the possibility that the carriers on the bottom side could short conductors below if pressed completely down against the surface of the circuit board. The pins on the package are designed with a standoff feature to help prevent the leadless carriers from touching the circuit board surface.

Specifications HM-92570-8/HM-92570-9

Absolute Maximum Ratings

Operating Conditions

D.C. Electrical Specifications $V C C=5 \mathrm{~V} \pm 10 \%$; $T_{A}=H M-92570-9-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ $\mathrm{T}_{\mathrm{A}}=\mathrm{HM}-92570-8-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
ICCSB	Standby Supply Current	-	600	$\mu \mathrm{~A}$	$\mathrm{IO}=0, \mathrm{VI}=\mathrm{VCC}$ or GND
ICCOP	Operating Supply Current (Note 3) $16 \mathrm{~K} \times 16$	-	30	mA	$\overline{\mathrm{E}}=1 \mathrm{MHz}, \mathrm{IO}=0, \mathrm{VI}=\mathrm{VCC}$ or GND, $\overline{\mathrm{G}}=\mathrm{VCC}$
ICCOP	Operating Supply Current (Note 3) $32 \mathrm{~K} \times 8$	-	15	mA	$\overline{\mathrm{E}}=1 \mathrm{MHz}, \mathrm{IO}=0, \mathrm{VI}=\mathrm{VCC}$ or GND, $\mathrm{G}=\mathrm{VCC}$
ICCDR	Data Retention Supply Voltage	-	450	$\mu \mathrm{~A}$	$\mathrm{VCC}=2.0 \mathrm{~V}, \mathrm{IO}=0, \mathrm{VI}=\mathrm{VCC}$ or GND, $\mathrm{E}=\mathrm{VCC}$
VCCDR	Data Retention Supply Voltage	2.0	-	V	
II	Input Leakage Current	-1.0	+1.0	$\mu \mathrm{~A}$	$\mathrm{VI}=\mathrm{VCC}$ or GND
IIOZ	Input/Output Leakage Current	-5.0	+5.0	$\mu \mathrm{~A}$	$\mathrm{VO}=\mathrm{VCC}$ or GND
VIL	Input Low Voltage	-0.3	0.8	V	
VIH	Input High Voltage	3.5	$\mathrm{VCC}+0.3$	V	
VOL	Output Low Voltage	-	0.4	V	$\mathrm{IO}=3.2 \mathrm{~mA}$
VOH1	Output High Voltage	2.4	-	V	$10=-0.4 \mathrm{~mA}$
VOH2	Output High Voltage (Note 2)	$\mathrm{VCC}-0.4$	-	V	$\mathrm{IO}=-100 \mu \mathrm{~A}$

Capacitance

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
CIA	Address Input Capacitance (Note 2)	-	50	pF	$\mathrm{VI}=\mathrm{VCC}$ or GND, $\mathrm{f}=1 \mathrm{MHz}$
CIE1	Decoder Enable Input Capacitance 16K $\times 16$ (Note 2)	-	50	pF	$\mathrm{VI}=\mathrm{VCC}$ or $\mathrm{GND}, \mathrm{f}=1 \mathrm{MHz}$
CIE2	Decoder Enable Input Capacitance $32 \mathrm{~K} \times 8$ (Note 2)	-	25	pF	$\mathrm{VI}=\mathrm{VCC}$ or $\mathrm{GND}, \mathrm{f}=1 \mathrm{MHz}$
CIG1	Output Enable Input Capacitance $16 \mathrm{~K} \times 16$ (Note 2)	-	50	pF	$\mathrm{VI}=\mathrm{VCC}$ or $\mathrm{GND}, \mathrm{f}=1 \mathrm{MHz}$
CIG 2	Output Enable Input Capacitance 32K $\times 8$ (Note 2)	-	25	pF	$\mathrm{VI}=\mathrm{VCC}$ or $\mathrm{GND}, \mathrm{f}=1 \mathrm{MHz}$
ClO 1	Input/Output Capacitance $16 \mathrm{~K} \times 16$ (Note 2)	-	150	pF	$\mathrm{VI} / \mathrm{O}=\mathrm{VCC}$ or GND, $\mathrm{f}=1 \mathrm{MHz}$
ClO 2	Input/Output Capacitance $32 \mathrm{~K} \times 8$ (Note 2)	-	250	pF	$\mathrm{VI} / \mathrm{O}=\mathrm{VCC}$ or $\mathrm{GND}, \mathrm{f}=1 \mathrm{MHz}$
CIW	Write Input Capacitance (Note 2)	-	25	pF	$\mathrm{VI}=\mathrm{VCC}$ or $\mathrm{GND}, \mathrm{f}=1 \mathrm{MHz}$
$\mathrm{CV}_{\mathrm{CC}}$	Decoupling Capacitance	0.5	-	$\mu \mathrm{F}$	$\mathrm{f}=1 \mathrm{MHz}$

NOTES:

1. Input pulse levels: 0 to 3.0 V ; Input rise and fall times: 10 ns (max); Input and output timing reference level: 1.5 V ; Output load: 1 TTL gate equivalent $\mathrm{CL}=50 \mathrm{pF}$ (min) - for CL greater than 50 pF , access time is derated by 0.15 ns per pF .
2. Tested at initial design and after major design changes.
3. ICCOP is proportional to operating frequency.
4. $\mathrm{VCC}=4.5 \mathrm{~V}$ and 5.5 V .

Specifications HM5-92570-8/HM5-925 70-9
$\begin{aligned} \text { A.C. Electrical Specifications } \mathrm{VCC}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}} & =\text { HM5-92570-9 } & -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{T}_{\mathrm{A}} & =\text { HM5-92570-8 } & -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}\end{aligned}$

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
(1) TELQV	Chip Enable Access Time	-	250	ns	(Notes 1, 4)
(2) TAVQV	Address Access Time	-	270	ns	(Notes 1, 4)
(3) TELQX	Chip Enable Output Enable Time	5	-	ns	(Notes 2, 4)
(4) TEHQZ	Chip Enable Output Disable Time	-	150	ns	(Notes 2, 4)
(5) TGLQX	Output Enable Output Enable Time	10	-	ns	(Notes 2, 4)
(6) TGLQV	Output Enable Output Valid Time	-	120	ns	(Notes 1, 4)
(7) TGHQZ	Output Enable Output Disable Time	-	150	ns	(Notes 2, 4)
(8) TELEH	Chip Enable Pulse Negative Width	250	-	ns	(Notes 1, 4)
(9) TEHEL	Chip Enable Pulse Positive Width	100	-	ns	(Notes 1, 4)
(10) TAVEL	Address Setup Time	20	-	ns	(Notes 1, 4, 5)
(11) TELAX	Address Hold Time	120	-	ns	(Notes 1, 4)
(12) TWLWH	Write Enable Pulse Width	140	-	ns	(Notes 1, 4)
(13) TWLEH	Write Enable Pulse Setup Time	140	-	ns	(Notes 1, 4)
(14) TELWH	Write Enable Pulse Hold Time	250	-	ns	(Notes 1, 4)
(15) TDVWH	Data Setup Time	20	-	ns	(Notes 1, 4)
(16) TWHDX	Data Hold Time	70	-	ns	(Notes 1, 4)
(17) TWLDV	Write Data Delay Time	120	-	ns	(Notes 1, 4)
(18) TELEL	Read or Write Cycle Time	350	-	ns	(Notes 1, 4)
(19) TAVAV	Enable Decoder Address Valid Time	270	-	ns	(Applies Only to A11, A12, A13)

NOTES:

1. Input pulse levels: 0 to 3.0 V ; Input rise and fall times: 10 ns (max); Input and output timing reference level: 1.5 V ; Output load: 1 TTL gate equivalent $\mathrm{CL}=50 \mathrm{pF}(\mathrm{min})-$ for CL greater than 50 pF , access time is derated by 0.15 ns per pF .
2. Tested at initial design and after major design changes.
3. ICCOP is proportional to operating frequency.
4. $\mathrm{VCC}=4.5 \mathrm{~V}$ and 5.5 V .
5. Includes A11, A12, A13.

Absolute Maximum Ratings

Operating Conditions

D.C. Electrical Specifications $\mathrm{VCC}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=\mathrm{HM}-92570-5-0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
ICCSB	Standby Supply Current	-	3.5	mA	$\mathrm{IO}=0, \mathrm{VI}=\mathrm{VCC}$ or GND
ICCOP	Operating Supply Current (Note 3) $16 \mathrm{~K} \times 16$	-	35	mA	$\overline{\mathrm{E}}=1 \mathrm{MHz}, \mathrm{IO}=0, \mathrm{VI}=\mathrm{VCC}$ or GND $\overline{\mathrm{G}}=\mathrm{VCC}$
ICCOP	Operating Supply Current (Note 3) $32 \mathrm{~K} \times 8$	-	20	mA	$\overline{\mathrm{E}}=1 \mathrm{MHz}, \mathrm{IO}=0, \mathrm{VI}=\mathrm{VCC}$ or GND $\mathrm{G}=\mathrm{VCC}$
ICCDR	Data Retention Supply Voltage	-	2.5	mA	$\mathrm{VCC}=2.0 \mathrm{~V}, \mathrm{IO}=0, \mathrm{VI}=\mathrm{VCC}$ or GND $\mathrm{E}=\mathrm{VCC}$
VCCDR	Data Retention Supply Voltage	2.0	-	V	
II	Input Leakage Current	-10.0	+10.0	$\mu \mathrm{~A}$	$\mathrm{VI}=\mathrm{VCC}$ or GND
IIOZ	Input/Output Leakage Current	-10.0	+10.0	$\mu \mathrm{~A}$	$\mathrm{VO}=\mathrm{VCC}$ or GND
VIL	Input Low Voltage	-0.3	0.8	V	
VIH	Input High Voltage	3.5	$\mathrm{VCC}+0.3$	V	
VOL	Output Low Voltage	-	0.4	V	$\mathrm{IO}=3.2 \mathrm{~mA}$
VOH1	Output High Voltage	2.4	-	V	$\mathrm{IO}=-0.4 \mathrm{~mA}$
VOH2	Output High Voltage (Note 2)	$\mathrm{VCC}-0.4$	-	V	$10=-100 \mu \mathrm{~A}$

Capacitance

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
CIA	Address Input Capacitance (Note 2)	-	50	pF	$\mathrm{VI}=\mathrm{VCC}$ or GND, $\mathrm{f}=1 \mathrm{MHz}$
CIE1	Decoder Enable Input Capacitance 16K $\times 16$ (Note 2)	-	50	pF	$\mathrm{VI}=\mathrm{VCC}$ or GND, $\mathrm{f}=1 \mathrm{MHz}$
CIE2	Decoder Enable Input Capacitance 32K $\times 8$ (Note 2)	-	25	pF	$\mathrm{VI}=\mathrm{VCC}$ or $\mathrm{GND}, \mathrm{f}=1 \mathrm{MHz}$
CIG1	Output Enable Input Capacitance $16 \mathrm{~K} \times 16$ (Note 2)	-	50	pF	$\mathrm{VI}=\mathrm{VCC}$ or $\mathrm{GND}, \mathrm{f}=1 \mathrm{MHz}$
CIG 2	Output Enable Input Capacitance 32K $\times 8$ (Note 2)	-	25	pF	$\mathrm{VI}=\mathrm{VCC}$ or $\mathrm{GND}, \mathrm{f}=1 \mathrm{MHz}$
ClO 1	Input/Output Capacitance 16K $\times 16$ (Note 2)	-	150	pF	$\mathrm{VI} / \mathrm{O}=\mathrm{VCC}$ or GND, $\mathrm{f}=1 \mathrm{MHz}$
ClO 2	Input/Output Capacitance $32 \mathrm{~K} \times 8$ (Note 2)	-	250	pF	$\mathrm{VI} / \mathrm{O}=\mathrm{VCC}$ or GND, $\mathrm{f}=1 \mathrm{MHz}$
CIW	Write Input Capacitance (Note 2)	-	25	pF	$\mathrm{VI}=\mathrm{VCC}$ or GND, $\mathrm{f}=1 \mathrm{MHz}$
$\mathrm{CV}_{\mathrm{CC}}$	Decoupling Capacitance	0.5	-	$\mu \mathrm{F}$	$f=1 \mathrm{MHz}$

NOTES:

1. Input pulse levels: 0 to 3.0 V ; Input rise and fall times: 10 ns (max); Input and output timing reference level: 1.5 V ; Output load: 1 TL gate equivalent $\mathrm{CL}=50 \mathrm{pF}(\mathrm{min})-$ for CL greater than 50 pF , access time is derated by 0.15 ns per pF .
2. Tested at initial design and after major design changes.
3. ICCOP is proportional to operating frequency.
4. $\mathrm{VCC}=4.5 \mathrm{~V}$ and 5.5 V .

Specifications HM5-92570-5
A.C. Electrical Specifications $V C C=5 \mathrm{~V} \pm 10 \% ; T_{A}=H M 5-92570-5 \quad 0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
(1) TELQV	Chip Enable Access Time	-	300	ns	(Notes 1, 4)
(2) TAVQV	Address Access Time	-	320	ns	(Notes 1, 4)
(3) TELQX	Chip Enable Output Enable Time	5	-	ns	(Notes 2, 4)
(4) TEHQZ	Chip Enable Output Disable Time	-	200	ns	(Notes 2, 4)
(5) TGLQX	Output Enable Output EnableTime	-	-	ns	(Notes 2, 4)
(6) TGLQV	Output Enable Output Valid Time		120	ns	(Notes 1, 4)
(7) TGHQZ	Output Enable Output Disable Time		200	ns	(Notes 2, 4)
(8) TELEH	Chip Enable Pulse Negative Width	300	-	ns	(Notes 1, 4)
(9) TEHEL	Chip Enable Pulse Positive Width	150	-	ns	(Notes 1, 4)
(10) TAVEL	Addres Setup Time	20	-	ns	(Notes 1, 4, 5)
(11) TELEX	Address Hold Time	130	-	ns	(Notes 1, 4)
(12) TWLWH	Write Enable Pulse Width	150	-	ns	(Notes 1, 4)
(13) TWLEH	Write Enable Pulse Setup Time	150	-	ns	(Notes 1, 4)
(14) TELWH	Write Enable Pulse Hold Time	300	-	ns	(Notes 1, 4)
(15) TDVWH	Data Setup Time	30	-	ns	(Notes 1, 4)
(16) TWHDX	Data Hold Time	80	-	ns	(Notes 1, 4)
(17) TWLDV	Write Data Delay Time	120	-	ns	(Notes 1, 4)
(18) TELEL	Read or Write Cycle Time	450	-	ns	(Notes 1, 4)
(19) TAVAV	Enable Decoder Address Valid Time	320	-	ns	(Applies Only to A11, A12, A13.

NOTES:

1. Input pulse levels: 0 to 3.0 V ; Input rise and fall times: 10 ns (max); Input and output timing reference level: 1.5 V ; Output load: 1 TTL gate equivalent $\mathrm{CL}=50 \mathrm{pF}(\mathrm{min})-$ for CL greater than 50 pF , access time is derated by 0.15 ns per pF .
2. Tested at initial design and after major design changes.
3. ICCOP is proportional to operating frequency.
4. $\mathrm{VCC}=4.5 \mathrm{~V}$ and 5.5 V .
5. Includes A11, A12, A13.

HM-92570-8/HM-92570-9

The address information is latched in the on chip registers on the falling edge of $\bar{E}(T=0)$, minimum address setup and hold time requirements must be met. After the required hold time, the addresses may change state without affecting device operation. During time ($\mathrm{T}=1$), the outputs become enabled but data is not valid until time ($T=2$), \bar{W} must
remain high throughout the read cycle. After the data has been read, $\overline{\mathrm{E}}$ may return high $(\mathrm{T}=3)$. This will force the output buffers into a high impedance mode at time ($\mathrm{T}=4$). $\overline{\mathrm{G}}$ is used to disable the output buffers when in a logical "1" state ($T=-1,0,3,4,5$). After $(T=4)$ time, the memory is ready for the next cycle.

The write cycle is initiated on the falling edge of $\bar{E}(T=0)$, which latches the address information in the on chip registers. If a write cycle is to be performed where the output is not to become active, \bar{G} can be held high (in-active). TDVWH and TWHDX must be met for proper device operation regardless of \bar{G}. If \bar{E} and \bar{G} fall before \bar{W} falls (read mode), a possible bus conflict may exist. If \bar{E} rises before \bar{W} rises, reference data setup and hold times to the \bar{E}
rising edge. The write operation is terminated by the first rising edge of $\bar{W}(T=2)$ or $E(T=3)$. After the minimum \bar{E} high time (TEHEL), the next cycle may begin. If a series of consecutive write cycles are to be performed, the \bar{W} line may be held low until all desired locations have been written. In this case, data setup and hold times must be referenced to the rising edge of \bar{E}.

1M Bit Asynchronous CMOS Static RAM Module

Features

－Low Standby Current ．．2mA
－Low Operating Supply Current ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．10／20mA
－Fast Address Access Time ．．． 180 ns
－Low Data Retention Supply Voltage ．．2．0V
－CMOS／TTL Compatible Inputs／Outputs
－Buffered Address and Control Lines
－ 48 Pin DIP Pinout ．． $2.66 \times 1.3 \times 0.3$＂
－Wide Operating Temperature Ranges：

Description

The HM－91M2 is a fully buffered $1,048,572$ bit CMOS RAM module consisting of sixteen HM－65642 8K x 8 CMOS RAMs，two 82 C82 CMOS octal buffers，and two HCT－138 CMOS $3: 8$ decoders in leadless chip carriers mounted on a multi－layer， co－fired，ceramic substrate．The HM－91M2 CMOS RAM module is organized as two $64 \mathrm{~K} \times 8$ RAM arrays sharing a common address bus and write enable input． Separate data input／output buses allow the user to format the HM－91M2 as either a $64 \mathrm{~K} \times 16$ or $128 \mathrm{~K} \times 8$ bit array．

The on－substrate CMOS buffers and decoders on the HM－91M2 reduce the system package count and minimize the capacitive load on the system address and control buses．In addition to this，the HM－91M2 has on－substrate decoupling capacitors mounted in leadless chip carriers to reduce power supply noise and minimize the need for external decoupling while ensuring high reliability，even in harsh environments．

The HM－91M2 is physically constructed as an extra wide 48 pin dual－in－line package with standard 0.1 ＂centers between pins to combine the high density of CMOS and leadless chip carriers with the ease of use of DIP packaging．

The HM－65642 RAMs used on the HM－91M2 module are full CMOS devices， utilizing arrays of six－transistor（6T）memory cells for the most stable and lowest possible standby and data retention supply current over full military operating tem－ perature range．In addition to this，the high stability of the 6T cell provides excellent protection against soft errors due to power supply noise and alpha particles．This stability also improves the radiation tolerance of the module over that of RAMs utilizing four transistor（4T）Mix－MOS memory cells．

Pinout

TOP VIEW

GND \square_{1}^{1}	48	$\mathrm{V}_{\text {cc }}$
A7 2	47	$\square \mathrm{AO}$
A8 ${ }^{-1}$	46	$\square \mathrm{A} 1$
A9 4	45	$\square \mathrm{A} 2$
A10 5	44	A3
A11 \square^{6}	43	口 ${ }^{\text {a }}$
A12 \square^{7}	42	A5
A13 8	41	$\square \mathrm{A} \mathrm{B}^{\text {a }}$
E1A ${ }^{-1}$	40	］$\overline{E 1 B}$
E2A 10	39	］E2B
E3A 11	38	E3B
NC［ 12	37	$\square \bar{W}$
$\overline{\mathrm{GA}} \square^{13}$	36	二 $\overline{\mathrm{GB}}$
A14 14	35	$\square \mathrm{NC}$
A15 15	34	口
DQ0 16	33	口008
DQ1 17	32	$\square 009$
D02 18	31	D010
DQ3 19	30	D011
004 20	29	D012
$005{ }^{21}$	28	$\square \mathrm{DO13}$
0062^{22}	27	口 D014
D07 23	26	D015
vcc 24	25	GND

A－Address Input
DQ－Data Input／Output
$\overline{\mathrm{GX}}$－Output Enable
EXX－Chip Enable
\bar{W}－Write Enable
NC－No Connection
S－Module Select

Functional Diagram

Absolute Maximum Ratings

Supply Voltage	+7.0V
Input, Output or I/O Voltage Applied	GND-0.3V to VCC +0.3V
Storage Temperature Range.	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Power Dissipation	100 mW at 1 MHz
$\theta_{\text {jc }}$	TBD ${ }^{\circ} \mathrm{C} / \mathrm{W}$ (Module Package)
θ_{ja}	TBD ${ }^{\circ} \mathrm{C} / \mathrm{W}$ (Module Package)
Gate Count	1619000 Gates
Junction Temperature	$+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, Ten Se	$+275{ }^{\circ} \mathrm{C}$

CAUTION: Stresses above those listed in the "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operation section of this specification is not implied.

Operating Conditions

Operating Voltage Range Operating Temperature Ranges: $\begin{aligned} & \text { HM-91 M2-9 } \\ & \text { HM-91M2-8 } \end{aligned}$	$\begin{aligned} & .+4.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V} \\ & -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$

D.C. Electrical Specifications $\quad V C C=5 \mathrm{~V} \pm 10 \% ; T A=H M-91 \mathrm{M} 2-9-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ $T A=H M-91 M 2-8-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
ICCSB1	Standby Supply Current (CMOS)	-	2.0	mA	$1 \mathrm{O}=0, \mathrm{E} 3=\mathrm{S}=0.3 \mathrm{~V}, \mathrm{VCC}=5.5 \mathrm{~V}$
ICCSB	Standby Supply Current (TTL)	-	2.0	mA	$\begin{aligned} & 1 O=0, \overline{\mathrm{E} 1}=\overline{\mathrm{E} 2}=\mathrm{VIH}, E 3=S=V I L, \\ & \mathrm{VCC}=5.5 \mathrm{~V}, \mathrm{VIN}=\mathrm{VCC} \text { or } \mathrm{GND} \end{aligned}$
ICCEN	Enabled Supply Current	-	5.0	mA	$\begin{aligned} & \mathrm{IO}=0, \overline{\mathrm{E} 1}=\overline{\mathrm{E} 2}=\mathrm{VIL}, \mathrm{E} 3=\mathrm{S}=\mathrm{VIH}, \\ & \mathrm{VCC}=5.5 \mathrm{~V}, \mathrm{VIN}=\mathrm{VCC} \text { or } \mathrm{GND} \end{aligned}$
ICCOP	Operating Supply Current $128 \mathrm{~K} \times 8$ (Note 2) $64 \mathrm{~K} \times 16$	-	$\begin{aligned} & 10 \\ & 20 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$	$\begin{aligned} & \mathrm{IO}=0, \mathrm{f}=1 \mathrm{MHz}, \overline{\mathrm{E} 1}=\overline{\mathrm{E} 2}=\mathrm{VIL}, \\ & \mathrm{E} 3=\mathrm{S}=\mathrm{VIH}, \mathrm{VCC}=5.5 \mathrm{~V}, \mathrm{VIN}=\mathrm{VCC} \text { or } \mathrm{GND} \end{aligned}$
ICCDR	Data Retention Supply Current	-	1.0	mA	$\mathrm{E} 3=\mathrm{S}=0.3 \mathrm{~V}, \mathrm{VCC}=2.0 \mathrm{~V}$
11	Input Leakage Current (Except S)	-1.0	+1.0	$\mu \mathrm{A}$	$\mathrm{VIN}=\mathrm{VCC}$ or GND, VCC $=5.5 \mathrm{~V}$
IIS	Module Select Input Current	-5	+5	$\mu \mathrm{A}$	$\mathrm{VIN}=\mathrm{VCC}$ or $\mathrm{GND}, \mathrm{VCC}=5.5 \mathrm{~V}$
1102	I/O Leakage Current	-5	+5	$\mu \mathrm{A}$	$\mathrm{VIO}=\mathrm{VCC}$ or GND, $\mathrm{VCC}=5.5 \mathrm{~V}$
VCCDR	Data Retention Supply Voltage	2.0	-	V	
VOL	Output Voltage Low	-	0.4	V	$1 \mathrm{OL}=4.0 \mathrm{~mA}, \mathrm{VCC}=4.5 \mathrm{~V}$
VOH1	Output Voltage High	2.4	-	V	$1 \mathrm{OH}=-1.0 \mathrm{~mA}, \mathrm{VCC}=4.5 \mathrm{~V}$
VOH2	Output Voltage High (Note 3)	VCC-0.4		V	$1 \mathrm{OH}=-100 \mu \mathrm{~A}, \mathrm{VCC}=4.5 \mathrm{~V}$
VIL	Input Voltage Low	-0.3	0.8	V	
VIH	Input Voltage High	2.4	VCC+0.3	V	

Capacitance (Note 3)

SYMBOL	PARAMETER	MAX	UNITS	TEST CONDITIONS
CI	Input Capacitance (Except S)	25	pF	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{VA}=\mathrm{VCC}$ or GND
CDQ	Data I/O Capacitance	150	pF	$\mathrm{f}=1 \mathrm{MHz}$, VDQ and VG $=$ VCC or GND
CIS	Module Select Input Capacitance	150	pF	$\mathrm{f}=1 \mathrm{MHz}$, VEN $=\mathrm{VCC}$ or GND

NOTES:

1. All devices tested at worst case temperature and supply voltage limits.
2. Typical derating: $128 \mathrm{~K} \times 8: 5 \mathrm{~mA} / \mathrm{MHz}$ increase in ICCOP; $64 \mathrm{~K} \times 16: 10 \mathrm{~mA} / \mathrm{MHz}$.
3. Guaranteed but not tested.
4. Input pulse levels: 0 to 3.0 V ; Input rise and fall times: 10 ns max; Input and output timing reference level: 1.5 V ; Output load: 1 TTL gate equivalent and $C L=100 \mathrm{pF} \mathrm{min}$ including scope and jig - for CL greater than 100 pF , access time is derated by $0.15 \mathrm{~ns} / \mathrm{pF}$.
5. Enable valid (EV) in a parameter is determined the last transition that results in the combination of $\overline{\mathrm{E} 1}$ low, $\overline{\mathrm{E} 2}$ low and E3 high. Enable invalid $(E X)$ in a parameter is determined by the first transition that results in any other combination than $\overline{\mathrm{E}} 1$ low, $\overline{\mathrm{E}} 2$ low and E 3 high.

Specifications HM-91M2-8/HM-91M2-9
A.C. Electrical Specifications (Notes 1, 4) $\quad \mathrm{VCC}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=\mathrm{HM}-91 \mathrm{M} 2-9-40^{\circ} \mathrm{C}$ to $+85{ }^{\circ} \mathrm{C}$ $T_{A}=H M-91 M 2-8 \quad-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

PIN NO.	SYMBOL		PARAMETER		MIN	MAX	UNITS	TEST CONDITIONS
READ CYCLE								
(1)	TAVAX	tRC	Read Cycle Time		200	-	ns	
(2)	TAVQV	tAA	Address Access Time		-	200	ns	
(3)	TEVQV	tCE1	Chip Enable Access Time		-	200	ns	(Note 5)
(4)	TSHQV	tCE2	Module Select Access Time		-	180	ns	
(5)	TGLQV	tOE	Output Enable Access Time		-	120	ns	
(6)	TEVQX	tLZ1	Chip Enable Output Enable Time		30	-	ns	(Notes 3, 5)
(7)	TSHQX	tLZ2	Module Select Output Enable Time		5	-	ns	(Note 3)
(8)	TGLQX	tOLZ	Output Enable Time		5	-	ns	(Note 3)
(9)	TAXQX	tOH	Address Output Hold Time		30	-	ns	(Note 3)
(10)	TEXQZ	tHZ1	Chip Disable Output Disable Time		0	85	ns	(Notes 3, 5)
(11)	TSLQZ	tHZ2	Module Select Output Disable Time		0	60	ns	(Note 3)
(12)	TGHQZ	tOZ	Output Disable Time		0	70	ns	(Note 3)
WRITE CYCLE								
(13)	TAVAX	tWC	Write Cycle Time		200	-	ns	
(14)	TWLWH	tWP	Write Pulse Width		100	-	ns	
(15)	TEVWH	tCW	Chip Enable to End of Write	$\overline{\text { W }}$ Controlled	145	-	ns	(Note 5)
(16)	TEVEX	tCW	Chip Enable to End of Write	E Controlled	120	-	ns	(Notes 3, 5)
(17)	TSHSL	tCW	Cinip Enable to End of Write	S Controlled	120	-	ns	(Note 3)
(18)	TAVWL	tAS	Address Setup Time	\bar{W} Controlled	50	-	ns	
(19)	TAVEV	tAS	Address Setup Time	E Controlled	40	-	ns	(Notes 3, 5)
(20)	TAVSH	tAS	Address Setup Time	S Controlled	40	-	ns	(Note 3)
(21)	TWHAX	tWR	Write Recovery Time	$\overline{\text { W }}$ Controlled	10	-	ns	
(22)	TEXAX	tWR	Write Recovery Time	E Controlled	10	-	ns	(Notes 3, 5)
(23)	TSLAX	tWR	Write Recovery Time	S Controlled	10	-	ns	(Note 3)
(24)	TDVWH	tDW	Data Setup Time	$\overline{\text { W }}$ Controlled	60	-	ns	
(25)	TDVEX	tDW	Data Setup Time	E Controlled	55	-	ns	(Note 3, 5)
(26)	TDVSL	tDW	Data Setup Time	S Controlled	55	-	ns	(Note 3)
(27)	TWHDX	tDH	Data Hold Time	$\overline{\text { W }}$ Controlled	35	-	ns	
(28)	TEXDX	tDH	Data Hold Time	E Controlled	35	-	ns	(Notes 3, 5)
(29)	TSLDX	tDH	Data Hold Time	S Controlled	35	-	ns	(Note 3)
(30)	TWLQZ	tWZ	Write Enable Output Disable Time		-	95	ns	(Note 3)
(31)	TWHQX	tOW	Write Disable Output Enable Time		10	-	ns	(Note 3)

NOTES:

1. All devices tested at worst case temperature and supply voltage limits.
2. Typical derating: $128 \mathrm{~K} \times 8: 5 \mathrm{~mA} / \mathrm{MHz}$ increase in ICCOP; $64 \mathrm{~K} \times 16: 10 \mathrm{~mA} / \mathrm{MHz}$.
3. Guaranteed but not tested.
4. Input pulse levels: 0 to 3.0 V ; Input rise and fall times: 10 ns max; Input and output timing reference level: 1.5 V ; Output load: 1 TTL gate equivalent and $C L=100 \mathrm{pF}$ min including scope and jig - for $C L$ greater than 100 pF , access time is derated by $0.15 \mathrm{~ns} / \mathrm{pF}$.
5. Enable valid (EV) in a parameter is determined the last transition that results in the combination of E1 low, $\bar{E} 2$ low and E3 high. Enable invalid (EX) in a parameter is determined by the first transition that results in any other combination than $\overline{\mathrm{E} 1}$ low, $\overline{\mathrm{E} 2}$ low and E3 high.

Absolute Maximum Ratings

Supply Voltage	+7.0V
Input, Output or I/O Voltage Applied	GND-0.3V to VCC +0.3 V
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Power Dissipation	100 mW at 1 MHz
$\theta_{\text {jc }}$	TBDOC/W (Module Package)
$\theta_{\text {ja }}$	TBD ${ }^{\circ} \mathrm{C} / \mathrm{W}$ (Module Package)
Gate Count	. 1619000 Gates
Junction Temperature	$+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, Ten S	. $+275{ }^{\circ} \mathrm{C}$
CAUTION: Stresses above those listed in stress only rating and operation of the dev specification is not implied.	ent damage to the device. This is a ted in the operation section of this

Operating Conditions

Operating Voltage Range Operating Temperature Ranges: HM-91M2B-9 HM-91M2B-8	$\begin{aligned} & \ldots+4.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V} \\ & .-40^{\circ} \mathrm{C} \text { to }+855^{\circ} \mathrm{C} \\ & -55^{\circ} \mathrm{C} \text { to }+12{ }^{\circ} \mathrm{C} \end{aligned}$

D.C. Electrical Specifications $\quad \mathrm{VCC}=5 \mathrm{~V} \pm 10 \% ; \begin{aligned} \mathrm{TA} & =\mathrm{HM}-91 \mathrm{M} 2 \mathrm{~B}-9 \\ \mathrm{TA} & -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{HM}-91 \mathrm{M} 2 \mathrm{~B}-8 & -55{ }^{\circ} \mathrm{C} \text { to }+125{ }^{\circ} \mathrm{C}\end{aligned}$

SYMBEL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
ICCSB1	Standby Supply Current (CMOS)	-	2.0	mA	$1 \mathrm{O}=0, \mathrm{E} 3=\mathrm{S}=0.3 \mathrm{~V}, \mathrm{VCC}=5.5 \mathrm{~V}$
ICCSB	Standby Supply Current (TTL)	-	2.0	mA	$\begin{aligned} & 10=0, \overline{E 1}=\overline{\mathrm{E} 2}=\mathrm{VIH}, E 3=S=V I L, \\ & \mathrm{VCC}=5.5 \mathrm{~V}, \mathrm{VIN}=\mathrm{VCC} \text { or } \mathrm{GND} \end{aligned}$
ICCEN	Enabled Supply Current	-	5.0	mA	$\begin{aligned} & 10=0, \overline{\mathrm{E} 1}=\overline{\mathrm{E} 2}=\mathrm{VIL}, E 3=S=\mathrm{VIH}, \\ & \mathrm{VCC}=5.5 \mathrm{~V}, \mathrm{VIN}=V C C \text { or } G N D \end{aligned}$
ICCOP	 Operating Supply Current $128 \mathrm{~K} \times 8$ (Note 2) $64 \mathrm{~K} \times 16$	-	$\begin{aligned} & 10 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$	$\begin{aligned} & \mathrm{IO}=0, \mathrm{f}=1 \mathrm{MHz}, \overline{\mathrm{E} 1}=\overline{\mathrm{E} 2}=\mathrm{VIL}, \\ & \mathrm{E} 3=\mathrm{S}=\mathrm{VIH}, \mathrm{VCC}=5.5 \mathrm{~V}, \mathrm{VIN}=\mathrm{VCC} \text { or } \mathrm{GND} \end{aligned}$
ICCDR	Data Retention Supply Current	-	1.0	mA	$\mathrm{E} 3=\mathrm{S}=0.3 \mathrm{~V}, \mathrm{VCC}=2.0 \mathrm{~V}$
II	Input Leakage Current (Except S)	-1.0	+1.0	$\mu \mathrm{A}$	$\mathrm{VIN}=\mathrm{VCC}$ or GND, VCC $=5.5 \mathrm{~V}$
IIS	Module Select Input Current	-5	+5	$\mu \mathrm{A}$	$\mathrm{VIN}=\mathrm{VCC}$ or GND, VCC $=5.5 \mathrm{~V}$
IIOZ	I/O Leakage Current	-5	+5	$\mu \mathrm{A}$	$\mathrm{VIO}=\mathrm{VCC}$ or GND, VCC $=5.5 \mathrm{~V}$
VCCDR	Data Retention Supply Voltage	2.0	-	V	
VOL	Output Voltage Low	-	0.4	V	$1 \mathrm{OL}=4.0 \mathrm{~mA}, \mathrm{VCC}=4.5 \mathrm{~V}$
VOH1	Output Voltage High	2.4	-	V	$1 \mathrm{OH}=-1.0 \mathrm{~mA}, \mathrm{VCC}=4.5 \mathrm{~V}$
VOH2	Output Voltage High (Note 3)	VCC-0.4		V	$1 \mathrm{OH}=-100 \mu \mathrm{~A}, \mathrm{VCC}=4.5 \mathrm{~V}$
VIL	Input Voltage Low	-0.3	0.8	V	
VIH	Input Voltage High	2.4	VCC +0.3	V	

Capacitance (Note 3)

SYMBOL	PARAMETER	MAX	UNITS	TEST CONDITIONS
CI	Input Capacitance (Except S)	25	pF	$f=1 \mathrm{MHz}$, VA $=$ VCC or GND
CDQ	Data I/O Capacitance	150	pF	$\mathrm{f}=1 \mathrm{MHz}$, VDQ and VG $=$ VCC or GND
CIS	Module Select Input Capacitance	150	pF	$\mathrm{f}=1 \mathrm{MHz}$, VEN $=$ VCC or GND

NOTES:

1. All devices tested at worst case temperature and supply voltage limits.
2. Typical derating: $128 \mathrm{~K} \times 8: 5 \mathrm{~mA} / \mathrm{MHz}$ increase in ICCOP; $64 \mathrm{~K} \times 16: 10 \mathrm{~mA} / \mathrm{MHz}$.
3. Guaranteed but not tested.
4. Input pulse levels: 0 to 3.0 V ; Input rise and fall times: 10 ns max; Input and output timing reference level: 1.5 V ; Output load: 1 TTL gate equivalent and $C L=100 \mathrm{pF}$ min including scope and jig - for CL greater than 100 pF , access time is derated by $0.15 \mathrm{~ns} / \mathrm{pF}$.
5. Enable valid (EV) in a parameter is determined the last transition that results in the combination of $\overline{\mathrm{E} 1}$ low, $\overline{\mathrm{E} 2}$ low and E3 high. Enable invalid (EX) in a parameter is determined by the first transition that results in any other combination than $\overline{\mathrm{E} 1}$ low, $\overline{\mathrm{E} 2}$ low and E3 high.

Specifications HM-91M2B-8/HM-91M2B-9
D.C. Electrical Specifications (Notes 1, 4) VCC $=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=\mathrm{HM}-91 \mathrm{M} 2 \mathrm{~B}-9-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ $\mathrm{T}_{\mathrm{A}}=\mathrm{HM}-91 \mathrm{M} 2 \mathrm{~B}-8-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

PIN NO.	SYMBOL		PARAMETER		MIN	MAX	UNITS	TEST CONDITIONS
READ CYCLE								
(1)	TAVAX	tRC	Read Cycle Time		180	-	ns	
(2)	TAVQV	tAA	Address Access Time		-	180	ns	
(3)	TEVQV	tCE1	Chip Enable Access Time		-	180	ns	(Note 5)
(4)	TSHQV	tCE2	Module Select Access Time		-	160	ns	
(5)	TGLQV	tOE	Output Enable Access Time		-	120	ns	
(6)	TEVQX	tLZ1	Chip Enable Output Enable Time		25	-	ns	(Notes 3, 5)
(7)	TSHQX	tLZ2	Module Select Output Enable Time		5	-	ns	(Note 3)
(8)	TGLQX	tOLZ	Output Enable Time		5	-	ns	(Note 3)
(9)	TAXQX	tOH	Address Output Hold Time		30	-	ns	(Note 3)
(10)	TEXQZ	tHZ1	Chip Disable Output Disable Time		0	75	ns	(Notes 3, 5)
(11)	TSLQZ	tHZ2	Module Select Output Disable Time		0	50	ns	(Note 3)
(12)	TGHQZ	toz	Output Disable Time		0	60	ns	(Note 3)
WRITE CYCLE								
(13)	TAVAX	tWC	Write Cycle Time		180	-	ns	
(14)	TWLWH	tWP	Write Pulse Width		100	-	ns	
(15)	TEVWH	tCW	Chip Enable to End of Write	$\overline{\text { W }}$ Controlled	140	-	ns	(Note 5)
(16)	TEVEX	tCW	Chip Enable to End of Write	E Controlled	120	-	ns	(Notes 3, 5)
(17)	TSHSL	tCW	Chip Enable to End of Write	S Controlled	120	-	ns	(Note 3)
(18)	TAVWL	tAS	Address Setup Time	\bar{W} Controlled	40	-	ns	
(19)	TAVEV	tAS	Address Setup Time	E Controlled	40	-	ns	(Notes 3, 5)
(20)	TAVSH	tAS	Address Setup Time	S Controlled	40	-	ns	(Note 3)
(21)	TWHAX	tWR	Write Recovery Time	\bar{W} Controlled	10	-	ns	
(22)	TEXAX	tWR	Write Recovery Time	E Controlled	10	-	ns	(Notes 3, 5)
(23)	TSLAX	tWR	Write Recovery Time	S Controlled	10	-	ns	(Note 3)
(24)	TDVWH	tDW	Data Setup Time	\bar{W} Controlled	60	-	ns	
(25)	TDVEX	tDW	Data Setup Time	E Controlled	55	-	ns	(Note 3,5)
(26)	TDVSL	tDW	Data Setup Time	S Controlled	55	-	ns	(Note 3)
(27)	TWHDX	tDH	Data Hold Time	W Controlled	35	-	ns	
(28)	TEXDX	tDH	Data Hold Time	E Controlled	35	-	ns	(Notes 3, 5)
(29)	TSLDX	tDH	Data Hold Time	S Controlled	35	-	ns	(Note 3)
(30)	TWLQZ	tWZ	Write Enable Output Disable Time		-	95	ns	(Note 3)
(31)	TWHQX	tow	Write Disable Output Enable Time		10	-	ns	(Note 3)

NOTES:

1. All devices tested at worst case temperature and supply voltage limits.
2. Typical derating: $128 \mathrm{~K} \times 8: 5 \mathrm{~mA} / \mathrm{MHz}$ increase in ICCOP; $64 \mathrm{~K} \times 16: 10 \mathrm{~mA} / \mathrm{MHz}$.
3. Guaranteed but not tested.
4. Input pulse levels: 0 to 3.0 V ; Input rise and fall times: 10 ns max; Input and output timing reference level: 1.5 V ; Output load: 1 TTL gate equivalent and $C L=100 \mathrm{pF}$ min including scope and jig - for CL greater than 100 pF , access time is derated by $0.15 \mathrm{~ns} / \mathrm{pF}$.
5. Enable valid (EV) in a parameter is determined the last transition that results in the combination of E1 low, $\overline{E 2}$ low and E3 high. Enable invalid $(E X)$ in a parameter is determined by the first transition that results in any other combination than $\overline{\mathrm{E}} 1$ low, $\overline{\mathrm{E}} 2$ low and E 3 high.

Timing Diagrams: Read Cycles

READ CYCLE 1: Address Controlled (Notes 1, 2)

READ CYCLE 2: E, S, or \bar{G} Controlled (Note 1)

READ CYCLE NOTES:

1. In a read cycle, \bar{W} is held high.
2. In read cycle 1 , the module is kept continuously enabled: $\overline{\mathrm{E} 1}, \overline{\mathrm{E} 2}$ and $\overline{\mathrm{G}}$ are held low; E 3 and S are held high.

Timing Diagrams: Write Cycles WRITE CYCLE 1: $\overline{\mathbf{W}}$ Controlled (Note 1)

WRITE CYCLE 2: $\overline{\mathbf{E 1}}, \overline{\mathrm{E} 2}$, or E3 Controlled (Note 2)

HM-91M2

Timing Diagrams: Write Cycles

WRITE CYCLE 3: S Controlled (Note 3)

WRITE CYCLE NOTES:

1. In Write Cycle 1, the module is first enabled, and then data is strobed into the RAM with a pulse on \bar{W}. If \bar{G} is held high for the entire cycle, the outputs will remain in the high impedance state. If $\overline{\mathrm{G}}$ is held low, it may be necessary to lengthen the cycle to prevent bus contention. This would occur if TWLQZ and TDVWH overlapped.
2. In Write Cycle 2, Address (A) and Write Enable (\bar{W}) are first set up and then data is strobed into the RAM with a pulse on E.
3. In Write Cycle 3, Addresses (A), Write Enable (\bar{W}) and the Chip Enable inputs ($\overline{\mathrm{E} 1}, \overline{\mathrm{E} 2}$ and E 3) are first set up and data is then strobed into the RAM with the Module Select (S) input.

TRUTH TABLE

S	$\overline{E 1 A}$	E2A	E3A	INPUTS			$\overline{\mathbf{G A}}$	$\overline{\mathbf{G B}}$	\bar{W}	MODE
				E1B	E2B	E3B				
GND	X	X	GND	X	X	GND	X	X	X	Standby (CMOS) Sides A and B
VIL	X	X	X	X	X	X	X	X	X	Standby (TTL) Sides A and B
X	VIH	X	X	X	X	X	X	X	X	Standby (TTL) Side A
X	X	VIH	X	X	X	X	X	X	X	Standby (TTL) Side A
X	X	X	VIL	X	X	X	X	X	X	Standby (TTL) Side A
X	X	X	X	VIH	X	X	X	X	X	Standby (TTL) Side B
X	X	X	X	X	VIH	X	X	X	X	Standby (TTL) Side B
X	X	X	X	X	X	VIL	X	X	X	Standby (TTL) Side B
VIH	VIL	VIL	VIH	X	X	X	VIH	X	VIH	Side A Enabled, Outputs High Impedance
VIH	X	X	X	VIL	VIL	VIH	X	VIH	VIH	Side B Enabled, Outputs High Impedance
VIH	VIL	VIL	VIH	X	X	X	VIL	X	VIH	Read Side A
VIH	X	X	X	VIL	VIL	VIH	X	VIL	VIH	Read Side B
VIH	VIL	VIL	VIH	X	X	X	X	X	VIL	Write Side A
VIH	X	X	X	VIL	VIL	VIH	X	X	VIL	Write Side B

NOTE:
Side A refers to the half of the module that connects to DQO through DQ7 and side B refers to the half of the module that connects to DQ8 through DQ15. When the module is configured as a $64 \mathrm{~K} \times 16$ array, side A and side B may be enabled either simultaneously or separately. When the array is configured as a $128 \mathrm{~K} \times 8$ array, side A and B should not be enabled simultaneously, as bus contention could result.

Organizational Guide

FOR 128K X 8 CONFIGURATION

CONNECT: PIN 16 (DQ0) to PIN 33 (DQ8)
PIN 17 (DQ1) to PIN 32 (DQ9)
PIN 18 (DQ2) to PIN 31 (DQ10)
PIN 19 (DQ3) to PIN 30 (DQ11)
PIN 20 (DQ4) to PIN 29 (DQ12)
PIN 21 (DQ5) to PIN 28 (DQ13)
PIN 22 (DQ6) to PIN 27 (DQ14)
PIN 23 (DQ7) to PIN 26 (DQ15)

FOR 64K X 16 CONFIGURATION

CONNECT: PIN $9(\overline{\mathrm{E} 1 \mathrm{~A}})$ to PIN $40(\overline{\mathrm{E} 1 \mathrm{~B}})$ PIN 10 (E2A) to PIN 39 (E2B) PIN 11 (E3A) to PIN 38 (E3B) PIN $13(\overline{\mathrm{GA}})$ to PIN $36(\overline{\mathrm{~GB}})$

Concerns for Proper Operation of Chip Enables:

The transition between blocks of RAM requires a change in the chip enable being used. When operating in the $64 \mathrm{~K} \times 16$ mode use the chip enables as if there were only three, E1 thru E3. In the 128K $\times 8$ mode all chip enables must be treated separately. Transitions between chip enables must be treated with the same constraints that apply to any one chip enable. More than one (internal) chip enable low simultaneously, for devices whose outputs are tied together either internally or externally, is an illegal input condition and must be avoided.

Printed Circuit Board Mounting:

The leadless chip carrier packages used in the HM-91M2 have conductive lids. These lids are electrically connected to GND.The system designer should be aware that the carriers on the bottom side could short conductors below if pressed completely down against the surface of the circuit board. The pins on the package are designed with a standoff feature to help prevent the leadless carriers from touching the circuit board surface.

Low Voltage Data Retention

Harris CMOS RAMs are designed with battery backup in mind. Data retention voltage and supply current are guaranteed over temperature. The following rules insure data retention:

1. The module must be kept disabled during data retention. The Chip Enable (E3A and E3B) and module select (S) must be between -0.3 V and +0.3 V .
2. During power-up and power-down transitions. S must be held between -0.3 V and 10% of VCC.
3. The RAM module can begin operation one TAVAX after VCC reaches the minimum operating voltage (4.5 V).

8 HARRIS

- Address Latches Included On Chip
- Easy Microprocessor Interfacing
- Wide Operating Temperature Ranges:

$$
\begin{aligned}
& \text { HM-6642-9 . }-45^{\circ} \mathrm{C} 5^{\circ} \mathrm{C} \text { to } \text { to }+ \text { +125 }^{\circ} \mathrm{C} \\
& \\
& \rightarrow \text { HM-6642-8 }
\end{aligned}
$$

Description

The HM-6642 is a 512×8 CMOS NiCr fusible link Programmable Read Only Memory in the popular 24 pin, byte wide pinout. Synchronous circuit design techniques combine with CMOS processing to give this device high speed performance with very low power dissipation.
On chip address latches are provided, allowing easy interfacing with recent generation microprocessors that use multiplexed address/data bus structures, such as the 8085. The output enable controls, both active low and active high, further simplify microprocessor system interfacing by allowing output data bus control independent of the chip enable control. The data output latches allow the use of the HM-6642 in high speed pipelined architecture systems, and also in synchronous logic replacement functions.

Applications for the HM-6642 CMOS PROM include low power handheld microprocessor based instrumentation and communications systems, remote data acquisition and processing systems, processor control store, and synchronous logic replacement.

Pinouts

TOP VIEW

A-Address Input $\overline{\mathrm{G}}$-Output Enable
Q-Data Output P-Program Enable $\begin{array}{lr}\text { E-Chip Enable } & \text { (P-Should be Hardwired to GND } \\ \text { NC-No Connect } & \text { Except During Programming) }\end{array}$

LCC TOP VIEW

Functional Diagram

CAUTION: These devices are sensitive to electrostatic discharge. Proper I.C. handling procedures should be followed.

Absolute Maximum Ratings

Operating Conditions

Operating Temperature Ranges:	
HM-6642B-9	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
HM-6642B-8	$55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

D.C. Electrical Specifications $\quad \mathrm{VCC}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=\mathrm{HM}-6642 \mathrm{~B}-9-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

$$
\mathrm{T}_{\mathrm{A}}=\mathrm{HM}-6642 \mathrm{~B}-8 \quad-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}
$$

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
ICCSB	Standby Supply Current	-	100	$\mu \mathrm{~A}$	$10=0, \mathrm{VI}=\mathrm{VCC}$ or GND
ICCOP	Operating Supply Current (Note 3)	-	20	mA	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{IO}=0, \mathrm{VI}=\mathrm{VCC}$ or GND
II	Input Leakage Current	-1.0	+1.0	$\mu \mathrm{~A}$	$\mathrm{GND} \leq \mathrm{VI} \leq \mathrm{VCC}$
IOZ	Output Leakage Current	-1.0	+1.0	$\mu \mathrm{~A}$	$\mathrm{GND} \leq \mathrm{VO} \leq \mathrm{VCC}$
VIL	Input Low Voltage	-0.3	0.8	V	
VIH	Input High Voltage	2.4	$\mathrm{VCC}+0.3$	V	
VOL	Output Low Voltage	-	0.4	V	$\mathrm{IOL}=3.2 \mathrm{~mA}$
VOH 1	Output High Voltage	2.4	-	V	$\mathrm{IOH}=-1.0 \mathrm{~mA}$
VOH 2	Output High Voltage (Note 2)	$\mathrm{VCC}-1.0$	-	V	$1 \mathrm{OH}=-100 \mu \mathrm{~A}$

A.C. Electrical Specifications

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
(1) TELQV	Chip Enable Access Time	-	120	ns	(Notes 1,4)
(2) TAVQV	Address Access Time (TAVQV = TELQV + TAVEL)	-	140	ns	(Notes 1, 4)
(3) TGVQV	Output Enable Access Time	-	50	ns	(Notes 1, 4)
(4) TGVQX	Output Enable Time	5	50	ns	(Notes 2, 4)
(5) TGXQZ	Output Disable Time	-	50	ns	(Notes 2, 4)
(6) TELEH	Chip Enable Pulse Negative Width	120	-	ns	(Notes 1, 4)
(7) TELEL	Read Cycle Time	160	-	ns	(Notes 1,4)
(8) TEHEL	Chip Enable Pulse Positive Width	40	-	ns	(Notes 1, 4)
(9) TAVEL	Address Set-up Time	20	-	ns	(Notes 1,4)
(10) TELAX	Address Hold Time	25	-	ns	(Notes 1,4)

Capacitance

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
CI	Input Capacitance (Note 2)	-	10.0	pF	$\mathrm{VI}=\mathrm{VCC}$ or $\mathrm{GND}, \mathrm{f}=1 \mathrm{MHz}$
CO	Output Capacitance (Note 2)	-	12.0	pF	$\mathrm{VO}=\mathrm{VCC}$ or GND, $\mathrm{f}=1 \mathrm{MHz}$

NOTES:

1. Input pulse levels: 0 to 3.0 V ; Input rise and fall times: 5 ns (max); Input and output timing reference level: 1.5 V ; Output load: 1 TLL gate equivalent $C L=50 \mathrm{pF}(\mathrm{min})-$ for CL greater than 50 pF , access time is derated by 0.15 ns per pF .
2. Tested at initial design and after major design changes.
3. Typical derating $5 \mathrm{~mA} / \mathrm{MHz}$ increase in ICCOP.
4. $\mathrm{VCC}=4.5 \mathrm{~V}$ and 5.5 V .

Absolute Maximum Ratings

Supply Voltage	7.0V
Input, Output or I/O Voltage Applied.	GND -0.3V to VCC +0.3V
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Package Power Dissipation	1 Watt
$\theta_{\text {jc }}$	$26^{\circ} \mathrm{C} / \mathrm{W}$ (CERDIP Package), TBD $^{\circ} \mathrm{C} / \mathrm{W}$ (LCC Package)
	$56^{\circ} \mathrm{C} / \mathrm{W}$ (CERDIP Package), TBD $^{\circ} \mathrm{C} / \mathrm{W}$ (LCC Package)
Gate Count	1680 Gates
Junction Temperature	$+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, Ten Se	$+275{ }^{\circ} \mathrm{C}$
CAUTION: Stresses above those listed stress only rating and operation of the de specification is not implied.	Ratings" may cause permanent damage to the device. This is a conditions above those indicated in the operation section of this

Operating Conditions

Operating Voltage Range \qquad +4.5 V to +5.5 V Operating Temperature Ranges:	
HM-6642-9 .	$-40^{\circ} \mathrm{C}$ to $+85{ }^{\circ} \mathrm{C}$
HM-6642-8	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

D.C. Electrical Specifications $V C C=5 \mathrm{~V} \pm 10 \% ; T_{A}=H M-6642-9-400^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ $T_{A}=H M-6642-8 \quad-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
ICCSB	Standby Supply Current	-	100	$\mu \mathrm{~A}$	$\mathrm{IO}=0, \mathrm{VI}=\mathrm{VCC}$ or GND
ICCOP	Operating Supply Current (Note 3)	-	20	mA	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{IO}=0, \mathrm{VI}=\mathrm{VCC}$ or GND
II	Input Leakage Current	-1.0	+1.0	$\mu \mathrm{~A}$	$\mathrm{GND} \leq \mathrm{VI} \leq \mathrm{VCC}$
IOZ	Output Leakage Current	-1.0	+1.0	$\mu \mathrm{~A}$	$\mathrm{GND} \leq \mathrm{VO} \leq \mathrm{VCC}$
VIL	Input Low Voltage	-0.3	0.8	V	
VIH	Input High Voltage	2.4	$\mathrm{VCC}+0.3$	V	
VOL	Output Low Voltage	-	0.4	V	$\mathrm{IOL}=3.2 \mathrm{~mA}$
VOH1	Output High Voltage	2.4	-	V	$\mathrm{IOH}=-1.0 \mathrm{~mA}$
VOH2	Output High Voltage (Note 2)	$\mathrm{VCC}-1.0$	-	V	$\mathrm{IOH}=-100 \mu \mathrm{~A}$

A.C. Electrical Specifications

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
(1) TELQV	Chip Enable Access Time	-	200	ns	(Notes 1, 4)
(2) TAVQV	Address Access Time (TAVQV = TELQV + TAVEL)	-	220	ns	(Notes 1, 4)
(3) TGVQV	Output Enable Access Time	-	150	ns	(Notes 1, 4)
(4) TGVQX	Output Enable Time	5	150	ns	(Notes 2, 4)
(5) TGXQZ	Output Disable Time	-	150	ns	(Notes 2, 4)
(6) TELEH	Chip Enable Pulse Negative Width	200	-	ns	(Notes 1, 4)
(7) TELEL	Read Cycle Time	350	-	ns	(Notes 1,4)
(8) TEHEL	Chip Enable Pulse Positive Width	150	-	ns	(Notes 1, 4)
(9) TAVEL	Address Set-up Time	20	-	ns	(Notes 1, 4)
(10) TELAX	Address Hold Time	60	-	ns	(Notes 1, 4)

Capacitance

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
CI	Input Capacitance (Note 2)	-	10.0	pF	$\mathrm{VI}=\mathrm{VCC}$ or $\mathrm{GND}, \mathrm{f}=1 \mathrm{MHz}$
CO	Output Capacitance (Note 2)	-	12.0	pF	$\mathrm{VO}=\mathrm{VCC}$ or GND, $\mathrm{f}=1 \mathrm{MHz}$

NOTES:

1. Input pulse levels: 0 to 3.0 V ; Input rise and fall times: 5 ns (max); Input and output timing reference level: 1.5 V ; Output load: 1 TTL gate equivalent $\mathrm{CL}=50 \mathrm{pF}(\mathrm{min})-$ for CL greater than 50 pF , access time is derated by 0.15 ns per pF .
2. Tested at initial design and after major design changes.
3. Typical derating $5 \mathrm{~mA} / \mathrm{MHz}$ increase in ICCOP.
4. $\mathrm{VCC}=4.5 \mathrm{~V}$ and 5.5 V .

Read Cycle

*G HAS SAME TIMING AS $\overline{\mathrm{G}}$ EXCEPT SIGNAL IS INVERTED

TIME REFERENCE	$\overline{\mathrm{E}}$	$\overline{\mathrm{G}}$	A	OUTPUTS 0	FUNCTION
-1	H	H	X	Z	Memory Disabled
0	4	H	V	Z	Cycle Begins-Addresses are Latched
1	L	L	X	X	Output Enabled
2	L	L	X	V	Output Valid
3	\rightarrow	L	X	V	Output Latched
4	H	H	X	Z	Read Accomplished and Output Disabled
5	H	H	X	Z	Prepare for Next Cycle (Same as -1)
6	1	H	X	Z	Cycle Ends, Next Cycle Begins (Same as 0)

In the HM-6642 read cycle, the address information is latched into the on chip registers on the falling edge of $\overline{\mathrm{E}}(\mathrm{T}=0)$. Minimum address setup and hold time requirements must be met. After the required hold time, the address may change state without affecting device operation. To read data $\overline{\mathrm{G} 1}$ and $\overline{\mathrm{G} 2}$ must be low, and G3 must be high. After access time, \bar{E} may be take high to latch the data
outputs and begin TEHEL. Taking either or both $\overline{\mathrm{G} 1}$ or $\overline{\mathrm{G} 2}$ high or G3 low will force the output buffers to a high impedance state. The output data may be reenabled at any time taking $\overline{\mathrm{G} 1}$ and $\overline{\mathrm{G} 2}$ low and G3 high. On the falling edge of $\overline{\mathrm{E}}$ the data will be unlatched. P should be grounded except when in the programming mode.

Programming

INTRODUCTION

The HM-6642 is a 512 word, by 8 bit field programmable read only memory utilizing nichrome fusible links as programmable memory elements. Selected memory locations are permanently changed from their manufactured state, of all low (VOL) to a logical high (VOH), by the controlled application of programming potentials and pulses. Careful adherence to the following programming specifications will result in high programming yield. Both high VCC (6.0V) and low VCC (4.0V) verify cycles are specified to assure the integrity of the programmed fuse. This programming specification, although complete, does not preclude rapid programming. The worst case programming time required is 37.4 seconds, and typical programming time can be approximately 4 seconds per device.

The chip ($\overline{\mathrm{E}}$) and output enable (G) are used during the programming procedure. On PROM's which have more than one output enable control G3 is to be used. The other output enables must be held in the active, or enabled, state throughout the entire programming sequence. The prog-
rammer designer is advised that all pins of the programmer's socket should be at ground potential when the PROM is inserted into the socket. VCC must be applied to the PROM before any input or output pin is allowed to rise*.

OVERALL PROGRAMMING PROCEDURE

1. The address of the first bit to be programmed is presented, and latched by the chip enable (\bar{E}) falling edge. The output is disabled by taking the output enable G Low: The programming pin is enabled by taking (P) high.
2. VCC is raised to the programming voltage level, 12.5 V .
3. All data output pins are pulled up to VCC program. Then the data output pin corresponding to the bit to be programmed is pulled low for 100μ s. Only one bit should be programmed at a time.
4. The data output pin is returned to VCC, and the VCC pin is returned to 6.0 V .
5. The address of the bit is again presented, and latched by a second chip enable falling edge.
6. The data outputs are enabled, and read, to verify that the bit was successfully programmed.
(a) If verified, the next bit to be programmed is addressed and programmed.
(b) If not verified, the program/verify sequence is repeated up to 8 times total.
7. After all bits to be programmed have been verified at 6.0 V , the VCC is lowered to 4.0 V and all bits are verified.
(a) If all bits verify, the device is properly programmed.
(b) If any bit fails to verify, the device is rejected.

PROGRAMMING SYSTEM REQUIREMENTS

1. The power supply for the device to be programmed must be able to be set to three voltages; $4.0 \mathrm{~V}, 6.0 \mathrm{~V}$, 12.5 V . This supply must be able to supply 500 mA average, and 1 A dynamic, currents to the PROM during programming. The power supply rise fall times when switching between voltages must be no quicker than $1 \mu \mathrm{~s}$.
2. The address drivers must be able to supply a VIH of 4.0 V and 6.0 V and VIL when the system is at programming voltages.*
3. The control input buffers must be able to maintain input voltage levels of $\geq 70 \%$ and $\leq 20 \%$ VCC for VIH and VIL levels, respectively. Notice that chip enable ($\overline{\mathrm{E}}$) and G does not require a pull up to programming voltage levels. The program control (P) must switch from ground to VIH and from VIH to the VCC PGM level.*
4. The data input buffers must be able to sink up to 3 mA from the PROM's output pins without rising more than 0.7 V above ground, be able to hold the other outputs high with a current source capability of 0.5 mA to 2.0 mA , and not interfere with the reading and verifying of the data output of the PROM. Notice that a bit to be programmed is changed from a low state (VOL) to high (VOH) by pulling low on the output pin. A suggested implementation is open collector TTL buffers (or inverters) with $4.7 \mathrm{k} \Omega$ pull up resistors to VCC.*
*NOTE: Never allow any input or output pin to rise more than 0.3 V above VCC , or fall more than 0.3 V below ground

Programming System Specifications

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS
VCC PROG	Programming VCC	12.0	12.0	12.5	V
VCCN	Operating VCC	4.5	5.0	5.5	V
VCC LV	Special Verify VCC	4.0	-	6.0	V
ICC	System ICC Capability	500	-	-	mA
ICC Peak	Transient ICC Capability	1.0	-	-	A
VOL	For PROM Input Pins: Output Low Voltage (to PROM)	-0.3	GND	20\% VCC	V
VOH	Output High Voltage (to PROM)	70\% VCC	VCC	VCC+0.3	V
IOL	Output Sink Current (at VOL)	0.01	-	-	mA
IOH	Output Source Current (at VOH)	0.01	-	-	mA
VOL	For PROM Data Output PIns: Output Low Voltage (to PROM)	-0.3	GND	0.7	V
VOH	Output High Voltage (to PROM)	70\% VCC	VCC	VCC+0.3	V
IOL	Output Sink Current (at VOL)	3.0	-	-	mA
IOH	Output Source Current (at VOH)	0.5	1.0	2.0	mA
(1) t_{d}	Delay Time	1.0	1.0	-	$\mu \mathrm{s}$
(2) t_{r}	Rise Time	1.0	10.0	10.0	$\mu \mathrm{s}$
(3) t_{f}	Fall Time	1.0	10.0	10.0	$\mu \mathrm{s}$
(4) TEHEL	Chip Enable Pulse Width	500	-	-	ns
(5) TAVEL	Address Valid to Chip Enable Low Time	500	-	-	ns
(6) TELQV	Chip Enable Low to Output Valid Time	-	-	500	ns
(7) $t_{\text {pw }}$	Programming Pulse Width	90	100	110	$\mu \mathrm{S}$
$t_{\text {IP }}$	Input \%eakage at VCC = VCC PROG	-10	+1.0	10	$\mu \mathrm{A}$
T_{A}	Ambient Temperature	-	25	-	${ }^{\circ} \mathrm{C}$

Program and Verify Cycle

Low Voltage Verify Cycle

- Synchronous Operation
- On-Chip Address Latches
- Separate Output Enable
- Wide Operating Temperature Ranges:
- HM-6617-9 $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- HM-6617-8
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Description

The HM-6617 is a 16,384 bit fuse link CMOS PROM in a 2 K word by 8 bit/word format with three-state outputs. This PROM is available in the standard 0.600 inch wide 24 pin DIP, the 0.300 inch wide slimline DIP, and the JEDEC standard 32 pin LCC.
The HM-6617 utilizes a synchronous design technique. This includes on-chip address latches and a separate output enable control which makes this device ideal for applications utilizing recent generation microprocessors. This design technique, combined with the Harris advanced self-aligned silicon gate CMOS process technology offers ultralow standby current. Low ICCSB is ideal for battery applications or other systems with low power requirements.
The Harris Nickel-Chromium fuse link technology is utilized on this and other Harris CMOS PROMs. This gives the user a PROM with permanent, stable storage characteristics over the full industrial and military temperature and voltage ranges. NiCr fuse technology combined with the low power characteristics of CMOS provides an excellent alternative to standard Bipolar PROMs or NMOS EPROMs.
All bits are manufactured storing a logical " 0 " and can be selectively programmed for a logical " 1 " at any bit location.

LCC
TOP VIEW

Functional Diagram

Absolute Maximum Ratings

Operating Conditions

Operating Voltage Range +4.5 V to +5.5 V Operating Temperature Ranges:	
HM-6617-9	$40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
HM-6617-8	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

D.C. Electrical Specifications $\quad \mathrm{VCC}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=\mathrm{HM}-6617-9 \quad-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{A}}=\mathrm{HM}-6617-8 \quad-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
VIH	Logical One Input Voltage	2.4	VCC +0.3	V	
VIL	Logical Zero Input Voltage	-0.3	0.8	V	
VOH 1	Logical One Output Voltage	2.4	-	V	$\mathrm{IOH}=-2.0 \mathrm{~mA}$
VOH 2	Logical One Output Voltage (Note 2)	$\mathrm{VCC}-1.0$	-	V	$1 \mathrm{OH}=-100 \mu \mathrm{~A}$
VOL	Logical Zero Output Voltage	-	0.4	V	$\mathrm{IOL}=+4.8 \mathrm{~mA}$
II	Input Leakage	-1.0	+1.0	$\mu \mathrm{~A}$	$\mathrm{VIN}=\mathrm{VCC}$ or GND
IOZ	Output Leakage	-1.0	+1.0	$\mu \mathrm{~A}$	$\mathrm{VO}=\mathrm{VCC}$ or $\mathrm{GND}, \overline{\mathrm{G}}=\mathrm{VCC}$
ICCSB	Standby Power Supply Current	-	100	$\mu \mathrm{~A}$	$\mathrm{VIN}=\mathrm{VCC}$ or GND, VCC $=5.5 \mathrm{~V}$, $\mathrm{IO}=0$
ICCOP	Operating Power Supply Current (Note 3)	-	20	mA	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{VCC}=5.5 \mathrm{~V}, \mathrm{IO}=0$, $\mathrm{VIN}=\mathrm{VCC}$ or GND

A.C. Electrical Specifications

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
(1) TAVQV	Address Access Time	-	140	ns	(Notes 1, 4)
(2.) TELQV	Chip Enable Access Time	-	120	ns	(Notes 1, 4)
(3) TELQX	Chip Enable Time	5	-	ns	(Notes 2, 4)
(4) TAVEL	Address Setup Time	20	-	ns	(Notes 1,4)
(5) TELAX	Address Hold Time	25	-	ns	(Notes 1, 4)
(6) TELEH	Chip Enable Low Width	120	-	ns	(Notes 1,4)
(7) TEHEL	Chip Enable High Width	40	-	ns	(Notes 1,4)
(8) TELEL	Cycle Time	160	-	ns	(Notes 1,4)
(9) TGLQV	Output Access Time	-	50	ns	(Notes 1,4)
(10) TGLQX	Output Enable Time	5	-	ns	(Notes 2,4)
(11) TGHQZ	Output Disable Time	-	50	ns	(Notes 2, 4)
(12) TEHQZ	Chip Enable Disable Time	-	50	ns	(Notes 2, 4)

Capacitance

SYMBOL	PARAMETER	MAX	UNITS	TEST CONDITIONS
CIN	Input Capacitance (Note 2)	10	$p F$	$f=1 \mathrm{MHz}$, VIN $=$ VCC $=$ GND
COUT	Output Capacitance (Note 2)	12	$p F$	$f=1 \mathrm{MHz}$, VIN $=$ VCC $=$ GND

NOTES: 1. Input pulse levels: 0 to 3.0 V ; Input rise and fall times: 5 ns (max); Input and output timing reference level: 1.5 V ; Output load: 1 TTL gate equivalent $\mathrm{CL}=50 \mathrm{pF}(\mathrm{min})-$ for CL greater than 50 pF , access time is derated by 0.15 ns per pF .
2. Tested at initial design and after major design changes.
3. Typical derating $5 \mathrm{~mA} / \mathrm{MHz}$ increase in ICCOP.
4. $\mathrm{VCC}=4.5 \mathrm{~V}$ and 5.5 V .

Absolute Maximum Ratings

Operating Conditions

HM-6617B-9	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
HM-6617B-8	$5^{\circ}{ }^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

D.C. Electrical Specifications $\quad \mathrm{VCC}=5 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=\mathrm{HM}-6617 \mathrm{~B}-9-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{A}}=\mathrm{HM}-6617 \mathrm{~B}-8-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
VIH	Logical One Input Voltage	2.4	$\mathrm{VCC}+0.3$	V	
VIL	Logical Zero Input Voltage	-0.3	0.8	V	
VOH1	Logical One Output Voltage	2.4	-	V	$\mathrm{IOH}=-2.0 \mathrm{~mA}$
VOH2	Logical One Output Voltage (Note 2)	$\mathrm{VCC}-1.0$	-	V	$\mathrm{IOH}=-100 \mu \mathrm{~A}$
VOL	Logical Zero Output Voltage	-	0.4	V	$\mathrm{IOL}=+4.8 \mathrm{~mA}$
II	Input Leakage	-1.0	+1.0	$\mu \mathrm{~A}$	$\mathrm{VIN}=\mathrm{VCC}$ or GND
IOZ	Output Leakage	-1.0	+1.0	$\mu \mathrm{~A}$	$\mathrm{VO}=\mathrm{VCC}$ or GND, $\overline{\mathrm{G}}=\mathrm{VCC}$
ICCSB	Standby Power Supply Current	-	100	$\mu \mathrm{~A}$	$\mathrm{VIN}=\mathrm{VCC}$ or GND, $\mathrm{VCC}=5.5 \mathrm{~V}$, $1 \mathrm{O}=0$
ICCOP	Operating Power Supply Current (Note 3)	-	20	mA	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{VCC}=5.5 \mathrm{~V}, \mathrm{IO}=0$, $\mathrm{VIN}=\mathrm{VCC}$ or GND

A.C. Electrical Specifications

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
(1) TAVQV	Address Access Time	-	105	ns	(Notes 1, 4)
(2) TELQV	Chip Enable Access Time	-	90	ns	(Notes 1, 4)
(3) TELQX	Chip Enable Time	5	-	ns	(Notes 2, 4)
(4) TAVEL	Address Setup Time	15	-	ns	(Notes 1, 4)
(5) TELAX	Address Hold Time	20	-	ns	(Notes 1, 4)
(6) TELEH	Chip Enable Low Width	95	-	ns	(Notes 1, 4)
(7) TEHEL	Chip Enable High Width	40	-	ns	(Notes 1, 4)
(8) TELEL	Cycle Time	136	-	ns	(Notes 1, 4)
(9) TGLQV	Output Access Time	-	40	ns	(Notes 1, 4)
(10) TGLQX	Output Enable Time	5	-	ns	(Notes 2, 4)
(11) TGHQZ	Output Disable Time	-	40	ns	(Notes 2, 4)
(12) TEHQZ	Chip Enable Disable Time	-	45	ns	(Notes 2, 4)

Capacitance

SYMBOL	PARAMETER	MAX	UNITS	TEST CONDITIONS
CIN	Input Capacitance (Note 2)	10	pF	$\mathrm{f}=1 \mathrm{MHz}$, VIN $=$ VCC = GND
COUT	Output Capacitance (Note 2)	12	pF	$\mathrm{f}=1 \mathrm{MHz}$, VIN $=$ VCC = GND

NOTES: 1. Input pulse levels: 0 to 3.0 V ; Input rise and fall times: 5 ns (max); Input and output timing reference level: 1.5 V ; Output load: 1 TTL gate equivalent $C L=50 \mathrm{pF}(\mathrm{min})-$ for CL greater than 50 pF , access time is derated by 0.15 ns per pF .
2. Tested at initial design and after major design changes.
3. Typical derating $5 \mathrm{~mA} / \mathrm{MHz}$ increase in ICCOP.
4. $\mathrm{VCC}=4.5 \mathrm{~V}$ and 5.5 V .

Switching Waveforms

CMOS PROM Programming Algorithm

The HM-6617 CMOS PROM is manufactured with all bits containing a logical zero (output low). Any bit can be programmed selectively to a logical one (output high) state by following the procedure shown below. To accomplish this, a programmer can be built that meets the specifications shown, or any of the approved commercial programmers can be used.

PROGRAMMING SEQUENCE OF EVENTS

1. Apply a voltage of VCC1 to VCC (pin 24) of the PROM.
2. Read all fuse locations to verify that the PROM is blank (output low).
3. Place the PROM in the initial state for programming: $\bar{E}=\mathrm{VIH} . \quad \bar{P}=\mathrm{VIH} . \quad \overline{\mathrm{G}}=\mathrm{VIL}$.
4. Apply the correct binary address for the word to be programmed. No inputs should be left open circuit.
5. After a delay of t_{d}, apply voltage of VIL to \bar{E} (pin 18) to access the addressed word.
6. The address may be held through the cycle, but must be held valid at least for a time equal to t_{d} after the falling edge of $\overline{\mathrm{E}}$. None of the inputs should be allowed to float to an invalid logic level.
7. After a delay of t_{d}, disable the outputs by applying a voltage of VIH to G (pin 20).
8. After delay of t_{d}, apply voltage of VIL to $\overline{\mathrm{P}}$ (pin 21).
9. After delay of t_{d}, raise VCC (pin 24) to VCCPROG with a rise time of $t_{\text {r }}$. All outputs at VIH should track VCC with VCC-2.0V to VCC +0.3 V . This could be accomplished by pulling outputs at VIH to VCC through pullup resistors of value R_{n}.
10. After a delay of t_{d}, pull the output which corresponds to the bit to be programmed to VIL. Only one bit should be programmed at a time.
11. After a delay of t_{pw}, allow the output to be pulled to VIH though pull-up resistor R_{n}.
12. After a delay of t_{d}, reduce VCC (pin 24) to VCC1 with a fall time of tf . All outputs at VIH should track VCC with VCC-2.0V to VCC +0.3 V . This could be accomplished by pulling outputs at VIH to VCC through pull-up resistors of value R_{n}.
13. Apply a voltage of VIH to $\overline{\mathrm{P}}$ (pin 21).
14. After a delay of t_{d}, apply a voltage of VIL to $\overline{\mathrm{G}}$ (pin 20).
15. After a delay of t_{d}, examine the outputs for correct data. If any location verifies incorrectly, repeat steps 4 through 14 (attempting to program only those bits in the word which verified incorrectly) up to a maximum of eight attempts for a given word. If a word does not program within eight attempts, it should be considered a programming reject.
16. Repeat steps 3 through 15 for all other bits to be programmed in the PROM.

POST-PROGRAMMING VERIFICATION

17. Place the PROM in the post-programming verification mode:
$\bar{E}=$ VIH. $\quad \bar{G}=$ VIL. $\quad \bar{P}=$ VIH.
$\operatorname{VCC}($ pin 24$)=$ VCC1.
18. Apply the correct binary address of the word to be verified to the PROM.
19. After a delay of t_{d}, apply a voltage of VIL to \bar{E} (pin 18).
20. After a delay of t_{d}, examine the outputs for correct data. If any location fails to verify correctly, the PROM should be considered a programming reject.
21. Repeat steps 17 through 20 for all possible programming locations.

POST-PROGRAMMING READ

22. Apply a voltage of VCC2 $=4.0 \mathrm{~V}$ to VCC (pin 24).
23. After a delay of t_{d}, apply a voltage of VIH to \bar{E} (pin 18).
24. Apply the correct binary address of the word to be read.
25. After a delay of TAVEL, apply a voltage of VIL to \bar{E} (pin 18).
26. After a delay of TELQV, examine the outputs for correct data. If any location fails to verify correctly, the PROM should be considered a programming reject.
27. Repeat steps 23 through 26 for all address locations.
28. Apply a voltage of VCC2 $=6.0 \mathrm{~V}$ to VCC (pin 24).
29. Repeat steps 23 through 26 for all address locations.

HM-6617 POST PROGRAMMING VERIFY CYCLE

Programming Specifications

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	NOTES
VIL.	Input "0"	0.0	0.2	0.8	V	
VIH	Voltage " 1 "	VCC-2	VCC	VCC+0.3	V	6
VCCPROG	Programming VCC	12.0	12.0	12.5	V	2
VCC1	Operating VCC	4.5	5.0	5.5	V	
VCC2	Special Verify VCC	4.0	-	6.0	V	3
(1) t_{d}	Delay Time	1.0	1.0	-	$\mu \mathrm{s}$	
(2) t_{r}	Rise Time	1.0	10.0	10.0	$\mu \mathrm{s}$	
(3) t_{f}	Fall Time	1.0	10.0	10.0	$\mu \mathrm{s}$	
(4 TEHEL	Chip Enable Pulse Width	50	-	-	ns	
(5) TAVEL	Address Valid to Chip Enable Low Time	20	-	-	ns	
(6) TELQV	Chip Enable Low to Output Valid Time	-	-	120	ns	
(7) tpw	Programming Pulse Width	90	100	110	$\mu \mathrm{s}$	4
$t_{1 P}$	Input Leakage at VCC = VCCPROG	-10	+1.0	10	$\mu \mathrm{A}$	
IOP	Data Output Current at VCC $=$ VCCPROG	-	-5.0	-10	mA	
R_{n}	Output Pull-Up Resistor	5	10	15	$\mathrm{k} \Omega$	5
TA	Ambient Temperature	-	25	-	${ }^{\circ} \mathrm{C}$	

NOTES:

1. All inputs must track VCC (pin 24) within these limits.
2. VCCPROG must be capable of supplying 500 mA .
3. See Steps 22 through 29 of the Programming Algorithm.
4. See Step 11 of the Programming Algorithm.
5. All outputs should be pulled up to VCC through a resistor of value R_{n}
6. Except during programming (See Programming Cycle Waveforms).

Data Entry Formats for Harris Custom Programming*

For Harris to custom program to a user data pattern specification, the user must supply the data in one of the following formats:

1. Master PROM of same organization and pinout as device ordered. Two pieces required, three preferred.
2. Paper tape in Binary or ASCII BPNF.

* BINARY PAPER TAPE FORMAT

- A minimum of six inches of leader.
- A rubout (all eight locations punched).
- Data words beginning with the first word (word " 0 "), proceeding sequentially, ending with the last word (word " N "), with no interruptions or extraneous characters of any kind.
- Specify whether a punched hole is a $\mathrm{VOH}=" 1$ " = logic high or is a VOL $=$ " 0 " $=$ logic low.
- A minimum trailer of six inches of tape.

* ASCII BPNF FORMAT

- A minimum leader of twenty rubouts (all eight locations punched).
- Any characters desired (none necessary) except " B ".
- Data words beginning with the first word (word " 0 "), proceeding sequentially, ending with the last word (word " N ").
- Data words consist of:

1. The character " B " denoting the beginning of a data word.
2. A sequence of characters, only " P " or " N ", one character for each bit in . the word.
3. The character " F " denoting the finish of the data word.

- No extraneous characters of any kind may appear within a data word (between any " B " and the next " F ").
- Errors may be deleted by rubouts superimposed over the entire word including the " B ", and beginning the word again with a new " B ".
- Any text of any kind (except the character " B ") is allowed between data words (between any " F " and the next " B "), including carriage return and line feed.
- A minimum trailer of twenty-five rubouts.
- Specify whether a " P " is a " 1 " = VOH = logic high or is a " 0 " = VOL = logic low.
- The use of even or odd parity is optional.
* Harris can not assume responsibility for PROMs programmed to data tapes or masters which contain errors. The user must insure the accuracy of the data provided to Harris. Harris guarantees that the programmed PROMs will contain the information provided if either of the following formats are followed.

BINARY PAPER TAPE EXAMPLE

$$
\text { Punched Hole = " } 0 \text { " = VOL = Logic Low }
$$

Word				PROM Output Data (1)								
AX $\cdot \cdots$ A2		A0		Channel Output	$\begin{gathered} 8 \\ \mathrm{O}_{8} \end{gathered}$	$\begin{gathered} 7 \\ 07 \end{gathered}$	$\begin{gathered} 6 \\ \mathrm{O}_{6} \end{gathered}$	$\begin{gathered} 5 \\ \mathrm{O}_{5} \end{gathered}$	$\begin{aligned} & 4 \\ & \mathrm{O}_{4} \end{aligned}$	$\begin{gathered} 3 \\ \mathrm{O}_{3} \end{gathered}$	$\begin{gathered} 2 \\ \mathrm{O}_{2} \end{gathered}$	$\begin{aligned} & 1 \\ & 0_{1} \end{aligned}$
$0 \cdots 0$	0	0	First		0	1	0	0	0	1	0	1
$0 \cdots 0$	0	1	Second		1	1	1	0	1	0	0	0
$0 \cdots 0$	1	0	Third		0	1	0	1	1	1	0	0
$0 \cdots 0$	1	1	Fourth		0	1	1	1	0	1	1	0
$0 \cdots 1$	0	0	Fifth		1	0	0	1	0	0	0	1
$1 \cdots 1$	1	1	Last		0	1	0	0	1	0	1	0

NOTES:
(1) PROMs with 4 bit wide data outputs require punching only first 4 channels on tape (Channels 1 thru 4).
(2) On HARRIS PROMs O_{X} (Example: O_{1}) designates a respective output pin on the device. O_{1} (Output 1) is always LSB.

DEVICE OUTPUT PACKAGE PINS

EXAMPLE:

$$
\text { Character " } D \text { " }=" 1 \text { " }=\text { VOH = Logic High }
$$

$$
\text { Character " } \mathrm{V} \text { ' }=\text { = } " 0 \text { " = VOL = Logic Low }
$$

EXAMPLE PACKAGE TYPE DEVICE OUTPUT PINS

Word				PROM Outputs Data (1)							
AX $\cdot \cdots$ A2		AO		O_{8}	07	O_{6}	O5	O_{4}	O_{3}	O_{2}	O_{1}
$0 \cdots \cdots 0$	0	0	First	0	1	0	0	0	1	0	1
$0 \cdots \cdots 0$	0	1	Second	1	1	1	0	1	0	0	0
$1 \cdots \cdots 0$	1	0	Last	0	1	0	0	1	0	1	0

NOTES:
(1) In the ASCII BPNF format, MSB data is punched after " B ". On devices with 8 outputs, O_{8} (Output 8) data is punched after " B ". On devices with 4 outputs, O_{4} (Output 4) data is punched after " B "

D|(T)TAL

PAGE

CMOS MICROPROCESSORS
Industry CMOS Microprocessor Cross Reference . 3-2
80C286 Static 16- Bit Microprocessor . 3-3
80C86 Static 16-Bit Microprocessor . 3-58
80C88 Static 8/16-Bit Microprocessor . 3-81

Microprocessor Cross Reference

HARRIS	INTEL	NEC	OK1	AMD
8-BIT MICROPROCESSOR				
$80 \mathrm{C88}$	$80 \mathrm{C8} 8$	$\mu \mathrm{PD} 70108 \mathrm{D}-5$	MSM80C88A	
80C88-2	80C88-2	$\mu \mathrm{PD} 70108 \mathrm{D}-8$	MSM80C88A-2	
16-BIT MICROPROCESSOR				
$80 \mathrm{C86}$	$80 \mathrm{C86}$	μ PD70116D-5	MSM80C86A	
80C86-2	80C86-2	μ PD70116D-8	MSM80C86A-2	
80C286-10	$\begin{aligned} & 80286-10 \\ & 80 C 286-10 \end{aligned}$			80286-10
80C286-12	$\begin{aligned} & 80286-12 \\ & 80 C 286-12 \end{aligned}$			80286-12
80C286-16				80286-16

With Memory Management and Protection

- Two 80C86 Upward Compatible Operating Modes:
- 80C286 Real Address Mode
- Protected Virtual Address Mode
- Compatible with 80287 Numeric Data Co-processor
- Wide Range of Clock Rates:
- DC to 16 MHz (80C286-16)
- DC to 12.5 MHz (80C286-12)
- DC to 10 MHz (80C286-10)
- High Bandwidth Bus Interface (16 Megabyte/Sec)
- Available in 68 Pin PGA (Pin Grid Array) Package

Description

The Harris 80C286 is a static CMOS version of the NMOS 80286 microprocessor. The 80 C 286 is an advanced, high-performance microprocessor with specially optimized capabilities for multiple user and multi-tasking systems. The 80C286 has built-in memory protection that supports operating system and task isolation as well as program and data privacy within tasks. A 12.5 MHz 80 C 286 provides nine times or more throughput than the standard 5 MHz 8086 . The 80 C 286 includes memory management capabilities that map 2^{30} (one gigabyte) of virtual address space per task into 2^{24} bytes (16 megabytes) of physical memory.

The 80 C 286 is upwardly compatible with 80 C 86 and 80 C 88 software (the 80 C 286 instruction set is a superset of the $80 \mathrm{C} 86 / 80 \mathrm{C} 88$ instruction set). Using the 80 C 286 real address mode, the 80 C 286 is object code compatible with existing 80 C 86 and 80 C 88 software. In protected virtual address mode, the 80 C 286 is source code compatible with 80 C 86 and 80 C 88 software but may require upgrading to use virtual address as supported by the 80C286's integrated memory management and protection mechanism. Both modes operate at full 80 C 286 performance and execute a superset of the 80 C 86 and 80 C 88 instructions.

The 80 C 286 provides special operations to support the efficient implementation and execution of operating systems. For example, one instruction can end execution of one task, save its state, switch to a new task, load its state, and start execution of the new task. The 80C286 also supports virtual memory systems by providing a segment-not-present exception and restartable instructions.

Pin Configurations

Component Pad Views - As viewed from underside of the component when mounted on the board.

Functional Diagram

Pin Description

The following pin function descriptions are for the 80C286 microprocessor:
tABLE 1.

| SYMBOL | PUN | NUMBER | TYPE |
| :---: | :---: | :---: | :---: |\quad DESCRIPTION

TABLE 1. CONTINUED

SYMBOL	PIN NUMBER	TYPE	DESCRIPTION
COD/INTA	66	0	CODE/INTERRUPT ACKNOWLEDGE: distinguishes instruction fetch cycles from memory data read cycles. Also distinguishes interrupt acknowledge cycles from I/O cycles. COD/INTA is held at high impedance to the last valid logic state during bus hold acknowledge. Its timing is the same as $\mathrm{M} / \overline{\mathrm{IO}}$.
$\overline{\text { LOCK }}$	68	0	BUS LOCK: indicates that other system bus masters are not to gain control of the system bus for the current and following bus cycles. The $\overline{\text { LOCK }}$ signal may be activated explicitly by the "LOCK" instruction prefix or automatically by 80 C 286 hardware during memory XCHG instructions, interrupt acknowledge, or descriptor table access. प्LOCK is active LOW and is held at a high impedance logic one during bus hold acknowledge.
$\overline{\text { READY }}$	63	1	BUS READY: terminates a bus cycle. Bus cycles are extended without limit until terminated by $\overline{R E A D Y}$ LOW. $\overline{R E A D Y}$ is an active LOW synchronous input requiring setup and hold times relative to the system clock be met for correct operation. $\overline{\operatorname{READY}}$ is ignored during bus hold acknowledge. (Note 1)
$\begin{aligned} & \text { HOLD } \\ & \text { HLDA } \end{aligned}$	$\begin{aligned} & 64 \\ & 65 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	BUS HOLD REQUEST AND HOLD ACKNOWLEDGE: control ownership of the 80C286 local bus. The HOLD input allows another local bus master to request control of the local bus. When control is granted, the 80 C 286 will float its bus drivers and then activate HLDA, thus entering the bus hold acknowledge condition. The local bus will remain granted to the requesting master until HOLD becomes inactive which results in the 80 C 286 deactivating HLDA and regaining control of the local bus. This terminates the bus hold acknowledge condition. HOLD may be asynchronous to the system clock. These signals are active HIGH. Note that HLDA never floats.
INTR	57	1	INTERRUPT REQUEST: requires the 80C286 to suspend its current program execution and service a pending external request. Interrupt requests are masked whenever the interrupt enable bit in the flag word is cleared. When the 80C286 responds to an interrupt request, it performs two interrupt acknowledge bus cycles to read an 8-bit interrupt vector that identifies the source of the interrupt. To ensure program interruption, INTR must remain active until an interrupt acknowledge bus cycle is initiated. INTR is sampled at the beginning of each processor cycle and must be active HIGH at least two processor cycles before the current instruction ends in order to interrupt before the next instruction. INTR is level sensitive, active HIGH, and may be asynchronous to the system clock.
NMI	59	1	NON-MASKABLE INTERRUPT REQUEST: interrupts the 80 C 286 with an internally supplied vector value of two. No interrupt acknowledge cycles are performed. The interrupt enable bit in the 80 C 286 flag word does not affect this input. The NMI input is active HIGH, may be asynchronous to the system clock, and is edge triggered after internal synchronization. For proper recognition, the input must have been previously LOW for at least four system clock cycles and remain HIGH for at least four system clock cycles.
$\frac{\text { PEREQ }}{\text { PEACK }}$	$\begin{gathered} 61 \\ 6 \end{gathered}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	PROCESSOR EXTENSION OPERAND REQUEST AND ACKNOWLEDGE: extend the memory management and protection capabilities of the 80 C 286 to processor extensions. The PEREQ input requests the 80 C 286 to perform a data operand transfer for a processor extension. The PEACK output signals the processor extension when the requested operand is being transferred. PEREQ is active HIGH. PEACK is active LOW and is held at a high impedance logic one during bus hold acknowledge. PEREQ may be asynchronous to the system clock.
$\frac{\overline{B U S Y}}{\overline{\text { ERROR }}}$	$\begin{aligned} & 54 \\ & 53 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	PROCESSOR EXTENSION BUSY AND ERROR: indicates the operating condition of a processor extension to the 80C286. An active BUSY input stops 80 C 286 program execution on WAIT and some ESC instructions until $\overline{\text { BUSY }}$ becomes inactive (HIGH). The 80 C 286 may be interrupted while waiting for $\overline{\mathrm{BUSY}}$ to become inactive. An active $\overline{E R R O R}$ input causes the $80 C 286$ to perform a processor extension interrupt when executing WAIT or some ESC instructions. These inputs are active LOW and may be asynchronous to the system clock.

Pin Description

TABLE 1. CONTINUED

SYMBOL	PIN NUMBER	TYPE	DESCRIPTION	
RESET	29	1	SYSTEM RESET: clears the internal logic of the 80 C 286 and is active HIGH. The 80C286 may be reinitialized at any time with a LOW to HIGH transition on RESET which remains active for more than 16 system clock cycles. During RESET active, the output pins of the 80 C 286 enter the state shown below. 80C286 Pin State During Reset	
			Pin Value	Pin Names
			1 (HIGH) 0 (LOW) HIGH IMPEDANCE	$\begin{aligned} & \overline{S_{0}}, \overline{S_{1}}, \overline{\text { PEACK }}, A_{23}-A_{0}, \overline{\text { BHE }}, \overline{\text { LOCK }} \\ & \text { M/IO, COD } / \overline{\mathrm{INTA}}, \mathrm{HLDA}(\text { Note } 2) \\ & \mathrm{D} 15-\mathrm{DO} \end{aligned}$

Operation of the 80 C 286 begins after a HIGH to LOW transition on RESET. The HIGH to LOW transition of RESET must be synchronous to the system clock. Approximately 50 system clock cycles are required by the 80 C 286 for internal initializations before the first bus cycle to fetch code from the power-on execution address is performed. A LOW to HIGH transition of RESET synchronous to the system clock will end a processor cycle at the second HIGH to LOW transition of the system clock. The LOW to HIGH transition of RESET may be asynchronous to the system clock; however, in this case it cannot be predetermined which phase of the processor clock will occur during the next system clock period. Synchronous LOW to HIGH transitions of RESET are required only for systems where the processor clock must be phase synchronous to another clock.

$V_{\text {SS }}$	$9,35,60$	1	SYSTEM GROUND: are the ground pins (all must be connected to system ground).
$V_{\text {CC }}$	30,62	1	SYSTEM POWER: +5 volt power supply pins. A 0.1μ F capacitor between pins 60 and 62 is recommended.

NOTES: 1. $\overline{R E A D Y}$ is an open-collector signal and should be pulled inactive with a 620Ω resistor.
2. HLDA is only Low if HOLD is inactive (Low).
3. All unused inputs should be pulled to their inactive state with pull up/down resistors.

Functional Description

Introduction

The Harris 80C286 microprocessor is a static CMOS version of the NMOS 80286 microprocessor. The 80C286 is an advanced, high-performance microprocessor with specially optimized capabilities for multiple user and multi-tasking systems. Depending on the application, the 80C286's performance is up to twelve times faster than the standard 5 MHz 8086 's, while providing complete upward software compatibility with Harris 80 C 86 and 80 C 88 CPU family.

The 80 C 286 operates in two modes: 80 C 286 real address mode and protected virtual address mode. Both modes execute a superset of the 80 C 86 and 80 C 88 instruction set.

In 80C286 real address mode programs use real addresses with up to one megabyte of address space. Programs use virtual addresses in protected virtual address mode, also called protected mode. In protected mode, the 80C286 CPU automatically maps 1 gigabyte of virtual addresses per task into a 16 megabyte real address space. This mode also provides memory protection to isolate the operating system and ensure privacy of each tasks' programs and data. Both modes provide the same base instruction set, registers and addressing modes.
The Functional Description describes the following: Static operation, the base 80 C 286 architecture common to both modes, 80 C 286 real address mode, and finally, protected mode.

Static Operation

The 80 C 286 is comprised of completely static circuitry. Internal registers, counters, and latches are static and require no refresh as with dynamic circuit design. This eliminates the minimum operating frequency restriction typically placed on microprocessors. The CMOS 80C286 can operate from DC to the specified upper frequency limit. The clock to the processor may be stopped at any point (either phase one or phase two of the processor clock cycle) and held there indefinitely. There is, however, a significant decrease in power requirement if the clock is stopped in phase two of the processor clock cycle. Details on the clock relationships will be discussed in the Bus Operation section. The ability to stop the clock to the processor is especially useful for system debug or power critical applications.

The 80C286 can be single-stepped using only the CPU clock. This state can be maintained as long as necessary. Single step clock information allows simple interface circuitry to provide critical information for system debug.

Static design also allows very low frequency operation (down to DC). In a power critical situation, this can provide low power operation since 80C286 power dissipation is directly related to operating frequency. As the system frequency is reduced, so is the operating power until, ultimately, with the clock stopped in phase two of the processor clock cycle, the 80C286 power requirement is the standby current (5 mA maximum).

80C286 Base Architecture

The $80 \mathrm{C} 86,80 \mathrm{C} 88$, and 80 C 286 CPU family all contain the same basic set of registers, instructions, and addressing modes. The 80 C 286 processor is upwardly compatible with the 80 C 86 and 80 C 88 CPU 's.

Register Set

The 80C286 base architecture has fifteen registers as shown in Figure 1. These registers are grouped into the following four categories.

GENERAL REGISTERS: Eight 16-bit general purpose registers used to contain arithmetic and logical operands. Four of these (AX, BX, CX and DX) can be used either in their entirety as 16-bit words or split into pairs of separate 8 -bit registers.

SEGMENT REGISTERS: Four 16-bit special purpose registers select, at any given time, the segments of memory that are immediately addressable for code, stack and data. (For usage, refer to Memory Organization.)

FIGURE 1. REGISTER SET

FIGURE 2. STATUS AND CONTROL REGISTER BIT FUNCTIONS

BASE AND INDEX REGISTERS: Four of the general purpose registers may also be used to determine offset addresses of operands in memory. These registers may contain base addresses or indexes to particular locations within a segment. The addressing mode determines the specific registers used for operand address calculations.

STATUS AND CONTROL REGISTERS: Three 16 -bit special purpose registers record or control certain aspects of the 80 C 286 processor state. These include the Flags register and Machine Status Word register shown in

Figure 2, and the Instruction Pointer, which contains the offset address of the next sequential instruction to be executed

Flags Word Description

The Flags word (Flags) records specific characteristics of the result of logical and arithmetic instrucitons (bits 0,2 , $4,6,7$ and 11) and controls the operation of the 80 C 286 within a given operating mode (bits 8 and 9). Flags is a 16 -bit register. The function of the flag bits is given in Table 2.

TABLE 2. FLAGS WORD BIT FUNCTIONS

BIT POSITION	NAME	
0	CF	FUNCTION
2	PF	Carry Flag - Set on high-order bit carry or borrow; cleared otherwise Parity Flag - Set if low-order 8-bits of result contain an even number of 1-bits; cleared otherwise
4	AF	Set on carry from or borrow to the low order four bits of AL; cleared otherwise
6	ZF	Zero Flag - Set if result is zero; cleared otherwise
7	SF	Sign Flag - Set equal to high-order bit of result (0 if positive, 1 if negative)
11	OF	Overflow Flag - Set if result is a too-large positive number or a too-small negative number (excluding sign-bit) to fit in destination operand; cleared otherwise
8	TF	Single Step Flag - Once set, a single step interrupt occurs after the next instruction executes. TF is cleared by the single step interrupt.
9	IF	Interrupt-enable Flag - When set, maskable interrupts will cause the CPU to transfer control to an interrupt vector specified location
10	DF	Direction Flag - Causes string instructions to auto decrement the appropriate index registers when set. Clearing DF causes auto increment.

Instruction Set

The instruction set is divided into seven categories: data transfer, arithmetic, shift/rotate/logical, string manipulation, control transfer, high level instructions, and processor control. These categories are summarized in Figure 3.

An 80C286 instruction can reference zero, one, or two operands; where an operand may reside in a register, in the instruction itself, or in memory. Zero-operand instructions (e.g. NOP ane HLT) are usually one byte long. One-operand instructions (e.g. INC and DEC) are usually two bytes long but some are encoded in only one byte. One-operand instructions may reference a register or memory location. Two-operand instructions permit the following six types of instruction operations:

- Register to Register
- Memory to Memory
- Memory to Register
- Register to Memory
- Immediate to Register
- Immediate to Memory

GENERAL PURPOSE		
MOV	Move byte or word	
PUSH	Push word onto stack	
POP	Pop word off stack	
PUSHA	Push all registers on stack	
POPA	Pop all registers from stack	
XCHG	Exchange byte or word	
XLAT	Translate byte	
INPUT/OUTPUT		
IN	Input byte or word	
OUT	Output byte or word	
ADDRESS OBJECT		
LEA	Load effective address	
LDS	Load pointer using DS	
LES	Load pointer using ES	
FLAG TRANSFER		
LAHF	Load AH register from flags	
SAHF	Store AH register in flags	
PUSHF	Push flags onto stack	
POPF	Pop flags off stack	

FIGURE 3A. DATA TRANSFER INSTRUCTIONS

MOVS	Move byte or word string
INS	Input bytes or word string
OUTS	Output bytes or word string
CMPS	Compare byte or word string
SCAS	Scan byte or word string
LODS	Load byte or word string
STOS	Store byte or word string
REP	Repeat
REPE/REPZ	Repeat while equal/zero
REPNE/REPNZ	Repeat while not equal/not zero

FIGURE 3C. STRING INSTRUCTIONS

Two-operand instructions (e.g. MOV and ADD) are usually three to six bytes long. Memory to memory operations are provided by a special class of string instructions requiring one to three bytes. For detailed instruction formats and encodings refer to the instruction set summary at the end of this document.

ADDITION		
ADD	Add byte or word	
ADC	Add byte or word with carry	
INC	Increment byte or word by 1	
AAA	ASCII adjust for addition	
DAA	Decimal adjust for addition	
SUBTRACTION		
SUB	Subtract byte or word	
SBB	Subtract byte or word with borrow	
DEC	Decrement byte or word by 1	
NEG	Negate byte or word	
CMP	Compare byte or word	
AAS	ASCII adjust for subtraction	
DAS	Decimal adjust for subtraction	
MULTIPLICATION		
MUL	Multiply byte or word unsigned	
IMUL	Integer multiply byte or word	
AAM	ASCII adjust for multiply	
DIVISION		
DIV	Divide byte or word unsigned	
IDIV	Integer divide byte or word	
AAD	ASCII adjust for division	
CBW	Convert byte to word	
CWD	Convert word to doubleword	

FIGURE 3B. ARITHMETIC INSTRUCTIONS

LOGICALS	
NOT	"Not" byte or word
AND	"And" byte or word
OR	"Inclusive or" byte or word
XOR	"Exclusive or" byte or word
TEST	"Test" byte or word
SHIFTS	
SHL/SAL	Shift logical/arithmetic left byte or word
SHR	Shift logical right byte or word
SAR	Shift arithmetic right byte or word
ROTATES	
ROL	Rotate left byte or word
ROR	Rotate right byte or word
RCL	Rotate through carry left byte or word
RCR	Rotate through carry right byte or word

FIGURE 3D. SHIFT/ROTATE LOGICAL INSTRUCTIONS

CONDITIONAL TRANSFERS		UNCONDITIONAL TRANSFERS	
JAJJNBE	Jump if above/not below nor equal	CALL	Call procedure
JAE/JNB	Jump if above or equal/not below	RET	Return from procedure
JB/JNAE	Jump if below/not above nor equal	JMP	Jump
JBE/JNA	Jump if below or equal/not above		
JC	Jump if carry	ITERATION CONTROLS	
JE/JZ	Jump if equal/zero		
JG/JNLE	Jump if greater/not less nor equal	LOOP	Loop
JGE/JNL	Jump if greater or equal/not less	LOOPE/LOOPZ	Loop if equal/zero
JL/JNGE	Jump if less/not greater nor equal	LOOPNE/LOOPNZ	Loop if not equal/not zero
JLE/JNG	Jump if less or equal/not greater	JCXZ	Jump if register CX $=0$
JNC	Jump if not carry		
JNE/JNZ	Jump if not equal/not zero	INTERRUPTS	
JNO	Jump if not overflow		
JNP/JPO	Jump if not parity/parity odd	INT	Interrupt
JNS	Jump if not sign	INTO	Interrupt if overflow
JO	Jump if overflow	IRET	Interrupt return
JP/JPE	Jump if parity/parity even		
JS	Jump if sign		

FIGURE 3E. PROGRAM TRANSFER INSTRUCTIONS

FLAG OPERATIONS	
STC	Set carry flag
CLC	Clear carry flag
CMC	Complement carry flag
STD	Set direction flag
CLD	Clear direction flag
STI	Set interrupt enable flag
CLI	Clear interrupt enable flag
EXTERNAL SYNCHRONIZATION	
HLT	Halt until interrupt or reset
WAIT	Wait for TEST pin active
ESC	Escape to extension processor
LOCK	Lock bus during next instruction
NO OPERATION	
NOP	No operation
EXECUTION ENVIRONMENT CONTROL	
LMSW	Load machine status word
SMSW	Store machine status word

FIGURE 3F. PROCESSOR CONTROL INSTRUCTIONS

ENTER	Format stack for procedure entry
LEAVE	Restore stack for procedure exit
BOUND	Detects values outside prescribed range

FIGURE 3G. HIGH LEVEL INSTRUCTIONS

Memory Organization

Memory is organized as sets of variable-length segments. Each segment is a linear contiguous sequence of up to 64 K (216) 8 -bit bytes. Memory is addressed using a two-component address (a pointer) that consists of a 16 -bit segment selector and a 16 -bit offset. The segment selector indicates the desired segment in memory. The offset component indicates the desired byte address within the segment. (See Figure 4).

All instructions that address operands in memory must specify the segment and the offset. For speed and compact instruction encoding, segment selectors are usually stored in the high speed segment registers. An instruction need specify only the desired segment register and offset in order to address a memory operand.

FIGURE 4. TWO COMPONENT ADDRESS

TABLE 3. SEGMENT REGISTER SELECTION RULES

Memory Reference Needed	Segment Register Used	Implicit Segment Selection Rule
Instructions	Code (CS)	Automatic with instruction prefetch
Stack	Stack (SS)	All stack pushes and pops. Any memory reference which uses BP as a base register.
Local Data	Data (DS)	All data references except when relative to stack or string destination
External (Global) Data	Extra (ES)	Alternate data segment and destination of string operation

Most instructions need not explicitly specify which segment register is used. The correct segment register is automatically chosen according to the rules of Table 3. These rules follow the way programs are written (see Figure 5) as independent modules that require areas for code and data, a stack, and access to external data areas.

Special segment override instruction prefixes allow the implicit segment register selection rules to be overriden for special cases. The stack, data and extra segments may coincide for simple programs. To access operands not residing in one of the four immediately available segments, a full 32-bit pointer or a new segment selector must be loaded.

Addressing Modes

The 80C286 provides a total of eight addressing modes for instructions to specify operands. Two addressing modes are provided for instructions that operate on register or immediate operands:

REGISTER OPERAND MODE: The operand is located in one of the 8 or 16-bit general registers.

IMMEDIATE OPERAND MODE: The operand is included in the instruction.

Six modes are provided to specify the location of an operand in a memory segment. A memory operand address consists of two 16-bit components: segment selector and offset. The segment selector is supplied by a segment register either implicitly chosen by the addressing mode or explicitly chosen by a segment override prefix. The offset is calculated by summing any combination of the following three address elements:
the displacement (an 8 or 16-bit immediate value contained in the instruction)
the base (contents of either the BX or BP base registers)
the index (contents of either the SI or DI index registers)

FIGURE 5. SEGMENTED MEMORY HELPS STRUCTURE SOFTWARE

Any carry out from the 16 -bit addition is ignored. Eight-bit displacements are sign extended to 16 -bit values.

Combinations of these three address elements define the six memory addressing modes, described below.

DIRECT MODE: The operand's offset is contained in the instruction as an 8 or 16-bit displacement element.

REGISTER INDIRECT MODE: The operand's offset is in one of the registers $\mathrm{SI}, \mathrm{DI}, \mathrm{BX}$ or BP .

BASED MODE: The operand's offset is the sum of an 8 or 16-bit displacement and the contents of a base register ($B X$ or $B P$).

INDEXED MODE: The operand's offset is the sum of an 8 or 16-bit displacement and the contents of an index register (SI or DI).

BASED INDEXED MODE: The operand's offset is the sum of the contents of a base register and an index register.

BASED INDEXED MODE WITH DISPLACEMENT: The operand's offset is the sum of a base register's contents, an index register's contents, and an 8 or 16-bit displacement.

Data Types

The 80 C 286 directly supports the following data types:
Integer: A signed binary numeric value contained in an 8 -bit byte or a 16 -bit word. All operations assume a 2's complement representation. Signed 32 and 64 -bit integers are supported using the 80287 Numeric Data Processor.

Ordinal: An unsigned binary numeric value contained in an 8 -bit byte or 16 -bit word.

Pointer: A 32-bit quantity, composed of a segment selector component and an offset component. Each component is a 16-bit word.

String: A contiguous sequence of bytes or words. A string may contain from 1 byte to 64 K bytes.

ASCII: A byte representation of alphanumeric and control characters using the ASCII standard of character representation.

BCD: A byte (unpacked) representation of the decimal digits 0-9.

Packed A byte (packed) representation of two decimal BCD: digits 0-9 storing one digit in each nibble of the byte.

Floating A signed 32,64 or 80 -bit real number Point: representation. (Floating point operands are supported using the 80287 Numeric Processor extension).

Figure 6 graphically represents the data types supported by the 80C286.

TABLE 4. INTERRUPT VECTOR ASSIGNMENTS

FUNCTION	INTERRUPT NUMBER	RELATED INSTRUCTIONS	DOES RETURN ADDRESS POINT TO INSTRUCTION CAUSING EXCEPTION?
Divide error exception	0	DIV, IDIV	Yes
Single step interrupt	1	All	
NMI interrupt	2	INT 2 or NMI pin	
Breakpoint interrupt	3	INT 3	No
INTO detected overflow exception	4	INTO	Yes
BOUND range exceeded exception	5	BOUND	Yes
Invalid opcode exception	6	Any undefined opcode	
Processor extension not available exception	7	ESC of WAIT	
Reserved-do not use	$8-15$		
Processor extension error interrupt	16	ESC or WAIT	
Reserved	$17-31$		
User defined	$32-255$		

I/O Space

The I/O space consists of 64 K 8 -bit ports, 32 K 16 -bit ports, or a combination of the two. I/O instructions address the I/O space with either an 8-bit port address, specified in the instruction, or a 16 -bit port address in the DX register. 8 -bit port addresses are zero extended such that $\mathrm{A}_{15}-\mathrm{A}_{8}$ are LOW. I/O port addresses 00F8(H) through 00FF(H) are reserved.

Interrupts

An interrupt transfers execution to a new program location. The old program address (CS:IP) and machine state (Flags) are saved on the stack to allow resumption of the interrupted program. Interrupts fall into three classes: hardware initiated, INT instructions, and instruction exceptions. Hardware initiated interrupts occur in response to an external input and are classified as non-maskable or maskable. Programs may cause an interrupt with an INT instruction. Instruction exceptions occur when an unusual condition which prevents further instruction processing is detected while attempting to execute an instruction. The return address from an exception will always point to the instruction causing the exception and include any leading instruction prefixes.

A table containing up to 256 pointers defines the proper interrupt service routine for each interrupt. Interrupts 031, some of which are used for instruction exceptions, are reserved. For each interrupt, an 8 -bit vector must be supplied to the 80C286 which identifies the appropriate table entry. Exceptions supply the interrupt vector internally. INT instructions contain or imply the vector and allow access to all 256 interrupts. Maskable hardware initiated interrupts supply the 8 -bit vector to the CPU during an interrupt acknowledge bus sequence. Nonmaskable hardware interrupts use a predefined internally supplied vector.

Maskable Interrupt (INTR)

The 80 C 286 provides a maskable hardware interrupt request pin, INTR. Software enables this input by setting the interrupt flag bit (IF) in the flag word. All 224 user-defined interrupt sources can share this input, yet they can retain separate interrupt handlers. An 8-bit vector read by the CPU during the interrupt acknowledge sequence (discussed in System Interface section) identifies the source of the interrupt.

The processor automatically disables further maskable interrupts internally by resetting the IF as part of the response to an interrupt or exception. The saved flag word will reflect the enable status of the processor prior to the interrupt. Until the flag word is restored to the flag register, the interrupt flag will be zero unless specifically set. The interrupt return instruction includes restoring the flag word, thereby restoring the original status of IF.

Non-Maskable Interrupt Request (NMI)

A non-maskable interrupt input (NMI) is also provided. NMI has higher priority than INTR. A typical use of NMI would be to activate a power failure routine. The activation of this input causes an interrupt with an internally supplied vector value of 2 . No external interrupt acknowledge sequence is performed.

While executing the NMI servicing procedure, the 80C286 will service neither further NMI requests, INTR requests, nor the processor extension segment overrun interrupt until an interrupt return (IRET) instruction is executed or the CPU is reset. If NMI occurs while currently servicing an NMI, its presence will be saved for servicing after executing the first IRET instruction. IF is cleared at the beginning of an NMI interrupt to inhibit INTR interrupts.

Single Step Interrupt

The 80C286 has an internal interrupt that allows programs to execute one instruction at a time. It is called the single step interrupt and is controlled by the single step flag bit (TF) in the flag word. Once this bit is set, an internal single step interrupt will occur after the next instruction has been executed. The interrupt clears the TF bit and uses an internally supplied vector of 1 . The IRET instruction is used to set the TF bit and transfer control to the next instruction to be single stepped.

Interrupt Priorities

When simultaneous interrupt requests occur, they are processed in a fixed order as shown in Table 5. Interrupt processing involves saving the flags, return address, and setting CS:IP to point at the first instruction of the interrupt handler. If another enabled interrupt should occur, it is processed before the next instruction of the current interrupt handler is executed. The last interrupt processed is therefore the first one serviced.

TABLE 5. INTERRUPT PROCESSING ORDER

ORDER	INTERRUPT
1	Instruction exception
2	Single step
3	NMI
4	Processor extension segment overrun
5	INTR
6	INT instruction

Initialization and Processor Reset

Processor initialization or start up is accomplished by driving the RESET input pin HIGH. RESET forces the 80 C 286 to terminate all execution and local bus activity. No instruction or bus activity will occur as long as RESET is active. After RESET becomes inactive, and an internal processing interval elapses, the 80C286 begins execution in real address mode with the instruction at physical location FFFFFO(H). RESET also sets some registers to predefined values as shown in Table 6.

TABLE 6. $\mathbf{8 0 C 2 8 6}$ INITIAL REGISTER STATE AFTER RESET

Flag word	$0002(\mathrm{H})$
Machine status word	FFFO (H)
Instruction pointer	$\mathrm{FFFO}(\mathrm{H})$
Code segment	$\mathrm{F000}(\mathrm{H})$
Data segment	$0000(\mathrm{H})$
Extra segment	$0000(\mathrm{H})$
Stack segment	$0000(\mathrm{H})$

HOLD must not be active during the time from the leading edge of the initial RESET to 34 CLKs after the trailing edge of the initial RESET of an 80C286 system.

Machine Status Word Description

The machine status word (MSW) records when a task switch takes place and controls the operating mode of the 80 C 286 . It is a 16 -bit register of which the lower four bits are used. One bit places the CPU into protected mode, while the other three bits, as shown in Table 7, control the

TABLE 7. MSW BIT FUNCTIONS

BIT POSITION	NAME	FUNCTION
0	PE	Protected mode enable places the 80 C 286 into protected mode and cannot be cleared except by RESET.
1	MP	Monitor processor extension allows WAIT instructions to cause a processor extension not present exception (number 7).
2	EM	Emulate processor extension causes a processor extension not present exception (number 7) on ESC instructions to allow emulating a processor extension.
3	TS	Task switched indicates the next instruction using a processor extension will cause exception 7, allowing software to test whether the current processor extension context belongs to the current task.

TABLE 8. RECOMMENDED MSW ENCODINGS FOR PROCESSOR EXTENSION CONTROL

TS	MP	EM		INSTRUCTIONS CAUSING EXCEPTION 7	
0	0	0	Initial encoding after RESET. 80 C 286 operation is identical to $80 \mathrm{C} 86 / 88$	None	
0	0	1	No processor extension is available. Software will emulate its function.	ESC	
1	0	1	No processor extension is available. Software will emulate its function. The current processor extension context may belong to another task.	ESC	
0	1	0	A processor extension exists.		
1	1	0	A processor extension exists. The current processor extension context may belong to another task. The exception 7 on WAIT allows software to test for an error pending from a previous processor extension operation	ESC or WAIT	

processor extension interface. After RESET, this register contains FFFO(H) which places the 80C286 in 80C286 real address mode.

The LMSW and SMSW instructions can load and store the MSW in real address mode. The recommended use of TS, EM, and MP is shown in Table 8.

Halt
The HLT instruction stops program execution and prevents the CPU from using the local bus until restarted. Either NMI, INTR with IF = 1, or RESET will force the 80C286 out of halt. If interrupted, the saved CS:IP will point to the next instruction after the HLT.

80C286 Real Address Mode

The 80C286 executes a fully upward-compatible superset of the 80 C 86 instruction set in real address mode. In real address mode the 80 C 286 is object code compatible with 80 C 86 and 80 C 88 software. The real address mode architecture (registers and addressing modes) is exactly as described in the 80C286 Base Architecture section of this Functional Description.

Memory Size

Physical memory is a contiguous array of up to $1,048,576$ bytes (one megabyte) addressed by pins A_{0} through A_{19} and $\overline{\mathrm{BHE}}$. A_{20} through A_{23} should be ignored.

Memory Addressing

In real address mode physical memory is a contiguous array of up to $1,048,576$ bytes (one megabyte) addressed by pin A_{0} through A_{19} and $\overline{\mathrm{BHE}}$. Address bits $\mathrm{A}_{20}-\mathrm{A}_{23}$ may not always be zero in real mode. $A_{20}-A_{23}$ should not be used by the system while the 80 C 286 is operating in Real Mode.

The selector portion of a pointer is interpreted as the upper 16-bits of a 20 -bit segment address. The lower four bits of the 20 -bit segment address are always zero. Segment addresses, therefore, begin on multiples of 16 bytes. See Figure 7 for a graphic representation of address information.

All segments in real address mode are 64 K bytes in size and may be read, written, or executed. An exception or interrupt can occur if data operands or instructions attempt
to wrap around the end of a segment (e.g. a word with its low order byte at offset $\operatorname{FFFF}(\mathrm{H})$ and its high order byte at offset $0000(\mathrm{H})$. If, in real address mode, the information contained in a segment does not use the full 64 K bytes, the unused end of the segment may be overlayed by another segment to reduce physical memory requirements.

FIGURE 7. 80C286 REAL ADDRESS MODE ADDRESS CALCULATION

TABLE 9. REAL ADDRESS MODE ADDRESSING INTERRUPTS

FUNCTION	INTERRUPT NUMBER	RELATED INSTRUCTIONS	RETURN ADDRESS BEFORE INSTRUCTION
Interrupt table limit too small exception	8	INT vector is not within table limit	Yes
Processor extension segment overrun interrupt	9	ESC with memory operand extending beyond offset FFFF(H)	No
Segment overrun exception	13	Word memory reference with offset FFFF(H) or an attempt to execute past the end of a segment	Yes

Reserved Memory Locations

The 80C286 reserves two fixed areas of memory in real address mode (see Figure 8); system initialization area and interrupt table area. Locations from addresses FFFFO(H) through $\operatorname{FFFFF}(\mathrm{H})$ are reserved for system initialization. Initial execution begins at location FFFFO(H). Locations $00000(\mathrm{H})$ through $003 \mathrm{FF}(\mathrm{H})$ are reserved for interrupt vectors.

INITIAL CS:IP VALUE IS F000:FFFO.

FIGURE 8. 80C286 REAL ADDRESS MODE INITIALLY RESERVED MEMORY LOCATIONS

Interrupts

Table 9 shows the interrupt vectors reserved for exceptions and interrupts which indicate an addressing error. The exceptions leave the CPU in the state existing before attempting to execute the failing instruction (except for

PUSH, POP, PUSHA, or POPA). Refer to the next section on protected mode initialization for a discussion on exception 8.

Protected Mode Initialization

To prepare the 80 C 286 for protected mode, the LIDT instruction is used to load the 24-bit interrupt table base and 16 -bit limit for the protected mode interrupt table. This instruction can also set a base and limit for the interrupt vector table in real address mode. After reset, the interrupt table base is initialized to $000000(\mathrm{H})$ and its size set to $03 F F(H)$. These values are compatible with 80 C 86 and 80 C 88 software. LIDT should only be executed in preparation tor protected mode.

Shutdown

Shutdown occurs when a severe error is detected that prevents further instruction processing by the CPU. Shutdown and halt are externally signalled via a halt bus operation. They can be distinguished by $\mathrm{A}_{1} \mathrm{HIGH}$ for halt and A_{1} LOW for shutdown. In real address mode, shutdown can occur under two conditions:

- Exceptions 8 or 13 happen and the IDT limit does not include the interrupt vector.
- A CALL INT or PUSH instruction attempts to wrap around the stack segment when SP is not even.

An NMI input can bring the CPU out of shutdown if the IDT limit is at least $000 \mathrm{~F}(\mathrm{H})$ and SP is greater than $0005(\mathrm{H})$, otherwise shutdown can only be exited via the RESET input.

Protected Virtual Address Mode

The 80C286 executes a fully upward-compatible superset of the 80 C 86 instruction set in protected virtual address mode (protected mode). Protected mode also provides memory management and protection mechanisms and associated instructions.

The 80C286 enters protected virtual address mode from real address mode by setting the PE (Protection Enable) bit of the machine status word with the Load Machine Status Word (LMSW) instruction. Protected mode offers
extended physical and virtual memory address space, memory protection mechanisms, and new operations to support operating systems and virtual memory.

All registers, instructions, and addressing modes described in the 80C286 Base Architecture section of this Functional Description remain the same. Programs for the 80C86, 80C88, and real address mode 80C286 can be run in protected mode; however, embedded constants for segment selectors are different.

Memory Size

The protected mode 80 C 286 provides a 1 gigabyte virtual address space per task mapped into a 16 megabyte physical address space defined by the address pins $\mathrm{A}_{23}-\mathrm{A}_{0}$ and $\overline{\mathrm{BHE}}$. The virtual address space may be larger than the physical address space since any use of an address that does not map to a physical memory location will cause a restartable exception.

Memory Addressing

As in real address mode, protected mode uses 32-bit pointers, consisting of 16 -bit selector and offset components. The selector, however, specifies an index into a memory resident table rather than the upper 16-bits of a real memory address. The 24-bit base address of the desired segment is obtained from the tables in memory. The 16-bit offset is added to the segment base address to form the physical address as shown in Figure 9. The tables
are automatically referenced by the CPU whenever a segment register is loaded with a selector. All 80C286 instructions which load a segment register will reference the memory based tables without additional software. The memory based tables contain 8 byte values called descriptors.

Descriptors

Descriptors define the use of memory. Special types of descriptors also define new functions for transfer of control and task switching. The 80C286 has segment descriptors for code, stack and data segments, and system control descriptors for special system data segments and control transfer operations. Descriptor accesses are performed as locked bus operations to assure descriptor integrity in multi-processor systems.

Code and Data Segment Descriptors ($\mathrm{S}=1$)

Besides segment base addresses, code and data descriptors contain other segment attributes including segment size (1 to 64 K bytes), access rights (read only, read/write, execute only, and execute/read), and presence in memory (for virtual memory systems) (See Figure 10). Any segment usage violating a segment attribute indicated by the segment descriptor will prevent the memory cycle and cause an exception or interrupt.

CODE OR DATA SEGMENT DESCRIPTOR

*Must be set to 0 for compatability with future upgrades.

ACCESS RIGHTS BYTE DEFINITION

FIGURE 10. CODE AND DATA SEGMENT DESCRIPTOR FORMATS

Code and data (including stack data) are stored in two types of segments: code segments and data segments. Both types are identified and defined by segment descriptors ($S=1$). Code segments are identified by the executable (E) bit set to 1 in the descriptor access rights byte. The access rights byte of both code and data segment descriptor types have three fields in common: present (P) bit, Descriptor Privilege Level (DPL), and accessed (A) bit. If $P=0$, any attempted use of this segment will cause a not-present exception. DPL specifies the privilege level of the segment descriptor. DPL controls when the descriptor may be used by a task (refer to privilege discussion below). The A bit shows whether the segment has been previously accessed for usage profiling, a necessity for virtual memory systems. The CPU will always set this bit when accessing the descriptor.
Data segments ($S=1, E=0$) may be either read-only or read-write as controlled by the W bit of the access rights byte. Read-only ($\mathrm{W}=0$) data segments may not be written into. Data segments may grow in two directions, as determined by the Expansion Direction (ED) bit: upwards ($E D=0$) for data segments, and downwards ($E D=1$) for a segment containing a stack. The limit field for a data segment descriptor is interpreted differently depending on the ED bit (see Figure 10).

A code segment ($S=1, E=1$) may be execute-only or execute/read as determined by the Readable (R) bit. Code segments may never be written into and execute-only code segments ($R=0$) may not be read. A code segment may also have an attribute called conforming (C). A conforming code segment may be shared by programs that execute at different privilege levels. The DPL of a conforming code segment defines the range of privilege levels at which the segment may be executed (refer to privilege discussion below). The limit field identifies the last byte of a code segment.

System Segment Descriptors ($\mathrm{S}=\mathbf{0}$, Type $=\mathbf{1 - 3}$)

In addition to code and data segment descriptors, the protected mode 80C286 defines System Segment Descriptors. These descriptors define special system data segments which contain a table of descriptors (Local Descriptor Table Descriptor) or segments which contain the execution state of a task (Task State Segment Descriptor).

Figure 11 gives the formats for the special system data segment descriptors. The descriptors contain a 24 -bit base address of the segment and a 16 -bit limit. The access byte defines the type of descriptor, its state and privilege level. The descriptor contents are valid and the segment is in physical memory if $P=1$. If $P=0$, the segment is not valid. The DPL field is only used in Task State Segment descriptors and indicates the privilege level at which the descriptor may be used (see Privilege). Since the Local Descriptor Table descriptor may only be used by a special privileged instruction, the DPL field is not used. Bit 4 of the access byte is 0 to indicate that it is a system control descriptor. The type field specifies the descriptor type as indicated in Figure 11.

*Must be set to 0 for compatability with future upgrades
SYSTEM SEGMENT DESCRIPTOR FIELDS

Name	Value	Description
TYPE	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & \hline \end{aligned}$	Available Task State Segment (TSS) Local Descriptor Table Busy Task State Segment (TSS)
P	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	Descriptor contents are not valid Descriptor contents are valid
DPL	0-3	Descriptor Privilege Level
BASE	$\begin{gathered} \text { 24-bit } \\ \text { number } \end{gathered}$	Base Address of special system data segment in real memory
LIMIT	16-bit number	Offset of last byte in segment

FIGURE 11. SYSTEM SEGMENT DESCRIPTOR FORMAT

Gate Descriptors ($\mathrm{S}=0$, Type $=4-7$)

Gates are used to control access to entry points within the target code segment. The gate descriptors are call gates, task gates, interrupt gates and trap gates. Gates provide a level of indirection between the source and destination of the control transfer. This indirection allows the CPU to automatically perform protection checks and control entry point of the destination. Call gates are used to change privilege levels (see Privilege), task gates are used to perform a task switch, and interrupt and trap gates are used to specify interrupt service routines. The interrupt gate disables interrupts (resets IF) while the trap gate does not.

Figure 12 shows the format of the gate descriptors. The descriptor contains a destination pointer that points to the descriptor of the target segment and the entry point offset. The destination selector in an interrupt gate, trap gate, and call gate must refer to a code segment descriptor. These gate descriptors contain the entry point to prevent a program from constructing and using an illegal entry point. Task gates may only refer to a task state segment. Since task gates invoke a task switch, the destination offset is not used in the task gate.

Exception 13 is generated when the gate is used if a destination selector does not refer to the correct descriptor type. The word count field is used in the call gate descriptor to indicate the number of parameters (0-31 words) to be automatically copied from the caller's stack to the stack of the called routine when a control transfer changes privilege levels. The word count field is not used by any other gate descriptor.

The access byte format is the same for all descriptors. $P=$ 1 indicates that th gate contents are valid. $\mathrm{P}=0$ indicates the contents are not valid and causes exception 11 if referenced. DPL is the descriptor privilege level and specifies when this descriptor may be used by a task (refer
to privilege discussion below). Bit 4 must equal 0 to indicate a system control descriptor. The type field specifies the descriptor type as indicated in Figure 12.

GATE DESCRIPTOR

*Must be set to 0 for compatibility with future upgrades
GATE DESCRIPTOR FIELDS

Name	Value	Description
TYPE	$\begin{aligned} & 4 \\ & 5 \\ & 6 \\ & 7 \end{aligned}$	-Call Gate - Task Gate - Interrupt Gate - Trap Gate
P	0 1	- Descriptor Contents are not valid -Descriptor Contents are valid
DPL	0-3	Descriptor Privilege Level
WORD COUNT	0-31	Number of words to copy from callers stack to ca!led procedures stack. Only used with call gate.
DESTINATION SELECTOR	16-bit selector	Selector to the target code segment (Call, Interrupt or Trap Gate) Selector to the target task state segment (Task Gate)
$\begin{aligned} & \text { DESTINATION } \\ & \text { OFFSET } \end{aligned}$	16-bit offset	Entry point within the target code segment

FIGURE 12. GATE DESCRIPTOR FORMAT

Segment Descriptor Cache Registers

A segment descriptor cache register is assigned to each of the four segment registers (CS, SS, DS, ES). Segment descriptors are automatically loaded (cached) into a segment descriptor cache register (Figure 13) whenever the associated segment register is loaded with a selector.

FIGURE 13. DESCRIPTOR CACHE REGISTERS

Only segment descriptors may be loaded into segment descriptor cache registers. Once loaded, all references to that segment of memory use the cached descriptor information instead of reaccessing the descriptor. The descriptor cache registers are not visible to programs. No instructions exist to store their contents. They only change when a segment register is loaded.

Selector Fields

A protected mode selector has three fields: descriptor entry index, local or global descriptor table indicator (TI), and selector privilege (RPL) as shown in Figure 14. These fields select one of two memory based tables of descriptors, select the appropriate table entry and allow high-speed testing of the selector's privilege attribute (refer to privilege discussion below).

BITS	FUNCTION	
$1-0$	REQUESTED PRIVILEGE LEVEL (RPL)	INDICATES SELECTOR PRIVILEGE LEVEL DESIRED
2	TABLE INDICATOR (TI)	$\mathrm{TI}=$O USE GLOBAL DESCRIPTOR TABLE (GDT) 1 USE LOCAL DESCRIPTOR TABLE (LDT) $15-3$
INDEX	SELECT DESCRIPTOR ENTRY IN TABLE	

FIGURE 14. SELECTOR FIELDS

Local and Global Descriptor Tables

Two tables of descriptors, called descriptor tables, contain all descriptors accessible by a task at any given time. A descriptor table is a linear array of up to 8192 descriptors. The upper 13 bits of the selector value are an index into a descriptor table. Each table has a 24-bit base register to locate the descriptor table in physical memory and a 16-bit limit register that confine descriptor access to the defined limits of the table as shown in Figure 15. A restartable exception (13) will occur if an attempt is made to reference a descriptor outside the table limits.

FIGURE 15. LOCAL AND GLOBAL DESCRIPTOR TABLE DEFINITION

One table, called the Global Descriptor table (GDT), contains descriptors available to all tasks. The other table, called the Local Descriptor Table (LDT), contains descriptors that can be private to a task. Each task may have its own private LDT. The GDT may contain all descriptor types except interrupt and trap descriptors. The LDT may contain only segment, task gate, and call gate descriptors. A segment cannot be accessed by a task if its segment descriptor does not exist in either descriptor table at the time of access.

The LGDT and LLDT instructions load the base and limit of the global and local descriptor tables. LGDT and LLDT are privileged, i.e. they may only be executed by trusted programs operating at level 0 . The LGDT instruction loads a six byte field containing the 16-bit table limit and 24-bit physical base address of the Global Descriptor Table as shown in Figure 16. The LDT instruction loads a selector which refers to a Local Descriptor Table descriptor containing the base address and limit for an LDT, as shown in Figure 11.

*Must be set to 0 for compatability with future upgrades
FIGURE 16. GLOBAL DESCRIPTOR TABLE AND INTERRUPT DESCRIPTOR TABLE DATA TYPE

Interrupt Descriptor Table

The protected mode 80C286 has a third descriptor table, called the Interrupt Descriptor Table (IDT) (see Figure 17), used to define up to 256 interrupts. It may contain only task gates, interrupt gates and trap gates. The IDT (Interrupt Descriptor Table) has a 24-bit physical base and 16-bit limit register in the CPU. The priviledged LIDT instruction loads these registers with a six byte value of identical form to that of the LGDT instruction (see Figure 16 and Protected Mode Initialization).

FIGURE 17. INTERRUPT DESCRIPTOR TABLE DEFINITION

References to IDT entries are made via INT instructions, external interrupt vectors, or exceptions. The IDT must be at least 256 bytes in size to allocate space for all reserved interrupts.

Privilege

The 80C286 has a four-level hierarchical privilege system which controls the use of privileged instructions and access to descriptors (and their associated segments)
within a task. Four-level privilege, as shown in Figure 18, is an extension of the userssupervisor mode commonly found in minicomputers. The privilege levels are numbered 0 through 3 . Level 0 is the most privileged level. Privilege levels provide protection within a task. (Tasks are isolated by providing private LDT's for each task.) Operating system routines, interrupt handlers, and other system software can be included and protected within the virtual address space of each task using the four levels of privilege. Each task in the system has a separate stack for each of its privilege levels.

Tasks, descriptors, and selectors have a privilege level attribute that determines whether the descriptor may be used. Task privilege affects the use of instructions and descriptors. Descriptor and selector privilege only affect access to the descriptor.

NOTE: PL becomes numerically lower as privilege level increases
FIGURE 18. HIERARCHICAL PRIVILEGE LEVELS

Task Privilege

A task always executes at one of the four privilege levels. The task privilege level at any specific instant is called the Current Privilege Level (CPL) and is defined by the lower two bits of the CS register. CPL cannot change during execution in a single code segment. A task's CPL may only be changed by control transfers through gate descriptors to a new code segment (See Control Transfer). Tasks begin executing at the CPL value specified by the code segment selector within TSS when the task is initiated via a task switch operation (See Figure 19). A task executing at Level 0 can access all data segments defined in the GDT and the task's LDT and is considered the most trusted level. A task executing a Level 3 has the most restricted access to data and is considered the least trusted level.

Descriptor Privilege

Descriptor privilege is specified by the Descriptor Privilege Level (DPL) field of the descriptor access byte. DPL specifies the least trusted task privilege level (CPL) at which a task may access the descriptor. Descriptors with DPL $=0$ are the most protected. Only tasks executing at privilege level $0(C P L=0)$ may access them. Descriptors with DPL $=3$ are the least protected (i.e. have the least restricted access) since tasks can access them when $C P L=0,1,2$, or 3). This rule applies to all descriptors, except LDT descriptors.

TABLE 10. DESCRIPTOR TYPES USED FOR CONTROL TRANSFER

CONTROL TRANSFER TYPES	OPERATION TYPES	DESCRIPTOR REFERENCED	DESCRIPTOR TABLE
Intersegment within the same privilege levels	JMP, CALL, RET, IRET*	Code Segment	GDT/LDT
Intersegment to the same or higher privilege level Interrupt within task may change CPL.	CALL	Call Gate	GDT/LDT
	Interrupt Instruction, Exception External Interrupt	Trap or Interrupt Gate	IDT
Intersegment to a lower privilege level (changes task CPL)	RET, IRET*	Code Segment	GDT/LDT
	CALL, JMP	Task State Segment	GDT
	CALL, JMP	Task Gate	GDT/LDT
	IRET** Interrupt Instruction, Exception External Interrupt	Task Gate	IDT

NT (Nested Task bit of flag word $)=0 \quad{ }^{ *} N T($ Nested T ask bit of flag word $)=1$

Selector Privilege

Selector privilege is specified by the Requested Privilege Level (RPL) field in the least significant two bits of a selector. Selector RPL may establish a less trusted privilege level than the current privilege level for the use of a selector. This level is called the task's effective privilege level (EPL). RPL can only reduce the scope of a task's access to data with this selector. A task's effective privilege is the numeric maximum of RPL and CPL. A selector with RPL $=0$ imposes no additional restriction on its use while a selector with RPL $=3$ can only refer to segments at privilege Level 3 regardless of the task's CPL. RPL is generally used to verify that pointer parameters passed to a more trusted procedure are not allowed to use data at a more privileged level than the caller (refer to pointer testing instructions).

Descriptor Access and Privilege Validation

Determining the ability of a task to access a segment involves the type of segment to be accessed, the instruction used, the type of descriptor used and CPL, RPL, and DPL. The two basic types of segment accesses are control transfer (selectors loaded into CS) and data (selectors loaded into DS, ES or SS)

Data Segment Access

Instructions that load selectors into DS and ES must refer to a data segment descriptor or readable code segment descriptor. The CPL of the task and the RPL of the selector must be the same as or more privileged (numerically equal to or lower than) than the descriptor DPL. In general, a task can only access data segments at the same or less privileged levels than the CPL or RPL (whichever is numerically higher) to prevent a program from accessing data it cannot be trusted to use.

An exception to the rule is a readable conforming code segment. This type of code segment can be read from any privilege level.

If the privilege checks fail (e.g. DPL is numerically less than the maximum of CPL and RPL) or an incorrect type of descriptor is referenced (e.g. gate descriptor or execute only code segment) exception 13 occurs. If the segment is not present, exception 11 is generated.

Instructions that load selectors into SS must refer to data segment descriptors for writable data segments. The descriptor privilege (DPL) and RPL must equal CPL. All other descriptor types or a privilege level violation will cause exception 13. A not present fault causes exception 12.

Control Transfer

Four types of control transfer can occur when a selector is loaded into CS by a control transfer operation (see Table 10). Each transfer type can only occur if the operation which loaded the selector references the correct descriptor type. Any violation of these descriptor usage rules (e.g. JMP through a call gate or RET to a Task State Segment) will cause exception 13.

The ability to reference a descriptor for control transfer is also subject to rules of privilege. A CALL or JUMP instruction may only reference a code segment descriptor with DPL equal to the task CPL or a conforming segment with DPL of equal or greater privilege than CPL. The RPL of the selector used to reference the code descriptor must have as much privilege as CPL.

RET and IRET instructions may only reference code segment descriptors with descriptor privilege equal to or less privileged than the task CPL. The selector loaded into CS is the return address from the stack. After the return, the selector RPL is the task's new CPL. If CPL changes, the old stack pointer is popped after the return address.

When a JMP or CALL references a Task State Segment descriptor, the descriptor DPL must be the same or less privileged than the task's CPL. Reference to a valid Task

State Segment descriptor causes a task switch (see Task Switch Operation). Reference to a Task State Segment descriptor at a more privileged level than the task's CPL generates exception 13.
When an instruction or interrupt references a gate descriptor, the gate DPL must have the same or less privilege than the task CPL. If DPL is at a more privileged level than CPL, exception 13 occurs. If the destination selector contained in the gate references a code segment descriptor, the code segment descriptor DPL must be the same or more privileged than the task CPL. If not, Exception 13 is issued. After the control transfer, the code segment descriptors DPL is the task's new CPL. If the destination selector in the gate references a task state segment, a task switch is automatically performed (see Task Switch Operation).

The privilege rules on control transfer require:

- JMP or CALL direct to a code segment (code segment descriptor) can only be a conforming segment with DPL of equal or greater privilege than CPL or a nonconforming segment at the same privilege level.
- interrupts within the task, or calls that may change privilege levels, can only transfer control through a gate at the same or a less privileged level than CPL to a code segment at the same or more privileged level than CPL.
- return instructions that don't switch tasks can only return control to a code segment at the same or less privileged level.
- task switch can be performed by a call, jump or interrupt which references either a task gate or task state segment at the same or less privileged level.

Privilege Level Changes

Any control transfer that changes CPL within the task, causes a change of stacks as part of the operation. Initial values of SS:SP for privilege levels 0,1 , and 2 are kept in the task state segment (refer to Task Switch Operation). During a JMP or CALL control transfer, the new stack pointer is loaded into the SS and SP registers and the previous stack pointer is pushed onto the new stack.
When returning to the original privilege level, its stack is restored as part of the RET or IRET instruction operation. For subroutine calls that pass parameters on the stack

TABLE 11. SEGMENT REGISTER LOAD CHECKS

ERROR DESCRIPTION	EXCEPTION NUMBER
Descriptor table limit exceeded	13
Segment descriptor not-present	11 or 12
Privilege rules violated	13
Invalid descriptor/segment type segment register load: -Read only data segment load to SS -Special control descriptor load to DS, ES, SS -Execute only segment load to DS, ES, SS -Data segment load to CS -Read/Execute code segment load SS	13

and cross privilege levels, a fixed number of words, as specified in the gate, are copied from the previous stack to the current stack. The inter-segment RET instruction with a stack adjustment value will correctly restore the previous stack pointer upon return.

Protection

The 80 C 286 includes mechanisms to protect critical instructions that effect the CPU execution state (e.g. HLT) and code or data segments from improper usage. These protection mechanisms are grouped into three forms:

- Restricted usage of segments (e.g. no write allowed to read-only data segments). The only segments available for use are defined by descriptors in the Local Descriptor Table (LDT) and Global Descriptor Table (GDT).
- Restricted access to segments via the rules of privilege and descriptor usage.
- Privileged instructions or operations that may only be executed at certain privilege levels as determined by the CPL and I/O Privilege Level (IOPL). The IOPL is defined by bits 14 and 13 of the flag word.

These checks are performed for all instructions and can be split into three categories: segment load checks (Table 11), operand reference checks (Table 12), and privileged instruction checks (Table 13). Any violation of the rules shown will result in an exception. A not-present exception related to the stack segment causes exception 12.

The IRET and POPF instructions do not perform some of their defined functions if CPL is not of sufficient privilege (numerically small enough). Precisely these are:

- The IF bit is not changed if CPL is greater than IOPL.
- The IOPL field of the flag word is not changed if CPL is greater than 0.

No exceptions or other indication are given when these conditions occur.

TABLE 12. OPERAND REFERENCE CHECKS

ERROR DESCRIPTION	EXCEPTION NUMBER
Write into code segment	13
Read from execute-only code segment	13
Write to read-only data segment	13
Segment limit exceeded (Note1)	12 or 13

NOTE 1. Carry out in offset calculations is ignored.

TABLE 13. PRIVILEGED INSTRUCTION CHECKS

ERROR DESCRIPTION	EXCEPTION NUMBER
CPL $\neq 0$ when executing the following instructions: LIDT, LLDT, LGDT, LTR, LMSW, CTS, HLT	13
CPT > IOPL when executing the following instructions: INS, IN, OUTS, OUT, STI, CLI, LOCK	13

$80 C 286$

TABLE 14. PROTECTED MODE EXCEPTIONS

INTERRUPT VECTOR	FUNCTION	RETURN ADDRESS AT FALLING INSTRUCTION?	ALWAYS RESTARTABLE?	ERROR CODE ON STACK?
8	Double exception detected	Yes	No (Note 2)	Yes
9	Processor extension segment overrun	No	No (Note 2)	No
10	Invalid task state segment	Yes	Yes	Yes
11	Segment not present	Yes	Yes	Yes
12	Stack segment overrun or stack segment not present	Yes	Yes (Note 1)	Yes
13	General protection	Yes	No (Note 2)	Yes

NOTES: 1. When a PUSHA or POPA instruction attempts to wrap around the stack segment, the machine state after the exception will not be restartable because stack segment wrap around is not permitted. This condition is identified by the value of the saved SP being either 0000(H), 0001(H), $\operatorname{FFFE}(\mathrm{H})$, or $\operatorname{FFFF}(\mathrm{H})$.
2. These exceptions indicate a violation to privilege rules or usage rules has occurred. Restart is generally not attempted under those conditions.

Exceptions

The 80 C 286 detects several types of exceptions and interrupts in protected mode (see Table 14). Most are restartable after the exceptional condition is removed. Interrupt handlers for most exceptions can read an error code, pushed on the stack after the return address, that identifies the selector involved (0 if none). The return address normally points to the failing instruction, including all leading prefixes. For a processor extension segment overrun exception, the return address will not point at the ESC instruction that caused the exception; however, the processor extension registers may contain the address of the failing instruction.

These exceptions indicate a violation to privilege rules or usage rules has occurred. Restart is generally not attempted under those conditions.

All these checks are performed for all instructions and can be split into three categories: segment load checks (Table 11), operand reference checks (Table 12), and privileged instruction checks (Table 13). Any violation of the rules shown will result in an exception. A not-present exception causes exception 11 or 12 and is restartable.

Special Operations

Task Switch Operation

The 80C286 provides a built-in task switch operation which saves the entire 80C286 execution state (registers, address space, and a link to the previous task), loads a new execution state, and commences execution in the new task. Like gates, the task switch operation is invoked by executing an inter-segment JMP or CALL instruction which refers to a Task State Segment (TSS) or task gate descriptor in the GDT or LDT. An INT instruction, exception, or external interrupt may also invoke the task switch operation by selecting a task gate descriptor in the associated IDT descriptor entry.

The TSS descriptor points at a segment (see Figure 19) containing the entire 80C286 execution state while a task gate descriptor contains a TSS selector. The limit field of the descriptor must be greater than 002B(H).

Each task must have a TSS associated with it. The current TSS is identified by a special register in the 80C286 called
the Task Register (TR). This register contains a selector referring to the task state segment descriptor that defines the current TSS. A hidden base and limit register associated with TR are loaded whenever TR is loaded with a new selector. The IRET instruction is used to return control to the task that called the current task or was interrupted. Bit 14 in the flag register is called the Nested Task (NT) bit. It controls the function of the IRET instruction. If NT $=0$, the IRET instruction performs the regular current task by popping values off the stack; when NT $=1$, IRET performs a task switch operation back to the previous task.

When a CALL, JMP, or INT instruction initiates a task switch, the old (except for case of JMP) and new TSS will be marked busy and the back link field of the new TSS set to the old TSS selector. The NT bit of the new task is set by CALL or INT initiated task switches. An interrupt that does not cause a task switch will clear NT. NT may also be set or cleared by POPF or IRET instructions.

The task state segment is marked busy by changing the descriptor type field from Type 1 to Type 3. Use of a selector that references a busy task state segment causes Exception 13.

Processor Extension Context Switching

The context of a processor extension is not changed by the task switch operation. A processor extension context need only be changed when a different task attempts to use the processor extension (which still contains the context of a previous task). The 80C286 detects the first use of a processor extension after a task switch by causing the processor extension not present exception (7). The interrupt handler may then decide whether a context change is necessary.

Whenever the 80 C 286 switches tasks, it sets the Task Switched (TS) bit of the MSW. TS indicates that a processor extension context may belong to a different task than the current one. The processor extension not present exception (7) will occur when attempting to execute an ESC or WAIT instruction if TS = 1 and a processor extension is present (MP = 1 in MSW).

FIGURE 19. TASK STATE SEGMENT AND TSS REGISTERS

Pointer Testing Instructions

The 80 C 286 provides several instructions to speed pointer testing and consistency checks for maintaining system integrity (see Table 15). These instructions use the memory management hardware to verify that a
selector value refers to an appropriate segment without risking an exception. A condition flag (ZF) indicates whether use of the selector or segment will cause an exception.

TABLE 15. 80C286 POINTER TEST INSTRUCTIONS

INSTRUCTION	OPERANDS	FUNCTION
ARPL	Selector, Register	Adjust Requested Privilege Level: adjusts the RPL of the selector to the numeric maximum of current selector RPL value and the RPL value in the register. Set zero flag if selector RPL was changed by ARPL.
VERR	Selector	VERify for Read: sets the zero flag if the segment referred to by the selector can be read.
VERW	Selector	VERify for Write: sets the zero flag if the segment referred to by the selector can be written.
LSL	Register, Selector	Load Segment Limit: reads the segment limit into the register if privilege rules and descrip- tor type allow. Set zero flag if successful.
LAR	Register, Selector	Load Access Rights: reads the descriptor access rights byte into the register if privilege rules allow. Set zero flag if successful.

Double Fault and Shutdown

If two separate exceptions are detected during a single instruction execution, the 80C286 performs the double fault exception (8). If an exception occurs during processing of the double fault exception, the 80 C 286 will enter shutdown. During shutdown no further instructions or exceptions are processed. Either NMI (CPU remains in protected mode) or RESET (CPU exits protected mode) can force the 80 C 286 out of shutdown. Shutdown is externally signalled via a HALT bus operation with A_{1} LOW.

Protected Mode Initialization

The 80C286 initially executes in real address mode after RESET. To allow initialization code to be placed at the top of physical memory, A_{23-20} will be HIGH when the 80C286 performs memory references relative to the CS register until CS is changed. A_{23-20} will be zero for references to the DS, ES, or SS segments. Changing CS in real address mode will force A_{23-20} LOW whenever CS is
used again. The initial CS:IP value of F000:FFFO provides 64 K bytes of code space for initialization code without changing CS.

Protected mode operation requires several registers to be initialized. The GDT and IDT base registers must refer to a valid GDT and IDT. After executing the LMSW instruction to set PE, the 80C286 must immediately execute an intrasegment JMP instruction to clear the instruction queue of instructions decoded in real address mode.

To force the 80C286 CPU registers to match the initial protected mode state assumed by software, execute a JMP instruction with a selector referring to the initial TSS used in the system. This will load the task register, local descriptor table register, segment registers and initial general register state. The TR should point at a valid TSS since any task switch operation involves saving the current task state.

System Interface

The 80C286 system interface appears in two forms: a local bus and a system bus. The local bus consists of address, data, status, and control signals at the pins of the CPU. A system bus is any buffered version of the local bus. A system bus may also differ from the local bus in terms of coding of status and control lines and/or timing and loading of signals.

Bus Interface Signals and Timing

The 80C286 microsystems local bus interfaces the 80 C 286 to local memory and I/O components. The interface has 24 address lines, 16 data lines, and 8 status and control signals.

The $80 \mathrm{C} 286 \mathrm{CPU}, 82 \mathrm{C} 284$ clock generator, 82 C 288 bus controller, 82289 bus arbiter, $82 \mathrm{C} 86 \mathrm{H} / 87 \mathrm{H}$ tranceivers, and $82 \mathrm{C} 82 / 83 \mathrm{H}$ latches provide a buffered and decoded system bus interface. The 82C284 generates the system clock and synchronizes READY and RESET. The 82C288 converts bus operation status encoded by the 80 C 286 into command and bus control signals. The 82289 bus arbiter

FIGURE 20A. BUS HOLD CIRCUITRY - PINS 36-51, 66, 67
generates Multibus ${ }^{\text {™ }}$ bus arbitration signals. These components can provide the critical timing required for most system bus interfaces including the Multibus.

Bus Hold Circuitry

To avoid high current conditions caused by floating inputs to CMOS devices, and to eliminate the need for pull-up/down resistors, "bus-hold" circuitry has been used on the 80C286 pins 4-6, 36-51,53,54 and 66-68 (See Figure 20A and 20B). The circuit shown in Figure 20A will maintain the last valid logic state if no driving source is present (i.e. an unconnected pin or a driving source which goes to a high impedance state). The circuit shown in Figure 20B will maintain a high impedance logic one state if no driving source is present. To overdrive the "bus-hold" circuits, an external driver must be capable of sinking or sourcing approximately 400 microamps at valid input voltage levels. Since this "bus-hold" circuitry is active and not a "resistive" type element, the associated power supply current is negligible, and power dissipation is significantly reduced when compared to the use of passive pull-up resistors.

FIGURE 20B. BUS HOLD CIRCUITRY - PINS 4-6, 53, 54, 68

Physical Memory and I/O Interface

A maximum of 16 megabytes of physical memory can be addressed in protected mode. One megabyte can be addressed in real address mode. Memory is accessible as bytes or words. Words consist of any two consecutive bytes addressed with the least significant byte stored in the lowest address. Byte transfers occur on either half of the 16-bit local data bus. Even bytes are accessed over D_{7-0} while odd bytes are transferred over D_{15-8}. Even addressed words are transferred over D_{15-0} in one bus cycle, while odd addressed word require two bus operations. The first transfers data on D_{15-8}, and the second transfers data on D7-0. Both byte data transfers occur automatically, transparent to software.

Two bus signals, A_{0} and $\overline{B H E}$, control transfers over the lower and upper halves of the data bus. Even address byte transfers are indicated by A_{0} LOW and BHE HIGH. Odd address byte transfers are indicated by $\mathrm{A}_{0} \mathrm{HIGH}$ and $\overline{\mathrm{BHE}}$ LOW. Both A_{0} and $\overline{\mathrm{BHE}}$ are LOW for even address word transfers.

The I/O address space contains 64 K addresses in both modes. The I/O space is accessible as either bytes or words, as is memory. Byte wide peripheral devices may be attached to either the upper or lower byte of the data bus. Byte-wide I/O devices attached to the upper data byte (D_{15-8}) are accessed with odd I/O addresses. Devices on the lower data byte are accessed with even I/O addresses. An interrupt controller such as Harris's 82C59A must be connected to the lower data byte (D_{7-0}) for proper return of the interrupt vector.

Bus Operation

The 80C286 uses a double frequency system clock (CLK input) to control bus timing. All signals on the local bus are measured relative to the system CLK input. The CPU divides the system clock by 2 to produce the internal processor clock, which determines bus state. Each processor clock is composed of two system clock cycles named phase 1 and phase 2. The 82C284 clock generator output (PCLK) identifies the next phase of the processor clock. (See Figure 21.)

FIGURE 21. SYSTEM AND PROCESSOR CLOCK RELATIONSHIPS

Six types of bus operations are supported; memory read, memory write, I/O read, I/O write, interrupt acknowledge, and halt/shutdown. Data can be transferred at a maximum rate of one word per two processor clock cycles.

The 80 C 286 bus has three basic states: idle (T_{1}), send status (TS), and perform command (TC). The 80 C 286 CPU also has a fourth local bus state called hold (TH) . TH indicates that the 80C286 has surrendered control of the local bus to another bus master in response to a HOLD request.

Each bus state is one processor clock long. Figure 22 shows the four 80C286 local bus states and allowed transitions.

FIGURE 22. 80 C 286 BUS STATES

Bus States

The idle (T_{1}) state indicates that no data transfers are in progress or requested. The first active state T_{S} is signaled by status line $\overline{S_{1}}$ or $\overline{S_{0}}$ going LOW and identifying phase 1 of the processor clock. During TS, the command encoding, the address, and data (for a write operation) are available on the 80 C 286 output pins. The 82 C 288 bus controller decodes the status signals and generates Multibus compatible read/write command and local transceiver control signals.

After TS, the perform command (TC) state is entered. Memory or I/O devices respond to the bus operation during T_{C}, either transferring read data to the CPU or accepting write data. TC states may be repeated as often as necessary to ensure sufficient time for the memory or I/O device to respond. The READY signal determines whether T_{C} is repeated. A repeated T_{C} state is called a wait state.

During hold (T_{H}), the 80C286 will float all address, data, and status output drivers enabling another bus master to use the local bus. The 80C286 HOLD input signal is used to place the 80 C 286 into the TH_{H} state. The 80 C 286 HLDA output signal indicates that the CPU has entered T_{H}.

Pipelined Addressing

The 80C286 uses a local bus interface with pipelined timing to allow as much time as possible for data access. Pipelined timing allows a new bus operation to be initiated every two processor cycles, while allowing each individual bus operation to last for three processor cycles.

Pipeling: valid address $(\mathrm{N}+1)$ available in last phase of bus cycle (N).

FIGURE 23. BASIC BUS CYCLE

The timing of the address outputs is pipelined such that the address of the next bus operation becomes available during the current bus operation. Or, in other words, the first clock of the next bus operation is overlapped with the last clock of the current bus operation. Therefore, address decode and routing logic can operate in advance of the next bus operation.

External address latches may hold the address stable for the entire bus operation, and provide additional AC and DC buffering.

The 80C286 does not maintain the address of the current bus operation during all T_{C} states. Instead, the address for the next bus operation may be emitted during phase 2 of any TC. The address remains valid during phase 1 of the first T_{C} to guarantee hold time, relative to ALE, for the address latch inputs.

Bus Control Signals

The 82C288 bus controller provides control signals; address latch enable (ALE), Read/Write commands, data transmit/receive (DT/ \bar{R}), and data enable (DEN) that control the address latches, data transceivers, write enable, and output enable for memory and I/O systems.

The Address Latch Enable (ALE) output determines when the address may be latched. ALE provides at least one system CLK period of address hold time from the end of the previous bus operation until the address for the next bus operation appears at the latch outputs. This address hold time is required to support Multibus and common memory systems.

The data bus transceivers are controlled by 82 C 288 outputs Data Enable (DEN) and Data Transmit/Receive (DT/ \bar{R}). DEN enables the data transceivers; while $D T / \bar{R}$ controls tranceiver direction. DEN and DT// \bar{R} are timed to prevent bus contention between the bus master, data bus transceivers, and system data bus transceivers.

Command Timing Controls

Two system timing customization options, command extension and command delay, are provided on the 80C286 local bus.

Command extension allows additional time for external devices to respond to a command and is analogous to inserting wait states on the 80C86. External logic can control the duration of any bus operation such that the operation is only as long as necessary. The $\overline{\operatorname{READY}}$ input signal can extend any bus operation for as long as necessary.

Command delay allows an increase of address or write data setup time to system bus command active for any bus operation by delaying when the system bus command becomes active. Command delay is controlled by the 82C288 CMDLY input. After Ts, the bus controller samples CMDLY at each failing edge of CLK. If CMDLY is HIGH, the 82C288 will not activate the command signal. When CMDLY is LOW, the 82C288 will activate the command signal. After the command becomes active, the CMDLY input is not sampled.

When a command is delayed, the available response time from command active to return read data or accept write data is less. To customize system bus timing, an address decoder can determine which bus operations require delaying the command. The CMDLY input does not affect the timing of ALE, DEN or DT/ $\overline{\mathrm{R}}$.

Figure 24 illustrates four uses of CMDLY. Example 1 shows delaying the read command two system CLKs for cycle $\mathrm{N}-1$ and no delay for cycle N , and example 2 shows delaying the read command one system CLK for cycle $\mathrm{N}-1$ and one system CLK delay for cycle N .

Bus Cycle Termination

At maximum transfer rates, the 80 C 286 bus alternates between the status and command states. The bus status signals become inactive after Ts so that they may cor-

rectly signal the start of the next bus operation after the completion of the current cycle. No external indication of TC exists on the 80 C 286 local bus. The bus master and bus controller enter TC directly after TS and continue executing TC cycles until terminated by the assertion of READY.

$\overrightarrow{R E A D Y}$ Operation

The current bus master and 82C288 bus controller terminate each bus operation simultaneously to achieve maximum bus operation bandwidth. Both are informed in advance by READY active (open-collector output from 82C284) which identifies the last TC cycle of the current bus operation. The bus master and bus controller must see the same sense of the READY signal, thereby requiring $\overline{\text { READY }}$ to be synchronous to the system clock.

Synchronous Ready

The 82C284 clock generator provides $\overline{\text { READY }}$ synchronization from both synchronous and asynchronous sources (see Figure 25). The synchronous ready input ($\overline{\mathrm{SRDY}}$) of the clock generator is sampled with the falling edge of CLK at the end of phase 1 of each TC. The state of SRDY is then broadcast to the bus master and bus controller via the READY output line.

Asynchronous Ready

Many systems have devices or subsystems that are asynchronous to the system clock. As a result, their ready outputs cannot be guaranteed to meet the 82C284 SRDY setup and hold time requirements. But the 82C284 asynchronous ready input ($\overline{\text { ARDY }}$) is designed to accept such signals. The ARDY input is sampled at the beginning of each TC cycle by 82C284 synchronization logic. This provides one system CLK cycle time to resolve its value before broadcasting it to the bus master and bus controller,
$\overline{A R D Y}$ or $\overline{\text { ARDYEN }}$ must be HIGH at the end of TS. $\overline{\text { ARDY }}$ cannot be used to terminate the bus cycle with no wait states.

Each ready input of the 82 C 284 has an enable pin (SRDYEN and $\overline{\text { ARDYEN }}$) to select whether the current bus operation will be terminated by the synchronous or asynchronous ready. Either of the ready inputs may terminate a bus operation. These enable inputs are active low and have the same timing as their respective ready inputs. Address decode logic usually selects whether the current bus operation should be terminated by $\overline{\text { ARDY }}$ or SRDY.

Data Bus Control

Figures 26, 27, and 28 show how the DT/R, DEN, data bus, and address signals operate for different combinations of read, write, and idle bus operations. DT//̄ goes active (LOW) for a read operation. DT//̄ remains HIGH before, during, and between write operations.

The data bus is driven with write data during the second phase of Ts. The delay in write data timing allows the read data drivers, from a previous read cycle, sufficient time to enter three-state OFF before the 80C286 CPU begins driving the local data bus for write operations. Write data will always remain valid for one system clock past the last TC to provide sufficient hold time for Multibus or other similar memory or I/O systems. During write-read or write-idle sequences the data bus enters a high impedance state during the second phase of the processor cycle after the last TC. In a write-write sequence the data bus does not enter a high impedance state between TC and Ts.

Bus Usage

The 80C286 local bus may be used for several functions: instruction data transfers, data transfers by other bus masters, instruction fetching, processor extension data transfers, interrupt acknowledge, and halt/shutdown. This section describes local bus activities which have special signals or requirements. Note that I/O transfers take place in exactly the same manner as memory transfers (i.e. to the 80 C 286 the timing, etc. of an I/O transfer is identical to a memory transfer).

HOLD and HLDA

HOLD and HLDA allow another bus master to gain control of the local bus by placing the 80 C 286 bus into the T_{H} state. The sequence of events required to pass control between the 80 C 286 and another local bus master are shown in Figure 29.

In this example, the 80 C 286 is initially in the T_{H} state as signaled by HLDA being active. Upon leaving T_{H}, as signaled by HLDA going inactive, a write operation is started. During the write operation another local bus master requests the local bus from the 80 C 286 as shown by the HOLD signal. After completing the write operation, the 80C286 performs one $T_{\text {/ b }}$ bus cycle, to guarantee write data hold time, then enters T_{H} as signaled by HLDA going active.

The CMDLY signal and $\overline{\text { ARDY }}$ ready are used to start and stop the write bus command, respectively. Note that SRDY must be inactive or disabled by SRDYEN to guarantee $\overline{A R D Y}$ will terminate the cycle.

HOLD must not be active during the time from the leading edge of RESET until 34 CLKs following the trailing edge of RESET unless the 80C286 is in the Halt condition. To ensure that the 80 C 286 remains in the Halt condition until
the processor Reset operation is complete, no interrupts should occur after the execution of HLT until 34 CLKs after the trailing edge of the RESET pulse.

LOCK

The CPU asserts an active lock signal during InterruptAcknowledge cycles, the XCHG instruction, and during some descriptor accesses. Lock is also asserted when the LOCK prefix is used. The LOCK prefix may be used with the following ASM-286 assembly instructions; MOVS, INS and OUTS. For bus cycles other than InterruptAcknowledge cycles, Lock will be active for the first and subsequent cycles of a series of cycles to be locked. Lock will not be shown active during the last cycle to be locked. For the next-to-last cycle, Lock will become inactive at the end of the first TC regardless of the number of wait states inserted. For Interrupt-Acknowledge cycles, Lock will be active for each cycle, and will become inactive at the end of the first T_{C} for each cycle regardless of the number of wait-states inserted.

Instruction Fetching

The 80C286 Bus Unit (BU) will fetch instructions ahead of the current instruction being executed. This activity is called prefetching. It occurs when the local bus would otherwise be idle and obeys the following rules:

A prefetch bus operation starts when at least two bytes of the 6 -byte prefetch queue are empty.

The prefetcher normally performs word prefetches independent of the byte alignment of the code segment base in physical memory.

The prefetcher will perform only a byte code fetch operation for control transfers to an instruction beginning on a numerically odd physical address.

Prefetching stops whenever a control transfer or HLT instruction is decoded by the IU and placed into the instruction queue.

In real address mode, the prefetcher may fetch up to 6 bytes beyond the last control transfer or HLT instruction in a code segment.

In protected mode, the prefetcher will never cause a segment overrun exception. The prefetcher stops at the last physical memory word of the code segment. Exception 13 will occur if the program attempts to execute beyond the last full instruction in the code segment.

If the last byte of a code segment appears on an even physical memory address, the prefetcher will read the next physical byte of memory (perform a word code fetch). The value of this byte is ignored and any attempt to execute it causes exception 13.

FIGURE 25. SYNCHRONOUS AND ASYNCHRONOUS READY

FIGURE 26. BACK TO BACK READ-WRITE CYCLE

FIGURE 27. BACK TO BACK WRITE-READ CYCLE

FIGURE 28. BACK TO BACK WRITE-WRITE CYCLE

ts - status cycle
TC - COMMAND CYCLE

NOTES:

1. Status lines are not driven by 80 C 286 , yet remain high due to pullup resistors in 82 C 288 and 82 C 289 during HOLD state.
2. Address, $M / \overline{I O}$ and COD/I$\overline{N T A}$ may start floating during any T_{C} depending on when internal $80 C 286$ bus arbiter decides to release bus to external HOLD. The float stats in $\phi 2$ of ${ }^{T} \mathrm{C}$.
3. $\overline{\mathrm{BHE}}$ and $\overline{\mathrm{LOCK}}$ may start floating after the end of any T_{C} depending on when internal 80 C 286 bus arbiter decides to release bus to external HOLD. The float starts in $\phi 1$ of T_{C}.
4. The minimum HOLD to HLDA time is shown. Maximum is one T_{H} longer.
5. The earliest HOLD time is shown. It will always allow a subsequent memory cycle if pending is shown.
6. The minimum HOLD to HLDA time is shown. Maximum is a function of the instruction, type of bus cycle and other machine state (i.e., Interrupts, Waits, Lock, etc.).
7. Asynchronous ready allows termination of the cycle. Synchronous ready does not signal ready in this example. Synchronous ready state is ignored after ready is signaled via the asynchronous input.

FIGURE 29. MULTIBUS WRITE TERMINATED BY ASYNCHRONOUS READY WITH BUS HOLD

Processor Extension Transfers

The processor extension interface uses I/O port addresses 00F8(H), and 00FC(H) which are part of the I/O port address range reserved by Harris. An ESC instruction with Machine Status Word bits EM $=0$ and Ts $=0$ will perform I/O bus operations to one or more of these I/O port addresses independent of the value of IOPL and CPL.

ESC instructions with memory references enable the CPU to accept PEREQ inputs for processor extension operand transfers. The CPU will determine the operand starting address and read/write status of the instruction. For each operand transfer, two or three bus operations are performed, one word transfer with I/O port address 00FA(H) and one or two bus operations with memory. Three bus operations are required for each word operand aligned on an odd byte address.

Interrupt Acknowledge Sequence

Figure 30 illustrates an interrupt acknowledge sequence performed by the 80C286 in response to an INTR input. An interrupt acknowledge sequence consists of two INTA bus operations. The first allows a master 82C59A Programmable Interrupt Controller (PIC) to determine which if any of its slaves should return the interrupt vector. An eight bit vector is read on $D_{0}-D_{7}$ of the 80C286 during the second INTA bus operation to select an interrupt handler routine from the interrupt table.

The Master Cascade Enable (MCE) signal of the 82C288 is used to enable the cascade address drivers during INTA bus operations (See Figure 30) onto the local adress bus for distribution to slave interrupt controllers via the system address bus. The 80 C 286 emits the $\overline{\text { LOCK }}$ signal (active LOW) during TS of the first INTA bus operation. A local bus "hold" request will not be honored until the end of the second INTA bus operation.

Three idle processor clocks are provided by the 80C286 between INTA bus operations to allow for the minimum INTA to INTA time and CAS (cascade address) out delay of the 82C59A. The second INTA bus operation must always have at least one extra T_{C} state added via logic controlling $\overline{R E A D Y} . A_{23}-A_{0}$ are in three-state OFF until after the first TC state of the second INTA bus operation. This prevents bus contention between the cascade address drivers and CPU address drivers. The extra TC state allows time for the 80C286 to resume driving the address lines for subsequent bus operations.

Local Bus Usage Priorities

The 80C286 local bus is shared among several internal units and external HOLD requests. In case of simultaneous requests, their relative priorities are:
(Highest) Any transfers which assert $\overline{\text { LOCK }}$ either 1 explicitly (via the LOCK instruction prefix) or 1 implicitly (i.e. some segment descriptor I accesses, an interrupt acknowledge seI quence, or an XCHG with memory).

The second of the two byte bus operations required for an odd aligned word operand.

The second or third cycle of a processor extension data transfer.

Local bus request via HOLD input.
Processor extension data operand transfer via PEREQ input.

Data transfer performed by EU as part of an instruction.
(Lowest)
An instruction prefetch request from BU. The EU will inhibit prefetching two processor clocks in advance of any data transfers to minimize waiting by the EU for a prefetch to finish.

Halt or Shutdown Cycles

The 80C286 externally indicates halt or shutdown conditions as a bus operation. These conditions occur due to a HLT instruction or multiple protection exceptions while attempting to execute one instruction. A halt or shutdown bus operation is signalled when $\overline{\mathrm{S}_{1}}, \overline{\mathrm{~S}_{0}}$, and COD/INTA are LOW and M/IO is HIGH. A HIGH indicates halt, and A_{1} LOW indicates shutdown. The 82 C 288 bus controller does not issue ALE, nor is READY required to terminate a halt or shutdown bus operation.

During halt or shutdown, the 80C286 may service PEREQ or HOLD requests. A processor extension segment overrun during shutdown will inhibit further service of PEREQ. Either NMI or RESET will force the 80C286 out of either halt or shutdown. An INTR, if interrupts are enabled, or a processor extension segment overrun exception will also force the 80 C 286 out of halt.

FIGURE 30. INTERRUPT ACKNOWLEDGE SEQUENCE

FIGURE 31. BASIC 80C286 SYSTEM CONFIGURATION

System Configurations

The versatile bus structure of the 80 C 286 micro-system, with a full complement of support chips, allows flexible configuration of a wide range of systems. The basic configuration, shown in Figure 31, is similar to an 80C86 maximum mode system. It includes the CPU plus an 82C59A interrupt controller, 82C284 clock generator, and the 82C288 Bus Controller. The 80C86 latches (82C82 and 82 C 83 H) and transceivers (82 C 86 H and 82 C 87 H) may be used in an 80C286 microsystem.

As indicated by the dashed lines in Figure 31, the ability to add processor extensions is an integral feature of 80C286 based microsystems. The processor extension interface allows external hardware to perform special functions and transfer data concurrent with CPU execution of other instructions. Full system integrity is maintained because the 80 C 286 supervises all data transfers and instruction execution for the processor extension.

An 80C286 system which includes the 80287 numeric processor extension (NPX) uses this interface. The 80C286/80287 system has all the instructions and data types of an 80C86 or 80C88 with 8087 numeric processor extension. The 80287 NPX can perform numeric calcula-
tions and data transfers concurrently with CPU program execution. Numerics code and data have the same integrity as all other information protected by the 80C286 protection mechanism.

The 80C286 can overlap chip select decoding and address propagation during the data transfer for the previous bus operation. This information is latched into the $82 \mathrm{C} 82 / 83 \mathrm{H}$'s by ALE during the middle of a Ts cycle. The latched chip select and address information remains stable during the bus operation while the next cycle's address is being decoded and propagated into the system. Decode logic can be implemented with a high speed PROM or PAL.

The optional decode logic shown in Figure 31 takes advantage of the overlap between address and data of the 80 C 286 bus cycle to generate advanced memory and I/Oselect signals. This minimizes system performance degradation caused by address propagation and decode delays. In addition to selecting memory and I/O, the advanced selects may be used with configurations supporting local and system buses to enable the appropriate bus interface for each bus cycle. The COD/INTA

FIGURE 32. MULTIBUS SYSTEM BUS INTERFACE
and $\mathrm{M} / \overline{\mathrm{IO}}$ signals are applied to the decode logic to distinguish between interrupt, I/O, code, and data bus cycles.

By adding the 82289 bus arbiter chip the 80 C 286 provides a Multibus system bus interface as shown in Figure 32. The ALE output of the 82 C 288 for the Multibus bus is connected to its CMDLY input to delay the start of commands one system CLK as required to meet Multibus
address and write data setup times. This arrangement will add at least one extra T_{C} state to each bus operation which uses the Multibus.

A second 82 C 288 bus controller and additional latches and transceivers could be added to the local bus of Figure 32. This configuration allows the 80 C 286 to support an on-board bus for local memory and peripherals, and the Multibus for system bus interfacing.

Absolute Maximum Ratings

```
Supply Voltage
+8.0V
Input, Output or I/O Voltage Applied .............................................. GND - 1.0V to VCC + 1.0V
```



```
Storage Temperature Range.
-650}\textrm{C}\mathrm{ to +1500}\textrm{C
Gate Count22,500
```

Junction Temperature. $+150^{\circ} \mathrm{C}$

```Lead Temperature (Soldering, Ten Seconds) .......................................................................... \(+270^{\circ} \mathrm{C}\)
CAUTION: Stresses above those listed in the Absolute Maximum Ratings may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operations sections of this specification is not implied.
```


Operating Conditions

Operating Voltage Range
+4.5 V to +5.5 V
Operating Temperature Range
$0^{\circ} \mathrm{C}$ to $+70{ }^{\circ} \mathrm{C}$
D.C. Electrical Specifications ($\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$)

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	-0.5	0.8	V	
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage	2.0	$\mathrm{V}_{\mathrm{CC}}+0.5$	V	
VILC	CLK Input LOW Voltage	-0.5	1.0	V	
$\mathrm{V}_{\text {IHC }}$	CLK Input HIGH Voltage	3.8	$\mathrm{V}_{\mathrm{CC}}+0.5$	V	
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	-	0.4	V	$1 \mathrm{OL}=2.0 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage	$\begin{gathered} 3.0 \\ v_{\mathrm{Cc}}-0.4 \end{gathered}$	-	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & 1 \mathrm{OH}=-2.0 \mathrm{~mA} \\ & 1 \mathrm{OH}=-100 \mu \mathrm{~A} \end{aligned}$
1	Input Leakage Current	-10	10	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\text {IN }}=\text { GND or VCC } \\ & \text { Pins 29, } 31,57,59,61 \text {, } \\ & 63-64 \end{aligned}$
IBHL	Input Sustaining Current LOW	38	200	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=1.0 \mathrm{~V}$ (See Note 1)
IBHH	Input Sustaining Current HIGH	-50	-400	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=3.0 \mathrm{~V}$ (See Note 2)
10	Output Leakage Current	-10	10	$\mu \mathrm{A}$	$\begin{aligned} & V_{O}=G N D \text { or } V_{C C} \\ & \text { Pins } 1,7-8,10-28,32-34 \end{aligned}$
ICCOP	Active Power Supply Current	-	20	$\mathrm{mA} / \mathrm{MHz}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, Outputs Unloaded (See Note 4)
ICCsB	Standby Power Supply Current	-	5	mA	(See Note 3)

Capacitance ($T_{A}=+25{ }^{\circ} \mathrm{C}$; All Measurements Referenced to Device GND)

SYMBOL	PARAMETER	TYP	UNITS	TEST CONDITIONS
$\mathrm{C}_{\mathrm{CLK}}$	CLK Input Capacitance	10	pF	FREQ $=1 \mathrm{MHz}$
C_{IN}	Other Input Capacitance	10	pF	
$\mathrm{C}_{\mathrm{I} / \mathrm{O}}$	I/O Capacitance	10	pF	

notes:

1. $I_{B H L}$ should be measured after lowering $V_{I N}$ to $G N D$ and then raising to 1.0 V on the following pins: $36-51,66,67$.
2. $I_{B H H}$ should be measured after raising $V_{I N}$ to $V_{C C}$ and then lowering to 3.0 V on the following pins: 4-6, 36-51, 53, 54, 66-68.
3. ICCSB tested with the clock stopped in phase two of the processor clock cycle. $\mathrm{V}_{I N}=\mathrm{V}_{\mathrm{CC}}$ or $\mathrm{GND}, \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, outputs unloaded.
4. Referenced to internal processor clock frequency.

A.C. Electrical Specifications ($\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=0{ }^{\circ} \mathrm{C}$ to $\left.+70^{\circ} \mathrm{C}\right)$
 A.C. Timings are Referenced to 0.8 V and 2.0 V Points of the Signals as Illustrated in Datasheet Waveforms, Unless Otherwise Noted.

PRELIMINARY

SYMBOL	PARAMETER	10 MHz		12.5MHz		, 16 MHz		UNIT	TEST CONDITION
		MIN	MAX	MIN	MAX	MIN	MAX:		

TIMING REQUIREMENTS

1	System Clock (CLK) Period	50	-	40	-	31	$\sqrt{2 \pi}$	ns	
2	System Clock (CLK) LOW Time	12	-	11	-	17		ns	@ 1.0V
3	System Clock (CLK) HIGH Time	16	-	13	-	11		ns	@ 3.6V
17	System Clock (CLK) RISE Time	-	8	-	8	\%	-5.	ns	1.0 V to 3.6 V
18	System Clock (CLK) FALL Time	-	8	-	8		4	ns	3.6 V to 1.0 V
4	Asynchronous Inputs SETUP Time	20	-	15	-	5.		ns	(Note 1)
5	Asynchronous Inputs HOLD Time	20	-	15	-	\% 5	4	ns	(Note 1)
6	RESET SETUP Time	23	-	18	-	. 14	4	ns	
7	RESET HOLD Time	5	-	5	-	3. ${ }^{3}$	$=$	ns	
8	Read Data SETUP Time	8	-	5	-	5.		ns	
9	Read Data HOLD Time	8	-	6	-	3		ns	
10	READY SETUP Time	26	-	20	-	12.	$\sqrt{4}$	ns	
11	$\overline{\text { READY }}$ HOLD Time	25	-	20	-	5.		ns	
20	Input RISE/FALL Times	-	10	-	8		6	ns	0.8 V to 2.0 V

TIMING RESPONSES

12A	Status/ $/ \overline{\text { PEACK }}$ Active Delay	1	22	1	22	0.	18.	ns	1, (Notes 3, 7)
12B	Status/PEACK Inactive Delay	1	30	1	24	0 \%.	20.	ns	1, (Notes 3, 6)
13	Address Valid Delay	1	35	1	32	0	27.	ns	1, (Notes 2, 3)
14	Write Data Valid Delay	0	40	0	31	0.	2. 27.	ns	1, (Notes 2, 3)
15	Address/Status/Data Float Delay	0	47	0	32	, 0 .	(29.	ns	2, (Note 5)
16	HLDA Valid Delay	0	47	0	25	(0)	. 25.	ns	1, (Notes 2, 3)
19	Address Valid to Status SETUP Time	27	-	22	-	20	$-$	ns	1, (Notes 3, 4)

NOTES:

1. Asynchronous inputs are INTR, NMI, HOLD, PEREQ, ERROR, and BUSY. This specification is given only for testing purposes, to assure recognition at a specific CLK edge
2. Delay from 1.0 V on the CLK to 0.8 V or 2.0 V .
3. Output load: $C_{L}=100 \mathrm{pF}$
4. Delay measured from address either reaching 0.8 V or 2.0 V (valid) to status going active reaching 0.8 V or status going inactive reaching 2.0 V .
5. Delay from 1.0 V on the CLK to Float (no current drive) condition
6. Delay from 1.0 V on the CLK to 0.8 V for min. (HOLD time) and to 2.0 V for max. (inactive delay).
7. Delay from 1.0 V on the CLK to 2.0 V for min. (HOLD time) and to 0.8 V for max. (active delay)

A.C. Test Conditions

TEST CONDITION	I_{L} (CONSTANT CURRENT SOURCE)	$\mathbf{C}_{\mathbf{L}}$
1	$\|2.0 \mathrm{~mA}\|$	100 pF
2	$-6 \mathrm{~mA}\left(\mathrm{~V}_{\mathrm{OH}}\right.$ to Float)	100 pF
	$8 \mathrm{~mA}\left(\mathrm{~V}_{\mathrm{OL}}\right.$ to Float)	

A.C. Specifications (Continued)
A.C. DRIVE AND MEASURE POINTS - CLK INPUT

A.C. Electrical Specifications (Continued)

82C284 TIMING

PRELIMINAFY									
	PARAMETER	10 MHz		12.5MHz		$16 \mathrm{NH}$		UNIT	TEST CONDITION
SYMBOL		MIN	MAX	MIN	MAX	MIN:	Mix.		
TIMING REQUIREMENTS									
11	$\overline{\text { SRDY }} / \overline{\text { SRDYEN }}$ Setup Time	15	-	15	-	10		ns	
12	$\overline{\text { SRDY/SRDYEN }}$ Hold Time	2	-	2	-	41		ns	
13	$\overline{\text { ARDY }} / \overline{\text { ARDYEN }}$ Setup Time	0	-	0	-	\% 0	$1 . \sqrt{4} \times$	ns	(Note 1)
14	$\overline{\text { ARDY }} / \overline{\text { ARDYEN }}$ Hold Time	30	-	25	-	20		ns	(Note 1)
TIMING RESPONSES									
19	PCLK Delay	0	20	0	16		13	ns	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=75 \mathrm{pF} \\ & \mathrm{IOL}_{\mathrm{OL}}=5 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \end{aligned}$

82C288 TIMING

SYMBOL	PARAMETER	10 MHz		12.5MHz		16 MHz		UNIT	TEST CONDITION
		MIN	MAX	MIN	MAX	MII.	Max		
TIMING REQUIREMENTS									
12	CMDLY Setup Time	15	-	15	-	10	In	ns	
13	CMDLY Hold Time	1	-	1	-	0		ns	
TIMING RESPONSES									
16	ALE Active Delay	3	16	3	16		12	ns	
17	ALE Inactive Delay	-	19	-	19		18	ns	
19	DT//R Read Active Delay	-	23	-	23		18	ns	$\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$
20	DEN Read Active Delay	5	21	5	21	3	16	ns	$\mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA} \mathrm{Max}$
21	DEN Read Inactive Delay	3	21	3	19	3	14	ns	$\mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \mathrm{Max}$
22	DT/ $\overline{\mathrm{R}}$ Read Inactive Delay	5	20	5	18	3	14	ns	
23	DEN Write Active Delay	-	23	-	23		17	ns	
24	DEN Write Inactive Delay	3	19	3	19	3	15	ns	
29	Command Active Delay from CLK	3	21	3	21	3	$\sqrt{13}$	ns	$\mathrm{C}_{\mathrm{L}}=300 \mathrm{pF}$
30	Command Inactive Delay from CLK	5	20	5	20	3	15	ns	$\mathrm{I}^{\text {OL }}=32 \mathrm{~mA} \mathrm{max}$

NOTE 1. These times are given for testing purposes to ensure a predetermined action.

Waveforms

MAJOR CYCLE TIMING

NOTE: 1. The modified timing is due to the CMDLY signal being active.

Waveforms (Continued)

80C286 ASYNCHRONOUS INPUT SIGNAL TIMING

NOTES:

1. PCLK indicates which processor cycle phase will occur on the next CLK. PCLK may not indicate the correct phase until the first cycle is performed.
2. These inputs are asynchronous. The setup and hold times shown assure recognition for testing purposes.

80 C286 RESET INPUT TIMING AND subsequent processor cycle phase

NOTE:
When RESET meets the setup time shown, the next CLK will start or repeat $\phi 2$ of a processor cycle.

EXITING AND ENTERING HOLD

NOTES:

1. These signals may not be driven by the 80 C 286 during the time shown. The worst case in terms of latest float time is shown.
2. The data bus will be driven as shown if the last cycle before T_{1} in the diagram was a write T_{C}
3. The 80 C 286 floats its status pins during T_{H}.
4. For HOLD request set up to HLDA, refer to Figure 29.
5. $\overline{\mathrm{BHE}}$ and $\overline{\mathrm{LOCK}}$ are driven at this time but will not become valid until T_{S}.
6. The data bus will remain in a high impedance state if a read cycle is performed.

Waveforms (Continued)

80C286 PEREQ/PEACK TIMING FOR ONE TRANSFER ONLY

ASSUMING WORD-ALIGNED MEMORY OPERAND. IF ODD ALIGNED, 80 C 286 TRANSFERS TO/FROM MEMORY BYTE-AT-A-TIME WITH TWO MEMORY CYCLES.

NOTES:

1. $\overline{\text { PEACK }}$ always goes active during the first bus operation of a processor extension data operand transfer sequence. The first bus operation will be either a memory read at operand address or I/O read at port address 00FA(H).
2. To prevent a second processor extension data operand transfer, the worst case maximum time (Shown above) is $3 \times(1)-12 A_{m a x}-$ (4)min. The actual, configuration dependent, maximum time is: $3 \times$ (1) $-12 A_{\text {max. }}{ }^{-(4)} \min .+N \times 2 \times(1) . N$ is the number of extra T_{C} states added to either the first or second bus operation of the processor extension data operand transfer sequence.

INITIAL 80C286 PIN STATE DURING RESET

NOTES:

1. Setup time for RESET \uparrow may be violated with the consideration that $\phi 1$ of the processor clock may begin one system CLK period later.
2. Setup and hold times for RESET \downarrow must be met for proper operation, but RESET \mid may occur during $\phi 1$ or $\phi 2$.
3. The data bus is only guaranteed to be in three-state OFF at the time shown.

A. SHORT OPCODE FORMAT EXAMPLE

B. LONG OPCODE FORMAT EXAMPLE

FIGURE 33. 80C286 INSTRUCTION FORMAT EXAMPLES

80C286 Instruction Set Summary

Instruction Timing Notes

The instruction clock counts listed below establish the maximum execution rate of the 80 C 286 . With no delays in bus cycles, the actual clock count of an 80C286 program will average 5\% more than the calculated clock count, due to instruction sequences which execute faster than they can be fetched from memory.

To calculate elapsed times for instruction sequences, multiply the sum of all instruction clock counts, as listed in the table below, by the processor clock period. An 12.5 MHz processor clock has a clock period of 80 nanoseconds and requires an 80C286 system clock (CLK input) of 25 MHz .

Instruction Clock Count Assumptions

1. The instruction has been prefetched, decoded and is ready for execution. Control transfer instruction clock counts include all time required to fetch, decode, and prepare the next instruction for execution.
2. Bus cycles do not require wait states.
3. There are no processor extension data transfer or local bus HOLD requests.
4. No exceptions occur during instruction execution.

Instruction Set Summary Notes

Addressing displacements selected by the MOD field are not shown. If necessary they appear after the instruction fields shown.

Above/below refers to unsigned value
Greater refers to more positive signed values
Less refers to less positive (more negative) signed values
if $d=1$, then "to" register; if $d=0$ then "from" register
if $w=1$, then word instruction; if $w=0$, then byte instruction
if $s=0$, then 16 -bit immediate data form the operand
if $s=1$ then an immediate data byte is sign-extended to form the 16-bit operand

```
x don't care
    z used for string primitives for comaprison with ZF
    FLAG
```

If two clock counts are given, the smaller refers to a register operand and the larger refers to a memory operand

* $=$ add one clock if offset calculation requires summing 3 elements
$n=$ number of times repeated
$m=$ number of bytes of code in next instruction
Level (L)-Lexical nesting level of the procedure
The following comments describe possible exceptions, side effects and allowed usage for instructions in both operating modes of the 80C286.

Real Address Mode Only

1. This is a protected mode instruction. Attempted execution in real address mode will result in an undefined opcode exception (6).
2. A segment overrun exception (13) will occur if a word operand reference at offset $\operatorname{FFFF}(\mathrm{H})$ is attempted.
3. This instruction may be executed in real address mode to initialize the CPU for protected mode.
4.

The IOPL and NT fields will remain 0 .
5. Processor extension segment overrun interrupt (9) will occur if the operand exceeds the segment limit.

Either Mode

6. An exception may occur, depending on the value of the operand.
7. $\overline{\text { LOCK }}$ is automatically asserted regardless of the presence or absence of the LOCK instruction prefix.
8. $\overline{\text { LOCK }}$ does not reamain active between all operand transfers.

Protected Virtual Address Mode Only

9. A general protection exception (13) will occur if the memory operand cannot be used due to either a segment limit or access rights violation. If a stack segment limit is violated, a stack segment overrun exception (12) occurs.
10. For segment load operations, the CPL, RPL and DPL must agree with privilege rules to avoid an exception. The segment must be present to avoid a not-present exception (11). If the SS register is the destination and a segment not-present violation occurs, a stack exception (12) occurs.
11. All segment descriptor accesses in the GDT or LDT made by this instruction will automatically assert $\overline{\text { LOCK }}$ to maintain descriptor integrity in multiprocessor systems.
12. JMP, CALL, INT, RET, IRET instructions referring to another code segment will cause a general protection exception (13) if any privilege rule is violated.
13. A general protection exception (13) occurs if CPL $\neq 0$.
14. A general protection exception (13) occurs if CPL $>$ IOPL.
15. The IF field of the flag word is not updated if CPL $>$ IOPL. The IOPL field is updated only if CPL $=0$.
16. Any violation of privilege rules as applied to the selector operand does not cause a protection exception; rather, the instruction does not return a result and the zero flag is cleared.
17. If the starting address of the memory operand violates a segment limit, or an invalid access is attempted, a general protection exception (13) will occur before the ESC instruction is executed. A stack segment overrun exception (12) will occur if the stack limit is violated by the operand's starting address. If a segment limit is violated during an attempted data transfer then a processor extension segment overrun exception (9) occurs.
18. The destination of an INT, JMP, CALL, RET or IRET instruction must be in the defined limit of a code segment or a general protection exception (13) will occur.

$80 C 286$ Instruction Set Summary

FUNCTION	FORMAT				CLOCK COUNT		COMMENTS	
					Real Addreses Mode	Protected Virtual Address Mode		Protected Virtual Addrese Mode
DATA TRANSFER MOV = Move:								
Register to Register/Memory	1000100 w	modreg r/m			2,3*	2,3*	2	9
Register/memory to register	1000101 w	modreg r/m			2,5*	2,5*	2	9
mmediate to register/memory	1100011 w	$\bmod 000 \mathrm{r} / \mathrm{m}$	data	data if $w=1$	2,3*	2,3*	2	9
Immediate to register	1011 w reg	data	data if $w=1$		2	2		
Memory to accumulator	1010000 w	addr-low	addr-high		5	5	2	9
Accumulator to memory	1010001 w	addr-low	addr-high		3	3	2	9
Register/memory to segment register	10001110	$\bmod 0 \mathrm{regr} \mathrm{r} / \mathrm{m}$			2,5*	17,19*	2	9,10,11
Segment register to register/memory	10001100	$\bmod 0 \mathrm{reg} \mathrm{r} / \mathrm{m}$			2,3*	2,3*	2	9
PUSH = Push:								
Memory	11111111	$\bmod 110 \mathrm{r} / \mathrm{m}$			5*	$5 *$	2	9
Register	01010 reg				3	3	2	9
Segment register	000 reg 110				3	3	2	9
munedility	01101080	data 1	data ${ }^{\text {a }}$ am 0	$\because \mathrm{x}$	3	- 3	5-2.	- 9.\%
Pushtin Prum An	01100000	-		$\because \because \quad 4$	17	-	C+	0
POP $=$ Pop:								
Memory	10001111	$\bmod 000 \mathrm{r} / \mathrm{m}$			$5 *$	5^{*}	2	9
Register	01011 reg				5	5	2	9
Segment register	000 reg 111	$($ reg $\neq 01$)			5	20	2	9,10,11
HopA mpop Al	01100001		\%	\%	12	10	2	S
XCHG = Exhcange:								
Register/memory with register	1000011 w	modreg r/m			$3.5{ }^{\circ}$	$3.5{ }^{*}$	2,7	7,9
Register with accumulator	10010 reg				3	3		
$\mathrm{N}=$ Input from:								
Fixed port	1110010 w	port			5	5		14
Variable port	1110110 w				5	5		14
OUT = Output to:								
Fixed port	1110011 w	port			3	3		14
Nariable port	1110111 w				3	3		14
XLAT $=$ Translate byte to AL	11010111				5	5		9
LEA = Load EA to register	10001101	modreg r/m			3^{*}	3*		
LDS = Load pointer to DS	11000101	modreg r/m	$(\bmod \neq 11)$		7*	21^{*}	2	9,10,11
LES = Load pointer to ES	11000100	modreg r/m	$(\bmod =1)$		7*	21*	2	9,10,11

Shaded areas indicate instructions not available in 80 C $86 / 88$ microsystems.

80C286 Instruction Set Summary (Continued)

FUNCTION	FORMAT				CLOCK COUNT		COMMENTS	
						Protected Virtual Address Mode		Protected Virtual Address Mode
DATA TRANSFER (Continued)								
LAHF Load AH with flags	10011111				2	2		
SAHF $=$ Store AH into flags	10011110				2	2		
PUSHF = Push flags	10011100				3	3	2	9
POPF $=$ Pop flags	10011101				5	5	2,4	9,15
ARITHMETICADD = Add:								
Reg/memory with registar to either	000000dw	modreg r/m			2,7*	2,7*	2	9
Immediate to register/memory	100000 sw	$\bmod 000 \mathrm{r} / \mathrm{m}$	data	data if $\mathrm{s} w=01$	3,7*	3,7*	2	9
Immediate to accumulator	0000010 w	data	data if $w=1$		3	3		
ADC = Add with carry:								
Reg/memory with register to either	000100 dw	modreg r/m			2,7*	2,7*	2	9
Immediate to register/memory	100000 sw	$\bmod 010 \mathrm{r} / \mathrm{m}$	data	data if $\mathrm{s} \mathbf{w}=01$	3,7*	3,7*	2	9
immediate to accumulator	0001010 w	data	data if $w=1$		3	3		
INC = Increment:								
Register/memory	1111111 w	$\bmod 000 \mathrm{r} / \mathrm{m}$			2,7*	2,7*	2	9
Register	01000 reg				2	2		
SUB = Subtract:								
Reg/memory and register to either	001010 dw	modreg r/m			2,7*	2,7*	2	9
Immediate from register/memory	100000 sw	$\bmod 101 \mathrm{r} / \mathrm{m}$	data	data if $\mathrm{s} \mathbf{w}=01$	3,7*	3,7*	2	9
Immediate from accumulator	0010110 w	data	data if $w=1$		3	3		
SBB $=$ Subtract with borrow:								
Reg/memory and register to either	000110 dw	modreg r/m			2,7*	2,7*	2	9
Immediate from register/memory	100000 sw	$\bmod 011 \mathrm{r} / \mathrm{m}$	data	data if s w $=01$	3,7*	3,7*	2	9
Immediate from accumulator	0001110 w	data	data if $w=1$		3	3		
DEC $=$ Decrement								
Register/memory	1111111 w	$\bmod 001 \mathrm{r} / \mathrm{m}$			2,7*	2,7*	2	9
Register	01001 reg				2	2		
CMP = Compare								
Register/memory with register	0011101 w	modreg r/m			2,6*	2,6*	2	9
Register with register/memory	0011100 w	modreg r/m			2,7*	2,7*	2	9
Immediate with register/memory	100000 sw	modi11 r / m	data	data if $s \mathbf{w}=01$	3,6*	3,6*	2	9
Immediate with accumulator	0011110 w	data	data if $w=1$		3	3		
NEG = Change sign	1111011 w	$\bmod 011 \mathrm{r} / \mathrm{m}$			2	7*	2	7
AAA $=$ ASCII adjust for add	00110111				3	3		
DAA = Decimal adjust for add	00100111				3	3		

80C286 Instruction Set Summary (Continued)

Shaded areas indicate instructions not available in $80 \mathrm{C} 86 / 88$ microsystems.

80C286 Instruction Set Summary (Continued)

FUNCTION	FORMAT				CLOCK COUNT		COMMENTS	
					Real Address Mode	Protected Virtual Address Mode	Real Address Mode	Protected Virtual Address Mode
ARITHMETIC (Continued)								
AND = And:								
Reg/memory and register to either	001000 dw	modreg r/m			2,7*	2,7*	2	9
Immediate to register/memory	1000000 w	$\bmod 100 \mathrm{r} / \mathrm{m}$	data	data if $w=1$	3,7*	3,7*	2	9
Immediate to accumulator	0010010 w	data	data if $w=1$		3	3		
TEST = And function to flags, no result:								
Register/memory and register	1000010 w	modreg r/m			$2.6{ }^{\circ}$	2,6*	2	9
Immediate data and register/memory	1111011 w	$\bmod 000 \mathrm{r} / \mathrm{m}$	data	data if $w=1$	3,6*	3,6*	2	9
Immediate data and accumulator	1010100 w	data	data if $w=1$		3	3		
$\mathrm{OR}=0 \mathrm{r}$:								
Reg/memory and register to either	000010 dw	modreg r/m			2,7*	2,7*	2	9
Immediate to register/memory	1000000 w	$\bmod 001 \mathrm{r} / \mathrm{m}$	data	data if $w=1$	3,7*	3,7*	2	9
mmediate to accumulator	0000110 w	data	data if $w=1$		3	3		
XOR = Exclusive or:								
Reg/memory and register to either	001100 dw	modreg r/m			2,7*	2,7*	2	9
Immediate to register/memory	1000000 w	$\bmod 110 \mathrm{r} / \mathrm{m}$	data	data if $w=1$	3,7*	3,7*	2	9
Immediate to accumulator	0011010 w	data	data if $w=1$		3	3		
NOT = Invert register/memory	1111011 w	$\bmod 010 \mathrm{r} / \mathrm{m}$			2,7*	2,7*	2	9
STRING MANIPULATION:								
MOVS $=$ Move byte/word	1010010 w				5	5	2	9
CMPS = Compare byte/word	1010011 w				8	8	2	9
SCAS $=$ Scan byte/word	1010111 w				7	7	2	9
LODS $=$ Load byte/wd to AL/AX	1010110 w				5	5	2	9
STOS $=$ Stor byte/wd from AL/A	1010101 w				3	3	2	9
Whirtyourhembx ont	$\frac{01161.10 \%}{60110111 \%}$						$\frac{2}{2}$	$\begin{aligned} & \mathrm{ers} \\ & \mathrm{c} / \mathrm{l} \end{aligned}$
Repeated by count in CX								
MOV $\mathrm{V}_{5}=$ Move string	11110011	1010010 w			$5+4 n$	$5+4 n$	2	9
CMPS $=$ Compare string	11110012	1010011 w			$5+9 n$	$5+9 n$	2,8	8,9
SCAS = Scan string	11110012	1010111 w			$5+8 n$	$5+8 n$	2.8	8,9
LODS = Load string	11110011	1010110 w			$5+4 n$	$5+4 n$	2,8	8,9
STOS = Store string	11110011	1010101 w			$4+3 n$	$4+3 n$	2,8	8,9
		.0110118w			$8+4$ 5itin	itin vi+3		$\begin{gathered} 4.4 \\ 5.4 \end{gathered}$

[^3]80C286 Instruction Set Summary (Continued)

80C286 Instruction Set Summary (Continued)

FUNCTION	FORMAT		CLOCK COUNT		COMMENTS	
			Real Addrese Mode Mode	Protected Virtual Address Mode	Real Address Mode	Protected Virtual Address Mode
CONTROL TRANSFER (Continued)						
JE/JZ = Jump on equal zero	01110100	disp	7+mor 3	$7+\mathrm{m}$ or 3		18
JL/JNGE = Jump on less/not greater or equal	01111100	disp	$7+\mathrm{m}$ or 3	7+mor 3		18
JLE/JNG = Jump on less or equal/not greater	01111110	disp	$7+\mathrm{m}$ or 3	7+mor 3		18
JB/JNAE $=$ Jump on below/not above or equal	01110010	disp	7+mor 3	7+mor 3		18
JBE/JNA = Jump on below or equal/not above	01110110	disp	7+mor 3	7+mor 3		18
JP/JPE = Jump on parity/parity even	01111010	disp	7+mor 3	$7+\mathrm{m}$ or 3		18
JO = Jump on overilow	01110000	disp	$7+m$ or 3	7+mor 3		18
JS = Jump on sign	01111000	disp	$7+\mathrm{mor} 3$	7+mor 3		18
JNE/JNZ = Jump on not equal/not zero	01110101	disp	$7+\mathrm{m}$ or 3	$7+\mathrm{m}$ or 3		18
JNL/JGE = Jump on not less/greater or equal	01111101	disp	$7+\mathrm{mor} 3$	$7+$ mor 3		18
JNLE/JG = Jump on not less or equal/greater	01111111	disp	$7+m$ or 3	$7+\mathrm{mor} 3$		18
JNB/JAE = Jump on not below/above or equal	01110011	disp	$7+\mathrm{mor} 3$	$7+\mathrm{mor} 3$		18
JNBE/JA = Jump on not below or equal/above	01110111	disp	$7+\mathrm{m}$ or 3	$7+\mathrm{mor} 3$		18
JNP/JPO = Jump on not par/par odd	01111011	disp	$7+\mathrm{mor} 3$	$7+$ mor 3		18
JNO = Jump on not overflow	01110001	disp	7+mor 3	$7+\mathrm{m}$ or 3		18
JNS = Jump on not sign	01111001	disp	$7+\mathrm{m}$ or 3	7+mor 3		18
LOOP = Loop CX times	11100010	disp	$8+m$ or 4	$8+\mathrm{mor} 4$		18
LOOPZ/LOOPE = Loop while zero/equal	11100001	disp	$8+\mathrm{m}$ or 4	$8+$ mor 4		18
LOOPNZ/LOOPNE = Loop while not zero/equal	11100000	disp	$8+\mathrm{mor} 4$	$8+\mathrm{mor} 4$		18
JCXZ = Jump on CX zero	11100011	disp	$8+m$ or 4	$8+\mathrm{m}$ or 4		18
EMIER En Enter Procodure $\mathrm{L}=0$ L"w 1 $L>1$ LEAVE Lonve Procendre	11001000 $\$ 1001001$			$\left\lvert\, \begin{gathered} 11 \\ 15 \\ 18+4 n \\ 5 \end{gathered}\right.$		
INT $=$ interrupt						
Type specified	11001101	type	$23+m$		2,7,8	
Type 3	11001100		$23+m$		2,7,8	
INTO = interrupt on overiow	11001110		$\begin{gathered} 24+m \text { or } 3 \\ \text { (3 if no } \\ \text { interrupt) } \end{gathered}$	(3 if no interrupt)	2,6,8	

Shaded areas indicate instructions not available in 80C86/88 microsystems.
$80 C 286$ Instruction Set Summary (Continued)

80C286 Instruction Set Summary (Continued)

Shaded areas indicate instructions not available in 80C86/88 microsystems.

	LO															
	0	1	2	3	4	5	6	7	8	9	A	B	c	D	E	F
0	$\begin{gathered} \mathrm{ADD} \\ \mathrm{~b}, \mathrm{f}, \mathrm{r} / \mathrm{m} \end{gathered}$	ADD $w, f, r / m$	$\begin{gathered} \mathrm{ADD} \\ \mathrm{~b}, \mathrm{t}, \mathrm{r} / \mathrm{m} \end{gathered}$	$\begin{gathered} \mathrm{ADD} \\ \mathrm{w}, \mathrm{t}, \mathrm{r} / \mathrm{m} \end{gathered}$	$\begin{gathered} \text { ADD } \\ \text { b,ia } \end{gathered}$	$\begin{aligned} & \text { ADD } \\ & \text { w,ia } \end{aligned}$	$\begin{aligned} & \text { PUSH } \\ & \text { ES } \end{aligned}$	$\begin{gathered} \text { POP } \\ \text { ES } \end{gathered}$	$\begin{gathered} \mathrm{OR} \\ \mathrm{~b}, \mathrm{f}, \mathrm{r} / \mathrm{m} \end{gathered}$	$\begin{gathered} \mathrm{OR} \\ \mathrm{w}, \mathrm{f}, \mathrm{r} / \mathrm{m} \end{gathered}$	$\underset{b, t, r / m}{\text { OR }}$	$\begin{gathered} \text { OR } \\ \mathrm{w}, \mathrm{t}, \mathrm{r} / \mathrm{m} \end{gathered}$	OR	$\begin{aligned} & \text { OR } \\ & \mathrm{w}, \mathrm{i} \end{aligned}$	$\begin{gathered} \text { PUSH } \\ \text { CS } \end{gathered}$	PVAM n
1	ADC $\mathrm{b}, \mathrm{f}, \mathrm{r} / \mathrm{m}$	ADC w,f,r/m	$\begin{gathered} \mathrm{ADC} \\ \mathrm{~b}, \mathrm{t}, \mathrm{r} / \mathrm{m} \end{gathered}$	ADC w,t,r/m	$\begin{gathered} \text { ADC } \\ \mathrm{b}, \mathrm{i} \mathrm{a} \end{gathered}$	$\begin{gathered} \text { ADC } \\ \text { w,ia } \end{gathered}$	$\begin{aligned} & \text { PUSH } \\ & \text { SS } \end{aligned}$	$\begin{aligned} & \text { POP } \\ & \text { SS } \end{aligned}$	$\underset{\mathrm{b}, \mathrm{f}, \mathrm{r} / \mathrm{m}}{\mathrm{SBB}}$	$\begin{gathered} \mathrm{SBB} \\ \mathrm{w}, \mathrm{f}, \mathrm{r} / \mathrm{m} \end{gathered}$	$\begin{gathered} \mathrm{SBB} \\ \mathrm{~b}, \mathrm{t}, \mathrm{r} / \mathrm{m} \end{gathered}$	$\underset{\mathrm{w}, \mathrm{t}, \mathrm{r} / \mathrm{m}}{\mathrm{SBB}}$	$\underset{\mathrm{b}, \mathrm{i}}{\mathrm{SBB}}$	SBB	$\begin{aligned} & \text { PUSH } \\ & \text { DS } \end{aligned}$	$\begin{gathered} \text { POP } \\ \text { DS } \end{gathered}$
2	AND b,f,r/m	AND w,f,r/m	AND b,t,r/m	AND w,t,r/m	$\begin{gathered} \text { AND } \\ \text { b,ia } \end{gathered}$	AND w,ia	$\begin{aligned} & \text { SEG } \\ & =E S \end{aligned}$	DAA	$\begin{gathered} \text { SUB } \\ b, f, r / m \end{gathered}$	$\begin{gathered} \text { SUB } \\ \mathrm{w}, \mathrm{f}, \mathrm{r} / \mathrm{m} \end{gathered}$	$\begin{gathered} \text { SUB } \\ b, t, r / m \end{gathered}$	$\begin{gathered} \text { SUB } \\ w, t, r / m \end{gathered}$	$\underset{\mathrm{b}, \mathrm{i}}{\mathrm{~S}}$	$\begin{gathered} \text { SUB } \\ \text { w,i } \end{gathered}$	$\begin{aligned} & \text { SEG } \\ & =C S \end{aligned}$	DAS
3	$\begin{gathered} \text { XOR } \\ b, f, r / m \end{gathered}$	$\begin{gathered} \text { XOR } \\ \mathrm{w}, \mathrm{f}, \mathrm{r} / \mathrm{m} \end{gathered}$	$\begin{gathered} \mathrm{XOR} \\ \mathrm{~b}, \mathrm{t}, \mathrm{r} / \mathrm{m} \end{gathered}$	$\begin{gathered} \mathrm{XOR} \\ \mathrm{w}, \mathrm{t}, \mathrm{r} / \mathrm{m} \end{gathered}$	$\begin{gathered} \mathrm{XOR} \\ \mathrm{~b}, \mathrm{ia} \end{gathered}$	$\begin{aligned} & \text { XOR } \\ & \text { w,ia } \end{aligned}$	$\begin{aligned} & \text { SEG } \\ & =S S \end{aligned}$	AAA	$\begin{gathered} \mathrm{CMP} \\ \mathrm{~b}, \mathrm{f}, \mathrm{r} / \mathrm{m} \end{gathered}$	$\begin{gathered} \mathrm{CMP} \\ \mathrm{w}, \mathrm{f}, \mathrm{r} / \mathrm{m} \end{gathered}$	$\begin{aligned} & \text { CMP } \\ & \mathrm{b}, \mathrm{t}, \mathrm{r} / \mathrm{m} \end{aligned}$	CMP w,t,r/m	$\begin{gathered} \mathrm{CMP} \\ \mathrm{~b}, \mathrm{i} \end{gathered}$	$\begin{gathered} \text { CMP } \\ \mathrm{w}, \mathrm{i} \end{gathered}$	$\begin{aligned} & \text { SEG } \\ & =D S \end{aligned}$	AAS
4	INC AX	INC CX	$\begin{gathered} \text { INC } \\ \text { DX } \end{gathered}$	$\begin{gathered} \text { INC } \\ \mathrm{BX} \end{gathered}$	$\begin{gathered} \text { INC } \\ \text { SP } \end{gathered}$	$\begin{gathered} \text { INC } \\ \mathrm{BP} \end{gathered}$	$\begin{gathered} \text { INC } \\ \text { SI } \end{gathered}$	$\begin{gathered} \text { INC } \\ \text { DI } \end{gathered}$	$\begin{gathered} \text { DEC } \\ \text { AX } \end{gathered}$	$\begin{gathered} \text { DEC } \\ \text { CX } \end{gathered}$	$\begin{gathered} \text { DEC } \\ \text { DX } \end{gathered}$	$\begin{gathered} \text { DEC } \\ \text { BX } \end{gathered}$	$\begin{gathered} \hline \mathrm{DEC} \\ \mathrm{SP} \end{gathered}$	$\begin{gathered} \text { DEC } \\ \mathrm{BP} \end{gathered}$	$\begin{gathered} \text { DEC } \\ \mathrm{SI} \end{gathered}$	$\begin{gathered} \text { DEC } \\ \text { DI } \end{gathered}$
5	$\begin{aligned} & \text { PUSH } \\ & \text { AX } \end{aligned}$	PUSH cx	PUSH DX	$\begin{aligned} & \text { PUSH } \\ & \text { BX } \end{aligned}$	$\begin{aligned} & \text { PUSH } \\ & \text { SP } \end{aligned}$	$\begin{aligned} & \text { PUSH } \\ & \text { BP } \end{aligned}$	$\begin{aligned} & \text { PUSH } \\ & \text { SI } \end{aligned}$	PUSH DI	$\begin{gathered} \mathrm{POP} \\ \mathrm{AX} \end{gathered}$	$\begin{aligned} & \text { POP } \\ & \text { CX } \end{aligned}$	$\begin{aligned} & \mathrm{POP} \\ & \mathrm{DX} \end{aligned}$	$\begin{aligned} & \mathrm{POP} \\ & \mathrm{BX} \end{aligned}$	$\begin{gathered} \mathrm{POP} \\ \mathrm{SP} \end{gathered}$	$\begin{gathered} \mathrm{POP} \\ \mathrm{BP} \end{gathered}$	$\begin{aligned} & \text { POP } \\ & \text { SI } \end{aligned}$	$\begin{aligned} & \text { POP } \\ & \text { DI } \end{aligned}$
6	PUSHA	POPA	BOUND	ARPL					$\begin{gathered} \text { PUSH } \\ \text { w,i } \end{gathered}$	$\left\|\begin{array}{c} \text { IMUL } \\ w, t, r / m, i \end{array}\right\|$	$\begin{aligned} & \text { PUSH } \\ & \text { b,i } \end{aligned}$	IMUL b,t,r/m,i	INSB	INSW	OUTSB	OUTSW
7	JO	JNO	JB/ JNAE	JNB/ JAE	$\begin{aligned} & \text { JE/ } \\ & \text { JZ } \end{aligned}$	JNE/ JNZ	$\begin{aligned} & \text { JBE/ } \\ & \text { JNA } \end{aligned}$	JNBE/ JA	JS	JNS	JP/ JPE	JNP/ JPO	$\begin{gathered} \text { JL/ } \\ \text { JNGE } \end{gathered}$	$\begin{aligned} & \text { JNL/ } \\ & \text { JGE } \end{aligned}$	JLE/ JNG	$\begin{aligned} & \text { JNLE/ } \\ & \text { JG } \end{aligned}$
8	Immed b,r/m	Immed w,r/m	$\begin{gathered} \text { Immed } \\ \mathrm{b}, \mathrm{r} / \mathrm{m} \end{gathered}$	Immed is, r / m	$\begin{aligned} & \text { TEST } \\ & \mathrm{b}, \mathrm{r} / \mathrm{m} \end{aligned}$	$\begin{aligned} & \text { TEST } \\ & \mathrm{w}, \mathrm{r} / \mathrm{m} \end{aligned}$	$\begin{gathered} \mathrm{XCHG} \\ \mathrm{~b}, \mathrm{r} / \mathrm{m} \end{gathered}$	$\begin{aligned} & \mathrm{xCHG} \\ & \mathrm{w}, \mathrm{r} / \mathrm{m} \end{aligned}$	$\begin{gathered} \mathrm{MOV} \\ \mathrm{~b}, \mathrm{f}, \mathrm{r} / \mathrm{m} \end{gathered}$	$\begin{gathered} \mathrm{MOV} \\ \mathrm{w}, \mathrm{f}, \mathrm{r} / \mathrm{m} \end{gathered}$	MOV b,t,r/m	$\begin{gathered} \text { MOV } \\ w, t, r / m \end{gathered}$	$\begin{array}{\|c\|} \hline \mathrm{MOV} \\ \mathrm{sr}, \mathrm{f}, \mathrm{r} / \mathrm{m} \end{array}$	LEA	$\begin{gathered} \mathrm{MOV} \\ \mathrm{sr}, \mathrm{t}, \mathrm{r} / \mathrm{m} \end{gathered}$	$\begin{aligned} & \text { POP } \\ & \mathrm{r} / \mathrm{m} \end{aligned}$
9	$\begin{gathered} \mathrm{XCHG} \\ \mathrm{AX} \end{gathered}$	XCHG CX	$\begin{gathered} \text { XCHG } \\ \text { DX } \end{gathered}$	$\begin{gathered} \mathrm{XCHG} \\ \mathrm{BX} \end{gathered}$	$\begin{gathered} \mathrm{XCHG} \\ \mathrm{SP} \end{gathered}$	XCHG BP	$\begin{array}{\|c} \mathrm{XCHG} \\ \mathrm{SI} \end{array}$	$\begin{gathered} \text { XCHG } \\ \text { DI } \end{gathered}$	CBW	CWD	$\begin{aligned} & \text { CALL } \\ & \text { i,d } \end{aligned}$	WAIT	PUSHF	POPF	SAHF	LAHF
A	$\begin{aligned} & \mathrm{MOV} \\ & \mathrm{~m}-\mathrm{AL} \end{aligned}$	$\begin{aligned} & \mathrm{MOV} \\ & \mathrm{~m}-\mathrm{AX} \end{aligned}$	$\begin{aligned} & \text { MOV } \\ & \text { AL-m } \end{aligned}$	$\begin{aligned} & \text { MOV } \\ & \text { AX-m } \end{aligned}$	MOVSB	MOVSW	CMPSB	CMPSW	$\begin{aligned} & \text { TEST } \\ & \text { b,i,a } \end{aligned}$	$\begin{aligned} & \text { TEST } \\ & \mathrm{w}, \mathrm{i}, \mathrm{a} \end{aligned}$	STOSB	Stosw	LODSB	LODSW	SCASB	SCASW
B	$\begin{aligned} & \text { MOV } \\ & \text { i-AL } \end{aligned}$	$\begin{aligned} & \text { MOV } \\ & \text { i-CL } \end{aligned}$	$\begin{aligned} & \text { MOV } \\ & \text { i-DL } \end{aligned}$	$\begin{aligned} & \text { MOV } \\ & \text { i-BL } \end{aligned}$	$\begin{aligned} & \text { MOV } \\ & \text { i-AH } \end{aligned}$	$\begin{aligned} & \mathrm{MOV} \\ & \mathrm{i}-\mathrm{CH} \end{aligned}$	$\begin{aligned} & \text { MOV } \\ & \text { i-DH } \end{aligned}$	$\begin{aligned} & \text { MOV } \\ & \text { i-BH } \end{aligned}$	$\begin{aligned} & \text { MOV } \\ & \text { i-AX } \end{aligned}$	$\begin{aligned} & \text { MOV } \\ & \text { i-CX } \end{aligned}$	$\begin{aligned} & \text { MOV } \\ & \text { i-DX } \end{aligned}$	$\begin{aligned} & \text { MOV } \\ & \text { I-BX } \end{aligned}$	$\begin{aligned} & \text { MOV } \\ & \text { i-SP } \end{aligned}$	$\begin{aligned} & \text { MOV } \\ & \text { i-BP } \end{aligned}$	$\begin{gathered} \mathrm{MOV} \\ \mathrm{i}-\mathrm{SI} \end{gathered}$	$\begin{gathered} \text { MOV } \\ \text { i-DI } \end{gathered}$
C	Shift b,i	Shift w,i	$\begin{gathered} \text { RET } \\ (\mathrm{i}+\mathrm{SP}) \end{gathered}$	RET	LES	LDS	$\begin{gathered} \mathrm{MOV} \\ \mathrm{~b}, \mathrm{i}, \mathrm{r} / \mathrm{m} \end{gathered}$	$\underset{\mathrm{w}, \mathrm{i}, \mathrm{r} / \mathrm{m}}{\mathrm{MOV}}$	ENTER	LEAVE	$\begin{gathered} \text { RET } \\ \mathrm{I},(\mathrm{i}+\mathrm{SP}) \end{gathered}$	RET	INT Type 3	INT (any)	INTO	IRET
D	$\begin{gathered} \text { Shift } \\ b \end{gathered}$	Shift w	Shift b, CL	Shift b, CL	AAM	AAD		XLAT	$\begin{gathered} \text { ESC } \\ 0 \end{gathered}$	$\begin{gathered} \text { ESC } \\ 1 \end{gathered}$	$\begin{gathered} \mathrm{ESC} \\ 2 \end{gathered}$	$\begin{gathered} \text { ESC } \\ 3 \end{gathered}$	$\begin{gathered} \text { ESC } \\ 4 \end{gathered}$	$\begin{gathered} \text { ESC } \\ 5 \end{gathered}$	$\begin{gathered} \text { ESC } \\ 6 \end{gathered}$	$\begin{gathered} \text { ESSC } \\ 7 \end{gathered}$
E	$\begin{aligned} & \text { LOOPNZ/ } \\ & \text { LOOPNE } \end{aligned}$	LOOPZ/ LOOPE	LOOP	Jcxz	$\begin{gathered} \text { in } \\ \text { b } \end{gathered}$	$\begin{aligned} & \text { IN } \\ & \mathrm{w} \end{aligned}$	$\begin{gathered} \text { OUT } \\ \text { b } \end{gathered}$	$\begin{gathered} \text { OUT } \\ \text { w } \end{gathered}$	$\begin{gathered} \text { CALL } \\ d \end{gathered}$	$\begin{gathered} \text { JMP } \\ d \end{gathered}$	JMP i,d	$\begin{aligned} & \text { JMP } \\ & \text { si,d } \end{aligned}$	$\begin{gathered} \mathrm{IN} \\ \mathrm{DX}, \mathrm{~b} \end{gathered}$	$\begin{gathered} \text { IN } \\ \text { DX,w } \end{gathered}$	$\begin{aligned} & \text { OUT } \\ & \text { DX,b } \end{aligned}$	$\begin{aligned} & \text { OUT } \\ & \text { DX,w } \end{aligned}$
F	LOCK		REP	REPZ	HLT	СмС	$\begin{aligned} & \text { Grp } 1 \\ & \text { b,r/m } \end{aligned}$	$\begin{aligned} & \text { Grp } 1 \\ & w, r / m \end{aligned}$	CLC	STC	CLI	STI	CLD	STD	$\begin{aligned} & \text { Grp } 2 \\ & \mathrm{~b}, \mathrm{r} / \mathrm{m} \end{aligned}$	$\text { Grp } 2$ $\mathrm{w}, \mathrm{r} / \mathrm{m}$

80C286 Machine Instruction Encoding Matrix (Continued)

where:

$\bmod \mathrm{r} / \mathrm{m}$	000	001	010	011	100	101	110	111
Immed	ADD	OR	ADC	SBB	AND	SUB	XOR	CMP
Shift	ROL	ROR	RCL	RCR	SHL/SAL	SHR	-	SAR
Grp 1	TEST	-	NOT	NEG	MUL	IMUL	DIV	IDIV
Grp 2	INC	DEC	CALL id	$\underset{\text { l,id }}{\text { CALL }}$	JMP id	$\begin{aligned} & \text { JMP } \\ & \text { I,id } \end{aligned}$	PUSH	-
PVAM 0	SLDT	STR	LLDT	LTR	VERR	VERW	-	-
PVAM 1	SGDT	SIDT	LGDT	LIDT	SMSW	-	LMSW	-
PVAM 2	LAR							
PVAM 3	LSL							
PVAM 6	CLTS							

b = byte operation
$d=$ direct
$f=$ from CPU reg
$\mathrm{i}=$ immediate
ia = immediate to $A X$
id = indirect
is = immediate byte sign extension
$\mathrm{I}=$ long ie. intersegment
$n=2 n d$. byte of PVAM instruction
$\mathrm{m}=$ memory
$\mathrm{r} / \mathrm{m}=\mathrm{EA}$ is second byte
si $=$ short intrasegment
$\mathrm{sr}=$ segment register
$t=$ to CPU register
$v=$ variable
$w=$ word operation
z = zero

Footnotes

The Effective Address (EA) of the memory operand is computed according to the mod and r / m fields:

> DISP follows 2nd byte of instruction (before data is required)
> * except if mod $=00$ and $\mathrm{r} / \mathrm{m}=110$ then $\mathrm{EQ}=$ disp-high: disp-low.

Segment Override Prefix

$$
001 \text { reg } 110
$$

reg is assigned according to the following:

REG	SEGMENT REGISTER
00	ES
01	CS
10	SS
11	SS

REG is assigned according to the following table:

$\mathbf{1 6}$ 16 BIT $(\mathbf{w}=\mathbf{1})$	$\mathbf{8}$-BIT $(\mathbf{w}=\mathbf{0})$		
000	AX	000	AL
001	CX	001	CL
010	DX	010	DL
011	BX	011	BL
100	SP	100	AH
101	BP	101	CH
110	SI	110	DH
111	DI	111	BH

The physical addresses of all operands addressed by the BP register are computed using the SS segment register. The physical addresses of the destination operands of the string primitive operations (those addressed by the DI register) are computed using the ES segment, which may not be overridden.

CMOS 16 Bit Microprocessor

Features

- Compatible with NMOS 8086
- Completely Static CMOS Design
- DC to 5 MHz (80C86)
- DC to 8 MHz (80C86-2)
- Low Power Operation
- ICCSB $=500 \mu \mathrm{~A}$ Maximum
- ICCOP $=10 \mathrm{~mA} / \mathrm{MHz}$ Typical
- 1 MByte of Direct Memory Addressing Capability
- 24 Operand Addressing Modes
- Bit, Byte, Word and Block Move Operations
- 8 And 16 Bit Signed/Unsigned Arithmetic
- Binary, or Decimal \rightarrow Multiply and Divide
- Wide Operating Temperature Ranges:
- C80C86 $.0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
- I80C86 $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- M80C86
\qquad $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Description

The Harris 80C86 high performance 16 bit CMOS CPU is manufactured using a self-aligned silicon gate CMOS process (Scaled SAJI IV). Two modes of operation, MINimum for small systems and MAXimum for larger applications such as multi-processing, allow user configuration to achieve the highest performance level. Full TTL compatibility and industry standard operation allow use of existing NMOS 8086 hardware and software designs.

Pinout *
TOP VIEW

	TOP VIEW				
		O		MAX	(MIN)
GND	1		40	VCC	
AD14	2		39	AD15	
AD13	3		38	A16/S3	
AD12	4		37	A17/S4	
AD11	5		36	A18/S5	
AD10	6		35	A19/S6	
AD9	7		34	$\overline{\mathrm{BHE}} / \mathrm{S} 7$	
AD8	8	$80 C 86$	33	MN/ $\overline{M X}$	
AD7	9		32	$\overline{\mathrm{RD}}$	
AD6	10		31	$\overline{\mathrm{RQ}} / \overline{\mathrm{GTO}}$	(HOLD)
AD5	11		30	$\overline{\mathrm{RQ}} / \overline{\mathrm{GTI}}$	(HLDA)
AD4	12		29	$\overline{L O C K}$	($\overline{W R}$)
AD3	13		28	$\overline{\text { S2 }}$	(M/IO)
AD2	14		27	S1	($\mathrm{DT} / \overline{\mathrm{B}}$)
ADI	15		26	SO	(DEN)
ADO	16		25	QSO	(ALE)
NMI	17		24	QS1	[INTA)
INTR	18		23	TEST	
CLK	19		22	READY	
GND	20		21	RESET	

* LCC/PLCC Pinout on Page 3-75

Functional Diagram

CAUTION: Electronic devices are sensitive to electrostatic discharge. Proper I.C. handling procedures should be followed.

Pin Description

The following pin function descriptions are for 80C86 systems in either minimum or maximum mode. The "Local Bus" in these descriptions is the direct multiplexed
bus interface connection to the 80C86 (without regard to additional bus buffers).

SYMBOL	$\begin{gathered} \text { PIN } \\ \text { NUMBER } \end{gathered}$	TYPE	DESCRIPTION
$\mathrm{AD}_{15}-\mathrm{AD}_{0}$	2-16, 39	1/0	ADDRESS DATA BUS: These lines constitute the time multiplexed memory/IO address (T_{1}) and data ($T_{2}, T_{3}, T_{W}, T_{4}$) bus. A_{0} is analogous to $\overline{B H E}$ for the lower byte of the data bus, pins $D_{7}-D_{0}$. It is LOW during T1 when a byte is to be transferred on the lower portion of the bus in memory or I/O operations. Eight-bit oriented devices tied to the lower half would normally use A_{0} to condition chip select functions (See $\overline{\mathrm{BHE}}$). These lines are active HIGH and are held at high impedance to the last valid logic level during interrupt acknowledge and local bus "hold acknowledge" or "grant sequence".
A_{19} / S_{6} $\mathrm{A}_{18} / \mathrm{S}_{5}$ $\mathrm{A}_{17} / \mathrm{S}_{4}$ $\mathrm{A}_{16} / \mathrm{S}_{3}$	35-38	0	ADDRESSS/STATUS: During T_{1}, these are the four most significant address lines for memory operations. During I/O operations these lines are low. During memory and I/O operations, status information is available on these lines during $T_{2}, T_{3}, T_{W}, T_{4} . S_{6}$ is always zero. The status of the interrupt enable FLAG bit $\left(S_{5}\right)$ is updated at the beginning of each CLK cycle. S_{4} and S_{3} are encoded as shown in (Table 1). This information indicates which segment register is presently being used for data accessing. These lines are held at high impedance to the last valid logic level during local bus "hold acknowledge" or "grant sequence".
$\widetilde{\mathrm{BHE} / \mathrm{S}_{7}}$	34	0	BUS HIGH ENABLE/STATUS: During T_{1} the bus high enable signal ($\overline{\mathrm{BHE}}$) should be used to enable data onto the most significant half of the data bus, pins $D_{15}-D_{8}$. Eight bit oriented devices tied to the upper half of the bus would normally use $\overline{\mathrm{BHE}}$ to condition chip select functions. $\overline{B H E}$ is LOW during T_{1} for read, write, and interrupt acknowledge cycles when a byte is to be transferred on the high portion of the bus. The S_{7} status information is available during T_{2}, T_{3} and T_{4}. The signal is active LOW, and is held at high impedance to the last valid logic level during interrupt acknowledge and local bus "hold acknowledge" or "grant sequence"; it is LOW during T_{1} for the first interrupt acknowledge cycle. (See Table 2).
$\overline{\mathrm{RD}}$	32	0	READ: Read strobe indicates that the processor is performing a memory or I/O read cycle, depending on the state of the $\mathrm{M} / \overline{\mathrm{IO}}$ or $\overline{\mathrm{S}_{2}}$ pin. This signal is used to read devices which reside on the 80 C 86 local bus. $\overline{\mathrm{RD}}$ is active LOW during $\mathrm{T}_{2}, \mathrm{~T}_{3}$ and TW of any read cycle, and is guaranteed to remain HIGH in T_{2} until the 80 C 86 local bus has floated. This line is held at a high impedance logic one state during "hold acknowledge" or "grant sequence".
READY	22	1	READY: is the acknowledgement from the addressed memory or I/O device that will complete the data transfer. The RDY signal from memory or I/O is synchronized by the 82C84A Clock Generator to form READY. This signal is active HIGH. The 80C86 READY input is not synchronized. Correct operation is not guaranteed if the Setup and Hold Times are not met.
INTR	18	1	INTERRUPT REQUEST: is a level triggered input which is sampled during the last clock cycle of each instruction to determine if the processor should enter into an interrupt acknowledge operation. A subroutine is vectored to via an interrupt vector lookup table located in system memory. It can be internally masked by software resetting the interrupt enable bit. INTR is internally synchronized. This signal is active HIGH.
$\overline{\text { TEST }}$	23	1	TEST: input is examined by the "Wait" instruction. If the TEST input is LOW execution continues, otherwise the processor waits in an "Idle" state. This input is synchronized internally during each clock cycle on the leading edge of CLK.
NMI	17	1	NON-MASKABLE INTERRUPT: is an edge triggered input which causes a type 2 interrupt. A subroutine is vectored to via an interrupt vector lookup table located in system memory. NMI is not maskable internally by software. A transition from LOW to HIGH initiates the interrupt at the end of the current instruction. This input is internally synchronized.
RESET	21	I	RESET: causes the processor to immediately terminate its present activity. The signal must transition LOW to HIGH and remain active HIGH for at least four clock cycles. It restarts execution, as described in the Instruction Set description, when RESET returns LOW. RESET is internally synchronized.
CLK	19	1	CLOCK: provides the basic timing for the processor and bus controller. It is asymmetric with a 33% duty cycle to provide optimized internal timing.
VCC	40		VCC: +5 V power supply pin. A $0.1 \mu \mathrm{~F}$ capacitor between pins 20 and 40 is recommended for decoupling.
GND	1,20		GND: Ground. Note: both must be connected. A $0.1 \mu \mathrm{~F}$ capacitor between pins 1 and 20 is recommended for decoupling.
$\mathrm{MN} / \overline{\mathrm{MX}}$	33	1	MINIMUM/MAXIMUM: Indicates what mode the processor is to operate in. The two modes are discussed in the following sections.

Pin Description

The following pin function descriptions are for the $80 \mathrm{C} 86 / 80 \mathrm{C} 88$ system in maximum mode (i.e., $\mathrm{MN} / \overline{\mathrm{MX}}=$

GND). Only the pin functions which are unique to maximum mode are described below.

SYMBOL	PIN NUMBER	TYPE	DESCRIPTION
$\overline{s_{0}}, \overline{s_{1}}, \overline{s_{2}}$	26-28	0	STATUS: is active during T_{4}, T_{1} and T_{2} and is returned to the passive state $(1,1,1)$ during T_{3} or during TW when READY is HIGH. This status is used by the 82 C 88 Bus Controller to generate all memory and I/O access control signals. Any change by $\overline{S_{2}}, \overline{S_{1}}$ or $\overline{S_{0}}$ during T_{4} is used to indicate the beginning of a bus cycle, and the return to the passive state in T_{3} or T_{W} is used to indicate the end of a bus cycle. These status lines are encoded as shown in Table 3. These signals are held at a high impedance logic one state during "grant sequence".
$\begin{aligned} & \overline{\mathrm{RQ}} / \overline{\mathrm{GT}}_{0} \\ & \overline{\mathrm{RQ}} / \overline{\mathrm{GT}}_{1} \end{aligned}$	31, 30	1/O	REQUEST/GRANT: pins are used by other local bus masters to force the processor to release the local bus at the end of the processor's current bus cycle. Each pin is bi-directional with $\overline{R Q} / \overline{G T}_{0}$ having higher priority than $\overline{R Q} / \overline{G T} 1 \cdot \overline{R Q} / \overline{G T}$ has an internal pull-up bus hold device so it may be left unconnected. The request/grant sequence is as follows (see $\overline{R Q} / \overline{G T}$ Sequence Timing)

1. A pulse of 1 CLK wide from another local bus master indicates a local bus request ("hold") to the 80 C 86 (pulse 1).
2. During a T_{4} or T_{1} clock cycle, a pulse 1 CLK wide from the 80 C 86 to the requesting master (pulse 2) indicates that the 80C86 has allowed the local bus to float and that it will enter the "grant sequence" state at the next CLK. The CPU's bus interface unit is disconnected logically from the local bus during "grant sequence".
3. A pulse 1 CLK wide from the requesting master indicates to the 80 C 86 (pulse 3) that the "hold" request is about to end and that the 80 C 86 can reclaim the local bus at the next CLK. The CPU then enters T_{4} (or T_{1} if no bus cycles pending).
Each Master-Master exchange of the local bus is a sequence of 3 pulses. There must be one idle CLK cycle after each bus exchange. Pulses are active low.

If the request is made while the CPU is performing a memory cycle, it will release the local bus during T_{4} of the cycle when all the following conditions are met:

1. Request occurs on or before T_{2}.
2. Current cycle is not the low byte of a word (on an odd address).
3. Current cycle is not the first acknowledge of an interrupt acknowledge sequence.
4. A locked instruction is not currently executing.

If the local bus is idle when the request is made the two possible events will follow:

1. Local bus will be released during the next cycle.
2. A memory cycle will start within three clocks. Now the four rules for a currently active memory cycle apply with condition number 1 already satisfied.

| $\overline{\text { LOCK }}$ | 29 | O | LOCK: output indicates that other system bus masters are not to gain control of the system |
| :--- | :--- | :--- | :--- | bus while $\overline{\text { LOCK }}$ is active LOW. The $\overline{\text { LOCK signal is activated by the "LOCK" prefix instruc- }}$ tion and remains active until the completion of the next instruction. This signal is active LOW, and is held at a high impedance logic one state during "grant sequence". In MAX mode, $\overline{\text { LOCK }}$ is automatically generated during T_{2} of the first INTA cycle and removed during T_{2} of the second INTA cycle. is valid during the CLK cycle after QS $_{1} \quad$ QS $_{\mathbf{0}}$ which the queue operation is performed.

$Q S_{1}$ and $Q S_{0}$ provide status to allow external tracking of the internal 80C86 instruction queue. Note that 10

No Operation
1 First Byte of Op Code from Queue Empty the Queue
Subsequent Byte from Queue
dance.
TABLE 1.

$\mathbf{S}_{\mathbf{4}}$	$\mathbf{S}_{\mathbf{3}}$	CHARACTERISTICS
0	0	Alternate Data
0	1	Stack
1	0	Code or None
1	1	Data

TABLE 2.

$\overline{\text { BHE }}$	$\mathbf{A}_{\mathbf{0}}$	CHARACTERISTICS
0	0	Whole word
0	1	Upper byte from/to odd address
1	0	Lower byte from/to even address
1	1	None

TABLE 3.

$\overline{\mathbf{S}_{\mathbf{2}}}$	$\overline{\mathbf{S}_{\mathbf{1}}}$	$\overline{\mathbf{S}_{\mathbf{0}}}$	CHARACTERISTICS
0	0	0	Interrupt Acknowledge
0	0	1	Read I/O Port
0	1	0	Write I/O Port
0	1	1	Halt
1	0	0	Code Access
1	0	1	Read Memory
1	1	0	Write Memory
1	1	1	Passive

Pin Description
The following pin function descriptions are for the 80C86 in minimum mode (i.e. $M N / \overline{M X}=V_{C C}$). Only the pin func-
tions which are unique to minimum mode are described; all other pin functions are as described below.

Functional Description

Static Operation

All 80C86 circuitry is of static design. Internal registers, counters and latches are static and require no refresh as with dynamic circuit design. This eliminates the minimum operating frequency restriction placed on other microprocessors. The CMOS 80C86 can operate from DC to the specified upper frequency limit. The processor clock may be stopped in either state (HIGH/LOW) and held there indefinitely. This type of operation is especially useful for system debug or power critical applications.

The 80C86 can be single stepped using only the CPU clock. This state can be maintained as long as is necessary. Single step clock operation allows simple interface circuitry to provide critical information for bringing up your system.
Static design also allows very low frequency operation (down to DC). In a power critical situation, this can provide extremely low power operation since 80C86 power
dissipation is directly related to operating frequency. As the system frequency is reduced, so is the operating power until, ultimately, at a DC input frequency, the 80 C 86 power requirement is the standby current, $(500 \mu \mathrm{~A}$ maximum).

Internal Architecture

The internal functions of the 80 C 86 processor are partitioned logically into two processing units. The first is the Bus Interface Unit (BIU) and the second is the Execution Unit (EU) as shown in the CPU functional diagram.

These units can interact directly but for the most part perform as separate asynchronous operational processors. The bus interface unit provides the functions related to instruction fetching and queuing, operand fetch and store, and address relocating. This unit also provides the basic bus control. The overlap of instruction pre-fetching
provided by this unit serves to increase processor performance through improved bus bandwidth utitization. Up to 6 bytes of the instruction stream can be queued while waiting for decoding and execution.

The instruction stream queuing mechanism allows the BIU to keep the memory utilized very efficiently. Whenever there is space for at least 2 bytes in the queue, the BIU will attempt a word fetch memory cycle. This greatly reduces "dead-time" on the memory bus. The queue acts as a First-In-First-Out (FIFO) buffer, from which the EU extracts instruction bytes as required. If the queue is empty (following a branch instruction, for example), the first byte into the queue immediately becomes available to the EU.

The execution unit receives pre-fetched instructions from the BIU queue and provides un-relocated operand addresses to the BIU. Memory operands are passed through the BIU for processing by the EU, which passes results to the BIU for storage.

Memory Organization

The processor provides a 20 -bit address to memory, which locates the byte being referenced. The memory is organized as a linear array of up to 1 million bytes, addressed as $00000(\mathrm{H})$ to $\operatorname{FFFFF}(\mathrm{H})$. The memory is logically divided into code, data, extra and stack segments of up to 64 K bytes each, with each segment falling on 16-byte boundaries. (See Figure 1).

FIGURE 1. 80C86 MEMORY ORGANIZATION
TABLE 4.

TYPE OF MEMORY REFERENCE	DEFAULT SEGMENT BASE	ALTER- SATE SEGMENT BASE	OFFSET
Instruction Fetch	CS	None	IP
Stack Operation	SS	None	SP
Variable (except following)	DS	CS, ES, SS	Effective Address
String Source	DS	CS, ES, SS	SI
String Destination	ES	None	DI
BP Used As Base Register	SS	CS, DS, ES	Effective Address

All memory references are made relative to base addresses contained in high speed segment registers. The segment types were chosen based on the addressing needs of programs. The segment register to be selected is automatically chosen according to the specific rules of Table 4. All information in one segment type share the same logical attributes (e.g. code or data). By structuring memory into relocatable areas of similar characteristics and by automatically selecting segment registers, programs are shorter, faster and more structured. (See Table 4).

Word (16-bit) operands can be located on even or odd address boundaries and are thus not constrained to even boundaries as is the case in many 16 -bit computers. For address and data operands, the least significant byte of the word is stored in the lower valued address location and the most significant byte in the next higher address location. The BIU automatically performs the proper number of memory accesses, one if the word operand is on an even byte boundary and two if it is on an odd byte boundary. Except for the performance penalty, this double access is transparent to the software. The performance penalty does not occur for instruction fetches; only word operands.

Physically, the memory is organized as a high bank (D15D8) and a low bank (D7-D0) of 512K bytes addressed in parallel by the processor's address lines.

Byte data with even addresses is transferred on the D7-D0 bus lines while odd addressed byte data (AO HIGH) is transferred on the D15-D8 bus lines. The processor provides two enable signals, BHE and A 0 , to selectively allow reading from or writing into either an odd byte location, even byte location, or both. The instruction stream is fetched from memory as words and is addressed internally by the processor at the byte level as necessary.

In referencing word data, the BIU requires one or two memory cycles depending on whether the starting byte of the word is on an even or odd address, respectively. Consequently, in referencing word operands performance can be optimized by locating data on even address boundaries. This is an especially useful technique for using the stack, since odd address references to the stack may adversely affect the context switching time for interrupt processing or task multiplexing.

Certain locations in memory are reserved for specific CPU operations (See Figure 2). Locations from address FFFFFOH through FFFFFFH are reserved for operations including a jump to the initial program loading routine. Following RESET, the CPU will always begin execution at location FFFFOH where the jump must be located. Locations 00000 H through 003FFH are reserved for interrupt operations. Each of the 256 possible interrupt service routines is accessed thru its own pair of 16 -bit pointers - segment address pointer and offset address pointer. The first
pointer, used as the offset address, is loaded into the IP and the second pointer, which designates the base address is loaded into the CS. At this point program control is transferred to the interrupt routine. The pointer elements are assumed to have been stored at the respective places in reserved memory prior to occurrence of interrupts.

FIGURE 2. RESERVED MEMORY LOCATIONS

Minimum and Maximum Operation Modes

The requirements for supporting minimum and maximum 80C86 systems are sufficiently different that they cannot be met efficiently using 40 uniquely defined pins. Consequently, the 80 C 86 is equipped with a strap pin ($\mathrm{MN} / \overline{\mathrm{MX} \text {) }}$ which defines the system configuration. The definition of a certain subset of the pins changes, dependent on the condition of the strap pin. When the $M N / \overline{M X}$ pin is strapped to GND, the 80C86 defines pins 24 through 31 and 34 in maximum mode. When the $\mathrm{MN} / \overline{\mathrm{MX}}$ pin is strapped to VCC, the 80 C 86 generates bus control signals itself on pins 24 through 31 and 34.

The minimum mode 80 C 86 can be used with either a multiplexed or demultiplexed bus. This architecture provides the 80 C 86 processing power in a highly integrated form.

The demultiplexed mode requires two 82 C 82 latches (for 64 K addressability) or three 82 C 82 latches (for a full megabyte of addressing). An 82C86 or 82C87 transceiver can also be used if data bus buffering is required. (See Figure 6a.) The 80 C 86 provides $\overline{\mathrm{DEN}}$ and $D T / \bar{R}$ to control the transceiver, and ALE to latch the addresses. This configuration of the minimum mode provides the standard demultiplexed bus structure with heavy bus buffering and relaxed bus timing requirements.

The maximum mode employs the 82C88 bus controller (See Figure 6 b). The 82 C 88 decodes status lines $\overline{\mathrm{S}_{0}}, \overline{\mathrm{~S}_{1}}$ and $\overline{\mathrm{S}_{2}}$, and provides the system with all bus control signals.

Moving the bus control to the 82C88 provides better source and sink current capability to the control lines, and frees the 80C86 pins for extended large system features. Hardware lock, queue status, and two request/grant interfaces are provided by the 80C86 in maximum mode. These features allow coprocessors in local bus and remote bus configurations.

Bus Operation

The 80C86 has a combined address and data bus commonly referred to as a time multiplexed bus. This technique provides the most efficient use of pins on the processor while permitting the use of a standard 40-lead package. This "local bus" can be buffered directly and used throughout the system with address latching provided on memory and I/O modules. In addition, the bus can also be demultiplexed at the processor with a single set of 82C82 address latches if a standard non-multiplexed bus is desired for the system.

Each processor bus cycle consists of at least four CLK cycles. These are referred to as T_{1}, T_{2}, T_{3} and T_{4} (see Figure 3). The address is emitted from the processor during T_{1} and data transfer occurs on the bus during T_{3} and $T_{4} . T_{2}$ is used primarily for changing the direction of the bus during read operations. In the event that a "NOT READY" indication is given by the addressed device, "Wait" states (TW) are inserted between T_{3} and T_{4}. Each inserted wait state is the same duration as a CLK cycle. Periods can occur between 80C86 driven bus cycles. These are referred to as "idle" states (T_{1}) or inactive CLK cycles. The processor uses these cycles for internal housekeeping and processing.

During T_{1} of any bus cycle, the ALE (Address Latch Enable) signal is emitted (by either the processor or the 82C88 bus controller, depending on the $\mathrm{MN} / \overline{\mathrm{MX}}$ strap). At the trailing edge of this pulse, a valid address and certain status information for the cycle may be latched.

Status bits $\overline{\mathrm{S}_{0}}, \overline{\mathrm{~S}_{1}}$ and $\overline{\mathrm{S}_{2}}$ are used by the bus controller, in maximum mode, to identify the type of bus transaction according to Table 5.

TABLE 5.

$\mathbf{s}_{\mathbf{2}}$	$\mathbf{s}_{\mathbf{1}}$	$\mathbf{s}_{\mathbf{0}}$	CHARACTERISTICs
0	0	0	Interrupt
0	0	1	Read I/O
0	1	0	Write I/O
0	1	1	Halt
1	0	0	Instruction Fetch
1	0	1	Read Data from Memory
1	1	0	Write Data to Memory
1	1	1	Passive (no bus cycle)

FIGURE 3. BASIC SYSTEM TIMING

Status bits S_{3} through S_{7} are time multiplexed with high order address bits and the $\overline{\mathrm{BHE}}$ signal, and are therefore valid during T_{2} through $\mathrm{T}_{4} . \mathrm{S}_{3}$ and S_{4} indicate which segment register (see Instruction Set Description) was used for this bus cycle in forming the address, according to Table 6.

TABLE 6.

$\mathbf{S}_{\mathbf{4}}$	$\mathbf{s}_{\mathbf{3}}$	CHARACTERISTICS
0	0	Alternate Data (extra segment)
0	1	Stack
1	0	Code or None
1	1	Data

S_{5} is a reflection of the PSW interrupt enable bit. S_{6} is always zero and S_{7} is a spare status bit.

I/O Addressing

In the $80 \mathrm{C} 86,1 / O$ operations can address up to a maximum of 64 K I/O byte registers or 32 K I/O word registers. The I/O address appears in the same format as the memory address on bus lines A15-A0. The address lines A19-A16 are zero in I/O operations. The variable I/O instructions which use register DX as a pointer have full address capability while the direct I/O instructions directly address one or two of the 256 I/O byte locations in page 0 of the $1 / O$ address space.

I/O ports are addressed in the same manner as memory locations. Even addressed bytes are transferred on the D7-D0 bus lines and odd addressed bytes on D15-D8. Care must be taken to ensure that each register within an 8 -bit peripheral located on the lower portion of the bus be addressed as even.

External Interface

Processor RESET and Initialization

Processor initialization or start up is accomplished with
activation (HIGH) of the RESET pin. The 80 C 86 RESET is required to be HIGH for greater than 4 CLK cycles. The 80C86 will terminate operations on the high-going edge of RESET and will remain dormant as long as RESET is HIGH. The low-going transition of RESET triggers an internal reset sequence for approximately 7 clock cycles. After this interval, the 80C86 operates normally beginning with the instruction in absolute location FFFFOH. (See Figure 2). The RESET input is internally synchronized to the processor clock. At initialization, the HIGH-to-LOW transition of RESET must occur no sooner than $50 \mu \mathrm{~s}$ (or 4 CLK cycles, whichever is greater) after power-up, to allow complete initialization of the 80 C 86 .

NMI will not be recognized prior to the second CLK cycle following the end of RESET. If NMI is asserted sooner than nine clock cycles after the end of RESET, the processor may execute one instruction before responding to the interrupt.

Bus Hold Circuitry

To avoid high current conditions caused by floating inputs to CMOS devices and to eliminate need for pull-up/down resistors, "bus-hold" circuitry has been used on the 80 C 86 pins 2-16, 26-32 and 34-39. (See Figure $4 A$ and $4 B$). These circuits will maintain the last valid logic state if no driving source is present (i.e. an unconnected pin or a driving source which goes to a high impedance state). To overdrive the "bus hold" circuits, an external driver must be capable of supplying approximately $400 \mu \mathrm{~A}$ minimum sink or source current at valid input voltage levels. Since this "bus hold" circuitry is active and not a "resistive" type element, the associated power supply current is negligible and power dissipation is significantly reduced when compared to the use of passive pull-up resistors.

FIGURE 4A. BUS HOLD CIRCUITRY PIN 2-16, 34-39

FIGURE 4B. BUS HOLD CIRCUITRY PIN 26-32

FIGURE 5. INTERRUPT ACKNOWLEDGE SEQUENCE

Interrupt Operations

Interrupt operations fall into two classes: software or hardware initiated. The software initiated interrupts and software aspects of hardware interrupts are specified in the Instruction Set Description. Hardware interrupts can be classified as non-maskable or maskable.

Interrupts result in a transfer of control to a new program location. A 256-element table containing address pointers to the interrupt service program locations resides in absolute locations 0 through 3FFH, which are reserved for this purpose. Each element in the table is 4 bytes in size and corresponds to an interrupt "type". An interrupting device supplies an 8 -bit type number during the interrupt acknowledge sequence, which is used to "vector" through the appropriate element to the new interrupt service program location. All flags and both the Code Segment and Instruction Pointer register are saved as part of the INTA sequence. These are restored upon execution of an Interrupt Return (IRET) instruction.

Non-Maskable Interrupt (NMI)

The processor provides a single non-maskable interrupt pin (NMI) which has higher priority than the maskable interrupt request pin (INTR). A typical use would be to activate a power failure routine. The NMI is edge-triggered on a LOW-to-HIGH transition. The activation of this pin causes a type 2 interrupt.
NMI is required to have a duration in the HIGH state of greater than two CLK cycles, but is not required to be synchronized to the clock. Any positive transition of NMI is latched on-chip and will be serviced at the end of the current instruction or between whole moves of a block-type instruction. Worst case response to NMI would be for multiply, divide, and variable shift instructions. There is no specification on the occurrence of the low-going edge; it may occur before, during or after the servicing of NMI. Another positive edge triggers another response if it occurs after the start of the NMI procedure. The signal must be free of logical spikes in general and be free of bounces on the low-going edge to avoid triggering extraneous responses.

Maskable Interrupt (INTR)

The 80 C 86 provides a single interrupt request input (INTR) which can be masked internally by software with the resetting of the interrupt enable flag (IF) status bit. The interrupt request signal is level triggered. It is internally synchronized during each clock cycle on the high-going edge of CLK. To be responded to, INTR must
be present (HIGH) during the clock period preceding the end of the current instruction or the end of a whole move for a block- type instruction. INTR may be removed anytime after the falling edge of the first INTA signal. During the interrupt response sequence further interrupts are disabled. The enable bit is reset as part of the response to any interrupt (INTR, NMI, software interrupt or singlestep), although the FLAGS register which is automatically pushed onto the stack reflects the state of the processor prior to the interrupt. Until the old FLAGS register is restored the enable bit will be zero unless specifically set by an instruction.

During the response sequence (Figure 5) the processor executes two successive (back-to-back) interrupt acknowledge cycles. The 80 C 86 emits the LOCK signal (Max mode only) from T_{2} of the first bus cycle until T_{2} of the second. A local bus "hold" request will not be honored until the end of the second bus cycle. In the second bus cycle, a byte is supplied to the 80C86 by the 82C59A Interupt Controller, which identifies the source (type) of the interrupt. This byte is multiplied by four and used as a pointer into the interrupt vector look-up table. An INTR signal left HIGH will be continually responded to within the limitations of the enable bit and sample period. The INTERRUPT RETURN instruction includes a FLAGS pop which returns the status of the original interrupt enable bit when is restores the FLAGS.

Halt

When a software "HALT" instruction is executed the processor indicates that it is entering the "HALT" state in one of two ways depending upon which mode is strapped. In minimum mode, the processor issues one ALE with no qualifying bus control signals. In maximum mode the processor issues appropriate HALT status on $\overline{\mathrm{S}_{2}}, \overline{\mathrm{~S}_{1}}, \overline{\mathrm{~S}_{0}}$ and the 82C88 bus controller issues one ALE. The 80C86 will not leave the "HALT" state when a local bus "hold" is entered while in "HALT". In this case, the processor reissues the HALT indicator at the end of the local bus hold. An NMI or interrupt request (when interrupts enabled) or RESET will force the 80C86 out of the "HALT" state.

Read/Modify/Write (Semaphore)

Operations Via Lock

The $\overline{L O C K}$ status information is provided by the processor when consecutive bus cycles are required during the execution of an instruction. This gives the processor the
capability of performing read/modify/write operations on memory (via the Exchange Register With Memory instruction, for example) without another system bus master receiving intervening memory cycles. This is useful in multiprocessor system configurations to accomplish "test and set lock" operations. the LOCK signal is activated (forced LOW) in the clock cycle following decoding of the software "LOCK" prefix instruction. It is deactivated at the end of the last bus cycle of the instruction following the "LOCK" prefix instruction. While $\overline{\mathrm{LOCK}}$ is active a request on a $\overline{\mathrm{RQ}} / \overline{\mathrm{GT}}$ pin will be recorded and then honored at the end of the LOCK.

External Synchronization Via TEST

As an alternative to interrupts, the 80 C 86 provides a single software-testable input pin (TEST). This input is utilized by executing a WAIT instruction. The single WAIT instruction is repeatedly executed until the TEST input goes active (LOW). The execution of WAIT does not consume bus cycles once the queue is full.

If a local bus request occurs during WAIT execution, the 80 C 86 tri-states all output drivers while inputs and I/O pins are held at valid logic levels by internal bus-hold circuits. If interrupts are enabled, the 80C86 will recognize interrupts and process them when it regains control of the bus. The WAIT instruction is then refetched, and reexecuted.

Basic System Timing

Typical system configurations for the processor operating in minimum mode and in maximum mode are shown in Figures 6A and 6B, respectively. In minimum mode, the $M N / \overline{M X}$ pin is strapped to $V_{C C}$ and the processor emits bus control signals (e.g. $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}$, etc.) directly. In maximum mode, the MN/ $\overline{M X}$ pin is strapped to GND and the processor emits coded status information which the 82C88 bus controller used to generate MULTIBUSTM compatible bus control signals. Figure 3 shows the signal timing relationships.

TABLE 7. 80C86 REGISTER MODEL

AX	AH	AL
BX	8H	BL
cx	CH	CL
DX	DH	DL

ACCUMULATOR
bASE
COUNT
DATA

STACK POINTER BASE POINTER SOURCE INDEX destination index

INSTRUCTION POINTER STATUS FLAGS

CODE SEGMENT data segment STACK SEGMENT extra segment

System Timing - Minimum System

The read cycla begins in T1 with the assertion of the Address Laich Enable (ALE) signal. The trailing (low-going) edge of this signal is used to latch the address information, which is valid on the address/data bus (AD0-AD15) at this time, into the $82 \mathrm{C} 82 / 82 \mathrm{C} 83$ latch. The $\widehat{\mathrm{BHE}}$ and AO signals address the low, high or both bytes. From T1 to T4 the M/Ī signal indicates a memory or I/O operation. At T2, the address is removed from the address/data bus and the bus is held at the last valid logic state by internal bus hold devices. The read control signal is also asserted at $T 2$. The read ($\overline{R D}$) signal causes the addressed device to enable its data bus drivers to the local bus. Some time later, valid data will be available on the bus and the addressed device will drive the READY lineHIGH. When the processor returns the read signal to a HIGH level, the addressed device will again tri-state its bus drivers. If a transceiver ($82 \mathrm{C} 86 / 82 \mathrm{C} 87$) is required to buffer the 80 C 86 local bus, signals DT/ $\overline{\mathrm{R}}$ and $\overline{\mathrm{DEN}}$ are provided by the 80 C 86 .

A write cycle also begins with the assertion of ALE and the emission of the address. The $M / \overline{\mathrm{IO}}$ signal is again asserted to indicate a memory or I/O write operation. In T_{2}, immediately following the address emission, the processor emits the data to be written into the addressed location. This data remains valid until at least the middle of T_{4}. During T_{2}, T_{3} and T_{W}, the processor asserts the write control signal. The write ($\overline{W R}$) signal becomes active at the beginning of T_{2} as opposed to the read which is delayed somewhat into T_{2} to provide time for output drivers to become inactive.

The $\overline{B H E}$ and $A O$ signals are used to select the proper byte(s) of the memory/lO word to be read or written according to Table 8.

TABLE 8.

$\overline{\text { BHE }}$	A $_{0}$	CHARACTERISTCS
0	0	Whole word
0	1	Upper byte from/to odd address
1	0	Lower byte from/to even address
1	1	None

I/O ports are addressed in the same manner as memory location. Even addressed bytes are transferred on the D7D0 bus lines and odd address bytes on D15-D8.

The basic difference between the interrupt acknowledge cycle and a read cycle is that the interrupt acknowledge signal ($\overline{\mathrm{NTA}}$) is asserted in place of the read ($\overline{\mathrm{RD}}$) signal and the address bus is held at the last valid logic state by internal bus hold devices. (See Figure 4). In the second of two successive INTA cycles a byte of information is read from the data bus (D7-D0) as supplied by the interrupt system logic (i.e. 82C59A Priority Interrupt Controller). This byte identifies the source (type) of the interrupt. It is multiplied by four and used as a pointer into an interrupt vector lookup table, as described earlier.

FIGURE 6A. MINIMUM MODE $80 C 86$ TYPICAL CONFIGURATION

FIGURE 6B. MAXIMUM MODE $80 C 86$ TYPICAL CONFIGURATION

Bus Timing - Medium Size Systems

For medium complexity systems the $M N / \overline{M X}$ pin is connected to GND and the 82C88 Bus Controller is added to the system as well as an 82C82/82C83 latch for latching the system address, and an $82 \mathrm{C} 86 / 82 \mathrm{C} 87$ transceiver to allow for bus loading greater than the 80 C 86 is capable of handling. Signals ALE, $\overline{D E N}$, and DT/ \bar{R} are generated by the 82 C 88 instead of the processor in this configuration, although their timing remains relatively the same. The 80 C 86 status outputs ($\overline{\mathrm{S}_{2}}, \overline{\mathrm{~S}_{1}}$ and $\overline{\mathrm{S}_{0}}$) provide type-of-cycle information and become 82 C 88 inputs. This bus cycle information specifies read (code, data or I/O), write (data or I/O), interrupt acknowledge, or software halt. The 82 C 88 issues control signals specifying memory read or write, I/O read or write, or interrupt acknowledge. The 82 C 88 provides two types of write strobes, normal and
advanced, to be applied as required. The normal write strobes have data valid at the leading edge of write. The advanced write strobes have the same timing as read strobes, and hence, data is not valid at the leading edge of write. The 82C86/82C87 transceiver receives the usual T and OE inputs from the $82 \mathrm{C} 88 \mathrm{DT} / \mathrm{R}$ and DEN signals.

The pointer into the interrupt vector table, which is passed during the second INTA cycle, can be derived from an 82C59A located on either the local bus or the system bus. If the master 82C59A Priority Interrupt Controller is positioned on the local bus, the 82C86/82C87 transceiver must be disabled when reading from the master 82C59A during the interrupt acknowledge sequence and software "poll".

Absolute Maximum Ratings

Operating Conditions

Operating Voltage Range M80C86-2 Only	$\begin{array}{r} \ldots+4.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V} \\ +4.75 \mathrm{~V} \text { to }+5.25 \mathrm{~V} \end{array}$
Operating Temperature Range	
C80C86/-2	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
180C86/-2	$40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
M80C86/-2	$55^{\circ} \mathrm{C}$ to +1250 C

D.C. Electrical Specifications $V_{C C}=5.0 \mathrm{~V} \pm 10 \% ; T_{A}=0^{\circ} \mathrm{C}$ to $+70{ }^{\circ} \mathrm{C}$ (C80C86) (C80C86-2)

$$
\begin{aligned}
& V_{C C}=5.0 \mathrm{~V} \pm 10 \% ; T_{A}=-40{ }^{\circ} \mathrm{C} \text { to }+85{ }^{\circ} \mathrm{C}(180 \mathrm{C} 86)(\mathrm{C} 80 \mathrm{C} 86-2) \\
& V_{C C}=5.0 \mathrm{~V} \pm 10 \% ; T_{A}=-55{ }^{\circ} \mathrm{C} \text { to }+125{ }^{\circ} \mathrm{C}(\mathrm{M} 80 \mathrm{C} 86) \\
& V_{C C}=5.0 \mathrm{~V} \pm 5 \% ; T_{A}=-55{ }^{\circ} \mathrm{C} \text { to }+125{ }^{\circ} \mathrm{C}(\mathrm{M} 80 \mathrm{C} 86-2)
\end{aligned}
$$

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
VIH	Logical One Input Voltage	$\begin{aligned} & 2.0 \\ & 2.2 \end{aligned}$		v	C80C86, 180C86 (See Note 5) M80C86 (See Note 5)
VIL	Logical Zero Input Voltage		0.8	V	
VIHC	CLK Logical One Input Voltage	$\mathrm{V}_{\text {CC }}-0.8$		V	
VILC	CLK Logical Zero Input Voltage		0.8	V	
VOH	Output High Voltage	$\begin{gathered} 3.0 \\ v_{C c}-0.4 \end{gathered}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{v} \end{aligned}$	$\begin{aligned} & \mathrm{IOH}=-2.5 \mathrm{~mA} \\ & \mathrm{IOH}=-100 \mu \mathrm{~A} \end{aligned}$
VOL	Output Low Voltage		0.4	V	$1 \mathrm{OL}=+2.5 \mathrm{~mA}$
11	Input Leakage Current	-1.0	1.0	$\mu \mathrm{A}$	$\begin{aligned} & \text { VIN = GND or VCC DIP } \\ & \text { Pins } 17-19,21-23,33 \end{aligned}$
IBHH	Input Current-Bus Hold High	-40	-400	$\mu \mathrm{A}$	VIN $=3.0 \mathrm{~V}$ (See Note 1)
IBHL	Input Current-Bus Hold Low	40	400	$\mu \mathrm{A}$	VIN $=0.8 \mathrm{~V}$ (See Note 2)
10	Output Leakage Current		-10.0	$\mu \mathrm{A}$	VOUT = GND (See Note 4)
ICCSB	Standby Power Supply Current		500	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$ (See Note 3)
ICCOP	Operating Power Supply Current		10	$\mathrm{mA} / \mathrm{MHz}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \mathrm{V}_{C C}=5 \mathrm{~V}$, TYP, FREQ = CLK Cycle Time (TCLCL) (MHz)

Capacitance $T_{A}=25^{\circ} \mathrm{C}$

SYMBOI	PARAMETER	TYPICAL	UNITS	TEST CONDITIONS
CIN	Input Capacitance	20	pF	FREQ $=1 \mathrm{MHz}$. All measurements are referenced to device GND
COUT	Output Capacitance	20	pF	
CI/O	I/O Capacitance	20	pF	

NOTES: 1. IBHH should be measured after raising VIN to $V_{C C}$ and then lowering to 3.0 V on the following pins: 2-16, 26-32, 34-39.
2. IBHL should be measured after lowering VIN to GND and then raising to 0.8 V on the following pins: 2-16, 34-39.
3. ICCSB tested during clock high time after halt instruction executed. VIN $=V_{C C}$ or $G N D, V_{C C}=5.5 \mathrm{~V}$, Outputs unloaded.
4. IO should be measured by putting the pin in a high impedance state and then driving VOUT to GND on the following pins: 26-29 and 32.
5. $\mathrm{MN} / \overline{\mathrm{MX}}$ is a strap option and should be held to V_{CC} or $G N D$.
A.C. Electrical Specifications $V_{C C}=5.0 \mathrm{~V} \pm 10 \% ; T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}(\mathrm{C} 80 \mathrm{C} 86)(\mathrm{C} 80 \mathrm{C} 86-2)$
$V_{C C}=5.0 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (180C86) (180C86-2)
$V_{C C}=5.0 \mathrm{~V} \pm 10 \% ; T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ (M80C86)
$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \% ; \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ (M80C86-2)
MINIMUM COMPLEXITY SYSTEM

	SYMBOL	PARAMETER	80C86-2		80C86		UNITS	TEST CONDITIONS
			MIN	MAX	MIN	MAX		
	TIMING REQUIREMENTS							
(1)	TCLCL	CLK Cycle Period	125		200		ns	
(2)	TCLCH	CLK Low Time	68		118		ns	
(3)	TCHCL	CLK High Time	44		69		ns	
(4)	TCH1CH2	CLK Rise Time		10		10	ns	From 1.0 V to 3.5 V
(5)	TCL2CL1	CLK Fall Time		10		10	ns	From 3.5 V to 1.0 V
(6)	TDVCL	Data In Setup Time	20		30		ns	
(7)	TCLDX1	Data In Hold Time	10		10		ns	
(8)	TR1VCL	RDY Setup Time into 82C84A (Notes 1, 2)	35		35		ns	
(9)	TCLR1X	RDY Hold Time into 82C84A (Notes 1, 2)	0		0		ns	
(10)	TRYHCH	READY Setup Time into 80C86	68		118		ns	
(11)	TCHRYX	READY Hold Time into 80C86	20		30		ns	
(12)	TRYLCL	READY Inactive to CLK (Note 3)	-8		-8		ns	
(13)	THVCH	HOLD Setup Time	20		35		ns	
(14)	TINVCH	INTR, NMI, TEST Setup Time (Note 2)	15		30		ns	
(15)	TILIH	Input Rise Time (Except CLK)		15		15	ns	From 0.8 V to 2.0 V
(16)	TIHIL	Input Fall Time (Except CLK)		15		15	ns	From 2.0 V to 0.8 V
	TIMING RESPONSES							
(17)	TCLAV	Address Valid Delay	10	60	10	110	ns	$C L=100 \mathrm{pF}$
(18)	TCLAX	Address Hold Time	10		10		ns	
(19)	TCLAZ	Address Float Delay	TCLAX	50	TCLAX	80	ns	
(20)	TCHSZ	Status Float Delay		50		80	ns	
(21)	TCHSV	Status Active Delay	10	60	10	110	ns	
(22)	TLHLL	ALE Width	TCLCH-10		TCLCH-20		ns	
(23)	TCLLH	ALE Active Delay		50		80	ns	
(24)	TCHLL	ALE Inactive Delay		55		85	ns	
(25)	TLLAX	Address Hold Time to ALE Inactive	TCHCL-10		TCHCL-10		ns	
(26)	TCLDV	Data Valid Delay	10	60	10	110	ns	
(27)	TCLDX2	Data Hold Time	10		10		ns	
(28)	TWHDX	Data Hold Time After $\overline{W R}$	TCLCL-30		TCLCL-30		ns	
(29)	TCVCTV	Control Active Delay1	10	70	10	110	ns	
(30)	TCHCTV	Control Active Delay2	10	60	10	110	ns	
(31)	TCVCTX	Control Inactive Delay	10	70	10	110	ns	
(32)	TAZRL	Address Float to READ Active	0		0		ns	
(33)	TCLRL	RD Active Delay	10	100	10	165	ns	
(34)	TCLRH	RD Inactive Delay	10	80	10	150	ns	
(35)	TRHAV	$\overline{\mathrm{RD}}$ Inactive to Next Address Active	TCLCL-40		TCLCL-45		ns	
(36)	TCLHAV	HLDA Valid Delay	10	100	10	160	ns	
(37)	TRLRH	RD Width	2TCLCL-50		2TCLCL-75		ns	
(38)	TWLWH	WR Width	2TCLCL-40		2TCLCL-60		ns	
(39)	TAVAL	Address Valid to ALE Low	TCLCH-40		TCLCH-60		ns	
(40)	TOLOH	Output Rise Time		15		20	ns	From 0.8 V to 2.0 V
(41)	TOHOL	Output Fall Time		15		20	ns	From 2.0 V to 0.8 V

NOTES: 1. Signal at 82C84A shown for reference only.
2. Setup requirement for asynchronous signal only to guarantee recognition at next CLK.
3. Applies only to T_{2} state (8 ns into T_{3}).

Waveforms

BUS TIMING - MINIMUM MODE SYSTEM

Waveforms

Specifications $80 C 86$

```
A.C. Electrical Specifications VCC = 5.0V \pm 10%; TA = 00'C to +700
    VCC = 5.0V \pm 10%; TA = 400}\textrm{C}\mathrm{ to +850}\textrm{C}\mathrm{ (180C86) (C80C86-2)
    VCC}=5.0\textrm{V}\pm10%; TA = -550'C to +1250'C (M80C86)
    VCC}=5.0\textrm{V}\pm5%;TA=-55\circ\textrm{C}\mathrm{ to +1250}\textrm{C}(\textrm{M}80\textrm{C}86-2
```


MAX MODE SYSTEM (USING 82C88 BUS CONTROLLER)

TIMING REQUIREMENTS		80C86-2		$80 \mathrm{C86}$		UNITS	TEST CONDITIONS
SYMBOL	PARAMETER	MIN	MAX	MIN	MAX		
(1) TCLCL	CLK Cycle Period	125		200		ns	
(2) TCLCH	CLK Low Time	68		118		ns	
(3) TCHCL	CLK High Time	44		69		ns	
(4) TCH 1 CH 2	CLK Rise Time		10		10	ns	From 1.0 V to 3.5 V
(5) TCL2CL1	CLK Fall Time		10		10	ns	From 3.5V to 1.0 V
(6 TDVCL	Data in Setup Time	20		30		ns	
(7) TCLDX1	Data In Hold Time	10		10		ns	
(8) TR1VCL	RDY Setup Time into 82C84A (Notes 1, 2)	35		35		ns	
(9) TCLR1X	RDY Hold Time into 82C84A (Notes 1, 2)	0		0		ns	
(10)TRYHCH	READY Setup Time into 80C86	68		118		ns	
(11)TCHRYX	READY Hold Time into 80C86	20		30		ns	
(12)TRYLCL	READY Inactive to CLK (Note 3)	-8		-8		ns	
(13)TINVCH	Setup Time for Recognition (INTR,NMI, TEST) (Note 2)	15		30		ns	
(14) TGVCH	$\overline{\mathrm{RQ}} / \overline{\mathrm{GT}}$ Setup Time	15		30		ns	
(15)TCHGX	$\overline{\mathrm{RQ}}$ Hold Time into 80C86 (Note 4)	30	$\begin{array}{\|c} \hline \mathrm{TCHCL}+ \\ 10 \end{array}$	40	$\begin{array}{\|c\|} \hline \mathrm{TCHCL}+ \\ 10 \end{array}$	ns	
(16) TILIH	Input Rise Time (Except CLK)		15		15	ns	Frome 0.8 V to 2.0 V
(17) TIHIL	Input Fall Time (Except CLK)		15		15	ns	From 2.0 V to 0.8 V
TIMING RESPONSES							
(18) TCLML	Command Active Delay (Note 1)	5	35	5	35	ns	
(19) TCLMH	Command Inactive (Note 1)	5	35	5	35	ns	
(20)TRYHSH	READY Active to Status Passive (Notes 3, 5)		65		110	ns	
(21)TCHSV	Status Active Delay	10	60	10	110	ns	
(22) TCLSH	Status Inactive Delay (Note 5)	10	70	10	130	ns	
(23) TCLAV	Address Valid Delay	10	60	10	110	ns	
(24) TCLAX	Address Hold Time	10		10		ns	
(25) TCLAZ	Address Float Delay	TCLAX	50	TCLAX	80	ns	
(26) TCHSZ	Status Float Delay		50		80	ns	
(27) TSVLH	Status Valid to ALE High (Note 1)		20		20	ns	
(28)TSVMCH	Status Valid to MCE High (Note 1)		30		30	ns	$C L=100 \mathrm{pF}$
(29) TCLLH	CLK low to ALE Valid (Note 1)		20		20	ns	for all 80C86 Outputs (In addition
(30)TCLMCH	CLK low to MCE High (Note 1)		25		25	ns	to 80C86 self-load)
(31) TCHLL	ALE Inactive Delay (Note 1)	4	18	4	18	ns	
(32)TCLMCL	MCE Inactive Delay (Note 1)		15		15	ns	
(33) TCLDV	Data Valid Delay	10	60	10	110	ns	
(34)TCLDX2	Data Hold Time	10		10		ns	
(35) TCVNV	Control Active Delay (Note 1)	5	45	5	45	ns	1

Specifications 80C86

TIMING REQUIREMENTS		80C86-2		80 C 86		UNITS	TEST CONDITIONS
SYMBOL	PARAMETER	MIN	MAX	MIN	MAX		
TIMING RESPONSES							
(36)TCVNX	Control Inactive Delay (Note 1)	5	45	10	45	ns	1
(37)TAZRL	Address Float to Read Active	0		0		ns	
(38)TCLRL	RD Active Delay	10	100	10	165	ns	$C L=100 \mathrm{pF}$
(39)TCLRH	RD Inactive Delay	10	80	10	150	ns	
(40)TRHAV	RD Inactive to Next Address Active	$\begin{gathered} \text { TCLCL } \\ -45 \end{gathered}$		$\begin{gathered} \text { TCLCL } \\ -45 \end{gathered}$		ns	
TCHDTL (41)	Direction Control Active Delay (Note 1)		50		50	ns	
$\underset{(42)}{\text { TCHDTH }}$	```Direction Control Inactive Delay (Note 1)```		30		30	ns	
(43)TCLGL	GT Active Delay	0	50	0	85	ns	
(44)TCLGH	GT Inactive Delay	0	50	0	85	ns	
(45)TRLRH	RD Width	$\begin{gathered} 2 \text { TCLCL } \\ \hline \end{gathered}$		$\begin{array}{\|c\|} \hline 2 \text { TCLCL } \\ \hline-75 \end{array}$		ns	\dagger
(46)TOLOH	Output Rise Time		15		20	ns	From 0.8V to 2.0V
(47)TOHOL	Output Fall Time		15		20	ns	From 2.0 V to 0.8 V

NOTES: 1. Signal at $82 C 84 \mathrm{~A}$ or 82 C 88 shown for reference only.
2. Setup requirement for asynchronous signal only to guarantee recognition at next CLK.
3. Applies only to T 2 state (8 nanoseconds into T 3).
4. The 80 C 86 actively pulls the RQ/GT pin to a logic one on the following clock low time.
5. Status lines return to their inactive (logic one) state after CLK goes low and READY goes high.

A. C. Test Circuits

*Includes stray and jig capacitance.
A. C. Testing Input, Output Waveform

A. C. Testing: All inputs signals (other than CLK) must switch between VIL $\max ^{-0.4 \mathrm{~V} \text { and } \mathrm{VIH}_{\text {min }}+0.4 \mathrm{~V} \text {. CLK must switch between }}$ 0.4 V and VCC -0.4 V . Input rise, and fall times are driven at $1 \mathrm{~ns} / \mathrm{V}$.

LCC/PLCC Pinout

Waveforms

BUS TIMING - MAXIMUM MODE SYSTEM

Waveforms

NOTES:

1. All signals switch between V_{OH} and V_{OL} unless otherwise specified.
2. RDY is sampled near the end of T_{2}, T_{3}, T_{W} to determine if T_{W} machines states are to be inserted.
3. Cascade address is valid between first and second INTA cycle.
4. Two INTA cycles run back-to-back. The $80 C 86$ LOCAL ADDR/DATA BUS is floating during both INTA cycles. Control for pointer address is shown for second INTA cycle.
5. Signals at 82 C 84 A or 82 C 88 are shown for reference only.
6. The issuance of the 82 C 88 command and control signals ($\overline{\mathrm{MRDC}}$, $\overline{M W T C}, \overline{A M W C}, \overline{I O R C}, \overline{I O W C}, \overline{A I O W C}, \overline{I N T A}$ and $\overline{\mathrm{DEN}}$) lags the active high 82C88 CEN.
7. All timing measurements are made at 1.5 V unless otherwise noted.
8. Status inactive in state just prior to T_{4}.

Waveforms

ASYNCHRONOUS SIGNAL RECOGNITION

Note: Setup Requirements for asynchronous signals only to guarantee recognition at next CLK.

BUS LOCK SIGNAL TIMING (MAXIMUM MODE ONLY)

RESET TIMING

REQUEST/GRANT SEQUENCE TIMING (MAXIMUM MODE ONLY)

Note: The Coprocessor may not drive the busses outside the region shown without risking contention.
HOLD/HOLD ACKNOWLEDGE TIMING (MINIMUM MODE ONLY)

Instruction Set Summary

18543210	18543210	76543210	16543210
100010 dm	mod $\mathrm{reg} \mathrm{r} / \mathrm{m}$		
1100011 m	mod $0000 \mathrm{r} / \mathrm{m}$	data	data if w 1
1011 m reg	data	dataitw 1	
1010000 m	ador low	add thigh	
1010001 w	addr.low	add. high	
10001110	mod 0 reg r / m		
10001100	modoreg r/m		

Pusk = Push:
Aegister/memory
Register
egment register
01010 reg
000 reg 110
$\mathrm{POP}=\mathrm{PaP}:$
egiste

| 10001111 | $\bmod 000 \mathrm{r} / \mathrm{m}$ |
| :--- | :--- | :--- |
| 01011 reg | |

000 reg 111
Ch6 = Exchange:
Register/memory with register $\quad 1000011 \mathrm{w}$ mod reg $1 / \mathrm{m}$
in=input from:
fixed port
OUT $=$ Output to
fixed port
xut $=$ Translate byte to AL
EA=Load EA to register
O8=Load pointer to DS
Hunfaul lags
OPF -Pop flags

ARITMMETIC

ADO = ACd:

MC = heroment

Register/memory
Register
Man=ASCII adjust tor ado
ana-Decimal adjust tor ado
SUS = swiract:
Aeg./memory and register to either
immediate from register/memory
immediate from accumulator

$\mathbf{1 0 8}$ = \$whract with terrow

Reg./memory and register to either
Immediate from register/memory
immediate from accumulator
Mnemonics ©Intel, 1978

Instruction Set Summary

CONTROL TRANSFER
CALL = Call:
Direct within segment Indirect within segment Oirect intersegment
indirect intersegment

11101000	disp-low	disp-high
1111111111	mod $010 \mathrm{r} / \mathrm{m}$	
10011010	offset-10w	offset-high
	seg.low	seg.high
11111111	mod $011 \mathrm{l} / \mathrm{m}$	

JMP = Unconditional Jump
Direct within segment Direct within segment-short indirect within segment Direct intersegment

Indirect intersegment

11101001	disp-low	disp.high
11101011	disp	
11111111	mod $100 \mathrm{r} / \mathrm{m}$	
11101010	offset-low	offset-high "
	seg low	seg-high
11111111	mod $101 \mathrm{r} / \mathrm{m}$	

AET = Return from CALL:
Within segmeni
Within seg adding immed to SP Intersegment
intersegment. adding immediate to SP JE/JZ Jump on equal/zero JL/JMGE =Jump on less/not greater lle/Jug or equal
JLE/JMG = Jump on less or equal/not
JB/JMAE = Jump on below/not above
JBE/JMA $=J$ equal
JoEsha $=$ Jump on
not above
JP/JPE = Jump on parity/parity even
J0= Jump on overflow
JS - Jump on sign
JME/JMZ = Jump on not equal/not zero
JWL/JGE = Jump on not less/greater
$J M L E / J G=J u m p$ on $\begin{gathered}\text { or equal } \\ \text { great }\end{gathered}$

11000011		
11000010	data-low	data-high
11001011		
11001010	data-low	dala-high
01110100	disp	
01111100	disp	
01111110	disp	
01110010	disp	
01110110	disp	
01111010	disp	
01110000	disp	
01111000	đisp	
01110101	disp	
01111101	disp	
01111111	disp	

	78543210	76543210
JMB/JaE Jump on not below/above or equal JMBE/JA Jump on not betow or equal/above	01110011	disp
		disp
JWP/JPQ-Jump on not par/par odd	01111011	disp
JWO Jump on not overflow	01110001	disp
JWS Jump on not sign	01111001	disp
LOOP Loop CX umes	11100010	disp
LOOP2/LOOPE LOOp while zero/equal LOOPMZ/LOOPME LOOp while not zero/equal JCXZ Jump on CX zero	11100001	disp
	11100000	disp
	11100011	disp
INT Interrupt		
Type specified	11001101	type
Type 3	11001100	
ImTO intertupt on overtion	11001110	
IRET interrupt return	11001111	

PROCESSOR CONTROL

CLC Clear carry	11111000	
CMC Complement carry	11110101	
STC Set carry	11111001	
CLU Clear direction	11111100	
STD Set direction	11111101	
CLI Clear interrupt	11111010	
STI Set interrupt	11111011	
HLT Hais	11110100	
Walt Wait	10011011	
ESC Escape to externat device)	$11011 \times \times \times$	mod $\times \times \times 1 / m$
Lock Bus lock prefix	11110000	

Footnotes:

$A L=8$-bit accumulator
$A X=16$-bit accumulator
$C X=$ Count register
DS = Data segment
$E S=$ Extra segment
Above/below refers to unsigned value
Greater = more positive
Less = less positive (more negative) signed values
if $d=1$ then "to" reg; if $d=0$ then "from" reg
if $w=1$ then word instruction; if $w=0$ then byte instruction
if $\bmod =11$ then r / m is treated as a REG field
if $\bmod =00$ then DISP $=0^{*}$, disp-low and disp-high are absent
if $\bmod =01$ then DISP $=$ disp-low sign-extended to 16-bits, disp-high is absent
if $\bmod =10$ then DISP $=$ disp-high disp-low
if $\mathrm{r} / \mathrm{m}=000$ then $E A=(B X)+(S I)+D I S P$
if $r / m=001$ then $E A=(B X)+(D I)+D I S P$
if $\mathrm{r} / \mathrm{m}=010$ then $E A=(B P)+(S I)+D I S P$
if $\mathrm{r} / \mathrm{m}=011$ then $E A=(B P)+(D I)+D I S P$
if $\mathrm{r} / \mathrm{m}=100$ then $E A=(S I)+$ DISP
if $\mathrm{r} / \mathrm{m}=101$ then $E A=(D I)+$ DISP
if $\mathrm{r} / \mathrm{m}=110$ then $E A=(B P)+D I P^{*}$
if $r / m=111$ then $E A=(B X)+D I S P$
DISP follows 2nd byte of instruction (before data if required)
"except if $\mathrm{mod}=00$ and $\mathrm{r} / \mathrm{m}=110$ then $E A=$ disp-high: disp-low

If $\mathbf{s} \mathbf{w}=01$ then 16 bits of immediate data form the operand if $s \cdot w=11$ then an immediate data byte is sign extended to form the 16 -bit operand
if $\mathrm{v}=0$ then "count'" $=1$: if $\mathrm{v}=1$ then "count'" in (CL)
$x=$ don't care
z is used for string primitives for comparison with Z.F FL.AG
SEGMENT OVERRIDE PREFIX

| 00 | 1 reg 110 |
| :--- | :--- | :--- | :--- | :--- |

REG is assigned according to the following table

16-Bit [w=1]	8-8it $(w=0)$	Segment
000 AX	000 AL	00 ES
001 CX	001 CL .	01 CS
$010^{-} \mathrm{DX}$	010 DL	10 SS
011 BX	011 BL	11 DS
100 SP	100 AH	
101 BP	101 CH	
110 SI	110 DH	
111 DI	111 BH	

Instructions which reference the flag register file as a 16 -bit object use the symbol FLAGS to represent the file
$F L A G S=X \cdot X: X \cdot X:(O F):(D F) \cdot(I F):(T F) \cdot(S F):(Z F): X \cdot(A F) \cdot X \cdot(P F) \cdot X:(C F)$

CMOS 8/16-Bit Microprocessor

Functional Diagram

CAUTION: These devices are sensitive to electrostatic discharge. Proper I. C handling procedures should be followed.

Pin Description

The following pin function descriptions are for 80 C 88 systems in either minimum or maximum mode. The "local bus" in these
descriptions is the direct multiplexed bus interface connection to the 80 C 88 (without regard to additional bus buffers).

SYMBOL	PIN NUMBER	TYPE	DESCRIPTION
AD7-AD0	9-16	1/O	ADDRESS DATA BUS: These lines constitute the time multiplexed memory/IO address (T1) and data ($\mathrm{T} 2, \mathrm{~T} 3$, Tw, and T4) bus. These lines are active HIGH and are held at high impedance to the last valid logic level during interrupt acknowledge and local bus "hold acknowledge" or "grant sequence".
A15-A8	2-8, 39	0	ADDRESS BUS: These lines provide address bits 8 through 15 for the entire bus cycle (T1-T4). These lines do not have to be latched by ALE to remain valid. A15-A8 are active HIGH and are held at high impedance to the last valid logic level during interrupt acknowledge and local bus "hold acknowledge" or "grant sequence".
A19/S6, A18/S5, A17/S4, A16/S3	$\begin{aligned} & 35 \\ & 36 \\ & 37 \\ & 38 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	ADDRESS/STATUS: During T1, these are the four most significant address lines for memory operations. During I/O operations, these lines are LOW. During memory and I/O operations, status information is available on these lines during T2, T3, Tw, and T4. S6 is always low. The status of the interrupt enable flag bit (S5) is updated at the beginning of each clock cycle. S4 and S3 are encoded as shown. This information indicates which segment register is presently being used for data accessing. These lines are held at high impedance to the last valid logic level during local bus "hold acknowledge" or "grant sequence".
$\overline{\mathrm{RD}}$	32	0	READ: Read strobe indicates that the processor is performing a memory or I/O read cycle, depending on the state of the $10 / \bar{M}$ pin or $\overline{S 2}$. This signal is used to read devices which reside on the 80 C 88 local bus. $\overline{R D}$ is active LOW during T2, T3 and Tw of any read cycle, and is guaranteed to remain HIGH in T2 until the 80C88 local bus has floated. This line is held at a high impedance logic one state during "hold acknowledge" or "grant sequence".
READY	22	1	READY: is the acknowledgment from the addressed memory or I/O device that it will complete the data transfer. The RDY signal from memory or I/O is synchronized by the 82C84A clock generator to form READY. This signal is active HIGH. The 80C88 READY input is not synchronized. Correct operation is not guaranteed if the set up and hold times are not met.
INTR	18	1	INTERRUPT REQUEST: is a level triggered input which is sampled during the last clock cycle of each instruction to determine if the processor should enter into an interrupt acknowledge operation. A subroutine is vectored to via an interrupt vector lookup table located in system memory. It can be internally masked by software resetting the interrupt enable bit. INTR is internally synchronized. This signal is active HIGH.
$\overline{\text { TEST }}$	23	1	TEST: input is examined by the "wait for test" instruction. If the TEST input is LOW, execution continues, otherwise the processor waits in an "idle" state. This input is synchronized internally during each clock cycle on the leading edge of CLK.
NMI	17	1	NON-MASKABLE INTERRUPT: is an edge triggered input which causes a type 2 interrupt. A subroutine is vectored to via an interrupt vector lookup table located in system memory. NMI is not maskable internally by software. A transition from a LOW to HIGH initiates the interrupt at the end of the current instruction. This input is internally synchronized.
RESET	21	1	RESET: causes the processor to immediately terminate its present activity. The signal must transition LOW to HIGH and remain active HIGH for at least four clock cycles. It restarts execution, as described in the instruction set description, when RESET returns LOW. RESET is internally synchronized.
CLK	19	1	CLOCK: provides the basic timing for the processor and bus controller. It is asymmetric with a 33% duty cycle to provide optimized internal timing.
V_{cc}	40		V_{CC} is the +5 V power supply pin. A $0.1 \mu \mathrm{~F}$ capacitor between pins 20 and 40 is recommended for decoupling.
GND	1,20		GND: are the ground pins (both pins must be connected to system ground). A $0.1 \mu \mathrm{~F}$ capacitor between pins 1 and 20 is recommended for decoupling.
MN/ $\overline{\mathrm{MX}}$	33	1	MINIMUM/MAXIMUM: indicates the mode in which the processor is to operate. The two modes are discussed in the following sections.

Pin Description

The following pin descriptions are for the 80C88 system in maximum mode (i.e., MN/MX = GND). Only the pin functions MAX MODE SYSTEM
which are unique to maximum mode are described; all other pin functions are as described above.
. A puise of one CLK wide from another local bus master indicates a local bus request ("hold") to the $80 \mathrm{C88}$ (pulse 1).
2. During a $T 4$ or $T 1$ clock cycle, a puise one clock wide from the $80 C 88$ to the requesting master (pulse 2), indicates that the 80 C 88 has allowed the local bus to float and that it will enter the "grant sequence" state at the next CLK. The CPU's bus interface unit is disconnected logically from the local bus during "grant sequence".
3. A pulse one CLK wide from the requesting master indicates to the 80 C 88 (pulse 3) that the "hold" request is about to end and that the 80 C88 can reclaim the local bus at the the next CLK. The CPU then enters T4 (or TI if no bus cycles pending).
Each master-master exchange of the local bus is a sequence of three pulses. There must be one idle CLK cycle after each bus exchange. Pulses are active LOW.

If the request is made while the CPU is performing a memory cycle, it will release the local bus during T 4 of the cycle when all the following conditions are met:

1. Request occurs on or before T 2.
2. Current cycle is not the low bit of a word.
3. Current cycle is not the first acknowledge of an interrupt acknowledge sequence.
4. A locked instruction is not currently executing.

If the local bus is idle when the request is made the two possible events will follow:

1. Local bus will be released during the next clock.
2. A memory cycle will start within 3 clocks. Now the four rules for a currently active memory cycle apply with condition number 1 already satistied.

$\overline{\text { LOCK }}$	29	0	LOCK: indicates that other system bus masters are not to gain control of the system bus while LOCK is active (LOW). The LOCK signal is activated by the "LOCK" prefix instruction and remains active until the completion of the next instruction. This signal is active LOW, and is held at a high impedance logic one state during "grant sequence". In Max mode, LOCK is automatically generated during T2 of the first INTA cycle and removed during $T 2$ of the second INTA cycle.			
$\begin{aligned} & \text { QS1, } \\ & \text { QSO } \end{aligned}$	24, 25	0	QUEUE STATUS: provide status to allow external tracking of the internal 80 C 88 instruction queue. The queue status is valid during the CLK cycle after which the queue operation is performed. Note that the queue status never goes to a high impedance state (floated).	QS1	aso	CHARACTERISTICS
				0	0	№ operation
				0	1	First byte of opcode from queue
				1	0	Empty the queue
				1	1	Subsequent byte from queve
--	34	0	Pin 34 is always a logic one in the maximum mode and is held at a high impedance logic one during a "grant sequence".			

Pin Description

The following pin function descriptions are for the 80C88 minimum mode (i.e., $M N / \overline{M X}=V_{C C}$). Only the pin functions MINIMUM MODE SYSTEM
which are unique to the minimum mode are described; all other pin functions are as described above.

Functional Description

Static Operation

All 80 C 88 circuitry is static in design. Internal registers, counters and latches are static and require no refresh as with dynamic circuit design. This eliminates the minimum operating frequency restriction placed on other microprocessors. The CMOS 80C88 can operate from DC to the specified upper frequency limit. The processor clock may be stopped in either state (high/low) and held there indefinitely. This type of operation is especially useful for system debug or power critical applications.

The 80C88 can be single stepped using only the CPU clock. This state can be maintained as long as is necessary. Single step clock operation allows simple interface circuitry to provide critical information for start-up.

Static design also allows very low frequency operation (as low as DC). In a power critical situation, this can provide extremely low power operation since 80C88 power dissipation is directly related to operating frequency. As the system frequency is reduced, so is the operating power until, at a DC input frequency, the power requirement is the $80 C 88$ standby current.

Internal Architecture

The internal functions of the 80C88 processor are partitioned logically into two processing units. The first is the Bus Interface Unit (BIU) and the second is the Execution Unit (EU) as shown in the CPU block diagram.
These units can interact directly but for the most part perform as separate asynchronous operational processors. The bus interface unit provides the functions related to instruction fetching and queuing, operand fetch and store, and address relocation. This unit also provides the basic bus control. The overlap of instruction pre-fetching provided by this unit serves to increase processor performance through improved bus bandwidth utilization. Up to 4 bytes of the instruction stream can be queued while waiting for decoding and execution.
The instruction stream queuing mechanism allows the BIU to keep the memory utilized very efficiently. Whenever there is space for at least 1 byte in the queue, the BIU will attempt a byte fetch memory cycle. This greatly reduces "dead time" on the memory bus. The queue acts as a First-In-First-Out (FIFO) buffer, from which the EU extracts instruction bytes as required. If the queue is empty (following a branch instruction, for example), the first byte into the queue immediately becomes available to the EU.
The execution unit receives pre-fetched instructions from the BIU queue and provides un-relocated operand addresses to the BIU. Memory operands are passed through the BIU for processing by the EU, which passes results to the BIU for storage.

Figure 1. Memory Organization

Memory Organization

The processor provides a 20 -bit address to memory which locates the byte being referenced. The memory is organized as a linear array of up to 1 million bytes, addressed as $00000(\mathrm{H})$ to FFFFF(H). The memory is logically divided into code, data, extra, and stack segments of up to 64 K bytes each, with each segment falling on 16 -byte boundaries. (See FIGURE 1).

All memory references are made relative to base addresses contained in high speed segment registers. The segment types were chosen based on the addressing needs of programs. The segment register to the selected is automatically chosen according to specific rules as shown in Table 2. All information in one segment type share the same logical attributes (e.g., code or data). By structuring memory into relocatable areas of similar characteristics and by automatically selecting segment registers, programs are shorter, faster, and more structured.

Word (16-bit) operands can be located on even or odd address boundaries. For address and data operands, the least significant byte of the word is stored in the lower valued address location and the most significant byte in the next higher address location.

Table 2.

Memory Reference Need	Segment Register Used	Segment Selection Rule
Instructions	CODE (CS)	Automatic with all instruction prefetch.
Stack	STACK (SS)	All stack pushes and pops. Memory references relative to BP base register except data references.
Local Data	Data references when: relative to stack, destination of string operation, or explicitly overridden.	
External (Global) Data (DS)	EXTRA (ES)	Destination of string operations: Explicitly selected using a segment override.

Figure 2. Reserved Memory Locations

The BIU will automatically execute two fetch or write cycles for 16-bit operands.
Certain locations in memory are reserved for specific CPU operations. (See FIGURE 2). Locations from addresses FFFFOH through FFFFFFH are reserved for operations including a jump to the initial system initialization routine. Following RESET, the CPU will always begin execution at location FFFFOH where the jump must be located. Locations

00000 H through 003FFH are reserved for interrupt operations. Each of the 256 possible interrupt service routines is accessed through its own pair of 16 -bit pointers - segment address pointer and offset address pointer. The first pointer, used as the offset address, is loaded into the IP, and the second pointer, which designates the base address, is loaded into the CS. At this point program control is transferred to the interrupt routine. The pointer elements are assumed to have been stored at their respective places in reserved memory prior to the occurrence of interrupts.

Minimum and Maximum Modes

The requirements for supporting minimum and maximum 80C88 systems are sufficiently different that they cannot be done efficiently with 40 uniquely defined pins. Consequently, the 80 C 88 is equipped with a strap pin (MN/MX) which defines the system configuration. The definition of a certain subset of the pins changes, dependent on the condition of the strap pin. When the MN/MX pin is strapped to GND, the 80C88 defines pins 24 through 31 and 34 in maximum mode. When the MN/MX pin is strapped to VCC, the 80 C 88 generates bus control signals itself on pins 24 through 31 and 34.
The minimum mode 80C88 can be used with either a multiplexed or demultiplexed bus. This architecture provides the 80 C 88 processing power in a highly integrated form.

The demultiplexed mode requires one latch (for 64 K addressability) or two latches (for a full megabyte of addressing). An 82C86 or 82C87 transceiver can also be used if data bus buffering is required. (See FIGURE 3.) The 80C88 provides DEN and DT/R to control the transceiver, and ALE to latch the addresses. This configuration of the minimum mode provides the standard demultiplexed bus structure with heavy bus buffering and relaxed bus timing requirements.

The maximum mode employs the 82C88 bus controller (See FIGURE 4). The 82 C 88 decodes status lines $\overline{\mathrm{S} 0}, \overline{\mathrm{~S} 1}$, and $\overline{\mathrm{S} 2}$, and provides the system with all bus control signals. Moving the bus control to the 82 C 88 provides better source and sink current capability to the control lines, and frees the 80 C 88 pins for extended large system features. Hardware lock, queue status, and two request/grant interfaces are provided by the 80 C 88 in maximum mode. These features allow coprocessors in local bus and remote bus configurations.

Figure 3. Demultiplexed Bus Configuration

Figure 4. Fully Buffered System Using Bus Controller

Bus Operation

The 80C88 address/data bus is broken into three parts - the lower eight address/data bits (ADO-AD7), the middle eight address bits (A8-A15), and the upper four address bits (A16-A19). The address/data bits and the highest four address bits are time multiplexed. This technique provides the most efficient use of pins on the processor, permitting the use of a standard 40 lead package. The middle eight address bits are not multiplexed, i.e. they remain valid throughout each bus cycle. In addition, the bus can be demultiplexed at the processor with a single address latch if a standard, nonmultiplexed bus is desired for the system.

Each processor bus cycle consists of at least four CLK cycles. These are referred to as T1, T2, T3, and T4. (See FIGURE 5). The address is emitted from the processor during T1 and data transfer occurs on the bus during T3 and T4. T2 is used primarily for changing the direction of the bus during read operations. In the event that a "NOT READY" indication is given by the addressed device, "wait" states (Tw) are inserted between T3 and T4. Each inserted "wait" state is of the same duration as a CLK cycle. Periods can occur between 80C88 driven bus cycles. These are referred to as "idle" states (Ti), or inactive CLK cycles. The processor uses these cycles for internal housekeeping.

Figure 5. Basic System Timing

During T1 of any bus cycle, the ALE (address latch enable) signal is emitted (by either the processor or the 82 C 88 bus controller, depending on the MN/MX strap). At the trailing edge of this pulse, a valid address and certain status information for the cycle may be latched.
Status bits $\overline{\mathrm{S} 0}, \overline{\mathrm{~S} 1}$, and $\overline{\mathrm{S} 2}$ are used by the bus controller, in maximum mode, to identify the type of bus transaction according to the following table:

$\overline{\mathbf{S}}_{\mathbf{2}}$	$\overline{\mathbf{S}}_{\mathbf{1}}$	$\overline{\mathbf{S}}_{\mathbf{0}}$	CHARACTERISTICS
0	0	0	Interrupt Acknowledge
0	0	1	Read I/O
0	1	0	Write I/O
0	1	1	Halt
1	0	0	Instruction Fetch
1	0	1	Read Data from Memory
1	1	0	Write Data to Memory
1	1	1	Passive (no bus cycle)

Table 3.

Status bits S_{3} through S_{6} are multiplexed with high order address bits and are therefore valid during T2 through T4. S_{3} and S_{4} indicate which segment register was used for this bus cycle in forming the address according to the following table:

$\mathbf{S}_{\mathbf{4}}$	$\mathbf{S}_{\mathbf{3}}$	CHARACTERISTICS
0	0	Alternate Data (extra segment)
0	1	Stack
1	0	Code or None
1	1	Data

Table 4.
S_{5} is a reflection of the PSW interrupt enable bit. S_{6} is always equal to 0 .

Figure 6A. Bus hold circuitry pin 2-16, 35-39.

I/O Addressing

In the 80C88, I/O operations can address up to a maximum of $64 \mathrm{~K} \mathrm{I/O} \mathrm{registers} .\mathrm{The} \mathrm{I/O} \mathrm{address} \mathrm{appears} \mathrm{in} \mathrm{the} \mathrm{same} \mathrm{format}$ as the memory address on bus lines A15-A0. The address lines A19-A16 are zero in I/O operations. The variable I/O instructions, which use register DX as. a pointer, have full address capability, while the direct I/O instructions directly address one or two of the 256 I/O byte locations in page 0 of the I/O address space. I/O ports are addressed in the same manner as memory locations.
Designers familiar with the 8085 or upgrading an 8085 design should note that the 8085 address I/O with an 8 -bit address on both halves of the 16 -bit address bus. The 80 C 88 uses a full 16 -bit address on its lower 16 address lines.

External Interface

Processor Reset and Initialization

Processor initialization or start up is accomplished with activation (HIGH) of the RESET pin. The 80C88 RESET is required to be HIGH for greater than four clock cycles. The 80 C 88 will terminate operations on the high-going edge of RESET and will remain dormant as long as RESET is HIGH. The low-going transition of RESET triggers an internal reset sequence for approximately 7 clock cycles. After this interval the 80C88 operates normally, beginning with the instruction in absolute location FFFFOH (see FIGURE 2). The RESET input is internally synchronized to the processor clock. At initialization, the HIGH to LOW transition of RESET must occur no sooner than $50 \mu \mathrm{~s}$ after power up, to allow complete initialization of the 80C88.
NMI will not be recognized if asserted prior to the second CLK cycle following the end of RESET.

Bus Hold Circuitry

To avoid high current conditions caused by floating inputs to CMOS devices and to eliminate the need for pull-up/down resistors, "bus-hold" circuitry has been used on 80 C 88 pins 2-16, 26-32 and 34-39 (see FIGURE 6A, 6B). These circuits maintain a valid logic state if no driving source is present (i.e.,

Figure 6B. Bus hoid circuitry pin 26-32, 34.
an unconnected pin or a driving source which goes to a high impedance state).
To overdrive the "bus hold" circuits, an external driver must be capable of supplying $400 \mu \mathrm{~A}$ minimum sink or source current at valid input voltage levels. Since this "bus hold" circuitry is active and not a "resistive" type element, the associated power supply current is negligible. Power dissipation is significantly reduced when compared to the use of passive pull-up resistors.

Interrupt Operations

Interrupt operations fall into two classes: software or hardware initiated. The software initiated interrupts and software aspects of hardware interrupts are specified in the instruction set description. Hardware interrupts can be classified as nonmaskable or maskable.
Interrupts result in a transfer of control to a new program location. A 256 element table containing address pointers to the interrupt service program locations resides in absolute locations 0 through 3FFH (see FIGURE 2), which are reserved for this purpose. Each element in the table is 4 bytes in size and corresponds to an interrupt "type." An interrupting device supplies an 8-bit type number, during the interrupt acknowledge sequence, which is used to vector through the appropriate element to the new interrupt service program location.

Non-Maskable Interrupt (NMI)

The processor provides a single non-maskable interrupt (NMI) pin which has higher priority than the maskable interrupt request (INTR) pin. A typical use would be to activate a power failure routine. The NMI is edge-triggered on a LOW to HIGH transition. The activation of this pin causes a type 2 interrupt.
NMI is required to have a duration in the HIGH state of greater than two clock cycles, but is not required to be synchronized to the clock. Any high going transition of NMI is latched on-chip and will be serviced at the end of the current instruction or between whole moves (2 bytes in the case of word moves) of a block type instruction. Worst case response to NMI would be for multiply, divide, and variable shift instructions. There is no specification on the occurrence of the low-going edge; it may
occur before, during, or after the servicing of NMI. Another high-going edge triggers another response if it occurs after the start of the NMI procedure.
The signal must be free of logical spikes in general and be free of bounces on the low-going edge to avoid triggering extraneous responses.

Maskable Interrupt (INTR)

The 80C88 provides a single interrupt request input (INTR) which can be masked internally by software with the resetting of the interrupt enable (IF) flag bit. The interrupt request signal is level triggered. It is internally synchronized during each clock cycle on the high-going edge of CLK.
To be responded to, INTR must be present (HIGH) during the clock period preceding the end of the current instruction or the end of a whole move for a block type instruction. INTR may be removed anytime after the falling edge of the first INTA signal. During interrupt response sequence, further interrupts are disabled. The enable bit is reset as part of the response to any interrupt (INTR, NMI, software interrupt, or single step). The FLAGS register, which is automatically pushed onto the stack, reflects the state of the processor prior to the interrupt. The enable bit will be zero until the old FLAGS register is restored, unless specifically set by an instruction.
During the response sequence (see FIGURE 7), the processor executes two successive (back to back) interrupt acknowledge cycles. The 80C88 emits the LOCK signal (maximum mode only) from T2 of the first bus cycle until T2 of the second. A local bus "hold" request will not be honored until the end of the second bus cycle. In the second bus cycle, a byte is fetched from the external interrupt system (e.g., 82C59A PIC) which identifies the source (type) of the interrupt. This byte is multiplied by four and used as a pointer into the interrupt vector lookup table.
An INTR signal left HIGH will be continually responded to within the limitations of the enable bit and sample period. INTR may be removed anytime after the falling edge of the first INTA signal. The interrupt return instruction includes a flags pop which returns the status of the original interrupt enable bit when it restores the flags.

Figure 7. Interrupt Acknowledge Sequence

Halt

When a software HALT instruction is executed, the processor indicates that it is entering the HALT state in one of two ways, depending upon which mode is strapped. In minimum mode, the processor issues ALE, delayed by one clock cycle, to allow the system to latch the halt status. Halt status is available on $10 / \bar{M}, \mathrm{DT} / \overline{\mathrm{R}}$, and $\overline{\mathrm{SSO}}$. In maximum mode, the processor issues appropriate HALT status on $\overline{\mathrm{S} 2}, \overline{\mathrm{~S} 1}$, and $\overrightarrow{\mathrm{S} 0}$, and the 82 C 88 bus controller issues one ALE. The 80C88 will not leave the HALT state when a local bus hold is entered while in HALT. In this case, the processor reissues the HALT indicator at the end of the local bus hold. An interrupt request or RESET will force the 80C88 out of the HALT state.

Read/Modify/Write (Semaphore) Operations Via LOCK

The LOCK status information is provided by the processor when consecutive bus cycles are required during the execution of an instruction. This allows the processor to perform read/modify/write operations on memory (via the "exchange register with memory" instruction), without another system bus master receiving intervening memory cycles. This is useful in multiprocessor system configurations to accomplish "test and set lock" operations. The LOCK signal is activated (LOW) in the clock cycle following decoding of the LOCK prefix instruction. It is deactivated at the end of the last bus cycle of the instruction following the LOCK prefix. While LOCK is active, a request on a $\overline{R Q} / \overline{G T}$ pin will be recorded, and then honored at the end of the LOCK.

External Synchronization Via TEST

As an alternative to interrupts, the 80C88 provides a single software-testable input pin (TEST). This input is utilized by executing a WAIT instruction. The single WAIT instruction is repeatedly executed until the TEST input goes active (LOW). The execution of WAIT does not consume bus cycles once the queue is full.

If a local bus request occurs during WAIT execution, the 80C88 3 -states all output drivers while inputs and I/O pins are held at valid logic levels by internal bus-hold circuits. If interrupts are enabled, the 80 C 88 will recognize interrupts and process them when it regains control of the bus.

Basic System Timing

In minimum mode, the $M N / \overline{M X}$ pin is strapped to $\mathrm{V}_{C C}$ and the processor emits bus control signals ($\overline{R D}, \overline{W R}, 1 O / \bar{M}$, etc.) directly. In maximum mode, the MN/ $\overline{M X}$ pin is strapped to GND and the processor emits coded status information which the 82C88 bus controller uses to generate MULTIBUS ${ }^{\text {TM }}$ compatible bus control signals.

System Timing - Minimum System

The read cycle begins in T1 with the assertion of the address latch enable (ALE) signal (See FIGURE 5). The trailing (low going) edge of this signal is used to latch the address information, which is valid on the address/data bus (ADO-AD7) at this time, into the $82 \mathrm{C} 82 / 82 \mathrm{C} 83$ latch. Address lines A8 through A15 do not need to be latched because they remain valid throughout the bus cycle. From T1 to T4 the IO/M signal indicates a memory or I/O operation. At T2 the address is removed from the address/data bus and the bus is held at the last valid logic state by internal bus-hold devices. The read control signal is also asserted at T 2 . The read ($\overline{\mathrm{RD}}$) signal causes the addressed device to enable its data bus drivers to
the local bus. Some time later, valid data will be available on the bus and the addressed device will drive the READY line HIGH. When the processor returns the read signal to a HIGH level, the addressed device will again 3 -state its bus drivers. If a transceiver ($82 \mathrm{C} 86 / 82 \mathrm{C87}$) is required to buffer the local bus, signals DT/T and $\overline{D E N}$ are provided by the 80 C 88 .
A write cycle also begins with the assertion of ALE and the emission of the address. The $10 / \bar{M}$ signal is again asserted to indicate a memory or I/O write operation. In T2, immediately following the address emission, the processor emits the data to be written into the addressed location. This data remains valid until at least the middle of T4. During T2, T3, and Tw, the processor asserts the write control signal. The write ($\overline{\mathrm{WR}}$) signal becomes active at the beginning of T2, as opposed to the read, which is delayed somewhat into T2 to provide time for output drivers to become inactive.
The basic difference between the interrupt acknowledge cycle and a read cycle is that the interrupt acknowledge (INTA) signal is asserted in place of the read ($\overline{\mathrm{RD}}$) signal and the address bus is held at the last valid logic state by internal bus-hold devices (see FIGURE 6). In the second of two successive INTA cycles, a byte of information is read from the data bus, as supplied by the interrupt system logic (i.e., 82C59A priority interrupt controller). This byte identifies the source (type) of the interrupt. It is multiplied by four and used as a pointer into the interrupt vector lookup table, as described earlier.

Bus Timing - Medium Complexity Systems

For medium complexity systems, the $\mathrm{MN} / \overline{\mathrm{MX}}$ pin is connected to GND and the 82C88 bus controller is added to the system, as well as an $82 \mathrm{C} 82 / 82 \mathrm{C} 83$ latch for latching the system address, and an 82C86/82C87 transceiver to allow for bus loading greater than the 80 C 88 is capable of handling (see FIGURE 8). Signals ALE, $\overline{D E N}$, and DT/R are generated by the 82 C 88 instead of the processor in this configuration, although their timing remains relatively the same. The 80 C 88 status outputs ($\overline{\mathrm{S} 2}, \overline{\mathrm{~S} 1}$, and $\overline{\mathrm{SO}}$) provide type of cycle information and become 82 C 88 inputs. This bus cycle information specifies read (code, data, or I/O), write (data or I/O), interrupt acknowledge, or software halt. The 82C88 thus issues control signals specifying memory read or write, I/O read or write, or interrupt acknowledge. The 82C88 provides two types of write strobes, normal and advanced, to be applied as required. The normal write strobes have data valid at the leading edge of write. The advanced write strobes have the same timing as read strobes, and hence, data is not valid at the leading edge of write. The 82C86/82C87 transceiver receives the usual T and $\overline{\mathrm{OE}}$ inputs from the 82C88 DT/R and $\overline{\mathrm{DEN}}$ outputs.
The pointer into the interrupt vector table, which is passed during the second INTA cycle, can derive from an 82C59A located on either the local bus or the system bus. If the master 82C59A priority interrupt controller is positioned on the local bus, the 82C86/82C87 transceiver must be disabled when reading from the master 82C59A during the interrupt acknowledge sequence and software "poll".

The 80C88 Compared To The 80C86

The 80 C 88 CPU is an 8 -bit processor designed around the 8086 internal structure. Most internal functions of the 80C88 are identical to the equivalent 80 C 86 functions. The 80 C 88 handles the external bus the same way the 80C86 does with the distinction of handling only 8 bits at a time. Sixteen-bit
operands are fetched or written in two consecutive bus cycles. Both processors will appear identical to the software engineer, with the exception of execution time. The internal register structure is identical and all instructions have the same end result. Internally, there are three differences between the 80 C 88 and the 80 C 86 . All changes are related to the 8 -bit bus interface.

- The queue length is 4 bytes in the 80 C 88 , whereas the 80 C 86 queue contains 6 bytes, or three words. The queue was shortened to prevent overuse of the bus by the BIU when prefetching instructions. This was required because of the additional time necessary to fetch instructions 8 bits at a time.
- To further optimize the queue, the prefetching algorithm was changed. The 80C88 BIU will fetch a new instruction to load into the queue each time there is a 1 byte space available in the queue. The 80C86 waits until a 2-byte space is available.
- The internal execution time of the instruction set is affected by the 8 -bit interface. All 16 -bit fetches and writes from/to memory take an additional four clock cycles. The CPU is also limited by the speed of instruction fetches. This latter problem only occurs when a series of simple operations occur. When the more sophisticated instructions of the 80 C 88 are being used, the queue has time to fill and the execution proceeds as fast as the execution unit will allow.

The 80C88 and 80C86 are completely software compatible by virtue of their identical execution units. Software that is system dependent may not be completely transferable, but software that is not system dependent will operate equally as well on an 80 C 88 or an 80C86.
The hardware interface of the 80C88 contains the major differences between the two CPUs. The pin assignments are nearly identical, however, with the following functional changes:

- A8-A15 - These pins are only address outputs on the 80C88. These address lines are latched internally and remain valid throughout a bus cycle in a manner similar to the 8085 upper address lines.
- $\overline{\mathrm{BHE}}$ has no meaning on the 80 C 88 and has been eliminated.
- $\overline{\mathrm{SSO}}$ provides the $\overline{\mathrm{SO}}$ status information in the minimum mode. This output occurs on pin 34 in minimum mode only. $\mathrm{DT} / \overline{\mathrm{R}}, \mathrm{IO} / \overline{\mathrm{M}}$, and $\overline{\mathrm{SSO}}$ provide the complete bus status in minimum mode.
- $10 / \bar{M}$ has been inverted to be compatible with the 8085 bus structure.
- ALE is delayed by one clock cycle in the minimum mode when entering HALT, to allow the status to be latched with ALE.

Figure 8. Medium Complexity System Timing

Absolute Maximum Ratings

> Supply Voltage... 8.0 Volts
> Input, Output or I/O Voltage Applied GND -0.5 V to $\mathrm{VCC}+0.5 \mathrm{~V}$
> Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
> Maximum Package Power Dissipation $160^{\circ} \mathrm{C} / \mathrm{W}$ (CERDIP Package), $21^{\circ} \mathrm{C} / \mathrm{W}$ 10° W (LCC Package)
> $\theta_{\text {jc }}$ 360° /W (CERDIP Package), $41^{\circ} \mathrm{C} / \mathrm{W}$ (LCC Package)
> Gate Count . 9750 Gates
> Junction Temperature $+150^{\circ} \mathrm{C}$
> Lead Temperature (Soldering, Ten Seconds) $+275{ }^{\circ} \mathrm{C}$
> CAUTION: Stresses above those listed in the "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operation section of this specification is not implied.

Operating Conditions

Operating Voltage Range .. V to +5.5 VM80C88-2 Only	
Operating Temperature Range	
C80C88/-2.	$0^{\circ} \mathrm{C}$ to $+70{ }^{\circ} \mathrm{C}$
180C88/-2	$-40^{\circ} \mathrm{C}$ to +850 C
M80C88/-2	550 C to +1250 C

D.C. Electrical Specifications $V_{C C}=5.0 \mathrm{~V} \pm 10 \% ; T_{A}=0^{\circ} \mathrm{C}$ to $+70{ }^{\circ} \mathrm{C}$ (C80C88) (C80C88-2)
$V_{C C}=5.0 \mathrm{~V} \pm 10 \% ; T_{A}=-40^{\circ} \mathrm{C}$ to +850 C (180 C 88) ($180 \mathrm{C} 88-2$)
$V_{C C}=5.0 \mathrm{~V} \pm 10 \% ; T_{A}=-55^{\circ} \mathrm{C}$ to $+125{ }^{\circ} \mathrm{C}$ (M80C88)
$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \% ; \mathrm{TA}=-550 \mathrm{C}$ to +1250 C (M80C88-2)

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
VIH	Logical One Input Voltage	$\begin{aligned} & 2.0 \\ & 2.2 \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{v} \end{aligned}$	C80C88, 180C88 (Note 4) M80C88(Ote 4)
VIL	Logical Zero Input Voltage		0.8	V	
VIHC	CLK Logical One Input Voltage	VCC -0.8V		V	
VILC	CLK Logical Zero Input Voltage		0.8	V	
VOH	Output High Voltage	$\begin{gathered} 3.0 \\ \operatorname{vCC}-0.4 \end{gathered}$		v	$\begin{aligned} & 1 \mathrm{OH}=-2.5 \mathrm{~mA} \\ & 1 \mathrm{OH}=-100 \mu \mathrm{~A} \end{aligned}$
VOL	Output Low Voltage		0.4	V	$1 \mathrm{OL}=+2.5 \mathrm{~mA}$
11	Input Leakage Current	-1.0	1.0	$\mu \mathrm{A}$	VIN $=0 \mathrm{~V}$ or VCC, DIP Pins 17-19, 21-23, 33
IBHH	Input Current Bus Hold High	-40	-400	$\mu \mathrm{A}$	$\begin{aligned} & \text { VIN }=3.0 \mathrm{~V} \\ & \text { (See Note 1) } \end{aligned}$
IBHL	Input current Bus Hold Low	40	400	$\mu \mathrm{A}$	$\begin{aligned} & \text { VIN }=0.8 \mathrm{~V} \\ & \text { (See Note 2) } \end{aligned}$
10	Output Leakage Current		-10.0	$\mu \mathrm{A}$	VO = OV (Note 5)
ICCSB	Standby Power Supply Current		500	$\mu \mathrm{A}$	$\begin{aligned} & \text { VCC }=5.5 \mathrm{~V} \\ & (\text { See Note 3.) } \end{aligned}$
ICCOP	Operating Power Supply Current		10	$\mathrm{mA} / \mathrm{MHz}$	$\begin{aligned} & \text { VCC }=5.5 \mathrm{~V} \\ & \text { Freq }(\mathrm{MHz})=\text { CLK Cycle } \\ & \text { Time }(\text { TCLCL) } \end{aligned}$

NOTES: 1. IBHH should be measured after raising VIN to VCC and then lowering to 3.0 V on the following pins: 2-16, 26-32, 34-39.
2. IBHL should be measured after lowering VIN to GND and then raising to 0.8 V on the following pins: 2-16, 35-39.
3. ICCSB tested during clock high time after HALT instruction execution. VIN $=$ VCC or GND VCC $=5.5 \mathrm{~V}$ outputs unloaded.
4. $M N / M \bar{X}$ is a strap option and should be held to VCC or GND.
5. IO should be measured by putting the pin in a high impedance state and then driving $\mathrm{V}_{\text {OUT }}$ to $G N D$ on the following pins: 26-29 and 32 .

Capacitance $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	TYPICAL	UNITS	TEST CONDITIONS
CIN	Input Capacitance	20	pF	FREQ $=1 \mathrm{MHz}$ All measurements are referenced to device GND
COUT	Output Capacitance	20	pF	
CI / O	I/O Capacitance	20	pF	

A.C. Electrical Specifications $V_{C C}=5.0 \mathrm{~V} \pm 10 \% ; T_{A}=0{ }^{\circ} \mathrm{C}$ to $+700 \mathrm{C}(\mathrm{C} 80 \mathrm{C} 88)(\mathrm{C} 80 \mathrm{C} 88-2)$
$V_{C C}=5.0 \mathrm{~V} \pm 10 \% ; T_{A}=-40^{\circ} \mathrm{C}$ to $+85{ }^{\circ} \mathrm{C}$ (180C88) ($180 \mathrm{C} 88-2$)
$V_{C C}=5.0 \mathrm{~V} \pm 10 \% ; T_{A}=-55{ }^{\circ} \mathrm{C}$ to $+125{ }^{\circ} \mathrm{C}(\mathrm{M} 80 \mathrm{C} 88)$
$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \% ; \mathrm{TA}=-55^{\circ} \mathrm{C}$ to $+125{ }^{\circ} \mathrm{C}$ (M80C88-2)
MINIMUM COMPLEXITY SYSTEM TIMING REQUIREMENTS

SYMBOL	PARAMETER	80C88-2		$80 \mathrm{C88}$		UNITS	TEST CONDITIONS
		MIN	MAX	MIN	MAX		
(1) TCLCL	CLK Cycle Period	125		200		ns	
(2) TCLCH	CLK Low Time	68		118		ns	
(3) TCHCL	CLK High Time	44		69		ns	
(4) TCH 1 CH 2	CLK Rise Time		10		10	ns	From 1.0 V to 3.5 V
(5)TCL2CL1	CLK Fall Time		10		10	ns	From 3.5 V to 1.0 V
(6) TDVCL	Data in Setup Time	20		30		ns	
(7) TCLDX1	Data in Hold Time	10		10		ns	
(8) TR1VCL	RDY Setup Time into 82C84A (See Notes 1, 2)	35		35		ns	
(9)TCLR1X	RDY Hold Time into 82C84A (See Notes 1, 2)	0		0		ns	
$\underset{(10)}{\text { TRYHCH }}$	READY Setup Time into 80C88	68		118		ns	
TCHRYX (11)	READY Hold Time into 80C88	20		30		ns	
$\underset{(12)}{ }$	READY Inactive to CLK (See Note 3)	-8		-8		ns	
(13)THVCH	HOLD Setup Time	20		35		ns	
TINVCH (14)	INTR, NMI, TEST Setup Time (See Note 2)	15		30		ns	
(15) TILIH	Input Rise Time (Except CLK)		15		15	ns	From 0.8 V to 2.0 V
(16) TIHIL	Input Fall Time (Except CLK)		15		15	ns	From 2.0 V to 0.8 V

A.C. Electrical Specifications $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70{ }^{\circ} \mathrm{C}$ (C80C88) (C80C88-2)
$V_{C C}=5.0 \mathrm{~V} \pm 10 \% ; T_{A}=-400^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (180 C 88) ($(80 \mathrm{C} 88-2)$
$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \% ; \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ (M80C88)
VCC $=5.0 \mathrm{~V} \pm 5 \% ;$ TA $=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ (M80C88-2)

MINIMUM COMPLEXITY SYSTEM TIMING RESPONSES

SYMBOL	PARAMETER	MIN	80C88-2		$80 \mathrm{C88}$		TEST CONDITIONS
			MAX	MIN	MAX	UNITS	
(17)TCLAV	Address Valid Delay	10	60	10	110	ns	$C_{L}=100 \mathrm{pF}$ for all 80C88 Outputs in addition to internal loads
(18)TCLAX	Address Hold Time	10		10		ns	
(19\TCLAZ	Address Float Delay	TCLAX	50	TCLAX	80	ns	
(20)TCHSZ	Status Float Delay		50		80	ns	
(21)TCHSV	Status Active Delay	10	60	10	110	ns	
(22) TLHLL	ALE Width	TCLCH-10		TCLCH-20		ns	
(23)TCLLH	ALE Active Delay		50		80	ns	
(24)TCHLL	ALE Inactive Delay		55		85	ns	
(25) TLLAX	Address Hold Time to ALE Inactive	TCHCL-10		TCHCL-10		ns	
(26)TCLDV	Data Valid Delay	10	60	10	110	ns	
${ }_{(27)^{\text {TCLD }} \text { (}}$	Data Hold Time	10		10		ns	
$\underset{(28)}{\text { TWHDX }}$	Data Hold Time After WR	TCLCL-30		TCLCL-30		ns	
(29)TCVCTV	Control Active Delay 1	10	70	10	110	ns	
(30)TCHCTV	Control Active Delay 2	10	60	10	110	ns	
(31)TCVCTX	Control Inactive Delay	10	70	10	110	ns	
(32)TAZRL	Address Float to READ Active	0	,	0		ns	
(33)TCLRL	$\overline{\mathrm{RD}}$ Active Delay	10	100	10	165	ns	
(34)TCLRH	$\overline{\mathrm{RD}}$ Inactive Delay	10	80	10	150	ns	
(35)TRHAV	$\overline{\mathrm{RD}}$ Inactive to Next Address Active	TCLCL-40	\because	TCLCL-45		ns	
(36)TCLHAV	HLDA Valid Delay	10	100	10	160	ns	
(37) TRLRH	$\overline{\text { RD }}$ Width	2TCLCL-50		2TCLCL-75		ns	
(38TWLWH	$\overline{\text { WR Width }}$	2TCLCL-40		2TCLCL-60		ns	
(39) TAVAL	Address Valid to ALE Low	TCLCH-40		TCLCH-60		ns	
(40)TOLOH	Output Rise Time		15		15	ns	From 0.8 V to 2.0 V
(41)TOHOL	Output Fall Time		15		15	ns	From 2.0 V to 0.8 V

NOTES: 1. Signal at 82C84A shown for reference only.
2. Setup requirement for asynchronous signal only to guarantee recognition at next clock.
3. Applies only to T2 state (8 nanoseconds into T3).

Waveforms

BUS TIMING - MINIMUM MODE SYSTEM

Waveforms

BUS TIMING - MINIMUM MODE SYSTEM

SOFTWARE HALT -

NOTES: 1. All signals switch between V_{OH} and V_{OL} unless otherwise specified.
2. RDY is sampled near the end of T_{2}, T_{3}, T_{W} to determine if T_{W} machines states are to be inserted.
3. Two INTA cycles run back-to-back. The 80 C 88 local ADDR/DATA bus is floating during both INTA cycles. Control Signals are shown for the second INTA cycle.
4. Signals at 82C84A are shown for reference only
5. All timing measurements are made at 1.5 V unless otherwise noted.
A.C. Electrical Specifications

$$
\begin{aligned}
& V_{C C}=5.0 \mathrm{~V} \pm 10 \% ; T_{A}=0{ }^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}(\mathrm{C} 80 \mathrm{C} 88)(\mathrm{C} 80 \mathrm{C} 88-2) \\
& V_{C C}=5.0 \mathrm{~V} \pm 10 \% ; T_{A}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \text { (I80C88) (I80C88-2) } \\
& V_{C C}=5.0 \mathrm{~V} \pm 10 \% ; T_{A}=-55^{\circ} \mathrm{C} \text { to }+125{ }^{\circ} \mathrm{C} \text { (M80C88) } \\
& V_{C C}=5.0 \mathrm{~V} \pm 5 \% ; T_{A}=-55^{\circ} \mathrm{C} \text { to }+125{ }^{\circ} \mathrm{C} \text { (M80C88-2) }
\end{aligned}
$$

MAX MODE SYSTEM (USING 82C88 BUS CONTROLLER) TIMING REQUIREMENTS

SYMBOL	PARAMETER	80C88-2		$80 C 88$		UNITS	TEST CONDITIONS
		MIN	MAX	MIN	MAX		
(1) TCLCL	CLK Cycle Period	125		200		ns	
(2) TCLCH	CLK Low Time	68		118		ns	
(3) TCHCL	CLK High Time	44		69		ns	
(4) $\mathrm{TCH1CH} 2$	CLK Rise Time		10		10	ns	From 1.0 V to 3.5 V
(5) TCL2CL1	CLK Fall Time		10		10	ns	From 3.5 V to 1.0 V
(6) TDVCL	Data in Setup Time	20		30		ns	
(7) TCLDX1	Data in Hold Time	10		10		ns	
TR1VCL (8)	RDY Setup Time into 82 C 84 (See Notes 1, 2)	35		35		ns	
TCLR1X (9)	RDY Hold Time into 82C84 (See Notes 1, 2)	0		0		ns	
TRYHCH (10)	READY Setup Time into 80C88	68		118		ns	
$\underset{\text { (11) }}{\text { TCHRYX }}$	READY Hold Time into 80C88	20		30		ns	
$\begin{gathered} \text { TRYLCL } \\ \hline(12) \end{gathered}$	READY Inactive to CLK (See Note 3)	-8		-8		ns	
TINVCH (13)	Setup Time for Recognition (INTR, NMI, TEST) (See Note 2)	15		30		ns	
14TGVCH	$\overline{\mathrm{RQ}} / \overline{\mathrm{GT}}$ Setup Time	15		30		ns	
$\underset{(15)}{\text { TCHGX }}$	$\overline{R Q}$ Hold Time into 80C88 (See Note 4)	30	TCHCL + 10	40	TCHCL + 10	ns	
(16)TILIH	Input Rise Time (Except CLK)		15		15	ns	From 0.8 V to 2.0 V
(17) TIHIL	Input Fall Time (Except CLK)		15		15	ns	From 2.0 V to 0.8 V

A.C. Electrical Specifications

$$
\begin{aligned}
& V_{C C}=5.0 \mathrm{~V} \pm 10 \% ; T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}(\mathrm{C} 80 \mathrm{C} 88)(\mathrm{C} 80 \mathrm{C} 88-2) \\
& V_{C C}=5.0 \mathrm{~V} \pm 10 \% ; T_{A}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}(\text { (180C88) }(180 \mathrm{C} 88-2) \\
& V_{C C}=5.0 \mathrm{~V} \pm 10 \% ; T_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}(\mathrm{M} 80 \mathrm{C} 88) \\
& V_{C C}=5.0 \mathrm{~V} \pm 5 \% ; T_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}(\mathrm{M} 80 \mathrm{C} 88-2)
\end{aligned}
$$

$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$ for all 80 C 88 Outputs in addition to internal loads
MAX MODE SYSTEM (USING 82C88 BUS CONTROLLER) TIMING RESPONSES

SYMBOL	PARAMETER	80C88-2		80 C 88		UNITS	TEST CONDITIONS
		MIN	MAX	MIN	MAX		
(18)TCLML	Command Active Delay (See Note 1)	5	35	5	35	ns	$C_{L}=100 \mathrm{pF}$ for all 80C88 Outputs in addition to internal loads
(19)TCLMH	Command Inactive Delay (See Note 1)	5	35	5	35	ns	
(20) ${ }^{\text {TRYHSH }}$	READY Active to Status Passive (See Notes 3, 5)		65		110	ns	
(21)TCHSV	Status Active Delay	10	60	10	110	ns	
(22)TCLSH	Status Inactive Delay (See Note 5)	10	70	10	130	ns	
(23) TCLAV	Address Valid Delay	10	60	10	110	ns	
(24)TCLAX	Address Hold Time	10		10		ns	
(25) TCLAZ	Address Float Delay	TCLAX	50	TCLAX	80	ns	
(26)TCHSZ	Status Float Delay		50		80	ns	
(27)TSVLH	Status Valid to ALE High (See Note 1)		20		20	ns	
$\begin{array}{\|l} \mathbf{n}^{\text {T8) }} \text { TSVMCH } \\ \hline \end{array}$	Status Valid to MCE High (See Note 1)		30		30	ns	
(29) TCLLH	CLK Low to ALE Valid (See Note 1)		20		20	ns	
$\begin{array}{\|l} \hline \text { TCLMCH } \\ (30) \\ \hline \end{array}$	CLK Low to MCE High (See Note 1)		25		25	ns	
(31)TCHLL	ALE Inactive Delay (See Note 1)	4	18	4	18	ns	
${ }_{(32)} \text { TCLMCL }$	MCE Inactive Delay (See Note 1)		15		15	ns	
(33)TCLDV	Data Valid Delay	10	60	10	110	ns	
(34)TCLDX2	Data Hold Time	10		10		ns	
(35)TCVNV	Control Active Delay (See Note 1)	5	45	5	45	ns	
(36)TCVNX	Control Inactive Delay (See Note 1)	10	45	10	45	ns	
(37) TAZRL	Address Float to Read Active	0		0		ns	
(38)TCLRL	$\overline{\mathrm{RD}}$ Active Delay	10	100	10	165	ns	
(39)TCLRH	$\overline{\mathrm{RD}}$ Inactive Delay	10	80	10	150	ns	
(40)TRHAV	$\overline{\mathrm{RD}}$ Inactive to Next Address Active	TCLCL-40		TCLCL-45		ns	
${ }_{(41)}^{\text {TCHDTL }}$	Direction Control Active Delay (See Note 1)		50		50	ns	
$\begin{aligned} & \text { TCHDTH } \\ & (42)^{Y} \end{aligned}$	Direction Control Inactive Delay (See Note 1)	.	30		30	ns	
(43)TCLGL	$\overline{\mathrm{GT}}$ Active Delay	0	50	0	85	ns	
(44)TCLGH	GT Inactive Delay	0	50	0	85	ns	
(45)TRLRH	$\overline{\text { RD Width }}$	2TCLCL-50		2TCLCL-75		ns	
$(46){ }^{\text {TOLOH }}$	Output Rise Time		15		15	ns	From 0.8 V to 2.0 V
(47) TOHOL	Output Fall Time		15		15	ns	From 2.0 V to 0.8 V

NOTES: 1. Signal at 82 C 84 A or 82 C 88 shown for reference only.
2. Setup requirement for asynchronous signal only to guarantee recognition at next clock.
3. Applies only to T 2 state (8 nanoseconds into T 3).
4. The 80 C 88 actively pulls the $\mathrm{RQ} / \mathrm{GT}$ pin to a logic one on the following clock low time.
5. Status lines return to their inactive (logic one) state after CLK goes low and READY goes high.

Waveforms

BUS TIMING - MAXIMUM MODE

CLK

Waveforms

REQUEST/GRANT SEQUENCE TIMING (MAXIMUM MODE ONLY)

NOTE: 1. THE COPROCESSOR MAY NOT DRIVE THE BUSSES OUTSIDE THE REGION SHOWN WITHOUT RISKING CONTENTION

HOLD/HOLD ACKNOWLEDGE TIMING (MINIMUM MODE ONLY)

ASYNCHRONOUS

 SIGNAL RECOGNITION

NOTE: 1. SETUP REQUIREMENTS FOR ASYNCHRONOUS SIGNALS ONLY TO GUARANTEE RECOGNITION AT NEXT CLK.
bus Lock signal timing (MAXIMUM MODE ONLY)

Reset Timing

A.C. Test Circuit

*Includes stray and jig capacitance
A.C. Testing Input, Output Waveforms

A.C. Testing: All input signals (other than CLK) must switch between $\mathrm{VIL}_{\text {max }}-0.4 \mathrm{~V}$ and $\mathrm{VIH}_{\text {min }}+0.4 \mathrm{~V}$. CLK must switch between 0.4 V and VCC -0.4 V . Input rise and fall times are driven at $1 \mathrm{~ns} / \mathrm{V}$.

LCC/PLCC Pinout

INSTRUCTION SET SUMMARY

gata transfen mov = Mow:	16543210	18543210	76543210	76543210
Aegister/memory to/from register	100010 dm	mod reg $1 / \mathrm{m}$		
Immediate to register/memory	1100011 m	$\bmod 000 \mathrm{l} / \mathrm{m}$	data	dala if w 1
Immediate to register	1011m reg	dala	data it w 1	
Memory to accumulator	1010000 m	addr low	addr-high	
Accumulator to memory	1010001 m	addr.low	addr.high	
Register/memory to segment register	10001110	mod 0 reg $1 / \mathrm{m}$		
Segment register to register/memory	10001100	modo reg $1 / \mathrm{m}$		
PUsM = Puah:				
Register/memory	11111111	mod 110 lm		
Register	01010 reg			
Segment register	000 reg 110			
$\boldsymbol{P O P}=\mathrm{Pep}_{\text {P }}$				
Register/memory	10001111	$1 \mathrm{mod} 000 \mathrm{t} / \mathrm{m}$		
Repister	01011 reg			
Segment register	000 reg 1111			
XCWE = Exeheme:				
Register/memory with register	1000011 m	mod reg 1/m		
Aegister with accumulator	10010 reg			
IN=input from:				
Fixed port	1110010w	port		
Variable port	1110110w			
OUT $=$ Output to:				
Fixed port	1110011m	port		
Varrable port	1110111m			
xLat - Transiate byte to AL	$\underline{11010111}$			
LEA $=$ Load EA to register	10001101	mod reg I / m		
Les=Load pointer to OS	11000101	mod reg $1 / \mathrm{m}$		
LE8 =Load pointer to ES	11000100	mod reg $1 / \mathrm{m}$		
LuMF =Load AH with flags	10011111			
2awif = Store AH into flags	10011110			
Pusurfeush tlags	10011100			
Pepr \times Pop flags	10011101			

ARITMMETIC				
AOS = AbN:				
Reo /memory with register to ether	0000000 w	mod $\mathrm{eg} 1 / \mathrm{m}$		
Immediate to register/memory	1000005 m	$\bmod 000 \mathrm{r} / \mathrm{m}$	data	dala it 5 w 01
Immediate to accumulator	0000010 w	data	data Itw 1	
AEC = ANE with earry:				
Aeg /memory with register to euther	000100 dm	mod reg rim		
Immediate to register/memory	100000 sw	mod $010 \mathrm{r} / \mathrm{m}$	Jata	data if sw 01
Immediate to accumulator	0001010 w	data	data if w 1	
IWC = imersment				
Repister/memory	1111111w	$\bmod 000 \mathrm{r} / \mathrm{m}$		
Aegister	01000 reg			
2an-ASCll aduust tor ado	00110111			
ma-Docimal adust tor add	00100111			
Sul $=$ entruet:				
Rep./memory and register to ether	0010100 \%	mod rog r / m		
Immediate from register/memory	1000005 m	mod $101 \mathrm{r} / \mathrm{m}$	data	data it sm=01
Immediate from accumulator	0010110 m	data	data 11 w	
800 = smbruat mint torrow				
Reg./memory and register to eitiver	0001100 m	mod reg $1 / \mathrm{m}$		
Immediate from rogister/memory	100000 sm	modo 11 lm	data	dataitsw.01
immediate from accumulator	0001110 m	data	data Itw 1	

LOEIC

mot inver!	1111011 w	mod $010 \mathrm{r} / \mathrm{m}$
SML/sat Smitt logicaliantitumetic left	110100 ww	mod 100 llm
SWR Snitt logical fight	110100 cw	mod 101
SAR Snitt authmetic right	110100 w	mod 111
not Rotate left	110100 rw	$\bmod 000 \mathrm{~lm}$
mon Rotate right	110100 w	$\bmod 001 \mathrm{~lm}$
MCL Aotate through carry tlag ieft	110100 rw	$\bmod 010 \mathrm{rm}$
RCA Rotate infough carty cight	110100rw	$\bmod 011$

MO And:

TEST And function to liage, no result
Registel i memory and register
inmediate dala and register / memoty

1111011 w	$\bmod 000 \mathrm{~cm}$	data	data if w
1010100 m	data	data If w	

on or

Reg /memory and register to either
Immediate to registel/memory
immediate to accumulato

xOR Exclusive er

Req / memory and register to ether
immediate to register/memory
immediate to accumulator

0011000 w	mod reg $1 / \mathrm{m}$		
1000000 w	mod $110 \mathrm{t} / \mathrm{m}$	data	data it w 1
0011010 w	data	data it w 1	

STAIMG MAMIPULATION	
REP $=$ Repeat	11110012
MOVS=Move byte/word	1010010 w
CMPS $=$ Compare byte/word	1010011 w
SCAS=Scan byte/word	1010111 m
LODS $=$ Load byte/wd to AL/AX	1010110 w
STOS=Stor byte/wd from AL/A	1010101 m

Mnemonics ©intel, 1978

INSTRUCTION SET SUMMARY

CONTROL TRAMSFER

CALL = Call:
Direct within segment
Indirect within segment
Direct intersegment

Indirect intersegment

JMP = Unconditional Jump:
Oirect whin segment
Direct within segment-short Indirect within segment Direct intersegment

Indirect intersegment

11101001	disp-low	disp.high
11101011	disp	
11111111	mod $100 \mathrm{f} / \mathrm{m}$	
11101010	oftset-10w	offset-high ${ }^{\text {a }}$
	seg-low	seg-high
11111111	mod 101 lm	

RET Return Irom CALL
Within segment
Within seg adding immed to SP intersegment
intersegment adding immediate to SP JE/JZ = Jump on equal/zero
Jl/Jwst = Jump on less/not greater
JLE/JMG or equal
JLE/JMG = Jump on less or equal/not
JB/JMAE Jump on below/not above
JE/JuA or equal
JBE/JMA = Jump on below or equal /
JP/JPE = Jump on D
JO Jump on overflow
JS = Jump on sign
JME/JMZ = Jump on not equal/not zero JWL/JGE = Jump on not less/greater JWLE/JG= Jump on not less or equal/
greater

11000011		
11000010	data-10w	data-high
11001011		
11001010	data -10w	data-high
01110100	disp	
01111100	disp	
01111110	disp	
01110010	disp	
01110110	disp	
01111010	disp	
01110000	disp	
01111000	disp	
01110101	disp	
0111111101	disp	
011111111	disp	

Footnotes

$A L=8$-bit accumulator
$A X=16$-bit accumulator
$C X=$ Count register
DS = Data segment
$E S=$ Extra segment
Above/below refers to unsigned value
Greater = more positive:
Less = less positive (more negative) signed values
if $d=1$ then "to" reg; if $d=0$ then "from" reg
if $w=1$ then word instruction; if $w=0$ then byte instruction
if $\bmod =11$ then r / m is treated as a REG field
if $\bmod =00$ then DISP $=0^{*}$, disp-low and disp-high are absent
if mod $=01$ then DISP $=$ disp-low sign-extended to 16-bits, disp-high is absent
if $\bmod =10$ then DISP $=$ disp-high: disp-low
if $\mathrm{r} / \mathrm{m}=000$ then $E A=(B X)+(S I)+D I S P$
if $\mathrm{r} / \mathrm{m}=001$ then $E A=(B X)+(D I)+D I S P$
if $\mathrm{r} / \mathrm{m}=010$ then $E A=(B P)+(S I)+D I S P$
if $\mathrm{r} / \mathrm{m}=011$ then $E A=(B P)+(D I)+D I S P$
if $\mathrm{r} / \mathrm{m}=100$ then $E A=(S I)+$ DISP
if $\mathrm{r} / \mathrm{m}=101$ then $E A=(D I)+D I S P$
if $r / m=110$ then $E A=(B P)+D I S P^{*}$
if $r / m=111$ then $E A=(B X)+$ DISP
DISP follows 2nd byte of instruction (before data if required)
*except if mod $=00$ and $r / m=110$ then $E A=$ disp-high: disp-low
if $\mathbf{s}: \mathbf{w}=01$ then 16 bits of immediate data form the operand
if $s \cdot w=11$ then an immediate data byte is sign extended to form the 16 -bit operand
if $v=0$ then "count' ' $=1$; if $v=1$ then ' 'count' " in (CL)
$x=$ don't care
2 is used for string primitives for comparison with Z.F FLAG
SEGMENT OVERRIDE PREFIX

| 0 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- |

REG is assigned according to the following table

$\underline{16-8 i t}(\mathrm{w}=1)$	8-Bit $(\mathrm{w}=0)$		Segment	
000 AX	000	AL	00	ES
001 CX	001	CL	01	CS
$010^{-} \mathrm{DX}$	010	DL	10	SS
011 BX	011	BL	11	DS
100 SP	100	AH		
101 BP	101	CH		
110 SI	110	DH		
111 DI	111	BH		

instructions which reference the flag register file as a 16-bit object use the symbol FLAGS to represent the file:
$F L A G S=X: X: X: X:(O F):(D F):(I F):(T F)(S F) \cdot(Z F): X \cdot(A F) \cdot X:(P F): X:(C F)$
PAGE
CMOS PERIPHERALS
Industry CMOS Peripheral Cross Reference 4-2
82C37A High Performance Programmable DMA Controller 4-3
82C50A Asynchronous Communications Element 4-21
82C52 Serial Controller Interface 4-41
82C54 Programmable Interval Timer 4-51
82C55A Programmable Peripheral Interface 4-66
82C59A Priority Interrupt Controller 4-86
82C82 Octal Latching Bus Driver 4-100
82C83H Octal Latching Inverting Bus Driver 4-105
82C84A Clock Generator Driver 4-110
82C85 Static Clock Controller/Generator 4-117
82C86H/87H Octal Bus Transceivers 4-134
82C88 Bus Controller 4-139
82C89 Bus Arbiter 4-146
App Note 109 82C59A Priority Interrupt Controller 4-156

Peripheral Cross Reference

HARRIS	INTEL	NEC	OKI	MITSUBISHI	VLSI	OTHER
PERIPHERALS						
82C37A-5			MSM82C37A-5	$\begin{gathered} \text { M5M82C37A } \\ -4,-5 \end{gathered}$	VL82C37A-4 VL82C37A-5	
82C37A			MSM82C37A		VL82C37A-8	
82 C 54	82 C 54	μ PD71054	MSM82C54	$\begin{gathered} \text { M5M82C54-6 } \\ \text { M5M82C54 } \end{gathered}$	VL82C54-8	AM82C54
82C55A-5			MSM82C55A-5	M5M82C55A-5		
82C55A	82C55A-2	μ PD71055	MSM82C55A-2			AM82C55A-2
82C59A-5				M5M82C59A		
82C59A	82C59A-2	μ PD71059	MSM82C59-2		VL82C59A-8	AM82C59A
UARTS						
82C50A					VL82C50A	INS82C50A WD82C50A
82C52	4		4\%		+	
BUS SUPPORT						
82C82		μ PD71082				MM182C82
82C83H		μ PD71083			(\%)	MMI82C83
82C84A	$\begin{array}{r} 82 C 84 A \\ 82 C 84 A-5 \end{array}$	μ PD71084	MSM82C84A MSM82C84A-5 MSM82C84A-2		VL82C84A-8	
82C85	2		+			
82C86H		μ PD71086			4.	MM182C86
82C87H		μ PD71087			4	MMI82C87
82C88	$82 \mathrm{c} 88$	μ PD71088	$\begin{aligned} & \text { MSM82C88 } \\ & \text { MSM82C88-2 } \end{aligned}$.	V182C88-8	

CMOS High Performance Programmable DMA Controller Memory Access) controller, fabricated using Harris' advanced SAJI (self aligned junction isolated) CMOS process. Pin compatible with NMOS designs, the 82C37A offers increased functionality, improved performance, and dramatically reduced power consumption. The fully static design permits gated clock operation for even further reduction of power.
The 82C37A controller can improve system performance by allowing external devices to transfer data directly to or from system memory. Memory-to-memory transfer capability is also provided, along with a memory block initialization feature. DMA requests may be generated by either hardware or software, and each channel is independently programmable with a variety of features for flexible operation.
The 82C37A is designed to be used with an external address latch, such as the 82 C 82 CMOS to demultiplex the most significant 8 bits. The 82C37A can be used with industry standard microprocessors such as $80 \mathrm{C} 86,80 \mathrm{C} 88,8088,8085,8086$, Z80, NSC800, 80186 and others.

Multimode programmability allows the user to select from three basic types of DMA services, and reconfiguration under program control is possible even with the clock to the controller stopped. Each channel has a full 64 K address and word count range, and may be programmed to autoinitialize these registers following DMA termination (end of process).

Block Diagram

CAUTION: These devices are sensitive to electrostatic discharge. Proper I.C. handling procedures should be followed.

TABLE 1.

SYMBOL	$\begin{gathered} \text { PIN } \\ \text { NUMBER } \end{gathered}$	TYPE	DESCRIPTION
Vcc	31		VCC : is the +5 V power supply pin. A $0.1 \mu \mathrm{~F}$ capacitor between pins 31 and 20 is recommended for decoupling.
GND	20		Ground
CLK	12	1	CLOCK INPUT: The Clock Input is used to generate the timing signals which control 82C37A operations. This input may be driven from DC to 8 MHz for the 82C37A, or from DC to 5 MHz for the 82C37A-5. The Clock may be stopped in either state for standby operation.
$\overline{\mathrm{Cs}}$	11	1	CHIP SELECT: Chip Select is an active low input used to enable the controller onto the data bus for CPU communications.
RESET	13	1	RESET: This is an active high input which clears the command, status, request, and temporary registers, the first/last flip-flop, and the mode register counter. The mask register is set to ignore requests. Following a Reset, the controller is in an ide cycle.
READY	6	1	READY: This signal can be used to extend the memory read and write pulses from the 82C37A to accommodate slow memories or I/O devices. Ready must not make transitions during its specified set-up and hold times. Ready is ignored in verify transfer mode.
HLDA	7	1	HOLD ACKNOWLEDGE: The active high Hold Acknowiedge from the CPU indicates that it has relinquished control of the system busses.
DREQODREQ3	$\begin{aligned} & 16- \\ & 19 \end{aligned}$	1	DMA REQUEST: The DMA Request (DREQ) lines are individual asynchronous channel request inputs used by peripheral circuits to obtain DMA service. In Fixed Priority, DREQ0 has the highest priority and DREQ3 has the lowest priority. A request is generated by activating the DREQ line of a channel. DACK will acknowledge the recognition of DREQ signal. Polarity of DREQ is programmable. Reset initializes these lines to active high. DREQ must be maintained until the corresponding DACK goes active. DREQ will not be recognized while the clock is stopped. Unused DREQ inputs should be pulled High or Low (inactive) and the corresponding mask bit set.
$\begin{aligned} & \text { DB0- } \\ & \text { DB7 } \end{aligned}$	$\begin{aligned} & 21-23 \\ & 26-30 \end{aligned}$	I/O	DATA BUS: The Data Bus lines are bidirectional three-state signals connected to the system data bus. The outputs are enabled in the Program condition during the I/O Read to output the contents of a register to the CPU. The outputs are disabled and the inputs are read during an I/O Write cycle when the CPU is programming the 82C37A control registers. During DMA cycles, the most significant 8 bits of the address are output onto the data bus to be strobed into an external latch by ADSTB. In memory-to-memory operations, data from the memory enters 82C37A on the data bus during the read-from-memory transfer, then during the write-to-memory transfer, the data bus outputs write the data into the new memory location.
$\overline{O R}$	1	I/O	I/O READ: I/O Read is a bidirectional active low three-state line. In the Idle cycle, it is an input control signal used by the CPU to read the control registers. In the Active cycle, it is an output control signal used by the 82C37A to access data from a peripheral during a DMA Write transfer.
Iow	2	I/O	I/O WRITE: I/O Write is a bidirectional active low three-state line. In the Idle cycle, it is an input control signal used by the CPU to load information into the 82C37A. In the Active cycle, it is an output control signal used by the 82C37A to load data to the peripheral during a DMA Read transfer.

Pin Description

TABLE 1.

	PIN		
SYMBOL	NUMBER	TYPE	DESCRIPTION

EOP	36	1/0	END OF PROCESS: End of Process ($\overline{\mathrm{EOP}}$) is an active low bidirectional signal. Information concerning the completion of DMA services is available at the bidirectional EOP pin. The 82C37A allows an external signal to terminate an active DMA service by pulling the $\overline{E O P}$ pin low. A pulse is generated by the 82C37A when terminal count (TC) for any channel is reached, except for channel 0 in memory-to-memory mode. During memory-to-memory transfers, $\overline{E O P}$ will be output when the TC for channel 1 occurs. The $\overline{E O P}$ pin is driven by an open drain transistor on-chip, and requires an external pull-up resistor. When an $\overline{E O P}$ pulse occurs, whether internally or externally generated, the 82C37A will terminate the service, and if autoinitialize is enabled, the base registers will be written to the current registers of that channel. The mask bit and TC bit in the status word will be set for the currently active channel by $\overline{E O P}$ unless the channel is programmed for autoinitialize. In that case,the mask bit remains clear.
A0-A3	32-35	1/0	Address: The four least significant address lines are bidirectional three-state signals. In the Idle cycle, they are inputs and are used by the 82C37A to address the control register to be loaded or read. In the Active cycle, they are outputs and provide the lower 4 bits of the output address.
A4-A7	37-40	0	Address: The four most significant address lines are three-state outputs and provide 4 bits of address. These lines are enabled only during the DMA service.
HRQ	10	0	Hold Request: The Hold Request (HRQ) output is used to request control of the system bus. When a DREQ occurs and the corresponding mask bit is clear, or a software DMA request is made, the 82C37A issues HRQ. The HLDA signal then informs the controller when access to the system busses is permitted. For stand-alone operation where the 82C37A always controls the busses, HRQ may be tied to HLDA. This will result in one S0 state before the transfer.

DACK0- DACK 3	14,15 24,25	O	DMA Acknowledge: DMA acknowledge is used to notify the individual peripherals when one has been granted a DMA cycle. The sense of these lines is programmable. Reset initializes them to active low.
AEN	9	O	Address Enable: Address Enable enables the 8-bit latch containing the upper 8 address bits onto the system address bus. AEN can also be used to disable other system bus drivers during DMA transfers. AEN is active HIGH.
ADSTB	8	0	Address Strobe: This is an active high signal used to control latching of the upper address byte. It will drive directly the strobe input of external transparent octal latches, such as the 82C82. During block operations, ADSTB will only be issued when the upper address byte must be updated, thus speeding operation through elimination of S1 states.
$\overline{M E M R}$	3	0	Memory Read: The memory Read signal is an active low three-state output used to access data from the selected memory location during a DMA Read or a memory-to-memory transfer.
$\overline{\text { MEMW }}$	4	O	Memory Write: The Memory Write is an active low three-state output used to write data to the selected memory location during a DMA Write or a memory-to-memory transfer.
NC	5		No connect. Pin 5 is open and should not be tested for continuity.

Functional Description

The 82C37A direct memory access controller is designed to improve the data transfer rate in systems which must transfer data from an I/O device to memory, or move a block memory to an I/O device. It will also perform memory-to-memory block moves, or fill a block of memory with data from a single location. Operating modes are provided to handle single byte transfers a well as discontinuous data streams, which allows the 82C37A to control data movement with software transparency.

The DMA controller is a state-driven address and control signal generator, which permits data to be transferred directly from an I/O device to memory or vice versa without ever being stored in a temporary register. This can greatly increase the data transfer rate for sequential operations, compared with processor move or repeated string instructions. Memory-to-memory operations require temporary internal storage of the data byte between generation of the source and destination addresses, so memory-to-memory transfers take place at less than half the rate of I/O operations, but still much faster than with central processor techniques. The maximum data transfer rate obtainable with the 82C37A is approximately $4 \mathrm{Mbytes} /$ second, for an I/O operation using the compressed timing option and 8 MHz clock.

The block diagram of the 82C37A is shown on page 1. The timing and control block, priority block, and internal registers are the main components. Figure 1 lists the name and size of the internal registers. The timing and control block derives internal timing from the clock input, and generates external control signals. The Priority Encoder block resolves priority contention between DMA channels requesting service simultaneously.

NAME	SIZE	NUMBER
Base Address Registers	16 Bits	4
Base Word Count Registers	16 Bits	4
Current Address Registers	16 bits	4
Current Word Count Registers	16 bits	4
Temporary Address Register	16 bits	1
Temporary Word Count Register	16 bits	1
Status Register	8 bits	1
Command Register	8 bits	1
Temporary Register	8 bits	1
Mode Registers	6 bits	4
Mask Registers	4 bits	1
Request Register	4 bits	1

FIGURE 1. 82C37A INTERNAL REGISTERS

DMA Operation

In a system, the 82C37A address and control outputs and data bus pins are basically connected in parallel with the system busses. An external latch is required for the upper address byte. While inactive, the controller's outputs are in a high impedence state. When activated by a DMA
request and bus control is relinquished by the host, the 82C37A drives the busses and generates the control signals to perform the data transfer. The operation performed by activating one of the four DMA request inputs has previously been programmed into the controller via the command, mode, address, and word count registers.

For example, if a block of data is to be transferred from RAM to an I/O device, the starting address of the data is loaded into the 82C37A current and base address registers for a particular channel, and the length of the block is loaded into that channel's word count register. The corresponding mode register is programmed for a memory-to-l/O operation (read transfer), and various options are selected by the command register and other mode register bits. The channel's mask bit is cleared to enable recognition of a DMA request (DREQ). The DREQ can either be a hardware signal or a software command.

Once initiated, the block DMA transfer will proceed as the controller outputs the data address, simultaneous MEMR and TOW pulses, and selects an I/O device via the DMA acknowledge (DACK) outputs. The data byte flows directly from the RAM to the I/O device. After each byte is transferred, the address is automatically incremented (or decremented) and the word count is decremented. The operation is then repeated for the next byte. The controller stops transferring data when the word count register underflows, or an external $\overline{\mathrm{EOP}}$ is applied

To further understand 82C37A operation, the states generated by each clock cycle must be considered. The DMA controller operates in two major cycles, active and idle. After being programmed, the controller is normally idle until a DMA request occurs on an unmasked channel, or a software request is given. The 82C37A will then request control of the system busses and enter the active cycle. The active cycle is composed of several internal states, depending on what options have been selected and what type of operation has been requested.

The 82C37A can assume seven separate states, each composed of one full clock period. State I (SI) is the idle state. It is entered when the 82C37A has no valid DMA requests pending, at the end of a transfer sequence, or when a Reset or Master Clear has occurred. While in SI, the DMA controller is inactive but may be in the Program Condition (being programmed by the processor.)

State $0(\mathrm{SO})$ is the first state of a DMA service. The 82C37A has requested a hold but the processor has not yet returned an acknowledge. The 82C37A may still be programmed until it has received HLDA from the CPU. An acknowledge from the CPU will signal that DMA transfers may begin. S1, S2, S3 and S4 are the working states of the DMA service. If more time is needed to complete a transfer than is available with normal timing, wait states (SW) can be inserted between S2 or S3 and S4 by the use of the Ready line on the 82C37A.

Note that the data is transferred directly from the I/O device to memory (or vice versa) with $\overline{\mathrm{IOR}}$ and $\overline{\mathrm{MEMW}}$ (or $\overline{M E M R}$ and $\overline{\mathrm{OW}}$) being active at the same time. The data is not read into or driven out of the 82C37A in I/O-to-memory or memory-to-l/O DMA transfers.

Memory-to-memory transfers require a read-from and a write-to-memory to complete each transfer. The states, which resemble the normal working states, use two-digit numbers for identification. Eight states are required for a single transfer. The first four states (S11, S12, S13, S14 are used for the read-from-memory half and the last four states (S21, S22, S23, S24) for the write-to-memory half of the transfer.

Idle Cycle

When no channel is requesting service, the 82C37A will enter the Idle cycle and perform "SI" states. In this cycle, the 82C37A will sample the DREQ lines on the falling edge of every clock cycle to determine if any channel is requesting a DMA service.

Note that for standby operation where the clock has been stopped, DMA requests will be ignored. The device will respond to $\overline{\mathrm{CS}}$ (chip select), in case of an attempt by the microprocessor to write or read the internal registers of the 82C37A. When $\overline{C S}$ is low and HLDA is low, the 82C37A enters the Program Condition. The CPU can now establish, change or inspect the internal definition of the part by reading from or writing to the internal registers.

The 82C37A may be programmed with the clock stopped, provided that HLDA is low and at least one rising clock edge has occurred after HLDA was driven low, so the controller is in an SI state. Address lines A0-A3 are inputs to the device and select which registers will be read or written. The $\overline{\overline{O R}}$ and $\overline{\mathrm{IOW}}$ lines are used to select and time the read or write operations. Due to the number and size of the internal registers, an internal flip-flop is used to generate an additional bit of address. The bit is used to determine the upper or lower byte of the 16-bit Address and Word Count registers. The flip-flop is reset by Master Clear or Reset. Separate software commands can also set or reset this flip-flop.

Special software commands can be executed by the 82C37A in the Program Condition. These commands are decoded as sets of addresses with $\overline{\mathrm{CS}}, \overline{\mathrm{OR}}$, and $\overline{\mathrm{OWW}}$. The commands do not make use of the data bus. Instructions include Set and Clear First/Last Flip-Flop, Master Clear, Clear Mode Register Counter, and Clear Mask Register.

Active Cycle

When the 82C37A is in the Idle cycle, and a software request or an unmasked channel requests a DMA service, the device will output an HRQ to the microprocessor and enter the Active cycle. It is in this cycle that the DMA service will take place, in one of four modes:

Single Transfer Mode - In single transfer Mode, the device
is programmed to make one transfer only. The word count will be decremented and the address decremented or incremented following each transfer. When the word count "rolls over" from zero to FFFFH, a terminal count bit in the status register is set, an EOP pulse is generated, and the channel will autoinitialize if this option has been selected. If not programmed to autoinitialize, the mask bit will be set, along with the TC bit and $\overline{E O P}$ pulse.

DREQ must be held active until DACK becomes active. If DREQ is held active throughout the single transfer, HRQ will go inactive and release the bus to the system. It will again go active and, upon receipt of a new HLDA, another single transfer will be performed, unless a higher priority channel takes over. In 8080A, 8085A, 80C88, or 80C86 systems, this will ensure one full machine cycle execution between DMA transfers. Details of timing between the 82C37A and other bus control protocols will depend upon the characteristics of the microprocessor involved.

Block Transfer Mode - In Block Transfer mode, the device is activated by DREQ or software request and continues making transfers during the service until a TC, caused by word count going to FFFFH, or an external End of Process ($\overline{\mathrm{EOP}}$) is encountered. DREQ need only be held active until DACK becomes active. Again, an Autoinitialization will occur at the end of the service if the channel has been programmed for that option.

Demand Transfer Mode - In Demand Transfer mode the device continues making transfers until a TC or external $\overline{\mathrm{EOP}}$ is encountered, or until DREQ goes inactive. Thus, transfers may continue until the I/O device has exhausted its data capacity. After the I/O device has had a chance to catch up, the DMA service is reestablished by means of a DREQ. During the time between services when the microprocessor is allowed to operate, the intermediate values of address and word count are stored in the 82C37A Current Address and Current Word Count registers. Higher priority channels may intervene in the demand process, once DREQ has gone inactive. Only an $\overline{E O P}$ can cause an Autoinitialization at the end of the service. $\overline{\mathrm{EOP}}$ is generated either by TC or by an external signal.

Cascade Mode - This mode is used to cascade more than one 82C37A for simple system expansion. The HRQ and HLDA signals from the additional 82C37A are connected to the DREQ and DACK signals respectively of a channel for the initial 82C37A. This allows the DMA requests of the additional device to propagate through the priority network circuitry of the preceding device. The priority chain is preserved and the new device must wait for its turn to acknowledge requests. Since the cascade channel of the initial 82C37A is used only for prioritizing the additional device, it does not output an address or control signals of its own. These could conflict with the outputs of the active channel in the added device. The 82C37A will respond to DREQ and generate DACK but all other outputs except HRQ will be disabled. An external EOP will be ignored by the initial device, but will have the usual effect on the added device.

Figure 2 shows two additional devices cascaded with an initial device using two of the previous channels. This forms a two-level DMA system. More 82C37As could be added at the second level by using the remaining channels of the first level. Additional devices can also be added by cascading into the channels of the second level devices, forming a third level.

FIGURE 2. CASCADED 82C37As
When programming cascaded controllers, start with the first level (closest to the microprocessor). After RESET, the DACK outputs are programmed to be active low and are held in the high state. If they are used to drive HLDA directly, the second level device(s) cannot be programmed until DACK polarity is selected as active high on the initial device. Also, the initial device's mask bits function normally on cascaded channels, so they may be used to inhibit second-level services.

Transfer Types

Each of the three active transfer modes can perform three different types of transfers. These are Read, Write and Verify. Write transfers move data from an I/O device to the memory by activating $\overline{M E M W}$ and $\overline{\mathrm{IOR}}$. Read transfers move data from memory to an I/O device by activating $\overline{M E M R}$ and $\overline{\text { IOW. }}$

Verify transfers are pseudo-transfers. The 82C37A operates as in Read or Write transfers generating addresses and responding to $\overline{E O P}$, etc., however the memory and I/O control lines all remain inactive. Verify mode is not permitted for memory-to-memory operation. Ready is ignored during verify transfers.

Autoinitialize - By programming a bit in the mode register, a channel may be set up as an Autoinitialize channel. During Autoinitialization, the original values of the Current Address and Current Word Count registers are
automatically restored from the Base Address and Base Word count registers of that channel following EOP. The base registers are loaded simultaneously with the current registers by the microprocessor and remain unchanged throughout the DMA service. The mask bit is not set when the channel is in Autoinitialize. Following Autoinitialization, the channel is ready to perform another DMA service, without CPU intervention, as soon as a valid DREQ is detected, or software request is made.

Memory-to-Memory - To perform block moves of data from one memory address space to another with minimum of program effort and time, the 82C37A includes a memory-to-memory transfer feature. Programming a bit in the Command register selects channels 0 and 1 to operate as memory-to-memory transfer channels.

The transfer is initiated by setting the software or hardware DREQ for channel 0 . The 82C37A requests a DMA service in the normal manner. After HLDA is true, the device, using four-state transfers in Block Transfer mode, reads data from the memory. The channel 0 Current Address register is the source for the address used and is decremented or incremented in the normal manner. The data byte read from the memory is stored in the 82C37A internal Temporary register. Another four-state transfer moves the data to memory using the address in channel one's Current Address register and incrementing or decrementing it in the normal manner. The channel 1 Current Word Count is decremented.

When the word count of channel 1 goes to FFFFH, a TC is generated causing an $\overline{\mathrm{EOP}}$ output terminating the service. Channel 0 word count decrementing to FFFFH will not set the channel 0 TC bit in the status register or generate an EOP in this mode. It will cause an autoinitialization of channel 0 , if that option has been selected.

If full Autoinitialization for a memory-to-memory operation is desired, the channel 0 and channel 1 word counts must be set equal before the transfer begins. Otherwise, if channel 0 underflows before channel 1 , it will autoinitialize and set the data source address back to the beginning of the block. If the channel 1 word count underflows before channel 0 , the memory-to-memory DMA service will terminate, and channel 1 will autoinitialize but channel 0 will not.

In memory-to-memory mode, Channel 0 may be programmed to retain the same address for all transfers. This allows a single byte to be written to a block of memory. This channel 0 address hold feature is selected by bit 1 in the command register.

The 82C37A will respond to external $\overline{\mathrm{EOP}}$ signals during memory-to-memory transfers, but will only relinquish the system busses after the transfer is complete (i.e., after an S24 state). Data comparators in block search schemes may use this input to terminate the service when a match is found. The timing of memory-to-memory transfers is found in Figure 9. Memory-to-memory operations can be detected as an active AEN with no DACK outputs.

Priority - The 82C37A has two types of priority encoding available as software selectable options. The first is Fixed Priority which fixes the channels in priority order based upon the descending value of their numbers. The channel with the lowest priority is 3 followed by 2,1 and the highest priority channel, 0 . After the recognition of any one channel for service, the other channels are prevented from interferring with the service until it is completed.

The second scheme is Rotating Priority. The last channel to get service becomes the lowest priority channel with the others rotating accordingly. The next lower channel from the channel serviced has highest priority on the following request: Priority rotates every time control of the system busses is returned to the processor.

Rotating Priority

$$
\begin{array}{ccc}
\text { 1st } & \text { 2nd } & \text { 3rd } \\
\text { Service } & \text { Service } & \text { Service }
\end{array}
$$

With Rotating Priority in a single chip DMA system, any device requesting service is guaranteed to be recognized after no more than three higher priority services have occurred. This prevents any one channel from monopolizing the system.

Regardless of which priority scheme is chosen, priority is evaluated every time a HLDA is returned to the 82C37A.

Compressed Timing - In order to achieve even greater throughput where system characteristics permit, the 82C37A can compress the transfer time to two clock cycles. From Figure 8 it can be seen that state S 3 is used to extend the access time of the read pulse. By removing state S3, the read pulse width is made equal to the write pulse width and a transfer consists only of state S 2 to change the address and state S 4 to perform the read/write. S1 states will still occur when A8-A15 need updating (see Address Generation). Timing for compressed transfers is found in Figure 11. $\overline{\mathrm{EOP}}$ will be output in S2 if compressed timing is selected. Compressed timing is not allowed for memory-to-memory transfers.

Address Generation - In order to reduce pin count, the 82C37A multiplexes the eight higher order address bits on the data lines. State S1 is used to output the higher order address bits to an external latch from which they may be placed on the address bus. The falling edge of Address Strobe (ADSTB) is used to load these bits from the data lines to the latch. Address Enable (AEN) is used to enable
the bits onto the address bus through a three-state enable. The lower order address bits are output by the 82C37A directly. Lines A0-A7 should be connected to the address bus. Figure 8 shows the time relationships between CLK, AEN, ADSTB, DB0-DB7 and A0-A7.

During Block and Demand Transfer mode service, which include multiple transfers, the addresses generated will be sequential. For many transfers the data held in the external address latch will remain the same. This data need only change when a carry or borrow from A7 to A8 takes place in the normal sequence of addresses. To save time and speed transfers, the 82C37A executes S1 states only when updating of A8-A15 in the latch is necessary. This means for long services, S1 states and Address Strobes may ocur only once every 256 transfers, a savings of 255 clock cycles for each 256 transfers.

Programming

The 82C37A will accept programming from the host processor anytime that HLDA is inactive, and at least one rising clock edge has occurred after HLDA went low. It is the responsibility of the host processor to assure that programming and HLDA are mutually exclusive.

Note that a problem can occur if a DMA request occurs on an unmasked channel while the 82C37A is being programmed. For instance, the CPU may be starting to reprogram the two byte address register of channel 1 when channel 1 receives a DMA request. If the 82C37A is enabled (bit 2 in the command register is 0), and channel 1 is unmasked, a DMA service will occur after only one byte of the Address register has been reprogrammed. This condition can be avoided by disabling the controller (setting bit 2 in the command register) or masking the channel before programming any of its registers. Once the programming is complete, the controller can be enabled/unmasked.

After power-up it is suggested that all internal locations be loaded with some known value, even if some channels are unused. This will aid in debugging.

Register Description

Current Address Register - Each channel has a 16-bit Current Address register. This register holds the value of the address used during DMA transfers. The address is automatically incremented or decremented after each transfer and the values of the address are stored in the Current Address register during the transfer. This register is written or read by the microprocessor in successive 8 -bit bytes. It may also be reinitialized by an Autoinitialize back to its original value. Autoinitialize takes place only after an EOP. In memory-to-memory mode, the channel 0 current address register can be prevented from incrementing or decrementing by setting the address hold bit in the command register.

Current Word Register - Each channel has a 16-Bit Current Word Count register. This register determines the number of transfers to be performed. The actual number of transfers will be one more than the number programmed in the Current Word Count register (i.e., programming a count of 100 will result in 101 transfers). The word count is decremented after each transfer. When the value in the register goes from zero to FFFFH, a TC will be generated. This register is loaded or read in successive 8 -bit bytes by the microprocessor in the Program Condition. Following the end of a DMA service it may also be reinitialized by an Autoinitialization back to its original value. Autoinitialization can occur only when an $\overline{E O P}$ occurs. If it is not Autoinitialized, this register will have a count of FFFFH after TC.

Base Address and Base Word Count Registers - Each channel has a pair of Base Address and Base Word Count registers. These 16-bit registers store the original value of their associated current registers. During Autoinitialize these values are used to restore the current registers to their original values. The base registers are written simultaneously with their corresponding current register in 8 -bit bytes in the Program Condition by the microprocessor. These registers cannot be read by the microprocessor.

Command Register - This 8-bit register controls the operation of the 82C37A. It is programmed by the microprocessor and is cleared by Reset or a Master Clear instruction. The following table lists the function of the command bits. See Figure 3 for Read and Write addresses.

Command Register

Mode Register - Each channel has a 6-bit mode register associated with it. When the register is being written to by the microprocessor in the Program Condition, bits 0 and 1 determine which channel Mode register is to be written. When the processor reads a mode register, bits 0 and 1 will both be ones. See the following table and Figure 3 for mode register functions and addresses.

Mode Register

Request Register - The 82C37A can respond to requests for DMA service which are initiated by software as well as by a DREQ. Each channel has a request bit associated with it in the 4-bit Request register. These are non-maskable and subject to prioritization by the priority Encoder network. Each register bit is set or reset separately under software control. The entire register is cleared by a Reset. To set or reset a bit, the software loads the proper form of the data word. See Figure 3 for register address coding, and the following table for request register format. A software request for DMA operation can be made in block or single modes. For memory-to-memory transfers, the software request for channel 0 should be set. When reading the request register, bits $4-7$ will always read as ones, and bits $0-3$ will display the request bits of channels $0-3$ respectively.

Request Register

Mask Register - Each channel has associated with it a mask bit which can be set to disable an incoming DREQ. Each mask bit is set when its associated channel produces an $\overline{E O P}$ if the channel is not programmed to Autoinitialize. Each bit of the 4-bit Mask register may also be set or cleared separately or simultaneously under software control. The entire register is also set by a Reset or Master Clear. This disables all hardware DMA requests until a clear Mask register instruction allows them to occur. The instruction to separately set or clear the mask bits is similar in form to that used with the Request register. Refer to the following table and Figure 3 for details. When reading the mask register, bits 4-7 will always read as logical ones, and bits $0-3$ will display the mask bits of channel 0-3, respectively. The 4 bits of the mask register may be cleared simultaneously by using the Clear Mask Register command (see software commands section).

Mask Register

All four bits of the Mask register may also be written with a single command

Bit Number

Clear channel 0 mask bit Set channel 0 mask bit

Clear channel 1 mask bit Set channel 1 mask bit

Clear channel 2 mask bit Set channel 2 mask bit

Clear channel 3 mask bit Set channel 3 mask bit

Status Register - The Status register is available to be read out of the 82C37A by the microprocessor. It contains information about the status of the devices at this point. This information includes which channels have reached a terminal count and which channels have pending DMA requests. Bits 0-3 are set every time a TC is reached by that channel or an external EOP is applied. These bits are cleared upon Reset, Master Clear, and on each Status Read. Bits 4-7 are set whenever their corresponding channel is requesting service, regardless of the mask bit state. If the mask bits are set, software can poll the status register to determine which channels have DREQs, and selectively clear a mask bit, thus allowing user defined service priority. Status bits 4-7 are updated while the clock is high, and latched on the falling edge. Status Bits 4-7 are cleared upon Reset or Master Clear.

Status Register

Bit Number

Channel 0 has reached TC
Channel 1 has reached TC
Channel 2 has reached TC
Channel 3 has reached TC

Channel 0 request
Channel 1 request
Channel 2 request
Channel 3 request

Temporary Register - The Temporary register is used to hold data during memory-to-memory transfers. Following the completion of the transfers, the last word moved can be read by the microprocessor. The Temporary register always contains the last byte transferred in the previous memory-to-memory operation, unless cleared by a Reset or Master Clear.

OPERATION	A3	A2	A1	A0	$\overline{\mathbf{I O R}}$	$\overline{\mathbf{I O W}}$
Read Status Register	1	0	0	0	0	1
Write Command Register	1	0	0	0	1	0
Read Request Register	1	0	0	1	0	1
Write Request Register	1	0	0	1	1	0
Read Command Register	1	0	1	0	0	1
Write Single Mask Bit	1	0	1	0	1	0
Read Mode Register	1	0	1	1	0	1
Write Mode Register	1	0	1	1	1	0
Set Byte Pointer F/F	1	1	0	0	0	1
Clear Byte Pointer F/F	1	1	0	0	1	0
Read Temporary Register	1	1	0	1	0	1
Master Clear	1	1	0	1	1	0
Clear Mode Reg. Counter	1	1	1	0	0	1
Clear Mask Register	1	1	1	0	1	0
Read All Mask Bits	1	1	1	1	0	1
Write All Mask Bits	1	1	1	1	1	0

FIGURE 3. SOFTWARE COMMAND CODES AND REGISTER CODES

Software Commands

There are special software commands which can be executed by reading or writing to the 82C37A. These commands do not depend on the specific data pattern on the data bus, but are activated by the I/O operation itself. On read type commands, the data value is not guaranteed. These commands are:

Clear First/Last Flip-Flop: This command is executed prior to writing or reading new address or word count information to the 82C37A. This initializes the flip-flop to a known state so that subsequent accesses to register contents by the microprocessor will address upper and lower bytes in the correct sequence.

Set First/Last Flip-Flop: This command will set the flipflop to select the high byte first on read and write operations to address and word count registers.

Master Clear: This software instruction has the same effect as the hardware Reset. The Command, Status, Request, and Temporary registers, and Internal First/Last Flip-Flop and mode register counter are cleared and the Mask register is set. The 82C37A will enter the Idle cycle.

Clear Mask Register: This command clears the mask bits
of all four channels, enabling them to accept DMA requests.

Clear Mode Register Counter: Since only one address location is available for reading the mode registers, an internal two-bit counter has been included to select mode registers during read operations. To read the mode registers, first execute the clear mode register counter command, then do consecutive reads until the desired channel is read. Read order is channel 0 first, channel 3 last. The lower two bits on all mode registers will read as ones.

External EOP Operation

The $\overline{E O P}$ pin is a bidirectional, open drain pin which may be driven by external signals to terminate DMA operation. Because $\overline{E O P}$ is an open drain pin an external pull-up resistor is required. The value of the external pull-up resistor used should guarantee a rise time of less than 125 ns . It is important to note that the 82C37A will not accept external EOP signals when it is in an SI (Ide) state. The controller must be active to latch EXT EOP. Once latched, the EXT $\overline{E O P}$ will be acted upon during the next $\$ 2$ state, unless the 82C37A enters an idle state first. In the latter

Channel	Register	Operation	Signals							Internal Flip-FIop	Data Bus DB0-DB7
			$\overline{\text { CS }}$	$\overline{\overline{O R}}$	$\overline{\text { IOW }}$	A3	A2	A1	AO		
0	Base and Current Address	Write	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { AO-A7 } \\ & \text { A8-A15 } \end{aligned}$				
	Current Address	Read	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { A0-A7 } \\ & \text { A8-A15 } \end{aligned}$			
	Base and Current Word Count	Write	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	Wo-w7 W8-W15			
	Current Word Count	Read		$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	W0-W7 W8-W15
1	Base and Current Address	Write		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { A0-A7 } \\ & \text { A8-A15 } \end{aligned}$
	Current Address	Read	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { A0-A7 } \\ & \text { A8-A15 } \end{aligned}$
	Base and Current Word Count	Write	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	W0-W7 W8-W15
	Current Word Count	Read	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	W0-W7 W8-W15
2	Base and Current Address	Write	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	0	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { A0-A7 } \\ & \text { A8-A15 } \end{aligned}$
	Current Address	Read	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	0	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { A0-A7 } \\ & \text { A8-A15 } \end{aligned}$
	Base and Current Word Count	Write	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	1	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	1	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	W0-W7 W8-W15
	Current Word Count	Read	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	1 1	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	W0-W7 W8-W15
3	Base and Current Address	Write	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	0	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { A0-A7 } \\ & \text { A8-A15 } \end{aligned}$
	Current Address	Read	0	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	0 0	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	0	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { A0-A7 } \\ & \text { A8-A15 } \end{aligned}$
	Base and Current Word Count	Write	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	0	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	1	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	W0-W7 W8-W15
	Current Word Count	Read	0	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	0 0	1	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	1 1	$\begin{aligned} & 0 \\ & 1 \\ & \hline \end{aligned}$	W0-W7 W8-W15

FIGURE 4. WORD COUNT AND ADDRESS REGISTER COMMAND CODES.
case, the latched $\overline{\mathrm{EOP}}$ is cleared. External $\overline{\mathrm{EOP}}$ pulses occurring between active DMA transfers in demand mode will not be recognized, since the 82C37A is in an SI state.

Application Information

Figure 5 shows an application for a DMA system utilizing the 82C37A DMA controller and the 80C88 Microprocessor. In this application, the 82C37A DMA controller is used to improve system performance by allowing an I/O device to transfer data directly to or from system memory.

Components

The system clock is generated by the 82C84A clock driver and is inverted to meet the clock high and low times required by the 82C37A DMA controller. The four OR gates are used to support the 80C88 Microprocessor in minimum mode by producing the control signals used by the processor to access memory or I/O. A decoder is used to generate chip select for the DMA controller and mem
ory. The most significant bits of the address are output on the address/data bus. Therefore, the 82 C 82 octal latch is used to demultiplex the address. Hold Acknowledge (HLDA) and Address Enable (AEN) are "ORed" together to insure that the DMA controller does not have bus contention with the microprocessor.

Operation

A DMA request (DREQ) is generated by the I/O device. After receiving the DMA request, the DMA controller will issue a Hold request (HRQ) to the processor. The system busses are not released to the DMA controller until a Hold Acknowledge signal is returned to the DMA controller from the 80 C 88 processor. After the Hold Acknowledge has been received, addresses and control signals are generated by the DMA controller to accomplish the DMA transfers. Data is transferred directly from the I/O device to memory (or vice versa) with IOR and MEMW (or MEMR and $\overline{\mathrm{OW}}$) being active. Note that data is not read into or driven out of the DMA controller in I/O-to-memory or me-mory-to-I/O data transfers.

NOTE: The address lines need pull-up resistors

FIGURE 5. APPLICATION FOR DMA SYSTEM

Absolute Maximum Ratings

Input, Output or I/O Voltage Applied ...GND -0.5V to VCC +0.5V	
Storage Temperature Range..-650${ }^{\circ} \mathrm{C}$ to $+150{ }^{\circ}$	
Maximum Package Power Dissipation... 1 W	
Gate Count...2,325 Gates	
Junction Temperature .. $+150.1{ }^{\circ} \mathrm{C}$	
Lead Temperature (Soldering, Ten Seconds)...2750 CAUTION: Stresses above those listed in the "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.	

Operating Conditions

```
Operating Voltage Range ..................................................................................................... to +5.5V
Operating Temperature Ranges
    C82C37A................................................................................................................00}\textrm{C}\mathrm{ to +700}\textrm{C
    182C37A .............................................................................................................400}\textrm{C}\mathrm{ to +850}\textrm{C
    M82C37A..........................................................................................................550}\textrm{C}\mathrm{ to +1250}\textrm{C
```

D.C. Electrical Specifications $\quad V C C=5.0 \mathrm{~V} \pm 10 \%, \quad \mathrm{TA}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}(\mathrm{C} 82 \mathrm{C} 37 \mathrm{~A})$
$\mathrm{TA}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}(182 \mathrm{C} 37 \mathrm{~A}), \quad \mathrm{TA}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}(\mathrm{M} 2 \mathrm{C} 37 \mathrm{~A})$

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
VIH	Logical One Input Voltage	$\begin{aligned} & 2.0 \\ & 2.2 \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { C82C37A 182C37A, } \\ & \text { M82C37A } \end{aligned}$
VIL	Logical Zero Input Voltage		0.8	V	
VOH	Output High Voltage	$\begin{gathered} 3.0 \\ \operatorname{vcc}-0.4 \end{gathered}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & 1 \mathrm{OH}=-2.5 \mathrm{~mA} \\ & \mathrm{IOH}=-100 \mu \mathrm{~A} \end{aligned}$
VOL	Output Low Voltage		0.4	V	$1 \mathrm{OL}=+2.5 \mathrm{~mA}$
II	Input Leakage Current	-1.0	+1.0	$\mu \mathrm{A}$	$\begin{aligned} & \text { VIN = GND or VCC } \\ & \text { pins } 11,12,13,6,7, \\ & 16-19 \end{aligned}$
10	1/O and Output	-10.0	+10.0	$\mu \mathrm{A}$	VO = GND or VCC pins 21-23, 26-30, 1, 2, 36, 32-35, 37-40, 3, 4
ICCSB	Standby Power Supply Current		10	$\mu \mathrm{A}$	$\begin{aligned} & \text { VCC }=5.5 \mathrm{~V} \\ & \text { VIN }=\text { VCC or GND } \\ & \text { Outputs Open } \end{aligned}$
ICCOP	Operating Power Supply Current		2	$\mathrm{mA} / \mathrm{mHz}$	$\begin{aligned} & \text { VCC }=5.5 \mathrm{~V} \\ & \text { CLK FREQ }=5 \mathrm{MHz} \\ & \text { VIN }=\text { VCC or GND } \\ & \text { Outputs Open } \end{aligned}$

Capacitance $\mathrm{TA}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	TYP	UNITS	TEST CONDITIONS
CIN	Input Capacitance	10	pF	FREQ $=1 \mathrm{MHz}$ All measurements are re- ferenced to device GND
COUT	Output Capacitance	15	pF	
CI / O	I/O Capacitance	20	pF	

A.C. Electrical Specifications
$\mathrm{VCC}=+5 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}$
$\mathrm{TA}=00 \mathrm{C}$ to $+700 \mathrm{C}(\mathrm{C} 82 \mathrm{C} 37 \mathrm{~A})(\mathrm{C} 82 \mathrm{C} 37 \mathrm{~A}-5)$
$T \mathrm{~A}=-40{ }^{\circ} \mathrm{C}$ to $+850^{\circ} \mathrm{C}(182 \mathrm{C} 37 \mathrm{~A})($ I82C37A-5)
$T A=-55{ }^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}($ M82C37A) $)(\mathrm{M} 82 \mathrm{C} 37 \mathrm{~A}-5)$

DMA (Master) Mode

SYMBOL	PARAMETER	82C37A-5		82C37A		UNITS
		MIN	MAX	MIN	MAX	
(1) TAEL	AEN HIGH from CLK LOW (S1) Delay Time		175		105	ns
(2) TAET	AEN LOW from CLK HIGH (SI) Delay Time		130		80	ns
(3) TAFAB	ADR Active to Float Delay from CLK HIGH		90		55	ns
(4) TAFC	$\overline{\text { READ }}$ or WRITE Float Delay from CLK HIGH		120		75	ns
(5)TAFDB	DB Active to Float Delay from CLK HIGH		170		135	ns
(6) TAHR	ADR from $\overline{\text { READ }}$ HIGH Hold Time	TCY-100		TCY-75		ns
(7) TAHS	DB from ADSTB LOW Hold Time	TCL-18		TCL-18		ns
(8) TAHW	ADR from WRITE HIGH Hold Time	TCY-50		TCY-50		ns
(9) TAK	DACK Valid from CLK LOW Delay Time		170		105	ns
	$\overline{\text { EOP }}$ HIGH from CLK HIGH Delay Time		170		105	ns
	$\overline{\text { EOP LOW to CLK HIGH Delay Time }}$		100		60	ns
(10)TASM	ADR Stable from CLK HIGH		110		60	ns
(11)TASS	DB to ADSTB LOW Setup Time	TCH-20		TCH-20		ns
(12) TCH	Clock High Time (Transitions 10ns)	70		55		ns
(13) TCL	Clock LOW Time (Transitions 10ns)	50		43		ns
(14) TCY	CLK Cycle Time	200		125		ns
(15) TDCL	CLK HIGH to $\overline{\text { READ }}$ or WRITE LOW Delay		190		120	ns
(16)TDCTR	$\overline{\text { READ }}$ HIGH from CLK HIGH (S4) Delay Time		190		115	ns
(17)TDCTW	WRITE HIGH from CLK HIGH (S4) Delay Time		130		80	ns
$\begin{aligned} & \text { (18) TDQ1 } \\ & \text { (19) TDQ2 } \end{aligned}$	HRQ Valid from CLK HIGH Delay Time		120		75	ns
			120		75	ns
(20) TEPS	EOP LOW to CLK LOW Setup Time	40		25		ns
(21)TEPW	$\overline{\text { EOP Pulse Width }}$	220		135		ns
(22)TFAAB	ADR Float to Active Delay from CLK HIGH		110		60	ns
(23) TFAC	$\overline{\text { READ }}$ or WRITE Active from CLK HIGH		150		90	ns
(24)TFADB	DB Float to Active Delay from CLK HIGH		110		60	ns
(25) THS	HLDA Valid to CLK HIGH Setup Time	75		45		ns
(26) TIDH	Input Data from $\overline{\text { MEMR }}$ HIGH Hold Time	0		0		ns
(27) TIDS	Input Data to $\overline{\text { MEMR }}$ HIGH Setup Time	155		90		ns
(28)TODH	Output Data from MEMW HIGH Hold Time	15		15		ns
(29) TODV	Output Data Valid to $\overline{\text { MEMW }}$ HIGH	TCY-35		TCY-35		ns
(30) TQS	DREQ to CLK LOW (SI, S4) Setup Time	0		0		ns
(31) TRH	CLK to READY LOW Hold Time	20		20		ns
(32) TRS	READY to CLK LOW Setup Time	60		35		ns
(33)TCLSH	ADSTB HIGH from CLK LOW Delay Time		80		50	ns
34)TCLSL	ADSTB LOW from CLK LOW Delay Time		120		120	ns

Specifications 82C37A

A.C. Electrical Specifications

DMA Ma	r Mode	82C37A-5		82C37A		
SYMBOL	PARAMETER	MIN	MAX	MIN	MAX	UNITS
(35) TWRRD	$\overline{\text { READ }}$ HIGH Delay from $\overline{\text { WRITE }}$ HIGH	0		0		ns
(36) TRLRH	$\overline{\text { READ }}$ Pulse Width, Normal Timing	2TCY-50		2TCY-50		ns
(37) TSHSL	ADSTB Pulse Width	TCY-80		TCY-50		ns
(38)TWLWHA	Extended WRITE Pulse Width	2TCY-100		2TCY-75		ns
(39) TWLWH	WRITE Pulse Width	TCY-100		TCY-75		ns
(40) TRLRHC	$\overline{\text { READ Pulse Width, Compressed }}$	TCY-50		TCY-50		ns

Peripheral (Slave) Mode

(41) TAR	ADR Valid or $\overline{C S}$ LOW to $\overline{R E A D}$ LOW	10		10		ns
(42) TAWL	ADR Valid to WRITE LOW Setup Time	0		0		ns
(43) TCWL	$\overline{\mathrm{CS}}$ LOW to $\overline{\text { WRITE }}$ LOW Setup Time	0		0		ns
(44) TDW	Data Valid to $\overline{\text { WRITE }}$ HIGH Setup Time	150		100		ns
(45) TRA	ADR or $\overline{C S}$ Hold from $\overline{\text { READ }} \mathrm{HIGH}$	0		0		ns
(46) TRDE	Data Access from $\overline{\text { READ }}$		140		120	ns
(47) TRDF	DB Float Delay from READ HIGH	10	85	10	85	ns
(48) TRSTD	Power Supply HIGH to RESET LOW Setup Time	500		500		ns
(49) TRSTS	RESET to First $\overline{\text { IOWR }}$	2TCY		2TCY		ns
(50) TRSTW	RESET Pulse Width	300		300		ns
(51) TRW	$\overline{R E A D}$ Width	200		155		ns
(52) TWA	ADR from $\overline{\text { WRITE }}$ HIGH Hold Time	0		0		ns
(53) TWC	$\overline{\mathrm{CS}}$ HIGH from $\overline{\text { WRITE }}$ HIGH Hold Time	0		0		ns
(54) TWD	Data from WRITE HIGH Hold Time	10		10		ns
(55) TWWS	WRITE Width	150		100		ns

Waveforms

Slave Mode Write Timing

FIGURE 6. SLAVE MODE TIMING
NOTE: Successive WRITE accesses to the 82C37A must allow at least TCY as recovery time between accesses.

Waveforms

Slave Mode Read Timing

FIGURE 7. SLAVE MODE READ
NOTE: Successive READ accesses to the 82C37A must allow at least TCY as recovery time between accesses
DMA Transfer Timing

FIGURE 8. DMA TRANSFER

Waveforms

Memory-to-Memory Transfer Timing

FIGURE 9. MEMORY-TO-MEMORY TRANSFER

Ready Timing

FIGURE 10. READY

Waveforms
Compressed Transfer Timing

FIGURE 11. COMPRESSED TRANSFER

Reset Timing

FIGURE 12. RESET

A. C. Test Circuits

* Includes STRAY and JIG Capacitance

TEST CONDITION DEFINITION TABLE

PINS	V1	R1	C1
All Outputs Except $\overline{\mathrm{EOP}}$	1.7 V	520Ω	100 pF
$\overline{\mathrm{EOP}}$	VCC	$1.6 \mathrm{~K} \Omega$	50 pF

A. C. Testing Input, Output Waveforms

A. C. Testing: All A. C. Parameters tested as per test circuits. Input RISE and FALL times are driven at Ins/V.

Features

- Single Chip UART/BRG
- DC to 10 MHz Operation, (DC to 625K Baud)
- Crystal or External Clock Input
- On Chip Baud Rate Generator 1 to 65535 Divisor Generates 16X Clock
- Prioritized Interrupt Mode
- Fully TTL/CMOS Compatible
- Microprocessor Bus Oriented Interface
- 80C86/80C88 Compatible
- Scaled SAJI IV CMOS Process
- Low Power - $1 \mathrm{~mA} / \mathrm{MHz}$ Typical
- Modem Interface
- Line Break Generation and Detection
- Loopback and Echo Modes
- Doubled Buffered Transmitter and Receiver
- Single 5V Supply

Pinouts

Description

The 82C50A Asynchronous Communication Element (ACE) is a high performance programmable Universal Asynchronous Receiver/Transmitter (UART) and Baud Rate Generator (BRG) on a single chip. Using Harris Semiconductor's advanced Scaled SAJI IV CMOS Process, the ACE will support data rates from DC to 625 K baud ($0-10 \mathrm{MHz}$ clock).

The ACE's receiver circuitry converts start, data, stop, and parity bits into a parallel data word. The transmitter circuitry converts a parallel data word into serial form and appends the start, parity, and stop bits. The word length is programmable to $5,6,7$, or 8 data bits. Stop bit selection provides a choice of $1,1.5$, or 2 stop bits.

The Baud Rate Generator divides the clock by a divisor programmable from 1 to 2^{16-1} to provide standard RS-232C baud rates when using any one of three industry standard baud rate crystals ($1.8432 \mathrm{MHz}, 2.4576 \mathrm{MHz}$, or 3.072 MHz). A programmable buffered clock output (BAUDOUT) provides either a buffered oscillator or 16X (16 times the data rate) baud rate clock for general purpose system use.
To meet the system requirements of a CPU interfacing to an asynchronous channel, the modem control signals RTS, CTS, DSR, DTR, RI, DCD are provided. Inputs and outputs have been designed with full TTL/CMOS compatability in order to facilitate mixed TTL/NMOS/CMOS system design.

Functional Diagram

CAUTION: Electronic devices are sensitive to electrostatic discharge. Proper I.C. handling procedures should be followed.

Pin Description

SYMBOL	PIN NUMBER	TYPE	ACTIVE LEVEL	DESCRIPTION
$\frac{\text { DISTR, }}{\text { DISTR }}$	$\begin{aligned} & 22 \\ & 21 \end{aligned}$	I	$\begin{aligned} & H \\ & L \end{aligned}$	DATA IN STROBE, DATA IN STROBE: DISTR, $\overline{\text { DISTR }}$ are read inputs which cause the 82C50A to output data to the data bus (D0-D7). The data output depends upon the register selected by the address inputs A0, A1, A2. The chip select inputs CS0, CS1, CS2 enable the DISTR, DISTR inputs. Only an active DISTR or DISTR, not both, is used to receive data from the 82C50A during a read operation. If DISTR is used as the read input, $\overline{\text { DISTR }}$ should be tied high. If DISTR is used as the active read input, DISTR should be tied low.
$\frac{\text { DOSTR }}{\text { DOSTR }}$	$\begin{aligned} & 19 \\ & 18 \end{aligned}$	i	$\begin{aligned} & H \\ & L \end{aligned}$	DATA OUT STROBE, DATA OUT STROBE: DOSTR, $\overline{\text { DOSTR }}$ are write inputs which cause data from the data bus (D0-D7) to be input to the 82C50A. The data input depends upon the register selected by the address inputs A0, A1, A2. The chip select inputs CS0, CS1, CS2 enable the DOSTR, $\overline{\text { DOSTR inputs. }}$ Only an active DOSTR or DOSTR, not both, is used to transmit data to the 82C50A during a write operation. If DOSTR is used as the write input, $\overline{\text { DOSTR }}$ should be tied high. If $\overline{\text { DOSTR }}$ is used as the write input, DOSTR should be tied low.
D0-D7	1-8	1/0		DATA BITS 0-7: The Data Bus provides eight, 3-state input/output lines for the transfer of data, control and status information between the 82C50A and the CPU. For character formats of less than 8 bits, D7, D6 and D5 are "don't cares" for data write operations and 0 for data read operations. These lines are normally in a high impedance state except during read operations. D0 is the Least Significant Bit (LSB) and is the first serial data bit to be received or transmitted.
$\begin{gathered} \mathrm{A} 0, \mathrm{~A} 1 \\ \mathrm{~A} 2 \end{gathered}$	$\begin{gathered} 28,27 \\ 26 \end{gathered}$	1	H	REGISTER SELECT: The address lines select the internal registers during CPU bus operations. See Table 1.
XTAL1, XTAL2	$\begin{aligned} & 16 \\ & 17 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$		CRYSTAL/CLOCK: Crystal connections for the internal Baud Rate Generator. XTAL1 can also be used as an external clock input, in which case XTAL2 should be left open.
SOUT	11	0		SERIAL DATA OUTPUT: Serial data output from the 82C50A transmitter circuitry. A Mark (1) is a logic one (high) and Space (0) is a logic zero (low). SOUT is held in the Mark condition when the transmitter is disabled, MR is true, the Transmitter Register is empty, or when in the Loop Mode. SOUT is not affected by the $\overline{\mathrm{CTS}}$ input.
GND	20		L	GROUND: Power supply ground connection (VSS).
$\overline{\mathrm{CTS}}$	36	1	L	CLEAR TO SEND: The logical state of the $\overline{\mathrm{CTS}}$ pin is reflected in the CTS bit of the (MSR) Modem Status Register (CTS is bit 4 of the MSR, written MSR(4)). A change of state in the $\overline{\mathrm{CTS}}$ pin since the previous reading of the MSR causes the setting of DCTS (MSR(0)) of the Modem Status Register. When $\overline{\text { CTS }}$ pin is ACTIVE (low), the modem is indicating that data on SOUT can be transmitted on the communications link. If $\overline{C T S}$ pin goes INACTIVE (high), the 82C50A should not be allowed to transmit data out of SOUT. CTS pin does not affect Loop Mode operation.
$\overline{\text { DSR }}$	37	1	L	DATA SET READY: The logical state of the $\overline{\mathrm{DSR}}$ pin is reflected in MSR(5) of the Modem Status Register. DDSR (MSR(1)) indicates whether the $\overline{D S R}$ pin has changed state since the previous reading of the MSR. When the $\overline{D S R}$ pin is ACTIVE (low), the modem is indicating that it is ready to exchange data with the 82 C 50 A , while the $\overline{\mathrm{DSR}}$ Pin INACTIVE (high) indicates that the modem is not ready for data exchange. The ACTIVE condition indicates only the condition of the local Data Communications Equipment (DCE), and does not imply that a data circuit as been established with remote equipment.

Pin Description

SYMBOL	PIN NUMBER	TYPE	ACTIVE LEVEL	DESCRIPTION
$\overline{\text { DTR }}$	33	O	L	DATA TERMINAL READY: The $\overline{\text { DTR }}$ pin can be set (low) by writing a logic 1 to MCR(0), Modem Control Register bit 0 . This signal is cleared (high) by writing a logic 0 to the DTR bit (MCR(0)) or whenever a MR ACTIVE (high) is applied to the 82C50A. When ACTIVE (low), DTR pin indicates to the DCE that the 82C50A is ready to receive data. In some instances, $\overline{\text { DTR }}$ pin is used as a power on indicator. The INACTIVE (high) state causes the DCE to disconnect the modem from the telecommunications circuit.
$\overline{\text { RTS }}$	32	O	L	REQUEST TO SEND: The $\overline{R T S}$ signal is an output used to enable the modem. The $\overline{\text { TTS }}$ pin is set low by writing a logic 1 to MCR(1) bit 1 of the Modem Control Register. The $\overline{\mathrm{RTS}}$ pin is reset high by Master Reset. When ACTIVE, the RTS pin indicates to the DCE that the 82C50A has data ready to transmit. In half duplex operations, $\overline{\mathrm{RTS}}$ is used to control the direction of the line.
$\overline{\text { BAUDOUT }}$	15	0		BAUDOUT: This output is a 16 X clock out used for the transmitter section ($16 \mathrm{X}=16$ times the data rate). The $\overline{B A U D O U T}$ clock rate is equal to the reference oscillator frequency divided by the specified divisor in the Baud Rate Generator Divisor Latches DLL and DLM. $\overline{\text { BAUDOUT }}$ may be used by the Receiver section by tying this output to RCLK.
$\overline{\text { OUT1 }}$	34	0	L	OUTPUT 1: This is a general purpose output that can be programmed ACTIVE (low) by setting MCR(2) (OUT1) of the Modem Control Register to a high level. The OUT1 pin is set high by Master Reset. The OUT' pin is INACTIVE (high) during loop mode operation.
OUT2	31	0	L	OUTPUT 2: This is a general purpose output that can be programmed ACTIVE (low) by setting MCR(3) (OUT2) of the Modem Control Register to a high level. The OUT2 pin is set high by Master Resot. Tho OUT2 signal is INACTIVE (high) during loop mode operation.
$\overline{\mathrm{RI}}$	39	1	L	RING INDICATOR: When low, $\overline{R I}$ indicates that a telephono ringing signal has been received by the modem or data set. The $\overline{R l}$ signal is a modem control input whose condition is tested by reading MSR(6) (RI). The Modem Status Register output TERI (MSR(2)) indicates whether the $\overline{R I}$ input has changed from a Low to High since the previous reading of the MSR. If the interrupt is enabled (IER $(3)=1)$ and $\overline{R I}$ changes froma Low to High, an interrupt is generated. The ACTIVE (low) state of $\overline{\mathrm{Ri}}$ indicates that the DCE is receiving a ringing signal. $\overline{R I}$ will appear ACTIVE for approximately the same length of time as the ACTIVE segment of the ringing cycle. The INACTIVE state of $\overline{\mathrm{RI}}$ will occur during the INACTIVE segments of the ringing cycle, or when ringing is not detected by the DCE. This circuit is not disabled by the INACTIVE condition of DTR.
$\overline{D C D}$	38	1	L	DATA CARRIER DETECT: When ACTIVE (low), $\overline{D C D}$ indicates that the data carrier has been detected by the modem or data set. $\overline{\mathrm{DCD}}$ is a modem input whose condition can be tested by the CPU by reading MSR(7) (DCD) of the Modem Status Register. MSR(3) (DDCD) of the Modem Status Register indicates whether the $\overline{D C D}$ input has changed since the previous reading of the MSR. $\overline{D C D}$ has no effect on the receiver. If the $\overline{D C D}$ changes state with the modem status interrupt enabled, an interrupt is generated. When $\overline{D C D}$ is ACTIVE (low), the received line signal from the remote terminal is within the limits specified by the DCE manufacturer. The INACTIVE (high) signal indicates that the signal is not within the specified limits, or is not present.

Pin Description

SYMBOL	PIN NUMBER	TYPE	ACTIVE LEVEL	DESCRIPTION

MR	35	1	H	MASTER RESET: The MR input forces the 82C50A into an idle mode in which all serial data activities are suspended. The Modem Control Register (MCR) along with its associated outputs are cleared. The Line Status Register (LSR) is cleared except for the THRE and TEMT bits, which are set. The 82C50A remains in an idle state until programmed to resume serial data activities. The MR input is a Schmitt trigger input. See the D. C. Electrical Characteristics for Schmitt trigger logic input voltage levels. See Table 7 for a summary of Master Reset's effect on 82C50A operation.
INTRPT	30	0	H	INTERRUPT REQUEST: The INTRPT output goes ACTIVE (high) when one of the following interrupts has an ACTIVE (high) condition and is enabled by the Interrupt Enable Register: Receiver Error flag, Received Data Available, Transmitter Holding Register Empty, and Modem Status. The INTRPT is reset low upon appropriate service or a MR operation. See Figure 1. Interrupt Control Structure.
SIN	10	1	H	SERIAL DATA INPUT: The SIN input is the serial data input from the communication line or modem to the 82C50A receiver circuits. A mark (1) is high, and a space (0) is low. Data inputs on SIN are disabled when operating in the loop mode.
VCC	40		H	VCC: +5 volt positive power supply pin. A $0.1 \mu \mathrm{~A}$ decoupling capacitor from VCC (pin 40) to GND (pin 20) is recommended.
$\frac{\mathrm{CS} 0, \mathrm{CS} 1}{\mathrm{CS} 2}$	$\begin{gathered} 12,13 \\ 14 \end{gathered}$	1	H, H L	CHIP SELECT: The Chip Select inputs acts as enable signals for the write (DOSTR, $\overline{\text { DOSTR }}$) and read (DISTR, $\overline{\text { DISTR) input signals. The }}$ Chip Select inputs are latched by the $\overline{A D S}$ input.
NC	29			Do Not Connect
CSOUT	24	0	H	CHIP SELECT OUT: When ACTIVE (high), this pin indicates that the chip has been selected by active CS0, CS1, and $\overline{\mathrm{CS} 2}$ inputs. No data transfer can be initiated until CSOUT is a logic 1, ACTIVE (high).
DDIS	23	0	H	DRIVER DISABLE: This output is INACTIVE (low) when the CPU is reading data from the 82 C 50 A . An ACTIVE (high) DDIS output can be used to disable an external transceiver when the CPU is reading data.
$\overline{\text { ADS }}$	25	1	L	ADDRESS STROBE: When ACTIVE (low), $\overline{A D S}$ latches the Register Select ($A 0, A 1, A 2$) and Chip Select (CS0, CS1, $\overline{C S 2}$) inputs. An active $\overline{A D S}$ is required when the Register Select pins are not stable for the duration of the read or write operation, multiplexed mode. If not required, the $\overline{A D S}$ input should be tied low, non-multiplexed mode.
RCLK	9	1		This input is the 16X Baud Rate Clock for the receiver section of the 82C50A. This input may be provided from the BAUDOUT output or an external clock.

Block Diagram

Accessible Registers

The three types of internal registers in the 82C50A used in the operation of the device are control, status, and data registers. The control registers are the Bit Rate Select Register DLL and DLM, Line Control Register, Interrupt Enable Register and the Modem Control registers, while the status registers are the Line Status Registers and the Modem Status Register. The data registers are the Receiver Buffer Register and Transmitter Holding Register. The Address, Read, and Write inputs are used in conjunction with the Divisor Latch Access Bit in the Line Control Register (LCR(7)) to select the register to be written or read (see Table 1.). Individual bits within these registers are referred to by the register mnemonic and the bit number in parenthesis. An example, LCR(7) refers to Line Control Register Bit 7.

TABLE 1. ACCESSING 82C50A INTERNAL REGISTERS

DLAB	A2	A1	A0	MNEMONIC	REGISTER		
0	0	0	0	RBR	Receiver Buffer Register (read only)		
0	0	0	0	THR	Transmitter Holding Register (write only)		
0	0	0	1	IER	Interrupt Enable Register Interrupt Identification		
X	0	1	0	IIR	Register (read only) X		
\mathbf{X}	1	1	1	LCR	Line Control Register		
X	1	0	0	1	MCR		Modem Control Register
:---							
X							

The Transmitter Buffer Register and Receiver Buffer Register are data registers holding from 5-8 data bits. If less than eight data bits are transmitted, data is right justified to the LSB. Bit 0 of a data word is always the first serial data bit received and transmitted. The 82C50A data
registers are double buffered so that read and write operations can be performed at the same time the UART is performing the parallel to serial and serial to parallel conversion. This provides the microprocessor with increased flexibility in its read and write timing.

Line Control Register (LCR)

The format of the data character is controlled by the Line Control Register. The contents of the LCR may be read, eliminating the need for separate storage of the line characteristics in system memory. The contents of the LCR are described below.

LCR Bits 0 thru 7
LCR (0) Word Length Select Bit 0 (WLSO)
LCR (1) Word Length Select Bit 1 (WLS1)
LCR (2) Stop Bit Select (STB)
LCR (3) Parity Enable (PEN)
LCR (4) Even Parity Select (EPS)
LCR (5) Stick Parity
LCR (6) Set Break
LCR (7) Divisor Latch Access Bit (DLAB)
$\operatorname{LCR}(0)$ and LCR(1) word length select bit 0 , word length select bit 1: The number of bits in each transmitted or received serial character is programmed as follows

LCR(1)	LCR(0)	WORD LENGTH
0	0	5 Bits
0	1	6 Bits
1	0	7 Bits
1	1	8 Bits

LCR(2) Stop Bit Select: LCR(2) specifies the number of stop bits in each transmitted character. If LCR(2) is a logic 0 , one stop bit is generated in the transmitted data. If $\operatorname{LCR}(2)$ is a logic 1 when a 5 bit word length is selected, 1.5 stop bits are generated. If LCR(2) is a logic 1 when either a 6 -, 7-, or 8-bit word length is selected, two stop bits are generated. The receiver checks for two stop bits if programmed.

LCR(3): Parity Enable: When LCR(3) is high, a parity bit between the last data word bit and stop bit is generated and checked.

LCR(4) Even Parity Select: When parity is enabled (LCR(3)=1), LCR(4)=0 selects odd parity, and LCR(4)=1 selects even parity.

LCR(5) Stick Parity: When parity is enabled (LCR(3)=1), $\operatorname{LCR}(5)=1$ causes the transmission and reception of a parity bit to be in the opposite state from that indicated by LCR(4). This allows the user to force parity to a known state and for the receiver to check the parity bit in a known state.

LCR(6) Break Control: When LCR(6) is set to logic-1, the serial output (SOUT) is forced to the spacing (logic 0) state. The break is disabled by setting LCR(6) to a logic-0. The Break Control bit acts only on SOUT and has no effect on the transmitter logic. Break Control enables the

CPU to alert a terminal in a computer communications system. If the following sequence is used, no erroneous or extraneous characters will be transmitted because of the break.

1. Load an all Os pad character in response to THRE.
2. Set break in response to the next THRE.
3. Wait for the transmitter to be idle, (TEMT=1), and clear break when normal transmission has to be restored.

During the break, the transmitter can be used as a character timer to accurately establish the break duration.

LCR(7) Divisor Latch Access Bit (DLAB): LCR(7) must be set high (logic 1) to access the Divisor Latches DLL and DLM of the Baud Rate Generator during a read or write operation. LCR(7) must be input low to access the Receiver Buffer, the Transmitter Holding Register, or the Interrupt Enable Register.

Line Status Register (LSR)

The LSR is a single register that provides status indications. The LSR is usually the first register read by the CPU to determine the cause of an interrupt or to poll the status of the 82C50A.

Three error flags OE, FE, and PE provide the status of any error conditions detected in the receiver circuitry. During reception of the stop bits, the error flags are set high by an error condition. The error flags are not reset by the absence of an error condition in the next received character. The flags reflect the last character only if no overrun occured. The Overrun Error (OE) indicates that a character in the Receiver Buffer Register has been overwritten by a character from the Receiver Shift Register before being read by the CPU. The character is lost. Framing Error (FE) indicates that the last character received contained incorrect (low) stop bits. This is caused by the absence of the required stop bit or by a stop bit too short to be detected. Parity Error (PE) indicates that the last character received contained a parity error based on the programmed and calculated parity of the received character.

The Break Interrupt (BI) status bit indicates that the last character received was a break character. A break character is an invalid data character, with the entire character, including parity and stop bits, logic zero.

The Transmitter Holding Register Empty (THRE) bit indicates that the THR register is empty and ready to receive another character. The Transmission Shift Register Empty (TEMT) bit indicates that the Transmitter Shift Register is empty, and the 82C50A has completed transmission of the last character. If the interrupt is enabled (IER(1)), an active THRE causes an interrupt (INTRPT).

The Data Ready (DR) bit indicates that the RBR has been loaded with a received character (including Break) and that the CPU may access this data.

Reading the LSR clears LSR(1)-LSR(4). (OE, PE, FE \& $\mathrm{BI})$

LSR Bits 0 Thru 7

	LOGIC 1	LOGIC 0
LSR (0) Data Ready (DR)	Ready	Not Ready
LSR (1) Overrun Error (OE)	Error	No Error
LSR (2) Parity Error (PE)	Error	No Error
LSR (3) Framing Error (FE)	Error	No Error
LSR (4) Break Interrupt (BI)	Break	No Break
LSR (5) Transmitter Holding	Empty	Not Empty
\quad Register Empty (THRE)		
LSR (6) Transmitter Empty (TEMT)	Empty	Not Empty
LSR (7) Not Used		

The contents of the Line Status Register are indicated in the above table and are described below.

LSR(0) Data Ready (DR): Data Ready is set high when an incoming character has been received and transferred into the Receiver Buffer Register. LSR(0) is reset low by a CPU read of the data in the Receiver Buffer Register.

LSR(1) Overrun Error (OE): Overrun Error indicates that data in the Receiver Buffer Register was not read by the CPU before the next character was transferred into the Receiver Buffer Register, overwriting the previous character. The OE indicator is reset whenever the CPU reads the contents of the Line Status Register.

LSR(2) Parity Error (PE): Parity Error indicates that the received data character does not have the correct even or odd parity, as selected by the Even Parity Select bit (LCR(4)). The PE bit is set high upon detection of a parity error, and is reset low when the CPU reads the contents of the LSR.

LSR(3) Framing Error (FE): Framing Error indicates that the received character did not have a valid stop bit. LSR(3) is set high when the stop bit following the last data bit or parity bit is detected as a zero bit (spacing level). The FE indicator is reset low when the CPU reads the contents of the LSR.

LSR(4) Break Interrupt (BI): Break Interrupt is set high when the received data input is held in the spacing (logic 0) state for longer than a full word transmission time (start bit + data bits + parity + stop bits). The BI indicator is reset when the CPU reads the contents of the Line Status Register.
$\operatorname{LSR}(1)-\operatorname{LSR}(4)$ are the error conditions that produce a Receiver Line Status interrupt (priority 1 interrupt in the Interrupt Identification Register (IIR)) when any of the conditions are detected. This interrupt is enabled by setting $\operatorname{IER}(2)=1$ in the Interrupt Enable Register.

LSR(5) Transmitter Holding Register Empty (THRE): THRE indicates that the 82C50A is ready to accept a new character for transmission. The THRE bit is set high when a character is transferred from the Transmitter Holding Register into the Transmitter Shift Register. LSR(5) is reset low by the loading of the Transmitter Holding Register by the CPU. LSR(5) is not reset by a CPU read of the LSR.

When the THRE interrupt is enabled (IER(1)=1), THRE causes a priority 3 interrupt in the IIR. If THRE is the interrupt source indicated in IIR, INTRPT is cleared by a read of the IIR.

LSR(6) Transmitter Empty (TEMT): TEMT is set high when the Transmitter Holding Register (THR) and the Transmitter Shift Register (TSR) are both empty. LSR(6) is reset low when a character is loaded into the THR and remains low until the character is transferred out of SOUT. TEMT is not reset low by a CPU read of the LSR.
$\operatorname{LSR}(7):$ This bit is permanently set to logic 0 .

Modem Control Register (MCR)

The MCR controls the interface with the modem or data set as described below. The MCR can be written and read. The RTS, $\overline{\text { DTR, OUT1, and OUT2 }}$ outputs are directly controlled by their control bits in this register. A high input asserts a low (true) at the output pins.

MCR Bits 0 thru 7

,	MCR BIT LOGIC 1	MCR BIT LOGIC 0
MCR (0) Data Terminal Ready (DTR)	$\overline{\overline{\mathrm{DTR}}}$ Output Low	$\overline{\text { DTR }}$ Output High
MCR (1) Request to Send (RTS)	$\overline{\text { RTS }}$ Output Low	$\overline{\text { RTS }}$ Output High
MCR (2) OUT1	$\overline{O U T 1}$ Output Low	$\overline{\text { OUT1 }}$ Output High
MCR (3) OUT2	$\overline{\text { OUT2 }}$ Output Low	OUT2 Output High
MCR (4) LOOP	LOOP Enabled	LOOP Disabled
MCR (5) 0		
MCR (6) 0		
MCR (7) 0		

$\operatorname{MCR}(0)$: When $\operatorname{MCR}(0)$ is set high, the $\overline{D T R}$ output is forced low. When MCR (0) is reset low, the DTR output is forced high. The $\overline{\mathrm{DTR}}$ output of the 82C50A may be input into an EIA inverting line driver as the 1488 to obtain the proper polarity input at the modem or data set.
$\operatorname{MCR}(1)$: When $\operatorname{MCR}(1)$ is set high, the $\overline{R T S}$ output is forced low. When MCR(1) is reset low, the RTS output is forced high. The $\overline{R T S}$ output of the 82C50A may be input into an EIA inverting line driver as the 1488 to obtain the proper polarity input at the modem or data set.

MCR(2): When MCR(2) is set high, the OUT1 output is forced low. When MCR(2) is reset low, the OUT1 output is forced high. $\overline{\text { OUT1 }}$ is an user designated output.
$\operatorname{MCR}(3)$: When MCR(3) is set high, the OUT2 output is forced low. When MCR(3) is reset low, the OUT2 output is forced high. $\overline{O U T 2}$ is an user designated output.

MCR(4): MCR(4) provides a local loopback feature for diagnostic testing of the 82C50A. When MCR(4) is set high, Serial Output (SOUT) is set to the marking (Iogic 1) state, and the receiver data input Serial Input (SIN) is disconnected. The output of the Transmitter Shift Register is looped back into the Receiver Shift Register input. The four modem control inputs ($\overline{C T S}, \overline{D S R}, D C$, and $\overline{\mathrm{RI}}$) are disconnected. The four modem control outputs ($\overline{\mathrm{TTR}}$, RTS, OUT1 and OUT2) are internally connected to the four modem control inputs. The modem control output pins are forced to their inactive state (high). In the diagnostic mode, data transmitted is immediately received. This allows the processor to verify the transmit and receive data paths of the 82C50A.

In the diagnostic mode, the receiver and transmitter interrupts are fully operational. The modem control interrupts are also operational, but the interrupt sources are now the lower four bits of the MCR instead of the four modem control inputs. The interrupts are still controlled by the Interrupt Enable Register.

MCR(5) - MCR(7): These bits are permanently set to logic 0.

Modem Status Register (MSR)

The MSR provides the CPU with status of the modem input lines from the modem or peripheral device. The MSR allows the CPU to read the modem signal inputs by accessing the data bus interface of the 82C50A. In addition to
the current status information, four bits of the MSR indicate whether the modem inputs have changed since the last reading of the MSR. The delta status bits are set high when a control input from the modem changes state, and reset low when the CPU reads the MSR.

The modem input lines are $\overline{C T S}$ (pin 36), $\overline{\mathrm{DSR}}$ (pin 37), $\overline{\mathrm{RI}}$ (pin 39), and $\overline{D C D}$ (pin 38). MSR(4) - MSR(7) are status indications of these lines. The status indications follow the status of the input lines. If the modem status interrupt in the Interrupt Enable Register is enabled (IER(3)), a change of state in a modem input signals will be reflected by the modem status bits in the IIR register, and an interrupt (INTRPT) is generated. The MSR is a priority 4 interrupt. The contents of the Modem Status Register are described below:

Note that the state (high or low) of the status bits are Inverted versions of the actual input pins.

MSR Bits 0 thru 7

MSR BIT	MNEMONIC	DESCRIPTION
MSR (1)	DDSR	Delta Data Set Ready
MSR (2)	TERI	Trailing Edge of Ring
MSR (0)	DCTS	Indicator
Delta Clear To Send		
MSR (3)	DDCD	Delta Data Carrier Detect
MSR (4)	CTS	Clear To Send
MSR (5)	DSR	Data Set Ready
MSR (6)	RI	Ring Indicator
MSR (7)	DCD	Data Carrier Detect

MSR(0) Delta Clear to Send (DCTS): DCTS indicates that the CTS input (Pin-36) to the 82C50A has changed state since the last time it was read by the CPU.

MSR(1) Delta Data Set Ready (DDSR): DDSR indicates that the $\overline{D S R}$ input (Pin-37) to the 82C50A has changed state since the last time it was read by the CPU.

MSR(2) Trailing Edge of Ring Indicator (TERI): TERI indicates that the RI input (Pin-39) to the 82C50A has changed state from Low to High since the last time it was read by the CPU. High to Low transitions on $\overline{\mathrm{RI}}$ do not activate TERI.

MSR(3) Delta Data Carrier Detect (DDCD): DDCD indicates that the $\overline{\mathrm{DCD}}$ input (Pin-38) to the 82C50A has changed state since the last time it was read by the CPU.

MSR(4) Clear to Send (CTS): Clear to Send (CTS) is the status of the CTS input (Pin-36) from the modem indicating to the 82C50A that the modem is ready to receive data from the 82 C 50 A transmitter output (SOUT). If the 82 C 50 A is in the loop mode ($\mathrm{MCR}(4)=1$), $\operatorname{MSR}(4)$ is equivalent to RTS in the MCR.

MSR(5) Data Set Ready (DSR): Data Set Ready (DSR) is a status of the $\overline{\mathrm{DSR}}$ input (Pin-37) from the modem to the 82C50A which indicates that the modem is ready to provide received data to the 82C50A receiver circuitry. If the 82C50A is in the loop mode $(\operatorname{MCR}(4)=1), \operatorname{MSR}(5)$ is equivalent to DTR in the MCR.

MSR(6) Ring Indicator MSR(6): Indicates the status of the $\overline{\mathrm{R}}$ input ($\mathrm{Pin}-39$). If the 82C50A is in the loop mode $(\operatorname{MCR}(4)=1), \operatorname{MSR}(6)$ is equivalent to OUT1 in the MCR.

MSR(7) Data Carrier Detect (MSR(7)): Data Carrier Detect indicates the status of the Data Carrier Detect (DCD) input (Pin-38). If the 82C50A is in the loop mode $(\operatorname{MCR}(4)=1), \operatorname{MSR}(4)$ is equivalent to OUT2 of the MCR.

The modem status inputs (RI, DCD, DSR and CTS) reflect the modem input lines with any change of status. Reading the MSR register will clear the delta modem status indications but has no effect on the status bits. The status bits reflect the state of the input pins regardless of the mask control signals. If a DCTS, DDSR, TERI, or DDCD are true and a state change occurs during a read operation (DISTR, DISTR), the state change is not indicated in the MSR. If DCTS, DDSR, TERI, or DDCD are false and a state change occurs during a read operation, the state change is indicated after the read operation.

For LSR and MSR, the setting of status bits is inhibited during status register read (DISTR, DISTR) operations. If a status condition is generated during a read (DISTR, $\overline{\text { DISTR }}$) operation, the status bit is not set until the trailing edge of the read (DISTR, $\overline{\text { DISTR }}$).

If a status bit is set during a read (DISTR, $\overline{\text { DISTR }}$) operation, and the same status condition occurs, that status bit will be cleared at the trailing edge of the read (DISTR, $\overline{\text { DISTR }}$) instead of being set again.

Baud Rate Select Register (BRSR)

The 82C50A contains a programmable Baud Rate Generator (BRG) that divides the clock ($D C$ to 10 MHz) by any divisor from 1 to 2^{16-1} (see also BRG description). The output frequency of the Baud Generator is 16X the data rate [divisor \# = frequency input \div (baud rate $\times 16$)]. Two 8-blt divisor latch registers store the divisor in a 16 bit binary format. These Divisor Latch registers must be loaded during initialization. Upon loading either of the Divisor Latches, a 16 -bit Baud counter is immediately loaded. This prevents long counts on initial load.

Sample Divisor Number Calculation:
Given: Desired Baud Rate 1200 Baud
Frequency Input 1.8432 MHz
Formula: Divisor \# = Frequency Input \div (Baud Rate $\times 16$)

$$
\begin{gathered}
\text { Divisor \# }=1843200 \div(1200 \times 16) \\
\text { Answer: } \quad \text { Divisor \# }=96=60 \mathrm{HEX} \rightarrow \begin{array}{l}
\text { DLL }=01100000 \\
\text { DLM }=00000000
\end{array}
\end{gathered}
$$

Check: The Divisor \# 96 will divide the input frequency 1.8432 MHz down to 19200 which is 16 times the desired baud rate.

Divisor Latch Least Significant BYTE

DLL (0)	Bit 0
DLL (1)	Bit 1
DLL (2)	Bit 2
DLL (3)	Bit 3
DLL (4)	Bit 4
DLL (5)	Bit 5
DLL (6)	Bit 6
DLL (7)	Bit 7

Divisor Latch Most Significant BYTE

DLM (0)	Bit 8
DLM (1)	Bit 9
DLM (2)	Bit 10
DLM (3)	Bit 11
DLM (4)	Bit 12
DLM (5)	Bit 13
DLM (6)	Bit 14
DLM (7)	Bit 15

Receiver Buffer Register (RBR)

The receiver circuitry in the 82C50A is programmable for $5,6,7$ or 8 data bits per character. For words of less than 8 bits, the data is right justified to the least significant bit (LSB = Data Bit 0 (RBR (0)). Data Bit 0 of a data word (RBR $(0))$ is the first data bit received. The unused bits in a character less than 8 bits are output low to the parallel output by the 82C50A.

Received data at the SIN input pin is shifted into the Receiver Shift Register by the 16X clock provided at the RCLK input. This clock is synchronized to the incoming data based on the position of the start bit. When a complete character is shifted into the Receiver Shift Register, the assembled data bits are parallel loaded into the Receiver Buffer Register. The DR flag in the LSR register is set.

Double buffering of the received data permits continuous reception of data without losing received data. While the Receiver Shift Register is shifting a new character into the 82C50A, the Receiver Buffer Register is holding a previously received character for the CPU to read. Failure to read the data in the RBR before complete reception of the next character result in the loss of the data in the Receiver Register. The OE flag in the LSR register indicates the overrun condition.

RBR Bits 0 thru 7

RBR (0)	Data Bit 0
RBR (1)	Data Bit 1
RBR (2)	Data Bit 2
RBR (3)	Data Bit 3
RBR (4)	Data Bit 4
RBR (5)	Data Bit 5
RBR (6)	Data Bit 6
RBR (7)	Data Bit 7

Transmitter Holding Register (THR)

The Transmitter Holding Register (THR) holds parallel data from the data bus (D0-D7) until the Transmitter Shift Register is empty and ready to accept a new character for transmission. The transmitter and receiver word length and number of stop bits are the same. If the character is less than eight bits, unused bits at the microprocessor data bus are ignored by the transmitter.

Data Bit 0 (THR (0)) is the first serial data bit transmitted. The THRE flag (LSR (5)) refiect the status of the THR. The TEMT flag (LSR (6)) indicates if both the THR and TSR are empty.

THR Bits 0 thru 7

THR (0)	Data Bit 0
THR (1)	Data Bit 1
THR (2)	Data Bit 2
THR (3)	Data Bit 3
THR (4)	Data Bit 4
THR (5)	Data Bit 5
THR (6)	Data Bit 6
THR (7)	Data Bit 7

Scratchpad Register (SCR)

This 8-bit Read/Write register has no effect on the 82C50A. It is intended as a scratchpad register to be used by the programmer to hold data temporarily.

SCR Bits 0 thru 7

SCR (0)	Data Bit 0
SCR (1)	Data Bit 1
SCR (2)	Data Bit 2
SCR (3)	Data Bit 3
SCR (4)	Data Bit 4
SCR (5)	Data Bit 5
SCR (6)	Data Bit 6
SCR (7)	Data Bit 7

Interrupt Structure

Interrupt Identification Register (IIR)

The 82C50A has interrupt capability for interfacing to current microprocessors. In order to minimize software overhead during data character transfers, the 82C50A prioritizes interrupts into four levels. The four levels of interrupt conditions are as follows:

1. Receiver Line Status (priority 1)
2. Received Data Ready (priority 2)
3. Transmitter Holding Register Empty (priority 3)
4. Modem Status (priority 4).

Information indicating that a prioritized interrupt is pending and the type of interrupt is stored in the Interrupt Identification Register (IIR). When addressed during chip select time, the IIR indicates the highest priority interrupt pending. No other interrupts are acknowledged until the interrupt is serviced by the CPU. The contents of the IIR are indicated in Table 2 and are described below.
$\operatorname{IIR}(0): \operatorname{IIR}(0)$ can be used in either a hardwired prioritized or polled environment to indicate whether an interrupt is pending. When IIR(0) is low, an interrupt is pending, and the IIR contents may be used as a pointer to the appropriate interrupt service routine. When IIR(0) is high, no interrupt is pending.
$\operatorname{IIR}(1)$ and $\operatorname{IIR}(2): \operatorname{IIR}(1)$ and $\operatorname{IIR}(2)$ are used to identify the highest priority interrupt pending as indicated in Table 2.
$\operatorname{IIR}(3)-\operatorname{IIR}(7)$: These five bits of the IIR are logic 0 .

Interrupt Enable Register (IER)

The Interrupt Enable Register (IER) is a Write register used to independently enable the four 82C50A interrupts which activate the interrupt (INTRPT) output. All interrupts are disabled by resetting $\operatorname{IER}(0)-\operatorname{IER}(3)$ of

TABLE 2. INTERRUPT IDENTIFICATION REGISTER

INTERRUPT IDENTIFICATION				INTERRUPT SET AND RESET FUNCTIONS		
BIT 2	BIT 1	BIT 0	PRIORITY LEVEL	INTERRUPT FLAG	INTERRUPT SOURCE	INTERRUPT RESET CONTROL
X	X	1		None	None	
1	1	0	First	Receiver Line Status	OE, PE, FE, or BI	LSR Read
1	0	0	Second	Received Data Available	Receiver Data Available	RBR Read
0	1	0	Third	THRE	THRE	IIR Read if THRE is the interrupt source or THR Write
0	0	0	Fourth	Modem Status	$\begin{aligned} & \overline{\mathrm{CTS}}, \overline{\mathrm{DSR}} \\ & \overline{\mathrm{RI}}, \overline{\mathrm{DCD}} \end{aligned}$	MSR Read

[^4]the Interrupt Enable Register. Interrupts are enabled by setting the appropriate bits of the IER high. Disabling the interrupt system inhibits the Interrupt Identification Register and the active (high) INTRPT output. All other system functions operate in their normal manner, including the setting of the Line Status and Modem Status Registers. The contents of the Interrupt Enable Register are indicated in Table 3 and are described below.
$\operatorname{IER}(0)$: When programmed high $(\operatorname{IER}(0)=\operatorname{Logic} 1), \operatorname{IER}(0)$ enables Received Data Available interrupt.
$\operatorname{IER}(1)$: When programmed high (IER(1)=Logic 1), $\operatorname{IER}(1)$ enables the Transmitter Holding Register Empty interrupt.
$\operatorname{IER}(2)$: When programmed high (IER(2)=Logic 1), $\operatorname{IER}(2)$ enables the Receiver Line Status interrupt.
IER(3): When programmed high (IER(3)=Logic 1), IER (3) enables the Modem Status interrupt.
$\operatorname{IER}(4)-\operatorname{IER}(7):$ These four bits of the IER are logic 0.

FIGURE 1. 82C50A INTERRUPT CONTROL STRUCTURE

Transmitter

The serial transmitter section consists of a Transmitter Holding Register (THR), Transmitter Shift Register (TSR), and associated control logic. The Transmitter Holding Register Empty (THRE) and Transmitter Shift Register Empty (TEMT) are two bits in the Line Status Register which indicate the status of THR and TSR. To transmit a 5-8 bit word, the word is written through D0-D7 to the THR. The microprocessor should perform a write operation only if THRE is high. The THRE is set high when the word is automatically transferred from the THR to the TSR during the transmission of the start bit.

When the transmitter is idle, both THRE and TEMT are high. The first word written causes THRE to be reset to 0 . After completion of the transfer, THRE returns high. TEMT remains low for at least the duration of the transmission of the data word. If a second character is transmitted to the THR, the THRE is reset low. Since the data word cannot be transferred from the THR to the TSR until the TSR is empty, THRE remains low until the TSR has completed transmission of the word. When the last word has been transmitted out of the TSR, TEMT is set high. THRE is set high one THR to TSR transfer time later.

Receiver

Serial asynchronous data is input into the SIN pin. The idle state of the line providing the input into SIN is high. A start bit detect circuit continually searches for a high to low transition from the idle state. When the transition is detected, a counter is reset, and counts the 16X clock to 7 $1 / 2$, which is the center of the start bit. The start bit is valid if the SIN is still low at the mid bit sample of the start bit. Verifying the start bit prevents the receiver from assembling an incorrect data character due to a low going noise spike on the SIN input.

The Line Control Register determines the number of data bits in a character (LCR(0), LCR(1)), number of stop bits $\operatorname{LCR}(2)$, if parity is used $\operatorname{LCR}(3)$, and the polarity of parity LCR(4). Status information for the receiver is provided in the Line Status Register. When a character is transferred from the Receiver Shift Register to the Receiver Buffer Register, the Data Received indication in LSR(0) is set high. The CPU reads the Reciver Buffer Register through D0-D7. This read resets LSR(0). If D0-D7 are not read prior to a new character transfer from the RSR to the RBR, the overrun error status indication is set in LSR(1). The parity check tests for even or odd parity on the parity bit, which precedes the first stop bit. If there is a parity error, the parity error is set in LSR(2). There is circuitry which tests whether the stop bit is high. If it is not, a framing error indication is generated in LSR(3).

The center of the start bit is defined as clock count $71 / 2$. If the data into SIN is a symmetrical square wave, the center of the data cells will occur within $\pm 3.125 \%$ of the actual
center, providing an error margin of 46.875%. The start bit can begin as much as one 16X clock cycle prior to being detected.

Baud Rate Generator (BRG)

The BRG generates the clocking for the UART function, providing standard ANSI/CCITT bit rates. The oscillator driving the BRG may be provided either with the addition of an external crystal to the XTAL1 and XTAL2 inputs, or an external clock into XTAL1. In either case, a buffered clock output, $\overline{\text { BAUDOUT }}$, is provided for other system clocking. If two 82C50As are used on the same board, one can use a crystal, and the buffered clock output can be routed directly into the XTAL1 of the second 82C50A.

The data rate is determined by the Divisor Latch registers DLL and DLM and the external frequency or crystal input, with the BAUDOUT providing an output 16X the data rate. The bit rate is selected by programming the two divisor latches, Divisor Latch Most Significant Byte and Divisor Latch Least Significant Byte. Setting DLL=1 and DLM=0 selects the divisor to divide by 1 (divide by 1 gives maximum baud rate for a given input frequency at XTAL 1). The on-chip oscillator is optimized for a 10 MHz crystal. Usually, higher frequency are less expensive than lower frequency crystals.

The BRG can use any of three different popular crystals to provide standard baud rates. The frequency of these three common crystals on the market are $1.8432 \mathrm{MHz}, 2.4576$ MHz , and 3.072 MHz . With these standard crystals, standard bit rates from 50 to 38.5 kbps are available. The following tables illustrate the divisors needed to obtain standard rates using these three crystal frequencies.

TABLE 4. BAUD RATES USING 1.8432 MHz CRYSTAL

DESIRED BAUD RATE	DIVISOR USED TO GENERATE 16 x CLOCK	PERCENT ERROR DIFFERENCE BETWEEN DESIRED \& ACTUAL
50	2304	-
75	1536	-
110	1047	0.026
134.5	857	0.058
150	768	-
300	384	-
600	192	-
1200	96	-
1800	64	-
2000	58	0.69
2400	48	-
3600	32	-
4800	24	-
7200	16	-
9600	12	-
19200	6	-
38400	3	-
56000	2	2.86

TABLE 5. BAUD RATES USING $2.4576 \mathbf{M H z}$ CRYSTAL

DESIRED BAUD RATE	DIVISOR USED TO GENERATE 16 x CLOCK	PERCENT ERROR DIFFERENCE BETWEEN DESIRED \& ACTUAL
50	3072	-
75	2048	-
110	1396	0.026
134.5	1142	0.0007
150	1024	-
300	512	-
600	256	-
1200	128	-
1800	85	0.392
2000	77	0.260
2400	64	-
3600	43	0.775
4800	32	-
7200	21	1.587
9600	16	-
19200	8	-
38400	4	-

Reset

After powerup, the 82C50A Master Reset schmitt trigger input (MR) should be held high for TMRW ns to reset the 82C50A circuits to an idle mode until initialization. A high on MR causes the following:

1. Initializes the transmitter and receiver internal clock counters.
2. Clears the Line Status Register (LSR), except for Transmitter Shift Register Empty (TEMT) and Transmit Holding Register Empty (THRE), which are set. The Modem Control Register (MCR) is also cleared. All of the discrete lines, memory elements

TABLE 6. BAUD RATES USING 3.072 MHz Crystal

DESIRED BAUD RATE	DIVISOR USED TO GENERATE 16 x CLOCK	PERCENT ERROR DIFFERENCE BETWEEN DESIRED \& ACTUAL
50	3840	-
75	2560	-
110	1745	0.026
134.5	1428	0.034
150	1280	-
300	640	-
600	320	-
1200	160	-
1800	107	0.312
2000	96	-
2400	80	-
3600	53	0.628
4800	40	-
7200	27	1.23
9600	20	-
19200	10	-
38400	5	-

Following removal of the reset condition (MR low), the 82C50A remains in the idle mode until programmed.

A hardware reset of the 82C50A sets the THRE and TEMT status bit in the LSR. When interrupts are subsequently enabled, an interrupt occurs due to THRE.

A summary of the effect of a Master Reset on the 82C50A is given in Table 7.

TABLE 7. 82C50A RESET OPERATIONS

REGISTER/SIGNAL	RESET CONTROL	
Interrupt Enable Register	Master Reset	RESET
Interrupt Identification	Master Reset	All Bits Low (0-3 forced and 4-7 permanent)
Register	Bit 0 is High, Bits 1 and 2 Low	
Line Control Register	Master Reset	Bits 3-7 are Permanently Low
MODEM Control Register	Master Reset	All Bits Low
Line Status Register	All Bits Low	
MODEM Status Register	Master Reset	All Bits Low, Except Bits 5 and 6 are High
	Master Reset	Bit 0-3 Low
SOUT	Master Reset	Bits 4-7 Input Signal
Intrpt (RCVR Errs)	High	
Intrpt (RCVR Data Ready)	Read LSR/MR	Low
Intrpt (THRE)	Read RBR/MR	Low
Intrpt (Modem Status Changes)	Read IIR/Write THR/MR	Low
Out2	Read MSR/MR	Low
	Master Reset	High
$\overline{\text { RTS }}$	High	
$\overline{\text { DTR }}$	Master Reset	High
	Mat1	High

Programming

The 82C50A is programmed by the control registers LCR, IER, DLL and DLM, and MCR. These control words define the character length, number of stop bits, parity, baud rate, and modem interface.

While the control registers can be written in any order, the IER should be written to last because it controls the interrupt enables. Once the 82C50A is programmed and operational, these registers can be updated any time the 82C50A is not transmitting or receiving data.

The control signals required to access 82C50A internal registers are shown below.

Software Reset

A software reset of the 82C50A is a useful method for returning to a completely known state without a system reset. Such a reset consists of writing to the LCR, Divisor Latches, and MCR registers. The LSR and RBR registers should be read prior to enabling interrupts in order to
clear out any residual data or status bits which may be invalid for subsequent operation.

Crystal Operation

The 82C50A crystal oscillator circuitry is designed to operate with a fundamental mode, parallel resonant crystal. Table 8 shows the required crystal parameters and crystal circuit configuration, respectively.

When using an external clock source, the XTAL1 input is driven and the XTAL2 output is left open. Power consumption when using an external clock is typically 50% of that required when using a crystal. This is due to the sinusoidal nature of the drive circuitry when using a crystal.

The maximum frequency of the the 82C50A is 10 MHz with an external clock or a crystal attached to XTAL1 and XTAL2. Using the external clock or crystal, and a divide by one divisor, the maximum BAUDOUT is 10 MHz , and the maximum data rate is 625 Kbps .

TABLE 8. TYPICAL CRYSTAL OSCILLATOR CIRCUIT

PARAMETER	
Frequency	1.0 to 10 MHz
Type of Operation	Parallel resonant, Fundamental mode
Load Capacitance(CL)	20 or 32 pF (typ)
R Series (Max)	100 ohms ($\mathrm{f}=10 \mathrm{MHz}, \mathrm{CL}=32 \mathrm{pF}$)
	200 ohms ($\mathrm{f}=10 \mathrm{MHz}, \mathrm{CL}=20 \mathrm{pF}$)

Absolute Maximum Ratings

Supply Voltage
+8.0 Volts
Input, Output or I/O Voltage Applied GND -0.5 V to $\mathrm{VCC}+0.5 \mathrm{~V}$
Storage Temperature Range GN $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Maximum Package Power Dissipation .. 1 Watt
 θ_{ja} $.36^{\circ} \mathrm{C} / \mathrm{W}$ (CERDIP Package) $41^{\circ} \mathrm{C} / \mathrm{W}$ (LCC Package)
Gate Count 1788 Gates
Junction Temperature $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, Ten Seconds) $+275^{\circ} \mathrm{C}$
CAUTION: Stresses above those listed in the "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operation sections of this specification is not implied.

Operating Conditions

Operating Voltage Range	5V
Operating Temperature Range	
C82C50A................	.$^{\circ}{ }^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
182C50A	$40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
M82C50A	$55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

D.C. Electrical Specifications

```
VCC = 5.0V 士 10%
                    TA}=\mp@subsup{0}{}{\circ}\textrm{C}\mathrm{ to +700}\textrm{C}(\textrm{C}22\textrm{C}50\textrm{A}),\mp@subsup{T}{A}{}=-4\mp@subsup{0}{}{\circ}\textrm{C}\mathrm{ to +850}\textrm{C}\mathrm{ (182C50A)
                    TA}=-5\mp@subsup{5}{}{\circ}\textrm{C}\mathrm{ to +125}\mp@subsup{}{}{\circ}\textrm{C}(M82C50A
```

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
VIH	Logical One Input Voltage	2.0 2.2		V V	I82C50A, C82C50A M82C50A
VIL	Logical Zero Input Voltage		0.8	V	
VTH	Schmitt Trigger Logic One Input Voltage				MR Input I82C50A, C82C50A M82C50A
VTL	Schmitt Trigger Logic Zero Input Voltage		V V		
VIH(CLK)	Logical One Clock Voltage	VCC-0.8		V	MR Input

Capacitance $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	TYPICAL	UNITS	TEST CONDITIONS
CIN	Input Capacitance	15	pF	FREQ $=1 \mathrm{MHz}$, all measure- ments are referenced to device GND
COUT	Output Capacitance	15	pF	pF
CI / O	I/O Capacitance	20		

A.C. Specifications

$$
\begin{aligned}
& V C C=5.0 \mathrm{~V} \pm 10 \% \\
& T_{A}=00 \mathrm{C} \text { to }+700 \mathrm{C}(C 82 C 50 \mathrm{~A}) \\
& T_{A}=-400 \mathrm{C} \text { to }+850^{\circ} \mathrm{C}(182 \mathrm{C} 50 \mathrm{~A}) \\
& T_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}(\text { M82C50A })
\end{aligned}
$$

Timing Requirements

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
(1) $\mathrm{T}_{\text {AW }}$	Address Strobe Width	50		ns	
(2) $\mathrm{T}_{\text {AS }}$	Address Setup Time	60		ns	Note 1
(3) T_{AH}	Address Hold Time	0		ns	
(4) TCS	Chip Select Setup Time	60		ns	Note 1
(5) ${ }^{\mathrm{T}} \mathrm{CH}$	Chip Select Hold Time	0		ns	
(6) TDIW	DISTR $\overline{\text { DISTR }}$ Strobe Width	150		ns	
(7) T_{RC}	Read Cycle Delay	270		ns	Note 1
(8) R_{C}	Read Cycle $=$ TAR +TDIW +TRC	500		ns	
(9) $T^{\text {DD }}$	DISTR $\overline{\text { DISTR }}$ to Driver Disable Delay		75	ns	
(10) TDDD	Delay From DISTR $\overline{\text { DISTR }}$ to Data		120	ns	
(11) T_{HZ}	DISTR $\overline{\text { DISTR }}$ to Floating Data Delay	10	75	ns	
(12) TDOW	DOSTR $\overline{\text { DOSTR }}$ Strobe Width	150		ns	
(13) TWC	Write Cycle Delay	270		ns	Note 1
(14) W_{C}	Write Cycle $=$ TAW + TDOW + TWC	500		ns	
(15) TDS	Data Setup Time	90		ns	
(16) T DH	Data Hold Time	60		ns	

NOTE 1: "When using the 82C50A in the multiplexed mode ($\overline{A D S}$ operational), it will operate in $80 C 86 / 88$ systems with a maximum 3 MHz operating frequency."
A.C. Specifications

Timing

$$
\begin{aligned}
& \mathrm{VCC}=5.0 \mathrm{~V} \pm 10 \% \\
& \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}(\mathrm{C} 82 \mathrm{C} 50 \mathrm{~A}) \\
& \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}(\text { I82C50A }) \\
& \mathrm{T}_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}(\mathrm{M} 82 \mathrm{C} 50 \mathrm{~A})
\end{aligned}
$$

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
DEMULTIP	EXED OPERATION				
(17) TCSC	Chip Select Output Delay from Select		125	ns	
(18) TRA	Address Hold Time from DISTR $\overline{\text { DISTR }}$	20		ns	
(19) TRCS	Chip Select Hold Time from DISTR $\overline{\text { DISTR }}$	20		ns	
(20) TAR	DISTR $\overline{\text { DISTR }}$ Delay from Address	80		ns	
(21) TCSR	DISTR DISTR Delay from Chip Select	80		ns	
(22) TWA	Address Hold Time from DOSTR $\overline{\text { DOSTR }}$	20		ns	
(23) TWCS	Chip Select Hold Time from DOSTR $\overline{\text { DOSTR }}$	20		ns	
(24) TAW	DOSTR $\overline{\text { DOSTR }}$ Delay from Address	80		ns	
(25) TCSW	DOSTR DOSTR Delay from Select	80		ns	
(26) TMRW	Master Reset Pulse Width	500		ns	
(27) TXH	Duration of Clock High Pulse	40			
(28) TXL	Duration of Clock Low Pulse	40		ns	
BAUD GENERATOR					
(29) N	Baud Divisor	1	2^{16-1}		
(30) TBLD	Baud Output Negative Edge Delay		250	ns	
(31) $\mathrm{T}_{\mathrm{BHD}}$	Baud Output Positive Edge Delay		250	ns	

A.C. Test Circuit

A.C. Testing Input, Output Waveform

A.C. Testing: All input signals must switch between VIL -0.4 V and $\mathrm{VIH}+0.4 \mathrm{~V}$. Input rise and fall times are driven at 1 nsec per volt.

Timing Waveforms

EXTERNAL CLOCK INPUT

AC TEST POINTS

BAUDOUT TIMING

NOTE: tBLD $(\div 1)$ is the only spec measure from XTL1 falling edge. All other tBLD's and tBHD's are measured from XTAL1 rising edge.

Timing Waveforms

* Applicable only when ADS is tied low

* Applicable only when $\overline{\text { ADS }}$ is tied low.

READ CYCLE

Timing Waveforms

RECEIVER TIMING

TRANSMITTER TIMING

NOTE 1: See Write Cycle Timing
NOTE 2: See Read Cycle Timing

Description

The 82C52 is a high performance programmable Universal Asynchronous Receiver／Transmitter（UART）and Baud Rate Generator（BRG）on a single chip． Utilizing the Harris advanced Scaled SAJI IV CMOS process，the 82C52 will support data rates from D．C．to 1M baud asynchronously with a 16X clock（0－16 MHz clock frequency）．
The on－chip Baud Rate Generator can be programmed for any one of 72 different baud rates using a single industry stanciard crystal or external frequency source．A unique pre－scale divide circuit has been designed to provide standard RS－232－C baud rates when using any one of three industry standard baud rate crystals （ $1.8432 \mathrm{MHz}, 2.4576 \mathrm{MHz}$ ，or 3.072 MHz ）．
A programmable buffered clock output（CO）is available and can be programmed to provide either a buffered oscillator or 16X baud rate clock for general purpose system usage．
Inputs and outputs have been designed with full TTL／CMOS compatibility in order to facilitate mixed TTL／NMOS／CMOS system design．

Pinouts
TOP VIEW

的 \square_{1}	${ }^{28} \square \overline{\text { cso }}$
WR ${ }^{2}$	27口vcc
DOL 3	26 Dor
D104	25 －soi
02－5	24 PIntr
D3 6	$23 \square \mathrm{RST}$
${ }^{0} 4 \mathrm{C} 7$	22 atbre
05－8	21 صco
06［9	$20 \square \overline{\text { RTS }}$
07810	$19 \square \overline{\text { DTR }}$
A0C11	$18 \square \overline{\text { OSR }}$
A1兎 12	
IXE 13	$16 \square \mathrm{GND}$
0x［14	15『SDO

Block Diagram

CAUTION：These devices are sensitive to electrostatic discharge．Proper I．C．handling procedures should be followed．

Pin Description

SYMBOL	PIN NO.	TYPE	ACTIVE LEVEL	DESCRIPTION
$\overline{\mathrm{RD}}$	1	I	Low	READ: The RD input causes the 82C52 to output data to the data bus (D0-D7). The data output depends upon the state of the address inputs (A0-A1). CS0 enables the RD input.
$\overline{W R}$	2	I	Low	WRITE: The $\overline{W R}$ input causes data from the data bus (D0-D7) to be input to the 82C52. Addressing and chip select action is the same as for read operations.
D0-D7	3-10	1/O	High	DATA BITS 0-7: The Data Bus provides eight, three-state input/output lines for the transfer of data, control and status information between the 82C52 and the CPU. For character formats of less than 8 bits, the corresponding D7, D6 and D5 are considered "don't cares" for data WRITE operations and are 0 for data READ operations. These lines are normally in a high impedance state except during read operations. DO is the Least Significant Bit (LSB) and is the first serial data bit to be received or transmitted.
A0, A1	11, 12	I	High	ADDRESS INPUTS: The address lines select the various internal registers during CPU bus operations.
IX, OX	13, 14	1/0		CRYSTAL/CLOCK: Crystal connections for the internal Baud Rate Generator. IX can also be used as an external clock input in which case OX should be left open.
SDO	15	0	High	SERIAL DATA OUTPUT: Serial data output from the 82C52 transmitter circuitry. A Mark (1) is a logic one (high) and Space (0) is logic zero (low). SDO is held in the Mark condition when CTS is false, when RST is true, when the Transmitter Register is empty, or when in the Loop Mode.
GND	16		Low	GROUND: Power supply ground connection.
$\overline{\mathrm{CTS}}$	17	1	Low	CLEAR TO SEND: The logical state of the $\overline{C T S}$ line is reflected in the CTS bit of the Modem Status Register. Any change of state in CTS causes INTR to be set true when INTEN and MIEN are true. A false level on $\overline{\mathrm{CTS}}$ will inhibit transmission of data on the SDO output and will hold SDO in the Mark (high) state. If $\overline{C T S}$ goes false during transmission, the current character being transmitted will be completed. $\overline{\mathrm{CTS}}$ does not affect Loop Mode operation.
$\overline{\mathrm{DSR}}$	18	1	Low	DATA SET READY: The logical state of the $\overline{\operatorname{DSR}}$ line is reflected in the Modem Status Register. Any change of state of $\overline{\text { DSR }}$ will cause INTR to be set if INTEN and MIEN are true. The state of this signal does not affect any other circuitry within the 82C52.
$\overline{\text { DTR }}$	19	0	Low	DATA TERMINAL READY: The $\overline{\text { DTR }}$ signal can be set (low) by writing a logic 1 to the appropriate bit in the Modem Control Register (MCR). This signal is cleared (high) by writing a logic 0 in the DTR bit in the MCR or whenever a reset (RST = high) is applied to the 82C52.
$\overline{\text { RTS }}$	20	0	Low	REQUEST TO SEND: The $\overline{R T S}$ signal can be set (low) by writing a logic 1 to the appropriate bit in the MCR. This signal is cleared (high) by writing a logic 0 to the $\overline{R T S}$ bit in the MCR or whenever a reset (RST = high) is applied to the 82C52.
CO	21	0		CLOCK OUT: This output is user programmable to provide either a buffered IX output or a buffered Baud Rate Generator (16X) clock output. The buffered IX (Crystal or external clock source) output is provided when the Baud Rate Select Register (BRSR) bit 7 is set to a zero. Writing a logic one to BRSR bit 7 causes the CO output to provide a buffered version of the internal Baud Rate Generator clock which operates at sixteen times the programmed baud rate. On reset D7 (CO select) is reset to 0 .
TBRE	22	0	High	TRANSMITTER BUFFER REGISTER EMPTY: The TBRE output is set (high) whenever the Transmitter Buffer Register (TBR) has transferred its data to the Transmit Register. Application of a reset (RST) to the 82C52 will also set the TBRE output. TBRE is cleared (low) whenever data is written to the TBR.
RST	23	1	High	RESET: The RST input forces the 82C52 into an "Idle" mode in which all serial data activities are suspended. The Modem Control Register (MCR) along with its associated outputs are cleared. The UART Status Register (USR) is cleared except for the TBRE and TC bits, which are set. The 82C52 remains in an "Idle" state until programmed to resume serial data activities. The RST input is a Schmitt triggered input.
INTR	24	0	High	INTERRUPT REQUEST: The INTR output is enabled by the INTEN bit in the Modem Control Register (MCR). The MIEN bit selectively enables modem status changes to provide an input to the INTR logic. Figure 9 shows the overall relationship of these interrupt control signals.
SDI	25	I	High	SERIAL DATA INPUT: Serial data input to the 82C52 receiver circuits. A Mark (1) is high, and a Space (0) is low. Data inputs on SDI are disabled when operating in the loop mode or when RST is true.

Pin Description

SYMBOL	PIN NO.	TYPE	ACTIVE LEVEL	
DESCRIPTION				
DR	26	0	High	DATA READY: A true level indicates that a character has been received. transferred to the RBR and is ready for transfer to the CPU. DR is reset on a data READ of the Receiver Buffer Register (RBR) or when RST is true.
VCC	27		High	VCC: +5V positive power supply pin. A $0.1 \mu A$ decoupling capacitor from VCC (Pin 27) to GND (Pin 16) is recommended.
$\overline{C S O}$	28	1	Low	CHIP SELECT: The chip select input acts as an enable signals for the $\overline{R D}$ and $\overline{W R}$ input signals.

RESET

During and after power-up, the 82C52 Reset input (RST) must be held high for at least two IX clock cycles in order to initialize and drive the 82C52 circuits to an idle mode until proper programming can be done. A high on RST causes the following events to occur:

- Resets the internal Baud Rate Generator (BRG) circuits clock counters and bit counters. The Baud Rate Select Register (BRSR) is not affected (except for bit 7 which is reset to 0).
- Clears the UART Status Register (USR) except for Transmission Complete (TC) and Transmit Buffer Register Empty (TBRE) which are set. The Modem Control Register (MCR) is also cleared. All of the discrete lines, memory elements and miscellaneous logic associated with these register bits are also cleared or turned off. Note that the UART Control Register (UCR) is not affected.

Following removal of the reset condition (RST = low), the 82 C 52 remains in the idle mode until programmed to its desired system configuration.

PROGRAMMING THE $82 C 52$

The complete functional definition of the 82C52 is programmed by the systems software. A set of control words (UCR, BRSR and MCR) must be sent out by the CPU to initialize the 82C52 to support the desired communication format. These control words will program the character length, number of stop bits, even/odd/no parity, baud rate, etc. Once programmed, the 82C52 is ready to perform its communication functions.

The control registers can be written to in any order. However, the MCR should be written to last because it controls the interrupt enables, modem control outputs and the receiver enable bit. Once the 82C52 is programmed and operational, these registers can be updated any time the 82C52 is not immediately transmitting or receiving data.

Table 1 shows the control signals required to access 82C52 internal registers.

TABLE 1.

$\overline{\text { CSO }}$	A1	A0	WR	$\overline{\mathrm{RD}}$	OPERATION
0	0	0	0	1	$\begin{array}{\|c\|c\|c\|} \hline \text { Data Bus } \rightarrow \rightarrow & \text { Transmitter Buffer } \\ \text { Register (TBR) } \end{array}$
0	0	0	1	0	$\begin{aligned} & \text { Receiver Buffer } \\ & \text { Register }(\text { RBR }) \rightarrow \text { Data Bus } \end{aligned}$
0	0	1	0	1	Data Bus $\rightarrow \underset{\text { Register (UCR) }}{\text { UART Control }}$
0	0	1	1	0	UART Status Register (USR) \rightarrow Data Bus
0	1	0	0	1	$\begin{array}{\|l\|l\|} \hline \text { Data Bus } \rightarrow & \begin{array}{c} \text { Modem Control } \\ \text { Register (MCR) } \end{array} \\ \hline \end{array}$
0	1	0	1	0	MCR \rightarrow Data Bus
0	1	1	0	1	$\begin{array}{\|l\|l\|} \hline \text { Data Bus } \rightarrow & \text { Bit Rate Select } \\ & \text { Register (BRSR) } \\ \hline \end{array}$
0	1	1	1	0	Modem Status Register (MSR) \rightarrow Data Bus

FIGURE 1.

TABLE 2.

BAUD RATE SELECT REGISTER (BRSR)

The 82C52 is designed to operate with a single crystal or external clock driving the IX input pin. The Baud Rate Select Register is used to select the divide ratio (one of 72) for the internal Baud Rate Generator circuitry. The internal circuitry is separated into two separate counters, a Prescaler and a Divisor Select. The Prescaler can be set to any one of four division rates, $\div 1, \div 3, \div 4$ or $\div 5$.

The Prescaler design has been optimized to provide standard baud rates using any one of three popular crystal frequencies. By using one of these common system clock frequencies, 1.8432 MHz, 2.4576 MHz or 3.072 MHz and Prescaler divide ratios of $\div 3, \div 4$, or $\div 5$ respectively, the Prescaler output will provide a constant 614.4 KHz . When this frequency is further divided by the Divisor Select counter, any of the standard baud rates from 50 Baud to 38.4 KBaud can be selected (see Table 2). Non-standard baud rates up to 1 Mbaud can be selected by using different input frequencies (crystal or an external frequency input up to 16 MHz) and/or different Prescaler and Divisor Select ratios.

Regardless of the baud rate, the baud rate generator provides a clock which is 16 times the desired baud rate. For example, in order to operate at a 1 Mbaud data rate, a 16 MHz crystal, a Prescale rate of $\div 1$, and a Divisor Select rate of "external" would be used. This would provide a 16 MHz clock as the output of the Baud Rate Generator to the Transmitter and Receiver circuits.

The CO select bit in the BRSR selects whether a buffered version of the external frequency input (IXinput) or the Baud Rate Generator output (16x baud rate clock) will be output on the CO output (pin 21). The Baud Rate Generator output will always be a 50% nominal duty cycle except when "external" is selected and the Prescaler is set to $\div 3$ or $\div 5$.

BRSR

FIGURE 2.
$00=\div 1$
$01=\div 3$
$10=\div 4$
$1=\div 5$
$00010=+$
$00011=+8$
$00100=\div 32 / 3$
$00101=\div 16$
$00111=\div 22$
$01000=\div 32$
$01001=\div 64$
$01010=\div 128$
$01011=\div 192$
$01100=\div 256$ $01101=\div 288$ $01110=\div 352$
$01111=\div 512$
$10000=\div 768$
$0=$ |Xoutput
$1=$ BRG output
(On Reset, D7 (CO-select) is Reset to 0

BAUD RATE	DIVISOR
38.4 K	external
19.2 K	2
9600	4
7200	$16 / 3$
4800	8
3600	$32 / 3$
2400	16
2000^{*}	$58 / 3$
1800	22
1200	32
600	64
300	128
200	192
150	256
134.5^{*}	288
110^{*}	352
75	512
50	768

Note: These baud rates are based upon the following input frequency/Prescale divisor combinations.
1.8432 MHz and Prescale $=\div 3$
2.4576 MHz and Prescale $=\div 4$
3.072 MHz and Prescale $=\div 5$
*All baud rates are exact except for:

BAUD RATE	ACTUAL	PERCENT ERROR
1800	1745.45	3.03%
2000	1986.2	0.69%
134.5	133.33	0.87%
110	109.09	0.83%

MODEM CONTROL REGISTER

The MCR is a general purpose control register which can be written to and read from. The RTS and DTR outputs are directly controlled by their associated bits in this register. Note that a logic one asserts a true logic level (low) at these output pins. The Interrupt Enable (INTEN) bit is the overall control for the INTR output pin. When INTEN is false, INTR is held false (low).

The Operating Mode bits configure the 82C52 into one of four possible modes. "Normal" configures the 82C52 for normal full or half duplex communications. "Transmit Break" enables the transmitter to only transmit break characters (Start, Data and Stop bits all are logic zero). The Echo Mode causes any data that is received on the SDI input pin to be re-transmitted on the SDO output pin. Note that this output is a buffered version of the data seen on the SDI input and is not a resynchronized output. Also note that normal UART transmission via the Transmitter Register is disabled when operating in the Echo mode (see Figure 4). The Loop Test Mode internally routes transmitted data to the receiver circuitry for the purpose of self test. The transmit data is disabled from the SDO output pin. The Receiver Enable bit gates off the input to the receiver circuitry when in the false state.
Modem Interrupt Enable will permit any change in modem status line inputs (CTS, DSR) to cause an interrupt when this bit is enabled. Bit D7 must always be written to with a logic zero to insure correct 82C52 operation.

MCR

-See Modem Status Register description (p5) for a descrip-
tion of register filag images with respect to output pins.
FIGURE 3.

FIGURE 4. LOOP AND ECHO MODE FUNCTIONALITY
UART STATUS REGISTER (USR)
The USR provides a single register that the controlling system can examine to determine if errors have occurred or if other status changes in the 82C52 require attention. For this reason, the USR is usually the first register read by the CPU to determine the cause of an interrupt or to poll the status of the 82C52.

Three error flags OE, FE and PE report the status of any error conditions detected in the receiver circuitry. These error flags are updated with every character received during reception of the stop bits. The Overrun Error (OE) indicates that a character in the Receiver Register has been received and cannot be transferred to the Receiver Buffer Register (RBR) because the RBR was not read by the CPU. Framing Error (FE) indicates that the last character received in the RBR contained improper stop bits. This could be caused by the absence of the required stop bit(s) or by a stop bit(s) that was too short to be properly detected. Parity Error (PE) indicates that the last character received in the RBR contained a parity error based on the programmed parity of the receiver and the calculated parity of the received character data and parity bits.

The Received Break (RBRK) status bit indicates that the last character received was a break character. A break character would be considered to be an invalid data character in that the entire character including parity and stop bits are a logic zero.
The Modem Status bit is set whenever a transition is detected on any of the Modem input lines (CTS or DSR). A subsequent read of the Modem Status Register will show the state of these two signals. Assertion of this bit will cause an interrupt (INTR) to be generated if the MIEN and INTEN bits in the MCR register are enabled.

The Transmission Complete (TC) bit indicates that both the TBR and Transmitter Registers are empty and the 82C52 has completed transmission of the last character it was commanded to transmit. The assertion of this bit will cause an interrupt (INTR) if the INTEN bit in the MCR register is true.
The Transmitter Buffer Register Empty (TBRE) bit indicates that the TBR register is empty and ready to receive another character.

The Data Ready (DR) bit indicates that the RBR has been loaded with a received character (including Break) and that the CPU may access this data.

Assertion of the TBRE or DR bits do not affect the INTR logic and associated INTR output pin since the 82C52 has been designed to provide separate requests via the DR and TBRE output pins. If a single interrupt for any status change in the 82 C 52 is desired this can be accomplished by using an 82C59A Interrupt controller with DR, TBRE, and INTR as inputs. (See Figure 11).
Reading the USR clears all of the status bits in the USR register, but does not affect associated output pins.

USR

$$
\begin{aligned}
& 0=\text { No Error } \\
& 1=\text { Error } \\
& 0=\text { No error } \\
& 1=\text { Error } \\
& 0=\text { No error } \\
& 1=\text { Error } \\
& 0=\text { No break } \\
& 1=\text { Break } \\
& 0=\text { No status change } \\
& 1=\text { Status change } \\
& 0=\text { Not complete } \\
& 1=\text { Complete } \\
& 0=\text { Not empty } \\
& 1=\text { Empty } \\
& 0=\text { Not ready } \\
& 1=\text { Ready }
\end{aligned}
$$

FIGURE 5.

MODEM STATUS REGISTER (MSR)

The MSR allows the CPU to read the modem signal inputs by accessing the data bus interface of the 82C52. Like all of the register images of external pins in the 82C52, true logic levels are represented by a high (1) signal level. By following this consistent definition, the system software need not be concerned with whether external signals are high or low true. In particular, the modem signal inputs are low true, thus a 0 (true assertion) at a modem input pin is represented by a 1 (true) in the MSR.
Any change of state in any modem input signals will set the Modem Status (MS) bit in the USR register. When this happens, an interrupt (INTR) will be generated if the MIEN and INTEN bits of the MCR are enabled.
The Data Set Ready ($\overline{\mathrm{DSR}}$) input is a status indicator from the modem to the 82C52 which indicates that the modem is ready to provide received data to the 82C52 receiver circuitry.
Clear to Send ($\overline{\mathrm{CTS}}$) is both a status and control signal from the modem that tells the 82C52 that the modem is ready to receive transmit data from the 82C52 transmitter output (SDO). A high (false) level on this input will inhibit the 82C52 from beginning transmission and if asserted in the middle of a transmission will only permit the 82C52 to finish transmission of the current character.

MSR

$0=$ false
$0=$ false
$1=$ true
$0=$ false
$1=$ true

RECEIVER BUFFER REGISTER (RBR)
The receiver circuitry in the 82C52 is programmable for $5,6,7$ or 8 data bits per character. For words of less than 8 bits, the data is right justified to the Least Significant Bit (LSB = DO). Bit DO of a data word is always the first data bit received. The unused bits in a less than 8 bit word, at the parallel interface, are set to a logic zero (0) by the 82C52.
Received data at the SDI input pin is shifted into the Receiver Register by an internal $1 \times$ clock which has been synchronized to the incoming data based on the position of the start bit. When a complete character has been shifted into the Receiver Register, the assembled data bits are parallel loaded into the Receiver Buffer Register. Both the DR output pin and DR flag in the USR register are set. This double buffering of the received data permits continuous reception of data without losing any of the received data.

While the Receiver Register is shifting a new character into the 82C52, the Receiver Buffer Register is holding a previously received character for the system CPU to read. Failure to read the data in the RBR before complete reception of the next character can result in the loss of the data in the Receiver Register. The OE flag in the USR register indicates the overrun condition.

> RBR

$\mathrm{D7}$	D 6	D 5	D 4	D 3	D 2	D 1	D 0

Note: The LSB, Bit 0 is the first serial data bit received.

FIGURE 7

TRANSMITTER BUFFER REGISTER (TBR)

The Transmitter Buffer Register (TBR) accepts parallel data from the data bus (D0-D7) and holds it until the Transmitter Register is empty and ready to accept a new character for transmission. The transmitter always has the same word length and number of stop bits as the receiver. For words of less than 8 bits the unused bits at the microprocessor data bus are ignored by the transmitter.

Bit 0 , which corresponds to D 0 at the data bus, is always the first serial data bit transmitted. Provision is made for the transmitter parity to be the same or different from the receiver. The TBRE output pin and flag (USR register) reflect the status
of the TBR. The TC flag (USR register) indicates when both the TBR and TR are empty.

FIGURE 8.

$82 C 52$ INTERRUPT STRUCTURE

The 82C52 has provisions for software masking of interrupts generated for the INTR output pin. Two control bits in the MCR register, MIEN and INTEN, control modem status interrupts and overall 82C52 interrupts respectively. Figure 9 illustrates the logical control function provided by these signals.
The modem status inputs ($\overline{\mathrm{DSR}}$ and $\overline{\mathrm{CTS}}$) will trigger the edge detection circuitry with any change of status. Reading the MSR register will clear the detect circuit but has no effect on the status bits themselves. These status bits always reflect the state of the input pins regardless of the mask control signals. Note that the state (high or low) of the status bits are inverted versions of the actual input pins.

The edge detection circuits for the USR register signals will trigger only for a positive edge (true assertion) of these status bits. Reading the USR register not only clears the edge detect circuit but also clears (sets to 0) all of the status bits. The output pins associated with these status bits are not affected by reading the USR register.

A hardware reset of the 82C52 sets the TC status bit in the USR. When interrupts are subsequently enabled an interrupt can occur due to the fact that the positive edge detection circuitry in the interrupt logic has detected the setting of the TC bit. If this interrupt is not desired the USR should be read prior to enabling interrupts. This action resets the positive edge detection circuitry in the interrupt control logic (Figure 9).

NOTE: For USR and MSR, the setting of status bits is inhibited during status register READ operations. If a status condition is generated during a READ operation, the status bit is not set until the trailing edge of the RD pulse.
If the bit was already set at the time of the READ operation, and the same status condition occurs, that status bit will be cleared at the trailing edge of the $\overline{\mathrm{RD}}$ pulse instead of being set again.

FIGURE 9. 82C52 INTERRUPT STRUCTURE

SOFTWARE RESET

A software reset of the 82 C 52 is a useful method for returning to a completely known state without exercising a complete system reset. Such a reset would consist of writing to the UCR, BRSR and MCR registers. The USR and RBR registers should be read prior to enabling interrupts in order to clear out any residual data or status bits which may be invalid for subsequent operation.

CRYSTAL OPERATION

The 82C52 crystal osscillator circuitry is designed to operate with a fundamental mode, parallel resonant crystal. This circuit is the same one used in the Harris 82C84A clock generator/driver. To summarize, Table 3 and Figure 10 show the required crystal parameters and crystal circuit configuration respectively.
When using an external clock source, the IX input is driven and the OX output is left open. Power consumption when using an external clock is typically 50% of that required when using a crystal. This is due to the sinusoidal nature of the drive circuitry when using a crystal.

TABLE 3.

PARAMETER	TYPICAL CRYSTAL SPECIFICATION
Frequency	1.0 to 16 MHz
Type of Operation	Parallel resonant, Fundamental mode
Load Capacitance (CL)	20 or $32 \mathrm{pF}(T y p)$
RSERIES(Max)	100 ohms ($f=16 \mathrm{MHz}, \mathrm{CL}=32 \mathrm{pF}$)
	200 ohms ($f=16 \mathrm{MHz}, \mathrm{CL}=20 \mathrm{pF}$)

${ }^{*} \mathrm{C} 1=\mathrm{C} 2=47 \mathrm{pF}$ for $\mathrm{CL}=32 \mathrm{pF}$
FIGURE 10.

82C52-80C86 INTERFACING

The following example (Figure 11) shows the interface for an 82C52 in an 80C86 system.
Use of the Harris CMOS Interrupt Controller (82C59A) is optional and necessary only if an interrupt driven system is desired.
By using the Harris CMOS 82C84A clock generator, the system can be built with a single crystal providing both the processor clock and the clock for the 82C52. The 82C52 has special divider circuitry which is designed to
supply industry standard baud rates with a 2.4576 MHz input frequency. Using a 15 MHz crystal as shown, results in less than a 2% frequency error which is adequate for many applications. For more precise baud rate requirements, a 14.7456 MHz crystal will drive the 80 C 86 at 4.9 MHz and provide the 82 C 52 with the standard baud rate input frequency of 2.4576 MHz . If baud rates above 156 Kbaud are desired, the OSC output can be used instead of the PCLK ($\div 6$) output for asynchronous baud rates up to 1 Mbaud.

Absolute Maximum Ratings

Operating Conditions

Operating Voltage	+4.5 V to +5.5 V
Operating Temperature Range	
C82C52	$\ldots .0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
I82C52	$-40^{\circ} \mathrm{C}$ to ${ }^{8} 85^{\circ} \mathrm{C}$
M82C52	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

D.C. Electrical Specifications $\quad \mathrm{VCC}=5.0 \mathrm{~V} \pm 10 \% ; \quad T_{A}=00^{\circ} \mathrm{Cto}+700^{\circ} \mathrm{C}$ (C82C52)
$T_{A}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (182 C 52)
$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to ${ }^{+125^{\circ} \mathrm{C}}$ (M82C52)

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
VIH	Logical One Input Voltage	2.0 2.2		V	I82C52, C82C52 M82C52
VIL	Logical Zero Input Voltage		0.8	V	
VTH	Schmitt Trigger Logical One Input Voltage	VCC-0.5		V	Reset Input
VTL	Schmitt Trigger Logical Zero Input Voltage		GND +0.5	V	Reset Input

*Guaranteed and sampled, but not 100% tested. ICCOP is typically $\leq 1 \mathrm{~mA} / \mathrm{MHz}$.
Capacitance $T_{A}=250 \mathrm{C}$

SYMBOL	PARAMETER	TYPICAL	UNITS	TEST CONDITIONS
CIN $_{\text {IN }}$	Input Capacitance	10	pF	FREQ $=1 \mathrm{MHz}$, all measure- ments are referenced to device GND
COUT $^{C_{I O}}$	Output Capacitance	I/O Capacitance	10	pF

Specifications $82 C 52$

A．C．Electrical Specifications

$$
\begin{aligned}
& V C C=5.0 \mathrm{~V} \pm 10 \% ; \\
& T A=00 \mathrm{C} \text { to }+70{ }^{\circ} \mathrm{C} \text { (C82C52) } \\
& T A=-40^{\circ} \mathrm{C} \text { to }+850^{\circ} \mathrm{C} \text { (I82C52) } \\
& T A=-55{ }^{\circ} \mathrm{C} \text { to }+1250^{\circ} \text { (M82C52) }
\end{aligned}
$$

Timing Requirements and Responses

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
（1）TSVCTL	Select Setup to Control Leading Edge	30		ns	
（2）TCTHSX	Select Hold From Control Trailing Edge	50		ns	
（3）TCTLCTH	Control Pulse Width	150		ns	Control Consists of $\overline{\mathrm{RD}}$ or WR
（4）TCTHCTL	Control Disable to Control Enable	190		ns	
（5）TRLDV	Read Low to Data Valid		120	ns	1
（6）TRHDZ	Read Disable	0	60	ns	2
（7）TDVWH	Data Setup Time	50		ns	
（8）TWHDX	Data Hold Time	20		ns	
（9）FC	Clock Frequency	0	16	MHz	$\begin{aligned} & \text { TCHCL+TCLCH must } \\ & \text { be } \geqslant 62.5 \mathrm{~ns} \end{aligned}$
（10）TCHCL	Clock High Time	25		ns	
（11）TCLCH	Clock Low Time	25		ns	
（12）TR／TF	IX Input Rise／Fall Time （External Clock）		tx	ns	$\mathrm{tx} \leqslant \frac{1}{6 \mathrm{FC}} \text { or } 50 \mathrm{~ns}$ whichever is smaller
（13）TFCO	Clock Output Fall Time		15	ns	$\mathrm{CL}=50 \mathrm{pf}$
（14）TRCO	Clock Output Rise Time		15	ns	$\mathrm{CL}=50 \mathrm{pf}$

Timing Diagram

A.C. Test Circuit

TEST CONDITION		V 1	R 1	R 2	CL
1	Propagation Delay	1.7 V	520	∞	100 pF
2	Disable Delay	VCC	5 K	5 K	50 pF

A.C. Testing Input, Output Waveforms

PROPAGATION DELAY

ENABLE/DISABLE DELAY

A.C. Testing: All input signals must switch between VIL -0.4 V and $\mathrm{VIH}+0.4 \mathrm{~V}$. Input rise and fall times are driven at 1 nsec per volt. Interval Timer

Features

- Compatible with NMOS 8254
- Enhanced Version of NMOS 8253
- 8 MHz Clock Input Frequency
- Three Independent 16 Bit Counters
- Six Programmable Counter Modes
- Status Read Back Command
- Binary or BCD Counting
- Fully TTL Compatible
- Scaled SAJI IV CMOS Process
- Low Power
- ICCSB $=10 \mu \mathrm{~A}$
- $I C C O P=10 \mathrm{~mA}$
- Single 5V Power Supply
- Wide Operating Temperature Ranges:
- C82C54
$.0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
- 182C54 $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- M82C54
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Description

The Harris 82C54 is a high performance CMOS Programmable Interval Timer manufactured using a self-aligned silicon gate CMOS process (Scaled SAJIIV). The 82C54 has three independently programmable and functional 16 bit counters, each capable of handling clock input frequencies of up to 8 MHz . The high speed and industry standard configuration of the 82C54 make it compatible with the Harris 80C86 and 80C88 CMOS microprocessors along with many other industry standard processors.
Six programmable timer modes allow the 82C54 to be used as an event counter, elapsed time indicator, programmable one-shot along with many other applications.
Static CMOS circuit design insures low operation power Harris advanced SAJI process results in a significant reduction in power with performance equal to or greater than existing equivalent products.

Pinouts

Functional Diagram

COUNTER INTERNAL BLOCK DIAGRAM
CAUTION: These devices are sensitive to electrostatic discharge. Proper I.C. handling procedures should be followed.

Pin Description

SYMBOL	PIN NUMBER	TYPE	DESCRIPTION
$\mathrm{D}_{7}-\mathrm{D}_{0}$	1-8	1/0	DATA: Bi-directional three state data bus lines, connected to system data bus.
CLK 0	9	1	CLOCK 0: Clock input of Counter 0.
OUT 0	10	0	OUT 0: Output of Counter 0.
GATE 0	11	1	GATE 0: Gate input of Counter 0.
GND	12		GROUND: Power supply connection.
OUT 1	13	0	OUT 1: Output of Counter 1.
GATE 1	14	1	GATE 1: Gate input of Counter 1.
CLK 1	15	1	CLOCK 1: Clock input of Counter 1.
GATE 2	16	1	GATE 2: Gate input of Counter 2.
OUT 2	17	0	OUT 2: Output of Counter 2.
CLK 2	18	1	CLOCK 2: Clock input of Counter 2.
A0, A1	19-20	1	ADDRESS: Select inputs for one of the three counters or Control Word Register for read/write operations. Normally connected to the system address bus.
$\overline{\mathrm{CS}}$	21	I	CHIP SELECT: A low on this input enables the 82C54 to respond to $\overline{R D}$ and $\overline{W R}$ signals. $\overline{R D}$ and $\overline{W R}$ are ignored otherwise.
$\widehat{\mathrm{RD}}$	22	1	READ: This input is low during CPU read operations.
$\overline{W R}$	23	1	WRITE: This input is low during CPU write operations.
VCC	24		VCC: The +5 V power supply Pin. A $0.1 \mu \mathrm{~F}$ capacitor between pins 12 and 24 is recommended for decoupling.

Functional Description

General

The 82C54 is a programmable interval timner/counter designed for use with microcomputer systems. It is a general purpose, multi-timing element that can be treated as an array of I/O ports in the system software.

The 82C54 solves one of the most common problems in any microcomputer system, the generation of accurate time delays under software control. Instead of setting up timing loops in software, the programmer configures the 82C54 to match his requirements and programs one of the counters for the desired delay. After the desired delay, the 82C54 will interrupt the CPU. Software overhead is minimal and variable length delays can easily be accommodated.

Some of the other computer/timer functions common to
microcomputers which can be implemented with the 82C54 are:

- Real time clock
- Event counter
- Digital one-shot
- Programmable rate generator
- Square wave generator
- Binary rate multiplier
- Complex waveform generator
- Complex motor controller

Data Bus Buffer

This three-state, bi-directional, 8-bit buffer is used to interface the 82 C 54 to the system bus (see Figure 1).

FIGURE 1. DATA BUS BUFFER AND READ/WRITE LOGIC FUNCTION

Read/Write Logic

The Read/Write Logic accepts inputs from the system bus and generates control signals for the other functional blocks of the 82C54. A_{1} and A_{0} select one of the three counters or the Control Word Register to be read from/written into. A "low" on the $\overline{\mathrm{RD}}$ input tells the 82C54 that the CPU is reading one of the counters. A "low" on the $\overline{W R}$ input tells the 82C54 that the CPU is writing either a Control Word or an initial count. Both $\overline{\mathrm{RD}}$ and $\overline{\mathrm{WR}}$ are qualified by $\overline{\mathrm{CS}} ; \overline{\mathrm{RD}}$ and $\overline{\mathrm{WR}}$ are ignored unless the 82C54 has been selected by holding CS low.

Control Word Register

The Control Word Register (Figure 2) is selected by the Read/Write Logic when $A_{1}, A_{0}=11$. If the CPU then does a write operation to the 82C54, the data is stored in the Control Word Register and is interpreted as a Control Word used to define the Counter operation.

The Control Word Register can only be written to; status information is available with the Read-Back Command.

Counter 0, Counter 1, Counter 2

These three functional clocks are identical in operation, so only a single Counter will be described. The internal block diagram of a single counter is shown in Figure 3. The counters are fully independent. Each Counter may operate in a different Mode.

The Control Word Register is shown in the figure; it is not part of the Counter itself, but its contents determine how the Counter operates.

FIGURE 3. COUNTER INTERNAL BLOCK DIAGRAM

FIGURE 2. CONTROL WORD REGISTER AND COUNTER FUNCTIONS

The status register, shown in the figure, when latched, contains the current contents of the Control Word Register and status of the output and null count flag. (See detailed explanation of the Read-Back command.)

The actual counter is labeled CE (for Counting Element). It is a 16 bit presettable synchronous down counter.
O_{M} and O_{L} are two 8-bit latches. OL stands for "Output Latch"; the subscripts M and L for "Most significant byte" and "Least significant byte", respectively. Both are normally referred to as one unit and called just OL. These latches normally "follow" the CE, but if a suitable Counter Latch Command is sent to the 82C54, the latches "latch" the present count until read by the CPU and then return to "following" the CE. One latch at a time is enabled by the counter's Control Logic to drive the internal bus. This is how the 16-bit Counter communicates over the 8-bit internal bus. Note that the CE itself cannot be read; whenever you read the count, it is the OL that is being read.

Similarly, there are two 8-bit registers called CR_{M} and CR $_{\mathrm{L}}$ (for "Count Register"). Both are normally referred to as one unit and called just CR. When a new count is written to the Counter, the count is stored in the CR and later transferred to the CE. The Control Logic allows one register at a time to be loaded from the internal bus. Both bytes are transferred to the CE simultaneously. CRM and CRL are cleared when the Counter is programmed for one byte counts (either most significant byte only or least significant byte only) the other byte will be zero. Note that the CE cannot be written into; whenever a count is written, it is written into the CR.

The Control Logic is also shown in the diagram. CLK n, GATE n, and OUT n are all connected to the outside world through the Control Logic.

82C54 System Interface

The 82C54 is treated by the system software as an array of peripheral I/O ports; three are counters and the fourth is a control register for MODE programming.

Basically, the select inputs A_{0}, A_{1} connect to the A_{0}, A_{1} address bus signals of the CPU. The CS can be derived
directly from the address bus using a linear select method or it can be connected to the output of a decoder, such as a Harris HD-6440 for larger systems.

Operational Description

General

After power-up, the state of the 82C54 is undefined. The Mode, count value, and output of all Counters are undefined.

How each Counter operates is determined when it is programmed. Each Counter must be programmed before it can be used. Unused counters need not be programmed.

Programming The 82C54

Counters are programmed by writing a Control Word and then an initial count.

All Control Words are written into the Control Word Register, which is selected when $A_{1}, A_{0}=11$. The Control Word specifies which Counter is being programmed.

By contrast, initial counts are written into the Counters, not the Control Word Register. The $\mathrm{A}_{1}, \mathrm{~A}_{0}$ inputs are used to select the Counter to be written into. The format of the initial count is determined by the Control Word used.

Write Operations

The programming procedure for the 82C54 is very flexible. Only two conventions need to be remembered:

1. For each Counter, the Control Word must be written before the initial count is written.
2. The initial count must follow the count format specified in the Control Word (least significant byte only, most significant byte only, or least significant byte and then most significant byte).

Since the Control Word Register and the three Counters have separate addresses (selected by the $\mathrm{A}_{1}, \mathrm{~A}_{0}$ inputs), and each Control Word specifies the Counter it applies to (SC0, SC1 bits), no special instruction sequence is required. Any programming sequence that follows the conventions above is acceptable.

FIGURE 4. 82C54 SYSTEM INTERFACE

Control Word Format

$A_{1}, A_{0}=11 ; \overline{C S}=0 ; \overline{R D}=1 ; \overline{W R}=0$

D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}
SC1	SC0	RW1	RW0	M2	M1	M0	BCD

SC - Select Counter:

SC1	SC0	
0	0	Select Counter 0
0	1	Select Counter 1
1	0	Select Counter 2
1	1	Read-Back Command (See Read Operations)

RW - Read/Write:

RW1
RW0
0

M2	M1	M0	
0	0	0	Mode 0
0	0	1	Mode 1
X	1	0	Mode 2
X	1	1	Mode 3
1	0	0	Mode 4
1	0	1	Mode 5

BCD - Binary Coded Decimal:

0	Binary Counter 16-bits
1	Binary Coded Decimal (BCD) Counter (4 Decades)

NOTE: Don't Care bits (X) should be 0 to insure compatibility with future products.

FIGURE 5. CONTROL WORD FORMAT

	A_{1}	A_{0}		A1	A_{0}
Control Word - Counter 0	1	1	Control Word - Counter 2	1	1
LSB of count - Counter 0	0	0	Control Word - Counter 1	1	1
MSB of count - Counter 0	0	0	Control Word - Counter 0	1	1
Control Word - Counter 1	1	1	LSB of count - Counter 2	1	0
LSB of count - Counter 1	0	1	MSB of count - Counter 2	1	0
MSB of count - Counter 1	0	1	LSB of count - Counter 1		1
Control Word - Counter 2	1	1	MSB of count - Counter 1	0	1
LSB of count - Counter 2	1	0	LSB of count - Counter 0	0	0
MSB of count - Counter 2	1	0	MSB of count - Counter 0	0	0
	A_{1}	A_{0}		A_{1}	A_{0}
Control Word - Counter 0	1	1	Control Word - Counter 1	1	1
Control Word - Counter 1	1	1	Control Word - Counter 0	1	1
Control Word - Counter 2	1	1	LSB of count - Counter 1	0	1
LSB of count - Counter 2	1	0	Control Word - Counter 2	1	1
LSB of count - Counter 1	0	1	LSB of count - Counter 0		0
LSB of count - Counter 0	0	0	MSB of count - Counter 1	0	1
MSB of count - Counter 0	0	0	LSB of count - Counter 2		0
MSB of count - Counter 1	0	1	MSB of count - Counter 0	0	0
MSB of count - Counter 2	1	0	MSB of count - Counter 2	1	0
NOTE: In all four examples, all counters are programmed to Read/Write two-byte counts. These are only four of many possible programming sequences.					

FIGURE 6. A FEW POSSIBLE PROGRAMMING SEQUENCES

A new initial count may be written to a Counter at any time without affecting the Counter's programmed Mode in any way. Counting will be affected as described in the Mode definitions. The new count must follow the programmed count format.

If a Counter is programmed to read/write two-byte counts, the following precaution applies: A program must not transfer control between writing the first and second byte to another routine which also writes into that same Counter. Otherwise, the Counter will be loaded with an incorrect count.

Read Operations

It is often desirable to read the value of a Counter without disturbing the count in progress. This is easily done in the 82C54.

There are three possible methods for reading the Counters. The first is through the Read-Back command, which is explained later. The second is a simple read operation of the Counter, which is selected with the A_{1}, A_{0} inputs. The only requirement is that the CLK input of the selected Counter must be inhibited by using either the GATE input or external logic. Otherwise, the count may be in process of changing when it is read, giving an undefined result.

Counter Latch Command

The other method for reading the Counters involves a special software command called the "Counter Latch Command". Like a Control Word, this command is written to the Control Word Register, which is selected when $A_{1}, A_{0}=11$. Also, like a Control Word, the SC0, SC1 bits select one of the three Counters, but two other bits, D_{5} and D_{4}, distinguish this command from a Control Word.

$$
A_{1}, A_{0}=11 ; \overline{C S}=0 ; \overline{\operatorname{RD}}=1 ; \overline{W R}=0
$$

D7	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}
SC1	SC0	0	0	X	X	x	X

SC1, SC0 - specify counter to be latched

SC1	SCO	Counter
0	0	0
0	1	1
1	0	2
1	1	Read-Back Command

D5, D4 - 00 designates Counter Latch Command X - Don't Care

NOTE: Don't Care bits (X) should be 0 to insure compatibility with future products.

FIGURE 7. COUNTER LATCH COMMAND FORMAT
The selected Counter's output latch (OL) latches the count when the Counter Latch Command is received. This count is held in the latch untilit is read by the CPU (or
until the Counter is reprogrammed). The count is then unlatched automatically and the OL returns to "following" the counting element (CE). This allows reading the contents of the Counters "on the fly" without affecting counting in progress. Multiple Counter Latch Commands may be used to latch more than one Counter. Each latched Counter's OL holds its count until read. Counter Latch Commands do not affect the programmed Mode of the Counter in any way.

If a Counter is latched and then, some time later, latched again before the count is read, the second Counter Latch Command is ignored. The count read will be the count at the time the first Counter Latch Command was issued.

With either method, the count must be read according to the programmed format; specifically, if the Counter is programmed for two byte counts, two bytes must be read. The two bytes do not have to be read one right after the other; read or write or programming operations of other Counters may be inserted between them.
Another feature of the 82 C 54 is that reads and writes of the same Counter may be interleaved; for example, if the Counter is programmed for two byte counts, the following sequence is valid.

1. Read least significant byte.
2. Write new least significant byte.
3. Read most significant byte.
4. Write new most significant byte.

If a Counter is programmed to read or write two-byte counts, the following precaution applies: A program MUST NOT transfer control between reading the first and second byte to another routine which also reads from that same Counter. Otherwise, an incorrect count will be read.

Read-Back Command

The read-back command allows the user to check the count value, programmed Mode, and current state of the OUT pin and Null Count flag of the selected counter(s).

The command is written into the Control Word Register and has the format shown in Figure 8. The command applies to the counters selected by setting their corresponding bits $\mathrm{D}_{3}, \mathrm{D}_{2}, \mathrm{D}_{1}=1$.

$A_{0}, A_{1}=11 ; \overline{C S}=0 ; \overline{R D}=1 ; \overline{W R}=0$							
1	1	COUNT	$\overline{\text { STATUS }}$	CNT 2	CNT 1	CNT 0	0
$D_{5}: 0=$ Latch count of selected Counters(s) $\mathrm{D}_{4}: 0=$ Latch status of selected Counters(s) $D_{3}: 1$ = Select Counter 2 $D_{2}: 1=$ Select Counter 1 $\mathrm{D}_{1}: 1$ = Select Counter 0 D_{0} : Reserved for future expansion; Must be 0							

FIGURE 8. READ-BACK COMMAND FORMAT

The read-back command may be used to latch multiple counter output latches (OL) by setting the COUNT bit $\mathrm{D}_{5}=0$ and selecting the desired counter(s). This single command is functionally equivalent to several counter latch commands, one for each counter latched. Each counter's latched count is held until it is read (or the counter is reprogrammed). That counter is automatically unlatched when read, but other counters remain latched until they are read. If multiple count read-back commands are issued to the same counter without reading the count, all but the first are ignored; i.e., the count which will be read is the count at the time the first read-back command was issued.

The read-back command may also be used to latch status information of selected counter(s) by setting STATUS bit $D_{4}=0$. Status must be latched to be read; status of a counter is accessed by a read from that counter.

The counter status format is shown in Figure 9. Bits D_{5} through D_{0} contain the counter's programmed Mode exactly as written in the last Mode Control Word. OUTPUT bit D_{7} contains the current state of the OUT pin. This allows the user to monitor the counter's output via software, possibly eliminating some hardware from a system.

D7	D6	D5	D4	D3	D2	D1	D0
OUTPUT	NULL COUNT	RW1	RWo	M2	M1	M0	$B C D$

$$
\begin{aligned}
\text { D7 } 1 & =\text { Out Pin is } 1 \\
0 & =\text { Out pin is } 0 \\
\text { D6 } 1 & =\text { Null count } \\
0 & =\text { Count available for reading } \\
\text { D5-D0 } & =\text { Counter programmed mode (See Figure } 5 \text {) }
\end{aligned}
$$

FIGURE 9. STATUS BYTE
NULL COUNT bit D_{6} indicates when the last count written to the counter register (CR) has been loaded into the counting element (CE). The exact time this happens de-
pends on the Mode of the counter and is described in the Mode Definitions, but until the counter is loaded into the counting element (CE), it can't be read from the counter. If the count is latched or read before this time, the count value will not reflect the new count just written. The operation of Null Count is shown in Figure 10.

THIS ACTION:

CAUSES:

A. Write to the control word register: (1)

Null Count $=1$
B. Write to the count register (CR): (2)

Null Count = 1
C. New count is loaded into CE (CR \rightarrow CE): Null Count $=0$
(1) Only the counter specified by the control word will have its null count set to 1 . Null count bits of other counters are unaffected.
(2) If the counter is programmed for two-byte counts (least significant byte then most significant byte) null count goes to 1 when the second byte is written.

FIGURE 10. NULL COUNT OPERATION

If multiple status latch operations of the counter(s) are performed without reading the status, all but the first are ignored; i.e., the status that will be read is the status of the counter at the time the first status read-back command was issued.

Both count and status of the selected counter(s) may be latched simultaneously by setting both COUNT and STATUS bits $D_{5}, D_{4}=0$. This is functionally the same as issuing two separate read-back commands at once, and the above discussions apply here also. Specifically, if multiple count and/or status read-back commands are issued to the same counter(s) without any intervening reads, all but the first are ignored. This is illustrated in Figure 11.
If both count and status of a counter are latched, the first read operation of that counter will return latched status, regardless of which was latched first. The next one or two reads (depending on whether the counter is programmed for one or two type counts) return latched count. Subsequent reads return unlatched count.

COMmAND									
D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}	DESCRIPTION	RESULT
1	1	0	0	0	0	1	0	Read back count and status of Counter 0	Count and status latched for Counter 0
1	1	1	0	0	1	0	0	Read-back status of Counter 1	Status latched for Counter 1
1	1	1	0	1	1	0	0	Read-back status of Counters 2, 1	Status latched for Counter 2, but not Counter 1
1	1	0	1	1	0	0	0	Read-back count of Counter 2	Count latched for Counter 2
1	1	0	0	0	1	0	0	Read-back count and status of Counter 1	Count latched for Counter 1, but not status
1	1	1	0	0	0	1	0	Read-back status of Counter 1	Command ignored, status already latched for Counter 1

FIGURE 11. READ-BACK COMMAND EXAMPLE

$\overline{\mathbf{C S}}$	$\overline{\mathbf{R D}}$	$\overline{\mathbf{W R}}$	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{0}}$	
0	1	0	0	0	Write into Counter 0
0	1	0	0	1	Write into Counter 1
0	1	0	1	0	Write into Counter 2
0	1	0	1	1	Write Control Word
0	0	1	0	0	Read from Counter 0
0	0	1	0	1	Read from Counter 1
0	0	1	1	0	Read from Counter 2
0	0	1	1	1	No-Operation (Three-State)
1	X	X	X	X	No-Operation (Three-State)
0	1	1	X	X	No-Operation (Three-State)

FIGURE 12. READ/WRITE OPERATIONS SUMMARY

Mode Definitions

The following are defined for use in describing the operation of the 82C54.

CLK PULSE:

A rising edge, then a falling edge, in that order, of a Counter's CLK input.

TRIGGER:

A rising edge of a Counter's Gate input.

COUNTER LOADING:

The transfer of a count from the CR to the CE (See "Functional Description")

Mode 0: Interrupt on Terminal Count

Mode 0 is typically used for event counting. After the Control Word is written, OUT is initially low, and will remain low until the Counter reaches zero. OUT then goes high and remains high until a new count or a new Mode 0 Control Word is written to the Counter.

GATE $=1$ enables counting; GATE $=0$ disables counting. GATE has no effect on OUT.

After the Control Word and initial count are written to a Counter, the initial count will be loaded on the next CLK pulse. This CLK pulse does not decrement the count, so for an initial count of N, OUT does not go high until $\mathrm{N}+1$ CLK pulses after the initial count is written.

If a new count is written to the Counter it will be loaded on the next CLK pulse and counting will continue from the new count. If a two-byte count is written, the following happens:

1- Writing the first byte disables counting. Out is set low immediately (no clock pulse required).

2- Writing the second byte allows the new count to be loaded on next CLK pulse.

This allows the counting sequence to be synchronized by software. Again OUT does not go high until $\mathrm{N}+1$ CLK pulses after the new count of N is written.

If an initial count is written while $G A T E=0$, it will still be loaded on the next CLK pulse. When GATE goes high, OUT will go high N CLK pulses later; no CLK pulse is needed to load the counter as this has already been done.

Mode 1: Hardware Retriggerable One-Shot

OUT will be initially high. OUT will go low on the CLK pulse following a trigger to begin the one-shot pulse, and will remain low until the Counter reaches zero. OUT will then go high and remain high until the CLK pulse after the next trigger.
After writing the Control Word and initial count, the Counter is armed. A trigger results in loading the Counter and setting OUT low on the next CLK pulse, thus starting the one-shot pulse N CLK cycles in duration. The one-shot is retriggerable, hence OUT will remain low for N CLK pulses after any trigger. The one-shot pulse can be repeated without rewriting the same count into the counter. GATE has no effect on OUT.

If a new count is written to the Counter during a one-shot pulse, the current one-shot is not affected unless the Counter is retriggered. In that case, the Counter is loaded with the new count and the one-shot pulse continues until the new count expires.

Mode 2: Rate Generator

This Mode functions like a divide-by-N counter. It is typically used to generate a Real Time Clock interrupt. OUT will initially be high. When the initial count has decremented to 1, OUT goes low for one CLK pulse. OUT then goes high again, the Counter reloads the initial count and the process is repeated. Mode 2 is periodic; the same sequence is repeated indefinitely. For an initial count of N , the sequence repeats every N CLK cycles.

GATE $=1$ enables counting; GATE $=0$ disables counting. If GATE goes low during an output pulse, OUT is set high immediately. A trigger reloads the Counter with the initial count on the next CLK pulse; OUT goes low N CLK pulses after the trigger. Thus the GATE input can be used to synchronize the Counter.

After writing a Control Word and initial count, the Counter will be loaded on the next CLK pulse. OUT goes low N CLK pulses after the initial count is written. This allows the Counter to be synchronized by software also.

Writing a new count while counting does not affect the current counting sequence. If a trigger is received after writing a new count but before the end of the current period, the Counter will be loaded with the new count on the next CLK pulse and counting will continue from the new count. Otherwise, the new count will be loaded at the end of the current counting cycle.

NOTE: The following conventions apply to all mode timing diagrams. 1. Counters are programmed for binary (not BCD) counting and for reading/writing least significant byte (LSB) only.
2. The counter is always selected ($\overline{C S}$ always low).
3. CW stands for "Control Word"; $\mathrm{CW}=10$ means a control word of 10 , Hex is written to the counter.
4. LSB stands for "Least significant byte" of count.
5. Numbers below diagrams are count values. The lower number is the least significant byte. The upper number is the most significant byte. Since the counter is programmed to read/write LSB only, the most significant byte cannot be read.
6. N stands for an undefined count.
7. Vertical lines show transitions between count values.

FIGURE 14. MODE 1

FIGURE 13. MODE 0

Mode 3: Square Wave Mode

Mode 3 is typically used for Baud rate generation. Mode 3 is similar to Mode 2 except for the duty cycle of OUT. OUT will initially be high. When half the initial count has expired, OUT goes low for the remainder of the count. Mode 3 is periodic; the sequence above is repeated indefinitely. An initial count of N results in a square wave with a period of N CLK cycles.

GATE $=1$ enables counting; GATE $=0$ disables counting. If GATE goes low while OUT is low, OUT is set high immediately; no CLK pulse is required. A trigger reloads the Counter with the initial count on the next CLK pulse. Thus the GATE input can be used to synchronize the Counter.

After writing a Control Word and initial count, the Counter will be loaded on the next CLK pulse. This allows the Counter to be synchronized by software also.

FIGURE 15. MODE

Writing a new count while counting does not affect the current counting sequence. If a trigger is received after writing a new count but before the end of the current halfcycle of the square wave, the Counter will be loaded with the new count on the next CLK pulse and counting will continue from the new count. Otherwise, the new count will be loaded at the end of the current half-cycle.

Mode 3 is implemented as follows:

EVEN COUNTS: OUT is initially high. The initial count is loaded on one CLK pulse and then is decremented by two on succeeding CLK pulses. When the count expires, OUT changes value and the Counter is reloaded with the initial count. The above process is repeated indefinitely.

FIGURE 16. MODE 3

ODD COUNTS: OUT is initially high. The initial count is loaded on one CLK pulse, decremented by one on the next CLK pulse, and then decremented by two on succeeding CLK pulses. When the count expires, OUT goes low and the Counter is reloaded with the initial count. The count is decremented by three on the next CLK pulse, and then by two on succeeding CLK pulses. When the count expires, OUT goes high again and the Counter is reloaded with the initial count. The above process is repeated indefinitely. So for odd counts, OUT will be high for ($\mathrm{N}+1$)/2 counts and low for ($\mathrm{N}-1$)/2 counts.

Mode 4: Software Triggered Mode

OUT will be initially high. When the initial count expires, OUT will go low for one CLK pulse then go high again. The counting sequence is "Triggered" by writing the initial count.

GATE $=1$ enables counting; GATE $=0$ disables counting. GATE has no effect on OUT.

After writing a Control Word and initial count, the Counter will be loaded on the next CLK pulse. This CLK pulse does not decrement the count, so for an initial count of N, OUT does not strobe low until $N+1$ CLK pulses after the initial count is written.

If a new count is written during counting, it will be loaded on the next CLK pulse and counting will continue from the new count. If a two-byte count is written, the following happens:

1. Writing the first byte has no effect on counting.
2. Writing the second byte allows the new count to be loaded on the next CLK pulse.

This allows the sequence to be "retriggered" by software. OUT strobes low $\mathrm{N}+1$ CLK pulses after the new count of N is written.

Mode 5: Hardware Triggered Strobe (Retriggerable)

OUT will initially be high. Counting is triggered by a rising edge of GATE. When the initial count has expired, OUT will go low for one CLK pulse and then go high again.

FIGURE 18. MODE 5

FIGURE 17. MODE 4

After writing the Control Word and initial count, the counter will not be loaded until the CLK pulse after a trigger. This CLK pulse does not decrement the count, so for an initial count of N, OUT does not strobe low until N+1 CLK pulses after trigger.

A trigger results in the Counter being loaded with the initial count on the next CLK pulse. The counting sequence is triggerable. OUT will not strobe low for $\mathrm{N}+1$ CLK pulses after any trigger. GATE has no effect on OUT.

If a new count is written during counting, the current counting sequence will not be affected. If a trigger occurs after the new count is written but before the current count expires, the Counter will be loaded with the new count on the next CLK pulse and counting will continue from there.

Operation Common to All Modes

Programming

When a Control Word is written to a Counter, all Control Logic is immediately reset and OUT goes to a known initial state; no CLK pulses are required for this.

Gate

The GATE input is always sampled on the rising edge of CLK. In Modes 0, 2, 3 and 4 the GATE input is level sensitive, and logic level is sampled on the rising edge of CLK. In modes 1,2,3 and 5 the GATE input is rising-edge sensitive. In these Modes, a rising edge of Gate (trigger) sets an edge-sensitive flip-flop in the Counter. This flipflop is then sampled on the next rising edge of CLK. The flip-flop is reset immediately after it is sampled. In this way, a trigger will be detected no matter when it occurs - a high logic level does not have to be maintained until the next rising edge of CLK. Note that in Modes 2 and 3, the GATE input is both edge-and level-sensitive.

Counter

New counts are loaded and Counters are decremented on the falling edge of CLK.

The largest possible initial count is 0 ; this is equivalent to 2^{16} for binary counting and 104 for $B C D$ counting.

The counter does not stop when it reaches zero. In Modes $0,1,4$ and 5 the Counter "wraps around" to the highest count, either FFFF hex for binary counting or 9999 for BCD counting, and continues counting. Modes 2 and 3 are periodic; the Counter reloads itself with the initial count and continues counting from there.

SIGNAL Status MODES	$\begin{aligned} & \text { LOW } \\ & \text { OR GOING } \\ & \text { LOW } \end{aligned}$	RISING	HIGH
0	Disables counting	- '	Enables counting
1	-	1) Initiates counting 2) Resets output after next clock	-
2	1) Disables counting 2) Sets output immediately high	Initiates counting	Enables counting
3	1) Disables counting 2) Sets output immediately high	Initiates counting	Enables counting
4	1) Disables counting	-	Enables counting
5	-	Initiates counting	-

FIGURE 19. GATE PIN OPERATIONS SUMMARY

MODE	MIN COUNT	MAX COUNT
0	1	0
1	1	0
2	2	0
3	2	0
4	1	0
5	1	0

NOTE: 0 is equivalent to 2^{16} for binary counting and 10^{4} for $B C D$ counting.

FIGURE 20. MINIMUM AND MAXIMUM INITIAL COUNTS

Absolute Maximum Ratings

Supply Voltage.
+8.0 Volts
Input, Output or I/O Voltage Applied GND -0.5 V to $\mathrm{VCC}+0.5 \mathrm{~V}$ Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Maximum Package Power Dissipation
\qquad $\theta_{\mathrm{jc}} \cdot .170 ~ C / W ~(C E R D I P ~ P a c k a g e), ~ 22^{\circ} \mathrm{C} / \mathrm{W}$ (LCC Package) $\theta_{\text {ja }}$ $54^{\circ} \mathrm{C} / \mathrm{W}$ (CERDIP Package), $59^{\circ} \mathrm{C} / \mathrm{W}$ (LCC Package)
Gate Count 2250 Gates
Junction Temperature. $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, Ten Seconds)
$+275^{\circ} \mathrm{C}$
CAUTION: Stresses above those listed in the "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operation section of this specification is not implied.

Operating Conditions

Operating Voltage Range ..4.5V to +5.5V	
Operating Temperature Ranges:	
C82C54.......	. $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
I82C54	.$^{-40}{ }^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
M82C54	$55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

D. C. Electrical Specifications
$V C C=5.0 \mathrm{~V} \pm 10 \%$
$\mathrm{TA}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}(\mathrm{C} 82 \mathrm{C} 54)$
$T A=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}($ (182C54)
$T A=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}(\mathrm{M} 82 \mathrm{C} 54)$

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
VIH	Logical One Input Voltage	$\begin{aligned} & 2.0 \\ & 2.2 \end{aligned}$		$\begin{aligned} & \text { v } \\ & \text { v } \end{aligned}$	$\begin{aligned} & \text { C82C54, I82C54 } \\ & \text { M82C54 } \end{aligned}$
VIL	Logical Zero Input Voltage		0.8	V	
VOH	Output High Voltage	$\begin{gathered} 3.0 \\ \text { vCC }-0.4 \end{gathered}$		$\begin{aligned} & \hline v \\ & v \end{aligned}$	$\begin{aligned} & 1 \mathrm{OH}=-2.5 \mathrm{~mA} \\ & \mathrm{OH}=-100 \mu \mathrm{~A} \end{aligned}$
VOL	Output Low Voltage		0.4	V	$1 \mathrm{OL}=+2.5 \mathrm{~mA}$
11	Input Leakage Current	-1.0	+1.0	$\mu \mathrm{A}$	$\begin{aligned} & \text { VIN = GND or VCC } \\ & \text { DIP Pins } 9,11,14-16, \\ & 18-23 \end{aligned}$
10	1/O Leakage Current	-10.0	+10.0	$\mu \mathrm{A}$	$\begin{aligned} & \text { VO }=\text { GND or VCC } \\ & \text { DIP Pins } 1-8 \end{aligned}$
ICCSB	Standby Power Supply Current		10	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{VCC}=5.5 \mathrm{~V} \\ & \mathrm{VIN}=\mathrm{VCC} \text { or GND, } \end{aligned}$ Outputs Open Counters Programmed
ICCOP	Operating Power Supply Current		10	mA	$\begin{aligned} & \text { VCC }=5.5 \mathrm{~V} \\ & \text { CLK } 0=\text { CLK } 1=\text { CLK } 2 \\ & =8 \mathrm{MHz}, \\ & \text { Outputs Open } \end{aligned}$

Capacitance $T A=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	TYP	UNITS	TEST CONDITIONS
CIN	Input Capacitance	5	pF	FREQ $=1 \mathrm{MHz}$, all measurements are referenced to device GND
COUT	Output Capacitance	10	pF	
CI / O	I/O Capacitance	15	pF	

Specifications 82C54

A.C. Electrical Specifications

$\mathrm{VCC}=+5 \mathrm{~V} \pm 10 \%$
$\mathrm{TA}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}(\mathrm{C} 82 \mathrm{C} 54)$
$\mathrm{TA}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (I82C54)
$\mathrm{TA}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ (M82C54)

BUS PARAMETERS

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
READ CYCLE					
(1) TAR	Address Stable Before $\overline{\mathrm{RD}}$	30		ns	1
(2) TSR	CS Stable Before $\overline{\mathrm{RD}}$	0		ns	
(3) TRA	Address Hold Time After $\overline{\mathrm{RD}}$	0		ns	
(4) TRR	$\overline{\mathrm{RD}}$ Pulse Width	150		ns	
(5) TRD	Data Delay from $\overline{\mathrm{RD}}$		120	ns	
(6) TAD	Data Delay from Address		210	ns	
(7) TDF	$\overline{R D}$ to Data Floating	5	85	ns	2
(8) TRV	Command Recovery Time	200		ns	
WRITE CYCLE					
(9) TAW	Address Stable Before $\overline{W R}$	0		ns	
(10) TSW	CS Stable Before $\overline{W R}$	0		ns	
(11) TWA	Address Hold Time $\overline{W R}$	0		ns	
(12) TWW	WR Pulse Width	95		ns	
(13) TDW	Data Setup Time Before $\overline{W R}$	140		ns	
(14) TWD	Data Hold Time After $\overline{W R}$	25		ns	
(15) TRV	Command Recovery Time	200		ns	
CLOCK AND GATE					
(16) TCLK	Clock Period	125	DC	ns	1
(17) TPWH	High Pulse Width	60		ns	1
(18) TPWL	Low Pulse Width	60		ns	1
(19) TR	Clock Rise Time		25	ns	
(20) TF	Clock Fall Time		25	ns	
(21) TGW	Gate Width High	50		ns	1
(22) TGL	Gate Width Low	50		ns	
(23) TGS	Gate Setup Time to CLK	50		ns	
(24) TGH	Gate Hold Time After CLK	50		ns	
(25) TOD	Output Delay from CLK		150	ns	
(26) TODG	Output Delay from Gate		120	ns	\downarrow
(27) TWO	OUT Delay from Mode Write		260	ns	,

A.C. Test Circuits

TEST CONDITION DEFINITION TABLE
*Includes stray and jig capacitance

A.C. Testing Input, Output Waveform

A. C. Testing: All input signals must switch between $\mathrm{VIL}-0.4 \mathrm{~V}$ and $\mathrm{VIH}+0.4 \mathrm{~V}$. Input rise and fall times are driven at $1 \mathrm{~ns} / \mathrm{V}$.

Waveforms

READ

CLOCK AND GATE

CMOS Programmable Peripheral Interface

Features

- Pin Compatible with NMOS 8255A
- 24 Programmable I/O Pins
- Fully TTL Compatible
- High Speed, No "Wait State" Operation with 5MHz and 8MHz 80C86/80C88
- Direct Bit Set/Reset Capability
- Enhanced Control Word Read Capability
- Scaled SAJI IV CMOS Process
- 2.5mA Drive Capability on All I/O Port Outputs
- Low Standby Power - ICCSB $=10 \mu \mathrm{~A}$
- Wide Operating Temperature Ranges:
\qquad
- 182C55A $40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Description

The Harris 82C55A is a high performance CMOS version of the industry standard 8255A and is manufactured using a self-aligned silicon gate CMOS process (Scaled SAJIIV). It is a general purpose programmable I/O device which may be used with many different microprocessors. There are 24 I/O pins which may be individually programmed in 2 groups of 12 and used in 3 major modes of operation. The high performance and industry standard configuration of the 82C55A make it compatible with the $80 \mathrm{C} 86,80 \mathrm{C} 88$, and other microprocessors.

Static CMOS circuit design insures low operating power. TTL compatibility over the full temperature range and bus hold circuitry eliminate the need for pull-up resistors. The Harris advanced SAJI process results in performance equal to or greater than existing equivalent products at a fraction of the power.

Functional Description

$\mathrm{D}_{7}-\mathrm{D}_{8}$	DATA BUS (BI-DIRECTIONAL)
RESET	RESET INPUT
$\overline{\mathrm{CS}}$	CHIP SELECT
$\overline{\mathrm{AD}}$	READ INPUT
$\overline{\text { WR }}$	WRITE INPUT
A0, A1	PORT ADDRESS
PA7-PAO	PORT A (BIT)
PB7-PB0	PORT B (BIT)
PC7-PC0	PORT C (BIT)
YCC $*$	+5 VOLTS
GND $*$	OVOLTS

* A $0.1 \mu \mathrm{~F}$ decoupling capacitor from the $V_{C C}$ pin to the GND pin is recommended.
*LCC/PLCC Pinouts on Page 4-67

CAUTION: These devices are sensitive to electrostatic discharge. Proper IC handling procedures should be followed.

Pin Descriptions

SYMBOL	PIN NUMBER	TYPE	DESCRIPTION
VCC	26		VCC: the +5 V power supply pin. A $0.1 \mu \mathrm{~F}$ capacitor between pins 26 and 7 is recommended for decoupling.
GND	7		GROUND
$\mathrm{D}_{0}-\mathrm{D}_{7}$	27-34	1/0	DATA BUS: The Data Bus lines are bidirectional three-state pins connected to the system data bus.
RESET	35	1	RESET: A high on this input clears the control register and all ports (A, B, C) are set to the input mode with the "Bus Hold" circuitry turned on.
$\overline{C S}$	6	1	CHIP SELECT: Chip select is an active low input used to enable the 82C55A onto the Data Bus for CPU communications.
$\overline{\mathrm{RD}}$	5	1	READ: Read is an active low input control signal used by the CPU to read status information or data via the data bus.
$\overline{W R}$	36	1	WRITE: Write is an active low input control signal used by the CPU to load control words and data into the 82C55A
A0-A1	8, 9	1	ADDRESS: These input signals, in conjunction with the $\overline{R D}$ and $\overline{W R}$ inputs, control the selection of one of the three ports or the control word register. A0 and A1 are normally connected to the least significant bits of the Address Bus A0, A1).
$\mathrm{PA}_{0}-\mathrm{PA}_{7}$	1-4, 37-40	1/O	PORT A: 8-Bit input and output port. Both bus hold high and bus hold low circuitry are present on this port.
$\mathrm{PB}_{0}-\mathrm{PB}_{7}$	18-25	1/0	PORT B: 8-Bit input and output port. Bus hold high circuitry is present on this port.
$\mathrm{PC}_{0}-\mathrm{PC}_{7}$	10-17	1/0	PORT C: 8-Bit input and output port. Bus Hold High circuitry is present on this port.

LCC/PLCC Pinouts

[^5]
Functional Description

Data Bus Buffer

This 3-state bidirectional 8-bit buffer is used to interface the 82C55A to the system data bus. Data is transmitted or received by the buffer upon execution of input or output instructions by the CPU. Control words and status information are also transferred through the data bus buffer.

Read/Write and Control Logic

The function of this block is to manage all of the internal and external transfers of both Data and Control or Status words. It accepts inputs from the CPU Address and Control busses and in turn, issues commands to both of the Control Groups.

($\overline{\mathrm{CS}})$

Chip Select. A "low" on this input pin enables the communication between the 82C55A and the CPU.

($\overline{\mathrm{RD}})$

Read. A "low" on this input pin enables the 82C55A to send the data or status information to the CPU on the data bus. In essence, it allows the CPU to "read from" the 82C55A.

(WR)

Write. A "low" on this input pin enables the CPU to write data or control words into the 82C55A.

(Ao and A_{1})

Port Select 0 and Port Select 1. These input signals, in conjunction with the $\overline{R D}$ and WR inputs, control the selection of one of the three ports or the control word register. They are normally connected to the least significant bits of the address bus (A_{0} and A_{1}).

82C55A BASIC OPERATION

A_{1}	A_{0}	$\overline{\overline{R D}}$	$\overline{\text { WR }}$	$\overline{\overline{C S}}$	INPUT OPERATION (READ)
0	0	0	1	0	PORT A \rightarrow DATA BUS
0	1	0	1	0	PORT B \rightarrow DATA BUS
1	0	0	1	0	PORT $C \rightarrow$ DATA BUS
1	1	0	1	0	CONTROL WORD \rightarrow DATA BUS
					OUTPUT OPERATION (WRITE)
0	0	1	0	0	DATA BUS \rightarrow PORT A
0	1	1	0	0	DATA BUS \rightarrow PORT B
1	0	1	0	0	DATA BUS \rightarrow PORT C
1	1	1	0	0	DATA BUS \rightarrow CONTROL
					DISABLE FUNCTION
x	x	x	x	1	DATA BUS $\rightarrow 3$-STATE
x	x	1	1	0	DATA BUS $\rightarrow 3$-STATE

Figure 1
82C55A Block Diagram
Data Bus Buffer, Read/Write, Group A \& B Control Logic Functions

(RESET)

Reset. A "high" on this input clears the control register and all ports (A, B, C) are set to the input mode. "Bus hold" devices internal to the 82C55A will hold the I/O port inputs to a logic "1" state with a maximum hold current of $400 \mu \mathrm{~A}$.

Group A and Group B Controls

The functional configuration of each port is programmed by the systems software. In essence, the CPU "outputs" a control word to the 82C55A. The control word contains information such as "mode", "bit set", "bit reset", etc., that initializes the functional configuration of the 82C55A.
Each of the Control blocks (Group A and Group B) accepts "commands" from the Read/Write Control Logic, receives "control words" from the internal data bus and issues the proper commands to its associated ports.
Control Group A - Port A and Port C upper (C7-C4)
Control Group B - Port B and Port C lower (C3-C0)
The control word register can be both written and read as shown in the "Basic Operation" table. Figure 4 shows the control word format for both Read and Write operations. When the control word is read, bit D7 will always be a logic " 1 ", as this implies control word mode information.

Ports A, B and C

The 82C55A contains three 8-bit ports (A, B, and C). All can be configured to a wide variety of functional characteristics by the system software but each has its own special features or "personality" to further enhance the power and flexibility of the 82C55A.
Port A One 8-bit data output latch/buffer and one 8-bit data input latch. Both "pull-up" and "pull-down" bus-hold devices are present on Port A. See Figure 2a.

Port B One 8-bit data input/output latch/buffer and one 8-bit data input buffer. See Figure 2 b .

Port C One 8-bit data output latch/buffer and one 8 -bit data input buffer (no latch for input). This port can be divided into two 4-bit ports under the mode control. Each 4-bit port contains a 4-bit latch and it can be used for the control signal outputs and status signal inputs in conjunction with ports A and B. See Figure 2 b .

Figure 2
Port A \& B, Port C Bus-hold Configuration

Operational Description

Mode Selection

There are three basic modes of operation that can be selected by the system software:

> Mode 0-Basic Input/Output
> Mode 1-Strobed Input/Output
> Mode 2-Bi-Directional Bus

When the reset input goes "high", all ports will be set to the input mode with all 24 port lines held at a logic "one" level by internal bus hold devices. After the reset is removed, the 82C55A can remain in the input mode with no additional initialization required. This eliminates the need for pullup or pulldown resistors in all-CMOS designs. During the execution of the system program, any of the other modes may be selected using a single output instruction. This allows a single 82C55A to service a variety of peripheral devices with a simple software maintenance routine.
The modes for Port A and Port B can be separately defined, while Port C is divided into two portions as required by the Port A and Port B definitions. All of the output registers, including the status flip-flops, will be reset whenever the mode is changed. Modes may be combined so that their functional definition can be "tailored" to almost any I/O structure. For instance: Group B can be programmed in Mode 0 to monitor simple switch closings or display computational results, Group A could be programmed in Mode 1 to monitor a keyboard or tape reader on an interrupt-driven basis.

Figure 3
Basic Mode Definitions and Bus Interface

Figure 4
Mode Definition Format

The mode definitions and possible mode combinations may seem confusing at first but after a cursory review of the complete device operation a simple, logical I/O approach will surface. The design of the 82C55A has taken into account things such as efficient PC board layout, control signal definition vs PC layout and complete functional flexibility to

Figure 5
Bit Set/Reset Format
support almost any peripheral device with no external logic. Such design represents the maximum use of the available pins.

Single Bit Set/Reset Feature

Any of the eight bits of Port C can be Set or Reset using a single OUTput instruction. This feature reduces software requirements in control-based applications.
When Port C is being used as status/control for Port A or B , these bits can be set or reset by using the Bit Set/Reset operation just as if they were data output ports.

Interrupt Control Functions

When the 82C55A is programmed to operate in mode 1 or mode 2, control signals are provided that can be used as interrupt request inputs to the CPU. The interrupt request signals, generated from port C, can be inhibited or enabled by setting or resetting the associated INTE flip-flop, using the bit set/reset function of port C.
This function allows the programmer to enable or disable a CPU interrupt by a specific I/O device without affecting any other device in the interrupt structure.

INTE flip-flop definition:

(BIT-SET) - INTE is SET - Interrupt enable (BIT-RESET) - INTE is RESET - Interrupt disable.
Note: All Mask flip-flops are automatically reset during mode selection and device Reset.

Operating Modes

Mode O (Basic Input/Output). This functional configuration provides simple input and output operations for each of the three ports. No handshaking is required, data is simply written to or read from a specific port.

Mode O Basic Functional Definitions:

- Two 8-bit ports and two 4-bit ports
- Any port can be input or output
- Outputs are latched
- Inputs are not latched
- 16 different Input/Output configurations possible

MODE 0 (Basic Input)

MODE 0 (Basic Output)

MODE 0 Port Definition

A		B		GROUP A			GROUP B	
$\mathbf{D}_{\mathbf{4}}$	$\mathbf{D}_{\mathbf{3}}$	$\mathbf{D}_{\mathbf{1}}$	$\mathbf{D}_{\mathbf{0}}$	PORT A	PORT C (UPPER)	$\#$	PORT B	PORT C (LOWER)
0	0	0	0	OUTPUT	OUTPUT	0	OUTPUT	OUTPUT
0	0	0	1	OUTPUT	OUTPUT	1	OUTPUT	INPUT
0	0	1	0	OUTPUT	OUTPUT	2	INPUT	OUTPUT
0	0	1	1	OUTPUT	OUTPUT	3	INPUT	INPUT
0	1	0	0	OUTPUT	INPUT	4	OUTPUT	OUTPUT
0	1	0	1	OUTPUT	INPUT	5	OUTPUT	INPUT
0	1	1	0	OUTPUT	INPUT	6	INPUT	OUTPUT
0	1	1	1	OUTPUT	INPUT	7	INPUT	INPUT
1	0	0	0	INPUT	OUTPUT	8	OUTPUT	OUTPUT
1	0	0	1	INPUT	OUTPUT	9	OUTPUT	INPUT
1	0	1	0	INPUT	OUTPUT	10	INPUT	OUTPUT
1	0	1	1	INPUT	OUTPUT	11	INPUT	INPUT
1	1	0	0	INPUT	INPUT	12	OUTPUT	OUTPUT
1	1	0	1	INPUT	INPUT	13	OUTPUT	INPUT
1	1	1	0	INPUT	INPUT	14	INPUT	OUTPUT
1	1	1	1	INPUT	INPUT	15	INPUT	INPUT

MODE 0 Configurations

CONTROL WORD \#4

CONTROL WORD \#8

D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}
1	0	0	1	0	0	0	0

CONTROL WORD \#9

D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}
1	0	0	1	0	0	0	1

CONTROL WORD \#6

D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}
1	0	0	0	1	0	1	0

CONTROL WORD \#10

D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}
1	0	0	1	0	0	1	0

CONTROL WORD \#7

D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}
1	0	0	0	1	0	1	1

CONTROL WORD \#11

D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}
1	0	0	1	0	0	1	1

CONTROL WORD \#12

| D_{7} | D_{6} | D_{5} | D_{4} | D_{3} | D_{2} | D_{1} | D_{0} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 |

CONTROL WORD \#14
$\begin{array}{llllllll}D_{7} & D_{6} & D_{5} & D_{4} & D_{3} & D_{2} & D_{1} & D_{0}\end{array}$

1	0	0	1	1	0	1	0

CONTROL WORD \#13

CONTROL WORD \#15

D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}
1	0	0	1	1	0	1	1

Operating Modes

Mode 1 (Strobed Input/Output). This functional configuration provides a means for transferring I/O data to or from a specified port in conjunction with strobes or "handshaking" signals. In mode 1, port A and port B use the lines on port C to generate or accept these "handshaking" signals.

Mode 1 Basic Functional Definitions:

- Two Groups (Group A and Group B)
- Each group contains one 8-bit port and one 4-bit control/data port.
- The 8-bit data port can be either input or output. Both inputs and outputs are latched.
- The 4-bit port is used for control and status of the 8 -bit port.

Input Control Signal Definition
 $\overline{\mathrm{STB}}$ (Strobe Input)

A "low" on this input loads data into the input latch.

IBF (Input Buffer Full F/F)

A "high" on this output indicates that the data has been loaded into the input latch; in essence, an acknowledgement. IBF is set by STB input being low and is reset by the rising edge of the $\overline{R D}$ input.

INTR (Interrupt Request)

A "high"on this output can be used to interrupt the CPU when an input device is requesting service. INTR is set by the condition: STB is a "one", IBF is a "one" and INTE is a "one". It is reset by the falling edge of $\overline{\mathrm{RD}}$. This procedure allows an input device to request service from the CPU by simply strobing its data into the port.

INTE A

Controlled by bit set/reset of PC_{4}.

INTE B

Controlled by bit set/reset of PC_{2}.

Figure 6 MODE 1 Input

Figure 7
MODE 1 (Strobed Input)

OUTPUT CONTROL SIGNAL DEFINITION

$\overline{\mathrm{OBF}}$ (Output Buffer Full F/F). The $\overline{\mathrm{OBF}}$ output will go "low" to indicate that the CPU has written data out to the specified port. This does not mean valid data is sent out of the part at this time since $\overline{O B F}$ can go true before data is available. Data is guaranteed valid at the rising edge of OBF. See Note 1. The OBF F/F will be set by the rising edge of the WR input and reset by $\overline{A C K}$ Input being low.
$\overline{\text { ACK }}$ (Acknowledge Input). A "low" on this input informs the 82C55A that the data from Port A or Port B is ready to be accepted. In essence, a reponse from the peripheral device indicating that it is ready to accept data. See Note 1.
INTR (Interrupt Request). A "high" on this output can be used to interrupt the CPU when an output device has accepted data transmitted by the CPU. INTR is set when $\overline{\text { ACK }}$ is a "one", OBF is a "one" and INTE is a "one". It is reset by the falling edge of WR.

INTE A

Controlled by Bit Set/Reset of PC6.
INTE B
Controlled by Bit Set/Reset of PC2.

NOTE:

1. To strobe data into the peripheral device, the user must operate the strobe line in a hand shaking mode. The user needs to send OBF to the peripheral device, generate an $\overline{A C K}$ from the peripheral device and then latch data into the peripheral device on the rising edge of $\overline{\mathrm{OBF}}$

Figure 8
MODE 1 Output

Figure 9
MODE 1 (Strobed Output)

Combinations of MODE 1: Port A and Port B can be individually defined as input or output in Mode 1 to support a wide variety of strobed I/O applications.

Figure 10
Combinations of MODE 1

Operating Modes

MODE 2 (Strobed Bidirectional Bus I/O)

The functional configuration provides a means for communicating with a peripheral device or structure on a single 8 -bit bus for both transmitting and receiving data (bidirectional bus I/O). "Handshaking" signals are provided to maintain proper bus flow discipline similar to MODE 1. Interrupt generation and enable/disable functions are also available.

MODE 2 Basic Functional Definitions:

- Used in Group A only.
- One 8-bit, bi-directional bus Port (Port A) and a 5-bit control Port (Port C).
- Both inputs and outputs are latched.
- The 5-bit control port (Port C) is used for control and status for the 8 -bit, bi-directional bus port (Port A).

Bidirectional Bus I/O Control Signal Definition

INTR (Interrupt Request). A high on this output can be used to interrupt the CPU for both input or output operations.

Output Operations

$\overline{\mathrm{OBF}}$ (Output Buffer Full). The $\overline{\mathrm{OBF}}$ output will go "low" to indicate that the CPU has written data out to port A.
$\overline{A C K}$ (Acknowledge). A "low" on this input enables the tri-state output buffer of port A to send out the data. Otherwise, the output buffer will be in the high impedance state.
INTE 1 (The INTE Flip-Flop Associated with $\overline{\mathrm{OBF}}$). Controlled by bit set/reset of PC_{6}.

Input Operations

$\overline{\text { STB }}$ (Strobe Input). A "low" on this input loads data into the input latch.
IBF (Input Buffer Full F/F). A "high" on this output indicates that data has been loaded into the input latch.
INTE 2 (The INTE Flip-Flop Associated with IBF). Controlled by bit set/reset of PC_{4}.

Figure 13. MODE 2 (Bidirectional)

Figure 14
MODE 2 Combinations

Mode Definition Summary

	MODE 0	
	IN	OUT
PA_{0}	IN	OUT
$P A_{1}$	IN	OUT
PA_{2}	IN	OUT
PA_{3}	IN	OUT
PA_{4}	IN	OUT
PA_{5}	IN	OUT
PA_{6}	IN	OUT
PA_{7}	IN	OUT
PB_{0}	IN	OUT
PB_{1}	IN	OUT
PB_{2}	IN	OUT
PB_{3}	IN	OUT
PB_{4}	IN	OUT
PB_{5}	IN	OUT
PB_{6}	IN	OUT
PB_{7}	IN	OUT
$P C_{0}$	IN	OUT
PC_{1}	IN	OUT
PC_{2}	IN	OUT
PC_{3}	IN	OUT
PC_{4}	IN	OUT
PC_{5}	IN	OUT
PC_{6}	IN	OUT
PC_{7}	IN	OUT

MODE 1	
IN	OUT
$\mathrm{INTR}_{\mathrm{B}}$	${ }^{\text {INTR }}$ B
${ }_{18} F_{B}$	$\overline{\text { OBF }}_{B}$
$\overline{S T B}_{B}$	$\overline{A C K}_{B}$
INTR $_{A}$	INTR $_{\text {A }}$
$\overline{S T B}_{A}$	1/O
$18 F_{A}$	1/O
1/0	$\overline{\mathrm{ACK}}_{\mathrm{A}}$
1/0	$\overline{O B F}_{A}$

Special Mode Combination Considerations:

There are several combinations of modes possible. For any combination, some or all of Port C lines are used for control or

Figure 15. MODE 1 Status Word Format

Figure 16. MODE 2 Status Word Format
status. The remaining bits are either inputs or outputs as defined by a "Set Mode" command.
During a read of Port C, the state of all the Port C lines, except the $\overline{A C K}$ and $\overline{\text { STB }}$ lines, will be placed on the data bus. In place of the $\overline{A C K}$ and $\overline{\text { STB }}$ line states, flag status will appear on the data bus in the PC2, PC4, and PC6 bit positions as illustrated by Figure 17.

Through a "Write Port C" command, only the Port C pins programmed as outputs in a Mode 0 group can be written. No other pins can be affected by a "Write Port C" command, nor can the interrupt enable flags be accessed. To write to any Port C output programmed as an output in a Mode 1 group or to change an interrupt enable flag, the "Set/Reset Port C Bit" command must be used.

With a "Set/Reset Port C Bit" command, any Port C line programmed as an output (including IBF and OBF) can be written, or an interrupt enable flag can be either set or reset. Port C lines programmed as inputs, including $\overline{A C K}$ and STB lines, associated with Port C are not affected by a "Set/Reset Port C Bit" command. Writing to the corresponding Port C bit positions of the $\overline{A C K}$ and STB lines with the "Set/Reset Port C Bit" command will affect the Group A and Group B interrupt enable flags, as illustrated in Figure 17.

Interrupt Enable Flag	Position	Alternate Port C Pin Signal (Mode)
INTE B	PC2	$\overline{\text { ACK }}_{\mathbf{B}}$ (Output Mode 1) or STB (Input Mode 1)
INTE A2	PC4	$\overline{\text { STB }}_{\mathbf{A}}$ (Input Mode 1 or Mode 2)
INTE A1	PC6	$\overline{\text { ACK }}_{\text {A }}$ (Output Mode 1 or Mode 2)

Figure 17
Interrupt Enable Flags in Modes 1 and 2

Current Drive Capability:

Any output on Port A, B or C can sink or source 2.5 mA . This feature allows the 82C55A to directly drive Darlington type drivers and high-voltage displays that require such sink or source current.

Reading Port C Status

In Mode 0, Port C transfers data to or from the peripheral
device. When the 82C55A is programmed to function in Modes 1 or 2, Port C generates or accepts "hand-shaking" signals with the peripheral device. Reading the contents of Port C allows the programmer to test or verify the "status" of each peripheral device and change the program flow accordingly.
There is no special instruction to read the status information from Port C. A normal read operation of Port C is executed to perform this function.

APPLICATIONS OF THE 82C55A

The 82C55A is a very powerful tool for interfacing peripheral equipment to the microcomputer system. It represents the optimum use of available pins and is flexible enough to interface almost any I/O device without the need for additional external logic.
Each peripheral device in a microcomputer system usually has a "service routine" associated with it. The routine manages the software interface between the device and the CPU. The functional definition of the 82C55A is programmed by the I/O service routine and becomes an extension of the system software. By examining the I/O devices interface characteristics for both data transfer and timing, and matching this information to the examples and tables in the detailed operational description, a control word can easily be developed to initialize the 82C55A to exactly "fit" the application. Figures 18 through 24 present a few examples of typical applications of the 82C55A.

Figure 18. Printer Interface

Figure 19. Keyboard and Display Interface

Figure 22. Basic CRT Controller Interface

Figure 20. Keyboard and Terminal Address Interface

Figure 21. Digital to Analog, Analog to Digita!

Figure 23. Basic Floppy Disc Interface
Figure 24. Machine Tool Controller Interface

Specifications 82C55A

Absolute Maximum Ratings

S	+8.0 Volts
Input, Output or I/O Voltage Applied	GND -0.5V to VCC +0.5 V
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150{ }^{\circ} \mathrm{C}$
Maximum Package Power Dissipation	1 Watt
θ_{jc}... $22^{\circ} \mathrm{C} / \mathrm{W}$ (CERDIP Package),	2700\%/W (LCC Package)
θ_{ja}-.. $550 \mathrm{C} / \mathrm{W}$ (CERDIP Package),	$60^{\circ} \mathrm{C} / \mathrm{W}$ (LCC Package)
Gate Count	1,000 Gates
Junction Temperat	+ $150{ }^{\circ} \mathrm{C}$
Lead Temperature (Soldering, Ten Seconds)	$\ldots+275{ }^{\circ} \mathrm{C}$
CAUTION: Stresses above those listed in the "Absolute Maximum Ratings" may cause perm is a stress only rating and operation of the device at these or any other conditions above section of this specification is not implied.	nent damage to the device. This hose indicated in the operation

Operating Conditions

Operating Voltage Range	. V to +5.5 V
Operating Temperature Range	
C82C55A$^{\circ} \mathrm{C}$ to $+70{ }^{\circ} \mathrm{C}$
I82C55A.	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
M82C55A	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

D. C. Electrical Specifications $\quad V C C=5.0 \mathrm{~V} \pm 10 \% ; \quad T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}(\mathrm{C} 82 \mathrm{C} 55 \mathrm{~A})$;
$T_{A}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}(182 \mathrm{C} 55 \mathrm{~A})$;
$T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ (M82C55A)

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
VIH	Logical One Input Voltage	$\begin{aligned} & 2.0 \\ & 2.2 \end{aligned}$		$\begin{aligned} & \text { v } \\ & \text { v } \end{aligned}$	182C55A, C82C55A, M82C55A
VIL	Logical Zero Input Voltage		0.8	V	
VOH	Logical One Output Voltage	$\begin{gathered} 3.0 \\ \text { VCC }-0.4 \end{gathered}$		$\begin{aligned} & \text { v } \\ & \text { v } \end{aligned}$	$\begin{aligned} & 1 \mathrm{OH}=-2.5 \mathrm{~mA} \\ & \mathrm{IOH}=-100 \mu \mathrm{~A} \end{aligned}$
VOL	Logical Zero Output Voltage		0.4	V	$1 \mathrm{OL}=+2.5 \mathrm{~mA}$
11	Input Leakage Current	-1.0	1.0	$\mu \mathrm{A}$	$\begin{aligned} & \text { VIN }=\text { VCC or GND, DIP } \\ & \text { Pins: } 5,6,8,9,35,36 \end{aligned}$
10	I/O Pin Leakage Current	-10.0	10.0	$\mu \mathrm{A}$	$\mathrm{VO}=\mathrm{VCC}$ or GND DIP Pins: 27-34
IBHH	Bus Hold High Current	-50	-400	$\mu \mathrm{A}$	VO $=3.0 \mathrm{~V}$ Ports A, B, C
IBHL	Bus Hold Low Current	+50	+400	$\mu \mathrm{A}$	$\mathrm{VO}=1.0 \mathrm{~V}$ PORT A ONLY
IDAR	Darlington Drive Current	-2.0	Note 1	mA	PORTS A, B, C Test Condition 3
ICCSB	Standby Power Supply Current		10	$\mu \mathrm{A}$	$\mathrm{VCC}=5.5 \mathrm{~V}, \mathrm{VIN}=\mathrm{VCC}$ or GND Outputs Open
ICCOP	Operating Power Supply Current		1	$\mathrm{mA} / \mathrm{MHz}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{VCC}=5.0 \mathrm{~V}, \\ & \text { Typical (See Note 2) } \end{aligned}$

NOTES: 1. No internal current limiting exists on Port Outputs. A resistor must be added externally to limit the current.
2. $I C C O P=1 \mathrm{~mA} / \mathrm{MHz}$ of Peripheral Read/Write cycle time. (Example: $1.0 \mu \mathrm{~s} \mathrm{I} / \mathrm{O}$ Read/Write cycle time $=1 \mathrm{~mA}$).

Capacitance $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	TYPICAL	UNITS	TEST CONDITIONS
C_{IN}	Input Capacitance	5	pF	FREQ $=1 \mathrm{MHz}$, all measure- ments are referenced to device GND
$\mathrm{C}_{\mathrm{I} / \mathrm{O}}$	I/O Capacitance	20	pF	

Specifications 82C55A

$$
\begin{array}{ll}
\text { A.C. Electrical Specifications } & \mathrm{VCC}=+5 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}(\mathrm{M} 82 \mathrm{C} 55 \mathrm{~A})(\mathrm{M} 82 \mathrm{C} 55 \mathrm{~A}-5) \\
\mathrm{VCC}=+5 \mathrm{~V} \pm 10 \%, G N D=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}(\text { (182C55A) (I82C55A-5) } \\
& \mathrm{VCC}=+5 \mathrm{~V} \pm 10 \%, G N D=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}(\mathrm{CB} 82 \mathrm{C} 55 \mathrm{~A})(\mathrm{C} 82 \mathrm{C} 55 \mathrm{~A}-5)
\end{array}
$$

Bus Parameters READ		82C55A		82C55A-5		UNITS	TEST CONDITIONS
SYMBOL	PARAMETER	MIN	MAX	MIN	MAX		
(1) tAR	Address Stable Before READ	0		0		ns	
(2) tRA	Address Stable After READ	0		0		ns	
(3) tRR	READ Pulse Width	150		250		ns	
(4) tRD	Data Valid From READ		120		200	ns	1
(5) tDF	Data Float After READ	10	75	10	75	ns	2
(6) tRV	Time Between READs and/or WRITEs	300		300		ns	
WRITE		82C55A		82C55A-5			TEST
SYMBOL	PARAMETER	MIN	MAX	MIN	MAX	UNITS	CONDITIONS
(7) tAW	Address Stable Before WRITE	0		0		ns	
(8) tWA	Address Stable After WRITE	20		20		ns	
(9) tWW	WRITE Pulse Width	100		100		ns	
(10)tDW	Data Valid to WRITE High	100		100		ns	
(1.1) ${ }^{\text {tWD }}$	Data Valid After WRITE High	30		30		ns	
OTHER TIMINGS		82C55A		82C55A-5			TEST
SYMBOL	PARAMETER	MIN	MAX	MIN	MAX	UNITS	CONDITIONS
(12)tWB	WR = 1 to Output		350		350	ns	1
(13)tIR	Peripheral Data Before RD	0		0		ns	
(14)tHR	Peripheral Data After RD	0		0		ns	
(15)tAK	ACK Pulse Width	200		200		ns	
(16)tST	STB Pulse Width	100		100		ns	
(17)tPS	Per. Data Before STB High	20		20		ns	
(18) P PH	Per. Data After STB High	50		50		ns	
(19)tAD	ACK $=0$ to Output		175		175	ns	1
(20)tKD	ACK $=1$ to Output Fioat	20	250	20	250	ns	2
(21)tWOB	$W R=1$ to $O B F=0$		150		150	ns	1
(22)tAOB	$A C K=0$ to $O B F=1$		150		150	ns	1
(23)tSIB	$\mathrm{STB}=0$ to $\mathrm{IBF}=1$		150		150	ns	1
(24)tRIB	$\mathrm{RD}=1$ to $1 \mathrm{BF}=0$		150		150	ns	1
(25)tRIT	RD $=0$ to $1 N T R=0$		200		200	ns	1
(26) tSIT	STB $=1$ to INTR $=1$		150		150	ns	1
(27)tAIT	$A C K=1$ to $\operatorname{INTR}=1$		150		150	ns	1
(28)tWIT	$W \mathrm{~W}=0$ to $\mathrm{INTR}=0$		200		200	ns	1
(29) ${ }^{\text {tRES }}$	Reset Pulse Width	500		500		ns	see note 1

Note 1. Period of initial Reset pulse after power-on must be at least $50 \mu \mathrm{sec}$. Subsequent Reset pulses may be 500 ns minimum.
A. C. Test Circuit

A.C. Testing Input, Output Waveforms

A.C. Testing: All parameters tested as per test circuits. Input rise and fall times are driven at $1 \mathrm{~ns} / \mathrm{V}$.

TEST CONDITION	V1	R1	R2	C1
1	1.7 V	523Ω	OPEN	150 pf
2	5.0 V	$2 \mathrm{~K} \Omega$	$1.7 \mathrm{~K} \Omega$	50 pf
3	1.5 V	$750 \Omega 2$	OPEN	OPEN

[^6]
Waveforms

MODE 0 (BASIC INPUT)

MODE 0 (BASIC OUTPUT)

MODE 1 (STROBED INPUT)

MODE 2 (BIDIRECTIONAL)

1. Any sequence where $\overline{W R}$ occurs before $\overline{A C K}$ and $\overline{S T B}$ occurs before $\overline{R D}$ is permissible. $(\operatorname{INTR}=\mathrm{IBF} \bullet \overline{\mathrm{MASK}} \bullet \overline{\mathrm{STB}} \bullet \overline{\mathrm{RD}}+\overline{\mathrm{OBF}} \bullet \overline{\mathrm{MASK}} \bullet \overline{\mathrm{ACK}} \bullet \overline{\mathrm{WR}})$

WRITE TIMING

READ TIMING

Features

- Pin Compatible with NMOS 8259A
- 8 MHz and 5 MHz Versions Available
- Eight Level Priority Controller, Expandable to 64 Levels
- Fully TTL Compatible
- High Speed, No "Wait State" Operation with 8MHz 80C86 and 80C88
- Programmable Interrupt Modes
- 8080/8085 and 8086/80C86/80C88 Compatible Operation
- Individual Request Mask Capatibility
- Fully Static Design
- Scaled SAJI IV CMOS Process
- Single 5V Power Supply
- Low Standby Power - $10 \mu \mathrm{~A}$ Maximum
- Wide Operating Temperature Ranges:
\qquad
- 182C59A $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- M82C59A $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Description

The Harris 82C59A is a high performance CMOS Priority Interrupt controller manufactured using a self-aligned silicon gate CMOS process (Scaled SAJIIV). The 82C59A is designed to relieve the system CPU from the task of polling in a multi-level priority interrupt system. The high speed and industry standard configuration of the 82C59A make it compatible with microprocessors such as the 80C86, 80C88, 8086, 8080/85 and NSC800.
The 82C59A can handle up to eight vectored priority interrupting sources and is cascadable to 64 without additional circuitry. Individual interrupting sources can be masked or prioritized to allow custom system configuration. Two modes of operation make the 82C59A compatible with both $8080 / 85$ and 80C86/88 formats.
Static CMOS circuit design insures low operaing power. Harris advanced SAJI process results in performance equal to or greater than existing equivalent products at a fraction of the power.

Pinouts

TOP VIEW

$\overline{\text { cs }}$	28	$\mathrm{V}_{\text {cc }}$
WR ${ }^{2}$	27	$\square A_{0}$
$\overline{\mathrm{RD}} \square^{3}$	26	DINTA
$\mathrm{D}_{7} \mathrm{H}_{4}$	25	コIR7
$\mathrm{D}_{6} \mathrm{C}_{5}$	24]IR6
$\mathrm{D}_{5} \mathrm{C}^{6}$	23]IR5
$\mathrm{D}_{4} \mathrm{Cl}_{7}$	22]IR4
$\mathrm{D}_{3} \mathrm{~B}_{8}$	21	$\square \mathrm{IR} 3$
02-9	20	IR2
$\mathrm{D}_{1} \mathrm{C}_{10}$	19	$\square \mathrm{IR1}$
$\mathrm{D}_{0} \mathrm{C}_{11}$	18	$\square \mathrm{IRO}$
CAS 012	17	\square INT
CAS $1{ }^{13}$	16	$\square \overline{S P} / \overline{E N}$
GND-14	15	$\square \mathrm{CAS} 2$

LCC/PLCC

TOP VIEW

Functional Diagram

$D_{7}-D_{0}$	DATA BUS (BI-DIRECTIONAL)
$\overline{\mathrm{RD}}$	READ INPUT
$\overline{\mathrm{WR}}$	WRITE INPUT
A_{0}	COMMAND SELECT ADDRESS
$\overline{\mathrm{CS}}$	CHIP SELECT
$\overline{\mathrm{CAS}} 2-\mathrm{CAS} 0$	CASCADE LINES
$\overline{S P} / \overline{\mathrm{EN}}$	SLAVE PROGRAM INPUT ENABLE
INT	INTERRUPT OUTPUT
$\overline{\text { INTA }}$	INTERRUPT ACKNOWLEDGE INPUT
IRO - IR 7	INTERRUPT REQUEST INPUTS

CAUTION: These devices are sensitive to electrostatic discharge. Proper I.C. handling procedures should be followed.

Pin Description

SYMBOL	PIN NUMBER	TYPE	DESCRIPTION
V_{CC}	28	1	$V_{\text {CC }}$: The +5 V power supply pin. A $0.1 \mu \mathrm{~F}$ capacitor between pins 14 and 28 is recommended for decoupling.
GND	14	1	GROUND
$\overline{\mathrm{CS}}$	1	1	CHIP SELECT: A low on this pins enables $\overline{\mathrm{RD}}$ and $\overline{\mathrm{WR}}$ communications between the CPU and the 82C59A. INTA functions are independent of $\overline{C S}$.
$\overline{W R}$	2	1	WRITE: A low on this pin when $\overline{\mathrm{CS}}$ is low enables the 82C59A to accept command words from the CPU.
$\overline{\mathrm{RD}}$	3	1	READ: A low on this pin when $\overline{C S}$ is low enables the 82C59A to release status onto the data bus for the CPU.
$\mathrm{D}_{7}-\mathrm{D}_{0}$	4-11	1/0	BIDIRECTIONAL DATA BUS: Control status and interrupt-vector information is transferred via this bus.
$\begin{gathered} \text { CAS } 0- \\ \text { CAS } 2 \end{gathered}$	12, 13, 15	1/0	CASCADE LINES: the CAS lines form a private 82C59A bus to control a multiple 82C59A structure. These pins are outputs for a master 82C59A and inputs for a slave 82C59A.
$\overline{\mathrm{SP}} / \overline{\mathrm{EN}}$	16	1/O	SLAVE PROGRAM/ENABLE BUFFER: This is a dual function pin. when in the Buffered Mode it can be used as an output to control buffer transceivers ($\overline{E N}$). When not in the buffered mode it is used as an input to designate a master $(\overline{\mathrm{SP}}=1)$ or slave $(\overline{\mathrm{SP}}=0)$.
INT	17	0	INTERRUPT: This pin goes high whenever a valid interrupt request is asserted. It is used to interrupt the CPU, thus it is connected to the CPU's interrupt pin.
IRO-IR7	18-25	1	INTERRUPT REQUESTS: Asynchronous inputs. An interrupt request is executed by raising an IR input (low to high), and holding it high until it is acknowledged (Edge Triggered Mode), or just by a high level on an IR input (Level Triggered Mode).
INTA	26	1	INTERRUPT ACKNOWLEDGE: This pin is used to enable 82C59A interrupt-vector data onto the data bus by a sequence of interrupt acknowledge pulses issued by the CPU.
AO	27	1	ADDRESS LINE: This pin acts in conjunction with the $\overline{C S}, \overline{W R}$, and $\overline{R D}$ pins. It is used by the 82C59A to decipher various Command Words the CPU writes and status the CPU wishes to read. It is typically connected to CPU A0 address line (A for 80C86/88).

Functional Description

INTERRUPTS IN MICROCOMPUTER SYSTEMS

Microcomputer system design requires that I/O devices such as keyboards, displays, sensors and other components receive servicing in an efficient manner so that large amounts of the total system tasks can be assumed by the microcomputer with little or no effect on throughput.

The most common method of servicing such devices is the Polled approach. This is where the processor must test each device in sequence and in effect "ask" each one if it needs servicing. It is easy to see that a large portion of the main program is looping through this continuous polling cycle and that such a method would have a serious, detrimental effect on system through-put, thus limiting the tasks that could be assumed by the microcomputer and reducing the cost effectiveness of using such devices.

A more desirable method would be one that would allow the microprocessor to be executing its main program and only stop to service peripheral devices when it is told to do so by the device itself. In effect, the method would provide an external asynchronous input that would inform the processor that it should complete whatever instruction that is currently being executed and fetch a new routine that will service the requesting device. Once this servicing is
complete, however, the processor would resume exactly where it left off.

This is the interrupt-driven method. It is easy to see that system throughput would drastically increase, and thus more tasks could be assumed by the microcomputer to further enhance its cost effectiveness.

The Programmable Interrupt Controller (PIC) functions as an overall manager in an Interrupt-Driven system. It accepts requests from the peripheral equipment, determines which of the incoming requests is of the highest importance (priority), ascertains whether the incoming request has a higher priority value than the level currently being serviced, and issues an interrupt to the CPU based on this determination.

Each peripheral device or structure usually has a special program or "routine" that is associated with its specific functional or operational requirements; this is referred to as a "service routine". The PIC, after issuing an interrupt to the CPU, must somehow input information into the CPU that can "point" the Program Counter to the service routine associated with the requesting device. This "pointer" is an address in a vectoring table and will often be referred to, in this document, as vectoring data.

82C59A FUNCTIONAL DESCRIPTION

The 82C59A is a device specifically designed for use in real time, interrupt driven microcomputer systems. It manages eight levels of requests and has built-in features for expandability to other 82C59As (up to 64 levels). It is programmed by system software as an I/0 peripheral. A selection of priority modes is available to the programmer so that the manner in which the requests are processed by the 82C59A can be configured to match system requirements. The priority modes can be changed or reconfigured dynamically at any time during main program operation. This means that the complete
interrupt structure can be defined as required, based on the total system environment.

INTERRUPT REQUEST REGISTER (IRR) and IN-SERVICE REGISTER (ISR)

The interrupts at the IR input lines are handled by two registers in cascade, the Interrupt Request Register (IRR) and the In-Service Register (ISR). The IRR is used to store all the interrupt levels which are requesting service, and the ISR is used to store all the interrupt levels which are currently being serviced.

PRIORITY RESOLVER

This logic block determines the priorities of the bits set in the IRR. The highest priority is selected and strobed into the corresponding bit of the ISR during the INTA sequence.

INTERRUPT MASK REGISTER (IMR)

The IMR stores the bits which disable the interrupt lines to be masked. The IMR operates on the output of the IRR. Masking of a higher priority input will not affect the interrupt request lines of lower priority.

INTERRUPT (INT)

This output goes directly to the CPU interrupt input. The VoH level on this line is designed to be fully compatible with the 8080A, 8085A, 8086, 8088 and $80 C 86,80 C 88$ input levels.

INTERRUPT ACKNOWLEDGE (INTA)

INTA pulses will cause the 82C59A to release vectoring information onto the data bus. The format of this data depends on the system mode ($\mu \mathrm{PM}$) of the 82C59A.

DATA BUS BUFFER

This 3-state, bidirectional 8-bit buffer is used to interface the 82C59A to the system Data Bus. Control words and status information are transferred through the Data Bus Buffer.

READ/WRITE CONTROL LOGIC

The function of this block is to accept OUTput commands from the CPU. It contains the Initialization Command Word (ICW) registers and Operation Command Word (OCW) registers which store the various control formats for device operation. This function block also allows the status of the 82C59A to be transferred onto the Data Bus.

CHIP SELECT ($\overline{\mathrm{CS}}$)

A LOW on this input enables the 82C59A. No reading or writing of the device will occur unless the device is selected.

WRITE ($\overline{\text { WR }}$)

A LOW on this input enables the CPU to write control words (ICWs and 0 CWs) to the 82C59A.

READ ($\overline{\mathrm{RD}}$)

"A LOW on this input enables the 82C59A to send the status of the Interrupt Request Register (IRR), In Service Register (ISR), the Interrupt Mask Register (IMR), or the interrupt level (in the poll mode.) onto the Data Bus.
A
This input signal is used in conjunction with $\overline{W R}$ and $\overline{\mathrm{RD}}$ signals to write commands into the various command registers, as well as reading the various status registers of the chip. This line can be tied directly to one of the address lines.

THE CASCADE BUFFER/COMPARATOR

This function block stores and compares the IDs of all 82C59A s used in the system. The associated three I/O pins (CASO-2) are outputs when the 82C59A is used as a master and are inputs when the 82C59A is used as a slave. As a master, the 82C59A sends the ID of the interrupting slave device onto the CASO-2 lines. The slave thus selected will send its preprogrammed subroutine address onto the Data Bus during the next one or two consecutive INTA pulses. (See section "Cascading the 82C59A".)

INTERRUPT SEQUENCE

The powerful features of the 82C59A in a microcomputer system are its programmability and the interrupt routine addressing capability. The latter allows direct or indirect jumping to the specified interrupt routine requested without any polling of the interrupting devices. The normal sequence of events during an interrupt depends on the type of CPU being used.

These events occur in an 8080A/8085 system:

1. One or more of the INTERRUPT REQUEST lines (I0-17) are raised high, setting the corresponding IRR bit(s).
2. The 82C59A evaluates these requests in the priority resolver and sends an interrupt (INT) to the CPU, if appropriate.
3. The CPU acknowledges the INT and responds with an INTA pulse.
4. Upon receiving an INTA from the CPU group, the highest priority ISR bit is set, and the corresponding IRR bit is reset. The 82C59A will also release a CALL instruction code (11001101) onto the 8 -bit data bus through $D_{0}-D_{7}$.
5. This CALL instruction will initiate two additional INTA pulses to be sent to the 82C59A from the CPU group.
6. These two INTA pulses allow the 82C59A to release its preprogrammed subroutine address onto the data bus. The lower 8 -bit address is released at the first INTA pulse and the higher 8-bit address is released at the second INTA pulse.
7. This completes the 3 -byte CALL instruction released by the 82C59A. In the AEOI mode, the ISR bit is reset at the end of the third INTA pulse. Otherwise, the ISR bit remains set until an appropriate EOI command is issued at the end of the interrupt sequence.
The events occurring in an $80 C 86$ system are the same until step 4.
8. Upon receiving an INTA from the CPU group, the highest priority ISR bit is set and the corresponding IRR bit is reset. The 82C59A does not drive the data bus during this cycle.
9. The 80 C 86 will initiate a second INTA pulse. During this pulse, the 82C59A releases an 8-bit pointer onto the data bus where it is read by the CPU.
10. This completes the interrupt cycle. In the AEOI mode, the ISR bit is reset at the end of the second INTA pulse. Otherwise, the ISR bit remains set until an appropriate EOI command is issued at the end of the interrupt subroutine.

If no interrupt request is present at step 4 of either sequence (i.e. the request was too short in duration), the 82C59A will issue an interrupt level 7. If a slave is programmed on IR bit 7, the CAS lines remain inactive and vector addresses are output from the master 82C59A.

Interrupt Sequence Outputs

8080, 8085
This sequence is timed by three INTA pulses. During the first INTA pulse, the CALL opcode is enabled onto the data bus.
First Interrupt Vector Byte Data: Hex CD

CALL CODE

D7	D6	D5	D4	D3	D2	D1	D0
1	1	0	0	1	1	0	1

During the second $\overline{\text { INTA }}$ pulse, the lower address of the appropriate service routine is enabled onto the data bus. When interval $=4$ bits, $\mathrm{A}_{5}-\mathrm{A}_{7}$ are programmed, while $\mathrm{A}_{0}-\mathrm{A}_{4}$ are automatically inserted by the 82C59A. When interval $=8$, only A_{6} and A_{7} are programmed, while $A_{0}-A_{5}$ are automatically inserted.

Content of Second Interrupt Vector Byte

IR

IR	Interval $=4$							
	D7	D6	D5	D4	D3	D2	D1	D0
7	A7	A6	A5	1	1	1	0	0
6	A7	A6	A5	1	1	0	0	0
5	A7	A6	A5	1	0	1	0	0
4	A7	A6	A5	1	0	0	0	0
3	A7	A6	A5	0	1	1	0	0
2	A7	A6	A5	0	1	0	0	0
1	A7	A6	A5	0	0	1	0	0
0	A7	A6	A5	0	0	0	0	0

IR	Interval $=8$							
	D7	D6	D5	D4	D3	D2	D1	D0
7	A7	A6	1	1	1	0	0	0
6	A7	A6	1	1	0	0	0	0
5	A7	A6	1	0	1	0	0	0
4	A7	A6	1	0	0	0	0	0
3	$A 7$	A6	0	1	1	0	0	0
2	$A 7$	A6	0	1	0	0	0	0
1	A7	A6	0	0	1	0	0	0
0	A7	A6	0	0	0	0	0	0

During the third $\overline{\mathrm{NTA}}$ pulse, the higher address of the appropriate service routine, which was programmed as byte 2 of the initialization sequence ($A_{8}-A_{15}$), is enabled onto the bus.

Content of Third Interrupt Vector Byte

D7	D6	D5	D4	D3	D2	D1	D0
A15	A14	A13	A12	A11	A10	A9	A8

80C86, 80 C88 INTERRUPT RESPONSE MODE

80C86 mode is similar to 8080/85 mode except that only two Interrupt Acknowledge cycles are issued by the processor and no CALL opcode is sent to the processor. The first interrupt acknowledge cycle is similar to that of $8080 / 85$ systems in that the 82C59A uses it to internally freeze the state of the interrupts for priority resolution and, as a master, it issues the interrupt code on the cascade lines. On this first cycle, it does not issue any data to the processor and leaves its data bus buffers disabled. On the second interrupt acknowledge cycle in 80C86 mode, the master (or slave if so programmed) will send a byte of data to the processor with the acknowledged interrupt code composed as follows (note the state of the ADI mode control is ignored and $\mathrm{A}_{5}-\mathrm{A}_{11}$ are unused in 80 C 86 mode.)

Content of Interrupt								
Vector Byte for 80C86 System Mode								
	D7	D6	D5	D4	D3	D2	D1	D0
IR7	T7	T6	T5	T4	T3	1	1	1
IR6	T7	T6	T5	T4	T3	1	1	0
IR5	T7	T6	T5	T4	T3	1	0	1
IR4	T7	T6	T5	T4	T3	1	0	0
IR3	T7	T6	T5	T4	T3	0	1	1
IR2	T7	T6	T5	T4	T3	0	1	0
IR1	T7	T6	T5	T4	T3	0	0	1
IR0	T7	T6	T5	T4	T3	0	0	0

PROGRAMMING THE 82C59A

The 82C59A accepts two types of command words generated by the CPU;

1. Initialization Command Words (ICWs): Before normal operation can begin, each 82C59A in the system must be brought to a starting point-by a sequence of 2 to 4 bytes timed by WR pulses.
2. Operation Command Words (OCWs): These are the command words which command the 82C59A to operate in various interrupt modes. Among these modes are:
a. Fully nested mode
c. Special mask mode
b. Rotating priority mode
d. Polled mode

The 0CWs can be written into the 82C59A anytime after initialization.

Initialization Command Words (ICWS)

GENERAL

Whenever a command is issued with $\mathrm{A} 0=0$ and $\mathrm{D} 4=1$, this is interpreted as Initialization Command Word 1 (ICW1). ICW1 starts the initialization sequence during which the following automatically occur.
a. The edge sense circuit is reset, which means that following
initialization, an interrupt request (IR) input must make a low-to-high transition to generate an interrupt.
b. The Interrupt Mask Register is cleared.
c. IR7 input is assigned priority 7 .
d. Special Mask Mode is cleared and Status Read is set to IRR.
e. If IC4 $=0$, then all functions selected in ICW4 are set to zero. (Non-Buffered mode*, no Auto-EOI, 8080/85 system).
*NOTE: Master/Slave in ICW4 is only used in the buffered mode.

INITIALIZATION COMMAND WORDS 1 and 2 (ICW1, ICW2)

$\mathrm{A}_{5}-\mathrm{A}_{15}$: Page starting address of service routines. In an 8080/85 system, the 8 request levels will generate CALLS to 8 locations equally spaced in memory. These can be programmed to be spaced at intervals of 4 or 8 memory locations, thus the 8 routines will occupy a page of 32 or 64 bytes, respectively.
The address format is 2 bytes long ($\mathrm{A}_{0}-\mathrm{A}_{15}$). When the routine interval is $4, \mathrm{~A}_{0}-\mathrm{A}_{4}$ are automatically inserted by the 82C59A, while $\mathrm{A}_{5}-\mathrm{A}_{15}$ are programmed externally. When the routine interval is $8, A_{0}-A_{5}$ are automatically inserted by the 82C59A while A_{6}-A15 are programmed externally.
The 8-byte interval will maintain compatibility with current software, while the 4 -byte interval is best for a compact jump table.
In an 80C86 system, $\mathrm{A}_{15}-\mathrm{A}_{11}$ are inserted in the five most significant bits of the vectoring byte and the 82C59A sets the three least significant bits according to the interrupt level. $\mathrm{A}_{10}-\mathrm{A}_{5}$ are ignored and ADI (Address interval) has no effect.

LTIM: \quad If $\operatorname{LTIM}=1$, then the 82C59A will operate in the level interrupt mode. Edge detect logic on the interrupt inputs will be disabled.
ADI: \quad CALL address interval. $A D I=1$ then interval $=4 ;$ ADI $=0$ then interval $=8$.
SNGL: \quad Single. Means that this is the only 82C59A in the system. If $\operatorname{SNGL}=1$, no ICW3 will be issued.
IC4: If this bit is set-ICW4 has to be issued. If ICW4 is not needed, set IC4 $=0$.

82C59A INITIALIZATION SEQUENCE

INITIALIZATION COMMAND WORD 3 (ICW3)

This word is read only when there is more than one 82C59A in the system and cascading is used, in which case SNGL $=0$. It will load the 8 -bit slave register. The functions of this register are:
a. In the master mode (either when $\mathrm{SP}=1$, or in buffered mode when $M / S=1$ in ICW4), a " 1 " is set for each slave in the bit corresponding to the appropriate IR line for the slave. The master then will release byte 1 of the call sequence (for 8080/85 system)' and will enable the corresponding slave to

release bytes 2 and 3 (for 80C86, only byte 2) through the cascade lines.
b. In the slave mode (either when $S P=0$, or if $B U F=1$ and $M / S=0$ in ICW4), bits 2-0 identify the slave. The slave compares its cascade input with these bits and if they are equal, bytes 2 and 3 of the call sequence (or just byte 2 for 80 C 86) are released by it on the Data Bus (Note: the slave address must correspond to the IR line it is connected to in the master ID).

INITIALIZATION COMMAND WORD 4 (ICW4)

SFNM: If $\operatorname{SFNM}=1$, the special fully nested mode is programmed.
BUF: \quad If $B U F=1$, the buffered mode is programmed. In buffered mode, SP/EN becomes an enable output and the master/slave determination is by M / S.
M / S : If buffered mode is selected: $\mathrm{M} / \mathrm{S}=1$ means the 82C59A is programmed to be a master, $M / \mathrm{S}=0$ means the 82 C 59 A is programmed to be a slave. If $\mathrm{BUF}=0$, M / S has no function.
AEOI: If $A E O I=1$, the automatic end of interrupt mode is programmed.
$\mu \mathrm{PM}: \quad$ Microprocessor mode: $\mu \mathrm{PM}=0$ sets the 82C59A for $8080 / 85$ system operation, $\mu \mathrm{PM}=1$ sets the 82C59A for 80C86 system operation.

OPERATION COMMAND WORDS (OCWs)

After the initialization Command Words (ICWs) are programmed into the 82C59A, the device is ready to accept interrupt requests at its input lines. However, during the 82C59A operation, a selection of algorithms can command the 82C59A to operate in various modes through the Operation Command Words (OCWs).

OPERATION CONTROL WORDS (OCWs)

AO	D7	D6	D5	D4	D3	D2	D1	DO
OCW1								
1	M7	M6	M5	M4	M3	M2	M1	M0
OCW2								
0	R	SL	EOI	0	0	L2	L1	L0
OCW3								
0	0	ESMM	SMM	0	1	P	RR	RIS

OPERATION CONTROL WORD 1 (OCW1)

OCW1 sets and clears the mask bits in the interrupt Mask Register (IMR). $M_{7}-M_{0}$ represent the eight mask bits. $M=1$ indicates the channel is masked (inhibited), $M=0$ indicates the channel is enabled.

OPERATION CONTROL WORD 2 (OCW2)

R, SL, EOI - These three bits control the Rotate and End of Interrupt modes and combinations of the two. A chart of these combinations can be found on the Operation Command Word Format.
L_{2}, L_{1}, L_{0}-These bits determine the interrupt level acted upon when the SL bit is active.

ocw 3

82C59A OPERATION COMMAND WORD FORMAT

OPERATION CONTROL WORD 3 (OCW3)

ESMM - Enable Special Mask Mode. When this bit is set to 1 it enables the SMM bit to set or reset the Special Mask Mode. When ESMM $=0$, the SMM bit becomes a "don't care".

SMM - Special Mask Mode. If ESMM = 1 and SMM $=1$,the $82 C 59 \mathrm{~A}$ will enter Special Mask Mode. If ESMM $=1$ and SMM $=0$,the $82 C 59 A$ will revert to normal mask mode. When $E S M M=0$, $S M M$ has no effect.

FULLY NESTED MODE

This mode is entered after initialization unless another mode is programmed. The interrupt requests are ordered in priority from 0 through 7 (0 highest). When an interrupt is acknowledged the highest priority request is determined and its vector placed on the bus. Additionally, a bit of the Interrupt Service register (IS0-7) is set. This bit remains set until the microprocessor issues an End of Interrupt (EOI) command immediately before returning from the service routine, or if AEOI (Automatic End of Interrupt) bit is set, until the trailing edge of the last INTA. While the IS bit is set, all further interrupts of the same or lower priority are inhibited, while higher levels will generate an interrupt (which will be acknowledged only if the microprocessor internal interrupt enable flip-flop has been re-enabled through software).

After the initialization sequence, IRO has the highest priority and IR7 the lowest. Priorities can be changed, as will be explained, in the rotating priority mode or via the set priority command.

END OF INTERRUPT (EOI)

The In Service (IS) bit can be reset either automatically following the trailing edge of the last in sequence INTA pulse (when AEOI bit in ICW1 is set) or by a command word that must be issued to the 82C59A before returning from a service routine (EOI Command). An EOI command must be issued twice if in the Cascade mode, once for the master and once for the corresponding slave.

There are two forms of EOI command: Specific and Non-Specific. When the 82C59A is operated in modes which preserve the fully nested structure, it can determine which IS bit to reset on EOI. When a Non-Specific EOI command is issued the 82C59A will automatically reset the highest IS bit of those that are set, since in the fully nested mode the highest IS level was necessarily the last level acknowledged and serviced. A non-specific EOI can be issued with OCW2 ($\mathrm{EOI}=1$, $\mathrm{SL}=0, \mathrm{R}=0$).

When a mode is used which may disturb the fully nested structure, the 82C59A may no longer be able to determine the last level acknowledged. In this case a Specific End of Interrupt must be issued which includes as part of the command the IS level to be reset. A specific EOI can be issued with $0 C W 2$ ($\mathrm{EO}=1, \mathrm{SL}=1, \mathrm{R}=0$, and L0-L2 is the binary level of the IS bit to be reset).

An IRR bit that is masked by an IMR bit will not be cleared by a non-specific EOI if the 82C59A is in the Special Mask Mode.

AUTOMATIC END OF INTERRUPT (AEOI) MODE

If $\mathrm{AEOI}=1$ in ICW4, then the 82C59A will operate in AEOI mode continuously until reprogrammed by ICW4. In this mode the 82C59A will automatically perform a non-specific EOI operation at the trailing edge of the last interrupt acknowledge pulse (third pulse in $8080 / 85$, second in 80C86). Note that from a system standpoint, this mode should be used only when a nested multi-level interrupt structure is not required within a single 82C59A.

AUTOMATIC ROTATION (Equal Priority Devices)

In some applications there are a number of interrupting devices of equal priority. In this mode a device, after being serviced, receives the lowest priority, so a device requesting an interrupt will have to
wait, in the worst case until each of 7 other devices are serviced at most once. For example, if the priority and "in service" status is:

Before Rotate (IR4 the highest priority requiring service)

	IS7	IS6	IS5	IS4	IS3	IS2	IS1	IS
"IS" STATU	0	1	0	1	0	0	0	0
PRIORITY		6	5	4	3	2		

After Rotate (IR4 was serviced, all other priorities rotated correspondingly)

There are two ways to accomplish Automatic Rotation using OCW2, the Rotation on Non-Specific EOI Command ($\mathrm{R}=1, \mathrm{SL}=0, \mathrm{EOI}=1$) and the Rotate in Automatic EOI Mode which is set by ($R=1, S L=0$, $\mathrm{EOI}=0$) and cleared by ($\mathrm{R}=0, \mathrm{SL}=0, \mathrm{EOI}=0$).

SPECIFIC ROTATION (Specific Priority)

The programmer can change priorities by programming the bottom priority and thus fixing all other priorities; i.e., if IR5 is programmed as the bottom priority device, then IR6 will have the highest one.

The Set Priority command is issued in $0 C W 2$ where: $R=1, S L=1$; L0-L2 is the binary priority level code of the bottom priority device.

Observe that in this mode internal status is updated by software control during OCW2. However, it is independent of the End of Interrupt (EOI) command (also executed by OCW2). Priority changes can be executed during an EOO command by using the Rotate on Specific EOI command in OCW2 ($\mathrm{R}=1, \mathrm{SL}=1, \mathrm{EOI}=1$ and LO$12=$ IR level to receive bottom priority).

INTERRUPT MASKS

Each Interrupt Request input can be masked individually by the Interrupt Mask Register (IMR) programmed through OCW1. Each bit in the IMR masks one interrupt channel if it is set (1). Bit 0 masks IR0, Bit 1 masks IR1 and so forth. Masking an IR channel does not affect the other channels operation.

SPECIAL MASK MODE

Some applications may require an interrupt service routine to dynamically alter the system priority structure during its execution under software control. For example, the routine may wish to inhibit lower priority requests for a portion of its execution but enable some of them for another portion.

The difficulty here is that if an Interrupt Request is acknowledged and an End of Interrupt command did not reset its IS bit (i.e., while executing a service routine), the 82C59A would have inhibited all lower priority requests with no easy way for the routine to enable them.
That is where the Special Mask Mode comes in. In the special Mask Mode, when a mask bit is set in OCW1, it inhibits further interrupts at that level and enables interrupts from all other levels (lower as well as higher) that are not masked.

Thus, any interrupts may be selectively enabled by loading the mask register.
The special Mask Mode is set by 0 CW3 where: $E S M M=1, S M M=1$, and cleared where $\mathrm{ESMM}=1, \mathrm{SMM}=0$.

POLL COMMAND

In this mode, the INT output is not used or the microprocessor internal Interrupt Enable flip-flop is reset, disabling its interrupt input. Service to devices is achieved by software using a Poll command.

The Poll command is issued by setting $P=1$ in 0 CW3. The 82C59A treats the next $\overline{\mathrm{RD}}$ pulse to the 82 C 59 A (i.e. $\overline{\mathrm{RD}}=0, \overline{\mathrm{CS}}=0$) as an interrupt acknowledge, sets the appropriate IS bit if there is a reguest, and reads the priority level. Interrupt is frozen from $\overline{W R}$ to RD.

The word enabled onto the data bus during $\overline{\mathrm{RD}}$ is:

D7	D6	D5	D4	D3	D2	D1	D0
1	-	-	-	-	W2	W1	W0

W0-W2: Binary code of the highest priority level requesting service.
I: Equal to a " 1 " if there is an interrupt.
This mode is useful if there is a routine command common to several levels so that the INTA sequence is not needed (saves ROM space). Another application is to use the poll mode to expand the number of priority levels to more than 64.

READING THE 82C59A STATUS

The input status of several internal registers can be read to update the user information on the system. The following registers can be read via OCW3 (IRR and ISR or OCW1 (IMR)).
In-Service Register (ISR): 8-bit register which contains the priority levels that are being serviced. The ISR is updated when an End of Interrupt Command is issued.

Interrupt Mask Register: 8-bit register which contains the interrupt request lines which are masked.

The IRR can be read when, prior to the $\overline{R D}$ pulse, a Read Register Command is issued with OCW3 ($R R=1, R I S=0$).
The ISR can be read when, prior to the $\overline{R D}$ pulse, a Read Register Command is issued with OCW3 ($R R=1, R I S=1$).

There is no need to write an OCW3 before every status read operation, as long as the status read corrersponds with the previous one; i.e., the 82C59A "remembers" whether the IRR or ISR has been previously selected by the OCW3. This is not true when poll is used. In the poll mode, the 82C59A treats the $\overrightarrow{R D}$ following a "poll write" operation as an INTA. After initialization, the 82C59A is set to IRR.

For reading the IMR, no OCW3 is needed. The output data bus will contain the IMR whenever $\overline{R D}$ is active and $A 0=1$ ($0 C W 1$). Polling overrides status read when $P=1, R R=1$ in $0 C W 3$.

EDGE AND LEVEL TRIGGERED MODES

This mode is programmed using bit 3 in ICW1.
If LTIM = ' 0 ', an interrupt request will be recognized by a low to high transition on an IR input. The IR input can remain high without generating another interrupt.

If LTIM = ' 1 ', an interrupt request will be recognized by a 'high'. level on IR input, and there is no need for an edge detection. The interrupt request must be removed before the EOI command is issued or the CPU interrupt is enabled to prevent a second interrupt from occuring.

The priority cell diagram showns a conceptual circuit of the level sensitive and edge sensitive input circuitry of the 82C59A. Be sure to note that the request latch is a transparent D type latch.

In both the edge and level triggered modes the IR inputs must remain high until after the falling edge of the first INTA. If the IR input goes low before this time a DEFAULT IR7 will occur when the CPU acknowleges the interrupt. This can be a useful safeguard for detecting interrupts caused by spurious noise glitches on the IR inputs. To implement this feature the IR7 routine is used for "clean up" simply executing a return instruction, thus ignoring the interrupt. If IR7 is needed for other purposes a default IR7 can still be detected by reading the ISR. A normal IR7 interrupt will set the corresponding ISR
bit, a default IR7 won't. If a default IR7 routine occurs during a normal IR7 routine, however, the ISR will remain set. In this case it is necessary to keep track of whether or not the IR7 routine was previously entered. If another IR7 occurs it is a default.

In power sensitive applications, it is advisable to place the 82C59A in the edge-triggered mode with the IR lines normally high. This will minimize the current through the pull-up resistors on the IR pins.

THE SPECIAL FULLY NESTED MODE

This mode will be used in the case of a big system where cascading is used, and the priority has to be conserved within each slave. In this case the special fully nested mode will be programmed to the master (using ICW4). This mode is similar to the normai nested mode with the following exceptions:
a. When an interrupt request from a certain slave is in service, this slave is not locked out from the master's priority logic and further interrupt requests from higher priority IRs within the slave will be recognized by the master and will initiate interrupts to the processor. (In the normal nested mode a slave is masked out when its request is in service and no higher requests from the same slave can be serviced.)
b. When exiting the Interrupt Service routine the software has to check whether the interrupt serviced was the only one from that slave. This is done by sending a non-specific End of Interrupt (EOI) command to the slave and then reading its In-Service register and checking for zero. If it is empty, a non-specified EOI can be sent to the master, too. If not, no EOI should be sent.

BUFFERED MODE

When the 82C59A is used in a large system where bus driving buffers are required on the data bus and the cascading mode is used, there exists the problem of enabling buffers.

The buffered mode will structure the 82C59A to send an enable signal of SP/EN to enable the buffers. In this mode, whenever the 82C59A's data bus outputs are enabled, the SP/EN output becomes active.

This modification forces the use of software programming to determine whether the 82C59A is a master or a slave. Bit 3 in ICW4 programs the buffered mode, and bit 2 in ICW4 determines whether it is a master or a slave.

CASCADE MODE

The 82C59A can be easily interconnected in a system of one master with up to eight slaves to handle up to 64 priority levels.

The master controls the slaves through the 3 line cascade bus. The cascade bus acts like chip selects to the slaves during the INTA sequence.
In a cascade configuration, the slave interrupt outputs are connected to the master interrupt request inputs. When a slave request line is activated and afterwards acknowledged, the master will enable the corresponding slave to release the device routine address during bytes 2 and 3 of INTA. (Byte 2 only for $80 \mathrm{C} 86 / 80 \mathrm{C} 88$).
The cascade bus lines are normally low and will contain the slave address code from the trailing edge of the first INTA pulse to the
trailing edge of the third pulse. Each 82C59A in the system must follow a separate initialization sequence and can be programmed to work in a different mode. An EOI command must be issued twice: once for the master and once for the corresponding slave. Chip select decoding is required to activate each 82C59A.
Note: Auto EOI is supported in the slave mode for the 82C59A.
The cascade lines of the Master 82C59A are activated only for slave inputs, non-slave inputs leave the cascade line inactive (low). Therefore, it is necessary to use a slave address of 0 (zero) only after all other addresses are used.

Absolute Maximum Ratings

Operating Conditions

Operating Voltage Range ..4.5V to +5.5V	
Operating Temperature Range	
C82C59A	.$^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
I82C59A	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
M82C59A	$5^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

D. C. Electrical Specifications $\quad V C C=5.0 \mathrm{~V} \pm 10 \% ; \quad T_{A}=0{ }^{\circ} \mathrm{C}$ to $+700 \mathrm{C}(\mathrm{C} 82 \mathrm{C} 59 \mathrm{~A})$;
$T_{A}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (I82C59A);
$T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ (M82C59A)

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
VIH	Logical One Input Voltage	$\begin{aligned} & 2.0 \\ & 2.2 \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { 182C59A, C82C59A, } \\ & \text { M82C59A } \end{aligned}$
VIL	Logical Zero Input Voltage		0.8	V	
VOH	Output High Voltage	$\begin{gathered} 3.0 \\ \text { vCC }-0.4 \end{gathered}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{v} \end{aligned}$	$\begin{aligned} & 10 \mathrm{OH}=-2.5 \mathrm{~mA} \\ & 10 \mathrm{H}=-100 \mu \mathrm{~A} \end{aligned}$
VOL	Output Low Voltage		0.4	V	$1 \mathrm{OL}=+2.5 \mathrm{~mA}$
11	Input Leakage Current	-1.0	+1.0	$\mu \mathrm{A}$	VIN = GND or VCC DIP Pins: 1-3, 26-27
10	I/O Leakage Current	-10.0	+10.0	$\mu \mathrm{A}$	$\begin{aligned} & \text { VO = GND or VCC } \\ & \text { DIP Pins: 4-13, 15-16 } \end{aligned}$
ILIR	IR Input Load Current		$\begin{gathered} -500 \\ 10 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & V I N=O V \\ & V I N=V C C \end{aligned}$
ICCSB	Standby Power Supply Current		10	$\mu \mathrm{A}$	$\begin{aligned} & \text { VCC }=5.5 \mathrm{~V} \text {, } \\ & \text { VIN }=\text { VCC or GND }(\text { Note } 1) \\ & \text { Outputs Open } \end{aligned}$
ICCOP	Operating Power Supply Current		1	$\mathrm{mA} / \mathrm{MHz}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{VCC}=5 \mathrm{~V} \text {, } \\ & \text { Typical (Note 2) } \end{aligned}$

NOTES: 1. Except for IRO-IR7 where VIN = VCC or open.
2. $I C C O P=1 \mathrm{~mA} / \mathrm{MHz}$ of peripheral read/write cycle time. (Example: $1.0 \mu \mathrm{~s} 1 / \mathrm{O}$ read/write cycle time $=1 \mathrm{~mA}$).

Capacitance $T_{A}=250 \mathrm{C}$

SYMBOL	PARAMETER	TYPICAL	UNITS	TEST CONDITIONS
$\mathrm{C}_{I N}$	Input Capacitance	5	pF	FREQ $=1 \mathrm{MHz}$ all measure- ments are referenced to device GND
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	15	pF	
$\mathrm{C}_{I / O}$	I/O Capacitance	20	pF	

Specifications 82C59A

SYMBOL	PARAMETER	82C59A-5		82C59A		UNITS	TEST CONDITIONS
		MIN	MAX	MIN	MAX		
TIMING REQUIREMENTS							
(1) TAHRL	$\mathrm{AO} / \overline{\mathrm{CS}}$ Setup to $\overline{\mathrm{RD}} / \overline{\mathrm{NTA}}$	10		10		ns	
(2) TRHAX	AO/ $\overline{\mathrm{CS}}$ Hold after $\overline{\mathrm{RD}} / \overline{\mathrm{INTA}}$	5		5		ns	
(3)TRLRH	$\overline{\mathrm{RD}} / \mathrm{INTA}$ Pulse Width	235		160		ns	
(4)TAHWL	AO/ $\overline{\mathrm{CS}}$ Setup to $\overline{\mathrm{WR}}$	0		0		ns	
(5) TWHAX	AO/ $\overline{\mathrm{CS}}$ Hold after $\overline{W R}$	5		5		ns	
(6) TWLWH	$\overline{\text { WR Pulse Width }}$	165		95		ns	
(7)TDVWH	Data Setup to $\overline{W R}$	240		160		ns	
(8) TWHDX	Data Hold after \bar{W} R	5		5		ns	
(9)TJLJH	Interrupt Request Width (Low)	100		100		ns	See Note 1
(10)TCVIAL	Cascade Setup to Second or Third $\overline{\text { INTA }}$ (Slave Only)	55		40		ns	
11)TRHRL	End of $\overline{\mathrm{RD}}$ to next $\overline{\mathrm{RD}}$; End of $\overline{\mathrm{INTA}}$ to next $\overline{\mathrm{INTA}}$ within an INTA sequence only	160		160		ns	
(12)TWHWL	End of $\overline{W R}$ to next $\overline{W R}$	190		190		ns	
13)* ${ }^{\text {TCHCL }}$	End of Command to next Command (Not same command type) End of INTA sequence to next INTA sequence	500		400		ns	

*Worst case timinng for TCHCL in an actual microprocessor system is typically much greater than 400 ns (i.e. $8085 \mathrm{~A}=1.6 \mu \mathrm{~s}, 8085 \mathrm{~A}-2=1 \mu \mathrm{~s}, 80 \mathrm{C} 86=1 \mu \mathrm{~s}$). NOTE 1. This is the low time required to clear the input latch in the edge triggered mode.

SYMBOL	PARAMETER	82C59A-5		82C59A		UNITS	TESTCONDITIONS
		MIN	MAX	MIN	MAX		
TIMING RESPONSES							
14)TRLDV	Data Valid from $\overline{\mathrm{RD}} / \overline{\mathrm{NTTA}}$		160		120	ns	1
(15)TRHDZ	Data Float after $\overline{\mathrm{RD}} / \overline{\mathrm{NTA}}$	10	100	10	85	ns	2
(16)TJHIH	Interrupt Output Delay		350		300	ns	1
(17) TIALCV	Cascade Valid from First INTA (Master Only.)		565		360	ns	1
(18)TRLEL	Enable Active from $\overline{\mathrm{RD}}$ or $\overline{\mathrm{INTA}}$		125		100	ns	1
(19)TRHEH	Enable Inactive from $\overline{\mathrm{RD}}$ or $\overline{\mathrm{NTTA}}$		60		50	ns	1
(20)TAHDV	Data Valid from Stable Address		210		200	ns	1
(21)TCVDV	Cascade Valid to Valid Data		300		200	ns	1

A. C. Test Circuit

TEST CONDITION	V1	R1	R2	C1
1	1.7 V	523Ω	Open	100 pF
2	4.5 V	$1.8 \mathrm{k} \Omega$	$1.8 \mathrm{k} \Omega$	30 pF

TEST CONDITION DEFINITION TABLE
A. C. Testing Input, Output Waveforms

A.C. Testing: All input signals must switch between VIL - 0.4V and $\mathrm{VIH}+0.4 \mathrm{~V}$. Input rise and fall times are driven at $1 \mathrm{~ns} / \mathrm{V}$.

READ/INTA

OTHER TIMING

INTA SEQUENCE

Note 1: Interrupt Request (IR) must remain HIGH until leading edge of first INTA.
Note 2: During first INTA the Data Bus is not active in 80C86/88 mode.
Note 3: 80C86/88 mode.
Note 4: $8080 / 8085$ mode.

CMOS Octal Latching
Bus Driver

Features

- Full Eight-Bit Parallel Latching Buffer
- Blpolar 8282 Compatible
- Three-State Non-Inverting Outputs
- Propagation Delay.
- A.C. Specifications Guaranteed for:
- Full Temperature Range
- 10\% Power Supply Tolerance
- $C L=300 \mathrm{pF}$
- Gated Inputs
- Reduce Operating Power
- Ellminate the Need for Pull-Up Resistors
- Single 5V Power Supply
- Power Supply Current.. 10 1 A Max. Standby
- Outputs Guaranteed Valid at VCC $=2.0$ Volts
- Wide Operating Temperature Ranges:
- C82C82 $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
- 182C82 $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- M82C82 ... -550C to +1250C

Description

The Harris 82 C 82 is an octal latching buffer manufactured using a self-aligned silicon gate CMOS process. This circuit provides an eight-bit parallel latch/buffer in a 20-pin package. The active high strobe (STB) input allows transparent transfer of data and latches data on the negative transition of this signal. The active low output enable $\overline{\mathrm{OE}}$ permits simple interface to state-of-the-art microprocessor systems.

Pinouts

TOP VIEW

	0
$\mathrm{DiO}_{1} \mathrm{C}^{2}$	19
${\mathrm{DI} 2 \mathrm{H}_{3}}$	18
$\mathrm{Di}_{3} \mathrm{H}^{4}$	17
$\mathrm{DI}_{4} \mathrm{C}_{5}$	16
$\mathrm{DI}_{5} \mathrm{Cl}_{6}$	15
$\mathrm{DI}_{6} \mathrm{C} 7$	14
$\mathrm{DI}_{7} \mathrm{O}^{8}$	13
$\overline{O E}$ [9	12
GND-10	11

LCC/PLCC TOP VIEW

Functional Diagram

PIN NAMES

$\mathrm{Dl}_{0}-\mathrm{DI7}$	Data Input Pins
DO $0-$ DO7	Data Output Pins
STB	Active High Strobe
$\overline{\mathrm{OE}}$	Active Low Output Enable

Truth Table

STB	$\overline{O E}$	DI	DO
X	H	X	Hi-Z
H	L	L	L
H	L	H	H
X	L	X	$*$

$H=$ Logic One
L = Logic Zero
X = Don't Care
$\mathrm{Hi}-\mathrm{Z}=$ High Impedance
$t=$ Negative Transition

* $=$ Latched to Value of Last Data

CAUTION: Electronic devices are sensitive to electrostatic discharge. Proper I.C. handling procedures should be followed.

Absolute Maximum Ratings

Operating Conditions

Operating Temperature Range
C82C82
${ }^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
182C82
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
M82C82
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
D.C. Electrical Specifications $\quad \mathrm{VCC}=5.0 \mathrm{~V} \pm 10 \% ; \quad \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}(\mathrm{C} 82 \mathrm{C} 82)$;
$T_{A}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (182 C 82);
$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ (M82C82)

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
V_{IH}	Logical One Input Voltage	$\begin{aligned} & 2.0 \\ & 2.2 \end{aligned}$		$\begin{aligned} & \mathrm{v} \\ & \mathrm{v} \end{aligned}$	$\begin{aligned} & \text { C82C82, I82C82 } \\ & \text { M82C82 (Note 1) } \end{aligned}$
$\mathrm{V}_{\text {IL }}$	Logical Zero Input Voltage		0.8	V	
V_{OH}	Logical One Output Voltage	$\begin{gathered} 2.9 \\ \operatorname{VCC}-0.4 \mathrm{~V} \end{gathered}$		V	$\begin{aligned} & \mathrm{IOH}=-8 \mathrm{~mA} \\ & \mathrm{IOH}=-100 \mu \mathrm{~A} \\ & \overline{\mathrm{OE}}=\mathrm{LOW} \end{aligned}$
$\mathrm{V}_{\text {OL }}$	Logical Zero Output Voltage		0.4	v	$\begin{aligned} & \mathrm{IOL}=8 \mathrm{~mA} \\ & \overline{O E}=\mathrm{LOW} \end{aligned}$
11	Input Leakage Current	-1.0	1.0	$\mu \mathrm{A}$	VIN $=$ GND or VCC DIP Pins 1-9, 11
10	Output Leakage Current	-10.0	10.0	$\mu \mathrm{A}$	$\begin{aligned} & \text { VO }=G N D O R \text { VCC } \\ & \overline{O E}=V C C-0.5 \mathrm{~V} \\ & \text { DIP Pins } 12-19 \end{aligned}$
' CcsB	Standby Power Supply Current		10	$\mu \mathrm{A}$	$\begin{aligned} & \text { VIN }=\text { VCC or GND } \\ & \text { VCC }=5.5 \mathrm{~V} \\ & \text { Outputs Open } \end{aligned}$
ICCOP	Operating Power Supply Current		1	$\mathrm{mA} / \mathrm{MHz}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{VCC}=5 \mathrm{~V}, \\ & \text { Typical (See Note 2) } \end{aligned}$

NOTES: 1. $V_{I H}$ is measured by applying a pulse of magnitude $=V_{I H}$ min to one data input at a time and checking the corresponding device output for a valid logical " 1 " during valid input high time. Control pins (STB, OE) are tested separately with all device data input pins at $\mathrm{V}_{\mathrm{CC}}-0.4 \mathrm{~V}$.
2. Typical ${ }^{\mathrm{I}} \mathrm{CCOP}=1 \mathrm{~mA} / \mathrm{MHz}$ of STB cycle time. (Example: $5 \mathrm{MHz} \mu \mathrm{P}, \mathrm{ALE}=1.25 \mathrm{MHz}, \mathrm{I}_{\mathrm{CCOP}}=1.25 \mathrm{~mA}$).

Capacitance $T_{A}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	TYPICAL	UNITS	TEST CONDITIONS
$\mathrm{C}_{\text {IN }}$	Input Capacitance	5	pF	FREQ $=1 \mathrm{MHz}$ all measure- ments are referenced to device GND
COUT	Output Capacitance	15	pF	

A.C. Electrical Specifications $\quad \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \% ; \quad \mathrm{T}_{\mathrm{A}}=00 \mathrm{C}$ to $+700^{\circ} \mathrm{C}$ (C82C82); $C_{L}=300 \mathrm{pF}^{*}$, FREQ $=1 \mathrm{MHz} \quad \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (182 C 82);
 $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ (M82C82)

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
(1) TIVOV	Propagation Delay Input to Output		35	ns	see notes 1, 2
(2) TSHOV	Propagation Delay STB to Output		55	ns	see notes 1, 2
(3) TEHOZ	Output Disable Time		35	ns	see notes 1, 2
(4) TELOV	Output Enable Time		50	ns	see notes 1, 2
(5) TIVSL	Input to STB Set Up Time	0		ns	see notes 1, 2
(6) TSLIX	Input to STB Hold Time	25		ns	see notes 1, 2
(7) TSHSL	STB High Time	25		ns	see notes 1, 2
(8) TR, TF	Input Rise/Fall Times		20	ns	see notes 1, 2

* Output load capacitance is rated at 300 pF for ceramic and plastic packages.

NOTES: 1. All A.C. parameters tested as per test circuits and definitions in Figures 1-4. Input rise and fall times are driven at $1 \mathrm{~ns} / \mathrm{V}$.
2. Input test signals must switch between VIL -0.4 V and $\mathrm{VIH}+0.4 \mathrm{~V}$.

All timing measurements are made at 1.5 V unless otherwise noted.

FIGURE 1. 82C82 TIMING RELATIONSHIPS

$82 C 82$

A.C. Test Circuit

FIGURE 2. TIVOV, TSHOV, TELOV

FIGURE 3.
FIGURE 4.
TEHOZ
OUTPUT HIGH DISABLE
LOAD CIRCUIT
OUTPUT LOW DISABLE
LOAD CIRCUIT
*Includes stray and jig capacitance

Decoupling Capacitors

The transient current required to charge and discharge the 300 pF load capacitance specified in the $82 \mathrm{C82}$ data sheet is determined by

$$
\mathrm{I}=\mathrm{C}_{\mathrm{L}}(\mathrm{dv} / \mathrm{dt})
$$

Assuming that all outputs change state at the same time and that $\mathrm{dv} / \mathrm{dt}$ is constant;

$$
I=C_{L} \frac{(V C C \times 80 \%)}{t_{R} / t_{F}}
$$

where $t_{R}=20 \mathrm{~ns}, \mathrm{VCC}=5.0$ volts, $C_{L}=300 \mathrm{pF}$ on each of eight outputs.

$$
\begin{aligned}
I & =\left(8 \times 300 \times 10^{-12}\right) \times(5.0 \mathrm{v} \times 0.8) /\left(20 \times 10^{-9}\right) \\
& =480 \mathrm{~mA}
\end{aligned}
$$

This current spike may cause a large negative voltage spike on VCC, which could cause improper operation of the device. To filter out this noise, it is recommended that a $0.1 \mu \mathrm{~F}$ ceramic disc decoupling capacitor be placed between VCC and GND at each device, with placement being as near to the device as possible.

GATED INPUTS

During normal system operation of a latch, signals on the bus at the device inputs will become high impedance or make transitions unrelated to the operation of the latch. These unrelated input transitions switch the input circuitry and typically cause an increase in power dissipation in CMOS devices by creating a low resistance path between $V_{C C}$ and GND when the signal is at or near the input switching threshold. Additionally, if the driving signal becomes high impedance ("float" condition), it could create an indeterminate logic state at the inputs and cause a disruption in device operation.
The Harris 82C8X series of bus drivers eliminates these conditions by turning off data inputs when data is latched (STB $=$ logic zero for the $82 \mathrm{C} 82 / 83 \mathrm{H}$) and when the device is disabled ($\overline{\mathrm{OE}}=$ logic one for $82 \mathrm{C} 86 \mathrm{H} / 87 \mathrm{H}$). These gated inputs disconnect the input circuitry from the $V_{C C}$ and ground power supply pins by turning off
the upper P-channel and lower N -channel (see Figure 5a,5b). No current flow from VCC to GND occurs during input transitions and invalid logic states from floating inputs are not transmitted. The next stage is held to a valid logic level internal to the device.
D.C. input voltage levels can also cause an increase in ${ }^{\mathrm{I}} \mathrm{CC}$ if these input levels approach the minimum V_{IH} or maximum $V_{\text {IL }}$ conditions. This is due to the operation of the input circuitry in its linear operating region (partially conducting state). The 82C8X series gated inputs mean that this condition will occur only during the time the device is in the transparent mode (STB = logic one). ICC remains below the maximum ICC standby specification of $10 \mu \mathrm{~A}$ during the time inputs are disabled, thereby greatly reducing the average power dissipation of the 82C8X series devices.

FIGURE 5a. 82C82/83H

FIGURE 5b. 82C86H/87H GATED INPUTS

TYPICAL 82C82 SYSTEM EXAMPLE

In a typical 80C86/88 system, the 82C82 is used to latch multiplexed addresses and the STB input is driven by ALE (Address Latch Enable) (see Figure 6). The high pulse width of ALE is approximately 100 ns with a bus cycle time of 800 ns (80C86/88 @ 5 MHz). The 82C82 inputs are active only 12.5% of the bus cycle time. Average power dissipation related to input transitioning is reduced by this factor also.

FIGURE 6.
SYSTEM EFFECTS OF GATED INPUTS

Description

The Harris 82 C 83 H is an octal latching buffer manufactured using a self-aligned silicon gate CMOS process. This circuit provides an eight-bit parallel latch/buffer in a 20-pin package. The active high strobe (STB) input allows transparent transfer of data and latches data on the negative transition of this signal. The active low output enable (OE) permits simple interface to state-of-the-art microprocessor systems. The 82 C 83 H provides inverted data at the outputs.

Pinouts
top View

LCC/PLCC TOP VIEW

Functional Diagram

PIN NAMES

Truth Table

STB	$\overline{\mathrm{OE}}$	DI	$\overline{\mathrm{DO}}$
\times	H	\times	$\mathrm{Hi}-\mathrm{Z}$
H	L	L	H
H	L	H	L
X	L	X	$*$

$\mathrm{H}=$ Logic One
$\mathrm{L}=$ Logic Zero
X $=$ Don't Care
$\mathrm{Hi}-\mathrm{Z}=$ High Impedance
$1=$ Negative Transition

* $=$ Latched to Value of Last Data

Absolute Maximum Ratings

Operating Conditions

Operating Voltage Range	+4.5 V to +5.5 V
Operating Temperature Range	
C82C83H.	.$^{\circ} 0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
182 C 83 H	-400 ${ }^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
M82C83H	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

D.C. Electrical Specifications $\quad V C C=5.0 \mathrm{~V} \pm 10 \% ; \quad T_{A}=0^{\circ} \mathrm{C}$ to $+70{ }^{\circ} \mathrm{C}(\mathrm{C} 82 \mathrm{C} 83 \mathrm{H})$;
$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}(182 \mathrm{C} 83 \mathrm{H})$;
$T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}(\mathrm{M} 82 \mathrm{C} 83 \mathrm{H})$

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
V_{IH}	Logical One Input Voltage	$\begin{aligned} & 2.0 \\ & 2.2 \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{v} \end{aligned}$	$\begin{aligned} & \mathrm{C} 82 \mathrm{C} 83 \mathrm{H}, \mathrm{I} 2 \mathrm{C} 83 \mathrm{H} \\ & \text { M82C83H } \end{aligned}$
$V_{\text {IL }}$	Logical Zero Input Voltage		0.8	\checkmark	
VOH	Logical One Output Voltage	$\left\lvert\, \begin{gathered} 3.0 \\ \operatorname{VCC}-0.4 \mathrm{~V} \end{gathered}\right.$		V	$\begin{aligned} & \mathrm{IOH}=-8 \mathrm{~mA} \\ & \mathrm{IOH}=-100 \mu \mathrm{~A} \\ & \mathrm{OE}=\mathrm{LOW} \end{aligned}$
VOL	Logical Zero Output Voltage		0.45	V	$\begin{aligned} & \mathrm{IOL}=20 \mathrm{~mA} \\ & \mathrm{OE}=\mathrm{LOW} \end{aligned}$
11	Input Leakage Current	-10	10	$\mu \mathrm{A}$	VIN $=$ GND or VCC DIP Pins 1-9, 11
10	Output Leakage Current	-10	10	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{VO}=\mathrm{GND} \text { or } \mathrm{VCC} \\ & \mathrm{OE} \geq \mathrm{VCC}-0.5 \mathrm{~V} \\ & \text { DIP Pins } 12-19 \end{aligned}$
ICCSB	Standby Power Supply Current		10	$\mu \mathrm{A}$	$\begin{aligned} & \text { VIN }=\text { VCC or GND } \\ & \text { VCC }=5.5 \mathrm{~V} \\ & \text { Outputs Open } \end{aligned}$
ICCOP	Operating Power Supply Current		1	$\mathrm{mA} / \mathrm{MHz}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{VCC}=5 \mathrm{~V}, \\ & \text { Typical (See Note 2) } \end{aligned}$

NOTES: 1. $V_{I H}$ is measured by applying a pulse of magnitude $=V_{I H m i n}$ to one data input at a time and checking the corresponding device output for a valid logical "1" during valid input high time. Control pins (STB, OE) are tested separately with all device data input pins at $\mathrm{V}_{\mathrm{CC}}-0.4 \mathrm{~V}$.
2. Typical $\mathrm{I}^{\mathrm{C}} \mathrm{CCOP}=1 \mathrm{~mA} / \mathrm{MHz}$ of STB cycle time. (Example: $5 \mathrm{MHz} \mu \mathrm{P}, \mathrm{ALE}=1.25 \mathrm{MHz}, \mathrm{I}_{\mathrm{CCOP}}=1.25 \mathrm{~mA}$).

Capacitance $T_{A}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	TYPICAL	UNITS	TEST CONDITIONS
C_{IN}	Input Capacitance	10	pF	FREQ $=1 \mathrm{MHz}$, all measurements are referenced to device GND
COUT	Output Capacitance	15	pF	

A.C. Electrical Specifications

$$
\begin{aligned}
& V_{C C}=5.0 \mathrm{~V} \pm 10 \% ; \\
& C_{L}=300 \mathrm{pF}^{*}, \text { FREQ }=1 \mathrm{MHz}
\end{aligned}
$$

$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+700^{\circ} \mathrm{C}(\mathrm{C} 82 \mathrm{C} 83 \mathrm{H})$;
${ }^{\top} \mathrm{A}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}(182 \mathrm{C} 83 \mathrm{H})$;
$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}(\mathrm{M} 82 \mathrm{C} 83 \mathrm{H})$

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
(1) TIVOV	Propagation Delay Input to Output	5	25	ns	see notes 1, 2
(2) TSHOV	Propagation Delay STB to Output	10	50	ns	see notes 1, 2
(3) TEHOZ	Output Disable Time	5	22	ns	see notes 1, 2
(4) TELOV	Output Enable Time	10	45	ns	see notes 1, 2
(5) TIVSL	Input to STB Set Up Time	0		ns	see notes 1, 2
(6) TSLIX	Input to STB Hold Time	30		ns	see notes 1, 2
(7) TSHSL	STB High Time	15		ns	see notes 1, 2
(8) TR, TF	Input Rise/Fall Times		20	ns	see notes 1, 2

*Output load capacitance is rated at 300 pF for both ceramic and plastic packages.
NOTES: 1. All A.C. Parameters tested as per test circuits and definitions in Figures $1-5$. Input rise and fall times are driven at $1 \mathrm{~ns} / \mathrm{V}$. 2. Input test signals must switch between $\mathrm{V}_{\mathrm{IL}}-0.4 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{IH}}+0.4 \mathrm{~V}$.

All timing measurements are made at 1.5 V unless otherwise noted.

FIGURE 1. 82 C 83 H TIMING RELAIONSHIPS

A. C. Test Circuits

FIGURE 2. TIVOV, TSHOV LOAD CIRCUIT

FIGURE 4. TELOV OUTPUT LOW ENABLE LOAD CIRCUIT

FIGURE 3. TELOV OUTPUT HIGH ENABLE LOAD CIRCUIT

FIGURE 5. TEHOZ OUTPUT LOW/HIGH DISABLE LOAD CIRCUIT
*Includes jig and stray capacitance

Decoupling Capacitors

The transient current required to charge and discharge the 300 pF load capacitance specified in the 82 C 83 H data sheet is determined by

$$
I=C_{L}(d v / d t)
$$

Assuming that all outputs change state at the same time and that $\mathrm{dv} / \mathrm{dt}$ is constant;

$$
I=C_{L} \frac{\left(V_{C C} \times 80 \%\right)}{t_{R} / t_{F}}
$$

where $\mathrm{t}_{\mathrm{R}}=20 \mathrm{~ns}, \mathrm{~V}_{\mathrm{CC}}=5.0$ volts, $\mathrm{C}_{\mathrm{L}}=300 \mathrm{pF}$ on each of eight outputs.

$$
\begin{aligned}
I & =\left(8 \times 300 \times 10^{-12}\right) \times(5.0 \mathrm{~V} \times 0.8) /\left(20 \times 10^{-9}\right) \\
& =480 \mathrm{~mA}
\end{aligned}
$$

[^7]
GATED INPUTS

During normal system operation of a latch, signals on the bus at the device inputs will become high impedance or make transitions unrelated to the operation of the latch. These unrelated input transitions switch the input circuitry and typically cause an increase in power dissipation in CMOS devices by creating a low resistance path between $V_{C C}$ and GND when the signal is at or near the input switching threshold. Additionally, if the driving signal becomes high impedance("float" condition), it could create an indeterminate logic state at the inputs and cause a disruption in device operation.
The Harris 82C8X series of bus drivers eliminates these conditions by turning off data inputs when data is latched(STB = logic zero for the $82 \mathrm{C} 82 / 83 \mathrm{H}$) and when the device is disabled ($\overline{\mathrm{OE}}=$ logic one for $82 \mathrm{C} 86 \mathrm{H} / 87 \mathrm{H}$). These gated inputs disconnect the input circuitry from the V_{CC} and ground power supply pins by turning off
the upper P-channel and lower N -channel (see Figure $6 \mathrm{a}, 6 \mathrm{~b}$). No current flow from V_{CC} to GND occurs during input transitions and invalid logic states from floating inputs are not transmitted. The next stage is held to a valid logic level internal to the device.
D.C. input voltage levels can also cause an increase in $I_{C C}$ if these input levels approach the minimum $\mathrm{V}_{1 \mathrm{H}}$ or maximum VIL conditions. This is due to the operation of the input circuitry in its linear operating region (partially conducting state). The 82C8X series gated inputs mean that this condition will occur only during the time the device is in the transparent mode (STB = logic one). ICC remains below the maximum ICC standby specification of 10μ A during the time inputs are disabled, thereby greatly reducing the average power dissipation of the 82C8X series devices.

FIGURE 6b. $\quad 82 \mathrm{C} 86 \mathrm{H} / 87 \mathrm{H}$ GATED INPUTS

TYPICAL 82C83H SYSTEM EXAMPLE

In a typical $80 \mathrm{C} 86 / 88$ system, the 82 C 83 H is used to latch multiplexed addresses and the STB input is driven by ALE (Address Latch Enable) (see Figure 7). The high pulse width of ALE is approximately 100 ns with a bus cycle time of 800 ns ($80 \mathrm{C} 86 / 88$ @ 5 MHz). The 82 C 83 H inputs are active only 12.5% of the bus cycle time. Average power dissipation related to input transitioning is reduced by this factor also.

FIGURE 7. SYSTEM EFFECTS OF GATED INPUTS

CMOS Clock Generator Driver

Features

- Generates the System Clock For CMOS or NMOS Microprocessors
- Up to 25 MHz Operation
- Uses a Parallel Mode Crystal Circuit or External Frequency Source
- Provides Ready Synchronization
- Generates System Reset Output From Schmitt Trigger Input
- Capable of Clock Synchronization With Other 82C84As
- TTL Compatible Inputs/Outputs
- Very Low Power Consumption
- Single +5V Power Supply
- Wide Operating Temperature Ranges:
- C82C84A $.0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
- 182C84A $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- M82C84A $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Description

The Harris 82C84A is a high performance CMOS clock generator-driver which is designed to service the requirements of both CMOS and NMOS microprocessors such as the $80 \mathrm{C} 86,80 \mathrm{C} 88,8086$ and the 8088 . The chip contains a crystal controlled oscillator, a divide-by-three counter and complete "Ready" synchronization and reset logic.
Static CMOS circuit design permits operation with an external frequency source from DC to 25 MHz . Crystal controlled operation to 25 MHz is guaranteed with the use of a parallel, fundamental mode crystal and two small load capacitors.
All inputs (except X 1 , and $\overline{\mathrm{RES}}$) are TTL compatible over temperature and voltage ranges.

Power consumption is a fraction of that of the equivalent bipolar circuits. This speed-power characteristic of CMOS permits the designer to custom tailor his system design with respect to power and/or speed requirements.

Block Diagram

CONTROL PIN	LOGICAL1	LOGICALO		
F/ $\overline{\mathrm{C}}$	External Clock	Crystal Drive		
$\overline{\text { RES }}$	Normal	Reset		
RDY1 RDY2	Bus Ready	Bus Not Ready		
$\overline{\text { AEN1 }}$	Address Disabled	Address Enabled		
$\overline{\text { AEN2 }}$	$\overline{\text { ASYNC }}$	1 Stage Ready Synchronization		2 Stage Ready
:---:				
Synchronization	\(~\left(\begin{array}{l} 			

\hline\end{array}\right.\)

CAUTION: These devices are sensitive to electrostatic discharge. Proper I.C. handling procedures should be followed.

TABLE 1.

SYMBOL	PIN NUMBER	TYPE	DESCRIPTION
$\frac{\overline{\mathrm{AEN} 1}}{\overline{\mathrm{AEN} 2}}$	$\begin{aligned} & 3, \\ & 7 \end{aligned}$	1	ADDRESS ENABLE: $\overline{\mathrm{AEN}}$ is an active LOW signal. $\overline{\mathrm{AEN}}$ serves to qualify its respective Bus Ready Signal (RDY1 or RDY2). $\overline{\text { AEN1 }}$ validates RDY1 while $\overline{\mathrm{AEN} 2}$ validates RDY2. Two AEN signal inputs are useful in system configurations which permit the processor to access two Multi-Master System Busses. In non-Multi-Master configurations, the $\overline{\mathrm{AEN}}$ signal inputs are tied true (LOW).
$\begin{aligned} & \text { RDY 1, } \\ & \text { RDY } 2 \end{aligned}$	$\begin{aligned} & 4 \\ & 6 \end{aligned}$	1	BUS READY (Transfer Complete). RDY is an active HIGH signal which is an indication from a device located on the system data bus that data has been received, or is available. RDY1 is qualified by AEN1 while RDY2 is qualified by AEN2.
$\overline{\text { ASYNC }}$	15	1	READY SYNCHRONIZATION SELECT: $\overline{A S Y N C}$ is an input which defines the synchronization mode of the READY logic. When $\overline{\text { ASYNC }}$ is low, two stages of READY synchronization are provided. When $\overline{\text { ASYNC }}$ is left open or HIGH a single stage of READY synchronization is provided.
READY	5	0	READY: READY is an active HIGH signal which is the synchronized RDY signal input. READY is cleared after the guaranteed hold time to the processor has been met.
$\begin{aligned} & \mathrm{X} 1, \\ & \mathrm{X} 2 \end{aligned}$	$\begin{aligned} & 17 \\ & 16 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	CRYSTAL IN: X1 and X2 are the pins to which a crystal is attached. The crystal frequency is 3 times the desired processor clock frequency.*
F/ \bar{C}	13	1	FREQUENCY/CRYSTAL SELECT: F / \bar{C} is a strapping option. When strapped LOW, F/ \bar{C} permits the processor's clock to be generated by the crystal. When F / \bar{C} is strapped HIGH, CLK is generated from the EFI input.
EFI	14	1	EXTERNAL FREQUENCY IN: When $F / \overline{\mathrm{C}}$ is strapped HIGH, CLK is generated from the input frequency appearing on this pin. The input signal is a square wave 3 times the frequency of the desired CLK output.
CLK	8	0	PROCESSOR CLOCK: CLK is the clock output used by the processor and all devices which directly connect to the processor's local bus. CLK has an output frequency which is $1 / 3$ of the crystal or EFI input frequency and a $1 / 3$ duty cycle.

Functional Description

Oscillator

The oscillator circuit of the 82C84A is designed primarily for use with an external parallel resonant, fundamental mode crystal from which the basic operating frequency is derived.

The crystal frequency should be selected at three times the required CPU clock. X1 and X2 are the two crystal
input crystal connections. For the most stable operation of the oscillator (OSC) output circuit, two capacitors ($\mathrm{C} 1=\mathrm{C} 2$) as shown in the waveform figures are recommended. The output of the oscillator is buffered and brought out on OSC so that other system timing signals can be derived from this stable, crystal-controlled source.

Capacitors C1, C2 are chosen such that their combined capacitance
$\mathrm{CT}=\frac{\mathrm{C} 1 \times \mathrm{C} 2}{\mathrm{C} 1+\mathrm{C} 2}$ (Including stray capacitance)
matches the load capacitance as specified by the crystal manufacturer. This insures operation within the frequency tolerance specified by the crystal manufacturer.

Clock Generator

The clock generator consists of a synchronous divide-bythree counter with a special clear input that inhibits the counting. This clear input (CSYNC) allows the output clock to be synchronized with an external event (such as another 82C84A clock). It is necessary to synchronize the CSYNC input to the EFI clock external to the 82C84A. This is accomplished with two flip-flops. (See Figure 1). The counter output is a 33% duty cycle clock at one-third the input frequency.
*The F / \bar{C} input is a strapping pin that selects either the crystal oscillator or the EFI input as the clock for the $\div 3$ counter. If the EFI input is selected as the clock source, the oscillator section can be used independently for another clock source. Output is taken from OSC.

Clock Outputs

The CLK output is a 33% duty cycle clock driver designed to drive the 80C86, 80C88 processors directly. PCLK is a peripheral clock signal whose output frequency is $1 / 2$ that of CLK. PCLK has a 50% duty cycle.

Reset Logic

The reset logic provides a Schmitt trigger input ($\overline{\mathrm{RES}}$) and a synchronizing flip-flop to generate the reset timing. The reset signal is synchronized to the falling edge of CLK. A simple RC network can be used to provide power-on reset by utilizing this function of the 82 C 84 A . Waveforms for clocks and reset signals are illustrated in Figure 2.

READY Synchronization

Two READY inputs (RDY1, RDY2) are provided to accommodate two system busses. Each input has a qualifier ($\overline{\mathrm{AEN} 1}$ and $\overline{\mathrm{AEN} 2}$, respectively). The $\overline{\mathrm{AEN}}$ signals validate their respective RDY signals. If a Multi-Master system is not being used the $\overline{\text { AEN }}$ pin should be tied LOW.

Synchronization is required for all asynchronous activegoing edges of either RDY input to guarantee that the RDY setup and hold times are met. Inactive-going edges of RDY in normally ready systems do not require synchronization but must satisfy RDY setup and hold as a matter of proper system design.
The $\overline{\text { ASYNC }}$ input defines two modes of READY synchronization operation.
When $\overline{\text { ASYNC }}$ is LOW, two stages of synchronization are provided for active READY input signals. Positive-going asynchronous READY inputs will first be synchronized to flip-flop one at the rising edge of CLK (requiring a setup time $t_{\text {R1 }} \mathrm{VCH}$) and then synchronized to flip-flop two at the next falling edge of CLK, after which time the READY output will go active (HIGH). Negative-going asynchronous READY inputs will be synchronized directly to flip-flop two at the falling edge of CLK, after which time the READY output will go inactive. This mode of operation is intended for use by asynchronous (normally not ready) devices in the system which cannot be guaranteed by design to meet the required RDY setup timing, trivCL, on each bus cycle. (Refer to Figure 3.)
When $\overline{\text { ASYNC }}$ is high or left open, the first READY flip-flop is bypassed in the READY synchronization logic. READY inputs are synchronized by flip-flop two on the falling edge of CLK before they are presented to the processor. This mode is available for synchronous devices that can be guaranteed to meet the required RDY setup time. (Refer to Figure 4.)
$\overline{\text { ASYNC }}$ can be changed on every bus cycle to select the appropriate mode of synchronization for each device in the system.

FIGURE 1. CSYNC SYNCHRONIZATION
*NOTE: If EFI input is used, then crystal input X1 must be tied to VCC or GND and X2 should be left open. If the crystal inputs are used, then EFI should be tied to VCC or GND.

Absolute Maximum Ratings

Operating Conditions

Operating Voltage Range ... +4.5 V to +5.5 V
Operating Temperature Range
C82C84A... ${ }^{\circ} \mathrm{C}$
182C84A.........
D.C. Electrical Specifications $\quad V C C=5.0 \mathrm{~V} \pm 10 \% ; \quad T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}(\mathrm{C} 82 \mathrm{C} 84 \mathrm{~A})$; ${ }^{\top} A=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (182 C 84 A); $T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ (M82C84A)

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
VIH	Logical One Input Voltage	2.0 2.2		V V	C82C84A, I82C84A M82C84A
VIL	Logical Zero Input Voltage		0.8	V	
VIHR	Reset Input High Voltage	VCC -0.8		V	
VILR	Reset Input Low Voltage		0.5	V	
VT+ - VT-	Reset Input Hysteresis	0.2 VCC			
VOH	Logical One Output Current	VCC -0.4		V	IOH $=-4.0 \mathrm{~mA}$ for CLK Output IOH $=-2.5 \mathrm{~mA}$ for All Others
VOL	Logical Zero Output Voltage		0.4	V	IOL $=+4.0 \mathrm{~mA}$ for CLK Output IOL $=+2.5 \mathrm{~mA}$ for All Others
II	Input Leakage Current	-1.0	1.0	$\mu \mathrm{~A}$	$\mathrm{VIN}=\mathrm{VCC}$ or GND except ASYNC, X1: (Note 1)
ICCOP	Operating Power Supply Current		40	mA	Crystal Frequency $=25 \mathrm{MHz}$ Outputs Open

NOTES: 1. $\overline{\text { ASYNC }}$ pin includes an internal $17.5 \mathrm{k} \Omega$ nominal pull-up resistor. For $\overline{\text { ASYNC }}$ input at GND, $\overline{\text { ASYNC }}$ input leakage current $=320 \mu \mathrm{~A}$ nominal, $500 \mu \mathrm{~A}$ maximum. X 1 - crystal feedback input.

Capacitance $T_{A}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	TYPICAL	UNITS	TEST CONDITIONS
CIN	Input Capacitance	5	pF	FREQ $=1 \mathrm{MHz}$, all measure- ments are referenced to device GND

A.C. Electrical Specifications		Specifications $T_{A}=0^{\circ} \mathrm{C}$ to +7 $T_{A}=-40^{\circ} \mathrm{C}$ to REMENTS $T_{A}=-55{ }^{\circ} \mathrm{C}$ to	$\begin{aligned} & T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%-\mathrm{C} 22 \mathrm{C} 84 \mathrm{~A} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%-182 \mathrm{C} 84 \mathrm{~A} \end{aligned}$			
	Symbol	Parameter	Min.	Max.	Units	Test Conditions
(1)	tEHEL	External Frequency HIGH Time	13		ns	90\%-90\% V 1 N
(2)	tELEH	External Frequency LOW Time	13		ns	10\%-10\% VIN
(3)	tELEL	EFI Period	36		ns	
		XTAL Frequency	2.4	25	MHz	
(4)	tR1VCL	RDY1, RDY2 Active Setup to CLK	35		ns	ASYNC $=\mathrm{HIGH}$
(5)	tR1VCH	RDY1, RDY2 Active Setup to CLK	35		ns	ASYNC = LOW
(6)	tR1VCL	RDY1, RDY2 Inactive Setup to CLK	35		ns	
(7)	tCLR1X	RDY1, RDY2 Hold to CLK	0		ns	
(8)	tAYVCL	ASYNC Setup to CLK	50		ns	
(9)	${ }^{\text {t }}$ LAYYX	ASYNC Hold to CLK	0		ns	
(10)	talvR1V	AEN1, AEN2 Setup to RDY1, RDY2	15		ns	
11)	tCLA1X	AEN1, AEN2 Hold to CLK	0		ns	
12)	tYHEH	CSYNC Setup to EFI	20		ns	
(13)	tehYL	CSYNC Hold to EFI	20		ns	
(14)	tYHYL	CSYNC Width	2.tELEL		ns	
(15)	t/1HCL	RES Setup to CLK	65		ns	(Note 2)
(16)	${ }^{\text {t CLIIH }}$	RES Hold to CLK	20		ns	(Note 2)

TIMING RESPONSES

	Symbol	Parameter	Min.	Max.	Units	Test Conditions
(17)	${ }^{\text {t CLCL }}$	CLK Cycle Period	125		ns	
(18)	${ }^{\text {t }} \mathrm{CHCL}$	CLK HIGH Time	$(1 / 3 \mathrm{t}$ CLCL $)+2.0$		ns	Fig. 5 \& Fig. 6
(19)	${ }^{\text {t }}$ LCH	CLK LOW Time	(2/3 tCLCL) -15.0		ns	Fig. 5 \& Fig. 6
(20)	$\begin{aligned} & { }^{\mathrm{t}} \mathrm{CH} 1 \mathrm{CH} 2 \\ & { }^{\mathrm{t}} \mathrm{CL} 2 \mathrm{CL} 1 \\ & \hline \end{aligned}$	CLK Rise or Fall Time		10	ns	1.0 V to 3.5 V
(22)	tPHPL	PCLK HIGH Time	${ }^{\text {t }}$ CLCL-20		ns	
(23)	tPLPH	PCLK LOW Time	tCLCL-20		ns	
(24)	tRYLCL	Ready Inactive to CLK (See note 4)	-8		ns	Fig. 7 \& Fig. 8
(25)	tRYHCH	Ready Active to CLK (See note 3)	(2/3 tCLCL) - 15.0		ns	Fig. 7 \& Fig. 8
(26)	tCLIL	CLK to Reset Delay		40	ns	
(27)	tCLPH	CLK to PCLK HIGH Delay		22	ns	
(28)	tCLPL	CLK to PCLK LOW Delay		22	ns	
(29)	tolch	OSC to CLK HIGH Delay	-5	22	ns	
(30)	tolcl	OSC to CLK LOW Delay	2	35	ns	

NOTES:

1. Output signals switch between VOH and VOL unless otherwise specified.
2. Setup and hold necessary only to guarantee recognition at next clock.
3. Applies only to T3 TW states.
4. Applies only to T2 states.
5. All timing delays are measured at 1.5 volts unless otherwise noted.
6. Input rise and fall times are driven at Ins / V.
+Figure 11 illustrates test load measurement condition.

NOTE: ALL TIMING MEASUREMENTS ARE MADE AT 1.5 VOLTS, UNLESS OTHERWISE NOTED.
FIGURE 2. WAVEFORMS FOR CLOCKS AND RESET SIGNALS

FIGURE 3. WAVEFORMS FOR READY SIGNALS (FOR ASYNCHRONOUS DEVICES)

FIGURE 4. WAVEFORMS FOR READY SIGNALS (FOR SYNCHRONOUS DEVICES)

82C84A

FIGURE 5. CLOCK HIGH AND LOW TIME (USING X1, X2)

FIGURE 7. READY TO CLOCK (USING X1, X2)

FIGURE 6. CLOCK HIGH AND LOW TIME (USING EFI)

FIGURE 8. READY TO CLOCK (USING EFI)

FIGURE 9. TEST LOAD MEASUREMENT CONDITIONS
NOTES:

1. $C_{L}=100 \mathrm{pF}$
2. $C_{L}=30 \mathrm{pF}$
3. CLINCLUDES PROBE AND JIG CAPACITANCE

A.C. Testing Input, Output Waveforms

PARAMETER	TYPICAL CRYSTAL SPEC
Frequency	$2.4-25 \mathrm{MHz}$, Fundamental, " $\mathrm{AT}^{\prime \prime}$ ' cut
Type of Operation	Parallel
Unwanted Modes	-6 db (Minimum)
Load Capacitance	$18-32 \mathrm{pf}$

TABLE 2. CRYSTAL SPECIFICATIONS

See Harris Publication TB-47 for recommended crystal specifications.

The Harris 82 C 85 Static CMOS Clock Controller/Generator provides simple, complete control of static CMOS system operating modes and supports full complete control of static CMOS system operating modes and supports full
speed, slow, stop-clock and stop-oscillator operation. While directly compatible with the Harris 80 C86/80C88 16-bit Static CMOS Microprocessor Family, the 82C85 can also be used for general system clock control.
For static system designs, separate signals are provided on the 82C85 for stop (S0, S1, $\overline{S 2} /$ STOP) and start (START) control of the crystal oscillator and system
clocks. A single control line (SLO/FST) determines $82 C 85$ fast (crystal/EFI clocks. A single control line ($\overline{\mathrm{SLO}} / \mathrm{FST}$) determines 82 C 85 fast (crystal/EFI frequency divided by 3) or slow (crystal/EFI frequency divided by 768) mode op-
eration. Automatic maximum mode 80 C $86 / 88$ software HALT instruction decode frequency divided by 3) or slow (crystal/EFI frequency divided by 768) mode op-
eration. Automatic maximum mode 80 C86/88 software HALT instruction decode logic in the 82C85 enables software-based clock control. Restart logic insures valid clock start-up and complete synchronization of system clocks.
The 82C85 is manufactured using the Harris advanced Scaled SAJI IV CMOS process. In addition to clock control circuitry, the 82C85 also contains a crystal controlled oscillator (up to 25 MHz), clock generation logic, complete "Ready" synchronization and reset logic. This permits the designer to tailor the system po-wer-performance product to provide optimum performance at low power levels.

- Generates System Clocks for CMOS or NMOS Microprocessors and Peripherals
- Complete Control Over System Clock Operation for Very Low System Power - Stop-Oscillator Low Frequency
- Stop-Clock \rightarrow Full Speed Operation
- DC to 25 MHz Operation (DC to 8 MHz System Clock)
- Generates Both 50\% and 33\% Duty Cycle Clocks (Synchronized)
- Uses a Parallel Mode Crystal Circuit or External Frequency Source
- TTL/CMOS Compatible Inputs/Outputs
- 24-Pin Slimline Dual-In-Line or 28-Pad Square LCC Package Options
- Wide Operating Temperature Ranges:
- C82C85
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
- 182C85 $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- M82C85.
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Description

Functional Block Diagram

CAUTION: These devices are sensitive to electrostatic discharge. Proper I.C. handling procedures should be followed.

Pin Description

SYMBOL	PIN NUMBER	TYPE	DESCRIPTION
$\begin{aligned} & \mathrm{X} 1 \\ & \mathrm{X} 2 \end{aligned}$	$\begin{aligned} & 23 \\ & 22 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	CRYSTAL CONNECTIONS: X1 and X2 are the crystal oscillator connections. The crystal frequency must be 3 times the maximum desired processor clock frequency. X 1 is the oscillator circuit input and X 2 is the output of the oscillator circuit.
EFI	20	1	EXTERNAL FREQUENCYIN: When F/ $\overline{\mathrm{C}}$ is $\mathrm{HIGH}, \mathrm{CLK}$ is generated from the EFI input signal. This input signal should be a square wave with a frequency of three times the maximum desired CLK output frequency.
F/C̄	19	1	FREQUENCY/CRYSTAL SELECT: F/C selects either the crystal oscillator or the EFI input as the main frequency source. When F/ $\overline{\mathrm{C}}$ is LOW, the 82 C 85 clocks are derived from the crystal oscillator circuit. When F/ $\overline{\mathrm{C}}$ is HIGH, CLK is generated from the EFI input. F / \bar{C} cannot be dynamically switched during normal operation.
START	11	1	A low-to-high transition on START will restart the CLK, CLK50 and PCLK outputs after the appropriate restart sequence is completed. When in the crystal mode (F/C LOW) with the oscillator stopped, the oscillator will be restarted when a Start command is received. The CLK, CLK50 and PCLK outputs will start after the oscillator input signal (X1) reaches the Schmitt trigger input threshold and an 8 K internal counter reaches terminal count. If $\mathrm{F} / \overline{\mathrm{C}}$ is HIGH (EFI mode), CLK, CLK50 and PCLK will restart within 3 EFI cycles after START is recognized. The 82C85 will restart in the same mode ($\overline{\mathrm{SLO}} / \mathrm{FST}$) in which it stopped. A high level on START disables the STOP mode.
$\begin{gathered} \mathrm{SO} \\ \mathrm{~S} 1 \\ \overline{\mathrm{~S} 2} / \overline{\mathrm{STOP}} \end{gathered}$	13 14 15	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\overline{\mathrm{S} 2} / \overline{\mathrm{STOP}}, \mathrm{S} 1, \mathrm{~S} 0$ are used to stop the 82C85 clock outputs (CLK, CLK50, PCLK) and are sampled by the rising edge of CLK. CLK, CLK50 and PCLK are stopped by $\overline{S 2} / \mathrm{STOP}, \mathrm{S} 1, \mathrm{SO}$ being in the LHH state on the low-to-high transition of CLK. This LHH state must follow a passive HHH state ocurring on the previous low-to-high CLK transition. CLK and CLK50 stop in the high state. PCLK stops in it's current state (high or low). When in the crystal mode ($\mathrm{F} / \overline{\mathrm{C}}$) low and a STOP command is issued, the 82 C 85 oscillator will stop along with the CLK, CLK50 and PCLK outputs. When in the EFI mode, only the CLK, CLK50 and PCLK outputs will be halted. The oscillator circuit if operational, will continue to run. The oscillator and/or clock is restarted by the START input signal going true (HIGH) or the reset input ($\overline{\mathrm{RES}}$) going low.
$\overline{\text { SLO/FST }}$	12	1	$\overline{\mathrm{SLO}} / \mathrm{FST}$ is a level-triggered input. When HIGH, the CLK and CLK50 outputs run at the maximum frequency (crystal or EFI frequency divided by 3). When LOW, CLK and CLK50 frequencies are equal to the crystal or EFI frequency divided by 768. $\overline{\mathrm{SLO}} / \mathrm{FST}$ mode changes are internally synchronized to eliminate glitches on the CLK and CLK50. START and STOP control of the oscillator or EFI is available in either the SLOW or FAST frequency modes. The $\overline{\text { SLO} / F S T ~ i n p u t ~ m u s t ~ b e ~ h e l d ~ L O W ~ f o r ~ a t ~ l e a s t ~} 195$ OSC/EFI clock cycles before it will be recognized. This eliminates unwanted frequency changes which could be caused by glitches or noise transients. The $\overline{\mathrm{SLO}} / \mathrm{FST}$ input must be held HIGH for at least 6 OSC/EFI clock pulses to guarantee a transition to FAST mode operation.
CLK	8	0	PROCESSOR CLOCK: CLK is the clock output used by the 80 C 86 or 80 C 88 processor and other peripheral devices. When SLO/FST is high, CLK has an output frequency which is equal to the crystal or EFI input frequency divided by three. When SLO/FST is low, CLK has an output frequency which is equal to the crystal or EFI input frequency divided by 768 . CLK has a 33% duty cycle.
CLK50	10	0	50% DUTY CYCLE CLOCK: CLK50 is an auxiliary clock with a 50% duty cycle and is synchronized to the falling edge of CLK. When SLO/FST is high, CLK50 has an output frequency which is equal to the crystal or EFI input frequency divided by 3. When $\overline{\text { SLO} / F S T ~ i s ~ l o w, ~ C L K 50 ~ h a s ~ a n ~ o u t p u t ~ f r e q u e n c y ~ e q u a l ~ t o ~ t h e ~ c r y s t a l ~ o r ~ E F I ~ i n-~}$ put frequency divided by 768.
PCLK	2	0	PERIPHERAL CLOCK: PCLK is a peripheral clock signal whose output frequency is equal to the crystal or EFI input frequency divided by 6 and has a 50% duty cycle. PCLK frequency is unaffected by the state of the SLO/FST input.

Pin Description

SYMBOL	PIN NUMBER	TYPE	DESCRIPTION
OSC	18	0	OSCILLATOR OUTPUT: OSC is the output of the internal oscillator circuitry. Its frequency is equal to that of the crystal oscillator circuit. OSC is unaffected by the state of the SLO/FST input.
			When the 82C85 is in the crystal mode (F / \bar{C} low) and a STOP command is issued, the OSC output will stop in the HIGH state. When the 82 C 85 - is in the EFI mode ($\mathrm{F} / \overline{\mathrm{C}}$ HIGH), the oscillator (if operational) will continue to run when a STOP command is issued and OSC remains active.
$\overline{\mathrm{RES}}$	17	1	RESET IN: $\overline{\mathrm{RES}}$ is an active LOW signal which is used to generate RESET. The 82C85 provides a Schmitt trigger input so that an RC connection can be used to establish the power-up reset of proper duration. $\overline{\mathrm{RES}}$ starts cyrstal oscillator operation.
RESET	16	0	RESET: RESET is an active HIGH signal which is used to reset the 80C86 family processors. Its timing characteristics are determined by $\overline{\text { RES }}$. RESET is guaranteed to be HIGH for a minimum of 16 CLK pulses after the rising edge of RES.
CSYNC	1	1	CLOCK SYNCHRONIZATION: CSYNC is an active HIGH signal which allows multiple 82C85s and 82C84As to be synchronized to provide multiple in-phase clock signals. When CSYNC is HIGH, the internal counters are reset and force CLK, CLK50 and PCLK into a HIGH state. When CSYNC is LOW, the internal counters are allowed to count and the CLK, CLK50 and PCLK outputs are active. CSYNC must be externally synchronized to EFI.
$\overline{\overline{A E N 1}} \overline{A E N 2}$	$\begin{aligned} & 3 \\ & 7 \end{aligned}$	1	ADDRESS ENABLE: $\overline{A E N}$ is an active LOW signal. $\overline{\text { AEN }}$ serves to qualify its respective Bus Ready Signal (RDY1 or RDY2). $\overline{\text { AEN1 }}$ validates $\overline{\text { RDY1 }}$ while $\overline{\text { AEN2 }}$ validates RDY2. Two $\overline{\text { AEN }}$ signal inputs are useful in system configurations which permit the processor to access two Multi-Master System Buses.
RDY1 RDY2	$\begin{aligned} & 4 \\ & 6 \end{aligned}$	1	BUS READY: (Transfer Complete). RDY is an active HIGH signal which is an indication from a device located on the system data bus that data has been received, or is available. RDY1 is qualified by $\overline{\operatorname{AEN1}}$ while RDY2 is qualified by $\overline{\mathrm{AEN2}}$.
$\overline{\text { ASYNC }}$	21	1	READY SYNCHRONIZATION SELECT: $\overline{\text { ASYNC }}$ is an input which defines the synchronization mode of the READY logic. When $\overline{A S Y N C}$ is LOW, two stages of READY synchronization are provided. When $\overline{\text { ASYNC }}$ is left open or HIGH a single stage of READY synchronization is provided.
READY	5	\bigcirc	READY: READY is an active HIGH signal which is the synchronized RDY signal input.
GND	9	1	Ground
vcc	24	1	VCC: is the +5 V power supply pin. A $0.1 \mu \mathrm{~F}$ capacitor between pins 24 and 9 is recommended.

Functional Description

The 82C85 Static Clock Controller/Generator provides simple and complete control of static CMOS system operating modes. The 82C85 supports full speed, slow, stop-clock and stop-oscillator operation. While it is directly compatible with the Harris 80 C 86 and 80 C88 CMOS 16 -bit static microprocessors, the 82 C 85 can also be used for general purpose system clock control.

The 82 C 85 pinout is a superset of the 82C84A Clock Generator/Driver. 82C85 pins 1-9, 16-24 are compatible with 82C84A pins 1-9, 10-18, respectively. An 82C84A can be placed in the upper 18 pins of an 82C85 socket and it will operate correctly (without the ability to control the clock and oscillator operation.) This allows dual design for simple system upgrades. The 82C85 will also emulate an 82C84A when pins 11-15 on the 82C85 are tied to VCC.

For static system designs, separate signals are provided on the 82C85 for stop and start control of the crystal oscillator and clock outputs. A single control line determines 82C85 fast (crystal/EFI frequency divided by 3) or slow (crystal/EFI frequency divided by 768) mode operation. The 82C85 also contains a crystal controlled oscillator, clock generation logic, complete "Ready" synchronization and reset logic.

Automatic 80C86/88 software HALT instruction decode logic is present to ease the design of software-based clock control systems and provide complete software control of STOP mode operation. Restart logic insures valid clock start-up and complete synchronization of CLK, CLK50 and PCLK.

Static Operating Modes

In static CMOS system design, there are four basic operating modes. The 82C85 Static Clock Controller supports each of them. These modes are: FAST, SLOW, STOP-CLOCK and STOP-OSCILLATOR. Each has distinct power and performance characteristics which can be matched to the needs of a particular system at a specific time (See Table 1).

Keep in mind that a single system may require all of these operating modes at one time or another during normal operation. A design need not be limited to a single operating mode or a specific combination of modes. The appropriate operating mode can be matched to the power-performance level needed at a specific time or in a particular circumstance.

Reset Logic

The 82C85 reset logic provides a Schmitt trigger input ($\overline{\mathrm{RES}}$) and a synchronizing flip-flop to generate the reset timing. The reset signal is synchronized to the falling edge of CLK. A simple RC network can be used to provide power-on reset by utilizing this function of the 82C85.
When in the crystal oscillator ($F / \bar{C}=$ LOW) or the EFI ($\mathrm{F} / \overline{\mathrm{C}}=\mathrm{HIGH}$) mode, a LOW state on the $\overline{\text { RES }}$ input will set the RESET output to the HIGH state. It will also restart the oscillator circuit if it is in the idle state. The RESET output is guaranteed to stay in the HIGH state for a minimum of 16 CLK cycles after a low-to-high transition of the $\overline{\text { RES }}$ input.

An oscillator restart count sequence will not be disturbed by RESET if this count is already in progress. After the restart counter expires, the RESET output will stay HIGH at least for 16 periods of CLK before going LOW. RESET can be kept high beyond this time by a continuing low input on the $\overline{\text { RES }}$ input.

If F / \bar{C} is low (crystal oscillator mode), a low state on $\overline{R E S}$ starts the crystal oscillator circuit. The stopped outputs remain inactive until the oscillator signal amplitude reaches the X1 Schmitt trigger input threshold voltage and 8192 cycles of the crystal oscillator output are counted by an internal counter. After this count is complete, the stopped outputs (CLK, CLK50, PCLK) start cleanly with the proper phase relationships.

This 8192 count requirement insures that the CLK, CLK50 and PCLK outputs will meet minimum clock requirements and will not be affected by unstable oscillator characteristics which may exist during the oscillator start-up sequence. This sequence is also followed when a START command is issued while the 82 C 85 oscillator is stopped.

Oscillator/Clock Start Control

Once the oscillator is stopped (or committed to stop) or at power-on, the restart sequence is initiated by a HIGH state on START or LOW state on $\overline{\operatorname{RES}}$. If F/ $\overline{\mathrm{C}}$ is HIGH , then restart occurs immediately after the START or $\overline{\text { RES }}$ input is synchronized internally. This insures that stopped outputs (CLK, PCLK, OSC and CLK50) start cleanly with the proper phase relationship.

If F / \bar{C} is low (crystal oscillator mode), a HIGH state on the START input or a low state on $\overline{R E S}$ causes the crystal oscillator to be restarted. The stopped outputs remain stopped, until the oscillator signal amplitude reaches the X1 Schmitt trigger input threshold voltage and 8192 cycles of the crystal oscillator output are counted by an internal counter. After this count is complete, the stopped outputs (CLK, CLK50, PCLK) start cleanly with the proper phase relationships.
table 1. STATIC SYSTEM OPERATING MODE CHARACTERISTICS

OPERATING MODE	DESCRIPTION	POWER LEVEL	PERFORMANCE
Stop-Oscillator	All system clocks and main clock oscillator are stopped	Maximum savings	Slowest response due to oscillator restart time
Stop-Clock	System CPU and peripherals clocks stop but main clock oscillator continues to run at rated frequency	Reduced system power	Fast restart - no oscillator restart time
Slow	System CPU clocks are slowed while peripheral clock and main clock oscillator run at rated frequency	Power dissipation slightly higher than Stop-Clock	Continuous operation at low frequency
Fast	All clocks and oscillators run at rated frequency	Highest power	Fastest response

Typically, any input signal which meets the START input timing requirements can be used to start the 82C85. In many cases, this would be the INT output from an 82C59A CMOS Priority Interrupt Controller (See Figure 1). This output, which is active high, can be connected to both the 82 C 85 START pin and to the appropriate interrupt request input on the microprocessor.

FIGURE 1. CMOS PERIPHERAL CONTROL OF 82 C 85 STOP, START AND SLOW/FAST OPERATIONS

When the INT output becomes active, the oscillator/clock circuit on the 82C85 will restart. Upon completion of the appropriate restart sequence, the CLK signal to the CPU will become active. The CPU can then respond to the stillpending interrupt request.

If the 82C59A/82C85 restart combination is used in conjunction with an 82C55A STOP control, the 82C55A must be initialized prior to the 82C59A after reset. The 82C59A interrupt output is driven high at reset, causing the 82C85 to remain in the START mode regardless of the state of the $\overline{\mathrm{S} 2} / \overline{\mathrm{STOP}}$ input. This will avoid stopping the 82 C 85 due to negative transitions on the $\bar{S} 2 /$ STOP input which may occur during a mode change on the 82C55A or during the
operation of any peripheral 1/O device prior to initialization.

Another method of insuring proper operation of the START function upon reset or system initialization is to bias the $\overline{\mathrm{S} 2} / \overline{\mathrm{STOP}}$ input low with an external pull-down resistor. The $\overline{S 2} / \overline{S T O P}$ input will remain low until driven high by the 82C55A port pin or by external logic. This insures that the 82 C 85 STOP command (HHH prior to LHH requirement on the status inputs) will not be satisfied. To minimize power dissipation in this case (using a pulldown resistor), the $\overline{\mathrm{S}} / \overline{\mathrm{STOP}}$ input should be normally LOW and pulsed HIGH to develop the necessary HHH-toLHH STOP sequence. In this manner, the output driving the $\overline{S 2} / \overline{S T O P}$ input be normally LOW and will not be driving to the opposite state of the pull-down resistor.

Fast Mode

The most common operating mode for a system is the FAST mode. In this mode, the 82C85 operates at the maximum frequency determined by the main oscillator or EFI frequency. FAST mode operation is enabled by each of two conditions:

- The $\overline{\text { SLO}} /$ FST input is HIGH and a START or reset command is issued
- The $\overline{\text { SLO} / F S T ~ i n p u t ~ i s ~ h e l d ~ H I G H ~ f o r ~ a t ~ l e a s t ~} 3$ oscillator or EFI cycles.

Alternate Operating Modes

Using alternate modes of operation (slow, stop-clock, stop-oscillator) will reduce the average system operating power dissipation in a static CMOS system (See Table 2). This does not mean that system speed or throughput must be reduced. When used appropriately, the slow, stopclock, stop-oscillator modes can make your design more power-efficient while maintaining maximum system performance.

TABLE 2. TYPICAL SYSTEM POWER SUPPLY CURRENT FOR STATIC CMOS OPERATING MODES

	FAST	SLOW	STOP-CLOCK	STOP-OSC
CPU Freq. XTAL Freq.	$\begin{gathered} 5 \mathrm{MHz} \\ 15 \mathrm{MHz} \end{gathered}$	$\begin{aligned} & 20 \mathrm{KHz} \\ & 15 \mathrm{MHz} \end{aligned}$	$\begin{gathered} \text { DC } \\ 15 \mathrm{MHz} \end{gathered}$	$\begin{aligned} & \mathrm{DC} \\ & \mathrm{DC} \end{aligned}$
ICC				
82 C 85 80 C 88	$\begin{aligned} & 24.7 \mathrm{~mA} \\ & 23.8 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 16.9 \mathrm{~mA} \\ & 173.0 \mu \mathrm{~A} \end{aligned}$	$\begin{gathered} 14.1 \mathrm{~mA} \\ 106.6 \mu \mathrm{~A} \end{gathered}$	$\begin{array}{r} 24.4 \mu \mathrm{~A} \\ 106.6 \mu \mathrm{~A} \end{array}$
82C82	1.7 mA	$6.5 \mu \mathrm{~A}$	$1.0 \mu \mathrm{~A}$	$1.0 \mu \mathrm{~A}$
82C86	1.4 mA	$14.0 \mu \mathrm{~A}$	$1.0 \mu \mathrm{~A}$	$1.0 \mu \mathrm{~A}$
82C88	3.5 mA	$14.3 \mu \mathrm{~A}$	$3.8 \mu \mathrm{~A}$	$3.8 \mu \mathrm{~A}$
82C52	$151.2 \mu \mathrm{~A}$	$72.0 \mu \mathrm{~A}$	$1.0 \mu \mathrm{~A}$	$1.0 \mu \mathrm{~A}$
82C54	$943.0 \mu \mathrm{~A}$	$915.0 \mu \mathrm{~A}$	$3.5 \mu \mathrm{~A}$	$1.0 \mu \mathrm{~A}$
82C55A	$3.2 \mu \mathrm{~A}$	$1.2 \mu \mathrm{~A}$	$1.0 \mu \mathrm{~A}$	$1.0 \mu \mathrm{~A}$
82C59A	$580.0 \mu \mathrm{~A}$	$520.0 \mu \mathrm{~A}$	$1.0 \mu \mathrm{~A}$	$1.0 \mu \mathrm{~A}$
74HCXX + other	2.9 mA	$110.0 \mu \mathrm{~A}$	$90.0 \mu \mathrm{~A}$	$90.0 \mu \mathrm{~A}$
HM-6516	$820.0 \mu \mathrm{~A}$	$132.0 \mu \mathrm{~A}$	$1.9 \mu \mathrm{~A}$	$1.9 \mu \mathrm{~A}$
HM-6616	6.3 mA	$52.5 \mu \mathrm{~A}$	$12.0 \mu \mathrm{~A}$	$12.0 \mu \mathrm{~A}$
Total	66.8 mA	18.9 mA	14.3 mA	$244.7 \mu \mathrm{~A}$

[^8]
Stop-Oscillator Mode

When the 82C85 is stopped while in the crystal mode ($F / \overline{\mathrm{C}}$ LOW), the oscillator, in addition to all system clock signals (CLK, CLK50 and PCLK), are stopped. CLK and CLK50 stop in the high state. PCLK stops in it's current state (high or low).

With the oscillator stopped, 82C85 power drops to it's lowest level. All clocks and oscillators are stopped. All devices in the system which are driven by the 82 C 85 go into the lowest power standby mode. The 82C85 also goes into standby and requires a power supply current of less than 100 microamps.

Stop-Clock Mode

When the 82C85 is in the EFI mode ($\mathrm{F} / \overline{\mathrm{C}} \mathrm{HIGH}$) and a $\overline{\text { STOP }}$ command is issued, all system clock signals (CLK, CLK50 and PCLK) are stopped. CLK and CLK50 stop in the high state. PCLK stops in it's current state (high or low).

The 82C85 can also provide it's own EFI source simply by connecting the OSC output to the EFI input and pulling the $\mathrm{F} / \overline{\mathrm{C}}$ input HIGH. This puts the 82 C 85 into the External Frequency Mode using it's own oscillator as an external source signal (See Figure 2). In this configuration, when the 82C85 is stopped in the EFI mode, the oscillator continues to run. Only the clocks to the CPU and peripherals (CLK, CLK50 and PCLK) are stopped.

Oscillator/Clock Stop Operation

Three control lines determine when the 82C85 clock outputs or oscillator will stop. These are S0, S1 and $\overline{\text { S2 }} / \overline{\mathrm{STOP}}$. These three lines are designed to connect directly to the MAXimum mode 80C86 and 80C88 status lines or to be driven by external I/O signals (such as an 82C55A output port).

In the MAXimum mode configuration, the 82C85 will automatically recognize a software HALT command from the 80C86 or 80C88 and stop the system clocks or oscillator. This allows complete software control of the STOP function.

FIGURE 2. STOP-CLOCK MODE USING 82 C 85 IN EFI MODE WITH OSCILLATOR AS FREQUENCY SOURCE

If the 80C86 or 80C88 is used in the MINimum mode, the 82 C 85 can be controlled using the $\overline{\mathrm{S} 2} / \overline{\mathrm{STOP}}$ input (with S 0 and S 1 held high). This can be done using an external I/O control line, such as from an 82C55A or by decoding the state of the 80 C 86 MINimum mode status signals.

82 C 85 status inputs $\overline{\mathrm{S}} / \overline{\mathrm{STOP}}, \mathrm{S} 1, \mathrm{~S} 0$ are sampled on the rising edge of CLK. The oscillator (F/ \bar{C} LOW only) and clock outputs are stopped by $\bar{S} 2 / \overline{\mathrm{STOP}}, \mathrm{S} 1, \mathrm{~S} 0$ being in the LHH state on a low-to-high transition of CLK. This LHH state must follow a passive HHH state ocurring on the previous low-to-high CLK transition. CLK and CLK50 will stop in the logic HIGH state after two additional complete cycles of CLK. PCLK stops in it's current state (HIGH or LOW). This is true for both SLOW and FAST mode operation.

80C86/88 Maximum Mode Clock Control

The 82C85 STOP function has been optimized for 80C86/88 MAXimum mode operation. In this mode, the three 82C85 status inputs ($\overline{\mathrm{S} 2} / \overline{\mathrm{STOP}}, \mathrm{S} 1, \mathrm{~S} 0$) are connected directly to the MAXimum mode status lines (S2, S1, S0) of the Harris 80 C 86 or 80 C 88 static CMOS microprocessors (See Figure 3).

When in the MAXimum mode, the $80 \mathrm{C} 86 / 88$ status lines identify which type of bus cycle the CPU is starting to execute. 82C85 S2/STOP, S1 and S0 control input logic will recognize a valid MAXimum mode software HALT executed by the 80 C 86 or 80 C 88 . Once this state has been recognized, the 82C85 stops the clock (F/C HIGH) or oscillator ($\mathrm{F} / \overline{\mathrm{C}} \mathrm{LOW}$) operation.
The 82C85 $\overline{\mathrm{S} 2} / \overline{\mathrm{STOP}}, \mathrm{S} 1$ and S0 control lines were designed to detect a passive 111 state followed by a HALT 011 logic state before recognizing the HALT instruction and stopping the system clocks. In the MAXimum mode, the $80 \mathrm{C} 86 / 88$ status lines go into a passive (no bus cycle) logic 111 state prior to executing a HALT instruction. The qualification of a passive no bus cycle logic 111 state insures that random transitions of the status lines into a logic 011 state will not stop the system clock. This is necessary since the status lines of the 80C86/88 transition through an unknown state during T3 of the bus cycle.

FIGURE 3. 82C85 STOP CONTROL USING 80C86/88 mAXIMUM MODE STATUS LINES

Once the HALT instruction is decoded by the 82C85, either the oscillator is stopped (STOP-OSCILLATOR mode - F / \bar{C} tied low) or the external frequency source is gated off internally (STOP-CLOCK mode - F/C C HIGH). When the HALT instruction is decoded, the CLK and CLK50 will be stopped in a logic high state after 2 additional cycles of the clock. PCLK stops in it's current state (high or low). This is true for both SLOW and FAST mode operation. The halt instruction is detected in the same manner whether the 82C85 is in the SLOW or the FAST mode.

Independent Stop Control for Minimum Mode Operation

When the 80 C 86 and 80 C 88 microprocessors are configured in MINimum Mode (MN/ $\overline{M X}$ pin tied high), their status lines S0, S1, and S2 assume alternate functions. The logic states and sequences (passive before a HALT) necessary for automatic HALT detect in the 82 C 85 do not occur as in the MAXimum mode. The 82C85 controller cannot use the microprocessor status lines to detect a software Halt instruction when operating in MINimum mode.

However, the negative edge-activated $\overline{\mathrm{S} 2} / \overline{\mathrm{STOP}}$ pin provides a simple means for clock control in MINimum mode 80 C 86 and 80 C 88 systems. $\overline{\mathrm{S} 2} / \overline{\mathrm{STOP}}$ can be used as an independent STOP control when S1 and S2 are held in the logical HIGH state. Keeping the S0 and S1 inputs at a logic 1 level and transitioning $\overline{\text { S2 }} / \stackrel{\text { STOP }}{ }$ from high to low will meet the passive 111 state prior to a 011 state requirement of the 82 C 85 . This feature allows 82 C 85 operation with the 80 C 86 and 80 C 88 in the MINimum mode, provides compatibility with other static CMOS microprocessors and allows maximum flexibility in a system.

With $\overline{S 2} / \overline{S T O P}$ being used as a stand-alone STOP command line, system clocks can be controlled via an 82C55A programmable peripheral interface or other similar interface circuits. This is accomplished by driving the $\overline{\mathrm{S}} / \overline{\mathrm{STOP}}$ input with a PORT pin on the 82C55A (See Figure 1). The 82C55A port pin should be configured as an output and must present a logic HIGH to the $\overline{\mathrm{S} 2} / \overline{\mathrm{STOP}}$ input for at least one CLK cycle, followed by a LOW state. This will meet the 82C85 status input requirement of 111 followed by a 011.

When a logic 0 is written to a 82C55A port pin, the $\overline{\mathrm{S} 2} / \overline{\mathrm{STOP}}$ pin is pulled low, stopping the system clocks (CLK, CLK50, PCLK). In essence, the 82C85 is software controlled via the 82C55A. As with the SLO/FST interface, PORT C is a logical choice for this job since the individual bit set and reset commands available for this port make control of the $\overline{\mathrm{S} 2} / \overline{\mathrm{STOP}}$ input simple.

A START command issued to the 82 C 85 will override a STOP command and the 82C85 will begin normal operation. The low state of the negative-edge triggered $\overline{\mathrm{S} 2} / \overline{\mathrm{STOP}}$ input will not prohibit the clocks from restarting. After a START or $\overline{\text { RES }}$ command, the 82C85 must see a passive (111) state followed by a HALT (011) state to stop the system clocks. To accomplish this, the

82C55A port output must be brought high and then returned low again for the 82C85 to recognize the next STOP command.

External Decode Adds Halt Control

SSO, IO/ \bar{M} and DT/ \bar{R} can identify a MINimum mode 80 C 88 HALT execution. During T2 of the system timing (while ALE is high), SSO, IO/M, and DT/R go into a 111 state when the 80 C 88 is executing a software HALT. These signals cannot be tied directly to the S2/STOP, S1 and S0 inputs since they are not guaranteed to go into a passive state prior to their 111 state.

These signals can be decoded during the time ALE is high to indicate a software HALT execution. The Harris HD-6440 latch 3:8 decoder/driver can be used for this purpose (See Figure 4). $10 / \overline{\mathrm{M}}, \mathrm{DT} / \overline{\mathrm{R}}, \mathrm{SS} 0$ are connected directly to the three address lines of the HD-6440.

The ALE signal from the $80 \mathrm{C} 86 / 88$ is connected to the HD-6440 $\overline{\mathrm{G} 2}$ and L 2 pins. The falling edge of ALE latches the states of $1 O / \bar{M}, D T / \bar{R}$, and SSO and enables the corresponding HD-6440 output (Y7), which is connected to the $82 \mathrm{C} 85 \overline{\mathrm{~S} 2 / S T O P}$ pin. S0 and S1 should be tied high. Once a HALT state (111) has been recognized by the HD-6440, the low-going action of $Y 7$ will stop the 82C85.

Slow Mode

When continuous operation is critical but power consumption remains a concern, the 82C85 SLOW mode operation provides a lower frequency at the CLK and CLK50 outputs (crystal/EFI frequency divided by 768). The frequency of PLCK is unaffected. The SLOW mode allows the CPU and the system to operate at a reduced rate which, in turn, reduces system power.

For example, the operating power for the 80C86 or 80C88 CPU is $10 \mathrm{~mA} / \mathrm{MHz}$ of clock frequency. When the SLOW mode is used in a typical 5 MHz system, CLK and CLK50 run at approximately 20 kHz . At this reduced frequency, the average operating current of the CPU drops to 200 microamps. Adding the 80C86/88 500 microamps standby current brings the total current to 700 microamps.

FIGURE 4. AUTOMATIC STOP-ON-HALT WITH MINIMUM MODE 80C88

FIGURE 5. $\overline{\text { SLO} / F S T ~ T I M I N G ~ O V E R V I E W ~}$

While the CPU and peripherals run slower and the 82C85 CLK and CLK50 outputs switch at a reduced frequency, the main 82 C 85 oscillator is still running at the maximum frequency (determined by the crystal or EFI input frequency). Since CMOS power is directly related to operating frequency, 82C85 power supply current will typically be reduced by $25-35 \%$.

Clock Slow/Fast Operation

The $\overline{\text { SLO} / F S T ~ i n p u t ~ d e t e r m i n e s ~ w h e t h e r ~ t h e ~ C L K ~ a n d ~}$ CLK50 outputs run at full speed (crystal or EFI frequency divided by 3) or at slow speed (crystal or EFI frequency divided by 768) (See Figure 5). When in the SLOW mode, 82C85 stop-clock and stop-oscillator functions operate in the same manner as in the FAST mode.

Internal logic requires that the $\overline{\text { SLO} / F S T ~ p i n ~ b e ~ h e l d ~ l o w ~}$ for at least 195 oscillator or EFI clock pulses before the SLOW mode command is recognized. This requirement eliminates unwanted FAST-to-SLOW mode frequency changes which could be caused by glitches or noise spikes.

To guarantee FAST mode recognition, the $\overline{\text { SLO} / F S T ~ p i n ~}$ must be held high for at least 3 OSC or EFI pulses. The 82C85 will begin FAST mode operation on the next PCLK edge after FAST command recognition. Proper CLK and CLK 50 phase relationships are maintained and minimum pulse width specifications are met.

FAST-to-SLOW or SLOW-to-FAST mode changes will occur on the next rising or falling edge of PCLK. It is important to remember that the transition time for operating freqeuncy changes, which are dependent upon PCLK, will vary with the 82C85 oscillator or EFI frequency.

Slow Mode Control

The 82C55A programmable peripheral interface can be used to provide control of the $\overline{S L O} /$ FST pin by connecting a port pin of the 82C55A directly to the SLO/FST pin (See Figure 1). With the port pin configured as an output, software control of the SLO/FST pin is provided by simply writing a logical one (FAST mode) or logical zero (SLOW Mode) to the corresponding port. PORT C is well-suited for this function due to it's bit set and reset capabilities.

Since PCLK continues to run at a frequency equal to the oscillator or EFI frequency divided by 6 , it can be used by other devices in the system which need a fixed high frequency clock. For example, PCLK could be used to clock an 82C54 programmable interval timer to produce a real-time clock for the system or as a baud rate generator to maintain serial data communications during SLOW mode operation.

Oscillator

The oscillator circuit of the 82 C 85 is designed primarily for use with an external parallel resonant, fundamental mode crystal from which the basic operating frequency is derived. The crystal frequency should be selected at three times the required CPU clock. X1 and X2 are the two crystal input connections. The output of the oscillator is buffered and available at the OSC output (pin 18) for generation of other system timing signals.

For the most stable operation of the oscillator (OSC) output circuit, two capacitors ($\mathrm{C} 1=\mathrm{C} 2$) are recommended. Capacitors C1 and C2 are chosen such that their combined capacitance matches the load capacitance as specified by the crystal manufacturer. This insures operation within the frequency tolerance specified by the crystal manufacturer.

The crystal/capacitor configuration and the formula used to determine the capacitor values are shown in Figure 6. Crystal Specifications are shown in Table 3. For additional information on crystal operation, see Harris publication Tech Brief 47.

$$
C T=\frac{C 1 \cdot C 2}{C_{1}+C_{2}} \quad \text { (Including stray capacitance) }
$$

FIGURE 6. 82C85 CRYSTAL CONNECTION

TABLE 3. CRYSTAL SPECIFICATIONS

PARAMETER	TYPICAL CRYSTAL SPECIFICATION
Frequency	2.4 to 25 MHz
Type of Operation	Parallel Resonent, Fund. Mode
Load Capacitance	20 or 32 pF
RSERIES (Max)	$35 \Omega(\mathrm{f}=24 \mathrm{MHz}, \mathrm{CL}=32 \mathrm{pF})$
	$66 \Omega(\mathrm{f}=24 \mathrm{MHz}, \mathrm{CL}=20 \mathrm{pF})$

Frequency Source Selection

The F / \bar{C} input is a strapping pin that selects either the crystal oscillator or the EFI input as the source frequency for clock generation. If the EFI input is selected as the source, the oscillator section (OSC output) can be used independently for another clock source. If a crystal is not used, then crystal input X1 (pin 23) must be tied to VCC or GND and X2 (pin 22) should be left open. If the EFI mode is not used, then EFI (pin 20) should be tied to VCC or GND.

Clock Generator

The clock generator consists of two synchronous divide-by-three counters with special clear inputs that inhibit the counting. One counter generates a 33% duty cycle waveform (CLK) and the other generates a 50% duty cycle waveform (CLK50). These two counters are negativeedge synchronized, with the low-going transitions of both waveforms occurring on the same oscillator transition. The CLK and CLK50 output frequencies are one-third of the base input frequency when SLO/FST is high and are equal to the base input frequency divided by 768 when $\overline{\mathrm{SLO} / F S T}$ is low.

The CLK output is a 33% duty cycle clock signal designed to drive the 80 C 86 and 80 C 88 microprocessors directly. CLK50 has a 50% duty cycle output synchronous with CLK, designed to drive coprocessors and peripherals requiring a 50% duty cycle clock. When $\overline{\text { SLO/FST is high, }}$ CLK and CLK50 have output frequencies which are 1/3 that of EFI/OSC. When $\overline{\mathrm{SLO}} / \mathrm{FST}$ is low, CLK and CLK50 have output frequencies which are OSC (EFI) divided by 768 .

PCLK is a peripheral clock signal with an output frequency equal the oscillator or EFI frequency divided by 6. PCLK has a 50% duty cycle. PCLK is unaffected by SLO/FST. When the 82C85 is placed in the STOP mode, PCLK will remain in it's current state (logic high or logic low) until a RESET or START command restarts the 82 C 85 clock circuitry. PCLK is negative-edge synchronized with CLK and CLK50.

Clock Synchronization

The clock synchronization (CSYNC) input allows the output clocks to be synchronized with an external event (such as another 82C85 or 82C84A clock signal). CSYNC going active causes all clocks (CLK, CLK50 and PCLK) to stop in the HIGH state.

It is necessary to synchronize the CSYNC input to the EFI clock external to the 82C85. This is accomplished with two flip-flops when synchronizing two 82C85s and with three flip-flops when synchronizing an 82 C 85 to an 82C84A (See Figure 7). Multiple external flip-flops are necessary to minimize the occurence of metastable (or indeterminate) states.

FIGURE 7. 82C85 AND 82C84A CSYNC SYNCHRONIZATION METHODS

Ready Synchronization

Two READY inputs (RDY1, RDY2) are provided to accommodate two system busses. Each READY input is qualified by ($\overline{\mathrm{AEN1}}$ and $\overline{\mathrm{AEN2}}$, respectively). The $\overline{\mathrm{AEN}}$ signals validate their respective RDY signals.
Synchronization is required for all asynchronous activegoing edges of either RDY input to guarantee that the RDY set up and hold times are met. Inactive-going edges of RDY in normally ready systems do not require synchronization but must satisfy RDY setup and hold as a matter of proper system design.
The $\overline{A S Y N C}$ input defines two modes of READY synchronization operation. When $\overline{A S Y N C}$ is LOW, two stages of synchronization are provided for active READY input signals. Positive-going asynchronous READY inputs will first be synchronized to flip-flop one at the rising edge of CLK (requiring a setup time TR1VCH) and then synchronized to flip-flop two at the next falling edge of CLK, after which time the READY output will go HIGH.

Negative-going asynchronous READY inputs will be synchronized directly to flip-flop two at the falling edge of CLK, after which time the READY output will go inactive. This mode of operation is intended for use by asynchronous (normally not ready) devices in the system which cannot be guaranteed by design to meet the required RDY setup timing (TR1VCL.) on each bus cycle.
When $\overline{A S Y N C}$ is high or left open, the first READY flip-flop is bypassed in the READY synchronization logic. READY inputs are synchronized by flip-flop two on the falling edge of CLK before they are presented to the processor. This mode is available for synchronous devices that can be guaranteed to meet the required RDY setup time. $\overline{A S Y N C}$ can be changed on every bus cycle to select the appropriate mode of synchronization for each device in the system.

Specifications 82C85

Absolute Maximum Ratings

Supply Voltage +8.0 Volts	
Input, Output or I/O Voltage Applied	CC + 0.5 V
Storage Temperature Rang	
Maximum Package Power Dissipation.. 1 Watt	
$\theta_{\text {jc }}$.. $26{ }^{\circ} \mathrm{C} / \mathrm{W}$ (CERDIP Package), $31{ }^{\circ} \mathrm{C} / \mathrm{W}$ (LCC Package)	
Gate Count.. 500 Gates	
Junction Temperature... $150{ }^{\circ} \mathrm{C}$	
Lead Temperature (Soldering, Ten Seconds)... $+275^{\circ} \mathrm{C}$	
UTION: Stresses above those listed in the stress only rating and operation of the tions of this specification is not implied.	nent damage to the device. This hose indicated in the operation

Operating Conditions

Operating Voltage Range .. +4.5 V to +5.5VOperating Temperature Range	
C82C85	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
I82C85	.$^{-40}{ }^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
M82C85	$55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

D.C. Electrical Specifications $\quad V C C=5.0 \mathrm{~V} 10 \% ; \quad \mathrm{TA}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}(\mathrm{C} 82 \mathrm{C} 85)$;
$\mathrm{TA}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (182C85);
TA $=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ (M82C85)

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
VIH	Logical One Input Voltage	$\begin{aligned} & 2.0 \\ & 2.2 \end{aligned}$		$\begin{aligned} & V \\ & V \end{aligned}$	$\begin{aligned} & \text { C82C85, I82C85 } \\ & \text { M82C85 } \end{aligned}$
VIHR	Reset Input High Voltage	2.8		V	
VIL	Logical Zero Input Voltage		0.8	V	
$\mathrm{V}_{\mathrm{T}^{+}}-\mathrm{V}_{\mathrm{T}}$	Reset Input Hysteresis	0.25		V	
VOH	Logical One Output Voltage	VCC-0.4		V	$10 \mathrm{H}=-5.0 \mathrm{~mA}$ for CLK or CLK50 outputs $\mathrm{IOH}=-2.5 \mathrm{~mA}$ for all other outputs
VOL	Logical Zero Output Voltage		0.4	V	$\mathrm{IOL}=+5.0 \mathrm{~mA}$ for all outputs
11	Input Leakage Current	-1.0	1.0	$\mu \mathrm{A}$	VIN $=$ VCC or GND, except Pins 11, 12, 13, 14, 15, 23
IBHH	Bus-hold High Leakage Current	-10	-200	$\mu \mathrm{A}$	$\begin{aligned} & \text { VIN = 3.0V; Pins } 21,11,12 \\ & 13,14,15 \end{aligned}$
ICCSB	Standby Power Supply Current		100	$\mu \mathrm{A}$	82C85 in HALT state with oscillator stopped
ICCOP	Operating Power Supply Current		30 50	mA mA	$\begin{aligned} & \text { Crystal Frequency }=15 \mathrm{MHz} \text {, } \\ & \text { outputs open } \\ & \text { Crystal Frequency }=25 \mathrm{MHz} \text {, } \\ & \text { outputs open } \end{aligned}$
ICCSLOW	Slow Mode Operating Current		1.5	$\mathrm{mA} / \mathrm{MHz}$	$\begin{aligned} & \text { Outputs Open; } \overline{\text { SLO }} / \text { FST }=0 ; \\ & \text { START }=1 ; \\ & \text { Other inputs }- \text { VIN }=\text { VCC or GND } \end{aligned}$

Capacitance $T_{A}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	TYPICAL	UNITS	TEST CONDITIONS
CIN	Input Capacitance	5	pF	FREQ $=1 \mathrm{MHz}$, all measure- ments are referenced to device GND

A. C. Electrical Specifications $\quad \mathrm{VCC}=5 \mathrm{~V} \pm 10 \%$
$\mathrm{TA}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}(\mathrm{C} 82 \mathrm{C} 85) ; \mathrm{TA}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (182 C 85);
$\mathrm{TA}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ (M82C85)

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS

TIMING REQUIREMENTS

(1) TEHEL	External Frequency HIGH Time	15		ns	90\%-90\% VIN
(2) TELEH	External Frequency LOW Time	15		ns	10\%-10\% VIN
(3) TELEL	EFI or crystal period	40		ns	
(4) TEFIDC	External Frequency Input duty cycle	45	55	\%	
(5) FX	Crystal Frequency	2.4	25	MHz	
(6) TR1VCL	RDY1, RDY2 Active Setup to CLK	35		ns	$\overline{\text { ASYNC }}=\mathrm{HIGH}$
(7) TR1VCH	RDY1, RDY2 Active Setup to CLK	35		ns	$\overline{\text { ASYNC }}=$ LOW
(8) TR1VCL	RDY1, RDY2 Inactive Setup to CLK	35		ns	
(9) TCLR1X	RDY1, RDY2 Hold to CLK	0		ns	
(10) TAYVCL	$\overline{\text { ASYNC Setup to CLK }}$	50		ns	
(11)TCLAYX	$\overline{\text { ASYNC }}$ Hold to CLK	0		ns	
(12) TA1VR1V	$\overline{\text { AEN1 }}, \overline{\text { AEN2 }}$ Setup to RDY1, RDY2	15		ns	
(13)TCLA1X	$\overline{\text { AEN1, }}$ AEN2 Hold to CLK	0		ns	
(14)TYHEH	CSYNC Setup to EFI	10		ns	
(15)TEHYL	CSYNC Hold to EFI	10		ns	
(16)TYHYL	CSYNC Pulse Width	2TELEL		ns	
(17) T/1HCL	$\overline{\mathrm{RES}}$ Setup to CLK	65		ns	See Note 2
(18) TSVCH	S0, S1, $\overline{\text { S2 }} / \overline{\text { STOP }}$ Setup to CLK	35		ns	
(19) TCHSV	S0, S1, ड̄/STOP Hold to CLK	35		ns	
(20)TRSVCH	$\overline{\text { RES }}$, START Setup to CLK	65		ns	Note 2
(21)TSHSL	$\overline{\mathrm{RES}}$ (low) or START (high) pulse width	TCLCL/3		ns	
(22)TSFPC	$\overline{\text { SLO/FST setup to PCLK }}$	TEHEL + 100		ns	Note 2
(23)TSTART	$\overline{\text { RES }}$ or START valid to CLK low	2TELEL + 2		ns	
(24)TSTOP	$\overline{\text { STOP }}$ command valid to CLK high	2 TCHCH + TRSVCH	$\begin{gathered} 3 \mathrm{TCHCH} \\ +34 \end{gathered}$	ns	

TIMING RESPONSES

(25)TCLCL	CLK/CLK50 Cycle Period	125		ns	
(26)TCHCL	CLK HIGH Time	(1/3 TCLCL) +2		ns	Fig. 12 \& 13
(27) ${ }^{\text {TCLCH }}$	CLK LOW Time	(2/3 TCLCL)-15		ns	Fig. 12 \& 13
(28)T5CHCL	CLK50 HIGH Time	(1/2 TCLCL)-7.5		ns	Fig. 12 \& 13
(29)T5CLCH	CLK50 LOW Time	(1/2 TCLCL)-7.5		ns	Fig. 12 \& 13
(30) ${ }^{\text {TCH1CH2 }}$	CLK/CLK50 Rise Time		8	ns	1.0 V to 3.5 V
(31)TCL2CL1	CLK/CLK50 Fall Time		8	ns	1.0 to 3.5 V
(32)TPHPL	PCLK HIGH Time	TCLCL-20		ns	
(33)TPLPH	PCLK LOW Time	TCLCL-20		ns	
(34)TRYLCL	Ready Inactive to CLK	-8		ns	Fig. 14 \& 15 See Note 4
(35)TRYHCH	Ready Active to CLK	2/3(TCLCL)-15		ns	Fig. 14 \& 15 See Note 3
(36)TCLIL	CLK to Reset Delay		40	ns	
(37)TCLPH	CLK to PCLK HIGH Delay		22	ns	
(38)TCLPL	CLK to PCLK LOW Delay		22	ns	
(39)TOST	Start/Reset Valid to Clock LOW		2	ms	Typ. - See Note 8
(40)TOLOH	Output Rise Time (except CLK)		15	ns	From 0.8 V to 2.0 V
(41)TOHOL	Output Fall Time (except CLK)		12	ns	From 2.0 V to 0.8 V
(42)TRST	RESET output HIGH Time	16xTCLCL		ns	
(43)TCLC50L	CLK LOW to CLK50 LOW Skew		5	ns	

Notes:

1. Output signals switch between VOH and VOL unless otherwise specified.
2. Setup and hold necessary only to guarantee recognition at next clock.
3. Applies only to T3, TW states.
4. Applies only to T2 states.
5. All timing delays are measured at 1.5 volts unless otherwise noted.
6. Input signals must switch between VIL max -0.4 and $\mathrm{VIH} \min +0.4$ volts.
7. Timing measurements made with EFI duty cycle $=50 \%$.
8. Oscillator start-up time depends on several factors including crystal frequency, crystal manufacturer, capacitive load, temperature, power supply voltage, etc. This parameter is given for information only.

NOTE. All Timing Measurements are Made At 1.5 Volts Unless Otherwise Noted

FIGURE 8. WAVEFORMS FOR CLOCKS.

FIGURE 9. WAVEFORMS FOR READY SIGNALS (FOR ASYNCHRONOUS DEVICES)

FIGURE 10. WAVEFORMS FOR READY SIGNALS (FOR SYNCHRONOUS DEVICES)

FIGURE 11. CLOCK STOP (F/C̄ HIGH OR F/C LOW)

FIGURE 12. CLOCKS START (F/C̄ HIGH)

FIGURE 13. CLOCK START (F/C̄ LOW)

* NOTE: Start up count begins when the crystal oscillator reaches a suitable threshold level.

FIGURE 14. RESET TIMING (CLK RUNNING WITH F/C LOW - OSC MODE) (CLK RUNNING-OR STOPPED WITH F/C CIGH EFI MODE)

FIGURE 15. RESET TIMING OSCILLATOR STOPPED, F/ \bar{C} LOW)
Note 1: CLK, CLK50, PCLK Remain in the High State until $\overline{\text { RES }}$ goes high and 8192 valid oscillator cycles have been registered by the 82C85 internal counter (TOST time period). After $\overline{\mathrm{RES}}$ goes high and CLK, CLK50, POLY become active, the RESET output will remain high for a minimum of 16 CLK Cycles (TRST).

FIGURE 16B. FAST TO SLOW CLOCK MODE TRANSITION.

* If TSFPC is not met on one edge of PLCK, $\overline{\text { SLO} / F S T ~ w i l l ~ b e ~ r e c o g n i z e d ~ o n ~ t h e ~ n e x t ~ e d g e ~ o f ~ P C L K . ~}$

FIGURE 16C. SLOW TO FAST CLOCK MODE TRANSITION.

FIGURE 17. CLOCK HIGH AND LOW TIME (USING $\mathbf{X 1}, \mathrm{X} 2)$

FIGURE 19. READY TO CLOCK (USING X1,X2)

FIGURE 18. CLOCK HIGH AND LOW TIME (USING EFI)

FIGURE 20. READY TO CLOCK (USING EFI)

FIGURE 21. TEST LOAD MEASUREMENT CONDITIONS.
A.C. Testing Input, Output Waveform

A.C. TESTING: All A.C. parameters tested as per Test Circuits. Input rise and fall times are driven at $1 \mathrm{~ns} / \mathrm{V}$.

H0 HARRIS

Features

- Full Eight-Bit Bi-directional Bus Interface
- Industry Standard 8286/8287 Compatible Pinout
- " H " Designates High Drive CMOS Bus Transceiver
- B Side:
.20 mA
- A Side:
.12 mA
- Three-State Outputs
- Gated Inputs
- Reduce Operating current
- Eliminate Pull-Up/Down Resistors
- Propagation Delay
- 82C86H 32ns Max.
- 82C87H 30ns Max.
- A.C. Specifications Guaranteed at Rated CL
\qquad
- A Side
$C_{L}=100 \mathrm{pF}$
- Single 5V Power Supply
- Power Supply Current \qquad $10 \mu \mathrm{~A}$ Max. Standby
- Wide Operating Temperature Ranges:
- C82C86H/C82C87H. . $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
- $182 \mathrm{C} 86 \mathrm{H} / 182 \mathrm{C} 87 \mathrm{H}$. \qquad $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- M82C86H/M82C87H $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Description

The $82 \mathrm{C} 86 \mathrm{H} / 82 \mathrm{C} 87 \mathrm{H}$ are octal bus transceivers manufactured using a self-aligned silicon gate CMOS process (SAJI IV). These circuits provide a full eight-bit bi-directional bus interface in a 20-pin package. The Transmit (T) control determines the data direction. The active low enable (OE) allows simple interface to the 80C86, 80 C 88 and other microprocessors. The outputs of the 82 C 86 H are non-inverting while the 82 C 87 H outputs are inverting. The 82 C 86 H and 82 C 87 H have gated inputs, eliminating the need for pull-up/down resistors and reducing overall system operating power dissipation.

Functional Diagram

82C86H

82C87H

PIN NAMES

$A_{0}-A_{7}$	Local Bus Data I/O Pins
$\overline{B_{0}}-\overline{B_{7}}$ $B_{0}-B_{7}$	System Bus Data I/O Pins
	Transmit Control Input
$\overline{\mathrm{OE}}$	Active Low Output Enable

Truth Table

T	$\overline{O E}$	A	B
X	H	$\mathrm{Hi}-Z$	$\mathrm{Hi}-Z$
H	L	I	O
L	L	O	1

[^9]
Absolute Maximum Ratings

CAUTION: Stresses above those listed in the "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operation section of this specification is not implied.

Operating Conditions

Operating Voltage Range .. 4.5 V to +5.5 VOperatiing Temperature Range	
C82C86H/C82C87H	$0^{\circ} \mathrm{C}$ to $+700^{\circ} \mathrm{C}$
$182 \mathrm{C} 86 \mathrm{H} / 182 \mathrm{C} 87 \mathrm{H}$	$40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
M82C86H/M82C87H	$5^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

D.C. Electrical Specifications $\quad V C C=5.0 \mathrm{~V} \pm 10 \% ; T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}(\mathrm{C} 82 \mathrm{C} 86 \mathrm{H} / \mathrm{C} 82 \mathrm{C} 87 \mathrm{H})$;
$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}(182 \mathrm{C} 86 \mathrm{H} / 182 \mathrm{C} 87 \mathrm{H})$;
$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}(\mathrm{M} 82 \mathrm{C} 86 \mathrm{H} / \mathrm{M} 82 \mathrm{C} 87 \mathrm{H})$;

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
VIH	Logical One Input Voltage	$\begin{aligned} & 2.0 \\ & 2.2 \end{aligned}$		V	$\begin{aligned} & \mathrm{C} 82 \mathrm{C} 86 \mathrm{H} / \mathrm{C} 82 \mathrm{C} 87 \mathrm{H}, \\ & \mathrm{l} 82 \mathrm{C} 86 \mathrm{H} / 182 \mathrm{C} 87 \mathrm{H} \\ & \mathrm{M} 82 \mathrm{C} 86 \mathrm{H} / \mathrm{M} 82 \mathrm{C} 87 \mathrm{H} \\ & \text { (See Note 1) } \end{aligned}$
VIL	Logical Zero Input Voltage		0.8	V	
VOH	Logical One Output Voltage B Outputs A Outputs A or B Outputs	$\begin{gathered} 3.0 \\ 3.0 \\ \text { VCC }-0.4 \end{gathered}$		$\begin{aligned} & v \\ & v \\ & v \end{aligned}$	$1 O H=-8 \mathrm{~mA}$ $1 O H=-4 \mathrm{~mA}$ $1 \mathrm{OH}=-100 \mu \mathrm{~A}$
VOL	Logical Zero Output Voltage B Outputs A Outputs		$\begin{aligned} & 0.45 \\ & 0.45 \end{aligned}$	v	$\begin{aligned} & 1 \mathrm{OL}=20 \mathrm{~mA} \\ & \mathrm{IOL}=12 \mathrm{~mA} \end{aligned}$
11	Input Leakage Current	-10	10	$\mu \mathrm{A}$	$\begin{aligned} & \text { VIN }=\text { GND or VCC } \\ & \text { DIP Pins } 9,11 \\ & \hline \end{aligned}$
10	Output Leakage Current	-10	10	$\mu \mathrm{A}$	$\begin{aligned} & V O=G N D \text { or } V C C \\ & O E \geq V C C-0.5 V \\ & \text { DIP Pins } 1-8,12-19 \end{aligned}$
ICCSB	Standby Power Supply Current		10	$\mu \mathrm{A}$	$\begin{aligned} & \text { VIN }=\text { VCC or GND } \\ & \text { VCC }=5.5 \mathrm{~V} \\ & \text { Outputs Open } \end{aligned}$
ICCOP	Operating Power Supply Current		1	$\mathrm{mA} / \mathrm{MHz}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \\ & \text { Typical (See Note 2). } \end{aligned}$

NOTES: 1. VIH is measured by applying a pulse of magnitude $=$ VIH min to one data input at a time and checking the corresponding device output for a valid logical one during valid input high time. Control pins ($\mathrm{T}, \overline{\mathrm{OE}}$) are tested separately with all device data input pins at VCC -0.4 V . 2. Typical $I C C O P=1 \mathrm{~mA} / \mathrm{MHz}$ of read/write cycle time. (Example: $1.0 \mu \mathrm{~s}$ read/write cycle time $=1 \mathrm{~mA}$).

Capacitance $T_{A}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	TYPICAL	UNITS	TEST CONDITIONS
CIN	Input Capacitance			F $=1 \mathrm{MHz}$, all measure- ments are referenced to device GND
	B Inputs	15	pF	pF

A.C. Electrical Specifications

$$
\begin{array}{ll}
\mathrm{VCC}=5.0 \mathrm{~V} \pm 10 \% ; & T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}(\mathrm{C} 82 \mathrm{C} 86 \mathrm{H} / \mathrm{C} 82 \mathrm{C} 87 \mathrm{H}),(\mathrm{C} 82 \mathrm{C} 86 \mathrm{H}-5 / \mathrm{C} 82 \mathrm{C} 87 \mathrm{H}-5) ; \\
\text { FREQ }=1 \mathrm{MHz} & T_{A}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}(182 \mathrm{C} 86 \mathrm{H} / 182 \mathrm{C} 87 \mathrm{H}),(182 \mathrm{C} 86 \mathrm{H}-5 / 182 \mathrm{C} 87 \mathrm{H}-5) ; \\
& T_{A}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}(\mathrm{M} 82 \mathrm{C} 86 \mathrm{H}-5 / \mathrm{M} 82 \mathrm{C} 87 \mathrm{H}-5)
\end{array}
$$

SYMBOL	PARAMETER	MIN	MAX ${ }^{4}$	MAX ${ }^{4}$	UNITS	TEST CONDITIONS
			$82 \mathrm{C} 86 \mathrm{H} / 87 \mathrm{H}$	$82 \mathrm{C} 86 \mathrm{H} / 87 \mathrm{H}-5$		
(1) TIVOV	Input to Output Delay Inverting Non-Inverting	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 30 \\ & 32 \end{aligned}$	$\begin{aligned} & 35 \\ & 35 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	See Notes 1,2
(2) TEHTV	Transmit Receive Hold Time	5			ns	See Notes 1,2
(3) TTVEL	Transmit/Receive Setup Time	10			ns	See Notes 1,2
(4) TEHOZ	Uutput Disable Time	5	30	35	ns	See Notes 1,2
(5) TELOV	Output Enable Time	10	50	65	ns	See Notes 1,2
(6) TR, TF	Input Rise/Fall Times		20	20	ns	See Notes 1,2
(7) TEHEL	Minimum Output Enable High Time $82 \mathrm{C} 86 \mathrm{H} / 87 \mathrm{H}$ $82 \mathrm{C} 86 \mathrm{H} / 87 \mathrm{H}-5$	$\begin{aligned} & 30 \\ & 35 \end{aligned}$			ns	See Note 3

NOTE 1: All A.C. Parameters tested as per test circuits and definitions in Figures 1-5. Input rise and fall times are driven at $1 \mathrm{~ns} / \mathrm{V}$. NOTE 2: Input test signals must switch between VIL -0.4 V and $\mathrm{VIH}+0.4 \mathrm{~V}$.
NOTE 3: A system limitation only when changıng direction. Not a measured parameter.
NOTE $4: 82 \mathrm{C} 86 \mathrm{H}$ and 82 C 87 H are available in commercial and industrial temperature ranges only. $82 \mathrm{C} 86 \mathrm{H}-5$ and $82 \mathrm{C} 87 \mathrm{H}-5$ are available in commercial, industrial and military temperature ranges.

All timıng measurements are made at 1.5 V unless otherwise noted.

FIGURE1. 82C86H/82C87H TIMING RELATIONSHIPS

A. C. Test Circuit

FIGURE 2a. TIVOV LOAD CIRCUIT

B SIDE OUTPUT

FIGURE 3a. TELOV OUTPUT HIGH ENABLE LOAD CIRCUIT

FIGURE 4a. TELOV
OUTPUT LOW ENABLE LOAD CIRCUIT

FIGURE 5a. TEHOZ
OUTPUT LOW/HIGH DISABLE LOAD CIRCUIT

FIGURE 2b. TIVOV
LOAD CIRCUIT

FIGURE 3b. TELOV OUTPUT HIGH ENABLE LOAD CIRCUIT

FIGURE 4b. TELOV OUTPUT LOW ENABLE LOAD CIRCUIT

FIGURE 5b.
TEHOZ
OUTPUT LOW/HIGH DISABLE LOAD CIRCUIT
*Includes jig and stray capacitance

GATED INPUTS

During normal system operation of a latch, signals on the bus at the device inputs will become high impedance or make transitions unrelated to the operation of the latch. These unrelated input transitions switch the input circuitry and typically cause an increase in power dissipation in CMOS devices by creating a low resistance path between V_{CC} and GND when the signal is at or near the input switching threshold. Additionally, if the driving signal becomes high impedance ("float" condition), it could create and indeterminate logic state at the inputs and cause a disruption in device operation.
The Harris 82C8X series of bus drivers eliminates these conditions by turning off data inputs when data is latched (STB = logic zero for the $82 \mathrm{C} 82 / 83 \mathrm{H})$ and when the device is disabled $(\mathrm{OE}=$ logic one for the $82 \mathrm{C} 86 \mathrm{H} / 87 \mathrm{H})$. These gated inputs disconnect the input circuitry from the $V_{C C}$ and ground power supply pins by turning off
the upper P-channel and lower N-channel (see Figure 6a, 6b). No current flow from $V_{C c}$ to GND occurs during input transitions and invalid logic states from floating inputs are not transmitted. The next stage is held to a valid logic level internal to the device.
D.C. input voltage levels can also cause an increase in $I_{C C}$ if these input levels approach the minimum $\mathrm{V}_{I H}$ or maximum $\mathrm{V}_{I L}$ conditions. This is due to the operation of the input circuitry in its linear operating region (partially conducting state). The 82C8X series gated inputs mean that this condition will occur only during the time the device is in the transparent mode (STB = logic one). I ICC remains below the maximum I_{CC} standby specification of $10 \mu \mathrm{~A}$ during the time inputs are disabled, thereby greatly reducing the average power dissipation of the 82C8X series devices.

Figure 6a 82C82/83H

Figure 6b 82C86H/87H Gated Inputs

CMOS Bus Controller

Features

- Compatible with Bipolar 8288
- Performance Compatible with:
- 80C86/80C88 (5/8 MHz) - 80186/80188 (6/8 MHz)
- 8086/8088 ($5 / 8 \mathrm{MHz}$) 8089
- Provides Advanced Commands for Multi-Master Busses
- Three-State Command Outputs
- Bipolar Drive Capability
- Fully TTL Compatible
- Scaled SAJI IV CMOS Process
- Single 5V Power Supply
- Low Power Operation
- ICCSB
- ICCOP $1 \mathrm{~mA} / \mathrm{MHz}$
- Wide Operating Temperature Ranges:
- C82C88 \qquad $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
- 182C88 $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- M82C88 $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Description

The Harris 82 C 88 is a high performance CMOS Bus Controller manufactured using a self-aligned silicon gate CMOS process (Scaled SAJIIV). The 82C88 provides the control and command timing signals for 80C86, 80C88, 8086, 8088, 8089,80186 , and 80188 based systems. The high output drive capability of the 82C88 eliminates the need for additional bus drivers.

Static CMOS circuit design insures low operating power. The Harris advanced SAJI process results in performance equal to or greater than existing equivalent products at a significant power savings.

Pinouts

top View

108 -		vcc
CLK [-2	19	$\square \overline{\text { so }}$
$\overline{\mathrm{s} 1} \mathrm{C}^{3}$	18	
	17	$\square \mathrm{mce} / \overline{\text { POEN }}$
ALE \square^{5}	8288816	$\square \mathrm{den}$
AEN -6	15] CEN
$\overline{\text { MROC }} \mathrm{Cl}^{1}$	14	$\square \overline{\text { INTA }}$
$\overline{\text { AMWC }}$-8	13	$\square \overline{\text { IORC }}$
MWTC -9	12	ص $\overline{\text { Alowc }}$
GNO -10	11	a lowc

LCC/PLCC
TOP VIEW

Functional Diagram

[^10]
Pin Description

SYMBOL	PIN NUMBER	TYPE	DESCRIPTION
V_{CC}	20		VCC: The +5 V power supply pin. A $0.1 \mu \mathrm{~F}$ capacitor between pins 10 and 20 is recommended for decoupling.
GND	10		GROUND.
$\overline{\mathrm{s}_{0}}, \overline{\mathrm{~S}_{2}}$	$\begin{gathered} 19,3 \\ 18 \end{gathered}$	1	STATUS INPUT PINS: These pins are the input pins from the $80 \mathrm{C} 86,8086 / 88 / 8089$ processors. The 82C88 decodes these inputs to generate command and control signals at the appropriate time. When Status pins are not in use (passive), command outputs are held HIGH (See Table 1.)
CLK	2	1	CLOCK: This is a CMOS compatible input which receives a clock signal from the 82C84A or 82C85 clock generator and serves to establish when command/control signals are generated.
ALE	5	0	ADDRESS LATCH ENABLE: This signal serves to strobe an address into the address latches. This signal is active HIGH and latching occurs on the falling (HIGH to LOW) transition. ALE is intended for use with transparent D type latches, such as the $82 \mathrm{C} 82 / 82 \mathrm{C} 83 \mathrm{H}$.
DEN	16	0	DATA ENABLE: This signal serves to enable data transceivers onto either the local or system data bus. This signal is active HIGH.
DT/R	4	0	DATA TRANSMIT/RECEIVE: This signal establishes the direction of data flow through the transceivers. A HIGH on this line indicates Transmit (write to I/O or memory) and a LOW indicates Receive (read from I/O or memory).
$\overline{\text { AEN }}$	6	1	ADDRESS ENABLE: $\overline{\text { AEN }}$ enables command outputs of the 82 C 88 Bus Controller a minimum of 110 ns (250 ns maximum) after it becomes active (LOW). AEN going inactive immediately three-states the command output drivers. $\overline{\text { AEN }}$ does not affect the I/O command lines if the 82 C 88 is in the $1 / \mathrm{O}$ Bus mode (IOB tied HIGH).
CEN	15	1	COMMAND ENABLE: When this signal is LOW all 82C88 command outputs and the DEN and PDEN control outputs are forced to their Inactive state. When this signal is HIGH, these same outputs are enabled.
$10 B$	1	1	INPUT/OUTPUT BUS MODE: When the IOB pin is strapped HIGH, the 82C88 functions in the I/O Bus mode. When it is strapped LOW, the 82C88 functions in the System Bus mode (See I/O Bus and System Bus sections).
$\overline{\text { AIOWC }}$	12	0	ADVANCED I/O WRITE COMMAND: The AIOWC issues an I/O Write Command earlier in the machine cycle to give I/O devices an early indication of a write instruction. Its timing is the same as a read command signal. $\overline{\mathrm{AIOWC}}$ is active LOW.
$\overline{\text { IOWC }}$	11	0	I/O WRITE COMMAND: This command line instructs an I/O device to read the data on the data bus. The signal is active LOW.
$\overline{\text { IORC }}$	13	0	I/O READ COMMAND: This command line instructs an I/O device to drive its data onto the data bus. This signal is active LOW.
$\overline{\text { AMWC }}$	8	0	ADVANCED MEMORY WRITE COMMAND: The $\overline{\text { AMWC }}$ issues a memory write command earlier in the machine cycle to give memory devices an early indication of a write instruction. Its timing is the same as a read command signal. $\overline{A M W C}$ is active LOW.
$\overline{\text { MWTC }}$	9	0	MEMORY WRITE COMMAND: This command line instructs the memory to record the data present on the data bus. This signal is active LOW.
$\overline{\text { MRDC }}$	7	0	MEMORY READ COMMAND: This command line instructs the memory to drive its data onto the data bus. MRDC is active LOW.
$\overline{\text { INTA }}$	14	0	INTERRUPT ACKNOWLEDGE: This command line tells an interrupting device that its interrupt has been acknowledged and that it should drive vectoring information onto the data bus. This signal is active LOW.
MCE/PDEN	17	0	This is a dual function pin. MCE (IOB IS TIED LOW) Master Cascade Enable occurs during an interrupt sequence and serves to read a Cascade Address from a master 82C59A Priority Interrupt Controller onto the data bus. The MCE signal is active HIGH. PDEN (IOB IS TIED HIGH): Peripheral Data Enable enables the data bus transceiver for the I/O bus that DEN performs for the system bus. $\overline{\mathrm{PDEN}}$ is active LOW.

Functional Description

Command and Control Logic

The command logic decodes the three $80 \mathrm{C} 86,8086,80 \mathrm{C} 88$, $8088,80186,80188$ or 8089 status lines ($\overline{\mathrm{S}_{0}}, \overline{\mathrm{~S}_{1}}, \overline{\mathrm{~S}_{2}}$) to determine what command is to be issued (see Table 1).

Table 1. Command Decode Definition

$\overline{\mathbf{S}_{\mathbf{2}}}$	$\overline{\mathbf{S}_{\mathbf{1}}}$	$\overline{\mathbf{S}_{\mathbf{0}}}$	Processor State	$\mathbf{8 2 C 8 8}$ Command
0	0	0	Interrupt Acknowledge	$\overline{\mathrm{NTA}}$
0	0	1	Read I/O Port	$\overline{\mathrm{IORC}}$
0	1	0	Write I/O Port	$\overline{\mathrm{IOWC}}, \overline{\mathrm{AIOWC}}$
0	1	1	Halt	None
1	0	0	Code Access	$\overline{\text { MRDC }}$
1	0	1	Read Memory	$\overline{\text { MRDC }}$
1	1	0	Write Memory	$\overline{\text { MWTC }, \overline{\text { AMWC }}}$
1	1	1	Passive	None

I/O Bus Mode

The 82 C 88 is in the I / O Bus mode if the IOB pin is strapped HIGH. In the I/O Bus mode, all I/O command lines IORC, $\overline{\text { IOWC, }} \overline{\text { AIOWC, }} \overline{\text { INTA }}$) are always enabled (i.e., not dependent on $\overline{\mathrm{AEN}})$. When an I/O command is initiated by the processor, the 82C88 immediately activates the command lines using $\overline{P D E N}$ and $\mathrm{DT} / \overline{\mathrm{R}}$ to control the I / O bus transceiver. The I/O command lines should not be used to control the system bus in this configuration because no arbitration is present. This mode allows one 82 C 88 Bus Controller to handle two external busses. No waiting is involved when the CPU wants to gain access to the I/O bus. Normal memory access requires a "Bus Ready" signal ($\overline{\mathrm{AEN}}$ LOW) before it will proceed. It is advantageous to use the IOB mode if I/O or peripherals dedicated to one processor exist in a multi-processor system.

System Bus Mode

The 82 C 88 is in the System Bus mode if the IOB pin is strapped LOW. In this mode, no command is issued until a specified time period after the $\overline{\text { AEN }}$ line is activated (LOW). This mode assumes bus arbitration logic will inform the bus controller (on the $\overline{\mathrm{AEN}}$ line) when the bus is free for use. Both memory and I/O commands wait for bus arbitration. This mode is used when only one bus exists. Here, both I/O and memory are shared by more than one processor.

Command Outputs

The advanced write commands are made available to initiate write procedures early in the machine cycle. This signal can be used to prevent the processor from entering an unnecessary wait state

The command outputs are:

[^11]$\overline{\text { AMWC }}$ - Advanced Memory Write Command
AIOWC - Advanced I/O Write Command
INTA - Interrupt Acknowledge
INTA (Interrupt Acknowledge) acts as an I/O read during an interrupt cycle. Its purpose is to inform an interrupting device that its interrupt is being acknowledged and that it should place vectoring information onto the data bus.

Control Outputs

The control outputs of the 82C88 are Data Enable (DEN), Data Transmit/Receive (DT/ $\overline{\mathrm{R}}$) and Master Cascade Enable/ Peripheral Data Enable (MCE/ $\overline{\operatorname{PDEN}}$). The DEN signal determines when the external bus should be enabled onto the local bus and the DT/ $\overline{\mathrm{R}}$ determines the direction of data transfer. These two signals usually go to the chip select and direction pins of a transceiver.

The MCE/ $\overline{P D E N}$ pin changes function with the two modes of the 82C88. When the 82C88 is in the IOB mode (IOB HIGH), the PDEN signal serves as a dedicated data enable signal for the I/O or Peripheral System bus.

Interrupt Acknowledge and MCE

The MCE signal is used during an interrupt acknowledge cycle if the 82C88 is in the System Bus mode (IOB LOW). During any interrupt sequence, there are two interrupt acknowledge cycles that occur back to back. During the first interrupt cycle no data or address transfers take place. Logic should be provided to mask off MCE during this cycle. Just before the second cycle begins the MCE signal gates a master Priority Interrupt Controller's (PIC) cascade address onto the processor's local bus where ALE (Address Latch Enable) strobes it into the address latches. On the leading edge of the second interrupt cycle, the addressed slave PIC gates an interrupt vector onto the system data bus where it is read by the processor.

If the system contains only one PIC, the MCE signal is not used. In this case, the second Interrupt Acknowledge signal gates the interrupt vector onto the processor bus.

Address Latch Enable and Halt

Address Latch Enable (ALE) occurs during each machine cycle and serves to strobe the current address into the 82C82/82C83H address latches. ALE also serves to strobe the status ($\overline{\mathrm{S}_{0}}, \overline{\mathrm{~S}_{1}}, \overline{\mathrm{~S}_{2}}$) into a latch for halt state decoding.

Command Enable

The Command Enable (CEN) input acts as a command qualifier for the 82C88. If the CEN pin is high, the 82C88 functions normally. If the CEN pin is pulled LOW, all command lines are held in their inactive state (not 3-state). This feature can be used to implement memory partitioning and to eliminate address conflicts between system bus devices and resident bus devices.

Absolute Maximum Ratings

Supply Voltage +8.0 Volts
Input, Output or I/O Voltage Applied GND -0.5 V to VCC +0.5 V
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Package Power Dissipation
$\theta_{j c}$ \qquad 2600
$\theta_{j a}$ \qquad $76^{\circ} \mathrm{C} / \mathrm{W}$ (CERDIP package), $81^{\circ} \mathrm{C} / \mathrm{W}$ (LCC package)
Gate Count 00 Gates
Junction Temperature. $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, Ten Seconds)
$+275^{\circ} \mathrm{C}$
CAUTION: Stresses above those listed in the "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operation sections of this specification is not implied.

Operating Conditions

Operating Voltage Range .. 4.5 V to +5.5V	
Operating Temperature Range	
C82C88	.$^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
182C88.	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
M82C88	$55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

D.C. Electrical Specifications $\quad \mathrm{VCC}=5.0 \mathrm{~V} \pm 10 \%$;
$T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}(\mathrm{C} 82 \mathrm{C} 88) ;$
$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}(182 \mathrm{C} 88) ;$
$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}(\mathrm{M} 82 \mathrm{C} 88)$

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
VIH	Logical One Input Voltage	$\begin{aligned} & 2.0 \\ & 2.2 \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { C82C88, I82C88 } \\ & \text { M82C88 } \end{aligned}$
VIL	Logical Zero Input Voltage		0.8	V	
VIHC	CLK Logical One Input Voltage	0.7 VCC		V	
VILC	CLK Logical Zero Input Voltage		0.2 VCC	V	
VOH	Output High Voltage Command Outputs	$\begin{gathered} 3.0 \\ \text { vcc }-0.4 \end{gathered}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & 1 \mathrm{OH}=-8.0 \mathrm{~mA} \\ & \mathrm{IOH}=-2.5 \mathrm{~mA} \end{aligned}$
	Output High Voltage Control Outputs	$\begin{gathered} 3.0 \\ \operatorname{vcc}-0.4 \end{gathered}$		\bar{v}	$\begin{aligned} & 1 \mathrm{OH}=-4.0 \mathrm{~mA} \\ & 10 \mathrm{H}=-2.5 \mathrm{~mA} \end{aligned}$
VOL	Output Low Voltage Command Outputs		0.5	V	$1 \mathrm{OL}=+20.0 \mathrm{~mA}$
	Output Low Voltage Control Outputs		0.4	V	$1 \mathrm{OL}=+8.0 \mathrm{~mA}$
11	Input Leakage Current	-1.0	1.0	$\mu \mathrm{A}$	$\mathrm{VIN}=$ GND or VCC except $\bar{S}_{0}, S_{1}, S_{2}$, DIP Pins 1-2, 6, 15
IBHH	input Leakage Current-Status Bus	-50	-300	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{VIN}=2.0 \mathrm{~V} \\ & \mathrm{~S}_{0}, \bar{S}_{1}, \overline{\mathrm{~S}_{2}} \text { (See Note 1) } \end{aligned}$
10	Output Leakage Current	-10.0	10.0	$\mu \mathrm{A}$	VO = GND or VCC DIP Pins 7-9, 11-14
ICCSB	Standby Power Supply		10	$\mu \mathrm{A}$	$\begin{aligned} & \hline \text { VCC }=5.5 \mathrm{~V} \\ & \text { VIN }=\text { VCC or GND } \\ & \text { Outputs Open } \end{aligned}$
ICCOP	Operating Power Supply Current		1	$\mathrm{mA} / \mathrm{MHz}$	$\begin{aligned} & \hline \text { VCC }=5.5 \mathrm{~V} \\ & \text { Outputs Open (See Note 2) } \end{aligned}$

NOTES: 1: IBHH should be measured after raising the VIN on $\overline{\mathrm{S}_{0}}, \overline{\mathrm{~S}_{1}}, \overline{\mathrm{~S}_{2}}$ to VCC and then lowering to 2.0 V .
2: ICCOP $=1 \mathrm{~mA} / \mathrm{MHz}$ of CLK cycle time (TCLCL)
Capacitance $T_{A}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	TYPICAL	UNITS	TEST CONDITIONS
$C_{\text {IN }}$	Input Capacitance	5	pF	FREQ $=1 \mathrm{MHz}$, all measure- ments are referenced to device GND
COUT	Output Capacitance	15	pF	

Specifications 82C88
A.C. Electrical Specifications $\quad \mathrm{VCC}=5.0 \mathrm{~V} \pm 10 \% ; \mathrm{GND}=0 \mathrm{~V} \quad \mathrm{~T}_{\mathrm{A}}=0{ }^{\circ} \mathrm{C}$ to +700 C (C82C88);
$T_{A}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (182 C 88);
$T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ (M82C88)

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS	
TIMING REQUIREMENTS						
(1) TCLCL	CLK Cycle Period	125		ns		
(2) TCLCH	CLK Low Time	55		ns		
(3) TCHCL	CLK High Time	40		ns		
(4) TSVCH	Statis Active Setup Time	35		ns		
(5) TCHSV	Status Inactive Hold Tirne	10		ns		
(6) TSHCL	Status Inactive Setup Time	35		ns		
(7) TCLSH	Status Active Hold Time	10		ns		
TIMING RESPONSES						
(8) TCVNV	Control Active Delay	5	45	ns	1	
(9) TCVNX	Control Inactive Delay	10	45	ns	1	
(10) TCLLH	ALE Active Delay (from CLK)		20	ns	1	
(11)TCLMCH	MCE Active Delay (from CLK)		25	ns	1	
(12) TSVLH	ALE Active Delay (from Status)		20	ns	1	
(13)TSVMCH	MCE Active Delay (from Status)		30	ns	1	
(14) TCHLL	ALE Inactive Delay	4	18	ns	1	
(15) TCLML	Command Active Delay	5	35	ns	2	
(16) TCLMH	Command Inactive Delay	5	35	ns	2	

A.C. Test Circuit

TEST CONDITION DEFINITION TABLE

TEST CONDITION	IOH	10L	$\mathbf{V 1}$	R1	C1
1	-4.0 mA	+8.0 mA	2.13 V	220Ω	80 pF
2	-8.0 mA	+20.0 mA	2.29 V	91Ω	300 pF
3	-8.0 mA	-	1.5 V	187Ω	300 pF
4	-8.0 mA	-	1.5 V	187Ω	50 pF

A.C. Testing Input, Output Waveforms

INPUT
A.C. Testing: All input signals (other than CLK) must switch between VIL -0.4 V and $\mathrm{VIH}+0.4 \mathrm{~V}$. CLK must switch between 0.4 V and $\mathrm{VCC}-0.4 \mathrm{~V}$. Input rise and fall times are driven at $1 \mathrm{~ns} / \mathrm{V}$.

Waveforms

NOTES: (1)
Addresses/Data Bus is shown only for reference purposes.
Leading edge of ALE and MCE is determined by the falling edge of CLK or status going active. Whichever occurs last. All timing measurements are made at 1.5 V unless specified otherwise.

Waveforms
DEN, PDEN QUALIFICATION TIMING

ADDRESS ENABLE ($\overline{\operatorname{AEN}}$) TIMING (3-STATE ENABLE/DISABLE)

NOTE: CEN must be low or valid prior to T2 to prevenfathe command from being generated

Features

- Pin Compatible with Bipolar 8289
- Scaled SAJI IV CMOS Process
- Low Power Operation
- ICCSB \qquad $10 \mu \mathrm{~A}$
- ICCOP \qquad $1 \mathrm{~mA} / \mathrm{MHz}$
- Compatible with 5 MHz and 8 MHz 80 C 86 and 80 C 88
- Provides Multi-Master System Bus Control and Arbitration
- Provides Simple Interface With 82C88/8288 Bus Controller
- Synchronizes $\mathbf{8 0 C 8 6 / 8 0 8 6 , ~ 8 0 C 8 8 / 8 0 8 8 ~ P r o c e s s o r s ~ w i t h ~ M u l t i - M a s t e r ~ B u s ~}$
- Bipolar Drive Capability, Fully TTL Compatible
- Four Operating Modes for Flexible System Configuration
- Wide Operating Temperature Ranges:
- C82C89 $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
- 182C89. $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- M82C89
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Description

The Harris 82C89 Bus Arbiter is manufactured using a self-aligned silicon gate CMOS process (Scaled SAJI IV). This circuit along with the 82C88 bus controller, provides full bus arbitration and control for multi-processor systems. The 82C89 is typically used in medium to large 80 C 86 or 80 C 88 systems where access to the bus by several processors must be coordinated. The 82C89 also provides high output current and capacitive drive to eliminate the need for additional bus buffering.
Static CMOS circuit design insures low operating power. The advanced Harris SAJI CMOS process results in performance equal to or greater than existing equivalent products at a significant power savings.

Pinouts

top view

Functional Diagram

[^12]
Pin Description

SYMBOL	$\begin{gathered} \text { PIN } \\ \text { NUMBER } \end{gathered}$	TYPE	DESCRIPTION
Vcc	20		VCC: The +5 V Power supply pin. A $0.1 \mu \mathrm{~F}$ capacitor between pins 10 and 20 is recommended for decoupling.
GND	10		GROUND.
$\overline{\mathrm{s} 0}, \overline{\mathrm{~s} 1}, \overline{\mathrm{~s} 2}$	1, 18-19	1	STATUS INPUT PINS: The status input pins from an $80 \mathrm{C} 86,80 \mathrm{C} 88$ or 8089 processor. The 82C89 decodes these pins to initiate bus request and surrender actions. (See Table 1)
CLK	17	1	CLOCK: From the 82C84A or 82C85 clock chip and serves to establish when bus arbiter actions are initiated.
$\overline{\text { LOCK }}$	16	1	LOCK: A processor generated signal which when activated (low) prevents the arbiter from surrendering the multi-master system bus to any other bus arbiter, regardless of its priority.
$\overline{\text { CRQLCK }}$	15	1	COMMON REQUEST LOCK: An active low signal which prevents the arbiter from surrendering the multi-master system bus to any other bus arbiter requesting the bus through the $\overline{\mathrm{CBRQ}}$ input pin.
RESB	4	1	RESIDENT BUS: A strapping option to configure the arbiter to operate in systems having both a multi-master system bus and a Resident Bus. Strapped high, the multi-master system bus is requested or surrendered as a function of the SYSB/RESB input pin. Strapped low, the SYSB/ $\overline{\operatorname{RESB}}$ input is ignored.
ANYRQST	14	1	ANY REQUEST: A strapping option which permits the multi-master system bus to be surrendered to a lower priority arbiter as if it were an arbiter of higher priority (i.e., when a lower priority arbiter requests the use of the multi-master system bus, the bus is surrendered as soon as it is possible). When ANYRQST is strapped low, the bus is surrendered according to Table 1 . If ANYRQST is strapped high and $\overline{\mathrm{CBRQ}}$ is activated, the bus is surrendered at the end of the present bus cycle. Strapping CBRQ low and ANYRQST high forces the 82 C 89 arbiter to surrender the multi-master system bus after each transfer cycle. Note that when surrender occurs $\overline{\mathrm{BREQ}}$ is driven false (high).
$\overline{O B}$	2	1	10 BUS: A strapping option which configures the 82C89 Arbiter to operate in systems having both an IO Bus (Peripheral Bus) and a multi-master system bus. The arbiter requests and surrenders the use of the multi-master system bus as a function of the status line, $\overline{\mathrm{S}}$. The multi-master system bus is permitted to be surrendered while the processor is performing 10 commands and is requested whenever the processor performs a memory command. Interrupt cycles are assumed as coming from the peripheral bus and are treated as an 10 command.
$\overline{\text { AEN }}$	13	0	ADDRESS ENABLE: The output of the 82C89 Arbiter to the processor's address latches, to the 82C88 Bus Controller and 82C84A or 82C85 Clock Generator. $\overline{\text { AEN }}$ serves to instruct the Bus Controller and address latches when to three-state their output drivers.
$\overline{\mathrm{INIT}}$	6	1	INITIALIZE: An active low multi-master system bus input signal used to reset all the bus arbiters on the multi-master system bus. After initialization, no arbiters have the use of the multi-master system bus.
SYSB/ $/ \overline{R E S B}$	3	1	SYSTEM BUS/RESIDENT BUS: An input signal when the arbiter is configured in the System/Resident Mode (RESB is strapped high) which determines when the multi-master system bus is requested and multi-master system bus surrendering is permitted. The signal is intended to originate from a form of address-mapping circuitry, such as a decoder or PROM attached to the resident address bus. Signal transitions and glitches are permitted on this pin from $\phi 1$ of T4 to $\phi 1$ of T2 of the processor cycle. During the period from $\phi 1$ of T2 to $\phi 1$ of T4, only clean transitions are permitted on this pin (no glitches). If a glitch occurs, the arbiter may capture or miss it, and the multi-master system bus may be requested or surrendered, depending upon the state of the glitch. The arbiter requests the multi-master system bus in the System/Resident Mode when the state of the SYSB/RESB pin is high and permits the bus to be surrendered when this pin is low.

Pin Description

SYMBOL	PIN NUMBER	TYPE	DESCRIPTION
$\overline{\text { CBRQ }}$	12	1/0	COMMON BUS REQUEST: An input signal which instructs the arbiter if there are any other arbiters of lower priority requesting the use of the multi-master system bus. The $\overline{C B R Q}$ pins (open-drain output) of all the $82 C 89$ Bus Arbiters which surrender to the multi-master system bus upon request are connected together. The Bus Arbiter running the current transfer cycle will not itself pull the $\overline{\mathrm{CBRQ}}$ line low. Any other arbiter connected to the $\overline{\mathrm{CBRQ}}$ line can request the multi-master system bus. The arbiter presently running the current transfer cycle drops its $\overline{B R E Q}$ signal and surrenders the bus whenever the proper surrender conditions exist. Strapping CBRQ low and ANYRQST high allows the multi-master system bus to be surrendered after each transfer cycle. See the pin definition of ANYRQST.
$\overline{\text { BCLK }}$	5	1	BUS CLOCK: The multi-master system bus clock to which all multi-master system bus interface signals are synchronized.
$\overline{\text { BREQ }}$	7	0	BUS REQUEST: An active low output signal in the Parallel Priority Resolving Scheme which the arbiter activates to request the use of the multi-master system bus.
$\overline{\text { BPRN }}$	9	1	BUS PRIORITY IN: The active low signal returned to the arbiter to instruct it that it may acquire the multi-master system bus on the next falling edge of BCLK. BPRN active indicates to the arbiter that it is the highest priority requesting arbiter presently on the bus. The loss of $\overline{\text { BPRN }}$ instructs the arbiter that it has lost priority to a higher priority arbiter.
$\overline{\text { BPRO }}$	8	0	BUS PRIORITY OUT: An active low output signal used in the serial priority resolving scheme where $\overline{\mathrm{BPRO}}$ is daisy-chained to $\overline{\mathrm{BPRN}}$ of the next lower priority arbiter.
$\overline{\text { BUSY }}$	11	1/0	BUSY: An active low open-drain multi-master system bus interface signal used to instruct all the arbiters on the bus when the multi-master system bus is available. When the multi-master system bus is available the highest requesting arbiter (determined by BPRN) seizes the bus and pulls BUSY low to keep other arbiters off of the bus. When the arbiter is done with the bus, it releases the $\overline{\mathrm{BUSY}}$ signal, permitting it to go high and thereby allowing another arbiter to acquire the multi-master system bus.

Functional Description

The 82C89 Bus Arbiter operates in conjunction with the 82C88 Bus Controller to interface 80C86, 80 C 88 processors to a multi-master system bus (both the 80C86 and 80 C 88 are configured in their max mode). The processor is unaware of the arbiter's existence and issues commands as though it has exclusive use of the system bus. If the processor does not have the use of the multi-master system bus, the arbiter prevents the Bus Controller (82C88), the data transceivers and the address latches from accessing the system bus (e.g. all bus driver outputs are forced into the high impedance state). Since the command sequence was not issued by the 82 C 88 , the system bus will appear as "Not Ready" and the processor will enter wait states. The processor will remain in Wait until the Bus Arbiter acquires the use of the multi-master system bus whereupon the arbiter will allow the bus controller, the data transceivers, and the address latches to access the system. Typically, once the command has been issued and a data transfer has taken place, a transfer acknowledge (XACK) is returned to the processor to indicate "READY" from the accessed slave device. The processor then completes its transfer cycle. Thus the arbiter serves to multiplex a processor (or bus master) onto a multi-master system bus and avoid contention problems between bus masters.

Arbitration Between Bus Masters

In general, higher priority masters obtain the bus when a lower priority master completes its present transfer cycle. Lower priority bus masters obtain the bus when a higher priority master is not accessing the system bus. A strapping option (ANYRQST) is provided to allow the arbiter to surrender the bus to a lower priority master as though it were a master of higher priority. If there are no other bus masters requesting the bus, the arbiter maintains the bus so long as its processor has not entered the HALT State. The arbiter will not voluntarily surrender the system bus and has to be forced off by another master's bus request, the HALT State being the only exception. Additional strapping options permit other modes of operation wherein the multi-master system bus is surrendered or requested under different sets of conditions.

Priority Resolving Techniques

Since there can be many bus masters on a multi-master system bus, some means of resolving priority between bus masters simultaneously requesting the bus must be provided. The 82C89 Bus Arbiter provides several resolving techniques. All the techniques are based on a priority
concept that at a given time one bus master will have priority above all the rest. There are provisions for using parallel priority resolving techniques, serial priority resolving techniques, and rotating priority techniques.

Parallel Priority Resolving

The parallel priority resolving technique uses a separate bus request line $\overline{B R E Q}$ for each arbiter on the multi-master system bus, see Figure 1. Each $\overline{B R E Q}$ line enters into a priority encoder which generates the binary address of the highest priority BREQ line which is active. The binary address is decoded by a decoder to select the corresponding BPRN (Bus Priority In) line to be returned to the highest priority requesting arbiter. The arbiter receiving priority ($\overline{\mathrm{BPRN}}$ true) then allows its associated bus master onto the multi-master system bus as soon as it becomes available (i.e., the bus is no longer busy). When one bus arbiter gains priority over another arbiter it cannot immediately seize the bus, it must wait until the present bus transaction is complete. Upon completing its transaction the present bus occupant recognizes that it no longer has priority and surrenders the bus by releasing BUSY. BUSY is an active low "OR" tied signal line which goes to every bus arbiter on the system bus. When $\overline{B U S Y}$ goes inactive (high), the arbiter which presently has bus priority (BPRN true) then seizes the bus and pulls BUSY low to keep other arbiters off of the bus. See waveform timing diagram, Figure 2. Note that all multi-master system bus transac-

FIGURE 1. PARALLEL PRIORITY RESOLVING TECHNIQUE

NOTES:
(1) Higher priority bus arbiter requests the Multi-Master system bus.
(2) Attains priority.
(3) Lower priority bus arbiter releases $\overline{\mathrm{BUSY}}$.
(4) Higher priority bus arbiter then acquires the bus and pulls BUSY down.

FIGURE 2. HIGHER PRIORITY ARBITER OBTAINING THE BUS FROM A LOWER PRIORITY ARBITER
tions are synchronized to the bus clock ($\overline{\mathrm{BCLK}}$). This allows the parallel priority resolving circuitry or any other priority resolving scheme employed to settle.

Serial Priority Resolving

The serial priority resolving technique eliminates the need for the priority encoder-decoder arrangement by daisy-chaining the bus arbiters together, connecting the higher priority bus arbiter's BPRO (Bus Priority Out) output to the $\overline{\mathrm{BPRN}}$ of the next lower priority. See Figure 3.

NOTE:
The number of arbiters that may be daisy-chained together in the serial priority resolving scheme is a function of $\overline{\mathrm{BCLK}}$ and the propagation delay from arbiter to arbiter. Normally, at 10 MHz only 3 arbiters may be daisychained.

FIGURE 3. SERIAL PRIORITY RESOLVING

Rotating Priority Resolving

The rotating priority resolving technique is similar to that of the parallel priority resolving technique except that priority is dynamically re-assigned. The priority encoder is replaced by a more complex circuit which rotates priority between requesting arbiters thus allowing each arbiter an equal chance to use the multi-master system bus, over time.

Which Priority Resolving Technique To Use

There are advantages and disadvantages for each of the techniques described above. The rotating priority resolving technique requires substantial external logic to implement while the serial technique uses no external logic but can accommodate only a limited number of bus arbiters before the daisy-chain propagation delay exceeds the multi-master's system bus clock ($\overline{\mathrm{BCLK}}$). The parallel priority resolving technique is in general a good compromise between the other two techniques. It allows for many arbiters to be present on the bus while not requiring too much logic to implement.

82C89 Modes Of Operation

There are two types of processors for which the 82C89 will provide support: An Input/Output processor (i.e. an NMOS 8089 IOP) and the $80 \mathrm{C} 86,80 \mathrm{C} 88$. Consequently,
there are two basic operating modes in the 82C89 bus arbiter. One, the IOB (I/O Peripheral Bus) mode, permits the processor access to both an I/O Peripheral Bus and a multi-master system bus. The second, the RESB (Resident Bus mode), permits the processor to communicate over both a Resident Bus and a multi-master system bus. An I/O Peripheral Bus is a bus where all devices on that bus, including memory, are treated as I/O devices and are addressed by I/O commands. All memory commands are directed to another bus, the multi-master system bus. A Resident Bus can issue both memory and I/O commands, but it is a distinct and separate bus from the multi-master system bus. The distinction is that the Resident Bus has only one master, providing full availability and being dedicated to that one master.

The $\overline{\mathrm{OB}}$ strapping option configures the 82 C 89 Bus Arbiter into the $\overline{\mathrm{OB}}$ mode and the strapping option RESB
configures it into the RESB mode. It might be noted at this point that if both strapping options are strapped false, the arbiter interfaces the processor to a multi-master system bus only (see Figure 4). With both options strapped true, the arbiter interfaces the processor to a multi-master system bus, a Resident Bus, and an I/O Bus.

In the $\overline{\mathrm{OB}}$ mode, the processor communicates and controls a host of peripherals over the Peripheral Bus. When the I/O Processor needs to communicate with system memory, it does so over the system memory bus. Figure 5 shows a possible I/O Processor system configuration.

The 80 C 86 and 80 C 88 processors can communicate with a Resident Bus and a multi-master system bus. Two bus controllers and only one Bus Arbiter would be needed in such a configuration as shown in Figure 6. In such a system configuration the processor would have access to

FIGURE 4. TYPICAL MEDIUM COMPLEXITY CPU SYSTEM

FIGURE 5. TYPICAL MEDIUM COMPLEXITY IOB SYSTEM

FIGURE 6. 82C89 BUS ARBITER SHOWN IN SYSTEM- RESIDENT BUS CONFIGURATION

[^13]memory and peripherals of both busses. Memory mapping techniques are applied to select which bus is to be accessed. The SYSB/ RESB input on the arbiter serves to instruct the arbiter as to whether or not the system bus is to be accessed. The signal connected to SYSB/ $\overline{\operatorname{RESB}}$
also enables or disables commands from one of the bus controllers.

A summary of the modes that the 82 C 89 has, along with its response to its status lines inputs, is shown in Table 1.

TABLE 1. SUMMARY OF 82C89 MODES, REQUESTING AND RELINQUISHING THE MULTI-MASTER SYSTEM BUS

STATUS LINES FROM 80C86 OR 80C88 OR 8088				$\begin{gathered} \text { IOB MODE } \\ \text { ONLY } \\ \hline \overline{I O B}=\text { LOW } \\ \text { RESB = LOW } \end{gathered}$	$\xlongequal[\text { RESB MODE ONLY }]{\text { IOB }=\text { HIGH RESB }=\text { HIGH }}$		$\begin{aligned} & \text { IOB MODE RESB MODE } \\ & \overline{I O B}=\text { LOW RESB }=\text { HIGH } \end{aligned}$		$\begin{aligned} & \text { SINGLE } \\ & \text { BUS MODE } \\ & \hline \hline \text { IOB = HIGH } \\ & \text { RESB = LOWW } \end{aligned}$
1/O COMMANDS		$\overline{51}$			SYSB/ $\overline{\text { RESB }}=$ High	SYSB/ $\overline{\text { RESB }}=$ Low	SYSB/ $\overline{\text { RESB }}=\mathrm{High}$	SYSB/ $\overline{\mathbf{R E S B}}=$ Low	
	0	0	0	x	\checkmark	x	x	x	\checkmark
	0	0	1	X	\checkmark	X	X	X	\checkmark
	0	1	0	x	\checkmark	x	x	X	\checkmark
HALT	0	1	1	x	X	X	X	X	X
MEM COMMANDS	1	0	0	\checkmark	\checkmark	X	\checkmark	x	\checkmark
	1	0	1	\checkmark	\checkmark	X	\checkmark	X	\checkmark
	1	1	0	\checkmark	\checkmark	X	\checkmark	X	\checkmark
IDLE	1	1	1	x	x	X	x	x	x

NOTES:

1. $X=$ Multi-Master System Bus is allowed to be Surrendered.
2. $V=$ Multi-Master System Bus is Requested.

MODE	PIN STRAPPING	MULTI-MASTER SYSTEM BuS	
		REQUESTED**	SURRENDERED*
Single Bus Multi-Master Mode	$\begin{aligned} & \overline{1 O B}=\text { High } \\ & \text { RESB }=\text { Low } \end{aligned}$	Whenever the processor's status lines go active	HLT + TI $\cdot \overline{\mathrm{CBRQ}}+\mathrm{HPBRQ} \dagger \dagger$
RESB Mode Only	$\begin{aligned} & \overline{\mathrm{OB}}=\text { High } \\ & \text { RESB }=\text { High } \end{aligned}$	SYSB $/ \overline{\mathrm{RESB}}=\mathrm{High} \cdot$ active status	$\begin{aligned} & \frac{(\mathrm{SYSB} / \overline{\mathrm{RESB}}=\operatorname{Low}+\mathrm{TI}) \bullet}{\mathrm{CBRQ}+\mathrm{HLT}+\mathrm{HPBRQ}} . \end{aligned}$
10B Mode Only	$\begin{aligned} & \overline{\mathrm{OBB}}=\text { Low } \\ & \text { RESB }=\text { Low } \end{aligned}$	Memory Commands	(1/O Status +T) $\cdot \overline{\mathrm{CBRQ}}+$ HLT + HPBRQ
IOB Mode RESB Mode	$\begin{aligned} & \overline{\mathrm{OB}}=\text { Low } \\ & \text { RESB }=\text { High } \end{aligned}$	(Memory Command) (SYSB/RESB $=$ High $)$	((I/O Status Commands) + SYSB/ $\overline{\text { RESB }}=$ LOW $) \cdot \overline{\mathrm{CBRQ}}$ + HPBRQ $\dagger+$ HLT

NOTES:

* $\overline{\text { LOCK }}$ prevents surrender of Bus to any other arbiter, $\overline{\text { CRQLCK }}$ prevents surrender of Bus to any lower priority arbiter.
** Except for HALT and Passive or IDLE Status.
\dagger HPBRQ, Higher priority Bus request or $\overline{\mathrm{BPRN}}=1$.

1. $\overline{O B}$ Active Low.
2. RESB Active High.
3. + is read as "OR" and • as "AND"
4. $\mathrm{TI}=$ Processor Idle Status $\overline{\mathrm{S} 2}, \overline{\mathrm{~S} 1}, \overline{\mathrm{~S} 0}=111$
5. HLT $=$ Processor Halt Status $\overline{\mathrm{S} 2}, \overline{\mathrm{~S} 1}, \overline{\mathrm{SO}}=011$

Absolute Maximum Ratings

Supply Voltage \qquad +8.0 Volts Input, Output or I/O Voltage Applied. \qquad GND -0.5 V to VCC +0.5 V Maximum Package Power Dissipation \qquad 1 Watt Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ \qquad θ_{j} 260ㅇ/W (CERDIP package), 310 C/W (LCC package) Gate Count \qquad 200 Gates Junction Temperature. \qquad Lead Temperature (Soldering, Ten Seconds) $+275^{\circ} \mathrm{C}$ CAUTION: Stresses above those listed in the "ABSOLUTE MAXIMUM RATINGS" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operation sections of this specification is not implied.

Operating Conditions

Operating Voltage Range .. +4.5 V to +5.5V	
Operating Temperature Range	
C82C89	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
I82C89	$40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
M82C89	$55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

D.C. Electrical Specifications VCC $=5.0 \mathrm{~V} \pm 10 \%$;
$T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ (C82C89);
-450 to +850
182C89
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$\top^{\top} A=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (182 C 89);
$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ (M82C89)

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
VIH	Logical One Input Voltage	$\begin{aligned} & 2.0 \\ & 2.2 \end{aligned}$		$\begin{aligned} & \text { v } \end{aligned}$	$\begin{aligned} & \text { C82C89, I82C89 } \\ & \text { M82C89 } \end{aligned}$
VIL	Logical Zero Input Voltage		0.8	V	
VIHC	CLK Logical One Input Voltage	0.7 VCC		V	
VILC	CLK Logical Zero Input Voltage		0.2 VCC	V	
V OL	Output Low Voltage $\overline{B U S Y}, \overline{C B R Q}$ AEN $\overline{B P R O}, \overline{B R E Q}$		$\begin{aligned} & 0.45 \\ & 0.45 \\ & 0.45 \end{aligned}$	$\begin{aligned} & v \\ & v \\ & v \end{aligned}$	$\begin{aligned} & \mathrm{IOL}=20 \mathrm{~mA} \\ & \mathrm{OL}=16 \mathrm{~mA} \\ & \mathrm{IOL}=10 \mathrm{~mA} \end{aligned}$
V_{OH}	Output High Voltage $\overline{B U S Y}, \overline{C B R Q}$	Open-Drain			
	All other Outputs	$\begin{gathered} 3.0 \\ \text { vCC }-0.4 \end{gathered}$		$\begin{aligned} & \mathrm{v} \\ & \mathrm{v} \end{aligned}$	$\begin{aligned} & 1 \mathrm{OH}=-2.5 \mathrm{~mA} \\ & \mathrm{OH}=-100 \mu \mathrm{~A} \end{aligned}$
11	Input Leakage Current	-1.0	1.0	$\mu \mathrm{A}$	VIN = GND or VCC DIP Pins 1-6, 9, 14-19
10	1/O Leakage	-10.0	10.0	$\mu \mathrm{A}$	$\mathrm{VO}=\mathrm{GND}$ orVCC DIP Pins 11-12
ICCSB	Standby Power Supply Current		10	$\mu \mathrm{A}$	$\begin{aligned} & \hline \text { VCC }=5.5 \mathrm{~V} \\ & \text { VIN }=\text { VCC or GND } \\ & \text { Outputs Open } \\ & \hline \end{aligned}$
ICCOP	Operating Power Supply Current		1	$\mathrm{mA} / \mathrm{MHz}$	$\mathrm{VCC}=5.5 \mathrm{~V}$ Outputs Open See Note 1

NOTE 1: Maximum current defined by CLK or BCLK, whichever has the highest operating frequency
Capacitance $T_{A}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	TYPICAL	UNITS	TEST CONDITIONS
C_{IN}	Input Capacitance	5	pF	FREQ = 1MHz, all measure- ments are referenced to device GND
COUT	Output Capacitance	15	pF	G

A.C. Electrical Specifications $\quad \mathrm{VCC}=+5 \mathrm{~V} \pm 10 \%$, $\mathrm{GND}=\mathrm{OV}: \mathrm{T}_{\mathrm{A}}=00 \mathrm{C}$ to $70{ }^{\circ} \mathrm{C}$ (C82C89) $T_{A}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (182C89)
$\mathrm{T}_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ (M82C89)

SYMBOL	PARAMETER	MIN	MAX	UNIT	TEST CONDITION

(1) TCLCL	CLK Cycle Period	125		ns
(2) TCLCH	CLK Low Time	55		ns
(3) TCHCL	CLK High Time	35		ns
(4) TSVCH	Status Active Setup	65	TCLCL-10	ns
(5) TSHCL	Status Inactive Setup	50	TCLCL-10	ns
(6) THVCH	Status Inactive Hold	10		ns

(6) THVCH	Status Inactive Hold	10	ns
(7) THVCL	Status Active Hold	10	ns
(8) TBYSBL	$\overline{\text { BUSY }}$! S Setup to $\overline{\text { BCLK }}$.	20	ns
(9) TCBSBL		20	ns

(10) TBLBL	$\overline{\text { BCLK }}$ Cycle Time	100	
(11) TBHCL	$\overline{\text { BCLK }}$ High Time	30	0.65 (TBLBL)
(12) TCLLL1	$\overline{\text { LOCK }}$ Inactive Hold	10	

(13) TCLLL2	$\overline{\text { LOCK }}$ Active Setup		
(14) TPNBL	$\overline{\text { BPRN }} / 1$ to $\overline{\text { BCLK }}$ Setup Time	20	

(15) TCLSR1	SYSB/RESB Setup	0		ns
(16) TCLSR2	SYSB/RESB Hold	30		ns
(17) TIVIH	Initialization Pulse Width	3 TBLBL+		ns

NOTES: 1. $\overline{B C L K}$ generates the first $\overline{B P R O}$ wherein subsequent $\overline{B P R O}$ changes lower in the chain are generated through BPRON.
Measured at 0.5 V above GND
3. All A.C. parameters tested as per test circuits in Figures 7-9. Input rise and fall times are driven at $1 \mathrm{~ns} / \mathrm{V}$.

Except $\overline{B U S Y}$ and $\overline{C B R Q}$.
A.C. Test Circuits

FIGURE 7.
BUSY, CBRQ LOAD CIRCUIT
*Includes stray and jig capacitance

FIGURE 8.
AEN LOAD CIRCUIT

FIGURE 9.
BPRO, BREQ LOAD CIRCUIT

A.C. Testing Input, Output Waveforms

INPUT OUTPUT

A.C. Testing: Inputs are driven at $\mathrm{VIH}+0.4 \mathrm{~V}$ for a logic " 1 " and VIL -0.4 V for a logic " 0 ". The clock is driven at 4.1 V and 0.4 V . Timing measurements are made at 1.5 V for both a logic " 1 " and " 0 ".

Waveforms

NOTES:
 cal time and can be asynchronous. CRQLCK has no critical timing and is considered an asynchronous input signal.
2. Glitching of SYSB/ $\overline{R E S B}$ is permitted during this time. After $\phi 2$ of $T 1$, and before $\phi 1$ of $T 4, S Y S B / \overline{R E S B}$ should be stable to maintain system efficiency.
3. $\overline{\mathrm{AEN}}$ leading edge is related to $\overline{\mathrm{BCLK}}$, trailing edge to CLK. The trailing edge of $\overline{\mathrm{AEN}}$ occurs after bus priority is lost.

ADDITIONAL NOTES:
The signals related to CLK are typical processor signals, and do not relate to the depicted sequence of events of the signals referenced to $\overline{B C L K}$. The signals shown related to the BCLK represent a hypothetical sequence of events for illustration. Assume 3 bus arbiters of priorities 1,2 and 3 configured in serial priority resolving scheme (as shown in Figure 3). Assume arbiter 1 has the bus and is holding $\overline{B U S Y}$ low. Arbiter \#2 detects its processor wants the bus and pulls low $\overline{B R E Q}$ \#2. If $\overline{B P R N}$ \#2 is high (as shown), arbiter \#2 will pull low CPRQ line. CBRQ signals to the higher priority arbiter \#1 that a lower priority arbiter wants the bus. [A higher priority arbiter would be granted BPRN when it makes the bus request rather than having to wait for another arbiter to release the bus through $\overline{\mathrm{CBRQ}}]$. *Arbiter\#1 will relinquish the multi-master system bus when it enters a state not requiring it (see Table 1), by lowering its $\overline{\mathrm{BPRO}} \# 1$ (tied to $\overline{\mathrm{BPRN}} \# 2$) and releasing $\overline{\mathrm{BUSY}}$. Arbiter \#2 now sees that is has priority from $\overline{\mathrm{BPRN}} \# 2$ being low and releases $\overline{\mathrm{CBRQ}}$. As soon as BUSY signifies the bus is available (high), arbiter \#2 pulls $\overline{B U S Y}$ low on next falling edge of $\overline{B C L K}$. Note that if arbiter \#2 didn't want the bus at the time it received priority, it would pass priority to the next lower priority arbiter by lowering its $\overline{\mathrm{BPRO}}$ \#2 [TPNPO].
*Note that even a higher priority arbiter which is acquiring the bus through $\overline{\mathrm{BPRN}}$ will momentarily drop $\overline{\mathrm{CBRQ}}$ until it has acquired the bus.

82C59A PRIORITY INTERRUPT CONTROLLER

By J. A. Goss

PAGE
Introduction 4-157
1.0 Glossary of Terms For The 82C59A 4-157
1.1 Automatic End-of-Interrupt 4-157
1.2 Automatic Rotation 4-157
1.3 Buffered Mode 4-158
1.4 Cascade Mode 4-158
1.5 End-of-Interrupt 4-158
1.6 Fully Nested Mode 4-159
1.7 Master 4-159
1.8 Slave 4-159
1.9 Special Fully Nested Mode 4-159
1.10 Special Mask Mode 4-159
1.11 Specific Rotation 4-159
2.0 Initialization Control Words 4-160
2.1 ICW1 4-162
2.2 ICW2 4-162
2.3 ICW3 4-163
2.4 ICW4 4-163
3.0 Operation Command Words 4-164
3.1 OCW1 4-164
3.2 OCW2 4-161
3.3 OCW3 4-165
4.0 Addressing the 82C59A 4-166
5.0 Programming the 82C59A 4-167
5.1 Example 1: Single 82C59A 4-167
5.2 Example 2: Cascaded 82C59As 4-168
6.0 Expansion Past 64 Interrupts 4-169
Program Listing, Example 1 4-170
Program Listing, Example 2 4-175

82C59A CMOS PROGRAMMABLE INTERRUPT CONTROLLER

By J. A. Goss

Introduction

The Harris 82C59A is a CMOS Priority Interrupt Controller, designed to relieve the system CPU from the task of polling in a multi-level priority interrupt system. The 82C59A is compatible with microprocessors such as the 80C86, 80C88, 8086, 8088, 8080/85 and NSC800

In the following discussion, we will look at the initialization and operation process for the 82C59A. We will focus our attention on $80 \mathrm{C} 86 / 80 \mathrm{C} 88$-based systems. However, the information presented will also be applicable to use of the 82 C 59 A in 8080 or 8085 -based systems as well.
Let us look at the sequence of events that occur with the 82C59A during an interrupt request and service. In an 8080/85 based system:
(1) One or more of the INTERRUPT REQUEST lines (IRO - IR7) are raised high, setting the corresponding bits in the Interrupt Request Register (IRR).
(2) The interrupt is evaluated in the priority resolver. If appropriate, an interrupt is sent to the CPU via the INT line (pin 17).
(3) The CPU acknowledges the interrupt by sending a pulse on the INTA line. Upon reception of this pulse, the 82C59A responds by forcing the opcode for a call instruction (OCDH) onto the data bus.
(4) A second $\overline{\mathrm{INTA}}$ pulse is sent from the CPU. At this time, the device will respond by placing the lower byte of the address of the appropriate service routine onto the data bus. This address is derived from ICW1.
(5) A final (third) pulse of $\overline{\mathrm{NTA}}$ occurs, and the 82C59A responds by placing the upper byte of the address onto the data bus. This address is taken from ICW2.
(6) The three byte call instruction is then complete. If the AEOI mode has been chosen, the bit set during the first INTA pulse in the ISR is reset at the end of the third INTA pulse. Otherwise, it will not get reset until an appropriate EOI command is issued to the 82C59A.

For 80C86- and 80C88-based systems:
(1) and (2) same as above.
(3) The CPU responds to the interrupt request by pulsing the INTA line twice. The first pulse sets the appropriate ISR bit and resets the IRR bit while the second pulse causes the interrupt vector to be placed on the data bus. This byte is composed of the interrupt number in bits 0 through 2, and bits 3 through 7 are taken from bits 3-7 of ICW2.
(4) The interrupt sequence is complete. If using the AEOI mode, the bit set earlier in the ISR will be reset. Otherwise, the interrupt controller will await an appropriate EOI command at the end of the interrupt service routine.

1.0 Glossary of Terms for the 82C59A

1.1 Automatic End of Interrupt (AEOI):

When the 82C59A is programmed to operate in the Automatic EOI mode, the device will produce its own End-of-Interrupt (EOI) at the trailing edge of the last Interrupt Acknowledge pulse (INTA) from the CPU. Using this mode of operation frees the software (service routines) from needing to send an EOI manually to the 82C59A.

However, using the Automatic EOI mode will upset the priority structure of the 82C59A. When the AEOI is generated, the bit that was set in the In-Service Register (ISR) to indicate which interrupt is being serviced, will be cleared. Because of this, while an interrupt is being serviced there will be no record in the ISR that it is being serviced. Unless interrupts are disabled by the CPU, there is a risk that interrupt requests of lower or equal priority will interrupt the current request being serviced. If this mode of operation is not desired, interrupts should not be re-enabled by the CPU when executing interrupt service routines.

1.2 Automatic Rotation:

During normal operation of the 82C59A, we have an assigned order of priorities for the IR lines. There are however, instances when it might be useful to assign equal priorities to all interrupts. Once a particular interrupt has been serviced, all other equal priority interrupts should have an opportunity to be serviced before the original peripheral can be serviced again. This priority equalization can be achieved through Automatic Rotation of priorities.
Assume, for example, that the assigned priorities of interrupts has IRO as the highest priority interrupt and IR7 as the lowest. Figure 1A shows interrupt requests occuring on IR7 as well as IR3. Because IR3 is of higher priority, it will be serviced first. Upon completion of the servicing of IR3, rotation occurs and IR3 then becomes the lowest priority interrupt. IR4 will now have the highest priority (see Figure 1B).
There are two methods in which Automatic Rotation can be implemented. First, if the 82C59A is operating in the AEOI mode as described above, the 82C59A can be programmed for "Rotate in Automatic EOI mode". This is done by writing a command word to OCW2. The second method occurs when using normal EOIs. When an EOI is issued by the service routine, the software can specify that rotation be performed.

FIGURE 1A. IR PRIORITIES (BEFORE ROTATION)

	187	IR6	R5	IR4	IR3	IR2	\|R1	IRO
ISR STATUS	1	0	0	0	0	0	0	0
Priority	3	2	1	0	7	6	5	4
	$\begin{aligned} & \text { HIGHEST } \\ & \text { PRIORITY } \end{aligned}$							RIOR

FIGURE 1B. IR PRIORITIES (AFTER ROTATION)

1.3 Buffered Mode:

When using the 82C59A in a large system, it may be necessary to use bus buffers to guarantee data integrity and guard against bus contention.

By selecting buffered mode when initializing the device, the $\overline{S P} / \overline{E N}$ pin (pin 16) will generate an enable signal for the buffers whenever the data outputs from the 82C59A are active. In this mode, the dual function $\overline{\mathrm{SP}} / \overline{\mathrm{EN}}$ pin can no longer be used for specifying whether a particular 82C59A is being used as a master or a slave in the system. This specification must be made through setting the proper bit in ICW4 during the device initialization.

1.4 Cascade Mode:

More than one 82C59A can be used in a system to expand the number of priority interrupts to a maximum of 64 levels without adding any additional hardware. This method of expansion is known as "cascading". An example of cascading 82C59As is shown in Figure 2.

In a cascaded interrupt scheme, a single 82C59A is utilized as the "master" interrupt controller. As many as 8 "slave" 82C59As can be connected to the IR inputs of the "master" 82C59A. Each of these slaves can support up to 8 interrupt inputs, yielding 64 possible prioritized interrupts.

When in cascade mode, the determination of whether a device is a master or a slave can take either of twọ forms. The state of the $\overline{\mathrm{SP}} / \overline{\mathrm{EN}}$ pin will select "master" or "slave" mode for a device when the buffered mode is not being used. Should buffered mode be used, then it is necessary that bit D2 (M/S) of ICW4 be set to indicate if the particular 82C59A is being used as a "master" or "slave" interrupt controller in the system.

The CASO-2 pins on the interrupt controllers serve to provide a private bus for the cascaded 82C59As. These lines allow the "master" to inform the slaves which is to be serviced for a particular interrupt.

1.5 End of Interrupt (EOI):

When an interrupt is recognized and acknowledged by the CPU, its corresponding bit will be set in the In-Service Register (ISR). If the AEOI mode is in use, the bit will be cleared automatically through the interrupt acknowledge signal from the CPU. However, if AEOI is not in effect, it is the task of software to notify the 82C59A when servicing of an interrupt is completed. This is done by issuing an End-of-Interrupt (EOI).

There are 2 different types of EOIs that can be issued to the device; non-specific EOI and specific EOI. In most cases, when the device is operating in a mode that does not disturb the fully nested mode such as Special Fully Nested Mode, we will issue a non-specific EOI. This form of the EOI will automatically reset the highest priority bit set in the ISR. This is because for full nested operation, the highest priority is bit set is the last interrupt level acknowledged and serviced.
The "specific" EOI is used when the fully nested structure has not been preserved. The 82C59A may not be able to determine the last level acknowledged. Thus, the software must specify which interrupt level is to be reset. This is done by issuing a "specific" EOI.

FIGURE 2. CASCADING THE 82C59A

1.6 Fully Nested Mode:

By default, the 82C59A operates in the Fully Nested Mode. It will remain in this mode until it is programmed otherwise. In the Fully Nested Mode, interrupts are ordered by priority from highest to lowest. Initially, the highest priority level is IR0 with IR7 having the lowest. This ordering can be changed through the use of priority rotation (see 1.2).
In the Fully Nested Mode, when an interrupt occurs, its corresponding bit will get set in the Interrupt Request Register (IRR). When the processor acknowledges the interrupt, the 82C59A will look to the IRR to determine the highest priority interrupt requesting service. The bit in the In-service Register (ISR) corresponding to this interrupt will then be set. This bit remains set until an EOI is sent to the 82C59A.
While an interrupt is being serviced, only higher priority interrupts will be allowed to interrupt the current interrupt being serviced. However, lower priority interrupts can be allowed to interrupt higher priority requests if the 82C59A is programmed for operation in the Special Mask Mode.
When using the 82C59A in an 80C86- or 80C88-based system, interrupts will automatically be disabled when the processor begins servicing an interrupt request. The current address and the state of the flags in the processor will be pushed onto the stack. The interrupt-enable flag is then cleared. To allow interrupts to occur at this point, the STI instruction can be used. Upon exiting the service routine using the IRET instruction, execution of the program is resumed at the point where the interrupt occured, and the flags are restored to their original values, thus re-enabling interrupts.

A configuration in which the Fully Nested structure is not preserved occurs when one or more of the following conditions occur:
(a) The Automatic EOI mode is being used.
(b) The Special Mask Mode is in use.
(c) A slave 82 C 59 A has a master that is not programmed to the Special Fully Nested Mode.
Cases (a) and (b) differ from case (c) in that the 82C59A would allow lower priority interrupt requests the opportunity to be serviced before higher priority interrupt requests.

1.7 Master:

When using multiple 82C59As in a system, one 82C59A has control over all other 82C59As. This is known as the "master" interrupt controller. Communication between the master and the other (slave) 82C59As occurs via the CASO-2 lines. These lines form a private bus between the multiple 82C59As. Also, the INT lines from the slaves are routed to the master's IR input pin(s). See Figure 2.

1.8 Slave:

A "slave" 82C59A in a system is controlled by a master 82C59A. There is but one "master" in the system, but there can be up to 8 slave 82C59As. The INT outputs from the slaves act as inputs to the master through it's IR inputs.

Communications between the master and slaves occurs via the CASO-2 lines. See Figure 2.

1.9 Special Fully Nested Mode:

The Special Fully Nested Mode (SFNM) is used in a system having multiple 82C59As where it is necessary to preserve the priority of interrupts within a slave 82C59A. Only the master is programmed for the Special Fully Nested Mode through ICW4. This mode is similar to the Fully Nested Mode with the following exceptions:
(a) When an interrupt from a particular slave is being serviced, additional higher priority interrupts from that slave can cause an interrupt to the master. Normally, a slave is masked out when its request is in service.
(b) When exiting the Interrupt Service routine, the software should first issue a non-specific EOI to the slave. The In-service Register (ISR) should then be read and checked to see if its contents are zero. If the register is empty, the software should then write a non-specific EOI to the master. Otherwise, a second EOI need not be written because there are interrupts from that slave still being processed.

NOTE: Because the Master 82C59A and its slave 82C59As must be in Fully Nested Mode for this mode to be functional, we could not utilize Automatic: EOIs. These would disturb the Fully Nested structure, as described in section 16 .

1.10 Special Mask Mode:

The Special Mask Mode is utilized in order to allow interrupts from all other levels (higher and lower as well) to interrupt the IR level that is currently being serviced. Invoking this mode of operation will disturb the fully nested priority structure.

Generally, the Special Mask Mode is selected during the servicing of an interrupt. The software should first set the bit corresponding to the IR level being serviced, in the Interrupt Mask Register (OCW1). The Special Mask Mode and interrupts should then be enabled. This will allow any of the IR levels except for those masked off by OCW1 to interrupt the IR level currently being serviced.
Because this disturbs the Fully Nested Structure, it is required that a Specific EOI be issued when servicing interrupts while the Special Mask Mode is in effect. Before exiting the original interrupt routine, the Special Mask Mode should be disabled.

1.11 Specific Rotation:

By issuing the proper command word to OCW2, the priority structure of the 82C59A can be dynamically altered. The command word written to OCW2 would specify which is to be the lowest priority IR level.
This specific rotation can be accomplished one of two ways. The first is through a specific EOI. The software can specify that rotation is to be applied to the IR level provided with the EOI. The second method is a simple "set priority" command, in which the lowest priority level is specified with the command word.

2.0 Initialization Control Words

The following section gives a description of the Initialization Control Words (ICW) used for configuring the 82C59A Interrupt controller. There are four (4) control words used for initialization of the 82C59A. These ICWs must be programmed in the proper sequence beginning with ICW1. If at any time during the course of operation the configuration of the 82C59A needs to be changed, the user must again write out the control words to the device in their proper order. The initialization sequence is shown in Figure 3.

FIGURE 3. 82C59A INITIALIZATION SEQUENCE
ICW1: The 82C59A recognizes the first Initialization Control Word (ICW) written to it based on two criteria: (1) the A0 line from the address bus must be a zero, and (2) the D4 bit must be a one. If the D4 bit is set to a zero, we would be programming either OCW2 or OCW3 (these are explained later). The function of ICW1 is to tell the 82C59A how it is being used in the system (i.e. Single or cascaded, edge or level triggered interrupts etc.).
ICW2: This control word is always issued directly after ICW1. When addressing this ICW, the A0 line from the address bus must be a one (high). ICW2 is utilized in providing the CPU with information on where to vector to in memory when servicing an interrupt.
ICW3: This control word is issued only if the SNGL (D1) bit of ICW1 has been programmed with a zero. When addressing this word, the AO line from the CPU must be high (1). This control word is for cascaded 82C59A's. It allows the master and slave 82C59As to communicate via the CAS0-2 lines. With the master, this word indicates which IR lines have slaves connected to them. For the slave 82C59A(s), this word indicates to which IR line on the master it is connected.

ICW4: Issuance of this ICW is selectable through the IC4 (D0) bit of ICW4. If ICW4 is to be written to the 82C59A, A0 from the CPU must be high (1) when writing to it. This word needs to be written only when the 82C59A is operating in modes other than the default modes. Instances when we would want to write to ICW4 are one or more of the following: An $80 \mathrm{C} 86(80 \mathrm{C} 88)$ processor is being used, buffered outputs (D0-D7) are to be used, Automatic EOIs are desired, or the Special Fully Nested mode is to be used.

2.1 ICW1:

ICW1 is the first control word that is written to the 82C59A during the initialization process. To access this word, the value of A0 must be a zero (0) in the addressing, and bit D4 of ICW1 must be a one (1). The format of the command word is as follows:

* NOTE: This is an address bit, and not part of the ICW.

FIGURE 4. ICW1 FORMAT

D7 thru D5 - A7, A6, A5: These bits are used in the 8080/85 mode to form a portion of the low byte call address. When using the 4 byte address interval, all 3 bits are utilized. When using the 8 byte interval, only bits A7 and A6 are used. Bit A5 becomes a "don't care" bit. If using an 80C86(80C88) system, the value of these bits can be set to either a one or zero.
D3 - LTIM:
0 : The 82 C 59 A will operate in an edge triggered mode. An interrupt request on one of the IR lines (IR0-IR7) is recognized by a low to high transition on the pin. The IR signal must remain high at least until the falling edge of the first $\overline{\operatorname{INTA}}$ pulse. Subsequent interrupts on the IR pin(s) will not occur until another low-to-high transition occurs.
1: Sets up the 82C59A to operate in the level triggered mode. Interrupts occur when a "high" level is detected on one or more of the IR pins. The interrupt request must be removed from this pin before the EOI command is issued by the CPU. Otherwise, the 82C59A will see the IR line still in a high state, and consider this to be another interrupt request.

D2 - ADI: Call Address Interval (for 8080/8085 use only). If using the 82C59A in an 80C86/88 based system, the value of this bit can be either a 0 or a 1.

0 : The address interval generated by the 82C59A is 8 bytes. This option provides compatiblity with the RST interrupt vectoring in 8080/8085 systems since the vector locations are 8 bytes apart. This vector will be combined with the values specified in bits D7 and D6 of ICW1. The addresses generated are shown in Table 1.

TABLE 1. ADDRESS INTERVAL (8 BYTES)

D7	D6	D5	D4	D3	D2	D1	D0
A7	A6	1	1	1	0	0	0
A7	A6	1	1	0	0	0	0
A7	A6	1	0	1	0	0	0
A7	A6	1	0	0	0	0	0
A7	A6	0	1	1	0	0	0
A7	A6	0	1	0	0	0	0
A7	A6	0	0	1	0	0	0
A7	A6	0	0	0	0	0	0

1: The address interval generated by the interrupt controller will be 4 bytes. This provides the user with a compact jump table for 8080/8085 systems. The interrupt number is effectively multiplied by four and combined with bits D7, D6 and D5 to form the lower byte of the call instruction generated and sent to the 8080 or 8085 . Table 2 shows how these addresses are generated for the various Interrupt request (IR) levels.

TABLE 2. ADDRESS INTERVAL (4 BYTES)

D7	D6	D5	D4	D3	D2	D2	D0	IR7
A7	A6	A5	1	1	1	0	0	
A7	A6	A5	1	1	0	0	0	IR6
A7	A6	A5	1	0	1	0	0	IR5
A7	A6	A5	1	0	0	0	0	IR4
A7	A6	A5	0	1	1	0	0	R3
A7	A6	A5	0	1	0	0	0	IR2
A7	A6	A5	0	0	1	0	0	IR1
A7	A6	A5	0	0	0	0	0	IRO

D1-SNGL:
0 : This tells the 82C59A that more than one 82C59A is being used in the system, and it should expect to receive ICW3 following ICW2. How the particular 82C59A is being used in the system will be determined either through ICW4 for buffered mode, or through the $\overline{\mathrm{SP}} / \mathrm{EN}$ pin for non-buffered mode operation.

1: Tells the 82C59A that it is being used alone in the system. Therefore, there will be no need to issue ICW3 to the device.

DO - IC4: Specifies to the 82C59A whether or not it can expect to receive ICW4. If this device is being used in an 80C86/ 80C88 system, ICW4 must be issued.

0: ICW4 will not be issued. Therefore, all of the parameters associated with ICW4 will default to the zero (0) state. This should only be done when using the 82C59A in an 8080 or 8085 based system.

1: ICW4 will be issued to the 82C59A.

2.2 ICW2:

ICW2 is the second control word that must be sent to the 82C59A. This byte is used in one of two ways by the 82C59A, depending on whether it is being used in an $8080 / 85$ or an 80 C86/88 based system.

When used in conjunction with the 8080/85 microprocessor, the value given to this register is taken as being the high byte of the address in the CALL instruction sent to the CPU.

D7	D6	D5	D4	D3	D2	D1	D0
A15	A14	A13	A12	A11	A10	A9	A8

FIGURE 5. ICW2 FORMAT

In an 80C86- or 80C88-based system, ICW2 is used to send the processor an interrupt vector. This vector is formed by taking the value of bits D7 through D3 and combining them with the interrupt request level to get an eight bit number. The processor will multiply this number by four and go to that absolute location in memory to find a starting address for the interrupt service routine corresponding to the interrupt request.

For example, if we set ICW2 to "00011000" and an interrupt is recognized on IR1, the vector sent to the $80 \mathrm{C} 86(80 \mathrm{C} 88)$ will be $00011001(19 \mathrm{H})$. The processor will then look to the memory location 64 H to find the starting address of the corresponding interrupt service routine. It is the responsibility of the software to provide this address in the interrupt table.

FIGURE 6. ICW2 FORMAT (80C86 MODE)

2.3 ICW3:

ICW3 is only issued when the SNGL bit in ICW1 has been set to zero. If not set, the next word written to the 82C59A will be interpreted as ICW4 if A0 $=1$ and IC4 from ICW4 was set to one, or it could see it as one of the Operation Command Words based upon the state of the AO line.

Like ICW2, this control word can be interpreted in two ways by the 82C59A. However the interpretation of this word depends on whether the 82C59A is being used as a "master" or a "slave" in the system. The definition of the particular devices role in the system is assigned through ICW4 (which will be discussed later), or through the state of the $\overline{S P} / \overline{E N}$ pin (pin 16).

82C59A as a MASTER:

If the given 82C59A is being used as a master, the eight (8) bits in this command word are used to indicate which of the IR lines are being driven by a slave 82C59A.

D7	D6	D5	D4	D3	D2	D1	D0
S 7	S 6	S 5	S 4	S 3	S 2	S 1	S 0

FIGURE 7. ICW3 FORMAT (MASTER)

D7 thru D0:
0 : The corresponding IR line to this bit is not being driven by a slave 82C59A. This line can however then be connected to the interrupt output of another interrupting device such as a UART. If there are unused bits in this byte because not all eight of the IR lines are used, set them to zero.

1: The corresponding IR line to this bit is being driven by a slave 82C59A.

The bits in this command word are directly related to the IR lines. For example, to tell the 82C59A that there is a slave device connected to IR5 (pin 23), bit D5 of the command word should be set to a one (1).

82C59A as a SLAVE device:

When the device is being used as a slave device, we must use ICW3 to inform itself as to which IR line it will be connected to in the master. Therefore, only the three (3) least significant bits of ICW3 will be used to specify this value.

D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	102	101	100

FIGURE 8. ICW3 FORMAT (SLAVE)

These bits are coded as follows:
TABLE 3. SLAVE 'IDENTIFICATION' WITH ICW3

MASTER IR number	IO2	IO1	IO0
IR7	1	1	1
IR6	1	1	0
IR5	1	0	1
IR4	1	0	0
IR3	0	1	1
IR2	0	1	0
IR1	0	0	1
IR0	0	0	0

For example, if the INT output of a "slave" 82C59A is connected to the input pin IR5 on the "master" 82C59A, ICW3 of the "slave" would be programmed with the value 00000101 b , or 05 H . This informs the "slave" as to which priority level it holds with the "master".
D7 thru D3: These bits must be set to zeros (0) for proper operation of the device.

2.4 ICW4:

This control register is written to only when the IC4 bit is set in ICW1. The purpose of this command word is to set up the 82C59A to operate in a mode other than the default mode of operation. The default mode of operation is the same as if a value of 00 H were to be written to ICW4 (i.e. all bits set to zero).

NOTE: Slave $I O$ is equal to the corresponding master IR input
FIGURE 9. ICW4 FORMAT

D7 thru D5: These bits must be set to zero for proper operation.

D4 - SFNM: This bit is used in the selection of the Special Fully Nested Mode (SFNM) of operation. This mode should only be used when multiple 82C59As are cascaded in a system. It needs only to be programmed in the Master 82C59A in the system.
0 : Special Fully Nested Mode is not selected.
1: Special Fully Nested Mode is selected.

D3 - BUF: This bit tells the 82C59A whether or not the outputs from the data pins (D0 - D7) will be buffered. If they are buffered, this bit will cause the $\overline{S P} / E N$ pin to become an output signal that can be used to control the "enable" pin on a buffering device(s).

0 : The device will be used in a non-buffered mode. Therefore, (1) the M/S bit in ICW4 is a don't care, and (2) the $\overline{S P} / \overline{E N}$ pin becomes an input pin telling the device if it is being used as a master (pin $16=$ High) or a slave (pin $16=$ Low). For systems using a single 82C59A, the $\overline{S P} / \overline{E N}$ input should be tied high.
1: The device is used in buffered mode. An enable output signal will be generated on pin 16, and the M / S bit will be used for determining whether the particular 82C59A is a "master" or a "slave".

D2 - M/S: This bit is of significance only when the BUF bit is set ($B U F=1$). The purpose of this bit is to determine whether the particular 82C59A is being used as a "master" or a "slave" in the target system.

0 : The 82C59A is being used as a slave.
1: The 82C59A is the master interrupt controller in the system.

D1 - AEOI: This bit is used to tell the 82C59A to automatically perform a non-specific End-of-Interrupt on the trailing edge of the last Interrupt Acknowledge pulse. Users should note that when this is selected, the nested priority interrupt structure is lost.

0 : Automatic End-of-Interrupt will not be generated.
1: Automatic End-of-Interrupt will be generated on the trailing edge of the last Interrupt Acknowledge pulse.

DO - $\mu \mathrm{PM}$: This bit tells the Interrupt Controller which microprocessor is being used in the system. An $8080 / 8085$, or an $80 \mathrm{C} 86 / 80 \mathrm{C} 88$.

0 : The 82C59A will be used in an 8080/8085 based system.

1: 82C59A to be used in the $80 \mathrm{C} 86 / 88$ mode of operation.

3.0 Operation Command Words

Once the Initialization Command Words, described in the previous section, have been written to the 82C59A, the device is ready to accept interrupt requests. While the 82C59A is operating, we have the ability to select various options that will put the device in different operating modes, by writing Operation Command Words (OCWs) to the 82C59A. These OCWs can be sent at any time after the device has been initialized and in any order. These words can be changed at any time as well. Note: If A0 $=0$ and D4 of the command word $=1$, the 82C59A will begin the ICW initialization sequence.

There are three different OCWs for the 82C59A. Each has a different purpose. The first control word (OCW1) is used for masking out interrupt lines that are to be inactive or ignored during operation. OCW2 is used to select from various priority resolution algorithms in the device. Finally, OCW3 is used for (1) controlling the Special Mask Mode, and (2) telling the 82C59A which Register will be read on the next RD pulse; the ISR (In-service Register) or the IRR (Interrupt Request Register).

3.1 OCW1:

This control word is used to set or clear the masking of the eight (8) interrupt lines input to the 82C59A. This control word performs this function via the Interrupt Mask Register (IMR). In it's initial state, the value of this register is 00 H . In other words, all of the interrupt lines are enabled. Therefore, we need only write this control word when we wish to disable specific interrupt lines.

A direct mapping occurs between the bits in this control word and the actual interrupt pins on the device. For example bit 7 (D7) controls interrupt line IR7 (pin 25), bit 6 controls IR6, and so on.

FIGURE 10. OCW1 FORMAT

Even though the user can mask off any of the IR lines, any interrupt occuring during that time will not be lost. The request for an interrupt is retained in the IRR; therefore when that IR is unmasked by issuing a new mask value to OCW1, the interrupt will be generated when it becomes the highest requesting priority.

D7 thru DO:

0 : When any of the bits in the control word are reset (0), the corresponding interrupt is enabled.
1: By setting a bit(s) to a one in the control word, the corresponding interrupt line(s) is disabled.

For example, if the value 34 H (00110100 b) were written to OCW1, interrupts would be disabled from being serviced on lines IR2, IR4 and IR5.

3.2 OCW2:

In ICW4 bit D1 was used to specify whether the 82C59A should wait for an EOI (End of Interrupt) from the CPU, or generate its own EOI (Automatic EOI). If bit D1 of ICW4 had been programmed to be a zero, OCW2 would be used for sending the EOI to the 82C59A. Conversely, if this bit had been set to a one, OCW2 would be used for specifying whether or not the 82C59A should perform a priority rotation on the interrupts when the AEOI is detected.

OCW2 has several EOI options. The EOI issued can be either specific or non-specific. For each of these EOIs, the user can specify whether or not priority rotation should be performed.

FIGURE 11.

R, SL, and EOI:
These three bits are used for specifying how the device should handle AEOls, or for issuing one of several different EOIs. They are programmed as shown in the following table:

TABLE 4. ROTATE AND EOI MODES

R	SL	EOI	
0	0	1	Non-specific EOI command
0	1	1	* Specific EOI command
1	0	1	Rotate on non-specific EOI command
1	0	0	Rotate in Automatic EOI mode (set)
0	0	0	Rotate in Automatic EOI mode (clear)
1	1	1	Rotate on specific EOI command
1	1	0	* Set priority command
0	1	0	* No operation

L2, L1, and LO:

These three bits of the control word are used in conjunction with the issuance of specific EOIs or when specifically establishing a different priority structure. The bits tell the 82C59A which interrupt level is to be acted upon. Therefore, the software needs to know which interrupt is being serviced by the 82C59A.

TABLE 5. INTERRUPT LEVEL TO ACT UPON

L2	L1	LO	
0	0	0	IR level 0
0	0	1	IR level 1
0	1	0	IR level 2
0	1	1	IR level 3
1	0	0	IR level 4
1	0	1	IR level 5
1	1	0	IR level 6
1	1	1	IR level 7

3.3 OCW3:

There are two main functions that OCW3 controls: (1) Interrupt Status, and (2) Interrupt Masking. Interrupt
status can be checked by looking at the ISR or IRR registers, or by issuing a Poll Command to manually identify the highest priority interrupt requesting service.

D7	D6	D5	D4	D3	D2	D1	D0
0	ESMM	SMM	0	1	P	RR	RIS

FIGURE 12.

D7: Must be set to zero for proper operation of the 82C59A.

D6 - ESMM: Enable Special Mask Mode - The ESMM bit when enabled allows the SMM bit to set or clear the Special Mask Mode. When disabled, this bit causes the SMM bit to have no effect on the 82C59A.
0 : Disables the effect of the SMM bit.
1: Enable the SMM bit to control the Special Mask Mode.

D5 - SMM: Special Mask Mode - The SMM bit is used to enable or disable the Special Mask Mode. This bit will only affect the 82C59A when the ESMM bit is set to 1.
0 : Disable the Special Mask Mode.
1: Put the 82C59A into the Special Mask Mode.

D4, D3: These bits are used to differentiate between OCW2, OCW3 and ICW1. To properly select OCW3, D4 must be set to zero and D3 must be set to one.

D2 - P: Poll Command - This bit is used to issue the poll command to the 82C59A. The next read of the 82C59A will cause a poll word to be returned which tells if an interrupt is pending, and if so, which is the highest requesting level.
NOTE: The poll command must be issued each time the poll operation is desired.

0 : No poll command issued to the 82C59A.
1: Issue the poll command.

D1-RR: Read Register - This bit is used to execute the "read register" command. When this bit is set, the 82C59A will look at the RIS bit to determine whether the ISR or IRR register is to be read. When issuing this command, the next instruction executed by the CPU should be an input from this same port to get the contents of the specified register.

0 : No "Read Register" command will be performed.
1: The next input instruction by the CPU will read either the contents of the ISR or the IRR as specified by the RIS bit.

D0-RIS: This bit is used in conjunction with the RR bit to select which register is to be read when the "Read Register" command is issued.
0 : The next input instruction will read the contents of the Interrupt Request Register (IRR).
1: The next input instruction will read the contents of the In-Service Register (ISR).

The two registers that can be accessed through the Read Register command are used to determine which interrupts are requesting service, and which one(s) are currently being serviced.

The IRR bits get set when corresponding Interrupt requests are received. For instance, when IR4 is detected, bit D4 of the IRR will get set. When an interrupt acknowledge comes back from the CPU, the priority resolution logic will determine which interrupt request will be serviced. The corresponding bit in the In-service Register (ISR) will then be set. Clearing of the correct bits in the ISR occurs through out use of the AEOI, or by issuing an EOI to the device.

4.0 Addressing the 82C59A

There are two factors that must be taken into account when addressing the 82C59A in a system. To begin with, the 82C59A is accessed only when the $\overline{C S}$ pin (chip select) sees an active signal (low). This signal is generated using control circuitry in the system. Secondly, the various registers within the 82C59A are selected
based upon the state of the A0 (address pin) as well as specific bits in the command words (i.e for ICW1, OCW2, and OCW3 A0 must be a zero).
The circuit in Figure 13 shows that the $\overline{C S}$ signal is generated using an HPL-82C338 Programmable Chip Select Decoder (PCSD). This device is being used as a 3 -to-8 decoder. Note that the G1 input is active high and G2 thru G5 have been programmed to be active low. The A, B, and C inputs to the 82C338 correspond to address lines AD2, AD3 and AD4 respectively, from the 80C88. The AO input to the 82C59A is also taken from the CPUs address bus; ADO is used. It should be noted that address line AD1 from the 80 C 88 is not being used in the addressing of this particular peripheral. This is done to allow other peripheral devices that require two address inputs for internal register selection, to use address lines AD0 and AD1 from the processor.

Because the AD1 address line from the 80 C 88 is not being used, the 82C59A will be addressed regardless of whether AD1 is high or low (1 or 0). The remainder of the address lines from the 80 C 88 can either be a zero or one when addressing the 82C59A. For the examples to be presented, it can be assumed that all unused address lines will be set to zero when addressing the 82C59A.
In Figure 13, output $\overline{Y 6}$ from the HPL-82C338 is being used as the $\overline{\mathrm{CS}}$ input to the 82C59A. This line is enabled when the inputs on A, B, and C are: $\mathrm{A}=0, \mathrm{~B}=1$, and $\mathrm{C}=1$. Combining this with the A0 input to the 82C59A, we get the addresses 18 H and 19 H for accessing the 82C59A.

FIGURE 13. ADDRESSING THE 82C59A

5.0 Programming the 82C59A

As described earlier, there are two different types of command words that are used for controlling 82C59A operation; the Initialization Command Words (ICWs) and the Operation Command Words (OCWs). To properly program the 82C59A, it is essential that the ICWs be written first. When writing the ICWs to the 82C59A, they must be written in the following sequence:
(1) Write ICW1 to the 82C59A, A0 $=0$.
(2) Write ICW2 to the $82 \mathrm{C} 59 \mathrm{~A}, \mathrm{~A} 0=1$.
(3) If using cascaded 82C59As in system, write ICW3 to the $82 \mathrm{C} 59 \mathrm{~A}, \mathrm{~A} 0=1$.
(4) If IC4 bit was set in ICW1, write ICW4 to the 82C59A

NOTE: When using multiple 82C59As in the system (cascaded), each one must be initialized following the above sequence.

Once the 82C59A(s) has been configured through the ICWs, the OCWs can be used to select from the various operation mode options. These include: masking of interrupt lines, selection of priority rotation, issuance of

EOIs, reading of the ISR andsor IRR, etc. These OCWs can be written to the 82C59A at any time during operation of the 82C59A. The various command words are identified by the state of selected bits in the words, rather than by the sequence that they are written to the 82C59A; as with the ICWs. Therefore, it is imperative that the fixed bit values in the command words be written as such to insure proper operation of the device(s).

5.1 Example 1: Single 82C59A

In Example 1, we are using a single 82C59A in a system to handle the interrupts caused by an HD-6406 Programmable Asynchronous Communications Interface. The system is driven using an 80 C 86 Microprocessor. The system configuration is shown in Figure 14. An assembly language listing for the software controlling this system can be found in Program Listing, Example 1, on page 15.

Interrupts are initiated by the HD-6406 anytime it receives data on its Serial Data In pin (SDI), or when it is ready to transmit more data via its Serial Data Out pin (SDO).

Application Note 109

5.2 Example 2: Cascaded 82C59As

Example 2 illustrates how we can use multiple 82C59As in Cascade Mode. Figure 15 shows the interconnections between the master and slave interrupt controllers. In this example, only one interrupt can occur. This is generated
by the HD-6406 PACI. Except for the fact that this system is configured with a Master-Slave interrupt scheme, it is the same as that in Example 1. The software for this system is given in Program Listing, Example 2, on Page 20.

FIGURE 15. EXAMPLE 2: CASCADED 82C59As

6.0 Expansion Past 64 Interrupts

In some instances, it may be desirable to expand the number of available interrupts in a system past the maximum of 64 imposed when using cascaded 82C59As. The easiest way to accomplish this is through the use of the Poll command with the 82C59A. Figure 16 illustrates one example of how this expansion can be accomplished. Notice that we are using two 3-to-8 decoders (HPL-82C338 PCSDs) to address up to 16 82C59As. Selection of which decoder is active takes place using the G2 pin on the HPL-82C338. For one HPL-82C338, G2 has been programmed to be active low ($\overline{\mathrm{G} 2}$), while the other HPL-82C338 has been programmed for G2 to operate active high. This G2 input is driven by AD5 from the CPU's address bus.
With this type of interrupt structure, we are not using the INT and INTA lines from our processor (80C88 for this
example). Because of this, no interrupts will break execution of the system software. Therefore, it is the task of the software to poll the various 82C59As in the system to see if any interrupts are pending. Once it has been established which interrupt requires servicing, the software can take appropriate action.

There are disadvantages to using the poll mode for the systems interrupt structure: (1) the overhead of polling each of the 82C59As reduces the systems efficiency, and (2) real-time interrupt servicing cannot be guaranteed.

There are several advantages to using the poll mode in this manner: (1) there can be more than 64 priority interrupts in the system, and (2) memory in the system is freed because no interrupt vector table is required.

FIGURE 16. EXPANDING PAST 64 INTERRUPTS

PROGRAM LISTING, EXAMPLE 1

NAME EXAMPLE 1

; The following are port addresses for the devices used in our example
; system. The devices that we will look at are the HD-6406 PACI, and the
; two 82C59A Interrupt Controller.
; ------ 6406 Register Addresses ------

UCR	EQU	11 H	;UART control register
BRSR	EQU	13 H	;Baud Rate Select Register
MCR	EQU	12 H	;Modem Control Register
USR	EQU	11 H	;UART Status Register
MSR	EQU	13 H	;Modem Status Register
TBR	EQU	10 H	;Transmit Buffer Register
RBR	EQU	10 H	;Receive Buffer Register

; --------- 82C59A Addresses

ICW1	EQU	18 H
ICW2	EQU	19 H
ICW4	EQU	19 H
OCW1	EQU	19 H
OCW2	EQU	18 H
CARRIAGE	RETURN	EQU
LINE FEED	EQU	ODH
DR	EQU	80 H
TBRE	EQU	40 H

ASSUME	CS:DRIVER_59A,
$\&$	DS:BUFFER-AREA,
$\&$	SS:STACK_AREA

DRIVER 59A SEGMENT PUBLIC

; * MAIN

MAIN PROC NEAR
SET_UP: MOV AX,BUFFER_AREA ; Set up the data segment
MOV DS,AX
MOV AX,STACK AREA ;Set up the stack segment
MOV SS,AX
;Set up the stack pointer
MOV SP,OFFSET STACK AREA:TOP OF STACK
; Set up the interrupt vector table
MOV AX,OFFSET INT SERVICE ROUTINE
MOV ISR 34,AX
MOV ISR_34[2],CS
; Initialize the pointer into the data buffer.
MOV BX,OFFSET BUFFER
XOR DI,DI ;Clear the index register
; Initialize the 82C59A
CALL INIT 82C59A
; Initialize the HD-6406 PACI
CALL INIT_6406
; Wait for interrupts from the '59A...

WAIT_LOOP:	STI NOP	
	JMP	WAIT_LOOP
MAIN	$\begin{aligned} & \text { HLT } \\ & \text { ENDP } \end{aligned}$	

PROGRAM LISTING, EXAMPLE 1

INIT 82C5YA PROC NEAR

; We first want to write ICW1. This will be used to set the
; device for edge triggered interrupt detection and for use
; in Single Mode.
BEGIN 59A: MOV AL,00010000B ;Edge triggered, and single mode

Now we will write out ICW2. This gives the 59A information
; about where to branch to in the interrupt table.

$$
\begin{array}{ll}
\text { MOV } & \text { AL,00100000B } \\
\text { OUT } & \text { ICW2,AL }
\end{array}
$$

; The final control word that is written in this sequence is ICW4.
; This is used to specify that the device is to operate in 80C86/80C88
; mode, with norinal EOI's generated through software, and non-buffered
; outputs are being fed back to the CPU.
MOV AL,00000001B
OUT ICW4,AL
; To insure that interrupts will only be issued by the HD-6406 PACI,
; we will write out an interrupt mask to the register OCW1. This
; mask will only allow interrupts from the specified lines. In this
; case on IR2 only, all others will be disabled.

	MOV	AL, 11111011B	; A zero in a bit means that the
	OUT	OCW1,AL	; corresponding IR lines is enabled.
INIT_82C59A	RET		

INIT 6406 PROC NEAR

; This routine sets up the HD-6406 to communicate with a dumb
; terminal. The device will generate an interrupt whenever
; a key is pressed at the terminal.

PROGRAM LISTING, EXAMPLE 1

; Set up for 8 data bits, 1 stop bit, and no parity.
$\begin{array}{lll}\text { BEGIN_6406: } & \text { MOV } & \text { AL,00111110B } \\ & \text { OUT } & U C R, A L\end{array}$
; Set up BRSR for 9600 bps, assuming that the target system uses
; a 2.4576 MHz clock crystal.
MOV AL,00000110B
OUT BRSR,AL
; Enable interrupts on the 6406, enable the receiver, and
; select normal mode.

	MOV	AL,00100100B	
	OUT	MCR,AL	
INIT_6406	RET ENDP	;Return to the MAIN	

INT SERVICE ROUTINE PROC NEAR

ISR_START:	IN	AL,USR	;Find out what caused the interrupt.
	TEST	AL,DR	;Was it DATA READY ?
	JNZ	READ DATA	;Was it TRANSMIT BUFFER REG. EMPTY ?
	TEST	AL,TBRE	;WI
	JNZ	PRINT_BUFFER	;If so, then print next character

; If this condition was not detected, then we have an erroneous
; interrupt from the HD-6406. Rather than servicing this, we will
; simply return from the service routine to the MAIN.
ERROR: JMP ISR_EXIT
; Read the data that is present in the Receive Buffer Register.

READ_DATA:	IN	AL, RBR	
	MOV	[BX][DI],AL	;Save the data in our buffer area.
	INC	DI	;Increment the index into the buffer.
	CMP	AL,CARRIAGE_RETURN	
	JE	PRINT_LF	

; Set up for writing the data out to the Transmit Buffer...
PRINT LF: MOV AL,LINE FEED
MOV $[B X][D I J, A L$;Add a line feed to the buffer.

PROGRAM LISTING, EXAMPLE 1

INC	DI	
OUT	TBR,AL	
MOV	CX,DI	;Load the buffer size into CX
XOR	DI,DI	;Set the index back to beginning
JMP	ISR_EXIT	; of the buffer.

; Print out the contents of the buffer...

PRINT_BUFFER:	CMP	CX, 0	;Anything to print ?
	JNE	PRINT CHAR	; If so, then print it..
	JMP	ISR EXIT	;Else, ignore this interrupt.
PRINT_CHAR:	MOV	$\mathrm{AL},[\mathrm{BX}][\mathrm{DI}]$;Print the byte pointed to in buffer
	OUT	TBR, AL	
	INC	DI	;Point to next character.
	LOOP	PRINT_CHAR	; Print til end-of-buffer.
DONE PRINTING:	XOR	DI, DI	;Re-initialize pointer into buffer.

; Exit from the service routine, sending out a non-specific EOI first.
ISR_EXIT: MOV AL,00100000B ;Send out an End-of-Interrupt

OUT OCW2 S,AL ; to both master and slave.
OUT OCW2_M,AL

INT SERVICE ROUTINE	ENDP
DRIVER 59 A	

BUFFER AREA SEGMENT PUBLIC

	ORG	$88 H$
ISR_34	DW	$4 \mathrm{DUP}(?)$
	ORG	100 H
BUFFER	DB	$80 \mathrm{DUP}(?)$
BUFFER_AREA	ENDS	

STACK AREA SEGMENT PUBLIC

STACK	DW	8OH DUP(?)
TOP OF STACK	LABEL	WORD
STACK_AREA	ENDS	
	END	

PROGRAM LISTING, EXAMPLE 2

PROGRAM LISTING, EXAMPLE 2

DRIVER 59A SEGMENT PUBLIC

MAIN PROC NEAR

SET_UP:
MOV AX,BUFFER_AREA ; Set up the data segment
MOV DS,AX
MOV AX,STACK_AREA ;Set up the stack segment
MOV SS,AX
;Set up the stack pointer
MOV SP,OFFSET STACK_AREA:TOP_OF_STACK
; Set up the interrupt vector table

MOV	AX,OFFSET INT_SERVICE_ROUTINE
MOV	ISR $34, A X$
MOV	ISR_34[2],CS

; Initialize the pointer into the data buffer.
MOV BX,OFFSET BUFFER
XOR DI,DI ;Clear the index register
; Initialize the 82C59A
CALL INIT_82C59A
; Initialize the HD-6406 PACI
CALL INIT_6406
; Wait for interrupts from the '59A...
STI ;Set the interrupt enable flag.
WAIT LOOP: NOP
WAIT_LOOP
HLT
MAIN
ENDP

PROGRAM LISTING, EXAMPLE 2

INIT 82C59A PROC NEAR

*		

; -------------------- Configure the MASTER \qquad
; We first want to write ICWI. This will be used to set the
; device for edge triggered interrupt detection and for use
; in Cascade Mode.

BEGIN 59A: $\begin{array}{lll}\text { MOV } & \text { AL,00010001B } & \text {;Edge triggered, } \\ & \text { OUT } & \text { ICW1 M,AL }\end{array}$ OUT ICWI_M,AL

; Now we will write out ICW2. This gives the 59A information
; about where to branch to in the interrupt table. In this example
; however, this value is not used. Interrupts will only be generated
; by the slave 82C59A.

MOV	AL,00000000B
OUT	ICW2 M,AL

; Write out ICW3 to the MASTER. This tells the master which IR lines
; have slaves connected to them. In this case, interrupts come from
; the slave only on IR5. All other lines are not used.

$$
\begin{array}{ll}
\text { MOV } & \text { AL,00100000B } \\
\text { OUT } & \text { ICW3_M,AL }
\end{array}
$$

; The final control word that is written in this sequence is ICW4.
; This is used to specify that the device is to operate in $80 C 86 / 88$
; mode, with normal EOI's generated through software, and non-buffered
; outputs are being fed back to the CPU.

$$
\begin{array}{ll}
\text { MOV } & \text { AL,00000001B } \\
\text { OUT } & \text { ICW4_M,AL }
\end{array}
$$

; -------------------- Configure the SLAVE
First, set up the slave for edge triggered interrupts, cascade mode
; and tell it that ICW4 is to be issued.

$$
\begin{array}{ll}
\text { MOV } & \text { AL,00010001B } \\
\text { OUT } & \text { ICW1_S,AL }
\end{array}
$$

; Write ICW2 to the slave. When an interrupt occurs, the 82C59A will take
; this value, add to it the interrupt number (IR2 $=20 \mathrm{H}+2=22 \mathrm{H}$) and
; sends it to the processor. The processor will then multiply this number
; by four (4) to generate the address in the Interrupt table to look for
; the address of the Interrupt Service Routine.

$$
\begin{array}{ll}
\text { MOV } & \text { AL,2OH } \\
\text { OUT } & \text { ICW2_S,AL }
\end{array} \quad \text {; } \operatorname{\text {IR2fromtheslavewillcausetovector}88\mathrm {H}.} \mathrm{l} \text { the }
$$

PROGRAM LISTING, EXAMPLE 2

; Tell the slave which IR line on the master it is connected to.
MOV AL,00000101B ;It drives IR5...
OUT ICW3_S,AL
; Set up the slave for normal EOI's, and $80 C 86 / 88$ mode.
MOV AL,00000001B OUT ICW4_S,AL
; Set up the mask register for both the master and the slave...
MOV AL,11011111B ; Interrupts recognized only on IR5
OUT OCWI_M,AL
MOV AL,11111011B ;Interrupt recognized only on IR2
OUT OCWI_S,AL
RET
INIT 82C59A ENDP

INIT 6406 PROC NEAR

; ${ }^{*}$ INIT 6406
; This routine sets up the $H D-6400^{\circ}$ to communicate with a dumo
; terminal. The device will generate an interrupt whenever
; a key is pressed at the terminal.
; Set up for 8 data bits, 1 stop bit, and no parity.

```
BEGIN_6406: 
```

; Set up BRSR for 9600 bps, assuming that the target system uses
; a 2.4576 MHz clock crystal.
MOV AL,00000110B
OUT BRSR,AL
; Enable interrupts on the 6406, enable the receiver, and
; select normal mode.
MOV AL,00100100B
OUT MCR,AL
RET
;Return to the MAIN
INIT_6406
ENDP

PROGRAM LISTING, EXAMPLE 2
DONE PRINTING: XOR DI,DI ;Re-initialize pointer into buffer.
; Exit from the service routine, sending out a non-specific EOI first.

```
ISR_EXIT:
MOV AL,00100000B ;Send out an End-of-Interrupt OUT OCW2 S,AL ; to both master and slave.
``` OUT OCW2-M,AL IRET
```

INT SERVICE ROUTINE ENDP
DRIVER59A - ENDS

```
BUFFER AREA SEGMENT PUBLIC

ORG 88H
ISR_34 DW 4 DUP(?)
BUFFER DB 80 DUP(?)
BUFFER_AREA ENDS

STACK AREA SEGMENT PUBLIC

STACK DW 80H DUP(?)
TOP OF STACK
LABEL WORD STAC̄K_ \(\overline{A R E A}\) ENDS
END

\section*{PAGE}

\section*{DATA COMMUNICATIONS FAMILY}
HD-4702 Programmable Bit Rate Generator 5-2
HD-6402 Universal Asynchronous Receiver Transmitter 5-7
HD-6406 Programmable Asynchronous Communication Interface 5-13
HD-6408 Asynchronous Serial Manchester Adapter 5-24
HD-6409 Manchester Encoder-Decoder 5-29
HD-15530 Manchester Encoder-Decoder 5-38
HD-15531 Manchester Encoder-Decoder 5-45
App Note 108 HD-6406 Software Applications 5-54

CMOS Programmable
Bit Rate Generator

\section*{Features}
- HD-4702 Provides 13 Commonly Used Bit Rates
- Uses a 2.4576MHz Crystal/Input for Standard Frequency Output (16 Times Bit Rate)
- TTL Compatible - Output Will Sink 1.6 mA
- Low Power Dissipation.
4.5mW Typ. @ 2.4576MHz
- Conforms to EIA RS-404
- One HD-4702 Controls up to Eight Transmission Channels
- Initialization Circuit Facilitates Diagnostic Fault Isolation
- On-Chip Input Pull-Up Circuit

\section*{Description}

The HD-4702 Bit Rate Generator provides the necessary clock signals for digital data transmission systems, such as a UART. It generates 13 commonly used bit rates using an on-chip crystal oscillator or an external input. For conventional operation generating 16 output clock pulses per bit period, the input clock frequency must be 2.4576 MHz (i.e. 9600 Baud \(\times 16 \times 16\), since there is an internal \(\div 16\) prescaler). A lower input frequency will result in a proportionally lower output frequency.

The HD-4702 can provide multi-channel operation with a minimum of external logic by having the clock frequency \(C O\) and the \(\div 8\) prescaler outputs \(Q_{0}, Q_{1}\), \(Q_{2}\) available externally. All signals have a \(50 \%\) duty cycle except 1800 Baud, which has less than \(0.39 \%\) distortion.

The four rate select inputs (S0-S3) select which bit rate is at the output (Z). Table 1 lists select code and output bit rate. Two of the 16 for the HD-4702 do not select an internally generated frequency, but select an input into which the user can feed either a different frequency, or a static level (High or Low) to generate "ZERO BAUD".

The bit rate most commonly used in modern data terminals (110, 150, 300, 1200,2400 Baud) require that no more than one input be grounded for the HD-4702, which is easily achieved with a single 5 -position switch.

The HD-4702 has an initialization circuit which generates a master reset for the scan counter. This signal is derived from a digital differentiator that senses the first high level on the CP input after the \(E_{C P}\) input goes low. When \(E_{C P}\) is high, selecting the crystal input, CP must be low. A high level on CP would apply a continuous reset. See Table 2.

For the HD-4702, all inputs except IX have on-chip pull-up circuits which provide TTL compatibility and eliminate the need to tie a permanently high input to \(V_{C C}\).

\section*{Truth Tables}
table 1.
truth table for rate select inputs (Using 2.4576MHz Crystal)
\begin{tabular}{|c|c|c|c|c|}
\hline \(\mathrm{S}_{3}\) & \(\mathrm{S}_{2}\) & \(\mathrm{s}_{1}\) & \(\mathrm{S}_{0}\) & \begin{tabular}{l}
OUTPUT \\
RATE (Z)
\end{tabular} \\
\hline L & L & L & L & MUX Input (\({ }^{\prime}\) M) \\
\hline L & L & L & H & MUX Input ('M) \\
\hline L & L & H & L & 50 Baud \\
\hline L & L & H & H & 75 Baud \\
\hline L & H & L & L & 1345 Baud \\
\hline L & H & L & H & 200 Baud \\
\hline L & H & H & L & 600 Baud \\
\hline L & H & H & H & 2400 Baud \\
\hline H & L & 1 & L & 9600 Baud \\
\hline H & L & L & H & 4800 Baud \\
\hline H & L & H & L & 1800 Baud \\
\hline H & L & H & H & 1200 Baud \\
\hline H & H & L & L & 2400 Baud \\
\hline H & H & & H & 300 Baud \\
\hline H & H & H & L & 150 Baud \\
\hline H & H & H & H & 110 Baud \\
\hline
\end{tabular}

Note 1. 19200 Baud by connecting \(Q_{2}\) to \(I_{M}\)
TABLE 2. CLOCK MODES AND INITIALIZATION
\begin{tabular}{|l|l|l|l|}
\hline\(I X\) & ECP & CP & \multicolumn{1}{|c|}{ OPERATION } \\
\hline\(\Omega \Omega\) & \(H\) & \(L\) & Clocked from IX \\
\(X\) & \(L\) & \(\Omega \Omega\) & Clocked trom CP \\
\(X\) & \(H\) & \(H\) & Continuous Reset \\
\(X\) & \(L\) & \(\Omega\) & \begin{tabular}{l}
Reset During 1st \(C P=\) \\
High Time
\end{tabular} \\
\hline
\end{tabular}

NOTE: Actual output frequency is 16 times the indicated Output Rate, assuming a clock frequency of 2.4576 MHz .

H = HIGH Level
L = LOW Level
\(x=\) Don't Care
\(\int=1\) 1st HIGH Level Clock Puise after \(\mathrm{E}_{\mathrm{CP}}\) goes LOW Clock Pulse

\section*{Pin Description}
\begin{tabular}{|c|c|c|c|}
\hline PIN NUMBER & TYPE & SYMBOL & DESCRIPTION \\
\hline 16 & & \(\mathrm{V}_{\mathrm{CC}}\) & \(\mathrm{V}_{\mathrm{CC}}\) : is the +5 V power supply pin. A \(0.1 \mu \mathrm{~F}\) capacitor between pins 16 and 8 is recommended for decoupling. \\
\hline 8 & & GND & GROUND \\
\hline 5 & 1 & CP & EXTERNAL CLOCK INPUT \\
\hline 4 & 1 & \(\mathrm{E}_{\mathrm{CP}}\) & EXTERNAL CLOCK ENABLE: A low signal on this input allows the baud rate to be generated from the CP input. \\
\hline 7 & 1 & IX & CRYSTAL INPUT \\
\hline 6 & 0 & OX & CRYSTAL DRIVE OUTPUT \\
\hline 15 & 1 & IM & MULTIPLEXED INPUT \\
\hline 11, 12, 13, 14 & 1 & \(\mathrm{S}_{0}-\mathrm{S}_{3}\) & BAUD RATE SELECT INPUTS \\
\hline 9 & 0 & CO & CLOCK OUTPUT \\
\hline 1, 2, 3 & 0 & \(Q_{0}-Q_{2}\) & SCAN COUNTER OUTPUTS \\
\hline 10 & 0 & Z & BIT RATE OUTPUT \\
\hline
\end{tabular}

\section*{Block Diagram}

HD-4702 ONLY

\section*{Absolute Maximum Ratings}

Supply Voltage or I/O..............................
ed................ \(\qquad\)
Input, Output or I/O Voltage
Storage Temperature Range.
\(\qquad\) GND -0.3V to VCC +0.3 V
Maximum Package Power Dissipation.. 1 Watt \(\theta_{\mathrm{jc}} \cdots . ~ 27^{\circ} \mathrm{C} / \mathrm{W}\) (CERDIP Package), \(32^{\circ} \mathrm{C} / \mathrm{W}\) (LCC Package)

\section*{Operating Conditions}

Operating Voltage Range
Operating Voltage Range
HD-4702-9 ..
2/8...
 Gates Junction Temperature. \(+275^{\circ} \mathrm{C}\)

Electrical Specifications
D.C.: \(V_{C C}=5 \mathrm{~V} \pm 10 \% ; T_{A}=H D-4702-9\) or HD-4702-2/-8
A.C.: \(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}(\mathrm{HD}-4702-9) ; \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}(\mathrm{HD}-4702-2 /-2)\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multirow[b]{2}{*}{SYMBOL} & \multirow[b]{2}{*}{PARAMETER} & \multicolumn{3}{|c|}{HD-4702-2} & \multicolumn{3}{|c|}{HD-4702-9} & \multirow[b]{2}{*}{UNITS} & \multirow[b]{2}{*}{TEST CONDITIONS} \\
\hline & & & MIN & TYP & MAX & MIN & TYP & MAX & & \\
\hline \multirow[t]{2}{*}{D.C.} & \[
\begin{gathered}
\hline \mathrm{v}_{\mathrm{IH}} \\
\mathrm{v}_{\mathrm{IL}} \\
\mathrm{v}_{\mathrm{OH} 1} \\
\mathrm{v}_{\mathrm{OL} 1} \\
\mathrm{I}_{\mathrm{IH}} \\
I_{\mathrm{IL}} \\
\mathrm{I}_{\mathrm{ILX}}
\end{gathered}
\] & Input High Voltage Input Low Voltage Output High Voltage Output Low Voltage Input High Current Input Low Current (1) (all other inputs) (IX Inputs) & \[
\begin{gathered}
\mathrm{v}_{\mathrm{CC}} 70 \% \\
\mathrm{v}_{\mathrm{CC}}-0.1 \\
-1 \\
-1
\end{gathered}
\] & -30 & \[
\begin{gathered}
30 \% \\
0.1 \\
+1 \\
-100 \\
+1
\end{gathered}
\] & \[
\begin{gathered}
\hline \mathrm{v}_{\mathrm{CC}} 70 \% \\
\mathrm{v}_{\mathrm{CC}}-0.1 \\
-1 \\
-1
\end{gathered}
\] & -30 & \[
\begin{gathered}
30 \% \\
\\
0.1 \\
+1 \\
-100 \\
+1
\end{gathered}
\] & v
v
v & \[
\begin{aligned}
& \mathrm{I}^{\prime} \mathrm{OH} \leq-1 \mu \mathrm{~A} \quad \mathrm{I}_{\mathrm{OH}}=-1 \mu \mathrm{~A} \\
& \mathrm{O}_{\mathrm{O}} \leq-1 \mu \mathrm{~A} \quad \mathrm{I}^{\prime} \mathrm{OL}=1 \mu \mathrm{~A} \\
& \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text {, all other pins }=\mathrm{OV} \\
& \mathrm{~V}_{1}=0 \text {, all other pins }=\mathrm{V}_{\mathrm{CC}}
\end{aligned}
\] \\
\hline & \[
\begin{aligned}
& \mathrm{I} \mathrm{OHX} \\
& \mathrm{I}^{\mathrm{OH} 1} \\
& \mathrm{I}^{\mathrm{OH} 2} \\
& \mathrm{I}^{\mathrm{OLX}} \\
& \mathrm{IOL} \\
& \mathrm{I}_{\mathrm{CC}}
\end{aligned}
\] & Output High Current (\(\mathrm{O}_{\mathrm{X}}\))
(all other outputs)
(all other outputs)
Output Low Current (\(\mathrm{O}_{\mathrm{X}}\))
(all other outputs)
Supply Current (Static) (1) & \[
\begin{gathered}
\hline-0.1 \\
-1.0 \\
-0.3 \\
0.1 \\
1.6
\end{gathered}
\] & & \[
\begin{aligned}
& 1500 \\
& 1000
\end{aligned}
\] & \[
\begin{gathered}
\hline-0.1 \\
-1.0 \\
-0.3 \\
0.1 \\
1.6
\end{gathered}
\] & & \[
\begin{aligned}
& 1500 \\
& 1000
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{mA} \\
& \mathrm{~mA} \\
& \mathrm{~mA} \\
& \mathrm{~mA} \\
& \mathrm{~mA} \\
& \mu \mathrm{~A} \\
& \mu \mathrm{~A}
\end{aligned}
\] & \begin{tabular}{l|l}
\begin{tabular}{ll}
\(V_{\text {OUT }}=V_{C C}-0.5\) & Input at 0 or \\
\(V_{C C}\) \\
\(V_{\text {OUT }}=2.5 \mathrm{~V}\) & Fer Logic
\end{tabular} \\
\(V_{\text {OUT }}=V_{C C}-0.5\) & Function or \\
Truth Table
\end{tabular} \\
\hline (1)
\((2)\)
\((3)\)
\((4)\)
\((5)\)
\((6)\)
\((7)\)
\((8)\)
\((9)\)
\((10)\) & \begin{tabular}{l}
\({ }^{\text {tpLH }}\) \\
tPHL \\
tple \\
\({ }^{\text {tPHL }}\) \\
\({ }^{\text {tpLH }}\) \\
\({ }^{\text {tPHL }}\) \\
\({ }^{\text {tpLH }}\) \\
\({ }^{\text {tPHL }}\) \\
\({ }^{\text {tTLH }}\) \\
\({ }^{\text {tTHL }}\)
\end{tabular} & \begin{tabular}{l}
Propagation Delay, IX to CO \\
Propagation Delay, CP to CO \\
Propagation Delay. CO to Qn \\
Propagation Delay, CO to Z \\
Output Transition \\
Time (except \(\mathrm{O}_{\mathrm{X}}\))
\end{tabular} & & & 300
250
215
195
(5)
75
65
80
40 & & & \[
\begin{aligned}
& 300 \\
& 250 \\
& 215 \\
& 195 \\
& \text { (5) } \\
& \\
& 75 \\
& 65 \\
& 80 \\
& 40
\end{aligned}
\] & \[
\begin{aligned}
& \text { ns } \\
& \mathrm{ns} \\
& \mathrm{~ns} \\
& \mathrm{~ns}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{C}_{\mathrm{L}} \leq 7 \mathrm{pF} \text { on } \mathrm{O}_{\mathrm{X}} \text { (2) } \\
& \mathrm{C}_{\mathrm{L}}-15 \mathrm{pF} \text { on } \mathrm{O}_{\mathrm{X}} \text { (2) } \\
& \text { Transition Times } \leq 20 \mathrm{~ns}
\end{aligned}
\] \\
\hline \[
\begin{array}{r}
(11) \\
(12) \\
(13) \\
\text { A.C. } 14) \\
(15) \\
(16) \\
(17) \\
(18) \\
(19) \\
(20)
\end{array}
\] & \begin{tabular}{l}
\({ }^{\text {tpLH }}\) \\
\({ }^{\text {tPHL }}\) \\
\({ }^{\text {tpLH }}\) \\
tphi \\
\({ }^{\text {tpLH }}\) \\
\({ }^{\text {tPHL }}\) \\
tple \\
\({ }^{\text {tpHL }}\) \\
\({ }^{\text {tTLH}}\) \\
\({ }^{\text {tTHL }}\)
\end{tabular} & \begin{tabular}{l}
Propagation Delay. \\
'x to CO \\
Propagation Delay, \\
CP to CO \\
Propagation Delay, CO to Qn \\
Propagation Delay. CO to Z \\
Output Transition Time (except \(\mathrm{O}_{\mathrm{X}}\))
\end{tabular} & & & \[
\begin{gathered}
350 \\
275 \\
260 \\
220 \\
\text { (5) } \\
\\
85 \\
75 \\
160 \\
75
\end{gathered}
\] & & & \[
\begin{gathered}
350 \\
275 \\
260 \\
220 \\
\text { (5) } \\
\\
85 \\
75 \\
160 \\
75
\end{gathered}
\] & \begin{tabular}{l}
ns \\
ns
\end{tabular} & \[
\begin{aligned}
& \mathrm{C}_{\mathrm{L}} \leq 7 \mathrm{pF} \text { on } \mathrm{O}_{\mathrm{X}} \text { (2) } \\
& \mathrm{C}_{\mathrm{L}}=50 \mathrm{pFF} \text {. } \\
& \text { Input Transition Times } \leq 20 \mathrm{~ns}
\end{aligned}
\] \\
\hline \begin{tabular}{l}
(21) \\
(22) \\
(23) \\
(24) \\
(25) \\
(26) \\
(27) \\
(28)
\end{tabular} & \begin{tabular}{l}
\(t_{s}\)
\(t_{n}\) \(t_{s}\) \(t_{h}\) \({ }^{\mathrm{t}} \mathrm{w} \mathrm{CP}(\mathrm{L})\) \\
\(\mathrm{t}_{\mathrm{w}} \mathrm{CP}(\mathrm{H})\) \\
\({ }^{t} w{ }_{w}\) (L) \\
\({ }^{t} \mathrm{w} C P(H)\)
\end{tabular} & \begin{tabular}{l}
Set-Up Time, Select to CO Hold Time, Select to CO \\
Set-Up Time, IM to CO Hold Time, \(\mathrm{I}_{\mathrm{M}}\) to CO \\
Minimum Clock \\
Pulse-Width \\
Low and High (3) (1) \\
Minimum IX Pulse Width Low and High (1)
\end{tabular} & \[
\begin{gathered}
\hline 350 \\
0 \\
350 \\
0 \\
120 \\
120 \\
160 \\
160
\end{gathered}
\] & & & \[
\begin{gathered}
350 \\
0 \\
350 \\
0 \\
120 \\
\\
120 \\
160 \\
160
\end{gathered}
\] & & & & \[
\begin{aligned}
& C_{L} \leq 7 p F \text { on } \mathrm{O}_{\mathrm{X}} \text { (2) } \\
& \mathrm{C}_{\mathrm{L}}=15 \mathrm{pFF} . \\
& \text { Input Transition Times } \leq 20 \mathrm{~ns}
\end{aligned}
\] \\
\hline
\end{tabular}

NOTES. (1) Input Current and Quiescent Power Supply Current are relatively higher for this device because of active pull-up circuits on all inputs except IX. This is done for TTL compatibility.
(2) Propagation Delay (\(\mathrm{t}_{\mathrm{PLH}}\) and \(\mathrm{t}_{\mathrm{PHL}}\)) and Output Transition Times (\(\mathrm{T}_{\mathrm{TLH}}\) and \(\mathrm{T}_{\mathrm{THL}}\)) will change with Output Load Capacitance (\(\mathrm{C}_{\mathrm{L}}\)). Set-Up Times (\(\mathrm{t}_{\mathrm{S}}\)), Hold \(\mathrm{T}_{1}\) mes (\(t_{h}\)), and Minimum Pulse Width (\(t_{w}\)) do not vary with load capacitance.
(3) The first High Level Clock Pulse after \(E_{C P}\) goes Low and must be at least 350 ns long to guarantee reset of all Counters
(4) It is recommended that input rise and fall times to the Clock Inputs (CP. IX) be less than \(15 \mu \mathrm{~s}\).
(5) For multichannel operation, Propagation Delay (\(C O\) to \(Q_{n}\)) plus Set-Up Time, Select to \(C O\). is guaranteed to be \(\leq 367 \mathrm{~ns}\).

\section*{Capacitance \(T_{A}=+25^{\circ} \mathrm{C}\); Frequency \(=1 \mathrm{MHz}\)}
\begin{tabular}{|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & TYPICAL & UNITS & CONDITIONS \\
\hline CIN & Input Capacitance & 3 & pF & \begin{tabular}{l}
All measurements are \\
referenced the device GND
\end{tabular} \\
\hline COUT & Output Capacitance & 7 & pF & \\
\hline
\end{tabular}

NOTE: Set-Up and Hold Times are shown as positive values but may be specified as negative values.

\section*{A.C. Testing Input, Output Waveform}

\section*{Applications}

\section*{Single Channel Bit Rate Generator}

Figure 1 shows the simplest application of the HD-4702. This circuit generates one of five possible bit rates as determined by the setting of a single pole, 5 -position switch. The Bit Rate Output (Z) drives one standard TTL load or four low power Schottky loads over the full temperature range. The possible output frequencies correspond to 110, 150, 300, 1200, and 2400 Baud. For many low cost terminals, these five bit rates are adequate.

\section*{Simultaneous Generation of Several Bit Rates}

Figure 2 shows a simple scheme that generates eight bit rates on eight output lines, using one HD-4702 and one 93L34 Bit Addressable Latch. This and the following applications take advantage of the built-in scan counter (prescaler) outputs. As shown in the block diagram, these outputs (\(Q_{0}\) to \(Q_{2}\)) go through a complete sequence of eight states for every half-period of the highest output frequency (9600 Baud). Feeding these Scan Counter Outputs back to the Select Inputs of the multiplexer causes the HD-4702 to interrogate sequentially eight different frequency signals. The 93L34 8-bit addressable Latch, ad-

* See Table 3
\begin{tabular}{|c|c|}
\hline SWITCH POSITION & HD-4702 BIT RATE \\
\hline 1 & 110 Baud \\
2 & 150 Baud \\
3 & 300 Baud \\
4 & 1200 Baud \\
5 & 2400 Baud \\
\hline
\end{tabular}

FIGURE 1. SWITCH SELECTABLE BIT RATE GENERATOR CONFIGURATION PROVIDING FIVE BIT RATES.

FIGURE 3. 19200 BAUD OPERATION
* See Table 3
dressed by the same Scan Counter Outputs, re-converts the multiplexed single Output (Z) of the HD-4702 into eight parallel output frequency signals. In the simple scheme of Figure 2, input \(\mathrm{S}_{3}\) is left open (HIGH) and the following bit rates are generated:
\begin{tabular}{lll}
\(Q_{0}: 110\) Baud & \(Q_{1}: 9600\) Baud & \(Q_{2}: 4800\) Baud \\
Q \(_{3}: 1800\) Baud & \(Q_{4}: 1200\) Baud & \(Q_{5}: 2400\) Baud \\
Q \(_{6}: 300\) Baud & \(Q_{7}: 150\) Baud &
\end{tabular}

Other bit rate combinations can be generated by changing the Scan Counter to Selector interconnection or by inserting logic gates into this path.

\section*{19200 Baud Operation}

Though a 19200 Baud signal is not internally routed to the multiplexer, the HD-4702 can be used to generate this bit rate by connecting the Q2 output to the IM input and applying select code. An additional 2 -input NOR gate can be used to retain the "Zero Baud" feature on select code 1 for the HD-4702 (See Figure 3).

FIGURE 2. bit rate generator Configuration with EIGHT SIMULTANEOUS FREQUENCIES.
* See Table 3

TABLE 3. CRYSTAL SPECIFICATIONS
\begin{tabular}{|l|c|}
\hline \multicolumn{1}{|c|}{ PARAMETERS } & TYPICAL CRYSTAL SPEC \\
\hline Frequency & 2.4576 MHz "AT" Cut \\
Series Resistance (Max) & 250 \\
Unwanted Modes & -6.0 dB (Min) \\
Type of Operation & Parallel \\
Load Capacitance & \(32 \mathrm{pF}+0.5\) \\
\hline
\end{tabular}

HD-6402
CMOS Universal Asynchronous
Receiver Transmitter (UART)

The HD-6402 can be used in a wide range of applications including modems, printers, peripherals and remote data acquisition systems. Utilizing the HARRIS advanced scaled SAJI IV CMOS process permits operation clock frequencies up to 8.0 MHz (500 K Baud). Power requirements, by comparison, are reduced from 300 mW to 10 mW . Status logic increases flexibility and simplifies the user interface.
- Low Power CMOS Design
- Programmable Word Length, Stop Bits and Parity
- Automatic Data Formatting and Status Generation
- Compatible with Industry Standard UARTs
- Single +5V Power Supply

\section*{Description}

The HD-6402 is a CMOS UART for interfacing computers or microprocessors to an asynchronous serial data channel. The receiver converts serial start, data, parity, and stop bits. The transmitter converts parallel data into serial form and automatically adds start, parity, and stop bits. The data word length can be \(5,6,7\) or 8 bits. Parity may be odd or even. Parity checking and generation can be inhibited. The stop bits may be one or two or one and one-half when transmitting 5 bit code.

Functional Diagram
\((33)^{(32)}{ }_{(31)_{1}}{ }_{(20)}^{(29)^{(28)}(27)^{(26)}}\)

\section*{Control Definition}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{CONTROL WORD} & \multicolumn{4}{|r|}{CHARACTER FORMAT} \\
\hline C & C & & & & & & & \\
\hline L & L & P & E & S & & & & \\
\hline S & S & 1 & P & B & START & DATA & PARITY & STOP \\
\hline 2 & 1 & & E & S & BIT & BITS & BIT & BITS \\
\hline 0 & 0 & 0 & 0 & 0 & 1 & 5 & ODD & 1 \\
\hline 0 & 0 & 0 & 0 & 1 & 1 & 5 & ODD & 1.5 \\
\hline 0 & 0 & 0 & 1 & 0 & 1 & 5 & EVEN & 1 \\
\hline 0 & 0 & 0 & 1 & 1 & 1 & 5 & EVEN & 1.5 \\
\hline 0 & 0 & 1 & \(\times\) & 0 & 1 & 5 & NONE & 1 \\
\hline 0 & 0 & 1 & \(\times\) & 1 & 1 & 5 & NONE & 1.5 \\
\hline 0 & 1 & 0 & 0 & 0 & 1 & 6 & ODD & 1 \\
\hline 0 & 1 & 0 & 0 & 1 & 1 & 6 & ODD & 2 \\
\hline 0 & 1 & 0 & 1 & 0 & 1 & 6 & EVEN & 1 \\
\hline 0 & 1 & 0 & 1 & 1 & 1 & 6 & EVEN & 2 \\
\hline 0 & 1 & 1 & \(\times\) & 0 & 1 & 6 & NONE & 1 \\
\hline 0 & 1 & 1 & \(\times\) & 1 & 1 & 6 & NONE & 2 \\
\hline 1 & 0 & 0 & 0 & 0 & 1 & 7 & ODD & 1 \\
\hline 1 & 0 & 0 & 0 & 1 & 1 & 7 & ODD & 2 \\
\hline 1 & 0 & 0 & 1 & 0 & 1 & 7 & EVEN & 1 \\
\hline 1 & 0 & 0 & 1 & 1 & 1 & 7 & EVEN & 2 \\
\hline 1 & 0 & 1 & \(\times\) & 0 & 1 & 7 & NONE & 1 \\
\hline 1 & 0 & 1 & \(\times\) & 1 & 1 & 7 & NONE & 2 \\
\hline 1 & 1 & 0 & 0 & 0 & 1 & 8 & ODD & 1 \\
\hline 1 & 1 & 0 & 0 & 1 & 1 & 8 & ODD & 2 \\
\hline 1 & 1 & 0 & 1 & 0 & 1 & 8 & EVEN & 1 \\
\hline 1 & 1 & 0 & 1 & 1 & 1 & 8 & EVEN & 2 \\
\hline 1 & 1 & 1 & X & 0 & 1 & 8 & NONE & 1 \\
\hline 1 & 1 & 1 & X & 1 & 1 & 8 & NONE & 2 \\
\hline
\end{tabular}

Pin Description
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline PIN & TYPE & SYMBOL & DESCRIPTION & PIN & TYPE & SYMBOL & DESCRIPTION \\
\hline 1
2
3 & & \[
\begin{gathered}
\mathrm{V}_{\mathrm{CC}}{ }^{*} \\
\text { NC } \\
\text { GND }
\end{gathered}
\] & Positive Voltage Supply No connection Ground & 16 & 1 & SFD & A high level on STATUS FLAGS DISABLE forces the outputs PE, FE, OE, DR, TBRE to a high impedance state. \\
\hline 4 & 1 & RRD & A high level on RECEIVER REGISTER DISABLE forces the receiver holding out- & 17 & 1 & RRC & The Receiver register clock is 16 X the receiver data rate. \\
\hline 5 & 0 & RBR8 & puts RBR1-RBR8 to a high impedance state. The contents of the RECEIVER BUFFER & 18 & 1 & \(\overline{\text { DRR }}\) & A low level on DATA RECEIVED RESET clears the data received output DR to a low level. \\
\hline & & & REGISTER appear on these three-state outputs. Word formats less than 8 characters are right justified to RBR1. & 19 & 0 & DR & A high level on DATA RECEIVED indicates a character has been received and transferred to the receiver buffer register. \\
\hline 6 & 0 & RBR7 & See Pin 5-RBR8 & 20 & 1 & RRI & \\
\hline 7 & 0 & RBR6 & See Pin 5-RBR8 & & & & is clocked into the receiver register. \\
\hline 8 & 0 & RBR5 & See Pin 5-RBR8 & 21 & 1 & MR & A high level on MASTER RESET clears PE, \\
\hline 9 & 0 & RBR4 & See Pin 5-RBR8 & & & & FE, OE, and DR to a low level and sets the \\
\hline 10 & 0 & RBR3 & See Pin 5-RBR6 & & & & transmitter register empty (TRE) to a high \\
\hline 11 & 0 & RBR2 & See Pin 5-RBR8 & & & & level 18 clock cycles after MR falling edge. \\
\hline 12 & 0 & RBR1 & See Pin 5-RBR8 & & & & register. This input must be pulsed at least \\
\hline 13 & 0 & PE & A high level on PARITY ERROR indicates received parity does not match parity programmed by control bits. When parity is inhibited this output is low. & & & & once after power up. The HD-6402 must be master reset after power up. The reset pulse should meet VIH and tMR. Wait 18 clock cycles after the falling edge of MR before \\
\hline 14 & 0 & FE & A high level on FRAMING ERROR indicates the first stop bit was invalid. & 22 & 0 & TBRE & beginning operation. \\
\hline 15 & 0 & OE & A high level on OVERRUN ERROR indicates the data received flag was not cleared before the last character was transferred to the receiver buffer register. & & & & REGISTER EMPTY indicates the transmitter buffer register has transferred its data to the transmitter register and is ready for new data. \\
\hline
\end{tabular}
*A \(0.1 \mu \mathrm{~F}\) decoupling capacitor from the \(\mathrm{V}_{\mathrm{CC}}\) pin to the GND pin is recommended.

\begin{tabular}{|c|c|c|c|}
\hline PIN & TYPE & SYMBOL & DESCRIPTION \\
\hline 23 & 1 & \(\overline{\text { TBRL }}\) & A low level on TRANMITTER BUFFER REGISTER LOAD transfers data from inputs TBR1-TBR8 into the transmitter buffer register. A low to high transition on TBRL initiates data transfer to the transmitter register. If busy, transfer is automatically delayed so that the two characters are transmitted end to end. \\
\hline 24 & 0 & TRE & A high level on TRANSMITTER REGISTER EMPTY indicates completed transmission of a character including stop bits. \\
\hline 25 & 0 & TRO & Character data, start data and stop bits appear serially at the TRANSMITTER REGISTER OUTPUT. \\
\hline 26 & 1 & TRB1 & Character data is loaded into the TRANSMITTER BUFFER REGISTER via inputs TBR1-TBR8. For character formats less than 8 bits the TBR8, 7, and 6 inputs are ignored corresponding to their programmed word length. \\
\hline 27 & 1 & TBR2 & See Pin 26 - TBR1. \\
\hline 28 & 1 & TBR3 & See Pin 26 - TBR1. \\
\hline 29 & 1 & TBR4 & See Pin 26 - TBR1. \\
\hline 30 & 1 & TBR5 & See Pin 26 - TBR1. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline PIN & TYPE & SYMBOL & DESCRIPTION \\
\hline 31 & 1 & TBR6 & See Pin 26 - TBR1. \\
\hline 32 & 1 & TBR7 & See Pin 26 - TBR1. \\
\hline 33 & 1 & TBR8 & See Pin 26 - TBR1. \\
\hline 34 & 1 & CRL & A high level on CONTROL REGISTER LOAD loads the control register with the control word. The control word is latched on the falling edge of CRL. See Figure 2. \\
\hline 35 & 1 & PI & A high level on PARITY INHIBIT inhibits parity generation, parity checking and forces PE output low. \\
\hline 36 & 1 & SBS & A high level on STOP BIT SELECT selects 1.5 stop bits for 5 character format and 2 stop bits for other lengths. \\
\hline 37 & 1 & CLS2 & These inputs program the CHARACTER LENGTH SELECTED (CLS1 low CLS2 low 5 bits) (CLS1 high CLS2 low 6 bits) (CLS1 low CLS2 high 7 bits) (CLS1 high CLS2 high 8 bits). \\
\hline 38 & 1 & CLS1 & See Pin 37 - CLS2. \\
\hline 39 & 1 & EPE & When PI is low, a high level on EVEN PARITY ENABLE generates and checks even parity. A low level selects odd parity. \\
\hline 40 & 1 & TRC & The TRANSMITTER REGISTER CLOCK is 16X the transmit data rate. \\
\hline
\end{tabular}

\section*{Transmitter Operation}

The transmitter section accepts parallel data, formats the data and transmits the data in serial form on the Transmitter Register Output (TRO) terminal (See serial data format). Data is loaded from the inputs TBR1-TBR8 into the Transmitter Buffer Register by applying a logic low on the Transmitter Buffer Register Load (TBRL) input (A). Valid data must be present at least \(t_{\text {set }}\) prior to and thold following the rising edge of TBRL. If words less than 8 bits are used, only the least significant bits are transmitted. The character is right justified, so the least significant bit corresponds to TBR1 (B).

The rising edge of TBRL clears Transmitter Buffer Register Empty (TBRE). 0 to 1 Clock cycles later, data is
transferred to the transmitter register, the Transmitter Register Empty (TRE) pin goes to a low state, TBRE is set high and serial data information is transmitted. The output data is clocked by Transmitter Register Clock (TRC) at a clock rate 16 times the data rate. A second low level pulse on TBRL loads data into the Transmitter Buffer Register (C). Data transfer to the transmitter register is delayed until transmission of the current data is complete (D). Data is automatically transferred to the transmitter register and transmission of that character begins one clock cycle later.

TRANSMITTER TIMING (NOT TO SCALE)

\section*{Receiver Operation}

Data is received in serial form at the Receiver Register Input (RRI). When no data is being received, RRI must remain high. The data is clocked through the Receiver Register Clock (RRC). The clock rate is 16 times the data rate. A low level on Data Received Reset (\(\overline{\mathrm{DRR}}\)) clears the Data Receiver (DR) line (A). During the first stop bit data is transferred from the Receiver Register to the Receiver Buffer Register (RBR) (B). If the word is less than 8 bits, the unused most significant bits will be a logic low.

The output character is right justified to the least significant bit RBR1. A logic high on Overrun Error (OE) indicates overruns. An overrun occurs when DR has not been cleared before the present character was transferred to the RBR. One clock cycle later DR is reset to a logic high, and Framing Error (FE) is evaluated (C). A logic high on FE indicates an invalid stop bit was received, a framing error. A logic high on Parity Error (PE) indicates a parity error.

SERIAL DATA
FORMAT

\section*{Start Bit Detection}

The receiver uses a 16 X clock timing. The start bit could have occurred as much as one clock cycle before it was detected, as indicated by the shaded portion (A). The center of the start bit is defined as clock count \(7 \frac{1}{2}\). If the receiver clock is a symmetrical square wave, the center of
the start bit will be located within \(\pm 1 / 2\) clock cycle, \(\pm 1 / 32\) bit or \(3.125 \%\) giving a receiver margin of \(46.875 \%\). The receiver begins searching for the next start bit at the center of the first stop bit.

\section*{Absolute Maximum Ratings}

Supply Voltage +8.0 Volts
Input, Output or I/O Voltage Applied GND -0.5 V to \(\mathrm{VCC}+0.5 \mathrm{~V}\)
\(\theta_{\text {jc }}\)
250ㅇ/W (CERDIP package)
ja
\(70^{\circ} \mathrm{C} / \mathrm{W}\) (CERDIP package)
Storage Temperature Range \(\qquad\) \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\) Gate Count 1,643 Gates

Maximum Package Power Dissipation
Junction Temperature \(\qquad\) \(+150^{\circ} \mathrm{C}\)

CAUTION: Stresses above those listed in the "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

\section*{Operating Conditions}
```

Operating Voltage Range
+4.5V to +5.5V
Operating Temperature Ranges
HD-6402R-9 .......................................................................................................400}\textrm{C}\mathrm{ to +850}\textrm{C
HD-6402R-2/-8 .............................................................................................-550}\textrm{C}\mathrm{ to +1250}\textrm{C

```

Electrical Specifications \(V_{C C}=5.0 \mathrm{~V} \pm 10 \%, \quad T_{A}=-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}(\mathrm{HD}-6402 \mathrm{R}-9)\),
\(\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) (HD-6402R-2/-8)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow{11}{*}{D.C.} & SYMBOL & PARAMETER & MIN & MAX & UNITS & CONDITIONS \\
\hline & \(\mathrm{V}_{\mathrm{IH}}\) & Logical "1" Input Voltage & \[
\begin{aligned}
& 2.0 \\
& 2.2
\end{aligned}
\] & & \[
\begin{aligned}
& \mathrm{V} \\
& \mathrm{v}
\end{aligned}
\] & \[
\begin{aligned}
& \text { HD-6402R-9 } \\
& \text { HD-6402R-2/-8 }
\end{aligned}
\] \\
\hline & \(V_{\text {IL }}\) & Logical "0" Input Voltage & & 0.8 & V & \\
\hline & \(\mathrm{V}_{\text {IHC }}\) & Logical "1" Clock Input Voltage & 2.0 & & v & HD-6402R-9 \\
\hline & \(\mathrm{V}_{\text {ILC }}\) & Logical "0" Clock Input Voltage & 2.2 & 0.8 & V & HD-6402R-2/8 \\
\hline & II & Input Leakage & -1.0 & 1.0 & \(\mu \mathrm{A}\) & \(\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}\) or GND \\
\hline & \(\mathrm{V}_{\mathrm{OH}}\) & Logical "1" Output Voltage & \[
\begin{gathered}
3.0 \\
\operatorname{vCC}-0.4
\end{gathered}
\] & & \[
\begin{aligned}
& \mathrm{V} \\
& \mathrm{v}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{IOH}=-2.5 \mathrm{~mA} \\
& \mathrm{IOH}=-100 \mu \mathrm{~A}
\end{aligned}
\] \\
\hline & \(\mathrm{V}_{\text {OL }}\) & Logical "0" Output Voltage & & 0.40 & V & \(\mathrm{IOL}=+2.5 \mathrm{~mA}\) \\
\hline & 10 & Output Leakage & -1.0 & 1.0 & \(\mu \mathrm{A}\) & \(\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}\) or GND \\
\hline & \({ }^{\text {I CcsB }}\) & Standby Current & & 100 & \(\mu \mathrm{A}\) & \[
\begin{aligned}
& \mathrm{V}_{I N}=G N D \text { or } \mathrm{V}_{C C} \\
& \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V} \text {, Output Open }
\end{aligned}
\] \\
\hline & ICCOP & Operating Supply Current* & & 2.0 & mA & \(V_{C C}=5.5 \mathrm{~V}\), Clock Freq. \(=\) \(2 \mathrm{MHz}, \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}\) or GND , Outputs Open. \\
\hline
\end{tabular}
*Guaranteed, but not \(100 \%\) tested.
Capacitance \(T_{A}=25^{\circ} \mathrm{C}\)
\begin{tabular}{|c|l|l|c|c|c|}
\hline SYMBOL & \multicolumn{1}{|c|}{ PARAMETER } & & TYPICAL & UNITS & CONDITIONS \\
\hline \hline \(\mathrm{C}_{\text {IN }}\) & Input Capacitance & & 8.0 & pF & \begin{tabular}{l}
Freq. \(=1 \mathrm{MHz}\), all measure- \\
ments are referenced to \\
device GND
\end{tabular} \\
\hline COUT & Output Capacitance & & 10.0 & pF & \\
\hline
\end{tabular}

Electrical Specifications \(V_{C C}=5.0 \mathrm{~V} \pm 10 \%, \quad T_{A}=-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}(\mathrm{HD}-6402 \mathrm{R}-9)\),
\(T_{A}=-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) (HD-6402R-2/-8)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow{7}{*}{A.C.} & SYMBOL & PARAMETER & MIN & MAX & UNITS & CONDITIONS \\
\hline & (1) fCLOCK & Clock Frequency & D.C. & 2.0 & MHz & \multirow{6}{*}{\begin{tabular}{l}
\[
C_{L}=50 \mathrm{pF}
\] \\
See Switching Time Waveforms 1, 2, 3
\end{tabular}} \\
\hline & (2) \(\mathrm{t}_{\mathrm{pw}}\) & Pulse Widths CRL, DRR, TBRL & 150 & & ns & \\
\hline & (3) tMR & Puise Width MR & 150 & & ns & \\
\hline & (4) \({ }^{\text {tSET }}\) & Input Data Setup Time & 50 & & ns & \\
\hline & (5) thold & Input Data Hold Time & 60 & & ns & \\
\hline & (6) teN & Output Enable Time & & 160 & ns & \\
\hline
\end{tabular}

\section*{Absolute Maximum Ratings}
\begin{tabular}{|c|c|}
\hline Supply Voltage..+8.0 Volts & 0jc250 \({ }^{\circ} \mathrm{C} / \mathrm{W}\) (CERDIP package) \\
\hline Input, Output or I/O Voltage Applied........ GND - 0.5V to & өja \(70^{\circ} \mathrm{C} / \mathrm{W}\) (CERDIP package) \\
\hline VCC + 0.5 V & Gate Count .. 1,643 Gates \\
\hline Storage Temperature Range-650 \({ }^{\circ}\) to \(+150{ }^{\circ} \mathrm{C}\) & Junction Temperature \({ }^{150}{ }^{\circ} \mathrm{C}\) \\
\hline Maximum Package Power Dissipation 1 Watt & Lead Temperature (Soldering, Ten Seconds) \(+275{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{Operating Conditions}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Operating Voltage Range ... +4.5 V to +5.5V} \\
\hline \multicolumn{2}{|l|}{Operating Temperature Ranges} \\
\hline HD-6402B-9. & \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) \\
\hline D-6402B-2/-8 & \(55^{\circ} \mathrm{C}\) to \(+125{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

Electrical Specifications \(V C C=5.0 \mathrm{~V} \pm 10 \%, T_{A}=-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}(\mathrm{HD}-6402 \mathrm{~B}-9)\),
\(\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) (HD-6402B-2/-8)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow{11}{*}{D.c.} & SYMBOL & PARAMETER & MIN & MAX & UNITS & CONDITIONS \\
\hline & \(\mathrm{V}_{\mathrm{IH}}\) & Logical "1" Input Voltage & \[
\begin{aligned}
& 2.0 \\
& 2.2
\end{aligned}
\] & & \[
\begin{aligned}
& \text { v } \\
& \text { v }
\end{aligned}
\] & \[
\begin{aligned}
& \text { HD-6402B-9 } \\
& \text { HD-6402B-2/-8 }
\end{aligned}
\] \\
\hline & \(V_{\text {IL }}\) & Logical "0" Input Voltage & & 0.8 & V & \\
\hline & \(\mathrm{V}_{\text {IHC }}\) & Logical "1" Clock Input Voltage & 2.0 & & V & HD-6402B-9 \\
\hline & \(\mathrm{V}_{\text {ILC }}\) & Logica! "0" Clock Input Voltage & 2.2 & 0.8 & V & HD-6402B-2/-8 \\
\hline & I & Input Leakage & -1.0 & 1.0 & \(\mu \mathrm{A}\) & \(V_{\text {IN }}=V_{C C}\) or GND \\
\hline & \(\mathrm{V}_{\mathrm{OH}}\) & Logical "1" Output Voltage & \[
\begin{gathered}
3.0 \\
\text { VCC }-0.4
\end{gathered}
\] & & \[
\begin{aligned}
& \mathrm{V} \\
& \mathrm{v}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{IOH}=-2.5 \mathrm{~mA} \\
& \mathrm{OH}=-100 \mu \mathrm{~A}
\end{aligned}
\] \\
\hline & \(\mathrm{V}_{\mathrm{OL}}\) & Logical "0" Output Voltage & & 0.40 & V & \(1 \mathrm{OL}=+2.5 \mathrm{~mA}\) \\
\hline & Io & Output Leakage & -1.0 & 1.0 & \(\mu \mathrm{A}\) & \(\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\text {CC }}\) or GND \\
\hline & \({ }^{\text {I CCSB }}\) & Standby Current & & 100 & \(\mu \mathrm{A}\) & \[
\begin{aligned}
& V_{I N}=G N D \text { or } V_{C C} \\
& V_{C C}=5.5 \mathrm{~V}, \text { Output Open }
\end{aligned}
\] \\
\hline & \({ }^{\text {I CCOP }}\) & Operating Supply Current* & & 2.0 & mA & \(\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}\), Clock Freq. \(2 \mathrm{MHz}, \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}\) or GND Outputs Open \\
\hline
\end{tabular}
*Guaranteed but not \(100 \%\) tested.
Capacitance \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)
\begin{tabular}{|c|l|c|c|c|}
\hline SYMBOL & \multicolumn{1}{|c|}{ PARAMETER } & TYPICAL & UNITS & CONDITIONS \\
\hline \hline C IN \(^{\text {COUT }}\) & Input Capacitance & 8.0 & pF & \begin{tabular}{l}
Freq. \(=1 \mathrm{MHz}\), all measure- \\
ments are referenced to \\
device GND
\end{tabular} \\
\hline
\end{tabular}

Electrical Specifications \(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%, T_{A}=-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}(\mathrm{HD}-6402-9)\), \(\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) (HD-6402-2/-8)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & SYMBOL & PARAMETER & MIN & MAX & UNITS & CONDITIONS \\
\hline \multirow{6}{*}{A.C.} & (1)fCLOCK & Clock Frequency & D.C. & 8.0 & MHz & \multirow{6}{*}{\begin{tabular}{l}
\[
C_{L}=50 \mathrm{pF}
\] \\
See Switching Time Waveforms 1, 2, 3
\end{tabular}} \\
\hline & (2) tpw & Pulse Widths CRL, DRR, TBRL & 75 & & ns & \\
\hline & (3) tMR & Pulse Width MR & 150 & & ns & \\
\hline & (4) tSET & Input Data Setup Time & 20 & & ns & \\
\hline & (5) tHOLD & Input Data Hold Time & 20 & & ns & \\
\hline & (6) \(t^{\text {E }}\) (& Output Enable Time & & 35 & ns & \\
\hline
\end{tabular}

\section*{Switching Waveforms}

FIGURE 1.
DATA INPUT CYCLE

CLSI, CLS2, SBS, PI, EPE

FIGURE 2.
CONTROL REGISTER LOAD CYCLE

FIGURE 3. STATUS FLAG OUTPUT ENABLE TIME OR DATA OUTPUT ENABLE TIME

\section*{Interfacing With The HD-6402}

TYPICAL SERIAL DATA LINK
A.C. Testing Input, Output Waveform

A.C. Testing: All input signals must switch between VIL -0.4 V and \(\mathrm{VIH}+\) 0.4 V . Input rise and fall times are driven at \(1 \mathrm{~ns} / \mathrm{V}\).

\section*{Features}
- Single Chip UART/BRG
- DC to 16 MHz Operation
- Crystal or External Clock Input
- On Chip Baud Rate Generator - 72 Selectable Baud Rates
- DMA or Vectored Interrupt Mode
- Maskable Interrupts
- Microprocessor Bus Oriented Interface
- Scaled SAJI IV CMOS Process
- Single 5V Power Supply
- Low Power - 1mA/MHz Typical
- Complete Modem Interface
- Line Break Generation and Detection
- Loopback and Echo Modes

\section*{Description}

The HD-6406 (PACI) is a high performance programmable Universal Asynchronous Receiver/Transmitter (UART) and Baud Rate Generator (BRG) on a single chip. Utilizing Harris Semiconductor's advanced Scaled SAJI IV CMOS process, the PACI will support data rates from DC to \(1 \mathrm{Mbaud}(0-16 \mathrm{MHz}\) clock). In addition to all standard UART functions, the PACI includes a complete Data Communications Equipment (DCE) interface.
Provision is made for DMA control of the PACl so that operation at the higher data rates is not hindered by slow microprocessor response times. An ALE control input permits direct interfacing to multiplexed data/address buses common to many microprocessors.
The interrupt structure of the PACI is user-programmable and can be configured to provide a single interrupt for any status change. A subsequent read of an internal status register will identify the source of the interrupt. If desired, the PACl can also provide separate hardware interrupt outputs for the receiver, transmitter and modem status changes. Separate error condition outputs can be used to pinpoint the exact cause of any detected error condition.

\section*{Pinout}
top VIEW

\footnotetext{
CAUTION: Electronic devices are sensitive to electrostatic discharge. Proper I.C. handling procedures should be followed.
}

\section*{Pin Description}
\begin{tabular}{|c|c|c|c|c|}
\hline PIN NUMBER & TYPE & SYMBOL & ACTIVE LEVEL & DESCRIPTION \\
\hline 1,39 & I & \(\overline{\mathrm{CSO}}, \mathrm{CS1}\) & Low, High & CHIP SELECTS: The chip select inputs act as enable signals for the \(\overline{R D}\) and \(\overline{W R}\) input signals during all non-DMA bus operations. \\
\hline 2 & 1 & \(\overline{\mathrm{RD}}\) & Low & READ: The \(\overline{R D}\) input causes data to be output to the data bus (D0-D7). The data output depends upon the state of the address inputs (A0, A1) during non-DMA operations. During DMA read operations (\(\overline{\mathrm{RXDACK}}\) true) the address inputs are ignored and the contents of the Receiver Buffer Register is output providing the DR bit in the Modem Status Register (MSR) is true. \\
\hline 3 & 1 & \(\overline{W R}\) & Low & WRITE: The \(\overline{W R}\) input causes data from the data bus (D0-D7) to be input to the PACI. Addressing and chip select action is the same as for read operations with the exception that TXDACK provides the select qualifier for DMA write operations providing the TBRE bit in the MSR is true. \\
\hline 4-11 & 1/0 & D0-D7 & High & DATA BITS 0-7: The Data Bus provides eight, 3-state input/output lines for the transfer of data, control and status information between the PACI and the CPU. For character formats of less than 8 bits, the corresponding D7, D6 and D5 are considered "don't cares" for data writes and are 0 for data reads. These lines are normally at their high impedance state except during read operations. D0 is the LSB and is the first serial data bit received or transmitted. \\
\hline 12, 13 & I & A0, A1 & High & ADDRESS 0,1: The address lines select the various internal registers during CPU bus operations. Qualified DMA operations ignore the address inputs and access the appropriate receive or transmit buffer register. \\
\hline 14 & 1 & ALE & High & ADDRESS LATCH ENABLE: ALE true enables the internal transparent address latches for the A0, A1 inputs. The address is latched when ALE goes false (low). \\
\hline 15 & 1 & \(\overline{\text { TXDACK }}\) & Low & TRANSMIT DMA ACKNOWLEDGE: A true \(\overline{\text { TXDACK }}\) notifies the PACI that a transmit DMA cycle has been granted. It acts as a chip select which enables the \(\overline{W R}\) input to access the Transmitter Buffer Register when the TBRE bit is in the USR is true. \\
\hline 16 & 1 & \(\overline{\text { RXDACK }}\) & Low & RECEIVE DMA ACKNOWLEDGE: A true \(\overline{\text { RXDACK }}\) notifies the PACI that a receive DMA cycle has been granted. It acts as a chip select which enables the \(\overline{R D}\) input to access the Receive Buffer Register when the DR bit in the USR is true. \\
\hline 17, 18 & I, O & IX, OX & & CRYSTAL/CLOCK: Crystal connections for the internal Baud Rate Generator. IX can also be used as an external clock input in which case OX should be left open. \\
\hline 19 & 0 & SDO & High & SERIAL DATA OUTPUT: Serial data output from the PACI transmitter circuitry. A Mark (1) is high and a Space (0) is low. SD0 is held in the Mark condition when the transmitter is disabled with \(\overline{\mathrm{CTS}}\) false, RST true, when the Transmitter Register is empty, or when in the Loop Mode. \\
\hline 20 & & GND & Low & GROUND: Power supply ground connection. \\
\hline 21 & 0 & TC & High & TRANSMISSION COMPLETE: TC goes true when a complete character, including stop bits, has been transmitted and TBRE is true. TC is reset with a data write to TBR, RST will set TC true. \\
\hline 22 & 1 & \(\overline{\text { RLSD }}\) & Low & RECEIVE LINE SIGNAL DETECT: The logical state of this input is reflected in the \(\overline{R L S D}\) bit of the Modem Status Register. Any change of state will cause an interrupt on INTR if INTEN and MIEN are true. \\
\hline 23 & 1 & \(\overline{\mathrm{CTS}}\) & Low & CLEAR TO SEND: The logical state of the \(\overline{\mathrm{CTS}}\) line is reflected in the CTS bit of the Modem Status Register. Any change of state of \(\overline{C T S}\) causes INTR to be set true when INTEN and MIEN are true. A false level on \(\overline{C T S}\) will inhibit transmission of data on the SDO in the Mark (high) state. If \(\overline{\mathrm{CTS}}\) goes false during transmission, the current character being transmitted will be completed. \(\overline{C T S}\) does not affect the Loop mode of operation. \\
\hline 24 & 1 & \(\overline{\text { DSR }}\) & Low & DATA SET READY: The logical state of the \(\overline{\text { DSR }}\) line is reflected in the Modem Status Register. Any change of state of DSR will cause INTR to be set if INTEN and MIEN are true. The state of this signal does not affect any other circuitry within the PACI. \\
\hline
\end{tabular}

Pin Description
\begin{tabular}{|c|c|c|c|c|}
\hline PIN NUMBER & TYPE & SYMBOL & ACTIVE LEVEL & DESCRIPTION \\
\hline 25 & 1 & \(\overline{\mathrm{RI}}\) & Low & RING INDICATOR: The logical state of the \(\overline{\mathrm{RI}}\) line is reflected inn the Modem Status Register. Any change of state of \(\overline{R I}\) will cause INTR to be set if INTEN and MIEN are true. The state of this signal does not affect any other circuitry within the PACl . \\
\hline 26 & 0 & \(\overline{\text { DTR }}\) & Low & DATA TERMINAL READY: The \(\overline{\text { DTR }}\) signal can be set (low) by writing a logic 1 to the appropriate bit in the Modem Control Register (MCR). This signal is cleared (high) by writing a logic 0 to the same bit in the MCR or whenever a RST (high) is applied to the PACI. \\
\hline 27 & 0 & \(\overline{\mathrm{RTS}}\) & Low & REQUEST TO SEND: The \(\overline{R T S}\) signal can be set (low) by writing a logic 1 to the appropriate bit in the MCR. This signal is cleared (high) by writing a logic 0 to the same bit in the MCR or whenever a RST (high) is applied to the PACI. \\
\hline 28 & 0 & CO & & CLOCK OUT: This output is user programmable to provide either buffered IX output or a buffered Baud Rate Generator (16X) clock output. The buffered IX (Crystal or external clock source) output is provided when the BRSR bit 7 is set to a zero. Writing a logic one to BRSR bit 7 causes the CO output to provide a buffered version of the internal Baud Rate Generator clock which operates at sixteen times the programmed baud rate. \\
\hline 29 & 0 & TBRE & High & TRAMSMITTER BUFFER REGISTER EMPTY: The TBRE output is set (high) whenever the Tranmitter Buffer Register (TBR) has transferred its data to the Transmit Register. Application of a RST to the PACI will also set the TBRE output. TBRE is cleared (low) whenever data is written to the TBR. \\
\hline 30 & I & RST & High & RESET: The RST input forces the PACI into an "Idle" mode in which all serial data activities are suspended. The Modem Control Register (MCR) along with its associated outputs are cleared. The UART Status Register (USR) is cleared except for the TBRE and TC bits which are set. The PACI remains in an "Idle" state until programmed to resume serial data activities. The RST input is a Schmitt trigger input. \\
\hline 31 & I & SIE & High & SINGLE INTERRUPT ENABLE: A true (high) level on the SIE input enables interrupts caused by the DR and TBRE status bits. This enables the user to utilize a single hardware interrupt signal (INTR) for any status change within the PACI. \\
\hline 32 & 1 & SFD & High & STATUS FLAGS DISABLE: Holding the SFD input true (high) prevents the true state of the USR bits PE, OE, FE and TC from causing an interrupt. This control input, like the SIE input, enables the user to define what status changes will effect the INTR output. \\
\hline 33 & 0 & INTR & High & INTERRUPT REQUEST: The INTR output is enabled by the INTEN bit in the Modem Control Register (MCR). The MIEN bit and the SIE and SFD control inputs selectively enable various status changes to provide an input to the INTR logic. Figure 9 shows an overall view of the relationship of these interrupt control signals. \\
\hline 34 & 1 & SDI & High & SERIAL DATA INPUT: Serial data input to the PACI receiver circuits. A Mark (1) is high, and a Space (0) is low. Data inputs on SDI are disabled when operating in the loop mode, when RST is true or when the Receiver Enable (REN) bit in the MCR register is false. \\
\hline 35 & 0 & OE & High & OVERRUN ERROR: A true level on the OE output indicates that the Receiver Buffer Register (RBR) was full when a character was received. Transfer to the RBR will not occur. OE is updated each time a character is transferred to the RBR. RST high will set OE low. \\
\hline 36 & 0 & FE & High & FRAMING ERROR: A true level on the FE output indicates that there were invalid stop bits in the last received character. The FE output is updated each time a character is transferred to the RBR. RST high will reset FE. \\
\hline 37 & 0 & PE & High & PARITY ERROR: PE is set true whenever the parity of a received character does not match the programmed parity. The PE output is updated each time a character is transferred to the RBR, PE is reset whenever RST is true or when no parity check is programmed. \\
\hline 38 & 0 & DR & High & DATA READY: A true level indicates that a character has been received, transferred to the RBR and is ready for transfer to the CPU. DR is reset on a data read of the RBR or when RST is true. \\
\hline 40 & & VCC & High & VCC: +5 Volt positive power supply pin. A \(0.1 \mu \mathrm{~F}\) decoupling capacitor from VCC (pin 40) to GND (pin 20) is recommended. \\
\hline
\end{tabular}

\section*{Functional Description}

\section*{RESET}

During and after power-up, the PACI should be given a RST high for at least two IX clock cycles in order to initialize and drive the PACl's circuits to an idle mode until proper programming can be done. A high on RST causes the following events to occur:
- Resets the internal BRG circuits, clock counters and bit counters. The Baud Rate Select Register (BRSR) is not affected.
- Clears the UART Status Register (USR) except for TC and TBRE which are set. The Modem Control Register (MCR) is also cleared. All of the discrete lines, memory elements and miscellaneous logic associated with these register bits are also cleared or turned off. Note that the UART Control Register (UCR) is not affected.

Following removal of the reset condition (RST low), the PACI remains in the idle mode until programmed to its desired system configuration.

\section*{PROGRAMMING THE HD-6406 PACI}

The complete functional definition of the PACl is programmed by the systems software. A set of control words (UCR, BRSR and MCR) must be sent out by the CPU to initialize the PACI to support the desired communication format. These control words will program the character length, number of stop bits, even/odd/no parity, baud rate etc. Once programmed, the PACI is ready to perform its communication functions.

The control registers can be written to in any order, however the MCR should be written to last because it controls the interrupt enables, modem control outputs and the receiver enable bit. Once the PACl is programmed and operational these registers can be updated any time that the PACl is not immediately transmitting or receiving data.

Table 1 shows the required control signals to access the PACI's internal registers.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline ALE & \(\overline{\text { CSO }}\) & CS1 & A1 & AO & \(\overline{\mathrm{WR}}\) & \(\overline{\mathrm{RD}}\) & OPERATION \\
\hline 1 or \(\bar{z}\) & 0 & 1 & 0 & 0 & 5 & 1 & Data bus \(\longrightarrow\) TBR \\
\hline 1 or \({ }^{1}\) & 0 & 1 & 0 & 0 & 1 & Z & RBR \(\longrightarrow\) Data bus \\
\hline 1 or Z & 0 & 1 & 0 & 1 & \(\underline{7}\) & 1 & Data bus \(\longrightarrow\) UCR \\
\hline 1 or \({ }^{1}\) & 0 & 1 & 0 & 1 & 1 & 2 & USR \(\longrightarrow\) Data bus \\
\hline 1 or z & 0 & 1 & 1 & 0 & 5 & 1 & Data bus \(\longrightarrow\) MCR \\
\hline 1 or \({ }^{\text {\% }}\) & 0 & 1 & 1 & 0 & 1 & \(\underline{2}\) & MCR \(\longrightarrow\) Data bus \\
\hline 1 or Z & 0 & 1 & 1 & 1 & 4 & 1 & Data bus \(\longrightarrow\) BRSR \\
\hline 1 or & 0 & 1 & 1 & 1 & 1 & \(\underline{2}\) & MSR \(\longrightarrow\) Data bus \\
\hline
\end{tabular}
table 1.
The Address Latch Enable (ALE) input acts as an address latch control signal during these operations. If ALE is left high, the address inputs A0, A1 must be held true during the entire bus operation (demultiplexed bus operation).

For multiplexed bus applications the address inputs AO, A1 are latched when ALE goes low. In this case A0 and A1 are not required to be held true for the entire bus cycle.

DMA control of the PACI is discussed in a later section of this data sheet and involves reading and writing of the Receiver and Transmitter Buffer Registers (RBR and TBR).

The following descriptions discuss the control registers in detail.

\section*{UART CONTROL REGISTER (UCR)}

The UCR is a write only register which configures the UART transmitter and receiver circuits. Data bits D7 and D6 are not used but should always be set to a zero in order to insure software compatibility with future product upgrades. During the Echo Mode, the transmitter always repeats the received word and parity, even when the UCR is programmed with different or no parity.

UCR

FIGURE 1.

\section*{BAUD RATE SELECT REGISTER (BRSR)}

The PACI is designed to operate with a single crystal or external clock driving the IX input pin. The Baud Rate Select Register is used to select which divide ratio (one of 72) the internal Baud Rate Generator circuitry will use. The internal circuitry is seperated into two separate counters, a Prescaler and a Divisor Select. The Prescaler can be set to any one of four division rates, \(\div 1, \div 3, \div 4\), or \(\div 5\). This Prescaler design has been optimized to provide standard baud rates using any one of three popular crystal frequencies. By using one of these common system clock frequencies, \(1.8432 \mathrm{MHz}, 2.4576 \mathrm{MHz}\) or 3.072 MHz and a Prescaler of \(\div 3, \div 4\) or \(\div 5\) respectively, the Prescaler output will provide a constant \(614,400 \mathrm{~Hz}\). When this frequency is further divided by the Divisor Select counter, any of the standard baud rates from 50 to 38.4 K baud can be selected (see Table 2). Non-standard baud rates up to 1 Mbaud can be selected by using different input frequencies (up to 16 MHz) and/or different Prescaler and Divisor Select ratios. The baud rate generator provides a clock which is 16 times the desired
baud rate. For example, in order to operate at a 1 Mbaud data rate a 16 MHz crystal, a Prescale rate of \(\div 1\), and a Divisor Select rate of "external" would be used to provide a 16 MHz clock as the output of the Baud Rate Generator to the Transmitter and Receiver Circuits.
The CO select bit in the BRSR selects whether a buffered version of the external frequency input (IX input) or the Baud Rate Generator output (16X baud rate clock) will be output on the CO output (pin 28). The Baud Rate Generator output will always be a \(50 \%\) nominal duty cycle except when "external" is selected and the Prescaler is set to \(\div 3\) or \(\div 5\).

> BRSR

FIGURE 2.
\begin{tabular}{|c|c|}
\hline BAUD RATE & DIVISOR \\
\hline 38.4 K & External \\
19.2 K & 2 \\
9600 & 4 \\
7200 & \(16 / 3\) \\
4800 & 8 \\
3600 & \(32 / 3\) \\
2400 & 16 \\
\(2000^{\star}\) & \(58 / 3\) \\
\(1800^{\star}\) & 21 \\
1200 & 32 \\
600 & 64 \\
300 & 128 \\
200 & 192 \\
150 & 256 \\
\(134.5^{\star}\) & 288 \\
\(110^{\star}\) & 352 \\
75 & 512 \\
50 & 768 \\
\hline
\end{tabular}

TABLE 2.
Note: These baud rates are based upon the following input frequency/prescale divisor combinations.
1.8432 MHz and Prescale \(=\div 3\)
2.4576 MHz and Prescale \(=\div 4\)
3.072 MHz and Prescale \(=\div 5\)
* All baud rates are exact except for:
\begin{tabular}{|c|c|c|}
\hline BAUD RATE & ACTUAL & PERCENT ERROR \\
\hline 2000 & 1986.2 & \(0.69 \%\) \\
134.5 & 133.33 & \(0.87 \%\) \\
110 & 109.71 & \(0.26 \%\) \\
1800 & 1828.57 & \(1.56 \%\) \\
\hline
\end{tabular}

\section*{MODEM CONTROL REGISTER}

The MCR is a general purpose control register which can be written to and read from. The \(\overline{R T S}\) and DTR outputs are directly controlled by their associated bits in this register. Note that a logic one asserts a true logic level (low) at these output pins. The Interrupt Enable (INTEN) bit is the overall control for the INTR output pin. When INTEN is false, INTR is held false (low). The Operating Mode bits configure the PACI into one of four possible modes. "Normal" configures the PACI for normal full or half duplex communications. "Transmit Break" enables the transmitter to only transmit break characters (Start, Data and Stop bits all are logic zero). The Echo Mode causes any data that is received on the SDI input pin to be re-transmitted on the SDO output pin. Note that this output is a buffered version of the data seen on the SDI input and is not a re-synchronized output (see Figure 4). The Loop Test Mode internally routes transmitted data to the receiver circuitry for the purpose of self test. The transmit data is disabled from the SDO output pin. The Receiver Enable bit gates off the input to the receiver circuitry when in the false state. Modem Interrupt Enable will permit any change in modem status line inputs (CTS, \(\overline{\mathrm{RI}}, \overline{\mathrm{RLSD}}, \overline{\mathrm{DSR}}\)) to cause an interrupt when this bit is enabled. Bit D7 must always be written to with a logic zero to insure correct PACI operation.

MCR

FIGURE 3.

FIGURE 4. LOOP AND ECHO MODE FUNCTIONALITY

\section*{UART STATUS REGISTER (USR)}

The USR provides a single register that the controlling system can examine to ascertain if errors have occurred or if other status changes in the PACI require the system's attention. For this reason, the USR is usually the first register read by the CPU to determine the cause of an interrupt or to poll the status of the PACI. Reading the USR clears all of the status bits in the USR but does not affect associated output pins. Three error flags OE, FE and PE report the status of any error conditions detected in the receiver circuitry. These error flags are updated with every character received during reception of the stop bits. The Overrun Error (OE) indicates that a character in the Receiver Register has been received and cannot be transferred to the Receiver Buffer Register (RBR) because the RBR was not read by the CPU. Framing Error (FE) indicates that last character received contained improper stop bits. This could be caused by the total absence of the required stop bit(s) or by a stop bit(s) that was too short to be properly detected. Parity Error (PE) indicates that the last character received contained a parity error based on the programmed parity of the receiver and the calculated parity of the received characters data and parity bits.

The Received Break (RBRK) status bit indicates that the last character received was a break character. A break character would be considered to be an invalid data character in that the entire character including parity and stop bits are a logic zero.
The Modem Status bit is set whenever a transition is detected on any of the Modem input lines (\(\overline{R I}, \overline{R L S D}, \overline{C T S}\) or DSR). A subsequent read of the Modem Status Register will show the state of these four signals. Assertion of this bit will cause an interrupt (INTR) to be generated if the MIEN and INTEN bits in the MCR register are enabled.
The Transmission Complete (TC) bit indicates that both the TBR and Transmitter Registers are empty and the PACI has completed transmission of the last character it was commanded to transmit. The assertion of this bit will cause an interrupt (INTR) if the SFD (pin 32) input is low and the INTEN bit in the MCR register is true.

USR

FIGURE 5
The Transmitter Buffer Register Empty (TBRE) bit indicates that the TBR register is empty and ready to receive another character. Assertion of this bit will cause an interrupt if the SIE (pin 31) input is high and the INTEN bit in the MCR is enabled.

The Data Ready (DR) bit indicates that the RBR has been loaded with a received character and that the CPU may access this data. An interrupt will be generated (INTR) if SIE input is high and the INTEN bit is enabled.

\section*{MODEM STATUS REGISTER (MSR)}

The MSR provides a means whereby the CPU can read the modem signal inputs by accessing the data bus interface of the PACl . Like all of the register images of external pins in the PACI, true logic levels are represented by a high (1) signal level. By following this consistent definition the system software need not be concerned with whether external signals are high or low true. In particular the modem signal inputs are low true, thus a 0 (true assertion) at a modem input pin is represented by a 1 (true) in the MSR.

Any change of state of any of the modem input signals will set the Modem Status (MS) bit in the USR register. When this happens an interrupt (INTR) will be generated if the MIEN and INTEN bits of the MCR are enabled.

The Ring Indicator (\(\overline{\mathrm{RI}}\)) input indicates to the PACI that the modem is receiving a ringing signal.

The Receive Line Signal Detect (\(\overline{\operatorname{RLSD}}\)) input is used to notify the PACI that the signal quality received by the modem is within acceptable limits.

The Data Set Ready (\(\overline{\mathrm{DSR}}\)) input is a status indicator from the modem to the PACl which indicates that the modem is ready to provide received data to the PACI receiver circuitry.

Clear to Send (\(\overline{\text { CTS }})\) is both a status and control signal from the modem that tells the PACI that the modem is ready to receive transmit data from the PACl transmitter output (SDO). A high (false) level on this input will inhibit the PACl from beginning transmission and if asserted in the middle of a transmission will only permit the PACI to finish transmission of the current character.

MSR

FIGURE 6

\section*{RECEIVER BUFFER REGISTER (RBR)}

The receiver circuitry in the PACl is programmable for 5 , 6,7 or 8 data bits per character. For words of less than 8 bits, the data is right justified to the LSB (DO). Bit DO of a data word is always the first data bit received. The unused bits in a less than 8 bit word, at the parallel interface, are set to 0 by the PACI. Received data at the SDI input pin is shifted into the Receiver Register by an internal 1X clock
which has been synchronized to the incoming data based on the position of the start bit. When a complete character has been shifted into the Receiver Register, the assembled data bits are parallel loaded into the Receiver Buffer Register. Both the DR output pin and DR flag in the USR register are set. This double buffering of the received data permits continuous reception of data without losing any of the received data. While the Receiver Register is shifting a new character into the PACI, the Receiver Buffer Register is holding a previously received character for the system CPU to read. Failure to read the data in the RBR before complete reception of the next character can result in the loss of the data in the Receiver Register. The OE flag in the USR register indicates the overrun condition.

RBR
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline D7 & D6 & D5 & D4 & D3 & D2 & D1 & DO \\
\hline
\end{tabular}

Note: The LSB, Bit 0 is the first serial data bit received.
FIGURE 7.

\section*{TRANSMITTER BUFFER REGISTER (TBR)}

The Transmitter Buffer Register (TBR) accepts parallel data from the microprocessor data bus (D0-D7) and holds it until the Transmitter Register is empty and ready to accept a new character for transmission. The transmitter always has the same word length and number of stop bits as the receiver. For words of less than 8 bits the unused bits at the microprocessor data bus are ignored by the transmitter. Bit 0, which corresponds to DO at the data bus, is always the first serial data bit transmitted. Provision is

TBR

Note: The LSB, Bit 0 is the first serial data bit transmitted
FIGURE 8.
made for the transmitter parity to be the same or different from the receiver. The TBRE output pin and flag (USR register) reflect the status of the TBR. The TC output pin and flag (USR register) indicates when both the TBR and TR are empty.

\section*{PACI INTERRUPT STRUCTURE}

The PACl has provision for both software and hardware masking of interrupts generated for the INTR output pin. The two input pins, SIE and SFD, provide the mask control for the receiver and transmitter status interrupts. Two control bits in the MCR register, MIEN and INTEN, control modem status interrupts and overall PACI interrupts respectively. Figure 9 illustrates the logical control function provided by these signals.

The modem status inputs (\(\overline{\operatorname{LSSD}}, \overline{\mathrm{RI}}, \overline{\mathrm{DSR}}\) and \(\overline{\mathrm{CTS}}\)) will trigger the edge detection circuitry with any change of status. Reading the MSR register will clear the detect circuit but has no effect on the status bits themselves. These status bits always reflect the state of the input pins regardless of the mask control signals. Note that the state (high or low) of the status bits are inverted versions of the actual input pins.

The edge detection circuits for the USR register signals will trigger only for a positive edge (true assertion) of these status bits. Reading the USR register not only clears the edge detect circuit but also clears (sets to 0) all of the status bits. The output pins associated with these status bits are not affected by reading the USR register.

FIGURE 9.

\section*{DMA CONTROL OF THE PACI}

Because of the high data rates possible with the PACI , provision for DMA control of the transmitter and receiver buffer registers has been included in the design. The \(\overline{\text { RXDACK }}\) and \(\overline{\text { TXDACK }}\) inputs in conjunction with the \(\overline{\mathrm{RD}}\) and \(\overline{\mathrm{WR}}\) inputs are driven by the system DMA controller to access the RBR and TBR registers respectively.

Reading of the RBR via the \(\overline{\text { RXDACK }}\) control signal requires that the DR bit in the USR is set (high) and that the \(\overline{R D}\) input be driven low. When these conditions are
met the address logic overrides the address inputs (AO, A1) and forces a read of the RBR. Similarly, a DMA write to the TBR requires that the TBRE bit in the USR register is set (high) and that TXDACK and \(\overline{W R}\) are asserted by the DMA controller. Once again the address logic overrides the address inputs and forces a write to the TBR register.

The \(\overline{\mathrm{CSO}}\) and CS1 inputs would normally be in their inactive state during DMA accesses. The A0, A1, and ALE inputs are overridden during DMA operations and as such their logical state is a don't care.

\section*{CRYSTAL OPERATIONS}

The PACI crystal oscillator circuitry is designed to operate with a fundamental, parallel resonent crystal. This circuit is the same as used in the Harris 82C84A clock generator/ driver and as such the general applications information contained in Tech Brief TB-47 that applies to the oscillator operation will be pertinent to the PACl . To summarize Table 3 and Figure 10 show the required crystal parameters and crystal circuit configuration respectively.

When using an external clock source the Ix input is driven and the Ox output is left open. Power consumption when using an external clock is typically 2 times lower than when using a crystal. This is due to the sinusoidal nature of the drive circuitry when using a crystal.
\begin{tabular}{|c|c|}
\hline Parameter & TYPICAL CRYSTAL SPECIFICATION \\
\hline Frequency & 1.0 to 16MHz \\
\hline Type of Operation & Parallel resonent, Fund. mode \\
\hline Load Capacitance (CL) & 20 or \(32 \mathrm{pf}\). . (typ.) \\
\hline \(\mathrm{R}_{\text {series }}(\) Max.) & \[
\begin{aligned}
& 100 \text { ohms (} \mathrm{f}=16 \mathrm{MHz}, \mathrm{CL}=32 \mathrm{pf} .) \text {) } \\
& 200 \text { ohms (} \mathrm{f}=16 \mathrm{MHz}, \mathrm{CL}=20 \mathrm{pf} . \text {) }
\end{aligned}
\] \\
\hline
\end{tabular}

TABLE 3.

* \(\mathrm{C} 1=\mathrm{C} 2 \approx 20 \mathrm{pf}\) for \(\mathrm{CL}=20 \mathrm{pf}\). \(C 1=C 2 \approx 47 \mathrm{pf}\) for \(\mathrm{CL}=32 \mathrm{pf}\).

FIGURE 10.

REGISTER BIT ASSIGNMENT SUMMARY
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{REGISTER NAME} & \multirow[b]{2}{*}{MNEMONIC} & \multicolumn{8}{|c|}{BIT ASSIGNMENT} \\
\hline & & LSB 0 & 1 & 2 & 3 & 4 & 5 & 6 & MSB 7 \\
\hline Receiver Buffer & RBR & Bit 0 & Bit 1 & - Bit 2 & Bit 3 & Bit 4 & Bit 5 & Bit 6 & Bit 7 \\
\hline Transmitter Buffer & TBR & Bit 0 & Bit 1 & Bit 2 & Bit 3 & Bit 4 & Bit 5 & Bit 6 & Bit 7 \\
\hline \begin{tabular}{l}
UART \\
Status
\end{tabular} & USR & Parity Error (PE) & Framing Error (FE) & Overrun Error (OE) & Received Break (RBRK) & Modem Status (MS) & Transmission Complete (TC) & Transmitter Buffer Reg. empty (TBRE) & Data Ready (DR) \\
\hline \begin{tabular}{l}
UART \\
Control
\end{tabular} & UCR & Stop Bit Select & Parity Control 0 & Parity Control 1 & Parity Control 2 & Word Length 0 & Word Length 1 & Reserved* & Reserved * \\
\hline Modem Control & MCR & \begin{tabular}{l}
Request \\
To Send (RTS)
\end{tabular} & Data Terminal Ready (DTR) & Interrupt Enable (INTEN) & Mode Select 0 & Mode Select 1 & Receiver Enable (REN) & \begin{tabular}{l}
Modem \\
Interrupt enable (MIEN)
\end{tabular} & 0 \\
\hline Modem Status & MSR & Clear to Send (CTS) & Data Set Ready (DSR) & Recesved Line Signal Detect (RLSD) & Ring Indicator (RI) & \begin{tabular}{l}
Not \\
Used
\end{tabular} & Not Used & \begin{tabular}{l}
Not \\
Used
\end{tabular} & Not Used \\
\hline Bit Rate Select & BRSR & \begin{tabular}{l}
Prescaler \\
Select 0
\end{tabular} & \begin{tabular}{l}
Prescaler \\
Select 1
\end{tabular} & \begin{tabular}{l}
Divisor \\
Select 0
\end{tabular} & \begin{tabular}{l}
Divisor \\
Select 1
\end{tabular} & Divisor Select 2 & \begin{tabular}{l}
Divisor \\
Select 3
\end{tabular} & \begin{tabular}{l}
Divisor \\
Select 4
\end{tabular} & Co Select \\
\hline
\end{tabular}
*Reserved for future use. Always set to zero (0) to maintain future software compatibility.

\section*{Absolute Maximum Ratings}
\begin{tabular}{|c|c|}
\hline Su & 2100/W (LCC Package) \\
\hline Input, Output or I/O Voltage Applied......... GND -0.5V to & \(\theta_{\mathrm{ja}}\).....................................430\({ }^{\text {a }}\) /W (CERDIP Package) \\
\hline VCC +0.5V & \(48^{\circ} \mathrm{C} / \mathrm{W}\) (LCC Package) \\
\hline Storage Temperature Range-650 \({ }^{\circ}\) to \(+150{ }^{\circ} \mathrm{C}\) & Gate Count.. 1500 Gates \\
\hline Maximum Package Power Dissipation 1 Watt & Junction Temperature....................................... \(+150{ }^{\circ}\) \\
\hline \(\theta_{\mathrm{jc}}\)..................................... \(16^{\circ} \mathrm{C} / \mathrm{W}\) (CERDIP Package) & Lead Temperature (Soldering, Ten Seconds) \({ }^{+2750}\) \\
\hline
\end{tabular}

CAUTION: Stresses above those listed in the "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operation section of this specification is not implied.

\section*{Operating Conditions}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Operating Voltage Range ... +4.5 V to +5.5V} \\
\hline \multicolumn{2}{|l|}{Operating Temperature Range} \\
\hline HD-6406-5... & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) \\
\hline HD-6406-9. & \(0^{\circ} \mathrm{C}\) to \(+85{ }^{\circ} \mathrm{C}\) \\
\hline HD-6406-2/-8 & \(0^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}
D. C. Specifications \(\quad V C C=5.0 \mathrm{~V} \pm 10 ; \quad \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}(6406-5)\);
\(T_{A}=-40^{\circ} \mathrm{C}\) to \(+85{ }^{\circ} \mathrm{C}\) (6406-9);
\(T_{A}=-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}(6406-2 /-8)\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & MIN & MAX & UNITS & TEST CONDITIONS \\
\hline VIH & Logical One Input Voltage & \[
\begin{aligned}
& 2.0 \\
& 2.2
\end{aligned}
\] & & V & \[
\begin{aligned}
& \text { HD-6406-5/-9 } \\
& \text { HD-6406-2/-8 }
\end{aligned}
\] \\
\hline VIL & Logical Zero Input Voltage & & 0.8 & V & \\
\hline VTH & Schmidt Trigger Logical One Input Voltage & vcc -0.5 & & V & Reset Input \\
\hline VTL & Schmidt Trigger Logical Zero Input Voltage & & GND +0.5 & v & Reset Input \\
\hline VIH (CLK) & Logical One Clock Voltage & VCC -0.5 & & V & \\
\hline VIL (CLK) & Logical Zero Clock Voltage & & GND +0.5 & V & External Clock \\
\hline VOH & Output High Voltage & \[
\begin{gathered}
3.0 \\
\text { VCC }-0.4
\end{gathered}
\] & & v & \[
\begin{aligned}
& 10 \mathrm{OH}=+2.5 \mathrm{~mA} \\
& 10 \mathrm{H}=-400 \mu \mathrm{~A}
\end{aligned}
\] \\
\hline VOL & Output Low Voltage & & 0.4 & V & \(10 \mathrm{~L}=+2.5 \mathrm{~mA}\) \\
\hline 11 & Input Leakage Current & -1.0 & +1.0 & LA & VIN = GND or VCC, DIP Pins 1, 2, 3, 12-16, 22-25, 30, 31, 32, 34-39 \\
\hline 10 & Input/Output Leakage Current & -10.0 & +10.0 & LA & VO = GND or VCC, DIP Pins 4-11 \\
\hline ICCOP* & Operating Power Supply Current & & 3 & mA & External Clock \(F=2.4576\) \(\mathrm{MHz}, \mathrm{VCC}=5.5 \mathrm{~V}, \mathrm{VIN}=\mathrm{VCC}\) or GND, Outputs Open \\
\hline
\end{tabular}
*Guaranteed and sampled, but not \(100 \%\) tested. ICCOP is typically \(\leq 1 \mathrm{~mA} / \mathrm{MHz}\).

Capacitance \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)
\begin{tabular}{|c|l|c|c|c|}
\hline SYMBOL & \multicolumn{1}{|c|}{ PARAMETER } & TYP & UNITS & TEST CONDITIONS \\
\hline CIN \(^{*}\) & Input Capacitance & 10 & pF & \begin{tabular}{l}
FREQ \(=1 \mathrm{MHz}\), all measure- \\
ments are referenced to \\
device GND
\end{tabular} \\
\hline COUT \(^{*}\) & Output Capacitance & 15 & pF & pF \\
\hline \(\mathrm{CI} / \mathrm{O}^{*}\) & I/O Capacitance & 20 & \\
\hline
\end{tabular}
*Guaranteed and sampled, but not \(100 \%\) tested.
A.C. Specifications \(\quad \mathrm{VCC}=+5 \mathrm{~V} \pm 10 \%, \quad \mathrm{GND}=0 \mathrm{~V}: \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\) to \(+70{ }^{\circ} \mathrm{C}\) (HD-6406-5)
\[
T_{A}=-400^{\circ} \mathrm{C} \text { to }+850^{C} \text { (HD-6406-9) }
\]
\[
\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}(\mathrm{HD}-6406-2 /-8)
\]

TIMING REQUIREMENTS \& RESPONSES
\begin{tabular}{|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & MIN & MAX & UNITS & TEST CONDITIONS \\
\hline (1) TLHLL & ALE Pulse Width & 50 & & ns & \\
\hline (2) TAVLL & Address Setup & 20 & & ns & \\
\hline (3) TLLAX & Address Hold & 20 & & ns & \\
\hline (4) TSVCTL & Select Setup to Control Leading Edge & 30 & & ns & \\
\hline (5) TCTHSX & Select Hold from Control Trailing Edge & 50 & & ns & \\
\hline (6) TCTLCTH & Control Pulse Width & 150 & & ns & Control Consists of RD or WR \\
\hline (7) TCTHCTL & Control Disable to Control Enable & 190 & & ns & \\
\hline (8) TRLDV & Read Low to Data Valid & & 120 & ns & 1 \\
\hline (9) TRHDZ & Read Disable & 0 & 60 & ns & 2 \\
\hline (10) TCTHLH & Control Inactive to ALE High & 20 & & ns & \\
\hline (11) TDVWH & Data Setup Time & 50 & & ns & \\
\hline (12) TWHDX & Data Hold Time & 20 & & ns & \\
\hline (13) FC & Clock Frequency & 0 & 16 & MHz & \[
\begin{aligned}
& \text { TCHCL + TCLCH Must Be } \\
& \geq 62.5 \mathrm{~ns}
\end{aligned}
\] \\
\hline (14) TCHCL & Clock High Time & 25 & & ns & \\
\hline (15) TCLCH & Clock Low Time & 25 & & ns & \\
\hline (16) TR/TF & IX Input Rise/Fall Time (10\%-90\%) (External Clock) & & tx & ns & \(\mathrm{tx} \leq 1 /(6 \mathrm{FC})\) or 50 ns Whichever is Smaller \\
\hline (17) TFCO & Clock Output Fall Time & & 15 & ns & \(\mathrm{CL}=50 \mathrm{pF}\) \\
\hline (18) TRCO & Clock Output Rise Time & & 15 & ns & CL \(=50 \mathrm{pF}\) \\
\hline
\end{tabular}

\section*{A.C. Test Circuit}

\begin{tabular}{|l|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ TEST CONDITION } & V 1 & R 1 & R 2 & CL \\
\hline 1 Propagation Delay & 1.7 V & 520 & \(\infty\) & 100 pF \\
2 Disable Delay & VCC & 5 K & 5 K & 50 pF \\
\hline
\end{tabular}

\section*{A.C. Testing Input, Output Waveform}

ENABLE/DISABLE DELAY

OUTPUT \(\qquad\)
A.C. Testing: All inputs signals must switch between \(\mathrm{VIL}-0.4 \mathrm{~V}\) and \(\mathrm{VIH}+0.4 \mathrm{~V}\). Input rise and fall times are driven at 1 nsec per volt.

Timing Diagrams
MULTIPLEXED BUS OPERATION

DEMULTIPLEXED BUS OPERATION (ALE HIGH)

\section*{CMOS Asynchronous Serial \\ Manchester Adapter (ASMA)}

\section*{Features}
- Low Bit Error Rate
- One Megabit/sec Data Rate
- Sync Identification and Lock-in
- Clock Recovery
- Manchester II Encoder, Decode
- Separate Encode and Decode
- Low Operating Power: 50 mW at 5 Volts
- Single Power Supply
- 24 Pin Package
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{Pinout TOP VIEW} \\
\hline vw \({ }^{1}\) & \(24 \square \mathrm{vcc}\) \\
\hline Esc- 2 & 23 Ec \\
\hline то \({ }^{\text {c }}\) & \(22 \square\) Scl \\
\hline S00-4 & 21 صSD \\
\hline OC-5 & \(20 \square\) ss \\
\hline B21-6 & 19 صEE \\
\hline & \(18 \square \mathrm{SOI}\) \\
\hline U015 8 & 17 ص\(\overline{800}\) \\
\hline DSC-9 & 16 ص \(\overline{1}\) \\
\hline \(\cos 510\) & 15 ص \(\overline{\text { BzO }}\) \\
\hline OR \(\mathrm{C}^{11}\) & \(14 \square\) DBS \\
\hline GNO-12 & \(13 \square \mathrm{MR}\) \\
\hline
\end{tabular}

\section*{Description}

The HD-6408 is a CMOS/LSI Manchester Encoder/ Decoder for creating a very high speed asynchronous serial data bus. The Encoder converts serial NRZ data (typically from a shift register) to Manchester II encoded data adding a sync pulse and parity bit. The Decoder recognizes this sync pulse and identifies it as a Command Sync or a Data Sync. The data is then decoded and shifted out in NRZ code (typically into a shift register). Finally, the parity bit is checked. If there were no Manchester or parity errors the Decoder responds with a valid word
signal. The Decoder puts the Manchester code to full use to provide clock recovery and excellent noise immunity at these very high speeds.

The HD-6408 can be used in many commercial applications such as, security systems, environmental control systems, serial data links and many others. It utilizes a single 12 X clock and achieves data rates of up to one million bits per second with a very minimum overhead of only 4 bits out of 20 , leaving 16 bits for data.

\section*{Block Diagrams}

decoder

CAUTION: These devices are sensitive to electrostatic discharge. Proper I.C. handling procedures should be followed.

\section*{Absolute Maximum Ratings}

\author{
Supply Voltage
}
\(\qquad\) +7.0 Volts Input, Output or I/O Voltage Applied \(\qquad\) GND -0.5 V to \(\mathrm{V}_{\mathrm{CC}}{ }^{+0.3 \mathrm{~V}}\)
Storage Temperature Range. \(\qquad\) \(+150^{\circ} \mathrm{C}\)
1 Watt \({ }^{0} \mathrm{jc}\). \(\qquad\) 1 \(17^{\circ} \mathrm{C} / \mathrm{W}\) (CERDIP Package), \(23^{\circ} \mathrm{C} / \mathrm{W}\) (LCC Package)

CAUTION: Stresses above those listed in the "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operation section of this specification is not implied.

\section*{Operating Conditions}
Operating Voltage Range
Operating Temperature
\[
\begin{aligned}
& \text { Operating Temperature Range } \\
& \text { HD6408-9.. } 40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}
\end{aligned}
\]

Electrical Specifications
D.C.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & MIN & TYP & MAX & UNITS & TEST CONDITIONS \\
\hline \[
\begin{gathered}
V_{I H} \\
V_{I L} \\
V_{I H C} \\
V_{I L C} \\
I I \\
\\
V_{O H} \\
V_{\mathrm{OL}} \\
I_{\mathrm{CCSB}} \\
\mathrm{I}_{\mathrm{CCOP}}
\end{gathered}
\] & \begin{tabular}{l}
Logical"1" Input Voltage Logical "0" Input Voltage Logical "1" Input Voltage (Clock) Logical "0" Input Voltage (Clock) Input Leakage \\
Logical "1" Output Voltage Logical "0" Output Voltage Supply Current Standby Supply Current Operating*
\end{tabular} & \begin{tabular}{l}
\[
\begin{gathered}
70 \% \text { VCC } \\
\text { VCC }-0.5 \\
-1.0 \\
2.4
\end{gathered}
\] \\
Guaranteed
\end{tabular} & \[
\begin{gathered}
0.5 \\
8.0 \\
\text { thot } 100
\end{gathered}
\] & \[
\begin{gathered}
20 \% \text { VCC } \\
\text { GND }+0.5 \\
+1.0 \\
\\
0.4 \\
2 \\
10.0 \\
\text { tested) }
\end{gathered}
\] & \begin{tabular}{l}
V
V \\
v \\
v \\
\(\mu \mathrm{A}\) \\
v \\
V \\
mA \\
mA
\end{tabular} & \begin{tabular}{l}
\(V_{I N}=\) VCC OR GND, DIP Pins \\
\(5-8,11,13,16,18,19,20,22,23\) \\
\({ }^{\prime} \mathrm{OH}=-3 \mathrm{~mA}\) \\
\(1 \mathrm{OL}=1.8 \mathrm{~mA}\) \\
\(\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}\) Outputs Open \\
\(V_{C C}=5.5 \mathrm{~V}, \mathrm{f}=15 \mathrm{MHz}\)
\end{tabular} \\
\hline \multicolumn{7}{|l|}{ENCODER TIMING \(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \% \quad \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\)} \\
\hline \begin{tabular}{l}
(1) \(\mathrm{F}_{\mathrm{EC}}\) \\
(2) \(F_{E S C}\) \\
(3) \(T_{E C R}\) \\
(4) TECF \\
(5) FED \\
(6) \(\mathrm{T}_{\mathrm{MR}}\) \\
(7) \(T_{E 1}\) \\
(8) TE2 \\
(9) TE3 \\
(10) TE4 \\
(11) \(T_{E 5}\) \\
(12) TE6 \\
(13) \(T_{E 7}\) \\
(14) TE8 \\
(15) TE9 \\
(16) \(T_{E 10}\) \\
(17) \({ }^{\top} \mathrm{E} 11\)
\end{tabular} & \begin{tabular}{l}
Encoder Clock Frequency Send Clock Frequency Encoder CLock Rise Time Encoder Clock Fall Time Data Rate \\
Master Reset Pulse Width \\
Shift Clock Delay \\
Serial Data Setup \\
Serial Data Hold \\
Enable Setup \\
Enable Pulse Width \\
Sync Setup \\
Sync Pulse Width \\
Send Data Delay \\
Bipolar Output Delay \\
Enable Hold \\
Sync Hold
\end{tabular} & 0
0
0
150
75
75
90
100
55
150
0
10
95 & & 12
2.0
8
8
1.0
125

50
130 & MHz
MHz
ns
ns
MHZ
ns
ns & \\
\hline \multicolumn{7}{|l|}{DECODER TIMING \(\mathrm{V}_{\text {CC }}=5.0 \mathrm{~V} \pm 10 \% \quad \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\) to \(+85{ }^{\circ} \mathrm{C}\)} \\
\hline \begin{tabular}{l}
(18) FDC (19) TDCR (20) TDCF \\
(21) \(F_{D D}\) (22) TDR (23)TDRS (24) TDRH \\
(25) TMR \\
(26) TD1 \\
(27) \(T_{D}\) 2 \\
(28) TD3 \\
(29) TD4 \\
(30) TD5 \\
(31) TD6 \\
(32) \(T_{D 7}\) \\
(33) TD8 \\
(34) TD9 \\
(35) TD10 \\
(36)TD11 \\
NOTE (1):
\end{tabular} & Decoder Clock Frequency Decoder Clock Rise Time Decoder Clock Fall Time Data Rate Decoder Reset Pulse Width Decoder Reset Setup Time Decoder Reset Hold Time Master Reset Pulse Width Bipolar Data Pulse Width Sync Transition Span One Zero Overlap Short Data Transition Span Long Data Transition Span Sync Delay (ON) Take Data Delay (ON) Serial Data Out Delay Sync Delay (OFF) Take Data Delay (OFF) Valid Word Delay
\[
C=\text { Decoder Clock Period }=\frac{1}{F_{D C}}
\] & \[
\begin{gathered}
0 \\
\\
0 \\
150 \\
75 \\
10 \\
150 \\
\text { TDC }^{+10} \\
\\
\\
\\
-20 \\
0 \\
0 \\
0 \\
0 \\
0 \\
\text { (These } \mathrm{p}
\end{gathered}
\] & \begin{tabular}{l}
\({ }^{18 T} D C\) \\
\({ }^{6 T}\) DC \\
\({ }^{12 T} D C\) \\
meters
\end{tabular} & \begin{tabular}{l}
8 \\
1.0 \\
TDC - 10 \\
110 \\
110 \\
80 \\
110 \\
110 \\
110 \\
guaranteed
\end{tabular} & \begin{tabular}{l}
MHz \\
ns \\
ns \\
MHz \\
ns \\
not 100
\end{tabular} & \\
\hline
\end{tabular}

\section*{Capacitance}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & MIN & TYP & MAX & UNITS & TEST CONDITIONS \\
\hline \hline CIN & Input Capacitance & & 5.0 & & pF & \begin{tabular}{l}
FREQ \(=1 \mathrm{MHz}\), all \\
measurements are refer- \\
enced tc device GND
\end{tabular} \\
\hline
\end{tabular}

\section*{Pin Description}
\begin{tabular}{|c|c|c|c|c|}
\hline PIN & TYPE & SYMBOL & SECTION & DESCRIPTION \\
\hline 1 & \(\bigcirc\) & VW & Decoder & Output high indicates receipt of a VALID WORD. \\
\hline 2 & 0 & ESC & Encoder & ENCODER SHIFT CLOCK is an output for shifting data into the Encoder. The Encoder samples SDI on the low-to-high transition of ESC. \\
\hline 3 & 0 & TD & Decoder & TAKE DATA output is high during receipt of data after identification of a sync pulse and two valid manchester data bits \\
\hline 4 & \(\bigcirc\) & SDO & Decoder & SERIAL DATA OUT delivers received data in correct NRZ format. \\
\hline 5 & 1 & DC & Decoder & DECODER CLOCK input drives the transition finder, and the synchronizer which in turn supplies the clock to the balance of the Decoder. Input a frequency equal to 12 X the data rate. \\
\hline 6 & 1 & BZI & Decoder & A high input should be applied to BIPOLAR ZERO IN when the bus is in its negative state. This pin must be held high when the Unipolar input is used. \\
\hline 7 & 1 & BOI & Decoder & A high input should be applied to BIPOLAR ONE IN when the bus is in its positive state, this pin must be held low when the Unipolar input is used. \\
\hline 8 & 1 & UDI & Decoder & With pin 6 high and pin 7 low, this pin enters UNIPOLAR DATA IN to the transition finder circuit. If not used this input must be held low. \\
\hline 9 & \(\bigcirc\) & DSC & Decoder & DECODER SHIFT CLOCK output delivers a frequency (DECODER CLOCK \(\div 12\)), synchronized by the recovered serial data stream. \\
\hline 10 & \(\bigcirc\) & CDS & Decoder & COMMAND/DATA SYNC output high occurs during output of decoded data which was preceded by a Command synchronizing character. A low output indicates a Data synchronizing character. \\
\hline 11 & 1 & DR & Decoder & A high input to DECODER RESET during a rising edge of DECODER SHIFT CLOCK resets the decoder bit counting logic to a condition ready for a new word. \\
\hline 12 & 1 & GND & Both & GROUND supply pin. \\
\hline 13 & 1 & MR & Both & A high on MASTER RESET clears the 2:1 counters in both the encoder and decoder and the \(\div 6\) counter. \\
\hline 14 & 0 & DBS & Encoder & DIVIDE BY SIX is an output from 6:1 divider which is driven by the ENCODER CLOCK. \\
\hline 15 & 0 & \(\overline{\text { BZO }}\) & Encoder & \(\overline{\mathrm{BIPOLAR}} \overline{\mathrm{ZERO}} \overline{\text { OUT }}\) is a active low output designed to drive the zero or negative sense of a bipolar line driver. \\
\hline 16 & 1 & \(\overline{\mathrm{O}}\) & Encoder & A low on OUTPUT INHIBIT forces pin 15 and 17 high, their inactive states. \\
\hline 17 & 0 & \(\overline{\mathrm{BOO}}\) & Encoder & \(\overline{\text { BIPOLAR }} \overline{\mathrm{ONE}} \overline{\mathrm{OUT}}\) is an active low output designed to drive the one or positive sense of a bipolar line driver. \\
\hline 18 & I & SDI & Encoder & SERIAL DATA IN accepts a serial data stream at a data rate equal to ENCODER SHIFT CLOCK. \\
\hline 19 & 1 & EE & Encoder & A high on ENCODER ENABLE initiates the encode cycle. (Subject to the preceding cycle being complete.) \\
\hline 20 & । & SS & Encoder & SYNC SELECT actuates a Command sync for an input high and Data sync for an input low. \\
\hline 21 & 0 & SD & Encoder & SEND DATA is an active high output which enables the external source of serial data. \\
\hline 22 & 0 & SCI & Encoder & SEND CLOCK IN is 2 X the Encoder data rate. \\
\hline 23 & 1 & EC & Encoder & ENCODER CLOCK is the input to the 6:1 divider. \\
\hline 24 & 1 & VCC & Both & VCC is the +5 V power supply pin. A \(0.1 \mu\) F decoupling capacitor from VCC (pin 24) to GND (pin 12) is recommended. \\
\hline
\end{tabular}

\section*{Encoder Operation}

The Encoder requires a single clock with a frequency of twice the desired data rate applied at the SClock input. An auxilliary divide by six counter is provided on chip which can be utilized to produce the SClock by dividing the DClock.

The Encoder's cycle begins when EE is high during a falling edge of ESC (1). This cycle lasts for one word length or twenty ESC periods. At the next low-to-high transition of the ESC, a high at SS input actuates a Command sync or a low will produce a Data sync for that word (2) . When the Encoder is ready to accept data, the SD output will go high and remain high for sixteen ESC periods (3) - (4)

During these sixteen periods the data should be clocked into the SDInput with every high-to-low transition of the

ESC (3) - (4). After the sync and Manchester II encoded data are transmitted through the \(\overline{\mathrm{BOO}}\) and \(\overline{\mathrm{BZO}}\) outputs, the Encoder adds on an additional bit which is the (odd) parity for that word (5). If ENCODER ENABLE is held high continuously, consecutive words will be encoded without an interframe gap. ENCODER ENABLE must go low by time (5) as shown to prevent a consecutive word from being encoded. At any time a low on \(\overline{\mathrm{O}}\) will force both bipolar outputs to a high state but will not affect the Encoder in any other way.

To Abort the Encoder transmission a positive pulse must be applied at MR. Any time after or during this pulse, a low-to-high transition on SCI clears the internal counters and initializes the Encoder for a new word.

\section*{Decoder Operation}

The Decoder requires a single clock with a frequency of 12 times the desired data rate applied at the DClock input. The Manchester II coded data can be presented to the Decoder in one of two ways. The BOI and BZI inputs will accept data from a differential output comparator. The UDI input can only accept noninverted Manchester II coded data (e.g. from \(\overline{\mathrm{BOO}}\) of an Encoder through an inverter to UDI).

The Decoder is free running and continuously monitors its data input lines for a valid sync character and two valid Manchester data bits to start an output cycle. When a valid sync is recognized (1), the type of sync is indicated by the CDS output. If the sync character was a command, this output will go high (2) and remain high for sixteen DSC periods (3), otherwise it will remain low. The TD output will go high and remain high (2) - (3) while the Decoder is transmitting the decoded data through SDO.

The decoded data available at SDO is in a NRZ format. The DSC is provided so that the decoded bits can be
shifted into an external register on every low-to-high transition of this clock (2) - (3) . Note that DECODER SHIFT CLOCK may adjust its phase up until the time that TAKE DATA goes high.

After all sixteen decoded bits have been transmitted (3) the data is checked for odd parity. A high on VW output (4) indicates a successful reception of a word without any Manchester or parity errors. At this time the Decoder is looking for a new sync character to start another output sequence. VALID WORD will go low approximately 20 DECODER SHIFT CLOCK periods after it goes high if not reset low sooner by a valid sync and two valid Manchester bits as shown (1).

At any time in the above sequence a high input on DR during a low-to-high transition of DSC will abort transmission and initialize the Decoder to start looking for a new sync character.

A. C. Testing Input, Output Waveform
INPUT
A.C. TESTING: All input signals must switch between VIL and VIH. Input rise and fall times are driven at 1 nSec per volt.

Encoder Timing

\section*{Decoder Timing}

\section*{Features}
- Converter or Repeater Mode
- Independent Manchester Encoder and Decoder Operation
- Static to One Megabit/sec Data Rate Guaranteed
- Low Bit Error Rate
- Digital PLL Clock Recovery
- On Chip Oscillator
- Low Operating Power: 50 mW at +5 V Supply
- Two Temperature Ranges Available
\(\qquad\)
- HD-6409-2/-8 \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)

\section*{Description}

The HD-6409 Manchester Encoder-Decoder (MED) is a high speed, low power device manufactured using self-aligned silicon gate technology. The device is intended for use in serial data communication, and can be operated in either of two modes. In the converter mode, the MED converts Nonreturn-to-Zero code (NRZ) into Manchester code and decodes Manchester code into Nonreturn-to-Zero code. For serial data communication, Manchester code does not have some of the deficiencies inherent in Nonreturn-to-Zero code. For instance, use of the MED on a serial line eliminates DC components, provides clock recovery, and gives a relatively high degree of noise immunity. Because the MED converts the most commonly used code (NRZ) to Manchester code, the advantages of using Manchester code are easily realized in a serial data link.
In the Repeater mode, the MED accepts Manchester code input and reconstructs it with a recovered clock. This minimizes the effects of noise on a serial data link. A digital phase lock loop generates the recovered clock. A maximum data rate of 1 MHz requires only 50 mW of power.
Manchester code is used in magnetic tape recording and in fiber optic communication, and generally is used where data accuracy is imperative. Because it frames blocks of data, the HD-6409 easily interfaces to protocol controllers.

\section*{Functional Diagram}

\section*{Logic Symbol}

CAUTION: These devices are sensitive to electronic discharge. Proper I.C. handling procedures should be followed.

\section*{Pin Description}
\begin{tabular}{|c|c|c|l|l|}
\hline \begin{tabular}{c}
PIN \\
NUMBER
\end{tabular} & TYPE & SYMBOL & & \multicolumn{1}{|c|}{ NAME }
\end{tabular}
(I) - Input
(O) - Output

\section*{Pin Description}
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{c}
PIN \\
NUMBER
\end{tabular} & TYPE & SYMBOL & NAME & DESCRIPTION \\
\hline \hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 10 & 1 & GND & Ground & Ground \\
\hline 11 & 0 & Co & Clock Output & Buffered output of clock input Ix. May be used as clock signal for other peripherals. \\
\hline 12 & 1 & 1 x & Clock Input & Ix is the input for an external clock or, if the internal oscillator is used, Ix and Ox are used for the connection of the crystal. \\
\hline 13 & 0 & Ox & Clock Drive & If the internal oscillator is used, Ox and Ix are used for the connection of the crystal. \\
\hline 14 & 1 & MS & Mode Select & MS must be held low for operation in the converter mode, and high for operation in the repeater mode. \\
\hline 15 & 1 & \(\overline{\text { CTS }}\) & Clear to Send & In the converter mode, a high disables the encoder, forcing outputs \(\overline{\mathrm{BOO}}, \overline{\mathrm{BZO}}\) high and ECLK low. A high to low transition of CTS initiates transmission of a Command sync pulse. A low on \(\overline{C T S}\) enables \(\overline{\mathrm{BOO}}, \overline{\mathrm{BZO}}\), and ECLK. In the repeater mode, the function of CTS is identical to that of the converter mode with the exception that a transition of \(\overline{\text { CTS }}\) does not initiate a synchronization sequence. \\
\hline 16 & 0 & ECLK & Encoder Clock & In the converter mode, ECLK is a 1 X clock output used to receive serial NRZ data to SD/CDS. In the repeater mode, ECLK is a \(2 X\) clock which is recovered from BZI and BOI data by the digital phase locked loop. \\
\hline 17 & 1 & SS & Speed Select & A logic high on SS sets the data rate at \(1 / 32\) times the clock frequency while a low sets the data rate at \(1 / 16\) times the clock frequency. \\
\hline 18 & 0 & \(\overline{\mathrm{BZO}}\) & \(\overline{\text { Bipolar Zero Output }}\) & \(\overline{\mathrm{BZO}}\) and its logical complement \(\overline{\mathrm{BOO}}\) are the Manchester data outputs of the encoder. The inactive state for these outputs is in the high state. \\
\hline 19 & \(\bigcirc\) & \(\overline{\mathrm{BOO}}\) & \(\overline{\text { Bipolar One Out }}\) & See pin 18. \\
\hline 20 & 1 & vcc & vcc & VCC is the +5 V power supply pin. A \(0.1 \mu \mathrm{~F}\) decompling capacitor from VCC (pin-20) to GND (pin-10) is recommended. \\
\hline
\end{tabular}
(I)-Input
(O)-Output

\section*{Specifications HD-6409}

\section*{Absolute Maximum Ratings}

Supply Voltage..+7.0 Volts Input, Output or I/O Voltage Applied \(\qquad\) GND -0.3 V to \(\mathrm{VCC}+0.3 \mathrm{~V}\) Maximum Package Power Dissipation.. 1 Watt Storage Temperature Range .. \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\) \(\theta \mathrm{jc} . ~ 32^{\circ} \mathrm{C} / \mathrm{W}\) (CERDIP Package), \(37^{\circ} \mathrm{C} / \mathrm{W}\) (LCC Package)
\(\theta j a\) \(\qquad\)
\(\qquad\) \(91^{\circ} \mathrm{C} / \mathrm{W}\) (CERDIP Package), \(96^{\circ} \mathrm{C} / \mathrm{W}\) (LCC Package) Gate Count \(\qquad\) 250 Gates
Junction Temperature..+150 \({ }^{\circ} \mathrm{C}\)

Lead Temperature (Soldering, Ten Seconds). \(+275^{\circ} \mathrm{C}\)

CAUTION: Stresses above those listed in the "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operation sections of this specification is not implied.

\section*{Operating Conditions}

Operating Voltage Range .. +4.5 V to +5.5 V Operating Temperature Range
HD-6409-9 \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\)
HD-6409-2/-8.
\(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)
Electrical Specifications \(\quad V C C=5 \mathrm{~V} \pm 10 \%\); GND \(=0 \mathrm{~V}\); \(\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) (HD-6409-9);
\(\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) (HD-6409-2)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & SYMBOL & PARAMETER & MIN & TYP & MAX & UNITS & TEST CONDITIONS \\
\hline DC & \(V_{\text {IH }}\)
\(V_{\text {IL }}\)
\(V_{\text {IHR }}\)
\(V_{\text {ILR }}\)
\(V_{\text {IHC }}\)
\(V_{\text {ILC }}\)
II
\(V_{O H}\)
\(V_{O L}\)
ICCQ
ICCOP & \begin{tabular}{l}
Logic-1 Input Voltage Logic-0 Input Voltage Logic-1 Input Voltage (\(\overline{\text { Reset }}\)) Logic-0 Input Voltage (Reset) Logic-1 Input Voltage (Clock) Logic-0 Input Voltage (Clock) Input Leakage \\
Logic-1 Output Voltage Logic-0 Output Voltage Supply Current Quiescent Supply Current Operating*
\end{tabular} & \[
\begin{gathered}
\hline 70 \% \text { VCC } \\
\text { VCC }-0.5 \\
\text { VCC }-0.5 \\
-1.0 \\
\text { VCC }-0.4
\end{gathered}
\] & \[
\begin{aligned}
& 1.0 \\
& 7.0
\end{aligned}
\] & \[
\begin{gathered}
20 \% \text { VCC } \\
\text { GND }+0.5 \\
\text { GND }+0.5 \\
+1.0 \\
\\
0.4 \\
100 \\
12.0
\end{gathered}
\] & \begin{tabular}{l}
V \\
V \\
v \\
V \\
V \\
V \\
\(\mu \mathrm{A}\) \\
V \\
V \\
\(\mu \mathrm{A}\) \\
mA
\end{tabular} & \begin{tabular}{l}
\(\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}\) or GND \\
DIP Pins 1-4, 9, 12, 14, 15, 17 \\
\({ }^{\mathrm{I}} \mathrm{OH}=-2.0 \mathrm{~mA}\) \\
\({ }^{\prime} \mathrm{OL}=2.0 \mathrm{~mA}\) \\
\(\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}\) \\
\(\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{f}_{\mathrm{CO}}=16 \mathrm{MHz}\)
\end{tabular} \\
\hline AC & \begin{tabular}{l}
(1) \(f_{C}\) \\
(2) \(t_{c}\) \\
(3) \(t_{1}\) \\
(4) \(t_{2}\) \\
(5) \(\quad t_{3}\) \\
(6) \(\quad t_{4}\) \\
(7) \(\mathrm{t}_{5}\) \\
(8) t 6 \\
(9) \(\mathrm{t}_{7}\) (10) \(t_{8}\) \\
(11) \(\mathrm{t}_{9}\)
\end{tabular} & \begin{tabular}{l}
Clock Frequency \\
Clock Period \\
Bipolar Pulse Width \\
Sync Transition Span \\
One-Zero Overlap \\
Short Data Transition Span \\
Long Data Transition Span \\
Output Rise \& Fall Time Clock Out Co Rise \& Fall Time Input Rise \& Fall Time \\
Clock High Time \\
Clock Low Time
\end{tabular} & \[
\mathrm{t}_{\mathrm{c}}-10
\]
\[
20
\]
\[
20
\] & \[
\begin{aligned}
& 1.5 \times \text { CR } x \\
& t_{c} \text { (1) (2) } \\
& 0.5 \times C R x \\
& t_{c} \text { © (2) } \\
& C R \times t_{c}
\end{aligned}
\] & \begin{tabular}{l}
\[
\begin{gathered}
\hline 16 \\
1 / \mathrm{fc}
\end{gathered}
\]
\[
t_{c}-10
\] \\
50
\[
\begin{aligned}
& 1 /\left(5 \times f_{c}\right) \\
& 1 /\left(5 \times f_{c}\right)
\end{aligned}
\]
\end{tabular} & \begin{tabular}{l}
MHz \\
s \\
ns \\
ns \\
ns \\
ns \\
ns \\
ns \\
\(s\) \\
s \\
ns \\
ns
\end{tabular} & \begin{tabular}{l}
Ix or Xtal \\
\(C L=20 \mathrm{pF}\) for Co , \\
50pF Otherwise \\
50ns Maximum \\
\(T_{\text {CYCLE }}=62 \mathrm{~ns}\), Fig. 6 \\
TCYCLE \(=62\) ns, Fig. 6
\end{tabular} \\
\hline
\end{tabular}

CONVERTER MODE

\section*{ENCODER SECTION}

\section*{AC}
\begin{tabular}{|c|c|c|c|c|c|}
\hline (12) t \({ }^{\text {CEE1 }}\) & SD Setup Time & 120 & & & ns \\
\hline (13) tCE2 & SD Hold Time & 0 & & & ns \\
\hline (14) tCE3 & SD to BZO, BOO Prop Delay & & 1 & 1.5 & DBP \\
\hline (15) \({ }^{\text {t CE4 }}\) & CTS Low to BZO, \(\overline{\text { BOO Enabled }}\) & & 1 & 1.5 & DBP \\
\hline (16) \({ }^{\text {t CE5 }}\) & CTS Low to ECLK Enabled & & 10.5 & & DBP \\
\hline (17)t CE 6 & CTS High to ECLK Disabled & & 1.0 & 1.5 & DBP \\
\hline (18) t CE7 & \(\overline{\mathrm{CTS}}\) High to BZO, \(\overline{\mathrm{BOO}}\) Disabled & & 2.0 & 2.5 & DBP \\
\hline
\end{tabular}

\section*{DECODER SECTION}

AC
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline (19) tCD1 & UDI to SDO, \(\overline{\text { NVM }}\) & \multirow[t]{4}{*}{2.5} & & 3 & DBP (3) & \\
\hline (20) t CD 2 & DCLK to SDO, \(\overline{\text { NVM }}\) & & & 40 & ns & \\
\hline (21) \({ }^{\text {t }}\) CD3 & RST Low to DCLK, SDO, \(\overline{\text { NVM }}\) Low & & 0.5 & 1.5 & DBP (3) & \(\mathrm{CL}=50 \mathrm{pF}\) \\
\hline (22) t CD 4 & RST High to DCLK Enabled & & 0.5 & 1.5 & DBP (3) & \(\mathrm{CL}=50 \mathrm{pF}\) \\
\hline
\end{tabular}

\section*{REPEATER MODE}

\section*{AC}

\section*{Converter Mode}

\section*{ENCODER OPERATION}

The encoder uses free running clocks at 1 X and 2 X the data rate derived from the system clock IX for internal timing. \(\overline{\mathrm{CTS}}\) is used to control the encoder outputs, ECLK, \(\overline{\mathrm{BOO}}\) and \(\overline{B Z O}\). A free running \(1 \times\) ECLK is transmitted out of the encoder to drive the external circuits which supply the NRZ data to the MED at pin SD/CDS.
A low on \(\overline{\mathrm{CTS}}\) enables encoder outputs ECLK, \(\overline{\mathrm{BOO}}\) and \(\overline{\mathrm{BZO}}\), while a high on CTS forces \(\overline{\mathrm{BZO}}, \overline{\mathrm{BOO}}\) high and holds ECLK low. When \(\overline{\mathrm{CTS}}\) goes from high to low (1) , a synchronization sequence is transmitted out on \(\overline{\mathrm{BOO}}\) and \(\overline{\mathrm{BZO}}\). A synchronization sequence consists of eight Manchester
" 0 " bits followed by a command sync pulse. (2) A command sync pulse is a three bit wide pulse with the first \(11 / 2\) bits high followed by \(11 / 2\) bits low. (3) Serial NRZ data is clocked into the encoder at SD/CDS on the high to low transition of ECLK during the command sync pulse. The NRZ data received is encoded into Manchester II data and transmitted out on \(\overline{\mathrm{BOO}}\) and \(\overline{\mathrm{BZO}}\) following the command sync pulse. (4) Following the synchronization sequence, input data is encoded and transmitted out continuously without parity check or word framing. The length of the data block encoded is defined by CTS. Manchester data out is inverted.

For expanded view
see Figure 6 \& 7.

FIGURE 1.

\section*{DECODER OPERATION}

The decoder requires a single clock with a frequency 16 X or 32 X the desired data rate. The rate is selected on the speed select with SS low producing a 16 X clock and high a 32 X clock. For long data links the 32 X mode should be used as this permits a wider timing jitter margin. The internal operation of the decoder utilizes a free running clock synchronized with incoming data for its clocking.
The Manchester II encoded data can be presented to the decoder in either of two ways. The Bipolar One and Bi polar Zero inputs will accept data from differential inputs such as a comparator sensed transformer coupled bus. The Unipolar Data input can only accept noninverted Machester II encoded data i.e. Bipolar One Out through an inverter to Unipolar Data Input. The decoder continuously monitors this data input for a valid sync pattern. Note that while the MED encoder section can generate only a command sync pattern, the decoder can recognize either a command or data sync pattern. A data sync is a logically inverted command sync.

There is a three bit delay between UDI, BOI or BZI input and the decoded NRZ data transmitted out of SDO.
Control of the decoder outputs is provided by the \(\overline{\text { RST }}\) pin. When \(\overline{\text { RST }}\) is low, SDO, DCLK and \(\overline{\text { NVM }}\) are forced low. When \(\overline{\text { RST }}\) is high, SDO is transmitted out synchronously with the recovered clock DCLK. The \(\overline{\mathrm{NVM}}\) output remains low after a low to high transition on \(\overline{\text { RST }}\) until a valid sync pattern is received.

The decoded data at SDO is in NRZ format. DCLK is provided so that the decoded bits can be shifted into an external register on every high to low transition of this clock.

Three bit periods after an invalid Manchester bit is received on UDI, or BOI, \(\overline{N V M}\) goes low synchronously with the questionable data output on SDO. FURTHER, THE DECODER DOES NOT REESTABLISH PROPER DATA DECODING UNTIL ANOTHER SYNC PATTERN IS RECOGNIZED

For expanded view see Figure 9.

FIGURE 2.

\section*{Repeater Mode}

Manchester II data can be presented to the repeater in either of two ways. The inputs Bipolar One In and Bipolar Zero In will accept data from differential inputs such as a comparator or sensed transformer coupled bus. The input Unipolar Data In accepts only non-inverted Manchester II coded data. The decoder requires a single clock with a frequency 16X or 32X the desired data rate. This clock is selected to 16 X with Speed Select low and 32 X with Speed Select high. For long data links the 32X mode should be used as this permits a wider timing jitter margin.

The inputs UDI, or BOI, BZI are delayed approximately \(1 / 2\) bit period and repeated as outputs \(\overline{\mathrm{BOO}}\) and \(\overline{\mathrm{BZO}}\). The 2X ECLK is transmitted out of the repeater synchronously with \(\overline{\mathrm{BOO}}\) and \(\overline{\mathrm{BZO}}\).

A low on \(\overline{\mathrm{CTS}}\) enables ECLK, \(\overline{\mathrm{BOO}}\), and \(\overline{\mathrm{BZO}}\). In contrast to the converter mode, a transition on CTS does not initiate a synchronization sequence of eight 0 's and a command sync. The repeater mode does recognize a command or data sync pulse. SD/CDS is an output which reflects the state of the most recent sync pulse received, with high indicating a command sync and low indicating a data sync.
When \(\overline{\operatorname{RST}}\) is low, the outputs SDO, DCLK, and \(\overline{\mathrm{NVM}}\) are low, and SRST is set low. SRST remains low after RST goes high and is not reset until a sync pulse and two valid manchester bits are received with the reset bit low. The reset bit is the first data bit after the sync pulse. With RST high, NRZ Data is transmitted out of Serial Data Out synchronously with the 1X DCLK.

FIGURE 3.

\section*{Switching Waveforms}

FIGURE 4.
A.C. Testing Input, Output Waveform

FIGURE 5.
A.C. Testing: All input signals must switch between VIL and VIH. Input rise and fall times are driven in 1 nsec per volt.

FIGURE 6.
NOTE: Reference parameters \(t_{6}, t_{7}, t_{8}, t_{9}\)

\section*{Encoder Timing}

FIGURE 7.

Decoder Timing

NOTE: Manchester Data In is not synchronous with Decoder Clock. Decoder Clock is synchronous with decoded NRZ out of SDO

FIGURE 9.

FIGURE 10.

\section*{Repeater Timing}

FIGURE 11.

\section*{MANCHESTER CODE}

Nonreturn to Zero (NRZ) code represents the binary values logic-0 and logic-1 with a static level maintained throughout the data cell. In contrast, Manchester code represents data with a level transition in the middle of the data cell. Manchester has bandwidth, error detection, and synchronization advantages over NRZ code.

The Manchester II code Bipolar One and Bipolar Zero shown below are logical complements. The direction of the transition indicates the binary value of data. A logic-0 in Bipolar One is defined as a low to high transition in the middle of the data cell, and a logic-1 as a high to low mid bit transition. Manchester II is also known as Biphase-L code.

The bandwidth of NRZ is from DC to the clock frequency \(\mathrm{fc} / 2\), while that of Manchester is from fc \(/ 2\) to fc. Thus, Manchester can be AC or transformer coupled, which has considerable advantages over DC coupling. Also, the ratio of maximum to minimum frequency of Manchester extends one octave, while the ratio for NRZ is the range of 5-10 octaves. It is much easier to design a narrow band than a wideband amp.

Secondly, the mid bit transition in each data cell provides the code with an effective error detection scheme. If noise produces a logic inversion in the data cell such that
there is no transition, an error indiction is given, and synchronization must be re-established. This places relatively stringent requirements on the incoming data.

The synchronization advantages of using the HD-6409 and Manchester code are several fold. One is that Manchester is a self clocking code. The clock in serial data communication defines the position of each data cell. Non self clocking codes, as NRZ, often require an extra clock wire or clock track (in magnetic recording). Further, there can be a phase variation between the clock and data track. Crosstalk between the two may be a problem. In Manchester, the serial data stream contains both the clock and the data, with the position of the mid bit transition representing the clock, and the direction of the transition representing data. There is no phase variation between the clock and the data.

A second synchronization advantage is a result of the number of transitions in the data. The decoder resynchronizes on each transition, or at least once every data cell. In contrast, receivers using NRZ, which does not necessarily have transitions, must resynchronize on frame bit transitions, which occur far less often, usually on a character basis. This more frequent resynchronization eliminates the cumulative effect of errors over sucessive data cells. A final synchronization advantage concerns the HD-6409's sync pulse used to initiate synchronization. This three bit wide pattern is sufficiently distinct from Manchester data that a false start by the receiver is unlikely.

FIGURE 12.

\section*{Crystal Oscillator Mode}

\section*{LC Oscillator Mode}

\section*{Features}
- Support of MIL-STD-1553
- 1.25 Megabit/Sec Data Rate
- Sync Identification and Lock-in
- Clock Recovery
- Manchester II Encode, Decode
- Separate Encode and Decode
- Low Operating Power \(\qquad\) 50 mW @ 5 Volts
- Full \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) Temperature Range Operation

\section*{Description}

The Harris HD-15530 is a high performance CMOS device intended to service the requirements of MIL-STD-1553 and similar Manchester II encoded, time division multiplexed serial data protocols. This LSI chip is divided into two sections, an Encoder and a Decoder. These sections operate completely independent of each other, except for the Master Reset functions.

This circuit meets many of the requirements of MIL-STD-1553. The Encoder produces the sync pulse and the parity bit as well as the encoding of the data bits.
The Decoder recognizes the sync pulse and identifies it as well as decoding the data bits and checking parity.

This integrated circuit is fully guaranteed to support the 1 MHz data rate of MIL-STD-1553 over both temperature and voltage. It interfaces with CMOS, TTL or N channel support circuitry, and uses a standard 5 volt supply.
The HD-15530 can also be used in many party line digital data communications applications, such as an environmental control system driven from a single twisted pair cable of fiber optic cable throughout the building.

\section*{Pinouts}

TOP VIEW
\begin{tabular}{|c|c|}
\hline valio woro 1 & 24 -vcc \\
\hline ENCODER SHIFT CLOCKC & 23 صencooer clock \\
\hline take datal 3 & 22 Dend clock in \\
\hline SEhial data out \({ }^{4}\) & 21 Psend data \\
\hline decoder clock \({ }^{5}\) & 20 PsYnc Select \\
\hline Bipolar zero in \({ }^{6}\) & 19 Dencooer enable \\
\hline BIPOLAR ONE INC7 & 18 Pserial data in \\
\hline unipolar data inc \({ }^{8}\) & 17 DBPOLAA ONE \(\overline{\text { OUT }}\) \\
\hline decoodr shift Clock \({ }^{9}\) & 16 DOUTPUT NHHBIT \\
\hline command/DATA SYNCD 10 & 15 bipolar zero \(\overline{\text { OUT }}\) \\
\hline decooer reset \({ }^{11}\) & \(14 \mathrm{P} \div 6\) OUT \\
\hline GNOL 12 & 13 master reset \\
\hline
\end{tabular}

\section*{Block Diagrams}

Caution: These devices are sensitive to electronic discharge. Proger I.C. handling procedures should be followed.

\section*{Absolute Maximum Ratings}

Supply Voltage. \(\qquad\) +7.0 Volts Input, Output or I/O Voltage Applied
\(\qquad\) GND -0.3 V to \(\mathrm{VCC}+0.3 \mathrm{~V}\) Storage Temperature Range. \(\qquad\) \(65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
W............ 1 Watt Maximum Package Power Dissipation. \(\qquad\) \(\theta_{\mathrm{jc}} \cdots \ldots18^{\circ} \mathrm{C} / \mathrm{W}\) (CERDIP package), \(22^{\circ} \mathrm{C} / \mathrm{W}\) (LCC package)
\begin{tabular}{|c|}
\hline \multirow[t]{4}{*}{} \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular}

CAUTION: Stresses above those listed in the "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operation sections of this specification is not implied.

\section*{Operating Conditions}
\begin{tabular}{|c|c|}
\hline Operating Voltage Range & 5 V \\
\hline \multicolumn{2}{|l|}{Operating Temperature Range} \\
\hline HD-15530-9 & \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) \\
\hline HD-15530-2/-8 & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

Electrical Specifications \(T_{A}=-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}(\mathrm{HD}-15530-9), \mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) (\(\mathrm{HD}-15530-2 /-8\))
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & MIN & TYP & MAX & UNITS & TEST CONDITIONS \\
\hline \(\mathrm{V}_{\text {IH }}\) & Logical "1" Input Voltage & \(70 \% \mathrm{~V}_{\mathrm{CC}}\) & & & V & \\
\hline VIL & Logical "0" Input Voltage & & & 20\% V \({ }_{\text {CC }}\) & V & \\
\hline VIHC & Logical "1" Input Voltage (Clock) & \(\mathrm{V}_{\mathrm{CC}}-0.5\) & & & V & \\
\hline \(V_{\text {ILC }}\) & Logical "0" Input Voltage (Clock) & & & GND +0.5 & V & \\
\hline 11 & Input Leakage & -1.0 & & +1.0 & \(\mu \mathrm{A}\) & \(V_{I N}=V_{C C}\) or GND, DIP Pins 5-8, 11, 13, 16, 18, 19, 20, 22, 23 \\
\hline VOH & Logical "1" Output Voltage & 2.4 & & & V & \({ }^{1} \mathrm{OH}=-3 \mathrm{~mA}\) \\
\hline VOL & Logical "0" Output Voltage & & & 0.4 & V & \(\mathrm{IOL}=1.8 \mathrm{~mA}\) \\
\hline \({ }^{1} \mathrm{CCSB}\) & Supply Current Standby & & 0.5 & 2.0 & mA & \begin{tabular}{l}
\[
V_{I N}=V_{C C}=5.5 \mathrm{~V}
\] \\
Outputs Open
\end{tabular} \\
\hline \({ }^{\prime} \mathrm{CCOP}\) & Supply Current Operating* & & 8.0 & 10.0 & mA & \(\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{Vf}=15 \mathrm{MHz}\) \\
\hline \multicolumn{5}{|c|}{(*Guaranteed but not 100\% tested)} & & \\
\hline
\end{tabular}

ENCODER TIMING \(V_{C C}=5.0 \mathrm{~V} \pm 10 \%\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline (1) FEC & Encoder Clock Frequency & 0 & & 15 & MHz & \(C_{L}=50 \mathrm{pF}\) \\
\hline (2) FESC & Send Clock Frequency & 0 & & 2.5 & MHz & \\
\hline (3) TECR & Encoder Clock Rise Time & & & 8 & ns & \\
\hline (4) TECF & Encoder Clock Fall Time & & & 8 & ns & \\
\hline (5) FED & Data Rate & 0 & & 1.25 & MHz & \\
\hline (6) TMR & Master Reset Pulse Width & 150 & & & ns & \\
\hline (7) TE1 & Shift Clock Delay & & & 125 & ns & \\
\hline (8) TE2 & Serial Data Setup & 75 & & & ns & \\
\hline (9) TE3 & Serial Data Hold & 75 & & & ns & \\
\hline (10) TE4 & Enable Setup & 90 & & & ns & \\
\hline (1,1)TE5 & Enable Pulse Width & 100 & & & ns & \\
\hline (12)TE6 & Sync Setup & 55 & & & ns & \\
\hline (13)TE7 & Sync Pulse Width & 150 & & & ns & \\
\hline (14)TE8 & Send Data Delay & 0 & & 50 & ns & \\
\hline (15)TE9 & Bipolar Ouput Delay & & & 130 & ns & \\
\hline (16)TE10 & Enable Hold & 10 & & & ns & \(\checkmark\) \\
\hline (17)TE11 & Sync Hold & 95 & & & ns & 1 \\
\hline \multicolumn{7}{|l|}{DECODER TIMING \(\mathrm{V}_{\text {CC }}=5.0 \mathrm{~V} \pm 10 \%\)} \\
\hline (18) FDC & Decoder Clock Frequency & 0 & & 15 & MHz & \(C_{L}=50 \mathrm{pF}\) \\
\hline (19)TDCR & Decoder Clock Rise Time & & & 8 & ns & \\
\hline (20)TDCF & Decoder Clock Fall Time & & & 8 & ns & \\
\hline (21) FDD & Data Rate & 0 & & 1.25 & MHz & \\
\hline (22)TDR & Decoder Reset Pulse Width & 150 & & & ns & \\
\hline (23) TDRS & Decoder Reset Setup Time & 75 & & & ns & \\
\hline (24) TDRH & Decoder Reset Hold Time & 10 & & & ns & \\
\hline (25) TMR & Master Reset Pulse & 150 & & & ns & \\
\hline & Bipolar Data Pulse Width & \(T_{D C}+10\) & & & ns & \\
\hline (27) TD2 & Sync Transition Span & & \({ }^{18}{ }^{\text {D }}\) DC & & ns & (Note 1) \\
\hline (28) TD3 & One Zero Overlap & & & TDC -10 & ns & (Note 1) \\
\hline (29) TD4 & Short Data Transition Span & & \(6{ }^{\text {6 }}\) DC & & ns & (Note 1) \\
\hline (30) TD5
(31)TD6 & Long Data Transition Span & & \({ }^{12 T}\) DC & & ns & (Note 1) \\
\hline (32)TD7 & Sync Delay (ON)
Take Data Delay (ON) & -20 & & 110
110 & ns & \\
\hline (33) TD8 & Serial Data Out Delay & 0 & & 80 & ns & \\
\hline (34) TD9 & Sync Delay (OFF) & 0 & & 110 & ns & \\
\hline (35) TD10 & Take Data Delay (OFF) & 0 & & 110 & ns & \\
\hline (36) TD11 & Valid Word Delay & 0 & & 110 & ns & 1 \\
\hline
\end{tabular}

NOTE 1. TDC \(=\) Decoder Clock Period \(=\frac{1}{\text { FDC }} \quad\) (These parameters are guaranteed but not \(100 \%\) tested)
Capacitance \(T_{A}=25^{\circ} \mathrm{C}\); Frequency \(=1 \mathrm{MHz}\)
\begin{tabular}{|c|l|c|c|c|}
\hline SYMBOL & PARAMETER & TYPICAL & UNITS & CONDITIONS \\
\hline \(\mathrm{C}_{\text {IN }}\) & Input Capacitance & 5.0 & pF & \begin{tabular}{c}
AI measurements are \\
referenced to device GND
\end{tabular} \\
\hline \(\mathrm{C}_{\mathrm{O}}\) & Output Capacitance & 8.0 & pF & \\
\hline
\end{tabular}

\section*{Pin Description}
\begin{tabular}{|c|c|c|c|c|}
\hline PIN NUMBER & TYPE & NAME & SECTION & DESCRIPTION \\
\hline 1 & 0 & VALID WORD & Decoder & Output high indicates receipt of a valid word, (valid parity and no Manchester errors). \\
\hline 2 & 0 & ENCODER SHIFT CLOCK & Encoder & Output for shifting data into the Encoder. The Encoder samples SDI on the low-to-high transition of Encoder Shift Clock. \\
\hline 3 & 0 & TAKE DATA & Decoder & Output is high during receipt of data after identification of a sync pulse and two valid Manchester data bits. \\
\hline 4 & 0 & SERIAL DATA OUT & Decoder & Delivers received data in correct NRZ format. \\
\hline 5 & 1 & DECODER CLOCK & Decoder & Input drives the transition finder, and the synchronizer which in turn supplies the clock to the balance of the decoder, input a frequency equal to 12 X the data rate. \\
\hline 6 & 1 & BIPOLAR ZERO IN & Decoder & A high input should be applied when the bus is in its negative state. This pin must be held high when the Unipolar input is used. \\
\hline 7 & 1 & BIPOLAR ONE IN & Decoder & A high input should be applied when the bus is in its positive state. This pin must be held low when the Unipolar input is used. \\
\hline 8 & 1 & UNIPOLAR DATA IN & Decoder & With pin 6 high and pin 7 low, this pin enters unipolar data into the transition finder circuit. If not used this input must be held low. \\
\hline 9 & 0 & DECODER SHIFT CLOCK & Decoder & Output which delivers a frequency (DECODER CLOCK \(\div 12\)), synchronized by the recovered serial data stream. \\
\hline 10 & 0 & COMMAND SYNC & Decoder & Output of a high from this pin occurs during output of decoded data which was preceded by a Command (or Status) synchronizing character. A low output indicates a Data synchronizing character. \\
\hline 11 & 1 & DECODER RESET & Decoder & A high input to this pin during a rising edge of DECODER SHIFT CLOCK resets the decoder bit counting logic to a condition ready for a new word. \\
\hline 12 & & GROUND & Both & Ground Supply pin. \\
\hline 13 & 1 & MASTER RESET & Both & A high on this pin clears \(2: 1\) counters in both Encoder and Decoder, and resets the \(\div 6\) circuit. \\
\hline 14 & 0 & \(\div 6\) OUT & Encoder & Output from 6:1 divider which is driven by the ENCODER CLOCK. \\
\hline 15 & 0 & & Encoder & An active low output designed to drive the zero or negative sense of a bipolar line driver. \\
\hline 16 & 1 & OUTPUT INHIBIT & Encoder & A low on this pin forces pin 15 and 17 high, the inactive states. \\
\hline 17 & 0 & \(\overline{\text { BIPOLAR }} \overline{\text { ONE }} \overline{\text { OUT }}\) & Encoder & An active low output designed to drive the one or positive sense of a bipolar line driver. \\
\hline 18 & 1 & SERIAL. DATA IN & Encoder & Accepts a serial data stream at a data rate equal to ENCODER SHIFT CLOCK. \\
\hline 19 & 1 & ENCODER ENABLE & Encoder & A high on this pin initiates the encode cycle. (Subject to the preceeding cycle being complete.) \\
\hline 20 & 1 & SYNC SELECT & Encoder & Actuates a Command sync for an input high and Data sync for an input low. \\
\hline 21 & 0 & SEND DATA & Encoder & An active high output which enables the external source of serial data. \\
\hline 22 & 1 & SEND CLOCK IN & Encoder & Clock input at a frequency equal to the data rate X 2 , usually driven by \(\div 6\) output. \\
\hline 23 & 1 & ENCODER CLOCK & Encoder & Input to the 6:1 divider, a frequency equal to the data rate X 12 is usually input here. \\
\hline 24 & & \(\mathrm{V}_{\mathrm{CC}}\) & Both & VCC is the +5 V power supply pin. A \(0.1 \mu \mathrm{~F}\) decoupling capacitor from \(\mathrm{V}_{\mathrm{CC}}\) (pin 24) to GROUND (pin 12) is recommended. \\
\hline
\end{tabular}
\(I\) = Input \(\quad O=\) Output

\section*{Encoder Timing}

The Encoder requires a single clock with a frequency of twice the desired data rate applied at the SEND CLOCK input. An auxiliary divide by six counter is provided on chip which can be utilized to produce the SEND CLOCK by dividing the DECODER CLOCK.
The Encoder's cycle begins when ENCODER ENABLE is high during a falling edge of ENCODER SHIFT CLOCK (1). This cycle lasts for one word length or twenty ENCODER SHIFT CLOCK periods. At the next low-tohigh transition of the ENCODER SHIFT CLOCK, a high SYNC SELECT input actuates a command sync or a low will produce a data sync for the word (2). When the Encoder is ready to accept data, the SEND DATA output will go high and remain high for sixteen ENCODER SHIFT CLOCK periods (3). During these sixteen periods the data should be clocked into the SERIAL DATA input with every high-to-low transition of the ENCODER SHIFT CLOCK
so it can be sampled on the low-to-high transition (3)- (4). After the sync and Manchester 11 coded data are transmitted through the BIPOLAR ONE and BIPOLAR ZERO outputs, the Encoder adds on an additional bit which is the parity for that word (5). If ENCODER ENABLE is held high continuously, consecutive words will be encoded without an interframe gap. ENCODER ENABLE must go low by time (5) as shown to prevent a consecutive word from being encoded. At any time a low on OUTPUT INHIBIT input will force both bipolar outputs to a high state but will not affect the Encoder in any other way.

To abort the Encoder transmission a positive pulse must be applied at MASTER RESET. Anytime after or during this pulse, a low-to-high transition on SEND CLOCK clears the internal counters and initializes the Encoder for a new word.

\section*{Decoder Timing}

The Decoder requires a single clock with a frequency of 12 times the desired data rate applied at the DECODER CLOCK input. The Manchester II coded data can be presented to the Decoder in one of two ways. The BIPOLAR ONE and BIPOLAR ZERO inputs will accept data from a comparator sensed transformer coupled bus as specified in Military Spec 1553. The UNIPOLAR DATA input can only accept non-inverted Manchester II coded data. (e.g. from \(\overline{B I P O L A R}\) ONE OUT of an Encoder through an inverter to Unipolar Data Input).

The Decoder is free running and continuously monitors its data input lines for a valid sync character and two valid Manchester data bits to start an output cycle. When a valid sync is recognized (1), the type of sync is indicated on COMMAND/DATA SYNC output. If the sync character was a command sync, this output will go high (2) and remain high for sixten DECODER SHIFT CLOCK periods (3), otherwise it will remain low. The TAKE DATA output will go high and remain high (2) - (3) while the Decoder is transmitting the decoded data through SERIAL DATA OUT. The decoded data available at SERIAL DATA OUT
is in NRZ format. The DECODER SHIFT CLOCK is provided so that the decoded bits can be shifted into an external register on every low-to-high transition of this clock (2) - (3). Note that DECODER SHIFT CLOCK may adjust its phase up until the time that TAKE DATA goes high.

After all sixteen decoded bits have been transmitted (3) the data is checked for odd parity. A high on VALID WORD output (4) indicates a successful reception of a word without any Manchester or parity errors. At this time the Decoder is looking for a new sync character to start another output sequence. VALID WORD will go low approximately 20 DECODER SHIFT CLOCK periods after it goes high if not reset low sooner by a valid sync and two valid Manchester bits as shown (1).

At any time in the above sequence a high input on DECODER RESET during a low-to-high transition of DECODER SHIFT CLOCK will abort transmission and initialize the Decoder to start looking for a new sync character.

\section*{Decoder Timing}

DECODER SHIFT CLOC
COMMAND/ DATA

decoder shift clock

A. C. Testing Input, Output Waveform

A.C. Testing: All input signals must switch between VIL and VIH. Input rise and fall times are driven at 1 nsec per volt.

Encoder Timing

SEND DATA
\(\qquad\) \(\sqrt{ }\)

SEND CLOCK BIPOLAR ONE OUT or
BIPOLAR ZERO OUT

\section*{Applications}

How to Make Our MTU Look Like a Manchester Encoded UART

Typical Timing Diagram for a Manchester Encoded UART
encoder timing

\section*{MIL-STD-1553}

The 1553 standard defines a time division multiplexed data bus for application within aircraft. The bus is defined to be bipolar, and encoded in a Manchester II format, so no DC component appears on the bus. This allows transformer coupling and excellent isolation among systems and their environment.

The HD-15530 supports the full bipolar configuration, assuming a bus driver configuration similar to that in Figure 1. Bipolar inputs from the bus, like Figure 2, are also accommodated.

The signaling format in MIL-STD-1553 is specified on the assumption that the network of 32 or fewer terminals are controlled by a central control unit by means of Command Words. Terminals respond with Status Words. Each word is preceded by a synchronizing pulse, and fol-

FIGURE 1. SIMPLIFIED MIL-STD-1553 DRIVER

FIGURE 3. MIL-STD-1553 CHARACTER FORMATS
lowed by parity bit, occupying a total of \(20 \mu \mathrm{sec}\). The word formats are shown in Figure 4. The special abbreviations are as follows:

P Parity, which is defined to be odd, taken across all 17 bits.

R/T Receive on logical zero, transmit on ONE.
ME Message Error if logical 1.
TF Terminal Flag, if set, calls for controller to request self-test data.

The paragraphs above are intended only to suggest the content of MIL-STD-1553, and do not completely describe its bus requirements, timing or protocols.

FIGURE 2. SIMPLIFIED MIL-STD-1553 RECEIVER
\begin{tabular}{|l|}
\hline 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 \\
\hline
\end{tabular}

COMMAND WORD (FROM CONTROLLER TO TERMINAL)

DATA WORD (SENT EITHER DIRECTION)

STATUS WORD (FROM TERMINAL TO CONTROLLER)

FIGURE 4. MIL-STD-1553 WORD FORMATS

\section*{10 HARRIS}

\section*{Features}
- Support of MIL-STD-1553
- 2.5 Megabit/Sec Data Rate (15531B)
- 1.25 Megabit/Sec Data Rate (15531)
- Sync Identification and Lock-in
- Clock Recovery
- Variable Frame Length to 32-Bits
- Manchester II Encode, Decode
- Separate Encode and Decode
- Low Operating Power \(\qquad\) 50mW @ 5 Volts
- Full \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) Temperature Range Operation

\section*{Description}

The Harris HD-15531 is a high performance CMOS device intended to service the requirements of MIL-STD-1553 and similar Manchester II encoded, time division multiplexed serial data protocols. This LSI chip is divided into two sections, an Encoder and a Decoder. These sections operate independently of each other, except for the master reset and word length functions.
This circuit provides many of the requirements of MIL-STD-1553. The Encoder produces the sync pulse and the parity bit as well as the encoding of the data bits. The Decoder recognizes the sync pulse and identifies it as well as decoding the data bits and checking parity.
The HD-15531 also surpasses the requirements of MIL-STD-1553 by allowing the word length to be programmable (from 2 to 28 data bits). A frame consists of three bits for sync foilowed by the data word (2 to 28 data bits) followed by one bit of parity, thus the frame length will vary from 6 to 32 bit periods. This chip also allows selection of either even or odd parity for the Encoder and Decoder separately.
This integrated circuit is fully guaranteed to support the 1 MHz data rate of MIL-STD-1553 over both temperature and voltage. For high speed applications the 15531B will support a 2.5 Megabit/sec data rate.
The HD-15531 can also be used in many party line digital data communications applications, such as a local area network or an environmental control system driven from a single twisted pair of fiber optis cable throughout a building.

Pinout
TOP VIEW
 take data \(4 \quad 37\) encooer clock sehial data out \({ }^{5} 5\) synchbonous data \({ }^{\text {© }}\) SYMChRONOUS DATA SEL. \({ }^{7}\) sywchbonous clock 口 \(_{8}\) decooer clock \({ }^{9}\) synchbonous clock sel. \({ }^{10}\) bipolar zero in \({ }^{11}\) bipolar one in in unipolar oata in \({ }^{13}\) DECODEE SHIFT CLLCK \({ }^{14}\) transition sel. 15 command s.c.c. \({ }^{16}\) OECOOER PARITY SEL. [18 decooder Reset \({ }^{19}\) COUNT CO \({ }^{2}\)
\({ }_{36}\) 㠯COUNT C3 \({ }_{35}\) ल.c. \({ }^{34}\) Encooen shift clock 33 Send clock in 32 . send data \({ }^{31}\) Dencoore parity sel. 30 Syrc sel. 29 encooen enable 28 Senial data in 27 Bipolar one out \({ }_{26}\) DOUTPUT WHIBIT \(2 5 \longdiv { \text { BIPOLAA } }\) ZERT \(\overline{\text { OUT }}\) \({ }_{24} \div 6\) оит \({ }_{23}\) bount 2 22 master heset 21 อand

\section*{Block Diagrams}

ENCODER

\section*{decoder}

\section*{Absolute Maximum Ratings}

Supply Voltage \(\qquad\) ed \(\qquad\) Input, Output or I/O Voltage Applied Storage Temperature Range ..
...............
n..... \(\qquad\) Maximum Package Power Dissipation............ 1 Watt \(\theta_{\mathrm{jc}} \cdots .17^{\circ} \mathrm{C} / \mathrm{W}\) (CERDIP package), \(23^{\circ} \mathrm{C} / \mathrm{W}\) (LCC package)
CAUTION: Stresses above those listed in the "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at hese or any other conditions above those indicated in the operation sections of this specification is not implied.

\section*{Operating Conditions}

Electrical Specifciations \(\quad T_{A}=-40^{\circ} \mathrm{C}\) to \(+850^{\circ} \mathrm{C}\) (HD-15531-9), \(\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\) to \(+1255^{\circ} \mathrm{C}\) (\(\mathrm{HD}-15531-2 /-8\))
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & MIN & TYP & MAX & UNITS & TEST CONDITIONS \\
\hline \begin{tabular}{l}
\(V_{1 H}\) \\
\(V_{\text {IL }}\) \\
\(\mathrm{V}_{\text {IHC }}\) \\
VILC \\
\(\mathrm{V}_{\mathrm{OH}}\) \\
\(\mathrm{V}_{\mathrm{OL}}\) \\
\({ }^{\prime} \mathrm{CCSB}\) \\
\({ }^{\prime}\) CCOP \\
\(\mathrm{C}_{\mathrm{IN}}\) \\
\(\mathrm{C}_{\mathrm{O}}\)
\end{tabular} & \begin{tabular}{l}
Logical "1" Input Voltage \\
Logical "0" Input Voltage \\
Logical " 1 " Input Voltage (Clock) \\
Logical "0" Input Voltage (Clock) Input Leakage \\
Logical "1" Output Voltage Logical "0" Output Voltage Supply Current Standby \\
Supply Current Operating* Input Capacitance \\
Output Capacitance
\end{tabular} & \begin{tabular}{l}
\[
\begin{gathered}
70 \% V_{C C} \\
V_{C C}-0.5 \\
-1.0 \\
2.4
\end{gathered}
\] \\
d and samp
\end{tabular} & 0.5
8.0
10
14
but not & \begin{tabular}{l}
\[
\begin{gathered}
20 \% \mathrm{~V}_{\mathrm{CC}} \\
\mathrm{GND}+0.5 \\
+1.0 \\
\\
\\
0.4 \\
2.0 \\
10.0
\end{gathered}
\] \\
\% tested
\end{tabular} & \begin{tabular}{l}
V \\
V \\
V \\
V \\
\(\mu \mathrm{A}\) \\
v \\
V \\
mA \\
mA pF pF
\end{tabular} & \begin{tabular}{l}
\(V_{\text {IN }}=V_{C C}\) or GND, DIP Pins 6-13, 15, 18, 19, 20, 22, 23, 26, 28-31, 33, 36 37, 39, 40 \\
\(1 \mathrm{OH}=-3 \mathrm{~mA}\) \\
\(1 \mathrm{OL}=1.8 \mathrm{~mA}\) \\
\(\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}\) \\
Outputs Open \\
\(\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \mathrm{f}=15 \mathrm{MHz}\) \\
All measurements are referenced to device \\
GND, \(T_{A}=+25^{\circ} \mathrm{C}\),
\[
\mathrm{F}=1 \mathrm{MHz}
\]
\end{tabular} \\
\hline ENCODER TIM & \(\mathrm{VCC}=5.0 \mathrm{~V} \pm 10 \%\) & & & & & \\
\hline \begin{tabular}{l}
(1) FEC \\
(2) FESC \\
(3) TECR \\
(4) TECF \\
(5) \(\mathrm{F}_{\mathrm{ED}}\) \\
(6) TMR \\
(7) TE1 \\
(8) TE2 \\
(9) TE3 \\
(10) TE4 \\
(11) \(T_{E 5}\) \\
(12) TE6 \\
(13)TE7 \\
(14)TE8 \\
(15)TE9 \\
(16)TE10 \\
(17) \(\mathrm{T}_{\mathrm{E} 11}\)
\end{tabular} & \begin{tabular}{l}
Encoder Clock Frequency \\
Send Clock Frequency \\
Encoder Clock Rise Time \\
Encoder Clock Fall Time \\
Data Rate \\
Master Reset Pulse Width \\
Shift Clock Delay \\
Serial Data Setup \\
Serial Data Hold \\
Enable Setup \\
Enable Pulse Width \\
Sync Setup \\
Sync Pulse Width \\
Send Data Delay \\
Bipolar Ouput Delay \\
Enable Hold \\
Sync Hold
\end{tabular} & \[
\begin{gathered}
0 \\
0 \\
\\
0 \\
150 \\
\\
75 \\
75 \\
90 \\
100 \\
55 \\
150 \\
0 \\
\\
10 \\
95
\end{gathered}
\] & & 15
2.5
8
8
1.25

125

50
130 & \begin{tabular}{l}
MHz \\
MHz \\
ns \\
ns \\
MHz \\
ns \\
ns
\end{tabular} & \[
C_{L}=50 \mathrm{pF}
\] \\
\hline \multicolumn{7}{|l|}{DECODER TIMING VCC \(=5.0 \mathrm{~V} \pm 10 \%\)} \\
\hline \begin{tabular}{l}
(18) FDC (19) FDS (20) TDCR 121) TDCF (22)FDD (23)TDR (24)TDRS (25)TDRH (26)TMR (27) TD1 (28) T D 2 (29)TD3 (30) TD4 (31) T \(D 5\) (32) TD6 (33) TD7 \\
(34)TD8 \\
(35)TD9 \\
(36) TD10 \\
(37)TD11 \\
(38)TD12 \\
(39) \({ }^{\top}\) D13 \\
NOTE 1. TD
\end{tabular} & \begin{tabular}{l}
Decoder Clock Frequency \\
Decoder Sync Clock \\
Decoder Clock Rise Time \\
Decoder Clock Fall Time \\
Data Rate \\
Decoder Reset Pulse Width \\
Decoder Reset Setup Time \\
Decoder Reset Hold Time \\
Master Reset Pulse \\
Bipolar Data Pulse Width \\
Sync Transition Span \\
One Zero Overlap \\
Short Data Transition Span \\
Long Data Transition Span \\
Sync Delay (ON) \\
Take Data Delay (ON) \\
Serial Data Out Delay \\
Sync Delay (OFF) \\
Take Data Delay (OFF) \\
Valid Word Delay \\
Sync Clock to Shift Clock Delay \\
Sync Data Setup \\
Decoder Clock Period \(=\frac{1}{\text { FDC }}\),
\end{tabular} & 0
0
0
150
75
10
150
\(\mathrm{~T}_{\mathrm{DC}}{ }^{+10}\)

-20
0
0
0
0
75
75 & \begin{tabular}{l}
\[
{ }^{18 \mathrm{~T}_{\mathrm{DC}}}
\] \\
\({ }^{6 T}\) DC \({ }^{12 \mathrm{~T}} \mathrm{DC}\) \\
are guar
\end{tabular} & \begin{tabular}{l}
\[
\begin{gathered}
15 \\
2.5 \\
8 \\
8 \\
1.25
\end{gathered}
\] \\
TDC -10
\[
\begin{gathered}
110 \\
110 \\
80 \\
110 \\
110 \\
110 \\
75
\end{gathered}
\] \\
ed but not
\end{tabular} & \begin{tabular}{l}
MHz \\
MHz \\
ns \\
ns \\
MHz \\
ns \\
ns \\
ns \\
ns , n ns ns \\
00\% tes
\end{tabular} & \begin{tabular}{l}
\[
C_{L}=50 \mathrm{pF}
\] \\
(Note 1) \\
(Note 1) \\
(Note 1) \\
(Note 1) \\
(Note 1)
\end{tabular} \\
\hline
\end{tabular}

\section*{Absolute Maximum Ratings}

Supply Voltage...+7.0 Volts
Input, Output or I/O Voltage Applied \(\qquad\) GND -0.3 V to VCC +0.3 V Storage Temperature Range \(\qquad\) \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
Maximum Package Power Dissipation.. 1 Watt \(\theta_{\mathrm{jc}} \cdots \ldots \ldots \ldots \ldots \ldots \ldots . .17^{\circ} \mathrm{C} / \mathrm{W}\) (CERDIP package), \(23^{\circ} \mathrm{C} / \mathrm{W}\) (LCC package)

Өja
\(45^{\circ} \mathrm{C} / \mathrm{W}\) (CERDIP package),
\(50^{\circ} \mathrm{C} / \mathrm{W}\) (LCC package) Gate Count \(\qquad\) 456 Gates Junction Temperature. Lead Temperature (Soldering, Ten Seconds). \(\qquad\) \(+275^{\circ} \mathrm{C}\)

CAUTION: Stresses above those IIsted in the "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operation sections of this specification is not implied.

\section*{Operating Conditions}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Operating Voltage Range .. +4.5 V to +5.5 V
Operating Temperature Range
HD-15531B-9.. \({ }^{\circ}+85^{\circ} \mathrm{C}\)
HD-15531B-2/-8..........} \\
\hline
\end{tabular}

Electrical Specifications \(\quad T_{A}=-40{ }^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) (HD-15531B-9), \(\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) (HD-15531B-2/-8)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & MIN & TYP & MAX & UNITS & TEST CONDITIONS \\
\hline \(\mathrm{V}_{1 \mathrm{H}}\) & Logical "1" Input Voltage & \(70 \% \mathrm{~V}_{\text {CC }}\) & & & V & \\
\hline \(V_{\text {IL }}\) & Logical "0" Input Voltage & & & 20\% V \({ }_{\text {CC }}\) & V & \\
\hline VIHC & Logical "1" Input Voltage (Clock) & \(\mathrm{V}_{\mathrm{CC}}-0.5\) & & & V & \\
\hline VILC & Logical "0" Input Voltage (Clock) & & & GND +0.5 & V & \\
\hline II & Input Leakage & -1.0 & & +1.0 & \(\mu \mathrm{A}\) & \(V_{\text {IN }}=V_{C C}\) or GND, DIP Pins 6-13, 15, 18, 19, 20, 22, 23, 26, 28-31, 33, 36, 37, 39, 40 \\
\hline \(\mathrm{V}_{\mathrm{OH}}\) & Logical "1" Output Voltage & 2.4 & & & V & \({ }^{1} \mathrm{OH}=-3 \mathrm{~mA}\) \\
\hline \(\mathrm{V}_{\mathrm{OL}}\) & Logical "0" Output Voltage & & & 0.4 & V & \(\mathrm{I}_{\mathrm{OL}}=1.8 \mathrm{~mA}\) \\
\hline \({ }^{\prime} \mathrm{CCSB}\) & Supply Current Standby & & 0.5 & 2.0 & mA & \begin{tabular}{l}
\[
V_{I N}=V_{C C}=5.5 \mathrm{~V}
\] \\
Outputs Open
\end{tabular} \\
\hline \[
\begin{aligned}
& \text { ICCOP } \\
& \text { CIN }^{2}
\end{aligned}
\] & Supply Current Operating* Input Capacitance & & \[
\begin{array}{r}
8.0 \\
10
\end{array}
\] & 10.0 & \[
\underset{\mathrm{pF}}{\mathrm{~mA}}
\] & \begin{tabular}{l}
\[
V_{C C}=5.5 \mathrm{~V} f=15 \mathrm{MHz}
\] \\
All measurements are referenced to device
\end{tabular} \\
\hline \(\mathrm{C}_{\mathrm{O}}\) & Output Capacitance & & \[
14
\] & & pF & \[
\begin{aligned}
& \mathrm{GND}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \\
& \mathrm{~F}=1 \mathrm{MHz}
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline (1) \(\mathrm{F}_{\mathrm{EC}}\) & Encoder Clock Frequency & 0 & 30 & MHz & \(C_{L}=50 \mathrm{pF}\) \\
\hline (2) FESC & Send Clock Frequency & 0 & 5.0 & MHz & \\
\hline (3) TECR & Encoder Clock Rise Time & & 8 & ns & \\
\hline (4) TECF & Encoder Clock Fall Time & & 8 & ns & \\
\hline (5) FED & Data Rate & 0 & 2.5 & MHz & \\
\hline (6) TMR & Master Reset Pulse Width & 150 & & ns & \\
\hline (7) TE1 & Shift Clock Delay & & 80 & ns & \\
\hline (8) TE2 & Serial Data Setup & 50 & & ns & \\
\hline (9) TE3 & Serial Data Hold & 50 & & ns & \\
\hline (10) TE4 & Enable Setup & 90 & & ns & \\
\hline (11) TE5 & Enable Pulse Width & 100 & & ns & \\
\hline (12)TE6 & Sync Setup & 55 & & ns & \\
\hline (13) TE7 & Sync Pulse Width & 150 & & ns & \\
\hline (14) TE8 & Send Data Delay & 0 & 50 & ns & \\
\hline (15)TE9 & Bipolar Ouput Delay & & 130 & ns & \\
\hline (16)TE10 & Enable Hold & 10 & & ns & \\
\hline (17) TE11 & Sync Hold & 95 & & ns & \(\dagger\) \\
\hline
\end{tabular}

DECODER TIMING VCC \(=5.0 \mathrm{~V} \pm 10 \%\)
\begin{tabular}{|c|c|}
\hline (18) F \({ }_{\text {DC }}\) & Decoder Clock Frequency \\
\hline (19) F \({ }_{\text {DS }}\) & Decoder Sync Clock \\
\hline (20) TDCR & Decoder Clock Rise Time \\
\hline (21)TDCF & Decoder Clock Fall Time \\
\hline (22) FDD & Data Rate \\
\hline (23)TDR & Decoder Reset Pulse Width \\
\hline (24)TDRS & Decoder Reset Setup Time \\
\hline (25)TDRH & Decoder Reset Hold Time \\
\hline (26) \({ }^{\text {T MR }}\) & Master Reset Pulse \\
\hline (27) TD1 & Bipolar Data Pulse Width \\
\hline (28) TD2 & Sync Transition Span \\
\hline (29)TD3 & One Zero Overlap \\
\hline (30) TD4 & Short Data Transition Span \\
\hline (31)TD5 & Long Data Transition Span \\
\hline (32)TD6 & Sync Delay (ON) \\
\hline (33) TD7 & Take Data Delay (ON) \\
\hline (34)TD8 & Serial Data Out Delay \\
\hline (35) TD9 & Sync Delay (OFF) \\
\hline (36)TD10 & Take Data Delay (OFF) \\
\hline (37) TD11 & Valid Word Delay \\
\hline (38) TD12 & Sync Clock to Shift Clock Delay \\
\hline (39) \(^{\text {D } 13}\) & Sync Data Setup \\
\hline
\end{tabular}

\section*{Pin Description}
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{array}{|c|}
\hline \text { PIN } \\
\text { NUMBER } \\
\hline
\end{array}
\] & TYPE & NAME & SECTION & DESCRIPTION \\
\hline 1 & & \(\mathrm{V}_{\mathrm{CC}}\) & Both & Positive supply pin. A \(0.1 \mu \mathrm{~F}\) decoupling capacitor from \(\mathrm{V}_{\mathrm{CC}}(\operatorname{pin} 1)\) to GROUND (pin 21) is recommended. \\
\hline 2 & 0 & VALID WORD & Decoder & Output high indicates receipt of a valid word, (valid parity and no Manchester errors). \\
\hline 3 & 0 & TAKE DATA' & Decoder & A continuous, free running signal provided for host timing or data handling. When data is present on the bus, this signal will be synchronized to the incoming data and will be identical to take data. \\
\hline 4 & 0 & TAKE DATA & Decoder & Output is high during receipt of data after identification of a valid sync pulse and two valid Manchester bits. \\
\hline 5 & 0 & SERIAL DATA OUT & Decoder & Delivers received data in correct NRZ format. \\
\hline 6 & 1 & SYNCHRONOUS DATA & Decoder & Input presents Manchester data directly to character identification logic. SYNCHRONOUS DATA SELECT must be held high to use this input. If not used this pin must be held high. \\
\hline 7 & 1 & SYNCHRONOUS DATA SELECT & Decoder & In high state allows the synchronous data to enter the character identification logic. Tie this input low for asynchronous data. \\
\hline 8 & 1 & SYNCHRONOUS CLOCK & Decoder & Input provides externally synchronized clock to the decoder, for use when receiving synchronous data. This input must be tied high when not in use. \\
\hline 9 & 1 & DECODER CLOCK & Decoder & Input drives the transition finder, and the synchronizer which in turn supplies the clock to the balance of the decoder. Input a frequency equal to 12 X the data rate. \\
\hline 10 & 1 & SYNCHRONOUS CLOCK SELECT & Decoder & In high state directs the SYNCHRONOUS CLOCK to control the decoder character identification logic. A low state selects the DECODER CLOCK. \\
\hline 11 & 1 & BIPOLAR ZERO IN & Decoder & A high input should be applied when the bus is in its negative state. This pin must be held high when the unipolar input is used. \\
\hline 12 & 1 & BIPOLAR ONE IN & Decoder & A high input should be applied when the bus is in its positive state. This pin must be held low when the unipolar input is used. \\
\hline 13 & 1 & UNIPOLAR DATA IN & Decoder & With pin 11 high and pin 12 low, this pin enters unipolar data into the transition finder circuit. If not used this input must be held low. \\
\hline 14 & 0 & \[
\begin{aligned}
& \text { DECODER SHIFT } \\
& \text { CLOCK }
\end{aligned}
\] & Decoder & Output which delivers a frequency (DECODER CLOCK \(\div 12\)), synchronous by the recovered serial data stream. \\
\hline 15 & 1 & TRANSITION SELECT & Decoder & A high input to this pin causes the transition finder to synchronize on every transition of input data. A low input causes the transition finder to synchronize only on mid-bit transitions. \\
\hline 16 & & N.C. & Blank & Not connected. \\
\hline 17 & 0 & COMMAND SYNC & Decoder & Output of a high from this pin occurs during output of decoded data which was preceded by a Command (or Status) synchronizing character. \\
\hline 18 & 1 & DECODER PARITY SELECT & Decoder & An input for parity sense, calling for even parity with input high and odd parity with input low. \\
\hline 19 & 1 & DECODER RESET & Decoder & A high input to this pin during a rising edge of DECODER SHIFT CLOCK resets the decoder bit counting logic to a condition ready for a new word. \\
\hline 20 & 1 & COUNT Co & Both & One of five binary inputs which establish the total bit count to be encoded or decoded. \\
\hline 21 & & GROUND & Both & Supply pin. \\
\hline 22 & 1 & MASTER RESET & Both & A high on this pin clears \(2: 1\) counters in both encoder and decoder, and resets the \(\div 6\) circuit. \\
\hline 23 & 1 & COUNT \(\mathrm{C}_{2}\) & Both & See pin 20. \\
\hline 24 & 0 & \(\div 6\) OUT & Encoder & Output from 6:1 divider which is driven by the ENCODER CLOCK. \\
\hline 25 & 0 & BIPOLAR \(\overline{\text { ZERO OUT }}\) & Encoder & An active low output designed to drive the zero or negative sense of a bipolar line driver. \\
\hline 26 & 1 & OUTPUT INHIBIT & Encoder & A low on this pin forces pin 25 and 27 high, the inactive states. \\
\hline 27 & 0 & \(\overline{\text { BIPOLAR ONE OUT }}\) & Encoder & An active low output designed to drive the one or positive sense of a bipolar line driver. \\
\hline 28 & 1 & SERIAL DATA IN & Encoder & Accepts a serial data stream at a data rate equal to ENCODER SHIFT CLOCK. \\
\hline 29 & 1 & ENCODER ENABLE & Encoder & A high on this pin initiates the encode cycle. (Subject to the preceding cycle being complete.) \\
\hline 30 & 1 & SYNC SELECT & Encoder & Actuates a Command sync for an input high and Data sync for an input low. \\
\hline 31 & 1 & ENCODER PARITY SELECT & Encoder & Sets transmit parity odd for a high input, even for a low input. \\
\hline 32 & 0 & SEND DATA & Encoder & Is an active high output which enables the external source of serial data. \\
\hline 33 & 1 & SEND CLOCK IN & Encoder & Clock input at a frequency equal to the data rate X 2 , usually driven by \(\div 6\) output. \\
\hline 34 & 0 & ENCODER SHIFT CLOCK & Encoder & Output for shifting data into the Encoder. The Encoder samples SDI pin-28 on the low-to-high transition of ESC. \\
\hline 35 & & N.C. & Blank & Not connected. \\
\hline 36 & 1 & COUNT C3 & Both & See pin 20. \\
\hline 37 & 1 & ENCODER CLOCK & Encoder & Input to the 6:1 divider, a frequency equal to 12 times the data rate is usually input here. \\
\hline 38 & 0 & DATA SYNC & Decoder & Output of a high from this pin occurs during output of decoded data which was preceded by a data synchronizing character. \\
\hline 39 & 1 & COUNT C4 & Both & See pin 20. \\
\hline 40 & 1 & COUNT C1 & Both & See pin 20. \\
\hline
\end{tabular}

\section*{Encoder Operation}

The Encoder requires a single clock with a frequency of twice the desired data rate applied at the SEND CLOCK input. An auxiliary divide by six counter is provided on chip which can be utilized to produce the SEND CLOCK by dividing the DECODER CLOCK. The frame length is set by programming the COUNT inputs. Parity is selected by programming ENCODER PARITY SELECT high for odd parity or low for even parity.

The Encoder's cycle begins when ENCODER ENABLE is high during a falling edge of ENCODER SHIFT CLOCK (1). This cycle lasts for one word length or \(K+4\) ENCODER SHIFT CLOCK periods, where \(K\) is the number of bits to be sent. At the next low-to-high transition of the ENCODER SHIFT CLOCK, a high SYNC SELECT input actuates a Command sync or a low will produce a Data sync for the word (2). When the Encoder is ready to accept data, the SEND DATA output will go high for K ENCODER SHIFT CLOCK periods (4). During these K periods the
data should be clocked into the SERIAL DATA input with every high-to-low transition of the ENCODER SHIFT CLOCK (3)-(4) so it can be sampled on the low-to-high transition. After the sync and Manchester II encoded data are transmitted through the BIPOLAR ONE and BIPOLAR ZERO outputs, the Encoder adds on an additional bit with the parity for that word (5). If ENCODER ENABLE is held high continuously, consecutive words will be encoded without an interframe gap. ENCODER ENABLE must go low by time (5) (as shown) to prevent a consecutive word from being encoded. At any time a low on OUTPUT INHIBIT input will force both bipolar outputs to a high state but will not affect the Encoder in any other way.
To abort the Encoder transmission a positive pulse must be applied at MASTER RESET. Any time after or during this pulse, a low-to-high transition on SEND CLOCK clears the internal counters and initializes the Encoder for a new word.

\section*{Decoder Operation}

To operate the Decoder asynchronously requires a single clock with a frequency of 12 times the desired data rate applied at the DECODER CLOCK input. To operate the Decoder synchronously requires a SYNCHRONOUS CLOCK at a frequency 2 times the data rate which is synchronized with the data at every high-to-low transition applied to the SYNCHRONOUS CLK input. The Manchester II coded data can be presented to the Decoder asynchronously in one of two ways. The BIPOLAR ONE and BIPOLAR ZERO inputs will accept data from a comparator sensed transformer coupled bus as specified in Military Spec 1553. The UNIPOLAR DATA input can only accept noninverted Manchester II coded data. (e.g. from \(\overline{B I P O L A R}\) ONE OUT on an Encoder through an inverter to Unipolar Data Input).
The Decoder is free running and continuously monitors its data input lines for a valid sync character and two valid Manchester data bits to start an output cycle. When a valid sync is recognized (1 , the type of sync is indicated by a high level at either COMMAND SYNC or DATA SYNC output. If the sync character was a command sync the COMMAND SYNC output will go high (2) and remain high for K SHIFT CLOCK periods (3), where K is the number of bits to be received. If the sync character was a data sync the DATA SYNC output will go high. The TAKE DATA
output will go high and remain high (2) - (3) while the Decoder is transmitting the decoded data through SERIAL DATA OUT. The decoded data available at SERIAL DATA OUT is in NRZ format. The DECODER SHIFT CLOCK is provided so that the decoded bits can get shifted into an external register on every low-to-high transition of this clock (2) - (3). Note that DECODER SHIFT CLOCK may adjust its phase up until the time that TAKE DATA goes high.

After all K decoded bits have been transmitted (3) the data is checked for parity. A high input on DECODER PARITY SELECT will set the Decoder to check for even parity or a low input will set the Decoder to check for odd parity. A high on VALID WORD output (4) indicates a successful reception of a word without any Manchester or parity errors. At this time the Decoder is looking for a new sync character to start another output sequence. VALID WORD will go low approximately K + 4 DECODER SHIFT CLOCK periods after it goes high if not reset low sooner by a valid sync and two valid Manchester bits as shown (1).

At any time in the above sequence a high input on DECODER RESET during a low-to-high transition of DECODER SHIFT CLOCK will abort transmission and initialize the Decoder to start looking for a new sync character.

\section*{Encoder Timing}

A.C. Testing Input, Output Waveform

A.C. Testing: All inputs signals must switch between VIL and VIH Input rise and fall times are driven at 1 nsec per volt.

Decoder Timing

DECODER SHIFT CLOCK

\section*{Frame Counter}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { DATA } \\
& \text { BITS }
\end{aligned}
\]} & \multirow[t]{2}{*}{} & \multicolumn{5}{|c|}{PIN WORD} \\
\hline & & \(\mathrm{C}_{4}\) & \(C_{3}\) & \(\mathrm{C}_{2}\) & \(\mathrm{C}_{1}\) & \(\mathrm{C}_{0}\) \\
\hline 2 & 6 & L & L & H & L & H \\
\hline 3 & 7 & L & L & H & H & L \\
\hline 4 & 8 & L & L & H & H & H \\
\hline 5 & 9 & L & H & L & L & L \\
\hline 6 & 10 & L & H & L & L & H \\
\hline 7 & 11 & L & H & L & H & L \\
\hline 8 & 12 & L & H & L & H & H \\
\hline 9 & 13 & L & H & H & L & L \\
\hline 10 & 14 & L & H & H & L & H \\
\hline 11 & 15 & L & H & H & H & L \\
\hline 12 & 16 & L & H & H & H & H \\
\hline 13 & 17 & H & L & L & L & L \\
\hline 14 & 18 & H & L & L & L & H \\
\hline 15 & 19 & H & L & L & H & L \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{DATA BITS} & \multirow[t]{2}{*}{\begin{tabular}{l}
FRAME \\
LENGTH \\
(BIT PERIODS)
\end{tabular}} & \multicolumn{5}{|c|}{PIN WORD} \\
\hline & & \(\mathrm{C}_{4}\) & \(\mathrm{C}_{3}\) & \(\mathrm{C}_{2}\) & \(\mathrm{C}_{1}\) & \(\mathrm{C}_{0}\) \\
\hline 16 & 20 & H & L & L & H & H \\
\hline 17 & 21 & H & L & H & L & L \\
\hline 18 & 22 & H & L & H & L & H \\
\hline 19 & 23 & H & L & H & H & L \\
\hline 20 & 24 & H & L & H & H & H \\
\hline 21 & 25 & H & H & L & L & L \\
\hline 22 & 26 & H & H & L & L & H \\
\hline 23 & 27 & H & H & L & H & L \\
\hline 24 & 28 & H & H & L & H & H \\
\hline 25 & 29 & H & H & H & L & L \\
\hline 26 & 30 & H & H & H & L & H \\
\hline 27 & 31 & H & H & H & H & L \\
\hline 28 & 32 & H & H & H & H & H \\
\hline
\end{tabular}

The above Table demonstrates all possible combinations of frame lengths ranging from 6 to 32 bits. The pin word described here is common to both the Encoder and Decoder.

\section*{Applications How to Make Our MTU Look Like a Manchester Encoded UART}

Typical Timing Diagram for a Manchester Encoded UART ENCODER TIMING

\section*{MIL-STD-1553}

The 1553 standard defines a time division multiplexed data bus for application within aircraft. The bus is defined to be bipolar, and encoded in a Manchester II format, so no DC component appears on the bus. This allows transformer coupling and excellent isolation among systems and their environment.

The HD-15531 supports the full bipolar configuration, assuming a bus driver configuration similar to that in Figure 1. Bipolar inputs from the bus, like Figure 2, are also accommodated.

The signaling format in MIL-STD-1553 is specified on the assumption that the network of 32 or fewer terminals are controlled by a central control unit by means of Command Words, and Data. Terminals respond with Status Words, and Data. Each word is preceded by a

FIGURE 1. SIMPLIFIED MIL-STD-1553 DRIVER

FIGURE 3. MIL-STD-1553 CHARACTER FORMATS
synchronizing pulse, and followed by parity bit, occupying a total of \(20 \mu \mathrm{sec}\). The word formats are shown in Figure 4. The special abbreviations are as follows:

P Parity, which is defined to be odd, taken across all 17 bits.

R/T Receive on logical zero, transmit on ONE.
ME Message Error if logical 1.
TF Terminal Flag, if set, calls for controller to request self-test data.

The paragraphs above are intended only to suggest the content of MIL-STD-1553, and do not completely describe its bus requirements, timing or protocols.

FIGURE 2. SIMPLIFIED MIL-STD-1553 RECEIVER
\begin{tabular}{|l|}
\hline 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 \\
\hline
\end{tabular}
COMMAND WORD (FROM CONTROLLER TO TERMINAL)
\begin{tabular}{|c|c|c|c|c|}
\hline & 5 & 1 & 5 & 5 \\
\hline
\end{tabular}

DATA WORD (SENT EITHER DIRECTION)

STATUS WORD (FROM TERMINAL TO CONTROLLER)

FIGURE 4. MIL-STD-1553 WORD FORMATS

NOTE: This page is a summary of MIL-STD-1553 and is not intended to describe the operation of the HD-15531.

\section*{HD-6406 SOFTWARE APPLICATIONS}
By J. A. Goss
PAGE
Introduction ..5-55
1.0 Glossary of Data Communication Terms 5-55
1.1 Clear to Send 5-55
1.2 Data Set Ready 5-55
1.3 Data Terminal Ready 5-55
1.4 Framing Error 5-55
1.5 Interrupt Driven I/O 5-55
1.6 I/O Polling 5-55
1.7 Overrun Error. 5-56
1.8 Parity 5-56
1.9 Parity Error. 5-56
1.10 Percentage Error in Baud Rate Generation 5-56
1.11 Receive Line Signal Detect 5-57
1.12 Request to Send 5-57
1.13 Ring Indicator 5-57
2.0 Control Registers 5-57
2.1 UART Control Register 5-57
2.2 Baud Rate Select Register 5-59
2.3 Modem Control Register 5-61
3.0 Status Registers 5-62
3.1 UART Status Register 5-62
3.2 Modem Status Register 5-64
4.0 Transmit/Receive Buffer Registers 5-64
4.1 Receiver Buffer Register 5-64
4.2 Transmitter Buffer Register 5-64
5.0 I/O Addressing Methods 5-65
5.1 I/O Mapped Addressing 5-65
5.2 Memory Mapped I/O 5-65
5.3 I/O Addressing for the HD-6406 5-66
6.0 Reset of the HD-6406 PACI 5-67
7.0 Programming the HD-6406 PACI 5-67
7.1 Device Driver Examples 5-67
Program Listing, Example 1 5-68
Program Listing, Example 2 5-72

\title{
HD-6406 CMOS PROGRAMMABLE ASYNCHRONOUS COMMUNICATION INTERFACE
}

\section*{Introduction}

The HD-6406 CMOS Programmable Asynchronous Communication Interface (PACl) can be utilized for serial communications at data rates from DC to 1 M baud using clock speeds in the range of \(0-16 \mathrm{MHz}\). In addition, the device provides an internal baud rate generator, and a complete set of handshaking signals to provide a Data Communications Equipment (DCE) interface.

In the following discussion, we will look at the functional capabilities of the HD-6406 PACI, and give information and examples on how the device can be programmed. The following topics will be discussed:
(1) Glossary of Communications Terms
(2) Control Registers
(3) Status Registers
(4) Transmit/Receive Buffer Registers
(5) I/O Addressing Methods
(6) Reset of the HD-6406 PACI
(7) Programming the HD-6406 PACI

\subsection*{1.0 Glossary of Data Communication Terms}

\subsection*{1.1 Clear to Send (\(\overline{\mathrm{CTS}}\)):}

Clear-to-send in an input signal to the HD-6406 PACI. It is provided by the device with which the HD-6406 is communicating, such as a modem. When this signal is in its active state (active low), the HD-6406 is being told that the modem will accept data sent to it from its Serial Data Out (SDO) pin.

The \(\overline{\mathrm{CTS}}\) signal is specified in the RS-232C protocol and is used in conjunction with the Request to Send (\(\overline{\mathrm{RTS}}\)) signal. This signal is used mainly in half-duplex systems. In a half-duplex system communications can be performed in both directions, but in only one direction at a time.

To illustrate this: Suppose we are using the HD-6406 to communicate over an RS-232C link to a modem. In halfduplex operation the UART tells the modem that it wishes to transmit a character by putting \(\overline{\mathrm{RTS}}\) into its active state (active low for the HD-6406). The modem, if ready for the data, will respond by driving the HD-6406's CTS line to its active state (low). When the HD-6406 recognizes this, it will then begin data transmission.

\subsection*{1.2 Data Set Ready (\(\overline{\mathrm{DSR}}\)):}

This is also an input signal to the HD-6406 PACI. When in its active state, it signifies that the device with which it is to communicate is powered on and ready for communications. When using a modem, an active state for this signal indicates that the modem is also connected to a communications line (is on line).

\subsection*{1.3 Data Terminal Ready (DTR):}

This is an output signal generated by the HD-6406 PACI. its purpose is to inform the target (i.e. modem) that it is ready for communications.

\subsection*{1.4 Framing Error:}

Each time the HD-6406 receives a character of data, it will check for 3 types of errors: (1) Parity error, (2) Framing error, and (3) Overrun error.
When reading characters through the Serial Data in (SDI) pin, the HD-6406 will first encounter a start bit. This start bit is a logical zero, and is detected by the first falling edge of the signal on SDI. Next, the HD-6406 will see a specified number of data bits followed by the parity bit. The parity bit is checked for a parity error (see 1:8 and 1.9). The stop bits are then checked for a framing error.

A framing error occurs when an incorrect stop bit is found, or if there are too few stop bits. This happens most often when the baud rates between the communicating devices differ. The data will have a tendency to become skewed. For information on this skewing problem, see 1.10.

\subsection*{1.5 Interrupt Driven I/O:}

This is a method of handling interaction between a CPU and an I/O device. In this scheme, the I/O device will issue an interrupt to the CPU when it requires attention.
With the HD-6406, an interrupt might occur when (1) the device receives a character on its SDI pin, (2) the device completes transmission of a character, (3) an error is found in a received character, or (4) a change was detected in one of the modem control lines.
After the interrupt is recognized by the CPU, it (the CPU) will go to the corresponding Interrupt Service Routine (ISR). This routine decides how the interrupt should be serviced, and then services it. Upon completion of the ISR, execution of the user's software will resume at the point where the interrupt occured.

\subsection*{1.6 I/O Polling:}

A second method for handling interaction between a CPU and an I/O device. Rather than waiting for an I/O device to interrupt the CPU, the software assumes the responsibility of checking to see if an I/O device needs servicing.
When the system software needs to output to the HD-6406, it will poll (look at) the device to see if it is ready to accept data. Similarly, in order to receive data from the HD-6406, the software will poll to see if there is any data waiting to be read in. Once read, the software must test the status of the HD-6406 to see if any errors were detected in the data received. The software must also look for status changes in the modem control lines.

\subsection*{1.7 Overrun Error:}

With the HD-6406, data is received on the SDI pin. From there it is shifted serially into the Receiver Register. Once in this register, it will be shifted (in parallel) into the Receive Buffer Register (RBR) should this register be empty. Should it not be empty, the data cannot be shifted into the RBR. However, subsequent data coming in on the SDI pin will be shifted into the Receiver Register, overwriting the data already there. This causes the HD-6406 to flag an overrun error.

To clear the RBR, data must be read from it by the CPU. This data must be read faster than the data is being received on SDI and written to the Receiver Register. In most cases, this problem must be dealt with in software: (1) Either the receive data routine must be optimized for better performance, or (2) The baud rate must be lowered to compensate for the data loss.

\subsection*{1.8 Parity:}

Parity is a form of error detection commonly used in serial communications. In parity checking, the sending device generates and sends an extra bit with each character transmitted. The state of this bit (0 or 1) is determined by
(1) the number of 1 bits in the character transmitted, and
(2) by whether parity was defined to be even or odd.

With even parity, the parity bit is generated such that the number of 'one' bits in the character (including the parity bit) is an even number. For example, if a word has 5 bits that are ones, the parity bit must be set to a one so that the total number of 'one' bits is an even number. If a character being sent has 6 bits set to a one, the parity bit will be zero. This still gives an even number of one bits in the character:

Conversely, in odd parity, the parity bit is generated such that the total number of 1 bits (including the parity bit) is an odd number. For a character having 5 one bits, the parity bit generated is a zero. For a character having 6 one bits, the parity bit is set to one.
\begin{tabular}{|c|c|c|}
\hline Character Sent & \begin{tabular}{c}
(EVEN) \\
Parity bit
\end{tabular} & \begin{tabular}{c}
(ODD) \\
Parity bit
\end{tabular} \\
\hline \hline 01101110 & 1 & 0 \\
11111010 & 0 & 1 \\
\hline
\end{tabular}

FIGURE 1. PARITY

\subsection*{1.9 Parity Error:}

This is caused by an invalid parity bit being detected in a character received. The condition occurs when (A) even parity is specified and an odd number of 'one' bits are detected in the character, or (\(B\)) odd parity is specified and an even number of 'one' bits are detected.
For example, if the character 6EH (01101110 b) is received by the device, and the parity bit read in is a 1 , a parity error would be flagged if parity was defined to be ODD. Should parity be set to EVEN and the parity bit is a 1 for this same character, a parity error will not be flagged.

\subsection*{1.10 Percentage Error in Baud Rate Generation:}

When exchanging data between two systems through serial links (i.e. RS-232C) it is important that the baud rates of the two systems be as equal as possible. Roughly speaking, these baud rates should not differ by more than \(2 \%\). For example, if system \(X\) is using an HD-6406 to generate 1200 bits per second (bps), and system \(Y\) with which it is communicating is generating 1244 bps , there is a \(3.67 \%\) difference in the baud rates. Errors may occur when data is received by system \(X\).
The HD-6406 samples the data being received on the SDI pin beginning from when the receiver detects a start bit. This is denoted by a high-to-low transition on the SDI pin. Based on the specified baud rate, the HD-6406 will count and sample such that each bit is read at the center of a bit period. Figure 2 B shows a character generated at 1200 bps, and sampled for 10 bit periods (S0 - S10). The character is 1B Hex with even parity.

FIGURE 2. PERCENTAGE ERROR

Assume that system X is configured to transmit and receive at 1200 bps . The system we are communicating with is running slightly faster as stated above (1244 bps). Our sampling rate will still be based upon 1200 bps, but the sampling of the incoming signal will be off by a short time period. With each sample this error accumulates. Thus, the skewing to the right becomes greater over time. By the time we normally would be sampling the parity bit (S9), the stop bit(s) would be coming in over the SDI pin (see Figure 2A). In this case, the HD-6406 thinks it is sampling the parity bit when in fact, what it is seeing is really the stop bit. This could cause a parity error to be flagged.

Conversely, if data is being received at a baud rate slightly less than our specified baud rate, we would get a skewing of the received data in the opposite direction. From Figure 2C, we see that at S10 we are checking the stop bit, but system Y is still transmitting the parity bit. Therefore, the Framing error will be flagged.

\subsection*{1.11 Receive Line Signal Detect (\(\overline{\operatorname{LLSD}}\)):}

Also known as CARRIER DETECT, this signal would be sent from a modem. It indicates that the modem has an established communications link with a remote system (i.e. via telephone). Any data transmitted from the modem to the HD-6406 is valid only if the the \(\overline{\operatorname{RLSD}}\) line is in its active state (active low). Otherwise, the data from the modem should be ignored.

\subsection*{1.12 Request To Send (\(\overline{\operatorname{RTS}}\)):}

This signal is an output of the HD-6406. It is used to inform a modem or remote system that it wishes to transmit data. The modem (remote system) would then respond by activating the \(\overline{\mathrm{CTS}}\) signal. As with the \(\overline{\mathrm{CTS}}\), this signal is of most value in half-duplex communications.

\subsection*{1.13 Ring Indicator (\(\overline{\mathrm{RI}}\)):}

This signal is an input to the HD-6406. It is generated by a modem and is used to inform the HD-6406 that the modem is receiving a ringing signal. In response, an interrupt could be generated by the HD-6406 to the CPU. This would force the CPU to initiate a connection to the caller. When this connection is made, the \(\overline{\mathrm{RLSD}}\) line should become active (low).

\subsection*{2.0 Control Registers}

In order for the HD-6406 to properly operate in a system, it must be configured for the desired form of operation. The user must decide how the device will be used in the system, and know the communications protocol of the device it will be communicating with. For example, in a system communicating with a modem we would need to utilize the modem control lines. When using the HD-6406 in a local area network these modem control lines may be of no use to us.

The HD-6406 is initialized and configured by writing a series of control words from the CPU to various control registers in the device. These registers include the UART Control Register (UCR), the Baud Rate Selector Register (BRSR), and the Modem Control Register (MCR).

UCR: Defines the format of characters being transmitted. The format of the characters includes the number of data bits, parity control, and the number of stop bits.

BRSR: Used in setting up the internal baud rate generator in the HD-6406 for a specific baud rate. It will also be used to specify what the CO output is to be.

MCR: Defines which interrupts will be enabled, and will also set the modem control output lines (\(\overline{\mathrm{RTS}}\) and \(\overline{\mathrm{DTR}}\)). In addition, the MCR allows the user to select one of four modes of communications (normal mode, echo mode, transmit break, and loop test mode).

\subsection*{2.1 UART Control Register}

The UART Control Register (UCR) is a write-only register. Writing a command word to the UCR configures the transmission and reception circuitry of the HD-6406. The command word essentially describes the format of characters that are to be transmitted or received. The format of these characters are made up of (1) a specific word length, (2) parity information, and (3) a selected number of stop bits, used to indicate transmission of that character is completed.

FIGURE 3. UCR FORMAT

D0 - Stop Bit Select: This bit is used to select the number of stop bits that the HD-6406 will insert into a character to be transmitted, and the number to look for in received characters. The stop bit(s) denote where the end of a character occurs. The external device must be configured with the same number of stop bits as the HD-6406. The setting(s) for this bit are as follows:
0 - If this bit is set to zero, then a single stop bit will be generated and checked for.
1 - Setting this bit to a one will cause either of two configurations. If we select a character length of 5 data bits, the HD-6406 will generate 1.5 stop bits during transmission, and will look for a single stop bit when receiving data. If a character length of 6,7 , or 8 data bits is selected, then two (2) stop bits will be generated and checked for.

D3, D2 and D1 - Parity Control: These three bits are used to control the generation and checking of the parity bit. The HD-6406 can be configured to perform this function one of seven ways. These are:
000 - Even parity is generated for transmitting data, and will be checked for when receiving data.
001 - Odd parity is generated for transmitting data, and checked for during data reception.
010 - Even parity is generated for data transmission, and odd parity will be checked for during data reception.
011 - Odd parity is generated for data transmission, and even parity will be checked for during data reception.
100 - Even parity is generated for data transmission, however, the HD-6406 will do no parity checking on data that has been received.
101 - Odd parity is generated for data transmission. The HD-6406 will not check parity on data received.
11X - The generation of a parity bit is disabled. Also, the HD-6406 will not check for parity on incoming data. D1 is not used therefore, it can be either a 0 or a 1 .
table 1. PARITY SELECTION
\begin{tabular}{|c|c|c|}
\hline & Transmitter & Receiver \\
\hline 000 & Even & Even \\
001 & Odd & Odd \\
010 & Even & Odd \\
011 & Odd & Even \\
100 & Even & Disabled \\
101 & Odd & Disabled \\
11 X & Disabled & Disabled \\
\hline
\end{tabular}

D5, D4 - Word Length Select: The state of these bits determines the number of bits that are transmitted as a data word. The word length can be 5, 6, 7, or 8 bits long.

TABLE 2. WORD LENGTH SELECTION
\begin{tabular}{|c|c|c|}
\hline D5 & D4 & Word Length \\
\hline 0 & 0 & 5 bits \\
0 & 1 & 6 bits \\
1 & 0 & 7 bits \\
1 & 1 & 8 bits \\
\hline
\end{tabular}

D7, D6 - Reserved: These bits have been reserved for future product upgrade compatibility. To insure that the future upgrades of the HD-6406 will operate with existing software, these bits must both be set to zero (00).

\subsection*{2.2 Baud Rate Select Register}

The Baud Rate Select Register (BRSR) is a write-only register used to set the internal HD-6406 baud rate generator to the desired data transfer rate. Essentially, this baud rate will depend upon the clock speed of the crystal being used with the device. However, to provide more flexibility, the HD-6406 provides two seperate counters for selecting a divide ratio to fit the user's needs.

These two counters are the Prescaler, and the Divisor select. The Prescaler allows the input clock rate to be divided by one of four values; \(1,3,4\), and 5 . This new data rate can then be further divided by using the values available with the Divisor select. This final clock speed will be 16 times the actual baud rate used by the HD-6406.

FIGURE 4. BRSR FORMAT

The 16X clock speed can be output to the CO pin of the device through the CO Select function of the BRSR. If CO select is not selected, the output of the CO pin will reflect the crystal frequency input by the part on the IX pin. Note, this output (CO) is a buffered version of the IX input or 16X baud rate.

D1 and D0 - Prescaler Select: This allows the user to choose one of four values that the input clock frequency (IX) will be divided by.

TABLE 3. PRESCALER SELECTION
\begin{tabular}{|c|c|c|}
\hline D1 & D0 & \begin{tabular}{c}
PRESCALER \\
DIVISOR
\end{tabular} \\
\hline \hline 0 & 0 & \(\div 1\) \\
0 & 1 & \(\div 3\) \\
1 & 0 & \(\div 4\) \\
1 & 1 & \(\div 5\) \\
\hline
\end{tabular}

D6, D5, D4, D3, and D2 - Divisor Select: The state of these bits determines the value of the Divisor select. The possible values are as follows:

TABLE 4. DIVISOR SELECTION
\begin{tabular}{|c|c|}
\hline D6-D2 & DIVISOR \\
\hline 00000 & \(\div 2\) \\
00001 & \(\div 4\) \\
00010 & \(\div 16 / 3\) \\
00011 & \(\div 8\) \\
00100 & \(\div 32 / 3\) \\
00101 & \(\div 16\) \\
00110 & \(\div 58 / 3\) \\
00111 & \(\div 32\) \\
01000 & \(\div 128\) \\
01001 & \(\div 192\) \\
01010 & \(\div 256\) \\
01011 & \(\div 288\) \\
01100 & \(\div 352\) \\
01101 & \(\div 512\) \\
01110 & \(\div 768\) \\
01111 & \(\div 1\) \\
\hline
\end{tabular}

By using a crystal or external frequency with one of the common crystal frequencies (\(1.8432 \mathrm{MHz}, 2.4576 \mathrm{MHz}\), or 3.072 MHz) and a prescaler of divide by 3,4 , or 5 respectively, standard baud rates can easily be generated by selecting the Divisor as shown in Table 5 below:

TABLE 5. STANDARD DIVISORS
\begin{tabular}{|c|c|}
\hline BAUD RATE & DIVISOR \\
\hline 38.4 K & External \\
19.2 K & 2 \\
9600 & 4 \\
7200 & \(16 / 3\) \\
4800 & 8 \\
3600 & \(32 / 3\) \\
2400 & 16 \\
\(2000^{\star}\) & \(58 / 3\) \\
\(1800^{\star}\) & 21 \\
1200 & 32 \\
600 & 64 \\
300 & 128 \\
200 & 192 \\
150 & 256 \\
\(134.5^{\star}\) & 288 \\
\(110^{\star}\) & 352 \\
75 & 512 \\
50 & 768 \\
\hline
\end{tabular}

NOTE: All baud rates are exact except for:

TABLE 6. PERCENT DIFFERENTIAL
\begin{tabular}{|c|c|c|}
\hline BAUD RATE & ACTUAL & \% DIFFERENCE \\
\hline \hline 2000 & 1968.2 & \(0.69 \%\) \\
1800 & 1828.6 & \(1.56 \%\) \\
134.5 & 133.33 & \(0.87 \%\) \\
110 & 109.71 & \(0.26 \%\) \\
\hline
\end{tabular}

To illustrate how a baud rate can be determined, let us look at the following example:

EXAMPLE 2.1:
Assume that we are using a clock frequency of 2.4576 MHz with the HD-6406, and we wish to configure the device to run at a baud rate of 9600 bits per second (bps).

First, select a prescaler of divide-by-four. Therefore, bits D1 and D0 will be set to 1 and 0 . This will give an effective clock frequency of \(614,400 \mathrm{~Hz}\).

Next, look at Table 5 to determine which divisor is needed to generate 9600 bps . The divisor is four (4). Bits 6 through 2 will be set to 0000 and 1. The \(614,400 \mathrm{~Hz}\) clock has then been divided by 4 to give the appropriate 16X clock, which is \(153,600 \mathrm{HZ}(16 \times 9600)\).

To determine what the actual baud rate is, take \(153,600 \mathrm{~Hz}\) and divide it by 16 . This will give us our 9600 bits per second (bps). A 16X clock rate is required by the internal circuitry of the HD-6406. That is why the prescalar and divisor are selected to yield a clock rate that is 16 times the desired baud rate.

Finally, set the CO Select bit to 1 so that the CO output will be the same as the BRG output. This is the 16X frequency calculated above (\(153,600 \mathrm{~Hz}\)).

The command word written to the BRSR will be:

\section*{10000110 or 86 Hex}

D7 - CO Select: This tells the HD-6406 what the source will be for the output pin CO.

0 - The output on CO will be a buffered version of the clock input (IX) to the device. The frequency of this signal will be the actual crystal frequency (or external frequency) used to run the HD-6406.

1- The output of CO will be a buffered version of a clock rate that is 16 times the actual baud rate generated by the HD-6406. This signal is suitable for driving a second HD-6406 or UART in a system.

\subsection*{2.3 Modem Control Register}

The Modern Control Register (MCR) is a general purpose register controlling various operation parameters within the device. These parameters include: (1) setting modem controi lines RTS and CTS, (2) Enabling the interrupt structure of the device, (3) enabling the receiver on the device, and (4) selecting one of four operating modes in the device.

FIGURE 5. MCR FORMAT

DO - Request to Send: This bit allows the user to set the state of the \(\overline{R T S}\) output pin. This pin is used as a modem control line in the RS-232C interface protocol. It is important to remember that the RTS output pin is active low.

0 - Setting this bit to a zero causes a one (1) to be output on the RTS pin. In effect, this is setting the pin to its logical false state.

1- If this bit is set to a one, the \(\overline{\mathrm{RTS}}\) pin will be forced to a zero (0). This puts the \(\overline{\mathrm{RTS}}\) signal in its logical true state.

D1 - Data Terminal Ready: This is a modem control line for an RS-232C-like interface. It is an output pin and is also active low.

0 - A zero in bit D1 causes \(\overline{\text { DTR }}\) pin to be put in a logical false state. The \(\overline{D T R}\) pin outputs a one (1).

1-By writing a one to this bit, the HD-6406 \(\overline{\text { DTR }}\) output pin is set to its logical true state (zero).

D2 - Interrupt Enable (INTEN): This bit is an overall control for the INTR pin on the HD-6406. With it, all HD-6406 interrupts to the processor can either be enabled or disabled. When D2 is reset to disable interrupts, no status changes including modem status changes can cause an interrupt to the processor.

0 - Interrupts are disabled. The INTR pin will be held in a false state (low) so that no interrupt requests to the processor are generated.

1- Interrupts are enabled. Interrupts will be discussed in more detail later.

D4 and D3 - Mode Select: These two bits allow the user to select one of the four possible operating modes for the HD-6406. These are:

00 - Normal mode - The HD-6406 is configured for normal full or half duplex communications. Data will not be looped back in any form or fashion between the serial data input pin and the serial data output pin (see Figure 6a).

01 - Transmit break - Selecting this mode of operation will cause the transmitter to transmit break characters only. A break character is composed of all logical zeros for the start, data, parity, and stop bits.

10 -Echo mode - When this is selected, the HD-6406 will re-transmit data received on the SDI pin out to the SDO pin. In this mode of operation, any data written to the Transmitter Buffer Register will not be sent out on the SDO pin (see Figure 6b).

11 - Loop Test mode - If this mode is selected, the data that normally would be transmitted is internally routed back to the receiver circuitry. The transmitted data will not appear at the SDO pin. Also, data that is received on the SDI pin will be ignored by the device. This mode of operation is useful for performing self test(s) on the device (see Figure 6c).

\section*{HD-6406}

6a. NORMAL MODE

HD-6406

HD-6406

FIGURE 6. OPERATING MODES
D5 - Receiver Enable (REN): Controls the reception of data through the SDI pin into the Receiver Register. Disabling the receiver is useful when performing a software reset on the device. This locks out any errant data from being received. This would also prevent interrupts from occuring due to data reception. Other possible reasons for disabling the receiver might be so that sections of software can execute without interruption, so that software only accepts data when ready for it, or so that a software reset/reconfiguration can be performed.
0 - A zero for this bit prevents the device from recognizing data sent to the SDI pin. The receive circuitry will remain in an idle state.
1- Writing a one to this bit enables the receiver. Data will then be recognized at the SDI pin.

D6 - Modem Interrupt Enable: Enabling this bit will allow any change in the modem status line inputs (\(\overline{C T S}, \overline{R I}, \overline{R L} \overline{S D}, \overline{D S R}\)) to cause an interrupt. The Modem Status register (MSR) will contain information pertaining to which condition(s) caused the interrupt.
0 - Modem interrupts not enabled.
1 - Modem interrupts enabled.

D7 - This bit must always be set to a logic zero to insure device compatibility for future product upgrades. Should this bit be set to a one (1) during initialization, the device will not respond to any data at the SDI pin, and no data will be transmitted from the Transmitter Register to the SDO pin.

\subsection*{3.0 Status Registers}

In addition to the various Control registers, the HD-6406 has two read only status registers that can be accessed by the CPU to determine the status of the device at any given time. These are the UART Status Register (USR), and the Modem Status Register (MSR). The registers are used for keeping track of any changes in (1) the modem lines on the device (2) the status of data transmission or reception, and (3) whether any error(s) were detected in received data.

The USR deals with the different types of data errors, the status of data transmission, as well as data waiting to be read. The MSR, on the otherhand, reflects the status of the various modem control lines in the device (i.e. \(\overline{\mathrm{CTS}}, \overline{\mathrm{DSR}}\), \(\overline{\mathrm{RLSD}}\) and \(\overline{\mathrm{RI}}\)).

Normally, in an interrupt-driven system, after an interrupt occurs, the user's software would check the status register(s) to determine what caused the interrupt. The software then should deal with the various types of interrupts in an appropriate manner.

\subsection*{3.1 UART Status Register}

The UART Status Register (USR) contains information pertaining to the status of the HD-6406 operation. The information that is kept in the USR includes: data reception error information, modem status, and the status of data transmission. This register will normally be the first HD-6406 register read when servicing an HD-6406 interrupt, or when polling the device.

NOTE: the USR will be cleared upon reading its contents. We will later deal with this situation from a software standpoint.

After reading and clearing the status register, the bits will remain as zeros until a status change occurs to set the proper bit(s).

FIGURE 7. USR FORMAT

D0 - Parity error (PE): This bit indicates whether a parity error was detected in the last character read into the Receive Buffer Register. If parity is disabled, this bit will always be a zero.

0 - No error detected.
1 - Parity error detected.
D1 - Framing error (FE): A one in this bit indicates that the last character received contained an improper number of stop bits. This might be caused by no stop bits being sent, or by the length of the stop bits being too short.
0 - No framing error.
1 - Framing error detected.
D2 - Overrun error (OE): When this status bit is set to a one, it indicates that data in the RBR is not being read by the CPU fast enough to permit data in the Receiver Buffer to be shifted to the RBR before the next character comes in on the SDI pin. Data is then lost because it is overwritten by incoming characters.

0 - No overrun error detected.
1 - Overrun error detected.
D3 - Received Break (RBRK): This status bit indicates that the last character received was a break character. A break character consists of all logic zeros including the parity and stop bits. The most common usage of this character is to indicate a special condition in the communications taking place. For example, the device sending information to the HD-6406 might send a break character to it to indicate that it has completed transmitting its stream of data.
0 - No break.
1-Break detected.

D4 - Modem Status (MS): This bit indicates whether or not there has been a change in the states of any of the modem control lines on the device. These lines include: RI, RLSD, CTS and DSR. To determine which of these lines has changed, the user can read the Modem Status Register (MSR).

Also, should both the MIEN and INTEN bits be set in the MCR register, an interrupt will be generated when the MS bit gets set.
0 - No status change.
1 - Status change detected.
D5 - Transmission Complete (TC): When a character is written to the HD-6406 Transmitter Buffer Register (TBR), it will be transferred to the Transmitter Register before actually being shifted out serially through the SDO pin. When
the character has finally been transmitted on SDO, and both the TBR and Transmitter Registers are empty, the TC bit will be set.

NOTE: The TC bit getting set does not always mean that an end of transmission has occured. It indicates that both the TBR and the Transmitter Register are empty. For instance, if we are running the HD-6406 at a high baud rate, it could transmit data faster than the user's software can write characters to the device. In this case, the TC bit could get set between each character being transmitted.

Assertion of this bit will cause an interrupt when the INTEN bit of the MCR has been set, and when the Status Flags Disable (SFD) pin (32) is held low.

0 - Not complete.
1- Transmission complete.

D6 - Transmitter Buffer Register Empty (TBRE): When a character written to the TBR has been transferred to the Transmitter Register and the TBR is ready for another character, this bit will get set.

The user should check the TBRE bit before writing another character to the Transmitter Buffer Register. This insures that the previous character written to the TBR no longer resides there, but is being shifted out on the SDO pin.

An interrupt is generated by a change in this status, should the INTEN bit of the MCR be set, and should the SIE (pin 31) input to the device be high.

0 - Not empty.
1- Empty.
D7 - Data Ready (DR): Is set when the Receive Buffer Register (RBR) has been loaded with a received character through the SDI pin. The CPU can access this data by reading the RBR. For example, if the user wishes to see if there is any data waiting to be read from the Receiver Register, this bit can be checked.

An interrupt signaling this condition is caused if the INTEN bit of the MCR is enabled, and if the SIE input (pin 31) is high.

0 - No data ready.
1 - Data ready in RBR.

NOTE: In an interrupt driven system, interrupts caused by the DR signal should have a higher priority than those caused by the TBRE signal. This will guard the software against Overrun errors. You have no control over the information being sent to you, but you can control how and when you are transmitting data.

\subsection*{3.2 Modem Status Register}

The Modem Status Register (MSR), a read-only register, allows the user to determine the status of the Modem Status pins. The status of these pins is reflected by the corresponding bit(s) being set to a one if the state of the pin is in its true state (low), and by being set to a zero if the pin is in its false state (high). This will apply regardless of whether the pin is set up to be active high or active low.

A change in any of the status bits will cause an interrupt if the INTEN and MIEN bits of the MCR are enabled.

FIGURE 8. MSR FORMAT

DO - Clear to Send (CTS): This is both a status and control signal from the modem. It tells the HD-6406 that the modem is ready to receive data from the HD-6406 transmitter output (SDO). If this line is inhibited (false), then the HD-6406 will not be able to begin transmission of data. Should this line go false in the middle of a transmission, the UART will only be able to finish transmission of the current character.

0 - CTS in false state.
1- CTS is true.

D1 - Data Set Ready (DSR): This is a status indicator from the modem to the HD-6406 indicating that the modem is ready to provide data to the HD-6406.

0- DSR in false state.
1- DSR is true.

D2 - Received Line Signal Detect (RLSD): This input is provided from the modem, and indicates that the signal quality received from the HD-6406 is within acceptable limits.

0 - Unacceptable signal quality.
1- Signal quality acceptable.

D3 - Ring Indicator (RI): The RI input informs the HD-6406 that the modem is receiving a ringing signal. This is useful for implementing automatic answering in communications systems.
0 - No ringing detected.
1 - Ringing detected.

\subsection*{4.0 Transmit/Receive Buffer Registers}

In addition to the control and status registers, the HD-6406 PACI has two buffer registers that allow for the actual serial communications to be performed. These registers are used for sending characters out to the SDO pin, and for reading data from the SDI pin.

\subsection*{4.1 Receiver Buffer Register}

The Receiver Buffer Register (RBR) is a read-only register which contains the character received via the SDI pin. When data is received by the HD-6406, it is read serially into the Receiver Register from the SDI pin, and then transferred to the RBR for the CPU's access. This double buffering allows for higher transmission rates without loss of data. However, should additional characters be received by the HD-6406 before this register is read, then the Receiver Register will be overwritten with the subsequent characters. This will cause the Overrun Error (OE) flag to be asserted.

The RBR is 8 bits long and can accept data lengths of 5 to 8 bits. The data will be right justified in the register. When selecting data lengths of less than 8 bits, the HD- 6406 will insert zeros (0) into the RBR for the unused (most significant) bits. For example, if the HD-6406 is configured for 6 data bits, and the character 31 H is received, the RBR will look as follows when read:
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline D7 & D6 & D5 & D4 & D3 & D2 & D1 & D0 \\
\hline 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 \\
\hline
\end{tabular}

FIGURE 9. RECEIVED DATA

Bits D7 and D6 are automatically zeroed out by the HD-6406.

\subsection*{4.2 Transmitter Buffer Register}

The Transmitter Buffer Register (TBR) is a write only register used for sending characters out through the SDO pin. Characters to be transmitted should only be written to this register when it is empty. This condition can be checked for by reading the UART Status Register (USR) TBRE bit, or waiting for an interrupt to signal this condition.

Like the Receiver circuitry, the Transmitter also uses double buffering. Here, we are taking advantadge of the double buffering to increase throughput with the HD-6406. The user would first write a character to the TBR. From here it is shifted (in parallel) into a second register known as the Transmit Buffer. After this transfer has been completed, the TBRE bit is set, and an interrupt generated if they have been enabled.

The character shifted into the Transmit Buffer is then shifted serially out onto the SDO pin. Meanwhile, because the TBR is empty, another character can be written by the CPU to the TBR. In effect, the transmitter circuitry is then performing two operations simultaneously. This double buffering technique allows continuous data flow transmission.

The Transmit Buffer Register is also 8 bits wide. Because we can specify data lengths as being from 5 to 8 bits wide, the HD-6406 right justifies the data when it is written to the TBR, and fills the unused bits with zero's. In other words, unused (most significant) bits are truncated. For example, if we set up the device so that 6 data bits are specified and we write the character 71 H (01110001 b) to the TBR, we will effectively be transmitting the character:
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline D7 & D6 & D5 & D4 & D3 & D2 & D1 & D0 \\
\hline 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 \\
\hline
\end{tabular}\(=31 H\)

FIGURE 10. TRANSMITTED DATA
The two most significant bits are zeroed out automatically by the HD-6406.

\section*{5.0 //O Addressing Methods}

To utilize the HD-6406 in a microprocessor based system, it is necessary for the system to be designed such that we can easily access (address) the device. In the following discussion, we will look at two I/O device addressing schemes that can be applied to the HD-6406:
- I/O Mapped Addressing, and
- Memory Mapped I/O Addressing

We will look at these two modes as they apply to an 80C86/80C88-based system.

\subsection*{5.1 I/O Mapped Addressing:}

In this scheme of I/O addressing, the microprocessor uses one set of instructions for accessing memory, and a different set for accessing I/O devices. The CPU will generate different control signals (\(\overline{\mathrm{IO}} / \mathrm{M}\)) to select either memory or I/O based upon the type of instruction it is executing. Because of this, the system needs two sets of control logic for accessing memory and I/O. As we can see in Figure 11, the control logic for each is essentially the same.

FIGURE 11. I/O MAPPED ADDRESSING

When addressing I/O, we would use either the IN instruction or the OUT instruction. The port address specified in the instruction is placed on the address bus, and the \(\overline{\mathrm{IO}} / \mathrm{M}\) signal selects and activates the control logic for I/O. If we used one of the memory commands (MOV, CMP, TEST, etc.), the \(\overline{\bar{O}} / \mathrm{M}\) signal would activate the control logic for the system memory.

\subsection*{5.2 Memory Mapped I/O:}

Memory Mapped I/O uses the same control logic for accessing both memory and I/O devices within a system. This is illustrated in Figure 12. Because we are using one set of control logic, we reduce the number of devices in the system, and save board space.

When I/O devices are placed within the Memory Space of a system, it is possible to take advantage of the memory instruction set. This would now allow us to utilize the full register set in I/O operations, as opposed to only being able to use the accumulator (AX/AL) for the I/O instructions. Also, conditional testing can be applied to the I/O devices (i.e. TEST, CMP). When using memory mapped I/O, it should be noted that the I/O devices can no longer be accessed through the I/O instructions (IN and OUT),

There are disadvantages to using memory mapped I/O as well:
- The I/O devices are treated as memory, therefore the amount of available memory in the system is reduced.
- Memory instructions will execute slower than the I/O commands (IN and OUT). In certain situations (i.e. I/O polling), this could lead to loss of data during communications (overrun errors).

FIGURE 12. MEMORY MAPPED I/O ADDRESSING

\subsection*{5.3 I/O Addressing For The HD-6406:}

The actual addressing of the HD-6406 internal registers takes place through the address pins A0 and A1. These two signals are taken from the address bus. In the following example(s), address lines ADO and AD1 from the \(80 \mathrm{C} 86 / 88\) drive A0 and A1, respectively, on the HD-6406. Control logic will decode the remaining address lines from the CPU to generate a 'chip select' for enabling the HD-6406. The control logic consists of an HPL-82C338 Programmable Chip Select Decoder (PCSD). The Gx lines of the PCSD are fuse programmable, and have been programmed to be active low for this particular application. A diagram of this logic is shown in Figure 13.

The addresses for the HD-6406 set up as described above are shown in Table 7.

TABLE 7. EXAMPLE ADDRESSES
\begin{tabular}{|l|c|l|}
\hline \multicolumn{1}{|c|}{ REGISTER } & ADDRESS & REGISTER TYPE \\
\hline Transmit Buffer Register & 10 H & Write only register \\
Receiver Buffer Register & 10 H & Read only register \\
UART Control Register & 11 H & Write only register \\
UART Status Register & 11 H & Read only register \\
Modem Control Register & 12 H & Write/Read register \\
Baud Rate Selector Register & 13 H & Write only register \\
Modem Status Register & 13 H & Read only register \\
\hline
\end{tabular}

FIGURE 13. EXAMPLE SYSTEM

\subsection*{6.0 Reset Of The HD-6406 PACI}

There are two distinct ways in which the HD-6406 can be reset to a known initial state: (1) By applying a reset pulse for at least two clock cycles on the RST pin, or (2) through software.

A hardware reset is accomplished by forcing the RST pin to a high state for a minimum of two clock cycles. This should be for two cycles of the HD-6406's IX clock input as opposed to the system clock. This reset will cause the UART Status Register (USR) to be set to 60 H (TC and TBRE bits will be set), and the Modem Control Register (MCR) will be cleared. Any lines associated with the bits in the USR and MCR will be cleared or disabled.

During the reset of the device, the Baud Rate Select Register (BRSR) and the UART Control Register (UCR) will not be affected. However, if the reset comes due to power on, these registers will have an indeterminate value associated with them. After this reset, the HD-6406 will remain in an idle state until programmed to its desired configuration.

A second method of resetting the HD-6406 is through a software reset. This will allow the device to be set to a known state. The procedure for performing a software reset is outlined below:
(1) \(\mathrm{MCR}=00 \mathrm{H}\). Write a zero to the MCR. This will disable the receiver as well as the modem control lines, and interrupts.
(2) Read the RBR to clear out any residual data.
(3) Read the USR to reset status, thus keeping status lines from causing possible interrupts to the CPU.
(4) Reconfigure the device for the desired mode of operation.

\subsection*{7.0 Programming The HD-6406 PACI}

In order to configure the HD-6406 for proper operation, three separate command words need to be written to the command (control) registers that were specified earlier.

These registers include (1) the UART Control Register, (2) the Baud Rate Select Register, and (3) the Modem Control Register. When programming the device, these registers can be written to in any order. It is advisable to initialize the Modem Control Register last because it controls the enabling of interrupts, and the receiver circuitry.

Once initialized, the HD-6406 can be reconfigured at any time by writing new command word(s) to the control registers. However, the device should not be actively transmitting or receiving data when reconfiguring the control registers.

Addressing of the internal registers on the HD-6406 occurs by using the address lines A1 and A0, as well as the \(\overline{W R}\) and \(\overline{R D}\) lines. A more complete description of this is shown in Table 8.

TABLE 8. ADDRESSING THE HD-6406
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline ALE & \(\overline{\mathrm{CsO}}\) & CS1 & A1 & A0 & \(\overline{W R}\) & \(\overline{\mathrm{RD}}\) & OPERATION \\
\hline 1 or \(\boldsymbol{z}\) & 0 & 1 & 0 & 0 & \(\underline{4}\) & 1 & Data bus \(\longrightarrow\) TBR \\
\hline 1 or Z & 0 & 1 & 0 & 0 & 1 & z & RBR \(\longrightarrow\) Data bus \\
\hline 1 or \(\bar{z}\) & 0 & 1 & 0 & 1 & - & 1 & Data bus \(\longrightarrow\) UCR \\
\hline 1 or \(\overline{\text { d }}\) & 0 & 1 & 0 & 1 & 1 & z & USR \(\longrightarrow\) Data bus \\
\hline 1 or \(\boldsymbol{z}\) & 0 & 1 & 1 & 0 & 4 & 1 & Data bus \(\longrightarrow\) MCR \\
\hline 1 or \(z\) & 0 & 1 & 1 & 0 & 1 & z & MCR \(\longrightarrow\) Data bus \\
\hline 1 or Z & 0 & 1 & 1 & 1 & 5 & 1 & Data bus \(\longrightarrow\) BRSR \\
\hline 1 or & 0 & 1 & 1 & 1 & 1 & \(\underline{1}\) & MSR \(\longrightarrow\) Data bus \\
\hline
\end{tabular}

\subsection*{7.1 Device Driver Examples:}

The following examples are provided to illustrate how we can program the HD-6406 as described above. The first example shows a system set up for I/O polling of the device. In the second example, we will take advantage of interrupt driven I/O.

It is important to note the following assumptions for these examples:
(1) The HD-6406 is being used as an RS-232C interface in an 80 C 86 or 80 C 88 based system.
(2) A 2.4576 MHz clock is being supplied to the HD-6406 PACI.
(3) For the interrupt driven example (example 2), we are utilizing an 82C59A Interrupt Controller to interface with the CPU when an interrupt occurs (see Figure 15).

\section*{HD-6406 Polling Operation}

When utilizing a polling scheme for communications with the HD-6406, it is important to note that the UART status register will be cleared of its contents when it is read by the processor. Therefore, subsequent reads of this register will show the contents to be 00 H unless the status of the device has changed between reads. Because of this, it would be necessary for a copy of the status to be saved so that the proper status can be seen.

A listing of the assembly language program for HD-6406 Polling operation is given in the Program Listing, Example 1, Page 15.

\section*{HD-6406 Interrupt Driven Operation}

In this example, the 82C59A Interrupt Controller is being used to handle interrupts generated by the HD-6406. The 82C59A then communicates this interrupt information to the CPU so that it may be properly serviced. An example of how the 82C59A and HD-6406 are interfaced to the CPU is shown in Figure 14. The listing of the assembly language program for Interrupt Driven Operation is given in the Program Listing, Example 2, page 19.

FIGURE 14. INTERRUPT DRIVEN SYSTEM

\section*{PROGRAM LISTING, EXAMPLE 1}

NAME
EXAMPLE 1

; HARRIS SEMICONDUCTOR
AUG 14, 1985
P.O. Box 883

Melbourne, FL 32901
Microprocessor Applications
JAGoss
EXAMPLE \#1: I/0 Polling operation of the HD-6406 PACI.
This program sets up and runs the HD-6406 for polling operation.
It will input characters sent to it and place them into a data buffer.
; When a carriage return is detected, no more data will be accepted.
The data will then be transmitted back to the sender.

; The following are port addresses for accessing the HD-6406
; in a demonstration system.
\begin{tabular}{lccl}
; ------ 6406 & Register Addresses ------ & \\
UCR & EQU & 11 H & ;UART control register \\
BRSR & EQU & 13 H & ;Baud Rate Select Register \\
MCR & EQU & 12 H & ;Modem Control Register \\
USR & EQU & 11 H & ;UART Status Register \\
MSR & EQU & 13 H & ;Modem Status Register \\
TBR & EQU & 10 H & ;Transmit Buffer Register \\
RBR & EQU & 10 H & ;Receive Buffer Register
\end{tabular}
nDOGRAM LISTING, EXAMPLE 1
\begin{tabular}{lrrl}
CARRIAGE RETURN & EQU & ODH & \\
LINE FEED & EQU & OAH & \\
DR & EQU & 8OH & ;Mask for checking DATA READY \\
TBRE & EQU & 40H & ;Mask for checking TRANSMIT BUFFER \\
& & &
\end{tabular}
\begin{tabular}{ll}
ASSUME & CS:DRIVER_6406, \\
\(\&\) & DS:BUFFER-AREA, \\
\(\&\) & SS:STACK_AREA
\end{tabular}

DRIVER 6406 SEGMENT PUBLIC

MAIN PROC NEAR
\begin{tabular}{llll}
SET_UP: & MOV & AX,BUFFER_AREA & ; Set up the data segment \\
& MOV & DS,AX \\
& MOV & AX,STACK_AREA & ; Set up the stack segment \\
& MOV & SS,AX & ;Set up the stack pointer \\
& & MOV & SP,OFFSET STACK_AREA:TOP_OF_STACK
\end{tabular}
; Initialize the HD-6406 PACI
CALL INIT_6406
; Initialize the pointer into the data buffer.
\begin{tabular}{lll}
BEGIN: & MOV & BX,OFFSET BUFFER \\
& XOR & DI,DI \\
& ; Clear the index register
\end{tabular}
; Read data from the HD-5406 and place it in the data buffer until
; the CPU detects a carriage return.
READ: CALL CHAR INPUT ;Get a character from the keyboard MOV \([B X][D I], A L \quad\) Store the char. in the buffer INC DI ;Point to the next location in the ; buffer.
; Check to see if the character read was a carriage return. If
; it wasn't, then go read another character, otherwise we will
; echo the data read-in back out of the HD-6406.
CMP
JNE
READ

\section*{PROGRAM LISTING, EXAMPLE 1}
; Print a line feed, then echo back the character string from the
; input buffer...
\begin{tabular}{lll}
MOV & AL,LINE FEED & ;Load the accumulator \\
MOV & {\([B X][D I], A L\)} & ;Put a line-feed at end of buffer \\
& & ;Point to next buffer location. \\
INC & DI & ;Print the line-feed. \\
CALL & CHAR OUTPUT & ;Load the string length into counter \\
MOV & CX,DI & ;Set DI to zero.
\end{tabular}
```

; Print loop...

```
\begin{tabular}{llll}
WRITE: & MOV & AL, [BX][DI] & ; Load char. from the buffer. \\
& CALL & CHAR OUTPUT & ;Print the character
\end{tabular}
INIT 640 \(\quad\) PROC NEAR

; * INIT 6406
***********************************匹********************************
; This routine sets up the HD-6406 to communicate with a dumb
; terminal.
; Set up for 8 data bits, 1 stop bit, and no parity.
BEGIN_6406: \(\quad\) MOV \(\quad \begin{aligned} & \text { AL,00111111 } \\ & \\ & \\ & \text { OUT }\end{aligned}\)
; Set up BRSR for 9600 bps, assuming that the target system uses
; a 2.4576 MHz clock crystal.
MOV AL,00000110B
OUT BRSR,AL
; Disable interrupts on the 6406, enable the receiver, and
; select normal mode.
MOV AL,00100000B
OUT MCR,AL

INIT_6406 ENDP

\section*{PROGRAM LISTING，EXAMPLE 1}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & & \\
\hline \multicolumn{2}{|l|}{；＊} & CHAR INPUT & ＊ \\
\hline \multicolumn{4}{|l|}{；＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊「＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊} \\
\hline \multirow[t]{7}{*}{POLL＿IN：} & NOP & & \\
\hline & IN & AL，USR & ；Read the status register \\
\hline & TEST & AL，DR & ；See if the data ready bit is set \\
\hline & JZ & POLL IN & ；If not，wait for data ready \\
\hline & OR & STATŪS＿06，AL & \multirow[t]{2}{*}{；Save the current state of status reg． ；Read the data from the Receiver reg．} \\
\hline & IN & \(A L\), RBR \(^{-}\) & \\
\hline & RET & & \\
\hline CHAR＿INPUT & \multicolumn{3}{|l|}{ENDP} \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{CHAR OUTPUT PROC NEAR}} \\
\hline & & & \\
\hline & \multicolumn{2}{|l|}{\(\xrightarrow{\text { CHAR OUTPUT }}\)} & \\
\hline \multicolumn{4}{|l|}{；＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊末＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊} \\
\hline \multirow[b]{2}{*}{POLL＿OUT：} & PUSH & AX & ；Save the character to print \\
\hline & NOP & & \multirow[b]{2}{*}{；Test to see if the transmit buf} \\
\hline & IN & AL，USR & \\
\hline & CMP & AL， 0 & ；has been cleared．If so，then look \\
\hline & JNE & CONTIN & ；at the stored value of the USR．If \\
\hline & MOV & AL，STATUS＿06 & ；either shows the transmit buffer to \\
\hline \multirow[t]{6}{*}{CONTIN：} & TEST & AL，TBRE－ & \multirow[t]{2}{*}{；be empty，send the char．to the RBR．} \\
\hline & JZ & POLL OUT & \\
\hline & MOV & STATUS＿06，0 & \multirow[t]{2}{*}{；Clear out the UART status word．} \\
\hline & POP & & \\
\hline & OUT & TBR，AL & \multirow[t]{2}{*}{；Output the character．．．} \\
\hline & RET & & \\
\hline \multirow[t]{2}{*}{CHAR OUTPUT DRIVER 6406} & \multicolumn{3}{|l|}{ENDP} \\
\hline & \multicolumn{3}{|l|}{ENDS} \\
\hline \multicolumn{4}{|l|}{BUFFER AREA SEGMENT PUBLIC} \\
\hline \multicolumn{4}{|l|}{；＊＊＊＊区＊＊＊} \\
\hline \multicolumn{2}{|l|}{；＊} & \multicolumn{2}{|l|}{BUFFER AREA \({ }^{\text {a }}\)（} \\
\hline \multicolumn{4}{|l|}{；＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊区＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊} \\
\hline \multirow[t]{2}{*}{BUFFER
STATUS 06} & \multicolumn{3}{|l|}{DB 80 DUP（？）} \\
\hline & \multicolumn{3}{|l|}{DB ？} \\
\hline BUFFER＿AREA & \multicolumn{3}{|l|}{ENDS} \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{STACK AREA SEGMENT PUBLIC}} \\
\hline & & & \\
\hline \multicolumn{4}{|l|}{；＊STACK AREA＊} \\
\hline \multicolumn{4}{|l|}{；＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊ㅊ＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊} \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
STACK \\
TOP OF STACK \\
STACK AREA
\end{tabular}} & \multicolumn{3}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{ll}
DW & \(80 H \operatorname{DUP}(?)\) \\
LABEL & WORD \\
ENDS & \\
END &
\end{tabular}}} \\
\hline & & & \\
\hline & & & \\
\hline
\end{tabular}

BUFFER AREA SEGMENT PUBLIC

STACK AREA SEGMENT PUBLIC

；＊STACK AREA＊
；＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊末＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊
STACK DW 80H DUP（？）
TOP OF STACK LABEL WORD
STACK ĀREA ENDS
END

\section*{PROGRAM LISTING, EXAMPLE 2}

NAME EXAMPLE 2
 P.O. Box 883

Melbourne, FL 32901
Microprocessor Applications
JAGoss
EXAMPLE \#2: Interrupt driven HD-6406. We are also using an 92C59A Interrupt Controller in this system.

The following are port addresses for the devices used in our example system. The devices that we will look at are the HD-6406 PACI, and the two 82C59A Interrupt Controller.
; ----- HD-6406 Register Addresses -----
\begin{tabular}{llll}
UCR & EQU & \(11 H\) & ;UART control register \\
BRSR & EQU & \(13 H\) & ;Baud Rate Select Register \\
MCR & EQU & \(12 H\) & ;Modem Control Register \\
USR & EQU & \(11 H\) & ;UART Status Register \\
MSR & EQU & \(13 H\) & ;Modem Status Register \\
TBR & EQU & \(10 H\) & ;Transmit Buffer Register \\
RBR & EQU & \(10 H\) & ;Receive Buffer Register
\end{tabular}
; ---------- 82C59A Addresses
\begin{tabular}{lcc|}
ICW1 & EQU & 18 H \\
ICW2 & EQU & \(19 H\) \\
ICW4 & EQU & 19 H \\
OCW1 & EQU & 19 H \\
OCW2 & EQU & 18 H \\
& & \\
CARRIAGE RETURN EQU & ODH & \\
LINE FEED & EQU & OAH \\
DR & EQU & \(80 H\) \\
TBRE & EQU & \(40 H\)
\end{tabular}
\begin{tabular}{ll}
ASSUME & CS:DRIVER 59A, \\
\(\&\) & DS:BUFFERAREA, \\
\(\&\) & SS:STACK_AREA
\end{tabular}

\section*{PROGRAM LISTING, EXAMPLE 2}

DRIVER 6406 SEGMENT PUBLIC

```

* MAIN

```

MAIN PROC NEAR
SET_UP: MOV AX,BUFFER_AREA ;Set up the data segment
MOV DS,AX -

MOV AX,STACK_AREA ;Set up the stack segment
MOV SS,AX
;Set up the stack pointer
MOV SP,OFFSET STACK_AREA:TOP OF STACK
; Set up the interrupt vector table
MOV AX,OFFSET INT_SERVICE_ROUTINE
MOV ISR 34,AX
MOV ISR-34[2],CS
; Initialize the pointer into the data buffer.
MOV BX,OFFSET BUFFER
XOR DI,DI ;Clear the index register
; Initialize the 82C59A
CALL INIT_82C59A
; Initialize the HD-6406 PACI
CALL INIT 6406
; Wait for interrupts from the '59A...
\begin{tabular}{lll}
& STI & \\
WAIT_LOOP: & NOP \\
& JMP & WAIT_LOOP \\
& & \\
& HLT & \\
MAIN & ENDP &
\end{tabular}

\section*{PROGRAM LISTING, EXAMPLE 2}
; Set up for 8 data bits, 1 stop bit, and no parity.
\(\begin{array}{lll}\text { BEGIN_6406: } & \text { MOV } & \text { AL,00111110B } \\ & \text { OUT } & \text { UCR,AL }\end{array}\)
; Set up BRSR for 9600 bps, assuming that the target system uses
; a 2.4576 MHz clock crystal.
MOV AL,00000110B
OUT BRSR,AL
; Enable interrupts on the 6406, enable the receiver, and
; select normal mode.
MOV AL,00100100B
OUT MCR,AL
RET ;Return to the MAIN
INIT_6406
ENDP

INT SERVICE ROUTINE
PROC NEAR

\begin{tabular}{|c|c|c|c|}
\hline ISR_START: & IN & AL, USR & ;Find out what caused the interrupt. \\
\hline & TEST JNZ & AL, DR READ DATA & ; Was it DATA READY ? \\
\hline & TEST & AL, T®BRE & ; Was it TRANSMIT BUFFER REG. EMPTY ? \\
\hline & JNZ & PRINT BUFFER & ; If so, then print next character \\
\hline
\end{tabular}
; If this condition was not detected, then we have an erroneous
; interrupt from the \(H D-6406\). Rather than servicing this, we will
; simply return from the service routine to the MAIN.
ERROR: JMP ISR_EXIT
; Read the data that is present in the Receive Buffer Register.
\begin{tabular}{llll}
READ_DATA: & IN & AL, RBR & \\
& MOV & {\([B X][D I], A L \quad\);Save the data in our buffer area. } \\
& INC & DI & ;Increment the index into the buffer. \\
& CMP & AL, CARRIAGE_RETURN \\
& JE & PRINT_LF & \\
& JMP & ISR_EXIT & ;Exit the service routine.
\end{tabular}
; Set up for writing the data out to the Transmit Buffer...
PRINT LF: MOV AL,LINE FEED
MOV \([B X] L D I J, A L\);Add a line feed to the buffer.

\section*{PROGRAM LISTING, EXAMPLE 2}
; Set up for 8 data bits, 1 stop bit, and no parity.
```

BEGIN 6406: MOV AL,00111110B
OUT UCR,AL

```
; Set up BRSR for 9600 bps, assuming that the target system uses
; a 2.4576 MHz clock crystal.
MOV AL,00000110B
OUT BRSR,AL
; Enable interrupts on the 6406, enable the receiver, and
; select normal mode.
MOV AL,00100100B
OUT MCR,AL
RET ;Return to the MAIN
INIT_6406
ENDP

INT SERVICE ROUTINE PROC NEAR

ISR_START: IN AL,USR ;Find out what caused the interrupt.
TEST AL,DR ; Was it DATA READY ?
JNZ READ DATA
TEST AL,TERE
; Was it TRANSMIT BUFFER REG. EMPTY ?
JNZ PRINT BUFFER ; If so, then print next character
; If this condition was not detected, then we have an erroneous
; interrupt from the HD-6406. Rather than servicing this, we will
; simply return from the service routine to the MAIN.
```

ERROR: JMP ISR_EXIT

```
; Read the data that is present in the Receive Buffer Register.
READ_DATA: IN AL,RBR
MOV [BX][DIJ,AL ;Save the data in our buffer area.
INC DI ; Increment the index into the buffer.
CMP AL,CARRIAGE RETURN
JE PRINT_LF
JMP ISR_EXIT ;Exit the service routine.
; Set up for writing the data out to the Transmit Buffer...
```

PRINT_LF:

```

\section*{PROGRAM LISTING, EXAMPLE 2}

INC D
OUT TBR,AL
MOV CX,DI
DI,DI
ISR_EXIT
;Load the buffer size into CX ;Set the index back to beginning ; of the buffer.
; Print out the contents of the buffer...
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{PRINT_BUFFER:} & CMP & CX,0 & ; Anything to print ? \\
\hline & JNE & PRINT CHAR & ; If so, then print it.. \\
\hline & JMP & ISR EXIT & ;Else, ignore this interrupt. \\
\hline \multirow[t]{4}{*}{PRINT_CHAR:} & MOV & AL, [BX][DI] & ;Print the byte pointed to in buffer. \\
\hline & OUT & TBR, AL & \\
\hline & INC & DI & ;Point to next character. \\
\hline & LOOP & PRINT_CHAR & ; Print til end-of-buffer. \\
\hline DONE PRINTING: & XOR & DI, DI & ;Re-initialize pointer into buffer. \\
\hline \multicolumn{4}{|l|}{; Exit from the service routine, sending out a non-specific EOI first.} \\
\hline \multirow[t]{4}{*}{ISR_EXIT:} & MOV & AL, 00100000B & ;Send out an End-of-Interrupt \\
\hline & OUT & OCW2 S,AL & ; to both master and slave. \\
\hline & OUT & OCW2-M, AL & \\
\hline & IRET & & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{INT SERVICE ROUTINE DRIVER 59A}} & ENDP & \\
\hline & & ENDS & \\
\hline
\end{tabular}

BUFFER AREA SEGMENT PUBLIC

\begin{tabular}{lll}
& ORG & 88 H \\
ISR_34 & DW & \(4 \mathrm{DUP}(?)\) \\
& ORG & 100 H \\
BUFFER & DB & \(80 \mathrm{DUP}(?)\) \\
BUFFER AREA & ENDS &
\end{tabular}

STACK AREA SEGMENT PUBLIC

\begin{tabular}{lll}
STACK & DW & 8OH DUP(?) \\
TOP OF STACK & LABEL & WORD \\
STACK_ AREA & ENDS & \\
& END &
\end{tabular}PAGE
EXAMPLE STANDARD CELL DATA SHEET 6-2
Complex Function Megacells 6-3
Compilable Cells 6-3

\section*{Standard Cell}

\section*{HSC 250 CMOS Cell Library}

\section*{Features}
- 1.5 Micron Effective Channel Length, 2-Layer Metal CMOS
- 1.2ns Typical Gate Delay Through 2-Input NAND
- Up to 100 MHz Flip-Flop Toggle Rate
- Over 200 Primitive and Macrocell Functions
- Complex Function Megacells
- Customer Definable RAM and ROM
- Supported on Multiple CAE Platforms

\section*{Description}

The HSC 250 STANDARD CELL LIBRARY is a proven, high performance dual-level metal library. The library offers a broad range of predesigned and fully characterized cells,
- CMOS/TTL Compatible I/O's
- Commercial-Industrial-Military Temperature Ranges
- Proven Reliable and Manufacturable Process
- Extensive Range of Packaging Options
- Minimum 4kV ESD Protection
- Screening and Qualification to Mil-Std-883 Method 5004/5005, Class B
- Fully Compatible with the HSC200-RH Rad-Hard Library

\section*{Die Photo}

\section*{Complex Function Megacel/s}

To enhance the level of system integration, and reduce the design cycle time Harris has developed a series of complex function megacells. These functions consist of a family of
highly integrated microprocessor peripherals, communication elements, high performance multipliers, and bit slice elements. A list of the available megacells follows:
- Microprocessor Peripherals

82C37A DMA Controller
82C50A Asynchronous Communication Element
82C50B Asynchronous Communication Element
82C52 UART/BRG
82C54 Programmable Interval Timer
82C55A . Programmable Peripheral Interface
82C59A . Priority Interrupt Controller
82C84A . Clock Generator
82C88 .. Bus Controller
- Communication Elements

HD4702 Programmable Bit Rate Generator
HD6402 . UART
HD6406 . UART/BRG/Modem Control
HD6408.. . ASMA
HD6409 . Manchester Encoder/Decoder
HD15530 . Manchester Encoder/Decoder
HD15531 . Programmable Manchester Encoder/Decoder
- Other Functions

H2901 4-Bit Slice ALU
*HMU16, HMU17, HMU18 \(16 \times 16\) Multipliers
**HMU1010.................................. \(16 \times 16\) Multipliers/Accumulator

\section*{Compilable Ce/ls}

Harris has further expanded user definability by providing allows the customer to quickly generate design specific high performance, module compilation. This capability RAM and ROM cells.
RAM
Compilable to 16 K
ROM
Compilable to 64 K
*Contact Factory for availability
**Available Q1, CY'88

\section*{Absolute Maximum Ratings}
\begin{tabular}{|c|c|}
\hline \multirow[t]{3}{*}{Supply Voltage. Input/Output Voltage} & -0.5V to 7.0V \\
\hline & VSS -0.5V \\
\hline & VCC +0.5V \\
\hline \multirow[t]{2}{*}{Input Diode Current} & 10 mA \\
\hline & \(\mathrm{VI}<0\) or \(\mathrm{VI}>\mathrm{VCC}\) \\
\hline \multirow[t]{2}{*}{Output Diode Current} & ... 10mA \\
\hline & VO < 0 or VO > VCC \\
\hline Power Dissipation . & 1000 mW \\
\hline \multicolumn{2}{|l|}{Continuous Supply Pin Current} \\
\hline VCC or GND. & . 100mA \\
\hline \multicolumn{2}{|l|}{Storage Temperature} \\
\hline Plastic & \(-40^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
\hline Ceramic & \(-65{ }^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\) \\
\hline Continuous Current per Output & ... 10 mA \\
\hline
\end{tabular}

CAUTION: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to absolute maximum rated conditions for extended periods may effect device reliability.

NOTE: All applied voltages are with reference to GND (VSS).

\section*{Recommended Operating Conditions}
D.C. Electrical Specifications \(\quad \mathrm{VCC}=5 \mathrm{~V} \pm 10 \% \quad \mathrm{~T}_{\mathrm{A}}=\) Operating Temperature Range
\begin{tabular}{|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & MIN & MAX & UNIT & CONDITIONS \\
\hline Vcc & Operating Supply Voltage & 4.5 & 5.5 & v & \\
\hline \({ }^{\text {T }}\) A & \begin{tabular}{l}
Operating Temperature \\
Commercial \\
Industrial \\
Military
\end{tabular} & \[
\begin{gathered}
0 \\
-40 \\
-55
\end{gathered}
\] & \[
\begin{gathered}
70 \\
85 \\
125
\end{gathered}
\] & \[
\begin{aligned}
& { }^{\circ} \mathrm{C} \\
& { }^{\circ} \mathrm{C} \\
& { }^{\circ} \mathrm{C}
\end{aligned}
\] & \\
\hline VIH & Input High Voltage TTL CMOS & \[
\begin{gathered}
2.2 \\
70 \% \mathrm{VCC}
\end{gathered}
\] & & V & \(\mathrm{VCC}=5.5 \mathrm{~V}\) \\
\hline VIL & Input Low Voltage TTL CMOS & & \[
\begin{gathered}
0.8 \\
30 \% \mathrm{VCC}
\end{gathered}
\] & V & \(\mathrm{VCC}=4.5 \mathrm{~V}\) \\
\hline II & \begin{tabular}{l}
Input Current \\
Standard \\
Pull Up \\
Pull Down
\end{tabular} & \[
\begin{aligned}
& -1.0 \\
& -500 \\
& -10
\end{aligned}
\] & \[
\begin{aligned}
& +1.0 \\
& +10 \\
& +500
\end{aligned}
\] & \(\mu \mathrm{A}\) & \[
\begin{aligned}
& \mathrm{VIN}=\mathrm{VSS}=0.0 \mathrm{~V} \\
& \mathrm{VIN}=\mathrm{VCC}=5.5 \mathrm{~V}
\end{aligned}
\] \\
\hline & Pull Up* Pull Down* & +50 & -50 & \[
\begin{aligned}
& \mu \mathrm{A} \\
& \mu \mathrm{~A}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{VI}=2.2 \mathrm{~V} \quad \mathrm{VCC}=5.5 \mathrm{~V} \\
& \mathrm{VI}=0.8 \mathrm{~V}
\end{aligned}
\] \\
\hline IOH & Output Voltage & 6.0 & & mA & \(\mathrm{VOH}=2.4 \mathrm{~V} ; \mathrm{VCC}=4.5 \mathrm{~V}\) \\
\hline IOL & Output Voltage & & -6.0 & mA & \(\mathrm{VOL}=0.4 \mathrm{~V} ; \mathrm{VCC}=4.5 \mathrm{~V}\) \\
\hline IOZ & Output Leakage & -10.0 & +10.0 & \(\mu \mathrm{A}\) & \[
\begin{aligned}
\mathrm{VSS} & =\mathrm{VOL}
\end{aligned}=0.0 \mathrm{~V} ;
\] \\
\hline ICCSB & Stand-By Supply & & *** & \(\mu \mathrm{A}\) & \(\mathrm{I}=0 ; \mathrm{IO}=0\) \\
\hline Cl** & Input Capacitance & \multicolumn{2}{|r|}{10.0 Typical} & pF & \(\mathrm{VI}=\mathrm{VCC}\) or VSS; \(\mathrm{f}=1 \mathrm{MHz}\) \\
\hline CO** & Output Capacitance & \multicolumn{2}{|r|}{10.0 Typical} & pF & \(\mathrm{VO}=\mathrm{VCC}\) or VSS; \(\mathrm{f}=1 \mathrm{MHz}\) \\
\hline CIO** & Input/Output Capacitance & \multicolumn{2}{|r|}{15.0 Typical} & pF & \(\mathrm{VO}=\mathrm{VCC}\) or VSS; \(\mathrm{f}=1 \mathrm{MHz}\) \\
\hline
\end{tabular}

\footnotetext{
* Maximum input current for which specified VI will be maintained.
** Characterized at initial design and after any major design or process changes. Maximum values may vary by package type.
*** Customer design dependent.
}
PAGE

HPL-16RC8/6/4 Programmable Logic . 7-9
HPL-82C339 Programmable Chip Select Decoder (PCSD) . 7-19
HPL-82C338 Programmable Chip Select Decoder (PCSD) 7-24
HPL-82C139 Programmable Chip Select Decoder (PCSD) 7-29
HPL-82C138 Programmable Chip Select Decoder (PCSD) 7-34

> CMOS HPL'M Harris
> Programmable Logic

\section*{Features}
- Pin \& Function Compatible with the Bipolar 16L8 and 16P8
- Scaled SAJI IV CMOS Process
- Fast Access (Input to Output) 125ns Max.
- Ultra-low Standby Power. .ICCSB \(=150 \mu \mathrm{~A}\)
- Low Operating Power \(\qquad\) \(I C C O P=6 \mathrm{~mA} / \mathrm{MHz}\)
- Wide Operating Temperature Ranges:
```

- HPL-16LC8-5
$0^{\circ} \mathrm{C}$ to +750 C

```
- HPL-16LC8-9..................................... -400 C to +850 C
- HPL-16LC8-8
\(-55^{\circ} \mathrm{C}\) to +1250 C
- Programmable Output Polarity
- 20-pin Slimline DIP
- Security Fuse for Pattern Protection
- TTL/CMOS Compatible Inputs/Outputs for Mixed System Compatibility
- Logic Paths Tested to Insure Functionality

\section*{Applications}
- Random Logic Replacement
- Code Converters
- Address Decoding
- Fault Detectors
- Boolean Function Generators
- Digital Multiplexers
- Parity Generators
- Pattern Recognition
- ROM Patching

LCC
TOP VIEW

\section*{Description}

The HPL-16LC8 is a CMOS Programmable Logic Device designed to provide a high performance, low power alternative to the industry standard 16L8 and 16P8 programmable logic devices.

In addition to the low power advantage of this device over its bipolar counterparts the HPL-16LC8 contains programmable output polarity, allowing the user to individually select each output as either active-high or active-low. When all output polarity fuses are left intact, all active outputs are active-low.

The Harris fuse link technology provides a permanent fuse with stable storage characteristics over the full temperature ranges of \(0^{\circ} \mathrm{C}\) to \(+75^{\circ} \mathrm{C},-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) and \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\). Like all Harris Programmable Logic (HPL), this device contains unique test circuitry developed by Harris which allows AC, DC and functional testing before programming.

On-chip automatic power-down circuitry places internal circuitry into an ultra-low ICCSB power mode after output data becomes valid.

Functional Diagram

\section*{Absolute Maximum Ratings}

\section*{Operating Conditions}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Operating Voltage Range.. +4.5 V to +5.5 V} \\
\hline \multicolumn{2}{|l|}{Operating Temperature Range} \\
\hline HPL-16LC8-5. & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) \\
\hline HPL-16LC8-9. & \(40^{\circ} \mathrm{C}\) to \(+85^{\circ}\) \\
\hline HPL-16LC8-8 & \(5^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}
D.C. Electrical Specifications (Operating)
\begin{tabular}{ll}
HPL-16LC8-5 & (VCC \(=5.0 \mathrm{~V} \pm 10 \%, T A=0^{\circ} \mathrm{C}\) to \(\left.+75^{\circ} \mathrm{C}\right)\) \\
HPL-16LC8-9 & (VCC \(=5.0 \mathrm{~V} \pm 10 \%, \mathrm{TA}=-40^{\circ} \mathrm{C}\) to \(\left.+85^{\circ} \mathrm{C}\right)\) \\
HPL-16LC8-8 & (VCC \(=5.0 \mathrm{~V} \pm 10 \%, T A=-55^{\circ} \mathrm{C}\) to \(\left.+125^{\circ} \mathrm{C}\right)\)
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & \multicolumn{2}{|l|}{PARAMETER} & MIN & MAX & UNITS & TEST CONDITIONS (3) \\
\hline \[
\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\end{array}
\] & Dedicated Input Current & \[
\begin{aligned}
& " 1 " \text { " } \\
& " 0 \text { " }
\end{aligned}
\] & & \[
\begin{aligned}
& +1 \\
& -1
\end{aligned}
\] & \[
\begin{aligned}
& \mu \mathrm{A} \\
& \mu \mathrm{~A}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{VIH}=\mathrm{VCC} \text { MAX } \\
& \mathrm{VIL}=O \mathrm{~V} \quad \mathrm{VCC}=\mathrm{VCC} \text { MAX }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l|l|l|l|l|l|l|l|l|}
\hline 1 F Z Z \\
\hline
\end{array}
\] & Output Current Hi-Z State & \[
\begin{aligned}
& 4 " \\
& " 0 "
\end{aligned}
\] & & \[
\begin{aligned}
& +10 \\
& -10
\end{aligned}
\] & \[
\begin{aligned}
& \mu \mathrm{A} \\
& \mu \mathrm{~A}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{VFH}=\mathrm{VCC} \text { MAX } \\
& V F L=O V \quad V C C=V C C \text { MAX }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 1 B Z H \\
& I B Z L
\end{aligned}
\] & Bidirectional Hi-Z Current & \[
\begin{aligned}
& 4 " \\
& " 0 " \\
& " 0 "
\end{aligned}
\] & & \[
\begin{aligned}
& +10 \\
& -10
\end{aligned}
\] & \[
\begin{aligned}
& \mu \mathrm{A} \\
& \mu \mathrm{~A}
\end{aligned}
\] & \[
\begin{aligned}
& V B H=V C C \text { MAX } \\
& V B L=O V \quad V C C=V C C \text { MAX }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { VIH } \\
& \text { VIL }
\end{aligned}
\] & \begin{tabular}{l}
Input Threshold \\
Voltage \\
(1)
\end{tabular} & \[
\begin{aligned}
& \text { "1" } \\
& \text { "0" }
\end{aligned}
\] & 2.0 & 0.8 & \[
\begin{aligned}
& \mathrm{V} \\
& \mathrm{~V}
\end{aligned}
\] & \[
\begin{aligned}
& V C C=V C C \text { MAX } \\
& V C C=V C C \text { MIN }
\end{aligned}
\] \\
\hline \begin{tabular}{l}
VOH1 \\
VOH2 \\
VOL
\end{tabular} & \begin{tabular}{l}
Output Voltage \\
(2) \\
Output Voltage
\end{tabular} & \[
\begin{aligned}
& " 1 " \\
& " 1 " \\
& " 0 "
\end{aligned}
\] & \[
\begin{gathered}
3.0 \\
\text { VCC-0.4 }
\end{gathered}
\] & 0.4 & \[
\begin{aligned}
& V \\
& V \\
& V
\end{aligned}
\] & \begin{tabular}{l}
\[
\begin{aligned}
& 1 \mathrm{OH} 1=-5.0 \mathrm{~mA} \\
& 1 \mathrm{OH} 2=-1.0 \mathrm{~mA}
\end{aligned}
\] \\
VCC MIN, VIL MAX, VIH MIN
\[
10 \mathrm{~L}=+5.0 \mathrm{~mA}
\]
\end{tabular} \\
\hline ICCSB & Standby Power Supply Current & & & 150 & \(\mu \mathrm{A}\) & \[
\begin{aligned}
& V I=V C C \text { or } G N D \\
& I F=0.00 \mu A, V C C=V C C \text { MAX }
\end{aligned}
\] \\
\hline ICCOP & Operating Power Supply Current & & & 6 & mAMMz & \[
\begin{aligned}
& V I=V C C \text { or } G N D \\
& \mathbb{F}=0.00 \mu \mathrm{~A}, \mathrm{VCC}=\mathrm{VCC} \text { MAX }
\end{aligned}
\] \\
\hline
\end{tabular}
(1) These specifications apply to both Input (I) and Bidirectional (B) Pins.
(2) These specifications apply to both Output (F) and Bidirectional (B) Pins.
(3) All DC parameters tested under worst case conditions.

\section*{A.C. Switching Specifications}

HPL-16LC8-5 (VCC \(=5.0 \mathrm{~V} \pm 10 \%, \mathrm{TA}=0^{\circ} \mathrm{C}\) to \(\left.+75^{\circ} \mathrm{C}\right)\)
HPL-16LC8-9 (VCC \(=5.0 \mathrm{~V} \pm 10 \%, T A=-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\))
HPL-16LC8-8 (VCC \(=5.0 \mathrm{~V} \pm 10 \%, T A=-55^{\circ} \mathrm{C}\) to \(\left.+125^{\circ} \mathrm{C}\right)\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|c|}{SYMBOL} & \multirow[b]{2}{*}{PARAMETER} & \multicolumn{2}{|l|}{HPL-16LC8-5} & \multicolumn{2}{|r|}{HPL-16LC8-9} & \multicolumn{2}{|l|}{HPL-16LC8-8} & \multirow[b]{2}{*}{UNITS} \\
\hline \[
\begin{aligned}
& \text { JEDEC } \\
& \text { STANDARD }
\end{aligned}
\] & OLD SYMBOL & & MIN & MAX & MIN & MAX & MIN & MAX & \\
\hline \[
\begin{gathered}
\text { TDVQH1 } \\
\text { (1) } \\
\hline
\end{gathered}
\] & TPD & Propagation delay I or B to Output High & - & 125 & - & 125 & - & 125 & ns \\
\hline TDVQL1
(2) & TPD & Propagation delay I or B to Output Low & - & 125 & - & 125 & - & 125 & ns \\
\hline \[
\begin{array}{|c}
\text { TDVQH2 } \\
\text { (3) }
\end{array}
\] & TPZX & \begin{tabular}{l}
Enable Access Time \\
to Output High
\end{tabular} & TDVQZ1 & 125 & TDVQZ1 & 125 & TDVQZ1 & 125 & ns \\
\hline \[
\begin{array}{|c}
\hline \text { TDVQL2 } \\
\text { (4) }
\end{array}
\] & TPZX & \begin{tabular}{l}
Enable Access Time \\
to Output Low (4)
\end{tabular} & TDVQ72 & 125 & TDVQZ2 & 125 & TDVQZ2 & 125 & ns \\
\hline \[
\begin{array}{|c}
\hline \text { TDVQZ1 } \\
\text { (5) }
\end{array}
\] & TPXZ & Disable Access Time from Output High & - & 125 & - & 125 & \(\cdot\) & 125 & ns \\
\hline \[
\begin{gathered}
\text { TDVQZ2 } \\
(6)
\end{gathered}
\] & TPXZ & Disable Access Time from Output Low & - & 125 & - & 125 & \(\cdot\) & 125 & ns \\
\hline
\end{tabular}

\footnotetext{
(4) Enable access time is guaranteed to be greater than disable access time to avoid device contention.
}

Specifications HPL-16LC8
Capacitance: \(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\) (NOTE: Sampled and guaranteed - but not \(100 \%\) tested.)
\begin{tabular}{|l|l|l|l|l|}
\hline SYMBOL & \multicolumn{1}{|c|}{ PARAMETER } & MAX & UNITS & TEST CONDITIONS \\
\hline & & & & \\
CI & Input Capacitance & 5 & pF & \(\mathrm{VI}=\mathrm{VCC}\) or GND \(\mathrm{f}=1 \mathrm{MHz}\) \\
CF & Output Capacitance & 10 & pF & \(\mathrm{VF}=\mathrm{VCC}\) or GND \(\mathrm{f}=1 \mathrm{MHz}\) \\
CB & Bidirectional Capacitance & 12 & pF & \(\mathrm{VB}=\mathrm{VCC}\) or GND \(\mathrm{f}=1 \mathrm{MHz}\) \\
\hline
\end{tabular}

Switching TIme Definitions

INPUT CONDITIONS: \(\mathrm{tr}_{\mathrm{t}} \mathrm{tt}=5 \mathrm{~ns}(10 \%\) to \(90 \%)\)
NOTE: Disable access time is the time taken for the output to reach a high impedance state when the three-state product term drives the output inactive. The high impedance state is defined as a point on the waveform equal to a \(\Delta \mathrm{V}\) of 0.5 V from VOHA or VOLA, the active output level.

\section*{A.C. Test Load}

\section*{Programming}

Following is the programming procedure which is used for the HPL-16LC8 programmable logic device. This device is manufactured with all fuses intact. Any desired fuse can be programmed by following the simple procedure shown on the following page. One
may build a programmer to satisfy the specifications described in the table, or use any of the commercially available programmers which meets these specifications. Please contact Harris for a list of approved programmers.

TABLE 1
PROGRAMMING SPECIFICATIONS
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{SYMBOL} & \multirow[b]{2}{*}{PARAMETER} & \multirow[t]{2}{*}{TEST CONDITIONS} & \multicolumn{3}{|c|}{LIMITS} & \multirow[b]{2}{*}{UNITS} \\
\hline & & & MIN & TYP & MAX & \\
\hline VCCP & VCC Voltage During Programming & & 11.50 & 12.00 & 12.00 & V \\
\hline VCCV & VCC Voltage During Verify & & 4.75 & 5.00 & 5.25 & V \\
\hline ICCP & ICC Limit During Programming & & & 100 & 200 & mA \\
\hline VNEG & Edit Enable \& Mode Select Voltage & & -5.00 & -5.00 & -7.00 & V \\
\hline INEG & Edit Enable \& Mode Select Current & & & & -5.00 & mA \\
\hline \[
\begin{aligned}
& \hline \text { VIL } \\
& \text { VIHV } \\
& \text { VIHP }
\end{aligned}
\] & Input Voltage Low Input Voltage High Input Voltage High & \[
\begin{aligned}
& \text { verify } \\
& \text { programming (1) (1) }
\end{aligned}
\] & 0.00 VCCV-2 VCCP-2 & \[
\begin{aligned}
& 0.00 \\
& V C C V \\
& V C C P
\end{aligned}
\] & \[
\begin{aligned}
& 0.80 \\
& \text { VCCV } \\
& \text { VCCP }
\end{aligned}
\] & \[
\begin{aligned}
& \hline \mathrm{V} \\
& \mathrm{~V} \\
& \mathrm{~V}
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \mathrm{IILP} \\
& \mathrm{IHH} \\
& \mathrm{IHP}
\end{aligned}
\] & Input Current Low Input Current High Input Current High & \[
\mathrm{VIL}=0.0 \mathrm{~V}
\] verify programming & & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 1 \\
& 1 \\
& 1 \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& \mu \mathrm{A} \\
& \mu \mathrm{~A} \\
& \mu \mathrm{~A}
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { VSI } \\
& \text { VSP }
\end{aligned}
\] & Verify voltage Verify voltage & Intact Fuse
Programmed Fuse & 3.00 & \[
\begin{aligned}
& 3.30 \\
& 0.00
\end{aligned}
\] & 0.50 & \[
\begin{aligned}
& \hline \mathrm{V} \\
& \mathrm{~V}
\end{aligned}
\] \\
\hline \begin{tabular}{l}
TV \\
PWP \\
td \\
tr \\
tr2 \\
tf1. \\
tf2 \\
tNEG \\
TPP \\
FL
\end{tabular} & Verify Pulse Delay Programming Width Pulse Seq. Delay Signal Rise Time VCC Rise Time Signal Fall Time VCC Fall Time Mode Select Width Programming Period Fuse Attempts/Link & \begin{tabular}{l}
10\% to \(90 \%\) \\
\(10 \%\) to \(90 \%\) \\
\(90 \%\) to \(10 \%\) \\
\(90 \%\) to \(10 \%\)
\end{tabular} & \[
\begin{aligned}
& 500 \\
& 4.5 \\
& 1 \\
& 0.01 \\
& 0.01 \\
& 0.01 \\
& 0.01 \\
& 1 \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& 750 \\
& 5.1 \\
& 1 \\
& 0.1 \\
& 0.1 \\
& 0.1 \\
& 0.1 \\
& 1 \\
& 5.2 \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& \hline 1000 \\
& 5.5 \\
& \hline 1 \\
& 5 \\
& 1 \\
& 5 \\
& 5 \\
& 2
\end{aligned}
\] & \begin{tabular}{l}
\(\mu \mathrm{sec}\) \\
msec \\
\(\mu \mathrm{Sec}\) \\
msec \\
cycles
\end{tabular} \\
\hline
\end{tabular}
(1) Inputs defined as logic " 1 " (VIHV or VIHP) must track the VCC power supply when the supply is raised or lowered. The input levels should never exceed the level on the VCC Pin.
\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{gathered}
\text { PROGRAM/ } \\
\text { MODE SELECT }
\end{gathered}
\] & r & & VCC \\
\hline R0 2 & & 19 & co \\
\hline \(R 13\) & & 18 & C1 \\
\hline R2 4 & HPL 20 PIN & 17 & C2 \\
\hline R3 5 & cmos & 16 & c3 \\
\hline \(R 46\) & EOIT MODE & 15 & C4 \\
\hline R5 7 & PIHOUT & 14 & C5 \\
\hline R6 8 & & 13 & c6 \\
\hline R7 9 & & 12 & edit out \\
\hline GND 10 & & 11 & mode reset/Enable \\
\hline
\end{tabular}

FIGURE 1 EDIT MODE PINOUT HPL-16LC8

NOTES: * While programming the CMOS HPL device, no pins should be left floating. EDIT OUT appears as an open drain output during programming. It should be tied to GND through a 1 M -ohm resistor.
* CMOS HPL outputs are not put into a high impedance state (suitable for row and column address application) until the device is reset and put into the edit mode. For this reason it is recommended that the outputs be left floating until the edit mode is enabled or that the outputs be driven thru a 2 k -ohm resistor.
* It is suggested that a \(0.01 \mu \mathrm{f}\) capacitor be put between VCC and GND to minimize VCC voltage spikes. Also, particular care should be exercised in regards to transients on the MODE SELECT and MODE RESET pins which could place the device in the incorrect mode.

\section*{Programming Procedure}
(1) Set-Up:

NOTE: Refer to the Figure 1 for the pin definitions, Table 1 for the timing and level definitions, Tables 3 \& 4 for the address decoding.
a. During programming, no pins should be left floating.
b. EDIT OUT (Pin 12) should be terminated with a 1 M -ohm \((\pm 1 \%)\) resistor to GND and stray capacitances on this pin should be \(\leq 50 \mathrm{pf}\).
c. Set GND to 0.00 volts.
d. Outputs are only in a high impedance state (and available for addressing of edit mode rows and columns) while in Edit Modes 1 thru 4. Do not apply signals to these pins until a valid Edit Mode is entered.
e. All input and bi-directional pins should be at zero volts nominal with a maximum of 0.3 volts applied.
f. Apply VCCV to the part. No input should ever exceed the level on the VCC PIN.
(2) Mode Reset/Edit Enable:
a. Wait td and reset the edit control logic by pulsing the MODE RESET PIN to VNEG for tNEG.
b. Wait td and enable Edit mode by applying VNEG to the EDIT ENABLE PIN.
(3) Mode Select:
a. Wait td and select EDIT MODE 1 by pulsing the MODE SELECT PIN to VNEG for tNEG. Subsequent pulses will increment the mode to 2,3 and 4 sequentially (sequencing the device beyond mode 4 will result in unpredictable results-if in doubt, return to STEP 2).
b. Verify entry into the proper mode by addressing column 64 and the row indicated in Table 2, waiting TV and monitoring the EDIT OUT PIN for the proper data.
c. Address column 65 and the row indicated in Table 2, wait TV and monitor the EDIT OUT PIN for the proper data. If both Steps 3 b \& 3 c are correct, then the proper mode has been selected.
d. To re-enter a mode lower than the current mode, return to Step 2. Mode 1 can only be (re-)entered from Step 2.
(4) Fuse Select

NOTE:The voltage for a logical " 1 " (VIHP) must not exceed VCCP and must track VCCP as it rises from VCCV in Step 5.
a. Wait td and select a row by applying the appropriate address from Table 3 .
b. Select a column by applying the appropriate address from Table 4.
(5) Verify Intact Fuse:

NOTE:Skip this step for post-programming verify.
b. If EDIT OUT has indicated less than VSI, the fuse is not intact. Reject this devide for a non-blank matrix.
(6) Program the Fuse:

NOTE:The PROTECT and POLARITY fuses can be accessed from either mode 1 or mode 3 by applying the addresses indicated in Tables 3 \& 4.
THE 'PROTECT' FUSE SHOULD NOT BE PROGRAMMED UNTIL ALL OTHER FUSES HAVE BEEN PROGRAMMED AND VERIFIED AS PROGRAMMING THIS FUSE DEFEATS ALL FURTHER VERIFICATION
a. Wait td and raise the VCC PIN to VCCP (allow VIHP to track this rise).
b. Wait td and pulse the PROGRAM PIN (Pin 1) to VIHP for a duration of PWP.
c. Wait td and lower the VCC PIN to VCCV (allow VIHP to track this fall).
(7) Verify Fuse:
a. Wait TV and monitor EDIT OUT for VSP (or VSI if verifying an intact fuse).
b. If EDIT OUT has indicated greater than VSP for an attempted programmed fuse, repeat Step 6 so that the fuse receives a maximum of FL fusing attempts
(8) Repeat Steps 4 through 7 for all addresses in a given mode.
(9) Repeat Steps 3 through 8 for all modes.

\section*{Programming Waveforms}
 FIGURE 2

\footnotetext{
NOTE Pins \(13-19\) are not necessarily three-stated and available for application of column address input signals until a valid edit mode is entered Refer to the edit mode pinout (Figure 1) for further details
}
\begin{tabular}{l}
\multicolumn{3}{c|}{\begin{tabular}{c}
Mode Verification \\
Table 2
\end{tabular}} \\
\begin{tabular}{|c|c|c|c|}
\hline \multirow{3}{*}{ MODE } & \begin{tabular}{c}
COLUMN \\
NUMBER
\end{tabular} & \begin{tabular}{c}
ROW \\
NUMBER
\end{tabular} & \begin{tabular}{c}
EDIT OUT (PIN 12) \\
LOGICAL LEVEL
\end{tabular} \\
\hline 1 & 64 & 0 & 0 \\
& 65 & 0 & 0 \\
\hline 2 & 64 & 1 & 0 \\
& 65 & 1 & 1 \\
\hline 3 & 64 & 2 & 1 \\
& 65 & 2 & 0 \\
\hline 4 & 64 & 3 & 1 \\
& 65 & 3 & 1 \\
\hline
\end{tabular} \\
NOTES: \\
- At least two addresses must be checked to verity the proper edit mode. \\
- The conversion from the decimal column and row addresses in the table \\
above to the actual pin levels can be made in Tables 3 and 4 .
\end{tabular}

Edit Mode Row Select
Table 3
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PROG. MODE} & \multirow[b]{2}{*}{ROW NUMBER} & R7 & R6 & R5 & R4 & R3 & R2 & R1 & RO & \multirow{2}{*}{VARIABLE} \\
\hline & & Pin 9 & Pin 8 & Pin 7 & Pin 6 & Pin 5 & Pin 4 & Pin 3 & Pin 2 & \\
\hline 1 & \[
\begin{array}{r}
0 \\
4 \\
8 \\
12 \\
16 \\
20 \\
24 \\
28
\end{array}
\] & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{~L}
\end{aligned}
\] & \[
\begin{aligned}
& H \\
& L \\
& H
\end{aligned}
\] & \[
\begin{aligned}
& H \\
& H
\end{aligned}
\] & \(H\)
\(H\)
\(H\)
\(H\)
\(H\)
\(H\)
\(H\)
\(H\)
\(H\) & \[
\begin{aligned}
& H \\
& H
\end{aligned}
\] & \(H\)
\(H\)
H
H
H
H
H
H & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{~L}
\end{aligned}
\] & \[
\begin{aligned}
& L \\
& H \\
& H
\end{aligned}
\] & \[
\begin{aligned}
& 11 \\
& 12 \\
& 13 \\
& 14 \\
& 15 \\
& 16 \\
& 17 \\
& 18 \\
& \hline
\end{aligned}
\] \\
\hline 2 & \[
\begin{array}{r}
1 \\
5 \\
9 \\
13 \\
17 \\
21 \\
25 \\
29
\end{array}
\] & \(L\)
\(L\)
\(L\)
\(L\)
\(L\)
\(L\)
\(L\) & & \[
\begin{aligned}
& L \\
& H \\
& L \\
& L
\end{aligned}
\] & \(L\)
\(L\)
\(L\)
\(L\)
\(L\)
\(L\)
\(L\) & \(L\)
\(L\)
\(L\)
\(H\)
\(L\)
\(L\)
\(L\) & \(L\)
\(L\)
\(H\)
\(L\)
\(L\)
\(L\)
\(L\) & \[
\begin{aligned}
& L \\
& H \\
& L \\
& L \\
& L \\
& L \\
& L
\end{aligned}
\] & \[
\begin{aligned}
& H \\
& L \\
& L
\end{aligned}
\] & \[
\begin{aligned}
& 111 \\
& 112 \\
& / 13 \\
& / 14 \\
& 115 \\
& 116 \\
& 117 \\
& 118
\end{aligned}
\] \\
\hline 3 & \[
\begin{array}{r}
2 \\
6 \\
10 \\
14 \\
18 \\
22 \\
26 \\
30
\end{array}
\] & \[
\begin{aligned}
& H \\
& H
\end{aligned}
\] & \[
\begin{aligned}
& H \\
& L \\
& H
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{~L} \\
& \mathrm{H} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{H} \\
& \mathrm{H} \\
& \mathrm{H} \\
& \mathrm{H} \\
& \mathrm{~L} \\
& \mathrm{H} \\
& \mathrm{H} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& H \\
& H
\end{aligned}
\] & \(H\)
\(H\)
\(L\)
\(H\)
\(H\)
\(H\)
\(H\)
\(H\) & \[
\begin{aligned}
& H \\
& L \\
& H \\
& H
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{L} \\
& \mathrm{H} \\
& \mathrm{H}
\end{aligned}
\] & \[
\begin{aligned}
& 10 \\
& \text { B5 } \\
& \text { B4 } \\
& \text { B3 } \\
& \text { B2 } \\
& \text { B1 } \\
& \text { B0 } \\
& 19
\end{aligned}
\] \\
\hline 4 & \[
\begin{array}{r}
3 \\
7 \\
11 \\
15 \\
19 \\
23 \\
27 \\
27 \\
31
\end{array}
\] & \[
\begin{aligned}
& L \\
& H
\end{aligned}
\] & L
L
L
L
L
L & \(L\)
\(L\)
\(L\)
\(L\)
\(L\)
\(L\)
\(L\) & \[
\begin{aligned}
& L \\
& L \\
& L \\
& L \\
& H \\
& L \\
& L \\
& L
\end{aligned}
\] & \(L\)
\(L\)
\(L\)
\(H\)
\(L\)
\(L\)
\(L\) & \[
\begin{aligned}
& L \\
& L \\
& H \\
& L \\
& L \\
& L \\
& L \\
& L
\end{aligned}
\] & \[
\begin{aligned}
& L \\
& H \\
& L \\
& L
\end{aligned}
\] & \(H\)
\(L\)
\(L\)
\(L\)
\(L\)
\(L\) & \begin{tabular}{l}
110 \\
/B5 \\
/B4 \\
/B3 \\
/B2 \\
/B1 \\
/B0 \\
119
\end{tabular} \\
\hline 1 or 3 & 32 & H & H & H & H & H & H & H & H & CONFIGURE \\
\hline
\end{tabular}

Edit Mode Column Select Table 4
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline COLUMN & C6 & C5 & C4 & C3 & C2 & C1 & Co & \\
\hline NUMBER & Pin 13 & Pin 14 & Pin 15 & Pin 16 & Pin 17 & Pin 18 & Pin 19 & \\
\hline 0 & L & L & L & L & L & L. & L & \\
\hline 1 & L & L & L & L & L & L & H & \\
\hline 2 & L & L & L & L & L & H & L & \\
\hline 3 & L & L & L & L & L & H & H & \\
\hline 4 & L & L & L & L & H & L & L & \\
\hline 5 & L & \(L\) & L & L & H & L & H & \\
\hline 6 & L & L & L & L & H & H & L & \\
\hline 7 & L & L & L & L & H & H & H & \\
\hline 8 & \(L\) & L & \(L\) & H & L & L & L & \\
\hline 9 & \(L\) & \(L\) & L & H & L & L & H & \\
\hline 10 & \(L\) & L & L & H & L & H & L & P \\
\hline 11 & \(L\) & L & L & H & L & H & H & P \\
\hline 12 & L & L & L & H & H & L & L & R \\
\hline 13 & \(L\) & L & \(L\) & H & H & L & H & \\
\hline 14 & L & L & L & H & H & H & L & 0 \\
\hline 15 & L & L & L & H & H & H & H & D \\
\hline 16 & L & L & H & L & L & L & L & D \\
\hline 17 & L & L & H & L & L & L & H & U \\
\hline 18 & L & L & H & L & L & H & L & \\
\hline 19 & L & L & H & \(L\) & L & H & H & C \\
\hline 20 & L & L & H & L & H & L & L & T \\
\hline 21 & L & L & H & L & H & \(L\) & H & T \\
\hline 22 & L & L & H & L & H & H & L & \\
\hline 23 & L & L & H & L & H & H & H & \\
\hline 24 & L & L & H & H & L & L & L & T \\
\hline 25 & L & L & H & H & L & L & H & \(T\) \\
\hline 26 & \(L\) & \(L\) & H & H & L & H & L & E \\
\hline 27 & L & L & H & H & L & H & H & \\
\hline 28 & L & L & H & H & H & L & L & \(R\) \\
\hline 29 & L & L & H & H & H & L. & H & M \\
\hline 30 & L & L & H & H & H & H & L & M \\
\hline 31 & L & L & H & H & H & H & H & S \\
\hline 32 & L & H & L & L & L & L & L & S \\
\hline 33 & L & H & L & L & L & L & H & \\
\hline 34 & L & H & L & L & L & H & L & \\
\hline 35 & L & H & \(L\) & L & L & H & H & \\
\hline 36 & L & H & L & L & H & L & L & \\
\hline 37 & L & H & L & L & H & L & H & \\
\hline 38 & L & H & L & L & H & H & L & \\
\hline 39 & L & H & L & L & H & H & H & \\
\hline 40 & L & H & L & H & L & L & L & \\
\hline 41 & L & H & L & H & L & L & H & \\
\hline 42 & L & H & L & H & L & H & L & \\
\hline 43 & L & H & L & H & L & H & H & \\
\hline 44 & L & H & L & H & H & L & L & \\
\hline 45 & L & H & L & H & H & L & H & \\
\hline 46 & L & H & L & H & H & H & L & \\
\hline 47 & L & H & L & H & H & H & H & \\
\hline 48 & L & H & H & L & L & L & L & \\
\hline 49 & L & H & H & L & L & L & H & \\
\hline 50 & L & H & H & L & L & H & L & \\
\hline 51 & L & H & H & L & L & H & H & \\
\hline 52 & L & H & H & L & H & L & L & \\
\hline 53 & L & H & H & L & H & L & H & \\
\hline 54 & L & H & H & L & H & H & L & \\
\hline 55 & L & H & H & L & H & H & H & \\
\hline 56 & L & H & H & H & L & L & L & \\
\hline 57 & L & H & H & H & L & L & H & \\
\hline 58 & L & H & H & H & L & H & L & \\
\hline 59 & L & H & H & H & L & H & H & \\
\hline 60 & L & H & H & H & H & L & L & \\
\hline 61 & L & H & H & H & H & L & H & \\
\hline 62 & L & H & H & H & H & H & L & \\
\hline 63 & L & H & H & H & H & H & H & \\
\hline 64 & H & L & L & L & L & L & L & MODE \\
\hline 65 & H & L & L & \(L\) & L & L. & H & VERIFY \\
\hline 68 & H & L & L & L & H & L & L & Pin \(19 \ldots p\) \\
\hline 69 & H & L & L & L & H & L & H & Pin 1800 \\
\hline 70 & H & L & L & L & H & H & L & Pin 17 U \\
\hline 71 & H & L & L & L & H & H & H & Pin 16 T A \\
\hline 72 & H & L & L & H & L & L & L & Pin 15 P R \\
\hline 73 & H & L & L & H & L & L & H & Pin \(14 \sim 1\) \\
\hline 74 & H & \(L\) & \(L\) & H & L & H & L & Pin 13 T \({ }^{\text {P }}\) \\
\hline 75 & H & L & L & H & L & H & H & Pin 12 \\
\hline 76 & H & L & L & H & H & L & L & PROTECT \\
\hline
\end{tabular}

HPL-16RC8 HPL-16RC6 HPL-16RC4

\section*{Features}
- Pin \& Function Compatible with the Bipolar 16R8, 16R6 and 16R4
- Scaled SAJI IV CMOS Process
- Fast Access \(\qquad\) Input to Output 125ns Max. Clock to Output 60ns Max.
- Low Standby and Operating Power
- ICCSB \(=150 \mu \mathrm{~A}\) - \(\operatorname{ICCOP}=7 \mathrm{~mA} / \mathrm{MHz}\)
- Wide Operating Temperature Ranges:
- HPL-16RC8-5, HPL-16RC6-5, HPL-16RC4-5.. .00 C to +750 C
- HPL-16RC8-9, HPL-16RC6-9, HPL-16RC4-9 \(\qquad\) \(40^{\circ} \mathrm{C}\) to \(+85{ }^{\circ} \mathrm{C}\)
- HPL-16RC8-8, HPL-16RC6-8, HPL-16RC4-8 \(\qquad\) \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)
- 20 Pin Dual-In-Line Package
- Security Fuse for Pattern Protection
- TTL/CMOS Compatible Inputs/Outputs for Mixed System Compatibility
- Logic Paths Tested to Insure Functionality
- Programmable Output Polarity

\section*{Applications}
- Random Logic Replacement
- Code Converters
- Address Decoding
- Custom Shift Registers
- Boolean Function Generators
- Digital Multiplexers
- Parity Generators
- Pattern Recognition
- State Machine Design

\section*{Description}

The HPL-16RC8, HPL-16RC6, and HPL-16RC4 are CMOS Programmable Logic Devices designed to provide high performance, low power alternatives to the industry standard 16RC8, 16RC6, and 16RC4 bipolar programmable logic devices.
In addition to the low power advantage of these devices over their bipolar counterparts, the HPL-16RC8, HPL-16RC6, and HPL-16RC4 contain programmable output polarity, allowing the user to individually select each output as either active-high or active-low. When all output polarity fuses are left intact, all active outputs are active-low.

These three devices provide a choice of either eight (16RC8), six (16RC6), or four (16RC4) registered outputs
with feedback, each output consisting of eight product terms. The HPL-16RC6 and the HPL-16RC4 also contain two and four bi-directional pins, respectively.

The Harris fuse link technology provides a permanent fuse with stable storage characteristics of the full temperature ranges of \(0^{\circ} \mathrm{C}\) to \(+75^{\circ} \mathrm{C},-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) and \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\). Like all Harris Programmable Logic (HPL), these devices contain unique test circuitry developed by Harris which allows AC, DC and functional testing before programming.

On-chip automatic power-down circuitry places internal circuitry into an ultra-low ICCSB power mode after output data becomes valid.

\section*{Functional Diagram}

\section*{Functional Diagram}

\section*{Absolute Maximum Ratings}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{Input, Output or I/O Voltage Applied... GND -0.3V to VCC +0.3V} \\
\hline \multicolumn{2}{|l|}{Storage Temperature Range..-65................. to +150 \({ }^{\circ} \mathrm{C}\)} \\
\hline Maximum Package Power Dissipation & Vatt \\
\hline \(\theta \mathrm{jc}\) & \(19^{\circ} \mathrm{C} / \mathrm{W}\) (LCC Package) \\
\hline \(\theta_{j a}\) & \(76^{\circ} \mathrm{C} / \mathrm{W}\) (LCC Package) \\
\hline Gate & 1500 Gates \\
\hline Junction Temperatu & +1500 \({ }^{\circ} \mathrm{C}\) \\
\hline Lead Temperature (Soldering, Ten Seconds) & +2750 C \\
\hline CAUTION: Stresses above those listed in the "Absolut is a stress only rating and operation of the device sections of this specification is not implied. & nt damage to the device. This indicated in the operation \\
\hline
\end{tabular}

\section*{Operating Conditions}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Operating Voltage Range ... +4.5 V to +5.5 V}} \\
\hline & \\
\hline HPL-16RC8,6,4-5 & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) \\
\hline HPL-16RC8,6,4-9 & \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) \\
\hline HPL-16RC8,6,4-8 & \({ }^{-55}{ }^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{D.C. Electrical Specifications \\ HPL-16RC8,6,4-5 (VCC \(=5.0 \mathrm{~V} \pm 10 \%, \mathrm{TA}=0^{\circ} \mathrm{C}\) to \(\left.+75^{\circ} \mathrm{C}\right)\) \\ (Operating) \(\quad \mathrm{HPL}-16 \mathrm{RC} 8,6,4-9 \quad\left(\mathrm{VCC}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{TA}=-40^{\circ} \mathrm{C}\right.\) to \(+85^{\circ} \mathrm{C}\)) \\ HPL-16RC8,6,4-8 (VCC \(=5.0 \mathrm{~V} \pm 10 \%, T A=-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\))}
\begin{tabular}{|c|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & MIN & MAX & UNITS & TEST CONDITIONS (3) \\
\hline \[
\begin{aligned}
& \mathrm{IH} \\
& \mathrm{IIL}
\end{aligned}
\] & \begin{tabular}{ll}
Dedicated & "1" \\
Input Current & "0"
\end{tabular} & & \[
\begin{aligned}
& +1 \\
& -1
\end{aligned}
\] & \[
\begin{array}{r}
\mu \mathrm{A} \\
\mu \mathrm{~A} \\
\hline
\end{array}
\] & \[
\begin{array}{rlr}
\mathrm{VIH} & =\mathrm{VCC} \text { MAX } & \\
\text { VIL } & =0 \mathrm{~V} & \mathrm{VCC}=\mathrm{VCC} \mathrm{MAX}
\end{array}
\] \\
\hline \[
\begin{aligned}
& \mathrm{IFZH} \\
& \text { IFZL }
\end{aligned}
\] & \begin{tabular}{ll}
Output Current & "1" \\
Hi-Z State & "0" \\
&
\end{tabular} & & \[
\begin{aligned}
& +10 \\
& -10
\end{aligned}
\] & \[
\begin{aligned}
& \mu \mathrm{A} \\
& \mu \mathrm{~A}
\end{aligned}
\] & \[
\begin{array}{ll}
\mathrm{VFH}=\mathrm{VCC} \text { MAX } & \\
V F L=O V & V C C=V C C \text { MAX }
\end{array}
\] \\
\hline \[
\begin{aligned}
& \text { IBZH } \\
& \text { IBZL }
\end{aligned}
\] & \begin{tabular}{ll}
Bidirectional & "1" \\
Hi-Z Current & " 0 "
\end{tabular} & & \[
\begin{aligned}
& +10 \\
& -10
\end{aligned}
\] & \[
{ }_{\mu \mathrm{A}}^{\mu \mathrm{A}}
\] & \[
\begin{array}{rlr}
\mathrm{VBH} & =\mathrm{VCC} \text { MAX } & \\
\mathrm{VBL} & =0 \mathrm{~V} & \mathrm{VCC}=\mathrm{VCC} \mathrm{MAX}
\end{array}
\] \\
\hline \[
\begin{aligned}
& \mathrm{VIH} \\
& \mathrm{VIL}
\end{aligned}
\] & \begin{tabular}{ll}
Input Threshold & " 1 " \\
Voltage (1) & "0"
\end{tabular} & 2.0 & 0.8 & V & \[
\begin{aligned}
& \mathrm{VCC}=\mathrm{VCC} \text { MAX } \\
& \mathrm{VCC}=\mathrm{VCC} M I N
\end{aligned}
\] \\
\hline VOH1 VOH2 VOL & \begin{tabular}{cc}
Output Voltage & " 1 " \(1 "\) \\
(2) & \(" 1 "\) \\
Output Voltage & "0"
\end{tabular} & \[
3.0
\] & 0.4 & \[
\begin{aligned}
& \hline V \\
& V \\
& v
\end{aligned}
\] & \begin{tabular}{l}
\[
\begin{aligned}
& 1 \mathrm{OH} 1=-5.0 \mathrm{~mA} \\
& 1 \mathrm{OH} 2=-1.0 \mathrm{~mA}
\end{aligned}
\] \\
VCC MIN, VIL MAX, VIH MIN \\
\(1 \mathrm{OL}=+5.0 \mathrm{~mA}\)
\end{tabular} \\
\hline ICCSB & Standby Power Supply Current & & 150 & \(\mu \mathrm{A}\) & \[
\begin{aligned}
& V I=V C C \text { or GND } \\
& I F=0 \mu A, V C C=V C C \text { MAX }
\end{aligned}
\] \\
\hline ICCOP & Operating Power Supply Current & & 7 & \(\mathrm{mA} / \mathrm{MHz}\) & \[
\begin{aligned}
& V I=V C C \text { or GND } \\
& I F=0 \mu A, V C C=V C C \text { MAX }
\end{aligned}
\] \\
\hline
\end{tabular}
(1) These specifications apply to both Input (I) and Bidirectional (B) Pins.
(2) These specifications apply to both Output (F) and Bidirectional (B) Pins.
(3) All DC parameters tested under worst case conditions.

Capacitance \(\quad \mathrm{TA}=+25^{\circ} \mathrm{C}\)
\begin{tabular}{|l|l|c|l|l|}
\hline SYMBOL & PARAMETER & MAX & UNITS & TEST CONDITIONS \\
\hline CI & Input Capacitance & 5 & pF & \(\mathrm{VI}=\mathrm{VCC}\) or GND, \(f=1 \mathrm{MHz}\) \\
CF & Output Capacitance & 10 & pF & \(\mathrm{VF}=\mathrm{VCC}\) or \(\mathrm{GND}, \mathrm{f}=1 \mathrm{MHz}\) \\
CB & Bidirectional Capacitance & 12 & pF & VB \(=\) VCC or \(G N D, f=1 \mathrm{MHz}\) \\
\hline
\end{tabular}

\section*{Specifications HPL-16RC8, 6, 4}

\section*{A.C. Switching Specifications (1) (Operating)}

HPL-16RC8,6,4-5 (VCC \(=5.0 \mathrm{~V} \pm 10 \%, \mathrm{TA}=0^{\circ} \mathrm{C}\) to \(+75^{\circ} \mathrm{C}\))
HPL-16RC8,6,4-9 (VCC \(=5.0 \mathrm{~V} \pm 10 \%, T A=-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\))
HPL-16RC8,6,4-8 (VCC \(=5.0 \mathrm{~V} \pm 10 \%, T A=-55^{\circ} \mathrm{C}\) to \(\left.+125^{\circ} \mathrm{C}\right)\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{SYMBOL} & & \multicolumn{2}{|l|}{HPL-16RC8,6,4-5} & \multicolumn{2}{|l|}{HPL-16RC8,6,4-9} & \multicolumn{2}{|l|}{HPL-16RC8,6,4-8} & \\
\hline & JEDEC STANDARD & \[
\begin{aligned}
& \text { OLD } \\
& \text { SYMBOL }
\end{aligned}
\] & PARAMETER & MIN & MAX & MIN & MAX & MIN & MAX & UNITS \\
\hline (1) & TDVQH1 & TPD & Propagation delay Input or I/O to Active High Output & - & 125 & - & 125 & - & 125 & ns \\
\hline (2) & TDVQL1 & TPD & Propagation delay Input or I/O to Active Low Output & - & 125 & - & 125 & - & 125 & ns \\
\hline (3) & \[
\text { , } \begin{gathered}
\text { TDVQH2 } \\
\text { (1) }
\end{gathered}
\] & TPZX & Enable Access Time to Active High Output - Product Term Controlled & TDVQZ1 & 125 & TDVQZ1 & 125 & TDVQZ1 & 125 & ns \\
\hline (4) & \[
\begin{gathered}
\text { TDVQL2 } \\
\text { (1) }
\end{gathered}
\] & TPZX & Enable Access Time to Active Low Output-Product Term Controlled & TDVQZ2 & 125 & TDVQZ2 & 125 & TDVQZ2 & 125 & ns \\
\hline (5) & TDVQZ1 & TPXZ & Disable Access Time from Active High Output-Product Term Controlled & - & 125 & - & 125 & - & 125 & ns \\
\hline (6) & TDVQZ2 & TPXZ & Disable Access Time from Active Low Output-Product Term Controlled & - & 125 & - & 125 & - & 125 & ns \\
\hline (7) & TCHQH & TCLK & Propagation delay Clock to Active High & - & 60 & - & 60 & - & 60 & ns \\
\hline (8) & TCHQL & TCLK & Propagation delay Clock to Active Low & - & 60 & - & 60 & - & 60 & ns \\
\hline (9) & \[
\begin{gathered}
\text { TGLQH } \\
1
\end{gathered}
\] & TPZX & Enable Access Time to Active High Output - Enable Pin Controlled & TGHOZ1 & 60 & TGHOZ1 & 60 & TGHQZ1 & 60 & ns \\
\hline (10) & \[
\begin{array}{|c}
\text { TGLQL } \\
\text { (1) } \\
\hline
\end{array}
\] & TPZX & Enable Access Time to Active Low Output - Enable Pin Controlled & TGHOZ2 & 60 & TGHOZ2 & 60 & TGHOZ2 & 60 & ns \\
\hline (11) & TGHQZ1 & TPXZ & Disable Access Time from Active High Output - Enable Pin Controlled & - & 60 & \(\cdot\) & 60 & - & 60 & ns \\
\hline (12) & TGHQZ2 & TPXZ & Disable Access Time from Active Low Output - Enable Pin Controlled & - & 60 & \({ }^{-}\) & 60 & \({ }^{-}\) & 60 & ns \\
\hline (13) & TDVCH & TSU & Data Setup Time & 125 & - & 125 & - & 125 & - & ns \\
\hline (14) & TCHDX & TH & Data Hold Time & 0 & . & 0 & - & 0 & - & ns \\
\hline (15) & TCHCL & TW & Clock Pulse Width (High) & 25 & . & 25 & - & 25 & - & ns \\
\hline (16) & TCLCH & TW & Clock Pulse Width (Low) & 25 & . & 25 & - & 25 & . & ns \\
\hline (17) & fMAX & fMAX & Maximum Frequency & - & 5 & - & 5 & - & 5 & MHz \\
\hline
\end{tabular}
(1) Enable access time is guaranteed to be greater than disable access time to avoid device contention.

\section*{Switching Time Definitions}

\section*{Asynchronous Outputs}

HPL-16RC8, 6, 4

\section*{Synchronous Outputs}

INPUT CONDITIONS: \(\mathbf{t r}_{\mathbf{t}} \mathbf{t}_{\mathbf{t}}=\mathbf{5 n s} \mathbf{(1 0 \%}\) to \(\left.\mathbf{9 0 \%}\right)\)
NOTE: Disable access time is the time taken for the output to reach a high impedance state when the three-state product term or the output enable pin drives the output inactive The high impedance state is defined as a point on the output waveform equal to a \(\Delta \mathrm{V}\) of 0.5 V from VOHA or VOLA, the active output level.
A.C. Test Load

\section*{Programming}

Following is the programming procedure used for the HPL-16RC8,6,4 programmable logic devices. These devices are manufactured with all fuses intact. Any desired fuse can be programmed by following the simple procedure shown on the following page. One may build a programmer to satisfy the specifications described in the table, or use any of the commercially available programmers which meets these specifications. Please contact Harris for a list of approved programmers.

TABLE 1
PROGRAMMING SPECIFICATIONS
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{SYMBOL} & \multirow[b]{2}{*}{PARAMETER} & \multirow[t]{2}{*}{TEST CONDITIONS} & \multicolumn{3}{|c|}{LIMITS} & \multirow[b]{2}{*}{UNITS} \\
\hline & & & MIN & TYP & MAX & \\
\hline VCCP & VCC Voltage During Programming & & 11.50 & 12.00 & 12.00 & V \\
\hline VCCV & VCC Voltage During Verify & & 4.75 & 5.00 & 5.25 & V \\
\hline ICCP & IC Limit During Programming & & & 100 & 200 & mA \\
\hline VNEG & Edit Enable \& Mode Select Voltage & & -5.00 & -5.00 & -7.00 & V \\
\hline \begin{tabular}{l}
INEG \\
VIL \\
VIHV \\
VIHP
\end{tabular} & Edit Enable \& Mode Select Current Input Voltage Low Input Voltage High Input Voltage High & Verify Programming & \begin{tabular}{l}
(5) \(\quad 0.00\) \\
(5) VCCP-2
\end{tabular} & \[
\begin{aligned}
& 0.00 \\
& \text { VCCV } \\
& \text { VCCP }
\end{aligned}
\] & \[
\begin{aligned}
& -5.00 \\
& 0.80 \\
& \text { VCCV } \\
& \text { VCCP }
\end{aligned}
\] & \[
\begin{aligned}
& m A \\
& V \\
& V \\
& V
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { IILP } \\
& \text { IIHV } \\
& \text { IIHP }
\end{aligned}
\] & Input Current Low Input Current High Input Current High & \[
\begin{aligned}
& \mathrm{VIL}=0.0 \mathrm{~V} \\
& \text { Verify } \\
& \text { Programming }
\end{aligned}
\] & & 0
0
0 & 1
1
1 & \(\mu \mathrm{A}\)
\(\mu \mathrm{A}\)
\(\mu \mathrm{A}\) \\
\hline \[
\begin{aligned}
& \hline \text { VSI } \\
& \text { VSP }
\end{aligned}
\] & Verify voltage Verify voltage & Intact Fuse Programmed Fuse & 3.00 & \[
\begin{aligned}
& 3.30 \\
& 0.00
\end{aligned}
\] & 0.50 & V \\
\hline \begin{tabular}{l}
TV PWP \\
td tr1 tr2 tf1 tf2 tNEG TPP FL
\end{tabular} & Verify Pulse Delay Programming Width Pulse Seq. Delay Signal Rise Time VCC Rise Time Signal Fall Time VCC Fall Time Mode Select Width Programming Period Fuse Attempts/Link & \begin{tabular}{l}
10\% to \(90 \%\) \\
10\% to \(90 \%\) \\
90\% to 10\% \\
90\% to 10\%
\end{tabular} & 500
4.5
1
0.01
0.01
0.01
0.01
1
1 & \[
\begin{aligned}
& 750 \\
& 50 \\
& 1 \\
& 0.1 \\
& 0.1 \\
& 0.1 \\
& 0.1 \\
& 1 \\
& 5.1 \\
& 1
\end{aligned}
\] & 1000
5.5
10
5
1
5
5
2 & \begin{tabular}{l}
\(\mu \mathrm{SeC}\) \\
msec \\
\(\mu \mathrm{sec}\) \\
msec \\
cycles
\end{tabular} \\
\hline
\end{tabular}
(5) Inputs defined as logic "1" (VIHV or VIHP) must track the VCC power supply when the supply is raised or lowered. The input levels should never exceed the level on the VCC PIN.

FIGURE 1
EDIT MODE PINOUT
HPL-16RC8, 6, 4

NOTES: * While programming the CMOS HPLTM device, no pins should be left floating. EDIT OUT appears as an open drain output during programming.
It should be tied to GND through a 1 M -ohm resistor.
* CMOS HPL outputs are not put into a high impedance state (suitable for row and column address application) until the device is reset and put into the edit mode. For this reason it is recommended that the outputs be left floating until the edit mode is enabled or that the outputs be
\(\mu \mathrm{F}\)
*It is suggested that a \(0.01 \mu \mathrm{~F}\) capacitor be put between VCC and GND to minimize VCC voltage spikes. Also, particular care should be exercised in regard to transients on the MODE SELECT and MODE RESET pins, which could place the device in the incorrect mode.

\section*{Programming Procedure}
(1) Set-Up:

NOTE: Refer to the Figure 1 for the pin definitions, Table 1 for the timing and level definitions, Table 2 for the mode decode, and Tables 3 \& 4 for the address decoding.
a. During programming, no pins should be left floating.
b. EDIT OUT(Pin 12) should be terminated with a 1 M ohm (\(\pm 1 \%\)) resistor to GND and stray capacitances on this pin should be \(\leq 50 \mathrm{pF}\).
c. Set GND to 0.00 volts.
d. Outputs are only in a high impedance state (and available for addressing of edit mode rows and columns) while in Edit Modes 1 thru 4. Do not apply signals to these pins until a valid Edit Mode is entered.
e. All input and bi-directional pins should be at zero volts nominal with a maximum of 0.3 volts applied.
f. Apply VCCV to the part. No input should ever exceed the level on the VCC PIN.
(2) Mode Reset/Edit Enable:
a. Wait td and reset the edit control logic by pulsing the MODE RESET PIN to VNEG for tNEG.
b. Wait td and enable Edit mode by applying VNEG to the EDIT ENABLE PIN.
(3) Mode Select:
a. Wait td and select EDIT MODE 1 by pulsing the MODE SELECT PIN to VNEG for tNEG. Subsequent pulses will increment the mode to 2,3 and 4 sequentially (sequencing the device beyond mode 4 will result in unpredictable results --- if in doubt, return to STEP 2).
b. Verify entry into the proper mode by addressing column 64 and the row indicated in Table 2, waiting TV and monitoring the EDIT OUT PIN for the proper data.
c. Address column 65 and the row indicated in Table 2, wait TV and monitor the EDIT OUT PIN for the proper data. If both steps 3b and 3c are correct, then the proper mode has been selected.
d. To re-enter a mode lower than the current mode, return to step 2. Mode 1 can only be (re-)entered from step 2.
(4) Fuse select:

NOTE: The voltage for a logical " 1 " (VIHP) must not exceed VCCP and must track VCCP as it rises from VCCV in step 5.
a. wait td and select a row by applying the appropriate address from Table 3.
b. Select a column by applying the appropriate address from Table 4.

\section*{ogram the Fuse}

NOTE: The PROTECT and POLARITY fuses can be accessed from either mode 1 or mode 3 by applying the addresses indicated in Tables 3 \& 4 .
THE 'PROTECT' FUSE SHOULD NOT BE PROGRAMMED UNTIL ALL OTHERFUSES HAVE BEEN PROGRAMMED AND VERIFIED AS PROGRAMMING THIS FUSE DEFEATS ALL FURTHER VERIFICATION!!
a. Wait td and raise the VCC PIN to VCCP (allow VIHP to track this rise).
b. Wait td and pulse the PROGRAM PIN(Pin 1) to VIHP for a duration of PWP.
c. Wait dd and lower the VCC PIN to VCCV (allow VIHP to track this fall)
(7) Verify Fuse:
a. Wait TV and monitor EDIT OUT for VSP (or VSI if verifying an intact fuse).
b. If EDIT OUT has indicated greater than VSP for an attempted programmed fuse, repeat step 6 so that the fuse receives a maximum of FL fusing attempts.
(8) Repeat steps 4 through 7 for all addresses in a given mode.....
(9) Repeat steps 3 through 8 for all modes.

\section*{Programming Waveforms}

SELECT NEXT FUSE

NOTE Pins \(13-19\) are not necessarily three-stated and available for application of column address input signals untila valid edit mode is entered Refer to the edit mode pinout (Figure 1) for further detalls

Programmable Chip Select Decoder (PCSD \({ }^{\text {TM }}\))

\section*{Features}
- Memory or I/O Chip Select Decoding, Replaces 3-7 ICs
- Superset of the Industry Standard 74138/74139
- Microprocessor Bus Oriented Interface
- Address "Match" Output Facilitates Bus Arbitration and "Wait-state" Timing Generation
- Harris Advanced Scaled SAJI IV CMOS Process
- Faster than Low-Power Schottky at CMOS Power Consumption
- 24 Pin Slimline DIP
- Wide Operating Temperature Ranges:
- HPL-82C339-5 \(\qquad\) \(.0^{\circ} \mathrm{C}\) to \(+75^{\circ} \mathrm{C}\)
- HPL-82C339-9 \(\qquad\) \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\)
- HPL-82C339-8 \(\qquad\) \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)
- Simple Programming Algorithm
- Mask Programmable for Volume Users
Pinouts
LCC

TOP VIEW
\begin{tabular}{|c|c|}
\hline A 1 & 24. vcc \\
\hline B \(\square_{2}\) & 23. \(\overline{\mathrm{YO}}\) \\
\hline LB \(\square^{3}\) & 22-71 \\
\hline HB \(\mathrm{C}_{4}\) & \(21 . \overline{72}\) \\
\hline 6185 & \(20 . \overline{Y_{3}}\) \\
\hline 62.6 & 19. \(\overline{\mathrm{Y} 4}\) \\
\hline 6317 & 18. \(\overline{\mathrm{Y} 5}\) \\
\hline 64.8 & \(17 . \overline{Y_{6}}\) \\
\hline 659 & \(16 . \overline{77}\) \\
\hline 6610 & 15 MATCH \\
\hline 6711 & \(14 . \operatorname{ALE}\) \\
\hline GND 12 & 13. \(\overline{S E L}\) \\
\hline
\end{tabular}

\section*{Description}

The HPL \({ }^{\text {TM }}\)-82C339 is a high performance Programmable Chip Select Decoder (PCSD) which is intended to be used for both memory and I/O chip select decoder applications. Utilizing the Harris advanced scaled SAJI IV CMOS process, this circuit provides bipolar speed with CMOS power consumption.

In a typical application, this circuit can replace a 24 -pin Programmable Logic Device (PLD) and two octal latches. The associated reductions in board area, chip count and power consumption result in a substantial increase in system reliability and an attendant decrease in system cost.

The seven "Gx" inputs are field programmable for either high or low true address decoding. The High and Low Band (HB, LB) Select inputs are also programmable. This permits the PCSD to be optimized for either 8-bit or 16-bit microprocessor applications. The Harris fuse link technology used in this product provides a permanent fuse with stable storage characteristics over the full temperature ranges of \(0^{\circ} \mathrm{C}\) to \(+75^{\circ} \mathrm{C},-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\), and \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\).

Transparent latches are utilized on all address inputs which permits the PCSD to be used with both multiplexed and non-multiplexed address/data bus microprocessors.

\section*{Block Diagram}

\section*{Absolute Maximum Ratings}

\section*{Operating Conditions}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Operating Voltage Range ... +4.5 V to +5.5 V}} \\
\hline & \\
\hline HPL-82C339-5. & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) \\
\hline HPL-82C339-9. & \(0^{\circ} \mathrm{C}\) to \(+85{ }^{\circ} \mathrm{C}\) \\
\hline HPL-82C339-8 & \(5^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}
\begin{tabular}{lll}
D.C. Electrical Specifications & HPL-82C339-5 & (VCC \(=5.0 \mathrm{~V} \pm 10 \%, \mathrm{TA}=0{ }^{\circ} \mathrm{C}\) to \(+75^{\circ} \mathrm{C}\)) \\
(Operating) & HPL-82C339-9 & (VCC \(=5.0 \mathrm{~V} \pm 10 \%, \mathrm{TA}=-40^{\circ} \mathrm{C}\) to \(+85{ }^{\circ} \mathrm{C}\)) \\
& HPL-82C339-8 & \(\left(\right.\) (VCC \(=5.0 \mathrm{~V} \pm 10 \%, \mathrm{TA}=-55^{\circ} \mathrm{C}\) to \(\left.+125^{\circ} \mathrm{C}\right)\)
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & \multicolumn{2}{|l|}{PARAMETER} & MIN & MAX & UNITS & TEST CONDITIONS \\
\hline \[
\begin{aligned}
& \text { IIH } \\
& \text { IIL }
\end{aligned}
\] & Dedicated Input Current & \[
\begin{aligned}
& \text { "1" } \\
& \text { " } 0 "
\end{aligned}
\] & & \[
\begin{aligned}
& +1 \\
& -1
\end{aligned}
\] & \[
\begin{aligned}
& \mu \mathrm{A} \\
& \mu \mathrm{~A}
\end{aligned}
\] & \[
\begin{aligned}
& \text { VIH }=\text { VCC MAX } \\
& \text { VIL }=0 \mathrm{~V} \quad \text { VCC }=\text { VCC MAX }
\end{aligned}
\] \\
\hline \begin{tabular}{l}
VIH \\
VIL
\end{tabular} & \begin{tabular}{l}
Input Threshold \\
Voltage
\end{tabular} & \[
\begin{aligned}
& \text { "1" } \\
& " 1 " \\
& " 0 \text { " }
\end{aligned}
\] & \[
\begin{aligned}
& \hline 2.0 \\
& 2.2
\end{aligned}
\] & 0.8 & \[
\begin{aligned}
& \mathrm{V} \\
& \mathrm{~V} \\
& \mathrm{~V}
\end{aligned}
\] & ```
VCC = VCC MAX HPL-82C339-5/-9
VCC = VCC MAX HPL-82C339-8
VCC = VCC MIN
``` \\
\hline \begin{tabular}{l}
VOH1 VOH2 \\
VOL
\end{tabular} & \begin{tabular}{l}
Output Voltage \\
Output Voltage
\end{tabular} & \[
\begin{aligned}
& \text { "1" } \\
& \text { "1" } \\
& \text { "0" }
\end{aligned}
\] & \[
\begin{gathered}
3.0 \\
\text { VCC-0.4 }
\end{gathered}
\] & 0.4 & \[
\begin{aligned}
& \mathrm{v} \\
& \mathrm{v} \\
& \mathrm{v}
\end{aligned}
\] & \[
\begin{aligned}
& 1 \mathrm{OH} 1=-5 \mathrm{~mA} \\
& 1 \mathrm{OH} 2=-1 \mathrm{~mA} \\
& \mathrm{VCC} \text { MIN, VIL MAX, VIH MIN } \\
& \mathrm{IOL}=+5 \mathrm{~mA}
\end{aligned}
\] \\
\hline ICCSB* & Standby Power Supply Current & & & 50 & \(\mu \mathrm{A}\) & \[
\begin{aligned}
& \mathrm{VIH}=\mathrm{VCC} \mathrm{MAX} \\
& \mathrm{IF}=0.0 \mu \mathrm{~A}, \mathrm{VCC}=\mathrm{VCC} M A X
\end{aligned}
\] \\
\hline ICCOP* & Operating Power Supply Current & & & 2 & \(\mathrm{mA} / \mathrm{MHz}\) & \[
\begin{aligned}
& \mathrm{VI}=\mathrm{VCC} \text { or GND } \\
& I F=0.0 \mu \mathrm{~A}, \mathrm{VCC}=\mathrm{VCC} \mathrm{MAX}
\end{aligned}
\] \\
\hline
\end{tabular}
* ICCSB, ICCOP specifications are achieved only after complete programming of the device. These specifications are sampled and guaranteed but not \(100 \%\) tested. While testing these specifications, output pins should be left open circuit.
A.C. Switching Specifications (Operating)

HPL-82C339-5 (VCC \(=5.0 \mathrm{~V} \pm 10 \%, \mathrm{TA}=0^{\circ} \mathrm{C}\) to \(+75^{\circ} \mathrm{C}\) )
HPL-82C339-9 (VCC \(=5.0 \mathrm{~V} \pm 10 \%, \mathrm{TA}=-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) )
HPL-82C339-8 (VCC \(=5.0 \mathrm{~V} \pm 10 \%\), TA \(=-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) )
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{SYMBOL} & \multirow[b]{2}{*}{PARAMETER} & \multicolumn{2}{|l|}{HPL-82C339-5} & \multicolumn{2}{|l|}{HPL-82C339-9} & \multicolumn{2}{|l|}{HPL-82C339-8} & \multirow[b]{2}{*}{UNITS} \\
\hline & & MIN & MAX & MIN & MAX & MIN & MAX & \\
\hline (1) TAVYL & Propagation delay A, B, LB, HB, or \(G\) to Output Low & - & 50 & - & 50 & - & 50 & ns \\
\hline (2) TGVML & Propagation delay G to Match Output Low & - & 50 & - & 50 & - & 50 & ns \\
\hline (3) TSLYL & Select Access Time to Output Low & - & 35 & - & 35 & - & 35 & ns \\
\hline (4) TSHYH & Select Access Time to Output High & - & 35 & - & 35 & - & 35 & ns \\
\hline (5) TGXMH & Match De-Select Propagation Delay & - & 50 & - & 50 & - & 50 & ns \\
\hline (6) TAVLL & Address Set-Up to ALE Trailing Edge & 15 & - & 15 & - & 15 & - & ns \\
\hline (7) TLLAX & Address Hold From ALE Trailing Edge & 15 & - & 15 & - & 15 & - & ns \\
\hline (8) TAVSL & Address Set-Up to SEL Low (Glitch-Free Operation) & 15 & - & 15 & - & 15 & - & ns \\
\hline (9) TSHAX & Address Hold From SEL High (Glitch-Free Operation) & 15 & - & 15 & - & 15 & - & ns \\
\hline (10) TLHLL & ALE Pulse Width & 15 & - & 15 & - & 15 & - & ns \\
\hline
\end{tabular}

Capacitance: \(\mathrm{TA}_{\mathrm{A}}+25^{\circ} \mathrm{C}\) (NOTE: Sampled and guaranteed - but not \(100 \%\) tested.)
\begin{tabular}{|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & MAX & UNITS & TEST CONDITIONS \\
\hline \hline Cl & Input Capacitance & 5 & pF & VI \(=\) VCC or GND, \(\mathrm{f}=1 \mathrm{MHz}\) \\
CO & Output Capacitance & 10 & pF & VO \(=\) VCC or GND, \(\mathrm{f}=1 \mathrm{MHz}\) \\
\hline
\end{tabular}


NOTES: 1. In order to ensure glitch-free operation of the \(\overline{Y x}\) outputs, set-up and hold times should be observed.
2. The \(\overline{S E L}\) input controls the \(\overline{Y x}\) outputs only and has no effect on the \(\overline{M A T C H}\) output.
3. \(A C\) switching characteristics are measured with inputs switching between GND and \(3.0 \mathrm{~V} . \mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=5 \mathrm{~ns}(10 \%-90 \%)\).
A.C. Test Load


\section*{Programming}

Following is the programming procedure which is used for the HPL-82C339 programmable logic device. This device is manufactured with all fuses intact. Any desired fuse can be programmed by following the simple procedure shown on the following page. One may build a pro-
grammer to satisfy the specifications described in the table, or use any of the commercially available programmers which meets these specifications. Please contact Harris for a list of approved programmers.

\section*{Programming Specifications}
table 1.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{SYMBOL} & \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{TEST CONDITIONS} & \multicolumn{3}{|c|}{LIMITS} & \multirow[b]{2}{*}{UNITS} \\
\hline & & & MIN & TYP & MAX & \\
\hline VCCP & VCC Voltage During Programming & & 11.50 & 12.00 & 12.00 & V \\
\hline vccv & VCC Voltage During Verify & & 4.75 & 5.00 & 5.25 & V \\
\hline ICCP & ICC Limit During Programming & & - & 100 & 200 & mA \\
\hline VNEG & Edit Enable \& Mode Select Voltage & & -6.00 & -6.00 & -7.00 & V \\
\hline INEG & Edit Enable \& Mode Select Current & & - & - & -5.00 & mA \\
\hline VIL VIHV VIHP & Input Voltage Low Input Voltage High Input Voltage High & \begin{tabular}{l}
verify \\
programming
\end{tabular} & 0.00 VCCV-2 VCCP-2 & \[
\begin{aligned}
& 0.00 \\
& \text { VCCV } \\
& \text { VCCP }
\end{aligned}
\] & \[
\begin{gathered}
0.80 \\
\text { VCCV } \\
\text { VCCP }
\end{gathered}
\] & V
V
V \\
\hline \[
\begin{aligned}
& \text { IILP } \\
& \text { IIHV } \\
& \text { IIHP }
\end{aligned}
\] & Input Current Low Input Current High Input Current High & \[
\begin{aligned}
& \text { VIL }=0.0 \mathrm{~V} \\
& \text { verify } \\
& \text { programming }
\end{aligned}
\] & - & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & 1
1
1 & \begin{tabular}{l}
\(\mu \mathrm{A}\) \\
\(\mu \mathrm{A}\) \\
\(\mu \mathrm{A}\)
\end{tabular} \\
\hline \begin{tabular}{l}
PWP \\
TD \\
tr1 \\
tr2 \\
tf1 \\
tf2
\end{tabular} & Programming Width Pulse Seq. Delay Signal Rise Time VCC Rise Time Signal Fall Time VCC Fall Time & \begin{tabular}{l}
\(10 \%\) to \(90 \%\) \\
\(10 \%\) to \(90 \%\) \\
\(90 \%\) to \(10 \%\) \\
\(90 \%\) to \(10 \%\)
\end{tabular} & \[
\begin{gathered}
4.5 \\
1 \\
0.01 \\
0.01 \\
0.01 \\
0.01
\end{gathered}
\] & \[
\begin{gathered}
5.0 \\
1 \\
0.1 \\
0.1 \\
0.1 \\
0.1
\end{gathered}
\] & \[
\begin{gathered}
5.5 \\
\hline 1 \\
5 \\
1 \\
5
\end{gathered}
\] & msec \(\mu \mathrm{sec}\) \(\mu \mathrm{sec}\) \(\mu \mathrm{sec}\) \(\mu \mathrm{sec}\) \(\mu \mathrm{sec}\) \\
\hline \[
\begin{aligned}
& \text { TPP } \\
& \text { FL }
\end{aligned}
\] & Programming Period Fuse Attempts/Link & & \(\overline{1}\) & \[
\begin{gathered}
5.1 \\
1
\end{gathered}
\] & \(\overline{2}\) & msec cycles \\
\hline
\end{tabular}
(1) Inputs defined as logic " 1 " (VIHV or VIHP) must track the VCC power supply when the supply is raised or lowered. The input levels should never exceed the level on the VCC Pin.


NOTE: While programming the CMOS HPL device, no input pins should be left floating. Output pins \((15-23)\) should be left unconnected. It is suggested that a \(0.1 \mu \mathrm{~F}\) capacitor be placed between VCC and GND to minimize VCC voltage spikes.

FIGURE 1. HPL-82C339 EDIT MODE PINOUT

\section*{Programming Procedure}

\section*{Set Up:}
a. During programming or operation, no input pins should be left floating.
b. No input pin voltage should ever be greater than the voltage applied to the device VCC pin.
c. The device should be decoupled with a \(0.1 \mu \mathrm{~F}\) or greater capacitor located at the device socket and placed between the VCC and GND pins.

\section*{Power up:}
a. Initially, all input pins including power supply pins should be at ground potential.
b. Normally, the input pins (pins \(3-11,13,14\) ) are driven with an open collector driver with a pull-up resistor to the VCC pin (pin 24) so that these inputs automatically track the voltage on the VCC pin when they are set to the high state. This prevents the voltage level on the input pins from exceeding the voltage applied to the VCC pin.
c. Ramp the VCC pin (pin 24) to VCCV and the input pins (pins 3-11, 13, 14) to VIHV.

\section*{Programming Sequence}
a. After a delay TD, the programming mode is entered by taking the programming enable pin (pin 1) to VNEG. Pin 1 must remain at VNEG throughout the entire programming sequence.
b. Wait TD and raises pin 24 to VCCP and pins 3-11, 14 to VIHP. At the same time, the SEL input (pin 13) is set to either VIHP or VIL in order to select the desired polarity of the input which is to be programmed. When SEL is at VIHP, the input will be programmed high true. When \(\overline{\text { SEL }}\) is at VIL, the input will be programmed low true.
c. Wait TD and pulse the input to be programmed to ground for PWP milliseconds. It should be noted that only one input should be programmed at a time.
d. After a delay TD, return pin 24 to VCCV and pins 3-11, 14 to VIHV.
e. Repeat steps b), c), and d) until pins 3-11 have been programmed with the appropriate polarity.
f. When all inputs have been programmed as explained above, wait TD and return the programming enable pin (pin 1) to VIL.

\section*{Fuse Integrity Testing}
a. Correct programming of the device should be verified by applying test vectors to the input pins.
b. Fuse integrity is tested by applying VCC to the device and measuring the static power consumption of the device. With all inputs at VCC or GND and the output pins unloaded, the measured ICCSB of the device should be less than \(50 \mu \mathrm{~A}\) at \(\mathrm{VCC}=5 \mathrm{~V}\) and \(\mathrm{T}=25^{\circ} \mathrm{C}\). This guarantees that all fuses have been blown to a final state which is not marginal and will not create a reliability problem over the life of the device. NOTE: Any device which fails this test should be rejected even if it passes functional testing in order to ensure no future reliability problems associated with marginally blown fuses.

IMPORTANT: All nine inputs must be programmed regardless of desired high or low input polarity. The advanced design of the fuse select circuitry (Patent Pending) provides for ultra-low post programming ICCSB and requires that one fuse on each input be programmed.

\section*{Programming Waveforms}


\section*{7 HARRIS}

Programmable Chip Select Decoder (PCSD \({ }^{\text {TM }}\) )

\section*{Features}
- Memory or I/O Chip Select Decoding, Replaces 3-6 ICs
- Superset of the Industry Standard 74138
- Microprocessor Bus Oriented Interface
- Harris Advanced Scaled SAJI IV CMOS Process
- Faster than Low-Power Schottky at CMOS Power Consumption
- 20 Pin Slimline DIP
- Wide Operating Temperature Ranges:
- HPL-82C338-5 \(\qquad\) \(0^{\circ} \mathrm{C}\) to \(+75^{\circ} \mathrm{C}\)
- HPL-82C338-9 \(\qquad\) \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\)
- HPL-82C338-8 \(\qquad\) \(-55^{\circ} \mathrm{C}\) to +1250 C
- Simple Programming Algorithm
- Mask Programmable for Volume Users

Pinouts


\section*{Description}

The HPL-82C338 is a high performance Programmable Chip Select Decoder (PCSD) which is intended to be used for both memory and I/O chip select decoder applications. Utilizing the Harris advanced scaled SAJI IV CMOS process, this circuit provides bipolar speed with CMOS power consumption.

In a typical application, this circuit can replace six 74HCXX SSI/MSI ICs. The associated reductions in board area, chip count and power consumption result in a substantial increase in system reliability and an attendant decrease in system cost. A speed improvement of a factor of four over an equivalent implementation with 74 HCXX logic is also realized. The faster decode provided by the

82C338 can result in improved system performance or a dramatic reduction in total system cost since less expensive, slower memories and I/O devices can be used.

The five " \(G x\) " inputs are field programmable for either high or low true address decoding. The Harris fuse link technology used in this product provides a permanent fuse with stable storage characteristics over the full temperature ranges of \(0^{\circ} \mathrm{C}\) to \(+75^{\circ} \mathrm{C},-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) and \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\).

Transparent latches are utilized on all address inputs which permits the 82 C 338 to be used with both multiplexed and non-multiplexed address/data bus microprocessors.

\section*{Block Diagram}


CAUTION: These devices are sensitive to electrostatic discharge. Proper I.C. handling procedures should be followed.

\section*{Absolute Maximum Ratings}
\begin{tabular}{|c|c|}
\hline Supply Voltage & ....................... +7.0 Volts \\
\hline Input, Output or I/O Voltage Applied & GND -0.3V to VCC +0.3V \\
\hline Storage Temperature Range & \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\) \\
\hline Maximum Package Power Dissipation & Vatt \\
\hline \(\theta_{\mathrm{jc}} . . . . . . . . . . . . . . . . . . . . . . . . .24^{\circ} \mathrm{C} / \mathrm{W}\) (CERDIP Package), \(19^{\circ} \mathrm{C} / \mathrm{W}\) (LCC Package) & \(29^{\circ} \mathrm{C} / \mathrm{W}\) (Plastic DIP Package) \\
\hline \(\theta_{\text {ja }}\)......................... \(81^{\circ} \mathrm{C} / \mathrm{W}\) (CERDIP Package), \(76^{\circ} \mathrm{C} / \mathrm{W}\) (LCC Package) & 750 \({ }^{\circ} \mathrm{C} / \mathrm{W}\) (Plastic DIP Package) \\
\hline Gate C & 500 Gates \\
\hline Junction Temperature & \(+150^{\circ} \mathrm{C}\) \\
\hline Lead Temperature (Soldering, Ten Seconds) & \(+275{ }^{\circ} \mathrm{C}\) \\
\hline CAUTION: Stresses above those listed in the "Absolute Maximum Ratings" may caus is a stress only rating and operation of the device at these or any other conditions & permanent damage to the device. This ove those indicated in the operation \\
\hline
\end{tabular}

\section*{Operating Conditions}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Operating Voltage Range.......................................................................................................... +4.5 V to +5.5 V
Operating Temperature Range}} \\
\hline & \\
\hline HPL-82C338-5............ & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) \\
\hline HPL-82C338-9. & \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) \\
\hline HPL-82C338-8 & \(55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}
D.C. Electrical Specifications \(\quad \mathrm{HPL}-82 \mathrm{C} 338-5\) ( \(\mathrm{VCC}=5.0 \mathrm{~V} \pm 10 \%\), \(\mathrm{TA}=0^{\circ} \mathrm{C}\) to \(+75^{\circ} \mathrm{C}\) ) (Operating)

HPL-82C338-9 (VCC \(=5.0 \mathrm{~V} \pm 10 \%\), TA \(=-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) )
\(\mathrm{HPL}-82 \mathrm{C} 338-8 \quad\left(\mathrm{VCC}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{TA}=-55^{\circ} \mathrm{C}\right.\) to \(+125^{\circ} \mathrm{C}\) )
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & \multicolumn{2}{|l|}{PARAMETER} & MIN & MAX & UNITS & TEST CONDITIONS \\
\hline \[
\begin{aligned}
& \mathrm{IIH} \\
& \mathrm{IIL}
\end{aligned}
\] & Dedicated Input Current & \[
\begin{aligned}
& " 1 " \\
& " 0 "
\end{aligned}
\] & & \[
\begin{aligned}
& +1 \\
& -1
\end{aligned}
\] & \begin{tabular}{l}
\(\mu \mathrm{A}\) \\
\(\mu \mathrm{A}\)
\end{tabular} & \[
\begin{aligned}
& \mathrm{VIH}=\mathrm{VCC} \text { MAX } \\
& \text { VIL }=0 \mathrm{~V} \quad \text { VCC }=\text { VCC MAX }
\end{aligned}
\] \\
\hline \begin{tabular}{l}
VIH \\
VIL
\end{tabular} & Input Threshold Voltage & \[
\begin{aligned}
& " 1 " \\
& " 1 " \text { " } \\
& \text { " } "
\end{aligned}
\] & \[
\begin{aligned}
& 2.0 \\
& 2.2
\end{aligned}
\] & 0.8 & \[
\begin{aligned}
& \mathrm{v} \\
& \mathrm{v} \\
& \mathrm{v}
\end{aligned}
\] & \[
\begin{aligned}
& \text { VCC }=\text { VCC MAX HPL-82C338-5/-9 } \\
& \text { VCC }=\text { VCC MAX HPL-82C338-8 } \\
& \text { VCC }=\text { VCC MIN }
\end{aligned}
\] \\
\hline VOH1 VOH2 VOL & \begin{tabular}{l}
Output Voltage \\
Output Voltage
\end{tabular} & \[
\begin{aligned}
& " 1 " \\
& " 1 " \\
& " 0 "
\end{aligned}
\] & \[
\begin{gathered}
3.0 \\
\text { VCC-0.4 }
\end{gathered}
\] & 0.4 & \[
\begin{aligned}
& \text { v } \\
& \text { v }
\end{aligned}
\] & \[
\begin{aligned}
& 1 \mathrm{OH} 1=-5 \mathrm{~mA} \\
& 1 \mathrm{OH} 2=-1 \mathrm{~mA} \\
& \mathrm{VCC} \text { MIN, VIL MAX, VIH MIN } \\
& 1 \mathrm{OL}=+5 \mathrm{~mA}
\end{aligned}
\] \\
\hline ICCSB* & Standby Power Supply Current & & & 50 & \(\mu \mathrm{A}\) & \[
\begin{aligned}
& V I H=V C C \text { MAX } \\
& I F=0.0 \mu A, V C C=V C C \text { MAX }
\end{aligned}
\] \\
\hline ICCOP* & Operating Power Supply Current & & & 2 & \(\mathrm{mA} / \mathrm{MHz}\) & \[
\begin{aligned}
& \mathrm{VI}=\mathrm{VCC} \text { or GND } \\
& \mathrm{IF}=0.0 \mu \mathrm{~A}, \mathrm{VCC}=\mathrm{VCC} M A X
\end{aligned}
\] \\
\hline
\end{tabular}
* ICCSB, ICCOP specifications are achieved only after complete programming of the device. These specifications are sampled and guaranteed but not \(100 \%\) tested. While testing these specifications, output pins should be left open circuit.
A.C. Switching Specifications (Operating)

HPL-82C338-5 (VCC \(=5.0 \mathrm{~V} \pm 10 \%, \mathrm{TA}=0^{\circ} \mathrm{C}\) to \(+75^{\circ} \mathrm{C}\) )
HPL-82C338-9 (VCC \(=5.0 \mathrm{~V} \pm 10 \%, T A=-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) )
HPL-82C338-8 (VCC \(=5.0 \mathrm{~V} \pm 10 \%\), TA \(=-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) )
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{SYMBOL} & \multirow[b]{2}{*}{PARAMETER} & \multicolumn{2}{|l|}{HPL-82C338-5} & \multicolumn{2}{|l|}{HPL-82C338-9} & \multicolumn{2}{|l|}{HPL-82C338-8} & \multirow[b]{2}{*}{UNITS} \\
\hline & & MIN & MAX & MIN & MAX & MIN & MAX & \\
\hline (1) TAVYL & Propagation delay A, B, C, or G to Output Low & - & 50 & - & 50 & - & 50 & ns \\
\hline (2) TSLYL & Select Access Time to Output Low & - & 35 & - & 35 & - & 35 & ns \\
\hline (3) TSHYH & Select Access Time to Output High & - & 35 & - & 35 & - & 35 & ns \\
\hline (4) TAVLL & Address Set-Up to ALE Trailing Edge & 15 & - & 15 & - & 15 & - & ns \\
\hline (5) TLLAX & Address Hold From ALE Trailing Edge & 15 & - & 15 & - & 15 & - & ns \\
\hline (6) TAVSL & Address Set-Up to SEL Low (Glitch-Free Operation) & 15 & - & 15 & - & 15 & - & ns \\
\hline (7) TSHAX & Address Hold From SEL High (Glitch-Free Operation) & 15 & - & 15 & - & 15 & - & ns \\
\hline (8) TLHLL & ALE Pulse Width & 15 & - & 15 & - & 15 & - & ns \\
\hline
\end{tabular}

Capacitance \(T_{A}=+25^{\circ} \mathrm{C}\) (NOTE: Sampled and guaranteed - but not \(100 \%\) tested.)
\begin{tabular}{|c|l|c|c|c|}
\hline SYMBOL & PARAMETER & TYP & UNITS & TEST CONDITIONS \\
\hline \hline CI & Input Capacitance & 5 & pF & \(\mathrm{VI}=\mathrm{VCC}\) or GND, \(\mathrm{f}=1 \mathrm{MHz}\) \\
CO & Output Capacitance & 10 & pF & VO = VCC or GND, \(\mathrm{f}=1 \mathrm{MHz}\) \\
\hline
\end{tabular}

\section*{Switching Time Definitions}


NOTES: 1. In order to ensure glitch-free operation of the \(\overline{Y_{x}}\) outputs, set-up and hold times should be observed.
2. \(A C\) switching characteristics are measured with inputs switching between GND and \(3.0 \mathrm{~V} . \mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=5 \mathrm{~ns}(10 \%-90 \%)\).
A.C. Test Load


\section*{Programming}

Following is the programming procedure which is used for the HPL-82C338 programmable logic device. This device is manufactured with all fuses intact. Any desired fuse can be programmed by following the simple procedure shown on the following page. One may build a pro-
grammer to satisfy the specifications described in the table, or use any of the commercially available programmers which meets these specifications. Please contact Harris for a list of approved programmers.
(1) Inputs defined as logic "1" (VIHV or VIHP) must track the VCC power supply when the supply is raised or lowered. The input levels should never exceed the level on the VCC Pin.


NOTE: While programming the CMOS HPL device, no input pins should be left floating. Output pins (12-19) should be left unconnected. It is suggested that a \(0.1 \mu \mathrm{~F}\) capacitor be placed between VCC and GND to minimize VCC voltage spikes.

FIGURE 1. HPL-82C338 EDIT MODE PINOUT

\section*{Programming Procedure}
1. Set Up:
a. During programming or operation, no input pins should be left floating.
b. No input pin voltage should ever be greater than the voltage applied to the device VCC pin.
c. The device should be decoupled with a \(0.1 \mu \mathrm{~F}\) or greater capacitor located at the device socket and placed between the VCC and GND pins.

\section*{2. Power up:}
a. Initially, all input pins including power supply pins should be at ground potential.
b. Normally, the input pins (pins 4-9, 11) are driven with an open collector driver with a pull-up resistor to the VCC pin (pin 20) so that these inputs automatically track the voltage on the VCC pin when they are set to the high state. This prevents the voltage level on the input pins from exceeding the voltage applied to the VCC pin.
c. Ramp the VCC pin (pin 20) to VCCV and the input pins (pins 4-9, 11) to VIHV.

\section*{3. Programming Sequence}
a. After a delay TD, the programming mode is entered by taking the programming enable pin (pin 1) to VNEG. Pin 1 must remain at VNEG throughout the entire programming sequence.
b. Wait TD and raises pin 20 to VCCP and pins 4-8, 11 to VIHP. At the same time, the SEL input (pin 9) is set to either VIHP or VIL in order to select the desired polarity of the input which is to be programmed. When \(\overline{\text { SEL }}\) is at VIHP, the input will be programmed high true. When \(\overline{S E L}\) is at VIL, the input will be programmed low true.
c. Wait TD and pulse the input to be programmed to ground for PWP milliseconds. It should be noted that only one input should be programmed at a time.
d. After a delay TD, return pin 20 to VCCV and pins 4-8, 11 to VIHV.
e. Repeat steps b), c), and d) until pins 4-8 have been programmed with the appropriate polarity.
f. When all inputs have been programmed as explained above, wait TD and return the programming enable pin (pin 1) to VIL.

\section*{4. Fuse Integrity Testing}
a. Correct programming of the device should be verified by applying test vectors to the input pins.
b. Fuse integrity is tested by applying VCC to the device and measuring the static power consumption of the device. With all inputs at VCC or GND and the output pins unloaded, the measured ICCSB of the device should be less than \(50 \mu \mathrm{~A}\) at \(\mathrm{VCC}=5 \mathrm{~V}\) and \(\mathrm{T}=25^{\circ} \mathrm{C}\). This guarantees that all fuses have been blown to a final state which is not marginal and will not create a reliability problem over the life of the device. NOTE: Any device which fails this test should be rejected even if it passes functional testing in order to ensure no future reliability problems associated with marginally blown fuses.

IMPORTANT: All five inputs must be programmed regardless of desired high or low input polarity. The advanced design of the fuse select circuitry (Patent Pending) provides for ultra-low post programming ICCSB and requires that one fuse on each input be programmed.

\section*{Programming Waveforms}


\section*{Features}
- Memory or I/O Chip Select Decoding, Replaces 2-3 ICs
- Similar to Industry Standard 74139
- Architecture Optimized for "Bootstrap Decoding"
- Microprocessor Bus Oriented Interface
- Harris Advanced Scaled SAJI IV CMOS Process
- Faster than Low-Power Schottky at CMOS Power Consumption
- 16-Pin Ceramic Dual-in-Line Package
- Wide Temperature Ranges: \(\left(0^{\circ} \mathrm{C}\right.\) to \(\left.+75^{\circ} \mathrm{C}\right)\)
\(\left(-40{ }^{\circ} \mathrm{C}\right.\) to \(\left.+85^{\circ} \mathrm{C}\right)\)
\(\left(-55^{\circ} \mathrm{C}\right.\) to \(\left.+125^{\circ} \mathrm{C}\right)\)
- Simple Programming Algorithm
- Mask Programmable for Volume Users

Pinout
TOP VIEW


\section*{Description}

The HPL-82C139 is a high performance Programmable Chip Select Decoder (PCSD) which is intended to be used for both memory and I/O chip select decoder applications. Utilizing the Harris advanced scaled SAJIIV CMOS process, this circuit provides bipolar speed with CMOS power consumption.

In a typical application, this circuit can replace two to three 74 HCXX SSI/MSI ICs. The associated reductions in board area, chip count and power consumption result in a substantial increase in system reliability and an attendant decrease in system cost. A speed improvement of a factor of three to four over an equivalent implementation with 74 HCXX logic is also realized. The fast decode provided by the 82C139 can result in improved system performance or a dramatic reduction in total system cost since less expensive, slower memories and I/O devices can be used.

The HPL-82C139 is ideal for 16-bit microprocessor applications as a "bootstrap" PROM decoder or other memory and I/O decoder applications where four or fewer devices require selection within a section of address space.

The four "GX" inputs are field programmable for either high or low true address decoding. The Harris fuse link technology used in this product provides a permanent fuse with stable storage characteristics over the full temperature ranges of 00 to \(+75^{\circ} \mathrm{C},-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\), and \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\).

Transparent latches are utilized on all address inputs which permits the 82 C 139 to be used with both multiplexed and non-multiplexed address/data bus microprocessors.

\section*{Block Diagram}


\footnotetext{
CAUTION: These devices are sensitive to electrostatic discharge. Proper I.C. handling procedures should be followed
}

\section*{Absolute Maximum Ratings}


\section*{Operating Conditions}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Operating Voltage Range.............................................................................................. +4.5 V to +5.5V} \\
\hline \multicolumn{2}{|l|}{Operating Temperature Range} \\
\hline HPL-82C139-5.. & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) \\
\hline HPL-82C139-9 & \(40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) \\
\hline HPL-82C139-8 & \(5^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}
D.C. Electrical Specifications (Operating)

HPL-82C139-5 (VCC \(=5.0 \mathrm{~V} \pm 10 \%, \mathrm{TA}=0^{\circ} \mathrm{C}\) to \(\left.+75^{\circ} \mathrm{C}\right)\)
HPL-82C139-9 (VCC \(=5.0 \mathrm{~V} \pm 10 \%, \mathrm{TA}=-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) )
HPL-82C139-8 (VCC \(=5.0 \mathrm{~V} \pm 10 \%, \mathrm{TA}=-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) )
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SYMBOL & \multicolumn{2}{|l|}{PARAMETER} & MIN & MAX & UNITS & TEST CONDITIONS \\
\hline \[
\begin{aligned}
& \text { IIH } \\
& \text { IIL }
\end{aligned}
\] & Dedicated Input Current & \[
\begin{aligned}
& \text { "1"" } \\
& \text { " } 0 "
\end{aligned}
\] & & \[
\begin{aligned}
& +1 \\
& -1
\end{aligned}
\] & \[
\begin{aligned}
& \mu \mathrm{A} \\
& \mu \mathrm{~A}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{VIH}=\mathrm{VCC} \text { MAX } \\
& \mathrm{VIL}=0 \mathrm{~V}, \quad \mathrm{VCC}=\mathrm{VCC} \text { MAX }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { VIH } \\
& \text { VIL }
\end{aligned}
\] & \begin{tabular}{l}
Input Threshold \\
Voltage
\end{tabular} & \[
\begin{aligned}
& " 1 " \\
& " 1 " \\
& " 0 "
\end{aligned}
\] & \[
\begin{aligned}
& \hline 2.0 \\
& 2.2
\end{aligned}
\] & 0.8 & \[
\begin{aligned}
& \mathrm{V} \\
& \mathrm{~V} \\
& \mathrm{~V}
\end{aligned}
\] & \[
\begin{aligned}
& \text { VCC }=\text { VCC MAX HPL-82C139-5/-9 } \\
& \text { VCC }=\text { VCC MAX HPL-82C139-8 } \\
& \text { VCC }=\text { VCC MIN }
\end{aligned}
\] \\
\hline \begin{tabular}{l}
VOH1 \\
VOH 2 \\
VOL
\end{tabular} & \begin{tabular}{l}
Output Voltage \\
Output Voltage
\end{tabular} & \[
\begin{aligned}
& " 1 " \\
& " 1 " \\
& " 0 "
\end{aligned}
\] & \[
\begin{gathered}
3.0 \\
\text { vcc- }-0.4
\end{gathered}
\] & 0.4 & \[
\begin{aligned}
& \mathrm{V} \\
& \mathrm{~V} \\
& \mathrm{~V}
\end{aligned}
\] & \[
\begin{aligned}
& 1 \mathrm{OH} 1=-5 \mathrm{~mA} \\
& 1 \mathrm{OH} 2=-1 \mathrm{~mA} \\
& \mathrm{VCC} \text { MIN, VIL MAX, VIH MIN } \\
& 1 \mathrm{OL}=+5 \mathrm{~mA}
\end{aligned}
\] \\
\hline ICCSB* & Standby Power Supply Current & & & 50 & \(\mu \mathrm{A}\) & \[
\begin{aligned}
& \mathrm{VIH}=\mathrm{VCC} M A X \\
& \mathrm{IF}=0.0 \mu \mathrm{~A}, \mathrm{VCC}=\mathrm{VCC} M A X
\end{aligned}
\] \\
\hline ICCOP* & Operating Power Supply Current & & & 2 & \(\mathrm{mA} / \mathrm{MHz}\) & \[
\begin{aligned}
& \mathrm{VI}=\mathrm{VCC} \text { or } \mathrm{GND} \\
& \mathrm{IF}=0.0 \mu \mathrm{~A}, \mathrm{VCC}=\mathrm{VCC} M A X
\end{aligned}
\] \\
\hline
\end{tabular}
* ICCSB, ICCOP specifications are achieved only after complete programming of the device. These specifications are sampled and guaranteed but not \(100 \%\) tested. While testing these specifications, output pins should be left open circuit.
A.C. Switching Specifications (Operating)

HPL-82C139-5 (VCC \(=5.0 \mathrm{~V} \pm 10 \%, \mathrm{TA}=0^{\circ} \mathrm{C}\) to \(+75^{\circ} \mathrm{C}\) )
HPL-82C139-9 (VCC \(=5.0 \mathrm{~V} \pm 10 \%\), TA \(=-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) )
HPL-82C139-8 (VCC \(=5.0 \mathrm{~V} \pm 10 \%, \mathrm{TA}=-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) )
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{SYMBOL} & \multirow[b]{2}{*}{PARAMETER} & \multicolumn{2}{|l|}{HPL-82C139-5} & \multicolumn{2}{|l|}{HPL-82C139-9} & \multicolumn{2}{|l|}{HPL-82C139-8} & \multirow[b]{2}{*}{UNITS} \\
\hline & & MIN & MAX & MIN & MAX & MIN & MAX & \\
\hline (1) TAVYL & Propagation delay A, LB, HB, or G to Output Low & - & 50 & - & 50 & - & 50 & ns \\
\hline (2) TGVML & Propagation delay G to Match Output Low & - & 50 & - & 50 & - & 50 & ns \\
\hline (3) TSLYL & Select Access Time to Output Low & - & 35 & - & 35 & - & 35 & ns \\
\hline (4) TSHYH & Select Access Time to Output High & - & 35 & - & 35 & - & 35 & ns \\
\hline (5) TGXMH & Match De-Select Propagation Delay & - & 50 & - & 50 & - & 50 & ns \\
\hline (6) TAVLL & Address Set-Up to ALE Trailing Edge & 15 & - & 15 & - & 15 & - & ns \\
\hline (7) TLLAX & Address Hold From ALE Trailing Edge & 15 & - & 15 & - & 15 & - & ns \\
\hline (8) TAVSL & Address Set-Up to SEL Low (Glitch-Free Operation) & 15 & - & 15 & - & 15 & - & ns \\
\hline (9) TSHAX & Address Hold From SEL High (Glitch-Free Operation) & 15 & - & 15 & - & 15 & - & ns \\
\hline (10) TLHLL & ALE Pulse Width & 15 & - & 15 & - & 15 & - & ns \\
\hline
\end{tabular}

Capacitance \(T_{A}=+250 \mathrm{C}\) (NOTE: Sampled and guaranteed - but not \(100 \%\) tested.)
\begin{tabular}{|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & MAX & UNITS & TEST CONDITIONS \\
\hline \hline Cl & Input Capacitance & 5 & pF & \(\mathrm{VI}=\mathrm{VCC}\) or GND, \(\mathrm{f}=1 \mathrm{MHz}\) \\
\hline CO & Output Capacitance & 10 & pF & \(\mathrm{VO}=\mathrm{VCC}\) or GND, \(\mathrm{f}=1 \mathrm{MHz}\) \\
\hline
\end{tabular}

\section*{Switching Time Definitions}


NOTES: 1 In order to ensure glitch-free operation of the \(\overline{Y x}\) outputs, set-up and hold times should be observed
2 The \(\overline{S E L}\) input controls the \(\overline{Y \times}\) outputs only and has no effect on the \(\overline{M A T C H}\) output.
3. AC switching characteristics are measured with inputs switching between GND and 3.0 V . \(\mathrm{t}_{\mathrm{r}} . \mathrm{t}_{\mathrm{f}} 5 \mathrm{~ns}\) ( \(10 \%-90 \%\) )
A.C. Test Load


\section*{Programming}

Following is the programming procedure which is used for the HPL-82C139 programmable logic device. This device is manufactured with all fuses intact. Any desired fuse can be programmed by following the simple procedure shown on the following page. One may build a pro-
grammer to satisfy the specifications described in the table, or use any of the commercially available programmers which meets these specifications. Please contact Harris for a list of approved programmers.

\section*{Programming Specifications}

TABLE 1.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{SYMBOL} & \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{TEST CONDITIONS} & \multicolumn{3}{|c|}{LIMITS} & \multirow[b]{2}{*}{UNITS} \\
\hline & & & MIN & TYP & MAX & \\
\hline VCCP & VCC Voltage During Programming & & 11.50 & 12.00 & 12.00 & V \\
\hline vcci & VCC Voltage During Verify & & 4.75 & 5.00 & 5.25 & V \\
\hline ICCP & ICC Limit During Programming & & - & 100 & 200 & mA \\
\hline VNEG & Edit Enable \& Mode Select Voltage & & -6.00 & -6.00 & -7.00 & V \\
\hline INEG & \begin{tabular}{l}
Edit Enable \& \\
Mode Select Current
\end{tabular} & & - & - & -5.00 & mA \\
\hline \begin{tabular}{l}
VIL \\
VIHV \\
VIHP
\end{tabular} & Input Voltage Low Input Voltage High Input Voltage High & \begin{tabular}{l}
\(\qquad\) \\
programming
\end{tabular} & \[
\begin{gathered}
0.00 \\
\text { VCCV-2 } \\
\text { VCCP-2 }
\end{gathered}
\] & \[
\begin{gathered}
0.00 \\
\text { VCCV } \\
\text { VCCP }
\end{gathered}
\] & \[
\begin{gathered}
0.80 \\
\text { VCCV } \\
\text { VCCP }
\end{gathered}
\] & \[
\begin{aligned}
& V \\
& v \\
& v
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { IILP } \\
& \text { IIHV } \\
& \text { IIHP }
\end{aligned}
\] & Input Current Low Input Current High Input Current High & \begin{tabular}{l}
\[
\mathrm{VIL}=0.0 \mathrm{~V}
\] \\
verify programming
\end{tabular} & - & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 1 \\
& 1 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
\(\mu \mathrm{A}\) \\
\(\mu \mathrm{A}\) \\
\(\mu \mathrm{A}\)
\end{tabular} \\
\hline PWP
TD
tr1
tr2
tf1
tf2 & Programming Width Pulse Seq. Delay Signal Rise Time VCC Rise Time Signal Fall Time VCC Fall Time & \begin{tabular}{l}
\(10 \%\) to \(90 \%\) \\
\(10 \%\) to \(90 \%\) \\
\(90 \%\) to \(10 \%\) \\
\(90 \%\) to \(10 \%\)
\end{tabular} & \[
\begin{gathered}
4.5 \\
1 \\
0.01 \\
0.01 \\
0.01 \\
0.01
\end{gathered}
\] & \[
\begin{gathered}
5.0 \\
1 \\
0.1 \\
0.1 \\
0.1 \\
0.1
\end{gathered}
\] & \[
\begin{gathered}
5.5 \\
\hline 1 \\
5 \\
1 \\
5
\end{gathered}
\] & msec \(\mu \mathrm{sec}\) \(\mu \mathrm{sec}\) \(\mu \mathrm{sec}\) \(\mu \mathrm{sec}\) \(\mu \mathrm{sec}\) \\
\hline \[
\begin{aligned}
& \hline \text { TPP } \\
& \text { FL }
\end{aligned}
\] & Programming Period Fuse Attempts/Link & & \[
\overline{1}
\] & \[
\begin{gathered}
5.1 \\
1
\end{gathered}
\] & \[
\overline{2}
\] & msec cycles \\
\hline
\end{tabular}
(1) Inputs defined as logic " 1 " (VIHV or VIHP) must track the VCC power supply when the supply is raised or lowered. The input levels should never exceed the level on the VCC Pin


NOTE: While programming the CMOS HPL device, no input pins should be left floating. Output pins \((11-15)\) should be left unconnected. It is suggested that a \(0.1 \mu \mathrm{~F}\) capacitor be placed between VCC and GND to minimize VCC voltage spikes.

FIGURE 1. HPL-82C139 EDIT MODE PINOUT

\section*{Programming Procedure}

\section*{Set Up:}
a. During programming or operation, no input pins should be left floating.
b. No input pin voltage should ever be greater than the voltage applied to the device VCC pin.
c. The device should be decoupled with a \(0.1 \mu \mathrm{~F}\) or greater capacitor located at the device socket and placed between the VCC and GND pins.

\section*{Power up:}
a. Initially, all input pins including power supply pins should be at ground potential.
b. Normally, the input pins (pins 2-7, 9, 10) are driven with an open collector driver with a pull-up resistor to the VCC pin (pin 16) so that these inputs automatically track the voltage on the VCC pin when they are set to the high state. This prevents the voltage level on the input pins from exceeding the voltage applied to the VCC pin.
c. Ramp the VCC pin (pin 16) to VCCV and the input pins (pins 2-7, 9, 10) to VIHV.

\section*{Programming Sequence}
a. After a delay TD, the programming mode is entered by taking the programming enable pin ( \(\mathrm{pin}: 1\) ) to VNEG. Pin 1 must remain at VNEG throughout the entire programming sequence.
b. Wait TD and raise pin 16 to VCCP and pins 2-7, 10 to VIHP. At the same time, the \(\overline{\operatorname{SEL}}\) input (pin 9) is set to either VIHP or VIL in order to select the desired polarity of the input which is to be programmed. When \(\overline{\mathrm{SEL}}\) is at VIHP, the input will be programmed high true. When \(\overline{\text { SEL }}\) is at VIL, the input will be programmed low true.
c. Wait TD and pulse the input to be programmed to ground for PWP milliseconds. It should be noted that only one input should be programmed at a time.
d. After a delay TD, return pin 16 to VCCV and pins 2-7, 10 to VIHV.
e. Repeat steps b), c), and d) until pins 2-7 have been programmed with the appropriate polarity.
f. When all inputs have been programmed as explained above, wait TD and return the programming enable pin (pin 1) to VIL.

\section*{Fuse Integrity Testing}
a. Correct programming of the device should be verified by applying test vectors to the input pins.
b. Fuse integrity is tested by applying VCC to the device and measuring the static power consumption of the device. With all inputs at VCC or GND and the output pins unloaded, the measured ICCSB of the device should be less than \(50 \mu \mathrm{~A}\) at \(\mathrm{VCC}=5 \mathrm{~V}\) and \(\mathrm{T}=25^{\circ} \mathrm{C}\). This guarantees that all fuses have been blown to a final state which is not marginal and will not create a reliability problem over the life of the device. NOTE: Any device which fails this test should be rejected even if it passes functional testing in order to ensure no future reliability problems associated with marginally blown fuses.

IMPORTANT: All six inputs must be programmed regardless of desired high or low input polarity. The advanced design of the fuse select circuitry (Patent Pending) provides for ultra-low post programming ICCSB and requires that one fuse on each input be programmed.

\section*{Programming Waveforms}


\section*{Features}
- Memory or I/O Chip Select Decoding, Replaces 2-3 ICs
- Similar to Industry Standard 74138
- Architecture Optimized for "Bootstrap Decoding"
- Microprocessor Bus Oriented Interface
- Harris Advanced Scaled SAJI IV CMOS Process
- Faster than Low-Power Schottky at CMOS Power Consumption
- 16-Pin Ceramic Dual-in-Line Package
- Wide Temperature Ranges: \(\left(0^{\circ} \mathrm{C}\right.\) to \(\left.+75^{\circ} \mathrm{C}\right)\)
( \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) )
\(\left(-55^{\circ} \mathrm{C}\right.\) to \(\left.+125^{\circ} \mathrm{C}\right)\)
- Simple Programming Algorithm
- Mask Programmable for Volume Users

Pinout
TOP VIEW


\section*{Description}

The HPL-82C138 is a high performance Programmable Chip Select Decoder (PCSD) which is intended to be used for both memory and I/O chip select decoder applications. Utilizing the Harris advanced scaled SAJI IV CMOS process, this circuit provides bipolar speed with CMOS power consumption.

In a typical application, this circuit can replace two to three 74HCXX SSI/MSI ICs. The associated reductions in board area, chip count and power consumption result in a substantial increase in system reliability and an attendant decrease in system cost. A speed improvement of a factor of three to four over an equivalent implementation with 74 HCXX logic is also realized. The fast decode provided by the 82C138 can result in improved system performance or a dramatic reduction in total system cost since less expensive, slower memories and I/O devices can be used.

The HPL-82C138 is ideal for either eight or sixteen bit microprocessor applications as a "bootstrap" PROM decoder or other memory and I/O decoder applications where four or fewer devices require selection within a section of address space.

The five "GX" inputs are field programmable for either high or low true address decoding. The Harris fuse link technology used in this product provides a permanent fuse with stable storage characteristics over the full temperature ranges of 00 to \(+75^{\circ} \mathrm{C},-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\), and \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\).

Transparent latches are utilized on all address inputs which permits the 82 C 138 to be used with both multiplexed and non-multiplexed address/data bus microprocessors.

\section*{Block Diagram}


CAUTION: These devices are sensitive to electrostatic discharge. Proper I \(C\) handling procedures should be followed.

\section*{Absolute Maximum Ratings}


\section*{Operating Conditions}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Operating Voltage Range ............................................................................................. +4.5 V to +5.5 V}} \\
\hline & \\
\hline HPL-82C138-5. & \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) \\
\hline HPL-82C183-9 & \(40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) \\
\hline HPL-82C138-8 & \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}
D.C. Electrical Specifications

HPL-82C138-5 (VCC \(=5.0 \mathrm{~V} \pm 10 \%\), TA \(=0^{\circ} \mathrm{C}\) to \(+75^{\circ} \mathrm{C}\) ) (Operating)
\[
\begin{array}{ll}
\text { HPL-82C138-9 } & \left(V C C=5.0 \mathrm{~V} \pm 10 \%, \mathrm{TA}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\right) \\
\text { HPL-82C138-8 } & \text { (VCC } \left.=5.0 \mathrm{~V} \pm 10 \%, \mathrm{TA}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}\right)
\end{array}
\]
\begin{tabular}{|l|l|c|c|c|c|c|}
\hline SYMBOL & PARAMETER & MIN & MAX & UNITS & TEST CONDITIONS \\
\hline \hline IIH & \begin{tabular}{l} 
Dedicated \\
Input Current
\end{tabular} & \(" 1 " 0 "\) & & +1 & \(\mu \mathrm{~A}\) & \(\mathrm{VIH}=\mathrm{VCC}\) MAX \\
IIL
\end{tabular}
* ICCSB, ICCOP specifications are achieved only after complete programming of the device. These specifications are sampled and guaranteed but not \(100 \%\) tested. While testing these specifications, output pins should be left open circuit.
A.C. Switching Specifications (Operating)
\[
\begin{array}{ll}
\text { HPL-82C138-5 } & \left(\text { VCC }=5.0 \mathrm{~V} \pm 10 \%, \mathrm{TA}=0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C}\right) \\
\text { HPL-82C138-9 } & \text { (VCC } \left.=5.0 \mathrm{~V} \pm 10 \%, \mathrm{TA}=-40^{\circ} \mathrm{C} \text { to }+855^{\circ} \mathrm{C}\right) \\
\text { HPL-82C138-8 } & \text { (VCC } \left.=5.0 \mathrm{~V} \pm 10 \%, \mathrm{TA}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}\right)
\end{array}
\]
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{SYMBOL} & \multirow[b]{2}{*}{PARAMETER} & \multicolumn{2}{|l|}{HPL-82C138-5} & \multicolumn{2}{|l|}{HPL-82C138-9} & \multicolumn{2}{|l|}{HPL-82C138-8} & \multirow[b]{2}{*}{UNITS} \\
\hline & & MIN & MAX & MIN & MAX & MIN & MAX & \\
\hline (1) TAVYL & Propagation delay A, B, or G to Output Low & - & 50 & - & 50 & - & 50 & ns \\
\hline (2) TGVML & Propagation delay \(G\) to Match Output Low & - & 50 & - & 50 & - & 50 & ns \\
\hline (3) TSLYL & Select Access Time to Output Low & - & 35 & - & 35 & - & 35 & ns \\
\hline (4) TSHYH & Select Access Time to Output High & - & 35 & - & 35 & - & 35 & ns \\
\hline (5) TGXMH & Match De-Select Propagation Delay & - & 50 & - & 50 & - & 50 & ns \\
\hline (6) TAVLL & Address Set-Up to ALE Trailing Edge & 15 & - & 15 & - & 15 & - & ns \\
\hline (7) TLLAX & Address Hold From ALE Trailing Edge & 15 & - & 15 & - & 15 & - & ns \\
\hline (8) TAVSL & Address Set-Up to \(\overline{\mathrm{SEL}}\) Low (Glitch-Free Operation) & 15 & - & 15 & - & 15 & - & ns \\
\hline (9) TSHAX & Address Hold From \(\overline{\text { SEL High }}\) (Glitch-Free Operation) & 15 & - & 15 & - & 15 & - & ns \\
\hline (10) TLHLL & ALE Pulse Width & 15 & - & 15 & - & 15 & - & ns \\
\hline
\end{tabular}

Capacitance \(T_{A}=+25^{\circ} \mathrm{C}\) (NOTE: Sampled and guaranteed - but not \(100 \%\) tested.)
\begin{tabular}{|c|l|c|c|c|}
\hline SYMBOL & \multicolumn{1}{|c|}{ PARAMETER } & MAX & UNITS & TEST CONDITIONS \\
\hline \hline CI & Input Capacitance & 5 & pF & \(\mathrm{VI}=\mathrm{VCC}\) or GND, \(\mathrm{f}=1 \mathrm{MHz}\) \\
\hline CO & Output Capacitance & 10 & pF & VO \(=\) VCC or GND, \(\mathrm{f}=1 \mathrm{MHz}\) \\
\hline
\end{tabular}

\section*{Switching Time Definitions}


DEMULTIPLEXED BUS OPERATION (ALE HIGH)


NOTES: 1 In order to ensure glitch-free operation of the \(\overline{Y \times}\) outputs, set-up and hold times should be observed The \(\overline{S E L}\) input controls the \(\overline{Y x}\) outputs only and has no effect on the \(\overline{M A T C H}\) output.
3. AC switching characteristics are measured with inputs switching between GND and \(3.0 \mathrm{~V} . \mathrm{t}_{\mathrm{r}} . \mathrm{t}_{\mathrm{f}}=5 \mathrm{~ns}(10 \%-90 \%)\)
A.C. Test Load

FROM OUTPUT UNDER TEST
 TEST POINT
* Includes Jig and Probe Total Capacitance.

\section*{Programming}

Following is the programming procedure which is used for the HPL-82C138 programmable logic device. This device is manufactured with all fuses intact. Any desired fuse can be programmed by following the simple procedure shown on the following page. One may build a pro-
grammer to satisfy the specifications described in the table, or use any of the commercially available programmers which meets these specifications. Please contact Harris for a list of approved programmers.

\section*{Programming Specifications}

TABLE 1.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{SYMBOL} & \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{TEST CONDITIONS} & \multicolumn{3}{|c|}{LIMITS} & \multirow[b]{2}{*}{UNITS} \\
\hline & & & MIN & TYP & MAX & \\
\hline VCCP & VCC Voltage During Programming & & 11.50 & 12.00 & 12.00 & V \\
\hline vccv & VCC Voltage During Verify & & 4.75 & 5.00 & 5.25 & V \\
\hline ICCP & ICC Limit During Programming & & - & 100 & 200 & mA \\
\hline VNEG & Edit Enable \& Mode Select Voltage & & -6.00 & -6.00 & -7.00 & V \\
\hline INEG & \begin{tabular}{l}
Edit Enable \& \\
Mode Select Current
\end{tabular} & & - & - & -5.00 & mA \\
\hline \begin{tabular}{l}
VIL \\
VIHV \\
VIHP
\end{tabular} & Input Voltage Low Input Voltage High Input Voltage High &  & 0.00 VCCV-2 VCCP-2 & \[
\begin{aligned}
& 0.00 \\
& \text { VCCV } \\
& \text { VCCP }
\end{aligned}
\] & \[
\begin{gathered}
0.80 \\
\text { vCCV } \\
\text { VCCP }
\end{gathered}
\] & \[
\begin{aligned}
& V \\
& V \\
& V
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { IILP } \\
& \text { IIHV } \\
& \text { IIHP }
\end{aligned}
\] & Input Current Low Input Current High Input Current High & \begin{tabular}{l}
\[
\mathrm{VIL}=0.0 \mathrm{~V}
\] \\
verify programming
\end{tabular} & - & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 1 \\
& 1 \\
& 1
\end{aligned}
\] & \begin{tabular}{l}
\(\mu \mathrm{A}\) \\
\(\mu \mathrm{A}\) \\
\(\mu \mathrm{A}\)
\end{tabular} \\
\hline PWP
TD
tr1
tr2
tf1
tf2 & Programming Width Pulse Seq. Delay Signal Rise Time VCC Rise Time Signal Fall Time VCC Fall Time & \[
\begin{aligned}
& 10 \% \text { to } 90 \% \\
& 10 \% \text { to } 90 \% \\
& 90 \% \text { to } 10 \% \\
& 90 \% \text { to } 10 \%
\end{aligned}
\] & \[
\begin{gathered}
4.5 \\
1 \\
0.01 \\
0.01 \\
0.01 \\
0.01
\end{gathered}
\] & 5.0
1
0.1
0.1
0.1
0.1 & \[
\begin{gathered}
5.5 \\
\hline 1 \\
5 \\
1 \\
1 \\
5
\end{gathered}
\] & msec \(\mu \mathrm{sec}\) \(\mu \mathrm{sec}\) \(\mu \mathrm{sec}\) \(\mu \mathrm{sec}\) \(\mu \mathrm{sec}\) \\
\hline \[
\begin{aligned}
& \text { TPP } \\
& \text { FL }
\end{aligned}
\] & Programming Period Fuse Attempts/Link & & \[
\overline{1}
\] & \[
\begin{gathered}
5.1 \\
1
\end{gathered}
\] & \[
\overline{2}
\] & msec cycles \\
\hline
\end{tabular}
(1) Inputs defined as logic "1" (VIHV or VIHP) must track the VCC power supply when the supply is raised or lowered. The input levels should never exceed the level on the VCC Pin.
\begin{tabular}{|c|c|}
\hline PGM 01 & \({ }^{16} \mathrm{p}\) vcc \\
\hline -2 & 15 NC \\
\hline = \(61 \mathrm{Cl}^{3}\) & 14 NC \\
\hline G2 \(\mathrm{Cl}_{4}\) & 13 NC \\
\hline 63.5 & 12 NC \\
\hline 64.6 & 11 DNC \\
\hline 6547 & 107 ALE \\
\hline GND \({ }^{8}\) & 97 SEL \\
\hline
\end{tabular}

NOTE: While programming the CMOS HPL device, no input pins should be left floating. Output pins \((11-15)\) should be left unconnected. It is suggested that a \(0.1 \mu \mathrm{~F}\) capacitor be placed between VCC and GND to minimize VCC voltage spikes

FIGURE 1. HPL-82C138 EDIT MODE PINOUT

\section*{Programming Procedure}

\section*{Set Up:}
a. During programming or operation, no input pins should be left floating.
b. No input pin voltage should ever be greater than the voltage applied to the device VCC pin.
c. The device should be decoupled with a \(0.1 \mu \mathrm{~F}\) or greater capacitor located at the device socket and placed between the VCC and GND pins.

\section*{Power up:}
a. Initially, all input pins including power supply pins should be at ground potential.
b. Normally, the input pins (pins 3-7, 9, 10) are driven with an open collector driver with a pull-up resistor to the VCC pin (pin 16) so that these inputs automatically track the voltage on the VCC pin when they are set to the high state. This prevents the voltage level on the input pins from exceeding the voltage applied to the VCC pin.
c. Ramp the VCC pin (pin 16) to VCCV and the input pins (pins 3-7, 9, 10) to VIHV.

\section*{Programming Sequence}
a. After a delay TD, the programming mode is entered by taking the programming enable pin (pin 1) to VNEG. Pin 1 must remain at VNEG throughout the entire programming sequence.
b. Wait TD and raise pin 16 to VCCP and pins 3-7, 10 to VIHP. At the same time, the SEL input (pin 9) is set to either VIHP or VIL in order to select the desired polarity of the input which is to be programmed. When SEL is at VIHP, the input will be programmed high true. When \(\overline{S E L}\) is at VIL, the input will be programmed low true.
c. Wait TD and pulse the input to be programmed to ground for PWP milliseconds. It should be noted that only one input should be programmed at a time.
d. After a delay TD, return pin 16 to VCCV and pins 3-7, 10 to VIHV.
e. Repeat steps b), c), and d) until pins 3-7 have been programmed with the appropriate polarity.
f. When all inputs have been programmed as explained above, wait TD and return the programming enable pin (pin 1) to VIL.

\section*{Fuse Integrity Testing}
a. Correct programming of the device should be verified by applying test vectors to the input pins.
b. Fuse integrity is tested by applying VCC to the device and measuring the static power consumption of the device. With all inputs at VCC or GND and the output pins unloaded, the measured ICCSB of the device should be less than \(50 \mu \mathrm{~A}\) at \(\mathrm{VCC}=5 \mathrm{~V}\) and \(\mathrm{T}=25^{\circ} \mathrm{C}\). This guarantees that all fuses have been blown to a final state which is not marginal and will not create a reliability problem over the life of the device. NOTE: Any device which fails this test should be rejected even if it passes functional testing in order to ensure no future reliability problems associated with marginally blown fuses.

IMPORTANT: All five inputs must be programmed regardless of desired high or low input polarity. The advanced design of the fuse select circuitry (Patent Pending) provides for ultra-low post programming ICCSB and requires that one fuse on each input be programmed.

\section*{Programming Waveforms}


\section*{PAGE}

\section*{CMOS BUS DRIVER DATA SHEETS}
HD-6431 Hex Latching Bus Driver ..... 8-2
HD-6432 Hex Bi-Directional Bus Driver ..... 8-3
HD-6433 Quad Bus Separator/Driver ..... 8-4
HD-6434 Octal Resettable Latched Bus Driver ..... 8-5
HD-6436 Octal Bus Buffer/Driver. ..... 8-6
HD-6440 Latched 3 to 8 Line Decoder-Driver ..... 8-7
HD-6495 Hex Bus Driver ..... 8-8


Functional Diagram


\footnotetext{
CAUTION: Electronic devices are sensitive to electrostatic discharge. Proper I.C. handling procedures should be followed.
}


\section*{Functional Diagram}


CAUTION: Electronic devices are sensitive to electrostatic discharge. Proper I.C. handling procedures should be followed.


Functional Diagram



Functional Diagram



\section*{Functional Diagram}

The HD-6440 is a self aligned silicon CMOS gate latched decoder. One of 8 output lines is decoded, and brought to a low state, from the 3 input lines. There are two latch enables ( \(\overline{L_{1}}, L_{2}\) ), one complemented and one not, to eliminate the need for external gates. The output is enabled by three different output enables ( \(\overline{G_{1}}, \overline{G_{2}}, G_{3}\) ), two of them complemented and one not. Each output remains in a high state until it is selected, at which time it will go low.
When using high speed CMOS memories, the delay time of the HD-6440 and the enable time of the memory is usually less than the access time of the memory. This assures that memory access time will not be lengthened by the use of the HD-6440 latched decoder driver. The latch is useful for memory mapping or for systems which use a multiplexed bus.
Outputs guaranteed valid at VCC 2.0V for Battery Backup Applications.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{INPUTS} & \multirow[b]{2}{*}{OUTPUTS} & \\
\hline \multicolumn{2}{|c|}{ENABLE} & ADDRESS & & \\
\hline \(\overline{\mathrm{G}}_{1} \overline{\mathrm{G}}_{2} \mathrm{G}_{3}\) & \(\Sigma_{1} \mathrm{~L} 2\) & \(A_{2} A_{1} A_{0}\) & \(\mathrm{Y}_{0} \mathrm{Y}_{1} \mathrm{Y}_{2} \mathrm{Y}_{3} \mathrm{r}_{4} \mathrm{Y}_{5} \mathrm{Y}_{6} \mathrm{Y}_{7}\) & function \\
\hline \(\begin{array}{llll}\text { X } & X & L \\ X & H & X \\ H & X & X \\ L & L & H \\ L & L & H\end{array}\) & \(\begin{array}{lll}\text { X } & X \\ X & X \\ X & X \\ \text { L } & H \\ L & H \\ X & L\end{array}\) & \(\begin{array}{llll}\text { X } & X & X \\ X & X & X \\ X & X & X \\ L & L & L \\ L & L & L \\ L & L & H \\ L & H & L \\ L & H & H \\ H & L & L\end{array}\) & HHHHHHHH HHHHHHHH HHHHHHHH LHHHHHHH \(\mathrm{H} \mathrm{L} H \mathrm{HHHHH}\) HHLHHHHH HHHLHHHH HHHHLHHH HHHHHLHH HHHHHHLH H H H H H H H L \(\mathrm{Y}_{0} \mathrm{Y}_{1} \mathrm{Y}_{2} \mathrm{Y}_{3} \mathrm{Y}_{4} \mathrm{Y}_{5} \mathrm{Y}_{6} \mathrm{Y}_{7}\) \(\mathrm{Y}_{0} \mathrm{Y}_{1} \mathrm{Y}_{2} \mathrm{Y}_{3} \mathrm{Y}_{4} \mathrm{Y}_{5} \mathrm{Y}_{6} \mathrm{Y}_{7}\) &  \\
\hline \multicolumn{5}{|c|}{\begin{tabular}{l}
\(L\) Low, \(\quad H=\) High, \(\quad X=\) Don't Care \\
\(Y_{n}=\) Data is latched to the value of the last input
\end{tabular}} \\
\hline
\end{tabular}

\section*{Functional Diagram}


CAUTION: Electronic devices are sensitive to electrostatic discharge. Proper I.C. handling procedures should be followed.


\section*{Functional Diagram}


\footnotetext{
CAUTION: Electronic devices are sensitive to electrostatic discharge. Proper I.C. handling procedures should be followed
}
PAGE
ELECTRONICS
8- and 16-Bit Processors Round Out CMOS Architecture Options ..... 9-2
ELECTRONIC PRODUCTS
CMOS Static Clock Exerts Complete Control ..... 9-7
ELECTRONIC DESIGN
Advanced Clock Controller Cuts Power Needs, Size of Static CMOS Systems ..... 9-15
CONTROL ENGINEERING
Saving Power in CMOS Systems Design ..... 9-22
DEFENSE ELECTRONICS
Part 1 Microprocessor Family Turns to Low-Power CMOS ..... 9-24
Part 2 High Density LCC Packages ..... 9-31
ELECTRONIC ENGINEERING TIMES
A Comparison of CMOS Static Random-Access-Memory Cells ..... 9-38
ELECTRONIC DESIGN ..... 9-40
Standard-Cell CPU Toolkit Crafts Potent Processors
VLSI SYSTEMS DESIGN FORTH Processor Core for Integrated 16-Bit Systems ..... 9-46

\title{
8- and 16-bit processors round out high-level C-MOS architecture options
}

\title{
By selecting appropriately from the microprocessor variety, designers can build for either low parts count or full multiprocessor capabilities
}

\author{
Reprinted from Electronics, April \\ by Walter J. Niewierski, Harris Semiconductor Corp., Melbourne, Fla. 1984. Copyright 1984. McGraw Hill All rights reserved
}
\(\square\) In the past, designers were stuck between a rock and a hard place when choosing between complementary-mOS and n -channel mOS microprocessors. Designing with nmOS circuitry ensured relatively high speeds, but its high power consumption required that extra measures be taken to dissipate heat. On the chip level, this meant both higher die temperatures, which degraded reliability, and large packaging, which used up precious board real estate. On the system level, heat sinks, fans, and vents were needed to cope with the greater heat, and these components necessitated larger enclosures.

\section*{An end to the heat problem}

As more and more transistors are packaged together, the power-dissipation problems associated with n-mOS increase exponentially (Fig. 1). This is pushing the industry toward C-MOS, because its performance, measured in terms of speed and capacity, compares favorably with nMOS, yet its power requirements are much less-meaning that chip densities can be increased with no penalty in heat dissipation.

1. N-MOS power dissipation. The exponential growth of power required by ever-denser n-channel MOS is being reversed by the move to low-power complementary-MOS. Greater device densities in C. MOS stem from its lower power dissipation.

Though slower, C-MOS requires less power, and thus has none of the heat-dissipation problems of n-MOS. Chips can be designed in smaller packages, and the system becomes lighter and more compact.

For example, the C-MOS J-11 self-aligned junction-isolated (SAJI) chip set [Electronics, Dec. 15, 1982, p. 131] designed by Harris Corp. for Digital Equipment Corp. consists of a data chip and a control chip that together emulate the hardware and software capabilities of the DEC PDP-11/70 minicomputer. The J-11 requires less than 1 watt of power with a single +5 -volt power supply, while the equivalent logic for the PDP-11/70 minicomputer is contained on 20 printed-circuit boards that require 800 w . An equivalent microprocessor in n-mOS probably could not be produced because of its high power dissipation.

\section*{High-density packaging}

The high power requirements of n-MOS and bipolar chips have another drawback. The heat generated in many of these parts cannot be dispersed adequately by the standard ceramic leadless chip-carriers or low-cost plastic packages. The 16 -bit 80 C 86 and the 8 -bit 80 C 88 families from Harris, fabricated with the SAJI C-MOS process, can be housed in industry-standard chip-carriers as well as in plastic and ceramic dual-in-line packages. Work is currently under way to provide plastic leaded chip-carriers for the \(80 \mathrm{C} 86 / 88\) products to further sim-plify-and cut the cost of-high-density packaging.

Increased densities can be extended beyond the chip level by creating modular systems using chip-carriers and ceramic DIP substrates. For example, several chip-carrierpackaged circuits can be mounted onto a ceramic substrate to provide a high level of integration in a single package. In the standard J-11 configuration, the control and data chips are mounted atop a 60 -pin substrate housed in 84 -pad chip-carriers, but two additional control chips can be attached to the underside of the package. This type of arrangement comes in handy when, for example, an expanded instruction set is needed.

High-density memory modules can be assembled in a similar fashion. The Harris HM-92570 buffered C-MOS random-access-memory module combines 16 HM-6516 \(16-\mathrm{K}\) C-MOS RAMS on one DIP substrate, along with ad-
dress decoders and signal buffers. An entire \(265-\mathrm{K}\) system is on one 1.3 -by- 2.66 -inch 48 -pin DIP substrate.

Besides achieving n-mOS density levels, modern-day CmOS can hit comparable speeds. Both the 16-bit 80C86 and the 8 -bit 80 C 88 microprocessors operate at 5 megahertz, matching the speeds of \(\mathrm{n}-\mathrm{MOS}\), and \(8-\mathrm{MHz}\) versions will be available during the third quarter of 1984. Both chips have a full complement of support circuits for peripherals and buses at the \(5-\mathrm{MHz}\) level, and some of these support chips operate at 8 MHz .

\section*{Static design}

Even more compelling for the designer weighing the benefits of C-MOS versus n-MOS is the fact that C-MOS is more amenable to use in static designs. Static processors, such as the \(80 \mathrm{C} 86,80 \mathrm{C} 88\) and J-11, maintain internal register and data values with the clock stopped, resuming operation immediately after the clock is restarted. With entire systems stopped and power reduced to the submilliampere standby-current level, battery life is lengthened and system current requirements drop. System analysis is also simpler, since complex bus operations can be stepped one clock cycle at a time.
C-MOS also lets the designer customize the speed and power characteristics of the product while maintaining the maximum performance. C-MOS operating power is often specified in terms of milliamperes per megahertz because power is a function of switching frequency-that is, as chip switching frequency decreases, so does power (and vice versa). However, defining this relationship early on is a key to a successful low-power, and thus lightweight and compact, design.
A direct comparison of C-MOS and n-MOS power requirements, using worst-case operating- and standby-current specifications, shows C-MOS system operating power is often less than \(10 \%\) of the worst case \(n\)-MOS requirement (table). For example, the 80 C 86 's operating current is specified 50 mA at 5 mHz , compared with 340 mA for the n mOS part (Fig. 2).

An even larger power savingsnearly three orders of magnitude-is achieved in the standby mode, when the clock to the microprocessor system is stopped and all chips go into standby. Both the 80 C 86 and 80 C 88 have a 500 -microampere guaranteed standby-current specification. The 80C86 peripheral product line-including the 82 C 55 A programmable peripheral interface and the 82 C 59 A priority-interrupt controller-have standby currents of less than \(10 \mu \mathrm{~A}\).
Simply swapping C-mOS circuits directly for n -MOS and bipolar circuits in existing designs will not show a system cost savings. Such a strategy may reduce power requirements, but
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{WORST-CASE POWER USE} \\
\hline \multicolumn{2}{|l|}{n-MOS/bipolar} & \multicolumn{3}{|c|}{C-MOS} \\
\hline Part number & Operating current. \(1 \mathrm{cc} O P(\mathrm{~mA})\) & Part number & \begin{tabular}{l}
Operating current, \\
\(1 \mathrm{cc} O P(\mathrm{~mA})\)
\end{tabular} & \begin{tabular}{l}
Standby current, \\
\(1 ;-\mathrm{AB}\left(\mu A_{1}\right.\)
\end{tabular} \\
\hline 8086 & 340 & \(80 \mathrm{C86}\) & 50 & 500 \\
\hline 8251A & 100 & 82 C 52 & 3 & 10 \\
\hline 8254 & 140 & 82 C 54 & 10 & 10 \\
\hline 8255A & 120 & 82C55A & 3 & 10 \\
\hline 8259A & 85 & 82C59A & 3 & 10 \\
\hline 8282 (2) & 320 & \(82 \mathrm{C82}\) (2) & 6 & 20 \\
\hline 8283 (2) & 320 & \(82 \mathrm{C83}\) (2) & 6 & 20 \\
\hline 8286 (2) & 320 & \(82 \mathrm{C86}\) (2) & 6 & 20 \\
\hline 8287 (2) & 320 & \(82 \mathrm{C87}\) (2) & 6 & 20 \\
\hline 8284A & 162 & 82C84A & 40 & 10 \\
\hline 8288 & 230 & 82 C 88 & 5 & 10 \\
\hline 2-k-by-8-bit RAM (2) & 180 & HM. 6516 & 20 & 100 \\
\hline 2-K-by-8-bit-ROM (2) & 125 & HM-6616 & 30 & 100 \\
\hline Total & 2.762 mA &  & \[
188 \mathrm{~mA}
\] & \(840 \mu \mathrm{~A}\) \\
\hline
\end{tabular}
it will not achieve the degree of savings that flow from a system approach to C-MOS design. By comparing n-MOS and C-mOS systems, it is easy to see the ripple effect that high operating power can have on system design.

For example, in an prototypical n -MOS system based on the 16 -bit 8086 , the power dissipation is 1.7 w . If n MOS memory and a combination of n -MOS and bipolar peripherals are added to support the 8086, power must then be increased from 25 to 30 w , depending upon the system's size. In fact, if future expansion is a possibility, a fairly large and heavy \(50-\mathrm{w}\) power supply might be mandated. Die temperatures in such a system will rise significantly, typically in the \(40-\) to \(-60^{\circ} \mathrm{C}\) range. Fans and heat sinks are needed to compensate for these increases, and with a filter for the fan plus vents, the enclosure expands. It thus becomes more difficult to assemble and heavier to transport.

\section*{The boons of current reduction}

If the same system is redesigned in C-MOS, it becomes evident how the effects of current reduction ripple throughout a system. Moreover, because the 80C86 maintains the same processor architecture as its n -MOS counterpart, the considerable expense involved in system hardware and software redevelopment has been avoided.

The first design decision to make is whether the system must run at all times. If there are periods when it is simply waiting for inputs or other events, power requirements may be cut significantly by shutting down the system clock oscillator.

The next step in redesign is choosing memory and peripherals. C-MOS devices frequently attain performance equal to their n-MOS and bipolar equivalents but with a significant reduction in current. The switch to C-MOS buys power savings of \(50: 1\) for peripherals and \(5: 1\) for

\section*{C-MOS}
memories. Overall system power can be reduced by more than \(90 \%\) by using C-MOS parts.

In fact, power needs could be so low that even battery operation can be specified. Low-power operation reduces die operating temperatures, which ups reliability. Typical die-temperature increases for C-MOS are in the 2-to\(5^{\circ} \mathrm{C}\) range, obviating cooling fans and heat sinks. Vents can be closed to ensure clean operating conditions in harsh environments and the sealed enclosures can be designed smaller and lighter. At final assembly the C-mOS system is portable, lightweight, sealed from the outside environment, and has the same computing power as its \(n\)-MOS equivalent.

\section*{Bus-configuration considerations}

A wide range of systems can be configured using the the 80 C 86 and the 80 C 88 , all sharing the low power dissipation of C-MOS. The 80C88 lends itself to building stand-alone systems with a minimum component count, while multiprocessor systems are best handled with the 80C86.

The single most important difference between the 80C86 and 80C88 microprocessors is in the interface with the external world (Fig. 3). The 80C86 communicates in 16 -bit words using a multiplexed address and data bus. The 80 C 88 also has a multiplexed bus, but it is

2. C-MOS vs. n-MOS. Low-power complementary-MOS technology combined with static design features give the 16 -bit 80 C 86 microprocessor lower current requirements and increased operating-frequency range, compared with \(n\)-channel MOS parts.
only 8 bits wide. Moreover, the lower half of the 80 C 88 bus multiplexes addresses and data, whereas the redesigned upper half is dedicated to addresses.

Several important systemlevel tradeoffs flow from this redefinition of the 80 C 88 bus. One involves the question of throughput. Since both chips are 16 -bit machines internally, and run the same software, 16 bits of data are usually transferred between the central processing unit and memory. In the 80C86, this takes place on the 16 -bit bus and is usually completed in a single bus cycle, but in the 80C88 and its 8 -bit data bus, a 16 -bit transfer requires two bus cycles to acquire the same data. The 8 -bit bus architecture of the 80 C 88 would appear to result in severe performance penalties, but there are two mitigating factors. First, the pipelined architecture of the 80C88 optimizes performance. Both the 80C86 and the 80C88 use an instruction queue within the processor to store data, permitting the 80 C 88 bus interface unit to prefetch data while the execution unit runs the current instruction. This arrangement cuts sys-tem-bus dead time so that the 80 C 88 's 8 -bit bus can perform nearly as well as the 80 C 86 's full 16 -bit bus. Typical throughput of the 80 C 88 is approximately \(75 \%\) to \(90 \%\) that of the 80 C 86 .

The second mitigating factor in the 8 -bit bus-and probably its biggest advantage-is the reduced hardware required to implement it. The 16-bit 80C86 interface

3. Parts count. The 16 -bit bus of the 80 C 86 (a) requires more parts than the 8 -bit bus of the 80 C 88 (b). Since both are 16 -bit machines internally, the 80 C 88 requires two bus cycles to complete a transfer, but its pipelining means it can run at \(75 \%\) to \(90 \%\) of the speed of the 16 -bit chip.
requires three \(82 \mathrm{C} 82 / 83 \mathrm{C}\)-MOS address latches and two 82C86/87 C-MOS bus transceivers to properly demultiplex the bus, more than twice as many as an 80 C 888 -bit bus. Since lines \(\mathrm{A}_{8}-\mathrm{A}_{15}\) of the 80C86 are dedicated to addresses and are present at all times during the bus cycle, no latch or transceiver is needed. The bus-interface component count is cut in half.

The reduced component count in the system designed with the 80 C 88 has several important advantages, not the least of which is reduced cost. Of course, a decreased component count is an obvious factor in decreasing cost. The savings in board real estate and the consequent manufacturing costs must also be factored into a costsavings equation.

\section*{Minimum and maximum operating modes}

Opting for a reduced component count is made easier by the architectures of the 80 C 86 and the 80 C 88 . With both architectures, the designer can decide the level of chip and system complexity required by the application. Given the choice of two operating structures, the minimum and maximum modes, the designer can configure systems based on the 80C86 and 80C88 microprocessors for each application.

The two mode names are indicative of their functions. In the minimum mode, the CPU provides all the control and interface signals necessary to achieve a minimum component count. Operation in the maximum mode uses
additional bus-interface and control chips to make large system design and expansion simpler and more efficient.

When either the 80 C 86 or the 80 C 88 are operating in the minimum mode, pins provide all necessary input/output and memory control signals. Figure 4 shows a minimum configuration for a stand-alone remote controller using the 80 C 88 system. Three lines-data-transmit/receive (DT/R), data-enable ( \(\overline{\mathrm{DEN}}\) ), and address-latchenable (ALE)-provide all address-latch and data-transceiver control. Input/output memory ( \(\mathrm{IO} / \overline{\mathrm{M}}\) ) and write ( \(\overline{\mathrm{WR}}\) ) are used for memory and I/O data transfer, respectively. The interrupt-acknowledge line (INTA) is available for incorporating interrupt capabilities with the 82C59A C-MOS priority-interrupt controller. The HOLD and HLDA (hold acknowledge) lines provide low-level multiprocessor support.

\section*{Minimum power in minimum systems}

As Fig. 4 shows, using the minimum mode for small systems can be very efficient. The operating-system firmware is contained in the Harris HM-6616, a 2 -K-by-8-bit C-MOS programmable read-only memory that requires only 15 mA of current at an enable rate of 1 MHz . The \(10-\) mA HM-6516 16-K C-MOS RAM also consumes very little operating power. The synchronous design of these two memories keys internal switching of transistors to the chip-enable signal transition. This arrangement results in a significantly lower operating current than does an asyn-

4. Minimum-mode operation. When configured in minimum mode, the CPU provides all control signals necessary in this stand-aione controller. Such C-MOS features as on-chip address latches in synchronous memories make it possible to eliminate the external 82 C 82 and the 82 C 86 .

Electronics / April 5, 1984

\section*{C-MOS}
chronous scheme implemented in either n-MOS or C-MOS.
The 82 C 52 serial controller interface provides highspeed asynchronous serial data communications at a rate up to 1 megabaud with only a \(1-\mathrm{mA} / \mathrm{MHz}\) current requirement. The 82C55A programmable peripheral interface provides parallel interfacing to I/O devices. The 82 C 82 and 82 C 86 bus-interface circuits are needed to demultiplex the 80 C 88 bus and increase address- and data-signal driving capability.

In the \(5-\mathrm{MHz} 80 \mathrm{C} 88\) system configuration shown in Fig. 4, worst-case power dissipation is 130 mA . The equivalent n -MOS or bipolar power dissipation would be between 1,100 and \(1,200 \mathrm{~mA}\). In the minimum mode, the parts count can be reduced, especially when a designer takes advantage of some special features available on many C-MOS chips. For example, the on-chip address latches could be used to eliminate the 82 C 82 address latch and the 82 C 86 bus transceiver.

However, minimum-mode designs are usually optimized for specific applications and often prove inflexible. As systems change, these designs are not easily upgraded to accommodate new requirements. If the specification requires that expansion or changes be easy to implement, then the maximum mode should be investigated.

In larger systems, or those that will require upgrading, the maximum mode is the most efficient way to use the available CPU pins to control system transactions. In Fig. 5, the eight control lines used in the minimum configura-
tion have changed functions (the minimum-mode pin functions are shown in parentheses).

Three lines \(\left(S_{0}, S_{1}\right.\), and \(\left.S_{2}\right)\) send CPU status information to the 82 C 88 C -mOs bus controller. The 82 C 88 , in turn, decodes the 80 C 88 status lines and sends out bus, memory, and I/O control signals. The six minimum-mode bus interface signals \(\overline{\mathrm{WR}}, \mathrm{ALE}, \mathrm{INTA}, \overline{\mathrm{DEN}}, \mathrm{DT} / \overline{\mathrm{R}}\), and \(\mathrm{IO} / \overline{\mathrm{M}}\) are passed to the 82 C 88 , where \(\overline{\mathrm{WR}}\) and \(\mathrm{IO} / \overline{\mathrm{M}}\) combine to produce three sets of signals expanding system capability: memory and I/O read, advanced memory and I/O write, and memory and I/O write.

Two multiprocessor interface signals (HOLD and HLDA) are replaced by two dual-function request/grant pins ( \(\mathrm{RQ} / \overline{\mathrm{GT}}_{0}\) and \(\mathrm{RQ} / \overline{\mathrm{GT}}_{1}\) ) and a LOCK output. These three control signals can handle a significantly higher level of multiprocessing coordination than the minimummode signals. In addition, the 80 C 88 maximum-mode pinout includes two queue-status lines \(\left(\mathrm{QS}_{0}\right.\) and \(\left.\mathrm{QS}_{1}\right)\), which allow easy integration of coprocessors to increase system throughout.

\section*{Simple expansion}

The extra functions provided by maximum-mode operation make system expansion simple. By adding additional 82 C 88 s , separate system and I/O buses can be added. In the system in Fig. 5, two 82C88 C-mOS bus controllers provide all the control signals for a local bus and a shared system bus. In a non-C-MOS system, adding a

5. Maximum-mode operation. Using the 80 C 88 in maximum mode optimizes available CPU pins. By increasing the number of bus controllers, it becomes easy to build separate system and I/O buses for multiprocessor applications without increasing system power. 8288 bipolar controller would increase power by 2.6 w . The 82 C 88 draws only 5 mA at 5 MHz and requires less than 0.0085 w , or only about \(3 \%\) of the power required by the bipolar 8288.

Power dissipation in the system can be further reduced by using the static design attributes of the C-MOS processors in a distributed processing environment. The processors' periods of operation can be closely controlled by the host, permitting entire subsystems to be powered down.

For example, when there is no I/O, that entire subsystem can be put into a standby mode, reducing current to 1 to 2 mA . The I/O subsystem can be reawakened in 20 to 50 milliseconds by an incoming interrupt. In situations where the incoming interrupt requests must be handled faster than 20 to 50 ms , clocking can be reduced below 5 MHz while a low supply current is still maintained The staticdesign feature of the 80 C 86 family supports development of multiprocessor distributed systems because power can be reduced by a factor that is inversely proportional to the resulting system's up-time.

\section*{Microsystems}

Reprinted from Ele'ctronic Products, August
1985. Copyright 1985. Hearst Business

Communtications Inc./UTP Division
All rights reserved.


\title{
CMOS static clock exerts complete control
}

> When all parts of a CMOS system are static, moment-to-moment demands can be met without performance degradation by slowing or stopping the clock

> Glenn E. Grise Microprocessor Applications Engineer -
> Curtis A. Mroz
> Microprocessor Applications Manager
> -
> Walt Niewierski
> Technical
> Marketing Manager -
> Harris Corp. Semiconductor Sector Digital Product Division Melbourne, FL

The full power-saving potential of static cmos can be realized only with control over the system clock. The clear advantages of the technology (see box, "Why static cmos?") in low-power systems have not always been achieved, because designers have had to make multichip ad hoc solutions or else forgo flexible use of the most parsimonious modes.

The 82C85 static clock controller/ generator (Electronic Products, June 17, p. 93) gives simple and complete control of the operating modes of static CMOS systems. Though the 82 C 85 is directly compatible with the Harris 80 C 86 and 80 C 88 cmos 16 -bit static microprocessors, it is designed for generalpurpose CMOS system clock control, supporting full-speed, slow, stopclock, and stop-oscillator operation.

To take the full advantage of static system design, the groundwork for static operation must be laid at the very beginning of the development program and not simply treated as an afterthought to an existing design. This is when decisions must be made regarding all power, performance, and response requirements. The designer can tailor a system to achieve the optimum power/performance tradeoff for the application, thus increasing efficiency and lowering the cost of implementing a static design.

In static-cmos system design, there are four basic operating modes. In ascending order of power saving, these are: fast, slow, stopclock, and stop-oscillator. Each has distinct power and performance traits that can be matched to the needs of a particular system at a
specific time (see Table 1).
A single system may require all of these operating modes at one time or another during normal operation. The power and performance levels of a system are then under the designer's control.

\section*{Fast mode: maximum everything}

The most common operating mode for a system is the fast mode. In this mode, the 82 C 85 operates at the maximum frequency determined by the main oscillator: Most systems continually strive for the greatest throughput, and this occurs during full-speed operation. Maximum-frequency operation insures that the CPU, memory, and peripherals are running as fast as possible.

Although the fast mode insures that the system runs at the highest possible rate, it also dissipates the most power. The 82C85 will be running with a crystal frequency of up to 24 MHz ; all internal counter logic will also be switching at this rate. Consequently, system power is at its maximum level.

While the system and peripheral clocks are running continuously at the maximum frequency, so are the CPU and peripheral circuits. Because CMOS power dissipation is directly

Table 1. Operating-mode characteristics of 82 C85
\begin{tabular}{|l|l|l|l|c|}
\hline \begin{tabular}{l} 
Operating \\
mode
\end{tabular} & \multicolumn{1}{|c|}{ Description } & \multicolumn{1}{|c|}{ Power level } & \multicolumn{1}{|c|}{\begin{tabular}{c} 
Performance
\end{tabular}} & \begin{tabular}{c} 
Typlesi 82c85 \\
power-supply current \\
(mA)
\end{tabular} \\
\hline \begin{tabular}{l} 
Stop- \\
0scillator
\end{tabular} & \begin{tabular}{l} 
All system clocks and main \\
clock oscillator are stopped
\end{tabular} & Maximum saving & \begin{tabular}{l} 
Slowest response \\
due to oscillator- \\
restart time
\end{tabular} & 0.024 \\
\hline \begin{tabular}{l} 
Stop- \\
Clock
\end{tabular} & \begin{tabular}{l} 
System CPU and peripheral \\
clocks stop, but main clock \\
oscillator continues to run at \\
rated frequency
\end{tabular} & \begin{tabular}{l} 
Reduced system \\
power
\end{tabular} & \begin{tabular}{l} 
Fast restart; \\
no oscillator- \\
restart time
\end{tabular} & 14.1 \\
\hline Slow & \begin{tabular}{l} 
System CPU clocks are \\
slowed while peripheral clock \\
and main clock oscillator run \\
at rated frequency
\end{tabular} & \begin{tabular}{l} 
Power dissipa- \\
tion slightly \\
higher than stop- \\
clock
\end{tabular} & \begin{tabular}{l} 
Continuous \\
operation at low \\
frequency
\end{tabular} & 16.9 \\
\hline Fast & \begin{tabular}{l} 
All clocks and oscillators run \\
at rated frequency
\end{tabular} & Highest power & Fastest response & 24.7 \\
\hline
\end{tabular}
related to frequency of operation, the fast mode has the highest power level of the four modes available (see Table 2). There are alternative modes of operation to reduce the average system operating-power dissipation. This does not mean, however, that system speed or throughput will be reduced. When used appropriately, the stop-clock, stop-oscillator, and slow modes can make the design more power-efficient
and keep system performance at a maximum.

\section*{Go slow to reduce power}

When continuous operation is critical but power dissipation remains a concern, the 82 C 85 slowmode operation divides the CLK and CLK50 outputs by 256 (PCLK frequency is unaffected). The slow mode allows the CPU and the system to operate at a reduced rate, which

\section*{Why static CMOS?}

A dynamic circult's clock must be maintained at or above a certain minimum frequency to guarantee proper operation. Internally, the dynamic cells must be refreshed at a certain rate or frequency in order to maintain valid data. Without this minimum clock frequency, the data within the CPU or peripheral device can be lost or altered.
In contrast, a static circuit needs no minimum frequency to guarantee proper operation. Static processors such as the \(80 C 86\) and 80 C88 maintain valid data over the full frequency range from dc to the maximum frequency rating.

The argument of static versus dynamic NMOS is unimportant since power dissipation for dynamic NMOS is fairly constant over its limited operating frequency range. In CMOS, though,
power is directly proportional to speed or frequency. Thus, static system design takes on new meaning. Static CMOS design yields the lowest power available since the frequency of operation can be reduced to dc.
A static system design has several prerequisites. First, it requires static CMOS microprocessors and support circuits, such as the 80C86/80C88 family, which can operate and maintain data from dc to the maximum frequency of operation. Second, it requires circuitry to control starting and stopping of the system clock as well as maintaining proper phase relationships and pulse widths of the system and peripheral clocks.
The main benefit of static system design is its dramatic power saving and the ability to control when and where this power sav-
ing will occur. For example, an 80 C86 multiprocessor system can be designed to allow the software executive routine to power down the entire system or just portions of the system not in use (i.e., certain I/0 sections or file-maintenance areas). This is done by using multiple 82 C85s throughout the system. This individual or group clock control is the key to a truly flexible minimum-power system.
Another benefit of static design is the ability to single-step the system clock. This becomes a very important asset when debugging prototype hardware in complex systems. Unlike software single-step debugging routines, commonly used in emulators, direct CPU clock control allows the hardware designer to troubleshoot high-speed signal movements normally hard to ob-
tain as long as transmisslon line effects are not causing full speed problems.
For example, with the 80C86, one could actually single-step through each phase of the processor timing cycle ( \(\mathrm{T}-1, \mathrm{~T}-2\), \(\mathrm{T}-3\), etc.) observing what happens on the address, data, and status lines. These signals can then be traced through the entire system because, with the clock stopped, signal levels are maintained indefinitely.
Low power eliminates thermal problems, creating several side benefits. Devices can be positioned closer together on the board, decreasing board size and weight. Sealed enclosures can be used because heat sinks and fans are no longer needed. System reliability increases, a smaller power supply can be used, and shipping weight and size are cut.
in turn reduces system power.
For example, the operating current for the 80 C 86 or 80 C 88 CPU is 10 mA per megahertz of clock frequency ( 50 mA at 5 MHz ). In slow mode, CLK and CLK 50 run at approximately 20 kHz ( 5 MHz divided by 256). At this reduced frequency, the average operating current of the CPU drops to \(200 \mu \mathrm{~A}\). Adding the 80C86/88's \(500 \mu \mathrm{~A}\) of standby current brings the total current to 700 \(\mu \mathrm{A}\)-a sharp contrast to 50 mA .

The 82C85, however, will not see such a major slow-mode reduction. Although the CLK and CLK50 outputs switch at a reduced frequency, the main 82C85 oscillator is still running at 15 MHz (for a \(5-\mathrm{MHz}\) system) or 24 MHz (for an \(8-\mathrm{MHz}\) system). The 82C85's power-supply current will typically be reduced by only \(25 \%\) to \(35 \%\).

Using the 82C85's slow/fast mode is a simple matter. The chip provides an asynchronous SLO/FST pin, which determines the system clock speed. If the SLo/fst pin recognizes a logic 1 on its input, CLK and cle 50 will run in the fast mode, which is the crystal or oscillator frequency divided by 3 . If the 82 C 85 recognizes a logic 0 , on the SLo/FST pin, CLK and CLK50 will run in the slow mode (fast-mode frequency divided by 256).


Fig. 1. When the 82C85 is operating in the EFI mode and using its oscillator circuit as the external frequency source, a Stop command will stop only the system clocks, not the 82C85 oscillator.

Internal counters and logic require that the SLO/FST pin be held low for at least 195 oscillator or EFI (external-frequency-input) clock pulses before the slow-mode command is recognized. This eliminates unwanted fast-to-slow-mode frequency changes that could be caused by glitches or noise spikes. To guarantee fast-mode recognition, the SLO/FST pin must be held high for at least three oscillator or EFI pulses.

Because PCLK maintains its highfrequency operation, it can be used by other system devices that need a fixed high-frequency clock. For ex-
ample, PCLK could be used to clock an 82C54 programmable interval timer to produce a real-time clock for the system or to serve as a baudrate generator maintaining the serial data communications during slow-mode operation.

High-to-low or low-to-high transitions of the SLO/FST input will be recognized on the next rising or falling edge of PCLK. The transition time for slow to fast mode is calculated by
\(3 \times\) (EFI or oscillator period) + PCLK high time + SLO/FST to PCLK setup.

\section*{Table 2. Typical system power-supply current for 82C85 operating modes}
\begin{tabular}{|c|c|c|c|c|}
\hline Devices & Stop-oscillator & Stop-clock & Slow & Fast \\
\hline 82C85 & \(24.4 \mu \mathrm{~A}\) & 14.1 mA & 16.9 mA & 24.7 mA \\
\hline \(80 \mathrm{C88}\) & \(106.6 \mu \mathrm{~A}\) & \(106.6 \mu \mathrm{~A}\) & \(173.0 \mu \mathrm{~A}\) & 23.8 mA \\
\hline \(82 \mathrm{C82}\) & \(1.0 \mu \mathrm{~A}\) & \(1.0 \mu \mathrm{~A}\) & \(6.5 \mu \mathrm{~A}\) & 1.7 mA \\
\hline 82C86 & \(1.0 \mu \mathrm{~A}\) & \(1.0 \mu \mathrm{~A}\) & \(14.0 \mu \mathrm{~A}\) & 1.4 mA \\
\hline 82C88 & \(3.8 \mu \mathrm{~A}\) & \(3.8 \mu \mathrm{~A}\) & \(14.3 \mu \mathrm{~A}\) & 3.5 mA \\
\hline \(82 C 52\) & \(1.0 \mu \mathrm{~A}\) & \(1.0 \mu \mathrm{~A}\) & \(72.0 \mu \mathrm{~A}\) & \(151.2 \mu \mathrm{~A}\) \\
\hline \(82 C 54\) & \(1.0 \mu \mathrm{~A}\) & \(3.5 \mu \mathrm{~A}\) & \(915.0 \mu \mathrm{~A}\) & 943.0 ¢ A \\
\hline 82C55A & \(1.0 \mu \mathrm{~A}\) & \(1.0 \mu \mathrm{~A}\) & \(1.2 \mu \mathrm{~A}\) & \(3.2 \mu \mathrm{~A}\) \\
\hline 82C59A & \(509.0 \mu \mathrm{~A}\) & 509.0 / A & \(520.0 \mu \mathrm{~A}\) & 580.0 m A \\
\hline HD-6406 & 4.97 mA & 4.97 mA & 5.09 mA & 5.12 mA \\
\hline 74HCXX plus other ICs & \(90.0 \mu \mathrm{~A}\) & \(90.0 \mu \mathrm{~A}\) & 110.0 m A & 2.9 mA \\
\hline HM-6516 & \(1.9 \mu \mathrm{~A}\) & \(1.9 \mu \mathrm{~A}\) & 132.0 mA & 820.0 mA \\
\hline HM-6616 & \(12.0 \mu \mathrm{~A}\) & \(12.0 \mu \mathrm{~A}\) & \(52.5 \mu \mathrm{~A}\) & 6.3 mA \\
\hline TOTAL with 6406 & 5.72 mA & 19.8 mA & 24.0 mA & 71.9 mA \\
\hline TOTAL without 6406 & \(752.7 \mu \mathrm{~A}\) & - & - & - \\
\hline CPU FREQUENCY XTAL FREQUENCY & \[
\begin{aligned}
& \mathrm{dc} \\
& \mathrm{dc}
\end{aligned}
\] & \[
\begin{gathered}
\mathrm{dc} \\
15 \mathrm{MHz}
\end{gathered}
\] & \[
\begin{aligned}
& 20 \mathrm{kHz} \\
& 15 \mathrm{MHz}
\end{aligned}
\] & \[
\begin{array}{r}
5 \mathrm{MHz} \\
15 \mathrm{MHz}
\end{array}
\] \\
\hline & \multicolumn{4}{|r|}{All measurements taken at room temperature, \(\mathrm{V}_{\mathrm{cc}}=+5.0 \mathrm{~V}\)} \\
\hline
\end{tabular}

In a \(5-\mathrm{MHz} 80 \mathrm{C} 86\) system (EFI frequency of 15 MHz ), slow-to-fastmode transition will occur within a maximum of 410 ns after the SLO/ FST pin is brought high. It is important to remember that the transition time from slow to fast mode will vary with input frequency.

\section*{Stop-clock mode}

The 82C85 can be used in the stopclock mode simply by connecting the oSC output to the EFI input and pulling the \(F / C\) (frequency/crystal strapping option) input high. This puts the 82C85 into the external fre-
quency mode using its own oscillator as an external source signal (see Fig. 1). When the 82 C 85 is stopped in the EFI mode, the oscillator continues to run; only the clocks to the CPU and peripherals (CLK, CLK50, and PCLK) are stopped.
Because the oscillator is still running, the power-supply current level is higher than in the stop-oscillator mode. The 82 C 85 operating current for stop-clock operation is typically 10 to 15 mA , compared with the standby current of \(100 \mu \mathrm{~A}\) in the stop-oscillator mode. All other devices in the system that are driven by the 82 C 85 will go into the lowest power standby mode, reducing system power by up to \(75 \%\).

\section*{Stop-oscillator mode}

In the stop-oscillator mode, system power drops to its lowest level. All processes are stopped, and all de-
vices are in minimum-power standby states. All data, however, are retained in the internal registers of all static circuits. No data is lost, and system operation begins in exactly the same state at which standby was entered.

All devices in the system that are driven by the 82 C 85 go into the lowest power standby mode. The 82C85 also goes into standby and requires less than \(100 \mu \mathrm{~A}\) of supply current.

\section*{Maximum-mode clock control}

Interface for the 82 C 85 stop and start functions has been optimized for \(80 \mathrm{C} 86 / 88\) maximum-mode operation. Three control lines ( \(\mathrm{S}_{2} /\) STOP, \(S_{1}, S_{0}\) ) are provided on the 82C85 to allow simple software control of the system clock. To allow direct software control of system clocks, these three control lines should be connected directly to the maximum-
mode status lines ( \(\mathrm{S}_{2}, \mathrm{~S}_{1}, \mathrm{~S}_{0}\) ) of the Harris 80C86 and 80C88 microprocessors (see Fig. 2).

In the maximum mode, the 80C86/ 88 status lines identify which type of bus cycle the CPU is starting to execute. These status lines are typically used by the 82 C 88 bus controller to decode the current bus-cycle status of the CPU. Figure 2 shows the status-line truth table for different operations.

The logic on the \(82 \mathrm{C} 85 \mathrm{~S}_{2} / \mathrm{STOP}\), \(S_{1}\), and \(S_{0}\) control inputs will recognize a valid software Halt executed by the 80 C 86 or 80 C 88 when in the maximum mode. Once this state has been recognized, the 82 C 85 stops its clock ( \(\mathrm{F} / \mathrm{C}\) tied high) or oscillator circuitry ( \(\mathrm{F} / \mathrm{C}\) tied low).

The 82C85 control lines ( \(\mathrm{S}_{2} /\) STOP, \(S_{1}, S_{0}\) ) were designed to detect a passive 111 state followed by a Halt 011 logic state before recog-

nizing the Halt instruction and stopping the system clocks. In the maximum mode, the \(80 \mathrm{C} 86 / 88\) status lines go into a passive (no bus cycle) logic 111 state prior to executing a Halt instruction. The qualification of a passive no-bus-cycle logic 111 state insures that random transitions of the status lines into a logic 011 state will not stop the system clock. This is necessary because the status lines of the \(80 \mathrm{C} 86 / 88\) pass through an undefined state during \(\mathrm{T}_{3}\) of the bus cycle.

When the Halt instruction is decoded, the CLK and CLK50 outputs will be stopped in a logic 1 state after \(11 / 2\) additional clock cycles. The Halt instruction is detected in the same manner whether the 82 C 85 is
in the slow or the fast mode.
When the 80 C 86 and 80 C 88 microprocessors are configured in minimum mode (MN/MX pin tied high), the status lines \(S_{0}, S_{1}\), and \(S_{2}\) assume alternate functions. The logic states and sequences (passive before a Halt) necessary for automatic Halt detection in the 82C85 do not occur as in the maximum mode. The 82C85 controller cannot use the microprocessor status lines to detect a software Halt instruction when operating in minimum mode.

\section*{Independent stop control}

However, the negative edge-activated \(\mathrm{S}_{2} /\) STOP pin provides a simple means of clock control in nonmaximum mode 80 C 86 and 80 C 88
systems. \(\mathrm{S}_{2}\) /STOP can be used as an independent Stop control when \(\mathrm{S}_{1}\) and \(S_{2}\) are held in the logical high state.

Keeping the \(S_{1}\) and \(S_{0}\) inputs at a logic 1 level and driving \(S_{2}\) /sTOP from high to low will meet the requirement for a passive 111 state prior to a Halt 011 state. This feature allows 82 C 85 operation with both the 80 C 86 and 80 C 88 in the minimum mode, provides compatibility with other static CMOS microprocessors, and allows maximum flexibility in a system.
With \(\mathrm{S}_{2}\) /stop being used as a standalone Stop command line, system clocks can be controlled through an 82C55A programmable peripheral interface. This is accomplished

by tying the pins \(S_{0}\) and \(S_{1}\) of the 82 C 85 to \(\mathrm{V}_{\mathrm{CC}}\) with the \(\mathrm{S}_{2} /\) STOP input connected to a port pin on the 82 C 55 A . The 82 C 55 A port pin should be configured as an output with a logical 1 output to the \(\mathrm{S}_{2} /\) sTOP pin. This will cause the 82 C 85 to see a logic 111 passive state before a logic 011 state is detected.

When a logic 0 is written to an 82C55A port pin, the \(\mathrm{S}_{2} /\) sTOP pin is pulled low, stopping the system clocks (CLK, CLK50, PCLK). In essence, the 82 C 85 is software controlled through the 82C55A. As with the SLO/FST interface, port C is a logical choice for this job because individual bit Set and Reset commands are available.

Upon receiving a Start command, the 82 C 85 will begin normal operation. The low state of the negativeedge triggered \(\mathrm{S}_{2}\) /STOP input will not prohibit the clocks from restarting. After a Start or Reset command, the 82 C 85 must see a passive (111) state followed by a Halt 011 state to stop the system clocks. To accomplish this, the 82C55A must be brought high and then returned low again for the 82 C 85 to recognize the next Stop command.

\section*{Restarting the system}

To start the 82C85 after it has been stopped, there is an independent Start input. Start is a leveltriggered, active-high input and will override any Stop condition.

When \(F / C\) is tied low (crystal mode), a logic 1 on the Start input will restart the crystal oscillator. However, the stopped clock outputs (CLK, CLK50, and PCLK) remain stopped until two events occur: The oscillator startup envelope amplitude first reaches the threshold of the Schmitt trigger buffer internal to the \(\mathrm{X}_{1}\) input; then an internal counter must count 8,192 valid \(n\) scillator pulses.

When the count is complete, the stopped clock outputs will start cleanly with the proper phase relationships. The count insures that high-frequency noise and crystal harmonics, which can occur during oscillator startup, are not allowed through to the clock outputs. Other-
wise, undesired glitches or unsynchronized signals could appear at the clock outputs, resulting in clock signals that do not meet \(80 \mathrm{C} 86 / 88\) clock specifications. This could lead to erratic or erroneous operation.

The total start time will vary depending upon the crystal frequency and manufacturer, the system power supply levels, temperature, and other factors. Typical oscillator start-to-clk-output delay times are in the range of \(500 \mu \mathrm{~s}\) to 2 ms .

In the stop-clock mode ( \(\mathrm{F} / \mathrm{C}\) tied high), a logic 1 on the start input will restart the stopped outputs im-

Fig. 4. The executive routine has the option of choosing stop-clock, stoposcillator, or slow mode operation after each character or screen transmission. Mode selection is determined by the user depending upon system power and responsetime requirements. In the slow mode, clock functions can be updated since PCLK runs at its normal frequency.
mediately after the start input is synchronized internally. No oscillator startup time is necessary, because the EFI source is either an external clock or the 82 C 85 osc output. In either case, the EFI input source will be constantly running.

Control of the start input can be provided through an 82C59A priority interrupt controller or other such asynchronous, clock-independent source. The 82C59A int output can be connected directly to the 82 C 85


Start pin and the INTR pin of the 80 C 86 or 80 C 88 microprocessors.

External events, such as a key-pad entry, can be used to produce an interrupt request to the 82 C 59 A , which in turn will produce an interrupt. This high level on the Start input will cause the 82C85 to start the system clocks.

\section*{System performance is the key}

When choosing between stopping the system clocks or stopping the oscillator, system response time enters the picture. Once stopped, how fast will the system resume operation when given a Start command? The answer could range from nanoseconds to milliseconds depending upon the mode of operation, the specific reason for restart, and the action that needs to be taken. The clock-control mode used must meet the specific restart response requirement of the system at that particular point (see Fig. 3).

When in the stop-clock mode, the 82 C 85 oscillator circuit is running and stabilized. In this case, restarting the clocks to the CPU is a simple matter. When the Start input is set to a logic 1 (high), internal circuitry gates the already running oscillator through to the clock-generation circuit. The internal signals are gated synchronously to ensure glitch-free, negative-edge-synchronized CLK, CLK50, and PCLK outputs.

The clock output will resume operation within 2 EFI cycles ( 137 ns at 5 MHz ) of the Start command input. This will meet the needs of those systems requiring immediate responses to requests.

In the stop-oscillator mode, restarting the 82 C 85 takes a while longer. In this mode, the oscillator circuit is stopped in order to conserve power. Internal 82 C 85 circuitry forces the CLK and CLK50 outputs high, while stopping PCLK in its current state.

These outputs do not become active immediately after a restart command. As mentioned earlier, they remain high until internal circuitry detects 8,192 stable oscillator cycles. Once this criterion is met, then the CLK, clk50, and PCLK outputs are allowed to start operation synchronously.

The oscillator stabilization period will typically last from \(500 \mu \mathrm{~s}\) to 3 ms , depending upon the crystal, system voltage, operating temperature, or a multitude of other factors.

\section*{Performance analysis is critical}

Response time to a Start or SLo/ FST speed-change command is different for each operating mode. The key to properly utilizing these alternative modes is to ensure that, wherever possible, power is saved without degrading performance.

In an interrupt-driven system, for example, the executive software routine in the operating system spends



Table 3. Effect of stop-oscillator mode on data transmission

the majority of its time in an idle mode waiting for an interrupt from an external hardware source (see Fig. 4). When the interrupt is recognized, the necessary task is performed and then the program goes back into its idle mode to await the next interrupt.

Controlling the system clock in software using the 82 C 85 and Halt instructions positioned in the appropriate places throughout the program can save power without degrading performance. A closer look shows the power/performance tradeoffs that can be considered in a typical CRT-handler routine.

In this system, display data are sent to a remote terminal over a standard serial data link. The CPU loads data into a UART which then completes the data transmission. The system is not required to do any other task during the data-transmission time. The system and CPU can be stopped periodically at intervals based on the data-transmission rate. While the UART is transmitting data to the screen, the rest of the system can power down and wait for the next time data needs to be loaded to the UART from the CPU.

The major concerns in this case are when to stop the system and the impact on performance and power. Two options can significantly affect power and performance: stopping the system after each character is transmitted, or stopping the system after each screen refresh.

If power dissipation is the most important factor, then the best choice would be to use the stop-oscillator mode and stop the system in the main loop of the executive routine. This allows the system to enter a complete standby state after ever: character sent to the CRT.

An interrupt, signaling that the transmitter buffer register in the UART is empty, will take the 82C85 out of stop-oscillator mode and restart the crystal oscillator. After the oscillator stabilizes and the clock is restored, the interrupt is serviced.

Such a system requires a separate crystal oscillator circuit for the UART so that data can be transmitted when the 82 C 85 is stopped. This approach provides the lowest power of the two options; with the main system oscillator stopped, current flows only in the UART crystal circuittypically 1 to 2 mA .

Low power, however, can come at the expense of response time. Because the crystal oscillator must be stabilized before the CPU can restart, data cannot be transmitted between the time the interrupt for more data occurs and the time the oscillator stabilizes. The startup time for crystal circuits can be from 1 to 2 ms , so each application must be evaluated individually. Performance is not affected in this mode as long as the transmission rate is 4,800 baud or less (see Table 3).

If faster transmission rates are needed, stopping just the clock and not the oscillator should be considered. Clock startup time is only 136 ns for a \(15-\mathrm{MHz}\) crystal. This increases supply current about 20 mA .

The second option, stopping the oscillator after each screen refresh, shows no impact on system response time at any baud rate. With the oscillator and system clock constantly running during a screen update, the CPU is available to respond immediately to the request for more data. This approach does, however, increase power dissipation because the oscillator is running for a much higher percentage of the time.

\title{
Advanced clock controller cuts power needs, size of static CMOS systems
}

\section*{With a one-chip controller-generator running a static CMOS system in any of three minimal-frequency modes, power consumption will drop to a trickle.}

The faster a CMOS system runs, the more power it consumes. Consequently a natural way to reduce power consumption is to run the system at a minimal frequency or even stop it whenever full speed is unnecessary. That possibility is open only to static CMOS circuits-those capable of running at anything from dc to their maximum frequency - and not to dynamic ones, which lose data below a certain clock frequency.
The 82C85 clock-signal generator and controller chip ensures that a static CMOS system will dissipate the least power possible (see "Lowering Power Consumption in CMOS Systems," p. 186). The chip can run the system in four modes, which are, in the order of most to least power savings:
- The stop-oscillator mode, in which both the control chip's oscillator and the system CPU's clock stop.
- The stop-clock mode, in which only the CPU clock stops (to make it faster to restart the system).
- The slow mode, at much less than the system's maximum frequency. Here, power dissipation approaches standby leakage current levels, yet the CPU can still tackle such functions as periodically polling external sources and collecting data from them or sensing low battery conditions.
- The fast mode, at the system's maximum frequency.

The Static Clock Controller-Generator, as the 82 C 85 is formally called, has separate

\section*{Curtis A. Mroz and Walt Niewierski Harris Corp.}

Curtis Mroz works as head applications engineer for the microprocessor applications group of Harris's Semiconductor Digital Products Division, Melbourne, Fla. Previously, he was a design engineer at Honeywell and OAK Industries. He has a BSEE from Purdue University.
Walt Niewierski, who holds a BSEE from the University of Michigan, is technical marketing engineer for the Harris division. Before joining the company, he designed microprocessor-based test equipment at Ford Motors.

signals for stopping and starting its oscillator or for blocking and unblocking an external frequency input. It can produce any clock frequency up to its maximum of 8 MHz , plus \(1 / 256\) of that frequency for its slow mode. Besides a crystal-controlled oscillator and clock generation logic, the chip contains ready synchronization and reset logic, as well as halt and decode restart logic. It comes in a slim-line DIP with 24 pins on 0.3 -in. centers.

To guarantee crystal-controlled operation at 24 MHz , the chip uses a parallel, fundamentalmode crystal and two small-load capacitors. It generates both system and peripheral clock
signals and for increased system flexibility, produces edge-synchronized \(33 \%\) (CLK) and \(50 \%\left(\mathrm{CLK}_{50}\right)\) duty-cycle clock signals. Both of the latter are available simultaneously. Moreover the device can synchronize its clocks with 82C84A clock generator-driver ICs and with other 82 C 85 s for use in multiprocessor systems. All of its inputs except three ( \(\mathrm{X}_{1}, \mathrm{X}_{2}\), and RES) are TTL-compatible over three temperature ranges--commercial, industrial and military - and the outputs are both CMOS- and TTL-compatible.

For ease of use with the \(80 \mathrm{C} 86 / 88\) CMOS microprocessor family, the new chip is manu-

\section*{Lowering power consumption in CMOS systems}

Only when static CMOS components are designed into a system can power consumption and package size be truly minimized. Consequently, as CMOS chips take over in architectures formerly built with NMOS devices, the distinction between static and dynamic circuitry takes on new importance.
Dynamic CMOS systems usually dissipate more power than static systems, in both the operating and the standby mode (see the figure). Even when their power dissipation seems the same for such operating conditions as maximum frequency and worst-case voltage, other factors tilt the balance in favor of the static device. A static circuit can run on any frequency from dc to its maximum. In contrast, if the clock frequency of a dynamic circuit falls below a specified minimum, data in the CPU or a peripheral is lost or altered. Therefore true standby operation (with the clock stopped) can occur only with a static CMOS design.
A static microprocessor system, like one based on the 80 C 86 or 80 C 88 CMOS devices, can be put in a

standby mode by simply stopping the clock signals. The 80C86/80C88 family, for example, has an operating frequency range of dc to \(5 / 8 \mathrm{MHz}\) and retains data even if the external clock is stopped indefinitely. The system restarts when the CPU clock signal resumes.

But a static system design calls for several prerequisites. First, it requires static CMOS microprocessors and support circuits, which can operate and maintain data from standby (dc) to the maximum frequency of operation. Another need is for care in defining power-down situations, in which the processor and system clock frequencies can be controlled. Standby and operating modes should not be considered separate entities. Opportunities to stop the system clock must be evaluated carefully, as should transitions from the operating mode to standby and back again. Standby, low-frequency, and high-frequency operations then become complementary states, and the result is lower system power dissipation.

By anticipating circumstances in which the system can be stopped or run more slowly, the engineer can ensure that the proper standby and lowfrequency hardware and software get into the initial system design and are not treated merely as afterthoughts. This increases efficiency and lowers the cost of implementing a static design. The degree to which the system's operating characteristics are altered is based on power, performance, and response requirements.

Because a static design results in lower power consumption, the system needs fewer supportive elements. For instance, fans and heat sinks can be eliminated, power-supply requirements reduced, and smaller enclosures used.
factured with the same CMOS process-a selfaligned junction-isolated process called scaled SAJI IV. However, it can be used with any static microprocessor or peripheral device. Its pinout is a superset of that of the 82 C 84 A : pins 1 through 9 and 16 through 24 are compatible with pins 1 through 9 and 10 through 18 , respectively. To emulate the 82 C 84 A , pins 11 through 15 are tied high.

If power consumption must be held as low as possible and response times of 1 to 3 ms are acceptable, the device should be operated in the stop-oscillator mode. In this case, the chip gates off the system clock and then stops the crystal
oscillator circuit. The External Frequency Input line (EFI) can be used instead of the oscillator by driving the Frequency-Control line ( \(\mathrm{F} / \mathrm{C}\) ) line high.
With a \(15-\mathrm{MHz}\) crystal, which is needed fnr the operating frequency of a \(5-\mathrm{MHz} 80 \mathrm{C} 86 / 88\) system, the total operating current for the oscillator circuit ranges from 15 to 30 mA . Without those \(15-\mathrm{MHz}\) transitions in the nscillator circuit, the typical stand by current falls tn less than \(50 \mu \mathrm{~A}\) ( \(100 \mu \mathrm{~A}\), worst case). A typical \(80 \mathrm{C} 86 / 80 \mathrm{C} 88\) system draws from 1 to 2 mA in standby.
Stopping the controller-generator is a simple

1. A single-chip clock controller and generator, the 82 C 85 generates clock signals for a microprocessor and its peripherals. Designed for static CMOS systems, the device controls system frequency to reduce power consumption.

\section*{CMOS Technology: Clock controller}
matter. Its three status lines \(-\mathrm{S}_{2} /\) Stop, \(\mathrm{S}_{1}\), and \(\mathrm{S}_{0}\)-are sampled on the rising edge of the CLK signal (Fig.1). When these three lines enter the logic 011 state after a 111 state and when the Start line is also low, either the chip's oscillator will be stopped synchronously or its external frequency source will be turned off synchronously. In other words, the CLK and \(\mathrm{CLK}_{50}\) outputs each stop in a logic 1 state after two additional complete cycles of the clock signal. The operation can occur in either the slow or the fast mode.

The 011 condition after a 111 on the three status pins indicates a software halt in the \(80 \mathrm{C} 86 / 80 \mathrm{C} 88\). This condition can be used in conjunction with the CPU's maximum-mode

2. A simple method for clock control uses the status lines of the 82C85 to detect a software halt. A soft-ware-controlled, power-down scheme of this sort requires no additional circuitry. MN/MX stands for Maximum mode.
status lines \(-S_{2}, S_{1}\), and \(S_{0}\)-to activate a software-controlled power-down that requires no external circuitry (Fig. 2).
If a power-down hinges on conditions other than a software halt, the device's \(\mathrm{S}_{2} /\) Stop input can be used as a stand-alone command to stop the crystal operation. To do this, the \(\mathrm{S}_{0}\) and \(\mathrm{S}_{1}\) pins are connected to \(\mathrm{V}_{\mathrm{cc}}\), and the \(\mathrm{S}_{2} /\) Stop line is controlled through external logic.

Once the oscillator stops or is committed to stop, its restart sequence begins on either a high level on the Start input or a low level on the Reset input ( \(\overline{\mathrm{RES}}\) ). A high level applied to the Start input disables the Stop input and overrides a Stop command in all instances. However, the stopped outputs-the peripheral clock (PCLK ), CLK, CLK \({ }_{50}\), and OSC-are held high by the 82 C 85 until a predetermined number of oscillator cycles have been internally counted. This automatically ensures proper oscillator startup, regardless of temperature, voltage, or the manufacturing source of the crystal. No external components are needed. After the internal count is complete, the high clock outputs restart cleanly with the correct phase relationship.

With an external frequency input ( \(\mathrm{F} / \mathrm{C}\) high), the restart operation is slightly different. It occurs immediately after the Start line or the RES input has been synchronized internally. In this case, the synchronization ensures that the same four stopped outputs are in the proper phase relationship.

\section*{Stopping the clock}

The stop-clock mode reduces power consumption but also affords an immediate response to a restart. The master oscillator continues to run while the CPU clock signal is gated off. In this mode the CPU and peripheral circuits are in the standby mode. It is up to the designer, however, to determine which peripherals should go into standby and which must remain active.

The stop-clock mode can be achieved with the 82 C 85 . Here the OSC output connects to the EFI input, and the device is operated in the EFI mode, with F/C high. In other words, the chip's own crystal oscillator serves as the "external" frequency source. The \(\mathrm{S}_{2} /\) Stop input gates the clock signal in the EFI mode, allowing the oscil-
lator to continue to run. When Start is enabled, system restart begins immediately with the resumption of the CLK output. The clock can also be restarted by a reset or external interrupt.

The mode's primary advantage is that the system clock can be restarted within microseconds after it is enabled, thereby permitting an immediate response to interrupts or other signals that indicate a change in system activity. The clock signal is always active, and there is no waiting for oscillator stabilization.

Of course, the penalty for such instant response is higher power dissipation (Fig. 3). This dissipation comes from current drawn by the crystal oscillator circuit. Clock generator ICs like the 82 C 84 A and 82 C 85 typically consume 1 to \(2 \mathrm{~mA} / \mathrm{MHz}\) when the crystal is in operation. With a \(15-\mathrm{MHz}\) crystal, the total operating current for the oscillator circuit ranges from 15 to 30 mA .

\section*{Slow clock cuts power}

When continuous operation is critical but power consumption remains a concern, the controller-generator can put the system into the slow, low-frequency mode, which retards most operations and thus reduces the total power required. Data continues to flow properly, and the system responds to interrupt requests much faster than it would in the stoposcillator mode.
The low-frequency divide-by-256 mode offers continual operation and performance of critical functions with a drastic reduction in power. The main oscillator continues to run, but the clock signal is divided by 256. The Slow and Fast input (SLO/FST) controls the frequency of the CLK and CLK sin \(^{0}\) outputs. When the line is high, the two outputs run at full speed--at one-third the crystal or external frequencr. When the line is low, the frequencies of the two outputs are divided by 256 . The PCLK output, however, remains at a constant frequency of one-sixth the oscillator or external frequency.
To be recognized by the controller-generator, SLO/FST must stay low for at least 195 oscillator or external frequency pulses \(-13 \mu \mathrm{~s}\) at a \(15-\mathrm{MHz}\) oscillator frequency. Otherwise glitches or noise spikes could cause undesirable frequency changes. To eliminate glitches on CLK
and \(\mathrm{CLK}_{50}\), SLO/FST is synchronized to the high or low transitions of PCLK. To guarantee transition to full frequency, SLO/FST must be held high for at least three oscillator or external frequency pulses.

In the low-frequency mode, a \(15-\mathrm{MHz}\) system can be returned to full speed in 1 microseconda half PCLK cycle of 800 ns plus 200 ns for three OSC or EFI cycles. The total delay in returning to full frequency operation is \(50.2 \mu \mathrm{~s}\). These times depend on the system's operating frequency, and they vary with the main oscillator frequency.

At a \(5-\mathrm{MHz}\) system clock \(-15-\mathrm{MHz}\) crystalthe final CPU clock frequency in the slow mode is approximately 20 kHz . At that reduced speed,

3. System power levels vary significantly, depending on the operating mode of the clock. From full frequency operation (point A), dissipation is lowest in the stop-oscillator mode (point B) and next lowest in the stop-clock mode (point C ). Note the differing restart response times. The crystal start-up time is typically \(\mathbf{1}\) to \(\mathbf{1 . 5} \mathbf{~ m s}\), and the CPU clock signal is gated on-at point B-after the crystal oscillator restarts, ensuring that the oscillator frequency is stable before it is reapplied to the CPU.

\section*{CMOS Technology: Clock controller}
the power dissipation of the CPU and peripheral circuits is very close to that drawn under standby current conditions and results in nearly the same power reduction as in the stop-clock operation.
Since the frequency of PCLK is not reduced when the 82C85 is in the slow mode, a real-time clock can be implemented with an 82 C 54 programmable interval timer driven by PCLK. Chip count falls, because no need exists for a stand-alone real-time clock circuit. Further, no additional crystal oscillator is needed for a UART, since it can run from PCLK.
CPU dissipation is reduced in the low-
frequency mode. The operating power for \(80 \mathrm{C} 86 / 80 \mathrm{C} 88\) microprocessors, for example, is \(10 \mathrm{~mA} / \mathrm{MHz}\) of clock frequency. At 20 kHz , the average operating current of these microprocessors drops to \(200 \mu \mathrm{~A}\). Adding \(500 \mu \mathrm{~A}\) of standby current brings the total current to \(700 \mu \mathrm{~A}\)-a sharp contrast with 50 mA at a \(5-\mathrm{MHz}\) operating frequency. However, the controller-generator will still run with a highfrequency crystal that consumes between 15 and 30 mA .
Low-frequency operation is a compromise between the stop-oscillator mode and fullspeed operation. It requires a minimum of

4. In a CRT control flowchart, the executive routine can select either the stopclock or the stop-oscillator mode, depending on the system's power and response requirements. If power consumption is the primary consideration, using the stop-oscillator mode to halt the CPU proves the best choice.
hardware and offers a reasonable tradeoff between power requirements and speed of response.

\section*{Power-down through software}

In an interrupt-driven system-for example, one for updating information on a CRT-the software executive idles most of the time while waiting for an interrupt from an external source. When it recognizes the interrupt, it allows the task to be completed and then returns to the idle state to await the next sequence. With the controller-generator and the proper software, power in such a system can be regulated. In addition the user gets software and hardware options not previously available.

The system and CPU can be stopped periodically at intervals based on the data transmission rate (Fig. 4). While data travels to the screen over a serial channel, the system can drop into a power-down state until more data can be loaded from the CPI. The major concerns are how often to stop the operation and the impact on power and performance.

Two options significantly affect power and performance: stopping the system after each character is transmitted or stopping the system after each screen refresh. If power consumption is paramount, the choice is to stop the processor on the main loop of the executive routine. This allows the CPU to enter the stop-oscillator mode after a character is sent to the CRT. An
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{c} 
How the clock oscillator start-up time \\
affects display performance
\end{tabular} \\
\hline \begin{tabular}{c} 
Baud rate \\
(baud)
\end{tabular} & \begin{tabular}{c} 
Data \\
transmission \\
time (ms)
\end{tabular} & \begin{tabular}{c} 
Oscillator \\
start-up \\
time (ms)
\end{tabular} & \begin{tabular}{c} 
Nominal impact \\
on transmission time \\
per character (ms)
\end{tabular} \\
\hline 19,200 & 0.52 & 3 & -2.48 \\
9600 & 1.04 & 3 & -1.96 \\
4800 & 2.08 & 3 & -0.92 \\
2400 & 4.17 & 3 & \begin{tabular}{c}
+1.17 \\
1200
\end{tabular} \\
& 8.33 & 3 & (no speed impact) \\
\hline 5.33 \\
& & & (no speed impact) \\
\hline
\end{tabular}
interrupt-one indicating that the transmitter buffer register in the UART is empty - takes the system out of the stop mode and restarts the oscillator. After the crystal oscillator stabilizes and the clock is restored to the CPU, the interrupt is serviced.

Such a system requires a separate crystal oscillator for the UART and for a hardware real-time clock if periodic scrolling is required. That approach consumes less power than stopping the system after each screen refresh. With the main system oscillator stopped, the only power dissipation is in the UART's crystal circuit-typically 1 to 2 mA .

Nevertheless low power comes at the expense of response time. Since the crystal oscillator must be stabilized before the CPU can restart, data cannot be transmitted between the time the interrupt for more data occurs and the oscillator becomes stable. The start-up time for crystal circuits can be from 1 to 2 ms or longer, but each application should be evaluated individually.

The oscillator start-up time affects the data transmission time. A fixed start-up time of 3 ms is assumed for various baud rates. As the baud rate increases, the start-up time slows the effective transmission rate (see the table). For standard rates above 2400 baud, data transmission is completed well before new data is loaded, resulting in varying degrees of so-called system dead time.

The second option-stopping the oscillator after each screen refreshing-has no effect on the system's response time. With the oscillator and system clock running constantly while the screen is being updated, the CPU can respond immediately to requests for more data. This method, however, dissipates more power because the oscillator runs longer.

If scrolling is called for, a much higher current is needed, since the oscillator must continue to deliver a clock signal to the real-time clock or other circuit used for watchdog timing functions.

\title{
Saving Power in CMOS Systems Design
}

WALTER J. NIEWIERSKI, Harris Semiconductor, Melbourne, FL
Designed to operate in harsh environments over wide temperature ranges, CMOS reduces system power, size, weight, and cost. Systems can be battery-powered and enclosures can be environmentally sealed. Using static CMOS makes some circuits work even better.

Because CMOS power dissipation is directly proportional to operating frequency in microproces-sor-based static CMOS systems, the slower CMOS is switched, the lower the power dissipation. The ability to slow or stop the system clock gives the designer direct control over system operating power. Stopped, power consumption drops to microwatts.

Static microprocessors, such as the Harris 80C86 and 80C88, and static CMOS memories require no active clock signals, consume no active power, and can be in a standby mode indefinitely.

Dynamic CMOS devices require a constant clock or refresh signal to maintain valid data in the chip, and are not discussed in this article.

\section*{Clock mode options}

Four basic operating modes are used in static CMOS system design
- FAST - all clocks and oscillators operate at the maximum frequencyhighest power dissipation;
- SLOW-system CPU clocks are slowed ( to provide a continual operation) while the main clock oscillator continues to run at the rated frequen-cy-reduced power;
- STOP-CLOCK - the system CPU clocks stop while the main clock oscillator continues to run-reduced power: and
- STOP-OSCILLATOR-both the system clocks and the clock oscillator stopminimum power condition.

\section*{Reducing average power}

A CMOS system running at full speed uses approximately 10 percent of the power of an equivalent NMOS system. Static CMOS system design technıques can achieve additıonal power reductions of \(35-75\) percent.

In STOP-OSCILLATOR, the CPU requires less than \(500 \mu \mathrm{~A}\), the 82C85 static clock controller/generator less than \(100 \mu \mathrm{~A}\), and peripheral and memory circuits less than \(10-50 \mu \mathrm{~A}\). In all, a typical static CMOS system can stand by drawing less than 1 mA .
In STOP-CLOCK, CPU, memory, and peripheral currents are the same as in STOP-OSCILLATOR but the 82C85 current jumps from under \(100 \mu \mathrm{~A}\) to \(15-40\) mA . The significant increase is due en-
tirely to the crystal oscillator switching currents.

In SLOW, the system operates at a very low frequency. CPU, memory, and peripheral power increase slightly due to the 82C85.

\section*{Lower power yields longer life}

A distributed processor system has three subsystems all running at the maximum frequency and drawing current from a one amp-hour battery. The total current requirement is 198 mA and the battery life is 5 hours.

By analyzing tasks and projecting individual subsystem run-times and modes, decisions can be made about which operating modes can be used and when. Since manipulating operating modes and frequencies reduces system power, hardware and software control to switch the system operating modes can be designed into each.

For example, System A, the host, is the workhorse; it runs full speed 75 percent of the time, consuming 66 mA . In STOP-CLOCK, it consumes 14.8 mA and does most of the data handling and manipulation. The system draws 53.2 mA .

System B runs full speed 40 percent of the time. When it's not doing a specific task, it can be shut down completely. Instead of running at 5 MHz , the maximum frequency was set at 4 MHz . This is significant because the 20 percent lower maximum frequency automatically means a 20 percent power reduction at full speed. System B draws a total of 21.6 mA .

Finally, System C continuously monitors specific conditions in the overall system, i.e., pressure level, low battery indicators, etc. Hence, the need for SLOW operation. When a monitored state requires attention, the system revs to full speed and performs as necessary. System C uses 33.0 mA

Based on the data above, the total current for all three subsystems' operation is 107.8 mA . Compared to the constant full speed operation of the original system, this 45 percent reduction in current consumption increases the estimated lifetıme of the battery supply approximately 80 percent.

Examining individual subsystem tasks, their priorities, and how often or how fast each job must be performed
allows development of a matrix of maximum subsystem frequencies and operating mode options. Intelligent system design must include the hardware control logic driven by well-defined software, and an established set of algorithms for determining allowable operating mode situations.

\section*{Support circuits for static design}

Circuits such as the 82C85 static clock controller/generator circuits provide control of static CMOS system operating modes and support full speed, slow, STOP-CLOCK, and STOP-OSCILLATOR operation. The 82C85 can also be used for general purpose clock control.

For static system designs, separate signals are provided on the 82C85 stop (S0, SI, S2/STOP) and start (START) control of the crystal oscillator and system clocks. A single control line (SLO/FST) puts the 82C85 and the rest of the system into the slow mode or lets it run at full speed. Automatic CPU MAXimum mode software HALT instruction decode logic in the 82C85 allows system control via software without additional hardware.

\section*{Placing control is critical}

The key to optimizing individual subsystem power and performance is to provide local control for each subsystem clock signal. The host system should have a means of controlling the operation of the subsystems under certain conditions (emergency power situation, fault at system level requiring system shutdown, etc. ). With an 82C85 in each static subsystem and a logical interface to the host computer, both local and remote control are performed.

Based on current monitored conditions, either the subsystem CPU or the host CPU determines each subsystem's operation in any of the four static modes. Once these decisions are made, the resident 82 C 85 controls the subsystem's clock.
In this example, how control can exist at both the remote and local levels in a distributed system is discussed. Using a parallel interface, the host can send a command to all subsystems at once. Dedicated decoders in each subsystem decode the command and provide the appropriate interrupt. Upon receipt of the interrupt command, the subsystem CPU determines which mode to enter.
The decoder outputs are dedicated to specific commands. Y1-Y2 control

Subsystem B and Y3-Y5 command Subsystem C. By splitting the command outputs, a single three-line interface controls both subsystems without additional enabling or decoding. Y6 and Y 7 are common to all subsystems.

These types of situations must be considered during the initial design phase. Host commands from the 82C59A Interrupt Controller, such as FAST, can be masked individually, allowing a subsystem to override the host in cases where the host tells the subsystem run fast but the subsystem determines slow is preferred. Time is wasted servicing a host SLOW interrupt when the subsystem is already slow. More power can be wasted when a stopped subsystem must be restarted ( typically FAST) to service a host STOP.

\section*{Hardware control is easy}

In the MAXimum mode (typically used in large system design), the CPU's output status signals (MEMORY READ, I/? WRITE, etc. ), indicate the operation being executed.
In HALT, the CPU stops operation, gives up the system bus, and waits for a signal to restart-a perfect time to enter into an alternate operating mode.
When the 82C85 status inputs (S0, SI, S2/STOP ) are connected to the CPU status output signals, it automatically recognizes the HALT status sequence. Depending upon the previously chosen state of the F/C (EFI/crystal) input, the 82C85 will enter either STOP-CLOCK or STOP-OSCILLATOR.
If the CPU is used in MiNimum, the 82 C 85 S 2 / STOP input is controlled by a single \(/\) / oline from a peripheral device. Connecting S 1 and S 0 to the +5 V line (VCC) and switching S2/STOP from high to low signals STOP. The 82C85 responds as described in MAXimum.
A third alternate mode is SLOW. In this mode, the system clock frequency is reduced to decrease system power. While the CPU static design allows operation between dc and 5 MHz , a reduced frequency is used for SLOW. The SLOW frequency equals the main oscillator frequency divided by 768 .

SLOW is controlled via the SLO/FST input, itself controlled by an I/O port or other control logic. When this line is held low for 195 OSC/EFI cycles, the 82C85 will output system clocks with a reduced frequency. This 195 OSC/EFI clock cycle restriction reduces the chance that system noise will cause a mode change. To return to full speed operation, the SLO/FST pin is held high for at least six OSC/EFI cycles.

To restart a system, START is output to the 82 C 85 . When the START input becomes active, the 82C85 will restart its crystal oscillator or the system clocks.

Once the clock signals are stabilized and synchronized, they're output to the CPU and system operation begins.
The START input is connected to the system's interrupt scheme or gated by a flag signal. When a significant external event occurs, a START command is issued, and the system restarts.

\section*{Response time is important}

Operating mode decisions are based upon two key criteria: power requirements and system performance. Each mode has its own power dissipation characteristic. Typically, power is the reason to choose an operating mode. Restart time and its impact on system performance must be considered.

In SLOW or STOP-CLOCK, response will be faster than in STOP-OSCILLATOR mode. The main 82C85 oscillator continues to run, providing instant or constant response to a system command.

The slow response when returning from the STOP-OSCILLATOR mode is due to the time necessary for the main oscillator to restart. In the STOP-OSCILLATOR mode, the 82C85 must wait for it to stabilize before allowing a clock signal to be sent to the CPU. This restart time typically runs from 0.5-3 msecs, compared to \(100-400\) nsecs for the STOPCLOCK and SLOW modes. This extra time, along with 82C85 synchronization circuitry, ensures clock signals meet system and device specifications.

From stop-OSCILLATOR, the 82C85 insures a valid CPU clock restart sequence in three ways. First, the hysteresis of a Schmitt trigger input is used at the crystal input to prevent the oscillator's signal from proceeding past that point until its amplitude has reached a predetermined level.

When the oscillator signal enters the 82 C 85 , the clock outputs remain inactive while an 8 K counter is incremented through the entire count sequence. During this sequence, harmonic and irregular cycles in the crystal oscillator's start-up can't be used to form the CPU clock signal. When the count is complete, internally developed system clock signals are negative-edge synchronized and released to the system.

\section*{Trade-off: power vs speed}

In designing a system, each mode should be evaluated not only for power but whether the mode's response time allows completion of the task in the given time period. (Examples: STOPCLOCK or SLOW require 20-40 times the current of STOP-OSCILLATOR and response time to a restart request is two orders of magnitude faster.)

If an input requiring service is received by a subsystem at a rate of 1 KHz , the system responds in 10 msec
intervals. Since the oscillator restart time is in the \(1-3 \mathrm{msec}\) range, (allowing 7-9 msecs for servicing the interrupt request), in this case the STOP-OSCILLATOR mode is a valid option.

If the frequency of the interrupting input increases to 10 KHz , then interrupts would require service at 1 msec intervals. This isn't enough time to guarantee oscillator restart and STOPOSCILLATOR operation would be ruled out. In this case, STOP-CLOCK or SLOW mode operation should be considered. Their response time of \(100-400\) nsecs allows system restart and servicing of interrupts within the 1 msec intervals.

Another area where a conscious decision to stop the system can be made is during \(A / D\) data conversions. When a command is given to an ADC to begin the conversion process, data may not be available for a length of time (20-70 \(\mu\) secs). This time period depends on the converter's speed, the sample-andhold structure, and the accuracy.

If the system is doing only this task, it can be stopped or slowed during the conversion delay time. A "conversion complete" signal from the ADC status output generates an interrupt request to restart the system. The main concern becomes which mode to use? This decision is based on the conversion time of the ADC and the response time of the system. If it's determined that a system shouldn't stop, then choose SLOW. Its response time is similar to STOP-CLOCK with only slightly higher power requirements.

\section*{Keep your system quiet}

CMOS can be a source of system noise. Since current flows only when a CMOS circuit switches, these switching transients result in noise on power supply and signal lines. The faster CMOS switches, the more noise.

Static system operating modes reduce system noise. With the system running at full speed, the +5 V line (VCC) is subject to significant noise.
In SLOW the VCC noise level goes down. Since the high frequency crystal oscillator is running, the average noise level remains relatively consistent. The frequency of the large noise transients is reduced since the main system clock frequency is lower and most system components switch at a lower rate.

The large current spikes occur with less frequency. In STOP-CLOCK, a similar situation seen in SLOW exists. The system isn't running but the oscillator continues and the general noise level remains high.

When the system goes into STOP-OSCILLATOR, all clocks and oscillators stop switching and the VCC noise drops to zero.

\title{
Microprocessor Family Turns to Low-Power CMOS
}

\author{
The 80C86 microprocessor adds a proven design and low power to high performance defense systems.
}

Next Month, Part II in this two-part series on microprocessors will examine the transition of the low-power 80C86 family to industry standard leadless chip carrier packages.
Walter Niewierski is a technical marketing engineer with Harris Corporation's Semiconductor Group, CMOS Digital Products Division, P.O. Box 883, MS 54-130, Melbourne, FL 32901.
CMOS equivalents of existing high performance circuits offer obvious advantages to the military system de-signer-allowing immediate reductions in critical system operating power, reduced power supply requirements, sealable enclosures, and lighter, higher density packaging. System reliability is improved due to lower ambient and junction temperatures and the high radiation tolerance of the cmos process. In the past, however, this power reduction usually came at the expense of lower system performance.

The new 80C86 products from Harris Semiconductor have been designed especially for high performance military systems. Initial device specifications for the product line include 5 MHz operation over the full \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) temperature range, with selected products available in 8 MHz versions. Upgrades of all circuits to 8 MHz compatibility are planned. MIL-STD-883B processing allows full implementation of CMOS products in military designs.

\section*{80C86 Functional Compatibility}

Full functional compatibility with existing 8086 NMOS/bipolar equivalents is provided in the 80 C 86 family. Programs that test original source


Harris Semiconductor will begin delivering the 80C86 mil-spec CMOS microprocessor and the six support chips by August. Additional parts will follow into fourth quarter 1983 to complete the family. The 80C86 is an exact replica of the NMOS 8086 processor, and takes advantage of existing software and support tools.
devices are being used to verify functionality and compatibility. In-system testing has been done by both the Harris Semiconductor CMOS Applications Group and selected external customer sites to verify functionality in a real system, real time environment providing an additional level of compatibility assurance.

Product compatibility with existing industry standard devices and development systems can immediately improve system performance with respect to power and reliability. Life spans of existing hardware and software designs can be extended by providing direct low-power, high performance upgrades for existing 8086based systems.

The unit's hardware interface and instruction set are compatible with proven design and development tools. Soft ware developed for projects using the 8086 can be used directly with the 80C86 family, reducing the manpower investment and resulting in decreased development time and cost. With standard software (Ada, Jovial, etc.) for military, defense, and aerospace applications, this software compatibility can result in significant savings in new and existing projects.

\section*{Worst Case Design for \\ Defense Applications}

As with all system components, cmos devices best perform within their specified operating conditions. The problem facing the designer is one of insuring these system operating conditions will not degrade device performance beyond the limits imposed by the design. Devices guaranteed to operate to specifications over "worst case ranges" make this task easier (for example, parameter limits guaranteed over the full temperature range and propagation delays guaranteed at realistic 100 to 300 pF capacitive loads as opposed to 15 to 45 pF ). All AC parameters are tested and guaranteed with worst case specified loads on the appropriate outputs.

The 80 C 86 product line has been designed for military applications; specific operation goals over the military temperature range were established and maintained throughout the design process. Performance is also guaranteed at worst case conditions, including operation over the power
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{CMOS 80C86 Microprocessor Family} \\
\hline \begin{tabular}{l}
Part \\
Type
\end{tabular} & Description & Scheduled Availability \\
\hline 80C86 & CMOS 16-Bit CPU & Aug '83 \\
\hline 82C54 & CMOS Programmable Interval Timer & Now \\
\hline 82C55A & CMOS Programmable Peripheral Interface & Now \\
\hline 82C59A & CMOS Priority Interrupt Contraller & Now \\
\hline 82 C 82 & CMOS Octal Latch & Now \\
\hline 82C84A & CMOS Clock Generator/Driver & Now \\
\hline 82 C 88 & CMOS Bus Controller & Now \\
\hline HD-6406 & CMOS PACI (UART/BRG) & Q3CY83 \\
\hline 82C89 & CMOS Bus Arbiter & Q4CY83 \\
\hline 82C83 82C86 82 C 87 & CMOS Inverting Octal Latch CMOS Bus Transceiver CMOS Inverting Bus Transceiver & Q4CY83 \\
\hline
\end{tabular}
supply voltage range and at the maximum rated loads. These worst case specifications insure reliable operation under adverse conditions such as extreme temperature variations, fluctuating power supply level, and heavy output load.
Limits specified for the 80 C 86 family \(A C\) and DC parameters reflect maximums and minimums over the entire military \(\left(-55^{\circ} \mathrm{C}\right.\) to \(\left.+125^{\circ} \mathrm{C}\right)\) temperature range. Capacitive loads are 100 to 150 pF for standard peripherals and 300 pF for the 82 C 82 and 82C88 bus interface devices, which interface directly with the system bus. These guarantees insure a system is designed to worst case specifications; no performance degradation calculations for guaranteed parameters will be needed during initial design; and, the system will operate properly over the full specified operating ranges.

\section*{Low-Power System Application}

The 80C86 CPU, operating in the maximum mode, is the focal point in the control module for flight navigation. Non-inverting octal latches ( 82 C 82 ) and transceivers ( 82 C 86 ) provide the address/data latching and buffering for the local bus. The 82C88 cmos bus controller provides the con-
trol signals for the on-board memory, both CMOS RAM and non-volatile CMOS PROM, and for the peripheral circuits.

\section*{CMOS Memory Options}

CMOS memory circuits offer the designer several options. The HM6516 , a \(2 \mathrm{~K} \times 8\) CMOS static RAM, offers a low operating power of 10 \(\mathrm{mA} / \mathrm{MHz}\), maximum, for military applications. Access times as low as 120 ns make this device compatible with many high-speed applications. Where increased performance is necessary, the HM-65162 asynchronous 16 K CMOS RAM can be used with an access time of 70 ns , maximum.
CMOS fuse link PROMS are used in this application because of the high reliability requirements of military systems. The long-term data retention characteristics of polysilicon fuses insure reliable operation in extreme environments. The low power ( 13 mA / MHz for the 16 K density CMOS PROM) and 150 ns access time provide the performance needed for this generation of CMOS systems.

\section*{Multiple CPUs}

Expanding system capabilities beyond the level available with a single


A typical flight control computer configuration based on the 80 C 86 microprocessor family is a full 5 MHz design. The device can also operate at lower speeds to provide even greater power savings. The 80C86 can directly replace the NMOS 8086 in existing designs.
processor can be accomplished in several ways. The addition of another CPU subsystem, along with the appropriate interface to allow common access to data, significantly improves system throughput. To accommodate this multiprocessing scheme, the 82 C 88 bus controller and the 82C89 bus arbiter provide the control and arbitration for the system bus. Inverting latches (82C83) and transceivers (82C87) meet the necessary functional compatibility for existing industry standard multiprocessor bus systems.

If there is no need to expand beyond a single board or enlarge to a multiprocessor system, the 80C86 can run in the Minimum mode, where decoded memory and I o signals are
available from the processor. This type of configuration eliminates the need for the 82 C 88 bus controllers and the additional multiprocessor interface circuitry.

\section*{Mixing Technologies}

Another way to increase system throughput. especially in cases where arithmetic functions and numeric data manipulation are critical, is to add an 8087 numeric coprocessor to the system. Although not available in CMOS, the device can be used in a cmos 80C86 system. providing the increase in power dissipation is acceptable.

The addition of the vMOS 8087 to the otherwise all-CMOS 80C86 system and the subsequent mixing of technol-
ogies is possible with the full TTL compatibility present on the 80 C 86 products. This compatibility on both inputs and outputs eases interfacing to NMOS and bipolar circuits. CMOS output drivers, along with the dual VOH specification, guarantee operation at CMOS and TTI logic levels.

\section*{Mil-Std Bus}

When data communication between subsystems is desired, but not necessarily at parallel bus speeds, a MIL-STD-1553 or alternate protocol Man-chester-based serial bus can be used. The addition of an HD-6406 programmable asynchronous communication interface ( PACl ) and an HD15530 Manchester encoder-decoder
(MED) form a high-speed serial link between several remote systems. Standard eight-bit data transfers can be accomplished in the non-1553 bus applications by using the military version of the HD-6409 Manchester en-coder-decoder-which allows more freedom than the MIL-STD-1553 bus for formatting the serial data.

The HD-6406 provides the UART parallel-to-serial/serial-to-parallel conversion function and bit rate generator in a single 40 -pin package. A 28 -pin version (82C52) will also be available for higher packing density applications. The HD-6406 functions are fully programmable through a micro-processor-compatible bidirectional bus, which has a maximum serial data rate of one megabaud (asynchronous transmission with a 16 X clock). The HD-15530 ( \(1.25 \mathrm{M}-\mathrm{bit} / \mathrm{sec}\) ) and the HD-6409's (1 M-bit/sec) maximum data rates can fully support a one M-bit serial bus interface for military applications.


\section*{Peripheral Monitor and Control Functions}

Several peripheral functions monitor system \(1 / \mathrm{O}\) and timing control. The 82C55A programmable peripheral interface can be used for display control or for information passing between subsystems, using the bidirectional handshaking mode. Upon RESET, the 82 C 55 A port pins become defined as inputs. If these inputs are not used or will eventually become outputs, they have no driving source and are in an undefined, or "float," condition.


Both the 80C86 and the 82C55A use this on-chip "bus-hold" circuitry to provide valid input voltages to specific inputs without using external resistors.

Undefined input voltage levels are forbidden in CMOS system design. Undefined input states allow the input circuitry to "float" within the devices' active regions. Unfortunately, floating CMOS inputs tend to migrate toward the threshold voltage and increase ICC substantially. All CMOS inputs, if unused, must be tied to VCC or GND to avoid oscillation and high ICC conditions.

Pull-up/pull-down resistors are the most common method for defining CMOS inputs when no driving source is present. But, this technique has several disadvantages. Additional components (resistors) are necessary, which increase production costs and reduce overall reliability. Higher power operation can actually occur when using pull-up/down resistors. Since the driving circuit must supply the current needed when switched to the opposite state of the pull-up/down resistor, the result can be a significant increase over normal cmos input leakage current levels of \(1 \mu \mathrm{~A}\).

\section*{Bus-Hold Circuitry}

To avoid the need for external resistors and eliminate the high power effects of floating inputs, the 82 C 55 A , along with the 80 C 86 CPU , uses onchip "bus-hold" circuitry to provide valid input voltages to specific inputs; this is important when there is no driving source (i.e., a no-connect or a driving input that goes to a high impedance state). The bus-hold cir-
cuits maintain these pins at a Logic One level internally and externally until they are defined as outputs or are overdriven by an external source.

An external driver must be capable of supplying \(300 \mu \mathrm{~A}\) minimum sink or source current at valid input voltage levels in order to overdrive the bus-hold circuits. Since this circuitry is active and not a passive pull-up resistive-type element, the 82 C 55 A , standby current is kept to \(10 \mu \mathrm{~A}\), maximum.

System needs and overall compatibility dictated the placing of bus-hold circuits on specific devices. The 80C86 CPU has bus-hold devices on selected pins (ADO-ADI5, etc.), which are common to the local bus - This eliminates the compounding of the overdrive current necessary if all 80C86 family members had bus-hold circuitry, and keeps all current requirements within TTL/ LSTTL capabilities.

\section*{Gated Inputs}

The 82C82 octal latch also has specialized input circuitry to minimize power dissipation and help eliminate the need for external resistors. Gated inputs minimize the effects on the ICC from switching and undefined inputs. This gating function, initiated by the falling edge of the strobe (STB) input, disconnects the input inverter from the vCC by turning off the upper P channel (Q1) and lower N -channel (Q2). Thus, there is no current path, other than leakage, between VCC and


Gated inputs on the 82C82 octal latch eliminate extraneous current spikes due to input conditions unrelated to latch operation. While data is latched, floating inputs can be directly connected to the 82C82 inputs without using pull-up resistors.


For power critical applications where power is reduced to the point that even tull-tıme operation at reduced frequency is not desirable, the 80C86's static circuitry allows the clock to be stopped.

GND during input transitions when data is latched in the 82 C 82 . Internally, logic states are held valid by the feedback logic signal in the circuit's latch section.

Input gating also isolates the driving source from the internal circuitry. Invalid logic states from floating inputs cannot be transmitted to succeeding stages when the inputs are turned off, eliminating the need for
pull-up resistors when data is latched.
In an 80C86 system, the sTB input is driven by an ALE (address latch enable). At 5 MHz , the high pulse width of the ALE is 98 ns or approximately 15 to 20 percent of the bus cycle period. Therefore, 82C82 inputs are disabled 80 percent of the time. During this time, ICC transients from input switching are eliminated, resulting in a lower operating current.

Polled or On-Demand Data Sensing
The 82C59A priority interrupt controller and the 82C54 programmable interval timer manage system interrupt and polling control functions. Two methods, used either separately or concurrently, are available for controlling the system sequencing of data acquisition. Polled acquisition or in-terrupt-driven data taking can be accomplished with the circuit described.

The 82C54 timer can be programmed, using single or multiple 16-bit timers (three per package), to provide an input to the 82 C 59 A interrup! controller and cause execution of a data acquisition software routine. This procedure can be repeated by using the 82C54 in the rate generator mode (Mode 2), inverting the signal, and inputting it to the 82 C 59 A programmed for edge-triggered inputs.

If certain functions must be executed only every vth cycle, the 82C54 Timer 0 output (OUT 0 ) can be fed into the clock of Timer 1 (CLK 1). Timer I can be programmed to operate as an event counter (Mode 0 interrupt on terminal count) and interrupt the 82C59A every Nth count.

The 82 C 59 A is also used for control of other external interrupts such as emergency conditions like engine over-temperature, pressure high/low, and other on-demand situations. If desirable, the repeated interrupt for polling purposes can be disabled by using the 82C59A's interrupt masking ability, which only allows generation of critical situation interrupts.

The 82C59A interrupt inputs can be prioritized. When both polled and on-demand sequences are used concurrently, the on-demand emergency situations would be considered highest priority.

\section*{Tailoring Low-Power System Operation}

Several circuit design techniques can be valuable in examining lowpower operation at the system level. CMOS is only a first step. Significant reductions in system-level power consumption can be realized if proper design approaches are taken.

In an aircraft situation, power is not normally a problem. If, however, the microsystem power fails independent of the main aircraft power, full

\section*{MICROPROCESSORS: PART I}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{15}{|c|}{CMOS/NMOS/Bipolar Parametric Comparison} \\
\hline & \begin{tabular}{l}
CMOS \\
80C86
\end{tabular} & NMOS 8086 & CMOS 82C54 & NMOS 8254 & \[
\begin{aligned}
& \text { CMOS } \\
& 82 \mathrm{C} 55 \mathrm{~A}
\end{aligned}
\] & \begin{tabular}{l}
NMOS \\
8255A
\end{tabular} & \[
\begin{aligned}
& \text { CMOS } \\
& 82 C 59 A
\end{aligned}
\] & \begin{tabular}{l}
NMOS \\
8259A
\end{tabular} & \begin{tabular}{l}
CMOS \\
82C82
\end{tabular} & Bipolar 8282 & \begin{tabular}{l}
CMOS \\
82C84A
\end{tabular} & \[
\begin{aligned}
& \text { Bipolar } \\
& \text { 8284A }
\end{aligned}
\] & \begin{tabular}{l}
CMOS \\
82C88
\end{tabular} & \[
\begin{gathered}
\text { Bipolar } \\
8288
\end{gathered}
\] \\
\hline VIH & 2.2 V & 2.0 V & 2.2V & 2.0 V & 2.2 V & 2.0 V \\
\hline VIL & 0.8 V \\
\hline VOH & \[
\begin{aligned}
& 3.0 \mathrm{~V} / \\
& \mathrm{VCC} \\
& 0.4 \mathrm{~V}
\end{aligned}
\] & 2.4 V & \[
\begin{aligned}
& 3.0 \mathrm{~V} / \\
& \mathrm{VCC} \\
& 0.4 \mathrm{~V}
\end{aligned}
\] & 2.4 V & \[
\begin{aligned}
& 3.0 \mathrm{~V} / \\
& \mathrm{VCC} \\
& 0.4 \mathrm{~V}
\end{aligned}
\] & 2.4 V & \[
\begin{aligned}
& 3.0 \mathrm{~V} / \\
& \mathrm{VCC} \\
& 0.4 \mathrm{~V}
\end{aligned}
\] & 2.4 V & 2.9 V & 2.4 V & \[
\begin{aligned}
& \text { VCC } \\
& 0.4 \mathrm{~V}
\end{aligned}
\] & 2.4 V & \[
\begin{aligned}
& 3.0 \mathrm{~V} / \\
& \mathrm{VCC} \\
& 0.4 \mathrm{~V}
\end{aligned}
\] & 2.4 V \\
\hline IOH & \[
\begin{aligned}
& -2.5 \mathrm{~mA} / \\
& -100 \mu \mathrm{~A}
\end{aligned}
\] & \(-400 \mu \mathrm{~A}\) & \[
\begin{array}{|l}
-2.5 \mathrm{MA} / \\
-100 \mu \mathrm{~A}
\end{array}
\] & \(-400 \mu \mathrm{~A}\) & \[
\left\lvert\, \begin{aligned}
& -2.5 \mathrm{~mA} / \\
& -100 \mu \mathrm{~A}
\end{aligned}\right.
\] & \(-400 \mu \mathrm{~A}\) & \[
\begin{aligned}
& -2.5 \mathrm{~mA} / \\
& -100 \mu \mathrm{~A}
\end{aligned}
\] & \(-400 \mu \mathrm{~A}\) & -8mA & -5mA & \(-2.5 \mathrm{~mA}\) & -1mA & \[
\begin{aligned}
& -8 \mathrm{~mA} / \\
& -2.5 \mathrm{~mA}
\end{aligned}
\] & \(-5 \mathrm{~mA}\) \\
\hline VOL & 0.4 V & 0.45 V & \[
\begin{aligned}
& 0.5 \mathrm{~V} / \\
& 0.4 \mathrm{~V}
\end{aligned}
\] & 0.5V \\
\hline IOL & + 2.5 mA & \(+2.5 \mathrm{~mA}\) & \(+2.5 \mathrm{~mA}\) & - 2 mA & : 2.5 mA & \(+2.5 \mathrm{~mA}\) & \(+2.5 \mathrm{~mA}\) & \(+2.2 \mathrm{~mA}\) & \(+8 \mathrm{~mA}\) & - 32 mA & +2.5mA & + 5 mA & \[
\begin{gathered}
+20 \mathrm{~mA} / \\
+8 \mathrm{~mA}
\end{gathered}
\] & \[
\begin{aligned}
& +32 \mathrm{~mA} \\
& +16 \mathrm{~mA}
\end{aligned}
\] \\
\hline ICCSB & \begin{tabular}{l}
\(500 \mu \mathrm{~A}\) \\
Typical
\end{tabular} & Not Applicable & \(10 \mu \mathrm{~A}\) & 140 mA & \(10 \mu \mathrm{~A}\) & 120 mA & \(10 \mu \mathrm{~A}\) & 85 mA & \(10 \mu \mathrm{~A}\) & 160 mA & \(10 \mu \mathrm{~A}\) Typical & 162 mA & \(10 \mu \mathrm{~A}\) & 230 mA \\
\hline ICCOP & \begin{tabular}{l}
40 mA \\
@ 5 MHz \\
Typical
\end{tabular} & 340 mA & \begin{tabular}{l}
\[
\begin{aligned}
& 1 \mathrm{~mA} / \\
& \mathrm{MHz}
\end{aligned}
\] \\
Typical
\end{tabular} & 140 mA &  & 120 mA & \begin{tabular}{l}
1 mA \\
MHz \\
Typical
\end{tabular} & 85 mA , &  & 160 mA & \begin{tabular}{l}
40 mA \\
@ 25 MHz
\end{tabular} & \[
\begin{gathered}
162 \mathrm{~mA} \\
@ \\
25 \mathrm{M} \mathrm{~Hz}
\end{gathered}
\] & \[
\begin{aligned}
& 1 \mathrm{~mA} / \\
& \mathrm{MHz}
\end{aligned}
\] & 230 mA \\
\hline \(C_{L}\) & 100 pF & 100 pF & 150 pF & 150 pF & 150 pF & 150 pF & 100 pF & 100 pF & 300 pF & 300 pF & \[
\begin{aligned}
& 100 \mathrm{pF} / \\
& 30 \mathrm{pF}
\end{aligned}
\] & \[
\begin{gathered}
100 \mathrm{pF} / \\
30 \mathrm{pF}
\end{gathered}
\] & \[
\left\lvert\, \begin{gathered}
300 \mathrm{pF} / \\
80 \mathrm{pF}
\end{gathered}\right.
\] & \[
\begin{gathered}
300 \mathrm{pF} / \\
80 \mathrm{pF}
\end{gathered}
\] \\
\hline & & & & & & & & & & & & & & \\
\hline
\end{tabular}
navigation controls can remain intact and operational with the 80 C 86 cmos control system. With a backup battery power supply, the power sensing unit can transfer the system from main power operation to battery supply With system power levels approximately 10 percent of equivalent NMOS/bipolar circuits, full 5 MHz operation can be maintained.

As primary power is diminished (battery discharging) or removed (power interruption-battery backup operation) in portable or remote bat-tery-powered applications, running at a lower frequency to conserve power becomes important. Operating power is critical in low-power applications, and CMOS operating power is directly related to frequency.

With the 80 C 86 family's static design, power requirements can be user controlled; lowering the frequency reduces power. Static design (i.e., no internal dynamic registers needing constant clocking or refresh) allows operation from DC to the individual device's maximum rated frequencies.

The cmOS 80C86 static design allows the system clock to drop to a lower frequency ( 100 kHz , for example), making full computational and data manipulation powers available while significantly reducing system power consumption. This low frequency operation is not available with most NMOS processors, including the nmOS 8086 where 2 mHz is the minimum allowed clock frequency. Dynamic register designs in the NMOS CPUs need to be refreshed at a minimum rate and do not allow low operating frequencies.

Typical operating power for the 80 C 86 CPU at 5 MHz is 40 mA , derated linearly as frequency drops (approximately 2 mA at 100 kHz ). Similar deratings are also valid for the power dissipations of the peripheral, support, and memory circuits.

Finally, given a power critical situation where power is diminished to the point that even low frequency, fulltime operation is undesirable, the 80C86's static internal circuitry allows clocks to be stopped. This capability eliminates the power dissipation associated with switching, and reduces device currents to standby levels. With static DC operation, individual peripheral device standby currents are
guaranteed to be less than \(10 \mu \mathrm{~A}\), with the 80C86 CPU typically less than \(500 \mu \mathrm{~A}\).

Static design can also stop and single-step the system clock during system prototyping. This debug method allows the designer to inspect the system bus and examine specific operations. The real time complications of 5 MHz bus transfers are eliminated and system debug is simplified.

\section*{Stopped Clock Power Savings}

Although the 82C84A clock generator's 40 mA ICC limit is significantly lower than the bipolar 8284A's 162 mA limit, it is still the largest, single power user in a cMOS 80C86 system; this is due to the high frequency of


Power curves for the 82C84A show the effects of both frequency and voltage decreases on the ICC.
operation ( \(15 ; 24 \mathrm{MHz}\). crystal frequency for \(5 / 6 \mathrm{MHz}\) system frequency) and the non-ideal waveform of the crystal signal.

When using the 82 C 84 A in a stopclock application, the external frequency input (EFI) mode of operation must be used. The 82C84A clock generator has a minimum crystal frequency of 2.4 MHz (corresponding to 800 kHz system frequency) for internal oscillator operation. The EFI input
allows use of an external clock to provide the main timing. This external clock is processed through the same internal 82 C 84 A circuitry as the crystal oscillator input, so timing within the system remains the same.
An additional benefit, critical to the successful design of a stop-clock circuit, is the 82 C 84 A 's reduced operating power when using an external frequency source to drive the EFI input.

With X1 and X2 crystal operation the input transistors spend a greater percentage of time in the active region due to the sinusoidal nature of the crystal circuit. Driving the EFI input to VCC and (iND) levels with an external source more effectively turns internal circuitry on and off, resulting in decreased operating power.
The clock frequency reduction must be properly timed to meet minimum 80 C 86 clock high- and low-time requirements. Therefore, along with the appropriate divide-down circuitry needed to provide the proper lower frequency, synchronization between the low frequency signal line and the control circuitry is necessary. Care must be taken to avoid cases of asynchronous timing errors caused by irregular clocks that are outside the CPU specification limits.

The 82C55A PPI provides the parallel CPU interface to the control circuitry. An interrupt from the 82C59A priority interrupt controller can provide the start-up signal for the system clock control circuitry. The 82C59A allows prioritizing and masking of interrupting sources so that, during the time the system is stopped, only the most critical signals may restart the processor.

\title{
High Density Leadless Chip Carrier Packages Increase Reliability, Save Weight
}

\section*{A military CMOS 16-bit microprocessor packaged in LCCs reduces operating temperatures, size, and weight, adding to that family's low-power advantages.}

\author{
By Walter J. Niewierski and Jeffrey M. Wilkinson
}

Reprinted from Defense Electronics July 1983, Copyright 1983. E.W. Communications Inc. \({ }^{\odot}\) All rights reserved.

Last month, DE looked at the 80C86 family, which adds low-power CMOS to a proven design for high performance defense systems. This month, Part II in this two-part series on microprocessors will examine that family's transition to industry standard leadless chip carrier packages.

Just as critical as power consumption is packaging technique. The low-power operation of the CMOS 80 C 86 family, along with memory and support chips, allows for design of sealed, portable system enclosures. In turn, this type of packaging reduces operating temperatures and minimizes hostile external environment effects, increasing system reliability.

\section*{System Level Reductions}

Replacing higher power devices with their CMOS equivalents can reduce system "hot spots" caused by localized high dissipation circuits. A direct replacement with low-power CMOS components will significantly reduce system ambient temperatures. Using the power supply current requirements of the CMOS 82C88 and bipolar 8288 bus controller, along with a typical \(\theta \mathrm{jA}\) (junction to ambient temperature rise with respect to power dissipation) of \(50^{\circ} \mathrm{C} / \mathrm{w}\), the following device temperature comparison can be made:
\[
\mathrm{T}=\theta \mathrm{j} \mathrm{~A} \times \text { power dissipation }+\mathrm{T}_{\mathrm{A}}
\]
\[
\begin{array}{ll}
\text { For }= & 50^{\circ} \mathrm{C} / \mathrm{W} \times(230 \mathrm{~mA}) \\
\text { bipolar } & \times 5.5 \mathrm{~V}+125^{\circ} \mathrm{C}
\end{array}
\]
\[
\begin{aligned}
= & 50^{\circ} \mathrm{C} / \mathrm{W} \times 1.265 \mathrm{~W} \\
& +125^{\circ} \mathrm{C}
\end{aligned}
\]


Leadless chip carriers attached to a ceramic dual-in-line substrate allow Harris Semiconductor to package the complete 16-bit CMOS microprocessor as a single unit. Harris has already used this packaging concept to produce \(64 K\) - and 256 K-bit RAM arrays based on 16 K and 64 K chips. All these LCC packaged products are military qualified.


Package weights and area for LCCs are compared to equivalent ceramic dual-in-line packages.
crease in the mean time between failure (MTBF). The MTBF equation shows the direct relationship of the failure rate and temperature:
\(\mathrm{MTBF}_{\mathrm{T}}=\mathrm{e}^{\mathrm{EA} / \mathrm{KT}}\)
where \(\mathrm{MTBF}_{\mathrm{T}}=\mathrm{MTBF}\) at temperature T
\[
\begin{aligned}
\mathrm{EA} & =\text { activation energy }(\mathrm{ev}) \\
\mathrm{K} & =\text { Boltzman's constant } \\
\mathrm{T} & =\text { absolute temperature }\left({ }^{\circ} \mathrm{K}\right)
\end{aligned}
\]

Similar increased MTBF numbers can be estimated for system operation when system ambient temperatures are reduced by CMOS circuits.

With decreased system temperatures, the need for special cooling equipment and enclosure openings can be eliminated or reduced. The use of cooling techniques such as heat pipes, liquid coolants, heat sinks, and louver assemblies can add weight and volume to systems. Besides these physical disadvantages, the lower reliability of electromechanical operation and the system's exposure to hostile environments adds an additional risk factor to system reliability. CMOS systems can keep the system operating temperature
to lower levels, enabling the use of sealed enclosures with a minimum of cooling.

Temperature also affects circuit and system performance. CMOS leakage currents and, therefore, standby power dissipation increase at the high end of the temperature range. Performance also degrades because of increased channel resistances on the P - and N channel transistors. Keeping the system ambient temperature low results in an improved overall performance.

Replacing existing circuits with lowpower CMOS offers many benefits. However, the system environment remains constant - that is, compatible with NMOS/bipolar operation. Power supplies, cooling equipment, and enclosure size and weight all remain the same.

In order to optimize the reductions possible in weight and cost and increase reliability, the system must be designed with low power in mind. Smaller system power supply requirements and lower temperatures eliminate the need for cooling components.

\section*{Device Level Miniaturization}

Decreasing an individual device's package can lead to miniaturization and portability. Flatpacks and DIPs are the main packages used in military system designs. However, leadless chip
carriers (LCC) have recently become popular because of their small size and light weight.

The trend toward using dual-in-line packages has proven sufficient in most applications. But, where very light and small, complex electrical functions are required, LCCs offer space and flexibility. DIPs occupy approximately three times the space an LCC package uses for the same pin count. And unlike an LCC package, the DIP has leads that can bend or break, adding a parasitic resistance and capacitance.
The introduction of flatpacks to military applications proved an alternative to the DIP package in reducing board space requirements. But, flatpack costs are high because of the large amounts of gold used in the package plating. Long lead length and narrow spacing also require special carriers for handling. And, when soldering to printed circuit boards, the long lead length permits package vibration, which could affect the reliability of the leads or their solder connections.

Leadless chip carriers offer small package sizes, no leads to bend or break, and premium electrical performance due to full parametric testing allowed at the package level. For critical military applications, MIL-STD-883B, group A, B, C, and D can be applied to leadless chip carriers in a method
similar to those applied to dice packaged in a size-brazed DIP.

Many devices cannot be manufactured in LCCs or must be placed in larger pad count carriers because of bipolar and NMOS technologies' excessive power dissipations. But with CMOS, power dissipation is reduced optimizing package size and pin count.

The leadless chip carrier pinout definitions for the cmOS 80C86 family follows, for the most part, predefined pinout and package assignments as established by the original NMOS source. With certain device types, specifically the original source products, larger than necessary packages were used. For example, the 8282 octal latch, 8284 A clock generator, and 8288 bus controller are packaged in 28 -pad LCCs, while 20 -pad LCC packages are standard for the 82 CXX CMOS equivalents. One of the main reasons for using this enlarged package for bipolar devices is its higher-than-CMOS power dissipation. With CMOS' lower power characteristics, however, minimum package sizes can be achieved. Using 20 -pad LCCs for the cmos versions of the above devices allows for maximum system packing density.

Leadless chip carriers for high density packaging and minimized pad counts further reduce board space and weight in high density systems. In addition, LCC packages' reduced package lead lengths and interconnect lower the parasitic inductance of the circuitry. Parasitic inductance is a major contributing factor to noise in high-speed CMOS system designs (See sidebar, "System Noise Reduction in High-Speed cmos Design").

\section*{LCC Assembly Techniques}

The relatively recent revival of the LCC package, along with the advantages of implementing these packages on printed circuit boards and substrates, allows designers a high-density packaging option. To ease the transition from conventional DIP/PCB assemblies to the LCC/PCB packaging option, the designer must understand the differences between the two packaging technologies.

\section*{Substrate Material Selection}

The basic concern for selection of the substrate material is matching the


Pinouts for the 80C86 CMOS microprocessor family are similar to the more familiar pinouts used for conventional flatpacks.

\section*{CMOS vs NMOS Power Requirements}
\begin{tabular}{lllr}
\begin{tabular}{ll} 
Part \\
Type
\end{tabular} & Description & \begin{tabular}{c} 
CMOS Operating \\
Power Supply Current
\end{tabular} & \begin{tabular}{c} 
NMOS/Bipolar Equiv. \\
Power Supply Current
\end{tabular} \\
80C86 & CMOS 16-Bit CPU & 40 mA & 340 mA \\
82C54 & CMOS Interval Timer & 5 mA \\
82C55A & CMOS Parallel Interface & 1 mA & 140 mA \\
82C59A & CMOS Interrupt Controller & 1 mA & 120 mA \\
HD-6406 & CMOS UART/BRG & 3 mA & 85 mA \\
82C82 & CMOS Octal Latch & 1 mA & 100 mA \\
82C83 & CMOS Octal Latch (Inv) & 1 mA & 160 mA \\
82C84A & CMOS Clock Generator & 25 mA & 160 mA \\
82C86 & CMOS Bus Transceiver & 1 mA & 162 mA \\
82C87 & CMOS Bus Transceiver (Inv) & 1 mA & 160 mA \\
82C88 & CMOS Bus Controller & 5 mA & 130 mA \\
82C89 & CMOS Bus Arbiter & 5 mA & 230 mA \\
\hline Approx. System Power Supply Current & 89 mA & 165 mA \\
\hline
\end{tabular}

80C86 Family Package Comparisons
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Part Type & \[
\begin{gathered}
\text { DIP } \\
\text { Pin Count }
\end{gathered}
\] & LCC Pad Count & DIP Area (Sq. In.) & LCC Area (Sq. In.) & DIP Weight (Gr.) & LCC Weight (Gr.) \\
\hline 80C86 & 40 & 44 & 1.2 & 0.423 & 10.92 & 1.18 \\
\hline 82C54 & 24 & 28 & 0.75 & 0.198 & 6.48 & 0.55 \\
\hline 82C55A & 40 & 44 & 1.2 & 0.423 & 10.92 & 1.18 \\
\hline 82C59A & 28 & 28 & 0.997 & 0.198 & 7.56 & 0.55 \\
\hline HD-6406 & 40 & 44 & 1.2 & 0.423 & 10.92 & 1.18 \\
\hline 82C82 & 20 & 20 & 0.3 & 0.123 & 2.9 & 0.34 \\
\hline 82C83 & 20 & 20 & 0.3 & 0.123 & 2.9 & 0.34 \\
\hline 82C84A & 18 & 20 & 0.283 & 0.123 & 2.48 & 0.34 \\
\hline 82C86 & 20 & 20 & 0.3 & 0.123 & 2.9 & 0.34 \\
\hline 82C87 & 20 & 20 & 0.3 & 0.123 & 2.9 & 0.34 \\
\hline 82C88 & 20 & 20 & 0.3 & 0.123 & 2.9 & 0.34 \\
\hline 82C89 & 20 & 20 & 0.3 & 0.123 & 2.9 & 0.34 \\
\hline \multicolumn{3}{|l|}{System Area/Weight Summary} & 7.43 Sq. In. & 2.526 Sq. In. & 66.68 Gr. & 7.02 Gr. \\
\hline
\end{tabular}

\section*{Material Thermal Properties}
\begin{tabular}{lc} 
& Material Thermal Properties \\
Substrate Material & \begin{tabular}{c} 
TCE
\end{tabular} \\
Alloy 42 & (in./in. \(/{ }^{\circ} \mathbf{C} \times \mathbf{1 0}^{-6}\) ) \\
96\% Alumina & 5.3 \\
94\% Alumina & 6.3 \\
92\% Alumina & 6.4 \\
Copper Clad Invar & 6.4 \\
99.5\% Be0 & 6.4 \\
Low Carbon Steel & 6.4 \\
Polyimide G30 & 12.0 \\
Epoxy/Glass G10 & 14.3 \\
Triazine G40 & 15.8 \\
CDA 101 Copper & 16.0 \\
6061 Aluminum & 17.3 \\
\end{tabular}

\section*{Comments}
\(42 \%\) Ni, Balance Fe
Industry Standard Industry Standard

Expensive
Porcelanized Industry Standard Industry Standard Industry Standard Very High TCE Very High TCE
linear thermal coefficient of expansion (TCE). Matching the TCEs is critical to attaching an LCC to a substrate when the assembly must be able to survive the number of thermal cycles typical of military applications and testing. When the LCC is soldered on a board, the solder interface is not only the electrical contact but the mechanical connection as well.

When the TCEs of both the package and mounting substrate are not properly matched, thermostatic deflection (warp) can occur during temperature cycles. When these two materials warp, torque is directed to the solder joints, which results in a fatigued mechanical/ electrical connection. This problem becomes even more apparent as the LCC pin count increases. Larger package and substrate sizes result in higher stress levels. The selection and use of board material should follow this general rule: The larger the difference between the TCEs of the two materials used (the LCC and the substrate material), the smaller the substrate surface area should be. Available materials range widely in cost and TCE characteristics.

\section*{Printed Circuit Considerations}

After selecting the substrate material, the printed circuit trace geometries should be investigated. The circuit traces for LCC foot pads should be the same size as the metallization on the bottom of the LCC and slightly longer to the outer edge of the package. This metallization allows the solder, when heated to the reflow temperature, to wet both the base contacts and the LCC package's castellations.

The outer surface of the solder deposit forms a fillet where it extends over the metallization pad on the substrate's surface, strengthening the mechanical bond. This type of bond raises the LCC away from the board's mounting surface to facilitate cleaning the residual flux and debris under the package.

To optimize packaging density, relatively tight geometries in layout are of concern. Leadless package layouts often require \(.010-\mathrm{in}\). lines, 010 -in. spaces between lines, and \(.020-\mathrm{in}\). or smaller feed-through holes. The pads that connect to the LCCs are typically .020 -in. wide, and are .050 -in. center to


Printed circuit board metallization should extend beyond the LCCs outer edge. This extension permits molten solder to flow up the castellated regions, and to form a fillet of solder to complete the electrical connection while strengthening the mechanical bond.
center. This spacing allows one \(.010-\mathrm{in}\). line at \(.010-\mathrm{in}\). spacing to be run between the LCC mounting pads.

If lines are run close to other metallization, a solder mask should be used on the board to prevent solder bridging during the reflow process. When using multilayer boards or substrates, a clean layout can be made by allocating the surface layer metallization exclusively to LCC mounting padseliminating the need for a solder mask and reducing the concern for solder bridging. Electrical noise problems can be diminished by power gridding the supply buses on a unique layer while routing signal lines on other layers of the substrate.

\section*{LCC Mounting Techniques}

Socketing and soldering directly to the board are the two methods possible for mounting LCCS on circuit boards. In military applications, socketing becomes a disappointing compromise for LCC mounting because of the socket's bulky size. An LCC socket has its place in less critical applications, but can severely sacrifice packing density, and falls short of the stringent environmental testing required by most military applications. Direct LCC to substrate
mounting is the most reliable method for assembly.

The basic principle for attaching LCCs to boards and substrates is reflow soldering. Both the leadless package I/O metallization and the interconnecting substrate metallization are pretinned with solder; the two are then mated and heated by one of a number of means. Surface tension and the cohesive properties of the molten solder align the package over the substrate metallization. The assembly is then cooled, making complete the electrical/mechanical bond.

The best results are usually obtained from reflow soldering, and when both the LCC and the metallization on the substrate it is to be attached to are pre-tinned. The LCC package pads can be pre-tinned by fluxing and dipping. The substrate pads are usually tinned by wave soldering or screening on a solder paste.

When using a wave solder tinning approach, and after the substrate has been tinned, an adhesive must be applied temporarily to hold the LCC in place over the substrate metallization during the reflow process.

In implementing the screened on solder paste technique, the paste is


\section*{System Noise Reduction in High-Speed CMOS}

The majority of current flow in an all CMOS system is transient by nature, occurring on the waveform edges or transitions where instantaneous demand for current occurs. These current transients result from:
- charging and discharging of output load capacitance
- simultaneous P -channel and N -channel switching

The currents generated by these switching conditions can be large and cause noise on the power supply lines. However, the current's magnitude is not the only factor in determining the size of VCC/GND variations - The time period over which this current is switched is also critical. If this time period is relatively long, the current can be categorized as steady or bulk current, and the transient effect on the power supply voltage is minimal.

However, as the time period decreases, these inductance effects begin to play a more important role. The relationship of time and inductance are given by:
\[
V=L^{d i} / d t
\]

Switching the same amount of current more quickly will have as great an effect on the VCC as an increase in the magnitude of the current change in the same time period. As propagation delays and output rise/fall times decrease, the effect of the related inductance becomes more significant.
The parasitic inductance is a result of system interconnect, socket, decoupling capacitor, and device package contributions. The inductance must be minimized to reduce this transient effect. The main sources of inductance are lead lengths (both IC and decoupling capacitor), PC board interconnect (VCC to capacitor to GND), and the capacitor, itself.
Although the designer can do little about standard IC packaging and lead length, manufacturers can employ several techniques for controlling the IC's parasitic inductance. Matching device size to package cavity area allows minimum bond wire lengths in assembly. Doubling the VCC and GND bond wire interconnect also reduces parasitic inductance effects within the package.

Printed circuit board runs should be kept to minimum lengths with VCC and GND lines \(3 / 16-\mathrm{in}\). to \(5 / 16-\mathrm{in}\). wide to reduce power line inductance. In prototype circuits, extra care should be taken in limiting wire length and including sufficient decoupling since the wire and socket lead length add inductance beyond that normally found in PC boards. Low inductance capacitors and socket elimination will help control system related inductance.
-W.J.N. \& J.M.W.
applied to the substrate contacts using a screen printing technique. Normally, a layer of "wet" paste, eight to nine mils thick, is deposited on the substrate contacts. Then the contact area, covered with paste, is air dried until tacky before the LCC is attached. The LCC is then mounted to the corresponding contacts manually or by automatic placement.

One important step in the LCC assembly process is baking the populated substrates dry before soldering, which allows the air and flux pockets in the paste to evacuate, minimizing the volatility effects in a vapor phase soldering operation. This process is vital because unevacuated flux pockets will cause the package to float during the reflow operation. Floating affects the package's positioning properties, and an unacceptable package alignment can occur. Also, the liquid vehicle of the solder paste is evaporated and the LCC is temporarily held to the substrate by the paste, which is now dry.

LCC placement on the substrate is not as critical as it might appear. During the reflow process, the dried solder paste holds the LCC in place while the paste reaches the reflow temperature. During this process, the surface tension of the solder will pull the LCC into alignment over the substrate contacts. The placement must be accurate enough to insure the LCC solder pads do not overlap the adjacent interconnect on the metallization below.

Heat must be applied to melt the solder and connect the LCC and the substrate. Methods such as belt furnaces, heated air chambers, and infrared radiated heat techniques can be used, but are not finding widespread acceptance. The most popular heating method for high-volume production is the vapor phase reflow technique.

In vapor phase reflow, the populated substrate to be soldered is lowered into a saturated vapor above a pool of high boiling point, flourinated hydrocarbons. Usually, vapor phase soldering systems have two operation zones. The primary zone is used for heating; the secondary zone is used as an intermediate cooling and cleansing zone before the assembly is removed from the soldering operation.

As the board is lowered into the primary zone, the solder joints are reflowed uniformly by the vapor, condensing over the suriace of the substrate, which gives up its latent heat from vaporization. This thermal exchange heats the board quickly and evenly. When the substrate is raised into the secondary zone, the now condensed fluid from the primary zone drips off the board into the boiling liquid below. The substrate assembly exits from the process, uniformly oldered, dry, and relatively clean.

Cleaning the soldered assembly should be performed immediately after the vapor phase reflow process while the boards are still hot. Uncongealed residue can be easily removed at this time, resulting in thorough cleaning.

Another reflow technique employs hot solder oil. The substrate with positioned LCCs are fully immersed in a hot oil bath to bring the solder and parts up to the reflow temperature quickly. The assembly is then removed from the oil and allowed to cool. Rinsing the assembly afterwards removes residual oil and excess flux. This technique is useful for experimentation and low-volume production because of its relatively small capital investment.

\section*{LCC Assembly Rework}

The repair and replacement of a failed device packaged in an LCC is important in chip carrier assembly processes. The advantages in rework stem from the ease of reflow soldering. Since there are no leads on LCCs and usually no holes in the substrate to deform, many rework cycles are allowed. Of course, rework is dependent on the reflow technique type of solder, reflow temperature, and the thickness of the metallization used in a particular application. During a rework situation, LCC removal can be accomplished using several techniques.

One method is to use the same hot solder oil immersion technique for applying the LCCs to a board. After the immersion and subsequent reflow of the solder, a pair of tweezers, or a similar tool, can be used to remove the defective LCC from the board.

Other removal methods are possible, such as using a soldering iron with a specially shaped tip to heat the contacts or by heating the defective package and its surrounding area with a forced hot air gun.
The heat gun method is usually the most convenient, inexpensive, and practical for rework. When the LCC is heated by the gun, the package should be removed with tweezers-the now exposed substrate contacts can be tinned, if necessary, as could the LCC contacts on the replacement device. The LCC is manually replaced in close proximity to its final position. The repair area or entire board is then heated to the solder reflow temperature to complete the operation.

\section*{System on a Substrate Concept}

When the appropriate LCC system components are assembled on a ceramic substrate with dual-in-line pins, the space, weight, and reliability advantages of LCCs are made more accessible. This "system on a substrate" technique allows LCCs to be used in more traditional system configurations such as those using standard DIP packaging.

One of the first movements in this concept direction has been the development of memory arrays on ceramic substrates. The HM-6564, a 64 K cmos RAM module, was first introduced in 1979, and uses sixteen \(4 \mathrm{~K} \times 1\) CMOS RAMs mounted on both the substrate's top and bottom. This packaging technique further increases an LCC's functional density on the RAM module. Other products available in module form include the Texas Instruments TMS4164, a 64 K dynamic RAM assembly, and a 64 K EEPROM assembly from National Semiconductor, the NMH2864.

With the introduction of the 16 K CMOS RAM, a step-up in module density is also seen. The HM-92560 uses sixteen HM-6516 RAMs, and has a total capacity of 256 K bits of static CMOS memory. The HM-92560 can be configured as a \(16 \mathrm{~K} \times 16\) or \(32 \mathrm{~K} \times 8\) static RAM array

The HM-6564 and HM-92560, along with the other such modules, provide
only the memory circuitry-This approach increases the system packing density when large amounts of memory are necessary. Maximum reduction, however, is not accomplished because bus drivers and decoders must be added externally to the module assembly. To achieve a greater reduction in size, as many functions as possible must be placed on high density assemblies.

The Harris HM-92570 is a beginning to the "system on a substrate" development. By providing LCC-packaged CMOS bus drivers and decoders on the substrate, all the functions of a 256 K -bit memory board are contained in one high density assembly. The HM-92570 address inputs are buffered and have an input current leakage limit of \(10 \mu \mathrm{~A}\) so direct connection to the CPU address bus is possible without additional buffering. The HD-6440 CMOS decoders on the substrate meet the memory array decoding needs.

The Digital Equipment Corporation Micro/J-11, a CMOS module assembly, which is a two-chip set equivalent of the PDP-11 minicomputer, has adapted this concept to the microprocessor area. Two CMOS devices manufactured by Harris, the control chip and the data chip, are packaged in 64 -pad LCCS and are mounted on a 60 -pin ceramic DIP substrate, compatible with the PDP-11's full instruction set. Compared to the original PDP-11 assembly, which consisted of several boards, this transition to a 60 -pin substrate offers significant size and power reduction advantages.
The next step will be the combination of CPU, I/O, and a significant amount of memory onto a single substrate assembly. The development of more highly integrated processor, such as the 80 C 186 , that include \(1 / O\) and control functions on-chip will make the logistics of providing all capabilities in a single high-density unit easier to handle. With all functions available in one unit, systems can be implemented with one assembly connected to the outside world, or additional assemblies added to provide greater amounts of memory or high-density multiprocessing capabilities.

\title{
A Comparison Of CMOS Static Random-Access-Memory Cells
}

\(\overline{\mathrm{N}}\)

\section*{By Ken Lyons} ot all CMOS static RAMs are the same. The biggest difference is in the number of transistors used to construct the SRAM's cells. Today, that can be either four or six. The impact on system performance that each has differs consider-ably-in fact, a switch from one to the other can have a greater impact on performance than the system design itself.
The four-transistor (4-T) cell is commonly used in commercial-tem-perature-range RAMs because it is smaller and easier to build than the six-transistor (6-T) cell. It is also found in some military-temperaturerange RAMs.

However, the 6-T cell requires less standby supply current than the \(4-\mathrm{T}\) when operated over the military temperature range \(\left(-55^{\circ} \mathrm{C}\right.\) to \(\left.+125^{\circ} \mathrm{C}\right)\). Its stability is inherently greater than that of the \(4-\mathrm{T}\) cell, giving greater immunity to soft errors due to electrical noise and alpha particles. Tolerance to gamma radiation is also improved.

Why then do so many CMOS RAM manufacturers use the 4-T cell? Many consider the 6-T cell more difficult to design because the cell uses two types ( n - and p -channel) of transistors, whereas the \(4-\mathrm{T}\) cell uses only n -channel transistors.

The 6-T cell also requires tighter lithography to obtain the same cell size.

Another reason not to use 6-T cells is that RAMs contain additional circuitry to increase speed. Some techniques used to accomplish this result in circuits that consume far more current than the memory array itself. In this case, manufacturers opt for the easier-to-process 4 -T cells, as the 6-T's lower power consumption is offset by the speed circuit's high power requirements. However, newer techniques give low-power-consuming speed circuits, and, in these instances, 6-T cells are gaining favor.

Despite the apparent popularity of the \(4-\mathrm{T}\) cell, the number of full-CMOS, 6-T-cell RAMs in the market is growing. This is especially true for military-temperature-range parts.

\section*{RAM Cell Optimization}

It might appear at first that the RAM cell is too small a circuit to have a significant impact on RAM performance. Because the RAM cell must be duplicated as many as 256 k times in a single CMOS static RAM, taking up more than 80 percent of the chip's area, a small change in the performance or structure of the cell has a large cumulative effect on device characteristics. Because of this, RAM-cell optimization for specific applications is extremely important.
Although 4-T and 6-T RAMs both operate similarly, they differ greatly in construction (see diagram). This is particularly true regarding the inverters that make up the data-storage latch. The 4-T cell uses one n-channel transistor and one polysilicon load resistor for each of the two inverters in the latch. This is actually an NMOS circuit.
CMOS RAMs that use this type of cell are frequently referred to as mixMOS RAMs because they combine NMOS and CMOS circuitry on the same chip.
On the other hand, the 6-T cell uses one \(n\)-channel and a complementary \(p\) channel transistor for each of the two inverters. This is a true CMOS circuitCMOS RAMs that use this type of cell are sometimes called full-CMOS RAMs.

\section*{Load Resistor Resistance}

One of the most important measures of cell performance is the supply current required to retain data in the cell. The latch in a RAM cell has two stable states, each of which occurs when the output of one inverter is high and the other is low.
In the \(4-\mathrm{T}\) cell, the transistor of the inverter that is low is turned on and a direct current flows from \(\mathrm{V}_{\mathrm{cc}}\) to ground through the load resistor and transistor of that inverter. In either state, therefore, the current required to retain data in the cell is determined by the resistance of the load resistor. This current is multiplied by the RAM's density (in bits) to determine the total current for the entire array of cells.
Selection of this resistance value is critical: if the resistance is too low, the standby supply current of the RAM will be unacceptably high; if too high, the cell will be marginally stable and data may be lost.

This is further complicated by the inverse relation between temperature and the polysilicon resistor's resistance. The resistance of the intrinsic polysilicon pull-up resistor can decrease by several orders of magnitude as the temperature rises from room temperature to the high end of the military-temperature range.

As in the 4-T cell, the output of one inverter in the 6-T cell is always low. There is, however, no direct current path from \(V_{c c}\) to ground, because the complementary p-channel pull-up transistor in the CMOS inverter is turned off whenever the n-channel pull-down transistor is turned on. There is only the smali leakage current through the channels of the transistors in the full CMOS latch.

This current is due to thermally generated carriers and increases as temperature increases. In both the 4T and 6-T cells, the standby current is greatest at high temperature, but that is where the similarity ends.
The 6-T cell invariably operates at lower current than 4-T cells. For example, military-temperature, mix-MOS, \(2 k \times 8\) RAMs are commonly specified at 900 to \(10,000 \mu \mathrm{~A}\) maximum standby supply current. By contrast, similar full-CMOS 6-T-cell RAMs are commonly specified at 50 to \(100 \mu \mathrm{~A}\). At room temperature, the mix-MOS part has a typical supply current of 4 to \(20 \mu \mathrm{~A}\), while the 6T RAM typically operates at \(0.01 \mu \mathrm{~A}\) or less (see graph).

\section*{Cell Stability}

Another important factor in CMOS RAM performance is cell stability. If the resistance of the internal pull-up resistors in a 4-T cell is too high, the cell can behave like a dynamic RAM cell and data could be lost because there are no refresh cycles. It is also possible for the data to change when reading a marginally stable cell, especially if the bit lines are not properly precharged or equalized before reading the cell. This limitation can reduce the speed or operating-temperature range of mix-MOS RAMs.

Finally, cell stability is essential to

Reprinted from EE TIMES August 5, 1985, Copyright 1985, CMP Publications, Inc. All rights reserved.


While standby current requirements increase with temperature for both 4-T and 6-T cells, the rate of increase is far greater for 4-T cells. The data is for \(\mathbf{2 k} \times 8\) CMOS RAMs.
prevent soft errors due to alpha particles given off by trace radioactive elements contained in IC-packaging materials. When a high-energy alpha particle strikes a device, a large number of elec-tron-hole pairs are generated. If this occurs in the vicinity of a reverse-biased junction, the electron-hole pairs give rise to a transient current pulse. In the highimpedance \(4-\mathrm{T}\) cell, this transient, and the resultant changes in the internal voltage levels, may cause the cell to change state, resulting in data loss.

6-T cells are inherently more stable than 4-T cells. Even under worst-case conditions, the p-channel pull-up transistors have a lower impedance when turned on than that of the load resistors of the \(4-\mathrm{T}\) cell. Therefore, it is more difficult to pull the high side of the latch in a 6 T cell low if, for example, the bit lines are not precharged and equalized prior to reading the cell.


Although 4-T and 6-T RAMs operate similarly, they differ in the load devices making up the data-storage latch. It results in 6-T RAM cells operating at lower current than 4-T cells.

Also, the p-channel pull-up transistors are able to source sufficient current to ensure that data are not lost when the cell is struck by an alpha particle. This has been verified in tests where an al-pha-particle source was placed on the exposed surface of a \(2 k \times 8\) full CMOS RAM for 24 hours without data loss.

Finally, there is evidence which strongly suggests that cell stability may be important in determining the tolerance of the RAM to gamma radiation. During extensive radiation testing done throughout the industry, several types of full-CMOS 6-T RAMs have shown tolerance to total doses of radiation in excess of 10 k rads (silicon), with some parts remaining functional after exposures greater than 40 k rads. This is significant when compared to the performance of mix-MOS RAMs, which failed at total doses of less than 6 k rads.

EET
Ken Lyons is an applications engineer in Harris Corp.'s Semiconductor Digital Products Division, Melbourne, Fla.

\section*{DESIGN ENTRY}

\title{
Standard-cell CPU toolkit crafts potent processors
}

\author{
Todd Jones, Christopher Malinowski, and Stanley Zepp
}

Harris Semiconductor Sector, P.O. Box 883, Melbourne, FL 32901; (305) 724-7000.

Real-time-system designers demanding the highest performance are bound by hardware and software chains. System throughputs are shackled by the limitations of standard microprocessors, a poor match between popular languages and real-time control applications, and the lack of a powerful, general-purpose 16-bit microprocessor that can share one chip with application-specific logic.

Designers can overcome the speed limitations with bit-slice processors, which are hard to program; or by coupling custom logic and bipo-

> A 16-bit, RISC-like CPU and complex support functions help a cell library called Force set the ideas of real-time designers into silicon.
sor's simple, directly executable set of Forth words and to heavy reliance on the two memory stacks. The CPU's low gate count leaves plenty of chip for stack memory, external interfaces, and specialized I/O to be created with cell-library CAD tools.

Depending on the task, the core processor can operate at clock rates in excess of 15 MHz , with an average execution throughput of between 1 and 1.5 clock cycles per instruction. That corresponds to a sustained throughput of 10 to 15 million high-level instructions per second (MIPS). Also, because each instruction executes the equivalent of several Forth primitives, peak processing throughput can exceed 30 million Forth primitives per second.

A typical form that the Force machine would take starts with the core processor and adds three memories: a main program memory, a return stack for dealing with subroutine calls, and a parameter stack for storing data (Fig. 1). Inside the core are three key registers that keep the operations moving at high speed. The I register, which is the logical top of the return stack; and the Top and Next registers,
 chains is a Forth optimized reduced-instruction-set computing engine (Force) and a standard-cell toolkit. The CMOS engine is a 16 -bit processor in stan-dard-cell form, and the toolbox is a set of complex cells, among them a stack controller, interrupt controller, multiplier, and multiplier-accumulator. The cells fit into a computer-aided-design package for developing real-time products.
The architecture of the reduced-instruction-set processor puts to work in hardware an existing Forth-language virtual machine (see "Forth: A Language for Real-Time Control," p. 94). The silicon version grows out of technology licensed from Novix Inc., of Cupertino, Calif., and makes the virtual machine available as an embedded CPU and standard all-based product. The low gate count, however, does not sacrifice performance.
The RISC-like architecture avoids a high gate count, a problem that blocks other processors from serving as standard cells. The CPU has only 2500 gates, a very low number that owes to the proces-
which are the two top locations of a parameter stack.
Thanks to the small core size, designs can rely heavily on on-chip stack memories. For some tasks, data and program memories could also be included on chip. However, when large amounts of memory become too costly, fast, off-chip ROMs, EPROMs, and static RAMs enable designers to build systems operating at clock speeds of 10 MHz or greater.

\section*{HIGHLY PARALLEL ARCHITECTURE}

All instructions execute in one or two clock cycles, and all three memory spaces can be accessed simultaneously. Although the concepts of RISC design apply to the processor, the architecture differs significantly from other CPUs of that type. The Force core puts to work a highlevel language as its native instructions, giving the programmer a compact set of very powerful commands.

Other RISC processors use a reduced set of low-level instructions that help the chips optimize throughput. Often, however, programs are big and development time is long. In contrast, the Force core needs less code for a given application, increasing programmer productivity and cutting software-development costs.

The processor core executes instructions fetched out of main memory. These instructions closely mirror the Forth language primitives. Arithmetic and logic com-
mands operate on the Top and Next registers and return the result to both those units, especially the Top register. Similarly, if operations must be performed on the return stack, the I register comes into play. There is also a fast I/O bus that can be accessed in parallel with the memories. For extra speed, arithmetic or logic operations, if needed, can be performed on read I/O data during, rather than after, the read cycle.
The main memory holds data, instructions, and the traditional Forth "dictionary" structures. Dual stacks are formed by two dedicated RAMs, which appear to the processor as last-in, first-out (LIFO) structures controlled by the stack-controller subsections (one for each stack). The stack controllers generate stack memory addresses under the direction of the processor.

In Forth, subroutine calls and operations on the data stack are most important. For this reason, the architecture is geared to these operations. For instance, the subroutine call takes one clock to do the "top-of-stack" arithmetic or logic operations. In addition, a subroutine return can occur in the same clock cycle as most other instructions. As a result, the total subroutine call-and-return overhead is cut to just one clock cycle with no extra time needed for the return.

The processor's highly parallel architecture executes the equivalent of several Forth language primitives at

\section*{Forth: a language for real-time control}

Designing today's real-time control applications requires a high-level language that interfaces easily with custom hardware. The ideal language would need little or no dedicated memory outside that required for the application; it would present few, if any, restrictions on application-memory locations. The language must also lend itself to testing and debugging the application in its real-time environment. Finally, compiled application code should be compact and execute fast.

One language that easily meets all those conditions is Forth. No ancillary libraries or executives take up valuable memory space, and because Forth is quite compact, much of the development can actually take place on the application hardware. This ability greatly aids the integration and testing phase of the program. Run-time diagnostics are similarly aided by a small interpreter that does real-time monitoring and control in stand-alone tasks.
Forth is an integrated software-development environment incorporat-
ing an editor, compiler, and debugger, as well as a host of other development utilities that, in other environments, are usually separate. Because Forth is interpretive, the programmer can directly compile and execute code as soon as it is entered.

Being interpretive, the language speeds prototyping. It lets designers find out if the basic algorithm is correct before committing much time and resources to generating code.

Forth is a software environment that embodies a "virtual machine," which is the heart of the development system. Much of the virtual machine is the dictionary, which is a linked list of procedures called words. Stacks communicate parameters between procedures and link subroutine calls during execution; they are the hub of all machine activity. The parameter stack maintains the program data, and the return stack maintains the return addresses during execution.

A typical application is built upon subroutines, and each word that is defined in Forth is treated like a procedure call. An application is built up of
words predefined by the programmer. These words can in turn be used again to define more complex words in the application. As each new word is defined, it is entered into the dictionary, from which it is pulled as needed. This process continues until the final application program exists as a single word.
The internal structure of a Forth word consists of a header, containing the name field and dictionary link, and the body. The body is a list of subroutine calls to the words that make up the definition. During execution of a word, the internal list of procedures is executed, calling another word of internal subroutine lists. This process of subroutine calls continues until a low-level primitive is encountered. That primitive is then executed, as it contains low-level machine instructions.

This process of layered subroutine calls is often referred to as threaded code. Because of this form of execution, the virtual machine depends heavily on modular programming techniques and subroutine calls.
once. In only two cycles, one such multifunction instruction performs the Forth equivalent of over swap-which exchanges, duplicates, and subtracts the values in two registers. It is executed just like classic executed Forth code.

The complex macrocells in the Force toolbox are based on an advanced cell library and computer-aided-design capability developed by Harris and SDA Systems Inc., of Santa Clara, Calif. The tools define cells and macrocells and efficiently place and route completed designs. They route designs incorporating fixed blocks of logic or memory, macrocells, and standard cells. Also included are tools to verify and simulate completed designs. The SDA software can compile RAMs and ROMs with variable size, configuration, and layout shape.

Besides the specially developed Force toolbox macrocells, the SDA design environment also contains a number of microprocessor-support peripherals, such as indus-try-standard and proprietary serial asynchronous transmitter-receivers, baud-rate generators, clock generators, programmable interval timers, and Manchester en-coder-decoders. Not only that, the toolbox ties directly into Harris's already available standard-cell library. As a result, the designer can glue the complex blocks together or develop added logic functions using the 7400 -series logic elements.

For breadboarding of systems, Harris has developed a 144 -lead version of the Force core only. The core is included in a demonstration board from Logical Devices Inc., of Ft. Lauderdale. With this board, designers can access all of the processor's I/O, making it possible to breadboard a full system. It can interface to any CRT terminal or serial-communication port, and contains ROM and RAM space for the application code. Extra space is available should a particular task require more memory.

A development system configured as an IBM PC plug-
in board and aimed at a PC-integrated development environment is now in final development by Silicon Composers Inc. of Palo Alto, Calif. Moreover, a Forth target compiler is now hosted on the IBM PC family. This target compiler makes possible the development of software in the PC environment, generating executable code for the Force processor and for use as a development tool for software vendors.

\section*{a Close look at the macrocells}

The Force processor core is the key element of the toolbox. That simple, yet powerful control engine is tied to other circuits by means of parallel, 16 -bit data paths to the parameter stack, return stack, main memory, and the general-purpose I/O bus. There is also a 16 -bit main memory address bus and a 5-bit address extension, which also functions as an I/O address bus. Inside the processor core are eight registers; four of which are independently accessible in parallel (Fig. 2).

The Top, Next, I, and Instruction Registers are all separately accessible so that multiple operations can be done simultaneously. The other four are the program counter, square-root, configuration, and multiply-divide registers. With its byte-swap logic on the main memory buses, the processor can rapidly reorder or perform byte reads or writes.

The core's two main work areas, the parameter-stack and return-stack memories, are addressed through identical stack-controller cells (Fig. 3), which generate address pointers within 5 ns from the time that the core's stack, read, and write signals become valid. The ability to quickly generate the stack addresses is critical to maximizing throughput.

The stack-controller cells can also be externally preloaded from the processor's data bus with a predetermined stack address. For deep stack-memory require-

1. Harris Semiconductor's Forth-optimized, reduced-instruction-set computing engine (Force) core can be surrounded by the stacks and vorious support functions and memories to build a complete system on just one chip.
ments, the cells can be cascaded using their Carry and Borrow signals. The cells generate the Stack Underflow and Stack Overflow outputs to indicate an empty and full status of the stack. Usually, these outputs would interrupt the processor.
For math intensive applications, the toolbox includes a 16-by-16-bit fast multiplier that executes a proprietary algorithm and operates at cycle times below 50 ns . The multiplier performs a signed-magnitude multiplication within one clock cycle of the engine. Also available is a 16-by-16-bit multiplier-accumulator (MAC) cell for jobs like digital filtering.

For dedicated tasks calling for parallel external ALU or concurrent external arithmetic operations, a set of fast 16 - and 32 -bit arithmetic cells is available. The library also includes a 32 -bit barrel shifter and a leading-zero-detector cell for floating-point math operations that need fast normalization and denormalization.

Giving priority encoding of up to 15 asynchronous maskable interrupts, the interrupt vector-generator (IVG) cell also delivers a 16th, nonmaskable interrupt (NMI) directly to the processor's NMI input. The IVG's mask register has a bit for each of the prioritized interrupt inputs and is loaded from the processor's T bus. That bus connects to the top of the parameter stack.

Any true interrupt input that is not masked will set the INT, informing the processor of the pending interrupt.

At the same time, the IVG produces a vector location corresponding to the highest-priority unmasked interrupting input. This location establishes the point at which in-terrupt-code execution starts when the interrupt is acknowledged. The interrupt-vector location is read onto the core I/O-input (G) bus when the signal INTA emanates from the core during an interrupt-acknowledge cycle. That vector can also be read by subsequent I/O read instructions.

An asynchronous host-interface cell lets the core communicate with slower hosts, typically general-purpose processors, in a master-slave environment. In the interface scheme, the host processor can access either part or all of the chip's data or program RAM, which would appear to the host as a block of its own memory space. The interface cell's arbitration logic allows the host only one access at a time, interleaved with one or more core-processor accesses. This limit, however, may be bypassed with lock options by either processor. Those options grant temporary exclusive access to the interface by one processor or the other.

\section*{PUUTING THE PIECES TOGETHER}

To see how all the macrocells come together, examine their work in a high-performance processor aimed at closed-loop control and other math-intensive tasks. Such jobs include robotics, instrumentation, flight control, sig-

2. A simple processor, the 16-bit Force core contains three key registers, the Top, Next, and I, that hold the most time-critical information. Other registers in the core take care of status-handling operations. Special registers and logic help multiply, divide, and find square roots.
nal processing, graphics, and image processing. (That processor is, in fact, the first planned product to be built with the toolbox.)

The control processor takes advantage of the Force engine, the high-performance proprietary multiplier, and the normalize-shift macrocells (Fig. 4). It can function as a stand-alone processor but because it includes a host interface, it can share external main memory with any host processor. Provisions are also made to handle interrupts to and from the host processor.

Highly integrated, the chip includes two 128 -word stack memories and controllers, one for the parameter

3. One of the key support cells in the Force toolbox is the stack controller, which turns ordinary RAMs into last-in, first-out stacks for the processor. Two versions of the stack controller address 64 or 256 words of memory. Multiple controllers can be cascaded to handle larger memory spaces.
stack and one for the return stack. The address registers of each of these macrocells can be loaded and read as I/O devices. On top of that, the overflow and underflow output lines from each of these macrocells drive interrupt inputs on the IVG.

Arithmetic hardware sits on-chip to speed computations. That hardware includes a 16 -by- 16 -bit multiplier and the normalize-denormalize-shift macrocell. The latter simplifies software development by delivering all the normalization that modern control systems typically demand for fast floating-point operations.

For control tasks, three 16 -bit timer-counters on the chip supply a programmable time base, internal timing, or event-counting functions. These timers are clocked by a prescaled internal clock or by external inputs. A 16 -input IVG macrocell obtains a fast response to internal or external events. The internal events flagged include overflow or underflow conditions for the four stacks and the three timeouts for the timers.

Provisions are also made for nine external interrupts including a host interrupt, a nonmaskable interrupt, and seven maskable interrupts. The interrupt mask register in the IVG cell can enable or disable any of these interrupts except the nonmaskable one.

The general-purpose coprocessor has the ability to address up to 16 Mbytes of external memory for code and data, all of which is external. Such a large range matches the addressing capability of most general-purpose host processors and supplies the space needed for software development, graphics, and image-processing jobs. It also makes possible complete flexibility with respect to memory configuration.

Because the core processor itself can produce only a 16bit address (capable of addressing 64 kbytes of code or data memory), it is supplemented by memory-address-

4. A general-purpose coprocessor, with on-chip resources to handle fast integer multiplication and floatingpoint math, is easily assembled from the cells in the Force toolbox. Both the parameter and return stacks, as well as three timer-counters and an interrupt controller, are on the chip.

\section*{PRICE AND AVAILABILITY}

The Force library is a part of standard product designs. The first such design is the coprocessor described in this article, which will be released in the fourth quarter. Prices for the coprocessor will be set then. It is also anticipated that the Force library will be released for semicustom design, but no date for that has yet been set.

CIRCLE 501
extension logic to achieve the 16 -Mbyte range. Thanks to two 8-bit memory-extension registers within the addressextension logic, independent address extension is supplied for code and data to generate 24 -bit addresses ( 16 Mbytes). Because the address extension for code and data is independent, maximum memory flexibility is gained.

An external processor works with a host-interface macrocell to gain access to the entire co-processor memory ( 16 Mbytes , if needed). This interface looks like a block of memory to the host, making it very easy to interface to any processor. The host interrupt to the Force processor is put into effect by a host write to a particular memory address. For stand-alone tasks, the host interface need not be used. Also included on the chip is a clock oscillator and clock generator, which supplies timing signals to the

Force core, I/O devices, stack RAMs, and to the rest of the appliction system.
The core processor's I/O bus is brought off-chip to connect to specialized I/O devices required by the job. These I/O devices can also be built with the HarrisSDA standard cell gate-array design systems. For tasks that do not need all the internal I/O devices, an internalconfiguration register selectively disables timers, math hardware, or address extension hardware, making their I/O addresses available to external devices.

Todd Jones is a senior engineer at Harris, responsible for Force software planning and development. He has a BS degree in computer science from the University of Idaho and an MS in computer science from the Florida Institute of Technology.

Christopher Malinowski is a senior scientist for Harris's semiconductor research and development department, and program manager for the Force project. He holds an MS degree in nuclear electronics and a Ph.D. in solid-state physics from Warsaw Technical University.

Stanley Zepp, a senior scientist, is Harris's manager of business development for the microprocessor product line. He holds a BEE degree from the University of Florida and an MEE from New York University.

\title{
FORTH Processor Core for Integrated 16-Bit Systems
}

\author{
Peter S. Danile and Christopher W. Malinowski, Harris Corp. Semiconductor Division, Melbourne, FL
}

The development of a high-performance dedicated 16bit processor using an industry-standard microcontroller or bit-slice processor calls not only for an extensive board-level design effort, but also for a long-term development program for software and firmware. It has been difficult to use semicustom techniques for such development because core processors have been scarce and microcode development for custom ICs is very difficult.

However, in a growing number of high-performance systems for digital signal processing, control, and arithmetic, application-specific processors are bringing forth the advantages of integration-including high throughput, low power dissipation, and much higher density than board-level implementations.
Harris Semiconductor now has a semicustom technology, called the Processor Toolbox, that eases the development of high-performance 16 -bit integrated processors. Toolbox features include a very small core-processor cell, a highly parallel architecture for maximum throughput, easy programming and code development, code portability, a full set of core-compatible peripheral cells that can support processor clock frequencies as high as 15 MHz , and a set of high-speed arithmetic and logic cells, such as a 16 -bit multiplier, for further customization.

The processor architecture derives from one conceived by Charles Moore, inventor of the FORTH language. This RISClike, highly parallel architecture meets the size and throughput requirements. The combination of the processor's instruction set-a directly executable set of FORTH high-level primitives-and its reliance on two stacks that reflect a FORTH virtual machine results in a compact core processor with less than 2500 gates. This core is called the FORTH Optimized RISC Computing Engine, or Force.

Because each instruction comprises more than one FORTH primitive (opcode), data-manipulation throughput can exceed the processor's clock frequency, often by a factor of three. Consequently, for instruction sets rich in multiple-opcode instructions, peak processing throughput can exceed 30 MIPS, with a steady throughput of 10 to 20 MIPS.

Users of the Toolbox can develop application code in a high-level FORTH language working with an interactive and interpretive environment. FORTH is not only portable but also offers expeditious debugging tools and easy target-compilation from one environment to another. Therefore, a wealth of code written for DSP, artificial intelligence, control, numbercrunching, and real-time data-processing applications can be


FIGURE 1. The Force Toolbox contains a FORTH processor and support peripherals, all available as cells and packaged parts.
ported to the Harris engine.
The principal advantage to designers of dedicated processors stems from the host of proprietary LSI and VLSI cells being developed to support the FORTH core processor. The Toolbox provides designers of Force-based products with a set of packaged Force circuits identical to the cells available in Harris' standard-cell library (Figure 1). The designer can use these parts to create a breadboard and experiment with different configurations of the Force processor before moving to an ASIC. He gains greater confidence in the design's functionality, because it can be exercised in a real environment in addition to a CAE simulation environment. Moreover, the designer can use the prototype breadboard to generate a reliable and accurate set of functional test vectors, a task both formidable and error-prone otherwise.

Another advantage of creating a breadboard is that the designer can compile the applications code and run it before committing it to a ROM pattern. Running the application code lets the designer make trade-offs between implementing func-
tions in hardware and coding them in software. The core's execution speed allows many functions-such as memory swaps, arithmetic and logic functions, shifts, and maskingto be implemented in firmware without sacrificing performance, shrinking die size considerably. Such trade-offs can be investigated only if the designer has access to the processor's functional blocks and can exercise alternatives in real time-that is, on a breadboard.

Finally, the Toolbox approach makes it easier to design a testable circuit. During breadboarding, the designer can observe the timing of signal paths, such as the processor's data paths, which may not be directly accessible in an integrated system. Identifying buried trouble spots increases the understanding of the circuit's testability requirements and makes it easier to implement such testability features as scan paths and memory-check routines.

The Toolbox version of the core processor (Figure 2) comes in a 144-pin pin-grid array with all the I/O signals bound to pins. Besides the core, the Force Toolbox also contains packaged versions of a stack controller with an onchip \(64 \times 16\)-bit stack RAM, an interrupt controller, and a \(16 \times 16\)-bit multiplier. By early 1988, Harris also will offer a hardware-development system and a Force target compiler that, in combination with a breadboard system, will support firmware-code development.

Once hardware and firmware are defined, the design is implemented in a semicustom IC, for which the designer customizes the program, data, and stack memories by using RAM and ROM module compilers. As much as 64 K of on-chip firmware ROM can be integrated in addition to 16 K of data RAM. Because FORTH code is so compact, very extensive application-specific code can be implemented in firmware along with the kernel code. To replace the discrete logic on the breadboard, the designer uses 7400-type SSI and MSI cells from the Harris standard-cell library.

\section*{The Force Core}

The Toolbox's Force core processor is a bare control engine with 123 I/O lines. These signals include three parallel 16-bit data buses (two for stack memories and one for main memory), a 16 -bit main-memory address bus, and a dualpurpose 5 -bit address-extension bus. In addition, a generalpurpose 16 -bit bus (G-bus) acts as the processor's primary I/O signal path.

A principle of RISC philosophy is to bring execution speed as close as possible to the maximum memory-access speed. As a corollary, the number of multicycle instructions in the processor's instruction set is reduced to maximize the processor's data-bus throughput and bandwidth.

The processor's independent buses account for the Force core's high throughput. Because each instruction executes in no more than two clock cycles, at least three of the five buses are active during any clock cycle. The G-bus transfers data at up to \(30 \mathrm{MB} / \mathrm{s}\) when the processor operates at 15 MHz ; the main-memory bus transfers data at up to \(30 \mathrm{MB} / \mathrm{s}\) when in a streamed-move mode.

The Force core processor's highly parallel architecture (Figure 3) reflects the structure of its horizontal instructions. Its eight main registers provide parallel storage and access to the parameter stack's top two locations (TOP and NEXT), the top location of the return stack (I), the instruction register


FIGURE 2. The packaged version of the Force core processor.
(IR), the program counter (PC), and two arithmetic-instruction registers (MD and SR). The MD register stores the partial results of step-multiply and step-divide instructions; the SR register stores the partial results of hardware-assisted squareroot operations.

The minimal overhead to support subroutines also reflects the nature of the FORTH language, which is heavily oriented toward the use of subroutines. The core processor is optimized for the minimum number of cycles necessary to execute a subroutine call and return. Through instruction partitioning and architectural refinement, the execution of a subroutine call requires only a single clock cycle; the return requires no added clock cycles. All interrupts that are interpreted as subroutine calls therefore require only one clock cycle of overhead.

\section*{Stack Controller Cell}

Because the stack-oriented FORTH instructions employ stacks in every command, the most critical peripheral used with the Force core processor is the stack controller. Controlling the stacks with software routines would degrade the system's performance. The core directs the stack controller through the RW and SA signals. The stack controller responds to the SA signal with either a push (data write) or pop (data read), according to the status of the RW signal.

In the packaged version of the stack controller are 64 words of memory with an access time of approximately 30 ns , so the designer can operate the core at 15 MHz without worrying about the access time of data in the stack. In an ASIC implementation, the stack's memory size can be altered and the access time improves to about 20 ns .

The stack controller operates with the core processor's parameter stack (through SAS and RWS signals) and the return stack (SAR and RWR), giving a typical system two stack controllers (Figure 4). To enhance system flexibility, the signals OVER and UNDER generate interrupts when the stacks are ready to overflow or underflow. UNDER occurs when the


FIGURE 3. Parallel architecture lets three of five processor buses be active for all instructions.
stack is pushed more than popped and the stack address lines reach 00 . The assertion should initiate a routine that either resets the controller (if more returns than routines were called) or tries to recover from other sources of underflow. The OVER signal occurs when the number of words pushed onto the stack exceeds a user-defined maximum. This maximum can be programmed into the ASIC implementation by writing into an offset register through the G-bus.

To implement multitasking versions of the Force processor, Harris is developing a multitasking stack controller (MSC). The MSC enables the user to partition the 256 -word stack into eight separate stacks via a 3-bit address size register. For example, if the system must run two concurrent jobs, the size register is programmed to divide the stack RAM into two 128 -word stacks. To switch between tasks, the processor enables a task-select register through the G-bus. When this register is written to, the stack pointer of the current task is saved and the stack pointer for the new task is restored at the new task's current address.

When the stack controllers and core processor are integrated on a single chip, options for increasing performance are available. Not only can the access times of the controller and the data RAMs be reduced merely by integrating, but access time can also be reduced further by separating the bidirec-
tional data buses into read (POP) and write (PUSH) buses (Figure 5). In the discrete versions, the data buses are bidirectional to allow them to connect directly to standard RAMs with bidirectional data buses. Separating the buses adds some additional routing area; on the other hand, the time required to set up the buses for either a read or a write is eliminated, improving system response time substantially.

\section*{Interrupt Controller and Host Interface}

The interrupt controller and the host interface help the core processor interact efficiently with the surrounding system. First, the interrupt controller contains 15 prioritized interruptrequest inputs and a separate input for nonmaskable interrupts (NMI). The interrupt priorities are fixed (to decrease response time) but can be defeated by writing in the interrupt controller's mask register (which has a discrete address on the Gbus). The interrupt controller samples the request inputs on opposite edges of the system clock. When two consecutive samples confirm that an interrupt is present, the INT line is asserted. The core processor responds with the INTA signal, which directs the interrupt controller to generate the appropriate vector for the interrupt. This vector comprises a 7 -bit userdefined field for the location of the interrupt-vector table and a 5 -bit field that designates the appropriate interrupt.


FIGURE 4. Breadboard design of Force system.

In the packaged version of the interrupt controller, the interrupt vector for the valid highest-priority interrupt is presented to the core processor within 40 ns of the INTA pulse. Thus the controller can operate with the core processor at system frequencies greater than 15 MHz . Once the system has entered an interrupt routine, the core's INTE signal inhibits any new interrupt from generating a new INTA. During INTE assertion, the system can clear the interrupt source and rewrite the Force configuration register to re-enable the interrupts. The interrupt controller does not automatically nest interrupts, so the system does not need to modify the interrupt controller until it must mask or unmask any interrupt line.
To create an interface between the Force core and a host controller that does not degrade the core's performance, the Toolbox includes a host interface cell. The interface allows another processor to read and write data in the Force core's memory-address space; it receives as inputs the address and data lines of the shared memory, the command lines from the processors, the core's data signals, and a MEMORY _READY signal that indicates when the data in the shared memory is valid. It provides a READY signal to the host, to indicate when it can read or write data, and a clock signal to the core. Figure 6 shows a typical configuration of the interface, the core processor, and the shared memory.

The host interface suspends the core processor when it attempts to read invalid data. When the data is not in the
shared memory, the MEMORY_READY input to the host interface is de-asserted until the data in the memory becomes valid. While the signal is low, the interface suspends execution by the core processor; the processor continues when MEMORY_READY is re-asserted.

When the host processor wants to write to the shared memory, the host interface checks the FORCE_LOCK signal to determine if the Force processor has priority on the memory bus. If not, the interface suspends the core processor and hands control over to the host. If wait states are necessary, MEMORY_READY becomes low and the host interface stalls the host with the HOST_READY signal. When HOST READY is asserted, the host can relinquish priority on the bus.

Writing host-processor data into the shared memory is simpler than reading from it. The host writes directly to the host interface, which holds the data in a buffer. When the memory bus becomes free, the interface writes the data into the memory. A HOST_READY signal is set when the buffer is full to prevent the host from writing over new data.

If the host processor wants to do some house-cleaning in the shared memory, it requests priority on the memory bus by asserting the HOST_LOCK pin. This signal suspends the core processor so the host can have exclusive access to the memory. In normal operation, the use of LOCK signals should be minimized so performance is not degraded.

The host interface is designed to work with an asynchro-


FIGURE 5. Integrated configuration of core, stack controller, and multiplier.
nous host by synchronizing all commands from the host with the Force clock signal. The core processor can work with synchronous or asynchronous RAMs, even if the host interface is used in a completely synchronous system. If the interface is integrated with the core, minor modifications can improve response time in the host read/write cycle. Also, if the shared memory is integrated with the other components, the MEMORY _ READY line is not necessary because the on-chip compiled RAM is fast enough to always contain valid data.

\section*{Multiplier}

Harris has designed a \(16 \times 16\)-bit multiplier, using its proprietary MPS algorithm, for use with the Force core processor. The peripheral performs full \(16 \times 16\) multiplication, generating a 32 -bit product in as little as two clock cycles when the peripheral is integrated with the core; a breadboard system can complete a multiply in five clock cycles.

The multiplier operates either clocked or unclocked and provides tristate signals at the output control and data (MSP and LSP) lines. It has data latches at its inputs to allow clocked operation independent of the core. On-chip results are generated in less than 50 ns from the edge of the clocking signal, and the two 16 -bit words in the product can be read simultaneously or in sequence.

The designer can incorporate the multiplier into the Force architecture in several ways. First, he could designate several G-bus addresses to identify the multiplier, multiplicand, and the product's most-significant word (MSP) and least-significant word (LSP). Using this configuration, the core processor would write the addresses and read back the results to receive the result in four clock cycles.

He also could designate one G-bus address to identify either the multiplier or the multiplicand. The second operand can attach directly to the processor's TOP bus. To perform a multiplication, the multiplier would be written to the G-bus and the multiplicand placed on the TOP bus. Upon comple-


FIGURE 6. Configuration of core and shared memory with host interface.
tion, the processor executes a FETCH_SWAP from the G-bus to receive either the MSP or LSP of the result (depending on the multiplier's configuration), placing it in the NEXT register. A G-bus FETCH then retrieves the remaining product word. This operation requires only three clock cycles to multiply two 16bit numbers, and when many numbers need to be scaled by a constant (the multiplicand), the multiply takes only two clock cycles once the initial multiplier is written to the G-bus.

When the multiplier is integrated with the Force processor, the multiplier and multiplicand can be placed directly on the TOP and NEXT buses. The multiplier would be configured in its feedthrough mode, and a 32-bit product would be available every clock cycle. To execute a multiplication, the processor needs to read only the appropriate G-bus addresses.

\section*{About the Authors}

Peter S. Danile is currently a section head of semicustom design at Harris Semiconductor. Prior to joining Harris in 1981, he worked for both Northern Telecom and Motorola Communications. A graduate of the University of South Florida in 1976, Peter went on to receive his MSE with honors from Florida Atlantic University in 1980.

Christopher W. Malinowski is a senior scientist for Harris' semiconductor research and development department, and a program manager for the Force project. He holds an MS degree in nuclear electronics and a PhD in solid-state physics from Warsaw Technical University.


\section*{(1) CMITAL \\ Harris Quality and Reliability}

PAGE
INTRODUCTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-2
QUALITY CONTROL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-2
QUALITY ASSURANCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-4
RELIABILITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 .4
HARRIS TAKES THE TOTAL APPROACH TO QUALITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-6
HARRIS STANDARD FLOWS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-7
HARRIS SEMICONDUCTOR STANDARD PROCESSING FLOWS . . . . . . . . . . . . . . . . . . . . . . . . . 10-8
ADVANTAGES OF STANDARD FLOWS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-10
QUALITY: BEGINNING TO END . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-10
DIE LAYOUT AND GEOMETRY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-11
RAW MATERIAL AND QC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-11
WAFER DIE PRODUCTION PROCESS AND CONTROLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-11
DIE/PACKAGE ASSEMBLY AND CONTROLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-11
BURN-IN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 12-12
ELECTRICAL SCREENING AND TEST PROCEDURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-12
RELIABILITY ASSESSMENT AND ENHANCEMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-12
NEW PRODUCTS/PROCESSES/PACKAGES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-12
"ADD ON" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-12
FIELD FAILURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-14
CMOS DESIGN CONSIDERATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-15

\section*{Harris Quality and Reliability}

\section*{Introduction}

The Product Assurance Department at Harris Semiconductor Products Division is responsible for assuring that the quality and reliability of all products shipped to customers meet their requirements. During all phases of product fabrication, there are many independent visual and electrical checks performed by Product Assurance personnel.

Prior to shipment, a final inspection is performed at Quality Assurance Plant Clearance to insure that all requirements of the purchase order and customer specifications are met.

The following military documents provide the foundation for HARRIS Product Assurance Program.
```

MIL-M-38510
MIL-STD-883
NASA Publication 200-3
MIL-C-45662
MIL-I-45208

```

\author{
"'General Specifications of Microcircuits" \\ "Test Methods and Procedures for Microelectronics" \\ "Inspection System Provisions" \\ "Calibration System Requirements" \\ "Inspection System Requirements"
}

The Harris Semiconductor Reliability and Quality Manual, which is available upon request, describes the total function and policies of the organization to assure product reliability and quality. All customers are encouraged to visit the Harris Semiconductor facilities and survey the deployment of the Product Assurance function.

\section*{Quality Control}

The Quality Control Department consists of Process Control with Chemical Mix as an available supporting service.

Process Quality Control is responsible for quality engineering and controls in the wafer processing modules, assembly, mask and materials production areas, and electrical wafer probe.

The primary responsibilities of Process Quality Control are:
a. To establish and maintain effective controls for monitoring manufacturing processes and equipment
b. to provide rapid feedback of information concerning the state of control
c. to initiate, design, and develop statistically controlled experiments to further improve product reliability and quality levels.

Statistical control charts on processes and operating procedures are used in the manufacturing areas and in the evaluation of process and product parameters utilized to qualify new processes.

When necessary, fixed gate inspections are permanently employed to assure specified quality levels.

On a regular basis, process audits are performed to verify conformance to operating procedures.

Statistical control charts are maintained on processes and workmanship for all phases of assembly and environmental testing.

\section*{PROCESS CONTROL}

\section*{WAFER FABRICATION - GENERAL PROCESS FLOW}

INCOMING MATERIALS
(SILICON, CHEMICALS, GASES,
 DOPANTS, PIECE PARTS)

RUN SETUP/MATERIALS PREP.

OXIDATION DIFFUSION, IMPLANT



PHOTORESIST/ETCH


THIN FILM (RESISTORS, INTERCONNECTS)


PASSIVATION/GLASSIVATION (SILOX, DOPED SILICON,
 SILICON NITRIDE)

WAFER/DIE
FINAL INSPECTION


PROBE


WAFER SAW/BREAK


PRODUCTION
P PRODUCTION INSPECTION
Q QUALITY CONTROL LOT ACCEPTANCE
Q QUALITY CONTROL MONITOR/AUDIT

\section*{Quality Assurance}

The primary responsibility of the Quality Assurance Department is to assure that all delivered products meet the rigid standard of reliability and quality of Harris Semiconductor Products Division. The Quality Assurance department is responsible for process control and product quality from product assembly to shipment. Random sampling of products at specified points and intervals is used to ensure quality. This includes performance and analysis of sample electrical testing (Group A) and environmental and life testing (Groups B, C and D). In addition, mechanical and visual inspections specified by the Quality Assurance Test Plans, as well as customer and military specifications are performed. The random selection and distribution of samples, the routing of devices through specified testing and adherence to inspection programs are controlled and implemented by Quality Assurance.

All packaged microcircuits are marked by a code indicating the date the lot was sealed. This code provides product traceability and meets customer date coding requirements. Traceability is maintained through lot acceptance, testing and shipment to the customer.

\section*{Reliability}

\section*{RELIABILITY PROCEDURES}

Harris Semiconductor Products Group employs a comprehensive approach to reliability evaluation to ensure that reliability is designed and built into all products. This approach is referred to as the Reliability Evaluation Procedures and outlines the basic guidelines for evaluation of the total inherent reliability capability of all products types. The Reliability Evaluation Procedures are applied as an overlay during the early product development phase, subsequent prove-in via preproduction and final maturity in the manufacturing of all new product types. They also provide guidelines for evaluation of new process technologies deployed in all applicable products. The Reliablity Evaluation Procedures also encompass a package qualification procedure, and the "Add-on" program which is a quarterly reliability monitor of all process groups. These decuments are available upon request.

The HARRIS CMOS Product line has had a continual evolution of new and enhanced processes. From SAJII (Self Aligned Junction Isolated) to the most recent SAJI VI and L7 processes, there has been an ongoing effort to increase performance, density and reliability. The current RAM products ( 4 K and up) along with the microprocessors and peripheral families utilize the SAJI IV, scaled SAJIIV, SAJI V and L7 processes. Table 1 is a summary of recent reliability data taken on the various SAJI processes. Table 2 lists the activation energies of the most common defects associated with the CMOS products. Table 4 (page 10-14) gives a breakdown of field returns by failure mechanism.

At Harris, accelerated life Tests are utilized to estimate the filed failure rate of our product. A typical life test consists of 200 devices tested at +1250 C to +1500 C ambient, dynamic operation, 5.5 V to 6.5 V , for 1000 hours. All failures are carefully analyzed to determine derating factors back to +550 C ambient, 5.5 volts operation are determined.-
\[
\begin{aligned}
\text { Derating factor } \left.=\mathrm{D} . \mathrm{F} .=\mathrm{e}-\binom{\mathrm{EA}_{\mathrm{A}}}{\mathrm{~K}}\left(\begin{array}{cc}
1 & 1 \\
\mathrm{~T}_{2} & -\mathrm{T}_{1}
\end{array}\right) \text { where } \begin{array}{l}
\mathrm{EA}=\text { Activation Energy } \\
\mathrm{K}=\text { Boltaman's Constant } \\
\mathrm{T} 2
\end{array}\right)=\text { Life Test Junction Temp. } \\
\mathrm{T} 1=\text { Junction Temp. at }+55^{\circ} \mathrm{C}
\end{aligned}
\]

Projected field failure rates are calculated at \(60 \%\) and \(95 \%\) confidence levels. This means that either \(60 \%\) or \(95 \%\) of the product will meet or exceed the reliability demonstrated in the test. We also ensure that the failure rate is decreasing with time to prevent any wearout mechanism from reaching our customers.

TABLE I. SUMMARY OF RELIABILITY DATA
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{SAJII PROCESS TYPE} & \multirow[b]{2}{*}{NO. OF DEVICES} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { DEVICE } \\
\text { HOURS @ } \\
\text { STRESS TEMP. }
\end{gathered}
\]} & \multirow[b]{2}{*}{NO. OF FAILURES} & \multirow[b]{2}{*}{\[
\begin{aligned}
& E_{A} \\
& (e V)
\end{aligned}
\]} & \multicolumn{2}{|c|}{\begin{tabular}{l}
FAILURE RATE (FITs) \\
@ \(\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}\)
\end{tabular}} \\
\hline & & & & & 60\% CONFIDENCE & 95\% CONFIDENCE \\
\hline *SSIV & 4404 & 5,013,762 & \[
\begin{array}{r}
26 \\
5 \\
1
\end{array}
\] & \[
\begin{aligned}
& 1.0 \\
& 0.7 \\
& 0.5
\end{aligned}
\] & 35.13 & 50.37 \\
\hline *S5/6 & 425 & 311,792 & 7 & 1.0 & 47.45 & 74.36 \\
\hline L7 & 1565 & 2,572,737 & 1
7
5
6
1 & \[
\begin{aligned}
& 1.0 \\
& 0.9 \\
& 0.7 \\
& 0.5 \\
& 0.45
\end{aligned}
\] & 73.58 & 97.92 \\
\hline
\end{tabular}

\footnotetext{
*Note that all infant mortality failures (up to 168 hours or equivalent) have been removed from products sampled.
}

TABLE II. CMOS PRODUCTS ACTIVATION ENERGY
\begin{tabular}{|l|c|}
\hline \multicolumn{1}{|c|}{ Failure Mechanism } & \begin{tabular}{c} 
Activation \\
Energy ( \(\mathrm{E}_{\mathrm{A}}\) )
\end{tabular} \\
\hline Oxide Defects & 0.5 ev \\
\hline Defective Apertures & 0.6 ev \\
\hline Photoresist Flaws & 0.7 ev \\
\hline Assembly Defects & 0.8 ev \\
\hline Ionic Contamination & 1.0 ev \\
\hline
\end{tabular}

\section*{Harris Takes the Total Approach to Quality}

\begin{abstract}
Quality and reliability in microcircuit manufacturing can be achieved only as a result of precise design, capable manufacturing methods, carefully controlled production processes and accurate screening and testing. Quality and reliability must be totally designed and built into the product. They are not characteristics that can be added after manufacture. They must be part and parcel of the flow from the original design through final assembly and test.
\end{abstract}

The major steps affecting microcircuit reliability and quality are:
- Initial circuit selection and design.
- Selection of package materials and design.
- Die layout and geometry.
- Raw material inspection and QC.
- Wafer/die production process and controls.
- Die/package assembly and controls.
- Screening and test procedures.

\section*{Harris Standard Flows}

Harris Semiconductor offers a variety of standard product flows which cover the myriad of application environments our customers experience. These flows run the gambet of low cost commercial parts to fully qualified JAN microcircuits. All of these grades have one thing in common. They result from meticulous attention to quality, starting with design decisions made during product development and ending with the labeling of shipping containers for delivery to our customers. The standard flows offered are:

Dash 5: Electrical performance guaranteed from \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\).
Dash 9: Electrical performance guaranteed from \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\).
*Dash 8: Electrical performance guaranteed from \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) plus 160 hours of burn-in with PDA of \(5 \%\). \(100 \%\) preseal visual per Mil-Std-883C, Method 2010.
/883: Mil-Std-883C - compliant product: contact the factory or local Harris sales office for details on availability and specifications

DESC/Standard Compliant to specifications developed and controlled by the Military Drawing: Defense Electronic Supply Center.

JAN Class B: Fully qualified and certified microcircuit manufactured per Mil-M-38510 requirements.

Details of the individual process requirements are contained in the flow charts on pages 10-8 and 10-9.

\footnotetext{
*Harris reserves the option to perform alternate screening in accordance with MIL-STD-883, Method 5004, Paragraph 3.3 on DASH -8 products.
}

\section*{Harris Semiconductor Standard Processing Flows}

(1) Example for a Cerdip Package Part

\section*{Harris Semiconductor Standard Processing Flows}

\section*{(Continued)}


10

(2) Burn-In test temperatures can be increased and time reduced per regression tables in Mil-Std-883, Method 1015.

\section*{Advantages of Standard Flows}

Wherever feasible, and in accordance with good value engineering practice, the IC user should specify device grades based on one of the five standard Harris manufacturing flows. These are more than adequate for the overwhelming majority of applications and may be utilized quite effectively if the user engineer bases his designs on the standard data sheet, military drawing or slash sheet (as applicable) electrical limits.

Some of the more important advantages gained by using standard as opposed to custom flows are as follows:
- Lower cost than the same or an equivalent flow executed on a custom basis. This results from the higher efficiency achieved with a constant product flow and the elimination of such extra cost items as special fixturing, test programs, additional handling, and added documentation.
- Faster delivery. The manufacturer often can supply many items from inventory and, in any case, can establish and maintain a better product flow when there is no need to restructure process and/or test procedures.
- Increased confidence in the devices. A continuing flow of a given product permits the manufacturer to monitor trends which may bear on end-product performance or reliability and to implement corrective action, if necessary.
- Reduction of risk. Since each product is processed independent of specific customer orders, the manufacturer absorbs production variability within its scheduling framework without major impact on deliveries. In a custom flow, a lot failure late in the production cycle can result in significant delays in delivery due to the required recycling time.

Despite the advantages of using standard flows, there are cases where a special or custom flow is mandatory to meet design or other requirements. In such cases, the Harris Marketing groups stand ready to discuss individual customer needs and, where indicated, to accomodate appropriate custom flows.

\section*{Quality: Beginning to End}

There are several significant elements which comprise Harris Semiconductor's approach to quality that don't show on a process flow chart. Some of these are as follows:

\section*{INITIAL CIRCUIT SELECTION AND DESIGN}

Once operational characteristics and parameter limits have been defined there are many different circuit configurations capable of conforming to them. Harris designers are tasked to choose those which are capable of meeting the required performance specifications with maximum reliability.

Powerful computer aided design (CAD) techniques are applied in developing the original concepts and detailed schematics, with computer modeled circuit simulation used to corroborate projected product performance. Monte Carlo methods, and other simulation techniques are also used, as appropriate to achieve specific objectives.

Regardless of the circuit approach selected, high reliability, top performance, and maximum potential yield to the required specifications are the governing criteria.

Individual active device types and component values are selected to provide optimum circuit performance and to minimize sensitivity to parametric changes which may occur with aging or as a result of environmental conditions.

Since most Harris products are sold into military, industrial and commercial end use applications most circuits are designed to meet military temperature range requirements at the outset. This results in more capable products introduced to all segments of the marketplace.

\section*{Die Layout and Geometry}

Conformance with good layout practice is a must, for consistently reliable devices cannot be assembled from poorly designed chips. Therefore, the IC layout phase at Harris is controlled by ground rules which establish the "do's" and "don'ts" for each manufacturing process. These rules define dimensions and toleranced to insure product immunity to process variations, while maximizing product reliability under worst-case stress conditions. Computerized ground rule software packages are used by the chip designers to assure dimensional adherence of diffusion windows as well as interconnect width and spacing. Automatic checkout procedures confirm that the product conforms to the established ground rules.

\section*{Raw Material Inspection and QC}

Acknowledging that \(\mathrm{Hi}-\mathrm{Rel}\), high performance devices can be manufactured only by using top quality materials, Harris subjects incoming materials, piece parts and supplies to documented tests and inspections. The techniques used are selected for optimum evaluation of the materials checked to ensure full compliance with Harris internal specifications. Close coordination with the suppliers is maintained to assure a reliable supply of quality materials.

\section*{Wafer Die Production Process and Controls}

Harris has a wide range of state-of-the-art wafer and die processing capabilities, permitting the circuit designer to choose the optimum production technique for each type of device.

Statistical process control charts are employed to maximize the visibility of wafer lot variability during production. These charts take the form of \(\bar{X} / R\) charts for variables data and \(\overline{\mathrm{C}} / \overline{\mathrm{p}}\) charts for attributes data. Typical process control points include diffusion, thin film, photo resist steps as well as inspection points or electrical device measurements. The goal of the control charts is three fold:
- Isolate and eliminate special causes of variability to preclude the production of wafers with a process which is not operating correctly.
- Define the natural limits of variability in a process to determine its capability in light of engineering expectation.
- Provide a reference baseline for process enhancements or changes to improve capability or reduce cost.

With high reliability an integral part of its manufacturing philosphy, Harris Semiconductor does not have separate production lines for standard and JAN devices. Rather, all Harris devices of a given type are manufactured on the same line. Product grades are selected by the application of screening tests and inspection from the same generic process flows in wafer fab.

\section*{Die/Package Assembly and Controls}

Each major process operation (mount, bond, seal, trim) is carefully monitored by in-process quality control steps. In addition, many mechanical and environmental tests are implemented during the die/package assembly stage. The specific controls and tests utilized at each step are in strict compliance with the applicable standards for the device reliability class designation.

\section*{Burn-In}
\(100 \%\) burn-in is a screening procedure used when applicable to detect devices subject to infant mortality failure modes. Biases are applied to simulate worst-case operational conditions, permitting the identification and elimination of marginal units.

The applied voltage levels, operational state, temperature and test period vary with the type of device and reliability class, as governed by the applicable standards. Electrical test of the device is performed both prior to and after the burn-in period.

\section*{Electrical Screening and Test Procedures}

While many factors are critical in the production of I. C. devices, the electrical screening and test procedures, are critical to matching product performance to customer need. All products receive \(100 \%\) electrical test per the data sheet requirements for each product type. In addition product lots received a battery of QA inspections and tests to assure compliance with Harris production standards.

\section*{Reliability Assessment and Enhancement}

At Harris, reliability assurance is a dynamic program with the primary and ultimate goal of securing full product performance throughout its usage life. Each manufacturing phase from original design to final packaging is subject to continuous review, analysis, and evaluation, with modifications introduced as needed to improve product performance and reliability. There are three important sources of reliability data:
1. Initial qualification
2. Add-on life
3. Field failure history

\section*{New Products/Processes/Packages}

Two requirements are imposed on the product development phase of new circuits and processes. First is the use of proper process methodology, design techniques, and layout practices. New designs are reviewed throughout the course of their development for conformance to the constraints defined by process ground rules. These rules document the results of years of experimentation and experience and reflect a relatively conservative approach to process capability and technology. Second is demonstration of reliability performance of a new product or process through a series of stress tests designed to accelerate typical failure mechanisms in integrated circuits. Qualification requirements are illustrated in Table 3 for a variety of product/process/package maturity conditions. These tests are executed by the Harris Reliability organization for each new product/package/process before circuits are committed to the marketplace. Failure rate predictions are made based on test results. More importantly, failure analysis results are fed back into design and process engineering organizations to generate corrective action (if applicable) and enhance product performance. Each new product entry must meet minimum failure rate standards to qualify for sale to customers.

\section*{"Add-On"}

An important source of reliability information is performance of established products through extended life testing under worst-case operating conditions. Failure rate predictions for specific products or product types are available on request via Harris Semiconductor Reliability bulletins;

Accelerated life test are utilized to estimate the expected field failure rate of our products. Life tests are conducted periodically on regular production samples. Sample sizes are typically 200 units which are operated at 1250 C at nominal supply voltages and with forcing and loading conditions simulating typical application environments. Where possible, operating conditions are structured to provide maximum thermal and electrical acceleration of the natural failure mechanisms found in I. C. devices.

All rejected devices are carefully analyzed and activation energies are assigned based on the observed failure mechanisms. There rates are then computed based on thermal derating factors per the Arrhenius equation. The results are reported in the Harris Reliability bulletins based on derating to \(+550^{\circ} \mathrm{C}\) operations and nominal supply conditions. Failure rates are reported at the \(60 \%\) confidence level and the \(95 \%\) confidence level.

Finally, life tests are monitored at mid-point intervals to assure that failure rates are decreasing and that no wearout mechanisms are at work.

TABLE III. TEST MATRIX
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Design \\
Package \\
Process
\end{tabular} & \begin{tabular}{l}
New \\
New \\
New
\end{tabular} & \begin{tabular}{l}
New \\
New \\
Est.
\end{tabular} & \begin{tabular}{l}
New \\
Exist \\
New
\end{tabular} & \begin{tabular}{l}
New \\
Exist \\
Est.
\end{tabular} & \begin{tabular}{l}
Exist \\
New \\
New
\end{tabular} & \begin{tabular}{l}
Exist \\
New \\
Est.
\end{tabular} & \begin{tabular}{l}
Exist \\
Exist \\
New
\end{tabular} & \begin{tabular}{l}
Exist \\
Exist \\
Est.
\end{tabular} \\
\hline Abuse Tests 20 Units & x & X & x & x & X & & x & x \\
\hline Max. Ratings 20 Units: No Failures & x & & X & x & x & & X & x \\
\hline 86/86 or Autoclave 50 Units: No Failures & x & x & x & & X & x & \(\times\) & \\
\hline \begin{tabular}{l}
Constr. Analysis \\
5 Units: No Failures
\end{tabular} & x & x & X & X & x & x & x & x \\
\hline \begin{tabular}{l}
Centrifuge \\
50 Units: No Failures
\end{tabular} & X & x & & & x & \(\times\) & & \\
\hline \begin{tabular}{l}
Ele. Charac. \\
20 Units: No Failures
\end{tabular} & x & \(\times\) & x & x & x & & x & x \\
\hline \begin{tabular}{l}
ESD Immunity \\
20 Units: No Failures
\end{tabular} & X & x & x & x & x & & X & X \\
\hline \begin{tabular}{l}
Fig. Test \\
20 Units: No Failures
\end{tabular} & x & x & X & \(x\) & x & & \(\times\) & \\
\hline HTOL Sample Groups & \[
\begin{aligned}
& 200 \\
& (\mathrm{~min})
\end{aligned}
\] & \[
\begin{gathered}
200 \\
(\min )
\end{gathered}
\] & \[
\begin{aligned}
& 200 \\
& (\min )
\end{aligned}
\] & \[
\begin{aligned}
& 200 \\
& (\min )
\end{aligned}
\] & \[
\begin{aligned}
& 200 \\
& (\mathrm{~min})
\end{aligned}
\] & \[
\begin{aligned}
& 200 \\
& (\mathrm{~min})
\end{aligned}
\] & \[
\begin{gathered}
200 \\
(\min )
\end{gathered}
\] & \[
\begin{aligned}
& 200 \\
& (\mathrm{~min})
\end{aligned}
\] \\
\hline ```
Latch-up
20 Units: No Failures
``` & X & X & \(\times\) & \(\times\) & x & & & \\
\hline Lead Integrity 20 Units: No Failures & \(\times\) & x & & & \(x\) & x & x & \(x\) \\
\hline \begin{tabular}{l}
Mech. Charac. \\
20 Units: No Failures
\end{tabular} & X & x & & & x & x & & \\
\hline \begin{tabular}{l}
Mech. Shock \\
50 Units: No Failures
\end{tabular} & x & x & & & x & X & & \\
\hline \begin{tabular}{l}
Moisture Resist \\
50 Units: No Failures
\end{tabular} & x & X & & & x & x & & \\
\hline \[
\begin{aligned}
& \theta \mathrm{ja} / \theta \mathrm{jc} \\
& 20 \text { Units }
\end{aligned}
\] & x & X & & & x & x & & \\
\hline \begin{tabular}{l}
Solvent Resistance \\
4 Units: No Failures
\end{tabular} & x & x & & & x & x & & \\
\hline \begin{tabular}{l}
Solderability \\
20 Units: No Failures
\end{tabular} & X & x & & & \(\times\) & X & & \\
\hline Temperature Cycling 50 Units: No Failures & X & x & & & X & \(\times\) & & \\
\hline Thermal Shock 50 Units: No Failures & x & x & & & x & x & & \\
\hline \begin{tabular}{l}
Vibration \\
50 Units: No Failures
\end{tabular} & x & \(\times\) & & & x & x & & \\
\hline
\end{tabular}

\section*{Field Failures}

The final source of continued reliability assessment and enhancements is the analysis of defects on products returned by our customer.

An exhaustive analysis of device failures is a requirement of the Harris reliability program. After failure confirmation by electrical test, the device is processed through the standard failure analysis procedure outlined below.

FAILURE ANALYSIS FLOW

tABLE IV. FIELD RETURNS BY FAILURE MECHANISM

NOTE: Returned units are approximately \(1 \%\) of the total shipped.
*Electrical Overstress

\section*{CMOS Design Considerations}

\section*{ESD (ELECTROSTATIC DISCHARGE)}

Since the introduction of MOS, manufacturers have searched for effective and safe ways of handling this voltage sensitive device. High input impedance of CMOS, coupled with gate-oxide breakdown characteristics, result in susceptibility to electrostatic charge damage.

Figure 1 shows a cross-section of a silicon gate MOS structure. Note the very thin oxide layer \((\approx 300-500 \AA\)) present under the gate material. Actual breakdown voltage for this insulating layer ranges from 30 V to 50 V .
Handling equipment and personnel, by simply moving, can generate in excess of 10 kV of static potential in a low humidity environment. Thus, static voltages, in magnitudes sufficient to damage delicate MOS input gate structures, are generated in most handling environments.

A failure occurs when a voltage of sufficient magnitude is applied across the gate oxide causing it to breakdown and destruct. Molten material then flows into the void creating a short from the gate to the underlying silicon. Such shorts occur either at a discontinuity in doping concentration, or at a defect site in the thin oxide. If no problems appear in the oxide, breakdown would most likely occur at gate/source, or gate/drain intersection coincidence due to the doping concentration gradient.
Noncatastrophic degradation may result due to overstressing a CMOS input. Sometimes an input may be damaged, but not shorted. Most of these failures relate to damage of the protection network, not the gate, and show up as increased input leakage.

Figure 1 - Silicon-gate PFET structure cross-section shows the heavily doped source and drain region. They are separated by a narrow gap over which lies a thin-gate oxide and gate material.
*NOTE: \(1 \AA\) (Angstrom \(=10-8 \mathrm{~cm}\))

\section*{Voltage Limiting Input Protection}

During the evolution of monolithic MOS, manufacturers developed various protection mechanisms that are an integral part of the circuit. However, several of these earlier techniques have been replaced by improved methods now in use. The object of most of these schemes is to prevent damage to input-gate structures by limiting applied voltages.
Recent CMOS designs employ a dual-diode concept in their input protection networks. Figure 2 illustrates such a protection circuit.
One characteristic of junction-isolated CMOS protection circuits is the \(\approx 200 \Omega\) current limiting resistor. Cross sectional area of the metallization leading to the resistor, and the area of the resistor are, therefore, designed to absorb discharge energy without sustaining permanent damage. This dual-diode protection has proved very effective and is the most commonly used method in production today.

\section*{HARRIS INPUT GATE PROTECTION}

To protect input device gates against destructive overstress by static electricity accumulating during handling and insertion of CMOS products, Harris provides a protection circuit on all inputs. The general configuration of this protection circuit is shown in Figure 2.

Figure 2 - Junction isolated dual-diode protection networks are most commonly used in today's CMOS circuits.

Both diodes to the \(\mathrm{V}_{\mathrm{DD}}\) and \(\mathrm{V}_{\text {SS }}\) lines have breakdown voltages averaging between 35 and 40 volts. Excessive static charge accumulated on the input pin is thus effectively discharged through these diodes which limit the voltage applied from gate to drain and source. The 200 ohm resistor provides current limiting during discharge. Depending on the polarity of the input static charge and on which of the supply pins.aregrounded, the protective diodes may either conduct in the forward direction or breakdown in the reverse direction.

There are two trade-offs to consider when fabricating an input protection scheme, namely effectiveness of the overvoltage protection and performance of the overall circuit. It is obvious that increasing the series resistance and capacitance at an input limits current and this, in turn, increases the input protection's ability to absorb the shock of a static discharge. However, such an approach to protection can have a significant effect on circuit speed and input leakage. The input protection selected must therefore provide a useful performance level and adequate static-charge protection.

Commonly used MOS-input protection circuits all have basic characteristics that limit their effectiveness. The zener diodes, or forward-biased pn-junctions, employed have finite turn-on times too long to be effective for fast rise-time conditions. A static discharge of 1.5 kV into a MOS input may bring the gate past its breakdown level before the protection diodes or zener becomes conductive.
Actual turn-on times of zeners and pn-diodes are difficult to determine. It is estimated that they are a few nanoseconds and a few tens of picoseconds, respectively. A low-impedance static source can easily produce rise times equal to or faster than these turn-on times. Obviously the input time constant required to delay buildup of voltage at the gate must be much higher for zener diodes or other schemes having longer turn-on times.

Consider an example. Figure 3 shows a test circuit that simulates the discharge of a 1.5 kV static charge into a CMOS input. Body capacitance and resistance of the average person is represented by a 100 pF capacitor through \(1.5 \mathrm{k} \Omega\). Switch A is initially closed, charging 100 pF to 1.5 kV with switch B open. Switch A is opened, then B is closed, starting the discharge. With the \(1.5 \mathrm{~K} \Omega \times 5 \mathrm{pF}\) time constant to limit the charge rate at the DUT input, it would take approximately 350 psec to charge to 70 V above VDD. Diode turn-on time is much shorter than 350 psec , hence the gate node would be clamped before any damage could be sustained.

Figure 3 - Input protection network test setup illustrates how diode clamping prevents excessive voltages from damaging the CMOS device.

\section*{HANDLING RULES}

There is no completely foolproof system of chip-input protection presently in production. If static discharge is of high enough magnitude, or of sufficiently short rise-time, some damage or degradation may occur. It is evident, therefore, that proper handling procedures should be adopted at all times.

Elimination or reduction of static charge can be accomplished as follows:
- Use conductive work stations. Metallic or conductive plastic tops on work benches connected to ground help eliminate static build-up.
- Ground all handling equipment.
- Ground all handling personnel with a conductive bracelet through \(1 \mathrm{M} \Omega\) to ground.
- The \(1 \mathrm{M} \Omega\) resistor will prevent injury.
- Smocks, clothing, and especially shoes of certain insulating materials (notably nylon) should not be worn in areas where devices are handled. These materials, highly dielectric in nature, will hold or aid in the generation of a static charge.
- Control relative humidity to as high a level as practical. A higher level of humidity helps bleed away any static charge as it collects.
- lonized air blowers reduce charge build-up in areas where grounding is not possible or desirable.
- Devices should be in antistatic conductive carriers during all phases of transport. If antistatic carriers are used the devices and carriers should be in a static shielding bag.
- In automated handling equipment, the belts, chutes or other surfaces the leads contact should be of a conducting nature. If this is not possible, ionized air blowers may be a good alternative.

Harris currently ships all CMOS products in Benstat TM tubes placed inside static shielding bags. Packing materials are all antistatic.

\section*{THE FORWARD-BIAS PHENOMENON}

Monolithic CMOS integrated circuits employ a single-crystal silicon wafer into which FET sources and drains are implanted. For complex functions many thousands of transistors may be required and each must be electrically isolated for proper operation.
Junction techniques are commonly used to provide the required isolation - each switching node operating reverse-biased to its respective substrate material. Additionally, as previously mentioned, protection diodes are provided to prevent static-charge related damage where inputs interface to package pins. Forward-biasing any of these junctions with or without power applied may result in malfunction, parametric degradation, or damage to the circuit.

High currents resulting from an excessive forward-bias can cause severe overheating localized to the area of a junction. Damage to the silicon, overlying oxide and metallization can result.

\section*{BIPOLAR PARASITICS}

Care must always be exercised not to forward-bias junctions from input or output pads.
A complex and potential defect phenomenon is the interaction of a npn/pnp combination a la SCR (Figure 5). Forward-biasing the base-emitter junction of either bipolar component can cause the pair to latch up if \(\beta \mathrm{npn} \times \beta \mathrm{pnp} \geq 1\). The resultant low/ impedance between supply pins can cause fusing of metallization or over-dissipation of the chip.

Figure 5 shows how an SCR might be formed. The \(p+\) diffusion labeled INPUT is connected to aluminum metallization and bonded to a package pin. Biasing this point positive with respect to \(V_{D D}\) supplies base drive to the pnp through R2. Although gain of these lateral devices is normally very low, sufficient collector current may be generated to forwardbias and supply substantial base current to the vertical npn parasitic. Once the prair has been activated, each member provides the base current required to sustain the other. A latched condition will be maintained until power is removed or circuit damage disables further operation.

Figure 5 - Improper biasing can latch-up this SCR configuration. A \(p+\) guard ring is commonly used to kill lateral pnp action. This ring is diffused into the surface at the junction of \(p\) - and \(n\) - silicon.

\section*{DESIGN RULES EQUALLY IMPORTANT AS HANDLING RULES}

A system using CMOS devices must have reliability designed in. No amount of testincı can guarantee long term reliability when poor design practices are evident.
- Never apply signals which exceed maximum ratings to a CMOS circuit before or after power has been turned on (to prevent latch-up)
- Supply filter capacitance should be distributed such that some filtering is in close proximity to the supply pins of each package. Testing has shown \(0.01 \mu \mathrm{~F} /\) package to be effective in filtering noise generated by most CMOS functions.
- CMOS signal lines are terminated at the driving end by a relatively high impedance when operating at the low end of the supply voltage range. This high-impedance termination results in vulnerability to high-energy or high-frequency noise generated by bipolar or other non-CMOS components. Such noise must be held down to manageable levels on both CMOS power and signal lines.
- Where CMOS must interface between logic frames or between different equipments, ground differences must be controlled in order to maintain operation within absolute maximum ratings.
- Capracitance on a CMOS input or output will result in a forward-bias condition when power is turned off. This capacitance must discharge through forward-biased input or outtput to substrate junctions as the bus voltage collapses. Excessive capacitance (thousarids of pF) should be avoided as discharging the stored energy may generate excessive current densities during power-down.
- Where forward-biasing is inevitable, current limiting should be provided. Current should not be permitted to exceed 1 mA on any package pin excluding supply pins.

All C:MOS is susceptible to damage due to electrical overstress. It is the user's responsibility to follow a few simple rules in order to minimize device losses.
First, select a source for the CMOS device that employs an effective input protection scheme. This will allow a greater margin of safety at all levels of device handling since the devices will not be quite so prone to static charge damage. Next, he should apply a sound set of handling and design rules. At minimum, this will eliminate electrical stresing or hold it to manageable levels.

With an effective on-chip protection scheme, good handling procedures and sound design, users should not lose any CMOS devices to electrical overstress.

Hi-Reliability Products

PAGE
HARRIS HI-REL PRODUCTS . 11-2
MILITARY PRODUCTS . 11-2
CMOS MICROPROCESSOR AND SUPPORT CIRCUITS . 11-3
CMOS STATIC RAMs . 11-4
MILITARY PRODUCT REFERENCE GUIDE . 11-5

\section*{Harris Hi-Rel Products}

Harris has developed standard flows which should satisfy most Hi-Rel requirements. Produced in accordance with established manufacturing flows,
the standard Harris Hi-Rel grades and their indicated areas of application are as follows:

Dash 5: Electrical performance guaranteed from \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\).
Dash 9: Electrical performance guaranteed from \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\).
Dash 8: Electrical performance guaranteed from \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\) plus 160 hours of burn-in with PDA of \(5 \%\). 100\% preseal visual per Mil-Std-883C, Method 2010.
/883: Mil-Std-883C - compliant product: contact the factory or local Harris sales office for details on availability and specifications

DESC/Standard Compliant to specifications developed and controlled by the Military Drawing: Defense Electronic Supply Center.
\(\begin{array}{ll}\text { JAN Class B: Fully qualified and certified microcircuit manufactured per } \\ & \text { Mil-M-38510 requirements. }\end{array}\)
Details of the individual process requirements are contained in the flow charts on pages 10-8 and 10-9 of this data book.

\section*{Military Products}

Harris offers a full line of products that are processed in full conformance to the provisions of military standards including MIL-STD-883C for Class B parts. The requirements for these products are controlled in one or two ways:
1. Government standards (such as JAN Slash Sheets or DESC Drawings)

\section*{2. Harris Standards}

The Harris standard Military Products Program is based on its experience in the JAN program. JAN certifications are maintained on our production and Product Assurance operations and form the basis of our MIL-STD-883 conformance program. These areas are regularly audited by Harris and by the U.S. government to assure compliance.

Selected products have been qualified to the MIL-\(\mathrm{M}-38510\) requirements and are listed on the QPL. There are also a number of Harris parts which are specified by DESC Drawings. In addition, Harris offers many products as fully conformant to MIL-STD-883 via an internal standards program. Please
contact the factory or your local Harris Sales Office or Representative for the latest status on military standard compliant product offerings.

The information in this catalog is intended to describe the expected part behavior under certain operating conditions. The product descriptions contained in this catalog, particularly in the area of electrical performance, do not precisely reflect those of our JAN qualified, DESC or MIL-STD-883 compliant products and are not necessarily test requirements for Harris military standard compliant products.

The actual product test requirements for JAN and DESC parts are described in the appropriate MIL-M38510 slash sheet or DESC Drawing, respectively. In addition, Harris will be issuing product data sheets for MIL-STD-883 compliant parts which will describe actual test requirements. These compliant products will be identified by a " \(/ 883\) " suffix on the part number (e.g. HX1-XXXX/883). Please contact the factory or your local Harris Sales Office or Representative for details on MIL-STD-883 compliant product offerings.

\section*{CMOS Microprocessor and Support Circuits}
\begin{tabular}{|c|c|c|c|}
\hline HI-REL PART NUMBER & FUNCTION & PIN COUNT & PAGE REF. \\
\hline \multicolumn{4}{|l|}{8/16-BIT MICROPROCESSORS} \\
\hline MD80C86/B & 16-Bit CMOS Microprocessor (5 MHz) & 40 & 3-58 \\
\hline MD80C86-2/B & 16-Bit CMOS Microprocessor (8MHz) & 40 & 3-58 \\
\hline MD80C88/B & 8 -Bit CMOS Microprocessor (5 MHz) & 40 & 3-81 \\
\hline MD80C88-2/B & 8-Bit CMOS Microprocessor (8MHz) & 40 & 3-81 \\
\hline \multicolumn{4}{|l|}{80C86/88 PERIPHERAL CIRCUITS} \\
\hline MD82C50A/B & CMOS Asynchronous Communication Element & 40 & 4-21 \\
\hline MD82C52/B & CMOS Serial Communication Interface & 28 & 4-41 \\
\hline MD82C54/B & CMOS Programmable Interval Timer & 24 & 4-51 \\
\hline MD82C55A/B & CMOS Programmable Peripheral Interface & 40 & 4-66 \\
\hline MD82C59A/B & CMOS Priority Interrupt Controller & 28 & 4-86 \\
\hline MD82C37A/B & CMOS DMA Controller & 40 & 4-3 \\
\hline \multicolumn{4}{|l|}{80C86/88 BUS SUPPORT CIRCUITS} \\
\hline MD82C82/B & CMOS Octal Latching Bus Driver & 20 & 4-100 \\
\hline MD82C83H/B & CMOS Octal Latching Inverting Bus Driver & 20 & 4-105 \\
\hline MD82C84A/B & CMOS Clock Generator/Driver & 18 & 4-110 \\
\hline MD82C85/B & CMOS Static Clock Controller/Generator & 24 & 4-117 \\
\hline MD82C86H/B & CMOS Octal Bus Transceiver & 20 & 4-134 \\
\hline MD82C87H/B & CMOS Octal Inverting Bus Transceiver & 20 & 4-134 \\
\hline MD82C88/B & CMOS Bus Controller & 20 & 4-139 \\
\hline MD82C89/B & CMOS Bus Arbiter & 20 & 4-146 \\
\hline \multicolumn{4}{|l|}{SERIAL COMMUNICATION CIRCUITS} \\
\hline HD-4702-8 & CMOS Bit Rate Generator & 16 & 5-2 \\
\hline HD-6402-8 & CMOS UART & 40 & 5-7 \\
\hline HD-6406-8 & CMOS Programmable Asynchronous Communication Interface & 40 & 5-13 \\
\hline HD-6409-8 & CMOS Manchester Encoder-Decoder & 20 & 5-29 \\
\hline HD-15530-8 & CMOS Manchester Encoder-Decoder & 24 & 5-38 \\
\hline HS-15530RH & CMOS Manchester Encoder-Decoder (Radiation Resistant) & 24 & \\
\hline HD-15531-8 & CMOS Manchester Encoder-Decoder & 40 & 5-45 \\
\hline HS-3182 & CMOS ARINC 429 Bus Interface Line Driver Circuit & 16 & \\
\hline HS-3282 & CMOS ARINC 429 Bus Interface Circuit & 40 & \\
\hline \multicolumn{4}{|l|}{CMOS PROGRAMMABLE LOGIC} \\
\hline HPL-16LC8-8 & Programmable Logic & 20 & 7-2 \\
\hline HPL-16RC4-8 & Programmable Logic & 20 & 7-9 \\
\hline HPL-16RC6-8 & Programmable Logic & 20 & 7-9 \\
\hline HPL-16RC8-8 & Programmable Logic & 20 & 7-9 \\
\hline HPL-82C339-8 & Programmable Chip Select Decoder (PCSD) & 24 & 7-19 \\
\hline HPL-82C338-8 & Programmable Chip Select Decoder (PCSD) & 20 & 7-24 \\
\hline HPL-82C139-8 & Programmable Chip Select Decoder (PCSD) & 16 & 7-29 \\
\hline HPL-82C138-8 & Programmable Chip Select Decoder (PCSD) & 16 & 7-34 \\
\hline
\end{tabular}

CMOS Static RAMs
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline HI-REL PART NUMBER & CONFIGURATION & PIN COUNT & ACCESS TIME & STANDBY CURRENTICCSB & DATA RET. CURRENTICCDR & OPERATING CURRENTICCOP & PAGE
REF. \\
\hline \multicolumn{8}{|l|}{1K - SYNCHRONOUS} \\
\hline HM-6508-8 & \(1 \mathrm{~K} \times 1\) & 16 & 250ns & \(10 \mu \mathrm{~A}\) & \(10 \mu \mathrm{~A}\) & \(4 \mathrm{~mA} / \mathrm{MHz}\) & 2-4 \\
\hline HM-6508B-8 & \(1 \mathrm{~K} \times 1\) & 16 & 180 ns & \(10 \mu \mathrm{~A}\) & \(5 \mu \mathrm{~A}\) & \(4 \mathrm{~mA} / \mathrm{MHz}\) & 2-4 \\
\hline HM-6518-8 & \(1 \mathrm{~K} \times 1\) & 18 & 250ns & \(10 \mu \mathrm{~A}\) & \(10 \mu \mathrm{~A}\) & \(4 \mathrm{~mA} / \mathrm{MHz}\) & 2-13 \\
\hline HM-6518B-8 & \(1 \mathrm{~K} \times 1\) & 18 & 180 ns & \(10 \mu \mathrm{~A}\) & \(5 \mu \mathrm{~A}\) & \(4 \mathrm{~mA} / \mathrm{MHz}\) & 2-13 \\
\hline HM-6551-8 & \(256 \times 4\) & 22 & 300 ns & \(10 \mu \mathrm{~A}\) & \(10 \mu \mathrm{~A}\) & \(4 \mathrm{~mA} / \mathrm{MHz}\) & 2-22 \\
\hline HM-6551B-8 & \(256 \times 4\) & 22 & 220 ns & \(10 \mu \mathrm{~A}\) & \(10 \mu \mathrm{~A}\) & \(4 \mathrm{~mA} / \mathrm{MHz}\) & 2-22 \\
\hline HM-6561-8 & \(256 \times 4\) & 18 & 300 ns & \(10 \mu \mathrm{~A}\) & \(10 \mu \mathrm{~A}\) & \(4 \mathrm{~mA} / \mathrm{MHz}\) & 2-31 \\
\hline HM-6561B-8 & \(256 \times 4\) & 18 & 220 ns & \(10 \mu \mathrm{~A}\) & \(10 \mu \mathrm{~A}\) & \(4 \mathrm{~mA} / \mathrm{MHz}\) & 2-31 \\
\hline \multicolumn{8}{|l|}{4K - SYNCHRONOUS} \\
\hline HM-6504-8 & \(4 \mathrm{~K} \times 1\) & 18 & 300 ns & \(50 \mu \mathrm{~A}\) & \(25 \mu \mathrm{~A}\) & \(7 \mathrm{~mA} / \mathrm{MHz}\) & 2-40 \\
\hline HM-6504B-8 & \(4 \mathrm{~K} \times 1\) & 18 & 200ns & \(50 \mu \mathrm{~A}\) & \(25 \mu \mathrm{~A}\) & \(7 \mathrm{~mA} / \mathrm{MHz}\) & 2-40 \\
\hline HM-6504S-8 & \(4 \mathrm{~K} \times 1\) & 18 & 120 ns & \(50 \mu \mathrm{~A}\) & \(25 \mu \mathrm{~A}\) & \(7 \mathrm{~mA} / \mathrm{MHz}\) & 2-40 \\
\hline HM-6514-8 & \(1 \mathrm{~K} \times 4\) & 18 & 300 ns & \(50 \mu \mathrm{~A}\) & \(25 \mu \mathrm{~A}\) & \(7 \mathrm{~mA} / \mathrm{MHz}\) & 2-55 \\
\hline HM-6514B-8 & \(1 \mathrm{~K} \times 4\) & 18 & 200 ns & \(50 \mu \mathrm{~A}\) & \(25 \mu \mathrm{~A}\) & \(7 \mathrm{~mA} / \mathrm{MHz}\) & 2-55 \\
\hline HM-6514S-8 & \(1 \mathrm{~K} \times 4\) & 18 & 120 ns & \(50 \mu \mathrm{~A}\) & \(25 \mu \mathrm{~A}\) & \(7 \mathrm{~mA} / \mathrm{MHz}\) & 2-55 \\
\hline \multicolumn{8}{|l|}{16K - SYNCHRONOUS} \\
\hline HM-6516-8 & \(2 \mathrm{~K} \times 8\) & 24 & 200ns & \(100 \mu \mathrm{~A}\) & \(50 \mu \mathrm{~A}\) & \(10 \mathrm{~mA} / \mathrm{MHz}\) & 2-70 \\
\hline HM-6516B-8 & \(2 \mathrm{~K} \times 8\) & 24 & 120 ns & \(50 \mu \mathrm{~A}\) & \(25 \mu \mathrm{~A}\) & \(10 \mathrm{~mA} / \mathrm{MHz}\) & 2-70 \\
\hline \multicolumn{8}{|l|}{16K - ASYNCHRONOUS} \\
\hline HM-65162-8 & \(2 \mathrm{~K} \times 8\) & 24 & 90 ns & \(100 \mu \mathrm{~A}\) & \(40 \mu \mathrm{~A}\) & 70 mA & 2-78 \\
\hline HM-65162B-8 & \(2 \mathrm{~K} \times 8\) & 24 & 70 ns & \(50 \mu \mathrm{~A}\) & \(20 \mu \mathrm{~A}\) & 70 mA & 2-78 \\
\hline HM-65262-8 & 16K x 1 & 20 & 85 ns & \(100 \mu \mathrm{~A}\) & \(40 \mu \mathrm{~A}\) & 50 mA & 2-89 \\
\hline HM-65262B-8 & 16K \(\times 1\) & 20 & 70 ns & \(50 \mu \mathrm{~A}\) & \(40 \mu \mathrm{~A}\) & 50 mA & 2-89 \\
\hline HM-65262S-8 & \(16 \mathrm{~K} \times 1\) & 20 & 55 ns & \(50 \mu \mathrm{~A}\) & \(40 \mu \mathrm{~A}\) & 50 mA & 2-89 \\
\hline \multicolumn{8}{|l|}{64K - ASYNCHRONOUS} \\
\hline HM-65642-8 & \(8 \mathrm{~K} \times 8\) & 28 & 150ns & \(250 \mu \mathrm{~A}\) & \(100 \mu \mathrm{~A}\) & 80 mA & 2-104 \\
\hline \multicolumn{8}{|l|}{CMOS RAM MODULES} \\
\hline HM-6564-8 & 64K & 40 & 350ns & \(800 \mu \mathrm{~A}\) & \(400 \mu \mathrm{~A}\) & 28/56mA/MHz & 2-113 \\
\hline HM-92560-8 & 256K & 48 & 150 ns & \(500 \mu \mathrm{~A}\) & \(350 \mu \mathrm{~A}\) & \(15 / 30 \mathrm{~mA} / \mathrm{MHz}\) & 2-146 \\
\hline HM-92570-8 & Buffered 256K & 48 & 250 ns & \(600 \mu \mathrm{~A}\) & \(450 \mu \mathrm{~A}\) & \(15 / 30 \mathrm{~mA} / \mathrm{MHz}\) & 2-153 \\
\hline HM-8808A-8 & \(8 \mathrm{~K} \times 8\) & 28 & 150ns & \(900 \mu \mathrm{~A}\) & \(400 \mu \mathrm{~A}\) & 70 mA & 2-122 \\
\hline HM-8808AB-8 & \(8 \mathrm{~K} \times 8\) & 28 & 120 ns & \(250 \mu \mathrm{~A}\) & \(125 \mu \mathrm{~A}\) & 70 mA & 2-122 \\
\hline HM-8808AS-8 & \(8 \mathrm{~K} \times 8\) & 28 & 100ns & \(250 \mu \mathrm{~A}\) & \(125 \mu \mathrm{~A}\) & 70 mA & 2-122 \\
\hline HM-8808-8 & \(8 \mathrm{~K} \times 8\) & 28 & 150ns & \(900 \mu \mathrm{~A}\) & \(400 \mu \mathrm{~A}\) & 70 mA & 2-122 \\
\hline HM-8808B-8 & \(8 \mathrm{~K} \times 8\) & 28 & 120 ns & \(250 \mu \mathrm{~A}\) & \(125 \mu \mathrm{~A}\) & 70 mA & 2-122 \\
\hline HM-8808S-8 & \(8 \mathrm{~K} \times 8\) & 28 & 100 ns & \(250 \mu \mathrm{~A}\) & \(125 \mu \mathrm{~A}\) & 70 mA & 2-122 \\
\hline HM-8816H-8 & 16K \(\times 8\) & 28 & 85 ns & \(800 \mu \mathrm{~A}\) & \(370 \mu \mathrm{~A}\) & 400 mA & 2-134 \\
\hline HM-8816HB-8 & 16K \(\times 8\) & 28 & 70 ns & \(800 \mu \mathrm{~A}\) & \(370 \mu \mathrm{~A}\) & 400 mA & 2-134 \\
\hline HM-8832 & \(32 \mathrm{~K} \times 8\) & 28 & 180ns & \(250 \mu \mathrm{~A}\) & \(200 \mu \mathrm{~A}\) & 15 mA & 2-139 \\
\hline HM-91M2 & \(64 \mathrm{~K} \times 16\) or \(128 \mathrm{~K} \times 8\) & 48 & 180s & 2 mA & 1 mA & 20 mA & 2-160 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|c|c|c|c|c|}
\hline \multicolumn{2}{|c|}{ CMOS RADIATION HARDENED RAMS } \\
\hline \begin{tabular}{c}
PART \\
NUMBER
\end{tabular} & CONFIGURATION & \begin{tabular}{c}
PIN \\
COUNT
\end{tabular} & \begin{tabular}{c}
ACCESS \\
TIME
\end{tabular} & \begin{tabular}{c}
STANDBY \\
CURRENT- \\
ICCSB
\end{tabular} & \begin{tabular}{c}
DATA RET. \\
CURRENT- \\
ICCDR
\end{tabular} & \begin{tabular}{c}
OPERATING \\
CURRENT- \\
ICCOP
\end{tabular} \\
\hline \hline HS-6504RH & \(4 \mathrm{~K} \times 1\) & 18 & 300 ns & \(100 \mu \mathrm{~A}\) & \(50 \mu \mathrm{~A}\) & \(7 \mathrm{~mA} / \mathrm{MHz}\) \\
HS-6508RH & \(1 \mathrm{~K} \times 1\) & 16 & 300 ns & \(100 \mu \mathrm{~A}\) & - & \(4 \mathrm{~mA} / \mathrm{MHz}\) \\
HS-6514RH & \(1 \mathrm{~K} \times 4\) & 18 & 200 ns & \(250 \mu \mathrm{~A}\) & \(50 \mu \mathrm{~A}\) & \(7 \mathrm{~mA} / \mathrm{MHz}\) \\
HS-6551RH & \(256 \times 4\) & 22 & 300 ns & \(100 \mu \mathrm{~A}\) & - & \(4 \mathrm{~mA} / \mathrm{MHz}\) \\
HS-6564RH & \(16 \mathrm{~K} \times 4\) or & 40 & 350 ns & \(800 \mu \mathrm{~A}\) & - & \(32 \mathrm{~mA} / \mathrm{MHz}\) \\
RAM Module & \(8 \mathrm{~K} \times 8\) & & & & & \\
\hline
\end{tabular}

\section*{CMOS Fuse Link PROMs}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline PART NUMBER & CONFIGURATION & PIN COUNT & ACCESS TIME & STANDBY CURRENTICCSB & DATA RET. CURRENTICCDR & OPERATING CURRENTICCOP & PAGE REF. \\
\hline \[
\begin{aligned}
& \text { HM-6642-8 } \\
& \text { HM-6617-8 }
\end{aligned}
\] & \[
\begin{aligned}
& 512 \times 8 \\
& 2 K \times 8
\end{aligned}
\] & \[
\begin{aligned}
& 24 \\
& 24
\end{aligned}
\] & \[
\begin{aligned}
& 120 / 250 \mathrm{~ns} \\
& 120 / 90 \mathrm{~ns}
\end{aligned}
\] & \[
\begin{aligned}
& 100 \mu \mathrm{~A} \\
& 100 \mu \mathrm{~A}
\end{aligned}
\] & - & \(20 \mathrm{~mA} / \mathrm{MHz}\) \(20 \mathrm{~mA} / \mathrm{MHz}\) & \[
\begin{aligned}
& 2-169 \\
& 2-175
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{Military Product Reference Guide}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{MICROPROCESSOR PRODUCTS} \\
\hline PART NUMBER & JAN PART NUMBER & MILITARY DRAWING NUMBER & 883 PART NUMBER \\
\hline MD80C86 & - & 8405201QA & - \\
\hline MR80C86 & - & 84052012C & - \\
\hline MD80C88 & - & - & *MD80C88/883 \\
\hline MR80C88 & - & - & *MR80C88/883 \\
\hline MD82C37A & - & *In Development & - \\
\hline MR82C37A & - & *In Development & - \\
\hline MD82C50A-5 & - & - & *MD82C50A-5/883 \\
\hline MR82C50A-5 & - & - & *MR82C50A-5/883 \\
\hline MD82C52 & - & 8501501 XA & - \\
\hline MR82C52 & - & 85015013C & - \\
\hline MD82C54 & - & 8406501JA & - \\
\hline MR82C54 & - & 84065013C & - \\
\hline MD82C55A-5 & - & 8406601QA & - \\
\hline MR82C55A-5 & - & 8406601 XC & - \\
\hline MD82C55A & - & 8406602QA & - \\
\hline MR82C55A & - & 8406602XC & - \\
\hline MD82C59A-5 & - & 8501601YA & - \\
\hline MR82C59A-5 & - & 85016013C & - \\
\hline MD82C59A & - & 8501602YA & - \\
\hline MR82C59A & - & 85016023C & - \\
\hline MD82C82 & - & 8406701RA & - \\
\hline MR82C82 & - & 84067012C & - \\
\hline MD82C83H & - & 8406702RA & - \\
\hline MR82C83H & - & 84067022C & - \\
\hline MD82C84A & - & 8406801VA & - \\
\hline MR82C84A & - & 84068012C & - \\
\hline MD82C85 & - & *In Development & - \\
\hline MR82C85 & - & *In Development & - \\
\hline MD82C86H-5 & - & 8757701RA & - \\
\hline MR82C86H-5 & - & 87577012C & - \\
\hline MD82C87H-5 & - & 8757702RA & - \\
\hline MR82C87H-5 & - & 87577022C & - \\
\hline MD82C88 & - & 8406901RA & - \\
\hline MR82C88 & - & 84069012C & - \\
\hline MD82C89 & - & 8552801RA & - \\
\hline MR82C89 & - & 85528012C & - \\
\hline \multicolumn{4}{|l|}{DATA COMMUNICATION PRODUCTS} \\
\hline HD1-4702 & - & - & HD1-4702/883* \\
\hline HD1-6402 & - & - - & HD1-6402/883* \\
\hline HD1-15530 & - & 7802901JA & - \\
\hline HD4-15530 & - & 78029013C & , \\
\hline HD1-15531 & - & - & HD1-15531/883* \\
\hline
\end{tabular}

\footnotetext{
*Scheduled for Q1 CY'88
}

\section*{Military Product Reference Guide}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{CMOS MEMORY PRODUCTS} \\
\hline PART NUMBER & PART NUMBER & DESC DRAWING NUMBER & 883 PART NUMBER \\
\hline \multicolumn{4}{|l|}{1 K CMOS STATIC RAMs} \\
\hline \begin{tabular}{l}
HM1-6508 \\
HM1-6508B \\
HM1-6518 \\
HM1-6518B \\
HM1-6551 \\
HM1-6551B \\
HM1-6561 \\
HM1-6561B
\end{tabular} & & & \begin{tabular}{l}
HM1-6508/883 \\
HM1-6508B/883 \\
HM1-6518/883 \\
HM1-6518B/883 \\
HM1-6551/883 \\
HM1-6551B/883 \\
HM1-6561/883 \\
HM1-6561B/883
\end{tabular} \\
\hline \multicolumn{4}{|l|}{4K CMOS STATIC RAMs} \\
\hline \begin{tabular}{l}
HM1-6504 \\
HM1-6504B \\
HM1-6504S \\
HM1-6514 \\
HM1-6514B \\
HM1-6514S \\
HM4-6514 \\
HM4-6514B \\
HM1-6514S
\end{tabular} & \begin{tabular}{l}
24501BVX \\
24502BVX
\end{tabular} & 8102405VA
8102403VA
8102401VA
8102406VA
8102404VA
\(8102402 V A^{*}\)
-
-
- & \begin{tabular}{l}
HM1-6504/883 \\
HM1-6504B/883 \\
HM1-6504S/883 \\
HM1-6514/883 \\
HM1-6514B/883 \\
HM1-6514S/883 \\
HM4-6514/883 \\
HM4-6514B/883 \\
HM4-6514S/883
\end{tabular} \\
\hline \multicolumn{4}{|l|}{16K CMOS SYNCHRONOUS STATIC RAMs} \\
\hline \begin{tabular}{l}
HM1-6516 \\
HM1-6516B \\
HM4-6516
\end{tabular} & 29102BJX & \[
\begin{aligned}
& \text { 8403601JA } \\
& \text { 8403607JA } \\
& \text { 8403601ZC }
\end{aligned}
\] & HM1-6516/883
HM1-6516B/883
HM4-6516/883 \\
\hline \multicolumn{4}{|l|}{16K CMOS ASYNCHRONOUS STATIC RAMs} \\
\hline \begin{tabular}{l}
HM1-65162 \\
HM1-65162B \\
HM1-65162C \\
HM1-65162S \\
HM4-65162 \\
HM4-65162B \\
HM4-65162C \\
HM1-65262 \\
HM1-65262B \\
HM4-65262 \\
HM4-65262B
\end{tabular} & \[
\begin{gathered}
29104 \mathrm{BJX} \\
- \\
- \\
- \\
- \\
- \\
- \\
29103 \mathrm{BJX} \\
- \\
- \\
- \\
\hline
\end{gathered}
\] & \begin{tabular}{l}
8403602JA 8403606JA 8403603JA \\
8403602XC 8403606XC 8403603XC 8413201RA 8413203RA 8413201YC 8413203YC
\end{tabular} & \begin{tabular}{l}
HM1-65162/883 \\
HM1-65162B/883 \\
HM1-65162C/883 \\
HM4-65162/883 \\
HM4-65162B/883 \\
HM4-65162C/883 \\
HM1-65262/883 \\
HM1-65262B/883 \\
HM4-65262/883 \\
HM4-65262B/883
\end{tabular} \\
\hline \multicolumn{4}{|l|}{64K CMOS STATIC RAMs} \\
\hline \[
\begin{aligned}
& \text { HM1-65642 } \\
& \text { HM4-65642 } \\
& \text { HM1-65642B }
\end{aligned}
\] & \[
29201 \mathrm{BJX}
\] & \[
\begin{aligned}
& \text { 8552503YA } \\
& 8552503 X C
\end{aligned}
\] & \[
\begin{aligned}
& \text { HM1-65642/883 } \\
& \text { HM4-65642/883 } \\
& \text { HM1-65642B/883 }
\end{aligned}
\] \\
\hline \multicolumn{4}{|l|}{CMOS STATIC RAM MODULES} \\
\hline \begin{tabular}{l}
HM5-6564 \\
HM5-8808 \\
HM5-8808B \\
HM5-8808S \\
HM5-8808A \\
HM5-8808AB \\
HM5-8808AS \\
HM5-8816H \\
HM5-8832B \\
HM5-91M2 \\
HM5-92560 \\
HM5-92570
\end{tabular} & Harris CMOS stat reliability applicati This includes burn SEM inspection, e representative for & AM Modules are availabl processed to our high-r and value-added proces Please contact your loca ails. & or military and highDASH 8 program flow. ng (temperature cycling, Harris sales office or \\
\hline \multicolumn{4}{|l|}{CMOS FUSE LINK PROMs} \\
\hline \begin{tabular}{l}
HM1-6642 \\
HM4-6642 \\
HM6-6642 \\
HM1-6617 \\
HM4-6617 \\
HM6-6617
\end{tabular} & & & HM1-6642/883 HM4-6642/883 HM6-6642/883 HM1-6617/883 HM4-6617/883 HM6-6617/883 \\
\hline
\end{tabular}

\footnotetext{
*Obsolete - may still be purchased for contracts prior to 10/22/85.
}

Ordering and Packaging

PAGE
ORDERING INFORMATION 12-2
DICE INFORMATION 12-3
PACKAGING AVAILABILITY 12-4
PACKAGING CONFIGURATION 12-6

\section*{Ordering Information}

Harris products are designed by "Product Code". When ordering, please refer to products by the full code.
PRODUCT CODE

80CXX FAMILY PRODUCT CODE

\(\mathrm{C}: 0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\)
I : \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\)
M : \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)
\(\mathrm{X}:+25^{\circ} \mathrm{C}\)

P : Plastic DIP
D : Ceramic DIP
X : Unpackaged Device
R : Leadless Chip Carrier
S : Plastic Leaded Chip Carrier
G : Pin Grid Array

\section*{SPECIAL ORDERS}

For best availability and price, it is urged that standard "Product Code" devices be specified which are available worldwide from authorized distributors. Where enhanced reliability is needed, note standard "Dash 8" screening described in this Data Book. Harris application engineers may be consulted for advice about suitability of a part for a given application.

If additional electrical parameter guarantees or reliability screening are absolutely required, a Request for Quotation and Standard Control Drawing should be submitted through the local Harris Sales Office or Sales Representative. Many electrical parameters cannot be economically tested, but can be assured through design analysis, characterization, or correlation with other parameters which have been tested to specification limits. These parameters are labeled "Sampled and guaranteed, but not 100\% tested".

Harris reserves the right to decline to quote, or to request modification to special screening requirements.

\section*{MILITARY PRODUCTS}

Harris offers a full line of products that are processed in full conformance to the provisions of military standards including MIL-STD-883C for Class B parts. The requirements for these products are controlled in one or two ways:
1. Government standards (such as JAN Slash Sheets or DESC Drawings)

\section*{2. Harris Standards}

The Harris standard Military Products Program is based on its experience in the JAN program. JAN certifications are maintained on our production and Product Assurance operations and form the basis of
our MIL-STD-883 conformance program. These areas are regularly audited by Harris and by the U.S. government to assure compliance.
Selected products have been qualified to the MIL-\(\mathrm{M}-38510\) requirements and are listed on the QPL. There are also a number of Harris parts which are specified by DESC Drawings. In addition, Harris offers many products as fully conformant to MIL-STD-883 via an internal standards program. Please contact the factory or your local Harris Sales Office or Representative for the latest status on military standard compliant product offerings.

The information in this catalog is intended to describe the expected part behavior under certain operating conditions. The product descriptions contained in this catalog, particularly in the area of
electrical performance, do not precisely reflect those of our JAN qualified, DESC or MIL-STD-883 compliant products and are not necessarily test requirements for Harris military standard compliant products.

The actual product test requirements for JAN and DESC parts are described in the appropriate MIL-M38510 slash sheet or DESC Drawing, respectively. In addition, Harris will be issuing product data sheets for MIL-STD-883 compliant parts which will describe actual test requirements. These compliant products will be identified by a "/883" suffix on the part number (e.g. HX1-XXXX/883). Please contact the factory or your local Harris Sales Office or Representative for details on MIL-STD-883 compliant product offerings.

\section*{Dice Information}

\section*{GENERAL INFORMATION}

Harris CMOS Products are available in chip form to the hybrid micro circuit designer. The standard chips are DC electrically tested at \(+25^{\circ} \mathrm{C}\) to the data sheet limits for the commercial device and are 100\% visually inspected. Packaging for shipment consists of waffle pack carriers plus an anti-static cushioning strip for extra protection.

The hybrid industry has rapidly become more diversified and stringent in its requirements for integrated circuits. To meet these demands Harris has several options additional to standard chip processing available upon request at extra cost. For more information consult the nearest Harris Sales Office.

\section*{CHIP ORDERING INFORMATION}

Standard and special chip sales are direct factory order only. The minimum order on all sales is \(\$ 250.00\) per line item. Contact the local Harris Sales

Office for pricing and delivery on special chip requirements.

\section*{MECHANICAL INFORMATION}

Dimensions: All chip dimensions nominal with a tolerance of \(\pm .003\) ". Nominal chip thickness is \(.011^{\prime \prime} \pm .002^{\prime \prime}\).

Bonding Pads: Minimum bonding pad size is .004 " x.004" unless otherwise specified.

\section*{ELECTRICAL INFORMATION}

CMOS: Die substrate must be electrically connected to VCC through conductive die attach, to assure proper electrical operating characteristics.

\section*{DIE GEOMETRIES AND DIMENSIONS}

May be obtained by contacting the factory or your local Harris Sales Office.

\footnotetext{
* Contact Harris for availability of \(-\mathrm{M}\left(-55^{\circ} \mathrm{C}\right.\) to \(\left.+125^{\circ} \mathrm{C}\right)\) dice.
}

\section*{Package Availability}
\begin{tabular}{|c|c|c|c|c|}
\hline PART NUMBER & CERAMIC DIP/PGA* & PLASTIC DIP & \[
\begin{aligned}
& \text { CERAMIC } \\
& \text { LEADLESS } \\
& \text { CHIP CARRIER }
\end{aligned}
\] & \begin{tabular}{l}
PLASTIC \\
LEADED CHIP CARRIER
\end{tabular} \\
\hline \multicolumn{5}{|l|}{CMOS 80C86 FAMILY} \\
\hline 80C286* & TF & - & - & Q1 1988 \\
\hline 80C86 & DF & FF & BN & NG \\
\hline \(80 \mathrm{C88}\) & DF & FL & BN & NG \\
\hline 82C37A & CH & FE & BN & NF \\
\hline 82C50A & CJ & FE & - & NF \\
\hline 82C52 & 1M & FJ & BK & NE \\
\hline 82C54 & 5 F & FG & BM & NE \\
\hline 82C55A & CH & FD & BP & NH \\
\hline 82C59A & 1M & FJ & BK & ND \\
\hline 82C82 & CK & 7M & BG & NB \\
\hline 82C83H & CL & 7F & BG & NC \\
\hline 82C84A & 4N & 7W & BE & NB \\
\hline 82C85 & DC & - & BK & ND \\
\hline 82 C 86 H & CL & 7F & BG & NC \\
\hline 82C87H & CL & 7F & BG & NC \\
\hline 82C88 & CK & 7M & BE & NB \\
\hline \(82 \mathrm{C89}\) & CK & 7M & BE & NB \\
\hline \multicolumn{5}{|l|}{1K RAM} \\
\hline HM-6508 & 5 C & 71 & - & - \\
\hline HM-6518 & 5E & 7D & LA & - \\
\hline HM-6551 & 4M & FK & - & - \\
\hline HM-6561 & 4N & 7D & LA & - \\
\hline \multicolumn{5}{|l|}{4K RAM} \\
\hline HM-6504 & 5E & 7D & LB & - \\
\hline HM-6514 & 5E & 7D & LB & - \\
\hline \multicolumn{5}{|l|}{16K RAM} \\
\hline HM-6516 & 5 J & 72 & EC & - \\
\hline HM-65162 & 5 F & 7 Z & EC & - \\
\hline HM-65262 & CL & 7F & BB & - \\
\hline \multicolumn{5}{|l|}{64K RAM} \\
\hline HM-65642 & DK & - & ED & - \\
\hline \multicolumn{5}{|l|}{CMOS PROM} \\
\hline HM-6641 & 5J, DC & - & BK & - \\
\hline HM-6616 & 5J, DC & - & EC & - \\
\hline \multicolumn{5}{|l|}{CMOS HPL} \\
\hline HPL-16LC8 & CL, 1 K ** & - & BG & - \\
\hline HPL-16RC8/6/4 & CL, 1K** & - & BG & - \\
\hline HPL-82C339 & DC & - & BK & - \\
\hline \multicolumn{5}{|l|}{DATA COMMUNICATION} \\
\hline HD-15530 & 4K & 7 C & BA & - \\
\hline HD-15531 & CH & FD & BP & - \\
\hline HD-6408 & - & 7 C & - & - \\
\hline HD-6409 & CK & 7M & BE & - \\
\hline HD-6406 & CH & FE & BN & NF \\
\hline HD-6402 & CH & FD & - & - \\
\hline HD-4702 & 4Z & 7H & LA & - \\
\hline
\end{tabular}
**Sidebrazed Dual-in-Line Package

\section*{Package Availability}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ PART NUMBER } & MODULE SUBSTRATE \\
\hline RAM MODULE & \\
\hline HM-6564 & MA \\
HM-8808 & MJ \\
HM-8808A & MJ \\
HM-8816H & MK \\
HM-8816 & MJ \\
HM-8832 & MJ \\
HM-92560 (32K \(\times 8)\) & MD \\
HM-92560 (16K \(\times 16)\) & MD \\
HM-92570 & MG \\
HM-91M2 & MG \\
\hline
\end{tabular}

\section*{12}

\section*{Package Configuration}

\section*{DC, 4N, 4Z, 5C, 5E, CK, CL}

\section*{CERAMIC DUAL-IN-LINE . 300}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
PKG. \\
TYPE
\end{tabular} & \[
\left\lvert\, \begin{aligned}
& \text { LEAD } \\
& \text { COUNT }
\end{aligned}\right.
\] & DIM. & \[
\begin{gathered}
\text { DIM. } \\
\text { A1 }
\end{gathered}
\] & DIM. & DIM. B1 & DIM. & DIM. D & DIM. E & \[
\underset{\text { E1 }}{\text { DIM. }}
\] & DIM. & DIM. L & DIM. L1 & \[
\begin{gathered}
\text { DIM. } \\
0
\end{gathered}
\] & \[
\begin{gathered}
\text { DIM. } \\
\mathrm{S}
\end{gathered}
\] & \[
\begin{array}{|c}
\hline \text { DIM. } \\
\hline \text { S1 }
\end{array}
\] & DIM. \(\alpha\) \\
\hline 42 & * 16 & \(\frac{-}{.200}\) & \(\frac{.140}{.170}\) & \(\frac{.016}{.023}\) & \(\frac{.050}{.070}\) & \(\frac{.008}{.015}\) & \(\frac{.753}{.785}\) & \(\frac{.265}{.285}\) & \(\frac{.290}{310}\) & \(\frac{.090}{.110}\) & \(\frac{.125}{.180}\) & \(\frac{.150}{-}\) & \(\frac{.015}{.060}\) & \(\frac{-}{.080}\) & . 005 & \(\frac{0^{\circ}}{150}\) \\
\hline 5 C & * 16 & \(\frac{-}{.200}\) & \(\frac{.140}{.170}\) & \(\frac{.016}{.023}\) & \(\frac{.050}{.070}\) & \(\frac{.008}{.015}\) & \(\frac{.753}{.785}\) & \(\frac{.285}{.305}\) & \(\frac{.300}{.320}\) & \(\frac{.090}{.110}\) & \(\frac{.125}{.180}\) & \(\underline{.150}\) & \(\frac{.015}{.060}\) & \(\frac{-}{.080}\) & \(\underline{.005}\) & \(\frac{0^{\circ}}{150}\) \\
\hline 4N,5E & * 18 & \(\frac{-}{.200}\) & \(\frac{.140}{.170}\) & \(\frac{.016}{.023}\) & \(\frac{.050}{.070}\) & \(\frac{.008}{.015}\) & \(\frac{.882}{.915}\) & \(\frac{.285}{.305}\) & \(\frac{.300}{320}\) & \(\frac{.090}{110}\) & \(\frac{.125}{.180}\) & \(\frac{.150}{-}\) & \(\frac{.015}{.060}\) & \(\stackrel{\cdots}{.098}\) & \(\underline{.005}\) & \(\frac{0^{\circ}}{15^{\circ}}\) \\
\hline CK, CL & * 20 & \(\frac{-}{.200}\) & \(\frac{.140}{.170}\) & \(\frac{.016}{.023}\) & \(\frac{.050}{.070}\) & \(\frac{.008}{.015}\) & \(\frac{.940}{.970}\) & \(\frac{.285}{.305}\) & \(\frac{.300}{.320}\) & \(\frac{.090}{.110}\) & \(\frac{.125}{.180}\) & \(\frac{.150}{-}\) & \(\frac{.015}{.060}\) & \(\frac{-}{.080}\) & \(\frac{.005}{-}\) & \(\frac{0^{\circ}}{150}\) \\
\hline DC & \[
\begin{gathered}
24 \\
\text { SLIM }
\end{gathered}
\] & \(\frac{-}{.200}\) & \(\frac{.150}{.180}\) & \(\frac{.016}{.023}\) & \(\frac{.050}{.070}\) & \(\frac{.008}{.015}\) & \(\frac{1.240}{1.280}\) & \(\frac{.285}{.305}\) & \(\frac{.300}{.320}\) & \(\frac{.090}{.110}\) & \(\frac{.125}{.180}\) & \(\frac{.150}{-}\) & \(\frac{.000}{.035}\) & \(\frac{-}{.098}\) & \(\underline{.005}\) & \(\frac{0}{150}\) \\
\hline
\end{tabular}
* End leads are half leads where B remains the same and B1 is . 035 - . 045
* Dimensions B and C maximum limits are increased by 0.003 for solder dip finish

\section*{4M}

CERAMIC DUAL-IN-LINE . 400

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{c}
PKG. \\
TYPE
\end{tabular} & \begin{tabular}{c}
LEAD \\
COUNT
\end{tabular} & \begin{tabular}{c}
DIM. \\
A
\end{tabular} & \begin{tabular}{c}
DIM. \\
A1
\end{tabular} & \begin{tabular}{c}
DIM. \\
\# B
\end{tabular} & \begin{tabular}{c}
DIM. \\
B1
\end{tabular} & \begin{tabular}{c}
DIM. \\
"C
\end{tabular} & \begin{tabular}{c}
DIM. \\
D
\end{tabular} & \begin{tabular}{c}
DIM. \\
E
\end{tabular} & \begin{tabular}{c}
DIM. \\
E1
\end{tabular} & \begin{tabular}{c}
DIM. \\
e
\end{tabular} & \begin{tabular}{c}
DIM. \\
L
\end{tabular} & \begin{tabular}{c}
DIM. \\
L1
\end{tabular} & \begin{tabular}{c}
DIM. \\
Q
\end{tabular} & \begin{tabular}{c}
DIM. \\
S
\end{tabular} & \begin{tabular}{c}
DIM. \\
S1
\end{tabular} & \begin{tabular}{c}
DIM. \\
\(\boldsymbol{\alpha}\)
\end{tabular} \\
\hline \hline 4 & 22 & \(\frac{-}{.225}\) & \(\frac{.150}{.180}\) & \(\frac{.016}{.023}\) & \(\frac{.050}{.070}\) & \(\frac{.008}{.015}\) & \(\frac{1.055}{1.085}\) & \(\frac{.375}{1390}\) & \(\frac{.395}{.415}\) & \(\frac{.090}{.110}\) & \(\frac{.125}{.180}\) & \(\frac{.150}{-}\) & \(\frac{.015}{.060}\) & \(\frac{-}{.080}\) & \(\frac{.005}{-}\) & \(\frac{00}{150}\) \\
\hline
\end{tabular}
* Dimensions B and C maximum limits are increased by 0.003 for solder dip finish

DK, DF, 1M, 4K, 5F, 5J, CH, CJ

\section*{CERAMIC DUAL-IN-LINE . 600}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
PKG. \\
TYPE
\end{tabular} & \[
\begin{gathered}
\text { LEAD } \\
\text { COUNT }
\end{gathered}
\] & DIM. & \[
\begin{gathered}
\text { DIM. } \\
\text { A1 }
\end{gathered}
\] & \[
\begin{aligned}
& \text { DIM. } \\
& \text { B B }
\end{aligned}
\] & \[
\begin{array}{|c|}
\hline \text { DIM } \\
\text { B1 }
\end{array}
\] & \[
\begin{aligned}
& \text { DIM. } \\
& { }^{*} \mathrm{C}
\end{aligned}
\] & \[
\begin{gathered}
\text { DIM. } \\
\mathrm{D}
\end{gathered}
\] & DIM. E & DIM. E1 & \begin{tabular}{l}
DIM. \\
e
\end{tabular} & DIM. L & \[
\begin{gathered}
\text { DIM, } \\
\text { L1 }
\end{gathered}
\] & DIM.
\[
0
\] & \[
\begin{gathered}
\text { DIM. } \\
\mathrm{S}
\end{gathered}
\] & \[
\begin{gathered}
\text { DIM. } \\
\text { S1 }
\end{gathered}
\] & DIM. \(\boldsymbol{\alpha}\) \\
\hline \[
\begin{gathered}
4 K, 5 F \\
5 \mathrm{~J}
\end{gathered}
\] & 24 & \(\frac{-}{.225}\) & \(\frac{.150}{.180}\) & \(\frac{.016}{.023}\) & \(\frac{.050}{.070}\) & \(\frac{.008}{.015}\) & \(\frac{1.24}{1.27}\) & \(\frac{.515}{.535}\) & \(\frac{.595}{.615}\) & \(\frac{.090}{.110}\) & \(\frac{.125}{.180}\) & \(\frac{.150}{-}\) & \(\frac{.015}{.060}\) & \(\frac{-}{.098}\) & \(\frac{.005}{-}\) & \(\frac{00}{150}\) \\
\hline DK,1M & 28 & \(\frac{-}{.225}\) & \(\frac{.160}{.190}\) & \(\frac{.016}{.023}\) & \(\frac{.050}{.070}\) & \(\frac{.008}{.015}\) & \(\frac{1.44}{1.47}\) & \(\frac{.515}{.535}\) & \(\frac{.595}{.615}\) & \(\frac{.090}{.110}\) & \(\frac{.125}{.180}\) & \(\frac{.150}{-}\) & \(\frac{.015}{.060}\) & \(\frac{-}{.098}\) & . 005 & \(\frac{00}{150}\) \\
\hline \[
\begin{gathered}
\text { CJ,CH } \\
\text { DF }
\end{gathered}
\] & 40 & \(\frac{-}{.225}\) & \(\frac{.160}{.200}\) & \(\frac{.016}{.023}\) & \(\frac{.050}{.070}\) & \(\frac{.008}{.015}\) & \(\frac{2.035}{2.096}\) & \(\frac{.515}{.535}\) & \(\frac{.595}{.615}\) & \(\frac{.090}{.110}\) & \(\frac{.125}{.180}\) & \(\underline{.150}\) & \(\frac{.015}{.060}\) & \(\frac{-}{.098}\) & \(\frac{.005}{-}\) & \(\frac{00}{150}\) \\
\hline
\end{tabular}
* Dimension B and C maximum limits are increased by 0.003 for solder dip finish

\footnotetext{
\(\frac{\text { Min. }}{\text { Max }}\)
}

\section*{Package Configuration}

1K
SIDEBRAZE DUAL-IN-LINE . 300

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline PKG. TYPE & LEAD COUNT & \[
\left\lvert\, \begin{gathered}
\text { DIM. } \\
\text { A }
\end{gathered}\right.
\] & \[
\begin{array}{|l|l}
\text { DIM. } \\
\text { *B }
\end{array}
\] & DIM. B1 & \begin{tabular}{l}
DIM. \\
* C
\end{tabular} & \[
\begin{gathered}
\text { DIM. } \\
\text { D }
\end{gathered}
\] & DIM. E & DIM. E1 & \[
\underset{0}{\text { DIM. }}
\] & DIM. L & DIM. L1 & DIM.
0 & \[
\begin{gathered}
\text { DIM. } \\
\mathbf{S}
\end{gathered}
\] & DIM. S1 \\
\hline 1K & 20 & \(\frac{.110}{150}\) & \(\frac{.016}{.023}\) & \(\frac{.045}{.060}\) & \(\frac{.008}{.015}\) & \(\frac{.990}{1.010}\) & \(\frac{.280}{.300}\) & \(\frac{.290}{310}\) & \(\frac{.100}{\text { BSC }}\) & \(\frac{.125}{.180}\) & . 150 & \(\frac{.025}{.045}\) & \(\frac{-}{.080}\) & . 005 \\
\hline
\end{tabular}
* Dimensions B and C maximum limits are increased by 0.003 for solder dip finish

7D, 7F, 7H, 7I, 7M, 7W
PLASTIC DUAL-IN-LINE . 300

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
PKG. \\
TYPE
\end{tabular} & \[
\begin{array}{|c}
\text { LEAD } \\
\text { COUNT }
\end{array}
\] & DIM. A1 & DIM. & DIM. B1 & DIM. & \[
\begin{gathered}
\text { DIM. } \\
\text { D }
\end{gathered}
\] & DIM. E & DIM. E1 & \[
\underset{e}{\text { DIM. }}
\] & DIM. L & DIM. 0 & DIM. S & DIM. \(\boldsymbol{\alpha}\) \\
\hline \multirow[t]{2}{*}{7H,71} & \multirow[t]{2}{*}{* 16} & . 125 & . 016 & . 05 & . 00 & . 745 & . 24 & . 290 & . 090 & . 100 & . 020 & . 025 & \\
\hline & & . 140 & . 023 & . 070 & . 015 & . 785 & . 265 & . 310 & . 110 & . 150 & . 040 & . 035 & 150 \\
\hline \multirow[t]{2}{*}{7D,7W} & \multirow[t]{2}{*}{18} & . 125 & . 016 & . 05 & . 00 & . 890 & . 24 & . 290 & . 090 & . 100 & . 020 & . 040 & 00 \\
\hline & & . 140 & . 023 & . 070 & . 015 & . 930 & . 265 & . 310 & . 110 & . 150 & . 040 & . 060 & \(15^{\circ}\) \\
\hline \multirow[t]{2}{*}{7F,7M} & \multirow[t]{2}{*}{20} & . 13 & . 016 & . 050 & . 008 & 1.02 & . 250 & . 290 & . 090 & . 100 & \(\underline{.020}\) & . 060 & \\
\hline & & . 145 & . 023 & . 070 & . 015 & 1.060 & . 270 & . 310 & . 110 & . 150 & . 040 & . 080 & 15 \\
\hline
\end{tabular}
* End leads are half leads where B remains the same and B1 is . 035 - . 045
** Dimensions B and C maximum limits are increased by 0.003 for solder dip finish
FK
PLASTIC DUAL-IN-LINE . 400

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline PKG. CODE & LEAD COUNT & DIM. A1 & \[
\begin{aligned}
& \hline \text { DIM. } \\
& \text { *B }
\end{aligned}
\] & DIM. B1 & \[
\begin{aligned}
& \mathrm{DIM} . \\
& * \mathrm{c} \\
& \hline
\end{aligned}
\] & DIM.
D & DIM. E & \[
\begin{gathered}
\mathrm{DIM} . \\
\mathrm{E}_{1} \\
\hline
\end{gathered}
\] & DIM. & DIM. L & DIM. 0 & \[
\begin{gathered}
\text { DIM. } \\
\mathbf{S}
\end{gathered}
\] & DIM. \(\boldsymbol{\alpha}\) \\
\hline FK & 22 & \(\frac{.140}{.170}\) & \(\frac{.016}{.023}\) & \(\underline{.050}\) & \(\frac{.008}{.015}\) & \(\frac{1.09}{1.13}\) & \(\frac{.335}{.355}\) & \(\frac{.390}{.410}\) & \(\frac{.090}{.110}\) & \(\stackrel{.100}{150}\) & \(\frac{.020}{.040}\) & \(\frac{.040}{\text {. }}\) & \(\frac{0}{150}\) \\
\hline
\end{tabular}
* Dimensions B and C maximum limits are increased by 0.003 for solder dip finish

\section*{Package Configuration}

FD, FE, FF, FG, FJ, 7C, 7Z, FL
PLASTIC DUAL-IN-LINE . \(\mathbf{6 0 0}\)

* Dimensions B and C maximum limits are increased by 0.003 for solder dip finish

\section*{BE, BD, BG, LA, LB}

\section*{LEADLESS CHIP CARRIER 18R, 20SQ}

\section*{EC, ED, BB, BK, BM, BA}

LEADLESS CHIP CARRIEFI 20R, 28SQ, 32R

\section*{Package Configuration}

\section*{BN, BP}

\section*{LEADLESS CHIP CARRIER 44SQ}

\section*{NB, NC, ND, NE, NF, NG, NH}

PLASTIC LEADED CHIP CARRIER ALL LEAD COUNTS

MA MODULE SUBSTRATE HM-6564

MD MODULE SUBSTRATE HM-92560

\section*{Package Configuration}

MG MODULE SUBSTRATE HM-92570, HM-91 M2

MJ MODULE SUBSTRATE HM-8808/08A, HM-8816, HM-8832

MK MODULE SUBSTRATE
HM-8816H

TF 68 PIN GRID ARRAY (PGA)
\(80 \mathrm{C286}\)
ANALOG PRODUCTS 13-2
CMOS DIGITAL PRODUCTS 13-6
CICD RADIATION HARDENED PRODUCTS 13-7
HARRIS MICROWAVE/GALLIUM ARSENIDE PRODUCTS 13-9
HARRIS SALES LOCATIONS 13-10

\section*{Analog Products}

\section*{Analog-to-Digital Converters}
\begin{tabular}{|c|c|}
\hline HI-574A & \(25 \mu \mathrm{~s}\), Complete 12-Bit A/D Converter with Microprocessor Interface \\
\hline HI-674A & \(12 \mu \mathrm{~s}\), Complete 12-Bit A/D Converter with Microprocess \\
\hline HI-77 & \(8.5 \mu \mathrm{~s}\), Complete 12-Bit A/D Converter with Mi \\
\hline HI-774A & ss, Complete 12-Bit A/D Converter with Microp \\
\hline
\end{tabular}

Digital-to-Analog Converters
\begin{tabular}{|c|c|}
\hline HI-5618A/18B.... & -Bithigh Speed D/A Converter \\
\hline HI-562A & 12-Bit High Speed D/A Converter \\
\hline HI-565A & 12-Bit High Speed D/A Converter with Reference \\
\hline HI-5660/60A & 12-Bit High Speed D/A Converter \\
\hline HI-5680 & 12-Bit D/A Converter with Reference (\(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\)) \\
\hline HI-5685/85A & 12-Bit D/A Converter with Reference (\(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\)) \\
\hline HI-5687 & 12 -Bit D/A Converter with Reference (\(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)) \\
\hline HI-5811 & Complete, Monolithic 12-Bit Latched D/A Converter \\
\hline HI-5690V & Fast 12-Bit V-DAC with Reference (\(0^{\circ} \mathrm{C}\) to \(+70{ }^{\circ} \mathrm{C}\)) \\
\hline HI-5695V & Fast 12-Bit V-DAC with Reference (\(-40^{\circ} \mathrm{C}\) to \(+85{ }^{\circ} \mathrm{C}\)) \\
\hline HI-5697V & Fast 12-Bit V-DAC with Reference (\(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)) \\
\hline DAC16B/C & 16-Bit D/A Converter \\
\hline
\end{tabular}

\section*{Multiplexers}

SINGLE 8/DIFFERENTIAL 4 CHANNEL:
\begin{tabular}{|c|c|}
\hline HI-508/509 & Single 8/Differential 4 Channel CMOS Analog Multipl \\
\hline HI-508A/509A. & Single 8/Differential 4 Channel CMOS Analog MUX with Active Overvoltage Protection \\
\hline HI-518 & Programmable Single 8/Differential 4 Channel CMOS High Speed Analog MUX \\
\hline HI-548/549 & Single 8/Differential 4 Channel CMOS Analog MUX with Active Overvoltage Protection \\
\hline HI-1818A/1828A.. & w Resistance Single 8/Differential 4 Channel CMOS Analog Multiplexer \\
\hline
\end{tabular}

\section*{SINGLE 16/DIFFERENTIAL 8 CHANNEL:}
\begin{tabular}{ll}
HI-506/507..................... Single 16/Differential 8 Channel CMOS Analog \\
HI-506A/507A............... & Single 16/Differential 8 Channel CMOS Analog \\
HI-516 & Programmable Single 16/Differential 8 Channe \\
HI-546/547............... & Single 16/Differential 8 Channel CMOS Analog \\
& \\
4 CHANNEL: & \\
HI-524 4 Channel Video Multiplexer \\
HI-539 4 Channel Low Level Differential Multiplexer
\end{tabular}

\section*{Analog Products}

\section*{Operational Amplifiers: High Slew-Rate}

\section*{SINGLES:}
\begin{tabular}{|c|c|}
\hline -2510/12/15 & High Slew Rate Operational Amplifiers \\
\hline HA-2520/22/25. & High Slew Rate Operational Amplifiers \\
\hline HA-2529 & High Slew Rate Operational Amplifier \\
\hline HA-2539. & High Slew Rate, Wide Bandwidth Operational Amplifier \\
\hline HA-2540 & High Slew Rate, Wide Bandwidth Operational Amplifier \\
\hline HA-2541. & High Slew Rate, Unity Gain Stable Operational Amplifier \\
\hline HA-2542 & High Slew Rate, Power Operational Amplifier \\
\hline HA-2544/44C & High Slew Rate, Video Operational Amplifier \\
\hline HA-2620/22/25 & Wide Bandwidth Operational Amplifiers \\
\hline HA-5101/5111 & Low Noise, High Performance Operational Amplifiers \\
\hline HA-5137. & High Slew Rate, Precision, Low Noise Operational Amplifier \\
\hline HA-5147/47A & High Slew Rate, Precision, Low Noise Operational Amplifier \\
\hline HA-5160/62 & High Slew Rate, Wide Bandwidth J-FET Operational Amplifier \\
\hline HA-5190/95 & High Slew Rate, Fast Settling Operational Amplifiers \\
\hline
\end{tabular}

\section*{DUALS:}

HA-5112.............................. Dual High Slew Rate, Low Noise Operational Amplifier

\section*{QUADS:}
\begin{tabular}{ll}
HA-2400/04/05.................... PRAM Four Channel Programmable Amplifiers \\
HA-2406........................... & Digital Selectable Four Channel Operational Amplifier \\
HA-5114......................... & Quad High Slew Rate, Low Noise Operational Amplifier
\end{tabular}

\section*{Operational Amplifiers: Wide Bandwidth}

\section*{SINGLES:}
\begin{tabular}{|c|c|}
\hline HA-5137 & High Slew Rate, Precision, Low Noise Operational Amplifier \\
\hline HA-2510/12/15. & High Slew Rate Operational Amplifiers \\
\hline HA-2520/22/25. & High Slew Rate Operational Amplifiers \\
\hline HA-2529. & High Slew Rate Operational Amplifier \\
\hline HA-2539 & High Slew Rate, Wide Bandwidth Operational Amplifier \\
\hline HA-2540. & High Slew Rate, Wide Bandwidth Operational Amplifier \\
\hline HA-2541 & High Slew Rate, Unity Gain Stable Operational Amplifier \\
\hline HA-2542. & High Slew Rate, Power Operational Amplifier \\
\hline HA-2544/44C & High Slew Rate, Video Operational Amplifier \\
\hline HA-2600/02/05 & General Purpose High Performance Operational Amplifiers \\
\hline HA-2620/22/25 & Wide Bandwidth Operational Amplifiers \\
\hline HA-5147/47A. & High Slew Rate, Precision, Low Noise Operational Amplifier \\
\hline HA-5160/62 & High Slew Rate, Wide Bandwidth J-FET Operational Amplifiers \\
\hline HA-5190/95 & High Slew Rate, Fast Settling Operational Amplifiers \\
\hline
\end{tabular}

DUALS:
HA-5112.............................. Dual High Slew Rate, Low Noise Operational Amplifier
QUADS:
\begin{tabular}{|c|c|}
\hline HA-2400/04/05. & PRAM Four Channel Programmable Amplifiers \\
\hline HA-2406........................... & Digital Selectable Four Channel Operational Amplifier \\
\hline HA-5114. & Quad High Slew Rate, Low Noise Operational Amplifier \\
\hline \multicolumn{2}{|l|}{Operational Amplifiers: Precision} \\
\hline HA-5127. & Precision, Low Noise Operational Amplifier \\
\hline HA-5134. & Precision Quad Operational Amplifier \\
\hline HA-5137. & Precision Operational Amplifier \\
\hline HA-5147/47A. & High Slew Rate, Precision, Low Noise Operational Amplifier \\
\hline HA-5170.. & J-FET Precision Operational Amplifier \\
\hline HA-5180.. & J-FET Precision, Low Bias Current Operational Amplifier \\
\hline
\end{tabular}

\section*{Analog Products}

\section*{Operational Amplifiers: Low Power}

\section*{SINGLES:}
\begin{tabular}{|c|c|}
\hline \[
\begin{aligned}
& \text { HA-5141... }
\end{aligned}
\] & Ultra-Low Power Operational Amplifier Low Power Operational Amplifier \\
\hline \multicolumn{2}{|l|}{DUALS:} \\
\hline \[
\begin{aligned}
& \text { HA-5142... } \\
& \text { HA-5152...... }
\end{aligned}
\] & Dual Ultra-Low Power Operational Amplifier Low Power Operational Amplifier \\
\hline \multicolumn{2}{|l|}{QUADS:} \\
\hline \[
\begin{aligned}
& \text { HA-5144... } \\
& \text { HA-5154..... }
\end{aligned}
\] & Quad Ultra-Low Power Operational Amplifier Low Power Operational Amplifier \\
\hline \multicolumn{2}{|l|}{Operational Amplifiers: General Purpose} \\
\hline \multicolumn{2}{|l|}{SINGLES:} \\
\hline \[
\begin{aligned}
& \text { HA-2600/02/05 } \\
& \text { HA-5101/5111. }
\end{aligned}
\] & General Purpose High Performance Operational Amplifiers Low Noise, High Performance Operational Amplifiers \\
\hline \multicolumn{2}{|l|}{DUALS:} \\
\hline \[
\begin{aligned}
& \text { HA-5102.. } \\
& \text { HA-5112..... }
\end{aligned}
\] & Dual Low Noise Operational Amplifier Dual High Slew Rate, Low Noise Operational Amplifier \\
\hline \multicolumn{2}{|l|}{QUADS:} \\
\hline \[
\begin{aligned}
& \text { HA-2400/04/05 } \\
& \text { HA-2406........... } \\
& \text { HA-5104.......... } \\
& \text { HA-5114......... }
\end{aligned}
\] & \begin{tabular}{l}
PRAM Four Channel Programmable Amplifiers \\
Digital Selectable Four Channel Operational Amplifier \\
Quad Low Noise Operational Amplifier \\
Quad High Slew Rate, Low Noise Operational Amplifier
\end{tabular} \\
\hline \multicolumn{2}{|l|}{Operational Amplifiers: High Voltage} \\
\hline HA-2640/45 & High Voltage Operational Amplifiers \\
\hline \multicolumn{2}{|l|}{Operational Amplifiers: Addressable} \\
\hline \[
\begin{aligned}
& \text { HA-2400/04/05 } \\
& \text { HA-2406........... }
\end{aligned}
\] & PRAM Four Channel Programmable Amplifiers Digital Selectable Four Channel Operational Amplifier \\
\hline \multicolumn{2}{|l|}{Operational Amplifiers: Current Buffers} \\
\hline HA-5002... & Wideband, High Slew Rate, High Output Current Buffer Wideband, High Slew Rate Current Buffer \\
\hline \multicolumn{2}{|l|}{Sample and Hold Amplifiers} \\
\hline \[
\begin{aligned}
& \text { HA-2420/25 } \\
& \text { HA-5320...... } \\
& \text { HA-5330..... }
\end{aligned}
\] & Fast Sample and Hold Amplifier High Speed Precision Sample and Hold Amplifier Very High Speed Precision Sample and Hold Amplifier \\
\hline \multicolumn{2}{|l|}{Comparators} \\
\hline HA-4900/02/05.................. & Quad High Speed Comparators \\
\hline
\end{tabular}

\title{
Analog Products
}

\section*{Switches}

SPST:
\begin{tabular}{|c|c|}
\hline HI-5040 & \multirow[t]{2}{*}{Low ON Resistance SPST Analog Switch} \\
\hline \(2 \times\) SPST: & \\
\hline HI-200 & Dual SPST General Purpose CMOS Analog Switch \\
\hline HI-300 & Dual SPST Precision CMOS Analog Switch \\
\hline HI-304 & Dual SPST Precision CMOS Analog Switch \\
\hline HI-381 & Dual SPST Precision CMOS Analog Switch \\
\hline HI-5041 & Low ON Resistance Dual SPST Analog Switch \\
\hline HI-5048 & Low ON Resistance Dual SPST Switch \\
\hline \multicolumn{2}{|l|}{\(4 \times\) SPST:} \\
\hline HI-201 & Quad SPST General Purpose CMOS Analog Switch \\
\hline HI-201HS & Quad SPST High Speed CMOS Analog Switch \\
\hline \multicolumn{2}{|l|}{SPDT:} \\
\hline HI-301 & SPDT Precision CMOS Analog Switch \\
\hline HI-305 & SPDT Precision CMOS Analog Switch \\
\hline HI-387 & SPDT Precision CMOS Analog Switch \\
\hline HI-5042 & Low ON Resistance SPDT Analog Switch \\
\hline HI-5050 & Low ON Resistance SPDT Switch \\
\hline \multicolumn{2}{|l|}{\(2 \times\) SPDT:} \\
\hline HI-303 & Dual SPDT Precision CMOS Analog Switch \\
\hline HI-307 & Dual SPDT Precision CMOS Analog Switch \\
\hline HI-390 & Dual SPDT Precision CMOS Analog Switch \\
\hline HI-5043 & Low ON Resistance Dual SPDT Analog Switch \\
\hline HI-5051 & Low ON Resistance Dual SPDT Switch \\
\hline \multicolumn{2}{|l|}{DPST:} \\
\hline HI-5044 & Low ON Resistance DPST Analog Switch \\
\hline \multicolumn{2}{|l|}{\(2 \times\) DPST:} \\
\hline HI-302 & Dual DPST Precision CMOS Analog Switch \\
\hline HI-306 & Dual DPST Precision CMOS Analog Switch \\
\hline HI-384 & Dual DPST Precision CMOS Analog Switch \\
\hline HI-5045 & Low ON Resistance Dual DPST Analog Switch \\
\hline HI-5049 & Low ON Resistance Dual DPST Switch \\
\hline \multicolumn{2}{|l|}{DPDT:} \\
\hline HI-5046/46A & Low ON Resistance DPDT Analog Switch \\
\hline 4PST: & \\
\hline HI-5047/47A & Low ON Resistance 4PST Analog Switch \\
\hline
\end{tabular}

\section*{Telecommunication Circuits}
\begin{tabular}{|c|c|}
\hline HC-5502A & SLIC Subscriber Line Interface Circuit \\
\hline HC-5504. & SLIC Subscriber Line Interface Circuit \\
\hline HC-5509B & SLIC Subscriber Line Interface Circuit \\
\hline HC-5512/12A. & PCM Monolithic Filter \\
\hline HC-5512D. & PCM Monolithic Filter Military Temperature Range \\
\hline HC-55536. & All-Digital Continuously Variable Slope Delta Demodulator (CVSD) \\
\hline HC-55564. & All-Digital Continuously Variable Slope Delta Modulator/Demodulator (CVSD) \\
\hline HF-10. & Universal Filter \\
\hline HC-5560.. & Transcoder \\
\hline
\end{tabular}

\section*{CMOS Microprocessors}

\section*{CMOS Digital Products}

80C286
80 C 86
80C88
CMOS Peripherals
82C37A
82C50A
82C52
82C54
82C55A
82C59A
82C82
82C83H
82C84A
82C85
82C86H
82C87H
82C88
82C89
Data Communications
HD-15530
HD-15531
HD-4702
HD-6402
HD-6406
HD-6408
HD-6409
CMOS Memory
HM-6504
HM-6508
HM-6514
HM-6516
HM-65162
HM-6518
HM-65262
HM-6551
HM-6561
HM-6564
HM-6617
HM-6642
HM-8808/08A
HM-8816H
HM-8832
HM-92560
HM-92570
HM-91M2
CMOS Programmable Logic
HPL-16LC8
HPL-16RC4
HPL-16RC6
HPL-16RC8
HPL-82C339
HPL-82C338
HPL-82C139
HPL-82C138

\section*{Standard Cell}

Static 16-Bit Microprocessor
Static 16-Bit Microprocessor
Static 8/16-Bit Microprocessor

High Performance Programmable DMA Controller
Asynchronous Communications Element
Serial Controller Interface
Programmable Interval Timer
Programmable Peripheral Interface
Priority Interrupt Controller
Octal Latching Bus Driver
Octal Latching Inverting Bus Driver
Clock Generator Driver
Static Clock Controller/Generator
Octal Bus Transceiver
Octal Bus Transceiver (Inverting)
Bus Controller
Bus Arbiter

Manchester Encoder-Decoder
Manchester Encoder-Decoder
Programmable Bit Rate Generator Universal Asynchronous Receiver Transmitter Programmable Asynchronous Communication Interface Asynchronous Serial Manchester Adapter
Manchester Encoder-Decoder

4K x 1 Synchronous RAM
1K \(\times 1\) Synchronous RAM
1K \(\times 4\) Synchronous RAM
2K x 8 Synchronous RAM
2K x 8 Asynchronous RAM
1K x 1 Synchronous RAM
16K x 1 Asynchronous RAM
\(256 \times 4\) Synchronous RAM
\(256 \times 4\) Synchronous RAM
64K Synchronous RAM Module
\(2 \mathrm{~K} \times 8\) Fuse Link PROM
\(512 \times 8\) Fuse Link PROM
\(8 \mathrm{~K} \times 8\) Asynchronous RAM Module
16K x 8 Asynchronous RAM Module
32K x 8 Asynchronous RAM Module
256K Synchronous RAM Module
256K Buffered Synchronous RAM Module
1M-Bit Asynchronous RAM Module

Programmable Logic
Programmable Logic
Programmable Logic
Programmable Logic
Programmable Chip Select Decoder (PCSD)

\section*{CICD Radiation Hardened Products}

\section*{Memories}
\begin{tabular}{|c|c|c|}
\hline H & 1K \(\times 1\) CMOS Static RAM (Synchronous) & Rad Hard \\
\hline HS-6551 & \(256 \times 4\) CMOS Static RAM (Synchronous) & Rad Hard \\
\hline HS-6504RH & \(4 \mathrm{~K} \times 1\) CMOS Static RAM (Synchronous) & Rad Hard \\
\hline HS-6514RH & 1K \(\times 4\) CMOS Static RAM (Synchronous) & Rad Hard \\
\hline HS-65142RH & 1K x 4 CMOS Static RAM (Asynchronous) & Rad Hard \\
\hline HS-65C162RH & & \\
\hline HS-65T162RH & \(2 \mathrm{~K} \times 8\) CMOS Static RAM (Asynchronous & Rad Hard \\
\hline HS-65C262RH & & \\
\hline HS-65T262RH & 16K \(\times 1\) CMOS Static RAM (Asynchronous) & Rad Hard \\
\hline HS-6564RH. & \(8 \mathrm{~K} \times 8\) or 16K x 4 CMOS RAM Module (Synchronous) & Rad Hard \\
\hline HS-6616RH & \(2 \mathrm{~K} \times 8\) CMOS PROM (Synchronous) & Rad Hard \\
\hline HS-76161RH & \(2 \mathrm{~K} \times 8\) Bipolar PROM (Synchronous) & Rad Hard \\
\hline
\end{tabular}

\section*{Quad Power Strobe}

HS-6600RH
Quad Power Strobe
Rad Hard

\section*{Microprocessor and Peripherals}

80C85 8-BIT MICROPROCESSOR FAMILY
\begin{tabular}{|c|c|c|}
\hline HS-80C85 & 8-Bit CMOS Microprocessor & Rad Hard \\
\hline HS-3374RH & CMOS/TTL Bidirectional Level Shifter & Rad Hard \\
\hline HS-54C138RH & 3-Line to 8-Line CMOS Decoder/Demultiplexer & Rad Hard \\
\hline HS-81C55/56RH.. & \(256 \times 8\) CMOS RAM with I/O Ports and Timer & Rad Hard \\
\hline HS-82C08RH & 8-Bit CMOS Bus Transceiver & Rad Hard \\
\hline HS-82C12RH & 8-Bit CMOS I/O Port & Rad Hard \\
\hline HS-83C55RH & \(2 \mathrm{~K} \times 8\) CMOS ROM with I/O Ports & Rad Hard \\
\hline \multicolumn{3}{|l|}{30C86 16-BIT MICROPROCESSOR FAMILY} \\
\hline HS-80C86RH & 16-Bit CMOS Microprocessor & Rad Hard \\
\hline HS-82C37ARH & CMOS Programmable DMA Controller & Rad Hard \\
\hline HS-85C52RH & CMOS Serial Controller Interface & Rad Hard \\
\hline HS-82C54RH & CMOS Programmable Interval Timer & Rad Hard \\
\hline HS-82C55ARH & CMOS Programmable Peripheral Interface & Rad Hard \\
\hline HS-82C59ARH & CMOS Programmable Interrupt Controller & Rad Hard \\
\hline HS-82C85RH & CMOS Static Clock Controller/Generator & Rad Hard \\
\hline
\end{tabular}

Operational Amplifiers, Comparator \& Regulator
HS-3516RH High Slew Rate Wide Band Operational Amplifier
HS-3530RH Low Power Programmable Operational Amplifier
HS-3569RH Wide Range Dual Programmable Operational Amplifier
HS-5104RH Quad Low Noise Operational Amplifier
HS-3560RH High Speed Latching Comparator
HS-3761RH Regulating Pulse Width Modulator

\section*{Multiplexers and Switches}

Rad Hard
Rad Hard
Rad Hard
Rad Hard
Rad Hard
Rad Hard

\section*{CICD Radiation Hardened Products}

\section*{Semicustom}
\begin{tabular}{cc}
HS-CXXXXRH.................. CMOS Standard Cell Multiple Technologies & Rad Hard \\
HS-DXXXXRH............... CMOS Standard Cell 2.5 Micron & Rad Hard \\
& CMOS/Analog/Digital Cell Library
\end{tabular}

\section*{Special Products}
\begin{tabular}{|c|c|c|}
\hline HS-2420RH & Sample and Hold & Rad Hard \\
\hline HS-3112RH & Dual 4 Gate & Rad Hard \\
\hline HS-3113RH & Flip Flop & Rad Hard \\
\hline HS-3114RH & Quad 2 Gate & Rad Hard \\
\hline HS-3315RH & Multiplexer & Rad Hard \\
\hline HS-3116RH & Demultiplexer & Rad Hard \\
\hline HS-3117RH. & Register File & Rad Hard \\
\hline HS-3118RH. & Arithmetic Logic Unit (ALU) & Rad Hard \\
\hline HS-3120RH & Counter & Rad Hard \\
\hline HS-3121RH & Shift Register & Rad Hard \\
\hline HS-3128RH & High Drive Multiplexer & Rad Hard \\
\hline HS-3148RH. & PROM & Rad Hard \\
\hline HS-3504RH. & 12-Bit Digital to Analog Converter & Rad Hard \\
\hline HS-3506RH & 10V Precision Reference & Rad Hard \\
\hline HS-3508RH & Line Receiver/Driver & Rad Hard \\
\hline HS-3509RH & Voltage Regulator & Rad Hard \\
\hline HS-3510RH & Comparator & Rad Hard \\
\hline HS-3511RH & Operational Amplifier & Rad Hard \\
\hline HS-3525RH.. & 8 Channel Multiplexer & Rad Hard \\
\hline HS-3535RH.. & Dual Analog Switch & Rad Hard \\
\hline HS-3536RH.. & Quad Analog Switch & Rad Hard \\
\hline HS-3565RH & J-FET Driver & Rad Hard \\
\hline HS-3580RH & Sense Amplifier & Rad Hard \\
\hline In Development & Dual MOS Driver & Rad Hard \\
\hline In Development & Switching Regulator & Rad Hard \\
\hline
\end{tabular}

\section*{Communications Interface Devices}
\begin{tabular}{|c|c|}
\hline HS-15530RH. & CMOS Manchester. Encoder/Decoder \\
\hline HS-245/246/248/249 & Triple Line Transmitter/Receiver \\
\hline HS-3182 & ARINC 429 Bus Interface Line Driver \\
\hline HS-3273 & MIL-STD-1553 Bus Interface Circuit \\
\hline HS-3282 & ARINC 429 Bus Interface Circuit \\
\hline HS-3447 & CMOS Data Encryption/Decryption Device Cypher \({ }^{\text {™ }}\) \\
\hline
\end{tabular}

Rad Hard
HS-245/246/248/249 Triple Line Transmitter/Receiver
HS-3182 ARINC 429 Bus Interface Line Driver
HS-3273 MIL-STD-1553 Bus Interface Circuit
HS-3447 CMOS Data Encryption/Decryption Device Cypher I™

\section*{Harris Microwave/Gallium Arsenide Products}
GaAs FETs
 HMF-0300 125 mW Power GaAs FET - Chip
 HMF-0301 125 mW Power GaAs FET - Packaged
 HMF-0302 125 mW Power GaAs FET - Flange
 HMF-0310 High Gain GaAs FET - Chip
 HMF-0314 High Gain Low Noise GaAs FET - Package
 HMF-0330 High Gain Low Current GaAs FET
 HMF-0600 250 mW Power GaAs FET - Chip
 HMF-0602 250 mW Power GaAs FET - Flange
 HMF-0610 High Gain Power GaAs FET - Chip
 HMF-0620 High Gain GaAs FET - Chip
 HMF-1200 500 mW Power GaAs FET - Chip
 HMF-1202 500 mW Power GaAs FET - Flange
 HMF-1210 High Gain Power GaAs FET
 HMF-2400 1 W Power GaAs FET - Chip
 HMF-2402 1 W Power GaAs FET - Flange
GaAs Integrated Circuits
 HMD-11011-2 Divide by 10/11 Variable Modulus Divider
 HMD-11016-1 Divide by 2/4/8 Binary Counter
 HMD-11101-2 5-Input NOR/OR Gate
 HMD-11104-2 5-Input NAND/AND Gate
 HMD-11131-2 Master/Slave D Flip-Flop
 HMD-11301-2 Divide by Two Prescaler
 HMD-12141-1 Four-Bit Universal Shift Register
 HMD-11113-2 Dual 2-Input Exclusive OR Gate
 HMD-11685-2 Ultra-High Speed Comparator
 HMD-11188-2 Dual Clock Driver/Fanout Buffer
 HMD-11502-2 Programmable Pulse Driver/Formatter

\section*{MMICs}
HMM-10610 2-6 GHz MMIC Amplifier
HMM-11810-0 6-18 GHz MMIC AmplifierHMR-10502\(0.5-5.0 \mathrm{GHz}\) MMIC Amplifier
HMR-10503 \(1.0-5.0 \mathrm{GHz}\) MMIC Amplifier
IC Evaluation Kits
HMK-11MSI-1 MSI Evaluation Kit
HMK-11SSI-2 SSI Evaluation Kit
GaAs Programs and Services
Monolithic Microwave Integrated Circuits (MMICs)
Custom Analog Integrated Circuits
Custom Digital Integrated CircuitsSemicustom Digital Integrated Circuits
HMS Library of Standard Cells
High Reliability Screening

\section*{Sales Offices}
\begin{tabular}{lll}
U.S. HEADQUARTERS & EUROPEAN HEADQUARTERS & FAR EAST HEADQUARTERS \\
Harris Semiconductor & Harris/System Limited & Harris K.K. \\
2401 Palm Bay Road & Semiconductor Sector & Shinjuku NS Bldg. Box 6153 \\
Palm Bay, Florida 32905 & Eskdale Road & \(2-4-1\) Nishi-Shinjuku \\
TEL: (305) \(724-7418\) & Winnersh Triangle & Shinjuku-Ku, Tokyo 163 Japan \\
& Wokingham RG11 5TR & TEL: 81-3-345-8911 \\
& Berkshire & \\
& United Kingdom &
\end{tabular}

DISTRIBUTORS IN U.S.A.
Anthem Electronics
Falcon Electronics
Hall-Mark Electronics

EUROPEAN HEADQUARTERS
Harris/System Limited
Sector

Wokingham RG11 5TR
United Kingdom
TEL: 0734-698787

Harris K.K.
Shinjuku NS BIdg. Box 6153
2-4-1 Nishi-Shinjuku
Shinjuku-Ku, Tokyo 163 Japan
TEL: 81-3-345-8911

DISTRIBUTORS IN CANADA
Hamilton/Avnet Corporation
Semad Electronics

In addition to our Sales Offices, Harris has a number of sales representatives that may be contacted for ordering or product information. Please contact your nearest sales office or the factory at (305) 724-7418 for a complete listing.

\section*{NOTES}

\title{
Harris Semiconductor Spectrum of Products
}

Microprocessors
Memory
Data Acquisition
Linear
Telecommunication
Semicustom/Custom
Radiation Hardened
Gallium Arsenide

\section*{FOR YOUR INFORMATION, \\ OUR NAME IS \\ HARRIS}

M HARRIS

Printed in U.S.A.```

[^0]: $\mathrm{HPL}{ }^{\text {TM }}$ is a Trademark of Harris Corporation

[^1]: CAUTION: These devices are sensitive to electrostatic discharge. Proper I.C. handling procedures should be followed.

[^2]: CAUTION: Electronic devices are sensitive to electrostatic discharge. Proper I.C. handling procedures should be followed.

[^3]: Shaded areas indicate instructions not available in $80 \mathrm{C} 86 / 88$ microsystems.

[^4]: X = Not Defined, May Be 0 or 1

[^5]: * No Connect

[^6]: TEST CONDITION DEFINITION TABLE

[^7]: This current spike may cause a large negative voltage spike on $V_{C C}$, which could cause improper operation of the device. To filter out this noise, it is recommended that a $0.1 \mu \mathrm{~F}$ ceramic disc capacitor be placed between V_{CC} and GND at each device, with placement being as near to the device as possible.

[^8]: All measurements taken at room temperature, VCC $=+5.0$ volts. Power supply current levels will be dependent upon system configuration and frequency of operation.

[^9]: H = Logic One
 L = Logic Zero
 I = Input Mode
 $\mathrm{O}=$ Output Mode
 X = Don't Care
 $\mathrm{Hi}-\mathrm{Z}=$ High Impedance

[^10]: CAUTION: These devices are sensitive to electrostatic discharge. Proper I.C. handling procedures should be followed.

[^11]: $\overline{\text { MRDC }}$ - Memory Read Command
 MWTC - Memory Write Command
 IORC - I/O Read Command
 IOWC - I/O Write Command

[^12]: CAUTION: These devices are sensitive to electrostatic discharge. Proper I.C. handling procedures should be followed

[^13]: * By adding another 82 C 89 arbiter and connecting its $\overline{\mathrm{AEN}}$ to the 82C88 whose AEN is presently grounded. The processor could have access to two multi-master buses.

