

LINEAR ICs
 FOR COMMERCIAL APPLICATIONS

THE NEW HARRIS SEMICONDUCTOR

In December 1988, Harris Semiconductor acquired the General Electric Solid State division, thereby adding former GE, RCA, and Intersil devices to the Harris Semiconductor line.

This linear IC databook represents the full line of Harris Semiconductor linear products for commercial applications and supersedes previously published linear databooks under the Harris, GE, RCA or Intersil names. For a complete listing of all Harris Semiconductor products, please refer to the Product Selection Guide (SPG-201R; ordering information below).

For complete, current and detailed technical specifications on any Harris device please contact the nearest Harris sales, representative or distributor office; or direct literature requests to:

```
Harris Semiconductor Literature Department
P.O. Box 883, MS CB1-28
Melbourne, FL 32901
(407) 724-3739
FAX 407-724-3937
```

U.S. HEADQUARTERS

Harris Semiconductor 1301 Woody Burke Road Melbourne, Florida 32902 TEL: (407) 724-3000

SOUTH ASIA

Harris Semiconductor H.K. Ltd
13/F Fourseas Building
208-212 Nathan Road
Tsimshatsui, Kowloon
Hong Kong
TEL: (852) 3-723-6339

EUROPEAN HEADQUARTERS
Harris Semiconductor
Mercure Centre
Rue de la Fusse 100
Brussels, Belgium 1130
TEL.: (32) 2-246-2111
NORTH ASIA
Harris K.K.
Shinjuku NS BIdg. Box 6153
2-4-1 Nishi-Shinjuku
Shinjuku-Ku, Tokyo 163 Japan
TEL: 81-3-345-8911

Harris Semiconductor products are sold by description only. All specifications in this product guide are applicable only to packaged products; specifications for die are available upon request. Harris reserves the right to make changes in circuit design, specifications and other information at any time without prior notice. Accordingly, the reader is cautioned to verify that information in this publication is current before placing orders. Reference to products of other manufacturers are solely for convenience of comparison and do not imply total equivalency of design, performance, or otherwise.

FOR COMMERCIAL APPLICATIONS1
Power Control Circuits 2
Operational Amplifiers3Comparators4
Sample and Hold Amplifiers 5
Differential Amplifiers 6
Special Analog Circuits 8
Harris Quality and Reliability 9
Application Note Abstracts 10
Packaging 11
Sales Office Information 12

LINEAR PRODUCT TECHNICAL ASSISTANCE

For technical assistance on the Harris products listed in this databook, please contact Field Applications Engineering staff available at one of the following Harris Sales Offices:

UNITED STATES

CALIFORNIA	Costa Mesa	714-433-0600
	San Jose.	. 408-922-0977
	Woodland Hills	818-992-0686
FLORIDA	Melbourne	407-724-3576
GEORGIA	Norcross.	. 404-246-4660
ILLINOIS	Itasca	. 708-250-0070
MASSACHUSETTS	Burlington	. 617-221-1850
NEW JERSEY	Mt. Laurel	. 609-727-1909
	Rahway.	. 201-381-4210
TEXAS	Dallas 214 -733-0800

INTERNATIONAL

FRANCE	Paris 33-1-346-54046
GERMANY	Munich 49-8-963-8130
ITALY	Milano 39-2-262-22141
JAPAN	Tokyo 81-3-345-8911
SWEDEN	Stockholm 46-8-623-5229
U.K.	Camberley 44-2-766-86886

For literature requests, please contact Harris Telemarketing at 407-724-3739.

GENERAL INFORMATION

ALPHA NUMERIC PRODUCT INDEX

PAGE
CA 101 Externally Compensated, Single 3-9
CA 124 Internally Compensated, Quad 3-15
CA 139, A Quad Voltage Comparators 4-3
CA 158, A Internally Compensated, Dual 3-22
CA 201 Externally Compensated, Single 3-9
CA 224 Internally Compensated, Quad 3-15
CA 239, A Quad Voltage Comparators 4-3
CA 258,A Internally Compensated, Dual 3-22
CA 301A Externally Compensated, Single 3-9
CA 311 Voltage Comparator 4-8
CA 324 Internally Compensated, Quad 3-15
CA 339, A Quad Voltage Comparators 4-3
CA 358, A Internally Compensated, Dual 3-22
CA 555, C Timer 8-3
CA 723,C Adjustable Voltage Regulator 2-5
CA 741, C Internally Compensated, Single 3-33
CA 747, C Dual 741 with Offset Null, Dual 3-33
CA 748, C Externally Compensated, Single 3-33
CA 1458 Dual 741 without Offset Null, Dual 3-33
CA 1524 Pulse Width Modulator 2-13
CA 1558 Dual 741 without Offset Null, Dual 3-33
CA 2524 Pulse Width Modulator 2-13
CA 2902 Internally Compensated, Quad 3-15
CA 2904 Internally Compensated, Dual 3-22
CA 3002 IF Amplifier 6-3
CA $3010 \pm 6 \mathrm{~V}$, Biploar 5 mV VIO, Externally Compensated, Single 3-41
CA 3010A $\quad \pm 6 \mathrm{~V}$, Bipolar 2 mV VIO, Externally Compensated, Single 3-48
CA $3015 \quad \pm 12 \mathrm{~V}$, Bipolar 5 mV VIO, Externally Compensated, Single 3-41
CA 3015A $\pm 12 \mathrm{~V}$, Bipolar 2 mV VIO, Externally Compensated, Single 3-48
CA 3018, A General-Purpose Transistor Array 7-5
CA 3020, A Multi-Purpose Wideband Power Amplifier, Single 3-55
CA 3028A, B Differential/Cascode Amplifier 6-9
CA $3029 \pm 6 \mathrm{~V}$, Bipolar 5 mV V 1 O , Externally Compensated, Single 3-41
CA 3029A $\quad \pm 6 \mathrm{~V}$, Bipolar 2 mV V 1 IO , Externally Compensated, Single 3-48
CA $3030 \quad \pm 12 \mathrm{~V}$, Bipolar 5 mV VIO, Externally Compensated, Single 3-41
CA 3030A $\pm 12 \mathrm{~V}$, Bipolar 2 mV VIO, Externally Compensated, Single 3-48
CA 3039 Diode Array 7-11
CA 3045 General-Purpose N-P-N Transistor Array 7-15
CA 3046 General-Purpose N-P-N Transistor Array 7-15
CA 3049 Dual High-Frequency Differential Amplifier 6-20
CA 3053 Differential/Cascode Amplifier 6-9
CA 3054 Transistor Array-Dual Differential Amplifier 6-25
CA 3059 Zero-Voltage Crossing Switch System 2-28
CA $3060 \quad$ Programmable/Variable OTA, Triple 3-63
CA 3078, A Micropower, Externally Compensated, Single 3-74
CA 3079 Same as CA3059 Without Protection and Inhibit 2-28

ALPHA NUMERIC PRODUCT INDEX (Continued)

PAGE
CA 3080, A Programmable/Variable OTA, Single 3-82
CA 3081 General-Purpose High-Current N-P-N Array 7-21
CA 3082 General-Purpose High-Current N-P-N Array 7-24
CA 3083 General-Purpose High-Current N-P-N Array 7-28
CA 3085, A, B Positive Voltage Regulator 2-39
CA 3086 General-Purpose N-P-N Transistor Array 7-28
CA 3094, A, B Programmable Power Switch/Amplifier, Single 3-91
CA 3096, A, C N-P-N/P-N-P Transistor Array 7-33
CA 3097 Thyristor/Transistor Array 7-43
CA 3098 Programmable Schmitt Trigger-With Memory 4-16
CA $3100 \pm 15 \mathrm{~V}, \mathrm{BiMOS}, 38 \mathrm{MHz}$, GBW Product, Single 3-102
CA 3102 Dual High-Frequency Differential Amplifier 6-20
CA 3127 High-Frequency N-P-N Transistor Array 7-54
CA 3130, A $\quad \pm 7 \mathrm{~V}$, BiMOS, 15 MHz , GBW Product, Single 3-108
CA 3140, A $\quad \pm 15 \mathrm{~V}$, BiMOS, 4.5 MHz , GBW Product, Single 3-122
CA 3141 High-Voltage Diode Array 7-59
CA 3146, A High-Voltage Transistor Array 7-62
CA 3160, A $\pm 7.5 \mathrm{~V}$, BiMOS, 4 MHz , GBW Product, Single 3-142
CA 3183, A HIgh-voltage Transistor Array 7-62
CA 3193, A BiMOS Precision, Single 3-158
CA 3227 High-Frequency N-P-N Transistor Array 7-69
CA 3240, A $\pm 15 \mathrm{~V}$, BiMOS, Int. Comp., Dual 3-169
CA 3246 High-Frequency N-P-N Transistor Array 7-69
CA 3260, A $\pm 7.5 \mathrm{~V}, \mathrm{BiMOS}$, Int. Comp., Dual 3-183
CA 3280, A Programmable/Variable OTA, Dual 3-187
CA 3290, A BiMOS Dual Voltage Comparators 4-23
CA 3410, A BiMOS MOS Input, Internally Compensated, Single 3-196
CA 3420, A Low Voltage BiMOS Op Amp, Single 3-206
CA 3440, A Nanopower BiMOS Op Amp, Single 3-211
CA 3450 Video Line Driver, High Speed, Single 3-216
CA 3493, A Precision BiMOS Op Amp, Single 3-224
CA 3524 Regulating Pulse Width Modulator. 2-13
CA 5130, A High Slew Rate and Wide Bandwidth, Single 3-235
CA 5160, A Frequency-compensated CA 5130, Single 3-252
CA 5260, A Dual CA 5130 3-270
CA 5420, A Low Input Current, Low Power, Single. 3-276
CA 5470 Wideband BiMOS, Quad 3-283
CA 6078 Low Noise, Low Power, Single 3-288
CA 6741 Low Noise, Single 3-288
HA 2400, 04, 05 PRAM Four Channel Programmable Amplifier, Quad 3-292
HA 2406 Digitally Selectable Four Channel Amplifier, Quad 3-296
HA 2420, 25 Fast Sample and Hold Amplifier 5-3
HA 2500, 02, 05 Precision High Slew Rate, Single 3-300
HA 2510, 12, 15 High Slew Rate, Single 3-304
HA 2520, 22, 25 Uncompensated High Slew Rate, Single 3-308
HA 2529 Uncompensated, High Slew Rate, Single 3-313

ALPHA NUMERIC PRODUCT INDEX (Continued)

PAGE
HA 2539 Very High Slew Rate Wideband Amplifier, Single 3-319
HA 2540 Wideband, Fast Settling, Single 3-325
HA 2541 Wideband, Fast Settling, Unity Gain Stable, Single 3-331
HA 2542 Wideband, High Slew Rate, High Output Current, Single 3-338
HA 2544 Video Optimized, Single 3-346
HA 2546 Two Quadrant, Voltage Output Multiplier 8-9
HA 2547 Two Quadrant, Current Output Multiplier 8-19
HA 2548 Precision, High Slew Rate, Wideband, Single 3-355
HA 2600, 02, 05 Wideband, High Impedance, Single 3-362
HA 2620, 22, 25 Very Wideband, Uncompensated, Single 3-367
HA 2640, 45 High Voltage, Single 3-372
HA 2650,55 High Performance, Dual 3-377
HA 2720, 25 Wide Range Programmable, Single 3-381
HA 4741 Enhanced Performance 741-type, Quad 3-387
HA 4900, 02, 05 Precision Quad Comparators 4-32
HA 5002 Wideband, High Slew Rate Buffer 8-26
HA 5004100 MHz Current Feedback Amplifier, Single 3-391
HA 5033 Video Buffer 8-33
HA 5101, 11 Low Noise, High Performance, Single 3-398
HA 5102, 12 Low Noise, High Performance, Dual 3-408
HA 5104, 14 Low Noise, High Performance, Quad 3-408
HA 5127, A Ultra-Low Noise, Precision, Single 3-417
HA 5130, 35 Precision, Single 3-424
HA 5134 Precision, Quad 3-431
HA 5137, A Ultra-Low Noise, Precision, High Slew Rate, Single 3-438
HA 5141, 42, 44 Single/Dual/Quad Low Power 3-444
HA 5147 Ultra-Low Noise, Precision, High Slew Rate, Single 3-451
HA 5151, 52, 54 Single/Dual/Quad Low Power 3-457
HA 5160, 62 Wideband, JFET Input, High Slew Rate, Single 3-464
HA 5170 Precision, JFET Input, Single 3-471
HA 5177, A Ultra-Low Offset Voltage, Single 3-476
HA 5180 Low Bias Current, Low Power, JFET Input, Single 3-484
HA 5190, 95 Wideband, Fast Settling, Single 3-490
HA 5221, 22 Low Noise, Wideband, Precision, Single/Dual 3-497
HA $5320 \quad$ High Speed Precision Monolithic Amplifier 5-10
HA 5330 Very High Speed Monolithic Amplifier 5-17
HA 5340 High Speed, Low Distortion, Monolithic Amplifier 5-21
HFA $0001 \quad$ Ultra High Slew Rate, Single 3-507
HFA 0002 Low Noise Wideband, Single 3-516
HFA 0005 High Slew Rate, Single 3-524
HV 1205 Single Chip Power Supply 2-46
HV 2405E Single Chip Power Supply 2-57
ICL 7605 Instrumentation Amplifier, Single 3-533
ICL 7606 Instrumentation Amplifier, Single 3-533

ALPHA NUMERIC PRODUCT INDEX (Continued)

PAGE
ICL 7611 Low Power, Single 3-545
ICL 7612 Low Power, Single 3-545
ICL 7621 Low Power, Dual 3-545
ICL 7631 Low Power, Triple 3-545
ICL 7641 Low Power, Quad 3-545
ICL 7642 Low Power, Quad 3-545
ICL 7650 S Chopper-Stabilized, Single 3-560
ICL 7652S Chopper-Stabilized, Low Noise, Single 3-570
ICL 7660 CMOS Voltage Converter 2-68
ICL 7660 S Super Voltage Converter 2-77
ICL 7662 CMOS Voltage Converter 2-87
ICL 7663S CMOS Programmable Positive Voltage Regulator 2-96
ICL 7665S CMOS Micropower Over/Under Voltage Detector 2-103
ICL 7667 Dual Power MOSFET Driver 2-113
ICL 7673 Automatic Battery Back-up Switch 2-121
ICL 7675 Switched-Mode Power Supply Controller Set 2-129
ICL 7676 Switched-Mode Power Supply Controller Set 2-129
ICL $7680 \quad+5$ to $\pm 15 \mathrm{~V}$ Voltage Converter/Regulator 2-138
ICL 8013 Low Power Bipolar 8-42
ICL 8021 Low Power Bipolar, Single 3-580
ICL 8023 Low Power Bipolar, Triple 3-580
ICL 8038 Precision Waveform Generator/vCO 8-51
ICL 8048 Log Amplifier 8-60
ICL 8049 Antilog Amplifier 8-60
ICL 8211 Programmable Voltage Detector 2-147
ICL 8212 Programmable Voltage Detector 2-147
ICM 7242 Long-Range Fixed Timer 8-70
ICM 7555 General Purpose Timer 8-76
ICM 7556 Dual General Purpose Timer 8-76
LM 201 Externally Compensated, Single. 3-9
LM 301A Externally Compensated, Single 3-9
LM 311 Voltage Comparator 4-8
LM 324 Internally Compensated, Quad 3-15
LM 339, A Quad Voltage Comparator 4-3
LM 358 Internally Compensated, Dual 3-22
LM 555C Timer 8-3
LM 741, C Internally Compensated, Single 3-33
LM 748, C Externally Compensated, Single 3-33
LM 1458 Internally Compensated, Dual 3-33
LM 1558 Internally Compensated, Dual 3-33
LM 2902 Internally Compensated, Quad 3-15
LM 2904 Internally Compensated, Dual 3-22
LM 4250 Low Power, Low Offset, Single 3-585

PRODUCT INDEX BY FAMILY

ARRAYS PAGE
CA 3018, A General-Purpose Transistor Array 7-5
CA 3039 Diode Array 7-11
CA 3045 General-Purpose N-P-N Transistor Array 7-15
CA 3046 General-Purpose N-P-N Transistor Array 7-15
CA 3081 General-Purpose High-Current N-P-N Array 7-21
CA 3082 General-Purpose High-Current N-P-N Array 7-24
CA 3083 General-Purpose High-Current N-P-N Array 7-28
CA 3086 General-Purpose N-P-N Transistor Array 7-28
CA 3096, A, C N-P-N/P-N-P Transistor Array 7-33
CA 3097 Thyristor/Transistor Array 7-43
CA 3127 High-Frequency N-P-N Transistor Array 7-54
CA 3141 High-Voltage Diode Array 7-59
CA 3146, A High-Voltage Transistor Array 7-62
CA 3183, A HIgh-voltage Transistor Array. 7-62
CA 3227 High-Frequency N-P-N Transistor Array 7-69
CA 3246 High-Frequency N-P-N Transistor Array 7-69
COMPARATORS
CA 139, A Quad Voltage Comparators 4-3
CA 239, A Quad Voltage Comparators 4-3
CA 311 Voltage Comparator 4-8
CA 339, A Quad Voltage Comparators 4-3
CA 3098 Programmable Schmitt Trigger-With Memory 4-16
CA 3290, A BiMOS Dual Voltage Comparators 4-23
HA 4900, 02, 05 Precision Quad Comparators 4-32
LM 311 Voltage Comparator 4-8
LM 339, A Quad Voltage Comparator. 4-3
DIFFERENTIAL AMPLIFIERS
CA 3002 IF Amplifier 6-3
CA 3028A, B Differential/Cascode Amplifier 6-9
CA 3049 Dual High-Frequency Differential Amplifier 6-20
CA 3053 Differential/Cascode Amplifier 6-9
CA 3054 Transistor Array-Dual Differential Amplifier 6-25
CA 3102 Dual High-Frequency Differential Amplifier 6-20
OPERATIONAL AMPLIFIERS
CA 101 Externally Compensated, Single 3-9
CA 124 Internally Compensated, Quad. 3-15
CA 158, A Internally Compensated, Dual 3-22
CA 201 Externally Compensated, Single 3-9
CA 224 Internally Compensated, Quad 3-15
CA 258,A Internally Compensated, Dual 3-22
CA 301A Externally Compensated, Single. 3-9
CA 324 Internally Compensated, Quad 3-15
CA 358, A Internally Compensated, Dual 3-22
CA 741, C Internally Compensated, Single 3-33
CA 747, C Dual 741 with Offset Null, Dual 3-33
CA 748, C Externally Compensated, Single 3-33

PRODUCT INDEX BY FAMILY (Continued)

OPERATIONAL AMPLIFIERS (Continued) PAGE
CA 1458 Dual 741 without Offset Null, Dual 3-33
CA 1558 Dual 741 without Offset Null, Dual 3-33
CA 2902 Internally Compensated, Quad 3-15
CA 2904 Internally Compensated, Dual 3-22
CA $3010 \quad \pm 6 \mathrm{~V}$, Biploar 5 mV V 10 , Externally Compensated, Single 3-41
CA 3010A $\quad \pm 6 \mathrm{~V}$, Bipolar $2 \mathrm{mV} \mathrm{V}_{\mathrm{IO}}$, Externally Compensated, Single 3-48
CA $3015 \quad \pm 12 \mathrm{~V}$, Bipolar 5 mV VIO, Externally Compensated, Single 3-41
CA 3015A $\quad \pm 12 \mathrm{~V}$, Bipolar 2mV VIO, Externally Compensated, Single 3-48
CA 3020, A Multi-Purpose Wideband Power Amplifier, Single 3-55
CA $3029 \pm 6 \mathrm{~V}$, Bipolar 5 mV V 1 O , Externally Compensated, Single 3-41
CA 3029A $\pm 6 \mathrm{~V}$, Bipolar 2 mV VIO, Externally Compensated, Single 3-48
CA 3030 $\pm 12 \mathrm{~V}$, Bipolar 5 mV VIO, Externally Compensated, Single 3-41
CA 3030A $\pm 12 \mathrm{~V}$, Bipolar 2mV VIO, Externally Compensated, Single 3-48
CA 3060 Programmable/Variable OTA, Triple 3-63
CA 3078, A Micropower, Externally Compensated, Single 3-74
CA 3080, A Programmable/Variable OTA, Single 3-82
CA 3094, A, B Programmable Power Switch/Amplifier, Single 3-91
CA $3100 \quad \pm 15 \mathrm{~V}$, BiMOS, 38 MHz , GBW Product, Single 3-102
CA $3130, \mathrm{~A} \quad \pm 7 \mathrm{~V}$, BiMOS, 15 MHz , GBW Product, Single 3-108
CA 3140, A $\quad \pm 15 \mathrm{~V}$, BiMOS, 4.5 MHz , GBW Product, Single 3-122
CA 3160, A $\pm 7.5 \mathrm{~V}$, BiMOS, 4 MHz , GBW Product, Single 3-142
CA 3193, A BiMOS Precision, Single 3-158
CA 3240, A $\pm 15 \mathrm{~V}$, BiMOS, Int. Comp., Dual 3-169
CA 3260, A $\pm 7.5 \mathrm{~V}$, BiMOS, Int. Comp., Dual 3-183
CA 3280, A Programmable/Variable OTA, Dual 3-187
CA 3410, A BiMOS MOS Input, Internally Compensated, Single 3-196
CA 3420, A Low Voltage BiMOS Op Amp, Single 3-206
CA 3440, A Nanopower BiMOS Op Amp, Single 3-211
CA 3450 Video Line Driver, High Speed, Single 3-216
CA 3493, A Precision BiMOS Op Amp, Single 3-224
CA 5130, A High Slew Rate and Wide Bandwidth, Single 3-235
CA 5160, A Frequency-compensated CA 5130, Single 3-252
CA 5260, A Dual CA 5130 3-270
CA 5420, A Low Input Current, Low Power, Single 3-276
CA 5470 Wideband BiMOS, Quad 3-283
CA 6078 Low Noise, Low Power, Single 3-288
CA 6741 Low Noise, Single 3-288
HA 2400, 04, 05 PRAM Four Channel Programmable Amplifier, Quad 3-292
HA 2406 Digitally Selectable Four Channel Amplifier, Quad 3-296
HA 2500, 02, 05 Precision High Slew Rate, Single 3-300
HA 2510, 12, 15 High Slew Rate, Single 3-304
HA 2520, 22, 25 Uncompensated High Slew Rate, Single 3-308
HA 2529 Uncompensated, High Slew Rate, Single 3-313
HA 2539 Very High Slew Rate Wideband Amplifier, Single 3-319
HA 2540 Wideband, Fast Settling, Single 3-325
HA 2541 Wideband, Fast Settling, Unity Gain Stable, Single 3-331
HA 2542 Wideband, High Slew Rate, High Output Current, Single 3-338
HA 2544 Video Optimized, Single 3-346
HA 2548 Precision, High Slew Rate, Wideband, Single 3-355

PRODUCT INDEX BY FAMILY (Continued)

OPERATIONAL AMPLIFIERS (Continued)HA 2600, 02, 05 Wideband, High Impedance, Single3-362
HA 2620, 22, 25 Very Wideband, Uncompensated, Single 3-367
HA 2640, 45 High Voltage, Single 3-372
HA 2650, 55 High Performance, Dual 3-377
HA 2720, 25 Wide Range Programmable, Single 3-381
HA 4741 Enhanced Performance 741-type, Quad 3-387
HA 5004100 MHz Current Feedback Amplifier, Single 3-391
HA 5101, 11 Low Noise, High Performance, Single 3-398
HA 5102, 12 Low Noise, High Performance, Dual 3-408
HA 5104, 14 Low Noise, High Performance, Quad 3-408
HA 5127, A Ultra-Low Noise, Precision, Single 3-417
HA 5130, 35 Precision, Single 3-424
HA 5134 Precision, Quad 3-431
HA 5137, A Ultra-Low Noise, Precision, High Slew Rate, Single 3-438
HA 5141,42, 44 Single/Dual/Quad Low Power 3-444
HA 5147 Ultra-Low Noise, Precision,High Slew Rate, Single 3-451
HA 5151, 52, 54 Single/Dual/Quad Low Power 3-457
HA 5160, 62 Wideband, JFET Input, High Slew Rate, Single 3-464
HA 5170 Precision, JFET Input, Single 3-471
HA 5177, A Ultra-Low Offset Voltage, Single 3-476
HA 5180 Low Bias Current, Low Power, JFET Input, Single. 3-484
HA 5190, 95 Wideband, Fast Settling, Single 3-490
HA 5221, 22 Low Noise, Wideband, Precision, Single/Dual 3-497
HFA 0001 Ultra High Slew Rate, Single 3-507
HFA 0002 Low Noise Wideband, Single 3-516
HFA 0005 High Slew Rate, Single 3-524
ICL 7605 Instrumentation Amplifier, Single 3-533
ICL 7606 Instrumentation Amplifier, Single 3-533
ICL 7611 Low Power, Single 3-545
1CL 7612 Low Power, Single 3-545
ICL 7621 Low Power, Dual 3-545
ICL 7631 Low Power, Triple 3-545
ICL 7641 Low Power, Quad 3-545
ICL 7642 Low Power, Quad 3-545
ICL 7650 Chopper-Stabilized, Single 3-560
ICL 7652 Chopper-Stabilized, Low Noise, Single 3-570
ICL 8021 Low Power Bipolar, Single 3-580
ICL 8023 Low Power Bipolar, Triple 3-580
LM 201 Externaliy Compensated, Single. 3-9
LM 301A Externally Compensated, Single 3-9
LM 324 Internally Compensated, Quad 3-15
LM 358 Internally Compensated, Dual 3-22
LM 741, C Internally Compensated, Single 3-33
LM 748, C Externally Compensated, Single. 3-33
LM 1458 Internally Compensated, Dual 3-33
LM 1558 Internally Compensated, Dual 3-33
LM 2902 Internally Compensated, Quad 3-15
LM 2904 Internally Compensated, Dual 3-22
LM 4250 Low Power, Low Offset, Single 3-585

PRODUCT INDEX BY FAMILY (Continued)

POWER CONTROL CIRCUITS PAGE
CA 723,C Adjustable Voltage Regulator 2-5
CA 1524 Pulse Width Modulator 2-13
CA 2524 Pulse Width Modulator 2-13
CA 3059 Zero-Voltage Crossing Switch System 2-28
CA 3079 Same as CA3059 Without Protection and Inhibit 2-28
CA 3085, A, B Positive Voltage Regulator 2-39
CA 3524 Regulating Pulse Width Modulator 2-13
HV 1205 Single Chip Power Supply 2-46
HV 2405E Single Chip Power Supply 2-57
ICL 7660 CMOS Voltage Converter 2-68
ICL 7660 S Super Voltage Converter 2-77
ICL 7662 CMOS Voltage Converter 2-87
ICL 7663 CMOS Programmable Positive Voltage Regulator 2-96
ICL 7665S CMOS Micropower Over/Under Voltage Detector 2-103
ICL 7667 Dual Power MOSFET Driver 2-113
ICL 7673 Automatic Battery Back-up Switch 2-121
ICL 7675 Switched-Mode Power Supply Controller Set 2-129
ICL 7676 Switched-Mode Power Supply Controller Set 2-129
ICL $7680 \quad+5$ to $\pm 15 \mathrm{~V}$ Voltage Converter/Regulator 2-138
ICL 8211 Programmable Voltage Detector 2-147
ICL 8212 Programmable Voltage Detector 2-147
SAMPLE AND HOLD AMPLIFIERS
HA 2420, 25 Fast Sample and Hold Amplifier 5-3
HA 5320 High Speed Precision Monolithic Amplifier 5-10
HA 5330 Very High Speed Monolithic Amplifier 5-17
HA 5340 High Speed, Low Distortion, Monolithic Amplifier 5-21
SPECIAL ANALOG CIRCUITS
CA 555, C Timer 8-3
HA 2546 Two Quadrant, Voltage Output Multiplier 8-9
HA 2547 Two Quadrant, Current Output Multiplier 8-19
HA 5002 Wideband, High Slew Rate Buffer 8-26
HA 5033 Video Buffer 8-33
ICL 8013 Low Power Bipolar 8-42
ICL 8038 Precision Waveform Generator/VCO 8-51
ICL 8048 Log Amplifier 8-60
ICL 8049 Antilog Amplifier 8-60
ICM 7242 Long-Range Fixed Timer 8-70
ICM 7555 General Purpose Timer 8-76
ICM 7556 Dual General Purpose Timer 8-76
LM 555C Timer 8-3

Commercial Linear Product Cross Reference

DEVICE	HARRIS REPLACEMENT	(NOTE 1) PIN TO PIN	(NOTE 2) EE	HARRIS ADVANTAGE OR COMMENTS
3507J	HA2-2525-5	Yes	1	
3508J	HA2-2625-5	Yes	1	
$\begin{aligned} & 3551 \mathrm{~J} \\ & 3551 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \text { HA2-5162-5 } \\ & \text { HA2-5160-2 } \end{aligned}$	*	$\begin{aligned} & \mathrm{FE} \\ & \mathrm{FE} \end{aligned}$	Reduced Ibias/Greater Bandwidth Reduced Ibias/Greater Bandwidth
$\begin{aligned} & \text { 3554AM } \\ & \text { 3554BM } \\ & 3554 \mathrm{SM} \end{aligned}$	HFA1-0001-9 HFA1-0001-9 HFA1-0001-9	$\begin{aligned} & \text { No } \\ & \text { No } \\ & \text { No } \end{aligned}$	$\begin{aligned} & \mathrm{FE} \\ & \mathrm{FE} \end{aligned}$ FE	Greater Bandwidth/Faster Ts/Lower Cost Greater Bandwidth/Faster Ts/Lower Cost Greater Bandwidth/Faster Ts/Lower Cost
$\begin{aligned} & \text { AD301AH } \\ & \text { AD301AN } \end{aligned}$	$\begin{aligned} & \text { CA0301AT } \\ & \text { CA0301AE } \end{aligned}$	Yes Yes	I	
AD3554AM AD3554BM AD3554SM	HFA1-0001-9 HFA1-0001-9 HFA1-0001-9	$\begin{aligned} & \text { No } \\ & \text { No } \end{aligned}$ No	FE FE FE	Greater Bandwidth/Faster Ts/Lower Cost Greater Bandwidth/Faster Ts/Lower Cost Greater Bandwidth/Faster Ts/Lower Cost
$\begin{aligned} & \text { AD389BD } \\ & \text { AD389KD } \end{aligned}$	$\begin{aligned} & \text { HA1-5320-2 } \\ & \text { HA1-5320-5 } \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { No } \end{aligned}$	$\begin{aligned} & \mathrm{FE} \\ & \mathrm{FE} \end{aligned}$	Faster Acquisition/Reduced Droop Faster Acquisition/Reduced Droop
AD507JH AD507KH AD507SH	$\begin{aligned} & \text { HA2-2625-5 } \\ & \text { HA2-2625-5 } \\ & \text { HA2-2620-2 } \end{aligned}$	Yes Yes Yes	$\begin{gathered} 1 \\ \mathrm{FE} \\ \mathrm{I} \end{gathered}$	
AD509JH AD509KH AD509SH	$\begin{aligned} & \text { HA2-2525-5 } \\ & \text { HA2-2525-5 } \\ & \text { HA2-2520-2 } \end{aligned}$	Yes Yes Yes	$\begin{gathered} \text { I } \\ \text { FE } \\ \text { I } \end{gathered}$	Substitute HA2-2529-5 Substitute HA2-2529-5 Substitute HA2-2529-2
AD515AJH AD515AKH	$\begin{aligned} & \text { HA2-5180-5 } \\ & \text { HA2-5180-5 } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \hline \text { FE } \\ & \text { FE } \end{aligned}$	Enhanced ACs Improved ACs
AD518JH AD518JN AD518KH AD518SH	$\begin{aligned} & \text { HA2-2515-5 } \\ & \text { HA3-2515-5 } \\ & \text { HA2-2515-5 } \\ & \text { HA2-2510-2 } \end{aligned}$	Yes Yes Yes Yes	$\begin{gathered} \text { I } \\ \text { I } \\ \text { FE } \\ \text { i } \end{gathered}$	
$\begin{aligned} & \text { AD539JD } \\ & \text { AD539KD } \\ & \text { AD539SD } \end{aligned}$	$\begin{aligned} & \text { HA1-2547-5 } \\ & \text { HA1-2547-5 } \\ & \text { HA1-2547-9 } \end{aligned}$		FE FE FE	Enhanced Bandwidth Enhanced Bandwidth Enhanced Bandwidth
AD542JH AD542KH AD542LH AD542SH	$\begin{aligned} & \text { HA1-5170-5 } \\ & \text { HA2-5170-5 } \\ & \text { HA2-5170-5 } \\ & \text { HA2-5170-2 } \end{aligned}$		$\begin{aligned} & \text { FE } \\ & \text { FE } \\ & \text { FE } \\ & \mathrm{FE} \end{aligned}$	Enhanced ACs Enhanced ACs Enhanced ACs Enhanced ACs
AD545JH AD54KH AD545LH AD545MH	$\begin{aligned} & \text { HA2-5180-5 } \\ & \text { HA2-5180-5 } \\ & \text { HA2-5180-5 } \\ & \text { HA2-5180-5 } \end{aligned}$	Yes Yes Yes Yes	FE FE FE FE	Enhanced ACs Enhanced ACs Enhanced ACs Enhanced ACs
AD5539JN AD5539JQ AD5539SQ	$\begin{aligned} & \text { НАЗ-2539-5 } \\ & \text { HA1-2539-5 } \\ & \text { HA1-2539-2 } \end{aligned}$	*	$\begin{aligned} & \mathrm{FE} \\ & \mathrm{FE} \\ & \mathrm{FE} \end{aligned}$	
$\begin{aligned} & \text { AD582KD } \\ & \text { AD582SD } \end{aligned}$	$\begin{aligned} & \text { HA1-2425-5 } \\ & \text { HA1-2420-2 } \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { No } \end{aligned}$	$\begin{aligned} & \text { FE } \\ & \text { FE } \end{aligned}$	Faster Acquisition/Enhanced ACs Faster Acquisition/Enhanced ACs
AD583KD	HA1-2425-5	Yes	FE	Faster Acquisition/Greater lout
AD585AQ AD585SQ	$\begin{aligned} & \text { HA1-5320-5 } \\ & \text { HA1-5320-2 } \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { No } \end{aligned}$	$\begin{aligned} & \text { FE } \\ & \text { FE } \end{aligned}$	Faster Acquisition/Reduced Droop Faster Acquisition/Reduced Droop
AD5901H AD590.JH	$\begin{aligned} & \text { AD5901H } \\ & \text { AD590JH } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	1	

NOTES: 1. A "*" in this column indicates that primary pins are pin-to-pin, but secondary or optional function pins are not.
2. Electrical equivalency; denoted by the following: $I=$ Identical, $F E=$ Functional Equivalent,
$E=$ Enhanced Harris product meets all competitor specifications and exceeds several.

Commercial Linear Product Cross Reference

DEVICE	HARRIS REPLACEMENT	(NOTE 1) PIN TO PIN	(NOTE 2) EE	HARRIS ADVANTAGE OR COMMENTS
AD741CH AD741CN AD741H	CA0741CT CA0741CE CA0741T	Yes Yes Yes	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	
AD821AQ AD821AS AD821JN	CA5160AE (PDIP) CA5160AE (PDIP) CA5160AE		$\begin{aligned} & \mathrm{FE} \\ & \mathrm{FE} \\ & \mathrm{FE} \end{aligned}$	Reduced Ibias/Enhanced ACs Reduced Ibias/Enhanced ACs Reduced Ibias/Enhanced ACs
AD840.JN AD840JQ AD840KN AD840KQ AD840SQ	НАЗ-2540С-5 HA1-2540C-5 НАЗ-2540-5 HA1-2540-5 HA1-2540-2	Yes Yes Yes Yes Yes	$\begin{aligned} & \text { FE } \\ & \hline \end{aligned}$	
AD841JH AD841JQ AD841KH AD841KQ AD841SH AD841SQ	HA2-2541-5 HA1-2541-5 HA2-2541-5 HA1-2541-5 HA2-2541-2 HA1-2541-2	Yes Yes Yes Yes Yes Yes	FE FE FE FE FE FE	
AD842JH AD842JN AD842JQ AD842KH AD842KN AD842KQ AD842SH	HA2-2542-5 НАЗ-2542-5 HA1-2542-5 HA2-2542-5 НАЗ-2542-5 HA1-2542-5 HA2-2542-2	Yes Yes Yes Yes Yes Yes Yes	FE FE FE FE FE FE FE	
AD846AQ AD846BQ AD846SQ	HA1-5004-9 HA1-5004-9 HA1-5004-9	$\begin{aligned} & \text { No } \\ & \text { No } \\ & \text { No } \end{aligned}$	$\begin{aligned} & \text { FE } \\ & \text { FE } \\ & \mathrm{FE} \\ & \hline \end{aligned}$	Enhanced ACs/Greater lout Enhanced ACs/GReater lout Enhanced ACs/Greater lout
$\begin{aligned} & \text { AD847JN } \\ & \text { AD847SQ } \end{aligned}$	$\begin{aligned} & \text { НАЗ-2544C-5 } \\ & \text { НА7-2544C-2 } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \mathrm{FE} \\ & \mathrm{FE} \end{aligned}$	
AD9610BH	HA1-5004-9	No	FE	Greater Bandwidth/Lower Cost Monolithic
ADLH0032CG ADLH0032G	$\begin{aligned} & \text { HA2-2542-5 } \\ & \text { HA2-2542-2 } \end{aligned}$	*	$\begin{aligned} & \text { FE } \\ & \text { FE } \end{aligned}$	Monolithic/Lower Cost Monolithic/Lower Cost
ADLH0033CG ADLH0033G	$\begin{aligned} & \text { HA2-5033-5 } \\ & \text { HA2-5033-2 } \end{aligned}$		$\begin{aligned} & \text { FE } \\ & \text { FE } \end{aligned}$	Enhanced ACs/Monolithic/Lower Cost Enhanced ACs/Monolithic/Lower Cost
ADOP27AH ADOP27AQ ADOP27EH ADOP27EQ ADOP27GH ADOP27GQ	HA2-5127A-2 HA7-5127A-2 HA2-5127A-5 HA7-5127A-5 HA2-5127-5 HA7-5127-5	Yes Yes Yes Yes Yes Yes	E E E E E E	Enhanced ACs/Reduced Icc
ADOP37AH ADOP37AQ ADOP37EH ADOP37EQ ADOP37GH ADOP37GQ	HA2-5137A-2 HA7-5137A-2 HA2-5137A-5 HA7-5137A-5 HA2-5137-5 HA7-5137-5	Yes Yes Yes Yes Yes Yes	E E E E E E	Enhanced ACs/Reduced Icc Enhanced ACs/Reduced Icc Enhanced ACs/Reduced Icc Enhanced ACs/Reduced Icc Enhanced ACs/Reduced lcc Enhanced ACs/Reduced Icc
$\begin{aligned} & A M-450-2 \\ & A M-450-2 M \end{aligned}$	$\begin{aligned} & \text { HA2-2505-5 } \\ & \text { HA2-2502-2 } \end{aligned}$	Yes Yes	$\begin{aligned} & E \\ & E \end{aligned}$	Guaranteed DCs/ACs Guaranteed DCs/ACs
$\begin{aligned} & A M-452-2 \\ & A M-452-2 M \end{aligned}$	$\begin{aligned} & \text { HA2-2525-5 } \\ & \text { HA2-2522-2 } \end{aligned}$	Yes Yes	$\begin{aligned} & E \\ & E \end{aligned}$	Guaranteed DCs/ACs Guaranteed DCs/ACs

NOTES: 1. A "*" in this column indicates that primary pins are pin-to-pin, but secondary or optional function pins are not.
2. Electrical equivalency; denoted by the following: I = Identical, FE = Functional Equivalent,

E = Enhanced Harris product meets all competitor specifications and exceeds several.

Commercial Linear Product Cross Reference

DEVICE	HARRIS REPLACEMENT	(NOTE 1) PIN TO PIN	(NOTE 2) EE	HARRIS ADVANTAGE OR COMMENTS
AM-460-2	HA2-2605-5	Yes	E	Guaranteed DCs/ACs Guaranteed DCs/ACs
AM-460-2M	HA2-2602-2	Yes	E	E
AM-462-2	HA2-2625-5	Yes	Guaranteed DCs/ACs	
AM-462-2M	HA2-2620-2	Yes	E	Guaranteed DCs/ACs
AM-7650-1	ICL7650SCPD	Yes	FE	Almost Identical
AM-7650-2	ICL7650SCTV-1	Yes	FE	Almost Identical
BB3554AM	HFA1-0001-9	No	FE	Greater Bandwidth/Faster Ts/Lower Cost
BB3554BM	HFA1-0001-9	No	FE	Greater Bandwidth/Faster Ts/Lower Cost
BB3554SM	HFA1-0001-9	No	FE	Greater Bandwidth/Faster Ts/Lower Cost

NOTES: 1. A "*" in this column indicates that primary pins are pin-to-pin, but secondary or optional function pins are not.
2. Electrical equivalency; denoted by the following: $I=$ Identical, $F E=$ Functional Equivalent, $E=$ Enhanced Harris product meets all competitor specifications and exceeds several.

Commercial Linear Product Cross Reference

DEVICE	HARRIS REPLACEMENT	(NOTE 1) PIN TO PIN	(NOTE 2) EE	harris advantage OR COMMENTS
EHA7-2510-2	HA7-2510-2	Yes	1	
EHA7-2512-2	HA7-2512-2	Yes	1	
EHA7-2515-5	HA7-2515-5	Yes	1	
EHA7-2520-2	HA7-2520-2	Yes	1	
EHA7-2522-2	HA7-2522-2	Yes	1	
EHA7-2525-5	HA7-2525-5	Yes	1	
EHA7-2600-2	HA7-2600-2	Yes	1	
EHA7-2602-2	HA7-2602-2	Yes	1	
EHA7-2605-5	HA7-2605-5	Yes	1	
EHA7-2620-2	HA7-2620-2	Yes	1	
EHA7-2622-2	HA7-2622-2	Yes	1	
EHA7-2625-5	HA7-2625-5	Yes	1	
EL2003CH	HA2-5002-5	Yes	FE	Greater Slew Rate/Reduced Icc
EL2003CJ	HA7-5002-5	No	FE	Greater Slew Rate/Reduced Icc
EL2003CN	НАЗ-5002-5	No	FE	Greater Slew Rate/Reduced Icc
EL2003CPL	HA9P5002-9	No	FE	Greater Slew Rate/Reduced lcc
EL2003H	HA2-5002-2	Yes	FE	Greater Slew Rate/Reduced licc
EL2003J	HA7-5002-2	No	FE	Greater Slew Rate/Reduced Icc
EL2005CG	HA2-5033-5	*	FE	Greater Bandwidth
EL2005G	HA2-5033-2	*	FE	Greater Bandwidth
EL2020CJ	HA1-5004-5	No	FE	Enhanced ACs/lout
EL2020J	HA1-5004-9	No	FE	Enhanced ACs/lout
EL2033CJ	HA7-5002-5	*	FE	Greater Slew Rate/Reduced Icc
EL2033CN	НАЗ-5002-5	*	FE	Greater Slew Rate/Reduced Icc
EL2033J	HA7-5002-2	*	FE	Greater Slew Rate/Reduced lcc
EL2039CJ	HA1-2539-5	Yes	FE	
EL2039CN	НАЗ-2539-5	Yes	FE	
EL2039J	HA1-2539-2	Yes	FE	
EL2040CJ	HA1-2540-5	Yes	FE	
EL2040CN	НАЗ-2540-5	Yes	FE	
EL2040J	HA1-2540-2	Yes	FE	
EL2041CG	HA2-2541-5	Yes	FE	
EL2041CJ	HA1-2541-5	Yes	FE	
EL2041G	HA2-2541-2	Yes	FE	
EL2041J	HA1-2541-2	Yes	FE	
EL2190G	HA2-5190-2	Yes	FE	
EL2190J	HA1-5190-2	Yes	FE	
EL2195CG	HA2-5195-5	Yes	FE	
EL2195CJ	HA1-5195-5	Yes	FE	
ELH0032CG	HA2-2542-5	*	FE	
ELH0032G	HA2-2542-2	*	FE	
ELH0оз3CG	HA2-5033-5	*	FE	Greater Bandwidth
ELHOO33G	HA2-5033-2	*	FE	Greater Bandwidth
HOS-100AH	HA2-5033-2	*	FE	Greater Bandwidth/Lower Cost
HOS-100SH	HA2-5033-2	*	FE	Greater Bandwidth/Lower Cost
HOSO50	HA2-2542-2	*	FE	Lower Cost
HOSO50A	HA2-2542-2	*	FE	Lower Cost
HOSO50C	HA2-2542-2	*	FE	Lower Cost

NOTES: 1. A "*" in this column indicates that primary pins are pin-to-pin, but secondary or optional function pins are not.
2. Electrical equivalency; denoted by the following: $I=$ Identical, $F E=$ Functional Equivalent, $E=$ Enhanced Harris product meets all competitor specifications and exceeds several.

Commercial Linear Product Cross Reference

	HARRIS DEVICE					REPLACEMENT	(NOTE 1)		
PIN TO PIN								(NOTE 2)	EE
:---:									

NOTES: 1. A "*" in this column indicates that primary pins are pin-to-pin, but secondary or optional function pins are not.
2. Electrical equivalency; denoted by the following: I = Identical, $F E=$ Functional Equivalent, $E=$ Enhanced Harris product meets all competitor specifications and exceeds several.

Commercial Linear Product Cross Reference

	HARRIS DEVICE	(NOTE 1)		
REPLACEMENT				
PIN TO PIN			(NOTE 2)	EE
:---				

NOTES: 1. A "*" in this column indicates that primary pins are pin-to-pin, but secondary or optional function pins are not.
2. Electrical equivalency; denoted by the following: $I=$ Identical, $F E=$ Functional Equivalent, $E=$ Enhanced Harris product meets all competitor specifications and exceeds several.

Commercial Linear Product Cross Reference

DEVICE	HARRIS REPLACEMENT	(NOTE 1) PIN TO PIN	(NOTE 2) EE	HARRIS ADVANTAGE OR COMMENTS
LF398AH LF398AN LF398H (CAN) LF398N	HA1-2425-5 (CDIP) НАЗ-2425-5 HA1-2425-5 (CDIP) НАЗ-2425-5	No No No No	FE FE FE FE	Faster Acquisition Faster Acquisition Faster Acquisition Faster Acquisition
LF400CH	CA3100T	*	FE	Similar ACs
LF411CD LF411CH LF411CN LF411CP LF411MH	CA3140AM CA3140AT CA3140AE CA3140AE CA3140AT	Yes Yes Yes Yes Yes	FE FE FE FE FE	Reduced Ibias/lio Reduced Ibias/lio Reduced Ibias/lio Reduced Ibias/lio Reduced Ibias/lio
LF412CD LF412CN LF412CP	CA3240AE CA3140AE CA3240AE	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \mathrm{FE} \\ & \mathrm{FE} \\ & \mathrm{FE} \end{aligned}$	Reduced Ibias/lio Reduced Ibias/lio Reduced Ibias/lio
LH0002CH LH0002CN LHOOO2H	$\begin{aligned} & \text { HA2-5002-5 } \\ & \text { HA3-5002-5 } \\ & \text { HA2-5002-2 } \end{aligned}$	No	$\begin{aligned} & E \\ & E \\ & E \end{aligned}$	Enhanced ACs/DCs/Monolithic Enhanced ACs/DCs/Monolithic Enhanced ACs/DCs/Monolithic
$\begin{aligned} & \text { LHOO22CD } \\ & \text { LH0022CH } \end{aligned}$	CA3140AE (PDIP) CA3140AT	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { FE } \\ & \text { FE } \end{aligned}$	Greater Bandwidth/Slew Rate Greater Bandwidth/Slew Rate
LH0032ACG LH0032AG LH0032CG LH0032G	$\begin{aligned} & \text { HA2-2542-S } \\ & \text { HA2-2542-2 } \\ & \text { HA2-2542-5 } \\ & \text { HA2-2542-2 } \end{aligned}$	Yes Yes Yes Yes	$\begin{aligned} & \text { FE } \\ & \text { FE } \\ & \text { FE } \\ & \text { FE } \end{aligned}$	Monolithic/Lower Cost Monolithic/Lower Cost Monolithic/Lower Cost Monolithic/Lower Cost
LH0033ACG LH0033AG LH0033CG LH0033CJ LH0033G	HA2-5033-5 HA2-5033-2 HA2-5033-5 HA3-5033-5 HA2-5033-2		FE FE FE FE FE	Greater Bandwidth/Monolithic/Lower Cost Monolithic/Lower Cost Greater Bandwidth/Monolithic/Lower Cost Monolithic/Lower Cost Monolithic/Lower Cost
$\begin{aligned} & \text { LHOO42CD } \\ & \text { LHOO42CD } \end{aligned}$	$\begin{aligned} & \text { CA3140E (PDIP) } \\ & \text { CA3140T } \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \mathrm{FE} \\ & \mathrm{FE} \end{aligned}$	Greater Bandwidth/Slew Rate Greater Bandwidth/Slew Rate
$\begin{aligned} & \text { LH4004CD } \\ & \text { LH4004D } \end{aligned}$	$\begin{aligned} & \text { HA1-5004-5 } \\ & \text { HA1-5004-9 } \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { No } \end{aligned}$	$\begin{aligned} & \mathrm{FE} \\ & \mathrm{FE} \end{aligned}$	Monolithic/Lower Cost Monolithic/Lower Cost
LH4161CH LH4161CJ LH4161H LH4161J	HA2-2544-5 HA7-2544-5 HA2-2544-2 HA7-2544-2	No No No No	FE FE FE FE	PDIP Substitute is HA3-2544C-5
LM101H	CA0101T	Yes	1	
LM124J	CA0124E (PDIP)	Yes	1	
LM139AJ LM139DG	CA0139AF CA0139F	Yes Yes	I	
LM139J	CA0139F	Yes	1	
LM143H	HA2-2640-2	*	FE	Enhanced ACs
LM1458DP LM1458H LM1458N	CA1458E CA1458T/LM1458H CA1458E/LM1458N	Yes Yes Yes	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	
LM1524DJ	CA1524F	Yes	1	
LM1558H	CA1558T/LM1558H	Yes	1	

NOTES: 1. A "*" in this column indicates that primary pins are pin-to-pin, but secondary or optional function pins are not.
2. Electrical equivalency; denoted by the following: $I=$ Identical, $F E=$ Functional Equivalent, $E=$ Enhanced Harris product meets all competitor specifications and exceeds several.

Commercial Linear Product Cross Reference

DEVICE	HARRIS REPLACEMENT	(NOTE 1) PIN TO PIN	(NOTE 2) EE	HARRIS ADVANTAGE OR COMMENTS
LM158AH LM158H	$\begin{aligned} & \text { CA0158AT } \\ & \text { CA0158T } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	1	
LM193H	CA3290at	Yes	FE	MOSFET Input
LM201H	CA0201T/LM201H	Yes	1	
LM224D LM224J LM224N	$\begin{aligned} & \text { CA0224M } \\ & \text { CA0224E (PDIP) } \\ & \text { CA0224E } \end{aligned}$	Yes Yes Yes	FE FE FE	
LM239AD LM239AJ LM239AN LM239D LM239DG LM239DP LM239FP LM239J LM239N	CA0239AM CA0239AF CA0239AE CA0239M CA0239F CA0239E CA0239M CA0239F CA0239E	Yes Yes	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	
LM2524DN	CA2524E	Yes	1	
LM258AH LM258D LM258H LM258N LM258PM	CA0258AT CA0258M CA0258T CA0258E CA0258E	Yes Yes Yes Yes Yes	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	
LM2901D LM2901M LM2901N LM2902D LM2902N LM2903N LM2904D LM2904M LM2904N LM2904PM	LM2901M LM2901M CA3290AE LM2902M LM2902N CA3290AE CA2904M CA2904M CA2904E/LM2904N CA2904E	Yes Yes	I I FE FE FE FE I I I I	MOSFET Input MOSFET Input
LM293H	CA3290AT	Yes	FE	MOSFET Input
LM301ADP LM301AH LM301AHD LM301AN LM301AND LM301AP	CA0301AE CA0301AT/LM301AH CA0301AEX CA0301AE/LM301AN CA0301AEX CA0301AE	Yes Yes Yes Yes Yes Yes	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	
LM3045J	САЗО45	Yes	1	
LM3046D LM3046N	$\begin{aligned} & \text { CA3046M } \\ & \text { CA3046E } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{gathered} \text { FE } \\ \text { I } \end{gathered}$	
LM3080AN LM3080N	CA3080AE CA3080E	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \mathrm{FE} \\ & \mathrm{FE} \end{aligned}$	
LM3086J LM3086M LM3086N	CA3086F CA3086M CA3086	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	

NOTES: 1. A "*" in this column indicates that primary pins are pin-to-pin, but secondary or optional function pins are not.
2. Electrical equivalency; denoted by the following: I = Identical, $F E=$ Functional Equivalent,
$E=$ Enhanced Harris product meets all competitor specifications and exceeds several.

Commercial Linear Product Cross Reference

DEVICE	HARRIS REPLACEMENT	(NOTE 1) PIN TO PIN	(NOTE 2) EE	HARRIS ADVANTAGE OR COMMENTS
LM311H LM311N LM311ND LM311PM	CA0311T/LM311H CA0311E/LM311N CA0311EX CA0311E	Yes Yes Yes Yes	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	
LM3146M LM3146N	$\begin{aligned} & \text { CA3146M } \\ & \text { CA3146E } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	Enhanced "A" Version Offered Enhanced "A" Version Offered
LM324D LM324M LM324N	$\begin{aligned} & \text { CA0324M } \\ & \text { CA0324M } \\ & \text { CA0324E/LM324N } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	
LM3302M LM3302N	$\begin{aligned} & \text { LM3302M } \\ & \text { CA3290E/LM3302N } \end{aligned}$	Yes Yes	1	
LM339AD LM339ADP LM339AFP LM339AN LM339D LM339DG LM339DP LM339FP LM339M LM339N	CA0339AM CA0339AE CA0339AM CA0339AE/LM339AN CA0339M CA0339F CA0339E CA0339M CA0339M CA0339E/LM339N	Yes Yes	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	
LM3401N	CA3401E	Yes	E	Greater Bandwidth
LM343H	HA2-2645-5	*	FE	Enhanced ACs
LM3524DN LM3524J LM3524N	CA3524E CA3524F CA3524E	Yes Yes Yes	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	
LM358AH LM358AM LM358AN LM358D LM358H LM358M LM358N LM358PM	CA0358AT CA0358AM CA0358AE CA0358M CA0358T CA0358M CA0358E/LM358N CA0358E	Yes Yes	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	
LM393H LM393N	$\begin{aligned} & \text { CA3290AT } \\ & \text { CA3290AE } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \mathrm{FE} \\ & \mathrm{FE} \\ & \hline \end{aligned}$	MOSFET Input MOSFET Input
LM4250CH LM4250CJ LM4250CN LM4250H LM4250J	LM4250CH LM4250CJ LM4250CN LM4250H LM4250J	Yes Yes Yes Yes Yes	$\begin{gathered} \mathrm{I} \\ \mathrm{I} \\ \mathrm{I} \\ \mathrm{FE} \\ \mathrm{FE} \end{gathered}$	Almost Identical Almost Identical
LM555CH LM555CM LM555CN LM555H	$\begin{aligned} & \text { CA0555CT/LM555CH } \\ & \text { CA0555CM } \\ & \text { CA0555CE/LM555CN } \\ & \text { CA0555T } \end{aligned}$	Yes Yes Yes Yes	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Guaranteed Drift/Accuracy
LM556CN	ICM7556IPD	Yes	FE	CMOS/Reduced Icc
LM604ACM LM604ACN LM604AMJ LM604CM LM604CN	HA9P2406-5 НАЗ-2406-5 HA1-2400-2 HA9P2406-5 НАЗ-2406-5	$\begin{aligned} & \text { No } \\ & \text { No } \end{aligned}$	FE FE FE FE FE	Enhanced ACs Enhanced ACs Enhanced ACs Enhanced ACs Enhanced ACs

NOTES: 1. A "*" in this column indicates that primary pins are pin-to-pin, but secondary or optional function pins are not.
2. Electrical equivalency; denoted by the following: $I=I d e n t i c a l, F E=$ Functional Equivalent, $E=$ Enhanced Harris product meets all competitor specifications and exceeds several.

Commercial Linear Product Cross Reference

DEVICE	HARRIS REPLACEMENT	(NOTE 1) PIN TO PIN	(NOTE 2) EE	HARRIS ADVANTAGE OR COMMENTS
LM6118J	HA7-5222-9	Yes	FE	Lower Vio
LM6161J	HA7-2544-2	*	FE	Guaranteed Differential Phase/Gain
LM6164J	HA1-5190-2	No	FE	Reduced Voltage Noise
LM6165J	HA1-2540-2	No	FE	Enhanced Slew Rate/Avol
LM6218AH LM6218AJ	$\begin{aligned} & \text { HA2-5222-9 } \\ & \text { HA7-5222-9 } \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { FE } \\ & \text { FE } \end{aligned}$	Lower Vio Lower Vio
LM6361N	НАЗ-2544C-5	*	FE	Guaranteed Differential Phase/Gain
LM6364N	HA1-5195-5	No	FE	Reduced Voltage Noise
LM6365N	HA3-2540C-5	No	FE	Enhanced Slew Rate/Avol
LM723CH LM723CN LM723H	$\begin{aligned} & \text { CA0723CT } \\ & \text { CA0723CE } \\ & \text { CA0723T/LM723H } \end{aligned}$	Yes Yes Yes	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	
LM741CH LM741CN LM741H LM741PM	CA0741CT/LM741CH CA0741CE/LM741CN CA0741T/LM741H CA0741E	Yes Yes Yes Yes	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	
LM747CH LM747CN LM747H	CA0747CT CA0747CE CA0747T	Yes Yes Yes	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	
LM748CH LM748CN LM748H LM748PM	CA0748CT/LM748CH CA0748CE CA0748T/LM748H CA0748E	Yes Yes Yes Yes	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	
LMC555CH LMC555CM LMC555CN	ICM7555ITV ICM7555CBA ICM7555IPA	Yes Yes Yes	$\begin{aligned} & \text { FE } \\ & \text { FE } \\ & \text { FE } \end{aligned}$	Reduced lcc/Wider Supply Range Reduced lcc/Wider Supply Range Reduced lcc/Wider Supply Range
LMC668ACJ LMC668ACJ-8 LMC668ACN LMC668ACN-8	ICL7650SIJD ICL7650SIJA-1 ICL7650SIPD ICL7650SCPA-1	Yes Yes Yes Yes	$\begin{aligned} & \mathrm{E} \\ & \mathrm{E} \\ & \mathrm{E} \\ & \mathrm{E} \end{aligned}$	Enhanced DCs Enhanced DCs Enhanced DCs Enhanced DCs
LS204AT LS204CB LS204CM LS204CT LS204T	$\begin{aligned} & \text { HA2-5102-2 } \\ & \text { HA3-5102-5 } \\ & \text { HA9P-5102-5 } \\ & \text { HA2-5102-5 } \\ & \text { HA2-5102-2 } \end{aligned}$	Yes Yes Yes Yes Yes	$\begin{aligned} & \text { FE } \\ & \text { FE } \end{aligned}$	Reduced Noise Voltage
LS404CB LS404CM LS404M	НАЗ-5104-5 HA9P-5104-5 HA9P-5104-9	Yes	$\begin{aligned} & \text { FE } \\ & \mathrm{FE} \\ & \mathrm{FE} \\ & \hline \end{aligned}$	Reduced Noise Voltage Reduced Noise Voltage Reduced Noise Voltage
LS776CB LS776T	$\begin{aligned} & \text { САЗ440АЕ } \\ & \text { САЗ440АТ } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \mathrm{FE} \\ & \mathrm{FE} \end{aligned}$	MOS Input MOS Input
LT1001CH LT1001CJ8 LT1001MH LT1001MJ8	$\begin{aligned} & \text { HA2-5177-5 } \\ & \text { HA7-5177-5 } \\ & \text { HA2-5177-2 } \\ & \text { HA7-5177-2 } \end{aligned}$	Yes Yes Yes Yes	FE FE FE FE	Enhanced ACs/Reduced lcc Enhanced ACs/Reduced Icc Enhanced ACs/Reduced lcc Enhanced ACs/Reduced lcc
LT1014ACJ LT1014AMJ LT1014CJ LT1014MJ	$\begin{aligned} & \text { HA1-5134A-5 } \\ & \text { HA1-5134A-2 } \\ & \text { HA1-5134-5 } \\ & \text { HA1-5134-2 } \end{aligned}$	Yes Yes Yes Yes	FE FE FE FE	Reduced Vio/Enhanced ACs Reduced Vio/Enhanced ACs Reduced Vio/Enhanced ACs Reduced Vio/Enhanced ACs

NOTES: 1. A "*" in this column indicates that primary pins are pin-to-pin, but secondary or optional function pins are not.
2. Electrical equivalency; denoted by the following: $I=$ Identical, $F E=$ Functional Equivalent, $\mathbf{E}=$ Enhanced Harris product meets all competitor specifications and exceeds several.

Commercial Linear Product Cross Reference

DEVICE	HARRIS REPLACEMENT	(NOTE 1) PIN TO PIN	(NOTE 2) EE	HARRIS ADVANTAGE OR COMMENTS
$\begin{aligned} & \text { LT1022CH } \\ & \text { LT1022MH } \end{aligned}$	$\begin{aligned} & \text { HA2-5160-5 } \\ & \text { HA2-5160-2 } \end{aligned}$	*	$\begin{aligned} & \text { FE } \\ & \text { FE } \end{aligned}$	Greater Bandwidth/Slew Rate Greater Bandwidth/Slew Rate
LT1037ACH LT1037ACJ8 LT1037AMH LT1037AMJ8 LT1037CH LT1037CJ8 LT1037MH LT1037MJ8	HA2-5137A-5 HA7-5137A-5 HA2-5137A-2 HA7-5137A-2 HA2-5137-5 HA7-5137-5 HA2-5137-2 HA7-5137-2	Yes Yes	FE FE	Enhanced ACs/Reduced Icc
LT1055CH LT1055CN8 LT1055MH	$\begin{aligned} & \text { HA2-5170-5 } \\ & \text { HA7-5170-5 (CDIP) } \\ & \text { HA2-5170-2 } \end{aligned}$	Yes Yes Yes	$\begin{aligned} & \text { FE } \\ & \text { FE } \end{aligned}$ FE	Reduced Vio/lcc/Enhanced ACs Reduced Vio/lcc/Enhanced ACs Reduced Vio/lcc/Enhanced ACs
LT1056CH LT1056CN8 LT1056MH	$\begin{aligned} & \text { HA2-5170-5 } \\ & \text { HA7-5170-5 (CDIP) } \\ & \text { HA2-5170-2 } \end{aligned}$	Yes Yes Yes	FE FE FE	Reduced Vio/lcc/Enhanced ACs Reduced Vio/lcc/Enhanced ACs Reduced Vio/lcc/Enhanced ACs
LT1524J LT3524J LT3524N	CA1524F CA3524F CA3524E	Yes Yes Yes	$\begin{aligned} & 1 \\ & i \\ & i \end{aligned}$	
LTC1044CH LTC1044CN8 LTC1044MH	ICL7660SITV ICL7660SIPA ICL7660SMTV	Yes Yes Yes	$\begin{aligned} & \mathrm{E} \\ & \mathrm{E} \\ & \mathrm{E} \end{aligned}$	Reduced Icc/Wider Voltage Range Reduced Icc/Wider Voltage Range Reduced lcc/Wider Voltage Range
LTC1052CJ LTC1052CN	ICL7652SIJD ICL7652SIPD	Yes Yes	$\begin{aligned} & \mathrm{FE} \\ & \mathrm{FF} \end{aligned}$	Reduced Voltage Noise Reduced Voltage Noise
MA723CN	CA0723CE	Yes	1	
$\begin{aligned} & \text { MA747CN } \\ & \text { MA747N } \end{aligned}$	$\begin{aligned} & \text { CA0747CE } \\ & \text { CA0747E } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	1	
MA748CP	CA0748CE	Yes	1	
MAX460IGC MAX460MGC	$\begin{aligned} & \text { HA2-5033-5 } \\ & \text { HA2-5033-2 } \end{aligned}$	*	$\begin{aligned} & \text { FE } \\ & \text { FE } \end{aligned}$	Greater Bandwidth Greater Bandwidth
MAX610CP	HV3-1205/2405E-5	No	FE	Guaranteed Surge Protection
MAX611CP	HV3-1205/2405E-5	No	FE	Guaranteed Surge Protection
MAX612CP	HV3-1205/2405E-5	No	FE	Guaranteed Surge Protection
MAX663CPA MAX663CSA MAX663EJA MAX663EPA MAX663ESA	ICL7663SACPA ICL7663SCBA ICL7663SAIJA ICL7663SAIPA ICL7663SIBA		FE FE FE FE FE	Reduced Icc/Greater Voltage Range Reduced lcc/Greater Voltage Range Reduced lcc/Greater Voltage Range Reduced lcc/Greater Voltage Range Reduced Icc/Greater Voltage Range
MAX8211CPA MAX8211CSA MAX8211CTY	$\begin{aligned} & \text { ICL8211CPA } \\ & \text { ICL8211CBA } \\ & \text { ICL8211CTY } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \hline \mathrm{FE} \\ & \mathrm{FE} \\ & \mathrm{FE} \end{aligned}$	Bipolar/Wider Supply Range Bipolar/Wider Supply Range Bipolar/Wider Supply Range
MAX8212CPA MAX8212CSA MAX8212CTY	ICL8212CPA ICL8212CBA ICL8212CTY	Yes Yes Yes	$\begin{aligned} & \text { FE } \\ & \text { FE } \\ & \text { FE } \end{aligned}$	Bipolar/Wider Supply Range Bipolar/Wider Supply Range Bipolar/Wider Supply Range
MC1445P1D	CA0555CEX	Yes	1	
$\begin{aligned} & \text { MC1455D } \\ & \text { MC1455G } \\ & \text { MC1455P1 } \end{aligned}$	$\begin{aligned} & \text { CA0555CM } \\ & \text { CA0555CT } \\ & \text { CA0555CE } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \\ & \text { Yes } \end{aligned}$	1	

NOTES: 1. A "*" in this column indicates that primary pins are pin-to-pin, but secondary or optional function pins are not.

[^0]
Commercial Linear Product Cross Reference

DEVICE	HARRIS REPLACEMENT	(NOTE 1) PIN TO PIN	(NOTE 2) EE	harris advantage OR COMMENTS
MC1458CD	CA1458M	Yes	1	
MC1458CN	CA1458E	Yes	1	
MC1458G	CA1458T	Yes	,	
MC1458N	CA1458E	Yes	FE	
MC1458P1	CA1458E	Yes	1	
MC1558G	CA1558T	Yes	1	
MC1558GDS	CA1558TX	Yes	1	
MC1558N	CA1558E	Yes	FE	
MC1723CG	CA0723CT	Yes	1	
MC1723CGD	CA0723CTX	Yes	1	
MC1723CP	CA0723CE	Yes	1	
MC1723CPD	CA0723CEX	Yes	1	
MC1723G	CA0723T	Yes	1	
MC1723GD	CA0723TX	Yes	1	
MC1741CG	CA0741CT	Yes	1	
MC1741CP1	CA0741CE	Yes	1	
MC1741CP1D	CA0741CEX	Yes	1	
MC1741G	CA0741T	Yes	1	
MC1776CD	ICL7611DCBA	Yes	FE	Lower Power Drain
MC1776CG	ICL7611BCTV	Yes	FE	Lower Power Drain
MC1776CP1	ICL7611BCPA	Yes	FE	Lower Power Drain
MC1776G	ICL7611BMTV	Yes	FE	Lower Power Drain
MC3302N	CA3290E	Yes	FE	MOSFET Input
MC3302P	LM3302N	Yes	1	
МСззозд	CA5470M	Yes	FE	MOS Input/Enhanced ACs
MC3303N	CA5470E	Yes	FE	MOS Input/Enhanced ACs
MC33071P	CA3140AE	Yes	FE	Reduced Ibias/lio
MC33072P	CA3240AE	Yes	FE	Reduced Ibias/lio
MC33074P	CA3410AE	Yes	FE	Reduced Ibias/lio
MC34001BG	CA3140AT	Yes	FE	Reduced Ibias/lio
MC34001BP	CA3140AE	Yes	FE	Reduced lbias/lio
MC34001G	CA3140T	Yes	FE	Reduced Ibias/lio
MC34001P	CA3140E	Yes	FE	Reduced Ibias/lio
MC34002BG	CA3240AT	Yes	FE	Reduced Ibias/lio
MC34002BP	CA3240AE	Yes	FE	Reduced Ibias/lio
MC34002G	CA3240T	Yes	FE	Reduced lbias/lio
MC34002P	CA34002E	Yes	FE	Reduced Ibias/lio
MC3401P	CA3401E	Yes	FE	Greater Bandwidth
MC3403D	CA5470M	Yes	FE	MOS Input/Enhanced ACs
MC3403N	CA5470E	Yes	FE	MOS Input/Enhanced ACs
MC34071P	CA3140AE	Yes	FE	Reduced Ibias/lio
MC34072P	CA3240AE	Yes	FE	Reduced Ibias/lio
MC34074P	CA3410AE	Yes	FE	Reduced lbias/lio
MC3456L	ICM7556MJD	Yes	FE	CMOS/Reduced Icc
MC3456P	ICM7556IPD	Yes	FE	CMOS/Reduced lcc
MC3556L	ICM7556MJD	Yes	FE	CMOS/Reduced Icc
NE5230N	CA5160AE	No	FE	MOS input

[^1]
Commercial Linear Product Cross Reference

DEVICE	HARRIS REPLACEMENT	(NOTE 1) PIN TO PIN	(NOTE 2) EE	HARRIS ADVANTAGE OR COMMENTS
NE5532AFE	HA7-5102-5	Yes	FE	Enhanced DCs/Reduced Icc
NE5532AN	НАЗ-5102-5	Yes	FE	Enhanced DCs/Reduced Icc
NE5532FE	HA7-5102-5	Yes	FE	Enhanced DCs/Reduced Icc
NE5532N	НАЗ-5102-5	Yes	FE	Enhanced DCs/Reduced Icc
NE5534AFE	HA7-5101-5	*	FE	Enhanced DCs
NE5534AN	НАЗ-5101-5	*	FE	Enhanced DCs
NE5534FE	HA7-5101-5	*	FE	Enhanced DCs
NE5534N	HA3-5101-5	*	FE	Enhanced DCs
NE5539D	HA9P-2539-5	*	FE	Specified @ $\pm 15 \mathrm{~V}$ Supplies
NE5539F	HA1-2539-5	*	FE	Specified @ $\pm 15 \mathrm{~V}$ Supplies
NE5539N	НАЗ-2539-5	*	FE	Specified @ $\pm 15 \mathrm{~V}$ Supplies
NE555D	CA0555CM	Yes	FE	
NE555DP	CA0555E	Yes	1	
NE555FP	CA0555M	Yes	1	
NE555N	CA0555CE/NE555N	Yes	FE	NE555N Brand Offered
NE556-1N	ICM7556IPD	Yes	FE	CMOS/Reduced Icc
NE556N	ICM7556IPD	Yes	FE	CMOS/Reduced Icc
$\mathrm{OP}-15 \mathrm{CH}$	CA3140AT	Yes	FE	Reduced Ibias/lio
OP-15GN8	CA3140AE	Yes	FE	Reduced Ibias/lio
OP11AY	HA1-5134-2	Yes	FE	Enhanced ACs
OP11EY	HA1-5134-5	Yes	FE	Enhanced ACs
OP11FY	HA1-5104-5	Yes	FE	Enhanced ACs
OP20CJ	HA2-5141-2	Yes	FE	Enhanced ACs
OP20CZ	HA7-5141-2	Yes	FE	Enhanced ACs
OP2OHJ	HA2-5141-5	Yes	FE	Enhanced ACs
OP20HP	НАЗ-5141-5	Yes	FE	Enhanced ACs
OP20HZ	HA7-5141-5	Yes	FE	Enhanced ACs
OP215GZ	CA3240AE (PDIP)	Yes	FE	
OP21GJ	HA2-5151-5	Yes	FE	Enhanced ACs
OP21GP	НАЗ-5151-5	Yes	FE	Enhanced ACs
OP220CJ	HA2-5142-2	Yes	FE	Enhanced ACs
OP220CZ	HA7-5142-2	Yes	FE	Enhanced ACs
OP220GJ	HA2-5142-5	Yes	FE	Enhanced ACs
OP220GZ	HA7-5142-5	Yes	FE	Enhanced ACs
OP221CJ	HA2-5152-2	Yes	FE	Enhanced ACs
OP221GJ	HA2-5152-5	Yes	FE	Enhanced ACs
OP221GZ	HA7-5152-5	Yes	FE	Enhanced ACs
OP22AJ	HA2-2720-2	Yes	FE	
OP22AZ	HA7-2720-2	Yes	FE	
OP22EJ	HA2-2725-5	Yes	FE	
OP22EZ	HA7-2725-5	Yes	FE	
OP22FZ	HA7-2725-5	Yes	FE	
OP22HZ	HA7-2725-5	Yes	FE	
OP271AZ	HA7-5102-2	Yes	FE	Lower Voltage Noise/Greater Bandwidth
OP271EZ	HA7-5102-5	Yes	FE	Lower Voltage Noise/Greater Bandwidth
OP271FZ	HA7-5102-5	Yes	FE	Lower Voltage Noise/Greater Bandwidth
OP271GP	НАЗ-5102-5	Yes	FE	Lower Voltage Noise/Greater Bandwidth
OP271GS	HA9P-5102-9	Yes	FE	Lower Voltage Noise/Greater Bandwidth

NOTES: 1. A "*" in this column indicates that primary pins are pin-to-pin, but secondary or optional function pins are not.
2. Electrical equivalency; denoted by the following: $I=$ Identical, $F E=$ Functional Equivalent,
$E=$ Enhanced Harris product meets all competitor specifications and exceeds several.

Commercial Linear Product Cross Reference

DEVICE	HARRIS REPLACEMENT	(NOTE 1) PIN TO PIN	(NOTE 2) EE	HARRIS ADVANTAGE OR COMMENTS
OP27AH	HA2-5127A-2	Yes	E	Enhanced ACs/Reduced Icc
OP27AJ	HA2-5127A-2	Yes	E	Enhanced ACs/Reduced Icc
OP27AJ8	HA7-5127A-2	Yes	E	Enhanced ACs/Reduced Icc
OP27AZ	HA7-5127A-2	Yes	E	Enhanced ACs/Reduced Icc
OP27CH	HA2-5127-2	Yes	E	Enhanced ACs/Reduced Icc
OP27CJ	HA2-5127-2	Yes	E	Enhanced ACs/Reduced Icc
OP27CJ8	HA7-5127-2	Yes	E	Enhanced ACs/Reduced Icc
OP27CZ	HA7-5127-2	Yes	E	Enhanced ACs/Reduced Icc
OP27EH	HA2-5127A-5	Yes	E	Enhanced ACs/Reduced Icc
OP27EJ	HA2-5127A-5	Yes	E	Enhanced ACs/Reduced lcc
OP27EJ8	HA7-5127A-5	Yes	E	Enhanced ACs/Reduced Icc
OP27EZ	HA7-5127A-5	Yes	E	Enhanced ACs/Reduced Icc
OP27GH	HA2-5127-5	Yes	E	Enhanced ACs/Reduced Icc
OP27GJ	HA2-5127-5	Yes	E	Enhanced ACs/Reduced lcc
OP27GJ8	HA7-5127-5	Yes	E	Enhanced ACs/Reduced Icc
OP27GZ	HA7-5127-5	Yes	E	Enhanced ACs/Reduced Icc
OP37AH	HA2-5137A-2	Yes	E	Enhanced ACs/Reduced Icc
OP37AJ	HA2-5137A-2	Yes	E	Enhanced ACs/Reduced Icc
OP37AJ8	HA7-5137A-2	Yes	E	Enhanced ACs/Reduced Icc
OP37AZ	HA7-5137A-2	Yes	E	Enhanced ACs/Reduced lcc
OP37CH	HA2-5137-2	Yes	E	Enhanced ACs/Reduced Icc
OP37CJ	HA2-5137-2	Yes	E	Enhanced ACs/Reduced Icc
OP37CJ8	HA7-5137-2	Yes	E	Enhanced ACs/Reduced lcc
OP37CZ	HA7-5137-2	Yes	E	Enhanced ACs/Reduced lcc
OP37EH	HA2-5137A-5	Yes	E	Enhanced ACs/Reduced Icc
OP37EJ	HA2-5137A-5	Yes	E	Enhanced ACs/Reduced Icc
OP37EJ8	HA7-5137A-5	Yes	E	Enhanced ACs/Reduced lcc
OP37EZ	HA7-5137A-5	Yes	E	Enhanced ACs/Reduced Icc
OP37GH	HA2-5137-5	Yes	E	Enhanced ACs/Reduced Icc
OP37GJ	HA2-5137-5	Yes	E	Enhanced ACs/Reduced lcc
OP37GJ8	HA7-5137-5	Yes	E	Enhanced ACs/Reduced Icc
OP37GZ	HA7-5137-5	Yes	E	Enhanced ACs/Reduced Icc
OP400AY	HA1-5134A-2	Yes	FE	
OP400EY	HA1-5134A-5	Yes	FE	
OP400FY	HA1-5134-5	Yes	FE	
OP41EJ	CA3193AT	Yes	FE	Reduced Vio/Noise Voltage
OP41FJ	CA3193T	Yes	FE	Reduced Vio/Noise Voltage
OP41GP	CA3193E	Yes	FE	Reduced Vio/Noise Voltage
OP420BY	HA1-5144-2	Yes	FE	Enhanced ACs
OP420CY	HA1-5144-2	Yes	FE	Enhanced ACs
OP420HY	HA1-5144-5	Yes	FE	Enhanced ACs
OP421BY	HA1-5154-2	Yes	FE	Enhanced ACs
OP421CY	HA1-5154-2	Yes	FE	Reduced Icc/Greater Bandwidth
OP421HY	HA1-5154-5	Yes	FE	Reduced lcc/Greater Bandwidth
OP42AJ	HA2-5170-2	Yes	FE	Enhanced DCs
OP42AZ	HA7-5170-2	Yes	FE	Enhanced DCs
OP42EJ	HA2-5170-5	Yes	FE	Enhanced DCs
OP42EZ	HA7-5170-5	Yes	FE	Enhanced DCs
OP42FJ	HA2-5170-5	Yes	FE	Enhanced DCs
OP42FZ	HA7-5170-5	Yes	FE	Enhanced DCs
OP43BJ	HA2-5180-2	*	FE	Reduced Ibias/Greater Bandwidth
OP43GP	HA7-5180-5	*	FE	Reduced Ibias/Greater Bandwidth

NOTES: 1. A "*" in this column indicates that primary pins are pin-to-pin, but secondary or optional function pins are not.

[^2]
Commercial Linear Product Cross Reference

DEVICE	HARRIS REPLACEMENT	(NOTE 1) PIN TO PIN	(NOTE 2) EE	HARRIS ADVANTAGE OR COMMENTS
OP470AY	HA1-5104-2	Yes	FE	
OP470EY	HA1-5104-5	Yes	FE	
OP470FY	HA1-5104-5	Yes	FE	
OP470GP	HA3-5104-5	Yes	FE	
OP470GS	HA9P5104-5	Yes	FE	
OP47AD	HA7-5147A-2	Yes	E	Greater Bandwidth/Min Acl=10
OP47AT	HA2-5147A-2	Yes	E	Greater Bandwidth/Min Acl=10
OP47CD	HA7-5147-2	Yes	E	Greater Bandwidth/Min Acl=10
OP47CT	HA2-5147-2	Yes	E	Greater Bandwidth/Min Acl=10
OP47EN	HA7-5147A-5 (CDIP)	Yes	E	Greater Bandwidth/Min Acl=10
OP47GN	HA7-5147-5 (CDIP)	Yes	E	Greater Bandwidth/Min Acl=10
OP62AJ	HA2-5221-9	*	FE	Greater Slew Rate
OP62AZ	HA7-5221-9	*	FE	Greater Slew Rate
OP62EJ	HA2-5221-9	*	FE	Greater Slew Rate
OP62EZ	HA7-5221-9	*	FE	Greater Slew Rate
OP62FJ	HA2-5221-9	*	FE	Greater Slew Rate
OP62FZ	HA7-5221-9	*	FE	Greater Slew Rate
OP63AJ	HA2-5221-9	*	FE	Reduced Vio
OP63AZ	HA7-5221-9	*	FE	Reduced Vio
OP63EJ	HA2-5221-9	*	FE	Reduced Vio
OP63EZ	HA7-5221-9	*	FE	Reduced Vio
OP63FJ	HA2-5221-9	*	FE	Reduced Vio
OP63FZ	HA7-5221-9	*	FE	Reduced Vio
OP64AJ	HA2-5221-9	*	FE	Reduced Vio
OP64AZ	HA7-5221-9	*	FE	Reduced Vio
OP64EJ	HA2-5221-9	*	FE	Reduced Vio
OP64EZ	HA7-5221-9	*	FE	Reduced Vio
OP64FJ	HA2-5221-9	*	FE	Reduced Vio
OP64FZ	HA7-5221-9	*	FE	Reduced Vio
OP65AJ	HA2-2548-9	*	FE	Lower Vio/Guaranteed Ts
OP65AZ	HA7-2548-9	*	FE	Lower Vio/Guaranteed Ts
OP65EJ	HA2-2548-9	*	FE	Lower Vio/Guaranteed Ts
OP65EZ	HA7-2548-9	*	FE	Lower Vio/Guaranteed Ts
OP65FJ	HA2-2548-9	*	FE	Lower Vio/Guaranteed Ts
OP65FZ	HA7-2548-9	*	FE	Lower Vio/Guaranteed Ts
OP65GP	CA3450E	No	FE	Greater Bandwidth /Slew Rate
OP77BJ	HA2-5177-2	Yes	FE	Greater Bandwidth/Reduced Icc
OP77BZ	HA7-5177-2	Yes	FE	Greater Bandwidth/Reduced Icc
OP77FJ	HA2-5177-5	Yes	FE	Greater Bandwidth/Reduced Icc
OP77FZ	HA7-5177-5	Yes	FE	Greater Bandwidth/Reduced Icc
OP80FJ	CA5420AT	*	FE	Single Supply Operation
OP80GJ	CA5420T	*	FE	Single Supply Operation
OP80GP	CA5420E	*	FE	Single Supply Operation
OPA111AM	HA2-5180-5	Yes	FE	Reduced Ibias/Enhanced ACs
OPA111BM	HA2-5180-5	Yes	FE	Enhanced ACs
OPA111SM	HA2-5180-2	Yes	FE	Reduced Ibias/Enhanced ACs
OPA121KP	CA3140AE	*	FE	MOS Input/Enhanced ACs
OPA2111KM	HA2-5102-5	Yes	FE	Greater Bandwidth
OPA2111KP	НАЗ-5102-5	Yes	FE	Greater Bandwidth

NOTES: 1. A"*" in this column indicates that primary pins are pin-to-pin, but secondary or optional function pins are not.
2. Electrical equivalency; denoted by the following: I = Identical, FE = Functional Equivalent, $E=$ Enhanced Harris product meets all competitor specifications and exceeds several.

Commercial Linear Product Cross Reference

DEVICE	HARRIS REPLACEMENT	(NOTE 1) PIN TO PIN	(NOTE 2) EE	HARRIS ADVANTAGE OR COMMENTS
OPA27AJ	HA2-5127A-2	Yes	E	Enhanced ACs/Reduced Icc
OPA27AZ	HA7-5127A-2	Yes	E	Enhanced ACs/Reduced Icc
OPA27CJ	HA2-5127-2	Yes	E	Enhanced ACs/Reduced Icc
OPA27CZ	HA7-5127-2	Yes	E	Enhanced ACs/Reduced lcc
OPA27EJ	HA2-5127A-5	Yes	E	Enhanced ACs/Reduced Icc
OPA27EZ	HA7-5127A-5	Yes	E	Enhanced ACs/Reduced lcc
OPA27GJ	HA2-5127-5	Yes	E	Enhanced ACs/Reduced Icc
OPA27GZ	HA7-5127-5	Yes	E	Enhanced ACs/Reduced Icc
OPA37AJ	HA2-5137A-2	Yes	E	Enhanced ACs/Reduced Icc
OPA37AZ	HA7-5137A-2	Yes	E	Enhanced ACs/Reduced Icc
OPA37CJ	HA2-5137-2	Yes	E	Enhanced ACs/Reduced Icc
OPA37CZ	HA7-5137-2	Yes	E	Enhanced ACs/Reduced Icc
OPA37EJ	HA2-5137A-5	Yes	E	Enhanced ACs/Reduced Icc
OPA37EZ	HA7-5137A-5	Yes	E	Enhanced ACs/Reduced Icc
OPA37GJ	HA2-5137-5	Yes	E	Enhanced ACs/Reduced Icc
OPA37GZ	HA7-5137-5	Yes	E	Enhanced ACs/Reduced lcc
OPA404AG	HA1-5114-5	Yes	FE	Lower Voltage Noise/Enhanced ACs
OPA404BG	HA1-5114-5	Yes	FE	Lower Voltage Noise/Enhanced ACs
OPA404KP	НАЗ-5114-5	Yes	FE	Lower Voltage Noise/Enhanced ACs
OPA404KU	HA9P-5114-5	Yes	FE	Lower Voltage Noise/Enhanced ACs
OPA404SG	HA1-5114-2	Yes	FE	Lower Voltage Noise/Enhanced ACs
OPA445AP	HA7-2645-5	Yes	FE	
OPA445BM	HA2-2640-2	Yes	FE	
OPA445SM	HA2-2640-2	Yes	FE	
OPA620KG	HFA7-0005-5	*	FE	Enhanced ACs
OPA620KP	HFA3-0005-5	*	FE	Enhanced ACs
OPA620LG	HFA7-0005-5	*	FE	Enhanced ACs
OPA620SG	HFA7-0005-9	*	FE	Enhanced ACs
OPA621KG	HFA7-0002-5	*	FE	Lower Voltage Noise/Temco
OPA621KP	HFA3-0002-5	*	FE	Lower Voltage Noise/Temco
OPA621LG	HFA7-0002-5	*	FE	Lower Voltage Noise/Temco
OPA621SG	HFA7-0002-9	*	FE	Lower Voltage Noise/Temco
OPA633AH	HA2-5033-2	Yes	1	
OPA633KP	HA3-5033-5	Yes	1	
OPA633SH	HA2-5033-5	Yes	FE	
PM139AY	CA0139AF	Yes	1	
PM139Y	CA0139F	Yes	1	
PM741CJ	CA0741CT	Yes	I	
PM741J	CA0741T	Yes	1	
RC3403AN	CA5470E	Yes	FE	MOS Input/Enhanced ACs
RC4741D	HA1-4741-2	Yes	E	Guaranteed ACs
RC4741M	HA9P-4741-5	Yes	E	Guaranteed ACs
RC5532AN	НАЗ-5102-5	Yes	FE	Enhanced DCs/Reduced Icc
RC5532N	НАЗ-5102-5	Yes	FE	Enhanced DCs/Reduced Icc
RC5534AN	НАЗ-5101-5	Yes	FE	Enhanced DCs/Reduced Icc
RC5534N	НАЗ-5101-5	*	FE	Enhanced DCs/Reduced Icc
RC741N	CA0741CE	Yes	1	
RC747N	CA0747CE	Yes	1	
RC747T	CA0747CT	Yes	1	

NOTES: 1. A "*" in this column indicates that primary pins are pin-to-pin, but secondary or optional function pins are not.
2. Electrical equivalency; denoted by the following: $I=$ Identical, $F E=$ Functional Equivalent,
$E=$ Enhanced Harris product meets all competitor specifications and exceeds several.

Commercial Linear Product Cross Reference

DEVICE	HARRIS REPLACEMENT	(NOTE 1) PIN TO PIN	(NOTE 2) EE	HARRIS ADVANTAGE OR COMMENTS
RM5334T	HA2-5101-2	*	FE	Reduced Icc
RM5532AD RM5532AT RM5532D RM5532T	$\begin{aligned} & \text { HA7-5102-2 } \\ & \text { HA2-5102-2 } \\ & \text { HA7-5102-2 } \\ & \text { HA2-5102-2 } \end{aligned}$	Yes Yes Yes Yes	FE FE FE FE	Reduced lcc Reduced Icc Reduced lcc Reduced Icc
RM5534AD RM5534AT RM5534D	$\begin{aligned} & \text { HA7-5101-2 } \\ & \text { HA2-5101-2 } \\ & \text { HA7-5101-2 } \end{aligned}$	*	FE FE FE	Reduced Icc Reduced Icc Reduced Icc
RM741T	CA0741T	Yes	1	Specified From 0-70 Degrees C
RM747T	CA0747T	Yes	1	
RV741T SA5230N	CA0741CT CA5160AE	Yes No	$\begin{aligned} & \text { FE } \\ & \text { FE } \end{aligned}$	Specified From 0-70 Degrees C MOS Input
$\begin{aligned} & \text { SA556-1N } \\ & \text { SA556N } \end{aligned}$	ICM7556IPD ICM7556IPD	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \hline F E \\ & \text { FE } \end{aligned}$	CMOS/Reduced Icc CMOS/Reduced Icc
SA723CN	CA0723CE	Yes	1	
SA747CN	CA0747CE	Yes	FE	
SE5532AFE SE5532FE	$\begin{aligned} & \text { HA7-5102-2 } \\ & \text { HA7-5102-2 } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \mathrm{FE} \\ & \mathrm{FE} \end{aligned}$	Reduced Icc Reduced lcc
SE5534AFE SE5534FE	$\begin{aligned} & \text { HA7-5101-2 } \\ & \text { HA7-5101-2 } \end{aligned}$		$\begin{aligned} & \mathrm{FE} \\ & \mathrm{FE} \end{aligned}$	Reduced Ibias/lio Reduced Ibias/lio
SE5539F	HA1-2539-2	*	FE	Specified @ $\pm 15 \mathrm{~V}$ Supplies
SE555CN	CA0555E	Yes	FE	
$\begin{aligned} & \text { SE556-1CN } \\ & \text { SE556-1F } \\ & \text { SE556F } \end{aligned}$	ICM7556MJD ICM7556MJD ICM7556MJD	Yes Yes Yes	FE FE FE	CMOS/Reduced Icc CMOS/Reduced Icc CMOS/Reduced Icc
$\begin{aligned} & \text { SG1524CF } \\ & \text { SG1524CN } \\ & \text { SG1524J } \end{aligned}$	CA1524F CA1524E CA1524F	Yes Yes Yes	$\begin{gathered} \mathrm{FE} \\ \mathrm{FE} \\ \mathrm{I} \end{gathered}$	
$\begin{aligned} & \text { SG1536T } \\ & \text { SG1536 } \end{aligned}$	$\begin{aligned} & \text { HA2-2640-2 } \\ & \text { HA7-2640-2 } \end{aligned}$	*	$\begin{aligned} & \mathrm{FE} \\ & \mathrm{FE} \end{aligned}$	Reduced Vio/Enhanced ACs Reduced Vio/Enhanced ACs
$\begin{aligned} & \text { SG2524CF } \\ & \text { SG2524CN } \end{aligned}$	$\begin{aligned} & \text { CA2524F } \\ & \text { CA2524E } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \mathrm{FE} \\ & \mathrm{FE} \end{aligned}$	
SG301AT	CA0301AT	Yes	FE	Almost Identical
SG3045J	САЗО45	Yes	FE	
SG3049T	CA3049T	Yes	FE	Greater Bandwidth/Reduced Noise
$\begin{aligned} & \text { SG3083 } \\ & \text { SG3183D } \\ & \text { SG3183N } \end{aligned}$	САЗ083 CA3183M CA3183E	Yes Yes Yes	$\begin{gathered} \mathrm{I} \\ \mathrm{FE} \\ \mathrm{FE} \end{gathered}$	Identical Specs @ 25 Degrees C Identical Specs @ 25 Degrees C
$\begin{aligned} & \text { SG3524CF } \\ & \text { SG3524CN } \\ & \text { SG3524J } \\ & \text { SG3524N } \end{aligned}$	CA3524F CA3524E CA3524F CA3524E	Yes Yes Yes Yes	$\begin{gathered} \text { FE } \\ \text { FE } \\ 1 \\ i \end{gathered}$	
$\begin{aligned} & \text { SG741CN } \\ & \text { SG741T } \end{aligned}$	$\begin{aligned} & \text { CA0741CE } \\ & \text { CA0741T } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	1	

NOTES: 1. A "*" in this column indicates that primary pins are pin-to-pin, but secondary or optional function pins are not.
2. Electrical equivalency; denoted by the following: $I=$ Identical, $F E=$ Functional Equivalent,
$E=$ Enhanced Harris product meets all competitor specifications and exceeds several.

Commercial Linear Product Cross Reference

DEVICE	HARRIS REPLACEMENT	(NOTE 1) PIN TO PIN	(NOTE 2) EE	HARRIS ADVANTAGE OR COMMENTS
$\begin{aligned} & \text { SHC532OKH } \\ & \text { SHC532OSH } \end{aligned}$	$\begin{aligned} & \text { HA1-5320-5 } \\ & \text { HA1-5320-2 } \end{aligned}$	Yes Yes	1	
$\begin{aligned} & \text { SHC85 } \\ & \text { SHC85ET } \end{aligned}$	$\begin{aligned} & \text { HA1-2425-5 } \\ & \text { HA1-2420-2 } \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { No } \end{aligned}$	$\begin{aligned} & \text { FE } \\ & \text { FE } \end{aligned}$	Enhanced ACs Enhanced ACs
$\begin{aligned} & \text { SHM-20C } \\ & \text { SHM-20M } \end{aligned}$	$\begin{aligned} & \text { HA1-5320-5 } \\ & \text { HA1-5320-2 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \mathrm{FE} \\ & \mathrm{FE} \\ & \hline \end{aligned}$	Guaranteed Acquisition Time Guaranteed Acquisition Time
$\begin{aligned} & \text { SHM-IC-1 } \\ & \text { SHM-IC-1M } \end{aligned}$	$\begin{aligned} & \text { HA1-2425-5 } \\ & \text { HA1-2420-2 } \end{aligned}$	Yes Yes	$\begin{aligned} & \mathrm{FE} \\ & \mathrm{FE} \\ & \hline \end{aligned}$	Almost Identical Almost Identical
$\begin{aligned} & \hline \text { SI7652DJ } \\ & \text { SI7652DK } \end{aligned}$	ICL7652SIPD ICL7652SIPD (PDIP)	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & E \\ & E \end{aligned}$	Enhanced ACs/Gain Enhanced ACs/Gain
SI7660AA SI7660BA SI7660CA SI7660CJ SI7660DY	ICL7660SMTV ICL7660SITV ICL7660SCTV ICL7660SCPA ICL7660SIBA		E E E E E	Greater Vout Efficiency/Reduced Icc
SL3045CDG14	CA3045	Yes	FE	
SL3046CDP14	CA3046E	Yes	FE	
SL3127CDG16	CA3127F	Yes	FE	SOIC Version Available
SMP10AY SMP10BY SMP10EY SMP10FY	HA1-2420-2 HA1-2420-2 HA1-2425-5 HA1-2425-5		FE FE FE FE	Faster Acquisition/Lower Droop Faster Acquisition/Lower Droop Faster Acquisition/Lower Droop Faster Acquisition/Lower Droop
SMP11AY SMP11BY SMP11EY SMP11FY	HA1-2420-2 HA1-2420-2 HA1-2425-5 HA1-2425-5		FE FE FE FE	Faster Acquisition/Lower Droop Faster Acquisition/Lower Droop Faster Acquisition/Lower Droop Faster Acquisition/Lower Droop
$\begin{aligned} & \text { SP1-2541-5 } \\ & \text { SP1-2541-2 } \end{aligned}$	$\begin{aligned} & \text { HA1-2541-5 } \\ & \text { HA1-2541-2 } \end{aligned}$	Yes Yes	1	
$\begin{aligned} & \text { SP1-2542-2 } \\ & \text { SP1-2542-5 } \end{aligned}$	$\begin{aligned} & \text { HA1-2542-2 } \\ & \text { HA1-2542-5 } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	1	
$\begin{aligned} & \text { SP1-5330-2 } \\ & \text { SP1-5330-5 } \end{aligned}$	HA1-5330-2 HA1-5330-5	Yes Yes	1	
$\begin{aligned} & \text { SP2-2500-2 } \\ & \text { SP2-2502-2 } \\ & \text { SP2-2505-5 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { HA2-2500-2 } \\ & \text { HA2-2502-2 } \\ & \text { HA2-2505-5 } \\ & \hline \end{aligned}$	Yes Yes Yes	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	
$\begin{aligned} & \text { SP2-2510-2 } \\ & \text { SP2-2512-2 } \\ & \text { SP2-2515-5 } \end{aligned}$	$\begin{aligned} & \text { HA2-2510-2 } \\ & \text { HA2-2512-2 } \\ & \text { HA2-2515-5 } \end{aligned}$	Yes Yes Yes	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	
$\begin{aligned} & \text { SP2-2520-2 } \\ & \text { SP2-2522-2 } \\ & \text { SP2-2525-5 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { HA2-2520-2 } \\ & \text { HA2-2522-2 } \\ & \text { HA2-2525-5 } \\ & \hline \end{aligned}$	Yes Yes Yes	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \end{aligned}$	Substitute HA2-2529-2 Substitute HA2-2529-2 Substitute HA2-2529-5
$\begin{aligned} & \text { SP2-2541-2 } \\ & \text { SP2-2541-5 } \end{aligned}$	$\begin{aligned} & \text { HA2-2541-2 } \\ & \text { HA2-2541-5 } \end{aligned}$	Yes Yes	I	
$\begin{aligned} & \text { SP2-2542-2 } \\ & \text { SP2-2542-5 } \end{aligned}$	$\begin{aligned} & \text { HA2-2542-2 } \\ & \text { HA2-2542-5 } \end{aligned}$	Yes Yes	1	
$\begin{aligned} & \text { SP2-2600-2 } \\ & \text { SP2-2602-2 } \\ & \text { SP2-2605-5 } \end{aligned}$	$\begin{aligned} & \text { HA2-2600-2 } \\ & \text { HA2-2602-2 } \\ & \text { HA2-2605-5 } \end{aligned}$	Yes Yes Yes	$\begin{aligned} & \text { i } \\ & \text { i } \end{aligned}$	

NOTES: 1. A "*" in this column indicates that primary pins are pin-to-pin, but secondary or optional function pins are not.
2. Electrical equivalency; denoted by the following: I = Identical, $\mathrm{FE}=$ Functional Equivalent, $E=$ Enhanced Harris product meets all competitor specifications and exceeds several.

Commercial Linear Product Cross Reference

DEVICE	HARRIS REPLACEMENT	(NOTE 1) PIN TO PIN	(NOTE 2) EE	HARRIS ADVANTAGE OR COMMENTS
$\begin{aligned} & \text { SP2-2620-2 } \\ & \text { SP2-2622-2 } \\ & \text { SP2-2625-5 } \end{aligned}$	$\begin{aligned} & \text { HA2-2620-2 } \\ & \text { HA2-2622-2 } \\ & \text { HA2-2625-5 } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	
$\begin{aligned} & \text { SP3-2505-5 } \\ & \text { SP3-2515-5 } \\ & \text { SP3-2525-5 } \end{aligned}$	$\begin{aligned} & \text { НАЗ-2505-5 } \\ & \text { НАЗ-2515-5 } \\ & \text { НАЗ-2525-5 } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	Substitute HA3-2529-5
SP3-2542-5	НАЗ-2542-5	Yes	1	
SP3-2605-5	НАЗ-2605-5	Yes	1	
SP3-2625-5	НАЗ-2625-5	Yes	1	
$\begin{aligned} & \text { SP7-2500-2 } \\ & \text { SP7-2502-2 } \\ & \text { SP7-2505-5 } \end{aligned}$	$\begin{aligned} & \text { HA7-2500-2 } \\ & \text { HA7-2502-2 } \\ & \text { HA7-2505-5 } \end{aligned}$	Yes Yes Yes	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	
$\begin{aligned} & \text { SP7-2510-2 } \\ & \text { SP7-2512-2 } \\ & \text { SP7-2515-5 } \end{aligned}$	$\begin{aligned} & \text { HA7-2510-2 } \\ & \text { HA7-2512-2 } \\ & \text { HA7-2515-5 } \end{aligned}$	Yes Yes Yes	$\begin{aligned} & \text { I } \\ & \text { I } \end{aligned}$	
SP7-2520-2 SP7-2522-2 SP7-2525-5	$\begin{aligned} & \text { HA7-2520-2 } \\ & \text { HA7-2522-2 } \\ & \text { HA7-2525-5 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	Substitute HA7-2529-2 Substitute HA7-2529-2 Substitute HA7-2529-5
SP7-2600-2 SP7-2602-2 SP7-2605-5	$\begin{aligned} & \text { HA7-2600-2 } \\ & \text { HA7-2602-2 } \\ & \text { HA7-2605-5 } \end{aligned}$	Yes Yes Yes	$\begin{aligned} & 1 \\ & 1 \\ & i \end{aligned}$	
SP7-2620-2 SP7-2622-2 SP7-2625-5	$\begin{aligned} & \text { HA7-2620-2 } \\ & \text { HA7-2622-2 } \\ & \text { HA7-2625-5 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	
TCA520BN	$\begin{aligned} & \text { CA5130AE } \\ & \text { CA5130M } \end{aligned}$	*	$\begin{aligned} & \text { FE } \\ & \text { FE } \end{aligned}$	MOS Input/Enhanced ACs MOS Input/Enhanced ACs
$\begin{aligned} & \text { TLC251ACP } \\ & \text { TLC251CP } \end{aligned}$	$\begin{aligned} & \text { CA3440AE } \\ & \text { CA3440E } \end{aligned}$	*	$\begin{aligned} & \mathrm{FE} \\ & \mathrm{FE} \\ & \hline \end{aligned}$	
$\begin{aligned} & \text { TLC252ACD } \\ & \text { TLC252ACP } \\ & \text { TLC252CD } \\ & \text { TLC252CP } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { CA5260AM } \\ & \text { CA5260AE } \\ & \text { CA5260M } \\ & \text { CA5260E } \end{aligned}$	Yes Yes Yes Yes	FE FE FE FE	Specified @ +5V Supply Specified @ +5 V Supply Specified @ +5 V Supply Specified @ +5V Supply
$\begin{aligned} & \text { TLC254CD } \\ & \text { TLC254CN } \end{aligned}$	$\begin{aligned} & \text { CA5470M } \\ & \text { CA5470E } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \mathrm{FE} \\ & \mathrm{FE} \end{aligned}$	Specified @ +5V Supply Specified @ +5V Supply
$\begin{aligned} & \text { TLC2652CP } \\ & \text { TLC2652IN } \end{aligned}$	$\begin{aligned} & \text { ICL7652SCPD } \\ & \text { ICL7652SIPD } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { FE } \\ & \text { FE } \end{aligned}$	Reduced Ibias/lio Reduced Ibias/lio
TLC272ACD	CA5260AM	Yes	FE	Greater Vout Range/Reduced Icc
TLC272ACP	CA5260AE	Yes	FE	Greater Vout Range/Reduced Icc
TLC272AID	CA5260AM	Yes	FE	Greater Vout Range/Reduced Icc
TLC272AIP	CA5260AE	Yes	FE	Greater Vout Range/Reduced Icc
TLC272CD	CA5260M	Yes	FE	Greater Vout Range/Reduced Icc
TLC272CP	CA5260E	Yes	FE	Greater Vout Range/Reduced Icc
TLC272ID	CA5260M	Yes	FE	Greater Vout Range/Reduced Icc
TLC272IP	CA5260E	Yes	FE	Greater Vout Range/Reduced Icc
TLC272MJG	CA5260E (PDIP)	Yes	FE	Greater Vout Range/Reduced Icc
TLC274CD	CA5470M	Yes	FE	Greater Vout/Bandwidth/Slew Rate
TLC274CN	CA5470E	Yes	FE	Greater Vout/Bandwidth/Slew Rate
TLC274ID	CA5470M	Yes	FE	Greater Vout/Bandwidth/Slew Rate
TLC274IN	CA5470E	Yes	FE	Greater Vout/Bandwidth/Slew Rate
TLC274MJ	CA5470E (PDIP)	Yes	FE	Greater Vout/Bandwidth/Slew Rate

NOTES: 1. A "*" in this column indicates that primary pins are pin-to-pin, but secondary or optional function pins are not.
2. Electrical equivalency; denoted by the following: I = Identical, $F E=$ Functional Equivalent,
$E=$ Enhanced Harris product meets all competitor specifications and exceeds several.

Commercial Linear Product Cross Reference

DEVICE	HARRIS REPLACEMENT	(NOTE 1) PIN TO PIN	(NOTE 2) EE	HARRIS ADVANTAGE OR COMMENTS
TLC27M2ACD	CA5260AM	Yes	FE	Greater Vout/Bandwidth/Slew Rate
TLC27M2ACP	CA5260AE	Yes	FE	Greater Vout/Bandwidth/Slew Rate
TLC27M2AID	CA5260AM	Yes	FE	Greater Vout/Bandwidth/Slew Rate
TLC27M2AIP	CA5260AE	Yes	FE	Greater Vout/Bandwidth/Slew Rate
TLC27M2CD	CA5260M	Yes	FE	Greater Vout/Bandwidth/Slew Rate
TLC27M2CP	CA5260E	Yes	FE	Greater Vout/Bandwidth/Slew Rate
TLC27M2ID	CA5260M	Yes	FE	Greater Vout/Bandwidth/Slew Rate
TLC27M21P	CA5260E	Yes	FE	Greater Vout/Bandwidth/Slew Rate
TLC27M2MJG	CA5260E (PDIP)	Yes	FE	Greater Vout/Bandwidth/Slew Rate
TLC555CD	ICM7555CBA	Yes	FE	Reduced Icc
TLC5551P	ICM7555IPA	Yes	FE	Reduced lcc
TLC556CN	ICM7556IPD	Yes	FE	Reduced Icc
TLC556IN	ICM7556IPD	Yes	FE	Reduced Icc
TLC556MJ	ICM7556MJD	Yes	FE	Reduced Icc
TLE2021	HA-5151		FE	Greater Slew Rate
TLE2022	HA-5152		FE	Greater Slew Rate
TLE2024	HA-5154		FE	Greater Slew Rate
TP1321	HA-5195	Yes	FE	
TP1322	HA-2520	Yes	FE	
TP1326	HA-2600	Yes	FE	
TP1332	HA-2645	Yes	FE	
TP1339	HA-2620	No	FE	
TP1341	HA-2540	Yes	FE	
TP1342	HA-2539	Yes	FE	
TP1344	HA-5160	Yes	FE	
TP1345	HA-5162	Yes	FE	
TP1346	H1-5180	Yes		
TP4856	HA1-2420/25	Yes	1	Guaranteed Acquisition Time
TP4866	HA1-5320	Yes	FE	Guaranteed Acquisition Time
TSC426CPA	ICL7667CPA	Yes	FE	Almost Identical
TSC426MJA	ICL7667MJA	Yes	FE	Almost Identical
TSC7650ACPA	ICL7650SCPA-1	Yes	FE	Reduced Tempco/Noltage Noise
TSC7650ACPD	ICL7650SCPD	Yes	FE	Reduced Tempco/Voltage Noise
TSC7650AIJA	ICL7650SIJA-1	Yes	FE	Reduced Tempco/Voltage Noise
TSC7650AIJD	ICL7650SIJD	Yes	FE	Reduced Tempco/Voltage Noise
TSC7652CPD	ICL7652SCPD	Yes	FE	
TSC7652IJD	ICL7652SIPD (PDIP)	Yes	FE	
TSC7660	ICL7660	*	FE	
TSC7662	ICL7662	*	FE	
$\mu \mathrm{A} 741 \mathrm{CL}$	CA0741CT	Yes	1	
$\mu \mathrm{A} 741 \mathrm{CP}$	CA0741CE	Yes	1	
$\mu \mathrm{A} 41 \mathrm{HM}$	CA0741T	Yes	I	
UC0P01CN	CA3140AE	Yes	FE	MOSFET Input
UC0P01GJ	CA3140AE (PDIP)	Yes	FE	MOSFET Input
UCOP02EN	CA3493E	*	FE	Reduced Tempco
UC1524J	CA1524F	Yes	I	
UC2524J	CA2524F	Yes	1	
UC2524N	CA2524E	Yes	1	

NOTES: 1. A "*" in this column indicates that primary pins are pin-to-pin, but secondary or optional function pins are not.
2. Electrical equivalency; denoted by the following: I = Identical, FE = Functional Equivalent, $E=$ Enhanced Harris product meets all competitor specifications and exceeds several.

Commercial Linear Product Cross Reference

DEVICE	HARRIS REPLACEMENT	(NOTE 1) PIN TO PIN	(NOTE 2) EE	HARRIS ADVANTAGE OR COMMENTS
$\begin{aligned} & \text { UC3524J } \\ & \text { UC3524N } \end{aligned}$	$\begin{aligned} & \text { CA3524F } \\ & \text { CA3524F } \end{aligned}$	Yes Yes	1	
$\begin{aligned} & \text { VI-7660-1 } \\ & \text { VI-7660-2 } \end{aligned}$	ICL7660SCPA ICL7660SCTV	*	$\begin{aligned} & \mathrm{E} \\ & \mathrm{E} \end{aligned}$	Greater Vout Efficiency/Reduced Icc Greater Vout Efficiency/Reduced Icc
XR-1458CP	CA1458E	Yes	1	
XR-1524M	CA1524F	Yes	1	
XR-2242CP	ICM7242IPA	Yes	FE	Greatly Reduced Icc
$\begin{aligned} & \text { XR-2524N } \\ & \text { XR-2524P } \end{aligned}$	$\begin{aligned} & \text { CA2524F } \\ & \text { CA2524E } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	1	
XR-3403CP	CA5470E	Yes	FE	MOS Input/Enhanced ACs
$\begin{aligned} & X R-3524 N \\ & \text { XR-3524P } \end{aligned}$	$\begin{aligned} & \text { CA3524F } \\ & \text { CA3524E } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	1	
XR-4558CP	CA1458E	Yes	1	
$\begin{aligned} & \mathrm{XR}-4739 \mathrm{CN} \\ & \text { XR-4739CP } \end{aligned}$	$\begin{aligned} & \text { HA7-5102-5 } \\ & \text { HA3-5102-5 } \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { No } \end{aligned}$	$\begin{aligned} & \mathrm{FE} \\ & \mathrm{FE} \end{aligned}$	Enhanced ACs/DCs Enhanced ACs/DCs
$\begin{aligned} & \text { XR-4741CN } \\ & \text { XR-4741CP } \\ & \text { XR-4741M } \end{aligned}$	$\begin{aligned} & \text { HA1-4741-5 } \\ & \text { HA3-4741-5 } \\ & \text { HA1-4741-2 } \end{aligned}$	Yes Yes Yes	$\begin{aligned} & E \\ & E \\ & E \end{aligned}$	Guaranteed Channel Separation Guaranteed Channel Separation Guaranteed Channel Separation
$\begin{aligned} & \text { XR-5532AN } \\ & \text { XR-5532AP } \\ & \text { XR-5532N } \\ & \text { XR-5532P } \end{aligned}$	$\begin{aligned} & \text { HA7-5102-5 } \\ & \text { HA3-5102-5 } \\ & \text { HAT-5102-5 } \\ & \text { HA3-5102-5 } \end{aligned}$	Yes Yes Yes Yes	$\begin{aligned} & \mathrm{FE} \\ & \mathrm{FE} \\ & \mathrm{FE} \\ & \mathrm{FE} \end{aligned}$	Reduced Vio/lbias Reduced Vio/lbias Reduced Vio/lbias Reduced Vio/lbias
XR-5534ACN XR-5534ACP XR-5534AM XR-5534CN XR-5534CP XR-5534M	HA7-5101-5 HA3-5101-5 HA7-5101-2 HA7-5101-5 HA3-5101-5 HA7-5101-2		FE FE FE FE FE FE	Greater Avol/Reduced Vio Greater Avol/Reduced Vio Greater Avol Greater Avol/Reduced Vio Greater Avol/Reduced Vio Greater Avol
XR-555CP	CA0555CE	Yes	FE	
$\begin{aligned} & \text { XR-8038CN } \\ & \text { XR-8038CP } \\ & \text { XR-8038M } \\ & \text { XR-8038N } \end{aligned}$	ICL8038CCJD ICL8038CCPD ICL8038AMJD ICL8038BCJD	Yes Yes Yes Yes	FE FE FE FE	Reduced Supply Current Reduced Supply Current Reduced Supply Current Reduced Supply Current

NOTES: 1. A "*" in this column indicates that primary pins are pin-to-pin, but secondary or optional function pins are not.
2. Electrical equivalency; denoted by the following: I = Identical, $F E=$ Functional Equivalent,
$\mathbf{E}=$ Enhanced Harris product meets all competitor specifications and exceeds several.

POWER CONTROL CIRCUITS

PAGE
SELECTION GUIDE 2-2
POWER CONTROL CIRCUITS DATA SHEETS
CA 723,C Adjustable Voltage Regulator 2-5
CA 1524 Pulse Width Modulator 2-13
CA 2524 Pulse Width Modulator 2-13
CA 3059 Zero-Voltage Crossing Switch System 2-28
CA 3079 Same as CA3059 Without Protection and Inhibit 2-28
CA 3085, A, B Positive Voltage Regulator 2-39
CA 3524 Regulating Pulse Width Modulator 2-13
HV 1205 Single Chip Power Supply 2-46
HV 2405E Single Chip Power Supply 2-57
ICL 7660 CMOS Voltage Converter 2-68
ICL 7660 Super Voltage Converter 2-77
ICL 7662 CMOS Voltage Converter 2-87
ICL 7663 CMOS Programmable Positive Voltage Regulator 2-96
ICL 7665S CMOS Micropower Over/Under Voltage Detector 2-103
ICL 7667 Dual Power MOSFET Driver. 2-113
ICL 7673 Automatic Battery Back-up Switch 2-121
ICL 7675 Switched-Mode Power Supply Controller Set 2-129
ICL 7676 Switched-Mode Power Supply Controller Set 2-129
ICL $7680 \quad+5$ to $\pm 15 \mathrm{~V}$ Voltage Converter/Regulator 2-138
ICL 8211 Programmable Voltage Detector 2-147
ICL 8212 Programmable Voltage Detector 2-147

Selection Guide

POWER-SUPPLY SUPERVISORY CIRCUITS

Type	Function	Description	Package Number of Pins*
ICL7663S	Programmable micropower positive voltage regulator	Low-power, high-efficiency device ($l_{0}=4 \mu \mathrm{~A}$ max.) that accepts an input of 1 to 16 V and provides an adjustable output over the same range at up to 40 mA load. T_{A} Range: 0 to $+70^{\circ} \mathrm{C},-25$ to $+85^{\circ} \mathrm{C}$. Line and load regulation and ESP protection ($>2000 \mathrm{~V}$).	$\begin{aligned} & \mathrm{BA}, \mathrm{JA} \\ & \text { PA, TV } \end{aligned}$
ICL7680	-5 V to $\pm 15 \mathrm{~V}$ voltage converter/regulator	Boost-type switched-mode converter inverter chip to convert +5 to $\pm 15 \mathrm{~V}$ regulated outputs. Features current limiting protection with external shut down. $\mathrm{T}_{\mathrm{A}} \text { Range: } 0 \text { to }+70^{\circ} \mathrm{C} .$	JE, PE
ICL7660S	Voltage converter	Performs supply voltge conversion from positive to negative. Input range is +1.5 V to +10 V resulting in complementary output voltages of -1.5 V to -12 V . Can be connected as a voltge doubler to generate output voltage of -18.6 V . T_{A} Range: 0 to $+70^{\circ} \mathrm{C}$, -55 to $+125^{\circ} \mathrm{C}$. ICL7660S improved version of ICL7660. Has extended supply voltage range, lower supply current, and ESD protection (>2000V).	$\begin{gathered} \mathrm{BA}, \mathrm{PA}, \\ \mathrm{TV} \end{gathered}$
ICL7662S	Voltage converter	Similar to the ICL7660 in its operation, except the output voltages are -4.5 V to -20 V . Doubler output 22.6V.	PA, TV
ICL7665S ICL7665	Programmable micropower under/over voltage detector	Contains two individually programmable voltage comparators and requires only $3 \mu \mathrm{~A}$ supply current. Intended for battery-operated systems that require low or high voltage warnings, etc. Open drain outputs for interfacing. T_{A} Range: 0 to $+70^{\circ} \mathrm{C}$, -25 to $+85^{\circ} \mathrm{C}$. ICL7665S improved ICL7665. For features, see ICL7663S.	$\begin{aligned} & \text { BA, JA, } \\ & \text { PA, TV } \end{aligned}$
1CL8211	Programmable voltage level detector	Contains a 1.15 V reference, a comparator, a hysteresis output and a non-inverting main-output. Provides a 7 mA current-limited output sink when voltage on threshold terminal is $<1.15 \mathrm{~V} . \mathrm{T}_{\mathrm{A}}$ Range: 0 to $+70^{\circ} \mathrm{C},-55$ to $+125^{\circ} \mathrm{C}$.	$\begin{aligned} & \text { BA, JA, } \\ & \text { PA, TV } \end{aligned}$
ICL8212	Programmable voltage level detector	Similar in operation to the ICL8211 except that its main output is inverting as opposed to non-inverting. Requires a voltage in excess of 1.15 V to switch its output on (no current limit). TA Range: Same as ICL8211.	
ICL7667	Dual power MOSFET driver	TTL-compatible high-speed CMOS driver designed to provide high output current (1.5 A) and voltage (up to +15 V) for driving the gates of power MOSFETs in highfrequency switched-mode power converters. TA Range: 0 to $+70^{\circ} \mathrm{C},-55$ to $+125^{\circ} \mathrm{C}$.	$\begin{aligned} & \text { BA, JA, } \\ & \text { PA, TV } \end{aligned}$
HV-250/255	MOSFET drivers	Complementary power. Wide supply range (20 V to 450 V). High peak output current of 2A. High switching speed 200 ns . New product in development.	-
HV-350/355		Totem pole N -channel power MOSFET driver. Wide supply range (20 V to 450 V). High peak output current of 2 A . High switching speed of 200 ns . New product in development.	-
ICL7673	Automatic battery backup switch	Automatically switches between a main power supply (eg., +5 V) and a battery back-up supply, when the main supply is removed. Wide supply range: 2.5 V to 15 V . T_{A} Range: 0 to $+70^{\circ} \mathrm{C},-25$ to $+85^{\circ} \mathrm{C}$.	$\begin{gathered} \mathrm{BA}, \mathrm{PA}, \\ \mathrm{TV} \end{gathered}$
$\begin{aligned} & \text { ICL7675 } \\ & \text { ICL7676 } \end{aligned}$	Switched-mode power-supply controller set	Two-chip set provides required control circuitry for a 50W - 150 W isolated-type flyback-type switching power supply. ICL7675 primary side controller provides main power-switch drive. ICL7676 secondary side controller monitors the regulated output. T_{A} Range: 0 to $+70^{\circ} \mathrm{C},-25$ to $+85^{\circ} \mathrm{C},-55$ to $+125^{\circ} \mathrm{C}$.	JA, PA
ICL7677	CMOS power fail detector	Used on primary side of power supply with opto isolators transmitting the fault indication to the equipment on the secondary side. Also used on secondary side to drive TTL/CMOS logic at fault indicating outputs. TA Range: 0 to $+70^{\circ} \mathrm{C}$, $-25 \text { to }+85^{\circ} \mathrm{C},-55 \text { to }+125^{\circ} \mathrm{C} .$	JN, PN

[^3]
Selection Guide

SPECIAL PURPOSE CIRCUITS

Type	Description	Features
ICL8069	Low voltage reference	1.2 V temperature compensated voltage reference uses band-gap principal for excellent stability and low noise at reverse currents down to $50 \mu \mathrm{~A} .0$ to $70^{\circ} \mathrm{C}$ and -55 to $+125^{\circ} \mathrm{C}$ temperature ranges (metal only). Temperature coefficients of 0.005 and $0.01 /{ }^{\circ} \mathrm{C}$.

*See Packaging Section

Selection Guide

SPECIAL PURPOSE CIRCUITS (Continued)

[^4]
Voltage Regulators

For Regulated Output Voltage Adjustable from 2 V to 37 V at Output
Currents up to 150 mA without External Pass Transistors

Features:

- Up to 150 mA output current
- Positive and negative voltage regulation
- Regulation in excess of 10 a with suitable pass transistors
- Input and output short-circuit protection
- Load and line regulation: 0.03\%
- Direct replacement for 723 and 723C industry types
- Adjustable output voltage: 2 to 37 V

Applications:

- Series and shunt voltage regulator
- Floating regulator
- Switching voltage regulator
- High-current voltage regulator
- Temperature controller

The CA723 and CA723 are silicon monolithic integrated circuits designed for service as voltage regulators at output voltages ranging from 2 to 37 volts at currents up to 150 milliamperes.

Each type includes a temperature-compensated reference amplifier, an error amplifier, a power series pass transistor, and a current-limiting circuit. They also provide independently accessible inputs for adjustable current limiting and remote shutdown and, in addition, feature low standby current drain, low temperature drift, and high ripple rejection.

The CA723 and CA723C may be used with positive and negative power supplies in a wide variety of series, shunt,
switching, and floating regulator applications. They can provide regulation at load currents greater than 150 milliamperes and in excess of 10 amperes with the use of suitable $n-p-n$ or $p-n-p$ external pass transistors.

The CA723 and CA723C are supplied in the 10-lead TO-5style package (T suffix), and the 14-lead dual-in-line plastic package (E suffix), and are direct replacements for industry types 723, 723C, $\mu \mathrm{A} 723$, and $\mu \mathrm{A} 723 \mathrm{C}$ in packages with similar terminal arrangements. They are also available in chip form (" H " suffix).

All types are rated for operation over the full militarytemperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

Figure 1 - Functional diagram of the CA723 and CA723C.

MAXIMUM RATINGS, Absolute-Maximum Values:

DC SUPPLY VOLTAGE (Between V^{+}and V^{-}Terminals)	40	V
PULSE VOLTAGE FOR $50-\mathrm{ms}$		
PULSE WIDTH (Between V^{+}and V^{-}Terminals)	50	V
DIFFERENTIAL INPUT-OUTPUT		
VOLTAGE	40	V
DIFFERENTIAL INPUT		
VOLTAGE:		
Between Inverting and NonInverting Inputs	± 5	
Between Non-Inverting Input and V^{-}	8	V
CURRENT FROM ZENER D!ODE		
TERMINAL ($\mathrm{V}_{\mathbf{Z}}$)	25	mA
CURRENT FROM VOLTAGE		
REFERENCE TERMINAL		
(VEF)	15	mA

DEVICE DISSIPATION:
Up to $T_{A}=25^{\circ} \mathrm{C}$ -
CA723T, CA723CT 800 mW
CA723E, CA723CE 1000
mW
Above $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ -
CA723T, CA723CT
Derate linearly $\quad 6.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
CA723E, CA723CE
Derate linearly $8.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
AMBIENT TEMPERATURE
RANGE (All Types):

Fig. 2 - Terminal arrangement of the CA $723 T$ and CA723CT in the TO-5 style package.

Fig. 3 - Terminal arrangement of the CA723E and CA723CE in the dual-in-line plastic package.

Fig. 4 - Equivalent schematic diagram of the CA723 and CA723C.

ELECTRICAL CHARACTERISTICS at $T_{A}=25 \mathrm{C}, \mathrm{V}^{+}=\mathrm{V}_{\mathrm{C}}=\mathrm{V}_{\mathrm{I}}=12 \mathrm{~V}, \mathrm{~V}^{-}=0, \mathrm{~V}_{\mathrm{O}}=5 \mathrm{~V}$, $I_{L}=1 \mathrm{~mA}, C_{1}=100 \mathrm{pF}, C_{R E F}=0, R_{S C P}=0$, unless otherwise specified. Divider impedance $\frac{R_{1} R_{2}}{R_{1}}$ at non-inverting input, Term. $5,=10 \mathrm{k} \Omega$ (see Fig. 23).

$$
\overline{R_{1}+R_{2}}
$$

CHARACTERISTIC	TEST CONDITIONS	LIMITS						UNITS
		CA723			CA723C			
		Min.	Typ.	Max.	Min.	Typ.	Max.	
Quiescent Regulator Current, I_{Q}	$\begin{aligned} & I_{L}=0, \\ & V_{1}=30 \mathrm{~V} \end{aligned}$	-	2.3	3.5	-	2.3	4	mA
Input Voltage Range, V_{I}		9.5	-	40	9.5	-	40	V
Output Voltage Range, V_{O}		2	-	37	2	-	37	V
Differential InputOutput Voltage, $V_{1}-V_{0}$		3	-	38	3	-	38	V
Reference Voltage, $V_{\text {REF }}$		6.95	7.15	7.35	6.8	7.15	7.5	V
Line Regulation (See Note 1)	$V_{1}=12$ to 40 V	-	0.02	0.2	-	0.1	0.5	${ }^{\%} \mathrm{~V}_{0}$
	$\begin{aligned} & \mathrm{V}_{1}=12 \\ & \text { to } 15 \mathrm{~V} \end{aligned}$	-	0.01	0.1	-	0.01	0.1	
	$\begin{aligned} & V_{1}=12 \\ & \text { to } 15 \mathrm{~V}, \\ & T_{A}=-55 \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	-	-	0.3	-	-	-	
	$\begin{aligned} & V_{1}=12 \\ & \text { to } 15 \mathrm{~V}, \\ & T_{A}=0 \text { to } \\ & 70^{\circ} \mathrm{C} \end{aligned}$	-	-	-	-	-	0.3	
Load Regulation (See Note 1)	$\begin{aligned} & \mathrm{I}_{\mathrm{L}}=1 \\ & \text { to } 50 \mathrm{~mA} \end{aligned}$	-	0.03	0.15	-	0.03	0.2	\% V_{O}
	$\begin{aligned} & \mathrm{I}_{\mathrm{L}}=1 \\ & \text { to } 50 \mathrm{~mA}, \\ & \mathrm{~T}_{\mathrm{A}}=-55 \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	-	-	0.6	-	-	-	
	$\begin{aligned} & \mathrm{I}_{\mathrm{L}}=1 \\ & \text { to } 50 \mathrm{~mA}, \\ & \mathrm{~T}_{\mathrm{A}}=0 \\ & \text { to } 70^{\circ} \mathrm{C} \end{aligned}$	-	-	-	-	-	0.6	
Output-Voltage Temp. Coefficient, ΔV_{O}	$\begin{array}{\|l\|} \hline \mathrm{T}_{\mathrm{A}}=-55 \\ \text { to }+125^{\circ} \mathrm{C} \\ \hline \end{array}$	-	0.002	0.015	-	-	-	\%/ ${ }^{\circ} \mathrm{C}$
	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=0 \\ & \text { to } 70^{\circ} \mathrm{C} \end{aligned}$	-	-	-	-	0.003	0.015	
Ripple Rejection (See Note 2)	$\begin{aligned} & \mathrm{f}=50 \mathrm{~Hz} \\ & \text { to } 10 \mathrm{kHz} \end{aligned}$	-	74	-	-	74	-	dB
	$\begin{aligned} & f=50 \mathrm{~Hz} \text { to } \\ & 10 \mathrm{kHz}, \\ & \mathrm{C}_{\text {REF }}=5 \mu \mathrm{~F} \end{aligned}$	-	86	-	-	86	-	

ELECTRICAL CHARACTERISTICS (Cont'd)

CHARACTERISTIC	TEST CONDITIONS	LIMITS						UNITS
		CA723			CA723C			
		Min.	Typ.	Max.	Min.	Typ.	Max.	
Short-Circuit Limiting Current, ILIM	$\begin{aligned} & \mathrm{R}_{\mathrm{SCP}}=10 \Omega \\ & \mathrm{~V}_{\mathrm{O}}=0 \end{aligned}$	-	65	-	-	65	-	mA
Equivalent Noise RMS Output Voltage, V_{N} (See Note 2)	$\begin{aligned} & \mathrm{BW}=100 \mathrm{~Hz} \\ & \text { to } 10 \mathrm{kHz}, \\ & \mathrm{C}_{\mathrm{REF}}=0 \\ & \hline \end{aligned}$	-	20	-	-	20	-	$\mu \mathrm{V}$
	$\begin{aligned} & \mathrm{BW}=100 \mathrm{~Hz} \\ & 10 \mathrm{kHz}, \\ & \mathrm{C}_{\mathrm{REF}}=5 \mu \mathrm{~F} \end{aligned}$	-	2.5	-	-	2.5	-	

Note 1: Line and load regulation specifications are given for condition of a constant chip temperature. For high-dissipation conditions, temperature drifts must be separately taken into account.

Note 2: For $\mathrm{C}_{\text {REF, }}$ see Fig. 23.

TYPICAL CHARACTERISTICS CURVES FOR TYPE CA723

Fig. 5 - Max. load current vs differential inputoutput voltage.

Fig. 7 - Load regulation with current limiting

Fig. 6 - Load regulation without current limiting.

Fig. 8 - Load regulation with current limiting.

TYPICAL CHARACTERISTICS CURVES FOR TYPE CA723 (Cont'd)

Fig. 9 - Current limiting characteristics.

Fig. 10 - Quiescent current vs. input voltage.

TYPICAL CHARACTERISTICS CURVES FOR TYPE CA723C

DIFFERENTIAL INPUT-OUTPUT VOLTAGE ($\left.V_{I}-V_{0}\right)$-V
Fig. 11 - Max. load current vs differential inputoutput voltage CA 723CT.

Fig. 13-Load regulation without current limiting.

Fig. 15 - Current /imiting characteristics.

Fig. 12 - Max. load current vs differential inputoutput voltage for CA723CE.

Fig. 14 - Load regulation with current limiting.

Fig. 16 - Quiescent current vs. input voltage.

TYPICAL CHARACTERISTICS CURVES FOR TYPES CA723 AND CA723C

Fig. 17 - Load regulation vs, differential inputoutput voltage.

Fig. 19 - Line transient response.

Fig. 21 - Load transient response.

Fig. $18-\bar{L}$ ine regulation vs. differential inputoutput voltage.

Fig. 20 - Current limiting characteristics vs. junction temperature.

Fig. 22 - Output impedance vs. frequency.

TYPICAL APPLICATION CIRCUITS

$$
\text { Note: R3 }=\frac{R 1 \text { R2 }}{R 1+R 2} \text { for minimum temperature drift }
$$

Fig. 23 - Low-voltage regulator circuit $\left(V_{O}=2\right.$ to 7 volts).

Fig. 24 - High-voltage regulator circuit $V_{O}=7$ to 37 volts).

TYPICAL APPIICATION CIRCUITS (Cont'd)

CIRCUIT PERFORMANCE DATA: REGULATED OUTPUT VOLTAGE ...
LINE REGULATION $\left(\triangle V_{1}=3 \mathrm{~V}\right)$
V INE REGULATION ($\triangle V_{1}=3 \mathrm{~V}$) OAD REGULATION (AL $=100 \mathrm{~mA})$
Note: For applications employing the TO-5 style package
and where V_{Z} is required, an external 6.2 volt
ener diode should be connected in series with
\checkmark (Terminal 6).
Fig. 25 - Negative-voltage regulator circuit.

Fig. 27 - Positive voltage-regulator circuit (with external p-n-p pass transistor).

Fig. 29 - Positive-floating regulator circuit.

CIRCUIT PERFORMANCE DATA:
REGULATED OUTPUT VOLTAGE ... 15 v
LINE REGULATION $\left(\triangle V_{1}=3 \mathrm{~V}\right) \ldots . . .1 .5 \mathrm{mV}$

Fig. 26 - Positive-voltage-regulator circuit (with external n-p-n pass transistor).

Fig. 28 -Foldback current-limiting circuit.

Fig. 30 - Negative-floating regulator circuit.

TYPICAL APPLICATION CIRCUITS (Cont'd)

Fig. 31 - Remote shutdown regulator circuit with current limiting.

CIRCUIT PERFORMANCE DATA:
REGULATED OUTPUT VOLTAGE ... $5 \quad \mathrm{~V}$
LINE REGULATION $\mathrm{V}_{1}=10 \mathrm{~V}$ I LINE REGULATION (i, $\left.V_{1}=10 \mathrm{~V}\right)$... 0.5 mV
LOAD REGULATION $(\mathbb{\mathrm { L }} \mathrm{L}=100 \mathrm{~mA})$. 1.5 mV Note: For applications emploving the TO. 5 styie package
and where $V Z$ is required, an external 6.2 volt
zener diode should be connected in series with
vo iterminal 6).

Fig. 32 - Shunt regulator circuit.

Regulating Pulse Width Modulator

Features:
- Complete PWM power control circuitry
- Separate outputs for single-ended or push-pull operation
- Line and load regulation of 0.2% typ.
- Internal reference supply with 1\% max. oscillator and reference voltage variation over full temperature range
- Standby current of less than 10 mA
- Frequency of operation beyond 100 kHz
- Variable-output dead time of 0.5 to $5 \mu \mathrm{~s}$
- Low VCE(sat) over the temperature range

The CA1524, CA2524, and CA3524 are silicon monolithic integrated circuits designed to provide all the control circuitry for use in a broad range of switching regulator circuits.

The CA1524, CA2524, and CA3524 have all the features of the industry types SG1524, SG2524, and SG3524, respectively. A block diagram of the CA1524 series is shown in Fig. 1. The circuit includes a zener voltage reference, transconductance error amplifier, precision R-C oscillator, pulse-width modulator, pulse-steering flip-flop, dual alternating output switches, and current-limiting and shutdown circuitry. This device can be used for switching regulators of either polarity, transformer-coupled dc-dc converter, transformerless voltage doublers, dc-ac power inverters, highly efficient variable power supplies, and polarity converter, as well as other powercontrol applications.

The CA1524 is specified for the military temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
The CA2524 and CA3524 are speciifed for the commmercial temperature range of $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. All types operate over a supply voltage range of 8 to 40 V , have a rated operating

Applications:
- Positive and negative regulated supplies
- Dual-output regulators
- Flyback converters
- DC-DC transformer-coupled regulating converters
- Single-ended DC-DC converters
- Variable power supplies

temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, and are supplied in 16-lead, dual-in-line plastic packages (E suffix, and dual-inline frit-seal hermetic packages (F suffix)). The CA3524 is available in chip form (H suffix).

TERMINAL ASSIGNMENT
MAXIMUM RATING, Absolute-Maximum Values
INPUT VOLTAGE (BETWEEN VIN AND GROUND TERMINALS) 40 V
OPERATING VOLTAGE RANGE (VIN TO GROUND) 8 to 40 V
OUTPUT CURRENT EACH OUTPUT: (TERMINAL 11, 12 OR 13, 14) 100 mA
OUTPUT CURRENT (REFERENCE REGULATOR) 50 mA
OSCILLATOR CHARGING CURRENT 5 mA
DEVICE DISSIPATION:
1 W
Up to $T A=25^{\circ} \mathrm{C}$
Above $T A=25^{\circ} \mathrm{C}$ Derate linearly $8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
OPERATING TEMPERATURE RANGE -55 to $+125^{\circ} \mathrm{C}$
STORAGE TEMPERATURE RANGE -65 to $+150^{\circ} \mathrm{C}$

Fig. 1 - Functional block diagram of CA1524 series.

Fig. 2 - Open loop test circuit for CA1524 series.

ELECTRICAL CHARACTERISTICS at T $_{\mathbf{A}}=-55$ to $+125^{\circ} \mathrm{C}$ for CA1524,
0 to $+70^{\circ} \mathrm{C}$ for the CA2524 and CA3524; $\mathrm{V}+=20 \mathrm{~V}$ and $\mathrm{f}=20 \mathrm{kHz}$, unless otherwise stated.

CHARACTERISTIC	TEST CONDITIONS	LIMITS						UNITS
		CA1524, CA2524			CA3524			
		Min.	Typ.	Max.	Min.		Max.	
Reference Section:								
Output Voltage		4.8	5	5.2	4.6	5	5.4	V
Line Regulation	$\mathrm{V}+=8$ to 40 V	-	10	20	-	10	30	mV
Load Regulation	$\mathrm{L}_{\mathrm{L}}=0$ to 20 mA	-	20	50	-	20	50	mV
Ripple Rejection	$\mathrm{f}=120 \mathrm{~Hz}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-	66	-	-	66	-	dB
Short Circuit Current Limit	$V_{\text {REF }}=0, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-	100	-	-	100	-	mA
Temperature Stability	Over Operating Temperature Range	-	0.3	1	-	0.3	1	\%
Long Term Stability	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-	20	-	-	20	-	$\mathrm{mV} / \mathrm{khr}$
Oscillator Section:								
Maximum Frequency	$\mathrm{C}_{\mathrm{T}}=0.001 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{T}}=2 \mathrm{~K} \Omega$	-	300	-	-	300	-	kHz
Initial Accuracy	R_{T} and $\mathrm{C}_{\text {T }}$ constant	-	5	-	-	5	-	\%
Voltage Stability	$\mathrm{V}+=8$ to $40 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-	-	1	-	-	1	\%
Temperature Stability	Over Operating Temperature Range	-	-	2	-	-	2	\%
Output Amplitude	Terminal 3, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-	3.5	-	-	3.5	-	V
Output Pulse Width (Pin 3)	$\mathrm{C}_{\mathrm{T}}=0.01 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-	$0: 5$	-	-	0.5	-	$\mu \mathrm{s}$
Ramp Voltage Low	Pin 7	-	0.6	-	-	0.6	-	V
Ramp Voltage High	Pin 7	-	3.5	-	-	3.5	-	V
Capacitor Charging Current Current Range	$\begin{gathered} \operatorname{Pin} 7 \\ \left(5-2 V_{B E}\right) / R T \end{gathered}$	0.03	-	2	0.03	-	2	mA
Timing Resistance Range	Pin 6	1.8	-	120	1.8	-	120	$\mathrm{K} \Omega$
Charging Capacitor Range	Pin 7	0.001	-	0.1	0.001	-	0.1	$\mu \mathrm{F}$
Dead Time Expansion Capacitor on Pin 3 (when a small osc. cap is used)	Pin 3	100	-	1000	100	-	1000	pF
Error Amplifier Section:								
Input Offset Voltage	$\mathrm{V}_{\mathrm{CM}}=2.5 \mathrm{~V}$	-	0.5	5	-	2	10	mV
Input Bias Current	$\mathrm{V}_{\mathrm{CM}}=2.5 \mathrm{~V}$	-	1	10	-	1	10	$\mu \mathrm{A}$
Open Loop Voltage Gain		72	80	-	60	80	-	dB
Common Mode Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	1.8	-	3.4	1.8	-	3.4	V
Common Mode Rejection Ratio	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-	70	-	-	70	-	dB
Small Signal Bandwidth	$\mathrm{A}_{\mathrm{V}}=0 \mathrm{~dB}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-	3	-	-	3	-	MHz
Output Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.5	-	3.8	0.5	-	3.8	V
Amplifier Pole		-	250	-	-	250	-	Hz
Pin 9 Shutdown Current	External Sink	-	200	-	-	200	-	$\mu \mathrm{A}$
Comparator Section:								
Duty Cycle	\% Each Output On	0	-	45	0	-	45	\%
Input Threshold	Zero Duty Cycle	-	1	-	-	1	-	V
Input Threshold	Max. Duty Cycle	-	3.5	-	-	3.5	-	V
Input Bias Current		-	1	-	-	1	-	$\mu \mathrm{A}$
Current Limiting Section:								
Sense Voltage For 25\% Output Duty Cycle	Terminal 9=2 V with Error Amplifier Set for Max Out, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	190	200	210	180	200	220	mV
Sense Voltage T.C.		-	0.2	-	-	0.2	-	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Common Mode Voltage		-1	-	+1	-1	-	+1	V
Rolloff Pole of R51 C3 + Q64		-	300	-	-	300	-	Hz
*Ramp voltage at Pin 7 where $t=$ OSC period in microseconds $t \cong R_{T} C_{T}$ with C_{T} in microfarads and R_{T} in ohms.								

[^5] when each output is connected in parallel.

ELECTRICAL CHARACTERISTICS (Cont'd)

CHARACTERISTIC	TEST CONDITIONS	LIMITS						UNITS
		CA1524, CA2524			CA3524			
		Min.	Typ.	Max.	Min.	Typ.	Max.	
Output Section: (Each Output)								
Collector-Emitter Voltage		40	-	-	40	-	-	V
Collector Leakage Current	$\mathrm{V}_{\text {CE }}=40 \mathrm{~V}$	-	0.1	50	-	0.1	50	$\mu \mathrm{A}$
Saturation Voltage	$\mathrm{V}+=40 \mathrm{~V}, \mathrm{I}_{\mathrm{c}}=50 \mathrm{~mA}$	-	0.8	2	-	0.8	2	V
Emitter Output Voltage	$\mathrm{V}+=20 \mathrm{~V}$	17	18	-	17	18	-	V
Rise Time	$\mathrm{R}_{\mathrm{C}}=2 \mathrm{~K} \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-	0.2	-	-	0.2	-	$\mu \mathrm{s}$
Fall Time	$\mathrm{R}_{\mathrm{C}}=2 \mathrm{~K} \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-	0.1	-	-	0.1	-	$\mu \mathrm{s}$
Total Standby Current:* ${ }_{\text {s }}$	$\mathrm{V}+=40 \mathrm{~V}$	-	4	10	-	4	10	mA

- Excluding oscillator charging current, error and current limit dividers, and with outputs open.

92CL-32686
Fig. 3 - Schematic diagram.

Fig. 3 - Schematic diagram (cont'd).

CIRCUIT DESCRIPTION

Voltage Reference Section

The CA1524 series contains an internal series voltage regulator employing a zener reference to provide a nominal 5 -volt output, which is used to bias all internal timing and control circuitry. The output of this regulator is available at terminal 16 and is capable of supplying up to $50-\mathrm{mA}$ output current.

Fig. 4 shows the temperature variation of the reference voltage with supply voltages of 8 to 40 volts and load currents up to 20 mA . Load regulation and line regulation curves are shown in Figs. 5 and 6, respectively.

Fig. 4 - Typical reference voltage as a function of ambient temperature.

Fig. 5 - Typical reference voltage as a function of reference output current.

Fig. 6 - Typical reference voltage as a function of supply voltage.

Oscillator Section

Transistors Q42, Q43 and Q44, in conjunction with an external resistor R_{T}, establishes a constant charging current into an external capacitor C_{T} to provide a linear ramp voltage at terminal 7. The ramp voltage has a value that ranges from 0.6 to 3.5 volts and is used as the reference for the comparator in the device. The charging current is equal to $\left(5-2 V_{B E}\right) / R_{T}$ or approximately $3.6 / R_{T}$ and should be kept within the range of $30 \mu \mathrm{~A}$ to 2 mA by varying R_{T}. The discharge time of C_{T} determines the pulse width of the oscillator output pulse at terminal 3. This pulse has a practical range of 0.5μ s to 5μ s for a capacitor range of 0.001 to $0.1 \mu \mathrm{~F}$. The pulse has two internal uses: as a dead-time control of blanking pulse to the output stages to assure that both outputs cannot be on simultaneously and as a trigger pulse to the internal flip-flop which controls the switching of the output between the two output channels. The output dead-time relationship is shown in Fig. 7. Pulse widths less than $0.5 \mu \mathrm{~s}$ may allow false triggering of one output by removing the blanking pulse prior to a stable state in the flip-flop.

Fig. 7 - Typical output stage dead time as a function of timing capacitor value.

If a small value of C_{T} must be used, the pulse width can be further expanded by the addition of a shunt capacitor in the order of 100 pF but no greater than 1000 pF , from terminal 3 to ground. When the oscillator output pulse is used as a sync input to an oscilloscope, the cable and input capacitances may increase the pulse width slightly. A $2-\mathrm{K} \Omega$ resistor at terminal 3 will usually provide sufficient decoupling of the cable. The upper limit of the pulse width is determined by the maximum duty cycle acceptable.
The oscillator period is determined by R_{T} and C_{T}, with an approximate value of $t=R_{T} C_{T}$, where R_{T} is in ohms, C_{T} is in $\mu \mathrm{F}$, and t is in $\mu \mathrm{s}$. Excess lead lengths, which produce stray capacitances, should be avoided in connecting R_{T} and C_{T} to their respective terminals. Fig. 8 provides curves for selecting these values for a wide range of oscillator periods. For series regulator applications, the two outputs can be connected in parallel for an effective $0-90 \%$ duty cycle with the output stage frequency the same as the oscillator frequency. Since the outputs are separate, push-pull and flyback applications are possible. The flip-flop divides the frequency such that the duty cycle of each output is $0-45 \%$ and the overall frequency is half that of the oscillator. Curves of the output duty cycle as a function of the voltage at terminal 9 are shown in Fig. 10. To synchronize two or more CA1524's, one must be designated as master, with

Fig. 8 - Typical oscillator period as a function of R_{T} and C_{T}.
$\mathrm{R}_{\mathrm{T}} \mathrm{C}_{\boldsymbol{T}}$ set for the correct period. Each of the remaining units (slaves) must have a C_{T} of $1 / 2$ the value used in the master and approximately a 10% longer $R_{T} C_{T}$ period than the master. Connecting terminal 3 together on all units assures that the master output pulse, which occurs first and has a wider pulse width, will reset the slave units.

Error Amplifier Section

The error amplifier consists of a differential pair (Q56, Q57) with an active load (Q61 and Q62) forming a differential transconductance amplifier. Since Q61 is driven by a constant current source, Q62, the output impedance Rout, terminal 9 , is very high ($\cong 5 \mathrm{M} \Omega$).
The gain is:

$$
A_{v}=g_{m} R=8 \operatorname{Ic} R / 2 K T=10^{4},
$$

where $R=\frac{R_{\text {out }} R_{L}}{R_{\text {out }}+R_{L}}, R_{L}=\infty, A_{V} \propto 10^{4}$
Since $R_{\text {out }}$ is extremely high, the gain can be easily reduced from a nominal $10^{4}(80 \mathrm{~dB})$ by the addition of an external shunt resistor from terminal 9 to ground as shown in Fig. 9.

Fig. 9 - Open-loop error amplifier response characteristics.

The output amplifier terminal is also used to compensate the system for ac stability. The frequency response and

Fig. 10 - Typical duty cycle as a function of comparator voltage (at terminal 9).
phase shift curves are shown in Fig. 10. The uncompensated amplifier has a single pole at approximately 250 Hz and a unity gain cross-over at 3 MHz .
Since most output filter designs introduce one or more additional poles at a lower frequency, the best network to stabilize the system is a series RC combination at terminal 9 to ground. This network should be designed to introduce a zero to cancel out one of the output filter poles. A good starting point to determine the external poles is a $1000-\mathrm{pF}$ capacitor and a variable series $50-\mathrm{K} \Omega$ potentiometer from terminal 9 to ground. The compensation point is also a convenient place to insert any programming signal to override the error amplifier. Internal shutdown and current limiting are also connected at terminal 9. Any external circuit that can sink $200 \mu \mathrm{~A}$ can pull this point to ground and shut off both output drivers.
While feedback is normally applied around the entire regulator, the error amplifier can be used with conventional operational amplifier feedback and will be stable in either the inverting or non-inverting mode. Input common-mode limits must be observed; if not, output signal inversion may result. The internal 5 -volt reference can be used for conventional regulator applications if divided as shown in Fig. 11. If the error amplifier is connected as a unity gain amplifier, a fixed duty cycle application results.

Fig. 11 - Typical output saturation voltage as a function of ambient temperature.

Output Section

The CA1524 series outputs are two identical n-p-n transistors with both collectors and emitters uncommitted. Each output transistor has antisaturation circuitry that enables a fast transient response for the wide range of oscillator frequencies. Current limiting of the output section is set at 100 mA for each output and 100 mA total if both outputs are paralleled. Having both emitters and collectors available provides the versatility to drive either $n-p-n$ or $p-n-p$ external transistors. Curves of the output saturation voltage as a function of temperature and output current are shown in Figs. 11 and 12, respectively.
There are a number of output configurations possible in the application of the CA1524 to voltage regulator circuits which fall into three basic classifications:

1. Capacitor-diode coupled voltage multipliers
2. Inductor-capacitor single-ended circuits
3. Transformer-coupled circuits

Fig. 12 - Typical output saturation voltage as a function of output current.

Device Application Suggestions

For higher currents, the circuit of Fig. 13 may be used with an external $p-n-p$ transistor and bias resistor. The internal regulator may be bypassed for operation from a fixed 5-volt supply by connecting both terminals 15 and 16 to the input voltage, which must not exceed 6 volts.

The internal 5-volt reference can be used for conventional regulator applications if divided as shown in Fig. 14. If the error amplifier is connected as a unity gain amplifier, a fixed duty cycle application results.

Fig. 14 - Error amplifier biasing circuits.

NOTE:
V^{+}SHOULD BE IN THE 5V RANGE AND MUST NOT EXCEED 6V

92CS-37297
Fig. 15 - Circuit to allow external bypass of the reference regulation.

To provide an expansion of the dead time without loading the oscillator, the circuit of Fig. 16 may be used.

Fig. 16 - Circuit for expansion of dead time, without using a capacitor on pin 3 or when a low value oscillator capacitor is used.

92CS - 32677R1
Fig. 17 - Foldback current-limiting circuit used to reduce power dissipation under shorted output conditions.

Fig. 18 - Capacitor-diode coupled voltage multiplier output stages. (Note: Diode D1 is necessary to prevent reverse emitter-base breakdown of transistor switch S_{A}).

Fig. 19 - Single-ended inductor circuits where the two outputs of the 1524 are connected in parallel.

Table I - Input vs. Output voltage, and
Feedback Resistor Values for
IL=40 mA (For capacitor-dlode output circuit in Fig. 21)

Vo (V)	$\begin{gathered} \mathbf{R 2} \\ (K \Omega) \end{gathered}$	$\begin{gathered} \mathrm{V}+\text { (Min.) } \\ \text { (V) } \\ \hline \end{gathered}$	
-0.5	6	8	
-2.5	10	9	
-3	11	10	
-4	13	11	
-5	15	12	
-6	17	13	
-7	19	14	2
-8	21	15	
-9	23	16	
-10	25	17	
-11	27	18	총
-12	29	19	运
-13	31	20	宸
-14	33	21	\%
-15	35	22	
-16	37	23	

APPLICATIONS*

A capacitor-diode output filter is used in Fig. 22 to convert +15 V dc to -5 Vdc at output currents up to 50 mA . Since the output transistors have built-in current limiting, no additional current limiting is needed. Table I gives the required minimum input voltage and feedback resistor values, R2, for an output voltage.

Capacitor-Diode Output Circuit

A capacitor-diode output filter is used in Fig. 21 to convert +15 Vdc to -5 Vdc at output currents up to 50 mA . Since the output transistors have built-in current limiting, no additional current limiting is needed. Table I gives the required minimum input voltage and feedback resistor values, R 2 , for
an output voltage range of -0.5 V to -20 V with an output current of 40 mA .

Single-Ended Switching Regulator

The CA1524 in the circuit of Fig. 22 has both output stages connected in parallel to produce an effective 0-90\% duty cycle. Transistor Q1 is pulsed on and off by these output stages. Regulation is achieved from the feedback provided by R1 and R2 to the error amplifier which adjusts the ontime of the output transistors according to the load current being drawn. Various output voltages can be obtained by adjusting R1 and R2. The use of an output inductor requires an R-C phase compensation network to stabilize the system. Current limiting is set at 1.9 amperes by the sense resistor R3.
*For additional information on the application of this device and a further explanation of the circuits below, see RCA Application Note ICAN-6915 "Application of the CA1524 series PWM IC".

Flyback Converter

Fig. 23 shows a flyback converter circuit for generating a dual 15 -volt output at 20 mA from a 5 -volt regulated line. Reference voltage is provided by the input and the internal reference generator is unused. Current limiting in this circuit is accomplished by sensing current in the primary line and resetting the soft-start circuit.

Push-Pull Converter

The output stages of the CA1524 provide the drive for transistors Q1 and Q2 in the push-pull application of Fig. 24. Since the internal flip-flop divides the oscillator frequency by two, the oscillator must be set at twice the output frequency. Current limiting for this circuit is done in the primary of transformer T1 so that the pulse width will be reduced if transformer saturation should occur.

Low-Frequency Pulse Generator

Fig. 25 shows the CA1524 being used as a low-frequency pulse generator. Since all components (error amplifier, oscillator, oscillator reference regulator, output transistor drivers) are on the IC, a regulated $5-\mathrm{V}$ (or $2.5-\mathrm{V}$) pulse of $0 \%-45 \%$ (or $0 \%-90 \%$) on time is possible over a frequency range of 150 to 500 Hz . Switch S1 is used to go from a $5-\mathrm{V}$ output pulse (S 1 closed) to a $2.5-\mathrm{V}$ output pulse (S 1 open) with a duty cycle range of 0% to 45%. The output frequency will be roughly half of the oscillator frequency when the output transistors are not connected in parallel (75 Hz to 250 Hz , respectively). Switch S2 will allow both output stages to be paralleled for an effective duty cycle of $0 \%-90 \%$ with the output frequency range from 150 to 500 Hz . The frequency is adjusted by R1; R2 controls duty cycle.

Fig. 23 - Flyback converter circuit.

Fig. 24 - Push-pull transformer-coupled converter.

Fig. 25 - Low-frequency pulse generator.

The Variable Switcher

The circuit diagram of the CA1524, used as a variable-output-voltage power supply is shown in Fig. 26. By connecting the two output transistors in parallel, the duty cycle is doubled, i.e., 0-90\%.

As the reference voltage level is varied, the feedback voltage will track that level and cause the output voltage to change according to the change in reference voltage.

Fig. 26 - The CA1524 used as a 0-5 A, 7-30 V laboratory supply.

Digital Readout Scale

The CA1524 can be used as the driving source for an electronic scale application. The circuit shown in Figs. 27 and 28 uses half (Q2) of the CA1524 output in a low-voltage switching regulator (2.2 V) application to drive the LED's displaying the weight. The remaining output stage (Q1) is used as a driver for the sampling plates PL1 and PL2. Since the CA1524 contains a 5 -volt internal regulator and a wide operating range of 8 to 40 volts, a single 9 -volt battery can power the total system. The two plates, PL1 and PL2, are driven with opposite phase signals (frequency held constant but duty cycle may change) from the pulse-width modulator IC (CA1524). The sensor, S, is located between the two plates. Plates PL1, S and PL2 form an effective capacitance
bridge-type divider network. As plate S is moved according to the object's weight, a change in capacitance is noted between PL1, S and PL2. This change is reflected as a voltage to the ac amplifier (CA3160). At the null position the signals from PL1 and PL2 as detected by S are equal in amplitude, but opposite in phase. As S is driven by the scale mechanism down toward PL2, the signal at S becomes greater. The CA3160 ac amplifier provides a buffer for the small signal change noted at S. The output of the CA3160 is converted to a dc voltage by a peak-to-peak detector. A peak-to-peak detector is needed, since the duty cycle of the sampled waveform is subject to change. The detector output is filtered further and displayed via the CA3161E and CA3162E digital readout system, indicating the weight on the scale.

2

Fig. 27 - Basic digital readout scale.

Fig. 28 - Schematic diagram of digital readout scale (cont'd).

Fig. 28 - Schematic diagram of digital readout scale.

Dimensions and pad layout for CA3524H chip.

Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils ($10^{-3} \mathrm{inch}$).

The layout represents a chip when it is part of the wafer. When the wafer is cut into chips, the cleavage angles are 57° instead of 90° with respect to the face of the chip. Therefore, the isolated chip is actually 7 mils (0.17 mm) larger in both dimensions.

Zero-Voltage Switches

For 50/60 and 400 Hz Thyristor Control Applications

Features:

- Relay control
- Valve control
- Synchronous switching of flashing lights
- On-off motor switching
- Differential comparator with self-contained power supply for industrial applications
- Photosensitive control
- Power one-shot control
- Heater control
- Lamp control

The САЗО59 and CA3079 zero-voltage switches are monolithic silicon integrated circuits designed to control a thyristor in a variety of $A C$ power switching applications for $A C$ input voltages of $24 \mathrm{~V}, 120 \mathrm{~V}, 208 / 230 \mathrm{~V}$, and 277 V at $50 / 60$ and 400 Hz . Each of the zero-voltage switches incorporates 4 functional blocks (see Fig. 1) as follows:

1. Limiter-Power Supply - Permits operation directly from an $A C$ line.
2. Differential On/Off Sensing Amplifier - Tests the condition of external sensors or command signals. Hysteresis or proportional-control capability may easily be implemented in this section.
3. Zero-Crossing Detector - Synchronizes the output pulses of the circuit at the time when the $A C$ cycle is at zero voltage point; thereby eliminating radio-frequency interference (RFI) when used with resistive loads.
4. Triac Gating Circuit - Provides high-current pulses to the gate of the power controlling thyristor.

In addition, the CA3059 provides the following important auxiliary functions (see Fig. 1).

1. A built-in protection circuit that may be actuated to remove drive from the triac if the sensor opens or shorts.
2. Thyristor firing may be inhibited through the action of an internal diode gate connected to Terminal 1.
3. High-power dc comparator operation is provided by overriding the action of the zero-crossing detector. This is accomplished by connecting Terminal 12 to Terminal 7. Gate current to the thyristor is continuous when Terminal 13 is positive with respect to Terminal 9.

For an explanation of these functions see Operating Considerations. For detailed application information, see companion Application Note ICAN-6182, "Features and Applications of Integrated-Circuit Zero-Voltage Switches (CA3059 and САЗ079)".

The CA3059 and CA3079 are supplied in 14-lead dual-in-line plastic packages. The CA3079 is also available in chip form (H suffix).
FeaturesCA3059

- $24 \mathrm{~V}, 120 \mathrm{~V}, 208 / 230 \mathrm{~V}, 277 \mathrm{~V}$ at $50 / 60$, or 400 Hz operation$\checkmark$$\checkmark$
- Differential Input \checkmarkv
- Low Balance Input Current (max.) - μA 12- Built-in Protection Circuit for openedor shorted sensor (Terminal 14)\checkmark
- Sensor Range (Rx) $-k \Omega$ 2 to 100- DC Mode (Terminal 12)v
- External Trigger (Terminal 6) \checkmark
- External Inhibit (Terminal 1) $\stackrel{V}{ }$
- DC Supply Volts (max.) 14- Operating Temperature Range - ${ }^{\circ} \mathrm{C}$-55 to +125

MAXIMU	M Vo	LT	GE	RA	TING	GS at	$\mathrm{T}_{\mathbf{A}}$	$=2$							MAXIMUM CURRENT RATINGS	
TERMINAL NO.	$\begin{gathered} 1 \\ \text { Note } \\ 3 \\ \hline \end{gathered}$	2	3	4	$\begin{gathered} 5 \\ \text { Note } \\ 1 \end{gathered}$	$\begin{array}{\|c} 6 \\ \text { Note } \\ 3 \end{array}$	7	8	9	10	11	$\begin{gathered} 12 \\ \text { Note } \\ 3 \end{gathered}$	13	$\begin{array}{r} 14 \\ \text { Note } \\ 2,3 \\ \hline \end{array}$	$\left(\left.\begin{array}{l} 1 \mathrm{~N} \\ \mathrm{IA} \end{array} \right\rvert\,\right.$	$\begin{aligned} & \mathrm{I}_{\text {OUT }} \\ & \mathrm{mA} \end{aligned}$
1 Note 3		*	*	*	*	$\begin{aligned} & 15 \\ & 0 \end{aligned}$	10	*	*	*	*	*	*	*	10	0.1
2			$\left\|\begin{array}{l} 0 \\ -15 \end{array}\right\|$	$\left\lvert\, \begin{aligned} & 0 \\ & -15 \end{aligned}\right.$	$\begin{array}{\|c\|} \hline 2 \\ -14 \\ \hline \end{array}$	$\left\lvert\, \begin{aligned} & 0 \\ & -14 \end{aligned}\right.$	$\begin{gathered} 0 \\ -14 \end{gathered}$	$\left(\begin{array}{c} 0 \\ -14 \end{array}\right.$	$\begin{aligned} & 0 \\ & -14 \\ & \hline \end{aligned}$	$\left\lvert\, \begin{aligned} & 0 \\ & -14 \end{aligned}\right.$	$\left\|\begin{array}{l} 0 \\ -14 \end{array}\right\|$	*	$\left\lvert\, \begin{aligned} & 0 \\ & -14 \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & 0 \\ & -14 \end{aligned}\right.$	150	10
3				$\begin{aligned} & 0 \\ & -15 \end{aligned}$	*	*	*	*	*	*	*	*	*	*	*	*
4						$\left\lvert\, \begin{aligned} & 2 \\ & -10 \\ & \hline \end{aligned}\right.$	*	*	*	*	*	*	*	*	0.1	150
5 Note 1						*	7 -7	*	*	*	*	*	*	*	50	10
$\begin{gathered} 6 \\ \text { Note } 3 \\ \hline \end{gathered}$							14	*	*	*	*	*	*	*	*	*
7								*	14 0	*	${ }_{0}^{20}$	2.5 -2.5	$1{ }^{14}$	- $\begin{array}{r}6 \\ -6\end{array}$	*	*
8									10 0	*	*	*	*	*	0.1	2
9										*	*	*	*	*	*	*
10											*	*	*	*	*	*
11												*	*	*	*	*
$\begin{gathered} 12 \\ \text { Note } 3 \\ \hline \end{gathered}$													*	*	50	50
13														*	*	*
$\begin{gathered} 14 \\ \text { Note } 3 \end{gathered}$															2	2

This chart gives the range of voltages which can be applied to the terminals listed horizontally with respect to the terminals listed vertically. For example, the voltage range of horizontal Terminal 6 to vertical Terminal 4 is 2 to -10 volts.

Note 1 - Resistance should be inserted between Terminal 5 and external supply or line voltage for limiting current into Terminal 5 to less than 50 mA .
Note 2 - Resistance should be inserted between Terminal 14 and external supply for limiting current into Terminal 14 to less than 2 mA .
Note 3 - For the CA3079 indicated terminal is internally connected and, therefore, should not be used.

4For CA3079 (0 to -10 V).
*Voltages are not normally applied between these terminals; however, voltages appearing between these terminals are safe, if the specified voltage limits between all other terminals are not exceeded.

AC Input Voltage $(50 / 60$ or 400 Hz$)$ $V ~ A C$	Input Series Resistor (RS) $k \Omega$	Dissipation Rating for RS W
24	2	0.5
120	10	2
$208 / 230$	20	4
277	25	5

NOTE:
Circuitry, within shaded areas, not included in CA3079

- See chart
- IC = Internal Connection - . DO NOT USE (Terminal Restriction applies only to CA3079).

Fig. 1 - Functional block diagram of CA3059 and CA3079.

Fig. 2 - Schematic diagram of CA3059 and CA3079
ELECTRICAL CHARACTERISTICS (For all types, unless indicated otherwise) All voltages are measured with respect to Terminal 7.

CHARACTERISTIC	TEST CONDITIONS$\mathrm{T}_{A}=25^{\circ} \mathrm{C}$Unless Indicated Otherwise)	LIMITS			UNITS
		Min.	Typ.	Max.	
For Operating at 120 V rms, 50.60 Hz (AC Line Voltage) ${ }^{\text {® }}$					
$\begin{aligned} & \text { DC Supply Voltage, VS } \\ & \text { Inhibit Mode } \\ & \text { At } 50 / 60 \mathrm{~Hz} \end{aligned}$	$\mathrm{R}_{\mathrm{S}}=8 \mathrm{k} \Omega, \mathrm{I}_{\mathrm{L}}=0$	6.1	6.5	7	V
At 400 Hz	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega, \mathrm{I}_{\mathrm{L}}=0$	-	6.8	-	V
At $50 / 60 \mathrm{~Hz}$	$\mathrm{R}_{\mathrm{S}}=5 \mathrm{k} \Omega, \mathrm{I}_{\mathrm{L}}=2 \mathrm{~mA}$	-	6.4	-	V
Pulse Mode $\text { At } 50 / 60 \mathrm{~Hz}$	$\mathrm{R}_{\mathrm{S}}=8 \mathrm{k} \Omega, \mathrm{I}_{\mathrm{L}}=0$	6	6.4	7	V
At 400 Hz	$\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega, \mathrm{I}_{\mathrm{L}}=0$	-	6.7	-	V
At 50/60 Hz	$\mathrm{R}_{\mathrm{S}}=5 \mathrm{k} \Omega, \mathrm{I}_{\mathrm{L}}=2 \mathrm{~mA}$	-	6.3	-	V
At 50/60 Hz (CA3058) See Fig. 3	$\begin{aligned} & R_{S}=8 \mathrm{k} \Omega, \mathrm{I}_{\mathrm{L}}=0 \\ & \mathrm{~T}_{\mathrm{A}}=-55 \text { to }+125^{\circ} \mathrm{C} \end{aligned}$	5.5	-	7.5	V

ELECTRICAL CHARACTERISTICS (For all types, unless indicated otherwise) (Cont'd)
All voltages are measured with respect to Terminal 7.

CHARACTERISTIC	TEST CONDITIONS $T_{A}=25^{\circ} \mathrm{C}$ (Unless Indicated Otherwise)	LIMITS			UNITS
		Min.	Typ.	Max.	
For Operating at 120 V rms, $50-60 \mathrm{~Hz}\left(\mathrm{AC}\right.$ Line Voltage) ${ }^{\text {® }}$					
Gate Trigger Current, $\mathrm{I}_{\mathrm{GT}}{ }^{(4)}$ See Figs. 4, 5(a)	Terms. 3 and 2 connected, $\mathrm{V}_{\mathrm{GT}}=1 \mathrm{~V}$	-	105	-	mA
```Peak Output Current (Pulsed), IOM (4) With Internal Power Supply```	Term. 3 open, Gate Trigger Voltage $\left(\mathrm{V}_{\mathrm{GT}}\right)=0$	50	84	-	mA
	Terms. 3 and 2 connected, Gate Trigger Voltage ( $\mathrm{V}_{\mathrm{GT}}$ ) $=0$	90	124	-	mA
With External Power Supply	Term. 3 open, $\mathrm{V}^{+}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{GT}}=0$	-	170	-	mA
	Terms. 3 and 2 connected; $\mathrm{V}^{+}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{GT}}=0$	-	240	-	mA
Inhibit Input Ratio, $\mathrm{V}_{\mathrm{g}} / \mathrm{V}_{2}$ See Fig. 7	Voltage Ratio of Term. 9 to 2	0.465	0.485	0.520	-
Total Gate Pulse Duration:*For positive $\mathrm{dv} / \mathrm{dt}$, tp$50-60 \mathrm{~Hz}$$\frac{400 \mathrm{~Hz}}{}$	$\mathrm{C}_{\text {EXT }}=0$	70	100	140	$\mu \mathrm{s}$
	$\mathrm{C}_{\text {EXT }}=0, \mathrm{R}_{\text {EXT }}=\infty$	-	12	-	$\mu \mathrm{s}$
$\begin{aligned} & \text { For negative dv/dt, } \mathrm{t} \\ & 50-60 \mathrm{~Hz} \end{aligned}$	$\mathrm{C}_{\text {EXT }}=0$	70	100	140	$\mu \mathrm{s}$
400 Hz   See Fig. 8	$\mathrm{C}_{\text {EXT }}=0, \mathrm{R}_{\text {EXT }}=\infty$	-	10	-	$\mu \mathrm{s}$
Pulse Duration After Zero Crossing ( $50-60 \mathrm{~Hz}$ ):   For positive $\mathrm{dv} / \mathrm{dt}, \mathrm{t}$ p1	$\begin{aligned} & C_{E X T}=0 \\ & R_{E X T}=\infty \end{aligned}$	-	50	-	$\mu \mathrm{s}$
For negative $\mathrm{dv} / \mathrm{dt}, \mathrm{t}_{\mathrm{N}} 1$ See Fig. 8		-	60	-	$\mu \mathrm{s}$
Output Leakage Current, $I_{4}$ Inhibit Mode:   See Fig. 9		-	0.001	10	$\mu \mathrm{A}$
$\begin{aligned} & \text { Input Bias Current, I } \\ & \text { CA3059 } \end{aligned}$		-	220	1000	nA
$\begin{aligned} & \hline \text { CA3079 } \\ & \text { See Fig. } 10 \end{aligned}$		-	220	2000	nA
Common-Mode Input Voltage Range, $\mathrm{V}_{\mathrm{CMR}}$	Terms. 9 and 13 connected	-	1.5 to 5	-	V
$\begin{aligned} & \text { Sensitivity, } \Delta \mathrm{V}_{13} \neq \\ & \text { (Pulse Mode) } \\ & \text { See Figs. 5(a), } 12 \end{aligned}$	Term. 12 open	-	6	-	mV

[^6]

Fig. 3(a)-DC supply voltage test circuit for CA3059 and CA3079.


Fig. 3(c)-DC supply voltage vs. external load current for CA3059 and CA3079.

all resistange values are in ohis
Fig. 5(a)-Peak output (pulsed) and gate trigger current with internal power supply test circuit for CA3059 and CA3079.


Fig. 6(a)-Peak output current (pulsed) with external power supply test curcuit for CA3059.


Fig. 3(b)-DC supply voltage vs. ambient temperature for CA3059 and CA3079.


Fig. 4-Gate trigger current vs. gate trigger voltage for CA3059 and CA3079.


Fig. 5(b)-Peak output current (pulsed) vs. ambient temperature for CA3059 and CA3079.


Fig. 6(b)-Peak output current (pulsed) vs. external power supply voltage for CA3059


Fig. 6(c) - Peak output current (pulsed) vs ambient temperature for CA3059.


Fig. 8(a) - Gate pulse duration test circuit with associated waveform for CA3059 and CA3079.


Fig. 8(c) - Pulse duration after zero crossing vs external capacitance for CA3059 and CA3079.


Fig. 7(a) - input inhibit voltage ration test circuit for CA3059 and CA3079.


Fig. 7(b) - Input inhibit voltage ratio vs ambient temperature for CA3059 and CA3079.


Fig. 8(b) - Total gate pulse duration vs external capacitance for CA3059 and CA3079.


Fig. 8(d) - Total gate pulse duration vs external resistance for CA3059.


Fig. 9-Output leakage current (inhibit mode) vs. ambient temperature for CA3059 and CA3079.


Fig. 10-Input bias current test circuit for CA3059 and CA3079.

(b)

(d)
(c)

Fig. 11-Relative pulse width and location of zero crossing for 220-volt operation for CA3059 and CA3079.


Fig. 12-Sensitivity vs. ambient temperature for CA3059 and CA3079.


Fig. 13-Operating regions for built-in protection circuit for CA3059.


Fig. 14-Line-operated one-shot timer.


Fig. 16-On/off temperature control circuit with

$92 \mathrm{CM}-26717$

Fig. 17(a)-Line-operated IC timer for long time periods.


Fig. 17(b)-Timing diagram for Fig. 17(a).


Fig. 18(a)-Programmable ultra-accurate line-operated timer.
(Programmable over the range from 0.5333 seconds to 2 minutes, 16 seconds in 0.5333 . second increments)

Time Periods

| Time Periods <br> $(\mathrm{t}=0.5333 \mathrm{~s})$ | 1 t | 2 t | 4 t | 8 t | 16 t | 32 t | 64 t | 128 t | $\mathrm{t}_{\mathrm{o}}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Terminals

CD4020A	a	b	c	d	e	$f$	g	h	
CD4048A	A	B	C	D	E	F	G	H	
	C	NC	1 t						
	NC	C	NC	NC	NC	NC	NC	NC	2 t
	C	C	NC	NC	NC	NC	NC	NC	3 t
	NC	NC	C	NC	NC	NC	NC	NC	4 t
	C	NC	C	NC	NC	NC	NC	NC	5 t
	NC	C	C	NC	NC	NC	NC	NC	6 t
	C	C	C	NC	NC	NC	NC	NC	7 t
	NC	NC	NC	C	NC	NC	NC	NC	8 t
	C	NC	NC	C	NC	NC	NC	NC	9 t
	NC	C	NC	C	NC	NC	NC	NC	10 t
	C	C	NC	C	NC	NC	NC	NC	11 t
	NC	NC	C	C	NC	NC	NC	NC	12 t
	C	NC	C	C	NC	NC	NC	NC	13 t
	NC	C	C	C	NC	NC	NC	NC	14 t
	C	C	C	C	NC	NC	NC	NC	15 t
	C	C	C	C	NC	C	C	NC	111 t
	NC	NC	NC	NC	C	C	C	NC	112 t
	C	NC	NC	NC	C	C	C	NC	113 t
	C	C	C	C	C	C	C	C	255 t

Notes:
$\mathrm{t}_{\mathrm{o}}=$ Total time delay $=\mathrm{n}_{1} \mathrm{t}+\mathrm{n}_{2} \mathrm{t}+\ldots \mathrm{n}_{\mathrm{n}} \mathrm{t}$.
$\mathrm{C}=$ Connect. For example, interconnect terminal a of the CD4020A and terminal A of the CD4048A.
$N C=$ No Connection. For example, terminal $b$ of the CD4020A open and terminal B of the CD4048A connected to $+V_{D D}$ bus.

Fig. 18 (b)-'Programming" table for Fig. 18 (a).


Fig. 18(c)-Timing diagram for Fig. 18(a).

## OPERATING CONSIDERATIONS

## Power Supply Considerations for CA3059

 and CA3079The CA3059 and CA3079 are intended for operation as self-powered circuits with the power supplied from an AC line through a dropping resistor. The internal supply is designed to allow for some current to be drawn by the auxiliary power circuits. Typical power supply characteristics are given in Figs. 3(b) and 3(c).
Power Supply Considerations for CA3059
The output current available from the internal supply may not be adequate for higher power applications. In such applications an external power supply with a higher voltage should be used with a resulting increase in the output level. (See Fig. 5 for the peak output current characteristics). When an external power supply is used, Terminal 5 should be connected to Terminal 7 and the synchronizing voltage applied to Terminal 12 as illustrated in Fig. 5(a).

## Operation of Built-in Protection for the CA3059

A special feature of the CA3059 is the inclusion of a protection circuit which, when connected, removes power from the load if the sensor either shorts or opens. The protection circuit is activated by connecting Terminal 14 to Terminal 13 as shown in Fig. 1. To assure proper operation of the protection circuit the following conditions should be observed:

1. Use the internal supply and limit the external load current to 2 mA with a $5 \mathrm{k} \Omega$ dropping resistor.
2. Set the value of $R_{p}$ and sensor resistance ( $R_{X}$ ) between $2 \mathrm{k} \Omega$ and $100 \mathrm{k} \Omega$.
3. The ratio of $R_{X}$ to $R_{p}$, typically, should be greater than 0.33 and less than 3. If either of these ratios is not met with an unmodified sensor over the entire anticipated temperature range, then either a series or shunt resistor must be added to avoid undesired activation of the circuit.
If operation of the protection circuit is desired under conditions other than those specified above, then apply the data given in Fig. 13.

## External Inhibit Function for the CA3059

A priority inhibit command may be applied to Terminal 1. The presence of at least +1.2 V at $10 \mu \mathrm{~A}$ will remove drive from the thyristor. This required level is compatible with DTL or $\mathrm{T}^{2}$ L logic. A logical 1 activates the inhibit function.

## DC Gate Current Mode for the CA3059

Connecting Terminals 7 and 12 disables the zero-crossing detector and permits the flow of gate current on demand from the differential sensing amplifier. This mode of operation is useful when comparator operation is desired or when inductive loads are switched. Care must be exercised to avoid overloading the internal power supply when operating in this mode. A sensitive gate thyristor should be used with a resistor placed between Terminal 4 and the gate in order to limit the gate current.
For a list of RCA thyristors, see RCA Thyristor Data Bulletin, File No. 406, dated 5-75.


Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions. as indicated. Grid gradations are in mils $\left(10^{-3}\right.$ inch $)$.

The photographs and dimensions represent a chip when it is part of the wafer. When the wafer is cut into chips, the cleavage angles are $57^{\circ}$ instead of $90^{\circ}$ with respect to the face of the chip. Therefore, the isolated chip is actually 7 mils $(0.17 \mathrm{~mm})$ larger in both dimensions.

## Positive Voltage Regulators

For Regulated Voltages from 1.7 V to 46 V at Currents up to 100 mA

## Features:

- Up to 100 mA output current
- Input and output short-circuit protection
- Load and line regulation: 0.025\%
- Pin compatible with LM100 Series
- Adjustable output voltage


## Applications:

- Shunt voltage regulator
- Current regulator
- Switching voltage regulator
- High-current voltage regulator
- Combination positive and negative voltage regulator
- Dual tracking regulator
external pass transistors. However, all the devices can provide voltage regulation at load currents greater than 100 mA with the use of suitable external pass transistors. The CA3085 Series has an unregulated input voltage ranging from 7.5 to $30 \vee$ (CA3085), 7.5 to $40 \vee$ (CA3085A), and 7.5 to 50 V (CA3085B) and a minimum regulated output voltage of 26 V (CA3085), 36 V (CA3085A), and 46 V (CA3085B).

The CA3085A is unilaterally interchangeable with the CA3055.
These types are supplied in the 8 -lead TO-5 style package (CA3085, CA3085A, CA3085B, and the 8-lead TO-5 with dual-in-line formed leads ("DIL-CAN", CA3085S, CA3085AS, CA3085BS). The CA3085 is also supplied in the 8-lead dual-in-line plastic package ("MINI-DIP", CA3085E), and in chip form (CA3085H).

COMPENSATION AND


Figure 1 - Block diagram of CA3085 Series.
*This value may be extended to 100 mA ; however, regulation is not specified beyond 12 mA .

The CA3085, CA3085A, and CA3085B are silicon monolithic integrated circuits designed specifically for service as voltage regulators at output voltages ranging from 1.7 to 46 volts at currents up to 100 milliamperes.

A block diagram of the CA3085 Series is shown in Fig. 1. The diagram shows the connecting terminals that provide access to the regulator circuit components. The voltage regulators provide important features such as: frequency compensation, short-circuit protection, temperature-compensated reference voltage, current limiting, and booster input. These devices are useful in a wide range of applications for regulating highcurrent, switching, shunt, and positive and negative voltages. They are also applicable for current and dual-tracking regulation.

The CA3085A and CA3085B have output current capabilities up to 100 mA and the CA3085 up to 12 mA without the use of

MAXIMUM RATINGS, ABSOLUTE-MAXIMUM VALUES at $T_{A}=25^{\circ} \mathrm{C}$
POWER DISSIPATION: WITHOUT HEAT SINK

up to $\mathrm{T}_{A}=55^{\circ} \mathrm{C} \ldots \ldots \ldots \ldots .630 \mathrm{~mW}$	up to $\mathrm{T}_{\mathrm{C}}=55^{\circ} \mathrm{C} \ldots .1 .6 \mathrm{~W}$
above $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C} \quad$ derate linearly @6.67 mW $/{ }^{\circ} \mathrm{C}$	above $\mathrm{T}_{\mathrm{C}}=55^{\circ} \mathrm{C} \ldots$ derate linearly at

TEMPERATURE RANGE:
Operating . . . . . . . . . . . . . . . -55 to $+125^{\circ} \mathrm{C}$

UNREGULATED INPUT VOLTAGE:
CA3085 . . . . . . . . . . . . . . . . . . . . . . . . . 30 V
40 V
CA3085A . . . . . . . . . . . . . . . . . 50 V
CA3085B . . . . . . .

LEAD TEMPERATURE (DURING SOLDERING):
At distance $1 / 16 \pm 1 / 32$ inch $(1.59 \pm 0.79 \mathrm{~mm})$
from case for 10 seconds max. . . . . . . . $+265^{\circ} \mathrm{C}$

Maximum Voltage Ratings
The following chart gives the range of voltages which can be applied to the terminals
listed vertically with respect to the terminals listed horizontally. For example, the
voltage range between vertical Terminal No. 7 and horizontal Terminal No. 1 is +3 to -10 volts.

MAXIMUM VOLTAGE RATINGS

TERMINAL No.	5	6	7	8	1	2	3	4	- Voltages are not normally applied between these terminats; however, voltages appearing between these terminais are safe, if the specified voltage limits between all other terminals are not exceeded.   $\ddagger 30 \mathrm{~V}$ for CA3085 40 V for CA3085A 50 V for CA3085B
5	-	$\begin{aligned} & +5 \\ & -5 \\ & \hline \end{aligned}$	-	-	-	-	-	$\begin{gathered} +10 \\ 0 \end{gathered}$	
6	-	-	-	-	-	-	-	-	
7	-	-	-	$\begin{aligned} & +3 \\ & -10 \\ & \hline \end{aligned}$	$\begin{aligned} & +3 \\ & -10 \\ & \hline \end{aligned}$	-	-	$\begin{array}{r} +\ddagger \\ 0 \end{array}$	
8	-	-	-	-	$\begin{aligned} & +5 \\ & -1 \end{aligned}$	-	-	-	
1	-	-	-	-	-	$\begin{aligned} & +10 \\ & -\frac{+}{+} \end{aligned}$	$\begin{array}{r} 0 \\ - \end{array}$	$\begin{array}{r} +\mathrm{t} \\ 0 \end{array}$	
2	-	-	-	-	-	-	0	$\begin{array}{r} \hline+1 \\ 0 \end{array}$	
3	-	-	-	-	-	-	-	$\begin{array}{r} +1 \\ 0 \\ \hline \end{array}$	
4	-	-	-	-	-	-	-	Substrate \& Case	

MAXIMUM
CURRENT RATINGS

TERMM   INAL   No.	IIN   mA	IOUT   mA
5	10	1.0
6	1.0	-0.1
7	1.0	-1.0
8	0.1	10
1	20	150
2	150	60
3	150	60
4	-	-



Fig.2-Schematic diagram of CA3085 Series.

ELECTRICAL CHARACTERISTICS

CHARACTERISTICS	SYMBOL	TEST CONDITIONS			LIMITS									UNITS	
		Test Circuit   Fig. No	$T_{A}=25^{\circ} \mathrm{C}$   (Unless indicated otherwise]		CA3085			CA3085A			CA3085B				
					MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.		
Reference Voltage	$V_{\text {REF }}$	4	$\mathrm{V}^{+}{ }^{+} \mathrm{N}=15 \mathrm{~V}$		1.4	1.6	1.8	1.5	1.6	1.7	1.5	1.6	1.7	V	
Quiescent Regulator Current	'quiescent	4	$\mathrm{V}^{+} \mathrm{IN}=30 \mathrm{~V}$		-	3.3	4.5	-	-	-	-	-	-	mA	
			$\mathrm{V}^{+} \mathrm{IN}=40 \mathrm{~V}$		-	-	-	-	3.65	5	-	-	-		
			$\mathrm{V}^{+} \mathrm{IN}=50 \mathrm{~V}$		-	-	-	-	-	-	-	4.05	7		
Input Voltage Range	$V_{\text {IN }}$ (range)	-	-		7.5	-	30	7.5	-	40	7.5	-	. 50	V	
Maximum Output Voltage	Volmax.)	4	$\begin{aligned} & \mathrm{V}^{+} I N=30,40.50 \mathrm{~V} \# ; \mathrm{R}_{\mathrm{L}}=365 \Omega 2 ; \\ & \text { Term. No. } 6 \text { to } \mathrm{Gnd} \text {. } \end{aligned}$		26	27	-	36	37	-	46	47	-	V	
Minimum Output Voltage	$\mathrm{V}_{\mathrm{O}}$ (min.)	4	$V^{+} 1 N=30 \mathrm{~V}$		-	1.6	1.8	-	1.6	1.7	-	1.6	1.7	V	
Input Output Voltage Differential	VIN-VOUT	-		-	4	-	28	4	-	38	3.5	-	48	v	
Limiting Current	'LIM	7	$\begin{aligned} & \mathrm{V}^{+} I N=16 \mathrm{~V} \\ & \mathrm{RSCP}^{*}=6 \Omega \end{aligned}$	$\mathrm{V}^{+} \text {OUT }=10 \mathrm{~V}$	-	96	120	-	96	120	-	96	120	mA	
Load Regulation ${ }^{*}$	-	-	$\mathrm{L}_{\mathrm{L}}=1$ to 100	$\mathrm{mA}, \mathrm{RSCP}=0$	-	-	-	-	0.025	0.15	-	0.025	0.15	$\% \mathrm{~V}_{\text {OUT }}$	
		-	$\begin{gathered} \mathrm{T}_{\mathrm{L}}=110100 \\ T_{A}=0^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & \mathrm{mA}, \mathrm{RSCP}=0 \\ & \text { to }+70^{\circ} \mathrm{C} \end{aligned}$	-	-	-	-	0.035	0.6	-	0.035	0.6		
		-	$L_{L}=1$ to 12 mA	A, RSCP $=0$	-	0.003	0.1	-	-	-	-	-	-		
Line Regulation ${ }^{\text {a }}$	-	-	$\mathrm{I}_{\mathrm{L}}=1 \mathrm{~mA}, \mathrm{R}_{\text {SCP }}=0$		-	0.025	0.1	-	0.025	0.075	-	0.025	0.04	\%/V	
		-	$\begin{aligned} & \mathrm{I}_{\mathrm{L}}=1 \mathrm{~mA}, \mathrm{R}_{S C P}=0 \\ & T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$		-	0.04	0.15	-	0.04	0.1	-	0.04	0.08		
Equivalent Noise Output Voltage	VNOISE	11	$\mathrm{V}^{+} \mathrm{iN}=25 \mathrm{~V}$	$\mathrm{C}_{\text {REF }}=0$	-	0.5	-	-	0.5	-	-	0.5	-	$m \vee p-p$	
				CREF $=0.22 \mu \mathrm{~F}$	-	0.3	-	-	0.3	-	-	0.3	-		
Ripple Rejection	-	12	$\begin{aligned} & V^{+} I N=25 \mathrm{~V} \\ & f=1 \mathrm{kHz} \end{aligned}$	$\mathrm{C}_{\text {REF }}=0$	-	50	-	-	50	-	45	50	-	dB	
				$\mathrm{C}_{\text {REF }}=2 \mu \mathrm{~F}$	-	56	-	-	56	-	50	56	-		
Output Resistance	${ }^{\circ}$	12	$\mathrm{V}^{+} \mathrm{IN}=25 \mathrm{~V} . \mathrm{f}=1 \mathrm{kHz}$		-	0.075	1.1	-	0.075	0.3	-	0.075	0.3	$\Omega$	
Temperature Coef. ficient of Reference and Output Voltages	$\Delta V_{\text {REF }}$.   $\Delta V_{0}$	-	$\mathrm{I}_{\mathrm{L}}=0 . V_{\text {REF }}=1.6 \mathrm{~V}$		-	0.0035	-	-	0.0035	-	-	0.0035	-	\%/ ${ }^{\circ} \mathrm{C}$	
Load Transient Recovery Time:$\frac{\text { Turn On }}{\text { Turn Off }}$	${ }^{\text {ton }}$	16	$\mathrm{V}^{+}{ }_{\mathrm{IN}}=25 \mathrm{~V} .+50 \mathrm{~mA} \mathrm{Step}$		-	1	-	-	1	-	-	1	-	$\mu \mathrm{s}$	
	${ }^{\text {' OFF }}$		$\mathrm{V}^{+} \mathrm{IN}=25 \mathrm{~V},-50 \mathrm{~mA}$ Step		-	3	-	-	3	-	-	3	-	$\mu 5$	
Line Transient Recovery Time: Turn On	ton	-	$V^{+} \mathbb{I N}^{\prime}=25 \mathrm{~V} . \mathrm{f}=1 \mathrm{kHz} .2 \mathrm{~V}$ Step		-	0.8	-	-	0.8	-	-	0.80.4	-	$\mu s$	
Turn Off	toff	-			$\mu \mathrm{s}$										
\# 30V (CA3085), 40V(CA3085A), 50V(CA3085B)   - RSCP: Short circuit protection resistance						$\frac{\Delta V_{\text {OUT }}}{V_{\text {OUT }}(\text { initial })} \times 100 \%$			- Line Regulation $=$			$\left(\Delta V_{O U T}\right)$   [ $\mathrm{V}_{\text {OUTfinitial }}$		X 100\%	



Fig.3-Application of the CA3085 Series in a typical power supply.


Fig.4-Test circuit for $V_{R E F}$, Iquiescent, $V_{O U T}(m a x),$. VOUT(min.).


Fig.5-Iquiescent vs. $v_{I N}^{+}$


Fig.6-Normalized Iquiescent vs. $\boldsymbol{T}_{\mathbf{A}}$.


Fig.7-Test circuit for limiting current


Fig. $8-$ ILIM $_{\text {L }}$ v. $T_{A}$.


Fig.9-Load regulation characteristics.


Fig.10-Line regulation temperature characteristics.


Fig.12-Test circuit for ripple rejection and output resistance.


Fig. $13-r_{o}$ vs. $f$.


Fig. 11-Test circuit for noise voltage.

TEST PROCEDURES FOR TEST CIRCUIT FOR RIPPLE REJECTION AND OUTPUT RESISTANCE

Output Resistance
Conditions:

1. $V_{I N}=+25 V, C_{\text {REF }}=0$, Short $E_{1}$
2. Set $E_{S 2}$ at 1 kHz so that $E_{2}=4 \mathrm{~V} \mathrm{~ms}$
3. Read VOUT on a VTVM, such as a Hewlett-Packard. HP400D or equivalent
4. Calculate $R_{\text {OUT }}$ from $R_{\text {OUT }}=V_{\text {OUT }}\left\{_{1} R_{L} / E_{2}\right)$

Ripple Rejection - 1
onditions

1. $V_{I N}=+25 V, C_{\text {REF }}=0$. Short $E_{2}$
2. Set $E_{S 1}$ at 1 kHz so that $E_{1}=3 \mathrm{~V} \mathrm{rms}$
3. Read VOUT on a VTVM, such as a Hewlett-Packard, HP400D or equivalent
4. Calculate Ripple Rejection from $20 \log \left(\mathrm{E}_{1} / \mathrm{V}_{\text {OUT }}\right)$

Ripple Rejection - II
Conditions:

1. Repeat Ripple Rejection I with $C_{\text {REF }}=2 \mu \mathrm{~F}$


Fig.15-Temperature coefficient of $V_{R E F}$ and VOUT.


Fig.17-Dissipation limitation (VIN-VOUT vs. IOUT).


Fig.16-Turn-on and turn-off recovery time test circuit with associated waveforms.


Fig.18-Typical high-current voltage regulator circuit.


Fig.19-Typical current regulator circuit.


Fig.20-Typical switching regulator circuit.


Fig. 21 -Combination positive and negative voltage regulator circuit.
ALL RESISTANCE VALUES ARE IN OHmS
Q) RCA.2N2102 OR EQUIVALENT

Q2 ANY P.N.P SILICON TRANSISTOR
Q3 ANY N.P.N SILICON TRANSISTOR THAT CAN handle the desired load current
(RCA. 2N 3772 OR EQUIVALENT)

## Features

- Direct AC to DC Conversion
- Wide Input Voltage Range $\qquad$ $18 \mathrm{Vrms}-132 \mathrm{Vrms}$
- Wide Input Frequency Range $\qquad$ $48 \mathrm{~Hz}-440 \mathrm{~Hz}$
- Guaranteed Output Current $\qquad$ 50 mA
- Output Voltage 5V to 24V
- Line and Load Regulation $\qquad$ <5\%
- Surge Protection per IEEE 587 Category A \& B Using MOV


## Applications

- Compact, Low Cost, Power Supply for Non-Isolated Applications
- High Efficiency Regulator for 26 VAC Systems
- Battery Back-Up Systems
- Dual Output Supply for OFF-LINE Motor Controls


## Description

The HV-1205 is a single chip power supply that can supply 5 V to 24 V at 50 mA output current. Just a few inexpensive external components are needed to provide a compact, light weight, cost effective power supply. The HV-1205 replaces a transformer, rectifier, and voltage regulator. This chip is made in the new Harris High Voltage Dielectric Isolation Process. This high breakdown process (400V) allows a patented switching circuit to draw current from the AC line only as necessary to supply the load. The HV-1205 operates from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (with no derating necessary due to package power dissipation). The HV-1205 is available in an 8 Pin Plastic Mini-DIP.

CAUTION: This Product Does Not Provide Isolation From the AC Line


CAUTION: This Product Does Not Provide Isolation From the AC Line
Copyright © Harris Corporation 1990

Absolute Maximum Ratings	
Voltage Between Pin 1 and 8, Continuous Vrms	132 Vrms
Voltage Between Pin 1 and 8, Peak	400V
Voltage Between Pin 2 and 6	15 V
Input Current, Peak	1.1A
Output Current . . . . . . . . . . . . . . . . . . . . . . Sh	Protected
Output Voltage . . . .	. 30 V
Maximum Junction Temperature	$+150^{\circ} \mathrm{C}$

## Operating Temperature Range

HV3-1205-9.	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
HV3-1205-5.	$\ldots 0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$
Thermal Constants ( ${ }^{\circ} \mathrm{C} / \mathrm{W}$ ) Plastic DIP	$\begin{array}{ll} \theta_{\mathrm{ja}} & \theta_{\mathrm{jc}} \\ 82 & 16 \end{array}$

Electrical Specifications Unless Otherwise Specified: $\mathrm{V}_{\mathrm{IN}}=120 \mathrm{Vrms}$ at $60 \mathrm{~Hz}, \mathrm{C} 1=0.05 \mu \mathrm{~F}, \mathrm{C} 2=470 \mu \mathrm{~F}, \mathrm{C} 3=150 \mathrm{pF}$, $V_{\text {OUT }}=5 \mathrm{~V}$, IOUT $=50 \mathrm{~mA}$, Source Impedance, $\mathrm{R}_{1}=150 \Omega$. Parameters are Guaranteed at the Specific $\mathrm{V}_{\text {IN }}$ and Frequency Conditions, Unless Otherwise Specified. See Functional Diagrams for Component Location.

PARAMETER	VIN	TEMP	$\begin{gathered} \text { HV-1205-9 } \\ -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{gathered}$			$\begin{gathered} \mathrm{HV}-1205-5 \\ 0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \end{gathered}$			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	
Output Voltage (At Preset 5V)	120 V	$+25^{\circ} \mathrm{C}$	4.75	5.0	5.25	4.75	5.0	5.25	V
	120 V	Full	4.65	5.0	5.35	4.65	5.0	5.35	V
Output Voltage TC	120 V	Full	-	0.02	-	-	0.02	-	\%/ ${ }^{\circ} \mathrm{C}$
Output Ripple (Vp-p)$(\mathrm{C} 4=1 \mu \mathrm{~F}, \mathrm{f}=60 \mathrm{~Hz})$	120 V	$+25^{\circ} \mathrm{C}$	-	10	-	-	10	-	mV
	120 V	Full	-	20	-	-	20	-	mV
Line Regulation	80 Vrms to 132 Vrms	$+25^{\circ} \mathrm{C}$	-	-	15	-	-	20	mV
		Full	-	-	30	-	-	40	mV
Load Regulation (IOUT $=5 \mathrm{~mA}$ to 50 mA )	120 V	$+25^{\circ} \mathrm{C}$	-	-	15	-	-	20	mV
	120 V	Full	-	-	30	-	-	40	mV
Output Current	120 V	Fuil	0	-	50	0	-	50	mA
Short Circuit Current Limit	120 V	Full	55	95	-	55	95	-	mA
Drop-Out Voltage	Pin $2-\mathrm{Pin} 6$	$+25^{\circ} \mathrm{C}$	-	2.2	-	-	2.2	-	V
Quiescent Current Post Regulator	$11 V_{D C} \text { to } 30 V_{D C}$ On Pin 2	$+25^{\circ} \mathrm{C}$	-	2	-	-	2	-	mA

Equivalent Circuit For Output Voltage Adjustment
$K=V_{\text {OUT }}-5 V$ Where $K$ is the Approximate Value of Resistor Between Pin 5 and Pin 6 (in K $\Omega$ ), V VUT is the Desired Output Voltage. See Graph.



## Application Information

## How The HV-1205 Works

The HV-1205 converts AC voltage into regulated DC voltage to power low voltage components such as integrated circuits. This is accomplished in two stages on the monolithic chip. First, the pre-regulator momentarily connects a large capacitor to the AC high line until it charges to about 6 V above the selected output voltage. The pre-regulator then switches to a blocking mode and stays in that blocking mode until the next line cycle begins. The large capacitor supplies power to the series pass regulator, providing DC current to power the user's circuit. Providing current to the post regulator causes the large cap to discharge at a rate dependent on load current. Each line cycle refreshes the charge on the electrolytic capacitor. For a detailed explanation of HV-1205 operation see Application Note 558.

## Input Voltage

The HV-1205 operates over a wide range of input voltages. Most applications will use the 120 Vrms line from the power grid. A standard circuit for this application is shown in Figure 2. Much smaller input voltages can be used. The size of the external components used will be determined by the output voltage and current required and the input voltage available. Several graphs have been provided to help choose component values for a specific application. The section below called Component Selection discusses trade-offs related to component sizing.

## Input Frequency

The HV-1205 is designed to operate from 48 Hz to 440 Hz . Higher operating frequency in possible. Keep in mind that the HV-1205 will refresh C2 once per line cycle.

## Setting Output Voltage

The HV-1205 can be set to provide a regulated output voltage anywhere from 5 V to 24 V DC. Refer to Figures 4,5 and 6 for several ways of adjusting output voltage. Any time an output voltage greater than 5 V is chosen, a $10 \mu \mathrm{~F}$ capacitor between the output and the sense pin is required. That capacitor allows C 2 to charge gradually.

As seen in Figure 1, output voltage is set by feedback to the sense pin. The output will rise to the voltage necessary to keep the sense pin at 5 V . For a 5 V output, pins 5 and 6 are shorted together. There are three ways to increase the output voltage beyond 5 V . The simplest method is to increase the feedback resistor by adding an external resistor between pins 5 and 6 . The disadvantage is that the internal circuit resistors have a tolerance of approximately $\pm 15 \%$ which limits the accuracy of the predicted output (see graph). The internal thin film resistors have low temperature coefficients.

An external voltage divider as shown in Figure 5 improves the accuracy as long as the external resistors are much lower in value than those of the internal divider. Approximately 1 mA flows into pin 5 . If a potentiometer is used as the divider, an additional resistor between the lower leg and ground will insure that the output never exceeds its maximum rated voltage.

A zener diode between pins 5 and 6, as shown in Figure 6, sets the output voltage above 5 V by the zener's breakdown voltage at 1 mA . This voltage has the accuracy and tolerance of the zener. An added advantage is that two outputs are now available, pin 5 at 5 V and pin 6 at $\mathrm{V}_{\mathrm{Z}}+5 \mathrm{~V}$. All the current from the 5 V supply flows through the reference diode. The sum of both output currents should not exceed 50 mA .

## Output Current

Any current draw up to 50 mA continuous is acceptable. More current can be drawn momentarily. Care should be taken to make sure C2 is not discharged below the dropout voltage and that the duty cycle of the excess current is low enough to not cause a package power dissipation problem. The output is current limited as shown in the graph to protect against shorted loads.

## Component Selection

One of the most powerful features of the HV-1205 is its flexibility. One standard configuration allows enormous variation in input voltage and output current while still maintaining a regulated output. For example, with $R_{1}=150 \Omega$, $\mathrm{C} 2=470 \mu \mathrm{~F}$ and VOUT $=5 \mathrm{~V}$, the HV-1205 will provide a regulated 50 mA output when input voltage is anywhere from $132 \mathrm{~V}_{A C}$ down to about $28 \mathrm{~V}_{\mathrm{AC}}$. The designer can choose components tailored to his application in order to save cost, space, power dissipation etc.

Below is a list of external components, description of their purpose, and a recommended value. This is a full list of possible components all of which may not be required for an intended application. Most designs will use a subset of this list.

F1: Fuse. Opens the connections to the power line should chip fail. Recommended value $=1 / 4 \mathrm{~A}, 2 \mathrm{AG}$ similar to Littlefuse 225.250@.
$\mathrm{R}_{1}$ : Source Resistance. Limits current into HV-1205. Needs to be large enough to limit inrush current when C2 is discharged fully. $\mathrm{VPEAK}^{\mathrm{P}} / \mathrm{R}_{1}=1.1 \mathrm{~A}$ Maximum. $R_{1}$ will dissipate power as shown in the graphs. The equation for $\mathrm{Pd}_{\mathrm{d}}$ in $\mathrm{R}_{1}$ is:
$\mathrm{Pd}=1.33 \sqrt{\pi R_{1} \operatorname{VPEAK}(\text { lOUT })^{3}}$. Low average output currents would allow for source resistors with lower Pd ratings. Similarly, lower VAC or smaller value $R_{1}$ will cause less dissipation in $R_{1}$. Sizing of $\mathrm{R}_{1}$ should be tailored to the intended application keeping in mind not to let the maximum inrush current be exceeded. Should an external method of limiting inrush current be used (such as NTC resistors) then the value of $R_{1}$ and its associated heat could be reduced. Recommended value $=150 \Omega$.

C1: Snubber Capacitor. $\mathrm{R}_{1}$ and C 1 form a low pass filter thereby limiting the rate of voltage rise at the input of the HV-1205. Recommended value $=0.05 \mu \mathrm{~F}, \mathrm{AC}$ rated.

MOV: Surge suppressor. Metal Oxide Varistor clamps voltage to a level that the HV-1205 can handle. Recommended value $=$ V130LA20 or equivalent.

## Application Information (Continued)

C2: Pre-Regulator capacitor. This capacitor is charged once each line cycle. The post-regulator portion of $\mathrm{HV}-1205$ is powered by C2 for most of the line cycle. Normally the smallest C2 that will supply the load current (see graph) is used. Using a large C2 will supply temporary high load currents or normal load current during a short power loss. Using a larger C 2 will reduce ripple at Pin 2 , the input to the post regulator, which will reduce output ripple. C2 should have a ripple current rating consistent with the application. Small capacitors with high ESR may not store enough charge to maintain load current. See graph. Recommended value $=470 \mu \mathrm{~F}$, voltage rating should be about 10 V greater than chosen VOUT.
C3: Inhibit capacitor. Keeps the HV-1205 from turning on during input transients. If sized too large, HV-1205 will never turn on. If sized too small, no protection from transients is offered. For 60 Hz (or 50 Hz ) use the recommended value of 150 pF ,
voltage rating should be at about 10 V greater than VOUT. For 400 Hz use 47 pF .

C4: Output filter capacitor. At least $1 \mu \mathrm{~F}$ is required to maintain stability of the output stage. Larger values will not reduce ripple but will reduce spiking which may occur on the output coincident with the $\mathrm{HV}-1205$ going into blocking mode. $100 \mu \mathrm{~F}$ reduces the spike amplitude to about $25 \mathrm{mVp}-\mathrm{p}$.

R2: Feedback component. A resistor or diode that causes a voltage drop between the SENSE and OUTPUT pins and thereby adjusting the output voltage. See voltage adjustment equivalent circuit. Also see graph for approximate resistor value.

C5: Sense Capacitor. Used to ramp up C2 voltage at power up. Charging C2 rapidly to higher output voltages without C5 in place could damage the HV-1205. A large C5 can be used to delay power up of the load circuit (when VOUT is greater than 5 V ). Recommended value, $10 \mu \mathrm{~F}$.


FIGURE 2. HV-1205 STANDARD +5V APPLICATION
Vout ADJustment

FIGURE 4   METHOD		FIGURE 5   METHOD		FIGURE 6   METHOD	
$R_{2}$	$\mathrm{~V}_{\mathrm{O}}$	R $_{\mathrm{A}} / \mathrm{R}_{\mathrm{B}}$	$\mathrm{V}_{\mathrm{O}}$	$\mathrm{V}_{\mathrm{Z}}{ }^{*}$	$\mathrm{~V}_{\mathrm{O}}$
0	5 V	$0 / 00$	5 V	-	5 V
1 K	6 V	$160 / 1 \mathrm{~K}$	6 V	1 V	6 V
3 K	8 V	$510 / 1 \mathrm{~K}$	8 V	3 V	8 V
5 K	10 V	$820 / 1 \mathrm{~K}$	10 V	5 V	10 V
7 K	12 V	$1.2 \mathrm{~K} / 1 \mathrm{~K}$	12.2 V	7 V	12 V
9 K	14 V	$1.5 \mathrm{~K} / 1 \mathrm{~K}$	14 V	9 V	14 V
11 K	16 V	$1.8 \mathrm{~K} / 1 \mathrm{~K}$	15.8 V	11 V	16 V
13 K	18 V	$2.2 \mathrm{~K} / 1 \mathrm{~K}$	18.2 V	13 V	18 V
15 K	20 V	$2.4 \mathrm{~K} / 1 \mathrm{~K}$	19.4 V	15 V	20 V
17 K	22 V	$3.0 \mathrm{~K} / 1 \mathrm{~K}$	23 V	17 V	22 V
19 K	24 V	$3.17 \mathrm{~K} / 1 \mathrm{~K}$	24 V	19 V	24 V



FIGURE 3. $V_{\text {OUT }}=+5 \mathrm{~V}$


FIGURE 4. VOUT $>+5 \mathrm{~V}$


FIGURE 5. $V_{\text {OUT }}>+5 \mathrm{~V}$


FIGURE 6. $V_{\text {OUT }}>+5 \mathrm{~V}$

## Application Information (Continued)

OPERATION FROM TRANSFORMER SECONDARY ( $+5 \mathrm{~V}_{\text {OUT }}$ )


OPERATION FROM A BRIDGE RECTIFIER


USING SWITCH TO TURN OFF OUTPUT


HV-1205 Waveforms Unless Otherwise Specified: $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{AC}}=120 \mathrm{Vrms}, \mathrm{f}=60 \mathrm{~Hz}$,

$$
\mathrm{R}_{1}=150 \Omega, \mathrm{C} 1=0.05 \mu \mathrm{~F}, \mathrm{C} 2=470 \mu \mathrm{~F}, \mathrm{C} 3=150 \mathrm{pF}, \mathrm{C} 4=1 \mu \mathrm{~F}, \mathrm{~V}_{\mathrm{OUT}}=5 \mathrm{~V}
$$

Top Trace: Regulated 5VOUT
Middle Trace: Input Voltage at Pin 8, AC HIGH (100V/Div) Bottom Trace: Current into Pin 8, (0.5A/Div)


Top Trace: Pre-Regulator Capacitor Voltage, C2 (5V/Div) @ Approximately 11VDC
Middle Trace: Input Voltage at Pin 8, AC HIGH (100V/Div) Bottom Trace: Inhibit Capacitor Voltage ( $5 \mathrm{~V} / \mathrm{Div}$ )


Top Trace: Ripple on Regulated 5V Out with 50mA Out ( $10 \mathrm{mV} / \mathrm{Div}$ )
Bottom Trace: Ripple on C2, Input to Linear Regulator. $\mathrm{C} 2=470 \mu \mathrm{~F}(5 \mathrm{~V} / \mathrm{Div})$


Typical Performance Curves Unless Otherwise Specified: $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{AC}}=120 \mathrm{~V} \mathrm{rms}, \mathrm{f}=60 \mathrm{~Hz}$, $\mathrm{R}_{1}=150 \Omega, \mathrm{C} 1=0.05 \mu \mathrm{~F}, \mathrm{C} 2=470 \mu \mathrm{~F}, \mathrm{C} 3=150 \mathrm{pF}, \mathrm{C} 4=1 \mu \mathrm{~F}, \mathrm{~V}_{\mathrm{OUT}}=5 \mathrm{~V}$

MAXIMUM OUTPUT CURRENT FOR 5V REGULATED OUTPUT vs. INPUT VOLTAGE AND PRE-REGULATOR CAPACITOR SIZE (C2)
$R_{1}=24 \Omega$


Pd IN R $\mathbf{1}_{1}$ vs. $\mathrm{R}_{1}$ VALUE
$\mathrm{Vrms}=120 \mathrm{~V}$


PEAK C2 VOLTAGE vs. OUTPUT VOLTAGE


MAXIMUM OUTPUT CURRENT FOR 24V REGULATED OUTPUT vs. INPUT VOLTAGE AND PRE-REGULATOR CAPACITOR SIZE (C2)
$R_{1}=24 \Omega$


PdiN R1 vs. IOUT
$120 \mathrm{Vrms}, \mathrm{R}_{1}=150 \Omega$


MINIMUM C2 VALUE vs. LOAD CURRENT


Typical Performance Curves Unless Otherwise Specified: $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{AC}}=120 \mathrm{Vrms}, f=60 \mathrm{~Hz}$, $\mathrm{R}_{1}=150 \Omega, \mathrm{C} 1=0.05 \mu \mathrm{~F}, \mathrm{C} 2=470 \mu \mathrm{~F}, \mathrm{C} 3=150 \mathrm{pF}, \mathrm{C} 4=1 \mu \mathrm{~F}, \mathrm{~V}_{\mathrm{OUT}}=5 \mathrm{~V}$

CHIP POWER DISSIPATION vs. OUTPUT CURRENT


QUIESCENT CURRENT vs. OUTPUT VOLTAGE @ $=+25^{\circ} \mathrm{C}$
$I_{\text {OUT }}=5 \mathrm{~mA}$ to 50 mA


OUTPUT RIPPLE VOLTAGE vs. TEMPERATURE $\mathrm{C} 4=1 \mu \mathrm{~F}$


DROPOUT VOLTAGE vs. TEMPERATURE


OUTPUT RIPPLE VOLTAGE vs. OUTPUT VOLTAGE
IOUT $=50 \mathrm{~mA}$


OUTPUT RIPPLE VOLTAGE vs. LOAD CAPACITANCE AND OUTPUT CURRENT


Typical Performance Curves Unless Otherwise Specified: $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{AC}}=120 \mathrm{~V} \mathrm{rms}, \mathrm{f}=60 \mathrm{~Hz}$, $R_{1}=150 \Omega, C 1=0.05 \mu \mathrm{~F}, \mathrm{C} 2=470 \mu \mathrm{~F}, \mathrm{C} 3=150 \mathrm{pF}, \mathrm{C} 4=1 \mu \mathrm{~F}, \mathrm{~V}_{\mathrm{OUT}}=5 \mathrm{~V}$

OUTPUT RIPPLE VOLTAGE vs. C2 SIZE
$\mathrm{I}_{\text {OUT }}=50 \mathrm{~mA}, V_{\text {OUT }}=5 \mathrm{~V}$


OUTPUT CURRENT LIMIT (5V OUT)
50 mA is the Maximum Specified Output Current


VOUT vs. R $_{2}$ WITH TOLERANCES
Internal Resistors 15\% High or Low


NORMALIZED QUIESCENT CURRENT vs. TEMPERATURE
Actual Quiescent Current at $+25^{\circ} \mathrm{C}: \mathrm{V}_{\text {OUT }}=24 \mathrm{~V}: 3.42 \mathrm{~mA}$
$V_{\text {OUT }}=5 \mathrm{~V}: 0.41 \mathrm{~mA}$


OUTPUT CURRENT LIMIT ( $24 \mathrm{~V}_{\text {OUT }}$ )
50 mA is the Maximum Specified Output Current


MINIMUM ALLOWABLE R1 FOR INPUT VOLTAGE


HV-1205 Parallel Operation (Method \#1)


HV-1205 Parallel Operation (Method \#2)


Single Chip Power Supply

Features		
- Direct AC to DC Conversion		
- Wide Input Voltage Range ........ 18Vrms-264Vrms		
- Wide Input Frequency Range .......... $48 \mathrm{~Hz}-440 \mathrm{~Hz}$		
- Guaranteed Output Current .................. 50mA		
- Output Voltage . . . . . . . . . . . . . . . . . . . . . . . . . 5 5V to 24V		
- Line and Load Regulation . . . . . . . . . . . . . . . . . . . . $<$ 5\%		
- Surge Protection per IEEE 587 Category A \& B Using MOV or Gas Discharge Tube		
Applications		
- Compact, Low Cost, Power Supply for Non-Isolated Applications		
- High Efficiency Regulator for HVAC 26V Control Systems		
- Battery Back-Up Systems		
- Dual Output Supply for OFF-LINE Motor Controls		
- Housekeeping Supply for Switch-Mode Power Supplies		
Ordering Information		
PART NUMBER	OPERATING TEMPERATURE RANGE RANGE	PACKAGE DESCRIPTION
HV3-2405E-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	8 Lead Piastic Mini-DIP
HV3-2405E-9	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 Lead Plastic Mini-DIP

## Features

## - Direct AC to DC Conversion

- Wide Input Voltage Range ......... 18Vrms-264Vrms
- Wide Input Frequency Range .......... $48 \mathrm{~Hz}-440 \mathrm{~Hz}$
- Guaranteed Output Current 50 mA

5V to 24

- Line and Load Regulation <5\%
- Surge Protection per IEEE 587 Category A \& B Using MOV Gas Discharge Tube


## Applications

- Compact, Low Cost, Power Supply for Non-Isolated Applications
- High Efficiency Regulator for HVAC 26V Control Systems
- Battery Back-Up Systems
- Dual Output Supply for OFF-LINE Motor Controls
- Housekeeping Supply for Switch-Mode Power Supplies


## Ordering Information

## Description

The HV-2405E is a single chip power supply that can supply 5 V to 24 V at 50 mA output current. Just a few inexpensive external components are needed to provide a compact, light weight, cost effective power supply. The HV-2405E replaces a transformer, rectifier, and voltage regulator. This chip is made in the new Harris High Voltage Dielectric Isolation Process. This high breakdown process (500V) allows a patented switching circuit to draw current from the $A C$ line only as necessary to supply the load.

The wide input voltage range makes the HV-2405E an excellent choice for use in equipment which must operate from either 240 V or 120 V . Unlike competitive AC-DC convertors, the HV-2405E can use the same external components for operation from either voltage. In addition the HV-2405E can be connected across any two phases of a 3-phase system ( 208 Vrms )*. This great flexibility in input voltage allows a single design for worldwide use.

The HV-2405E is pin for pin compatible with the HV-1205 but allows twice the input voltage. Additionally, the output and sense pins are connected through a zener diode to limit output voltage should the sense pin to output connection become open.

Further flexibility can be obtained from the HV-2405E by using it with other Harris chips. For example, the high efficiency ICL-7660S and ICL-7662 provide positive to negative voltage conversion. For automatic switch-over to battery back-up use the ICL 7673. Harris also offers a line of extremely low power op amps.

* CAUTION: When used in this mode, GND and AC RETURN operate at high voltage with respect to earth ground.


## Pinout



## Functional Diagram



[^7]Copyright © Harris Corporation 1990


## Equivalent Circuit For Output Voltage Adjustment

## $K=V_{\text {OUT }}-5 V$ Where $K$ is the Approximate Value of Resistor Between Pin 5 and $\operatorname{Pin} 6$ (in $K \Omega$ ), $V_{O U T}$ is the Desired Output Voltage. See Graph.



Rense is zero ohms for 5V output

FIGURE 1.

## Schematic



Patent pending on the above circuit.

## Application Information

## How The HV-2405E Works

The HV-2405E converts AC voltage into regulated DC voltage to power low voltage components such as integrated circuits. This is accomplished in two stages on the monolithic chip. First, the pre-regulator momentarily connects a large capacitor to the AC high line until it charges to about 6 V above the selected output voltage. The pre-regulator then switches to a blocking mode and stays in that blocking mode until the next line cycle begins. The large capacitor supplies power to the series pass regulator, providing DC current to power the user's circuit. Providing current to the post regulator causes the large cap to discharge at a rate dependent on load current. Each line cycle refreshes the charge on the electrolytic capacitor.

## Input Voltage

The HV-2405E operates over a wide range of input voltages. Most applications will use the 240 Vrms or 120 Vrms line from the power grid. A standard circuit for this application is shown in Figure 2. Much smaller input voltages can be used. The size of the external components used will be determined by the output voltage and current required and the input voltage available. Several graphs have been provided to help choose component values for a specific application. The section below called Component Selection discusses trade-offs related to component sizing.

## Input Frequency

The HV-2405E is designed to operate from 48 Hz to 440 Hz . Higher operating frequency is possible. Keep in mind that the HV-2405E will refresh C2 once per line cycle.

## Setting Output Voltage

The HV-2405E can be set to provide a regulated output voltage anywhere from 5 V to 24 V DC. Refer to Figures 4,5 and 6 for several ways of adjusting output voltage.
As seen in Figure 1, output voltage is set by feedback to the sense pin. The output will rise to the voltage necessary to keep the sense pin at 5 V . For a 5 V output, pins 5 and 6 are shorted together. There are three ways to increase the output voltage beyond 5 V . The simplest method is to increase the feedback resistor by adding an external resistor between pins 5 and 6 . The disadvantage is that the internal circuit resistors have a tolerance of approximately $\pm 15 \%$ which limits the accuracy of the predicted output (see graph). The internal thin film resistors have low temperature coefficients.
An external voltage divider as shown in Figure 5 improves the accuracy as long as the external resistors are much lower in value than those of the internal divider. Approximately 1 mA flows into pin 5.

A zener diode between pins 5 and 6, as shown in Figure 6, sets the output voltage above 5 V by the zener's breakdown voltage at 1 mA . This voltage has the accuracy and tolerance of the zener. An added advantage is that two outputs are now available, pin 5 at 5 V and pin 6 at $\mathrm{V}_{\mathrm{Z}}+5 \mathrm{~V}$. All the current from the 5 V supply flows through the reference diode. The sum of both output currents should not exceed 50 mA .

The HV-2405E has an internal zener diode to clamp the output above the 24 V maximum but below a damaging level.

## Output Current

Any current draw up to 50 mA continuous is acceptable. More current can be drawn momentarily. Care should be taken to make sure C2 is not discharged below the dropout voltage and that the duty cycle of the excess current is low enough to not cause a package power dissipation problem. The output is current limited as shown in the graph to protect against shorted loads.

## Component Selection

One of the most powerful features of the HV-2405E is its flexibility. One standard configuration allows enormous variation in input voltage and output current while still maintaining a regulated output. For example, with $R_{1}=150 \Omega$, $\mathrm{C} 2=470 \mu \mathrm{~F}$ and $\mathrm{V}_{\text {OUT }}=5 \mathrm{~V}$, the HV-2405E will provide a regulated 50 mA output when input voltage is anywhere from $264 \mathrm{~V}_{\text {AC }}$ down to about $28 \mathrm{~V}_{\text {AC }}$. The designer can choose components tailored to his application in order to save cost, space, power dissipation etc.

Below is a list of external components, description of their purpose, and a recommended value. This is a full list of possible components all of which may not be required for an intended application. Most designs will use a subset of this list.

F1: Fuse. Opens the connections to the power line should chip or C2 fail. Recommended value $=1 / 2 \mathrm{~A}$, 2AG similar to Littlefuse 225.500 ©.
$R_{1}$ : Source Resistance. Limits current into HV-2405E. Needs to be large enough to limit inrush current when C 2 is discharged fully. $\mathrm{VPEAK} / \mathrm{R}_{1}=2.5 \mathrm{~A}$ Maximum. $R_{1}$ will dissipate power as shown in the graphs. The equation for $P d$ in $R_{1}$ is:
$\mathrm{Pd}=1.33 \sqrt{\pi R_{1} \operatorname{VPEAK}\left(\mathrm{IOUT}^{3}\right.}$.
Low average output currents would allow for source resistors with lower Pd ratings. Similarly, lower VAC or smaller value $R_{1}$ will cause less dissipation in $R_{1}$. Sizing of $R_{1}$ should be tailored to the intended application keeping in mind not to let the maximum inrush current be exceeded. Should an external method of limiting inrush current be used (such as NTC resistors) then the value of $R_{1}$ and its associated heat could be reduced. Recommended value $=$ $150 \Omega$.
C1: Snubber Capacitor. $\mathrm{R}_{1}$ and $\mathrm{C1}_{1}$ form a low pass filter thereby limiting the rate of voltage rise at the input of the HV-2405E. Recommended value $=0.05 \mu \mathrm{~F}, \mathrm{AC}$ rated.

MOV: Surge suppressor. Metal Oxide Varistor clamps voltage to a level that the HV-2405E can handle. Recommended value $=$ V130LA20 or equivalent for 120 V applications and gas tube which arcs over at less than 500 V for 240 V applicatons.

## Application Information (Continued)

C2: Pre-Regulator capacitor. This capacitor is charged once each line cycle. The post-regulator portion of HV-2405E is powered by C2 for most of the line cycle. Normally the smallest C 2 that will supply the load current (see graph) is used. Using a large C2 will supply temporary high load currents or normal load current during a short power loss. Using a larger C2 will reduce ripple at Pin 2, the input to the post regulator, which will reduce output ripple. C2 should have a ripple current rating consistent with the application. Small capacitors with high ESR may not store enough charge to maintain load current. See graph. Recommended value $=470 \mu \mathrm{~F}$, voltage rating should be about 10 V greater than chosen VOUT.

C3: Inhibit capacitor. Keeps the HV-2405E from turning on during input transients. If sized too large, HV-2405E will never turn on. If sized too small, no
protection from transients is offered. For 50 Hz or 60 Hz use the recommended value of 150 pF , voltage rating should be at about 10 V greater than VOUT.

C4: Output filter capacitor. At least $1 \mu \mathrm{~F}$ is required to maintain stability of the output stage. Larger values will not reduce ripple but will reduce spiking which may occur on the output coincident with the HV-2405E going into blocking mode.

R2: Feedback component. A resistor or zener diode that causes a voltage drop between the SENSE and OUTPUT pins and thereby adjusting the output voltage. See voltage adjustment equivalent circuit. Also see graph for approximate resistor value. About 1 mA flows through this component.


FIGURE 2. HV-2405E STANDARD +5V APPLICATION

FIGURE 4   METHOD		FIGURE 5   METHOD		FIGURE 6   METHOD	
$\mathrm{R}_{\mathbf{2}}$	$\mathrm{V}_{\mathrm{O}}$	$\mathrm{R}_{\mathrm{A}} / \mathrm{R}_{\mathrm{B}}$	$\mathrm{V}_{\mathrm{O}}$	$\mathrm{V}_{\mathrm{Z}^{*}}$	$\mathrm{~V}_{\mathrm{O}}$
0	5 V	$0 / 0 \mathrm{Pen}$	5 V	-	5 V
1 K	6 V	$160 / 1 \mathrm{~K}$	6 V	1 V	6 V
3 K	8 V	$510 / 1 \mathrm{~K}$	8 V	3 V	8 V
5 K	10 V	$820 / 1 \mathrm{~K}$	10 V	5 V	10 V
7 K	12 V	$1.2 \mathrm{~K} / 1 \mathrm{~K}$	12.2 V	7 V	12 V
9 K	14 V	$1.5 \mathrm{~K} / 1 \mathrm{~K}$	14 V	9 V	14 V
11 K	16 V	$1.8 \mathrm{~K} / 1 \mathrm{~K}$	15.8 V	11 V	16 V
13 K	18 V	$2.2 \mathrm{~K} / 1 \mathrm{~K}$	18.2 V	13 V	18 V
15 K	20 V	$2.4 \mathrm{~K} / 1 \mathrm{~K}$	19.4 V	15 V	20 V
17 K	22 V	$3.0 \mathrm{~K} / 1 \mathrm{~K}$	23 V	17 V	22 V
19 K	24 V	$3.17 \mathrm{~K} / 1 \mathrm{~K}$	24 V	19 V	24 V



FIGURE 3. $V_{\text {OUT }}=+5 \mathrm{~V}$


FIGURE 4. VOUT $>+5 \mathrm{~V}$


FIGURE 5. VOUT > + 5 V


FIGURE 6. VOUT $^{\mathbf{~}} \mathbf{+ 5 \mathrm { V }}$

## Application Information (Continued)


$\tau$ formed by $R 1{ }^{*} \mathrm{C} 1$ assures that $V_{C 1}$ is an $A C$ waveform.
SURGE PROTECTION USING GAS TUBE


HV-2405E Waveforms Unless Otherwise Specified: $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{AC}}=240 \mathrm{Vrms}, \mathrm{f}=50 \mathrm{~Hz}$, $\mathrm{R}_{1}=150 \Omega, \mathrm{C} 1=0.05 \mu \mathrm{~F}, \mathrm{C} 2=470 \mu \mathrm{~F}, \mathrm{C} 3=150 \mathrm{pF}, \mathrm{C} 4=1 \mu \mathrm{~F}$, $\mathrm{V}_{\text {OUT }}=5 \mathrm{~V} @ 50 \mathrm{~mA}, 5 \mathrm{~ms} /$ div

Top Trace: Input Voltage at Pin 8, AC High (200V/Div)

Top Trace: Input Voltage at Pin 8, AC High (200V/Div) Bottom Trace: Current into Pin 8, (0.5A/Div)


Top Trace: Input Voltage at Pin 8, AC High (200V/Div) Bottom Trace: Inhibit Capacitor Voltage (10V/Div)


Bottom Trace: Pre-Regulator Capacitor Voltage, Ci2 (5V/Div) @ Approximately 10 V DC


Top Trace: Load Current Step ( 50 mA Div) Bottcm Trace: Output Voltage ( $20 \mathrm{mV} / \mathrm{Div}$ ) @ 5VDC


Top Trace: Input Voltage at Pin 8, AC High (200V/Div)
Bottom Trace: Ripple or Switch Spike on Regulator 5V DC Output ( $50 \mathrm{mV} / \mathrm{Div}$ )
This is Worst Case Ripple due to Worst Case Operating Conditions
(High Line Voltage, Minimum R1 Value, Maximum IOUT)


Typical Performance Curves Unless Otherwise Specified: $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{AC}}=240 \mathrm{~V} \mathrm{rms}, \mathrm{f}=50 \mathrm{~Hz}$, $R_{1}=150 \Omega, C 1=0.05 \mu \mathrm{~F}, \mathrm{C} 2=470 \mu \mathrm{~F}, \mathrm{C} 3=150 \mathrm{pF}, \mathrm{C} 4=1 \mu \mathrm{~F}, \mathrm{~V}_{\mathrm{OUT}}=5 \mathrm{~V}$

MAXIMUM OUTPUT CURRENT FOR 5V REGULATED OUTPUT vS. INPUT VOLTAGE AND PRE-REGULATOR CAPACITOR SIZE (C2)
$\mathrm{R}_{1}=24 \Omega$


Pd IN R1 vs. IOUT


MINIMUM C2 VALUE vs. LOAD CURRENT


MAXIMUM OUTPUT CURRENT FOR 24V REGULATED OUTPUT vs. INPUT VOLTAGE AND PRE-REGULATOR CAPACITOR SIZE (C2)
$R_{1}=24 \Omega$


PE.AK C2 VOLTAGE vs. OUTPUT VOLTAGE


CHIP POWER DISSIPATION vs. OUTPUT CURRENT


Typical Performance Curves Unless Otherwise Specified: $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{AC}}=240 \mathrm{Vrms}, \mathfrak{f}=50 \mathrm{~Hz}$, $\mathrm{R}_{1}=150 \Omega, \mathrm{C} 1=0.05 \mu \mathrm{~F}, \mathrm{C} 2=470 \mu \mathrm{~F}, \mathrm{C} 3=150 \mathrm{pF}, \mathrm{C} 4=1 \mu \mathrm{~F}, \mathrm{~V}_{\mathrm{OUT}}=5 \mathrm{~V}$


DROPOUT VOLTAGE vs. TEMPERATURE

OUTPUT RIPPLE VOLTAGE vs. TEMPERATURE
$\mathrm{C4}=1 \mu \mathrm{~F}$


NORMALIZED QUIESCENT CURRENT vs. TEMPERATURE
Actual Quiescent Current at $+25^{\circ} \mathrm{C}:$ V OUT $=24 \mathrm{~V}: 3.42 \mathrm{~mA}$
$V_{\text {OUT }}=5 \mathrm{~V}: 0.41 \mathrm{~mA}$


QUIESCENT CURRENT vs. OUTPUT VOLTAGE @ $=+25^{\circ} \mathrm{C}$ $I_{\text {OUT }}=5 \mathrm{~mA}$ to 50 mA


Typical Performance Curves Unless Otherwise Specified: $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{AC}}=240 \mathrm{Vrms}, \mathrm{f}=50 \mathrm{~Hz}$, $\mathrm{R}_{1}=150 \Omega, \mathrm{C} 1=0.05 \mu \mathrm{~F}, \mathrm{C} 2=470 \mu \mathrm{~F}, \mathrm{C} 3=150 \mathrm{pF}, \mathrm{C} 4=1 \mu \mathrm{~F}, \mathrm{~V}_{\mathrm{OUT}}=5 \mathrm{~V}$


Vout vs. R2 WITH TOLERANCES Internal Resistors 15\% High or Low


Minimum recommended rif for nominal input voltage


CREATING SYNTHESIZED $\pm$ SUPPLIES USING FALSE GROUND


NOTES:

1. RA, RB voltage divider sets voltage of false ground anywhere between VOUT of HV-2405E and ground.
2. RA and RB should be large values (e.g. 470K)
3. Circuits powered with this method must ALL be referred to "False Gnd"
4. Op amp must be able to source/sink load current
5. Example: $R A=470 \mathrm{~K}, \mathrm{RB}=470 \mathrm{~K}, \mathrm{VOUT}$ set to $24 \mathrm{~V} .+\mathrm{VSUPPLY}$ would be $\approx+12 \mathrm{~V}$

- VSUPPLY would be $\approx-12 \mathrm{~V}$

HV-2405E Parallel Operation (Method \#1)


NOTE: Operational Amplifier Causes Each HV-2405E to Contribute Equally to Output Current.

HV-2405E Parallel Operation (Method \#2)


## GENERAL DESCRIPTION

The Harris ICL7660 is a monolithic CMOS power supply circuit which offers unique performance advantages over previously available devices. The ICL7660 performs supply voltage conversion from positive to negative for an input range of +1.5 V to +10.0 V , resulting in complementary output voltages of -1.5 V to -10.0 V . Only 2 non-critical external capacitors are needed for the charge pump and charge reservoir functions. The ICL7660 can also be connected to function as a voltage doubler and will generate output voltages up to +18.6 V with a +10 V input.

Contained on chip are a series DC power supply regulator, RC oscillator, voltage level translator, and four output power MOS switches. A unique logic element senses the most negative voltage in the device and ensures that the output N -channel switch source-substrate junctions are not forward biased. This assures latchup free operation.

The oscillator, when unloaded, oscillates at a nominal frequency of 10 kHz for an input supply voltage of 5.0 volts. This frequency can be lowered by the addition of an external capacitor to the "OSC" terminal, or the oscillator may be overdriven by an external clock.

The "LV" terminal may be tied to GROUND to bypass the internal series regulator and improve low voltage (LV) operation. At medium to high voltages $(+3.5$ to +10.0 volts), the LV pin is left floating to prevent device latchup.

An enhanced direct replacement for this part, the ICL7660S, is now available and should be used for all new designs.

## ICL7660 CMOS Voltage Converter

## FEATURES

- Simple Conversion of +5 V Logic Supply to $\pm 5 \mathrm{~V}$ Supplies
- Simple Voltage Multiplication (VOUT $\left.=(-) n V_{I N}\right)$
- 99.9\% Typical Open Circuit Voltage Conversion Efficiency
- 98\% Typical Power Efficiency
- Wide Operating Voltage Range 1.5V to 10.0 V
- Easy to Use - Requires Only 2 External Non-Critical Passive Components
- No External Diode Over Full Temperature and Voltage Range


## APPLICATIONS

- On Board Negative Supply for Dynamic RAMs
- Localized $\mu$-Processor (8080 Type) Negative Supplies
- Inexpensive Negative Supplies
- Data Acquisition Systems

ORDERING INFORMATION

Part Number	Temp. Range	Package
ICL7660CTV	$0^{\circ}$ to $+70^{\circ} \mathrm{C}$	TO-99
ICL7660CBA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 PIN SOIC
ICL7660CPA	$0^{\circ}$ to $+70^{\circ} \mathrm{C}$	8 PIN MINI DIP
ICL $7660 \mathrm{MTV}^{*}$	$-55^{\circ}$ to $+125^{\circ} \mathrm{C}$	TO-99

*Add $/ 883 \mathrm{~B}$ to part number if 883 B processing is required


ABSOLUTE MAXIMUM RATINGS


Operating Temperature Range	
ICL7660M	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
ICL7660C	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature	
(Soldering, 10sec)	$300^{\circ} \mathrm{C}$

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.


Figure 2: Functional Diagram
ELECTRICAL CHARACTERISTICS
$V^{+}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{OSC}}=0$, Test Circuit Figure 3 (unless otherwise specified)

Symbol	Parameter	Test Conditions	Limits			Units
			Min	Typ	Max	
$1^{+}$	Supply Current	$\mathrm{R}_{\mathrm{L}}=\infty$		170	500	$\mu \mathrm{A}$
$\mathrm{V}_{\mathrm{L}}^{+}$	Supply Voltage Range - Lo	MIN $\leq T_{A} \leq M A X, R_{L}=10 \mathrm{k} \Omega$, LV to GROUND	1.5		3.5	V
$\mathrm{V}_{\mathrm{H}}^{+}$	Supply Voltage Range - Hi	$M I N \leq T_{A} \leq M A X, R_{L}=10 k \Omega$, LV Open	3.0		10.0	V

## ELECTRICAL CHARACTERISTICS

$\mathrm{V}+=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{OSC}}=0$, Test Circuit Figure 3 (unless otherwise specified) (Continued)

Symbol	Parameter	Test Conditions	Limits			Units
			Min	Typ	Max	
Rout	Output Source Resistance	$\mathrm{I}_{\text {OUT }}=20 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		55	100	$\Omega$
		$\mathrm{l}_{\text {OUT }}=20 \mathrm{~mA}, 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$			120	$\Omega$
		IOUT $=20 \mathrm{~mA},-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$			150	$\Omega$
		$\begin{aligned} & V+=2 V, \text { lout }=3 \mathrm{~mA}, \text { LV to GROUND } \\ & 0^{\circ} \mathrm{C} \leq T_{A} \leq+70^{\circ} \mathrm{C} \end{aligned}$			300	$\Omega$
		$\begin{aligned} & \mathrm{V}+=2 \mathrm{~V}, \mathrm{l}_{\text {OUT }}=3 \mathrm{~mA}, \text { LV to GROUND, } \\ & -55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \end{aligned}$			400	$\Omega$
$\mathrm{f}_{\mathrm{OSC}}$	Oscillator Frequency			10		kHz
$\mathrm{P}_{\mathrm{Ef}}$	Power Efficiency	$\mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega$	95	98		\%
Vout Ef	Voltage Conversion Efficiency	$\mathrm{R}_{\mathrm{L}}=\infty$	97	99.9		\%
$\mathrm{Z}_{\text {OSC }}$	Oscillator Impedance	$\mathrm{V}+=2 \mathrm{Volts}$		1.0		$\mathrm{M} \Omega$
		$\mathrm{V}=5 \mathrm{Volts}$		100		$\mathrm{k} \Omega$

Notes: 1. Connecting any input terminal to voltages greater than $V+$ or less than GROUND may cause destructive latchup. It is recommended that no inputs from sources operating from external supplies be applied prior to "power up" of the ICL7660.
2. Derate linearly above $50^{\circ} \mathrm{C}$ by $5.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

TYPICAL PERFORMANCE CHARACTERISTICS (Circuit of Figure 3)

OPERATING VOLTAGE AS A FUNCTION OF TEMPERATURE


0319-8

OUTPUT SOURCE RESISTANCE AS A FUNCTION OF SUPPLY VOLTAGE


0319-9

OUTPUT SOURCE RESISTANCE AS A FUNCTION OF TEMPERATURE


0319-10

## TYPICAL PERFORMANCE CHARACTERISTICS (Circuit of Figure 3) (Continued)



0319-11
OUTPUT VOLTAGE AS A FUNCTION OF OUTPUT CURRENT


0319-14

FREQUENCY OF OSCILLATION AS
A FUNCTION OF EXTERNAL OSC. CAPACITANCE


0319-12


UNLOADED OSCILLATOR FREQUENCY AS A FUNCTION OF TEMPERATURE


0319-13

OUTPUT VOLTAGE AS A FUNCTION OF OUTPUT CURRENT


0319-16
NOTE 4. These curves include in the supply current that current fed directly into the load $R_{L}$ from $V^{+}$(see Figure 3). Thus, approximately half the supply current goes directly to the positive side of the load, and the other half, through the ICL7660, to the negative side of the load. Ideally, $V_{O U T} \cong 2 V_{I N}$, $I_{S} \cong 2 I_{L}$, so $V_{\mathbb{N}} \bullet I_{S} \cong V_{O U T} \bullet I_{L}$.


NOTE: 1. For large values of $C_{O S C}(>1000 \mathrm{pF})$ the values of $\mathrm{C}_{1}$ and $\mathrm{C}_{2}$ should be increased to $100 \mu \mathrm{~F}$.

Figure 3: ICL7660 Test Circuit

## DETAILED DESCRIPTION

The ICL7660 contains all the necessary circuitry to complete a negative voltage converter, with the exception of 2 external capacitors which may be inexpensive $10 \mu \mathrm{~F}$ polarized electrolytic types. The mode of operation of the device may be best understood by considering Figure 4, which shows an idealized negative voltage converter. Capacitor $\mathrm{C}_{1}$ is charged to a voltage, $\mathrm{V}^{+}$, for the half cycle when switches $S_{1}$ and $S_{3}$ are closed. (Note: Switches $S_{2}$ and $S_{4}$ are open during this half cycle.) During the second half cycle of operation, switches $S_{2}$ and $S_{4}$ are closed, with $S_{1}$ and $S_{3}$ open, thereby shifting capacitor $C_{1}$ negatively by $V^{+}$ volts. Charge is then transferred from $\mathrm{C}_{1}$ to $\mathrm{C}_{2}$ such that the voltage on $\mathrm{C}_{2}$ is exactly $\mathrm{V}+$, assuming ideal switches and no load on $\mathrm{C}_{2}$. The ICL7660 approaches this ideal situation more closely than existing non-mechanical circuits.

In the ICL7660, the 4 switches of Figure 4 are MOS power switches; $S_{1}$ is a P-channel device and $S_{2}, S_{3} \& S_{4}$ are N -channel devices. The main difficulty with this approach is that in integrating the switches, the substrates of $S_{3} \& S_{4}$ must always remain reverse biased with respect to their sources, but not so much as to degrade their "ON" resistances. In addition, at circuit startup, and under output short circuit conditions ( $\mathrm{V}_{\mathrm{OUT}}=\mathrm{V}^{+}$), the output voltage must be sensed and the substrate bias adjusted accordingly. Failure to accomplish this would result in high power losses and probable device latchup.

This problem is eliminated in the ICL7660 by a logic network which senses the output voltage (VOUT) together with the level translators, and switches the substrates of $S_{3} \& S_{4}$ to the correct level to maintain necessary reverse bias.
The voltage regulator portion of the ICL7660 is an integral part of the anti-latchup circuitry, however its inherent voltage drop can degrade operation at low voltages. Therefore, to improve low voltage operation the "LV" pin should be connected to GROUND, disabling the regulator. For supply voltages greater than 3.5 volts the LV terminal must be left open to insure latchup proof operation, and prevent device damage.


0319-19
Figure 4: Idealized Negative Voltage Converter

## THEORETICAL POWER EFFICIENCY CONSIDERATIONS

In theory a voltage converter can approach $100 \%$ efficiency if certain conditions are met:
A The drive circuitry consumes minimal power.
B The output switches have extremely low ON resistance and virtually no offset.
C The impedances of the pump and reservoir capacitors are negligible at the pump frequency.
The ICL7660 approaches these conditions for negative voltage conversion if large values of $C_{1}$ and $C_{2}$ are used. ENERGY IS LOST ONLY IN THE TRANSFER OF CHARGE BETWEEN CAPACITORS IF A CHANGE IN VOLTAGE OCCURS. The energy lost is defined by:

$$
E=1 / 2 C_{1}\left(V_{1} 2-V_{2} 2\right)
$$

where $V_{1}$ and $V_{2}$ are the voltages on $C_{1}$ during the pump and transfer cycles. If the impedances of $C_{1}$ and $C_{2}$ are relatively high at the pump frequency (refer to Figure 4) compared to the value of $R_{L}$, there will be a substantial difference in the voltages $V_{1}$ and $V_{2}$. Therefore it is not only desirable to make $\mathrm{C}_{2}$ as large as possible to eliminate output voltage ripple, but also to employ a correspondingly large value for $\mathrm{C}_{1}$ in order to achieve maximum efficiency of operation.

## DO'S AND DON'TS

1. Do not exceed maximum supply voltages.
2. Do not connect LV terminal to GROUND for supply voltages greater than 3.5 volts.
3. Do not short circuit the output to $V+$ supply for supply voltages above 5.5 volts for extended periods, however, transient conditions including startup are okay.
4. When using polarized capacitors, the + terminal of $\mathrm{C}_{1}$ must be connected to pin 2 of the ICL7660 and the + terminal of $\mathrm{C}_{2}$ must be connected to GROUND.
5. Add capacitor ( $\sim 0.1 \mu \mathrm{~F}$, disc) from pin 8 to ground to limit rate of rise of input voltage to approximately $2 \mathrm{~V} / \mu \mathrm{s}$.



0319-21
Figure 7: Paralleling Devices


0319-22
Figure 8: Cascading Devices for Increased Output Voltage

## TYPICAL APPLICATIONS

## Simple Negative Voltage Converter

The majority of applications will undoubtedly utilize the ICL7660 for generation of negative supply voltages. Figure 5 shows typical connections to provide a negative supply where a positive supply of +1.5 V to +10.0 volts is available. Keep in mind that pin $6(\mathrm{LV})$ is tied to the supply negative (GND) for supply voltages below 3.5 volts.

The output characteristics of the circuit in Figure 5a can be approximated by an ideal voltage source in series with a resistance as shown in Figure 5b. The voltage source has a value of $-\mathrm{V}^{+}$. The output impedance $\left(\mathrm{R}_{0}\right)$ is a function of the ON resistance of the internal MOS switches (shown in Figure 4), the switching frequency, the value of C 1 and C 2 , and the ESR (equivalent series resistance) of C 1 and $\mathrm{C} 2 . \mathrm{A}$ good first order approximation for $R_{0}$ is:

$$
\begin{aligned}
R_{0} \cong & 2\left(R_{S W 1}+R_{S W 3}+E S R_{C 1}\right)+ \\
& 2\left(R_{S W 2}+R_{S W 4}+E S R_{C 1}\right)+ \\
& \frac{1}{\left(f_{\text {PUMP }}\right)(C 1)}+E S R_{C 2} \\
\left(f_{\text {PUMP }}=\right. & \left.\frac{f_{\mathrm{OSC}}}{2}, R_{S W X}=\text { MOSFET switch resistance }\right)
\end{aligned}
$$

Combining the four Rswx terms as RSW, we see that:

$$
\mathrm{R}_{\mathrm{O}} \cong 2\left(\mathrm{R}_{\mathrm{SW}}\right)+\frac{1}{\left(\mathrm{f}_{\mathrm{PUMP}}\right)(\mathrm{C} 1)}+4\left(\mathrm{ESR}_{\mathrm{C} 1}\right)+\mathrm{ESR}_{\mathrm{C} 2}
$$

$R_{\text {SW }}$, the total switch resistance, is a function of supply voltage and temperature (See the Output Source Resistance graphs), typically $23 \Omega$ @ $25^{\circ} \mathrm{C}$ and 5 V . Careful selection of C 1 and C 2 will reduce the remaining terms, minimizing the output impedance. High value capacitors will reduce the $1 /(\mathrm{fPUMP} \bullet \mathrm{C} 1)$ component, and low ESR capacitors will lower the ESR term. Increasing the oscillator frequency will reduce the $1 /(\mathrm{fPUMP}$ - C 1 ) term, but may have the side effect of a net increase in output impedance when
$C 1>10 \mu \mathrm{~F}$ and there is no longer enough time to fully charge the capacitors every cycle. In a typical application where $\mathrm{f}_{\mathrm{OSC}}=10 \mathrm{kHz}$ and $\mathrm{C}=\mathrm{C} 1=\mathrm{C} 2=10 \mu \mathrm{~F}$ :

$$
\begin{aligned}
& R_{0} \cong 2(23)+\frac{1}{\left(5 \bullet 10^{3}\right)\left(10^{-5}\right)}+4\left(\text { ESR }_{\mathrm{C} 1}\right)+\mathrm{ESR}_{\mathrm{C} 2} \\
& \mathrm{R}_{0} \cong 46+20+5\left(\mathrm{ESR}_{\mathrm{C}}\right)
\end{aligned}
$$

Since the ESRs of the capacitors are reflected in the output impedance multiplied by a factor of 5 , a high value could potentially swamp out a low $1 /$ (fpuMP $\bullet$ C1) term, rendering an increase in switching frequency or filter capacitance ineffective. Typical electrolytic capacitors may have ESRs as high as $10 \Omega$.

## Output Ripple

ESR also affects the ripple voltage seen at the output. The total ripple is determined by 2 voltages, $A$ and $B$, as shown in Figure 101. Segment $A$ is the voltage drop across the ESR of C 2 at the instant it goes from being charged by C 1 (current flow into C 2 ) to being discharged through the load (current flowing out of C 2 ). The magnitude of this current change is $2 \bullet$ lout, hence the total drop is $2 \bullet l o u t \bullet e \mathrm{SR}_{\mathrm{C} 2}$ volts. Segment $B$ is the voltage change across $C 2$ during time $t_{2}$, the half of the cycle when C 2 supplies current to the load. The drop at $B$ is loutet2/C2 volts. The peak-to-peak ripple voltage is the sum of these voltage drops:

$$
V_{\text {ripple }} \cong\left[\frac{1}{2\left(f_{\text {PUMP }}\right)(\mathrm{C} 2)}+2\left(\mathrm{ESR}_{\mathrm{C} 2}\right)\right] \text { lout }
$$

Again, a low ESR capacitor will result in a higher performance output.

## Paralleling Devices

Any number of ICL7660 voltage converters may be paralleled to reduce output resistance. The reservoir capacitor, $\mathrm{C}_{2}$, serves all devices while each device requires its own pump capacitor, $\mathrm{C}_{1}$. The resultant output resistance would be approximately:

$$
\mathrm{R}_{\text {OUT }}=\frac{\mathrm{R}_{\text {OUT }} \text { (of ICL7660) }}{\mathrm{n} \text { (number of devices) }}
$$

## Cascading Devices

The ICL7660 may be cascaded as shown to produce larger negative multiplication of the initial supply voltage. However, due to the finite efficiency of each device, the practical limit is 10 devices for light loads. The output voltage is defined by:

$$
\mathrm{V}_{\mathrm{OUT}}=-\mathrm{n}\left(\mathrm{~V}_{\mathrm{IN}}\right),
$$

where $n$ is an integer representing the number of devices cascaded. The resulting output resistance would be approximately the weighted sum of the individual ICL7660 ROUT values.

## Changing the ICL7660 Oscillator Frequency

It may be desirable in some applications, due to noise or other considerations, to increase the oscillator frequency. This is achieved by overdriving the oscillator from an external clock, as shown in Figure 9. In order to prevent possible device latchup, a $100 \mathrm{k} \Omega$ resistor must be used in series with the clock output. In a situation where the designer has generated the external clock frequency using TTL logic, the addition of a $10 \mathrm{k} \Omega$ pullup resistor to $\mathrm{V}^{+}$supply is required. Note that the pump frequency with external clocking, as with internal clocking, will be $1 / 2$ of the clock frequency. Output transitions occur on the positive-going edge of the clock.


Figure 9: External Clocking
0319-23
It is also possible to increase the conversion efficiency of the ICL7660 at low load levels by lowering the oscillator frequency. This reduces the switching losses, and is shown in Figure 10. However, lowering the oscillator frequency will cause an undesirable increase in the impedance of the pump $\left(\mathrm{C}_{1}\right)$ and reservoir $\left(\mathrm{C}_{2}\right)$ capacitors; this is overcome by increasing the values of $\mathrm{C}_{1}$ and $\mathrm{C}_{2}$ by the same factor that the frequency has been reduced. For example, the addition of a 100 pF capacitor between pin 7 (Osc) and $\mathrm{V}^{+}$will lower the oscillator frequency to 1 kHz from its nominal frequency of 10 kHz (a multiple of 10), and thereby necessitate a corresponding increase in the value of $\mathrm{C}_{1}$ and $\mathrm{C}_{2}$ (from $10 \mu \mathrm{~F}$ to $100 \mu \mathrm{~F}$ ).


0319-24
Figure 10: Lowering Oscillator Frequency

## Positive Voltage Doubling

The ICL7660 may be employed to achieve positive voltage doubling using the circuit shown in Figure 11. In this application, the pump inverter switches of the ICL7660 are used to charge $C_{1}$ to a voltage level of $V+-V_{F}$ (where $V+$ is the supply voltage and $V_{F}$ is the forward voltage drop of diode $D_{1}$ ). On the transfer cycle, the voltage on $C_{1}$ plus the supply voltage $\left(\mathrm{V}^{+}\right)$is applied through diode $\mathrm{D}_{2}$ to capacitor $\mathrm{C}_{2}$. The voltage thus created on $\mathrm{C}_{2}$ becomes $\left(2 V^{+}\right)-\left(2 V_{F}\right)$ or twice the supply voltage minus the combined forward voltage drops of diodes $D_{1}$ and $D_{2}$.

The source impedance of the output (VOUT) will depend on the output current, but for $\mathrm{V}^{+}=5$ volts and an output current of 10 mA it will be approximately 60 ohms.


## ICL7660

## Combined Negative Voltage Conversion and Positive Supply Doubling

Figure 12 combines the functions shown in Figures 5 and 11 to provide negative voltage conversion and positive voltage doubling simultaneously. This approach would be, for example, suitable for generating +9 volts and -5 volts from an existing +5 volt supply. In this instance capacitors $\mathrm{C}_{1}$ and $\mathrm{C}_{3}$ perform the pump and reservoir functions respectively for the generation of the negative voltage, while capacitors $C_{2}$ and $C_{4}$ are pump and reservoir respectively for the doubled positive voltage. There is a penalty in this configuration which combines both functions, however, in that the source impedances of the generated supplies will be somewhat higher due to the finite impedance of the common charge pump driver at pin 2 of the device.


0319-26
Figure 12: Combined Negative Voltage Converter and Positive Doubler

## Voltage Splitting

The bidirectional characteristics can also be used to split a higher supply in half, as shown in Figure 13. The combined load will be evenly shared between the two sides. Because the switches share the load in parallel, the output impedance is much lower than in the standard circuits, and higher currents can be drawn from the device. By using this circuit, and then the circuit of Figure 8, +15 V can be converted (via +7.5 , and -7.5 ) to a nominal -15 V , although with rather high series output resistance ( $\sim 250 \Omega$ ).


0319-27
Figure 13: Splitting A Supply in Half

## Regulated Negative Voltage Supply

In some cases, the output impedance of the ICL7660 can be a problem, particularly if the load current varies substantially. The circuit of Figure 14 can be used to overcome this by controlling the input voltage, via an ICL7611 low-power CMOS op amp, in such a way as to maintain a nearly constant output voltage. Direct feedback is inadvisable, since the ICL7660's output does not respond instantaneously to change in input, but only after the switching delay. The circuit shown supplies enough delay to accommodate the 7660, while maintaining adequate feedback. An increase in pump and storage capacitors is desirable, and the values shown provides an output impedance of less than $5 \Omega$ to a load of 10 mA .


Figure 14: Regulating the Output Voltage


## OTHER APPLICATIONS

Further information on the operation and use of the ICL7660 may be found in A051 "Principals and Applications of the ICL7660 CMOS Voltage Converter".

## GENERAL DESCRIPTION

The ICL7660S Super Voltage Converter is a monolithic CMOS voltage conversion IC that guarantees significant performance advantages over other similar devices. It is a direct replacement for the industry-standard ICL7660 offering an extended operating supply voltage range up to 12 V , with lower supply current. No external diode is needed for the ICL7660S. In addition, a Frequency Boost pin has been incorporated to enable the user to achieve lower output impedance despite using smaller capacitors. All improvements are highlighted in bold italics in the Electrical Characteristics section. Critical parameters are guaranteed over the entire commercial, industrial and military temperature ranges.

The ICL7660S performs supply voltage conversion from positive to negative for an input range of 1.5 V to 12 V , resulting in complementary output voltages of -1.5 V to -12 V . Only 2 non-critical external capacitors are needed for the charge pump and charge reservoir functions. The ICL7660S can be connected to function as a voltage doubler and will generate up to 22.8 V with a 12 V input. It can also be used as a voltage multiplier or voltage divider.

The chip contains a series DC power supply regulator, RC oscillator, voltage level translator, and four output power MOS switches. The oscillator, when unloaded, oscillates at a nominal frequency of 10 kHz for an input supply voltage of 5.0 volts. This frequency can be lowered by the addition of an external capacitor to the "OSC" terminal, or the oscillator may be over-driven by an external clock.

The "LV" terminal may be tied to GROUND to bypass the internal series regulator and improve low voltage (LV) operation. At medium to high voltages ( 3.5 V to 12 V ), the LV pin is left floating to prevent device latchup.

## Super Voltage Converter

## FEATURES

- Guaranteed Lower Max Supply Current for All Temperature Ranges
- Guaranteed Wider Operating Voltage Range -1.5V to 12V
- No External Diode Over Full Temperature and Voltage Range
- Boost Pin (Pin 1) for Higher Switching Frequency
- Guaranteed Minimum Power Efficiency of $96 \%$
- Improved Minimum Open Circuit Voltage Conversion Efficiency of 99\%
- Improved SCR Latchup Protection
- Simple Conversion of +5 V Logic Supply to $\pm \mathbf{5 V}$ Supplies
- Simple Voltage Multiplication $\mathbf{V}_{\text {OUT }}=(-) n V_{I N}$
- Easy to Use-Requires Only 2 External Non-Critical Passive Components
- Improved Direct Replacement for Industry-Standard ICL7660 and Other Second-Source Devices


## APPLICATIONS

- Simple Conversion of +5 V to $\pm 5 \mathrm{~V}$ Supplies
- Voltage Multiplication $\mathrm{V}_{\text {OUT }}= \pm \mathbf{n} \mathrm{V}_{\mathbf{I N}}$
- Negative Supplies for Data Acquisition Systems \& Instrumentation
- RS232 Power Supplies
- Supply Splitter, $\mathbf{V}_{\text {OUT }}= \pm \mathbf{V}_{\mathbf{S}} / \mathbf{2}$

ORDERING INFORMATION

Part Number	Temp. Range	Package
ICL7660SCBA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 -Pin SOIC
ICL7660SCPA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8-Pin Minidip
ICL7660SIBA	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 -Pin SOIC
ICL7660SCTV	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	TO-99
ICL7660SIPA	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 -Pin Minidip
ICL7660SITV	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	TO-99
ICL7660SMTV*	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	TO-99

*Add $/ 883 \mathrm{~B}$ to part number if 883 B processing is required.

(BA)


0088-2
(TV)

(PA)

Figure 1: Pin Configurations

ABSOLUTE MAXIMUM RATINGS


NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.


0088-4
Figure 2: Functional Diagram

ICL7660S

## ELECTRICAL CHARACTERISTICS

$\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{OSC}=$ Free running, Test Circuit Figure 3 (unless otherwise specified)

Symbol	Parameter	Test Conditions	Limits			Units
			Min	Typ	Max	
$I^{+}$	Supply Current (Note 3)	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=\infty, 25^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+70^{\circ} \mathrm{C} \\ &-25^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+85^{\circ} \mathrm{C} \\ &-55^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+125^{\circ} \mathrm{C} \end{aligned}$		80	$\begin{aligned} & 160 \\ & 180 \\ & 180 \\ & 200 \end{aligned}$	$\mu \mathrm{A}$
$V_{H}^{+}$	Supply Voltage Range-Hi (Note 4)	$\begin{aligned} & R_{L}=10 \mathrm{~K}, \mathrm{LV} \text { Open } \\ & T_{\text {min }}<T_{A}<T_{\text {max }} \end{aligned}$	3.0		12	V
$\mathrm{V}_{\mathrm{L}}^{+}$	Supply Voltage Range-Lo	$\begin{aligned} & R_{\mathrm{L}}=10 \mathrm{~K}, \mathrm{LV} \text { to GROUND } \\ & T_{\min }<\mathrm{T}_{\mathrm{A}}<\mathrm{T}_{\max } \end{aligned}$	1.5		3.5	V
$R_{\text {OUT }}$	Output Source Resistance	$\mathrm{l}_{\text {OUT }}=20 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		60	100	$\Omega$
		$\mathrm{I}_{\text {OUT }}=20 \mathrm{~mA}, 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+70^{\circ} \mathrm{C}$			120	
		$\mathrm{I}_{\text {OUT }}=20 \mathrm{~mA},-25^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+85^{\circ} \mathrm{C}$			120	
		$\mathrm{l}_{\text {OUT }}=20 \mathrm{~mA},-55^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+125^{\circ} \mathrm{C}$			150	
		$\begin{aligned} & \text { lout }=3 \mathrm{~mA}, \mathrm{~V}+=2 \mathrm{~V}, \mathrm{LV}=\mathrm{GND}, \\ & 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+70^{\circ} \mathrm{C} \end{aligned}$			250	
		$\begin{aligned} & \mathrm{I}_{\text {OUT }}=3 \mathrm{~mA}, \mathrm{~V}^{+}=2 \mathrm{~V}, \mathrm{LV}=\mathrm{GND}, \\ & -25^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+85^{\circ} \mathrm{C} \end{aligned}$			300	
		$\begin{aligned} & \text { lout }=3 \mathrm{~mA}, \mathrm{~V}+=2 \mathrm{~V}, \mathrm{LV}=\mathrm{GND}, \\ & -55^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+125^{\circ} \mathrm{C} \end{aligned}$			400	
$f$ OSC	Oscillator Frequency	$\begin{gathered} \mathrm{C}_{\mathrm{OSC}}=0, \text { Pin } 1 \text { Open or GND } \\ \text { Pin } 1=\mathrm{V}^{+} \end{gathered}$	5	$\begin{aligned} & 10 \\ & 35 \end{aligned}$		kHz
PEff	Power Efficiency	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega \\ & \mathrm{~T}_{\min }<\mathrm{T}_{\mathrm{A}}<\mathrm{T}_{\max } \end{aligned}$	$\begin{aligned} & 96 \\ & 95 \\ & \hline \end{aligned}$	$\begin{aligned} & 98 \\ & 97 \\ & \hline \end{aligned}$		\%
$V_{\text {OuT }}$ Eff	Voltage Conversion Efficiency	$\mathrm{R}_{\mathrm{L}}=\infty$	99	99.9		\%
ZOSC	Oscillator Impedance	$\mathrm{V}+=2 \mathrm{~V}$		1		$\mathrm{M} \Omega$
		$\mathrm{V}+=5 \mathrm{~V}$		100		k $\Omega$

NOTE 1: Connecting any terminal to voltages greater than $V^{+}$or less than GROUND may cause destructive latchup. It is recommended that no inputs from sources operating from external supplies be applied prior to "power up" of ICL7660s.
2. Derate linearly above $50^{\circ} \mathrm{C}$ by $5.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

3: In the test circuit, there is no external capacitor applied to pin 7 . However, when the device is plugged into a test socket, there is usually a very small but finite stray capacitance present, of the order of 5 pF .

4: The Harris ICL7660S can operate without an external diode over the full temperature and voltage range. This device will function in existing designs which incorporate an externat diode with no degradation in overall circuit performance.

5: All significant improvements over the industry-standard ICL7660 are highlighted in bold italics.

TYPICAL PERFORMANCE CHARACTERISTICS (Circuit of Figure 3)
operating voltage as a FUNCTION OF TEMPERATURE


0088~5

OUTPUT SOURCE RESISTANCE AS A FUNCTION OF SUPPLY VOLTAGE


0088-6

FREQUENCY OF OSCILLATION AS A FUNCTION OF EXTERNAL OSC. CAPACITANCE


OUTPUT SOURCE RESISTANCE AS A FUNCTION OF TEMPERATURE


0088-7

POWER CONVERSION EFFICIENCY AS A FUNCTION OF OSC. FREQUENCY


TYPICAL PERFORMANCE CHARACTERISTICS (Circuit of Figure 3) (Continued)

OUTPUT VOLTAGE AS A FUNCTION OF OUTPUT CURRENT


SUPPLY CURRENT \& POWER CONVERSION EFFICIENCY AS A FUNCTION OF LOAD CURRENT


OUTPUT VOLTAGE AS A FUNCTION OF OUTPUT CURRENT


SUPPLY CURRENT \& POWER CONVERSION EFFICIENCY AS A FUNCTION OF LOAD CURRENT


OUTPUT SOURCE RESISTANCE AS A FUNCTION OF
OSCILLATOR FREQUENCY


NOTE 4: These curves include in the supply current that current fed directly into the load $\mathrm{R}_{\mathrm{L}}$ from $\mathrm{V}^{+}$(see Figure 3). Thus, approximately half the supply current goes directly to the positive side of the load, and the other half, through the ICL 7660 S , to the negative side of the load. Ideally, $V_{O U T} \cong 2 V_{I N}, I_{S} \cong 2 I_{L}$, so $V_{I_{N}} \bullet I_{S} \cong V_{\text {OUT }} \bullet I_{L}$.


NOTE 1: For large values of $C_{O S C}(>1000 \mathrm{pF})$ the values of $C_{1}$ and $\mathrm{C}_{2}$ should be increased to $100 \mu \mathrm{~F}$.

Figure 3: ICL7660S Test Circuit

## DETAILED DESCRIPTION

The ICL7660S contains all the necessary circuitry to complete a negative voltage converter, with the exception of 2 external capacitors which may be inexpensive $10 \mu \mathrm{~F}$ polarized electrolytic types. The mode of operation of the device may be best understood by considering Figure 4, which shows an idealized negative voltage converter. Capacitor $\mathrm{C}_{1}$ is charged to a voltage, $\mathrm{V}+$, for the half cycle when switches $S_{1}$ and $S_{3}$ are closed. (Note: Switches $S_{2}$ and $S_{4}$ are open during this half cycle.) During the second half cycle of operation, switches $S_{2}$ and $S_{4}$ are closed, with $S_{1}$ and $\mathrm{S}_{3}$ open, thereby shifting capacitor $\mathrm{C}_{1}$ negatively by $\mathrm{V}^{+}$ volts. Charge is then transferred from $\mathrm{C}_{1}$ to $\mathrm{C}_{2}$ such that the voltage on $\mathrm{C}_{2}$ is exactly $\mathrm{V}^{+}$, assuming ideal switches and no load on $\mathrm{C}_{2}$. The ICL7660S approaches this ideal situation more closely than existing non-mechanical circuits.
In the ICL7660S, the 4 switches of Figure 4 are MOS power switches; $\mathrm{S}_{1}$ is a P -channel device and $\mathrm{S}_{2}, \mathrm{~S}_{3} \& \mathrm{~S}_{4}$ are N -channel devices. The main difficulty with this approach is that in integrating the switches, the substrates of $\mathrm{S}_{3} \& \mathrm{~S}_{4}$ must always remain reverse biased with respect to their sources, but not so much as to degrade their "ON" resistances. In addition, at circuit startup, and under output short circuit conditions ( $\mathrm{V}_{\text {OUT }}=\mathrm{V}^{+}$), the output voltage must be sensed and the substrate bias adjusted accordingly. Failure to accomplish this would result in high power losses and probable device latchup.

This problem is eliminated in the ICL 7660 S by a logic network which senses the output voltage ( $\mathrm{V}_{\text {OUT }}$ ) together with the level translators, and switches the substrates of $\mathrm{S}_{3}$ \& $\mathrm{S}_{4}$ to the correct level to maintain necessary reverse bias.

The voltage regulator portion of the ICL7660S is an integral part of the anti-latchup circuitry, however its inherent voltage drop can degrade operation at low voltages. Therefore, to improve low voltage operation the "LV' pin should be connected to GROUND, disabling the regulator. For supply voltages greater than 3.5 volts the LV terminal must be left open to insure latchup proof operation, and prevent device damage.


0088-17
Figure 4: Idealized Negative Voltage Converter

## THEORETICAL POWER EFFICIENCY CONSIDERATIONS

In theory a voltage converter can approach $100 \%$ efficiency if certain conditions are met:
A The drive circuitry consumes minimal power.
B The output switches have extremely low ON resistance and virtually no offset.
C The impedances of the pump and reservoir capacitors are negligible at the pump frequency.
The ICL7660S approaches these conditions for negative voltage conversion if large values of $\mathrm{C}_{1}$ and $\mathrm{C}_{2}$ are used. ENERGY IS LOST ONLY IN THE TRANSFER OF CHARGE BETWEEN CAPACITORS IF A CHANGE IN VOLTAGE OCCURS. The energy lost is defined by:

$$
E=1 / 2 C_{1}\left(V_{1}{ }^{2}-V_{2} 2\right)
$$

where $\mathrm{V}_{1}$ and $\mathrm{V}_{2}$ are the voltages on $\mathrm{C}_{1}$ during the pump and transfer cycles. If the impedances of $\mathrm{C}_{1}$ and $\mathrm{C}_{2}$ are relatively high at the pump frequency (refer to Figure 4) compared to the value of $\mathrm{R}_{\mathrm{L}}$, there will be a substantial difference in the voltages $V_{1}$ and $V_{2}$. Therefore it is not only desirable to make $\mathrm{C}_{2}$ as large as possible to eliminate output voltage ripple, but also to employ a correspondingly large value for $\mathrm{C}_{1}$ in order to achieve maximum efficiency of operation.

## DO'S AND DON'TS

1. Do not exceed maximum supply voltages.
2. Do not connect LV terminal to GROUND for supply voltages greater than 3.5 volts.
3. Do not short circuit the output to $\mathrm{V}^{+}$supply for supply voltages above 5.5 volts for extended periods, however, transient conditions including startup are okay.
4. When using polarized capacitors, the + terminal of $\mathrm{C}_{1}$ must be connected to pin 2 of the ICL7660S and the + terminal of $\mathrm{C}_{2}$ must be connected to GROUND.


0088-18
Figure 5: Simple Negative Converter and its Output Equivalent

Figure 6: Output Ripple


Figure 7: Paralleling Devices


0088-20
*NOTE 1: $V_{\text {OUT }}=-n V^{+}$for $1.5 \mathrm{~V} \leq \mathrm{V}^{+} \leq 12 \mathrm{~V}$.
Figure 8: Cascading Devices for Increased Output Voltage

## TYPICAL APPLICATIONS

## Simple Negative Voltage Converter

The majority of applications will undoubtedly utilize the ICL7660S for generation of negative supply voltages. Figure 5 shows typical connections to provide a negative supply where a positive supply of +1.5 V to +12 V is available. Keep in mind that pin $6(\mathrm{LV})$ is tied to the supply negative (GND) for supply voltages below 3.5 volts.

The output characteristics of the circuit in Figure 5a can be approximated by an ideal voltage source in series with a resistance as shown in Figure 5b. The voltage source has a value of $-(V+)$. The output impedance $\left(R_{0}\right)$ is a function of the ON resistance of the internal MOS switches (shown in Figure 4), the switching frequency, the value of $C 1$ and $C 2$, and the ESR (equivalent series resistance) of $C 1$ and $C 2$. $A$ good first order approximation for $R_{0}$ is:

$$
\begin{gathered}
R_{\mathrm{O}} \cong 2\left(R_{S W 1}+R_{S W 3}+E S_{\mathrm{C}} 1\right)+2\left(R_{\mathrm{SW} 2}+R_{\mathrm{SW} 4}+\right. \\
\left.E S R_{\mathrm{C} 1}\right)+\frac{1}{f_{\mathrm{PUMP}} \times \mathrm{C} 1}+E S R_{\mathrm{C} 2} \\
\left(f_{\mathrm{PUMP}}=\frac{f_{O S C}}{2}, R_{\mathrm{SWX}}=\text { MOSFET switch resistance }\right)
\end{gathered}
$$

Combining the four $R_{S W X}$ terms as R R $_{\text {SW }}$, we see that:

$$
R_{\mathrm{O}} \cong 2 \times R_{\mathrm{SW}}+\frac{1}{\text { fPUMP } \times \mathrm{C} 1}+4 \times \mathrm{ESR}_{\mathrm{C} 1}+E \mathrm{ES}_{\mathrm{C} 2} \Omega
$$

RSW, the total switch resistance, is a function of supply voltage and temperature (See the Output Source Resistance graphs), typically $23 \Omega$ @ $25^{\circ} \mathrm{C}$ and 5 V . Careful selection of C 1 and C 2 will reduce the remaining terms, minimizing the output impedance. High value capacitors will reduce the $1 /(\mathrm{f}$ PUMP $\times \mathrm{C} 1)$ component, and low ESR capacitors will lower the ESR term. Increasing the oscillator frequency will reduce the $1 /($ fpump $\times \mathrm{C} 1$ ) term, but may have the side effect of a net increase in output impedance when $\mathrm{C} 1>$ $10 \mu \mathrm{~F}$ and there is no longer enough time to fully charge the capacitors every cycle. In a typical application where fosc $=10 \mathrm{kHz}$ and $\mathrm{C}=\mathrm{C} 1=\mathrm{C} 2=10 \mu \mathrm{~F}$ :

$$
\begin{gathered}
\mathrm{R}_{\mathrm{o}} \cong 2 \times 23+\frac{1}{\left(5 \times 10^{3} \times 10 \times 10^{-6}\right)}+4 \times \mathrm{ESR}_{\mathrm{C} 1}+E \mathrm{ER}_{\mathrm{C} 2} \\
\mathrm{R}_{\mathrm{o}} \cong 46+20+5 \times \mathrm{ESR}_{\mathrm{C}} \Omega
\end{gathered}
$$

Since the ESRs of the capacitors are reflected in the output impedance multiplied by a factor of 5 , a high value could potentially swamp out a low $1 /(f$ PUMP $\times C 1$ ) term, rendering an increase in switching frequency or filter capacitance ineffective. Typical electrolytic capacitors may have ESRs as high as $10 \Omega$.

## Output Ripple

ESR also affects the ripple voltage seen at the output. The total ripple is determined by 2 voltages, $A$ and $B$, as shown in Figure 6. Segment $A$ is the voltage drop across the ESR of C2 at the instant it goes from being charged by C 1 (current flowing into C 2 ) to being discharged through the load (current flowing out of C 2 ). The magnitude of this current change is $2 \times l_{\text {OUT }}$, hence the total drop is $2 \times I_{\text {OUT }} \times E S R_{C 2}$ volts. Segment 8 is the voltage change across C 2 during time $\mathrm{t}_{2}$, the half of the cycle when C 2 supplies current to the load. The drop at $B$ is $\mathrm{l}_{\mathrm{OUT}} \times \mathrm{t}_{2} / \mathrm{C} 2$ volts. The peak-to-peak ripple voltage is the sum of these voltage drops:

$$
V_{\text {ripple }} \cong\left(\frac{1}{2 \times f_{\mathrm{PUMP}} \times \mathrm{C} 2}+2 \times \mathrm{ESR}_{\mathrm{C} 2}\right) \times \mathrm{I}_{\mathrm{OUT}}
$$

Again, a low ESR capacitor will result in a higher performance output.

## Paralleling Devices

Any number of ICL7660S voltage converters may be paralleled to reduce output resistance. The reservoir capacitor, $\mathrm{C}_{2}$, serves all devices while each device requires its own pump capacitor, $\mathrm{C}_{1}$. The resultant output resistance would be approximately:

$$
R_{\text {OUT }}=\frac{R_{\text {OUT }} \text { (of ICL7660S) }}{n \text { (number of devices) }}
$$

## Cascading Devices

The ICL7660S may be cascaded as shown to produce larger negative multiplication of the initial supply voltage. However, due to the finite efficiency of each device, the practical limit is 10 devices for light loads. The output voltage is defined by:

$$
V_{\text {OUT }}=-n\left(V_{I N}\right)
$$

where $n$ is an integer representing the number of devices cascaded. The resulting output resistance would be approximately the weighted sum of the individual ICL7660S ROUT values.

## Changing the ICL7660S Oscillator Frequency

It may be desirable in some applications, due to noise or other considerations, to alter the oscillator frequency. This can be achieved simply by one of several methods described below.

By connecting the Boost Pin (Pin 1) to $\mathrm{V}^{+}$, the oscillator charge and discharge current is increased and, hence, the oscillator frequency is increased by approximately $31 / 2$ times. The result is a decrease in the output impedance and ripple. This is of major importance for surface-mount applications where capacitor size and cost are critical. Smaller capacitors, e.g. $0.1 \mu \mathrm{~F}$, can be used in conjunction with the Boost Pin in order to achieve similar output currents compared to the device free running with $\mathrm{C}_{1}=\mathrm{C}_{2}=10 \mu \mathrm{~F}$ or $100 \mu \mathrm{~F}$. (Refer to graph of Output Source Resistance as a Function of Oscillator Frequency).

Increasing the oscillator frequency can also be achieved by overdriving the oscillator from an external clock, as shown in Figure 9. In order to prevent device latchup, a $100 \mathrm{k} \Omega$ resistor must be used in series with the clock output. In a situation where the designer has generated the external clock frequency using TTL logic, the addition of a $10 \mathrm{k} \Omega$ pullup resistor to $\mathrm{V}^{+}$supply is required. Note that the pump frequency with external clocking, as with internal clocking, will be $1 / 2$ of the clock frequency. Output transitions occur on the positive-going edge of the clock.


It is also possible to increase the conversion efficiency of the ICL7660S at low load levels by lowering the oscillator frequency. This reduces the switching losses, and is shown in Figure 10. However, lowering the oscillator frequency will cause an undesirable increase in the impedance of the pump $\left(\mathrm{C}_{1}\right)$ and reservoir $\left(\mathrm{C}_{2}\right)$ capacitors; this is overcome by increasing the values of $\mathrm{C}_{1}$ and $\mathrm{C}_{2}$ by the same factor that the frequency has been reduced. For example, the addition of a 100 pF capacitor between pin 7 (Osc) and $\mathrm{V}^{+}$will lower the oscillator frequency to 1 kHz from its nominal frequency of 10 kHz (a multiple of 10), and thereby necessitate a corresponding increase in the value of $\mathrm{C}_{1}$ and $\mathrm{C}_{2}$ (from $10 \mu \mathrm{~F}$ to $100 \mu \mathrm{~F}$ ).


0088-22
Figure 10: Lowering Oscillator Frequency


NOTE: $D_{1} \& D_{2}$ can be any suitable diode.
Figure 11: Positive Voltage Doubler

## Positive Voltage Doubling

The ICL7660S may be employed to achieve positive voltage doubling using the circuit shown in Figure 11. In this application, the pump inverter switches of the ICL7660S are used to charge $\mathrm{C}_{1}$ to a voltage level of $\mathrm{V}^{+}-\mathrm{V}_{\mathrm{F}}$ (where $\mathrm{V}^{+}$ is the supply voltage and $V_{F}$ is the forward voltage drop of diode $\mathrm{D}_{1}$ ). On the transfer cycle, the voltage on $\mathrm{C}_{1}$ plus the supply voltage $\left(\mathrm{V}^{+}\right)$is applied through diode $\mathrm{D}_{2}$ to capacitor $\mathrm{C}_{2}$. The voltage thus created on $\mathrm{C}_{2}$ becomes $\left(2 \mathrm{~V}^{+}\right)-\left(2 \mathrm{~V}_{\mathrm{F}}\right)$ or twice the supply voltage minus the combined forward voltage drops of diodes $\mathrm{D}_{1}$ and $\mathrm{D}_{2}$.

The source impedance of the output ( $\mathrm{V}_{\text {OUT }}$ ) will depend on the output current, but for $\mathrm{V}+=5$ volts and an output current of 10 mA it will be approximately 60 ohms.

## Combined Negative Voltage Conversion and Positive Supply Doubling

Figure 12 combines the functions shown in Figures 5 and 11 to provide negative voltage conversion and positive voltage doubling simultaneously. This approach would be, for example, suitable for generating +9 volts and -5 volts from an existing +5 volt supply. In this instance capacitors $\mathrm{C}_{1}$ and $\mathrm{C}_{3}$ perform the pump and reservoir functions respectively for the generation of the negative voltage, while capacitors $C_{2}$ and $C_{4}$ are pump and reservoir respectively for the doubled positive voltage. There is a penalty in this configuration which combines both functions, however, in that the source impedances of the generated supplies will be somewhat higher due to the finite impedance of the common charge pump driver at pin 2 of the device.
.


0088-24
Figure 12: Combined Negative Voltage Converter and Positive Doubler

## Voltage Splitting

The bidirectional characteristics can also be used to split a higher supply in haif, as shown in Figure 13. The combined load will be evenly shared between the two sides, and a high value resistor to the LV pin ensures start-up. Because the switches share the load in parallel, the output impedance is much lower than in the standard circuits, and higher currents can be drawn from the device. By using this circuit, and then the circuit of Figure $8,+15 \mathrm{~V}$ can be converted (via +7.5 , and -7.5 ) to a nominal -15 V , although with rather high series output resistance ( $\sim 250 \Omega$ ).


Figure 13: Splitting A Supply in Half

## Regulated Negative Voltage Supply

In some cases, the output impedance of the ICL7660S can be a problem, particularly if the load current varies substantially. The circuit of Figure 14 can be used to overcome this by controlling the input voltage, via an ICL7611 lowpower CMOS op amp, in such a way as to maintain a nearly constant output voltage. Direct feedback is inadvisable, since the ICL7660S's output does not respond instantaneously to change in input, but only after the switching delay. The circuit shown supplies enough delay to accommodate the 7660 , while maintaining adequate feedback. An increase in pump and storage capacitors is desirable, and the values shown provides an output impedance of less than $5 \Omega$ to a load of 10 mA .

## OTHER APPLICATIONS

Further information on the operation and use of the ICL7660S may be found in A051 "Principals and Applications of the ICL7660 CMOS Voltage Converter".


Figure 14: Regulating the Output Voltage


Figure 15: RS232 Levels From A Single 5V Supply

## GENERAL DESCRIPTION

The Harris ICL7662 is a monolithic high-voltage CMOS power supply circuit which offers unique performance advantages over previously available devices. The ICL7662 performs supply voltage conversion from positive to negative for an input range of +4.5 V to +20.0 V , resulting in complementary output voltages of -4.5 V to -20 V . Only 2 non-critical external capacitors are needed for the charge pump and charge reservoir functions. The ICL7662 can also function as a voltage doubler, and will generate output voltages up to +38.6 V with a +20 V input.

Contained on chip are a series DC power supply regulator, RC oscillator, voltage level translator, four output power MOS switches. A unique logic element senses the most negative voltage in the device and ensures that the output N -channel switch source-substrate junctions are not forward biased. This assures latchup free operation.

The oscillator, when unloaded, oscillates at a nominal frequency of 10 kHz for an input supply voltage of 15.0 volts. This frequency can be lowered by the addition of an external capacitor to the "OSC" terminal, or the oscillator may be overdriven by an external clock.
The "LV" terminal may be tied to GROUND to bypass the internal series regulator and improve low voltage (LV) operation. At medium to high voltages $(+10$ to +20 V ), the LV pin is left floating to prevent device latchup.

## ORDERING INFORMATION

Part Number	Temperature Range	Package
ICL7662CTV	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	TO-99
ICL7662CPA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 PIN MINI DIP
ICL7662MTV*	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	TO-99

*Add /883B to Part Number for 883 B Processing.

## CMOS Voltage Converter

FEATURES

- No External Diode Needed Over Entire Temperature Range
- Pin Compatible With ICL7660
- Simple Conversion of +15 V Supply to -15 V Supply
- Simple Voltage Multiplication ( $\mathrm{V}_{\text {OUT }}=(-) \mathbf{n} \mathrm{V}_{\mathbf{I N}}$ )
- $99.9 \%$ Typical Open Circuit Voltage Conversion Efficiency
- 96\% Typical Power Efficiency
- Wide Operating Voltage Range 4.5V to 20.0 V
- Easy to Use - Requires Only 2 External Non-Critical Passive Components


## APPLICATIONS

- On Board Negative Supply for Dynamic RAMs
- Localized $\mu$-Processor ( 8080 Type) Negative Supplies
- Inexpensive Negative Supplies
- Data Acquisition Systems
- Up to -20V for Op Amps


Figure 1: Pin Configurations


Figure 2: Functional Diagram

[^8]
## ABSOLUTE MAXIMUM RATINGS

Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22V
Oscillator Input Voltage (Note 1) $\qquad$

$$
-0.3 \mathrm{~V} \text { to }(\mathrm{V}++0.3 \mathrm{~V}) \text { for } \mathrm{V}+<10 \mathrm{~V}
$$

$$
\left(V^{+}-10 \mathrm{~V}\right) \text { to }\left(\mathrm{V}^{+}+0.3 \mathrm{~V}\right) \text { for } V^{+}>10 \mathrm{~V}
$$

Current into LV (Note 1) . . . . . . . . . . . . . . $20 \mu \mathrm{~A}$ for $\mathrm{V}^{+}>10 \mathrm{~V}$
Output Short Duration $\qquad$ . Continuous

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## ELECTRICAL CHARACTERISTICS <br> $\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{O S C}=0$, unless otherwise stated. Test Circuit

Figure 3.

Symbol	Parameter	Test Conditions		Limits			Units
				Min	Typ	Max	
$\begin{aligned} & V+L \\ & V+H \end{aligned}$	Supply Voltage Range-Lo   Supply Voltage Range-Hi	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{LV}=\mathrm{GND} \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{LV}=\text { Open } \end{aligned}$	$\begin{aligned} & \operatorname{Min}<T_{A}<\operatorname{Max} \\ & \operatorname{Min}<T_{A}<\operatorname{Max} \end{aligned}$	$\begin{gathered} 4.5 \\ 9 \end{gathered}$		$\begin{aligned} & 11 \\ & 20 \end{aligned}$	$\begin{aligned} & V \\ & v \end{aligned}$
$1+$	Supply Current	$R_{L}=\infty, L V=\text { Open }$	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C}<\mathrm{T}_{A}<+70^{\circ} \mathrm{C} \\ & -55^{\circ} \mathrm{C}<T_{A}<+125^{\circ} \mathrm{C} \end{aligned}$		$\begin{array}{r} \hline .25 \\ .30 \\ .40 \\ \hline \end{array}$	$\begin{aligned} & .60 \\ & .85 \\ & 1.0 \end{aligned}$	mA
$\mathrm{R}_{0}$	Output Source Resistance	$I_{0}=20 \mathrm{~mA}, \mathrm{LV}=\text { Open }$	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C}<T_{A}<+70^{\circ} \mathrm{C} \\ & -55^{\circ} \mathrm{C}<T_{A}<+125^{\circ} \mathrm{C} \\ & \hline \end{aligned}$		$\begin{aligned} & 60 \\ & 70 \\ & 90 \\ & \hline \end{aligned}$	$\begin{aligned} & 100 \\ & 120 \\ & 150 \\ & \hline \end{aligned}$	$\Omega$
$1+$	Supply Current	$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=\infty, \mathrm{LV}=\mathrm{GND} \end{aligned}$	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C}<\mathrm{T}_{A}<+70^{\circ} \mathrm{C} \\ & -55^{\circ} \mathrm{C}<T_{A}<+125^{\circ} \mathrm{C} \\ & \hline \end{aligned}$		$\begin{aligned} & 20 \\ & 25 \\ & 30 \\ & \hline \end{aligned}$	$\begin{array}{r} 150 \\ 200 \\ 250 \\ \hline \end{array}$	$\mu \mathrm{A}$
$\mathrm{R}_{0}$	Output Source Resistance	$\begin{aligned} & V^{+}=5 \mathrm{~V} \\ & \mathrm{I}_{0}=3 \mathrm{~mA}, \mathrm{LV}=\mathrm{GND} \end{aligned}$	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C}<T_{A}<+70^{\circ} \mathrm{C} \\ & -55^{\circ} \mathrm{C}<T_{A}<+125^{\circ} \mathrm{C} \\ & \hline \end{aligned}$		$\begin{aligned} & 125 \\ & 150 \\ & 200 \end{aligned}$	$\begin{aligned} & 200 \\ & 250 \\ & 350 \\ & \hline \end{aligned}$	$\Omega$
$\mathrm{F}_{\text {osc }}$	Oscillator Frequency				10		kHz
$\mathrm{P}_{\text {eff }}$	Power Efficiency	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{~K} \Omega$	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & \text { Min }<T_{A}<\operatorname{Max} \end{aligned}$	$\begin{aligned} & 93 \\ & 90 \\ & \hline \end{aligned}$	$\begin{aligned} & 96 \\ & 95 \\ & \hline \end{aligned}$		\%
$V_{\text {OEf }}$	Voltage Conversion Effic.	$\mathrm{R}_{\mathrm{L}}=\infty$	Min $<T_{A}<$ Max	97	99.9		\%
losc	Oscillator Sink or Source Current	$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V}\left(\mathrm{~V}_{\text {osc }}=0 \mathrm{~V} \text { to }+5 \mathrm{~V}\right) \\ & \mathrm{V}+=15 \mathrm{~V}\left(\mathrm{~V}_{\text {osc }}=+5 \mathrm{~V} \text { to }+15 \mathrm{~V}\right) \end{aligned}$			$\begin{aligned} & 0.5 \\ & 4.0 \\ & \hline \end{aligned}$		$\mu \mathrm{A}$

NOTES: 1. Connecting any terminal to voltages greater than $\mathrm{V}^{+}$or less than ground may cause destructive latchup. It is recommended that no inputs from sources operating from external supplies be applied prior to "power up" of the ICL7662.
2. Derate linearly above $50^{\circ} \mathrm{C}$ by $5.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
3. Pin 1 is a Test pin and is not connected in normal use. When the TEST pin is connected to $\mathrm{V}^{+}$, an internal transmission gate disconnects any external parasitic capacitance from the oscillator which would otherwise reduce the oscillator frequency from its nominal value.

## TYPICAL PERFORMANCE CHARACTERISTICS

(See Test Circuit of Figure 3)


## TYPICAL PERFORMANCE CHARACTERISTICS

(See Test Circuit of Figure 3) (Continued)


## ICL7662

## TYPICAL PERFORMANCE CHARACTERISTICS

(See Test Circuit of Figure 3) (Continued)


0320-16

## NOTE 4.

Note that these curves include in the supply current that current fed directly into the load $R_{L}$ from $V^{+}$(see Figure 3). Thus, approximately half the supply current goes directly to the positive side of the load, and the other half, through the ICL7662, to the negative side of the load. Ideally, $V_{\text {LOAD }} \cong$ $2 V_{I N}, I_{S} \cong 2 I_{L}$, so $V_{I N} \bullet I_{S} \cong V_{L O A D} \bullet I_{L}$

## CIRCUIT DESCRIPTION

The ICL7662 contains all the necessary circuitry to complete a negative voltage converter, with the exception of 2 external capacitors which may be inexpensive $10 \mu \mathrm{~F}$ polarized electrolytic capacitors. The mode of operation of the device may be best understood by considering Figure 4, which shows an idealized negative voltage converter. Ca pacitor $\mathrm{C}_{1}$ is charged to a voltage, $\mathrm{V}^{+}$, for the half cycle when switches $S_{1}$ and $S_{3}$ are closed. (Note: Switches $S_{2}$ and $S_{4}$ are open during this half cycle.) During the second half cycle of operation, switches $S_{2}$ and $S_{4}$ are closed, with $S_{1}$ and $S_{3}$ open, thereby shifting capacitor $C_{1}$ negatively by $V^{+}$volts. Charge is then transferred from $C_{1}$ to $C_{2}$ such that the voltage on $\mathrm{C}_{2}$ is exactly $\mathrm{V}^{+}$, assuming ideal switches and no load on $\mathrm{C}_{2}$. The ICL7662 approaches this ideal situation more closely than existing non-mechanical circuits.
In the ICL7662, the 4 switches of Figure 4 are MOS power switches; $S_{1}$ is a P-channel device and $S_{2}, S_{3} \& S_{4}$ are N -channel devices. The main difficulty with this approach is that in integrating the switches, the substrates of $S_{3} \& S_{4}$ must always remain reverse biased with respect to their sources, but not so much as to degrade their "ON" resistances. In addition, at circuit startup, and under output short circuit conditions ( $\mathrm{V}_{\mathrm{OUT}}=\mathrm{V}^{+}$), the output voltage must be sensed and the substrate bias adjusted accordingly. Failure to accomplish this would result in high power losses and probable device latchup.

This problem is eliminated in the ICL7662 by a logic network which senses the output voltage (VOUT) together with the level translators, and switches the substrates of $S_{3} \& S_{4}$ to the correct level to maintain necessary reverse bias.

The voltage regulator portion of the ICL7662 is an integral part of the anti-latchup circuitry, however its inherent voltage drop can degrade operation at low voltages. Therefore, to improve low voltage operation the "LV" pin should be connected to GROUND, disabling the regulator. For supply. voltages greater than 11 volts the LV terminal must be left open to insure latchup proof operation, and prevent device damage.


NOTE: For large value of $C_{O S C}(>1000 p f)$ the values of $C_{1}$ and $C_{2}$ should be increased to $100 \mu \mathrm{~F}$.

Figure 3: ICL7662 Test Circuit


0320-18
Figure 4: Idealized Negative Converter

## THEORETICAL POWER EFFICIENCY CONSIDERATIONS

In theory a voltage multiplier can approach $100 \%$ efficiency if certain conditions are met:
A The drive circuitry consumes minimal power
B The output switches have extremely low ON resistance and virtually no offset.
C The impedances of the pump and reservoir capacitors are negligible at the pump frequency.
The ICL7662 approaches these conditions for negative voltage multiplication if large values of $C_{1}$ and $C_{2}$ are used. ENERGY IS LOST ONLY IN THE TRANSFER OF CHARGE BETWEEN CAPACITORS IF A CHANGE IN VOLTAGE OCCURS. The energy lost is defined by:

$$
E=1 / 2 C_{1}\left(V_{1}{ }^{2}-V_{2}{ }^{2}\right)
$$

where $\mathrm{V}_{1}$ and $\mathrm{V}_{2}$ are the voltages on $\mathrm{C}_{1}$ during the pump and transfer cycles. If the impedances of $C_{1}$ and $C_{2}$ are relatively high at the pump frequency (refer to Figure 4) compared to the value of $R_{L}$, there will be a substantial difference in the voltages $\mathrm{V}_{1}$ and $\mathrm{V}_{2}$. Therefore it is not only desirable to make $\mathrm{C}_{2}$ as large as possible to eliminate output voltage ripple, but also to employ a correspondingly large value for $\mathrm{C}_{1}$ in order to achieve maximum efficiency of operation.

## DO'S AND DON'TS

1. Do not exceed maximum supply voltages.
2. Do not connect LV terminal to GROUND for supply voltages greater than 11 volts.
3. When using polarized capacitors, the + terminal of $\mathrm{C}_{1}$ must be connected to pin 2 of the ICL7662 and the + terminal of $\mathrm{C}_{2}$ must be connected to GROUND.

## TYPICAL APPLICATIONS

## Simple Negative Voltage Converter

The majority of applications will undoubtedly utilize the ICL7662 for generation of negative supply voltages. Figure 5 shows typical connections to provide a negative supply where a positive supply of +4.5 V to 20.0 V is available. Keep in mind that pin 6 (LV) is tied to the supply negative (GND) for supply voltages below 11 volts.

The output characteristics of the circuit in Figure 5a can be approximated by an ideal voltage source in series with a resistance as shown in Figure 5b. The voltage source has a value of $-(\mathrm{V}+)$. The output impedance $\left(\mathrm{R}_{0}\right)$ is a function of the ON resistance of the internal MOS switches (shown in Figure 4), the switching frequency, the value of $C 1$ and $C 2$, and the ESR (equivalent series resistance) of C 1 and C2. A good first order approximation for $R_{0}$ is:

$$
\begin{gathered}
R_{\mathrm{O}} \cong 2\left(R_{S W 1}+R_{S W 3}+E S_{\mathrm{S} 1}\right) \\
+2\left(R_{S W 2}+R_{S W 4}+E S R_{\mathrm{C} 1}\right)+\frac{1}{f_{P U M P} \times C 1}+E S R_{\mathrm{C} 2} \\
\left(f_{\text {PUMP }}=\frac{\mathrm{f}_{\mathrm{OSC}}}{2}, R_{S W X}=\text { MOSFET switch resistance }\right)
\end{gathered}
$$

Combining the four $\mathrm{R}_{\mathrm{SW}}$ terms as $\mathrm{R}_{\mathrm{SW}}$, we see that:

$$
R_{0} \cong 2 \times R_{S W}+\frac{1}{f_{P U M P} \times C 1}+4 \times E \text { SR }_{C 1}+E E^{C 2} \Omega
$$

$R_{\text {SW }}$, the total switch resistance, is a function of supply voltage and temperature (See the Output Source Resistance graphs), typically $24 \Omega$ @ $25^{\circ} \mathrm{C}$ and 15 V , and $53 \Omega$ @ $25^{\circ} \mathrm{C}$ and 5 V . Careful selection of C 1 and C 2 will reduce the remaining terms, minimizing the output impedance. High value capacitors will reduce the $1 /(\mathrm{fPUMP} \times \mathrm{C} 1)$ component, and low ESR capacitors will lower the ESR term. Increasing the oscillator frequency will reduce the $1 /$ (fPUMP $\times$ C1) term, but may have the side effect of a net increase in output impedance when $\mathrm{C} 1>10 \mu \mathrm{~F}$ and there is no longer enough time to fully charge the capacitors every cycle. In a typical application where $f_{\mathrm{OSC}}=10 \mathrm{kHz}$ and $\mathrm{C}=\mathrm{C} 1=\mathrm{C} 2$ $=10 \mu \mathrm{~F}$ :

$$
\begin{gathered}
R_{0} \cong 2 \times 23+\frac{1}{\left(5 \times 10^{3} \times 10 \times 10^{-6}\right)}+4 \times E \mathrm{ER}_{\mathrm{C} 1}+E S R_{\mathrm{C} 2} \\
R_{0} \cong 46+20+5 \times E \mathrm{ER}_{\mathrm{C}} \Omega
\end{gathered}
$$



Figure 5: Simple Negative Converter and Its Output Equivalent

Since the ESRs of the capacitors are reflected in the output impedance multiplied by a factor of 5 , a high value could potentially swamp out a low $1 /($ fpuMP $\times \mathrm{C} 1$ ) term, rendering an increase in switching frequency or filter capacitance ineffective. Typical electrolytic capacitors may have ESRs as high as $10 \Omega$.

## Output Ripple

ESR also affects the ripple voltage seen at the output. The total ripple is determined by 2 voltages, $A$ and $B$, as shown in Figure 6. Segment $A$ is the voltage drop across the ESR of C2 at the instant it goes from being charged by C 1 (current flowing into C 2 ) to being discharged through the load (current flowing out of C 2 ). The magnitude of this current change is $2 \times$ lout $_{\text {, hence the the }}$ the is $2 \times$ IOUT $\times \mathrm{ESR}_{\mathrm{C} 2}$ volts. Segment B is the voltage change across C 2 during time $\mathrm{t}_{2}$, the half of the cycle when C 2 supplies current to the load. The drop at B is lout $\times \mathrm{t}_{2} / \mathrm{C} 2$ volts. The peak-to-peak ripple voltage is the sum of these voltage drops:

$$
\mathrm{V}_{\text {ripple }} \cong\left(\frac{1}{2 \times \mathrm{f}_{\text {PUMP }} \times \mathrm{C} 2}+2 \times \mathrm{ESR}_{\mathrm{C} 2}\right) \times \mathrm{I}_{\mathrm{OUT}}
$$

Again, a low ESR capacitor will result in a higher performance output.

## Paralleling Devices

Any number of ICL7662 voltage converters may be paralleled to reduce output resistance. The reservoir capacitor, $\mathrm{C}_{2}$, serves all devices while each device requires its own pump capacitor, $\mathrm{C}_{1}$. The resultant output resistance would be approximately

$$
\mathrm{R}_{\mathrm{OUT}}=\frac{\mathrm{R}_{\mathrm{OUT}} \text { (of ICL7662) }}{\mathrm{n} \text { (number of devices) }}
$$

## Cascading Devices

The ICL7662 may be cascaded as shown to produce larger negative multiplication of the initial supply voltage. However, due to the finite efficiency of each device, the practical limit is 10 devices for light loads. The output voltage is defined by:

$$
V_{\text {OUT }}=-n\left(V_{\text {IN }}\right),
$$

where n is an integer representing the number of devices cascaded. The resulting output resistance would be approximately the weighted sum of the individual ICL7662 ROUT values.



0320-20
Figure 7: Paralleling Devices


0320-21
Figure 8: Cascading Devices for Increased Output Voltage


## Changing the ICL7662 Oscillator Frequency

It may be desirable in some applications, due to noise or other considerations, to increase the oscillator frequency. This is achieved by overdriving the oscillator from an external clock, as shown in Figure 9. In order to prevent possible device latchup, a $100 \mathrm{k} \Omega$ resistor must be used in series with the clock output. In the situation where the designer has generated the external clock frequency using TTL logic, the addition of a $10 \mathrm{k} \Omega$ pullup resistor to $\mathrm{V}^{+}$supply is required. Note that the pump frequency with external clocking, as with internal clocking, will be $1 / 2$ of the clock frequency. Output transitions occur on the positive-going edge of the clock.

It is also possible to increase the conversion efficiency of the ICL7662 at low load levels by lowering the oscillator frequency. This reduces the switching losses, and is achieved by connecting an additional capacitor, COSC, as shown in Figure 10. However, lowering the oscillator frequency will cause an undesirable increase in the impedance of the pump $\left(\mathrm{C}_{1}\right)$ and reservoir $\left(\mathrm{C}_{2}\right)$ capacitors; this is overcome by increasing the values of $\mathrm{C}_{1}$ and $\mathrm{C}_{2}$ by the same factor that the frequency has been reduced. For example, the addition of a 100 pF capacitor between pin 7 (Osc) and $\mathrm{V}+$ will lower the oscillator frequency to 1 kHz from its nominal frequency of 10 kHz (a multiple of 10 ), and thereby necessitate a corresponding increase in the value of $\mathrm{C}_{1}$ and $\mathrm{C}_{2}$ (from $10 \mu \mathrm{~F}$ to $100 \mu \mathrm{~F}$ ).


## Positive Voltage Doubling

The ICL7662 may be employed to achieve positive voltage doubling using the circuit shown in Figure 11. In this application, the pump inverter switches of the ICL7662 are used to charge $C_{1}$ to a voltage level of $V^{+}-V_{F}$ (where $V^{+}$ is the supply voltage and $V_{F}$ is the forward voltage drop of diode $D_{1}$ ). On the transfer cycle, the voltage on $\mathrm{C}_{1}$ plus the supply voltage $\left(\mathrm{V}^{+}\right)$is applied through diode $\mathrm{D}_{2}$ to capacitor $\mathrm{C}_{2}$. The voltage thus created on $\mathrm{C}_{2}$ becomes $\left(2 V^{+}\right)-\left(2 V_{F}\right)$ or twice the supply voltage minus the combined forward voltage drops of diodes $D_{1}$ and $D_{2}$.

The source impedance of the output ( $\mathrm{V}_{\mathrm{OUT}}$ ) will depend on the output current, but for $\mathrm{V}^{+}=15$ volts and an output current of 10 mA it will be approximately 70 ohms.


## Combined Negative Voltage Conversion and Positive Supply Doubling

Figure 12 combines the functions shown in Figures 5 and 11 to provide negative voltage conversion and positive voltage doubling simultaneously. This approach would be, for example, suitable for generating +9 volts and -5 volts from an existing +5 volt supply. In this instance capacitors $\mathrm{C}_{1}$ and $\mathrm{C}_{3}$ perform the pump and reservoir functions respectively for the generation of the negative voltage, while capacitors $\mathrm{C}_{2}$ and $\mathrm{C}_{4}$ are pump and reservoir respectively for the doubled positive voltage. There is a penalty in this configuration which combines both functions, however, in that the source impedances of the generated supplies will be somewhat higher due to the finite impedance of the common charge pump driver at pin 2 of the device.


0320-25
Figure 12: Combined Negative Converter and Positive Doubler

## Voltage Splitting

The bidirectional characteristics can also be used to split a higher supply in half, as shown in Figure 13. The combined load will be evenly shared between the two sides and, a high value resistor to the LV pin ensures start-up. Because the switches share the load in parallel, the output impedance is much lower than in the standard circuits, and higher currents can be drawn from the device. By using this circuit, and then the circuit of Figure $8,+30 \mathrm{~V}$ can be converted (via +15 V , and -15 V ) to a nominal -30 V , although with rather high series output resistance ( $\sim 250 \Omega$ ).


Figure 13: Splitting A Supply in Half

## Regulated Negative Voltage Supply

In some cases, the output impedance of the ICL7662 can be a problem, particularly if the load current varies substantially. The circuit of Figure 14 can be used to overcome this by controlling the input voltage, via an ICL7611 low-power CMOS op amp, in such a way as to maintain a nearly constant output voltage. Direct feedback is inadvisable, since the ICL7662's output does not respond instantaneously to a change in input, but only after the switching delay. The circuit shown supplies enough delay to accommodate the 7662, while maintaining adequate feedback. An increase in pump and storage capacitors is desirable, and the values shown provides an output impedance of less than $5 \Omega$ to a load of 10 mA .


0320-27
Figure 14: Regulating the Output Voltage

## OTHER APPLICATIONS

Further information on the operation and use of the ICL7662 may be found in A051 "Principals and Applications of the ICL 7660 CMOS Voltage Converter".

## ICL7663S CMOS Programmable Micropower Positive Voltage Regulator

## GENERAL DESCRIPTION

The Harris ICL7663S Super Programmable Micropower Voltage Regulator is a low power, high efficiency positive voltage regulator which accepts 1.6 V to 16 V inputs and provides adjustable outputs from 1.3 V to 16 V at currents up to 40 mA .

It is a direct replacement for the industry standard ICL7663B offering wider operating voltage and temperature ranges, improved output accuracy (ICL7663SA), better temperature coefficient, guaranteed maximum supply current, and guaranteed line and load regulation. All improvements are highlighted in bold italics in the electrical characteristics section. Critical parameters are guaranteed over the entire commercial and industrial temperature ranges. The ICL7663S/SA programmable output voltage is set by two external resistors. The $1 \%$ reference accuracy of the ICL7663SA eliminates the need for trimming the output voltage in most applications.

The ICL7663S is well suited for battery powered supplies, featuring $4 \mu \mathrm{~A}$ quiescent current, low $\mathrm{V}_{\mathrm{IN}}$ to $\mathrm{V}_{\text {OUT }}$ differential, output current sensing and logic input level shutdown control. In addition, the ICL7663S has a negative temperature coefficient output suitable for generating a temperature compensated display drive voltage for LCD displays.

The ICL7663S is available in either an 8-pin plastic, CERDIP, or SOIC package.


[^9]ABSOLUTE MAXIMUM RATINGS
Input Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +18 V
Any Input or Output Voltage (Note 1)
(Terminals $1,2,3,5,6,7) \ldots \ldots \ldots \ldots . . . . . . .\left(V_{I N}+0.3\right)$ to (GND - 0.3) $V$

(Terminal 3) .............................................. . . 25 mA
Output Sinking Current
(Terminai 7) ....................................... -10 mA
Lead Temperature (Soldering, 10 sec .) . . . . . . . . . . . . $300^{\circ} \mathrm{C}$
Storage Temperature Range . . . . . . . . . . . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range
ICL7663SC
$.0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

ICL7663SI ................................ . . $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Total Power Dissipation (Note 2)
SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 mW
Minidip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500 mW
CERDIP . . . . . . . . . . . .

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS Specifications below applicable to both ICL7663S and ICL7663SA uniess otherwise stated. $V^{+}{ }_{I N}=9 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise stated. See Test Circuit, Figure 3.

Symbol	Parameter	Test Conditions	Limits			Units
			Min	Typ	Max	
$V^{+}{ }^{\text {IN }}$	Input Voltage	$\begin{aligned} & I C L 7663 S \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+70^{\circ} \mathrm{C} \\ & -25^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+85^{\circ} \mathrm{C} \\ & I C L 7663 S A \\ & 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+70^{\circ} \mathrm{C} \\ & -25^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.6 \\ & 1.6 \\ & 1.6 \\ & 1.6 \\ & \hline \end{aligned}$		$\begin{aligned} & 16 \\ & 16 \\ & 16 \\ & \\ & 16 \\ & 16 \\ & \hline \end{aligned}$	$\begin{aligned} & V \\ & v \end{aligned}$ V
$1 Q$	Quiescent Current	$\begin{array}{ll} 1.4 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq 8.5 \mathrm{~V}, \text { No Load } \\ \mathrm{V}^{+}{ }_{\text {IN }}=9 \mathrm{~V}, & 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<70^{\circ} \mathrm{C} \\ & -25^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+85^{\circ} \mathrm{C} \\ \mathrm{~V}^{+}{ }_{\text {IN }}=16 \mathrm{~V}, & 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+70^{\circ} \mathrm{C} \\ & -25^{\circ} \mathrm{C}<T_{A}<+85^{\circ} \mathrm{C} \end{array}$			$\begin{aligned} & 10 \\ & 10 \\ & 12 \\ & 12 \end{aligned}$	$\mu \mathrm{A}$   $\mu \mathrm{A}$
$V_{\text {SET }}$	Reference Voltage	$\begin{array}{ll} \text { louT } 1=100 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{SET}} \\ \text { ICL7663S } & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ \text { ICL7663SA } & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ \hline \end{array}$	$\begin{gathered} 1.2 \\ 1.275 \end{gathered}$	$\begin{aligned} & 1.3 \\ & 1.29 \end{aligned}$	$\begin{gathered} 1.4 \\ 1.305 \end{gathered}$	$\begin{aligned} & V \\ & V \end{aligned}$
$\frac{\Delta V_{\mathrm{SET}}}{\Delta \mathrm{~T}}$	Temperature Coefficient	$\begin{aligned} & 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+70^{\circ} \mathrm{C} \\ & -25^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+85^{\circ} \mathrm{C} \\ & \hline \end{aligned}$		$\begin{array}{r} 100 \\ 100 \\ \hline \end{array}$		ppm   ppm
$\frac{\Delta V_{S E T}}{V_{S E T} \Delta V_{I N}}$	Line Regulation	$\begin{aligned} & 2 \mathrm{~V}<\mathrm{V}_{\mathbb{N}}<15 \mathrm{~V} \\ & 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+70^{\circ} \mathrm{C} \\ & -25^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+85^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & 0.03 \\ & 0.03 \end{aligned}$	$\begin{gathered} 0.03 \\ 0.3 \end{gathered}$	$\begin{aligned} & \% / V \\ & \% / V \end{aligned}$
ISET	$V_{\text {SET }}$ Input Current	$\begin{aligned} & 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+70^{\circ} \mathrm{C} \\ & -25^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+85^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & 0.01 \\ & 0.01 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	nA $\mathrm{nA}$

NOTE: 1. Connecting any terminal to voltages greater than $\left(\mathbb{V}{ }^{+} i \mathbb{N}+0.3 \mathrm{~V}\right)$ or less than ( $\mathrm{GND}-0.3 \mathrm{~V}$ ) may cause destructive device latch-up. It is recommended that no inputs from sources operating on external power supplies be applied prior to ICL7663S power-up
2. Derate linearly above $50^{\circ} \mathrm{C}$ at $5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for Plastic Minidip, $7.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for TO-99 can, and $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for CERDIP.

ELECTRICAL CHARACTERISTICS
Specifications below applicable to both ICL7663S and ICL7663SA unless otherwise stated. $\mathrm{V}^{+}{ }_{I N}=9 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise stated. See Test Circuit, Figure 3.

Symbol	Parameter	Test Conditions	Limits			Units
			Min	Typ	Max	
ISHDN	Shutdown Input Current			$\pm 0.01$	10	nA
$\mathrm{V}_{\text {SHDN }}$	Shutdown Input Voltage	$\mathrm{V}_{\text {SHDN }}$ HI: Both $\mathrm{V}_{\text {OUT }}$ Disabled $V_{\text {SHDN }}$ LO: Both V OUT Enable	1.4		0.3	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$
ISENSE	Sense Pin Input Current			0.01	10	nA
$\mathrm{V}_{\mathrm{CL}}$	Sense Pin Input Threshold			0.5		V
$\mathrm{R}_{\text {SAT }}$	Input-Output   Saturation Resistance   (Note 3)	$\begin{aligned} & V+{ }_{1 N}=2 V, \text { IOUT }_{1}=1 \mathrm{~mA} \\ & V+\mathbb{N}=9 \mathrm{~V}, \text { I OUT }_{1}=2 \mathrm{~mA} \\ & V^{+}{ }_{\mathrm{IN}}=15 \mathrm{~V}, \text { I OUT } 1=5 \mathrm{~mA} \end{aligned}$		$\begin{aligned} & 170 \\ & 50 \\ & 35 \\ & \hline \end{aligned}$	$\begin{gathered} 350 \\ 100 \\ 70 \\ \hline \end{gathered}$	$\begin{aligned} & \Omega \\ & \Omega \\ & \Omega \\ & \hline \end{aligned}$
$\frac{\Delta V_{\text {OUT }}}{\Delta l_{\text {OUT }}}$	Load Regulation	$\begin{aligned} & 1 \mathrm{~mA}<\text { I OUT } 2^{<20} \mathrm{~mA} \\ & 50 \mu \mathrm{~A}<\text { I OUT } 1<5 \mathrm{~mA} \\ & \hline \end{aligned}$		$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{gathered} 3 \\ 10 \end{gathered}$	$\begin{aligned} & \Omega \\ & \Omega \end{aligned}$
lout2	Available Output Current (Vout2)	$\begin{aligned} & 3 V \leq V_{I N} \leq 16 V, \\ & V_{I N}-V_{\text {OUT2 }}=1.5 \mathrm{~V} \end{aligned}$	40			mA
$V_{\text {TC }}$	Negative Tempco Output (Note 4)	Open-Circuit Voltage		0.9		V
${ }_{\text {IT }}$		Maximum Sink Current	0	8	2.0	mA
$\frac{\Delta V_{\mathrm{TC}}}{\Delta \mathrm{~T}}$	Temperature Coefficient	Open Circuit		+2.5		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
$\mathrm{I}_{\text {L(MIN })}$	Minimum Load Current	$\begin{aligned} & \text { (Includes } V_{S E T} \text { Divider) } \\ & T_{A}=25^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C}<\mathrm{T}_{A}<+70^{\circ} \mathrm{C} \\ & -25^{\circ} \mathrm{C}<\mathrm{T}_{A}<+85^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & 0.2 \\ & 0.2 \end{aligned}$	$\begin{array}{r} 1.0 \\ 5.0 \\ 5.0 \\ \hline \end{array}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$

NOTE: 3. This parameter refers to the saturation resistance of the MOS pass transistor. The minimum input-output voltage differential at low current (under 5 mA ), can be determined by multiplying the load current (including set resistor current, but not quiescent current) by this resistance.
4. This output has a positive temperature coefficient. Using it in combination with the inverting input of the regulator at $\mathrm{V}_{\mathrm{SET}}$, a negative coefficient results in the output voltage. See Figure 5 for details. Pin will not source current.
5. All pins are designed to withstand electrostatic discharge (ESD) leveis in excess of 2000 V .
6. All significant improvements over the industry standard ICL7663 are highlighted in bold italics.


Figure 2: ICL76635 Functional Diagram

## TYPICAL PERFORMANCE CHARACTERISTICS



## DETAILED DESCRIPTION

The ICL7663S is a CMOS integrated circuit incorporating all the functions of a voltage regulator plus protection circuitry on a single monolithic chip. Referring to the functional diagram (Figure 2), the main blocks are a bandgap-type voltage reference, an error amplifier, and an output driver with both PMOS and NPN pass transistors.
The bandgap output voltage, trimmed to $1.29 \mathrm{~V} \pm 15 \mathrm{mV}$ for the ICL7663SA, and the input voltage at the V ${ }_{\text {SET }}$ terminal are compared in amplifier A. Error amplifier A drives a Pchannel pass transistor which is sufficient for low (under about 5 mA ) currents. The high current output is passed by an NPN bipolar transistor connected as a follower. This configuration gives more gain and lower output impedance. Logic-controlled shutdown is implemented via a N -channel MOS transistor. Current-sensing is achieved with comparator C, which functions with the VOUT2 terminal. The ICL7663S has an output ( $\mathrm{V}_{\mathrm{TC}}$ ) from a buffer amplifier ( B ), which can be used in combination with amplifier $A$ to generate programmable-temperature-coefficient output voltages. The amplifier, reference and comparator circuitry all operate at bias levels well below $1 \mu \mathrm{~A}$ to achieve extremely low quiescent current. This does limit the dynamic response of
the circuits, however, and transients are best dealt with outside the regulator loop.

## BASIC OPERATION

The ICL7663S is designed to regulate battery voltages in the 5 V to 15 V region at maximum load currents of about 5 mA to 30 mA . Although intended as low power devices, power dissipation limits must be observed. For example, the power dissipation in the case of a 10 V supply regulated down to 2 V with a load current of 30 mA clearly exceeds the power dissipation rating of the Minidip:

$$
(10-2)(30)\left(10^{-3}\right)=240 \mathrm{~mW}
$$

The circuit of Figure 4 illustrates proper use of the device. CMOS devices generally require two precautions: every input pin must go somewhere, and maximum values of applied voltages and current limits must be rigorously observed. Neglecting these precautions may lead to, at the least, incorrect or nonoperation, and at worst, destructive device failure. To avoid the problem of latchup, do not apply inputs to any pins before supply voltage is applied.


0092-6
NOTE: 1. $\mathrm{S}_{1}$ when closed disables output current limiting.
2: Close $S_{2}$ for $V_{\text {OUT1 }}$, open $S_{2}$ for $V_{\text {OUT2 }}$.
3: $V_{\text {OUT }}=\frac{R_{2}+R_{1}}{R_{1}} V_{\text {SET }}$.

4: $\mathrm{I}_{\mathrm{Q}}$ quiescent current is measured at GND pin by meter M .
5: $\mathrm{S}_{3}$ when ON, permits normal operation, when OFF, shuts down both $\mathrm{V}_{\text {OUT1 }}$ and $\mathrm{V}_{\text {OUT2 }}$

Figure 3: ICL7663S Test Circuit

Input Voltages-The ICL7663S accepts working inputs of 1.5 V to 16 V . When power is applied, the rate-of-rise of the input may be hundreds of volts per microsecond. This is potentially harmful to the regulators, where internal operating currents are in the nanoampere range. The $0.047 \mu \mathrm{~F}$ capacitor on the device side of the switch will limit inputs to a safe level around $2 \mathrm{~V} / \mu \mathrm{s}$. Use of this capacitor is suggested in all applications. In severe rate-of-rise cases, it may be advisable to use an RC network on the SHutDowN pin to delay output turn-on. Battery charging surges, transients, and assorted noise signals should be kept from the regulators by RC filtering, zener protection, or even fusing.
Output Voltages-The resistor divider $R_{2} / R_{1}$ is used to scale the reference voltage, $\mathrm{V}_{\mathrm{SET}}$, to the desired output using the formula $V_{\text {OUT }}=\left(1+R_{2} / R_{1}\right) V_{\text {SET }}$. Suitable arrangements of these resistors, using a potentiometer, enables exact values for $V_{\text {OUT }}$ to be obtained. In most applications the potentiometer may be eliminated by using the ICL7663SA. The ICL7663SA has $\mathrm{V}_{\text {SET }}$ voltage guaranteed to be $1.29 \mathrm{~V} \pm 15 \mathrm{mV}$ and when used with $\pm 1 \%$ tolerance resistors for $R_{1}$ and $R_{2}$ the initial output voltage will be within $\pm 2.7 \%$ of ideal.
The low leakage current of the $\mathrm{V}_{\text {SET }}$ terminal allows $\mathrm{R}_{1}$ and $\mathrm{R}_{2}$ to be tens of megohms for minimum additional quiescent drain current. However, some load current is required for proper operation, so for extremely low-drain applications it is necessary to draw at least $1 \mu \mathrm{~A}$. This can include the current for $R_{2}$ and $R_{1}$.
Output voltages up to nearly the $\mathrm{V}_{\text {IN }}$ supply may be obtained at low load currents, while the low limit is the reference voltage. The minimum input-output differential in each regulator is obtained using the $\mathrm{V}_{\text {OUT1 }}$ terminal. The inputoutput differential increases to 1.5 V when using $V_{\text {OUT2 }}$.


Figure 4: Positive Regulator with Current Limit

Output Currents-Low output currents of less than 5 mA are obtained with the least input-output differential from the $\mathrm{V}_{\text {OUT } 1}$ terminal (connect $\mathrm{V}_{\text {OUT2 }}$ to $\mathrm{V}_{\text {OUT1 }}$ ). Where higher currents are needed, use $\mathrm{V}_{\text {OUT2 }}$ (VOUT1 should be left open in this case).
High output currents can be obtained only as far as package dissipation allows. It is strongly recommended that output current-limit sensing be used in such cases.
Current-Limit Sensing-The on-chip comparator ( C in Figure 2) permits shutdown of the regulator output in the event of excessive current drain. As Figure 4 shows, a current-limiting resistor, $\mathrm{R}_{\mathrm{CL}}$, is placed in series with $\mathrm{V}_{\text {OUT2 }}$ and the SENSE terminal is connected to the load side of $\mathrm{R}_{\mathrm{CL}}$. When the current through $\mathrm{R}_{\mathrm{CL}}$ is high enough to produce a voltage drop equal to $V_{C L}(0.5 \mathrm{~V})$ the voltage feedback is bypassed and the regulator output will be limited to this current. Therefore, when the maximum load current (LOAD) is determined, simply divide $\mathrm{V}_{\text {CL }}$ by lload to obtain the value for $\mathrm{R}_{\mathrm{CL}}$.
Logic-Controllable Shutdown-When equipment is not needed continuously (e.g., in remote data-acquisition systems), it is desirable to eliminate its drain on the system until it is required. This usually means switches, with their unreliable contacts. Instead, the ICL7663S can be shut down by a logic signal, leaving only $l_{Q}$ (under $4 \mu \mathrm{~A}$ ) as a drain on the power source. Since this pin must not be left open, it should be tied to ground if not needed. A voltage of less than 0.3 V for the ICL7663S will keep the regulator ON, and a voltage level of more than 1.4 V but less than $\mathrm{V}{ }^{+}$in will turn the outputs OFF. If there is a possibility that the control signal could exceed the regulator input $\left(\mathrm{V}^{+}{ }_{i N}\right)$ the current from this signal should be limited to $100 \mu \mathrm{~A}$ maximum by a highvalue ( $1 \mathrm{M} \Omega$ ) series resistor. This situation may occur when the logic signal originates from a system powered separately from that of the regulator.

Additional Circuit Precautions-This regulator has poor rejection of voltage fluctuations from AC sources above 10 Hz or so. To prevent the output from responding (where this might be a problem), a reservoir capacitor across the load is advised. The value of this capacitor is chosen so that the regulated output voltage reaches $90 \%$ of its final value in 20 ms . From

$$
\mathrm{I}=\mathrm{C} \frac{\Delta V}{\Delta \mathrm{t}}, \mathrm{C}=\mathrm{I}_{\text {OUT }} \frac{\left(20 \times 10^{-3}\right)}{0.9 \mathrm{~V}_{\text {OUT }}}=0.022 \frac{\mathrm{I} \text { OUT }}{V_{\text {OUT }}}
$$

In addition, where such a capacitor is used, a current-limiting resistor is also suggested (see "Current-Limit Sensing"). Producing Output Voltages with Negative Temperature Coefficients-The ICL7663S has an additional output which is 0.9 V relative to GND and has a tempco of $+2.5 \mathrm{mV} /{ }^{\circ} \mathrm{C}$. By applying this voltage to the inverting input of amplifier $A$ (i.e., the $\mathrm{V}_{\text {SET }}$ pin), output voltages having negative TC may be produced. The TC of the output voltage is controlled by the $R_{2} / R_{3}$ ratio (see Figure 5 and its design equations).

## APPLICATIONS

## Boosting Output Current with External Transistor

The maximum available output current from the ICL7663S is 40 mA . To obtain output currents greater than 40 mA , an external NPN transistor is used connected as shown in Figure 6.

## Generating a Temperature Compensated Display Drive Voltage

Temperature has an important effect in the variation of threshold voltage in multiplexed LCD displays. As temperature rises, the threshold voltage goes down. For applications where the display temperature varies widely, a temperature compensated display voltage, $\mathrm{V}_{\text {DISP }}$, can be generated using the ICL7663S. This is shown in Figure 7 for the ICM7233 triplexed LCD display driver.


0092-8
$E Q .1: V_{\text {OUT }}=V_{S E T}\left(1+\frac{R_{2}}{R_{1}}\right)+\frac{R_{2}}{R_{3}}\left(V_{S E T}-V_{T C}\right)$
EQ. 2: $T C V_{\text {OUT }}=-\frac{R_{2}}{R_{3}}\left(T C V_{T C}\right)$ in $m V /{ }^{\circ} \mathrm{C}$
Where: $V_{\text {SET }}=1.3 \mathrm{~V}$
$V_{T C}=0.9 \mathrm{~V}$
$\mathrm{TCV}_{\mathrm{TC}}=+2.5 \mathrm{mV} /{ }^{\circ} \mathrm{C}$
Figure 5. Generating Negative Temperature Coefficients


## 2

## APPLICATIONS



0092-10
Figure 7: Generating a Multiplexed LCD Display Drive Voltage

## GENERAL DESCRIPTION

The ICL7665S Super CMOS Micropower Over/Under Voltage Detector contains two low power, individually programmable voltage detectors on a single CMOS chip. Requiring typically $3 \mu \mathrm{~A}$ for operation, the device is intended for battery-operated systems and instruments which require high or low voltage warnings, settable trip points, or fault monitoring and correction. The trip points and hysteresis of the two voltage detectors are individually programmed via external resistors. An internal bandgap-type reference provides an accurate threshold voltage while operating from any supply in the 1.6 V to 16 V range.

The Harris ICL7665S, Super Programmable Over/Under Voltage Detector is a direct replacment for the industry standard ICL7665B offering wider operating voltage and temperature ranges, improved threshold accuracy (ICL7665SA), and temperature coefficient, and guaranteed maximum supply current. All improvements are highlighted in bold italics in the electrical characteristics section. All critical parameters are guaranteed over the entire commercial and industrial temperature ranges.


## FEATURES

- Guaranteed $10 \mu \mathrm{~A}$ Maximum Quiescent Current over Temperature
- Guaranteed Wider Operating Voltage Range over Entire Operating Temperature Range
- 2\% Threshold Accuracy (ICL7665SA)
- Dual Comparator with Precision Internal Reference
- $100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ Temperature Coefficient of Threshold Voltage
- Improved Direct Replacement for Industry-Standard ICL7665B and Other Second-Source Devices
- Up to 20 mA Output Current Sinking Ability
- Individually Programmable Upper and Lower Trip Voltages and Hysteresis Levels


## APPLICATIONS

- Pocket Pagers
- Portable Instrumentation
- Charging Systems
- Memory Power Back-Up
- Battery-Operated Systems
- Portable Computers
- Level Detectors

ORDERING INFORMATION

Part   Number	Temperature   Range	Package
ICL7665SCBA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Lead SOIC
ICL7665SCPA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Lead Minidip
ICL7665SCJA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Lead CERDIP
ICL7665SACPA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Lead Minidip
ICL7665SACJA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Lead CERDIP
ICL7665SIBA	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 Lead SOIC
ICL7665SIPA	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 Lead Minidip
ICL7665SIJA	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 Lead CERDIP
ICL7665SAIPA	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 lead Minidip
ICL7665SAIJA	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 Lead CERDIP

## ABSOLUTE MAXIMUM RATINGS

Supply Voltage (Note 2)
Output Voltages OUT1 and OUT2 (with respect to GND)
(Note 2) ................................ . 0.3 V to +18 V
Output Voltages HYST1 and HYST2 (with respect to $\mathrm{V}^{+}$)
(Note 2)
-0.3 V to +18 V
input Voltages SET1 and SET2
(Note 2) $\ldots \ldots \ldots \ldots \ldots$. $\mathrm{GND}-0.3 \mathrm{~V}$ ) to $\left(\mathrm{V}^{+}+0.3 \mathrm{~V}\right)$
Maximum Sink Output OUT1 and OUT2 . . . . . . . . . . . 25 mA
Maximum Source Output Current

$$
\text { HYST1 and HYST2 . . . . . . . . . . . . . . . . . . . . . . . . . . }-25 \mathrm{~mA}
$$

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## ELECTRICAL CHARACTERISTICS

The specifications below are applicable to both the ICL7665S and ICL7665SA unless otherwise stated. $\mathrm{V}^{+}=5 \mathrm{~V}$, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, Test Circuit Figure 3 unless otherwise stated.

Symbol	Parameter	Test Conditions	Limits			Units
			Min	Typ	Max	
$V^{+}$	Operating Supply Voltage	$\begin{aligned} & I C L 7665 S \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} \\ & -25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C} \\ & I C L 7665 S A \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} \\ & -25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	$\begin{aligned} & 1.6 \\ & 1.8 \\ & 1.8 \\ & \\ & 1.8 \\ & 1.8 \end{aligned}$		$\begin{aligned} & 16 \\ & 16 \\ & 16 \\ & \\ & 16 \\ & 16 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \hline \end{aligned}$
$1+$	Supply Current	$\mathrm{GND} \leq \mathrm{V}_{\text {SET } 1}, \mathrm{~V}_{\text {SET } 2} \leq \mathrm{V}^{+}$ All Outputs Open Circuit $\begin{aligned} & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} \\ & V^{+}=2 \mathrm{~V} \\ & V^{+}=9 \mathrm{~V} \\ & \mathrm{~V}^{+}=15 \mathrm{~V} \\ & -\mathbf{2 5 ^ { \circ }} \mathbf{C} \leq \boldsymbol{T}_{\boldsymbol{A}} \leq+85^{\circ} \mathbf{C} \\ & \boldsymbol{V}^{+}=\mathbf{2 V} \\ & \boldsymbol{V}^{+}=\mathbf{9 V} \\ & \boldsymbol{V}^{+}=15 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 2.5 \\ & 2.6 \\ & 2.9 \\ & 2.5 \\ & 2.6 \\ & 2.9 \\ & \hline \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \\ & \hline \end{aligned}$	V   $\mu \mathrm{A}$
$\mathrm{V}_{\text {SET1 }}$   $V_{\text {SET2 }}$   $V_{\text {SETI }}$   $V_{\text {SET2 }}$	Input Trip Voltage	$\begin{aligned} & \text { ICL7665S } \\ & \text { ICL7665SA } \end{aligned}$	$\begin{gathered} 1.15 \\ 1.2 \\ 1.275 \\ 1.225 \end{gathered}$	$\begin{aligned} & 1.3 \\ & 1.3 \\ & 1.30 \\ & 1.30 \end{aligned}$	$\begin{gathered} 1.45 \\ 1.4 \\ 1.325 \\ 1.375 \end{gathered}$	$\begin{aligned} & V \\ & V \\ & V \\ & V \end{aligned}$
$\frac{\Delta V_{S E T}}{\Delta T}$	Temperature Coefficient of $V_{S E T}$	$\begin{aligned} & \text { ICL7665S } \\ & \text { ICL7665SA } \end{aligned}$		$\begin{array}{r} 200 \\ 100 \\ \hline \end{array}$		ppm   ppm
$\frac{\Delta V_{\mathrm{SET}}}{\Delta \mathrm{~V}_{\mathrm{S}}}$	Supply Voltage Sensitivity of $\mathrm{V}_{\mathrm{SET} 1}, \mathrm{~V}_{\mathrm{SET}}$	$\begin{aligned} & R_{\text {OUT1 } 1}, R_{\text {OUT2 } 2, ~}, R_{\text {HYST1 }}, R_{\text {RHYST }}=1 \mathrm{M} \Omega \\ & 2 \mathrm{~V} \leq \mathrm{V}+\leq 10 \mathrm{~V} \end{aligned}$		0.03		\%/V
lolk   HLK   lolk   lhLK	Output Leakage Currents of OUT and HYST	$\begin{aligned} & V_{\mathrm{SET}}=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{SET}} \geq 2 \mathrm{~V} \\ & \mathrm{~V}^{+}=15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=70^{\circ} \mathrm{C} \end{aligned}$		$\begin{gathered} 10 \\ -10 \end{gathered}$	$\begin{array}{\|c\|} 200 \\ -100 \\ 2000 \\ -500 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
VOUT1   $V_{\text {OUT1 }}$   $V_{\text {OUT1 }}$	Output Saturation Voltages	$\begin{aligned} & V_{S E T 1}=2 \mathrm{~V}, \text { I OUT1 }=2 \mathrm{~mA} \\ & \mathrm{~V}^{+}=2 \mathrm{~V} \\ & \mathrm{~V}^{+}=5 \mathrm{~V} \\ & \mathrm{~V}^{+}=15 \mathrm{~V} \end{aligned}$		$\begin{gathered} 0.2 \\ 0.1 \\ 0.06 \\ \hline \end{gathered}$	$\begin{aligned} & 0.5 \\ & 0.3 \\ & 0.2 \end{aligned}$	$\begin{aligned} & v \\ & v \\ & v \end{aligned}$

## ELECTRICAL CHARACTERISTICS

The specifications below are applicable to both the ICL7665S and ICL7665SA unless otherwise stated. $\mathrm{V}+=5 \mathrm{~V}$,
$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, Test Circuit Figure 3 unless otherwise stated. (Continued)

Symbol	Parameter	Test Conditions	Limits			Units
			Min	Typ	Max	
$\mathrm{V}_{\text {HYST1 }}$   $\mathrm{V}_{\mathrm{HYST}} 1$   $\mathrm{V}_{\mathrm{HYST}} 1$	Output Saturation Voltages	$\begin{aligned} & V_{S E T 1}=2 \mathrm{~V}, I_{H Y S T 1}=-0.5 \mathrm{~mA} \\ & \mathrm{~V}^{+}=2 \mathrm{~V} \\ & \mathrm{~V}^{+}=5 \mathrm{~V} \\ & \mathrm{~V}^{+}=15 \mathrm{~V} \end{aligned}$		$\begin{array}{r} -0.15 \\ -0.05 \\ -0.02 \end{array}$	$\begin{aligned} & -0.30 \\ & -0.15 \\ & -0.10 \end{aligned}$	$\begin{aligned} & V \\ & v \\ & v \end{aligned}$
$V_{\text {OUT2 }}$   VOUT2   $V_{\text {OUT2 }}$	Output Saturation Voltages	$\begin{aligned} & \mathrm{V}_{\text {SET2 }}=0 \mathrm{~V}, \text { IOUT2 }=2 \mathrm{~mA} \\ & \mathrm{~V}+=2 \mathrm{~V} \\ & \mathrm{~V}+=5 \mathrm{~V} \\ & \mathrm{~V}+=15 \mathrm{~V} \end{aligned}$		$\begin{gathered} 0.2 \\ 0.15 \\ 0.11 \end{gathered}$	$\begin{gathered} 0.5 \\ 0.3 \\ 0.25 \end{gathered}$	$\begin{aligned} & v \\ & v \\ & v \end{aligned}$
$\mathrm{V}_{\text {HYST2 }}$   $\mathrm{V}_{\text {HYST2 }}$	Output Saturation Voltages	$\begin{aligned} & \mathrm{V}_{\text {SET2 }}=2 \mathrm{~V} \\ & \mathrm{~V}^{+}=2 \mathrm{~V}, \mathrm{I}_{\text {HYST2 }}=-0.2 \mathrm{~mA} \\ & \mathrm{~V}^{+}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{HYST} 2}=-0.5 \mathrm{~mA} \\ & \mathrm{~V}^{+}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{HYST}}=-0.5 \mathrm{~mA} \end{aligned}$		$\begin{array}{r} -0.25 \\ -0.43 \\ -0.35 \end{array}$	$\begin{array}{r} -0.8 \\ -1.0 \\ -0.8 \\ \hline \end{array}$	$\checkmark$
${ }^{\text {ISET }}$	$V_{\text {SET }}$ Input Leakage Current	GND $\leq \mathrm{V}_{\text {SET }} \leq \mathrm{V}^{+}$		0.01	10	nA
$\Delta V_{S E T}$	$\Delta$ Input for Complete Output Change	$\begin{aligned} & \text { ROUT }=4.7 \mathrm{k} \Omega, \text { R }_{\text {HYST }}=20 \mathrm{k} \Omega \\ & \mathrm{~V}_{\text {OUTLO }}=1 \% \mathrm{~V}+, \mathrm{V}_{\text {OUTH }} H \mathrm{~V}=99 \% \mathrm{~V}^{+} \\ & \text {ICL7665S } \\ & \text { ICL7665SA } \end{aligned}$		$\begin{aligned} & 1.0 \\ & 0.1 \end{aligned}$		$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
$\mathrm{V}_{\mathrm{SET} 1}-\mathrm{V}_{\text {SET2 }}$	Difference in Trip Voltages	$\mathrm{R}_{\text {OUT }}, \mathrm{R}_{\text {HYST }}=1 \mathrm{M} \Omega$		$\pm 5$	$\pm 50$	mV
	Output/Hysteresis Difference	$\begin{aligned} & R_{\text {OUT, }} R_{\text {HYST }}=1 \mathrm{M} \Omega \\ & \text { ICL7665S } \\ & \text { ICL7665SA } \end{aligned}$		$\begin{gathered} \pm 1 \\ \pm 0.1 \end{gathered}$		$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$

NOTE 1: Derate above $+25^{\circ} \mathrm{C}$ ambient temperature at $4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
2: Due to the SCR structure inherent in the CMOS process used to fabricate these devices, connecting any terminal to voitages greater than ( $\mathrm{V}++0.3 \mathrm{~V}$ ) or less than (GND - 0.3V) may cause destructive device latchup. For these reasons, it is recommended that no inputs from external sources not operating from the same power supply be applied to the device before its supply is established, and that in multiple supply systems, the supply to the ICL7665S be turned on first. If this is not possible, currents into inputs and/or outputs must be limited to $\pm 0.5 \mathrm{~mA}$ and voltages must not exceed those defined above.
3: All significant improvements over the industry-standard ICL7665 are highlighted in bold italics.


0090-4
CONDITIONS*
$\mathrm{V}_{\text {SET1 }}>1.3 \mathrm{~V}$, OUT1 switch ON
$\mathrm{V}_{\text {SET1 }}<1.3 \mathrm{~V}$. OUT1 switch OFF
$V_{\text {SET2 }}>1.3 \mathrm{~V}$, OUT2 switch OFF
$V_{\text {SET2 }}<1.3 \mathrm{~V}$, OUT2 switch ON
*See Operating Characteristics for exact threshoids.

HYST1 switch ON HYST1 switch OFF HYST2 switch ON HYST2 switch OFF

Figure 2: Functional Diagram


Figure 3: Test Circuits


Figure 4: Switching Waveforms

## A.C. ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Test Conditions	Limits			Units
			Min	Typ	Max	
tso1d   ${ }^{\text {tsH1d }}$   ${ }^{\text {tsO2d }}$   ${ }^{\text {tsH2d }}$	Output Delay Times Input Going HI	$\mathrm{V}_{\text {SET }}$ Switched between 1.0 V to 1.6 V $R_{\text {OUT }}=4.7 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=12 \mathrm{pF}$ $R_{H Y S T}=20 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=12 \mathrm{pF}$		$\begin{aligned} & 85 \\ & 90 \\ & 55 \\ & 55 \\ & \hline \end{aligned}$		$\mu \mathrm{S}$
tso1d   ${ }^{\text {tsH1d }}$   ${ }^{\text {tsO2d }}$   ${ }^{\text {tsH2d }}$	Input Going LO	$\mathrm{V}_{\text {SET }}$ Switched between 1.6 V to 1.0 V ROUT $=4.7 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=12 \mathrm{pF}$ $R_{\text {HYST }}=20 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=12 \mathrm{pF}$		$\begin{aligned} & 75 \\ & 80 \\ & 60 \\ & 60 \\ & \hline \end{aligned}$		$\mu \mathrm{S}$
toir   to2r   $\mathrm{t}_{\mathrm{H} 1 \mathrm{r}}$   $\mathrm{t}_{\mathrm{H} 2 \mathrm{r}}$	Output Rise Times	$\mathrm{V}_{\text {SET }}$ Switched between 1.0 V to 1.6 V ROUT $=4.7 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=12 \mathrm{pF}$ $R_{\text {HYST }}=20 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=12 \mathrm{pF}$		$\begin{aligned} & 0.6 \\ & 0.8 \\ & 7.5 \\ & 0.7 \end{aligned}$		$\mu \mathrm{S}$
$\mathrm{t}_{\mathrm{O} 1 \mathrm{f}}$   tozf   $\mathrm{t}_{\mathrm{H} 1 \mathrm{f}}$   $\mathrm{t}_{\mathrm{H} 2 f}$	Output Fall Times	$V_{\text {SET }}$ Switched between 1.0 V to 1.6 V $R_{\text {OUT }}=4.7 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=12 \mathrm{pF}$ $R_{\text {HYST }}=20 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=12 \mathrm{pF}$		$\begin{gathered} 0.6 \\ 0.7 \\ 4 \\ 1.8 \end{gathered}$		$\mu \mathrm{S}$

Typical Performance Characteristics


## DETAILED DESCRIPTION

As shown in the Functional Diagram, Figure 2, the ICL7665S consists of two comparators which compare input voltages on the SET1 and SET2 terminals to an internal 1.3 V band-gap reference. The outputs from the two comparators drive open-drain N-channel transistors for OUT1 and OUT2, and open-drain P-channel transistors for HYST1 and HYST2 outputs. Each section, the Under-Voltage Detector and the Over-Voltage Detector, is independent of the other, although both use the internal 1.3 V reference. The offset voltages of the two comparators will normally be unequal so $\mathrm{V}_{\mathrm{SET} 1}$ will generally not quite equal $\mathrm{V}_{\mathrm{SET} 2}$.

The input impedances of the SET1 and SET2 pins are extremely high, and for most practical applications can be ignored. The four outputs are open-drain MOS transistors, and when ON behave as low resistance switches to their respective supply rails. This minimizes errors in setting-up the hysteresis, and maximizes the output flexibility. The operating currents of the bandgap reference and the comparators are around 100 nA each.

## PRECAUTIONS

Junction-isolated CMOS devices like the ICL7665S have an inherent SCR or 4-layer PNPN structure distributed throughout the die. Under certain circumstances, this can be triggered into a potentially destructive high-current mode. This latchup can be triggered by forward-biasing an input or output with respect to the power supply, or by applying excessive supply voltages. In very-low current analog circuits, such as the ICL7665S, this SCR can also be triggered by applying the input power supply extremely rapidly ("instantaneously"), e.g. through a low impedance battery and an ON/OFF switch with short lead lengths. The rate-ofrise of the supply voltage can exceed $100 \mathrm{~V} / \mu \mathrm{s}$ in such a circuit. A low-impedance capacitor (e.g., $0.05 \mu \mathrm{~F}$ disc ceramic) between the $\mathrm{V}^{+}$and GrouND pins of the ICL7665S can be used to reduce the rate-of-rise of the supply voltage in battery applications. In line-operated systems, the rate-ofrise of the supply is limited by other considerations, and is normally not a problem.

If the SET voltages must be applied before the supply voltage $\mathrm{V}^{+}$, the input current should be limited to less than 0.5 mA by appropriate external resistors, usually required for voltage setting anyway. A similar precaution should be taken with the outputs if it is likely that they will be driven by other circuits to levels outside the supplies at any time. See M011 for some other protection ideas.

## SIMPLE THRESHOLD DETECTOR

Figure 5 shows the simplest connection of the ICL7665S for threshold detection. From the graph (b), it can be seen that at low input voltages OUT1 is OFF, or high, while OUT2 is ON, or low. As the input rises (e.g., at power-on) toward $\mathrm{V}_{\text {NOM }}$ (usually the eventual operating voltage), OUT2 goes high on reaching $V_{\text {TR2 }}$. If the voltage rises above $V_{\text {NOM }}$ as much as $\mathrm{V}_{\text {TR1 }}$, OUT1 goes low. The equations giving $\mathrm{V}_{\text {SET1 }}$ and $V_{S E T 2}$ are from Figure 5(a):
$V_{\text {SET } 1}=V_{I N} \frac{R_{11}}{\left(R_{11}+R_{21}\right)} ; V_{\text {SET } 2}=V_{I N} \frac{R_{12}}{\left(R_{12}+R_{22}\right)}$
Since the voltage to trip each comparator is nominally 1.3 V , the value $\mathrm{V}_{\text {IN }}$ for each trip point can be found from $V_{T R 1}=V_{S E T 1} \frac{\left(R_{11}+R_{21}\right)}{R_{11}}=1.3 \frac{\left(R_{11}+R_{21}\right)}{R_{11}}$ for detector 1 and
$V_{\text {TR2 }}=V_{\text {SET2 }} \frac{\left(R_{12}+R_{22}\right)}{R_{12}}=1.3 \frac{\left(R_{12}+R_{22}\right)}{R_{12}}$ for detector 2


Either detector may be used alone, as well as both together, in any of the circuits shown here.
When $\mathrm{V}_{\mathrm{IN}}$ is very close to one of the trip voltages, normal variations and noise may cause it to wander back and forth across this level, leading to erratic output ON and OFF conditions. The addition of hysteresis, making the trip points slightly different for rising and falling inputs, will avoid this condition.

## THRESHOLD DETECTOR WITH HYSTERESIS

Figure 6(a) shows how to set up such hysteresis, while Figure 6(b) shows how the hysteresis around each trip point produces switching action at different points depending on whether $\mathrm{V}_{\mathbb{I N}}$ is rising or falling (the arrows indicate direction of change). The HYST outputs are basically switches which short out $\mathrm{R}_{31}$ or $\mathrm{R}_{32}$ when $\mathrm{V}_{\mathbb{N}}$ is above the respective trip point. Thus if the input voltage rises from a low value, the trip point will be controlled by $R_{1 n}, R_{2 n}$, and $R_{3 n}$, until the trip point is reached. As this value is passed, the detector changes state, $R_{3 n}$ is shorted out, and the trip point becomes controlled by only $R_{1 n}$ and $R_{2 n}$, a lower value. The input will then have to fall to this new point to restore the

## APPLICATIONS



Table 1: Set-Point Equations
a) NO HYSTERESIS

Over-Voltage $V_{\text {TRIP }}=\frac{R_{11}+R_{21}}{R_{11}} \times V_{\text {SET1 }}$
Over-Voltage $V_{\text {TRIP }}=\frac{R_{12}+R_{22}}{R_{12}} \times V_{\text {SET2 }}$
b) HYSTERESIS PER FIGURE 6A

$$
v_{\mathrm{U} 1}=\frac{R_{11}+R_{21}+R_{31}}{R_{11}} \times V_{\mathrm{SET} 1}
$$

Over-Voltage $V_{\text {TRIP }}$

$$
\begin{aligned}
& V_{L 1}=\frac{R_{11}+R_{21}}{R_{11}} \times V_{\text {SET } 1} \\
& V_{\mathrm{U} 2}= \frac{R_{12}+R_{22}+R_{32}}{R_{12}} \times V_{\mathrm{SET} 2}
\end{aligned}
$$

Under-Voltage $V_{\text {TRIP }}$

$$
V_{\mathrm{L} 2}=\frac{R_{12}+R_{22}}{R_{12}} \times V_{\mathrm{SET} 2}
$$

c) HYSTERESIS PER FIGURE 7

$$
V_{U 1}=\frac{R_{11}+R_{21}}{R_{11}} \times V_{S E T 1}
$$

Over-Voltage $V_{\text {TRIP }}$

$$
\begin{array}{r}
V_{\mathrm{L} 1}=\frac{R_{11}+\frac{R_{21} R_{31}}{R_{21}+R_{31}}}{R_{11}} \times V_{\mathrm{SET} 1} \\
V_{\mathrm{U} 2}=\frac{R_{12}+R_{22}}{R_{12}} \times V_{\mathrm{SET} 2}
\end{array}
$$

Over-Voltage $\mathrm{V}_{\text {TRIP }}$

$$
V_{\mathrm{L} 2}=\frac{R_{12}+\frac{R_{22} R_{32}}{R_{22}+R_{32}}}{R_{12}} \times V_{\mathrm{SET} 2}
$$

## ICL7665S

## THRESHOLD DETECTOR WITH HYSTERESIS (Continued)

initial comparator state, but as soon as this occurs, the trip point will be raised again.

An alternative circuit for obtaining hysteresis is shown in Figure 7. In this configuration, the HYST pins put the extra resistor in parallel with the upper setting resistor. The values of the resistors differ, but the action is essentially the same. The governing equations are given in Table 1. These ignore the effects of the resistance of the HYST outputs, but these can normally be neglected if the resistor values are above about $100 \mathrm{k} \Omega$.

## APPLICATIONS

## Single Supply Fault Monitor

Figure 8 shows an over/under-voltage fault monitor for a single supply. The over-voltage trip point is centered around 5.5 V and the under-voltage trip point is centered around 4.5 V . Both have some hysteresis to prevent erratic output

ON and OFF conditions. The two outputs are connected in a wired OR configuration with a pullup resistor to generate a power OK signal.

## Multiple Supply Fault Monitor

The ICL7665S can simultaneously monitor several supplies when connected as shown in Figure 9. The resistors are chosen such that the sum of the currents through $\mathrm{R}_{21 \mathrm{~A}}$, $R_{21 B}$, and $R_{31}$ is equal to the current through $R_{11}$ when the two input voltages are at the desired low voltage detection point. The current through $\mathrm{R}_{11}$ at this point is equal to $1.3 \mathrm{~V} / \mathrm{R}_{11}$. The voltage at the $\mathrm{V}_{\text {SET }}$ input depends on the voltage of both supplies being monitored. The trip voltage of one supply while the other supply is at the nominal voltage will be different than the trip voltage when both supplies are below their nominal voltages.
The other side of the ICL7665S can be used to detect the absence of negative supplies. The trip points for OUT1 depend on both the negative supply voltages and the actual voltage of the +5 V supply.


Figure 8: Fault Monitor for a Single Supply


0090-19
Figure 9: Multiple Supply Fault Monitor


Figure 10: Low Battery Warning and Low Battery Disconnect

## Combination Low Battery Warning and Low Battery Disconnect

When using rechargeable batteries in a system, it is important to keep the batteries from being overdischarged. The circuit shown in Figure 10 provides a low battery warning and also disconnects the low battery from the rest of the system to prevent damage to the battery. OUT1 is used to shutdown the ICL7663S when the battery voltage drops to the value where the load should be disconnected. As long as $\mathrm{V}_{\text {SET } 1}$ is greater than 1.3 V , OUT1 is low, but when $\mathrm{V}_{\text {SET1 }}$ drops below 1.3 V , OUT1 goes high, shutting off the ICL7663S. OUT2 is used for low battery warning. When $\mathrm{V}_{\text {SET2 }}$ is greater than 1.3 V , OUT2 is high and the low battery warning is on. When $\mathrm{V}_{\text {SET2 }}$ drops below 1.3 V , OUT2 is low and the low battery warning goes off. The trip voltage for low battery warning can be set higher than the trip voltage for shutdown to give advance low battery warning before the battery is disconnected.

## Power Fail Warning and Powerup/Powerdown Reset

Figure 11 shows a power fail warning circuit with powerup/powerdown reset. When the unregulated DC input is
above the trip point, OUT1 is low. When the DC input drops below the trip point, OUT1 shuts OFF and the power fail warning goes high. The voltage on the input of the 7805 decays at a rate of lout/C. Since the 7805 will continue to provide 5 V out at 1 A until $\mathrm{V}_{\text {IN }}$ is less than 7.3 V , this circuit will provide a certain amount of warning before the 5 V output begins to drop.
The ICL7665S OUT2 is used to prevent a microprocessor from writing spurious data to a CMOS battery backup memory by causing OUT2 to go low when the 78055 V output drops below the ICL7665S trip point.

## Simple High/Low Temperature Alarm

Figure 12 illustrates a simple high/low temperature alarm which uses the ICL7665S with an NPN transistor. The voltage at the top of $R_{1}$ is determined by the $V_{B E}$ of the transistor and the position of $R_{1}$ 's wiper arm. This voltage has a negative temperature coefficient. $R_{1}$ is adjusted so that $V_{\text {SET2 }}$ equals 1.3 V when the NPN transistor's temperature reaches the temperature selected for the high temperature alarm. When this occurs, OUT2 goes low. $R_{2}$ is adjusted

Figure 11: Power Fail Warning and Powerup/Powerdown Reset

so that $\mathrm{V}_{\text {SET1 }}$ equals 1.3 V when the NPN transistor's temperature reaches the temperature selected for the low temperature alarm. When the temperature drops below this limit, OUT1 goes low.

## AC Power Fail and Brownout Detector

Figure 13 shows a circuit that detects AC undervoltage by monitoring the secondary side of the transformer. The capacitor, $C_{1}$, is charged through $R_{1}$ when OUT1 is OFF. With a normal 110 VAC input to the transformer, OUT1 will dis-
charge $\mathrm{C}_{1}$ once every cycle, approximately every 16.7 ms . When the AC input voltage is reduced, OUT1 will stay OFF, so that $\mathrm{C}_{1}$ does not discharge. When the voltage on $\mathrm{C}_{1}$ reaches 1.3 V , OUT2 turns OFF and the power fail warning goes high. The time constant, $\mathrm{R}_{1} \mathrm{C}_{1}$, is chosen such that it takes longer than 16.7 ms to charge $\mathrm{C}_{1} 1.3 \mathrm{~V}$.

For a more comprehensive AC power fail circuit, refer to Harris' new ICL7677 monolithic power fail detector.


Figure 13: AC Power Fail and Brownout Detector

## ICL7667 <br> Dual Power MOSFET Driver

## GENERAL DESCRIPTION

The ICL7667 is a dual monolithic high-speed driver designed to convert TTL level signals into high current outputs at voltages up to 15 V . Its high speed and current output enable it to drive large capacitive loads with high slew rates and low propagation delays. With an output voltage swing only millivolts less than the supply voltage and a maximum supply voltage of 15 V , the ICL7667 is well suited for driving power MOSFETs in high frequency switched-mode power converters. The ICL7667's high current outputs minimize power losses in the power MOSFETs by rapidly charging and discharging the gate capacitance. The ICL7667's inputs are TTL compatible and can be directly driven by common pulse-width modulation control IC's.

## ORDERING INFORMATION

Part Number	Temperature Range	Package
ICL7667CBA   ICL7667CPA   ICL7667CJA   ICL7667CTV	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8-Pin SOIC   8-Pin Plastic   8-Pin Cerdip   TO-99 Can
ICL7667MTV* ICL7667MJA*	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	TO-99 Can 8-Pin Cerdip

*Add $/ 883 \mathrm{~B}$ to Part Number for 883B processing.

## FEATURES

- Fast Rise and Fall Times - 30ns With 1000pF Load
- Wide Supply Voltage Range
$-V_{C C}=4.5$ to 15 V
- Low Power Consumption
- 4mW With Inputs Low
- 120 mW With Inputs High
- TTL/CMOS Input Compatible Power Driver - ROUT $=7 \Omega$ typ
- Direct Interface With Common PWM Control IC's
- Pin Equivalent to DS0026/DS0056; TSC426

TYPICAL APPLICATIONS

- Switching Power Supplies
- DC/DC Converters
- Motor Controllers


0323-1
Figure 1: Functional Diagram


0323-2
Figure 2: Pin Configurations

[^10]
## ABSOLUTE MAXIMUM RATINGS

Supply Voltage $\mathrm{V}^{+}$to $\mathrm{V}^{-}$.............................. 15V
Input Voltage $\ldots \ldots \ldots \ldots \ldots . .\left(\mathrm{V}^{-}-0.3 \mathrm{~V}\right)$ to $\left(\mathrm{V}^{+}+0.3 \mathrm{~V}\right)$
Package Dissipation, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ .................. . 500 mW Linear Derating Factors

TO-99	Plastic	Cerdip
$6.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	$5.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	$6.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
above $50^{\circ} \mathrm{C}$	above $36^{\circ} \mathrm{C}$	above $50^{\circ} \mathrm{C}$


Storage Temperature ................ $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
ICL7667C	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
ICL7667M	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
ead Temperature	$300^{\circ} \mathrm{C}$

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## ELECTRICAL CHARACTERISTICS (STATIC)

Symbol	Parameter	Test Conditions	$\begin{gathered} \text { ICL7667C,M } \\ T_{A}=25^{\circ} \mathrm{C} \end{gathered}$			ICL7667M			Units
						$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$			
			Min	Typ	Max	Min	Typ	Max	
$\mathrm{V}_{\text {IH }}$	Logic 1 Input Voltage	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	2.0			2.0			V
$V_{I H}$	Logic 1 Input Voltage	$V_{C C}=15 \mathrm{~V}$	2.0			2.0			V
$\mathrm{V}_{\text {IL }}$	Logic 0 Input Voltage	$V_{C C}=4.5 \mathrm{~V}$			0.8			0.5	V
$\mathrm{V}_{\text {IL }}$	Logic 0 Input Voltage	$\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}$			0.8			0.8	V
IIL	Input Current	$\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$ and 15 V	-0.1		0.1	-0.1		0.1	$\mu \mathrm{A}$
V OH	Output Voltage High	$V_{C C}=4.5 \mathrm{~V}$ and 15 V	$V_{C C}-0.05$	$\mathrm{V}_{\mathrm{CC}}$		$\mathrm{v}_{\mathrm{CC}}-0.1$			V
$\mathrm{V}_{\mathrm{OL}}$	Output Voltage Low	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ and 15 V		0	0.05			0.1	V
Rout	Output Resistance	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}, \mathrm{l}_{\text {OUT }}=-10 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{CC}}=15 \mathrm{~V} \end{aligned}$		7	10			12	$\Omega$
ROUT	Output Resistance	$\begin{aligned} & V_{I N}=V_{I H},{ }_{I O U T}=10 \mathrm{~mA}, \\ & V_{C C}=15 \mathrm{~V} \\ & \hline \end{aligned}$		8	12			13	$\Omega$
ICC	Power Supply Current	$\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=3 \mathrm{~V}$ both inputs		5	7			8	mA
I CC	Power Supply Current	$\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$ both inputs		150	400			400	$\mu \mathrm{A}$

## ELECTRICAL CHARACTERISTICS (DYNAMIC)

Symbol	Parameter	Test Conditions	ICL7667C,M			ICL7667M			Units
			$\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}$			$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$			
			Min	Typ	Max	Min	Typ	Max	
$\mathrm{T}_{\mathrm{D} 2}$	Delay Time	Figure 3		35	50			60	ns
$\mathrm{T}_{\text {R }}$	Rise Time	Figure 3		20	30			40	ns
$\mathrm{T}_{\mathrm{F}}$	Fall Time	Figure 3		20	30			40	ns
$\mathrm{T}_{\mathrm{D} 1}$	Delay Time	Figure 3		20	30			40	ns



Typical Performance Characteristics


## Typical Performance Characteristics (Continued)

 Delay and Fall Times vs $V_{c c}$

## DETAILED DESCRIPTION

The ICL7667 is a dual high-power CMOS inverter whose inputs respond to TTL levels while the outputs can swing as high as 15 V . Its high output current enables it to rapidly charge and discharge the gate capacitance of power MOSFETs, minimizing the switching losses in switchmode power supplies. Since the output stage is CMOS, the output will swing to within millivolts of both ground and $V_{C C}$ without any external parts or extra power supplies as required by the DS0026/56 family. Although most specifications are at $V_{C C}=15 \mathrm{~V}$, the propagation delays and specifications are almost independent of $\mathrm{V}_{\mathrm{CC}}$.

In addition to power MOS drivers, the ICL7667 is well suited for other applications such as bus, control signal, and clock drivers on large memory of microprocessor boards, where the load capacitance is large and low propagation delays are required. Other potential applications include peripheral power drivers and charge-pump voltage inverters.

## INPUT STAGE

The input stage is a large N-channel FET with a P-channel constant-current source. This circuit has a threshold of about 1.5 V , relatively independent of the $\mathrm{V}_{\mathrm{CC}}$ voltage. This means that the inputs will be directly compatible with TTL over the entire 4.5-15V $V_{C C}$ range. Being CMOS, the inputs draw less than $1 \mu \mathrm{~A}$ of current over the entire input voltage range of ground to $\mathrm{V}_{\mathrm{CC}}$. The quiescent current or no load supply current of the ICL7667 is affected by the input voltage, going to nearly zero when the inputs are at the 0 logic level and rising to 7mA maximum when both inputs are at the 1 logic level. A small amount of hysteresis, about 50 100 mV at the input, is generated by positive feedback around the second stage.

## OUTPUT STAGE

The ICL7667 output is a high-power CMOS inverter, swinging between ground and $\mathrm{V}_{\mathrm{CC}}$. At $\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}$, the output impedance of the inverter is typically $7 \Omega$. The high peak current capability of the ICL7667 enables it to drive a 1000 pF load with a rise time of only 40 ns . Because the output stage impedance is very low, up to 300 mA will flow through the series N - and P -channel output devices (from $V_{C C}$ to ground) during output transitions. This crossover current is responsible for a significant portion of the internal


0323-13 power dissipation of the ICL 7667 at high frequencies. It can be minimized by keeping the rise and fall times of the input to the ICL7667 below $1 \mu \mathrm{~s}$.

## APPLICATION NOTES

Although the ICL7667 is simply a dual level-shifting inverter, there are several areas to which careful attention must be paid.

## GROUNDING

Since the input and the high current output current paths both include the ground pin, it is very important to minimize any common impedance in the ground return. Since the ICL7667 is an inverter, any common impedance will generate negative feedback, and will degrade the delay, rise and fall times. Use a ground plane if possible, or use separate ground returns for the input and output circuits. To minimize any common inductance in the ground return, separate the input and output circuit ground returns as close to the ICL7667 as is possible.

## BYPASSING

The rapid charging and discharging of the load capacitance requires very high current spikes from the power supplies. A parallel combination of capacitors that has a low impedance over a wide frequency range should be used. A $4.7 \mu \mathrm{~F}$ tantalum capacitor in parallel with a low inductance $0.1 \mu \mathrm{~F}$ capacitor is usually sufficient bypassing.

## OUTPUT DAMPING

Ringing is a common problem in any circuit with very fast rise or fall times. Such ringing will be aggravated by long inductive lines with capacitive loads. Techniques to reduce ringing include:

1) Reduce inductance by making printed circuit board traces as short as possible.
2) Reduce inductance by using a ground plane or by closely coupling the output lines to their return paths.
3) Use a 10 to $30 \Omega$ resistor in series with the output of the ICL7667. Although this reduces ringing, it will also slightly increase the rise and fall times.
4) Use good bypassing techniques to prevent supply voltage ringing.

## POWER DISSIPATION

The power dissipation of the ICL7667 has three main components:

1) Input inverter current loss
2) Output stage crossover current loss
3) Output stage $1^{12} R$ power loss

The sum of the above must stay within the specified limits for reliable operation.

As noted above, the input inverter current is input voltage dependent, with an $I_{C C}$ of 0.2 mA maximum with a logic 0 input and 6 mA maximum with a logic 1 input.

The output stage crowbar current is the current that flows through the series N - and P -channel devices that form the output. This current, about 300 mA , occurs only during output transitions. Caution: The inputs should never be allowed to remain between $V_{I L}$ and $V_{I H}$ since this could leave the output stage in a high current mode, rapidly leading to destruction of the device. If only one of the drivers is being used, be sure to tie the unused input to a ground. NEVER leave an input floating. The average supply current drawn by the output stage is frequency dependent, as can be seen in ICC vs. Frequency graph in the Typical Characteristics Graphs.

The output stage $1^{12 R}$ power dissipation is nothing more than the product of the output current times the voltage drop across the output device. In addition to the current drawn by any resistive load, there will be an output current due to the charging and discharging of the load capacitance. In most high frequency circuits the current used to charge and discharge capacitance dominates, and the power dissipation is approximately

$$
P_{A C}=C V_{C C} 2 f
$$

Where $\mathrm{C}=$ Load Capacitance
$\mathrm{f}=$ Frequency
In cases where the load is a power MOSFET and the gate drive requirements are described in terms of gate charge, the ICL7667 power dissipation will be

$$
P_{A C}=Q_{G} V_{C C} f
$$

Where $\mathrm{Q}_{\mathrm{G}}=$ Charge required to switch the gate, in Coulombs.
$\mathrm{f}=$ Frequency

## POWER MOS DRIVER CIRCUITS POWER MOS DRIVER REQUIREMENTS

Because it has a very high peak current output, the ICL7667 excels at driving the gate of power MOS devices. The high current output is important since it minimizes the time the power MOS device is in the linear region. Figure 4 is a typical curve of charge vs. gate voltage for a power MOSFET. The flat region is caused by the Miller capacitance, where the drain-to-gate capacitance is multiplied by the voltage gain of the FET. This increase in capacitance occurs while the power MOSFET is in the linear region and
is dissipating significant amounts of power. The very high current output of the ICL7667 is able to rapidly overcome this high capacitance and quickly turns the MOSFET fully on or off.


## DIRECT DRIVE OF MOSFETs

Figure 6 shows interfaces between the ICL7667 and typical switching regulator ICs. Note that unlike the DSOO26, the ICL7667 does not need a dropping resistor and speedup capacitor between it and the regulator IC. The ICL7667, with its high slew rate and high voltage drive can directly drive the gate of the MOSFET. The 1527 IC is the same as the 1525 IC, except that the outputs are inverted. This inversion is needed since ICL7667 is an inverting buffer.

## TRANSFORMER COUPLED DRIVE OF MOSFETs

Transformers are often used for isolation between the logic and control section and the power section of a switching regulator. The high output drive capability of the ICL 7667 enables it to directly drive such transformers. Figure 6 shows a typical transformer coupled drive circuit. PWM ICs with either active high or active low outputs can be used in this circuit, since any inversion required can be obtained by reversing the windings on the secondaries.

## BUFFERED DRIVERS FOR MULTIPLE MOSFETS

In very high power applications which use a group of MOSFETs in parallel, the input capacitance may be very large and it can be difficult to charge and discharge quickly. Figure 8 shows a circuit which works very well with very large capacitance loads. When the input of the driver is zero, Q1 is held in conduction by the lower half of the ICL7667 and Q2 is clamped off by Q1. When the input goes positive, Q1 is turned off and a current pulse is applied to the gate of Q2 by the upper half of the ICL7667 through the transformer, T1. After about 20ns, T1 saturates and Q2 is held on by its own $\mathrm{C}_{\mathrm{gs}}$ and the bootstrap circuit of C1, D1 and R1. This bootstrap circuit may not be needed at frequencies greater than 10 kHz since the input capacitance of Q2 discharges slowly.


Figure 5: Direct Drive of MOSFET Gates


Figure 6: Transformer Coupled Drive Circuit




Figure 9: Voltage Doubler

## OTHER APPLICATIONS

## RELAY AND LAMP DRIVERS

The ICL7667 is suitable for converting low power TTL or CMOS signals into high current, high voltage outputs for relays, lamps and other loads. Unlike many other level translator/driver ICs, the ICL7667 will both source and sink current. The continuous output current is limited to 200 mA by the I2R power dissipation in the output FETs.

## CHARGE PUMP OR VOLTAGE INVERTERS AND DOUBLERS

The low output impedance and wide $\mathrm{V}_{\mathrm{CC}}$ range of the ICL7667 make it well suited for charge pump circuits. Figure

8 shows a typical charge pump voltage inverter circuit and a typical performance curve. A common use of this circuit is to provide a low current negative supply for analog circuitry or RS232 drivers. With an input voltage of +15 V , this circuit will deliver 20 mA at -12.6 V . By increasing the size of the capacitors, the current capability can be increased and the voltage loss decreased. The practical range of the input frequency is 500 Hz to 250 kHz . As the frequency goes up, the charge pump capacitors can be made smaller, but the internal losses in the ICL7667 will rise, reducing the circuit efficiency.

Figure 9, a voltage doubler, is very similar in both circuitry and performance. A potential use of Figure 8 would be to supply the higher voltage needed for EEPROM or EPROM programming.

## CLOCK DRIVER

Some microprocessors (such as the 68XX and 65XX families) use a clock signal to control the various LSI peripherals of the family. The ICL7667's combination of low propagation delay, high current drive capability and wide voltage swing make it attractive for this application. Although the ICL7667 is primarily intended for driving power MOSFET gates at 15 V , the ICL7667 also works well as a 5 V highspeed buffer. Unlike standard 4000 series CMOS, the ICL7667 uses short channel length FETs and the ICL7667 is only slightly slower at 5 V than at 15 V .

## GENERAL DESCRIPTION

The Harris ICL7673 is a monolithic CMOS battery backup circuit that offers unique performance advantages over conventional means of switching to a backup supply. The ICL7673 is intended as a low-cost solution for the switching of systems between two power supplies; main and battery backup. The main application is keep-alive-battery power switching for use in volatile CMOS RAM memory systems and real time clocks. In many applications this circuit will represent a low insertion voltage loss between the supplies and load. This circuit features low current consumption, wide operating voltage range, and exceptionally low leakage between inputs. Logic outputs are provided that can be used to indicate which supply is connected and can also be used to increase the power switching capability of the circuit by driving external PNP transistors.

## FEATURES

- Automatically Connects Output to The Greater Of Either Input Supply Voltage
- If Main Power to External Equipment Is Lost, Circuit Will Automatically Connect Battery Backup
- Reconnects Main Power When Restored
- Logic Indicator Signaling Status Of Main Power
- Low Impedance Connection Switches
- Low Internal Power Consumption
- Wide Supply Range: 2.5 to 15 Volts
- Low Leakage Between Inputs
- External Transistors May Be Added If Very Large Currents Need to Be Switched


## APPLICATIONS

- On Board Battery Backup for Real-Time Clocks, Timers, or Volatile RAMs
- Over/Under Voltage Detector
- Peak Voltage Detector
- Other Uses:
-Portable Instruments, Portable Telephones, Line Operated Equipment

ORDERING INFORMATION

Part Number	Temperature Range	Package
ICL7673CPA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8-pin minidip
ICL7673CBA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8-pin SOIC



0324-1
$\mathbf{V}_{\mathbf{P}}>V_{\mathbf{S}}, P_{1}$ SWITCH ON AND $P_{b a r}$ SWITCH ON
$\mathbf{V}_{\mathbf{S}}>\mathbf{V}_{\mathbf{P}}, P_{2}$ SWITCH ON AND $S_{b a r}$ SWITCH ON

Figure 1: Functional Diagram

ABSOLUTE MAXIMUM RATINGS	
Input Supply ( $\mathrm{V}_{\mathrm{p}}$ or $\mathrm{V}_{\mathrm{S}}$ ) Voltage	(GND - 0.3) to +18 V
Output Voltages $\mathrm{P}_{\text {bar }}$ and $\mathrm{S}_{\text {bar }}$	( $\mathrm{GND}-0.3$ ) to +18 V
Peak Current	
Input $\mathrm{V}_{P}\left(@ \mathrm{~V}_{\mathrm{P}}=5 \mathrm{~V}\right)($ note 1)	38 mA
Input $\mathrm{V}_{\mathrm{S}}$ (@ $\mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}$ )	30 mA
$\mathrm{P}_{\text {bar }}$ or $\mathrm{S}_{\text {bar }}$	0 mA
Continuous Current	
Input $\mathrm{V}_{\mathrm{P}}\left(@ \mathrm{~V}_{P}=5 \mathrm{~V}\right)$ ( note 1)	38 mA
Input $\mathrm{V}_{\mathrm{S}}$ (@ $\mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}$ )	30 mA
$\mathrm{P}_{\text {bar }}$ or $\mathrm{S}_{\text {bar }}$	50 mA

Input Supply ( $\mathrm{V}_{\mathrm{p}}$ or $\mathrm{V}_{\mathrm{S}}$ ) Voltage .... (GND - 0.3 ) to +18 V
Output Voltages $\mathrm{P}_{\text {bar }}$ and $\mathrm{S}_{\text {bar }} \ldots .$. (GND -0.3 ) to +18 V
Peak Current
Input $V_{P}$ (@ $V_{P}=5 \mathrm{~V}$ ) (note 1) ....................... . 38mA
Input $\mathrm{V}_{\mathrm{S}}\left(@ \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V}\right)$................................ 30mA
bar or $\mathrm{S}_{\text {bar }}$.................................................. 150 mA
input $V_{P}\left(@ V_{P}=5 V\right)$ (note 1) 8mA
$\mathrm{P}_{\mathrm{bar}}$ or $\mathrm{S}_{\text {bar }}$.......................................... 50 mA

Package Dissipation ................................. . . 300mW
Derate $6.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Temperature Range:
ICL7673C
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature $\ldots \ldots . . . . . . . . .5^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10sec) ............... $300^{\circ} \mathrm{C}$

Note 1. Derate above $25^{\circ} \mathrm{C}$ by $0.38 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

(Outline Dwg BA)
8-LEAD SOIC

(Outline Dwg PA) 8-LEAD Minidip

Figure 2: Pin Configurations
ELECTRICAL CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

Symbol	Parameter	Test Conditions	Min	Typ	Max	Units
$V_{P}$	INPUT VOLTAGE	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=0 \text { volts } \\ & \text { I load }=0 \mathrm{~mA} \end{aligned}$	2.5	-	15	V
$\mathrm{V}_{\mathrm{S}}$		$\begin{aligned} & V_{P}=0 \text { volts } \\ & 1 \text { load }=0 \mathrm{~mA} \end{aligned}$	2.5	-	15	
$1+$	QUIESCENT SUPPLY CURRENT	$V_{P}=0$ volts   $V_{S}=3$ volts   1 load=0mA	-	1.5	5	$\mu \mathrm{A}$
$\mathrm{R}_{\mathrm{ds}(\mathrm{on}) \mathrm{P} \dagger}$	SWITCH RESISTANCE P1 (NOTE 2)	$V_{P}=5$ volts   $V_{S}=3$ volts   \| load = 15 mA	-	8	15	$\Omega$
		@ $\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$	-	16	-	
		$V_{P}=9$ volts $V_{S}=3$ volts \| load = 15 mA	-	6	-	$\Omega$
		$\begin{aligned} & V_{P}=12 \text { volts } \\ & V_{S}=3 \text { volts } \\ & l \text { load }=15 \mathrm{~mA} \end{aligned}$	-	5	-	$\Omega$

ELECTRICAL CHARACTERISTICS ( $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise specified) (Continued)

Symbol	Parameter	Test Conditions	Min	Typ	Max	Units
$\mathrm{T}_{\mathrm{C}(\mathrm{P} 1)}$	TEMPERATURE COEFFICIENT OF SWITCH RESISTANCE P1	$\mathrm{V}_{\mathrm{P}}=5$ volts   $V_{S}=3$ volts   $\mid$ load $=15 \mathrm{~mA}$	-	0.5	-	\%/ ${ }^{\circ} \mathrm{C}$
$\mathrm{R}_{\text {ds(on)P2 }}$	SWITCH RESISTANCE   P2   (NOTE 2)	$\mathrm{V}_{\mathrm{P}}=0$ volts   $\mathrm{V}_{\mathrm{S}}=3$ volts   \| load $=1 \mathrm{~mA}$	-	40	100	$\Omega$
		@ $\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$	-	60	-	
		$V_{P}=0$ volts   $V_{S}=5$ volts   1 load $=1 \mathrm{~mA}$	-	26	-	$\Omega$
		$\mathrm{V}_{\mathrm{P}}=0$ volts   $\mathrm{V}_{\mathrm{S}}=9$ volts   $\mid$ load $=1 \mathrm{~mA}$	-	16	-	$\Omega$
$T_{C(P 2)}$	TEMPERATURE COEFFICIENT OF SWITCH RESISTANCE P2	$\mathrm{V}_{\mathrm{P}}=0$ volts   $V_{S}=3$ volts   \| load = 1mA	-	0.7	-	\%/ ${ }^{\circ} \mathrm{C}$
L L (PS)	LEAKAGE CURRENT ( $V_{p}$ to $V_{S}$ )	$V_{P}=5$ volts   $V_{S}=3$ volts   1 load $=10 \mathrm{~mA}$	-	0.01	20	nA
		(1) $\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$	-	35	-	
LL(SP)	LEAKAGE CURRENT ( $\mathrm{V}_{\mathrm{S}}$ to $\mathrm{V}_{\mathrm{P}}$ )	$V_{P}=0$ volts   $V_{S}=3$ volts   \| load = 1 mA	-	0.01	50	nA
		@ $T_{A}=85^{\circ} \mathrm{C}$	-	120	-	
V OPbar	OPEN DRAIN OUTPUT SATURATION VOLTAGES	$V_{P}=5$ volts   $V_{S}=3$ volts   1 sink $=3.2 \mathrm{~mA}$   1 load $=0 \mathrm{~mA}$	-	85	400	mV
		@ $T_{A}=85^{\circ} \mathrm{C}$	-	120	-	
		$\begin{aligned} & V_{P}=9 \text { volts } \\ & V_{S}=3 \text { volts } \\ & 1 \text { sink }=3.2 \mathrm{~mA} \\ & \text { I load }=0 \mathrm{~mA} \end{aligned}$	-	50	-	mV
		$V_{P}=12$ volts   $V_{S}=3$ volts   1 sink $=3.2 \mathrm{~mA}$   1 load $=0 \mathrm{~mA}$	-	40	-	mV
Vosbar		$\mathrm{V}_{\mathrm{P}}=0$ volts   $V_{S}=3$ volts   1 sink $=3.2 \mathrm{~mA}$   \| load $=0 \mathrm{~mA}$	-	150	400	mV
		@ $\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$	-	210	-	
		$V_{P}=0$ volts   $V_{S}=5$ volts   1 sink $=3.2 \mathrm{~mA}$   1 load $=0 \mathrm{~mA}$	-	85	-	mV
		$\begin{aligned} & V_{P}=0 \text { volts } \\ & V_{S}=9 \text { volts } \\ & \text { I sink }=3.2 \mathrm{~mA} \\ & \text { I load }=0 \mathrm{~mA} \end{aligned}$	-	50	-	mV

ELECTRICAL CHARACTERISTICS $\quad\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified) (Continued)

Symbol	Parameter	Test Conditions	Min	Typ	Max	Units
$l_{\text {L Pbar }}$	OUTPUT LEAKAGE CURRENTS OF Pbar AND Sbar	$\mathrm{V}_{\mathrm{P}}=0$ volts   $V_{S}=15$ volts   1 load = 0mA	-	50	500	nA
		@ $T_{A}=85^{\circ} \mathrm{C}$	-	900	-	
IL Sbar		$V_{P}=15$ volts   $V_{S}=0$ volts   \| load = 0mA	-	50	500	nA
		(@ $\mathrm{T}_{A}=85^{\circ} \mathrm{C}$	-	900	-	
$V_{P}-V_{S}$	SWITCHOVER UNCERTAINTY FOR COMPLETE SWITCHING OF INPUTS AND OPEN DRAIN OUTPUTS.	$\begin{aligned} & V_{S}=3 \text { volts } \\ & 1 \text { sink }=3.2 \mathrm{~mA} \\ & \text { load }=0 \mathrm{~mA} \end{aligned}$	-	$\pm 10$	$\pm 50$	mV

NOTE 2. The minimum input to output voltage can be determined by multiplying the load current by the switch resistance.

## TYPICAL PERFORMANCE CHARACTERISTICS

ON-RESISTANCE SWITCH P1 AS A FUNCTION OF INPUT VOLTAGE $V_{P}$


0324-5

ON-RESISTANCE SWITCH P2 AS A FUNCTION OF INPUT VOLTAGE $\mathbf{V}_{\mathbf{S}}$


0324-7

> IS LEAKAGE CURRENT $V_{p}$ to $V_{S}$ AS A FUNCTION OF INPUT VOLTAGE


0324-9
(Continued)

## Pbar OR Sbar SATURATION VOLTAGE AS A FUNCTION OF OUTPUT CURRENT



0324-8

## DETAILED DESCRIPTION

As shown in the functional diagram (Figure 1), the ICL7673 includes a comparator which senses the input voltages $V_{P}$ and $V_{S}$. The output of the comparator drives the first inverter and the open-drain N -channel transistor $\mathrm{P}_{\mathrm{bar}}$ The first inverter drives a large P-channel switch, P1, a second inverter, and another open-drain N -channel transistor, $\mathrm{S}_{\text {bar }}$. The second inverter drives another large P-channel switch P2. The ICL7673, connected to a main and a backup power supply, will connect the supply of greater potential to its output. The circuit provides break-before-make switch action as it switches from main to backup power in the event of a main power supply failure. For proper operation, inputs $V_{P}$ and $V_{S}$ must not be allowed to float, and, the difference in the two supplies must be greater than 50 millivolts. The leakage current through the reverse biased parasitic diode of switch P2 is very low.

## OUTPUT VOLTAGE

The output operating voltage range is 2.5 to 15 volts. The insertion loss between either input and the output is a function of load current, input voltage, and temperature. This is due to the P-channels being operated in their triode region, and, the ON-resistance of the switches is a function of output voltage $\mathrm{V}_{0}$. The ON-resistance of the P-channels have positive temperature coefficients, and therefore as temperature increases the insertion loss also increases. At low load currents the output voltage is nearly equal to the greater of the two inputs. The maximum voltage drop across switch P1 or P2 is 0.5 volts, since above this voltage the body-drain parasitic diode will become forward biased. Complete switching of the inputs and open-drain outputs typically occurs in 50 microseconds.

## INPUT VOLTAGE

The input operating voltage range for $V_{P}$ or $V_{S}$ is 2.5 to 15 volts. The input supply voltage ( $\mathrm{V}_{\mathrm{P}}$ or $\mathrm{V}_{\mathrm{S}}$ ) slew rate should be limited to 2 volts per microsecond to avoid potential harm to the circuit. In line-operated systems, the rate-of-rise (or fall) of the supply is a function of power supply design. For battery applications it may be necessary to use a capacitor between the input and ground pins to limit the rate-ofrise of the supply voltage. A low-impedance capacitor such as a $0.047 \mu \mathrm{~F}$ disc ceramic can be used to reduce the rate-of-rise.

## STATUS INDICATOR OUTPUTS

The N-channel open drain output transistors can be used to indicate which supply is connected, or can be used to drive external PNP transistors to increase the power switching capability of the circuit. When using external PNP power transistors, the output current is limited by the beta and thermal characteristics of the power transistors. The application section details the use of external PNP transistors.

## APPLICATIONS

A typical discrete battery backup circuit is illustrated in Figure 3. This approach requires several components, substantial printed circuit board space, and high labor cost. It also consumes a fairly high quiescent current. The ICL7673 battery backup circuit, illustrated in Figure 4, will often replace such discrete designs and offer much better performance, higher reliability, and lower system manufacturing cost. A trickle charge system could be implemented with an additional resistor and diode as shown in Figure 5. A complete low power $A C$ to regulated $D C$ system can be implemented using the ICL7673 and ICL7663S micropower voltage regulator as shown in Figure 6.


0324-10
Figure 3: Discrete Battery Backup Circuit


0324-11
Figure 4: ICL7673 Battery Backup Circuit


0324-12
Figure 5: Application Requiring Rechargeable Battery Backup

Applications for the ICL7673 include volatile semiconductor memory storage systems, real-time clocks, timers, alarm systems, and over/under voltage detectors. Other systems requiring $D C$ power when the master $A C$ line supply fails can also use the ICL7673.

A typical application, as illustrated in Figure 7, would be a microprocessor system requiring a 5 volt supply. In the event of primary supply failure, the system is powered down, and a 3 volt battery is employed to maintain clock or volatile memory data. The main and backup supplies are connected to $\mathrm{V}_{\mathrm{P}}$ and $\mathrm{V}_{\mathrm{S}}$, with the circuit output $\mathrm{V}_{\mathrm{O}}$ supplying power to the clock or volatile memory. The ICL7673 will sense the main supply, when energized, to be of greater potential than $\mathrm{V}_{\mathrm{S}}$ and connect, via its internal MOS switches, $\mathrm{V}_{\mathrm{P}}$ to output $\mathrm{V}_{\mathrm{O}}$. The backup input, $\mathrm{V}_{\mathrm{S}}$ will be disconnected internally. In the event of main supply failure, the circuit will sense that the backup supply is now the greater potential, disconnect $\mathrm{V}_{\mathrm{P}}$ from $\mathrm{V}_{0}$, and connect $\mathrm{V}_{\mathrm{S}}$.
Figure 8 illustrates the use of external PNP power transistors to increase the power switching capability of the circuit. In this application the output current is limited by the beta and thermal characteristics of the power transistors.
If hysteresis is desired for a particular low power application, positive feedback can be applied between the input $\mathrm{V}_{\mathrm{P}}$ and open drain output $S_{\text {bar }}$ through a resistor as illustrated in Figure 9. For high power applications hysteresis can be applied as shown in Figure 10.
The ICL7673 can also be used as a clipping circuit as illustrated in Figure 11. With high impedance loads the circuit output will be nearly equal to the greater of the two input signals.


Figure 6: Power Supply for Low Power Portable AC to DC Systems


Figure 7: Typical Microprocessor Memory Application


Figure 8: High Current Battery Backup System


0324-16
Figure 9: Low Current Battery Backup System With Hysteresis


Figure 11: Clipping Circuits

# ICL7675/ICL7676 Switched-Mode Power Supply Controller Set 

## GENERAL DESCRIPTION

The ICL7675/7676 two-chip set provides the necessary control circuitry for regulation of a single-ended, transformer coupled, flyback type switching power supply. Specifically designed to operate in this type of configuration, the Harris controller chip set is trimmed to provide a regulated 5 V output.

The two chips comprise a primary side controller and a secondary side controller. Referring to Figure 3, the output of the primary side controller drives the power MOSFET switch in the primary leg of the transformer. The switch is always turned off at a time corresponding to the falling edge of the internal system clock at a frequency of 50 kHz . Following an initial soft-start cycle, the switch is turned on at a time corresponding to a pulse received from the secondary side controller via a pulse transformer. The secondary side controller detects the power switch turn-off at the secondary of the transformer and initiates a time-out sequence with a duration directly proportional to the output voltage being sensed. A pulse generated at the end of the time-out period is fed back through the pulse transformer to the primary side controller, thereby completing the control loop.

Power for the primary side controller may be taken from the high voltage DC input to the power transformer via a resistor which feeds current to the on-chip zener diode. This eliminates the need for a separate power supply for the controller. Excessive current in the power MOSFET switch is detected at one end of a resistor in series with the source of the MOSFET, forcing the primary side controller into the soft-start mode.

## FEATURES

- Output Voltage of $5 \mathrm{~V} \pm 5 \%$ Under All Conditions
- Simple Low Current Pulse Transformer Feedback
- Power Switch Over-Current Protection
- Soft-Start
- No Off-Chip Trimming Required
- Minimum External Components
- Low Supply Current
- Output Duty Cycle-5\% to 75\%

ORDERING INFORMATION

Part   Number	Temperature   Range	Package
ICL7675CPA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Lead MINIDIP
ICL7675CJA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Lead CERDIP
ICL7675IPA	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 Lead MINIDIP
ICL7675MJA	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 Lead CERDIP
ICL7676CPA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Lead MINIDIP
ICL7676MJA	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 Lead CERDIP



0095-2

ICL7676
Package Outline (PA, JA)
Figure 1: Pin Configurations

[^11]
## ABSOLUTE MAXIMUM RATINGS

ICL7675
Supply Voltage (V+ to GND) . . . . . . . . . . . . . . . . . . . . . . . . 16 V
Voltage on any pin $\qquad$ $(\mathrm{V}++0.3)$ to $(\mathrm{GND}-0.3) \mathrm{V}$

ICL7676
Supply Voltage ( $\mathrm{V}_{\text {sense }}$ to GND) .......................... 16 V
Voltage on any pin ....... ( $\mathrm{V}_{\text {sense }}+0.3$ ) to (GND -0.3 ) V

## ICL7675 \& ICL7676

Lead Temperature (Soldering, 10 sec ).
Storage Temperature Range . $\qquad$ $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Operating Temperature Range


NOTE: Stresses above those listed under "Absolute Maximum Ratings". may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.


ICL7675


ICL7676
Figure 2: Functional Diagrams

ICL7675/ICL7676

ICL7675
ELECTRICAL CHARACTERISTICS Unless otherwise stated: Pins 1, 2, 3, and 4 are connected to GND;
Pin 7 is connected to $\mathrm{V}^{+}$; all other pins are open; $\mathrm{V}^{+}=13.5 \mathrm{~V}$

Parameter	Test Conditions	Limits												Units
		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			$0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+70^{\circ} \mathrm{C}$			$-25^{\circ} \mathrm{C}<\mathrm{T}_{A}<+85^{\circ} \mathrm{C}$			$-55^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+125^{\circ} \mathrm{C}$			
		Min	Typ	Max										
Oscillator:   Frequency		42		58	41		59	40		60	38		62	kHz
Temp. Stability						0.1			0.1			0.1		\%/ ${ }^{\circ} \mathrm{C}$
Output:   Fall Time (Note 1)	$\begin{aligned} & \mathrm{R}_{\mathrm{O}}=10 \mathrm{M}, \\ & \mathrm{C}_{\mathrm{O}}=500 \mathrm{pF} \end{aligned}$		100	150			170			180			200	ns
Rise Time (Note 1)	$\begin{aligned} & \mathrm{R}_{\mathrm{O}}=10 \mathrm{M}, \\ & \mathrm{C}_{\mathrm{O}}=500 \mathrm{pF} \end{aligned}$		100	150			170			180			200	ns
Voitage	Output Low, $\mathrm{l}_{\mathrm{O}}=-5 \mathrm{~mA}$		0.2	0.3			0.33			0.35			0.40	V
	Output High, $\mathrm{l}_{\mathrm{O}}=+5 \mathrm{~mA}$	12.8			12.8			12.7			12.6			V
Control Input: Leakage Current			0.01	10			50			50			100	nA
Threshold		9.5		11.0	9.0		11.0	8.5		11.5	8.5		12.0	V
Shut-Down:   Leakage Current			0.01	10			50			50			100	nA
Threshold		9.5		11.5	9.4		11.8	9.3		12.0	9.2		12.5	V
Soft-Start: Time-out	Open Pin		8											ms
Current Limiting:   Sense Voltage		420		600	390		630	370		640	300		700	mV
Sense Voltage Temperature Coefficient						0.6			0.6			0.6		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
$V_{\text {zener: }}$   Forward Voltage (Pin 8)		13.5	13.8	14.3										V
Forward Voltage Temperature Coefficient						7			7			7		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
V + Supply Voltage   (Pin 7)			13.2											V
Supply Current	No Output Load			1.2			1.3			1.4			1.5	mA

NOTE 1: This parameter is guaranteed by design and is not tested in production.

## ICL7676

ELECTRICAL CHARACTERISTICS Unless otherwise stated: Pins 2 and 4 are connected to GND; Pins 1 and 8 are connected to $V_{\text {sense; }}$ all other pins are open; $V^{+}=5 \mathrm{~V}$

Parameter	Test Conditions	Limits									Units
		$\mathrm{T}_{\mathbf{A}}=+25^{\circ} \mathrm{C}$			$0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+70^{\circ} \mathrm{C}$			$-55^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+125^{\circ} \mathrm{C}$			
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
Power Supply: Output Voltage	$15 \mu$ s Pulse Delay (Note 2)	4.9		5.1							V
Temp. Stability						100			100		mV
Sync Input: Threshold		1.2		2.4	1.2		2.4	1.2		2.4	V
Leakage			0.01	10			50			100	nA
Output: Voltage	Output High	4.35			4.3			4.1			V
Pulse Current		15			14			10			mA
Pulse Width		0.55		1.0	0.5		1.0	0.25		1.0	$\mu \mathrm{s}$
Min. Pulse Delay	50 kHz Clock at Input			9			9			12	$\mu \mathrm{s}$
Max. Pulse Delay	50 kHz Clock at Input	20			20			20			$\mu \mathrm{s}$
Gain	Time-Out/ $V_{\text {sense }}$	90	140		70			50			$\mu \mathrm{S} / \mathrm{V}$
$V_{\text {sense }}$ input Current (Note 3)	$\begin{aligned} & V_{\text {sense }}=5.0 \mathrm{~V}, \\ & \text { No Load } \end{aligned}$			1.0			1.1			1.5	mA

NOTE 2: This corresponds to a $25 \%$ duty cycle at the output of the ICL7675
3: This parameter is equivalent to device supply current.

## TYPICAL PERFORMANCE CHARACTERISTICS




C 1	$0.022 \mu \mathrm{~F} / 400 \mathrm{~V}$	R 1	Thermistor	$\mathrm{D} 1-4$	1N4004
C 2	$330 \mu \mathrm{~F} / 200 \mathrm{~V}$	R 2	$.47 \Omega / 2 \mathrm{~W}$	D 5	1N4937
C 3	$470 \mu \mathrm{~F} / 16 \mathrm{~V}$	R 3	$10 \Omega / .125 \mathrm{~W}$	D 6	MBR 1035
C 4	$180 \mathrm{pF} / 500 \mathrm{~V}$	R 4	$1.5 \mathrm{k} \Omega / 2 \mathrm{~W}$		
C 5	$0.022 \mu \mathrm{~F} / 400 \mathrm{~V}$	R 5	$10 \mathrm{k} \Omega / .25 \mathrm{~W}$	L 1	$\mathrm{Lp}=5.1 \mathrm{mH}$
C 6	$39 \mathrm{pF} / 500 \mathrm{~V}$	R 6	$10 \Omega / .5 \mathrm{~W}$		$\mathrm{n}=1 / 14$
C 7	$11,000 \mu \mathrm{~F} / 6.3 \mathrm{~V}$	R 7	$3.9 \Omega / .5 \mathrm{~W}$	L 2	$20 \mu \mathrm{H}$
C 8	$4.7 \mu \mathrm{~F} / 16 \mathrm{~V}$	R 8	$10 \Omega / 5 \mathrm{~W}$	L 3	$47 \mu \mathrm{H}$
C 9	$.047 \mu \mathrm{~F} / 10 \mathrm{~V}$	R 9	$68 \mathrm{k} \Omega / .25 \mathrm{~W}$		$\mathrm{n}=1 / 3$
C 10	$2200 \mathrm{pF} / 500 \mathrm{~V}$	R 10	$75 \mathrm{k} \Omega / .5 \mathrm{~W}$	Q 1	GE IRF821
C 11	$270 \mathrm{pF} / 500 \mathrm{~V}$				

Table 1: Example Component Values for SMPS System

## DETAILED DESCRIPTION

Refer to the system schematic (Figure 3), timing diagram (Figure 4) and the individual controller functional diagrams (Figure 2) for the following discussion.

## Secondary Side Controller

The secondary side controller, ICL7676, is required to provide an output pulse that will cause the primary side controller, ICL7675, to turn the MOSFET power switch on in the primary leg of the power supply transformer. This pulse must occur at a time such that the resultant switch duty cycle causes the output of the power supply to be regulated at precisely 5 V . The circuit accomplishes this by amplifying the difference between a fraction of the output voltage and an internally generated reference voltage and using that output to control a ramp generator. When the output of the ramp generator reaches the reference voltage level, a comparator triggers a monostable giving a fixed width pulse at the output of the controller. A positive transition at the power supply transformer secondary, corresponding to power switch turn-off, triggers a one-shot with a bounce lock-out feature that prevents any false triggering due to excessive ringing at this node. The output of this one-shot resets the ramp generator by turning on a MOS transistor across the ramp capacitor. Also, if the ramp voltage has not reached the comparator threshold, the one-shot triggers the output monostable. This ensures that a pulse is sent to the primary side controller every cycle. Variations in the output voltage are detected and cause an increase or decrease in the current supplied to the ramp capacitor. This causes a change in the capacitor ramp rate at point G in Figure 2 and a consequent change in the time when the comparator threshold crossover occurs, generating an output pulse from the ICL7676. The output pulse's position is thereby modulated relative to the input trigger in direct proportion to the power supply voltage. The direction of change is such that when the resultant duty cycle at the output of the ICL7675 corrects the power supply voltage, a negative feedback control loop is formed that maintains the desired output voltage.

## Primary Side Controller

The primary side controller, ICL7675, must process the incoming pulse from the secondary side controller, ICL7676, and combine this with the internally generated oscillator waveform to produce a driving signal for the MOSFET switch. Initially, however, a soft-start circuit determines the driving signal waveform. Therefore, there must also be a circuit which directs the orderly transition from soft-start to
normal operation. When the power supply is first turned on, a power-up-reset circuit initializes the soft-start clock and sets switch S1 on and switch S2 off, as shown in Figure 2. The soft-start's slowly increasing duty cycle waveform is fed through an AND gate and through switch S1 to the output buffer. Meanwhile, the transition circuit continuously monitors the relative position in time between the incoming pulse from the secondary side controller and the leading edge from the clock waveform. When the duty cycle of the softstart clock has increased to the point where its positive edge occurs earlier than the input pulse, then the transition circuit gives control of the output switch drive to the feedback loop by turning off S1 and turning on S2. Now the negative edge of the clock resets the flip-flop, turning off the power switch, and the input pulse sets the flip-flop, turning on the power switch. The negative edge of the soft-start clock is synchronized to the negative edge of the oscillator and occurs at a fixed frequency of 50 kHz . The soft-start clock's output duty cycle gradually increases from zero to $100 \%$, but when ANDed with the $75 \%$ duty cycle waveform of the oscillator, the maximum duty cycle of the resultant waveform is limited to $75 \%$ as well.

## Soft-Start Cycle

The soft-start cycle time is fixed at about 15 ms . It can be increased somewhat by adding capacitance to pin 5 . If no pulse is received from the secondary side controller, the primary side controller will reset, initiating the soft-start sequence. It will continue to recycle through the soft-start sequence until a pulse is received. As long as a pulse is received within one eighth cycle after the falling edge of the system clock, an approximately $0.5 \mu$ s pulse will appear at the output to drive the power switch. This allows for delays in the feedback loop which might cause the controlling pulse to arrive late.

## Other Features

The external resistor R2, connected between the $I_{\text {sense }}$ pin and ground and placed in series with the power MOSFET switch, senses an over-current fault condition, tripping a comparator which shuts down the output. After the fault condition has been removed, the power supply will pass through the soft-start cycle before returning to normal operation. There is also a shut-down pin that when forced high will shut down the output. An on-chip zener diode and rectifying diode combination, connected through a dropping resistor to the high DC input voltage of the power supply, provides power to the circuit.

ICL7675/ICL7676


## ICL7675/ICL7676

## APPLICATIONS

Refer to the system schematic (Figure 3) for the following discussion of a flyback converter.

The input bridge rectifier and filter circuit converts the 115 V AC line to 163 V DC. The unregulated high voltage DC is applied across a GE IRF 821 Power FET (Q1) and the primary of transformer L1. The Power FET acts as a switch, opening and closing in response to the gate drive signal from the output of the ICL7675 controller. When Q1 opens, the energy stored in L1 is transferred to the secondary and through diode D6 into C7. This is characteristic of the flyback converter. The ICL7676 monitors the voltage across C7 and sends a variable time delay pulse through pulse transformer L3 to the ICL7675 with a delay proportional to the voltage sensed. The ICL7675 translates the pulse into a variable duty-cycle 50 kHz output signal which drives the gate of the Power FET Q1 "ON" and "OFF" thereby closing the negative feedback loop.

The flyback converter topology is best suited for power levels below 150 W due to the high ripple current produced across capacitor C7. This topology is favored because of its simplicity. Output voltage control is achieved by varying the ratio of ON to OFF time for Q1, and can be expressed as follows:

$$
V_{0}=V_{\mathrm{C} 2} N \frac{t_{\mathrm{on}}}{t_{\mathrm{off}}}-V_{D 6}-I_{0} R_{\mathrm{S}}
$$

where:
$V_{C 2}=$ Voltage across $C 2$
$V_{D 6}=$ Forward drop across D6
$\mathrm{I}_{0}=$ Output current
$\mathrm{R}_{\mathrm{S}}=$ Output series resistance
$\mathrm{N}=$ Turns ratio of L1 (secondary/primary)
This applies for continuous mode operation where the current in L1 never falls to zero during a clock cycle. For light loads, discontinuous conduction may occur. The primary inductance of L1 required to assure continuous mode operation at a light load $\mathrm{I}_{0(\min )}$ is:

$$
L_{p}=\frac{t_{o n(\min )}^{2} \times V_{C 1(\text { max })}^{2} \times f}{2\left(V_{0}+V_{D 6}+I_{0} R_{S}\right) I_{0(\text { min })}}
$$

For $I_{O(\min )}=10 \%$ of full load at high line:

$$
\mathrm{L}_{\mathrm{p}}=\frac{\left(6 \times 10^{-6}\right)^{2} \times(185)^{2} \times\left(50 \times 10^{3}\right)}{(2)(6)(1)}=5.1 \mathrm{mH}
$$

This inductance can be obtained on a gapped ferrite ' $E$ ' core which offers an excellent (performance)/(cost) ratio. The air gap is required to prevent saturation at low line and maximum current.

Neglecting voltage spikes due to leakage inductance, drain to source voltage stress for Q1 is:

$$
v_{d s}=\frac{V_{0}+V_{D 6}+I_{0} R_{S}}{N}+v_{C 2}
$$

A turns ratio $N=1 / 14$ limits $V_{d s}$ to a safe value at high line. A catch winding clamps voltage spikes across the Power FET at turn off. The winding should be bifilar wound with the primary to minimize leakage inductance. An electrostatic shield will improve isolation between primary and secondary.

The network composed of L2 and C8 at the output provides additional filtering by attenuating high frequency spikes and ripple. The corner frequency for the LC filter is approximately 20 kHz which effectively attenuates 50 kHz and higher order harmonics. Inductor L2 is shunted by $3.9 \Omega$ R 7 to reduce the output " Q " and minimize output ringing. For critical damping: $R=\sqrt{L / C}$. Diode $D 6$ is a fast recovery Schottky doide. It has a low $V_{d}$ and is snubbed by resistor R6 and capacitor C6 to limit the $\mathrm{dV} / \mathrm{dt}$ and overshoot. The diode D5 is also a fast recovery diode which is connected to the catch winding of transformer L1. This protects the power FET Q1 from potentially damaging voltage spikes.

## Switching Losses

Power FETs behave like ideal switches and are very well suited for high frequency switching power supply applications. The fast turn-on and turn-off of the power MOSFET results in very low switching losses. In this application the turn-off losses are essentially zero, due in part to the presence of snubber network C4 and R4. And the worst case turn-on losses are less than two watts.

Energy:

$$
W=\int_{0}^{t} V_{d s}(t) l_{d}(t) d t
$$

where:

$$
V_{d s}(t)=10^{9} t
$$

$$
I_{d}(t)=12.5 \times 10^{6} t
$$

Integrating:

$$
\mathrm{W}=12.5 \times 10^{15} \int_{0}^{200 \mathrm{~ns}} \mathrm{t}^{2} \mathrm{dt}
$$

$$
W=12.5 \times 1015 \frac{t^{3}}{3} \quad \text { where: } t=200 \times 10^{-9}
$$

and Power:

$$
\begin{aligned}
P & =W \times F \quad \text { where: } F=50 \mathrm{kHz} \\
\text { Power } & =12.5 \times 10^{15}\left[\frac{\left(2 \times 10^{-7}\right)^{3}}{3}\right] 5 \times 10^{4} \\
& =1.67 \text { Watts }
\end{aligned}
$$

Because the power MOSFET has very high current gain it can be driven directly from the ICL7675. This is highly advantageous because it simplifies the circuitry and reduces overall system manufacturing costs.

## Control Loop Design

The control loop for a transformer coupled flyback converter is similar to the boost converter from which it is derived. The presence of an LC resonant filter with its steep 180 degree phase rolloff and a right-half plane zero in the loop transfer function makes frequency compensation a non-trivial exercise. However, the design of the control loop can be made easier if not simpler with the proper tools. The mathematical equation representing the power mesh equivalent transfer function may be reduced to a model which can be entered into SPICE, a widely used circuit simulation program, or any other simulation software being used. The equation for the modulator-power mesh portion of the control loop may be expressed as:

$$
\frac{V_{0}}{D(1-D)}\left[1-\frac{s n^{2} D L_{p}}{(1-D)^{2} R_{0}}\right] \frac{T(1-D)^{2}}{C_{r} V_{\mathrm{ref}}}
$$

## ICL7675/ICL7676

where:
D = Duty cycle
$\mathrm{n}=$ Transformer turns ratio
$L_{p}=$ Primary inductance
$\mathrm{R}_{0}=$ Load resistance
$T=$ Clock period
$\mathrm{C}_{\mathrm{r}}=$ Internal ramp capacitance $=40 \mathrm{pF}$
$V_{\text {ref }}=$ Internal reference voltage $=2.5 \mathrm{~V}$

A model representing this equation is shown in Figure 5B. Combined with the output filter shown in Figure 5C, and the error amp shown in Figure 5A, a computer simulation can be used to determine the optimum combination of components for a stable design that still provides adequate response to external disturbances. Note that in the output filter, the effective primary inductance and inductor series resistance are multiplied by $n^{2} /(1-D)^{2}$. In the example here, a combination of lead compensation provided by C11 and lag compensation provided by R9 and C10 gave the desired response.

$$
\begin{array}{rllr}
\mathrm{GM} 1=0.4 \mathrm{MV} & \mathrm{R}_{\mathrm{B}}=500 \mathrm{k} \Omega & \mathrm{R} 1=50 \mathrm{k} \Omega & \mathrm{E} 0=\mathrm{ED}=1 \\
\mathrm{GM} 2=0.15 \mathrm{MV} & \mathrm{C}_{\mathrm{B}}=20 \mathrm{pF} & \mathrm{R} 2=50 \mathrm{k} \Omega & \mathrm{GA}=6.67 \mu \mathrm{~V} \\
\mathrm{R}_{\mathrm{A}}=1.0 \mathrm{M} \Omega & \mathrm{C}_{\mathrm{C}}=10 \mathrm{pF} & \mathrm{R} 3=11.94 \mathrm{k} \Omega & \\
\mathrm{C}_{\mathrm{A}}=4 \mathrm{pF} & & \mathrm{R} 4=500 \mathrm{k} \Omega &
\end{array}
$$

Figure 5A: Error Amp Model

$\frac{V_{4}}{I_{A}}=\frac{E 1 \times G 1 \times G 2 \times H 1 \times R_{G}\left[1-s \frac{C_{X}}{G_{1}}\right]\left(R_{X}+s L_{X}\right)}{1+s R_{G} C_{X}}$
$R_{G}=G_{1}=R_{X}=G 2=H 1=1.0095-9$
$C_{X}=L_{x}=\frac{n^{2} D L_{p}}{(1-D)^{2}}$
$E 1=\frac{V_{0}}{D(1-D)} \times \frac{T(1-D)^{2}}{C_{r} V_{\text {ref }}}$
Figure 5B: Control Loop Model


Figure 5C: Output Filter Model

## GENERAL DESCRIPTION

The Harris ICL7680 voltage regulator pitvides the neceste C sary control circuitry for independent regutation of Beth a single-ended, boost type and boost-buck 管verting) typee switched-mode power supply. Specifically de ugned ta ges ate in these two configurations, the ICL7680 themed tr provide both $\mathrm{a}+15 \mathrm{~V}$ and -15 V output with $\boldsymbol{c}_{\mathrm{a}}+5 \mathrm{y}$ 综put voltage.

The internal circuitry is divided into two similar sections sharing a common voltage reference and oscillator: one for the boost stage and another for the inverting stage. Each section contains an error amplifier, comparator, and output logic which provide a standard pulse-width modulated output drive to an external transistor switch. The boost section senses the positive power supply output voltage via an internal thin film resistor divider which is trimmed for +15 V . This voltage is user adjustable by adding an external resistor. Similarly, the inverting section senses the negative power supply output voltage at the input of an inverting amplifier that is trimmed for -15 V .
The output logic provides the proper phase to drive an N -channel MOSFET on the boost side and a P-channel MOSFET on the inverting side. Although bipolar devices could be used, the chip is optimized for MOSFET drive and these devices will give higher efficiency.

For overcurrent protection, an internal comparator senses the voltage across an external resistor between the chip input supply pin and the current sense pin, shutting the circuit down for a voltage exceeding the limit.
Oscillator frequencies of $25 \mathrm{kHz}, 50 \mathrm{kHz}$, or 100 kHz can be set with the three-state frequency select pin connected to GND, left open, or connected to $V_{\text {in }}$ respectively.

- paal Cuttuy oitages of $\pm 15 \mathrm{~V} \pm 5 \%$ Under All

Condisisns
2 2utput Voltage Externally Adjustable

- Input Current Sensing
- Three Frequency Oscillator, Selectable with a Single Pin
- No Off-Chip Trimming Required
- Minimum External Components
- Low Supply Current
- Built-In Latchup Protection


## ORDERING INFORMATION

Part Number	Temperature   Range	Package
ICL7680CPE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Pin Plastic
ICL7680IPE	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Pin Plastic
ICL7680IDE	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Pin Ceramic
ICL7680MDE	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Pin Ceramic



HARRIS SEMICONDUCTOR, 2450 Walsh Avenue, Santa Clara, Ca. 95051
Printed in U.S.A. © Copyright 1990, Harris Corporation, All Rights Reserved
HARRIS SEMICONDUCTOR'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

302090-002
NOTE: All typical values have been characterized but are not tested.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage ( $\mathrm{V}_{\text {in }}$ to GND)	
Voltage on Any Pin ........... ( $\mathrm{V}_{\mathrm{in}}+0.3$ ) to (GND - 0.3) V (Except Pin 3 and Pin 14)	
Voitage on Pin 3	30 V to -0.3 V
Voltage on Pin 14	+0.3 V to -30 V
Lead Temperature (Soldering, 10 sec )	$.300^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range	
ICL7680C	$.0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
ICL76801	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
ICL7680M	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Continuous Total Power Dissipation	$=25^{\circ} \mathrm{C}$ )
Ceramic Package	.500 mW
Plastic Package	. . 375 mW

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.


ELECTRICAL CHARACTERISTICS Unless otherwise specified: $\mathrm{V}_{\text {in }}=5 \mathrm{~V}$, Pins $3,7,10$, and 14 are connected to GND ; Pin 4 is connected to $\mathrm{V}_{\text {in }}$; all other pins are open.

Symbol	Parameter	Test Conditions	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$\begin{aligned} & T_{A}=0^{\circ} \mathrm{C} \\ & \text { to }+70^{\circ} \mathrm{C} \end{aligned}$			$\begin{gathered} T_{A}=-25^{\circ} \mathrm{C} \\ \text { to }+85^{\circ} \mathrm{C} \end{gathered}$			$\begin{gathered} T_{A}=-55^{\circ} \mathrm{C} \\ \text { to }+125^{\circ} \mathrm{C} \end{gathered}$			Units
			Min	Typ	Max										
$V_{\text {REG }}$	Regulation Voltage	Duty Cycle 30,70\%	14.6		15.4	14.55		15.45	14.5		15.5	14.4		15.6	V

SWITCH OUTPUTS

$\mathrm{V}_{\mathrm{L}}$	Low Voltage	No Load $I_{\text {sink }}=20 \mathrm{~mA}$			$\begin{aligned} & 0.1 \\ & 1.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 0.1 \\ & 1.3 \end{aligned}$		$\begin{aligned} & 0.1 \\ & 1.5 \\ & \hline \end{aligned}$		$\begin{aligned} & 0.1 \\ & 1.6 \\ & \hline \end{aligned}$	V V
$\mathrm{V}_{\mathrm{H}}$	High Voltage	No Load $I_{\text {sink }}=20 \mathrm{~mA}$	$\begin{array}{r} 4.9 \\ 3.5 \\ \hline \end{array}$			$\begin{aligned} & 4.9 \\ & 3.4 \\ & \hline \end{aligned}$		$\begin{aligned} & 4.9 \\ & 3.4 \end{aligned}$		$\begin{aligned} & 4.9 \\ & 3.3 \end{aligned}$		V
$\mathrm{D}_{\text {max } 1}$	Max Duty Cycle 1	+15 V Sense $=0 \mathrm{~V}$	80		90	80	90	80	90	80	90	\%
$\mathrm{D}_{\text {min2 }}$	Min Duty Cycle 2	-15 V Sense $=0 \mathrm{~V}$	10		20	10	20	10	20	10	20	\%
$\mathrm{t}_{\mathrm{f}}$	Fall Time	$\begin{aligned} & \mathrm{R}_{0}=10 \mathrm{M} \Omega \\ & \mathrm{C}_{0}=500 \mathrm{pF} \end{aligned}$		70								ns
$t_{\text {t }}$	Rise Time	$\begin{aligned} & R_{0}=10 \mathrm{M} \Omega \\ & \mathrm{C}_{0}=500 \mathrm{pF} \end{aligned}$		70								ns

## SENSE INPUTS



## OP-AMP, ERROR AMPS, AND CURRENT LIMIT INPUTS

ILK	Leakage Current	Pin Voltage $=$ $0 \mathrm{~V}, \mathrm{~V}_{\text {in }}$	0.01	120	145	170	220	nA

## SHUT-DOWN (Bi-Directional)

	Overdrive Input   Current	Pin Voltage $=$   OV to $V_{\text {in }}$		-25	-35			-40			-45			-50
$\mathrm{~V}_{\mathrm{H}}$	Input Low Voltage				0.8			0.8			0.8			0.8
$\mathrm{~V}_{\mathrm{H}}$	Input High Voltage		3.1			3.1			3.1			3.1		
$\mathrm{~V}_{\mathrm{OL}}$	Output Low   Voltage	$I_{\text {sink }}=200 \mu \mathrm{~A}$			0.45			0.5			0.55			0.6
$\mathrm{~V}_{\mathrm{OH}}$	Output High   Voltage	$I_{\text {source }}=10 \mu \mathrm{~A}$	4.75	4.85		4.7			4.65			4.6		

CURRENT LIMITING

$\mathrm{V}_{\text {sense }}$	Sense Voltage	Shut-Down Low	115		175	110		180	105		185	100		190	mV

## oscillator

f	Frequency	$\begin{aligned} & \operatorname{Pin} 12=\text { GND } \\ & \operatorname{Pin} 12=\text { Open } \\ & \operatorname{Pin} 12=V_{\text {in }} \end{aligned}$		$\begin{gathered} 28 \\ 55 \\ 100 \end{gathered}$								kHz
	Frequency Select Input Current	Pin Voltage $=0 \mathrm{~V}$   Pin Voltage $=V_{\text {in }}$	-1	-0.5	$\begin{gathered} 0 \\ 15 \end{gathered}$	-1	$\begin{gathered} 0 \\ 16 \end{gathered}$	-1	$\begin{gathered} 0 \\ 18 \end{gathered}$	-1	$\begin{gathered} 0 \\ 20 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
	Freq. Stability with Temperature	(Note 1)					10		10		10	\%
	Freq. Stability with Voltage	$\mathrm{V}_{\text {in }}=4 \mathrm{~V}$ to 6 V		0.5								\%
SUPPLY												
$V_{\text {in }}$	Input Voltage Range	Functional Oper.	4		6	4	6	4	6	4	6	V
$\mathrm{I}_{\text {in }}$	Supply Current	No Load		1.2	1.7		1.8		1.9		2.0	mA

NOTE 1: Parameter guaranteed by design and characterization, but not tested over temperature.


Figure 3: System Schematic for Discontinuous Mode


Figure 4: System Schematic for Continuous Mode

Table 1: Example Component Values for SMPS System

C1	$150 \mu \mathrm{~F} / 75 \mathrm{~V}$	R5	$750 \mathrm{k} \Omega / .25 \mathrm{~W}$	D1-2	1N5818
C2	$150 \mu \mathrm{~F} / 75 \mathrm{~V}$	R6	$51 \mathrm{k} \Omega / .25 \mathrm{~W}$	$\mathrm{~L} 1-2$	$75 \mu \mathrm{H}$ (Discontinuous Mode)
C3	$10 \mu \mathrm{~F} / 16 \mathrm{~V}$	R7	$750 \mathrm{k} \Omega / .25 \mathrm{~W}$	$\mathrm{~L} 1-2$	$750 \mu \mathrm{H}$ (Continuous Mode)
C4	$0.01 \mu \mathrm{~F} / 50 \mathrm{~V}$	R8	$51 \mathrm{k} \Omega / .25 \mathrm{~W}$		93 turns, 22 ga. wire on  
					Magnetics 55204 core   C5
$0.001 \mu \mathrm{~F} / 50 \mathrm{~V}$	R9	$12 \mathrm{k} \Omega / .25 \mathrm{~W}$		Q1	TN0204N2
C6	$0.01 \mu \mathrm{~F} / 50 \mathrm{~V}$	R10	$0.15 \Omega / .25 \mathrm{~W}$	Q1	Q2
C7	$0.001 \mu \mathrm{~F} / 50 \mathrm{~V}$	R11	$2.2 \Omega / .5 \mathrm{~W}$	TP0204N2	
C8	$470 \mu \mathrm{~F} / 25 \mathrm{~V}$	R12	$2.2 \Omega / .5 \mathrm{~W}$		
C9	$470 \mu \mathrm{~F} / 25 \mathrm{~V}$				

## DETAILED DESCRIPTION

Refer to the system schematic (Figures 3 and 4) and the regulator functional diagram (Figure 2) for the following discussion.

## Control Circuits

The ICL7680 is divided into two sections: one for the +15 V regulator and another for the -15 V regulator. The output of the boost circuit is connected to the +15 V sense pin (3) where it is divided down to about 1.25 V and applied to one input of an error amplifier (A). Here it is compared to the internal 1.25 V reference, resulting in an error voltage which appears at the amplifier output. A pulse width modulated signal is produced by comparing the output of the error amp to a sawtooth waveform generated in the oscillator circuit. Variations in the error amp output cause the duty cycle at the output of the comparator to change. After some
signal conditioning in the output logic circuitry, the PWM signal appears at the output pin where it can be connected to the boost circuit power switch. The duty cycle varies in direct proportion to voltage changes at the +15 V sense pin (3) connected to the power supply output. The direction of change is such that when the voltage increases, duty cycle decreases, thus forming a negative feedback control loop. Changes in output voltage may occur due to fluctuations in either input voltage or load current. If the output voltage magnitude drops, for example, the effective duty ratio is increased until the output rises to the proper level, providing continuous regulation.
The -15 V section operates similarly except that the buck-boost circuit output is applied to the -15 V sense pin (14) at the input of an inverting op-amp (B) which provides +1.25 V at its output. The op-amp (B) has an input com-mon-mode range which includes ground.

## TYPICAL PERFORMANCE CHARACTERISTICS

## CURRENT SENSE VOLTAGE vs. AMBIENT TEMPERATURE



0097-10

## Oscillator

Oscillator frequencies of $25 \mathrm{kHz}, 50 \mathrm{kHz}$, or 100 kHz can be selected with pin 12 connected to GND, left open, or connected to $\mathrm{V}_{\text {in }}$ respectively.
An internal sync pulse resets the output latch which only recognizes one input transition between each pulse. This provides immunity to noise at the output of the error amp which would otherwise cause multiple transitions at the output of the PWM comparator.

A sawtooth waveform with a peak to peak amplitude of two times the reference voltage, or 2.5 V , provides one of the inputs for each of the PWM comparators at point $C$. The sawtooth waveform is also applied to a third comparator with a reference input, giving an output clock with a duty cycle of $85 \%$ at point $B$. When ANDed with either of the pulse width modulator outputs, this sets the upper duty cycle limit for the overall system. This limit is necessary during start-up conditions.

## Other Features

A current limit comparator is also provided to monitor the input current of the supply through an external resistor, R10, between $\mathrm{V}_{\text {in }}$ (pin 6) and pin 4. If the IR drop across the resistor exceeds the limit, the output of the comparator at pin 5 will go low, turning off the switch drive output. Pin 5 can also be overdriven to shut down the circuit by other means.

## APPLICATIONS

Refer to the power supply system schematic (Figures 3 and 4) for the following discussion of the boost and boostbuck converter.

When Q1 is off, current flows from the input source and energy is stored in L1. During this time, diode D1 is reverse biased, capacitor C1 supplies the output current, and the stored energy is somewhat depleted. When Q1 turns off, an inductive voltage step appears across L1 since current in an inductor cannot change instantaneously, making point $X$ positive relative to $\mathrm{V}_{\mathrm{in}}$. Diode D1 becomes forward biased, and the current initially flowing through L1 and Q1 now continues flowing via diode D1 into output capacitor C1 and to the load, restoring the energy lost when C 1 alone was driving the load. The magnitude of the inductive voltage step across L1 when Q1 opens depends on the switch duty cycle which is controlled by the ICL7680. The larger the duty cycle, the greater the peak current and energy stored in L1; hence, the higher the inductive voltage impulse across L1 necessary to transfer that energy out during the switch off time.
The duty cycle can be expressed as:

$$
D=\frac{V_{O}+V_{D}-V_{\text {in }}}{V_{O}+V_{D}-V_{S}}
$$

where: $\quad \mathrm{D}=$ Duty cycle
$V_{O}=$ Power supply output voltage $=15 \mathrm{~V}$
$V_{\text {in }}=$ Power supply input voltage $\cong 5 \mathrm{~V}$
$V_{D}=$ Forward diode voltage drop
$\mathrm{V}_{\mathrm{S}}=$ Switch "on" voltage
$=\left[\frac{I_{0}}{1-D}\right] R_{D S \text { (on) }}$ for MOSFET
$=V_{C E(S A T)}$ for Bipolar


Figure 5: ICL7680 Timing Diagram

This applies for continuous mode operation where the current in L1 never falls to zero during a clock cycle. For light loads, discontinuous conduction may occur. The inductance of L1 required to assure continuous mode operation at a light load of $\mathrm{l}_{\mathrm{O}(\mathrm{min})}$ is:

$$
L 1=\frac{V_{0} D_{\min }\left(1-D_{\min }\right)^{2}}{2 l_{\mathrm{O}(\min )} f}
$$

The -15 V section of the circuit behaves similarly except that the inductive voltage step at point $Y$ is negative because of the reversed orientation of Q2 and L2. This negative inductive step forward biases diode D2 and allows the current initially flowing through Q2 and L2 to continue flowing through D2 out of capacitor C2 and out of the load. Again, the magnitude of the inductive voltage step across L2 depends on switch duty cycle which is controlled by the ICL7680. The duty cycle here can be expressed as:

$$
D=\frac{V_{D}+\left|V_{O}\right|}{V_{\text {in }}+V_{D}+\left|V_{O}\right|-V_{S}}
$$

The inductance of L 2 required to assure continuous mode operation at light load $\mathrm{l}_{\mathrm{O}(\mathrm{min})}$ is:

$$
\mathrm{L} 2=\frac{\left(V_{D}+\left|V_{\mathrm{O}}\right|\right)\left(1-\mathrm{D}_{\text {min }}\right)^{2}}{\left.2 \mathrm{l}_{\mathrm{O}(\text { min })}\right)^{2}}
$$

## Component Selection

Power MOSFETs are recommended for the switching transistors because of their superior efficiency, especially with the low 5 V input. Efficiencies close to $90 \%$ should be easily obtainable with these devices. To help determine the correct part to use, the voltage stress and current for Q1 and Q2 are given below. Also, since the gate is being driven with a 5 V signal, a device with low $\mathrm{V}_{\text {th }}$ (threshold voltage)
must be selected to ensure sufficient drive for turn on. Devices that fit into this category include the Supertex TN01A ( N -ch) and TP02A/TP06A (P-ch) series and the RCA RFL1N (N-ch) series of MOSFETs. Alternatively, a bipolar configuration, such as shown in Figure 6, may be used in place of Q2 in Figures 3 and 4. This approach results in a system efficiency of about $80 \%$.
The drain to source voltage stress for Q1 is:

$$
V_{D S}=V_{D}+V_{O}
$$

The drain to source voltage stress for Q 2 is:

$$
v_{D S}=v_{D}+v_{\text {in }}+\left|v_{o}\right|
$$

The average "on" current in both Q1 and Q2 is:

$$
\mathrm{I}_{\mathrm{ON}}=\frac{\mathrm{I}_{\mathrm{O}}}{1-\mathrm{D}}
$$

Schottky diodes such as the 1 N5818 with their lower forward voltage drop and high speed will also give improved efficiency. The average current in the diode is just $\mathrm{I}_{\mathrm{O}}$, and the reverse voltage stress is about $\mathrm{V}_{\mathrm{O}}$ for D 1 and ( $\left|\mathrm{V}_{\mathrm{O}}\right|+$ $V_{\text {in }}$ ) for D2.
The peak-to-peak output voltage ripple for both topologies can be shown to be approximately:

$$
\Delta V_{O}=\frac{D_{\max } l_{0}}{f \bullet C}
$$

This equation can be used to compute the minimum value of capacitor required to maintain a given percentage of voltage ripple at the output. It must be remembered, however, that the equivalent series resistance (esr) of the output capacitor can contribute significantly to the voltage ripple and
must also be taken into account. The ripple contribution from esr for the low inductor current ripple in continuous mode conduction can be given by:

$$
\Delta \mathrm{V}_{\mathrm{O}}=\operatorname{esr} \bullet \mathrm{I}_{\mathrm{O}} \frac{1}{1-\mathrm{D}}
$$

This value should be added to the contribution from the output capacitor given above to give the total output voltage ripple. An equivalent series resistance of only $0.1 \Omega$ can dominate the total ripple at the output.
Finally, as shown in the last section and in Figure 9, any inductor series resistance $R_{S}$ is multiplied by a factor $1 /(1-D)^{2}$. For the large duty cycles encountered in this circuit this can have a significant effect on efficiency, and therefore $\mathrm{R}_{\mathrm{S}}$ should be kept to a minimum.

## Control Loop Design

The control loop for the boost and boost-buck converters is described below. The presence of an LC resonant filter with its steep 180 degree phase rolloff and a right-half plane zero in the loop transfer function makes frequency compensation a non-trivial exercise. However, the design of the control loop can be made easier if not simpler with the proper tools. The mathematical equation representing the smallsignal output to control voltage transfer function may be reduced to a model which can be entered into any simulation software being used, such as SPICE, a widely used circuit simulation program. The equation for the modulatorpower mesh portion of the control loop in the boost converter may be expressed as:

$$
\frac{V_{O}}{(1-D)}\left[1-\frac{s L}{(1-D)^{2} R_{O}}\right] \frac{1}{V_{m}}
$$

Similarly, the equation for the boost-buck converter may be written as:

$$
\frac{V_{O}}{D(1-D)}\left[1-\frac{s D L}{(1-D)^{2} R_{O}}\right] \frac{1}{V_{m}}
$$

where:
D = Duty cycle
$\mathrm{L}=$ Inductance
$\mathrm{R}_{\mathrm{O}}=$ Load resistance
$\mathrm{V}_{\mathrm{m}}=$ Internal reference voltage $=2.5 \mathrm{~V}$
A model representing these equations is shown in Figure 8. Combined with the output filter shown in Figure 9, and the error amp shown in Figure 7, a computer simulation can be used to determine the optimum combination of components for a stable design that still provides adequate response to external disturbances.

Note that in the output filter, the effective primary inductance and inductor series resistance are multiplied by $1 /(1-D)^{2}$. For the boost converter example, a combination of lead compensation provided by C5 and lag compensation provided by R6 and C4 gave the desired response. The buck-boost converter has identical lag compensation provided by C6 and R8; however, the lead compensation requires a series combination of C7 and R9 which appears across R3 (Figure 2) within the ICL7680. Both R5 and R7 load the output of each error amplifier, reducing the DC gain. The output resistance of the error amp is given by $R_{B}$ in Figure 7 as $4.6 \mathrm{M} \Omega$. Finally, the C8/R11 and C9/R12 networks at both outputs provide damping which lessens the severity of the LC phase rolloff.

## Line and Load Regulation

Line and load regulation can be approximated by $1 /$ (loop gain) which for the boost converter can be expressed as:

$$
\frac{2(1-D)}{a_{0}}
$$

For the buck-boost converter, the expression becomes:

$$
\frac{2 D(1-D)}{a_{0}}
$$

where: $a_{0}=$ error amp gain

$$
\begin{aligned}
& =G m_{2}\left(R_{B} \| R_{E X T}\right) \\
& =(0.66 E-3)\left(4.6 \mathrm{Meg} \| R_{E X T}\right), \text { see Figure } 7 .
\end{aligned}
$$

A value of around $0.2 \%$ is typical for the system shown in Figure 4.

## Discontinuous Conduction

As stated earlier, the above analysis assumes continuous mode conduction where the inductor current never falls to zero. The converter can also be operated in what is called discontinuous conduction mode where the inductor current becomes zero for a portion of the clock cycle. This can occur from either a light load current or small inductor value or a combination of both. The advantage of this mode of operation is that the order of the system is reduced by one giving a single pole response, thereby easing loop stability design. The disadvantage is a higher input current surge and more severe ripple problems at the input and output, particularly with high ESR capacitors. An example of a system configuration for the discontinuous case is shown in Figure 3.


Figure 6: Configuration to Replace Q2 In Figures 3 and 4


Figure 7: Error Amp Model


Figure 8: Control Loop Model


$$
\begin{array}{ll}
R_{e}=\frac{R_{S}+D \times R_{t}+(1-D) R_{d}+D(1-D) r_{C}}{(1-D)^{2}} & \begin{array}{l}
R_{S}=\text { Inductor Series Resistance } \\
L_{e}=\frac{L}{(1-D)^{2}}
\end{array} \\
R_{t}=\text { MOSFET "ON" Resistance } \\
R_{d}=\text { Diode "ON" Resistance }
\end{array}
$$

Figure 9: Output Filter Model

## ICL8211/ICL8212 Programmable Voltage Detectors

## GENERAL DESCRIPTION

The Harris ICL8211/8212 are micropower bipolar monolithic integrated circuits intended primarily for precise voltage detection and generation. These circuits consist of an accurate voltage reference, a comparator and a pair of output buffer/drivers.
Specifically, the ICL8211 provides a 7 mA current limited output sink when the voltage applied to the 'THRESHOLD' terminal is less than 1.15 volts (the internal reference). The ICL8212 requires a voltage in excess of 1.15 volts to switch its output on (no current limit). Both devices have a low current output (HYSTERESIS) which is switched on for input voltages in excess of 1.15 V . The HYSTERESIS output may be used to provide positive and noise free output switching using a simple feedback network.
ORDERING INFORMATION

Part Number	Temperature Range	Package
ICL8211CPA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 lead Mini DIP
ICL8211CBA	$0^{\circ} \mathrm{C}$ t $+70^{\circ} \mathrm{C}$	8 lead SOIC
ICL8211CTY	$0^{\circ} \mathrm{C}$ t $+70^{\circ} \mathrm{C}$	TO-99 Can
ICL8211MTY*	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	TO-99 Can
ICL8212CPA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 lead Mini DIP
ICL8212CBA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 lead SOIC
ICL8212CTY	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	TO-99 Can
ICL8212MTY*	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	TO-99 Can

## FEATURES

- High Accuracy Voltage Sensing and Generation: Internal Reference 1.15 Volts Typical
- Low Sensitivity to Supply Voltage and Temperature Variations
- Wide Supply Voltage Range: Typ. 1.8 to 30 Volts
- Essentially Constant Supply Current Over Full Supply Voltage Range
- Easy to Set Hysteresis Voltage Range
- Defined Output Current Limit - ICL8211 High Output Current Capability - ICL8212


## APPLICATIONS

- Low Voltage Sensor/Indicator
- High Voltage Sensor/Indicator
- Non Volatile Out-of-Voltage Range Sensor/Indicator
- Programmable Voltage Reference or Zener Diode
- Series or Shunt Power Supply Regulator
- Fixed Value Constant Current Source
* Add /883B to part number if 883B processing is required.


[^12]ABSOLUTE MAXIMUM RATINGS
(Note 1)
Supply Voltage ........................... . -0.5 to +30 volts
Output Voltage . . . . . . . . . . . . . . . . . . . . . . -0.5 to +30 volts
Hysteresis Voltage ..................... +0.5 to -10 volts
Threshold Input Voltage
+30 to -5 volts with respect to GROUND and +0 to -30 volts with respect to $\mathrm{V}^{+}$
Current into Any Terminal

Power Dissipation (Note 1 \& 2) . . . . . . . . . . . . . . . . . . 300mW
Operating Temperature Range:
ICL8211M/8212M ................... $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
ICL8211C/8212C . . . . . . . . . . . . . . . . . . . . . . . $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range . .......... $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec ) ............... $300^{\circ} \mathrm{C}$

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

NOTE 1: Rating applies for case temperatures to $125^{\circ} \mathrm{C}$ to $\mathrm{ICL} 8211 \mathrm{MTY} / 8212 \mathrm{MTY}$ products. Derate linearly at $-10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for ambient temperatures above $100^{\circ} \mathrm{C}$.
NOTE 2: Derate linearly above $50^{\circ} \mathrm{C}$ by $-10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for ICL8211 $\mathrm{C} / 8212 \mathrm{C}$ products. The threshold input voltage may exceed +7 volts for short periods of time. However for continuous operation this voltage must be maintained at a value less than 7 volts.
ELECTRICAL CHARACTERISTICS $\left(V^{+}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

Symbol	Parameter	Test Conditions	ICL8211			ICL8212			Units
			Min	Typ	Max	Min	Typ	Max	
$1+$	Supply Current	$\begin{aligned} & 2.0<\mathrm{V}+<30 \\ & \mathrm{~V}_{\mathrm{TH}}=1.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{TH}}=0.9 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & 10 \\ & 50 \end{aligned}$	$\begin{gathered} 22 \\ 140 \end{gathered}$	$\begin{gathered} 40 \\ 250 \\ \hline \end{gathered}$	$\begin{aligned} & 50 \\ & 10 \end{aligned}$	$\begin{gathered} 110 \\ 20 \end{gathered}$	$\begin{gathered} 250 \\ 40 \end{gathered}$	$\mu \mathrm{A}$   $\mu \mathrm{A}$
$V_{\text {TH }}$	Threshold Trip Voltage	$V_{\text {OUT }}=4 \mathrm{~mA}$ $V^{+}=5 \mathrm{~V}$   $\mathrm{~V}_{\text {OUT }}=2 \mathrm{~V}$ $\mathrm{~V}^{+}=2 \mathrm{~V}$    $V^{+}=30 \mathrm{~V}$	$\begin{aligned} & 0.98 \\ & 0.98 \\ & 1.00 \end{aligned}$	$\begin{aligned} & 1.15 \\ & 1.145 \\ & 1.165 \end{aligned}$	$\begin{aligned} & 1.19 \\ & 1.19 \\ & 1.20 \end{aligned}$	$\begin{aligned} & 1.00 \\ & 1.00 \\ & 1.05 \end{aligned}$	$\begin{aligned} & \hline 1.15 \\ & 1.145 \\ & 1.165 \end{aligned}$	$\begin{aligned} & 1.19 \\ & 1.19 \\ & 1.20 \end{aligned}$	$\begin{aligned} & \mathrm{v} \\ & \mathrm{v} \\ & \mathrm{v} \end{aligned}$
$V_{\text {THP }}$	Threshold Voltage Disparity Between Output \& Hysteresis Output	lout $=4 \mathrm{~mA}$ $V_{\text {OUT }}=2 \mathrm{~V}$   $\mathrm{I}_{\mathrm{HYST}}=7 \mu \mathrm{~A}$ $\mathrm{~V}_{\mathrm{HYST}}=3 \mathrm{~V}$		$-8.0$			-0.5		mV
V SUPPLY	Guaranteed Operating Supply Voltage Range (Note 5)	$\begin{aligned} & +25^{\circ} \mathrm{C} \\ & 0 \text { to }+70^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.2 \\ & \hline \end{aligned}$		$\begin{aligned} & 30 \\ & 30 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.2 \\ & \hline \end{aligned}$		$\begin{aligned} & 30 \\ & 30 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
V SUPPLY	Minimum Operating Supply Voltage Range	$\begin{aligned} & +25^{\circ} \mathrm{C} \\ & +125^{\circ} \mathrm{C} \\ & -55^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & 1.8 \\ & 1.4 \\ & 2.5 \\ & \hline \end{aligned}$			$\begin{aligned} & 1.8 \\ & 1.4 \\ & 2.5 \\ & \hline \end{aligned}$		$V$ $V$ $V$
$\Delta V_{T H} / \Delta T$	Threshold Voltage Temperature Coefficient	$\begin{aligned} & \mathrm{I}_{\mathrm{OUT}}=4 \mathrm{~mA} \\ & \mathrm{~V}_{\text {OUT }}=2 \mathrm{~V} \end{aligned}$		$\pm 200$			$\pm 200$		ppm $/{ }^{\circ} \mathrm{C}$
$\Delta \mathrm{V}_{\mathrm{TH}} / \Delta \mathrm{V}^{+}$	Variation of Threshold Voltage with Supply Voltage	$\Delta V^{+}=10 \%$ at $V^{+}=5 \mathrm{~V}$		1.0			1.0		mV
${ }^{1} \mathrm{TH}$	Threshold Input Current	$\begin{aligned} & \mathrm{V}_{\mathrm{TH}}=1.15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{TH}}=1.00 \mathrm{~V} \end{aligned}$		$\begin{gathered} 100 \\ 5 \\ \hline \end{gathered}$	250		$\begin{gathered} 100 \\ 5 \\ \hline \end{gathered}$	250	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \\ & \hline \end{aligned}$
IoLk	Output Leakage Current	$V_{\text {OUT }}=30 \mathrm{~V}$ $V_{\text {TH }}=0.9 \mathrm{~V}$   $V_{\text {OUT }}=30 \mathrm{~V}$ $V_{T H}=1.3 \mathrm{~V}$   $V_{\text {OUT }}=5 \mathrm{~V}$ $V_{T H}=0.9 \mathrm{~V}$   $V_{\text {OUT }}=5 \mathrm{~V}$ $\mathrm{~V}_{\text {TH }}=1.3 \mathrm{~V}$			10   1			$10$ $1$	$\mu \mathrm{A}$   $\mu \mathrm{A}$   $\mu \mathrm{A}$   $\mu \mathrm{A}$
$V_{\text {SAT }}$	Output Saturation Voltage	lout $=4 \mathrm{~mA}$ $\begin{aligned} & \mathrm{V}_{\text {TH }}=1.3 \mathrm{~V} \\ & \\ & \\ & \mathrm{VH}_{\text {TH }}=1.3 \mathrm{~V}\end{aligned}$		0.17	0.4		0.17	0.4	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
${ }^{\mathrm{OH}}$	Max Available Output Current	(Note 3 \& 4) $V_{T H}=0.9 \mathrm{~V}$   $V_{\text {OUT }}=5 \mathrm{~V}$ $V_{T H}=1.3 \mathrm{~V}$	4	7.0	12	15	35		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \hline \end{aligned}$
ILHYS	Hysteresis Leakage Current	$\begin{array}{lll} \hline \mathrm{V}^{+}=10 \mathrm{~V} & \mathrm{~V}_{\mathrm{TH}}=1.0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{HYST}}=\mathrm{GROUND} & \\ \hline \end{array}$			0.1			0.1	$\mu \mathrm{A}$
$V_{\text {HYS (max) }}$	Hysteresis Sat Voltage	$\mathrm{I}_{\mathrm{HYST}}=-7 \mu \mathrm{~A} \quad \mathrm{~V}_{\mathrm{TH}}=1.3 \mathrm{~V}$ measured with respect to $\mathrm{V}^{+}$		$-0.1$	-0.2		$-0.1$	-0.2	V
$\mathrm{I}_{\text {HYS (max) }}$	Max Available Hysteresis Current	$\mathrm{V}_{T H}=1.3 \mathrm{~V}$	-15	-21		-15	-21		$\mu \mathrm{A}$

NOTES: 3. The maximum output current of the ICL8211 is limited by design to 15 mA under any operating conditions. The output voltage may be sustained at any voltage up to +30 V as long as the maximum power dissipation of the device is not exceeded.
4. The maximum output current of the ICL8212 is not defined, and systems using the ICL8212 must therefore ensure that the output current does not exceed 30 mA and that the maximum power dissipation of the device is not exceeded.
5. Threshold Trip Voltage is $0.80 \mathrm{~V}(\mathrm{~min})$ to $1.30 \mathrm{~V}(\max )$. At lout $=3 \mathrm{~mA}$.

ELECTRICAL CHARACTERISTICS ICL8211MTY/8212MTY ( $\mathrm{V}+=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ )

Symbol	Parameter	Test Conditions	ICL8211			ICL8212			Units
			Min	Typ	Max	Min	Typ	Max	
$1+$	Supply Current	$\begin{aligned} & 2.8<V+<30 \\ & V_{T}=1.3 V \\ & V_{T}=0.8 V \end{aligned}$			$\begin{aligned} & 100 \\ & 350 \end{aligned}$			$\begin{aligned} & 350 \\ & 100 \end{aligned}$	$\mu \mathrm{A}$   $\mu \mathrm{A}$
$V_{\text {TH }}$	Threshold Trip Voltage	$\begin{array}{ll} \begin{array}{ll} \text { loUT } & =2 \mathrm{~mA} \\ & \\ \mathrm{~V}_{\text {OUT }}=2 \mathrm{~V} & \mathrm{~V}+=2.8 \mathrm{~V} \\ & \mathrm{~V}^{+}=30 \mathrm{~V} \\ \hline \end{array} \end{array}$	$\begin{aligned} & 0.80 \\ & 0.80 \end{aligned}$		$\begin{aligned} & 1.30 \\ & 1.30 \end{aligned}$	$\begin{aligned} & 0.80 \\ & 0.80 \end{aligned}$		$\begin{aligned} & 1.30 \\ & 1.30 \end{aligned}$	$\begin{aligned} & v \\ & v \end{aligned}$
V SUPPLY	Guaranteed Operating Supply Voltage Range	(Note 5)	2.8		30	2.8		30	V
$I_{\text {TH }}$	Threshold Input Current	$\mathrm{V}_{\mathrm{TH}}=1.15 \mathrm{~V}$			400			400	nA
lolk	Output Leakage Current	$\begin{array}{ll} V_{\text {OUT }}=30 \mathrm{~V} & V_{\mathrm{TH}}=0.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{TH}}=1.3 \mathrm{~V} \end{array}$			20			20	$\mu \mathrm{A}$ $\mu \mathrm{A}$
$V_{\text {SAT }}$	Output Saturation Voltage	$\begin{array}{ll} \text { louT }=3 \mathrm{~mA} & \mathrm{~V}_{\mathrm{TH}}=0.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{TH}}=1.3 \mathrm{~V} \end{array}$			0.5			0.5	$\begin{aligned} & v \\ & v \end{aligned}$
IOH	Max Available Output Current	$\begin{array}{ll} (\text { Note } 3 \& 4) & V_{\mathrm{TH}}=0.8 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{OUT}}=5 \mathrm{~V} & \mathrm{~V}_{\mathrm{TH}}=1.3 \mathrm{~V} \\ \hline \end{array}$	3		15	9			$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \hline \end{aligned}$
'LHYS	Hysteresis Leakage Current	$\begin{aligned} & \mathrm{V}^{+}=10 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{TH}}=0.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{HYST}}=\mathrm{GROUND} \end{aligned}$			0.2			0.2	$\mu \mathrm{A}$
$\mathrm{V}_{\text {HYS (max) }}$	Hysteresis Saturation Voltage	$\mathrm{I}_{\mathrm{HYST}}=-7 \mu \mathrm{~A} \quad \mathrm{~V}_{\mathrm{TH}}=1.3 \mathrm{~V}$ measured with respect to $V+$			0.3			0.3	V
$\mathrm{I}_{\mathrm{HYS} \text { (max) }}$	Max Available Hysteresis Current	$\mathrm{V}_{\mathrm{TH}}=1.3 \mathrm{~V}$	10			10			$\mu \mathrm{A}$

## TYPICAL PERFORMANCE CHARACTERISTICS COMMON TO ICL8211 AND ICL8212



HYSTERESIS OUTPUT SATURATION CURRENT AS A FUNCTION OF TEMPERATURE


0328-5

TYPICAL PERFORMANCE CHARACTERISTICS ICL8211 ONLY

SUPPLY CURRENT AS A
FUNCTION OF SUPPLY VOLTAGE


0328-6

OUTPUT SATURATION CURRENTS AS A FUNCTION OF THRESHOLD VOLTAGE


SUPPLY CURRENT AS A FUNCTION OF THRESHOLD VOLTAGE


0328-7
THRESHOLD VOLTAGE TO TURN OUTPUTS "JUST ON" AS A FUNCTION OF TEMPERATURE


SUPPLY CURRENT AS A FUNCTION OF TEMPERATURE


0328-8
THRESHOLD VOLTAGE TO TURN OUTPUTS "JUST ON" AS A
FUNCTION OF SUPPLY VOLTAGE


TYPICAL PERFORMANCE CHARACTERISTICS ICL8211 ONLY (Continued) OUTPUT SATURATION CURRENT

AS A FUNCTION OF TEMPERATURE


0328-12

OUTPUT CURRENT AS A FUNCTION OF OUTPUT VOLTAGE


0328-13

HYSTERESIS OUTPUT CURRENT AS A FUNCTION OF HYSTERESIS OUTPUT VOLTAGE


HYSTERESIS OUTPUT VOLTAGE

0328-23

TYPICAL PERFORMANCE CHARACTERISTICS ICL8212 ONLY

SUPPLY CURRENT AS A
FUNCTION OF SUPPLY VOLTAGE


0328-15


0328-18

SUPPLY CURRENT AS A
FUNCTION OF THRESHOLD VOLTAGE
 (IRREGULAR SCALE)

0328-16
THRESHOLD VOLTAGE TO TURN OUTPUTS "JUST ON" AS A FUNCTION OF TEMPERATURE


0328-19

SUPPLY CURRENT AS A FUNCTION OF TEMPERATURE


0328-17
THRESHOLD VOLTAGE TO TURN OUTPUTS "JUST ON" AS A FUNCTION OF SUPPLY VOLTAGE


0328-20

## TYPICAL PERFORMANCE CHARACTERISTICS ICL8212 ONLY (Continued)



HYSTERESIS OUTPUT CURRENT AS A FUNCTION OF HYSTERESIS OUTPUT VOLTAGE


0328-21
0328-22

## DETAILED DESCRIPTION

The ICL8211 and ICL8212 use standard linear bipolar integrated circuit technology with high value thin film resistors which define extremely low value currents.

Components $Q_{1}$ thru $Q_{10}$ and $R_{1}, R_{2}$ and $R_{3}$ set up an accurate voltage reference of 1.15 volts. This reference voltage is close to the value of the bandgap voltage for silicon and is highly stable with respect to both temperature and supply voltage. The deviation from the bandgap voltage is necessary due to the negative temperature coefficient of the thin film resistors $\left(-5000 \mathrm{ppm}\right.$ per $\left.{ }^{\circ} \mathrm{C}\right)$.

Components $Q_{2}$ thru $Q_{9}$ and $R_{2}$ make up a constant current source; $Q_{2}$ and $Q_{3}$ are identical and form a current mirror. $Q_{8}$ has 7 times the emitter area of $Q_{9}$, and due to the current mirror, the collector currents of $Q_{8}$ and $Q_{9}$ are forced to be equal and it can be shown that the collector current in $Q_{8}$ and $Q_{9}$ is

$$
I_{C}\left(Q_{8} \text { or } Q_{9}\right)=\frac{1}{R_{2}} \times \frac{k T}{q} \ln 7
$$

or approximately $1 \mu \mathrm{~A}$ at $25^{\circ} \mathrm{C}$
Where $k=$ Boltzman's constant
$q=$ charge on an electron
and $\quad \mathrm{T}=$ absolute temperature in ${ }^{\circ} \mathrm{K}$
Transistors $Q_{5}, Q_{6}$, and $Q_{7}$ assure that the $V_{C E}$ of $Q_{3}, Q_{4}$, and $Q_{9}$ remain constant with supply voltage variations. This ensures a constant current supply free from variations.

The base current of $Q_{1}$ provides sufficient start up current for the constant source; there being two stable states for this type of circuit - either ON as defined above, or OFF if no start up current is provided. Leakage current in the transistors is not sufficient in itself to guarantee reliable startup.
$Q_{4}$ is matched to $Q_{3}$ and $Q_{2} ; Q_{10}$ is matched to $Q_{9}$. Thus the $I_{C}$ and $V_{B E}$ of $Q_{10}$ are identical to that of $Q_{9}$ or $Q_{8}$. To generate the bandgap voltage, it is necessary to sum a voltage equal to the base emitter voltage of $Q_{9}$ to a voltage proportional to the difference of the base emitter voltages of two transistors $Q_{8}$ and $Q_{9}$ operating at two current densities.

Thus $1.15=V_{B E}\left(Q_{9}\right.$ or $\left.Q_{10}\right)+\frac{R_{3}}{R_{2}} \times \frac{k T}{q} \ln 7$ which provides $\frac{R_{3}}{R_{2}}=12$ (approx.)

The total supply current consumed by the voltage reference section is approximately $6 \mu \mathrm{~A}$ at room temperature. A voltage at the THRESHOLD input is compared to the reference 1.15 volts by the comparator consisting of transistors $Q_{11}$ thru $Q_{17}$. The outputs from the comparator are limited to two diode drops less than $\mathrm{V}^{+}$or approximately 1.1 volts. Thus the base current into the hysteresis output transistor is limited to about 500 nA and the collector current of $\mathrm{Q}_{19}$ to $100 \mu \mathrm{~A}$.

In the case of the ICL8211, $Q_{21}$ is proportioned to have 70 times the emitter area of $Q_{20}$ thereby limiting the output current to approximately 7 mA , whereas for the ICL8212 almost all the collector current of $Q_{19}$ is available for base drive to $Q_{21}$, resulting in a maximum available collector current of the order of 30 mA . It is advisable to externally limit this current to 25 mA or less.

## APPLICATIONS

The ICL8211 and ICL8212 are similar in many respects, especially with regard to the setup of the input trip conditions and hysteresis circuitry. The following discussion describes both devices, and where differences occur they are clearly noted.

## General Information THRESHOLD INPUT CONSIDERATIONS

Although any voltage between -5 V and $\mathrm{V}^{+}$may be applied to the THRESHOLD terminal, it is recommended that the THRESHOLD voltage does not exceed about +6 volts since above that voltage the threshold input current increases sharply. Also, prolonged operation above this voltage will lead to degradation of device characteristics.


The outputs change states with an input THRESHOLD voltage of approximately 1.15 volts. Input and output waveforms are shown in Figure 3 for a simple 1.15 volt level detector.

The HYSTERESIS output is a low current output and is intended primarily for input threshold voltage hysteresis applications. If this output is used for other applications it is suggested that output currents be limited to $10 \mu \mathrm{~A}$ or less.

The regular OUTPUT's from either the ICL8211 or ICL8212 may be used to drive most of the common logic families such as TTL or C-MOS using a single pullup resistor. There is a guaranteed TTL fanout of 2 for the ICL8211 and 4 for the ICL8212.


0328-26
Figure 4: Output Logic Interface

A principal application of the ICL8211 is voltage level detection, and for that reason the OUTPUT current has been limited to typically 7 mA to permit direct drive of an LED connected to the positive supply without a series current limiting resistor.

On the other hand the ICL8212 is intended for applications such as programmable zener references, and voltage regulators where output currents well in excess of 7 mA are desirable. Therefore, the output of the ICL8212 is not current limited, and if the output is used to drive an LED, a series current limiting resistor must be used.
In most applications an input resistor divider network may be used to generate the 1.15 V required for $\mathrm{V}_{\mathrm{TH}}$. For high accuracy, currents as large as $50 \mu \mathrm{~A}$ may be used, however for those applications where current limiting may be desirable, (such as when operating from a battery) currents as low as $6 \mu \mathrm{~A}$ may be considered without a great loss of accuracy. $6 \mu \mathrm{~A}$ represents a practical minimum, since it is about this level where the device's own input current becomes a significant percentage of that flowing in the divider network.


Case 1. High accuracy required, current in resistor network unimportant Set $I=50 \mu \mathrm{~A}$ for $\mathrm{V}_{\mathrm{TH}}=1.15$ volts $\therefore R_{1} \rightarrow 20 \mathrm{k} \Omega$.
Case 2. Good accuracy required, current in resistor network important Set $\mathrm{I}=7.5 \mu \mathrm{~A}$ for $\mathrm{V}_{\mathrm{TH}}=1.15$ volts $\therefore R_{1} \rightarrow 150 \mathrm{k} \Omega$.

## SETUP PROCEDURES FOR VOLTAGE LEVEL DETECTION

Case 1. Simple voltage detection - no hysteresis
Unless an input voltage of approximately 1.15 volts is to be detected, resistor networks will be used to divide or multiply the unknown voltage to be sensed. Figure 7 shows procedures on how to set up resistor networks to detect INPUT VOLTAGES of any magnitude and polarity.
For supply voltage level detection applications the input resistor network is connected across the supply terminals as shown in Figure 8.


0328-28
Input voltage to change the output states

$$
=\frac{\left(R_{1}+R_{2}\right)}{R_{1}} \times 1.15 \text { volts }
$$

Figure 6: Range of Input Voltage Greater Than +1.15 Volts
may be any stable voltage REFERENCE GREATER


0328-29
Range of input voltage less than +1.15 volts. Input voltage to change the output states $=\frac{\left(R_{1}+R_{2}\right) \times 1.15}{R_{1}}-\frac{R_{2} V_{R E F}}{R_{1}}$
Figure 7: Input Resistor Network Setup Procedures


0328-30
Figure 8: Combined Input and Supply Voltages

Case 2. Use of the HYSTERESIS function
The disadvantage of the simple detection circuits is that there is a small but finite input range where the outputs are neither totally 'ON' nor totally 'OFF'. The principle behind
hysteresis is to provide positive feedback to the input trip point such that there is a voltage difference between the input voltage necessary to turn the outputs ON and OFF.
The advantage of hysteresis is especially apparent in electrically noisy environments where simple but positive voltage detection is required. Hysteresis circuitry, however, is not limited to applications requiring better noise performance but may be expanded into highly complex systems with multiple voltage level detection and memory applications - refer to specific applications section.

There are two simple methods to apply hysteresis to a circuit for use in supply voltage level detection. These are shown in Figure 9.
The circuit (a) of Figure 9 requires that the full current flowing in the resistor network be sourced by the HYSTERESIS output, whereas for circuit (b) the current to be sourced by the HYSTERESIS output will be a function of the ratio of the two trip points and their values. For low values of hysteresis, circuit (b) is to be preferred due to the offset voltage of the hysteresis output transistor.
A third way to obtain hysteresis (ICL8211 only) is to connect a resistor between the OUTPUT and the THRESHOLD terminals thereby reducing the total external resistance between the THRESHOLD and GROUND when the OUTPUT is switched on.

## Practical Applications

a) Low Voltage Battery Indicator (Figure 10)

This application is particularly suitable for portable or remote operated equipment which requires an indication of a depleted or discharged battery. The quiescent current taken by the system will be typically $35 \mu \mathrm{~A}$ which will increase to 7 mA when the lamp is turned on. $\mathrm{R}_{3}$ will provide hysteresis if required.
b) Non-Volatile Low Voltage Detector (Figure 11)

In this application the high trip voltage $\mathrm{V}_{\text {TR2 }}$ is set to be above the normal supply voltage range. On power up the initial condition is $A$. On momentarily closing switch $S_{1}$ the operating point changes to $B$ and will remain at $B$ untis the supply voltage drops below $\mathrm{V}_{\text {TR1 }}$, at which time the output will revert to condition $A$. Note that state $A$ is always retained if the supply voltage is reduced below $\mathrm{V}_{\text {TR1 }}$ (even to zero volts) and then raised back to $\mathrm{V}_{\text {NOM }}$.
c) Non-Volatile Power Supply Malfunction Recorder (Figures 12 and 13)
In many systems a transient or an extended abnormal (or absence of a) supply voltage will cause a system failure. This failure may take the form of information lost in a volatile semiconductor memory stack, a loss of time in a timer or even possible irreversible damage to components if a supply voltage exceeds a certain value.

It is, therefore, necessary to be able to detect and store the fact that an out-of-operating range supply voltage condition has occurred, even in the case where a supply voltage may have dropped to zero. Upon power up to the normal operating voltage this record must have been retained and easily interrogated. This could be important in the case of a transient power failure due to a faulty component or intermittent power supply, open circuit, etc., where direct observation of the failure is difficult.


0328-31
Low trip voltage
$V_{\mathrm{TR} 1}=\left[\frac{\left(R_{1}+R_{2} \times 1.15\right.}{\left.R_{1}\right)}+0.1\right]$ volts
High trip voltage

$$
V_{T R 2}=\frac{\left(R_{1}+R_{2}+R_{3}\right)}{R_{1}} \times 1.15 \text { volts }
$$



0328-32
Low trip voltage
$V_{T R 1}=\left[\frac{R_{Q} R_{S}}{\left(R_{Q}+R_{S}\right)}+R P\right] \times \frac{1}{R_{P}} \times 1.15$ volts High trip voltage

$$
V_{T R 2}=\frac{\left(R_{P}+R_{Q}\right)}{R_{P}} \times 1.15 \text { volts }
$$



Figure 9: Two alternative voltage
0328-33 detection circuits employing hysteresis to provide pairs of well defined trip voltages.


0328-34
Figure 10: Low Voltage Battery Indicator


Figure 11: Non-Volatile Low Voltage Indicator


A simple circuit to record an out of range voltage excursion may be constructed using an ICL8211, an ICL8212 plus a few resistors. This circuit will operate to 30 volts without exceeding the maximum ratings of the I.C.'s. The two voltage limits defining the in range supply voltage may be set to any value between 2.0 and 30 volts.


The ICL8212 is used to detect a voltage, $\mathrm{V}_{2}$, which is the upper voltage limit to the operating voltage range. The ICL8211 detects the lower voltage limit of the operating voltage range, $\mathrm{V}_{1}$. Hysteresis is used with the ICL8211 so that the output can be stable in either state over the operating voltage range $V_{1}$ to $V_{2}$ by making $V_{3}$ - the upper trip point of the ICL8211 much higher in voltage than $V_{2}$.

The output of the ICL8212 is used to force the output of the ICL8211 into the ON state above $\mathrm{V}_{2}$. Thus there is no value of the supply voltage that will result in the output of the ICL8211 changing from the ON state to the OFF state. This may be achieved only by shorting out $R_{3}$ for values of supply voltage between $\mathrm{V}_{1}$ and $\mathrm{V}_{2}$.
d) Constant Current Sources (Figure 14)

The ICL8212 may be used as a constant current source of value of approximately $25 \mu \mathrm{~A}$ by connecting the THRESHOLD terminal to GROUND. Similarly the ICL8211 will provide a $130 \mu \mathrm{~A}$ constant current source. The equivalent parallel resistance is in the tens of megohms over the supply voltage range of 2 to 30 volts. These constant current sources may be used to provide biasing for various circuitry including differential amplifiers and comparators. See Typical Operating Characteristics for complete information.
e) Programmable Zener Voltage Reference (Figure 15)
The ICL8212 may be used to simulate a zener diode by connecting the OUTPUT terminal to the $\mathrm{V}_{\mathrm{Z}}$ output and using a resistor network connected to the THRESHOLD terminal to program the zener voltage

$$
v_{\text {zener }}=\frac{\left(R_{1}+R_{2}\right)}{R_{1}} \times 1.15 \text { volts }
$$

Since there is no internal compensation in the ICL8212 it is necessary to use a large capacitor across the output to prevent oscillation.
Zener voltages from 2 to 30 volts may be programmed and typical impedance values between $300 \mu \mathrm{~A}$ and 25 mA will range from 4 to $7 \Omega$. The knee is sharper and occurs at a significantly lower current than other similar devices available.


0328-40
Figure 15: Programmable Zener Voltage Reference


0328-41
Figure 16: Precision Voltage Regulator
f) Precision Voltage Regulator (Figure 16)

The ICL8212 may be used as the controller for a highly stable series voltage regulator. The output voltage is simply programmed, using a resistor divider network $\mathrm{R}_{1}$ and $\mathrm{R}_{2}$. Two capacitors $C_{1}$ and $C_{2}$ are required to ensure stability since the ICL8212 is uncompensated internally.

## ICL8211/ICL8212



This regulator may be used with lower input voltages than most other commercially available regulators and also consumes less power for a given output control current than
any commercial regulator. Applications would therefore include battery operated equipment especially those operating at low voltages.
g) High Supply Voltage Dump Circuit (Figure 17)

In many circuit applications it is desirable to remove the power supply in the case of high voltage overload. For circuits consuming less than 5 mA this may be achieved using an ICL8211 driving the load directly. For higher load currents it is necessary to use an external pnp transistor or darlington pair driven by the output of the ICL8211. Resistors $R_{1}$ and $R_{2}$ set up the disconnect voltage and $R_{3}$ provides optional voltage hysteresis if so desired.
h) Frequency Limit Detector (Figure 18)

Simple frequency limit detectors providing a GO/NO-GO output for use with varying amplitude input signals may be conveniently implemented with the ICL8211/8212. In the application shown, the first ICL8212 is used as a zero crossing detector. The output circuit consisting of $\mathrm{R}_{3}, \mathrm{R}_{4}$ and $\mathrm{C}_{2}$ results in a slow output positive ramp. The negative range is much faster than the positive range. $\mathrm{R}_{5}$ and $\mathrm{R}_{6}$ provide hysteresis so that under all circumstances the second ICL8212 is turned on for sufficient time to discharge $\mathrm{C}_{3}$. The time constant of $R_{7} C_{3}$ is much greater than $R_{4} C_{2}$. Depending upon the desired output polarities for low and high input frequencies, either an ICL8211 or an ICL8212 may be used as the output driver.
This circuit is sensitive to supply voltage variations and should be used with a stabilized power supply. At very low frequencies the output will switch at the input frequency.


Figure 18: Frequency Limit Detector
i) Switch Bounce Filter (Figure 19)

Single pole single throw (SPST) switches are less costly and more available than single pole double throw (SPDT) switches. SPST switches range from push button and slide types to calculator keyboards. A major problem with the use of switches is the mechanical bounce of the electrical contacts on closure. Contact bounce times can range from a fraction of a millisecond to several tens of milliseconds depending upon the switch type. During this contact bounce time the switch may make and break contact several times. The circuit shown in Figure 19 provides a rapid charge up of $\mathrm{C}_{1}$ to close to the positive supply voltage $\left(\mathrm{V}^{+}\right)$on a switch closure and a corresponding slow discharge of $\mathrm{C}_{1}$ on a switch break. By proportioning the time constant of $\mathrm{R}_{1} \mathrm{C}_{1}$ to approximately the manufacturer's bounce time the output as terminal \#4 of the ICL8211/8212 will be a single transition of state per desired switch closure.
j) Low Voltage Power Disconnect (Figure 20)

There are some classes of circuits that require the power supply to be disconnected if the power supply voltage falls below a certain value. As an example, the National LM199 precision reference has an on chip heater which malfunctions with supply voltages below 9 volts causing an excessive device temperature. The ICL8212 may be used to detect a power supply voltage of 9 volts and turn the power supply off to the LM199 heater section below that voltage.
For further applications, see A027 "Power Supply Design using the ICL8211 and ICL8212."


# OPERATIONAL AMPLIFIERS 

PAGE
SELECTION GUIDE ..... 3-4
OPERATIONAL AMPLIFIERS DATA SHEETS
CA 101 Externally Compensated, Single ..... 3-9
CA 124 Internally Compensated, Quad ..... 3-15
CA 158, A Internally Compensated, Dual ..... 3-22
CA 201 Externally Compensated, Single ..... 3-9
CA 224 Internally Compensated, Quad ..... 3-15
CA 258,A Internally Compensated, Dual ..... 3-22
CA 301A Externally Compensated, Single ..... 3-9
CA 324 Internally Compensated, Quad ..... 3-15
CA 358, A Internally Compensated, Dual ..... 3-22
CA 741, C Internally Compensated, Single ..... 3-33
CA 747, C Dual 741 with Offset Null, Dual ..... 3-33
CA 748, C Externally Compensated, Single ..... 3-33
CA 1458 Dual 741 without Offset Null, Dual ..... 3-33
CA 1558 Dual 741 without Offset Null, Dual ..... 3-33
CA 2902 Internally Compensated, Quad ..... 3-15
CA 2904 Internally Compensated, Dual ..... 3-22
CA 3010 $\pm 6 \mathrm{~V}$, Biploar $5 \mathrm{mV} \mathrm{V}_{10}$, Externally Compensated, Single ..... 3-41
CA 3010A $\pm 6 \mathrm{~V}$, Bipolar $2 \mathrm{mV} \mathrm{V}_{10}$, Externally Compensated, Single ..... 3-48
CA 3015 $\pm 12 \mathrm{~V}$, Bipolar 5 mV V 1 O , Externally Compensated, Single ..... 3-41
CA 3015A $\pm 12 \mathrm{~V}$, Bipolar 2 mV VIO, Externally Compensated, Single ..... 3-48
CA 3020, A Multi-Purpose Wideband Power Amplifier, Single ..... 3-55
CA 3029 $\pm 6 \mathrm{~V}$, Bipolar $5 \mathrm{mV} \mathrm{V}_{\mathrm{IO}}$, Externally Compensated, Single. ..... 3-41
CA 3029A $\pm 6 \mathrm{~V}$, Bipolar $2 \mathrm{mV} \mathrm{V}_{1}$, Externally Compensated, Single ..... 3-48
CA 3030 $\pm 12 \mathrm{~V}$, Bipolar 5 mV V IO , Externally Compensated, Single ..... 3-41
CA 3030A $\pm 12 \mathrm{~V}$, Bipolar 2 mV V IO , Externally Compensated, Single ..... 3-48
CA 3060 Programmable/Variable OTA, Triple ..... 3-63
CA 3078, A Micropower, Externally Compensated, Single ..... 3-74

## OPERATIONAL AMPLIFIERS (Continued)

OPERATIONAL AMPLIFIERS DATA SHEETS PAGE
CA 3080, A: Programmable/Variable OTA, Single ..... 3-82
CA 3094, A, B Programmable Power Switch/Amplifier, Single ..... 3-91
CA $3100 \quad \pm 15 \mathrm{~V}$, BiMOS, 38 MHz , GBW Product, Single ..... 3-102
CA $3130, \mathrm{~A} \quad \pm 7 \mathrm{~V}$, BiMOS, 15 MHz , GBW Product, Single ..... 3-108
CA 3140, A $\quad \pm 15 \mathrm{~V}$, BiMOS, 4.5 MHz , GBW Product, Single ..... 3-122
CA 3160, A $\quad \pm 7.5 \mathrm{~V}$, BiMOS, 4 MHz , GBW Product, Single ..... 3-142
CA 3193, A BiMOS Precision, Single ..... 3-158
CA 3240, A $\pm 15 \mathrm{~V}$, BiMOS, Int. Comp., Dual ..... 3-169
CA 3260, A $\pm 7.5 \mathrm{~V}$, BiMOS, Int. Comp., Dual ..... 3-183
CA 3280, A Programmable/Variable OTA, Dual ..... 3-187
CA 3410, A BiMOS MOS Input, Internally Compensated, Single ..... 3-196
CA 3420, A Low Voltage BiMOS Op Amp, Single ..... 3-206
CA 3440, A Nanopower BiMOS Op Amp, Single ..... 3-211
CA 3450 Video Line Driver, High Speed, Single ..... 3-216
CA 3493, A Precision BiMOS Op Amp, Single ..... 3-224
CA 5130, A High Slew Rate and Wide Bandwidth, Single ..... 3-235
CA 5160, A Frequency-compensated CA 5130, Single ..... 3-252
CA 5260, A Dual CA 5130 ..... 3-270
CA 5420, A Low Input Current, Low Power, Single ..... 3-276
CA 5470 Wideband BiMOS, Quad ..... 3-283
CA 6078 Low Noise, Low Power, Single ..... 3-288
CA 6741 Low Noise, Single ..... 3-288
HA 2400, 04, 05 PRAM Four Channel Programmable Amplifier, Quad ..... 3-292
HA 2406 Digitally Selectable Four Channel Amplifier, Quad. ..... 3-296
HA 2500, 02, 05 Precision High Slew Rate, Single ..... 3-300
HA 2510, 12, 15 High Slew Rate, Single ..... 3-304
HA 2520, 22, 25 Uncompensated High Slew Rate, Single ..... 3-308
HA 2529 Uncompensated, High Slew Rate, Single ..... 3-313
HA 2539 Very High Slew Rate Wideband Amplifier, Single ..... 3-319
HA 2540 Wideband, Fast Settling, Single ..... 3-325
HA 2541 Wideband, Fast Settling, Unity Gain Stable, Single ..... 3-331
HA 2542 Wideband, High Slew Rate, High Output Current, Single ..... 3-338
HA 2544 Video Optimized, Single ..... 3-346
HA 2548 Precision, High Slew Rate, Wideband, Single ..... 3-355
HA 2600, 02, 05 Wideband, High Impedance, Single ..... 3-362
HA 2620, 22, 25 Very Wideband, Uncompensated, Single ..... 3-367
HA 2640, 45 High Voltage, Single ..... 3-372
HA 2650, 55 High Performance, Dual ..... 3-377
HA 2720, 25 Wide Range Programmable, Single ..... 3-381
HA 4741 Enhanced Performance 741-type, Quad ..... 3-387
HA $5004 \quad 100 \mathrm{MHz}$ Current Feedback Amplifier, Single ..... 3-391
HA 5101, 11 Low Noise, High Periormance, Single ..... 3-398

## OPERATIONAL AMPLIFIERS (Continued)

OPERATIONAL AMPLIFIERS DATA SHEETS ..... PAGE
HA 5102, 12 Low Noise, High Performance, Dual ..... 3-408
HA 5104, 14 Low Noise, High Performance, Quad ..... 3-408
HA 5127, A Ultra-Low Noise, Precision, Single ..... 3-417
HA 5130, 35 Precision, Single ..... 3-424
HA 5134 Precision, Quad ..... 3-431
HA 5137, A Ultra-Low Noise, Precision, High Slew Rate, Single ..... 3-438
HA 5141, 42, 44 Single/Dual/Quad Low Power ..... 3-444
HA 5147 Ultra-Low Noise, Precision,High Slew Rate, Single ..... 3-451
HA 5151, 52, 54 Single/Dual/Quad Low Power ..... 3-457
HA 5160, 62 Wideband, JFET Input, High Slew Rate, Single ..... 3-464
HA 5170 Precision, JFET Input, Single ..... 3-471
HA 5177, A Ultra-Low Offset Voltage, Single ..... 3-476
HA 5180 Low Bias Current, Low Power, JFET Input, Single ..... 3-484
HA 5190, 95 Wideband, Fast Settling, Single ..... 3-490
HA 5221, 22 Low Noise, Wideband, Precision, Single/Dual ..... 3-497
HFA 0001 Ultra High Slew Rate, Single ..... 3-507
HFA 0002 Low Noise Wideband, Single ..... 3-516
HFA 0005 High Slew Rate, Single. ..... 3-524
ICL 7605 Instrumentation Amplifier, Single ..... 3-533
ICL 7606 Instrumentation Amplifier, Single ..... 3-533
ICL 761 Low Power, Single ..... 3-545
ICL 7612 Low Power, Single ..... 3-545
ICL 7621 Low Power, Dual ..... 3-545
ICL 7631 Low Power, Triple ..... 3-545
ICL 7641 Low Power, Quad ..... 3-545
ICL 7642 Low Power, Quad ..... 3-545
ICL 7650 Chopper-Stabilized, Single ..... 3-560
ICL 7652 S Chopper-Stabilized, Low Noise, Single ..... 3-570
ICL 8021 Low Power Bipolar, Single ..... 3-580
ICL 8023 Low Power Bipolar, Triple ..... 3-580
LM 201 Externally Compensated, Single ..... 3-9
LM 301A Externally Compensated, Single ..... 3-9
LM 324 Internally Compensated, Quad ..... 3-15
LM 358 Internally Compensated, Dual ..... 3-22
LM 741, C Internally Compensated, Single ..... 3-33
LM 748, C Externally Compensated, Single ..... 3-33
LM 1458 Internally Compensated, Dual ..... 3-33
LM 1558 Internally Compensated, Dual ..... 3-33
LM 2902 Internally Compensated, Quad. ..... 3-15
LM 2904 Internally Compensated, Dual ..... 3-22
LM 4250 Low Power, Low Offset, Single ..... 3-585
OPERATIONAL AMPLIFIERS GLOSSARY OF TERMS ..... 3-590

PRECISION: Min/Max Limits @ $+25^{\circ} \mathrm{C}$, Unless Otherwise Specified

DEVICE	OFFSET VOLTAGE (mV)	$\begin{gathered} \mathrm{V}_{10} \\ \text { DRIFT } \\ \text { (typ) } \\ \text { ( } \left.\mathrm{V} / \mathrm{O}^{\circ} \mathrm{C}\right) \end{gathered}$	BIAS CURRENT (nA)	OFFSET CURRENT ( nA )	CMRR   (dB)	PSRR   (dB)	GBWP   (MHz)	SLEW RATE ( $\mathrm{V} / \mu \mathrm{s}$ )	AVOL (dB)	SUPPLY CURRENT (mA)
SINGLE										
1CL7605	0.005	0.01	1.5	-	100	110	-	-	90	5.0
ICL7606	0.005	0.01	1.5	-	100	110	-	-	90	5.0
ICL7650S	0.005	0.02	0.01	0.005	120	120	2.0	2.5	135	3.0
ICL7652S	0.005	0.01	0.03	0.040	120	120	0.5	1.0	135	2.5
HA-5127A	0.025	0.20	40.0	35.0	114	86	8.5	10.0	120	3.5
HA-5130	0.025	0.40	2.0	2.0	110	100	2.5	0.8	120	1.3
HA-5137A	0.025	0.20	40.0	35.0	114	100	63.0	20.0	120	3.5
HA-5147A	0.025	0.20	40.0	35.0	114	100	120.0	35.0	120	3.5
HA-5177A	0.025	0.10	2.0	2.0	120	110	2.0	0.8	134	1.7
HA-5177	0.060	0.20	6.0	6.0	110	110	1.4	0.8	126	1.7
HA-5135	0.075	0.40	4.0	4.0	106	94	2.5	0.8	120	1.7
HA-5137	0.100	0.40	80.0	75.0	100	96	63.0	20.0	117	3.5
HA-5147	0.100	0.40	80.0	75.0	100	96	140.0	35.0	117	3.5
CA3193A	0.200	1.00	20.0	5.0	110	100	1.2	0.25	110	3.5
HA-5170	0.300	2.0	0.01	0.03	85	85	8.0	8.0	109	2.5
CA3493	0.500	1.0	40.0	10.0	100	100	1.2	0.25	100	3.5
DUAL										
HA-5222	0.8	0.5	80	50	86	86	100.0	25.0	106	8.00
CA158A	2.0	7.0	50	10	70	65	1.0	0.5	94	1.20
HA-5102	2.0	3.0	200	75	86	86	60.0	3.0	100	5.00
HA-5112	2.0	3.0	200	75	86	86	60.0	20.0	100	5.00
ICL7621	2.0	10.0	0.05	0.03	76	80	1.4	1.6	80	2.50
CA3280	3.0	5.0	5000	700	80	86	9.0	125.0	94	4.80
CA258A	3.0	7.0	80	15	70	65	1.0	0.5	94	1.20
HA-5152	3.0	3.0	250	50	80	80	1.3	6.0	94	0.25
CA358A	3.0	7.0	100	30	65	65	1.0	0.5	88	1.20
TRIPLE										
ICL8023	6.0	-	30	10	70	76	0.27	0.16	94	0.09
ICL7631	10.0	-	0.05	0.03	70	80	1.40	1.60	80	2.50
QUAD										
HA-5134A	0.1	0.3	25.0	25.0	115	110	4.0	0.75	123	8.00
HA-5114	2.5	3.0	200.0	75.0	86	86	60.0	20.0	100	6.50
HA-5104	2.5	3.0	200.0	75.0	86	86	60.0	3.0	100	6.50
HA-5154	3.0	3.0	250.0	50.0	80	80	1.3	6.0	94	0.25
HA-5144	6.0	3.0	100.0	10.0	77	77	0.4	0.8	86	0.15
CA224	7.0	7.0	250.0	50.0	65	65	1.0	0.5	88	2.00
CA324	7.0	7.0	250.0	50.0	65	65	1.0	0.5	86	2.00
CA2902	7.0	7.0	250.0	50.0	65	65	1.0	0.5	86	2.00
CA3410A	8.0	10.0	0.03	0.01	80	80	5.4	10.0	86	10.0

## Selection Guide

LOW BIAS CURRENT: Min/Max Limits @ $+25^{\circ} \mathrm{C}$, Unless Otherwise Specified

DEVICE	$\begin{aligned} & \text { BIAS } \\ & \text { CURRENT } \\ & \text { (nA) } \end{aligned}$	OFFSET CURRENT (nA)	$\begin{aligned} & \text { OFFSET } \\ & \text { VOLTAGE } \\ & \text { (mV) } \end{aligned}$	CM RANGE $( \pm \mathrm{V})$	Avol (dB)		SLEW   RATE   (typ)   (V/ $\mu \mathrm{s}$ )	CMRR   (dB)	$\begin{aligned} & \text { PSRR } \\ & \text { (dB) } \end{aligned}$	CURRENT SUPPLY (mA)
SINGLE										
CA5420A	0.001	0.0005	5.0	3.7	85	0.5	0.5	75	75	0.50
HA-5180	0.001	0.0002	3.0	10.0	106	2.0	7.0	90	85	1.00
CA5420	0.002	0.0010	10.0	3.7	85	0.5	0.5	70	70	0.50
ICL8007A	0.004	0.002	30.0	10.0	86	1.0	6.0	86	75	6.00
CA3420	0.005	0.004	10.0	1.0	80	0.5	0.5	55	60	0.65
CA3420A	0.005	0.004	5.0	1.0	86	0.5	0.5	60	70	0.65
CA5130A	0.010	0.005	4.0	2.5	90	4.0	10.0	75	60	0.10
CA5160A	0.010	0.005	4.0	2.5	90	4.0	10.0	75	60	0.10
ICL7650	0.010	0.005	0.005	2.0	120	2.0	2.5	110	120	3.50
ICL7650S	0.010	0.005	0.005	3.5	135	2.0	2.5	120	120	3.00
CA5130	0.015	0.010	10.0	2.5	85	4.0	10.0	70	55	0.10
CA5160	0.015	0.010	10.0	2.5	85	4.0	10.0	70	55	0.10
ICL8007	0.020	0.005	20.0	10.0	86	1.0	6.0	70	70	5.20
CA3130A	0.030	0.020	5.0	10.0	94	15.0	9.0	80	80	15.00
DUAL										
CA5260	0.015	0.01	15.0	11.0	80	3.0	5.0	70	70	2.0
CA5260A	0.015	0.01	4.0	2.5	83	3.0	5.0	80	75	2.0
CA3260A	0.03	0.02	5.0	13.0	94	4.0	10.0	80	76	15.5
CA3240A	0.04	0.02	5.0	13.0	86	4.5	9.0	70	76	12.0
CA3240	0.05	0.03	15.0	12.0	86	4.5	9.0	70	76	12.0
CA3260	0.05	0.03	15.0	10.0	94	4.0	10.0	70	70	15.5
ICL. 7621	0.05	0.03	2.0	12.0	80	1.4	1.6	76	80	2.5
CA158A	50.0	10.0	2.0	13.0	94	1.0	0.5	70	65	1.2
TRIPLE										
ICL7631	0.05	0.03	10.0	4.2	80	1.40	1.60	70	80	2.50
ICL8023	30.0	10.0	6.0	12.0	94	0.27	0.16	70	76	0.09
QUAD										
CA5470	0.01	0.005	22.0	3.5	80	14.0	5.0	55	60	10.0
CA3410A	0.03	0.01	8.0	12.5	86	5.4	10.0	80	80	10.0
CA3410	0.04	0.03	15.0	12.5	86	5.4	10.0	70	70	12.0
ICL7641	0.05	0.03	10.0	4.2	80	1.4	1.60	70	80	2.5
ICL7642	0.05	0.03	10.0	4.2	80	1.4	1.60	70	80	2.5
HA-5134A	25.0	25.0	0.1	10.0	123	4.0	0.75	115	110	8.0

WIDEBAND: Min/Max Limits @ $+25^{\circ} \mathrm{C}$, Unless Otherwise Specified

DEVICE	GBWP (typ)   (MHz)	$\begin{aligned} & \text { FPBW } \\ & \text { (MHz) } \end{aligned}$	SLEW   RATE   (typ)   (V/ $\mu \mathrm{s}$ )	AVOL (dB)	MINIMUM STABLE GAIN	$\begin{gathered} \text { OFFSET } \\ \text { VOLTAGE } \\ (\mathrm{mV}) \end{gathered}$	$\qquad$	CMRR   (dB)	PSRR   (dB)	SUPPLY CURRENT (mA)
SINGLE										
HFA-0002	1000	4.50	250	98	10	0.7	700	105	90	15.0
HA-2539	600	8.70	600	80	10	10.0	20000	60	60	25.0
HA-2540	400	5.50	400	80	10	10.0	20000	60	60	25.0
HFA-0001	350	53.00	1000	43	1	15.0	50000	45	35	75.0
HFA-0005	300	22.00	420	43	1	15.0	50000	45	40	40.0
CA3450	170	6.56	330	60	1	15.0	350	50	60	35.0
HA-2548	150	1.91	120	114	5	0.9	50	80	86	18.0
HA-5190	150	5.00	200	83	5	5.0	15000	74	70	28.0
HA-5195	150	5.00	200	83	5	5.0	15000	74	70	28.0
HA-5147	140	0.45	35	117	10	0.1	80	100	96	3.5
HA-5147A	120	0.45	35	120	10	0.03	40	114	100	3.5
HA-2620	100	0.40	35	100	5	4.0	15	80	80	3.7
HA-2622	100	0.32	35	98	5	5.0	25	74	74	4.0
HA-2625	100	0.32	35	98	5	5.0	25	74	74	4.0
HA-5101	100	0.10	10	120	1	3.0	200	80	80	6.0
HA-5111	100	0.63	50	120	10	3.0	200	80	80	6.0
HA-5160	100	1.60	120	97	10	3.0	0.05	74	74	8.0
HA-5162	100	1.10	70	90	10	15.0	0.065	70	70	8.0
HA-5221	100	0.24	25	106	1	0.75	80	86	86	8.0
DUAL										
HA-5222	100.0	0.24	25	106	1	0.8	80.0	86	86	8.0
HA-5102	60.0	0.02	3	100	1	2.0	200.0	86	86	5.0
HA-5112	60.0	0.19	20	100	10	2.0	200.0	86	86	5.0
CA3280	9.0	1.99	125	94	1	3.0	5000.0	80	86	4.8
CA3280A	9.0	1.99	125	94	1	0.5	5000.0	94	94	4.8
CA3240	4.5	0.14	9	86	1	15.0	0.05	70	76	12.0
CA3240A	4.5	0.14	9	86	1	5.0	0.04	70	76	12.0
CA3260	4.0	0.16	10	94	1	15.0	0.05	70	70	15.5
CA3260A	4.0	0.16	10	94	1	5.0	0.03	80	76	15.5
CA5260	3.0	0.10	5	80	1	15.0	0.02	70	70	2.0
CA5260A	3.0	0.10	5	83	1	4.0	0.02	80	75	2.0
TRIPLE										
ICL7631	1.40	0.032	1.60	80	1	10.0	0.05	70	80	2.5
ICL8023	0.27	0.002	0.16	94	1	6.0	30.0	70	76	0.1
QUAD										
HA-5104	60.0	0.02	3.0	100	1	2.5	200.0	86	86	6.5
HA-5114	60.0	0.19	20.0	100	10	2.5	200.0	86	86	6.5
HA-2400	40.0	0.20	30.0	94	1	9.0	200.0	80	74	6.0
HA-2404	40.0	0.20	30.0	94	1	9.0	200.0	80	74	6.0
HA-2405	40.0	0.20	30.0	94	1	9.0	250.0	74	74	6.0
HA-2406	30.0	0.24	20.0	92	1	10.0	250.0	74	74	7.0
CA5470	14.0	0.01	5.0	80	1	22.0	0.01	55	60	10.0
CA3410	5.4	0.16	10.0	86	1	15.0	0.04	70	70	12.0
CA3410A	5.4	0.16	10.0	86	1	8.0	0.03	80	80	10.0
HA-5134A	4.0	0.02	0.8	123	1	0.1	25.0	115	110	8.0

## Selection Guide

HIGH SLEW RATE: Min/Max Limits @ $+25^{\circ} \mathrm{C}$, Unless Otherwise Specified

DEVICE	SLEW   RATE   (typ)   (V/ $\mu \mathrm{s}$ )	GBWP (typ)   (MHz)	$\begin{aligned} & \text { FPBW } \\ & (\mathrm{MHz}) \end{aligned}$	Avol (dB)	MINIMUM STABLE GAIN	$\begin{gathered} \text { OFFSET } \\ \text { VOLTAGE } \\ (\mathrm{mV}) \end{gathered}$	$\qquad$	CMRR   (dB)	PSRR   (dB)	$\qquad$
SINGLE										
HFA-0001	1000	350	4.5	43	1	15.0	50000	45	35	75.0
HA-2539	600	600	8.7	80	10	10.0	20000	60	60	25.0
HFA-0005	420	300	22.0	43	1	15.0	50000	45	40	40.0
HA-2540	400	400	5.5	80	10	10.0	20000	60	60	25.0
HA-2542	350	70	4.7	80	2	10.0	35000	70	70	35.0
CA3450	330	170	6.6	60	1	15.0	350	50	60	35.0
HA-2541	250	40	3.0	80	1	2.0	25000	70	70	40.0
HFA-0002	250	1000	4.5	98	10	0.7	700	105	90	15.0
HA-5190	200	150	5.0	83	5	5.0	15000	74	70	28.0
HA-5195	200	150	5.0	83	5	5.0	15000	74	70	28.0
HA-2529	150	20	2.1	80	3	5.0	200	80	80	6.0
HA-2544	150	50	3.2	71	1	15.0	15000	75	70	12.0
HA-2520	120	20	1.5	80	3	8.0	200	80	80	6.0
HA-2522	120	20	1.2	78	3	10.0	250	74	74	6.0
HA-2525	120	20	1.2	78	3	10.0	250	74	74	6.0
HA-2548	120	150	1.91	114	5	0.9	50	80	86	18.0
HA-5160	120	100	1.600	97	10	3	0.05	74	74	8
DUAL										
CA3280	125	9.0	1.99	94	1	3.0	5000	80	86	4.8
CA3280A	125	9.0	1.99	94	1	0.5	5000	94	94	4.8
HA-5222	25	100	0.24	106	1	0.75	80	86	86	8.0
HA-5112	20	60	0.19	100	10	2.0	200	86	86	5.0
CA3260	10	4.0	0.16	94	1	15.0	0.05	70	70	15.5
CA3260A	10	4.0	0.16	94	1	5.0	0.03	80	76	15.5
CA3240	9.0	4.5	0.14	86	1	15.0	0.05	70	76	12.0
CA3240A	9.0	4.5	0.14	86	1	5.0	0.04	70	76	12.0
HA-5152	6.0	1.3	0.10	94	1	3.0	250	80	80	0.25
CA5260A	5.0	3.0	0.10	83	1	4.0	0.015	80	75	2.0
TRIPLE										
ICL7631	1.6	1.4	0.032	80	1	10.0	0.05	70	80	2.5
ICL8023	0.16	0.27	0.002	94	1	6.0	30.0	70	76	0.09
QUAD										
HA-2400	30	40	0.20	94	1	9.0	200	80	74	6
HA-2404	30	40	0.20	94	1	9.0	200	80	74	6
HA-2405	30	40	0.20	94	1	9.0	250	74	74	6
HA-2406	20	30	0.24	92	1	10.0	250	74	74	7
HA-5114	20	60	0.191	100	10	2.5	200	86	86	6.5
CA3410	10	5.4	0.159	86	1	15.0	0.04	70	70	12
CA3410A	10	5.4	0.159	86	1	8.0	0.03	80	80	10
HA-5154	6.0	1.3	0.095	94	1	3.0	250	80	80	0.25
CA5470	5.0	14	0.01	80	1	22.0	0.01	55	60	10

3

Selection Guide

LOW POWER: Min/Max Limits @ $+25^{\circ} \mathrm{C}$, Unless Otherwise Specified

DEVICE	$\begin{aligned} & \text { SUPPLY } \\ & \text { CURRENT } \\ & \text { (mA) } \end{aligned}$	$\begin{gathered} \text { MAX } \\ \mathrm{V}+, \mathrm{V}- \\ ( \pm \mathrm{V}) \end{gathered}$	SLEW   RATE   (typ)   (V/ $\mu \mathrm{s}$ )	GBWP (typ)   (MHz)	CM RANGE $( \pm \mathrm{V})$	OUTPUT VOLTAGE SWING $( \pm \mathrm{V})$	OUTPUT CURRENT (mA)	OFFSET VOLTAGE (mV)	$\qquad$	$\begin{aligned} & \text { PSRR } \\ & \text { (dB) } \end{aligned}$
SINGLE										
LM4250	0.011	18.0	-	-	13.5	12.0	-	5.0	10.0	74
CA3440	0.017	12.5	0.03	0.063	3.5	3.0	15.0	10.0	0.050	70
CA3440A	0.017	12.5	0.03	0.063	3.5	3.0	15.0	5.0	0.040	70
CA3078A	0.02	18.0	1.5	0.002	5.5	5.1	12.0	3.5	12.0	70
ICL7611A	0.02	9.0	0.02	0.044	4.4	4.9	8.0	2.0	0.05	80
ICL7612A	0.02	9.0	0.02	0.044	5.3	4.9	8.0	2.0	0.05	80
ICL8021	0.03	18.0	0.16	0.270	12.0	12.0	10.0	6.0	30.0	76
CA5130	0.10	8.0	10.0	4.0	2.5	2.5	4.0	10.0	0.015	55
CA5130A	0.10	8.0	10.0	4.0	2.5	2.5	4.0	4.0	0.010	60
CA5160	0.10	8.0	10.0	4.0	2.5	2.5	4.0	10.0	0.015	55
CA5160A	0.10	8.0	10.0	4.0	2.5	2.5	4.0	4.0	0.010	60
CA3078	0.13	7.0	1.5	0.002	5.5	5.1	12.0	4.5	170.0	70
HA-5141	0.15	17.5	0.8	0.40	10.0	10.0	4.5	6.0	100.0	77
HA-5151	0.25	17.5	6.0	1.30	10.0	10.0	4.5	3.0	250.0	80
CA3094	0.40	12.0	50.0	30.0	12.0	14.9	100.0	5.0	5000.0	70
CA3094A	0.40	18.0	50.0	30.0	12.0	14.9	100.0	5.0	5000.0	70
CA3094B	0.40	22.0	50.0	30.0	12.0	14.9	100.0	5.0	5000.0	70
DUAL										
HA-5142	0.15	17.5	0.8	0.4	10.0	10.0	4.5	6.0	100.0	77
ICL7621A	0.25	9.0	0.2	0.5	4.2	4.9	8.0	2.0	0.05	80
HA-5152	0.25	17.5	6.0	1.3	10.0	10.0	4.5	3.0	250.0	80
CA158A	1.2	13.0	0.5	1.0	13.0	13.0	20.0	2.0	50.0	65
CA258A	1.2	6.5	0.5	1.0	13.0	13.0	20.0	3.0	80.0	65
CA2904	1.2	6.5	0.5	1.0	13.0	13.0	20.0	7.0	250.0	50
CA258	1.2	6.5	0.5	1.0	13.0	13.0	20.0	5.0	150.0	65
CA358	1.2	13.0	0.5	1.0	13.0	13.0	20.0	7.0	250.0	65
CA158	1.2	16.0	0.5	1.0	13.0	13.0	20.0	5.0	150.0	65
CA358A	1.2	13.0	0.5	1.0	13.0	13.0	20.0	3.0	100.0	65
CA124	2.0	16.0	0.5	1.0	13.0	26.0	10.0	5.0	150.0	65
CA5260	2.0	8.0	5.0	3.0	2.5	3.0	1.75	15.0	0.015	70
TRIPLE										
1CL8023	0.09	18.0	0.16	0.27	12.0	12.0	10.0	6.0	30.0	76
ICL7631	2.50	9.0	1.60	1.40	4.2	4.5	8.0	10.0	0.05	80
QUAD										
ICL7642	0.02	9.0	0.02	0.04	4.2	4.5	8.0	10.0	0.05	80
HA-5144	0.15	17.5	0.8	0.4	10.0	10.0	4.5	6.0	100.0	77
HA-5154	0.25	17.5	6.0	1.3	10.0	10.0	4.5	3.0	250.0	80
CA224	2.00	16.0	0.5	1.0	13.0	13.0	10.0	7.0	250.0	65
CA324	2.00	16.0	0.5	1.0	13.0	13.0	10.0	7.0	250.0	65
ICL7641	2.50	9.0	1.6	1.4	4.2	4.5	8.0	10.0	0.05	80

CA101, CA201, CA301A, LM201*, LM301A*

May 1990

## Operational Amplifiers

For Commercial, Industrial, and Military Applications

## Features:

- Short-circuit protection and latch-free operation
- Unity-gain phase compensation with a single 30-pF capacitor
- Replacement for industry types 101, 201, 301A
- CA301A Slew Rate (Summing ampl.) $10 \mathrm{~V} / \mu \mathrm{s}$


## Applications:

- Long-interval infegrator ■ AC/DC converters
- Timers
- Sample-and-hold circuits
- Summing amplifiers
- Multivibrators
- Comparators
- Instrumentation
- Inverting amplifiers
- Sine- \& square-wave generators
- Capacitance multipliers \& simulated inductors

All types are available in 8-lead TO-5 style packages with standard leads ( $T$ suffix), and with dual-in-line formed leads ("DIL-CAN", S suffix). The CA301A is also available in the 8lead dual-in-line plastic package ("MINI-DIP", E suffix), and in chip form (H suffix).

The CA101, CA201, and CA301A are general-purpose, highgain operational amplifiers for use in military, industrial, and commercial applications.

These types, which are externally phase compensated, permit a choice of operation for optimum high-frequency performance at a selected gain; unity-gain compensation can be obtained with a single $30-\mathrm{pF}$ capacitor.
(a) TO-5 Style package for all types

T-Suffix
S-Suffix

(b) Plastic package for CA301A

E-Suffix

Figure 1 - Functional diagrams.

[^13]Maximum Ratings, Absolute Maximum Values at $T_{A}=25^{\circ} \mathrm{C}$.
DC SUPPLY VOLTAGE (Between $\mathrm{V}^{+}$and $\mathrm{V}^{-}$Terminals): CA101, CA201 ..... 44 V
CA301A ..... 36 V
DC INPUT VOLTAGE ..... 15 V
(For supply voltages less than $\pm 15 \mathrm{~V}$, the Input Voltage rating is equal to the DC Supply Voltage) DIFFERENTIAL INPUT VOLTAGE ..... $\pm 30 \mathrm{~V}$
OUTPUT SHORT-CIRCUIT DURATION ..... Indefinite*
DEVICE DISSIPATION
UP TO TA $=75^{\circ} \mathrm{C}$ ..... 500 mW
Above $T_{A}=75^{\circ} \mathrm{C}$ Derate linearly at $6.67 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating -
CA101 .. -55 to $+125^{\circ} \mathrm{C}$
CA201, CA301A .....  0 to $+70^{\circ} \mathrm{C}$
LEAD TEMPERATURE (During Soldering):
* At $T_{A} \leq 70^{\circ} \mathrm{C}$ and $\mathrm{TC} \leq 125^{\circ} \mathrm{C}(\mathrm{CA} 101) ; \mathrm{T}_{\mathrm{A}} \leq 55^{\circ} \mathrm{C}$ and $\mathrm{Tc} \leq 70^{\circ} \mathrm{C}(\mathrm{CA} 201, \mathrm{CA} 301 \mathrm{~A})$.


Fig. 2 - Schematic diagram.

## ELECTRICAL CHARACTERISTICS

CHARACTERISTICS	TEST CONDITIONS $\triangle$	LIMITS									UNITS
	$\begin{aligned} & \text { Supply Voltage (V } \pm \text { ) } \\ & =5 \text { to } 15 \mathrm{~V} \end{aligned}$	CA101			CA201			CA301A			
		Min.	Typ.	Max.	Min.	Typ.	Max.	Min.	Typ.	Max.	
Input Offset   Voltage   Vio	$\mathrm{TA}=25^{\circ} \mathrm{C}$ Rs $\leq 10 \mathrm{k} \Omega$	-	1	5	-	2	7.5	-	-	-	mV
	$R \mathrm{~s} \leq 50 \mathrm{k} \Omega$	-	-	-	-	-	-	-	2	7.5	
	$\mathrm{Rs} \leq 10 \mathrm{k} \Omega$	-	-	6	-	-	10	-	-	-	
	$\mathrm{Rs} \leq 50 \mathrm{k} \Omega$	-	-	-	-	-	-	-	-	10	
Average Temperature Coefficient of Input Offset Voltage $\quad \alpha$ Vio	$\mathrm{Rs} \leq 10 \mathrm{k} \Omega$	-	6	-	-	10	-	-	-	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
	$\mathrm{Rs} \leq 50 \Omega$	-	3	-	-	6	-	-	-	-	
		-	-	-	-	-	-	-	6	30	
Average Temperature Coefficient of Input Offset Current alıo	$-55^{\circ} \mathrm{C}$ to $+25^{\circ} \mathrm{C}$	-	-	-	-	-	-	-	-	-	$n A{ }^{\circ} \mathrm{C}$
	$0^{\circ} \mathrm{C}$ to $+25^{\circ} \mathrm{C}$	-	-	-	-	-	-	-	0.02	0.6	
	$+25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	-	-	-	-	-	-	-	0.01	0.3	
	$+25^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	-	-	-	-	-	-	-	-	-	
Input Offset Current lıo	$\mathrm{T} \mathrm{A}=0^{\circ} \mathrm{C}$	-	-	-	-	150	750	-	-	-	$n \mathrm{~A}$
	$T_{A}=25^{\circ} \mathrm{C}$	-	40	200	-	100	500	-	3	50	
	$\mathrm{TA}=70^{\circ} \mathrm{C}$	-	-	-	-	50	400	-	-	-	
	$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$	-	10	200	-	-	-	-	-	-	
		-	-	-	-	-	-	-	-	70	
	$\mathrm{TA}=-55^{\circ} \mathrm{C}$	-	100	500	-	-	-	-	-	-	
Input Bias   Current lis	$\mathrm{TA}^{\prime}=-55^{\circ} \mathrm{C}$	-	0.28	1.5	-	-	-	-	-	-	$\mu \mathrm{A}$
	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	-	-	-	-	0.32	2	-	-	-	
	$\mathrm{TA}=25^{\circ} \mathrm{C}$	-	0.12	0.5	-	0.25	1.5	-	0.07	0.25	
		-	-	-	-	-	-	-	-	0.3	
Supply Current $1 \pm$	$\mathrm{T} A=25^{\circ} \mathrm{C} \quad \mathrm{V} \pm=15 \mathrm{~V}$	-	-	-	-	-	-	-	1.8	3	mA
	$\mathrm{V} \pm=20 \mathrm{~V}$	-	1.8	3	-	1.8	3	-	-	-	
	$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$ V $\pm=20 \mathrm{~V}$	-	1.2	2.5	-	-	-	-	-	-	
Open-Loop   Differential   Voltage Gain   AOL	$\begin{array}{ll} T_{A}=25^{\circ} \mathrm{C} & \mathrm{~V} \pm=15 \mathrm{~V} \\ \mathrm{VO}= \pm 10 \mathrm{~V} & \mathrm{RL} \geq 2 \mathrm{k} \Omega \\ \hline \end{array}$	50	160	-	20	150	-	25	160	-	$\mathrm{V} / \mathrm{mW}$
	$\begin{array}{ll}  & \mathrm{V} \pm=15 \mathrm{~V} \\ \mathrm{~V} 0= \pm 10 \mathrm{~V} & \mathrm{RL} \geq 2 \mathrm{k} \Omega \\ \hline \end{array}$	25	-	-	15	-	-	15	-	-	
Input Resistance RI	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	0.3	0.8	-	0.1	0.4	-	0.5	2	-	M ת
Output Voltage   Swing Vopp	$\mathrm{V} \pm=15 \mathrm{~V} \quad \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	$\pm 12$	$\pm 14$	-	$\pm 12$	$\pm 14$	-	$\pm 12$	$\pm 14$	-	V
	$\mathrm{V} \pm=15 \mathrm{~V} \quad \mathrm{RL}=2 \mathrm{k} \Omega$	$\pm 10$	$\pm 13$	-	$\pm 10$	$\pm 13$	-	$\pm 10$	$\pm 13$	-	
Common-Mode Input-Voltage Range Vicr	$V \pm=15 \mathrm{~V}$	$\pm 12$	-	-	$\pm 12$	-	-	$\pm 12$.	-	-	V
	$\mathrm{V} \pm=20 \mathrm{~V}$	-	-	-	-	-	-	-	-	-	
Common-Mode Rejection Ratio CM.RR	$\mathrm{Rs} \leq 10 \mathrm{k} \Omega$	70	90	-	65	90	-	-	-	-	dB
	$\mathrm{Rs} \leq 50 \mathrm{k} \Omega$	-	-	-	-	-	-	70	90	-	
Supply-Voltage Rejection Ratio PSRR	$\mathrm{Rs} \leq 10 \mathrm{k} \Omega$	70	90	-	70	90	-	-	-	-	dB
	$\mathrm{Rs} \leq 50 \mathrm{k} \Omega$	-	-	-	-	-	-	70	90	-	

$\Delta$ Characteristics applicable over operating temperature range (TA) as shown below, unless otherwise specified:
CA101: -55 to $+125^{\circ} \mathrm{C}$; CA201, CA301A: 0 to $70^{\circ} \mathrm{C}$

TYPICAL STATIC CHARACTERISTICS
TYPE CA101


Fig. 3 - Input current (l/o, lis) vs. temperature.


Fig. 5 - Voltage gain vs. supply voltage.


Fig. 4 - Input bias current vs. supply voltage.


Fig. 6 - Supply characteristics.


Fig. 7 - Output characteristics.
TYPE CA201


Fig. 8 - input current ( $/ 10, \| B$ ) vs. temperature.


Fig. 9 - Input bias current (//B) vs. supply voltage.


Fig. 10 - Voltage gain vs. supply voltage.


Fig. 12 - Input current (//O, /|B) vs. temperature.


Fig. 14 - Output characteristics.


Fig. 11 - Supply characteristics.

## TYPE CA301A



Fig. 13 - Voltage gain vs. supply voltage


Fig. 15 - Supply characteristics.

TYPICAL DYNAMIC CHARACTERISTICS TYPES CA101, CA201, CA301A


Fig. 16 - Voltage gain vs. frequency.


Fig. 17 - Output voltage swing vs. frequency.

## TYPICAL DYNAMIC CHARACTERISTICS (Cont'd) FOR TYPES CA101, CA201 AND CA301A



Fig. 18 - Voltage follower pulse response.
TYPE CA301A


Fig. 19-1/f noise voltage vs. frequency


Fig. 20-1/f noise current vs. frequency.


Dimensions and pad layout for CA301H.
Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils $\left(10^{-3}\right.$ inch).

CA124, CA224, CA324, CA2902, LM324*, LM2902*

## Quad Operational Amplifiers

For Commercial, Industrial, and Military Applications

## Features:

- Operation from single or dual supplies
- Unity-gain bandwidth - 1 MHz (typ.)
- DC voltage gain - 100 dB (typ.)
- Input bias current - 45 nA (typ.)
- Input offset voltage - 2 mV (typ.)
- Input offset current -

5 nA (typ.) for CA224, CA324, CA2902, LM324, LM2902
3 nA (typ.) for CA124

- Replacement for industry types 124, 224, 324


## Applications:

- Summing amplifiers
- Multivibrators
- Oscillators
- Transducer amplifiers
- DC gain blocks

The CA124, CA224, CA324, CA2902, LM324, and LM2902 consist of four independent, high-gain operational amplifiers on a single monolithic substrate. An on-chip capacitor in each of the amplifiers provides frequency compensation for unity gain. These devices are designed specially to operate from either single or dual supplies, and the differential voltage range is equal to the power-supply voltage. Low power drain and an input common-mode voltage range from 0 V to $\mathrm{V}+-1.5 \mathrm{~V}$ (single-supply operation) make these devices suitable for battery operation.

The CA124, CA224, CA324, CA2902, LM324 and LM2902 are supplied in both 14 -lead dual-in-line plastic ( $E$ suffix) and 14 -lead ( 150 mil ) small outline ( M suffix) packages. These devices are also available in chip form ( $H$ suffix).


Figure 1 - Functional diagram.

[^14]
## MAXIMUM RATINGS, Absolute-Maximum Values at $T_{A}=25^{\circ} \mathrm{C}$


*The maximum output current is approximately 40 mA independent of the magnitude of $\mathrm{V}^{+}$. Continuous short circuits at $\mathrm{V}^{+}>15 \mathrm{~V}$ can cause excessive power dissipation and eventual destruction. Short circuits from the output to $\mathrm{V}^{+}$can cause overheating and eventual destruction of the device.
this input current will only exist when the voltage at any of the input leads is driven negative. This current is due to the collector-base junction of the input $p-n-p$ transistors becoming forward biased and thereby acting as input diode clamps. In addition to this diode action, there is also lateral n-p-n parasitic transistor action on the IC chip. This transistor action can cause the output voltages of the amplifiers to go to the $\mathrm{V}^{+}$voltage level (or to ground for a large overdrive) for the time duration that an input is driven negative. This transistor action is not destructive and normal output states will re-establish when the input voltage, which was negative, again returns to a value greater than $-0.3 \mathrm{~V} d c$.


Fig. 2-Schematic diagram-one of four operational amplifiers.

ELECTRICAL CHARACTERISTICS (Values Apply For Each Operational Amplifier)

CHARACTERISTIC	TEST CONDITIONS	CA124   LIMITS			UNITS
	Supply Voltage $\left(\mathrm{V}^{+}\right)=5 \mathrm{~V}$ Unless Otherwise Specified	Min.	Typ.	Max.	
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$					
Input Offset Voltage, $\mathrm{V}_{10}$	Note 3	-	2	5	mV
Output Voltage Swing, $\mathrm{V}_{\text {OPP }}$	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	0	-	$\mathrm{V}^{+}-1.5$	V
Input Common-Mode Voltage Range, $V_{\text {ICR }}$	Note 2, $\mathrm{V}^{+}=30 \mathrm{~V}$	0	-	$\mathrm{V}^{+}-1.5$	$\checkmark$
Input Offset Current, ${ }^{\text {IO }}$	$1_{1}^{+}-1_{1}$	-	3	30	$n \mathrm{~A}$
Input Bias Current, I ${ }_{\text {IB }}$	$\mathrm{I}^{+}$or $\mathrm{I}^{-}{ }^{-}$, Note 1	-	45	150	nA
Output Current (Source), 10	$\begin{aligned} & \mathrm{V}_{1}^{+}=+1 \mathrm{~V}, \mathrm{~V}_{1}^{-}=0 \mathrm{~V}, \\ & \mathrm{~V}^{+}=15 \mathrm{~V} \end{aligned}$	20	40	-	mA
Output Current (Sink), ${ }^{\text {I O }}$	$\mathrm{V}_{1}^{+}=0 \mathrm{~V}, \mathrm{~V}_{1}^{-}=1 \mathrm{~V}, \mathrm{~V}^{+}=15 \mathrm{~V}$	10	20	-	mA
	$\begin{aligned} & V_{1}^{+}=0 \mathrm{~V}, \mathrm{~V}_{1}^{-}=1 \mathrm{~V}, \\ & \mathrm{~V}_{0}=200 \mathrm{mV} \end{aligned}$	12	50	-	$\mu \mathrm{A}$
Large-Signal Voltage Gain, A	$\begin{aligned} & \mathrm{R}_{\mathrm{L}} \geqslant 2 \mathrm{k} \Omega, \mathrm{~V}^{+}=15 \mathrm{~V} \\ & \text { (For large } \mathrm{V}_{\mathrm{O}} \text { swing } \text { ) } \end{aligned}$	94	100	-	dB
Common-Mode Rejection Ratio, CMRR	DC	70	85	-	dB
Power Supply Rejection Ratio, PSRR	DC	65	100	-	dB
Amplifier-to-Amplifier Coupling	$\mathrm{f}=1$ to 20 kHz (Input referred)	-	-120	-	dB
$\mathrm{T}_{\mathrm{A}}=-55$ to $+125^{\circ} \mathrm{C}$					
Input Offset Voltage, $\mathrm{V}_{10}$	Note 3	-	-	7	mV
Temperature Coefficient of Input Offset Voltage, $\propto V_{10}$	$\mathrm{R}_{\mathrm{S}}=0$	-	7	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Current, '10	$1^{+}-11^{-}$	-	-	100	nA
Temperature Coefficient of Input Offset Current, ${ }^{\circ}{ }_{10}$		-	10	--	$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
Input Bias Current, I ${ }_{\text {IB }}$	$\mathrm{I}^{+}$or $\mathrm{I}^{-}$	-	-	300	nA
Total Supply Current, $1^{+}$	$\mathrm{R}_{\mathrm{L}}=\infty$ On All Ampl.	-	0.8	2	mA
Input Common-Mode Voltage Range, $\mathrm{V}_{\text {ICR }}$	$\mathrm{V}^{+}=30 \mathrm{~V}$	0	-	$\mathrm{v}^{+}-2$	V
Large-Signal Voltage Gain, A	$\begin{aligned} & \mathrm{R}_{\mathrm{L}} \geqslant 2 \mathrm{k} \Omega, \mathrm{~V}^{+}=15 \mathrm{~V} \\ & \text { (For large } \left.\mathrm{V}_{\mathrm{O}} \text { swing }\right) \end{aligned}$	88	-	-	dB
Output Voltage Swing:   High-Level, $\mathrm{V}_{\mathrm{OH}}$	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{V}^{+}=30 \mathrm{~V}$	26	-	-	V
	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	27	28	-	
Low-Level, $\mathrm{V}_{\mathrm{OL}}$	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	-	5	20	mV
Output Current:   Source, IO	$\begin{aligned} & V_{1}^{+}=1 V_{D C}, V_{1}^{-}=0, \\ & V^{+}=15 V \end{aligned}$	10	20	-	mA
Sink, IO	$\begin{aligned} & V_{1}^{-}=1 V_{D C} V_{1}^{+}=0, \\ & V^{+}=15 \mathrm{~V} \end{aligned}$	5	8	-	mA
Differential Input Voltage	Note 2	-	-	$\mathrm{V}^{+}$	V

NOTE 1: Due to the p-n-p input stage the direction of the input current is out of the IC. No loading change exists on the input lines because the current is essentially constant, independent of the state of the output.
NOTE 2: The input signal voltage and the input common-mode voltage should not be allowed to go negative by more than 0.3 V . The positive limit of the common-mode voltage range is $\mathrm{V}^{+}-1.5 \mathrm{~V}$, but either or both inputs can go to +32 V without damage.
NOTE 3: $V_{O}=1.4 \mathrm{~V}_{\mathrm{DC}}, \mathrm{R}_{\mathrm{S}}=0 \Omega$ with $\mathrm{V}^{+}$from 5 V to 30 V ; and over the full input common-mode voltage range ( 0 V to $\mathrm{V}^{+}-1.5 \mathrm{~V}$ ).

CA124, CA224, CA324, CA2902, LM324, LM2902

ELECTRICAL CHARACTERISTICS (Values apply for each operational amplifier)

CHARACTERISTIC	TEST CONDITIONS	CA224, CA324   LIMITS			UNITS
	Supply Voltage $\left(\mathrm{V}^{+}\right)=5 \mathrm{~V}$ Unless Otherwise Specified	Min.	Typ.	Max.	
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$					
Input Offset Voltage, $\mathrm{V}_{10}$	Note 3	-	2	7	mV
Output Voltage Swing, $\mathrm{V}_{\text {OPP }}$	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	0	-	$\mathrm{V}^{+}-1.5$	V
Input Common-Mode Voltage Range, $\mathrm{V}_{\text {ICR }}$	Note 2, $\mathrm{V}^{+}=30 \mathrm{~V}$	0	-	$\mathrm{V}^{+}-1.5$	V
Input Offset Current, $1_{10}$	$1_{1}^{+}-11^{-}$	-	5	50	nA
Input Bias Current, IIB	$1_{1}^{+}$or $1_{1}^{-}$, Note 1	-	45	250	nA
Output Current (Source), ${ }^{\circ} \mathrm{O}$	$\begin{aligned} & V_{1}^{+}=+1 \mathrm{~V}, \mathrm{~V}_{1}^{-}=0 \mathrm{~V}, \\ & \mathrm{~V}^{+}=15 \mathrm{~V} \end{aligned}$	20	40	-	mA
Output Current (Sink), ${ }^{\text {I O }}$	$\mathrm{V}^{+}=0 \mathrm{~V}, \mathrm{~V}_{1}^{-}=1 \mathrm{~V}, \mathrm{~V}^{+}=15 \mathrm{~V}$	10	20	-	mA
	$\begin{aligned} & V_{1}^{+}=0 \mathrm{~V}, \mathrm{~V}_{1}^{-}=1 \mathrm{~V}, \\ & \mathrm{~V}_{0}=200 \mathrm{mV} \end{aligned}$	12	50	-	$\mu \mathrm{A}$
Large-Signal Voltage Gain, A	$\begin{aligned} & \mathrm{R}_{\mathrm{L}} \geqslant 2 \mathrm{k} \Omega, \mathrm{~V}^{+}=15 \mathrm{~V} \\ & \text { (For large } \mathrm{V}_{\mathrm{O}} \text { swing) } \end{aligned}$	88	100	-	dB
Common-Mode Rejection Ratio, CMRR	DC	65	70	-	dB
Power Supply Rejection Ratio, PSRR	DC	65	100	-	dB
Amplifier-to-Amplifier Coupling	$\begin{aligned} & f=1 \text { to } 20 \mathrm{kHz} \\ & \text { (Input referred) } \end{aligned}$	-	-120	-	dB
$\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$ (CA224), $\mathrm{T}_{\mathrm{A}}=0$ to $70^{\circ} \mathrm{C}$ (CA324)					
Input Offset Voltage, $\mathrm{V}_{10}$	Note 3	-	-	9	mV
Temperature Coefficient of Input Offset Voltage, $\alpha \mathrm{V}_{10}$	$\mathrm{R}_{\mathrm{s}}=0$	-	7	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Current, IIO	$1^{+}-1^{-}$	-	-	150	nA
Temperature Coefficient of Input Offset Current, ${ }^{\alpha} 1_{1 O}$		-	10	-	pA/ $/{ }^{\circ} \mathrm{C}$
Input Bias Current, $\mathrm{I}_{\text {IB }}$	$1_{1}^{+}$or $1_{1}{ }^{-}$	-	-	500	nA
Total Supply Current, ${ }^{+}$	$\mathrm{R}_{\mathrm{L}}=\infty$ On All Ampl.	-	0.8	2	mA
Input Common-Mode Voltage Range, $V_{\text {ICR }}$	$\mathrm{V}^{+}=30 \mathrm{~V}$	0	-	$\mathrm{v}^{+}-2$	V
Large-Signal Voltage Gain, $A$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}} \geqslant 2 \mathrm{k} \Omega, \mathrm{~V}^{+}=15 \mathrm{~V} \\ & \text { (For large } \mathrm{V}_{\mathrm{O}} \text { swing } \text { ) } \end{aligned}$	83	-	-	dB
Output Voltage Swing:   High-Level, $\mathrm{V}_{\mathrm{OH}}$	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{V}^{+}=30 \mathrm{~V}$	26	-	-	V
	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	27	28	-	
Low-Level, $\mathrm{V}_{\mathrm{OL}}$	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	--	5	20	mV
Output Current: Source, IO	$\begin{aligned} & V_{1}^{+}=1 V_{D C}, V_{1}^{-}=0, \\ & V^{+}=15 \mathrm{~V} \end{aligned}$	10	20	-	mA
Sink, IO	$\begin{aligned} & V_{1}^{-}=1 V_{D C}, V_{1}^{+}=0, \\ & V^{+}=15 \mathrm{~V} \end{aligned}$	5	8	-	mA
Differential Input Voltage	Note 2	-	-	$\mathrm{V}^{+}$	V

NOTE 1: Due to the p-n-p input stage the direction of the input current is out of the $1 C$. No loading change exists on the input lines because the current is essentially constant, independent of the state of the output.
NOTE 2: The input signal voltage and the input common-mode voltage shouid not be allowed to go negative by more than 0.3 V . The positive limit of the common-mode voltage range is $\mathrm{V}^{+}-1.5 \mathrm{~V}$, but either or both inputs can go to +32 V without damage.
NOTE 3: $V_{O}=1.4 \mathrm{~V}_{\mathrm{DC}}, \mathrm{R}_{\mathrm{S}}=0 \Omega$ with $\mathrm{V}^{+}$from 5 V to 30 V ; and over the full input common-mode voltage range ( O V to $\mathrm{V}^{+}-1.5 \mathrm{~V}$ ).

ELECTRICAL CHARACTERISTICS (Values apply for each operational amplifier)

CHARACTERISTIC	TEST CONDITIONS	$\begin{gathered} 2902 \\ \text { LIMITS } \end{gathered}$			UNITS
	Supply Voltage $\left(\mathrm{V}^{+}\right)=5 \mathrm{~V}$ Unless Otherwise Specified	Min.	Typ.	Max.	
$\mathrm{T}_{A}=-40$ to $+85^{\circ} \mathrm{C}$ (CA2902)					
Input Offset Voltage, $\mathrm{V}_{1 \mathrm{O}}$	Note 3	-	-	10	mV
Temperature Coefficient of Input Offset Voltage, $\propto V_{1 O}$	$\mathrm{R}_{\mathrm{S}}=0$	-	7	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Current, $\mathrm{l}_{10}$	$1^{+}-1^{-}$	-	45	200	nA
Temperature Coefficient of Input Offset Current, $\propto_{1} \mathrm{O}$		-	10	-	$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
Input Bias Current, $\mathrm{I}_{\text {IB }}$	$\mathrm{I}^{+}$or $\mathbf{1}^{-}$, Note 1	-	40	500	nA
Input Common-Mode Voltage Range, $\mathrm{V}_{1 \mathrm{CR}}$	$\mathrm{V}^{+}=26 \mathrm{~V}$, Note 2	0	-	$\mathrm{v}^{+}-2$	V
Supply Current, ${ }^{+}$	$\mathrm{R}_{\mathrm{L}}=\infty$ On All Ampl.	-	0.7	1.2	mA
	$\mathrm{R}_{\mathrm{L}}=\infty, \mathrm{V}^{+}=26 \mathrm{~V}$	-	1.5	3	
Large-Signal Voltage Gain, A	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}>2 \mathrm{k} \Omega, \mathrm{~V}^{+}=15 \mathrm{~V} \\ & \text { (For large } \mathrm{V}_{\mathrm{O}} \text { swing) } \\ & \hline \end{aligned}$	83	-	-	dB
Output Voltage Swing: High-Level, $\mathrm{V}_{\mathrm{OH}}$	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{V}^{+}=26 \mathrm{~V}$	22	-	-	v
	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	23	28	-	
Low-Level, $\mathrm{V}_{\mathrm{OL}}$	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	-	5	100	mV
Output Current:   Source, Io	$\begin{aligned} & \mathrm{V}_{1}^{+}=1 \mathrm{~V}_{\mathrm{DC}}, \mathrm{~V}_{1}^{-}=0, \\ & \mathrm{~V}^{+}=15 \mathrm{~V} \end{aligned}$	10	20	-	$\mathrm{mA}$
Sink, lo	$\begin{aligned} & V_{l^{-}}^{-}=1 V_{D C}, V_{1}^{+}=0, \\ & V^{+}=15 \mathrm{~V} \end{aligned}$	5	8	-	mA
Differential Input Voltage	Note 2	-	-	v+	V

NOTE 1: Due to the $p-n-p$ input stage the direction of the input current is out of the IC. No loading change exists on the input lines because the current is essentially constant, independent of the state of the output.
NOTE 2: The input signal voltage and the input common-mode voltage should not be allowed to go negative by more than 0.3 V . The positive limit of the common-mode voltage range is $\mathrm{V}^{+}-1.5 \mathrm{~V}$, but either or both inputs can go to +32 V without damage.
NOTE 3: $V_{O}=1.4 \mathrm{~V}_{\mathrm{DC}}, \mathrm{R}_{\mathrm{S}}=0 \Omega$ with $\mathrm{V}^{+}$from 5 V to 30 V ; and over the full input common-mode voltage range ( $0 \vee$ to $V^{+}-1.5 \mathrm{~V}$ ).

## TYPICAL CHARACTERISTICS CURVES



Fig. 3-Input current vs. ambient temperature.


Fig. 4-Supply current drain vs. supply voltage.


Fig. 5-Large-signal frequency response.


Fig. 6-Output current vs. ambient temperature.


Fig. 7-Input current vs. supply voltage.


Fig. 8-Voltage gain vs. supply voltage.

TYPICAL CHARACTERISTICS CURVES (CONT'D)



92Cs-24213

Fig. 11 -Voltage follower pulse response.

## Dual Operational Amplifiers

## For Commercial, Industrial, and Military Applications

## Features:

- Internal frequency compensation for unity gain

■ High dc voltage gain - 100 dB typ.

- Wide bandwidth at unity gain - 1 MHz typ.
- Wide power supply range: Single supply 3 to 30 V Dual supplies $\pm 1.5$ to $\pm 15 \mathrm{~V}$

■ Low supply current - 1.5 mA typ.

- Low input bias current
- Low input offset voltage and current
- Input common-mode voltage range includes ground
- Differential input voltage range equal to $V+$ range
- Large output voltage swing - 0 to $\mathrm{V}+-1.5 \mathrm{~V}$

The CA158, CA158A, CA258, CA258A, CA358, CA358A and CA2904 types consist of two independent, high gain, internally frequency compensated operational amplifiers which are designed specifically to operate from a single power supply over a wide range of voltages. They may also be operated from split power supplies. The supply current is basically independent of the supply voltage over the recommended voltage range.

These devices are particularly useful in interface circuits with digital systems and can be operated from the single common 5 Vdc power supply. They are also intended for transducer amplifiers, dc gain blocks and many other conventional op
amp circuits which can benefit from the single power supply capability.

The CA158, CA158A, CA258, CA258A, CA358, CA358A, and CA2904 types are supplied in 8-lead Small Outline packages (M suffix), 8-lead dual-in-line plastic packages (MINI-DIP, E suffix), 8-lead TO-5 style packages with standard leads (T suffix), and with dual-in-line formed leads (DIL-CAN, S suffix). The CA358 is also supplied in chip form (H suffix).

The CA158, CA158A, CA258, CA258A, CA358, CA358A, and CA2904 types are an equivalent to or a replacement for the industry types 158, 158A, 258, 258A, 358, 358A, and CA2904.


Figure 1 - Functional diagram for CA158, CA258, and CA358 S- and T-suffix types.


Figure 2 - Functional diagram for CA158, CA258, CA358, and CA2904 E-suffix and M-suffix types.

[^15]MAXIMUM RATINGS, Absolute-Maximum Values at $T_{A}=25^{\circ} \mathrm{C}$


+ This input current will only exist when the voltage at any of the input leads is driven negative. This current is due to the collector-base junction of the input p-n-p transistors becoming forward biased and thereby acting as input diode clamps. In addition to this diode action, there is also lateral n-p-n parasitic transistor action on the IC chip. This transistor action can cause the output voltages of the amplifiers to go to the $\mathrm{V}^{+}$ voltage level (or to ground for a large overdrive) for the time duration that an input is driven negative. This transistor action is not destructive and normal output states will re-establish when the input voltage, which was negative, again returns to a value greater than -0.3 V dc.
* The maximum output current is approximately 40 mA independent of the magnitude of $\mathrm{V}^{+}$. Continuous short circuits at $\mathrm{V}^{+}>15 \mathrm{~V}$ can cause excessive power dissipation and eventual destruction. Short circuits from the output to $\mathrm{V}^{+}$can cause overheating and eventual destruction of the device. Destructive dissipation can result from simultaneous short circuits on both amplifiers.


Fig. 3 - Schematic diagram - one of two operational amplifiers.

ELECTRICAL CHARACTERISTICS (Values Apply For Each Operational Amplifier)

CHARACTERISTIC	TEST CONDITIONS	LIMITSCA158A (E, T, S)			UNITS
	Supply Voltage ( $\mathrm{V}^{+}$) $=5 \mathrm{~V}$ Unless Otherwise Specified	Min.	Typ.	Max.	
$\mathrm{T}_{A}=25^{\circ} \mathrm{C}$					
İnput Offset Voltage, VIO	Note 3	-	1	2	mV
Output Voltage Swing, VOPP	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	0	-	$\mathrm{V}^{+}-1.5$	V
Input Common-Mode Voltage Range, VICR	Note 2, $\mathrm{V}^{+}=30 \mathrm{~V}$	0	-	$\mathrm{V}^{+}-1.5$	V
Input Offset Current, IIO	$1_{1}^{+}-1_{1}^{-}$	-	2	10	nA
Input Bias Current, IIB	$\mathrm{I}_{1}^{+}$or $\mathrm{I}_{1}^{-}$, Note 1	-	20	50	nA
Output Current (Source), Io	$\begin{aligned} & V_{1}^{+}=+1 \mathrm{~V}, \mathrm{~V}_{1}^{-}=0 \mathrm{~V} \\ & \mathrm{~V}^{+}=15 \mathrm{~V} \end{aligned}$	20	40	-	mA
Output Current (Sink), Io	$\mathrm{V}^{+}+=0 \mathrm{~V}, \mathrm{~V}_{1}^{-}=1 \mathrm{~V}, \mathrm{~V}^{+}=15 \mathrm{~V}$	10	20	-	mA
	$\begin{aligned} & V_{1}^{+}=0 \mathrm{~V}, \mathrm{~V}_{1}^{--=}=1 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{O}}=200 \mathrm{mV} \end{aligned}$	12	50	-	$\mu \mathrm{A}$
Short Circuit Output Current	$\mathrm{R}_{\mathrm{L}}=0$ (to Ground) Note 4	-	40	60	mA
Large Signal Voltage Gain, AOL	$\mathrm{R}_{\mathrm{L}} \geqslant 2 \mathrm{k} \Omega, \mathrm{~V}^{+}=15 \mathrm{~V}$   (For large $\mathrm{V}_{\mathrm{O}}$ swing)	50	100	-	$\mathrm{V} / \mathrm{mV}$
Common-Mode Rejection Ratio, CMRR	DC	70	85	-	dB
Power Supply Rejection Ratio, PSRR	DC	65	100	-	dB
Amplifier-to-Amplifier Coupling	$\mathrm{f}=1$ to 20 kHz (Input referred)	-	-120	-	dB
$\mathrm{T}_{\mathrm{A}}=-55$ to $+125^{\circ} \mathrm{C}$					
Input Offset Voltage, V10	Note 3	-	-	4	mV
Temperature Coefficient of Input Offset Voltage, $\propto V_{10}$	$\mathrm{R}_{\mathrm{S}}=0$	-	7	15	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Current, $\mathrm{I}_{10}$	$1^{+}-11^{-}$	-	-	30	nA
Temperature Coefficient of Input Offset Current, $\propto_{10}$		-	10	200	$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
Input Bias Current, IIB	$\mathrm{I}^{+}$or $1_{1}^{-}$	-	40	100	nA
Input Common-Mode Voltage Range, $\mathrm{V}_{\text {ICR }}$	$\mathrm{V}^{+}=30 \mathrm{~V}$, Note 2	0	-	$\mathrm{V}^{+}-2$	V
Supply Current, $\mathrm{I}^{+}$	$\mathrm{R}_{\mathrm{L}}=\infty$ On All Ampl.	-	0.7	1.2	mA
	$\mathrm{R}_{\mathrm{L}}=\infty, \mathrm{V}^{+}=30 \mathrm{~V}$	-	1.5	3	

NOTE 1: Due to the p-n-p input stage the direction of the input current is out of the IC. No loading change exists on the input lines because this current is essentially constant, independent of the state of the output.
NOTE 2: The input signal voltages and the input common-mode voltage should not be allowed to go negative by more than 0.3 V . The positive limit of the common-mode voltage range is $\mathrm{V}^{+}-1.5 \mathrm{~V}$, but either or both inputs can go the +32 V without damage.
NOTE 3: $V_{\mathrm{O}}=1.4 \mathrm{~V}_{\mathrm{DC}}, \mathrm{R}_{\mathrm{s}}=0 \Omega$ with $\mathrm{V}^{+}$from 5 V to 30 V , and over the full input common-mode voltage range ( 0 V to $\mathrm{V}^{+}-1.5 \mathrm{~V}$ ).
NOTE 4: The maximum output current is approximately 40 mA independent of the magnitude of $\mathrm{V}^{+}$. Continuous short circuits at $\mathrm{V}^{+}>15 \mathrm{~V}$ can cause excessive power dissipation and eventual destruction. Short circuits from the output to $\mathrm{V}^{+}$can cause overheating and eventual destruction of the device. Destructive dissipation can result from simultaneous short circuits on both amplifiers.

ELECTRICAL CHARACTERISTICS (Values Apply for Each Operational Amplifier)

CHARACTERISTIC	TEST CONDITIONS	LIMITSCA258A (E, T, S)			UNITS
	Supply Voltage ( $\mathrm{V}^{+}$) $=5 \mathrm{~V}$ Unless Otherwise Specified	Min.	Typ.	Max.	
$\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}$					
Input Offset Voltage, V10	Note 3	-	1	3	mV
Output Voltage Swing, V ${ }_{\text {OPP }}$	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	0	-	$\mathrm{V}^{+}-1.5$	V
Input Common-Mode Voltage Range, VICR	Note 2, $\mathrm{V}^{+}=30 \mathrm{~V}$	0	-	$\mathrm{V}^{+}-1.5$	V
Input Offset Current, 110	$11^{+}-11^{-}$	-	2	15	nA
Input Bias Current, IIB	$\mathrm{I}_{1}^{+}$or I11${ }^{-}$, Note 1	-	40	80	nA
Output Current (Source), Io	$\begin{aligned} & \mathrm{V}_{1}^{+}=+1 \mathrm{~V}, \mathrm{~V}_{1}^{-}=0 \mathrm{~V} \\ & \mathrm{~V}^{+}=15 \mathrm{~V} \end{aligned}$	20	40	-	mA
Output Current (Sink), IO	$\mathrm{V}_{1}^{+}=0 \mathrm{~V}, \mathrm{~V}_{1}^{-}=1 \mathrm{~V}, \mathrm{~V}^{+}=15 \mathrm{~V}$	10	20	-	mA
	$\begin{aligned} & \mathrm{V}_{1}^{+}=0 \mathrm{~V}, \mathrm{~V}_{1}^{-=}=1 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{O}}=200 \mathrm{mV} \end{aligned}$	12	50	-	$\mu \mathrm{A}$
Short Circuit Output Current	$\mathrm{R}_{\mathrm{L}}=0$ (to Ground) Note 4	-	40	60	mA
Large Signal Voltage Gain, AOL	$\mathrm{R}_{\mathrm{L}} \geqslant 2 \mathrm{k} \Omega, \mathrm{~V}^{+}=15 \mathrm{~V}$   (For large $\mathrm{V}_{\mathrm{O}}$ swing)	50	100	-	$\mathrm{V} / \mathrm{mV}$
Common-Mode Rejection Ratio, CMRR	DC	70	85	-	dB
Power-Supply Rejection Ratio, PSRR	DC	65	100	-	dB
Amplifier-to-Amplifier Coupling	$\mathrm{f}=1$ to 20 kHz (Input referred)	-	-120	-	dB
$\mathrm{T}_{A}=-25$ to $+85^{\circ} \mathrm{C}$					
Input Offset Voltage, V10	Note 3	-	-	4	mV
Temperature Coefficient of Input Offset Voltage, $\propto \mathrm{V}_{10}$	$\mathrm{R}_{\mathrm{S}}=0$	-	7	15	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Current, 110	$1_{1}^{+}-1^{-}$	-	-	30	nA
Temperature Coefficient of Input Offset Current, $\propto_{10}$		-	10	200	$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
Input Bias Current, IIB	$1_{1}^{+}$or $1_{1}^{-}$	-	40	100	nA
Input Common-Mode Voltage Range, VICR	$\mathrm{V}^{+}=30 \mathrm{~V}$, Note 2	0	-	$\mathrm{V}^{+}-2$	V
Supply Current, $1^{+}$	$\mathrm{R}_{\mathrm{L}}=\infty$ On All Ampl.	-	0.7	1.2	mA
	$\mathrm{R}_{\mathrm{L}}=\infty, \mathrm{V}^{+}=30 \mathrm{~V}$	-	1.5	3	

NOTE 1: Due to the p-n-p input stage the direction of the input current is out of the IC. No loading change exists on the input lines because this current is essentially constant, independent of the state of the output.
NOTE 2: The input signal voltages and the input common-mode voltage should not be allowed to go negative by more than 0.3 V . The positive limit of the common-mode voltage range is $\mathrm{V}^{+}-1.5 \mathrm{~V}$, but either or both inputs can go the +32 V without damage.
NOTE 3: $V_{O}=1.4 V_{D C}, R_{S}=0 \Omega$ with $V^{+}$from 5 V to 30 V , and over the full input common-mode voltage range $\left(0 \mathrm{~V}\right.$ to $\left.\mathrm{V}^{+}-1.5 \mathrm{~V}\right)$.
NOTE 4: The maximum output current is approximately 40 mA independent of the magnitude of $\mathrm{V}^{+}$. Continuous short circuits at $\mathrm{V}^{+}>15 \mathrm{~V}$ can cause excessive power dissipation and eventual destruction. Short circuits from the output to $\mathrm{V}^{+}$can cause overheating and eventual destruction of the device. Destructive dissipation can result from simultaneous short circuits on both amplifiere.

ELECTRICAL CHARACTERISTICS (Values Apply for Each Operational Amplifier)

CHARACTERISTIC	TEST CONDITIONS	LIMITS CA35RA (E.T.S)			UNITS
	Supply Voltage ( $\mathrm{V}^{+}$) $=5 \mathrm{~V}$ Unless Otherwise Specified	Min.	Typ.	Max.	
$\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}$					
Input Offset Voltage, V10	Note 3	-	2	3	mV
Output Voltage Swing, VOPP	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	0	-	$\mathrm{V}^{+}-1.5$	V
Input Common-Mode Voltage Range, VICR	Note 2, $\mathrm{V}^{+}=30 \mathrm{~V}$	0	-	$\mathrm{V}^{+}-1.5$	V
Input Offset Current, 1/O	$1_{1}^{+}-11^{-}$	-	5	30	nA
Input Bias Current, IIB	$\mathrm{I}^{+}$or $1_{1}{ }^{-}$, Note 1	-	45	100	$n \mathrm{~A}$
Output Current (Source), Io	$\begin{aligned} & V_{1}^{+}=+1 \mathrm{~V}, V_{1}^{-}=0 \mathrm{~V} \\ & V^{+}=15 \mathrm{~V} \end{aligned}$	20	40	-	mA
Output Current (Sink), Io	$\mathrm{V}_{1}^{+}=0 \mathrm{~V}, \mathrm{~V}_{1}^{-}=1 \mathrm{~V}, \mathrm{~V}^{+}=15 \mathrm{~V}$	10	20	-	mA
	$\begin{aligned} & V_{1}^{+}=0 \mathrm{~V}, \mathrm{~V}_{1}^{-}=1 \mathrm{~V}, \\ & V_{0}=200 \mathrm{mV} \end{aligned}$	12	50	-	$\mu \mathrm{A}$
Short Circuit Output Current	$\mathrm{R}_{\mathrm{L}}=0$ (to Ground) Note 4	-	40	60	mA
Large Signal Voltage Gain, AOL	$\mathrm{R}_{\mathrm{L}} \geqslant 2 \mathrm{k} \Omega, \mathrm{~V}^{+}=15 \mathrm{~V}$   (For large $V_{O}$ swing)	25	100	-	V/mV
Common-Mode Rejection Ratio, CMRR	DC	65	85	-	dB
Power Supply Rejection Ratio, PSRR	DC	65	100	-	dB
Amplifier-to-Amplifier Coupling	$\mathrm{f}=1$ to 20 kHz (Input referred)	-	-120	-	dB
$\mathrm{TA}^{\prime}=0$ to $+70^{\circ} \mathrm{C}$					
Input Offset Voltage, V10	Note 3	-	-	5	mV
Temperature Coefficient of Input Offset Voltage, $\propto \mathrm{V}_{10}$	$\mathrm{R}_{\mathrm{S}}=0$	-	7	20	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Current, IIO	$1_{1}^{+}-1_{1}{ }^{-}$	-	-	75	nA
Temperature Coefficient of Input Offset Current, $\propto_{10}$		-	10	300	$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
Input Bias Current, IIB	$1_{1}^{+}$or $1_{1}$	-	40	200	nA
Input Common-Mode Voltage Range, VICR	$\mathrm{V}^{+}=30 \mathrm{~V}$, Note 2	0	-	$\mathrm{V}^{+}-2$	V
Supply Current, $\mathrm{I}^{+}$	$\mathrm{R}_{\mathrm{L}}=\infty$ On All Ampl.	-	0.7	1.2	mA
	$\mathrm{R}_{\mathrm{L}}=\infty, \mathrm{V}^{+}=30 \mathrm{~V}$	-	1.5	3	

NOTE 1: Due to the p-n-p input stage the direction of the input current is out of the IC. No loading change exists on the input lines because this current is essentially constant, independent of the state of the output
NOTE 2: The input signal voltages and the input common-mode voltage should not be allowed to go negative by more than 0.3 V . The positive limit of the common-mode voltage range is $\mathrm{V}^{+}-1.5 \mathrm{~V}$, but either or both inputs can go the +32 V without damage.
NOTE 3: $V_{O}=1.4 V_{D C}, R_{S}=0 \Omega$ with $V^{+}$from 5 V to 30 V , and over the full input common-mode voltage range ( 0 V to $\mathrm{V}^{+}-1.5 \mathrm{~V}$ ).
NOTE 4: The maximum output current is approximately 40 mA independent of the magnitude of $\mathrm{V}^{+}$. Continuous short circuits at $\mathrm{V}^{+}>15 \mathrm{~V}$ can cause excessive power dissipation and eventual destruction. Short circuits from the output to $\mathrm{V}^{+}$can cause overheating and eventual destruction of the device. Destructive dissipation can result from simultaneous short circuits on both amplifiers.

ELECTRICAL CHARACTERISTICS (Values Apply for Each Operational Amplifier)

CHARACTERISTIC	TEST CONDITIONS	LIMITS CA158 (E, T, S) CA258 (E, T, S)			UNITS
	Unless Otherwise Specified	Min.	Typ.	Max.	
$\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}$					
Input Offset Voltage, V10	Note 3	-	2	5	mV
Output Voltage Swing, VOPP	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	0	-	$\mathrm{v}^{+}-1.5$	V
Input Common-Mode Voltage Range, VICR	Note 2, $\mathrm{V}^{+}=30 \mathrm{~V}$	0	-	$\mathrm{V}^{+}-1.5$	V
Input Offset Current, IIO	$1_{1}^{+}-1^{-}$	-	3	30	nA
Input Bias Current, IIB	$\mathrm{I}_{1}^{+}$or $\mathrm{I}^{-}$, Note 1	-	45	150	nA
Output Current (Source), IO	$\begin{aligned} & \mathrm{V}_{1}^{+}=+1 \mathrm{~V}, \mathrm{~V}_{1}^{-}=0 \mathrm{~V} \\ & \mathrm{~V}^{+}=15 \mathrm{~V} \end{aligned}$	20	40	-	mA
Output Current (Sink), Io	$\mathrm{V}_{1}^{+}=0 \mathrm{~V}, \mathrm{~V}_{1}^{-=}=1 \mathrm{~V}, \mathrm{~V}^{+}=15 \mathrm{~V}$	10	20	-	mA
	$\begin{aligned} & V_{1}^{+}=0 \mathrm{~V}, \mathrm{~V}_{1}^{-}=1 \mathrm{~V}, \\ & V_{O}=200 \mathrm{mV} \end{aligned}$	12	50	-	$\mu \mathrm{A}$
Short Circuit Output Current	$\mathrm{R}_{\mathrm{L}}=0$ (to Ground) Note 4	-	40	60	mA
Large Signal Voltage Gain, AOL	$\mathrm{R}_{\mathrm{L}} \geqslant 2 \mathrm{k} \Omega, \mathrm{~V}^{+}=15 \mathrm{~V}$   (For large $\mathrm{V}_{\mathrm{O}}$ swing)	50	100	-	$\mathrm{V} / \mathrm{mV}$
Common-Mode Rejection Ratio, CMRR	DC	70	85	-	dB
Power-Supply Rejection Ratio, PSRR	DC	65	100	-	dB
Amplifier-to-Amplifier Coupling	$\mathrm{f}=1$ to 20 kHz (Input referred)	-	-120	-	dB
$\mathrm{T}_{\mathrm{A}}=-55$ to $+125^{\circ} \mathrm{C}$ (CA158); $\mathrm{T}_{\mathrm{A}}=-25$ to $+85^{\circ} \mathrm{C}$ (CA258)					
Input Offset Voltage, V10	Note 3	-	-	7	mV
Temperature Coefficient of Input Offset Voltage, $\propto \mathrm{V}_{10}$	$\mathrm{R}_{\mathrm{S}}=0$	-	7	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Current, ${ }_{1} \mathrm{O}$	$1_{1}^{+}-1^{-}$	-	-	100	$n \mathrm{~A}$
Temperature Coefficient of Input Offset Current, $\propto_{10}$		-	10	-	$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
Input Bias Current, IIB	$\mathrm{I}^{+}$or $\mathrm{I}^{-}$	-	40	300	$n \mathrm{~A}$
Input Common-Mode Voltage Range, VICR	$\mathrm{V}^{+}=30 \mathrm{~V}$, Note 2	0	-	$\mathrm{V}^{+}-2$	V
Supply Current, $1^{+}$	$\mathrm{R}_{\mathrm{L}}=\infty$ On All Ampl.	-	0.7	1.2	mA
	$\mathrm{R}_{\mathrm{L}}=\infty, \mathrm{V}^{+}=30 \mathrm{~V}$	-	1.5	3	

NOTE 1: Due to the p-n-p input stage the direction of the input current is out of the IC. No loading change exists on the input lines because this current is essentially constant, independent of the state of the output.
NOTE 2: The input signal voltages and the input common-mode voltage should not be allowed to go negative by more than 0.3 V . The positive limit of the common-mode voltage range is $\mathrm{V}^{+}-1.5 \mathrm{~V}$, but either or both inputs can go the +32 V without damage.
NOTE 3: $V_{O}=1.4, V_{D C}, R_{S}=0 \Omega$ with $V^{+}$from 5 V to 30 V , and over the full input common-mode voltage range ( $0 \vee$ to $V+-1.5 \mathrm{~V}$ ).
NOTE 4: The maximum output current is approximately 40 mA independent of the magnitude of $\mathrm{V}^{+}$. Continuous short circuits at $\mathrm{V}^{+}>15 \mathrm{~V}$ can cause excessive power dissipation and eventual destruction. Short circuits from the output to $\mathrm{V}^{+}$can cause overheating and eventual destruction of the device. Destructive dissipation can result from simultaneous short circuits on both amplifiers.

ELECTRICAL CHARACTERISTICS (Values Apply for Each Operational Amplifier)

CHARACTERISTIC	TEST CONDITIONS	$\begin{gathered} \text { LIMITS } \\ \text { CA358 (E, T, S) } \end{gathered}$			UNITS
	Unless Otherwise Specified	Min.	Typ.	Max.	
$\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}$					
Input Offset Voltage, $\mathrm{V}_{10}$	Note 3	-	2	7	mV
Output Voltage Swing, VOPP	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	0	-	$\mathrm{V}^{+}-1.5$	V
Input Common-Mode Voltage Range, VICR	Note 2, $\mathrm{V}^{+}=30 \mathrm{~V}$	0	-	$\mathrm{v}^{+}-1.5$	V
Input Offset Current, I/O	$1^{+}-11^{-}$	-	5	50	nA
Input Bias Current, IIB	$1_{1}^{+}$or $1_{1}^{-}$, Note 1	-	45	250	nA
Output Current (Source), Io	$\begin{aligned} & \mathrm{V}_{1}^{+}=+1 \mathrm{~V}, \mathrm{~V}_{1}^{-}=0 \mathrm{~V}, \\ & \mathrm{~V}^{+}=15 \mathrm{~V} \end{aligned}$	20	40	-	mA
Output Current (Sink), Io	$\mathrm{V}_{1}^{+}=0 \mathrm{~V}, \mathrm{~V}_{1}^{-}=1 \mathrm{~V}, \mathrm{~V}^{+}=15 \mathrm{~V}$	10	20	-	mA
	$\begin{aligned} & V_{1}^{+}=0 \mathrm{~V}, \mathrm{~V}_{1}^{-=}=1 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{O}}=200 \mathrm{mV} \end{aligned}$	12	50	-	$\mu \mathrm{A}$
Short Circuit Output Current	$\mathrm{R}_{\mathrm{L}}=0$ (to Ground) Note 4	-	40	60	mA
Large Signal Voltage Gain, AOL	$\mathrm{R}_{\mathrm{L}} \geqslant 2 \mathrm{k} \Omega, \mathrm{~V}^{+}=15 \mathrm{~V}$   (For large $\mathrm{V}_{\mathrm{O}}$ swing)	25	100	-	$\mathrm{V} / \mathrm{mV}$
Common-Mode Rejection Ratio, CMRR	DC	65	70	-	dB
Power-Supply Rejection Ratio, PSRR	DC	65	100	-	dB
Amplifier-to-Amplifier Coupling	$\mathrm{f}=1$ to 20 kHz (Input referred)	-	-120	-	dB
$\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$					
Input Offset Voltage, $\mathrm{V}_{10}$	Note 3	-	-	9	mV
Temperature Coefficient of Input Offset Voltage, $\propto V_{10}$	$\mathrm{R}_{\mathrm{S}}=0$	-	7	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Current, IIO	$1_{1}{ }^{+}-11^{-}$	-	-	150	nA
Temperature Coefficient of Input Offset Current, $\propto_{10}$		-	10	-	$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
Input Bias Current, IIB	$1_{1}^{+}$or $1_{1}^{-}$	-	40	500	nA
Input Common-Mode Voltage Range, VICR	$\mathrm{V}^{+}=30 \mathrm{~V}$, Note 2	0	-	$\mathrm{v}^{+}-2$	V
Supply Current, $1^{+}$	$\mathrm{R}_{\mathrm{L}}=\infty$ On All Ampl.	-	0.7	1.2	mA
	$\mathrm{R}_{\mathrm{L}}=\infty, \mathrm{V}^{+}=30 \mathrm{~V}$	-	1.5	3	

NOTE 1: Due to the p-n-p input stage the direction of the input current is out of the IC. No loading change exists on the input lines because this current is essentially constant, independent of the state of the output.
NOTE 2: The input signal voltages and the input common-mode voltage should not be allowed to go negative by more than 0.3 V . The positive limit of the common-mode voltage range is $\mathrm{V}^{+}-1.5 \mathrm{~V}$, but either or both inputs can go the +32 V without damage.
NOTE 3: $V_{O}=1.4, V_{D C}, R_{S}=0 \Omega$ with $V^{+}$from 5 V to 30 V , and over the full input common-mode voltage range ( 0 V to $\mathrm{V}+-1.5 \mathrm{~V}$ ).
NOTE 4: The maximum output current is approximately 40 mA independent of the magnitude of $\mathrm{V}^{+}$. Continuous short circuits at $V^{+}>15 \mathrm{~V}$ can cause excessive power dissipation and eventual destruction. Short circuits from the output to $\mathrm{V}^{+}$can cause overheating and eventual destruction of the device. Destructive dissipation can result from simultaneous short circuits on both amplifiers.

ELECTRICAL CHARACTERISTICS (Values Apply for Each Operational Amplifier)

CHARACTERISTIC	TEST CONDITIONS	LIMITS CA2904E			UNITS
	Supply Voltage ( $\mathbf{V}^{+}$) $=5 \mathrm{~V}$   Unless Otherwise Specified	Min.	Typ.	Max.	
$\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}$					
Input Offset Voltage, Vio	Note 3	-	2	7	mV
Output Voltage Swing, VopP	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	0	-	$\mathrm{v}^{+}-1.5$	V
Input Common-Mode Voltage Range, $V_{\text {ICR }}$	Note 2, $\mathrm{V}^{+}=30 \mathrm{~V}$	0	-	$\mathrm{V}^{+}-1.5$	V
Input Offset Current, 1/O	$1_{1}^{+}-11^{-}$	-	5	50	nA
Input Bias Current, I/B	$\mathrm{I}_{1}^{+}$or $1_{1}^{-}$, Note 1	-	45	250	$n \mathrm{~A}$
Output Current (Source), Io	$\begin{aligned} & \mathrm{V}_{1}^{+}=+1 \mathrm{~V}, \mathrm{~V}_{1}^{-}=0 \mathrm{~V} \\ & \mathrm{~V}^{+}=15 \mathrm{~V} \end{aligned}$	20	40	-	mA
Output Current (Sink), IO	$V_{1}^{+}=0 \mathrm{~V}, \mathrm{~V}_{1}^{-}=1 \mathrm{~V}, \mathrm{~V}^{+}=15 . \mathrm{V}$	10	20	-	mA
Short Circuit Output Current	$\mathrm{R}_{\mathrm{L}}=0$ (to Ground) Note 4	-	40	60	mA
Large Signal Voltage Gain, AOL	$\mathrm{R}_{\mathrm{L}} \geqslant 2 \mathrm{k} \Omega, \mathrm{~V}^{+}=15 \mathrm{~V}$   (For large $V_{O}$ swing)	-	100	-	$\mathrm{V} / \mathrm{mV}$
Common-Mode Rejection Ratio, CMRR	DC	50	70	-	dB
Power- Supply Rejection Ratio, PSRR	DC	50	100	-	dB
Amplifier-to-Amplifier Coupling	$\mathrm{f}=1$ to 20 kHz (Input referred)	-	-120	-	dB
$\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$					
Input Offset Voltage, $\mathrm{V}_{10}$	Note 3	-	-	10	mV
Temperature Coefficient of Input Offset Voltage, $\propto \mathrm{V}_{10}$	$\mathrm{R}_{\mathrm{S}}=0$	-	7	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Current, 1/O	$1_{1}^{+}-1{ }^{-}$	-	45	200	nA
Temperature Coefficient of Input Offset Current, $\propto_{10}$		-	10	-	$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
Input Bias Current, IIB	$1_{1}^{+}$or $1^{-}$	-	40	500	$n \mathrm{~A}$
Input Common-Mode Voltage Range, VICR	$\mathrm{V}^{+}=30 \mathrm{~V}$, Note 2	0	-	$\mathrm{V}^{+}-2$	V
Supply Current, $1^{+}$	$R_{L}=\infty$ On All Ampl.	-	0.7	1.2	mA
	$\mathrm{R}_{\mathrm{L}}=\infty, \mathrm{V}^{+}=30 \mathrm{~V}$	-	1.5	3	

NOTE 1: Due to the $p-n-p$ input stage the direction of the input current is out of the $I C$. No loading change exists on the input lines because this current is essentially constant, independent of the state of the output.
NOTE 2: The input signal voltages and the input common-mode voltage should not be allowed to go negative by more than 0.3 V . The positive limit of the common-mode voltage range is $\mathrm{V}^{+}-1.5 \mathrm{~V}$, but either or both inputs can go the +32 V without damage.
NOTE 3: $V_{O}=1.4, V_{D C}, R_{S}=0 \Omega$ with $\mathrm{V}+$ from 5 V to 30 V , and over the full input common-mode voltage range ( 0 V to $\mathrm{V}+-1.5 \mathrm{~V}$ ).
NOTE 4: The maximum output current is approximately 40 mA independent of the magnitude of $\mathrm{V}^{+}$. Continuous short circuits at $\mathrm{V}^{+}>15 \mathrm{~V}$ can cause excessive power dissipation and eventual destruction. Short circuits from the output to $\mathrm{V}^{+}$can cause overheating and eventual destruction of the device. Destructive dissipation can result from simultaneous short circuits on both amplifiers.

# CA158, CA158A, CA258, CA258A, CA358 CA358A, CA2904, LM358, LM2904 



Fig. 4 - Input voltage range as a function of supply voltage.


Fig. 6 - Supply current drain as a function of supply voltage.


Fig. 8 - Voltage gain as a function of supply voltage.


Fig. 10 - Voltage follower pulse response.


Fig. 5 - Input current as a function of ambient temperature.


Fig. 7 - Common mode rejection ratio as a function of input frequency.


Fig. 9 - Open-loop frequency response.


Fig. 11 - Voltage follower pulse response
(small signal).


Fig. 12 - Large-signal frequency response.


Fig. 14 - Output source current characteristics.


Fig. 16 - Output current as a function of ambient temperature.


Fig. 13 - Input current as a function of supply voltage.


Fig. 15 - Output sink current characteristics.

## ORDERING INFORMATION

These packages are identified by Suffix Letters indicated in the chart shown below. When ordering these devices, it is important that the appropriate suffix letter be affixed to the type number of the device required.

PACKAGE	SUFFIX   LETTERS	TYPES
8-Lead Dual-In-Line Plastic with	E	CA158, A   CA258, A   CA358, A   CA2904
8-Lead TO-5 Style with Standard   Leads	T	CA158, A   CA258, A   CA358, A
8-Lead TO-5 Style with Dual-In-   Line Formed Leads	S	



Dimensions and pad layout for CA358H.

Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils $\left(10^{-3}\right.$ inch).

The photographs and dimensions represent a chip when it is part of the wafer. When the wafer is cut into chips, the cleavage angles are $57^{\circ}$ instead of $90^{\circ}$ with respect to the face of the chip. Therefore, the isolated chip is actually 7 mils ( 0.17 mm ) larger in both dimensions.

# Operational Amplifiers 

CA741, CA747, CA748, CA1458, CA1558, LM741*, LM748*, LM1458*, LM1558*

May 1990

## Operational Amplifiers

High-Gain Single and Dual Operational Amplifiers
For Military, Industrial and Commercial Applications

## Features:

- Input bias current (all types): 500 nA max.
- Input offset current (all types): 200 nA max.


## Applications:

- Comparator
- DC amplifier
- Integrator or differentiator
- Multivibrator

Narrow-band or band-pass filter

- Summing amplifier

The CA1458, CA1558 (dual types); CA741C, CA741 (singletypes); CA747C, CA747 (dual types); and CA748C, CA748 (single types) are general-purpose, high-gain operational amplifiers for use in military, industrial, and commercial applications.

These monolithic silicon integrated-circuit devices provide output short-circuit protection and latch-free operation. These types also feature wide common-mode and differential-mode signal ranges and have low-offset voltage nulling capability when used with an appropriately valued potentiometer. A 5 -megohm potentiometer is used for offset nulling types CA748C, CA748 (See Fig. 10); a 10-kilohm potentiometer is used for offset nulling types CA741C, CA741, CA747CE, CA747E (See Fig. 9); and types CA1458, CA1558, CA747CT, have no specific terminals for offset nulling. Each type consists of a differential-input amplifier that effectively drives a gain and level-shifting stage having a complementary emitterfollower output.

The manufacturing process make it possible to produce IC operational amplifiers with low-burst ("popcorn") noise characteristics. Type CA6741, a low-noise version of the CA741, gives limit specifications for burst noise in the data bulletin, File No. 530. Contact your Sales Representative for information pertinent to other operational amplifier types that meet low-burst noise specifications.
This operational amplifier line also offers the circuit designer the option of operation with internal or external phase compensation.
Types CA748C and CA748, which are externally phase compensated (terminals 1 and 8) permit a choice of operation for improved bandwidth and slew-rate capabilities. Unity gain with external phase compensation can be obtained with a single $30-\mathrm{pF}$ capacitor. All the other types are internally phase-compensated.

TYPENO.	NO. OF AMPL.	PHASE COMP.	OFFSET VOLTAGE NULL	MINIMUM AOL	MAXIMUM VIO ( mV )	OPERATING TEMPERATURE RANGE ( ${ }^{\circ} \mathrm{C}$ )
CA1458	Dual	Int.	No	20k	6	0 to 704
CA1558	Dual	Int.	No	50k	5	-55 to 125
CA741C	Single	Int.	Yes	20k	6	0 to 704
CA741	Single	Int.	Yes	50k	5	-55 to +125
CA747C	Dual	Int.	Yes*	20k	6	0 to 704
CA747	Dual	Int.	Yes*	50k	5	-55 to +125
CA748C	Single	Ext.	Yes	20k	6	0 to 704
CA748	Single	Ext.	Yes	50k	5	-55 to +125

* In the 14-lead dual-in-line plastic package only.

A All types in any package style can be operated over the temperature range of -55 to $+125^{\circ} \mathrm{C}$, although the published limits for certain electrical specifications apply only over the temperature range of 0 to $+70^{\circ} \mathrm{C}$.
*Technical Data on LM Branded types is identical to the corresponding CA Branded types.

## ORDERING INFORMATION

When ordering any of these types, it is important that the appropriate suffix letter for the package required be affixed to the type number. For example: If a CA1458 in a straightlead TO-5 style package is desired, order CA1458T.

TYPE NO.	PACKAGE TYPE AND SUFFIX LETTER							FIG. NO.
	TO-5   STYLE			PLASTIC		CHIP	BEAM-   LEAD	
	8L	10L	DIL-   CAN	8L	14L			
CA1458	T		S	E		H		1d, 1h
CA1558	T		S	E				1d, 1h
CA741C	T		S	E		H		1a, 1e
CA741	T		S	E			L	1a, 1e
CA747C		T			E	H		1b, 17
CA747		T			E			1b, 1f
CA748C	T		S	E		H		1c, 1g
CA748	T		S	E				1c, 1g

MAXIMUM RATINGS, Absolute-Maximum Values at $T_{A}=25^{\circ} \mathrm{C}$ :

[^16]

1a.-CA741CS,CA741CT,CA741S, \& CA741T with internal phase compensation.

TOP VIEW


NOTE: PIN 4 IS CONNECTED TO CASE
92CS-19428
1c. -CA748CS, CA748CT,CA748S, and CA748T with external phase compensation.


1e.-CA741C and CA741E with internal phase compensation.


1g.-CA748CE and CA748E with external phase compensation.


92Cs-19427 A1
1b. -CA747CT and CA747T with internal phase compensation.

1d. -CA1458S,CA1458T,CA1558S, and CA1558T and internal phase compensation.


1f.-CA747CE and CA747E with internal phase compensation.


1h.-CA1458E and CA1558E with internal phase compensation.

Fig. 1 - Functional diagrams.


Fig.2-Schematic diagram of operational amplifier with external phase compensation for CA748C and CA748.


Fig.3-Schematic diagram of operational amplifiers with internal phase compensation for CA741C, CA741, and for each amplifier of the CA747C, CA747, CA1458, and CA1558.

ELECTRICAL CHARACTERISTICS
Typical Values Intended Only for Design Guidance

CHARACTERISTIC	TEST CONDITIONS $\mathrm{V} \pm= \pm 15 \mathrm{~V}$	TYP. VALUES ALL TYPES	UNITS
Input Capacitance, $\mathrm{C}_{1}$		1.4	pF
Offset Voltage   Adjustment Range		$\pm 15$	mV
Output Resistance, $\mathrm{R}_{\mathrm{O}}$		75	$\Omega$
Output Short-Circuit Current		25	mA
Transient Response: $\qquad$   Overshoot	Unity gain$\begin{aligned} & V_{1}=20 \mathrm{mV} \\ & R_{L}=2 \mathrm{k} \Omega \\ & C_{L} \leqslant 100 \mathrm{pF} \end{aligned}$	0.3	$\mu \mathrm{s}$
		5	\%
Slew Rate, SR:   Closed-loop	$R_{L} \geqslant 2 \mathrm{k} \Omega$	0.5	$\mathrm{V} / \mu \mathrm{s}$
Open-loop		40	

A Open-loop slew rate applies only for types CA748C and CA748.
ELECTRICAL CHARACTERISTICS
For Equipment Design

CHARACTERISTIC	TEST CONDITIONS   Supply Voltage,			MITS		UNITS
				$\begin{aligned} & \text { A741C } \\ & \text { A747C* } \\ & \text { A748C } \\ & \text { A1458* } \end{aligned}$		
		Ambient Temperature, $\mathbf{T}_{\mathbf{A}}$	Min.	Typ.	Max.	
Input Offset Voltage,$v_{10}$	$\mathrm{R}_{\mathrm{S}}=\leqslant 10 \mathrm{k} \Omega$	$25^{\circ} \mathrm{C}$	-	2	6	mV
		0 to $70{ }^{\circ} \mathrm{C}$	-	-	7.5	
Input Offset Current, 10		$25^{\circ} \mathrm{C}$	-	20	200	nA
		0 to $70{ }^{\circ} \mathrm{C}$	-	-	300	
Input Bias Current, $I_{\text {IB }}$		$25^{\circ} \mathrm{C}$	-	80	500	nA
		0 to $70{ }^{\circ} \mathrm{C}$	-	-	800	
Input Resistance, $\mathrm{R}_{\text {I }}$			0.3	2	-	$\mathrm{M} \Omega$
Open-Loop Differential Voltage Gain, $\mathrm{A}_{\mathrm{OL}}$	$\begin{aligned} & R_{\mathrm{L}} \geqslant 2 \mathrm{k} \Omega \\ & \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V} \end{aligned}$	$25^{\circ} \mathrm{C}$	20,000	200,000	-	
		0 to $70{ }^{\circ} \mathrm{C}$	15,000	-	-	
Common-Mode Input Voltage Range, $\mathrm{V}_{\text {ICR }}$		$25^{\circ} \mathrm{C}$	$\pm 12$	$\pm 13$	-	V
Common-Mode Rejection Ratio, CMRR	$\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k} \Omega$	$25^{\circ} \mathrm{C}$	70	90	-	dB
Supply-Voltage Rejection Ratio, PSRR	$\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k} \Omega$	$25^{\circ} \mathrm{C}$	-	30	150	$\mu \mathrm{V} / \mathrm{V}$
Output Voltage Swing, $v_{\text {OPP }}$	$R_{L} \geqslant 10 \mathrm{k} \Omega$	$25^{\circ} \mathrm{C}$	$\pm 12$	$\pm 14$	-	V
	$\mathrm{R}_{\mathrm{L}} \geqslant 2 \mathrm{k} \Omega$	$25^{\circ} \mathrm{C}$	$\pm 10$	$\pm 13$	-	
		0 to $70^{\circ} \mathrm{C}$	$\pm 10$	$\pm 13$	-	
Supply Current, $1^{ \pm}$		$25^{\circ} \mathrm{C}$	-	1.7	2.8	mA
Device Dissipation, $\mathrm{P}_{\mathrm{D}}$		$25^{\circ} \mathrm{C}$	-	50	85	mW

* Values apply for each section of the dual amplifiers.

ELECTRICAL CHARACTERISTICS
For Equipment Design

CHARACTERISTIC	TEST CONDITIONS   Supply Voltage, $\begin{aligned} & V^{+}=15 \mathrm{~V} \\ & \mathrm{~V}^{-}=-15 \mathrm{~V} \end{aligned}$		LIMITS			UNITS
				$\begin{aligned} & \text { CA741 } \\ & \text { CA747* } \\ & \text { CA748 } \\ & \text { CA1558* } \end{aligned}$		
		Ambient Temperature, $\mathrm{T}_{\mathrm{A}}$	Min.	Typ.	Max.	
Input Offset Voltage, $\mathrm{V}_{1 \mathrm{O}}$	$R_{S}=\leqslant 10 \mathrm{k} \Omega$	$25^{\circ} \mathrm{C}$	-	1	5	mV
		-55 to $+125^{\circ} \mathrm{C}$	-	1	6	
Input Offset Current, 110		$25^{\circ} \mathrm{C}$	-	20	200	nA
		$-55^{\circ} \mathrm{C}$	-	85	500	
		$+125^{\circ} \mathrm{C}$	-	7	200	
Input Bias Current, $I_{\text {IB }}$		$25^{\circ} \mathrm{C}$	-	80	500	nA
		$-55^{\circ} \mathrm{C}$	-	300	1500	
		$+125{ }^{\circ} \mathrm{C}$	-	30	500	
Input Resistance, $\mathrm{R}_{\mathbf{I}}$			0.3	2	-	$\mathrm{M} \Omega$
Open-Loop Differential Voltage Gain, AOL	$\begin{aligned} & R_{L} \geqslant 2 \mathrm{k} \Omega \\ & V_{O}= \pm 10 \mathrm{~V} \end{aligned}$	$25^{\circ} \mathrm{C}$	50,000	200,000	-	
		-55 to $+125^{\circ} \mathrm{C}$	25,000	-	-	
Common-Mode Input Voltage Range, $V_{\text {ICR }}$		-55 to $+125^{\circ} \mathrm{C}$	$\pm 12$	$\pm 13$	-	V
Common-Mode   Rejection Ratio, CMRR	$\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k} \Omega$	-55 to $+125^{\circ} \mathrm{C}$	70	90	-	dB
Supply Voltage Rejection Ratio, PSRR	$\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k} \Omega$	-55 to $+125^{\circ} \mathrm{C}$	-	30	150	$\mu \mathrm{V} / \mathrm{V}$
Output Voltage Swing, $V_{\text {OPP }}$	$\mathrm{R}_{\mathrm{L}} \geqslant 10 \mathrm{k} \Omega$	-55 to $+125^{\circ} \mathrm{C}$	$\pm 12$	$\pm 14$	-	V
	$\mathrm{R}_{\mathrm{L}} \geqslant 2 \mathrm{k} \Omega$	-55 to $+125^{\circ} \mathrm{C}$	$\pm 10$	$\pm 13$	-	
Supply Current, $1^{ \pm}$		$25^{\circ} \mathrm{C}$	-	1.7	2.8	mA
		$-55^{\circ} \mathrm{C}$	-	2	3.3	
		$+125^{\circ} \mathrm{C}$	-	1.5	2.5	
Device Dissipation, $\mathrm{P}_{\mathrm{D}}$		$25^{\circ} \mathrm{C}$	-	50	85	mW
		$-55^{\circ} \mathrm{C}$	-	60	100	
		$+120^{\circ} \mathrm{C}$	-	45	75	

* Values apply for each section of the dual amplifiers.


Fig. 4 - Open-loop voltage gain vs. supply voltage for all types except CA748 and CA748C.


Fig.5-Open-loop voltage gain vs. frequency for all types except CA748 and CA748C.


Fig.6-Common-mode input voltage range vs, supply voltage for all types.


Fig. 8 - Output voltage vs. transient response time for CA741C and CA741.


Fig. 10-Voltage-offset null circuit for CA748C and CA748.


Fig.7-Peak-to-peak output voltage vs. supply volt age for all types except CA748 and CA 748C.


Fig.9-Voltage offset null circuit for CA741C, CA741, CA747CE, and CA747E.


Fig.11-Transient response test circuit for all types.

CHIP PHOTOS

CA741CH

CA747CH


9205-33259


NOTE: NOS. IN PADS ARE FOR IO-LEAD TO-5
NOS. OUTSIDE OF CHIP ARE FOR 14 -LEAD DIP
92CM-33260


Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils $\left(10^{-3}\right.$ inch $)$.


CA1458H

CA3010, CA3015,

May 1990

## Operational Amplifiers

## Features:

- All types are electrically identical within their voltage groups
- For use in telemetry, data-processing, instrumentation, and communication equipment
- Built-in temperature stability from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ for TO-5 style; $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ for plastic dual-in-line packages


## Applications:

\author{

- Narrow-band and bandpass amplifier <br> - Operational functions <br> - Feedback amplifier <br> - DC and video amplifier <br> - Multivibrator <br> - Oscillator <br> - Comparator <br> - Servo driver <br> - Balanced modulator-driver
}

6-Volt Types	12-Volt Types	Package
CA3010	CA3015	12-Lead TO-5 Style
CA3029	CA3030	14-Lead Plastic Dual-In-Line



CA3010
CA3015

Figure 1 - Schematic diagrams.

## ABSOLUTE-MAXIMUM VOLTAGE AND CURRENT LIMITS, $T_{A}=25^{\circ} \mathrm{C}$

Voltage or current limits shown for each terminal can be applied under the indicated voltage or other circuit conditions for other terminals
All voltages are with respect to ground (common terminal of Positive and Negative DC Supplies)

Terminal		Voltage or Current Limits		Circuit Conditions			Terminal		VoItage or Current Limits		Circuit Conditions		
CA3010	CA3029			CA3015	CA3030								
		Nega-   tive Posi-   tive				Terminal		Voltage	Negative	Posi-   tive	Terminal		Voltage
12	1	DO NOT APPLY VOLTAGE FROM AN EXTERNAL SOURCE TO THIS TERMINAL					12	1	DO NOT APPLY VOLTAGE FROM AN EXTERNAL SOURCE TO THIS TERMINAL				
				CA3010	CA3029						CA3015	CA3030	
1	2	-8V	0 V	$\begin{array}{r} 4 \\ 10 \end{array}$	$\begin{array}{r} 6 \\ 13 \end{array}$	-8 +6	1	2	-16 V	0 V	$\begin{array}{r} 4 \\ 10 \\ \hline \end{array}$	$\begin{array}{r} 6 \\ 13 \end{array}$	$\begin{array}{r}-16 \\ +12 \\ \hline\end{array}$
2	3	-4V	+1 V	1 3 4 10	2 4 6 13	0 0 -6 +6	2	3	-8V	+1 V	1 3 4 10	2 4 6 13	$\begin{array}{r} 0 \\ 0 \\ -12 \\ +12 \end{array}$
3	4	-4V	+1 V	1 2 4 10	2 3 6 13	0 0 -6 +6	3	4	-8V	+1 V	1 2 4 10	2 3 6 13	$\begin{array}{r} 0 \\ 0 \\ -12 \\ +12 \end{array}$
	5			CONNECT				5			CONNEC		
4	6	$-10 \mathrm{~V}$	0 V	1 10	2 13	0 +6	4	6	$-20 \mathrm{~V}$	OV	1 10	2 13	$\begin{array}{r}0 \\ +12 \\ \hline\end{array}$
	7			CONNECT				7			CONNEC		
5	8	$\begin{gathered} \text { DON } \\ \text { TER } \\ \hline \end{gathered}$	$\begin{aligned} & \text { TAPPL } \\ & \text { AL SOU } \end{aligned}$	Y VOLTAG RCE TO T	FROM   IS TERM	N EX- NAL	5	8	$\begin{aligned} & \text { DO NO } \\ & \text { TER } \end{aligned}$	APPLY AL SOU	$\begin{aligned} & \text { Y VOLTA } \\ & \text { RCE TO } \end{aligned}$	$\begin{aligned} & \text { FROM } \\ & \text { IIS TERM } \end{aligned}$	NEX- INAL
6	9	$\begin{gathered} \text { DON } \\ \text { TER } \\ \hline \end{gathered}$	$\begin{aligned} & T \text { APPL } \\ & \hline \end{aligned}$	YOLTAG RCE TO T	FROM   HIS TERMI	N EX- NAL	6	9	$\begin{aligned} & \text { DO NO } \\ & \text { TE.R } \end{aligned}$	$\begin{aligned} & \text { T APPLY } \\ & \text { VAL SOU } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Y VOLTAC } \\ & \text { RCE TO } \end{aligned}$	FROM HIS TER	$\mathrm{NEX}-$ INAL
7	10	0 V	+7 V	$\begin{array}{r}1 \\ 4 \\ 10 \\ \hline\end{array}$	2 6 13	0 -6 +6	7	10	0 V	+14 V	$\begin{array}{r}1 \\ 4 \\ 10 \\ \hline\end{array}$	$\begin{array}{r}2 \\ 6 \\ 13 \\ \hline\end{array}$	$\begin{array}{r}0 \\ -12 \\ +12 \\ \hline\end{array}$
8	11	$\begin{gathered} \text { DON } \\ \text { TER } \\ \hline \end{gathered}$	$\begin{aligned} & \text { TAPPL } \\ & \text { AL SOU } \end{aligned}$	volta   CE TO	E FROM HIS TERM	$\begin{aligned} & \text { N EX- } \\ & \text { NAL } \\ & \hline \end{aligned}$	8	11	DO NO TER	$\begin{aligned} & \text { TAPPL } \\ & \text { VAL SOU } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Y VOLTAC } \\ & \text { RCE TO } \end{aligned}$	$\begin{aligned} & \text { E FROM } \\ & \text { HIS TERM } \\ & \hline \end{aligned}$	IN EX IINAL
9	12			$\begin{gathered} 4 \\ 10 \\ 200 \Omega \\ \text { CA3 } \\ 4 \& 9 \end{gathered}$	$\begin{gathered} 6 \\ 13 \\ \text { Between } \\ 6 \& 12 \\ \text { (CA } 12 \\ \text { (CA3010) } \\ \hline \end{gathered}$		9	12			$\begin{gathered} 4 \\ 10 \\ 400 \Omega \\ \text { CA } 30 \\ 4 \& 9 \end{gathered}$	$\begin{gathered} 6 \\ 13 \\ \text { etween T } \\ \& \quad 12 \\ 0 \\ \text { CA3015) } \end{gathered}$	$\left.\right\|_{r} ^{-12} \begin{array}{r} \text { rinals } \\ +12 \end{array}$
10	13	0 V	+10 V	1	2 6	0 -6	10	13	OV	+20 V	1	2	$\begin{array}{r}0 \\ -12 \\ \hline\end{array}$
11	14	0 V	+7 V	1 4 10	2 6 13	0 -6 +6	11	14	0 V	+14 V	1 4 10	2 6 13	$\begin{array}{r}0 \\ -12 \\ +12 \\ \hline\end{array}$
			nally co 010 (Sub	nected to trate) DO	Terminal NOT GRO	$\begin{array}{r}\text { No.4, } \\ \text { UND } \\ \text { 1 } \\ \hline\end{array}$		ASE		$\begin{aligned} & \text { nally cor } \\ & 015 \text { (Subs } \end{aligned}$	inected to trate DO	Ferminal	No.i.
			CA30	0 CA30	$\begin{aligned} & \mathrm{CA} 3 \\ & \mathrm{CA} 3 \end{aligned}$					CA3030	CA30	CA30	
RATING RAGE TE	EMPERA	URE RAN	E . . . - -6	$5^{0} \mathrm{C}$ to +125	$\begin{array}{l\|l} 5^{\circ} \mathrm{C} & -40^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} & -650 \end{array}$	$\begin{aligned} & \text { to }+85^{\circ} \mathrm{C} \\ & \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \end{aligned}$	MAXIMU MAXIMUI	SIGNAL DEVICE	OLTAGE DISSIPAT	N	$\begin{aligned} & -8 \mathrm{~V} \text { to } \\ & . \quad 600 \end{aligned}$	$\begin{array}{c\|c} \mathrm{V} & -4 \mathrm{~V} \\ n W & 300 \end{array}$	$0+1 V=$   W

ELECTRICAL CHARACTERISTICS at $\mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Characteristics	Symbols	Special Test Conditions   Terminal No. 8   CA3029, CA3030   Terminal No. 5 (CA3010, CA3015) Not Connected Unless Otherwise Specified	Test   Cir-   cuit	$\begin{aligned} & \text { CA3010 } \\ & \text { CA3029 } \end{aligned}$			$\begin{aligned} & \text { CA3015 } \\ & \text { CA3030 } \end{aligned}$			Units	Typical   Charac-   teristic   Curves
			Fig.	Min.	Typ.	Max.	Min.	Typ.	Max.		Fig.
STATIC CHARACTERISTICS:											
Input Offset Voltage	V10		4	-	1.08	5	-	$1.37$	5	mV	2
Input Offset Current	110	$\begin{array}{ll}=+6 \mathrm{~V} & =-6 \mathrm{~V} \\ =+12 \mathrm{~V} & =-12 \mathrm{~V}\end{array}$	5	-	0.54	5	-	$1.07$	$5$	$\mu \mathrm{A}$	2
Input Bias Current	1 IB	$\begin{array}{ll}=+6 \mathrm{~V} & \\ =+12 \mathrm{~V} & =-6 \mathrm{~V} \\ & =-12 \mathrm{~V}\end{array}$	5	.	5.3 $\cdot$	12	-	$9.6$	$24$	$\mu \mathrm{A}$	3
Input Offset Voltage Sensitivity: Positive Negative	$\begin{aligned} & \Delta V_{10} / \Delta V_{C C} \\ & \Delta V_{10} / \Delta V_{E E} \end{aligned}$	$\begin{array}{ll} =+6 \mathrm{~V} & =-6 \mathrm{~V} \\ =+12 \mathrm{~V} & \\ =-12 \mathrm{~V} \\ =+6 \mathrm{~V} & \\ =+-6 \mathrm{~V} \\ & +12 \mathrm{~V} \end{array}$	4	-	$\left\|\begin{array}{c} 0.10 \\ \cdot \\ 0.26 \end{array}\right\|$	$\begin{aligned} & 1 \\ & - \\ & 1 \end{aligned}$		$\begin{gathered} 0.096 \\ - \\ 0.156 \end{gathered}$	$\begin{gathered} - \\ 0.5 \\ - \\ 0.5 \end{gathered}$	mV/V	none
		$\begin{array}{ll}=+6 \mathrm{~V} & =-6 \mathrm{~V} \\ =+12 \mathrm{~V} & =-12 \mathrm{~V}\end{array}$		-	30	-	$\stackrel{-}{-}$	$175$	-		
Device Dissipation	$P_{D}$	$\begin{array}{\|cc\|} \hline 5 \text { shorted to } 9 & V C C=+6 \mathrm{~V} \\ & V_{E E}=-6 \mathrm{~V} \\ 8 \text { shorted to } 12 & V_{C C}=+12 \mathrm{~V} \\ & V_{E E}=-12 \mathrm{~V} \\ \hline \end{array}$	4		$102$		-	$500$		mW	none
DYNAMIC CHARACTERISTICS: All tests at $f=1 \mathrm{kHz}$ except BWOL											
Open-Loop Differential Voltage Gain	${ }^{\text {A OL }}$	$\begin{aligned} V_{C C} & =+6 \mathrm{~V}, & V_{E E} & =-6 \mathrm{~V} \\ & =+12 \mathrm{~V} & & =-12 \mathrm{~V} \end{aligned}$	8	57	60	-	$66$	70	-	dB	6 \& 7
Open-Loop Bandwidth at -3 dB Point	$B W_{0 L}$	$\begin{array}{ll} =+6 \mathrm{~V} & =-6 \mathrm{~V} \\ =+12 \mathrm{~V} & \\ =-12 \mathrm{~V} \end{array}$	8	200	300	$\stackrel{-}{-}$	200	320	-	kHz	6 \& 7
Common-Mode Rejection Ratio	CMRR	$\begin{array}{rlrl} \mathrm{VCC} & =+6 \mathrm{~V}, & V E E & =-6 \mathrm{~V} \\ & & =+12 \mathrm{~V} & \\ & =-12 \mathrm{~V} \end{array}$	11	70	94.	-	80	$103$	-	dB	12
Maximum Output-Voltage Swing	$V_{0}(P-P)$	$\begin{array}{ll} =+6 \mathrm{~V} & =-6 \mathrm{~V} \\ =+12 \mathrm{~V} & =-12 \mathrm{~V} \end{array}$	8	4	6.75	.	$12$	14	.	$V_{\text {P-P }}$	$9 \& 10$
Input Impedance	$Z_{\text {IN }}$	$\begin{array}{ll} =+6 \mathrm{~V} & =-6 \mathrm{~V} \\ =+12 \mathrm{~V} & =-12 \mathrm{~V} \end{array}$	14	10	14	.	5	7.8	-	k $\Omega$	13
Output Impedance	ZOUT	$\begin{array}{ll} =+6 \mathrm{~V} & =-6 \mathrm{~V} \\ =+12 \mathrm{~V} & =-12 \mathrm{~V} \end{array}$	15	-	200	-	-	$92$	-	$\Omega$	16
Common-Mode Input-Voitage Range	VICR	$\begin{array}{ll} =+6 \mathrm{~V} & =-6 \mathrm{~V} \\ =+12 \mathrm{~V} & =-12 \mathrm{~V} \end{array}$	11	0.   to   to   -4   -	$\stackrel{-}{-}$	-	-   0.65   to,   -8	.	.	V	none

## LEAD TEMPERATURE (During Soldering):

At distance $1 / 16 \pm 1 / 32$ inch ( $1.59 \pm 0.79 \mathrm{~mm}$ )
from case for 10 seconds max.

TYPICAL STATIC CHARACTERISTICS AND TEST CIRCUITS
Terminal Numbers in Circles are for CA3029, CA3030 Italic Numbers in Square Boxes are for CA3010, CA3015.


Fig. 2 - Input offset voltage and current.


Fig. 4 - Input offset voltage, input offset voltage sensitivity, and device dissipation test circuit


Fig. 5 - Input offset current and input bias current test circuit.


Fig. 3 - Input bias current.

Procedure:
Input Offset Voltage

1. Adjust $V_{E}$ for a DC Output Voltage ( $\mathrm{V}_{\mathrm{OUT}}$ ) of $0 \pm 0.1$ volts.
2. Measure $V_{E}$ and record Input Offset Voltage in millivolts as $V_{E / 1000}$.

Input Offsef Voltage Sensitivity

1. Adjust $\mathrm{V}_{\mathrm{E}}$ for a DC Output Voltage ( $\mathrm{V}_{\mathrm{OUT}}$ ) of $0 \pm 0.1$ volts. 2. Increase $\left\lceil V_{C C} \mid\right.$ by 1 volt and record output voltage ( $\mathrm{V}_{\mathrm{OUT}}$ ). 3. Decrease $\left|V_{C C}\right|$ by 1 volt and record output voltage (VOT).
2. Divide the diference between VOUT measured in steps 2 and 3 by the change in $V_{\mathrm{CC}}$ in steps 2 and 3.

$$
\frac{V_{\text {OUT }}}{V_{\text {CC }}}=\frac{V_{\text {OUT }}\left(\text { Step 2) }-V_{\text {OUT }}(\text { Step 3) }\right.}{2 \text { volts }}
$$

5. Refer the reading to the input by dividing by Open Loop Voltage Gain (AOL).

$$
V_{10} / V_{C C}=\frac{V_{O U T} / V_{C C}}{A_{O L}}
$$

6. Repeat procedures 1 through 5 for the Negative Supply (VE).
7. Device Dissipation
$P_{T}=V_{C C I}+V_{E E} I_{E}$
IC $=$ Direct Current into Terminal (13) or 10
$I_{E}=$ Direct Current out of Terminal(6)or 4

Procedure:
Input Bias Current and Input Offset Current

1. Adjust $V_{E}$ for $\left|V_{\text {OUT }}\right|<0.1$ V DC.
2. Measure and record $V_{E}$ and $V_{N_{4}}$.
3. Calcuiate the Input Bias Current using the following equation:

$$
I_{14}=\frac{V_{1 N_{4}}}{100 \mathrm{k} \Omega}
$$

4. Calculate the Input Offset Current using the following equation:

$$
I_{10}=V_{E / 100 ~ k \Omega}
$$

## TYPICAL DYNAMIC CHARACTERISTICS AND TEST CIRCUITS

Terminal Numbers in Circles are for CA3029, CA3030
Italic Numbers in Square Boxes are for CA3010, CA3015.


Fig. 6 - Open-loop voltage gain vs. frequency for CA3010, CA3015,


Fig. 7 - Open-loop voltage gain vs. frequency for CA3029 and САЗОЗО

## Procedure:

1. Adjust $V_{E}$ for $V_{O U T}= \pm 0.1 \mathrm{~V} D C$.
2. Measure Open-Loop Differential Voltage Gain ( $A_{O L}$ ) at $f=1 \mathrm{kHz}$.

$$
A_{O L}=20 \log _{10} \frac{V_{\mathrm{OUT}}}{V_{\mathrm{IN}}}
$$

3. Measure Maximum Peak-to-Peak Output Voltage at $f=1 \mathrm{kHz}$.
4. Measure Open-Loop Bandwidth at -3 dB Point.

Reference Level $=A_{O L}$ at 1 kHz .
Fig. 8

Fig. 8 - Open-loop differential voltage gain, maximum peak-to-peak output voltage, and open-loop bandwidth at - 3 dB point test circuit


Fig. 9 - Maximum peak-to-peak output voltage vs. load resistance for CA3010, CA3015

## TYPICAL DYNAMIC CHARACTERISTICS AND TEST CIRCUITS

Terminal Numbers in Circles are for CA3029, CA3030,
Italic Numbers in Square Boxes are for CA3010, CA3015.


Fig. 10 - Maximum peak-to-peak output voltage vs. load resistance for CA3029 and CA3030


Procedures:
Common-Mode Rejection Ratio:

1. Set $V_{B I A S}=0$. Adjust $V_{E}$ for $V_{O U T}(D C)=0 \pm 0.1 \mathrm{~V}$.
2. Apply $1-\mathrm{kHz}$ sinusodial input signal and adjust for $\mathrm{V}_{\mathrm{S}}=0.3 \mathrm{~V}$ (RMS).
3. Measure and record the RMS value of VOUT. An oscilloscope is used for this measurement so that the output signal may be visually separated.from noise output.
4. Calculate Common-Mode Voltage Gain:

$$
\begin{aligned}
& A_{C M}=V_{O U T} / V_{S} \\
& A_{C M} \text { in } d B=-20 \text { LOG }_{10} V_{S} / V_{\text {OUT }}
\end{aligned}
$$

5. Calculate Common-Mode Rejection Ratio:
$C M R$ in $d B=A D I F F$ in $d B-A C M$ in $d B$.
Common-Mode Input-Voltage Range:
6. Calculate and record CMR for various positive and negative values of $V_{\text {BIAS }}$ within the maximum limits shown on Page 2. The Com-mon-Mode Input-Voltage Range limits are those values of $V_{\text {BIAS }}$ at which CMR is 6 dB less than that calculated in Step 5 of the procedure given above.

Fig. 11 - Common-mode rejection ratio and common-mode input-voltage-range test circuit.


Fig. 12 - Common-mode rejection ratio vs. frequency.

CA3010, CA3015, CA3029, CA3030,

TYPICAL DYNAMIC CHARACTERISTICS AND TEST CIRCUITS
Terminal Numbers in Circles are for CA3029, CA3030
Italic Numbers in Square Boxes are for CA3010, CA3015.


Fig. 13 - Single-ended input impedance vs. temperature.


1. With $S_{2}$ in position (c), adjust $V_{E}$ for $V_{O U T}(D C)=0 \pm 0.1$ volt.
2. With $S_{1}$ in position (a), and $S_{2}$ in position (d), record $V_{\text {OUT }}$ (rms).
3. With Switch $S_{1}$ in position (b), and $S_{2}$ in position (d), adjust $R_{L}$ until
$\mathrm{V}_{\mathrm{OUT}_{2}}(\mathrm{rms})=\frac{\mathrm{VOUT}_{1}(\mathrm{rms})}{2}$. Record value of $\mathrm{R}_{\mathrm{L}}$ as $\mathrm{Z}_{\mathrm{OUT}}$.
Fig. 15 - Output impedance test circuit.


Fig. 16 - Output impedance vs. temperature.

May 1990

## Operational Amplifiers

## Features:

- These new types have all the desirable features and characteristics of their prototypes plus lower noise figures and improved input characteristics for offset voltage, offset current, bias current, and impedance
- All types are electrically identical within their voltage groups
- For use in telemetry, data-processing, instrumentation, and communication equipment
- Built-in temperature stability from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ for TO-5 style, and ceramic dual-in-line packages; $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ for plastic dual-in-line packages


## Applications:

- Narrow-band and band-pass amplifier
- Operational functions
- Feedback amplifier
- DC and video amplifier
- Multivibrator
- Oscillator
- Comparator
- Servo driver
- Scaling adder
- Balanced modulator-driver

6-VOLT TYPES	12-VOLT TYPES	PACKAGE
CA3010A	CA3015A	12-Lead TO-5 Style
CA3029A	CA3030A	14-Lead Plastic Dual-In-Line (TO-116)



Figure 1 - Schematic diagrams.

ABSOLUTE-MAXIMUM VOLTAGE AND CURRENT LIMITS, $T_{A}=25^{\circ} \mathrm{C}$
Voltage or current limits shown for each terminal can be applied under the indicated voltage or other circuit conditions for other terminals
All voltages are with respect to ground (common terminal of Positive and Negative DC Supplies)


Terminal		Voltage or Current   Limits		Circuit Conditions	
CA3015A	CA3030A	Nega-   tive		Posi-   tive	Terminal
		Voltage			



ELECTRICAL CHARACTERISTICS at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Characteristics	Symbols	Special Test Conditions Terminal No. 8 CA3029A, CA3030A, Terminal No. 5 (CA3010A, CA3015A) Not Connected Unless Otherwise Specified	Test   Cir-   cuit	$\begin{aligned} & \text { CA3010A } \\ & \text { CA3029A } \end{aligned}$			CA3015A CA3030A			Units	Typical   Charac-   teristic   Curves
			Fig.	Min.	Typ.	Max.	Min.	Typ.	Max.		Fig.
STATIC CHARACTERISTICS:											
Input Offset Voltage	$V_{10}$		4	-	0.9	2	$\cdot$	1	2	mV	2
Input Offset Current	110	$\begin{array}{ll} =+6 \mathrm{~V} & =-6 \mathrm{~V} \\ =+12 \mathrm{~V} & =-12 \mathrm{~V} \end{array}$	5	.	0.3	1.5	-	$0.5$	$1.6$	$\mu \mathrm{A}$	2
Input Bias Current	$I_{I B}$	$\begin{array}{ll} =+6 \mathrm{~V} & =-6 \mathrm{~V} \\ =+12 \mathrm{~V} & =-12 \mathrm{~V} \end{array}$	5	-	2.5	4	-	$4.7$	$6$	$\mu \mathrm{A}$	3
Input Offset Voltage Sensitivity: Positive   Negative	$\begin{aligned} & \Delta V_{10} / \Delta V_{C C} \\ & \Delta V_{10} / \Delta V_{E E} \end{aligned}$	$\begin{array}{ll} =+6 \mathrm{~V} & =-6 \mathrm{~V} \\ =+12 \mathrm{~V} & \\ =-12 \mathrm{~V} \\ =+6 \mathrm{~V} & \\ =+6 \mathrm{~V} \\ =+12 \mathrm{~V} & \\ =-12 \mathrm{~V} \end{array}$	4	-	$\begin{gathered} 0.10 \\ - \\ 0.26 \end{gathered}$		-	$\begin{gathered} - \\ 0.096 \\ - \\ 0.156 \end{gathered}$	$\begin{gathered} - \\ 0.5 \\ - \\ 0.5 \end{gathered}$	mV/V	none
		$\begin{array}{ll}=+6 \mathrm{~V} & =-6 \mathrm{~V} \\ =+12 \mathrm{~V} & =-12 \mathrm{~V}\end{array}$		-	40   -	-	-	$\stackrel{-}{175}$	-		
Device Dissipation	$P_{D}$	5 shorted to 9 $\begin{gathered} V C C=+6 \mathrm{~V} \\ V_{E E}=-6 \mathrm{~V} \\ V_{C C}=+12 \mathrm{~V}, \\ V_{E E}=-12 \mathrm{~V} \\ \hline \end{gathered}$	4		102		-	$500$		mW	none
DYNAMIC CHARACTERISTICS: All tests at $f=1 \mathrm{kHz} \mathrm{except} \mathrm{BWOL}$											
Open-Loop Differential Voltage Gain	${ }^{\text {A OL }}$	$\begin{aligned} V_{C C} & =+6 \mathrm{~V}, & & V_{E E} \end{aligned}=-6 \mathrm{~V} .$	8	57.	60	-	$66$	$70$	-	dB	6 \& 7
Open-Loop Bandwidth at -3 dB Point	$B W_{0 L}$	$\begin{array}{ll} =+6 \mathrm{~V} & =-6 \mathrm{~V} \\ =+12 \mathrm{~V} & =-12 \mathrm{~V} \end{array}$	8	200	300	-	$200$	$320$	-	kHz	6 \& 7
Slew Rate	SR	$V_{C C}$ $=+6 \mathrm{~V}$ $\mathrm{~V}_{\text {EE }}$ $=-6 \mathrm{~V}$     $\mathrm{R}_{S}=$     $=+12 \mathrm{~V}$  $=-12 \mathrm{~V}$ l k	none	-	3	-	-	7	.	$\mathrm{V} / \mu \mathrm{S}$	none
Common-Mode Rejection Ratio	CMR		11	70	94	-	80	$103$	-	dB	12
Maximum Output-Voltage Swing	$V_{0}(P-P)$	$\begin{array}{ll} =+6 \mathrm{~V} & =-6 \mathrm{~V} \\ =+12 \mathrm{~V} & \\ =-12 \mathrm{~V} \end{array}$	8	4.	6.75	$\stackrel{\square}{-}$	12	14	-	$V_{\text {P-P }}$	$9 \& 10$
Input Impedance	$Z_{\text {IN }}$	$\begin{array}{ll} =+6 \mathrm{~V} & =-6 \mathrm{~V} \\ =+12 \mathrm{~V} & =-12 \mathrm{~V} \end{array}$	14	15	20	-	$7.5$	10	-	$\mathrm{k} \Omega$	13
Output Impedance	Zout	$\begin{array}{ll} =+6 \mathrm{~V} & =-6 \mathrm{~V} \\ =+12 \mathrm{~V} & =-12 \mathrm{~V} \end{array}$	15		160	-	-	85	-	$\Omega$	16
Common-Mode Input-Voltage Range	$V_{\text {ICR }}$	$\begin{array}{ll} =+6 \mathrm{~V} & =-6 \mathrm{~V} \\ =+12 \mathrm{~V} & =-12 \mathrm{~V} \end{array}$	11	+0.5 to -4 -	.	-	$\left\lvert\, \begin{gathered} +0.65 \\ \text { to } \\ -8 \end{gathered}\right.$	-	-	V	none
Noise Figure	NF	$\left.\begin{array}{rlrl} V_{C C} & =+3 \mathrm{~V}, \mathrm{VEE} & =-3 \mathrm{~V} \\ & =+6 \mathrm{~V} & & =-6 \mathrm{~V} \\ & =+9 \mathrm{~V} & & =-9 \mathrm{~V} \\ & =+12 \mathrm{~V} & & =-12 \mathrm{~V} \end{array} \right\rvert\, \mathrm{R} \Omega \Omega$	18	-	6.3 8.3 -	9 12 -	-	6.3 8.3 10 11	9 12 14 16	dB	17

LEAD TEMPERATURE (During Soldering):
At distance $1 / 16 \pm 1 / 32$ inch ( $1.59 \pm 0.79 \mathrm{~mm}$ )
from case for 10 seconds max.
$+265^{\circ} \mathrm{C}$

## TYPICAL DYNAMIC CHARACTERISTICS AND TEST CIRCUITS

Terminal Numbers in Circles are for CA3029A, CA3030A
Italic Numbers in Square Boxes are for CA3010A, CA3015A.


Fig. 2 - input offset voltage and current


Fig. 4 - Input offset voltage, input offset voltage sensitivity, and and device dissipation test circuit.


Fig. 5 - Input offset current and input bias current test circuit.


Fig. 3 - Input bias current

## Procedure:

Input Offset Voltage

1. Adjust $V_{E}$ for a $D C$ Output Voltage ( $V_{O U T}$ ) of $0 \pm 0.1$ volts.
2. Measure $V_{E}$ and record Input Offset Voltage in millivolts as $\mathrm{V}_{\mathrm{E}} / 1000$.

Input Offset Voltage Sensitivity

1. Adjust $V_{E}$ for a DC Output Voltage ( $\mathrm{V}_{\mathrm{OUT}}$ ) of $0 \pm 0.1$ volts.
2. Increase $\left|V_{C C}\right|$ by 1 volt and record output voltage (VOUT).
3. Decrease $\left|V_{C C}\right|$ by 1 volt and record output voltage (VOUT).
4. Divide the diference between VOUT measured in steps 2 and 3 by the change in $V_{C C}$ in steps 2 and 3.

$$
\frac{V_{\text {OUT }}}{V_{\text {CC }}}=\frac{V_{\text {OUT }}\left(\text { Step 2) }-V_{\text {OUT }}\right. \text { (Step 3) }}{2 \text { volts }}
$$

5. Refer the reading to the input by dividing by Open Loop Voltage Gain (AOL).

$$
v_{10} / V_{C C}=\frac{v_{O U T} / v_{C C}}{A_{O L}}
$$

6. Repeat procedures 1 through 5 for the Negative Supply ( $\mathrm{V}_{\mathrm{EE}}$ ).
7. Device Dissipation
$P_{T}=V_{C C l}+V_{E E}{ }^{\prime} E$
IC = Direct Current into Terminal 13 or 10
$I_{E}=$ Direct Current out of Terminal 6 or 4

## Procedure:

Input Bias Current and Input Offset Current

1. Adjust $V_{E}$ for $\left|V_{O U T}\right|<0.1 \vee D C$.
2. Measure and record $V_{E}$ and $V_{I N_{4}}$
3. Calculate the Input Bias Current using the following equation:

$$
I_{14}=\frac{V_{1 N_{4}}}{100 \mathrm{k} \Omega}
$$

4. Calculate the Input Offset Current using the following equation:

$$
\mathrm{I}_{10}=V_{\mathrm{E}} / 100 \mathrm{k} \Omega
$$

## TYPICAL DYNAMIC CHARACTERISTICS AND TEST CIRCUITS

Terminal Numbers in Circles are for CA3029A, CA3030A,
Italic Numbers in Square Boxes are for CA3010A, CA3015A.


Fig. 6 - Open loop voltage gain vs. frequency for CA3015A, CA3016A


Fig. 7 - Open loop voltage gain vs. frequency for CA3029A and CA3030A.


Procedure:

1. Adjust $V_{E}$ for $V_{O U T}= \pm 0.1 \mathrm{~V} D C$.
2. Measure Open-Loop Differential Voltage Gain ( $A_{O L}$ ) at $f=1 \mathrm{kHz}$

$$
A_{\mathrm{OL}}=20 \log _{10} \frac{V_{\mathrm{OUT}}}{V_{\mathrm{IN}}}
$$

3. Measure Maximum Peak-to-Peak Output Voltage at $f=1 \mathrm{kHz}$
4. Measure Open-Loop Bandwidth at -3 dB Point Reference Level $=A_{O L}$ at 1 kHz

Fig. 8 - Open-loop differential voltage gain, maximum peak-to-peak output voltage, and open-loop bandwidth at - 3 point test circuit.


Fig. 9 - Maximum peak-to-peak output voltage vs. load resistance for CA3010A. CA3015A

## TYPICAL DYNAMIC CHARACTERISTICS AND TEST CIRCUITS

Terminal Numbers in Circles are for CA3029A, CA3030A
Italic Numbers in Square Boxes are for CA3010A, CA3015A.


Fig. 10 - Maximum peak-to-peak output voltage vs. load resistance for CA3029A and CA3030A.


Procedures:
Common-Mode Rejection Ratio:

1. Set $V_{B I A S}=0$. Adjust $V_{E}$ for $V_{O U T}(D C)=0 \pm 0.1 \mathrm{~V}$.
2. Apply $1-\mathrm{kHz}$ sinusodial input signal and adjust for $\mathrm{V}_{\mathrm{S}}=0.3 \mathrm{~V}$ (RMS).
3. Measure and record the RMS value of $V_{O U T}$. An oscilloscope is used for this measurement so that the output signal may be visually separated. from noise output.
4. Caiculate Common-Mode Voltage Gain:

$$
A_{C M}=V_{O U T} / V_{S}
$$

$$
\mathrm{A}_{\mathrm{CM}} \text { in } \mathrm{dB}=-20 \mathrm{LOG}_{10} \mathrm{VS}_{\mathrm{S}} / \mathrm{V}_{\text {OUT }}
$$

5. Calculate Common-Mode Rejection Ratio:

$$
C M R \text { in } d B=A D I F F \text { in } d B-A C M \text { in } d B .
$$

Common-Mode Input-Voltage Range:

1. Calculate and record CMR for various positive and negative values of $V_{\text {BIAS }}$ within the maximum limits shown on Page 2. The Com-mon-Mode Input-Voltage Range limits are those values of VBIAS at which CMR is 6 dB less than that calculated in Step 5 of the procedure given above.
Fig. 11 - Common-mode rejection ratio and common-mode input-voltage-range test circuit.


Fig. 12 - Common-mode rejection ratio vs. frequency.

## CA3010A, CA3015A, CA3029A, CA3030A

TYPICAL DYNAMIC CHARACTERISTICS AND TEST CIRCUITS
Terminal Numbers in Circles are for CA3029A, CA3030A
Italic Numbers in Square Boxes are for CA3010A, CA3015A.



Fig. 14 - Single-ended input impedance test circuit.

Fig. 13 - Single-ended input impedance vs. temperature.


1. With $S_{2}$ in position (c), adjust $V_{E}$ for $V_{O U T}(D C)=0 \pm 0.1$ volt.
2. With $S_{1}$ in position (a), and $S_{2}$ in position (d), record $V_{\text {OUT }_{1}}$ (rms).
3. With Switch $S_{1}$ in position (b) and $S_{2}$ in position (d) adjust $R_{L}$ until
$\mathrm{V}_{\mathrm{OUT}_{2}}(\mathrm{mms})=\frac{\mathrm{V}_{\mathrm{OUT}_{1}}(\mathrm{rms})}{2}$. Record value of $\mathrm{R}_{\mathrm{L}}$ as $\mathrm{Z}_{\mathrm{OUT}}$.
Fig. 15 - Output impedance test circuit.


Fig. 16 - Output impedance vs. temperature

# Multipurpose Wide-Band Power Amplifiers 

For Military, Industrial, and Commercial Equipment at Frequencies up to 8 MHz

## Features:

- High power output-class B amplifier... САЗО20-0.5 W typ. at VCC $=+9 \mathrm{~V}$
CA3020A-1.0 W typ. at VCC +12 V
- Wide frequency range...

Up to 8 MHz with resistive loads

- High power gain... 75 dB typ.
- Single power supply for class B operation with transformer...
CA3020-3 to 9 V
CA3020A-3 to 12 V
- Built-in temperature-tracking voltage regulator provides stable operation over $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range

The CA3020 and CA3020A are integrated-circuit, multi-stage, multipurpose, wide-band power amplifiers on a single monolithic silicon chip. They employ a highly versatile and stable direct-coupled circuit configuration featuring wide frequency range, high voltage and power gain, and high power output. These features plus inherent stability over a wide temperature range make the CA3020 and CA3020A extremely useful for a wide variety of applications in military, industrial, and commercial equipment.

The CA3020 and CA3020A are particularly suited for service as class B power amplifiers. The CA3020A can provide a maximum power output of 1 watt from a 12-volt dc supply with a typical power gain of 75 dB . The CA3020 provides 0.5 -watt power output from a 9 -volt supply with the same power gain.

These types are supplied in hermetically sealed TO-5 style 12-lead packages.

## Applications:

- AF power amplifiers for portable and fixed sound and communications systems
- Servo-control amplifiers
- Wide-band linear mixers
- Video power amplifiers
- Transmission-line driver amplifiers (balanced and unbalanced)
E Fan-in and fan-out amplifiers for computer logic circuits
- Lamp-control amplifiers
- Motor-control amplifiers
- Power multivibrators
- Power switches
- Companion Application Note, ICAN-5766, "Application of CA3020 and CA3020A Integrated Circuit Multipurpose Wide-Band Power Amplifiers"

SCHEMATIC DIAGRAM FOR CA3020 AND CA3020A


Figure 1
The resistance values included on the schematic diagram have been supplied as a convenience to assist Equipment Manufacturers in optimizing the selection of "outboard" components of equipment designs. The values shown may vary as much as $\pm 30 \%$.
Harris reserves the right to make any changes in the Resistance Values provided such changes do not adversely affect the published performance characteristics of the device.

## ABSOLUTE-MAXIMUM RATINGS:

DISSIPATION: WITHOUT HEAT SINK
At $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Above $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
. . . . . . . . . . . . . . . . . . . . . . . . . 1 W
derate linearly $6.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

At $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C} . . . . . . . . . . . . . . . . .2 \mathrm{~W}$
At $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ to $\mathrm{T}_{\mathrm{C}}=55^{\circ} \mathrm{C} \ldots . . . .2 \mathrm{~W}$
Above $\mathrm{T}_{\mathrm{C}}=55^{\circ} \mathrm{C} \ldots$ derate linearly $16.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

TEMPERATURE RANGE:
Operating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

## MAXIMUM VOLTAGE RATINGS at $T_{A}=25^{\circ} \mathrm{C}$

The following chart gives the range of voltages which can be applied to the terminals listed vertically with respect to the terminals listed horizontally. For example, the voltage range of the vertical terminal 1 with respect to terminal 12 is 0 to +10 volts. CURRENT RATINGS

TERMINAL No.	1	2	3	4	5	6	7	8	9	10	11	12
1		*	*	*	*	*	*	*	$\begin{aligned} & \Delta \\ & -10 /-12 \end{aligned}$	+3   Note 1	*	${ }_{+10}$
2			*	*	*	*	*	*	*	*	*	+2 +2
3				*	*	*	*	*	*	*	*	+2 -2
4					+18/+25	*	*	*	*	*	*	$\begin{gathered} \Delta \\ +18 /+25 \\ 0 \end{gathered}$
5						*	*	*	*	*	*	$\begin{gathered} +3 \\ \text { Note } 2 \end{gathered}$
6							$\begin{gathered} 48 \\ -18 / 25 \end{gathered}$	*	*	*	*	$\begin{gathered} +3 \\ \text { Note } 2 \end{gathered}$
7								*	*	*	*	$\begin{gathered} 4 \\ +18 /+25 \\ 0 \end{gathered}$
8									Note 3	*	*	$\underset{0}{\text { Note } 3}$
9										${ }_{0}^{+10}$	$\begin{gathered} \text { Note } 1 \\ 0 \end{gathered}$	$+10 /+12$
10											*	${ }_{0}^{+10}$
11												*
12												$\begin{aligned} & \text { REF. } \\ & \text { SUB } \\ & \text { STRATE } \end{aligned}$


TERMINAL No.	${ }_{\text {I }}^{\mathrm{INA}}$	${ }_{\text {I }}^{\text {ma }}$ ¢
1	-	20
2	-	-
3	-	-
4	300	-
5	$\cdot$	300
6	-	300
7	300	-
8	-	-
9	20	-
10	1	-
11	20	-
12	-	-

Note 1: This voltage is established by the maximum current rating.
Note 2: The emitters of $Q_{6}$ and $Q_{7}$ may be returned to a negative voltage supply through emitter resistors. Current into terminal No. 9 should not be exceeded and the total device dissipation should not be exceeded.
Note 3: Terminal No. 8 may be connected to terminals Nos.9, 11 , or 12 .

* Voltages are not normally applied between these terminals. Voltages appearing between these terminals will be safe if the specified limits between all other terminals are not exceeded.
$\triangle$ Higher value is for CA3020A.

ELECTRICAL CHARACTERISTICS AT TA $=25^{\circ} \mathrm{C}$

CHARACTERISTICS	SYMBOLS	TEST CONDITIONS			$\begin{aligned} & \text { LIMI TS } \\ & \text { CA3 } 020 \end{aligned}$			$\begin{gathered} \text { LIMITS } \\ \text { CA3020A } \end{gathered}$			UNITS
		CIRCUIT AND PROCEDURE	$\begin{gathered} \text { DC } \\ \text { SUPPLY } \\ \text { VOLTAGE } \end{gathered}$								
		FIG.	$\mathrm{V}_{\text {CCl }}$	$\mathrm{V}_{\text {CC2 }}$	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
Collector-to-Emitter Breakdown Voltage, $Q_{6} \& Q_{7}$ at 10 mA	$V_{\text {(BR)CER }}$	2 a	-	-	18	-	-	25	-		v
Collector-to-Emitter   Breakdown Voltage, $\mathrm{Q}_{1}$   at 0.1 mA	$V_{(B R) C E O}$	-	-	-	10	-	-	10	-	-	v
Idle Currents, $Q_{6}$ \& $Q_{7}$	$\begin{aligned} & \mathrm{I}_{4} \text { IDLE } \\ & \mathrm{I}_{7} \text { IDLE } \\ & \hline \end{aligned}$	8	9.0	2.0	-	5.5	-	-	5.5	-	mA
Peak Output Curients, $Q_{6} \& Q_{7}$	$\begin{aligned} & \mathrm{I}_{4} \mathrm{PK} \\ & \mathrm{I}_{7} \mathrm{PK} \end{aligned}$	8	9.0	2.0	140	-	-	180	-	-	mA
$\begin{aligned} & \text { Cutoff Currents, } \\ & Q_{6} \& Q_{7} \\ & \hline \end{aligned}$	$\begin{aligned} & 1_{4} \text { CUTOFF } \\ & 17 \text { CUTOFF } \end{aligned}$	8	9.0	2.0	-	.	1.0	-	-	1.0	mA
Differetial Amplifier Current Drain	ICCl	8	9.0	9.0	6.3	9.4	12.5	6.3	9.4	12.5	mA
Total Current Drain	$\begin{aligned} & \mathrm{ICC1}+ \\ & \mathrm{ICC2} \\ & \hline \end{aligned}$	8	9.0	9.0	8.0	21.5	35.0	14.0	21.5	30.0	mA
Differential Amplifier Input Terminal Voltages	$\begin{aligned} & v_{2} \\ & v_{3} \end{aligned}$	8	9.0	2.0	.	1.11	-	-	1.11	-	V
Regulator Terminal Voltage	$\mathrm{V}_{11}$	8	9.0	2.0	.	2.35	-	-	2.35	.	V
Q, Cutoff (Leakage) Currents: Collector-to-Emitter	ICEO		10.0	-	-	-	100	-	-	100	
Emitter-to-Base	IEBO	-	3.0	-	-	-	0.1	-	-	0.1	$\mu \mathrm{A}$
Collector-to-Base	${ }^{\text {ICBO }}$		3.0	-	-	-	0.1	-	-	0.1	
Forward Current Transfer Ratio, $Q_{1}$ at 3 mA	$\mathrm{h}_{\text {FE1 }}$	-	6.0	${ }^{-}$	30	75	-	30	75		
Bandwidth at -3 dB Point	BW	9	6.0	6.0	-	8	-	-	8	-	MHz
			6.0	6.0	200	$300^{\text {a }}$	-	200	$300^{\text {a }}$	-	
Maximum Power Output	$\mathrm{P}_{\text {O(MAX })}$	10	9.0	9.0	400	$550^{\text {a }}$	-	400	$550^{2}$	-	mW
			9.0	12.0	-	-	-	800	$1000^{\text {b }}$	-	
Sensitivity for $\mathrm{P}_{\text {OUT }}=400 \mathrm{~mW}$	$\mathrm{e}_{\text {IN }}$	10	9.0	9.0	-	$35^{\text {a }}$	55	-	$\cdot$	-	mV
Sensitivity for P PUT $=800 \mathrm{~mW}$	${ }_{\text {e }}^{\text {IN }}$	10	9.0	12.0	-	-	-	-	$50^{\text {b }}$	100	mV
Input Resistance-..- Terminal 3 to Ground	RIN3	11	6.0	6.0	-	1000	-	.	1000	-	$\Omega$
Junction-to-Case Thermal Resistance	$\theta_{\mathrm{JJC}}$	-	-	-	-	-	60	.	-	60	${ }^{\circ} \mathrm{C} / \mathrm{W}$

a $R_{C C}=130 \Omega$
b $R_{C C}=200 \Omega$

a. Collector-to-Emitter Breakdown Voltage ( $Q_{6}$ and $Q_{7}$ ) Circuit

b. Typical Audio Amplifier Circuit Utilizing the CA3020 or CA3020A As An Audio Preamplifier and Class B Power Amplifier

Fig. 2

## TYPICAL PERFORMANCE DATA*

An External Radiator is Recommended for High Ambient Temperature Operation

CHARACTERISTICS	SYMB0LS	CA3020	CA3020A	UNITS
Power Supply Voltage	$\mathrm{V}_{\mathrm{CC}_{1}}$	9.0	9.0	v/1
	$\mathrm{V}_{\mathrm{CC}_{2}}$	9.0	12.0	
Zero Signal Current $\frac{\text { Diff. Ampl. }}{\text { Output Ampl. }}$	${ }^{1} \mathrm{CCl}_{1}$	15	15	mA
	$\mathrm{ICC}_{2}$	24	24	
Maximum Signal Current $\frac{\text { Diff. Ampl. }}{\text { Output Ampl. }}$	${ }^{1} \mathrm{CC}_{1}$	16	16.6	mA
	${ }^{\mathrm{I}} \mathrm{CC}_{2}$	125	140	
Maximum Power Output at THD $=10 \%$	Po	550	1000	mW
Sensitivity	$\mathrm{e}_{\text {IN }}$	35	45	mV
Power Gain	$\mathrm{G}_{\mathrm{P}}$	75	75	dB
Input Resistance	$\mathrm{R}_{\mathrm{IN}}$	55	55	$\mathrm{k} \Omega$
Efficiency	$\eta$	45	55	\%
Signal-to-Noise Ratio	$S / N$	70	66	dB
THD at 150 mW level		3.1	3.3	\%
Test Signal Frequency from $600 \Omega$ Generator		1000	1000	Hz
Equivalent Collector-to-Collector Load Resistance	$\mathrm{R}_{\mathrm{CC}}$	130	200	$\Omega$

[^17]

a. Test Setup


Fig. 5

a. Test Setup


DIFFERENTIAL AMPLIFIER SUPPLY VOLTS ( $V_{C C I}$ ) 92CS-15229
b. Differential Amplifier Characteristics

c. Output Amplifier Characteristics

Fig. 6

b. Differential Amplifier Characteristics

Fig. 7

c. Output Amplifier Characteristics

## STATIC CURRENT AND VOLTAGE TEST CIRCUIT



CURRENTS OR   VOLTAGES	S1	S2
I $_{4 \text {-IDLE }}$	open	open
I $_{7 \text {-IDLE }}$	open	open
I $_{4-\text { PEAK }}$	open	close
I $_{7 \text {-PEAK }}$	close	open
I $_{4-\text { CUTOFF }}$	close	open
I $_{7 \text {-CUTOFF }}$	open	close


CURRENTS OR   VOLTAGES	S1	S2
$I_{\text {CC1 }}$	open	open
$I_{\text {CC2 }}$	open	open
$V_{2}$	open	open
$V_{3}$	open	open
$V_{11}$	open	open

Fig. 8

MEASUREMENT OF BANDWIDTH AT -3 dB POINTS


## PROCEDURES:

1. Apply desired value of $\mathrm{V}_{\mathrm{CC}}$ and $\mathrm{V}_{\mathrm{CC}}$
2. Apply 1 kHz input signal and adjust for $\mathrm{e}_{\mathrm{IN}}=$ 5 mV ( rms )
3. Record the resulting value of e OUT in dB (reference value)
4. Vary input-signal frequency, keeping $e_{\text {iN }}$ constant at 5 mV , and record frequencies above and below 1 kHz at which e OUT decreases 3 dB below reference value.
5. Record bandwidth as frequency range between -3 dB points.

Fig. 9
MEASUREMENTS OF ZERO-SIGNAL DC CURRENT DRAIN, MAXIMUM-SIGNAL DC CURRENT DRAIN MAXIMUM POWER OUTPUT, CIRCUIT EFFICIENCY, SENSITIVITY, AND TRANSDUCER POWER GAIN


## PROCEDURES:

Zero-Signal DC Current Drain

1. Apply desired Value of $\mathrm{V}_{\mathrm{CC}_{1}}$ and $\mathrm{V}_{\mathrm{CC}_{2}}$ and reduce 2. Record resulting values of $I_{C C}$
as Zero-Signal DC Current Drain and $I_{C C}$ in $m A$

Fig. 10

Maximum-Signal DC Current Drain, Maximum Power Output, Circuit Efficiency, Sensitivity, and Transducer Power Gain

1. Apply desired value of $\mathrm{V}_{\mathrm{CC}_{1}}$ and $\mathrm{V}_{\mathrm{CC}_{2}}$ and adjust ${ }^{e}$ IN to the value at which the Total Harmonic Distortion in the output of the amplifier $=10 \%$
2. Record resulting value of ${ }^{\mathrm{CCC}_{1}}$ and $\mathrm{I}_{\mathrm{CC}_{2}}$ in mA as Maximum-Signal DC Current Drain
3. Determine resulting amplifier power output in watts and record as Maximum Power Output (POUT)
4. Calculate Circuit Efficiency ( $\eta$ ) in \% as follows:

$$
\eta=100 \frac{\mathrm{P}_{\mathrm{OUT}}}{\mathrm{~V}_{\mathrm{CC}_{1}} \mathrm{I}_{\mathrm{CC}_{1}}+\mathrm{V}_{\mathrm{CC}_{2}} \mathrm{I}_{\mathrm{CC}_{2}}}
$$

where $P_{\text {OUT }}$ is in watts, $V_{C_{C}}$ and $V_{C C}$ are in volts, and $I_{C C}$ and $I_{C C}$ are ${ }^{1}$ in amperes.
5. Record value of ${ }^{1} e_{\text {IN }}$ in $m V^{2}$ (rms) required in Step 1 as Sensitivity ( $\mathrm{e}_{\mathrm{IN}}$ )
6. Calculate Transducer Power Gain ( $\mathrm{G}_{\mathrm{p}}$ ) in dB as follows:

$$
G_{p}=10 \log _{10} \frac{P_{\mathrm{OUT}}}{P_{\mathrm{IN}}}
$$

where $P_{I N}($ in mW$)=\frac{\mathrm{e} \mathrm{IN}^{2}}{3000+\mathrm{R}_{\mathrm{IN}_{(10)}}}$

MEASUREMENT OF INPUT RESISTANCE


MEASUREMENT OF SIGNAL-TO-NOISE RATIO
AND TOTAL HARMONIC DISTORTION


## PROCEDURES:

Signal-to-Noise Ratio

1. Close $S_{1}$ and $S_{3}$; open $S_{2}$
2. Apply desired values of $\mathrm{V}_{\mathrm{CC}}$, and $\mathrm{V}_{\mathrm{CC}}$
3. Adjust $e_{\text {IN }}$ for an amplifier output of 150 mW and record resulting value of $E_{\text {OUT }}$ in $d B$ as ${ }^{e}$ OUT ${ }_{1}$ (reference vaiue)
4. Open $S_{1}$ and record resulting value of $e_{\mathrm{OUT}}$ in dB as
5. Signal-to-Noise Ratio $(\mathrm{S} / \mathrm{N})=201 \mathrm{og}_{10} \mathrm{e}^{\mathrm{e}^{\mathrm{OUT}} \mathrm{OUT}_{1}} \mathrm{e}_{\mathrm{e}^{\mathrm{OUT}}}^{2}$.

Total Harmonic Distortion

1. Close $S_{1}$ and $S_{2}$; open $S_{3}$
2. Apply desired values of $\mathrm{V}_{\mathrm{CC}}$ and $\mathrm{V}_{\mathrm{CC}_{2}}$
3. Adjust $e_{\text {IN }}$ for desired level amplifier output power
4. Record Total Harmonic Distortion (THD) in \%

Fig. 12

# Operational Transconcustance Amplifier Arrays 

## Features:

- Low power consumption - as low as 100 mW per amplifier
- Independent biasing for each amplifier
- High forward transconductance
- Programmable range of input characteristics
- Low input bias and input offset current
- High input and output impedance
- No effect on device under output short-circuit conditions
- Zener diode bias regulator


## Applications:

a For low power conventional operational amplifier applications

- Active filters
- Comparators
- Gyrators
- Mixers
- Modulators
- Multiplexers
- Multipliers
- Strobing and gating functions
- Sample and hold functions

The CA3060 monolithic integrated circuit consists of an array of three independent Operational Transconductance Amplifiers.* This type of amplifier has the generic characteristics of an operational voltage amplifier with the exception that the forward gain characteristic is best described by transconductance rather than voltage gain (open-loop voltage gain is the product of the transconductance and the load resistance, $\mathrm{gm}_{\mathrm{RL}}$ ). When operated into a suitable load resistor and with provisions for feedback, these amplifiers are well suited for a wide variety of operational-amplifier and related applications. In addition, the extremely high output impedance makes these types particularly well suited for service in active filter.

The three amplifiers in the CA3060 are identical push-pull Class A types which can be independently biased to achieve a wide range of characteristics for specific application. The electrical characteristics of each amplifier are a function of the amplifier bias current $\left(I_{\mathrm{ABC}}\right)$. This feature offers the system designer maximum flexibility with regard to output current capability, power consumption, slew rate, input resistance. input bias current, and input offset current. The linear variation of the parameters with respect to bias and the ability to maintain a constant dc level between input and output of each amplifier also makes the CA3060 suitable for a variety of non-linear applications such as mixers, multipliers, and modulators.

In addition, the CA3060 incorporates a unique Zener diode regulator system that permits current regulation below supply voltages normally associated with such systems.

The CA3060 is supplied in a 16 -lead dual-in-line plastic package ( E suffix) and in chip form ( H suffix). This device is operational from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
*Generic applications of the OTA are described in ICAN-6668. For improved input operating ranges, refer to CA3080 and CA3280 data bulletins (File Nos. 475 and 1174) and application notes ICAN-6668 and ICAN-6818.


Fig. 1 - Functional block diagram for the CA3060.

ELECTRICAL CHARACTERISTICS at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}+=\mathbf{1 5} \mathrm{V}, \mathrm{V}-=-15 \mathrm{~V}$

CHARACTERISTIC	SYMBOL	TYPICAL CHARACTERISTICS CURVE Fig.	LIMITS					UNITS
			Amplifier Bias Current					
			$\mathrm{I}_{\text {ABC }}=1 \mathrm{~A}$	$\mathrm{I}_{\mathrm{ABC}}=10 \mathrm{~A}$	$\mathrm{I}_{\text {ABC }}$	= 100	$\mu \mathbf{A}$	
			TYP.	TYP.	MIN.	TYP.	MAX.	
STATIC CHARACTERISTICS								
Input Offset Voltage	V 10	3	1	1	-	1	5	mV
Input Offset Current	110	4	3	30	-	250	1000	nA
Input Bias Current	$\mathrm{I}_{1}$	5a,b	33	300	-	2500	5000	nA
Peak Output Current	IOM	$6 \mathrm{a}, \mathrm{b}$	2.3	26	150	240	-	$\mu \mathrm{A}$
Peak Output Voltage:		7						V
Positive	$\mathrm{VOM}^{+}$		13.6	13.6	12	13.6	-	
Negative	$\mathrm{V}_{\text {OM }}{ }^{-}$		14.7	14.7	12	14.7	-	
Amplifier Supply								
Current (each amplifier)	$I_{A}$	$8 \mathrm{a}, \mathrm{b}$	8.5	85	-	850	1200	$\mu \mathrm{A}$
Power Consumption (each amplifier)	P	-	0.26	2.6	-	26	36	mW
Input Offset-Voltage   Sensitivity:   Positive	$\Delta V^{10} / \Delta \mathrm{V}+$	-	1.5	2	-	2	150	$u \mathrm{~V} / \mathrm{V}$
Negative	$\Delta V^{10} / \Delta V-$		20	20	-	30	150	
Amplifier Bias Voltage*	$V_{\text {ABC }}$	9	0.54	0.60	-	0.66	-	V

DYNAMIC CHARACTERISTICS (at $1 \mathbf{k H z}$ unless specified otherwise)

Forward Transconductance (large signal)	921	10a,b	1.55	18			30	102	-	mmho
Common-Mode Rejection Ratio	CMRR	-	110	110			70	90	-	dB
Common-Mode Input Voltage Range	$V_{\text {ICR }}$	-	$\begin{aligned} & +12 \text { to }-12 \mathrm{~min} . \\ & +13 \text { to }-14 \text { typ. } \end{aligned}$	$\begin{aligned} & +12 \text { to }-12 \mathrm{~min} . \\ & +13 \text { to }-14 \text { typ. } \end{aligned}$			$\begin{aligned} & +12 \text { to }-12 \mathrm{~min} . \\ & +13 \text { to }-14 \text { typ. } \end{aligned}$			V
Slew Rate (Test ckt., Fig. 13)	SR	-	0.1	1			-	*	-	$\mathrm{V} / \mu \mathrm{s}$
Open-Loop ( $\mathrm{g}_{21}$ ) Bandwidth	$B W_{O L}$	11	20	45			-	110	-	kHz
Input Impedance   Components:   Resistance	$\mathrm{R}_{1}$	12	1600	170			10	20	-	$\mathrm{k} \Omega$
Capacitance at 1 MHz	$\mathrm{C}_{1}$	-	2.7	2.7			-	2.7	-	pF
Output Impedance   Components:   Resistance	Ro	14	200	20			-	2	-	$\mathrm{M} \Omega$
Capacitance at 1 MHz	$\mathrm{C}_{0}$	-	4.5	4.5			-	4.5	pF	
ZENER BIAS REGULATOR CHARACTERISTICS (at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}_{2}=0.1 \mathrm{~mA}$ )										
Voltage	$V_{z}$	15	Temp. Coeff. = $3 \mathrm{mV} /{ }^{\circ} \mathrm{C}$	MIN.	TYP.   6.7	7.9				V
Impedance	$\mathrm{Z}_{z}$	-			200	300				

*Temperature-Coefficient; $-2.2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ (at $\mathrm{V}_{\mathrm{ABC}}=0.54 \mathrm{~V}, \mathrm{I}_{\mathrm{ABC}}=1 \mu \mathrm{~A} ;-2.1 \mathrm{mV} /{ }^{\circ} \mathrm{C}\left(\right.$ at $\left.\mathrm{V}_{\mathrm{ABC}}=0.060 \mathrm{~V}, \mathrm{I}_{\mathrm{ABC}}=10 \mu \mathrm{~A}\right) ;-1.9 \mathrm{mV} /{ }^{\circ} \mathrm{C}\left(\right.$ at V ABC $=0.66 \mathrm{~V}, \mathrm{I}_{\mathrm{ABC}}=$ $100 \mu \mathrm{~A}$ )

- Conditions for Input Offset Voltage and Supply Sensitivity
(a) Bias current derived from the regulator with an appropriate resistor connected from terminal No. 1 to the bias terminal on the amplifier under test $V+$ is reduced to 13 volts for $V+$ sensitivity
$V$ - is reduced to -13 volts for $V$ - sensitivity
(b) $\mathrm{V}+$ sensitivity in $\mu \mathrm{V} / \mathrm{V}=\frac{\text { Voffset }- \text { Voffset for }+13 \mathrm{~V} \text { and }-15 \mathrm{~V} \text { supplies }}{1 \text { volt }}$
$V$-sensitivity in $\mu \mathrm{V} / \mathrm{V}=\frac{\text { Voffset }-V \text { offset for }+13 \mathrm{~V} \text { and }-15 \mathrm{~V} \text { supplies }}{1 \text { Volt }}$

MAXIMUM RATINGS, Absolute-Maximum Values at $T_{A}=25^{\circ} \mathrm{C}$ DC SUPPLY VOLTAGE (BETWEEN V + and V- TERMINALS)	$36 \mathrm{~V}( \pm 18 \mathrm{~V})$
DIFFERENTIAL INPUT VOLTAGE (EACH AMPLIFIER)	$\pm 5 \mathrm{~V}$
DC INPUT VOLTAGE	$\mathrm{V}+$ to V -
INPUT SIGNAL CURRENT (EACH AMPLIFIER)	$\pm 1 \mathrm{~mA}$
AMPLIFIER BIAS CURRENT (EACH AMPLIFIER)	2 mA
Bias Regulator Input Current	$-5 \mathrm{~mA}$
OUTPUT SHORT-CIRCUIT DURATION*	No limitation
DEVICE DISSIPATION	
Up to $T_{A}=75^{\circ} \mathrm{C}$	490 mW
Above $\mathrm{TA}^{\prime} 75^{\circ} \mathrm{C}$	Derate linearly $6.67 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
TEMPERATURE RANGE	
Operating	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage	-65 to $+150^{\circ} \mathrm{C}$
LEAD TEMPERATURE (During Soldering)	
At distance $1 / 16 \pm 1 / 32 \mathrm{in}$. ( $1.59 \pm 0.79 \mathrm{~mm}$ ) from case for	$+300^{\circ} \mathrm{C}$

*Short circuit may be applied to ground or to either supply

$\triangle$ INVERTING INPUT OF AMPLIFIERS 1, 2, AND 3 IS ON TERMINAL Nos. 13, 12 AND 4, RESPECTIVELY
O NON-INVERTING INPUT OF AMPLIFIERS 1, 2, AND 3 IS TERMINAL Nos. 14, 11, AND 5, RESPECTIVELY

* OUTPUT OF AMPLIFIERS 1, 2, AND 3 IS ON TERMINAL Nos. 16, 9 , AND 7, RESPECTIVELY
- AMPLIFIER BIAS CURRENT OF AMPLIFIERS 1, 2, AND 3 IS ON TERMINAL Nos. 15, 10, AND 6, RESPECTIVELY

Fig. 2 - Simplified schematic diagram showing bias regulator and one operational transconductance amplifier for the CA3060.


Fig. 3-Input offset voltage vs. amplifier bias current.


Fig.4-Input offset current vs. amplifier bias current.


Fig.5a-Input bias current vs. amplifier bias current


Fig.6a-Peak output current vs. amplifier bias current.


Fig.7-Peak output voltage vs. amplifier bias current.


Fig.5b-Input bias current vs. ambient temperature.


Fig.6b-Peak output current vs. ambient temperature.


Fig.8a-Amplifier supply current (each amplifier) vs. amplifier bias current


Fig.8b-Amplifier supply current leach amplifier) vs. ambient temperature.


Fig.10a-Forward transconductance vs. amplifier bias current.


Fig.11-Forward transconductance vs. frequency.


Fig.9-Amplifier bias voltage vs. amplifier bias current.


Fig. 10b-Forward transconductance vs. ambient temperature.


Fig. 12-Input resistance vs. amplifier bias current.


92C5-15855R1
$V_{Z}$ is measured between terminals 1 and 8.
$V_{A B C}$ is measured between terminals 15 and 8.
$R_{Z}=\frac{\left[\left(V^{+}\right) \cdot\left(V^{-}\right) \cdot 0.7\right]}{I_{2}}, R_{A B C}=\frac{V_{Z} \cdot V_{A B C}}{l_{A B C}}$
Supply Voltage: for both $\pm 6 \mathrm{~V}$ and $\pm 15 \mathrm{~V}$.


Fig. 13-Slew rate test circuit for amplifier No. I of CA3060.


Fig. 14-Output resistance vs. amplifier bias current.


Fig. 15-Bias regulator voltage vs. bias regulator current.

## OPERATING CONSIDERATIONS

The CA3060 consists of three operational amplifiers similar in form and application to conventional operational amplifiers but sufficiently different from the standard operational amplifier (op-amp) to justify some explanation of their characteristics. The amplifiers incorporated in the CA3060 are best described by the term Operational Transconductance Amplifier (OTA). The characteristics of an ideal OTA are similar to those of an ideal op-amp except that the OTA has an extremely high output impedance. Because of this inherent characteristic the output signal is best defined in terms of current which is proportional to the difference between the voltages of the two input terminals. Thus, the transfer characteristic is best described in terms of transconductance rather than voltage gain. Other than the difference given above, the characteristics tabulated on pages 3 and 4 of this data bulletin are similar to those of any typical op-amp.

The OTA circuitry incorporated in the CA3060 (See Fig. 16) provides the equipment designer with a wider variety of
circuit arrangements than does the standard op-amp; because as the curves in the data bulletin indicate, the user may select the optimum circuit conditions for a specific application simply by varying the bias conditions of each amplifier. If low power consumption, low bias, and low offset current, or high input impedance are primary design requirements, then low current operating conditions may be selected. On the other hand, if operation into a moderate load impedance is the primary consideration, then higher levels of bias may be used.

## Bias Considerations for Op-Amp Applications

The operational transconductance amplifiers allow the circuit designer to select and control the operating conditions of the circuit merely by the adjustment of the input bias current ${ }^{\prime} \mathrm{ABC}$. This enables the designer to have complete control over transconductance, peak output current and total power consumption independent of supply voltage.


In addition, the high output impedance makes these amplifiers ideal for applications where current summing is involved.

The design of a typical operational amplifier circuit (See Fig. 17) would proceed as follows:


Fig. 17-20-dB amplifier using the CA3060.
Circuit Requirements
Closed loop voltage gain $=10(20 \mathrm{~dB})$
Offset voltage adjustable to zero
Current drain as low as possible
Supply voltage $= \pm 6 \mathrm{~V}$
Maximum input voltage $= \pm 50 \mathrm{mV}$
Input resistance $=20 \mathrm{k} \Omega$
Load resistance $=20 \mathrm{k} \Omega$
Device: CA3060

## Calculation

1. Required transconductance $g_{21}$.

Assume that the open loop gain $\mathrm{A}_{\mathrm{OL}}$ must be at least ten times the closed loop gain. Therefore, the forward transconductance required is given by

$$
\begin{aligned}
g_{21} & =A_{O L} / R_{\mathrm{L}} \\
& =100 / 18 \mathrm{k} \Omega \\
& \cong 5.5 \mathrm{mmho}
\end{aligned}
$$

( $R_{L}=20 \mathrm{k} \Omega$ in parallel with $200 \mathrm{k} \Omega$

$$
\cong 18 \mathrm{k} \Omega)
$$

2. Selection of suitable amplifier bias current.

The amplifier bias current is selected from the minimum value curve of transconductance ( Fig .10 a ) to assure that the amplifier will provide sufficient gain. For the required $\mathrm{g}_{21}$ of 5.5 mmho an amplifier bias current $\mathrm{I}_{\mathrm{ABC}}$ of $20 \mu \mathrm{~A}$ is suitable.
3. Determination of Output Swing Capability.

For a loop gain of 10 the output swing is $\pm 0.5 \mathrm{~V}$ and the peak load current $25 \mu \mathrm{~A}$. However, the amplifier must also supply the necessary current through the feedback resistor and for $\mathrm{R}_{\mathrm{S}}=20 \mathrm{k} \Omega$ than $\mathrm{R}_{\mathrm{F}}=200 \mathrm{k} \Omega$ if $\mathrm{A}_{\mathrm{OL}}=$ 10. Therefore, the feedback loading $=0.5 / 200 \mathrm{k} \Omega=2.5 \mu \mathrm{~A}$.

The total amplifier current output requirements are, therefore, $\pm 27.5 \mu \mathrm{~A}$. Referring to the data given in Fig. 6a we see that for an amplifier bias current of $20 \mu \mathrm{~A}$ the amplifier output current is $\pm 40 \mu \mathrm{~A}$. This is obviously adequate and it is not necessary to change the amplifier bias current ${ }^{1} \mathrm{ABC}$.
4. Calculation of bias resistance.

For minimum supply current drain the amplifier bias current ${ }^{\prime} A B C$ should be fed directly from the supplies and not from the bias regulator. The value of the resistor $\mathrm{R}_{A B C}$ may be directly calculated using Ohm's law.

$$
\begin{aligned}
R_{A B C} & =\frac{V_{S U P}-V_{A B C}}{I_{A B C}} \\
R_{A B C} & =\frac{12 \cdot 0.63}{20 \times 10^{-6}} \\
& =568.5 \mathrm{k} \Omega \text { or } \cong 560 \mathrm{k} \Omega
\end{aligned}
$$

5. Calculation of offset adjustment circuit. In order to reduce the loading effect of the offset adjustment circuit on the power supply, the offset control should be arranged to provide the necessary offset current. The source resistance of the non-inverting input is made equal to the source resistance of the inverting input.

$$
\text { i.e. } \frac{20 \times 200 \times 10^{6} \text { ohms }}{220 \times 10^{3}} \cong 18 \mathrm{k} \Omega
$$

Because the maximum offset voltage is 5 mV and an additional increment due to the offset current (Fig. 4) flowing through the source resistance
(i.e. $200 \times 10^{-9} \times 18 \times 10^{3}$ volts), therefore,
the Offset Voltage Range $=5 \mathrm{mV}+3.6 \mathrm{mV}= \pm 8.6 \mathrm{mV}$
The current necessary to provide this offset is

$$
\frac{8.6 \times 10^{-3}}{18 \times 10^{3}} \text { or } 0.48 \mu \mathrm{~A}
$$

With a supply voltage of $\pm 6 \mathrm{~V}$, this current can be provided by a $10 \mathrm{M} \Omega$ resistor. However, the stability of such a resistor is often questionable and a more realistic value of $2.2 \mathrm{M} \Omega$ was used in the final circuit.

## OTHER CONSIDERATIONS

## - Capacitance Effects

The CA3060 is designed to operate at such low power levels that high impedance circuits must be employed. In designing such circuits, particularly feedback amplifiers, stray circuit capacitance must always be considered because of its adverse effect on frequency response and stability. For example a $10-\mathrm{k} \Omega$ load with a stray capacitance of 15 pF has a time constant of 1 MHz . Fig. 18 illustrates how a $10-\mathrm{k} \Omega 15-\mathrm{pF}$ load modifies the frequency characteristic.


Fig.18-Effect of capacitive loading on frequency response.

Capacitive loading also has an effect on slew rate; because the peak output current is established by the amplifier bias current, ${ }^{\text {ABC }}$ (see Fig. 6a), the maximum slew rate is limited to the maximum rate at which the capacitance can be charged by the IOM. Therefore,

$$
\mathrm{SR}=\mathrm{dV} / \mathrm{dt}=\mathrm{I}_{\mathrm{OM}} / \mathrm{C}_{\mathrm{L}}
$$

where $C_{L}$ is the total load capacitance including strays. This relationship is shown graphically in Fig. 19. When measuring slew rate for this data bulletin, care was taken to keep the total capacitive loading to 13 pF .

## Phase Compensation

In many applications phase compensation will not be required for the amplifiers of the CA3060. When needed, compensation may easily be accomplished by a simple RC network at the input of the amplifier as shown in Fig. 13. The values given in Fig. 13 provide stable operation for the critical unity gain condition, assuming that capacitive loading on the output is 13 pF or less. Input phase compensation is recommended in order to maintain the highest possible slew rate.
In applications such as integrators, two OTAs may be cascaded to improve current gain. Compensation is best accomplished in this case with a shunt capacitor at the output of the first amplifier. The high gain following compensation assures a high slew rate.

## APPLICATIONS

Having determined the operating points of the CA3060 amplifiers, they can now function in the same manner as conventional op-amps, and thus, are well suited for most op-amp applications, including inverting and non-inverting amplifiers, integrators, differentiators, summing amplifiers etc.

## TRI-LEVEL COMPARATOR

Tri-level comparator circuits are an ideal application for the CA3060 since it contains the requisite three amplifiers. A tri-level comparator has three adjustable limits. If either the upper or lower limit is exceeded, the appropriate output is activated until the input signal returns to a selected intermediate limit. Tri-level comparators are particularly suited to many industrial control applications.


Fig. 19-Effect of load capacitance on slew rate.

## Circuit Description

Fig. 20 shows the block diagram of a tri-level comparator using the CA3060. Two of the three amplifiers are used to compare the input signal with the upper-limit and lower-


Fig.20-Functional block diagram of a tri-level comparator.
limit reference voltages. The third amplifier is used to compare the input signal with a selected value of inter-mediate-limit reference voltage. By appropriate selection or resistance ratios this intermediate-limit may be set to any voltage between the upper-limit and lower-limit values. The output of the upper-limit and lower-limit comparator sets the corresponding upper or lower-limit flip-flop. The activated flip-flop retains its state until the third comparator (inter-mediate-limit) in the CA3060 initiates a reset function, thereby indicating that the signal voltage has returned to the intermediate-limit selected. The flip-flops employ two CA3086 transistor-array IC's, with circuitry to provide separate "SET" and "POSITIVE OUTPUT" terminals.

The circuit diagram of a tri-level comparator appears in Fig. 21. Power is provided for the CA3060 via terminals 3 and 8 by $\pm 6$-volt supplies and the built-in regulator provides amplifier-bias-current ( ${ }^{\mathrm{ABC}}$ ) to the three amplifiers via terminal 1. Lower-limit and upper-limit reference voltages are selected by appropriate adjustment of potentiometers R1 and R2, respectively. When resistors R3 and R4 are equal in value (as shown), the intermediate-limit reference voltage is automatically established at a value midway between the lower-limit and upper-limit values. Appropriate variation of resistors R3 and R4 permits selection of other values of intermediate-limit voltages. Input signal ( $\mathrm{E}_{\mathrm{S}}$ ) is applied to the three comparators via terminals 5,12 , and 14 . The "SET" output lines trigger the appropriate flip-flop whenever the input signal reaches a limit value. When the input signal returns to an intermediate-value, the common flip-flop "RESET" line is energized. The loads in the circuits, shown in Fig. 21 are $5-\mathrm{V}, 25-\mathrm{mA}$ lamps.

## Active Filters - Using the CA3060 as a Gyrator

The high output impedance of the OTAs makes the CA3060 ideally suited for use as a gyrator in active filter applications. Fig. 22 shows two OTAs of the CA3060 connected as a gyrator in an active filter circuit. The OTAs in this circuit can make a $3-\mu \mathrm{F}$ capacitor function as a floating 10 -kilohenry inductor across Terminals A and B . The measured Q of 13 (at a frequency of 1 Hz ) of this inductor compares favorably with a calculated Q of 16 . The 20 -kilohm to 2 -megohm attenuators in this circuit extend the dynamic range of the OTA by a factor of 100 . The 100 -kilohm potentiometer, across $\mathrm{V}+$ and $\mathrm{V}^{-}$, tunes the inductor by varying the $\mathrm{g}_{21}$ of the OTAs, thereby changing the gyration resistance.


Fig.21-Tri-level comparator circuit.


Fig.22-Two operational transconductance amplifiers of the CA3060 connected as a gyrator in an active filter circuit.


RESISTANCE VALUES ARE IN OHM
92CS-19610 RI
Fig.23-Three-channel multiplexer.

## THREE CHANNEL MULTIPLEXER

Fig. 23 shows a schematic of a three channel multiplexer using a single CA3060 and a 3 N153 MOS/FET as a buffer and power amplifier.

When the CA3060 is connected as a high-input impedance voltage follower, and strobe "ON," each amplifier is activated and the output swings to the level of the input of that amplifier. The cascade arrangement of each CA3060 amplifier with the MOS/FET provides an open loop voltage gain in excess of 100 dB , thus assuring excellent accuracy in the voltage follower mode with $100 \%$ feedback.

Operation at $\pm 6$ volts is also possible with several minor changes. First, the resistance in series with amplifier bias
current ( ${ }^{\prime} \mathrm{ABC}$ ) terminal of each amplifier should be decreased to maintain $100 \mu \mathrm{~A}$ of strobe-"ON" current at this lower supply voltage. Second, the drain resistance for the MOS/FET should be decreased to maintain the same value of source current. The low cost dual-gate protected MOS/FET, RCA-40841, may be used when operating at the low supply voltage.
The phase compensation network consists of a single $390 \Omega$ resistor and a $1000-\mathrm{pF}$ capacitor, located at the interface of the CA3060 output and the MOS/FET gate. The bandwidth of the system is 1.5 MHz and the slew rate is $0.3 \mathrm{volts} / \mu \mathrm{sec}$. The system slew rate is directly proportional to the value of the phase compensation capacitor. Thus, with higher gain settings where lower values of phase compensation capacitors are possible, the slew rate is proportionally increased.

## NON LINEAR APPLICATIONS

AM Modulator (Two-Quadrant Multiplier)
Fig. 24 shows Amplifier No. 3 of the CA3060 used in an AM modulator or 2 -quadrant multiplier circuit. When modulation is applied to the amplifier bias input, Terminal $B$, and the carrier frequency to the differential input, Terminal $A$, the waveform, shown in Fig. 24, is obtained. Fig. 24 is a result of adjusting the input offset control to balance the circuit so that no modulation can occur at the output without a carrier input. The linearity of the modulator is indicated by the solid trace of the superimposed modulating frequency. The maximum depth of modulation is determined by the ratio of the peak input modulating voltage to $\mathrm{V}^{-}$.
The two-quadrant multiplier characteristic of this modulator is easily seen if modulation and carrier are reversed as shown in Fig. 24. The polarity of the output must follow that of the differential input; therefore, the output is positive only during, the positive half cycle of the modulation and negative only in the second half cycle. Note, that both the input and output signals are referenced to ground. The output signal is zero when either the differential input or ${ }^{\prime} \mathrm{ABC}$ are zero.


Fig.24-Two-quadrant multiplier circuit using the CA3060 with associated waveforms.

## Four-Quadrant Multiplier

The CA3060 is also useful as a four-quadrant multiplier. A block diagram of such a multiplier, utilizing Amplifier Nos. 1, 2, and 3, is shown in Fig. 25 and a typical circuit is shown in Fig. 26. The multiplier consists of a single CA3060 and, as in the two-quadrant multiplier, exhibits no level shift between input and output. In Fig. 25, Amplifier No. 1 is connected as an inverting amplifier for the X -input signal. The output current of Amplifier No. 1 is calculated as follows:

$$
\begin{equation*}
{ }^{\prime} O^{(1)}=\left[-V_{X}\right] \quad\left[g_{21}(1)\right] \tag{Eq.3}
\end{equation*}
$$

Ampl. No. 2 is a non-inverting amplifier so that

$$
\begin{equation*}
I_{O}(2)=\left[+V_{X}\right]\left[g_{21}(2)\right] \tag{Eq.4}
\end{equation*}
$$

Because the amplifier output impedances are high, the load current is the sum of the two output currents, for an output voltage

$$
\begin{equation*}
V_{O}=V_{X} R_{L}\left[g_{21}(2)-g_{21}(1)\right] \tag{Eq.5}
\end{equation*}
$$

The transconductance is approximately proportional to the amplifier bias current; therefore, by varying the bias current the $\mathrm{g}_{21}$ is also controlled. Amplifier No. 2 bias current is proportional to the Y -input signal and is expressed as

$$
\begin{equation*}
I_{A B C(2)} \approx \frac{(V-)+V_{Y}}{R_{1}} \tag{Eq.6}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
g_{21}(2) \approx k\left[(V-)+V_{Y}\right] . \tag{Eq.7}
\end{equation*}
$$

Bias for Amplifier No. 1 is derived from the output of Amplifier No. 3 which is connected as a unity-gain inverting amplifier. ${ }^{\prime} \mathrm{ABC}(1)$, therefore, varies inversely with $\mathrm{V}_{\mathrm{Y}}$. And by the same reasoning as above

$$
\begin{equation*}
g_{21}(1) \approx k\left[(V)-V_{Y}\right] \tag{Eq.8}
\end{equation*}
$$

Combining equation 5,7 , and 8 yields:

$$
\begin{aligned}
v_{O} & \approx v_{X} \cdot k \cdot R_{L}\left\{\left[(v-)+v_{Y}\right]-\left[(V-)-v_{Y}\right]\right\} \text { or } \\
v_{O} & \approx 2 k R_{L} v_{X} v_{Y}
\end{aligned}
$$

Fig. 26 shows the actual circuit including all the adjustments associated with differential input and an adjustment for equalizing the gains of Amplifiers No. 1 and No. 2. Adjustment of the circuit is quite simple. With both the $X$ and $Y$ voltages at zero, connect Terminal 10 to Terminal 8. This procedure disables Amplifier No. 2 and permits adjusting the offset voltage of Amplifier No. 1 to zero by means of the $100-\mathrm{k} \Omega$ potentiometer. Next, remove the short between Terminals 10 and 8 and connect Terminal 15 to Terminal 8. This step disables Amplifier No. 1 and permits Amplifier No. 2 to be zeroed with the other potentiometer. With AC signals on both the $X$ and $Y$ input, R3 and R11 are adjusted for symmetrical output signals. Fig. 27 shows the output waveform with the multiplier adjusted. The voltage waveform in Fig. 27a shows suppressed carrier modulation of $1-\mathrm{kHz}$ carrier with a triangular wave.


Fig.25-Four-quadrant multiplier using the CA3060.
Figures 27b and 27c, respectively, show the squaring of a triangular wave and a sine wave. Notice that in both cases the outputs are always positive and return to zero after each cycle.


Fig.26-Typical four-quadrant multiplier circuit.


Fig.27-Voltage waveforms of four-quadrant multiplier circuit.

## Micropower Operational Amplifier

## Features:

- Low standby power: as low as 700 nW
- Wide supply voltage range: $\pm 0.75$ to $\pm 15 \mathrm{~V}$
- High peak output current: 6.5 mA min.
- Adjustable quiescent current
- Output short-circuit protection


## Applications:

- Portable electronics
- Medical electronics
- Instrumentation
- Telemetry
- Intrusion alarms

The CA3078 and CA3078A are high-gain monolithic operational amplifiers which can deliver milliamperes of current yet only consume microwatts of standby power. Their operating points are externally adjustable and frequency compensation may be accomplished with one external capacitor. The CA3078 and CA3078A provide the designer with the opportunity to tailor the frequency response and improve the slew rate without sacrificing power. Operation with a single 1.5 -volt battery is a practical reality with these devices.

The CA3078A is a premium device having a supply voltage range of $\mathrm{V} \pm=0.75$ to $\mathrm{V} \pm=15 \mathrm{~V}$ and an operating temperature
range of $-25^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. The CA3078 has the same lower supply voltage limit but the upper limit is $\mathrm{V}+=+6 \mathrm{~V}$ and $\mathrm{V}-=-6 \mathrm{~V}$. The operating temperature range is from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

The CA3078 and CA3078A are supplied in the 8-lead Small Outline package ( M suffix), the standard 8 -lead TO-5 package ("T" suffix), the 8 -lead dual-in-line formed-lead "DIL-CAN" package ("S" suffix), or the 8 -lead dual-in-line plastic "MINI-DIP" package ("E" suffix).


Fig. 1 - Schematic diagram of the CA3078 and CA3078A.

MAXIMUM RATINGS, Absolute-Maximum Values at $T_{A}=25^{\circ} \mathrm{C}$


* Short circuit may be applied to ground or to either supply.

ELECTRICAL CHARACTERISTICS For Equipment Design

CHARACTERISTICS SYMBOLS	TEST CONDITIONS			$\begin{aligned} & \text { CA3078A LIMITS } \\ & \text { R }_{\text {SET }}=5.1 \mathrm{M} \Omega \end{aligned}$					CA3078 LIMITS$\mathrm{R}_{\mathrm{SET}}=1 \mathrm{M} \Omega$					$U$   $N$   1   $T$   $S$
	$\begin{aligned} & v^{+} \\ & \& \\ & \mathbf{v} \end{aligned}$	$\begin{aligned} & \mathrm{RS} \\ & \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & R_{L} \\ & k \Omega \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-55 \text { to } \\ 125^{\circ} \mathrm{C} \end{gathered}$		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0 \text { to } \\ 70^{\circ} \mathrm{C} \end{gathered}$		
				MIN.	TYP.	MAX.	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	
$V_{10}$	1	$\leqslant 10$	-	-	0.70	3.5	-	4.5	-	1.3	4.5	-	5	mV
$\mathrm{V}_{10}$		-	-	-	0.50	2.5	-	5.0	-	6	32	-	40	nA
$\mathrm{I}_{1 \mathrm{~B}}$		-	-	-	7	12	-	50	-	60	170	-	200	nA
$\mathrm{A}_{\mathrm{OL}}$		-	$\geqslant 10$	92	100	-	90	-	88	92	-	86	-	dB
${ }^{1} \mathrm{Q}$		-	-	-	20	25	-	45	-	100	130	-	150	$\mu \mathrm{A}$
$P_{D}$	,	-	-	-	240	300	-	540	-	1200	1560	-	1800	$\mu \mathrm{W}$
$\mathrm{V}_{\text {OM }}$	6	-	$\geqslant 10$	$\pm 5.1$	$\pm 5.3$	-	$\pm 5$	-	$\pm 5.1$	$\pm 5.3$	-	$\pm 5$	-	V
VICR		$\leqslant 10$	-	-	$\begin{gathered} -5.5 \\ \text { to } \\ +5.8 \end{gathered}$	-	$\begin{aligned} & -5 \\ & \text { to } \\ & +5 \end{aligned}$	-	-	$\begin{array}{\|c\|} \hline-5.5 \\ \text { to } \\ +5.8 \\ \hline \end{array}$	-	$\begin{aligned} & -5 \\ & \text { to } \\ & +5 \end{aligned}$	-	V
CMRR		$\leqslant 10$	-	80	115	-	-	-	80	110	-	-	-	dB
$\mathrm{IOM}^{+}$or $\mathrm{I}^{\mathrm{OM}}$		-	-	-	12	-	6.5	30	-	12	-	6.5	30	mA
$\Delta \mathrm{V}_{10} / \Delta \mathrm{V}^{+}$	-	$\leqslant 10$		76	105	-	-	-	76	93	-	-	-	$\mu \mathrm{VN}$
$\Delta V_{10} / \Delta V$			-	76	105	-	-	-	76	93	-	-	-	
					SET $=13$	$3 \mathrm{M} \Omega$,								
$V_{10}$	1	$\leqslant 10$	-	-	1.4	3.5	-	4.5	-	-	-	-	-	mV
$\mathrm{AOL}^{\text {a }}$		-	$\geqslant 10$	92	100	-	88	-	-	-	-	-	-	dB
${ }_{1}$	15	-	-	-	20	30	-	50	-	-	-	-	-	$\mu \mathrm{A}$
$P_{\text {D }}$		-	-	-	600	750	-	1350	-	-	-	-	-	$\mu \mathrm{W}$
$\mathrm{V}_{\text {OM }}$		-	$\geqslant 10$	$\pm 13.7$	$\pm 14.1$	-	$\pm 13.5$	-	-	-	-	-	-	V
CMRR		$\leqslant 10$	-	80	106	-	-	-	-	-	-	-	-	dB
$I_{\text {IB }}$	,	-	-	-	7	14	-	55	-	-	-	-	-	$n \mathrm{~A}$
110	1	-	-	-	0.50	2.7	-	5.5	-	-	-	-	-	nA

3

ELECTRICAL CHARACTERISTICS, at $T_{A}=25^{\circ} \mathrm{C}$
Typical Values Intended Only for Design Guidance

CHARACTERISTICS SYMBOLS	TYPICAL VALUES				UNITS
	CA3078A		CA3078		
	$\begin{aligned} & \mathrm{V}^{+}=+1.3 \mathrm{~V} \\ & \mathrm{~V}-=-1.3 \mathrm{~V} \\ & \mathrm{RSET}^{2}=2 \mathrm{M} \Omega \end{aligned}$	$\begin{array}{r} \mathrm{V}^{+}=+0.75 \mathrm{~V} \\ \mathrm{~V}-=-0.75 \mathrm{~V} \\ \mathrm{RSET}^{-}=10 \mathrm{M} \Omega \end{array}$	$\begin{aligned} & \mathrm{V}^{+}=+1.3 \mathrm{~V}, \\ & \mathrm{~V}^{-}=-1.3 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{SET}}=2 \mathrm{M} \Omega \end{aligned}$	$\begin{aligned} & \mathrm{V}^{+}=+0.75 \mathrm{~V} \\ & \mathrm{~V}-=-0.75 \mathrm{~V} \\ & \mathrm{R}_{\text {SET }}=10 \mathrm{M} \Omega \end{aligned}$	
$\mathrm{V}_{10}$	0.7	0.9	1.3	1.5	mV
${ }_{10}$	0.3	0.054	1.7	0.5	nA
1 IB	3.7	0.45	9	1.3	nA
${ }^{\text {AOL }}$	84	65	80	60	dB
${ }^{1} \mathrm{O}$	10	1	10	1	$\mu \mathrm{A}$
$P_{D}$	26	1.5	26	1.5	$\mu \mathrm{W}$
$v_{\text {OPP }}$	1.4	0.3	1.4	0.3	V
$V_{\text {ICR }}$	$\begin{array}{r} -0.8 \\ \text { to } \\ +1.1 \end{array}$	$\begin{array}{r} -0.2 \\ \text { to } \\ +0.5 \end{array}$	$\begin{array}{r} -0.8 \\ \text { to } \\ +1.1 \end{array}$	$\begin{array}{r} -0.2 \\ \text { to } \\ \text { + } 0.5 \end{array}$	V
CMRR	100	90	100	90	dB
${ }^{1} \mathrm{OM}^{ \pm}$	12	0.5	12	0.5	mA
$\Delta \mathrm{V}_{10} / \Delta \mathrm{V}^{ \pm}$	20	50	20	50	$\mu \mathrm{V} / \mathrm{V}$

Typical Values Intended Only for Design Guidance at $T_{A}=25^{\circ} \mathrm{C}$ and $\mathrm{V}^{+}=+6 \mathrm{~V}, \mathrm{~V}=-6 \mathrm{~V}$

CHARACTERISTICS SYMBOLS	TEST CONDITIONS	CA3078A		CA3078	UNITS
		RSET $=5.1 \mathrm{M} \Omega$	RSET $=1 \mathrm{M} \Omega$	RSET $=1 \mathrm{M} \Omega$	
$\Delta V_{10} / \Delta T_{A}$	$\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k} \Omega$	5	6	6	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\Delta V_{10} / \Delta T_{A}$	$\mathrm{R}_{\mathrm{S}} \leqslant 10 \mathrm{k} \Omega$	6.3	70	70	$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
$\mathrm{BW}_{\mathrm{OL}}$	$3 \mathrm{~dB} \mathrm{pt}$.	0.3	2	2	kHz
SR	$\begin{aligned} & \text { See Figs. } \\ & 20,21 \end{aligned}$	0.027	0.04	0.04	$\mathrm{V} / \mu \mathrm{s}$
		0.5	1.5	1.5	
-	$10 \% \text { to } 90 \%$   Rise Time	3	2.5	2.5	$\mu \mathrm{s}$
$\mathrm{R}_{1}$		7.4	1.7	0.87	M 2
$\mathrm{R}_{\mathrm{O}}$		1	0.8	0.8	$k \Omega$
$\mathrm{e}^{(10 \mathrm{~Hz})}$	$\mathrm{R}_{\mathrm{S}}=0$	40	-	25	$n \mathrm{~V} / \sqrt{\mathrm{Hz}}$
$\mathrm{in}^{(10 \mathrm{~Hz})}$	$\mathrm{R}_{\mathrm{S}}=1 \mathrm{M} \Omega$	0.25	-	1	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$




Fig. 2 - Functional diagrams.


Fig. 3 - Input offset voltage vs. total quiescent current.


Fig. 5 - Input bias current vs. total quiescent current.


Fig. 7 - Bias-setting resistance vs. total quiescent current.


Fig. 4 - Input offset current vs. total quiescent current.


Fig. 6 - Open-loop voltage gain vs. total quiescent current.


Fig. 8 - Maximum output current vs. total quiescent current.


Fig. 9 - Output voltage swing vs. total quiescent current.


Fig. 11 - Output and common-mode voltage vs. supply voltage.


Fig. 14 - Input offset current vs. temperature.


Fig. 10 - Open-loop voltage gain vs. frequency for $I_{Q}=100 \mu A-C A 3078$.


Fig. 12 - Open-loop voltage gain vs. frequency for $I_{Q}=20 \mu A-C A 3078$.


Fig. 13 - Input offset voltage vs. temperature.


Fig. 15 - Input bias current vs. temperature.


Fig. 16 - Open-loop voltage gain vs. temperature.


Fig. 18 - Quivalent input noise voltage vs.
frequency.


Fig. 20 - Slew rate vs. closed-loop gain for ${ }^{\prime} Q=100 \mu A-C A 3078$.


Fig. 22 - Transient response and slew-rate, unity gain (inverting) test circuit.


Fig. 17 - Total quiescent current vs. temperature.


Fig. 19 - Equivalent input noise current vs. frequency.


Fig. 21 - Slew rate vs. closed-loop gain for $I_{Q}=20 \mu A-$ CA3078.


Fig. 23 - Slew-rate, unity gain (non-inverting) test circuit.


Fig. 24 - Phase compensation capacitance vs. closed-loop gain - CA3078.


Fig. 25 - Phase compensation capacitance vs. closed-loop gain - CA3078A.

Table I - Unity-gain slew rate vs. compensation - CA3078 and CA3078A


## OPERATING CONSIDERATIONS

## Compensation Techniques

The CA3078A and CA3078 can be phasecompensated with one or two external components depending upon the closedloop gain, power consumption, and speed desired. The recommended compensation is a resistor in series with a capacitor connected from terminal 1 to terminal 8. Values of the resistor and capacitor required for compensation as a function of closed loop gain are shown in Figs. 24 and 25. These curves represent the compensation necessary at quiescent currents of $100 \mu \mathrm{~A}$ and $20 \mu \mathrm{~A}$, respectively, for a transient response with $10 \%$ overshoot. Figs. 20 and 21 show the slew rates that can be obtained with the two different compensation tech-
niques. Higher speeds can be achieved with input compensation, but this increases noise output. Compensation can also be accomplished with a single capacitor connected from terminal 1 to terminal 8, with speed being sacrificed for simplicity. Table I gives an indication of slew rates that can be obtained with various compensation techques at quiescent currents of $100 \mu \mathrm{~A}$ and $20 \mu \mathrm{~A}$.

## Single Supply Operation

The CA3078A and CA3078 can operate from a single supply with a minimum total supply voltage of 1.5 volts. Figs. 27 and 28 show the CA3078A or CA3078 in inverting the non-inverting $20-\mathrm{dB}$ amplifier configurations utilizing a 1.5 -volt type " $A A^{\prime}$ " cell for a supply. The total power consumption for
either circuit is approximately 675 nano- configuration is 300 mV p-p with a 20 kS watts. The output voltage swing in this load.


92C5-20812R2

$92 \mathrm{CS}-20813 \mathrm{R} 2$

Fig. 26 - Offset voltage null circuits.


Fig. 27 - Inverting 20-dB amplifier circuit.


Fig. 28 - Non inverting 20-dB amplifier circuit.

## Operational Transconductance Amplifiers (OTA's)

Gatable-Gain Blocks

## Features:

- Slew rate (unity gain, compensated): $50 \mathrm{~V} / \mu \mathrm{s}$

■ Adjustable power consumption: $10 \mu \mathrm{~W}$ to 30 mW

- Flexible supply voltage range: $\pm 2 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$
- Fully adjustable gain: 0 to $g_{m} R_{L}$ limit
- Tight $g_{m}$ spread: CA3080 (2:1), CA3080A (1.6:1)
- Extended $g_{m}$ linearity: 3 decades

The CA3080 and CA3080A types are Gatable-Gain Blocks which utilize the unique operational-transconductanceamplifier (OTA) concept described in Application Note ICAN6668, "Applications of the CA3080 and CA3080A HighPerformance Operational Transconductance Amplifiers".
The CA3080 and CA3080A types have differential input and a single-ended, push-pull, class A output. In addition, these types have an amplifier bias input which may be used either for gating or for linear gain control. These types also have a high output impedance and their transconductance ( gm ) is directly proportional to the amplifier bias current ( $I_{A B C}$ ).

The CA3080 and CA3080A types are notable for their excellent slew rate ( $50 \mathrm{~V} / \mu \mathrm{s}$ ), which makes them especially useful for multiplex and fast unity-gain voltage followers. These types are especially applicable for multiplex applications because power is consumed only when the devices are in the "ON" channel state.

The CA3080A is rated for operation over the full militarytemperature range ( -55 to $+125^{\circ} \mathrm{C}$ ) and its characteristics are specifically controlled for applications such as sample-hold, gain-control, multiplex, etc. Operational transconductance amplifiers are also useful in programmable power-switch applications, e.g., as described in Application Note ICAN6048, "Some Applications of a Programmable Power Switch/ Amplifier" (CA3094, CA3094A, CA3094B).

## Applications:

- Sample and hold
- Multiplex
- Voltage follower
- Multiplier
- Comparator

These types are supplied in the 8-lead Small Outline package (CA3080M, САЗО80AM), the 8-lead TO-5-style package (CA3080, СА3080A), and in the 8 -lead TO-5-style package with dual-in-line formed leads ("DIL-CAN", CA3080S, CA3080AS). The CA3080 is also supplied in the 8-lead dual-in-line plastic ("MINI-DIP") package (CA3080E, CA3080AE), and in chip form (CA3O8OH).


Figure 1- Schematic diagram for CA3080 and CA3080.

ELECTRICAL CHARACTERISTICS
For Equipment Design

CHARACTERISTIC		$\begin{aligned} & \mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{ABC}}=500 \mu \mathrm{~A} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \text { (unless indicated } \\ & \text { otherwise) } \end{aligned}$	CA3080   CA3080E   CA3080S   LIMITS			UNITS	
		Min.	Typ.	Max.			
Input Offset Voltage	$V_{10}$			-	0.4	5	mV
		$T_{A}=0$ to $70^{\circ} \mathrm{C}$	-	-	6		
Input Offset Current	110		-	0.12	0.6	$\mu \mathrm{A}$	
Input Bias Current	1		-	2	5	$\mu \mathrm{A}$	
		$T_{A}=0$ to $70^{\circ} \mathrm{C}$	-	-	7		
Forward Transconductance (large signal)	${ }^{9} \mathrm{~m}$		6700	9600	13000	$\mu \mathrm{mho}$	
		TA $=0$ to $70^{\circ} \mathrm{C}$	5400	-	-		
Peak Output Current	$\|\mathrm{Om}\|$	$\mathrm{R}_{\mathrm{L}}=0$	350	500	650	$\mu \mathrm{A}$	
		$R_{L}=0, T^{\top} A=0$ to $70^{\circ} \mathrm{C}$	300	-	-		
Peak Output Voltage:		$R_{L}=\infty$				$\checkmark$	
Positive	$\frac{\mathrm{V}^{+} \mathrm{OM}}{\mathrm{~V}^{-} \mathrm{OM}}$		12	13.5	-		
Negative			-12	-14.4	-		
Amplifier Supply Current	${ }_{1}{ }_{\text {A }}$		0.8	1	1.2	mA	
Device Dissipation	${ }^{\text {PD }}$		24	30	36	mW	
Input Offset Voltage Sensitivity:						$\mu \mathrm{V} / \mathrm{V}$	
Positive $\quad \Delta V^{\prime}$	$\Delta v_{10} / \Delta v^{+}$		-	-	150		
Negative $\Delta v$	$\Delta v_{10} / \Delta v^{-}$		-	-	150		
Common-Mode Rejection Ratio CMRR			80	110	-	dB	
$\begin{aligned} & \text { Common-Mode Input-Voltage } \\ & \text { Range } \end{aligned}$	VICR		$\begin{aligned} & 12 \text { to } \\ & -12 \end{aligned}$	$\begin{array}{\|r\|} \hline 13.6 \text { to } \\ -14.6 \\ \hline \end{array}$	-	V	
Input Resistance	$\mathrm{R}_{1}$		10	26	-	$k \Omega$	
ELECTRICAL CHARACTERISTICS Typical Values Intended Only for Design Guidance			CA3080 CA3080E CA3080S				


Input Offset Voltage	$V_{10}$	${ }^{\prime}{ }^{\text {ABC }}=5 \mu \mathrm{~A}$	0.3	mV
Input Offset Voltage Change	$\left\|\Delta v_{10}\right\|$	$\begin{aligned} & I_{\mathrm{ABC}}=500 \mu \mathrm{~A} \text { to } \\ & \mathrm{I}_{\mathrm{ABC}}=5 \mu \mathrm{~A} \end{aligned}$	0.2	mV
Peak Output Current	IOM	${ }^{\prime} \mathrm{ABC}=5 \mu \mathrm{~A}$	5	$\mu \mathrm{A}$
Peak Output Voltage: Positive   Negative	$\frac{\mathrm{V}^{+} \mathrm{OM}}{\mathrm{~V}^{-} \mathrm{OM}}$	${ }^{\prime} A B C=5 \mu \mathrm{~A}$	$-13.8$	V
Magnitude of Leakage Current		${ }^{1} \mathrm{ABC}=0, \mathrm{~V}_{\text {TP }}=0$	0.08	nA
		${ }^{1} \mathrm{ABC}=0, V_{T P}=36 \mathrm{~V}$	0.3	
Differential Input Current		${ }^{\prime} A B C=0, V_{\text {DIFF }}=4 \mathrm{~V}$	0.008	nA
Amplifier Bias Voltage	$\mathrm{V}_{\text {ABC }}$		0.71	$\checkmark$
$\begin{array}{\|l} \hline \text { Slew Rate: } \\ \begin{array}{l} \text { Maximum (uncompensated) } \\ \hline \text { Unity Gain (compensated) } \\ \hline \end{array} \\ \hline \end{array}$			75	$\mathrm{V} / \mu \mathrm{s}$
Open-Loop Bandwidth	BWOL		2	MHz
Input Capacitance	$\mathrm{Cl}_{1}$	$\mathrm{f}=1 \mathrm{MHz}$	3.6	PF
Output Capacitance	$\mathrm{CO}_{0}$	$\mathrm{f}=1 \mathrm{MHz}$	5.6	pF
Output Resistance	$\mathrm{R}_{0}$		15	$M \Omega$
Input-to-Output Capacitance	$\mathrm{C}_{1.0}$	$\mathrm{f}=1 \mathrm{MHz}$	0.024	pF
Propagation Delay t	tPHL, tPLH	${ }^{\prime} \mathrm{ABC}=500 \mu \mathrm{~A}$	45	ns

ELECTRICAL CHARACTERISTICS
For Equipment Design

CHARACTERISTIC		TEST CONDITIONS	CA3080A CA3080AE CA3080AS LIMITS			UNITS		
		$\begin{aligned} & \mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V} \\ & \mathrm{~A}^{\mathrm{A} B C}=500 \mu \mathrm{~A} \\ & \mathrm{~T}^{\prime}=25^{\circ} \mathrm{C} \\ & \text { (unless indicated } \\ & \text { otherwise) } \end{aligned}$						
		Min.	Typ.	Max.				
Input Offset Voltage	$\mathrm{V}_{10}$		${ }^{\prime} A B C=5 \mu \mathrm{~A}$	-	0.3	2	mV	
			-	0.4	2			
		$\mathrm{T}^{\prime} \mathrm{A}=-55$ to $+125^{\circ} \mathrm{C}$	-	-	5			
Input Offset Voltage Change	$\left\|\Delta v_{10}\right\|$	$\begin{aligned} & I_{\mathrm{ABC}}=500 \mu \mathrm{~A} \text { to } \\ & \mathrm{I}_{\mathrm{ABC}}=5 \mu \mathrm{~A} \end{aligned}$	-	0.1	3	mV		
Input Offset Current	110		-	0.12	0.6	$\mu \mathrm{A}$		
Input Bias Current	1		-	2	5	$\mu \mathrm{A}$		
		$\mathrm{T}_{\mathrm{A}}=-55$ to $+125^{\circ} \mathrm{C}$	-	-	8			
Forward Transconductance (large signal)	9 m		7700	9600	12000	$\mu \mathrm{mho}$		
		$\mathrm{T}_{\mathrm{A}}=-55$ to $+125^{\circ} \mathrm{C}$	4000	-	-			
Peak Output Current	\|rom		${ }^{\prime} A B C=5 \mu \mathrm{~A}, \mathrm{R}_{\mathrm{L}}=0$	3	5	7	$\mu \mathrm{A}$	
		$\mathrm{R}_{\mathrm{L}}=0$	350	500	650			
		$\mathrm{R}_{\mathrm{L}}=0, \mathrm{~T}_{\mathrm{A}}=-55$ to $+125^{\circ} \mathrm{C}$	300	-	-			
Peak Output Voltage:		$\left\{\begin{array}{l} I_{A B C}=5 \mu \mathrm{~A} \\ R_{L}=\infty \end{array}\right.$				V		
Positive	$\mathrm{V}^{+} \mathrm{OM}$		12	13.8	-			
Negative	$\mathrm{V}^{-} \mathrm{OM}$		-12	-14.5	-			
Positive	$\mathrm{V}^{+} \mathrm{OM}$	$R_{L}=\infty$	12	13.5	-			
Negative	$\mathrm{V}^{-} \mathrm{OM}$		-12	-14.4	-			
Amplifier Supply Current	IA		0.8	1	1.2	mA		
Device Dissipation	PD		24	30	36	mW		
Input Offset Voltage Sensitivity: \|						$\mu \mathrm{V} / \mathrm{V}$		
Positive	$\Delta V_{10} / \Delta V^{+}$		-	-	150			
Negative	$\Delta v_{10} / \Delta v^{-}$		-	-	150			
Magnitude of Leakage Current		${ }^{1} \mathrm{ABC}=0, \mathrm{~V}_{T P}=0$	-	0.08	5	nA		
		${ }^{1} \mathrm{ABC}=0, V_{T P}=36 \mathrm{~V}$	-	0.3	5			
Differential Input Current		$I_{\text {ABC }}=0, V_{\text {DIFF }}=4 \mathrm{~V}$	-	0.008	5	nA		
Common-Mode Rejection Ratio	CMRR		80	110	--	dB		
Common-Mode Input-Voltage Range	$V_{\text {ICR }}$		$\begin{array}{\|l} 12 \text { to } \\ -12 \\ \hline \end{array}$	$\begin{array}{\|r\|} \hline 13.6 \text { to } \\ -14.6 \\ \hline \end{array}$	-	$\checkmark$		
Input Resistance	$\mathrm{R}_{1}$		10	26	-	k $\Omega$		

ELECTRICAL CHARACTERISTICS
Typical Values Intended Only for Design Guidance

CA3080A
CA3080AE
CA3080AS

Amplifier Bias Voltage	$V_{\text {ABC }}$		0.71	V
Slew Rate:				
Maximum (uncompensated)			75	$\mathrm{V} / \mu \mathrm{s}$
Unity Gain (compensated) SR			50	
Open-Loop Bandwidth	BWOL	-	2	MHz
Input Capacitance	$\mathrm{C}_{1}$	$\mathrm{f}=1 \mathrm{MHz}$	3.6	pF
Output Capacitance	$\mathrm{C}_{0}$	$\mathrm{f}=1 \mathrm{MHz}$	5.6	pF
Output Resistance	$\mathrm{R}_{\mathrm{O}}$		. 15	$\mathrm{M} \Omega$
Input-to-Output Capacitance	$\mathrm{Cl}_{1.0}$	$\mathrm{f}=1 \mathrm{MHz}$	0.024	pF
Input Offset Voltage Temperature Drift	$\Delta V_{10} / \Delta T$	$\begin{aligned} & I_{A B C}=100 \mu \mathrm{~A}, \\ & T_{A}=-55 \text { to }+125^{\circ} \mathrm{C} \end{aligned}$	3	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Propagation Delay	tPHL, tPLH	${ }^{\prime}{ }^{\prime} B^{\prime}=500 \mu \mathrm{~A}$	45	ns

MAXIMUM RATINGS, Absolute-Maximum Values:



TO 5
TO-5 Style Package


92cs -24771
Plastic Package (E Suffix)

Fig. 2 - Functional diagrams.
TYPICAL CHARACTERISTICS CURVES AND TEST CIRCUITS FOR THE CA3080 AND CA3080A


Fig. 3 - Input offset voltage as a function of amplifier bias current.


Fig. 5 - Input bias current as a function of amplifier bias current.


Fig. 4 - Input offset current as a function of amplifier bias current.


Fig. 6 - Peak output current as a function of amplifier bias current.

TYPICAL CHARACTERISTICS CURVES AND TEST CIRCUITS (Cont'd)


Fig. 7 - Peak output voltage as a function of amplifier bias current.


Fig. 9 - Total power dissipation as a function of amplifier bias current.


Fig. 11 - Leakage current test circuit.


Fig. 13 - Differential input current test circuit


Fig. 8 - Amplifier supply current as a function of amplifier bias current.


Fig. 10 - Transconductance as a function of amplifier bias current


Fig. 12 - Leakage current as a function of temperature.


Fig. 14 - Input current as a function of input differential voltage.

TYPICAL CHARACTERISTICS CURVES AND TEST CIRCUITS (Cont'd)


Fig. 15 - Input resistance as a function of amplifier bias current.


Fig. 17 - Input and output capacitance as a function of amplifier bias current.


Fig. 19 - Input-to-output capacitance test circuit


Fig. 16 - Amplifier bias voltage as a function of amplifier bias current.


Fig. 18 - Output resistance as a function of amplifier bias current.


Fig. 20 - Input-to-output capacitance as a function of supply voltage.

## APPLICATIONS




Fig. $22-1,000,000 / 1$ single-control function generator -1 MHz to 1 Hz .

(a) - Two-tone output signal from the function generator. A square-wave signal modulates the external sweeping input to produce 1 Hz and 1 MHz , showing the $1,000,000 / 1$ frequency range of the function generator.

(b) - Triple-trace of the function generator sweeping to 1 MHz . The bottom trace is the sweeping signal and the top trace is the actual generator output. The center trace displays the 1 MHz signal via delayed oscilloscope triggering of the upper swept output signal.

Fig. 23 - Function generator dynamic characteristics waveforms.


SLEW RATELIN SAMPLE MODE) $=1.3 \mathrm{~V} / \mu \mathrm{s}$ ACQUISITION TIME ${ }^{\text {N }}$ I $\mu \mathrm{S}$

* TIME REQUIREO FOR OUTPUT TO SEITLE WITHIN $\pm 3 \mathrm{mV}$ OF A 4 - WOLT STEP

Fig. 24 - Schematic diagram of the CA3080A in a sample-hold configuration.


Fig. 25 - Sample- and hold circuit.


SAMPLING RESPONSE
TOP TRACE: SYSTEM OUTPUT
(IOO mV/DIV. AND $500 \mathrm{~ns} /$ DIV.
BOTTOM TRACE: SAMPLING SIGNAL
( $20 \mathrm{~V} / \mathrm{DIV}$. AND $500 \mathrm{~ns} /$ DIV.)

Fig. 27 - Sampling response for circuit shown in Fig. 25.


LARGE-SIGNAL RESPONSE ANO SETTLING TIME
TOP TRACE: OUTPUT SIGNAL
( 5 v/DIV. AND $2 \mu \mathrm{~s} /$ DIV.
BOTTOM TRACE: INPUT SIGNAL
( $5 \mathrm{~V} / \mathrm{DIV}$. ANO $2 \mu \mathrm{~s} /$ DIV.)
CENTER TRACE DIFFERENCE OF INPUT AND OUTPUT SIGNALS THROUGH TEKTRONIX
AMPLIFIER TAI3
( $5 \mathrm{mv} /$ DIV AND $2 \mu \mathrm{~s} / \mathrm{DIV}$.)

Fig. 26 - Large-signal response and settling time for circuit shown in Fig. 25.


TOP TRACE : OUTPUT
( $50 \mathrm{mV} / \mathrm{DIV}$ AND 200ns/DIV.)
BOTTOM TRACE: INPUT
( $50 \mathrm{mV} / \mathrm{OIV}$ AND $200 \mathrm{~ns} / \mathrm{DIV}$.)

Fig. 28 - Input and output response for circuit shown in Fig. 25.


Fig. 29 - Thermocouple temperature control with CA3079 zero voltage switch as the output amplifier.


Fig. 30 - Schematic diagram of the CA3080A in a samplehold circuit with BiMos output amplifier.


Fig. 31 - Large-signal response for circuit shown in Fig. 30.

Fig. 32 - Small-signal response for circuit shown in Fig. 30.


Fig. 33 - Propagation delay test circuit and associated waveforms.

HARRIS
SEMICONDUCTOR
HARRIS
RCA • GE . INTERSIL

CA3094, CA3094A, CA3094B

May 1990

## Programmable Power Switch/Amplifier

For Control \& General-Purpose Applications
CA3094T, S, E: For Operation Up to 24 Volts
CA3094AT, S, E: For Operation Up to 36 Volts
CA3094BT, S:
For Operation Up to 44 Volts

## Features:

- Designed for single or dual power supply
- Programmable: strobing, gating, squelching, AGC capabilities
- Can deliver 3 watts (avg.) or 10 W (peak) to external load (in switching mode)
- High-power, single-ended class A amplifier will deliver power output of 0.6 watt ( 1.6 W device dissipation)
- Total harmonic distortion (THD) @ 0.6 W in class A operation - 1.4\% typ.


## Applications:

- Error-signal detector: temperature control with thermistor sensor; speed control for shunt wound de motor
- Over-current, over-voltage, over-temperature protectors
- Dual-tracking power supply with CA3085
- Wide-frequency-range oscillator
- Analog timer
- Level detector
- Alarm systems
- Voltage follower
- Ramp-voltage generator
- High-power comparator
- Ground-fault interrupter (GFI) circuits

These types are available in 8-lead TO-5 style packages with standard leads ("T" suffix) and with dual-in-line formed leads "DIL-CAN" ("S" suffix). Type CA3094 is also available in an 8 -lead dual-in-line plastic package "MINI-DIP" ("E" suffix), and in chip form (" H " suffix).


Fig. 1 - Schematic diagram of CA3094.

ELECTRICAL CHARACTERISTICS at $\mathrm{T}_{\mathbf{A}}=25^{\circ} \mathrm{C}$ For Equipment Design

CHARACTERISTIC	TEST CONDITIONS	LIMITS			UNITS
	Single Supply $\mathrm{V}^{+}=30 \mathrm{~V}$   Dual Supply $\mathrm{V}^{+}=15 \mathrm{~V}$, $\begin{aligned} V- & =15 \mathrm{~V} \\ \mathrm{I}_{\mathrm{ABC}} & =100 \mu \mathrm{~A} \end{aligned}$   Unless Otherwise   Specified	Min.	Typ.	Max.	
INPUT PARAMETERS					
Input Offset Voltage $\mathrm{V}_{10}$	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & T_{A}=0 \text { to } 70^{\circ} \mathrm{C} \end{aligned}$	-	$0.4$	$\begin{aligned} & 5 \\ & 7 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Input-Offset-Voltage Change $\left\|\Delta \mathrm{V}_{10}\right\|$	Change in $V_{10}$   Between IABC $=100 \mu \mathrm{~A}$   and $I_{A B C}=5 \mu \mathrm{~A}$	-	1	8	mV
Input Offset Current 110	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & T_{A}=0 \text { to } 70^{\circ} \mathrm{C} \end{aligned}$		$0.02$	$\begin{aligned} & 0.2 \\ & 0.3 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Input Bias Current I/	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=0 \text { to } 70^{\circ} \mathrm{C} \end{aligned}$		$0.2$	$\begin{aligned} & 0.50 \\ & 0.70 \end{aligned}$	$\mu \mathrm{A}$   $\mu \mathrm{A}$
Device Dissipation PD	$\mathrm{l}_{\text {out }}=0$	8	10	12	mW
Common-Mode Rejection Ratio CMRR		70	110	-	dB
Common-Mode Input-   Voltage Range	$\mathrm{V}^{+}=30 \mathrm{~V} \frac{\text { High }}{\text { Low }}$	27	28.8	-	V
		1.0	0.5	-	V
	$\begin{aligned} & \mathrm{V}^{+}=15 \mathrm{~V} \\ & \mathrm{~V}^{-}=15 \mathrm{~V} \end{aligned}$	$\left\lvert\, \begin{aligned} & +12 \\ & -14 \end{aligned}\right.$	$\begin{array}{r} +13.8 \\ -14.5 \end{array}$		$\begin{aligned} & V \\ & v \end{aligned}$
Unity Gain-Bandwidth	$\begin{aligned} & \hline \mathrm{I}=7.5 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CE}}=15 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{ABC}}=500 \mu \mathrm{~A} \\ & \hline \end{aligned}$	-	30	-	MHz
Open-Loop Bandwidth   At -3 dB Point	$\begin{aligned} & \mathrm{I}^{\mathrm{C}}=7.5 \mathrm{~mA} \\ & \mathrm{~V} C E=15 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{ABC}}=500 \mu \mathrm{~A} \end{aligned}$	-	4	-	kHz
Total Harmonic Distortion   (Class A Operation)$\quad$ THD	$\begin{aligned} & \mathrm{P}_{\mathrm{D}}=220 \mathrm{~mW} \\ & \mathrm{P}_{\mathrm{D}}=600 \mathrm{~mW} \end{aligned}$		$\begin{aligned} & \hline 0.4 \\ & 1.4 \\ & \hline \end{aligned}$		\%
Amplifier Bias Voltage $\quad V_{\text {ABC }}$   (Terminal (No. 5 to Terminal No.4)		-	0.68	-	V
Input Offset Voltage $\quad \Delta V_{10} / \Delta T$   Temperature Coefficient		-	4	-	$\mu \mathrm{V} / \mathrm{OC}$
Power-Supply Rejection $\Delta V_{10} / \Delta \mathrm{V}$		-	15	150	$\mu \mathrm{V} / \mathrm{V}$
1/F Noise Voltage EN	$\begin{aligned} & f=10 \mathrm{~Hz} \\ & \mathrm{IABC}=50 \mu \mathrm{~A} \end{aligned}$	-	18	-	$\eta \mathrm{V} / \sqrt{\mathrm{Hz}}$
1/F Noise Current IN	$\begin{aligned} & f=10 \mathrm{~Hz} \\ & \mathrm{I} A B C=50 \mu \mathrm{~A} \end{aligned}$	-	1.8	-	$\mathrm{pa} / \sqrt{\mathrm{Hz}}$
Differential Input Resistance $\quad \mathrm{R}_{\mathrm{l}}$	$\mathrm{I}^{\prime} \mathrm{ABC}=20 \mu \mathrm{~A}$	0.50	1	-	$\mathrm{M} \Omega$
Differential Input Capacitance $\mathrm{Cl}_{\boldsymbol{l}}$	$\begin{aligned} & f=1 \mathrm{MHz} \\ & \mathrm{~V}^{+}=30 \mathrm{~V} \end{aligned}$	-	2.6	-	pF

## ELECTRICAL CHARACTERISTICS at $\mathbf{T}_{\mathbf{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$ For Equipment Design

CHARACTERISTIC	TEST CONDITIONS	LIMITS			UNITS
	Single Supply $\mathrm{V}^{+}=30 \mathrm{~V}$   Dual Supply $\mathrm{V}^{+}=15 \mathrm{~V}$. $\begin{aligned} V- & =15 \mathrm{~V} \\ I_{A B C} & =100 \mu \mathrm{~A} \end{aligned}$   Unless Otherwise Specified	Min.	Typ.	Max.	
OUTPUT PARAMETERS (Differential Input Voltage $=1 \mathrm{~V}$ )					
Peak Output Voltage:   (Terminal No. 6)   With Q13 "ON" $V^{+} O M$   With Q13 "OFF" V-OM	$\begin{aligned} & \mathrm{V}^{+}=30 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text { to ground } \end{aligned}$	26	$\begin{array}{r} 27 \\ 0.01 \\ \hline \end{array}$	$0.05$	V
Peak Output Voltage:    (Terminal No. 6)    Positive $\mathrm{V}^{+} \mathrm{OM}$   Negative $\mathrm{V}-\mathrm{OM}$	$\begin{aligned} & \mathrm{V}^{+}=+15 \mathrm{~V}, \mathrm{~V}^{-}=-15 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{kS} 2 \text { to }-15 \mathrm{~V} \end{aligned}$	+11	$\begin{array}{r} +12 \\ -14.99 \\ \hline \end{array}$	$\begin{gathered} 0.5 \\ - \\ -14.95 \end{gathered}$	v
Peak Output Voltage:    (Terminal No. 8)    With Q13 "ON" $\mathrm{V}+\mathrm{OM}$   With Q13 "OFF" $\mathrm{V}-\mathrm{OM}$	$\begin{aligned} & \mathrm{V}^{+}=30 \mathrm{~V} \\ & R_{\mathrm{L}}=2 \mathrm{k} \Omega \text { to } 30 \mathrm{~V} \end{aligned}$	29.95	$\begin{array}{r} 25.99 \\ 0.040 \\ \hline \end{array}$	-	V
Peak Output Voltage:   (Terminal No. 8)   Positive   v+OM   Negative   V-OM	$\begin{aligned} & \mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text { to }+15 \mathrm{~V} \end{aligned}$	+14.95	$\begin{array}{r} +14.99 \\ 14.96 \\ \hline \end{array}$	-	V
Collector-to-Emitter Saturation Voltage (Terminal No. 8) $V_{C E}$ (sat)	$\begin{aligned} & \hline \mathrm{V}^{+}=30 \mathrm{~V} \\ & \mathrm{I} \mathrm{C}=50 \mathrm{~mA} \\ & \text { Terminal No. } 6 \text { grounded } \\ & \hline \end{aligned}$	-	0.17	0.80	V
Output Leakage Current (Terminal No. 6 to Terminal No. 4)	$\mathrm{V}^{+}=30 \mathrm{~V}$	-	2	10	$\mu \mathrm{A}$
Composite Small-Signal Current Transfer Ratio (Beta) $\left(\mathrm{Q}_{12}\right.$ and $\left.\mathrm{Q}_{13}\right) \quad \mathrm{h}_{\mathrm{fe}}$	$\begin{aligned} & \mathrm{V}^{+}=30 \mathrm{~V} \\ & V_{C E}=5 \mathrm{~V} \\ & I_{C}=50 \mathrm{~mA} \end{aligned}$	16,000	100,000	-	
Output Capacitance:    Terminal No. 6    Terminal No. 8	$f=1 \mathrm{MHz}$   All Remaining   Terminals Tied to   Terminal No. 4	-	$\begin{gathered} 5.5 \\ 17 \end{gathered}$	-	pF pF
TRANSFER PARAMETERS					
Voltage Gain A	$\begin{aligned} & \mathrm{V}^{+}-30 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{ABC}}=100 \mu \mathrm{~A} \\ & \triangle \mathrm{~V}_{\text {out }}=20 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega 2 \end{aligned}$	$\begin{gathered} 20,000 \\ 86 \end{gathered}$	$\begin{gathered} 100,000 \\ 100 \end{gathered}$		$V / V$ $d B$
Forward Transconductance To Terminal No. $1 \quad g_{m}$		1650	2200	2750	$\mu$ mhos
Slew Rate: Open Loop: Positive Slope Negative Slope	$\begin{aligned} & \mathrm{IABC}=500 \mu \mathrm{~A} \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \end{aligned}$	-	$\begin{gathered} 500 \\ 50 \\ \hline \end{gathered}$	-	$\mathrm{V} / \mu \mathrm{s}$ $\mathrm{V} / \mu \mathrm{s}$
Unity Gain (Non-Inverting, Compensated)	$\begin{aligned} & \mathrm{I} A B C=500 \mu \mathrm{~A} \\ & R_{\mathrm{L}}=2 \mathrm{k} \Omega \end{aligned}$	-	0.7	-	$\mathrm{V} / \mu \mathrm{s}$

\begin{tabular}{|c|c|c|c|c|}
\hline MAXIMUM RATINGS, Absolute-Maximum Values: \& CA3094 \& CA3094A \& CA3094B \& \\
\hline \multicolumn{5}{|l|}{DC SUPPLY VOLTAGE:} \\
\hline Dual Supply \& \(\pm 12 \mathrm{~V}\) \& \(\pm 18 \mathrm{~V}\) \& \(\pm 22 \mathrm{~V}\) \& V \\
\hline Single Supply \& 24 V \& 36 V \& 44 V \& V \\
\hline \begin{tabular}{l}
DC DIFFERENTIAL INPUT VOLTAGE \\
(Terminals 2 and 3 )
\end{tabular} \& \& \(\pm 5^{*}\) \& \& V \\
\hline DC COMMON-MODE INPUT VOLTAGE \& \multicolumn{4}{|c|}{Term. \(4 \leqslant\) Term. 2 \& \(3 \leqslant\) Term. 7} \\
\hline \begin{tabular}{l}
PEAK INPUT SIGNAL CURRENT \\
(Terminals 2 and 3 )
\end{tabular} \& \& \(\ldots \pm 1\). \& \& mA \\
\hline PEAK AMPLIFIER BIAS CURRENT (Terminal 5) \& \& 2 \& \& mA \\
\hline OUTPUT CURRENT: Peak \& \& . 300 \& \& mA \\
\hline Average \& \& 100 \& \& mA \\
\hline \multicolumn{5}{|l|}{DEVICE DISSIPATION:} \\
\hline \multicolumn{5}{|l|}{Up to \(\mathrm{T}_{\text {A }}=55^{\circ} \mathrm{C}\) :} \\
\hline Without heat sink \& \& 630 \& \& mW \\
\hline With heat sink \& \& 1.6 \& \& W \\
\hline \multicolumn{5}{|l|}{Above \(\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}\) :} \\
\hline \multicolumn{5}{|l|}{Without heat sink derate linearly .............. \(\quad\) - \(6.67-\) mW/ \({ }^{\circ} \mathrm{C}\)} \\
\hline With heat sink derate linearly \& \& 16.7 \& \& \(\mathrm{mW} /{ }^{\circ} \mathrm{C}\) \\
\hline \multicolumn{5}{|l|}{THERMAL RESISTANCE} \\
\hline (Junction to Air) \& \& 140 \& \& \({ }^{\circ} \mathrm{C} / \mathrm{W}\) \\
\hline \multicolumn{5}{|l|}{AMBIENT TEMPERATURE RANGE:} \\
\hline \begin{tabular}{l}
Operating \\
Storage
\end{tabular} \& \& -55 to +125
-65 to +150 \& \& \(\circ\)

0 <br>
\hline \multicolumn{5}{|l|}{LEAD TEMPERATURE (DURING SOLDERING):} <br>
\hline \multicolumn{5}{|l|}{At distance $1 / 16 \pm 1 / 32 \mathrm{in}$. $\{1.59 \pm 0.79 \mathrm{~mm}$ )} <br>
\hline
\end{tabular}

FUNCTIONAL DIAGRAMS


TO-5 Style Package


Plastic Package

TYPICAL CHARACTERISTICS CURVES


Fig. 2 - Input offset voltage vs. amplifier bias current (I ABC, terminal No.5).


Fig. 3 - Input offset current vs. amplifier bias current (I $A B C$, terminal No.5).

TYPICAL CHARACTERISTICS CURVES (Cont'd)


Fig. 4 - Input bias current vs. amplifier bias current ('ABC, terminal No.5).


Fig. 6 - Amplifier supply current vs. amplifier bias current (I ABC, terminal No.5).


Fig. $8-1 / F$ Noise voltage vs. frequency.


COLLECTOR CURRENT (IC) $=\mathrm{mA}$
Fig. 10 - Collector-emitter saturation voltage vs. collector current of output transistor $Q_{13}$.


Fig. 5 - Device dissipation vs. amplifier bias current ('ABC, terminal No.5).


Fig. 7 - Common mode input voltage vs. amplifier bias current (IABC, terminal No.5).


Fig. 9 - I/F Noise current vs. frequency.


COLLECTOR MILLIAMPERES (IC)-mA
Fig. 11 - Composite dc beta vs. collector current of Darlington-connected output transistors $\left(Q_{12}, Q_{13}\right)$.


Fig. 12 - Open-loop voltage gain vs. frequency.


Fig. 14 - Slew rate vs amplifier bias current.


Fig. 13 - Forward transconductance vs amplifier bias current.


Fig. 15 - Slew rate vs closed-loop voltage gain.


Fig. 16 - Phase compensation capacitance and resistance vs closed-loop voltage gain.

## OPERATING CONSIDERATIONS

The "Sink" Output (terminal No.8) and the "Drive" Output (terminal No.6) of the CA3094 are not inherently current (or power) limited. Therefore, if a load is connected between terminal No. 6 and terminal No. 4 ( $\mathrm{V}^{-}$or ground), it is important to connect a current-limiting resistor between terminal 8 and terminal $\mathrm{No} .7\left(\mathrm{~V}^{+}\right)$to protect transistor $\mathrm{Q}_{13}$ under shorted load conditions. Similarly, if a load is connected between terminal No. 8 and terminal No.7, the currentlimiting resistor should be connected between terminal No. 6 and terminal No. 4 or ground. In circuit applications where the emitter of the output transistor is not connected to the most negative potential in the system, it is recommended that a $100-$ ohm current-limiting resistor be inserted between terminal No. 7 and the $\mathrm{V}^{+}$supply.

## TEST CIRCUITS

## I/F Noise Measurement Circuit

When using the CA3094, A or B audio amplifier circuits, it is frequently necessary to consider the noise performance of the device. Noise measurements are made in the circuit shown in Fig.21. This circuit is a $30-\mathrm{dB}$, non-inverting amplifier with emitterfollower output and phase compensation from terminal No. 2 to ground. Source resistors (Rs) are set to $0 . \Omega$ or $1 \mathrm{M} \Omega$ for $E$ noise and I noise measurements, respectively. These measurements are made at frequencies of $10, \mathrm{~Hz}, 100 \mathrm{~Hz}$, and 1 kHz with a $1-\mathrm{Hz}$ measurement bandwidth. Typical values for $1 / \mathrm{f}$ noise at 10 Hz and $50 \mu \mathrm{~A}$ $\mathrm{I}_{\mathrm{ABC}} / \sqrt{\mathrm{HZ}}$. $\mathrm{E}_{\mathrm{n}}=18 \mathrm{nV} / \sqrt{\mathrm{HZ}}$ and $\mathrm{I}_{\mathrm{N}}=1.8$ $\mathrm{pA} / \sqrt{\mathrm{HZ}}$.


Fig. 17 - Input offset voltage and power-supply rejection test circuit.


Fig. 19 - Input bias current test circuit.

Fig. 21 - I/F noise test circuit.

Fig. 23 - Open-loop slew rate vs ${ }^{\prime}$ ABC test circuit.



Fig. 18 - Input offset current test circuit.


Fig. 20 - Common-mode range and rejection ratio test circuit.


Fig. 22 - Open-loop gain vs frequency test circuit.


Fig. 24 - Slew rate vs. non-inverting unity gain test circuit.

## TEST CIRCUITS (Cont'd)



Fig. 25 - Phase compensation test circuit.

2. Required Input Resistance - the lower the 1 ABC , the higher the input resistance. If the desired sensitivity and requred input resistance are not known and are to be experimentally determined, or the anticipated equipment design is sufficiently flexible to tolerate a wide range of these parameters, it is recommended that the equipment designer begin his calculations with an I ABC of 100 $\mu \mathrm{A}$, since the CA3094 is characterized at this value of amplifier bias current.
The CA3094 is extremely versatile and can be used in a wide variety of applications.

(a)

(b)

Fig. 27 - Application of the CA3094: (a) as an inverting op-amp, and
(b) in a non-inverting mode, as a follower.

Problem: To calculate the maximum value of $R$ required to switch a $100-\mathrm{mA}$ output current comparator
Given: $\quad I_{A B C}=5 \mu \mathrm{~A}, \mathrm{R}_{\mathrm{ABC}}=3.6 \mathrm{M} \Omega \approx \frac{18 \mathrm{~V}}{5 \mu \mathrm{~A}}$
$I_{1}=\left.500 \mathrm{nA} @\right|_{\mathrm{ABC}}=100 \mu \mathrm{~A}$ (from Fig.4)
$1_{1}=5 \mu \mathrm{~A}$ can be determined by drawing a line on Fig. 4 through $I_{A B C}=100 \mu \mathrm{~A}$ and $I_{B}=500 \mathrm{nA}$ parallel to the typical $T_{A}=25^{\circ} \mathrm{C}$ curve.
Then: $\quad I_{1}=33 \mathrm{nA} @ I_{\mathrm{ABC}}=5 \mu \mathrm{~A}$ $R_{\text {max }}=\frac{18-12 \text { volts }}{33 \mathrm{nA}}=180 \mathrm{M} \Omega @ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ $R_{\text {max }}=180 \mathrm{M} \Omega \times 2 / 3^{*}=120 \mathrm{M} \Omega @$

* Ratio of $I_{l}$ at $T_{A}=+25^{\circ} \mathrm{C}$ to $I_{I}$ at $T_{A}=-55^{\circ} \mathrm{C}$ for any given value of $I_{A B C}$.
Fig. 28 - RC timer.

TYPICAL APPLICATIONS (Cont'd)


On a negative going transient at input ( A ), a negative pulse at C will turn "on" the CA3094 and the output ( E ) will go from a low to a high level.


At the end of the time constant determined by $\mathrm{C}_{1}$, $\mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{R}_{3}$, the CA3094 will return to the "off" state and the output will be pulled low by RLOAD. This condition will be independent of the interval when input $A$ ،eturns to a high level.

Fig. 29 - RC timer triggered by external negative pulse.


Fig. 30 - Free-running pulse generator.


Fig. 32 - Single-supply astable multivibrator.


Fig. 31 - Current or voltage-controlled ascillator.

Fig. 33 - Dual-supply astable multivibrator.

## TYPICAL APPLICATIONS (Cont'd)



Fig. 34 - Comparators (threshold detectors) -dualand single-supply types.


Fig. 35 - Temperature controller.


Fig. 36 - Dual-voltage tracking regulator.


Fig. 37 - Ground fault interrupter (GFI) and waveform pertinent to ground fault detector.


Power Output ( $8 \Omega$ load. Tone Control set at "Flat")	
Music (at 5\% THD, regulated supply)	15
Continuous (at $0.2 \%$ IMD, $60 \mathrm{~Hz} \& 2 \mathrm{kHz}$ mixed unregulated supply) See Fig. 8 In ICAN 604	12
Total Harmonic Distoration	
At 1 W, unregulated supply	0.05
At 12 W , unregulated supply.	0.57
Voltage Gaın.	40
Hum and Norse (Below contınuous Power Output)	83
Input Resistance	250
Tone Control Range	ICAN-6048

[^18]May 1990

## Wideband Operational Amplifier

## Features:

- High open-loop gain at video frequencies - 42 dB typ. at 1 MHz
- High unity-gain crossover frequency ( f ) -38 MHz typ.
- Wide power bandwidth $-V_{O}=18 \mathrm{Vp}-\mathrm{p}$ typ. at 1.2 MHz
- High slew rate - $70 \mathrm{~V} / \mu \mathrm{s}$ (typ.) in 20 dB amplifier, $25 \mathrm{~V} / \mu \mathrm{s}$ (typ.) in unity-gain amplifier
- Fast settling time $-0.6 \mu s$ typ.
- High output current - $\pm 15 \mathrm{~mA}$ min.
- LM118, 748/LM101 pin compatibility
- Single capacitor compensation
- Offset null terminals


## Applications:

- Video amplifiers
- Fast peak detectors
- Meter-driver amplifiers
- High-frequency feedback amplifiers
- Video pre-drivers
- Oscillators
- Multivibrators
- Voltage-controlled oscillator
- Fast comparators

The CA3100 is a large-signal wideband, high-speed operational amplifier which has a unity gain cross-over frequency ( fT ) of approximately 38 MHz and an open-loop, 3 dB corner frequency of approximately 110 kHz . It can operate at a total supply voltage of from 14 to 36 volts ( $\pm 7$ to $\pm 18$ volts when using split supplies) and can provide at least $18 \mathrm{Vp}-\mathrm{p}$ and $30 \mathrm{~mA} \mathrm{p}-\mathrm{p}$ at the output when operating from $\pm 15$ volt supplies. The CA3100 can be compensated with a single external capacitor and has dc offset adjust terminals for those applications requiring offset null. (See Fig. 15).

The CA3100 circuit contains both bipolar and PMOS transistors on a single monolithic chip.

These devices are supplied in either the 8-lead Small Outline style package ( $M$ suffix), the standard 8-lead TO-5 style package (T suffix), 8-lead dual-in-line formed-lead TO-5 style "DIL-CAN" package (S suffix), or in the 8-lead dual-in-line plastic package "Mini-DIP" ( E suffix). They are also available in chip form ( H suffix).


Figure 1 - Schematic diagram for CA3100.

ELECTRICAL CHARACTERISTICS, At $T_{A}=25^{\circ} \mathrm{C}$ :


S \& T Suffixes
TERMINAL ASSIGNMENTS

MAXIMUM RATINGS, Absolute-Maximum Values:


* If the supply voltage is less than $\pm 15$ volts, the maximum input voltage to ground is equal to the supply voltage.
- CA3100S, CA3100T does not contain circuitry to protect against short circuits in the output.

TYPICAL CHARACTERISTIC CURVES


Fig. 2 - Open-loop gain, open-loop phase shift vs. frequency.


Fig. 4 - Open-loop gain vs. frequency and supply voltage.


Fig. 6 - Slew rate vs. compensation capacitance.


Fig. 3 - Open-loop gain vs, frequency and temperature.


Fig. 5 - Required compensation capacitance vs. closed-loop gain.


Fig. 7 - Typical open-loop output impedance vs. frequency.

TYPICAL CHARACTERISTIC CURVES (Cont'd)


Fig. 8 - Wideband input noise voltage vs. source resistance.


Fig. 10 - Maximum output voltage swing vs
frequency.


Fig. 12 - Maximum output voltage vs. supply voltage.


Fig. 9 - Typical open-loop differential input impedance vs, frequency.


Fig. 11 - Common-mode input voltage range vs. supply voltage.


Fig. 13 - Supply current vs. supply voltage.


Fig. 14 - Input bias current vs. supply voltage.

## TEST CIRCUITS



Fig. 15 - Open-loop voltage gain test circuit


Fig. 17 - Follower slew rate test circuit.


Fig. 19 - Output voltage swing ( $V_{O M}$ ), output current swing (I OM) test circuit.

Fig. 16 - Slew rate in $10 \times$ amplifier test circuit.


Fig. 18 - Wideband input noise voltage test circuit.

Fig. 20 - Settling time test circuit.

TYPICAL APPLICATIONS


Fig. $21-20 d B$ video amplifier.


Fig. $22-20 d B$ video line driver.

## TYPICAL APPLICATIONS (Cont'd)



Fig. 23 - Fast positive peak detector.


Fig. $24-1 \mathrm{MHz}$ meter-driver amplifier.

## BiMOS Operational Amplifiers

## With MOSFET Input/CMOS Output

## Features:

- MOSFET input stage provides:
very high $Z_{I}=1.5 \mathrm{~T} \Omega\left(1.5 \times 10^{12} \Omega\right)$ typ.
very low $I=5 p A$ typ. at 15 V operation
$=2 \mathrm{pA}$ typ. at 5 V operation
- Ideal for single-supply applications
- Common-mode input-voltage range includes negative supply rail; input terminals can be swung 0.5 V below negative supply rail
- CMOS output stage permits signal swing to either (or both) supply rails


## Applications:

- Ground-referenced single supply amplifiers
- Fast sample-hold amplifiers
- Long-duration timers/monostables
- High-input-impedance comparators (ideal interface with digital CMOS)
- High-input-impedance wideband amplifiers
- Voltage followers (e.g. follower for single-supply D/A converter)
- Voltage regulators (permits control of output voltage down to zero volts)
- Peak detectors
- Single-supply full-wave precision rectifiers
- Photo-diode sensor amplifiers

CA3130A and CA3130 are integrated-circuit operation amplifiers that combine the advantage of both CMOS and biploar transistors on a monolithic chip.

Gate-protected p-channel MOSFET (PMOS) transistors are used in the input circuit to provide very-high-input impedance, very-low-input current, and exceptional speed performance. The use of PMOS field-effect transistors in the input stage results in common-mode input-voltage capability down to 0.5 volt below the negative-supply terminal, an important attribute in single-supply applications.
A complementary-symmetry MOS (CMOS) transistor-pair, capable of swinging the output voltage to within 10 millivolts of either supply-voltage terminal (at very high values of load impedance), is employed as the output circuit.

The CA3130 Series circuits operate at supply voltges ranging from 5 to 16 volts, or $\pm 2.5$ to $\pm 8$ volts when using split supplies. They can be phase compensated with a single external capacitor, and have terminals for adjustment of offset voltage for applications requiring offset-null capability. Terminal provisions are also made to permit strobing of the output stage.
The CA3130 Series is supplied in standard 8-lead TO-5 style packages (T suffix), 8-lead dual-in-line formed lead TO-5 style "DIL-CAN" packages (S suffix). The CA3130 is available in chip form ( H suffix). The CA3130 and CA3130A are also available in the Mini-DIP 8-lead dual-in-line plastic package (E suffix), and in the 8 -lead Small Outline package (M suffix). All types operate over the full military-temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. The CA3130A offers superior input characteristics over those of the CA3130.

ELECTRICAL CHARACTERISTICS at $\mathbf{T}_{A^{2}}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}$ (Unless otherwise specified)

CHARACTERISTIC	LIMITS						Units
	CA3130A (T,S,E)			CA3130 (T,S, E)			
	Min.	Typ.	Max.	Min.	Typ.	Max.	
Input Offset Voltage, $\left\|\mathrm{V}_{10}\right\|, \mathrm{V}^{ \pm}= \pm 7.5 \mathrm{~V}$	-	2	5	-	8	15	mV
Input Offset Current, $\left\|\mathrm{I}_{10}\right\|, \mathrm{V}^{ \pm}= \pm 7.5 \mathrm{~V}$	-	0.5	20	-	0.5	30	pA
$\begin{aligned} & \text { Input Current, } \mathrm{I}_{\mathrm{I}} \\ & \mathrm{~V}^{ \pm}= \pm 7.5 \mathrm{~V} \end{aligned}$	-	5	30	-	5	50	pA
Large-Signa! Voltage	50 k	320 k	-	50 k	320 k	-	V/V
$\begin{gathered} \text { Gain, } A_{O L} \\ V_{\mathrm{O}}=10 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}, R_{\mathrm{L}}=2 \mathrm{k} \Omega \\ \hline \end{gathered}$	94	110	-	94	110	-	dB
Common-Mode Rejection Ratio,CMRR	80	90	-	70	90	-	dB
Common-Mode InputVoltage Range, $\mathrm{V}_{\text {ICR }}$	0	$\begin{gathered} -0.5 \\ \text { to } \\ 12 \\ \hline \end{gathered}$	10	0	$\begin{array}{\|c} \hline-0.5 \\ \text { to } \\ 12 \\ \hline \end{array}$	10	V
Power-Supply Rejection Ratio, $\Delta V_{10} / \Delta V^{ \pm}$ $\mathrm{V}^{ \pm}= \pm 7.5 \mathrm{~V}$	-	32	150	-	32	320	$\mu \mathrm{V} / \mathrm{V}$
Maximum Output Voltage: At $\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \frac{\mathrm{V}_{\mathrm{OM}^{+}}}{\mathrm{V}_{\mathrm{OM}^{-}}}$	12	13.3 0.002	- 0	12	$\begin{array}{\|r\|} 13.3 \\ \hline 0.002 \\ \hline \end{array}$	- 0.01	
$\begin{array}{ll}\text { At } \mathrm{R}_{\mathrm{L}}=\infty & \mathrm{V}_{\mathrm{OM}^{+}} \\ \mathrm{V}_{\mathrm{OM}}{ }^{-}\end{array}$	14.99	15 0	- 0.01	14.99	15	$\stackrel{-}{-}$	
Maximum Output Current: $\begin{aligned} & \mathrm{IOM}^{+} \text {(Source) @ } \\ & \mathrm{V}_{\mathrm{O}}=0 \mathrm{~V} \end{aligned}$	12	22	45	12	22	45	
$\begin{aligned} & \mathrm{IOM}^{-}(\text {Sink }) @ \\ & \mathrm{~V}_{\mathrm{O}}=15 \mathrm{~V} \\ & \hline \end{aligned}$	12	20	45	12	20	45	
$\begin{gathered} \text { Supply Current, } 1^{+}: \\ \mathrm{V}_{\mathrm{O}}=7.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\infty \end{gathered}$	-	10	15	-	10	15	mA
$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\infty$	-	2	3	-	2	3	
Input Offset Voltage Temp. Drift, $\Delta V_{10} / \Delta T^{*}$	-	10	-	-	10	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$



S and T Suffixes


Fig. 1 - Functional diagrams for the CA3130 series.

TYPICAL VALUES INTENDED ONLY FOR DESIGN GUIDANCE

CHARACTERISTIC	TEST CONDITIONS $\begin{aligned} \mathrm{V}^{+} & =+7.5 \mathrm{~V} \\ \mathrm{~V}^{-} & =-7.5 \mathrm{~V} \\ \mathrm{~T}_{\mathrm{A}} & =25^{\circ} \mathrm{C} \end{aligned}$   (Unless Other-   wise Specified)	$\begin{gathered} \text { CA3130A } \\ \text { CA3130 } \\ (T, S, E) \end{gathered}$	UNITS
Input Offset Voltage Adjustment Range	$10 \mathrm{k} \Omega$ across Terms. 4 and 5 or 4 and 1	$\pm 22$	mV
Input Resistance, $\mathrm{R}_{1}$		1.5	$T \Omega$
Input Capacitance, $\mathrm{C}_{1}$	$\mathrm{f}=1 \mathrm{MHz}$	4.3	pF
Equivalent Input Noise Voltage, $\mathrm{e}_{\mathrm{n}}$	$\begin{aligned} & \mathrm{BW}=0.2 \mathrm{MHz} \\ & \mathrm{R}_{\mathrm{S}}=1 \mathrm{M} \Omega^{*} \end{aligned}$	23	$\mu \mathrm{V}$
Unity Gain Crossover	$\mathrm{C}_{\mathrm{C}}=0$	15	MHz
Frequency, $\mathrm{f}_{\mathrm{T}}$	$\mathrm{C}_{C}=47 \mathrm{pF}$	4	
Slew Rate, SR: Open Loop	$\mathrm{C}_{\mathrm{C}}=0$	30	$\mathrm{V} / \mu \mathrm{s}$
Closed Loop	$\mathrm{C}_{\mathrm{C}}=56 \mathrm{pF}$	10	
Transient Response: Rise Time, $\mathrm{t}_{\mathrm{r}}$	$\begin{aligned} & \mathrm{C}_{\mathrm{C}}=56 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=25 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ & \text { (Voltage } \\ & \text { Follower) } \end{aligned}$	0.09	$\mu \mathrm{s}$
Overshoot		10	\%
Settling Time ( $4 \mathrm{~V}_{\mathrm{p} \cdot \mathrm{p}}$ Input to $<0.1 \%$ )		1.2	$\mu \mathrm{s}$

* Although a $1-M \Omega$ source is used for this test, the equivalent input noise remains constant for values of $R_{S}$ up to 10 Ms .

CHARACTERISTIC	TEST CONDITIONS $\begin{gathered} \mathrm{V}^{+}=5 \mathrm{~V} \\ \mathrm{~V}^{-}=0 \mathrm{~V} \\ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{gathered}$   (Unless Otherwise Specified)	$\begin{gathered} \text { CA3130A } \\ (T, S, E) \end{gathered}$	$\begin{array}{r} \text { CA3130 } \\ (T, S, E) \end{array}$	UNITS
Input Offset Voltage, $\mathrm{V}_{10}$		2	8	mV
Input Offset Current, IIO		0.1	0.1	pA
Input Current, I/		2	2	pA
Common-Mode Rejection Ratio, CMRR		90	80	dB
Large-Signal Voltage	$\mathrm{V}_{\mathrm{O}}=4 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$	100 k	100 k	$\mathrm{V} / \mathrm{V}$
Gain, $\mathrm{A}_{\mathrm{OL}}$	$\mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega$	100	100	dB
Common-Mode Input Voltage Range, $V_{\text {ICR }}$		0 to 2.8	0 to 2.8	V
Supply Current, $1^{+}$	$\begin{gathered} \mathrm{V}_{\mathrm{O}}=5 \mathrm{~V} \\ \mathrm{R}_{\mathrm{L}}=\infty \end{gathered}$	300	300	$\mu \mathrm{A}$
	$\begin{aligned} \mathrm{V}_{\mathrm{O}} & =2.5 \mathrm{~V}, \\ \mathrm{R}_{\mathrm{L}} & =\infty \end{aligned}$	500	500	
Power Supply Rejection Ratio, $\Delta V_{10} / \Delta V^{+}$		200	200	$\mu \mathrm{V} / \mathrm{V}$

MAXIMUM RATINGS, Absolute-Maximum Values

DC SUPPLY VOLTAGE	
DIFFERENTIAL-MODE	
INPUT VOLTAGE	$\pm 8 \mathrm{~V}$
COMMON-MODE DC	
INPUT VOLTAGE. . ( $\left.\mathrm{V}^{+}+8 \mathrm{~V}\right)$ to $\left(\mathrm{V}^{-}-0.5 \mathrm{~V}\right)$	
INPUT-TERMINAL CURRENT ......... 1 mA	
DEVICE DISSIPATION:	
WITHOUT HEAT SINK -	
TO $55^{\circ} \mathrm{C}$	
ABOVE $55^{\circ} \mathrm{C}$	
WITH HEAT SINK -	
UP TO $90^{\circ} \mathrm{C}$	
OVE $90^{\circ} \mathrm{C}$... Derate linear	$6.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

TEMPERATURE RANGE:
OPERATING (all types) . . . . -55 to $+125^{\circ} \mathrm{C}$
STORAGE (all types) .. . . . . . . -65 to $+150^{\circ} \mathrm{C}$
OUTPUT SHORT-CIRCUIT.
DURATION *. . . ...... INDEFINITE
LEAD TEMPERATURE
(DURING SOLDERING):
AT DISTANCE $1 / 16 \pm 1 / 32 \mathrm{INCH}$
$(1.59 \pm 0.79 \mathrm{~mm})$ FROM CASE
FOR 10 SECONDS MAX. . . $+265^{\circ} \mathrm{C}$
*Short circuit may be applied to ground or to either supply.


NOTE
DIODES O5 THROUGH OB PROVIDE GATE-OXIDE PROTECTION FOR MOS/FET INPUT STAGE.

92CM-24714R1

Fig. 2 - Schematic diagram of the CA3130 Series.

## CIRCUIT DESCRIPTION

Fig. 3 is a block diagram of the CA3130 Series CMOS Operational Amplifiers. The input terminals may be operated down to 0.5 V below the negative supply rail, and the output can be swung very close to either supply rail in many applications. Consequently, the CA3130 Series circuits are ideal for single-supply operation. Three Class A amplifier stages, having the individual gain capability and current consumption shown in Fig. 3, provide the total gain of the CA3130. A biasing circuit provides two potentials for common use in the first and
second stages. Term. 8 can be used both for phase compensation and to strobe the output stage into quiescence. When Term. 8 is tied to the negative supply rail (Term. 4) by mechanical or electrical means, the output potential at Term. 6 essentially rises to the positive supply-rail potential at Term. 7. This condition of essentially zero current drain in the output stage under the strobed "OFF" condition can only be achieved when the ohmic load resistance presented to the amplifier is very high (e.g., when the amplifier output is used to drive CMOS digital circuits in comparator applications).

Input Stages-The circuit of the CA3130 is shown in Fig. 2. It consists of a differential. input stage using PMOS field-effect transistors (06, Q7) working into a mirror-pair of bipolar transistors (Q9, Q10) functioning as load resistors together with resistors R3 through R6. The mirror-pair transistors also function as a differential-to-single-ended converter to provide base drive to the secondstage bipolar transistor (Q11). Offset nulling, when desired, can be effected by connecting a $100,000-\mathrm{ohm}$ potentiometer across Terms. 1 and 5 and the potentiometer slider arm to Term. 4. Cascode-connected PMOS transistors Q2, Q4 are the constant-current source for the input stage. The biasing circuit for the constant-current source is subsequently described. The small diodes D5 through D8 provide gate-oxide protection against highvoltage transients, e.g., including static electricity during handling for Q 6 and Q 7 .
Second-Stage-Most of the voltage gain in the CA3130 is provided by the second amplifier stage, consisting of bipolar transistor Q11 and its cascode-connected load resistance provided by PMOS transistors Q3 and Q5. The source of bias potentials for these PMOS transistors is subsequently described. MillerEffect compensation (roll-off) is accomplished by simply connecting a small capacitor between Terms. 1 and 8. A 47-picofarad capacitor provides sufficient compensation for stable unity-gain operation in most applications.
Bias-Source Circuit-At total supply voltages, somewhat above 8.3 volts, resistor R2 and zener diode Z 1 serve to establish a voltage of 8.3 volts across the series-connected circuit, consisting of resistor R1, diodes D1 through D4, and PMOS transistor Q1. A tap at the junction of resistor R1 and diode D4 provides a gate-bias potential of about 4.5 volts for PMOS transistors Q4 and Q5 with respect to Term. 7. A potential of about 2.2 volts is developed across diode-connected PMOS transistor Q1 with respect to Term. 7 to provide gate bias for PMOS transistors Q2 and Q3. It
should be noted that Q1 is "mirror-connected" $\dagger$ to both Q2 and Q3. Since transistors Q1, Q2, Q3 are designed to be identical, the approximately 200 -microampere current in $\mathbf{Q 1}$ establishes a similar current in Q 2 and Q 3 as constant-current sources for both the first and second amplifier stages, respectively.
At total supply voltages somewhat less than 8.3 volts, zener diode Z 1 becomes nonconductive and the potential, developed across series-connected R1, D1-D4, and Q1, varies directly with variations in supply voltage, Consequently, the gate bias for Q 4 , Q5 and Q2, Q3 varies in accordance with supply-voltage variations. This variation results in deterioration of the power-supplyrejection ratio (PSRR) at total supply voltages below 8.3 volts. Operation at total supply voltages below about 4.5 volts results in seriously degraded performance.
Output Stage-The output stage consists of a drain-loaded inverting amplifier using CMOS transistors operating in the Class A mode. When operating into very high resistance loads, the output can be swung within millivolts of either supply rail. Because the output stage is a drain-loaded amplifier, its gain is dependent upon the load impedance. The transfer characteristics of the output stage for a load returned to the negative supply rail are shown in Fig. 6. Typical op-amp loads are readily driven by the output stage. Because large-signal excursions are non-linear, requiring feedback for good waveform reproduction, transient delays may be encountered. As a voltage follower, the amplifier can achieve 0.01 per cent accuracy levels, including the negative supply rail.
$\dagger$ For general information on the characteristics of CMOS transistor-pairs in linear-circuit applications, see File No.619, data bulletin on CA3600E "CMOS Transistor Array".


Fig. 4 - Open-loop voltage gain and phase shift vs. frequency for various values of $C_{L}, C_{C}$, and $R_{L}$.


Fig. 5 - Open-loop gain vs. temperature.


Fig. 7 - Quiescent supply current vs. supply voltage.


Fig. 9 - Voltage across PMOS output transistor (Q8) vs. load current.

## Input Current Variation with CommonMode Input Voltage

As shown in the Table of Electrical Characteristics, the input current for the CA3130 Series Op-Amps is typically 5 pA at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ when terminals 2 and 3 are at a commonmode potential of +7.5 volts with respect to negative supply Terminal 4. Fig. 11 contains data showing the variation of input current as a function of common-mode input voltage at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. These data show that circuit designers can advantageously exploit these characteristics to design circuits which typically require an input current of less than 1 pA , provided the common-mode input voltage does not exceed 2 volts. As previously noted, the input current is essentially the result of the leakage current through the


Fig. 6 - Voltage transfer characteristics of CMOS output stage.


Fig. 8 - Quiescent supply current vs. supply voltage at several temperatures.


Fig. 10 - Voltage across NMOS output transistor (Q12) vs. load current.
gate-protection diodes in the input circuit and, therefore, a function of the applied

Fig. 11 - Input current vs. common-mode voltage.

voltage. Although the finite resistance of the glass terminal-to-case insulator of the TO-5 package also contributes an increment of leakage current, there are useful compensating factors. Because the gate-protection network functions as if it is connected to Terminal 4 potential, and the TO- 5 case of the CA3130 is also internally tied to Terminal 4 , input termina! 3 is essentially "guarded" from spurious leakage currents.

## Offset Nulling

Offset-voltage nulling is usually accomplished with a 100,000 -ohm potentiometer connected across Terms. 1 and 5 and with the potentiometer slider arm connected to Term. 4. A fine offset-null adjustment usually can be effected with the slider arm positioned in the mid-point of the potentiometer's total range.

## Input-Current Variation with Temperature

The input current of the CA3130 Series circuits is typically 5 pA at $25^{\circ} \mathrm{C}$. The major portion of this input current is due to leakage current through the gate-protective diodes in the input circuit. As with any semiconductorjunction device, including op amps with a junction-FET input stage, the leakage current approximately doubles for every $10^{\circ} \mathrm{C}$ increase in temperature. Fig. 12 provides data on the typical variation of input bias current as a function of temperature in the CA3130.


Fig. 12 - Input current vs. ambient temperature.
In applications requiring the lowest practical input current and incremental increases in current because of "warm-up" effects, it is suggested that an appropriate heat sink be used with the CA3130. In addition, when "sinking" or "sourcing" significant output current the chip temperature increases, causing an increase in the input current. In such cases, heat-sinking can also very markedly reduce and stabilize input current variations.

## Input-Offset-Voltage ( $\mathrm{V}_{10}$ ) Variation with DC Bias vs. Device Operating Life

It is well known that the characteristics of a MOS/FET device can change slightly when a dc gate-source bias potential is applied to the device for extended time periods. The magni-
tude of the change is increased at high temperatures. Users of the CA3130 should be alert to the possible impacts of this effect if the application of the device involves extended operation at high temperatures with a significant differential dc bias voltage applied across Terms. 2 and 3. Fig. 13 shows typical data pertinent to shifts in offset voltage encountered with CA3130 devices (TO-5 package) during life testing. At lower temperatures (TO-5 and plastic), for example at $85^{\circ} \mathrm{C}$, this change in voltage is considerably less. In typical linear applications where the differential voltage is small and symmetrical, these incremental changes are of about the same magnitude as those encountered in an operational amplifier employing a bipolar transistor input stage. The two-volt dc differential voltage example represents conditions when the amplifier output stage is "toggled", e.g., as in comparator applications.


Fig. 13 - TYpical incremental offset-voltage shift vs. operating life.

## Power-Supply Considerations

Because the CA3130 is very useful in singlesupply applications, it is pertinent to review some considerations relating to power-supply current consumption under both single- and dual-supply service. Figs. 14a and 14b show the CA3130 connected for both dual- and single-supply operation.
Dual-supply operation: When the output voltage at Term. 6 is zero-volts, the currents supplied by the two power supplies are equal. When the gate terminals of Q 8 and Q 12 are driven increasingly positive with respect to ground, current flow through Q12 (from the negative supply) to the load is increased and current flow through $\mathrm{Q8}$ (from the positive supply) decreases correspondingly. When the gate terminals of Q8 and Q12 are driven increasingly negative with respect to ground, current flow through $\mathrm{O8}$ is increased and current flow through 012 is decreased accordingly.
Single-supply operation: initially, let it be assumed that the value of $R_{L}$ is very high (or disconnected), and that the input-terminal bias (Terms. 2 and 3) is such that the output terminal (No. 6) voltage is at $\mathrm{V}^{+} / 2$, i.e.,

(a) DUAL POWER-SUPPLY OPERATION

(b) SINGLE POWER-SUPPLY OPERATION $92 \mathrm{CS}-24725$

Fig. 14 - CA3130 output stage in dual and single power-supply operation.
the voltage-drops across Q8 and Q12 are of equal magnitude. Fig. 7 shows typical quiescent supply-current vs. supply-voltage for the CA3130 operated under these conditions. Since the output stage is operating as a Class A amplifier, the supply-current will remain constant under dynamic operating conditions as long as the transistors are operated in the linear portion of their voltage-transfer characteristics (see Fig. 6). If either Q8 or Q12 are swung out of their linear regions toward cut-off (a non-linear region), there will be a corresponding reduction in supply-current. In the extreme case, e.g., with Term. 8 swung down to ground potential (or tied to ground), NMOS transistor Q 12 is completely cut off and the supply-current to series-connected transistors Q8, Q12 goes essentially to zero. The two preceding stages in the CA3130, however, continue to draw modest supply-current (see the lower curve in Fig. 7) even though the output stage is strobed off. Fig. 14a shows a dual-supply arrangement for the output stage that can also be strobed off, assuming $R_{L}=\infty$, by pulling the potential of Term. 8 down to that of Term. 4.

Let it now be assumed that a load-resistance of nominal value (e.g., 2 kilohms) is connected between Term. 6 and ground in the circuit of Fig. 14b. Let it further be assumed again that the input-terminal bias (Terms. 2 and 3 ) is such that the output terminal (No. 6) voltage is a $\mathrm{V}^{+} / 2$. Since PMOS transistor Q8 must now supply quiescent current to both $R_{L}$ and transistor Q12, it should be apparent that under these conditions the supply-current must increase as an inverse function of the $R_{L}$ magnitude. Fig. 9 shows the voltage-drop across PMOS transistor Q8 as a function of load current at several supplyvoltages. Fig. 6 shows the voltage-transfer characteristics of the output stage for several values of load resistance.

## Wideband Noise

From the standpoint of low-noise performance considerations, the use of the CA3130 is most advantageous in applications where in the source resistance of the input signal is
in the order of 1 megohm or more. In this case, the total input-referred noise voltage is typically only $23 \mu \mathrm{~V}$ when the test-circuit amplifier of Fig. 15 is operated at a total supply voltage of 15 volts. This value of total input-referred noise remains essentially constant, even though the value of source resistance is raised by an order of magnitude. This characteristic is due to the fact that reactance of the input capacitance becomes a significant factor in shunting the source resistance. It should be noted, however, that for values of source resistance very much greater than 1 megohm, the total noise voltage generated can be dominated by the thermal noise contributions of both the feedback and source resistors.

TYPICAL APPLICATIONS

## Voltage Followers

Operational amplifiers with very high input resistances, like the CA3130, are particularly suited to service as voltage followers. Fig. 16 shows the circuit of a classical voltage follower, together with pertinent waveforms using the CA3130 in a split-supply configuration.
A voltage follower, operated from a single supply, is shown in Fig. 17, together with related waveforms. This follower circuit is


92CS-24726
Fig. 15 - Test-circuit amplifier (30-dB gain) used for wideband noise measurements.


Top Trace: Output Bottom Trace: Input
(a) Small-signal response ( 50 mV /div. and $200 \mathrm{~ns} / \mathrm{div}$.


Top Trace: Output signal $\{2 \mathrm{~V} /$ div. $\quad 92 \mathrm{CS} 24739$ and $5 \mu \mathrm{~s} / \mathrm{div}$.)
Center Trace: Difference signal ( $5 \mathrm{mV} / \mathrm{div}$. and $5 \mu \mathrm{~s} / \mathrm{div}$.)
Bottom Trace: Input signal (2 V/div. and $5 \mu \mathrm{~s} / \mathrm{div}$.)
(b) Input-output difference signal showing settling time (Measurement made with Tektronix 7A13 differential amplifier)

Fig. 16 - Split-supply voltage follower with associated waveforms.
linear over a wide dynamic range, as illustrated by the reproduction of the output waveform in Fig. 17a with input-signal ramping. The waveforms in Fig. 17b show that the follower does not lose its input-tooutput phase-sense, even though the input is

(a) Output-waveform with input-signal ramping ( $2 \mathrm{~V} / \mathrm{div}$. and $500 \mu \mathrm{~s} / \mathrm{div}$.)


Top Trace: Output ( $5 \mathrm{~V} / \mathrm{div}$. and $200 \mu \mathrm{~s} / \mathrm{div}$.) Bottom Trace: Input (5 V/div. and $200 \mu \mathrm{~s} / \mathrm{div}$.)
(b) Output-waveform with ground-reference sine-wave input
Fig. 17 - Single-supply voltage-follower with associated waveforms. (e.g., for use in single-supply D/A converter; see Fig. 9 in ICAN-6080).
being swung 7.5 volts below ground potential. This unique characteristic is an important attribute in both operational amplifier and comparator applications. Fig. 17b also shows the manner in which the CMOS output stage permits the output signal to swing down to the negative supply-rail potential (i.e., ground in the case shown). The digital-toanalog converter (DAC) circuit, described in the following section, illustrates the practical use of the CA3130 in a single-supply voltagefollower application.

## 9. Bit COS/MOS DAC

A typical circuit of a 9-bit Digital to-Analog Converter (DAC)* is shown in Fig. 18 This system combines the concepts of multipleswitch CMOS IC's, a low-cost ladder network of discrete metal-oxide-film resistors, a CA3130 op amp connected as a follower, and an inexpensive monolithic regulator in a simple single power-supply arrangement. An additional feature of the DAC is that it is readily interfaced with CMOS input logic, e.g., 10 -volt logic levels are used in the circuit of Fig. 18.
of one per cent tolerance metal-oxide film resistors. The five arms requiring the highest accuracy are assembled with series and parallel combinations of 806,000 -ohm resistors from the same manufacturing lot.
A single 15 -volt supply provides a positive bus for the CA3130 follower amplifier and feeds the CA3085 voltage regulator. A "scale-adjust" function is provided by the regulator output control, set to a nominal 10 -volt level in this system. The line-voltage regulation (approximately $0.2 \%$ ) permits a 9 -bit accuracy to be maintained with varia-


Fig. 18-9-bit DAC using CMOS digital switches and CA3130.

The circuit uses an $R / 2 R$ voltage-ladder network, with the output potential obtained directly by terminating the ladder arms at either the positive or the negative powersupply terminal. Each CD4007A contains three "inverters", each "inverter" functioning as a single-pole double-throw switch to terminate an arm of the R/2R network at either the positive or negative power-supply terminal. The resistor ladder is an assembly

[^19]tions of several volts in the supply. The flexibility afforded by the COS/MOS building blocks simplifies the design of DAC systems tailored to particular needs.

## Single-Supply, Absolute-Value, Ideal FullWave Rectifier

The absolute-value circuit using the CA3130 is shown in Fig. 19. During positive excursions, the input signal is fed through the feedback network directly to the output. Simultaneously, the positive excursion of the input signal also drives the output terminal (No. 6) of the inverting amplifier in a
negative-going excursion such that the 1 N 914 diode effectively disconnects the amplifier from the signal path. During a negative-going excursion of the input signal, the CA3130 functions as a normal inverting amplifier with a gain equal to - R2/R1. When the equality of the two equations shown in Fig. 19 is satisfied, the full-wave output is symmetrical

## Error-Amplifier in Regulated-Power Supplies

The CA3130 is an ideal choice for erroramplifier service in regulated power supplies since it can function as an error-amplifier when the regulated output voltage is required to approach zero. Fig. 21 shows the schematic diagram of a $40-\mathrm{mA}$ power supply capable of providing regulated output volt-



Top Trace: Output signal ( $2 \mathrm{~V} / \mathrm{div}$.) Bottom Trace: Input signal ( $10 \mathrm{~V} / \mathrm{div}$.) Time base on both traces: $0.2 \mathrm{~ms} / \mathrm{div}$.

Fig. 19 - Single-supply, absolute-value, ideal full-wave rectifier with associated waveforms.

## Peak Detectors

Peak-detector circuits are easily implemented with the CA3130, as illustrated in Fig. 20 for both the peak-positive and the peaknegative circuit. It should be noted that with large-signal inputs, the bandwidth of the peak-negative circuit is much less than that of the peak-positive circuit. The second stage of the CA3130 limits the bandwidth in this case. Negative-going output-signal excursion requires a positive-going signal excursion at the collector of transistor Q11, which is loaded by the intrinsic capacitance of the associated circuitry in this mode. On the other hand, during a negative-going signal excursion at the collector of Q11, the transistor functions in an active "pull-down" mode so that the intrinsic capacitance can be discharged more expeditiously.

age by continuous adjustment over the range from 0 to 13 volts. Q3 and Q4 in IC2 (a CA3086 transistor-array IC) function as zeners to provide supply-voltage for the CA3130 comparator (IC1). Q1, Q2, and 05 in IC2 are configured as a low impedance, temperature-compensated source of adjustable reference voltage for the error amplifier. Transistors Q1, Q2, O3, and Q4 in IC3 (another CA3086 transistor-array IC) are connected in parallel as the series-pass element. Transistor Q5 in IC3 functions as a current-limiting device by diverting base drive from the series-pass transistors, in accordance with the adjustment of resistor R2.
Fig. 22 contains the schematic diagram of a regulated power-supply capable of providing regulated output voltage by continuous ad-
(o) Peak positive detector circuit

(d) peak negative detector circuit

Fig. 20 - Peak-detector circuits.


Fig. 21-Voltage regulator circuit (0 to 13 V at 40 mA )


Fig. 22 - Voltage regulator circuit 10.1 to 50 V at 1 A ).
justment over the range from 0.1 to 50 volts and currents up to 1 ampere. The error amplifier (IC1) and circuitry associated with IC2 function as previously described, although the output of IC1 is boosted by a discrete transistor (O4) to provide adequate base drive for the Darlington connected seriespass transistors Q1, Q2. Transistor Q3 functions in the previously described currentlimiting circuit.

## Multivibrators

The exceptionally high input resistance presented by the CA3130 is an attractive feature for multivibrator circuit design because it permits the use of timing circuits with high R/C ratios. The circuit diagram of a pulse generator (astable multivibrator), with provisions for independent control of the "on" and "off" periods, is shown in Fig. 23. Resistors R1 and R2 are used to bias the CA3130 to the mid-point of the supply-voltage and R3 is the feedback resistor. The pulse repetition rate is selected by positioning S1 to the desired position and the rate remains essentially constant when the resistors which determine "on-period" and "off-period" are adjusted.

## Function Generator

Fig. 24 contains a schematic diagram of a function generator using the CA3130 in the integrator and threshold detector functions. This circuit generates a triangular or square-
wave output that can be swept over a $1,000,000: 1$ range ( 0.1 Hz to 100 kHz ) by means of a single control, R1. A voltagecontrol input is also available for remote sweep-control.

The heart of the frequency-determining system is an operational-transconductance-amplifier (OTA)*, IC1, operated as a voltage-controlled current-source. The output, ${ }^{1} \mathrm{O}$, is a current applied directly to the integrating capacitor, C 1 , in the feedback loop of the integrator IC2, using a CA3130, to provide the triangular-wave output. Potentiometer R2 is used to adjust the circuit for slope symmetry of positive-going and negativegoing signal excursions.
Another CA3130, IC3, is used as a controlled switch to set the excursion limits of the triangular output from the integrator circuit. Capacitor C2 is a "peaking adjustment" to optimize the high-frequency square-wave performance of the circuit.
Potentiometer R3 is adjustable to perfect the "amplitude symmetry" of the square-wave output signals. Output from the threshold detector is fed back via resistor R4 to the input of IC1 so as to toggle the current source from plus to minus in generating the linear triangular wave.
*See File No. 475 and ICAN-6668.


Fig. 23 - Pulse generator (astable multivibrator) with provisions for independent control of "ON" and "OFF" periods.


Fig. 24 - Function generator (frequency can be varied 1,000,000/1 with a single control).

Operation with Output-Stage Power-Booster The current-sourcing and -sinking capability of the CA3130 output stage is easily supplemented to provide power-boost capability. In the circuit of Fig. 25, three CMOS transistor-pairs in a single CA3600E* IC array are shown parallel connected with the output stage in the CA3130. In the Class A mode of CA3600E shown, a typical device consumes 20 mA of supply current at $15-\mathrm{V}$
operation. This arrangement boosts the current-handling capability of the CA3130 output stage by about 2.5 X .
The amplifier circuit in Fig. 25 employs feedback to establish a closed-loop gain of 48 dB . The typical large-signal bandwidth $(-3 \mathrm{~dB})$ is 50 kHz .
*See File No. 619 for technical information.


Fig. 25 - CMOS transistor array (CA3600E)
connected as power-booster in the
output stage of the CA3130.

# BiMOS Operational Amplifiers 

With MOSFET Input/Biploar Output

## Features:

- MOSFET Input Stage
(a) Very high input impedance $\left(Z_{I N}\right)-1.5 T \Omega$ typ.
(b) Very low input current (ll) -10 pA typ. at $\pm 15 \mathrm{~V}$
(c) Wide common-mode input-voltage range (VICR) - can be swung 0.5 volt below negative supply-voltage rail
(d) Output swing complements input common-mode range
- Directly replaces industry type 741 in most applications


## Applications:

- Ground-referenced single-supply amplifiers in automobile and portable instrumentation
- Sample and hold amplifiers
- Long-duration timers/multivibrators (microseconds-minutes-hours)
- Photocurrent instrumentation
- Peak detectos
- Active filters
- Comparators
- Interface in 5 V TTL systems and other low-supply voltage systems
- All standard operational amplifier applications
- Function generators
- Tone controls
- Power supplies
- Portable instruments
- Intrusion alarm systems


#### Abstract

The CA3140A and CA3140 are integrated-circuit operational amplifiers that combine the advantages of high-voltage PMOS transistors with high-voltage biploar transistors on a single monolithic chip. Because of this unique combination of technologies, this device can now provide designers, for the first time, with the special performance features of the CA3130 CMOS operational amplifiers and the versaility of the 741 series of industry-standard operational amplifiers.


The CA3140A and CA3140 BiMOS operational amplifiers feature gate-protected MOSFET (PMOS) transistors in the input circuit to provide very-high-input impedance, very-lowinput current, and high-speed performance. The CA3140A and CA3140 operate at supply voltage from 4 to 36 volts (either single or dual supply). These operational amplifiers are internally phase-compensated to achieve stable operation in unity-gain follower operation, and, additionally, have access terminal for a supplementary external capacitor if additional frequency roll-off is desired. Terminals are also provided for use in applications requiring input offset-voltage nulling. The
use of PMOS field-effect transistors in the input stage results in common-mode input-voltage capability down to 0.5 volt below the negative-supply terminal, an important attribute for single-supply applications. The output stage uses bipolar transistors and includes built-in protection against damage from load-terminal short-circuiting to either supply-rail or to ground.

The CA3140 Series has the same 8-lead terminal pin-out used for the " 741 " and other industry-standard operational amplifiers. They are supplied in either the standard 8-lead TO-5 style package ( $T$ suffix), or in the 8 -lead dual-in-line formed-lead TO-5 style package "DIL-CAN" (S suffix). The CA3140 is available in chip form (H suffix). The CA3140A and CA3140 are also available in an 8-lead Small Outline package (M suffix) and in an 8 -lead dual-in-line plastic package (MINI-DIP $E$ suffix). The CA3140A and CA3140 are intended for operation at supply voltage up to 36 volts ( $\pm 18$ volts). All types can be operated safely over the temperature range from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

TYPICAL ELECTRICAL CHARACTERISTICS


## ELECTRICAL CHARACTERISTICS FOR EQUIPMENT DESIGN

At $\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}^{-}=15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Unless Otherwise Specified

CHARACTERISTIC	LIMITS						UNITS		
	CA3140A			CA3140					
	Min.	Typ.	Max.	Min.	Typ.	Max.			
Input Offset Voltage, $\left\|\mathrm{V}_{\mathrm{IO}}\right\|$	-	2	5	-	5	15	mV		
Input Offset Current, \|	ıO		-	0.5	20	-	0.5	30	pA
Input Current, II	-	10	40	-	10	50	pA		
Large-Signal Voltage Gain, $\mathrm{AOL}^{\bullet}$ (See Figs. 4, 18)	20 k	100 k	-	20 k	100 k	-	V/V		
	86	100	-	86	100	-	dB		
Common-Mode   Rejection Ratio, CMRR (See Fig.9)	-	32	320	-	32	320	$\mu \mathrm{V} / \mathrm{V}$		
	70	90	-	70	90	-	dB		
Common-Mode Input-Vottage Range, VICR (See Fig.20)	-15	$\begin{gathered} -15.5 \\ \text { to } \\ +12.5 \end{gathered}$	12	-15	$\left\lvert\, \begin{gathered} -15.5 \\ \text { to } \\ +12.5 \end{gathered}\right.$	11	V		
Power-Supply   Rejection $\triangle V_{1}$   Ratio, PSRR (See Fig.11)	-	100	150	-	100	150	$\mu \mathrm{V} / \mathrm{V}$		
	76	80	-	76	80	-	dB		
Max. Output$V_{\text {Voltage }}{ }^{\text {a }}$(See Figs.13,20) $\frac{V_{\mathrm{OM}^{+}}}{\mathrm{V}_{\mathrm{OM}}{ }^{-}}$	+12	13	-	+12	13	-	V		
	-14	--14.4	-	-14	$-14.4$	-	$v$		
Supply Current, $1^{+}$ (See Fig. 7 )	-	4	6	-	4	6	mA		
Device Dissipation, $\mathrm{P}_{\mathrm{D}}$	-	120	180	-	120	180	mW		
Input Offset Voltage Temp. Drift, $\Delta V_{10} / \Delta T$	-	6	-	-	8	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$		
Max. OutputVoltage,	-	-	-	-	-	-	v		
	-	-	-	-	-	-	$\checkmark$		

- At $\mathrm{V}_{\mathrm{O}}=26 \mathrm{~V}_{\mathrm{p}-\mathrm{p},}+12 \mathrm{~V},-14 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$.
- At $R_{L}=2 \mathrm{k} \Omega$.

TOP VIEW
S and T Suffixes


Fig. 1 - Functional diagrams of the CA3140 series.

MAXIMUM RATINGS, Absolute-Maximum Values:
CA3140, CA3140A
DC SUPPLY VOLTAGE
(BETWEEN V ${ }^{+}$AND V ${ }^{-}$TERMINALS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 V

COMMON-MODE DC INPUT VOLTAGE .......................................................... $\mathrm{V}^{+}+8 \mathrm{~V}$ ) to ( $\mathrm{V}^{-}-0.5 \mathrm{~V}$ )

DEVICE DISSIPATION:
WITHOUT HEAT SINK -
UP TO $55^{\circ} \mathrm{C}$.
630 mW
ABOVE $55^{\circ} \mathrm{C}$
.Derate linearly $6.67 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
WITH HEAT SINK -
UP TO $55^{\circ} \mathrm{C}$..
ABOVE $55^{\circ} \mathrm{C}$.
Derate linearly $16.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
TEMPERATURE RANGE
OPERATING (ALL TYPES) -55 to $+125^{\circ} \mathrm{C}$
STORAGE (ALL TYPES). -65 to $+150^{\circ} \mathrm{C}$
OUTPUT SHORT-CIRCUIT DURATION* . INDEFINITE
LEAD TEMPERATURE (DURING SOLDERING):
AT DISTANCE $1 / 16 \pm 1 / 32 \operatorname{INCH}(1.59 \pm 0.79 \mathrm{MM})$
FROM CASE FOR 10 SECONDS MAX

[^20]At $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

CHARACTERISTIC	$\begin{aligned} & \text { CA3140A } \\ & (T, S, E) \end{aligned}$	$\begin{aligned} & \text { CA3140 } \\ & (\mathrm{T}, \mathrm{~S}, \mathrm{E}) \end{aligned}$	UNITS
Input Offset Voltage $\mid$ Vıol	2	5	mV
Input Offset Current $\left\|\mathrm{I}_{1 \mathrm{O}}\right\|$	0.1	0.1	pA
Input Current I/ $^{\text {l }}$	2	2	pA
Input Resistance	1	1	$T \Omega$
Large-Signal Voltage Gain   (See Figs.4, 18)	100 k	100 k	$\mathrm{V} / \mathrm{V}$
	100	100	dB
Common-Mode Rejection Ratio, CMRR	32	32	$\mu \mathrm{V} / \mathrm{V}$
	90	90	dB
Common-Mode Input Voltage Range (See Fig.20)	-0.5	$-0.5$	V
	2.6	2.6	
Power-Supply Rejection Ratio $\quad \triangle \mathrm{V}_{10} / \Delta \mathrm{V}^{+}$	100	100	$\mu \mathrm{V} / \mathrm{V}$
	80	80	dB
Maximum Output Voltage $\quad \mathrm{VOM}^{+}$	3	3	V
(See Figs. 13,20) $\mathrm{VOM}^{-}$	0.13	0.13	
Maximum Output Current:			
Source $\mathrm{IOM}^{+}$	10	10	mA
Sink $\mathrm{IOM}^{-}$	1	1	
Slew Rate (See Fig.6)	7	7	$\mathrm{V} / \mathrm{\mu s}$
Gain-Bandwidth Product (See Fig. 5) fT	3.7	3.7	MHz
Supply Current (See Fig.7) $1^{+}$	1.6	1.6	mA
Device Dissipation PD	8	8	mW
Sink Current from Term. 8 to Term. 4 to Swing Output Low	200	200	$\mu \mathrm{A}$



Fig. 2 - Block diagram of CA3140 series.

all resistance values are in ohms
Fig. 3 - Schematic diagram of CA3140 series.

## CIRCUIT DESCRIPTION

Fig. 2 is a block diagram of the CA3140 Series PMOS Operational Amplifiers. The input terminals may be operated down to 0.5 V below the negative supply rail. Two class $A$ amplifier stages provide the voltage gain, and a unique class $A B$ amplifier stage provides the current gain necessary to drive low-impedance loads.
A biasing circuit provides control of cascoded constant-current flow circuits in the first and second stages. The CA3140 includes an on-
chip phase-compensating capacitor that is sufficient for the unity gain voltage-follower configuration.
Input Stages - The schematic circuit diagram of the CA3140 is shown in Fig.3. It consists of a differential-input stage using PMOS field-effect transistors (Q9, Q10) working into a mirror pair of bipolar transistors (Q11, Q12) functioning as load resistors together with resistors R2 through R5. The mirrorpair transistors also function as a differen-
tial-to-single-ended converter to provide basecurrent drive to the second-stage bipolar transistor (Q13). Offset nulling, when desired, can be effected with a $10-k \Omega$ potentiometer connected across terminals 1 and 5 and with its slider arm connected to terminal 4. Cascode-connected bipolar transistors Q2, Q5 are the constant-current source for the input stage. The base-biasing circuit for the constant-current source is described subsequently. The small diodes D3, D4, D5 provide gate-oxide protection against high-voltage transients, e.g., static electricity.
Second Stage - Most of the voltage gain in the CA3140 is provided by the second amplifier stage, consisting of bipolar transistor Q13 and its cascode-connected load resistance provided by pipolar transistors Q3, Q4. On-chip phase compensation, sufficient for a majority of the applications is provided by C1. Additional Miller-Effect compensation (roll-off) can be accomplished, when desired, by simply connecting a small capacitor between terminals 1 and 8 . Terminal 8 is also used to strobe the output stage into quiescence. When terminal 8 is tied to the negative supply rail (terminal 4) by mechanical or electrical means, the output terminal 6 swings low, i.e., approximately to terminal 4 potential.

Output Stage - The CA3140 Series circuits employ a broadband output stage that can sink loads to the negative supply to complement the capability of the PMOS input stage when operating near the negative rail. Quiescent current in the emitter-follower cascade circuit ( $\mathrm{Q} 17, \mathrm{Q} 18$ ) is established by transistors (Q14, Q15) whose base-currents are "mirrored" to current flowing through diode D2 in the bias circuit section. When the CA3140 is operating such that output terminal 6 is sourcing current, transistor Q18 functions as an emitter-follower to source current from the $\mathrm{V}+$ bus (terminal 7), via D7, R9, and R11. Under these conditions, the collector potential of Q13 is sufficiently high to permit the necessary flow of base current to emitter follower Q17 which, in turn, drives Q18.
When the CA3140 is operating such that output terminal 6 is sinking current to the V - bus, transistor Q 16 is the current-sinking
element. Transistor Q16 is mirror-connected to D6, R7, with current fed by way of Q21, R12, and Q20. Transistor Q20, in turn, is biased by current-flow through R13, zener D8, and R14. The dynamic current-sink is controlled by voltage-level sensing. For purposes of explanation, it is assumed that output terminal 6 is quiescently established at the potential mid-point between the $\mathrm{V}+$ and $V$ - supply rails. When output-current sinking-mode operation is required, the collector potential of transistor Q13 is driven below its quiescent level, thereby causing Q17, Q18 to decrease the output voltage at terminal 6. Thus, the gate terminal of PMOS transistor Q 21 is displaced toward the $V$-bus, thereby reducing the channel resistance of Q21. As a consequence, there is an incremental increase in current flow through Q20, R12, Q21, D6, R7, and the base of Q16. As a result, Q16 sinks current from terminal 6 in direct response to the incremental change in output voltage caused by Q18. This sink current flows regardless of load; any excess current is internally supplied by the emitter-follower Q18. Short-circuit protection of the output circuit is provided by Q 19 , which is driven into conduction by the high voltage drop developed across R11 under output short-circuit conditions. Under these conditions, the collector of Q19 diverts current from Q4 so as to reduce the base-current drive from Q17, thereby limiting current flow in Q18 to the short-circuited load terminal.
Bias Circuit - Quiescent current in all stages (except the dynamic current sink) of the CA3140 is dependent upon bias current flow in R1. The function of the bias circuit is to establish and maintain constantcurrent flow through D1, Q6, Q8 and D2. D1 is a diode-connected transistor mirrorconnected in parallel with the base-emitter junctions of Q1, Q2, and Q3. D1 may be considered as a current-sampling diode that senses the emitter current of Q6 and automatically adjusts the base current of Q6 (via Q1) to maintain a constant current through Q6, Q8, D2. The base-currents in Q2, Q3 are also determined by constantcurrent flow D1. Furthermore, current in diode-connected transistor D2 establishes the currents in transistors Q14 and Q15.


Fig. 4 - Open-loop voltage gain vs supply voltage and temperature.


Fig. 6 - Slew rate vs supply voltage andtemperature.


Fig. 8 - Maximum output voltage swing vs frequency.


Fig. 10 - Equivalent input noise voltage vs frequency.


Fig. 5 - Gain-bandwidth product vs supply voltage and temperature.


Fig. 7 - Quiescent supply current vs supply voltage and temperature.


Fig. 9 - Common-mode rejection ratio vs frequency.


Fig. 11 - Power supply rejection ratio vs frequency.

## APPLICATIONS CONSIDERATIONS

Wide dynamic range of input and output characteristics with the most desirable high input-impedance characteristic is achieved in the CA 3140 by the use of an unique design based upon the PMOS-Bipolar process. Input-common-mode voltage range and outputswing capabilities are complementary, allowing operation with the single supply down to four volts.
The wide dynamic range of these parameters also means that this device is suitable for many single-supply applications, such as, for example, where one input is driven below the potential of terminal 4 and the phase sense of the output signal must be maintained - a most important consideration in comparator applications.

## OUTPUT CIRCUIT CONSIDERATIONS

Excellent interfacing with TTL circuitry is easily achieved with a single 6.2 -volt zener diode connected to terminal 8 as shown in Fig.12. This connection assures that the maximum output signal swing will not go more positive than the zener voltage minus two base-to-emitter voltage drops within the CA3140. These voltages are independent of the operating supply voltage.


Fig. 12 - Zener clamping diode connected to terminals 8 and 4 to limit CA3140 output swing to TTL levels.

Fig. 13 shows output current-sinking capabilities of the CA3140 at various supply voltages. Output voltage swing to the negative supply rail permits this device to oper-


Fig. 13 - Voltage across output transistors Q15
ate both power transistors and thyristors directly without the need for level-shifting circuitry usually associated with the 741 series of operational amplifiers.
Fig. 16 show some typical configurations. Note that a series resistor, $R_{L}$, is used in both cases to limit the drive available to the driven device. Moreover, it is recommended that a series diode and shunt diode be used at the thyristor input to prevent large negative transient surges that can appear at the gate of thyristors, from damaging the integrated circuit.


Fig. 14 - Typical incremental offset-voltage shift vs operating life.

## OFFSET-VOLTAGE NULLING

The input-offset voltage can be nulled by connecting a $10-\mathrm{k} \Omega$ potentiometer between terminals 1 and 5 and returning its wiper arm to terminal 4, see Fig. 15a. This technique, however, gives more adjustment range than required and therefore, a considerable portion of the potentiometer rotation is not fully utilized. Typical values of series resistors that may be placed at either end of the potentiometer, see Fig.15b, to optimize its utilization range are given in the table "Typical Electrical Characteristics" shown in this bulletin.
An alternate system is shown in Fig.15c. This circuit uses only one additional resistor of approximately the value shown in the table. For potentiometers, in which the resistance does not drop to zero ohms at either end of rotation, a value of resistance $10 \%$ lower than the values shown in the table should be used.

## LOW-VOLTAGE OPERATION

Operation at total supply voltages as low as 4 volts is possible with the CA3140. A current regulator based upon the PMOS threshold voltage maintains reasonable constant operating current and hence consistent performance down to these lower voltages.
The low-voltage limitation occurs when the upper extreme of the input common-mode voltage range extends down to the voltage at terminal 4. This limit is reached at a total


- BASIC

b. IMPROVED

c. SIMPLER IMPROVED
RESOLUTION

Fig. 15 - Three offset-voltage nulling methods.
supply voltage just below 4 volts. The output voltage range also begins to extend down to the negative supply rail, but is slightly higher than that of the input. Fig. 20 shows these characteristics and shows that with 2 -volt dual supplies, the lower extreme of the input common-mode voltage range is below ground potential.


Fig. 16 - Methods of utilizing the $V_{C E}($ sat $)$ sinking current capability of the CA3140 series.

## BANDWIDTH AND SLEW RATE

For those cases where bandwidth reduction is desired, for example, broadband noise reduction, an external capacitor connected between terminals 1 and 8 can reduce the openloop -3 dB bandwidth. The slew rate will, however, also be proportionally reduced by using this additional capacitor. Thus, a $20 \%$ reduction in bandwidth by this technique will also reduce the slew rate by about $20 \%$.
Fig. 17 shows the typical settling time required to reach 1 mV or 10 mV of the final value for various levels of large signal inputs for the voltage-follower and inverting unity-gain amplifiers. The exceptionally fast setting time characteristics are largely due to the high combination of high gain and wide bandwidth of the CA3140; as shown in Fig. 18.


Fig. 17 - Input voltage vs settling time.

## INPUT CIRCUIT CONSIDERATIONS

As mentioned previously, the amplifier inputs can be driven below the terminal 4 potential, but a series current-limiting re-


Fig. 18 - Open-loop voltage gain and phase lag vs frequency.
sistor is recommended to limit the maximum input terminal current to less than 1 mA to prevent damage to the input protection circuitry.

Moreover, some current-limiting resistance should be provided between the inverting input and the output when the CA3140 is used as a unity-gain voltage follower. This resistance prevents the possibility of extremely large input-signal transients from forcing a signal through the input-protection network and directly driving the internal constant-current source which could result in positive feedback via the output terminal. A $3.9-k \Omega$ resistor is sufficient.

The typical input current is in the order of 10 pA when the inputs are centered at nominal device dissipation. As the output supplies load current, device dissipation will increase, raising the chip temperature and resulting in increased input current. Fig. 19 shows typical input-terminal current versus ambient temperature for the CA3140.
It is well known that MOS/FET devices can exhibit slight changes in characteristics (for example, small changes in input offset voltage) due to the application of large differential input voltages that are sustained over long periods at elevated temperatures.
Both applied voltage and temperature accelerate these changes. The process is reversible and offset voltage shifts of the opposite polarity reverse the offset. Fig. 14 shows the typical offset voltage change as a function of various stress voltages at the maximum rating of $125^{\circ} \mathrm{C}$ (for TO-5); at lower temperatures (TO-5 and plastic), for example, at $85^{\circ} \mathrm{C}$, this change in voltage is considerably less. In typical linear applications, where the differential voltage is small and symmetircal, these incremental changes are of about the same magnitude as those encountered in an operational amplifier employing a bipolar a transistor input stage.

## SUPER SWEEP FUNCTION GENERATOR

A function generator having a wide tuning range is shown in Fig. 21 . The $1,000,000 / 1$


Fig. 19 - Input current vs ambient temperature.


Fig. 20 - Output-voltage-swing capability and common-mode input-voltage range vs supply voltage and temperature.
adjustment range is accomplished by a single variable potentiometer or by an auxiliary sweeping signal. The CA3140 functions as a non-inverting read-out amplifier of the triangular signal developed across the integrating capacitor network connected to the output of the CA3080A current source.
Buffered triangular output signals are then applied to a second CA3080 functioning as a high-speed hysteresis switch. Output from the switch is returned directly back to the
input of the CA3080A current source, thereby, completing the positive feedback loop.
The triangular output level is determined by the four 1N914 level-limiting diodes of the second CA3080 and the resistor-divider network connected to terminal No. 2 (input) of the CA3080. These diodes establish the input trip level to this switching stage and, therefore, indirectly determine the amplitude of the output triangle.
Compensation for propagation delays around the entire loop is provided by one adjust-
ment on the input of the CA3080. This adjustment, which provides for a constant generator amplitude output, is most easily made while the generator is sweeping. Highfrequency ramp linearity is adjusted by the single 7 -to- 60 pF capacitor in the output of the CA3080A.

It must be emphasized that only the CA3080A is characterized for maximum output linearity in the current-generator function.

(b2) Function generator with fixed frequencies
Fig. 21 - Function generator.


Fig. 22 - Meter driver and buffer amplifier.

## METER DRIVER AND BUFFER AMPLIFIER

Fig. 22 shows the CA3140 connected as a meter driver and buffer amplifier. Low driving impedance is required of the CA3080A current source to assure smooth operation of the Frequency Adjustment Control. This low-driving impedance requirement is easily met by using a CA3140 connected as a voltage follower. Moreover, a meter may be placed across the input to the CA3080A to give a logarithmic analog indication of the function generators frequency.
Analog frequency readout is readily accomplished by the means described above because the output current of the CA3080A varies approximately one decade for each $60-\mathrm{mV}$ change in the applied voltage, $V_{A B C}$ (voltage between terminals 5 and 4 of the CA3080A of the function generator). Therefore, six decades represent $360-\mathrm{mV}$ change in $V_{A B C}$.
Now, only the reference voltage must be established to set the lower limit on the meter. The three remaining transistors from the CA3086 Array used in the sweep generator are used for this reference voltage. In addition, this reference generator arrangement tends to track ambient temperature variations, and thus compensates for the effects of the normal negative temperature coefficient of the CA3080A $V_{A B C}$ terminal voltage.
Another output voltage from the reference generator is used to insure temperature tracking of the lower end of the Frequency Adjustment Potentiometer. A large series resistance simulates a current source, assuring similar temperature coefficients at both ends of the Frequency Adjustment Control.

To calibrate this circuit, set the Frequency Adjustment Potentiometer at its low end. Then adjust the Minimum Frequency Calibration Control for the lowest frequency. To establish the upper frequency limit, set the Frequency Adjustment Potentiometer to its upper end and then adjust the Maximum Frequency Calibration Control for the maximum frequency. Because there is interaction among these controls, repetition of the adjustment procedure may be necesary.
Two adjustments are used for the meter. The meter sensitivity control sets the meterscale width of each decade, while the meter position control adjusts the pointer on the scale with negligible effect on the sensitivity adjustment. Thus, the meter sensitivity adjustment control calibrates the meter so that it deflects $1 / 6$ of full scale for each decade change in frequency.

## SINE-WAVE SHAPER

The circuit shown in Fig. 23 uses a CA3140 as a voltage follower in combination with diodes from the CA3019 Array to convert the triangular signal from the function generator to a sine-wave output signal having typically less than $2 \%$ THD. The basic zerocrossing slope is established by the $10-\mathrm{k} \Omega$ potentiometer connected between terminals 2 and 6 of the CA3140 and the $9.1-\mathrm{k} \Omega$ resistor and $10-\mathrm{k} \Omega$ potentiometer from terminal 2 to ground. Two break points are established by diodes $\mathrm{D}_{1}$ through $\mathrm{D}_{4}$. Positive feedback via $\mathrm{D}_{5}$ and $\mathrm{D}_{6}$ establishes the zero slope at the maximum and minimum levels of the sine wave. This technique is necessary because the voltage-follower configuration approaches unity gain rather than the zero gain required to shape the sine wave at the two extremes.

This circuit can be adjusted most easily with a distortion analyzer, but a good first approximation can be made by comparing the output signal with that of a sine-wave generator. The initial slope is adjusted with the potentiometer $R_{1}$, followed by an adjustment of $R_{2}$. The final slope is established by ad justing $R_{3}$, thereby adding additional segments that are contributed by these diodes Because there is some interaction among these controls, repetition of the adjustment procedure may be necessarv

## SWEEPING GENERATOR

Fig. 24 shows a sweeping generator. Three CA3140's are used in this circuit. One CA3140 is used as an integrator, a second device is used as a hysteresis switch that determines the starting and stopping points of the sweep. A third CA3140 is used as a logarithmic shaping network for the log function. Rates and slopes, as well as sawtooth, triangle, and logarithmic sweeps are generated by this circuit.


Fig. 23 - Sine-wave shaper


Fig. 24 - Sweeping generator.


Fig. 25 - Wideband output amplifier.

## WIDEBAND OUTPUT AMPLIFIER

Fig. 25 shows a high-slew-rate, wideband amplifier suitable for use as a 50 -ohm trans-mission-line driver. This circuit, when used in conjunction with the function generator and sine-wave shaper circuits shown in Figs. 21 and 23 provides 18 volts peak-to-peak output open-circuited, or 9 volts peak-to-peak output when terminated in 50 ohms. The slew rate required of this amplifier is 28 volts $/ \mu$ s (18 volts peak-to-peak $\times \pi \times 0.5$ MHz .

## POWER SUPPLIES

High input-impedance, common-mode capability down to the negative supply and high output-drive current capability are key factors in the design of wide-range output-voltage supplies that use a single input voltage to provide a regulated output voltage that can be adjusted from essentially 0 to 24 volts. Unlike many regulator systems using comparators having a bipolar transistor-input stage, a high-impedance reference-voltage divider from a single supply can be used in connection with the CA3140 (see Fig. 26).


Fig. 26 - Basic single-supply voltage regulator showing voltage-follower configuration.

Essentially, the regulators, shown in Figs. 27 and 28, are connected as non-inverting power operational amplifiers with a gain of 3.2. An 8 -volt reference input yields a maximum output voltage slightly greater than 25 volts. As a voltage follower, when the reference input goes to 0 volts the output will be 0 volts. Because the offset voltage is also multiplied by the 3.2 gain factor, a potentiometer is needed to null the offset voltage.
Series pass transistors with high I CBO levels will also prevent the output voltage from reaching zero because there is a finite voltage drop ( $V_{C E s a t)}$ across the output of the CA3140 (see Fig.13). This saturation voltage level may indeed set the lowest voltage obtainable.


Fig. 27 - Regulated power supply.

The high impedance presented by terminal 8 is advantageous in effecting current limiting. Thus, only a small signal transistor is required for the current-limit sensing amplifier. Resistive decoupling is provided for this transistor to minimize damage to it or the CA3140 in the event of unusual input or output transients on the supply-rail.
Figs. 27 and 28, show circuits in which a D2201 high-speed diode is used for the current sensor. This diode was chosen for its slightly higher forward-voltage drop characteristic thus giving greater sensitivity. It must be emphasized that heat sinking of this diode is essential to minimize variation of the current trip point due to internal heating of the diode. That is, 1 ampere at 1 volt forward drop represents one watt which can result in significant regenerative changes in the current trip point as the diode temperature rises. Placing the small-signal reference amplifier in the proximity of the cur-rent-sensing diode also helps minimize the variability in the trip level due to the negative temperature coefficient of the diode. In spite of those limitations, the current limiting point can easily be adjusted over the range from 10 mA to 1 ampere with a single adjustment potentiometer. If the temperature stability of the current-limiting system is a serious consideration, the more usual current-sampling resistor-type of circuitry should be employed.
A power Darlington transistor (in a heat sink TO-3 case), is used as the series-pass element for the conventional current-limiting system; Fig. 27, because high-power Darlington dissipation will be encountered at low output voltage and high currents.

A small heat-sink VERSAWATT transistor is used as the series-pass element in the foldback current system, Fig.28, since dissipation levels will only approach 10 watts. In this system, the D2201 diode is used for current sampling. Foldback is provided by the $3 \mathrm{k} \Omega$ and $100 \mathrm{k} \Omega$ divider network connected to the base of the current-sensing transistor.
Both regulators, Figs. 27 and 28 , provide better than 0.02\% load regulation. Because there is constant loop gain at all voltage settings, the regulation also remains constant. Line regulation is $0.1 \%$ per volt. Hum and noise voltage is less than $200 \mu \mathrm{~V}$ as read with a meter having a $10-\mathrm{MHz}$ bandwidth.
Fig. 31 (a) shows the turn ON and turn OFF characteristics of both regulators. The slow turn-on rise is due to the slow rate of rise of the reference voltage. Fig. 29 (b) shows the transient response of the regulator with the switching of a $20-\Omega$ load at 20 volts output.


Fig. 28 - Regulated power supply with
"foldback" current limiting.

(b)
transient response TOP TRACE: OUTPUT VOLTAGE
( $200 \mathrm{mV} / \mathrm{DIV}$ AND $5 \mu \mathrm{~s} / \mathrm{DIV}$ )
BOTTOM TRACE COLLECTOR OF LOAD
SWITCHING TRANS
LOAD $=1$ AMPERE
( 5 VOLTS/DIV AND $5 \mu \mathrm{~s} / \mathrm{DIV}$ )
92CS-2788
Fig. 29 - Waveforms of dynamic characteristics of power supply currents shown in Figs. 29 and 30.


20 dB FLAT POSITION GAIN
$\pm 15$ dB bass ano treble boost and
CUT AT 100 Hz AND 10 kHz , RESPECTIVELY
25 VOLTS p-p OUTPUT AT 20 kHz
-3 dB AT 24 kHz FROM I kHz REFERENCE

Fig. 30 - Tone control circuit using CA3130 series
(20-dB midband gain).


Fig. 31 -- Baxandall tone control circuit using CA3140 series.

## TONE CONTROL CIRCUITS

High-slew-rate, wide-bandwidth, high-output voltage capability and high input impedance are all characteristics required of tone-control amplifiers. Two tone control circuits that exploit these characteristics of the CA3140 are shown in Figs. 30 and 31.
The first circuit, shown in Fig. 31, is the Baxandall tone-control circuit which provides unity gain at midband and uses standard linear potentiometers. The high input impedance of the CA3140 makes possible the use of low-cost, low-value, small-size capacitors, as well as reduced load of the driving stage.

Bass treble boost and cut are $\pm 15 \mathrm{~dB}$ at 100 Hz and 10 kHz , respectively. Full peak-to-peak output is available up to at least 20 kHz due to the high slew rate of the CA3140. The amplifier gain is -3 dB down from its "flat" position at 70 kHz .
Fig. 30 shows another tone-control circuit with similar boost and cut specifications. The wideband gain of this circuit is equal to the ultimate boost or cut plus one, which in this case is a gain of eleven. For $20-\mathrm{dB}$ boost and cut, the input loading of this circuit is essentially equal to the value of the resistance from terminal No. 3 to ground. A detailed analysis of this circuit is given in "An IC Operational Transconductance Amp. lifier (OTA) With Power Capability" by L, Kaplan and H . Wittlinger, IEEE Transactions on Broadcast and Television Receivers, Vol. BTR-18, No.3, August, 1972.

## WIEN BRIDGE OSCILLATOR

Another application of the CA3140 that makes excellent use of its high input-impedance, high-slew-rate, and high-voltage qualities is the Wien Bridge sine-wave oscillator. A basic Wien Bridge oscillator is shown in Fig. 32. When $R_{1}=R_{2}=R$ and $C_{1}=C_{2}=C$, the frequency equation reduces to the familiar $f=1 / 2 \pi R C$ and the gain required for oscillation, AOSC is equal to 3 . Note that if $C_{2}$ is increased by a factor of four and $R_{2}$ is reduced by a factor of four, the gain required for oscillation becomes 1.5 , thus per-
mitting a potentially higher operating frequency closer to the gain-bandwidth product of the CA3140.

Oscillator stabilization takes on many forms. It must be precisely set, otherwise the amplitude will either diminish or reach some form of limiting with high levels of distortion. The element, $R_{s}$, is commonly replaced with some variable resistance element. Thus, through some control means, the value of $R_{S}$ is adjusted to maintain constant oscillator output. A FET channel resistance, a thermistor, a lamp bulb, or other device whose resistance is made to increase as the output amplitude is increased are a few of the elements often utilized.


Fig. 32 - Basic Wien bridge oscillator circuit using an operational amplifier.

Fig. 33 shows another means of stabilizing the oscillator with a zener diode shunting the feedback resistor ( $R_{f}$ of Fig. 32). As the output signal amplitude increases, the zener diode impedance decreases resulting in more feedback with consequent reduction in gain; thus stabilizing the amplitude of the output signal. Furthermore, this combination of a monolithic zener diode and bridge rectifier circuit tends to provide a zero temperature coefficient for this regulating system. Because this bridge rectifier system has no time constant, i.e., thermal time constant for the lamp bulb, and RC time constant for filters often used in detector networks, there is no lower frequency limit. For example, with $1-\mu \mathrm{F}$ polycarbonate capacitors and $22 \mathrm{M} \Omega$ for the frequency determining network, the operating frequency is 0.007 Hz .

As the frequency is increased, the output amplitude must be reduced to prevent the output signal from becoming slew-rate limited. An output frequency of 180 kHz will reach a slew rate of approximately 9 volts/ $\mu s$ when its amplitude is 16 volts peak-topeak.


Fig. 33 - Wien bridge oscillator circuit using CA3140 series.

## SIMPLE SAMPLE-AND-HOLD SYSTEM

Fig. 34 shows a very simple sample-and-hold system using the CA3140 as the readout amplifier for the storage capacitor. The CA3080A serves as both input buffer amplifier and low feed-through transmission switch.* System offset nulling is accom-


Fig. 34 - Sample- and hold circuit.
plished with the CA3140 via its offset nulling terminals. A typical simulated load of $2 \mathrm{k} \Omega$ and 30 pF is shown in the schematic.

In this circuit, the storage compensation capacitance $\left(C_{1}\right)$ is only 200 pF . Larger value capacitors provide longer "hold" periods but with slower slew rates. The slew rate $\frac{d v}{d t}=\frac{i}{c}=0.5 \mathrm{~mA} / 200 \mathrm{pF}=2.5 \mathrm{~V} / \mu \mathrm{s}$.

[^21]Pulse "droop" during the hold interval is $170 \mathrm{pA} / 200 \mathrm{pF}$ which is $=0.85 \mu \mathrm{~V} / \mu \mathrm{s}$; (i.e., $170 \mathrm{pA} / 200 \mathrm{pF}$ ). In this case, 170 pA represents the typical leakage current of the CA3080A when strobed off. If $\mathrm{C}_{1}$ were increased to 2000 pF . the "hold-droon" rate will decrease to $0.085 \mu \mathrm{~V} / \mu \mathrm{s}$, but the slew rate would decrease to $0.25 \mathrm{~V} / \mu \mathrm{s}$. The parallel diode network connected between terminal


LARGE-SIGNAL RESPONSE AND SETTLING time
TOP TRACE : OUTPUT SIGNAL
( 5 V/DIV AND $2 \mu$ s/DIV.)
BOTTOM TRACE : INPUT SIGNAL
(5V/DIV AND $2 \mu \mathrm{~s}$ /DIV.)
CENTER TRACE DIFFERENCE OF INPUT ANO OUTPUT
SIGNALS THROUGH TEKTRONIX
AMPLIFIER TAI3
( 5 mV /DIVAND $2 \mu \mathrm{~s} /$ DIV.) $92 \mathrm{CS}-27884$


SAMPLING RESPONSE
TOP TRACE: SYSTEM OUTPUT
( $100 \mathrm{mV} / \mathrm{DIV}$ AND $500 \mathrm{~ns} /$ DIV.)
BOTTOM TRACE : SAMPLING SIGNAL $(20 \mathrm{v} / \mathrm{DIV}$ AND $500 \mathrm{~ns} /$ DIV.)

92Cs-27885
Fig. 35 - Sample- and hold system dynamic characteristics waveforms.

3 of the CA3080A and terminal 6 of the CA3140 prevents large input-signal feedthrough across the input terminals of the CA3080A to the 200 pF storage capacitor when the CA3080A is strobed off. Fig. 35 shows dynamic characteristic waveforms of this sample-and-hold system.

## CURRENT AMPLIFIER

The low input-terminal current needed to drive the CA3140 makes it ideal for use in current-amplifier applications such as the one shown in Fig. 36. In this circuit, low current is supplied at the input potential as the power supply to load resistor $R_{L}$. This load current is increased by the multiplication factor R2/R1, when the load current is monitored by the power supply meter $M$. Thus, if the load current is 100 nA , with values shown, the load current presented to the supply will be $100 \mu \mathrm{~A}$; a much easier current to measure in many systems.
Note that the input and output voltages are transferred at the same potential and only the output current is multiplied by the scale factor.
The dotted components show a method of decoupling the circuit from the effects of high output-load capacitance and the potential oscillation in this situation. Essentially, the necessary high-frequency feedback is provided by the capacitor with the dotted series resistor providing load decoupling.


Fig. 36 - Basic current amplifier for low-current measurement systems.

Fig. 37 shows a single-supply, absolute-value, ideal full-wave rectifier with associated waveforms. During positive excursions, the input signal is fed through the feedback network directly to the output. Simultaneously, the positive excursion of the input signal also drives the output terminal (No.6) of the inverting amplifier in a negative-going excursion such that the 1 N914 diode effectively disconnects the amplifier from the signal path. During a negative-going excursion of the input signal, the CA3140 functions as a normal inverting amplifier with a gain equal to -R2/R1. When the equality of the two equations shown in Fig. 37 is satisfied, the full-wave output is symmetrical.

[^22]

Fig. 37 - Single-supply, absolute-value, ideal full-wave rectifier with associated waveforms.


Fig. $38-$ Split-supply voltage-follower test circuit and associated waveforms.


Fig. 39 - Test circuit amplifier (30-dB gain) used for wideband noise measurement.


Dimensions and pad layout for CA3140H.
The photographs and dimensions represent a chip when it is part of the wafer. When the wafer is cut into chips, the cleavage angles are $57^{\circ}$ instead of $90^{\circ}$ with respect to the face of the chip. Therefore, the isolated chip is actually $7 \mathrm{mi} / \mathrm{s}(0.17 \mathrm{~mm})$ larger in both dimensions.

Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils $\left(10^{-3}\right.$ inch $)$.

## BiMOS Operational Amplifiers

## With MOSFET Input/CMOS Output

## Features:

- MOSFET input stage provides:
very high $Z_{I}=1.5 \mathrm{~T} \Omega(1.5 \times 1012 \Omega)$ typ. very low $I=5 \mathrm{pA}$ typ. at 15 V operation
$=2 p A$ typ. at 5 V operation
- Common-mode input voltage range includes negative supply rail; input terminals can be swung 0.5 V below negative supply rail
- CMOS output stage permits signal swing to either (or both) supply rails


## Applications:

- Ground referenced single supply amplifiers
- Fast sample hold amplifiers
- Long duration timers/monostables
- High input impedance wideband amplifiers
- Voltage followers (e.g. follower for single supply D/A converter)
- Wien-Bridge oscillators
- Voltage controlled oscillators
- Photo diode sensor amplifiers

The CA3160A and CA3160 are integrated circuit operational amplifiers that combine the advantage of both CMOS and biploar transistors on a monolithic chip. The CA3160 series are frequency compensated versions of the popular CA3130 series.

Gate-protected p-channel MOSFET (PMOS) transistors are used in the input circuit to provide very high input impedance, very low input current, and exceptional speed performance. The use of PMOS field effect transistors in the input stage results in common-mode input voltage capability down to 0.5 volt below the negative-supply terminal, an important attribute in single-supply applications.

A complementary symmetry MOS (CMOS) transistor-pair, capable of swinging the output voltage to within 10 millivolts of either supply voltage terminal (at very high values of load
impedance), is employed as the output circuit.
The CA3160 Series circuits operate at supply voltges ranging from 5 to 16 volts, or $\pm 2.5$ to $\pm 8$ volts when using split supplies, and have terminals for adjustment of offset voltage for applications requiring offset null capability. Terminal provisions are also made to permit strobing of the output stage.
The CA3160 Series is supplied in standard 8-lead TO-5 style packages ( $T$ suffix), 8-lead dual-in-line formed lead TO-5 style "DIL-CAN" packages (S suffix). The CA3160 is available in chip form (H suffix). The CA3160 and CA3160A are also available in the Mini-DIP 8-lead dual-in-line plastic package (Mini-DIP-E suffix). All types operate over the full military temperature range of $-55^{\circ} \mathrm{C}$ to +1250 C . The CA3160A offers superior input characteristics over those of the CA3160.

ELECTRICAL CHARACTERISTICS at $\mathrm{T}_{\mathrm{A}^{-2}} \mathbf{2 5}^{\circ} \mathrm{C}, \mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}$ (Unless otherwise specified)



CA3160 Series devices have an on-chip frequencycompensation network. Supplementary phasecompensation or frequency roll-off (if desired) can be connected externally between terminals 1 and 8 .

Fig. 1 - Functional diagrams of the CA3160 Series.

TYPICAL VALUES INTENDED ONLY FOR DESIGN GUIDANCE

CHARACTERISTIC	TEST CONDITIONS	CA3160   CA3160A $(\mathbf{T}, \mathbf{S}, \mathbf{E})$	UNITS
	$\begin{gathered} \mathrm{V}^{+}=+7.5 \mathrm{~V} \\ \mathrm{~V}^{-}=-7.5 \mathrm{~V} \\ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{gathered}$   (Unless Other-   wise Specified)		
Input Offset Voltage Adjustment Range	$10 \mathrm{k} \Omega$ across   Terms. 4 and 5 or 4 and 1	$\pm 22$	mV
Input Resistance, $\mathrm{R}_{1}$		1.5	TS
Input Capacitance, $\mathrm{C}_{1}$	$\mathrm{f}=1 \mathrm{MHz}$	4.3	pF
Equivalent Input Noise Voltage, $e_{n}$	$B W=$ $R_{S}=1 \mathrm{M} \Omega$   0.2 MHz $R_{S}=10 \mathrm{M} \Omega$	$\begin{aligned} & 40 \\ & 50 \\ & \hline \end{aligned}$	$\mu \mathrm{V}$
Equivalent Input Noise Voltage, $\mathrm{e}_{\mathrm{n}}$	$\begin{array}{l\|l} \hline \mathrm{R}_{\mathrm{S}}= & 1 \mathrm{kHz} \\ 100 \Omega & 10 \mathrm{kHz} \\ \hline \end{array}$	$\begin{aligned} & 72 \\ & 30 \\ & \hline \end{aligned}$	$n \vee \sqrt{\mathrm{~Hz}}$
Unity Gain Crossover Frequency, $\mathrm{f}_{\mathrm{T}}$		4	MHz
Slew Rate, SR:		10	$\mathrm{V} / \mu \mathrm{s}$
Transient Response Rise Time, $\mathrm{t}_{\mathrm{r}}$	$\mathrm{C}_{\mathrm{L}}-25 \mathrm{pF}$	0.09	$\mu \mathrm{s}$
Overshoot	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{kS}$	10	\%
Settling Time ( $4 \mathrm{~V}_{\mathrm{p} . \mathrm{p}}$ Input to $<0.1 \%$ )	Follower)	1.8	$\mu \mathrm{s}$


CHARACTERISTIC	TEST CONDITIONS $\begin{gathered} \mathrm{V}^{+}=5 \mathrm{~V} \\ \mathrm{~V}^{-}=0 \mathrm{~V} \\ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{gathered}$   (Unless Otherwise Specified)	$\begin{aligned} & \text { CA3160A } \\ & (T, S, E) \end{aligned}$	$\begin{aligned} & C A 3160 \\ & (T, S, E) \end{aligned}$	UNITS
Input Offset Voltage, $\mathrm{V}_{10}$		2	6	mV
Input Offset Current, ${ }^{10}$		0.1	0.1	pA
Input Current, II		2	2	pA
Common-Mode Rejection Ratio, CMRR		90	80	dB
Large-Signal Voltage	$\mathrm{V}_{\mathrm{O}}=4 \mathrm{~V}_{\mathrm{p} \cdot \mathrm{p}}$	100 k	100 k	V/V
Gain, $\mathrm{AOL}^{\text {O }}$	$\mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega$	100	100	dB
Common-Mode Input Voltage Range, VICR		0 to 2.8	0 to 2.8	V
Supply Current, $1^{+}$	$\begin{gathered} \mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}, \\ \mathrm{R}_{\mathrm{L}}=\infty \\ \hline \mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V} . \\ \mathrm{R}_{\mathrm{L}}=\infty \end{gathered}$	300	500	$\mu \mathrm{A}$
Power Supply Rejection Ratio, $\Delta V_{10} / \Delta V^{+}$		200	200	$\mu \mathrm{V} / \mathrm{V}$

MAXIMUM RATINGS, Absolute-Maximum Values


```
TEMPERATURE RANGE:
 OPERATING (All Types) . . . - -55 to +125 ' C
 STORAGE (All Types) - }65\mathrm{ to +150 }\mp@subsup{}{}{\circ}\textrm{C
 OUTPUT SHORT-CIRCUIT
 DURATION* INDEFINITE
 LEAD TEMPERATURE
 (DURING SOLDERING):
 AT DISTANCE 1/16\pm1/32 INCH
 (1.59 \pm0.79 MM) FROM CASE
 FOR }10\mathrm{ SECONDS MAX. +2655
```

*Short circuit may be applied to ground or to either supply.


## CIRCUIT DESCRIPTION

Fig. 3 is a block diagram of the CA3160 series CMOS Operational Amplifiers. The input terminals may be operated down to 0.5 V below the negative supply rail, and the output can be swung very close to either supply rail in many applications. Consequently, the CA3160 series circuits are ideal for single-supply operation. Three class A amplifier stages, having the individual gain capability and current consumption shown in Fig.3, provide the total gain of the CA3160. A biasing circuit provides two potentials for common use in the first and second stages. Terminals 8 and 1 can be used to supplement the internal phase compensation network if
additional phase compensation or frequency roll-off is desired. Terminals 8 and 4 can also be used to strobe the output stage into a low quiescent current state. When Terminal 8 is tied to the negative supply rail (Terminal 4) by mechanical or electrical means, the output potential at Terminal 6 essentially rises to the positive supply-rail potential at Terminal 7. This condition of essentially zero current drain in the output stage under the strobed "OFF" condition can only be achieved when the ohmic load resistance presented to the amplifier is very high le.g., when the amplifier output is used to drive CMOS digital circuits in comparator applications).

## CA3 160A, CA3 160

Input Stages -- The circuit of the CA3160 is shown in Fig.2. It consists of a differentialinput stage using PMOS field-effect transistors (Q6, Q7) working into a mirror-pair of bipolar transistors (09, Q10) functioning as load resistors together with resistors R3 through R6. The mirror-pair transistors also function as a differential-to-single-ended converter to provide base drive to the secondstage bipolar transistor (Q11). Offset nulling, when desired, can be effected by connecting a 100,000 -ohm potentiometer across Terms. 1 and 5 and the potentiometer slider arm to Term. 4. Cascode-connected PMOS transistors Q2, Q4, are the constant-current source for the inputstage. The biasing circuit for the constant-current source is subsequently described. The small diodes D5 through D7 provide gate-oxide protection against highvoltage transients, e.g., including static electricity during handling for Q6 and Q7.
Second-Stage - Most of the voltage gain in the CA3160 is provided by the second amplifier stage, consisting of bipolar transistor Q11 and its cascode-connected load resistance provided by PMOS transistors Q3 and Q5. The source of bias potentials for these PMOS transistors is described later. Miller Effect compensation (roll off) is accomplished by means of the $30-\mathrm{pF}$ capacitor and $2-\mathrm{k} \Omega$ resistor connected between the base and collector of transistor Q11. These internal components provide sufficient compensation for unity gain operation in most applications. However, additional compensation, if desired, may be used between Terminals 1 and 8 .
Bias-Source Circuit - At total supply voltages, somewhat above 8.3 volts, resistor R2 and zener diode $\mathrm{Z1}$ serve to establish a voltage of 8.3 volts across the series-connected circuit, consisting of resistor R1, diodes D1 through D4, and PMOS transistor Q1. A tap at the junction of resistor R1 and diode D4 provides a gate-bias potential of about 4.5 volts for PMOS transistors Q4 and Q5 with respect to Terminal 7. A potential of
about 2.2 volts is developed across diodeconnected PMOS transistor 01 with respect to Terminal 7 to provide gate bias for PMOS transistors Q2 and Q3. It should be noted that Q 1 is "mirror-connected" $\dagger$ to both Q2 and Q3. Since transistors Q1, Q2, Q3 are designed to be identical, the approximately 200 -microampere current in Q1 establishes a similar current in Q2 and Q3 as constantcurrent sources for both the first and second amplifier stages, respectively.
At total supply voltages somewhat less than 8.3 volts, zener diode $\mathrm{Z1}$ becomes nonconductive and the potential, developed across series-connected R1, D1-D4, and Q1, varies directly with variations in supply voltage. Consequentiy, the gate bias for Q4, Q5 and Q2, Q3 varies in accordance with supply-voltage variations. This variation results in deterioration of the power-supply-rejection ratio (PSRR) at total supply voltages below 8.3 volts. Operation at total supply voltages below about 4.5 volts results in seriously degraded performance.

Output Stage - The output stage consists of a drain-loaded inverting amplifier using COS/ MOS transistors operating in the Class $A$ mode. When operating into very high resistance loads, the output can be swung within millivolts of either supply rail. Because the output stage is a drain-loaded amplifier, its gain is dependent upon the load impedance. The transfer characteristics of the output stage for a load returned to the negative supply rail are shown in Fig.6. Typical op-amp loads are readily driven by the output stage. Because largesignal excursions are non-linear, requiring feedback for good waveform reproduction, transient delays may be encountered. As a voltage follower, the amplifier can achieve 0.01 per cent accuracy levels, including the negative supply rail.
$\dagger$ For generalinformation on the characteristics CMOS transistor-pairs in linear-circuit applications, see File No. 619, data bulletin on CA3600E "CMOS Transistor Array".

*OTAL SUPPLY VOLTAGE (FOR INDICATED VOLTAGE GAINS) = 15 V

* WITH INPUT TERMINALS BIASED SO THAT TERM 6 POTENTIAL
with output terminal
* WITH OUTPUT TERMINAL DRIVEN TO EITHER SUPPLY RAIL

Fig. 3-Block diagram of the CA3160 Series.


Fig. 4 - Open-loop voltage gain and phase shift vs. frequency.


92C5-24718
Fig. 6 - Voltage transfer characteristics of COS/MOS output stage.


Fig. 8 - Quiescent supply current vs. supply voltage at several temperatures.


Fig. 10 - Voltage across NMOS output transistor (Q12) vs. load current.


Fig. 5 - Open-loop gain vs. temperature.


Fig. 7 - Quiescent supply current vs. supply voltage.


Fig. 9 - Voltage across PMOS output transistor (O8) vs. load current.


Fig. 11 - Equivalent noise voltage vs. frequency.

## Offset Nulling

Offset-voltage nulling is usually accomplished with a 100,000 -ohm potentiometer connected across Terminals 1 and 5 and with the potentiometer slider arm connected to Terminal 4. A fine offset-nuil adjustment usually can be effected with the slider arm positioned in the mid-point of the potentiometer's total range.

## Input Current Variation with CommonMode Input Voitage

As shown in the Table of Electrical Characteristics, the input current for the CA3160 Series Op-Amps is typically $5 p A$ at $\mathrm{T}_{A}=25^{\circ} \mathrm{C}$ when Terminals 2 and 3 are at a commonmode potential of +7.5 volts with respect to negative supply Terminal 4 . Fig. 12 contains


Fig. 12 - Input current vs. common-mode voltage.
data showing the variation of input current as a function of common-mode input voltage at $T_{A}=25^{\circ} \mathrm{C}$. These data show that circuit designers can advantageously exploit these characteristics to design circuits which typically require an input current of less than 1 pA , provided the common-mode input voltage does not exceed 2 volts. As previously noted, the input current is essentially the result of the leakage current through the gate-protection diodes in the input circuit and, therefore, a function of the applied voltage. Although the finite resistance of the glass terminal-to-case insulator of the TO-5 package also contributes an increment of leakage current, there are useful compensating factors. Because the gate-protection network functions as if it is connected to Terminal 4 potential, and the TO- 5 case of the CA3160 is also internally tied to Terminal 4 , input terminal 3 is essentially "guarded" from spurious leakage currents.
Input-Current Variation with Temperature The input current of the CA3160 Series circuits is typically 5 pA at $25^{\circ} \mathrm{C}$. The major portion of this input current is due to leakage current through the gate-protective diodes in the input circuit. As with any semiconductorjunction device, including op amps with a junction-FET input stage, the leakage current approximately doubles for every $10^{\circ} \mathrm{C}$ increase in temperature. Fig. 13 provides data
on the typical variation of input bias current as a function of temperature in the CA3160.


Fig. 13 - Input current vs. ambient temperature.
In applications requiring the lowest practical input current and incremental increases in current because of "warm-up" effects, it is suggested that an appropriate heat sink be used with the CA3160. In addition, when "sinking" or "sourcing" significant output current the chip temperature increases, causing an increase in the input current. In such cases, heat-sinking can also very markedly reduce and stabilize input current variations.

## Input-Offset-Voltage ( $\mathrm{V}_{1 \mathrm{O}}$ ) Variation with DC Bias vs. Device Operating Life

It is well known that the characteristics of a MOS/FET device can change slightly when a dc gate-source bias potential is applied to the device for extended time periods. The magnitude of the change is increased at high temperatures. Users of the CA3160 should be alert to the possible impacts of this effect if the application of the device involves extended operation at high temperatures with a significant differential dc bias voltage applied across Terminals 2 and 3. Fig. 14 shows typical data pertinent to shifts in offset voltage encountered with CA3160 devices in TO-5 packages during life testing. At lower temperatures (TO-5 and plastic) for example at $85^{\circ} \mathrm{C}$, this change in voltage is considerably less. In typical linear applications where the differential voltage is small and symmetrical, these incremental changes are of about the same magnitude as those en-


Fig. 14 - Typical incremental offset-voltage shift vs. operating life.
countered in an operational amplifier employing a bipolar transistor input stage. The two-volt dc differential voltage example represents conditions when the amplifier output state is "toggled", e.g., as in comparator applications.

## Power-Supply Considerations

Because the CA3160 is very useful in singlesupply applications, it is pertinent to review some considerations relating to power-supply current consumption under both single- and dual-supply service. Figs. 15(a) and 15(b) show the CA3160 connected for both dualand single-supply operation.

(a) DUAL POWER-SUPPLY OPERATION

(b) SINGLE POWER-SUPPLY OPERATION

Fig. 15 - CA3160 output stage in dual and single power-supply operation.
Dual-supply operation: When the output voltage at Terminal 6 is zero-volts, the currents supplied by the two power supplies are equal. When the gate terminals of Q 8 and Q12 are driven increasingly positive with respect to ground, current flow through Q12 (from the negative supply) to the load is increased and current flow through Q8 (from the positive supply) decreases correspondingly. When the gate terminals of Q 8 and Q12 are driven increasingly negative with respect to ground, current flow through Q8 is increased and current flow through Q12 is decreased accordingly.

Single-supply operation: Initially, let it be assumed that the value of $R_{L}$ is very high (or disconnected), and that the input-terminal bias (Terminals 2 and 3 ) is such that the output terminal (No. 6) voltage is at $\mathrm{V}^{+} / 2$, i.e., the voltage-drops across Q 8 and Q 12 are of equal magnitude. Fig. 7 shows typical quiescent supply-current vs. supply-voltage for the CA3160 operated under these conditions.

Since the output stage is operating as a Class A amplifier, the supply-current will remain constant under dynamic operating conditions as long as the transistors are operated in the linear portion of their voltage-transfer characteristics (see Fig. 6). If either O8 or Q12 are swung out of their linear regions toward cutoff (a non-linear region), there will be a corresponding reduction in supply-current. In the extreme case, e.g., with Terminal 8 swung down to ground potential (or tied to ground), NMOS transistor Q12 is completely cut off and the supply-current to series-connected transistors Q8, Q12 goes essentially to zero. The two preceding stages in the CA3160, however, continue to draw modest supply current (see the lower curve in Fig. 7) even though the output stage is strobed off. Fig. 15 (a) shows a dual-supply arrangement for the output stage that can also be strobed off, assuming $R_{L}=\infty$, by pulling the potential of Terminal 8 down to that of Terminal 4.

Let it now be assumed that a load-resistance of nominal value (e.g., 2 kilohms) is connected between Terminal 6 and ground in the circuit of Fig. 15(b). Let it further be assumed again that the input-terminal bias (Terminals 2 and 3) is such that the output terminal (No. 6) voltage is a $\mathrm{V}^{+} / 2$. Since PMOS transistor 08 must now supply quiescent current to both $R_{\mathrm{L}}$ and transistor Q12, it should be apparent that under these conditions the supply-current must increase as an inverse function of the $R_{L}$ magnitude. Fig. 9 shows the voltage-drop across PMOS transistor 08 as a function of load current at several supply voltages. Fig. 6 shows the voltage-transfer characteristics of the output stage for several values of load resistance.

## Wideband Noise

From the standpoint of low-noise perform. ance considerations, the use of the CA3160 is most advantageous in applications where in the source resistance of the input signal is in the order of 1 megohm or more. In this case, the total input-referred noise voltage is typically only $40 \mu \vee$ when the test-circuit amplifier of Fig. 16 is operated at a total supply voltage of 15 volts. This value of


Fig. 16 - Test-circuit amplifier (30-dB gain) used for wideband noise measurements.
total input-referred noise remains essentially constant, even though the value of source resistance is raised by an order of magnitude. This characteristic is due to the fact that reactance of the input capacitance becomes a significant factor in shunting the source resistance. It should be noted, however, that for values of source resistance very much greater than 1 megohm, the total noise voltage generated can be dominated by the thermal noise contributions of both the feedback and source resistors.

(a)

(b) Small Signal Response Top Trace: Output Bottom Trace: Input


92C5-28579
(c) Input-Output Difference Signal Showing Settling Time
Top Trace: Output Signal
Center Trace: Difference Signal $5 \mathrm{mV} / \mathrm{div}$ Bottom Trace: Input Signal

Fig. 17 - Split-supply voltage follower with associated waveforms.

## TYPICAL APPLICATIONS

## Voltage Followers

Operational amplifiers with very high input resistances, like the CA3160, are particularly suited to service as voltage followers. Fig. 17 shows the circuit of a classical voltage follower, together with pertinent waveforms using the CA3160 in a split-supply configuration.
A voltage follower, operated from a singlesupply, is shown in Fig. 18 together with related waveforms. This follower circuit is linear over a wide dynamic range, as illustrated by the reproduction of the output waveform in Fig.18b with input-signal ramping. The waveforms in Fig.18c show that the follower does not lose its input-tooutput phase-sense, even though the input is being swung 7.5 volts below ground potential. This unique characteristic is an important attribute in both operational amplifier and comparator applications. Fig.18c also shows the manner in which the COS/MOS output stage permits the output signal to swing down
to the negative supply-rail potential (i.e., ground in the case shown). The digital-toanalog converter (DAC) circuit, described in the following section, illustrates the practical use of the CA3160 in a single-supply voltagefollower application.

## 9-Bit CMOS DAC

A typical circuit of a 9-bit Digital-to-Analog Converter (DAC)* is shown in Fig.19. This system combines the concepts of multipleswitch CMOS IC's, a low-cost ladder network of discrete metal-oxide-film resistors, a CA3160 op amp connected as a follower, and an inexpensive monolithic regulator in a simple single power-supply arrangement. An additional feature of the DAC is that it is readily interfaced with CMOS input logic, e.g., 10 -volt logic levels are used in the circuit of Fig. 19.

[^23]
(a)

(b) Output signal with input-signal ramping.


92CS-28581R1
(c) Output-Waveform with Ground-Reference Sine-Wave Input
Top Trace: Output Bottom Trace: Input


Fig. 19 - 9-bit DAC using CMOS digital switches and CA3160.

The circuit uses an $R / 2 R$ voltage-ladder network, with the output-potential obtained directly by terminating the ladder arms at either the positive or the negative powersupply terminal. Each CD4007A contains three "inverters", each "inverter" functioning as a single-pole double-throw switch to terminate an arm of the R/2R network at either the positive or negative power-supply terminal. The resistor ladder is an assembly of one per cent tolerance metal-oxide film resistors. The five arms requiring the highest accuracy are assembled with series and parallel combinations of 806,000-ohm resistors from the same manufacturing lot.
A single 15 -volt supply provides a positive bus for the CA3160 follower amplifier and feeds the CA3085 voltage regulator. A "scale-adjust" function is provided by the regulator output control, set to a nominal 10 -volt level in this system. The line-voltage regulation (approximately $0.2 \%$ ) permits a 9 -bit accuracy to be maintained with variations of several volts in the supply. The
flexibility afforded by the COS/MOS building blocks simplifies the design of DAC systems tailored to particular needs.

## Error-Amplifier in Regulated Power Supplies

The CA3160 is an ideal choice for erroramplifier service in regulated power supplies since it can function as an error-amplifier when the regulated output voltage is required to approach zero.
The circuit shown in Fig. 20 uses a CA3160 as an error amplifier in a continuously adjustable 1-ampere power supply. One of the key features of this circuit is its ability to regulate down to the vicinity of zero volts with only one de power supply input.
An RC network, connected between the base of the output drive transistor and the input voltage, prevents "turn-on overshoot", a condition typical of many operational-amplifier regulator circuits. As the amplifier becomes operational, this RC network ceases to have any influence on the regulator performance.


Fig. 20 - Voltage regulator circuit 10.1 to 35 V at 1 A ).

## Precision Voltage-Controlled Oscillator

The circuit diagram of a precision voltagecontrolled oscillator is shown in Fig.21. The oscillator operates with a tracking error in the order of 0.02 percent and a temperature coefficient of $0.01 \% /{ }^{\circ} \mathrm{C}$. A multivibrator $\left(\mathrm{A}_{1}\right)$ generates pulses of constant amplitude (V) and width ( $T_{2}$ ). Since the output (terminal 6) of $A_{1}(a \operatorname{CA} 3130)$ can swing within about 10 millivolts of either supplyrail, the output pulse amplitude ( V ) is essentially equal to $\mathrm{V}+$. The average output voltage ( $E_{\mathrm{avg}}=V T_{2} / T_{1}$ ) is applied to the non-inverting input terminal of comparator $A_{2}$ via an integrating network $R_{3}, C_{2}$. Comparator $\mathrm{A}_{2}$ operates to establish circuit conditions such that $E_{\text {avg }}=V 1$. This circuit condition is accomplished by feeding an output signal from terminal 6 of $A_{2}$ through $R_{4}$, $\mathrm{D}_{4}$ to the inverting terminal (terminal 2)
of $A_{1}$, thereby adjusting the multivibrator interval, $\mathrm{T}_{3}$.

## Voltmeter With High Input Resistance

The voltmeter circuit shown in Fig. 22 illustrates an application in which a number of the CA 3160 characteristics are exploited. Range-switch SW1 is ganged between input and output circuitry to permit selection of the proper output voltage for feedback to Terminal 2 via $10 \mathrm{~K} \Omega$ current-limiting resistor. The circuit is powered by a single 8.4 -volt mercury battery. With zero input signal, the circuit consumes somewhat less than 500 microamperes plus the meter current required to indicate a given voltage. Thus, at full-scale input, the total supply current rises to slightly more than 1500 microamperes.


Fig. 21 - Voltage-controlled oscillator.


Fig. 22 - High-input-resistance DC voltmeter.

## Function Generator

A function generator having a wide tuning range is shown in Fig.23. The adjustment range, in excess of $1,000,000 / 1$, is accomplished by a single potentiometer. Three operational amplifiers are utilized: a CA3160 as a voltage follower, a CA3080 as a highspeed comparator, and a second CA3080A
as a programmable current source. Three variable capacitors C1, C2, and C3 shape the triangular signal between 500 kHz and 1 MHz . Capacitors C4, C5, and the trimmer potentiometer in series with C5 maintain essentially constant $( \pm 10 \%$ ) amplitude up to 1 MHz .


Fig.23(a) - 1,000,000/1 single-control function generator -1 MHz to 1 Hz .

(b) - Two-tone output signal from the function generator. A square-wave signal modulates the external sweeping input to produce 1 Hz and 1 MHz , showing the $1,000,000 / 1$ frequency range of the function generator.


92CS. 28588
(c) - Triple-trace of the function generator sweeping to 1 MHz . The bottom trace is the sweeping signal and the top trace is the actual generator output. The center trace displays the 1 MHz signal via delayed oscilloscope triggering of the upper swept output signal.

## Staircase Generator

Fig. 24 shows a staircase generator circuit utilizing three CMOS operational amplifiers. Two CA3130's are used; one as a multivibrator, the other as a hysteresis switch. The third amplifier, a CA3160, is used as a linear staircase generator.


Picoammeter Circuit
Fig. 25 is a current-to-voltage converter configuration utilizing a CA3160 and CA3140 to provide a picoampere meter for $\pm 3 \mathrm{pA}$ fullscale meter deflection. By placing Terminals 2 and 4 of the CA3160 at ground potential, the CA3160 input is operated in the "guarded mode".. Under this operating condition, even slight leakage resistance present between Terminals 3 and 2 or between Terminals 3 and 4 would result in zero voltage across this leakage resistance, thus substantially reducing the leak age current
If the CA3160 is operated with the same voltage on input Terminals 3 and 2 as on Terminal 4, a further reduction in the input current to the less than one picoampere level can be achieved as shown in Fig. 12.
To further enhance the stability of this circuit, the CA3160 can be operated with its
output (Terminal 6) near ground, thus markedly reducing the dissipation by reducing the supply current to the device.
The CA3140 stage serves as a $\times 100$ gain stage to provide the required plus and minus output swing for the meter and feedback network. A 100-to-1 voltage divider network consisting of a $9.9-\mathrm{K} \Omega$ resistor in series with a 100 -ohm resistor sets the voltage at the $10-\mathrm{KM} \Omega$ resistor (in series with Terminal 3) to $\pm 30 \mathrm{mV}$ full-scale deflection. This 30 mV signal results from $\pm 3$ volts appearing at the top of the voltage divider network which also drives the meter circuitry.

By utilizing a switching technique in the meter circuit and in the $9.9 \mathrm{~K} \Omega$ and 100 -ohm network similar to that used in voltmeter circuit shown in Fig. 22, a current range of 3 pA to 1 nA full scale can be handled with the single $10-\mathrm{KM} \Omega$ resistor.


92CM.28589R1
Fig. 25 - Current-to-voltage converter to provide a picoammeter with $\pm 3 p A$ full-scale deflection.

Single-Supply Sample-and-Hold System
Fig. 26 shows a single-supply sample-and-hold system using a CA3160 to provide a high input impedance and an input-voltage range of 0 to 10 volts. The output from the input buffer integrator network is coupled to a CA3080A. The CA3080A functions as a strobeable current source for the CA3140 output integrator and storage capacitor. The CA3140 was chosen because of its low output impedance and constant gain-bandwidth
product. Pulse "droop" during the hold interval can be reduced to zero by adjusting the $100-\mathrm{K} \Omega$ bias-voltage potentiometer on the positive input of the CA3140. This zero adjustment sets the CA3080A output voltage at its zero current position. In this sample-and-hold circuit it is essential that the amplifier bias current be reduced to zero to minimize output signal current during the hold mode. Even with 320 mV at the amplifier bias circuit terminal (5) at least $\pm 100 \mathrm{pA}$ of output current will be available.


## Wien Bridge Oscillator

A simple, single-supply Wien Bridge oscillator using a CA3160 is shown in Fig. 27. A pair of parallel-connected 1N914 diodes comprise the gain-setting network which standardizes the output voltage at approximately 1.1 volts. The 500 -ohm potentiometer is adjusted so that the oscillator will always start and the oscillation will be maintained. Increasing the amplitude of the voltage may lower the threshold level for starting and for sustaining the oscillation, but will introduce more distortion.


Fig. 27 - Single-supply Wien Bridge oscillator.

Operation with Output-Stage Power-Booster
The current sourcing and sinking capability of the CA3160 output stage is easily supplemented to provide power-boost capability. In the circuit of Fig. 28, three CMOS transistor-pairs in a single CA3600 IC array are shown parallel-connected with the output stage in the CA3160. In the Class A mode of CA3600E shown, a typical device consumes

20 mA of supply current at $15 . \mathrm{V}$ operation. This arrangement boosts the current-handling capability of the CA3160 output stage by about 2.5 X .
The amplifier circuit in Fig. 28 employs feedback to establish a closed-loop gain of 20 dB . The typical large-signal-bandwidth $(-3 \mathrm{~dB})$ is 190 kHz .


Fig. 28 - CMOS transistor array (CA3600E) connected as power booster in the output stage of the CA3160.

CA3193A, CA3193

May 1990

## BiMOS Precision Operational Amplifiers

Features:

- Low VIO: $200 \mu \mathrm{~V}$ max. (CA3193A)
$500 \mu \mathrm{~V}$ max. (CA3193A)
- Low $\Delta V_{I O} / \Delta T$ : $3 \mu V /{ }^{\circ} \mathrm{C}$ max. (CA3193A)
$5 \mu V / O C$ max. (CA3193)
- Low IIO and II
- Low $\Delta / I_{\mathrm{O}} \mathrm{O} \Delta T$ : $150 \mathrm{pA} /{ }^{\circ} \mathrm{C}$ max. (CA3193)
- Low $\Delta / / \| \Delta T$ : 3.7 nA ${ }^{\circ} \mathrm{C}$ max. (CA3193)

Applications:

- Thermocouple preamplifiers
- Strain-gauge bridge amplifiers
- Summing amplifiers
- Differential amplifiers
- Bilateral current sources
- Log amplifiers
- Differential voltmeters
- Precision voltage references
- Active filters
- Buffers
- Integrators
- Sample-and-hold circuits
- Low frequency filters

The CA3193A and CA3193 are ultra-stable, precision instrumentation, operational amplifiers that employ both PMOS and bipolar transistors on a single monolithic chip. The CA3193A and CA3193 amplifiers are internally phase compensated and provide a gain bandwidth product of 1.2 MHz . They are pin compatible with the industry 741 series and many other IC op amps, and may be used as replacements for 741 series types in most applications.

The CA3193A and CA3193 can also be used as functional replacements for op-amp types 725, 108A, OP-5, OP-7, LM11 and LM714 in many applications where nulling is not
employed. Because of their low offset voltage and low offset voltage-versus-temperature coefficient the CA3193A and CA3193 amplifiers have a wider range of applications than most op amps and are particularly well suited ofr use as thermocouple amplifiers, high gain filters, buffer, strain gauge bridge amplifiers and precision voltage references.
The three types in the CA3193 series are functionally identical. The CA3193 and CA3193A operate from supply voltage of $\pm 3.5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$ and have operating temperature ranges of $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ and $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$, respectively.


Figure 1 - Block diagram of CA3193A and CA3193.

Absolute-Maximum Ratings, Absolute-Maximum $V$ alues at $T_{A}=25^{\circ} \mathrm{C}$

	CA3193	CA3193A
DC Supply Voltage	$\pm 18$	$\pm 18$
Differential-Mode Input Voltage	$\pm 5$	$\pm 5$
Common-Mode DC Input Voltage	$\left(\mathrm{V}^{+}-4\right), \mathrm{V}^{-}$	$\left(V^{+}-4\right), V^{-}$
Input Terminal Current	1	1
Device Dissipation		
Without Heat Sink		
Up to $55^{\circ} \mathrm{C}$	630	630
Above $55^{\circ} \mathrm{C}$. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .	Derate Linearly 6.67	
Temperature Range	0 to 70	-25 to 85
Output Short-Circuit Duration*. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .	Indefinite	Indefinite
Lead Temperature (During Soldering) at distance of $1 / 16 \mathrm{in} . \pm 1 / 32 \mathrm{in}$. ( $1.59 \pm 0.79 \mathrm{~mm}$ ) from case for 10 seconds max.	$\pm 265$	$\pm 265$

Fig. 2 - Functional diagram of CA3193A and CA3193.

The CA3193A and CA3193 types are supplied in standard 8 -lead TO-5 style (T suffix), 8-lead dual-in-line formed lead TO-5-style (DIL-CAN-S suffix) and 8-lead dual-in-line plastic (Mini-DIP-E suffix) packages.

## Circult Description

The block diagram of the CA3193 amplifier, Fig. 1 shows the voltage gain and supply current for each of its four amplifier stages. Simplified and complete schematic diagrams of the CA3193 amplifier are shown in Figs. 3 and 4, respectively.

A quad of physically cross-connected $n-p-n$ transistors comprise the input-stage differential pair (Q1, Q2 in Figs. 3 and 4); this arrangement contributes to the low input offsetvoltage characteristics of the amplifier. The ultra-high gain provided in the first stage ensures that subsequent stages cannot significantly influence the overall offset-voltage characteristics of the amplifier. High load impedances for the input-stage differential pair (Q1, Q2) are provided by the cascode-connected p-n-p transistors Q3, Q5 and Q4, Q6, thereby contributing to the high gain developed in the stage.
The second stage of the amplifier consists of a differential amplifier employing PMOS/FETs (Q7, Q8 in Figs. 3 and 4)
with appropriate drain loading. Since Q7 and Q8 are MOS/FETs, their loading on the first stage is quite low, thereby making an additional contribution to the high gain developed in the first stage. The second stage is also configured to convert its differential signal to a singleended output signal by means of current mirror D9, Q30 (Figs. 3 and 4) to drive subsequent gain stage.
The third stage of the amplifier consists of Darlingtonconnected $n-p-n$ transistors (Q17, Q19 in Figs. 3 and 4), driving the quasi-complementary Cl ass AB output stage (Q14 and Q15, Q16 in Figs. 3 and 4). Output-stage shortcircuit protection is activated by voltage drops developed across the 60 -ohm resistors adjacent to the output terminal (R9 and R10, Fig. 4). When the voltage drop developed across either of these resistors reaches a potential equal to $1 \mathrm{~V}_{\mathrm{BE}}$, the respective protective transistor (Q12 or Q13) is activated and shunts the base drive from the bases of the output stage transistors (Q14 and Q15, Q16).
Internal frequency compensation for the CA3193 amplifier is provided by two internal networks, a $6-\mathrm{pF}$ capacitor connected between the input-stage transistor collectors and the node between the third and output stages and a second network, consisting of a $20-\mathrm{pF}$ capacitor in series with a $7.5 \mathrm{k} \Omega$ resistor connected between the input and output nodes of the third stage.

ELECTRICAL CHARACTERISTICS at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}+=15 \mathrm{~V}$ and $\mathrm{V}-=15 \mathrm{~V}$ unless otherwise specified.

CHARACTERISTIC	LIMITS						UNITS		
	CA3193A			CA3193					
	Min.	Typ.	Max.	Min.	Typ.	Max.			
Input Offset Voltage, $\mid V_{1 O}$	-	140	200	-	300	500	$\mu \mathrm{V}$		
V10 @ Max.Temp.	-	-	380	-	-	725	$\mu \mathrm{V}$		
Input Offset Voltage Temp.Coefficient, $\Delta \mathrm{V}_{1 \mathrm{O}} / \Delta \mathrm{T}$ (Over specified temperature range for each device)	-	1	3	-	1	5	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$		
Input Offset Current, 10	-	3	5	-	5	10	nA		
\|l	O	@ Max.Temp.	-	-	11	-	-	17	nA
Input Offset Current Temp. Coefficient, $\Delta{ }^{\prime} \mathrm{I} / \mathrm{O} \Delta \mathrm{T}$ (Over specified temperature range for each device)	-	0.03	0.10	-	0.04	0.15	$n \mathrm{~A} /{ }^{\circ} \mathrm{C}$		
Input Bias Current, II	-	10	20	-	20	40	nA		
\|IB	@ Max.Temp.	-	-	83	-	-	207	nA	
Input Bias Current Temp. Coefficient, $\Delta l^{\prime} / \Delta T$	-	0.10	1.18	-	0.15	3.70	$n \mathrm{~A} /{ }^{\circ} \mathrm{C}$		
Input Noise Voltage, en p-p ( 0.1 to 10 Hz )	-	0.36	-	-	0.36	-	$\mu \vee \mathrm{p}-\mathrm{p}$		
Input Noise Volt- age Density, $e_{n}$ $f_{0}=10 \mathrm{~Hz}$ $f_{0}=100 \mathrm{~Hz}$ $f_{0}=1000 \mathrm{~Hz}$ $f_{0}=10 \mathrm{kHz}$ $f_{0}=100 \mathrm{kHz}$		$\begin{aligned} & 25 \\ & 25 \\ & 24 \\ & 24 \\ & 22 \\ & \hline \end{aligned}$	-	$\begin{aligned} & - \\ & - \\ & - \\ & \hline \end{aligned}$	$\begin{array}{r} 25 \\ 25 \\ 24 \\ 24 \\ 22 \\ \hline \end{array}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\frac{n V I}{\sqrt{H z}}$		
Input Noise   Current, in p-p   ( 0.1 to 10 Hz )   年	-	12	20	-	12	20	pA p-p		
Input Noise Current Density, in $\begin{aligned} & \mathrm{f}_{0}=10 \mathrm{~Hz} \\ & \mathrm{f}_{0}=100 \mathrm{~Hz} \\ & \mathrm{f}_{\mathrm{O}}=1000 \mathrm{~Hz} \\ & \mathrm{f}_{0}=10 \mathrm{kHz} \\ & \mathrm{f}_{0}=100 \mathrm{kHz} \end{aligned}$	-   -   -   -   -	$\begin{aligned} & 0.83 \\ & 0.80 \\ & 0.75 \\ & 0.72 \\ & 0.60 \\ & \hline \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & 0.83 \\ & 0.80 \\ & 0.75 \\ & 0.72 \\ & 0.60 \\ & \hline \end{aligned}$	- - - -	$\frac{\mathrm{pA} /}{}$		

ELECTRICAL CHARACTERISTICS at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}+=15 \mathrm{~V}$ and $\mathrm{V}-=15 \mathrm{~V}$ unless otherwise specified.



Fig. 3 - CA3193 simplified schematic diagram.


Fig. 4 - Schematic diagram of CA3193A and CA3193.


Fig. 5 - Typical input offset-voltage temperature characteristic for CA3193 series.


Fig. 7 - Typical input bias current vs. temperature.


Fig. 9 - Input noise voltage and current density vs. frequency.


Fig. 6-Input offset voltage vs. time.


Fig. 8 - Typical input offset current vs. temperature.


Fig. 10 - Power supply voltage $\left(V^{+}, V^{-}\right)$vs. supply current.


Fig. 11-Open-loop gain and phase-shift response for CA3193B.


Fig. 12-Open-loop gain vs. power-supply voltage.


Fig. 13-Open-loop gain vs. temperature for CA3193 series.


Fig. 14 - Maximum undistorted output voltage vs. frequency.


Fig. 15-Output-voltage-swing capability and common-mode input-voltage vs. supply voltage.

## Offset Voltage Nulling

The input offset voltage can be nulled to zero by any of the three methods shown in the table below. A 10 K potentiometer between terminals 1 and 5 , with its wiper returned to $\mathrm{V}^{-}$, will provide a gross nulling for all types. For finer nulling, either of the other two circuits shown below
may be used, thus providing simpler improved resolution for all types.
CAUTION: The CA3193 amplifiers will be damaged if they are plugged into op-amp circuits employing nulling with respect to the $\mathrm{V}^{+}$supply bus.

Offset Voltage Nulling

Offset Nulling Circuits			
Type	Resistor R Value	Resistor R Value	Resistor R Value
$\begin{gathered} \text { CA3193A } \\ \text { CA3193 } \end{gathered}$	$\begin{aligned} & 10 \mathrm{~K} \\ & 10 \mathrm{~K} \end{aligned}$	$\begin{aligned} & 50 \mathrm{~K} \\ & 20 \mathrm{~K} \end{aligned}$	$\begin{gathered} 10 K \\ 5 K \end{gathered}$
	Gross Offset Adjustment	Finer Offset Adjustments	

## TEST CIRCUITS


age test circuit.

a


Fig. 17-Inverting amplifier (a) test circuit (b) response to $1-\mathrm{kHz}$, 20-V p-p square wave.

TOP TRACE : INPUT VOLTAGE BOTTOM TRACE : OUTPUT VOLTAGE

VERT: $\frac{10 \mathrm{~V}}{\text { DIV }}$	$V+=15 \mathrm{~V}$
HOR $: \frac{.1 \mathrm{~ms}}{\text { DIV }}$	$\mathrm{V}^{-}=15 \mathrm{~V}$
$R_{L}=2 \mathrm{~K}$	

Fig. 18 - Voltage follower (a) test circuit (b) response to $20-\mathrm{V}$ p-p, $1-\mathrm{kHz}$ square-wave input.


Fig. 19-Low frequency noise (a) test circuit-0.1 to 10 Hz (b) output A waveform - 0 to 10 Hz noise (c) output B waveform -0 to 10 Hz noise.

## APPLICATION CIRCUITS


$v_{\text {OUT }}=-v_{a}\left(\frac{R 2}{R 1}+1\right) \frac{R 4}{R 3}+v_{b}\left(\frac{R 4}{R 3}+1\right)$
FOR IDEAL RESISTORS WITH $\frac{R 1}{R 2}=\frac{R 3}{R 4}$
$V_{\text {OUT }}=v_{b}-v_{a}\left(\frac{R 4}{R 3}+1\right)$
$A=\frac{v_{\text {OUT }}}{V_{b}-v_{\mathrm{C}}}=\left(\frac{R 4}{R 3}+1\right)$
FOR VALUES ABOVE $V_{\text {OUT }}=\left(v_{b}-v_{a}\right)(10)$

Fig. 20-Typical two-op amp bridge-type differential amplifier.


IF RI = R3 AND R2 $\approx$ R4 + R5 THEN
$I_{L}$ IS INDEPENDENT OF VARIATIONS IN R $R_{L}$
FOR R $R_{L}$ VALUES OF O $\Omega$ TO $3 k \Omega$ WITH $V=1 V$
$I_{L}=\frac{V R 4}{R 3 R 5}=\frac{V I M}{(2 M)(I K)}=\frac{v}{2 K}=500 \mu \mathrm{~A}$

Fig. 22-Using CA3193 as a bilateral current source.


ALL RESISTANCE VALUES ARE IN OHMS

$$
\begin{aligned}
& V_{\text {OUT }}=v_{2}\left(\frac{R 4}{R 3+R 4}\right)\left(\frac{R 1+R 2}{R I}\right)-v_{1}\left(\frac{R 2}{R I}\right) \\
& \text { IF R4 }=R 2, R 3=R I \text { AND } \frac{R 2}{R I}=\frac{R 4}{R 3} \\
& \text { THEN V } V_{\text {OUT }}=\left(V_{2}-V_{1}\right)\left(\frac{R 2}{R 1}\right)
\end{aligned}
$$

$$
\text { FOR VALUES ABOVE VOUT }=2\left(V_{2}-V_{1}\right)
$$

IF AV IS TO BE MADE I ANO IF RI $=R 3=R 4=R$ WITH R2 $=0.999$ R ( $0.1 \%$ MISMATCH IN R2)

THEN $V_{\text {OCM }}=0.0005 V_{I N}$ OR CMRR $=66 \mathrm{~dB}$
THUS, THE CMRR OF THIS CIRCUIT IS LIMITED BY THE MATCHING OR MISMATCHING OF THIS NETWORK RATHER THAN THE AMPLIFIER.

Fig. 21 - Differential amplifier (simple subtractor) using CA3193.

ALL RESISTANCE VALUES ARE IN OHMS

Fig. 23-Typical summing amplifier application.

The CA3193 is an excellent choice for use with thermocouples. In Fig. 24, the CA3193 amplifies the signal
generated 500 times. The three 22 -megohm resistors will provide full-scale output if the thermocouple opens.


Fig. 24 - The CA3193 used in a thermocouple circuit.

HARRIS
SEMICONDUCTOR
HARRIS • RCA • GE • INTERSIL

## Operational Amplifiers

## Dual BiMOS Operational Amplifiers

## With MOSFET Input, Bipolar Output

Features:

- Dual version of CA3140
- Internally compensated
- MOSFET input stage
(a) Very high input impedance ( $Z_{I N}$ ): 1.5 $T \Omega$ typ.
(b) Very low input current (l): 10 pA typ. at $\pm 15 \mathrm{~V}$
(c) Wide common-mode input voltage range (VICR): can be swung 0.5 volt below negative supply voltage rail
- Directly replaces industry type 741 in most applications


## Applications:

- Ground referenced single supply amplifiers in automobile and portable instrumentation
- Sample and hold amplifiers
- Long duration timers/multivibrators (microseconds- minutes-hours)
- Photocurrent instrumentation
- Active filters
- Intrusion alarm systems
- Comparators
- Instrumentation amplifiers
- Function generators
- Power supplies

The CA3240A and CA3240 are dual versions of the popular CA3140 series integrated circuit operational amplifiers. They combine the advantages of MOS and bipolar transistors on the same monolithic chip. The gate-protected MOSFET (PMOS) input transistors provide high input impedance and a wide common-mode input voltage range (typically to 0.5 V below the negative supply rail). The bipolar output transistors allow a wide output voltge swing and provide a high output current capability.

The CA3240A and CA3240 are supplied in the 8-lead dual-in-line plastic package (Mini-DIP, E suffix), and in the 14-lead dual-in-line plastic package ( E 1 suffix). They are pin-compatible with the industry standard 747 and 1458 operational amplifiers in similar packages. The CA3240A and CA3240 have an operating temperature range of -40 to $+85^{\circ} \mathrm{C}$. The offset null feature is available only when these types are supplied in the 14 -lead dual-in-line plastic package (E1 suffix). The CA3240 is also available in chip form (H suffix).


Figure 1 - Block diagram of one-half CA3240 series.

MAXIMUM RATINGS, Absolute-Maximum Values:

```
DC SUPPLY VOLTAGE
 (BETWEEN V+ AND V- TERMINALS) }36\textrm{V
OPERATING VOLTAGE RANGE 4 to 36 V
 or }\pm2\mathrm{ to }\pm18\textrm{V
DIFFERENTIAL-MODE INPUT VOLTAGE }\pm8
COMMON-MODE DC INPUT VOLTAGE (}\mp@subsup{\textrm{V}}{}{+}+8\textrm{V})\mathrm{ to (}\mp@subsup{\textrm{V}}{}{-}-0.5\textrm{V}
INPUT-TERMINAL CURRENT . }1\textrm{mA
DEVICE DISSIPATION:
 UP TO 55'` C . }630\textrm{mW
 ABOVE 55 ` C Derate linearly 6.67 mW/ }\mp@subsup{}{}{\circ}\textrm{C
TEMPERATURE RANGE:
 OPERATING . - 40 to +850}\textrm{C
 STORAGE . - }65\mathrm{ to +150}\textrm{C
OUTPUT SHORT-CIRCUIT DURATION` UNLIMITED
LEAD TEMPERATURE (DURING SOLDERING):
 AT DISTANCE 1/16 \pm1/32 INCH (1.59 \pm 0.79 MM)
 FROM CASE FOR }10\mathrm{ SECONDS MAX. +265}\textrm{C
```

- Short circult may be applied to ground or to either supply. Temperatures and/or supply voltages must be limited to keep dissipation within maximum rating.

all resistance values are in ohms
92CL-30014
* only available wirh i4-Lead dip (el suffix)

Fig. 2 - Schematic diagram of one-half CA3240 series.

## Circuit Description

The schematic diagram of one amplifier section of the CA3240 is shown in Fig. 2. It consists of a differential amplifier stage using PMOS transistors Q9 and Q10 with gate-tosource protection against static discharge damage provided by zener diodes D3, D4, and D5. Constant current bias is applied to the differential amplifier from transistors 02
and 05 connected as a constant-current source. This assures a high common-mode rejection ratio. The output of the differential amplifier is coupled to the base of gain stage transistor Q13 by means of an n-p-n current mirror that supplies the required differential-to-single-ended conversion. Provision for offset null for types in the 14 -lead plastic package ( $E 1$ suffix) is provided through the use of this current mirror.

The gain stage transistor Q13 has a highimpedance active load ( Q 3 and Q 4 ) to provide maximum open-loop gain. The collector of 013 directly drives the base of the compound emitter-follower output stage. Pulldown for the output stage is provided by two independent circuits: (1) constant-current-connected transistors Q14 and Q15 and (2) dynamic current-sink transistor Q16 and its associated circuitry. The level of pulldown current is constant at about 1 mA for Q15 and varies from 0 to 18 mA for 016 depending on the magnitude of the voltage between the output terminal and $\mathrm{V}^{+}$. The dynamic current sink becomes active whenever the output terminal is more negative
than $\mathrm{V}^{+}$by about 15 V . When this condition exists, transistors Q21 and Q16 are turned on causing 016 to sink current from the output terminal to $\mathrm{V}^{-}$. This current always flows when the output is in the linear region, either from the load resistor or from the emitter of 018 if no load resistor is present. The purpose of this dynamic sink is to permit the output to go within $0.2 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{CE}}(\mathrm{sat})\right)$ of $\mathrm{V}^{-}$with a $2-k \Omega$ load to ground. When the load is returned to $V^{+}$, it may be necessary to supplement the 1 mA of current from $Q 15$ in order to turn on the dynamic current sink (Q16). This may be accomplished by placing a resistor (approx. $2 \mathrm{k} \Omega$ ) between the output and $\mathrm{V}^{-}$

ELECTRICAL CHARACTERISTICS FOR EQUIPMENT DESIGN
At $\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}^{-}=15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Unless Otherwise Specified

CHARACTERISTIC	LIMITS						UNITS
	CA3240A			CA3240			
	Min.	Typ.	Max.	Min.	Typ.	Max.	
Input Offset Voltage, $\left\|V_{\text {IO }}\right\|$	-	2	5	-	5	15	mV
Input Offset Current. $\|1 / 10\|$	-	0.5	20	-	0.5	30	pA
Input Current, II	-	10	40	-	10	50	pA
Large-Signal	20 k	100 k	-	20 k	100 k	-	V/V
(See Figs. 4, 19)	86	100	-	86	100	-	dB
Common-Mode Rejection Ratio, CMRR (See Fig. 9)	-	32	320	-	32	320	$\mu \mathrm{V} / \mathrm{V}$
	70	90	-	70	90	-	dB
Common-Mode   Input-Voltage    Range, $V_{\text {ICR }}$   (See Fig: 16)	-15	$\begin{gathered} -15.5 \\ \text { to } \\ +12.5 \end{gathered}$	12	-15	$\begin{gathered} -15.5 \\ \text { to } \\ +12.5 \end{gathered}$	11	V
Power-Supply$\Delta V_{\text {IO }} / \Delta V$   Rejection Ratio,   (See Fig. 11)	-	100	150	-	100	150	$\mu \mathrm{V} / \mathrm{V}$
	76	80	-	76	80	-	dB
Maximum Output Voltage, $\qquad$	+12	13	-	+12	13	-	V
(See Figs. 22,16) $\mathrm{VOM}^{-}$	-14	-14.4	-	-14	-14.4	-	
Maximum Output    Voltage, † $\mathrm{V}_{\mathrm{OM}^{-}}$	0.4	0.13	-	0.4	0.13	-	V
Supply Current,   (See Fig. 7)   For Both Amps.	-	8	12	-	8	12	mA
Total Device Dissipation, $P_{D}$	-	240	360	-	240	360	mW

At $\mathrm{V}_{\mathrm{O}}=26 \mathrm{~V}_{\mathrm{p}-\mathrm{p}^{\prime}}+12 \mathrm{~V},-14 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$

- At $\mathrm{A}_{\mathrm{L}}=2 \mathrm{ks}$
${ }^{\dagger}$ At $V^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=G N D, I_{\text {Sink }}=200 \mu \mathrm{~A}$.

TYPICAL ELECTRICAL CHARACTERISTICS

CHARACTERISTIC			TEST CONDITIONS$\begin{aligned} \mathrm{V}^{+} & =+15 \mathrm{~V} \\ \mathrm{~V}^{-} & =-15 \mathrm{~V} \\ \mathrm{~T}_{\mathrm{A}} & =25^{\circ} \mathrm{C} \end{aligned}$		TYPICAL VALUES		UNITS		
			CA3240A	CA3240					
Input Offset Voltage Adjustment Resistor (E1 Package Only)					Typ. Value of Resistor Between Terms. 4 and 3(5) or Between 4 and 14 (8) to Adjust Max. $V_{10}$		18	4.7	$k \Omega$
Input Resistance		$\mathrm{R}_{1}$			1.5	1.5	$T \Omega$		
Input Capacitance		$\mathrm{C}_{1}$			4	4	pF		
Output Resistance		$\mathrm{R}_{\mathrm{O}}$			60	60	$\Omega$		
Equivalent Wideband Input Noise Voltage (See Fig. 21)		$\mathrm{e}_{\mathrm{n}}$	$\begin{aligned} & B W=140 \mathrm{kHz} \\ & R_{S}=1 \mathrm{M} \Omega \end{aligned}$		48	48	$\mu \mathrm{V}$		
Equivalent Input Noise Voltage (See Fig. 10)		$\mathrm{e}_{\mathrm{n}}$	$\mathrm{f}=1 \mathrm{kHz}$	$\mathrm{R}_{S}$	40	40	$n \mathrm{~V} / \sqrt{\mathrm{Hz}}$		
		$\mathrm{f}=10 \mathrm{kHz}$	$100 \Omega$	12	12				
Short-Circuit Current to Opposite Supply Source $\mathrm{IOM}^{+}$					40	40	mA		
	Sink		${ }^{1} \mathrm{OM}^{-}$			11		11	
Gain-Bandwidth Product (See Figs. 5 and 19)					4.5	4.5	MHz		
Slew Rate (See Fig. 6)		SR			9	9	$\mathrm{V} / \mu \mathrm{s}$		
Transient Response:			$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \\ & \hline \end{aligned}$		0.08	0.08	$\mu \mathrm{s}$		
			10	10	\%				
Settling Time at $10 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$. (See Fig. 17)	$\frac{1 \mathrm{mV}}{10 \mathrm{mV}} \mathrm{t}_{\mathrm{s}}$				$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \\ & \text { Voltage Follower } \end{aligned}$		4.5	4.5	$\mu \mathrm{s}$
			1.4	1.4					
Crosstalk			$\mathrm{f}=1 \mathrm{kHz}$		120	120	dB		



E1 Suffix
Pin compatible with the industry-standard 747


E Suffix
Pin compatible with the industry-standard 1458

Fig. 3 - Functional diagrams.

ELECTRICAL CHARACTERISTICS FOR EQUIPMENT DESIGN
At $V^{+}=15 \mathrm{~V}, \mathrm{~V}^{-}=15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$ Unless Otherwise Specified

CHARACTERISTIC	TYPICAL VALUES		UNITS
	CA3240A	CA3240	
Input Offset Voltage, $\quad\left\|V_{10}\right\|$	3	10	mV
Input Offset Current, ${ }^{\text {b }}$, $\left\|l_{10}\right\|$	32	32	pA
Input Current, ${ }^{\text {b }}$	640	640	pA
Large-Sign	63 k	63 k	$\mathrm{V} / \mathrm{V}$
	96	96	dB
Common-Mode   Rejection Ratio,   CMRR   (See Fig. 9)	32	32	$\mu \mathrm{V} / \mathrm{V}$
	90	90	dB
Common-Mode Input-Voltage Range, $\quad V_{\text {ICR }}$ (See Fig. 16)	$\begin{gathered} -15 \\ \text { to } \\ +12.3 \end{gathered}$	$\begin{gathered} -15 \\ \text { to } \\ +12.3 \end{gathered}$	V
Power-Supply Rejection $\Delta V_{10} / \Delta \mathrm{V}$	150	150	$\mu \vee / V$
Ratio,   PSRR   (See Fig. 11)	76	76	dB
Maximum Output Voltage."   (See Figs. 16, 22)   $\frac{V_{\mathrm{OM}}}{\mathrm{V}_{\mathrm{OM}}}$	12.4	12.4	V
	-14.2	-14.2	
$\begin{array}{cr} \text { Supply Current, } & 1^{+} \\ \text {(See Fig. 7) For Both Amps. } \end{array}$	8.4	8.4	mA
Total Device Dissipation, $\mathrm{P}_{\mathrm{D}}$	252	252	mW
Temperature Coefficient of Input Offset Voltage, $\Delta V_{10} / \Delta T$	15	15	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$

At $V_{O}=26 \mathrm{~V}_{\mathrm{p} \cdot \mathrm{p}^{\prime}}+12 \mathrm{~V},-14 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}=2 \mathrm{k}!\Omega$.

- At $R_{L}=2 k s!$
- $A t T_{A}=85^{\circ} \mathrm{C}$


Fig. 4 - Open-loop voltage gain as a function of supply voltage and temperature.


Fig. 5 - Gain-bandwidth product as a function of supply voltage and temperature.

TYPICAL ELECTRICAL CHARACTERISTICS FOR DESIGN GUIDANCE
At $\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

CHARACTERISTIC		TYPICAL VALUES		UNITS
		CA3240A	CA3240	
Input Offset Voltage,	$\left\|V_{10}\right\|$	2	5	mV
Input Offset Current,	$\mid \mathrm{lo}$	0.1	0.1	pA
Input Current,	1	2	2	pA
Input Resistance		1	1	TS
Large-Signal Voltage Gain, (See Figs. 4, 19)	${ }^{\text {A OL }}$	100 k	100 k	V/V
		100	100	dB
Common-Mode Rejection Ratio, CMRR		32	32	$\mu \mathrm{V} / \mathrm{V}$
		90	90	dB
Common-Mode Input-Voltage Range,   (See Fig. 22)	$V_{\text {ICR }}$	-0.5	-0.5	V
		2.6	2.6	
Power-Supply Rejection Ratio, PSRR		31.6	31.6	$\mu \mathrm{V} / \mathrm{V}$
		90	90	dB
Maximum Output Voltage, (See Figs. 16,22)	$\mathrm{V}_{\mathrm{OM}}{ }^{+}$	3	3	V
	$\mathrm{V}_{\text {OM }}{ }^{-}$	0.3	0.3	
Maximum Output Current:   Source,   Sink	$\mathrm{IOM}^{+}$	20	20	mA
	${ }^{1} \mathrm{OM}^{-}$	1	1	
Slew Rate (See Fig. 6)		7	7	$\mathrm{V} / \mu \mathrm{s}$
Gain-Bandwidth Product, (See Fig. 5)	${ }^{\mathrm{f}}$ T	4.5	4.5	MHz
Supply Current, (See Fig. 7)	$1^{+}$	4	4	mA
Device Dissipation,	$P_{\text {D }}$	20	20	mW



Fig. 6 - Slew rate as a function of supply voltage and temperature.


Fig. 7 - Quiescent supply current as a function of supply voltage and temperature.


Fig. 8 - Maximum output voltage swing as a function of frequency.


Fig. 10 - Equivalent input noise voltage as a function of frequency.


Fig. 12 - Output sink current as a function of output voltage.


Fig. 14 - Crosstalk as a function of frequency.


Fig. 9 - Common-mode rejection ratio as a function of frequency.


Fig. 11 - Power supply rejection ratio as a function of frequency.


Fig. 13 - Supply current as a function of output voltage.


Fig. 15 - Voltage across output transistors Q15 and Q16 as a function of load current.


Fig. 16 - Output-voltage-swing capability and common-mode input-voltage range as a function of supply voltage and temperature.


(o) SETTLING TIME - $\mu \mathrm{s}$


Fig. 17 - Input voltage as a function of settling time.

Fig. 18 - Input current as a function of ambient temperature.


Fig. 19 - Open-loop voltage gain and phase lag as a function of frequency.


(b) LARGE SIGNAL RESPONSE

Fig. 20 - Split-supply voltage-follower test circuit and associated waveforms.


Fig. 21 - Test-circuit amplifier (30-dB gain) used for wideband noise measurement.


Fig. 22 - Voltage across output transistors Q15 and Q16 as a function of load current.

## APPLICATIONS CONSIDERATIONS

## Output Circuit Considerations

Fig. 22 shows output current-sinking capabilities of the CA3240 at various supply voltages. Output voltage swing to the negative supply rail permits this device to operate both power transistors and thyristors directly without the need for level-shifting circuitry usually associated with the 741 series of operational amplifiers.
Fig. 23 shows some typical configurations. Note that a series resistor, $R_{L}$, is used in both cases to limit the drive available to the driven device. Moreover, it is recommended that a series diode and shunt diode be used at the thyristor input to prevent large negative transient surges that can appear at the gate of thyristors, from damaging the integrated circuit.



Fig. 23 - Methods of utilizing the $V_{C E}$ (sat) sinking-current capability of the CA3240 series.

## Input Circuit Considerations

As indicated by the typical VICR, this device will accept inputs as low as 0.5 V below $\mathrm{V}^{-}$. However, a series current-limiting resistor is recommended to limit the maximum input terminal current to less than 1 mA to prevent damage to the input protection circuitry.
Moreover, some current-limiting resistance should be provided between the inverting input and the output when the CA3240 is used as a unity-gain voltage follower. This resistance prevents the possibility of extremely large input-signal transients from forcing a signal through the input-protection network and directly driving the internal constant-current source which could result in positive feedback via the output terminal. A $3.9-\mathrm{k} \Omega$ resistor is sufficient.
The typical input current is in the order of 10 pA when the inputs are centered at nominal device dissipation. As the output supplies
load current, device dissipation will increase, raising the chip temperature and resulting in increased input current. Fig. 24 shows typical input-terminal current versus ambient temperature for the CA3240.
It is well known that MOS/FET devices can exhibit slight changes in characteristics (for example, small changes in input offset voltage) due to the application of large differential input voltages that are sustained over long periods at elevated temperatures.
Both applied voltage and temperature accelerate these changes. The process is reversible and offset voltage shifts of the opposite polarity reverse the offset. In typical linear applications, where the differential voltage is small and symmetrical, these incremental changes are of about the same magnitude as those encountered in an operational amplifier employing a bipolar transistor input stage.


Fig. 24 - Input current as a function of ambient temperature.

## Offset-Voltage Nulling

The input-offset voltage of the CA3240AE1 and CA3240E1 can be nulled by connecting a $10-k \Omega$ potentiometer between Terminals 3 and 14 or 5 and 8 and returning its wiper arm to Terminal 4, see Fig. 25a. This technique, however, gives more adjustment range than required and therefore, a considerable portion of the potentiometer rotation is not fully utilized. Typical values of series resistors that may be placed at either end of the potentiometer, see Fig. 25b, to optimize its utilization range are given in the table "Electrical Characteristics For Design Guidance" shown in this bulletin.
An alternate system is shown in Fig. 25c. This circuit uses only one additional resistor of approximately the value shown in the table. For potentiometers, in which the resistance does not drop to zero ohms at either end of rotation, a value of resistance $10 \%$ lower than the values shown in the table should be used.



Fig. 25 - Three offset-voltage nulling methods. (CA3240AE1, CA3240E1 only.)

## TYPICAL APPLICATIONS

## On/Off Touch Switch

The on/off touch switch shown in Fig. 26 uses the CA3240E to sense small currents flowing between two contact points on a touch plate consisting of a PC board metallization "grid". When the "on" plate is touched, current flows between the two halves of the grid causing a positive shift in the output voltage (Term. 7) of the CA3240E. These positive transitions are fed into the CA3059, which is used as a latching circuit and zero-crossing triac driver. When a positive pulse occurs at Terminal 7 of the CA3240E,
the triac is turned on and held on by the CA3059 and its associated positive feedback circuitry ( $51-\mathrm{k} \Omega$ resistor and $36-\mathrm{k} \Omega / 42-\mathrm{k} \Omega$ voltage divider). When the positive pulse occurs at Terminal 1 (CA3240E), the triac is turned off and held off in a similar manner. Note that power for the CA3240E is supplied by the CA3059 internal power supply. The advantage of using the CA3240E in this circuit is that it can sense the small currents associated with skin conduction while allowing sufficiently high circuit impedance to provide protection against electrical shock.


[^24]Fig. 26 - On/off touch switch.

Dual Level Detector (window comparator)
Fig. 27 illustrates a simple dual liquid level detector using the CA3240E as the sensing amplifier. This circuit operates on the principle that most liquids contain enough ions in solution to sustain a small amount of current flow between two electrodes submersed in the liquid. The current, induced by an $0.5 \cdot \mathrm{~V}$ potential applied between two halves of a

PC board grid, is converted to a voltage level by the CA3240E in a circuit similar to that of the on/off touch switch shown in Fig. 26. The changes in voltage for both the upper and lower level sensors are processed by the CA3140 to activate an LED whenever the liquid level is above the upper sensor or below the lower sensor.


Fig. 27 - Dual level detector.


Fig. 28 - Constant-voltage/constant-current power supply.

Constant-Voltage/Constant-Current Power Supply 29 shows the transient response of the

The constant-voltage/constant-current power supply shown in Fig. 28 uses the CA3240E as a voltage-error and current-sensing amplifier. The CA3240E is ideal for this application because its input common-mode voltage-range includes ground, allowing the supply to adjust from 20 mV to 25 V without requiring an additional negative input voltage. Also, the ground reference capability of the CA3240 E allows it to sense the voltage across
supply during a $100-\mathrm{mA}$ to $1-\mathrm{A}$ load transition.

## Precision Differential Amplifier

Fig. 30 shows the CA3240E in the classical precision differential amplifier circuit. The CA3240E is ideally suited for biomedical applications because of its extremely high input impedance. To insure patient safety, an extremely high electrode series resistance is required to limit any current that might
top trace output voltage
$(500 \mathrm{mV} / \mathrm{cm}$ AND $5 \mu \mathrm{~s} / \mathrm{cm}$ )
BOTTOM TRACE: COLLECTOR OF LOAD
SWITCHING TRANSISTOR
$\angle O A D=100 \mathrm{~mA}$ TO 1 A
$(5 \mathrm{~V} / \mathrm{cm}$ AND $5 \mu \mathrm{~s} / \mathrm{cm})$ 92Cs-30034

TRANSIENT RESPONSE
the $1-\Omega$ current-sensing resistor in the negative output lead of the power supply. The CA3086 transistor array functions as a reference for both constant-voltage and constantcurrent limiting. The 2N6385 power Darlington is used as the pass element and may be required to dissipate as much as 40 W . Fig.
result in patient discomfort in the event of a fault condition. In this case, $10-\mathrm{M} \Omega$ resistors have been used to limit the current to less than $2 \mu \mathrm{~A}$ without affecting the performance of the circuit. Fig. 31 shows a typical electrocardiogram waveform obtained with this circuit.


Fig. 30 - Precision differential amplifier.


Fig. 31 - Typical electrocardiogram waveform.

## Differential Light Detector

In the circuit shown in Fig. 32, the CA3240E converts the current from two photo diodes to voltage, and applies 1 V of reverse bias to the diodes. The voltages from the CA3240E outputs are subtracted in the second stage
(CA3140) so that only the difference is amplified. In this manner, the circuit can be used over a wide range of ambient light conditions without circuit component adjustment. Also, when used with a light source, the circuit will not be sensitive to changes in light level as the source ages.


Fig. 32 - Differential light detector.

## Operational Amplifiers

CA3260A, CA3260

# BiMOS Operational Amplifiers 

## With MOSFET Input/CMOS Output

## Features:

- MOSFET input stage provides:
very high $Z_{I}=1.5 \mathrm{~T} \Omega\left(1.5 \times 10^{12} \Omega\right)$ typ.
very low $l^{\prime}=5$ pA typ. at 15 V operation
$=2 p A$ typ. at 5 V operation
- Ideal for single supply applications
- Common-mode input voltage range includes negative supply rail; input terminals can be swung 0.5 V below negative supply rail
- CMOS output stage permits signal swing to either (or both) supply rails


## Applications:

- Ground referenced single supply amplifiers
- Fast sample-hold amplifiers
- Long duration timers/monostables
- Ideal interface with digital CMOS
- High input impedance wideband amplifiers
- Voltage followers (e.g. follower for single supply D/A converter)
- Voltage regulators (permits control of output voltage down to zero volts)
- Wien-Bridge oscillators
- Voltage controlled oscillators
- Photo diode sensor amplifiers

CA3260A and CA3260 are integrated circuit operation amplifiers that combine the advantage of both CMOS and biploar transistors on a monolithic chip. The CA3260 series circuits are dual versions of the popular CA3160 series.

Gate-protected p-channel MOSFET (PMOS) transistors are used in the input circuit to provide very high input impedance, very low input current, and exceptional speed performance. The use of PMOS field-effect transistors in the input stage results in common-mode input voltage capability down to 0.5 volt below the negative supply terminal, an important attribute in single supply applications.

A complementary symmetry MOS (CMOS) transistor pair, capable of swinging the output voltage to within 10 millivolts of
either supply voltage terminal (at very high values of load impedance), is employed as the output circuit.

The CA3260 Series circuits operate at supply voltages ranging from 4 to 16 volts, or $\pm 2$ to $\pm 8$ volts when using split supplies.

The CA3260 Series is supplied in standard 8-lead TO-5 style packages (T suffix) and 8-lead dual-in-line formed lead TO-5 style "DIL-CAN" packages (S suffix). The CA3260 is available in chip form ( H suffix).

The CA3260 and CA3260A are also available in the 8-lead dual-in-line plastic package (Mini-DIP E suffix). All types operate over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. The CA3260A offers superior input characteristics over those of the CA3260.


Fig. 1 - Schematic diagram of CA3260 series.


S and T Suffixes Pin compatible with the industry-standard 1458


E Suffix Pin compatible with the industry-standard 1458

Fig. 2 - Functional diagrams for the CA3260 Series.

ELECTRICAL CHARACTERISTICS for Each Amplifier at $\mathrm{T}_{\mathbf{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$, $\mathbf{V}^{+}=15 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}$ (Unless otherwise specified)

CHARACTERISTIC	LIMITS						UNITS	
	CA3260A (T,S,E)			CA3260 (T,S,E)				
	Min.	Typ.	Max.	Min.	Typ.	Max.		
Input Offset Voltage, $1 \mathrm{~V}_{1 \mathrm{O}} \mathrm{I}, \mathrm{V}^{ \pm}= \pm 7.5 \mathrm{~V}$	-	2	5	-	6	15	mV	
Input Offset Current, \\| I O I, $\mathrm{V}^{ \pm}= \pm 7.5 \mathrm{~V}$	-	0.5	20	-	0.5	30	pA	
Input Current, II $\mathrm{V}^{ \pm}= \pm 7.5 \mathrm{~V}$	-	5	30	-	5	50	pA	
```Large-Signal Voltage Gain, AOL \(\mathrm{V}_{\mathrm{O}}=10 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega\)```	50 k	320 k	-	50 k	320 k	-	V/V	
	94	110	-	94	110	-	dB	
Common-Mode Rejection Ratio, CMRR	80	95	-	70	90	-	dB	
Common-Mode Input Voltage Range, VICR	0	$\begin{array}{\|r} \hline-0.5 \\ \text { to } \\ 12 \\ \hline \end{array}$	10	0	$\begin{array}{\|c\|} \hline-0.5 \\ \text { to } \\ 12 \\ \hline \end{array}$	10	V	
Power-Supply Rejection Ratio, $\Delta V_{10} / \Delta V^{ \pm}$ $\mathrm{V}^{ \pm}= \pm 7.5 \mathrm{~V}$	-	32	150	-	32	320	$\mu \mathrm{V} / \mathrm{V}$	
Maximum Output Voltage:								
Voltage: $\mathrm{V}_{\mathrm{OM}}{ }^{+}$	11	13.3	-	11	13.3	-		
$\text { At } R_{L}=10 \mathrm{k} \Omega \frac{V_{O M}}{V_{O M}}$	11	0.002	0.01	11	13.002	0.01	v	
At $\mathrm{R}_{\mathrm{L}}=\infty \quad \mathrm{V}_{\mathrm{OM}^{+}}$	14.99	15	-	14.99	15	-	v	
Maximum Output	-	0	0.01	-	0	0.01		
$\begin{aligned} & \hline \text { Maximum Output } \\ & \text { Current, } \\ & \text { IOM }^{+}(\text {Source }) @ \\ & \mathrm{~V}_{\mathrm{O}}=7.5 \mathrm{~V} \\ & \hline \end{aligned}$	12	22	45	12	22	45	mA	
$\begin{aligned} & \text { lom (Sink) @ } \\ & \mathrm{V}_{\mathrm{O}}=7.5 \mathrm{~V} \end{aligned}$	12	20	45	12	20	45		
Total Supply Current, I^{+} $R_{\mathrm{L}}=\infty$ $\mathrm{V}_{\mathrm{O}}($ Ampli.A $)=\mathrm{V}_{\mathrm{O}}$ $\quad($ Ampli.B $)=7.5 \mathrm{~V}$	-	9	15.5	-	9	15.5	mA	
$\begin{gathered} \mathrm{V}_{\mathrm{O}}(\text { Ampli.A })=\mathrm{V}_{\mathrm{O}} \\ (\text { Ampli.B })=0 \mathrm{~V} \\ \hline \end{gathered}$	-	1.2	3	-	1.2	3		
V_{O} (Ampli.A) $=0 \mathrm{~V}$ $\mathrm{V}_{\mathrm{O}}($ Ampli. $B)=7.5 \mathrm{~V}$	-	5	8.5	-	5	8.5		
Input Offset Voltage Temp.Drift, $\Delta V_{10} / \Delta T$	-	6	-	-	8	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	
Crosstalk $\mathrm{f}=1 \mathrm{kHz}$	-	120	-	-	120	-	dB	

MAXIMUM RATINGS, Absolute-Maximum Values:

DC SUPPLY VOLTAGE
(Between V^{+}and V^{-}Terminals)......... 16 V
DIFFERENTIAL-MODE
INPUT VOLTAGE $\pm 8 \mathrm{~V}$
COMMON-MODE DC
INPUT VOLTAGE $\ldots . .\left(\mathrm{V}^{+}+8 \mathrm{~V}\right)$ to $\left(\mathrm{V}^{-}-0.5 \mathrm{~V}\right.$ NPUT-TERMINAL CURRENT \qquad .1 mA
DEVICE DISSIPATION
WITHOUT HEAT SINK -
UP TO $55^{\circ} \mathrm{C}$........................... . . 630 mW
ABOVE $55^{\circ} \mathrm{C} \ldots$ Derate linearly $6.67 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

Short circuit may be applied to ground or to either supply.

WITH HEAT SINK -

ABOVE $90^{\circ} \mathrm{C}$... Derate linearly $16.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
TEMPERATURE RANGE:
OPERATING (All Types) -55 to $+125^{\circ} \mathrm{C}$
STORAGE (All Types) -65 to $+150^{\circ} \mathrm{C}$
OUTPUT SHORT-CIRCUIT
DURATION* \qquad . INDEFINITE
LEAD TEMPERATURE
(DURING SOLDERING):
At distance $1 / 16 \pm 1 / 32 \mathrm{in}$.
($1.59 \pm 0.79 \mathrm{~mm}$) from case
for 10 s max.
$+265^{\circ} \mathrm{C}$

TYPICAL VALUES INTENDED ONLY FOR DESIGN GUIDANCE

CHARACTERISTIC	TEST CONDITIONS	$\begin{aligned} & \text { CA3260A } \\ & \text { (T, S, E) } \end{aligned}$	$\begin{aligned} & \text { CA3260 } \\ & (T, S, E) \end{aligned}$	UNITS
$\mathrm{V}^{+}=+7.5 \mathrm{~V}, \mathrm{~V}^{-}=-7.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Unless Otherwise Specified)				
Input Resistance, R_{1}		1.5	1.5	T Ω
Input Capacitance, C_{1}	$\mathrm{f}=1 \mathrm{MHz}$	4.3	4.3	pF
Unity Gain Crossover Frequency, f_{T}		4	4	MHz
Slew Rate, SR		10	10	$\mathrm{V} / \mu \mathrm{s}$
Transient Response: Rise Time, t_{r}	$\begin{aligned} & C_{L}=25 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \end{aligned}$	0.09	0.09	$\mu \mathrm{S}$
Overshoot	(Voltage	10	10	\%
$\begin{aligned} & \text { Settling Time }\left(4 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}\right. \\ & \text { Input to }<0.1 \%) \\ & \hline \end{aligned}$	Follower)	1.8	1.8	$\mu \mathrm{S}$
$\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Unless Otherwise Specified)				
Input Offset Voltage, $\mathrm{V}_{1 \mathrm{O}}$		2	6	mV
Input Offset Current, 1/O		0.1	0.1	pA
Input Current, II		2	2	PA
Common-Mode Rejection Ratio, CMRR		70	60	dB
Large-Signal Voltage Gain, AOL	$\begin{aligned} & V_{O}=4 V_{p-p} \\ & R_{L}=20 \mathrm{k} \Omega \end{aligned}$	$\begin{gathered} 100 \mathrm{k} \\ 100 \end{gathered}$	$\begin{gathered} 100 \mathrm{k} \\ 100 \end{gathered}$	$\begin{aligned} & \mathrm{V} / \mathrm{V} \\ & \mathrm{~dB} \end{aligned}$
Common-Mode Input Voltage Range, VICR	\cdots	0 to 2.5	0 to 2.5	V
Supply Current, 1^{+}	$\begin{gathered} \mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}, \\ \mathrm{R}_{\mathrm{L}}=\infty \end{gathered}$	1	1	mA
	$\begin{gathered} \hline \mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}, \\ \mathrm{R}_{\mathrm{L}}=\infty \end{gathered}$	1.2	1.2	
Power Supply Rejection Ratio, $\Delta \mathrm{V}_{10} / \Delta \mathrm{V}^{+}$		200	200	$\mu \mathrm{V} / \mathrm{V}$

Dual Variable Operational Amplifiers

Features:

- Low initial input-offset voltage: $500 \mu \mathrm{~V}$ max. (CA3280A)
- Low offset-voltage change versus $I_{A B C}:<500 \mu \mathrm{~V}$ typ. for all types
- Low offset-voltage drift: $5 \mu \mathrm{~V} / \mathrm{C}$ max. (CA3280A)
- Excellent matching of the two amplifiers for all characteristics
- Internal current-driven linearizing diodes reduce the external input current to an offset component

Applications:

- Voltage-controlled amplifiers

Comparators

- Voltage-controlled oscillators
- Audio preamplifiers
- Multipliers
- Demodulators
- Sample and hold
- Instrumentation amplifiers
- Function generators
- Triangle wave-to-sine wave converters

3

tic of many AGC systems. Inter-digitation, or crosscoupling, of critical portions of the circuit reduces the amplifier dependence upon thermal and processing variables.

The CA3280 has all the generic characteristics of an operational voltage amplifier except that the forward transfer

The CA3280 and CA3280A types consist of two variable operational amplifiers that are designed to substantially reduce the initial input offset voltage and the offset-voltage variation with respect to changes in programming current. This design results in reduced "AGC thump," an objectionable characteris-
characteristic is best described by transconductance rather than voltage gain, and the output is current, not voltage. The magnitude of the output current is equal to the product of transconductance and the input voltage. This type of operational transconductance amplifier was first introduced by RCA in 1969*, and it has since gained wide

[^25]For additional application information on this device and on OTA's in general, please refer to Application Notes: ICAN-6818, ICAN6668, and ICAN-6077.
acceptance as a gateable, gain-controlled building block for instrumentation and audio applications, such as linearization of transducer outputs, standardization of widely changing signals for data processing, multiplexing, instrumentation amplifiers operating from the nanopower range to high current and highspeed comparators.

The operating-temperature ranges are -55 to $+125^{\circ} \mathrm{C}$ for the CA3280A, and 0 to $+70^{\circ} \mathrm{C}$ for the CA3280.

The CA3280 and CA3280A are supplied in the 16-lead dual-in-line plastic package (E suffix), in the 16-lead dual-in-line frit-seal ceramic package (F suffix, and are also supplied in chip form (H suffix).
MAXIMUM RATINGS, Absolute-Maximum Values:
DC SUPPLY VOLTAGE (BETWEEN V + AND V-TERMINALS) 36 V
DIFFERENTIAL INPUT VOLTAGE $\pm 5 \mathrm{~V}$
DC INPUT VOLTAGE RANGE $\ldots \ldots$
INPUT SIGNAL CURRENT AT $I_{0}=0$ + to $V-100 \mathrm{~A}$
AMPLIFIER BIAS CURRENT 10 mA
OUTPUT SHORT CIRCUIT DURATION* 5 mA
POWER DISSIPATION, PD:
Either Amplifier 600 mW
Above $55^{\circ} \mathrm{C}$ Derate linearly at $6.67 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
AMBIENT TEMPERATURE RANGE, T_{A} :
Operating:
CA3280 0 to $+70^{\circ} \mathrm{C}$
55 to $+125^{\circ} \mathrm{C}$
Storage, All Types -65 to $+150^{\circ} \mathrm{C}$
At distance $1 / 16 \pm 1 / 32$ in. $(1.59 \pm 0.79 \mathrm{~mm})$
from case for 10 sec . max $+265^{\circ} \mathrm{C}$

[^26]

ELECTRICAL CHARACTERISTICS at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}^{ \pm}=15 \mathrm{~V}$ (Unless Otherwise Stated)
For Equipment Design

CHARACTERISTIC	TESTCONDITIONS	LIMITS						UNITS
		CA3280			CA3280A			
		Min.	Typ.	Max.	Min.	Typ.	Max.	
Input Offset Voltage, V_{10}	${ }^{1} \mathrm{ABC}=1 \mathrm{~mA}$	-	-	3	-	-	0.5	mV
	${ }^{\prime} A B C=100 \mu \mathrm{~A}$	-	0.7	3	-	0.25	0.5	
	${ }^{1} \mathrm{ABC}^{=10 \mu \mathrm{~A}}$	-	-	3	-	-	0.5	
	${ }^{\prime} A B C=1 \mathrm{~mA}$ to $10 \mu \mathrm{~A}$ $\mathrm{T}_{\mathrm{A}}=$ fuil temp. range	-	0.8	4	-	0.8	1.5	
Input Offset Voltage Change, $\left\|\Delta V_{10}\right\|$	${ }^{\prime}{ }^{\prime} B^{\prime}=1 \mu \mathrm{~A}$ to 1 mA	-	0.5	1	-	0.5	1	mV
	${ }^{\prime} A B C=100 \mu \mathrm{~A}$ $T_{A} A=$ full temp. range	-	5	-	-	3	5	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Amplifier Bias Voltage, $\mathrm{V}_{\mathrm{ABC}}$	${ }^{\prime} A B C=100 \mu A$	-	1.2	-	-	1.2	-	V
Peak Output Voltage: Positive VOM^{+}	${ }^{\prime} A B C=500 \mu \mathrm{~A}$	12	13.7	-	12.5	13.7	-	V
Negative VOM ${ }^{-}$		12	-14.3	-	-13.3	-14.3	-	
Positive VOM ${ }^{+}$	${ }^{\prime} A B C=5 \mu A$	12	13.9	-	12.5	13.9	-	
Negative VOM ${ }^{-}$		12	-14.5	-	-13.5	-14.5	-	
Common-Mode Input Voltage Range, VICR	${ }^{\prime} A B C=100 \mu \mathrm{~A}$	-13	-	13	-13	-	13	V
$\begin{gathered} \text { Noise Voltage, } \mathrm{e}_{\mathrm{N}} \text { : } \\ 10 \mathrm{~Hz} \\ \hline \end{gathered}$	${ }^{\prime} A B C=500 \mu \mathrm{~A}$	-	20	-	-	20	-	$\begin{aligned} & \mathrm{nV} / \\ & \sqrt{\mathrm{Hz}} \end{aligned}$
1 kHz		-	8	-	-	8	-	$\begin{aligned} & \mu \mathrm{V} / \\ & \sqrt{\mathrm{Hz}} \end{aligned}$
10 kHz		-	7	-	-	7	-	$\begin{aligned} & \mathrm{nV} / \\ & \sqrt{\mathrm{Hz}} \end{aligned}$
Input Offset Current, 110	${ }^{\prime}{ }^{\prime} \mathrm{ABC}^{\prime}=500 \mu \mathrm{~A}$	-	0.3	0.7	-	0.3	0.7	$\mu \mathrm{A}$
Input Bias Current, ${ }^{1 / B}$	${ }^{\prime} A B C=500 \mu \mathrm{~A}$	-	1.8	5	-	1.8	5	
	$I_{A B C}=500 \mu \mathrm{~A}$ $\mathrm{T}_{\mathrm{A}}=$ full temp. range	-	3	8	-	3	8	$\mu \mathrm{A}$
Peak Output	${ }^{\prime} A B C=500 \mu \mathrm{~A}$							$\mu \mathrm{A}$
Current: Source $1 \mathrm{OM}^{+}$		350	410	650	350	410	650	
Sink $10 \mathrm{M}^{-}$		-350	-410	-650	-350	-410	-650	
Source IOM ${ }^{+}$	${ }^{\prime} \mathrm{ABC}^{\prime}=5 \mu \mathrm{~A}$	3	4.1	7	3	4.1	7	
Sink 1OM ${ }^{-}$		-3	-4.1	-7	-3	-4.1	-7	
Sink and Source, IOM-, $10 \mathrm{M}^{+}$	${ }^{\prime} A B C=500 \mu \mathrm{~A}$ $T_{A}=$ full temp. range	350	450	550	350	450	550	
Diodes: Dynamic Impedance	$I^{\prime}=100 \mu \mathrm{~A}$	-	700	-	-	700	-	Ω
Offset Current	${ }^{1} \mathrm{D}=100 \mu \mathrm{~A}$	-	10	-	-	10	-	$\mu \mathrm{A}$
	$I^{\prime}=10 \mu \mathrm{~A}$	-	0.5	1	-	0.5	1	

ELECTRICAL CHARACTERISTICS (Cont'd)

CHARACTERISTIC	TEST CONDITIONS	LIMITS						UNITS
		CA3280			CA3280A			
		Min.	Typ.	Max.	Min.	Typ.	Max.	
Diode Network Supply Current	${ }^{\prime} A B C=100 \mu \mathrm{~A}$	250	400	800	250	400	800	$\mu \mathrm{A}$
Amplifier Supply Current (Per amplifier)	${ }^{\prime}{ }_{A B C}=500 \mu \mathrm{~A}$	-	2	2.4	-	2	2.4	mA
Amplifier Output Leakage Current, IOL	$\mathrm{I}_{\mathrm{ABC}}=0, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}$	-	0.015	0.1	-	0.015	0.1	$n \mathrm{~A}$
	$\mathrm{I}_{\mathrm{ABC}}=0, \mathrm{~V}_{\mathrm{O}}=30 \mathrm{~V}$	-	0.15	1	-	0.15	1	
Common-Mode Rejection Ratio, CMRR	${ }^{\prime} A B C=100 \mu \mathrm{~A}$	80	100	-	94	100	-	dB
Power-Supply Rejection Ratio, PSRR	${ }^{\prime}{ }_{A B C}=100 \mu \mathrm{~A}$	86	105	-	94	105	-	dB
Open-Loop Voltage Gain, AOL	$\begin{aligned} & \mathrm{I}_{\mathrm{ABC}}=100 \mu \mathrm{~A}, \\ & \mathrm{R}_{\mathrm{L}}=\infty, \end{aligned}$	94	100	-	94	100	-	dB
	$\mathrm{V}_{\mathrm{O}}=20 \mathrm{Vp-p}$	50K	100K	-	50 K	100K	-	V/V
Forward Transconductance: Large Signal, Gm	${ }^{\text {ABC }}=50 \mu \mathrm{~A}$	-	0.8	1.2	-	0.8	1.2	mmho
Small Signal, gm	${ }^{1} A B C=1 \mathrm{~mA}$	-	16	22	-	16	22	
Input Resistance, $\mathrm{R}_{\mathbf{l}}$	${ }^{\prime}{ }^{\prime}{ }^{\text {BC }}=10 \mu \mathrm{~A}$	0.5	-	-	0.5	-	-	$\mathrm{M} \Omega$
Channel Separation	$\mathrm{f}=1 \mathrm{kHz}$	-	94	-	-	94	-	dB
Open-Loop Total Harmonic Distortion	$\begin{aligned} & \mathrm{f}=1 \mathrm{kHz}, \mathrm{I}_{\mathrm{ABC}}= \\ & 1.5 \mathrm{~mA}, \\ & \mathrm{R}_{\mathrm{L}}=15 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{O}}= \\ & 20 \mathrm{Vp} \cdot \mathrm{p} \end{aligned}$	-	0.4	-	-	0.4	-	\%
Bandwidth	$\begin{array}{\|l\|} \hline{ }^{\mathrm{A} A B C}=1 \mathrm{~mA}, \\ \mathrm{R}_{\mathrm{L}}=100 \Omega \\ \hline \end{array}$	-	9	-	-	9	-	MHz
Slew Rate, SR: Open Loop	${ }^{\prime} A B C=1 \mathrm{~mA}$	-	125	-	-	125	-	$\mathrm{V} / \mu \mathrm{s}$
Capacitance: Input, C_{\mid}	${ }^{1} A B C=100 \mu \mathrm{~A}$	-	4.5	-	-	4.5	-	pF
Output, C_{O}		-	7.5	-	-	7.5	-	
Output Resistance, R_{O}	${ }^{1} A B C=100 \mu \mathrm{~A}$	-	63	-	-	63	-	$\mathrm{M} \Omega$

Figs. 2 and 3 show the equivalent circuits for the current source and linearization diodes in the CA3280. The current through the linearization network is approximately equal to the programming current. There are several advantages to driving these diodes with a current source. First, only the offset current from the biasing network flows through the input resistor. Second, another input is provided to extend the gain control dynamic range. And third, the input is truly differential and can accept signals within the commonmode range of the CA3280.

The structure of the variable operational amplifier eliminates the need for matched resistor networks in differential to single-ended converters, as shown in Fig. 4. A matched resistor network requires ratio matching of 0.01% or trimming for 80 dB of common-mode rejection. The CA3280, with its excellent common-mode rejection ratio, is capable of converting a small ($\pm 25 \mathrm{mV}$) differential input signal to a single-ended output without the need for a matched resistor network.

Fig. 5 shows the CA3280 in a typical gain-control application. The input-signal range as a function of distortion at various levels of linearization diode current is shown in Fig. 6 This curve shows only the AGC capability of the diode network, but gain control can also be performed with the amplifier bias current ($I_{A B C}$). With no diode bias current, the gain is merely $g m R_{L}$. For example, with an $I_{A B C}$ of 1 mA , the gm is approximately 16 mmhos. With the CA3280 operating into a $5 \mathrm{k} \Omega$ resistor, the gain is 80 .

The need for external buffers can be eliminated by the use of low-value load resistors, but the resulting increase in the required amplifier bias current reduces the input impedance of the CA3280. The linearization diode impedance also decreases as the diode bias current increases, which further loads the input. The diodes, in addition to acting as a linearization network, also operate as an additional attenuation system to accommodate input signals in the volt range when they are applied through appropriate input resistors.

Fig. 3-Block diagram of linearized VOA.

Fig. 5 - Typical gain control circuit.

Fig. 7 - Two channel linear multiplexer.

Fig. 4 - Differential to single-ended converter.

Fig. 6 - Amplifier gain as a function of frequency.

Fig. 9 shows a triangle wave-to-sine wave converter using the CA3280. Two $100 \mathrm{~K} \Omega$ resistors are connected between the differential amplifier emitters and $V+$ to reduce the cur-
rent flow through the differential amplifier. This allows the amplifier to fully cut off during peak input signal excursions. THD is approximately 0.37% for this circuit.

Fig. 9 - Triangle wave-to-sine wave converter.

Fig. $10-$ Leakage current test circuit.

Fig. 11 - Channel separation test circuit.

a) With diode programming terminal active

$I_{a b c}=650 \mu \mathrm{~A}$
$I_{D}=0$
VERT $=200 \mu \mathrm{~A} / \mathrm{DIV}$
HOR = $\mathbf{2 5} \mathrm{mV} / \mathrm{DIV}$
b) With diode programming terminal cut-off

Fig. 12 - CA3280 transfer characteristics.

Fig. 13 - Supply current as a function of diode current.

Fig. 15 - Input offset voltage as a function of amplifier bias current.

Fig. 14 - Input offset current as a function of amplifier bias current.

Fig. 16 - Peak output voltage as a function of amplifier bias current.

Fig. 17 - Input current as a function of input differential voltage.

Fig. 19 - Amplifier bias voltage as a function of amplifier bias current.

Fig. 21 - Peak output current as a function of amplifier bias current.

Fig. 23 - Amplifier gain as a function of amplifier bias current.

Fig. 18 - Leakage current as a function of temperature.

Fig. $20-1 /$ F noise as a function of frequency.

Fig. 22 - Diode resistance as a function of diode current.

Fig. 24 - Supply current as a function of amplifier bias current.

Fig. 25 - Input bias current as a function of amplifier bias current.

Dimensions and pad layout for CA3280H.

The photographs and dimensions represent a chip when it is part of the wafer. When the wafer is cut into chips, the cleavage angles are 57 instead of 90° with respect to the face of the chip. Therefore, the isolated chip is actually 7 mils $(0.17 \mathrm{~mm})$ larger in both dimensions.

Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils $\left(10^{-3}\right.$ inch $)$.

HARRIS

Quad BiMOS Operational Amplifiers

With MOSFET Input, Biploar Output

Features:

Internally compensated

- MOSFET Input Stage
(a) Very high input impedance ($Z_{I N}$): 1.5 $T \Omega$ typ.
(b) Very low input current (1): : 10 pA typ. at $\pm 15 \mathrm{~V}$
(c) Wide common-mode input voltage range ($\mathrm{V}_{I} \mathrm{CR}$): can be swung to the negative supply voltage rail
(d) Rugged input stage: bipolar diode protected
- Directly replaces industry type 324 in most applications
- Operation from 6-to-36 volts single or dual supplies
- Characterized for ± 15-volt operation and for TTL supply systems with operation down to 6 volts
- Wide bandwidth: 5 MHz unity gain at $\pm 15 \mathrm{~V}$ or a single 30 V supply
- High voltage follower slew rate: $10 \mathrm{~V} / \mu \mathrm{s}$

Applications:

- Ground referenced single supply amplifiers in automobile and portable instrumentation
- Sample and hold amplifiers
- Long duration timers/multivibrators (microseconds-minutes-hours)
- Photocurrent instrumentation
- Active filters
- Intrusion alarm systems
- Comparators
- Instrumentation amplifiers
- Function generators
- Power supplies

The CA3410A and CA3410 are BiMOS integrated circuit operational amplifiers. They combine the advantage of MOS and bipolar transistors on the same monolithic chip. The gateprotected MOSFET (PMOS) input transistors provide high input impedance and a wide common-mode input voltage range (typically to the negative supply rail). The bipolar output transistors allow a wide output voltage swing and provide a high output current capability

The CA3410A and CA3410 are supplied in the 14-lead dual-in-line plastic package (E suffix). They are pin-compatible with the industry standard 324 and 084 operational amplifiers in similar packages. The CA3410A and CA3410 have an operating temperature range of -40 to $+85^{\circ} \mathrm{C}$.

Figure 1 - Block diagram of $1 / 4$ of the CA3410E.

MAXIMUM RATINGS, Absolute-Maximum Values:

DC SUPPLYVOLTAGE (BETWEEN V^{+}AND V^{-}TERMINALS) 36 V
OPERATING VOLTAGE RANGE 6 to 36 V
or ± 2 to $\pm 18 \mathrm{~V}$
DIFFERENTIAL-MODE INPUT VOLTAGE $\pm 16 \mathrm{~V}$
COMMON-MODE DC INPUT VOLTAGEINPUT-TERMINAL CURRENT1 mA
DEVICE DISSIPATION:
UP TO $55^{\circ} \mathrm{C}$. 625 mW
ABOVE $55^{\circ} \mathrm{C}$ Derate linearly $6.67 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$TEMPERATURE RANGE:OPERATING-40 to $+85^{\circ} \mathrm{C}$
STORAGE -65 to $+150^{\circ} \mathrm{C}$
OUTPUT SHORT-CIRCUIT DURATION* UNLIMITED
LEAD TEMPERATURE (DURING SOLDERING)
AT DISTANCE $1 / 16 \pm 1 / 32 \mathrm{iNCH}(1.59 \pm 0.79 \mathrm{MM})$FROM CASE FOR 10 SECONDS MAX$+265^{\circ} \mathrm{C}$

- Short circuit may be applied to ground or to either supply. Temperatures and/or supply voltages must be limited to keep dissipation within maximum rating

Fig. 2 - Schematic diagram for $1 / 4$ of the CA3410

Circuit Description

The schematic diagram of one amplifier section of the CA3410 is shown in Fig. 2. It consists of a differential amplifier stage using PMOS transistors Q2 and Q3 with gate-to-source protection against static discharge damage provided by zener diodes D9, D10, D11, and D12, D13, D14. Constant current bias is applied to the
differential amplifier from transistors Q1 connected as a constant-current source. This assures a high commonmode rejection ratio. The output of the differential amplifier is coupled to the base of gain stage transistors Q5 and Q8 by means of an n-p-n current mirror that supplies the required differential-to-single-ended conversion.

ELECTRICAL CHARACTERISTICS for Equipment Design at $\mathbf{V}^{+}=15 \mathrm{~V}, \mathbf{V}^{-}=\mathbf{1 5} \mathrm{V}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Unless Otherwise Specifled

CHARACTERISTIC		LIMITS						UNITS
		CA3410A			CA3410			
		Min.	Typ.	Max.	Min.	Typ.	Max.	
Input Offset Voltage	V_{10}	-	3	8	-	8	15	mV
Input Offset Current	I_{10}	-	0.5	10	-	0.5	30	pA
Input Current	1	-	10	30	-	10	40	pA
Large-Signal Voltage Gain	AOL	20 k	100 k	-	20 k	100 k	-	V/V
$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	$V_{0}= \pm 10 \mathrm{~V}$	86	100	-	86	100	-	dB
Common-Mode Rejection Ratio	CMRR	-	32	100	-	32	320	$\mu \mathrm{V} / \mathrm{V}$
		80	90	-	70	90	-	dB
Common-Mode Input-Voltage Range	$V_{\text {ICR }}$	-15	$\begin{gathered} -15.5 \\ \text { to } \\ 13 \\ \hline \end{gathered}$	12.5	-15	$\begin{gathered} -15.5 \\ \text { to } \\ 13 \\ \hline \end{gathered}$	12.5	V
Power-Supply Rejection Ratio	$\Delta V_{10} / \Delta V$	-	50	100	-	50	316	$\mu \mathrm{V} / \mathrm{V}$
	PSRR	80	86	-	70	86	-	dB
Maximum Output Voltage Swing	VOM^{+}	13	13.9	-	13	13.9	-	V
$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	VOM^{-}	-10.5	-11.2	-	-10.5	-11.2	-	
Maximum Output Voltage Swing	VOM^{+}	13.5	14.2	-	13.5	14.2	-	
$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	Vom ${ }^{-}$	-11	-12.2	-	-11	-12.2	-	v
Total Supply Current	1^{+}	-	8	10	-	8	12	mA
Total Device Dissipation	Po	-	240	300	-	240	360	mW

Circuit Description (Cont'd)

Output Stage

The output stage is a physo-complementary amplifier with n-p-n output transistors. Diode D3 complements Q10, while diode connected PMOS transistor Q12 complements PMOS transistor Q13. N-P-N transistor Q14 provides the sinking current while n-p-n transistor Q10 provides the sourcing current.

Fig. 3 - Functional diagram.

TYPICAL ELECTRICAL CHARACTERISTICS

CHARACTERISTIC		TEST CONDITIONS$\begin{aligned} & V^{+}=15 \mathrm{~V} \\ & \mathrm{~V}^{-}=-15 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		TYPICAL VALUES		UNITS
				CA3410A	CA3410	
Input Resistance	R1			1.5	1.5	T Ω
Input Capacitance	C_{1}			4	4	pF
Output Resistance	Ro			60	60	Ω
Equivalent Wideband Input Noise Voltage	e_{n}	$\begin{aligned} & \mathrm{BW}=1401 \\ & \mathrm{R}_{\mathrm{S}}=1 \mathrm{M} \Omega \end{aligned}$		48	48	$\mu \mathrm{V}$
Equivalent Input Noise Voltage	e_{n}	$f=1 \mathrm{kHz}$	$\mathrm{R}_{\text {S }}=$	40	40	$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
		$f=10 \mathrm{kHz}$	100Ω	30	30	
Short-Circuit Current to Opposite Supply\qquad Source lom ${ }^{+}$				35	35	mA
Sink lom $^{-}$				17	17	
Gain-Bandwidth Product	f_{T}			5.4	5.4	MHz
Slew Rate	SR			10	10	$\mathrm{V} / \mu \mathrm{s}$
Transient Response: Rise Time:	t_{r}	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$		0.08	0.08	$\mu \mathrm{s}$
Overshoot		$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$		10	10	\%
Crosstalk		$\mathrm{f}=1 \mathrm{kHz}$		120	120	dB

Fig. 4 - Output voltage as a function of frequency and temperature.

Fig. 5 - Output voltage as a function of frequency and supply voltage.

ELECTRICAL CHARACTERISTICS for Equipment Design at $\mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}^{-}=15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40$ to $100^{\circ} \mathrm{C}$ Unless Otherwise Specifled

CHARACTERISTIC		TYPICAL VALUES		UNITS
		CA3410A	CA3410	
Input Offset Voltage	V_{10}	4	10	mV
Input Offset Current	$1{ }_{10}$	8	10	mA
Input Current	11	10	20	mA
Large-Signal Voltage Gain	Aol	50 k	50 k	V/V
$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	$V_{0}= \pm 10 \mathrm{~V}$	94	94	dB
Common-Mode Rejection Ratio	CMRR	32	32	$\mu \mathrm{V} / \mathrm{V}$
		90	90	dB
Common-Mode Input-Voltage Range	$V_{\text {ICR }}$	$\begin{array}{r} -15 \\ \text { to } \\ +12.50 \\ \hline \end{array}$	$\begin{gathered} -15 \\ \text { to } \\ +12.50 \\ \hline \end{gathered}$	V
Power-Supply Rejection Ratio	$\Delta V_{10} / \Delta V$	150	150	$\mu \mathrm{V} / \mathrm{V}$
	PSRR	76	76	dB
Maximum Output Voltage	VOM^{+}	13.50	13.50	V
$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	VOM^{-}	-10.50	-10.50	
Supply Current	$1+$	9	10	mA
Total Device Dissipation	PD	270	300	mW
Temperature Coefficient of Input Offset Voltage	$\Delta V_{10} / \Delta T$	10	12	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$

Fig. 6 - Differential voltage amplification as a function of frequency.

Fig. 7 - Input bias current as a function of ambient temperature.

Fig. 8 - Open-loop voltage gain as a function of supply voltage and output voltage.

Fig. 10-Slew rate as a function of supply voltage.

Fig. 12 - Positive output voltage swing as a function of supply voltage.

Fig. 9 - Gain-bandwidth product as a function of supply voltage.

Fig. 11 - Negative output voltage swing as a function of supply voltage.

Fig. 13-Total supply current as a function of supply voltage.

Fig. 14 - Typical common-mode rejection ratio as a function of supply voltage.

Fig. 15 - Equivalent input noise voltage as a function of frequency.

Fig. 16 - Split-supply voltage-follower test circuit.

APPLICATIONS CONSIDERATIONS

Input Circuit Considerations

As indicated by the typical VICR, this device will accept inputs as low as V^{-}. However, a series current-limiting resistor is recommended to limit the maximum input terminal current to less than 1 mA to prevent damage to the input protection circuitry.
Moreover, some current-limiting resistance should be provided between the inverting input and the output when the CA3410 is used as a unity-gain voltage follower. This resistance prevents the possibility of extremely large input-signal transients from forcing a signal through the input-protection network and directly driving the internal constant-current source which could result in positive feedback via the output terminal. A $3.9-\mathrm{k} \Omega$ resistor is sufficient.

The typical input current is in the order of 10 pA when the inputs are centered at nominal device dissipation. As the output supplies load current, device dissipation will increase, raising the chip temperature and resulting in increased input current.
It is well known that MOSFET devices can exhibit slight changes in characteristics (for example, small changes in input offset voltage) due to the application of large differential input voltages that are sustained over long periods at elevated temperatures.
Both applied voltage and temperature accelerate these changes. The process is reversible and offset voltage shifts of the opposite polarity reverse the offset. In typical linear applications, where the differential voltage is small and symmetrical, these incremental changes are of about the same magnitude as those encountered in an operational amplifier employing a bipolar transistor input stage.

TYPICAL APPLICATIONS

On/Off Touch Switch

The on/off touch switch shown in Fig. 18 uses the CA3410E to sense small currents flowing between two contact points on a touch plate consisting of a PC board metallization "grid". When the "on" plate is touched, current flows between the two halves of the grid causing a positive shift in the output voltage (Term. 7) of the CA3410E. These positive transitions are fed into the CA3059, which is used as a latching circuit and zerocrossing triac driver. When a positive puise occurs at Terminal 7 of the CA3410E, triac is turned on and beld on by the CA3059 and its associated positive feedback circuitry ($51-\mathrm{k} \Omega$ resistor and $36-\mathrm{k} \Omega / 42-\mathrm{k} \Omega$ voltage divider). When the positive pulse occurs at Terminal 1 (CA3410E), the triac is turned off and held off in a similar manner. Note that power for the CA3410E is supplied by the CA3059 internal power supply.

The advantage of using the CA3410E in this circuit is that it can sense the small currents associated with skin conduction while allowing sufficiently high circuit impedance to provide protection against electrical shock.

92cs-37922
Fig. 17-Test-circuit amplifier (30-dB gain) used for wideband noise measurement.

*AT 220 V OPERATION, TRIAC SHOULD BE T2300d, RS $=18 \mathrm{~K}, 5 \mathrm{~W}$

Fig. 18 -On/off touch switch.

Dual Level Detector (window comparator)

Fig. 19 illustrates a simple dual liquid level detector using the CA3410E as the sensing amplifier. This circuit operates on the principle that most liquids contain enough ions in solution to sustain a small amount of current flow between two electrodes submersed in the liquid. The current, induced by an $0.5-\mathrm{V}$ potential applied
between two halves of a PC board grid, is converted to a voltage level by the CA3410E in a circuit similar to that of the on/off touch switch shown in Fig. 18. The changes in voltage for both the upper and lower level sensors are processed by the amp 3 of their CA3410 to activate an LED whenever the liquid level is above the upper sensor or below the lower sensor.

Fig. 19 - Dual level detector.

Precision Differential Amplifier

Fig. 20 shows the CA3410 in the classical precision differential amplifier circuit. The CA3410 is ideally suited for biomedical applications because of its extremely high input impedance. To insure patient safety, an extremely high electrode series resistance is required to limit any current that might result in patient discomfort in the event
of a fault condition. In this case, $10-\mathrm{M} \Omega$ resistors have been used to limit the current to less than $2 \mu \mathrm{~A}$ without affecting the performance of the circuit. Fig. 21 shows a typical electrocardiogram waveform obtained with this circuit.

Fig. 20 - Precision differential amplifier.

VERTICAL: 1.0 mV / DIV.
(AMPLIFIER GAIN $=100 \mathrm{X}$)
(SCOPE SENSITIVITY = O.IV/DIV.
HORIZONTAL: > 0.2 SEC/DIV (UNCAL)

92Cs-30033

TYPICAL ELECTROCARDIOGRAM WAVEFORM

Fig. 21 - Typical electrocardiogram waveform.

Differential Light Detector

In the circuit shown in Fig. 22, the CA3410E converts the current from two photo diodes to voltage, and applies 1 V of reverse bias to the diodes. The voltages from the CA3410 outputs are subtracted in the second stage
(Amp 3) so that only the difference is amplified. In this manner, the circuit can be used over a wide range of ambient light conditions without circuit component adjustment. Also, when used with a light source, the circuit will not be sensitive to changes in light level as the source ages.

Fig. 22 - Differential light detector.

May 1990

Low-Supply Voltage, Low-Input Current BiMOS Operational Amplifiers

Features:
- $2 V$ supply at $300 \mu A$ supply current
- 1 pA (typ.) input current (essentially constant to $85^{\circ} \mathrm{C}$)
- Rail-to-rail output swing (Drive $\pm 2 \mathrm{~mA}$ into $1 \mathrm{k} \Omega$ load)
- Pin compatible with 741 op amp

Applications:
- pH probe amplifiers
- Picoammeters
- Electrometer (High Z) instruments
- Portable equipment
- Inaccessible field equipment
- Battery-dependent equipment (medical and military)

Abstract

The CA3420A and CA3420* are integrated-circuit operational amplifiers that combine PMOS transistors and bipolar transistors on a single monolithic chip. The CA3420A and CA3420 BiMOS operational amplifiers feature gate-protected PMOS transistors in the input circuit to provide very high input impedance, very low input currents (less than 1 pA). The internal bootstrapping network features a unique guardbanding technique for reducing the doubling of leakage current for every $10^{\circ} \mathrm{C}$ increase in temperature. The CA3420 series operates at total supply voltages from 2 to 20 volts either single or dual supply. These operational amplifiers are internally phase compensated to achieve stable operation in the unity gain follower configuration. Additionally, they have access terminals for a supplementary external capacitor if additional frequency roll-off is desired. Terminal are also provided for use

in applications requiring input offset voltage nulling. The use of PMOS in the input stage results in common-mode input voltage capability down to 0.45 volt below the negative supply terminal, an important attribute for single-supply application. The output stage uses a feedback OTA type amplifier that can swing essentially from rail-to-rail. The output driving current of $1.5 \mathrm{~mA}(\mathrm{~min})$ is provided by using non-linear current mirrors.

The CA3420 series has the same 8-lead pin-out used for the industry standard 741. They are supplied in the standard 8 -lead TO-5 style package (S suffix, and T suffix); in the standard 8-lead dual-in-line plastic package (Minidip - E suffix), and are also available in chip form (H suffix).
*Formerly Dev. Type No. TA10841

Functional diagrams for CA3420A, CA3420.

MAXIMUM RATINGS, Absolute-Maximum Values $\left(T_{C}=25^{\circ} \mathrm{C}\right)$:

DC Supply Voltage
(Between V^{+}and V - Terminals) 22 V
Differntial-Mode
Input Voltage ... $\pm 15 \mathrm{~V}$
Common-Mode DC
Input Voltage $\ldots \ldots \ldots \ldots . .\left(\mathrm{V}^{+}+8 \mathrm{~V}\right)$ to $\left(\mathrm{V}^{-}-0.5 \mathrm{~V}\right)$
Input-Terminal Current 1 mA
Device Dissipation:
Without Heat Sink -
Up to $55^{\circ} \mathrm{C}$. \qquad .630 mW
Above $55^{\circ} \mathrm{C}$ \qquad Derate linearly $6.67 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
With Heat Sink -
Up to $110^{\circ} \mathrm{C}$.................................. 630 mW
Above $110^{\circ} \mathrm{C} \ldots \ldots \ldots$. . . Derate linearly $16.7 \mathrm{~mW}^{\circ} \mathrm{C}$

Temperature Range:	
Operating (All Types)	-55 to $+125^{\circ} \mathrm{C}$
Storage (All Types)	-65 to $+150^{\circ} \mathrm{C}$
Output Short-Circuit	
Duration*	Indefinite
Lead Temperature	
(During Soldering):	
At Distance 1/16 $\pm 1 / 32$ Inch	
($1.59 \pm 0.79 \mathrm{~mm}$) from case	
For 10 seconds max.	$+265^{\circ} \mathrm{C}$

*Short circuit may be applied to ground or to either supply.

TYPICAL VALUES INTENDED ONLY FOR DESIGN GUIDANCE

Characteristic	Test Conditions $\begin{gathered} \mathrm{V}+=+10 \mathrm{~V} ; \mathrm{V}-=-10 \mathrm{~V} \\ \mathrm{TA}=25^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} \text { CA3420A } \\ (T, S, E) \end{gathered}$	CA3420 (T,S,E)	Units
Input Resistance $\quad \mathrm{R}_{\mathrm{l}}$		150	150	T Ω
Input Capacitance $\quad \mathrm{C}_{1}$		4.9	4.9	pF
Output Resistance $\quad \mathrm{R}_{0}$		300	300	Ω
Equivalent Input Noise Voltage	$\begin{aligned} & f=1 \mathrm{KHz} \\ & f=10 \mathrm{KHz} \end{aligned}$	$\begin{aligned} & 62 \\ & 38 \\ & \hline \end{aligned}$	62 38	$\mathrm{nV} / \mathrm{Hz}$
Short-Circuit Current Source Source IOM+		2.6	2.6	mA
To Opposite Supply Sink IOM-		2.4	2.4	mA
Gain-Bandwidth Product \dagger_{T}		0.5	0.5	MHz
Slew Rate SR		0.5	0.5	$\mathrm{V} / \mu \mathrm{s}$
Transient Response Rise Time tr	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{~K} \Omega$	0.7	0.7	$\mu \mathrm{s}$
Overshoot	$C_{L}=100 \mathrm{pF}$	15	15	\%
Current from Terminal 8 To V -		20	20	$\mu \mathrm{A}$
Current from Terminal 8 To V+		2	2	mA

ELECTRICAL CHARACTERISTICS FOR EQUIPMENT DESIGN
At $\mathrm{V}+=1 \mathrm{~V}, \mathrm{~V}-=-1 \mathrm{~V}, \mathrm{TA}=25^{\circ} \mathrm{C}$ unless otherwise specified

Characteristic	Limits						Units		
	CA3420A			CA3420					
	Min	Typ	Max	Min	Typ	Max			
Input Offset Voltage $\left\|V_{10}\right\|$	-	2	5	-	5	10	mV		
Input Offset Current $\left\\|_{10}\right\\|^{*}$	-	0.01	4	-	0.01	4	pA		
Input Current $\left.\right\|_{1} \mid$ *	-	0.02	5	-	1	5	pA		
Large-Signal Voltage Gain	20 K	100K	-	10K	100K	-	V/V		
AOL ($\mathrm{R}_{\mathrm{L}}=10 \mathrm{~K} \Omega$)	86	100	-	80	100	-	dB		
Common-Mode	-	560	1000		560	1800	$\mu \mathrm{V} / \mathrm{V}$		
Rejection Ratio CMRR	60	65	-	55	65	-	dB		
Common-Mode Input VICR +	+0.2	+0.5	-	+0.2	+0.5	-	V		
Voltage Range VICR -	-1	-1.3	-		-1.3	-	V		
Power Supply Rejection	-	32	320	-	100	1000	$\mu \mathrm{V} / \mathrm{V}$		
Ratio PSRR \triangle VIO/ $\Delta \mathrm{V}$	70	90	-	60	80	-	dB		
Max Output Voltage VOM +	+0.90	+0.95	-	+0.90	+0.95	-	V		
RL $=00 \quad$ VOM -	-0.85	-0.91	-	-0.85	-0.91	-	V		
Supply Current I+	-	350	650	-	350	650	$\mu \mathrm{A}$		
Device Dissipation PD	-	0.7	1.1	-	0.7	1.1	mW		
Input Offset Voltage Temp. Drift $\Delta \mathrm{VIO} / \Delta T$	-	4	-	-	4	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$		

ELECTRICAL CHARACTERISTICS FOR EQUIPMENT DESIGN

At $\mathrm{V}+=10 \mathrm{~V}, \mathrm{~V}-=-10 \mathrm{~V}, \mathrm{TA}=25^{\circ} \mathrm{C}$ unless otherwise specified

Characteristic	Limits						Units
	CA3420A			CA3420			
	Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage $\left\|\mathrm{V}_{\mathrm{IO}}\right\|$	-	2	5	-	5	10	mV
Input Offset Current liol *	-	0.03	4	-	0.03	4	pA
Input Current \|1! *	-	0.05	5	-	0.05	5	pA
Large-Signal Voltage Gain	20K	100K	-	10K	100 K	-	V/V
AQL ($\mathrm{R}_{\mathrm{L}}=10 \mathrm{~K} \Omega$)	86	100	-	80	100	-	dB
Common-Mode	-	100	320	-	100	320	$\mu \mathrm{V} / \mathrm{V}$
Rejection Ratio CMRR	70	80	-	70	80	-	dB
Common-Mode Input VICR +	+9.0	+9.3	-	+8.5	+9.3	-	V
Voltage Range VICR -	-10	-10.3	-	-10	-10.3	-	V
Power Supply Rejection	-	32	320	-	32	320	$\mu \mathrm{V} / \mathrm{V}$
Ratio PSRR $\Delta \mathrm{VIO} / \Delta \mathrm{V}$	70	90	-	70	90	-	dB
Max Output Voltage VOM +	+9.7	+9.9	-	+9.7	+9.9	-	\checkmark
$R L=00 \quad$ VOM -	-9.7	-9.85	-	-9.7	-9.85	-	V
Supply Current I+	-	450	1000	-	450	1000	$\mu \mathrm{A}$
Device Dissipation PD	-	9	14	-	9	14	mW
Input Offset Voltage Temp. Drift $\Delta \mathrm{VIO} / \Delta T$	-	4	-	-	4	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$

* The maximum limit represents the levels obtainable on high speed automatic test equipment. Typical values are obtained under laboratory conditions.

92CS-34156
Fig. 1 - Functional diagram for CA3420.

Fig. 3 - Output voltage versus load sourcing current.

Fig. 5 - Input noise voltage versus frequency.

Fig. 2 - Output-voltage-swing and common-mode input-voltage range versus supply voltage.

Fig. 4 - Output voltage versus load sinking current.

Fig. 6-Open-loop gain and phase-shift response.

Application Circults

Picoameter Circuit

The exceptionally low input current (typically 0.2 pA) makes the CA3420 highly suited for use in a picoameter circuit. With only a single 10 K megohm resistor, this circuit covers the range from $\pm 1.5 \mathrm{pA}$. Higher current ranges are possible with suitable switching techniques and current scaling resistors. Input transient protection is provided by the 1 -megohm resistor in series with the input. Higher current ranges require that this resistor be reduced. The 10 -megohm resistor connected to pin 2 of the CA3420 decouples the potentially high input capacitance often associated with lower current circuits and reduces the tendency for the circuit to oscillate under these conditions.

High-Input-Resistance Voltmeter

Advantage is taken of the high input impedance of the CA3420 in a high-input-resistance dc voltmeter. Only two 1.5 V "AA" type penlite batteries power this exceedingly high-input resistance ($>1,000,000-\mathrm{megohms}$) dc voltmeter. Full-scale deflection is $\pm 500 \mathrm{mV}$, $\pm 150 \mathrm{mV}$, and $\pm 15 \mathrm{mV}$. Higher voltage ranges are easily added with external input voltage attenuator networks.

The meter is placed in series with the gain network, thus eliminating the meter temperature coefficient error term.

Supply current in the standby position with the meter undeflected is $300 \mu \mathrm{~A}$. At full-scale deflection this current rises to $800 \mu \mathrm{~A}$. Carbon-zinc battery life should be in excess of 1,000 hours.

Fig. 7 - Picoameter circuit.

92CS - 34004

Fig. 8 - High input resistance voltmeter.

May 1990

Nanopower BiMOS Operational Amp

Features:

- 300 nW (typ.) standby power at $\mathrm{V}+=5 \mathrm{~V}$
- Supply current, BW, slew rate programmable using external resistor
- 10 pA (typ.) input current
- 5 to 15 V supply
- Output drives typical bipolar-type loads
- Low cost 8-lead Mini-DIP, TO-5

The CA3440A and CA3440* are integrated circuit operational amplifiers that combine the advantages of MOS and bipolar transistors on a single monolithic chip.

The CA3440A and CA3440 BiMOS op amps feature gateprotected PMOS transistors in the input circuit to provide very high input impedance and very low input current (10 pA). These devices operate at total supply voltage from 5 to 15 volts and can be operated over the temperature range from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. Their virtues are programmability and very low standby power consumption (300 nW). These operational amplifiers are internally phase compensated to achieve stable operation in the unity gain follower configuration. Terminals are also provided for use in applications requiring input offset voltage nulling. The use of PMOS in the input stage results in common-mode input voltage capability down to 0.5 volt below the negative supply terminals, an important attribute for single supply applications. The output stage uses MOS
complementary source follower form which permits moderate load driving capability ($10 \mathrm{~K} \Omega$) at very low total standby currents (50 nA).
The CA3440A and CA3440 have the same 8-lead terminal pin-out used for "741" and other industry standard op amps with two exceptions: terminals one and five must be connected to the negative supply or to a potentiometer if nulling is required. Terminal 8 must be programmed through an external resistor returned to the negative supply.
These devices are supplied in either the standard 8-lead TO-5 style package (T suffix), 8-lead dual-in-line formed-lead TO-5 style "DIL-CAN" package (S suffix), or in the 8-lead dual-inline plastic package "Mini-DIP" (E suffix). They are also available in chip form (H suffix).

[^27]
3

S AND T SUFFIXES

E SUFFIX

Functional diagrams for CA3440A and CA3440.

```
MAXIMUM RATINGS, Absolute-Maximum Values:
DC SUPPLY VOLTAGE
```



```
COMMON-MODE DC INPUT VOLTAGE............................................................... (}\mp@subsup{V}{}{+}+8\textrm{V})\mathrm{ to (V- - 0.5 V)
```



```
DEVICE DISSIPATION:
    WITHOUT HEAT SINK -
```



```
WITH HEAT SINK -
```



```
TEMPERATURE RANGE:
```



```
OUTPUT SHORT-CIRCUIT DURATION
                                . INDEFINITE
LEAD TEMPERATURE (DURING SOLDERING):
AT DISTANCE 1/16 \pm1/32 IN. (1.59 \pm0.79 MM) FROM CASE FOR 10 SECONDS MAX
+265 %
```

TYPICAL VALUES INTENDED ONLY FOR DESIGN GUIDANCE

CHARACTERISTIC	TEST CONDITIONS$\begin{gathered} \mathrm{V}^{+}=+5 \mathrm{~V} ; \mathrm{V}^{-}=-5 \mathrm{~V} \\ \mathrm{RSET}^{=10 \mathrm{M} \Omega} ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{gathered}$		CA3440A	CA3440	UNITS
Input Resistance, $\mathrm{R}_{\text {I }}$			2	2	$T \Omega$
Input Capacitance, C_{T}			3.5	3.5	pF
Ouput Resistance, R_{O}			450	450	Ω
Equivalent Input	$\mathrm{f}=1 \mathrm{kHz}$		110	110	
Noise Voltage, e_{n}	$\mathrm{f}=10 \mathrm{kHz}$	0	110	110	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Short-Circuit Current Source IOM ${ }^{+}$			15	15	
To Opposite Supply Sink $10 M^{-}$			4.5	4.5	mA
Gain-Bandwidth Product, fT			63	63	kHz
Slew Rate, SR			0.03	0.03	$\mathrm{V} / \mu \mathrm{s}$
Transient Response Rise Time, t_{r}	$\begin{aligned} & R_{L}=10 \mathrm{k} \Omega \\ & C_{\mathrm{L}}=100 \mathrm{pF} \end{aligned}$		5.6	5.6	$\mu \mathrm{s}$
Overshoot			10	10	\%

Fig. 1 - Output-voltage-swing and common-mode input-voltage range versus supply voltage.

Fig. 2 - Set current versus supply current.

ELECTRICAL CHARACTERISTICS FOR EQUIPMENT DESIGN
At $\mathrm{V}^{+}=+5 \mathrm{~V}, \mathrm{~V}^{-}=-5 \mathrm{~V}, \mathrm{~T}_{\mathbf{A}}=25^{\circ} \mathrm{C}$ Unless Otherwise Specified, RSET $=10 \mathrm{M} \Omega$

CHARACTERISTIC	LIMITS						UNITS		
	CA3440A			CA3440					
	Min.	Typ.	Max.	Min.	Typ.	Max.			
Input Offset Voltage, $\left\|\mathrm{V}_{1} \mathrm{O}\right\|$	-	2	5	-	5	10	mV		
Input Offset Current, \|liol	-	2.5	20	-	2.5	30			
Input Current, \|l			-	10	40	-	10	50	
Large-Signal Voltage Gain, AOL ($R_{L}=10 \mathrm{~K} \Omega$)	10K	100K	-	10K	100K	-	V/V		
	80	100	-	80	100	-	dB		
Common-Mode	-	100	320	-	100	320	$\mu \mathrm{V} / \mathrm{V}$		
Rejection Ratio, CMRR	70	80	-	70	80	-	dB		
Common-Mode Input VICR ${ }^{+}$	+3.5	+3.7	-	+3.5	+3.7	-	V		
Voltage Range, VICR $^{-}$	-5.0	-5.3	-	-5.0	-5.3	-			
Power Supply Rejection Ratio, $\Delta \mathrm{VIO} / \Delta \mathrm{V}$	-	32	320	-	32	320	$\mu \mathrm{V} / \mathrm{V}$		
PSRR	70	90	-	70	90	-	dB		
Maximum Output Voltage,$\text { VOM }^{+}$$\mathrm{VOM}^{-}$	+3	+3.2	-	+3	+3.2	-	V		
	-3	-3.2	-	-3	-3.2	-			
Supply Current, 1^{+}	-	10	17	-	10	17	$\mu \mathrm{A}$		
Device Dissipation, P_{D}	-	100	170	-	100	170	$\mu \mathrm{W}$		
Input Offset Voltage Temperature Drift, $\triangle \mathrm{VIO} / \Delta T$	-	4	-	-	4	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$		

Fig. 3 - Total harmonic distortion percentage versus load resistance.

Fig. 5 - Output voltage versus sinking load current.

Fig. 4 - Output voltage versus sourcing load current.

Fig. 6 - Input noise voltage versus frequency.

Fig. 7-Bandwidth versus set current.

Fig. 8 - Slew rate versus set current.

STAGE 1	
$\left[\begin{array}{c}\text { HIGH GAIN } \\ \text { 100 db }\end{array}\right]$	$\left.\begin{array}{c}\text { STAGE } 2 \\ \text { BUFFER } \\ \text { LOWZ } \\ \text { OUTPUT }\end{array}\right]$
$92 c s-34304$	

Fig. 9 - Nanopower op amp (supply current programmable using
RSET) 1-pA typical input bias current, 4.0 to 15 -volt supply.

Fig. 10 - Nanopower op amp (usable standby power versus programming resistor RSET).

As RSET is increased, ISET and the standby power decrease while the BW/SR also decreases.

Operating at a +5 V single supply, the CA3440 exhibits the following characteristics:

RSET	Standby Power	BW	SR
$1 \mathrm{M} \Omega$	$250 \mu \mathrm{~W}$	164 kHz	$0.17 \mathrm{~V} / \mu \mathrm{s}$
$10 \mathrm{M} \Omega$	$25 \mu \mathrm{~W}$	27 kHz	$0.017 \mathrm{~V} / \mu \mathrm{s}$
$100 \mathrm{M} \Omega$	$2.5 \mu \mathrm{~W}$	2.6 kHz	$.0017 \mathrm{~V} / \mu \mathrm{s}$
$1000 \mathrm{M} \Omega$	250 nW	78 Hz	$0.00017 \mathrm{~V} / \mu \mathrm{S}$

The CA3440 is pin-compatible with the 741 except that pins 1 and 5 (typical negative nulling pins) must be connected either directly to pin 4 or to a negative nulling potentiometer. In addition, pin 8, the ISET terminal, must be returned to either ground or -V via RSET.

APPLICATIONS CIRCUITS

$R_{\text {in }}>20 \mathrm{M} \Omega$
STAND-BY POWER $=90 \mu \mathrm{~W}$
STAND-BYP

92Cs-34309
Fig. 12 - High-input impedance amplifier.

Fig. 13 - Micropower bandgap reference.

May 1990

Video Line Driver, High-Speed Operational Amplifiers

Features:

- High open loop gain at video frequencies: $A_{O L}=>40 d B$ at $f=5 \mathrm{MHz}$
- Power bandwidth of 10 MHz ; Aclosed Loop $=5$; $V_{O}= \pm 3.5 \mathrm{~V}$
- Slew rate of $330 \mathrm{~V} / \mu \mathrm{sec}(A \vee \geq 10)$ at full load
- $t_{T}=220 \mathrm{MHz} ; C_{C}=5 \mathrm{pF}$ with a load of $50 \mathrm{ohm}\|20 \mathrm{pF}\|$ $1 \mathrm{M} \Omega$ (scope input)
- VOUT $= \pm 4.1 \vee$ into 75Ω
- Offset null terminals

The CA3450* is a large signal video line driver and high speed operational amplifier capable of driving 50 ohm transmission lines and flash A/Ds. The uncompensated unity gain crossing occurs at 230 MHz without load. It can operate dual or single supplies of $\pm 7.25 \mathrm{~V}$ or 14.5 V , respectively. The CA3450 can be compensated with a single capacitor network. It has output drive capability of 75 mA SINK or SOURCE. The CA3450 is

Applications:
- Video line driver
- High-frequency unity gain buffer
- Pulse amplifier
- High-speed comparator
- High-frequency oscillator and video amplifiers
- Driver for A/Ds in video applications: 10 MHz BW

Figure 1-Block diagram of the CA3450.

MAXIMUM RATINGS, Absolute-Maximum Values

DIFFERENTIAL INPUT VOLTAGE
DEVICE DISSIPATION:	
Up to $55^{\circ} \mathrm{C}$.	1.5 W
Above $55^{\circ} \mathrm{C}$.	Derate linearly at $16.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
OUTPUT CURRENT (SINK OR SOURCE)	.100 mA
TEMPERATURE RANGE	
Operating.	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Storage.	$-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
MAXIMUM JUNCTION TEMPERATURE. 150 ${ }^{\circ} \mathrm{C}$
MAXIMUM THERMAL RESISTANCE	
Junction to Air ($\theta \mathrm{J}-\mathrm{A}$)	. $600{ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction to Case ($\theta \mathrm{J}-\mathrm{C}$)	$12^{\circ} \mathrm{C} / \mathrm{W}$
To pins 4, 5, 12, 13 at seat	

TERMINAL ASSIGNMENT

ELECTRICAL CHARACTERISTICS, At $T_{A}=25^{\circ} \mathrm{C}, C_{C}=5 p F, V+, V-=6 V^{\star}$

CHARACTERISTICS	CONDITIONS		LIMITS			UNITS
			MIN.	TYP.	MAX.	
STATIC						
Input Offset Voltage, $\mathrm{V}_{10} \mathrm{l}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		-	8	20	mV
	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$		-	10	35	
Input Bias Current, ${ }_{\text {IIB }} \mid$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		-	100	400	nA
Input Offset Current, l_{10} \|	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		-	50	200	
Open Loop DC Gain, AOL	$\mathrm{V}_{\text {OUT }}= \pm 2.5 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=50 \Omega$	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	55	-	-	dB
		$25^{\circ} \mathrm{C}$	60	70	-	
Power Supply Rejection Ratio, PSRR	$\Delta \mathrm{V}= \pm 1 \mathrm{~V}$		55	65	-	
Common-Mode Rejection Ratio, $\mathrm{C}_{\text {MRR }}$	$\mathrm{V}_{\text {ICR }} \pm= \pm 3.5 \mathrm{~V}$		50	60	-	
Common-Mode Input Range, $\mathrm{V}_{1 \mathrm{CR}}$	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C}$		± 3.0	-	-	v
	$T_{A}=25^{\circ} \mathrm{C}$		± 3.5	± 3.7	-	
Supply current, I	$\mathrm{T}_{\text {A }}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$		-	-	50	mA
	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		-	30	40	

*All test are performed with ± 6 volts at the terminals of the device.

A 10 ohm, $1 / 4$ watt supply decoupling resistor is shown in all application circuits of this device. The resistor serves two purpose, first provides a means of decoupling the IC directly at its terminal without introducing
additional supply resonance due to parallel connected capacitors. Secondly, it also provides protection for the device in event of a substained short circuit applied directly to the output terminals.

ELECTRICAL CHARACTERISTICS, At $T_{A}=25^{\circ} \mathrm{C}, C_{C}=5 \mathrm{pF}, \mathrm{V}+, V-=6 \mathrm{~V}^{*}$

CHARACTERISTICS	CONDITIONS		LIMITS			UNITS		
			MIN.	TYP.	MAX.			
DYNAMIC								
-3 dB Bandwidth $A_{V}=1 \quad$ (See Figure 3) $\mathrm{C}_{\mathrm{C}}=5 \mathrm{pF}$	NoLoad		-	200	-	MHz		
	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega \\|_{20 \mathrm{pF}}$		-	190	-			
	$\mathrm{R}_{\mathrm{L}}=50$ Ohms $\\|^{20 \mathrm{pF}}$		-	185	-			
Bandwidth (Unity Gain Crossing)$\begin{aligned} & A V=O \text { pen Loop } \\ & C_{C}=0 \quad \text { (See Figure 2) } \end{aligned}$	No Load		210	230	-			
	$\mathrm{R}_{\mathrm{L}}=20 \mathrm{pF} \\|_{1} \mathrm{M} \Omega$		180	200	-			
	$\mathrm{R}_{\mathrm{L}}=50$ Ohms $\\|^{20 \mathrm{pF}}$		180	220	-			
Bandwidth (Unity Gain Crossing)$\begin{aligned} & A_{V} \geq 10, C_{C}=0 \mathrm{PF} \\ & R_{\text {Feedback }}=450 \Omega \\ & R_{\text {Pin 3-G }}=50 \Omega \quad \text { (See Figure 3) } \end{aligned}$	No Load		200	210	-			
	50Ω		175	190	-			
	$1 \mathrm{M} \\|^{20} \mathrm{pF}$		180	195	-			
	$50 \Omega\\|1 \mathrm{M}\\| 20 \mathrm{pF}$		170	188	-			
Transient Response, Overshoot	$\mathrm{A}_{\mathrm{V}}=1, \mathrm{C}_{\mathrm{C}}=5 \mathrm{pF}$	$\mathrm{R}_{\mathrm{L}}=50 \Omega \\|_{20 \mathrm{pF}}$	-	30	-	\%		
		No Load	-	20	-			
	$A_{V} \geq 10, C_{C}=0 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega \\|_{20} \mathrm{pF}$		-	10	-			
Settling Time (See Figure 6)	2 Volt Step$\mathrm{R}_{\mathrm{L}}=50 \Omega \\|_{20 \mathrm{pF}}$	$A_{V}=-1, C_{C}=5 \mathrm{pF}, 0.1 \%, 10$ Bits	-	35	-	ns		
		$\mathrm{A}_{\mathrm{V}}=1, \mathrm{C}_{C}=5 \mathrm{pF}, 0.1 \%, 10$ Bits	-	50	-			
		$A_{V}=10, C_{C}=0 \mathrm{pF}, 0.1 \%, 10$ Bits	-	35	-			
		$A_{V}=10, C_{C}=0 \mathrm{pF}, 1.0 \%, 7$ Bits	-	25	-			
Slew Rate, SR (See Figure 3)	$A_{V}=1, C_{C}=5 \mathrm{pF}$	No Load	-	220	-	$\mathrm{V} / \mathrm{\mu s}$		
		$\mathrm{R}_{\mathrm{L}}=50 \Omega \\| 20 \mathrm{pF}$	-	160	-			
	$A V \geq 10, C C=0 p F$	No Load	370	440	-			
		$\mathrm{R}_{\mathrm{L}}=50 \Omega \\|_{20} \mathrm{pF}$	300	330	-			
Power Bandwidth PBW (MHz) PBW $=\mathrm{SR} / \Omega \mathrm{Vpp}$	$\begin{aligned} & A_{V}=5, C_{C}=5 \mathrm{pF} \\ & V_{\text {OUT }}= \pm 3.5 \mathrm{~V} \end{aligned}$	No Load	-	10	-	MHz		
		$\mathrm{R}_{\mathrm{L}}=50 \Omega \\| 20 \mathrm{pF}$	-	7.2	-			
	$\begin{aligned} & A_{V}>10, C_{C}=0 \mathrm{pF} \\ & V_{\text {OUT }}= \pm 2.0 \mathrm{~V} \end{aligned}$	No Load	29	35	-			
		$\mathrm{R}_{\mathrm{L}}=50 \Omega \\| 20 \mathrm{pF}$	24	26	-			
Input Noise Voltage en	$f=1 \mathrm{KHz}$		-	12	-	$\mathrm{nV} \sqrt{\mathrm{Hz}}$		
Differential Gain	See Figure 15		-	0.6	-	\%		
Differential Phase			-	0.3	-	Degrees		
lout	Into +4V or - 4 V		60	75	60	mA		
Output Voltage Swing into 75 Ohms	$\mathrm{V}_{\mathrm{OM}}{ }^{+}$		3.9	+4.1	-	v		
	$\mathrm{V}_{\text {OM }}{ }^{-}$		-3.9	-4.1	-			
Input Capacitance, C_{1}	$\mathrm{f}=1 \mathrm{MHz}$		-	2.2	-	pF		
Input Resistance, $\mathrm{R}_{\mathbf{I}}$			-	1	-	$\mathrm{M} \Omega$		
Output Resistance, ROUT	See Figure 13, $\mathrm{A}=1$,	MHz	-	4	-	Ω		

*All test are performed with ± 6 volts at the terminals of the device.

ALL $0.001 \mu F$ SUPPLY DECOUPLING CAPACITORS ARE MULTI-LAYER CERAMIC CHIP

Fig. 2 - Open-loop gain versus frequency test circuit.

Fig. 3-Unity-gain and $\times 10$ non-inverting amplifier/and slew rate test circuit.

Transient Response Waveforms

Figure 4 - Transient-response waveform.

Figure 5 - Slew-rate waveform.

Figure 6 - Circuit used to measure settling time.

Typical Performance Curves

Figure 9 -Bode plot for the CA3450.

Figure 11 - Closed loop gain and phase vs frequency. $\quad\left(A_{V}=10\right)$

Figure 13-Output resistance vs frequency.

Figure 10 - Closed loop gain and phase vs frequency. $\quad(A V=1)$

Figure 12 - Curve showing the equivalent input noise "en" of the op amp.

Figure 14 - Output voltage as a function of frequency for the CA3450 3-221 under various loads.

Figure 15 - Configuration used to measure differential gain and phase.

Figure 16 - Typical high-bandwidth X5 amplifier for driving the CA3318 Flash AVD.

Figure 17 - Full schematic diagram of the CA3450.

M-Bonding wire to Chip Mounting Pad
Pins 12 and 13 Connected to Chip Mounting Pad
No Chip Pads for $2.10,12,13.15$
Figure 18 - Dimensions and pad layout for CA3450H.

The photographs and dimensions of each CMOS chip represent a chip when it is part of the wafer. When the water is separated into individual chips, the angle of cleavage may vary with respect to the chip face for different chips. The actual dimensions of the isolated chip, therefore, may differ slightly from the nominal dimensions shown. The user should
consider a tolerance of $\mathbf{- 3}$ mils to +16 mils applicable to the nominal dimensions shown.
Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Scale graduations are in mils (10-3 inch).

May 1990

BiMOS Precision Operational Amplifiers

Features:

- Low VIO: $200 \mu \mathrm{~V}$ max. (CA3493A)
$500 \mu \mathrm{~V}$ max. (CA3493A)
- Low $\Delta V_{I O} / \Delta T: 3 \mu V / O C$ max. (CA3493A)
$5 \mu V / O C$ max. (CA3493)
- Low IIO and II
- Low $\Delta / I \mathrm{IO} \Delta \mathrm{AT}: 150 \mathrm{pA} /{ }^{\circ} \mathrm{C}$ max. (CA3493)
- Low $\Delta / I_{\|} \mid \Delta T: 3.7$ nA $O C$ max. (CA3493)

Applications:
- Thermocouple preamplifiers
- Strain-gauge bridge amplifiers
- Summing amplifiers
- Differential amplifiers
- Bilateral current sources
- Log amplifiers
- Differential voltmeters
- Precision voltage references
- Active filters
- Buffers
- Integrators
- Sample-and-hold circuits
- Low frequency filters

The CA3493A and CA3493 are ultra-stable, precision instrumentation, operational amplifiers that employ both PMOS and bipolar transistors on a single monolithic chip. The CA3493A and CA3493 amplifiers are internally phase compensated and provide a gain-bandwidth product of 1.2 MHz . They are pin compatible with the industrial types such as 725, 108A, OP-7, LM11 and LM714 where positive nulling is employed.

Because of their low offset voltage and low offset voltage-versus-temperature coefficient the CA3493A and CA3493 amplifiers have a wider range of applications than most op amps and are particularly well suited for use as thermocouple amplifiers, high gain filters, buffer, strain gauge bridge amplifiers and precision voltage references.

The op amps are functionally identical. The CA3493 and CA3493A operate from supply voltage of $\pm 3.5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$ and have operating temperature ranges of $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ and $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, respectively.

These types are supplied in standard 8-lead TO-5-style (T suffix), 8 -lead dual-in-line formed lead TO-5-style (DIL-CAN S suffix) and 8 -lead dual-in-line plastic (Mini-DIP E suffix) packages.

Circuit Description

The block diagram of the CA3493 amplifier, Fig. 2, shows the voltage gain and supply current for each of its four amplifier stages. Simplified and complete schematic diagrams of the CA3493 amplifier are shown in Figs. 3 and 4, respectively.

[^28]| Absolute-Maximum Ratings, Absolute-Maximum Values at $T_{A}=25^{\circ} \mathrm{C}$ | | |
| :---: | :---: | :---: |
| | CA3493A | CA3493 |
| DC Supply Voltage | ± 18 | ± 18 |
| Differential-Mode Input Voltage | ± 5 | ± 5 |
| Common-Mode DC Input Voltage | $\left(V^{+}-4\right), V^{-} \quad\left(V^{+}\right.$ | -4), \vee^{-} |
| Input Terminal Current | 1 | 1 |
| Device Dissipation | | |
| Without Heat Sink | | |
| Up to $55^{\circ} \mathrm{C}$ | 630 | 630 |
| Above $55^{\circ} \mathrm{C}$ | Derate Linearly 6.67 | |
| Temperature Range | - 25 to 85 | 0 to 7 |
| Output Short-Circuit Duration* | Indefinite | ndefinite |
| Lead Temperature (During Soldering) at distance of $1 / 16 \mathrm{in} . \pm 1 / 32 \mathrm{in}$.
 ($1.59 \pm 0.79 \mathrm{~mm}$) from case for 10 | | |
| seconds max. | ± 265 | ± 265 |

*Short circuit may be applied to ground or to either supply.

Fig. 1 - Functional diagram of CA3493A and CA3493.

Fig. 2 - Block diagram of CA3493A and CA3493.

Circuit Description (cont'd)

A quad of physically cross-connected $n-p-n$ transistors comprise the input-stage differential pair (Q1,Q2 in Figs. 3 and 4); this arrangement contributes to the low input offset-voltage characteristics of the amplifier. The ultra-high gain provided in the first stage ensures that subsequent stages cannot significantly influence the
overall offset-voltage characteristics of the amplifier. High load impedances for the input-stage differential pair (Q1,Q2) are provided by the cascode-connected $\mathrm{p}-\mathrm{n}-\mathrm{p}$ transistors $\mathrm{Q} 3, \mathrm{Q} 5$ and $\mathrm{Q} 4, \mathrm{Q} 6$, thereby contributing to the high gain developed in the stage.
The second stage of the amplifier consists of a differential amplifier employing PMOS/FETs (Q7,Q8 in Figs. 3 and 4) with

ELECTRICAL CHARACTERISTICS at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}+=15 \mathrm{~V}$ and $\mathrm{V}-=15 \mathrm{~V}$ unless otherwise specified.

CHARACTERISTIC	LIMITS						UNITS
	CA3493A			CA3493			
	Min.	Typ.	Max.	Min.	Typ.	Max.	
Input Offset Voltage, $\left\|V_{10}\right\|$	-	140	200	-	300	500	$\mu \mathrm{V}$
V_{10} (3) Max.Temp.	-	-	380	-	-	725	$\mu \mathrm{V}$
Input Offset Voltage Temp.Coefficient, $\Delta V_{I O} / \Delta T$ (Over specified temperature range for each device)	-	1	3	-	1	5	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Current, lio	-	3	5	-	5	10	nA
\|liol @ Max.Temp.	-	-	11	-	-	17	nA
Input Offset Current Temp. Coefficient, specified temperature range for each device)	-	0.03	0.10	-	0.04	0.15	$n A /{ }^{\circ} \mathrm{C}$
Input Bias Current, II	-	10	20	-	20	40	nA
$\left\|I_{\text {B }}\right\|$ @ Max.Temp.	-	-	83	-	-	207	nA
Input Bias Current Temp. Coefficient, $\Delta l_{1} / \Delta T$	-	0.10	1.18	-	0.15	3.70	$n A^{\circ} \mathrm{C}$
Input Noise Voltage, en p-p $(0.1$ to 10 Hz)	-	0.36	-	-	0.36	-	$\mu \mathrm{V}$ p-p
Input Noise Voltage Density, e_{n} $\begin{aligned} & \mathrm{f}_{0}=10 \mathrm{~Hz} \\ & \mathrm{f}_{0}=100 \mathrm{~Hz} \\ & \mathrm{f}_{0}=1000 \mathrm{~Hz} \\ & \mathrm{f}_{0}=10 \mathrm{kHz} \\ & \mathrm{f}_{0}=100 \mathrm{kHz} \end{aligned}$		$\begin{aligned} & 25 \\ & 25 \\ & 24 \\ & 24 \\ & 22 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \\ & 24 \\ & 24 \\ & 22 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\frac{n \mathrm{VI}}{\sqrt{\mathrm{~Hz}}}$
Input Noise Current, in p-p (0.1 to 10 Hz)	-	12	20	-	12	20	pA p-p
Input Noise Current Density, in $\begin{aligned} & \mathrm{f}_{\mathrm{O}}=10 \mathrm{~Hz} \\ & \mathrm{f}_{\mathrm{O}}=100 \mathrm{~Hz} \\ & \mathrm{f}_{\mathrm{O}}=1000 \mathrm{~Hz} \\ & \mathrm{f}_{\mathrm{O}}=10 \mathrm{kHz} \\ & \mathrm{f}_{\mathrm{O}}=100 \mathrm{kHz} \end{aligned}$	- - - - -	$\begin{aligned} & 0.83 \\ & 0.80 \\ & 0.75 \\ & 0.72 \\ & 0.60 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \\ & - \\ & \hline \end{aligned}$	$\begin{aligned} & 0.83 \\ & 0.80 \\ & 0.75 \\ & 0.72 \\ & 0.60 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\frac{\mathrm{pA}}{\sqrt{\mathrm{Hz}}}$

ELECTRICAL CHARACTERISTICS at $\mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}+=15 \mathrm{~V}$ and $\mathrm{V}-=15 \mathrm{~V} \quad$ (Cont'd) unless otherwise specified.

CHARACTERISTIC	LIMITS						UNITS
	CA3493A			CA3493			
	Min.	Typ.	Max.	Min.	Typ.	Max.	
Common-Mode Input Voltage Range, $\mathrm{V}_{\mathrm{ICR}}$	-12	$\begin{array}{\|c\|} \hline-13.5 \\ \text { to } \\ 11.5 \\ \hline \end{array}$	10	- 12	$\begin{array}{\|c\|} \hline-13.5 \\ \text { to } \\ 11.5 \\ \hline \end{array}$	10	V
	110	115	-	100	110	-	dB
$\left(V_{C M}=V_{I C R}\right)$		1.78	3.16		3.16	10	$\mu \mathrm{V} / \mathrm{V}$
Power Supply Rejection Ratio,	100	130	-	100	130	-	dB
PSRR, $\Delta \mathrm{V}_{1 \mathrm{O}} / \Delta \mathrm{V} \pm$		0.316	10		0.316	10	$\mu \mathrm{V} / \mathrm{V}$
Maximum Output Voltage Swing ($R_{L} \geqslant 2 \mathrm{~K} \Omega$)	± 13.0	± 13.5	-	± 13.0	± 13.5	-	V
$\begin{gathered} \text { Large-Signal } \\ \text { Voltage Gain } \\ \left(V_{O}= \pm 10\right) \\ R_{L} \geqslant 1 \mathrm{~K} \Omega \\ R_{L} \geqslant 2 \mathrm{~K} \Omega \\ R_{L} \geqslant 10 \mathrm{~K} \Omega \end{gathered}$	110	$\begin{aligned} & 115 \\ & 125 \\ & \hline \end{aligned}$	-	$\overline{100}$	$\begin{aligned} & 110 \\ & 115 \\ & \hline \end{aligned}$	$-$	dB
Short-Circuit Output Current to the Opposite Rail, $\mathrm{IOM}^{+}, \mathrm{IOM}^{-}$	-25	± 7	25	-25	± 7	25	mA
Slew Rate, SR $\left(R_{L} \geqslant 2 \mathrm{~K} \Omega ;\right.$ Unity Gain Voltage Follower)	-	0.25	-	-	0.25	-	$\mathrm{V} / \mathrm{\mu s}$
$\begin{aligned} & \text { Gain-Bandwidth } \\ & \text { Product, } \mathrm{f}_{\mathrm{t}} \\ & \mathrm{AOL}_{\mathrm{OL}}=0 \mathrm{~dB} \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \\ & \mathrm{CL}_{\mathrm{L}}=100 \mathrm{pF} \\ & \mathrm{VIN}=20 \\ & \mathrm{f}=1 \mathrm{kHz} \\ & \hline \end{aligned}$	-	1.20	-	-	1.20	-	MHz
$\begin{aligned} & \text { Small-Signal } \\ & \text { Transient Re- } \\ & \text { sponse, } t_{r} \\ & \left(V_{I N}=20 \mathrm{mV} \mathrm{p}-\mathrm{p},\right. \\ & f=1 \mathrm{kHz} \end{aligned}$	-	0.29	-	-	0.29	-	$\mu \mathrm{S}$
Supply Current, $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=\infty \\ & \mathrm{V}+=15, \\ & \mathrm{~V}-=-15 \end{aligned}$	-	2.3	3.5	-	2.3	3.5	mA
Temperature Range	-25	-	85	0	-	70	${ }^{\circ} \mathrm{C}$

Fig. 3 - CA3493 simplified schematic diagram.

Fig. 4 - Schematic diagram of CA3493A and CA3493.

Circult Description (cont'd)

appropriate drain loading. Since Q7 and Q8 are MOS/FETs, their loading on the first stage is quite low, thereby making an additional contribution to the high gain developed in the first stage. The second stage is also configured to convert its differential signal to a single-ended output signal by means of current mirror D9,Q30 (Figs. 3 and 4) to drive subsequent gain stage.
The third stage of the amplifier consists of Darlington-connected $n-p-n$ transistors (Q17,Q19 in Figs. 3 and 4), driving the quasi-complementary Class AB output stage (Q14 and Q15,Q16 in Figs. 3 and 4). Output-stage short-circuit protection is activated by voltage drops developed

Fig. 5 - Typical input offset-voltage temperature characteristic for CA3493A and CA3493.

Fig. 7 - Typical input bias current vs. temperature
across the 60 -ohm resistors adjacent to the output terminal (R9 and R10, Fig. 4). When the voltage drop developed across either of these resistors reaches a potential equal to $1 \mathrm{~V}_{\mathrm{be}}$, the respective protective transistor (Q12 or Q13) is activated and shunts the base drive from the bases of the output stage transistors (Q14 and Q15,Q16).
Internal frequency compensation for the CA3493 amplifier is provided by two internal networks, a $6-\mathrm{pF}$ capacitor connected between the input-stage transistor collectors and the node between the third and output stages and a second network, consisting of a $20-\mathrm{pF}$ capacitor in series with a $7.5 \cdot \mathrm{~K} \Omega$ resistor connected between the input and output nodes of the third stage.

Fig. 6 - Input offset voltage vs. time.

Fig. 8 - Typical input offset current vs. temperature.

Fig. 9 - Input noise voltage and current density vs. frequency.

Fig. 11 - Open-loop gain and phase-shift response for CA3493.

Fig. 13 - Open-loop gain vs. temperature for CA3493A and CA3493.

Fig. 14 - Maximum undistorted output voltage vs. frequency.

Fig. 10 - Power supply voltage $(V+, V-)$ vs. supply current.

Fig. 12 - Open-loop gain vs. power-supply voltage.

Fig. 15 - Output-voltage-swing capability and common-mode input-voltage vs. supply voltage.

Offset Voltage Nulling
The input offset voltage can be nulled to zero by any of the three methods shown in the table below. A 10 K potentiometer between terminals 1 and 8 , with its wiper returned to V^{+}, will provide a gross nulling for all types. For finer nulling, either of
the other two circuits shown below may be used, thus providing simpler improved resolution for all types.

CAUTION: The CA3493 amplifiers will be damaged if they are plugged into op-amp circuits employing nulling with respect to the V^{-}supply bus.

Offset Voltage Nulling

Offset Nulling Circuits			
Type	Resistor R Value	Resistor R Value	Resistor R Value
$\begin{aligned} & \text { CA3493A } \\ & \text { CA3493 } \end{aligned}$	$\begin{aligned} & 10 \mathrm{~K} \\ & 10 \mathrm{~K} \end{aligned}$	$\begin{aligned} & 50 \mathrm{~K} \\ & 20 \mathrm{~K} \end{aligned}$	$\begin{gathered} \hline 10 \mathrm{~K} \\ 5 \mathrm{~K} \end{gathered}$
	Gross Offset Adjustment	Finer Offset Adjustments	

Fig. 16-Input offset voltage test circuit.

a

TOP TRACE: INPUT VOLTAGE BOT TOM TRACE : OUTPUT VOLTAGE VERT: : $\frac{10 \mathrm{~V}}{\text { DIV }}$

$$
v^{+}=15 \mathrm{~V}
$$

$$
v^{-}=-15 V
$$

$$
\text { HOR: } \frac{.1 \mathrm{~ms}}{\text { DIV }}
$$

$$
R_{L}=10 \mathrm{~K}
$$

Fig. 17 - Inverting amplifier (a) test circuit
(b) response to $1-\mathrm{kHz}, 20-\mathrm{V} \rho-\mathrm{p}$
square wave.

Fig. 18 - Voltage follower (a) test circuit (b) response to $20-\mathrm{V} p \cdot p, 1-\mathrm{kHz}$ square-wave input.

b

Fig. 19-Low frequency noise (a) test cir-
cuit- 0.1 to 10 Hz (b) output A
waveform - 0 to 10 Hz noise (c) output
B waveform-0 to 10 Hz noise.

Fig. 22-Using CA3493 as a bilateral current source.

Fig. 23. Typical summing amplifier application.

The CA3493 is an excellent choice for use with themocouples. In Fig. 24, the CA3493 amplifies the signal generated 500 times.

The three 22-megohm resistors will provide full-scale output if the thermocouple opens.

Fig. 24 - The CA3493 used in a thermocouple circuit.

BiMOS Microprocessor Operational Amplifiers

With MOSFET Input/CMOS Output

Features:

- MOSFET input stage provides:

$$
\text { very high } Z_{I}=1.5 \mathrm{~T} \Omega\left(1.5 \times 10^{12} \Omega\right) \text { typ. }
$$

very low $I /=5 p A$ typ. at 15 V operation
$=2 \mathrm{pA}$ typ. at 5 V operation

- Ideal for single-supply applications
- Common-mode input-voltage range includes negative supply rail; input terminals can be swung 0.5 V below negative supply rail
- CMOS output stage permits signal swing to either (or both) supply railsCA5130A, CA5130 5V have full military temperature range guaranteed specifications
- CA5130A, CA5130 are guaranteed to operate down to $V_{T}=4.5 \mathrm{~V}$ for AOL
- CA5130A, CA5130 are guaranteed to operate at ± 7.5 CA3130A, CA3130 specifications

CA5130A and CA5130 are integrated-circuit operation amplifiers that combine the advantage of both CMOS and biploar transistors on a monolithic chip. They are designed and guaranted to operate in microprocessors or logic systems that use +5 V supplies.

Gate-protected p-channel MOSFET (PMOS) transistors are used in the input circuit to provide very-high-input impedance, very-low-input current, and exceptional speed performance. The use of PMOS field-effect transistors in the input stage results in common-mode input-voltage capability down to 0.5 volt below the negative-supply terminal, an important attribute in single-supply applications.
A complementary-symmetry MOS (CMOS) transistor-pair, capable of swinging the output voltage to within 10 millivolts of either supply-voltage terminal (at very high values of load impedance), is employed as the output circuit.

Applications:

- Ground-referenced single supply amplifiers
- Fast sample-hold amplifiers
- Long-duration timers/monostables
- High-input-impedance comparators (ideal interface with digital CMOS)
- High-input-impedance wideband amplifiers
- Voltage followers (e.g. follower for single-supply D/A converter)
■ Voltage regulators (permits control of output voltage down to zero volts)
- Peak detectors
- Single-supply full-wave precision rectifiers
- Photo-diode sensor amplifiers
- 5 V logic systems
- Microprocessors interface

The CA5130 Series circuits operate at supply voltages ranging from 4 to 16 volts, or ± 2 to ± 8 volts when using split supplies. They can be phase compensated with a single external capacitor, and have terminals for adjustment of offset voltage for applications requiring offset-null capability. Terminal provision are also made to permit strobing of the output stage.

The CA5130 Series is supplied in standard 8-lead TO-5 style packages (T suffix) and 8-lead dual-in-line formed lead TO-5 style "DIL-CAN" packages (S suffix). The CA5130 is available in chip form (H suffix). The CA5130 and CA5130A are also available in the 8 -lead Small Outline package (M suffix) and in the 8 -lead dual-in-line plastic package (Mini-DIP E suffix).

The CA5130A, CA5130 have guaranteed specifications for 5 V operation over the full military-temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

MAXIMUM RATINGS, Absolute-Maximum Values

SUPPLY VOLTAGE	
DIFFERENTIAL-MODE INPUT VOLTAGE	. 88 V
COMMON-MODE DC INPUT VOLTAGE	$\left(V^{+}+8 V\right)$ to ($\left.V^{-}-0.5 \mathrm{~V}\right)$
INPUT-TERMINAL CURRENT.	.1 mA
DEVICE DISSIPATION:	
WITHOUT HEAT SINK -	
ABOVE $55^{\circ} \mathrm{C}$	Derate Linearly $6.67 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
WITH HEAT SINK -	
ABOVE $90^{\circ} \mathrm{C}$. Derate Linearly $16.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	
SMALL OUTLINE PACKAGE	... $250^{\circ} / \mathrm{W}$
temperature range:	
OPERATING (all types) . 5 - ${ }^{\text {c }}$ to $+125^{\circ} \mathrm{C}$	
STORAGE (all types) . $6 . .6$ to $+150^{\circ} \mathrm{C}$	
OUTPUT SHORT-CIRCUIT DURATION * . ${ }^{\text {INDEFINITE }}$	
LEAD TEMPERATURE (DURING SOLDERING):	
At distance $1 / 16 \pm 1 / 32$ inch (1.59 ± 0.79	$+265^{\circ} \mathrm{C}$

Fig. 2 - Schematic diagram of the CA5130 series.

ELECTRICAL CHARACTERISTICS AT $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}$

CHARACTERISTIC		LIMITS						UNITS
		CA5130A			CA5130			
		MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
Input Offset Voltage $V_{0}=2.5 \mathrm{~V}$	V_{10}	-	1.5	4	-	2	10	mV
Input Offset Current $V_{0}=2.5 \mathrm{~V}$	10	-	0.1	5	-	0.1	10	pA
Input Current, $V_{0}=2.5 \mathrm{~V}$	1	-	2	10	-	2	15	
Common-Mode Rejection Ratio $V_{C M}=0 \text { to } 1 \mathrm{~V}$	$\mathrm{C}_{\text {MRA }}$	75	87	-	70	85	-	dB
$\mathrm{V}_{\mathrm{CM}}=0$ to 2.5 V	$\mathrm{C}_{\text {MRA }}$	60	69	-	60	69	-	
Input Common-Mode Voltage Range	$\mathrm{V}_{1 \mathrm{CR}^{+}}$	2.5	2.8	-	2.5	2.8	-	V
	$V_{1 C R^{-}}$	-	-0.5	0	-	-0.5	0	
Power-Supply Rejection Ratio $\Delta^{+}=1 \mathrm{~V} ; \Delta^{-}=1 \mathrm{~V}$	$P_{\text {sar }}$	60	75	-	55	73	-	dB
Large-Signal Voltage Gain* $V_{0}=0.1 \text { to } 4.1 \mathrm{~V}$	Aol $R_{L}=\infty$	100	105	-	95	105	-	
$\mathrm{V}_{0}=0.1$ to 3.6 V	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$	90	97	-	85	95	-	
Source Current $V_{0}=0 \mathrm{~V}$	Isounce	1.0	3.1	4.0	1.0	2.6	4.0	mA
Sink Current $V_{0}=5 \mathrm{~V}$	IsİNK	1.0	1.6	4.0	1.0	1.7	4.0	
Output Voltage $R_{L}=\infty$	$\begin{aligned} & V_{\text {OUT }} \\ & \text { Vom }^{+} \end{aligned}$	4.99	5	-	4.99	5	-	V
$R_{L}=10 \mathrm{k}$$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k}$	VOM^{-}	-	0	0.01	-	0	0.01	
	VOM^{+}	4.4	4.7	-	4.4	4.7	-	
	$\mathrm{V}_{\text {OM }}{ }^{-}$	-	0	0.01	-	0	0.01	
	VOM^{+}	2.5	3.5	-	2.5	3.5	-	
	$\mathrm{V}_{\mathrm{OM}^{-}}$	-	0	0.01	-	0	0.01	
Supply Current $V_{0}=0 \mathrm{~V}$	IsuppLy	-	50	100	-	50	100	$\mu \mathrm{A}$
$V_{0}=2.5 \mathrm{~V}$	$I_{\text {SUPPLY }}$	-	260	400	-	260	400	

*For $\mathrm{V}^{+}=4.5 \mathrm{~V}$ and $\mathrm{V}^{-}=$Gnd; $V_{\text {OUt }}=0.5 \mathrm{~V}$ to 3.2 V at $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$.

ELECTRICAL CHARACTERISTICS AT $T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}$

CHARACTERISTIC		LIMITS						UNITS
		CA5130A			CA5130			
		MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
Input Offset Voltage $V_{0}=2.5 \mathrm{~V}$	V_{10}	-	2	10	-	3	15	mV
Input Offset Current $V_{0}=2.5 \mathrm{~V}$	I_{1}	-	0.1	5	-	0.1	10	nA
Input Current $V_{0}=2.5 \mathrm{~V}$	1	-	2	10	-	2	- 15	
Common-Mode Rejection Ratio $V_{C M}=0 \text { to } 1 \mathrm{~V}$	$\mathrm{C}_{\text {MRR }}$	60	80	-	60	80	-	dB
$\mathrm{V}_{\mathrm{CM}}=0$ to 2.5 V	$\mathrm{C}_{\text {MRR }}$	55	80	-	50	80	-	
Input Common-Mode Voltage Range	$\mathrm{V}_{1 C 口 R+}$	2.5	2.8	-	2.5	2.8	-	V
	$V_{1 C R}{ }^{-}$	-	-0.5	0	-	-0.5	0	
Power-Supply Rejection Ratio $\Delta^{+}=1 \mathrm{~V} ; \Delta^{-}=1 \mathrm{~V}$	$P_{\text {SRA }}$	45	70	-	40	66	-	dB
Large-Signal Voltage Gain* $V_{0}=0.1 \text { to } 4.1 \mathrm{~V}$	AoL $\mathrm{R}_{\mathrm{L}}=\infty$	94	98	-	90	98	-	
$V_{0}=0.1$ to 3.6 V	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$	80	88	-	75	85	-	
Source Current $V_{0}=0 \mathrm{~V}$	Isource	0.6	2.2	5.0	0.6	-	5.0	mA
Sink Current $V_{0}=5 \mathrm{~V}$	Isink	0.6	1.15	5.0	0.6	-	5.0	
Output Voltage $R_{L}=\infty$	$\begin{aligned} & V_{\text {out }} \\ & V_{\text {OM }}+ \end{aligned}$	4.99	5	-	4.99	5	-	V
$R_{L}=10 k$$R_{L}=2 k$	VOM^{-}	-	0	0.01	-	0	0.01	
	$\mathrm{V}_{\text {OM }}{ }^{+}$	4.0	4.6	-	4.0	4.6	-	
	$\mathrm{V}_{\text {ом }}{ }^{-}$	-	0	0.01	-	0	0.01	
	$\mathrm{V}_{\text {OM }}{ }^{+}$	2.0	3.0	-	2.0	3.0	-	
	Vom ${ }^{-}$	-	0	0.01	-	0	0.01	
Supply Current $V_{0}=0 \mathrm{~V}$	$I_{\text {suppLy }}$	-	80	220	-	80	220	$\mu \mathrm{A}$
$\mathrm{V}_{0}=2.5 \mathrm{~V}$	ISUPPLY	-	300	500	-	300	500	

*For $\mathrm{V}^{+}=4.5 \mathrm{~V}$ and $\mathrm{V}^{-}=$Gnd; $\mathrm{V}_{\text {OUt }}=0.5 \mathrm{~V}$ to 3.2 V at $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$.

ELECTRICAL CHARACTERISTICS AT $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}$ (Unless otherwise specified)

CHARACTERISTIC		LIMITS						UNITS
		CA5130A (T, S, E)			CA5130 (T, S, E)			
		MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
Input Offset Voltage $\mathrm{V} \pm= \pm 7.5 \mathrm{~V}$	V_{10}	-	2	5	-	8	15	mV
Input Offset Current $\mathrm{V} \pm= \pm 7.5 \mathrm{~V}$	110	-	0.5	20	-	0.5	30	pA
Input Current $\mathrm{V} \pm= \pm 7.5 \mathrm{~V}$	11	-	5	30	-	5	50	pA
Large-Signal Voltage Gain	Aol	50 k	320 k	-	50 k	320 k	-	V/V
$\mathrm{V}_{0}=10 \mathrm{~V}_{\text {p-p }}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$		94	110	-	94	110	-	dB
Common-Mode Rejection Ratio	$\mathrm{C}_{\text {MRR }}$	80	90	-	70	90	-	dB
Common-Mode Input-Voltage Range	$V_{\text {ICR }}$	10	$\begin{gathered} -0.5 \\ \text { to } \\ 12 \end{gathered}$	0	10	$\begin{gathered} -0.5 \\ \text { to } \\ 12 \\ \hline \end{gathered}$	0	V
Power-Supply Rejection Ratio $\begin{aligned} & \Delta V_{10} / \Delta V \pm \\ & \mathrm{V} \pm= \pm 7.5 \mathrm{~V} \end{aligned}$	$\mathrm{P}_{\text {SRR }}$	-	32	150	-	32	320	$\mu \mathrm{V} / \mathrm{V}$
Maximum Output Voltage$\text { At } R_{L}=2 \mathrm{k}$	Vom^{+}	12	13.3	-	12	13.3	-	V
	VOM^{-}	-	0.002	0.01	-	0.002	0.01	
At $\mathrm{R}_{\mathrm{L}}=\infty$	VOM^{+}	14.99	15	-	14.99	15	-	
	VOM^{-}	-	0	0.01	-	0	0.01	
Maximum Output Current lom ${ }^{+}$(Source) @ $V_{0}=0 \mathrm{~V}$		12	22	45	12	22	45	mA
$\mathrm{lom}^{-}($Sink $) @ V_{0}=15 \mathrm{~V}$		12	20	45	12	20	45	
Supply Current$\mathrm{V}_{\mathrm{O}}=7.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\infty$		-	10	15	-	10	15	mA
$\mathrm{V}_{0}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\infty$		-	2	3	-	2	3	
Input Offset Voltage Temp. Drift $\Delta V_{10} / \Delta T^{*}$		-	10	-	-	10	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$

TYPICAL VALUES INTENDED ONLY FOR DESIGN GUIDANCE

CHARACTERISTIC		TEST CONDITIONS $\begin{gathered} \mathrm{V}^{+}=+7.5 \mathrm{~V} \\ \mathrm{~V}-=-7.5 \mathrm{~V} \\ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{gathered}$ (Unless otherwise specifled)	TYPICAL VALUES		UNITS	
		CA5130A $(\mathbf{T}, \mathbf{S}, \mathbf{E})$	$\begin{aligned} & \text { CA5130 } \\ & (T, S, E) \end{aligned}$			
Input Offset Voltage Adjustment Range			$10 \mathrm{k} \Omega$ across Terms. 4 and 5 or 4 and 1	± 22	± 22	mV
Input Resistance	RI		1.5	1.5	$T \Omega$	
Input Capacitance	Cl_{1}	$\mathrm{f}=1 \mathrm{MHz}$	4.3	4.3	pF	
Equivalent Input Noise Voltage	e_{n}	$\begin{aligned} \mathrm{BW} & =0.2 \mathrm{MHz} \\ \mathrm{R}_{\mathrm{s}} & =1 \mathrm{M} \Omega^{*} \end{aligned}$	23	23	$\mu \mathrm{V}$	
Unity Gain Crossover Frequency		$\mathrm{C}_{\mathrm{c}}=0$	15	15	MHz	
	f_{T}	$\mathrm{C}_{\mathrm{c}}=47 \mathrm{pF}$	4	4		
Slew Rate, SR: Open Loop		$\mathrm{C}_{\mathrm{c}}=0$	30	30	$\mathrm{V} / \mu \mathrm{s}$	
Closed Loop		$\mathrm{C}_{\mathrm{c}}=56 \mathrm{pF}$	10	10		
Transient Response: Rise Time	$\mathrm{t}_{\text {r }}$	$\begin{aligned} & \mathrm{C}_{\mathrm{c}}=56 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=25 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \end{aligned}$ (Voltage Follower)	0.09	0.09	$\mu \mathrm{s}$	
Overshoot			10	10	\%	
Settling Time (4 Vp-p Input to $<0.1 \% \text {) }$			1.2	1.2	$\mu \mathrm{s}$	

* Although a 1-M Ω source is used for this test, the equivalent input noise remains constant for values of Rs_{s} up to $10 \mathrm{M} \Omega$.

Fig. 1 - Functional diagrams for the CA5130 series.

CIRCUIT DESCRIPTION

Fig. 3 is a block diagram of the CA5130 Series CMOS Operational Amplifiers. The input terminals may be operated down to 0.5 V below the negative supply rail, and the output can be swung very close to either supply rail in many applications. Consequently, the CA5130 Series circuits are ideal for single-supply operation. Three Class A amplifier stages, having the individual gain capability and current consumption shown in Fig. 3, provide the total gain of the CA5130. A biasing circuit provides two potentials for common use in the first and second stages. Term. 8 can be used both for phase compensation and to strobe the output stage into quiescence. When Term. 8 is tied to the negative supply rail (Term. 4) by mechanical or electrical means, the output potential at Term. 6 essentially rises to the positive supply-rail potential at Term. 7. This condition of essentially zero current drain in the output stage under the strobed "OFF" condition can only be achieved when the ohmic load resistance presented to the amplifier is very high (e.g., when the amplifier output is used to drive CMOS digital circuits in comparator applications).

Input Stages

The circuit of the CA5130 is shown in Fig. 2. It consists of a differential-input stage using PMOS field-effect transistors (Q6, Q7) working into a mirror-pair of bipolar transistors (Q9, Q10) functioning as load resistors together with resistors R3 through R6. The mirror-pair transistors also function as a differential-to-single-ended converter to provide base drive to the second-stage bipolar transistor (Q11). Offset nulling, when desired, can be effected by connecting a $100,000-\mathrm{hm}$ potentiometer across Terms. 1 and 5 and the potentiometer slider arm to Term.4. Cascodeconnected PMOS transistors Q2, Q4 are the constantcurrent source for the input stage. The biasing circuit for the constant-current source is subsequently described. The small diodes D5 through D8 provide gate-oxide protection against high-voltage transients, e.g., including static electricity during handling for Q6 and Q7.

Second-Stage

Most of the voltage gain in the CA5130 is provided by the second amplifier stage, consisting of bipolar transistor Q11 and its cascode-connected load resistance provided by PMOS transistors Q3 and Q5. The source of bias potentials

TOTAL SUPPLY VOLTAGE (FOR INDICATED VOLTAGE GAINS) - 15 V - WITH INPUT TERMINALS BIASED SO THAT TERM 6 POTENTIAL IS +75 V ABOVE TERM 4

- with output terminal driven to either supply rail

Fig. 3-Block diagram of the CA5130 series.
for these PMOS transistors is subsequently described. Miller-Effect compensation (roll-off) is accomplished by simply connecting a small capacitor between Terms. 1 and 8. A 47-picofarad capacitor provides sufficient compensation for stable unity-gain operation in most applications.

Bias-Source Clrcuit

At total supply voltages, somewhat above 8.3 volts, resistor R2 and zener diode $Z 1$ serve to establish a voltage of 8.3 volts across the series-connected circuit, consisting of resistor R1, diodes D1 through D4, and PMOS transistor Q1. A tap at the junction of resistor R1 and diode D4 provides a gate-bias potential of about 4.5 volts for PMOS transistors Q4 and Q5 with respect to Term. 7. A potential of about 2.2 volts is developed across diode-connected PMOS transistor Q1 with respect to Term. 7 to provide gate bias for PMOS transistors Q2 and Q3. It should be noted that Q1 is "mirrorconnected" + to both Q2 and Q3. Since transistors Q1, Q2, Q3 are designed to be identical, the approximately $200-$ microampere current in Q1 establishes a similar current in Q2 and Q3 as constant-current sources for both the first and second amplifier stages, respectively.
At total supply voltages somewhat less than 8.3 volts, zener diode Z1 becomes non-conductive and the potential, developed across series-connected R1, D1-D4, and Q1, varies directely with variations in supply voltage, Consequently, the gate bias for Q4, Q5 and Q2, Q3 varies in accordance with supply-voltage variations. This variation results in deterioration of the power-supply-rejection ratio (PSRR) at total supply voltages below 8.3 volts. Operation at total supply voltages below about 4.5 volts results in seriously degraded performance.

Output Stage

The output stage consists of a drain-loaded inverting amplifier using CMOS transistors operating in the Class A mode. When operating into very high resistance load, the output can be swung within millivolts of either supply rail. Because the output stage is a drain-loaded amplifier, its gain is dependent upon the load impedance. The transfer characteristics of the output stage for a load returned to the negative supply rail are shown in Fig. 6. Typical op-amp loads are readily driven by the output stage. Because largesignal excursions are non-linear, requiring feed-back for good waveform reproduction, transient delays may be encountered. As a voltage follower, the amplifier can achieve 0.01 percent accuracy levels, including the negative supply rail.
\dagger For general information on the characteristics of CMOS transistor-pairs in linear-circuit applications, see File No. 619, data bulletin on CA3600E "CMOS Transistor Array".

Fig. 4 - Open-loop voltage gain and phase shift vs. frequency for various values of C_{L}, C_{C}, and R_{L}.

Fig. 5-Open-loop gain vs. temperature.

Fig. 7 - Quiescent supply current vs. supply voltage.

Fig. 9 - Supply current vs. output voltage.

Fig. 11 - Output swing vs. load resistance.

Fig. 6 - Voltage transfer characteristics of CMOS output stage.

Fig. 8 - Quiescent supply current vs. supply voltage at several temperatures.

Fig. 10 - Output voltage swing vs. load resistance.

Fig. 12 - Output current vs. temperature.

Input Current Variation with Common-Mode Input Voltage

As shown in the Table of Electrical Characteristics, the input current for the CA5130 Series Op-Amps is typically 5 $p A$ at $T_{A}=25^{\circ} \mathrm{C}$ when terminals 2 and 3 are at a commonmode potential of +7.5 volts with respect to negative supply Terminal 4. Fig. 15 contains data showing the variation of input current as a function of common-mode input voltage at $T_{A}=25^{\circ} \mathrm{C}$. These data show that circuit designers can advantageously exploit these characteristics to design circuits which typically require an input current of less than 1 pA , provided the common-mode input voltage does not exceed 2 volts. As previously noted, the input current is essentially the result of the leakage current through the gate-protection diodes in the input circuit and, therefore, a function of the applied voltage. Although the finite resistance of the glass terminal-to-case insulator of the TO-5 package also contributes an increment of leakage current, there are useful compensating factors. Because the gate-protection network functions as if it is connected to Terminal 4 potential, and the TO-5 case of the CA5130 is also internally tied to Terminal 4, input terminal 3 is essentially "guarded" from spurious leakage currents.

Offset Nulling

Offset-voltage nulling is usually accomplished with a 100,000-ohm potentiometer connected across Terms. 1 and 5 and with the potentiometer slider arm connected to Term. 4. A fine offset-null adjustment usually can be effected with the slider arm positioned in the mid-point of the potentiometer's total range.

MAGNITUDE OF LOAD CURRENT (I_{L}) - mA

Input-Current Variation with Temperature

The input current of the CA5130 Series circuits is typically 5 pA at $25^{\circ} \mathrm{C}$. The major portion of this input current is due to leakage current through the gate-protective diodes in the input circuit. As with any semiconductor-junction device, including op amps with a junction-FET input stage, the leakage current approximately doubles for every $10^{\circ} \mathrm{C}$ increase in temperature. Fig. 16 provides data on the typical variation of input bias current as a function of temperature in the CA5130.

In applications requiring the lowest practical input current and incremental increases in current because of "warm-up" effects, it is suggested that an appropriate heatsink be used with the CA5130. In addition, when "sinking" or "sourcing" significant output current the chip temperature increases, causing an increase in the input current. In such cases, heat-sinking can also very markedly reduce and stabilize input current variations.

Input-Offset-Voltage (\mathbf{V}_{10}) Variation with DC Blas vs. Device Operating Life

It is well known that the characteristics of a MOS/FET device can change slightly when a dc gate-source bias potential is applied to the device for extended time periods. The magnitude of the change is increased at high temperatures. Users of the CA5130 should be alert to the possible impacts of this effect if the application of the device involves extended operation at high temperatures with a significant differential dc bias voltage applied across

Fig. 14 - Voltage across NMOS output transistor (Q12) vs. load
current.

Fig. 16 - Input current vs. ambient temperature.

Fig. 13 - Voltage across PMOS output transistor (Q8) vs. load current.

Fig. 15-CA5130 input current vs. common-mode voltage.

Terms. 2 and 3. Fig. 17 shows typical data pertinent to shifts in offset voltage encountered with CA5130 devices (TO-5 package) during life testing. At lower temperatures (TO-5 and plastic), for example at $85^{\circ} \mathrm{C}$, this change in voltage is considerably less. In typical linear applications where the differential voltage is small and symmetrical, these incremental changes are of about the same magnitude as those encountered in an operational amplifier employing a bipolar transistor input stage. The two-volt dc differential voltage example represents conditions when the amplifier output stage is "toggled", e.g., as in comparator applications.

Power-Supply Considerations

Because the CA5130 is very useful in single-supply applications, it is pertinent to review some considerations relating to power-supply current consumption under both single- and dual-supply service. Figs. 18a and 18b show the CA5130 connected for both dual- and single-supply operation.
Dual-supply operation: When the output voltage at Term. 6 is zero-volts, the currents supplied by the two power supplies are equal. When the gate terminals of Q8 and Q12 are driven increasingly positive with respect to ground, current flow through Q12 (from the negative supply) to the load is increased and current flow through Q8 (from the positive supply) decreases correspondingly. When the gate terminals of Q8 and Q12 are driven increasingly negative with respect to ground, current flow through Q8 is increased and current flow through Q12 is decreased accordingly.

Single-supply operation: Initially, let it be assumed that the value of R_{L} is very high (or disconnected), and that the input-terminal bias (Terms. 2 and 3) is such that the output terminal (No. 6) voltage is at $\mathrm{V}+/ 2$, i.e., the voltage-drops across Q8 and Q12 are of equal magnitude. Fig. 7 shows typical quiescent supply-current vs. supply-voltage for the CA5130 operated under these conditions. Since the output stage is operating as a Class A amplifier, the supply-current will remain constant under dynamic operating conditions as long as the transistors are operated in the linear portion of their voltage-transfer characteristics (see Fig. 6). If either Q8 or Q12 are swung out of their linear regions toward cut-off (a non-linear region), there will be a corresponding reduction in supply-current. In the extreme case, e.g., with Term. 8 swung down to ground potential (or tied to ground), NMOS transistor Q12 is completely cut off and the supplycurrent to series-connected transistors Q8, Q12 goes essentially to zero. The two preceeding stages in the CA5130, however, continue to draw modest supply-current (see the lower curve in Fig. 7) even though the output stage is strobed off. Fig. 14a shows a dual-supply arrangement for the output stage that can also be strobed off, assuming $R_{L}=$ ∞, by pulling the potential of Term. 8 down to that of Term. 4.

Let it now be assumed that a load-resistance of nominal value (e.g., 2 kilohms) is connected between Term. 6 and ground in the circuit of Fig. 18b. Let it further be assumed again that the input-terminal bias (Terms. 2 and 3) is such that the output terminal (No. 6) voltage is a $\mathrm{V}^{+} / 2$. Since PMOS transistor Q8 must now supply quiescent current to

Fig. 17-Typical incremental offset-voltage shift vs. operating life.

Fig. 18-CA5130 output stage in dual and single power-supply operation.
both R $_{\text {L }}$ and transistor Q12, it should be apparent that under these conditions the supply-current must increase as an inverse function of the R_{L} magnitude. Fig. 9 shows the voltage-drop across PMOS transistor Q8 as a function of load current at several supply-voltages. Fig. 6 shows the voltage-transfer characteristics of the output stage for several values of load resistance.

Wideband Nolse

From the standpoint of low-noise performance considerations, the use of the CA5130 is most advantageous in applications where in the source resistance of the input signal is in the order of 1 megohm or more. In this case, the total input-referred noise voltage is typically only $23 \mu \mathrm{~V}$ when the test-circuit amplifier of Fig. 19 is operated at a total supply voltage of 15 volts. This value of total inputreferred noise remains essentially constant, even though the value of source resistance is raised by an order of magnitude. This characteristic is due to the fact that reactance of the input capacitance becomes a significant factor in shunting the source resistance. It should be noted, however, that for values of source resistance very much greater than 1 megohm, the total noise voltage generated can be dominated by the thermal noise contributions of both the feedback and source resistors.

TYPICAL APPLICATIONS

Voltage Followers

Operational amplifiers with very high input resistances, like the CA5130, are particularly suited to service as voltage followers. Fig. 20 shows the circuit of a classical voltage follower, together with pertinent waveforms using the CA5130 in a split-supply configuration.

A voltage follower, operated from a single supply, is shown in Fig. 21, together with related waveforms. This follower circuit is linear over a wide dynamic range, as illustrated by the reproduction of the output waveform in Fig. 21a with input-signal ramping. The waveforms in Fig. 21b show that the follower does not lose its input-to-output phase-sense, even though the input is being swung 7.5 volts below ground potential. This unique characteristic is an important attribute in both operational amplifier and comparator
applications. Fig. 21b also shows the manner in which the CMOS output stage permits the output signal to swing down to the negative supply-rail potential (i.e., ground in the case shown). The digital-to-analog converter (DAC) circuit, described in the following section, illustrates the practical use of the CA5130 in a single-supply voltagefollower application.

9-Bit CMOS DAC

A typical circuit of a 9-bit Digital-to-Analog Converter (DAC)* is shown in Fig. 22. This system combines the concepts of multiple-switch CMOS IC's a low-cost ladder network of discrete metal-oxide-film resistors, a CA5130 op amp connected as a follower, and an inexpensive monolithic regulator in a simple single power-supply arrangement. An additional feature of the DAC is that it is readily interfaced with CMOS input logic, e.g., 10 -volt logic levels are used in the circuit of Fig. 22.
The circuit uses an R/2R voltage-ladder network, with the output potential obtained directly by terminating the ladder arms at either the positive or the negative power-supply terminal. Each CD4007A contains three "inverters", each "inverter" functioning as a single-pole double-throw switch to terminate an arm of the R/2R network at either the positive or negative power-supply terminal. The resistor ladder is an assembly of one percent tolerancemetal-oxide film resistors. The five arms requiring the highest accuracy are assembled with series and parallel combinations of 806,000 -ohm resistors from the same manufacturing lot.

A single 15 -volt supply provides a positive bus for the CA5130 follower amplifier and feeds the CA3085 voltage regulator. A "scale-adjust" function is provided by the regulator output control, set to a nominal 10-volt level in this system. The line-voltage regulation (approximately 0.2\%) permits a 9-bit accuracy to be maintained with variations of several volts in the supply. The flexibility afforded by the CMOS building blocks simplifies the design of DAC systems tailored to particular needs.

[^29]

Fig. 19-CA5130 test-circuit amplifier (30 -dB gain) used for wideband noise measurements.

Fig. 20-CA5130 split-supply voltage follower with associated waveforms.

Single-Supply, Absolute-Value, Ideal Full-Wave Rectifier

The absolute-value circuit using the CA5130 is shown in Fig. 23. During positive excursions, the input signal is fed through the feedback network directly to the output. Simultaneously, the positive excursion of the input signal also drives the output terminal (No. 6) of the inverting amplifier in a negative-going excursion such that the 1N914 diode effectively disconnects the amplifier from the signal path. During a negative-going excursion of the input signal, the CA5130 functions as a normal inverting amplifier with a gain equal to-R2/R1. When the equality of the two equations shown in Fig. 23 is satisfied, the full-wave output is symmetrical.

Peak Detectors

Peak-detector circuits are easily implemented with the CA5130, as illustrated in Fig. 24 for both the peak-positive and the peak-negative circuit. It should be noted that with large-signal inputs, the bandwidth of the peak-negative circuit is much less than that of the peak-positive circuit. The second stage of the CA5130 limits the bandwidth in this case. Negative-going output-signal excursion requires a positive-going signal excursion at the collector of transistor Q11, which is loaded by the intrinsic capacitance of the
associated circuitry in this mode. On the other hand, during a negative-going signal excursion at the collector of Q11, the transistor functions in active "pull-down" mode so that the intrinsic capacitance can be discharge more expeditiously.

Error-Amplifier in Regulated-Power Supplies

The CA5130 is an ideal choice for error-amplifier service in regulated power supplies since it can function as an erroramplifier when the regulated output voltage is required to approach zero. Fig. 25 shows the schematic diagram of a 40-mA power supply capable of providing regulated output voltage by continuous adjustment over the range from 0 to 13 volts. Q3 and Q4 in IC2 (a CA3086 transistor-array IC) function as zerners to provide supply-voltage for the CA5130 comparator (IC1). Q1, Q2, and Q5 in IC2 are configured as a low impedance, temperature-compensated source of adjustable reference voltage for the error amplifier.

Transistors Q1, Q2, Q3, and Q4 in IC3 (another CA3086 transistor-array IC) are connected in parallel as the seriespass element. Transistor Q5 in IC3 functions as a currentlimiting device by diverting base drive from the series-pass transistors, in accordance with the adjustment of resistor R2.

Fig. 21 - Single-supply voltage-follower with associated waveforms. (e.g., for use in single-supply D/A converter; see Fig. 9 in ICAN-6080).

Fig. 26 contains the schematic diagram of a regulated power-supply capable of providing regulated output voltage by continuous adjustment over the range from 0.1 to 50 volts and currents up to 1 ampere. The error amplifier (IC1) and circuitry associated with IC2 function as previously described, although the output of IC1 is boosted by a discrete transistor (Q4) to provide adequate base drive for the Darlington-connected series-pass transistors Q1, Q2. Transistor Q3 functions in the previously described current-limiting circuit.

Multivibrators

The exceptionally high input resistance presented by the CA5130 is an attractive feature for multivibrator circuit design because it permits the use of timing circuits with high R/C ratios. The circuit diagram of a pulse generator (astable multivibrator), with provisions for independent control of the "on"and "off" periods, is shown in Fig. 27, Resistors R1 and R2 are used to bias the CA5130 to the mid-point of the supply-voltage and R3 is the feedback resistor. The pulse repetition rate is selected by positioning S 1 to the desired position and the rate remains essentially constant when the resistors which determine "on-period" and "off-period" are adjusted.

Function Generator

Fig. 24 contains a schematic diagram of a function generator using the CA5130 in the integrator and threshold detector
functions. This circuit generates a triangular or squarewave output that can be swept over a 1,000,000:1 range (0.1 Hz to 100 kHz) by means of a single control, R1. A voltagecontrol input is also available for remote sweep-control.

The heart of the frequency-determining system is an operational-transconductance-amplifier (OTA)*, IC1, operated as a voltage-controlled current-source. The output, l_{0}, is a current applied directly to the integrating capacitor, C1, in the feedback loop of the integrator IC2, using a CA5130, to provide the triangular-wave output. Potentiometer R2 is used to adjust the circuit for slope symmetry of positive-going and negative-going signal excursions.
Another CA5130, IC3, is used as a controlled switch to set the excursion limits of the triangular output from the integrator circuit. Capacitor C2 is a "peaking adjustment" to optimize the high-frequency square-wave performance of the circuit.

Potentiometer R3 is adjustable to perfect the "amplitude symmetry" of the square-wave output signals. Output from the threshold detector is fed back via resistor R 4 to the input of IC1 so as to toggle the current source from plus to minus in generating the linear triangular wave.
*See File No. 475 and ICAN-6668.

Fig. 22-9-bit DAC using CMOS digital switches and CA5130.
 1 VOLT p-D INPUT: $B W(-3 \mathrm{~dB})=130 \mathrm{kHz}$, DC OUTPUT (AVG.) $=160 \mathrm{mV}$

Fig. 23-CA5130 single-supply, absolute-value, ideal full-wave rectifier with associated waveforms.

Fig. 24 - CA5130 peak-detector circuits.

Fig. 25 - CA5130 voltage regulator circuit (0 to 13 V at 40 mA).

Fig. 26-CA5130 voltage regulator circuit (0.1 to 50 V at 1 A).
frequency range

POSITION OF SI
$0.001 \mu \mathrm{~F}$
$0.01 \mu \mathrm{~F}$
$0: \mu \mathrm{F}$
$1 \mu \mathrm{~F}$

Fig. 27-CA5130 pulse generator (astable multivibrator) with provisions for independent control of "ON" and "OFF" periods.

Fig. 28 - Function generator (frequency can be varied 1,000,000/1 with a single control).

Operation with Output-Stage Power-Booster

The current-sourcing and-sinking capability of the CA5130 output stage is easily supplemented to provide powerboost capability. In the circuit of Fig. 29, three CMOS transistor-pairs in a single CA3600E* IC array are shown parallel connected with the output stage in the CA5130. In the Class A mode of CA3600E shown, a typical device
consumes 20 mA of supply current at $15-\mathrm{V}$ operation. This arrangement boosts the current-handling capability of the CA5130 output stage by about 2.5X.

The amplifier circuit in Fig. 29 employs feedback to establish a closed-loop gain of 48 dB . The typical large-signal bandwidth (-3 dB) is 50 kHz .

BiMOS Microprocessor Operational Amplifiers

With MOSFET Input/CMOS Output

Features:

- MOSFET input stage provides. very high $Z_{I}=1.5 T \Omega\left(1.5 \times 10^{12} \Omega\right)$ typ. very low $I /=5 p A$ typ. at 15 V operation

$$
=2 p A \text { typ. at } 5 \mathrm{~V} \text { operation }
$$

- Common-mode input voltage range includes negative supply rail; input terminals can be swung 0.5 V below negative supply rail
- CMOS output stage permits signal swing to either (or both) supply rails
- CA5160A, CA5160 5V have full military temperature range guaranteed specifications
- CA5160A, CA5160 are guaranteed to operate down to 4.5 V for AOL
- CA5160A, CA5160 are guaranteed up to +7.5

Applications:

- Ground referenced single supply amplifiers
- Fast sample-hold amplifiers
- Long duration timers/monostables
- Ideal interface with digital CMOS
- High input impedance wideband amplifiers
- Voltage followers (e.g. follower for single supply D / A converter)
- Wien-Bridge oscillators
- Voltage controlled oscillators
- Photo diode sensor amplifiers
- 5 V logic systems
- Microprocessors interface
either supply voltage terminal (at very high values of load impedance), is employed as the output circuit.
The CA5160 Series circuits operate at supply voltages ranging from 5 to 16 volts, or ± 2.5 to ± 8 volts when using split supplies, and have terminals for adjustment of offset voltage for applications requiring offset-null capability. Terminal provisions are also made to permit strobing of the output stage.

The CA5160 Series is supplied in standard 8-lead TO-5 style packages (T suffix) and 8-lead dual-in-line formed lead TO-5 style "DIL-CAN" packages (S suffix). The CA5160 is available in chip form (H suffix). They have guaranteed specifications for 5 V operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

MAXIMUM RATINGS, Absolute-Maximum Values:

DC SUPPLY-VOLTAGE (Between V^{+}and V^{-}Terminals)	16 V
DIFFERENTIAL-MODE	
INPUT VOLTAGE	$\pm 8 \mathrm{~V}$
COMMON-MODE DC	
INPUT VOLTAGE	. $\left(\mathrm{V}^{+}+8 \mathrm{~V}\right)$ to $\left(\mathrm{V}^{-}-0.5 \mathrm{~V}\right)$
INPUT-TERMINAL CURRENT	... 1 mA
DEVICE DISSIPATION:	
WITHOUT HEAT SINK -	
UP TO $55^{\circ} \mathrm{C}$	630 mW
ABOVE $55^{\circ} \mathrm{C}$	Derate linearly $6.67 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
WITH HEAT SINK -	
UP TO $90^{\circ} \mathrm{C}$	1 W
ABOVE $90^{\circ} \mathrm{C}$	Derate linearly $16.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

TEMPERATURE RANGE:	
OPERATING (All Types)	-55 to $+125^{\circ} \mathrm{C}$
STORAGE (All Types)	-65 to $+150^{\circ} \mathrm{C}$
OUTPUT SHORT-CIRCUIT	
DURATION*	INDEFINITE
LEAD TEMPERATURE	
(DURING SOLDERING):	
AT DISTANCE 1/16 $\pm 1 / 32 \mathrm{INCH}$	
($1.59 \pm 0.79 \mathrm{MM}$) FROM CASE	
FOR 10 SECONDS MAX	$+265^{\circ} \mathrm{C}$

*Short circuit may be applied to ground or to either supply.

Fig. 1 - Schematic diagram of the CA5160 Series.

92cs-27794

CA5160 Series devices have an on-chip frequency-compensation network. Supplementary phase-compensation or frequency roll-off (if desired) can be connected externally between terminals 1 and 8 . E Suffix

S and T Suffixes
Fig. 2 - Functional diagrams of the CA5160 Series.

ELECTRICAL CHARACTERISTICS at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}$

CHARACTERISTIC		LIMITS						UNITS
		CA5160A			CA5160			
		Min.	Typ.	Max.	Min.	Typ.	Max.	
Input Offset Voltage $V_{0}=2.5 \mathrm{~V}$	V_{10}	-	1.5	4	-	2	10	mV
Input Offset Current $V_{0}=2.5 \mathrm{~V}$	10	-	0.1	5	-	0.1	1.0	
Input Current $V_{0}=2.5 \mathrm{~V}$	I	-	2	10	-	2	15	
Common-Mode Rejection Ratio $V_{C M}=0$ to $1 \mathrm{~V} \quad \mathrm{C}_{\text {MRR }}$		75	87	-	70	80	-	dB
$\mathrm{V}_{\text {CM }}=0$ to 2.5 V	$\mathrm{C}_{\text {MRR }}$	60	69	-	60	69	-	
Input Common-Mode Voltage Range		2.5	2.8	-	2.5	2.8	-	V
	$\mathrm{V}_{1 C R}{ }^{-}$	-	-0.5	0	-	-0.5	0	
Power-Supply Rejection Ratio $\Delta \mathrm{V}^{+}=1 \mathrm{~V} ; \Delta \mathrm{V}^{-}=1 \mathrm{~V}$	$P_{\text {sfa }}$	60	75	-	55	67	-	dB
Large-Signal Voltage Gain* $V_{0}=0.1 \text { to } 4.1 \mathrm{~V}$	$\begin{array}{r} \mathrm{A}_{\mathrm{ol}} \\ \mathrm{R}_{\mathrm{L}}=\infty \end{array}$	100	117	-	95	117	-	
$\mathrm{V}_{0}=0.1$ to 3.6 V	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$	90	102	-	85	102	-	
Source Current $V_{0}=0 \mathrm{~V}$	$I_{\text {source }}$	1.0	3.1	4.0	1.0	2.2	4.0	mA
Sink Current $V_{0}=5 \mathrm{~V}$	IsInk	1.0	1.6	4.0	1.0	3.4	4.0	
Output Voltage $\mathrm{R}_{\mathrm{L}}=\infty$ \qquad $R_{L}=10 k$ \qquad $R_{\mathrm{L}}=2 \mathrm{k}$	Vout VOm^{+}	4.99	5	-	4.99	5	-	V
	Vom ${ }^{-}$	-	0	0.01	-	0	0.01	
	VOM^{+}	4.4	4.7	-	4.4	4.7	-	
	VOM^{-}	-	0	0.01	-	0	0.01	
	VOM^{+}	2.5	3.3	-	2.5	3.3	-	
	Vom^{-}	-	0	0.01	-	0	0.01	
Supply Current$\begin{aligned} & V_{0}=0 \mathrm{~V} \\ & V_{0}=2.5 \mathrm{~V} \end{aligned}$	ISUPPLY	-	50	100	-	50	100	$\mu \mathrm{A}$
	1 ISUPpLY	-	320	400	-	320	400	

*For $V^{+}=4.5 \mathrm{~V}$ and $\mathrm{V}^{-}=G N D ; V_{\text {OUT }}=0.5 \mathrm{~V}$ to 3.2 V at $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$

ELECTRICAL CHARACTERISTICS at $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}$

CHARACTERISTIC		LIMITS						UNITS
		CA5160A			CA5160			
		Min.	Typ.	Max.	Min.	Typ.	Max.	
Input Offset Voltage $V_{0}=2.5 \mathrm{~V}$	V_{10}	-	2	10	-	3	15	mV
Input Offset Current $V_{0}=2.5 \mathrm{~V}$	10	-	0.1	5	-	0.1	10	nA
Input Current $V_{0}=2.5 \mathrm{~V}$	I_{1}	-	2	10	-	2	15	
Common-Mode Rejection Ratio $V_{C M}=0$ to 1 V C MRR $\mathrm{V}_{\text {CM }}=0$ to 2.5 V C $_{\text {MRR }}$ Input Common-Mode Voltage Range		60	80 80	-	60	80	-	dB
		2.5	2.8	-	2.5	2.8	-	V
	$\mathrm{V}_{1 C \mathrm{~B}}{ }^{-}$	-	-0.5	0	-	-0.5	0	
Power-Supply Rejection Ratio $\Delta^{+}=\mathrm{V}^{+}=2 \mathrm{~V}$	Psar	45	65	-	40	60	-	dB
$\begin{gathered} \text { Large-Signal Voltage Gain* } \\ V_{0}=0.1 \text { to } 4.1 \mathrm{~V} \\ V_{0}=0.1 \text { to } 3.6 \mathrm{~V} \\ \hline \end{gathered}$	$\begin{aligned} & \quad A_{o L} \\ & R_{L}=\infty \\ & \hline R_{L}=10 \mathrm{k} \\ & \hline \end{aligned}$	94 80	110	-	90	110	-	
Source Current $V_{0}=0 \mathrm{~V}$	Isource	0.6	2.2	5.0	0.6	-	5.0	mA
Sink Current $V_{0}=5 \mathrm{~V}$	IsINk	0.6	1.15	5.0	0.6	-	5.0	
Output Voltage $\mathrm{R}_{\mathrm{L}}=\infty$ \qquad $R_{L}=10 k$ \qquad $R_{L}=2 k$	$\begin{aligned} & \mathrm{V}_{\text {OUT }} \\ & \mathrm{V}_{\text {OM }}{ }^{\mathrm{VOM}^{-}} \end{aligned}$	4.99 -	5	0.01	4.99	5	- 0.01	V
	Vom^{+}	4.0	4.3	-	4.0	4.3	-	
	VOM^{-}	-	0	0.01	-	0	0.01	
	VOM^{+}	2.0	2.5	-	2.0	2.5	-	
	VOM^{-}	-	0	0.01	-	0	0.01	
Supply Current$\begin{aligned} & V_{0}=0 \mathrm{~V} \\ & V_{0}=2.5 \mathrm{~V} \end{aligned}$	Isupply	-	170	220	-	170	220	$\mu \mathrm{A}$
	Isupply	-	410	500	-	410	500	

*For $\mathrm{V}^{+}=4.5 \mathrm{~V}$ and $\mathrm{V}^{-}=\mathrm{GND}$; $\mathrm{V}_{\text {out }}=0.5 \mathrm{~V}$ to 3.2 V at $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$

ELECTRICAL CHARACTERISTICS at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}$ (Unless Otherwise Specified)

CHARACTERISTIC		LIMITS						UNITS
		CA5160A (T, S, E)			CA5160 (T, S, E)			
		Min.	Typ.	Max.	Min.	Typ.	Max.	
Input Offset Voltage $\mathrm{V}^{ \pm}= \pm 7.5 \mathrm{~V}$	$\left\|V_{10}\right\|$	-	2	5	-	6	15	mV
Input Offset Current $\mathrm{V}^{ \pm}= \pm 7.5 \mathrm{~V}$	$\left.\right\|_{10} \mid$	-	0.5	20	-	0.5	30	pA
Input Current $\mathrm{V}^{ \pm}= \pm 7.5 \mathrm{~V}$	I_{1}	-	5	30	-	5	50	pA
Large-Signal Voltage Gain	AoL	50k	320k	-	50k	320k	-	V/V
$\mathrm{V}_{\mathrm{O}}=10 \mathrm{~V}_{\mathrm{p}-\mathrm{p},} \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$		94	110	-	94	110	-	dB
Common-Mode Rejection Ratio	$\mathrm{C}_{\text {MRR }}$	80	95	-	70	90	-	dB
Common-Mode Input Voltage Range	Vicr	10	$\begin{gathered} -0.5 \\ \text { to } \\ 12 \end{gathered}$	0	10	$\begin{gathered} -0.5 \\ \text { to } \\ 12 \end{gathered}$	0	V
Power-Supply Rejection Ratio, $\Delta \mathrm{V}_{10} / \Delta \mathrm{V}^{ \pm}$ $\mathrm{V}^{ \pm}= \pm 7.5 \mathrm{~V}$	$\mathrm{P}_{\text {SRR }}$	-	32	150	-	32	320	$\mu \mathrm{V} / \mathrm{V}$
Maximum Output Voltage								
	VOM^{+}	12	13.3	-	12	13.3	-	
$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	Vom^{-}	-	0.002	0.01	-	0.002	0.01	
$\mathrm{R}_{\mathrm{L}}=\infty$	Vom^{+}	14.99	15	-	14.99	15	-	
	Vом ${ }^{-}$	-	0	0.01	-	0	0.1	
Maximum Output Current $\begin{gathered} \operatorname{lom}^{+}(\text {Source }) @ \\ \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V} \end{gathered}$	lom^{+}	12	22	45	12	22	45	
$\begin{gathered} \text { lом }^{-1}(\operatorname{Sin} \times) @ \\ V_{0}=15 \mathrm{~V} \end{gathered}$	Iom^{-}	12	20	45	12	20	45	
Supply Current $V_{0}=7.5 \mathrm{~V}$	$\mathrm{R}_{\mathrm{L}}=\infty$	-	10	15	-	10	15	
$\mathrm{V}_{0}=0 \mathrm{~V}$	$\begin{array}{r} I^{+} \\ R_{L}=\infty \\ \hline \end{array}$	-	2	3	-	2	3	mA
Input Offset Voltage Temp. Drift, $\Delta \mathrm{V}_{10} / \Delta \mathrm{T}^{*}$		-	6	-	-	8	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$

TYPICAL VALUES INTENDED ONLY FOR DESIGN GUIDANCE

CIRCUIT DESCRIPTION

Fig. 3 is a block diagram of the CA5160 series CMOS Operational Amplifiers. The input terminals may be operated down to 0.5 V below the negative supply rail, and the output can be swung very close to either supply rail in many applications. Consequently, the CA5160 series circuits are ideal for single-supply operation. Three class A amplifier stages, having the individual gain capability and current consumption shown in Fig. 3, provide the total gain of the CA5160. A biasing circuit provides two potentials for common use in the first and second stages. Terminals 8 and 1 can be used to supplement the internal phase compensation network if additional phase compensation or frequency roll-off is desired. Terminals 8 and 4 can also be used to strobe the output stage into a low quiescent current state. When Terminal 8 is tied to the negative supply rail (Terminal 4) by mechanical or electrical means, the output potential at Ter-
minal 6 essentially rises to the positive supply-rail potential at Terminal 7. This condition of essentially zero current drain in the output stage under the strobed "OFF" condition can only be achieved when the ohmic load resistance presented to the amplifier is very high (e.g., when the amplifier output is used to drive CMOS digital circuits in comparator applications).
Input Stages - The circuit of the CA5160 is shown in Fig. 2. It consists of a differential-input stage using PMOS fieldeffect transistors (Q6, Q7) working into a mirror-pair of bipolar transistors (Q9, Q10) functioning as load resistors together with resistors R3 through R6. The mirror-pair transistors also function as a differential-to-single-ended converter to provide base drive to the second-stage bipolar transistor (Q11). Offset nulling, when desired, can be effected by connecting a 100,000 -ohm potentiometer across Terminals 1 and 5 and the potentiometer slider arm to Terminal 4.

Cascode-connected PMOS transistors Q2, Q4, are the constant-current source for the input stage. The biasing curcuit for the constant-current source is subsequently described. The small diodes D5 through D7 provide gate-oxide protection against high-voltage transients, e.g., including static electricity during handling for Q6 and Q7.
Second-State - Most of the voltage gain in the CA5160 is provided by the second amplifier stage, consisting of bipolar transistor Q11 and its cascode-connected load resistance provided by PMOS transistors Q3 and Q5. The source of bias potentials for these PMOS tranistors is described later. Miller Effect compensation (roll off) is accomplished by means of the $30-\mathrm{pf}$ capacitor and $2-\mathrm{k} \Omega$ resistor connected between the base and collector of transistor Q11. These internal components provide sufficient compensation for unity gain operation in most applications. However, additional compensation, if desired, may be used between Terminals 1 and 8 .
Bias-Source Circuit - At total supply voltages, somewhat above 8.3 volts, resistor R2 and zener diode Z1 serve to establish a voltage of 8.3 volts across the series-connected circuit, consisting of resistor R1, diodes D1 through D4, and PMOS transistor Q1. A tap at the junction of resistor R1 and diode D4 provides a gate-bias potential of about 4.5 volts for PMOS transistors Q4 and Q5 with respect to Terminal 7. A potential of about 2.2 volts is developed across diodeconnected PMOS transistor Q1 with respect to Terminal 7 to provide gate bias for PMOS transistors Q2 and Q3. It should be noted that Q1 is "mirror-connected" \dagger to both Q2 and Q3. Since transistors Q1, Q2, Q3 are designed to be identical, the approximately 200-microampere current in Q1 establishes a similar current in Q2 and Q3 as constant-current sources for both the first and second amplifier stages, respectively.
At total supply voltages somewhat less than 8.3 volts, zener diode $\mathrm{Z1}$ becomes non-conductive and the potential, developed across series-connected R1, D1-D4, and Q1, varies directly with variations in supply voltage. Consequently, the gate bias for Q4, Q5 and Q2, Q3 varies in accordance with supply-voltage variations. This variation results in deterioration of the power-supply-rejection ration (PSRR) at total supply voltages below 8.3 volts. Operation at total supply
voltages below about 4.5 volts results in seriously degraded performance.
Output Stage - The output stage consists of a drain-loaded inverting amplifier using CMOS transistors operating in the Class A mode. When operating into very high resistance loads, the output can be swung within millivolts of either supply rail. Because the output stage is a drain-loaded amplifier, its gain is dependent upon the load impedance. The transfer characteristics of the output stage for a load returned to the negative supply rail are shown in Fig. 6. Typical op-amp loads are readily driven by the output stage. Because large-signal excursions are non-linear, requiring feedback for good waveform reproduction, transient delays may be encountered. As a voltage follower, the amplifier can achieve 0.01 per cent accuracy levels, including the negative supply rail.
\dagger For general information on the characteristics CMOS transistor-pairs in linear-circuit applications, see File No. 619, data bulletin on CA3600E "CMOS Transistor Array".

TOTAL SUPPLY VOLTAGE (FOR INOICATEO VOLTAGE GAINS) $=15 \mathrm{~V}$

* WITH INPUT TERMINALS BIASED SO THAT TERM 6 POTENTIAL $92 C S .28573$
IS +75 V ABOVE TERM 4 * +5 V ABOVE TERM

Fig. 3 - Block diagram of the CA5160 Series.

Fig. 5 - Open-loop gain vs. temperature.

* WITH OUTPUT TERMI

Fig. 4-Open-loop voltage gain and phase shift vs. frequency.

Fig. 6 - Voltage transfer characteristics of CMOS output stage.

Fig. 8 - Quiescent supply current vs. supply voltage at several temperatures.

Fig. 10 - Output voltage swing vs. Ioad resistance.

Fig. 12 - Output current vs. temperature.

Fig. 7 - Quiescent supply current vs. supply voltage.

Fig. 9 - Supply current vs. output voltage.

Fig. 11 - Output swing vs. load resistance.

9265-24721
Fig. 13 - Voltage across PMOS output transistor (Q8) vs. load current.

92C5-24722
Fig. 14 - Voltage across NMOS output transistor (Q12) vs. load current.

Offset Nulling

Offset-voltage nulling is usually accomplished with a 100,000ohm potentiometer connected across Terminals 1 and 5 and with the potentiometer slider arm connected to Terminal 4. A fine offset-null adjustment usually can be affected with the slider arm positioned in the mid-point of the potentiometer's total range.

Input Current Variation with CommonMode Input Voltage

As shown in the Table of Electrical Characteristics, the input current for the CA5160 Series Op-Amps is typically 5 pA at $T_{A}=25^{\circ} \mathrm{C}$ when Terminals 2 and 3 are at a common-mode potential of +7.5 volts with respect to negative supply Terminal 4. Fig. 16 contains data showing the variation of input

Fig. 16 - CA5160 input current vs. common-mode voltage.
current as a function of common-mode input voltage at $\mathrm{T}_{\mathrm{A}}=$ $25^{\circ} \mathrm{C}$. These data show that circuit designers can advantageously exploit these characteristics to design circuits which typically require an input current of less than 1 pA , provided the common-mode input voltage does not exceed 2 volts. As previously noted, the input current is essentially the result of the leakage current through the gate-protection diodes in the input curcuit and, therefore, a function of the applied voltage. Although the finite resistance of the glass terminal-to-case insulator of the TO-5 package also contributes an increment of leakage current, there are useful compensating factors. Because the gate-protection network functions as if it is connected to Terminal 4 potential, and the TO-5 case of the CA5160 is also internally tied to Terminal 4 , input terminal 3 is essentially "guarded" from spurious leakage currents.

Input-Current Variation with Temperature

The input current of the CA5160 Series circuits is typically 5

Fig. 15 - Equivalent noise voltage vs. frequency.
pA at $25^{\circ} \mathrm{C}$. The major portion of this input current is due to leakage current through the gate-protective diodes in the input circuit. As with any semiconductor-junction device, including op amps with a junction-FET input stage, the leakage current approximately doubles for every $10^{\circ} \mathrm{C}$ increase in temperature. Fig. 17 provides data on the typical variation of input bias current as a function of temperature in the CA5160.

Fig. 17 - Input current vs. ambient temperature.
In applications requiring the lowest practical input current and incremental increases in current because of "warm-up" effects, it is suggested that an appropriate heat sink be used with the CA5160. In addition, when "sinking" or "sourcing" significant output current the chip temperature increases, causing an increase in the input current. In such cases, heatsinking can also very markedly reduce and stabilize input current variations.

Input-Offset-Voltage (V_{10}) Variation with
 DC Bias vs. Device Operating Life

It is well known that the characteristics of a MOS/FET device can change slightly when a dc gate-source bias potential is applied to the device for extended time periods. The magnitude of the change is increased at high temperatures. Users of the CA5160 should be alert to the possible impacts of this effect if the application of the device involves extended operation at high temperatures with a significant differential dc bias voltage applied across Terminals 2 and 3. Fig. 18 shows typical data pertinent to shifts in offset voltage encountered with CA5160 devices in TO-5 packages during life testing. At lower temperatures (TO-5 and plastic) for example at $85^{\circ} \mathrm{C}$, this change in voltage is considerably less. In typical linear applications where the differential voltage is small and symmetrical, these incremental changes are of about the same magnitude as those encountered in an oper-

Fig. 18 - Typical incremental offset-voltage shift vs. operating life.
ational amplifier employing a bipolar transistor input stage. The two-volt dc differential voltage example represents conditions when the amplifier output state is "toggled", e.g., as in comparator applications.

Power-Supply Considerations

Because the CA5160, is very useful in single-supply applications, it is pertinent to review some considerations relating to power-supply current consumption under both single-and dual-supply service. Figs. 19 (a) and 19 (b) show the CA5160 connected for both dual-and-single-supply operation.

(b) SINGLE POWER-SUPPLY OPERATION

Fig. 19 - CA5160 output stage in dual and single power-supply operation

Dual-supply operation: When the output voltage at Terminal 6 is zero-volts, the currents supplied by the two power supplies are equal. When the gate terminals of Q8 and Q12 are driven increasingly positive with respect to ground, current flow through Q12 (from the negative supply) to the load is increased and current flow through Q8 (from the positive
supply) decreases correspondingly. When the gate terminals of Q8 and Q12 are driven increasingly negative with respect to ground, current flow through Q8 is increased and current flow through Q12 is decreased accordingly.
Single-supply operation: Initially, let it be assumed that the value of R_{L} is very high (or disconnected), and that the inputterminal bias (Terminals 2 and 3) is such that the output terminal (No. 6) voltage is at $\mathrm{V}^{+} / 2$, i.e., the voltage-drops across Q8 and Q12 are of equal magnitude. Fig. 7 shows typical quiescent supply-current vs. supply-voltage for the CA5160 operated under these conditions. Since the output stage is operating as a Class A amplifier, the supply-current will remain constant under dynamic operating conditions as long as the transistors are operated in the linear portion of their voltage-transfer characteristics (see Fig. 6). If either Q8 or Q12 are swung out of their linear regions toward cutoff (a non-linear region), there will be a corresponding reduction in supply-current. In the extreme case, e.g., with Terminal 8 swung down to ground potential (or tied to ground), NMOS transistor Q12 is completely cut off and the supply-current to series-connected transistors Q8, Q12 goes essentially to zero. The two preceding stages in the CA5160, however, continue to draw modest supply-current (see the lower curve in Fig. 7) even though the output stage is strobed off. Fig. 15(a) shows a dual-supply arrangement for the output stage that can also be strobed off, assuming $R_{L}=\infty$, by pulling the potential of Terminal 8 down to that of Terminal 4.

Let it now be assumed that a load-resistance of nominal value (e.g., 2 kilohms) is connected between Terminal 6 and ground in the circuit of Fig. 19(b). Let it further be assumed again that the input-terminal bias (Terminals 2 and 3) is such that the output terminal (No. 6) voltage is $\mathrm{V}^{+} / 2$. Since PMOS transistor Q8 must now supply quiescent current to both R_{L} and transistor Q12, it should be apparent that under these conditions the supply-current must increase as an inverse function of the R_{L} magnitude. Fig. 9 shows the voltage-drop across PMOS transistor Q8 as a function of load current at several supply voltages. Fig. 6 shows the voltage-transfer characteristics of the output state for several values of load resistance.

Wideband Noise

From the standpoint of low-noise performance considerations, the use of the CA5160 is most advantageous in applications where in the source resistance of the input signal is in the order of 1 megohm or more. In this case, the total input-referred noise voltage is typically only $40 \mu \mathrm{~V}$ when the test-circuit amplifier of Fig. 20 is operated at a total supply

92C5-28577
Fig. 20 - CA5160 Test-circuit amplifier (30-dB gain) used for wideband noise measurements.
voltage of 15 volts. This value of total input-referred noise remains essentially constant, even though the value of source resistance is raised by an order of magnitude. This characteristic is due to the fact that reactance of the input capacitance becomes a significant factor in shunting the source resistance. It should be noted, however, that for values of source resistance very much greater than 1 megohm, the total noise voltage generated can be dominated by the thermal noise contributions of both the feedback and source resistors.

TYPICAL APPLICATIONS

Voltage Followers

Operational amplifiers with very high input resistances, like the CA5160, are particularly suited to service as voltage followers. Fig. 21 shows the circuit of a classical voltage follower, together with pertinent waveforms using the CA5160 in a split-supply configuration.
A voltage follower, operated from a single-supply, is shown in Fig. 22 together with related waveforms. This follower circuit is linear over a wide dynamic range, as illustrated by the reproduction of the output waveform in Fig. 22b with inputsignal ramping. The waveforms in Fig. 22c show that the fol-
lower does not lose its input-to-output phase-sense, even though the input is being swung 7.5 volts below ground potential. This unique characteristic is an important attribute in both operational amplifier and comparator applications. Fig. 22c also shows the manner in which the CMOS output stage permits the output signal to swing down to the negative supply-rail potential (i.e., ground in the case shown). The digital-to-analog converter (DAC) circuit, described in the following section, illustrates the practical use of the CA5160 in a single-supply voltage-follower application.

9-Bit CMOS DAC

A typical circuit of a 9-bit Digital-to-Analog Converter (DAC)* is shown in Fig. 23. This system combines the concepts of multiple-switch CMOS IC's, a low-cost ladder network of discrete metal-oxide-film resistors, a CA5160 op amp connected as a follower, and an inexpensive monolithic regulator in a simple single power-supply arrangement. An additional feature of the DAC is that it is readily interfaced with CMOS input logic, e.g., 10 -volt logic levels are used in the circuit of Fig. 23.

[^30]

Fig. 21 - Split-supply voltage follower with associated waveforms for CA5160.

(a)

Fig. 22 - CA5160 Single-supply voltage-follower with associated waveforms. (e.g., for use in singlesupply D/A converter; see Fig. 9 in ICAN-6080.)

(b) Output signal with input-signal ramping.

92CS-28581R1
(c) Output-Waveform with Ground-Reference Sine-Wave Input
Top Trace: Output Bottom Trace: Input

Fig. 23 - 9-bit DAC using CMOS digital switches and CA5160.

The circuit uses an R/2R voltage-ladder network, with the output-potential obtained directly by terminating the ladder arms at either the positive or the negative power-supply terminal. Each CD4007A contains three "inverters", each "inverter" functioning as a single-pole double-throw switch to terminate an arm of the R/2R newtork at either the positive or negative power-supply terminal. The resistor ladder is an assembly of one per cent tolerance metal-oxide film resistors. The five arms requiring the highest accuracy are assembled with series and parallel combinations of 806,000 -ohm resistors from the same manufacturing tot.
A single 15 -volt supply provides a positive bus for the CA5160 follower amplifier and feeds the CA3085 voltage regulator. A "scale-adjust" function is provided by the regulator output control, set to a nominal 10 -volt level in this system. The line-voltage regulation (approximately 0.2%) permits a 9 -bit accuracy to be maintained with variations of several volts in the supply. The flexibility afforded by the CMOS building blocks simplifies the design of DAC systems tai-
lored to particular needs.

Error-Amplifier in Regulated Power Supplies

The CA5160 is an ideal choice for error-amplifier service in regulated power supplies since it can function as an erroramplifier when the regulated output voltage is required to approach zero.
The circuit shown in Fig. 24 uses a CA5160 as an error amplifier in a continuously adjustable 1 -ampere power supply. One of the key features of this circuit is its ability to regulate down to the vicinity of zero volts with only one dc power supply input.
An RC network, connected between the base of the output drive transistor and the input voltage, prevents "turn-on overshoot", a condition typical of many operational-amplifier regulator circuits. As the amplifier becomes operational, this RC network ceases to have any influence on the regulator performance.

Fig. 24 - CA5160 Voltage regulator circuit (0.1 to $35 V$ at 1 A).

Precision Voltage-Controlled Oscillator

The circuit diagram of a precision voltage-controlled oscillator is shown in Fig. 25. The oscillator operates with a tracking error in the order of 0.02 percent and a temperature coefficient of $0.01 \% /{ }^{\circ} \mathrm{C}$. A multivibrator (A_{1}) generates pulses of constant amplitude (V) and width (T_{2}). Since the output (terminal 6) of A_{1} (a CA5130) can swing within about 10 millivolts of either supply-rail, the output pulse amplitude (V) is essentially equal to $\mathrm{V}+$. The average output voltage ($\mathrm{E}_{\text {avg }}=\mathrm{V}$ $\mathrm{T}_{2} / \mathrm{T}_{1}$) is applied to the non-inverting input terminal of comparator A_{2} (a CA5160) via an integrating network R_{3}, C_{2}. Comparator A_{2} operates to establish circuit conditions such that $\mathrm{E}_{\text {avg }}=\mathrm{V} 1$. This circuit condition is accomplished by feeding an output signal from terminal 6 of A_{2} through $\mathrm{R}_{4}, \mathrm{D}_{4}$ to the inverting terminal (terminal 2) of A_{1}, thereby adjusting
the multivibrator interval, T_{3}.

Voltmeter With High Input Resistance

The voltmeter circuit shown in Fig. 26 illustrates an application in which a number of the CA5160 characteristics are exploited. Range-switch SW1 is ganged between input and output circuitry to permit selection of the proper output voltage for feedback to Terminal 2 via $10 \mathrm{~K} \Omega$ current-limiting resistor. The circuit is powered by a single 8.4 -volt mercury battery. With zero input signal, the circuit consumes somewhat less than 500 microamperes plus the meter current required to indicate a given voltage. Thus, at full-scale input, the total supply current rises to slightly more than 1500 microamperes.

Fig. 25 - Voltage-controlled oscillator.

Fig. 26 - CA5160A high-input-resistance DC voltmeter

Fig. 27(a) - CA5160 1,000,000/1 single-control function generator -1 MHz to 1 Hz .

Function Generator

A function generator having a wide tuning range is shown in Fig. 27. The adjustment range, in excess of $1,000,000 / 1$, is accomplished by a single potentiometer. Three operational amplifiers are utilized: a CA5160 as a voltage follower, a CA3080 as a high-speed comparator, and a second CA3080A

Fig. 27(b) - Two-tone output signal from the function generator. A square-wave signal modulates the external sweeping input to produce 1 Hz and 1 MHz , showing the $1,000,000 / 1$ frequency range of the function generator.
as a programmable current source. Three variable capacitors $\mathrm{C} 1, \mathrm{C} 2$, and C 3 shape the triangular signal between 500 kHz and 1 MHz . Capacitors C4, C5 and the trimmer potentiometer in series with C5 maintain essentially constant ($\pm 10 \%$) amplitude up to 1 MHz .

Fig. 27(c) - Triple-trace of the function generator sweeping to 1 MHz . The bottom trace is the sweeping signal and the top trace is the actual generator output. The center trace displays the 1 MHz signal via delayed oscilloscope triggering of the upper swept output signal.

Staircase Generator

Fig. 28 shows a staircase generator circuit utilizing three CMOS operational amplifiers. Two CA5130's are used; one
as a multivibrator, the other as a hysteresis switch. The third amplifier, a CA5160, is used as a linear staircase generator.

Fig. 28(a) - Staircase generator circuit utilizing three CMOS operational amplifiers.

Picoammeter Circuit

Fig. 29 is a current-to-voltage converter configuration utilizing a CA5160 and CA3140 to provide a picoampere meter for $\pm 3 \mathrm{pA}$ full-scale meter deflection. By placing Terminals 2 and 4 of the CA5160 at ground potential, the CA5160 input is operated in the "guarded mode". Under this operating condition, even slight leakage reistance present between Terminals 3 and 2 or between Terminals 3 and 4 would result in zero voltage across this leakage resistance, thus substantially reducing the leakage current.

If the CA5160 is operated with the same voltage on input Terminals 3 and 2 as on Terminal 4, a further reduction in the input current to the less than one picoampere level can be achieved as shown in Fig. 16.
To further enhance the stability of this circuit, the CA5160 can be operated with its output (Terminal 6) near ground, thus markedly reducing the dissipation by reducing the supply current to the device.
The CA3140 stage serves as a X100 gain stage to provide the required plus and minus output swing for the meter and
feedback network. A 100-to-1 voltage divider network consisting of a $9.9-\mathrm{K} \Omega$ resistor in series with a 100 -ohm resistor sets the voltage at the $10-\mathrm{KM} \Omega$ resistor (in series with Terminal 3) to $\pm 30 \mathrm{mV}$ full-scale deflection. This $30-\mathrm{mV}$ signal results from ± 3 volts appearing at the top of the voltage divider network which also drives the meter circuitry.

By utilizing a switching technique in the meter circuit and in the $9.9 \mathrm{~K} \Omega$ and 100 -ohm network similar to that used in voltmeter circuit shown in Fig. 26, a current range of 3 pA to 1 nA full scale can be handled with the single $10-\mathrm{KM} \Omega$ resistor.

Fig. 28 (b) - Staircase Generator Waveform
Top Trace: Staircase Output
2 Volt Steps
Center Trace: Comparator
Bottom Trace: Oscillator

92CM-28589R1
Fig. 29 - Current-to-voltage converter to provide a picoammeter with ± 3 pA full-scale deflection.

Single-Supply Sample-and-Hold System

Fig. 30 shows a single-supply sample-and-hold system using a CA5160 to provide a high input impedance and an inputvoltage range of 0 to 10 volts. The output from the input buffer integrator network is coupled to a CA3080A. The CA3080A functions as a strobeable current source for the CA3140 output integrator and storage capacitor. The CA3140 was chosen because of its low output impedance and constant gain-bandwidth product. Pulse "droop" during the hold
interval can be reduced to zero by adjusting the $100-\mathrm{K} \Omega$ bias-voltage potentiometer on the positive input of the CA3140. This zero adjustment sets the CA3080A output voltage at its zero current position. In this sample-and-hold circuit it is essential that the amplifier bias current be reduced to zero to minimize output signal current during the hold mode. Even with 320 mV at the amplifier bias circuit terminal (5) at least $\pm 100 \mathrm{pA}$ of output current will be available.

Fig. 30(a) - Single-supply sample-and-hold systeminput 0-to-10 volts.

(b) - Sample-and-hold waveform. Top Trace: Sampled Output Center Trace: Input Signal Bottom Trace: Sampling Puises

(c) - Sample-and-hold waveform. Top Trace: Sampled Output Center Trace: Input Bottom Trace: Sampling Pulse

Wien Bridge Oscillator

A simple, single-supply Wien Bridge oscillator using a CA5160 is shown in Fig. 31. A pair of parallel-connected 1N914 diodes comprise the gain-setting network which standardizes the output voltage at approximately 1.1 volts.

The 500 -ohm potentiometer is adjusted so that the oscillator will always start and the oscillation will be maintained. Increasing the amplitude of the voltage may lower the threshold level for starting and for sustaining the oscillation, but will introduce more distortion.

Fig. 31 - CA5160 Single-supply Wien Bridge oscillator.

Operation with Output-Stage Power-Booster
The current sourcing and sinking capability of the CA5160 output stage is easily supplemented to provide power-boost capability. In the circuit of Fig. 32, three CMOS transistorpairs in a single CA3600 IC array are shown parallel-connected with the output stage in the CA5160. In the Class A mode of CA3600E shown, a typical device consumes 20 mA of
supply current at $15-\mathrm{V}$ operation. This arrangement boosts the current-handling capability of the CA5160 output stage by about 2.5 X .
The amplifier circuit in Fig. 32 employs feedback to establish a closed-loop gain of 20 dB . The typical large-signalbandwidth $(-3 \mathrm{~dB})$ is 190 kHz .

Fig. 32 - CMOS transistor array (CA3600E) connected as power booster in the output stage of the CA5160.

BiMOS Microprocessor Operational Amplifiers

With MOSFET Input/CMOS Output

Features:

- MOSFET input stage provides: very high $Z_{I}=1.5 T \Omega\left(1.5 \times 10^{12} \Omega\right)$ typ very low $I=5$ pA typ. at 15 V operation $=2 \mathrm{pA}$ typ. at 5 V operation
- Ideal for single-supply applications
- Common-mode input-voltage range includes negative supply rail; input terminals can be swung 0.5 V below negative supply rail
- CMOS output stage permits signal swing to either (or both) supply rails
- CA5260A, CA5260 5V have full military temperature range guaranteed specifications
- CA5260A, CA5260 are guaranteed to operate down to $V_{T}=4.5 \mathrm{~V}$ for AOL
- Fully guaranteed to operate at $-55^{\circ} \mathrm{C}$ to +1250 C at $V_{+}=5 \mathrm{~V}, \mathrm{~V}_{-}=\mathrm{Gnd}$

The CA5260A and CA5260 are integrated-circuit operational amplifiers that combine the advantage of both CMOS and biploar transistors on a monolithic chip. The CA5260 series circuits are dual versions of the popular CA5160 series. They are designed and guaranteed to operate in microprocessors or logic systems that use +5 V supplies.

Gate-protected p-channel MOSFET (PMOS) transistors are used in the input circuit to provide very-high-input impedance, very-low-input current, and exceptional speed performance. The use of PMOS field-effect transistors in the input stage results in common-mode input-voltage capability down to 0.5 volt below the negative-supply terminal, an important attribute in single-supply applications.

A complementary-symmetry MOS (CMOS) transistor-pair, capable of swinging the output voltage to within 10 millivolts of

Applications:

- Ground-referenced single supply amplifiers
- Fast sample-hold amplifiers
- Long-duration timers/monostables
- Ideal interface with digital CMOS
- High-input-impedance wideband amplifiers
- Voltage followers (e.g. follower for single-supply D/A converter)
- Voltage regulators (permits control of output voltage down to zero volts)
- Wien-Bridge oscillators
- Voltage-controlled oscillators
- Photo-diode sensor amplifiers
- 5 V logic systems
- Microprocessors interface
either supply-voltage terminal (at very high values of load impedance), is employed as the output circuit.

The CA5260 Series circuits operate at supply voltages ranging from 4.5 to 16 volts, or ± 2.25 to ± 8 volts when using split supplies.

The CA5260 Series is supplied in standard 8-lead TO-5 style packages (T suffix) and 8-lead dual-in-line formed lead TO-5 style "DIL-CAN" packages (S suffix). The CA5260 is available in chip form (H suffix). The CA5260A and CA5260 are also available in the Mini-Dip 8-lead dual-in-line surface-mount plastic packages (M suffix).

The CA5260A, CA5260 have guaranteed specifications for 5 V operation over the full military-temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

MAXIMUM RATINGS, Absolute-Maximum Values

DC SUPPLY VOLTAGE (Between V^{+}and V^{-}Terminals)	
DEVICE DISSIPATION:	
WITHOUT HEAT SINK -	
WITH HEAT SINK -	
SMALL OUTLINE PACKAGE	.. $250^{\circ} / \mathrm{W}$
TEMPERATURE RANGE:	
OPERATING (all types) . 5 - 55 to $+125^{\circ} \mathrm{C}$	
STORAGE (all types) . 6 - 65 to $+150^{\circ} \mathrm{C}$	
OUTPUT SHORT-CIRCUIT DURATION * INDEFINITE	
LEAD TEMPERATURE (DURING SOLDERING):	
	$+265^{\circ} \mathrm{C}$

* Short circuit may be applied to ground or to either supply.

TYPICAL VALUES INTENDED ONLY FOR DESIGN GUIDANCE
$\mathbf{V}^{+}=\mathbf{5} \mathrm{V}, \mathrm{V}^{-}=\mathbf{0} \mathrm{V}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (Unless Otherwise Specified)

CHARACTERISTIC	TEST CONDITIONS	TYPICAL VALUES		UNITS
		CA5260A	CA5260	
Input Resistance $\quad R_{1}$		1.5	1.5	T Ω
Input Capacitance C_{1}	$f=1 \mathrm{MHz}$	4.3	4.3	pF
Unity Gain Crossover Frequency $\quad f_{T}$		3	3	MHz
Slew Rate SR	$\mathrm{V}_{\text {OUT }}=2.5 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$	5	5	$\mathrm{V} / \mu \mathrm{s}$
Transient Response: Rise Time	$\begin{aligned} \mathrm{C}_{\mathrm{L}} & =25 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}} & =2 \mathrm{k} \Omega \end{aligned}$ Voltage Follower)	0.09	0.09	$\mu \mathrm{s}$
Overshoot		10	10	\%
Settling Time ($4 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ Input to $<0.1 \%$)		1.8	1.8	$\mu \mathrm{s}$

S and T Suffixes Pin compatible with the industry-standard 1458

E and M Suffixes
Pin compatible with the industry-standard 1458

Fig. 1 - Functional diagrams for the CA5260 series.

ELECTRICAL CHARACTERISTICS AT $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}$

CHARACTERISTIC		LIMITS						UNITS
		CA5260A			CA5260			
		MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
Input Offset Voltage $V_{0}=2.5 \mathrm{~V}$	Vio	-	1.5	4	-	2	15	mV
Input Offset Current $V_{0}=2.5 \mathrm{~V}$	10	-	1	10	-	1	10	pA
Input Current $V_{0}=2.5 \mathrm{~V}$	1	-	2	15	-	2	15	
Common-Mode Rejection Ratio		80	85	-	70	85	-	dB
$\mathrm{V}_{C M}=0$ to 2.5 V	$\mathrm{C}_{\text {MRR }}$	50	55	-	50	55	-	
Input Common-Mode Voltage Range	$\mathrm{V}_{1 C \mathrm{R}}{ }^{+}$	2.5	3	-	2.5	3	-	V
	$V_{1 C A^{-}}$	-	-0.5	0	-	-0.5	0	
Power-Supply Rejection Ratio $\Delta^{+}=1 \mathrm{~V} ; \Delta^{-}=1 \mathrm{~V}$	$\mathrm{P}_{\text {SRR }}$	75	84	-	70	84	-	dB
Large-Signal Voltage Gain* $V_{0}=0.5 \text { to } 4 \mathrm{~V}$	AoL $R_{L}=\infty$	107	113	-	105	111	-	
$\mathrm{V}_{0}=0.5$ to 3.6 V	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$	83	86	-	80	86	-	
Source Current $V_{0}=0 \mathrm{~V}$	Isource	1.75	2.2	-	1.75.	2.2	-	mA
Sink Current $V_{0}=5 \mathrm{~V}$	IsİNK	1.70	2	-	1.70	2	-	
Output Voltage$R_{L}=\infty$	Vout $V_{\text {om }}{ }^{+}$	4.99	5	-	4.99	5	-	V
	VOM^{-}	-	0	0.01	-	0	0.01	
$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$	$\mathrm{V}_{\text {OM }}{ }^{+}$	4.4	4.7	-	4.4	4.7	-	
	Vom^{-}	-	0	0.01	-	0	0.01	
$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k}$	$\mathrm{V}_{\text {ом }}{ }^{+}$	3	3.4	-	3	3.4	-	
	VOM^{-}	-	0	0.01	-	0	0.01	
Supply Current $V_{0}=0 \mathrm{~V}$	Isupply	-	1.60	2.0	-	1.60	2.0	mA
$\mathrm{V}_{0}=2.5 \mathrm{~V}$	Isupply	-	1.80	2.25	-	1.80	2.25	

*For $\mathrm{V}^{+}=4.5 \mathrm{~V}$ and $\mathrm{V}^{-}=\mathrm{Gnd} ; \mathrm{V}_{\text {OUt }}=0.5 \mathrm{~V}$ to 3.2 V at $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$.

ELECTRICAL CHARACTERISTICS AT $T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}$

CHARACTERISTIC		LIMITS						UNITS
		CA5260A			CA5260			
		MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
Input Offset Voltage $V_{0}=2.5 \mathrm{~V}$	V_{10}	-	2	15	-	3	20	mV
Input Offset Current $V_{0}=2.5 \mathrm{~V}$	110	-	1	10	-	1	10	nA
Input Current $V_{0}=2.5 \mathrm{~V}$	1	-	2	15	-	2	15	
Common-Mode Rejection Ratio		65	78	-	60	78	-	dB
$\mathrm{V}_{C M}=0$ to 2.5 V	$\mathrm{C}_{\text {MRR }}$	50	60	-	50	60	-	
Input Common-Mode Voltage Range	$V_{I C R}+$	2.5	3	-	2.5	3	-	V
	$V_{1 C R^{-}}$	-	-0.5	0	-	-0.5	0	
Power-Supply Rejection Ratio $\Delta^{+}=1 \mathrm{~V} ; \Delta^{-}=1 \mathrm{~V}$	$P_{\text {SRR }}$	62	65	-	60	65	-	dB
Large-Signal Voltage Gain *$\begin{aligned} & V_{0}=0.5 \text { to } 4 \mathrm{~V} \\ & V_{0}=0.5 \text { to } 3.6 \mathrm{~V} \end{aligned}$	AoL $R_{L}=\infty$	70	78	-	70	78	-	
	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$	60	65	-	60	65	-	
Source Current $V_{0}=0 \mathrm{~V}$	Isource	1.3	1.6	-	1.3	1.6	-	mA
Sink Current $V_{0}=5 \mathrm{~V}$	Isink	1.2	1.4	-	1.2	1.4	-	
Output Voltage$R_{L}=\infty$		4.99	5	-	4.99	5	-	V
	VOM^{-}	-	0	0.01	-	0	0.01	
$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$	VOM^{+}	4.2	4.4	-	4.2	4.4	-	
	VOM^{-}	-	0	0.01	-	0	0.01	
$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k}$	Vom^{+}	2.5	2.7	-	2.5	2.7	-	
	Vom^{-}	-	0	0.01	-	0	0.01	
Supply Current $V_{0}=0 \mathrm{~V}$	Isupply	-	1.65	2.2	-	1.65	2.2	mA
- $\mathrm{V}_{0}=2.5 \mathrm{~V}$	Isupply	-	1.95	2.35	-	1.95	2.35	

*For $\mathrm{V}^{+}=4.5 \mathrm{~V}$ and $\mathrm{V}^{-}=\mathrm{Gnd} ; \mathrm{V}_{\text {out }}=0.5 \mathrm{~V}$ to 3.2 V at $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$.

ELECTRICAL CHARACTERISTICS for Each Amplifier at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=15 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}$ (Unless otherwise specified)

Low-Supply Voltage, Low-Input Current BiMOS Operational Amplifiers

Features:

- CA5420A, CA5420 at 5V supply voltage with full military temperature range guaranteed specifications
- CA5420A, CA5420 guaranteed to operate from $\pm 1 V$ to $\pm 10 \mathrm{~V}$ supplies
- $2 V$ supply at $300 \mu A$ supply current
- 1 pA (typ.) input current (essentially constant to $85^{\circ} \mathrm{C}$)
- Rail-to-rail output swing (Drive $\pm 2 m A$ into $1 \mathrm{k} \Omega$ load)
- Pin compatible with 741 op amp

Applications:

- pH probe amplifiers
- Picoammeters
- Electrometer (High Z) instruments
- Portable equipment
- Inaccessible field equipment
- Battery dependent equipment (medical and military)
- 5 V logic systems
- Microprocessor interface

Abstract

The CA5420A and CA5420* are integrated circuit operational amplifiers that combine PMOS transistors and bipolar transistors on a single monolithic chip. They are designed and guaranteed to operate in microprocessor logic systems that use $\mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=$ Gnd, since they can operate down to $\pm 1 \mathrm{~V}$ supplies. They will also be suitable for 3.3 V logic systems.

The CA5420A and CA5420 BiMOS operational amplifiers feature gate-protected PMOS transistors in the input circuit to provide very high input impedance, very low input currents (less than 1 pA). The internal bootstrapping network features a unique guardbanding technique for reducing the doubling of leakage current for every $10^{\circ} \mathrm{C}$ increase in temperature. The CA5420 series operates at total supply voltages from 2 to 20 volts either single or dual supply. These operational amplifiers are internally phase compensated to achieve stable operation in the unity gain follower configuration. Additionally, they have access terminals for a supplementary external capacitor if additional frequency roll-off is desired. Terminals are also provided for use in applications requiring input offset voltage
nulling. The use of PMOS in the input stage results in common-mode input voltage capability down to 0.45 volt below the negative supply terminal, an important attribute for single supply application. The output stage uses a feedback OTA-type amplifier that can swing essentially from rail-to-rail. The output driving current of $1.0 \mathrm{~mA}(\mathrm{~min})$ is provided by using non-linear current mirrors.

These devices have guaranteed specifications for 5 volt operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

The CA5420 series has the same 8-lead pin-out used for the industry standard 741. They are supplied in the standard 8 -lead TO-5 style package (S suffix, and T suffix); in the standard 8-lead dual-in-line plastic package (Minidip - E suffix), and are also available in chip form (H suffix).
*Formerly Dev. Type No. TA10841

S AND T SUFFIXES

E SUFFIX

Functional diagrams for CA5420A, CA5420.

MAXIMUM RATINGS, Absolute-Maximum Values ($T_{\mathrm{C}}=25^{\circ} \mathrm{C}$):

DC SUPPLY VOLTAGE (BETWEEN ${ }^{+}$AND V^{-}TERMINALS	22 V
DIFFERENTIAL-MODE INPUT VOLTAGE.	$\pm 15 \mathrm{~V}$
COMMON-MODE DC INPUT VOLTAGE	$\ldots\left(\mathrm{V}^{+}+8 \mathrm{~V}\right)$ to $\left(\mathrm{V}^{-}-0.5 \mathrm{~V}\right)$
INPUT-TERMINAL CURRENT	. 1 mA
DEVICE DISSIPATION:	
WITHOUT HEAT SINK	
Up to $55^{\circ} \mathrm{C}$.	630 mW
Above $55^{\circ} \mathrm{C}$	Derate linearly $6.67 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
WITH HEAT SINK	
Up to $110^{\circ} \mathrm{C}$.	630 mW
Above $110^{\circ} \mathrm{C}$	Derate linearly $16.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
TEMPERATURE RANGE:	
OPERATING (ALL TYPES)	-55 to $+125^{\circ} \mathrm{C}$
STORAGE (ALL TYPES)	-65 to $+150^{\circ} \mathrm{C}$
OUTPUT SHORT-CIRCUIT DURATION*	. Indefinite
LEAD TEMPERATURE (DURING SOLDERING):	
At distance $1 / 16 \pm 1 / 32 \mathrm{in}$. ($1.59 \pm 0.79 \mathrm{~mm}$) from case for 10 s max. $+265^{\circ} \mathrm{C}$

*Short circuit may be applied to ground or to either supply.

ELECTRICAL CHARACTERISTICS at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=\mathbf{0} \mathrm{V}$

CHARACTERISTIC		LIMITS						UNITS
		CA5420A			CA5420			
		Min.	Typ.	Max.	Min.	Typ.	Max.	
Input Offset Voltage $V_{0}=2.5 \mathrm{~V}$	V_{10}	-	1	5	-	1.5	10	mV
Input Offset Current $V_{0}=2.5 \mathrm{~V}$	110	-	0.02	0.5	-	0.02	1	pA
Input Current $V_{0}=2.5 \mathrm{~V}$	11	-	0.02	1	-	0.02	2	
Common-Mode Rejection Ratio $V_{C M}=0 \text { to } 3.7 \mathrm{~V} ; V_{0}=2.5 \mathrm{~V}$	$\mathrm{C}_{\text {mpr }}$	75	83	-	70	80	-	dB
Input Common-Mode Voltage Range$V_{0}=2.5 \mathrm{~V}$	$\mathrm{V}_{1 C \mathrm{C}}{ }^{+}$	3.7	4	-	3.7	4	-	V
	$\mathrm{V}_{1 C \mathrm{~A}^{-}}$	-	-0.3	0	-	-0.3	0	
$\begin{aligned} & \text { Power-Supply Rejection Ratio } \\ & \Delta^{+}=1 \mathrm{~V} ; \Delta^{-}=1 \mathrm{~V} \\ & \hline \end{aligned}$	$\mathrm{P}_{\text {SRA }}$	75	83	-	70	80	-	dB
Large-Signal Voltage Gain $V_{0}=0.5 \text { to } 4 \mathrm{~V}$	Aol $R_{L}=\infty$	85	87	-	85	87	-	
$\mathrm{V}_{0}=0.5$ to 4 V	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$	85	87	-	85	87	-	
$\mathrm{V}_{0}=0.7$ to 3 V	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k}$	80	85	-	80	85	-	
Source Current $V_{0}=0 \mathrm{~V}$	Isource	1.2	2.7	-	1.2	2.7	-	mA
Sink Current $V_{0}=5 \mathrm{~V}$	Isink	1.2	2.1	-	1.2	2.1	-	
Output Voltage $R_{L}=\infty$	$\begin{aligned} & \mathrm{V}_{\text {OUT }} \\ & \mathrm{V}_{\text {OM }}+ \\ & \hline \end{aligned}$	4.9	4.94	-	4.9	4.94	-	V
$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k}$	VOM^{-}	-	0.13	0.15	-	0.13	0.15	
	VOM^{+}	4.7	4.9	-	4.7	4.9	-	
	Vom ${ }^{-}$	-	0.12	0.15	-	0.12	0.15	
	Vom^{+}	3.5	4.6	-	3.5	4.6	-	
	VOM^{-}	-	0.1	0.15	-	0.1	0.15	
Supply Current $V_{0}=0 \mathrm{~V}$	Isupply	-	400	500	-	400	500	$\mu \mathrm{A}$
$\mathrm{V}_{0}=2.5 \mathrm{~V}$	1 Isupply	二	430	550	-	430	550	

Fig. 1 - Functional diagram for CA5420.

Fig. 2 - Output-voltage-swing and common-mode input-voltage range vs supply voltage.

ELECTRICAL CHARACTERISTICS at $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}$

CHARACTERISTIC		LIMITS						UNITS
		CA5420A			CA5420			
		Min.	Typ.	Max.	Min.	Typ.	Max.	
Input Offset Voltage $V_{0}=2.5 \mathrm{~V}$	V_{10}	-	2	10	-	3	15	mV
Input Offset Current	110	-	1.5	3	-	1.5	3	nA
$\mathrm{V}_{0}=2.5 \mathrm{~V}$ (Up to $\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$)	110	-	2	10	-	2	10	pA
Input Current	$\mid 1,1$	-	2	5	-	2	5	nA
	$\left\|l_{1}\right\|$	-	10	15	-	15	25	pA
Common-Mode Rejection Ratio $\mathrm{V}_{\mathrm{CM}}=0 \text { to } 3.7 \mathrm{~V} ; \mathrm{V}_{0}=2.5 \mathrm{~V}$	$\mathrm{C}_{\text {mra }}$	70	80	-	65	75	-	dB
Input Common-Mode Voltage Range $V_{0}=2.5 \mathrm{~V}$	$V_{1 C R}{ }^{+}$	3.7	4	-	3.7	4	-	V
	$\mathrm{V}_{1 \mathrm{ICR}^{-}}$	-	-0.3	0	-	-0.3	0	
Power-Supply Rejection Ratio $\Delta^{+}=1 \mathrm{~V} ; \Delta^{-}=1 \mathrm{~V}$	Pska	70	83	-	65	80	-	
Large-Signal Voltage Gain $\mathrm{V}_{\mathrm{O}}=0.5 \text { to } 4 \mathrm{~V}$	$\begin{gathered} \mathrm{A}_{\mathrm{OL}} \\ \mathrm{R}_{\mathrm{L}}=\infty \end{gathered}$	85	87	-	80	85	-	dB
$\mathrm{V}_{\mathrm{O}}=0.7$ to 4 V	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$	80	87	-	80	85	-	
$\mathrm{V}_{\text {OUT }}=0.7$ to 2.5 V	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k}$	75	80	-	75	80	-	
Source Current $V_{0}=0 \mathrm{~V}$	Isource	1	2.7	-	1	2.7	-	mA
Sink Current $V_{0}=5 \mathrm{~V}$	Isink	1	2.1	-	1	2.1	-	
Output Voltage $R_{L}=\infty$	Vout $\mathrm{V}_{\mathrm{OM}}{ }^{+}$	4.8	4.9	-	4.8	4.9	-	
	VOM^{-}	-	0.16	0.2	-	0.16	0.2	
$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$	Vom ${ }^{+}$	4.7	4.9	-	4.7	4.9	-	V
	$\mathrm{V}_{\text {OM }}{ }^{-}$	-	0.15	0.2	-	0.15	0.20	
$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k}$	VOM^{+}	3	4	-	3	4	-	
	VOM^{-}	-	0.14	0.2	-	0.14	0.2	
Supply Current $V_{0}=0 \mathrm{~V}$	IsUPPLY	-	430	550	-	430	550	$\mu \mathrm{A}$
$\mathrm{V}_{0}=2.5 \mathrm{~V}$	Isupply	-	480	600	-	480	600	

Fig. 3-Output voltage vs load sourcing current.

Fig. 4-Output voltage vs load sinking current.

ELECTRICAL CHARACTERISTICS FOR EQUIPMENT DESIGN

At $\mathrm{V}^{+}=\mathbf{1} \mathrm{V}, \mathrm{V}^{-}=-1 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Unless Otherwise Specifled

CHARACTERISTIC		LIMITS						UNITS
		CA5420A			CA5420			
		Min.	Typ.	Max.	Min.	Typ.	Max.	
Input Offset Voltage	V_{10}	-	2	5	-	5	10	mV
Input Offset Current	\|liol	-	0.01	4*	-	0.01	4*	pA
Input Current	$\|1$.	-	0.02	$5 *$	-	0.02	5*	pA
Large-Signal Voltage Gain$R_{L}=10 \mathrm{k} \Omega$	AoL	20k	100k	-	10k	100k	-	V/V
		86	100	-	80	100	-	dB
Common-Mode Rejection Ratio	$\mathrm{C}_{\text {mra }}$	-	560	1000	-	560	1800	$\mu \mathrm{V} / \mathrm{V}$
		60	65	-	55	65	-	dB
Input Common-Mode Voltage Range								V
	$V_{1 C R}{ }^{+}$	0.2	0.5	-	0.2	0.5	-	
	$V_{1 C R}{ }^{-}$	-1	-1.3	-	-	-1.3	-	
Power Supply Rejection Ratio $\Delta V_{10} / \Delta V$	$\mathrm{P}_{\text {SRR }}$	-	32	320	-	100	1000	$\mu \mathrm{V} / \mathrm{V}$
		70	90	-	60	80	-	dB
Maximum Output Voltage$\mathrm{R}_{\mathrm{L}}=\infty .$	Vout							V
	Vom ${ }^{+}$	0.9	0.95	-	0.9	0.95	-	
	$\mathrm{V}_{\text {OM }}{ }^{-}$	-0.85	-0.91	-	-0.85	-0.91	-	
Supply Current	Isupply	-	350	650	-	350	650	$\mu \mathrm{A}$
Device Dissipation	PD	-	0.7	1.1	-	0.7	1.1	mW
Input Offset Voltage Temp. Drift		-	4	-	-	4	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$

-The maximum limit represents the levels obtainable on high-speed automatic test equipment.
Typical values are obtained under laboratory conditions.

ELECTRICAL CHARACTERISTICS FOR EQUIPMENT DESIGN
At $\mathrm{V}^{+}=\mathbf{1 0} \mathrm{V}, \mathrm{V}^{-}=\mathbf{- 1 0} \mathrm{V}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Unless Otherwise Specified

CHARACTERISTIC		LIMITS						UNITS	
		CA5420A			CA5420				
		Min.	Typ.	Max.	MIn.	Typ.	Max.		
Input Offset Voltage	V_{10}	-	2	5	-	5	10	mV	
Input Offset Current	\|10		-	0.03	4*	-	0.03	4*	pA
Input Current	$\|1\|$	-	0.05	5*	-	0.05	5*	pA	
Large-Signal Voltage Gain$R_{L}=10 \mathrm{k} \Omega$	AOL	20k	100k	-	10k	100k	-	V/V	
		86	100	-	80	100	-	dB	
Common-Mode Rejection Ratio	$\mathrm{C}_{\text {mre }}$	-	100	320	-	100	320	$\mu \mathrm{V} / \mathrm{V}$	
		70	80	-	70	80	-	dB	
Input Common-Mode Voltage Range	$\mathrm{V}_{1 C \mathrm{R}}{ }^{+}$	9	9.3	-	8.5	9.3	-	V	
	$\mathrm{V}_{1 C R^{-}}$	-10	-10.3	-	-10	-10.3	-		
Power Supply Rejection Ratio $\Delta V_{10} / \Delta V$	$P_{\text {SRR }}$	-	32	320	-	32	320	$\mu \mathrm{V} / \mathrm{V}$	
		70	90	-	70	90	-	dB	
Maximum Output Voltage$R_{L}=\infty$	Vout Vom^{+}	9.7	9.9	-	9.7	9.9	-	V	
	VOM^{-}	-9.7	-9.85	-	-9.7	-9.85	-		
Supply Current	$I_{\text {supplr }}$	-	450	1000	-	450	1000	$\mu \mathrm{A}$	
Device Dissipation	$P_{\text {D }}$	-	9	14	-	9	14	mW	
Input Offset Voltage Temp. Drift		-	4	-	-	4	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	

[^31]

Fig. 5 - Supply current vs output voltage.

Fig. 7 - Input bias current drift $\left(\Delta /_{\mathrm{B}} / \Delta T\right)$.

Fig. 6 - Output voltage swing vs load resistance.

Fig. 9 - Open-loop gain and phase-shift response.

APPLICATION CIRCUITS

Picoammeter Circuit

The exceptionaily low input current (typically 0.2 pA) makes the CA5420 highly suited for use in a picoammeter circuit. With only a single 10 K -megohm resistor, this circuit covers the range from $\pm 1.5 \mathrm{pA}$. Higher current ranges are possible with suitable switching techniques and current scaling resistors. Input transient protection is provided by the 1 -megohm resistor in series with the input. Higher current ranges require that this resistor be reduced. The 10 -megohm resistor connected to pin 2 of the CA5420 decouples the potentially high input capacitance often associated with lower current circuits and reduces the tendency for the circuit to oscillate under these conditions.

92Cs-34002
Fig. 10-CA5420 picoammeter circuit.

High-Input-Resistance Voltmeter

Advantage is taken of the high input impedance of the CA5420 in a high-input-resistance dc voltmeter. Only two 1.5-V "AA"-type penlite batteries power this exceedingly high-input-resistance ($>1,000,000$ megohms) dc voltmeter. Full-scale deflection is $\pm 500 \mathrm{mV}, \pm 150 \mathrm{mV}$, and $\pm 15 \mathrm{mV}$. Higher voltage ranges are easily added with external input voltage attenuator networks.
The meter is placed in series with the gain network, thus eliminating the meter temperature coefficient error term.
Supply current in the standby position with the meter undeflected is $300 \mu \mathrm{~A}$. At full-scale deflection this current rises to $800 \mu \mathrm{~A}$. Carbon-zinc battery life should be in excess of 1,000 hours.

Fig. 11 - CA5420 high-input-resistance voltmeter.

HARRIS
SEMICONDUCTOR
HARRIS

Quad Microprocessor BiMOS-E Operational Amplifiers

With MOSFET Input/Bipolar Output

Features:

- High-speed CMOS input stage provides: very high $\mathrm{Zi}=3 T(3 \times 10+12 \Omega)$ typ. very low $I_{I}=0.5 \mathrm{pA}$ typ. at 5 V operation very low $/_{1} O=0.5 \mathrm{pA}$ typ. at 5 V operation
- ESD protection to 2000 V
- $3 V$ to 16 V power supply operation
- Fully guaranteed specifications over full military range
- Wide BW; high SR 14 MHz and $5 \mathrm{~V} / \mu \mathrm{sec}$ at 5 V supply
- Wide VICR range form -0.5 V to 3.7 V typ. at 5 V supply
- Ideally suited for CMOS and HCMOS applications
- +5 V characteristics for microprocessor applications

Applications:
- Bar Code readers
- Photodiode amplifiers (IR)
- Microprocessor buffering
- Ground reference single supply amplifiers
- Fast sample and hold
- Timers
- Voltage controlled oscillators
- Voltage followers
- V to 1 converters
- Peak detectors
- Precision rectifiers
- 5 V logic systems
- 3 V logic systems

The CA5470 series are integrated circuit operational amplifiers that combine the advantages of both high-speed CMOS and bipolar transistors on a single monolithic chip. They are constructed in the BiMOS-E process which adds drainextension implants to $3 \mu \mathrm{~m}$ polygate CMOS, enhancing both the voltage capability and providing vertical bipolar transistors for broadband analog/digital functions. This process lends itself easily to high-speed operational amplifiers, comparators, analog switches and interface peripherals, resulting in twice the speed of the conventional CMOS transistors having similar feature size.

BiMOS-E are broadbased bipolar transistors that have high transconductance, gains more constant with current level,
stable "precision" base-emitter offset voltages and superior drive capability. Excellent interface with environmental potentials enable use in 5 V logic systems and future 3.3 V logic systems.
ESD capability exceeds the standard 2000 volt level. The CA5470 series can operate with single supply voltages from 3 V to 16 V or $\pm 1.5 \mathrm{~V}$ to $\pm 8 \mathrm{~V}$. They have guaranteed specifications at both 5 V and $\pm 7.5 \mathrm{~V}$ at room temperature as well as over the full $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ military range.
The CA5470 series is supplied in the standard 14 -lead dual-in-line plastic package (E suffix) and the 14-lead dual-in-line surface-mount package (M suffix). The CA5470 is also available in chip form (H suffix).

MAXIMUM RATINGS, Absolute-Maximum Values

```
DC SUPPLY-VOLTAGE
    (Between V+ and V- Terminals)16 V
```

DIFFERENTIAL MODE INPUT VOLTAGE $\pm 8 \mathrm{~V}$
COMMON-MODE DC INPUTVOLTAGE 0.5 V
INPUT TERMINAL CURRENT 1 mA
DEVICE DISSIPATION:

```WITHOUT HEAT SINK -
```

up to $55^{\circ} \mathrm{C}$ 330 mW

```above \(55^{\circ} \mathrm{C}\)Derate Linearly \(6.67 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\)WITH HEAT SINKup to \(90^{\circ} \mathrm{C}\).1 W
```

above $90^{\circ} \mathrm{C}$ Derate Linearly $16.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

```SMALL OUTLINE PACKAGEup to \(65^{\circ} \mathrm{C}\).
```

\qquad


```above \(6^{\circ} \mathrm{C}\)ANGE:
```

OPERATING (all types) -55 to $+125^{\circ} \mathrm{C}$

```PERATURE RANGE:
```

STORAGE (all types) -65 to $+150^{\circ} \mathrm{C}$

```OUTPUT SHORT-CIRCUIT DURATION*INDEFINITELEAD TEMPERATURE (DURING SOLDERING):At distance \(1 / 16 \pm 1 / 32(1.59 \pm 0.79 \mathrm{~mm})\) from case for 10 seconds max\(+265^{\circ} \mathrm{C}\)
```

*Short circuit may be applied to ground or to either supply.

TYPICAL VALUES INTENDED ONLY FOR DESIGN GUIDANCE $v+=5 \mathrm{~V}, \mathrm{~V}-=0, T_{A}=25^{\circ} \mathrm{C}$ (Unless Otherwise Specified)

CHARACTERISTIC	TEST CONDITIONS	TYPICALVALUES	UNITS
Input Resistance $\quad R_{l}$		5	T Ω
Input Capacitance	$\mathrm{f}=1 \mathrm{MHz}$	3.1	pF
Unity Gain Crossover Frequency		14	MHz
Slew Rate \quad SR	$\mathrm{V}_{\text {OUT }}=3.65 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$	4	$\mathrm{v} / \mu \mathrm{s}$
Transient Response: Rise Time/Fall Time	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=25 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \end{aligned}$	27/25	ns
Overshoot	(Voltage Follower)	20	\%
Settling Time ($4 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ Input to $<0.1 \%$)		1	$\mu \mathrm{s}$
Full Power BW (VOUT $=3.65 \mathrm{~V}$) SR $=4 \mathrm{~V} / \mu \mathrm{s}$	$A_{V}=1$	350	kHz

E and M Suffixes
Figure 1 - Functional diagrams for the CA5470 series.

ELECTRICAL CHARACTERISTICS At $T_{A}=25^{\circ} \mathrm{C}, V+=5 \mathrm{~V}, \mathrm{~V}-=$ Gnd

CHARACTERISTICS		LIMITS			UNITS
		MIN.	TYP	MAX.	
Input Offset Voltage	$\left\|v_{10}\right\|$	-	6	22	mV
Input Offset Current	$1 \mathrm{H}_{10} \mathrm{l}$	-	0.5	5	pA
Input Current	1	-	0.5	10	pA
Common-Mode Input Range	VICR	3.5	-0.5 to 3.7	0	V
Common-Mode Rejection Ratio $V_{I C R}=0 \text { to } 3.5 \mathrm{~V}$	$\mathrm{C}_{\text {MRR }}$	55	70	-	dB
Power-Supply Rejection Ratio $\Delta V=2 V$	PSRR	60	75	-	dB
Positive Output Voltage Swing $\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \text { to } \mathrm{GND}$	$\mathrm{v}_{\mathrm{OM}}{ }^{+}$	4	4.4	-	v
Negative Output Voltage Swing $\mathrm{R}_{\mathrm{L}}=2 \mathrm{k}$ to GND	$\mathrm{V}_{\mathrm{OM}}{ }^{-}$	-	0.06	0.10	v
Total Supply Current $\mathrm{V}_{\text {OUT }}=2.5 \mathrm{~V}$	ISUPPLY	-	8	10	mA
Unity Gain Bandwidth Product	T	10	14	-	MHz
Slew Rate	SR	4	5	-	$\mathrm{V} / \mathrm{\mu Sec}$
Output Current Source to opposite supply	ISOURCE	4	5.5	-	mA
Sink to opposite supply	ISINK	0.8	1.2	-	mA
Open Loop Gain 0.5 V to 3.5 V	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$	80	90	-	dB

ELECTRICAL CHARACTERISTICS At $T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=\mathrm{Gnd}$

CHARACTERISTICS		LIMITS			UNITS
		MIN.	TYP	MAX.	
Input Offset Voltage	$\left\|v_{10}\right\|$	-	6	25	mV
Input Offset Current	$\|\mathrm{IO}\|$	-	550	5500	pA
Input Current	1	-	550	11000	PA
Common-Mode Input Range	VICR	3.5	-0.5 to 3.7	0	V
Common-Mode Rejection Ratio $V_{I C R}=0 \text { to } 3.5 \mathrm{~V}$	$\mathrm{C}_{\text {MRR }}$	50	65	-	dB
Power-Supply Rejection Ratio $\Delta V=2 V$	PSRR	58	75	-	dB
Positive Output Voltage Swing $\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \text { to } \mathrm{V}$	$\mathrm{V}_{\mathrm{OM}}{ }^{+}$	3.8	4.2	-	V
Negative Output Voltage Swing $R_{L}=2 k \text { to } V-$	VOM^{-}	-	0.08	0.11	v
Total Supply Current VOUT $=2.5 \mathrm{~V}$	ISUPPLY	-	9	11	mA
Unity Gain Bandwidth Product	TT	8	12	-	MHz
Slew Rate	SR	3	5	-	$\mathrm{V} / \mu \mathrm{Sec}$
Output Current Source to opposite supply	ISOURCE	4	5.5	-	mA
Sink to opposite supply	ISINK	0.8	1.2	-	mA
Open Loop Gain 0.5 V to 3.5 V	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$	80	90	-	dB

ELECTRICAL CHARACTERISTICS At $T_{A}=250 \mathrm{C}, \mathrm{V}+=7.5 \mathrm{~V}, \mathrm{~V}-=-7.5 \mathrm{~V}$

CHARACTERISTICS		LIMITS			UNITS
		MIN.	TYP	MAX.	
Input Offset Voltage	$\left\|\mathrm{V}_{10}\right\|$	-	5	25	mV
Input Offset Current	$\|10\|$	-	0.5	5	pA
Input Current	1	-	1	10	pA
Common-Mode Input Range	VICR	5.8	-7.8 to 6.0	-7.5	V
Common-Mode Rejection Ratio $V_{I C R}=0 \text { to } 3.5 \mathrm{~V}$	$\mathrm{C}_{\text {MRR }}$	60	70	-	dB
Power-Supply Rejection Ratio $\Delta V=2 V$	PSRR	65	76	-	dB
Positive Output Voltage Swing $\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \text { to } \mathrm{GND}$	$\mathrm{V}_{\mathrm{OM}}{ }^{+}$	6.3	6.5	-	V
$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$ to GND		6.4	6.6	-	
Negative Output Voltage Swing $R_{L}=2 k$ to GND	VOM^{-}	-	-7.47	-7.45	V
$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$ to GND		-	-7.3	-7.1	
Total Supply Current $\mathrm{V}_{\text {OUT }}=\mathrm{GND}$	ISUPPLY	-	10	11	mA
Unity Gain Bandwidth Product	f	12	16	-	MHz
Slew Rate	SR	4	7	-	$\mathrm{V} / \mu \mathrm{Sec}$
Output Current Source to opposite supply	IsOURCE	6.2	6.8	-	mA
Sink to opposite supply	ISINK	1	1.4	-	mA
Open Loop Gain -5 V to +5V	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$	80	90	-	dB

ELECTRICAL CHARACTERISTICS $A t T_{A}=55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V}+=7.5 \mathrm{~V}, \mathrm{~V}-=-7.5 \mathrm{~V}$

Figure 2 - Block diagram of the CA5470.

Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mills $\left(10^{-3}\right.$ inch). The layout represents a chip when it is part of the wafer. When the wafer is cut into chips, the cleavage angles are 57° instead of 90° with respect to the tace of the chip. Therefore, the isolated chip is actually 7 mils $(0.17 \mathrm{~mm})$ larger in both dimensions.

Figure 3 - Dimensions and pad layout for CA5470H.

Figure 4 - Maximum output voltage swing vs frequency.

SEMICONDUCTOR
SEMICONDUCTOR

HARRIS
CA6078A, CA6741

May 1990

Operational Amplifiers

CA6078AT - Micropower Type CA6741T - General-Purpose Type

For Applications where Low Noise (Burst $+1 / f$) is a Prime Requirement

Virtually free from "popcorn" (burst) noise: device rejected if any noise burst exceeds 20 mV (peak), referred to input over a 30 -second time period.

NOTE PIN 4 IS CONNECTED TO CASE
CA6741T

Features:

- Internal phase compensation - input bias current: 500 nA max.
- Input offset current: 200 nA max.
- Open loop voltage gain: 50,000 (94 dB) min.
- Input offset voltage: 5 mV max.

NOTE PIN 4 IS CONNECTED TO CASE
CA6078AT

Features:

- Open loop voltage gain: 40,000 (92 dB) min.
- Input offset voltage: 3.5 mV max
- Operates with low total supply voltage: 1.5 V min. ($\pm 0.75 \mathrm{~V}$)
- Low quiescent operating current: adjustable for application optimization
- Input bias current: adjustable to below 1 nA

Applications:

- Low noise AC amplifier
- Narrow band or bandpass filter
- Integrator or differentiator
- DC amplifier
- Summing amplifier

Applications:

- Portable electronics
- Medical electronics
- DC amplifier
- Narrow band or bandpass filter
- Integrator or differentiator
- Instrumentation
- Telemetry
- Summing amplifier

CA6078AT and CA6741T* are low-noise linear IC operational amplifiers that are virtually free of "popcorn" (burst) noise.

These low noise versions of the CA3078AT and CA3471T are a result of improved processing developments and rigid burst noise inspection criteria. A highly selective test circuit (See Figure 2) assures that each type meets the rigid low noise standards in the data section. This low burst noise property also assures excellent performance throughout the $1 / f$ noise spectrum.

In addition the CA6078AT and CA6741T offer the same features incorporated in the CA3078AT and CA3741T respectively, including output short circuit protection, latch free operation, wide common-mode and differential-mode signal ranges, and low offset nulling capability.

For detailed data, characteristics curves, schematic diagram, dimensional outline, and test circuits, refer to the Operational Amplifier Data Bulletins File No. 531 and 535. In addition, for details of considerations in burst-noise measurements, refer to Application Note, ICAN-6732, "Measurement of Burst ("Popcorn") Noise in Linear IC's".

The CA6078AT and CA6741T utilize the hermetically sealed 8 -lead TO-5 type package. The CA6078AT and the CA6741T can also be supplied on request with dual-in-line formed leads. These types are identified as the CA6078AS and CA6741S. This formed-lead configuration conforms to that of the 8 -lead dual-in-line (Mini-Dip) package. For terminal arrangements, see page 4.

[^32]MAXIMUM RATINGS, Absolute-Maximum Values at $T_{A}=25^{\circ} \mathrm{C}$

	CA6741T	CA6078AT
DC Supply Voltage (between V^{+}and $\mathrm{V}^{\text {- }}$ terminals)	44 V	36 V
Differential-Mode Input Voltage	$\pm 30 \mathrm{~V}$	$\pm 6 \mathrm{~V}$
Common-Mode DC Input Voltage	$\pm 15 \mathrm{~V}$	V^{+}to V^{-}
Device Dissipation:		
Up to $75^{\circ} \mathrm{C}$ (CA6741T), Up to 1250 (CA6078AT)	500 mW	250 mW
Above $75^{\circ} \mathrm{C}$.	Derate linearly $5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$	-
Temperature Range:		
Operating	-55 to $+125^{\circ} \mathrm{C}$	-55 to $+125^{\circ} \mathrm{C}$
Storage	-65 to $+150^{\circ} \mathrm{C}$	-65 to +150 ${ }^{\circ} \mathrm{C}$
Output Short-Circuit Duration*	No limitation	No limitation
Lead Temperature (During soldering):		
At distance $1 / 16 \pm 1 / 32$ inch ($1.59 \pm 0.79 \mathrm{~mm}$) from case for 10 seconds max.	$300{ }^{\circ} \mathrm{C}$	$300{ }^{\circ} \mathrm{C}$

[^33]

Fig.2-Block diagram of burst-noise "popcorn" test equipment.

ELECTRICAL CHARACTERISTICS - CA6078AT, For Equipment Design.

CHARACTERISTICS	SYMBOLS	TEST CONDITIONS Supply Volts: $\mathrm{V}^{+}=6, \mathrm{~V}-=-6$ $T_{A}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{Q}}=20 \mu \mathrm{~A}$	LIMITS			UNITS
			MIN.	TYP.	MAX.	
Noise Characteristic						
"Popcorn" (Burst) Noise		$\begin{aligned} & \text { Bandwidth }=1 \mathrm{kHz} \\ & \mathrm{R}_{\mathrm{S} 1}=\mathrm{R}_{\mathrm{S} 2}=200 \mathrm{k} \Omega \end{aligned}$	Device is rejected if the total noise voltage (burst $+1 / \mathrm{f}$), referred to input, exceeds $20 \mu \mathrm{~V}$ peak, during a $30-\mathrm{sec}$. test period.			

Principal Characteristics (For detailed Electrical Characteristics refer to CA3078AT Data Bulletin, Fite No. 535.)

Input Offset Voltage	V10	$\mathrm{RS} \leq 10 \mathrm{k} \Omega$	-	0.7	3.5	mV
Input Offset Current	110		-	0.5	2.5	nA
Input Bias Current	$1 / \mathrm{B}$		-	7	12	nA
Open-Loop Differential	AOL	$\mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k} \Omega$	40,000	100,000	-	
Voltage Gain		$\mathrm{V}_{\mathrm{O}}= \pm 4 \mathrm{~V}$	92	100	-	dB
Common-Mode Input Voltage Range	VICR	$\mathrm{V}^{+}=\mathrm{V}-=15 \mathrm{~V}$	± 14	-	-	\checkmark
Common-Mode Rejection Ratio	CMRR	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	80	115	-	dB
Output Voltage Swing	$V_{O}(P-P)$	$\mathrm{R}_{\mathrm{L}} \geq 10 \Omega$	± 13.7	± 14.1	-	V
		$\mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega$	-	± 14	-	
Supply Current	10		-	20	25	$\mu \mathrm{A}$

ELECTRICAL CHARACTERISTICS - CA6741T, For Equipment Design.

CHARACTERISTICS	SYMBOLS	TEST CONDITIONS Supply Volts; $\mathrm{V}^{+}=15, \mathrm{~V}-=-15$ $T_{A}=25^{\circ} \mathrm{C}$	LIMITS			UNITS
			MIN.	TYP.	MAX.	
Noise Characteristic						
"Popcorn" (Burst) Noise		$\begin{aligned} & \text { Bandwidth }=1 \mathrm{kHz} \\ & \mathrm{R}_{\mathrm{S} 1}=\mathrm{R}_{\mathrm{S} 2}=100 \mathrm{k} \Omega \end{aligned}$	Device is rejected if the total noise voltage (burst $+1 /$ f), referred to input, exceeds $20 \mu \mathrm{~V}$ peak, during a $30-\mathrm{sec}$. test period			

Principal Characteristics (For detailed Electrical Characteristics refer to CA3741T Data Bulletin, File No. 531.)

Input Offset Voltage	V_{10}	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	-	1	5	mV
Input Offset Current	110		-	20	200	nA
Input Bias Current	118		-	80	500	nA
Open-Loop Differential	$\mathrm{AOL}^{\text {a }}$	$\mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega$	50,000	200,000	-	
Voltage Gain		$\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}$	94	106	-	dB
Common-Mode Input Voltage Range	$V_{\text {ICR }}$		± 12	± 13	-	V
Common-Mode Rejection Ratio	CMRR	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	70	90	-	dB
Output Voltage Swing	$V_{O}(P-P)$	$\mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k} \Omega$	± 12	± 14	-	\checkmark
		$\mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega$	± 10	± 13		
Supply Current	10		-	1.7	2.8	mA

Fig.3-IN vs. Frequency for CA6078AT.

Fig.4-E E_{N} vs. Frequency for CA6078AT.

Fig.8-Test block diagram for $I^{\prime} \mathrm{N}$.

May 1990
Features

- Programmability
- High Rate Slew $30 \mathrm{~V} / \mu \mathrm{s}$
- Wide Gain Bandwidth 40 MHz
- High Gain 150kV/V
- Low Offset Current 5nA
- High Input Impedance $30 \mathrm{M} \Omega$
- Single Capacitor Compensation- DTL/TTL Compatible Inputs

Description

HA-2400/04/05 comprise a series of four-channel programmable amplifiers providing a level of versatility unsurpassed by any other monolithic operational amplifier. Versatility is achieved by employing four input amplifier channels, any one (or none) of which may be electronically selected and connected to a single output stage through DTL/TTL compatible address inputs. The device formed by the output and the selected pair of inputs is an op amp which delivers excellent slew rate, gain bandwidth and power bandwidth performance. Other advantageous features for these dielectrically isolated amplifiers include high voltage gain and input impedance coupled with low input offset voltage and offset current. External compensation is not required on this device at closed loop gains greater than 10.

Applications

- Thousands of Applications; Program:
- Signal Selection/Multiplexing
- Operational Amplifier Gain
- Oscillator Frequency
- Filter Characteristics
- Add-Subtract Functions
- Integrator Characteristics
- Comparator Levels
- For Further Design Ideas, See App. Note 514.

Each channel of the HA-2400/04/05 can be controlled and operated with suitable feedback networks in any of the standard op amp configurations. This specialization makes these amplifiers excellent components for multiplexing signal selection and mathematical function designs. With $30 \mathrm{~V} / \mu \mathrm{s}$ slew rate, 40 MHz gain bandwidth and 30 M ohms input impedance these devices are ideal building blocks for signal generators, active filters and data acquisition designs. Programmability, coupled with 2 mV typical offset voltage and 5 nA offset current, makes these amplifiers outstanding components for signal conditioning circuits.

HA-2400/04/05 are available in a 16 pin Dual-In-Line package. HA-2400 is specified from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. HA-2404 is specified over the $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ range, while HA-2405 operates from $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$.

CAUTION: These devices are sensitive to electrostatic discharge. Proper I.C. handling procedures should be followed.
Copyright © Harris Corporation 1990

Absolute Maximum Ratings

Voltage between $\mathrm{V}+$ and V - Terminals
Differenlial 1 . 45.0 V
Digital Input Votage
Output Current . Short Circuit Protected (ISC < $\pm 33 \mathrm{~mA}$)
Internal Power Dissipation (Note 13) \qquad

Operating Temperature Ranges

HA-2400 $-55^{\circ} \mathrm{C} \leq \top^{\top} \leq+125^{\circ} \mathrm{C}$
 HA-2405 $0^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+75^{\circ} \mathrm{C}$ Storage Temperature Range $\ldots \ldots \ldots \ldots . .{ }^{-65^{\circ}} \mathrm{C} \leq \bar{T}_{A} \leq+150^{\circ} \mathrm{C}$

Electrical Specifications Test Conditions: $V_{\text {SUPPLY }}= \pm 15.0 \mathrm{~V}$, Unless Otherwise Specified.
Digital Inputs: $\mathrm{V}_{\mathrm{IL}}=+0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=+2.4$. Limits apply to each of the four channels, when addressed.

PARAMETER	TEMP	HA-2400/04 LIMITS			HA-2405 LIMITS			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
INPUT CHARACTERISTICS								
Offset Voltage	$+25^{\circ} \mathrm{C}$	-	4	9	-	4	9	mV
	Full	-	-	11	-	-	11	mV
Bias Current (Note 12)	$+25^{\circ} \mathrm{C}$	-	50	200	-	50	250	nA
	Full	-	-	400	-	-	500	nA
Offset Current (Note 12)	$+25^{\circ} \mathrm{C}$	-	5	50	-	5	50	nA
	Full	-	-	100	-	-	100	nA
Input Resistance (Note 12)	$+25^{\circ} \mathrm{C}$	-	30	-	-	30	-	$\mathrm{M} \Omega$
Common Mode Range	Full	± 9.0	-	-	± 9.0	-	-	V
TRANSFER CHARACTERISTICS								
Large Signal Voltage Gain (Notes 1,5)	$+25^{\circ} \mathrm{C}$	50k	150k	-	50k	150k	-	V/N
	Full	25K	-	-	25K	-	-	V / N
Common Mode Rejection Ratio								
(Note 2)	Full	80	100	-	74	100	-	dB
Gain Bandwidth (Notes 3, 14)	$+25^{\circ} \mathrm{C}$	20	40	-	20	40	-	MHz
(Notes 4, 14)	$+25^{\circ} \mathrm{C}$	4	8	-	4	8	-	MHz
OUTPUT CHARACTERISTICS								
Output Voltage Swing (Note 1)	Full	± 10.0	± 12.0	-	± 10.0	± 12.0	-	V
Output Current	$+25^{\circ} \mathrm{C}$	10	20	-	10	20	-	mA
Full Power Bandwidth (Notes 3, 5, 15)	$+25^{\circ} \mathrm{C}$	200	500	-	200	500	-	kHz
(Notes 4,5,15)	$+25^{\circ} \mathrm{C}$	100	200	-	100	200	-	kHz
TRANSIENT RESPONSE								
Rise Time (Notes 4, 6)	$+25^{\circ} \mathrm{C}$	-	20	45	-	20	50	ns
Overshoot (Notes 4,6)	$+25^{\circ} \mathrm{C}$	-	25	40	-	25	40	\%
Slew Rate (Notes 3,7)	$+25^{\circ} \mathrm{C}$	20	30	-	20	30	-	$\mathrm{V} / \mu \mathrm{s}$
(Notes 4, 7, 14)	$+25^{\circ} \mathrm{C}$	6	8	-	6	8	-	$\mathrm{V} / \mu \mathrm{s}$
Settling Time (Notes 4, 7, 8, 14)	$+25^{\circ} \mathrm{C}$	-	1.5	2.5	-	1.5	2.5	$\mu \mathrm{s}$
CHANNEL SELECT CHARACTERISTICS								
Digital input Current ($\mathrm{V}_{\text {IN }}=\mathrm{OV}$)	Full	-	1	1.5	-	1	1.5	mA
Digital Input Current ($\mathrm{V}_{\mathrm{IN}}=+5.0 \mathrm{~V}$)	Full	-	5	-	-	5	-	$n \mathrm{~A}$
Output Delay (Notes 9, 14)	$+25^{\circ} \mathrm{C}$	-	100	250	-	100	250	ns
Crosstalk (Note 10)	$+25^{\circ} \mathrm{C}$	-80	-110	-	-74	-110	-	dB
POWER SUPPLY CHARACTERISTICS								
Supply Current	$+25^{\circ} \mathrm{C}$	-	4.8	6.0	-	4.8	6.0	mA
Power Supply Rejection Ratio (Note 11)	Full	74	90	-	74	90	-	dB

NOTES:

1. $\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$
2. $\mathrm{V}_{\mathrm{CM}}= \pm 5 \mathrm{VDC}$
3. $A_{V}=+10, C_{C O M P}=0, R_{L}=2 k \Omega, C_{L}=50 p F$.
4. $A_{V}=+1, C_{C O M P}=15 p F, R_{L}=2 k \Omega, C_{L}=50 p F$.
5. $V_{\text {OUT }}=20 \mathrm{~V}$ peak to peak.
6. $V_{\text {OUT }}=200 \mathrm{mV}$ peak.
7. $V_{\text {OUT }}=10.0 \mathrm{~V}$ peak to peak.
8. To 0.1% of final value.
9. To 10% of final value; output then slews at normal rate to final value.
10. Unselected input to output; $\mathrm{V}_{\mathrm{IN}}= \pm 10 \mathrm{VDC}$
11. $V_{\text {SUPPLY }}= \pm 10$ VDC to $\pm 20 \mathrm{VDC}$
12. Unselected channels have approximately the same input parameters.
13. Derate by $4.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $105^{\circ} \mathrm{C}$.
14. Guaranteed by design.
15. Full Power Bandwidth based on slew rate measurement using: FPBW $=\frac{\text { S.R. }}{2 \pi \text { Vpeak }}$

Typical Performance Curves $\mathrm{V}+=+15 \mathrm{VDC}, \mathrm{V}-=-15 \mathrm{VDC}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, Unless Otherwise Specified.

INPUT BIAS CURRENT AND OFFSET CURRENT AS A FUNCTION OF TEMPERATURE

POWER SUPPIY CURRENT DRAIN AS A FUNCTION OF TEMPERATURE

NORMALIZED A.C. PARAMETERS vs. SUPPLY VOLTAGE

NORMALIZED A.C. PARAMETERS
vs. TEMPERATURE

FREQUENCY RESPONSE vs. CCOMP

OPEN LOOP VOLTAGE GAIN
vs. TEMPERATURE

Typical Performance Curves (Continued) OUTPUT VOLTAGE SWING vs. FREQUENCY

INPUT NOISE vs. FREQUENCY

SLEW RATE AND TRANSIENT RESPONSE

Typical Applications

HA-2400
AMPLIFIER, NONINVERTING PROGRAMMABLE GAIN

HA-2400
SAMPLE AND HOLD

Sample Charging Rate $=\frac{l_{1}}{C} \mathrm{~V} / \mathrm{Sec}$.
Hold Drift Rate $=\frac{I_{2}}{C} \mathrm{~V} / \mathrm{Sec}$.
Switch Pedestal Error $=\frac{\text { Q }}{\mathrm{C}}$ Volts

$$
\begin{aligned}
\mathrm{I}_{1} \approx & 150 \times 10^{-6} \mathrm{~A} \\
\mathrm{I}_{2} \approx & 200 \times 10^{-9} \mathrm{~A} @+25^{\circ} \mathrm{C} \\
\approx & 600 \times 10^{-9} \mathrm{~A} @-55^{\circ} \mathrm{C} \\
& 100 \times 10^{-9} \mathrm{~A} @+125^{\circ} \mathrm{C} \\
\mathrm{Q} \approx & 2 \times 10-12 \mathrm{Coulomb}
\end{aligned}
$$

For More Examples, See Harris Application Note 514

Digitally Selectable Four Channel Operational Amplifier

Features

- TTL Compatible Inputs
- Single Capacitor Compensation
- Low Crosstalk ... -110dB
- High Slew Rate . 20V/ hs
- Low Offset Current . 5nA
- Offset Voltage . 7mV
- High Gain-Bandwidth 30MHz
- High Input Impedance . 30M Ω

Description

The HA-2406 is a monolithic device consisting of four op amp input stages that can be individually connected to one output stage by decoding two TTL lines into four channel select signals. In addition to allowing each channel to be addressed, an enable control disconnects all input stages from the output stage when asserted low.

Each input-output combination of the HA-2406 is designed to be a $20 \mathrm{~V} / \mu \mathrm{s}, 30 \mathrm{MHz}$ gain-bandwidth amplifier that is stable at a gain of ten but by connecting one external 15 pF capacitor all amplifiers are compensated for unity gain operation. The compensation pin may also be used to limit the output swing to TTL levels through suitable clamping diodes and divider networks (see Application Note 514).

Applications
- Digital Control Of:
- Analog Signal Multiplexing
- Op Amp Gains
- Oscillator Frequencies
- Filter Characteristics
- Comparator Levels
- For Further Design Ideas See Application Note 514

Dielectric isolation and short-circuit protected output stages contribute to the quality and durability of the HA-2406. When used as a simple amplifier, its dynamic performance is very good and when its added versatility is considered; the HA-2406 is unmatched in the analog world. It can replace a number of individual components in analog signal conditioning circuits for digital signal processing systems. Its advantages include saving board space and reducing power supply requirements.

The HA-2406 is available in a 16 pin dual-in-line package and is guaranteed for operation over the full commercial temperature range $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+75^{\circ} \mathrm{C}\right)$. An SOIC package option is also available with -5 and -9 temperature grades.

CAUTION: These devices are sensitive to electrostatic discharge. Proper I.C. handling procedures should be followed.

Absolute Maximum Ratings

Differential Input Voltage
Digital Input Voltage -0.76 V to +10.0 V
Output Current .
Short Circuit Protected
Internal Power Dissipation
Operating Temperature Range:

(Isc $< \pm 33 \mathrm{~mA}$)

Electrical Specifications Test Conditions: $V_{\text {SUPPLY }}= \pm 15.0 \mathrm{~V}$ Unless Otherwise Specified.
Digital Inputs: $\mathrm{V}_{\mathrm{IL}}=+0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=+2.4 \mathrm{~V}$. Limits apply to each of the four channels, when addressed.

PARAMETER	TEMP	HA-2406-5, -9 LIMITS			UNITS
		MIN	TYP	MAX	
INPUT CHARACTERISTICS					
Offset Voltage Bias Current (Note 12) Offset Current (Note 12) Input Resistance (Note 12) Common Mode Range	$\begin{gathered} +25^{\circ} \mathrm{C} \\ \text { Full } \\ +25^{\circ} \mathrm{C} \\ \text { Full } \\ +25^{\circ} \mathrm{C} \\ \text { Full } \\ +25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$	± 9.0	7 - 50 - 5 - 30 -	$\begin{gathered} 10 \\ 12 \\ 250 \\ 500 \\ 50 \\ 100 \\ - \end{gathered}$	mV mV nA nA nA nA $\mathrm{M} \Omega$ V
TRANSFER CHARACTERISTICS					
Large Signal Voltage Gain (Notes 1, 5) Common Mode Rejection Ratio (Note 2) Gain Bandwidth (Note 3, 15) Gain Bandwidth (Note 4, 15)	$\begin{gathered} +25^{\circ} \mathrm{C} \\ \text { Full } \\ \text { Full } \\ +25^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} 40 \mathrm{~K} \\ 20 \mathrm{~K} \\ 74 \\ 15 \\ 3 \end{gathered}$	150K 80 30 6	-	V / N V/N dB MHz MHz
OUTPUT CHARACTERISTICS					
Output Voltage Swing (Note 1) Output Current (Note 13) Full Power Bandwidth (Notes 3, 5, 14, 15) Full Power Bandwidth (Notes 4, 5, 14)	$\begin{gathered} \text { Full } \\ +25^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} \pm 10.0 \\ 10 \\ 240 \\ 64 \end{gathered}$	$\begin{gathered} \pm 12.0 \\ 15 \\ 320 \\ 95 \end{gathered}$	-	$\begin{gathered} \mathrm{V} \\ \mathrm{~mA} \\ \mathrm{kHz} \\ \mathrm{kHz} \end{gathered}$
TRANSIENT RESPONSE					
Rise Time (Notes 4, 6) Overshoot (Notes 4, 6) Slew Rate (Notes 3, 7, 15) Slew Rate (Notes 4, 7) Settling Time (Notes 4, 7, 8, 15)	$\begin{aligned} & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \end{aligned}$	- - 15 4	$\begin{gathered} 30 \\ 25 \\ 20 \\ 6 \\ 2.0 \end{gathered}$	$\begin{gathered} 100 \\ 40 \\ - \\ - \\ 3.5 \end{gathered}$	$\begin{gathered} \mathrm{ns} \\ \% \\ \mathrm{~V} / \mu \mathrm{s} \\ \mathrm{~V} / \mu \mathrm{s} \\ \mu \mathrm{~s} \end{gathered}$
CHANNEL SELECT CHARACTERISTICS					
Digital Input Current ($V_{I N}=O V$) Digital Input Current ($\mathrm{V}_{\text {IN }}=+5.0 \mathrm{~V}$) Output Delay (Note 9, 15) Crosstalk (Note 10)	$\begin{gathered} \text { Full } \\ \text { Full } \\ +25^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \end{gathered}$	-74	$\begin{gathered} 1 \\ 15 \\ 150 \\ -110 \end{gathered}$	$\begin{gathered} 1.5 \\ - \\ 300 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{nA} \\ & \mathrm{~ns} \\ & \mathrm{~dB} \end{aligned}$
POWER SUPPLY CHARACTERISTICS					
Supply Current Power Supply Rejection Ratio (Note 11)	$\begin{gathered} +25^{\circ} \mathrm{C} \\ \text { Full } \\ \hline \end{gathered}$	74	$\begin{aligned} & 4.8 \\ & 90 \end{aligned}$	7.0	$\begin{gathered} \mathrm{mA} \\ \mathrm{~dB} \end{gathered}$

NOTES:

1. $\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$
2. Unselected input to output; $\mathrm{V}_{\mathrm{IN}}= \pm 10 \mathrm{VDC}$
3. $\mathrm{V}_{\mathrm{CM}}= \pm 5 \mathrm{VDC}$
4. $A_{V}=+10, C_{C O M P}=0, R_{L}=2 k \Omega, C_{L}=50 p F$.
5. $A_{V}=+1, C_{C O M P}=15 \mathrm{pF}, R_{\mathrm{L}}=2 \mathrm{k} \Omega, C_{\mathrm{L}}=50 \mathrm{pF}$.
$V_{\text {OUT }}=20 \mathrm{~V}$ peak to peak.
6. $V_{\text {OUT }}=200 \mathrm{mV}$ peak to peak.
7. $\mathrm{V}_{\text {OUT }}=10.0 \mathrm{~V}$ peak to peak.
8. To 0.1% of final value.
9. To 10% of final value; output then slews at normal rate to final value.
10. $V_{\text {SUPPLY }}= \pm 10 \mathrm{VDC}$ to $\pm 20 \mathrm{VDC}$
11. Unselected channels have approximately the same input parameters.
12. $\mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}$
13. Full power Bandwidth based on slew rate measurement using:

FPBW $=\quad-\frac{\text { S.R. }}{2 \pi \text { Vpeak }}$
15. Sample tested.

Typical Performance Curves $\mathrm{V}+=15 \mathrm{~V}$ D.C., V $-=15 \mathrm{~V}$ D.C., $\mathrm{T}_{\mathrm{A}}=+25{ }^{\circ} \mathrm{C}$ Unless Otherwise Stated.

INPUT BIAS CURRENT AND OFFSET CURRENT AS A FUNCTION OF TEMPERATURE

POWER SUPPLY CURRENT DRAIN AS A FUNCTION OF TEMPERATURE

NORMALIZED A. C. PARAMETERS vs SUPPLY VOLTAGE

NORMALIZED A. C. PARAMETERS vs TEMPERATURE

OPEN LOOP FREQUENCY AND PHASE RESPONSE

FREQUENCY RESPONSE vs CCOMP

OPEN LOOP VOLTAGE GAIN vs TEMPERATURE

Typical Performance Curves (Continued)

OUTPUT VOLTAGE SWING vs FREQUENCY

INPUT NOISE vs FREQUENCY

EQUIVALENT INPUT NOISE vs BANDWIDTH

SLEW RATE AND TRANSIENT RESPONSE

Typical Applications

HA-2 406
AMPLIFIER, NON-INVERTING PROGRAMMABLE GAIN

HA-2406 SAMPLE AND HOLD

Sample charging rate $=-\frac{11}{\mathrm{C}} \mathrm{V} / \mathrm{sec}$.
$11 \approx 150 \times 10^{-6} \mathrm{~A}$
$12 \approx 200 \times 10^{-9} \mathrm{~A}$ at $+25^{\circ} \mathrm{C}$
Hold drift rate $=\quad-\frac{12}{\mathrm{C}} \mathrm{V} / \mathrm{sec}$.
$\approx 600 \times 10^{-9} \mathrm{~A}$ at $-55^{\circ} \mathrm{C}$
$\approx 100 \times 10^{-9} \mathrm{~A}$ at $+125^{\circ} \mathrm{C}$
$Q \approx 2 \times 10^{-12}$ Coul.

For more examples, see Harris Application Note 514.

HA-2500/02/05

Precision High Slew Rate Operational Amplifiers

Features

- High Slew Rate . 30V/ H
- Fast Settling . 330ns
- Wide Power Bandwidth . 500KHz
- High Gain Bandwidth . 12MHz
- High Input Impedance 50M Ω
- Low Offset Current 10nA
- Internally Compensated For Unity Gain Stability

Description

HA-2500/2502/2505 comprises a series of monolithic operational amplifiers whose designs are optimized to deliver excellent slew rate, bandwidth, and settling time specifications. The outstanding dynamic features of this internally compensated device are complemented with low offset voltage and offset current.
These dielectrically isolated amplifiers are ideally suited for applications such as data acquisition, R.F., video, and pulse conditioning circuits. Slew rates of $\pm 25 \mathrm{~V} / \mu \mathrm{s}$ and 330 ns (0.1%) settling time make these devices excellent components in fast, accurate data acquisition and pulse amplification designs. 12 MHz small signal bandwidth and 500 kHz power bandwidth make these devices well suited to R.F. and video applications. With 2 mV typical offset voltage plus offset trim capability and 10 nA offset current, HA-2500/2502/2505 are particularly useful components in signal conditioning designs.

Applications

- Data Acquisition Systems
- R.F. Amplifiers
- Video Amplifiers
- Signal Generators
- Pulse Amplification

The gain and offset voltage figures of the HA-2500 series are optimized by internal component value changes while the similar design of the HA-2510 series is maximized for slew rate.
The HA-2500 and HA-2502 have guaranteed operation from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ and are available in Hermetic Metal Can and Ceramic Mini-DIP packages. Both are offered as a /883 military grade part with the HA-2502 also available in LCC package. The HA-2505 has guaranteed operation from $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ and is available in Plastic and Ceramic Mini-DIP and Metal Can packages. Mil-Std-883 product and data sheets are available upon request. The HA-2505 is also offered in SOIC packaging in -5 and -9 temperature grades.

HA2-2500/02/05 (TO-99 METAL CAN) TOP VIEW

Schematic

CAUTION: These devices are sensitive to electronic discharge. Proper ic handling procedures should be followed.
Copyright © Harris Corporation 1990

Specifications HA-2500/2502/2505

Absolute Maximum Ratings (Note 6)	
Voltage Between V+ and V-Terminals	40.0V
Differential Input Voltage	$\pm 15.0 \mathrm{~V}$
Peak Output Current	50 mA
Internal Power Dissipation	300 mW
Lead Solder Temperature (10 Seconds)	$+275^{\circ}$

Operating Temperature Range

HA-2500/2502-2 $. .5^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}$
HA-2505-5 . $0^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+75^{\circ} \mathrm{C}$
HA-2505-9 $-40^{\circ} \mathrm{C} \leq T_{A} \leq+85^{\circ} \mathrm{C}$
Storage Temperature Range $\ldots5^{\circ} \mathrm{C} \leq \mathrm{T}^{\mathrm{A}} \leq+150^{\circ} \mathrm{C}$
Maximum Junction Temperature. $+175^{\circ} \mathrm{C}$

Electrical Specifications $V+=+15 \mathrm{~V} D C, V-=-15 \mathrm{~V} D C$

PARAMETER	TEMP.	HA-2500-2			HA-2502-2			HA-2505-5, -9			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
INPUT CHARACTERISTICS											
Offset Voltage	$\begin{gathered} +25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$	-	2	5 8	-	4 -	8 10	-	4	$\begin{gathered} 8 \\ 10 \end{gathered}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Offset Voltage Average Drift	Full	-	20	-	-	20	-	-	20	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Bias Current	$+25^{\circ} \mathrm{C}$	-	100	200	-	125	250	-	125	250	$n A$
	Full	-	-	400	-	-	500	-	-	500	$n \mathrm{~A}$
Offset Current	$\begin{gathered} +25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$	-	10 -	25 50	-	20	50 100	-	20	50 100	nA nA
Input Resistance (Note 10)	$+25^{\circ} \mathrm{C}$	25	50	-	20	50	-	20	50	-	$\mathrm{M} \Omega$
Common Mode Range	Full	± 10.0	-	-	± 10.0	-	-	± 10.0	-	-	V
TRANSFER CHARACTERISTICS											
Large Signal Voltage Gain (Note 1, 4)	$\begin{gathered} +25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$	$\begin{aligned} & 20 \mathrm{~K} \\ & 15 \mathrm{~K} \end{aligned}$	$30 K$	-	$\begin{aligned} & 15 \mathrm{~K} \\ & 10 \mathrm{~K} \end{aligned}$	25K	-	$\begin{aligned} & 15 \mathrm{~K} \\ & 10 \mathrm{~K} \end{aligned}$	25K	-	VN VN
Common Mode Rejection Ratio (Note 2)	Full	80	90	-	74	90	-	74	90	-	dB
Gain Bandwidth Product (Note 3)	$+25^{\circ} \mathrm{C}$	-	12	-	-	12	-	-	12	-	MHz
OUTPUT CHARACTERISTICS											
Output Voltage Swing (Note 1)	Full	± 10.0	± 12.0	-	± 10.0	± 12.0	-	± 10.0	± 12.0	-	V
Output Current (Note 4)	$+25^{\circ} \mathrm{C}$	± 10	± 20	-	± 10	± 20	-	± 10	± 20	-	mA
Full Power Bandwidth (Notes 4, 11)	$+25^{\circ} \mathrm{C}$	350	500	-	300	500	-	300	500	-	KHz
TRANSIENT RESPONSE											
Rise Time (Notes 1, 5, 7 \& 8)	$+25^{\circ} \mathrm{C}$	-	25	50	-	25	50	-	25	50	ns
Overshoot (Notes 1, 5, $7 \& 8$)	$+25^{\circ} \mathrm{C}$	-	25	40	-	25	50	-	25	50	\%
Slew Rate (Notes 1, 5, 8 \& 12)	$+25^{\circ} \mathrm{C}$	± 25	± 30	-	± 20	± 30	-	± 20	± 30	-	$\mathrm{V} / \mu \mathrm{s}$
Settling Time to 0.1% (Notes 1, 5, 8\& 12)	$+25^{\circ} \mathrm{C}$	-	0.33	-	-	0.33	-	-	0.33	-	$\mu \mathrm{s}$
POWER SUPPLY CHARACTERISTICS											
Supply Current	$+25^{\circ} \mathrm{C}$	-	4	6	-	4	6	-	4	6	mA
Power Supply Rejection Ratio (Note 9)	Full	80	90	-	74	90	-	74	90	-	dB

NOTES:

1. $R_{L}=2 \mathrm{~K} \Omega$
2. $V_{C M}= \pm 10 \mathrm{~V}$
3. $A_{V}>10$
4. $V_{O}= \pm 10.0 \mathrm{~V}$
5. $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
6. Absolute Maximum Ratings are limiting values, applied individually, beyond which the serviceability of the circuit may be impaired.
7. $\mathrm{V}_{\mathrm{O}}= \pm 200 \mathrm{mV}$
8. See Transient Response Test Circuits and Waveforms.
9. $\Delta V= \pm 5.0 \mathrm{~V}$
[^34]Performance Curves. V+ $=+15 \mathrm{VDC}, \mathrm{V}-=-15 \mathrm{VDC}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, Unless Otherwise Stated

INPUT BIAS AND OFFSET CURRENT vs. TEMPERATURE

NORMALIZED AC PARAMETERS vs. TEMPERATURE

NORMALIZED AC PARAMETERS vs. SUPPLY VOLTAGE AT $+25^{\circ} \mathrm{C}$

OPEN LOOP VOLTAGE GAIN vs. TEMPERATURE

EQUIVALENT INPUT NOISE vs. BANDWIDTH
(With 10 Hz High Pass Filter)

OPEN-LOOP FREQUENCY AND PHASE RESPONSE

OPEN LOOP FREQUENCY RESPONSE FOR VARIOUS VALUES OF CAPACITORS FROM COMPENSATION PIN TO GROUND

NOTE: External compensation components are not required for stability, but may be added to reduce bandwidth if desired.

OUTPUT VOLTAGE SWING vs. FREQUENCY AT $+25^{\circ} \mathrm{C}$

Typical Performance Curves（Continued）
power supply current vs temperature

VOLTAGE FOLLOWER PULSE RESPONSE

				\ddagger				
				邫				
＋1＋1						＋＋＋	＋11	H＋
				年				
				热				

$R_{L}=2 K \Omega, C_{L}=50 p F$
Upper Trace：Input Lower Trace：Output

Vertical $=5 \mathrm{~V} /$ Div．
Horizontal $=200 \mathrm{~ns} /$ Div．
$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15.0 \mathrm{~V}$

Test Circuits

SUGGESTED Vos ADJUSTMENT

NOTE：Measured on Both Positive and Negative Transitions from OV to +200 mV and OV to -200 mV at the output．

Settling Time Circuit

－$A_{V}=-1$
－Feedback and Summing Resistor Ratios Should be 0．1\％matched．
－Clipping Diodes CR1 and CR2 are Optional．HP5082－2810 Recommended．

Tested Offset Adjustment Range is $\left|V_{O S}+1 \mathrm{mV}\right|$ minimum referred to output．Typical ranges are $\pm 6 \mathrm{mV}$ with $\mathrm{R}_{\mathrm{T}}=20 \mathrm{k} \Omega$ ．

Die Characteristics

Transistor Count		
Die Dimensions		
Substrate Potential ．．．．．．．．．．．．．．．．．．．．．．．．．Unbiase		
Process		olar－DI
Thermal Constants（ ${ }^{\circ} \mathrm{C} / \mathrm{W}$ ）	θ_{ja}	$\theta_{\text {jc }}$
HA2－Metal Can（－2，－5，－7）	202	56
HA2－Metal Can（－8，／883）	168	52
HA3－Plastic Mini－DIP（－5）	84	34
HA4－Ceramic LCC（／883）	97	35
HA7－Ceramic Mini－DIP（ $-8, / 883$ ）	138	63
HA7－Ceramic Mini－DIP（－2，－5，－7）	204	112
HA9P－SOIC（－5，－9）	160	42

HARRIS

May 1990

Features

- High Slew Rate

60V/ $\mu \mathrm{s}$

- Fast Settling 250ns
- Wide Power Bandwidth . 1,000kHz
- High Gain Bandwidth . 12MHz
- High Input Impedance 100M Ω
- Low Offset Current . 10nA
- Internally Compensated For Unity Gain Stability

Description
HA-2510/2512/2515 are a series of high performance operational amplifiers which set the standards for maximum slew rate, highest accuracy and widest bandwidths for internally compensated monolithic devices. In addition to excellent dynamic characteristics, these dielectrically isolated amplifiers also offer low offset current and high input impedance.

The $\pm 60 \mathrm{~V} / \mu \mathrm{s}$ slew rate and $250 \mathrm{~ns}(0.1 \%)$ settling time of these amplifiers is ideally suited for high speed $D / A, A / D$, and pulse amplification designs. HA-2510/2512/2515's superior 12 MHz gain bandwidth and 1000 kHz power-bandwidth is extremely useful in R.F. and video applications. For accurate signal conditioning these amplifiers also provide 10 nA offset

Applications

- Data Acquisition Systems
- R.F. Amplifiers
- Video Amplifiers
- Signal Generators
- Pulse Amplification
current, coupled with $100 \mathrm{M} \Omega$ input impedance, and offset trim capability.

The HA-2510 and HA-2512 have guaranteed operation from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ and are available in Metal Can and Ceramic Mini-DIP packages. Both are offered as a $/ 883$ military grade part with the HA-2512 also available in LCC package. The HA-2515 has guaranteed operation from $0^{\circ} \mathrm{C}$ to $+7.5^{\circ} \mathrm{C}$ and is available in Plastic and Ceramic Mini-DIP and Metal Can packages. Mil-Std-883 product and data sheets are available upon request. Additionally, SOIC packaging is available for the HA-2515 in -5 and -9 temperature grades.

Pinouts

HA9P2515 (SOIC)
HA7-2510/12/15 (CERAMIC MINI-DIP) HA3-2515 (PLASTIC MINI-DIP) TOP VIEW

HA2-2510/12/15 (TO-99 METAL CAN) TOP VIEW

COMP

Schematic

CAUTION:These devices are sensitive to electronic discharge. Proper IC handling procedures should be followed. Copyright © Harris Corporation 1990

Operating Temperature Range

HA-2510/2512-2
$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$

HA-2515-9................................. $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+85^{\circ} \mathrm{C}$
Storage Temperature Range $\ldots \ldots \ldots \ldots . . .5^{\circ} \mathrm{C} \leq T_{A} \leq+150^{\circ} \mathrm{C}$
Maximum Junction Temperature.

Electrical Specifications $\mathrm{V}+=+15 \mathrm{~V} D C, \mathrm{~V}-=-15 \mathrm{~V} D C$

PARAMETER	TEMP.	HA-2510-2			HA-2512-2			HA-2515-5, -9			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
INPUT CHARACTERISTICS											
Offset Voltage	$\begin{gathered} +25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$	-	4	8 11	-	5	$\begin{aligned} & 10 \\ & 14 \end{aligned}$	-	5	$\begin{aligned} & 10 \\ & 14 \end{aligned}$	$\begin{aligned} & m V \\ & m V \end{aligned}$
Offset Voltage Average Drift	Full	-	20	-	-	25	-	-	30	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Bias Current	$+25^{\circ} \mathrm{C}$	-	100	200	\rightarrow	125	250	-	125	250	nA
	Full	-	-	400	-	-	500	-	-	500	nA
Offset Current	$\left\lvert\, \begin{gathered} +25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}\right.$	-	10	25 50	-	20	50 100	-	20	50 100	nA
Input Resistance (Note 10)	$+25^{\circ} \mathrm{C}$	50	100	-	40	100	-	40	100	-	$\mathrm{M} \Omega$
Common Mode Range	Full	± 10.0	-	-	± 10.0	-	-	± 10.0	-	-	V
TRANSFER CHARACTERISTICS											
Large Signal Voltage Gain (Note 1, 4)	$\begin{gathered} +25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$	$\begin{aligned} & 10 \mathrm{~K} \\ & 7.5 \mathrm{~K} \end{aligned}$	$15 \mathrm{~K}$	-	$\begin{gathered} 7.5 \mathrm{~K} \\ 5 \mathrm{~K} \end{gathered}$	$15 \mathrm{~K}$	-	$\begin{gathered} 7.5 \mathrm{~K} \\ 5 \mathrm{~K} \end{gathered}$	$15 \mathrm{~K}$	-	$\begin{aligned} & \mathrm{V} / \mathrm{N} \\ & \mathrm{~V} N \end{aligned}$
Common Mode Rejection Ratio (Note 2)	Full	80	90	-	74	90	-	74	90	-	dB
Gain Bandwidth Product (Note 3)	$+25^{\circ} \mathrm{C}$	-	12	-	-	12	-	-	12	-	MHz
OUTPUT CHARACTERISTICS											
Output Voltage Swing (Note 1)	Full	± 10.0	± 12.0	-	± 10.0	± 12.0	-	± 10.0	± 12.0	-	v
Output Current (Note 4)	$+25^{\circ} \mathrm{C}$	± 10	± 20	-	± 10	± 20	-	± 10	± 20	-	mA
Full Power Bandwidth (Notes 4, 11)	$+25^{\circ} \mathrm{C}$	750	1000	-	600	1000	-	600	1000	-	kHz
TRANSIENT RESPONSE											
Rise Time (Notes 1, 5, 7 \& 8)	$+25^{\circ} \mathrm{C}$	-	25	50	-	25	50	-	25	50	ns
Overshoot (Notes 1, 5, 7 \& 8)	$+25^{\circ} \mathrm{C}$	-	25	40	-	25	50	-	25	50	\%
Slew Rate (Notes 1, 5, 8 \& 12)	$+25^{\circ} \mathrm{C}$	± 50	± 65	-	± 40	± 60	-	± 40	± 60	-	$\mathrm{V} / \mathrm{\mu s}$
Settling Time to 0.1% (Notes 1, 5, 8 \& 12)	$+25^{\circ} \mathrm{C}$	-	0.25	-	-	0.25	-	-	0.25	-	μs
POWER SUPPLY CHARACTERISTICS											
Supply Current	$+25^{\circ} \mathrm{C}$	-	4	6	-	4	6	-	4	6	mA
Power Supply Rejection Ratio (Note 9)	Full	80	90	-	74	90	-	74	90	-	dB

NOTES:

1. $R_{L}=2 K \Omega$
2. $V_{C M}= \pm 10 \mathrm{~V}$
3. $A \vee>10$
4. Absolute Maximum Ratings are limiting values, applied individually, beyond which the serviceability of the circuit may be impaired.
5. $V_{O}= \pm 200 \mathrm{mV}$
6. $V_{O}= \pm 10.0 \mathrm{~V}$
7. $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
8. See Transient Response Test Circuits and Waveforms.
9. $\Delta V= \pm 5.0 \mathrm{~V}$
10. This parameter value is based on design calculations.
11. Full Power Bandwidth guaranteed based on slew rate measurement using: $F P B W=S . R . / 2 \pi V$ peak.
12. $\mathrm{V}_{\text {OUT }}= \pm 5 \mathrm{~V}$.

Performance Curves $\mathrm{V}+=+15 \mathrm{VDC}, \mathrm{V}-=-15 \mathrm{VDC}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, Unless Otherwise Stated INPUT BIAS AND OFFSET CURRENT vs. TEMPERATURE

NORMALIZED AC PARAMETERS vs. TEMPERATURE

NORMALIZED AC PARAMETERS vs. SUPPLY VOLTAGE AT $+\mathbf{2 5}{ }^{\circ} \mathrm{C}$

OPEN LOOP VOLTAGE GAIN vs. TEMPERATURE

EQUIVALENT INPUT NOISE vs. BANDWIDTH (With 10 Hz High Pass Filter)

OPEN-LOOP FREQUENCY AND PHASE RESPONSE

OPEN LOOP FREQUENCY RESPONSE FOR VARIOUS VALUES OF CAPACITORS FROM COMPENSATION PIN TO GROUND

NOTE: External compensation components are not required for stability, but may be added to reduce bandwidth if desired.

OUTPUT VOLTAGE SWING vs. FREQUENCY AT $+25^{\circ} \mathrm{C}$

Typical Performance Curves (Continued)

POWER SUPPLY CURRENT vs TEMPERATURE

VOLTAGE FOLLOWER PULSE RESPONSE

$\mathrm{R}_{\mathrm{L}}=2 \mathrm{~K} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
Upper Trace: Input
Lower Trace: Output

Vertical $=5 \mathrm{~V} /$ Div.
Horizontal $=200 \mathrm{~ns} /$ Div.
$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15.0 \mathrm{~V}$

Test Circuits

TRANSIENT RESPONSE

SLEW RATE AND TRANSIENT RESPONSE

SUGGESTED VOS ADJUSTMENT

NOTE: Measured on Both Positive and Negative Transitions from OV to +200 mV and OV to -200 mV at the output.

Tested Offset Adjustment Range is $\mathrm{V}_{\mathrm{OS}}+1 \mathrm{mV}$ minimum referred to output. Typical ranges are $\pm 6 \mathrm{mV}$ with $\mathrm{R}_{\mathrm{T}}=20 \mathrm{k} \Omega$.

Settling Time Circuit

- $A_{V}=-1$
- Feedback and Summing Resistor Ratios Should be 0.1% matched.
- Clipping Diodes CR1 and CR2 are Optional. HP5082-2810 Recommended.

Die Characteristics

Transistor Count . 40		
Die Dimensions . $57 \times 65 \times 19$ mils		
Substrate Potential		biased
Process		olar-DI
Thermal Constants (${ }^{\circ} \mathrm{C} / \mathrm{W}$)	$\theta_{\text {ja }}$	θ_{jc}
HA2-Metal Can (-2, -5, -7)	202	56
HA2-Metal Can (-8, /883)	168	52
HA3-Plastic Mini-DIP (-5)	84	34
HA4-Ceramic LCC (/883)	97	35
HA7-Ceramic Mini-DIP (-8, /883)	138	63
HA7-Ceramic Mini-DIP (-2, -5, -7)	204	112
HA9P-SOIC (-5, -9)	160	42

Uncompensated High Slew Rate Operational Amplifiers

Features

- High Slew Rate $120 \mathrm{~V} / \mathrm{s}$
- Fast Settling 200ns
- Wide Power Bandwidth 2,000kHz
- High Gain Bandwidth (Av ≥ 3)................. 20MHz
- High Input Impedance 100M Ω
- Low Offset Current . 10nA

Description

HA-2520/2522/2525 comprise a series of monolithic operational amplifiers delivering an unsurpassed combination of specifications for slew rate, bandwidth and settling time. These dielectrically isolated amplifiers are controlled at close loop gains greater than 3 without external compensation. In addition, these high performance components also provide low offset current and high input impedance.
$120 \mathrm{~V} / \mu \mathrm{s}$ slew rate and 200 ns (0.2%) settling time of these amplifiers make them ideal components for pulse amplification and data acquisition designs. These devices are valuable components for R.F. and video circuitry requiring up to 20 MHz gain bandwidth and 2 MHz power

Applications
- Data Acquisition Systems
- R.F. Amplifiers
- Video Amplifiers
- Signal Generators
- Pulse Amplification

bandwidth. For accurate signal conditioning designs the HA-2520/2522/2525's superior dynamic specifications are complimented by 10 nA offset current, $200 \mathrm{M} \Omega$ input impedance and offset trim capability.

The HA-2520 and HA-2522 have guaranteed operation from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ and are available in metal can and Ceramic Mini-DIP packages. Both are offered in $/ 883$ grade with the HA-2522 also available in LCC package. The HA-2525 has guaranteed operation from $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ and is available in plastic and Ceramic Mini-DIP and metal can packages. Mil-Std-883 product and data sheets are available upon request. Additionally, the HA2525 is available in SOIC packaging with -5 and -9 temperature ranges.

Pinouts

HA2-2520/22/25 (TO-99 METAL CAN)

Schematic

[^35]Copyright © Harris Corporation 1990

Absolute Maximum Ratings (Note 13)

Voltage Between V+ and V-Terminals	40.0V
Differential Input Voltage	OV
Peak Output Current	50 mA
Internal Power Dissipation	300 mW
Lead Solder Temperature (10 Se	$+2750$

Operating Temperature Range

HA-2520/2522-2	$-55^{\circ} \mathrm{C} \leq{ }^{\top} \mathrm{A} \leq+125^{\circ} \mathrm{C}$
HA-2525-5.	. $0^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+75^{\circ} \mathrm{C}$
HA-2525-9	$-40^{\circ} \mathrm{C} \leq T_{A} \leq+85^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C} \leq \top^{\top} \mathrm{A} \leq+150^{\circ} \mathrm{C}$
Maximum Junction	$\ldots . .+175^{\circ} \mathrm{C}$

Electrical Specifications $\mathrm{V}+=+15 \mathrm{~V} D C, \mathrm{~V}-=-15 \mathrm{~V} D C$

PARAMETER	TEMP	HA-2520-2			HA-2522-2			HA-2525-5, -9			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
INPUT CHARACTERISTICS											
Offset Voltage	$+25^{\circ} \mathrm{C}$	-	4	8	-	5	10	-	5	10	mV
	Full	-	-	11	-	-	14	-	-	14	mV
Offset Voltage Drift	Full	-	20	-	-	25	-	-	30	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Bias Current	$+25{ }^{\circ} \mathrm{C}$	-	100	200	-	125	250	-	125	250	nA
	Full	-	-	400	-	-	500	-	-	500	nA
Offset Current	$+25^{\circ} \mathrm{C}$	-	10	25	-	20	50	-	20	50	nA
	Full	-	-	50	-	-	100	-	-	100	nA
Input Resistance (Note 9)	$+25^{\circ} \mathrm{C}$	50	100	-	40	100	-	40	100	-	$\mathrm{M} \Omega$
Common Mode Range	Full	± 10.0	-	-	± 10.0	-	-	± 10.0	-	-	V
TRANSFER CHARACTERISTICS											
Large Signal Voltage Gain (Notes 1, 4)	$+25^{\circ} \mathrm{C}$ Full	$\begin{aligned} & 10 \mathrm{~K} \\ & 7.5 \mathrm{~K} \end{aligned}$	$15 \mathrm{~K}$	-	$7.5 \mathrm{~K}$ $5 \mathrm{~K}$	15K	-	$7.5 \mathrm{~K}$ $5 \mathrm{~K}$	15K	-	V/N vN
Common Mode Rejection Ratio (Note 2)	Full	80	90	-	74	90	-	74	90	-	dB
Gain Bandwidth Product (Notes 3, 12)	$+25^{\circ} \mathrm{C}$	10	20	-	10	20	-	10	20	-	MHz
OUTPUT CHARACTERISTICS											
Output Voltage Swing (Note 1)	Fuil	± 10.0	± 12.0	-	± 10.0	± 12.0	-	± 10.0	± 12.0	-	V
Output Current (Note 4)	$+25{ }^{\circ} \mathrm{C}$	± 10	± 20	-	± 10	± 20	-	± 10	± 20	-	mA
Full Power Bandwidth (Notes 4, 10)	$+25^{\circ} \mathrm{C}$	1500	2000	-	1200	1600	-	1200	1600	-	kHz

TRANSIENT RESPONSE ($\mathrm{AV}=+3 \mathrm{~V}$)

Rise Time (Notes 1, 5, 6\&8)	$+25^{\circ} \mathrm{C}$	-	25	50	-	25	50	-	25	50	ns
Overshoot (Notes 1,5,6,\&8)	$+25^{\circ} \mathrm{C}$	-	25	40	-	25	50	-	25	50	$\%$
Slew Rate (Notes $1,5,8 \& 11$)	$+25^{\circ} \mathrm{C}$	± 100	± 120	-	± 80	± 120	-	± 80	± 120	-	$\mathrm{V} / \mu \mathrm{s}$
Settling Time (Notes 1,5, \& \& 11)	$+25^{\circ} \mathrm{C}$	-	0.20	-	-	0.20	-	-	0.20	-	$\mu \mathrm{s}$

POWER SUPPLY CHARACTERISTICS

Supply Current	+250 C	-	4	6	-	4	6	-	4	6	mA
Power Supply Rejection Ratio (Note 7)	Full	80	90	-	74	90	-	74	90	-	dB

NOTES:

1. $\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$
2. $\Delta V= \pm 5.0 \mathrm{~V}$
3. $\mathrm{V}_{\mathrm{CM}}= \pm 10 \mathrm{~V}$
4. See Transient Response Test Circuits and Waveforms
5. $A_{V}>10$
6. $V_{O}= \pm 10.0 \mathrm{~V}$
7. $C_{L}=50 \mathrm{pF}$
8. $\mathrm{V}_{\mathrm{O}}= \pm 200 \mathrm{mV}$
9. This parameter value is based on design calculations.
10. Full Power Bandwidth guaranteed based on slew rate measurement using: $\mathrm{FPBW}=\mathrm{S} . \mathrm{R} . / 2 \pi V$ peak.
11. $\mathrm{V}_{\text {OUT }}= \pm 5 \mathrm{~V}$
12. Guaranteed by design.
13. Absolute Maximum Ratings are limiting values, applied individually, beyond which the serviceability of the circuit may be impaired. Functional operation under any of these conditions is not necessarily implied.

Performance Curves $\mathrm{V}+=+15 \mathrm{VDC}, \mathrm{V}-=-15 \mathrm{VDC}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, Unless Otherwise Stated INPUT BIAS AND OFFSET CURRENT vs. TEMPERATURE

EQUIVALENT INPUT NOISE vs. BANDWIDTH

NORMALIZED AC PARAMETERS vs. TEMPERATURE

NORMALIZED AC PARAMETERS vs. SUPPLY VOLTAGE AT $+\mathbf{2 5} 5^{\circ} \mathrm{C}$

OPEN LOOP VOLTAGE GAIN vs. TEMPERATURE

OPEN LOOP FREQUENCY RESPONSE FOR VARIOUS VALUES OF CAPACITORS FROM BANDWIDTH CONTROL PIN TO GROUND

NOTE: External compensation components are not required for stability, but may be added to reduce bandwidth if desired.

OUTPUT VOLTAGE SWING vs. FREQUENCY AT $+25^{\circ} \mathrm{C}$

Performance Curves (Continued)

$R_{L}=2 K \Omega, C_{L}=50 p F \quad$ Horizontal $=100 \mathrm{~ns} /$ Div.
Upper Trace: Input; $1.67 \mathrm{~V} /$ Div. $\quad T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$ Lower Trace: Output; 5V/Div

Test Circuits

SLEW RATE AND SETTLING TIME

TRANSIENT RESPONSE

SLEW RATE AND TRANSIENT RESPONSE

SUGGESTED Vos ADJUSTMENT

NOTE: Measurement on both positive and negative transitions from OV to +200 mV and OV to -200 mV at the output.

Tested Offset Adjustment Range is \mid VOS +1 mV minimum referred to ouput. Typical range is +20 mV to -18 mV with $R_{T}=20 \mathrm{k} \Omega$.

Settling Time Circuit

Typical Application

NOTE: Compensation Circuit for $\mathrm{A}_{\mathrm{V}}=-1$
Slew Rate $\approx 120 \mathrm{~V} / \mu \mathrm{s}$
Bandwidth $\approx 10 \mathrm{MHz}$
Settling Time (0.1%) $\approx 500 \mathrm{~ns}$
Capacitance at pin 8 must be minimized for maximum bandwidth.
Tested and functional with supply voltages from $\pm 4 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$.

FREQUENCY RESPONSE FOR INVERTING UNITY GAIN CIRCUIT

Die Characteristics

Transistor Count 40		
Die Dimensions . $57 \times 65 \times 19$ mils		
Substrate Potential		
Process		lar-DI
Thermal Constants (${ }^{\circ} \mathrm{C} / \mathrm{W}$)	θ_{ja}	θ_{jc}
HA2-Metal Can (-2, -5, -7)	206	56
HA2-Metal Can (-8, /883)	168	52
HA3-Plastic Mini-DIP (-5)	90	39
HA4-Ceramic LCC (/883)	99	37
HA7-Ceramic Mini-DIP (-8, /883)	140	65
HA7-Ceramic Mini-DIP (-2, -5, -7)	204	112
HA9P-SOIC (-5, -9)	160	42

Uncompensated, High Slew Rate High Output Current, Operational Amplifier

Features

- High Slew Rate . 150V/ $/ \mathrm{s}$
- Fast Settling 200ns
- Wide Power Bandwidth . 2MHz
- Wide Gain Bandwidth ($\mathrm{A} V \geq 3$) 20MHz
- High Input Impedance 130M Ω
- Low Offset Current . 200nA
- High Output Current. $\pm 30 \mathrm{~mA}$

Description

The HA-2529 is a monolithic operational amplifier which typifies excellence of design. With a design based on years of experience coupled with the reliable dielectric isolation process, these amplifiers provide an outstanding combination of DC and AC parameters at closed loop gains greater than 3.

The HA-2529 offers $150 \mathrm{~V} / \mu \mathrm{s}$ slew rate and fast settling time (200ns), while consuming a mere 6 mA of quiesent current, making these amplifiers ideal components for video circuitry and data acquisition designs. With 20 MHz gain-bandwidth combined with $7.5 \mathrm{kV} / \mathrm{V}$ open loop gain, the HA-2529 is an ideal component for demanding signal conditioning designs. These devices provide $\pm 30 \mathrm{~mA}$ output

Applications

- Data Acquisition Systems
- R.F. Amplifiers
- Video Amplifiers
- Signal Generators
- Pulse Amplification
current drive with an output voltage swing of $\pm 10 \mathrm{~V}$ making then suited for pulse amplifier and R.F. amplifier components.

The HA-2529 will upgrade output current, slew rate, offset voltage drift and offset current drift in systems presently using the HA-2520/22/25 or EHA-2520/22/25.

The HA-2529-2 has guaranteed operation over the military temperature range $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$ and the HA-2529-5 has guaranteed operation over the commercial temperature range $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+75^{\circ} \mathrm{C}\right)$. MIL-STD-883 product and data sheets are available upon request.

Pinouts

HA2-2529 (TO-99 METAL CAN) TOP VIEW

Schematic

[^36]Copyright © Harris Corporation 1990

Absolute Maximum Ratings (Note 1)	
Voltage Between V+ and V-Terminals	40.0V
Differential Input Voltage	$\pm 15 \mathrm{~V}$
Output Current	$90 \mathrm{~mA} \mathrm{(Peak)}$
Internal Power Dissipation (Note 10)	300 mW
Maximum Junction Temperature	$+175^{\circ}$

Operating Temperature Ranges

$H A-2529-5 \ldots \ldots \ldots \ldots \ldots \ldots0^{\circ} \mathrm{C} \leq T_{A} \leq+75^{\circ} \mathrm{C}$
Storage Temperature Range $\ldots \ldots \ldots \ldots . . .65^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+150^{\circ} \mathrm{C}$

Maximum Junction Temperature. $+175^{\circ} \mathrm{C}$
Electrical Specifications $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$, Unless Otherwise Specified

PARAMETER	TEMP	$\begin{gathered} \mathrm{HA}-2529-2 \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$			$\begin{gathered} \mathrm{HA}-2529-5 \\ 0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \\ \hline \end{gathered}$			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
INPUT CHARACTERISTICS								
Offset Voltage (Note 8)	$+25^{\circ} \mathrm{C}$	-	2	5	-	2	10	mV
	Full	-	-	8	-	-	14	mV
Average Offset Voltage Dritt (Note 8)	Full	-	10	-	-	10	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Bias Current (Note 8)	$+25^{\circ} \mathrm{C}$	-	50	200	-	50	250	nA
	Full	-	80	400	-	80	400	nA
Average Bias Current Drift (Note 8)	Full	-	0.2	-	-	0.2	-	$n N^{\circ} \mathrm{C}$
Offset Current (Note 8)	$+25^{\circ} \mathrm{C}$	-	5	25	-	5	50	nA
	Full	-	10	50	-	10	100	nA
Average Offset Current Drift	Full	-	0.02	-	-	0.02	-	$n A N^{\circ} \mathrm{C}$
Common Mode Range	Full	± 10	± 13	-	± 10	± 13	-	V
Differential Input Resistance (Note 11)	$+25^{\circ} \mathrm{C}$	50	130	-	50	130	-	$\mathrm{M} \Omega$
Differential Input Capacitance	$+25^{\circ} \mathrm{C}$	-	3	-	-	3	-	pF
Input Noise Voltage ($\mathrm{f}=1 \mathrm{kHz}$)	$+25^{\circ} \mathrm{C}$	-	20	-	-	20	-	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Input Noise Current ($\mathrm{f}=1 \mathrm{kHz}$)	$+25^{\circ} \mathrm{C}$	-	1.8	-	-	1.8	-	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
TRANSFER CHARACTERISTICS								
Large Signal Voltage Gain (Note 3)	$+25^{\circ} \mathrm{C}$	10	18	-	7.5	18	-	kV/N
	Full	7.5	15	-	5	15	-	kVN
Common Mode Rejection Ratio (Note 5)	Full	80	100	-	74	100	-	dB
Gain-Bandwidth Product (Note 2, 11)	$+25^{\circ} \mathrm{C}$	15	20	-	15	20	-	MHz
Minimum Stable Gain	$+25^{\circ} \mathrm{C}$	3	-	-	3	-	-	$\mathrm{V} N$
OUTPUT CHARACTERISTICS								
Output Voltage Swing Full Power Bandwidth (Notes $3 \& 6$) Output Current (Note 8)	Full	± 10	± 12	-	± 10	± 12	-	V
	$+25^{\circ} \mathrm{C}$	2.1	2.6	-	2.1	2.6	-	MHz
	$+25^{\circ} \mathrm{C}$	30	35	-	30	35	-	mA
	Full	25	30	-	25	30	-	mA
Output Resistance (Open Loop)	$+25^{\circ} \mathrm{C}$	-	30	-	-	30	-	Ω
TRANSIENT RESPONSE ($\mathrm{A}_{\mathrm{V}}=+3$)								
Rise Time (Note 2, 7)	$+25^{\circ} \mathrm{C}$	-	20	45	-	20	50	ns
Overshoot (Note 2,7)	$+25{ }^{\circ} \mathrm{C}$	-	10	30	-	10	30	\%
Slew Rate (Note 3,7)	$+25^{\circ} \mathrm{C}$	135	150	-	135	150	-	$\mathrm{V} / \mathrm{\mu s}$
Settling Time (Note 4, 7)	$+25{ }^{\circ} \mathrm{C}$	-	200	-	-	200	-	ns
POWER SUPPLY CHARACTERISTICS								
Supply Current	Full	-	4.5	6	-	4.5	6	mA
Power Supply Rejection Ratio (Note 12)	Full	80	90	-	74	90	-	dB

NOTE:

1. Absolute maximum ratings are limiting values, applied individually beyond which the serviceability of the circuit may be impaired. Functional operability under any of these conditions is not necessarily implied.
2. $V_{\text {OUT }}= \pm 200 \mathrm{mV}, A \vee \geq 3$.
3. $V_{\text {OUT }}= \pm 10 \mathrm{~V}$.
4. Settling Time is specified to 0.1% of final value for a 10 V output step and $A_{V}=-1$.
5. $\Delta \mathrm{V}_{\mathrm{CM}}= \pm 10 \mathrm{~V}$.
6. Full Power Bandwidth is guaranteed by equation: FPBW $=\frac{\text { Slew Rate }}{2 \pi V \text { PEAK }}$.
7. See Transient Response and Settling Time Test Circuits.
8. Refer to typical performance curve in data sheet.
9. $\mathrm{V}_{\text {OUT }}= \pm 5 \mathrm{~V}$.
10. Refer to package thermal constants in Die Information section.
11. Parameter is guaranteed by design and characterization data.
12. $\Delta V_{S}= \pm 10 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$.

Test Circuits

SLEW RATE AND SETTLING TIME WAVEFORM

NOTE: Measured on both positive and negative transitions from 0 to +200 mV and 0 to -200 mV .

SLEW RATE AND
TRANSIENT RESPONSE TEST CIRCUIT

SUGGESTED VOS ADJUSTMENT

LARGE SIGNAL RESPONSE
Vertical Scale: (200ns/Div.) Horizontal Scale: (2V/Div. Input) (5V/Div. Output)

SMALL SIGNAL RESPONSE
Vertical Scale: (200ns/Div.)
Horizontal Scale : ($50 \mathrm{mV} /$ Div. Input)
(100mV/Div. Output)

Settling Time Circuit

- $A_{V}=-3$
- Feedback and summing resistor ratios should be 0.1\% matched.
- Clipping diodes CR1 and CR2 are optional. HP5082-2810 recommended.

Typical Performance Curves

OFFSET VOLTAGE vs. TEMPERATURE
6 Typical Units From 3 Lots $@ V_{S}= \pm 15 \mathrm{~V}$

OFFSET CURRENT vs. TEMPERATURE
5 Typical Units From 3 Lots @ $V_{S}= \pm 15 \mathrm{~V}$

OUTPUT CURRENT vs. SUPPLY VOLTAGE

BIAS CURRENT vs. TEMPERATURE
6 Typical Units From 3 Lots @ $V_{S}= \pm 15 \mathrm{~V}$

OPEN LOOP GAIN vs. TEMPERATURE 6 Typical Units From 3 Lots $@ V_{S}= \pm 15 \mathrm{~V}$

OUTPUT VOLTAGE SWING vs. SUPPLY VOLTAGE

Typical Performance Curves (Continued)

OPEN LOOP FREQUENCY RESPONSE FOR VARIOUS VALUES OF CAPACITORS FROM BANDWIDTH CONTROL PIN TO GROUND

INPUT NOISE CHARACTERISTICS

OUTPUT VOLTAGE SWING vs. FREQUENCY

NORMALIZED A.C. PARAMETERS vs. SUPPLY VOLTAGE

Typical Applications

NOTE: - Compensation Circuit for $A_{V}=-1$

- Slew Rate $\approx 120 \mathrm{~V} / \mu \mathrm{s}$
- Bandwidth $\approx 10 \mathrm{MHz}$
- Settling Time $(0.1 \%) \approx 500 \mathrm{~ns}$
- Capacitance at pin 8 must be minimized for maximum bandwidth.
- Tested and functional with supply voltages from $\pm 4 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$.

Die Characteristics

Transistor Count		
Die Dimensions 1660		$\begin{aligned} & 485 \mu \mathrm{~m} \\ & 9 \mathrm{mils} \end{aligned}$
Substrate Potential		
Process		olar-D
Thermal Constants (${ }^{\circ} \mathrm{C} / \mathrm{W}$)	$\theta_{j a}$	θ_{jc}
HA2-Metal Can (-2, -5, -7)	206	56
HA2-Metal Can (-8, /883)	168	52
HA3-Plastic Mini-DIP (-5)	90	39
HA4-Ceramic LCC (/883)	99	37
HA7-Ceramic Mini-DIP (-8, /883)	140	65
HA7-Ceramic Mini-DIP ($-2,-5,-7$)	204	112

HA-2539

Very High Slew Rate Wideband Operational Amplifier

Features
 - Very High Slew Rate 600V/ms
 - Open Loop Gain
 - Wide Gain-Bandwidth ($\mathrm{A}_{\mathrm{V}} \leq 10$) . $30 \mathrm{kV} / \mathrm{V}$
 - Power Bandwidth
 \qquad 9.5 MHz
 - Low Offset Voltage
 \qquad 8 mV
 - Input Voltage Noise $6 n V / \sqrt{\mathrm{Hz}}$
 - Output Voltage Swing
 \qquad $\pm 10 \mathrm{~V}$
 - Monolithic Bipolar Dielectric Isolation Construction Description

The Harris HA-2539 represents the ultimate in high slew rate, wideband, monolithic operational amplifiers. It has been designed and constructed with the Harris High Frequency Bipolar Dielectric Isolation process and features dynamic parameters never before available from a truly differential device.
With a $600 \mathrm{~V} / \mu$ s slew rate and a 600 MHz gain bandwidth product, the HA-2539 is ideally suited for use in video and RF amplifier designs, in closed loop gains of 10 or greater. Full $\pm 10 \mathrm{~V}$ swing coupled with outstanding A.C. parameters and complemented by high open loop gain makes the devices useful in high speed data acquisition systems.

Applications

- Pulse and Video Amplifiers
- Wideband Amplifiers
- High Speed Sample-Hold Circuits
- RF Oscillators

The HA-2539 is available in 14 pin ceramic and plastic DIP. The HA-2539-2 operates over $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range while the HA-2539-5 operates over the $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ range. Additionally, SOIC packaging is available in -5 and -9 temperature grades.
For further design assistance please refer to Application Note 541 (Using The HA-2539 Very High Slew Rate Wideband Operational Amplifiers) and Application Note 556 (Thermal Safe-Operating-Areas For High Current Operational Amplifiers).
For military grade product information, the HA-2539/883 data sheet is available upon request.

Pinout

HA1-2539/2539C (CERAMIC DIP)
HA3-2539/2539C (PLASTIC DIP) HA9P2539/2539C (SOIC)

TOP VIEW

(N.C.) No Connection pins may be tied to a ground plane for better isolation and heat dissipation.

Schematic

[^37]Copyright © Harris Corporation 1990

Specifications HA-2539

Absolute Maximum Ratings (Note 1)
Voltage Between V+ and V-Terminals . 35V
Differential Voltage. $\pm 6 \mathrm{~V}$
Peak Output Current . 50mA
Continuous Output Current . 33mA Arms $^{\text {. }}$
Internal Quiescent Power Dissipation (Note 2)
... 870mW
(Ceramic DIP)

Operating Temperature Range

HA-2539-2
$.-55^{\circ} \mathrm{C} \leq T A \leq+125^{\circ} \mathrm{C}$
HA-2539/2539.
$. .0^{\circ} \mathrm{C} \leq T A \leq+75^{\circ} \mathrm{C}$
HA-2539-9
39C-5. $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+150^{\circ} \mathrm{C}$
Storage Temperature Range $\ldots \ldots65^{\circ} \mathrm{C} \leq T A \leq+150^{\circ} \mathrm{C}$
Maximum Junction Temperature
$-65^{\circ} \mathrm{C} \leq T \mathrm{TA} \leq+150^{\circ} \mathrm{C}$
$. \ldots+175^{\circ} \mathrm{C}$

Electrical Specifications $V_{S U P P L Y}= \pm 15 \mathrm{~V}, R_{L}=1 \mathrm{k} \Omega, C_{L} \leq 10 \mathrm{pF}$, Unless Otherwise Specified.

PARAMETER	TEMP	HA-2539-2			HA-2539-5, -9			HA-2539C-5, -9			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
INPUT CHARACTERISTICS											
Offset Voltage	$\begin{gathered} +25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$	-	8 13	$\begin{aligned} & 10 \\ & 15 \end{aligned}$	-	8 13	15 20	-	8 13	15 20	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Average Offset Voltage Drift	Full	-	20	-	-	20	-	-	20	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Bias Current	$+25^{\circ} \mathrm{C}$	-	5	20	-	5	20	-	5	20	$\mu \mathrm{A}$
	Full	-	-	25	-	-	25	-	-	25	$\mu \mathrm{A}$
Offset Current	$+25^{\circ} \mathrm{C}$	-	1	6	-	1	6	-	1	6	$\mu \mathrm{A}$
	Full	-	-	8	-	-	8	-	-	8	$\mu \mathrm{A}$
Input Resistance	$+25^{\circ} \mathrm{C}$	-	10	-	-	10	-	-	10	-	$k \Omega$
Input Capacitance	$+25^{\circ} \mathrm{C}$	-	1	-	-	1	-	-	1	-	pF
Common Mode Range	Full	± 10	-	-	± 10	-	-	± 10	-	-	V
Input Current Noise ($\mathrm{f}=1 \mathrm{KHz}, \mathrm{R}_{\text {SOURCE }}=0 \Omega$)	$+25^{\circ} \mathrm{C}$	-	6	-	-	6	-	-	6	-	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
Input Voltage Noise ($\mathrm{f}=1 \mathrm{KHz}, \mathrm{RSOURCES}=0 \Omega$)	$+25^{\circ} \mathrm{C}$	-	6	-	-	6	-	-	6	-	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
TRANSFER CHARACTERISTICS											
Large Signal Voltage Gain (Note 3)	$\begin{gathered} +25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$	$\begin{gathered} 10 \mathrm{~K} \\ 5 \mathrm{~K} \end{gathered}$	$15 K$	-	$\begin{gathered} 10 \mathrm{~K} \\ 5 \mathrm{~K} \end{gathered}$	15K	-	$\begin{aligned} & 7 K \\ & 5 K \end{aligned}$	10 K -	-	$\begin{aligned} & V / V \\ & V / V \end{aligned}$
Common-Mode Rejection Ratio (Note 4)	Full	60	72	-	60	72	-	60	72	-	$d B$
Minimum Stable Gain	$+25^{\circ} \mathrm{C}$	10	-	-	10	-	-	10	-	-	V / V
Gain Bandwidth Product (Notes 5 \& 6)	$+25^{\circ} \mathrm{C}$	-	600	-	-	600	-	-	600	-	MHz
OUTPUT CHARACTERISTICS											
Output Voltage Swing (Note 3, 10)	Full	± 10	-	-	± 10	-	-	± 10	-	-	V
Output Current (Note 3)	$+25^{\circ} \mathrm{C}$	± 10	± 20	-	± 10	± 20	-	± 10	± 20	-	mA
Output Resistance	$+25^{\circ} \mathrm{C}$	-	30	-	-	30	-	-	30	-	Ω
Full Power Bandwidth (Notes 3 \& 7)	$+25^{\circ} \mathrm{C}$	8.7	9.5	-	8.7	9.5	-	8.7	9.5	-	MHz
TRANSIENT RESPONSE (Note 8)											
Rise Time	$+25^{\circ} \mathrm{C}$	-	7	-	-	7	-	-	7	-	ns
Overshoot	$+25^{\circ} \mathrm{C}$	-	15	-	-	15	-	-	15	-	\%
Slew Rate	$+25^{\circ} \mathrm{C}$	550	600	-	550	600	-	550	600	-	$\mathrm{V} / \mathrm{\mu s}$
Settling Time: 10 V Step to 0.1\%	$+25^{\circ} \mathrm{C}$	-	180	-	-	180	-	-	200	-	ns
POWER REQUIREMENTS											
Supply Current	Full	-	20	25	-	20	25	-	20	25	mA
Power Supply Rejection Ratio (Note 9)	Full	60	70	-	60	70	-	60	70	-	dB

NOTES:

1. Absolute maximum ratings are limiting values, applied individually, beyond which the serviceability of the circuit may be impaired. Functional operability under any of these conditions is not necessarily imptied.
2. This value assumes a no load condition: Maximum power dissipation with load conditions must be designed to maintain the maximum junction temperature below $+175^{\circ} \mathrm{C}$. By using Application Note 556 on Safe Operating Area equations, along with the packaging thermal resistances listed in the die information section, proper load conditions can be determined. Heat sinking is recommended above $+75^{\circ} \mathrm{C}$ with suggested models:
Thermalloy \#6007 ($\theta_{\mathrm{SA}}=40^{\circ} \mathrm{C} / \mathrm{W}$) or AAVID \#5602B $\left(\theta_{\mathrm{SA}}=16^{\circ} \mathrm{C} / \mathrm{W}\right)$.
3. $R_{L}=1 \mathrm{k} \Omega, V_{O}= \pm 10 \mathrm{~V}$
4. $\mathrm{VCM}= \pm 10 \mathrm{~V}$
5. $V_{O}=90 \mathrm{mV}$
6. $A_{V}=10$.
7. Full Power Bandwidth guaranteed based on slew rate measurement using FPBW $=\frac{\text { Slew Rate }}{2 \pi V_{\text {PEAK }}}$
8. Refer to Test Circuits section of data sheet.
9. $\mathrm{V}_{\text {SUPPLY }}= \pm 5 \mathrm{VDC}$ to $\pm 15 \mathrm{VDC}$
10. Guaranteed range for output voltage is $\pm 10 \mathrm{~V}$. Functional operation outside of this range is not guaranteed.

Test Circuits

TEST CIRCUIT

LARGE SIGNAL RESPONSE
Vertical Scale: $A=0.5 \mathrm{~V} /$ Div., $B=5.0 \mathrm{~V} /$ Div. Horizontal Scale: Time: 50ns/Div.

SMALL SIGNAL RESPONSE
Vertical Scale: Input $=10 \mathrm{mV} /$ Div., Output $=50 \mathrm{mV} /$ Div . Horizontal Scale: 20ns/Div.

SETTLING TIME TEST CIRCUIT

- $A_{V}=-10$
- Load Capacitance should be less than 10 pF .
- It is recommended that resistors be carbon composition and that feedback and summing network ratios be matched to 0.1%.
- SETTLE POINT (Summing Node) capacitance should be less than 10 pF . For optimum settling time results, it is recommended that the test circuit be constructed directly onto the device pins. A Tektronix 568 Sampling Oscilloscope with S-3A sampling.heads is recommended as a settle point monitor.

Typical Performance Curves

INPUT OFFSET VOLTAGE AND BIAS CURRENT vs. TEMPERATURE

BROADBAND NOISE (0.1 Hz to 1 MHz)
Vertical Scale: $10 \mu \mathrm{~V} / \mathrm{Div}$.
Horizontal Scale: $50 \mathrm{~ms} /$ Div.

POWER SUPPLY REJECTION RATIO
vs. FREQUENCY

INPUT NOISE VOLTAGE AND NOISE CURRENT vs. FREQUENCY

COMMON MODE REJECTION RATIO vs. FREQUENCY

OPEN LOOP GAIN/PHASE vs. FREQUENCY HA-2539

Typical Performance Curves (Continued)

CLOSED LOOP FREQUENCY RESPONSE FOR VARIOUS CLOSED LOOP GAINS

OUTPUT VOLTAGE SWING vs. LOAD RESISTANCE

SETTLING TIME FOR VARIOUS OUTPUT STEP VOLTAGES

OUTPUT VOLTAGE SWING vs. FREQUENCY

NORMALIZED AC PARAMETERS vs. TEMPERATURE

POWER SUPPLY CURRENT vs. TEMPERATURE AND SUPPLY VOLTAGE

3

Applications

FREQUENCY COMPENSATION BY OVERDAMPING

$$
\operatorname{Set} A_{V}=1+\frac{R_{1}}{R_{2}}=5
$$

REDUCING DC ERRORS
COMPOSITE AMPLIFIER

STABILIZATION USING ZIN

$$
\text { Set } A_{V}=\frac{-R_{2}}{R_{1}}=-3
$$

DIFFERENTIAL GAIN ERROR (3\%) HA-2539 20dB VIDEO GAIN BLOCK

NOTE: No connect pins (NC) on the HA-2539 should be tied to a ground plane.
Refer to Figure 4 in Application Note 541 for detailed Application suggestions.

Die Characteristics

Transistor Count. 30		
Die Dimensions		x
	$(1910 \mu \mathrm{~m} \times 1550 \mu \mathrm{~m} \times 483 \mu \mathrm{~m})$	
Substrate Potential (Power Up)*		
Process	High Frequency Bipolar-DI	
Passivation		
Thermal Constants (${ }^{\circ} \mathrm{C} / \mathrm{W}$)	$0_{\text {ja }}$	θ_{ic}
HA1-2539/2539C Ceramic DIP	104	48
HA3-2539/2539C Plastic DIP	95	46
HA9P2539/2539C SOIC	119	36

*The substrate may be left floating (Insulating Die Mount) or it may be mounted on conductor at V - potential.

Wideband, Fast Settling Operational Amplifier

Features

- Very High Slew Rate . 400V/ $\mu \mathrm{s}$
- Fast Settling Time 200 ns
- Wide Gain-Bandwidth ($\mathrm{AV} \leq 10$) 400MHz
- Power Bandwidth6MHz
- Low Offset Voltage 8 mV
- Input Voltage Noise $6 n \mathrm{n} / \sqrt{\mathrm{Hz}}$
- Output Voltage Swing $\pm 10 \mathrm{~V}$
- Monolithic Bipolar Construction

Applications

- Pulse and Video Amplifiers
- Wideband Amplifiers
- High Speed Sample-Hold Circuits
- Fast, Precise D/A Converters

Description

The Harris HA-2540 is a wideband, very high slew rate, monolithic operational amplifier featuring superior speed and bandwidth characteristics. Bipolar construction coupled with dielectric isolation allows this truly differential device to deliver outstanding performance in circuits where closed loop gain is 10 or greater. Additionally, the HA-2540 has a drive capability of $\pm 10 \mathrm{~V}$ into a $1 \mathrm{~K} \Omega$ load. Other desirable characteristics include low input voltage noise, low offset voltage, and fast settling time.
A $400 / \mu \mathrm{s}$ slew rate ensures high performance in video and pulse amplification circuits, while the 400 MHz gain-band-width-product is ideally suited for wideband signal amplification. A settling time of 200 ns also makes the HA-2540 an excellent selection for high speed Data Acquisition Systems.
The HA-2540-2 is specified over the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ range while the HA-2540-5 is specified from $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$. The HA-2540 is available in the 14 pin Ceramic and Plastic DIP packages. A SOIC packaging option is also available in -5 and -9 temperature grades.
Refer to Application Note 541 and Application Note 556 for more information on High Speed Op-Amp applications. MIL-STD-883 data sheet is available on request.

Pinout

HA1-2540/2540C (CERAMIC DIP)
HA3-2540/2540C (PLASTIC DIP) HA92540/2540C (SOIC) TOP VIEW

NC No Connection. These pins may be tied to a ground plane for added isolation and heat dissipation

Schematic

Operating Temperature Ranges
HA-2540- \qquad $55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}$
HA-2540/2540C-5 $0^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+75^{\circ} \mathrm{C}$
HA-2540/2540C-9
\qquad $-40^{\circ} \mathrm{C} \leq T_{A} \leq+85^{\circ} \mathrm{C}$ Storage Temperature Range $-65^{\circ} \mathrm{C} \leq T_{A} \leq+150^{\circ} \mathrm{C}$
Junction Temperature \qquad $+175^{\circ} \mathrm{C}$

Electrical Specifications $V_{S U P P L Y}= \pm 15 \mathrm{~V}, R_{L}=1 \mathrm{k} \Omega, C_{L} \leq 10 p F$, Unless Otherwise Specified.

PARAMETER	TEMP	HA-2540-2			HA-2540-5, -9			HA-2540C-5, -9			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
INPUT CHARACTERISTICS											
Offset Voltage	$\begin{gathered} +25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$	-	$\begin{gathered} 8 \\ 13 \end{gathered}$	$\begin{aligned} & 10 \\ & 15 \end{aligned}$	-	$\begin{gathered} 8 \\ 13 \end{gathered}$	$\begin{aligned} & 15 \\ & 20 \end{aligned}$	-	$\begin{gathered} 8 \\ 13 \end{gathered}$	$\begin{aligned} & 15 \\ & 20 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Average Offset Voltage Drift	Full	-	20	-	-	20	-	-	20	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Bias Current	$+25^{\circ} \mathrm{C}$	-	5	20	-	5	20	-	5	20	$\mu \mathrm{A}$
	Full	-	-	25	-	-	25	-	-	25	$\mu \mathrm{A}$
Offset Current	$+25^{\circ} \mathrm{C}$	-	1	6	-	1	6	-	1	6	$\mu \mathrm{A}$
	Full	-	-	8	-	-	8	-	-	8	$\mu \mathrm{A}$
Input Resistance	$+25^{\circ} \mathrm{C}$	-	10	-	-	10	-	-	10	-	$k \Omega$
Input Capacitance	$+25^{\circ} \mathrm{C}$	-	1	-	-	1	-	-	1	-	pF
Common Mode Range	Full	± 10	-	-	± 10	-	-	± 10	-	-	V
Input Noise Current ($\mathrm{f}=1 \mathrm{kHz}, \mathrm{R}_{\text {SOURCE }}=0 \Omega$)	$+25^{\circ} \mathrm{C}$	-	6	-	-	6	-	-	6	-	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
Input Noise Voltage ($\mathrm{f}=1 \mathrm{kHz}, \mathrm{R}_{\text {SOURCES }}=0 \Omega$)	$+25^{\circ} \mathrm{C}$	-	6	-	-	6	-	-	6	-	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
TRANSFER CHARACTERISTICS											
Large Signal Voltage Gain (Note 3)	$\begin{gathered} +25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$	10K 5K	$15 \mathrm{~K}$	-	$\begin{gathered} 10 \mathrm{~K} \\ 5 \mathrm{~K} \end{gathered}$	$15 \mathrm{~K}$	-	$\begin{aligned} & 7 K \\ & 5 K \end{aligned}$	$10 \mathrm{~K}$	-	$\begin{aligned} & \mathrm{V} N \\ & \mathrm{~V} N \end{aligned}$
Common-Mode Rejection Ratio (Note 4)	Full	60	72	-	60	72	-	60	72	-	dB
Minimum Stable Gain	$+25^{\circ} \mathrm{C}$	10	-	-	10	-	-	10	-	-	V/N
Gain-Bandwidth-Product (Notes 5 \& 6)	$+25^{\circ} \mathrm{C}$	-	400	-	-	400	-	-	400	-	MHz
OUTPUT CHARACTERISTICS											
Output Voltage Swing (Note 3, 10)	Full	± 10	-	-	± 10	-	-	± 10	-	-	V
Output Current (Note 3)	$+25^{\circ} \mathrm{C}$	± 10	± 20	-	± 10	± 20	-	± 10	± 20	-	mA
Output Resistance	$+25^{\circ} \mathrm{C}$	-	30	-	-	30	-	-	30	-	Ω
Full Power Bandwidth (Notes 3 \& 7)	$+25^{\circ} \mathrm{C}$	5.5	6	-	5.5	6	-	5.5	6	-	MHz
TRANSIENT RESPONSE (Note 8)											
Rise Time	$+25^{\circ} \mathrm{C}$	-	14	-	-	14	-	-	14	-	ns
Overshoot	$+25^{\circ} \mathrm{C}$	-	5	-	-	5	-	-	5	-	\%
Slew Rate	$+25^{\circ} \mathrm{C}$	350	400	-	350	400	-	350	400	-	$\mathrm{V} / \mathrm{\mu s}$
Settling Time: 10 V Step to 0.1\%	$+25^{\circ} \mathrm{C}$	-	140	-	-	140	-	-	140	-	ns
POWER REQUIREMENTS											
Supply Current	Full	-	20	25	-	20	25	-	20	25	mA
Power Supply Rejection Ratio (Note 9)	Full	60	70	-	60	70	-	60	70	-	dB

NOTES

1. Absolute maximum ratings are limiting values, applied individually, beyond which the serviceability of the circuit may be impaired. Functional operability under any of these conditions is not necessarily implied.
. This value assumes a no load condition: Maximum power dissipation with load conditions must be designed to maintain the maximum junction temperature below $+175^{\circ} \mathrm{C}$. By using Application Note 556 on Safe Operating Area Equations, along with the packaging thermal resistances listed in the Die Information section, proper load conditions can be delermined. Heat sinking is recommended above $+75^{\circ} \mathrm{C}$ with suggested models:

Thermalloy \#6007 $\left(\theta_{\mathrm{SA}} \simeq 40^{\circ} \mathrm{C} / \mathrm{W}\right)$ or $\mathrm{AAVID} \# 5602 \mathrm{~B}\left(\theta_{\mathrm{SA}} \simeq 16^{\circ} \mathrm{C} / \mathrm{W}\right)$.
3. $R_{L}=1 \mathrm{k} \Omega, V_{O}= \pm 10 \mathrm{~V}$.
4. $V_{C M}= \pm 10 \mathrm{~V}$
5. $V_{0}=90 \mathrm{mV}$
6. $A_{V}=10 \mathrm{~V}$.
7. Full power bandwidth guaranteed based on slew rate

$$
\text { measurement using: FPBW }=\frac{\text { Slew Rate }}{2 \pi V_{\text {PEAK }}}
$$

8. Refer to Test Circuits section of the data sheet.
9. $V_{S U P P L Y}= \pm 5$ VDC to $\pm 15 \mathrm{VDC}$.
10. Guaranteed range for output voltage is $\pm 10 \mathrm{~V}$. Functional operation outside of this range is not guaranteed.

Test Circuits

LARGE AND SMALL SIGNAL RESPONSE TEST CIRCUIT

LARGE SIGNAL RESPONSE
Vertical Scale: (Volts: $A=0.5 \mathrm{~V} /$ Div., $B=5.0 \mathrm{~V} / \mathrm{Div}$.)
Horizontal Scale: (Time: 50ns/Div.)

SMALL SIGNAL RESPONSE
Vertical Scale: Input $=10 \mathrm{mV} /$ Div.; Output $=50 \mathrm{mV} /$ Div
Horizontal Scale: 20ns/Div.

TURN-ON TIME DELAY TYPICALLY 4ns.

SETTLING TIME TEST CIRCUIT

- $A_{V}=-10$
- Load Capacitance should be less than $10 p F$. Turn on time delay typically 4ns.
- It is recommended that resistors be carbon composition and that feedback and summing network ratios be matched to 0.1%.
- SETTLE POINT (Summing Node) capacitance should be less than 10pF For optimum settling time results, it is recommened that the test circuit be constructed directly onto the device pins. A Tektronix 568 Sampling Oscilloscope with S-3A sampling heads is recommended as a settle point monitor

Performance Curves

CLOSED LOOP FREQUENCY RESPONSE

OUTPUT VOLTAGE SWING vs. LOAD RESISTANCE

SETTLING TIME FOR VARIOUS
OUTPUT STEP VOLTAGES

OUTPUT VOLTAGE SWING vs. FREQUENCY

NORMALIZED AC PARAMETERS vs. TEMPERATURE

POWER SUPPLY CURRENT vs. TEMPERATURE AND SUPPLY VOLTAGE

Applications

WIDEBAND SIGNAL SPLITTER

With one HA-2540 and two low capacitance switching circuit is most useful for full wave rectification, AM detectors diodes, signals exceeding 10 MHz can be seperated. This or sync generation.

BOOTSTRAPPING FOR MORE OUTPUT CURRENT AND VOLTAGE SWING

NOTES:

1. Used for experimental purposes. $\mathrm{Cf} \approx 3 \mathrm{pF}$.
2. C_{1} is optional ($0.001 \mu \mathrm{~F} \rightarrow 0.01 \mu \mathrm{~F}$ ceramic)
3. R_{5} is optional and can be utilized to reduce input signal amplitude and/or balance input conditions. $\mathbf{R}_{5}=500 \Omega$ to $1 \mathrm{k} \Omega$.

Refer to Application Note 541 For Further Applications Information.
Die Characteristics

HA-2541

Wideband, Fast Settling, Unity Gain Stable, Operational Amplifier

May 1990

	Features
	- Unity Gain Bandwidth 40MHz
	- High Slew Rate . 250V/ $/ \mathrm{s}$
	- Low Offset Voltage 0.8mV
	- Fast Settling Time (0.1\%) 90ns
	- Power Bandwidth 4MHz
	- Output Voltage Swing (Min) $\pm 10 \mathrm{~V}$
	- Unity Gain Stability
	- Monolithic Bipolar Dielectric Isolation Construction
	Description
	The HA-2541 is the first unity gain stable monolithic operational amplifier to achieve 40 MHz unity gain bandwidth. A major addition to the Harris series of high speed, wideband op amps, the HA-2541 is designed for video and pulse applications requiring stable amplifier response at low closed loop gains.

The uniqueness of the HA-2541 is that its slew rate and bandwidth characteristics are specified at unity gain. Historically, high slew rate, wide bandwidth and unity gain stability have been incompatible features for a monolithic operational amplifier. But features such as $250 \mathrm{~V} / \mu \mathrm{s}$ slew rate and 40 MHz unity gain bandwidth clearly show that this is not the case for the HA-2541. These features, along with

Applications

- Pulse and Video Amplifiers
- Wideband Amplifiers
- High Speed Sample-Hold Circuits
- Fast, Precise D/A Converters
- High Speed A/D Input Buffer

90ns settling time to 0.1%, make this product an excellent choice for high speed data acquisition systems.

Packaged in a metal can (TO-8) or 14 pin ceramic DIP, the HA-2541 is pin compatible with the HA-2540 and HA-5190 op amps. The HA-2541-2 is specified over the temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. The $\mathrm{HA}-2541-5$ is specified over the temperature range of $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$. For the military grade product, refer to the HA-2541 military data sheet.
For further application suggestions on the HA-2541, please refer to Applicaton Note 550 (Using the HA-2541), and Application Note 556 (Thermal Safe-Operating-Areas For High Current Operational Amplifiers). Also see 'Applications' in this data sheet.

Pinouts

HA2-2541 METAL CAN (TO-8) TOP VIEW

VCASE $=V$

CAUTION: These devices are sensitive to electrostic discharge. Proper l.C. handling procedures should be followed.
Copyright (C) Harris Corporation 1990

Absolute Maximum Ratings (Note 1)

Continuous Output Current

Operating Temperature Range:
HA-2541-2 \qquad $-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}$
HA-2541-5
$.0^{\circ} \mathrm{C} \leq T_{A} \leq+75^{\circ} \mathrm{C}$
Storage Temperature Range
............... . .
$-65^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+150^{\circ} \mathrm{C}$
Maximum Junction Temperature (Note 11)
$\ldots \ldots \ldots \ldots+175^{\circ} \mathrm{C}$
Electrical Specifications $V_{S U P P L Y}= \pm 15$ Volts; $R_{L}=1 k \Omega, C_{L} \leq 10 p F$, Unless Otherwise Specified

PARAMETER	TEMP	$\begin{gathered} \text { HA-2541-2 } \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$			$\begin{gathered} \mathrm{HA}-2541-5 \\ \mathrm{O}^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \end{gathered}$			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
INPUT CHARACTERISTICS								
Offset Voltage	$\begin{gathered} +25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$	-	0.8 -	2	-	1	$\begin{aligned} & 2 \\ & 6 \end{aligned}$	$\begin{aligned} & m V \\ & m V \end{aligned}$
Average Offset Voltage Drift	Full	-	9	-	-	9	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Bias Current	$+25^{\circ} \mathrm{C}$	-	11	35	-	11	35	$\mu \mathrm{A}$
	Full	-	-	50	-	-	50	$\mu \mathrm{A}$
Average Bias Current Drift	Full	-	85	-	-	85	-	$n A /^{\circ} \mathrm{C}$
Offset Current	$+25^{\circ} \mathrm{C}$	-	1	7	-	1	7	$\mu \mathrm{A}$
	Full	-	-	9	-	-	9	$\mu \mathrm{A}$
Input Resistance	$+25^{\circ} \mathrm{C}$	-	100	-	-	100	-	$\mathrm{k} \boldsymbol{\Omega}$
Input Capacitance	$+25^{\circ} \mathrm{C}$	-	1	-	-	1	-	pF
Common Mode Range	Full	± 10	± 11	-	± 10	± 11	-	V
Input Noise Voltage ($f=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{g}}=0 \Omega$)	$+25^{\circ} \mathrm{C}$	-	10	-	-	10	-	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Input Noise Current ($\mathrm{f}=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{g}}=0 \Omega$)	$+25^{\circ} \mathrm{C}$	-	4	-	-	4	-	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
TRANSFER CHARACTERISTICS								
Large Signal Voltage Gain (Note 3)	$+25^{\circ} \mathrm{C}$	10k	16k	-	10k	$16 k$	-	VN
	Full	5 k	-	-	5k	-	-	VN
Common-Mode Rejection Ratio (Note 5)	Full	70	90	-	70	90	-	dB
Minimum Stable Gain	$+25^{\circ} \mathrm{C}$	1	-	-	1	-	-	V/N
Unity Gain-Bandwidth (Note 6)	$+25^{\circ} \mathrm{C}$	-	40	-	-	40	-	MHz
OUTPUT CHARACTERISTICS								
Output Voltage Swing (Note 4)	Full	± 10	± 11	-	± 10	± 11	-	V
Output Current (Note 4)	$+25^{\circ} \mathrm{C}$	± 10	± 15	-	± 10	± 15	-	mA
Output Resistance	$+25^{\circ} \mathrm{C}$	-	2	-	-	2	-	Ω
Full Power Bandwidth (Note 3 \& 7)	$+25^{\circ} \mathrm{C}$	3	4	-	3	4	-	MHz
Differential Gain (Note 2)	$+25^{\circ} \mathrm{C}$	-	0.1	-	-	0.1	-	\%
Differential Phase (Note 2)	$+25^{\circ} \mathrm{C}$	-	0.2	-	-	0.2	-	Degree
Harmonic Distortion (Note 10)	$+25^{\circ} \mathrm{C}$	-	<0.01	-	-	<0.01.	-	\%
TRANSIENT RESPONSE (Note 8)								
Rise Time	$+25^{\circ} \mathrm{C}$	-	4	-	-	4	-	ns
Overshoot	$+25^{\circ} \mathrm{C}$	-	40	-	-	40	-	\%
Slew Rate	$+25^{\circ} \mathrm{C}$	200	250	-	200	250	-	$\mathrm{V} / \mathrm{\mu s}$
Settling Time: $\quad 10 \mathrm{~V}$ Step to 0.1%	$+25^{\circ} \mathrm{C}$	-	90	-	-	90	-	ns
10V Step to 0.01\%	$+25^{\circ} \mathrm{C}$	-	175	-	-	175	-	ns
POWER REQUIREMENTS								
Supply Current	$+25^{\circ} \mathrm{C}$	-	29	-	-	29	-	mA
	Full	-	-	40	-	-	40	mA
Power Supply Rejection Ratio (Note 9)	Full	70	80	-	70	78.	-	dB

NOTES:

1. Absolute maximum ratings are limiting values, applied individually, beyond which the serviceability of the circuit may be impaired. Functional operability under any of these conditions is not necessarily implied.
2. Differential Gain and Phase are measured with a 1 Volt differential voltage at 5 MHz .
3. $V_{O}= \pm 10 \mathrm{~V}$
4. $R_{L}=1 \mathrm{k} \Omega$
5. $V_{C M}= \pm 10 \mathrm{~V}$
6. $V_{O}=90 \mathrm{mV}$.
7. Full Power Bandwidth guaranteed based on slew rate measurement using FPBW $=\frac{\text { Slew Rate }}{2 \pi V_{\text {PEAK }}}$
8. Refer to Test Circuits section of this data sheet
9. $V_{\text {SUPPLY }}= \pm 5 \mathrm{VDC}$ to $\pm 15 \mathrm{VDC}$
10. $\mathrm{V}_{\mathrm{IN}}=1 \mathrm{~V}_{\text {RMS }} ; f=10 \mathrm{kHz} ; \mathrm{A}_{\mathrm{V}}=10$
11. This value assumes a no load condition:Maximum power dissipation with load conditions must be designed to maintain the maximum junction temperature below $+175^{\circ} \mathrm{C}$. By using Application Note 556 on Safe operating Area equations, along with the packaging thermal resistances listed in the Die Characteristics section, proper load conditions can be determined. Heat sinking is recommended above $+75^{\circ} \mathrm{C}$ with suggested models:

14 Lead Ceramic DIP:
Thermalloy \#6007 or AAVID \#5602B ($\left.\theta_{\text {sa }}=16^{\circ} \mathrm{C} / \mathrm{W}\right)$.
12 Lead Metal Can (TO-8):
Thermalioy \#2240A ($\theta_{\text {sa }}=27^{\circ} \mathrm{C} / \mathrm{W}$) or \#22688 ($\left.\theta_{\mathrm{sa}}=24^{\circ} \mathrm{C} / \mathrm{W}\right)$

Test Circuits

TEST CIRCUIT

$V_{S}= \pm 15 \mathrm{~V}$
$A_{V}=+1$
$C_{L} \leq 10 \mathrm{pF}$

LARGE SIGNAL RESPONSE
Vertical Scale (Volts: 5V/Div.)
Horizontal Scale (Time: $50 \mathrm{~ns} /$ Div.)

SMALL SIGNAL RESPONSE
Vertical Scale (Volts: $100 \mathrm{mV} /$ Div.)
Horizontal Scale (Time: 50ns/Div.)

PROPAGATION DELAY
Vertical Scale (Volts: $100 \mathrm{mV} / \mathrm{Div}^{2}$)
Horizontal Scale (Time: 5ns/Div.)

$V_{S}= \pm 15 \mathrm{~V}, R_{\mathrm{L}}=1 \mathrm{k} \Omega$
$T=+25^{\circ} \mathrm{C}$
Propagation delay variance is negligible over full temperature range.

Test Circuits (Continued)

SETTLING TIME TEST CIRCUIT

- $A V=-1$
- Feedback and Summing Resistors Must Be Matched (0.1\%)
- HP5082-2810 Clipping Diodes Recommended
- Tektronix P6201 FET Probe Used At Settling Point.

Typical Performance Curves

INPUT RESISTANCE vs. FREQUENCY

NOISE DENSITY vs. FREQUENCY
$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

Suggested Offset Voltage Adjustment

Tested Offset Adjustment Range is $/ \mathrm{V}_{\mathrm{OS}}=1 \mathrm{mV} \mid$ minimum referred to output. Typical range is $\pm 15 \mathrm{mV}$ for $\mathrm{R}_{\mathrm{T}}=5 \mathrm{k} \Omega$

BIAS CURRENT DRIFT WITH TEMPERATURE Of 6 Representative Units

Typical Performance Curves (Continued)

OUTPUT VOLTAGE SWING vs. SUPPLY VOLTAGE
At Various Temperatures

SUPPLY CURRENT vs. SUPPLY VOLTAGE
At Various Temperatures

PSRR vs. SUPPLY VOLTAGE
Average of 3 Lots At Various Temperatures

OUTPUT CURRENT vs. SUPPLY VOLTAGE At Various Temperatures

SLEW RATE vs. SUPPLY VOLTAGE Normalized With $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$ at $+25^{\circ} \mathrm{C}$

CMRR vs. SUPPLY VOLTAGE
Average of 3 Lots At Various Temperatures

Applications (Also See Application Note 550)

APPLICATION 1. DRIVING POWER TRANSISTORS TO GAIN ADDITIONAL CURRENT BOOSTING

APPLICATION 1

High power amplifiers and buffers are in use in a wide variety of applications. Many times the "high power" capability is needed to drive large capacitive loads as well as low value resistive loads. In both cases the final driver stage is usually a power transistor of some type, but because of their inherently low gain, several stages of pre-drivers are often required. The HA-2541, with its 10 mA output rating, is powerful enough to drive a power transistor without additional stages of current amplification. This

APPLICATION 2

Video

One of the primary uses of the HA-2541 is in the area of video applications. These applications include signal construction, synchronization addition and removal, as well as signal modification. A wide bandwidth device such as the HA-2541 is well suited for use in this class of amplifier. This, however, is a more involved group of applications than ordinary amplifier applications since video signals contain precise DC levels which must be retained.

The addition of a clamping circuit restores D.C. levels at the output of an amplifier stage. The circuit shown in Application 2 utilizes the HA-5320 sample and hold amplifier as the D.C. clamp. Also shown is a 3.57 MHz trap in series, which will block the color burst portion of the video signal and allow the D.C. level to be amplified and restored.
capability is well demonstrated with the high power buffer circuit in Application 1.

The HA-2541 acts as the pre-driver to the output power transistor. Together, they form a unity gain buffer with the ability to drive three 50 ohm coaxial cables in parallel, each with a capacitance of 2000 pF . The total combined load is 16.6 ohms and 6000 pF capacitance.

APPLICATION 2. VIDEO D.C. RESTORER

Die Characteristics

Transistor Count. 41		
Die Dimensions		$\times 19$
($2250 \mu \mathrm{~m} \times 1990 \mu \mathrm{~m} \times 485 \mu \mathrm{~m}$)		
Substrate Potential (Power Up)* V-	
Process	High Frequency Bipolar	
Dielectric Isolation		
Passivation		
Thermal Constants (${ }^{\circ} \mathrm{C} / \mathrm{W}$)	$\theta_{\text {ja }}$	θ_{j}
Ceramic DIP	91	35
Metal Can	66	30

*The substrate may be left floating (Insulating Die Mount) or it may be mounted on a conductor at V-potential.

May 1990

Wideband, High Slew Rate, High Output Current Operational Amplifier

Features

- Stable at Gains of 2 or Greater
- Gain Bandwidth \qquad 70MHz
- High Slew Rate (Min.) . 300V/ $/$ s
- High Output Current (Min.) 100mA
- Power Bandwidth (Typ.)
5.5 MHz
- Output Voltage Swing (Min.) $\pm 10 \mathrm{~V}$
- Monolithic Bipolar Dielectric Isolation Construction

Description

The HA-2542 is a wideband, high slew rate, monolithic operational amplifier featuring an outstanding combination of speed, bandwidth, and output drive capability.

Utilizing the advantages of the Harris D. I. technology this amplifier offers $350 \mathrm{~V} / \mu \mathrm{s}$ slew rate, 70 MHz gain bandwidth, and $\pm 100 \mathrm{~mA}$ output current. Application of this device is further enhanced through stable operation down to closed loop gains of 2.

For additional flexibility, offset null and frequency compensation controls are included in the HA-2542 pinout.

The capabilities of the HA-2542 are ideally suited for high speed coaxial cable driver circuits where low gain and high output drive requirements are necessary. With 5.5 MHz full power bandwidth, this amplifier is most suitable for high

Applications
- Pulse and Video Amplifiers
- Wideband Amplifiers
- Coaxial Cable Drivers
- Fast Sample-Hold Circuits
- High Frequency Signal Conditioning Circuits

Pinouts

HA1-2542 (CERAMIC DIP), HA3-2542 (PLASTIC DIP)

HA2-2542 (TO-8 METAL CAN)
TOP VIEW

Schematic

Absolute Maximum Ratings (Note 1)
Voltage between V+ and V-Terminals . 35V
Differential Input Voltage. $\pm 6 \mathrm{~V}$
Output Current \qquad 125 mA (Peak) 107 mA rms (Continuous)

Operating Temperature Range

HA-2542-2
$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$
HA-2542-5 $.0^{\circ} \mathrm{C} \leq T_{A}^{-} \leq+75^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+150^{\circ} \mathrm{C}$
Maximum Junction Temperature (Note 11).
$\ldots \ldots \ldots \ldots+175^{\circ} \mathrm{C}$

Electrical Specifications $V_{S U P P L Y}= \pm 15$ Volts; $R_{L}=1 k \Omega, C_{L} \leq 10 p F$, Unless Otherwise Specified.

PARAMETER	TEMP	$\begin{gathered} \text { HA }-2542-2 \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$			$\begin{gathered} \mathrm{HA}-2542-5 \\ 0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \end{gathered}$			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
INPUT CHARACTERISTICS								
Offset Voltage	$+25^{\circ} \mathrm{C}$	-				5	10	mV
	Full	-	8	20	-	8	20	mV
Average Offset Voltage Drift		-	14	-	-	14	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Bias Current	$\begin{gathered} +25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$	-	15	35	-	15	35	$\mu \mathrm{A}$
		-	26	50	-	26	50	$\mu \mathrm{A}$
Average Bias Current Drift Offset Current	$\begin{aligned} & \text { Full } \\ & +25^{\circ} \mathrm{C} \end{aligned}$	-	66	-	-	45	-	$n N^{\circ} \mathrm{C}$
		-	1	7	-	1	7	$\mu \mathrm{A}$
	$\begin{gathered} +25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$	-	-	9	-	-	9	$\mu \mathrm{A}$
Input Resistance	$+25^{\circ} \mathrm{C}$	-	100	-	-	100	-	$k \Omega$
Input Capacitance	$+25^{\circ} \mathrm{C}$	-	1	-	-	1	-	pF
Common Mode Range	Full	± 10	-	-	± 10	-	-	\checkmark
Input Noise Voltage (0.1 Hz to 100 Hz)	$+25^{\circ} \mathrm{C}$	-	2.2	-	-	2.2	-	$\mu \mathrm{Vp}-\mathrm{p}$
Input Noise Voltage Density ($\mathrm{fo}=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{g}}=0 \Omega$)	$\begin{aligned} & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \end{aligned}$	-	10	-	-	10	-	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Input Noise Current Density ($\mathrm{fo}=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{g}}=0 \Omega$)		-	3	-	-	3	-	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
TRANSFER CHARACTERISTICS								
Large Signal Voltage Gain (Note 3)	$\begin{aligned} & +25^{\circ} \mathrm{C} \\ & \text { Full } \\ & \text { Full } \\ & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} 10 k \\ 5 k \\ 70 \\ 2 \\ - \end{gathered}$	$\begin{gathered} 30 k \\ 15 k \\ 100 \\ - \\ 70 \end{gathered}$		$\begin{gathered} 10 k \\ 5 k \\ 70 \\ 2 \\ - \\ \hline \end{gathered}$	30k 20k 100 - 70	-----	VN V/N dB VN MHz
Common-Mode Rejection Ratio (Note 4)								
Minimum Stable Gain								
Gain-Bandwidth-Product (Note 5)								
OUTPUT CHARACTERISTICS								
Output Voltage Swing (Note 3)	$\begin{gathered} \text { Full } \\ +25^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} \pm 10 \\ 100 \\ - \\ 4.7 \\ - \\ - \\ - \end{gathered}$	$\begin{gathered} \pm .11 \\ - \\ 5 \\ 5.5 \\ 0.1 \\ 0.2 \\ <0.04 \end{gathered}$		$\begin{gathered} \pm 10 \\ 100 \\ - \\ 4.7 \\ - \\ - \\ - \\ \hline \end{gathered}$	$\begin{gathered} \pm 11 \\ - \\ 5 \\ 5.5 \\ 0.1 \\ 0.2 \\ <0.04 \end{gathered}$	-------	$\begin{gathered} \mathrm{V} \\ \mathrm{~mA} \\ \Omega \\ \mathrm{MHz} \\ \% \\ \text { Degrees } \\ \% \end{gathered}$
Output Current (Note 6)								
Output Resistance								
Full Power Bandwidth (Note 3 \& 7)								
Differential Gain (Note 2)								
Differential Phase (Note 2)								
Harmonic Distortion (Note 10)								
TRANSIENT RESPONSE (Note 8)								
Rise Time Overshoot Slew Rate Settling Time: \quad V Step to 0.1% 10V Step to 0.01%	$\begin{aligned} & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \end{aligned}$	300	$\begin{gathered} 4 \\ 25 \\ 350 \\ 100 \\ 200 \end{gathered}$	-----	300	$\begin{gathered} 4 \\ 25 \\ 350 \\ 100 \\ 200 \end{gathered}$	-	ns
							-	\%
							-	$\mathrm{V} / \mu \mathrm{s}$
							-	ns
							-	ns
POWER REQUIREMENTS								
Supply Current	$\begin{gathered} +25^{\circ} \mathrm{C} \\ \text { Full } \\ \text { Full } \end{gathered}$	-	30	-	-	30	-	mA
		-	31	34.5	-	31	40	mA
Power Supply Rejection Ratio (Note 9)		70	79	-	70	79	-	dB

NOTES:

1. Absolute maximum ratings are limiting values, applied individually, beyond which the serviceability of the circuit may be impaired. Functional operability under any of these conditions is not necessarily implied.
2. Differential gain and phase are measured at 5 MHz with a 1 Volt differential input voltage.
3. $R_{L}=1 \mathrm{k} \Omega, V_{0}= \pm 10 \mathrm{~V}$
4. $V_{C M}= \pm 10 \mathrm{~V}$
5. $A_{V C L}=100$
6. $R_{L}=50 \Omega, V_{0}= \pm 5 \mathrm{~V}$
7. Full Power Bandwidth guaranteed based on slew rate measurement using FPBW $=\frac{\text { Slew Rate }}{2 \pi V_{\text {PEAK }}}$
8. Refer to Test Circuits section of this data sheet.
9. $V_{\text {SUPPL }}= \pm 5 \mathrm{VDC}$ to $\pm 15 \mathrm{VDC}$
10. $V_{I N}=1 V_{\text {RMS }} f=10 \mathrm{kHz} ; A_{V}=10$.
11. This value assumes a no load condition: Maximum power dissipation with load conditions must be designed to maintain the maximum junction temperature below $+175^{\circ} \mathrm{C}$. By using Application Note 556 on Safe Operating Area equations, along with the packaging thermal resistances listed in the Die Characteristics section, proper load conditions can be determined. Heat sinking is recommended above $+75^{\circ} \mathrm{C}$ with suggested models:
14 Lead Ceramic DIP:
Thermalloy \#6007 or AAVID \#5602B ($\theta_{\text {sa }}=16^{\circ} \mathrm{C} / \mathrm{W}$).
12 Lead Metal Can (TO-8):
Thermailoy \#2240A ($\theta_{\text {sa }}=27^{\circ} \mathrm{C} / \mathrm{W}$) or \#2268B $\left(\theta_{\text {sa }}=24^{\circ} \mathrm{C} / \mathrm{W}\right)$

Test Circuits

$$
\begin{aligned}
& V_{S}= \pm 15 \mathrm{~V} \\
& A V=+2 \\
& C_{L} \leq 10 p F
\end{aligned}
$$

LARGE SIGNAL RESPONSE
Vertical Scale (Volts: $\mathrm{V}_{\text {IN }}=2.0 \mathrm{~V} /$ Div., $\mathrm{V}_{\text {OUT }}=5.0 \mathrm{~V} /$ Div.)
Horizontal Scale (Time: 200ns/Div.)

SMALL SIGNAL RESPONSE
Vertical Scale (Volts: $100 \mathrm{mV} /$ Div.) Horizontal Scale (Time: $50 \mathrm{~ns} /$ Div.)

TIME DELAY
Vertical Scale (Volts: $100 \mathrm{mV} / \mathrm{D}: \mathrm{y}$.
Horizontal Scale (Time: 10ns/Civ.)

$V_{S}= \pm 15 \mathrm{~V}, R_{\mathrm{L}}=1 \mathrm{k} \Omega$
$T=+25^{\circ} \mathrm{C}$
Propagation delay variance is negligible over full temperature range.

Test Circuits (Continued)

- $A_{V}=-2$
- Feedback and summing resistors must be matched (0.1%)
- HP5082-2810 clipping diodes recommended
- Tektronix P6201 FET probe used at settling point
- For 0.01% settling time, heat sinking is suggested to reduce thermal effects and an analog ground plane with supply decoupling is suggested to minimize ground loop errors.

SUGGESTED OFFSET VOLTAGE ADJUSTMENT

Suggested compensation scheme 5-20pF
Tested Offset Adjustment Range is $\left|\mathrm{V}_{\mathrm{OS}}+1 \mathrm{mV}\right|$ minimum referred to output Typical range is +20 mV with $\mathrm{R}_{\mathrm{T}}=5 \mathrm{k} \Omega$.

Typical Performance Curves

INPUT NOISE VOLTAGE AND INPUT NOISE CURRENT vs. FREQUENCY

INPUT RESISTANCE vS. FREQUENCY

OFFSET VOLTAGE DRIFT WITH TEMPERATURE Of Six Representative Units, $V_{S}= \pm 12 \mathrm{~V}$

BIAS CURRENT DRIFT WITH TEMPERATURE Of Six Representative Units, $\mathrm{V}_{\mathrm{S}}= \pm 12 \mathrm{~V}$

Typical Performance Curves (Continued)

BIAS CURRENT vs. POWER SUPPLY
Six Units At Various Supplies At $+25^{\circ} \mathrm{C}$

SUPPLY CURRENT vs. SUPPLY VOLTAGE
At Various Temperatures

SLEW RATE vs. TEMPERATURE
At Various Supply Voltages With R Load $=100 \Omega$

PSRR AND CMRR vs. TEMPERATURE
$V_{S}= \pm 15 \mathrm{~V}$

PSRR AND CMRR vs. FREQUENCY

OPEN LOOP GAIN vs. TEMPERATURE At Various Supply Voltages

Typical Performance Curves (Continued)

OUTPUT VOLTAGE SWING vs. SUPPLY VOLTAGE At Various Temperatures

OUTPUT VOLTAGE SWING vs. FREQUENCY

FREQUENCY RESPONSE CURVES

NORMALIZED AC PARAMETERS vs. COMPENSATION CAPACITANCE

OUTPUT VOLTAGE SWING vs. FREQUENCY
$\mathrm{V}_{\mathrm{S}}= \pm 10 \mathrm{~V}$

HA-2542 CLOSED LOOP GAIN vs. TEMPERATURE

Die Characteristics
 Transistor Count . 43
 Die Dimensions $72 \times 105 \times 19$ mils ($1820 \mu \mathrm{~m} \times 2670 \mu \mathrm{~m} \times 485 \mu \mathrm{~m}$)
 Substrate Potential* . V-
 Process High Frequency Bipolar-DI
 Passivation . Nitride
 Thermal Constants ($\left.{ }^{\circ} \mathrm{C} / \mathrm{W}\right) \quad \theta_{\mathrm{ja}} \quad \theta_{\mathrm{jc}}$
 $\begin{array}{lll}\text { HA1-2542 Ceramic DIP } & 86.6 & 32.5\end{array}$
 $\begin{array}{lll}\text { HA3-2542 Plastic DIP } & 78.8 & 30.6\end{array}$
 HA2-2542 Metal Can 5829

*The substrate may be left floating (Insulating Die Mount) or it may be mounted on a conductor at V -potential.

Typical Applications

(Refer to Application Note 552 for Further Information)
The Harris HA-2542 is a state of the art monolithic device which also approaches the "ALL-IN-ONE" amplifier concept. This device features an outstanding set of AC parameters augmented by excellent output drive capability providing for suitable application in both high speed and high output drive circuits.
Primarily intended to be used in balanced 50Ω and 75Ω coaxial cable systems as a driver, the HA-2542 could also be used as a power booster in audio systems as well as a power amp in power supply circuits. This device would also be suitable as a small DC motor driver.

The applications shown on the following page demonstrate the HA-2542 at gains of +100 and +2 and as a video cable driver for small signals.

Prototyping Guidelines

For best overall performance in any application, it is recommended that high frequency layout techniques be used. This should include: 1) mounting the device through a ground plane: 2) connecting unused pins (N.C.) to the ground plane: 3) mounting feedback components on Teflon standoffs and or locating these components as close to the device as possible; 4) placing power supply decoupling capacitors from device supply pins to ground.

As a result of speed and bandwidth optimization, the HA-2542 can's case potential, when powered-up, is equal to the V - potential. Therefore, contact with other circuitry or ground should be avoided.

Frequency Compensation

The HA-2542 may be externally compensated with a single capacitor to ground. This provides the user the additional flexibility in tailoring the frequency response of the amplifier. A guideline to the response is demonstrated on the typical performance curve showing the normalized A.C. parameters versus compensation capacitance. It is suggested that the user check and tailor the accurate compensation value for each application. As shown additional phase margin is achieved at the loss of slew rate and bandwidth.

For example, for a voltage gain of +2 (or -1) and a load of $500 \mathrm{pF} / 2 \mathrm{k} \Omega, 20 \mathrm{pF}$ is needed for compensation to give a small signal bandwidth of 30 MHz with 40° of phase margin. If a full power output voltage of $\pm 10 \mathrm{~V}$ is needed, this same configuration will provide a bandwidth of 5 MHz and a slew rate of $200 \mathrm{~V} / \mu \mathrm{s}$.

If maximum bandwidth is desired and no compensation is needed, care must be given to minimize parasitic capacitance at the compensation pin. In some cases where minimum gain applications are desired, bending up or totally removing this pin may be the solution. In this case, care must also be given to minimize load capacitance.

For wideband positive unity gain applications, the HA-2542 can also be over-compensated with capacitance greater than 30pF to achieve bandwidths of around 25 MHz . This over-compensation will also improve capacitive load handling or lower the noise bandwidth. This versatility along with the $\pm 100 \mathrm{~mA}$ output current makes the HA-2542 an excellent high speed driver for many power applications.

Typical Applications

AvCL $=100$ PHASE AND GAIN

FREQUENCY $(3 \mathrm{~dB})=56 \mathrm{MHz}$
PHASE $(3 \mathrm{~dB})=40^{\circ}$
(dB)

AvCl $=2$ PHASE AND GAIN

VIDEO CABLE DRIVER (AVCL = 2)

VIDEO CABLE DRIVER PULSE RESPONSE
(1V/Div.; $100 \mathrm{~ns} /$ Div.)

Features

- Gain Bandwidth 50MHz
- High Slew Rate
$150 \mathrm{~V} / \mathrm{\mu s}$
- Low Supply Current 10 mA
- Differential Gain Error $<0.05 \mathrm{~dB}$
- Differential Phase Error <0.1 degree
- Gain Tolerance at $5 \mathrm{MHz} \ldots<0.15 \mathrm{~dB}$

Description

The HA-2544 is a fast, unity gain stable, monolithic op amp designed to meet the needs required for accurate reproduction of video or high speed signals. It offers high voltage gain ($6 \mathrm{kV} / \mathrm{V}$) and high phase margin (65 degrees) while maintaining tight gain tolerance over the video bandwidth. Built from high quality Dielectric Isolation, the HA-2544 is another addition to the Harris series of high speed, wideband Op-Amps, and offers true video performance combined with the versatility of an op-amp.

The primary features of the HA-2544 include 50 MHz Gain Bandwidth, $150 \mathrm{~V} / \mu \mathrm{s}$ slew rate, $<0.05 \mathrm{~dB}$ differential gain error and gain tolerance of just 0.15 dB at 5 MHz . High performance and low power requirements are met with a supply current of only 10 mA .

Applications

- Video Systems
- Video Test Equipment
- Radar Displays
- Imaging Systems
- Pulse Amplifiers
- Signal Conditioning Circuits
- Data Acquisition Systems

Uses of the HA-2544 range from video test equipment, guidance systems, radar displays and other precise imaging systems where stringent gain and phase requirements have previously been met with costly hybrids and discrete circuitry. The HA-2544 will also be used in nonvideo systems requiring high speed signal conditioning such as data acquisition systems, medical electronics, specialized instrumentation and communication systems.
The HA-2544-2 is guaranteed over the military temperature range $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$; the $\mathrm{HA}-2544 / 2544 \mathrm{C}-5$ over the commercial range $\left(0^{\circ} \mathrm{C}\right.$ to $+75^{\circ} \mathrm{C}$) and the $\mathrm{HA}-2544 /$ $2544 \mathrm{C}-9$ over the industrial range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$. The HA-2544 is available in TO-99 Metal Can, SOIC, and both Plastic and Ceramic Mini-DIP packages. Military (/883) product and data sheets are available upon request.

Pinouts

HA2-2544 (TO-99 METAL CAN) TOP VIEW

NC

NOTE: $V_{\text {CASE }}=V_{-}$

[^38]Copyright © Harris Corporation 1990

Absolute Maximum Ratings (Note 1)	
Voltage Between V+ and V-Terminals	. 33 V
Differential Input Voltage (Note 11)	$\pm 6 \mathrm{~V}$
Output Current (Peak)	$\pm 40 \mathrm{~mA}$
Internal Power Dissipation	700 mW

Operating Temperature Range

HA-2544/2544C-5 $0^{\circ} \mathrm{C} \leq \mathrm{T}^{\mathrm{A}} \leq+75^{\circ} \mathrm{C}$
HA-2544-9.................................. $40^{\circ} \mathrm{C} \leq T_{A} \leq+85^{\circ} \mathrm{C}$
HA-2544-2
$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+150^{\circ} \mathrm{C}$
Maximum Junction Temperature $+175^{\circ} \mathrm{C}$
Electrical Specifications $V_{S}= \pm 15 \mathrm{~V}, \mathrm{C}_{\mathrm{L}} \leq 10 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$, Unless Otherwise Specified

PARAMETER	TEMP	HA-2544-2/-5			HA-2544C-5			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
INPUT CHARACTERISTICS								
Offset Voltage	$+25^{\circ} \mathrm{C}$	-	6	15	-	15	25	mV
	-2,-5	-	-	20	-	-	40	mV
	-9	-	-	25	-	-	40	mV
Average Offset Voltage Drift (Note 9)	Full	-	10	-	-	10	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Bias Current	$+25^{\circ} \mathrm{C}$	-	7	15	-	9	18	$\mu \mathrm{A}$
	Full	-	-	20	-	-	30	$\mu \mathrm{A}$
Average Bias Current Drift (Note 9)	Full	-	0.04	-	-	0.04	-	$\mu \mathrm{A} /{ }^{\circ} \mathrm{C}$
Offset Current	$+25^{\circ} \mathrm{C}$	-	0.2	2	-	0.8	2	$\mu \mathrm{A}$
	Full	-	-	3	-	-	3	$\mu \mathrm{A}$
Offset Current Drift	Full	-	10	-	-	10	-	nA ${ }^{\circ} \mathrm{C}$
Common Mode Range	Full	± 10	± 11.5	-	± 10	± 11.5	-	V
Differential Input Resistance	$+25^{\circ} \mathrm{C}$	50	90	-	50	90	-	$k \Omega$
Differential Input Capacitance	$+25^{\circ} \mathrm{C}$	-	3	-	-	3	-	pF
Input Noise Voltage ($\mathrm{f}=1 \mathrm{kHz}$)	$+25^{\circ} \mathrm{C}$	-	20	-	-	20	-	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Input Noise Current ($\mathrm{f}=1 \mathrm{kHz}$)	$+25^{\circ} \mathrm{C}$	-	2.4	-	-	2.4	-	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
Input Noise Voltage								
0.1 Hz to 10 Hz (Note 9)	$+25^{\circ} \mathrm{C}$	-	1.5	-	-	1.5	-	$\mu \vee \mathrm{p}-\mathrm{p}$
0.1 Hz to 1 MHz	$+25^{\circ} \mathrm{C}$	-	4.6	-	-	4.6	-	$\mu \mathrm{V}$ r.m.s.
TRANSFER CHARACTERISTICS								
Large Signal Voltage Gain (Notes 4, 9)	$+25^{\circ} \mathrm{C}$	3.5	6	-	3	6	-	kV/N
	Full	2.5	-	-	2	-	-	kVN
Common Mode Rejection Ratio (Notes 6, 9)	-2, -5	75	89	-	70	89	-	dB
	-9	75	89	-	65	89	-	dB
Minimum Stable Gain	$+25^{\circ} \mathrm{C}$	+1	-	-	+1	-	-	VN
Unity Gain Bandwidth (Notes 3, 9)	$+25^{\circ} \mathrm{C}$	-	45	-	-	45	-	MHz
Gain Bandwidth Product (Notes 3, 9)	$+25^{\circ} \mathrm{C}$	-	50	-	-	50	-	MHz
Phase Margin	$+25^{\circ} \mathrm{C}$	-	65	-	-	65	-	Degrees

Electrical Specifications (Continued)

PARAMETER	TEMP	HA-2544-2/-5			HA-2544C-5			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
OUTPUT CHARACTERISTICS								
Output Voltage Swing	Full	± 10	± 11	-	± 10	± 11	-	V
Full Power Bandwidth (Note 7)	$+25^{\circ} \mathrm{C}$	3.2	4.2	-	3.2	4.2	-	MHz
Peak Output Current (Note 9)	$+25^{\circ} \mathrm{C}$	± 25	± 35	-	± 25	± 35	-	mA
Continuous Output Current (Note 9)	$+25^{\circ} \mathrm{C}$	± 10	-	-	± 10	-	-	mA
Output Resistance (Open Loop)	$+25{ }^{\circ} \mathrm{C}$	-	20	-	-	20	-	Ω
TRANSIENT RESPONSE								
Rise Time (Note 3)	$+25^{\circ} \mathrm{C}$	-	7	-	-	7	-	ns
Overshoot (Note 3)	$+25^{\circ} \mathrm{C}$	-	10	-	-	10	-	\%
Slew Rate	$+25^{\circ} \mathrm{C}$	100	150	-	100	150	-	$\mathrm{V} / \mathrm{\mu s}$
Settling Time (Note 5)	$+25^{\circ} \mathrm{C}$	-	120	-	-	120	-	ns
VIDEO PARAMETERS $\mathrm{R}_{\mathrm{S}}=50 \Omega, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ (Notes 2,10)								
Differential Phase (Notes 2, 12)								
$\mathrm{R}_{\mathrm{S}}=50 \Omega$	$+25^{\circ} \mathrm{C}$	-	0.05	0.11	-	0.05	0.11	Degree
$R_{S}=1 \mathrm{k} \Omega$	$+25^{\circ} \mathrm{C}$	-	0.4	-	-	0.4	-	Degree
Differential Gain (Note 2, 12, 14)							-	
$\mathrm{R}_{\mathrm{S}}=50 \Omega$	$+25^{\circ} \mathrm{C}$	-	0.02	0.04	-	0.02	0.04	dB
$\mathrm{R}_{\mathrm{S}}=50 \Omega$	$+25^{\circ} \mathrm{C}$	-	0.23	0.46	-	0.23	0.46	\%
$\mathrm{R}_{\mathrm{S}}=1 \mathrm{k} \Omega$	$+25^{\circ} \mathrm{C}$	-	0.15	-	-	0.15	-	dB
$\mathrm{R}_{\mathrm{S}}=1 \mathrm{k} \Omega$	$+25^{\circ} \mathrm{C}$	-	1.7	-	-	1.7	-	\%
Gain Tolerance (Note 2)								
5 MHz	$+25^{\circ} \mathrm{C}$	-	-0.10	± 0.15	-	-0.10	± 0.15	dB
10 MHz	$+25^{\circ} \mathrm{C}$	-	-0.12	± 0.35	-	-0.12	± 0.35	dB
Chrominance to Luminance Gain (Note:13)	$+25^{\circ} \mathrm{C}$	-	0.1	-	-	0.1	-	dB
Chrominance to Luminance Delay (Note 13)	$+25^{\circ} \mathrm{C}$	-	7	-	-	7	-	ns
POWER SUPPLY CHARACTERISTICS								
Supply Current	Full	-	10	12	-	10	15	mA
Power Supply Rejection Ratio (Notes 8,9)	-2,-5	70	80	-	70	80	-	dB
	-9	65	80	-	65	80	-	dB

NOTES:

1. Absolute maximum ratings are limiting values, applied individually beyond which the serviceability of the circuit may be impaired. Functional operability under any of these conditions is not necessarily implied.
2. Guaranteed by sample test and not 100% tested.
3. $V_{\text {OUT }}= \pm 100 \mathrm{mV}$. For Rise Time and Overshoot testing, $V_{\text {OUT }}$ is measured from 0 to +200 mV and 0 to -200 mV .
4. VOÚT $= \pm 5 \mathrm{~V}$
5. Seltling Time is specified to 0.1% of final value for a 10 V step and $A_{V}=-1$
6. $\Delta V_{C M}= \pm 10 \mathrm{~V}$
7. Full Power Bandwidth is guaranteed by equation: Full Power Bandwidth $=\frac{\text { Slew Rate }}{2 \pi \text { Vpeak }}($ Vpeak used $=5 \mathrm{~V})$
8. $\Delta V_{S}= \pm 10$ to $\pm 20 \mathrm{~V}$
9. Refer to typical performance curve in Data Sheet.
10. The video parameter specifications will degrade as the output load resislance decreases.
11. To achieve optimum $A C$ performance, the input stage was designed without protective diode clamps. Exceeding the maximum differential input voltage results in reverse breakdown of the base-emitter junction of the input transistors and probable degradation of the input parameters especially $V_{O S}$, IOS and Noise.
12. Test signal used is $\pm 200 \mathrm{mV}$ at 3.58 MHz and 4.43 MHz on a 0 and 1 Volt offset. For adaquate test repeatability, a minimum warm-up of 2 minutes is suggested.
13. C-L Gain and C-L Delay was less than the resolution of the test equipment used which is 0.1 dB and 7 ns , respectively.
$A_{D}(d B)$
14. $A_{D}(\%)=\left[\begin{array}{ll}10 & -1\end{array}\right] \times 100$

Test Circuits

$V_{S}= \pm 15 \mathrm{~V}$
$A_{V}=+1$
$\mathrm{R}_{\mathrm{S}}=50$ or 75Ω (Optional)
$R_{\mathrm{L}}=1 \mathrm{k} \Omega$
$\mathrm{C}_{\mathrm{L}}<10 \mathrm{pF}$
V_{IN} for Large Signal $= \pm 5 \mathrm{~V}$
$V_{I N}$ for Small Signal $=0$ to +200 mV and 0 to -200 mV

SETTLING TIME TEST CIRCUIT

- $A_{V}=-1$
- Feedback and Summing Resistors Must Be Matched (0.1\%)
- HP5082-2810 Clipping Diodes Recommended.
- Tektronix P6201 FET Probe Used At Settling Point.

SMALL SIGNAL RESPONSE
$V_{\text {OUT }}=0$ to +200 mV
Vertical Scale: $\left(V_{I N}=100 \mathrm{mV} /\right.$ Div.; $V_{O U T}=100 \mathrm{mV} /$ Div. $)$ Horizontal Scale: (100ns/Div.)

OFFSET VOLTAGE ADJUSTMENT

Tested Offset Adjustment Range is $\left|V_{O S}+1 \mathrm{mV}\right|$ Minimum Referred To Output. Typical Range For $\mathbf{R}_{\mathbf{T}}=20 \mathrm{k} \Omega$ is Approximately $\pm 30 \mathrm{mV}$

HA-2544
Typical Performance Curves

INPUT NOISE VOLTAGE AND NOISE CURRENT vs. FREQUENCY

NOISE VOLTAGE
($A V=1000$)
0.1 Hz to 10 Hz , Noise Voltage $=0.97 \mu \mathrm{Vp}-\mathrm{p}$

PSRR and CMRR vs. TEMPERATURE
$V_{S}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$

INPUT OFFSET VOLTAGE vs.TEMPERATURE 3 Typical Units

INPUT BIAS CURRENT vs. TEMPERATURE
$V_{S}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$

OPEN LOOP GAIN vs. TEMPERATURE

$$
V_{S}= \pm 15 \mathrm{~V}, R_{\mathrm{L}}=1 \mathrm{k} \Omega
$$

Typical Video Performance

A.C. GAIN VARIATION vs. D.C. OFFSET LEVELS
(Differential Gain)

DIFFERENTIAL GAIN
NTSC Method, $R_{L}=1 \mathrm{k} \Omega$ Differential Gain $<0.05 \%$ at $\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$ No Visual Difference at $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ or $+125^{\circ} \mathrm{C}$

GAIN TOLERANCE
$A_{V}=+1, V_{I N}= \pm 100 \mathrm{mV}$
$R_{L}=1 K, C_{L}<10 p F$

A.C. PHASE VARIATION vs. D.C. OFFSET LEVELS (Differential Phase)

DIFFERENTIAL PHASE
NTSC Method, $R_{L}=1 \mathrm{k} \Omega$
Differential Phase <0.05 Degree at $\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$
No Visual Difference at $T_{A}=-55^{\circ} \mathrm{C}$ or $+125^{\circ} \mathrm{C}$

CHROMINANCE TO LUMINANCE DELAY NTSC Method, $R_{L}=1 \mathrm{k} \Omega$
C-L Delay <7 ns at $T_{A}=+75^{\circ} \mathrm{C}$
No Visual Difference at $T_{A}=-55^{\circ} \mathrm{C}$ or $+125^{\circ} \mathrm{C}$

Vertical Scale: Input $=100 \mathrm{mV} /$ Div.
Output $=50 \mathrm{mV} /$ Div.
Horizontal Scale: 500ns/Div.

Typical Video Performance Curves (Continued)

$\mathrm{V}_{\mathrm{IN}}=2.0 \mathrm{~V} /$ Div., $\mathrm{V}_{\mathrm{OUT}}=2.0 \mathrm{~V} /$ Div. Timebase $=50 \mathrm{~ns} / \mathrm{Div}$.

BANDWIDTH vs. LOAD CAPACITANCE
$A_{V}=+1, V_{S}= \pm 15 \mathrm{~V}, R_{\mathrm{L}}=1 \mathrm{k} \Omega$

Applications And Product Guidelines

The HA-2544 is a true differential op amp that is as versatile as any op amp but offers the advantages of high unity gain bandwidth, high speed and low supply current. More important than its' general purpose applications is that the HA-2544 was especially designed to meet the requirements found in a video amplifier system. These requirements include fine picture resolution and accurate color rendition, and must meet broadcast quality standards.
In a video signal, the video information is carried in the amplitude and phase as well as in the D.C. level. The amplifier must pass the 30 Hz line rate luminance level and the 3.58 MHz (NTSC) or 4.43 MHz (PAL) color band without altering phase or gain. The HA-2544's key specifications aimed at meeting this include high bandwidth $(50 \mathrm{MHz})$, very low gain tolerance ($< \pm 0.15 \mathrm{~dB}$ at 5 MHz), near unmeasurable differential gain and differential phase ($<0.04 \mathrm{~dB}$ and 0.11 degrees), and low noise ($20 \mathrm{nV} / \sqrt{\mathrm{Hz} \text {). The HA-2544 }}$ meets these quidelines and are sample tested for standard grade product ($/ 883,-2,-7,-5$) at 5 and/or 10 MHz . If a customer wishes to 100% test these specifications, arrangement can be made.
The HA-2544 also offers the advantage of a full output voltage swing of $\pm 10 \mathrm{~V}$ into a 1 K ohm load. This equates to a full power bandwidth of 2.4 MHz for this $\pm 10 \mathrm{~V}$ signal. If video signal levels of $\pm 2 \mathrm{~V}$ maximum is used (with $\mathrm{R}_{\mathrm{L}}=1 \mathrm{~K}$ ohm), the full power bandwidth would be 11.9 MHz without clipping distortion. Another usage might be required for a direct 50 ohm or 75 ohm load where the HA- 2544 will still swing this $\pm 2 \mathrm{~V}$ signal as shown in the above display. One important note that must be realized is that as load resistance decreases the video parameters are also degraded. For optimal video performance a $1 \mathrm{k} \Omega$ load is recommended.

If lower supply voltage are required, such as $\pm 5 \mathrm{~V}$, many of the characterization curves indicate where the parameters vary. As shown the bandwidth, slew rate and supply current are still very well maintained.

Prototyping and PC Board Layout

When designing with the HA-2544 video op amp as with any high performance device, care should be taken to use
high frequency layout techniques to avoid unwanted parasitic effects. Short lead lengths, low source impedance and lower value feedback resistors help reduce unwanted poles or zeros. This layout would also include ground plane construction and power supply decoupling as close to the supply pins with suggested parallel capacitors of $0.1 \mu \mathrm{~F}$ and $0.001 \mu \mathrm{~F}$ ceramic to ground.
In the noninverting configuration, the amplifier is sensitive to stray capacitance $(<40 \mathrm{pF})$ to ground at the inverting input. Therefore, the inverting node connections should be kept to a minimum. Phase shift will also be introduced as load parasitic capacitance is increased. A small series resistor (20 ohm to 100 ohm) before the capacitance effectively decouples this effect.

Stability/Phase Margin/Compensation

The HA-2544 has not sacrificed unity gain stability in achieving its superb AC performance. For this device, the phase margin exceeds 60 degrees at the unity crossing point of the open loop frequency response. Large phase margin is critical in order to reduce the differential phase and differential gain errors caused by most other op amps. Because this part is unity gain stable, no compensation pin is brought out. If compensation is desired to reduce the noise bandwidth, most standard methods may be used. One method suggested for an inverting scheme would be a series R-C from the inverting node to ground which will reduce bandwidth, but not effect slew rate. If the user wishes to achieve even higher bandwidth ($>50 \mathrm{MHz}$), and can tolerate some slight gain peaking and lower phase margin, experimenting with various load capacitance can be done.
Shown in Application 1 is an excellent Differential Input, Unity Gain Buffer which also will terminate a cable to 75 ohm and reject common-mode voltages. Application 2 is a method of separating a video signal up into the Sync. only signal and the Video and Blanking signal. Application 3 shows the HA-2544 being used as a 100 kHz High Pass 2-Pole Butterworth Filter. Also shown is the measured frequency response curves.

Typical Application

APPLICATION 1
75Ω Differential Input Buffer

Composite Video Sync. Separator

Measured Frequency Response of Application 3

Die Characteristics

Transistor Count 44
Die Dimensions . $80 \times 65 \times 19$ mils $(2030 \times 1630 \times 485 \mu \mathrm{~m})$
Substrate Potential* V-
Process . High Frequency Bipolar D.I.

Passivation Nitride

Thermal Constants ($\left.{ }^{\circ} \mathrm{C} / \mathrm{W}\right)$	$\theta_{\text {ja }}$	$\theta_{\text {jc }}$
Metal Can TO-99, HA2-2544	186	50
Plastic Mini-DIP, HA3-2544/2544C	80	20
Ceramic Mini-DIP, HA7-2544	185	98
SOIC, HA9P2544	160	42

[^39] mounted on a conductor at V - potential.

> Precision, High Slew Rate, Wideband Operational Amplifier
HA2-2548
(TO-99 METAL CAN) TOP VIEW

Schematic (Simplified)

NOTES:

1. Absolute maximum ratings are limiting values, applied individually beyond which the servicability of the circuit may be impaired Functional operation under any of these conditions is not nessarily implied.
2. Refer to typical performance curve in data sheet.
3. $\mathrm{V}_{\mathrm{OUT}}= \pm 10 \mathrm{~V}$.
4. $V_{C M}= \pm 2 V$.
5. Characterized in an $A_{V}=-100$ configuration from 100 kHz to 10 MHz .
6. $\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{OUT}}>10 \mathrm{~V}$.
7. Full Power Bandwidth is calculated by:

$$
\text { FPBW }=\frac{\text { Slew Rate }}{2 \pi V_{\text {peak }}}, V_{\text {peak }}=10 \mathrm{~V}
$$

8. $V_{\text {OUT }}= \pm 5 \mathrm{~V}, A_{V}=+5$.
9. $V_{\text {OUT }}= \pm 100 \mathrm{mV}, A_{V}=+5$.

10 Settling time is specified to 0.01% with a 10 V step and $A_{V}=-5$.
11. Delta $V_{S}= \pm 10 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$.
12. These parameters are not tested. The limits are guaranteed based on lab characterization and refiect lot to lot variation.

Test Circuits and Waveforms
LARGE AND SMALL SIGNAL RESPONSE CIRCUIT

LARGE SIGNAL RESPONSE
$V_{\text {OUT }}= \pm 5 V, \quad A_{V}= \pm 5, \quad R_{L}=1 K, C_{L} \leq 10 p F$

SETTLING TIME TEST CIRCUIT

dback and summing resistors should be 0.1% matched.

- Clipping diodes are optional. HP5082-2810 recommended.

SMALL SIGNAL RESPONSE
$V_{\text {OUT }}= \pm 100 \mathrm{mV}, \quad A_{V}= \pm 5, \quad R_{L}=1 \mathrm{~K}, C_{L} \leq 10 \mathrm{pF}$

HA-2548 SETTLING TIME
$A_{V}=-5$, Output $=-10 \mathrm{~V}$. Output Scale Vertical: $1 \mathrm{mV} / \mathrm{Div}$ Horizontal: 50ns/Div

Typical Performance Curves $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

V_{10} vs TEMPERATURE
(3 Representative Units)

$V_{1 O}$ WARM-UP DRIFT (NORMALIZED FROM ZERO) (4 Representative Units)

ICc vs temperature

PSRR/CMRR vs TEMPERATURE

Avol vs TEMPERATURE
$V_{C C}= \pm 15 \mathrm{~V}, R_{L}=1 \mathrm{~K} \Omega$
$C_{L}=\leq 10 \mathrm{pF}, \quad V_{O U T}= \pm 10 \mathrm{~V}$

Typical Performance Curves (Continued) $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

AVOL vs $\pm V_{C C}$ vs TEMPERATURE
$V_{\text {OUT }}= \pm 5 \mathrm{~V} @ V_{C C}= \pm 10 \mathrm{~V}, V_{\mathrm{OUT}}= \pm 10 \mathrm{~V} @ \mathrm{~V}_{\mathrm{CC}}= \pm 15 \mathrm{~V}$ $V_{\text {OUT }}= \pm 12 \mathrm{~V} @ V_{C C}=18 \mathrm{~V}$

Avol/Vout vs \mathbf{R}_{L}
$V_{I N}= \pm 3 V$ For $100 \Omega, V_{I N}= \pm 5 V$ For 200Ω
$\mathrm{V}_{\mathrm{IN}}= \pm 10 \mathrm{~V}$ For 600Ω to $10 \mathrm{k} \Omega$

Typical Performance Curves (Continued) $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

SLEW RATE vs TEMPERATURE
$V_{C C}= \pm 15 \mathrm{~V}, \quad R_{L}=1 k \Omega, \quad C_{L}=\leq 10 p F$
$A_{V}= \pm 5, \quad V_{\text {OUT }}= \pm 5 \mathrm{~V}(10 \mathrm{Vp}-\mathrm{p})$

\% OVERSHOOT vs TEMPERATURE
$A_{V}=+5, \quad V_{\text {OUT }}= \pm 100 \mathrm{mV}(200 \mathrm{mVp}-\mathrm{p})$
$R_{L}=1 \mathrm{k} \Omega, C_{L} \leq 10 p F$

SLEW RATE vs COMPENSATION CAPACITANCE

RISE TIME vs TEMPERATURE
$V_{C C}= \pm 15 \mathrm{~V}, \quad R_{L}=1 \mathrm{k} \Omega, \quad C_{L}=\leq 10 p F$
$A V=+5, \quad V_{\text {OUT }}= \pm 100 \mathrm{mV}(200 \mathrm{mVp}-\mathrm{p})$

GAIN BANDWIDTH PRODUCT vs COMPENSATION CAPACITANCE

GAIN AND PHASE vs FREQUENCY
$R_{L}=1 \mathrm{k} \Omega, \quad C_{L} \leq 10 \mathrm{pF}$

Typical Performance Curves (Continued) $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

INPUT NOISE VOLTAGE DENSITY

PEAK TO PEAK NOISE 0.1 HZ TO 10 HZ
$\mathrm{p}-\mathrm{p}(\mathrm{RTI})=691.4 \mathrm{nV}, \quad \operatorname{rms}(R T I)=116.5 \mathrm{nV}, \quad A V=25000$

INPUT NOISE CURRENT DENSITY

PEAK TO PEAK NOISE 0.1HZ TO 1MHZ
$p-p(R T I)=4.004 \mu \mathrm{~V}, \quad r m s(R T I)=664.5 n \mathrm{~V}, \quad A V=25000$

REJECTION RATIOS vs FREQUENCY
$A_{V}= \pm 10, \quad V_{I N}=300 \mathrm{mVrms}$

Wideband, High Impedance Operational Amplifiers

Features

- Wide Bandwidth 12MHz
- High Input Impedance 500M Ω
- Low Input Bias Current InA
- Low Input Offset Current 1nA
- Low Input Offset Voltage 0.5 mV
- High Gain . 150kV/V
- High Slew Rate . 7 7/ $/$ s
- Output Short Circuit Protection
- Unity Gain Stable

Description

HA-2600/2602/2605 are internally compensated bipolar operational amplifiers that feature very high input impedance ($500 \mathrm{M} \Omega$, HA-2600) coupled with wideband AC performance. The high resistance of the input stage is complemented by low offset voltage (0.5 mV , HA-2600) and low bias and offset current (1nA, HA-2600) to facilitate accurate signal processing. Input offset can be reduced further by means of an external nulling potentiometer. 12 MHz unity gain-bandwidth, $7 \mathrm{~V} / \mu \mathrm{s}$ slew rate and $150 \mathrm{kV} / \mathrm{N}$ open-loop gain enables HA-2600/2602/2605 to perform high-gain amplification of fast, wideband signals. These dynamic characteristics, coupled with fast settling times, make these amplifiers ideally suited to pulse amplification designs as well as high frequency (e.g. video) applications. The frequency response of the amplifier can be tailored to exact design requirements by means of an external bandwidth control capacitor.

Applications
- Video Amplifier
- Pulse Amplifier
- Audio Amplifiers and Filters
- High-Q Active Filters
- High-Speed Comparators
- Low Distortion Oscillators

In addition to its application in pulse and video amplifier designs, HA-2600/2602/2605 is particularly suited to other high performance designs such as high-gain low distortion audio amplifiers, high-Q and wideband active filters and high-speed comparators. For more information, please refer to Application Note 515.

The HA-2600 and HA-2602 have guaranteed operation from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ and are available in Metal Can and Ceramic Mini-DIP packages. Both are offered as $/ 883$ Military Grade; product and data sheets are available upon request. The HA-2605 has guaranteed operation from $0^{\circ} \mathrm{C}$ to $+7.5^{\circ} \mathrm{C}$ and is available in Plastic and Ceramic Mini-DIP and Metal Can packages. SOIC packaging is also available for the HA-2605 with guaranteed operation from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}(-5)$ and $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}(-9)$.

Pinouts

HA9P2605 (SOIC)
HA7-2600/02/05 (CERAMIC MINI-DIP) HA3-2605 (PLASTIC MINI-DIP)

HA2-2600/02/05 (TO-99 METAL CAN)

NOTE: VCASE $=\mathrm{V}$ -

Schematic

Operating Temperature Ranges

HA-2600/HA-2602 $-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}$
HA-2605-5............................... $0^{\circ} \mathrm{C} \leq T_{A} \leq+75^{\circ} \mathrm{C}$
HA-2605-9................................ $-40^{\circ} \mathrm{C} \leq T_{A} \leq+85^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+150^{\circ} \mathrm{C}$
Lead Solder Temperature (10 Seconds)
$+275^{\circ} \mathrm{C}$

Electrical Specifications $V_{S}= \pm 15 V$ D.C., Unless Otherwise Specified.
 NOTES:

1. $\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$
2. $\mathrm{V}_{\mathrm{CM}}= \pm 10 \mathrm{~V}$
3. $\mathrm{V}_{\text {OUT }}<90 \mathrm{mV}$
4. $V_{\text {OUT }}= \pm 10 \mathrm{~V}$
5. $C_{L}=100 \mathrm{pF}$
6. $V_{\text {OUT }}= \pm 200 \mathrm{mV}$
7. $A_{V}=+1$
8. See Transient Response Test Circuits \& Waveforms.
9. $\Delta V_{S}= \pm 5 \mathrm{~V}$
10. This parameter value guaranteed by design calculations.
11. Full Power Bandwidth guaranteed by slew rate measurement FPBW $=\mathbf{S} . R . / 2 \pi V_{\text {PEAK }}$.
12. $\mathrm{V}_{\text {OUT }}= \pm 5 \mathrm{~V}$
13. Absolute Maximum Ratings are limiting values applied individually beyond which the serviceability of the circuit may be impaired. Functional operation under any of these conditions is not necessarily implied.
14. Settling time is characterized at $A_{V}=-1$ to 0.1% of a 10 Volt step.
15. Typical and minimum specifications for -9 are identical to those of -5 .

Typical Performance Curves $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$ D.C., $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, Unless Otherwise Specified.
input bias current and offset current AS A FUNCTION OF TEMPERATURE

OPEN LOOP FREQUENCY AND PHASE RESPONSE

OUTPUT VOLTAGE SWING vs. FREQUENCY

BROADBAND NOISE CHARACTERISTICS

INPUT IMPEDANCE vs. TEMPERATURE, 100 Hz

OPEN-LOOP FREQUENCY RESPONSE FOR VARIOUS VALUES OF CAPACITORS FROM COMPENSATION PIN TO GROUND

NOTE: External Compensation Components are not required for stability, but may be added to reduce bandwidth if desired. If External Compensation is used, also connect 100 pF capacitor from output to ground.

Typical Performance Curves (Continued)

COMMON MODE VOLTAGE RANGE AS A FUNCTION OF SUPPLY VOLTAGE

COMMON MODE REJECTION RATIO vs. FREQUENCY

Test Circuits

TRANSIENT RESPONSE	SLEW RATE	SLEW RATE AND TRANSIENT RESPONSE	SUGGESTED VOS ADJUSTMENT AND COMPENSATION HOOK-UP
NOTE: Measured on both positive and negative transistions from 0 to +200 mV and 0 to -200 mV at output.			Tested Offset Adjustment is $\left\|V_{\mathrm{OS}}+1 \mathrm{mV}\right\|$ minimum referred to output. Typical range is $\pm 10 \mathrm{mV}$ with $R_{T}=100 \mathrm{k} \Omega$.

Typical Applications

PHOTO-CURRENT TO VOLTAGE CONVERTER

FEATURES:

1. Minimum bias current in reference cell
2. Short circuit protection

SAMPLE-AND-HOLD

Drift rate $\frac{{ }^{\prime} \text { bias }}{C}$
If $\mathrm{C}=1000 \mathrm{pF}$ Drift $=0.01 \mathrm{~V} / \mathrm{ms}$ Max.

VOLTAGE FOLLOWER

$Z_{i N}=10^{12} \mathrm{Min}$.
$Z_{\text {OUT }}=0.01$ Max. \quad B.W. $=12 \mathrm{MHz}$ Typ.
Slew Rate $=4 \mathrm{~V} / \mu \mathrm{S}$ Min. Output Swing $= \pm 10 \mathrm{~V}$ Min. to 50 kHz

* A small load capacitance is recommended in all applications where practical to prevent possible high frequency oscillations resulting from external wiring parasitics. Capacitance up to 100 pF has negligible effect on the bandwidth or slew rate.

Die Characteristics

Transistor Count ... 140
Die Dimensions . $73 \times 52 \times 19$ mils
Substrate Potential . Unbiased

Thermal Constants $\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$		θ_{ja}
$\theta_{\text {jc }}$		
HA2-Metal Can $(-2,-5,-7)$	202	55
HA2-Metal Can $(-8, / 883)$	161	48
HA3-Plastic DIP (-5)	83	33
HA4-Ceramic LCC $(/ 883)$	96	35
HA7-Ceramic DIP $(-2,-5,-7)$	204	112
HA7-Ceramic DIP $(-8, / 883)$	81	32
HA9P-SOIC-(-5, -9$)$	160	42

May 1990

Very Wideband, Uncompensated Operational Amplifiers

Features

- Gain Bandwidth Product ($\mathrm{A} V \geq 5$) \qquad 100 MHz
- High Input Impedance 500M Ω
- Low Input Bias Current 1nA
- Low Input Offset Current 1nA
- Low input Offset Voltage 0.5 mV
- High Gain 150kV/V
- High Slew Rate 35V/ $\mu \mathrm{s}$
- Output Short Circuit Protection

Description

HA-2620/2622/2625 are bipolar operational amplifiers that feature very high input impedance ($500 \mathrm{M} \Omega$, HA-2620) coupled with wideband AC performance. The high resistance of the input stage is complemented by low offset voltage ($0.5 \mathrm{mV}, \mathrm{HA}-2620$) and low bias and offset current ($1 \mathrm{nA}, \mathrm{HA}-2620$) to facilitate accurate signal processing. Input offset can be reduced further by means of an external nulling potentiometer. 100 MHz gain-bandwidth product (HA-2620/2622/2625 are stable for closed loop gains greater than 5), $35 \mathrm{~V} / \mu \mathrm{s}$ slew rate and $150 \mathrm{kV} / \mathrm{N}$ open-loop gain enables HA-2620/2622/2625 to perform high-gain amplification of very fast, wideband signals. These dynamic characteristics, coupled with fast settling times, make these amplifiers ideally suited to pulse amplification designs as well as high frequency (e.g. video) applications. The frequency response of the amplifier can be tailored to exact

Applications

- Video and R.F. Amplifier
- Pulse Amplifier
- Audio Amplifiers and Filters
- High-Q Active Filters
- High-Speed Comparators
- Low Distortion Oscillators
design requirements by means of an external bandwidth control capacitor.
In addition to its application in pulse and video amplifier designs, HA-2620/2622/2625 is particularly suited to other high performance designs such as high-gain low distortion audio amplifiers, high-Q and wideband active filters and high-speed comparators. For more information, please refer to Application Notes 509, 519 and 546.
The HA-2620 and HA-2622 have guaranteed operation from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ and are available in Metal Can and Ceramic Mini-DIP packages. Both are offered as $/ 883$ Military Grade with the HA-2622 also available in LCC packages. MIL-STD-883 data sheets are available upon request. The HA-2625 has guaranteed operation from $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ and is available in Plastic and Ceramic Mini-DIP and Metal Can packages. Additionally the HA-2625 is available in SOIC packaging with -5 and -9 temperature grades.

Pinouts

HA9P2625 (SOIC)

HA7-2620/22/25 (CERAMIC MINI-DIP) HA3-2625 (PLASTIC MINI-DIP) TOP VIEW

HA2-2620/22/25 (TO-99 METAL CAN) TOP VIEW

Schematic

[^40]Copyright © Harris Corporation 1990

Absolute Maximum Ratings (Note 13)

Voltage Between V+ and V- Terminals	45.0 V
Differential Input Voltage.	$\ldots \pm 12.0 \mathrm{~V}$
Peak Output Current	Full Short Circuit Protection
Internal Power Dissipation	300 mW
Maximum Junction Temperature.	$\ldots+175^{\circ} \mathrm{C}$

Operating Temperature Ranges

HA-2620/HA-2622....................... $-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}$
HA-2625-5 $0^{\circ} \mathrm{C} \leq T_{A} \leq+75^{\circ} \mathrm{C}$
HA-2625-9................................ $-40^{\circ} \mathrm{C} \leq T_{A} \leq+80^{\circ} \mathrm{C}$
Storage Temperature Range: $-65^{\circ} \mathrm{C} \leq T_{A} \leq+150^{\circ} \mathrm{C}$
Lead Solder Temperature (10 Seconds) $275^{\circ} \mathrm{C}$

Electrical Specifications $V_{S}= \pm 15$ V D.C., Unless Otherwise Specified.

PARAMETER	TEMP	HA-2620			HA-2622			HA-2625-5, -9			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
INPUT CHARACTERISTICS											
Offset Voltage (Note 1)	$\begin{gathered} +25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$	-	0.5 2	4 6	-	3 -	5 7	-	3 -	5 7	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Average Offset Voltage Drift	Full	-	5	-	-	5	-	-	5	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Bias Current	$+25^{\circ} \mathrm{C}$	-	1	15	-	5	25	-	5	25	nA
	Full	-	10	35	-	-	60	-	-	40	$n A$
Offset Current	$+25^{\circ} \mathrm{C}$	-	1	15	-	5	25	-	5	25	nA
	Full	-	5	35	-	-	60	-	-	40	nA
Differential Input Resistance (Note 11)	$+25^{\circ} \mathrm{C}$	65	500	-	40	300	-	40	300	-	$\mathrm{M} \Omega$
Input Noise Voltage Density $\mathrm{f}_{0}=1 \mathrm{kHz}$	$+25^{\circ} \mathrm{C}$	-	11	-	-	11	-	-	11	-	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Input Noise Current Density $\dagger_{0}=1 \mathrm{kHz}$	$+25^{\circ} \mathrm{C}$	-	0.16	-	-	0.16	-	-	0.16	-	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
Common Mode Range	Full	± 11	± 12	-	± 11	± 12	-	± 11	± 12	\cdots	V
TRANSFER CHARACTERISTICS											
Large Signal Voltage Gain (Notes 2 \& 3)	$\begin{gathered} +25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$	$100 \mathrm{~K}$ 70K	150 K -	-	$\begin{aligned} & 80 \mathrm{~K} \\ & 60 \mathrm{~K} \end{aligned}$	150K	-	$\begin{aligned} & 80 \mathrm{~K} \\ & 70 \mathrm{~K} \end{aligned}$	150K	-	$\begin{aligned} & \mathrm{V} / \mathrm{N} \\ & \mathrm{~V} / \mathrm{V} \end{aligned}$
Common Mode Rejection Ratio (Note 4)	Full	80	100	-	74	100	-	74	100	-	$d B$
Minimum Stable Gain	$+25^{\circ} \mathrm{C}$	5	-	-	5	-	-	5	-	-	V/V
Gain Bandwidth Product (Notes 2,5 \& 6)	$+25^{\circ} \mathrm{C}$	-	100	-	-	100	-	-	100	-	MHz
OUTPUT CHARACTERISTICS											
Output Voltage Swing (Note 2)	Full	± 10	± 12	-	± 10	± 12	\cdots	± 10	± 12	-	v
Output Current (Note 3)	$+25^{\circ} \mathrm{C}$	± 15	± 22	-	± 10	± 18	-	± 10	± 18	-	mA
Full Power Bandwidth (Notes 2, 3, 7 \& 12)	$+25^{\circ} \mathrm{C}$	400	600	-	320	600	-	320	600	-	kHz
TRANSIENT RESPONSE (Note 8)											
Rise Time (Notes 2,7\&8)	$+25^{\circ} \mathrm{C}$	-	17	45	-	17	45	-	17	45	ns
Slew Rate (Notes 2, 7, 8 \& 10)	$+25^{\circ} \mathrm{C}$	± 25	± 35	-	± 20	± 35	-	± 20	± 35	-	$\mathrm{V} / \mu \mathrm{s}$
POWER SUPPLY CHARACTERISTICS											
Supply Current	$+25^{\circ} \mathrm{C}$	-	3	3.7	-	3	4	-	3	4	mA
Power Supply Rejection Ratio (Note 9)	Full	80	90	-	74	90	-	74	90	-	dB

NOTES:

1. Offset may be externally adjusted to zero.
2. $R_{L}=2 k \Omega$
3. $V_{\text {OUT }}= \pm 10.0 \mathrm{~V}$
4. $V_{C M}= \pm 10 \mathrm{~V}$
5. $V_{\text {OUT }}<90 \mathrm{mV}$
6. 40 dB Gain
7. See Transient Response Test Circuits \& Waveforms.
8. $A_{V}=5$ (The HA-2620 family is not stable at unity gain without external compensation.)
9. $\Delta V_{S}= \pm 5 \mathrm{~V}$
10. $\mathrm{V}_{\text {OUT }}= \pm 5 \mathrm{~V}$
11. This parameter value guaranteed by design calculations.
12. Full Power Bandwidth guaranteed by slew rate measurement: $F P B W=S . R . / 2 \pi V_{\text {PEAK }}$.
13. Absolute Maximum Ratings are limiting values applied individually beyond which the serviceability of the circuit may be impaired. Functional operation under any of these conditions is not necessarily implied.

Typical Performance Curves $\mathrm{V}_{S}= \pm 15 \mathrm{~V}$ D.C., $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, Unless Otherwise Specified.
INPUT BIAS CURRENT AND OFFSET CURRENT AS A FUNCTION OF TEMPERATURE

INPUT IMPEDANCE vs. TEMPERATURE,100Hz

OUTPUT VOLTAGE SWING vs. FREQUENCY

NOTE: External Compensation is required for closed loop gain < 5. If external compensation is used, also connect 100 pF capacitor from output to ground.

Test Circuits

NOTE: Measured on both positive and negative transistions from 0 to +200 mV and 0 to -200 mV at output.

[^41]
Typical Applications

VIDEO AMPLIFIER

* A small load capacitance of at least 30pF (including stray capacitance) is recommended to prevent possible high frequency oscillations.

Die Characteristics

Transistor Count 140
Die Dimensions . $73 \times 52 \times 19$ mils
Substrate Potential . Unbiased

Thermal Constants $\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$	θ_{ja}	θ_{j}
HA2-Metal Can $(-2,-5,-7)$	202	55
HA2-Metal Can $(-8, / 883)$	161	48
HA3-Plastic DIP (-5)	83	33
HA4-Ceramic LCC $(/ 883)$	96	35
HA7-Ceramic DIP $(-2,-5,-7)$	204	112
HA7-Ceramic DIP $(-8, / 883)$	81	32

Features	
- Output Voltage Swing	$\pm 35 \mathrm{~V}$
- Supply Voltage .	$\pm 10 \mathrm{~V}$ to $\pm 40 \mathrm{~V}$
- Offset Current	5nA
- Bandwidth 4MHz
- Slew Rate	$\ldots5 \mathrm{~V} / \mu \mathrm{s}$
- Common Mode Input	. $\pm 35 \mathrm{~V}$
Output Overload Pro	

Description

HA-2640 and HA-2645 are monolithic operational amplifiers which are designed to deliver unprecedented dynamic specifications for a high voltage internally compensated device. These dielectrically isolated devices offer very low values for offset voltage and offset current coupled with large output voltage swing and common mode input voltage.
For maximum reliability, these amplifiers offer unconditional output overload protection through current limiting and a chip temperature sensing circuit. This sensing device turns the amplifier "off", when the chip reaches a certain temperature level.
These amplifiers deliver $\pm 35 \mathrm{~V}$ common mode input voltage swing, $\pm 35 \mathrm{~V}$ output voltage swing, and up to $\pm 40 \mathrm{~V}$

Applications

- Industrial Control Systems
- Power Supplies
- High Voltage Regulators
- Resolver Excitation
- Signal Conditioning

Pinouts

HA7-2640/2645 (CERAMIC MINI-DIP) TOP VIEW

HA2-2640/2645 (TO-99 METAL CAN) TOP VIEW

(TO-99 Case Voltage $=-\mathrm{V}$)

Schematic

[^42]Copyright © Harris Corporation 1990

Absolute Maximum Ratings (Note 12)
Voltage Between V+ and V- Terminals 100 V
Input Voltage Range . $\pm 10 \mathrm{~V}$ to $\pm 37 \mathrm{~V}$
Output Current . Full Short Circuit Protection
Internal Power Dissipation Full Short Circuit Protection
Maximum Junction Temperature.

* Derate by $4.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+25^{\circ} \mathrm{C}$

Electrical Specifications $V_{\text {SUPPLY }}= \pm 40 \mathrm{~V}, R_{L}=5 k \Omega$, Unless Otherwise Specified.

PARAMETER	TEMP	$\begin{gathered} \text { HA-2640 } \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$			$\begin{gathered} \text { HA-2645 } \\ 0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \end{gathered}$			UNITS
		MIN	TYP	MAX	MIN	TVP	MAX	
INPUT CHARACTERISTICS								
Offset Voltage Average Offset Voltage Drift Bias Current Offset Current Input Resistance (Note 10) Common Mode Range	$\begin{gathered} +25^{\circ} \mathrm{C} \\ \text { Full } \\ \text { Full } \\ +25^{\circ} \mathrm{C} \\ \text { Full } \\ +25^{\circ} \mathrm{C} \\ \text { Full } \\ +25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$	- - - - - - - 50 ± 35	2 15 10 - 5 250	4 6 25 50 12 35 - -		2 15 12 $-$ 15 200	$\begin{gathered} 6 \\ 7 \\ - \\ 30 \\ 50 \\ 30 \\ 50 \\ - \end{gathered}$	mV mV $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ nA nA nA nA $M \Omega$ V
TRANSFER CHARACTERISTICS								
Large Signal Voltage Gain (Notes 8) Common Mode Rejection Ratio (Note 1) Minimum Stable Gain Unity Gain Bandwidth (Note 2)	$\begin{aligned} & +25^{\circ} \mathrm{C} \\ & \text { Full } \\ & \text { Full } \\ & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} 100 \mathrm{~K} \\ 75 \mathrm{~K} \\ 80 \\ 1 \end{gathered}$	200K 100 4	-	$\begin{gathered} 100 \mathrm{~K} \\ 75 \mathrm{~K} \\ 74 \\ 1 \end{gathered}$	200K 100 4	-	V/N V / N dB V/N MHz
OUTPUT CHARACTERISTICS								
Output Voltage Swing Output Current (Note 9) Output Resistance Full Power Bandwidth (Notes 3 \& 11)	$\begin{aligned} & \text { Full } \\ + & 25^{\circ} \mathrm{C} \\ + & 25^{\circ} \mathrm{C} \\ + & 25^{\circ} \mathrm{C} \end{aligned}$	± 35 ± 12 - -	$\begin{gathered} - \\ \pm 15 \\ 500 \\ 23 \end{gathered}$	-	± 35 ± 10 - -	$\begin{gathered} \pm 12 \\ 500 \\ 23 \end{gathered}$	-	$\begin{gathered} \mathrm{V} \\ \mathrm{~mA} \\ \Omega \\ \mathrm{kHz} \end{gathered}$
TRANSIENT RESPONSE (Note 7)								
Rise Time (Notes $4 \& 6$) Overshoot (Notes $4 \& 6$) Slew Rate (Note 6)	$\begin{aligned} & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \end{aligned}$	- - ± 3	60 15 ± 5	$\begin{gathered} 100 \\ 30 \end{gathered}$	- - ± 2.5	60 15 ± 5	$\begin{gathered} 100 \\ 40 \end{gathered}$	$\begin{gathered} \mathrm{ns} \\ \% \\ \mathrm{~V} / \mu \mathrm{s} \end{gathered}$
POWER SUPPLY CHARACTERISTICS								
Supply Current Supply Voltage Range Power Supply Rejection Ratio (Note 5)	$\begin{gathered} +25^{\circ} \mathrm{C} \\ \text { Full } \\ \text { Full } \end{gathered}$	$\begin{gathered} \pm 10 \\ 80 \end{gathered}$	3.2 - 90	3.8 ± 40	- ± 10 74	3.2 - 90	4.5 ± 40	$\begin{gathered} m A \\ V \\ d B \end{gathered}$

NOTES:

1. $V_{C M}= \pm 20 \mathrm{~V}$
2. $V_{\text {OUT }}=90 \mathrm{mV}$
3. $\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$
4. $V_{\text {OUT }}= \pm 35 \mathrm{~V}$
5. This parameter based upon design calculations.
6. $V_{\text {OUT }}= \pm 200 \mathrm{mV}$
7. Full Power Bandwidth guaranteed based upon slew rate measurement: FPBW $=S . R . / 2 \pi V_{\text {PEAK }}$.
8. $V_{S}= \pm 10 \mathrm{~V}$ to $\pm 40 \mathrm{~V}$
9. Absolute Maximum Ratings are limiting values applied individually beyond which the serviceability of the circuit may be impaired. Functional operation under any of these conditions is not necessarily implied.

Operating Temperature Ranges

HA-2640................................ $-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}$
HA-2645................................. $0^{\circ} \mathrm{C} \leq T_{A} \leq+75^{\circ} \mathrm{C}$
Storage Temperature Range $\ldots \ldots \ldots \ldots . .65^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+150^{\circ} \mathrm{C}$.$+175^{\circ} \mathrm{C}$
7. $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega$
8. $V_{\text {OUT }}= \pm 30 \mathrm{~V}$

Typical Performance Curves $\mathrm{V}+=\mathrm{V}-=40 \mathrm{~V}$ D.C., $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, Unless Otherwise Specified. INPUT BIAS AND OFFSET CURRENT vs. TEMPERATURE

INPUT NOISE CHARACTERISTICS

NORMALIZED AC PARAMETERS vs. TEMPERATURE

OPEN LOOP FREQUENCY RESPONSE FOR VARIOUS VALUES OF CAPACITORS FROM COMPENSATION PIN TO GROUND

NOTE: External Compensation Components are not required for stability, but may be added to reduce bandwidth if desired. If External Compensation is used, also connect 100 pF capacitor from output to ground.

Typical Performance Curves (Continued) OUTPUT VOLTAGE SWING vs. FREQUENCY AT $+25^{\circ} \mathrm{C}$

OUTPUT LOAD CURRENT (mA)

OUTPUT VOLTAGE SWING vs. SUPPLY VOLTAGE

Switching Waveform and Test Circuits

VOLTAGE FOLLOWER
 PULSE RESPONSE

$\mathrm{R}_{\mathrm{L}}=5 \mathrm{~K}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \quad \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

Vertical $=10 \mathrm{~V} /$ Div. Horizontal $=5 \mu \mathrm{~s} /$ Div .

SLEW RATE AND TRANSIENT RESPONSE TEST CIRCUIT

SUGGESTED Vos ADJUSTMENT

Tested Offset Adjusiment Range is $\left|\mathrm{V}_{\mathrm{OS}}+1 \mathrm{mV}\right|$ minimum referred to output. Typical range is $\pm 20 \mathrm{mV}$ with $\mathrm{R}_{\mathrm{T}}=10 \mathrm{k} \Omega$.

Features

- Slew Rate
- Bandwidth
- Bias Current部
- Avg. Offset Voltage Drift \qquad $8 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
- Power Consumption \qquad 75 mW
- Supply Voltage Range \qquad $\pm 2 \mathrm{~V}$ TO $\pm 20 \mathrm{~V}$

Applications

- Video Amplifiers
- High Impedance, Wideband Buffers
- Integrators
- Audio Amplifiers
- Active Filters

Description

HA-2650/2655 contains two internally compensated operational amplifiers offering high slew rate and high frequency performance combined with exceptional DC characteristics. $5 \mathrm{~V} / \mu \mathrm{sec}$ slew rate and 8 MHz bandwidth make these amplifiers suitable for processing fast, wideband signals extending into the video frequency spectrum. Signal processing accuracy is enhanced by front-end performance that includes 1.5 mV offset voltage, $8 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ offset voltage drift and low offset and bias current (1 nA and 35 nA respectively). Offset voltage can be trimmed to zero on the devices offered in dual-in-line packages. Signal conditioning is further enhance by $500 \mathrm{M} \Omega$ input impedance.

Applications for HA-2650/2655 include video circuit designs such as high impedance buffers, integrators, tone generators and filters. These amplifiers are also ideal components for active filtering of audio and voice signals.
HA-2650/2655 are offered in 14 pin DIP and metal TO-99 packages and are also available in dice form. HA-2650 is specified from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. HA-2655 operates from $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$.

Pinouts

HA2-2650/2655 (TO-99 METAL CAN) TOP VIEW

NOTE: Case Connected to V -

Schematic

Absolute Maximum Ratings (Note 1)
$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, Unless Otherwise Specified
Voltage Between V+ and V - Terminals 40 V
Differential Input Voltage. $\pm 30 \mathrm{~V}$
Input Voltage (Note 1) .. $\pm 15 \mathrm{~V}$
Output Short Circuit Duration Indefinite
Power Dissipation (Note 2) TO-99 . 300mW

Operating Temperature Ranges

HA-2650
$-55^{\circ} \mathrm{C} \leq T \mathrm{~A} \leq+125^{\circ} \mathrm{C}$
HA-2655
$.0^{\circ} \mathrm{C} \leq T A \leq+75^{\circ} \mathrm{C}$
Storage Temperature Range $\ldots \ldots \ldots \ldots . . .65^{\circ} \mathrm{C} \leq T A \leq+150^{\circ} \mathrm{C}$

Electrical Specifications $\quad V+=+15$ V D.C., $V-+-15$ V D.C.

PARAMETER	TEMP.	$\begin{gathered} \text { HA-2650 } \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$			$\begin{gathered} \text { HA-2655 } \\ 0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \end{gathered}$			UNITS
		MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
INPUT CHARACTERISTICS								
Offset Voltage	$\begin{gathered} +25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$		1.5	3 5		2	$\begin{aligned} & 5 \\ & 7 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Avg. Offset voltage Drift	Full		8			8		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Bias Current	$\begin{gathered} +25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$		35	100 200		50	$\begin{aligned} & 200 \\ & 300 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
Offset Current	$\begin{gathered} +25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$		1	$\begin{aligned} & 30 \\ & 60 \end{aligned}$		2	$\begin{gathered} 60 \\ 100 \end{gathered}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
Common Mode Range	Full	± 13			± 13			V
Differential Input Resistance (Note 9)	$+25^{\circ} \mathrm{C}$	5	20		5	20		$\mathrm{M} \Omega$
Common Mode Input Resistance	$+25^{\circ} \mathrm{C}$		500			500		$\mathrm{M} \Omega$
Input Capacitance	$+25^{\circ} \mathrm{C}$		5			5		pF
TRANSFER CHARACTERISTICS								
Large Signal Voltage Gain (Note 3ab)	$\begin{gathered} +25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$	$\begin{aligned} & 20 K \\ & 15 K \end{aligned}$	40 K		$\begin{aligned} & 15 \mathrm{~K} \\ & 10 \mathrm{~K} \end{aligned}$	40K		$\begin{aligned} & V / N \\ & V / N \end{aligned}$
Common Mode Rejection Ratio (Note 4)	$\begin{gathered} +25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$	$\begin{aligned} & 80 \\ & 80 \end{aligned}$	100		74 74	100		dB $d B$
OUTPUT CHARACTERISTICS								
Output Voltage Swing (Note 3c)	$\begin{gathered} +25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$	$\begin{aligned} & \pm 13 \\ & \pm 13 \end{aligned}$	± 14		± 13 ± 13	± 14		V
Full Power Bandwidth (Notes 5 \& 10)	$+25^{\circ} \mathrm{C}$	30	80		30	80		KHz
Output Current (Note 3a)	$+25^{\circ} \mathrm{C}$		± 20			± 18		mA
Output Resistance	$+25^{\circ} \mathrm{C}$		100			100		Ω
TRANSIENT RESPONSE (Note 6)								
Rise Time (Note 7)	$+25^{\circ} \mathrm{C}$		40	80		40	90	ns
Overshoot (Note 7)	$+25^{\circ} \mathrm{C}$		15	40		15	40	\%
Slew Rate		± 2	± 5		± 2	± 5		$\mathrm{V} / \mathrm{\mu s}$
POWER SUPPLY CHARACTERISTICS								
Supply Current	$+25^{\circ} \mathrm{C}$		2.5	4		3	5	mA
Power Supply Rejection Ratio (Note 8)	$+25{ }^{\circ} \mathrm{C}$ Fulf	80 80	100		74 74	100		dB dB
NOTES: 1. For supply voltages less than $\pm 15 \mathrm{~V}$, 4. $V_{C M}= \pm 5.0 \mathrm{~V}$ 9. This parameter value based upon the absolute maximum input voltage is equal to the supply voltage. 5. $A_{V}=1, R_{L}=2 K, V_{O}=20 V_{p p}$ 2. Derate at $4.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ at ambient 6. See transient response/slew temperatures above $+110^{\circ} \mathrm{C}$. rate circuit. 3. (a) $\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}$ (b) $R_{L}=2 K$ 7. $V_{I N}=200 \mathrm{mV}$ (c) $R_{\mathrm{L}}=10 \mathrm{~K}$ 8. $\Delta V= \pm 5.0 \mathrm{~V}$								

NORMALIZED AC PARAMETERS vs SUPPLY VOLTAGE

INPUT NOISE VOLTAGE vs FREQUENCY

NORMALIZED AC PARAMETERS vs TEMPERATURE

POWER SUPPLY CURRENT vs TEMPERATURE

COMMON MODE REJECTION RATIO vs FREQUENCY

Test Circuits

transient response/slew rate circuit

Typical Applications
Low cost high frequency generator

HIGH IMPEDANCE, HIGH GAIN, HIGH FREQUENCY INVERTING AMP

Features

- Wide Power Supply Range
± 1.2 to $\pm 18 \mathrm{~V}$
- Constant AC Performance Over Supply Range

Applications

- Active Filters
- Current Controlled Oscillators
- Variable Active Filters
- Modulators
- Battery-Powered Equipment

Description

HA-2720/2725 programmable amplifiers are internally compensated monolithic devices offering a wide range of performance, that can be controlled by adjusting the circuits' 'set' current (ISET). By means of adjusting an external resistor or current source, power dissipation, slew rate, bandwidth, output current and input noise can be programmed to desired levels. This versatile adjustment capability enables HA-2720/2725 to provide optimum design solutions by delivering the required level of performance with minimum possible power dissipation. HA-2720 and HA-2725 can, therefore, be utilized as the standard amplifier for a variety of designs simply of adjusting their programming current.

A major advantage of HA-2720/2725 is that operating characteristics remain virtually constant over a wide supply range ($\pm 1.2 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$), allowing the amplifiers to offer maximum performance in almost any system including battery-operated equipment. A primary application for HA-2720/2725 is in active filters for a wide variety of signals that differ in frequency and amplitude. Also, by modulating the 'set' current, HA-2720/2725 can be used for designs such as current controlled oscillators modulators, sample and hold circuits and variable active filters.

HA-2720 is guaranteed over $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. HA-2725 is specified from $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$. Both parts are available in TO-99 cans or dice form.

Pinouts

Note: Case tied to V -

HA2-2720/2655 (TO-99 METAL CAN) TOP VIEW

Schematic

NOTES: 1. For supply voltages less than $\pm 15.0 \mathrm{~V}$, the absolute maximum input voltage is equal to supply voltage.
2. Derate at $6.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for operation ambient temperatures above $75^{\circ} \mathrm{C}$.
3. $\quad \frac{V_{\text {SUPPLY }}= \pm 3.0 \mathrm{~V}}{\mathrm{~T}=+25^{\circ} \mathrm{C} \text { and Full }}$
$\frac{V_{\text {SUPPLY }}= \pm 15.0 \mathrm{~V}}{T=+25^{\circ} \mathrm{C}}$
$I_{S E T}=1.5 \mu \mathrm{~A}$
$\mathrm{R}_{\mathrm{L}}=75 \mathrm{~K} \Omega$
$\mathrm{R}_{\mathrm{L}}=75 \mathrm{~K} \Omega$
$\frac{\mathrm{ISET}=15 \mu \mathrm{~A}}{\mathrm{R}_{\mathrm{L}}=5 \mathrm{~K} \Omega}$
-
$T=$ Full
$\mathrm{R}_{\mathrm{L}}=75 \mathrm{~K} \Omega$
$\mathrm{R}_{\mathrm{L}}=75 \mathrm{~K} \Omega$
4. $V_{C M}= \pm 1.5 \mathrm{~V}$
5. $\quad V_{O}= \pm 2.0 \mathrm{~V}$
$\mathrm{V}_{\mathrm{CM}}= \pm 5.0 \mathrm{~V}$
$\mathrm{V}_{\mathrm{O}}= \pm 10.0 \mathrm{~V}$
\rightarrow
$\begin{array}{ll}V_{O}= \pm 2.0 \mathrm{~V} & V_{O}= \pm 10.0 \mathrm{~V} \\ \Delta V= \pm 1.5 \mathrm{~V}\end{array}$
$\Delta V= \pm 1.5 \mathrm{~V}$
$\Delta V= \pm 5.0 \mathrm{~V}$
9. $\mathrm{V}_{\mathrm{O}}= \pm 1.0 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{O}}= \pm 10.0 \mathrm{~V}$
10. This parameter based upon design calculations.

Electrical Specifications (Continued) $\mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}-+-15 \mathrm{~V}$.

PARAMETER	TEMP.	$\begin{gathered} \mathrm{HA}-2720 \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$						$\begin{gathered} \mathrm{HA}-2725 \\ 0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \end{gathered}$						UNITS
		$\mathrm{I}_{\text {SET }}=1.5 \mathrm{HA}$			ISET $=15 \mu \mathrm{~A}$			$\mathrm{I}^{\text {SET }}=1.5 \mu \mathrm{~A}$			ISET $=15 \mu \mathrm{~A}$			
		MIN.	TYP.	Max.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
INPUT CHARACTERISTICS														
Offset Voltage	$\begin{array}{\|c} +25^{\circ} \mathrm{C} \\ \text { Full } \end{array}$		2.0	3.0 5.0		2.0	3.0 5.0		2.0	5.0		2.0	5.0 7.0	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
OffsetCurrent	$\left\lvert\, \begin{gathered} +25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}\right.$		0.5	3.0 7.5		1.0	10		0.5	7.0 7.5		1.0	10	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
Bias Current	$\left\lvert\, \begin{gathered} +25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}\right.$		2.0	$\begin{aligned} & 5.0 \\ & 10 \end{aligned}$		8.0	20 40		2.0	$\begin{aligned} & 10 \\ & 10 \end{aligned}$		8.0	30	nA
Input Resistance (Note 10)	$+25{ }^{\circ} \mathrm{C}$		50			5			50			5		$\mathrm{M} \Omega$
Input Capacitance	$+25{ }^{\circ} \mathrm{C}$		3.0			3.0			3.0			3.0		pF
TRANSFER CHARACTERISTICS														
Large Signal Voltage Gain (Note 3 \& 9)	$\begin{gathered} +25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$	$\begin{aligned} & 30 \mathrm{~K} \\ & 20 \mathrm{~K} \end{aligned}$	$100 \mathrm{~K}$		$\begin{aligned} & 30 \mathrm{~K} \\ & 20 \mathrm{~K} \end{aligned}$	$120 \mathrm{~K}$		$\begin{aligned} & 25 K \\ & 20 K \end{aligned}$	40K		$\begin{aligned} & 25 \mathrm{~K} \\ & 20 \mathrm{~K} \end{aligned}$	$120 \mathrm{~K}$		$\mathrm{V} N$ $\mathrm{~V} N$
Common Mode Rejection Ratio (Note 4)	$\begin{gathered} +25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$		90			90			90			90		$\begin{aligned} & d B \\ & d B \end{aligned}$
OUTPUT CHARACTERISTICS														
Output Voltage Swing (Note 3)	+2500 ${ }^{\text {Full }}$	$\left\lvert\, \begin{aligned} & \pm 12 \\ & \pm 10 \end{aligned}\right.$	± 13.5		± 12 ± 10	± 13.5		± 12 ± 10	± 13.5		± 12 ± 10	± 13.5		v
Output Current (Note 5)	$+25^{\circ} \mathrm{C}$		± 0.5			± 5.0			± 0.5			± 5.0		mA
Output Resistance	$+25^{\circ} \mathrm{C}$		2K			500			2K			500		Ω
Output Short-Circuit Current	$+25^{\circ} \mathrm{C}$		3.7			19			3.7			19		mA
TRANSIENT RESPONSE														
Rise Time ((ote 6)	$+25^{\circ} \mathrm{C}$		2.0			0.2			2.0			0.2		$\mu \mathrm{s}$
Overshoot (Note 6)	$+25^{\circ} \mathrm{C}$		5			15			5			15		\%
Slew Rate (Note 7)	$+25^{\circ} \mathrm{C}$		0.1			0.8			0.1			0.8		$\mathrm{V} / \mathrm{\mu s}$
POWER SUPPLY CHARACTERISTICS														
Supply Current	$\begin{array}{\|c\|} \hline+25^{\circ} \mathrm{C} \\ \text { Full } \end{array}$		20	50		210	450		20	50		210	450	${ }_{\mu}^{\mu} \mathrm{A}$
Power Supply Rejection Ratio (Note 8)	Full	80			80			76			76			dB

NOTES: 1. For supply voltages less than $\pm 15.0 \mathrm{~V}$, the absolute maximum input voltage is equal to supply voltage.
2. Derate at $6.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for operation ambient temperatures above $75^{\circ} \mathrm{C}$.

	VSUPPLY $= \pm 3.0 \mathrm{~V}$
3.	$\mathrm{T}=+25^{\circ} \mathrm{C}$ and Full
4.	-
5.	$V_{C M}= \pm 1.5 \mathrm{~V}$
6.	$V_{O}= \pm 2.0 \mathrm{~V}$
7.	$V_{O}= \pm 2.0 \mathrm{~V}$
8.	$\Delta V= \pm 1.5 \mathrm{~V}$
9.	$V_{O}= \pm 1.0 \mathrm{~V}$

$V_{\text {SUPPLY }}= \pm 15.0 \mathrm{~V}$
$T=+25^{\circ} \mathrm{C}$
$T=$ Full
$V_{C M}= \pm 5.0 \mathrm{~V}$
$V_{O}= \pm 10.0 \mathrm{~V}$
$A_{V}=+1, V_{I N}=4$
$V_{O}= \pm 10.0 \mathrm{~V}$
$\Delta V= \pm 5.0 \mathrm{~V}$
$V_{O}= \pm 10.0 \mathrm{~V}$

10. This parameter based upon design calculations.

Typical Performance Curves $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$ D.C. Unless Otherwise Specified:

INPUT NOISE VOLTAGE AND CURRENT vs FREQUENCY

OPTIMUM SET CURRENT FOR MINIMUM NOISE vs SOURCE RESISTOR

Typical Performance Curves (Continued) $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$ D.C. Unless Otherwise Specified.

MAXIMUM OUTPUT VOLTAGE SWING vs LOAD RESISTANCE

OPEN LOOP VOLTAGE GAIN
vs ISET

SUPPLY CURRENT vs TEMPERATURE

NORMALIZED BANDWIDTH vs TEMPERATURE

Typical Performance Curves (Continued) $T A=+25^{\circ} \mathrm{C}, \mathrm{VS}= \pm 15 \mathrm{~V}$ D.C. Unless Otherwise Specified.

PHASE MARGIN vs SET CURRENT

Test Circuits

TRANSIENT RESPONSE/SLEW RATE CIRCUIT

SLEWING WAVEFORM

Die Characteristics

Transistor Count
Die Dimensions
Substrate Potential
Unbiased

Thermal Constants ($\left.{ }^{\circ} \mathrm{C} / \mathrm{W}\right)$	0ja	0jc
HA2-Metal Can (-2,-5)	212	58
HA2-Metal Can (-8)	173	52
HA7-Ceramic DIP (-2,-5)	218	123
HA7-Ceramic DIP (-8)	143	69
HA3-Plastic Mini-DIP (-5)	98	46

Features

- Slew Rate $1.6 \mathrm{~V} / \mu \mathrm{s}$
- Bandwidth \qquad 3.5 MHz
- Input Voltage Noise $n V \sqrt{H z}$
- Input Offset Voltage 0.5 mV
- Input Bias Current . 60nA
- Supply Range . $\pm 2 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$
- No Crossover Distortion
- Standard Quad Pinout

Description

HA-4741, which contains four amplifiers on a monolithic chip, provides a new measure of performance for general purpose operational amplifiers. Each amplifier in the HA-4741 has operating specifications that equal or exceed those of the 741-type amplifier in all categories of performance.

HA-4741 is well suited to applications requiring accurate signal processing by virtue of its low values of input offset voltage $(0.5 \mathrm{mV})$, input bias current (60 nA) and input voltage noise $(9 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ at 1 kHz). 3.5 MHz bandwidth, coupled with high open-loop gain, allow the HA-4741 to be used in designs requiring amplification of wide band signals, such as audio amplifiers. Audio application is further enhanced by the HA-4741's negligible output crossover distortion.

Applications

- Universal Active Filters
- D3 Communications Filters
- Audio Amplifiers
- Battery-Powered Equipment

These excellent dynamic characteristics also make the HA-4741 ideal for a wide range of active filter designs. Performance integrity of multi-channel designs is assured by a high level of amplifier-to-amplifier isolation (108dB at 1 kHz).
A wide range of supply voltages ($\pm 2 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$) can be used to power the HA-4741, making it compatible with almost any system including battery-powered equipment.
The HA-4741 is available in plastic or ceramic 14 lead DIP packages. The HA-4741-2 operates from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ and the HA-4741-5 operates over the $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ temperature range. HA-4741/883 product and data sheets available upon request. This device is also offered in a 16 pin SOIC package with -5 or -9 temperature options.

Schematic

1/4 HA-4741

CAUTION: These devices are sensitive to electrostatic discharge. Proper I.C. handling procedures should be followed.
Copyright © Harris Corporation 1990

Absolute Maximum Ratings (Note 13)

${ }^{T} A=+25^{\circ} \mathrm{C}$ Unless Otherwise Stated
Voltage Between V+ and V-Terminals . 40.0 V
Differential Input Voltage $\pm 30.0 \mathrm{~V}$
Input Voltage (Note 1) \qquad
Output Short Circuit Duration (Note 2) \qquad 15.0 V

Power Dissipation For Epoxy Package (Note 3)

Operating Temperature Ranges

HA-4741-5 $0^{\circ} \mathrm{C} \leq T_{A} \leq+75^{\circ} \mathrm{C}$
HA-4741-9 $40^{\circ} \mathrm{C} \leq T_{A} \leq+85^{\circ} \mathrm{C}$ Storage Temperature Range $-65^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+150^{\circ} \mathrm{C}$

Electrical Specifications $\mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}$, Unless Otherwise Specified.

PARAMETER	TEMP	HA-4741-2			HA-47 41-5			(NOTE 14) HA-4741-9	UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	MAX	
INPUT CHARACTERISTICS									
Offset Voltage Average Offset Voltage Drift Bias Current Offset Current Common Mode Range Differential Input Resistance Input Voltage Noise ($f=1 \mathrm{kHz}$)	$\begin{aligned} & +25^{\circ} \mathrm{C} \\ & \text { Full } \\ & \text { Full } \\ & +25^{\circ} \mathrm{C} \\ & \text { Full } \\ & +25^{\circ} \mathrm{C} \\ & \text { Full } \\ & \text { Full } \\ & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \end{aligned}$	- - - - - - - ± 12 - -	$\begin{gathered} 0.5 \\ 4 \\ 5 \\ 60 \\ - \\ 15 \\ - \\ - \\ 0.5 \\ 9 \end{gathered}$	$\begin{gathered} 3 \\ 5 \\ - \\ 200 \\ 325 \\ 30 \\ 75 \\ - \\ - \end{gathered}$		$\begin{gathered} 1 \\ 4 \\ 5 \\ 60 \\ - \\ 30 \\ - \\ - \\ 0.5 \\ 9 \end{gathered}$	$\begin{gathered} 5 \\ 6.5 \\ - \\ 300 \\ 400 \\ 50 \\ 100 \\ - \\ - \end{gathered}$	$\begin{gathered} 5 \\ 8.5 \\ - \\ 300 \\ 400 \\ 50 \\ 100 \\ - \end{gathered}$	mV mV $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ nA nA nA nA V $\mathrm{M} \Omega$ $n \mathrm{~V} / \sqrt{ } \mathrm{Hz}$
TRANSFER CHARACTERISTICS									
Large Signal Voltage Gain (Notes 4) Common Mode Rejection Ratio Channel Separation (Note 5) Small Signal Bandwidth	$\begin{aligned} & +25^{\circ} \mathrm{C} \\ & \text { Full } \\ & +25^{\circ} \mathrm{C} \\ & \text { Full } \\ & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} 50 \mathrm{~K} \\ 25 \mathrm{~K} \\ 80 \\ 74 \\ 90 \\ 2.5 \end{gathered}$	100K 95	- - - - - -	$\begin{gathered} 25 \mathrm{~K} \\ 15 \mathrm{~K} \\ 80 \\ 74 \\ 90 \\ 2.5 \end{gathered}$	50K 95 - 108 3.5	-	-	V/N V/N dB dB dB MHz
OUTPUT CHARACTERISTICS									
Output Voltage Swing $\begin{aligned} & \left(R_{L}=10 K\right) \\ & \left(R_{L}=2 K\right) \end{aligned}$ Full Power Bandwidth (Notes 4 \& 9) Output Current (Note 6) Output Resistance	$\begin{aligned} & \text { Full } \\ & \text { Full } \\ & +25^{\circ} \mathrm{C} \\ & \text { Full } \\ & +25^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} \pm 12 \\ \pm 10 \\ 14 \\ \pm 5 \end{gathered}$	$\begin{gathered} \pm 13.7 \\ \pm 12.5 \\ 25 \\ \pm 15 \\ 300 \end{gathered}$	- - - -	± 12 ± 10 14 ± 5 -	$\begin{gathered} \pm 13.7 \\ \pm 12.5 \\ 25 \\ \pm 15 \\ 300 \end{gathered}$	- - - -	-	$\begin{gathered} \mathrm{V} \\ \mathrm{~V} \\ \mathrm{kHz} \\ \mathrm{~mA} \\ \Omega \end{gathered}$
TRANSIENT RESPONSE (Note 7 \& 10)									
Rise Time (Note 11) Overshoot (Note 11) Slew Rate (Note 12)	$\begin{aligned} & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \end{aligned}$	-	$\begin{gathered} 75 \\ 25 \\ \pm 1.6 \end{gathered}$	140 40 -	--	$\begin{gathered} 75 \\ 25 \\ \pm 1.6 \end{gathered}$	$\begin{gathered} 140 \\ 40 \end{gathered}$	140 40	$\begin{gathered} \mathrm{ns} \\ \% \\ \mathrm{~V} / \mu \mathrm{s} \end{gathered}$
POWER SUPPLY CHARACTERISTICS									
Supply Current Power Supply Rejection Ratio (Note 8)	$\begin{gathered} +25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$	80	$\begin{aligned} & 4.5 \\ & 95 \end{aligned}$	5 -	-	5 95	7 -	7	$m A$ dB

NOTES:

1. For supply voltages. less than $\pm 15 \mathrm{~V}$, the absolute maximum 9 . Full power bandwidth guaranteed based upon slew rate input voltage is equal to the supply voltage.
2. One amplifier may be shorted to ground indefinitely
3. Derate $5.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$
4. $V_{\text {OUT }}= \pm 10, R_{L}=2 K$
5. Referred to input; $f=10 \mathrm{kHz}, R_{S}=1 \mathrm{~K}$
6. $V_{\text {OUT }}= \pm 10$
7. See Pulse Response Characteristics
8. $\Delta V= \pm 5 V$
measurement FPBW $=S . R . / 2 \pi V_{\text {PEAK }}$
9. $R_{L}=2 K, C_{L}=50 p F$
10. $V_{\text {OUT }}= \pm 200 \mathrm{mV}$
11. $\mathrm{V}_{\text {OUT }}= \pm 5 \mathrm{~V}$
12. Absolute maximum ratings are limiting values, applied individually beyond which the serviceability of the circuit may be impaired. Functional operability under any of these conditions is not necessarily implied.
13. Typical and Minimum specifications for the -9 version are the same as those for the -5 version.

Typical Performance Curves $\mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, Unless Otherwise Specified.

OPEN LOOP FREQUENCY RESPONSE

NORMALIZED AC PARAMETERS vs. SUPPLY VOLTAGE

INPUT NOISE vs. FREQUENCY

OUTPUT VOLTAGE SWING vs. FREQUENCY

NORMALIZED AC PARAMETERS vs. TEMPERATURE

SMALL SIGNAL BANDWIDTH AND PHASE MARGIN vs. LOAD CAPACITANCE

Typical Performance Curves (Continued)

CHANNEL SEPARATION vs. FREQUENCY

INPUT BIAS AND OFFSET CURRENT vs. TEMPERATURE

MAXIMUM OUTPUT VOLTAGE SWING vs. LOAD RESISTANCE

POWER CONSUMPTION vs. TEMPERATURE

Pulse Response
TRANSIENT RESPONSE/SLEW RATE CIRCUIT

SLEW RESPONSE
(Volts: 5V/Div., Time: $5 \mu \mathrm{~s} /$ Div.)

TRANSIENT RESPONSE
(Volts: $40 \mathrm{mV} / \mathrm{Div} .$, Time: $100 \mathrm{~ns} /$ Div.)

HARPIS
HA-5004

Features

```
- Slew Rate \(1200 \mathrm{~V} / \mu \mathrm{s}\)
- Output Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . \(\pm 100 \mathrm{~mA}\)
- Drives \(\pm 9 \mathrm{~V}\) into \(100 \Omega\)
- VSUPPLY .................................... \(\pm 5 \mathrm{~V}\) to \(\pm 18 \mathrm{~V}\)
- Thermal Overload Protection and Output Flag
- Bandwidth Nearly Independent of Gain
- Output Enable/Disable
```


Applications

- Unity Gain Video/Wideband Buffer
- Video Gain Block
- High Speed Peak Detector
- Fiber Optic Transmitters
- Zero Insertion Loss Transmission Line Drivers
- Current to Voltage Converter
- Radar Systems

Description

The HA-5004 current feedback amplifier is a video/ wideband amplifier optimized for low gain applications. The design is based on current-mode feedback which allows the amplifier to achieve higher closed loop bandwidth than voltage-mode feedback operational amplifiers. Since feedback is employed, the HA-5004 can offer better gain accuracy and lower distortion than open loop buffers. Unlike conventional op amps, the bandwidth and rise time of the HA-5004 are nearly independent of closed loop gain. The 100 MHz bandwidth at unity gain reduces to only 65 MHz at a gain of 10 . The HA- 5004 may be used in place of a conventional op amp with a significant improvement in speed power product.
Several features have been designed in for added value. A thermal overload feature protects the part against excessive junction temperature by shutting down the output. If this feature is not needed, it can be inhibited via a TTL input (TOI). A TTL chip enable/disable ($\overline{\mathrm{OE}}$) input is also provided; when the chip is disabled its output is high impedance. Finally, an open collector output flag ($\overline{\mathrm{TOL}}$) is provided to indicate the status of the chip. The status flag goes low to indicate when the chip is disabled due to either the internal Thermal Overload shutdown or the external disable.

In order to maximize bandwidth and output drive capacity, internal current limiting is not provided. However, current limiting may be applied via the $\mathrm{V}_{\mathrm{C}}+$ and V_{C} - pins which provide power separately to the output stage.
The HA-5004 is available in a 14-pin Ceramic DIP and is specified for operation from $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ (HA1-5004-5) and $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (HA1-5004-9). For Military grade product refer to the HA-5004/883 data sheet.

INPUTS		TEMP	TOL OUTPUT (OPEN	
$\overline{O E}$	TOI	T_{J}		
0	0	Normal	1	Normal
0	0	High *	0	OPERATION
0	1	x	1	Normal Shutdown, Hi-Z OUT
1	X	X	0	Manual Shutdown, Hi-Z OUT

$*>180^{\circ} \mathrm{C}$ Typical

Electrical Specifications (Continued) $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{C}+}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=\mathrm{V}_{\mathrm{C}-}=-15 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=50 \Omega, \mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{AV}^{2}=+1, \mathrm{R}_{\mathrm{F}}=250 \Omega$, $\overline{\mathrm{OE}}=0.8 \mathrm{~V}, \mathrm{TOI}=0.8 \mathrm{~V}$ or 2.0 V Unless Otherwise Specified.

PARAMETER	TEMP	HA-5004-5, -9			UNITS
		MIN	TYP	MAX	
OUTPUT CHARACTERISTICS					
Output Voltage Swing	$+25^{\circ} \mathrm{C}$	± 9.0	± 9.5	-	v
	$+25^{\circ} \mathrm{C}$	± 11.5	± 11.8	-	v
	Full	± 8.0	± 9.5	-	v
	Full	± 10.5	± 11.8	-	V
Full Power Bandwidth ($\mathrm{A}_{\mathrm{V}}=+1$) (Note 10)	+250 ${ }^{\circ}$	-	100	-	MHz
Output Resistance, Open Loop	$+25^{\circ} \mathrm{C}$	-	5	-	Ω
Output Current	$+25^{\circ} \mathrm{C}$	± 90	± 100	-	mA
	Full	± 80	± 100	-	mA
Output Enable time (Hi Z to $\pm 2 \mathrm{~V}$)	Full	-	100	-	ns
Output Disable time ($\pm 2 \mathrm{~V}$ to Hi Z)	Full	-	3	-	$\mu \mathrm{s}$
Output Leakage (Disabled)	Full	-	-	1	$\mu \mathrm{A}$
TRANSIENT RESPONSE					
Rise Time/Fall Time	$+25^{\circ} \mathrm{C}$	-	6.3	-	ns
Propagation Delay (10V Step)	$+25^{\circ} \mathrm{C}$	-	7	-	ns
Slew Rate	$+25^{\circ} \mathrm{C}$	-	1200	-	$\mathrm{V} / \mathrm{\mu s}$
Settling Time (0.1\%, 10V Step)	$+25^{\circ} \mathrm{C}$	-	50	-	ns
Overshoot	$+25^{\circ} \mathrm{C}$	-	10	-	\%
POWER SUPPLY CHARACTERISTICS					
Supply Current (Enabled)	$+25^{\circ} \mathrm{C}$	-	12	16	mA
	Full	-	-	22	mA
(Disabled)	+250\%	-	7	-	mA
Power Supply Rejecton Ratio	Full	50	60	-	dB

NOTES: 1. Absolute maximum ratings are limiting values, applied individually, beyond which the serviceability of the circuit may be impaired. Functional operation under any of these conditions is not necessarily implied.
2. Inverting (FB) input is a low impedance point; Bias Current, Offset Current, and Input Resistance are not specified for this terminal.
3. See typical performance curves.
4. DC Voltage Gain $=\frac{1}{\text { Gain Error }}$
5. $D C$ Transimpedance $=\frac{R_{F}}{\text { Gain Error }}, R_{F}=250 \Omega$
6. $\mathrm{V}_{\mathrm{IN}}=300 \mathrm{mVp}-\mathrm{p}$
7. $V_{\text {OFFSET }}=1.0 \mathrm{~V}$
8. Differential Gain $(\mathrm{dB})=0.0869$ Differential Gain (\%)
9. $V_{C M}= \pm 10 \mathrm{~V}$
10. Full power bandwidth guaranteed by equation: Full Power Bandwidth $=\frac{\text { Slew Rate }}{2 \pi V_{\text {peak }}}, V_{\text {peak }}=2 \mathrm{~V}$

Typical Performance Curves $\mathrm{V}_{\text {SUPPLY }}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Unless Otherwise Specified.

GAIN AND PHASE vs. FREQUENCY

FREQUENCY RESPONSE vs. C_{L}
$V_{C C}= \pm 15 \mathrm{~V}, A_{V}=+2, R_{L}=1 \mathrm{k} \Omega$, Input $=10 \mathrm{mV}$

CLOSED LOOP OUTPUT IMPEDANCE vs. FREQUENCY

FREQUENCY RESPONSE vs. SUPPLY VOLTAGE

MAX. UNDISTORTED SINEWAVE OUTPUT vs. FREQUENCY

$$
V_{C C}= \pm 15 V, A V=+1, \text { Sinewave Input }
$$

Applications Information

Theory of Operation

The HA-5004 is a high performance amplifier that uses current feedback to achieve its outstanding performance. Although it is externally configured like an ordinary op amp in most applications, its internal operation is significantly different.

Inside the HA-5004, there is a unity gain buffer from the non-inverting (+) input to the inverting (FB) input (as suggested by the circuit symbol), and the inverting terminal is a low impedance point. Error currents are sensed at the inverting input and amplified; a small change in input current produces a large change in output voltage. The ratio of output voltage delta due to input current delta is the transimpedance of the device.

Steady state current at the inverting input is very small because the transimpedance is large. The voltage across the input terminals is nearly zero due to the buffer amplifier. These two properties are similar to standard op amps and likewise simplify circuit analysis.

Resistor Selection

The HA-5004 is optimized for a feedback resistor of 250Ω, regardless of gain configuration. It is important to note that this resistor is required even for unity gain applications; higher gain settings use a second resistor like regular op amp circuits as shown in Figure 1 below.

FIGURE 1: TYPICAL APPLICATION CIRCUIT, $A_{V}=\boldsymbol{+ 2}$

Power Supplies

The HA-5004 will operate over a wide range of supply voltages with excellent performance. Supplies may be either single-ended or split, ranging from $6 \mathrm{~V}(\pm 3 \mathrm{~V})$ to 36 V $(\pm 18 \mathrm{~V})$. Appropriate reduction in input and output signal excursion is necessary for operation at lower supply voltages. Bypass capacitors from each supply to ground are recommended, typically a $0.01 \mu \mathrm{~F}$ ceramic in parallel with a $4.7 \mu \mathrm{~F}$ electrolytic.

Current Limit

No internal current limiting is provided for the HA-5004 in order to maximize bandwidth and slew rate. However, power is supplied separately to the output stage via pins 1 $\left(\mathrm{V}_{\mathrm{C}^{+}}\right)$and $14\left(\mathrm{~V}_{\mathrm{C}^{-}}\right)$so that external current limiting resistors may be used. If required, 100Ω resistors to each supply rail are recommended.

Enable/Disable and Thermal Overload Operation

The HA-5004 operates normally with a TTL low state on pin 7 (OE) but it may be disabled manually by a TTL high state at this input. When disabled, the output and inverting (FB) input go to a high impedance state and the circuit is electrically debiased, reducing supply current by about 5 mA . It is important to keep the differential input voltage below the absolute maximum rating of 5 V when the device is disabled.

If the power dissipation becomes excessive and chip temperature exceeds approximately $180^{\circ} \mathrm{C}$, the HA-5004 will automatically disable itself. The thermal overload condition will be indicated by a low state at the TOL output on pin 10. ($\overline{\mathrm{TOL}}$ is also low for manual shutdown via pin 7). Automatic thermal shutdown can be bypassed by a TTL high state on Thermal Overload Inhibit (TOI) pin 6. See the truth table for a summary of operation.

Offset Adjustment

Offset voltage may be nulled with a $5 \mathrm{~K} \Omega$ potentiometer between pins 3 and 4, center tapped to the positive supply. Setting the slider towards pin 3 (+BAL) increases output voltage; towards pin 4 (-BAL) decreases output voltage. Offset can be adjusted by about $\pm 10 \mathrm{mV}$ with a 5 K pot; this range is extended with a lower resistance potentiometer.

Die Characteristics

Transistor Count ... 64
Die Dimensions $93 \times 63 \times 19 \mathrm{mils}$ ($2370 \times 1600 \times 480 \mu \mathrm{~m}$)

Substrate Potential		
Process		pola
Thermal Constants (${ }^{\circ} \mathrm{C} / \mathrm{W}$)	θ_{ja}	$\theta_{\text {jc }}$
HA1-Ceramic DIP	107	25

Low Noise, High Performance Operational Amplifiers

Features- Low Noise3.3nV/ $\sqrt{\mathrm{Hz}}$ at 1 kHz- Wide Bandwidth 10MHz (Compensated)100 MHz (Uncompensated)

- High Slew Rate 10V/ $\mu \mathrm{s}$ (Compensated)
50V/ μ s (Uncompensated)
- Low Offset Voltage Drift $3 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
- High Gain . 1 x 106²V/V
- High CMRR/PSRR . 100dB
- High Output Drive Capability 30mA

Description

The HA-5101/5111 are dielectrically isolated operational amplifiers featuring low noise and high performance. Both amplifiers have an excellent noise voltage density of $3.5 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ at 1 kHz : The uncompensated $\mathrm{HA}-5111$ is stable at a minimum gain of 10 and has the same DC specifications as the unity gain stable HA-5101. The difference in compensation yields a 100 MHz gain-bandwidth product and a $50 \mathrm{~V} / \mu$ s slew rate for the HA-5111 versus a 10 MHz unity gain bandwidth and a $6 \mathrm{~V} / \mu \mathrm{S}$ slew rate for the HA-5101.
DC characteristics of the HA-5101/5111 assure accurate performance. The 1 mV offset voltage is externally adjustable and offset voltage drift is just $3 \mu \mathrm{~V} / \mathrm{O}^{\circ} \mathrm{C}$. An offset current of only 30 nA reduces input current errors and an open loop voltage gain of $1 \times 10^{6} \mathrm{~V} / \mathrm{V}$ increases loop gain for low distortion amplification.

Applications

- High Quality Audio Preamplifiers
- High Q Active Filters
- Low Noise Function Generators
- Low Distortion Oscillators
- Low Noise Comparators
- For Further Design Ideas, See App. Note 554

The HA-5101/5111 are ideal for audio applications, especially low-level signal amplifiers such as microphone, tape head and phono cartridge preamplifiers. Additionally, it is well suited for low distortion oscillators, low noise function generators and high Q filters.

The HA-5101/5111-2 has guaranteed operation from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ and can be ordered as a military grade part. The HA-5101/5111-5 has guaranteed operation from $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$. All devices are available in Ceramic MiniDIP and TO-99 Can packages. Additionally, the HA-5101/ 5111-5 is available in a Plastic Mini-DIP package.

These devices are also available in SOIC packages in both -5 and -9 temperature grades.

Pinouts

HA2-5101/5111 (TO-99 METAL CAN) TOP VIEW

HA3-5101/5111 (PLASTIC MINI-DIP)
HA7-5101/5111 (CERAMIC MINI-DIP) HA9P5101/5111 (SOIC) TOP VIEW

[^43]HA-5111 Compensation

CAUTION: These devices are sensitive to electrostatic discharge. Proper I.C. handling procedures should be followed.
Copyright (c) Harris Corporation 1990

Absolute Maximum Ratings (Note 1)

$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ Unless Otherwise Stated	
Voltage Between V+ and V-Terminals	40.0V
Differential Input Voltage.	. $\pm 7 \mathrm{~V}$
Voltage (at any pin)	$\pm \mathrm{V}_{\text {SUPPLY }}$
Output Current	Protection
Junction Temperature	$+175^{\circ} \mathrm{C}$

Operating Temperature

2	+1250
HA-5101/5111-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
HA-5101/5111-9	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperatur	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Internal Power Diss	$560 \mathrm{~mW}$

Storage Temperature . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Electrical Specifications $\mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=100 \Omega, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, Unless Otherwise Specified.

PARAMETER	TEMP	$\begin{aligned} & \text { HA-5101-2, -5 } \\ & \text { HA-5111-2, }-5 \end{aligned}$			$\begin{aligned} & \text { HA-5101-9 } \\ & \text { HA-5111-9 } \end{aligned}$			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
INPUT CHARACTERISTICS								
Offset Voltage	$+25^{\circ} \mathrm{C}$	-	0.5	3	-	0.5	3	mV
	Full	-	-	4	-	-	4	mV
Offset Voltage Drift	Full	-	3	-	-	3	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Bias Current	$+25^{\circ} \mathrm{C}$	-	100	200	-	100	200.	nA
	Full	-	-	325	-	-	325	$n \mathrm{~A}$
Offset Current	$+25^{\circ} \mathrm{C}$	-	30	75	-	30	75	nA
	Full	-	-	125	-	-	125	nA
Input Resistance	$+25^{\circ} \mathrm{C}$	-	500	-	-	500	-	$\mathrm{k} \Omega$
Common Mode Range	Full	± 12	-	-	± 12	-	-	V / N
TRANSFER CHARACTERISTICS								
Large Signal Voltage Gain (Note 2)	$+25^{\circ} \mathrm{C}$	-	1000K	-	-	1000K	-	V/V
	Full	100K	250K	-	100K	250K	-	V / N
Common Mode Rejection Ratio (Note 3)	Full	80	100	-	80	100	-	dB
Small Signal Bandwidth $H A-5101(A V=1)$	$+25^{\circ} \mathrm{C}$	-	10	-	-	10	-	MHz
Minimum Stable Gain								
HA-5101	Full	1	-	-	1	-	-	V/V
HA-5111	Full	10	-	-	10	-	-	V/V
Gain Bandwidth Product HA-5111 ($\mathrm{AV}^{\text {V }}=10$)	$+25^{\circ} \mathrm{C}$	-	100	-	-	100	-	MHz
OUTPUT CHARACTERISTICS								
Output Voltage Swing								
$\mathrm{R}_{\mathrm{L}}=10 \mathrm{~K}$	Full	± 12	± 13	-	± 12	± 13	-	V
$\mathrm{R}_{\mathrm{L}}=2 \mathrm{~K}$	Full	± 12	± 13	-	± 12	± 13	-	V
$\left(\mathrm{VPS}^{\prime}= \pm 18, \mathrm{R}_{\mathrm{L}}=600\right)$	$+25^{\circ} \mathrm{C}$	± 15	-	-	± 15	-	-	V
Output Current (Note 4)	$+25^{\circ} \mathrm{C}$	25	30	-	25	30	-	mA
Full Power Bandwidth (Note 5)								
HA-5101	$+25^{\circ} \mathrm{C}$	95	160	-	95	160	-	kHz
HA-5111	$+25^{\circ} \mathrm{C}$	630	790	-	630	790	-	kHz
Output Resistance	$+25^{\circ} \mathrm{C}$	-	110	-	-	110	-	Ω
Maximum Load Capacitance	$+25^{\circ} \mathrm{C}$	-	800	-	-	800	-	pF

Electrical Specifications (Continued) $\mathrm{V}+=15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=100, \mathrm{R}_{\mathrm{L}}=2 \mathrm{~K}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ Unless Otherwise Specified.

PARAMETER	TEMP	$\begin{aligned} & \text { HA-5101-2,-5 } \\ & \text { HA-5111-2, }-5 \end{aligned}$			$\begin{aligned} & \text { HA-5101-9 } \\ & \text { HA-5111-9 } \end{aligned}$			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
TRANSIENT RESPONSE (Note 6)								
Rise Time								
HA-5101	$+25^{\circ} \mathrm{C}$	-	50	100	-	50	100	ns
HA-5111	$+25^{\circ} \mathrm{C}$	-	30	60	-	30	60	ns
Overshoot								
HA-5101	$+25^{\circ} \mathrm{C}$	-	20	35	-	20	35	\%
HA-5111	$+25^{\circ} \mathrm{C}$	-	20	40	-	20	40	\%
Slew Rate								
HA-5101	$+25^{\circ} \mathrm{C}$	6	10	-	6	10	-	$\mathrm{V} / \mathrm{\mu s}$
HA-5111	$+25^{\circ} \mathrm{C}$	40	50	-	40	50	-	$\mathrm{V} / \mathrm{\mu s}$
Settling Time (Note 7)								
HA-5101 0.01\%	-	-	2.6	-	-	2.6	-	$\mu \mathrm{s}$
HA-5111 0.01\%	-	-	0.5	-	-	0.5	-	$\mu \mathrm{s}$
NOISE CHARACTERISTICS (Note 8)								
Input Noise Voltage								
$\mathrm{f}=10 \mathrm{~Hz}$	$+25^{\circ} \mathrm{C}$	-	7	17	-			$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
$f=1 \mathrm{kHz}$	$+25^{\circ} \mathrm{C}$	-	3.3	4.5	-	3.3	4.5	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Input Noise Current						.		
$\mathrm{f}=10 \mathrm{~Hz}$	$+25^{\circ} \mathrm{C}$	-	5.1	28	-	5.1	28	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
$\mathrm{f}=1 \mathrm{kHz}$	$+25^{\circ} \mathrm{C}$	-	1.1	3	-	1.1	3	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
Broadband Noise Voltage $f=$ DC to 30 kHz	$+25^{\circ} \mathrm{C}$	-	0.870	-	-	0.870	-	$\mu \mathrm{Vrms}$
POWER SUPPLY CHARACTERISTICS								
Supply Current HA-5101/5111	Full	-	4	6	-	4	7	mA
Power Supply Rejection Ratio (Note 9)	Full	80	100	-	80	100	-	dB

NOTES:

1. Absolute maximum ratings are limiting values, applied individually, beyond which the serviceability of the circuit may be impaired. Functiona operability under any of these conditions is not necessarily implied.
2. $V_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{~K}$.
3. $V_{C M}= \pm 10 \mathrm{~V}$.
4. Refer to Test Circuits section of the data sheet
5. Settling time is measured to 0.01% of final value for a 10 V output step, and $A_{V}=-10$ for HA-5111 and 0.01% of final value for a 10 V output step, $A_{V}=-1$ for HA-5101.
6. Sample Tested.
7. Delta $V_{S U P P L Y}= \pm 5 \mathrm{~V}$.
8. Full power bandwidth is guaranteed by equation:

Full power bandwidth $=\frac{\text { Slew Rate }}{2 \pi V \text { Peak }}, V_{\text {peak }}=10 \mathrm{~V}$.

Test Circuits

HA-5101 LARGE SIGNAL RESPONSE CIRCUIT

HA-5111 LARGE SIGNAL TRANSIENT RESPONSE

$$
\text { Ch. } 1=2.5 \mathrm{~V} / \text { Div. }
$$

Timebase $=200 \mathrm{~ns} /$ Div .

HA-5101 LARGE SIGNAL TRANSIENT RESPONSE Ch. $1=2.5 \mathrm{~V} /$ Div.
Timebase $=1.00 \mu \mathrm{~s} /$ Div .

HA-5111 LARGE AND SMALL RESPONSE CIRCUIT

HA-5101 SMALL SIGNAL RESPONSE CIRCUIT

HA-5111 SMALL SIGNAL TRANSIENT RESPONSE Ch. $1=100 \mathrm{mV} /$ Div. Timebase $=100 \mathrm{~ns} /$ Div.

HA-5101 SMALL SIGNAL TRANSIENT RESPONSE Ch. $1=50 \mathrm{mV} /$ Div. Timebase $=100 \mathrm{~ns} /$ Div.

- $A_{V}=-1$ (HA-5101), $* A_{V}=-10$ (HA-5111)
- Feedback and summing resistors should be 0.1% matched
- Clipping diodes are optional, HP5082-2810 recommended.

Typical Performance Curves
HA-5101/11 NOISE SPECTRUM

PEAK-TO-PEAK NOISE 0.1 Hz to 10 Hz
$A V=25000 V_{C C}= \pm 15 \mathrm{~V}$
($2.25 \mu \mathrm{Vp}-\mathrm{p}$ RTO)

SLEW RATE/RISE TIME vs. TEMPERATURE
$R_{\mathrm{L}}=2 \mathrm{~K}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{CC}}= \pm 15 \mathrm{~V}$

OFFSET VOLTAGE vs. TEMPERATURE

PEAK-TO-PEAK TOTAL NOISE 0.1 Hz to 1 MHz
$A V=25000, V_{C C}= \pm 15 \mathrm{~V}$
($12.89 \mathrm{mVp}-\mathrm{p}$ RTO)

INPUT•BIAS CURRENT vs. TEMPERATURE

OPEN-LOOP GAIN/PHASE VS. FREQUENCY

Typical Performance Curves (Continued)
INPUT OFFSET WARMUP DRIFT vs. TIME
(Normalizd To Zero Final Value)
(Six Representative Units)

DC OPEN-LOOP VOLTAGE GAIN vs. SUPPLY VOLTAGE

HA-5111 CLOSED-LOOP GAIN AND PHASE AT HIGH AND LOW TEMPERATURE (Typical Rresponse Of One Amplifier) $V_{C C}= \pm 15 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=10 \mathrm{~V} / \mathrm{N}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{~K}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

SUPPLY CURRENT vs. SUPPLY VOLTAGE

SHORT CIRCUIT CURRENT vs. TIME

HA-5111 CLOSED-LOOP VOLTAGE GAIN FREQUENCY AT DIFFERENT CLOSED-LOOP GAINS
$T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}= \pm 15 \mathrm{~V}, \mathrm{AV}=100$,
$10 \mathrm{~V} / \mathrm{N}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{~K}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

Typical Performance Curves (Continued)
HA-5101 CLOSED-LOOP GAIN AND PHASE AT HIGH AND LOW TEMPERATURE (Typical Response Of One Amplifier)
$V_{C C}= \pm 15 \mathrm{~V}, \mathrm{AV}=1 \mathrm{~V} / \mathrm{V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{~K}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

HA-5111 REJECTION RATIOS vs. FREQUENCY
$T_{A}=+25^{\circ} \mathrm{C}, V_{C C}= \pm 15 \mathrm{~V}$

HA-5101 CLOSED-LOOP VOLTAGE GAIN vs. FREQUENCY AT DIFFERENT CLOSED-LOOP GAINS
$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{~K}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

HA-5111 SETTLING WAVEFORM 500ns/DIV.

HA-5101 SETTLING WAVEFORM 1.5 $\mu \mathrm{s} / \mathrm{DIV}$.

Applications Information

Operation At $\pm 5 \mathrm{~V}$ Supply

The HA-5101/11 performs well at $V_{C C}= \pm 5 \mathrm{~V}$ exhibiting typical characteristics as listed below:

ICC	3.7	mA
V_{10}	0.5	mA
Ibias	56	nA
AVOL ($\mathrm{V}_{0}= \pm 3 \mathrm{~V}$) \ldots	106	KV/
Vout	3.7	V
lout.	13	mA
CMRR ($\Delta \mathrm{V}_{\mathrm{CM}}= \pm 2.5 \mathrm{~V}$)	90	dB
PSRR $\left(\Delta V_{C C}=0.5 \mathrm{~V}\right)$	90	dB
Unity Bandwidth (5101)	10	MHz
G8W (5111) .	100	MHz
Slew Rate (5101)	7	V/rs
Slew Rate (5111) . .	40	V/ $/ \mathrm{s}$

Offset Adjustment

The following is the recommended V_{IO} adjust configuration:

* Proper decoupling is always recommended, $0.1 \mu \mathrm{~F}$ high quality capacitor should be at or very near the devices's supply pins.

Compensation

An external compensation capacitor can be used with the HA-5111 connected between pin 8 and ground (or V-, V+ not Recommended). A plot of gain bandwidth product vs. compensation capacitor has been included as a design aid. The capacitor should be a high frequency type mounted near the device leads to minimize parasitics.

Input Protection

The HA-5101/11 has built-in back-to-back protection diodes which will limit the differential input voltage to approximately 7 V . If the $5101 / 11$ will be used in conditions where that voltage may be exceeded, then current limiting resistors must be used. No more than 25 mA should be allowed to flow in the HA-5101/11's input.

Comparator Circuit

$$
\text { Choose RLIM Such That: } \frac{\left(\Delta V_{I N} M A X-7 V\right)}{25 \mathrm{~mA}} \leq 2 R L I M
$$

Output Saturation

When an op amp is overdriven, output devices can saturate and sometimes take a long time to recover. Saturation can be avoided (sometimes) by using circuits such as:

If saturation cannot be avoided the HA-5101/11 recovers from a 25% overdrive in about $6.5 \mu \mathrm{~s}$ (see photos).

Applications information (Continued)

Output is overdriven negative and recovers in $6 \mu \mathrm{~s}$.

Die Characteristics

* The Substrate may be left floating (Insulating Die Mount) or it may be mounted on a conductor at V-potential.

Schematic

Features

- Low Noise
- Wide Bandwidth 8 MHz (Compensated)

20V/ $\mu \mathrm{s}$ (Uncompensated)
- Low Offset Voltage \qquad 0.5 mV
- Available in Duals or Quads

Description

Low noise and high performance are key words describing HA-5102/04/12/14. These general purpose amplifiers offer an array of dynamic specifications ranging from a $3 \mathrm{~V} / \mu \mathrm{s}$ slew rate and 8 MHz bandwidth (5102/04) to $20 \mathrm{~V} / \mu$ s slew rate and 60 MHz gain-bandwidth-product (HA-5112/14). Complementing these outstanding parameters is a very low noise specification of $4.3 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ at 1 kHz .
Fabricated using the Harris high frequency. DI process, these operational amplifiers also offer excellent input specifications such as a 0.5 mV offset voltage and $30 n A$ offset current. Complementing these specifications are 108 dB open loop gain and 108 dB channel separation. Consuming a very modest amount of power (90 mW / package for duals and $150 \mathrm{~mW} /$ package for quads), HA-5102/04/12/14 also provide 15 mA of output current.

Applications

- High Q, Active Filters
- Audio Amplifiers
- Instrumentation Amplifiers
- Integrators
- Signal Generators
- For Further Design Ideas, See App. Note 554.

This impressive combination of features make this series of amplifiers ideally suited for designs ranging from audio amplifiers and active filters to the most demanding signal conditioning and instrumentation circuits.
These operational amplifiers are available in dual or quad form with industry standard pinouts allowing for immediate inter-changeability with most other dual and quad operational amplifiers.
$\begin{array}{lll}\text { HA-5102 } & \text { Dual, Comp. } & \text { HA-5104 } \\ \text { HA-5112 } & \text { Dual, Uncomp. Comp. } \\ H A-5114 & \text { Quad, Uncomp. }\end{array}$
Each of these products are available in $-2\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right),-5$ and $-7\left(0^{\circ} \mathrm{C}\right.$ to $\left.+75^{\circ} \mathrm{C}\right),-9\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$ or $/ 883$ grades. Refer to the $/ 883$ data sheet for military product.

Pinouts

HA3-5102/5112 (PLASTIC MINI-DIP)
HA7-5102/5112 (CERAMIC MINI-DIP) TOP VIEW

HA2-5102/5112 (TO-99 METAL CAN) TOP VIEW

HA9P5104/5114 (SOIC)

HA1-5104/5114 (CERAMIC DIP)
HA3-5104/5114 (PLASTIC DIP) TOP VIEW

Absolute Maximum Ratings (Note 1)
$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ Unless Otherwise Stated
Voltage Between $V+$ and V - Terminals
Differential Input Voltage \qquad 40.0 V

Input Voltage (Note 2)
Output Short Circuit Duration (Note 3) .$\pm 15.0 \mathrm{~V}$

Power Dissipation (Note 4)
3). Indefinite .. 880mW

Operating Temperature Ranges

```
HA-5102/5104/5112/5114-2
```

\qquad

```
                                55}\mp@subsup{}{}{\circ}\textrm{C}\leq\mp@subsup{T}{A}{}\leq+12\mp@subsup{5}{}{\circ}\textrm{C HA-5102/5104/5112/5114-5 \(-0^{\circ} \mathrm{C} \leq \mathrm{T} A \leq+75^{\circ} \mathrm{C}\) HA-5102/5104/5112/5114-9 \(\ldots . . . . . .0^{\circ}{ }^{\circ} \mathrm{C} \leq T_{A} \leq+85^{\circ} \mathrm{C}\)Storage Temperature Range
                        -650}\textrm{C}\leq\mp@subsup{T}{A}{}\leq+15\mp@subsup{0}{}{\circ}\textrm{C
```

Electrical Specifications V+=15V D.C., V- = -15V D.C., Unless Otherwise Specified

PARAMETER	TEMP	$\begin{aligned} & \text { HA-5102-2,-5 } \\ & \text { HA-5112-2, -5 } \end{aligned}$			$\begin{aligned} & H A-5104-2,-5 \\ & \text { HA-5114-2, }-5 \end{aligned}$			$\begin{aligned} & \text { HA-5102-9 } \\ & \text { HA-5112-9 } \end{aligned}$			$\begin{aligned} & \text { HA-5104-9 } \\ & \text { HA-5114-9 } \end{aligned}$			UNITS
		MIN	TYP	MAX	MIN	TYP	MaX	MIN	TYP	MAX	MIN	TYP	MAX	
INPUT CHARACTERISTICS														
Offset Voltage	$+25^{\circ} \mathrm{C}$	-	0.5	2.0	-	0.5	2.5	-	0.5	2.0	-	0.5	2.5	mV
	Full	-	-	2.5	-	-	3.0	-	-	2.5	-	-	3.0	mV
Offset Voltage Average Drift	Full	-	3	-	-	3	-	-	3	-	-	3	-	$\mu V /{ }^{\circ} \mathrm{C}$
Bias Current	$+25^{\circ} \mathrm{C}$	-	130	200	-	130	200	-	130	200	-	130	200	nA
	Full	-	-	325	-	-	325	-	-	500	-	-	500	nA
Offset Current	$+25^{\circ} \mathrm{C}$	-	30	75	-	30	75	-	30	75	-	30	75	nA
	Full	-	-	125	-	-	125	-	-	125	-	-	125	nA
Input Resistance	$+25^{\circ} \mathrm{C}$	-	500	-	-	500	-	-	500	-	-	500	-	$k \Omega$
Common Mode Range	Full	± 12	-	-	± 12	-	-	± 12	-	-	± 12	-	-	\checkmark
TRANSFER CHARACTERISTICS														
Large Signal Voltage Gain	$+25^{\circ} \mathrm{C}$	100	250	-	100	250	-	80	250	-	80	250	-	kV/N
(Note 5)	Fuil	100	-	-	100	-	-	80	-	-	80	-	-	kV/N
Common Mode Rejection Ratio (Nole 6)	Full	86	95	-	86	95	-	80	95	-	80	95	-	dB
Small Signal Bandwidth $H A-5102 / 5104\left(A_{V}=1\right)$	$+25^{\circ} \mathrm{C}$		8		-	8		-	8	-	-	8	-	MHz
Gain Bandwidth Product $H A-5112 / 5114(A V=10)$	$+25^{\circ} \mathrm{C}$	-	60		-	60	-	-	60	-	-	60	-	MHz
Channel Separation (Note 7)	$+25^{\circ} \mathrm{C}$	-	108	-	-	108	-	-	108	-	-	108	-	dB
OUTPUT CHARACTERISTICS														
Output Voltage Swing														
($\mathrm{R}_{\mathrm{L}}=10 \mathrm{~K}$)	Full	± 12	± 13	-	± 12	± 13	-	± 12	± 13	-	± 12	± 13	-	v
($\left.\mathrm{R}_{\mathrm{L}}=2 \mathrm{~K}\right)$	Full	± 10	± 12	-	± 10	± 12	-	± 10	± 12	-	± 10	± 12	-	V
Output Current (Note 8)	Full	± 10	± 15	-	± 10	± 15	-	± 7	± 15	-	± 7	± 15	-	mA
Full Power Bandwidth (Note 9)														
HA-5102/5104	$+25^{\circ} \mathrm{C}$	16	47	-	16	47	-	16	47	-	16	47	-	kHz
HA-5112/5114	$+25^{\circ} \mathrm{C}$	191	318	-	191	318	-	191	318	-	191	318	-	kHz
Output Resistance	$+25^{\circ} \mathrm{C}$	-	110	-	-	110	-	-	110	-	-	110	-	Ω
STABILITY														
Minimum Stable Closed Loop Gain														
HA-5102/5104	Full	1	-	-	1	-	-	1	-	-	1	-	-	V / N
HA-5112/5114	Full	10	-	-	10	-	-	10	-	-	10	-	-	V / N

Electrical Specifications (Continued) V+=15V D.C., V-=-15V D.C., Unless Otherwise Specified

PARAMETER	TEMP	$\begin{aligned} & \text { HA-5102-2, -5 } \\ & \text { HA-5112-2, -5 } \end{aligned}$			$\begin{aligned} & \text { HA-5104-2,-5 } \\ & \text { HA-5114-2, } 5 \end{aligned}$			$\begin{aligned} & \text { HA-5102-9 } \\ & \text { HA-5112-9 } \end{aligned}$			$\begin{aligned} & \text { HA-5104-9 } \\ & \text { HA-5114-9 } \end{aligned}$			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
TRANSIENT RESPONSE (Note 10)														
Rise Time														
HA-5102/5104	$+25^{\circ} \mathrm{C}$	-	108	200	-	108	200	-	108	200	-	108	200	ns
HA-5112/5114	$+25^{\circ} \mathrm{C}$	-	48	100	-	48	100	-	48	100	-	48	100	ns
Overshoot														
HA-5102/5104	$+25^{\circ} \mathrm{C}$	-	20	35	-	20	35	-	20	35	-	20	35	\%
HA-5112/5114	$+25^{\circ} \mathrm{C}$	-	30	40	-	30	40	-	30	40	-	30	40	\%
Slew Rate														
HA-5102/5104	$+25^{\circ} \mathrm{C}$	± 1	± 3	-	± 1	± 3	-	± 1	± 3	-	± 1	± 3	-	$\mathrm{V} / \mu \mathrm{s}$
HA-5112/5114	$+25^{\circ} \mathrm{C}$	± 12	± 20	-	± 12	± 20	-	± 12	± 20	-	± 12	± 20	-	$\mathrm{V} / \mu \mathrm{s}$
Settling Time (Note 11)														
HA-5102/5104	$+25^{\circ} \mathrm{C}$	-	4.5	-	-	4.5	-	-	4.5	-	-	4.5	-	$\mu \mathrm{s}$
HA-5112/5114	$+25^{\circ} \mathrm{C}$	-	0.6	-	-	0.6	-	-	0.6	-	-	0.6	-	$\mu \mathrm{s}$
NOISE CHARACTERISTICS														
Input Noise Voltage (Note 12)														
$f=10 \mathrm{~Hz}$	$+25^{\circ} \mathrm{C}$	-	9	17	-	9	17	-	9	17	-	9	17	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
$f=1 \mathrm{kHz}$	$+25^{\circ} \mathrm{C}$	-	4.3	6.0	-	4.3	6.0	-	4.3	6.0	-	4.3	6.0	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Input Noise Current (Note 12)														
$f=10 \mathrm{~Hz}$	$+25^{\circ} \mathrm{C}$	-	5.1	12	-	5.1	12	-	5.1	12	-	5.1	12	$\mathrm{pA} \sqrt{\mathrm{~Hz}}$
$f=1 \mathrm{kHz}$	$+25^{\circ} \mathrm{C}$	-	0.57	3	-	0.57	3	-	0.57	3	-	0.57	3	$\mathrm{pA} \sqrt{\mathrm{~Hz}}$
Broadband Noise Voltage $f=\text { DC to } 30 \mathrm{kHz}$	$+25^{\circ} \mathrm{C}$	-	870	-	-	870	-	-	870	-	-	870	-	nVrms
POWER SUPPLY CHARACTERISTICS														
Supply Current														
HA-5102/51 12	$+25^{\circ} \mathrm{C}$	-	3.0	5.0	-	3.0	5.0	-	3.0	5.0	-	3.0	5.0	mA
HA-5104/5114	$+25^{\circ} \mathrm{C}$	-	5.0	6.5	-	5.0	6.5	-	5.0	6.5	-	5.0	6.5	$m A$
Power Supply Rejection Ratio (Note 6)	Full	86	100	-	86	100	-	80	100	-	80	100	-	dB

NOTES:

1. Absolute maximum ratings are limiting values, applied individually, beyond which the serviceability of the circuit may be impaired. Functional operability under any of these conditions is not necessarily implied.
2. For supply voltages $< \pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
3. Any one amplifier may be shorted to ground indefinitely.
4. Derate $9.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
5. $\mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{~K}$
6. $V_{C M}= \pm 5.0 \mathrm{~V}$
7. Channel separation value is referred to the input of the amplifier. Input lest conditions are: $f=10 \mathrm{kHz} ; \mathrm{V}_{\mathbb{N}}=200 \mathrm{mV}$ peak to peak; $\mathrm{R}_{\mathbf{S}}=1 \mathrm{k} \Omega$. (Refer to Channel Separation vs. Frequency Curve for test circuits.)
8. Output current is measured with $\mathrm{V}_{\mathrm{OUT}}= \pm 5 \mathrm{~V}$.
9. Full power bandwidth is guaranteed by equation:

Full power bandwidth $=\frac{\text { Slew Rate }}{2 \pi \text { Vpeak }}$
10. Refer to Test Circuits section of the data sheet.
11. Settling time is measured to 0.1% of final value for a 1 volt input step, and $A_{V}=-10$ for HA-5112/5114, and a 10 volt input step, $A_{V}=-1$ for HA-5102/5104.
12. Sample tested.

Test Circuits

LARGE SIGNAL RESPONSE CIRCUIT
Volts: $5 \mathrm{~V} /$ Div., Time: $5 \mu \mathrm{~S} /$ Div. ($\mathrm{AV}=-1$) HA-5102/5104

SMALL SIGNAL RESPONSE CIRCUIT
Volts: $40 \mathrm{mV} /$ Div., Time: $50 \mathrm{~ns} /$ Div. $\left(A_{V}=+1\right.$) HA-5102/5104

LARGE AND SMALL SIGNAL RESPONSE CIRCUIT

Volts: Input A: 0.5V/Div., Output B: 5V/Div. Time: 50ns/Div.

Volts: Input A: $0.01 \mathrm{~V} /$ Div., Output B: $50 \mathrm{mV} /$ Div. Time: 50ns/Div.

- $A_{V}=-1$ (HA-5102/5104), ${ }^{*} A V=-10$ (HA-5112/5114)
- Feedback and summing resistors should be 0.1% matched.
- Clipping diodes are optional, HP5082-2810 recommended.

Typical Performance Curves

INPUT NOISE VOLTAGE DENSITY
$V_{C C}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

0.1 Hz TO 10 Hz NOISE
$V_{C C}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ $50 \mu \mathrm{~V} / \mathrm{Div} ., 1 \mathrm{~s} / \mathrm{Div} ., A_{V}=1000 \mathrm{~V} / \mathrm{N}$

Input Noise $=0.232 \mu \mathrm{Vp}-\mathrm{p}$

V_{10} vs. TEMPERATURE
$V_{C C}= \pm 15 \mathrm{~V}$

INPUT NOISE CURRENT DENSITY
$V_{C C}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

0.1 Hz TO 1 MHz NOISE
$V_{C C}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ $500 \mu \mathrm{~V} /$ Div., $1 \mathrm{~s} /$ Div., $\mathrm{A}_{\mathrm{V}}=1000 \mathrm{~V} / \mathrm{N}$ Total Output Noise $=2.075 \mu \mathrm{Vp}-\mathrm{p}$

V_{10} vs. $V_{C C}$
$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

IBIAS vs. TEMPERATURE
$V_{C C}= \pm 15 \mathrm{~V}$

Typical Performance Curves (Continued)

OUTPUT SHORT-CIRCUIT CURRENT vs. TIME
$V_{C C}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

PSRR vs. FREQUENCY

CMRR vs. FREQUENCY

HA-5104 CHANNEL SEPARATION vs. FREQUENCY $10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{MHz}$

Typical Performance Curves (Continued)
HA-5104/02 UNITY GAIN FREQUENCY RESPONSE
$V_{C C}= \pm 15 \mathrm{~V}, R_{L}=2 K, C_{L}=50 p F$

OPEN LOOP GAIN vs. FREQUENCY
$V_{C C}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{~K}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

SLEW RATE vs. TEMPERATURE
$R_{\mathrm{L}}=2 \mathrm{~K}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{CC}}= \pm 15 \mathrm{~V}$

HA-5112/14 FREQUENCY RESPONSE
$A_{V C L}=10, T_{A}=+25^{\circ} \mathrm{C}, R_{L}=2 \mathrm{~K}, C_{L}=50 \mathrm{pF}$

SMALL SIGNAL OVERSHOOT vs. CLOAD $V_{C C}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{~K}$

RISE TIME vs. TEMPERATURE
$R_{\mathrm{L}}=2 \mathrm{~K}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{CC}}= \pm 15 \mathrm{~V}$

HA-5127

May 1990

Ultra-Low Noise Presision Operational Amplifier

Features

- High Speed .. 10V/ $\mu \mathrm{s}$
- Wide Unity Gain Bandwidth 8.5MHz
- Low Noise3nv/ $\sqrt{\mathrm{Hz}}$ at 1 KHz
- Low VOS... . $10 \mu \mathrm{~V}$
- High CMRR. 126dB
- High Gain
$1800 \mathrm{~V} / \mathrm{mV}$

Description

The HA-5127 monolithic operational amplifier features an unparalleled combination of precision DC and wideband high speed characteristics. Utilizing the Harris D. I. technology and advanced processing techniques, this unique design unites low noise ($3 \mathrm{nV} / \sqrt{\mathrm{Hz} \text {) precision instrumentation performance }}$ with high speed ($10 \mathrm{~V} / \mu \mathrm{s}$) wideband capability.

This amplifier's impressive list of features include low VOS $(10 \mu \mathrm{~V})$, wide unity gain-bandwidth $(8.5 \mathrm{MHz})$, high open loop gain ($1800 \mathrm{~V} / \mathrm{mV}$), and high CMRR (126 dB). Additionally, this flexible device operates over a wide supply range ($\pm 5 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$) while consuming only 140 mW of power.

Applications

- High Speed Signal Conditioners
- Wide Bandwidth Instrumentation Amplifiers
- Low Level Transducer Amplifiers
- Fast, Low Level Voltage Comparators
- Highest Quality Audio Preamplifiers
- Pulse/RF Amplifiers

Using the HA-5127 allows designers to minimize errors while maximizing speed and bandwidth.
This device is ideally suited for low level transducer signal amplifier circuits. Other applications which can utilize the HA-5127's qualities include instrumentation amplifiers, pulse amplifiers, audio preamplifiers, and signal conditioning circuits.

This device can easily be used as a design enhancement by directly replacing the 725, OP25, OP06, OP07, OP27 and OP37. The HA-5127 is available in TO-99 Metal Can and Ceramic 8 pin Mini-DIPs. For the military grade product, refer to the HA-5127/883 data sheet.

Pinouts

HA2-5127 (TO-99 METAL CAN) TOP VIEW

HA7-5127 (CERAMIC MINI-DIP) TOP VIEW

Schematic

[^44]Copyright © Harris Corporation 1990

Absolute Maximum Ratings (Note 1)

$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ Unless Otherwise Stated
Voltage Between $\mathrm{V}+$ and V - Terminals $\pm 22 \mathrm{~V}$
Differential Input Voltage (Note 2) . $\pm 0.7 \mathrm{~V}$
Internal Power Dissipation . 500mW
Output Current \qquad Full Short Circuit Protection

Operating Temperature Ranges

HA-5127/27A-2 \qquad $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ HA-5127/27A-5 \qquad
\qquad $.0^{\circ} \mathrm{C} \leq T_{A} \leq+75^{\circ} \mathrm{C}$ Storage Temperature Range $-65^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+150^{\circ} \mathrm{C}$ Maximum Junction Temperature. $-65^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+150^{\circ} \mathrm{C}$
$\ldots \ldots . . .+175^{\circ} \mathrm{C}$

Electrical Specifications $\mathrm{V}+=15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}<50 \mathrm{pF}, \mathrm{R}_{\mathrm{S}}<100 \Omega$

PARAMETER	TEMP	HA-5127A			HA-5127			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
INPUT CHARACTERISTICS								
Offset Voltage	$+25^{\circ} \mathrm{C}$	-	10	25	-	30	100	$\mu \mathrm{V}$
	Full	-	30	60	-	70	300	$\mu \mathrm{V}$
Average Offset Voltage Drift	Full	-	0.2	0.6	-	0.4	1.8	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Bias Current	$+25^{\circ} \mathrm{C}$	-	± 10	± 40	-	± 15	± 80	nA
	Full	-	± 20	± 60	-	± 35	± 150	nA
Offset Current	$+25^{\circ} \mathrm{C}$	-	7	35	-	12	75	nA
	Full	-	15	50	-	30	135	nA
Common Mode Range	Full	± 10.3	± 11.5	-	± 10.3	± 11.5	-	V
Differential Input Resistance (Note 3)	$+25^{\circ} \mathrm{C}$	1.5	6	-	0.8	4	-	$\mathrm{M} \Omega$
Input Noise Voltage 0.1 Hz to 10 Hz (Note 4)	$+25^{\circ} \mathrm{C}$	-	0.08	0.18	-	0.09	0.25	$\mu \mathrm{Vp}-\mathrm{p}$
$\begin{array}{ll}\text { Input Noise Voltage Density (Note 5) } & \left.\begin{array}{l}f_{0}=10 \mathrm{~Hz} \\ \\ f_{0}=30 \mathrm{~Hz} \\ \\ f_{0}=1000 \mathrm{H}\end{array}\right) .\end{array}$	$+25^{\circ} \mathrm{C}$	-	3.5	5.5	-	3.8	8.0	$n \mathrm{~V} / \sqrt{\mathrm{Hz}}$
		-	3.1	4.5	-	3.3	5.6	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
		-	3.0	3.8	-	3.2	4.5	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
$\begin{array}{ll}\text { Input Noise Current Denisty (Note 5) } & f_{0}=1 \\ & f_{0}=3 \\ & f_{0}=1\end{array}$	$+2500$	-	1.7	4.0	-	1.7	-	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
		-	1.0	2.3	-	1.0	-	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
		-	0.4	0.6	-	0.4	0.6	$\mathrm{pA} \sqrt{\mathrm{Hz}}$
TRANSFER CHARACTERISTICS								
Large Signal Voltage Gain (Note 7)	$+25^{\circ} \mathrm{C}$	1000	1800	-	700	1500	-	V / mV
	Full	600	1200	-	300	800	-	V / mV
Common Mode Rejection Ratio (Note 7)	Full	114	126	-	100	120	-	dB
Minimum Stable Gain	$+25^{\circ} \mathrm{C}$	1	-	-	1	-	-	V/N
Unity-Gain-Bandwidth	$+25^{\circ} \mathrm{C}$	5	8.5	-	5	8.5	-	MHz
OUTPUT CHARACTERISTICS								
$\begin{array}{ll}\text { Output Voitage Swing } & R_{L}=600 \Omega \\ & R_{L}=2 \mathrm{~K} \Omega\end{array}$	$+25^{\circ} \mathrm{C}$	± 10.0	± 11.5	-	± 10.0	± 11.5	-	V
	Full	± 11.7	± 13.8	-	± 11.4	± 13.5	-	V
Full Power Bandwidth (Note 8)	$+25^{\circ} \mathrm{C}$	111	160	-	111	160	-	kHz
Output Resistance, Open Loop	$+25^{\circ} \mathrm{C}$	-	70	-	-	70	-	V
Output Current	$+25^{\circ} \mathrm{C}$	16.5	25	-	16.5	25	-	mA
TRANSIENT RESPONSE (Note 9)								
Rise Time Slew Rate (Note 11) Settling Time (Note 10) Overshoot	$+25^{\circ} \mathrm{C}$	-	-	150	-	-	150	
	$+25^{\circ} \mathrm{C}$	7	10	-	7	10	$-$	$\mathrm{V} / \mathrm{\mu s}$
	$+25^{\circ} \mathrm{C}$	-	1.5	-	-	1.5	-	μs
	$+25^{\circ} \mathrm{C}$	-	20	40	-	20	40	\%
POWER SUPPLY CHARACTERISTICS								
Supply Current Power Supply Rejection Ratio (Note 12)	$+25^{\circ} \mathrm{C}$	-	3.5	-	-	3.5	-	mA
	Full	-	-	4.0	-	-	4.0	mA
	Full	-	2	4	-	16	51	$\mu \mathrm{V} /$

NOTES:

[^45]7. $V_{C M}= \pm 10 \mathrm{~V}$
8. Full power bandwidth guaranteed based on slew rate measurement using: $\mathrm{FPBW}=$ Slew Rate
$$
\overline{2 \pi V_{\text {PEAK }}}
$$
9. Refer to Test Circuits section of the data sheet.
10. Settling time is specified to 0.1% of final value for a 10 V output step and $A_{V}=-1$.
11. $V_{\text {OUT }}=10 \mathrm{~V}$ Step
12. $\mathrm{V}_{\mathrm{S}}= \pm 4 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$

Typical Performance Curves Unless Otherwise Specified: $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\text {SUPPLY }}= \pm 15 \mathrm{~V}$

OFFSET VOLTAGE TYPICAL DRIFT vs. TEMPERATURE

NOISE vs. SUPPLY VOLTAGE

OFFSET VOLTAGE DRIFT vs. TIME

CMRR vs. FREQUENCY

Typical Performance Curves Unless Otherwise Specified: $T A=+25^{\circ} \mathrm{C}, \mathrm{V}_{\text {SUPPLY }}= \pm 15 \mathrm{~V}$

PSRR vs. FREQUENCY

CLOSED LOOP GAIN AND PHASE vs. FREQUENCY

AVOL AND Vout vs. LOAD RESISTANCE

SUPPLY CURRENT vs. TEMPERATURE

NORMALIZED SLEW RATE vs. TEMPERATURE

VOUT MAX vs. FREQUENCY UNDISTORTED SINEWAVE OUTPUT

Typical Performance Curves Unless Otherwise Specified: $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\text {SUPPLY }}= \pm 15 \mathrm{~V}$

CLOSED LOOP GAIN AND
OPEN LOOP GAIN AND PHASE vs. FREQUENCY

3

Typical Performance Curves Unless Otherwise Specified: $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\text {SUPPLY }}= \pm 15 \mathrm{~V}$ suggested offset voltage adjustment

Tested Offset Adjustment Range is $\left|\mathrm{V}_{\mathrm{OS}}+1 \mathrm{mV}\right|$ minimum referred to output. Typical range is $\pm 4 \mathrm{mV}$ with $\mathrm{R}_{\mathrm{T}}=10 \mathrm{k} \Omega$.

LARGE AND SMALL SIGNAL RESPONSE TEST CIRCUITS

LARGE SIGNAL RESPONSE

Vertical Scale: (Volts: Input $=0.5 \mathrm{~V} /$ Div.) (Output $=5 \mathrm{~V} /$ Div.)
Horizontal Scale: (Time $=1 \mu \mathrm{~s} /$ Div.)

SMALL SIGNAL RESPONSE

Vertical Scale: (Volts: 100mV/Div.) Horizontal Scale: (200ns/Div.)

Typical Performance Curves Unless Otherwise Specified: $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{v}_{\text {SUPPLY }}= \pm 15 \mathrm{~V}$ settuing time test circuit

Low resistances are preferred for low noise applications as a $1 \mathrm{~K} \Omega$ resistor has $4 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ of thermal noise. Total resistances of greater than $10 \mathrm{~K} \Omega$ on either input can reduce stability. In most high resistance applications, a few picofarads of capacitance across the feedback resistor will improve stability.

Horizontal Scale $=1$ sec/Div. Vertical Scale $=0.002 \mu \mathrm{~V} /$ Div. $0.08 \mu \mathrm{Vp}-\mathrm{p}$

Die Characteristics

Transistor Count63

Die Dimensions
\qquad
$65 \times 104.3 \times 19$ mils $(1700 \mu \mathrm{~m} \times 2600 \mu \mathrm{~m} \times 480 \mu \mathrm{~m})$
Substrate Potential* . V-
Process . Bipolar-DI
Thermal Constants $\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right) \quad \theta_{\mathrm{ja}} \quad \theta_{\text {jc }}$

HA7-5127 Ceramic Mini-DIP	160	79
HA2-5127 TO-99 Metal Can	172	48

Ha2-5127 TO-99 Melal Can 172
*The substrate may be left floating (Insulating Die Mount) or it may be mounted on a conductor al V - potential.

Features

- Low Offset Voltage \qquad $10 \mu \mathrm{~V}$
- Low Offset Voltage Drift $0.4 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
- Low Noise 9nV/ $\sqrt{H z}$
- Open Loop Gain . 140dB
- Unity Gain Bandwidth \qquad
\qquad
- All Bipolar Construction

Description

The Harris HA-5130/5135 are precision operational amplifiers manufactured using a combination of key technological advancements to provide outstanding input characteristics.

A Super Beta input stage is combined with laser trimming, dielectric isolation and matching techniques to produce $25 \mu \mathrm{~V}$ (Maximum) input offset voltage and $0.4 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ input offset voltage average drift. Other features enhanced by this process include $9 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ (Typ.) Input Noise Voltage, 1 nA Input Bias Current and 140 dB Open Loop Gain.
These features coupled with 120 dB CMRR and PSRR make HA-5130/5135 an ideal device for precision DC
instrumentation amplifiers. Excellent input characteristics in conjunction with 2.5 MHz bandwidth and $0.8 \mathrm{~V} / \mu \mathrm{s}$ slew rate, makes this amplifier extremely useful for precision integrator and biomedical amplifier designs. These amplifiers are also well suited for precision data acquisition and for accurate threshold detector applications.
HA-5130/5135 is packaged in an 8 pin (TO-99) Metal Can and an 8 lead Cerdip and is pin compatible with many existing op amp configurations. It offers added features over the industry standard OP-07 in regards to bandwidth and slew rate specifications. For the military grade product, refer to the HA-5135/883 data sheet.

Pinouts

HA7-5130/5135 (CERAMIC MINI-DIP) TOP VIEW

HA2-5130/5135 (TO-99 METAL CAN) TOP VIEW

(Both BAL 1 Pins are Internally Connected)

Schematic

CAUTION: These devices are sensitive to electrostatic discharge. Proper I.C. handling procedures should be followed.
Copyright © Harris Corporation 1988

Absolute Maximum Ratings (Note 1)

$T_{A}=+25^{\circ} \mathrm{C}$ Unless Otherwise Stated
Voltage Between $\mathrm{V}+$ and V -Terminals 40.0V
Differential Input Voltage... $\pm 15.0 \mathrm{~V}$
Output Short Circuit Duration Indefinite
Power Dissipation (Note 2) . 300mW

Operating Temperature Ranges

Storage Temperature Range $-65^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+150^{\circ} \mathrm{C}$

Electrical Specifications $\mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}$

PARAMETER	TEMP	HA-5130-2/-5			HA-5135-2/-5			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
INPUT CHARACTERISTICS								
Offset Voltage	$+25^{\circ} \mathrm{C}$	-	10	25	-	10	75	$\mu \mathrm{V}$
	Full	-	50	60	-	50	130	$\mu \mathrm{V}$
Average Offset Voltage Drift	Full	-	0.4	0.6	-	0.4	1.3	$\mu \mathrm{V} / \mathrm{O}^{\mathrm{O}} \mathrm{C}$
Bias Current	$+25^{\circ} \mathrm{C}$	-	± 1	± 2	-	± 1	± 4	nA
	Full	-	-	± 4	-	-	± 6	nA
Bias Current Average Drift	Full	-	0.02	0.04	-	0.02	0.04	$n \mathrm{n} /{ }^{\circ} \mathrm{C}$
Offset Current	$+25^{\circ} \mathrm{C}$	-	-	2	-	-	4	nA
	Full	-	-	4	-	-	5.5	nA
Offset Current Average Drift	Full	-	0.02	0.04	-	0.02	0.04	$n \mathrm{~A} /{ }^{\circ} \mathrm{C}$
Common Mode Range	Full	± 12	-	-	± 12	-	-	V
Differential Input Resistance	$+25^{\circ} \mathrm{C}$	20	30	-	20	30	-	$\mathrm{M} \Omega$
Input Noise Voltage 0.1 Hz to 10 Hz (Note 3)	$+25^{\circ} \mathrm{C}$	-	-	0.6	-	-	0.6	${ }^{\mu} V_{p-p}$
Input Noise Voltage Density (Note 3)	$+25^{\circ} \mathrm{C}$							
$\mathrm{f}_{0}=10 \mathrm{~Hz}$		-	13.0	18.0	-	13.0	18.0	$\mathrm{n} V / \sqrt{\mathrm{Hz}}$
$\mathrm{fO}_{0}=100 \mathrm{~Hz}$		-	10.0	13.0	-	10.0	13.0	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
$\mathrm{f}_{0}=1000 \mathrm{~Hz}$		-	9.0	11.0	-	9.0	11.0	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Input Noise Current 0.1 Hz to 10Hz (Note 3)	$+25^{\circ} \mathrm{C}$	-	15	30	-	15	30	pAp-p
Input Noise Current Density (Note 3)	$+25^{\circ} \mathrm{C}$							
$\mathrm{fo}^{0}=10 \mathrm{~Hz}$		-	0.4	0.8	-	0.4	0.8	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
$\mathrm{f}_{\mathrm{O}}=100 \mathrm{~Hz}$		-	0.17	0.23	-	0.17	0.23	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
$\mathrm{f}_{\mathrm{O}}=1000 \mathrm{~Hz}$		-	0.14	0.17	-	0.14	0.17	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$

TRANSFER CHARACTERISTICS

Large Signal Voltage Gain (Note 4)	$+25^{\circ} \mathrm{C}$	120	140	-	120	140	-	dB
	Full	120	-	-	120	-	-	dB
Common Mode Rejection Ratio (Note 5)	Full	110	120	-	106	120	-	dB
Closed Loop Bandwidth (AvCL $=+1$)	$+25^{\circ} \mathrm{C}$	0.6	2.5	-	0.6	2.5	-	MHz

OUTPUT CHARACTERISTICS

Output Voltage Swing (Note 6)	$+25^{\circ} \mathrm{C}$	± 10	± 12	-	± 10	± 12	-	V
	Full	± 10	-	-	± 10	-	-	V
Full Power Bandwidth (Note 7)	$+25^{\circ} \mathrm{C}$	8	10	-	8	10	-	kHz
Output Current (Note 8)	$+25^{\circ} \mathrm{C}$	± 15	± 20	-	± 15	± 20	-	mA
Output Resistance (Note 8)	$+25^{\circ} \mathrm{C}$	-	45	-	-	45	-	Ω

TRANSIENT RESPONSE (Note 10)

Rise Time	$+25^{\circ} \mathrm{C}$	-	340	-	-	340	-	ns
Slew Rate	$+25^{\circ} \mathrm{C}$	0.5	0.8	-	0.5	0.8	-	$\mathrm{V} / \mathrm{\mu s}$
Settling Time (Note 11)	$+25^{\circ} \mathrm{C}$	-	11	-	-	11	-	$\mu \mathrm{s}$

POWER SUPPLY CHARACTERISTICS

Supply Current Power Supply Rejection Ratio (Note 12)	Full	-	1.0	1.3	-	1.0	1.7	mA
Full	100	130	-	94	130	-	dB	

NOTES:

1. Absolute maximum ratings are limiting values, applied individually beyond which the serviceability of the circuit may be impaired. Funtional operability under any of these conditions is not necessarily implied.
2. Derate at $6.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for operation at ambient temperatures above $+75^{\circ} \mathrm{C}$.
3. Not tested. 90% of units meet or exceed these specifications.
. $V_{O U T}= \pm 10 \mathrm{~V} ; R_{L}=2 K . \quad$ Gain $d B=20 \log _{10} A v$
$\therefore 120 \mathrm{~dB}=1 \mathrm{MV} / \mathrm{V}$
$140 \mathrm{~dB}=10 \mathrm{MV} / \mathrm{V}$
$V_{C M}= \pm 10 \mathrm{VCC}$
4. $\mathrm{R}_{\mathrm{L}}=600 \Omega$.
5. $R_{L}=2 K$; Full power bandwidth guaranteed based on slew rate measurement using $F P B W=$ SLEW RATE
2π VPEAK
6. $V_{\text {OUT }}=10 \mathrm{~V}$
7. Output resistance measured under open loop conditions ($\mathrm{f}=100 \mathrm{~Hz}$).
8. Refer to test circuits section of the data sheet.
9. Settling time is measured to 0.1 p of final value for a 10 V output step and $A_{V}=-1$.
10. $\mathrm{V}_{\text {SUPPLY }}= \pm 5 \mathrm{~V}$ DC to $\pm 20 \mathrm{VDC}$.

Test Circuits

SLEW RATE AND TRANSIENT RESPONSE TEST CIRCUIT

SMALL SIGNAL RESPONSE
Vertical Scale: (Volts: $50 \mathrm{mV} / \mathrm{Div}$. Output) (Volts: $100 \mathrm{mV} /$ Div. Input) Horizontal Scale: (Time: $1 \mu /$ sDiv.)

SETTLING TIME CIRCUIT

- $A_{V}=-1$.
- Feedback and summing resistors should be 0.1% matched.
- Clipping diodes are optional. HP5082-2810 recommended

Typical Performance Curves

INPUT OFFSET VOLTAGE, INPUT BIAS AND OFFSET CURRENT vs. TEMPERATURE

INPUT BIAS CURRENT vs. DIFFERENTIAL INPUT VOLTAGE

HA-5130 OFFSET VOLTAGE STABILITY vs. TIME

INPUT NOISE vs. FREQUENCY

OPEN LOOP FREQUENCY RESPONSE

Typical Performance Curves (Continued)

CLOSED LOOP FREQUENCY RESPONSE FOR VARIOUS CLOSED LOOP GAINS

OUTPUT VOLTAGE SWING vs FREQUENCY AND SUPPLY VOLTAGE

SMALL SIGNAL BANDWIDTH AND PHASE MARGIN vs. LOAD CAPACITANCE

MAXIMUM OUTPUT VOLTAGE SWING vs. LOAD RESISTANCE AND SUPPLY VOLTAGE

NORMALIZED AC PARAMETERS vs. SUPPLY VOLTAGE

Typical Performance Curves (Continued)

CMRR vs. FREQUENCY

SETTLING TIME FOR VARIOUS OUTPUT STEP VOLTAGES

PSRR vs. FREQUENCY

POWER SUPPLY CURRENT vs. TEMPERATURE AND SUPPL.Y VOLTAGE

Applying the HA-5130/5135 Operational Amplifiers

1. POWER SUPPLY DECOUPLING: Although not absolutely necessary, it is recommended that all power supply lines be decoupled with $0.01 \mu \mathrm{~F}$ ceramic capacitors to ground. Decoupling capacitors should be located as near to the amplifier terminals as possible.
2. CONSIDERATIONS FOR PROTOTYPING: The following list of recommendations are suggested for prototyping.

- Resolving low level signals requires minimizing leakage currents caused by external circuitry. Use of quality insulating materials, thorough cleaning of insulating surfaces and implementation of moisture barriers when required is suggested.
- Error voltages generated by theromocouples formed between dissimilar metals in the presence of temperature gradients should be minimized. Isolation of low level circuity from heat generating components is recommended.
- Shielded cable input leads, guard rings and shield drivers are recommended for the most critical applications.

3. When driving large capacitive loads ($>500 \mathrm{pF}$), as small value resistor ($\approx 50 \Omega$) should be connected in series with the output and inside the feedback loop.
4. OFFSE? VOLTAGE ADJUSTMENT: A $20 \mathrm{k} \Omega$ balance potentioneter is recommended if offset nulling is requirea. However, other potentiometer values such as $10 \mathrm{k} \Omega, 50 \mathrm{k} \Omega$ and $100 \mathrm{k} \Omega$ may be used. The minimum adjustment range for given values is $\pm 2 \mathrm{mV}$.
5. SATURATION RECOVER: Input and output saturation recovery time is negligible in most applications. However, care should be exercised to avoid exceeding the absolute maximum ratings of the device.
6. DIFFERENTIAL INPUT VOLTAGES: Inputs are shunted with back-to-back diodes for overvoltage protection. In applications where differential input voltages in excess of 1 V are applied between the inputs, the use of limiting resistors at the inputs is recommended.

Applications

OFFSET NULLING CONNECTIONS

* Although R_{p} is shown equal to 20 K , other values such as $50 \mathrm{~K}, 100 \mathrm{~K}$ and 1 M may be used. Range of adjustment is approximately $\pm 2.5 \mathrm{mV} . \mathrm{V}_{\text {OS }}$ TC of the amplifier is optimized at minimal V_{OS}.

Tested Offset Adjustment is $\left|\mathrm{V}_{\mathrm{OS}}+1 \mathrm{mV}\right|$ minimum referred to output.

PRECISION INTEGRATOR

The excellent inputs and gain characteristics of HA-5130 are well suited for precision integrator applications. Accurate integration over seven decades of frequency using HA-5130, virtually nullifies the need for more expensive chopper-type amplifiers.

ZERO CROSSING DETECTOR

Low VOS coupled with high open loop Gain, high CMRR and high PSRR make HA-5130 ideally suited for precision detector applications.

PRECISION INSTRUMENTATION AMPLIFIER ($A_{V}=100$)

Precision Quad Operational Amplifier

Features

- Low Offset Voltage Max $200 \mu \mathrm{~V}$
- Low Offset Voltage Drift
$\operatorname{Max} 2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
- Offset Voltage Match (5134A). . Full Temp. Max $250 \mu \mathrm{~V}$
- High Channel Separation 120 dB
- Low Noise inV/ $\sqrt{\mathrm{Hz}}$
- Wide Unity Gain Bandwidth 4 MHz
- High CMRR/PSRR (Typ)............................ 120 dB
- Dielectric Isolation

Description

The HA-5134 is a precision quad operational amplifier that is pin compatible with the OP-400, LT1014, OP11, RM4156, and LM148 as well as the HA-4741. Each amplifier features guaranteed maximum values for offset voltage of $200 \mu \mathrm{~V}$, offset voltage drift of $2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$, and offset current of 75 nA over the full military temperature range while CMRR/PSRR is guaranteed greater than 94dB and AVOL is guaranteed above $750 \mathrm{kV} / \mathrm{V}$ from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

Precision performance of the HA-5134 is enhanced by a noise voltage density of $7 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ at 1 kHz , noise current density of $2 \mathrm{pA} / \sqrt{\mathrm{Hz}}$ at 1 kHz and channel separation of 120dB. Each unity-gain stable quad amplifier is fabricated

Applications

- Instrumentation Amplifiers
- State-Variable Filters
- Precision Integrators
- Threshold Detectors
- Precision Data Acquisition Systems
- Low-Level Transducer Amplifiers
using the dielectric isolation process to assure performance in the most demanding applications.
The HA-5134 is ideal for compact circuits such as instrumentation amplifiers, state-variable filters, and low-level transducer amplifiers. Other applications include precision data acquisition, precision integrators, and accurate threshold detectors in designs where board space is a limitation.
The HA -51'34-2 has guaranteed operation from $-55^{\circ} \mathrm{C}$ to +1250 C and can be ordered as a military grade part. The HA -5134- 6 is guaranteed from $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ and all devices are available in ceramic dual-in-line packages. For military grade product, refer to the HA-5134/883 Data Sheet.

Pinout

HA1-5134 (CERAMIC DIP)
TOP VIEW

Schematic (Each Amplifier)

CAUTION: Electronic devices are sensitive to electrostatic discharge. Proper I.C. handling procedures should be followed.
Copyright (C) Harris Corporation 1990

```
Absolute Maximum Ratings (Note 1)
TA = +25'⿳ Onless Otherwise Stated
Voltage Between V+ and V- Terminals
Differential Input Voltage (Note 2) . . . . . . . . . . . . . . . . . . . . . . . 土6.0V
40.0V
Internal Power Dissipation (Note 3) . . . . . . . . . . . . . . . . . . . 800mW
Output Current . . . . . . . . . . . . . . . . . Full Short Circuit Protection
Voltage at any Op Amp Terminal
Maximum Junction Temperature
```

\qquad

``` \(+175^{\circ} \mathrm{C}\)
Output Current . . . . . . . . . . . . . . . . . . . . . Full Short Circuit Protection
Maximum Junction Temperature \(+175^{\circ} \mathrm{C}\)
```


Operating Temperature Ranges

HA-5134A/5134-2 $\ldots \ldots5^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}$
HA-5134A/5134-5 $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+75^{\circ} \mathrm{C}$
Storage Temperature Range
$-65^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+150^{\circ} \mathrm{C}$

Test Circuits

SLEW RATE AND TRANSIENT RESPONSE TEST CIRCUIT

SMALL SIGNAL RESPONSE
Vertical: $50 \mathrm{mV} / \mathrm{Div}$. Horizontal: $200 \mathrm{~ns} /$ Div.
$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}= \pm 15 \mathrm{~V}$
$A_{V}=+1, R_{L}=2 K, C_{L}=50 p F$

SETTLING TIME CIRCUIT

- $A_{V}=-1$.
- Feedback and summing resistors should be 0.1% matched.
- Clipping diodes are optional. HP5082-2810 recommended.

LARGE SIGNAL RESPONSE Vertical: 2V/Div. Horizontal: $2 \mu \mathrm{~s} /$ Div.

$$
T_{A}=+25^{\circ} \mathrm{C}, V_{C C}= \pm 15 \mathrm{~V}
$$

$A_{V}=+1, R_{L}=2 K, C_{L}=50 \mathrm{pF}$

PEAK-TO-PEAK NOISE 0.1 Hz TO 10 Hz $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}= \pm 15 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=1000$

$e n_{p-p}=0.167 \mu V_{p-p}$
$0.05 \mu \mathrm{~V} / \mathrm{Div} ., 1 \mathrm{~s} /$ Div.

Performance Curves

input offset voltage vs. TEMPERATURE

OFFSET CURRENT vs. TEMPERATURE
$A_{C L}=+1, V_{C C}= \pm 15 \mathrm{~V}$

REJECTION RATIOS vs. TEMPERATURE
$V_{C C}= \pm 5 \mathrm{~V}$ to $\pm 20 \mathrm{~V}, V_{C M}= \pm 10 \mathrm{~V}$

MAXIMUM OUTPUT VOLTAGE vs. TEMPERATURE

$R_{\text {LOAD }}=2 \mathrm{~K}, A_{V}=1000, V_{I N}= \pm 2 \mathrm{~V}$

PSRR vs. FREQUENCY

Performance Curves (Continued)

OVERSHOOT vs. CloAD
$V_{C C}= \pm 15 \mathrm{~V}, \mathrm{~T}_{A}=+25^{\circ} \mathrm{C}, \mathrm{AV}_{\mathrm{V}}=1, \mathrm{~V}_{\mathrm{OUT}}=200 \mathrm{mV}$

OPEN LOOP GAIN \& PHASE vs. FREQUENCY

Applications Information

SMALL SIGNAL TRANSIENT RESPONSE
$C_{\text {LOAD }}=1 \mathrm{nF}$

$T_{A}=+25^{\circ} \mathrm{C}, V_{C C}= \pm 15 \mathrm{~V}$,
$A_{V}=1, R_{L}=10 \mathrm{~K}$
$20 \mathrm{mV} / \mathrm{Div}, 1 \mu \mathrm{~s} / \mathrm{Div}$.

TF.ANSIENT RESPONSE OF APPLICATION

 CIRCUIT \#1
$V_{O U T}= \pm 10 \mathrm{~V}, \mathrm{R}_{\text {LOAD }}=50 \mathrm{~V}$
$C_{\text {LOAD }}=0.01 \mathrm{mF}, A_{V}=3, V_{C C}= \pm 15 \mathrm{~V}$
Top: Input, 2V/Div., 20 1 s/Div. Bottom: Output, 5V/Div, 20 2 s/Div.

APPLICATION CIRCUIT \#1:
INSTRUMENTATION AMPLIFIER WITH POWER OUTPUT

NOTE: When driving heavy loads the HA-5002 may contribute to thermal errors. Proper thermal shielding is recommended.

Applications Information (Continued)

APPLICATION CIRCUIT \#2: PROGRAMMABLEE GAIN AMPLIFIER

G_{1}	G_{0}	A_{V}
0	0	-1
0	1	-2
1	0	-4
1	1	-8

High Avol of HA-5134 reduces gain error. Gain Error $\cong 0.004 \%$ @ $A_{V}=8$

APPLICATION CIRCUIT \#3: PRECISION COMPARATOR

Horizontal: $50 \mu \mathrm{~s} /$ Div.
$\mathrm{V}_{\mathrm{IN}}= \pm 25 \mathrm{mV}, \mathrm{V}_{\text {OUT }}= \pm 14 \mathrm{~V}$
NOTE: If differential input voltages greater than 6 V are present, input current must be limited to less than 25 mA .

General Considerations

1. POWER SUPPLY DECOUPLING: Although not absolutely necessary, it is recommended that all power supply lines be decoupled with $0.01 \mu \mathrm{~F}$ ceramic capacitors to ground. Decoupling capacitors should be located as near to the amplifier terminals as possible.
2. CONSIDERATIONS FOR PROTOTYPING: The following list of recommendations are suggested for prototyping.

- Resolving low level signals requires minimizing leakage currents caused by external circuitry. Use of quality insulating materials, thorough cleaning of insulating surfaces and implementation of moisture barriers when required is suggested.
- Error voltages generated by thermocouples formed between dissimilar metals in the presence of temperature gradients should be minimized. Isolation of low level circuitry from heat generating components is recommended.
- Shielded cable input leads, guard rings and shield drivers are recommended for the most critical applications.

Ultra-Low Noise Precision Wideband Operational Amplifier

Features

- High Speed
$20 \mathrm{~V} / \mu \mathrm{s}$
- Wide Gain Bandwidth ($\mathrm{A} V \geq 5$) \qquad 63 MHz
- Low Noise $3 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ at 1 KHz
- Low VOS
$10 \mu \mathrm{~V}$
- High CMRR $126 d B$
- High Gain 1800V/mV

Applications

- High Speed Signal Conditioners
- Wide Bandwidth Instrumentation Amplifiers
- Low Level Transducer Amplifiers
- Fast, Low Level Voltage Comparators
- Highest Quality Audio Preamplifiers
- Pulse/RF Amplifiers
- For Further Design Ideas See Application Note 553

Description

The HA-5137 monolithic operational amplifier features an unparalleled combination of precision DC and wideband high speed characteristics. Utilizing the Harris D. I. technology and advanced processing techniques, this unique design unites low noise ($3 \mathrm{nV} / \sqrt{\mathrm{Hz} \text {) precision }}$ instrumentation performance with high speed $(20 \mathrm{~V} / \mu \mathrm{s})$ wideband capability.

This amplifier's impressive list of features include low $V_{O S}$ $(10 \mu \mathrm{~V})$, wide gain-bandwidth (63 MHz), high open loop gain ($1800 \mathrm{~V} / \mathrm{mV}$), and high CMRR (126 dB). Additionally, this flexible device operates over a wide supply range ($\pm 5 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$) while consuming only 140 mW of power.

Using the HA-5137 allows designers to minimize errors while maximizing speed and bandwidth in applications requiring gains greater than five.

This device is ideally suited for low level transducer signal amplifier circuits. Other applications which can utilize the HA-5137's qualities include instrumentation amplifiers, pulse or RF amplifiers, audio preamplifiers, and signal conditioning circuits.
This device can easily be used as a design enhancement by directly replacing the 725 , OP25, OP06, OP07, OP27 and OP37 where gains are greater than five. The HA-5137 is available in TO-99 Metal Can and Ceramic 8 pin Mini- DIPs. For the military grade product, refer to the HA-5137/883 data sheet.

CAUTION: These devices are sensitive to electrostatic discharge. Proper I.C. handing procedures should be followed.
Copyright (c) Harris Corporation 1990

Specifications HA-5137

Absolute Maximum Ratings (Note 1)

$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ Unless Otherwise Stated
Voltage Between V+ and V-Terminals . $\pm 22 \mathrm{~V}$
Differential Input Voltage (Note 2) V
Internal Power Dissipation . 500mW
Output Current \qquad Full Short Circuit Protection

Operating Temperature Ranges

A-5137/37A-2	$-55^{\circ} \mathrm{C} \leq \mathrm{T}^{\prime} \mathrm{A} \leq+125^{\circ} \mathrm{C}$
HA-5137/37A-5	$. .0^{\circ} \mathrm{C} \leq T_{A} \leq+75^{\circ} \mathrm{C}$
Storage Temperat	$-65^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+150^{\circ} \mathrm{C}$
Maximum Junctio	+175

HA-5137/37A-5 $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+75^{\circ} \mathrm{C}$
Maximum Junction Temperature. $+175^{\circ} \mathrm{C}$

Electrical Specifications $\mathrm{V}+=15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{C}_{\mathrm{L}} \leq 50 \mathrm{pF}, \mathrm{R}_{\mathrm{S}} \leq 100 \Omega$

PARAMETER	TEMP	HA-5137A			HA-5137			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
INPUT CHARACTERISTICS								
Offset Voltage	$+25^{\circ} \mathrm{C}$	-	10	25	-	30	100	$\mu \mathrm{V}$
	Full	-	30	60	-	70	300	$\mu \mathrm{V}$
Average Offset Voltage Drift	Full	-	0.2	0.6	-	0.4	1.8	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Bias Current	$+25^{\circ} \mathrm{C}$	-	± 10	± 40	-	± 15	± 80	nA
	Full	-	± 20	± 60	-	± 35	± 150	nA
Offset Current	$+25^{\circ} \mathrm{C}$	-	7	35	-	12	75	nA
	Full	-	15	50	-	30	135	nA
Common Mode Range	Full	± 10.3	± 11.5	-	± 10.3	± 11.5	-	V
Differential Input Resistance (Note 3)	$+25^{\circ} \mathrm{C}$	1.5	6	-	0.8	4	-	$\mathrm{M} \Omega$
Input Noise Voltage 0.1 Hz to 10 Hz (Note 4)	$+25^{\circ} \mathrm{C}$	-	0.08	0.18	-	0.09	0.25	$\mu \vee p-p$
Input Noise Voltage Density (Note 5) $\mathrm{f}_{\mathrm{O}}=10 \mathrm{~Hz}$	$+25^{\circ} \mathrm{C}$	-	3.5	5.5	-	3.8	8.0	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
$\mathrm{f}_{\mathrm{O}}=30 \mathrm{~Hz}$		-	3.1	4.5	-	3.3	5.6	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
$\mathrm{f}_{\mathrm{O}}=1000 \mathrm{~Hz}$		-	3.0	3.8	-	3.2	4.5	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Input Noise Current Density (Note 5) $\mathrm{f}_{\mathrm{O}}=10 \mathrm{~Hz}$	$+25^{\circ} \mathrm{C}$	-	1.7	4.0	-	1.7	-	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
$\mathrm{ff}_{0}=30 \mathrm{~Hz}$		-	1.0	2.3	-	1.0	-	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
$\mathrm{f}_{\mathrm{O}}=1000 \mathrm{~Hz}$		-	0.4	0.6	-	0.4	0.6	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
TRANSFER CHARACTERISTICS								
Large Signal Voltage Gain (Note 6)	$+25^{\circ} \mathrm{C}$	1000	1800	-	700	1500	-	V / mV
	Full	600	1200	-	300	800	-	V / mV
Common Mode Rejection Ratio (Note 7)	Full	114	126	-	100	120	-	dB
Minimum Stable Gain	$+25^{\circ} \mathrm{C}$	5	-	-	5	-	-	V / N
Gain-Bandwidth-Product $\quad \begin{array}{ll}\mathrm{f}_{0}=10 \mathrm{KHz} \\ & \mathrm{f}_{0}=1 \mathrm{MHz}\end{array}$	$+25^{\circ} \mathrm{C}$	60	80	-	60	80	-	MHz
	$+25^{\circ} \mathrm{C}$	-	63	-	-	63	-	MHz
OUTPUT CHARACTERISTICS								
Output Voltage Swing $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=600 \Omega \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{~K} \Omega \end{aligned}$ Full Power Bandwidth (Note 8) Output Resistance, Open Loop Output Current	$+25^{\circ} \mathrm{C}$	± 10.0	± 11.5	-	± 10.0	± 11.5	-	V
	Full	± 11.7	± 13.8	-	± 11.4	± 13.5	-	V
	$+25^{\circ} \mathrm{C}$	220	320	-	220	320	-	KHz
	$+25^{\circ} \mathrm{C}$	-	70	-	16	70	-	Ω
	$+25^{\circ} \mathrm{C}$	16.5	25	-	16.5	25	-	mA
TRANSIENT RESPONSE (Note 9)								
Rise Time Slew Rate (Note 11) Settling Time (Note 10) Overshoot	$+25^{\circ} \mathrm{C}$	-	-	100	-	$\stackrel{-}{\square}$	100	ns
	$+25^{\circ} \mathrm{C}$	14	20	-	14	20	-	V/ $/ \mathrm{s}$
	$+25^{\circ} \mathrm{C}$	-	1.0	-	-	1.0	\checkmark	$\mu \mathrm{s}$
	$+25^{\circ} \mathrm{C}$	-	20	40	-	20	40	\%
POWER SUPPLY CHARACTERISTICS								
Supply Current Power Supply Rejection Ratio (Note 12)	$+25^{\circ} \mathrm{C}$	-	3.5	-	-	3.5	-	mA
	Full	-	-	4.0	-	-	4.0	mA
	Full	-	2	4	-	16	51	$\mu \mathrm{V} / \mathrm{N}$

3

NOTES:

1. Absolute maximum ratings are limiting values, applied individually, beyond which the serviceability of the circuit may be impaired. Function al operability under any of these conditions is not necessarily implied.
2. For differential input voltages greater than 0.7 V , the input current must be limited to 25 mA to protect the back-to-back input diodes.
3. This parameter value is based upon design calculations.
4. Refer to Typical Performance section of the data sheet.
5. Sample tested
6. $\mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}, R_{\mathrm{L}}=2 \mathrm{k} \Omega$
7. $V_{C M}= \pm 10 \mathrm{~V}$
8. Full power bandwidth guaranteed based on slew rate measurement using: $F P B W=\frac{\text { Slew Rate }}{2 \pi V_{\text {Peak }}}$
9. Refer to Test Circuits section of the data sheet.
10. Settling time is specified to 0.1% of final value for a 10 V output step and $A_{V}=-5$.
11. $\mathrm{V}_{\text {OUT }}=10 \mathrm{~V}$ Step
12. $V_{S}= \pm 4 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$

Typical Performance Unless Otherwise Specified: $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\text {SUPPLY }}= \pm 15 \mathrm{~V}$

OFFSET VOLTAGE
TYPICAL DRIFT vs. TEMPERATURE

NOISE vs. SUPPLY VOLTAGE

SUPPLY CURRENT vs. SUPPLY VOLTAGE

NOISE CHARACTERISTICS

CMRR vs. FREQUENCY

BANDWIDTH AND SLEW RATE vs. SUPPLY VOLTAGE

Typical Performance Curves Unless Otherwise Specitied: $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\text {SUPPLY }}= \pm 15 \mathrm{~V}$

PSRR vs. FREQUENCY

AVOL AND Vout vs. LOAD RESISTANCE

SUPPLY CURRENT vs. TEMPERATURE

CLOSED LOOP GAIN AND PHASE vs. FREQUENCY

NORMALIZED SLEW RATE vs. TEMPERATURE

Vout MAX vs. FREQUENCY UNDISTORTED SINEWAVE OUTPUT

Typical Performance Curves Unless Otherwise Specified: $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\text {SUPPLY }}= \pm 15 \mathrm{~V}$

SUGGESTED OFFSET VOLTAGE ADJUSTMENT

Test Offset Adjustment Range is $\left|V_{O S}+1 \mathrm{mV}\right|$ minimum referred to output. Typical range is $\pm 4 \mathrm{mV}$ with $R p=10 \mathrm{k} \Omega$.

LARGE AND SMALL SIGNAL RESPONSE TEST CIRCUIT

LARGE SIGNAL RESPONSE

Vertical Scale: (Volts: Input $=1 \mathrm{~V} /$ Div.)
(Volts: Output $=5 \mathrm{~V} / \mathrm{Div}$.)
Horizontal Scale: (Time $=1 \mu \mathrm{~s} / \mathrm{Div}$.)

SMALL SIGNAL RESPONSE

Vertical Scale: (Volts: Input $=\mathbf{2 0} \mathbf{m V} /$ Div.)
(Volts: Output $=100 \mathrm{mV} /$ Div.)
Horizontal Scale: (Time $=100 \mathrm{~ns} /$ Div.)

Typical Performance Curves (Continued) Unless Otherwise Specified: $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{S}$ UPPLY $= \pm 15 \mathrm{~V}$ SETTLING TIME TEST CIRCUIT

SUGGESTED STABILITY CIRCUITS

Low resistances are preferred for low noise applications as a $1 \mathrm{~K} \Omega$ resistor has $4 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ of thermal noise. Total resistances of greater than 10K Ω on either input can reduce stability. In most high resistance applications, a few picofarads of capacitance across the feedback resistor will improve stability.
0.1 Hz TO 10 Hz NOISE WITH ACL $=25,000 \mathrm{~V} / \mathrm{V}$

Horizontal Scale $=1 \mathrm{sec} /$ Div. Vertical Scale $=0.002 \mu \mathrm{~V} /$ Div. $0.08 \mu \mathrm{Vp}-\mathrm{p}$

Die Characteristics

Transistor Count .. 63 Die Dimensions $65 \times 104.3 \times 19$ mils $(1700 \mu \mathrm{~m} \times 2600 \mu \mathrm{~m} \times 480 \mu \mathrm{~m})$
Substrate Potential* \qquad V-
Process . Bipolar-DI

Thermal Constants (${ }^{\circ} \mathrm{C} /$ W)	θ_{ja}	θ_{jc}
HA7-5137 Ceramic Mini-DIP	160	79

HA2-5137 TO-99 Metal Can 17248
*The substrate may be left floating (Insulating Die Mount) or it may be mounted on a conductor at V - potential.

HA=5141/42/44

Single/Dual/Quad UItra-Low Power Operational Amplifiers

Features

- Low Supply Current
$45 \mu \mathrm{~A} / \mathrm{Amp}$
- Wide Supply Voltage Range Single 3 V to 30 V
or Dual $\pm 1.5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$
- High Slew Rate
$1.5 \mathrm{~V} / \mu \mathrm{s}$
- High Gain

100kV/V

- Unity Gain Stable
- Available in Singles, Duals and Quads

Description

The HA-5141/42/44 ultra-low power operational amplifiers provide AC and DC performance characteristics similar to or better than most general purpose amplifiers while only drawing $1 / 30$ of the supply current of most general purpose amplifiers. In applications which require low power dissipation and good A.C. electrical charactersistics, this family offers the industry's best speed/power ratio.

The HA-5141/42/44 provides accurate signal processing by virtue of their low input offset voltage (0.5 mV), low input bias current (45 nA), high open loop gain ($100 \mathrm{kV} / \mathrm{V}$) and low noise, for low power operational amplifiers ($20 \mathrm{nV} / \sqrt{\mathrm{Hz}}$). These characteristics coupled with a $1.5 / \mu \mathrm{s}$ slew rate and a 400 kHz bandwidth make the HA-5141/42/44 ideal for

Applications
- Portable Instruments
- Meter Amplifiers
- Telephone Headsets
- Microphone Amplifiers
- Instrumentation
- For Further Design Ideas See Application Note 544

use in low power instrumentation, audio amplifier and active filter designs. The wide range of supply voltages (3 V to 30 V) also allow these amplifiers to be very useful in low voltage battery powered equipment. These parts are also tested and guaranteed at both $\pm 15 \mathrm{~V}$ and single ended +5 V supplies.
These amplifiers are available in singles (HA-5141, SOIC, Can or Mini-DIP), duals (HA-5142, SOIC, Can or Mini-DIP) or quads (HA-5144, SOIC or DIP) with industry standards pinouts which allow the HA-5141/5142/5144's to be interchangeable with most other operational amplifiers. For military grade product refer to the 5141, 5142, 5144/883 data sheet.

Pinouts

HA2-5141 (TO-99 METAL CAN)

TOP VIEWS

HA2-5142 (TO-99 METAL CAN)

CAUTION: These devices are sensitive to electrostatic discharge. Proper IC handling procedures should be followed.
Copyright (c) Harris Corporation 1990

Absolute Maximum Ratings	
Voltage Between $\mathrm{V}+$ and V - Terminals	35V
Differential Input Voltage.	7 V
Output Current	S/C Protected
Internal Power Dissipat	500 mW

Operating Temperature Range

HA-5141/42/44-5 \qquad $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+75^{\circ} \mathrm{C}$
HA-5141/42/44-2 \qquad $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+125^{\circ} \mathrm{C}$
HA-5141/42/44-9 . $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$
Storage Temperature Range \qquad $-65^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+150^{\circ} \mathrm{C}$
Maximum Junction Temperature \qquad $+175^{\circ} \mathrm{C}$

Electrical Specifications $R_{S}=100 \Omega, C_{L} \leq 10 p F$ Unless Otherwise Specified.

PARAMETER	TEMP	$\begin{gathered} -2,-5 \\ \mathrm{~V}+=+5 \mathrm{~V}, \mathrm{~V}-=\mathrm{OV} \end{gathered}$			$\begin{gathered} -2,-5 \\ \mathrm{~V}+=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V} \end{gathered}$			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
INPUT CHARACTERISTICS								
Offset Voltage (Note 11) Average Offset Voltage Drift Bias Current (Note 11) Offset Current (Note 11) Common Mode Range Differential Input Resistance Input Noise Voltage ($f=1 \mathrm{kHz}$) Input Noise Current ($\mathrm{f}=1 \mathrm{kHz}$)	$\begin{gathered} +25^{\circ} \mathrm{C} \\ \text { Full } \\ \text { Full } \\ +25^{\circ} \mathrm{C} \\ \text { Full } \\ +25^{\circ} \mathrm{C} \\ \text { Full } \\ \text { Full } \\ +25^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \end{gathered}$	- - - - - - - 0 to 3 - -	2 - 3 45 - 0.3 - - 0.6 20 0.25	6 8 - 100 125 10 20 - - -	- - - - - - ± 10 -	2 - 3 45 - 0.3 - - 0.6 20 0.25	6 8 - 100 125 10 20 - - -	mV mV $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ nA nA nA nA V $\mathrm{M} \Omega$ $\mathrm{nV} / \sqrt{\mathrm{Hz}}$ $\mathrm{pA} / \sqrt{\mathrm{Hz}}$
TRANSFER CHARACTERISTICS								
Large Signal Voltage Gain (Notes 2, 4) Common Mode Rejection Ratio (Note 7) Bandwidth (Notes 2, 3)	$\begin{gathered} +25^{\circ} \mathrm{C} \\ \text { Full } \\ \text { Full } \\ +25^{\circ} \mathrm{C} \end{gathered}$	20k $15 k$ 77 -	$\begin{gathered} 100 \mathrm{k} \\ - \\ 105 \\ 0.4 \end{gathered}$	-	20k $15 k$ 77 -	$\begin{gathered} 100 \mathrm{k} \\ - \\ 105 \\ 0.4 \end{gathered}$	-	VN V/N dB MHz
OUTPUT CHARACTERISTICS								
Output Voltage Swing (Notes 2, 10) Full Power Bandwidth (Notes 2, 4, 8)	$\begin{aligned} & +25^{\circ} \mathrm{C} \\ & \text { Full } \\ & +25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 1.0 \text { to } 3.8 \\ & 1.2 \text { to } 3.5 \end{aligned}$	$\begin{gathered} 0.7 \text { to } 4.2 \\ 0.9 \text { to } 4.0 \\ 240 \end{gathered}$	-	$\begin{aligned} & \pm 10 \\ & \pm 10 \end{aligned}$	$\begin{gathered} \pm 13 \\ \pm 13 \\ 24 \end{gathered}$	-	$\begin{gathered} V \\ V \\ \mathrm{kHz} \end{gathered}$
TRANSIENT RESPONSE (Notes 2,3)								
Rise Time Slew Rate (Note 6) Settling Time (Note 5)	$\begin{aligned} & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \end{aligned}$	- 0.8	600 1.5 10	-	0.8	$\begin{aligned} & 600 \\ & 1.5 \\ & 10 \end{aligned}$	-	ns $\mathrm{V} / \mu \mathrm{s}$ $\mu \mathrm{s}$
POWER SUPPLY CHARACTERISTICS								
Supply Current Power Supply Rejection Ratio (Note 9)	$+25^{\circ} \mathrm{C}$	- - 77	45 - 105	$\begin{gathered} 80 \\ 100 \end{gathered}$	- - 77		150 200	$\mu \mathrm{A} / \mathrm{Amp}$ $\mu \mathrm{A} /$ Amp dB

NOTES:

1. Absolute maximum ratings are limiting values, applied individually beyond which the serviceability of the circuit may be impaired. Functional operability under any of these conditions is not necessarily implied.
2. $R_{L}=50 \mathrm{k} \Omega$
3. $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
4. $\mathrm{V}_{\mathrm{O}}=1.4$ to 2.5 V for $\mathrm{V}_{\mathrm{CC}}=+5, \mathrm{OV} ; \mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}$ for $\mathrm{V}_{\mathrm{CC}}= \pm 15 \mathrm{~V}$.
5. Settling Time is specified to 0.1% of final value for a $3 V$ output step and $A_{V}=-1$ for $V_{C C}=+5 \mathrm{~V}, 0 \mathrm{~V}$. Output step $=10 \mathrm{~V}$ for $\mathrm{V}_{\mathrm{CC}}= \pm 15 \mathrm{~V}$.
6. Maximum input slew rate $=10 \mathrm{~V} / \mu \mathrm{s}$.
7. $V_{C M}=0$ to $3 V$ for $V_{C C}=+5,0 V ; V_{C M}= \pm 10 \mathrm{~V}$ for $V_{C C}= \pm 15 \mathrm{~V}$
8. Full Power Bandwidth is guaranteed by equation: Full Power Bandwidth $=\underline{\text { Slew Rate }}$
9. $\Delta V_{S}=+10 \mathrm{~V}$ for $\mathrm{V}_{\mathrm{CC}}=+5$, $0 \mathrm{~V} ; \Delta \mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$ for $\mathrm{V}_{\mathrm{CC}}= \pm 15 \mathrm{~V}$.
10. For $V_{C C}=+5$, $O V$ terminate R_{L} at +2.5 V . Typical output current is $\pm 3 \mathrm{~mA}$.
11. $\mathrm{V}_{\mathrm{O}}=1.4 \mathrm{~V}$ for $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}$, OV .

Electrical Specifications $R_{S}=100 \Omega, C_{L}<10 p F$ Uniess Otherwise Specified.

PARAMETER	TEMP	$\stackrel{-9}{\mathrm{v}+=+5 \mathrm{~V}, \mathrm{v}-=0 \mathrm{~V}}$			$V_{+}=+15 v^{-9}, V_{-}=-15 \mathrm{~V}$			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
INPUT CHARACTERISTICS								
Offset Voltage (Note 11)	$+25^{\circ} \mathrm{C}$	-	2	6	-	2	6	mV
	Full	-	-	8	-	-	8	mV
Average Offset Voltage Drift	Full	-	3	-	-	3	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Bias Current (Note 11)	+250\%	-	45	100	-	45	100	nA
	Full	-	-	125	-	-	125	nA
Offset Current (Note 11)	$+25^{\circ} \mathrm{C}$	-	0.3	10	-	0.3	10	nA
	Full	-	-	20	-	-	20	nA
Common Mode Range	Full	0 to 3	-	-	± 10	-	-	V
Differential Input Resistance	$+25^{\circ} \mathrm{C}$	-	0.6	-	-	0.6	-	$\mathrm{M} \Omega$
Input Noise Voltage ($f=1 \mathrm{kHz}$)	$+25^{\circ} \mathrm{C}$	-	20	-	-	20	-	$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
Input Noise Current ($\mathrm{f}=1 \mathrm{kHz}$)	$+25^{\circ} \mathrm{C}$	-	0.25	-	-	0.25	-	$\mathrm{pA} \sqrt{ } \mathrm{Hz}$
TRANSFER CHARACTERISTICS								
Large Signal Voltage Gain (Notes 2, 4)	$+25{ }^{\circ} \mathrm{C}$	20k	100k	-	20k	100k	-	VN
	Full	12k	-	-	12k	-	-	vN
Common Mode Rejection Ratio (Note 7)	Full	70	105	-	70	105	-	dB
Bandwidth (Notes 2,3)	$+25^{\circ} \mathrm{C}$	-	0.4	-	-	0.4	-	MHz
OUTPUT CHARACTERISTICS								
Output Voltage Swing (Notes 2,10)	$+25^{\circ} \mathrm{C}$	1.0 to 3.8	0.7 to 4.2	-	± 10	± 13	-	v
	Full	1.2 to 3.5	0.9 to 4.0	-	± 10	± 13	-	v
Output Current	$+25^{\circ} \mathrm{C}$	-	-	-	-	-	-	V
Full Power Bandwidth (Notes 2, 4, 8)	$+25^{\circ} \mathrm{C}$	-	240	-	-	24	-	kHz
TRANSIENT RESPONSE (Notes 2, 3)								
Rise Time	$+25^{\circ} \mathrm{C}$	-	600	-	-	600	-	ns
Slew Rate (Note 6)	$+25^{\circ} \mathrm{C}$	0.8	1.5	-	0.8	1.5	-	V/ $/ \mathrm{s}$
Settling Time (Note 5)	$+25^{\circ} \mathrm{C}$	-	10	-	-	10	-	$\mu \mathrm{s}$
POWER SUPPLY CHARACTERISTICS								
Supply Current	$+25{ }^{\circ} \mathrm{C}$	-	45	80	-	100	150	μ A/Amp
	Full	-	-	100	-	-	200	μ A/Amp
Power Supply Rejection Ratio (Note 9)	Full	70	105	-	70	105	-	dB

NOTE: The notes from the $\mathbf{- 2 ,}-5$ table apply to this $\mathbf{- 9}$ table. Absolute maximum ratings and the operating temperature ranges also apply.

SOIC Pinouts

TOP VIEWS

Test Circuits

SLEW RATE AND TRANSIENT RESPONSE TEST CIRCUIT

LARGE SIGNAL RESPONSE
Vertical Scale: (Volts: Input $=5 \mathrm{~V} /$ Div.; Output $=2 \mathrm{~V} /$ Div.)
Horizontal Scale: (Time: $2 \mu \mathrm{~s} /$ Div.)

$$
+V_{S U P P L Y}=+15 \mathrm{~V},-V_{S U P P L Y}=-15 \mathrm{~V}
$$

LARGE SIGNAL RESPONSE
Vertical Scale: (Volts: Input $=2 \mathrm{~V} /$ Div.; Output $=1 \mathrm{~V} /$ Div.) Horizontal Scale: (Time: $5 \mu \mathrm{~s} /$ Div.)

$+V_{\text {SUPPLY }}=+5 \mathrm{~V},-V_{\text {SUPPLY }}=0 \mathrm{~V}$

SMALL SIGNAL RESPONSE
Vertical Scale: (Volts: Input $=100 \mathrm{mV} /$ Div.; Output $=50 \mathrm{mV} /$ Div.) Horizontal Scale: (Time: $2 \mu \mathrm{~s} /$ Div.)

$+V_{\text {SUPPLY }}=+15 \mathrm{~V},-V_{\text {SUPPLY }}=-15 \mathrm{~V}$

SMALL SIGNAL RESPONSE
Vertical Scale: (Volts: Input $=100 \mathrm{mV} /$ Div.; Output $=50 \mathrm{mV} /$ Div.) Horizontal Scale: (Time: $5 \mu \mathrm{~s} / \mathrm{Div}$.)
$+V_{\text {SUPPLY }}=+5 \mathrm{~V},-\mathrm{V}_{\text {SUPPLY }}=0 \mathrm{~V}$

Performance Curves $\mathrm{v}_{\mathrm{S}}= \pm 2.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ Unless Otherwise Specified

OPEN LOOP FREQUENCY RESPONSE

BANDWIDTH AND PHASE MARGIN vs. LOAD CAPACITANCE

OUTPUT VOLTAGE SWING vs.
FREQUENCY AND SINGLE SUPPLY VOLTAGE

INPUT OFFSET CURRENT AND BIAS CURRENT vs. TEMPERATURE

NORMALIZED AC PARAMETERS vs. SUPPLY VOLTAGE

NORMALIZED AC PARAMETERS vs. TEMPERATURE

Performance Curves (Continued) $\mathrm{v}_{\mathrm{S}}= \pm 2.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ Unless Otherwise Specified

INPUT NOISE vs. FREQUENCY

PSRR AND CMRR vs. FREQUENCY

MAXIMUM OUTPUT VOLTAGE SWING vs. LOAD RESISTANCE AND SINGLE SUPPLY VOLTAGE

POWER SUPPLY CURRENT vs. TEMPERATURE AND SINGLE SUPPLY VOLTAGE

CHANNEL SEPARATION vs. FREQUENCY

Schematic

Die Characteristics

Transistor Count		
HA-5141.		
HA-5142.		
Substrate Potential ${ }^{\text {* }}$		
Process		
Thermal Constants (${ }^{\circ} \mathrm{C} / \mathrm{W}$)	$\theta_{\text {ja }}$	$\theta_{\text {jc }}$
HA1-5144 (-2, -5, -7)	101	33
HA1-5144 (/883)	75	22
HA2-5144 (-2, -5, -7)	206	56
HA2-5141 (/883)	168	50
HA2-5142 (-2, -5, -7)	184	50
HA2-5142 (/883)	143	43
НАЗ-5141 (-5)	90	40
НАЗ-5142 (-5)	80	20
НАЗ-5144 (-5)	75	20
HA7-5141 (-2, -5, -7)	210	117
HA7-5141 (/833)	90	40
HA7-5142 (-2, -5, -7)	177	92
HA7-5142 (/883)	80	20
HA9P5141 ($-5,-9$)	161	42
HA9P5142 (-5, -9)	94	26
HA9P5144 (-5, -9)	90	26

*The substrate may be left floating (Insulating Die Mount) or it may be mounted on a conductor at V -potential.
NOTE: Consult Harris for LCC/PLCC information.

Ultra-Low Noise Precision High Slew Rate Wideband Operational Amplifier

Features - High Speed \qquad 35V/ $\mu \mathrm{s}$ - Wide Gain Bandwidth (Av>10) \qquad 120MHz - Low Noise \qquad $3 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$ at 1 KHz - Low VOS \qquad $10 \mu \mathrm{~V}$ - High CMRR \qquad 126dB - High Gain \qquad $1800 \mathrm{~V} / \mathrm{mV}$ Description The HA-5147 monolithic operational amplifier features an unparalleled combination of precision DC and wideband high speed characteristics. Utilizing the Harris D. I. technology and advanced processing techniques, this unique design unites low noise ($3 \mathrm{nV} / \sqrt{ } / \mathrm{Hz}$) precision instrumentation performance with high speed ($35 \mathrm{~V} / \mu \mathrm{s}$) wideband capability. This amplifier's impressive list of features include low VOS ($10 \mu \mathrm{~V}$), wide gain-bandwidth (120 MHz), high open loop gain ($1800 \mathrm{~V} / \mathrm{mV}$), and high CMRR (126dB). Additionally, this flexible device operates over a wide supply range ($\pm 5 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$) while consuming only 140 mW of power.	

Using the HA-5147 allows designers to minimize errors while maximizing speed and bandwidth in applications requiring gains greater than ten.

Applications

- High Speed Signal Conditioners
- Wide Bandwidth Instrumentation Amplifiers
- Low Level Transducer Amplifiers
- Fast, Low Level Voltage Comparators
- Highest Quality Audio Preamplifiers
- Pulse/RF Amplifiers

This device is ideally suited for low level transducer signal amplifier circuits. Other applications which can utilize the HA-5147's qualities include instrumentation amplifiers, pulse or RF amplifiers, audio preamplifiers, and signal conditioning circuits. Further application ideas are given in Application Note 553.

This device can easily be used as a design enhancement by directly replacing the 725, OP25, OP06, OP07, OP27 and OP37 where gains are greater than ten. The HA-5147 is available in TO-99 Metal Can and Ceramic 8 pin Mini-DIPs. For military grade product, refer to the HA-5147/883 data sheet.

Pinouts

TOP VIEWS
HA7-5147 (CERAMIC MINI-DIP)

HA2-5147 (TO-99 METAL CAN)

Schematic

CAUTION: These devices are sensitive to electrostatic discharge. Proper I.C. handling procedures should be followed.

Absolute Maximum Ratings (Note 1)
$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ Unless Otherwise Stated
Voltage Between V+ and V-Terminals
Differential Input Voltage (Note 2) Internal Power Dissipation Output Current \qquad 500mw

Operating Temperature Ranges

HA-5147/47A-2 \qquad $-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}$ HA-5147/47A-5 $. .0^{\circ} \mathrm{C} \leq T_{A} \leq+75^{\circ} \mathrm{C}$ Storage Temperature Range $-65^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+150^{\circ} \mathrm{C}$
Maximum Junction Temperature
.... $-65^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+150^{\circ} \mathrm{C}$

Electrical Specifications $\mathrm{V}+=15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{C}_{\mathrm{L}} \leq 50 \mathrm{pF}, \mathrm{R}_{\mathrm{S}} \leq 100 \Omega$

PARAMETER	TEMP	HA-5147A			HA-5147			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
INPUT CHARACTERISTICS								
Offist Voltage	$+25^{\circ} \mathrm{C}$	-	10	25	-	30	100	$\mu \mathrm{V}$
	Full	-	30	60	-	70	300	$\mu \mathrm{V}$
Average Offset Voltage Drift	Full	-	0.2	0.6	-	0.4	1.8	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Bias Current	$+25^{\circ} \mathrm{C}$	-	± 10	± 40	-	± 15	± 80	nA
	Full	-	± 20	± 60	-	± 35	± 150	nA
Offset Current	$+25^{\circ} \mathrm{C}$	-	7	35	-	12	75	nA
	Full	-	15	50	-	30	135	nA
Common Mode Range	Full	± 10.3	± 11.5	-	± 10.3	± 11.5	-	V
Differential Input Resisfance (Note 3)	$+25^{\circ} \mathrm{C}$	1.5	6	-	0.8	4	-	$\mathrm{M} \Omega$
Input Noise Voltage 0.1 Hz to 10 Hz (Note 4)	$+25^{\circ} \mathrm{C}$	-	0.08	0.18	-	0.09	0.25	$\mu \mathrm{V} p-\mathrm{p}$
Input Noise Voltage Density (Note 5)	$+25^{\circ} \mathrm{C}$	-	3.5	5.5	-	3.8	8.0	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
		-	3.1	4.5	-	3.3	5.6	$n \mathrm{~V} / \sqrt{\mathrm{Hz}}$
		-	3.0	3.8	-	3.2	4.5	$n \mathrm{~V} / \sqrt{\mathrm{Hz}}$
Input Noise Current Density (Note 5) $f_{0}=10 \mathrm{~Hz}$ $f_{0}=30 \mathrm{~Hz}$ $f_{0}=1000 \mathrm{~Hz}$	$+25{ }^{\circ} \mathrm{C}$	-	1.7	4.0	-	1.7	-	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
		-	1.0	2.3	-	1.0	-	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
		-	0.4	0.6	-	0.4	0.6	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$

TRANSFER CHARACTERISTICS

NOTES:

1. Absolute maximum ratings are limiting values, applied individually, beyond which the serviceability of the circuit may be impaired. Functional operability under any of these conditions is not necessarily implied.
2. For differential input voltages greater than 0.7 V , the input current must be limited to 25 mA to protect the back-to-back input diodes.
3. This parameter value is based upon design calculations.
4. Refer to Typical Performance section of the data sheet.
5. Sample tested.
6. $\mathrm{V}_{\mathrm{CM}}= \pm 10 \mathrm{~V}$
7. Full power bandwidth guaranteed based on slew rate measurement using: FPBW $=$ Slew Rate

$$
2 \pi V_{P E A K}
$$

9. Refer to Test Circuits section of the data sheet.
10. Setting time is specified to 0.1% of final value for a 10 V output step and $A_{V}=-10$
11. $V_{\text {OUT }}=10 \mathrm{~V}$ Step
12. $V_{S}= \pm 4 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$
13. $\mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{~K} \Omega$

HA-5147

Typical Performance Curves (Continued) Unless Otherwise Specified: $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SUPPLY}}= \pm 15 \mathrm{~V}$

PSRR vs. FREQUENCY

Avol and vout vs. LoAd resistance

SUPPLY CURRENT vs. TEMPERATURE

OPEN LOOP GAIN AND PHASE vs. FREQUENCY

NORMALIZED SLEW RATE vs. TEMPERATURE

VOUT MAX vs. FREQUENCY UNDISTORTED SINEWAVE OUTPUT

Typical Performance Curves (Continued) Unless Otherwise Specified: $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\text {SUPPLY }}= \pm 15 \mathrm{~V}$

CLOSED LOOP GAIN AND PHASE vs. FREQUENCY

SUGGESTED OFFSET VOLTAGE ADJUSTMENT

Tested Offset Adjustment Range is $\left|\mathrm{V}_{\mathrm{OS}}+1 \mathrm{mV}\right|$ minimum referred to output. Typical range is $\pm 4 \mathrm{mV}$ with $\mathrm{R}_{\mathrm{T}}=10 \mathrm{k} \Omega$.

LARGE SIGNAL RESPONSE

Vertical Scale: (Volts: Input $=0.5 \mathrm{~V} /$ Div.) (Volts: Output $=5 \mathrm{~V} /$ Div.) Horizontal Scale: (Time: 500ns/Div)

SMALL SIGNAL RESPONSE

Vertical Scale: (Volts: Input $=10 \mathrm{mV} /$ Div)
(Volts: Output $=100 \mathrm{mV} /$ Div)
Horizontal Scale: (Time: $100 \mathrm{~ns} / \mathrm{Div}$)

Typical Performance Curves (Continued) Unless Otherwise Specified: $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\text {SUPPLY }} \doteq \pm 15 \mathrm{~V}$ settling time test circuit

- $A v=-10$
- Feedback and summing resistors should be 0.1%
- Clipping diodes are optional. HP5082-2810 recommended.

SUGGESTED STABILITY CIRCUITS

Low resistances are preferred for low noise applications as a $1 \mathrm{k} \Omega$ resistor has $4 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ of thermal noise. Total resistances of greater than $10 \mathrm{k} \Omega$ on either input can reduce stability. In most high resistance applications, a few picofarads of capacitance across the feedback resistor will improve stability.
0.1 Hz TO 10 Hz NOISE WITH ACL $=25,000 \mathrm{~V} / \mathrm{V}$

Horizontal Scale $=1 \mathrm{sec} /$ Div. Vertical Scale $=0.002 \mu \mathrm{~V} /$ Div. $0.08 \mu \mathrm{Vp}-\mathrm{p}$

Die Characteristics

Transistor Count . 63
Die Dimensions $65 \times 104.3 \times 19$ mils
Substrate Potential* . V-
Process . Bipolar-DI
$\begin{array}{ccc}\text { Thermal Constants }\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right) & \theta_{\mathrm{ja}} & \theta_{\mathrm{jc}} \\ \text { HA7-5147 Ceramic Mini-DIP } & 160 & 79\end{array}$
HA2-5147 TO-99 Metal Can 172 48
*The substrate may be left floating (Insulating Die Mount) or it may be mounted on a conductor at V -potential.

HA-5151/52/54
 \section*{\title{
Single/Dual/Quad Low Power
 \section*{\title{
Single/Dual/Quad Low Power Operational Amplifiers
}} Operational Amplifiers
}}

Features

- Low Supply Current $<200 \mu \mathrm{~A} /$ Amplifier
- Dual Supply Voltage Range $\pm 1.5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$
- Single Supply Voltage Range................. . 3 V to 30 V
- High Slew Rate . 6V/ h s
- Low VOS Drift
$.3 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
- Low Noise $.15 n V / \sqrt{\mathrm{Hz}}$
- Dielectric Isolation

Description

The HA-5151/52/54 series is a group of dielectrically isolated bipolar amplifiers designed to provide excellent AC performance while drawing less than $200 \mu \mathrm{~A}$ of supply current per amplifier. These unity gain stable amplifiers are especially well suited for portable and lightweight equipment where available power is limited.
The HA-5151/52/54 series combines superior tow power AC performance with DC precision not usually found in general purpose amplifiers. The DC performance is centered around low input offset voltage (0.5 mV), low offset voltage drift ($3 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$), and low input bias current (70 nA). This is combined with a very low input noise voltage of $15 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ at 1 kHz .

The AC performance of the HA-5151/52/54 series surpasses that of typical low power amplifiers with $6 \mathrm{~V} / \mu \mathrm{s}$ slew rate and a full power bandwidth of 95 kHz . This makes

Applications
- Portable Instruments
- Meter Amplifiers
- Telephone Headsets
- Microphone Amplifiers
- Remote SensorsTransmitter
- Battery Powered Equipment
- For Further Design Ideas See Application Note 544

the HA-5151/52/54 series an excellent choice for virtually all audio processing applications as well as remote sensor/ transmitter designs requiring both low power and high speed. The suitability of the HA-5151/52/54 series for remote and low power operation is further enhanced by the wide range of supply voltages ($\pm 1.5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$) as well as single supply operation (3 V to 30 V). These parts are also tested and guaranteed at both ± 15 and single ended +5 V supplies.
These amplifiers are available in singles (HA-5151, Can or Mini-DIP), duals (HA-5152, Can or Mini-DIP) or quads (HA-5154, 14 pin DIP), as well as over both the commercial $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+75^{\circ} \mathrm{C}\right)$ and military $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$ temperature ranges. These amplifiers also carry industry standard pinouts which allow the HA-5151/52/54's to be interchangeable with most other operational amplifiers. For military grade product refer to the HA-5151, 5152, 5154/883 data sheets.

Pinouts

HA3-5151 (PLASTIC MINI-DIP) HA7'-5151 (CERAMIC DIP)

HA2-5151 (TO-99 METAL CAN)

TOP VIEWS
HA3-5152 (PLASTIC MINI-DIP) HA7-5152 (CERAMIC DIP)

HA2-5152 (TO-99 METAL CAN)

Absolute Maximum Ratings (Note 1)
 Voltage Between V+ and V-Terminals . 35V
 Differential Input Voltage. $\pm 7 \mathrm{~F}$
 Output Current . S/C Protected
 Internal Power Dissipation . 500 mW

Electrical Specifications $R_{S}=100 \Omega, C_{L} \leq 10 p F$ Unless Otherwise Specified.

PARAMETER	TEMP	$\mathrm{V}+=+5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}$			$\mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}$			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
INPUT CHARACTERISTICS								
Offset Voltage Average Offset Voltage Drift Bias Current Offset Current Common Mode Range Differential Input Resistance Input Noise Voltage ($f=1 \mathrm{kHz}$) Input Noise Current ($f=1 \mathrm{kHz}$)	$\begin{aligned} & +25^{\circ} \mathrm{C} \\ & \text { Full } \\ & \text { Full } \\ & +25^{\circ} \mathrm{C} \\ & \text { Full } \\ & +25^{\circ} \mathrm{C} \\ & \text { Full } \\ & \text { Full } \\ & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \end{aligned}$	- - - - - - - 0 to 3 - -	$\begin{gathered} 0.5 \\ - \\ 3 \\ 100 \\ - \\ 5 \\ - \\ - \\ 1.5 \\ 14.8 \\ 0.25 \end{gathered}$	3 4 - 250 400 50 80 - - -	- - - - - - - ± 10 - -	0.5 - 3 100 - 5 - - 1.5 14.8 0.25	3 4 - 250 400 50 80 - - -	$\begin{gathered} m V \\ m V \\ \mu V /{ }^{\circ} \mathrm{C} \\ n A \\ n A \\ n A \\ n A \\ V \\ M \Omega \\ n V / \sqrt{H z} \\ p A / \sqrt{H z} \end{gathered}$
TRANSFER CHARACTERISTICS								
Large Signal Voltage Gain (Notes 2, 4) Common Mode Rejection Ratio (Note 7) Bandwidth (Notes 2,3)	$\begin{aligned} & +25^{\circ} \mathrm{C} \\ & \text { Full } \\ & \text { Full } \\ & +25^{\circ} \mathrm{C} \end{aligned}$	$50 k$ $25 k$ 80	$\begin{gathered} 100 \mathrm{k} \\ 50 \mathrm{k} \\ 105 \\ 1.3 \end{gathered}$	-	$\begin{gathered} 50 k \\ 25 k \\ 80 \end{gathered}$	$\begin{gathered} 100 \mathrm{k} \\ 50 \mathrm{k} \\ 105 \\ 1.3 \end{gathered}$	-	VN V/N dB MHz
OUTPUT CHARACTERISTICS								
Output Voltage Swing (Notes 2, 10) Full Power Bandwidth (Notes 2, 4, 8)	$\begin{aligned} & +25^{\circ} \mathrm{C} \\ & \text { Full } \\ & +25^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} 1 \text { to } 3.2 \\ 1.2 \text { to } 2.9 \end{gathered}$	$\begin{gathered} 0.7 \text { to } 3.5 \\ 0.9 \text { to } 3.2 \\ 700 \end{gathered}$	-	$\begin{aligned} & \pm 10 \\ & \pm 10 \end{aligned}$	$\begin{gathered} \pm 13 \\ \pm 13 \\ 95 \end{gathered}$	-	$\begin{gathered} \text { V } \\ \text { V } \\ \text { kHz } \end{gathered}$
TRANSIENT RESPONSE (Notes 2, 3)								
Rise Time Slew Rate (Note 6) Settling Time (Note 5)	$\begin{aligned} & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \end{aligned}$	2	$\begin{gathered} 300 \\ 4.5 \\ 5 \end{gathered}$	-	$\overline{4}$	300 6 5	-	ns $\mathrm{V} / \mu \mathrm{s}$ $\mu \mathrm{s}$
POWER SUPPLY CHARACTERISTICS								
Supply Current Power Supply Rejection Ratio (Note 9)	$\begin{gathered} +25^{\circ} \mathrm{C} \\ \text { Full } \\ \text { Full } \end{gathered}$	- - 80	$\begin{gathered} 200 \\ - \\ 105 \end{gathered}$	$\begin{aligned} & 250 \\ & 275 \end{aligned}$	- - 80	200 - 105	250 275	$\mu \mathrm{A} / \mathrm{Amp}$ $\mu \mathrm{A} / \mathrm{Amp}$ dB

NOTES:

1. Absolute maximum ratings are limiting values, applied individually beyond which the serviceability of the circuit may be impaired. Functional operability under any of these conditions is not necessarily implied.
2. $R_{L}=10 k \Omega$
3. $\mathrm{C}_{\mathrm{L}}=100 \mathrm{p} \mathrm{F}$
4. $\mathrm{V}_{\mathrm{O}}=1.4$ to 2.5 V for $\mathrm{V}_{\mathrm{CC}}=+5,0 \mathrm{~V}_{;} \mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}$ for $\mathrm{V}_{\mathrm{CC}}= \pm 15 \mathrm{~V}$.
5. Settling Time is specified to 0.1% of final value for a 3 V output step and $A_{V}=-1$. For $V_{C C}=+5 \mathrm{~V}$, OV ; output step $=10 \mathrm{~V}$ for $\mathrm{V}_{C C}= \pm 15 \mathrm{~V}$.
6. Maximum input slew rate $=25 \mathrm{~V} / \mu \mathrm{s}$.
7. $V_{C M}=0$ to 3 V for $\mathrm{V}_{\mathrm{CC}}=+5$, $\mathrm{OV} ; \mathrm{V}_{\mathrm{CM}}= \pm 10 \mathrm{~V}$ for $\mathrm{V}_{\mathrm{CC}}= \pm 15 \mathrm{~V}$
8. Full Power Bandwidth is guaranteed by equation:

Full Power Bandwidth $=\frac{\text { Slew Rate }}{2 \pi V_{\text {Peak }}}$
9. $\Delta \mathrm{VS}=+10 \mathrm{~V}$ for $\mathrm{V}_{\mathrm{CC}}=+5,0 \mathrm{~V} ; \Delta \mathrm{VS}= \pm 5 \mathrm{~V}$ for $\mathrm{V}_{\mathrm{CC}}= \pm 15 \mathrm{~V}$.
10. For $V_{C C}=+5$, $O V$ terminate R_{L} at +2.5 V .

Test Circuits

SLEW RATE AND TRANSIENT RESPONSE TEST CIRCUIT

$+V_{\text {SUPPLY }}=+15 \mathrm{~V},-V_{\text {SUPPLY }}=-15 \mathrm{~V}$

Vertical Scale: (Volts: Input $=1$ V/Div.)
(Volts: Output $=1 \mathrm{~V} /$ Div.)
Horizontal Scale: (Time: $5 \mu \mathrm{~s} /$ Div.)

$+\mathrm{V}_{\text {SUPPLY }}=+5 \mathrm{~V},-\mathrm{V}_{\text {SUPPLY }}=0 \mathrm{~V}$

SMALL SIGNAL RESPONSE
Vertical Scale: (Volts: Input $=100 \mathrm{mV} /$ Div.) (Volts: Output $=50 \mathrm{mV} /$ Div.)
Horizontal Scale: (Time: $5 \mu \mathrm{~s} /$ Div.)

Vertical Scale: (Volts: Input $=100 \mathrm{mV} /$ Div.) (Volts: Output $=50 \mathrm{mV} /$ Div.) Horizontal Scale: (Time: $5 \mu \mathrm{~s} /$ Div.)

$+V_{\text {SUPPLY }}=+5 \mathrm{~V},-V_{\text {SUPPLY }}=0 V$

Typical Characteristics

SLEW RATE vs. TEMPERATURE
Normalized to Unity at $+25^{\circ} \mathrm{C}, 6$ Representative Units

PEAK-TO-PEAK NOISE 0.1 Hz TO 10 Hz
$T_{A}=+25^{\circ} \mathrm{C}, A V=1000 \mathrm{~V} / \mathrm{N}$

Horizontal Scale: ($1 \mathrm{sec} /$ div)
Vertical Scale: ($100 \mu \mathrm{~s} / \mathrm{div}$)
$430 n V_{p-p}$ RTI

FREQUENCY RESPONSE vs. SUPPLY VOLTAGE
$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$

NOISE SPECTRAL DENSITY

PEAK-TO-PEAK 0.1 Hz TO 1 MHz
$T_{A}=+25^{\circ} \mathrm{C}, A_{V}=1000 \mathrm{~V} \mathrm{~N}$

Horizontal Scale: (1sec/div)
Vertical Scale: ($1 \mathrm{mV} / \mathrm{div}$)
$3.70 \mu \mathrm{~V}_{\mathrm{p}-\mathrm{p}} \mathrm{RTI}$

FREQUENCY RESPONSE AT VARIOUS GAINS
$T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$

Typical Characteristics (Continued)

OUTPUT VOLTAGE SWING vs. SUPPLY VOLTAGE $\left(+25^{\circ} \mathrm{C}\right)$

CMMR, PSRR vs. SUPPLY VOLTAGE
$\left(+25^{\circ} \mathrm{C}\right)$

CHANNEL SEPARATION vs. FREQUENCY
$V_{C C}= \pm 15 \mathrm{~V}, T_{A}=+25^{\circ} \mathrm{C}$

OUTPUT CURRENT vs. SUPPLY VOLTAGE $\left(+25^{\circ} \mathrm{C}\right)$

SUPPLY CURRENT vs. SUPPLY VOLTAGE Per Amplifier ($+25^{\circ} \mathrm{C}$)

CMRR vs. FREQUENCY
$T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}= \pm 15 \mathrm{~V}$

Applications Information

Independent Amplifiers

The HA-5152 dual op amp and the HA-5154 quad op amp consist of completely separate amplifier circuits. Unlike most duals and quads, these devices do not share a common bias network. Thus, one amplifier passing large, or noisy signals will have minimal effect on another channel carrying small, sensitive signals.

Loading

Although the standard load is $10 \mathrm{k} \Omega$, the HA-515X is capable of driving resistive loads down to $2 k \Omega$ and capacitive loads beyond 300 pF .

Input Stage

This amplifier uses a current amplifying input stage (see Application Note 544) and is not recommended for use in applications which involve large differential input voltages such as open-loop comparators. Most op amp applications
use feedback and keep the input terminals at approximately the same voltage. The HA-515X will perform well in these circuits as long as the input terminals see less than 7 volts differential.

Typical Applications

The low power consumption of the HA-5154 makes it ideal for applications like battery-powered instrumentation where the bridge amplifier circuit below would be used. Choose a low-current zener voltage reference such as LM285Z-2.5 and select R_{R} accordingly. This circuit was evaluated using the resistor values shown and a laboratory voltage source for the 2.5 V reference. With unmatched, off-the-shelf, 1% resistors, a gain accuracy of 1% to 2% can be expected. Temperature testing indicated a voltage offset tempco of less than $100 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ referred to output.

$$
V_{\text {OUT }}=\left(V_{P}-V_{N}\right)\left[2\left(1+\frac{R}{R_{G}}\right)\right]+V_{R}
$$

Schematic

Die Characteristics

Transistor Count
HA-5151.. . . 34
HA-5142.. . . . 68
HA-5144... 136
Substrate Potential* . V-
Process . Bipolar-DI
Thermal Constants $\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right) \quad \theta_{\mathrm{ja}} \quad \theta_{\mathrm{jc}}$
HA1-5154 (-2, -5, -7) 101
HA1-5154 (/883) 75
HA2-5151 (-2, -5, -7) 20656
HA2-5151 (/883) 16850
HA2-5152 (-2, -5, -7) 184
HA2-5152 (/883) 143
НАЗ-5151 (-5) 90
НАЗ-5152 (-5) $80 \quad 20$
НАЗ-5154 (-5) 75
HA7-5151 (-2, -5, -7) 210117
HA7-5151 (/833) 90
HA7-5152 (-2, -5, -7) $177 \quad 92$
HA7-5152 (/883)
80
20
*The substrate may be left floating (Insulating Die Mount) or it may be mounted on a conductor at V - potential.
NOTE: Consult Harris for LCC/PLCC information.

Features

- Wide Gain Bandwidth ($\mathrm{A} V \geq 10$) 100MHz
- High Slew Rate . 120V/ $\mathrm{\mu}$ s
- Settling Time . 280ns
- Power Bandwidth 1MHz
- Offset Voltage... . . . 1.0mV
- Bias Current .. 20pA

Description

The HA-5160 is a wideband, uncompensated, operational amplifier with FET/Bipolar technologies and Dielectric Isolation. This monolithic amplifier features superior high frequency capabilities further enhanced by precision laser trimming of the input stage to provide excellent input characteristics. This device has excellent phase margin at a closed loop gain of 10 without external compensation.

The HA-5160/5162 offers a number of important advantages over similiar FET input op amps from other manufacturers. In addition to superior bandwidth and settling characteristics, the Harris devices have nearly constant slew rate, bandwidth, and settling characteristics over the operating temperature range. This provides the user predictable performance in applications where settling time, full power bandwidth, closed loop bandwidth, or phase shift is critical. Note also that Harris specified all parameters at ambient (rather than junction) temperature to

Applications

- Video and RF Amplifiers
- Data Acquisition
- Pulse Amplifiers
- Precision Signal Generation
provide the designer meaningful data to predict actual operating performance.
Complementing the HA-5160/5162's predictable and excellent dynamic characteristics are very low input offset voltage, very low input bias current, and a very high input impedance. This ideal combination of features make these amplifiers most suitable for precision, high speed, data acquisition system designs and for a wide variety of signal conditioning applications. The HA-5160 provides excellent performance for applications which require both precision and high speed performance. The HA-5162 meets or exceeds the performance specifications of National's hybrid op amp, the LHOO62.
The HA2-5160-2 denotes a temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ and the HA2-5160/62-5 denotes a $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ range. Military version (/883) data sheets are available upon request.

Pinout

Case Connected to V-

Schematic

Absolute Maximum Ratings

Voltage Between V+ and V
Differential Input Voltage $\pm 40 \mathrm{~V}$ Peak Output Current Full Short Circuit Protection Internal Power Dissipation (Note 2). 675 mW

Operating Temperature Ranges:

HA-5160-2 $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+125^{\circ} \mathrm{C}$ HA-5160-5 $\ldots \ldots .0^{\circ} \mathrm{C} \leq T_{A} \leq+75^{\circ} \mathrm{C}$ HA-5162-5 \qquad $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+75^{\circ} \mathrm{C}$ Storage Temperature Range $-65^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+150^{\circ} \mathrm{C}$
Maximum Junction Temperature (Note 2)
. $\ldots+175^{\circ} \mathrm{C}$

Electrical Specifications $\mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}$, Unless Otherwise Specified.

PARAMETER	TEMP	$\begin{gathered} \text { HA-5160-2 } \\ -55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \end{gathered}$			$\begin{gathered} H A-5160-5 \\ 0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \end{gathered}$			$\begin{gathered} \text { HA-5162-5 } \\ 0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \end{gathered}$			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
INPUT CHARACTERISTICS											
Offset Voltage	$\begin{gathered} +25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$	-	1 3	3 5	-	1 3	3 5	-	3 5	15 20	$\begin{aligned} & m V \\ & m V \end{aligned}$
Offset Voltage Average Drift	Full	-	10	-	-	20	-	-	20	35	$\mu \mathrm{V} / \circ^{\circ} \mathrm{C}$
Bias Current	$+25^{\circ} \mathrm{C}$	-	20	50	-	20	50	-	20	65	PA
	Full	-	5	10	-	5	10	-	5	10	nA
Offset Current	$+25^{\circ} \mathrm{C}$	-	2	10	-	2	10	-	2	10	pA
	Full	-	2	5	-	2	5	-	2	5	$n A$
Input Capacitance	$+25^{\circ} \mathrm{C}$	-	5	-	-	5	-	-	5	-	pF
Input Resistance	$+25^{\circ} \mathrm{C}$	-	10^{12}	-	-	10^{12}	-	-	10^{12}	-	Ω
Common Mode Range	Full	± 10	± 11	-	± 10	± 11	-	± 10	± 11	-	V
TRANSFER CHARACTERISTICS											
Large Signal Voltage Gain (Note 3)	$\begin{gathered} +25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$	$\begin{aligned} & 75 \mathrm{~K} \\ & 60 \mathrm{~K} \end{aligned}$	$\begin{aligned} & 150 \mathrm{~K} \\ & 100 \mathrm{~K} \end{aligned}$	-	$\begin{aligned} & 75 \mathrm{~K} \\ & 60 \mathrm{~K} \end{aligned}$	$\begin{aligned} & 150 \mathrm{~K} \\ & 100 \mathrm{~K} \end{aligned}$	-	25K	$\begin{aligned} & 100 \mathrm{~K} \\ & 75 \mathrm{~K} \end{aligned}$	-	V/N V/V
Common Mode Rejection Ratio (Note 4)	Full	74	80	-	74	80	-	70	80	-	dB
Minimum Stable Gain	$+25^{\circ} \mathrm{C}$	10	-	-	10	-	-	10	-	-	V / V
Gain Bandwidth Product $(A V \geq 10)$	Full	-	100	-	-	100	-	-	100	-	MHz
OUTPUT CHARACTERISTICS											
Output Voltage Swing	$+25^{\circ} \mathrm{C}$	± 10	± 11	-	± 10	± 11	-	± 10	± 11	-	V
(Note 5)	Full	± 10	± 11	-	± 10	± 11	-	± 10	± 11	-	V
Output Current (Note 6)	$+25^{\circ} \mathrm{C}$	± 10	± 20	-	± 10	± 20	-	± 10	± 20	-	mA
Output Short Circuit Current	$+25^{\circ} \mathrm{C}$	-	± 35	-	-	± 35	-	-	± 35	-	mA
Full Power Bandwidth (Note 3, 7)	$+25^{\circ} \mathrm{C}$	1.6	1.9	-	1.6	1.9	-	0.8	1.1	-	MHz
Output Resistance (Note 8)	$+25^{\circ} \mathrm{C}$	-	50	-	-	50	-	-	50	-	Ω
TRANSIENT RESPONSE (Note 9)											
Rise Time	$+25^{\circ} \mathrm{C}$	-	20	-	-	20	-	-	20	-	ns
Slew Rate	$+25^{\circ} \mathrm{C}$	100	120	-	100	120	-	50	70	-	$\mathrm{V} / \mathrm{\mu s}$
Settling Time (Note 10)	$+25^{\circ} \mathrm{C}$	-	280	-	-	280	-	-	400	-	ns
POWER SUPPLY CHARACTERISTICS											
Supply Current	Full	-	8	10	-	8	10	-	8	12	mA
Power Supply Rejection Ratio (Note 11)	$+25^{\circ} \mathrm{C}$	74	86	-	74	86	-	70	86	-	dB

NOTES:

1. Absolute maximum ratings are jimiting values, applied individually, beyond which the serviceability of the circuit may be impaired. Functional operability under any of these conditions is not necessarily implied
2. Derate at $6.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for operation at ambient temperatures above $+75^{\circ} \mathrm{C}$.
3. $V_{\text {OUT }}= \pm 10 \mathrm{~V}, R_{\mathrm{L}}=2 \mathrm{~K}$
4. $V_{C M}= \pm 10 \mathrm{VDC}$
5. $R_{L}=2 K$
6. $\mathrm{V}_{\mathrm{OUT}}= \pm 10 \mathrm{~V}$
7. Full Power Bandwidth guaranteed, based on slew rate measurement using FPWB $=\frac{\text { Slew Rate }}{2 \pi V_{\text {peak }}}$
8. Output resistance measured under open loop conditions.
9. Refer to Test circuits section of the data sheet, where $A_{V}=+10$
10. Settling Time is measured to 0.2% of final value for a 10 volt output step and $A_{V}=10$.
11. $V_{S U P P L Y}= \pm 10 \mathrm{~V} D \mathrm{C}$ to $\pm 20 \mathrm{~V} D C$

Test Circuits

LARGE AND SMALL SIGNAL RESPONSE CIRCUIT

LARGE SIGNAL RESPONSE
Vertical Scale: $A=0.5 \mathrm{~V} /$ Div., $B=5 \mathrm{~V} /$ Div.
Horizontal Scale: Time $=500 \mathrm{~ns} /$ Div.

OUTPUT B

SMALL SIGNAL RESPONSE
Vertical Scale: $A=10 \mathrm{mV} /$ Div., $B=100 \mathrm{mV} /$ Div. Horizontal Scale: Time $=100 \mathrm{~ns} / \mathrm{Div}$

SETTLING TIME CIRCUIT

OUTPUT VOLTAGE SWING vs. FREQUENCY

OPEN LOOP FREQUENCY RESPONSE

Typical Performance Curves (Continued)

INPUT NOISE VOLTAGE AND NOISE CURRENT vs. FREQUENCY

OUTPUT VOLTAGE SWING

 vs. LOAD RESISTANCE

NORMALIZED AC PARAMETERS vs. TEMPERATURE

SETTLING TIME FOR VARIOUS OUTPUT STEP VOLTAGES

Typical Performance Curves (Continued)

COMMON MODE REJECTION
RATIO vs. FREQUENCY

POWER SUPPLY REJECTION RATIO vs. FREQUENCY

POWER SUPPLY CURRENT
vs. TEMPERATURE

Die Characteristics

Transistor Count . 82
Die Dimensions . $131 \times 72 \times 19$ mils $(3330 \times 1830 \times 483 \mu \mathrm{~m})$
Substrate Potential (Powered Up) None
Process . Bipolar/JFET DI

Thermal Constants ($\left.{ }^{\circ} \mathrm{C} / \mathrm{W}\right)$	θ_{ja}	θ_{jc}
HA2-5160 $(-8, / 883)$ (Gold Eutectic Die Attach)	103	31
HA2-5160/5162 (-2, $-5,-7)$ (Glass Die Attach)	146	38

Applying the HA-5160/5162

1. POWER SUPPLY DECOUPLING: Although not absolutely necessary, it is recommended that all power supply lines be decoupled with $0.01 \mu \mathrm{~F}$ ceramic capacitors to ground. Decoupling capacitors should be located as near to the amplifier terminals as possible.
2. STABILITY: The phase margin of the HA-5160/5162 will be improved by connecting a small capacitor ($>10 \mathrm{pF}$) between the output and the inverting input of
the device This small capacitor compensated for the input capacitance of the FET.
3. CAPACITIVE LOADS: When driving large capacitive loads ($>100 \mathrm{pF}$), it is suggested that a small resistor ($\approx 100 \Omega$) be connected in series with the output of the device and inside the feedback loop.
4. POWER SUPPLY MINIMUM: The absolute supply minimum is $\pm 6 \mathrm{~V}$ and the safe level is $\pm 7 \mathrm{~V}$.

Applications

Suggested Compensation For Unity Gain Stability*

Vertical Scale: (Volts: 2V/Div.) Horizontal Scale: (Time: 500ns/Div.)

NONINVERTING UNITY GAIN CIRCUIT

NONINVERTING UNITY GAIN PULSE RESPONSE

Vertical Scale: (Volts: 2V/Div.) Horizontal Scale: (Time: 500ns/Div.)

* Values Were Determined Experimentally

For Optimum Speed and Settling Time.

Features

- Low Offset Voltage \qquad $100 \mu \mathrm{~V}$
- Low Offset Voltage Drift $2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
- Low Noise $10 \mathrm{nV} / \sqrt{\mathrm{Hz}}$
- High Open Loop Gain 600K V/V
- Wide Bandwidth \qquad . 8MHz
- Unity Gain Stable

Description

The Harris HA-5170 is a precision, JFET input, operational amplifier which features low noise, low offset voltage and low offset voltage drift. Constructed using FET/Bipolar technology, the Harris Dielectric Isolation (DI) process, and laser trimming this amplifier offers low input bias and offset currents. This operational amplifier design also completely eliminates the troublesome errors due to warm-up drift.
Complementing these excellent input characteristics are dynamic performance characteristics never before available from precision operational amplifiers. An $8 \mathrm{~V} / \mu \mathrm{s}$ slew rate and 8 MHz bandwidth allow the designer to extend precision instrumentation applications in both speed and

Applications

- High Gain Instrumentation Amplifiers
- Precision Data Acquisition
- Precision Integrators
- Precision Threshold Detectors
- For Further Design Ideas, Refer to App. Note 540.
bandwidth. These characteristics make the HA-5170 well suited for precision integrator amplifier designs.

The superior input characteristics also make the HA-5170 ideally suited for transducer signal amplifiers, precision voltage followers and precision data acquisition systems. For application assistance, please refer to Application Note 540 addressing specifically this device.
The HA-5170 is available in Metal Can (TO-99) and Ceramic Mini-DIP packages. HA-5170-2 denotes a-550 C to $+125^{\circ} \mathrm{C}$ temperature range and HA-5170-5 denotes the $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ range. Military version (/883) product and data sheets available upon request.

CAUTION: These devices are sensitive to electrostatic discharge. Proper I.C. handling procedures should be followed.
Copyright © Harris Corporation 1990

Absolute Maximum Ratings (Note)
$T_{A}=+25^{\circ} \mathrm{C}$, Unless Otherwise Specitied.
Voltage Between V+ and V-Terminals . 44.0 V
Differential Input Voltage. $\pm 30.0 \mathrm{~V}$
Output Short Circuit Duration
Indefinite
Power Dissipation (Note 2) . 675 mW
Maximum Junction Temperature. $+175^{\circ} \mathrm{C}$

Operating Temperature Ranges

HA-5170-2
$55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$

Storage Temperature Range $-65^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+150^{\circ} \mathrm{C}$

Electrical Specifications $\mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}$, Unless Otherwise Specified.

PARAMETER	TEMP	$\begin{gathered} \text { HA-5170-2 } \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$			$\begin{gathered} \text { HA-5170-5 } \\ 0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \end{gathered}$			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
INPUT CHARACTERISTICS								
Offset Voltage	$+25^{\circ} \mathrm{C}$	-	0.1	0.3	-	0.1	0.3	mV
	Full	-	-	0.5	-	-	0.5	mV
Average Offset Voltage Drift (Note 3)	Full	-	2	5	-	2	5	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Bias Current	$+25^{\circ} \mathrm{C}$	-	20	100	-	20	100	pA
	Full	-	3	30	-	0.1	2	nA
Bias Current Average Drift	Fuill	-	3	-	-	3	-	$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
Offset Current	$+25^{\circ} \mathrm{C}$	-	3	30	-	3	60	pA
	Full	-	-	5	-	-	0.1	nA
Offset Current Average Driff (Note 3)	Full	-	0.3	1	-	0.3	1	$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
Common Mode Range	Full	± 10	+15.1	-	± 10	+15.1	-	V
			-12			-12		V
Differential Input Capacitance	$+25^{\circ} \mathrm{C}$	-	80	100	-	80	100	pF
Differential Input Resistance (Note 3)	$+25^{\circ} \mathrm{C}$	1×10^{10}	6×10^{10}	-	1×10^{10}	6×10^{10}	-	Ω
Input Capacitance (Single Ended)	$+25^{\circ} \mathrm{C}$	-	12	-	-	12	-	pF
Input Noise Voltage	$+25^{\circ} \mathrm{C}$	-	0.5	5	-	0.5	5	$\mu \mathrm{V}_{\mathrm{p}-\mathrm{p}}$
Input Noise Voltage Density (Note 3)								
$\mathrm{f}_{0}=10 \mathrm{~Hz}$	$+25^{\circ} \mathrm{C}$	-	20	150	-	20	150	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
$\mathrm{f}_{0}=100 \mathrm{~Hz}$	$+25^{\circ} \mathrm{C}$	-	12	50	-	12	50	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
$\mathrm{f}_{\mathrm{O}}=1000 \mathrm{~Hz}$	$+25^{\circ} \mathrm{C}$	-	10	25	-	10	25	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
$\mathrm{f}_{\mathrm{O}}=10 \mathrm{~Hz}$	$+25^{\circ} \mathrm{C}$	-	0.05	-	-	0.05	-	$\mathrm{pA} \sqrt{\mathrm{Hz}}$
$\begin{aligned} & f_{0}=100 \mathrm{~Hz} \\ & f_{0}=1000 \mathrm{~Hz} \end{aligned}$	$+25^{\circ} \mathrm{C}$ $+25^{\circ} \mathrm{C}$	-	0.01 0.01	0.1	-	0.01 0.01	$-$	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
TRANSFER CHARACTERISTICS								
Large Signal Voltage Gain (Notes 4)	$+25^{\circ} \mathrm{C}$	300 K	600K	-	300 K	600K	-	V/N
	Full	200K	-	-	250K	-	-	VN
Common Mode Rejection Ratio (Note 5) Minimum Stable Gain	Full	85	100	-	90	100	-	dB
Minimum Stable Gain	$+25^{\circ} \mathrm{C}$	1	-	-	1	-	-	VN
Closed Loop Bandwidth (AVCL $=+1$)	$+25^{\circ} \mathrm{C}$	4	8	-	4	8	-	MHz
OUTPUT CHARACTERISTICS								
Output Voltage Swing (Note 6)	$+25^{\circ} \mathrm{C}$	± 10	± 12	-	± 10	± 12	-	V
Full Power Bandwidth (Note 7)	$+25^{\circ} \mathrm{C}$	80	120	-	80	120	-	kHz
Output Current (Note 8)	$+25^{\circ} \mathrm{C}$	± 10	± 15	\bigcirc	± 10	± 15	-	mA
Output Resistance (Note 3 \& 9)	$+25^{\circ} \mathrm{C}$	-	45	100	-	45	100	Ω
TRANSIENT RESPONSE								
Rise Time Slew Rate Settling Time (Notes 3 \& 10)	$+25^{\circ} \mathrm{C}$	-	45	100	$\bar{\square}$	45	100	ns
	$+25^{\circ} \mathrm{C}$	5	8	-	5	8	-	$\mathrm{V} / \mathrm{\mu s}$
	$+25^{\circ} \mathrm{C}$	-	1	5	-	1	5	$\mu \mathrm{s}$
POWER SUPPLY CHARACTERISTICS								
Supply Current Power Supply Rejection Ratio (Note 11)	Full	-	1.9	2.5	-	1.9	2.5	mA
	Full	85	105	-	90	105	-	dB

NOTES:

1. Absolute maximum ratings are limiting values, applied individually beyond which the serviceability of the circuit may be impaired. Functional operability under any of these conditions is not necessarily implied.
2. Derate at $6.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for operation at ambient temperatures above $+75^{\circ} \mathrm{C}$.
3. Parameter is not 100% tested. 90% of all units meet or exceed these specifications.
4. $V_{\mathrm{OUT}}= \pm 10, R_{\mathrm{L}}=2 \mathrm{k} \Omega$.
5. $\Delta V_{C M}= \pm 10 \mathrm{~V}$ D.C.
6. $\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$.
7. $R_{k}=2 k \Omega$; Full power bandwidth guaranteed based on slew rate measurement using FPBW $=\frac{\text { SLEW RATE }}{2 \pi V_{\text {PEAK }}}$
8. $V_{\text {OUT }}= \pm 10 \mathrm{~V}$. ISC turns on at $\cong 23 \mathrm{~mA}$
9. Output resistance measured under open loop conditions ($f=100 \mathrm{~Hz}$).
10. Settling time is measured to 0.1% of final value for a 10 V output step and $A_{V}=-1$.
11. $\Delta V_{\text {SUPPLY }}= \pm 10 \mathrm{~V}$ D.C. to $\pm 20 \mathrm{~V}$ D.C.

Test Circuits

Tested Offset Adjustment Range is $\left|\mathrm{V}_{\mathrm{OS}}+1 \mathrm{mV}\right|$ minimum referred to output. Typical range is $\pm 5 \mathrm{mV}$ with $\mathrm{R}_{\mathrm{T}}=1 \mathrm{k} \Omega$ and $\pm 15 \mathrm{mV}$ with $\mathrm{R}_{\mathrm{T}}=100 \mathrm{k} \Omega$.

LARGE SIGNAL RESPONSE

Vertical Scale: 5V/Div.
Horizontal Scale: 500ns/Div.

LOW FREQUENCY NOISE TEST CIRCUIT

SMALL SIGNAL RESPONSE
Vertical Scale: $10 \mathrm{mV} / D i v$. Horizontal Scale: 100ns/Div.

HA-5170 LOW FREQUENCY NOISE (0.1 Hz TO 10 Hz) Vertical Scale: 200nV/Div. (Noise Referred to Input) $5 \mathrm{mV} /$ Div. at Output, $\mathrm{AVCL}^{2}=25,000$ Horizontal Scale: $1 \mathrm{Sec} . / \mathrm{Div}$

Typical Performance Curves
INPUT VOLTAGE NOISE vs. FREQUENCY

SETTLING TIME FOR VARIOUS OUTPUT STEP VOLTAGES

POWER SUPPLY CURRENT vs. SUPPLY VOLTAGE AND TEMPERATURE

POWER SUPPLY REJECTION RATIO vs. FREQUENCY

OFFSET VOLTAGE vs. TEMPERATURE DRIFT OF REPRESENTATIVE UNITS

BIAS CURRENT vs. TEMPERATURE

COMMON MODE REJECTION RATIO vs. FREQUENCY

NORMALIZED AC PARAMETERS vs. SUPPLY VOLTAGE

NORMALIZED AC PARAMETERS vs. TEMPERATURE

OPEN LOOP FREQUENCY RESPONSE

OUTPUT VOLTAGE SWING vs. FREQUENCY AND SUPPLY VOLTAGE

MAXIMUM OUTPUT VOLTAGE SWING vs. LOAD RESISTANCE

CLOSED LOOP FREQUENCY RESPONSE FOR Various closed loop gains

Ultra-Low Offset Voltage Operational Amplifier

Features	
- Low Offset Voltage 10, 10
- Low Offset Voltage Drift .	. $0.1{ }^{1} \mathrm{~V} /{ }^{\circ} \mathrm{C}$
- High Voltage Gain	.150dB
- High CMRR.	. 140 dB
- High PSRR	. 135dB
- Low Noise	$3.8 \mathrm{nV} / \sqrt{\mathrm{Hz}}$
- Low Power Consumption	51mW Max.

Description

The HA-5177 is a monolithic, all bipolar, precision operational amplifier, utilizing Harris dielectric isolation and advance processing techniques. This design features a combination of precision input characteristics, wide bandwidth $(2 \mathrm{MHz})$ and high speed $(0.8 \mathrm{~V} / \mu \mathrm{s})$.
The HA-5177 uses advanced matching techniques and laser trimming to produce low offset voltage ($10 \mu \mathrm{~V}$) and low offset voltage drift ($0.1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$). This design also features low voltage noise $(3.8 \mathrm{nV} / \sqrt{\mathrm{Hz}})$, low current noise $(0.32 \mathrm{pA} /$ $\sqrt{\mathrm{Hz}}$), nanoamp input currents, and 120 dB minimum gain.

Applications

- High Gain Instrumentation Amplifiers
- Precision Control Systems
- Precision Integrators
- High Resolution Data Converters
- Precision Threshold Detectors
- Low Level Transducer Amplifiers

Pinouts

HA2-5177 (TO-99 METAL CAN) TOP VIEW

Schematic

CAUTION: These devices are sensitive to electrostatic discharge. Proper I.C. handring procedures should be followed.
Copyright © Harris Corporation 1990

Absolute Maximum Ratings (Note 1)

Output Current . Short Circuit Protected

Operating Temperature Ranges
HA-5177A/5177-2
$55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}$ HA-5177A/5177-5 $\ldots \ldots0^{\circ}{ }^{\circ} \leq T_{A} \leq+75^{\circ} \mathrm{C}$ Storage Temperature Range $\ldots \ldots \ldots \ldots . .-65^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+150^{\circ} \mathrm{C}$ Maximum Junction Temperature. $+175^{\circ} \mathrm{C}$

Electrical Specifications $\mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}$, Unless Otherwise Specified

NOTES:

1. Absolute maximum ratings are limiting values, applied individually beyond which the serviceability of the circuit may be impaired. Functional operability under any of these conditions is not necessarily implied.
2. $\mathrm{V}_{\mathrm{OUT}}= \pm 10 \mathrm{~V}, R_{\mathrm{L}}=2 \mathrm{k} \Omega$
3. $\Delta V_{C M}= \pm 10 V$ D.C.
4. $R_{L}=2 K$
5. Full power bandwidth guaranteed based on slew rate measurement using FPBW $=\frac{\text { Slew Rate }}{2 \pi V_{\text {PEAK }}}, V_{\text {PEAK }}=10 \mathrm{~V}$.
6. $V_{\text {OUT }}= \pm 10$.
7. Refer to test circuits section of the data sheet.
8. Settling time is measured to 0.1% of final value for a 10 V output step and $A_{V}=+1$.
$\Delta V_{\text {SUPPLY }}= \pm 10 \mathrm{~V}$ D.C. to $\pm 20 \mathrm{~V}$ D.C.
9. $A_{V}=1, R_{L}=2 K, V_{O U T}= \pm 200 \mathrm{mV}$
10. $A_{V}=1, R_{L}=2 K, V_{O U T}=0$ to $\pm 3 V$

Test Circuits

SLEW RATE AND TRANSIENT RESPONSE TEST CIRCUIT

SMALL SIGNAL RESPONSE
Vertical Scale: (Volts: $100 \mathrm{mV} /$ Div.)
Horizontal Scale: (Time: $2 \mu \mathrm{~s} /$ Div.)

LARGE SIGNAL RESPONSE
Vertical Scale: (Volts: 5V/Div.)
Horizontal Scale: (Time: $5 \mu \mathrm{~s} /$ Div.)

SETTLING TIME CIRCUIT

- $A_{V}=-1$
- Feedback and summing resistors should be 0.1\% matched.
- Clipping diodes are optional HP5082-2810 recommended.

Typical Performance Curves $\mathrm{v}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

PSRR vs. FREQUENCY

CLOSED LOOP GAIN AND PHASE vs. FREQUENCY
$A_{V}=-1, R_{L}=2 K, C_{L}=50 \mathrm{pF}$

VARIOUS CLOSED LOOP GAINS vs. FREQUENCY $R_{L}=2 K, C_{L}=50 p F$

CMRR vs. FREQUENCY

CLOSED LOOP GAIN AND PHASE vs. FREQUENCY
$A V=+1, R_{L}=2 K, C_{L}=50 \mathrm{pF}$

Typical Performance Curves $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

OFFSET CURRENT vs. TEMPERATURE
Five Representative Units

OFFSET VOLTAGE vs. TEMPERATURE

OFFSET VOLTAGE WARM-UP DRIFT

BIAS CURRENT vs. TEMPERATURE

INPUT NOISE vs. FREQUENCY

OFFSET VOLTAGE vs. SUPPLY VOLTAGE
Six Representative Units

Typical Performance Curves $\mathrm{v}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$
SLEW RATE vs. SUPPLY VOLTAGE
$A_{V}=-1, R_{L}=2 K, C_{L}=50 p F$

SUPPLY VOLTAGE $(\pm \mathrm{V}$

SUPPLY CURRENT vs. SUPPLY VOLTAGE

OUTPUT VOLTAGE vs. LOAD RESISTANCE

$$
A V=-1, V I N=100 H z, C_{L}=50 p F
$$

BIAS CURRENT vs. DIFFERENTIAL INPUT VOLTAGE

OUTPUT VOLTAGE vs. FREQUENCY

$$
A V=-1, R_{L}=2 K, C_{L}=50 p F
$$

OVERSHOOT vs. LOAD CAPACITANCE
$V_{S}= \pm 15 \mathrm{~V}, A_{V}=+1, V_{\text {OUT }}= \pm 200 \mathrm{mV}$

Typical Performance Curves $\mathrm{v}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$
SMALL SIGNAL BANDWIDTH AND PHASE MARGIN vs.

LOAD CAPACITANCE
$A_{V}=+1$

LOAD CAPACITANCE (pF)

OPEN LOOP GAIN vs. TEMPERATURE

PEAK-TO-PEAK NOISE 0.1 Hz TO 10 Hz
$A_{V}=25,000,0.22 \mu V_{p-p}$ RTI

OPEN LOOP GAIN vs. SUPPLY VOLTAGE

OUTPUT SHORT CIRCUIT CURRENT vs. TIME

Applications Information

Operation Below $\pm 5 \mathrm{~V}$ Supply

The HA-5177 performs well down to $\pm 5 \mathrm{~V}$ supplies.
At $\pm 5 \mathrm{~V}$ supplies there is a slight degradation of slew rate and open loop gain. There is very little change in bias currents and offset voltage.

Offset Adjustment

The following is the recommended V_{IO} adjust configuration:

Settling $R P=20 \mathrm{~K}$ will give an adjustment range of $\pm 2.6 \mathrm{mV}$.

Input Protection

The HA-5177 input stage has built in back-to-back protection diodes with series current limiting resistors.

The Bias currents will increase when a differential voltage of 0.7 volts is exceeded.

The internal current limiting resistors sufficiently limit current therefore, no external resistors are required.

Refer to the "Bias Current vs. Differential Input Voltage" curve in the Typical Performance Curves section.

Die Characteristics

Transistor Count
Die Dimensions $102 \times 71.7 \times 19$ mils $(2590 \times 1820 \times 485 \mu \mathrm{~m})$
Substrate Potential* V-

Process . High Frequency Bipolar DI
Passivation Silox

Thermal Constants (${ }^{\circ}$ C/W)	$\theta_{\text {ja }}$	$\theta_{\text {jc }}$
Ceramic Mini-DIP, HA7-5177	154	74
Metal Can TO-99, HA2-5177	124	38

* The substrate may be left floating (insulating Die Mount) or it may be mounted on a conductor at V-potential.

Low Bias Current, Low Power JFET Input Operational Amplifier

Features

- Ultra Low Bias Current . 250fA
- Low Power Supply Current 0.8mA
- Low Offset Voltage 0.5 mV Max.
- Unity Gain Bandwidth $2 \mathrm{2MHz}$
-Slew Rate . 7 V/ $/$ s

Description

The Harris HA-5180 is an ultra low input bias current, JFET input, monolithic operational amplifier which also features low power, low offset voltage and excellent AC characteristics. Employing FET/Bipolar construction coupled with dielectric isolation this operational amplifier offers the lowest input bias currents (250fA typical) available in any monolithic operational amplifier. The HA-5180 has another unique feature in which the offset bias current may be nulled by externally adjusting the offset voltage.
The HA-5180 also offers excellent AC performance not previously available in similar hybrid or monolithic op amp designs. The 2 MHz bandwidth and $7 \mathrm{~V} / \mu \mathrm{s}$ slew rate of the HA-5180 extends the bandwidth and speed for applications such as very low drift sample and hold

Applications

- Electrometer Amplifier Designs
- Photo Current Detectors
- Precision, Long-Term Integrators
- Low Drift Sample \& Hold Circuits
- Very High Impedance Buffers
- High Impedance Biological Micro Probes
- Refer to Application Note 555
amplifiers and photo-current detectors. Other applications include use in electrometer designs, $\mathrm{pH} / \mathrm{Ion}$ sensitive electrodes, low current oxygen sensors, long term precision integrators and very high impedance buffer measurement designs.

The HA-5180 is packaged in an 8 pin (TO-99) Metal Can and an 8 lead Mini-DIP and is pin compatible with most existing op amp configurations. The case of the TO-99 package is internally connected to pin 8 so that it may be connected to the same potential as the input. This feature helps minimize stray leakage to the case, helps shield the amplifier from external noise and reduces common mode input capacitance. For military grade product, refer to the HA-5180/883 data sheet.

Pinouts

HA2-5180 (TO-99 METAL CAN) TOP VIEW

Schematic

CAUTION: These devices are sensitive to electrostatic discharge. Proper I.C. handing procedures should be followed.
Copyright © Harris Corporation 1990

Absolute Maximum Ratings (Note 1)
$T_{A}=+25^{\circ} \mathrm{C}$ Unless Otherwise Specified
Voltage Between V+ and V-Terminals
Differential Input Voltage.
ge.... \qquad . 40 V

Output Short Circuit Duration . $\pm 40 \mathrm{~V}$

Power Dissipation (Note 2) \qquad
\qquad Indefinite
. 300mW

Operating Temperature Ranges

Electrical Specifications $\mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}$, Unless Otherwise Specified.

PARAMETER	TEMP	$\begin{gathered} \text { HA-5180-2 } \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$			$\begin{gathered} H A-5180-5 \\ 0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \end{gathered}$			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
INPUT CHARACTERISTICS								
Offset Voltage	$+25^{\circ} \mathrm{C}$	-	1	3	-	1	3	mV
	Full	-	-	4	-	-	4	mV
Average Offset Voltage Drift	Full	-	5	-	-	5	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Bias Current (Note 3)	$+25^{\circ} \mathrm{C}$	-	250	1000	-	250	1000	fA
	Full	-	100	500	-	6	30	pA
Offset Current (Note 3)	$+25^{\circ} \mathrm{C}$	-	30	200	-	30	200	fA
	Full	-	6	30	-	1	5	pA
Common Mode Range	Full	± 10	± 12	-	± 10	± 12	-	V
Differential Input Resistance	$+25^{\circ} \mathrm{C}$	-	10^{12}	-	-	10^{12}	-	Ω
Input Capacitance	$+25^{\circ} \mathrm{C}$	-	5	-	-	5	-	pF
Input Noise Voltage, 0.1 Hz to 10 Hz	$+25^{\circ} \mathrm{C}$	-	5	-	-	5	-	$\mu \mathrm{V}_{\mathrm{p}-\mathrm{p}}$
$\mathrm{f}_{\mathrm{O}}=10 \mathrm{~Hz}$	$+25^{\circ} \mathrm{C}$	-	200	-	-	200	-	$n \mathrm{~V} / \sqrt{\mathrm{Hz}}$
$\mathrm{f}_{\mathrm{O}}=100 \mathrm{~Hz}$	$+25^{\circ} \mathrm{C}$	-	120	-	-	120	-	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
$\mathrm{f}_{\mathrm{o}}=1000 \mathrm{~Hz}$	$+25^{\circ} \mathrm{C}$	-	70	-	-	70	-	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Input Noise Current ($\mathrm{f}=1 \mathrm{kHz}$)	$+25^{\circ} \mathrm{C}$	-	0.01	-	-	0.01	-	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
TRANSFER CHARACTERISTICS								
Large Signal Voltage Gain (Notes 4)	$+25^{\circ} \mathrm{C}$	200K	1M	-	200K	1M	-	V / N
	Full	150K	-	-	150K	-	-	V/V
Common Mode Rejection Ratio (Note 5)	Full	90	110	-	90	110	-	dB
Closed Loop Bandwidth (AVCL = +1)	$+25^{\circ} \mathrm{C}$	-	2	-	-	2	-	MHz
OUTPUT CHARACTERISTICS								
Output Voltage Swing (Note 6)	$+25^{\circ} \mathrm{C}$	± 10	± 12	-	± 10	± 12	-	V
	Full	± 10	-	-	± 10	-	-	V
Full Power Bandwidth (Note 7)	$+25^{\circ} \mathrm{C}$	-	110	-	-	110	-	kHz
Output Current (Note 8)	$+25^{\circ} \mathrm{C}$	± 10	± 15	-	± 10	± 15	-	mA
Output Resistance (Note 9)	$+25^{\circ} \mathrm{C}$	-	25	-	-	25	-	Ω
TRANSIENT RESPONSE								
Overshoot	$+25^{\circ} \mathrm{C}$	-	30	50	-	30	50	\%
Rise Time	$+25^{\circ} \mathrm{C}$	-	75	-	-	75	-	ns
Slew Rate	$+25^{\circ} \mathrm{C}$	4	7	-	4	7	-	$\mathrm{V} / \mathrm{\mu s}$
Settling Time (Note 10)	$+25^{\circ} \mathrm{C}$	-	2	-	-	2	-	$\mu \mathrm{s}$
POWER SUPPLY CHARACTERISTICS								
Supply Current	Full	-	0.7	1	-	0.8	1	mA
Power Supply Rejection Ratio (Note 11)	Full	85	105	-	85	105	-	dB

NOTES:

1. Absolute Maximum Ratings are limiting values applied individually beyond which the serviceability of the circuit may be impaired. Functional operation under any of these conditions is not necessarily implied.
2. Derate at $6.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for operation at ambient temperatures above $+75^{\circ} \mathrm{C}$.
3. This parameter is guaranteed by design and is not 100% tested.
4. $V_{\text {OUT }}= \pm 10 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=2 \mathrm{~K}$. Gain $d B=20 \log _{10} A_{V}$.
5. $\Delta V_{C M}= \pm 10 V \mathrm{D} . \mathrm{C}$.
6. $R_{L}=2 K$.
7. $R_{\mathrm{L}}=2 \mathrm{~K}, \mathrm{~V}_{\text {PEAK }}=10 \mathrm{~V}$; Full power bandwidth guaranteed based on slew rate measurement using FPBW $=\frac{\text { Slew Rate }}{2 \pi V_{\text {Peak }}}$
8. $\mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}$.
9. Output resistance specified under open loop conditions ($f=100 \mathrm{~Hz}$).
10. Settling time is speified to 0.1% of final value for a 10 V output step and $A V=-1$.
11. $\Delta V_{\text {SUPPLY }}= \pm 10$ V D.C. to $\pm 20 \mathrm{~V}$ D.C.

Typical Performance Curves

SMALL SIGNAL BANDWIDTH AND PHASE MARGIN vs. LOAD CAPACITANCE

NORMALIZED AC PARAMETERS vs. TEMPERATURE

PSRR vs. FREQUENCY

CMRR vs. FREQUENCY

Typical Applications

The HA-5180 offers one of the lowest input bias currents of any monolithic operational amplifier and is ideal for use in applications for measuring signals from very high impedance or very low current sources. To fully utilize the capabilities of the HA-5180, care should be taken to minimize noise pickup and current leakage paths with the use of shielding and guarding techniques and by placing the device as close as possible to the signal source. The small size and low quiesent current (possible battery operation) of the HA-5180 allows easy installation at the signal source or inside a probe. The HA-5180 is internally compensated and is capable of driving long signal cables which have several hundred pF capacitive loading.

If it is not possible to place the HA-5180 very close to the signal source, then the use of shielded coaxial cable will offer the best isolation of the high impedance signal line from external noise sources. However, the effects of leakage, capacitance and vibrational noise should be taken into account when using coaxial cables. Leakage can be minimized by using cables with very high insulation resistance (such as polyethylene or Virgin Teflon). For example, the current to voltage converter circuit (as shown in Figure 1) will eliminate leakage across the insulation of the cable by forcing the signal line to the same potential as the shield. This circuit also provides fast response to input signals because the cable capacitance is never forced to be charged or discharged. However, the cable capacitance directly increases the input capacitance of the circuit and could cause the circuit to become unstable; if so, adding capacitance across Rf will stabilize the circuit again. Leakage can also be reduced in the high-impedance non-inverting configuration (see Figure 2) by bootstrapping the shield to the same potential as the signal source instead of ground. If low closed-loop gains are used, the noninverting configuration could also become unstable due to the positive feedback to the input through the cable capacitance. One method of compensating this circuit is to place a small (low leakage) capacitor from the input to ground. This technique will also reduce the effective capacitance presented to the signal source. When large closed-loop gains and/or long cable lengths are used, a buffer should be added to the circuit to drive the shield.

When using coaxial cable with the HA-5180 the cable should be kept as rigid and vibration free as possible. Frictional movement of the shield over the insulation can generate electrical charge which is picked up by the high impedance signal line as noise. Movement and bending of the cable can also cause charge movement due to small changes in cable capacitance and capacitance to surrounding objects. Another source of noise currents is that which is generated by the movement of a conductor in a magnetic field.

For lowest leakage at the device inputs either use a teflon IC socket or connect the signal line to the HA-5180 inputs using teflon standoffs. A guard ring, as shown in Figure 3, applied to both sides of the pc board and bootstrapped to the same potential as the input signal will minimize leakage paths across the pc board. Pin 8 of the TO-99 can, which is internally tied to the case, should also be tied to the bootstrap potential to help minimize noise pickup and leakage currents across the package insulation. This technique will also reduce common mode input capacitance.

Cleanliness of circuit boards and components is also important for achieving low leakage currents. Printed circuit boards and components should be thoroughly cleaned by using a low residue solvent such as TMC Freon, rinsed by deionized water and dried with nitrogen. The circuit board should be protected from high contamination and high humidity environments. A good quality conformal coating with low dielectric absorption provides the best protection from humidity and contamination.
Input protection is generally not necessary when designing with the HA-5180. Many electrometer type devices, especially CMOS, require elaborate zener protection schemes which may compromise overall performance. The Harris dielectric isolation process and JFET input design enables the HA-5180 to withstand input signals several volts beyond either supply and large differential signals equal to the rail-to-rail supply voltage without damage or degradation of performance.

For more information see Application Note 555.

FIGURE 1. CURRENT TO VOLTAGE CONVERTER

FIGURE 2. VERY HIGH IMPEDANCE NON-INVERTING AMPLIFIER

Typical Applications (Continued)

FIGURE 3. GUARD RING EXAMPLE

FIGURE 4. SLEW RATE AND TRANSIENT RESPONSE TEST CIRCUIT

FIGURE 5. SUGGESTED OFFSET ADJUSTMENT CIRCUIT

LARGE SIGNAL RESPONSE
Vertical Scale (Volts: 5V/Div. input) (Volts: 2V/Div. Output)
Horizontal Scale (Time: $500 \mathrm{~ns} /$ Div.)

SMALL SIGNAL RESPONSE
Vertical Scale (Volts: $100 \mathrm{mV} /$ Div. Input)
(Volts: $50 \mathrm{mV} /$ Div. Output)
Horizontal Scale (Time: $500 \mathrm{~ns} / \mathrm{Div}$.)

Wideband, Fast Settling Operational Amplifier

Features

- Fast Settling Time (0.1%) 70 ns
- Very High Slew Rate . 200V/ $/ \mathrm{s}$
- Wide Gain-Bandwidth (Av ≥ 5)............... 150MHz
- Power Bandwidth 6.5MHz
- Low Offset Voltage 3 mV
- Input Noise Voltage \qquad $6 n V / \sqrt{H z}$
- Monolithic Bipolar D.I. Construction

Description

HA-5190/5195 are monolithic operational amplifiers featuring an ultimate combination of speed, precision, and bandwidth. Employing monolithic bipolar construction coupled with Dielectric Isolation, these devices are capable of delivering an unparalleled $200 \mathrm{~V} / \mu \mathrm{s}$ slew rate with a settling time of 70 ns ($0.1 \%, 5 \mathrm{~V}$ output step). These truly differential amplifiers are designed to operate at gains ≥ 5 without the need for external compensation. Other oustanding HA-5190/5195 features are 150 MHz gain-bandwidth-product and 6.5 MHz full power bandwidth. In addition to these dynamic characteristics, these amplifiers also have excellent input characteristics such as 3 mV offset voltage and $6.0 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ input voltage noise at 1 kHz .

Applications

- Fast, Precise D/A Converters
- High Speed Sample-Hold Circuits
- Pulse and Video Amplifiers
- WideBand Amplifiers
- Replace Costly Hybrids

Pinouts TOP VIEWS
HA1-5190/5195 (CERAMIC DIP)

HA9P5195 (SOIC)

HA2-5190/5195 (TO-8 METAL CAN)

Schematic

Absolute Maximum Ratings (N	(Note 1)
Voltage Between V+ and V-Terminals	35 V
Differential Input Voltage. $\pm 6 \mathrm{~V}$
Output Current	50 mA (Peak)
Internal Power Dissipation (Note 2) 870mW (Cerdip); 1W (TO-8) Free Air
Maximum Junction Temperature (Note 2)) $\ldots \ldots \ldots \ldots \ldots+175^{\circ} \mathrm{C}$

Operating Temperature Ranges

$H A-5190-2 \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots{ }^{-50^{\circ}} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}$
$H A-5195-5 \ldots \ldots \ldots \ldots \ldots 0^{\circ} \mathrm{C} \leq T_{A} \leq+75^{\circ} \mathrm{C}$
Storage Temperature Range $\ldots \ldots \ldots \ldots 5^{\circ} \mathrm{C} \leq T_{A} \leq+150^{\circ} \mathrm{C}$
$55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}$
HA-5195-5
$65^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+150^{\circ} \mathrm{C}$

Electrical Specifications $V_{S U P P L Y}= \pm 15 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=200 \Omega$, Unless Otherwise Specified.

NOTES:

1. Absolute Maximum Ratings are limiting values applied individually beyond which the serviceability of the circuit may be impaired. Functional operation under any of these conditions is not necessarily implied.
2. Recommended heat sinks: For TO-8 Metal Can, Thermalloy \#2240A ($\theta_{S A}=27^{\circ} \mathrm{C} / \mathrm{W}$) or \#2268B ($\theta_{\mathrm{SA}}=24^{\circ} \mathrm{C} / \mathrm{W}$). For 14 pin Ceramic DIP: AAVID \#5602B ($\theta_{\text {SA }}=16^{\circ} \mathrm{C} / \mathrm{W}$). See Die Characteristics Section for $\theta_{\mathrm{ja}} / \theta_{\mathrm{jc}}$ values.
3. $R_{L}=200 \Omega, C_{L}<10 p F, V_{O U T}= \pm 5 \mathrm{~V}$.
4. $\Delta \mathrm{V}_{\mathrm{CM}}= \pm 5 \mathrm{~V}$.
5. $V_{\text {OUT }}=90 \mathrm{mV}$.
6. $A_{V}=10$.
7. Full power bandwidth guaranteed based on slew rate measurement using FPBW $=\frac{\text { Slew Rate }}{2 \pi V_{\text {PEAK }}}$
8. Refer to Test Circuits section of data sheet.
9. $\Delta \mathrm{V}_{\text {SUPPLY }}= \pm 10 \mathrm{~V}$ D.C. to $\pm 20 \mathrm{~V}$ D.C.

Test Circuits

LARGE SIGNAL RESPONSE
Vertical Scale: (Volts: $A=2.0 \mathrm{~V} / D i v ., B=4.0 / D i v$.) Horizontal Scale: (Time: $100 \mathrm{~ns} /$ Div.)

SMALL SIGNAL RESPONSE
Vertical Scale: (Volts: $A=50 \mathrm{mV} /$ Div., $B=100 \mathrm{mV} /$ Div.) Horizontal Scale: (Time: 100ns/Div.)

SETTLING TIME TEST CIRCUIT

- $A V=-5$
- Load Capacitance should be less than 10pF.
- It is recommended that resistors be carbon composition and that feedback and summing network ratios be matched to 0.1\%.
- Settle Point (Summing Node) capacitance should be less than 10 pF . For optimum settling time results, it is recommended that the test circuit be constructed directly onto the device pins. A Tektronix 568 Sampling Oscilloscope with S-3A sampling heads is recommended as a settle point monitor.

POWER SUPPLY CURRENT vs. TEMPERATURE

Applying the HA-5190/5195

1. POWER SUPPLY DECOUPLING: Although not absolutely necessary, it is recommended that all power supply lines be decoupled with $0.01 \mu \mathrm{~F}$ ceramic capacitors to ground. Decoupling capacitors should be located as near to the amplifier terminals as possible.
2. STABILITY CONSIDERATIONS: HA-5190/5195 is stable at gains >5. Gains < 5 are covered elsewhere in this data sheet. Feedback resistors should be of carbon composition located as near to the input terminals as possible.
3. WIRING CONSIDERATIONS: Video pulse circuits should be built on a ground plane. Minimum point to point connections directly to the amplifier terminals
should be used. When ground planes cannot be used, good single point grounding techniques should be applied.
4. OUTPUT SHORT CIRCUIT: HA-5190/5195 does not have output short circuit protection. Short circuits to ground can be tolerated for approximately 10 seconds. Short circuits to either supply will result in immediate destruction of the device.
5. HEAVY CAPACITIVE LOADS: When driving heavy capacitive loads ($>100 \mathrm{pF}$) a small resistor (100Ω) should be connected in series with the output and inside the feedback loop.

Typical Applications (Also see Application Notes 525 and 526)

SUGGESTED COMPENSATION FOR UNITY GAIN STABILITY: NONINVERTING

*Values were determined experimentally for optimum speed and settling time. R1 and C1 should be optimized for each particular application to ensure best overall frequency response.

INVERTING

Vertical Scale: (Volts: 2V/Div.) Horizontal Scale: (50ns/Div.)

Typical Applications (Continued)

VIDEO PULSE AMPLIFIER/75 Ω COAXIAL DRIVER
VIDEO PULSE AMPLIFIER COAXIAL LINE DRIVER

FAST DAC OUTPUT BUFFER

Vertical Scale:	(Volts: $2 \mathrm{~V} /$ Div. $)$
Horizontal Scale:	(Time: 50 ns/Div.)
$B=$ VOUT $\quad C=$ Digital Input	

OUTPUT

Die Characteristics
Transistor Count
Die Dimensions $0.087 \times 0.052 \times 0.019$ inches $(2210 \times 1320 \times 483 \mu \mathrm{~m})$
Substrate Potential (Powered Up)*. V-
Process High Frequency Bipolar Dielectric Isolation
Passivation . Nitride
Thermal Constants $\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right) \quad \theta_{\mathrm{ja}} \quad \theta_{\mathrm{jc}}$
Ceramic DIP 104

Metal Can 87 . 32
*The substrate may be left floating (Insulating Die Mount) or it may be mounted on a conductor at V - potential.
 \section*{\title{
Low Noise, Wideband
 \section*{\title{
Low Noise, Wideband Precision Operational Amplifier
}} Precision Operational Amplifier
}}

Features

- Gain Bandwidth Product....................... 100MHz
- Unity Gain Bandwidth 35MHz
- High Slew Rate . 25v/ $\mu \mathrm{s}$
- Low Offset Voltage \qquad
- High Open Loop Gain

128 dB

- Channel Separation @ 10kHz110dB
- Low Noise Voltage @ 1kHz \qquad $3.4 \mathrm{nV} / \sqrt{\mathrm{Hz}}$
- High Output Current

56 mA

- Low Supply Current per Amplifier 8 mA

Description

The HA-5221/5222 are single and dual high performance dielectrically isolated, monolithic op amps, featuring precision DC characteristics while providing excellent AC characteristics. Designed for audio, video, and other demanding applications, noise ($3.4 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ @ 1 kHz), total harmonic distortion ($<0.005 \%$), and DC errors are kept to a minimum.

The precision performance is shown by low offset voltage $(0.3 \mathrm{mV})$, low bias currents (60 nA), low offset currents (20nA), and high open loop gain (128 dB). The combination of these excellent DC characteristics with the fast settling time ($0.4 \mu \mathrm{~s}$) make the HA-5221/5222 ideally suited for precision signal conditioning.

Applications

- Precision Test Systems
- Active Filtering
- Small Signal Video
- Accurate Signal Processing
- RF Signal Conditioning standing AC characteristics not normally associated with precision op amps, high unity gain bandwidth (35 MHz) and high slew rate $(25 \mathrm{~V} / \mu \mathrm{s})$. Other key specifications include high CMRR (95 dB) and high PSRR (100 dB). The combination of these specifications will allow the HA-5221/5222 to be used in RF signal conditioning as well as video amplifiers.

The performance of the HA-5221/5222-9 is guaranteed from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, while the HA-5221/5222-5 is guaranteed from $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$. The HA-5221 is available in 8 pin Ceramic Mini-DIP and 8 pin Metal Can (TO-99) and the HA-5222 is available in the 8 pin Ceramic Mini-DIP. For MIL-STD-883C compliant product and Ceramic LCC packaging, consult the HA-5221/5222/883C data sheet.

Pinouts

HA7-5222 (CERAMIC MINI-DIP)
TOP VIEW

HA2-5221 (TO-99 METAL CAN) TOP VIEW

Absolute Maximum Ratings (Note 1)

Output Current Short Circuit Duration Indefinite

Operating Temperature Ranges

HA-5221/5222-9 $40^{\circ} \mathrm{C} \leq T_{A} \leq+85^{\circ} \mathrm{C}$ HA-5221/5222-5 $0^{\circ} \mathrm{C} \leq T_{A} \leq+75^{\circ} \mathrm{C}$ Storage Temperature Range $\ldots \ldots-65^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+150^{\circ} \mathrm{C}$ Maximum Junction Temperature. $+175^{\circ} \mathrm{C}$

Electrical Specifications $V+=15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}$, Unless Otherwise Specified

PARAMETER	TEMP	HA-5221-9 \& HA-5222-9			HA-5221-5 \& HA-5222-5			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
INPUT CHARACTERISTICS								
input Offset Voltage	$+25^{\circ} \mathrm{C}$	-	0.30	0.75	-	0.30	0.75	mV
	Full	-	0.35	1.5	-	0.35	1.5	mV
Average Offset Voltage Drift	Full	-	0.5	-	-	0.5	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Bias Current	$+25^{\circ} \mathrm{C}$	-	40	80	-	40	100	nA
	Full	-	70	200	-	70	200	nA
Input Offset Current	$+25^{\circ} \mathrm{C}$	-	15	50	-	15	100	nA
	Full	-	30	150	\sim	30	150	nA
Input Offset Voltage Match	$+25^{\circ} \mathrm{C}$	-	400	750	-	400	750	$\mu \mathrm{V}$
	Full	-	-	1500	-	-	1500	$\mu \mathrm{V}$
Common Mode Range	$+25^{\circ} \mathrm{C}$	± 12	-	-	± 12	-	-	V
Differential input Resistance	$+25^{\circ} \mathrm{C}$	-	70	-	-	70	-	$k \Omega$
Input Noise Voltage $\quad \mathrm{t}_{\mathrm{O}}=0.1 \mathrm{~Hz}$ to 10 Hz	$+25^{\circ} \mathrm{C}$	-	0.25	-	-	0.25	-	$\mu \vee p-p$
Input Noise Voltage $\quad \dagger_{0}=10 \mathrm{~Hz}$	$+25^{\circ} \mathrm{C}$	-	6.2	10	-	6.2	10	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
$\begin{array}{ll}\text { Density (Note 2, 15) } & f_{0}=100 \mathrm{~Hz} \\ & f_{0}=1000 \mathrm{~Hz}\end{array}$	$+25^{\circ} \mathrm{C}$	-	3.6	6	-	3.6	6	$n \mathrm{~V} / \sqrt{\mathrm{Hz}}$
	$+25^{\circ} \mathrm{C}$	-	3.4	4.0	-	3.4	4.0	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Input Noise Current $\quad f_{0}=10 \mathrm{~Hz}$	$+25^{\circ} \mathrm{C}$	-	4.7	8.0	-	4.7	8.0	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
$\begin{array}{ll}\text { Density (Note 2, 15) } & f_{0}=100 \mathrm{~Hz} \\ & f_{0}=1000 \mathrm{~Hz}\end{array}$	$+25^{\circ} \mathrm{C}$	-	1.8	2.8	-	1.8	2.8	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
	$+25^{\circ} \mathrm{C}$	-	0.97	1.8	-	0.97	1.8	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
THD + N (Note 3)	$+25^{\circ} \mathrm{C}$	-	<0.005	-	-	<0.005	-	\%
TRANSFER CHARACTERISTICS								
Large Signal Voltage Gain (Note 4)	$+25^{\circ} \mathrm{C}$	106	128	-	106	128	-	dB
	Full	100	120	-	100	120	-	dB
Common Mode Rejection Ratio (Note 5)	Full	86	95	-	86	95	-	dB
Unity Gain Bandwidth (-3dB)	$+25^{\circ} \mathrm{C}$	-	35	-	-	35	-	MHz
Gain Bandwidth Product (1 kHz to 400 kHz)	$+25^{\circ} \mathrm{C}$	-	100	-	-	100	-	MHz
Minimum Stable Gain	Full	1	-	-	1	-	-	V/V
OUTPUT CHARACTERISTICS								
Output Voltage Swing	Full	± 10	-	-	± 10	-	-	V
	$+25^{\circ} \mathrm{C}$	± 12	± 12.5	-	± 12	± 12.5	-	V
	Full	± 11.5	± 12.1	-	± 11.5	± 12.1	-	V
Output Current (Note 6)	Full	± 30	± 56	-	± 30	± 56	-	mA
Output Resistance	$+25^{\circ} \mathrm{C}$	-	10	-	-	10	-	Ω
Full Power Bandwidth (Note 7)	$+25^{\circ} \mathrm{C}$	238	398	-	238	398	-	kHz
Channel Separation (Note 8)	$+25{ }^{\circ} \mathrm{C}$	-	110	-	-	110	-	dB
TRANSIENT RESPONSE (Note 13)								
Slew Rate (Note 9, 15)	Full	15	25	-	15	25	-	V/us
Rise Time (Note 10, 15)	Full	-	13	20	-	13	20	ns
Overshoot (Note 10,15)	Full	-	28	50	-	28	50	\%
Settling Time (Note 11)	$+25^{\circ} \mathrm{C}$	-	0.4	-	-	0.4	-	$\mu \mathrm{s}$
	$+25^{\circ} \mathrm{C}$	-	1.5	-	-	1.5	-	$\mu \mathrm{s}$
POWER SUPPLY								
PSRR (Note 12) Supply Current	Full	86	100	-	86	100	-	dB
	Full	-	8	11	-	8	11	mA/Op Amp

NOTES:

1. Absolute maximum ratings are limiting values, applied individually, beyond which the serviceability of the circuit may be impaired. Functional operation under any of these conditions is not necessarily implied
2. Refer to typical performance curve in data sheet.
3. $A_{V C L}=10, f_{0}=1 \mathrm{kHz}, V_{O}=5 \mathrm{Vrms}, R_{\mathrm{L}}=600 \Omega, 10 \mathrm{~Hz}$ to 100 kHz , Minimum resolution of test equipment is 0.005%.
4. $V_{\mathrm{OUT}}=0$ to $\pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{~K}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$.
5. $V_{C M}= \pm 10 \mathrm{~V}$.
6. $\mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}$.
7. Full Power Bandwidth is calculated by: FPBW $=$ Slew Rate, $V_{\text {PEAK }}=10 \mathrm{~V}$
$2 \pi V_{\text {PEAK }}$
8. HA-5222 only, $f_{0}=10 \mathrm{kHz}, R_{L}=1 \mathrm{~K}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
9. $\mathrm{V}_{\mathrm{OUT}}= \pm 2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{~K}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$.
10. $V_{\text {OUT }}= \pm 100 \mathrm{mV}, R_{\mathrm{L}}=1 \mathrm{~K}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$.
11. Settling time is specified for a 10 V step and $A_{V}=-1$
12. $V_{S}= \pm 10 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$.
13. See Test Circuits.
14. Input is protected by back-to-back zener diodes See applications section.
15. Guaranteed by characterization.

Test Circuits
TRANSIENT RESPONSE TEST CIRCUIT

LARGE SIGNAL RESPONSE

SMALL SIGNAL RESPONSE
$V_{\text {OUT }}= \pm 100 \mathrm{mV}$
Vertical Scale: $100 \mathrm{mV} / \mathrm{div}$ Horizontal Scale: $200 \mathrm{~ns} / \mathrm{div}$

SETTLING TIME TEST CIRCUIT

- $A_{V}=-1$
- Feedback and summing resistors must be matched (0.1\%).
- HP5082-2810 clipping diodes recommended.
- Tektronix P6201 FET probe used at settling point.

Typical Performance Curves $\mathrm{v}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

OPEN LOOP GAIN vs TEMPERATURE
$R_{L}=1 K$

BIAS CURRENT TEMPERATURE
4 Representative Units

SLEW RATE vs TEMPERATURE
$A_{V}=+1, R_{L}=1 K, C_{L}=50 p F$

OFFSET VOLTAGE vs TEMPERATURE
4 Representative Units

OUTPUT VOLTAGE SWING vs TEMPERATURE $R_{\mathrm{L}}=600 \Omega$

OFFSET VOLTAGE WARM-UP DRIFT Ceramic DIP Packages

Typical Performance Curves $\mathrm{v}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

SUPPLY CURRENT vs SUPPLY VOLTAGE

OUTPUT VOLTAGE SWING vs SUPPLY VOLTAGE
$R_{L}=600 \Omega$

OFFSET CURRENT vs TEMPERATURE
4 Representative Units

SLEW RATE vs SUPPLY VOLTAGE
$A V=+1, R_{L}=2 K, C_{L}=50 \mathrm{pF}$

NOISE CHARACTERISTICS

CMRR AND PSRR vs TEMPERATURE

Typical Performance Curves $\mathrm{v}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25{ }^{\circ} \mathrm{C}$

BANDWIDTH AND PHASE MARGIN vs LOAD CAPACITANCE

0.1 Hz TO 10 Hz NOISE

Vertical Scale: $1 \mathrm{mV} / \mathrm{div}$ Horizontal Scale: $1 \mathrm{~S} / \mathrm{div}$ $A_{V}=+25,000(0.168 \mu \mathrm{Vp}-\mathrm{p} R T \mathrm{I})$

SHORT CIRCUIT OUTPUT CURRENT vS TIME

0.1 Hz TO 1 Hz 1 MHz

Vertical Scale: $10 \mathrm{mV} / \mathrm{div}$ Horizontal Scale: $1 \mathrm{~S} / \mathrm{div}$ $A V=+25,000(1.5 \mu \mathrm{Vp}-\mathrm{p}$ RTI)

Typical Performance Curves $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

SUPPLY CURRENT/AMPLIFIER vs TEMPERATURE

OUTPUT VOLTAGE SWING vs LOAD RESISTANCE $A V=+1, T H D \leq 0.01 \%, f=1 \mathrm{kHz}$

CHANNEL SEPARATION vs FREQUENCY (HA-5222 only)

Applications Information

Operation at Various Supply Voltages

The HA-5221/5222 operates over a wide range of supply voltages with little variation in performance. The supplies may be varied from ± 5 volts to ± 15 volts. See typical performance curves for variations in supply current, slew rate and output voltage swing.

Offset Adjustment

The following diagram shows the offset voltage adjustment configuration for the HA-5221. By moving the potentiometer wiper towards pin 8 (+BAL), the op amps output voltage will increase; towards pin 1 (-BAL) decreases the output voltage.

A $20 \mathrm{k} \Omega$ trim pot will allow an offset voltage adjustment of about 10 mV .

Capacitive Loading Considerations

When driving capacitive loads $>80 \mathrm{pF}$, a small resistor, 50 to 100Ω, should be connected in series with the output and inside the feedback loop.

Saturation Recovery

When an op amp is over driven, output devices can saturate and sometimes take a long time to recover. By clamping the input, output saturation can be avoided. If output saturation can not be avoided, the maximum recovery time when overdriven into the positive rail is $10.6 \mu \mathrm{~s}$. When driven into the negative rail the maximum recovery time is $3.8 \mu \mathrm{~s}$.

Input Protection

The HA-5221/5222 has built in back-to-back protection diodes which limit the maximum allowable differential input voltage to approximately 5 volts. If the HA-5221/5222 will be used in circuits where the maximum differential voltage may be exceeded, then current limiting resistors must be used. The input current should be limited to a maximum of 10 mA .

PC Board Layout Guidelines

When designing with the HA-5221 or the HA-5222, good high frequency (RF) techniques should be used when building a p.c. board. Use of ground plane is recommended. Power supply decoupling is very important. A $0.01 \mu \mathrm{f}$ to $0.1 \mu \mathrm{f}$ high quality ceramic capacitor at each power supply pin with a $2.2 \mu \mathrm{f}$ to $10 \mu \mathrm{f}$ tantalum close by will provide excellent decoupling. Chip capacitors produce the best results due to ease of placement next to the op amp and basically no lead inductance. If leaded capacitors are used, the leads should be kept as short as possible to minimize lead inductance.

Die Characteristics

Die Dimensions

H	. $94 \times 72 \times 19 \mathrm{mils}$ $\times 1840 \times 480 \mu \mathrm{~m})$
	$85 \times 78 \times 19 \mathrm{~m}$

Substrate Potential*V-
Process . High Frequency, Bipolar, DI

Passivation . Silox
Thermal Constants ($\left.{ }^{\circ} \mathrm{C} / \mathrm{W}\right) \quad \theta_{\mathrm{ja}} \quad \theta_{\mathrm{jc}}$
HA2-5221................................. 163 . 36
HA7-5221.................................. 152.
HA7-5222................................. . . 13459
*The substrate may be left floating (Insulating Die Mount) or it may be on a conductor at V - potential.
HA-5222 . $185 \times 78 \times 19 \mathrm{mils}$

Ultra High Slew Rate Operational Amplifier

May 1990

Features

- Unity Gain Bandwidth .. 350 MHz
- Full Power Bandwidth .. 53MHz
- High Slew Rate . 1000V/ $\mu \mathrm{s}$
- High Output Drive . $\pm 50 \mathrm{~mA}$
- Monolithic Construction

Applications

- RF/IF Processors
- Video Amplifiers
- High Speed Cable Drivers

- Pulse Amplifiers

- High Speed Communications
- Fast Data Acquisition Systems

Description

The HFA-0001 is an all bipolar op amp featuring high slew rate (1000V/ $\mu \mathrm{s}$), and high unity gain bandwidth (350 MHz). These features combined with fast settling time ($25 n \mathrm{~ns}$) make this product very useful in high speed data acquisition systems as well as RF, video, and pulse amplifier designs.Other outstanding characteristics include low bias currents $(15 \mu \mathrm{~A})$, low offset current ($18 \mu \mathrm{~A}$), and low offset voltage (6 mV).
The HFA-0001 offers high performance at low cost. It can replace hybrids and RF transistor amplifiers, simplifying designs while providing increased reliability due to monolithic construction. To enhance the ease of design, the HFA-0001 has a $50 \Omega \pm 20 \%$ resistor connected from the output of the op amp to a separate pin. This can be used when driving 50Ω strip line, microstrip, or coax cable.
The performance of the HFA-0001-9 is guaranteed from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, while the HFA-0001-5 is guaranteed from $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$. The HFA-0001 is available in 8 pin SOIC, 8 pin Plastic Mini-Dip and 14 pin Sidebraze packages. For MIL-STD-883 compliant product and Ceramic LCC package consult the HFA-0001/883 datasheet.

Pinouts

HFA3-0001-5 (PLASTIC MINI-DIP) TOP VIEW

HFA1-0001-5/-9 (CERAMIC SIDEBRAZE DIP) TOP VIEW

HFA9P0001-5/-9 (SOIC)
TOP VIEW

Simplified Schematic

CAUTION: These devices are sensitive to electrostatic discharge. Proper I.C. handiing procedures should be followed.
Copyright © Harris Corporation 1990

Absolute Maximum Ratings (Note 1)			Operating Temperature Range							
Voltage Between V+ and V-Terminals 12										
Differential Input Voltage. 5			HFA-0001-5........					$\cdots 5^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+150^{\circ} \mathrm{C}$		
Common Mode Input Voltage . $\pm 4 \mathrm{~V}$			Storage Temperature. -							
Output Current . 60m			Maximum Junction Temperature. $+175^{\circ} \mathrm{C}$							
Electrical Specifications $\mathrm{V}+=+5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V}$, Unless Otherwise Specified										
PARAMETER		TEMP	HFA-0001-9			HFA-0001-5			UNITS	
		MIN	TYP	MAX	MIN	TYP	MAX			
INPUT CHARACTERISTICS										
Offset Voltage			$+25^{\circ} \mathrm{C}$	-	6	15	-	6	30	mV
		High	-	4.5	20	-	4.5	30	mV	
		Low	-	12.5	45	-	12.5	35	mV	
Average Offset Voltage Drift		High	-	50	-	-	50	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	
		Low	-	100	-	-	100	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	
Bias Current		$+25^{\circ} \mathrm{C}$	-	15	50	-	15	100	$\mu \mathrm{A}$	
		Full	-	20	50	-	20	100	$\mu \mathrm{A}$	
Offset Current		$+25^{\circ} \mathrm{C}$	-	18	25	-	18	50	$\mu \mathrm{A}$	
		Full	-	22	50	-	22	50	$\mu \mathrm{A}$	
Common Mode Range		$+25^{\circ} \mathrm{C}$	± 3	-	-	± 3	-	-	V	
Differential Input Resistance		$+25^{\circ} \mathrm{C}$	-	10	-	-	10	-	$\mathrm{K} \Omega$	
Input Capacitance		$+25^{\circ} \mathrm{C}$	-	2	-	-	2	-	pF	
Input Noise Voltage	0.1 Hz to 10 Hz	$+25^{\circ} \mathrm{C}$	-	3.5	-	-	3.5	-	$\mu \mathrm{Vrms}$	
	10 Hz to 1 MHz	$+25^{\circ} \mathrm{C}$	-	6.7	-	-	6.7	-	$\mu \mathrm{Vrms}$	
Input Noise Voltage	$\mathrm{f}_{\mathrm{O}}=10 \mathrm{~Hz}$	$+25^{\circ} \mathrm{C}$	-	640	-	-	640	-	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$	
	$\mathrm{f}_{0}=100 \mathrm{~Hz}$	$+25^{\circ} \mathrm{C}$	-	170	-	-	170	-	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$	
	$\mathrm{f}_{\mathrm{O}}=1000 \mathrm{~Hz}$	$+25^{\circ} \mathrm{C}$	-	43	-	-	43	-	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$	
Input Noise Current	$\mathrm{f}_{\mathrm{O}}=10 \mathrm{~Hz}$	$+25^{\circ} \mathrm{C}$	-	2.35	-	-	2.35	-	$\mathrm{nA} \sqrt{\mathrm{Hz}}$	
	$\mathrm{f}_{\mathrm{O}}=100 \mathrm{~Hz}$	$+25^{\circ} \mathrm{C}$	-	0.57	-	-	0.57	-	$n \mathrm{~A} \sqrt{\mathrm{~Hz}}$	
	$\mathrm{f}_{\mathrm{O}}=1000 \mathrm{~Hz}$	$+25^{\circ} \mathrm{C}$	-	0.16	-	-	0.16	-	$n \mathrm{~A} \sqrt{\mathrm{~Hz}}$	
TRANSFER CHARACTERISTICS										
Large Signal Voltage Gain (Note 2)		$+25^{\circ} \mathrm{C}$	150	200	-	150	200	-	V/N	
		High	150	170	-	100	170	-	V/V	
		Low	150	220	-	150	220	-	V/V	
Common Mode Rejection Ratio (Note 3)		$+25^{\circ} \mathrm{C}$	45	47	-	42	47	-	dB	
		High	40	45	-	40	45	-	dB	
		Low	45	48	-	42	48	-	dB	
Unity Gain Bandwidth		$+25^{\circ} \mathrm{C}$	-	350	-	-	350	-	MHz	
Minimum Stable Gain		Full	1	-	-	1	-	-	V/V	
OUTPUT CHARACTERISTICS										
Output Voltage Swing	$R_{L}=100 \Omega$	$+25^{\circ} \mathrm{C}$	-	± 3.5	-	-	± 3.5	-	V	
	$R_{L}=1 k$	$+25^{\circ} \mathrm{C}$	± 3.5	± 3.7	-	± 3.5	± 3.7	-	v	
		High	± 3.0	± 3.6	-	± 3.0	± 3.6	-	v	
		Low	± 3.5	± 3.7	-	± 3.5	± 3.7	-	V	
Full Power Bandwidth (Note 5)		$+25^{\circ} \mathrm{C}$	-	53	-	-	53	-	MHz	
Output Resistance, Open Loop		$+25^{\circ} \mathrm{C}$	-	3	-	-	3	-	Ω	
Output Current		Full	± 30	± 50	-	± 30	± 50	-	mA	

Specifications HFA-0001

Electrical Specifications (Continued) $\mathrm{V}+=+5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V}$, Unless Otherwise Specified

PARAMETER	TEMP	HFA-0001-9			HFA-0001-5			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
TRANSIENT RESPONSE								
Rise Time (Note 4, 6)	$+25^{\circ} \mathrm{C}$	-	480	-	-	480	-	ps
Slew Rate (Note 4, 7) $\quad R_{L}=1 \mathrm{~K}$	$+25^{\circ} \mathrm{C}$	-	1000	-	-	1000	-	$\mathrm{V} / \mathrm{\mu s}$
$\mathrm{R}_{\mathrm{L}}=100 \Omega$	$+25^{\circ} \mathrm{C}$	-	875	-	-	875	-	$\mathrm{V} / \mathrm{\mu s}$
Settling Time (3V Step) $\quad 0.1 \%$	$+25^{\circ} \mathrm{C}$	-	25	-	-	25	-	ns
Overshoot (Note 4,6)	$+25^{\circ} \mathrm{C}$	-	36	-	-	36	-	\%
POWER SUPPLY CHARACTERISTICS								
Supply Current Power Supply Rejection Ratio (Note 8)		-	65	75	-	65	75	mA
	$+25^{\circ} \mathrm{C}$	40	42	-	37	42	-	dB
	High	35	41	-	35	41	-	dB
	Low	40	42	-	37	42	-	dB

NOTES:

1. Absolute maximum ratings are limiting values, applied individually, beyond which the serviceability of the circuit may be impaired. Functional operation under any of these conditions is not necessarily implied.
2. $\mathrm{V}_{\mathrm{OUT}}=0$ to $\pm 2 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{~K}$
3. Full Power Bandwidth is calculated by equation:
$F P B=\frac{\text { Slew Rate }}{2 \pi \text { Vpeak }}$, Vpeak $=3.0 \mathrm{~V}$
4. $\Delta V_{C M}= \pm 2 \mathrm{~V}$
5. $R_{L}=100 \Omega$
6. $V_{\text {OUT }}= \pm 200 \mathrm{mV}, A_{V}=+1$
7. $V_{O U T}= \pm 3 V, A V=+1$
8. $\Delta V_{S}= \pm 4 \mathrm{~V}$ to $\pm 6 \mathrm{~V}$

Test Circuits

LARGE SIGNAL RESPONSE TEST CIRCUIT

LARGE SIGNAL RESPONSE
$V_{\text {OUT }}=0$ to 3 V
Vertical Scale: 1V/Div. Horizontal Scale: 2ns/Div.

SMALL SIGNAL RESPONSE TEST CIRCUIT

SMALL SIGNAL RESPONSE
$V_{\text {OUT }}=0$ to 200 mV
Vertical Scale: $100 \mathrm{mV} / \mathrm{Div}$. Horizontal Scale: $2 \mathrm{~ns} / \mathrm{Div}$.

NOTE: Initial step in output is due to fixture feedthrough

Test Circuits (Continued)

NOTE: Test Fixture delay of 450 ps is included
Typical Performance Curves $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, Unless Otherwise Specified

OPEN LOOP GAIN AND PHASE vs FREQUENCY
$R_{L}=100 \Omega$

CLOSED LOOP GAIN vs FREQUENCY

$$
A_{V}=+1, R_{L}=100 \Omega, R_{F}=50 \Omega
$$

CLOSED LOOP GAIN vs FREQUENCY
$A_{V}=+10, R_{L}=100 \Omega$

Typical Performance Curves (Continued) $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, Unless Otherwise Specified

OFFSET VOLTAGE vs TEMPERATURE 3 Representative Units

BIAS CURRENT vs TEMPERATURE
3 Representative Units

OFFSET CURRENT vs TEMPERATURE 3 Representative Units

Typical Performance Curves (Continued) $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, Unless Otherwise Specified

OPEN LOOP GAIN vs TEMPERATURE

$$
R_{L}=1 \mathrm{~K}, \mathrm{~V}_{\mathrm{OUT}}=0 \text { to } \pm 2 \mathrm{~V}
$$

SLEW RATE vs TEMPERATURE
$A V=+1, R_{L}=100, V_{O U T}= \pm 3 V$

PSRR vs TEMPERATURE
$\Delta V_{S}= \pm 4 \mathrm{~V}$ to $\pm 6 \mathrm{~V}$

OUTPUT VOLTAGE SWING vs TEMPERATURE $R_{L}=1 K$

CMRR vs TEMPERATURE

SUPPLY CURRENT vs SUPPLY VOLTAGE

Typical Performance Curves (Continued) $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, Unless Otherwise Specified

OUTPUT VOLTAGE SWING vs LOAD RESISTANCE
$A V=+1, f_{0}=50 \mathrm{kHz}, \mathrm{THD}<1 \%$

INPUT NOISE vs FREQUENCY

MAXIMUM OUTPUT VOLTAGE SWING vs FREQUENCY
$A_{V}=+1, R_{L}=100 \Omega, T H D<1 \%$

OPEN LOOP GAIN vs LOAD RESISTANCE
$V_{\text {OUT }}= \pm 2 V$

INPUT NOISE vs FREQUENCY

Typical Performance Curves (Continued) $\mathrm{V}_{S}= \pm 5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, Unless Otherwise Specified

INPUT VOLTAGE NOISE
0.1 Hz to 10 Hz
$A_{V}=50$, Noise Voltage $=1.605 \mathrm{~V}_{\mathrm{rms}}(\mathrm{RTI})$
Noise Voltage $=10.12 \mathrm{Vp}-\mathrm{p}$

INPUT NOISE VOLTAGE
10 Hz to 1 MHz
$A_{V}=50$, Noise Voltage $=5.36 \mu \mathrm{~V}_{\mathrm{rms}}$ (RTI)
Noise Voltage $=29.88 \mu \mathrm{Vp}-\mathrm{p}$

Applications Information

Offset Adjustment

When applications require the offset voltage to be as low as possible, the figure below shows two possible schemes for adjusting offset voltage.

$\underset{\text { Range } \simeq \pm V}{\text { Adjustment }} \quad\left(\frac{R_{2}}{R_{1}}\right)$
FIGURE 1. INVERTING GAIN
For a voltage foliower application, use the circuit in Figure 2 without R2 and with Ri shorted. R1 should be $1 \mathrm{M} \Omega$ to $10 \mathrm{M} \Omega$. the adjustment resistors will cause only a very small gain error.

Adjustment
Range $\simeq \pm V$$\left(\frac{R_{2}}{R_{1}}\right) \quad$ Gain $\simeq 1+\left(\frac{R_{f}}{R_{i}+R_{2}}\right)$
FIGURE 2. NON-INVERTING GAIN

PC Board Layout Guidelines

When designing with the HFA-0001, good high frequency (RF) techniques should be used when making a PC board. A massive ground plane should be used to maintain a low impedance ground. Proper shielding and use of short interconnection leads are also very important.

To achieve maximum high frequency performance, the use of low impedance transmission lines with impedance matching is recommended: 50Ω lines are common in communications and 75Ω lines in video systems. Impedance matching is important to minimize reflected energy therefore minimizing transmitted signal distortion. This is accomplished by using a series matching resistor (50Ω or 75Ω), matched transmission line (50Ω or 75Ω), and a matched terminating resistor, as shown in the figure below. Note that there will be a 6 dB loss from input to output. The HFA-0001 has an integral $50 \Omega \pm 20 \%$ resistor connected to the op amps output with the other end of the resistor pinned out. This 50Ω resistor can be used as the series resistor instead of an external resistor.

Applications Information (Continued)

PC board traces can be made to look like a 50Ω or 75Ω transmission line, called microstrip. Microstrip is a PC board trace with a ground plane directly beneath, on the opposite side of the board, as shown below.

When manufacturing pc boards, the trace width can be calculated based on a number of variables. The following equation is reasonably accurate for calculating the proper trace width for a 50Ω transmission line.
$Z_{0}=\frac{87}{\sqrt{E_{\mathrm{K}}+1.41}} \ln \left(\frac{5.98 \mathrm{~h}}{0.8 w+t}\right) \Omega$
Power supply decoupling is essential for high frequency op amps. A 0.01μ high quality ceramic capacitor at each supply pin in parallel with a 1μ fantalum capacitor will provide excellent decoupling as shown in Figure 3. Chip capacitors produce the best results due to ease of placement next to the op amp and they have negligible lead inductance. If leaded capacitors are used, the leads should be kept as short as possible to minimize lead inductance. The figures below illustrate two different decoupling schemes. Figure 4 improves the PSRR because the resistor and capacitors create low pass filters. Note that the supply current will create a voltage drop across the resistor.

Saturation Recovery

When an op amp is over driven output devices can saturate and sometimes take a long time to recover. By clamping the

input to safe levels, output saturation can be avoided. If output saturation cannot be avoided, the recovery time from 25% over-drive is 20 ns and 30 ns from 50% over-drive.

Thermal Management

The HFA-0001 can sink and source a large amount of current making it very useful in many applications. Care must be taken not to exceed the power handling capability of the part to insure proper performance and maintain high reliability. The following graph shows the maximum power handling capability of the HFA-0001 without exceeding the maximum allowable junction temperature of $175^{\circ} \mathrm{C}$. The curves also show the improved power handling capability when heatsinks are used based on AVVID heatsink \#5801B for the 8 pin Plastic DIP and IERC heatsink \#PEP50AB for the 14 pin Sidebraze DIP. These curves are based on natural convection. Forced air will greatly improve the power dissipation capabilities of a heatsink.

Thermal Constants $\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$	θ_{ja}	θ_{jc}
HFA1-0001-5/-9 $\ldots \ldots \ldots$.	87	27
HFA3-0001-5 $\ldots \ldots \ldots \ldots \ldots$.	90	30

Features

- Wide Gain Bandwidth Product 1GHz
- High Slew Rate . 250V/
- High Open Loop Gain . 105V/mV
-Low Offset Voltage 0.45mV
- Low Power Consumption 143mW

- Monolithic Construction

Applications

- RF/IF Processors
- Video Amplifiers
- Radar Systems
- Pulse Amplifiers
- High Speed Communications
- Fast Data Acquisition Systems

Description

The HFA-0002 is a very wideband, high slew rate, op amp, featuring precision DC characteristics. Stable in gains of 10 or greater this all bipolar op amp offers a combination of AC and DC performance never seen before in monolithic form.
The high gain bandwidth product (1 GHz) and high slew rate ($250 \mathrm{~V} / \mu \mathrm{s}$) make this op amp ideal for use in video and RF circuits. The low offset voltage $(0.45 \mathrm{mV})$, low bias current ($0.23 \mu \mathrm{~A}$), and low voltage noise (2.7 nV / $\sqrt{\mathrm{Hz}}$) specifications combined with the excellent AC characteristics make this op amp ideal for high speed data acquisition systems with high accuracy.
The HFA-0002-9 operates over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range, while the HFA-0002-5 operates over $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$. The HFA-0002 is available in 8 pin SOIC, 8 pin Ceramic Sidebraze DIP, 8 pin Plastic DIP, and 8 pin TO-99 Metal Can packages. For MIL-STD-883 compliant product and Ceramic LCC package consult the HFA-0002/883 datasheet.

Simplified Schematic

CAUTION: These devices are sensitive to electrostatic discharge. Proper I.C. handling procedures should be followed.
Copyright © Harris Corporation 1990

Absolute Maximum Ratings (Note 1)
Voltage Between $\mathrm{V}+$ and V - Terminals 12V
Differential Input Voltage.
Common Mode Input Voltage 55 V
Output Current . $\pm 20 \mathrm{~mA}$
Electrical Specifications $+\mathrm{V}=+5 \mathrm{~V},-\mathrm{V}=-5 \mathrm{~V}$, Unless Otherwise Specified

NOTES:

1. Absolute maximum ratings are limiting values, applied individually, beyond which the serviceability of the circuit may be impaired. Functional operation under any of these conditions is not necessarily implied.
2. $\mathrm{V}_{\mathrm{OUT}}= \pm 3 \mathrm{~V}$
3. $\Delta V_{C M}= \pm 2 \mathrm{~V}$
4. $R_{L}=5 K, C_{L}=20 p F$
5. Full Power Bandwidth is guaranteed by equation:

$$
F P B=\frac{\text { Slew Rate }}{2 \pi \text { Vpeak }}, \text { Vpeak }=3.0 \mathrm{~V}
$$

6. $V_{\text {OUT }}= \pm 100 \mathrm{mV}, A_{V}=+10$
7. $V_{\mathrm{OUT}}= \pm 3 \mathrm{~V}, A_{V}=+10$
8. $\Delta V_{S}= \pm 4 \mathrm{~V}$ to $\pm 6 \mathrm{~V}$
9. $\mathrm{V}_{\text {OUT }}= \pm 3.5 \mathrm{~V}$

Test Circuits

LARGE \& SMALL SIGNAL RESPONSE TEST CIRCUIT

LARGE SIGNAL RESPONSE Input: 0.2V/Div. Output: 2V/Div. Horizontal Scale: 20ns/Div.

SETTLING TIME SCHEMATIC

- $A V=-1$
- Feedback and summing resistors must be matched (0.1\%)
- HP5082-2810 clipping diodes recommended
- Tektronix P6201 FET probe used at settling point

Typical Performance Curves $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, Unless Otherwise Specified

Typical Performance Curves (Continued) $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, Unless Otherwise Specified
offset voltage vs temperature
4 Representative Units

OFFSET CURRENT vs TEMPERATURE
4 Representative Units

OUTPUT VOLTAGE SWING vs TEMPERATURE
$R_{L}=5 K$

BIAS CURRENT vs TEMPERATURE

OPEN LOOP GAIN vs TEMPERATURE
$\mathrm{R}_{\mathrm{L}}=5 \mathrm{~K}, \mathrm{~V}_{\mathrm{OUT}}=0$ to $\pm 3 \Omega$

OUTPUT CURRENT vs TEMPERATURE
$V_{\text {OUT }}= \pm 3 V$

Typical Performance Curves (Continued) $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, Unless Otherwise Specified

PSRR vs TEMPERATURE
$\Delta V_{S}= \pm 4 \mathrm{~V}$ to $\pm 6 \mathrm{~V}$

SUPPLY CURRENT vs SUPPLY VOLTAGE

OUTPUT VOLTAGE SWING vs FREQUENCY $A V=+10, R_{L}=5 K$,

Typical Performance Curves (Continued) $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, Unless Otherwise Specified

INPUT NOISE VOLTAGE
0.1 Hz to 10 Hz
$A_{V}=25,000$, Noise Voltage $=3.31 \mathrm{nV} \mathrm{Vms}(\mathrm{RTI})$

RISE TIME vs TEMPERATURE

INPUT NOISE vs FREQUENCY

INPUT NOISE VOLTAGE
10 Hz to 1 MHz
$A V=25,000$, Noise Voltage $=17.89 n V_{\text {rms }}$ (RTI)

Applications Information

Offset Voltage Adjustment

The HFA-0002, due to its low offset voltage, will typically not require any external offset adjustment. If certain applications do require lower offset, the following diagram shows one possible configuration.

The power supply lines must be well decoupled to filter any power supply noise. A 20 K trim pot will allow an offset adjustment of about 3 mV , referred to input.

PC Board Layout Guidelines

When designing with the HFA-0002, good high frequency (RF) techniques should be used when doing pc board layouts. A massive ground plane should be used to maintain a low impedance ground. PC board traces should be kept as short as possible and kept wide to minimize trace inductance and impedance. Stray capacitance at the op amps
output and at the high impedance inputs should be kept to a minimum, to prevent any unwanted phase shift and bandwidth limiting.

When breadboarding remember to keep feedback resistor values low ($\leq 5 k \Omega$) for optimum performance. The use of metal film resistors for values over 200Ω and carbon film resistors under 200Ω typically gives the best performance. Remember to keep all lead lengths as short as possible to minimize lead inductance.

Sockets will add parasitic capacitance and inductance and therefore can limit AC performance as well as reduce stability. If sockets must be used, a low profile socket with minimum pin to pin capacitance will minimize any performance degradation.
Power supply decoupling is essential for high frequency op amps. A $0.01 \mu \mathrm{~F}$ high quality ceramic capacitor at each supply pin in parallel with a $1 \mu \mathrm{~F}$ tantalum capacitor will provide excellent decoupling. Chip capacitors produce the best results due to the ease of placement next to the op amp and they have negligible lead inductance. If leaded capacitors are used, again the lead lengths should be kept to a minimum.

Saturation Recovery

When an op amp is over driven output devices can saturate and sometime take a long time to recover. By clamping the input to safe levels, output saturation can be avoided. If output saturation cannot be avoided, the recovery time for an input sine wave at 25% overdrive is 100 ns .

Thermal Constants (${ }^{\circ} \mathrm{C} / \mathrm{W}$)	Oja	$\theta \mathrm{jc}$
HFA2-0002-5/-9	153	46
HFA3-0002-5/-9	90	30
HFA7-0002-5/-9	87	27

Features

- Unity Gain Bandwidth ..300MHz
- Full Power Bandwidth .. 22MHz
- High Slew Rate . 420V/ $/$ s
- High Output Drive . $\pm 50 \mathrm{~mA}$
- Monolithic Bipolar Construction

Applications

- RF/IF Processors
- Video Amplifiers
- Radar Systems
- Pulse Amplifiers
- High Speed Communications
- Fast Data Acquisition Systems

Description

The HFA-0005 is an all bipolar op amp featuring high slew rate ($420 \mathrm{~V} / \mu \mathrm{s}$), and high unity gain bandwidth (300 MHz). These features combined with fast settling time (20ns) make this product very useful in high speed data acquisition systems as well as RF, video, and pulse amplifier designs.
Other outstanding characteristics include low bias currents ($15 \mu \mathrm{~A}$), low offset current $(6 \mu \mathrm{~A})$, and low offset voltage $(6 \mathrm{mV})$. These high performance characteristics are achieved with only 40 mA of supply current.
The HFA-0005 offers high performance at low cost. It can replace hybrids and RF transistor amplifiers, simplifying designs while providing increased reliability due to monolithic construction. To enhance the ease of design, the HFA-0005 has a $50 \Omega \pm 20 \%$ resistor connected from the output of the op amp to a separate pin. This can be used when driving 50Ω strip line, microstrip, or coax cable.
The performance of the HFA-0005-9 is guaranteed from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, while the HFA-0005-5 is guaranteed from $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$. The HFA-0005 is available in 8 pin SOIC, 8 pin Sidebraze, 8 pin Epoxy Mini-Dip, and 8 pin TO-99 Metal Can packages. For MIL-STD-883 compliant product and Ceramic LCC package consult the HFA-0005/883 datasheet.

Simplified Schematic

CAUTION: These devices are sensitive to electrostatic discharge. Proper I.C. handling procedures should be followed.
Copyright © Harris Corporation 1990

NOTES:

1. Absolute maximum ratings are limiting values, applied individually, beyond which the serviceability of the circuit may be impaired. Functional operation under any of these conditions is not necessarily implied.
2. $V_{O U T}=0$ to $\pm 2 \mathrm{~V}, R_{\mathrm{L}}=1 \mathrm{~K}$
3. $\Delta V_{C M}= \pm 2 V$
4. $R_{L}=100 \Omega$
5. Full Power Bandwidth is calculated by equation:

FPB $=\frac{\text { Slew Rate, }}{2 \pi \text { Vpeak }}$ Vpeak $=3.0 \mathrm{~V}$
6. $V_{\text {OUT }}= \pm 200 \mathrm{mV}, A_{V}=+1$
7. $\mathrm{V}_{\mathrm{OUT}}= \pm 3 \mathrm{~V}, \mathrm{AV}_{\mathrm{V}}=+1$
8. $\Delta V_{S}= \pm 4 \mathrm{~V}$ to $\pm 6 \mathrm{~V}$

Test Circuits

LARGE SIGNAL RESPONSE TEST CIRCUIT

LARGE SIGNAL RESPONSE
$V_{\text {OUT }}=0$ to 3 V
Vertical Scale: 1V/Div. Horizontal Scale: 5ns/Div.

SMALL SIGNAL RESPONSE TEST CIRCUIT

SMALL SIGNAL RESPONSE
$V_{\text {OUT }}=0$ to 200 mV
Vertical Scale: $100 \mathrm{mV} /$ Div. Horizontal Scale: 2ns/Div.

NOTE: Initial step in output is due to fixture feedthrough

PROPAGATION DELAY
Vertical Scale: $500 \mathrm{mV} / D i v$. Horizontal Scale: $5 n s / D i v$. $A_{V}=+1, R_{L}=1 \mathrm{~K}, V_{\text {OUT }}=0$ to $3 V$

*NOTE: Test fixture delay of 450ps is included

Typical Performance Curves $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, Unless Otherwise Specified

OPEN LOOP GAIN AND PHASE vs FREQUENCY $R_{L}=100 \Omega$

CLOSED LOOP GAIN vs FREQUENCY
$A_{V}=+10, R_{L}=100 \Omega$

PSRR vs FREQUENCY

Typical Performance Curves (Continued) $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, Unless Otherwise Specified

OFFSET VOLTAGE vs TEMPERATURE
3 Representative Units

OFFSET CURRENT vs TEMPERATURE
3 Representative Units

OUTPUT VOLTAGE SWING vs TEMPERATURE
$R_{L}=1 K$

BIAS CURRENT vs TEMPERATURE 3 Representative Units

OPEN LOOP GAIN vs TEMPERATURE
$R_{L}=1 \mathrm{~K}, \mathrm{~V}_{\mathrm{OUT}}=0$ to $\pm 2 \mathrm{~V}$

SLEW RATE vs TEMPERATURE $A_{V}=+1, R_{L}=100 \Omega, V_{O U T}=3 V$

Typical Performance Curves (Continued) $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Unless Otherwise Specified

RISE TIME vs TEMPERATURE
$A_{V}=+1, R_{L}=100 \Omega, V_{\text {OUT }}=0$ to 200 mV

PSRR vs TEMPERATURE $\Delta V_{S}= \pm 4 \mathrm{~V}$ to $\pm 6 \mathrm{~V}$

SUPPLY CURRENT vs TEMPERATURE

Typical Performance Curves (Continued) $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, Unless Otherwise Specified

INPUT NOISE VOLTAGE
$A_{V}=50$, Noise Voltage $=1.646 \mu \mathrm{~V}_{\mathrm{rms}}(\mathrm{RTI})$

INPUT NOISE VOLTAGE
$A_{V}=50$, Noise Voltage $=5.568 \mu \mathrm{~V}_{\mathrm{rms}}(\mathrm{RTI})$

Applications Information

Offset Adjustment

When applications require the offset voltage to be as low as possible, the figure below shows two possible schemes for adjusting offset voltage.

Adjustment
Range $\simeq \pm \mathrm{V}$$\left(\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}\right)$

FIGURE 1. INVERTING GAIN

For a voltage follower application, use the circuit in Figure 2 without R2 and with Ri shorted. R1 should be 1 MV to 10 MV . the adjustment resistors will cause only a very small gain error.

$\underset{\text { Range } \simeq \pm V}{\text { Adjustment }} \quad\left(\frac{R_{2}}{R_{1}}\right) \quad$ Gain $\simeq 1+\left(\frac{R_{f}}{R_{i}+R_{2}}\right)$

FIGURE 2. NON-INVERTING GAIN

PC Board Layout Guidelines

When designing with the HFA-0005, good high frequency (RF) techniques should be used when making a PC board. A massive ground plane should be used to maintain a low impedance ground. Proper shielding and use of short interconnection leads are also very important.

To achieve maximum high frequency performance, the use of low impedance transmission lines with impedance matching is recommended: 50Ω lines are common in communications and 75Ω lines in video systems. Impedance matching is important to minimize reflected energy therefore minimizing transmitted signal distortion. This is accomplished by using a series matching resistor (50 or 75Ω), matched transmission line (50 or 75Ω), and a matched terminating resistor, as shown in the figure below. Note that there will be a 6 dB loss from input to output. The HFA-0005 has an integral $50 \Omega \pm 20 \%$ resistor connected to the op amps output with the other end of the resistor pinned out. This 50Ω resistor can be used as the series resistor instead of an external resistor.

PC board traces can be made to look like a 50 or 75Ω transmission line, called microstrip. Microstrip is a PC board trace with a ground plane directly beneath, on the opposite side of the board, as shown below.

Applications Information (Continued)

When manufacturing pc boards the trace width can be calculated based on a number of variables.

The following equation is reasonably accurate for calculating the proper trace width for a 50Ω transmission line.
$Z_{0}=\frac{87}{\sqrt{E_{r}+1.41}} \ln \left(\frac{5.98 h}{0.8 w+t}\right) \Omega$
Power supply decoupling is essential for high frequency op amps. A $0.01 \mu \mathrm{f}$ high quality ceramic capacitor at each supply pin in parallel with a $1 \mu \mathrm{f}$ tantalum capacitor will provide excellent decoupling. Chip capacitors produce the best results due to ease of placement next to the op amp and they have negligible lead inductance. If leaded capacitors are used, the leads should be kept as short as possible to minimize lead inductance. The figures below illustrate two different decoupling schemes. Figure 4 improves the PSRR because the resistor and capacitors create low pass filters. Note that the supply current will create a voltage drop across the resistor.

Saturation Recovery

When an op amp is over driven output devices can saturate and sometimes take a long time to recover. By clamping the input to safe levels, output saturation can be avoided. If output saturation cannot be avoided, the recovery time from 25% over-drive is 20 ns and 30 ns from 50% over-drive.

Thermal Constants ($\circ \mathrm{O} / \mathrm{W}$)	$\theta_{\text {ja }}$	$\theta_{\text {jc }}$
HFA2-0005-5/-9 $\ldots \ldots \ldots \ldots$.	153	46
HFA3-0005-5 $\ldots \ldots \ldots \ldots .$.	90	30
HFA7-0005-5/-9 $\ldots \ldots \ldots .$.	87	27

FIGURE 4.

ICL7605/ICL7606 Commutating Auto-Zero (CAZ) Instrumentation Amplifier

GENERAL DESCRIPTION

The ICL7605/ICL7606 CMOS commutating auto-zero (CAZ) instrumentation amplifiers are designed to replace most of today's hybrid or monolithic instrumentation amplifiers, for low frequency applications from DC to 10 Hz . This is made possible by the unique construction of this Harris device, which takes an entirely new design approach to low frequency amplifiers.

Unlike conventional amplifier designs, which employ three op-amps and require ultra-high accuracy in resistor tracking and matching, the CAZ instrumentation amplifier requires no trimming except for gain. The key features of the CAZ principle involve automatic compensation for longterm drift phenomena and temperature effects, and a flying capacitor input.

The ICL7605/ICL7606 consist of two analog sections a unity gain differential to single-ended voltage converter and a CAZ op amp. The first section senses the differential input and applies it to the CAZ amp section. This section consists of an operational amplifier circuit which continuously corrects itself for input voltage errors, such as input offset voltage, temperature effects, and long term drift.

The ICL7605/ICL7606 is intended for low-frequency operation in applications such as strain gauge amplifiers which require voltage gains from 1 to 1000 and bandwidths from DC to 10 Hz . Since the CAZ amp automatically corrects itself for internal errors, the only periodic adjustment required is that of gain, which is established by two external resistors. This, combined with extremely low offset and temperature coefficient figures, makes the CAZ instrumentation amplifier very desirable for operation in severe environments (temperature, humidity, toxicity, radiation, etc.) where equipment service is difficult.

FEATURES

- Exceptionally Low Input Offset Voltage $-2 \mu \mathrm{~V}$
- Low Long Term Input Offset Voltage Drift - $0.2 \mu \mathrm{~V}$ / Year
- Low Input Offset Voltage Temperature Coefficient $0.05 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
- Wide Common Mode Input Voltage Range - 0.3 V Above Supply Rail
- High Common Mode Rejection Ratio - 100 dB
- Operates at Supply Voltages As Low As $\pm 2 \mathrm{~V}$
- Short Circuit Protection On Outputs for $\pm 5 \mathrm{~V}$ Operation
- Static-Protected Inputs - No Special Handling Required
- Compensated (ICL7605) or Uncompensated (ICL7606) Versions

0306-1
Figure 1: Pin Configuration

ORDERING INFORMATION
Order parts by the following part numbers:

Part Number	Compensation	Temperature Range	Package
ICL7605CJN	INTERNAL	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	18 -PINCERDIP
ICL7605IJN	INTERNAL	$-25^{\circ} \mathrm{Co}+85^{\circ} \mathrm{C}$	18 -PIN CERDIP
ICL7605MJN	INTERNAL	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	18 -PINCERDIP
ICL7606CJN	EXTERNAL	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	18 -PIN CERDIP
ICL7606IJN	EXTERNAL	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	18 -PINCERDIP
ICL7606MJN	EXTERNAL	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	18 -PINCERDIP

[^46]ICL7605/ICL7606

0306-2
Figure 2: Symbol

ABSOLUTE MAXIMUM RATINGS

Total Supply Voltage ($\mathrm{V}+$ to V^{-}) 18 V
DR Input Voltage $\ldots \ldots \ldots \ldots . .\left(\mathrm{V}^{+}-8\right)$ to $\left(\mathrm{V}^{+}+0.3\right) \mathrm{V}$
Input Voltage ($\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}+$ DIFF IN, - DIFF \mathbb{N},

- INPUT, BIAS, OSC),
(Note 1) $\mathrm{V}^{-}-0.3$) to $\left(\mathrm{V}^{+}+0.3\right) \mathrm{V}$
Differential Input Voltage (+ DIFF IN to -DIFF IN)
(Note 2) $\ldots \ldots \ldots \ldots \ldots \ldots\left(V^{-}-0.3\right)$ to $\left(V^{+}+0.3\right) V^{2}$
Duration of Output Short Circuit (Note 3) Unlimited

Continuous Total Power Dissipation (Note 4) 500mW
Operating Temperature Range:
ICL7605/ICL7606C 0 to $+70^{\circ} \mathrm{C}$
ICL7605/ICL76061 $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
ICL7605/ICL7606M $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10sec) $300^{\circ} \mathrm{C}$

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
Note 1: Due to the SCR structure inherent in all CMOS devices, exceeding these limits may cause destructive latch up. For this reason, it is recommended that no inputs from sources operating on a separate power supply be applied to the $7605 / 6$ before its own power supply is established, and that when using multiple supplies, the supply for the 7605/6 should be turned on first.
Note 2: No restrictions are placed on the differential input voltages on either the +DIFF IN or -DIFF IN inputs so long as these voltages do not exceed the power supply voltages by more than 0.3 V .
Note 3: The outputs may be shorted to ground (GND) or to either supply (V^{+}or V^{-}). Temperatures and/or supply voltages must be limited to insure that the dissipation ratings are not exceeded.
Note 4: For operation above $25^{\circ} \mathrm{C}$ ambient temperature, derate $4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from 500 mW above $25^{\circ} \mathrm{C}$.

ELECTRICAL CHARACTERISTICS

Test Conditions: $\mathrm{V}^{+}=+5 \mathrm{~V}, \mathrm{~V}^{-}=-5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, DR pin connected to $\mathrm{V}+\left(\mathrm{fCOM} \cong 160 \mathrm{~Hz}, \mathrm{f}_{\mathrm{COM} 1} \cong 80 \mathrm{~Hz}\right.$), $C_{1}=C_{2}=C_{3}=C_{4}=1 \mu \mathrm{~F}$, Test Circuit 1 unless otherwise specified.

ICL7605/ICL7606

ELECTRICAL CHARACTERISTICS

Test Conditions: $\mathrm{V}^{+}=+5 \mathrm{~V}, \mathrm{~V}^{-}=-5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, DR pin connected to V^{+}(fCOM $\cong 160 \mathrm{~Hz}, \mathrm{f}_{\mathrm{COM} 1} \cong 80 \mathrm{~Hz}$), $\mathrm{C}_{1}=\mathrm{C}_{2}=\mathrm{C}_{3}=\mathrm{C}_{4}=1 \mu \mathrm{~F}$, Test Circuit 1 unless otherwise specified. (Continued)

Symbol	Parameter	Test Conditions		Value			Units
				Min	Typ	Max	
\bar{e}_{n}	Equivalent Input Noise voltage	Band Width 0.1 to 1.0 Hz	All Bias Modes		1.7		$\mu \mathrm{V}$
Avol	Open Loop Voltage Gain	$\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$	Low Bias Setting Med Bias Setting High Bias Setting	$\begin{aligned} & 90 \\ & 90 \\ & 80 \end{aligned}$	$\begin{aligned} & 105 \\ & 105 \\ & 100 \end{aligned}$		dB dB dB
$\pm \mathrm{V}_{\mathrm{O}}$	Maximum Output Voltage Swing	$\begin{aligned} & R_{L}=1 \mathrm{M} \Omega \\ & R_{L}=100 \mathrm{k} \Omega \\ & R_{L}=10 \mathrm{k} \Omega \end{aligned}$	Positive Swing Negative Swing	+4.4	$\begin{aligned} & \pm 4.9 \\ & \pm 4.8 \end{aligned}$	-4.5	$\begin{aligned} & v \\ & v \\ & v \\ & v \end{aligned}$
GBW	Bandwidth of Input Voltage Translator	$\mathrm{C}_{3}=\mathrm{C}_{4}=1 \mu$	All Bias Modes		10		Hz
$\mathrm{f}_{\text {COM }}$	Nominal Commutation Frequency	$\mathrm{C}_{\text {OSC }}=0$	DR Connected to V + DR Connected to GND		$\begin{gathered} 160 \\ 2560 \end{gathered}$		$\begin{aligned} & \mathrm{Hz} \\ & \mathrm{~Hz} \end{aligned}$
$\mathrm{f}^{\text {COM } 1}$	Nominal Input Converter Commutation Frequency	$\mathrm{Cosc}^{\text {a }}=0$	DR Connected to V^{+} DR Connected to GND		$\begin{gathered} 80 \\ 1280 \\ \hline \end{gathered}$		$\begin{aligned} & \mathrm{Hz} \\ & \mathrm{~Hz} \end{aligned}$
$V_{B H}$ $V_{B M}$ $V_{B L}$	Bias Voltage required to set Quiescent Current	Low Bias Settin Med Bias Settin High Bias Set		$\begin{aligned} & V^{+}-0.3 \\ & V^{-}+1.4 \\ & V^{-}-0.3 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{V}+ \\ \text { GND } \\ \mathrm{V} \\ \hline \end{gathered}$	$\begin{aligned} & v^{+}+0.3 \\ & v^{+}-1.4 \\ & v^{-}+0.3 \end{aligned}$	$\begin{aligned} & v \\ & v \\ & v \end{aligned}$
$\mathrm{I}_{\text {BIAS }}$	Bias (Pin 8) Input Current				± 30		pA
IDR	Division Ratio Input Current	$\mathrm{V}^{+}-8.0 \leq \mathrm{V}_{\mathrm{DR}} \leq \mathrm{V}^{+}+0.3$ volt			± 30		pA
$V_{\text {DRH }}$ $V_{\text {DRL }}$	DR Voltage required to set Oscillator division ratio	Internal oscillator division ratio 32 Internal oscillator division ratio 2		$\begin{gathered} \mathrm{V}^{+}-0.3 \\ \mathrm{~V}^{+}-8 \end{gathered}$		$\begin{aligned} & V^{+}+0.3 \\ & V^{+}-1.4 \end{aligned}$	$\begin{aligned} & v \\ & v \end{aligned}$
$\mathrm{R}_{\text {AS }}$	Effective Impedance of Voltage Translator Analog Switches				30		k Ω
ISUPP	Supply Current	High Bias Set Med Bias Setti Low Bias Setti			$\begin{gathered} 7 \\ 1.7 \\ 0.6 \end{gathered}$	$\begin{gathered} 15 \\ 5 \\ 1.5 \end{gathered}$	mA mA mA
$\mathrm{V}^{+}-\mathrm{V}^{-}$	Operating Supply Voltage Range	High Bias Set Med or Low B	Setting	$\begin{aligned} & 5 \\ & 4 \end{aligned}$		$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$

Note 5: For Design only, not tested.

TYPICAL PERFORMANCE CHARACTERISTICS

INPUT OFFSET VOLTAGE AS A FUNCTION OF
AMBIENT TEMPERATURE

INPUT OFFSET VOLTAGE AND PK-TO-PK NOISE VOLTAGE AS A FUNCTION OF COMMUTATION FREQUENCY ($\mathrm{C}_{1}, \mathrm{C}_{2}=0.1 \mu \mathrm{~F}$)

INPUT OFFSET VOLTAGE AND PK-TO-PK NOISE VOLTAGE AS A FUNCTION OF SUPPLY VOLTAGES

0306-5

INPUT OFFSET VOLTAGE AND PK-TO-PK NOISE AS A FUNCTION OF SUPPLY VOLTAGE ($\mathbf{V}^{+-} \mathbf{V}^{-}$)

INPUT OFFSET VOLTAGE AND PK-TO-PK NOISE VOLTAGE AS A FUNCTION OF COMMUTATION FREQUENCY ($\left.C_{1}, C_{2}=1 \mu F\right)$

0306-6

COMMON MODE REJECTION RATIO AS A FUNCTION OF THE INPUT DIFFERENTIAL TO SINGLE ENDED VOLTAGE CONVERTER CAPACITORS

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

0306-10

0306-13
AMPLITUDE RESPONSE OF THE INPUT DIFFERENTIAL TO SINGLE ENDED VOLTAGE CONVERTER

maximum output voltage AS A FUNCTION OF OUTPUT LOAD RESISTANCE

SUPPLY CURRENT AS A FUNCTION OF SUPPLY VOLTAGE

0306-12
OSCILLATOR FREQUENCY AS A FUNCTION OF EXTERNAL CAPACITIVE LOADING

0306-14
FREQUENCY RESPONSE OF THE 10 Hz LOW PASS FILTER USED TO MEASURE NOISE (TEST CIRCUIT 2).

DETAILED DESCRIPTION

CAZ Instrumentation Amp Overview

The CAZ instrumentation amplifier operates on principles which are very different from those of the conventional three op-amp designs, which must use ultra-precise trimmed resistor networks in order to achieve acceptable accuracy. An important advantage of the ICL7605/ICL7606 CAZ instrumentation amp is the provision for self-compensation of internal error voltages, whether they are derived from steady-state conditions, such as temperature and supply voltage fluctuations, or are due to long term drift.

The CAZ instrumentation amplifier is constructed with monolithic CMOS technology, and consists of three distinct sections, two analog and one digital. The two analog sections - a differential to single-ended voltage converter, and a CAZ op amp - have on-chip analog switches to steer the input signal. The analog switches are driven from a selfcontained digital section which consists of an RC oscillator, a programmable divider, and associated voltage translators. A functional layout of the ICL7605/ICL7606 is shown in Figure 6.

0306-19
Figure 6: Simplified Block Diagram
The ICL7605/ICL7606 have approximately constant equivalent input noise voltage, CMRR, PSRR, input offset voltage and drift values independent of the gain configuration. By comparison, hybrid-type modules which use the traditional three op amp configuration have relatively poor performance at low gain (1 to 100) with improved performance above a gain of 100 .
The only major limitation of the ICL7605/ICL7606 is its low-frequency operation (10 to 20 Hz maximum). However in many applications bandwidth is not the most important parameter.

CAZ Op Amp Section

Operation of the CAZ op-amp section of the ICL7605/ ICL7606 is best illustrated by referring to Figure 7. The basic amplifier configuration, represented by the large triangles, has one more input than does a regular op amp - the $A Z$, or auto-zero terminal. The voltage on the $A Z$ input is that level at which each of the internal op amps will be autozeroed. In Mode A, op amp \# 2 is connected in a unity gain mode through on-chip analog switches. It charges external capacitor C_{2} to a voltage equal to the DC input offset voltage of the amplifier plus the instantaneous low-frequency noise voltage. A short time later, the analog switches reconnect the on-chip op amps to the configuration shown in Mode B. In this mode, op amp \#2 has capacitor C_{2} (which is charged to a voltage equal to the offset and noise voltage of op amp \#2) connected in series to its non-inverting (+) input in such a manner as to null out the input offset and noise voltages of the amplifier. While one of the on-chip op amps is processing the input signal, the second op amp is in an auto-zero mode, charging a capacitor to a voltage equal to its equivalent DC and low frequency error voltage. The on-chip amplifiers are connected and reconnected at a rate designated as the commutation frequency ($\mathrm{f}_{\mathrm{COM}}$), so that at all times one or the other of the on-chip op amps is processing the input signal, while the voltages on capacitors C_{1} and C_{2} are being updated to compensate for variables such as low frequency noise voltage and input offset voltage changes due to temperature, drift or supply voltages effects.

Figure 7: Diagrammatic representation of the 2 half cycles of operation of the CAZ OP AMP.

Compared to the standard bipolar or FET input op amps, the CAZ amp scheme demonstrates a number of important advantages:

* Effective input offset voltages can be reduced from 1000 to 10,000 times without trimming.
* Long-term offset voltage drift phenomena can be compensated and dramatically reduced.
* Thermal effects can be compensated for over a wide operating temperature range. Reductions can be as much as 100 times or better.
* Supply voltage sensitivity is reduced.

CMOS processing is ideally suited to implement the CAZ amp structure. The digital section is easily fabricated, and the transmission gates (analog switches) which connect the on-chip op amps can be constructed for minimum charge
injection and the widest operating voltage range. The ana\log section, which includes the on-chip op amps, contributes performance figures which are similar to bipolar or FET input designs. The CMOS structure provides the CAZ opamp with open-loop gains of greater than 100 dB , typical input offset voltages of $\pm 5 \mathrm{mV}$, and ultra-low leakage currents, typically 1 pA .

The CMOS transmission gates connect the on-chip op amps to external input and output terminals, as shown in Figure 8. Here, one op amp and its associated analog switches are required to connect each on-chip op amp, so that at any time three switches are open and three switches are closed. Each analog switch consists of a P-channel transistor in parallel with an N -channel transistor.

The frequency at which modes $A \& B$ are cycled is known as the INPUT COMMUTATION FREQUENCY

Figure 9: Schematic of the differential to single ended voltage converter

DIFFERENTIAL-TO-SINGLE-ENDED UNITY GAIN VOLTAGE CONVERTER

An idealized schematic of the voltage converter block is shown in Figure 9. The mode of operation is quite simple, involving two capacitors and eight switches. The switches are arranged so that four are open and four are closed. The four conducting switches connect one of the capacitors across the differential input, and the other from a ground or reference voltage to the input of the CAZ instrumentation amp. The output signal of this configuration is shown in Figure 10 , where the voltage steps equal the differential voltage $\left(V_{A}-V_{B}\right)$ at commutation times a, b, c, etc. The output waveform thus represents all information contained in the input signal from DC up to the commutation frequency, including commutation and noise voltages. Sampling theory states that to preserve the information to be processed, at least two samples must be taken within a period $(1 / f)$ of the highest frequency being sampled. Consequently this scheme preserves information up to the commutation frequency. Above the commutation frequency, the input signal is translated to a lower frequency. This phenomenon is known as aliasing. Although the output responds to inputs above the commutation frequency, the frequencies of the output responses will be below the commutation frequency.

0306-24
Figure 11: 3-1/2 Digit Digital Readout Torque Wrench

The voltage converter is fabricated with CMOS analog switches, which contain a parallel combination of P-channel and N -channel transistors. The switches have a finite ON impedances of $30 \mathrm{k} \Omega$, plus parasitic capacitances to the substrate. Because of the charge injection effects which appear at both the switches and the output of the voltage converter, the values of capacitors C_{3} and C_{4} must be about $1 \mu \mathrm{~F}$ to preserve signal translation accuracies to 0.01%. The $1 \mu \mathrm{~F}$ capacitors, coupled with the $30 \mathrm{k} \Omega$ equivalent impedance of the switches, produce a low-pass filter response from the voltage converter which is down approximately 3 dB at 10 Hz .

APPLICATIONS

Using the ICL7605/ICL7606 to Build a Digital Readout Torque Wrench

A typical application for the ICL7605/ICL7606 is in a strain gauge system, such as the digital readout torque wrench circuit shown in Figure 6. In this application, the CAZ instrumentation amplifier is used as a preamplifier, taking the differential voltage of the bridge and converting it to a single-ended voltage referenced to ground. The signal is then amplified by the CAZ instrumentation amplifier and applied to the input of a $3-1 / 2$ digit dual-slope A/D converter which drives the LCD panel meter display. The A/D converter device used in this instance is the Harris ICL7106.

In the digital readout torque wrench circuit, the reference voltage for the ICL7106 is derived from the stimulus applied to the strain gauge, to utilize the ratiometric capabilities of
the A/D. In order to set the full-scale reading, a value of gain for the ICL7605/ICL7606 instrumentation CAZ amp must be selected along with an appropriate value for the reference voltage. The gain should be set so that at full scale, the output will swing about 0.5 V . The reference voltage required is about one-half the maximum output swing, or approximately 0.25 V .

In this type of system, only one adjustment is required. Either the amplifier gain or the reference voltage must be varied for full-scale adjustment. Total current consumption of all circuitry, less the current through the strain gauge bridge, is typically 2 mA . The accuracy is limited only by resistor ratios and the transducer.

SOME HELPFUL HINTS Testing the ICL7605/ICL7606 CAZ Instrumentation Amplifier

Figure 4 and 5 (Test Circuits) provide a convenient means of measuring most of the important electrical parameters of the CAZ instrumentation amp. The output signal can be viewed on an oscilloscope after being fed through a lowpass filter. It is recommended that for most applications, a low-pass filter of about 1.0 to 1.5 Hz be used to reduce the peak-to-peak noise to about the same level as the input offset voltage.

The output low-pass filter must be a high-input impedance RC type - not simply a capacitor across the feedback resistor R_{2}. Resistor and capacitor values of about $100 \mathrm{k} \Omega$ and $1.0 \mu \mathrm{~F}$ are necessary so that the output load impedance on the CAZ op-amp is greater than $100 \mathrm{k} \Omega$.

WAVEFORMS
0306-25

0306-26
Figure 12: Effect of a load capacitor on output voltage waveforms.

Bias Control

The on-chip op amps consume over 90% of the power required by the ICL7605/ICL7606. For this reason, the internal op amps have externally programmable bias levels. These levels are set by connecting the BIAS terminal to either V^{+}, GND, or V^{-}, for LOW, MED or HIGH BIAS levels, respectively. The difference between each bias setting is about a factor of 3 , allowing a $9: 1$ ratio of quiescent supply current versus bias setting. This current programmability provides the user with a choice of device power dissipation levels, slew rates (the higher the slew rate, the better the recovery from commutation spikes), and offset errors due to "IR" voltage drops and thermoelectric effects (the higher the power dissipation, the higher the input offset error). In most cases, the medium bias (MED BIAS) setting will be found to be the best choice.

Output Loading (Resistive)

With a $10 \mathrm{k} \Omega$ load, the output voltage swing can vary across nearly the entire supply voltage range, and the device can be used with loads as low as $2 k \Omega$.
However, with loads of less than $50 \mathrm{k} \Omega$, the on-chip op amps will begin to exhibit the characteristics of transconductance amplifiers, since their respective output impedances are nearly $50 \mathrm{k} \Omega$ each. Thus the open-loop gain is 20 dB less with a $2 \mathrm{k} \Omega$ load than it would be with a $20 \mathrm{k} \Omega$ load. Therefore, for high gain configurations requiring high accuracy, an output load of $100 \mathrm{k} \Omega$ or more is suggested.
There is another consideration in applying the CAZ instrumentation op amps which must not be overlooked. This is the additional power dissipation of the chip which will result from a large output voltage swing into a low resistance load. This added power dissipation can affect the initial input offset voltages under certain conditions.

Output Loading (Capacitive)

in many applications, it is desirable to include a low-pass filter at the output of the CAZ instrumentation op amp to reduce high-frequency noise outside the desired signal passband. An obvious solution when using a conventional op amp would be to place a capacitor across the external feedback resistor and thus produce a low-pass filter.
However, with the CAZ op amp concept this is not possible because of the nature of the commutation spikes. These voltage spikes exhibit a low-impedance characteris-
tic in the direction of the auto-zero voltage and a high-impedance characteristic on the recovery edge, as shown in Figure 12. It can be seen that the effect of a large load capacitor produces an area error in the output waveform, and hence an effective gain error. The output low-pass filter must be of a high-impedance type to avoid these area errors. For example, a 1.5 Hz filter will require a $100 \mathrm{k} \Omega$ resistor and a $1.0 \mu \mathrm{~F}$ capacitor, or a $1 \mathrm{M} \Omega$ resistor and a $0.1 \mu \mathrm{~F}$ capacitor.

Oscillator and Digital Circuitry Considerations

The oscillator has been designed to run free at about 5.2 kHz when the OSC terminal is open circuit. If the full divider network is used, this will result in a nominal commutation frequency of approximately 160 Hz . The commutation frequency is that frequency at which the on-chip op amps are switched between the signal processing and the autozero modes. A 160 Hz commutation frequency represents the best compromise between input offset voltage and low frequency noise. Other commutation frequencies may provide optimization of some parameters, but always at the expense of others.
The oscillator has a very high output impedance, so that a load of only a few picofarads on the OSC terminal will cause a significant shift in frequency. It is therefore recommended that if the natural oscillator frequency is desired $(5.2 \mathrm{kHz})$ the terminal remains open circuit. In other instances, it may be desirable to synchronize the oscillator with an external clock source, or to run it at another frequency. The ICL7605/ICL7606 CAZ amp provides two degrees of flexibility in this respect. First, the DR (division ratio) terminal allows a choice of either dividing the oscillator by 32 (DR terminal to V^{+}) or by 2 (DR terminal to GND) to obtain the commutation frequency. Second, the oscillator may have its frequency lowered by the addition of an external capacitor connected between the OSC terminal and the V^{+}or system GND terminals. For situations which require that the commutation frequency be synchronized with a master clock, (Figure 13) the OSC terminal may be driven from TTL logic (with resistive pull-up) or by CMOS logic, provided that the V^{+}supply is $+5 \mathrm{~V}(\pm 10 \%)$ and the logic driver also operates from a similar voltage supply. The reason for this requirement is that the logic section (including the oscillator) operates from an internal -5 V supply, referenced to V^{+} supply, which is not accessible externally.

ICL7605/ICL7606

Thermoelectric Effects

The ultimate limitations to ultra-high-sensitivity DC amplifiers are due to thermoelectric, Peltier, or thermocouple effects in electrical junctions consisting of various metals (alloys, silicon, etc.) Unless all junctions are at precisely the same temperature, small thermoelectric voltages will be produced, generally about $0.1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$. However, these voltages can be several tens of microvolts per ${ }^{\circ} \mathrm{C}$ for certain thermocouple materials.

In order to realize the extremely low offset voltages which the CAZ op amp can produce, it is necessary to take precautions to avoid temperature gradients. All components should be enclosed to eliminate air movement across device surfaces. In addition, the supply voltages and power dissipation should be kept to a minimum by use of the MED BIAS setting. Employ a high impedance load and keep the ICL7605/ICL7606 away from equipment which dissipates heat.

Component Selection

The four capacitors (C_{1} thru C_{4}) should each be about $1.0 \mu \mathrm{~F}$. These are relatively large values for non-electrolytic capacitors, but since the voltages stored on them change significantly, problems of dielectric absorption, charge bleed-off and the like are as significant as they would be for integrating dual-slope A/D converter applications. Polypropylene types are the best for C_{3} and C_{4}, although Mylar may be adequate for C_{1} and C_{2}.
Excellent results have been obtained for commercial temperature ranges using several of the less-expensive, small-er-size capacitors, since the absolute values of the capacitors are not critical. Even polarized electrolytic capacitors rated at $1.0 \mu \mathrm{~F}$ and 50 V have been used successfully at room temperature, although no recommendations are made concerning the use of such capacitors.

Commutation Voltage Transient Effects

Although in most respects the CAZ instrumentation amplifier resembles a conventional op amp, its principal applications will be in very low level, low-frequency preamplifiers limited to DC through 10 Hz . The is due to the finite switching transients which occur at both the input and output terminals because of commutation effects. These transients have a frequency spectrum beginning at the commutation frequency, and including all of the higher harmonics of the commutation frequency. Assuming that the commutation frequency is higher than the highest in-band frequency, then the commutation transients can be filtered out with a lowpass filter.

The input commutation transients arise when each of the on-chip op amps experiences a shift in voltage which is equal to the input offset voltages (about $5-10 \mathrm{mV}$), usually occurring during the transition between the signal processing mode and the auto-zero mode. Since the input capacitances of the on-chip op-amps are typically in the 10 pF range, and since it is desirable to reduce the effective input offset voltage about 10,000 times, the offset voltage autozero capacitors C_{1} and C_{2} must have values of at least $10,000 \times 10 \mathrm{pF}$, or $0.1 \mu \mathrm{~F}$ each.

The charge that is injected into the input of each op amp when being switched into the signal processing mode produces a rapidly-decaying voltage spike at the input, plus an equivalent $D C$ input bias current averaged over a full cycle. This bias current is directly proportional to the commutation frequency, and in most instances will greatly exceed the inherent leakage currents of the input analog switches, which are typically 1.0 pA at an ambient temperature of $25^{\circ} \mathrm{C}$.

The output waveform in Figure 4 (with no input signal) is shown in Figure 14. Note that the equivalent noise voltage is amplified 1000 times, and that due to the slew rate of the on-chip op amps, the input transients of approximately 7 mV are amplified by a factor of less than 1000.

Figure 14: Output waveform from Test Circuit 1.

Layout Considerations

Care should be exercised in positioning components on the PC board particularly the capacitors $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}$ and C_{4}, which must all be shielded from the OSC terminal. Also, parasitic PC board leakage capacitances associated with these four capacitors should be kept as low as possible to minimize charge injection effects.

GENERAL DESCRIPTION

The ICL761X/762X/763X/764X series is a family of monolithic CMOS operational amplifiers. These devices provide the designer with high performance operation at low supply voltages and selectable quiescent currents, and are an ideal design tool when ultra low input current and low power dissipation are desired.

The basic amplifier will operate at supply voltages ranging from $\pm 1 \mathrm{~V}$ to $\pm 8 \mathrm{~V}$, and may be operated from a single Lithium cell.

A unique quiescent current programming pin allows setting of standby current to $1 \mathrm{~mA}, 100 \mu \mathrm{~A}$, or $10 \mu \mathrm{~A}$, with no external components. This results in power consumption as low as $20 \mu W$. Output swings range to within a few millivolts of the supply voltages.

Of particular significance is the extremely low (1pA) input current, input noise current of $.01 \mathrm{pA} / \sqrt{\mathrm{Hz}}$, and $10^{12} \Omega$ input impedance. These features optimize performance in very high source impedance applications.

The inputs are internally protected. Outputs are fully protected against short circuits to ground or to either supply.

AC performance is excellent, with a slew rate of $1.6 \mathrm{~V} / \mu \mathrm{s}$, and unity gain bandwidth of 1 MHz at $\mathrm{I}_{\mathrm{Q}}=1 \mathrm{~mA}$.

Because of the low power dissipation, operating temperatures and drift are quite low. Applications utilizing these features may include stable instruments, extended life designs, or high density packages.

SELECTION GUIDE

DEVICE NOMENCLATURE

FEATURES

- Wide Operating Voltage Range $\pm 1 \mathrm{~V}$ to $\pm 8 \mathrm{~V}$
- High Input Impedance - $10^{12 \Omega}$
- Programmable Power Consumption - Low As 20μ W
- Input Current Lower Than BIFETs - Typ ipA
- Available As Singles, Duals, Triples, and Quads
- Output Voltage Swings to Within Millivolts Of V - and V^{+}
- Low Power Replacement for Many Standard Op Amps
- Compensated and Uncompensated Versions
- Input Common Mode Voltage Range Greater Than Supply Rails (ICL7612)

APPLICATIONS

- Portable Instruments
- Telephone Headsets
- Hearing Aid/Microphone Amplifiers
- Meter Amplifiers
- Medical Instruments
- High Impedance Buffers

SPECIAL FEATURE CODES

C $=$ INTERNALLY COMPENSATED
$\mathrm{H}=\mathrm{HIGH}$ QUIESCENT CURRENT (1mA)
$\mathrm{L}=$ LOW QUIESCENT CURRENT $(10 \mu \mathrm{~A})$
$\mathrm{M}=$ MEDIUM QUIESCENT CURRENT $(100 \mu \mathrm{~A})$
$0=$ OFFSET NULL CAPABILITY
$\mathrm{P}=$ PROGRAMMABLE QUIESCENT CURRENT
$V=$ EXTENDED CMVR

ICL76XX

ORDERING INFORMATION

Basic Part Number	Number of OP-AMPS in Package, and Special Features (SEE CODES)	Package Type and Suffix				
		8-Lead TO-99		8-Pin MINIDIP	$\begin{aligned} & \text { 8-Pin } \\ & \text { SOIC } \end{aligned}$	Plastic DIP (1)
		$\begin{aligned} & 0^{\circ} \mathrm{C} \text { to } \\ & +70^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	$\begin{aligned} & 0^{\circ} \mathrm{C} \text { to } \\ & +70^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 0^{\circ} \mathrm{C} \text { to } \\ & +70^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 0^{\circ} \mathrm{C} \text { to } \\ & +70^{\circ} \mathrm{C} \end{aligned}$
$\begin{aligned} & \text { ICL7611 } \\ & \text { ICL7612 } \end{aligned}$	SINGLE OP-AMP: C, O, P C, O, P, V C, O, P, V	$\begin{aligned} & \text { ACTV } \\ & \text { BCTV } \\ & \text { DCTV } \end{aligned}$	AMTV BMTV DMTV	$\begin{aligned} & \text { ACPA } \\ & \text { BCPA } \\ & \text { DCPA } \end{aligned}$	$\begin{gathered} \text { DCBA-T } \\ \text { DCBA } \end{gathered}$	
ICL7621	DUAL OP-AMP: C, M	ACTV BCTV DCTV	AMTV BMTV DMTV	ACPA BCPA DCPA	$\begin{gathered} \text { DCBA } \\ \text { DCBA-T } \end{gathered}$	
ICL7631	TRIPLE OP-AMP: C, P					CCPE ECPE
$\begin{aligned} & \text { ICL7641 } \\ & \text { ICL7642 } \end{aligned}$	QUAD OP-AMP: C, H C, L					$\begin{aligned} & \text { CCPD } \\ & \text { ECPD } \end{aligned}$

NOTES: 1. Duals and quads are available in 14 pin DIP package, triples in 16 pin only.
2. Ordering code must consist of basic part number and package suffix, e.g., ICL7611BCPA.

Device	Description	Pin Assignments
ICL7611XCPA ICL7611XCTV ICL7611XMTV ICL7611XCBA ICL7612XCPA ICL7612XCTV ICL7612XMTV ICL7612XCBA	Internal compensation, plus offset null capability and external I_{Q} control	*Pin 7 connected to case. 8 PIN DIP (TOP VIEW) (outline dwg BA)

Figure 1: Pin Configurations

Device	Description	Pin Assignments
ICL7621XCPA ICL7621XCTV ICL7621XMTV ICL7621XCBA	Dual op amps with internal compensation; I_{Q} fixed at $100 \mu \mathrm{~A}$ Pin compatible with Texas Inst. TL082 Motorola MC1458 Raytheon RC4558	*Pin 8 connected to case.
ICL7631XCPE	Triple op amps with internal compensation. Adjustable l_{Q} Same pin configuration as ICL8023.	16 PIN DIP (TOP VIEW) (outline dwg PE)
ICL7641XCPD ICL7642XCPD	Quad op amps with internal compensation. I_{Q} fixed at 1 mA (ICL7641) l_{Q} fixed at $10 \mu \mathrm{~A}$ (ICL7642) Pin compatible with Texas Instr. TL084 National LM324 Harris HA4741	14 PIN DIP (TOP VIEW) (outline dwg PD)

Figure 1: Pin Configurations (Cont.)

ABSOLUTE MAXIMUM RATINGS

Total Supply Voltage V^{+}to V^{-} 18 V Input Voltage \qquad \ldots. $V^{-}-0.3$ to $V^{+}+0.3 \mathrm{~V}$
Differential Input Voltage ${ }^{[1]} . \pm\left[\left(\mathrm{V}^{+}+0.3\right)-\left(\mathrm{V}^{-}-0.3\right)\right] \mathrm{V}$ Duration of Output Short Circuit ${ }^{[2]}$

Continuous Power Dissipation

	@ $25^{\circ} \mathrm{C}$	Above $25^{\circ} \mathrm{C}$ derate as below:
TO-99	250 mW	$2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
8 Lead Minidip	250 mW	$2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
14 Lead Plastic	375 mW	$3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
14 Lead Cerdip	500 mW	$4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
16 Lead Plastic	375 mW	$3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
16 Lead Cerdip	500 mW	$4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$		
Operating Temperature Range		
ICL76XXM . $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		
ICL76XXC $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$		
Lead Temperature (Soldering, 10sec)		

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

NOTE 1. Long term offset voltage stability will be degraded if large input differential voltages are applied for long periods of time.
2. The outputs may be shorted to ground or to either supply. for $V_{S U P P} \leq 10 \mathrm{~V}$. Care must be taken to insure that the dissipation rating is not exceeded.

ELECTRICAL CHARACTERISTICS (7611/12 and 7621 ONLY)
($V_{\text {SUPPLY }}= \pm 5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified.)

Symbol	Parameter	Test Conditions	76XXA			76XXB			76XXD			Units
			Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
Vos	Input Offset Voltage	$\begin{aligned} & \mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{k} \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {MAX }} \end{aligned}$			$\begin{aligned} & 2 \\ & 3 \end{aligned}$			$\begin{aligned} & 5 \\ & 7 \end{aligned}$			$\begin{aligned} & 15 \\ & 20 \end{aligned}$	mV
$\Delta \mathrm{V}_{\mathrm{OS}} / \Delta \mathrm{T}$	Temperature Coefficient of V_{OS}	$\mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{k} \Omega$		10			15			25		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
los	Input Offset Current	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & \Delta \mathrm{~T}_{A}=\mathrm{C}_{(2)} \\ & \Delta \mathrm{T}_{\mathrm{A}}=\mathrm{M}_{(2)} \end{aligned}$		0.5	$\begin{array}{\|c\|} \hline 30 \\ 300 \\ 800 \\ \hline \end{array}$		0.5	$\begin{array}{\|c\|} \hline 30 \\ 300 \\ 800 \\ \hline \end{array}$		0.5	$\begin{array}{\|c\|} \hline 30 \\ 300 \\ 800 \\ \hline \end{array}$	pA
IBIAS	Input Bias Current	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & \Delta T_{A}=C \\ & \Delta T_{A}=M \end{aligned}$		1.0	$\begin{array}{\|c\|} \hline 50 \\ 400 \\ 4000 \\ \hline \end{array}$		1.0	$\begin{array}{\|c\|} \hline 50 \\ 400 \\ 4000 \\ \hline \end{array}$		1.0	$\begin{array}{\|c\|} \hline 50 \\ 400 \\ 4000 \\ \hline \end{array}$	pA
$\mathrm{V}_{\text {CMR }}$	Common Mode Voltage Range (Except ICL7612)	$\begin{aligned} & \mathrm{l}_{\mathrm{Q}}=10 \mu \mathrm{~A}(1) \\ & \mathrm{l}_{\mathrm{Q}}=100 \mu \mathrm{~A} \\ & \left.\mathrm{l}_{\mathrm{Q}}=1 \mathrm{~mA} \mathrm{~A}^{1}\right) \end{aligned}$	$\begin{aligned} & \pm 4.4 \\ & \pm 4.2 \\ & \pm 3.7 \end{aligned}$			$\begin{array}{\|l\|} \hline \pm 4.4 \\ \pm 4.2 \\ \pm 3.7 \\ \hline \end{array}$			$\begin{aligned} & \pm 4.4 \\ & \pm 4.2 \\ & \pm 3.7 \\ & \hline \end{aligned}$			V
$\mathrm{V}_{\text {CMR }}$	Extended Common Mode Voltage Range (ICL7612 Only)	$\mathrm{l}_{\mathrm{Q}}=10 \mu \mathrm{~A}$	± 5.3			± 5.3			± 5.3			
		$\mathrm{I}_{\mathrm{Q}}=100 \mu \mathrm{~A}$	$\begin{array}{\|l\|} +5.3 \\ -5.1 \end{array}$			$\begin{array}{\|l\|} \hline+5.3 \\ -5.1 \\ \hline \end{array}$			$\begin{aligned} & +5.3 \\ & -5.1 \end{aligned}$			V
		$\mathrm{l}_{\mathrm{Q}}=1 \mathrm{~mA}$	$\begin{array}{\|l\|} \hline+5.3 \\ -4.5 \end{array}$			$\begin{array}{\|l\|} \hline+5.3 \\ -4.5 \end{array}$			$\begin{array}{\|l\|} +5.3 \\ -4.5 \end{array}$			
V OUT	Output Voltage Swing	$\begin{aligned} & \text { (1) } \mathrm{I}_{\mathrm{Q}}=10 \mu \mathrm{~A}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \Delta \mathrm{~T}_{\mathrm{A}}=\mathrm{C} \\ & \Delta \mathrm{~T}_{\mathrm{A}}=\mathrm{M} \end{aligned}$	$\begin{aligned} & \pm 4.9 \\ & \pm 4.8 \\ & \pm 4.7 \end{aligned}$			$\begin{array}{r} \pm 4.9 \\ \pm 4.8 \\ \pm 4.7 \\ \hline \end{array}$			$\begin{aligned} & \pm 4.9 \\ & \pm 4.8 \\ & \pm 4.7 \end{aligned}$			
		$\begin{aligned} & \mathrm{I}_{\mathrm{Q}}=100 \mu \mathrm{~A}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \Delta \mathrm{~T}_{\mathrm{A}}=\mathrm{C} \\ & \Delta \mathrm{~T}_{\mathrm{A}}=\mathrm{M} \end{aligned}$	$\begin{aligned} & \pm 4.9 \\ & \pm 4.8 \\ & \pm 4.5 \end{aligned}$			$\begin{aligned} & \pm 4.9 \\ & \pm 4.8 \\ & \pm 4.5 \\ & \hline \end{aligned}$			$\begin{array}{r} \pm 4.9 \\ \pm 4.8 \\ \pm 4.5 \\ \hline \end{array}$			V
		$\begin{aligned} & \text { (1) } I_{Q}=1 \mathrm{~mA}, R_{L}=10 \mathrm{k} \Omega \\ & T_{A}=25^{\circ} \mathrm{C} \\ & \Delta T_{A}=C \\ & \Delta T_{A}=M \end{aligned}$	$\begin{aligned} & \pm 4.5 \\ & \pm 4.3 \\ & \pm 4.0 \end{aligned}$			$\begin{aligned} & \pm 4.5 \\ & \pm 4.3 \\ & \pm 4.0 \end{aligned}$			$\begin{aligned} & \pm 4.5 \\ & \pm 4.3 \\ & \pm 4.0 \end{aligned}$			

ELECTRICAL CHARACTERISTICS (7611/12 and 7621 ONLY) (Continued)

($\mathrm{V}_{\text {SUPPLY }}= \pm 5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified.)

Symbol	Parameter	Test Conditions	76XXA			76XXB			76XXD			Units
			Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
Avol	Large Signal Voltage Gain	$\begin{aligned} & V_{O}= \pm 4.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega \\ & \mathrm{l}_{\mathrm{Q}}=10 \mu \mathrm{~A}(1), \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \Delta T_{A}=\mathrm{C} \\ & \Delta T_{A}=\mathrm{M} \end{aligned}$	$\begin{aligned} & 86 \\ & 80 \\ & 74 \end{aligned}$	104		$\begin{aligned} & 80 \\ & 75 \\ & 68 \end{aligned}$	104		$\begin{aligned} & 80 \\ & 75 \\ & 68 \end{aligned}$	104		dB
		$\begin{aligned} & \mathrm{V}_{\mathrm{O}}= \pm 4.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \\ & \mathrm{l}_{\mathrm{Q}}=100 \mu \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \Delta \mathrm{~T}_{\mathrm{A}}=\mathrm{C} \\ & \Delta \mathrm{~T}_{\mathrm{A}}=\mathrm{M} \end{aligned}$	86	102		$\begin{aligned} & 80 \\ & 75 \\ & 68 \\ & \hline \end{aligned}$	102		$\begin{aligned} & 80 \\ & 75 \\ & 68 \\ & \hline \end{aligned}$	102		
		$\begin{aligned} & V_{O}= \pm 4.0 \mathrm{~V}, R_{L}=10 \mathrm{k} \Omega \\ & \mathrm{Q}_{\mathrm{Q}}=1 \mathrm{~mA}(1), \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \Delta \mathrm{~T}_{\mathrm{A}}=\mathrm{C} \\ & \Delta \mathrm{~T}_{\mathrm{A}}=\mathrm{M} \end{aligned}$	$\begin{aligned} & 80 \\ & 76 \\ & 72 \\ & \hline \end{aligned}$	83		$\begin{aligned} & 76 \\ & 72 \\ & 68 \\ & \hline \end{aligned}$	83		$\begin{aligned} & 76 \\ & 72 \\ & 68 \\ & \hline \end{aligned}$	83		
GBW	Unity Gain Bandwidth	$\begin{aligned} & \mathrm{l}_{\mathrm{Q}}=10 \mu \mathrm{~A}(1) \\ & \mathrm{l}_{\mathrm{Q}}=100 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{Q}}=1 \mathrm{~mA}(1) \end{aligned}$		$\begin{array}{\|c\|} \hline 0.044 \\ 0.48 \\ 1.4 \\ \hline \end{array}$			$\begin{array}{\|c\|} \hline 0.044 \\ 0.48 \\ 1.4 \\ \hline \end{array}$			$\begin{array}{\|c\|} \hline 0.044 \\ 0.48 \\ 1.4 \\ \hline \end{array}$		MHz
$\mathrm{R}_{\text {IN }}$	Input Resistance			10^{12}			10^{12}			10^{12}		Ω
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & R_{S} \leq 100 \mathrm{k} \Omega, \mathrm{I}_{\mathrm{Q}}=10 \mu \mathrm{~A}^{(1)} \\ & \mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{k} \Omega, \mathrm{I}_{\mathrm{Q}}=100 \mu \mathrm{~A} \\ & \mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{k} \Omega, \mathrm{I}_{\mathrm{Q}}=1 \mathrm{~mA}^{(1)} \end{aligned}$	$\begin{aligned} & 76 \\ & 76 \\ & 66 \\ & \hline \end{aligned}$	$\begin{aligned} & 96 \\ & 91 \\ & 87 \end{aligned}$		$\begin{aligned} & 70 \\ & 70 \\ & 60 \\ & \hline \end{aligned}$	$\begin{aligned} & 96 \\ & 91 \\ & 87 \\ & \hline \end{aligned}$		70 70 60	$\begin{aligned} & 96 \\ & 91 \\ & 87 \\ & \hline \end{aligned}$		dB
PSRR	Power Supply Rejection Ratio $V_{\text {SUPPLY }}= \pm 8 \mathrm{~V}$ to $\pm 2 \mathrm{~V}$	$\begin{aligned} & R_{S} \leq 100 \mathrm{k} \Omega, I_{Q}=10 \mu \mathrm{~A}^{(1)} \\ & R_{S} \leq 100 \mathrm{k} \Omega, I_{Q}=100 \mu \mathrm{~A} \\ & R_{S} \leq 100 \mathrm{k} \Omega, I_{Q}=1 \mathrm{~mA}^{(1)} \end{aligned}$	$\begin{aligned} & 80 \\ & 80 \\ & 70 \\ & \hline \end{aligned}$	$\begin{aligned} & 94 \\ & 86 \\ & 77 \\ & \hline \end{aligned}$		$\begin{aligned} & 80 \\ & 80 \\ & 70 \\ & \hline \end{aligned}$	$\begin{aligned} & 94 \\ & 86 \\ & 77 \\ & \hline \end{aligned}$		$\begin{aligned} & 80 \\ & 80 \\ & 70 \\ & \hline \end{aligned}$	$\begin{aligned} & 94 \\ & 86 \\ & 77 \\ & \hline \end{aligned}$		dB
e_{n}	Input Referred Noise Voltage	$\mathrm{R}_{\mathrm{S}}=100 \Omega, \mathrm{f}=1 \mathrm{kHz}$		100			100			100		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
in	Input Referred Noise Current	$\mathrm{R}_{\mathrm{S}}=100 \Omega, \mathrm{f}=1 \mathrm{kHz}$		0.01			0.01			0.01		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
ISUPPLY	Supply Current (Per Amplifier)	No Signal, No Load lQ SET $=+5 \mathrm{~V}^{(1)}$ Low Bias $\mathrm{I}_{\mathrm{Q}} \mathrm{SET}=0 \mathrm{~V}$ Medium Bias I_{Q} SET $=-5 \mathrm{~V}\left({ }^{1}\right)$ High Bias		$\begin{array}{\|c} 0.01 \\ 0.1 \\ 1.0 \\ \hline \end{array}$	$\begin{gathered} 0.02 \\ 0.25 \\ 2.5 \end{gathered}$		$\begin{array}{\|c} 0.01 \\ 0.1 \\ 1.0 \\ \hline \end{array}$	$\begin{array}{\|c} 0.02 \\ 0.25 \\ 2.5 \end{array}$		$\begin{array}{\|c} 0.01 \\ 0.1 \\ 1.0 \\ \hline \end{array}$	0.02 0.25 2.5	mA
$\mathrm{V}_{\mathrm{O} 1} / \mathrm{V}_{\mathrm{O} 2}$	Channel Separation	$A_{V}=100$		120			120			120		dB
SR	Slew Rate ${ }^{(3)}$	$\begin{aligned} & \mathrm{A}_{\mathrm{V}}=1, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{IN}}=8 \mathrm{Vp}-\mathrm{p} \\ & \mathrm{l}_{\mathrm{Q}}=10 \mu \mathrm{~A}(1), \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega \\ & \mathrm{l}_{\mathrm{Q}}=100 \mu \mathrm{~A}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \\ & \mathrm{Q}=1 \mathrm{~mA}(1), \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \hline \end{aligned}$		$\begin{array}{\|c} 0.016 \\ 0.16 \\ 1.6 \\ \hline \end{array}$			$\begin{gathered} 0.016 \\ 0.16 \\ 1.6 \\ \hline \end{gathered}$			$\begin{gathered} 0.016 \\ 0.16 \\ 1.6 \\ \hline \end{gathered}$		$\mathrm{V} / \mu \mathrm{s}$
t_{r}	Rise Time ${ }^{(3)}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=50 \mathrm{mV}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \\ & \mathrm{l}_{\mathrm{Q}}=10 \mu \mathrm{~A}(1), \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega \\ & \mathrm{l}_{\mathrm{Q}}=100 \mu \mathrm{~A}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \\ & \mathrm{I}_{\mathrm{Q}}=1 \mathrm{~mA}(1), \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$		$\begin{gathered} 20 \\ 2 \\ 0.9 \end{gathered}$			$\begin{gathered} 20 \\ 2 \\ 0.9 \end{gathered}$			$\begin{gathered} 20 \\ 2 \\ 0.9 \end{gathered}$		$\mu \mathrm{S}$
	Overshoot Factor(3)	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=50 \mathrm{mV}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \\ & \mathrm{I}_{\mathrm{Q}}=10 \mu \mathrm{~A} 1, \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega \\ & \mathrm{I}_{\mathrm{Q}}=100 \mu \mathrm{~A}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \\ & \mathrm{I}_{\mathrm{Q}}=1 \mathrm{~mA}^{1}, R_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$		$\begin{gathered} 5 \\ 10 \\ 40 \\ \hline \end{gathered}$			$\begin{gathered} 5 \\ 10 \\ 40 \\ \hline \end{gathered}$			$\begin{gathered} 5 \\ 10 \\ 40 \\ \hline \end{gathered}$		\%

NOTES: 1. ICL7611, 7612 only.
2. $\mathrm{C}=$ Commercial Temperature Range: $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ $\mathrm{M}=$ Military Temperature Range: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

ICL76XX
ELECTRICAL CHARACTERISTICS (7611/12 A AND B GRADES ONLY)
($V_{\text {SUPPLY }}= \pm 1.0 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=10 \mu \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified.)

Symbol	Parameter	Test Conditions	76XXA			76XXB			Units
			Min	Typ	Max	Min	Typ	Max	
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	$\begin{aligned} & R_{S} \leq 100 \mathrm{k} \Omega, T_{A}=25^{\circ} \mathrm{C} \\ & T_{\text {MIN }} \leq T_{A} \leq T_{\text {MAX }} \end{aligned}$			$\begin{aligned} & 2 \\ & 3 \end{aligned}$			$\begin{aligned} & 5 \\ & 7 \end{aligned}$	mV
$\Delta \mathrm{V}_{\text {OS }} / \Delta \mathrm{T}$	Temperature Coefficient of $\mathrm{V}_{\text {OS }}$	$\mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{k} \Omega$		10			15		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
los	Input Offset Current	$\begin{aligned} & \mathrm{T}_{A}=25^{\circ} \mathrm{C} \\ & \Delta \mathrm{~T}_{\mathrm{A}}=\mathrm{C} \end{aligned}$		0.5	$\begin{array}{\|c\|} \hline 30 \\ 300 \\ \hline \end{array}$		0.5	$\begin{array}{\|c\|} \hline 30 \\ 300 \\ \hline \end{array}$	pA
IBIAS	Input Bias Current	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & \Delta T_{A}=C \end{aligned}$		1.0	$\begin{array}{\|c} 50 \\ 500 \\ \hline \end{array}$		1.0	$\begin{gathered} 50 \\ 500 \\ \hline \end{gathered}$	pA
$\mathrm{V}_{\text {CMR }}$	Common Mode Voltage Range (Except ICL7612)		± 0.6			± 0.6			V
$\mathrm{V}_{\text {CMR }}$	Extended Common Mode Voltage Range (ICL7612 Only)		$\begin{gathered} +0.6 \\ \text { to } \\ -1.1 \\ \hline \end{gathered}$			$\begin{array}{c\|} \hline+0.6 \\ \text { to } \\ -1.1 \\ \hline \end{array}$			V
V OUT	Output Voltage Swing	$\begin{aligned} & R_{L}=1 \mathrm{M} \Omega, T_{A}=25^{\circ} \mathrm{C} \\ & \Delta T_{A}=C \end{aligned}$		$\begin{aligned} & \pm 0.98 \\ & \pm 0.96 \\ & \hline \end{aligned}$			$\begin{aligned} & \pm 0.98 \\ & \pm 0.96 \end{aligned}$		V
Avol	Large Signal Voltage Gain	$\begin{aligned} & V_{O}= \pm 0.1 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega \\ & T_{A}=25^{\circ} \mathrm{C} \\ & \Delta T_{A}=C \\ & \hline \end{aligned}$		$\begin{aligned} & 90 \\ & 80 \end{aligned}$			$\begin{aligned} & 90 \\ & 80 \end{aligned}$		dB
GBW	Unity Gain Bandwidth			0.044					MHz
$\mathrm{R}_{\text {IN }}$	Input Resistance			10^{12}			1012		
CMRR	Common Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{k} \Omega$		80			80		
PSRR	Power Supply Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{k} \Omega$		80			80		dB
e_{n}	Input Referred Noise Voltage	$R_{S}=100 \Omega, f=1 \mathrm{kHz}$		100			100		$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
i_{n}	Input Referred Noise Current	$\mathrm{R}_{S}=100 \Omega, \mathrm{f}=1 \mathrm{kHz}$		0.01			0.01		$\mathrm{pA} / \sqrt{\text { Hz }}$
Isupply	Supply Current (Per Amplifier)	No Signal, No Load		6	15		6	15	$\mu \mathrm{A}$
SR	Slew Rate	$\begin{aligned} & A_{V}=1, C_{L}=100 \mathrm{pF} \\ & V_{I N}=0.2 \mathrm{Vp}-\mathrm{p} \\ & R_{L}=1 \mathrm{M} \Omega \\ & \hline \end{aligned}$		0.016			0.016		$\mathrm{V} / \mu \mathrm{s}$
t_{r}	Rise Time	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=50 \mathrm{mV}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega \end{aligned}$		20			20		$\mu \mathrm{S}$
	Overshoot Factor	$\begin{aligned} & V_{I N}=50 \mathrm{mV}, C_{L}=100 \mathrm{pF} \\ & R_{L}=1 \mathrm{M} \Omega \end{aligned}$		5			5		\%

NOTE: $\mathrm{C}=$ Commercial Temperature Range $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right) \quad \mathrm{M}=$ Military Temperature Range $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$.

ELECTRICAL CHARACTERISTICS (7631, 7641/42 ONLY)
($V_{\text {SUPPLY }}= \pm 5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified.)

Symbol	Parameter	Test Conditions	76XXC (6)			76XXE (6)			Units
			Min	Typ	Max	Min	Typ	Max	
Vos	Input Offset Voltage	$\begin{aligned} & \mathrm{R}_{S} \leq 100 \mathrm{k} \Omega, \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {MAX }} \end{aligned}$			$\begin{aligned} & 10 \\ & 15 \\ & \hline \end{aligned}$			$\begin{array}{r} 20 \\ 25 \\ \hline \end{array}$	mV
$\Delta V_{O S} / \Delta T$	Temperature Coefficient of $\mathrm{V}_{\text {OS }}$	$\mathrm{R}_{S} \leq 100 \mathrm{k} \Omega$ (Note 5)		20			30		
los	Input Offset Current	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C} \\ & \Delta T_{A}=C \\ & \Delta T_{A}=M \end{aligned}$		0.5	$\begin{gathered} 30 \\ 300 \\ 800 \\ \hline \end{gathered}$		0.5	$\begin{gathered} 30 \\ 300 \\ 800 \end{gathered}$	pA
IBIAS	Input Bias Current	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \Delta \mathrm{~T}_{\mathrm{A}}=\mathrm{C} \\ & \Delta \mathrm{~T}_{\mathrm{A}}=\mathrm{M} \end{aligned}$		1.0	$\begin{gathered} 50 \\ 500 \\ 4000 \end{gathered}$		1.0	$\begin{gathered} 50 \\ 500 \\ 4000 \end{gathered}$	pA
$\mathrm{V}_{\text {CMR }}$	Common Mode Voltage Range	$\begin{aligned} & \mathrm{I}_{\mathrm{Q}}=10 \mu \mathrm{~A}(1) \\ & \mathrm{I}_{\mathrm{Q}}=100 \mu \mathrm{~A}(3) \\ & \mathrm{I}_{\mathrm{Q}}=1 \mathrm{~mA}(2) \end{aligned}$	$\begin{aligned} & \pm 4.4 \\ & \pm 4.2 \\ & \pm 3.7 \end{aligned}$			$\begin{aligned} & \pm 4.4 \\ & \pm 4.2 \\ & \pm 3.7 \end{aligned}$			V
Vout	Output Voltage Swing	$\begin{aligned} & I_{Q}=10 \mu A(1), R_{L}=1 M \Omega \\ & T_{A}=25^{\circ} \mathrm{C} \\ & \Delta T_{A}=C \\ & \Delta T_{A}=M \end{aligned}$	$\begin{aligned} & \pm 4.9 \\ & \pm 4.8 \\ & \pm 4.7 \\ & \hline \end{aligned}$			$\begin{aligned} & \pm 4.9 \\ & \pm 4.8 \\ & \pm 4.7 \\ & \hline \end{aligned}$			V
		$\begin{aligned} & \mathrm{I}_{\mathrm{Q}}=100 \mu \mathrm{~A}(3), \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \\ & \quad \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \\ & \Delta T_{A}=C \\ & \Delta T_{A}=M \end{aligned}$	$\begin{aligned} & \pm 4.9 \\ & \pm 4.8 \\ & \pm 4.5 \\ & \hline \end{aligned}$			$\begin{array}{r} \pm 4.9 \\ \pm 4.8 \\ \pm 4.5 \\ \hline \end{array}$			
		$\begin{aligned} & \mathrm{I}_{\mathrm{Q}}=1 \mathrm{~mA}(2), \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \Delta \mathrm{~T}_{\mathrm{A}}=\mathrm{C} \\ & \Delta \mathrm{~T}_{\mathrm{A}}=\mathrm{M} \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 4.5 \\ & \pm 4.3 \\ & \pm 4.0 \\ & \hline \end{aligned}$			$\begin{aligned} & \pm 4.5 \\ & \pm 4.3 \\ & \pm 4.0 \\ & \hline \end{aligned}$			
Avol	Large Signal Voltage Gain	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}= \pm 4.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega^{(1)} \\ & \mathrm{I}_{\mathrm{Q}}=10 \mu \mathrm{~A}(1), \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \Delta \mathrm{~T}_{\mathrm{A}}=\mathrm{C} \\ & \Delta \mathrm{~T}_{\mathrm{A}}=\mathrm{M} \\ & \hline \end{aligned}$	$\begin{array}{r} 80 \\ 75 \\ 68 \\ \hline \end{array}$	104		$\begin{aligned} & 80 \\ & 75 \\ & 68 \\ & \hline \end{aligned}$	104		dB
		$\begin{aligned} & \mathrm{V}_{\mathrm{O}}= \pm 4.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega^{(3)} \\ & \mathrm{I}_{\mathrm{Q}}=100 \mu \mathrm{~A}(3), \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \Delta \mathrm{~T}_{\mathrm{A}}=\mathrm{C} \\ & \Delta \mathrm{~T}_{\mathrm{A}}=\mathrm{M} \\ & \hline \end{aligned}$	$\begin{aligned} & 80 \\ & 75 \\ & 68 \\ & \hline \end{aligned}$	102		$\begin{aligned} & 80 \\ & 75 \\ & 68 \\ & \hline \end{aligned}$	102		
		$\begin{aligned} & \mathrm{V}_{\mathrm{Q}}= \pm 4.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega^{(2)} \\ & \mathrm{I}_{\mathrm{Q}}=1 \mathrm{~mA}(2), \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \Delta \mathrm{~T}_{\mathrm{A}}=\mathrm{C} \\ & \Delta \mathrm{~T}_{\mathrm{A}}=\mathrm{M} \\ & \hline \end{aligned}$	$\begin{aligned} & 76 \\ & 72 \\ & 68 \\ & \hline \end{aligned}$	98		$\begin{aligned} & 76 \\ & 72 \\ & 68 \\ & \hline \end{aligned}$	98		
GBW	Unity Gain Bandwidth	$\begin{aligned} & \mathrm{I}_{\mathrm{Q}}=10 \mu \mathrm{~A}(1) \\ & \mathrm{I}_{\mathrm{Q}}=100 \mu \mathrm{~A}^{(3)} \\ & \mathrm{I}_{\mathrm{Q}}=1 \mathrm{~mA} \mathrm{~A}^{(2)} \end{aligned}$		$\begin{gathered} 0.044 \\ 0.48 \\ 1.4 \end{gathered}$			$\begin{gathered} 0.044 \\ 0.48 \\ 1.4 \end{gathered}$		MHz
$\mathrm{R}_{\text {IN }}$	Input Resistance			10^{12}			10^{12}		Ω
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & R_{S} \leq 100 \mathrm{k} \Omega, \mathrm{I}_{\mathrm{Q}}=10 \mu \mathrm{~A}(1) \\ & R_{S} \leq 100 \mathrm{k} \Omega, \mathrm{I}_{\mathrm{Q}}=100 \mu \mathrm{~A} \\ & R_{\mathrm{S}} \leq 100 \mathrm{k} \Omega, \mathrm{I}_{\mathrm{Q}}=1 \mathrm{~mA}(2) \end{aligned}$	$\begin{aligned} & 70 \\ & 70 \\ & 60 \end{aligned}$	$\begin{aligned} & 96 \\ & 91 \\ & 87 \end{aligned}$		$\begin{aligned} & 70 \\ & 70 \\ & 60 \\ & \hline \end{aligned}$	$\begin{aligned} & 96 \\ & 91 \\ & 87 \end{aligned}$		dB

ELECTRICAL CHARACTERISTICS (7631, 7641/42 ONLY) (Continued)
($\mathrm{V}_{\text {SUPPLY }}= \pm 5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified.)

Symbol	Parameter	Test Conditions	76XXC (6)			76XXE (6)			Units
			Min	Typ	Max	Min	Typ	Max	
PSRR	Power Supply Rejection Ratio $\mathrm{V}_{\text {SUPPLY }}= \pm 8 \mathrm{~V}$ to $\pm 2 \mathrm{~V}$	$\begin{aligned} & R_{S} \leq 100 \mathrm{k} \Omega, I_{\mathrm{Q}}=10 \mu \mathrm{~A}(1) \\ & \mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{k} \Omega, \mathrm{I}_{\mathrm{Q}}=100 \mu \mathrm{~A} \\ & \mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{k} \Omega, \mathrm{I}_{\mathrm{Q}}=1 \mathrm{~mA}(2) \\ & \hline \end{aligned}$	$\begin{aligned} & 80 \\ & 80 \\ & 70 \\ & \hline \end{aligned}$	$\begin{aligned} & 94 \\ & 86 \\ & 77 \\ & \hline \end{aligned}$		$\begin{aligned} & 80 \\ & 80 \\ & 70 \\ & \hline \end{aligned}$	$\begin{aligned} & 94 \\ & 86 \\ & 77 \\ & \hline \end{aligned}$		dB
e_{n}	Input Referred Noise Voltage	$\mathrm{R}_{\mathrm{S}}=100 \Omega, \mathrm{f}=1 \mathrm{kHz}$		100			100		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
I_{n}	Input Referred Noise Current	$\mathrm{R}_{\mathrm{S}}=100 \Omega, \mathrm{f}=1 \mathrm{kHz}$		0.01			0.01		$\mathrm{pA} / \sqrt{ } \overline{\mathrm{Hz}}$
ISUPPLY	Supply Current (Per Amplifier)	No Signal, No Load 7642 ONLY $\mathrm{I}_{\mathrm{Q}}=10 \mu \mathrm{~A}(1)$ Low Bias $\mathrm{I}_{\mathrm{Q}}=100 \mu \mathrm{~A}$ Medium Bias $\mathrm{I}_{\mathrm{Q}}=1 \mathrm{~mA}{ }^{(2)}$ High Bias		$\begin{gathered} 0.01 \\ 0.01 \\ 0.1 \\ 1.0 \end{gathered}$	$\begin{gathered} 0.03 \\ 0.022 \\ 0.25 \\ 2.5 \end{gathered}$		$\begin{gathered} 0.01 \\ \\ 0.01 \\ 0.1 \\ 1.0 \end{gathered}$	$\begin{gathered} 0.03 \\ 0.022 \\ 0.25 \\ 2.5 \end{gathered}$	mA
$\mathrm{V}_{\mathrm{O} 1} / \mathrm{V}_{\mathrm{O} 2}$	Channel Separation	$A_{V}=100$		120			120		dB
SR	Slew Rate	$\begin{aligned} & A_{V}=1, C_{L}=100 \mathrm{pF} \\ & V_{I N}=8 \mathrm{Vp}-\mathrm{p} \\ & \mathrm{I}_{\mathrm{Q}}=10 \mu \mathrm{~A}(1), R_{\mathrm{L}}=1 \mathrm{M} \Omega \\ & \mathrm{I}_{\mathrm{Q}}=100 \mu \mathrm{~A}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \\ & \mathrm{I}_{\mathrm{Q}}=1 \mathrm{~mA}^{(2)}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \hline \end{aligned}$		$\begin{gathered} 0.016 \\ 0.16 \\ 1.6 \\ \hline \end{gathered}$			$\begin{gathered} 0.016 \\ 0.16 \\ 1.6 \\ \hline \end{gathered}$		$\mathrm{V} / \mu \mathrm{s}$
tr_{r}	Rise Time	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=50 \mathrm{mV}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \\ & \mathrm{I}_{\mathrm{Q}}=10 \mu \mathrm{~A}^{(1),} \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega \\ & \mathrm{I}_{\mathrm{Q}}=100 \mu \mathrm{~A}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \\ & \mathrm{I}_{\mathrm{Q}}=1 \mathrm{~mA}(2), \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \hline \end{aligned}$		$\begin{gathered} 20 \\ 2 \\ 0.9 \\ \hline \end{gathered}$			$\begin{gathered} 20 \\ 2 \\ 0.9 \\ \hline \end{gathered}$		$\mu \mathrm{S}$
	Overshoot Factor	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=50 \mathrm{mV}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \\ & \mathrm{I}_{\mathrm{Q}}=10 \mu \mathrm{~A}(1), \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega \\ & \mathrm{I}_{\mathrm{Q}}=100 \mu \mathrm{~A}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \\ & \mathrm{I}_{\mathrm{Q}}=1 \mathrm{~mA}(2), \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$		$\begin{gathered} 5 \\ 10 \\ 40 \end{gathered}$			$\begin{gathered} 5 \\ 10 \\ 40 \end{gathered}$		\%

NOTES: 1. Does not apply to 7641.
2. Does not apply to 7642 .
3. ICL7631 only.

For Test Conditions:
$\mathrm{C}=$ Commercial Temperature Range: $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$\mathrm{M}=$ Military Temperature Range: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (7631 AND 7642 ONLY)

($V_{\text {SUPPLY }}= \pm 1.0 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=10 \mu \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified.)

Symbol	Parameter	Test Conditions	76XXC			Units
			Min	Typ	Max	
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	$\begin{aligned} & \mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{k} \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{MIN}} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\mathrm{MAX}} \end{aligned}$			$\begin{aligned} & 10 \\ & 12 \end{aligned}$	mV
$\Delta V_{\text {OS }} / \Delta T$	Temperature Coefficient of V_{OS}	$\mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{k} \Omega$		20		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
los	Input Offset Current	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \Delta \mathrm{~T}_{\mathrm{A}}=\mathrm{C} \end{aligned}$		0.5	$\begin{array}{r} 30 \\ 300 \\ \hline \end{array}$	pA
$\mathrm{I}_{\text {BIAS }}$	Input Bias Current	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \Delta \mathrm{~T}_{\mathrm{A}}=\mathrm{C} \end{aligned}$		1.0	$\begin{gathered} 50 \\ 500 \end{gathered}$	pA
$\mathrm{V}_{\text {CMR }}$	Common Mode Voltage Range		± 0.6			V

ELECTRICAL CHARACTERISTICS (7631 AND 7642 ONLY) (Continued)
($V_{\text {SUPPLY }}= \pm 1.0 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=10 \mu \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified.)

Symbol	Parameter	Test Conditions	76XXC			Units
			Min	Typ	Max	
$\mathrm{V}_{\text {OUT }}$	Output Voltage Swing	$\begin{aligned} & R_{L}=1 \mathrm{M} \Omega, \mathrm{~T}_{A}=25^{\circ} \mathrm{C} \\ & \Delta T_{A}=\mathrm{C} \end{aligned}$		$\begin{aligned} & \pm 0.98 \\ & \pm 0.96 \end{aligned}$		V
AVOL	Large Signal Voltage Gain	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}= \pm 0.1 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \Delta \mathrm{~T}_{\mathrm{A}}=\mathrm{C} \end{aligned}$		$\begin{aligned} & 90 \\ & 80 \end{aligned}$		dB
GBW	Unity Gain Bandwidth			0.044		MHz
$\mathrm{R}_{\text {IN }}$	Input Resistance			1012		Ω
CMRR	Common Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{k} \Omega$		80		dB
PSRR	Power Supply Rejection Ratio			80		dB
e_{n}	Input Referred Noise Voltage	$\mathrm{R}_{\mathrm{S}}=100 \Omega, \mathrm{f}=1 \mathrm{kHz}$		100		$\mathrm{nV} / \sqrt{ } \overline{\mathrm{Hz}}$
i_{n}	Input Referred Noise Current	$\mathrm{R}_{S}=100 \Omega, \mathrm{f}=1 \mathrm{kHz}$		0.01		$\mathrm{pA} / \sqrt{ } \overline{\mathrm{Hz}}$
ISUPPLY	Supply Current (Per Amplifier)	No Signal, No Load		6	15	$\mu \mathrm{A}$
$\mathrm{V}_{\text {O1/VO2 }}$	Channel Separation	$A_{V}=100$		120		dB
SR	Slew Rate	$\begin{aligned} & A_{V}=1, C_{L}=100 \mathrm{pF} \\ & V_{\mathbb{I N}}=0.2 \mathrm{Vp}-\mathrm{p} \\ & R_{\mathrm{L}}=1 \mathrm{M} \Omega \end{aligned}$		0.016		$\mathrm{V} / \mu \mathrm{s}$
t_{r}	Rise Time	$\begin{aligned} & V_{I N}=50 \mathrm{mV}, C_{L}=100 \mathrm{pF} \\ & R_{\mathrm{L}}=1 \mathrm{M} \Omega \end{aligned}$		20		$\mu \mathrm{S}$
	Overshoot Factor	$\begin{aligned} & V_{\mathbb{I N}}=50 \mathrm{mV}, C_{\mathrm{L}}=100 \mathrm{pF} \\ & R_{\mathrm{L}}=1 \mathrm{M} \Omega \end{aligned}$		5		\%

NOTE: $\mathrm{C}=$ Commercial Temperature Range $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$

TYPICAL PERFORMANCE CHARACTERISTICS

LARGE SIGNAL DIFFERENTIAL VOLTAGE GAIN AS A FUNCTION OF FREE-AIR TEMPERATURE

0307-15

POWER SUPPLY REJECTION RATIO

 AS A FUNCTION OF FREE-AIR TEMPERATURE

SUPPLY CURRENT PER AMPLIFIER AS A FUNCTION OF FREE-AIR TEMPERATURE

0307-13

> LARGE SIGNAL DIFFERENTIAL VOLTAGE GAIN AND PHASE SHIFT AS A FUNCTION OF FREQUENCY

0307-16

EQUIVALENT INPUT NOISE VOLTAGE AS A FUNCTION OF FREQUENCY

INPUT BIAS CURRENT AS A FUNCTION OF TEMPERATURE

0307-14
COMMON MODE REJECTION RATIO AS A FUNCTION OF FREE-AIR TEMPERATURE

0307-17
PEAK-TO-PEAK OUTPUT VOLTAGE AS A FUNCTION OF FREQUENCY

0307-20

TYPICAL PERFORMANCE CHARACTERISTICS

0307-21
MAXIMUM OUTPUT SOURCE CURRENT AS A FUNCTION OF SUPPLY VOLTAGE

0307-24
VOLTAGE FOLLOWER LARGE SIGNAL PULSE RESPONSE

0307-27

MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE AS A FUNCTION OF SUPPLY VOLTAGE

0307-22
MAXIMUM OUTPUT SINK CURRENT AS A FUNCTION OF SUPPLY VOLTAGE

0307-25
VOLTAGE FOLLOWER LARGE SIGNAL PULSE RESPONSE

0307-28

MAXIMUM PEAK-TO-PEAK VOLTAGE AS A FUNCTION OF FREE-AIR TEMPERATURE

0307-23
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE AS A FUNCTION OF LOAD RESISTANCE

LOAD RESISTANCE - K!?
0307-26
VOLTAGE FOLLOWER LARGE SIGNAL PULSE RESPONSE

0307-29

DETAILED DESCRIPTION

Static Protection

All devices are static protected by the use of input diodes. However, strong static fields should be avoided, as it is possible for the strong fields to cause degraded diode junction characteristics, which may result in increased input leakage currents.

Latchup Avoidance

Junction-isolated CMOS circuits employ configurations which produce a parasitic 4-layer (p-n-p-n) structure. The 4layer structure has characteristics similar to an SCR, and under certain circumstances may be triggered into a low impedance state resulting in excessive supply current. To avoid this condition, no voltage greater than 0.3 V beyond the supply rails may be applied to any pin. In general, the op-amp supplies must be established simultaneously with, or before any input signals are applied. If this is not possible, the drive circuits must limit input current flow to 2 mA to prevent latchup.

Choosing the Proper I_{Q}

Each device in the ICL76XX family has a similar I_{Q} set-up scheme, which allows the amplifier to be set to nominal quiescent currents of $10 \mu \mathrm{~A}, 100 \mu \mathrm{~A}$ or 1 mA . These current settings change only very slightly over the entire supply voltage range. The ICL7611/12 and ICL7631 have an external l_{Q} control terminal, permitting user selection of each amplifiers' quiescent current. (The 7621 and $7641 / 42$ have fixed I_{Q} settings - refer to selector guide for details.) To set the l_{Q} of programmable versions, connect the l_{Q} terminal as follows:
$I_{Q}=10 \mu \mathrm{~A}-\mathrm{I}_{\mathrm{Q}}$ pin to $\mathrm{V}+$
$l_{Q}=100 \mu A-l_{Q}$ pin to ground. If this is not possible, any voltage from $V^{+}-0.8$ to $V^{-}+0.8$ can be used.
$I_{Q}=1 \mathrm{~mA}-l_{Q}$ pin to $V-$
NOTE: The output current available is a function of the quiescent current setting. For maximum p-p output voltage swings into low impedance loads, I_{Q} of 1 mA should be selected.

Output Stage and Load Driving Considerations

Each amplifiers' quiescent current flows primarily in the output stage. This is approximately 70% of the l_{Q} settings.

This allows output swings to almost the supply rails for output loads of $1 \mathrm{M} \Omega, 100 \mathrm{k} \Omega$, and $10 \mathrm{k} \Omega$, using the output stage in a highly linear class A mode. In this mode, crossover distortion is avoided and the voltage gain is maximized. However, the output stage can also be operated in Class $A B$ for higher output currents. (See graphs under Typical Operating Characteristics). During the transition from Class A to Class B operation, the output transfer characteristic is non-linear and the voltage gain decreases.

Input Offset Nulling

For those models provided with OFFSET NULLING pins, nulling may be achieved by connecting a 25 K pot between the OFFSET terminals with the wiper connected to V^{+}. At quiescent currents of 1 mA and $100 \mu \mathrm{~A}$, the nulling range provided is adequate for all $\mathrm{V}_{\text {OS }}$ selections; however with $I_{Q}=10 \mu \mathrm{~A}$, nulling may not be possible with higher values of Vos.

Frequency Compensation

The ICL76XX are internally compensated, and are stable for closed loop gains as low as unity with capacitive loads up to 100 pF

Extended Common Mode Input Range

The ICL7612 incorporates additional processing which allows the input CMVR to exceed each power supply rail by 0.1 volt for applications where $V_{\text {SUPP }} \geq \pm 1.5 \mathrm{~V}$. For those applications where $V_{\text {SUPP }} \leq \pm 1.5 \mathrm{~V}$, the input CMVR is limited in the positive direction, but may exceed the negative supply rail by 0.1 volt in the negative direction (eg. for $V_{\text {SUPP }}= \pm 1.0 \mathrm{~V}$, the input CMVR would be +0.6 volts to -1.1 volts).

OPERATION AT $V_{\text {SUPP }}= \pm 1.0$ VOLTS

Operation at $\mathrm{V}_{\text {SUPP }}= \pm 1.0 \mathrm{~V}$ is guaranteed at $\mathrm{I}_{\mathrm{Q}}=10 \mu \mathrm{~A}$ for A and B grades only. This applies to those devices with selectable $l \mathrm{Q}$, and devices that are set internally to $\mathrm{I}_{\mathrm{Q}}=10 \mu \mathrm{~A}$ (i.e., ICL7611, 7612, 7631, 7642).
Output swings to within a few millivolts of the supply rails are achievable for $R_{L} \geq 1 \mathrm{M} \Omega$. Guaranteed input CMVR is $\pm 0.6 \mathrm{~V}$ minimum and typicaily +0.9 V to -0.7 V at $V_{\text {SUPP }}= \pm 1.0 \mathrm{~V}$. For applications where greater common mode range is desirable, refer to the description of ICL7612 above.

The user is cautioned that, due to extremely high input impedances, care must be exercised in layout, construction, board cleanliness, and supply filtering to avoid hum and noise pickup.

APPLICATIONS

Note that in no case is I_{Q} shown. The value of I_{Q} must be chosen by the designer with regard to frequency response and power dissipation.

Figure 3: Simple Follower*

0307-31
*By using the ICL7612 in these applications, the circuits will follow rail to rail inputs.

Figure 4: Level Detector*

0307-32
*Low leakage currents allow integration times up to several hours.
Figure 5: Photocurrent Integrator

0307-33
Since the output range swings exactly from rail to rail, frequency and duty cycle are virtually independent of power supply variations.

Figure 6: Precise Triangle/Square Wave Generator

0307-34
Figure 7: Averaging AC to DC Converter for A/D Converters Such as ICL7106, 7107, 7109, 7116, 7117

Note that $A_{V O L}=25$; single Ni-cad battery operation. Input current (from sensors connected to patient) limited to $<5 \mu \mathrm{~A}$ under fault conditions.

Figure 8: Medical Instrument Preamp

Figure 9: Fifth Order Chebyshev Multiple Feedback Low Pass Filter

Note that I_{Q} on each amplifier may be different. $A_{V C L}=10, Q=100, f_{0}=100 \mathrm{~Hz}$.
Figure 10: Second Order Biquad Bandpass Filter

NOTE 1. For devices with programmable standby current, connect $I_{Q} \operatorname{pin}$ to $V+\left(I_{Q}=10 \mu A\right.$ mode $)$.
Figure 11: Burn-In and Life Test Circuit

GENERAL DESCRIPTION

The ICL7650S Super Chopper-Stabilized Amplifier offers exceptionally low input offset voltage and is extremely stable with respect to time and temperature. It is a direct replacement for the industry-standard ICL7650 offering improved input offset voltage, lower input offset voltage temperature coefficient, reduced input bias current, and wider common mode voltage range. All improvements are highlighted in bold italics in the Electrical Characteristics section. Critical parameters are guaranteed over the entire commercial, industrial and military temperature ranges.

Harris' unique CMOS chopper-stabilized amplifier circuitry is user-transparent, virtually eliminating the traditional chopper amplifier problems of intermodulation effects, chopping spikes, and overrange lock-up.

The chopper amplifier achieves its low offset by comparing the inverting and non-inverting input voltages in a nulling amplifier, nulled by alternate clock phases. Two external capacitors are required to store the correcting potentials on the two amplifier nulling inputs; these are the only external components necessary.

The clock oscillator and all the other control circuitry is entirely self-contained. However the 14 -lead version includes a provision for the use of an external clock, if required for a particular application. In addition, the ICL7650S is internally compensated for unity-gain operation.

FEATURES

- Guaranteed Max Input Offset Voltage for All Temperature Ranges
- Low Long-Term and Temperature Drifts of Input Offset Voltage
- Guaranteed Max Input Bias Current-10 pA
- Extremely Wide Common Mode Voltage Range+3.5 to -5 V
- Reduced Supply Current-2 mA
- Guaranteed Minimum Output Source/Sink Current
- Extremely High Gain-150 dB
- Extremely High CMRR and PSRR—140 dB
- High Slew Rate- $2.5 \mathrm{~V} / \mu \mathrm{s}$
- Wide Bandwidth-2 MHz
- Unity-gain Compensated
- Clamp Circuit to Avoid Overload Recovery Problems and Allow Comparator Use
- Extremely Low Chopping Spikes at Input and Output
- Characterized Fully Over A/l Temperature Ranges
- Improved, Direct Replacement for Industry-Standard ICL7650 and other Second-Source Parts

ORDERING INFORMATION

Part	Temperature Range	Package
ICL7650SCPA-1	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8-Pin Plastic
ICL7650SCPD		14-Pin Plastic
ICL7650SCTV-1		8-Pin TO-99
ICL7650SIPA-1	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-Pin Plastic
ICL7650SIPD		14-Pin Plastic
ICL7650SIJD		14-Pin CERDIP
ICL7650SITV-1		8-Pin TO-99
ICL7650SMJD	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	14-Pin CERDIP
ICL7650SMTV-1		8-Pin TO-99

ABSOLUTE MAXIMUM RATINGS

Lead Temperature (Soldering, 10 sec) $+300^{\circ} \mathrm{C}$
Lead Tenp erature (Soldering, 10 sec) Operating Temperature Range

```
ICL7650SC . . . . . . . . . . . . . . . . . . . . . . . . 0}
ICL7650SI . . . . . . . . . . . . . . . . . . . . . . . - 25' . . to + 85'`
ICL7650SM. . . . . . . . . . . . . . . . . . . . . - 55 ' C to + 125*
```

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

Test Conditions: $\left(\mathrm{V}^{+}=+5 \mathrm{~V}, \mathrm{~V}^{-}=-5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, Test Circuit as in Fig. 3 (unless otherwise specified)

Symbol	Parameter	Test Conditions	Limits			Units
			Min	Typ	Max	
$V_{\text {OS }}$	Input Offset Voltage (Note 2)	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		± 0.7	+5	$\mu \mathrm{V}$
		$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$		± 1	± 8	
		$-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$		± 2	± 10	
		$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$		± 4	± 20	
$\Delta V_{O S} / \Delta T$	Average Temperature Coefficient of Input Offset Voltage (Note 2)	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$		0.02		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
		$-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$		0.02		
		$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$		0.03	0.1	
$\Delta \mathrm{V}_{\text {OS }} / \Delta \mathrm{t}$	Change in Input Offset with Time			100		$n \mathrm{~V} / \sqrt{\text { month }}$
$I_{\text {bias }}$	Input Bias Current $\|I(+)\|,\|I(-)\|$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		4	10	pA
		$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$		5	20	
		$-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$		20	50	
		$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$		20	50	
		$+85^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$		100	500	
IOS	Input Offset Current$\|1(-)-1(+)\|$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		8	20	pA
		$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$		10	40	
		$-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$		20	40	
		$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+85^{\circ} \mathrm{C}$		20	40	
		$+85^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$		20	50	
$\mathrm{R}_{\text {IN }}$	Input Resistance			10^{12}		Ω
$A_{\text {Vol }}$	Large Signal Voltage Gain (Note 2)	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{O}}= \pm 4 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	135	150		dB
		$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$	130			
		$-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$	130			
		$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	120			
V OUT	Output Voltage Swing (Note 3)	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	± 4.7	± 4.85		V
		$\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$		± 4.95		

ICL7650S
ELECTRICAL CHARACTERISTICS (Continued)
Test Conditions: ($\mathrm{V}^{+}=+5 \mathrm{~V}, \mathrm{~V}^{-}=-5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, Test Circuit as in Fig. 3 (unless otherwise specified)

Symbol	Parameter	Test Conditions	Limits			Units
			Min	Typ	Max	
CMVR	Common Mode Voltage Range (Note 2)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-5	-5.2 to + 4	+ 3.5	V
		$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$	-5		+ 3.5	
		$-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$	-5		+ 3.5	
		$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+125^{\circ} \mathrm{C}$	-5		+ 3.5	
CMRR	Common Mode Rejection Ratio (Note 2)	$\mathrm{CMVR}=-5 \mathrm{~V}$ to $+3.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	120	140		dB
		$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$	120			
		$25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$	115			
		$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+125^{\circ} \mathrm{C}$	110			
PSRR	Power Supply Rejection Ratio	$\mathrm{V}+, \mathrm{V}-= \pm 3 \mathrm{~V}$ to $\pm 8 \mathrm{~V}$	120	140		dB
en	Input Noise Voltage	$\mathrm{R}_{\mathrm{S}}=100 \Omega, \mathrm{f}=\mathrm{DC}$ to 10 Hz		2		$\mu \vee p$-p
in	Input Noise Current	$\mathrm{f}=10 \mathrm{~Hz}$		0.01		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
GBW	Gain Bandwidth Product			2		MHz
SR	Slew Rate	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$		2.5		$\mathrm{V} / \mu \mathrm{s}$
t_{r}	Rise Time			0.2		$\mu \mathrm{s}$
	Overshoot			20		\%
$\mathrm{V}+$ to V^{-}	Operating Supply Range		4.5		16	V
$I_{\text {supp }}$	Supply Current	No Load, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2	3	mA
		$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$			3.2	
		$-25^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+85^{\circ} \mathrm{C}$			3.5	
		$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$			4	
lo source	Output Source Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.9	4.5		mA
		$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$	2.3			
		$-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$	2.2			
		$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	2			
Io sink	Output Sink Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	25	30		mA
		$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$	20			
		$-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$	19			
		$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+125^{\circ} \mathrm{C}$	17			
f_{ch}	Internal Chopping Frequency	Pins 12 \& 14 Open	120	250	375	Hz
	Clamp ON Current (Note 4)	$\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	25	70		$\mu \mathrm{A}$
	Clamp OFF Current (Note 4)	$-4 \mathrm{~V} \leq \mathrm{V}_{\text {out }} \leq+4 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.001	5	nA
		$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$			10	
		$-25^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+85^{\circ} \mathrm{C}$			10	
		$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$			15	

NOTE 1: Limiting input current to $100 \mu \mathrm{~A}$ is recommended to avoid latchup problems. Typically 1 mA is safe, however this is not guaranteed.
2: These parameters are guaranteed by design and characterization, but not tested at temperature extremes because thermocouple effects prevent precise measurement of these voltages in automatic test equipment.

3: OUTPUT CLAMP not connected. See typical characteristic curves for output swing vs. clamp current characteristics.
4: See OUTPUT CLAMP under detailed description.
5: All significant improvements over the industry-standard ICL7650 are highlighted in bold italics.

Figure 1: Functional Diagram

0089-2
Figure 2: Pin Configurations

TYPICAL PERFORMANCE CHARACTERISTICS

TYPICAL PERFORMANCE CHARACTERISTICS

Open Loop Gain and Phase Shift
vs. Frequency

0089-12
Voltage Follower Large Signal Pulse Response*

Open Loop Gain and Phase Shift
vs. Frequency

0089-13
Voltage Follower Large Signal Pulse Response*

0089-14
0089-15
*THE TWO DIFFERENT RESPONSES CORRESPOND TO THE TWO PHASES OF THE CLOCK.

0089-16

0089-18
Figure 3: ICL7650S Test Circuit

DETAILED DESCRIPTION

Amplifier

The functional diagram shows the major elements of the ICL7650S. There are two amplifiers, the main amplifier, and the nulling amplifier. Both have offset-null capability. The main amplifier is connected continuously from the input to the output, while the nulling amplifier, under the control of the chopping oscillator and clock circuit, alternately nulls itself and the main amplifier. The nulling connections, which are MOSFET gates, are inherently high impedance, and two external capacitors provide the required storage of the nulling potentials and the necessary nulling-loop time constants. The nulling arrangement operates over the full com-mon-mode and power-supply ranges, and is also independent of the output level, thus giving exceptionally high CMRR, PSRR, and Avol.

Careful balancing of the input switches, and the inherent balance of the input circuit, minimizes chopper frequency charge injection at the input terminals, and also the feedfor-ward-type injection into the compensation capacitor, which is the main cause of output spikes in this type of circuit.

Intermodulation

Previous chopper-stabilized amplifiers have suffered from intermodulation effects between the chopper frequency and input signals. These arise because the finite AC gain of the amplifier necessitates a small AC signal at the input. This is seen by the zeroing circuit as an error signal, which is chopped and fed back, thus injecting sum and difference frequencies and causing disturbances to the gain and phase vs. frequency characteristics near the chopping frequency. These effects are substantially reduced in the ICL7650S by feeding the nulling circuit with a dynamic current, corresponding to the compensation capacitor current, in such a way as to cancel that portion of the input signal due to finite AC gain. Since that is the major error contribution to the ICL7650S, the intermodulation and gain/phase disturbances are held to very low values, and can generally be ignored.

Capacitor Connection

The null/storage capacitors should be connected to the $\mathrm{C}_{\text {EXTA }}$ and $\mathrm{C}_{\text {EXTB }}$ pins, with a common connection to the $C_{\text {RETN }}$ pin. This connection should be made directly by either a separate wire or PC trace to avoid injecting load current IR drops into the capacitive circuitry. The outside foil, where available, should be connected to CRETN.

Output Clamp

The OUTPUT CLAMP pin allows reduction of the overload recovery time inherent with chopper-stabilized amplifiers. When tied to the inverting input pin, or summing junction, a current path between this point and the OUTPUT pin occurs just before the device output saturates. Thus uncontrolled input differential inputs are avoided, together with the consequent charge build-up on the correction-storage capacitors. The output swing is slightly reduced.

Clock

The ICL7650S has an internal oscillator, giving a chopping frequency of 200 Hz , available at the CLOCK OUT pin on the 14-pin devices. Provision has also been made for the use of an external clock in these parts. The INT/EXT pin has an internal pull-up and may be left open for normal operation, but to utilize an external clock this pin must be tied to V - to disable the internal clock. The external clock signal may then be applied to the EXT CLOCK IN pin. An internal divide-by-two provides the desired 50% input switching duty cycle. Since the capacitors are charged only when EXT CLOCK IN is high, a $50 \%-80 \%$ positive duty cycle is recommended, especially for higher frequencies. The external clock can swing between V^{+}and V^{-}. The logic threshold will be at about 2.5 V below $\mathrm{V}+$. Note also that a signal of about 400 Hz , with a 70% duty cycle, will be present at the EXT CLOCK IN pin with INT/EXT high or open. This is the internal clock signal before being fed to the divider.
In those applications where a strobe signal is available, an alternate approach to avoid capacitor misbalancing during overload can be used. If a strobe signal is connected to EXT CLK IN so that it is low during the time that the overload signal is applied to the amplifier, neither capacitor will be charged. Since the leakage at the capacitor pins is quite low at room temperature, the typical amplifier will drift less than $10 \mu \mathrm{~V} / \mathrm{sec}$, and relatively long measurements can be made with little change in offset.

BRIEF APPLICATION NOTES

Component Selection

The two required capacitors, $\mathrm{C}_{\text {EXTA }}$ and $\mathrm{C}_{\text {EXTB }}$, have optimum values depending on the clock or chopping frequency. For the preset internal clock, the correct value is $0.1 \mu \mathrm{~F}$, and to maintain the same relationship between the chopping frequency and the nulling time constant this value should be scaled approximately in proportion if an external clock is used. A high-quality film-type capacitor such as mylar is preferred, although a ceramic or other lower-grade capacitor may prove suitable in many applications. For quickest setting on initial turn-on, low dielectric absorption capacitors (such as polypropylene) should be used. With ceramic capacitors, several seconds may be required to settle to $1 \mu \mathrm{~V}$.

Static Protection

All device pins are static-protected by the use of input diodes: However, strong static fields and discharges should be avoided, as they can cause degraded diode junction characteristics, which may result in increased input-leakage currents.

Latchup Avoidance

Junction-isolated CMOS circuits inherently include a parasitic 4-layer (p-n-p-n) structure which has characteristics similar to an SCR. Under certain circumstances this junction may be triggered into a low-impedance state, resulting in excessive supply current. To avoid this condition, no voltage greater than 0.3 V beyond the supply rails should be applied to any pin. In general, the amplifier supplies must be established either at the same time or before any input signals are applied. If this is not possible, the drive circuits must limit input current flow to under 1 mA to avoid latchup, even under fault conditions.

Output Stage/Load Driving

The output circuit is a high-impedance type (approximately $18 \mathrm{k} \Omega$), and therefore with loads less than this value, the chopper amplifier behaves in some ways like a transconductance amplifier whose open-loop gain is proportional to load resistance. For example, the open-loop gain will be 17 dB lower with a $1 \mathrm{k} \Omega$ load than with a $10 \mathrm{k} \Omega$ load. If the amplifier is used strictly for DC, this lower gain is of little consequence, since the DC gain is typically greater than 120 dB even with a $1 \mathrm{k} \Omega$ load. However, for wideband applications, the best frequency response will be achieved with a load resistor of $10 \mathrm{k} \Omega$ or higher. This will result in a smooth 6 dB /octave response from 0.1 Hz to 2 MHz , with phase shifts of less than 10° in the transition region where the main amplifier takes over from the null amplifier.

Thermo-Electric Effects

The ultimate limitations to ultra-high precision DC amplifiers are the thermo-electric or Peltier effects arising in thermocouple junctions of dissimilar metals, alloys, silicon, etc. Unless all junctions are at the same temperature, thermoelectric voltages typically around $0.1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$, but up to tens of $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ for some materials, will be generated. In order to
realize the extremely low offset voltages that the chopper amplifier can provide, it is essential to take special precautions to avoid temperature gradients. All components should be enclosed to eliminate air movement, especially that caused by power-dissipating elements in the system. Low thermoelectric-efficient connections should be used where possible and power supply voltages and power dissipation should be kept to a minimum. High-impedance loads are preferable, and good separation from surrounding heatdissipating elements is advisable.

Guarding

Extra care must be taken in the assembly of printed circuit boards to take full advantage of the low input currents of the ICL7650S. Boards must be thoroughly cleaned with TCE or alcohol and blown dry with compressed air. After cleaning, the boards should be coated with epoxy or silicone rubber to prevent contamination.

Even with properly cleaned and coated boards, leakage currents may cause trouble, particularly since the input pins are adjacent to pins that are at supply potentials. This leakage can be significantly reduced by using guarding to lower the voltage difference between the inputs and adjacent metal runs. Input guarding of the 8-lead TO-99 package is accomplished by using a 10 -lead pin circle, with the leads of the device formed so that the holes adjacent to the inputs are empty when it is inserted in the board. The guard, which is a conductive ring surrounding the inputs, is connected to a low impedance point that is at approximately the same voltage as the inputs. Leakage currents from high-voltage pins are then absorbed by the guard.

The pin configuration of the 14 -pin dual in-line package is designed to facilitate guarding, since the pins adjacent to the inputs are not used (this is different from the standard 741 and 101A pin configuration, but corresponds to that of the LM108).

Pin Compatibility

The basic pinout of the 8 -pin device corresponds, where possible, to that of the industry-standard 8 -pin devices, the LM741, LM101, etc. The null-storing external capacitors are connected to pins 1 and 8 , usually used for offset null or compensation capacitors, or simply not connected. In the case of the OP-05 and OP-07 devices, the replacement of the offset-null pot, connected between pins 1 and 8 and $V+$, by two capacitors from those pins to pin 5 , will provide easy compatibility. As for the LM108, replacement of the compensation capacitor between pins 1 and 8 by the two capacitors to pin 5 is all that is necessary. The same operation, with the removal of any connection to pin 5 , will suffice for the LM101, $\mu \mathrm{A} 748$, and similar parts.
The 14-pin device pinout corresponds most closely to that of the LM108 device, owing to the provision of "NC" pins for guarding between the input and all other pins. Since this device does not use any of the extra pins, and has no provision for offset-nulling, but requires a compensation capacitor, some changes will be required in layout to convert it to the ICL7650S.

TYPICAL APPLICATIONS

Clearly the applications of the ICL7650S will mirror those of other op amps. Anywhere that the performance of a circuit can be significantly improved by a reduction of input-offset voltage and bias current, the ICL7650S is the logical choice. Basic non-inverting and inverting amplifier circuits are shown in Figures 5 and 6. Both circuits can use the output clamping circuit to enhance the overioad recovery performance. The only limitations on the replacement of other op amps by the ICL7650S are the supply voltage ($\pm 8 \mathrm{~V}$ max.) and the output drive capability ($10 \mathrm{k} \Omega$ load for full swing). Even these limitations can be overcome using a simple booster circuit, as shown in Figure 7, to enable the full output capabilities of the LM741 (or any other standard device) to be combined with the input capabilities of the ICL7650S. The pair form a composite device, so loop gain stability, when the feedback network is added, should be watched carefully.

0089-20
Figure 5: Non Inverting Amplifier With Optional Clamp
NOTE: R_{1} / R_{2} indicates the parallel combination of R_{1} and R_{2}

Figure 8 shows the use of the clamp circuit to advantage in a zero-offset comparator. The usual problems in using a chopper stabilized amplifier in this application are avoided, since the clamp circuit forces the inverting input to follow the input signal. The threshold input must tolerate the output clamp current $\approx \mathrm{V}_{\mathbb{I N}} / \mathrm{R}$ without disturbing other portions of the system.

0089-22
Figure 7: Using 741 to Boost Output Drive Capacity

$$
0089-23
$$

Figure 8: Low Offset Comparator
Normal logarithmic amplifiers are limited in dynamic range in the voltage-input mode by their input-offset voltage. The built-in temperature compensation and convenience features of the ICL8048 can be extended to a voltage-input dynamic range of close to 6 decades by using the ICL7650S to offset-null the ICL8048, as shown in Figure 9. The same concept can also be used with such devices as the HA2500 or HA2600 families of op amps to add very low offset voltage capability to their very high slew rates and bandwidths. Note that these circuits will also have their DC gains, CMRR, and PSRR enhanced.

Figure 9: ICL8048 Offset Nulled by ICL7650S
FOR FURTHER APPLICATIONS ASSISTANCE, SEE A053 AND R017

Super Chopper-Stabilized LowNoise Operational Amplifier

GENERAL DESCRIPTION

The ICL7652S Super Chopper-Stabilized Low-Noise Amplifier offers exceptionally low input offset voltage and is extremely stable with respect to time and temperature. It is a direct replacement for the industry-standard ICL7652 offering improved input offset voltage, lower input offset voltage temperature coefficient, reduced input bias current, and wide common mode voltage range. All improvements are highlighted in bold italics in the Electrical Characteristics Section. Critical parameters are guaranteed over the entire commercial, industrial, and military temperature range.
Harris' unique CMOS chopper-stabilized amplifier circuitry is user-transparent, virtually eliminating the traditional chopper amplifier problems of intermodulation effects, chopping spikes, and overrange lock-up.

The chopper amplifier achieves its low offset by comparing the inverting and non-inverting input voltages in a nulling amplifier, nulled by alternate clock phases. Two external capacitors are required to store the correcting potentials on the two amplifier nulling inputs; these are the only external components necessary.
The clock oscillator and all the other control circuitry is entirely self-contained, however the 14 -lead version includes a provision for the use of an external clock, if required for a particular application. In addition, the ICL7652S is internally compensated for unity-gain operation.

FEATURES

- Guaranteed Max Input Offset Voltage for All Temperature Ranges
- Low Long-Term and Temperature Drifts of Input Offset Voltage
- Reduced Input Bias Current-3 pA Typ; 30 pA Max over Temperature
- Extremely Wide Common Mode Voltage Range+3.5 to -4.3 Volts
- Reduced Supply Current—1.7 mA; 3.5 mA Max over mil Temperature
- Guaranteed Minimum Output Source/Sink Current
- Extremely High Gain - 150 dB
- Low Input Noise Voltage- $0.2 \mu \mathrm{Vp}-\mathrm{p}$ (DC-1 Hz)
- Unity-Gain Compensated
- Very Low Intermodulation Effects (Open-Loop Phase Shift < $\mathbf{2}^{\circ} \mu$ @ Chopper Frequency)
- Clamp Circuit to Avoid Overload Recovery Problems and Allow Comparator Use (14-Lead only)
- Extremely Low Chopping Spikes at Input and Output
- Characterized Fully Over Military Temperature Range
- Improved Direct Replacement for Industry-Standard IC7652 and other Second-Source Parts

ORDERING INFORMATION

Part	Temperature Range	Package
ICL7652SCPD	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14-Pin Plastic
ICL7652SIPD	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14-Pin Plastic

ICL7652S

ABSOLUTE MAXIMUM RATINGS

Lead Temperature (Soldering, 10 sec) $\ldots . . \ldots \ldots . .+300^{\circ} \mathrm{C}$ Operating Temperature Range
ICL7652SC $.0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
ICL7652SI $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

Test Conditions: $\mathrm{V}^{+}=+5 \mathrm{~V}, \mathrm{~V}^{-}=-5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, Test Circuit as in Figure 3 (unless otherwise specified)

Symbol	Parameter	Test Conditions	Limits			Units
			Min	Typ	Max	
Vos	Input Offset Voltage	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		± 0.7	± 5	$\mu \mathrm{V}$
		$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$		± 2	± 7	
		$-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$		± 3	± 10	
$\Delta V_{O S} / \Delta T$	Average Temp. Coefficient of Input Offset Voltage (Note 2)	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$		0.01	0.06	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
		$-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$		0.02	0.07	
		$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$		0.02	0.07	
$\Delta V_{\text {OS }} / \Delta t$	Change in Input Offset with Time			150		$n \mathrm{~V} / \sqrt{\text { month }}$
$I_{\text {bias }}$	Input Bias Current$\|I(+)\|,\|1(-)\|$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		3	30	pA
		$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$			30	
		$-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$			30	
		$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$			30	
Ios	Input Offset Current$\|1(-)-I(+)\|$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		15	40	pA
		$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$			40	
		$-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$			40	
		$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$			40	
RIN	Input Resistance			10^{12}		Ω
$A_{\text {VOL }}$	Large Signal Voltage Gain (Note 2)	$\mathrm{RL}=10 \mathrm{~K} \Omega, \mathrm{~V}_{\mathrm{O}}= \pm 4 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	135	150		dB
		$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$	130			
		$-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$	130			
V OUT	Output Voltage Swing (Note 3)	$\mathrm{RL}=10 \mathrm{~K} \Omega$	± 4.7	± 4.85		V
		$\mathrm{RL}=100 \mathrm{~K} \Omega$		± 4.95		

ELECTRICAL CHARACTERISTICS

Test Conditions: $\mathrm{V}^{+}=+5 \mathrm{~V}, \mathrm{~V}^{-}=-5 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, Test Circuit (unless otherwise specified) (Continued)

Symbol	Parameter	Test Conditions	Limits			Units
			Min	Typ	Max	
CMRR	Common Mode Rejection Ratio (Note 2)	CMVR $=-4.3 \mathrm{~V}$ to $+3.5, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	120	130		dB
		$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$	110			
		$-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$	110			
PSRR	Power Supply Rejection Ratio (Note 2)	$\mathrm{V}^{+}, \mathrm{V}^{-}= \pm 3 \mathrm{~V}$ to $\pm 8 \mathrm{~V}$	120	130		dB
		$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$	110			
		$-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$	110			
en	Input Noise Voltage	$\mathrm{Rs}=100 \Omega, \mathrm{f}=\mathrm{DC}$ to 1 Hz		0.2		$\mu \vee p$-p
		$f=\mathrm{DC}$ to 10 Hz		0.7		
in	Input Noise Current	$\mathrm{f}=10 \mathrm{~Hz}$		0.01		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
GBW	Gain Bandwidth			500		kHz
SR	Slew Rate	$\mathrm{CL}=50 \mathrm{pF}, \mathrm{RL}=10 \mathrm{~K} \Omega$		1.0		$\mathrm{V} / \mu \mathrm{s}$
	Overshoot			15		\%
$\mathrm{V}+$ to V^{-}	Operating Supply Range		5.0		16	V
ISUPP	Supply Current	No Load $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1.7	2.5	mA
		$0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<70^{\circ} \mathrm{C}$			3.0	
		$-25^{\circ} \mathrm{C}<\mathrm{T}_{A}<85^{\circ} \mathrm{C}$			3.0	
Io source	Output Source Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2.4	4.4		mA
		$0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<70^{\circ} \mathrm{C}$	2.0			
		$-25^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<85^{\circ} \mathrm{C}$	1.9			
$l_{0 \text { sink }}$	Output Sink Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	15.0	20.0		mA
		$0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<70^{\circ} \mathrm{C}$	12.0			
		$-25^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<85^{\circ} \mathrm{C}$	12.0			
fch	Internal Chopping Frequency	Pins 12 \& 14 Open (dip)	250	450	650	Hz
	Clamp ON Current (Note 4)	$\mathrm{RL}=100 \mathrm{~K} \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	30	100		$\mu \mathrm{A}$
	Clamp OFF Current (Note 4)	$-4.0 \mathrm{~V}<\mathrm{V}_{\text {OUT }}<+4.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.001	10	nA
		$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$			10	
		$-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$			10	

NOTE 1: Limiting input current to $100 \mu \mathrm{~A}$ is recommended to avoid latchup problems. Typically 1 mA is safe, however this is not guaranteed.
2: These parameters are guaranteed by design and characterization, but not tested at temperature extremes because thermocouple effects prevent precise measurement of these voltages in automatic test equipment.

3: OUTPUT CLAMP not connected. See typical characteristic curves for output swing vs clamp current characteristics.
4: See OUTPUT CLAMP under detailed description.
5: All significant improvements over the industry-standard ICL7652 are highlighted in bold italics.

Figure 2: Pin Configuration

Figure 1: Functional Diagram
TYPICAL PERFORMANCE CHARACTERISTICS

0087-3

EACH SUPPLY VOLTAGE (+ AND -)

Supply Current vs Ambient
Temperature

Maximum Output Current vs Supply Voltage

0087-5
10 Hz P-P Noise Voltage vs Chopping Frequency

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

0087-9
Voltage Follower Large Signal Pulse Response*

0087-12

Broadband Noise Balanced
Source Impedance $=1 \mathrm{k} \Omega$ Gain $=1000 C_{\text {EXT }}=0.1 \mu \mathrm{~F}$

0087-10

Voltage Follower Large Signal Pulse Response*

Broadband Noise Balanced Source Impedance $=1 \mathrm{k} \Omega$ Gain $=1000$ CEXT $=1.0 \mu \mathrm{~F}$

0087-11

Open-Loop Gain and Phase Shift vs Frequency

0087-14

0087-13
*THE TWO DIFFERENT RESPONSES CORRESPOND TO THE TWO PHASES OF THE CLOCK.

N-Channel Clamp Current vs Output Voltage

P-Channel Clamp Current vs Output Voltage

Input Offset Voltage Change vs Supply Voltage

DETAILED DESCRIPTION

The Functional Diagram (Figure 1) shows the major elements of the ICL7652S. There are two amplifiers, the main amplifier, and the nulling amplifier. Both have offset-null capability. The main amplifier is connected continuously from the input to the output. The nulling amplifier, under the control of the chopping frequency oscillator and clock circuit, alternately nulls itself and the main amplifier. The nulling connections, which are MOSFET gates, are inherently highimpedance, and two external capacitors provide the required storage of the nulling potentials and the necessary nulling-loop time constants. The nulling arrangement operates over the full common-mode and power supply ranges, and is also independent of the output level, thus giving exceptionally high CMRR, PSRR, and AVol.

Careful balancing of the input switches, together with the inherent balance of the input circuit, minimizes chopper frequency charge injection at the input terminals. Feedforwardtype injection into the compensation capacitor is also minimized, which is the main cause of output spikes in this type of circuit.

Intermodulation

Previous chopper-stabilized amplifiers have suffered from intermodulation effects between the chopper frequency and input signals. These arise because the finite AC gain of the amplifier necessitates a small AC signal at the input. This is seen by the zeroing circuit as an error signal, which is chopped and fed back, thus injecting sum and difference frequencies and causing disturbances to the gain and phase vs frequency characteristics near the chopping frequency. These effects are substantially reduced in the ICL7652S by feeding the nulling circuit with a dynamic current, corresponding to the compensation capacitor current, in such a way as to cancel that portion of the input signal due to finite AC gain. Since that is the major error contribution to the ICL7652S, the intermodulation and gain/phase disturbances are held to very low values, and can generally be ignored.

Capacitor Connection

The null-storage capacitors should be connected to the $\mathrm{C}_{\text {EXTA }}$ and $\mathrm{C}_{\text {EXTB }}$ pins, with a common connection to the $\mathrm{C}_{\text {RETN }}$ pin. This connection should be made directly by either a separate wire or PC trace to avoid injecting load current IR drops into the capacitive circuitry. The outside foil, where available, should be connected to CRETN.

Output Clamp

The OUTPUT CLAMP pin allows reduction of the overload recovery time inherent with chopper-stabilized amplifiers. When tied to the inverting input pin, or summing junction, a current path between this point and the OUTPUT pin occurs just before the device output saturates. Thus uncontrolled differential input voltages are avoided, together with the consequent charge build-up on the correction-storage capacitors. The output swing is slightly reduced.

Clock

The ICL7652S has an internal oscillator, giving a chopping frequency of 400 Hz , available at the CLOCK OUT pin on the 14-pin devices. Provision has also been made for the use of an external clock in these parts. The INT/EXT pin has an internal pull-up and may be left open for normal operation, but to utilize an external clock this pin must be tied to V - to disable the internal clock. The external clock signal may then be applied to the EXT CLOCK IN pin. An internal divide-by-two provides the desired 50% input switching duty cycle. Since the capacitors are charged only when EXT CLOCK IN is high, a $50 \%-80 \%$ positive duty cycle is recommended, especially for higher frequencies. The external clock can swing between V^{+}and V^{-}. The logic threshold will be at about 2.5 V below $\mathrm{V}+$. Note also that a signal of about 800 Hz , with a 70% duty cycle, will be present at the EXT CLOCK IN pin with INT/EXT high or open. This is the internal clock signal before being fed to the divider.

In those applications where a strobe signal is available, an alternate approach to avoid capacitor misbalancing during overload can be used. If a strobe signal is connected to EXT CLK IN so that it is low during the time that the overload signal is applied to the amplifier, neither capacitor will be charged. Since the leakage at the capacitor pins is quite low at room temperature, the typical amplifier will drift less than $10 \mu \mathrm{~V} / \mathrm{sec}$, and relatively long measurements can be made with little change in offset.

BRIEF APPLICATION NOTES

Component Selection

The required capacitors, $\mathrm{C}_{\text {EXTA }}$ and $\mathrm{C}_{\text {EXTB }}$, are normally in the range of $0.1 \mu \mathrm{~F}$ to $1.0 \mu \mathrm{~F}$. A $1.0 \mu \mathrm{~F}$ capacitor should be used in broad bandwidth circuits if minimum clock ripple noise is desired. For limited bandwidth applications where clock ripple is filtered out, using a $0.1 \mu \mathrm{~F}$ capacitor results in slightly lower offset voltage. A high-quality film-type capacitor such as mylar is preferred, although a ceramic or other lower-grade capacitor may prove suitable in many applications. For quickest setting on initial turn-on, low dielectric absorption capacitors (such as polypropylene) should be used. With ceramic capacitors, several seconds may be required to settle to $1 \mu \mathrm{~V}$.

Static Protection

All device pins are static-protected by the use of input diodes. However, strong static fields and discharges should be avoided, as they can cause degraded diode junction characteristics which may result in increased input-leakage currents.

Latchup Avoidance

Junction-isolated CMOS circuits inherently include a parasitic 4-layer ($p-n-p-n$) structure which has characteristics similar to an SCR. Under certain circumstances this junction may be triggered into a low-impedance state, resulting in excessive supply current. To avoid this condition no voltage greater than 0.3 V beyond the supply rails should be applied to any pin. In general, the amplifier supplies must be established either at the same time or before any input signals are applied. If this is not possible, the drive circuits must limit input current flow to under 1 mA to avoid latchup, even under fault conditions.

Output Stage/Load Driving

The output circuit is a high-impedance type (approximately $18 \mathrm{k} \Omega$), and therefore, with loads less than this the chopper amplifier behaves in some ways like a transconductance amplifier whose open-loop gain is proportional to load resistance. For example, the open-loop gain will be 17 dB lower with a $1 \mathrm{k} \Omega$ load than with a $10 \mathrm{k} \Omega$ load. If the amplifier is used strictly for DC, this lower gain is of little consequence, since the $D C$ gain is typically greater than 120 dB even with a $1 \mathrm{k} \Omega$ load. However, for wideband applications, the best frequency response will be achieved with a load resistor of $10 \mathrm{k} \Omega$ or higher. This will result in a smooth 6 dB /octave response from 0.1 Hz to 2 MHz , with phase shifts of less than 2° in the transition region where the main amplifier takes over from the null amplifier.

Thermo-Electric Effects

The ultimate limitations to ultra-high precision DC amplifiers are the thermo-electric or Peltier effects arising in thermocouple junctions of dissimilar metals, alloys, silicon etc. Unless all junctions are at the same temperature, thermo-electric voltages typically around $0.1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$, but up to tens of $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ for some materials, will be generated. In order to realize the extremely low offset voltages that the chopper amplifier can provide, it is essential to take special precautions to avoid temperature gradients. All components should be enclosed to eliminate air movement, especially that caused by power-dissipating elements in the system. Low thermoelectric-coefficient connections should be used where possible and power supply voltages and power dissipation should be kept to a minimum. High-impedance loads are preferable, and good separation from surrounding heatdissipating elements is advisable.

Guarding

Extra care must be taken in the assembly of printed circuit boards to take full advantage of the low input currents of the ICL7652S. Boards must be thoroughly cleaned with TCE or alcohol and blown dry with compressed air. After cleaning, the boards should be coated with epoxy or silicone rubber to prevent contamination.
Even with properly cleaned and coated boards, leakage currents may cause trouble, particularly since the input pins are adjacent to pins that are at supply potentials. This leakage can be significantly reduced by using guarding to lower the voltage difference between the inputs and adjacent metal runs. Input guarding of the 8 lead TO-99 package is accomplished by using a 10 lead pin circle, with the leads of the device formed so that the holes adjacent to the inputs are empty when it is inserted in the board. The guard, which is a conductive ring surrounding the inputs, is connected to a low-impedance point that is at approximately the same voltage as the inputs. Leakage currents from high-voltage pins are then absorbed by the guard.

The pin configuration of the 14-pin dual-in-line package is designed to facilitate guarding, since the pins adjacent to the inputs are not used (this is different from the standard 741 and 101A pin configuration, but corresponds to that of the LM108).

PIN COMPATIBILITY

The basic pinout of the 8-pin device corresponds, where possible, to that of the industry-standard 8 -pin devices, the LM741, LM101, etc. The null-storing external capacitors are connected to pins 1 and 8 , which are usually used for off-set-null or compensation capacitors. In the case of the OP-05 and OP-07 devices, the replacement of the offsetnull pot, connected between pins 1 and 8 and V^{+}, by two capacitors from those pins to pin 5 , will provide easy compatibility. As for the LM108, replacement of the compensation capacitor between pins 1 and 8 by the two capacitors to pin 5 is all that is necessary. The same operation, with the removal of any connection to pin 5 , will suffice for the LM101, $\mu \mathrm{A} 748$, and similar parts.
The 14-pin device pinout corresponds most closely to that of the LM108 device, owing to the provision of "NC" pins for guarding between the input and all other pins. Since this device does not use any of the extra pins, and has no provision for offset-nulling, but requires a compensation capacitor, some changes will be required in layout to convert to the ICL7652S.

0087-19
Inverting Amplifier

0087-21

$$
\text { Note: } \frac{R_{1} R_{2}}{R_{1}+r_{2}}
$$

Should be low impedance for optimum guarding
Non-Inverting Amplifier

Follower

BOTTOM VIEW
Board Layout for Input Guarding with TO-99 Package
Figure 4: Connection of Input Guards

TYPICAL APPLICATIONS

Clearly the applications of the ICL7652S will mirror those of other op-amps. Thus, anywhere that the performance of a circuit can be significantly improved by a reduction of in-put-offset voltage and bias current, the ICL7652S is the logical choice. Basic non-inverting and inverting amplifier circuits are shown in Figures 5 and 6. Both circuits can use the output clamping circuit to enhance the overload recovery performance. The only limitations on the replacement of other op-amps by the ICL7652S are the supply voltage ($\pm 8 \mathrm{~V}$ max) and the output drive capability ($10 \mathrm{k} \Omega$ load for full swing). Even these limitations can be overcome using a simple booster circuit, as shown in Figure 7, to enable the full output capabilities of the LM741 (or any other standard device) to be combined with the input capabilities of the ICL7652S. The pair form a composite device, so loop gain stability, when the feedback network is added, should be watched carefully.

0087-25
Figure 7: Using 741 to Boost Output Drive Capability

Figure 8 shows the use of the clamp circuit to advantage in a zero-offset comparator. The usual problems in using a chopper-stabilized amplifier in this application are avoided, since the clamp circuit forces the inverting input to follow the input signal. The threshold input must tolerate the output clamp current $\approx \mathrm{V}_{\mathrm{IN}} / \mathrm{R}$ without disturbing other portions of the system.

Figure 8: Low Offset Comparator
It is possible to use the ICL7652S to offset-null such high slew rate and bandwidth amplifiers as the HA2500 and HA2600 series, as shown in Figure 9. The same basic idea can be used with low-noise bipolar devices, such as the OP05 , and also with the ICL8048 logarithmic amplifier, to achieve a voltage-input dynamic range of close to 6 decades. Note that these circuits will also have their DC gains, CMRR and PSRR enhanced. More details on these and other ideas are explained in application note A053.
Mixing the ICL7652S with circuits operating at $\pm 15 \mathrm{~V}$ supplies requires the provision of a lower voltage. Although this can be done fairly easily, a highly efficient voltage divider can be built using the ICL7660S voltage converter circuit "backwards". A suitable connection is shown in Figure 10.

TYPICAL APPLICATIONS (Continued)

0087-28
Figure 10: Splitting + 15V with ICL7660S at $>95 \%$ Efficiency. Same for - 15V

FOR FURTHER APPLICATIONS ASSISTANCE, SEE A053 AND R017.

GENERAL DESCRIPTION

The Harris ICL8021 series are low power operational amplifiers specifically designed for applications requiring very low standby power consumption over a wide range of supply voltages. The electrical characteristics of the 8021 series can be tailored to a particular application by adjusting an external resistor, $\mathrm{R}_{\text {SET }}$, which controls the quiescent current. This is advantageous because I_{Q} can be made independent of the supply voltages: it can be set to an extremely low value where power is critical, or to a larger value for high slew rate or wideband applications.
Other features of the 8021 series include low input current that remains constant with temperature, low noise, high input impedance, internal compensation and pin-for-pin compatibility with the 741.
The Harris 8023 consists of three low power operational amplifiers in a single 16 -pin DIP. Each amplifier is identical to an 8021 low power op amp, and has separate connections for adjusting its electrical characteristics by means of an external resistor, $\mathrm{R}_{\text {SET }}$, which controls the quiescent current of that amplifier.

ORDERING INFORMATION

Part Number	Temperature Range	Package
ICL8021CJA	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	8 Lead CERDIP
ICL8021CBA	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	8 Lead S.O.I.C
ICL8021CPA	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	8 Lead MINIDIP
ICL8021CTY	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	8 Lead Metal Can
ICL8021MJA	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 Lead CERDIP
ICL8021MTY*	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 Lead Metal Can
ICL8023CJE	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	16 Lead CERDIP
ICL8023CPE	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	16 Lead MINIDIP
ICL8023MJE*	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead CERDIP

*Add $/ 88313$ to Part Number if 883 B processing is required.

[^47]
ABSOLUTE MAXIMUM RATINGS

Supply Voltage .. $\pm 18 \mathrm{~V}$
Differential Input Voltage (Note 1)
Common Mode Input Voltage (Note 1) $\pm 15 \mathrm{~V}$
Output Short Circuit Duration Indefinite
Power Dissipation (Note 2) 300 mW
Operating Temperature Range
$8021 \mathrm{M} / 8023 \mathrm{M} \ldots \ldots \ldots \ldots \ldots \ldots .5^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$8021 \mathrm{C} / 8023 \mathrm{C} \ldots \ldots \ldots \ldots \ldots \ldots .0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10sec) $\ldots \ldots . . .+300^{\circ} \mathrm{C}$

NOTE 1: For supply voltages tess than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.
NOTE 2: Rating applies for case temperatures to $+125^{\circ} \mathrm{C}$; derate linearly at $5.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for ambient temperatures above $+95^{\circ} \mathrm{C}$.
NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Figure 1: Functional Diagram

0311-5
Figure 2: Pin Configurations

0311-6
Figure 3: Voltage Offset Null Circuit
ELECTRICAL CHARACTERISTICS $\quad\left(V_{S U P P L Y}= \pm 6 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=30 \mu \mathrm{~A}\right.$, unless otherwise specified.)

Characteristics	Test Conditions	8021M			8021C			Units
		Min	Typ	Max	Min	Typ	Max	
The following specifications apply for $\mathrm{T}_{\mathbf{A}}=25^{\circ} \mathrm{C}$:								
Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{k} \Omega$		2	3		2	6	mV
Input Offset Current			0.5	7.5		0.7	10	nA
Input Bias Current			5	20		7	30	nA
Input Resistance(1)		3	10		3	10		$\mathrm{M} \Omega$
Input Voltage Range	$V_{\text {SUPPLY }}= \pm 15 \mathrm{~V}$	± 12	± 13		± 12	± 13		V
Common Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	70	80		70	80		dB
Supply Voltage Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$		30	150		30	150	$\mu \mathrm{V} / \mathrm{V}$
Output Resistance	Open Loop		2			2		$\mathrm{k} \Omega$
Output Voltage Swing	$\mathrm{R}_{\mathrm{L}} \geq 20 \mathrm{k} \Omega, \mathrm{V}_{\text {SUPPLY }}= \pm 15 \mathrm{~V}$	± 12	± 14		± 12	± 14		V
	$\mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k} \Omega, \mathrm{V}_{\text {SUPPLY }}= \pm 15 \mathrm{~V}$	± 11	± 13		± 11	± 13		V
Output Short-Circuit Current			± 13			± 13		mA
Power Consumption	$\mathrm{V}_{\text {OUT }}=0$		360	480		360	600	$\mu \mathrm{W}$
Slew Rate (Unity Gain)			0.16			0.16		$\mathrm{V} / \mu \mathrm{s}$
Unity Gain Bandwidth	$\mathrm{R}_{\mathrm{L}}=20 \mathrm{k} \Omega, \mathrm{V}_{1 \mathrm{~N}}=20 \mathrm{mV}$		270			270		kHz
Transient Response (Unity Gain) Risetime Overshoot	$\mathrm{R}_{\mathrm{L}}=20 \mathrm{k} \Omega, \mathrm{V}_{\text {IN }}=20 \mathrm{mV}$		$\begin{aligned} & 1.3 \\ & 10 \\ & \hline \end{aligned}$			$\begin{aligned} & 1.3 \\ & 10 \\ & \hline \end{aligned}$		$\begin{aligned} & \mu \mathrm{S} \\ & \% \\ & \hline \end{aligned}$
Specifications Applicable over Temperature		$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$			$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$			
Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$		2.0	5.0		2.0	7.5	mV
Input Offset Current			1.0	11		1.5	15	nA
Input Bias Current			10	32		15	50	nA
Average Temperature Coefficient of Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$		5			5		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Average Temperature Coefficient of Input Offset Current			1.7			0.8		$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
Large Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	50	200		50	200		V / mV
Output Voltage Swing	$\mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k} \Omega$	± 10	± 13		± 10	± 13		V

[^48]
ICL8021/ICL8023

QUIESCENT CURRENT ADJUSTMENT

QUIESCENT CURRENT SETTING RESISTOR (PIN 8 to V^{-})

$\mathbf{v}_{\mathbf{S}}$	$\mathrm{I}_{\mathbf{Q}}$			
	$10 \mu \mathbf{A}$	$30 \mu \mathbf{A}$	$100 \mu \mathbf{A}$	$300 \mu \mathbf{A}$
	$1.5 \mathrm{M} \Omega$	$470 \mathrm{k} \Omega$	$150 \mathrm{k} \Omega$	-
± 3	$3.3 \mathrm{M} \Omega$	$1.1 \mathrm{M} \Omega$	$330 \mathrm{k} \Omega$	$100 \mathrm{k} \Omega$
± 6	$7.5 \mathrm{M} \Omega$	$2.7 \mathrm{M} \Omega$	$750 \mathrm{k} \Omega$	$220 \mathrm{k} \Omega$
± 9	$13 \mathrm{M} \Omega$	$4 \mathrm{M} \Omega$	$1.3 \mathrm{M} \Omega$	$350 \mathrm{k} \Omega$
± 12	$18 \mathrm{M} \Omega$	$5.6 \mathrm{M} \Omega$	$1.5 \mathrm{M} \Omega$	$510 \mathrm{k} \Omega$
± 15	$22 \mathrm{M} \Omega$	$7.5 \mathrm{M} \Omega$	$2.2 \mathrm{M} \Omega$	$620 \mathrm{k} \Omega$

TYPICAL PERFORMANCE CHARACTERISTICS*
($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 6 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=30 \mu \mathrm{~A}$ unless otherwise specified.)

0311-8

$$
\begin{aligned}
\text { I SET }= & \frac{V^{+}+|V-|-0.6 V}{R_{S E T}+5 \mathrm{k} \Omega} \\
\mathrm{I}_{\mathrm{Q}} & =\frac{\mathrm{I}_{\mathrm{SET}}+3 \times 10^{-7}}{0.165}
\end{aligned}
$$

TYPICAL PERFORMANCE CHARACTERISTICS*

$\left(T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{S}= \pm 6 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=30 \mu \mathrm{~A}\right.$ unless otherwise specified.) (Continued)

0311-14
OUTPUT VOLTAGE SWING VS SUPPLY VOLTAGE

0311-17

FREQUENCY RESPONSE VS QUIESCENT CURRENT

0311-12
TRANSIENT RESPONSE

0311-15

EQUIVALENT INPUT NOISE

 VOLTAGE VS FREQUENCY

0311-18

0311-13

0311-16
EQUIVALENT INPUT NOISE CURRENT VS FREQUENCY

FAEQUENCY $\left(\mathrm{H}_{2}\right)$
${ }^{*}$ ICL8021C guaranteed only for $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$

GENERAL DESCRIPTION

The 4250 is an extremely versatile programmable monolithic operational amplifier. A single external master bias current setting resistor programs the input bias current, input offset current, quiescent pqwer consumption, slew rate, input noise, and the gain-bandwidth product.

The 4250 C is guaranteed over a $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ temperature range.

RESISTOR BIASING

Set Current Setting Resistor to \mathbf{V}^{-}

$\mathbf{I}_{\text {SET }}$					
$\mathbf{V}_{\mathbf{S}}$	$\mathbf{0 . 1} \mu \mathbf{A}$	$\mathbf{0 . 5 \mu \mathbf { A }}$	$\mathbf{1 . 0 \mu \mathbf { A }}$	$\mathbf{5 \mu \mathbf { A }}$	$\mathbf{1 0 \mu \mathbf { A }}$
$\pm 1.5 \mathrm{~V}$	$25.6 \mathrm{M} \Omega$	$5.04 \mathrm{M} \Omega$	$2.5 \mathrm{M} \Omega$	$492 \mathrm{k} \Omega$	$244 \mathrm{k} \Omega$
$\pm 3.0 \mathrm{~V}$	$55.6 \mathrm{M} \Omega$	$11.0 \mathrm{M} \Omega$	$5.5 \mathrm{M} \Omega$	$1.09 \mathrm{M} \Omega$	$544 \mathrm{k} \Omega$
$\pm 6.0 \mathrm{~V}$	$116 \mathrm{M} \Omega$	$23.0 \mathrm{M} \Omega$	$\mathbf{1 1 . 5 \mathrm { M } \Omega}$	$2.29 \mathrm{M} \Omega$	$1.14 \mathrm{M} \Omega$
$\pm 9.0 \mathrm{~V}$	$176 \mathrm{M} \Omega$	$35.0 \mathrm{M} \Omega$	$17.5 \mathrm{M} \Omega$	$3.49 \mathrm{M} \Omega$	$1.74 \mathrm{M} \Omega$
$\pm \mathbf{1 2 . 0 V}$	$236 \mathrm{M} \Omega$	$47.0 \mathrm{M} \Omega$	$23.5 \mathrm{M} \Omega$	$4.69 \mathrm{M} \Omega$	$2.34 \mathrm{M} \Omega$
$\pm 15.0 \mathrm{~V}$	$296 \mathrm{M} \Omega$	$59.0 \mathrm{M} \Omega$	$29.5 \mathrm{M} \Omega$	$5.89 \mathrm{M} \Omega$	$2.94 \mathrm{M} \Omega$

0108-3

$$
\mathrm{I}_{\mathrm{SET}}=\frac{\mathrm{V}^{+}+|V-|-0.6 \mathrm{~V}}{\mathrm{R}_{\mathrm{SET}}+5 \mathrm{k}}
$$

$$
I_{S U P P L Y}=\frac{I_{\text {SET }}+3 \times 10^{-7}}{0.165}
$$

Figure 1: Functional Diagram

[^49]
ABSOLUTE MAXIMUM RATINGS

Supply Voltage . $\pm 18 \mathrm{~V}$
Power Dissipation (Note 1) . 500 mW
Differential Input Voltage . $\pm 30 \mathrm{~V}$
Input Voltage (Note 2) . $\pm 15 \mathrm{~V}$
ISET Current $150 \mu \mathrm{~A}$
Operating Temperature Range
LM4250C.................................... . . $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
LM4250 . $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Output Short Circuit Duration
Indefinite
Storage Temperature Range $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec .)
$\ldots+300^{\circ} \mathrm{C}$
NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

0108-2

0108-1
Figure 2: Pin Configurations

ELECTRICAL CHARACTERISTICS $\quad\left(0^{\circ} \mathrm{C} \leq T_{A} \leq+70^{\circ} \mathrm{C}\right.$ unless otherwise specified)

Parameters	Conditions	$\mathrm{V}_{\mathbf{S}}= \pm 1.5 \mathrm{~V}$			
		$\mathrm{I}_{\text {SET }}=1 \mu \mathrm{~A}$		$\mathrm{I}_{\text {SET }}=10 \mu \mathrm{~A}$	
		Min	Max	Min	Max
Vos	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{k} \Omega$		5 mV		6 mV
los	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		6 nA		20 nA
$l_{\text {bias }}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		10 nA		75 nA
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \\ & \mathrm{~V}_{\mathrm{O}}= \pm 0.6 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$	25k		25k	
Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$8 \mu \mathrm{~A}$		$90 \mu \mathrm{~A}$
Power Consumption	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$24 \mu \mathrm{~W}$		$270 \mu \mathrm{~W}$
$\mathrm{V}_{\text {OS }}$	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$		6.5 mV		7.5 mV
los			8 nA		25 nA
Ibias			10 nA		80 nA
Input Voltage Range		$\pm 0.6 \mathrm{~V}$		$\pm 0.6 \mathrm{~V}$	
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}= \pm 0.6 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$	25k		25k	
Output Voltage Swing	$\begin{aligned} & R_{\mathrm{L}}=100 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$	$\pm 0.6 \mathrm{~V}$		$\pm 0.6 \mathrm{~V}$	
Common Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	70 dB		70 dB	
Supply Voltage Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	65 dB		65 dB	
Supply Current			$8 \mu \mathrm{~A}$		$90 \mu \mathrm{~A}$
Power Consumption			$24 \mu \mathrm{~W}$		$270 \mu \mathrm{~W}$

ELECTRICAL CHARACTERISTICS
$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}\right.$ unless otherwise specified) (Continued)

Parameters	Conditions	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$			
		$\mathbf{I}_{\text {SET }}=1 \mu \mathrm{~A}$		$I_{\text {SET }}=10 \mu \mathrm{~A}$	
		Min	Max	Min	Max
V OS	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{k} \Omega$		5 mV		6 mV
los	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		6 nA		20 nA
$I_{\text {bias }}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		10 nA		75 nA
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \\ & \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$	60k		60k	
Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$11 \mu \mathrm{~A}$		$100 \mu \mathrm{~A}$
Power Consumption	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$330 \mu \mathrm{~W}$		3 mW
$\mathrm{V}_{\text {OS }}$	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$		6.5 mV		7.5 mV
los			8 nA		25 nA
$l_{\text {bias }}$			10 nA		80 nA
Input Voltage Range		$\pm 13.5 \mathrm{~V}$		$\pm 13.5 \mathrm{~V}$	
Large Signal Voltage Gain	$\begin{aligned} & V_{O}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$	50k		50k	
Output Voltage Swing	$\begin{aligned} & R_{\mathrm{L}}=100 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \hline \end{aligned}$	$\pm 12 \mathrm{~V}$		$\pm 12 \mathrm{~V}$	
Common Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	70 dB		70 dB	
Supply Voltage Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	74 dB		74 dB	
Supply Current			$11 \mu \mathrm{~A}$		$100 \mu \mathrm{~A}$
Power Consumption			$300 \mu \mathrm{~W}$		3 mW

NOTE 1: Derate linearly at $-6.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for ambient temperatures above $+95^{\circ} \mathrm{C}$ for the military temperature range. Derate linearly at $-6.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for ambient temperatures above $+45^{\circ} \mathrm{C}$ for the commercial temperature range.

2: For supply voltages less than $\pm 15 \mathrm{~V}$, the absolute maximum input voltage is equal to the supply voltage.

ELECTRICAL CHARACTERISTICS $\left(-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}\right.$ unless otherwise specified)

Parameters	Conditions	$\mathrm{V}_{\mathrm{S}}= \pm \mathbf{1 . 5 V}$			
		$\mathbf{I S E T}^{\text {e }}$ ($\mu \mathrm{A}$		$\mathrm{I}_{\text {SET }}=10 \mu \mathrm{~A}$	
		Min	Max	Min	Max
$\mathrm{V}_{\text {OS }}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{k} \Omega$		6 mV		6 mV
los	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		6 nA		20 nA
$l_{\text {bias }}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		10 nA		75 nA
Large Signal Voltage Gain	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \\ & \mathrm{~V}_{\mathrm{O}}= \pm 0.6 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$	25k		25k	
Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$8 \mu \mathrm{~A}$		$90 \mu \mathrm{~A}$
Power Consumption	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$24 \mu \mathrm{~W}$		270 mW
Vos	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$		7.5 mV		7.5 mV
los			8 nA		25 nA
Ibias			10 nA		80 nA
Input Voltage Range		$\pm 0.6 \mathrm{~V}$		$\pm 0.6 \mathrm{~V}$	
Large Signal Voltage Gain	$\begin{aligned} & V_{O}= \pm 0.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \\ & R_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$	25k		25k	
Output Voltage Swing	$\begin{aligned} & R_{L}=100 \mathrm{k} \Omega \\ & R_{L}=10 \mathrm{k} \Omega \end{aligned}$	$\pm 0.6 \mathrm{~V}$		$\pm 0.6 \mathrm{~V}$	
Common Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	70 dB		70 dB	
Supply Voltage Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	65 dB		65 dB	
Supply Current			$8 \mu \mathrm{~A}$		$90 \mu \mathrm{~A}$
Power Consumption			$24 \mu \mathrm{~W}$		$270 \mu \mathrm{~W}$

ELECTRICAL CHARACTERISTICS $\left(-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}\right.$ unless otherwise specified) (Continued)

Parameters	Conditions	$\mathbf{V}_{\mathbf{S}}= \pm 15 \mathrm{~V}$			
		$\mathrm{I}_{\text {SET }}=1 \mu \mathrm{~A}$		$\mathrm{I}_{\text {SET }}=10 \mu \mathrm{~A}$	
		Min	Max	Min	Max
Vos	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{k} \Omega$		6 mV		6 mV
los	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		6 nA		20 nA
$\mathrm{I}_{\text {bias }}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.	10 nA		75 nA
Large Signal Voltage Gain	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \\ & V_{O}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$	60k		60k	
Supply Current	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$11 \mu \mathrm{~A}$		$100 \mu \mathrm{~A}$
Power Consumption	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$330 \mu \mathrm{~W}$		3 mW
$\mathrm{V}_{\text {OS }}$	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$		7.5 mV		7.5 mV
los			8 nA		25 nA
$\mathrm{I}_{\text {bias }}$			10 nA		80 nA
Input Voltage Range		$\pm 13.5 \mathrm{~V}$		$\pm 13.5 \mathrm{~V}$	
Large Signal Voltage Gain	$\begin{aligned} & V_{O}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$	50k		50k	
Output Voltage Swing	$\begin{aligned} & R_{\mathrm{L}}=100 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$	$\pm 12 \mathrm{~V}$		$\pm 12 \mathrm{~V}$	
Common Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	70 dB		70 dB	
Supply Voltage Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	74 dB		74 dB	
Supply Current			$11 \mu \mathrm{~A}$		$100 \mu \mathrm{~A}$
Power Consumption			$300 \mu \mathrm{~W}$		3 mW

Operational Amplifiers Glossary

AVERAGE INPUT OFFSET CURRENT DRIFT - The average change in offset current between room $\left(+25^{\circ} \mathrm{C}\right)$ and high temperature $\left(+125{ }^{\circ} \mathrm{C},+85^{\circ} \mathrm{C}\right.$ or $\left.+75^{\circ} \mathrm{C}\right)$ or between room temperature and low temperature $\left(0^{\circ} \mathrm{C},-25^{\circ} \mathrm{C}\right.$ or $-55^{\circ} \mathrm{C}$) divided by the temperature difference.

AVERAGE OFFSET VOLTAGE DRIFT - The average change in offset voltage between room ($+25^{\circ} \mathrm{C}$) and high temperature $\left(+125^{\circ} \mathrm{C},+85^{\circ} \mathrm{C}\right.$ or $+75^{\circ} \mathrm{C}$) or between room temperature and low temperature $\left(0^{\circ} \mathrm{C},-25^{\circ} \mathrm{C}\right.$ or $\left.-55^{\circ} \mathrm{C}\right)$ divided by the temperature difference.

CHANNEL SEPARATION - The ratio of the output of a driven amplifier to the output (referred to input) of an adjacent undriven amplifier.

COMMON MODE INPUT VOLTAGE (VIC) - The average of the voltages present at the differential input terminals.

COMMON MODE INPUT VOLTAGE RANGE (VICR) - The range of voltage that if exceeded at either input terminal will cause the amplifier to cease operating properly.

COMMON MODE REJECTION RATIO (CMRR) - The ratio of change in input offset voltage to change in input common-mode voltage, expressed in dB .

$$
\mathrm{CMRR}=20 \times \log _{10}\left(\frac{\mathrm{VIO}}{\mathrm{VCM}}\right)
$$

COMMON MODE RESITANCE (r_{ic}) - The ratio of change in input common-mode voltage to the resulting change in input current.

DIFFERENTIAL INPUT RESISTANCE $\left(r_{i d}\right)$ - The ratio of change in input differential voltage (small-signal, assumes amplifier operating linearly) to the resulting change in differential input current.
FULL POWER BANDWIDTH (FPBW) - The maximum frequency at which a full scale undistorted (THD $\leq 1 \%$) sine wave can be obtained at the output of the amplifier.
GAIN BANDWIDTH (GBW) - The open-loop gain of an op amp (in V/N) at a mid-band, linear-region frequency (usually between 1 KHz and 10 KHz) times that frequency (in Hz). GBW = [AVOL] •f

INPUT BIAS CURRENT (IBIAS) - The average of the currents flowing into or out of the input terminals when the output is at zero volts.

INPUT CAPACITANCE ($\mathrm{C}_{\mathbf{I N}}$) - The equivalent capacitance seen looking into either input terminal.

INPUT NOISE CURRENT (i_{n}) - The input noise current that would reproduce the noise seen at the output if all amplifier noise sources were set to zero and the source impedances were large compared to the optimum source impedance.

INPUT OFFSET CURRENT (IOS) - The difference in the currents flowing into the two input terminals when the output is at zero volts.

INPUT OFFSET VOLTAGE (VOS) - The differential D.C. voltage required to zero the output voltage with no input signal or load. Input offset voltage may also be defined for the case where two equal resistances are inserted in series with the input leads.

INPUT NOISE VOLTAGE ($e_{\mathbf{n}}$) - The input noise voltage that would reproduce the noise seen at the output if all the amplifier noise sources and source resistances were set to zero.

LARGE SIGNAL VOLTAGE GAIN (Ay) - The ratio of the peak to peak output voltage swing (over a specified range) to the change in input voltage required to drive the output.

OUTPUT CURRENT (IOUT) - The output current available from the amplifier at some specified output voltage.

OUTPUT RESISTANCE (RO) - The ratio of the change in output voltage to the change in output current.

OUTPUT SHORT CIRCUIT CURRENT (ISC) - The output current available from the amplifier with the output shorted to ground (or other specified potential).

OUTPUT VOLTAGE SWING (VOUT) - The maximum output voltage swing, referred to ground, that can be obtained under specified loading conditions.

OVERSHOOT - Peak excursion above final value of an output step response.

POWER SUPPLY REJECTION RATIO (PSRR) - The ratio of the change in input offset voltage to the change in power supply voltage producing it.

RISE TIME (t_{r}) - The time required for an output voltage step to change from 10% to 90% of its final value, when the input is subjected to a small-signal voltage pulse.

SETTLING TIME (tset.) - The time required, after application of a step input signal, for the output voltage to settle and remain within a specified error band around the final value.

SLEW RATE (SR) - The rate of change of the output under large-signal conditions. Slew rate may be specified separately for both positive and negative going changes.
SUPPLY CURRENT (IS) - The current required from the power supply to operate the amplifier with no load and the output at zero volts.

SUPPLY VOLTAGE RANGE - The range of power supply voltage over which the amplifier may be safely operated.
UNITY GAIN BANDWIDTH - The frequency range from D.C. to that frequency where the amplifiers open loop gain is unity.

COMPARATORS

PAGE
SELECTION GUIDE 4-2
COMPARATORS DATA SHEETS
CA 139, A Quad Voltage Comparators 4-3
CA 239, A Quad Voltage Comparators 4-3
CA 311 Voltage Comparator 4-8
CA 339, A Quad Voltage Comparators 4-3
CA 3098 Programmable Schmitt Trigger-With Memory 4-16
CA 3290, A BiMOS Dual Voltage Comparators 4-23
HA 4900, 02, 05 Precision Quad Comparators 4-32
LM 311 Voltage Comparator 4-8
LM 339, A Quad Voltage Comparator 4-3

Selection Guide

COMPARATORS

General Purpose Electrical Characteristics, $\mathbf{T A}_{\mathbf{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

Type	V_{10} Max. mV	1 Max. nA	$\begin{gathered} \mathrm{I}^{+} \\ \mathrm{Max} . \\ \mathrm{Ma} \end{gathered}$	Max. V+, \mathbf{V}^{-}	${ }^{\text {AOL }}$ (Min.) dB	Unity Gain BW Typ. MHz	$\begin{gathered} \text { SR } \\ (T y p .) \\ \text { V/ } / \mu \mathrm{s} \end{gathered}$	Pkg. No. of Pins ${ }^{\star}$
Single-Unit Types								
CA311	7.5	250	8	± 8	106		(1)	8E, S, T
Dual-Unit Types								
CA3290	20	50pA	3	± 18	88	Response Time (2)		$\begin{gathered} 8 E, S, T \\ 14 E 1 \end{gathered}$
CA3290A	10	40pA	3	± 18	88			
Quad-Unit Types								
CA139	5	100	8	± 18	-	Response Time (3)		14E
CA139A	2	100	8	± 18	94			14E
CA239	5	250	2	± 18	-			14E
CA239A	2	250	2	± 18	94			14E
CA339	5	250	2	± 18	94			14E
CA339A	2	250	2	± 18	94			14E

Type	$\begin{aligned} & \mathrm{V}_{10} \\ & \mathrm{mV} \end{aligned}$	$\begin{aligned} & I_{10} \\ & n A \end{aligned}$	Comments	$\begin{array}{\|l} \text { Re- } \\ \text { sponse } \\ \text { Time } \end{array}$	Pkg. No. of Pins*
HA-4900	2	10	Single or dual supply. Analog and logic supplies separated for easier interface and noise immunity	130 ns	16
HA-4902	2	10		130ns	16
HA-4905	4	25		130 ns	16

*See Packaging Section.
Response Time:

$$
\begin{aligned}
& 1-200 \mathrm{~ns} \\
& 2-\mathrm{tr}=1.2 \mu \mathrm{~s}, \mathrm{tf}=200 \mathrm{~ns} \\
& 3-\mathrm{tr}=1.3 \mu \mathrm{~s}, \mathrm{tf}=300 \mathrm{~ns}
\end{aligned}
$$

High-Speed

Type	Comments	Propagation Delay ns	Tracking Bandwidth MHz
HFA-0003	New Product in Development	<3	300

CA139, CA139A, CA239, CA239A, CA339, CA339A, LM339*, LM339A*

May 1990

Quad Voltage Comparators

For Industrial, Commercial, and Military Applications

Features:

- Operation from single or dual supplies
- Common mode input voltage range to ground
- Output voltage compatible with TTL, DTL, ECL, MOS and CMOS
- Differential input voltage range equal to the supply voltage
- Maximum input offset voltage (VIO): CA139A, CA239A, CA339A - 2 mV
CA139, CA239, CA339-5 mV
- Replacement for industry types 139, 239, 339, 139A, 239A, and 339A

The CA139, CA239, CA339, CA139A, CA239A, and CA339A types consist of four independent single or dual supply voltage comparators on a single monolithic substrate. The common mode input voltage range includes ground even when operated from a single supply, and the low power sypply current drain makes these comparators suitable for battery operation. These types were designed to directly interface with TTL and CMOS.

Types CA139A, CA239A, and CA339A have all the features and characteristics of their prototype counter parts CA139, CA239, and CA339 plus an even lower input offset voltage characteristic. These devices are supplied in a 14-lead Small Outline package (M suffix), in a 14 -lead dual-in-line plastic package (E suffix) and in a 14-lead dual-in-line hermetic (fritseal) ceramic package (F suffix). The CA339 is also available in chip form (H suffix).

Applications:

- Square wave generators
- Time delay generators
- Pulse generators
- Multivibrators
- High voltage digital logic gates
- A/D converters
- MOS clock timers

[^50]MAXIMUM RATINGS, Absolute-Maximum Values at $T_{A}=25^{\circ} \mathrm{C}$:

DC SUPPLY VOLTAGE	36 V or $\pm 18 \mathrm{~V}$
DC DIFFERENTIAL INPUT VOLTAGE	$\pm 36 \mathrm{~V}$
INPUT VOLTAGE	-0.3 V to +36 V
INPUT CURRENT ($\left.\mathrm{V}_{1}<-0.3 \mathrm{~V}\right)^{*}$.	50 mA
OUTPUT SHORT CIRCUIT TO GROUND® (Single Supply)	Continuous
DEVICE DISSIPATION:	
Up to $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$	750 mW
Above $\mathrm{T}_{A}=55^{\circ} \mathrm{C}$	derate linearly at $6.67 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
AMBIENT TEMPERATURE RANGE:	
Operating	-55 to $+125^{\circ} \mathrm{C}$
Storage	-65 to $+150^{\circ} \mathrm{C}$
LEAD TEMPERATURE (DURING SOLDERING):	
At distance $1 / 16 \pm 1 / 32 \mathrm{in} .(1.59 \pm 0.79 \mathrm{~mm})$	
from case for 10 seconds max.	$+265{ }^{\circ} \mathrm{C}$

[^51]

Fig. 2-Schematic diagram.

ELECTRICAL CHARACTERISTICS

CHARACTERISTIC	TEST CONDITIONS		LIMITS						UNITS
	$\mathrm{V}^{+}=5 \mathrm{~V}$ Unless otherwise indicated		CA139			CA139A			
			Min.	Typ.	Max.	Min.	Typ.	Max.	
Input Offset Voltage (V_{10}) At Output Switch Point $\mathrm{V} \cong 1.4 \mathrm{~V}$	$\begin{aligned} & V_{R E F}= \\ & 1.4 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \end{aligned}$	$25^{\circ} \mathrm{C}$	-	2	5	-	1	2	mV
		Note 1	-	-	9	-	-	4	
Differential Input Voltage ($V_{I D}$)	Keep all inputs $\geqslant 0 \mathrm{~V}$ for V^{-}(If used), Notes 1, 2		-	-	36	-	-	36	V
Saturation Voltage$\left(V_{\text {sat }}\right)$	$\begin{aligned} & V_{1}^{-}=1 \mathrm{~V}, \\ & V_{1}^{+}=0 \mathrm{~V}, \\ & \mathrm{I}^{\text {SINK }} \leqslant \\ & 4 \mathrm{~mA} \\ & \hline \end{aligned}$	$25^{\circ} \mathrm{C}$	-	250	400	-	250	400	mV
		Note 1	-	-	700	-	-	700	
Common-Mode Input Voltage Range ($V_{\text {ICR }}$)	Note 3	$25^{\circ} \mathrm{C}$	0	-	$\mathrm{V}^{+}-1.5$	0	-	$\mathrm{V}^{+}-1.5$	V
		Note 1	0	-	$\mathrm{V}^{+}-2$	0	-	$\mathrm{V}^{+}-2$	
Input Offset Current (${ }_{10}$)	$11^{+}-11^{-}$	$25^{\circ} \mathrm{C}$	-	3	25	-	3	25	nA
		Note 1	-	-	100	-	-	100	
Input Bias Current (${ }_{1 B}$)	$1_{1}^{+} \text {or } 1_{1}^{-}$ with Output in Linear Range	$25^{\circ} \mathrm{C}$	-	25	100	-	25	100	nA
		Note 1	-	-	300	-	-	300	
Total Supply Current (${ }^{+}$)	$R_{\mathrm{L}}=\infty$ on all comparators, $T_{A}=25^{\circ} \mathrm{C}$		-	0.8	2	-	0.8	2	mA
Output Leakage Current	$\begin{aligned} & v_{1}^{+} \geqslant 1 \mathrm{~V}, \\ & v_{1}^{-}=0, \\ & v_{0}=5 \mathrm{~V} \end{aligned}$	$25^{\circ} \mathrm{C}$	-	0.1	-	-	0.1	-	nA
	$\begin{aligned} & \mathrm{v}_{1}^{+} \geqslant 1 \mathrm{~V}, \\ & \mathrm{v}_{1}^{-}=0, \\ & \mathrm{v}_{\mathrm{O}}=30 \mathrm{~V} \end{aligned}$	Note 1	-	-	1	-	-	1	$\mu \mathrm{A}$
Output Sink Current	$\begin{aligned} & V_{1}^{-} \geqslant 1 \mathrm{~V}, \\ & V_{1}^{+}=0, \\ & V_{O} \leqslant+1.5 \mathrm{~V}, \\ & T_{A}=25^{\circ} \mathrm{C} \\ & \hline \end{aligned}$		6	16	-	6	16	-	mA
Voltage Gain ($\mathrm{AOL}^{\text {) }}$)	$\begin{aligned} & R_{\mathrm{L}} \geqslant 15 \mathrm{k} \Omega, \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$+=15 \mathrm{~V}_{1}$	-	200	-	50	200	-	V/mV
Large Signal Response Time	$V_{1}=$ TTL Logic Swing, $V_{\text {REF }}$ $+1.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{RL}}=$ $R_{L}=5.1 \mathrm{k} \Omega$, $T_{A}=25^{\circ} \mathrm{C}$	$\begin{aligned} & \text { gic } \\ & = \\ & =50 \mathrm{~V} . \end{aligned}$	-	300	-	-	300	-	ns
Response Time See Figs. 5 \& 6	$\begin{aligned} & V_{R L}=5 \mathrm{~V}, \\ & R_{L}=5.1 \mathrm{k} \Omega, \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$		-	1.3	-	-	1.3	-	$\mu \mathrm{s}$

Note 1: Ambient Temperature (T_{A}) applicable over operating temperature range as shown below. $\begin{array}{r}\text { CA139 } \\ \text { CA } 139 A\end{array}\left(-55\right.$ to $\left.+125^{\circ} \mathrm{C}\right) \left\lvert\,\left.\begin{gathered}\text { CA239 } \\ \text { CA239A }\end{gathered}\left(-25\right.$ to $\left.+85^{\circ} \mathrm{C}\right)\right|_{\text {CA3339A }} ^{\text {CA339 }}\left(0\right.$ to $\left.+70^{\circ} \mathrm{C}\right)\right.$
Note 2: The comparator will provide a proper output state even if the positive swing of the inputs exceeds the power supply voltage level, if the other input remains within the common-mode voltage range. The low input voltage state must not be less than $-0.3 \vee$ (or 0.3 V below the magnitude of the negative power supply, if used).
Note 3: The upper end of the common-mode voltage range is $\left(V^{+}\right)-1.5 \mathrm{~V}$, but either or both inputs can go to +30 V without damaqe.

ELECTRICAL CHARACTERISTICS

CHARACTERISTIC	TEST CONDITIONS $\mathrm{V}^{+}=5 \mathrm{~V}$ Unless otherwise indicated		LIMITS						UNITS
			CA239, CA339			CA239A, CA339A			
			Min.	Typ.	Max.	Min.	Typ.	Max.	
Input Offset Voltage (V_{10}) At Output Switch Point $V \cong 1.4 \mathrm{~V}$	$\begin{aligned} & \mathrm{V}_{\mathrm{REF}}= \\ & 1.4 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \end{aligned}$	$25^{\circ} \mathrm{C}$	-	2	5	-	1	2	mV
		Note 1	-	-	9	-	-	4	
Differential Input Voltage ($\mathrm{V}_{\text {ID }}$)	Keep all inputs $\geqslant 0$ V for V^{-}(If used), Notes 1, 2		-	-	36	-	-	36	V
Saturation Voltage ($\mathrm{V}_{\text {sat }}$).	$\begin{aligned} & \mathrm{V}_{1}^{-}=1 \mathrm{~V}, \\ & \mathrm{~V}_{1}^{+}=0 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{SINK}} \leqslant \\ & 4 \mathrm{~mA} \end{aligned}$	$25^{\circ} \mathrm{C}$	-	. 250	400	-	250	400	mV
		Note 1	-	-	700	-	-	700	
Common-Mode Input Voltage Range ($\mathrm{V}_{\text {ICR }}$)	Note 3	$25^{\circ} \mathrm{C}$	0	-	$\mathrm{V}^{+}-1.5$	0	-	$\mathrm{V}^{+}-1.5$	V
		Note 1	0	-	$\mathrm{V}^{+}-2$	0	-	$\mathrm{V}^{+}-2$	
$\begin{array}{\|l\|} \hline \text { Input Offset } \\ \text { Current }\left(1_{10}\right) \end{array}$	$1_{1}^{+}-11^{-}$	$25^{\circ} \mathrm{C}$	-	5	50	-	5	50	nA
		Note 1	-	-	150	-	-	150	
Input Bias Current ${ }^{(1)}{ }^{\prime}$)	$\begin{aligned} & \hline 1_{1}^{+} \text {or } 1_{1}^{-} \\ & \text {with Output } \\ & \text { in Linear } \\ & \text { Range } \\ & \hline \end{aligned}$	$25^{\circ} \mathrm{C}$	-	25	250	-	25	250	nA
		Note 1	-	-	400	-	-	400	
Total Supply Current ($\left(^{+}\right.$)	$\mathrm{R}_{\mathrm{L}}=\infty$ on all com. parators, $T_{A}=25^{\circ} \mathrm{C}$		-	0.8	2	-	0.8	2	mA
Output Leakage Current	$\begin{aligned} & v_{1}^{+} \geqslant 1 \mathrm{~V}, \\ & \mathrm{v}_{1}^{-}=0, \\ & \mathrm{v}_{0}=5 \mathrm{~V} \end{aligned}$	$25^{\circ} \mathrm{C}$	-	0.1	-	-	0.1	-	nA
	$\begin{aligned} & \mathrm{V}_{1}^{+} \geqslant 1 \mathrm{~V}, \\ & \mathrm{v}_{1}^{-}=0, \\ & \mathrm{v}_{\mathrm{O}}=30 \mathrm{~V} \\ & \hline \end{aligned}$	Note 1	-	-	1	-	-	1	$\mu \mathrm{A}$
Output Sink Current	$\begin{aligned} & \mathrm{V}_{1}^{-} \geqslant 1 \mathrm{~V}, \\ & \mathrm{~V}_{1}^{+}=0, \\ & \mathrm{~V}_{\mathrm{O}} \leqslant+1.5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \hline \end{aligned}$		6	16	-	6	16	-	mA
Voltage Gain ($\mathrm{AOL}^{\text {) }}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}} \geqslant 15 \mathrm{k} \Omega, \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	$r^{+}=15 \mathrm{~V},$	-	200	-	50	200	-	V / mV
Large Signal Response Time	$V_{1}=$ TTL Logic Swing, $V_{\text {REF }}$ $+1.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{RL}}$ $R_{L}=5.1 \mathrm{k} \bar{\Omega}$, $T_{A}=25^{\circ} \mathrm{C}$	$\begin{aligned} & \text { gic } \\ & == \\ & =50 \mathrm{~V} . \end{aligned}$	-	300	-	-	300	-	ns
Response Time See Figs. 5 \& 6	$\begin{aligned} & V_{R L}=5 \mathrm{~V}, \\ & R_{\mathrm{L}}=5.1 \mathrm{k} \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		-	1.3	-	-	1.3	-	$\mu \mathrm{s}$

Note 1: Ambient Temperature (T_{A}) applicable over operating temperature range as shown below.

$$
\begin{gathered}
\text { CA139 } \\
\text { CA139A }
\end{gathered}\left(-55 \text { to }+125^{\circ} \mathrm{C}\right) \stackrel{\text { CA239 }}{\text { CA239A }}\left(-25 \text { to }+85^{\circ} \mathrm{C}\right) \underset{\text { CA339A }}{\text { CA339 }}\left(0 \text { to }+70^{\circ} \mathrm{C}\right)
$$

Note 2: The comparator will provide a proper output state even if the positive swing of the inputs exceeds the power supply voltage level, if the other input remains within the common-mode voltage range. The low input voltage state must not be less than $-0.3 \vee$ (or 0.3 V below the magnitude of the negative power supply, if used).
Note 3: The upper end of the common-mode voltage range is $\left(\mathrm{V}^{+}\right)-1.5 \mathrm{~V}$, but either or both inputs can go to +30 V without damage.

TYPICAL CHARACTERISTICS

Fig. 3-Supply current vs. supply voltage.

Fig. 5-Response time for various input overdrives-negative transition.

Fig. 7-Output saturation voltage vs. output sink current.

Fig. 4-Input current vs. supply voltage.

Fig. 6-Response time for various input overdrives-positive transition.

Chip Version (CA339H)

Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils $\left(10^{-3}\right.$ inch $)$.

Voltage Comparator

For Commercial and Industrial Applications

Features:

- Single- or dual-supply operation
- Power consumption - 135 mW at $\pm 15 \mathrm{~V}$
- Strobe capability
- Low input-offset current - 6 nA(typ.)
- Differential input-voltage range - $\pm 30 \mathrm{~V}$
- Directly interchangeable with National Semiconductor LM311 Series

Applications:

- Multivibrators
- Positive and negative peak detectors
- Crystal oscillators
- Zero-crossing detectors
- Solenoid, relay, and lamp drivers

The CA311 is a monolithic voltage comparator that operates from dual supplies up to $\pm 15 \mathrm{~V}$, or from single supplies down to 5 V . This single supply capability makes the outputs of these devices compatible with RTL, DTL, TTL, and MOS circuits. In addition they can drive lamps or relays, and switch voltages up to 40 V at currents as high as 50 mA .

The inputs and outputs of the CA311 can be isolated from
system ground, allowing the output to drive loads referred to ground $\mathrm{V}+$, or V -.

The CA311 is available in 8-lead TO-5 style packages with standard leads (T suffix), dual-in-line formed leads ("DILCAN', S suffix), 8-lead dual-in-line plastic package ("MINI-DIP", E suffix), and in chip form (H suffix).

*Technical Data on L.M Branded types is identical to the corresponding CA Branded types.

Maximum Ratings, Absolute Maximum Values at $T_{A}=25^{\circ} \mathrm{C}$:

DC SUPPLY VOLTAGE (between $\mathrm{V}+$ and V^{-}terminals) 36 V
DC INPUT VOLTAGE* ± 15 V
DIFFERENTIAL INPUT VOLTAGE $\pm 30 \mathrm{~V}$
OUTPUT TO NEGATIVE SUPPLY VOLTAGE (V7-4) 40 V
GROUND TO NEGATIVE SUPPLY VOLTAGE (V1-4) 30 V
OUTPUT SHORT-CIRCUIT DURATION 10 s
DEVICE DISSIPATION:
UP TO TA $=25^{\circ} \mathrm{C}$ 500 mW
Above $T_{A}=25^{\circ} \mathrm{C}$ derate linearly at $6.67 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
AMBIENT TEMPERATURE RANGE:
Operating 0 to $+70^{\circ} \mathrm{C}+$
Storage -65 to $+150^{\circ} \mathrm{C}$
LEAD TEMPERATURE (DURING SOLDERING):
At distance $1 / 16 \pm 1 / 32$ inch ($1.59 \pm 0.79 \mathrm{~mm}$) from case for 10 seconds max. $+265^{\circ} \mathrm{C}$
*This rating applies for $\pm 15 \mathrm{~V}$ supplies. The positive input-voltage limit is 30 V above the negative supply. The negative input-voltage limit is equal to the negative supply voltage or 30 V below the positive supply. The negative input-voltage limit is equal to the negative supply voltage or 30 V below the positive supply, whichever is less.
\dagger Types CA311 E, S, and T can be operated over the temperature range of -55 to $+125^{\circ} \mathrm{C}$, although the published limits for certain electrical specifications apply only over the temperature range of 0 to $70^{\circ} \mathrm{C}$.

FUNCTIONAL DIAGRAM FOR TO-5 STYLE PACKAGE.

TYPICAL CHARACTERISTICS

Fig. 2 - Response time for various input overdrive voltages - positive input.

Fig. 3 - Response time for various input overdrive voltages - negative input.

ELECTRICAL CHARACTERISTICS

CHARACTERISTICS		TEST CONDITIONS		LIMITS			UNITS		
		SUPPLY VOLTAGE (V \pm) $=15 \mathrm{~V}$ UNLESS OTHERWISE SPECIFIED		CA311					
		MIN.	TYP.	MAX.					
Input Offset Voltage	Vıo			$\mathrm{Rs} \leq 5 \mathrm{k} \Omega$, Note 2	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-	2	7.5	mV
		Note 1	-		-	10			
Saturation Voltage		$\mathrm{V}_{1} \leq-10 \mathrm{mV}$, $10=50 \mathrm{~mA}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-	0.75	1.5	V		
		$\begin{aligned} & \mathrm{V}+\geq 4.5 \mathrm{~V}, \mathrm{~V}^{-}-0, \mathrm{~V}_{\mathrm{I}} \leq-10 \mathrm{mV} \\ & \text { Isink } \leq 8 \mathrm{~mA} \end{aligned}$	Note 1	-	0.23	0.4			
Input Voltage Range	VIPP		Note 1	-	± 14	-	V		
Input Offset Current	lıo	Note 2	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-	6	50	nA		
			Note 1	-	-	70			
Input Bias Current	HB	Note 2	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-	100	250	nA		
			Note 1	-	-	300			
Postive Supply Current	$1+$		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-	5.1	7.5	mA		
Negative Supply Current	1^{-}		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-	4.1	5	mA		
Output Leakage Current		$V_{1} \geq 10 \mathrm{mV}, \mathrm{V}_{0}=35 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-	-	50	nA		
Strobe on Current			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-	3	-	mA		
Voltage Gain, A			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	40	200	-	V / mV		
Response Time		100 mV Input Step with 5 mV Overdrive Voltage	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-	200	-	ns		
Input Voltage Range			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-14.5	$\begin{aligned} & 13.8- \\ & -14.7 \\ & \hline \end{aligned}$	13	V		

Note 1: Ambient temperature (T_{A}) over applicable operating temperature of 0 to $+70^{\circ} \mathrm{C}$.
Note 2: The input offset characteristics given are the values required to drive the output to within 1 V of either supply with a 1 mA load. These characteristics define an error band which takes into account the worst-case effects of voltage gain and input impedance. The input offset voltage, input offset current, and input bias current specifications apply for any supply voltage from a 5 V single supply up to $\mathrm{a} \pm 15 \mathrm{~V}$ dual supply.

Fig. 4 - Response time for various input overdrive voltages - positive input.

Fig. 5 - Response time for various input overdrive voltages - negative input.

Fig. 6 - Output limiting characteristics.

Fig. 8 - Input bias current vs. ambient temperature.

Fig. 10-Input characteristics.

Fig. 12 - Transfer function.

Fig. 7 - Supply current vs. supply voltage.

Fig. 9 - Input offset current vs. ambient temperature.

Fig. 11 - Common-mode voltage range limits vs. ambient temperature.

Fig. 13-Output saturation voltage vs. output current.

Fig. 14 - Supply current vs. ambient temperature.

Fig. 15-Input and output leakage current vs. ambient temperature.

Fig. 16 - Offset error.

TYPICAL APPLICATIONS

Fig. 17 - Comparator and solenoid driver.

* input polarity is reversed when USING PIN : AS OUTPUT
Fig. 19 - Driving a ground-referred load.

Fig. 18 - Digital transmission isolator.

Fig. 20 - Zero-crossing detector driving MOS logic.

TYPICAL APPLICATIONS (cont'd)

Fig. 21 - Using clamp diodes to improve response.

Fig. 23 - Zero-crossing detector driving and MOS switch.

Fig. 25 - Precision photodiode comparator.

Fig. $26-100-\mathrm{kHz}$ free-running multivibrator.

Fig. 22 - Low-voltage adjustable-reference supply.

*ABSORBS INDUCTIVE KICKBACK OF RELAY
AND PROTECTS IC FROM SEVERE VOLTAGE AND PROTECTS IC FROM SEVERE VOLTAGE
TRANSIENTS ON DC SUPPLY LINE

Fig. 24 - Relay driver with strobe.

Fig. 27 - Switching power amplifier.

TYPICAL APPLICATIONS (cont'd)

Fig. 28 - Strobing off both input and output stages.

Fig. 30 - Crystal oscillator.

* Values shown are for a 0 to 30 V logic swing ano HRESHOL
1 MAY BE ADDED TO CONTROL SPEED AND REDUCE NOISE
SPIKES.
Fig. 29 - TTL interface with high-level logic.

Fig. 31 - Precision squarer.

Fig. 32-10 Hz to 10 kHz voltage controlled oscillator.

TYPICAL APPLICATIONS (cont'd)

Fig. 33 - Switching power amplifier.

Dimensions and pad layout for CA 311 H .

Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10-3 inch).

Programmable Schmitt Trigger - With Memory

Dual-Input Precision Level Detectors

Features:

- Programmable operating current
- Micropower standby dissipation
- Direct control of currents up to 150 mA
- Low input on/off current of less than 1 nA for programmable bias current of $1 \mu \mathrm{~A}$
- Built-in hysteresis: 20 mV max.

Applications:

- Control of relays, heaters, LEDS, lamps, photosensitive devices, thyristors, solenoids, etc.
- Signal reconditioning
- Phase and frequency modulators
- On/off motor switching
- Schmitt triggers, level detectors
- Time delays
- Overvoltage, overcurrent, overtemperature protection
- Battery-operated equipment
- Square and triangular-wave generators

The CA3098 Programmable Schmitt Trigger is a monolithic silicon integrated circuit designed to control high-operatingcurrent loads such as thyristors, lamps, relays, etc. The CA3098 can be operated with either a single power supply with maximum operating voltage of 16 volts, or a dual power supply with maximum operating voltage of ± 8 volts. It can directly control currents up to 150 mA and operates with microwatt standby power dissipation when the current to be controlled is less than 30 mA . The CA3098 contains the
following major circuit-function features (see Fig. 1):

1. Differential amplifiers and summer: the circuit uses two differential amplifiers, one to compare the input voltage with the "high" reference, and the other to compare the input with the "low" reference. The resultant output of the differential amplifiers actuates a summer circuit which delivers a trigger that initiates a change in state of a flip-flop.

Figure 1 - Block diagram of CA3098 programmable Schmitt trigger.
2. Flip-flop: the flip-flop functions as a bistable "memory" element that changes state in response to each trigger command.
3. Driver and output stages: these stages permit the circuit to "sink" maximum peak load currents up to 150 mA at terminal 3.
4. Programmable operating current: the circuit incorporates access at terminal 2 to permit programming the desired
quiescent operating current and performance parameters.
The CA3098 is supplied in the 8-lead dual-in-line plastic package ("Mini-Dip", E suffix), and in chip form (H suffix).
For information on another RCA Dual-Input Precision Level Detector, see the data bulletin for the RCA-CA3099E, File No. 620.

ELECTRICAL CHARACTERISTICS at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Unless Otherwise Specified

CHARACTERISTIC	TEST CONDITIONS	Fig. No.	LIMITS			UNITS
			Min.	Typ.	Max.	
Input Offset Voltage: "Low" Ref., VIO(LR)	$\begin{aligned} & V_{L R}=G n d, V_{H R}=3 \mathrm{~V} \\ & I_{\text {BIAS }}=100 \mu \mathrm{~A} \end{aligned}$	5	-15	-3	6	mV
"High" Ref., $\mathrm{V}_{1 \mathrm{O}}(\mathrm{HR})$	$\begin{aligned} & V_{H R}=G n d, V_{L R}=-3 V \\ & I_{\text {BIAS }}=100 \mu \mathrm{~A} \end{aligned}$	6	-10	± 10	10	
Temp. Coeff: "Low" Ref. "High" Ref.	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ & -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 7 \\ & 8 \end{aligned}$	-	4.5 ± 8.2	-	$\mu \vee /{ }^{\circ} \mathrm{C}$
Min. Hysteresis Voltage $\mathrm{V}_{\text {IO }}$ (HR-LR):	$\begin{aligned} & \mathrm{V}_{\text {REG }}=6 \mathrm{~V}, \mathrm{~V}^{+}=12 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{BIAS}}=100 \mu \mathrm{~A} \end{aligned}$	9	-	3	20	mV
Temp. Coeff.	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	10	-	6.7	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Output Saturation Voltage, $V_{C E}(S A T)$	$\begin{aligned} & \mathrm{V}_{1}=4 \mathrm{~V}, \mathrm{~V}_{\text {REG }}=6 \mathrm{~V}, \\ & \mathrm{~V}^{+}=12 \mathrm{~V}, \mathrm{I}_{\text {BIAS }}=100 \mu \mathrm{~A} \end{aligned}$	11,12	-	0.72	1.2	V
Total Supply Current, 'total: "ON"	$\begin{aligned} & V_{1}=4 \mathrm{~V}, \mathrm{~V}_{\text {REG }}=6 \mathrm{~V} ; \\ & \mathrm{V}^{+}=12 \mathrm{~V}, \mathrm{I}_{\text {BIAS }}=100 \mu \mathrm{~A} \end{aligned}$	13,14	500	710	800	$\mu \mathrm{A}$
"OFF"	$\begin{aligned} & \mathrm{V}_{1}=8 \mathrm{~V}, \mathrm{~V}_{\text {REG }}=6 \mathrm{~V} \\ & \mathrm{~V}^{+}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{BIAS}}=100 \mu \mathrm{~A} \end{aligned}$		400	560	750	$\mu \mathrm{A}$
Input Bias Current, $I_{1 B}$: ${ }^{\prime} B(p-n-p)$	$\begin{aligned} & V_{1}=4 \mathrm{~V}, V_{\text {REG }}=6 \mathrm{~V} \\ & \mathrm{~V}^{+}=12 \mathrm{~V}, \mathrm{I}_{\text {BIAS }}=100 \mu \mathrm{~A} \end{aligned}$	15	-	42	100	nA
${ }^{1} \mathrm{~B}(\mathrm{n}-\mathrm{p} \cdot \mathrm{n})$	$\begin{aligned} & V_{1}=8 \mathrm{~V}, \mathrm{~V}_{\text {REG }}=6 \mathrm{~V} \\ & \mathrm{~V}^{+}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{BIAS}}=100 \mu \mathrm{~A} \end{aligned}$		-	28	100	nA
Output Leakage Current, ${ }^{\prime}$ CE(OFF)	Current from Term. 3 when Q46 is "OFF"	-	-	-	10	$\mu \mathrm{A}$
Switching Times: Delay, t_{d}	${ }^{\mathrm{I}} \mathrm{C}=100 \mu \mathrm{~A}$		-	600	-	ns
Fall, t_{f}	$\mathrm{I}_{\text {BIAS }}=100 \mu \mathrm{~A}$	18	-	50	-	ns
Rise, t_{r}	$\mathrm{V}^{+}=5 \mathrm{~V}$		-	500	-	ns
Storage, t_{5}			-	4.5	-	$\mu \mathrm{s}$
Output Current, IO	$\mathrm{V}^{+}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{BIAS}}=50 \mu \mathrm{~A}$	-	100	-	-	mA

Maximum Ratings, Absolute-Maximum Values at $T_{A}=25^{\circ} \mathrm{C}$:

Fig. 2 - Schematic diagram of CA3098.

General Description of CIrcuit Operation

 (Refer to Figs. 2, 3, 4)When the signal-input voltage of the CA3098 is equal to or less than the "low" reference voltage (LR), current flows from an external power supply through a load connected to terminal 3 ("sink" output). This condition is maintained until the signal-input voltage rises to or exceeds the "high" reference voltage (HR), thereby effecting a change in the state of the flip-flop (memory) such that the output stage interrupts current flow in the external load. This condition, in turn, is maintained until such time as the signal again becomes equal to or less than the "low" reference voltage (VR).

Fig. 3 - Basic hysteresis switch (Schmitt trigger).

The CA3098 comparator is unique in that it contains circuit provisions to permit programmability. This feature provides flexibility to the designer to optimize quiescent power consumption, input-circuit characteristics, hysteresis, and additionally permits independent control of the comparator, namely, pulsing, strobing, keying, squelching, etc. Programmability is accomplished by means of the bias current ($\mathrm{l}_{\text {bias }}$) supplied to terminal 2.
An auxiliary means of controlling the magnitude of loadcurrent flow at terminal 3 is provided by "sinking" current into terminal 5. Figs 3 and 4 highlight the operation of the CA3098 when connected as a simple hysteresis switch (Schmitt trigger).

Fig. 4 - Resultant output states of the CA3098, shown in Fig. 3 as a function of various input signal levels

TYPICAL CHARACTERISTIC CURVES

Fig. 5 - Input-offset voltage ("low"reference) vs. programming bias current.

Fig. 7 - Input-offset voltage ("low" reference) vs. ambient temperature.

Fig. 6 - Input-offset voltage ("high" reference) vs. programming bias current.

Fig. 8 - Input-offset voltage ("high" reference) vs. ambient temperature.

TYPICAL CHARACTERISTIC CURVES (Cont'd)

Fig. 9 - Min. hysteresis voltage vs. programming bias current.

Fig. 11 - Output saturation voltage vs. output sink current.

Fig. 13-Total supply current vs. programming bias current.

Fig. 10 - Min. hysteresis voltage vs. ambient temperature.

Fig. 12- Output saturation voltage vs. ambient temperature.

Fig. 14 - Total supply current vs. ambient temperature.

Fig. 15 - Input bias current vs. programming bias current.

TEST CIRCUITS

Fig. 16 - Input-offset voltage test circuit.

Fig. 17 - Min. hysteresis voltage, total supply current, and input-bias-current test circuit.

Fig. 18 - Switching time test circuit.

TYPICAL APPLICATIONS

Fig. 19 - Time delay circuit: Terminal 3 "sinks" after τ seconds.

Fig. 20 - Time delay circuit: "sink" current interrupted affer $\boldsymbol{\tau}$ seconds.

Fig. 21 - Sine-wave to square-wave converter with duty-cycle adjustment (V_{1} and V_{2}).

TYPICAL APPLICATIONS (Cont'd)

Notes (a) Motor pump is "ON" when water level rises above thermistor TH_{2}.
(b) Motor pump remains "ON" until water level falls below thermistor TH_{1}.

Fig. 22(b) - Water level diagram for circuit of Fig. 22(a).
(c) Thermistors, operate in self-heating mode.

Fig. 22 (a) - Water-level control.

Fig. 23-OFFION control of triac with programmable hysteresis.

Fig. 24 - One-shot multivibrator.

Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10^{-3} inch).

The layout represents a chip when it is part of the wafer. When the wafer is cut into chips, the cleavage angles are 57° instead of 90° with respect to the face of the chip. Therefore, the isolated chip is actually 7 mils $(0.17 \mathrm{~mm})$ larger in both dimensions.

BiMOS Dual Voltage Comparators

With MOSFET Input, Bipolar Output

Features:

- MOSFET input stage:
(a) Very high input impedance (ZIN) - 1.7 TV typ.
(b) Very low input current - 3.5 pA typ. at $\pm 5 \mathrm{~V}$ supply voltage
(c) Wide common mode input voltage range ($V / C R$) - can be swung 1.5 V (typ.) below negative supply-voltage rail
(d) Virtually eliminates errors due to flow of input currents
- Output voltage compatible with TTL, DTL, ECL, MOS, and CMOS logic systems in most applications

Applications:

- High source impedance voltage comparators
- Long time delay circuits
- Square wave generators
- A / D converters
- Window comparators

The CA3290A and CA3290 types consist of a dual voltage comparator on a single monolithic chip. The common mode input voltage range includes ground when operated from a single supply. The low supply current drain makes these comparators suitable for battery operation; their extremely low input currents allow their use in applications that employ sensors with extremely high source impedances. Package options are shown in the table below.

Fig. 1 - Basic CA3290 comparator.

SELECTION CHART

SELECTION	CHARACTERISTIC				PACKAGE AND SUFFIX			
	MAX. V_{10} (mV)	$\begin{gathered} \text { MAX. } \\ \text { I } \\ (\mathrm{pA}) \end{gathered}$	MIN. AOL^{2}	$\begin{aligned} & \text { V+ } \\ & \text { (V) } \end{aligned}$	TO-5		PLASTIC	
					STD.	DIL-CAN	8-LEAD	14-LEAD
CA3290A	10	40	25K	36	T	S	E	E1
CA3290	20	50	25K	36	T	S	E	E1

The CA3290 is also available in chip form (H suffix).

```
MAXIMUM RATINGS, Absolute-Maximum Values:
DC SUPPLY VOLTAGE:
    Single Supply:
        CA3290A, CA3290 . . . . . . . . . . . . . . . . . . . . . +36 V
    Dual Supply:
        CA3290A, CA3290 . . . . . . . . . . . . . . . . . . . . . }\pm18\textrm{V
DIFFERENTIAL INPUT VOLTAGE . . . . . . . . . . . }\pm36\vee or \pm[(V+ - V- ) +5 V]
    (whichever is less)
COMMON-MODE INPUT VOLTAGE . . . . . . . . . . . . . . V V +5 V to V
DEVICE DISSIPATION:
    Up to }5\mp@subsup{5}{}{\circ}\textrm{C}\mathrm{ . . . . . . . . . . . . . . . . . . . . . . . }630\textrm{mW
    Above }5\mp@subsup{5}{}{\circ}\textrm{C}... . . . . . . . . . . . . . . . Derate linearly at 6.67 mW/0'C
OUTPUT-TO-V} SHORT CIRCUIT DURATION* . . . . . . . . . . . CONTINUOUS
TEMPERATURE RANGE, ALL TYPES:
    Operating . . . . . . . . . . . . . . . . . . . . . . - - 55 to +125}\mp@subsup{}{}{\circ}\textrm{C
    Storage . . . . . . . . . . . . . . . . . . . . . . - }65\mathrm{ to +150}\mp@subsup{0}{}{\circ}\textrm{C
INPUT TERMINAL CURRENT . . . . . . . . . . . . . . . . . . . . }1\textrm{mA
LEAD TEMPERATURE (DURING SOLDERING):
    AT DISTANCE 1/16\pm 1/32 INCH (1.59 土0.79 MM)
    FROM CASE FOR }10\mathrm{ SECONDS MAX
        265 %
```

*Short circuits from the output to V^{+}can cause excessive heating and eventual destruction of the device.

Fig. 2 - Schematic diagram of CA3290
(only one is shown).

CIRCUIT DESCRIPTION

The Basic Comparator

Fig. 1 shows the basic circuit diagram for one of the two comparators in the CA3290. It is generically similar to the industry-type " 139 " comparators, with PMOS transistors replacing $\mathrm{p}-\mathrm{n}-\mathrm{p}$ transistors as input stage elements. Transistors Q1 through Q4 comprise the differential input stage, with Q5 and Q 6 serving as a mirror-connected active load and differential-to-single-ended converter. The differential input at Q 1 and $\mathrm{Q4}$ is amplified so as to toggle Q 6 in accordance with the input-signal polarity. For example, if $+\mathrm{V}_{\text {IN }}$ is greater than $-\mathrm{V}_{1 N}, \mathrm{Q} 1, \mathrm{Q} 2$, and current mirror transistors Q 5 and Q 6 will be turned off; transistors $\mathrm{Q} 3, \mathrm{Q} 4$, and Q 7 will be turned on, causing Q 8 to be turned off.

The output is pulled positive when a load resistor is connected between the output and V^{+}.
In essence, Q1 and Q4 function as sourcefollowers to drive Q2 and Q3, respectively, with zener diodes D1 through D4 providing gate-oxide protection against input voltage transients (e.g., static electricity). The current flow in Q1 and O 2 is established at approximately 50 microamperes by constantcurrent sources 11 and 13 , respectively. Since Q1 and Q4 are operated with a constant current load, their gate-to-source voltage drops will be effectively constant as long as the input voltages are within the common-mode range.

As a result, the input offset voltage ($\mathrm{V}_{\mathrm{Gsig} 1}{ }^{+}$. $\mathrm{V}_{\mathrm{BE}(02)}-\mathrm{V}_{\mathrm{BE}(031)}-\mathrm{V}_{\mathrm{GS}(044)}$) will not be degraded when a large differential dc voltage is applied to the device for extended periods of time at high temperatures.

Additional voltage gain following the first stage is provided by transistors Q7 and Q8. The collector of Q8 is open, offering the user a wide variety of options in applications. An additional discrete transistor can be added if it becomes necessary to boost the output sink-current capability.

The detailed schematic diagram for one comparator and the common current-source biasing is shown in Fig. 2. PMOS transistors Q9 through Q12 are the current-source elements identified in Fig. 1 as 1_{1} through I_{4}. respectively. Their gate-source potentials (V_{GS}) are supplied by a common bus from the biasing circuit shown in the right-hand portion of the Fig. 2. The currents supplied by Q10 and Q12 are twice those supplied by Q9 and Q11. The transistor geometries are appropriately scaled to provide the requisite currents with common V_{GS} applied to Q 9 through Q12.

ELECTRICAL CHARACTERISTICS at $T_{A}=-55$ to $+125^{\circ} \mathrm{C}$

CHARACTERISTIC	TEST CONDITIONS		VALUES				UNITS
			CA3290A		CA3290		
		v^{+}	Typ.	Max.	Typ.	Max.	
Input Offset Voltage, V_{10}	$\begin{array}{\|l\|} \mathrm{V}_{\mathrm{CM}}=1.4 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{O}}=1.4 \mathrm{~V} \end{array}$	5 V	4.5	-	8.5	-	mV
	$\begin{aligned} & V_{C M}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V} \end{aligned}$	$\pm 15 \mathrm{~V}$	8.5	-	8.5		
Temp. Coefficient of Input Offset Voltage, $\Delta V_{10} / \Delta T$			8	-	8	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Current, 1_{10}	$\mathrm{V}_{\mathrm{CM}}=1.4 \mathrm{~V}$	5 V	2	28	2	32	nA
	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$	$\pm 15 \mathrm{~V}$	7	28	7	32	
Input Current, $1^{\text {a }}$	$\mathrm{V}_{\mathrm{CM}}=1.4 \mathrm{~V}$	5 V	2.8	45	2.8	55	nA
	$\mathrm{V}^{\mathrm{CM}}=0 \mathrm{~V}$	$\pm 15 \mathrm{~V}$	13	45	13	55	
Supply Current, 1^{+}	$R_{L}=\infty$	5 V	0.85	1	0.85	1.6	mA
		30 V	1.62	3	1.62	3.5	
Voltage Gain, AOL	$\mathrm{R}_{\mathrm{L}}=15 \mathrm{k} \Omega$	$\pm 15 \mathrm{~V}$	150	-	150	-	V / mV
			103	-	103	-	dB
Saturation Voltage ${ }^{I_{S I N K}}=4 \mathrm{~mA}$	$\begin{aligned} & V^{+}=5 V \\ & +V_{1}=0 V \\ & -V_{1}=1 V \end{aligned}$	$+125^{\circ} \mathrm{C}$	0.22	0.7	0.22	0.7	V
		$-55^{\circ} \mathrm{C}$	0.1	-	0.1	-	
Output Leakage Current, IOL		15 V	65	-	65	-	$n \mathrm{~A}$
		36 V	130	1k	130	1k	

$$
\begin{aligned}
& { }^{*}{ }^{*} \mathrm{~T}_{\mathrm{A}}=+125^{\circ} \mathrm{C} \\
& { }^{\text {At } \mathrm{T}_{\mathrm{A}}}=-55^{\circ} \mathrm{C}
\end{aligned}
$$

ELECTRICAL CHARACTERISTICS AT $T_{A}=25^{\circ} \mathrm{C}$

CHARACTERISTIC	TEST COND. v^{+}	LIMITS						$\begin{aligned} & \hline \mathbf{U} \\ & \mathbf{N} \\ & \mathbf{I} \\ & \mathrm{T} \\ & \mathbf{S} \end{aligned}$
		CA3290A			CA3290			
		Min.	Typ.	Max.	Min.	Typ.	Max.	
Input Offset Voltage, $\begin{array}{r} V_{10} \quad V_{\mathrm{CM}^{\prime}}=1.4 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{O}}=1.4 \mathrm{~V} \\ \hline \end{array}$	5 V	-	4	10	-	7.5	20	mV
$\begin{gathered} \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V} \end{gathered}$	$\pm 15 \mathrm{~V}$	-	4	10	-	7.5	20	
Input Current, $\mathrm{I}_{\text {I }}$	5 V	-	3.5	40	-	3.5	50	pA
$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$	$\pm 15 \mathrm{~V}$	-	12	40	-	12	50	
$\begin{aligned} & \text { Input Offset Current, } \mathrm{I}_{1 \mathrm{O}} \\ & \mathrm{~V}_{\mathrm{CM}}=1.4 \mathrm{~V} \end{aligned}$	5 V	-	2	25	-	2	30	pA
$\mathrm{V}_{\text {CM }}=0 \mathrm{~V}$	$\pm 15 \mathrm{~V}$	-	7	25	-	7	30	
$\begin{aligned} & \text { Common-Mode Input- } \\ & \text { Voltage Range, } V_{\text {ICR }} \\ & \qquad V_{\mathrm{O}}=1.4 \mathrm{~V} \end{aligned}$	5 V	$V^{+}-3.5$ V^{-}	$\begin{aligned} & \mathrm{v}^{+}-3.1 \\ & \mathrm{v}^{-}-1.5 \end{aligned}$	-	$\begin{gathered} \mathrm{v}^{+}-3.5 \\ \mathrm{~V}^{-} \end{gathered}$	$\begin{aligned} & v^{+}-3.1 \\ & v^{-}-1.5 \end{aligned}$	-	V
	$\pm 15 \mathrm{~V}$	$\mathrm{V}^{+}-3.8$ $\mathrm{~V}^{-}$	$\begin{array}{\|l\|} \hline \mathrm{V}^{+}-3.4 \\ \mathrm{~V}^{-}-1.6 \end{array}$	-	$\begin{gathered} v^{+}-3.8 \\ v^{-} \end{gathered}$	$\begin{aligned} & v^{+}-3.4 \\ & v^{-}-1.6 \end{aligned}$	-	
Supply Current, $\mathrm{I}^{+}$$R_{L}=\infty$	30 V	-	1.35	3	-	1.35	3	mA
	5 V	-	0.8	1.4	-	0.8	1.4	
$\begin{aligned} & \text { Voltage Gain, AOL } \\ & R_{\mathrm{L}}=15 \mathrm{k} \Omega \end{aligned}$	$\pm 15 \mathrm{~V}$	25	800	-	25	800	-	V / mV
		88	118	-	88	118	-	dB
Output Sink Current $\mathrm{V}_{\mathrm{O}}=1.4 \mathrm{~V}$	5 V	6	30	-	6	30	-	mA
Saturation Voltage $\begin{array}{r} +V_{1}=0 \mathrm{~V} \\ -V_{1}=1 \mathrm{~V} \\ \mathrm{~S}_{\mathrm{SINK}}=4 \mathrm{~mA} \\ \hline \end{array}$	5 V	-	0.12	0.4	-	0.12	0.4	V
Output Leakage Current,${ }^{\prime} \mathrm{OL}$	15 V	-	100	-	-	100	-	pA
	36 V	-	500	-	-	500	-	
Response Time$\begin{array}{ll} \mathrm{R}_{\mathrm{L}}=5.1 \mathrm{k} \Omega & \text { Rising Edge } \\ & \text { Falling Edge } \end{array}$	15 V	-	1.2	--	-	1.2	-	$\mu \mathrm{s}$
		-	200	-	-	200	-	ns
Common-Mode Rejection Ratio, CMRR	$\pm 15 \mathrm{~V}$	-	44	562	-	44	562	$\mu \mathrm{V} / \mathrm{V}$
	5 V	-	100	562	-	100	562	
Power-Supply Rejection Ratio, PSRR	$\pm 15 \mathrm{~V}$	-	15	316	-	15	316	$\mu \mathrm{V} / \mathrm{V}$
Large-Signal Response Time $R_{L}=5.1 \mathrm{k} \Omega$	15 V	-	500	-	-	500	-	ns
	5 V	-	400	-	-	400	-	

TERMINAL ASSIGNMENTS

TOTAL SUPPLY VOLTAGE $\left(\mathrm{V}^{+}\right)-\mathrm{v}$

Fig. 3 - Supply current as a function of supply voltage (both amplifiers).

Fig. 5 - Input current as a function of input common-mode voltage.

Fig. 7 - Negative common-mode input voltage range as a function of supply voltage.

Fig. 4 - Input current as a function of input common-mode voltage.

Fig. 6 - Positive common-mode input voltage range as a function of supply voltage.

Fig. 8 - Input current as a function of ambient temperature.

Fig. 9 - Output saturation voltage as a
function of output sink current.

Fig. 11 - Non-inverting comparator response-time test circuit and waveforms.

WITH c_{c}
TOP TRACE $\approx 4.5 \mathrm{mV} / \mathrm{DIV}=\mathrm{V}$ IN BOTTOM TRACE $=10 \mathrm{~V} /$ DIV $=$ VOUT
$\mathrm{H}=5 \mu \mathrm{~s} / \mathrm{DIV}$

WITHOUT C_{c}
TOP TRACE $\approx 4.5 \mathrm{mV} / \mathrm{DIV}$
BOTTOM TRACE $=10 \mathrm{~V} / \mathrm{DIV}$
$H=5 \mu \mathrm{~s} / \mathrm{DIV}$

Fig. 10 - Parasitic-oscillations test circuit and associated waveforms.

Fig. 12 - Inverting comparator response-time
test circuit and waveforms.

OPERATING CONSIDERATIONS

Input Circuit

The use of MOS transistors in the input stage of the CA3290 series circuits provides the user with the following features for com, parator applications:

1. Ultra-high input impedance ($\cong 1.7 \mathrm{~T} \Omega$);
2. The availability of common-mode rejection for input signals at potentials below that of the negative powersupply rail;
3. Retention of the in-phase relationship of the input and output signals for input signals below the negative rail.

Although the CA3290 employs rugged bipolar (zener) diodes for protection of the input circuit, the input-terminal currents should not exceed 1 mA . Appropriate seriesconnected limiting resistors should be used in circuits where greater current flows might exist, allowing the signal input voltage to be greater than the supply voltage without damaging the circuit.

Output Circuit

The output of the CA3290 is the open collector of an n-p-n transistor, a feature providing flexibility in a broad range of comparator applications. An output ORing function can be implemented by parallel-connection of the open collectors. An output pull-up resistor can be connected to a power supply having a voltage range within the rating of the particular CA3290 in use; the magnitude of this voltage may be set at a value which is independent of that applied to the V^{+} terminal of the CA3290.

Parasitic Oscillations

The ideal comparator has, among other features, ultra-high input impedance, high gain, and wide bandwidth. These desirable characteristics may, however, produce parasitic oscillations unless certain precautions are observed to minimize the stray capacitive
coupling between the input and output terminals. Parasitic oscillations manifest themselves during the output voltage transition intervals as the comparator switches states. For high source impedances, stray capacitance can induce parasitic oscillations. The addition of a small amount (1 to 10 mV) of positive feedback (hysteresis) produces a faster transition, thereby reducing the likelihood of parasitic oscillations. Furthermore, if the input signal is a pulse waveform, with relatively rapid rise and fall times, parasitic tendencies are reduced.

When dual comparators, like the CA3290, are packaged in an 8 -lead configuration, the output terminal of each comparator is adjacent to an input terminal. The lead-to-lead capacitance is approximately 1 pF , which may be sufficient to cause undesirable feedback effects in certain applications. Circuit factors such as impedance levels, supply voltage, toggling rate, etc., may increase the possibility of parasitic oscillations. To minimize this potential oscillatory condition, it is recommended that for source impedances greater than $1 \mathrm{k} \Omega$ a capacitor $\geqslant 1.2 \mathrm{pF}$) be connected between the appropriate input terminal and the output terminal. (See Fig. 10.)

The CA3290A and CA3290 are also supplied in a 14 -lead dual-in-line plastic package. To minimize the possibility of parasitic oscillations the input and output terminals are positioned on opposite sides of the package. In addition, there are two leads between the output terminal of each comparator and its corresponding inverting input terminal, reducing the input/output coupling significantly. These leads $(8,9,13,14)$ should be tied to either the V^{+}or V^{-}supply rail. If either comparator is unused, its input terminals should also be tied to either the V^{+} or V -supply rail.

TYPICAL APPLICATIONS

Light-Controlled One-Shot Timer

In Fig. 13 one comparator (A1) of the CA3290 is used to sense a change in photo diode current. The other comparator (A2) is configured as a one-shot timer and is triggered by the output of A1. The output of the circuit will switch to a low state for approximately 60 seconds after the light source to the photo diode has been interrupted. The circuit operates at normal room lighting levels. The sensitivity of the circuit may be adjusted by changing the values of R1 and R2. The ratio of R1 to R2 should be
constant to insure constant reverse voltage bias on the photo diode.

Low-Frequency Multivibrator

In this application, one-half of the CA3290 is used as a conventional multivibrator circuit. Because of the extremely high input impedance of this device, large values of timing resistor (R1) may be used for long time delays with relatively small leakage timing capacitors. The second half of the CA3290 is used as an output buffer to insure that the multivibrator frequency will not be affected by output loading.

Fig. 13 - Light-controlled one-shot timer.

Fig. 14 - Low-frequency multivibrator.

Window Comparator

Both halves of the CA3290 can be used in a high input-impedance window comparator as shown in Fig. 15. The LED will be
turned "on" whenever the input signal is above the lower limit (V_{L}) but below the upper limit ($V \cup$), as determined by the R1/R2/R3 resistor divider.

Fig. 15 - Window comparator.

LED Bar Graph Driver

The circuit in Fig. 16 demonstrates the use of the CA3290 in a bar graph display. The non-inverting inputs of both comparators are tied to the voltage divider reference and the input signal is applied to both of the
inverting inputs. The LED for a particular comparator will be turned "on" when the input voltage reaches the voltage on the resistor divider reference. The CA3290 is ideal for this application where input-signal loading is critical even though many comparator inputs are driven in parallel.

Fig. $16-L E D$ bar-graph driver.

The photographs and dimensions of each chip represent a chip when it is part of the wafer. When the wafer is cut into chips, the cleavage angles are 57° instead of 90° with respect to the face of the chip. Therefore, the isolated chip is actually 7 mils (0.17 mm) larger in both dimensions.

Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as in dicated. Grid graduations are in mils $\left(10^{-3}\right.$ inch $)$.

NOTE: NOS. IN PADS ARE FOR B-LEAD DIP AND TO-5
NOS. OUTSIDE OF CHIP ARE FOR 14-LEAD DIP
92CM-30091

Dimensions and pad layout for the CA3290H.

Features

- Fast Response Time . 130ns
- Low Offset Voltage . 2.0mV
- Low Offset Current 10nA
- Single or Dual-Voltage Supply Operation
- Selectable Output Logic Levels
- Active Pull-Up/Pull-Down Output Circuit-No External Resistors Required

Description

The HA-4900 series are monolithic, quad, precision comparators offering fast response time, low offset voltage, low offset current and virtually no channel-to-channel crosstalk for applications requiring accurate, high speed, signal level detection. These comparators can sense signals at ground level while being operated from either a single +5 volt supply (digital systems) or from dual supplies (analog networks) up to ± 15 volts. The HA- 4900 series contains a unique current driven output stage which can be connected to logic system supplies (VLogic + and $V_{\text {Logic }}{ }^{-}$) to make the output levels directly compatible (no external components needed) with any standard logic or special system logic levels. In combination analog/digital systems,

Applications

- Threshold Detector
- Zero-Crossing Detector
- Window Detector
- Analog Interfaces for Microprocessors
- High Stability Oscillators
- Logic System Interfaces
the design employed in the HA-4900 series input and output stages prevents troublesome ground coupling of signals between analog and digital portions of the system.
These comparators' combination of features makes them ideal components for signal detection and processing in data acquisition systems, test equipment and microprocessor/analog signal interface networks.
All devices are available in 16 pin dual-in-line ceramic packages. The HA-4900/4902-2 operates from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ and the HA-4905-5 operates over a $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ temperature range. For military grade product, refer to the HA-4902/883 data sheet.

Pinouts

Schematic

Absolute Maximum Ratings (Note 1)

Voltage Between V+ and V-Terminals	V
Differential Input Voltage	$\pm 15 \mathrm{~V}$
Voltage Between $\mathrm{V}_{\text {Logic }}(+)$ and $\mathrm{V}_{\text {Logic }}(-)$	18 V
Peak Output Current	$\pm 50 \mathrm{~mA}$
Internal Power Dissipation (Note 7, 8)	2.0W

Operating Temperature Ranges

HA-4900-2	$-55^{\circ} \mathrm{C} \leq \mathrm{T} \mathrm{A} \leq+125^{\circ} \mathrm{C}$
HA-4902-2	$-55^{\circ} \mathrm{C} \leq \mathrm{T} \mathrm{A} \leq+125^{\circ} \mathrm{C}$
HA-4905-5	$. .0^{\circ} \mathrm{C} \leq T_{A} \leq+75^{\circ} \mathrm{C}$
Storage Tem	$-65^{\circ} \mathrm{C} \leq \mathrm{T}^{\prime} \mathrm{A} \leq+150^{\circ} \mathrm{C}$

Electrical Specifications $\mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{~V}_{\text {Logic }}(+)=5 \mathrm{~V}, \mathrm{~V}_{\text {Logic }}(-)=\mathrm{GND}$.

PARAMETER	TEMP	$\begin{gathered} \text { HA- } 4900-2 \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$			$\begin{gathered} \text { HA-4902-2 } \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$			$\begin{gathered} \mathrm{HA}-4905-5 \\ 0^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
INPUT CHARACTERISTICS											
Offset Voltage (Note 2)	$+25^{\circ} \mathrm{C}$		2	3		2	5		4	7.5	mV
	Full			4			8			10	mV
Offset Current	$+25^{\circ} \mathrm{C}$		10	25		10	35		25	50	nA
	Full			35			45			70	nA
Bias Current (Note 3)	$+25^{\circ} \mathrm{C}$		50	75		50	150		100	150	$n \mathrm{~A}$
	Full			150			200			300	nA
Input Sensitivity (Note 4)	$+25^{\circ} \mathrm{C}$			$\mathrm{V}_{10}+.3$			$\mathrm{V}_{10}+.5$			$\mathrm{V}_{10}+.5$	mV
	Full			$\mathrm{V}_{10}+.4$			$\mathrm{V}_{10}+.6$			$\mathrm{V}_{10}+.7$	mV
Common Mode Range	Full	V-		$(V+)-2.4$	V-		$(\mathrm{V}+)-2.6$	V-		(V+)-2.4	V
Differential Input Resistance	$+25^{\circ} \mathrm{C}$		250			250			250		$\mathrm{M} \Omega$
TRANSFER CHARACTERISTICS											
Large Signal Voltage Gain	$+25^{\circ} \mathrm{C}$		400K			400K			400K		V / N
Response Time ($T_{p d} 0$) (Note 5)	$+25^{\circ} \mathrm{C}$		130	200		130	200		130	200	ns
Response Time ($T_{p d} 1$) (Note 5)	$+25^{\circ} \mathrm{C}$		180	215		180	215		180	215	ns
OUTPUT CHARACTERISTICS											
Output Voitage Level											
Logic "Low State" (VOL) (Note 6)	Full		0.2	0.4		0.2	0.4		0.2	0.4	V
Logic "High State" (V) ${ }^{\text {OH }}$) (Note 6)	Full	3.5	4.2		3.5	4.2		3.5	4.2		V
Output Current											
ISink	Full	3.0			3.0			3.0			mA
ISource	Full	3.0			3.0			3.0			mA
POWER SUPPLY CHARACTERISTICS											
Supply Current, Ips (+)	$+25^{\circ} \mathrm{C}$		6.5	20		6.5	20		7	20	mA
Supply Current, $\mathrm{I}_{\mathrm{ps}}(-)$	$+25^{\circ} \mathrm{C}$		4	8		4	8		5	8	mA
Supply Current, Ips (Logic)	$+25^{\circ} \mathrm{C}$		3.5	4		3.5	4		3.5	4	mA
Supply Voltage Range											
$V_{\text {Logic }}(+)$ (Note 7)	Full	0		+15.0	0		+15.0	0		+15.0	V
$V_{\text {Logic }}(-)$ (Note 7)	Full	-15.0		0	-15.0		0	-15.0		0	V

NOTES:

1. Absolute maximum ratings are limiting values, applied individually, beyond which the serviceability of the circuit may be impaired. Functional operability under any of these conditions is not necessarily implied.
2. Minimum differential input voltage required to ensure a defined output state.
3. Input bias currents are essentially constant with differential input voltages up to ± 9 volts. With differential input voltages from ± 9 to ± 15 volts, bias current on the more negative input can rise to approximately $500 \mu \mathrm{~A}$. This will also cause higher supply currents.
4. $R_{\mathrm{S}} \leq 200 \Omega \mathrm{~V}_{\mathrm{IN}} \leq$ Common Mode Range. Input sensitivity is the worst case minimum differential input voltage required to guarantee a given output logic state. This parameter includes the effects of offset voltage, offset current, common mode rejection, and voltage gain.
5. For $T_{p d}(1) ; 100 \mathrm{mV}$ input step, -10 mV overdrive. For $T_{p d}(0) ;-100 \mathrm{mV}$
input step, 10 mV overdrive. Frequency $\approx 100 \mathrm{~Hz}$; Duty Cycle $\approx 50 \%$; Inverting input driven. See Test Circuit below. All unused inverting inputs tie to +5 V .
6. For V_{OH} and $\mathrm{V}_{\mathrm{OL}}: I_{\text {Sink }}=I_{\text {Source }}=3.0 \mathrm{~mA}$. For other values of $V_{\text {Logic }}$; $\mathrm{V}_{\mathrm{OH}}($ min. $)=\mathrm{V}_{\text {Logic }}+-1.5 \mathrm{~V}$.
7. Total Power Dissipation (T.P.D.) is the sum of individual dissipation contributions of $\mathrm{V}+, \mathrm{V}$ - and $\mathrm{V}_{\text {Logic }}$ shown in curves of Power Dissipation vs. Supply Voltages (see Performance Curves). The calculated T.P.D. is then located on the graph of Maximum Allowable Package Dissipation vs. Ambient Temperature to determine ambient temperature operating limits imposed by the calculated T.P.D. (See Performance Curves). For instance, the combination of $+15 \mathrm{~V},-15 \mathrm{~V},+5 \mathrm{~V}, \mathrm{OV}\left(\mathrm{V}+, \mathrm{V}-, \mathrm{V}_{\text {Logic }}{ }^{+}\right.$, $V_{\text {Logic }}{ }^{-)}$gives a T.P.D. of 350 mW , the combination $+15 \mathrm{~V},-15 \mathrm{~V}$, OV gives a T.P.D. of 450 mW .
8. Derate By $5.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C} . \theta_{\mathrm{ja}}=75^{\circ} \mathrm{C} / \mathrm{W}, \theta_{\mathrm{jc}}=20^{\circ} \mathrm{C} / \mathrm{W}$.

Test Circuits

For input and output voltage waveforms for various input overdrives see Performance Curves.

Typical Performance Curves $\mathrm{V}+=15 \mathrm{~V}, \mathrm{~V}_{\text {Logic }}(+)=5 \mathrm{~V}, \mathrm{~V}_{\text {Logic }}(-)=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, Unless Otherwise Specified.

INPUT BIAS CURRENT vs. COMMON MODE INPUT VOLTAGE
$\left(V_{\text {DIFF. }}=O V\right)$

Typical Performance Curves (Continued) $\mathrm{V}+=15 \mathrm{~V}, \mathrm{~V}_{\text {Logic }}(+)=5 \mathrm{~V}$, $\mathrm{V}_{\text {Logic }}(-)=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, Unless Otherwise Specified.

MAXIMUM PACKAGE DISSIPATION vs. TAMBIENT

MAXIMUM POWER DISSIPATION vs. SUPPLY VOLTAGE (NO LOAD CONDITION)

Applying the HA-4900 Series Comparators

1. SUPPLY CONNECTIONS: This device is exceptionally versatile in working with most available power supplies. The voltage applied to the $\mathrm{V}+$ and V - terminals determines the allowable input signal range; while the voltage applied to the $\mathrm{V}_{\mathrm{L}}+$ and V_{L} - determines the output swing. In systems where dual analog supplies are available, these would be connected to $\mathrm{V}+$ and V -, while the logic supply and return would be connected to $V_{\text {Logic }}+$ and $V_{\text {Logic }}-$. The analog and logic supply commons can be connected together at one point in the system, since the comparator is immune to noise on the logic supply ground. A negative output swing may be obtained by connecting $\mathrm{V}_{\mathrm{L}}+$ to ground and V_{L} - to a negative supply. Bipolar output swings (15V P-P, max.) may be obtained using dual supplies. In systems where only a single logic supply is available (+5 V to 15 V), V+ and $\mathrm{V}_{\text {Logic }}+$ may be connected together to the positive supply while V - and $V_{\text {Logic }}{ }^{-}$are grounded. If an input signal could swing negative with respect the V terminal, a resistor should be connected in series with the input to limit input current to $<5 \mathrm{~mA}$ since the $\mathrm{C}-\mathrm{B}$ junction of the input transistor would be forward biased.
2. UNUSED INPUTS: Inputs of unused comparator sections should be tied to a differential voltage source to prevent output "chatter".
3. CROSSTALK: Simultaneous high frequency operation of all other channels in the package will not affect the output logic state of a given channel, provided that its differential input voltage is sufficient to define a given logic state $\left(\Delta V_{I N} \geq \pm V_{O S}\right)$. Low level or high impedance input lines should be shielded from other signal sources to reduce crosstalk and interference.
4. POWER SUPPLY DECOUPLING: Decouple all power supply lines with $.01 \mu \mathrm{~F}$ ceramic capacitors to ground line located near the package to reduce coupling between channels or from external sources.
5. RESPONSE TIME: Fast rise time (< 200ns) input pulses of several volts amplitude may result in delay times somewhat longer than those illustrated for 100 mV steps. Operating speed is optimized by limiting the maximum differential input voltage applied, with resistor-diode clamping networks.

Typical Applications

Data Acquisition System

In this circuit the HA-4900 series is used in conjunction with a D to A converter to form a simple, versatile, multi-channel analog input for a data acquisition system. In operation the processor first sends an address to the D to A, then the processor reads the digital word generated by the comparator outputs.
To perform a simple comparision, the processor sets the D to A to a given reference level, then examines one or more

TTL TO CMOS
comparator outputs to determine if their inputs are above or below the reference. A window comparison consists of two such cycles with 2 reference levels set by the D to A. One way to digitize the inputs would be for the processor to increment the D to A in steps. The D to A address, as each comparator switches, is the digitized level of the input. While stairstepping the D to A is slower than successive approximation, all channels are digitized during one staircase ramp.

CMOS TO TTL

Logic Level Translators

The HA-4900 series comparators can be used as versatile logic interface devices as shown in the circuits above. Negative logic devices may also be interfaced with appropriate supply connections.

If separate supplies are used for V - and $\mathrm{V}_{\text {Logic-, }}$ these logic level translators will tolerate several volts of ground line differential noise.

Typical Applications (Continued)

RS-232 TO CMOS Line Receiver
This RS-232 type line receiver to drive CMOS logic uses a Schmitt trigger feedback network to give about 1 volt input hysteresis for added noise immunity. A possible problem in an interface which connects two equipments, each plugged into a different AC receptacle, is that the power line voltage may appear at the receiver input when the interface connection is made or broken. The two diodes and a 3 watt input resistor will protect the inputs under these conditions.

Oscillator/Clock Generator

This self-starting fixed frequency oscillator circuit gives excellent frequency stability. R_{1} and C_{1} comprise the frequency determining network while R_{2} provides the regenerative feedback. Diode D_{1} enhances the stability by compensating for the difference between VOH and $V_{\text {Supply. In }}$ applications where a precision clock generator up to 100 kHz is required, such as in automatic test equipment, C_{1} may be replaced by a crystal.

Window Detector

The high switching speed, low offset current and low offset voltage of the HA-4900 series makes this window detector circuit extremely well suited to applications requiring fast, accurate, decision-making. The circuit above is ideal for industrial process system feedback controllers or "out-oflimit" alarm indicators.

Schmitt Trigger (Zero Crossing Detector with Hysteresis)

This Circuit has a 100 mV hysteresis which can be used in applications where very fast transition times are required at the output even though the signal input is very slow. The hysteresis loop also reduces false triggering due to noise on the input. The waveforms below show the trip points developed by the hysteresis loop.

SAMPLE AND HOLD AMPLIFIERS

PAGE
SELECTION GUIDE 5-2
SAMPLE AND HOLD DATA SHEETS
HA 2420, 25 Fast Sample and Hold Amplifier 5-3
HA 5320 High Speed Precision Monolithic Amplifier 5-10
HA $5330 \quad$ Very High Speed Monolithic Amplifier 5-17
HA 5340 High Speed, Low Distortion, Monolithic Amplifier 5-21

Selection Guide

SAMPLE-AND-HOLD AMPLIFIERS

Type	Sample/Hold Type	Temperature Range	Package*	Acquisition Time (to 0.01\%) $\text { Typ, }+25^{\circ} \mathrm{C}$	Charge Transfer Typ, $+25^{\circ} \mathrm{C}$	Aperture Time Typ, $+25^{\circ} \mathrm{C}$	Gain Bandwidth Product Typ, $+25^{\circ} \mathrm{C}$
HA1-2420-2 HA1-2425-5 НАЗ-2425-5 HA4-2420-8 HA4P2425-5	Low Droop Rate	$\left\lvert\, \begin{gathered} -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \end{gathered}\right.$	14-Pin Cerdip 14-Pin Cerdip 14-Pin Epoxy 20-Pin LCC Ceramic 20-Pin PLCC Epoxy	$\begin{gathered} 3.2 \mu \mathrm{~s} \\ \left(\mathrm{C}_{\mathrm{H}}=1,000 \mathrm{pF}\right) \end{gathered}$	10pC	30ns	2.5 MHz
HA1-5320-2 HA1-5320-5 HA1-5320-8 HA4-5320-8	High Speed Low Charge Transfer Precision Complete-Includes Hold Capacitor	$\left\lvert\, \begin{gathered} -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ 0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}\right.$	14-Pin Cerdip 14-Pin Cerdip 14-Pin Cerdip 20-Pin LCC Ceramic	$\begin{gathered} 1 \mu \mathrm{~s} \\ \left(\mathrm{C}_{\mathrm{H}}=\text { Internal }\right) \end{gathered}$	$0.1 p C$	25ns	$\begin{gathered} 2.0 \mathrm{MHz} \\ \mathrm{C}_{\mathrm{H}}=100 \mathrm{pF} \end{gathered}$
$\begin{aligned} & \text { HA1-5330-5 } \\ & \text { HA1-5330-4 } \\ & \text { HA1-5330-2 } \end{aligned}$	Very High Speed Precision Monolithic Complete-Includes Hold Capacitor	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \\ -25^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$	14-Pin Cerdip 14-Pin Cerdip 14-Pin Cerdip	500ns	0.05pC	$20 n s$	4.5 MHz
$\begin{aligned} & H A 1-5340-5 \\ & \text { HA1-5340-4 } \\ & \text { HA1-5340-2 } \end{aligned}$	High Speed Low DistortionIncludes Hold Capacitor	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \\ -25^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{gathered}$	14-Pin Cerdip 14-Pin Cerdip 14-Pin Cerdip	$0.7 \mu \mathrm{~s}$	0.5pC	15 ns	10 MHz

[^52]
Features

- Maximum Acquisition Time (10V Step to 0.1\%) ... 4 4 s
(10V Step to 0.01\%) $6 \mu \mathrm{~s}$
- Low Droop Rate ($\mathrm{C}_{\mathrm{H}}=1000 \mathrm{pF}$) $\ldots5 \mu \mathrm{~V} / \mathrm{ms}$ (Typ.)
- Gain Bandwidth Product 2.5MHz (Typ.)
- Low Effective Aperture Delay Time 30ns (Typ.)
- TTL Compatible Control Input
$- \pm 12 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$ Operation

Description

The HA-2420/2425 is a monolithic circuit consisting of a high performance operational amplifier with its output in series with an ultra-low leakage analog switch and MOSFET input unity gain amplifier.

With an external holding capacitor connected to the switch output, a versatile, high performance sample-and-hold or track-and-hold circuit is formed. When the switch is closed, the device behaves as an operational amplifier, and any of the standard op amp feedback networks may be connected around the device to control gain, frequency response, etc. When the switch is opened the output will remain at its last level.
Performance as a sample-and-hold compares very favorably with other monolithic, hybrid, modular, and discrete circuits. Accuracy to better than 0.01% is achievable over

Applications

- 12-Bit Data Acquisition
- Digital to Analog Deglitcher
- Auto Zero Systems
- Peak Detector
- Gated Operational Amplifier
the temperature range. Fast acquisition is coupled with superior droop characteristics, even at high temperatures. High slew rate, wide bandwidth, and low acquisition time produce excellent dynamic characteristics. The ability to operate at gains greater than 1 frequently eliminates the need for external scaling amplifiers.
The device may also be used as a versatile operational amplifier with a gated output for applications such as analog switches, peak holding circuits, etc. For more information, please see Application Note 517.

The HA-2420/25 is offered in a 14 pin Ceramic or Plastic DIP and a 20 pad Ceramic LCC or 20 pad PLCC. The MIL-STD-883 data sheet for this device is available on request.

Pinouts 14 PIn ceramic/plastic dip
TOP VIEW

Functional Diagram

CAUTION: These devices are sensitive to electrostatic discharge. Proper I.C. handling procedures should be followed.
Copyright © Harris Corporation 1988

Operating Temperature Range
HA-2420-2 $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$
HA-2425-5/-7................................... ${ }^{\circ}{ }^{\top} \leq^{\top} A \leq+75^{\circ} \mathrm{C}$
Storage Temperature Range $.5^{\circ} \mathrm{C} \leq \bar{T}_{A} \leq+150^{\circ} \mathrm{C}$
\qquad
Electrical Specifications Test Conditions (Unless Otherwise Specified) $\mathrm{V}_{\text {SUPPLY }}= \pm 15.0 \mathrm{~V} ; \mathrm{C}_{\mathrm{H}}=1000 \mathrm{pF}$; Digital Input: $\mathrm{V}_{\mathrm{IL}}=+0.8 \mathrm{~V}$ (Sample), $\mathrm{V}_{\mathrm{IH}}=+2.0 \mathrm{~V}$ (Hold), Unity Gain Configuration (Output tied to -Input)

PARAMETER	TEMP	HA-2420-2			HA-2425-5/-7			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
INPUT CHARACTERISTICS								
Input Voltage Range	Full	± 10	-	-	± 10	-	-	V
Offset Voltage	$+25^{\circ} \mathrm{C}$	-	2	4	-	3	6	mV
	Full	-	3	6	-	4	8	mV
Bias Current	$+25^{\circ} \mathrm{C}$	-	40	200	-	40	200	nA
	Full	-	-	400	-	-	400	nA
Offset Current	$+25^{\circ} \mathrm{C}$	-	10	50	-	10	50	nA
	Full	-	-	100	-	-	100	nA
Input Resistance	$+25^{\circ} \mathrm{C}$	5	10	-	5	10	-	$\mathrm{M} \Omega$
Common Mode Range	Full	± 10	-	-	± 10	-	-	V
TRANSFER CHARACTERISTICS								
Large Signal Voltage Gain (Notes 1, 4)	Full	25K	50 K	-	25 K	50 K	-	V / N
Common Mode Rejection (Note 2)	Full	-80	-90	-	-74	-90	-	dB
Hold Mode Feedthrough Attenuation (Note 3)	Full	-	-76	-	-	-76	-	dB
Gain Bandwidth Product (Note 3)	$+25^{\circ} \mathrm{C}$	-	2.5	-	-	2.5	-	MHz
OUTPUT CHARACTERISTICS								
Output Voltage Swing (Note 1)	Full	± 10	-	-	± 10	-	-	V
Output Current	$+25^{\circ} \mathrm{C}$	± 15	-	-	± 15	-	-	mA
Full Power Bandwidth (Notes 3, 4)	$+25^{\circ} \mathrm{C}$	-	100	-	-	100	-	kHz
Output Resistance (D.C.)	$+25^{\circ} \mathrm{C}$	-	0.15	-	-	0.15	-	Ω
TRANSIENT RESPONSE								
Rise Time (Notes 3, 5)	$+25^{\circ} \mathrm{C}$	-	75	100	-	75	100	ns
Overshoot (Notes 3,5)	$+25^{\circ} \mathrm{C}$	-	25	40	-	25	40	\%
Slew Rate (Notes 3,6)	$+25^{\circ} \mathrm{C}$	3.5	5	-	3.5	5	-	$\mathrm{V} / \mu \mathrm{s}$
DIGITAL INPUT CHARACTERISTICS								
Digital Input Current ($\mathrm{V}_{\mathrm{IN}}=\mathrm{OV}$)	Full	-			-	-	-0.8	mA
Digital Input Current ($\mathrm{V}_{\mathrm{IN}}=+5.0 \mathrm{~V}$)	Full	-	-	20	-	-	20	$\mu \mathrm{A}$
Digital Input Voltage (Low)	Full	-	-	0.8	-	-	0.8	V
Digital Input Voltage (High)	Full	2.0	-	-	2.0	-	-	V
SAMPLE AND HOLD CHARACTERISTICS								
Acquisition Time to 0.1\% 10V Step (Note 3)	$+25^{\circ} \mathrm{C}$	-	2.3		-	2.3	4	$\mu \mathrm{s}$
Acquisition Time to 0.01\% 10V Step (Note 3)	$+25^{\circ} \mathrm{C}$	-	3.2	6	-	3.2	6	$\mu \mathrm{s}$
Aperture Time (Note 9)	$+25^{\circ} \mathrm{C}$	-	30	-	-	30	-	ns
Effective Aperture Delay Time	$+25^{\circ} \mathrm{C}$	-	30	-	-	30	-	ns
Aperture Uncertainty	$+25^{\circ} \mathrm{C}$	-	5	-	-	5	-	ns
Drift Current (Notes 3, 7)	$+25^{\circ} \mathrm{C}$	-	5	-	-	5	-	pA
HA1-2420, HA4-2420	Full	-	1.8	10	-	-	-	nA
HA1-2425	Full	-	-	-	-	0.1	1.0	nA
HA3-2425, HA4P2425	Full	-	-	-	-	7.5	10.0	nA
Hold Step Error (Note 7)	$+25^{\circ} \mathrm{C}$	-	10	20	-	10	20	mV
POWER SUPPLY CHARACTERISTICS								
Supply Current (+)	$+25^{\circ} \mathrm{C}$	-	3.5	5.5	-	3.5	5.5	mA
Supply Current (-)	$+25^{\circ} \mathrm{C}$	-	2.5	3.5	-	2.5	3.5	mA
Power Supply Rejection	Full	-80	-90	-	-74	-90	-	dB

NOTES:
4. $V_{\text {OUT }}=20 \mathrm{~V}$ peak-to-peak.
5. $V_{\text {OUT }}=200 \mathrm{mV}$ peak-to-peak.
6. $\mathrm{V}_{\text {OUT }}=10.0 \mathrm{~V}$ peak-to-peak.
7. $V_{I N}=0 V$.
8. $\mathrm{f}_{\mathrm{I}} \leq \leq 100 \mathrm{kHz}$.
9. Derived from computer simulation only; not tested.

Offset and Gain Adjustment

HOLD STEP vs. INPUT VOLTAGE

OFFSET ADJUSTMENT

The offset voltage of the HA-2420/2425 may be adjusted using a $100 \mathrm{k} \Omega$ trim pot, as shown in Figure 6. The recommended adjustment procedure is:

1. Apply zero volts to the sample-and-hold input, and a square wave to the $\overline{\mathrm{S}} / \mathrm{H}$ control.
2. Adjust the trim pot for zero volts output in the hold mode.

INVERTING CONFIGURATION

figure 2.

GAIN ADJUSTMENT

The linear variation in pedestal voltage with sample-andhold input voltage causes a -0.06% gain error ($\mathrm{C}_{\mathrm{H}}=$ 1000 pF). In some applications (D/A deglitcher, A/D converter) the gain error can be adjusted elsewhere in the system, while in other applications it must be adjusted at the sample-and-hold. The two circuits shown below demonstrate how to adjust gain error at the sample-and-hold.

The recommended procedure for adjusting gain error is:

1. Perform offset adjustment.
2. Apply the nominal input voltage that should produce a +10 V output.
3. Adjust the trim pot for +10 V output in the hold mode.
4. Apply the nominal input voltage that should produce a -10V output.
5. Measure the output hold voltage (V_{-10} NOMINAL). Adjust the trim pot for an output hold voltage of

$$
\frac{\left(V_{-10 ~ N O M I N A L}\right)+(-10 \mathrm{~V})}{2}
$$

FIGURE 3.

Test Circuits

HOLD STEP ERROR AND DRIFT CURRENT

FIGURE 4.

HOLD STEP ERROR TEST

1. With a D.C. input voltage, observe the following waveforms:

2. Set rise/fall times of $\overline{\mathrm{S}} / \mathrm{H}$ Control to approximately 20 ns .

DRIFT CURRENT TEST

1. With a D.C. input voltage, observe the following waveforms:

2. Measure the slope of the output during hold, $\Delta \mathrm{V} / \Delta \mathrm{t}$, and compute drift current from: $\mathrm{I}_{\mathrm{D}}=\mathrm{C}_{\mathrm{H}} \Delta \mathrm{V} / \Delta \mathrm{t}$.

HOLD MODE FEEDTHROUGH ATTENUATION

FIGURE 5.
NOTE: Compute hold mode feedthrough attenuation from the formula:
Feedthrough Attenuation $=20$ Log $\frac{V_{\text {OUT }} \text { HOLD }}{V_{I N} \text { HOLD }}$
Where $V_{\text {OUT }}$ HOLD $=$ Peak-to-Peak value of output sinewave during the hold mode.

Applications

FIGURE 6.

GUARD RING LAYOUT
bOTTOM VIEW

FIGURE 7.

NOTES:

1. Figure 6 shows a typical unity gain circuit, with Offset Zeroing. All of the other normal op amp feedback configurations may be used with the HA-2420/2425. The input amplifier may be used as a gated amplifier by utilizing Pin 11 as the output. This amplifier has excellent drive capabilities along with exceptionally low switch leakage.
2. The method used to reduce leakage paths on the P.C. board and the device package is shown in Figure 7. This guard ring is recommended to minimize the drift during hold mode.
3. The holding capacitor should have extremely high insulation resistance and low dielectric absorption. Polystyrene (below $+85^{\circ} \mathrm{C}$), Teflon, or Parlene types are recommended.

For more applications, consult Harris Application Note 517, or factory applications group.

Glossary of Terms:

ACQUISITION TIME:

The time required following a "sample" command, for the output to reach its final value within $\pm 0.1 \%$ or $\pm 0.01 \%$. This is the minimum sample time required to obtain a given accuracy, and includes switch delay time, slewing time and settling time.

APERTURE TIME:

The time required for the sample-and-hold switch to open, independent of delays through the switch driver and input amplifier circuitry. The switch opening time is that interval between the conditions of 10% open and 90% open.

EFFECTIVE APERTURE DELAY TIME (EADT):

The difference between propagation time from the analog input to the S/H switch, and digital delay time between the Hold command and opening of the switch.
EADT may be positive, negative or zero. If zero, the \bar{S} / H amplifier will output a voltage equal to $V_{I N}$ at the instant the Hold command was received. For negative EADT, the
output in Hold (exclusive of pedestal and droop errors) will correspond to a value of V_{IN} that occurred before the Hold command.

APERTURE UNCERTAINTY:

The range of variation in Effective Aperture Delay Time. Aperture Uncertainty (also called Aperture Delay Uncertainty, Aperture Time Jitter, etc.) sets a limit on the accuracy with which a waveform can be reconstructed from sample data.

DRIFT CURRENT:

The net leakage current from the hold capacitor during the hold mode. Drift current can be calculated from the droop rate using the formula:

$$
I_{D}(\mathrm{pA})=\mathrm{C}_{\mathrm{H}}(\mathrm{pF}) \times \frac{\Delta \mathrm{V}}{\Delta T}(\text { Volts } / \mathrm{sec})
$$

Die Characteristics

Thermal Constants $\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$	θ_{ja}	θ_{jc}
Ceramic DIP	94	39
Ceramic LCC	88	28

High Speed Precision Monolithic Sample and Hold Amplifier

Applications

- Gain, D.C. 2×10^{6} V/V
- Aquisition Time 1.0 1 s (0.01%)
- Droop Rate $0.08 \mu \mathrm{~V} / \mu \mathrm{s}$ (+250$\left.{ }^{\circ} \mathrm{C}\right)$ $17 \mu \mathrm{~V} / \mu \mathrm{s}$ (Full Temperature)
- Aperture Time \qquad 25ns
- Hold Step Error (See Glossary) 1.0 mV
- Internal Hold Capacitor
- Fully Differential Input
- TTL Compatible

Description

The HA-5320 was designed for use in precision, high speed data acquisition systems.

The circuit consists of an input transconductance amplifier capable of providing large amounts of charging current, a low leakage analog switch, and an output integrating amplifier. The analog switch sees virtual ground as its load; therefore, charge injection on the hold capacitor is constant over the entire input/output voltage range. The pedestal voltage resulting from this charge injection can be adjusted to zero by use of the offset adjust inputs. The device in-
cludes a hold capacitor. However, if improved droop rate is required at the expense of acquisition time, additional hold capacitance may be added externally.

This monolithic device is manufactured using the Harris Dielectric Isolation Process, minimizing stray capacitance and eliminating SCR's. This allows higher speed and latchfree operation. The HA-532O is available in a Ceramic 14-pin DIP, and a Ceramic 20-pin LCC package. For further information, please see Application Note 538.

CAUTION: These devices are sensitive to electrostatic discharge. Proper I.C. handling procedures should be followed.
Copyright (c) Harris Corporation 1990

Absolute Maximum Ratings	(Note 1)
Voltage Between V+ and V-Terminals	40 V
Differential Input Voltage.	$\pm 24 \mathrm{~V}$
Digital Input Voltage	$+8 \mathrm{~V},-15 \mathrm{~V}$
Output Current, Continuous	$\pm 20 \mathrm{~mA}$ (Note 2)
Junction Temperature	$\ldots+175{ }^{\circ} \mathrm{C}$

Operating Temperature Range

HA-5320-2/-8 $-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}$
HA-5320-5................................ $0^{\circ} \mathrm{C} \leq T_{A} \leq+75^{\circ} \mathrm{C}$
Storage Temperature Range
$-65^{\circ} \mathrm{C} \leq{ }^{\top} \mathrm{A} \leq+150^{\circ} \mathrm{C}$

Electrical Specifications
Test Conditions (Unless Otherwise Specified) $\mathrm{V}_{\text {SUPPLY }}= \pm 15.0 \mathrm{~V} ; \mathrm{C}_{\mathrm{H}}=$ Internal; Digital Input: $\mathrm{V}_{\mathrm{IL}}=+0.8 \mathrm{~V}$ (Sample), $\mathrm{V}_{\mathrm{IH}}=+2.0 \mathrm{~V}$ (Hold), Unity Gain Configuration (Output tied to -Input)

PARAMETER	TEMP	HA-5320-2/-8			HA-5320-5/-7			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
INPUT CHARACTERISTICS								
Input Voltage Range Input Resistance Input Capacitance Offset Voltage Bias Current Offset Current Common Mode Range CMRR (Note 3) Offset Voltage T.C.	$\begin{gathered} \text { Full } \\ +25^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ \text { Full } \\ +25^{\circ} \mathrm{C} \\ \text { Full } \\ +25^{\circ} \mathrm{C} \\ \text { Full } \\ \text { Full } \\ +25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$	± 10 1 - - - - - - - ± 10 80 -	- 5 - 0.2 - 70 - 30 - - 90 5	- - 3 - 2.0 200 200 100 100 - - 15	± 10 1 - - - - - - - ± 10 72 -	- 5 - 0.5 - 100 - 30 - - 90 5	- - 3 - 1.5 300 300 300 300 - - 20	$\begin{gathered} \mathrm{V} \\ \mathrm{M} \Omega \\ \mathrm{pF} \\ \mathrm{mV} \\ \mathrm{mV} \\ \mathrm{nA} \\ \mathrm{nA} \\ \mathrm{nA} \\ \mathrm{nA} \\ \mathrm{~V} \\ \mathrm{~dB} \\ \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \end{gathered}$
TRANSFER CHARACTERISTICS								
Gain, D.C. (Note 12) Gain Bandwidth Product $\left(A_{V}=+1\right)$ (Note 5) $\begin{aligned} & \mathrm{C}_{\mathrm{H}}=100 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{H}}=1000 \mathrm{pF} \end{aligned}$	$\begin{aligned} & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \end{aligned}$	10^{6}	$\begin{gathered} 2 \times 10^{6} \\ 2.0 \\ 0.18 \end{gathered}$		3×10^{5}	$\begin{gathered} 2 \times 10^{6} \\ 2.0 \\ 0.18 \end{gathered}$	-	V / V MHz MHz
OUTPUT CHARACTERISTICS								
Output Voltage Output Current Full Power Bandwidth (Note 4) Output Resistance (Hold Mode) Total Output Noise, D.C. to 10 MHz Sample Hold	$\begin{gathered} \text { Full } \\ +25^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ \\ +25^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \end{gathered}$	± 10 ± 10 - - -	600 1.0 125 125	$\begin{aligned} & 200 \\ & 200 \end{aligned}$	± 10 ± 10 - -	600 1.0 125 125	$\begin{aligned} & - \\ & - \\ & - \\ & - \\ & 200 \\ & 200 \end{aligned}$	$\begin{array}{\|c} \mathrm{V} \\ \mathrm{~mA} \\ \mathrm{kHz} \\ \Omega \\ \\ \mu \mathrm{~V}_{\mathrm{RMS}} \\ \mu \mathrm{~V}_{\mathrm{RMS}} \mathrm{~S} \\ \hline \end{array}$
TRANSIENT RESPONSE								
Rise Time (Note 5) Overshoot (Note 5) Slew Rate (Note 6)	$\begin{aligned} & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \end{aligned}$	-	$\begin{gathered} 100 \\ 15 \\ 45 \end{gathered}$	-	-	$\begin{gathered} 100 \\ 15 \\ 45 \end{gathered}$	-	$\begin{gathered} \mathrm{ns} \\ \% \\ \mathrm{~V} / \mu \mathrm{s} \end{gathered}$
DIGITAL INPUT CHARACTERISTICS								
Input Voltage (High), V_{iH} Input Voltage (Low), V_{IL} Input Current ($\mathrm{V}_{\mathrm{IL}}=\mathrm{OV}$) Input Current $\left(\mathrm{V}_{\mathrm{IH}}=+5 \mathrm{~V}\right)$	Full Full Full Full	2.0 - -	-	- 0.8 4 0.1	2.0 - -	-	$\begin{gathered} 0.8 \\ 4 \\ 0.1 \end{gathered}$	V V $\mu \mathrm{A}$ $\mu \mathrm{A}$

Specifications HA-5320

Electrical Specifications (Continued)

PARAMETER	TEMP	HA-5320-2/-8			HA-5320-5/-7			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
SAMPLE AND HOLD CHARACTERISTICS								
Acquisition Time to 0.1\% (Note 7)	$+25^{\circ} \mathrm{C}$	-	0.8	1.2	-	0.8	1.2	$\mu \mathrm{S}$
Acquisition Time to 0.01\% (Note 7)	$+25^{\circ} \mathrm{C}$	-	1.0	1.5	-	1.0	1.5	$\mu \mathrm{s}$
Aperture Time (Note 8)	$+25^{\circ} \mathrm{C}$	-	25	-	-	25	-	ns
Effective Aperture Delay Time (See Glossary)	$+25^{\circ} \mathrm{C}$	-50	-25	0	-50	-25	0	ns
Aperture Uncertainty	$+25^{\circ} \mathrm{C}$	-	0.3	-	-	0.3	-	ns
Droop Rate	$+25^{\circ} \mathrm{C}$	-	0.08	0.5	-	0.08	0.5	$\mu \mathrm{V} / \mu \mathrm{s}$
	Full	-	17	100	-	1.2	100	$\mu \mathrm{V} / \mu \mathrm{s}$
Drift Current (Note 9)	$+25^{\circ} \mathrm{C}$	-	8	50	-	8	50	pA
	Full	-	1.7	10	-	0.12	10	nA
Charge Transfer (Note 9)	$+25^{\circ} \mathrm{C}$	-	0.1	0.5	-	0.1	0.5	pC
Hold Mode Settling Time 0.01\%	Full	-	165	350	-	165	350	ns
Hold Mode Feedthrough ($10 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}, 100 \mathrm{kHz}$)	Full	-	2	-	-	2	-	mV
POWER SUPPLY CHARACTERISTICS								
Positive Supply Current (Note 10)	$+25^{\circ} \mathrm{C}$	-	11	13	-	11	13	mA
Negative Supply Current (Note 10)	$+25^{\circ} \mathrm{C}$	-	-11	-13	-	-11	-13	mA
Power Supply Rejection V+	Full	80	-	-	80	-	-	dB
(Note 11) V-	Full	65	-	-	65	-	-	dB

NOTES

1. Absolute maximum ratings are limiting values, applied individually, beyond which the serviceability of the circuit may be impaired. Functional operation under any of these conditions is not necessarily implied.
2. Internal Power Dissipation may limit Output Current below 20 mA .
3. $V_{C M}= \pm 5 \mathrm{~V}$ D.C.
4. $\mathrm{V}_{\mathrm{O}}=20 \mathrm{~V}_{\mathrm{p}-\mathrm{p}} ; \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$; unattenuated output.
5. $V_{O}=200 \mathrm{mV} V_{p-p} ; R_{L}=2 k \Omega ; C_{L}=50 p F$.
6. $V_{O}=20 \mathrm{~V}$ Step; $R_{L}=2 k \Omega ; C_{L}=50 p F$.
7. $V_{O}=10 \mathrm{~V}$ Step; $R_{L}=2 \mathrm{k} \Omega ; C_{L}=50 \mathrm{pF}$.
8. Derived from computer simulation only; not tested.
9. $\mathrm{V}_{\mathrm{IN}}=\mathrm{OV}, \mathrm{V}_{\mathrm{IH}}=+3.5 \mathrm{~V}, \mathrm{t}_{\mathrm{r}}<20 \mathrm{~ns}\left(\mathrm{~V}_{\mathrm{IL}}\right.$ to $\left.\mathrm{V}_{\mathrm{IH}}\right)$.
10. Specified for a zero differential input voltage between $+\mathbb{N}$ and $-I N$. Supply current will increase with differential input (as may occur in the Hold mode) to approximately $\pm 28 \mathrm{~mA}$ at 20 V .
11. Based on a one volt delta in each supply, i.e. $15 \mathrm{~V} \pm 0.5 \mathrm{~V}$ D.C.
12. $R_{L}=1 K, C_{L}=30 p F$

Applying the HA-5320

The HA-5320 has the uncommitted differential inputs of an op amp, allowing the Sample and Hold function to be combined with many conventional op amp circuits. See the Harris Application Note 517 for a collection of circuit ideas.

LAYOUT

A printed circuit board with ground plane is recommended for best performance. Bypass capacitors (0.01 to $0.1 \mu \mathrm{~F}$, ceramic) should be provided from each power supply terminal to the Supply Ground terminal on pin 13.

The ideal ground connections are pin 6 (SIG. Ground) directly to the system Signal Ground, and pin 13 (Supply Ground) directly to the system Supply Common.

HOLD CAPACITOR

The HA-5320 includes a 100 pF MOS hold capacitor, sufficient for most high speed applications (the Electrical Specifications section is based on this internal capacitor).

Additional capacitance may be added between pins 7 and 11. This external hold capacitance will reduce droop rate at the expense of acquisition time, and provide other tradeoffs as shown in the Performance Curves.

If an external hold capacitor C_{H} is used, then a noise bandwidth capacitor of value $0.1 \mathrm{C}_{\mathrm{H}}$ should be connected from pin 8 to ground. Exact value and type are not critical.

The hold capacitor C_{H} should have high insulation resistance and low dielectric absorption, to minimize droop errors. Polystyrene dielectric is a good choice for operating temperatures up to $+85^{\circ} \mathrm{C}$. Teflone and glass dielectrics offer good performance to $+125^{\circ} \mathrm{C}$ and above.

The hold capacitor terminal (pin 11) remains at virtual ground potential. Any PC connection to this terminal should be kept short and "guarded" by the ground plane, since nearby signal lines or power supply voltages will introduce errors due to drift current.
(BTeflon is a registered Trademark of Dupont Corporation.

Applications

Figure 1 shows the HA-5320 connected as a unity gain noninverting amplifier - its most widely used configuration. As an input device for a fast successive - approximation A/D converter, it offers very high throughput rate for a monolithic IC sample/hold amplifier. Also, the HA-5320's hold step error is adjustable to zero using the Offset Adjust potentiometer, to deliver a 12-bit accurate output from the converter.

The application may call for an external hold capacitor C_{H} as shown. As mentioned earlier, $0.1 \mathrm{C}_{\mathrm{H}}$ is then
recommended at pin 8 to reduce output noise in the Hold mode.
The HA-5320 output circuit does not include short circuit protection, and consequently its output impedance remains low at high frequencies. Thus, the step changes in load current which occur during an A/D conversion are absorbed at the S/H output with minimum voltage error. A momentary short circuit to ground is permissible, but the output is not designed to tolerate a short of indefinite duration.

FIGURE 1.
TYPICAL HA-5320 CONNECTIONS; NONINVERTING UNITY GAIN MODE NOTE: Pin Numbers Refer to DIP Package Only.

Performance Curves $\mathrm{V}_{\text {SUPPLY }}= \pm 15 \mathrm{VDC}$

TYPICAL SAMPLE AND HOLD PERFORMANCE AS FUNCTION OF HOLDING CAPACITOR

C_{H} VALUE, PICOFARADS

DRIFT CURRENT vs. TEMPERATURE

OPEN LOOP GAIN AND PHASE RESPONSE

TYPICAL SAMPLE-TO-HOLD OFFSET
(HOLD STEP) ERROR
HOLD STEP vs. INPUT VOLTAGE

HOLD STEP
VOLTAGE
(MILLIVOLTS)
$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

DC INPUT (VOLTS)

HOLD STEP vs. LOGIC $\left(\mathrm{V}_{1 \mathrm{H}}\right)$ VOLTAGE

Test Circuits

CHARGE TRANSFER AND DRIFT CURRENT

CHARGE TRANSFER TEST

1. Observe the "hold step" voltage V_{p} :

DRIFT CURRENT TEST

1. Observe the voltage "droop", $\Delta \mathrm{V}_{\mathrm{O}} / \Delta \mathrm{T}$:
$\overline{\mathrm{S}} \mathrm{H}$ CONTROL

$\overline{\mathrm{S}}$ H CONTROL $--\sqrt{----\frac{\text { HOLD } 1+3.5 \mathrm{~V})}{\text { SAMPLE }(O V)}}$

2. Measure the slope of the output during hold, $\Delta \mathrm{V}_{\mathrm{O}} / \Delta \mathrm{T}$, and compute drift current: $I_{D}=C_{H} \Delta V_{O} / \Delta T$.
3. Compute charge transfer: $\mathrm{Q}=\mathrm{V}_{\mathrm{p}} \mathrm{C}_{\mathrm{H}}$

HOLD MODE FEED THROUGH ATTENUATION

Feedthrough in $\mathrm{dB}=20$ Log $\frac{\mathrm{V}_{\mathrm{OUT}}}{\mathrm{V}_{\mathrm{iN}}}$ where:
$\mathrm{V}_{\mathrm{OUT}}=$ Voits $_{\mathrm{p}-\mathrm{p}}$. Hold Mode,
$\mathrm{V}_{\mathrm{IN}}=$ Volts $_{\mathrm{p}-\mathrm{p}}$.

Glossary of Terms

ACQUISITION TIME:

The time required following a "sample" command, for the output to reach its final value within $\pm 0.1 \%$ or $\pm 0.01 \%$. This is the minimum sample time required to obtain a given accuracy, and includes switch delay time, slewing time and settling time.

CHARGE TRANSFER:

The small charge transferred to the holding capacitor from the inter-electrode capacitance of the switch when the unit is switched to the HOLD mode. Charge transfer is directly proportional to sample-to-hold offset pedestal error, where:

$$
\text { Charge Transfer }(\mathrm{pC})=\mathrm{C}_{\mathrm{H}}(\mathrm{pF}) \times \text { Offset Error }(\mathrm{V})
$$

APERTURE TIME:

The time required for the sample-and-hold switch to open, independent of delays through the switch driver and input amplifier circuitry. The switch opening time is the interval between the conditions of 10% open and 90% open.

HOLD STEP ERROR:

Hold Step Error is the output error due to Charge Transfer (see above). It may be calculated from the specified parameter, Charge Transfer, using the following relationship: HOLD STEP $(\mathrm{V})=\frac{\text { CHARGE TRANSFER }(\mathrm{pC})}{\text { HOLD CAPACITANCE }(\mathrm{pF})}$

EFFECTIVE APERTURE DELAY TIME (EADT):

The difference between propagation time from the analog input to S/H switch, and digital delay time between the Hold command and opening of the switch.
EADT may be positive, negative or zero. If zero, the $\overline{\mathrm{S}} / \mathrm{H}$ amplifier will output a voltage equal to $\mathrm{V}_{\mathbb{N}}$ at the instant the Hold command was received. For negative EADT, the output in Hold (exclusive of pedestal and droop errors) will correspond to a value of V_{IN} that occurred before the Hold command.

APERTURE UNCERTAINTY:

The range of variation in Effective Aperture Delay Time. Aperture Uncertainty (also called Aperture Delay Uncertainty, Aperture Time Jitter, etc.) sets a limit on the accuracy with which a waveform can be reconstructed from sample data.

DRIFT CURRENT:

The net leakage current from the hold capacitor during the hold mode. Drift current can be calculated from the droop rate using the formula:

$$
I_{D}(p A)=C_{H}(p F) \times \frac{\Delta V}{\Delta T} \quad(\text { Volts } / \mathrm{sec})
$$

See Performance Curves.

Die Characteristics

Transistor Count	75
Die Dimensions	$90.2 \times 143.7 \times 19$ mils
Substrate Potential	-VSUPPLY
Process	Bipolar DI

Thermal Constants (C/W)	$\theta_{\text {ja }}$	$\theta_{\text {jc }}$
Ceramic DIP	75	15
Ceramic LCC	76	19

Very High Speed Precision Monolithic Sample and Hold

Features

- Very Fast Acquisition 350ns (0.1\%) 500ns (0.01\%)
- Low Droop Rate
$0.01 \mu \mathrm{~V} / \mu \mathrm{s}$
- Very Low Offset 0.2 mV
- High Slew Rate . 90V/ 1 s
- Wide Supply Range
$\pm 11 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$
- Internal Hold Capacitor
- Fully Differential Input
- TTL/CMOS Compatible

Description

The HA-5330 is a very fast sample and hold amplifier designed primarily for use with high speed A/D converters. It utilizes the Harris Dielectric Isolation process to achieve a 500 ns acquisition time to 12-bit accuracy and a droop rate of $0.01 \mu \mathrm{~V} / \mu \mathrm{s}$. The circuit consists of an input transconductance amplifier capable of producting large amounts of charging current, a low leakage analog switch, and an integrating output stage which includes a 90pF hold capacitor.
The analog switch operates into a virtual ground, so charge injection on the hold capacitor is constant and independent of

Applications

- Precision Data Acquisition Systems
- D/A Converter Deglitching
- AutorZero Circuits
- Peak Detectors

Pinouts

14 PIN CERAMIC DIP

V_{IN}. Charge injection is held to a low value by compensation circuits and, if necessary, the resulting 0.5 mV hold step error can be adjusted to zero via the Offset Adjust terminals. Compensation is also used to minimize leakage currents which cause voltage droop in the Hold mode.
The HA-5330 will operate at reduced supply voltages (to $\pm 11 \mathrm{~V}$) with a reduced signal range. This monolithic device is available in a 14 pin Ceramic DIP and a 20 pad LCC package. The MIL-STD-883 data sheet for this device is available on request.

Functional Diagram

Absolute Maximum Ratings (Note 1)		Operating Temperature Range						
Voltage between V+ and SUPPLY/SIG GND +		HA-5330-2					. $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	
Voltage between V- and SUPPLY/SIG GND		HA-5330-4					$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
Voltage between SUPPLY GND and SIG GND ± 2		HA-5330-5					. $.0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	
Differential Input Voltage. \pm		Storage Temperature Range					$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
Voltage between $\overline{\mathrm{S}} / \mathrm{H}$ Control and SUPPLY/SIG GND $\ldots+8 \mathrm{~V},-6 \mathrm{~V}$ Output Current, Continuous $\pm 17 \mathrm{~mA}$ (Note 2) Junction Temperature \qquad $+175^{\circ} \mathrm{C}$								
Electrical Specifications Test Conditions Unless Otherwise Specified: VSUPPLY $= \pm 15 \mathrm{~V}$; S/H Control $\mathrm{V}_{\mathrm{IL}}=+0.8 \mathrm{~V}$ (Sample): $\mathrm{V}_{\mathrm{IH}}=+2.0 \mathrm{~V}$ (Hold); SIG GND $=$ SUPPLY GND, Unity Gain Configuration (Output tied to -Input)								
PARAMETER	TEMP	HA-5330-2,-4			HA-5330-5			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
INPUT CHARACTERISTICS								
Input Voltage Range Input Resistance (Note 3) Input Capacitance Offset Voltage	Full	± 10	-	-	± 10	-	-	V
	$+25^{\circ} \mathrm{C}$	5	15	-	5	15	-	$\mathrm{M} \Omega$
	$+25^{\circ} \mathrm{C}$	-	3	-	-	3	-	pF
	$+25^{\circ} \mathrm{C}$	-	0.2	-	-	0.2	-	mV
	Full	-	-	2.0	-	-	1.5	mV
Offset Voltage Temperature Coefficient	Full		1	10	-	1	10	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Bias Current	$+25^{\circ} \mathrm{C}$	-	± 20	-	-	± 20	-	nA
	Full	-	-	± 500	-	-	± 300	nA
Offset Current	$+25^{\circ} \mathrm{C}$	-	20	-	-	20	-	nA
	Full	-	-	500	-	-	300	nA
Common Mode Range CMRR (Note 4)	Full	± 10	-	-	± 10	-	-	V
	Full	86	100	-	86	100	-	dB
TRANSFER CHARACTERISTICS								
Gain, DC Gain Bandwidth Product (Note 12)	Full	2×10^{6}	2×10^{7}	-	2×10^{6}	2×10^{7}	-	V / N
	$+250 \mathrm{C}$		4.5	-		4.5	-	MHz
OUTPUT CHARACTERISTICS								
Output Voltage Output Current Full Power Bandwidth (Note 6) Output Resistance Hold Mode	Full	± 10	-	-	± 10	-	-	\checkmark
	Full	± 10	-	-	± 10	-	-	mA
	$+25^{\circ} \mathrm{C}$	-	1.4	-	-	1.4	-	MHz
	$+25^{\circ} \mathrm{C}$	-	0.2	-	-	0.2	-	Ω
Output Resistance Total Output Noise, DC to 4.0 MHz	$+25^{\circ} \mathrm{C}$	-	10^{-5}	0.001	-	10^{-5}	0.001	Ω
	$+25^{\circ} \mathrm{C}$	-	230	-	-	230	-	$\mu \mathrm{V}$ RMS
	$+25^{\circ} \mathrm{C}$	-	190	-	-	190	-	$\mu \mathrm{VRMS}$

Die Characteristics

Transistor Count
Die Dimensions . $99 \times 166 \times 19$ mils
Substrate Potential . SIG. GND
Process . Bipolar-DI
Thermal Constants $\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right) \quad \theta_{\mathrm{ja}} \quad \theta_{\mathrm{jc}}$

Ceramic DIP	75	15

$\begin{array}{lll}\text { Ceramic LCC } & 76 & 19\end{array}$

Specifications HA-5330

Electrical Specifications (Continued)

PARAMETER	TEMP	HA-5330-2, 4			HA-5330-5			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
TRANSIENT RESPONSE								
Rise Time (Note 5)	$+25^{\circ} \mathrm{C}$	-	70	-	-	70	-	ns
Overshoot (Note 5)	$+25^{\circ} \mathrm{C}$	-	10	-	-	10	-	\%
Slew Rate (Note 7)	$+25^{\circ} \mathrm{C}$	-	90	-	-	90	-	$\mathrm{V} / \mu \mathrm{s}$
DIGITAL INPUT CHARACTERISTICS								
Input Voltage (High), $\mathrm{V}_{\text {IH }}$	Full	2.0	-	-	2.0	-	-	V
Input Voltage (Low), VIL	Full	-	-	0.8	-	-	0.8	V
Input Current ($\mathrm{V}_{\mathrm{IL}}=\mathrm{OV}$)	Full	-	10	40	-	10	40	$\mu \mathrm{A}$
Input Current ($\left.\mathrm{V}_{\mathrm{IH}}=+5 \mathrm{~V}\right)$	Full	-	10	40	-	10	40	$\mu \mathrm{A}$
SAMPLE/HOLD CHARACTERISTICS								
Acquisition Time (Note 8) (0.1\%)	$+25^{\circ} \mathrm{C}$	-	350	-	-	350	-	ns
	Full	-	-	500	-	-	500	ns
(0.01\%)	$+25^{\circ} \mathrm{C}$	-	500	-	-	500	-	ns
	Full	-	-	900	-	-	900	ns
Aperture Time (Note 3)	$+25^{\circ} \mathrm{C}$	-	20	-	-	20	-	ns
Effective Aperture Delay Time (See Glossary)	$+25^{\circ} \mathrm{C}$	-50	-25	0	-50	-25	0	ns
Aperture Uncertainty	$+25^{\circ} \mathrm{C}$	-	0.1	-	-	0.1	-	ns
Droop Rate (Note 9)	$+25^{\circ} \mathrm{C}$	-	0.01	-	-	0.01	-	$\mu \mathrm{V} / \mu \mathrm{s}$
	Full	-	-	100	-	-	10	$\mu \mathrm{V} / \mu \mathrm{s}$
Hold Step Error (Note 10)	$+25^{\circ} \mathrm{C}$	-	0.5	-	-	0.5	-	mV
Hold Mode Settling Time (0.01\%)	$+25^{\circ} \mathrm{C}$	-	100	200	-	100	200	ns
Hold Mode Feedthru 20Vp-p, 100kHz	Full	-	-88	-	-	-88	-	dB
POWER SUPPLY CHARACTERISTICS								
Positive Supply Current	Full	-	18	22	-	18	24	mA
Negative Supply Current	Full	-	19	23	-	19	25	mA
Power Supply Rejection, V+, V- (Note 11)	Full	86	100	-	86	100	-	dB

NOTES:

1. Absolute maximum ratings are limiting values, applied individually, beyond which serviceability of the circuit may be impaired. Functional operation under any of these conditions is not necessarily implied.
2. Internal Power Dissipation may limit Output Current below $\pm 17 \mathrm{~mA}$.
3. Derived from computer simulation only; not tested.
4. $+V_{C M}= \pm 10 V D C$.
5. $V_{i}=200 \mathrm{mV}$ Step; $R_{L}=2 K ; C_{L}=50 p F$
6. Full power bandwidth based on slew rate measurement using FPBW $=\frac{\text { SLEW RATE }}{2 \pi \text { Vpeak }}$

Distortion of wave shape occurs beyond 100 KHz due to slew rate enhancement circuitry
7. $\mathrm{V}_{\mathrm{O}}=20 \mathrm{~V}$ Step; $\mathrm{R}_{\mathrm{L}}=2 \mathrm{~K} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$.
8. $V_{0}=10 \mathrm{~V}$ Step; $\mathrm{R}_{\mathrm{L}}=2 \mathrm{~K} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$.
9. This parameter is measured at ambient temperature extremes in a high speed test environment. Consequently, steady state heating effects from internal power dissipation are not included.
10. $V_{I N}=O V ; V_{I H}=+3.5 V ; t_{r}=22 n s\left(V_{I L}\right.$ to $\left.V_{I H}\right)$. See graph .
11. Based on a three volt delta in each supply, i.e. $15 \mathrm{~V}= \pm 1.5 \mathrm{~V} D C$.
12. $V_{\text {OUT }}=200 m V_{p-p}, R_{L}=2 K, C_{L}=50 p F$.

5

Applying the HA-5330

The HA-5330 has the uncommitted differential inputs of an op amp, allowing the Sample/Hold function to be combined with many conventional op amp circuit ideas. See the Harris Application Note 517 for a collection of circuit ideas.

Layout

A printed circuit board with ground plane is recommended for best performance. Bypass capacitors (0.01 to $0.1 \mu \mathrm{~F}$, ceramic) should be provided from each power supply terminal to the Supply GND Terminal on pin 11.

Applications

The HA-5330 is configured as a unity gain noninverting amplifier by simply connecting the output (pin 7) to the inverting input (pin 14). As an input device for a fast successive - approximation A / D converter, it offers an extremely high throughput rate. Also, the HA-5330's pedestal error is adjustable to zero by using an Offset Adjust potentiometer (10 K to 50 K) center tapped to V -.

The ideal ground connections are pin 11 (Supply Ground) directly to the system Supply Common, and pin 12 (Signal Ground) directly to the system Signal Ground (Analog Ground).

Hold Capacitor

The HA-5330 includes a 90 pF MOS hold capacitor, sufficient for most high speed applications (the Electrical Specifications section is based on the internal capacitor).

Output Stage

The HA-5330 output circuit does not include short circuit protection, and consequently its output impedance remains low at high frequencies. Thus, the step changes in load current which occur during an A/D conversion are absorbed at the $\overline{\mathrm{S}} / \mathrm{H}$ output with minimum voltage error. A momentary short circuit to ground is permissible, but the output is not designed to tolerate a short of indefinite duration.

Glossary of Terms

Acquisition Time:

The time required following a sample" command, for the output to reach its final value within $\pm 0.1 \%$ or $\pm 0.01 \%$. This is the minimum sample time required to obtain a given accuracy, and includes switch delay time, slewing time and settling time.

Aperture Time:

The time required for the sample-and-hold switch to open, independent of delays through the switch driver and input amplifier circuitry. The switch opening time is that interval between the conditions of 10% open and 90% open.

Hold Step Error:

Hold step error is the output shift due to charge transfer from the sample to the hold mode. It is also referred to as "offset step" or "pedestal error".

hold step error vs. $\overline{\mathbf{S}} / \mathrm{H}$ CONTROL RISE TIME

Effective Aperture Delay Time (EADT):

The difference between propagation time from the analog input to the $\overline{\mathrm{S}} / \mathrm{H}$ switch, and digital delay time between the Hold command and opening of the switch.

EADT may be positive, negative or zero. If zero, the $\overline{\mathrm{S}} / \mathrm{H}$ amplifier will output a voltage equal to $\mathrm{V}_{\mathbb{N}}$ at the instant the Hold command was received. For negative EADT, the output in Hold (exclusive of pedestal and droop errors) will correspond to a value of V_{IN} that occurred before the Hold command.

Aperture Uncertainty:

The range of variation in Effective Aperture Delay Time. Aperture Uncertainty (also called Aperture Delay Uncertainty, Aperture Time Jitter, etc.) sets a limit on the accuracy with which a waveform can be reconstructed from sample data.

High Speed, Low Distortion, Precision Monolithic Sample and Hold Amplifier

Features

- Fast Acquisition Time (0.01%) 700ns
- Fast Hold Mode Settling Time (0.01\%) 200ns
- Low Distortion (Hold Mode) - 72 dBc
($\mathrm{V}_{\mathrm{IN}}=200 \mathrm{kHz}, \mathrm{Fs}=450 \mathrm{kHz}, 5 \mathrm{Vp}-\mathrm{p}$)
- Bandwidth Minimally Affected By External C_{H}
- Fully Differential Analog Inputs
- Built-in 135pF Hold Capacitor
- Pin Compatible with HA-5320

Description

The HA-5340 combines the advantages of two sample/ hold architectures to create a new generation of monolithic sample/hold. High amplitude, high frequency signals can be sampled with very low distortion being introduced. The combination of exceptionally fast acquisition time and specified/characterized hold mode distortion is an industry first. Additionally, the AC performance is only minimally affected by additional hold capacitance.
To achieve this level of performance, the benefits of an integrating output stage have been combined with the advantages of a buffered hold capacitor. To the user this translates to a front-end stage that has high bandwidth due

Applications

- High Bandwidth Precision Data Acquisition Systems
- Inertial Navigation and Guidance Systems
- Ultrasonics
- SONAR
- RADAR

Ordering Information

MODEL NUMBER	OPERATING TEMPERATURE RANGE	PRODUCT DESCRIPTION
HA1-5340-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	14 Pin Ceramic DIP
HA1-5340-9	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 Pin Ceramic DIP

to charging only a small capacitive load and an output stage with constant pedestal error which can be nulled out using the offset adjust pins. Since the performance penalty for additional hold capacitance is low, the designer can further minimize pedestal error and droop rate without sacrificing speed.

Low distortion, fast acquisition, and low droop rate are the result, making the HA-5340 the obvious choice for high speed, high accuracy sampling systems.

For a Military temperature range version request the HA-5340/883 data sheet.

Pinout

Functional Diagram

* Buffer acts as a buffer in sample mode, acts as a closed switch in hold mode.

Specifications HA-5340

Absolute Maximum Ratings (Note 1)	Operating Temperature Range						
	HA-5340-	$\ldots 0^{\circ}$	A $\leq+75^{\circ} \mathrm{C}$		
Differential Input Voltage.. 24V Digital Input Voltage $+8 \mathrm{~V},-6 \mathrm{~V}$	Storage Temperature Range			$-65^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+150^{\circ} \mathrm{C}$			
Output Current, Continuous . $\pm 20 \mathrm{~mA}$ Junction Temperature . $+175^{\circ} \mathrm{C}$							
Electrical Specifications Test Conditions (Unless Otherwise Specified) VSUPPLY $= \pm 15.0 \mathrm{~V} ; \mathrm{C}_{\mathrm{H}}=\operatorname{Internal}=135 \mathrm{pF}$; Digital Input: $\mathrm{V}_{\mathrm{IL}}=+0.8 \mathrm{~V}$ (Sample), $\mathrm{V}_{\mathrm{IH}}=+2.0 \mathrm{~V}$ (Hold). Non-Inverting Unity Gain Configuration (Output tied to - -input), $R_{L}=2 K, C_{L}=60 \mathrm{pF}$							
PARAMETER	TEMP	$\begin{aligned} & \text { HA-5340-9 } \\ & \text { HA-5340-5 } \end{aligned}$			UNITS		
		MIN	TYP	MAX			
INPUT CHARACTERISTICS							
Input Voltage Range Input Resistance (Note 2) Input Capacitance Input Offset Voltage	Full	-10	-	+10	V		
	$+25^{\circ} \mathrm{C}$	-	1	-	$\mathrm{M} \Omega$		
	$+25^{\circ} \mathrm{C}$	-	-	3	pF		
	$+25^{\circ} \mathrm{C}$	-	-	1.5	mV		
	Full	-	-	3.0	mV		
Offset Voltage Temperature Coefficient	Full	-	-	30	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$		
Bias Current	$+25^{\circ} \mathrm{C}$	-	± 70	-	nA		
	Full	-	-	± 350	nA		
Offiset Current	$+25^{\circ} \mathrm{C}$	-	± 50	-	nA		
	Full	-	-	± 350	nA		
Common Mode Range	Full	-10	-	+10	V		
CMRR ($\pm 10 \mathrm{Vdc}$) (Note 3)	$+25^{\circ} \mathrm{C}$	-	83	-	dB		
	Full	72	-	-	dB		
TRANSFER CHARACTERISTICS							
$\begin{aligned} & \text { Gain, DC } \\ & \text { Gain Bandwidth Product } \begin{aligned} \mathrm{C}_{\mathrm{H}} \text { External } & =0 \mathrm{pF} \\ \mathrm{C}_{\mathrm{H}} \text { External } & =100 \mathrm{pF} \\ \mathrm{C}_{\mathrm{H}} \text { External } & =1000 \mathrm{pF} \end{aligned} \end{aligned}$	$+25^{\circ} \mathrm{C}$	110	140	-	dB		
	Full	-	10	-	MHz		
	Full	-	9.6	-	MHz		
	Full	-	6.7	-	MHz		
TRANSIENT RESPONSE							
Rise Time ($200 \mathrm{mV} \mathrm{step} \mathrm{)}$	$+25^{\circ} \mathrm{C}$	-	20	30	ns		
Overshoot (200mV step)	$+25^{\circ} \mathrm{C}$	-	35	50	\%		
Slew Rate (10V step)	$+25^{\circ} \mathrm{C}$	40	60	-	V / s		
DIGITAL INPUT CHARACTERISTICS							
Input Voltage (High), $\quad \mathrm{V}_{\text {IH }}$	Full	2.0	-	-	v		
Input Voltage (Low), $\mathrm{V}_{\text {IL }}$	Full	-	-	0.8	v		
Input Current $\mathrm{V}_{\text {IL }}=0 \mathrm{~V}$ IIL	Full	-	7	40	$\mu \mathrm{A}$		
Input Current $\mathrm{V}_{1 H}=5 \mathrm{~V} \quad \mathrm{IIH}^{\text {a }}$	Full	-	4	40	$\mu \mathrm{A}$		
OUTPUT CHARACTERISTICS							
Output Voltage Output Current Full Power Bandwidth (Slew Rate Limited) (Note 4) Output Resistance - Hold Mode	Full	-10	-	+10	v		
	Full	-10	-	+10	mA		
	Full	0.6	0.9	-	MHz		
Output Resistance - Hold Mode	$+25^{\circ} \mathrm{C}$	-	0.05	0.1	Ω		
	Full	-	0.07	0.15	Ω		
TOTAL OUTPUT NOISE, D.C. TO 10 MHz							
Sample Mode	$+25^{\circ} \mathrm{C}$	-	325	400	$\mu \mathrm{Vrms}$		
Hold Mode	$+25^{\circ} \mathrm{C}$	-	325	400	$\mu \mathrm{Vrms}$		

Electrical Specifications Test Conditions (Unless Otherwise Specified) $V_{S U P P L Y}= \pm 15.0 \mathrm{~V} ; \mathrm{C}_{\mathrm{H}}=\operatorname{Internal}=135 \mathrm{pF} ;$ Digital Input:

$$
\mathrm{V}_{\mathrm{IL}}=+0.8 \mathrm{~V} \text { (Sample), } \mathrm{V}_{\mathrm{IH}}=+2.0 \mathrm{~V} \text { (Hold). Non-Inverting Unity Gain Configuration (Output tied to }
$$ -Input), $\mathrm{R}_{\mathrm{L}}=2 \mathrm{~K}, \mathrm{C}_{\mathrm{L}}=60 \mathrm{pF}$

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} \& \multirow[b]{2}{*}{TEMP} \& \multicolumn{3}{|c|}{\[
\begin{aligned}
\& \text { HA-5340-9 } \\
\& \text { HA-5340-5 }
\end{aligned}
\]} \& \multirow[b]{2}{*}{UNITS} \\
\hline \& \& MIN \& TYP \& MAX \& \\
\hline \multicolumn{6}{|l|}{DISTORTION CHARACTERISTICS} \\
\hline \& \begin{tabular}{l}
Full \\
Full \\
Full \\
Full \\
Full
\[
\begin{aligned}
\& +25^{\circ} \mathrm{C} \\
\& +25^{\circ} \mathrm{C} \\
\& +25^{\circ} \mathrm{C} \\
\& +25^{\circ} \mathrm{C} \\
\& +25^{\circ} \mathrm{C} \\
\& +25^{\circ} \mathrm{C} \\
\& +25^{\circ} \mathrm{C} \\
\& +25^{\circ} \mathrm{C} \\
\& +25^{\circ} \mathrm{C} \\
\& +25^{\circ} \mathrm{C} \\
\& +25^{\circ} \mathrm{C}
\end{aligned}
\]
\end{tabular} \& -90
-76
-70
-66

-78 \& \[
$$
\begin{aligned}
& 115 \\
& -100 \\
& -82 \\
& -74 \\
& -75 \\
& -83 \\
& \\
& \\
& \\
& 76 \\
& 76 \\
& -72 \\
& -66 \\
& -56 \\
& -84 \\
& -71 \\
& -61 \\
& -95 \\
& -91 \\
& -82
\end{aligned}
$$

\] \& - \& | dB |
| :--- |
| dBc |
| dBc |
| dBc |
| dBc |
| dBc |
| dB |
| dB |
| dBc |
| dBc |
| dBc |
| dBc |
| dBc |
| dBc |
| dBc |
| $d B c$ |
| dBc |
| dBc |

\hline \multicolumn{6}{|l|}{SAMPLE/HOLD CHARACTERISTICS}

\hline Acquisition Time \quad 10V Step to 0.01%
Droop Rate $\left(\mathrm{C}_{\mathrm{H}}=\right.$ Internal) \quad 10V Step to 0.1%
Hold Step Error $\left(\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=4.0 \mathrm{~V}, \mathrm{t}_{\mathrm{r}}=5 \mathrm{~ns}\right)$
Hold Mode Settling Time (to $\pm 1 \mathrm{mV})$
Hold Mode Feedthrough ($20 \mathrm{Vp}-\mathrm{p}, 200 \mathrm{kHz}$, sine)
EADT (Effective Aperture Delay Time)

Aperture Uncertainty \& $$
\begin{aligned}
& +25^{\circ} \mathrm{C} \\
& \text { Full } \\
& +25^{\circ} \mathrm{C} \\
& +25^{\circ} \mathrm{C} \\
& \text { Full } \\
& +25^{\circ} \mathrm{C} \\
& \text { Full } \\
& \text { Full } \\
& +25^{\circ} \mathrm{C} \\
& +25^{\circ} \mathrm{C}
\end{aligned}
$$ \& -

-
-
-
-

-15

- \& $$
\begin{gathered}
700 \\
- \\
430 \\
0.1 \\
- \\
- \\
200 \\
-76 \\
-15 \\
0.2
\end{gathered}
$$ \& \[

$$
\begin{gathered}
- \\
900 \\
600 \\
- \\
95 \\
+15 \\
300 \\
- \\
-
\end{gathered}
$$

\] \& | ns |
| :--- |
| ns ns $\mu \mathrm{V} / \mu \mathrm{s}$ $\mu \mathrm{V} / \mu \mathrm{s}$ mV ns dB ns ns |

\hline \multicolumn{6}{|l|}{POWER SUPPLY CHARACTERISTICS}

\hline Positive Supply Current Negative Supply Current PSRR (V or -V, 10\% delta) \& | Full |
| :--- |
| Full |
| Full | \& \[

$$
\begin{gathered}
- \\
- \\
75
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 19 \\
& 19 \\
& 82
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 25 \\
& 25
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathrm{mA} \\
& \mathrm{~mA} \\
& \mathrm{~dB}
\end{aligned}
$$
\]

\hline
\end{tabular}

NOTES: 1. Absolute maximum ratings are limiting values, applied individually, beyond which the serviceability of the circuit may be impaired. Functional operation under any of these conditions is not necessarily implied.
2. Derived from Computer Simulation only, not tested.
3. +CMRR is measured from OV to $+10 \mathrm{~V},-\mathrm{CMRR}$ is measured from OV to -10V
4. Based on the calculation FPBW $=$ Slew Rate/ 2π Vpeak (Vpeak $=10 \mathrm{~V}$).

Applying the HA-5340

The HA-5340 has the uncommitted differential inputs of an op amp, allowing the Sample and Hold function to be combined with many conventional op amp circuits. See the Harris Application Note 517 for a collection of circuit ideas.

LAYOUT

A printed circuit board with ground plane is recommended for best performance. Bypass capacitors (0.01 to $0.1 \mu \mathrm{~F}$, ceramic) should be provided from each power supply terminal to the Supply Ground terminal on pin 13.

The ideal ground connections are pin 6 (SIG. Ground) directly to the system Signal Ground, and pin 13 (Supply Ground) directly to the system Supply Common.

HOLD CAPACITOR

The HA-5340 includes a 135pF MOS hold capacitor, sufficient for most high speed applications (the Electrical Specifications section is based on this internal capacitor).

Additional capacitance may be added between pins 7 and 11. This external hold capacitance will reduce droop rate at the expense of acquisition time, and provide other tradeoffs as shown in the Performance Curves.

The hold capacitor C_{H} should have high insulation resistance and low dielectric absorption, to minimize droop errors. Teflon ${ }^{\circledR}$, polystyrene and polypropylene dielectric capacitor types offer good performance over the specified operating temperature range.

The hold capacitor terminal (pin 11) remains at virtual ground potential. Any PC connection to this terminal should be kept short and "guarded" by the ground plane, since nearby signal lines or power supply voltages will introduce errors due to drift current.
©Teflon is a registered Trademark of Dupont Corporation.

Applications

Figure 1 shows the HA-5340 connected as a unity gain noninverting amplifier - its most widely used configuration. As an input device for a fast successive - approximation A/D converter, it offers very high throughput rate for a monolithic IC sample/hold amplifier. Also, the HA-5340's hold step error is adjustable to zero using the Offset Adjust potentiometer, to deliver a 12-bit accurate output from the converter.

The HA-5340 output circuit does not include short circuit protection, and consequently its output impedance remains low at high frequencies. Thus, the step changes in load current which occur during an A/D conversion are absorbed at the S/H output with minimum voltage error. A momentary short circuit to ground is permissible, but the output is not designed to tolerate a short of indefinite duration.

FIGURE 1.
TYPICAL HA-5340 CONNECTIONS; NONINVERTING UNITY GAIN MODE
NOTE: Pin Numbers Refer to DIP Package Only.

Test Circuits

HOLD STEP ERROR

1. Observe the "hold step" voltage V_{p} :
$\overline{\mathrm{S}}$ / H CONTROL

DROOP RATE TEST

1. Observe the voltage "droop", $\Delta \mathrm{V}_{\mathrm{O}} / \Delta \mathrm{T}$:
2. Measure the slope of the output during hold, $\Delta \mathrm{V}_{\mathrm{O}} / \Delta \mathrm{T}$.
3. Droop can be positive or negative - usually to one rail or the other not to GND.

HOLD MODE FEED THROUGH ATTENUATION

Feedthrough in $d B=20$ Log $\frac{V_{\text {OUT }}}{V_{\text {IN }}}$ where:
$V_{\text {OUT }}=$ Volts $_{p-p}$, Hold Mode,
$V_{\mathbb{N}}=$ Volts $_{p-p}$.

Performance Curves $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise specified.

DROOP RATE vs. HOLD CAPACITOR SIZE

Performance Curves (Continued) $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise specified.

HOLD STEP ERROR vs. TRISE
$\mathrm{CH}_{\mathrm{H}}=$ Internal; Temperature $=+25^{\circ} \mathrm{C}$

HOLD STEP ERROR vs. TEMPERATURE
$V_{I H}=4 \mathrm{~V}, C_{H}=$ Internal
$\mathrm{t}_{\mathrm{r}}=5 \mathrm{~ns}, 10 \mathrm{~ns}, 20 \mathrm{~ns}$
HOLD STEP ERROR vs. HOLD CAPACITANCE
$T_{\text {RISE }}=5 \mathrm{~ns}$; Temperature $=+25^{\circ} \mathrm{C}$

Performance Curves (Continued) $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise specified.

CLOSED LOOP PHASE/GAIN

$A V=+100, \pm 15 \mathrm{~V}$ and $\pm 12 \mathrm{~V}$ Supplies*

[^53]Performance Curves (Continued) $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise specified.

Die Characteristics

Transistor Count	196
Die Size	$139 \times 84 \times 19$ mils
Thermal Impedance:	
θ_{ja}	. $75^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{\text {jc }}$	$. .15^{\circ} \mathrm{C} / \mathrm{W}$
Tie Substrate to:	

DIFFERENTIAL AMPLIFIERS

PAGESELECTION GUIDE 6-2
DIFFERENTIAL AMPLIFIERS DATA SHEETS
CA 3002 IF Amplifier 6-3
CA 3028A, B Differential/Cascode Amplifier 6-9
CA 3049 Dual High-Frequency Differential Amplifier 6-20
CA 3053 Differential/Cascode Amplifier 6-9
CA 3054 Transistor Array-Dual Differential Amplifier 6-25
CA 3102 Dual High-Frequency Differential Amplifier 6-20

Selection Guide

DIFFERENTIAL AMPLIFIERS

Type	Description	Features	Freq. Range DC to MHz		BW (3dB Point) (typ.) MHz	$\begin{gathered} \text { I/F, } \\ \text { NF } \\ \text { (typ.) } \\ \text { dB } \end{gathered}$	AGC Range (typ.) dB	Pkg. No. of Pins*
CA3002	IF Amplifier	- Balanced differential-amplifier configuration with controlled constant-current source - RF, if, and video frequency capability - Balanced agc capability - Operation from dc to 500 MHz - CA3028B is controlled for input offset voltage, current, and input bias current, and is intended for "balance" requirements - Push-pull inputs and outputs - CA3O28 and CA3053 are identical except for 100 MHz noise specification	20	24	$11 \square$	4	-	10 T
CA3028A	Differential /Cascode Amplifiers		120	400	-	7.2	62	$\begin{gathered} 8 \mathrm{C}, \mathrm{~S}, \\ \mathrm{~T} \end{gathered}$
CA3028B			120	40	8	7.2	62	
CA3049	Dual High Frequency		500	22	1.35 A	53	75	12 T
CA3053	Differential /Cascode Amplifier		120	40	Recomme Applicatio	dor IF	mplifier	$\begin{gathered} 8 \mathrm{E}, \mathrm{~S}, \\ \mathrm{~T} \end{gathered}$
CA3054	Dual Independent		120	32	$550 \dagger$	3.25	75	14E
CA3102	Dual HighFrequency		500	22	1.35 A	1.5	7.5	14 E

*See Packaging Section ${ }^{\circ} \mathrm{Min} \quad \square \mathrm{RMS} \triangle \mathrm{GHz}{ }^{\circ}$ Transistor Array $\mathrm{ff}_{\mathrm{T}}(\mathrm{MHz}) \quad \square \mathrm{G}_{\mathrm{P}}$ Min. at 100 MHz Cascode. 16dB. Diff Ampl. 14dB
$V_{\text {OUT }}(p-p \mathrm{~V})$: CA3002, 5.5; CA3028B, 11.5; CA3040, 05. (RMS). TA Range: -55 to $+125^{\circ} \mathrm{G}$ except for types CA3051, CA3054 (-40 to $+85^{\circ} \mathrm{C}$)

Diferential Amplifiers
CA3002

May 1990

IF Amplifier

For Use in Communication Equipment

Features:

- Input resistance - $100 \mathrm{k} \Omega$ typ.
- Output resistance - 70Ω typ.
- Voltage gain - 24 dB typ. @ 1.75 MHz
- Push-pull input, single-ended output

■ -3 dB bandwidth - 11 MHz typ.

- AGC range - 80 dB typ.
- Useful frequency range $D C$ to 15 MHz

Applications:

- Product detector
- IF \& video amplifier
- AM detector
- Schmitt trigger

The CA3002 integrated-circuit IF amplifier is a balanced differential amplifier that can be used with either a single-ended or a push-pull input and can provide either a direct-coupled or a capacitance-coupled single-ended output. Its applications include RC-coupled IF amplifiers that use the internal silicon output-coupling capacitor, video amplifiers that use an external coupling capacitor, envelope detectors, product detectors, and various trigger circuits.
The CA3002 is supplied in the 10-lead hermetic TO-5 style package.

Figure 1 - Schematic diagram.

ABSOLUTE-MAXIMUM VOLTAGE AND CURRENT LIMITS, at $T_{A}=25^{\circ} \mathrm{C}$
COMMON-MODE INPUT SIGNAL VOLTAGE $\pm 2 \mathrm{~V}$
MAXIMUM POWER SUPPLY VOLTAGE 16 V or $\pm 8 \mathrm{~V}$
OPERATING-TEMPERATURE RANGE
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage-temperature range
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
LEAD TEMPERATURE (During Soldering):
At distance $1 / 16 \pm 1 / 32$ inch $(1.59 \pm 0.79 \mathrm{~mm})$ from case for 10 seconds max. $+265^{\circ} \mathrm{C}$
MAXIMUM INPUT-SIGNAL VOLTAGE $\pm 4 \mathrm{~V}$
MAXIMUM DEVICE DISSIPATION:

ELECTRICAL CHARACTERISTICS, at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+6 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-6 \mathrm{~V}$

CHARACTERISTICS	SPECIAL TEST CONDITIONS TERMINALS No. 3 \& No. 4 NOT CONNECTED UNLESS OTHERWISE NOTED			TEST CIRCUITS Fig.	LIMITS CA3002			$\begin{aligned} & U \\ & N \\ & 1 \\ & T \\ & S \end{aligned}$	
				Min.	Typ.	Max.			
STATIC CHARACTERISTICS									
Input Unbalance									
Voltage $\mathrm{V}_{\text {IU }}$					4	-	2.2	-	mV
Input Unbalance									
Current IU				5	-	2.2	10	$\mu \mathrm{A}$	
Input Bias Current I/				5	-	20	36	$\mu \mathrm{A}$	
Quiescent Operating Voltage	MODE	TERMINAL							
		2	4						
	A	$\mathrm{V}_{\text {EE }}$	NC	7 a	-	2.8	-	V	
	B	$V_{\text {EE }}$	$V_{\text {EE }}$	8 b	-	3.9	-	\checkmark	
Device Dissipation ${ }^{\text {P }}{ }_{\mathbf{T}}$				4	-	55	-	mW	
DYNAMIC CHARACTERISTICS									
Differential Voltage Gain ADIF (Single-Ended Input and Output)	$f=1.75 \mathrm{MHz}$			10	19	24	-	dB	
Bandwith at -3 dB Point BW	-			10	-	11	-	MHz	
Maximum Output Voltage Swing $\mathrm{V}_{\mathrm{OUT}}{ }^{(P-P)}$	-			10	-	5.5	-	$V_{\text {P-P }}$	
Noise Figure NF	$\mathrm{f}=1.75 \mathrm{MHz} \mathrm{R} \mathrm{S}^{\prime}=1 \mathrm{k} \Omega$			12	-	4	8	dB	
Input Impedance Components: Parallel Input	$f=1.75 \mathrm{MHz}$								
Parallel Input Capacitance C_{IN}	$\mathrm{f}=1.75 \mathrm{MHz}$			None	-	4	-	pF	
Output Resistance R RUT	$\mathrm{f}=1.75 \mathrm{MHz}$			14	-	70	-	Ω	
3rd Harmonic Intermodulation Distortion IMD	-			16	-30	-40	-	dB	
AGC Range (Maximum Voltage Gain to Complete Cutoff AGC	$\mathrm{f}=1.75 \mathrm{MHz}$			18	60	80	-	dB	

ABSOLUTE-MAXIMUM VOLTAGE AND CURRENT LIMITS, at $T_{A}=25^{\circ} \mathrm{C}$
Indicated voltage or current limits for each terminal can be applied under the specified operating conditions for other terminals.

All voltages are with respect to ground ($-V_{C C}{ }^{\prime}+V_{E E}$) or common terminal of Positive and Negative DC supplies).

TERMINAL	VOLTAGE OR CURRENT LIMITS		CONDITIONS	
	NEGATIVE	POSITIVE	TERMINAL	VOLTAGE
1	-8V	0 V	$\begin{gathered} 2,7 \\ 5,10 \\ 9 \end{gathered}$	$\begin{array}{r} -8 \\ 0 \\ +6 \end{array}$
2	-10 V	0 V	$\begin{gathered} 1,5,10 \\ 9 \end{gathered}$	$\begin{array}{r} 0 \\ +6 \end{array}$
3	-8.5 V	0 V	$\begin{gathered} 1,5,10 \\ 7 \\ 9 \end{gathered}$	$\begin{array}{r} 0 \\ -6 \\ +6 \end{array}$
4	-8V	0 V	$\begin{gathered} 1,5,10 \\ 2,7 \\ 9 \end{gathered}$	$\begin{array}{r} 0 \\ -8 \\ +6 \end{array}$
5	-3.5 V	+3.5 V	$\begin{gathered} 1,10 \\ 2,7 \\ 9 \end{gathered}$	$\begin{array}{r} 0 \\ -6 \\ +6 \end{array}$
6	INTERNAL CONNECTION DO NOT USE			
7	-12 V	0 V	$\begin{gathered} 1,5,10 \\ 2 \\ 9 \\ \hline \end{gathered}$	$\begin{array}{r} 0 \\ -6 \\ +6 \end{array}$
8	20 mA		$1,5,10$ 2 9 200Ω Resist Termin	0 -6 +6 Between $\& 8$
9	0 V	+10 V	$\begin{gathered} 1,5,10 \\ 2,3,7 \end{gathered}$	$\begin{array}{r} 0 \\ -6 \end{array}$
10	-3.5 V	+3.5 V	$\begin{gathered} 1,5 \\ 2,7 \\ 9 \end{gathered}$	$\begin{array}{r} 0 \\ -6 \\ +6 \end{array}$
CASE	INTERNALLY CONNECTED TO TERMINAL No. 2 (SUBSTRATE) DO NOT GROUND			

STATIC CHARACTERISTICS

Fig. 2 - input unbalance voltage \& current vs temperature.

Fig. 3 - Input bias current vs temperature.

Fig. 4 - Input unbalance voltage and device dissipation test circuit.

Fig. 6 - Quiescent operating voltage vs temperature.

Fig. 5 - Input unbalance current \& bias current test circuit.

mode a

mode a
Fig. 7 - Quiescent operating voltage.

DYNAMIC CHARACTERISTICS

Fig. 8a - Differential voltage gain vs temperature.

Fig. $8 b$ - Differential voltage gain vs frequency.

Fig. 9 - Bandwidth of $-3 d B$ point vs temperature.

Fig. 11 - Noise figure vs source resistance.

Fig. 13a - Output resistance vs temperature.

Fig. 14 - Output resistance.

Fig. 10 - Differential voltage gain, $-3 d B$ bandwidth, and maximum output voltage swing.

* Taps are adjusted to provide indicated equivalent values of RS with tank tuned to resonance at 1.75 MHz , and a $50-\Omega$ resisto connected to simulate the noise diode.

Fig. 12 - Noise figure.

Fig. 13b-Output resistance vs frequency.

Fig. 15 - Input level for -30 dB intermodulation vs temperature.

1) Increase both input-signal tones until the $\mathbf{2 f} \mathbf{2} \mathbf{f 1}$ and $\mathbf{2 f} \mathbf{f}$.f2 output signal voltages are $\mathbf{3 0} \mathrm{dB}$ below the $\boldsymbol{f}_{\mathbf{1}}$ and $\boldsymbol{f}_{\mathbf{2}}$ output-signal voltages. 2) Measure rms values of the input and output signal voltages. 3) The measured input signal voltage is that value when the 3 rd-harmonic intermodulation products are 30 dB below the fundamental outputs.

Fig. 16 - Intermodulation circuit.

Fig. 17-AGC range vs frequency.

Fig. 18 - AGC range.

Differential/Cascode Amplifiers

For Communications and Industrial Equipment at Frequencies from DC to 120 MHz

Features:

- Controlled for input offset voltage, input offset current, and input bias current (CA3028 series only)
- Balanced differential amplifier configuration with controlled constant-current source
- Single- and dual-ended operation

Applications:

- RF and IF amplifiers (differential or cascode)
- DC, audio, and sense amplifiers
- Converter in the commercial FM band
- Oscillator
- Mixer
- Limiter
- Companion Application Note, ICAN 5337 "Application of the CA3028 Integrated Circuit Amplifier in the HF and VHF Ranges." This note covers characteristics of different operating modes, noise performance, mixer, limiter, and amplifier design considerations.

The CA3053 is similar to the CA3028A and CA3028B but is recommended for IF amplifier applications.

The CA3028A, CA3028B, and CA3053 are available in 8-lead packages as shown below. When ordering these devices, it is important to add the appropriate suffix letter to the device.

The CA3028B is like the CA3028A but is capable of premium
performance particularly in critical dc and differential amplifier
applications requiring tight controls for input offset voltage, input offset current, and input bias current.

Package/Lead Options

SMALL OUTLINE $(150 \mathrm{mil})$	STRAIGHT LEAD TO-5	DUAL-IN-LINE FORMED- LEAD TO-5	DUAL-IN-LINE PLASTIC (MINI-DIP)
CA3028AM	CA3028A*	CA3028AS	CA3028AE
CA3028BM			
CA3053M	CA3028B*	CA33028BS CA3053*	CA3053S

*Most types in a straight-lead TO-5 package carry a "T" suffix. This one does not. Order type number as shown.
The CA3028A and CA3028B are differential/cascode amplifiers designed for use in communications and industrial equipment operating at frequencies from dc to 120 MHz .
The CA3028B is like the CA3028A but is capable of premium

Figure 1 - Schematic diagram for CA3028A. СА3028B and CA3053.

ABSOLUTE MAXIMUM RATINGS at $T_{A}=25^{\circ} \mathrm{C}$

DISSIPATION
At T_{A} Up to $85^{\circ} \mathrm{C}$ (CA3028A. CA3028B, CA3053) . 450 mW
At $T_{A} 85^{\circ} \mathrm{C}$ (CA3028A, CA3028B, CA305) . . Derate linearly $5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
AMBIENT-TEMPERATURE RANGE
Operating
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
LEAD TEMPERATURE (DURING SOLDERING):
At distance $1 / 16 \pm 1 / 32(1.59: 0.79 \mathrm{~mm})$ from case for 10 seconds max. ... $+265^{\circ} \mathrm{C}$

MAXIMUM VOLTAGE RATINGS at $T_{A}=25^{\circ} \mathrm{C}$

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
\& \text { TERM- } \\
\& \text { INAL } \\
\& \text { NO. }
\end{aligned}
\] \& 1 \& 2 \& 3 \& 4 \& 5 \& 6 \& 7 \& 8 \& \multirow[t]{9}{*}{\begin{tabular}{l}
This chart gives the range of voltages which can be applied to the terminals listed horizontally with respect to the terminals listed vertically. For example, the voitage range of the horizontal terminal 4 with respect to terminal 2 is \(\mathbf{- 1}\) to +5 volts. \\
\(\ddagger\) Terminal \#3 is connected to the substrate and case. \\
* Voltages are not normally applied between these terminals. Voltages appearing between these terminals will be safe, if the specified voltage limits between all other terminals are not exceeded. \\
- Limit is -12 V for CA3053. \\
\(\oplus\) Limit is +15 V for CA3053. \\
\(\phi\) Limit is +12 V for CA3053. \\
- Limit is +24V for CA3028A and +18 V for CA3053.
\end{tabular}} \\
\hline \(\bullet 1\) \& \& \begin{tabular}{c}
0 \\
0 \\
to \\
.15 \\
\hline
\end{tabular} \& \begin{tabular}{c}
0 \\
0 \\
10 \\
.15 \\
\hline 1
\end{tabular} \& \begin{tabular}{c}
0 \\
to \\
.15 \\
\hline
\end{tabular} \& +5
+5
to
5 \& * \& * \& +20¢
to
0
0 \& \\
\hline 2 \& \& \& +5
to
-11 \& +5
+10
10
-1 \& ct

to
0
0 \& * \& ctid ${ }^{+15}$ \& * \&

\hline 3^{\ddagger} \& \& \& \& \[
$$
\begin{gathered}
+10 \\
\text { to } \\
0
\end{gathered}
$$

\] \& | $+15^{9}$ |
| :---: |
| to |
| 0 | \& +300

to
0 \& $+15^{4}$
10
0 \& +30
to
0
0 \&

\hline 4 \& \& \& \& \& +15
to
0
0 \& * \& * \& * \&

\hline 5 \& \& \& \& \& \& +20¢
to
0 \& * \& * \&

\hline 6 \& \& \& \& \& \& \& * \& * \&

\hline 7 \& \& \& \& \& \& \& \& * \&

\hline 8 \& \& \& \& \& \& \& \& \&

\hline
\end{tabular}

MAXIMUM CURRENT RATINGS

TERM- INAL No.	$\mathrm{I}_{\text {IN }}$ mA	IOUT mA
1	0.6	0.1
2	4	0.1
3	0.1	23
4	20	0.1
5	0.6	0.1
6	20	0.1
7	4	0.1
8	20	0.1

ELECTRICAL CHARACTERISTICS at $T_{A}=25^{\circ} \mathrm{C}$

CHARACTERISTIC	SYMBOL	$\begin{aligned} & \text { TEST } \\ & \text { CIR- } \\ & \text { CUUIT } \end{aligned}$	SPECIAL TEST CONDITIONS		LIMITS TYPE CA3028A			LIMITSTYPE CA3028B			LIMITS TYPE CA3053			UNITS	TYPICAL CHARACTERISTICS
		Fig.			Min.	Typ.	Max.	Min.	Typ.	Max.	Min.	Typ.	Max.		Fig.
STATIC CHARACTERISTICS															
			$+\mathrm{V}_{\mathrm{CC}}$	$-V_{E E}$											
Input Offset Voltage	VT0	2	6 V 12 V	6 V 12 V	-	-	-	-	$\begin{aligned} & 0.98 \\ & 0.89 \end{aligned}$	5 5	-	-	-	mV	4
Input Offset Current	Ito	3 a	6 V 12 V	6 V 12 V	-	-	-	-	$\begin{aligned} & 0.56 \\ & 1.06 \end{aligned}$	5 6	-	-	-	$\mu \mathrm{A}$	4
Input Bias Current	I_{T}	3 a	6 V 12 V	6 V 12 V	-	$\begin{gathered} 16.6 \\ 36 \end{gathered}$	$\begin{array}{\|l\|} \hline 70 \\ 106 \end{array}$	-	$\begin{gathered} 16.6 \\ 36 \end{gathered}$	$\begin{aligned} & 40 \\ & 80 \end{aligned}$	-	.	-	$\mu \mathrm{A}$	5 a
		3b	9 V 12 V	-	-	-	-	-	-	-	-	$\begin{aligned} & 29 \\ & 36 \end{aligned}$	$\begin{array}{r} 85 \\ 125 \\ \hline \end{array}$		5b
Quiescent Operating Current	$\begin{aligned} & \mathrm{I}_{6} \\ & \text { or } \\ & \mathrm{I}_{8} \end{aligned}$	3a	$\begin{array}{r} 6 \mathrm{~V} \\ 12 \mathrm{~V} \end{array}$	6 V 12 V	0.8	$\begin{array}{\|l\|} \hline 1.25 \\ 3.3 \end{array}$	$\begin{aligned} & 2 \\ & 5 \end{aligned}$	$\begin{gathered} 1 \\ 2.5 \end{gathered}$	$\begin{aligned} & 1.25 \\ & 3.3 \end{aligned}$	1.5	-	-	-	mA	$\begin{aligned} & 6 \mathrm{a} \\ & 7 \end{aligned}$
		3b	$\begin{gathered} 9 \mathrm{~V} \\ 12 \mathrm{~V} \end{gathered}$	-	-	-	-	-	-	-	$\begin{aligned} & 1.2 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 2.2 \\ & 3.3 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 5.0 \end{aligned}$		6b
AGC Bias Current (Into Constant-Current Source Terminal No.7)	I7	8 a	$\begin{aligned} & 12 \mathrm{~V} \\ & 12 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{\text {AGC }}=+9$ $\mathrm{~V}_{\text {AGC }}=+12$	-	$\begin{aligned} & 1.28 \\ & 1.65 \end{aligned}$	-		$\begin{aligned} & 1.28 \\ & 1.65 \end{aligned}$.	$\stackrel{-}{-}$	-	-	mA	8b
		-	$9 V$ 12 V	\square	-	-	-	-	-	-	-	$\begin{aligned} & 1.15 \\ & 1.55 \\ & \hline \end{aligned}$	-		-
Input Current(Terminal No.7)	I_{7}	-	$\begin{array}{r} 6 \mathrm{~V} \\ 12 \mathrm{~V} \end{array}$	$\begin{array}{r} 6 \mathrm{~V} \\ 12 \mathrm{~V} \end{array}$	1	$\begin{aligned} & 0.85 \\ & 1.65 \end{aligned}$	$\begin{array}{\|l\|} \hline 1 \\ 2.1 \end{array}$	$\begin{gathered} 0.5 \\ 1 \end{gathered}$	$\begin{aligned} & 0.85 \\ & 1.65 \end{aligned}$	$\begin{array}{r} 1 \\ 2.1 \end{array}$	-	-	-	mA	-
Device Dissipation	P_{T}	3a	$\begin{array}{r} 6 \mathrm{~V} \\ 12 \mathrm{~V} \end{array}$	$\begin{array}{r} 6 \mathrm{~V} \\ 12 \mathrm{~V} \\ \hline \end{array}$	$\begin{aligned} & 24 \\ & 120 \\ & \hline \end{aligned}$	$\begin{array}{\|c} 36 \\ 175 \\ \hline \end{array}$	$\begin{aligned} & 54 \\ & 260 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 24 \\ 120 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 36 \\ 175 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 42 \\ 220 \\ \hline \end{array}$	-	-	-	mW	9
		3b	9 V 12 V	-	-	-	-	-	-	-	-	$\begin{array}{r} 50 \\ 100 \end{array}$	$\begin{array}{\|c} \hline 80 \\ 150 \\ \hline \end{array}$		-

ELECTRICAL CHARACTERISTICS of $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (cont'd)

CHARACTERISTIC		SYMBOL	$\begin{aligned} & \text { TEST } \\ & \text { CIR } \\ & \text { CUIT } \end{aligned}$	SPECIAL TEST CONDITIONS		LIMITS TYPE CA3028A			LIMITS TYPE CA3028B			LIMITS TYPE CA3053			UNITS	TYPICAL CHARAC. TERISTICS CURVE Fig.	
		Fig.	Min.			Typ.	Max.	Min.	Typ.	Max.	Min.	Typ.	Max.				
DYNAMIC CHARACTERISTICS																	
Power Gaın			$G^{\text {P }}$	10a	$\mathrm{f}=100 \mathrm{MHz}$	Cascode	16	20		16	20	.	.	\cdot		dB	10 b
		11 a d		$V_{C C}=.9 \mathrm{~V}$	Diff. Ampl.	14	17	.	14	17	.	.	-		11b, e		
		10a		$\left\{\begin{array}{l} =10.7 \mathrm{MHz} \\ v_{C C}=+9 \mathrm{~V} \end{array}\right.$	Cascode	35	39	-	35	39		35	39		dB	10b*	
		11 a			Diff. Ampl.	28	32		28	32	.	28	32	-		11b*	
Noise Figure		NF	10a	$\begin{aligned} & f=100 \mathrm{MHz} \\ & v_{C C}=+9 \mathrm{~V} \end{aligned}$	Cascode		7.2	9	.	7.2	9	-	-	-	dB	10 c	
		11ad	Diff. Ampl.			6.7	9		6.7	9	-	-	.	11c,e			
Input Admittance			Y_{11}		$\left\{\begin{array}{l} \mathrm{t}=10.7 \mathrm{MHz} \\ \mathrm{~V}_{\mathrm{CC}}=+9 \mathrm{~V} \end{array}\right.$	Cascode				-	$0.6+\mathrm{j} 1.6$.				mmho	12
				Diff. Ampl.		-				$0.5+j 0.5$		13					
Reverse Transfer Admittance		Y_{12}		Cascode						0.0003 - 10	.	mmino				14	
			Diff-Ampl	-		$0.01 \cdot j 0.0002$				-	15						
Forward Transfer Admittance.			γ_{21}	-		Cascode				-	99-j18					mmho	16
				Diff.-Ampl.		.				$37+j 0.5$	-	17					
Output Admittance		Y_{22}	\cdots	Cascode		-				0. +j 0.08	.	mmho				18	
			Diff. Ampl.			$0.04+j 0.23$.	19						
Power O (Untun			P_{0}	20a	$\mathrm{f}=10.7 \mathrm{MHz}$	$\begin{aligned} & \hline \text { Diff. Ampl } \\ & 50 \Omega \text { Input } \\ & \text { Output } \\ & \hline \end{aligned}$		5.7	.		5.7	-		-		μW	20b
$\begin{gathered} \text { AGC Ran } \\ \text { Max. } \\ \text { to Ful } \end{gathered}$	wer Gain Cutoff1	AGC	$21 a$	$V_{C C}=+9 \mathrm{~V}$	Diff. -Ampl.		62	-	-	62	.	-	\cdots		dB	21b	
Voltage Ga!n	at	A	22 a	$\left\{\begin{array}{l} \mathrm{f}=10.7 \mathrm{MHz} \\ \mathrm{v}_{\mathrm{CC}}=+0 \mathrm{~V} \\ \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \end{array}\right.$	Cascode		40			40	-		40		dB	22b	
	$\mathrm{f}=10.7 \mathrm{MHz}$		22 c		Diff. Ampl.		30	.	.	30	-	-	30			22d	
	Differential at $\mathrm{f}=1 \mathrm{kHz}$		23	$\begin{aligned} & V_{C C}=+6 \mathrm{~V} . \\ & R_{\mathrm{L}}=2 \mathrm{k} \Omega \\ & \mathrm{~V}_{\mathrm{CC}}=+12 \mathrm{~V} . \\ & \mathrm{R}_{\mathrm{L}}=1.6 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & V_{E E}=6 \mathrm{~V} \\ & V_{E E}=-12 \mathrm{~V} \end{aligned}$.	.	35 40	38 42.5	42 45	.	\cdots		dB	-	
Max. Peak-to-Peak Output Voltage at $\mathrm{f}=1 \mathrm{kHz}$		$V_{0}(P \cdot P)$	23	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=+6 \mathrm{~V} . & \mathrm{V}_{\mathrm{EE}}=6 \mathrm{~V} \\ R_{\mathrm{L}}=2 \mathrm{k} \Omega & \\ \mathrm{~V}_{\mathrm{CC}}=+12 \mathrm{~V} . & \mathrm{V}_{\mathrm{EE}}=-12 \mathrm{~V} \\ R_{\mathrm{L}}=1.6 \mathrm{k} \Omega & \\ \hline \end{array}$			-	.	7 15	$\begin{aligned} & 11.5 \\ & 23 \end{aligned}$.	${ }^{-}$	\cdots		$V_{P \cdot P}$	-	
Bandwidth at -3 dB point		BW	23	$\begin{array}{ll} V_{C C}=6 \mathrm{~V} . & \mathrm{V}_{\mathrm{EE}}=6 \mathrm{~V} . \\ R_{L}=2 \mathrm{k} \Omega & \\ \mathrm{~V}_{\mathrm{CC}}=+12 \mathrm{~V}, & \mathrm{~V}_{\mathrm{EE}}=-12 \mathrm{~V} \\ R_{\mathrm{L}}=1.6 \mathrm{k} \Omega & \end{array}$			\cdots	.	.	7.3 8	.		.		MHz	-	
Common-Mode Input-Voltage Range		$V_{\text {CMR }}$	24	$\begin{cases}V_{C C}=+6 V, & V_{E E}=6 \mathrm{~V} \\ V_{C C}=+12 V & V_{E E}=-12 \mathrm{~V}\end{cases}$.		$\left\lvert\, \begin{aligned} & -2.5 \\ & -5 \end{aligned}\right.$	$\left\{\begin{array}{c} (-3.2-4.5) \\ (-7-9) \\ \hline \end{array}\right.$	$\begin{aligned} & 4 \\ & 7 \end{aligned}$	-	\cdots		V	-	
Common-Mode Rejection Ratio		CMR	24	$\begin{aligned} & V_{C C}=+6 \mathrm{~V} . \\ & V_{C C}=+12 \mathrm{~V} . \end{aligned}$	$\begin{aligned} & V_{E E}=6 \mathrm{~V} \\ & V_{E E}=12 \mathrm{~V} \end{aligned}$		$\stackrel{\square}{ }$.	$\begin{aligned} & 60 \\ & 60 \end{aligned}$	$\begin{aligned} & 110 \\ & 90 \end{aligned}$			\cdot		dB	.	
$\left\lvert\, \begin{gathered} \text { Input Imp } \\ \text { at } \mathrm{f}=1 \end{gathered}\right.$	$\begin{aligned} & \text { dance } \\ & \mathrm{kHz} \end{aligned}$	$\mathrm{ZIN}_{\text {IN }}$		$\left\{\begin{array}{l} \mathrm{V}_{\mathrm{CC}}=+6 \mathrm{~V} . \\ \mathrm{V}_{\mathrm{CC}}=+12 \mathrm{~V} . \end{array}\right.$	$\begin{aligned} & V_{E E}=6 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{EE}}=-12 \mathrm{~V} \end{aligned}$		-	.		$\begin{gathered} 5.5 \\ 3 \end{gathered}$.	.		$k \Omega$.	
$\left\{\begin{array}{l} \text { Peak-to-Peak } \\ \text { Output } \\ \text { Curient } \end{array}\right.$		${ }^{\text {I P P P }}$		$\left\{\begin{array}{l} V_{C C}=+9 V \\ V_{C C}=+12 V \end{array}\right.$	$\left\{\begin{array}{l} \mathrm{f}=10.7 \mathrm{MHz} \\ \mathrm{e}_{\mathrm{in}}=400 \mathrm{mV} \\ \text { Diff. } \mathrm{Ampl} . \end{array}\right.$	2 2	4 6	7 710	$\frac{2.5}{4.5}$	4 6	6	2 3.5	4 6	7 10	mA	\cdot	

[^54]
DEFINITION OF TERMS

AGC Bias Current

The current drawn by the device from the AGC-voltage source, at maximum AGC voltage.

AGC Range

The total change in voltage gain (from maximum gain to complete cutoff) which may be achieved by application of the specified range of dc voltage to the AGC input terminal of the device.

Common-Mode Rejection Ratio

The ratio of the full differential voltage gain to the commonmode voltage gain.

Device Dissipation

The total power drain of the device with no signal applied and no external load current.

Input Bias Current

The average value (one-half the sum) of the currents at the two input terminals when the quiescent operating voltages at the two output terminals are equal.

Input Offset Current

The difference in the currents at the two input terminals when the quiescent operating voltages at the two output

Fig. 2 - Input offset voltage test circuit for CA3028B.
terminals are equal.

Input Offset Voltage

The difference in the dc voltages which must be applied to the input terminals to obtain equal quiescent operating voltages (zero output offset voltage) at the output terminals.

Noise Figure

The ratio of the total noise power of the device and a resistive signal source to the noise power of the signal source alone, the signal source representing a generator of zero impedance in series with the source resistance.

Power Gain

The ratio of the signal power developed at the output of the device to the signal power applied to the input, expressed in dB.

Quiescent Operating Current

The average (dc) value of the current in either output terminal.

Voltage Gain

The ratio of the change in output voltage at either output terminal with respect to ground, to a change in input voltage at either input terminal with respect to ground, with the other input terminal at ac ground.

Fig. 3a-Input offset current, input bias current, device dissipation, and quiescent operating current test circuit for CA3028A and CA3028B.

Fig. 3b - Input bias current, device dissipation and quiescent operating current test circuit for CA3053.

TYPICAL CHARACTERISTICS

Fig. 5a - Input bias current vs. ambient temperature for CA3028A and CA3028B.

Fig. 6a-Quiescent operating current vs. ambient temperature for CA3028A and CA3028B.

Fig. 4 - Input offset voltage and input offset current for CA3028B.

Fig. 5b - Input bias current vs. ambient temperature for CA3053.

Fig. 6b-Quiescent operating current vs. ambient temperature for CA3053.

TYPICAL CHARACTERISTICS (Continued)

Fig. 7-Operating current vs. Vee voltage for CA3028A and CA3028B.

TYPICAL CHARACTERISTICS AND TEST CIRCUITS

Fig. 8b - AGC bias current vs. bias volts (terminal No. 7) for CA3028A and CA3028B.

Fig. 10a-Power gain and noise figure test circuit (cascode configuration) for CA3028A, CA3028B and CA3053*.

* 10.7 MHz Power Gain Test Only.

TYPICAL CHARACTERISTICS AND TEST CIRCUITS (Continued)

Fig 10b-Power gain vs. frequency (cascode configuration) for CA3028A and CA3028B.

Fig. $10 \mathrm{c}-100 \mathrm{MHz}$ noise figure vs. collector supply volts icascode configuration) for CA3028A and CA3028B.

TYPICAL NOISE FIGURE AND POWER GAIN TEST CIRCUITS AND CHARACTERISTICS

Fig 11a-Power gain and noise figure test circuit (differentialamplifier configuration and terminal No. 7 connected to $V_{C C}$) for CA3028A, CA3028B and CA3053*

* 10.7 MHz Power Gain Test Only.

Fig. 11c -100 MHz noise figure vs. collector supply voltage (differential-amplifier configuration) for CA3028A and CA3028B.

Fig. 11b-Power gain vs. frequency (differential-amplifier configuration) for CA3028A and CA3028B.

Fig. 11d - Power gain and noise figure test circuit (differentialamplifier configuration) for CA3028A and CA3028B.

TYPICAL NOISE FIGURE AND POWER GAIN TEST CIRCUITS AND CHARACTERISTICS (Continued)

Fig. 11e-100 MHz noise figure and power gain vs. base-toemitter bias (terminal No. 7) for CA3028A and CA3028B

TYPICAL ADMITTANCE PARAMETERS

Fig. 12-Input admittance $\left(Y_{11}\right)$ vs. frequency (cascode contiguration) for CA3028A, CA3028B and CA3053.

Fig. 14 - Reverse transadmittance $\left(Y_{12}\right)$ vs. frequency (cascode configuration) for CA3028A, CA3028B and CA3053

Fig. 13-Input admittance $\left(Y_{11}\right)$ vs. frequency (differentialamplifier configuration) for CA3028A, CA3028B and CA3053.

Fig 15-Reverse transadmittance (Y_{12}) vs. frequency (differential-amplifier configuration) for CA3028A, CA3028B and CA3053.

TYPICAL ADMITTANCE PARAMETERS (Continued)

Fig. 16 - Forward transadmittance $\left(Y_{21}\right)$ vs. frequency (cascode configuration) for CA3028A, CA3028B and CA3053.

Fig. 18-Output admittance $\left(Y_{22}\right)$ vs. frequency (cascode configuration) for CA3028A, CA3028B and CA3053.

TYPICAL TEST CIRCUITS AND CHARACTERISTICS

Fig. 20a - Output power test circuit for CA3028A and CA3028B.

Fig. 17-Forward transadmittance (Y_{21}) vs. frequency (differential-amplifier configuration) for CA3028A, CA3028B and CA3053.

Fig. 19 - Output admittance (Y_{22}) vs. frequency (differentialamplifier configuration) for CA3028A, CA3028B and CA3053.

Fig. 20b-Output power vs. frequency - 50Ω input and 50Ω output (differential-amplifier configuration) for CA3028A and CA3028B.

TYPICAL TEST CIRCUITS AND CHARACTERISTICS (Continued)

Fig. 21a - AGC range test circuit (differential amplifier) for CA3028A and CA3028B.

TEST CIRCUITS AND TYPICAL CHARACTERISTICS

Fig. 22a - Transfer characteristic (voltage gain) test circuit (10.7 MHz) cascode configuration for CA3028A, CA3028B and CA3053.

Fig. 22c - Transfer characteristic (voltage gain) test circ uit (10.7 MHz) differential-amplifier configuration for CA3028A, CA3028B and CA3053.

Fig. 21b-AGC characteristics for CA3028A and CA3028B.

Fig. 22b-Transfer characteristics (cascode configuration) for CA3028A, CA3028B and CA3053.

Fig 22d-Transfer characteristics (differential-amplifier contiguration) for CA3028A, CA3028B and CA3053.

TEST CIRCUITS AND TYPICAL CHARACTERISTICS (Continued)

$\left.\begin{array}{rl}* \text { For } R & =1.6 \mathrm{k} \Omega-\left(V_{C C}=12 \mathrm{~V}, V_{E E}\right.\end{array}=-12 \mathrm{~V}\right)$,

Fig. 23 - Differential voltage gain, maximum peak-to-peak output voltage, and bandwidth test circuit for CA3028B.

For CMR test: S_{1} to ground
For input common-mode voltage range test: ς_{1} to V_{X}
Common mode rejection ratio $=20 \log _{10} \frac{\left(A^{*}\right)(2)(0.3)}{V_{\text {DIFF }}(\text { RMS })}$

* $A=$ Single-ended voltage gain.

Fig. 24 - Common-mode rejection ratio and common-mode input-voltage range test circuit for CA3028B.

Dual High-Frequency Differential Amplifiers

For Low-Power Applications at Frequencies up to 500 MHz

Features:

■ Power Gain 23 dB (typ.) at 200 MHz

- Noise Figure 4.6 dB (typ.) at 200 MHz
- Two differential amplifiers on a common substrate
- Independently accessible inputs and outputs
- Full military-temperature-range capability- (-550C to $+125^{\circ} \mathrm{C}$) for the CA3102E and for the CA3049T

Applications:
- VHF amplifiers
- VHF mixers
- Multifunction combinations - RF/Mixer/Oscillator; Converter/IF
- IF amplifiers (differential and/or cascode)
- Product detectors
- Doubly balanced modulators and demodulators
- Balanced quadrature detectors
- Cascade limiters
- Synchronous detectors
- Balanced mixers
- Synthesizers
- Balanced (push-pull) cascode amplifiers
- Sense amplifiers

The CA3049T and CA3102E* consist of two independent differential amplifiers with associated constant-current transistors on a common monolithic substrate. The six transistors which comprise the amplifiers are general-purpose devices which exhibit low I / f noise and a value of $\mathrm{f} T$ in excess of 1 GHz . These features make the CA3049T and CA3102E useful from dc to 500 MHz . Bias and load registers have been omitted to provide maximum application flexibility.

The monolithic construction of the CA3049T and CA3102E provides close electrical and thermal matching of the amplifi-
ers. This feature makes these devices particularly useful in dual-channel applications where matched performance of the two channels is required.

The CA3102E is like the CA3049T except that it has a separate substrate connection for greater design flexibility. The CA3049T is supplied in the 12-lead TO-5 package; the CA3102E, in the 14-lead plastic dual-in-line package (E suffix) and in the 14-lead Small Outline package (M suffix).
*Formerly Developmental No. TA6228.

Schematic Diagram for CA3049T.

Schematic Diagram for CA3102E.

[^55]MAXIMUM RATINGS, ABSOLUTE-MAXIMUM VALUES, $A T T_{A}=25^{\circ} \mathrm{C}$

Power Dissipation, P:	CA3049T	CA3102E
Any one transistor	300	300 mW
Total package	600	750 mW
For $T_{A}>55^{\circ} \mathrm{C}$ Derate at:	5	$6.67 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Temperature Range:		
Operating.	-55 to +125	-55 to $+125{ }^{\circ} \mathrm{C}$
Storage	-65 to +150	-65 to $+150{ }^{\circ} \mathrm{C}$

The following ratings apply for each transistor in the devices

*The collector of each transistor of the CA3049T and CA3102E is isolated from the substrate by an integral diode. The substrate (terminal 9) must be connected to the most negative point in the external circuit to maintain isolation between transistors and to provide for normal transistor action.

ELECTRICAL CHARACTERISTICS at $\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

CHARACTERISTICS	SYMBOLS	TEST CONDITIONS		TEST CIRCUIT	CA3102E LIMITS			CA3049T LIMITS			UNITS	TYPICAL CHARACTERISTICS CURVES FIG.
				FIG.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.		
STATIC CHARACTERISTICS												
For Each Differential Amplifier												
Input Offset Voltage	V_{10}			1	\cdots	0.25	5	\cdots	0.25	\cdots	mv	-4
Input Offset Current	110	$13=19=2 \mathrm{~mA}$		1	\cdots	0.3	3	\cdots	0.3	--	$\mu \mathrm{A}$	\cdots
Input Bias Current	$1{ }^{18}$			1	---	13.5	33		13.5	33	$\mu \mathrm{A}$	5
Temperature Coefficient Magnitude of Input-Offet Voltage	$\left\|\Delta v_{10}\right\|$ ΔT			1	\cdots	1.1	1.1	--.	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	4
For Each Transistor												
DC Forward Base-to. Emitter Voltage	$V_{B E}$	$\begin{aligned} & V_{C E}=6 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA} \end{aligned}$		--	674	774	874	-..	774	-..	mV	6
Temperature Coefficient of Base-to-Emitter Voltage	$\Delta V_{B E}$ ΔT	$V_{C E}=6 \mathrm{~V},{ }^{\prime} \mathrm{C}$	1 mA	---	...	-0.9	---	...	-0.9	---	$\mathrm{mv} /{ }^{\circ} \mathrm{C}$	6
Collector-Cutoff Current	C8O	$V_{C B}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}$	$=0$...	\cdots	0.0013	100	-..	0.0013	100	n¢	7
Collector-to-Emitter Breakdown Voltage	$V_{\text {(BR)CEO }}$	$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=$		-..	15	24	\ldots	15	24	---	V	...
Collector-to-Base Breakdown Voltage	$V_{\text {(BR) }}{ }^{\text {CBO }}$	$\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{E}}=$		---	20	60	\cdots	20	60	---	V	---
Collector-to-Substrate Breakdown Voltage	$V_{\text {(BR)CIO }}$	${ }^{\prime} \mathrm{C}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=$	$0,1_{E}=0$	--.	20	60	--*	20	60	---	\checkmark	---
Emitter-to-Base Breakdown Voltage	V (BR)EBO	${ }^{t_{E}}=10 \mu \mathrm{~A},{ }^{\prime} \mathrm{C}=$		-..	5	7	\cdots	5	7	---	V	\cdots
DYNAMIC CHARACTERISTICS												
1/f Noise Figure (For Single Transistor)	NF	$\begin{aligned} & \mathrm{f}=100 \mathrm{KHz}, R_{\mathrm{S}} \\ & \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA} \end{aligned}$	$s=500 \Omega$	\cdots	---	1.5	\cdots	\cdots	1.5	\cdots	dB	12
Gain-Bandwidth Product (For Single Transistor)	${ }^{\dagger} \mathbf{T}$	$\mathrm{V}_{\text {CE }}=6 \mathrm{~V}, \mathrm{I}^{\prime} \mathrm{C}=$	$=5 \mathrm{~mA}$	$\stackrel{-}{ }$	-	1.35	...	\cdots	1.35	---	GHz_{2}	11
Collector-Base Capacitance	${ }^{\text {CBB }}$	${ }^{1} \mathrm{C}=0$	$V_{C B}=5 \mathrm{~V}$	*	\ldots	$\begin{aligned} & 0.28 \\ & 0.15 \end{aligned}$	\cdots	\cdots	$\begin{aligned} & 0.28 \\ & 0.28 \\ & \hline \end{aligned}$	\cdots	$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$	8
Collector-Substrate Capacitance	${ }^{\mathrm{C}} \mathrm{Cl}$	$\mathrm{I}_{\mathrm{C}}=0$	$V_{C l}=5 \mathrm{~V}$		\cdots	1.65	\cdots	-.-	1.65	---	PF	8
For Each Differential Amplifier												
Common-Mode Rejection Ratio	CMR	$1_{3}=19=2 \mathrm{~mA}$		---	...	100	\cdots	-..	100	---	ds	---
AGC Range, One Stage	AGC	Bias Voltage $=-6 \mathrm{~V}$		2	\cdots	75	...	---	75	..-	dB	--.
Voltage Gain, Single-Ended Output	A	$\begin{aligned} & \text { Bias Voltage }=-4.2 \mathrm{~V} \\ & f=10 \mathrm{MHz} \end{aligned}$		2	18	22	\cdots	.--	22	\cdots	dB	9, 10
Insertion Power Gain	G_{p}	$t=200 \mathrm{MHz}$	Cascode	3	...	23	...	-.-	23	---	dB	...
Noise Figurs	NF	For Cascode Configuration $1_{3}=1_{9}=2 \mathrm{~mA}$ For Diff.	Cascode	3	..-	4.6	...	-..	4.6		$d \mathrm{~B}$	\cdots
Input Admittence	Y_{11}		Cascode	...	---	$1.5+\mathrm{j} 2.45$...	---	$1.5+\mathrm{j} 2.45$	---	mmho	14, 16, 18
			Diff.Amp.	\cdots	\cdots	$0.878+j 1.3$	\cdots	--	$0.878+j 1.3$	--*		15, 17, 19
Reverse Transfer Admittance	${ }^{12}$	For Diff. Amplitier Configuration	Cascode	-..	\cdots	0-j 0.008	\cdots	.-.	0-j 0.008	\cdots	mmho	---
		$\begin{aligned} & 1_{3}=19=4 \mathrm{~mA} \\ & \text { (each } \\ & \text { collector } \\ & I_{C} \simeq 2 \mathrm{~mA} \text {) } \end{aligned}$	Diff.Amp.	--	...	0-10.013	...	\cdots	$0-10.013$...		\cdots
Forward Transfer Admittance	Y_{21}		Cascode	-.-	\cdots	17.9-j 30.7	...	---	17.9-j 30.7	...	mmio	26,28,30
			Diff. Amp.	--	...	$-10.5+\mathrm{j} 13$...	-..	$-10.5+$ j 13	...		27, 29, 31
Output Admittance	Y_{22}		Cascode	-..	---	-0.503-1 15	-0.503-i 15	---	mmho	20, 22, 24
			Diff. Amp.	--	...	$0.071+0.62$	---	---	$0.071+j 0.62$	---		21, 23, 25

- Terminals $1 \&$ 14, or $7 \& 8$. (CA3102E) $1 \& 12$ or $6 \& 7$ (CA3049T)
* Terminals $13 \& 4$, or $6 \& 11$. (CA3102E) $10 \& 11$ or 4 \& 5 (CA3049T)

Fig.1-Static characteristics test circuit for CA3102E.

Fig.2-AGC range and voltage gain test circuit for CA3102E.

$\mathrm{L}_{1}, \mathrm{~L}_{2}$ - Approx. 1/2 Turn \#18 Tinned Copper Wire, 5/8" Dia. $\mathrm{C}_{1}, \mathrm{C}_{2}-15 \mathrm{pF}$ Variable Capacitors (Hammarlund, MAC-15; or Equivalent)
All Capacitors in $\mu \mathrm{F}$ Unless Otherwise Indicated All Resistors in Ohms Unless Otherwise Indicated

Fig. 3-200 MHz cascode power gain and noise figure test circuit.

Typical Characteristics for CA3049T and CA3102E

Fig. 4-Input offset voltage vs. emitter current.

Fig. 6-Base-to-emitter voltage vs. collector current.

Fig. 5-input bias current vs. emitter current.

Fig. 7-Collector-cutoff current vs. temperature.

Typical Characteristics for CA3049T and CA3102E (cont'd)

Fig. 8-Capacitance vs. dc bias voltage.

Fig. 11-Gain-bandwidth product vs. collector current.

oc eias voltage on terminals 2 and io-v
Fig. 9-Voltage gain vs. dc bias voltage.

Fig. 12-1/f noise figure vs. collector current.

Fig. 10-Voltage gain vs. frequency.

Fig. 13-1/f noise figure vs. collector current

Typical Input Admittance Characteristics for CA3049T and CA3102

Fig. 14-Input admittance $\left(Y_{11}\right)$ vs. frequency.

Fig. 15-Input admittance $\left(Y_{11}\right)$ vs. frequency.

Fig. 16-Input admittance $\left(Y_{11}\right)$ vs. collector supply voltage.

Fig. 19-Input admittance $\left(Y_{11}\right)$ vs. emitter current.

Typical Output Admittance Characteristics for CA3049T and CA3102E

Fig. 20-Output admittance $\left(Y_{22}\right)$ vs. frequency. Fig. 21-Output admittance $\left(Y_{22}\right)$ vs. frequency.

Fig. 23-Output admittance $\left(Y_{22}\right)$ vs. collector supply voltage.

Fig. 24-Output admittance $\left(Y_{22}\right)$ vs. emitter current.

Fig. 22-Output admittance $\left(Y_{22}\right)$ vs. collector supply voltage.

Fig. 25-Output admittance $\left(Y_{22}\right)$ vs. emitter current.

Typical Forward Transfer Characteristics for CA3049T and CA3102E

Fig. 26-Forward transfer admittance $\left(Y_{21}\right)$ vs. frequency.

Fig. 29-Forward transfer admittance $\left(Y_{21}\right)$ vs. collector supply voltage.

Fig. 27-Forward transfer admittance $\left(Y_{21}\right)$ vs. frequency.

Fig. 30-Forward transfer admittance $\left(Y_{21}\right)$ vs. emitter current.

Fig. 28-Forward transfer admittance $\left(Y_{21}\right)$ vs. collector supply voltage.

Fig. 31-Forward transfer admittance $\left(Y_{21}\right)$ vs. emitter current.

Transistor Array - Dual Independent Differential Amplifiers

For Low Power Applications at Frequencies from DC to 120 MHz

Features:

n Two differential amplifiers on a common substrate

- Independently accessible inputs and outputs
- Maximum input offset voltage: $\pm 5 \mathrm{mV}$
- Temperature range: $0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Applications:

- Dual sense amplifiers
- Dual Schmitt triggers
- Multifunction combinations - RF/Mixer/Oscillator; Converter/IF
- IF amplifiers (differential and/or cascode)
- Product detectors
- Doubly balanced modulators and demodulators
- Balanced quadrature detectors
- Cascade limiters
- Synchronous detectors
- Pairs of balanced mixers
- Synthesizer mixers
- Balanced (push-pull) cascode amplifiers

The CA3054 consists of two independent differential amplifiers with associated constant-current transistors on a common monolithic substrate. The six n-p-n transistors which comprise the amplifiers are general-purpose devices which exhibit low $1 / \mathrm{f}$ noise and a value of f T in excess of 300 MHz . These features make the CA3054 useful from dc to 120 MHz . Bias and load resistors have been omitted to provide maximum application flexibility.

The monolithic construction of the CA3054 provides close electrical and thermal matching of the amplifiers. This feature makes these devices particularly useful in dual-channel applications where matched performance of the two channels is required.
The CA3054 is supplied in a 14 -lead plastic dual-in-line package with a limited temperature range. The availability of extra terminals allows the introduction of an independent substrate connection for maximum flexibility.

Figure 1 - Schematic Diagram for CA3054.

CAUTION: Substrate MUST be maintained negative with respect to all coliector terminals of this device. See Maximum Voltage Ratings chart.

POWER DISSIPATION, P:	CA3054		The following ratings apply for each transistor in the device:		
Any one transistor.	300	mW	COLLECTOR-TO-EMITTER VOLTAGE, V $\mathrm{V}_{\text {CEO }}$		V
Total package .	750	mW	COLLECTOR-TO-BASE VOLTAGE, $\mathrm{V}_{\text {CBO }}$	20	V
For $\mathrm{T}_{\mathrm{A}}>{ }^{5} 5^{\circ} \mathrm{C}$. TEMPERATURE RANGE:	6.67	$\mathrm{mW} /{ }^{\circ} \mathrm{C}$	COLLECTOR-TO-SUBSTRATE VOLTAGE, $\mathrm{V}_{\mathrm{ClO}^{*}}$	20	V
Operating	-40 to +85	${ }^{\circ} \mathrm{C}$	EMITTER-TO-BASE VOLTAGE, VEBO	5	V
Storage.	-65 to +150	${ }^{\circ} \mathrm{C}$	COLLECTOR CURRENT, IC .	50	mA

LEAD TEMPERATURE (During Soldering)

At distance $1 / 16 \pm 1 / 32$ inch ($1.59 \pm 0.79 \mathrm{~mm}$) from case for 10 seconds max
$+265^{\circ} \mathrm{C}$
*The collector of each transistor of the CA3054 is isolated from the substrate by an
integral diode. The substrate must be connected to a voltage which is more negative than any collector voltage in order to maintain isolation between
ransistors and provide for normal transistor action. The substrate should be maintained at signal (AC) ground by means of a suitable grounding capacitor, to avoid undesired coupling between transistors.

Maximum Voltage Ratings

The following chart gives the range of voltages which can be applied to the terminals listed vertically with respect to the terminals listed horizontally. For example, the voltage range between vertical terminal 2 and horizontal terminal 4 is +15 to -5 volts.

$\text { CA3054 } \rightarrow$ Terminal No. \downarrow	13	14	1	2	3	4	6	7	8	9	11	12	5
13		$\begin{gathered} 0 \\ -20 \end{gathered}$	*	+5 -5	*	$\begin{gathered} +15 \\ -5 \end{gathered}$	*	*	*	*	*	*	*
14			*	*	*	$\begin{gathered} +20 \\ 0 \end{gathered}$	*	*	*	*	*	*	$\begin{gathered} +20 \\ 0 \end{gathered}$
1				$\begin{gathered} +20 \\ 0 \end{gathered}$	*	$\begin{gathered} +20 \\ 0 \end{gathered}$	*	*	*	*	*	*	$\begin{gathered} +20 \\ 0 \end{gathered}$
2					*	$\begin{gathered} +15 \\ -5 \end{gathered}$	*	*	*	*	*	*	*
3						$\begin{aligned} & +1 \\ & -5 \end{aligned}$	*	*	*	*	*	*	*
4							*	*	*	*	*	*	*
6								$\begin{gathered} 0 \\ -20 \end{gathered}$	*	$\begin{aligned} & +5 \\ & -5 \end{aligned}$	*	$\begin{gathered} +15 \\ -5 \end{gathered}$	*
7									*	*	*	*	$\begin{gathered} +20 \\ 0 \end{gathered}$
8										$\begin{gathered} +20 \\ 0 \end{gathered}$	*	*	$\begin{gathered} +20 \\ 0 \end{gathered}$
9											*	$\begin{gathered} +15 \\ -5 \end{gathered}$	*
11												$\begin{aligned} & -1 \\ & -5 \end{aligned}$	*
12													*
5													Ref Substrate

Maximum Current Ratings

CA3054 Terminal No.	IIN mA	IOUT mA
13	5	0.1
14	50	0.1
1	50	0.1
2	5	0.1
3	5	0.1
4	0.1	-50
6	5	0.1
7	50	0.1
8	50	0.1
9	5	0.1
11	5	0.1
12	0.1	50

- Termina No. 10 of CA3054 is no used.
*Voltages are not normally applied between these terminals. Voltages appearing between these terminals will be safe if the specified limits between all other terminals are not exceeded.

ELECTRICAL CHARACTERISTICS at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

CHARACTERISTICS	SYMBOLS	TEST CONDITIONS	$\begin{aligned} & \text { TEST } \\ & \text { CIR- } \\ & \text { CUIT } \end{aligned}$	CA3054 LIMITS			UNITS	TYPICAL CHARACTERISTICS CURVES FIG.
			FIG.	MIN.	TYP.	MAX.		
STATIC CHARACTERISTICS								
For Each Differential Amplifier								
Input Offset Voltage	V_{10}		-	.	0.45	5	mV	6
Input Offset Current	I_{10}		-	-	0.3	2	$\mu \mathrm{A}$	7
Input Bias Current	I_{1}	$V_{C B}=3 \mathrm{~V}$	-	-	10	24	$\mu \mathrm{A}$	3
Quiescent Operating Current Ratio		$\mathrm{I}_{\mathrm{E}(\mathrm{Q} 3)}=\mathrm{I}_{\mathrm{E}(\mathrm{Q4})}=2 \mathrm{~mA}$	-	-	$\begin{gathered} 0.98 \text { to } \\ 1.02 \end{gathered}$.	3
Temperature Coefficient Magnitude of Input-Offset Voltage	$\frac{\left\|\Delta V_{\text {IO }}\right\|}{\Delta T}$		-		1.1		$\mu V /{ }^{0} \mathrm{C}$	5
For Each Transistor								
DC Forward Base-toEmitter Voltage	$V_{B E}$	$V_{C B}=3 V V^{\prime}\left\|\begin{array}{c}\text { I }=50 \ldots \mathrm{~A} \\ 1 \mathrm{~mA} \\ 3 \mathrm{~mA} \\ 10 \mathrm{~mA}\end{array}\right\|$	-	\cdots	$\begin{aligned} & 0.630 \\ & 0.715 \\ & 0.750 \\ & 0.800 \end{aligned}$	$\begin{aligned} & 0.700 \\ & 0.800 \\ & 0.850 \\ & 0.900 \end{aligned}$	V	6
Temperature Coefficient of Base-to-Emitter Voltage	$\frac{\Delta V_{B E}}{\Delta T}$	$V_{C B}=3 \mathrm{~V} \cdot \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$.	-	-1.9	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	4
Collector-Cutoff Current	$\mathrm{I}_{\mathrm{CBO}}$	$V_{C B}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$	-	-	0.002	100	nA	2
Collector-to-Emitter Breakdown Voltage	$V_{\text {(BR)CEO }}$	$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA} \cdot \mathrm{I}_{\mathrm{B}}=0$	-	15	24	-	V	-
Collector-to-Base Breakdown Voltage	$V_{\text {(BR)CBO }}$	$\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{E}}=0$	-	20	60	-	V	-
Collector-to-Substrate Breakdown Voltage	$V_{\text {(BR CIO }}$	$\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{I}^{\text {CI }}=0$	-	20	60	-	V	-
Emitter-to-Base Breakdown Voltage	$V_{(B R) E B 0}$	${ }^{\prime} E=10 \mu \mathrm{~A}, \mathrm{I}^{\prime}=0$	-	5	7	-	V	-
DYNAMIC CHARACTERISTICS								
Common-Mode Rejection Ratio For Each Amplifier	CMR	$\begin{aligned} & V_{C C}=12 \mathrm{~V} \\ & V_{E E}=-6 \mathrm{~V} \\ & V_{x}=-3.3 \mathrm{~V} \\ & \mathrm{f}=1 \mathrm{kHz} \end{aligned}$	8 a	-	100	-	dB	8 b
AGC Range, One Stage	AGC		9 a	-	75	-	dB	9 b
Voltage Gain, Single Stage Double-Ended Output	A		9 a	-	32	-	dB	9 b
AGC Range, Two Stage	AGC		10a	-	105	-	dB	10b
Voltage Gain, Two Stage Double-Ended Output	A		10a	-	60	-	dB	10b
Low-Frequency, Small-Signal Equivalent-Circuit Characteristics: (For Single Transistor)								
Forward Current-Transfer Ratio	$h_{\text {fe }}$	$\begin{aligned} & f=1 \mathrm{kHz} \cdot V_{C E}=3 \mathrm{~V} . \\ & \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA} \end{aligned}$	-	-	110	-	-	11
Short-Circuit Input Impedance	$\mathrm{h}_{\text {de }}$		-	-	3.5	\cdot	$k \Omega$	11
Open-Circuit Output Impedance	h_{0}		-	.	15.6	\cdot	$\mu \mathrm{mho}$	11
Open-Circuit Reverse VoltageTransfer Ratio	h_{re}		-	-	1.8×10^{-4}		.	11

DYNAMIC CHARACTERISTICS CONT'D.

1/f Noise Figure (For Single Transistor)	NF	$f=1 \mathrm{kHz}, \mathrm{V}_{\text {CE }}=3 \mathrm{~V}$	-	-	3.25	-	dB	-
Gain-Bandwidth Product (For Single Transistor)	${ }^{\mathrm{f}}$ T	$V_{C E}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=3 \mathrm{~mA}$	-	-	550		MHz	12
Admittance Characteristics; Differential Circuit Configuration: (For Each Amplifier)								
Forward Transfer Admittance	y_{21}	$V_{C B}=3 \mathrm{~V}$ Each Collector $\begin{aligned} & I_{C} \approx 1.25 \mathrm{~mA} \\ & f=1 \mathrm{MHz} \end{aligned}$	-	-	$-20+\mathrm{j} 0$		mmho	13a
Input Admittance	y_{11}		-	-	$0.22+j 0.1$		mmho	13b
Output Admittance	y_{22}		-	-	$0.01+\mathrm{j} 0$		mmho	13c
Reverse Transfer Admittance	y_{12}		-	-	$-0.003+j 0$		mmho	13d
Admittance Characteristics; Cascode Circuit Configuration: (For Each Amplifier)								
Forward Transfer Admittance	y_{21}	$V_{C B}=3 \mathrm{~V}$	-	-	68-j0	-	mmho	14 a
Input Admittance	y_{11}	Total Stage	-	-	$0.55+$ j0	-	mmho	14 b
Output Admittance	y_{22}	$\begin{aligned} & C \approx 2.5 \mathrm{~mA} \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$	-	-	0+j0.02	\cdot	mmho	14 c
Reverse Transfer Admittance	y_{12}		-	-	0.004-j0.005	-	$\mu \mathrm{mho}$	14d
Noise Figure	NF	$\mathrm{f}=100 \mathrm{MHz}$	-	-	8	-	dB	\bullet

TYPICAL STATIC CHARACTERISTICS

* For CA3054: use data from $0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ only

Fig. 2 - Collector-to-base cutoff current vs ambient temperature for each transistor.

Fig. 3 - Input bias current characteristic vs collector current for each transistor.

TYPICAL STATIC CHARACTERISTICS

Fig. 4 -Base-to-emitter voltage characteristic for each transistor vs ambient temperature.

Fig. 5 - Offset voltage characteristic vs ambient temperature for differential pairs.

* For CA3054: use data from $0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ only

Fig. 6 - Static base-to-emitter voltage characteristic and input offset voltage for differential pairs vs emitter

Fig. 7 - Input offset current for matched differential pairs vs collector current.
current.

TYPICAL DYNAMIC CHARACTERISTICS

COMMON MODE REJECTION RATIO

Terminal Numbers in Circles are for CA3026
Terminal Numbers in Square Boxes are for CA3054

DC BIAS VOLTS ON TERMINAL (B) $\because(v x)$
(b) Characteristic

TYPICAL DYNAMIC CHARACTERISTICS (cont'd)

SINGLE-STAGE VOLTAGE GAIN

Terminal Numbers in Circles are for CA3026
Terminal Numbers in Square Boxes are for CA3054

Fig. 9
(b) Characteristic
(a) Test setup

TWO-STAGE VOLTAGE GAIN

Terminal Numbers in Circles are for CA3026
Terminal Numbers in Square Boxes

(a) Test setup

(b) Characteristic

TYPICAL DYNAMIC CHARACTERISTICS FOR EACH TRANSISTOR

Fig. 11 - Forward current-transfer ratio (hfe), short-circuit input impedance ($h_{i e}$), open-circuit output impedance ($h_{\text {oe }}$), and open-circuit reverse voltage-transfer ratio ($h_{r e}$) vs collector current for each transistor.

Fig.12-Gain-bandwidth product (f T) vs collector current.

TYPICAL DYNAMIC CHARACTERISTICS FOR EACH DIFFERENTIAL AMPLIFIER

Fig.13(a) - Forward transfer admiffance $\left(Y_{21}\right)$ vs frequency.

Fig. J3(b) - Input admittance $\left(\mathrm{Y}_{11}\right)$.

Fig.13(c) - Output admittance $\left(\mathrm{Y}_{22}\right)$ vs frequency.

Fig.13(d) - Reverse transfer admittance (Y_{12}) vs frequency.

TYPICAL DYNAMIC CHARACTERISTICS FOR EACH CASCODE AMPLIFIER

Fig.14(a) - Forward transfer admittance $\left(\mathrm{Y}_{21}\right)$ vs frequency.

Fig.14(b) - Input admittance $\left(Y_{11}\right)$ vs frequency.

TYPICAL CHARACTERISTICS FOR EACH CASCODE AMPLIFIER (cont'd)

Fig.14(c)-Outputadmittance $\left(Y_{22}\right)$ vs frequency.

Fig.14(d) - Reverse fransfer admittance $\left(Y_{12}\right)$ vs frequency.

ARRAYS

PAGE

SELECTION GUIDE

7-2
ARRAY DATA SHEETS

CA 3018, A General-Purpose Transistor Array 7-5
CA 3039 Diode Array ... 7-11
CA 3045 General-Purpose N-P-N Transistor Array 15
CA 3046 General-Purpose N-P-N Transistor Array . 7-15
CA 3081 General-Purpose High-Current N-P-N Array ... 7-21
CA 3082 General-Purpose High-Current N-P-N Array . 7-24
CA 3083 General-Purpose High-Current N-P-N Array .. 7-28

CA 3096, A, C N-P-N/P-N-P Transistor Array.. 7-33
CA 3097 Thyristor/Transistor Array... 7-43
CA 3127 High-Frequency N-P-N Transistor Array ... 7-54
CA 3141 High-Voltage Diode Array .. 7-59
CA 3146, A High-Voltage Transistor Array.. 7 -62
CA 3183, A HIgh-voltage Transistor Array . 7-62
CA 3227 High-Frequency N-P-N Transistor Array ... 7-69
CA 3246 High-Frequency N-P-N Transistor Array ... 7-69

Selection Guide

TRANSISTOR ARRAYS

Electrical Characteristics at $\mathrm{T}_{\mathrm{A}}=2 \mathbf{2 5}^{\circ} \mathrm{C}$

Type	Description.	$\begin{aligned} & \mathbf{V}_{(\text {BR) }} \\ & \text { CEO } \\ & \text { (Min.) } \end{aligned}$	$\begin{gathered} \mathbf{V}_{(\mathrm{BR})} \\ \text { CBO } \\ \text { (Min.) } \end{gathered}$	hFE (Min.)	$\underset{\text { (Max.) }}{\mathrm{I}_{\mathrm{CA}}}$	Package Number of Pins
CA3018	Two Isolated Transistors plus a Darlington Pair	15	20	30	50	12 T
CA3018A		15	30	60	50	
		hFE matched $\pm 10 \%$. VBE matched $\pm 2 \mathrm{mV}$ and $\pm 5 \mathrm{mV}$ max. Operation from DC to 120 MHz .				
CA3045	Three Transistors plus a Differential Pair	15	20	40	50	14D, 14F
CA3046		15	20	40	50	14E
		$\mathrm{f}_{\mathrm{t}}>300 \mathrm{MHz} 2$ matched pairs $\pm 5 \mathrm{mV}$				
CA3081	General-Purpose n-p-n High-Current Transistors	16	20	40	100	16E, 16F
		Seven Common-Emitter				
CA3082		16	20	40	100	16E, 16F
		Seven Common-Collector				
CA3083		15	20	40	100	16E, 16F
		Five independent transistors Q_{1} and Q_{2} matched: (1 O at 1 mA .) $2.5 \mu \mathrm{~A}$ maximum.				
CA3086	Three Isolated Transistors plus a Differential Pair	15	20	40	50	14E, 14F
		$\dagger_{T}>550 \mathrm{MHz}$ typ. Operation from DC to 120 MHz				
CA3127	Five Independent Transistors	15	20	40	20/trans.	16E, 16F
		$\mathrm{f}_{\mathrm{T}}>1 \mathrm{GHz}$. Operation from DC to 500 MHz .				
CA3146	Three Transistors plus a Differential Pair	30	40	30	50	16E
CA3146A		40	50	30	50	
		$\mathrm{T}_{\mathrm{T}}>500 \mathrm{MHz}$ typ. Operation from DC to 120 MHz .				
CA3183	Five High-Current Transistors	30	40	40	75	16 E
CA3183A		40	50	40	75	
		High-voltage versions of CA3083 Transistors Q_{1} and Q_{2} matched at 1 mA .				
CA3227	Five Independent Transistors	8	12	40	20/trans.	16E
		$\mathrm{ft}=3 \mathrm{GHz}$ typ. Operation from DC to 1.5 GHz .				
CA3246	Three Independent Transistors plus a Differential Pair	8	12	40	20	14E
		$\mathrm{f}_{\mathrm{t}}=3 \mathrm{GHz}$ typ. Operation from DC to 1.5GHZ.				

Selection Guide

TRANSISTOR ARRAYS (Continued)
Electrical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Type	Description	$\begin{gathered} V_{(B R)} \\ \text { CEO } \\ \text { (Min.)V } \\ n-p-n / p-n-p \end{gathered}$	$\begin{gathered} V_{(B R)} \\ C B O \\ (M i n .) V \\ n-p-n / p-n-p \end{gathered}$	$\begin{gathered} h_{\text {FE }} \\ (\operatorname{Min} . .) \\ n-p-n / p-n-p \end{gathered}$	$\begin{gathered} I_{C} \\ \text { (Max.) } \\ n-p-n / p-n-p \end{gathered}$	Package Number of Pins*
CA3096	Five Independent Transistors, $3 \mathrm{n}-\mathrm{p}-\mathrm{n}, 2 \mathrm{p}-\mathrm{n}-\mathrm{p}$	35/-40	45/-40	150/20	50/-10	16E
CA3096A		35/-40	45/-40	150/20	50/-40	
CA3096C		24/-24	30/-24	100/15	50/-10	
		$n-p-n$		p-n-p		
		$\left\|v_{10}\right\|=5 \mathrm{mV}$ max.		5 mV max.		
				$0.25 \mu \mathrm{~A}$ max.		
CA3097	Thyristor/Transistor Array $1 n-p-n, 1 n-p-n / p-n-p$ transistor pair, 1 zener, 1 PUT, 1 SCR	30/-40	50/-50	$\begin{aligned} & \text { n-p-n/p-n-p } \\ & \text { pr. } 8000 \text { typ. } \end{aligned}$	100/-10	16E
		PUT: $I_{P}=15 n A, V_{A K}= \pm 30 \mathrm{~V}$ Zener $V_{Z}=8 \mathrm{~V} \pm 10 \%$ $Z_{Z}=15 \Omega$ typ. at 10 mA				

DIODE ARRAYS

Electrical Characteristics at $\mathbf{T}_{A}=\mathbf{2 5}{ }^{\circ}$ C. Apply for each Diode

Type	Description	$\begin{aligned} & \mathbf{V}_{(\mathrm{BR})} \mathrm{R} \\ & \text { (Min.) } \mathrm{V} \end{aligned}$	$\stackrel{l_{\mathbf{R}}}{(\text { Max. }) ~} \mu \mathbf{A}$	$\stackrel{C_{D}}{\text { (Typ.) } \mathrm{pF}}$	$\begin{aligned} & V_{F 1}-V_{F 2} \\ & \text { (Max.) } m V \end{aligned}$	Package Number of Pins*
CA3039	6 Individual	5	0.1	0.65	$5\left(\mathrm{I}_{\mathrm{F}}=1 \mathrm{~mA}\right)$	12 T
		- Ultra-fast low-capacitance matched diodes				
CA3141	10 High Reverse Breakdown Voltage Diodes ${ }^{\square 0}$	30	0.1	0.3	$\begin{aligned} & 0.55 \text { (typ. } \\ & \text { ea. diode pr.) } \end{aligned}$	16E
		- Low-noise performance - Low-leakage current				

므 Six connected to form 3 common-cathode diode pairs.
Four connected to form 2 common-anode diode pairs.

* See Packaging Section.

General-Purpose Transistor Arrays

Two Isolated Transistors and a Darlington-Connected Transistor Pair
For Low-Power Applications at Frequencies from DC Through the VHF Range

Features:

- Matched monolithic general purpose transistors
- HFE matched $\pm 10 \%$
- VBE matched $\pm 2 \mathrm{mV}$ CA3018A ($\pm 5 \mathrm{~m} V \mathrm{CA3018)}$
- Operation from DC to 120 MHz
- Wide operating current range
- CA3018A performance characteristics controlled from $10 \mu \mathrm{~A}$ to 10 mA
- Low noise figure - 3.2 dB typical at 1 KHz
- Full military temperature range capability $\left(-55^{\circ} \mathrm{C}\right.$ to $+125^{\circ} \mathrm{C}$)

Applications:

- General use in signal processing systems in DC through VHF range
- Custom designed differential amplifiers
- Temperature compensated amplifiers
- See Application Note, ICAN-5296 "Application of the CA3018 Integrated-Circuit Transistor Array" for suggested applications.

The CA3018 and CA3018A consist of four general purpose silicon n-p-n transistors on a common monolithic substrate.
Two of the four transistors are connected in the Darlington configuration. The substrate is connected to a separate terminal for maximum flexibility.

The transistors of the CA3018 and the CA3018A are well suited to a wide variety of applications in low-power systems in the DC through VHF range. They may be used as discrete transistors in conventional circuits but in addition they provide the advantages of close electrical and thermal matching inherent in integrated circuit construction.

The CA3018A is similar to the CA3018 but features tighter control of current gain, leakage, and offset parameters making it suitable for more critical applications requiring premium performance.
Both devices are supplied in a 12-lead TO-5 style can package (T suffix).

LEAD TEMPERATURE (During Soldering)
At distance $1 / 16 \pm 1 / 32$ inch $(1.59 \pm 0.79 \mathrm{~mm})$
from case for 10 seconds max.
$+265^{\circ} \mathrm{C}$
Characteristics apply for each transistor in the CA3018 and CA3018A as specified.

ELECTRICAL CHARACTERISTICS at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	SYMBOLS	SPECIAL TEST CONDITIONS	CA3018 LIMITS			CA3018A LIMITS			Units	CHARAC TERISTICS CURVES Fig.
			Min.	Typ.	Max.	Min.	Typ.	Max:		
STATIC CHARACTERISTICS										
Collector-Cutoff Current	${ }^{\text {CBBO}}$	$\mathrm{V}_{\mathrm{CB}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$	-	0.002	100	..	0.002	40	nA	2
Collector-Cutoff Current	${ }^{\text {C CEO }}$	$\mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0$	-	See Curve	5	-	See Curve	0.5	$\mu \mathrm{A}$	3
Coliector-Cutoff Current Darlington Pair	ICEOD	$V_{C E}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0$	-	-	-	-	-	5	$\mu \mathrm{A}$	-
Collector-to-Emitter Breakdown Voltage	$V_{\text {(BR)CEO }}$	${ }^{\prime} \mathrm{C}=1 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0$	15	24	-	15	24	-	V	-
Collector-to-Base Breakdown Voltage	$V_{\text {(BR)CBO }}$	${ }^{1} \mathrm{C}=10 \mu \mathrm{~A}, I^{\prime}=0$	20	60	-	30	60	-	V	-
Emitter-to-Base Breakdown Voltage	$V_{\text {(BR)EBO }}$	${ }^{1} \mathrm{E}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=0$	5	7	-	5	7	-	V	-
Collector-to-Substrate Breakdown Voltage	$V_{\text {(BR)CIO }}$	$\mathrm{I}_{\mathrm{C}}=10_{\mu} \mathrm{A}, \mathrm{I}_{\mathrm{Cl}}=0$	20	60	$-$	40	60	-	V	-
Collector-to-Emitter Saturation Voltage	$V_{\text {CES }}$	${ }^{\prime}{ }_{B}=1 \mathrm{~mA}, 1 \mathrm{C}=10 \mathrm{~mA}$	-	0.23	-	-	0.23	0.5	V	-
Static Forward Current Transfer Ratio	${ }^{\text {h FE }}$	$V_{C E}=3 \mathrm{~V},\left\{\begin{array}{l}\text { C } \\ \mathrm{C}=10 \mathrm{~mA} \\ \mathrm{C}=1 \mathrm{~mA} \\ \mathrm{C}^{\text {c }}=10 \mathrm{AA}\end{array}\right.$	-	$\begin{array}{r} 100 \\ 100 \\ 54 \end{array}$	-	$\begin{aligned} & 50 \\ & 60 \\ & 30 \end{aligned}$	$\begin{array}{r} 100 \\ 100 \\ 54 \end{array}$	200	-	- 4
Magnitude of Static-Beta Ratio (Isolated Transistos Q_{1} and Q_{2})		$\mathrm{V}_{\mathrm{CE}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{Cl}}=\mathrm{l}_{\mathrm{C2}}=1 \mathrm{~mA}$	0.9	0.97	-	0.9	0.97	-	-	4
Static Forward Current Transfer Ratio Darlington Pair $\left(Q_{3} \& Q_{4}\right)$	${ }^{\text {h }}$ FED	$V_{C E}=3 \mathrm{~V},\left\{\begin{array}{l}1 \\ \mathrm{C}^{=}=1 \mathrm{~mA} \\ \mathrm{C}^{=}=100 \mu \mathrm{~A}\end{array}\right.$	$\begin{gathered} 1500 \\ - \end{gathered}$	5400 -	-	$\begin{aligned} & 2000 \\ & 1000 \end{aligned}$	$\begin{aligned} & 5400 \\ & 2800 \end{aligned}$	-		5
Base-to-Emitter Voltage	$V_{B E}$	$V_{C E}=3 \mathrm{~V} \quad \begin{aligned} & \mathrm{E}=1 \mathrm{~mA} \\ & I_{E}=10 \mathrm{~mA}\end{aligned}$		$\begin{aligned} & 0.715 \\ & 0.800 \end{aligned}$	-	0.600	$\begin{aligned} & 0.715 \\ & 0.800 \end{aligned}$	$\begin{aligned} & 0.800 \\ & 0.900 \end{aligned}$	V	6
Input Offset Voltage	$\left\|\begin{array}{l}V_{B E} \\ -V_{B E} \\ \hline\end{array}\right\|$	$V_{C E}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=1 \mathrm{~mA}$	-	0.48	5	-	0.48	2	mV	6,8
Temperature Coefficient: Base-to-Emitter Voltage $\mathrm{Q}_{1}, \mathrm{Q}_{2}$	$\frac{\left\|\Delta V_{B E}\right\|}{\Delta T}$	$V_{C E}=3 \mathrm{~V}_{1} \mathrm{E}=\mathrm{ImA}$	-	1.9	-	-	-1.9	-	$\mathrm{mV}^{\circ} \mathrm{C}$	7
Base $\left(\mathrm{Q}_{3}\right)$-to-Emitter $\left(\mathrm{Q}_{4}\right)$ Voltage-Darlington Pair	$\begin{aligned} & V_{B E D} \\ & \left(V_{g-1}\right) \end{aligned}$	$V_{C E}=3 V \quad \begin{aligned} & I_{E}=10 \mathrm{~mA} \\ & l_{E}=1 \mathrm{~mA}\end{aligned}$		$\begin{aligned} & 1.46 \\ & 1.32 \end{aligned}$		1.10	$\begin{aligned} & 1.46 \\ & 1.32 \end{aligned}$	$\begin{aligned} & 1.60 \\ & 1.50 \end{aligned}$	V	9
Temperature Coefficient: Base-to-Emitter Voltage Darlington Pair- $\mathrm{Q}_{3}, \mathrm{Q}_{4}$	$\left\lvert\, \frac{\left\|\Delta V_{B E D}\right\|}{\Delta T}\right.$	$V_{C E}=3 V_{1} I_{E}=1 \mathrm{~mA}$	-	4.4	-	-	4.4	-	${ }^{\mathrm{mV}} /{ }^{\circ} \mathrm{C}$	10
Temperature Coefficient: Magnitude of Input-Offset Voltage	$\left\|\frac{V_{B E_{1}} \cdot V_{B E_{2}}}{\Delta T}\right\|$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}, \mathrm{~V}_{E E}=6 \mathrm{~V} \\ & \mathrm{C}_{1}=1 \mathrm{C}_{2}=1 \mathrm{~mA} \end{aligned}$	-	10	-	-	10	-	${ }^{\mu} V^{\prime} \mathrm{C}$	-

ELECTRICAL CHARACTERISTICS, (CONT'D)

DYNAMIC CHARACTERISTICS										
Low Frequency Noise Figure	NF	$\begin{aligned} & f=1 \mathrm{KHz}, V_{C E}=3 \mathrm{~V}, \mathrm{I}=100 \mu \mathrm{~A} \\ & \text { Source resistance }=1 \mathrm{~K} \Omega \end{aligned}$	-	3.25	-	-	3.25	-	dB	11(b)
Low-Fiequency,Small-Signal Equivalent-Circuit Characteristics: Forward Current-Transfer Ratio										
	$h_{f e}$	$\mathrm{f}=1 \mathrm{kHz}, \mathrm{V}_{\text {CE }}=3 \mathrm{~V}, \mathrm{I} \mathrm{C}=1 \mathrm{~mA}$	-	110	-	-	110	-	-	12
Short-Circuit Input Impedance	$\mathrm{h}_{\text {ie }}$		-	3.5	-	-	3.5	-	$\mathrm{K} \Omega$	12
Open-Circuit Output Impedance	h_{00}		-	15.6	-	-	15.6	-	$\mu \mathrm{mho}$	12
Open-Circuit Reverse Voltage-Transfer Ratio	${ }^{\text {re }}$		-	1.8×10^{-4}	-	-	1.8×10^{-4}	-	-	12
Admittance Characteristics: Forward Tiansfer Admittance										
	$Y_{\text {fe }}$	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{~V}_{\mathrm{CE}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$	-	$31 \cdot 11.5$	-	-	$31-j 1.5$	-	mmho	13
Input Admittance	$Y_{i e}$		-	0.3+j0.04	-	-	$0.3+j 0.04$	-	mmho	14
Output Admittance	$Y_{\text {Oe }}$		-	0.001+j0.03	-	-	0.001+j0.03	-	mmho	15
Reverse Transfer Admittance	$Y_{\text {re }}$		See Curve			See Curve			mmho	16
Gain-Bandwidth Product	${ }_{\text {f }}$ T	$V_{C E}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=3 \mathrm{~mA}$	300	500	-	300	500	-	MHz	17
Emitter-to-Base Capacitance	$\mathrm{C}_{\text {EB }}$	$V_{E B}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$	-	0.6	-	-	0.6	-	pF	-
Collector-to-Base Capacitance	${ }^{C_{C B}}$	$V_{C B}=3 V_{1} I_{C}=0$	-	0.58	-	-	0.58	-	pF	-
Collector-to-Substrate Capacitance	${ }^{\text {C }}$ CI	$\mathrm{V}_{\mathrm{Cl}}{ }^{-3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}}=0$	-	2.8	-	-	2.8	-	pF	-

STATIC CHARACTERISTICS

Fig.2 Typical Collector-To-Base Cutoff Current vs Ambient Temperature for Each Transistor.

Fig. 3 - Typical Collector-To-Emmiter Cutoff Current vs Ambient Temperature for Each Transistor.

Fig.4-Typical Static Forward Current-Transfer Ratio and Beta Ratio for Transistors Q, and Q_{2} vs Emitter Current.

Fig.6-Typical Static Base-fo-Emitter Voltage Characteristic and Input Offset Voltage for Q_{1} and Q_{2} vs Emitter Current.

Fig. 8 - Typical Offset Voltage Characteristic vs Ambient Temperature

Fig. 5 - Typical Static Forward Current - Pransfer Ratio for Darlington-connected Transisters \mathbf{Q}_{3} and Q_{4} vs Emitter Current.

Fig. 7 - Typical Base-To-Emitter Voltage Characteristic for Each Transistor vs Ambient Temperature

Fig. 9 - Typical Static Input Voltage Characteristic for Darlington Pair $\left(Q_{3}\right.$ and $\left.Q_{4}\right)$ vs

Emitter Current

Fig.10- Typical Static Input Voltage Characteristic for Darlington Pair $\left(Q_{3}\right.$ and $\left.Q_{4}\right)$ vs Ambient Temperature.

TYPICAL DYNAMIC CHARACTERISTICS FOR EACH TRANSISTOR

Fig.11(a) - Noise Figure vs Collector Current, $R_{S}=500 \Omega$.

Fig.Il(c) - Noise Figure vs Collector Current, $R_{S}=10 \mathrm{~K} \Omega$.

Fig.11(b) - Noise Figure vs Collector Current, $R_{S}=1 K \Omega$.

Fig. 12 - Forward Current-Transfer Ratio ($h_{f e}$), ShortCircuit Input Impedance ($h_{i \mathrm{e}}$), Open-Circuit Output Impedance ($h_{\text {oe }}$), and Open-Circuit Reverse Voltage-Transfer Ratio ($h_{r e}$) vs Collector Current

Fig. 13 - Forward Transfer Admitfance (Y_{fe})

Fig. 15 - Output Admittance ($Y_{\text {oe }}$)

Fig. 14 - Input Admittance ($Y_{i e}$)

Fig. 16 - Reverse Transfer Admittance (Y_{re})

Fig. 17 - Typical Gain-Bandwidth Product (f_{T}) vs Collector Current

Arrays
CA3039

May 1990

Diode Array

Six Matched Diodes on a Common Substrate
Ultra-Fast Low-Capacitance Matched Diodes
For Applications in Communications and Switching Systems

Features:

- Excellent reverse recovery time - 1 ns typ.

Matched monolithic construction - VF matched within 5 mV

- Low diode capacitance $-C_{D}=0.65 \mathrm{pF}$ typical at $V_{R}=-2 V$

Applications:

- Balanced modulators or demodulators
- Ring modulators
- High speed diode gates
- Analog switches
 on a common monolithic substrate. Integrated circuit construction assures excellent static and dynamic matching of the diodes, making the array extremely useful for a wide variety of applications in communication and switching systems.

Five of the diodes are independently accessible, the sixth shares a common terminal with the substrate.

For applications such as balanced modulators or ring modulators where capacitive balance is important, the substrate should be returned to a DC potential which is significantly more negative (with respect to the active diodes) than the peak signal applied.

The CA3039 is available in a 12-lead TO-5 style can package (T suffix) and in a 14 -lead Small Outline package (M suffix).

Figure 1 - Schematic Diagram for CA3039.

ABSOLUTE MAXIMUM RATINGS at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Dissipation:
Any one diode unit. 100 mW
Total for device 600 mW
For $\mathrm{T}_{\mathrm{A}}>55^{\circ} \mathrm{C}$. derate linearly $5.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Temperature Range:
Operating -55 to $+125{ }^{\circ} \mathrm{C}$
Storage
-65 to $+150^{\circ} \mathrm{C}$

Peak Inverse Voltage, PIV for: $\mathrm{D}_{1}-\mathrm{D}_{5} \ldots \quad 5 \mathrm{~V}$
$\mathrm{D}_{6} \ldots \quad 0.5 \mathrm{~V}$

Peak Diode-to-Substrate Voltage, V_{DI}

for $\mathrm{D}_{1}-\mathrm{D}_{5}$ (term. $1,4,5,8$ or 12 to term. 10) $+20,-1 \mathrm{~V}$
DC Forward Current, IF 25 mA
Peak Recurrent Forward Current, If 100 mA
Peak Forward Surge Current, \mathbf{I}_{f} (surge) . . . 100 mA

LEAD TEMPERATURE (During Soldering)
At distance $1 / 16 \pm 1 / 32$ inch ($1.59 \pm 0.79 \mathrm{~mm}$)
from case for 10 seconds max. $+265{ }^{\circ} \mathrm{C}$
ELECTRICAL CHARACTERISTICS, at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Characteristics apply for each diode unit, unless otherwise specified.

CHARACTERISTICS	SYMBOLS	SPECIAL TEST CONDITIONS	LIMITS			UNITS	CHARACTERISTIC CURVES
			MIN.	TYP.	MAX.		FIG.
DC Forward Voltage Drop	V_{F}	$I_{F}=50 \mu \mathrm{~A}$	-	0.65	0.69	V	2
		1 mA	-	0.73	0.78	V	
		3 mA	-	0.76	0.80	V	
		10 mA	-	0.81	0.90	V	
DC Reverse Breakdown Voltage	$V_{(B R) R}$	$\mathrm{I}_{\mathrm{R}}=-10 \mu \mathrm{~A}$	5	7	-	V	-
DC Reverse Breakdown Voltage Between any Diode Unit and Substrate	$V_{(B R) R}$	$\mathrm{I}_{\mathrm{R}}=-10 \mu \mathrm{~A}$	20	-	-	V	-
DC Reverse (Leakage) Current	I_{R}	$V_{R}=-4 \mathrm{~V}$	-	0.016	100	nA	3
DC Reverse (Leakage) Current Between any Diode Unit and Substrate	I_{R}	$V_{R}=-10 \mathrm{~V}$	-	0.022	100	nA	4
Magnitude of Diode Offset Voltage (Difference in DC Forward Voltage Drops of any Two Diode Units)	$V_{F_{1}}-V_{F_{2}}$	$I_{F}=1 \mathrm{~mA}$	-	0.5	5	mV	2
Temperature Coefficient of $\left\|V_{F_{1}}-V_{F_{2}}\right\|$	$\frac{\Delta\left\|V_{F_{1}}-V_{F_{2}}\right\|}{\Delta T}$	$\mathrm{I}_{\mathrm{F}}=1 \mathrm{~mA}$	-	1	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	5
Temperature Coefficient of Forward Drop	$\frac{\Delta V_{F}}{\Delta T}$	$\mathrm{I}_{\mathrm{F}}=1 \mathrm{~mA}$	-	-1.9	-	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	6
DC Forward Voltage Drop for Anode-to-Substrate Diode (DS)	V_{F}	$\mathrm{I}_{\mathrm{F}}=1 \mathrm{~mA}$	-	0.65	-	V	-
Reverse Recovery Time	$t_{\text {rr }}$	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{R}}=10 \mathrm{~mA}$	-	1	-	ns	-
Diode Resistance	R_{D}	$f=1 \mathrm{kHz}, \mathrm{I}_{\mathrm{F}}=1 \mathrm{~mA}$	25	30	45	Ω	7
Diode Capacitance	C_{D}	$V_{R}=-2 V, I_{F}=0$	-	0.65	-	pF	8
Diode-to-Substrate Capacitance	C_{DI}	$V_{D I}=+4 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0$	-	3.2	-	pF	9

TYPICAL CHARACTERISTICS

Fig. 2 - DC forward voltage drop (any diode) and diode offset voltage vs DC forward current

Fig. 3 - DC reverse (leakage) current (diodes),2,3,4,5) vs temperature

Fig. 4-DC reverse (leakage) current between diodes (1,2,3,4,5) and substrate vs temperature

Fig. 5 - Diode offset voltage (any diode) vs temperature

Fig. 6 - DC forward voltage drop (any diode) vs temperature

Fig. 7 - Diode resistance (any diode) vs DC forward current

TYPICAL CHARACTERISTICS

DC REVERSE VOLTS (V_{R}) ACROSS DIODE

Fig. 8 - Diode capacitance (diodes $1,2,3,4,5$) vs reverse voltage

DC REVERSE VOLTS (V_{R}) BETWEEN TERMINALS $1,4,5,8,0 R 12$ AND SUBSTRATE (TERMINAL IO)

Fig. 9 - Diode-to-substrate capacitance vs reverse voltage

Arrays
CA3045, CA3046

May 1990

General-Purpose N-P-N Transistor Arrays

Three Isolated Transistors and One Differentially-Connected Transistor Pair For Low-Power Applications at Frequencies from DC through the VHF Range

Features:

- Two matched pairs of transistors
$V_{B E}$ matched $\pm 5 \mathrm{mV}$
Input offset current $2 \mu \mathrm{~A}$ max. at $I_{C}=1 \mathrm{~mA}$
- 5 general purpose monolithic transistors
- Operation from DC to 120 MHz
- Wide operating current range
- Low noise figure - 3.2 dB typ. at 1 KHz
- Full military temperature range for CA3045 $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Applications:

- General use in all types of signal processing systems operating anywhere in the frequency range from DC to VHF
- Custom designed differential amplifiers
- Temperature compensated amplifiers
- See Application Note, ICAN-5296 "Application of the CA3018 Integrated-Circuit Transistor Array" for suggested applications.

The CA3045 and CA3046 each consist of five general purpose silicon n-p-n transistors on a common monolithic substrate. Two of the transistors are internally connected to form a differentially-connected pair.

The transistors of the CA3045 and CA3046 are well suited to a wide variety of applications in low power systems in the DC through VHF range. They may be used as discrete transistors in conventional circuits. However, in addition, they provide the very significant inherent integrated circuit advantages of close

The CA3045 and CA3046 are available in the packages shown below

PACKAGE	SUFFIX LETTER	CA3045	CA3046
14-Lead Dual-In- Line Plastic	E		\checkmark
14-Lead Dual-In- Line Ceramic	D	V	
14-Line Dual-In- Line Frit-Seal Ceramic	F	V	
Chip	H	V	
14-Lead Small Outline	M		V

electrical and thermal matching.

The CA3045 is supplied in a 14 -lead dual-in-line hermetic (welded-seal) ceramic package and the CA3045F in a 14-lead dual-in-line hermetic (frit-seal) ceramic package.
The CA3046 is electrically identical to the CA3045 but is supplied in a 14 -lead dual-in-line plastic package (E suffix) and in 14-lead Small Outline package (M suffix) for applications requiring only a limited temperature range.

ABSOLUTE MAXIMUM RATINGS AT $T_{A}=25^{\circ} \mathrm{C}$

c	CA3045046, CA3045F		
Each	Total	Each	Total
Transistor	Package	Transistor	Package

Power Dissipation:

TA up to $55^{\circ} \mathrm{C}$	-	-	300	750	mW
$\mathrm{T}_{\mathrm{A}}>55^{\circ} \mathrm{C}$	-	-			$\mathrm{mW} /{ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {A }}$ up to $75^{\circ} \mathrm{C}$	300	750	-	-	mW
$\mathrm{T}_{\mathrm{A}}>75^{\circ} \mathrm{C}$	Derate at 8		-	-	$\mathrm{mW} /{ }^{\circ} \mathrm{C}$
Collector-to-Emitter Voltage, $\mathrm{V}_{\text {CEO }}$	15	-	15	-	\checkmark
Collector-to-Base Voltage, $\mathrm{V}_{\text {CBO }}$	20	-	20	-	\checkmark
Collector-to-Substrate Voltage, $\mathrm{V}_{\mathrm{CIO}}{ }^{*}$	20	-	20	-	V
Emitter-to-Base Voltage, $\mathrm{V}_{\text {EBO }}$	5	-	5	-	\checkmark
Collector Current	50	-	50	-	mA

$+265$
$+265$
${ }^{\circ} \mathrm{C}$
to the most negative point in the external circuit to maintain isolation between transistors and to provide for normal transistor action.

ELECTRICAL CHARACTERISTICS, of $T_{A}=25^{\circ} \mathrm{C}$
Characteristics apply for each transistor in the CA3045 and CA3046 as specified.

CHARACTERISTICS	SYMBOLS	SPECIAL TEST CONDITIONS	LIMITS			UNITS	CHARAC. TERISTIC CURVES
			Type CA3045 Type CA3046				
			MIN.	TYP.	MAX.		FIG.
STATIC CHARACTERISTICS							
Collector-to-Base Breakdown Voltage	$V_{\text {(BR) }}$ CBO	$\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{E}}=0$	20	60	\cdot	V	-
Collector-to-Emitter Breakdown Voltage	$V_{\text {(BRICEO }}$	${ }^{1} \mathrm{C}=1 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0$	15	24	-	V	\cdot
Collector-to-Substrate Breakdown Voltage	$\mathrm{V}_{\text {(BR)CIO }}$	$\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{Cl}}=0$	20	60	-	V	-
Emitter-10-Base Breakdown Voltage	$V_{\text {(BRIEBO }}$	$\mathrm{I}_{\mathrm{E}}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=0$	5	7		V	\cdot
Collector-Cutoff Current	CBO	$V_{C B}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$	-	0.002	40	nA	2
Collector-Cutoff Current	'CEO	$V_{C E}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0$	-	See curve	0.5	A	3
Static Forward Current-Transfer Ratio (Static Beta)	$\mathrm{h}_{\text {FE }}$	$V_{C E}=3 V\left\{\begin{array}{l} C=10 \mathrm{~mA} \\ C=1 \mathrm{~mA} \\ C=10 \mu \mathrm{~A} \end{array}\right.$	40	$\begin{aligned} & 100 \\ & 100 \\ & 54 \end{aligned}$	\cdot	$\stackrel{\square}{\square}$	4
Input Offset Curfent for Matched Pair Q_{1} and $\mathrm{O}_{2} \cdot \mid \mathrm{I}_{1 \mathrm{O}_{1}}{ }^{-1_{10_{2}} \mid}$		$V_{C E}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$	-	0.3	2	A	5
Base-to-Emitter Voltage	$V_{B E}$	$V_{C E}=3 V\left\{\begin{array}{l}l_{E}=1 \mathrm{~mA} \\ l_{E}=10 \mathrm{~mA}\end{array}\right.$.	$\begin{aligned} & 0.715 \\ & 0.800 \end{aligned}$	-	V	6
Magnitude of Input Offset Voltage for Differential Pair $\left\|V_{B E_{1}}-V_{B E_{2}}\right\|$		$V_{C E}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$.	0.45	5	mV	6,8
Magnitude of Input Offset Voltage for Iso lated Transistors $\left\|V_{B E_{3}}-V_{B E_{4}}\right\|$ $\left\|V_{B_{E}}-V_{B E_{5}}\right\|,\left\|V_{B_{E}}-V_{B E_{3}}\right\|$		$V_{C E}=3 \mathrm{~V} \cdot \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$	-	0.45	5	mV	6.8
Temperature Coefficient of Base-to-Emitter Voltage	$\frac{\Delta V_{B E}}{\Delta T}$	$V_{C E}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$	-	-1.9	-	$m V{ }^{\circ} \mathrm{C}$	7
Collector-to-Emitter Saturation Voltage	$V_{\text {CES }}$	$\mathrm{I}_{\mathrm{B}}=1 \mathrm{~mA},{ }^{1} \mathrm{C}=10 \mathrm{~mA}$		0.23	-	V	-
Temperature Coefficient: Magnitude of Input-Offset Voltage	$\frac{\left\|\Delta V_{10}\right\|}{\Delta T}$	$V_{C E}=3 \mathrm{~V} \cdot \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$	-	1.1		$\therefore V^{0} \mathrm{C}$	8

ELECTRICAL CHARACTERISTICS (Cont'd.)

DYNAMIC CHARACTERISTICS							
Low-Frequency Noise Figure	NF	$\begin{aligned} & f=1 \mathrm{kHz}, V_{C E}=3 \mathrm{~V}, I_{C}=100 \mathrm{~A} \\ & \text { Source Resistance }=1 \mathrm{kS} \text { ? } \end{aligned}$		3.25	-	dB	9(b)
Low-Frequency, Small-Signal Equivalent-Circuit Characteristics:							
Forward Current-Transfer Ratio	$\mathrm{hfe}_{\text {f }}$	$f=1 \mathrm{kHz}, \mathrm{V}_{C E}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$	-	110	-	-	10
Short-Circuit Input Impedance	$\mathrm{h}_{\text {je }}$		-	3.5	-	$\mathrm{k} \Omega$	
Open-Circuit Output Impedance	$\mathrm{h}_{\text {oe }}$		-	15.6	.	1 unho	
Open-Circuit Reverse Voltage-Transfer Ratio	$h_{\text {re }}$		-	1.8×10^{-4}	-	-	
Admittance Characteristics:							
Forward Transfer Admittance	$Y_{\text {fe }}$	$f=1 \mathrm{MHz}, V_{C E}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$	-	$31-\mathrm{j} 1.5$.	.	11
Input Admittance	$Y_{\text {ie }}$		-	$0.3+j 0.04$	-	-	12
Output Admittance	Y_{00}		\cdot	$0.001+\mathrm{j} 0.03$	-	-	13
Reverse Transfer Admittance	$Y_{\text {ce }}$		-	See curve	-	\cdot	14
Gain-Bandwidth Product	${ }_{\text {f }}$	$V_{C E}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=3 \mathrm{~mA}$	300	550	-	\cdot	15
Emitter-to-Base Capacitance	$\mathrm{C}_{\text {EB }}$	$V_{E B}=3 V, I_{E}=0$	-	0.6	-	pF	\cdot
Collector-to-Base Capacitance	${ }^{\text {C }}$ CB	$V_{C B}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0$	\cdot	U.58	-	pr	\cdot
Collector-to-Substrate Capacitance	${ }^{\mathrm{C}} \mathrm{Cl}$	$V_{C S}=3 V_{,} I_{C}=0$	-	2.8	-	pF	-

STATIC CHARACTERISTICS

Fig. 2 - Typical collector-to-base cutoff current vs ambient temperature for each transistor.

Fig. 3 - Typical collector-to-emitter cutoff current vs ambient temperature for each transistor.

STATIC CHARACTERISTICS

Fig. 4 - Typical static forward current-transfer ratio and beta ratio for transistors Q_{1} and Q_{2} vs emitter current.

Fig.6 - Typical static base-to-emitter voltage characteristic and input offset voltage for differential pair and paired isolated transistors vs emitter current.

Fig. 8 - Typical input offset voltage characteristics for differential pair and paired isolated transistors vs ambient temperature.

Fig. 5 - Typical input offset current for matched transistor pair $Q_{1} Q_{2}$ vs collector current.

Fig.7-Typical base-to-emitter voltage characteristic vs ambient temperature for each transistor.

COLLECTOR MILLIAMPERES (IC)
Fig.9(a) - Typical noise figure vs collector current.

DYNAMIC CHARACTERISTICS FOR EACH TRANSISTOR

COLLECTOR MILLIAMPERES (IC)
Fig.9(b) - Typical noise figure vs collector current.

Fig.10-Typical normalized forward current-transfer ratio, short-circuit input impedance, open-circuit output impedance, and open-circuit reverse volt-age-transfer ratio vs collector current.

Fig. 12 - Typical input admittance vs frequency.

Fig.9(c) - Typical noise figure vs collector current.

Fig.11-Typical forward transfer admittance vs frequency.

Fig.13 - Typical output admittance vs frequency.

DYNAMIC CHARACTERISTICS FOR EACH TRANSISTOR

Fig.14-Typical reverse transfer admittance vs frequency.

Fig.15-Typical gain-bandwidth product vs collector current.

HARRIS

General-Purpose High-Current N-P-N Transistor Arrays

CA3081 - Common-Emitter Array

CA3082 - Common-Collector Array
Directly Drive 7-Segment Incandescent Displays and Light-Emitting-Diode (LED) Displays

Features:

- 7 transistors permit a wide range of applications in either a common-emitter (CA3081) or common-collector (CA3082) configuration
- High IC: 100 mA max.
- Low $V_{C E}$ sat (at 50 mA): 0.4 V typ.

CA3081 and CA3082 consist of seven high-current (to 100 mA) silicon $\mathrm{n}-\mathrm{p}-\mathrm{n}$ transistors on a common monolithic substrate. The CA3081 is connected in a common-emitter configuration and the CA3082 is connected in a commoncollector configuration.

The CA3081 and CA3082 are capable of directly driving seven-segment displays, and light-emitting diode (LED)

Applications:

- Drivers for:
-Incandescent display devices
-LED displays
-Relay control
-Thyristor firing
displays. These types are also well-suited for a variety of other drive applications, including relay control and thyristor firing.

The CA3081 and CA3082 are supplied in a 16 -lead Small Outline package (M suffix), in a 16 -lead dual-in-line plastic package (E suffix), and in a 16 -lead dual-in-line frit-seal ceramic package (F suffix), which include a separate substrate connection for maximum flexibility in circuit design. Both types are also available in chip form.

MAXIMUM RATINGS, Absolute-Maximum Values at $T_{A}=25^{\circ} \mathrm{C}$
Power Dissipation:

Any one transistor		500	mW
Total package		750	mW
Above $55^{\circ} \mathrm{C}$	Derate linearly	6.67	$\mathrm{mW} /{ }^{\circ} \mathrm{C}$

Ambient Temperature Range:

Operating	-55 to +125	${ }^{\circ} \mathrm{C}$
Storage	-65 to +150	${ }^{\circ} \mathrm{C}$

Lead Temperature (During Soldering):
At distance $1 / 16^{\prime \prime} \pm 1 / 32^{\prime \prime}(1.59 \mathrm{~mm} \pm 0.79 \mathrm{~mm})$
from case for 10 seconds max. ${ }^{\circ} \mathrm{C}$
The following ratings apply for each transistor in the device:
Collector-to-Emitter Voltage ($\mathrm{V}_{\mathrm{CEO}}$) . 16 V
Collector-to-Base Voltage ($\mathrm{VBO}_{\mathrm{CBO}}$) . 20 V

Collector Current (I ${ }_{C}$. 100 mA
Base Current (IB) . 20 mA

* The collector of each transistor of the CA3081 and CA3082 is isolated from the substrate by an integral diode. The substrate must be connected to a voltage which is more negative than any collector voltage in order to maintain isolation between transistors and
provide normal transistor action. To avoid undesired coupling between transistors, the substrate terminal (5) should be maintained at either DC or signal (AC) ground. A suitable bypass capacitor can be used to establish a signal ground.

ELECTRICAL CHARACTERISTICS at TA $_{A}=25^{\circ} \mathrm{C}$
For Equipment Design

CHARACTERISTIC	SYMBOL	TEST CONDITIONS		LIMITS			UNITS
			Typ. Char. Curve	Min.	Typ.	Max.	
Collector-to-Base Breakdown Voltage	V (BR)CES	$I_{C}=500 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{E}}=0$	-	20	60	-	V
Collector-to-Substrate Breakdown Voltage	$V_{\text {(BR) }} \mathrm{Cl}$ O	$\mathrm{I}_{\mathrm{Cl}}=500 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{I}_{\mathrm{B}}=0$	-	20	60	-	V
Collector-to-Emitter Breakdown Voltage	$V_{(B R) C E O}$	$\mathrm{I}^{\prime}=1 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0$	-	16	24	-	V
Emitter-to-Base Breakdown Voltage	$V(B R) E B O$	$\mathrm{I}^{\prime}=500 \mu \mathrm{~A}$	-	5	6.9	-	V
DC Forward-Current Transfer Ratio	hFE	$\mathrm{V}_{\text {CE }}=0.5 \mathrm{~V}, \mathrm{IC}=30 \mathrm{~mA}$	-	30	68	-	
		$\mathrm{V}_{\text {CE }}=0.8 \mathrm{~V}, \mathrm{I} \mathrm{C}=50 \mathrm{~mA}$	-	40	70	-	
Base-to-Emitter Saturation Voltage	$V_{\text {BE sat }}$	$\mathrm{I}_{\mathrm{C}}=30 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=1 \mathrm{~mA}$	3	-	0.87	1.0	V
Collector-to-Emitter Saturation Voltage: CA3081, CA3082	sat	$\mathrm{I}_{\mathrm{C}}=30 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=1 \mathrm{~mA}$	-	-	0.27	0.5	
CA3081	sat	$\mathrm{I}_{\mathrm{C}}=50 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=5 \mathrm{~mA}$	4	-	0.4	0.7	v
CA3082		$\mathrm{I}_{\mathrm{C}}=50 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=5 \mathrm{~mA}$	4	-	0.4	0.8	
Collector-Cutoff-Current	ICEO	$\mathrm{V}_{C E}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0$	-	-	-	10	$\mu \mathrm{A}$
Collector-Cutoff Current	${ }^{\text {I CBO }}$	$V_{C B}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$	-	-	-	1	$\mu \mathrm{A}$

TYPICAL STATIC CHARACTERISTICS FOR EACH TRANSISTOR OF TYPES CA3081 AND CA3082

Fig. 2-hFE vs. IC

Fig. 4- $V_{C E s a t}$ vs. I_{C} at $T_{A}=25^{\circ} \mathrm{C}$

TYPICAL READ-OUT DRIVER APPLICATIONS

Fig.6-Schematic diagram showing one transistor of the CA3081 driving one segment of an incandescent display.

Fig. 3-VBEsat vs. IC

Fig. $5-V_{C E s a t}$ vs. I_{C} at $T_{A}=70{ }^{\circ} \mathrm{C}$

* THE RESISTANCE FOR R IS DETERMINED BY THE RELATIONSHIP
$R=\frac{V_{P}-V_{B E}-V_{F}(L E D)}{I(L E D)}$
$R=0$ FOR $V_{P}=V_{B E}+V_{F}(L E D)$

$$
\text { WHERE: } \left.\begin{array}{rl}
V_{P} & = \\
& \text { VOUT PULSE } \\
& V \\
& V_{F}=
\end{array}\right) \text { FORWARE VOLTAGE }
$$

Fig.7-Schematic diagram showing one transistor of the CA3082 driving a light-emitting diode (LED).

HARRIS

General-Purpose High-Current N-P-N Transistor Array

Features:

- High I_{C} : 100 mA max.
- Low $V_{\text {CEsat }}$ (at 50 mA): 0.7 V max.
- Matched pair (Q1 and Q2) -
$V_{\text {IO }}$ ($V_{B E}$ matched): $\pm 5 \mu \mathrm{~V}$ max. 110 (at 1 mA): 2.5 mA max.
- 5 independent transistors plus separate substrate connection

Applications:

- Signal processing and switching systems operating from DC to VHF
- Lamp and relay driver
- Differential amplifier
- Temperature-compensated amplifier
- Thyristor firing
- See Application Note, ICAN-5296 "Application of the CA3018 Circuit Transistor Array" for suggested applications

The CA3083 is a versatile array of five high-current (to 100 $\mathrm{mA}) \mathrm{n}-\mathrm{p}-\mathrm{n}$ transistors on a common monolithic substrate. In addition, two of these transistors (Q1 and Q2) are matched at low currents (i.e. 1 mA) for applications in which offset parameters are of special importance.

Independent connections for each transistor plus a separate terminal for the substrate permit maximum flexibility in circuit design. The CA3083 is supplied in a 16-lead dual-in-line frit-seal ceramic package (F suffix) and in a 16-lead Small Outline package (M suffix). The CA3083 is also available in chip form.

Figure 1 - Functional diagram of the CA3083.

MAXIMUM RATINGS, Absolute-Maximum Values at $T_{A}=25^{\circ} \mathrm{C}$
Power Dissipation:

Ambient Temperature Range:

Operating	$+125$	${ }^{\circ} \mathrm{C}$
	+150	${ }^{\circ} \mathrm{C}$
Lead Temperature (During Soldering):		
At distance $1 / 16^{\prime \prime} \pm 1 / 32^{\prime \prime}(1.59 \mathrm{~mm} \pm 0.79 \mathrm{~mm})$		
from case for 10 seconds max.	265	${ }^{\circ} \mathrm{C}$
The following ratings apply for each transistor in the device:		
Collector-to-Emitter Voltage ($\mathrm{V}_{\text {CEO }}$)	15	V
Collector-to Base Voltage ($\mathrm{V}_{\mathrm{CBO}}$)	20	\checkmark
Collector-to-Substrate Voltage ($\mathrm{V}_{\mathrm{ClO}}$) ${ }^{\text {T }}$.	20	\checkmark
Emitter-to-Base Voltage ($\mathrm{VEBO}^{\text {) }}$)	5	\checkmark
Collector Current (${ }^{\text {C }}$)	100	$m A$
Base Current (${ }_{B}$)	20	mA

The collector of each transistor of the CA3083 is isolated from the substrate by an integral diode. The substrate must be connected to a voltage which is more negative tnan any coiiectut vuitaye in vici io ..iainiain isclation. between transistors and provide normal transistor action. To avoid undesired coupling between transistors, the substrate terminal (5) should be maintained at either DC or signal (AC) ground. A suitable bypass capacitor can be used to establish a signal ground.

ELECTRICAL CHARACTERISTICS at TA $_{\text {A }}=25^{\circ} \mathrm{C}$
For Equipment Design

TYPICAL STATIC CHARACTERISTICS FOR EACH TRANSISTOR

Fig. $2-h_{F E}{ }^{\text {vs }}{ }^{\prime} C$

Fig. $4-V_{\text {CEsat }}{ }^{v s} I_{C}$ at $25^{\circ} \mathrm{C}$

Fig.3- $V_{B E}{ }^{\text {vs }}{ }^{\prime} C$

Fig. $5-V_{C E s a t}{ }^{\text {vs } I_{C}}$ at $70^{\circ} \mathrm{C}$

Fig.6- $V_{\text {BEsat }}{ }^{\text {vs }}{ }^{\prime} C$

CA3083

TYPICAL STATIC CHARACTERISTICS FOR DIFFERENTIAL AMPLIFIER

Fig. $7-V_{10}$ vs I_{C} (transistors $Q 1$ and $Q 2$ as a differential amplifier).

Fig.8-1 $10^{\text {vs } I_{C}}$ (transistors Q1 and Q2 as a differential amplifier).

General-Purpose N-P-N Transistor Array

Three Isolated Transistors and One Differentially - Connected Transistor Pair For Low-Power Applications from DC to 120 MHz

Applications:

- General-purpose use in signal processing systems operating in the $D C$ to $190-\mathrm{MHz}$ range
- Temperature compensated amplifiers
- See Application Note, ICAN-5296 "Application of the CA3018 Integrated-Circuit Transistor Array" for suggested applications.

The CA3086 consists of five general-purpose silicon n-p-n transistors on a common monolithic substrate. Two of the transistors are internally connected to form a differentiallyconnected pair.

The transistors of the CA3086 are well suited to a wide variety of applications in low-power systems at frequencies from DC to 120 MHz . They may be used as discrete transistors in conventional circuits. However, they also provide the very significant inherent advantages unique to integrated circuits, such as compactness, ease of physical handling and thermal matching.
The CA3086 is supplied in a 14 -lead dual-in-line plastic package. The CA3086F is supplied in a 14 -lead dual-in-line hermetic (frit-seal) ceramic package. The CA3086M is supplied in a 14 -lead Small Outline package.

Figure 1 - Functional diagram of the CA3086.
MAXIMUM RATINGS, Absolute-Maximum Values at $T_{A}=25^{\circ} \mathrm{C}$
DISSIPATION:
Any one transistor . 300 mW
Total package up to $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$. 750 mW
Above $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$AMBIENT TEMPERATURE RANGE:
Operating -55 to $+125^{\circ} \mathrm{C}$
Storage -65 to $+150^{\circ} \mathrm{C}$
LEAD TEMPERATURE (DURING SOLDERING):At distance $1 / 16 \pm 1 / 32$ inch $(1.59 \pm 0.79 \mathrm{~mm})$From case for 10 seconds max .$+265^{\circ} \mathrm{C}$
The following ratings apply for each transistor in the device:
COLLECTOR-TO-EMITTER VOLTAGE, VCEO 15 V
COLLECTOR-TO-BASE VOLTAGE, VCBO 20 V
COLLECTOR-TO-SUBSTRATE VOLTAGE, $\mathrm{V}_{\mathrm{CIO}}$ * 20 V
EMITTER-TO-BASE VOLTAGE, VEBO 5 V
COLLECTOR CURRENT, IC 50 mA

[^56]ELECTRICAL CHARACTERISTICS at $T_{A}=25^{\circ} \mathrm{C}$
For Equipment Design

CHARACTERISTICS	SYMBOLS	TEST CONDITIONS		LIMITS			UNITS
			Typ. Characteristic Curves Fig. No.				
				Min.	Typ.	Max.	
Collector-to-Base Breakdown Voltage	$V_{\text {(BR)CBO }}$	${ }^{\prime} \mathrm{C}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{E}}=0$	-	20	60	-	V
Collector-to-Emitter Breakdown Voltage	$V_{\text {(BR) }}$ CEO	$l_{C}=1 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0$	-	15	24	-	V
Collector-to-Substrate Breakdown Voltage	$V_{\text {(BR)CIO }}$	${ }^{\prime} \mathrm{C}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{Cl}}=0$	-	20	60	-	V
Emitter-to-Base Breakdown Voltage	$V_{\text {(BR)EBO }}$	$I_{E}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=0$	-	5	7	-	V
Collector-Cutoff Current	${ }^{\text {CBO }}$	$V_{C B}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$	2	-	0.002	100	nA
Collector-Cutoff Current	${ }^{\text {C CEO }}$	$V_{C E}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0$	3	-	See Curve	5	$\mu \mathrm{A}$
DC Forward-Current Transfer Ratio	${ }^{h_{\text {FE }}}$	$\mathrm{V}_{\text {CE }}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$	4	40	100	-	

TYPICAL STATIC CHARACTERISTICS FOR EACH TRANSISTOR

Fig. $2-I_{C B O}{ }^{v s} T_{A}$.

Fig. $3-{ }^{\prime}$ CEO ${ }^{\text {vs }} T_{A}$.

ELECTRICAL CHARACTERISTICS at $T_{A}=25^{\circ} \mathrm{C}$
Typical Values Intended Only for Design Guidance

CHARACTERISTICS	SYMBOL	TEST CONDITIONS			TYPICAL VALUES	UNITS
				Typ. Chara- teristics Curves Fig. No.		
DC Forward-Current Transfer Ratio	${ }^{\text {hfe }}$	$V_{C E}=3 \mathrm{~V}$	${ }^{1} \mathrm{C}=10 \mathrm{~mA}$	4	100	
			${ }^{1} \mathrm{C}=10 \mu \mathrm{~A}$	4	54	
Base-to-Emitter Voltage	$V_{B E}$	$V_{C E}=3 \mathrm{~V}$	$\mathrm{I}_{\mathrm{E}}=1 \mathrm{~mA}$	5	0.715	V
			${ }^{\prime} E=10 \mathrm{~mA}$	5	0.800	V
$\mathrm{V}_{\text {BE }}$ Temperature Coefficient	$\Delta V_{B E} / \Delta T$	$\mathrm{V}_{\text {CE }}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$		6	-1.9	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Collector-to-Emitter Saturation Voltage	$V_{\text {CEsat }}$	$\mathrm{I}_{\mathrm{B}}=1 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}$		-	0.23	V
Noise Figure (low frequency)	NF	$\begin{aligned} & f=1 \mathrm{kHz}, V_{C E}=3 \mathrm{~V} \\ & I_{C}=100 \mu \mathrm{~A}, R_{S}=1 \mathrm{k} \Omega \end{aligned}$		-	3.25	dB
Low-Frequency, Small-Signal Equivalent-Circuit Characteristics: Forward Current-Transfer Ratio	$h_{\text {fe }}$	$f=1 \mathrm{kHz}, \mathrm{V}_{\text {CE }}=3 \mathrm{~V},{ }^{\prime} \mathrm{C}=1 \mathrm{~mA}$		7	100	-
Short-Circuit Input Impedance	$h_{\text {ie }}$			7	3.5	k Ω
Open-Circuit Output Impedance	h_{oe}			7	15.6	$\mu \mathrm{mho}$
Open-Circuit Reverse-Voltage Transfer Ratio	h_{re}			7	1.8×10^{-4}	-
Admittance Characteristics: Forward Transfer Admittance	y_{fe}	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{C E}=3 \mathrm{~V}, \mathrm{I} \mathrm{C}=1 \mathrm{~mA}$		8	31-j1.5	mmho
Input Admittance	$y_{\text {ie }}$			9	$0.3+j 0.04$	mmho
Output Admittance	y_{oe}			10	$0.001+\mathrm{j} 0.03$	mmho
Reverse Transfer Admittance	$v_{\text {re }}$			11	See Curve	-
Gain-Bandwidth Product	${ }_{\text {f }}$	$V_{C E}=3 V, I_{C}=3 \mathrm{~mA}$		12	550	MHz
Emitter-to-Base Capacitance	$\mathrm{C}_{\text {EBO }}$	$V_{E B}=3 V, I_{E}=0$		-	0.6	pF
Collector-to-Base Capacitance	${ }^{\text {c }}$ CBO	$\mathrm{V}_{\mathrm{CB}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0$		-	0.58	pF
Collector-to-Substrate Capacitance	$\mathrm{C}_{\mathrm{CIO}}$	$\mathrm{V}_{\mathrm{CI}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0$		-	2.8	pF

TYPICAL STATIC CHARACTERISTICS FOR EACH TRANSISTOR

Fig. $4-h_{F E}$ vs $^{\prime}{ }_{E}$.

Fig. $5-V_{B E}$ vs I_{E}

Fig. $6-V_{B E}{ }^{\text {vs }} T_{A}$.

Fig.7-Normalized $h_{f e^{j}} h_{i e^{\prime}} h_{o e} h_{r e}$ vs ${ }_{C}$.

Fig. $9-y_{i e}$ vs f.

Fig. $11-y_{r e}$ vs f.

Fig. $8-y_{f e}$ vs f.

Fig. $10-v_{o e}$ vs f.

Fig. $12-f_{T}$ vs $/_{C}$

May 1990

N-P-N/P-N-P Transistor Array

Five-Independent Transistors: Three $\mathrm{n}-\mathrm{p}-\mathrm{n}$ and Two $\mathrm{p}-\mathrm{n}-\mathrm{p}$

Applications:

- Differential Amplifiers
- DC Amplifiers
- Sense Amplifiers
- Level Shifters
- Timers
- Lamp and Relay Drivers
- Thyristor Firing Circuits
- Temperature-Compensated Amplifiers
- Operational Amplifiers

The CA3096CE, CA3096E, and CA3096AE are general purpose high-voltage silicon transistor arrays. Each array
 $\mathrm{n}-\mathrm{p}-\mathrm{n}$ types) on a common substrate, which has a separate connection. Independent connections for each transistor permit maximum flexibility in circuit design.

Types CA3096AE, CA3096E, and CA3096CE are identical, except that the CA3096AE specifications include parameter matching and greater stringency in ICBO, ICEO, and $V_{C E}(S A T)$. The CA3096CE is a relaxed version of the CA3096E.

The CA3096CE, CA3096E, and CA3096AE are supplied in 16-lead dual-in-line plastic packages (E-suffix), and in 16lead Small Outline packages (M suffix). The CA3096 is also available in chip form (H suffix).
(16) substrate
(16) substrate

Figure 1 - Schematic Diagram.

CA3096AE, CA3096E, CA3096CE
ESSENTIAL DIFFERENCES

CHARACTERISTIC	CA3096AE	CA3096E	CA3096CE
$V_{(B R) C E O}(V) \underset{n-p-n}{M i n} .$	35	35	24
p-n-p	-40	-40	-24
$V_{(B R) C B O}(V) \underset{n-p-n}{M i n} .$	45	45	30
$p-n-p$	-40	-40	-24
$\mathrm{h}_{\text {FE }}$ @ 1 mA	150-500	150-500	100-670
$p-n-p$	20-150	20-150	15-200
$\mathrm{h}_{\text {FE }} @ 100 \mu \mathrm{~A}$	40-200	40-200	30-300
$I_{\text {CBO }}(\mathrm{nA})$	40	100	100
	-40	-100	-100
${ }^{\text {I CEO }}{ }^{(n A)}$	100	1000	1000
	-100	-1000	-1000
$V_{C E}(S A T)(V) \underset{p-n-p}{\text { Max. }}$	0.5	0.7	0.7
$\left\|v_{10}\right\|(\mathrm{mV})$	5	-	-
	5	-	-
$\left\|I_{10}\right\|(\mu A)$ Max.$\frac{n-p-n}{p-n-p}$	0.6	-	-
	0.25	-	-

MAXIMUM RATINGS, Absolute-Maximum Values:

STATIC ELECTRICAL CHARACTERISTICS at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
For Equipment Design

CHARACTERISTIC	TEST CONDITIONS	LIMITS									UNITS
		CA3096AE			CA3096E			CA3096CE			
		Min.	Typ.	Max.	Min.	Typ.	Max.	Min.	Typ.	Max.	
For Each n-p-n Transistor											
${ }^{1} \mathrm{CBO}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CB}}=10 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{E}}=0 \end{aligned}$	-	0.001	40	-	0.001	100	-	0.001	100	nA
ICEO	$\begin{aligned} & V_{C E}=10 \mathrm{~V}, \\ & I_{B}=0 \end{aligned}$	-	0.006	100	-	0.006	1000	-	0.006	1000	nA
$V_{\text {(BR) }}$ CEO	$\begin{aligned} & l^{\prime}=1 \mathrm{~mA}, \\ & l_{B}=0 \end{aligned}$	35	50	-	35	50	-	24	35	-	V
$V_{(B R) C B O}$	$\begin{aligned} & \text { IC }=10 \mu \mathrm{~A}, \\ & \text { ' } \mathrm{E}=0 \end{aligned}$	45	100	-	45	100	-	30	80	-	V
$V_{(B R) C I O}$	$\left\{\begin{array}{l} I_{C l}=10 \mu \mathrm{~A}, \\ I_{\mathrm{B}}=1 \mathrm{E}=0 \end{array}\right.$	45	100	-	45	100	-	30	80	-	V
$V_{(B R) E B O}$	$\begin{aligned} & I^{\prime}=10 \mu \mathrm{~A}, \\ & I^{\prime} \mathrm{C}=0 \end{aligned}$	6	8	-	6	8	-	6	8	-	V
v_{Z}	${ }^{\prime} \mathrm{Z}=10 \mu \mathrm{~A}$	6	7.9	9.8	6	7.9	9.8	6	7.9	9.8	V
$V_{\text {CE }}$ (SAT)	$\begin{aligned} & I_{C}=10 \mathrm{~mA}, \\ & I_{B}=1 \mathrm{~mA} \end{aligned}$	-	0.24	0.5	-	0.24	0.7.	-	0.24	0.7	V
V_{BE}	$\left\{\begin{array}{l} \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \\ \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V} \end{array}\right.$	0.6	0.69	0.78	0.6	0.69	0.78	0.6	0.69	0.78	V
$h_{\text {FE }}$		150	390	500	150	390	500	100	390	670	
$\left\|\triangle V_{B E} / \triangle T\right\|$	$\begin{aligned} & { }^{{ }^{2} \mathrm{C}=1 \mathrm{~mA}} \\ & \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{l} \end{aligned}$	-	1.9	-	-	1.9	-	-	1.9	-	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$

STATIC ELECTRICAL CHARACTERISTICS at $T_{A}=25^{\circ} \mathrm{C}$ (Cont'd)
For Equipment Design

CHARACTERISTIC	TEST CONDITIONS	LIMITS									UNITS
		CA3096AE			CA3096E			CA3096CE			
		Min.	Typ.	Max.	Min.	Typ.	Max	Min.	Typ.	Max.	
For Eactı p-n-p Transistor											
${ }^{\text {'CBO }}$	$\begin{aligned} & V_{C B}=-10 \mathrm{~V}, \\ & I_{\mathrm{F}}=0 \end{aligned}$	-	-0.006	-40	-	-0.06	-100	-	-0.06	-100	nA
${ }^{\text {I CeO }}$	$\begin{aligned} & V_{C E}=-10 \mathrm{~V}, \\ & I_{B}=0 \end{aligned}$	-	-0.12	-100	-	-0.12	-1000	-	-0.12	-1000	$n \mathrm{~A}$
$V_{\text {(BR) }}$ CEO	$\begin{aligned} & I_{C}=-100 \mu \mathrm{~A}, \\ & I_{B}=0 \end{aligned}$	-40	-75	-	-40	-75	-	-24	-30	-	V
$V_{(B R) C B O}$	$\left\{\begin{array}{l} \mathrm{I}=-10 \mu \mathrm{~A}, \\ \mathrm{I}=0 \end{array}\right.$	-40	-80	-	-40	-80	-	-24	-60	-	v
$V_{\text {(BR) } \mathrm{EBO}}$	$\begin{aligned} & \mathrm{I}=-10 \mu \mathrm{~A}, \\ & \mathrm{I} \mathrm{C}=0 \end{aligned}$	-40	-100	-	-40	-100	-	-24	-80	-	V
$V_{\text {(BR) EIO }}$	$\begin{aligned} & \mathrm{E}_{\mathrm{E}}=10 \mu \mathrm{~A}, \\ & \mathrm{I}_{\mathrm{B}}-:_{\mathrm{C}}-0 \end{aligned}$	-40	-100	-	-40	-100	-	-24	-80	-	V
$\mathrm{V}_{\text {CE }}$ (SAT)	$\begin{aligned} & I^{\prime}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{B}}=-100 \mu \mathrm{~A} \end{aligned}$	-	-0.16	-0.4	-	-0.16	-0.4	-	-0.16	-0.4	V
$V_{B E}$	$\begin{aligned} & l_{\mathrm{C}}^{\mathrm{C}}=-100 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{CE}}=-5 \mathrm{~V} \end{aligned}$	-0.5	-0.6	-0.7	-0.5	-0.6	-0.7	-0.5	-0.6	-0.7	V
hFE	$\begin{aligned} & \mathrm{l}_{\mathrm{C}}=-100 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{CE}}=-5 \mathrm{~V} \end{aligned}$	40	85	250	40	85	250	30	85	300	
	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=-1 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CE}}=-5 \mathrm{~V} \end{aligned}$	20	47	200	20	47	200	15	47	200	
$\left\|\triangle V_{B E} / \Delta T\right\|$	$\begin{aligned} & l_{C}=-100 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{CE}}=-5 \mathrm{~V} \end{aligned}$	-	2.2	-	-	2.2	-	-	2.2	-	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$

${ }^{\prime}$ CBO Collector-Cutoff Current
${ }^{I}$ CEO Collector-Cutoff Current
$V_{\text {(BR)CEO }}$ Collector-to-Emitter Breakdown
Voltage
$V_{(B R) C B O}$ Collector-to-Base Breakdown Voltage
$\mathrm{V}_{\text {(BR)CIO }}$ Collector-to-Substrate Breakdown Voltage
$V_{(B R) E B O}$ Emitter-to-Base Breakdown Voltage
$V_{Z} \quad$ Emitter-to-Base Zener Voltage
$V_{C E(S A T)}$ Collector-to-Emitter Saturation Voltage
$V_{B E} \quad$ Base-to-Emitter Voltage
$h_{\text {FE }} \quad$ DC Forward-Current Transfer Ratio
$\left|\Delta V_{B E} / \Delta T\right|$ Magnitude of Temperature Coefficient: (for each transistor)

STATIC ELECTRICAL CHARACTERISTICS at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (CA3096AE Only) For Equipment Design

CHARACTERISTIC	TEST CONDITIONS	$\frac{\text { LIMITS }}{\text { CA3096AE }}$			UNITS	
		Min.	Typ.	Max.		
For Transistors Q1 and Q2 (as a Differential Amplifier)						
Absolute Input Offset Voltage, $\left\|\mathrm{V}_{10}\right\|$	$\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{I} \mathrm{C}=1 \mathrm{~mA}$	-	0.3	5	mV	
Absolute Input Offset Current, $\mathrm{H}_{10} \mathrm{l}$		-	0.07	0.6	$\mu \mathrm{A}$	
$\begin{array}{cc}\begin{array}{c}\text { Absolute Input Offset Voltage } \\ \text { Temperature Coefficient, }\end{array} & \frac{\left\|\Delta V_{10}\right\|}{\Delta T}\end{array}$		-	1.1	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	
For Transistors Q4 and Q5 (As a Differential Amplifier)						
Absolute Input Offset Voltage, V_{10} !	$\left\{\begin{array}{l} V_{C E}=-5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=-100 \mu \mathrm{~A} \\ R_{S}=0 \end{array}\right.$	-	0.15	5	mV	
Absolute Input Offset Current, $\\|_{10}$		-	2	250	nA	
$\begin{array}{ll}\text { Absolute Input Offset Voltage } \\ \text { Temperature Coefficient, } & \frac{\left\|\Delta \mathrm{V}_{10}\right\|}{\Delta \mathrm{T}}\end{array}$		-	0.54	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	

Fig. 1 - Base-to-emitter zener characteristic ($n-p-n$).

Fig. 3 - Collector cut-off current ('CBO) as a function of temperature ($n-p-n$).

Fig. 2 - Collector cut-off current (ICEO) as a function of temperature ($n-p-n$).

Fig. 4 - Transistor (n-p-n) $h_{\text {FE }}$ as a function of collector current.

DYNAMIC
ELECTRICAL CHARACTERISTICS at TA $=25^{\circ} \mathrm{C}$
Typical Values Intended Only for Design Guidance

CHARACTERISTICS	TEST CONDITIONS	TYPICAL VALUES	UNITS
For Each n-p-n Transistor			
Noise Figure (low frequency), NF	$\begin{aligned} & f=1 \mathrm{kHz}, V_{C E}=5 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{R}_{\mathrm{S}}=1 \mathrm{k} \Omega \end{aligned}$	2.2	dB
Low-Frequency, Input Resistance, R_{i}	$\begin{aligned} & \mathrm{f}=1.0 \mathrm{kHz}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA} \end{aligned}$	10	k Ω
Low-Frequency Output Resistance, R_{o}		80	k Ω
Forward Transfer Admittance, $^{\mathrm{Yfe}_{\mathrm{fe}} \frac{\mathrm{g}_{\mathrm{fe}}}{\mathrm{b}_{\mathrm{fe}}}}$	$\begin{aligned} & f=1 \mathrm{MHz}, V_{C E}=5 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA} \end{aligned}$	7.5	mmho
		- 113	
Input Admittance, $\quad y_{i e} \frac{g_{i e}}{b_{i e}}$		2.2	mmho
		j3.1	
Output Admittance,		0.76	mmho
		j2.4	
Gain-Bandwidth Product, ${ }^{\mathrm{f}} \mathrm{T}$	$\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1.0 \mathrm{~mA}$	280	MHz
	$V_{C E}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=5 \mathrm{~mA}$	335	
Emitter-to-Base Capacitance, $\mathrm{C}_{\text {EB }}$	$V_{\text {EB }}=3 \mathrm{~V}$	0.75	pF
Collector-to-Base Capacitance, C_{CB}	$V_{C B}=3 \mathrm{~V}$	0.46	pF
Collector-to-Substrate Capacitance, C_{Cl}	$\mathrm{V}_{\mathrm{Cl}}=3 \mathrm{~V}$	3.2	pF

For Each p-n-p Transistor			
Noise Figure (low frequency), NF	$\mathrm{f}=1 \mathrm{kHz}$, $\mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}, \mathrm{R}_{\mathrm{S}}=1 \mathrm{k} \Omega$	3	dB
Low-Frequency Input Resistance, R_{i}	$\mathrm{f}=1 \mathrm{kHz}, \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}$,	27	$\mathrm{k} \Omega$
Low-Frequency Output Resistance, R_{O}	$\mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}$	680	$\mathrm{k} \Omega$
Gain-Bandwidth Product, f_{T}	$\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}$	6.8	MHz
Emitter-to-Base Capacitance, C_{EB}	$\mathrm{V}_{\mathrm{EB}}=-3 \mathrm{~V}$	0.85	pF
Collector-to-Base Capacitance, C_{CB}	$\mathrm{V}_{\mathrm{CB}}=-3 \mathrm{~V}$	2.25	pF
Base-to-Substrate Capacitance, C_{BI}	$\mathrm{V}_{\mathrm{BI}}=3 \mathrm{~V}$	3.05	pF

Fig. $5-V_{B E}(n-p-n)$ as a function of collector current.

Fig. $7-V_{C E}(S A T)$ (n-p-n) as a function of collector current

Fig. 9 - Collector cut-off current (1CBO) as a function of temperature ($p-n-p$).

Fig. 11 - Transistor (p-n-p) $h_{\text {FE }}$ as a function of temperature.

Fig. $13-V_{B E}(p-n-p)$ as a function of temperature.

Fig. 8 - Collector cut-off current (ICEO) as a function of temperature ($p-n-p$).

Fig. 10 - Transistor ($p-n-p$) $h_{\text {FE }}$ as a function of collector current.

Fig. $12-V_{B E}(p-n-p)$ as a function of collector current.

Fig. 14 - Magnitude of input offset voltage $\left|V_{1 O}\right|$ as a function of collector current for n-p-n transistor $Q_{1}-Q_{2}$.

Fig. 15 - Magnitude of input offset voltage $\left|V_{10}\right|$ as a function of collector current for p-n-p transistor $Q_{4}-Q_{5}$

FREQUENCY (f) - KHz
Fig. 17 - Noise figure as a function of frequency for n-p-n transistors.

Fig. 19 - Noise figure as a function of frequency for n-p-n transistors.

Fig. 21 - Capacitance as a function of bias voltage ($n-p-n$).

Fig. 16 - Noise figure as a function of frequency for n-p-n transistors.

Fig. 18 - Noise as a function of frequency for $n-p-n$ transistors.

Fig. 20 - Gain-bandwidth product as a function of collector current (n-p-n).

Fig. 22 - Input resistance as a function of collector current.

Fig. 23 - Output resistance as a function of collector current

Fig. 25 - Input admittance as a function of frequency.

Fig. 27 - Noise figure as a function of frequency ($p-n-p$).

Fig. 29 - Noise figure as a function of frequency ($p-n-p$)

Fig. 24 - Forward transconductance as a
function of frequency.

Fig. 26 - Output admittance as a function of frequency.

Fig. 28 - Noise figure as a function of frequen. cy ($p-n-p$).

Fig. 30 - Gain-bandwidth product as a function of collector current ($p-n-p$).

Fig. 31 - Capacitance as a function of bias voltage ($p-n-p$).

Fig. 32 - Frequency comparator using CA3096E.

Fig. 33 - Line-operated level switch using CA3096AE or CA3096E.

Fig. 34 - Frequency comparator characteristics.

Fig. 35 - One-minute timer using CA3096AE and a MOS/FET.

Fig. 36 - CA3096AE small-signal zero-voltage detector having noise immunity.

Fig. 37 - Ter-second timer operated form 1.5-volt supply using CA3096E.

Features:

1. Can be operated with either dual supply or single supply.
2. Wide-input common-mode range +5 V to -5 V .
3. Low bias current: $<1 \mu \mathrm{~A}$.

CA3096H

Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as in. dicated. Grid graduations are in mils 110^{-3} inch).

The photographs and dimensions represent a chip when it is part of the wafer. When the wafer is cut into chips, the cleavage angles are 57° instead of 90° with respect to the face of the chip. Therefore, the isolated chip is actually 7 mils $(0.17 \mathrm{~mm})$ larger in both dimensions.

Arrays

May 1990

Thyristor/Transistor Array

For Military, Commercial, and Industrial Applications

Features:

- Complete isolation between elements
- $n-p-n$ transistor $-V_{C E O}=30 \mathrm{~V}$ (min), $I_{C}=100 \mathrm{~mA}$ (max.)
- p-n-p/n-p-n transistor pair - beta ≥ 8000 (typ.) @ IC $=10$ $m A$ individual $p-n-p, n-p-n$, or transistor pair operation
- Programmable unijunction transistor (PUT) - peak-point current $=15 \mathrm{nA}$ (typ.) at $R_{G}=1 \mathrm{M} \Omega ; V_{A K}= \pm 30 \mathrm{~V}$
- (PUT) Extremely long RC time constants with low value of external capacitor
- Sensitive-gate silicon controlled rectifier (SCR) - 150 mA forward current (max.)
- Zener-diode impedance $\left(Z_{Z}\right)=15 \Omega$ (typ.) at 10 mA

Applications:

- Timers
- Light dimmers/motor controls
- Oscillators
- "One-shot" multivibrators
- Voltage regulators
- Comparators, Schmitt triggers
- Constant-current sources
- Amplifiers
- Logic circuits
- SCR triggering
- ruise circuirs

The CA3097E* Thyristor/Transistor Array is a monolithic integrated circuit that enables circuit designers to further integrate control systems. The CA3097E consists of five independent and completely isolated elements on one chip: an $\mathrm{n}-\mathrm{p}-\mathrm{n}$ transistor, a $\mathrm{p}-\mathrm{n}-\mathrm{p} / \mathrm{n}-\mathrm{p}-\mathrm{n}$ transistor pair, a zener diode, a programmable unijunction transistor (PUT), and a sensitivegate silicon controlled rectifier (SCR).
The CA3097 is supplied in either the 16 -lead dual-in-line plastic package (" E " suffix) or the chip version (" H " suffix), and operates over the full military-temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

[^57]

Figure 1 - Schematic diagram of CA3097E.

MAXIMUM RATINGS, Absolute-Maximum Values at $T_{A}=25^{\circ} \mathrm{C}$

Isolation Voltage, any terminal to substrate* $+50 \mathrm{~V}$
Dissipation, Total Package:
Up to $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$ 750 mW
Above $\mathrm{T}_{A}=55^{\circ} \mathrm{C}$ derate linearly at $6.67 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Ambient Temperature Range:
Operating -55 to $+125^{\circ} \mathrm{C}$
Storage -65 to $+150^{\circ} \mathrm{C}$
Lead Temperature (During Soldering):
At distance $1 / 16 \pm 1 / 32$ inch $(1.59 \pm 0.79 \mathrm{~mm})$ from case for 10 seconds max $+265^{\circ} \mathrm{C}$
Each n-p-n Transistor (03,05)
The following ratings apply with terminals $6 \& 9$ connected together.
Collector-to-Emitter Voltage ($\mathrm{V}_{\mathrm{CEO}}$) 30 V
Collector-to-Base Voltage ($\mathrm{V}_{\mathrm{CBO}}$) 50 V
Emitter-to-Base Voltage ($\mathrm{V}_{\mathrm{EBO}}$) 5 V
Collector Current (IC) 100 mA
Base Current (IB) 20 mA
Dissipation (P_{D}) 500 mW
p-n-p Transistor (O4)
The following ratings apply with terminals 7 \& 8 connected together.
Collector-to-Emitter Voltage ($\mathrm{V}_{\mathrm{CEO}}$) $-40 \mathrm{~V}$
Collector-to-Base Voltage ($\mathrm{V}_{\mathrm{CBO}}$) $-50 \mathrm{~V}$
Emitter-to-Base Voltage (VEBO) $-40 \mathrm{~V}$
Collector Current (IC) $-10 \mathrm{~mA}$
Base Current (I_{B}) $-3 \mathrm{~mA}$
Dissipation (P_{D}) 200 mW
p-n-p/n-p-n Transistor Pair (Q3,Q4)
Dissipation (P_{D}) 500 mW
Programmable Unijunction Transistor, PUT (Q1)
Gate-to-Cathode Positive Voltage (V_{GK}) 30 V
Gate-to-Cathode Negative Voltage ($\mathrm{V}_{\mathrm{GKR}}$) 5 V
Gate-to-Anode Negative Voltage (V_{GA}) 30 V
Anode-to-Cathode Voltage (V_{AK}) $\pm 30 \mathrm{~V}$
DC Anode Current 150 mA
Peak Anode Non-Recurrent Forward (On-State) Current (10 μ s pulse) 2 A
Total Average Dissipation 300 mW
Silicon Controlled Rectifier, SCR (O2)
Repetitive Peak Reverse Voltage ($\mathrm{V}_{\mathrm{RRXM}}$), $\mathrm{R}_{\mathrm{GK}}=1 \mathrm{~K} \Omega$ 30 V
Repetitive Peak Off-State Voltage ($\mathrm{V}_{\mathrm{DRXM}}$), $\mathrm{R}_{\mathrm{GK}}=1 \mathrm{k} \Omega$ 30 V
DC On-State Current (ITDC) 150 mA
Peak Surge (Non-Repetitive) On-State Current ($10 \mu \mathrm{~s}$ pulse) 2 A
Forward Peak Gate Current (IGFM) 20 mA
Peak Gate-to-Cathode Reverse Voltage (V_{GRM}) 5 V
Total Average Dissipation 300 mW
Zener Diode, (Z1)DC Current (I_{Z})25 mA
Dissipation (P_{D}) 250 mW

* One or more of the terminals of each element of the CA3097E is isolated from the substrate by a junction diode. In order to maintain electrical isolation between elements, the substrate terminal must be connected to a voltage which is no more positive than that of any other terminal. To avoid undesir able coupling between elements, the substrate terminal (terminal 10) should be maintained at either dc or signal (ac) ground.

ELECTRICAL CHARACTERISTICS

CHARACTERISTIC	SYMBOL	TEST CONDITIONS Ambient Temperature $\left(T_{A}\right)=25^{\circ} \mathrm{C}$ Unless Otherwise Specified	$\begin{aligned} & \text { FIG. } \\ & \text { NO. } \end{aligned}$	LIMITS			UNITS
				Min.	Typ.	Max.	
n-p-n TRANSISTORS Q3, Q5 (TERMINALS 6 and 9 CONNECTED)							
COLLECTOR CUTOFF CURRENT	${ }^{1} \mathrm{CBO}$	$V_{C B}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$		-	-	1	$\mu \mathrm{A}$
COLLECTOR CUTOFF CURRENT	${ }^{\text {I CEO }}$	$V_{C E}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0$		-	-	10	$\mu \mathrm{A}$
COLLECTOR-TO-EMITTER BREAKDOWN VOLTAGE	$V_{(B R)}$ CEO	$I_{C}=100 \mu A, I_{B}=0$		30	-	-	V
COLLECTOR-TO-BASE BREAKDOWN VOLTAGE	$V_{(B R)} C B O$	$I^{\prime}=100 \mu A, I_{E}=0$		50	-	-	V
COLLECTOR-TO-SUBSTRATE BREAKDOWN VOLTAGE	$V_{(B R)} \mathrm{ClO}$	${ }^{\prime} \mathrm{I}^{\prime}=100 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=0, I_{E}=0$		50	-	-	V
EMITTER-TO-BASE BREAKDOWN VOLTAGE	$V_{(B R)} \mathrm{EBO}$	$I_{E}=100 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=0$		5	7.5	10	V
COLLECTOR-TO-EMITTER SATURATION VOLTAGE	$V_{C E}(S A T)$	$\begin{aligned} & I_{C}=50 \mathrm{~mA}, I_{B}=5 \mathrm{~mA} \\ & I_{C}=10 \mathrm{~mA}, I_{B}=1 \mathrm{~mA} \end{aligned}$	5	-	$\overline{0.10}$	0.65	V
BASE-TO-EMITTER SATURATION VOLTAGE	$V_{B E}(S A T)$	${ }^{\prime} \mathrm{C}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=1 \mathrm{~mA}$	2	-	0.76	-	V
BASE-TO-EMITTER VOLTAGE	$V_{B E}$	$V_{C E}=3 \mathrm{~V}, \mathrm{I}^{2}=10 \mathrm{~mA}$	3	0.65	0.73	0.85	V
DC FORWARD-CURRENT	hFE	$V_{C E}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}$	4	100	130	-	
TRANSFER RATIO	hfe	$\mathrm{V}_{\text {CE }}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=50 \mathrm{~mA}$		80	120	-	
p-n-p TRANSISTOR Q4 (TERMINAL	and 8	CTED)					
COLLECTOR CUTOFF CURRENT	${ }^{1} \mathrm{CBO}$	$V_{C B}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$		-	-	-1	$\mu \mathrm{A}$
COLLECTOR CUTOFF CURRENT	${ }^{\text {I CEE }}$	$V_{C E}=-10 \mathrm{~V}, I_{B}=0$		-	-	-10	$\mu \mathrm{A}$
COLLECTOR-TO-EMITTER BREAKDOWN VOLTAGE	$V_{(B R)}$ CEO	$\mathrm{I}_{\mathrm{C}}=-100 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=0$		-40	-	-	V
COLLECTOR-TO-BASE BREAKDOWN VOLTAGE	$V_{(B R)} \mathrm{CBO}$	$I_{C}=-10 \mu A, I_{E}=0$		-50	-	-	V
EMITTER-TO-SUBSTRATE BREAKDOWN VOLTAGE	$V_{(B R)} \mathrm{ElO}$	$I_{E I}=10 \mu A, I_{B}=0, I_{E}=0$		-50	-	-	V
EMITTER-TO-BASE BREAKDOWN VOLTAGE	$V_{(B R)} \mathrm{EBO}$	$\mathrm{I}^{\prime} \mathrm{E}=-10 \mu \mathrm{~A}, \mathrm{I}^{\prime} \mathrm{C}=0$		-40	-	-	V
COLLECTOR-TO-EMITTER SATURATION VOLTAGE	$V_{\text {CE }}(S A T)$	$I_{C}=-1 m A, I_{B}=-100 \mu \mathrm{~A}$	6	-	-	-0.33	V
BASE-TO-EMITTER SATURATION VOLTAGE	$V_{B E}(S A T)$	${ }^{\prime} \mathrm{C}=-1 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=-100 \mu \mathrm{~A}$	7	-	-0.7	-	V
BASE-TO-EMITTER VOLTAGE	$V_{\text {BE }}$	$V_{C E}=-3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=-100 \mu \mathrm{~A}$	8	-0.5	-0.6	-0.7	V
DC FORWARD-CURRENT TRANSFER RATIO	hFE	$\begin{aligned} & V_{C E}=-3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=-100 \mu \mathrm{~A} \\ & V_{C E}=-3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=-1 \mathrm{~mA} \end{aligned}$	9	$\begin{aligned} & 30 \\ & 40 \end{aligned}$	60	-	
n-p-n/p-n-p TRANSISTOR PAIR 03, O4							
DC FORWARD.CURRENT TRANSFER RATIO	$h_{\text {FE }}$	$V_{C E}(n-p-n)=3 \mathrm{~V}, I_{C}=10 \mathrm{~mA}$	10	-	8000	--	
		$V_{C E}(n-p-n)=3 V, I_{C}=50 \mathrm{~mA}$	10	-	6500	-	

ELECTRICAL CHARACTERISTICS (Cont'd.)

CHARACTERISTIC	SYMBOL	TEST CONDITIONS Ambient Temperature $\left(T_{A}\right)=25^{\circ} \mathrm{C}$ Unless Otherwise Specified	$\begin{aligned} & \text { FIG. } \\ & \text { NO. } \end{aligned}$	LIMITS			UNITS
				Min.	Typ.	Max.	
PROGRAMMABLE UNIJUNCTION TRANSISTOR (PUT), Q1							
OFFSET VOLTAGE	$V_{T}{ }^{*}$	$\mathrm{V}_{\mathrm{S}}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{G}}=10 \mathrm{k} \Omega$	11,22 ${ }^{\text {a }}$	0.2	-	0.7	V
		$\mathrm{V}_{\mathrm{S}}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{G}}=1 \mathrm{MS}$		0.2	-	0.7	
ANODE-TO-CATHODE ON-STATE VOLTAGE	V_{F}	$\mathrm{I}_{\mathrm{F}}=50 \mathrm{~mA}$	12	-	0.90	1.5	V
		$\mathrm{I}_{\mathrm{F}}=100 \mathrm{~mA}$		-	1	-	
PEAK OUTPUT VOLTAGE	V_{OM}	$\mathrm{C}=0.22 \mu \mathrm{~F}$ Anode Supply Voltage $=20 \mathrm{~V}$	13,23	-	10	-	V
PEAK-POINT CURRENT	Ip	$V_{S}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{G}}=10 \mathrm{k} \Omega$	$14,22^{\text {a }}$	-	0.55	1	$\mu \mathrm{A}$
		$V_{S}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{G}}=1 \mathrm{MS}$	-	-	0.015	0.15	
VALLEY-POINT CURRENT	IV	$\mathrm{V}_{\mathrm{S}}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{G}}=10 \mathrm{k} \Omega$	17,15	4	40	-	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{S}}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{G}}=1 \mathrm{MS}$	16	-	-	25	
GATE REVERSE CURRENT	IGAO	$V_{S}=30 \mathrm{~V}$	$22^{\text {c }}$	-	0.02	-	nA
GATE REVERSE CURRENT	'GKS	Anode-To-Cathode Short, V_{S}, $=30 \mathrm{~V}$	$22^{\text {d }}$	-	0.2	-	nA
OUTPUT PULSE RISE TIME	t_{r}	$\begin{aligned} & \text { Anode-Supply Voltage }=20 \mathrm{~V} \\ & \mathrm{C}=0.22 \mu \mathrm{~F} \end{aligned}$	23	-	60	-	ns
SILICON CONTROLLED RECTIFIER (SCR), Q2							
PEAK OFF-STATE CURRENT							
FORWARD	${ }^{\text {I DXM }}$	$V_{\text {DRXM }}=30 \mathrm{~V}, \mathrm{R}_{\mathrm{GK}}=1 \mathrm{k} \Omega$	24	-	-	2	$\mu \mathrm{A}$
REVERSE	${ }^{1} \mathrm{RXM}$	$V_{\text {RRXM }}=30 \mathrm{~V}, \mathrm{R}_{\text {GK }}=1 \mathrm{k} \Omega$	24	-	-	2	
FORWARD DC VOLTAGE DROP	V_{T}	$\mathrm{I}_{\mathrm{T}}=50 \mathrm{~mA}$	18	-	0.90	1.5	V
GATE-TO-SOURCE TRIGGER CURRENT	${ }^{\text {IGS }}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	26	-	33	100	$\mu \mathrm{A}$
		$\mathrm{T}^{\prime}=-55^{\circ} \mathrm{C}$	26	-	50	-	
DC GATE-TRIGGER VOLTAGE	V_{GT}	$V_{L}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{~S}$	19	-	0.55	0.75	V
HOLDING CURRENT	${ }^{\prime} \mathrm{HO}$	$\mathrm{R}_{\mathrm{GK}}=1 \mathrm{k} \Omega$	20,24	-	1.2	-	mA
CRITICAL RATE-OF-RISE of off-state voltage	$\mathrm{dv} / \mathrm{dt}$	EXPONENTIAL RISE, $\mathrm{R}_{\mathrm{GK}}=1 \mathrm{k} \Omega 2, \mathrm{~V}_{\mathrm{DR} \times \mathrm{M}}=30 \mathrm{~V}$	25	-	150	-	$\mathrm{V} / \mu \mathrm{s}$
GATE-CONTROLLED TURN.ON TIME	t_{gt}	See Fig. 33	33	-	50	-	ns
CIRCUIT-COMMUTATED TURN-OFF TIME	${ }^{\text {t }}$ q	See Fig. 33	33	-	10	-	$\mu \mathrm{s}$
ZENER DIODE, 21							
ZENER VOLTAGE	v_{z}	$I^{\prime}=10 \mathrm{~mA}$	21	7.2	8	8.8	V
ZENER IMPEDANCE	$\mathrm{Z}_{\text {Z }}$	$I_{Z}=10 \mathrm{~mA}, \mathrm{f}=1 \mathrm{kHz}$		-	15	25	Ω
ZENER VOLTAGE TEMPERATURE COEFFICIENT	$\left(\Delta V_{Z} / V_{Z}\right) / \Delta T$	$\mathrm{I} Z=10 \mathrm{~mA}$		-	+0.05	-	\%/ ${ }^{\circ} \mathrm{C}$
	$\Delta V_{Z} / \Delta \mathrm{T}$			--	+4	-	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
ZENER-TO-SUBSTRATE breakdown voltage	$V_{(B R)} \mathrm{ZIO}$	$I_{Z}=100 \mu \mathrm{~A}$ TERM. 5 TO SUBSTRATE		50	80	-	V

[^58]

Fig. 2 - Base-to-emitter saturation voltage vs. collector current for n-p-n transistors $03 \& 05$.

Fig. 3 - Base-to-emitter voltage vs, ambient temperature for n-p-n transistors Q3 \& 05 .

COLLECTOR CURRENT (IE):mA
Fig. 4 - DC forward-current transfer ratio vs. collector current for n-p-n transistors Q3 \& 05.

COLLECTOR CURRENT (I_{C})=ma
Fig. 7 - Base-to-emitter saturation voltage vs. collector current for p-n-p transistor Q4.

collector gurrent iflema
Fig. $10-D C$ forward-current transfer ratio vs. collector current for transistor pair Q3, Q4.

TYPICAL CHARACTERISTICS

COLLECTOR CURRENT(I I_{C})-mA
Fig. 5 - Collector-to-emitter saturation voltage vs. collector current for n-p-n transistors Q3 \& Q5.

Fig. 8 - Base-to-emitter voltage vs. ambient temperature for $p-n-p$ transistor $Q 4$

Fig. 11 - Offset voltage vs. ambient temperature for Q1 (PUT).

COLLECTOR CUARENT(IC) -mA
Fig. 6 - Collector-to-emitter saturation voltage vs. collector current for p-n-p transistor $Q 4$.

COLLECTOR CURREMT (Ic):ma
Fig. $9-D C$ forward-current transfer ratio vs. collector current for p-n-p transistor 04.

Fig. 12 - Anode-to-cathode on-state voltage vs. anode-to-cathode on-state current for Q1 (PUT).

TYPICAL CHARACTERISTICS (CONT'D)

Fig. 13 - Peak output voltage vs. anode supply voltage for Q1 (PUT).

Fig. 16 - Valley-point current vs. gate-source voltage for Q1 (PUT).

Fig. 19 - Gate-trigger voltage vs. ambient temperature for Q2 (SCR).

Fig. 14 - Peak-point current vs. gate-source voltage and ambient temperature for Q1 (PUT).

Fig. 17 - Valley•point current vs. ambient tem perature for Q1 (PUT).

Fig. 20 - Typical DC holding current vs. gate-tocathode resistance for Q 2 (SCR).

Fig. 15 - Valley-point current vs. gate-source voltage for Q_{1} (PUT).

Fig. 18 - Forward DC on-state current vs. onstate voltage for Q2 (SCR).

Fig. 21 - Zener voltage vs. zener current for $Z 1$.

OPERATING CONSIDERATIONS FOR CA3097

1. Composite p-n-p/n-p-n Transistors $\mathbf{Q 3}, \mathbf{O 4}$ (See Fig. 3)

To use Q 3 as an individual n-p-n transistor, join terminals no. 6 and no. 9 to disable p-n-p transistor 04.
The appropriate terminal connections are then:
Collector. terminal 9
Base \mathbf{t}.erminal 7
Emitter. 8

To use Q4 as an individual p-n-p transistor, join terminals no. 7 and no. 8 to disable n-p-n transistor Q3.
The appropriate terminal connections are then:
Collector. terminal 7
Base terminal 6
Emitter terminal 9
To use Q3 and Q4 as a composite use terminals 6, 7, 8, and 9 as required.

2. Programmable Unijunction Transistor Q1 (PUT)

The programmable unijunction transistor is essentially an anode-gate SCR. The volt-ampere characteristic of the device is shown in Fig. 22. When an equivalent Inevenin source ($V_{\mathrm{S}}, \mathrm{R}_{\mathrm{G}}$), as shown in Fig. 22, is applied to the gate terminal the device will be "off" if the anode-voltage is negative with respect to the gate voltage. Under this condition, any current flow is exclusively leakage current. When the anode voltage be-
comes more positive than the gate voltage by an increment equal to the threshold voltage ($\mathrm{V}_{\mathrm{T}}=0.4 \mathrm{~V}$ typ.), the device can turn "on" only if the current available at the anode terminal is greater than the specified peak-point current. The PUT will then switch through its negative-resistance region to the "on" state (low anode-to-gate voltage). It should be noted that $I P$ is not the maximum current allowed through the device, but is the current required at the peak of the V-I curve. Ip is typically a very low value of current.

After the PUT has switched to its low-impedance state, the device will remain "on" if the anode-current (IA) exceeds the valley-point current (IV). If $I_{A}<I_{V}$, the PUT will switch back to its high-impedance "off" state. Thus, the PUT can be made to "latch" or recover, depending on IV. Since IV is a function of the "on"-state gate current (which depends on R_{G} and V_{S}) a choice of R_{G} and/or V_{S} will determine the operating mode, i.e., "off" state \rightarrow "on" state or "off" state \rightarrow "on" state \rightarrow "off" state. The value of IV increases directly as a function of V_{G} and inversely with R $_{G}$. The PUT
 $R_{G}=1 \mathrm{M} \Omega$. This low value of I_{p} indicates that an extremely large value of anode-supply resistor, e.g. $60 \mathrm{M} \Omega$ (typ.), can be used in timing circuits requiring long RC time constants. This becomes important when considering the size of the external

(b)

(c)

(d)

Fig. 22 - General anode characteristics for Q1 (PUT).

Fig. 23 - Output pulse characteristics for Q1 (PUT).

OPERATING CONSIDERATIONS (CONT'D)

timing capacitor to be used. Consequently, the use of the PUT in the CA3097E is advantageous since it has a lower IP than most discrete PUT's.

Temperature Compensation of Switching Point

As described previously, the PUT will switch to its lowimpedance state when its anode voltage is approximately a diode-drop above the gate voltage. Since the anode-to-gate threshold voltage vs. temperature characteristic is similar to that of a typical silicon-diode junction, a compensating series diode such as used in the circuit of Fig. 29 ($Z 1$ connected as forward-biased diode) considerably reduces the effect of temperature on the switching point.

Bypassing Anode Current

If the PUT gate equivalent source is such that $I_{A}>I_{V}$, the PUT will remain "on". A method for turning the PUT off is by shunting current away from the anode until IA<IV. An example of this technique is the oscillator circuit of Fig. 29. Q3 transistor is turned "on" after the PUT fires and shunts current away from the anode, thereby forcing $I_{A}<I_{V}$. The PUT then turns "off" allowing C_{T} to recharge through R_{T}, to repeat the cycle.

Fig. 24 - Principle voltage-current characteristics for Q2 (SCR).

Fig. 25 - Definition of critical rate of rise of off-state voltage for Q2 (SCR).

Protecting The PUT Against Discharge Current Of The Capacitor

A current-limiting resistor in series with the PUT is normally required to dissipate capacitive discharge energy (see Figs. 23 and 29).

Silicon Controlled Rectifier, Q2 (SCR)

The SCR should be used with a $1 \mathrm{k} \Omega$ (or less) resistor connected between the cathode and gate terminals if the SCR is to be subjected to its maximum forward and reverse voltage ratings ($V_{D X M}$ and $V_{R X M}$). Selecting a value for $R_{G K}$ of $1 \mathrm{k} \Omega$ (or lower) increases the capability of the device to withstand greater $\mathrm{dv} / \mathrm{dt}$ and increases the noise immunity of the SCR against false triggering at the gate. Practical considerations such as available current drive from the triggering devices (e.g., a PUT) will determine the lowest value of RGK at which the SCR will fire with a $V_{G K} \approx 0.55 \mathrm{~V}$. With a value of 500Ω for RGK, the trigger source must be capable of supplying 1.1 mA . R RGK should be non-inductive within the frequency band of the noise transients normally encountered in a particular application.

Fig. 26 - Test circuit for determining
${ }^{\prime} G S^{\text {in }} \mathbf{Q 2}$ (SCR).

APPLICATIONS CIRCUITS

TIMING PERIOD ≈ 200 SEC. WITH \& M Ω POT CENTERED
TIMING CYCLE BEGINS WHEN AC IS APPLIED

* SPRAGUE TYPE 4308, 5μ F AT 50 V

SPRAGUE TYPE $6308,5 \mu$ F AT 50 V
OR EQUIVALENT
Fig. 27 - AC line-operated one-shot timer.

TYPICAL TEMPERATURE CHARACTERISTIC
(@) $R_{L}=330 \Omega \frac{\Delta V_{0} / V_{0}}{\Delta T} \times 100= \pm 0.01 \% /{ }^{\circ} \mathrm{C}$
TYP. LOAD REGULATION@ $I_{L}=0$ TO $40 \mathrm{~mA},\left(\triangle V_{0} / V_{O}\right) \times 100=$ -3% (NO LOAD TO FULL LOAD)

TYP. LINE REGULATION @ RL $=330 \Omega, \frac{\Delta V_{0} / V_{0}}{\Delta V_{U N R E G}} \times 100= \pm 0.55 \% / \mathrm{V}$
Fig. 28 - Temperature-compensated shunt regulator.

PULSE RATE ADJUSTED BY VARYING RTOR C_{T} OUTPUT PULSE WIDTH ADJUSTED BY $R_{1} C_{1}$ DIFFERENTIATING TIME CONSTANT

TYPICAL OPERATION FOR:
$V^{+}=15 V_{1} C_{T}=0.1 \mu F, R_{T}=4.3 \mathrm{~K} \Omega$
$C_{1}=82 \mathrm{~F}$
$C_{1}=82 \mathrm{DF}, \quad R_{1}=60 \mathrm{~K} \Omega$
Fig. 29 - Pulse generator.

APPLICATIONS CIRCUITS

TYPICAL LOAD REGULATION @ $V_{0}=12 \mathrm{~V}$. I $I_{L}=0$ TO 40 mA
$\frac{\Delta V_{O}}{V_{O}} \times 100 \div \pm 0.4 \%$ (NO LOAD TO FULL LOAD)
TYPICAL LINE REGULATION @ $V_{0}=12 \mathrm{~V}$
$\frac{\Delta v_{0} / v_{0}}{\Delta v_{\text {UNREG. }}} \times 100= \pm 0.45 \% / \mathrm{V}$
Fig. 30 - Series voltage regulator.

Fig. $31-5$ to $7.5 V$ shunt regulator.

Fig. 32 - Schmitt trigger.

APPLICATIONS CIRCUITS (CONT'D)

Fig. 33 - Monostable multivibrator with variable delay.

$T_{O F F}=$ TIMING PERIOD (NO LOAD CURRENT)
PUT FIRES WHEN $V_{C} \approx 8 \vee$
$V_{C}=\frac{I_{C}\left(T_{O F F}\right)}{C_{T}}, I_{C} \approx I_{T}(Q 3, Q 5$ MATCHED)
I_{T} SET BY ADJUSTING $R_{T}, I_{T} \approx \frac{v^{+}-O ?}{R_{T}}$
$T_{O N}=$ CAPACITOR DISCHARGE TIME THROUGH LOAO. LOAD TURNS OFF WHEN SCR ANODE CURRENT FALLS BELOW HOLDING CURRENT ($I_{\text {HO }}$). TYPICAL $I_{H O}=1.2 \mathrm{~mA}$ EXAMPLE: FOR TIMING PERIOD OF 83 MIN
$C_{T}=1000 \mu F, I_{T}=16 \mu \mathrm{~A}$
$R_{T}=\frac{V^{+}-07}{I_{T}}\left(F O R V^{+}=16 \mathrm{~V}, R_{T} \approx 1 \mathrm{M} \Omega\right)$

Fig. 34 - Low-current-drain battery-operated long interval astable timer.

NOTE: SHORT TERMINAL 15 TO 14 WHEN USING Q5 AS A DIODE

Fig. 35 - Phase control circuit.

High-Frequency N-P-N Transistor Array

For Low-Power Applications at Frequencies up to 500 MHz

Features:

- Gain-bandwidth product (fT) $>1 \mathrm{GHz}$
- Power gain $=30 \mathrm{~dB}$ (typ.) at 100 MHz
- Noise figure $=3.5 \mathrm{~dB}$ (typ.) at 100 MHz
- Five independent transistors on a common substrate

Applications:

- VHF amplifiers
- Multifunction combinations RF/mixer/oscillator
- Sense amplifiers
- Synchronous detectors
- VHF mixers
- IF converter
- IF amplifiers
- Synthesizers
- Cascade amplifiers

The CA3127* consists of five general-purpose silicon n-p-n transistors on a common monolithic substrate. Each of the completely isolated transistors exhibits low $1 / \mathrm{f}$ noise and a value of f_{T} in excess of 1 GHz , making the CA3127 useful from dc to 500 MHz . Access is provided to each of the terminals for the individual transistors and a separate substrate connection has been provided for maximum application flexibility. The monolithic construction of the CA3127 provides close electrical and thermal matching of the five transistors.

The CA3127 is supplied in the 16 -lead Small Outline package (M suffix), 16-lead dual-in-line plastic package (E suffix), 16-lead dual-in-line frit-seal ceramic package (F suffix), and is also available in clip form (H suffix). It operates over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
*Formerly RCA Dev. No. TA6206.

Figure 1 - Schematic diagram of CA3127.
MAXIMUM RATINGS, Absolute-Maximum Values:
POWER DISSIPATION, PD:
Any one transistor 85 mW
Total Package:
For T_{A} up to $75^{\circ} \mathrm{C}$ 425 mW
For $T_{A}>75^{\circ} \mathrm{C}$ Derate Linearly at $6.67 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
AMBIENT TEMPERATURE RANGE:
Operating $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
LEAD TEMPERATURE (DURING SOLDERING):
At distance $1 / 16 \pm 1 / 32$ inch ($1.59 \pm 0.79 \mathrm{~mm}$) from case for 10 seconds max. $+265^{\circ} \mathrm{C}$
The following ratings apply for each transistor in the device: COLLECTOR-TO-EMITTER VOLTAGE, VCEO 15 V
COLLECTOR-TO-BASE VOLTAGE, VCBO 20 V
COLLECTOR-TO-SUBSTRATE VOLTAGE, $\mathrm{V}_{\mathrm{CIO}}{ }^{*}$ 20 V
COLLECTOR CURRENT, IC 20 mA

[^59]CA3127
STATIC ELECTRICAL CHARACTERISTICS at $\mathrm{T}_{\mathrm{A}}=\mathbf{2 5 ^ { \circ }} \mathbf{C}$

CHARACTERISTICS	TEST CONDITIONS		LIMITS			UNITS
			Min.	Typ.	Max.	
For Each Transistor:						
Collector-to-Base Breakdown Voltage	${ }^{1} \mathrm{C}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{E}}=0$		20	32	-	v
Collector-to-Emitter Breakdown Voltage	$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0$		15	24	-	v
Collector-to-Substrate Breakdown Voltage			20	60	-	v
Emitter-to-Base Breakdown Voltage*	$\mathrm{I}_{\mathrm{E}}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=0$		4	5.7	-	V
Collector-Cutoff-Current	$\mathrm{V}_{C E}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0$		-	-	0.5	$\mu \mathrm{A}$
Collector-Cutoff-Current	$\mathrm{V}_{C B}=10 \mathrm{~V}, \mathrm{IE}_{\mathrm{E}}=0$		-	-	40	nA
DC Forward-Current Transfer Ratio	$\mathrm{V}_{\text {CE }}=6 \mathrm{~V}$	$\mathrm{IC}=5 \mathrm{~mA}$	35	88	-	
		$\mathrm{I}_{\mathrm{C}} \mathrm{C}=1 \mathrm{~mA}$	40	90	-	
		$\mathrm{I}^{\mathrm{C}}=0.1 \mathrm{~mA}$	35	85	-	
Base-to-Emitter Voltage	$V_{C E}=6 \mathrm{~V}$	$\mathrm{I}^{\prime} \mathrm{C}=5 \mathrm{~mA}$	0.71	0.81	0.91	v
		$\mathrm{I}_{\mathrm{C}} \mathrm{C}=1 \mathrm{~mA}$	0.66	0.76	0.86	
		$\dot{i}=0.1$ min	0.50	0.70	n.8n	
Collector-to-Emitter Saturation Voltage	$\mathrm{IC}^{\prime}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=1 \mathrm{~mA}$		-	0.26	0.50	v
Magnitude of Difference in $V_{B E}$	O_{1} \& O_{2} Matched		-	0.5	5	mV
Magnitude of Difference in lB	$\mathrm{V}_{\mathrm{CE}}=6 \mathrm{~V}, \mathrm{IC}=1 \mathrm{~mA}$		-	0.2	3	$\mu \mathrm{A}$

*When used as a zener for reference voltage, the device must not be subjected to more than 0.1 millijoule of energy from any possible capacitance or electrostatic discharge in order to prevent degradation of the junction. Maximum operating zener current should be less than 10 mA .

DYNAMIC CHARACTERISTICS at $T_{A}=25^{\circ} \mathrm{C}$

CHARACTERISTICS	TEST CONDITIONS	LIMITS			UNITS
		Min.	Typ.	Max.	
1/F Noise Figure	$\mathrm{f}=100 \mathrm{kHz}, \mathrm{R}_{\mathrm{S}}=500 \Omega, \mathrm{I}=1 \mathrm{~mA}$	-	1.8	-	dB
Gain-Bandwidth Product	$\mathrm{V}_{\text {CE }}=6 \mathrm{~V}, \mathrm{I} \mathrm{C}=5 \mathrm{~mA}$	-	1.15	-	GHz
Collector-to-Base Capacitance	$\mathrm{V}_{\mathrm{CB}}=6 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	-	See	-	pF
Collector-to-Substrate Capacitance	$\mathrm{V}_{\mathrm{Cl}}=6 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	-	Fig.	-	pF
Emitter-to-Base Capacitance	$\mathrm{V}_{\mathrm{BE}}=4 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	-	5	-	pF
Voltage Gain	$\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=6 \mathrm{~V}, \mathrm{f}=10 \mathrm{MHz} \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA} \end{aligned}$	-	28	-	dB
Power Gain	Cascode Configuration$\begin{aligned} & f=100 \mathrm{MHz}, \mathrm{~V}^{+}=12 \mathrm{~V} \\ & \mathrm{IC}=1 \mathrm{~mA} \end{aligned}$	27	30	-	dB
Noise Figure		-	3.5	-	dB
Input Resistance	Common-Emitter Configuration$\begin{aligned} & \mathrm{VCE}=6 \mathrm{~V} \\ & \mathrm{I} C=1 \mathrm{~mA} \\ & \mathrm{f}=200 \mathrm{MHz} \end{aligned}$	-	400	-	Ω
Output Resistance		-	4.6	-	$\mathrm{k} \Omega$
Input Capacitance		-	3.7	-	pF
Output Capacitance		-	2	-	pF
Magnitude of Forward Transadmittance		-	24	-	mmho

COLLECTOR CURRENT (I_{C})-mA
Fig. 2-1/f noise figure as a function of collector current at $R_{\text {SOURCE }}=500 \Omega$.

Fig. 4 - Gain-bandwidth product as a function of collector current.

Fig. 6(a) - Capacitance as a function of bias voltage for Q_{2}.

frequency (f)-Mnz
Fig. 7 - Voltage gain as a function of frequency at $R_{L}=100 \Omega$.

Fig. 3-1/f noise figure as a function of collector current at RSOURCE $=1 \mathrm{k} \Omega$.

Fig. 5 - Base-to-emitter voltage as a function of collector current.

Transistor	Capacitance (pF)							
	C_{CB}		$\mathrm{c}_{\text {CE }}$		$\mathrm{C}_{\text {EB }}$		c_{Ct}	
	Pkg.	Total	Pkg.	Total	Pkg.	Total	Pkg.	Total
Bias Voltage	-	6 V	-	6 V	-	4 V	-	6 V
01	0.025	0.190	0.090	0.125	0.365	0.610	0.475	1.65
02	0.015	0.170	0.225	0.265	0.130	0.360	0.085	1.35
03	0.040	0.200	0.215	0.240	0.360	0.625	0.210	1.40
04	0.040	0.190	0.225	0.270	0.365	0.610	0.085	1.25
Q5	0.010	0.165	0.095	0.115	0.140	0.365	0.090	1.35

Fig. $6(b)$ - Typical capacitance values at $f=1 \mathrm{MHz}$. Three terminal measurement. Guard all terminals except those under test.

Fig. 8 - Voltage gain as a function of frequency at $R_{L}=1 \mathrm{ks}$.

Fig. $9-D C$ forward-current transfer ratio as a function of collector current.

Fig. 11 - Input admittance $\left(Y_{11}\right)$ as a function of collector current.

Fig. 13 - Output admittance $\left(Y_{22}\right)$ as a function of collector current.

Fig. 15 - Forward transadmittance $\left(Y_{21}\right)$ as a function of frequency.

Fig. 10 - Input admittance $\left(Y_{11}\right)$ as a function of frequency.

Fig. 12 - Output admittance (Y_{22}) as a function of frequency.

Fig. 14 - Forward transadmittance $\left(Y_{21}\right)$ as a function of collector current.

Fig. 16 - Reverse transadmittance $\left(Y_{12}\right)$ as a function of collector current.

Fig. 17 - Reverse transadmittance $\left(Y_{12}\right)$ as a function of frequency.

Fig. 18 - Voltage-gain test circuit using currentmirror biasing for Q_{2}.

This circuit was chosen because it conveniently represents a close approximation in performance to a properly unilateralized single transistor of this type. The use of Q3 in a current-mirror configuration facilitates simplified biasing. The use of the cascode circuit in no way implies that the transistors cannot be used individually.

Fig. $19-100-\mathrm{MHz}$ power-gain and noise-figure test circuit.

Fig. 20 - Block diagrams of power-gain and noise-figure test set-ups.

High-Voltage Diode Array

For Commercial, Industrial, and Military Applications

Features:

- Matched monolithic construction - V_{F} for each diode pair matched to within 0.55 mV (typ.) at $I_{F}=1 \mathrm{~mA}$
- Low diode capacitance - 0.3 pF (typ.) at $V_{R}=2 \mathrm{~V}$
- High diode-to-substrate breakdown voltage-30 V (min.)
- Low reverse (leakage) current - 100 nA (max.)

Applications:

- Balanced modulators of demodulators
- Analog switches
- High-voltage diode gates
- Current ratio detectors

The CA3141E High Voltage Diode Array Consists of ten general purpose high reverse breakdown diodes. Six diodes are internally connected to form three common cathode diode pairs, and the remaining tour doodes are internaily connecied to form two common anode diode pairs. Integrated circuit construction assures excellent static and dynamic matching of the diodes, making the CA3141 extremely useful for a wide variety of applications in communications and switching systems.

The CA3141 is supplied in the 16-lead dual-in-line plastic package (E suffix), and in chip form (H suffix).

Figure 1-Terminal assignment.

MAXIMUM RATINGS, Absolute-Maximum Values:

PEAK DIODE-TO-SUBSTRATE VOLTAGE . 30. .

DISSIPATION:

Total Package:
Up to $55^{\circ} \mathrm{C}$. 650 mW
For $T_{A}>55^{\circ} \mathrm{C}$
. Derate linearly at $6.67 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
AMBIENT TEMPERATURE RANGE:

Storage . 65 to $+150^{\circ}$ 年
LEAD TEMPERATURE (During Soldering):

ELECTRICAL CHARACTERISTICS at $\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

CHARACTERISTIC	TEST CONDITIONS		LIMITS			UNIT	
			Min.	Typ.	Max.		
DC Forward Voltage Drop, V_{F}	I_{F} (Anode)	$100 \mu \mathrm{~A}$	-	0.7	0.9	V	
		1 mA	-	0.78	1		
		10 mA	-	0.93	1.2		
DC Reverse Breakdown Voltage, $V_{(B R) R}$	${ }^{\prime}{ }_{F}=-10 \mu \mathrm{~A}$		30	50	-	V	
DC Breakdown Voltage Between Any Diode and Substrate, $V_{\text {(BR)DI }}$	${ }^{\prime} \mathrm{DI}^{\prime}=10 \mu \mathrm{~A}$		30	50	-	V	
DC Reverse (Leakage) Current, I_{R}	$V_{F}=-20 \mathrm{~V}$		-	-	100	nA	
DC Reverse (Leakage) Current Between Any Diode and Substrate, IDI	$\mathrm{V}_{\mathrm{DI}}=20 \mathrm{~V}$		-	-	100	nA	
Magnitude of Diode Offset Voltage Between Diode Pairs	$\begin{aligned} & \mathrm{V}_{\mathrm{DI}}=20 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{FA}}=1 \mathrm{~mA} \end{aligned}$		-	0.55	-	mV	
Temperature Coefficient of Forward Voltage Drop, $\Delta V_{F /} \Delta T$	$\mathrm{I}_{\mathrm{F}}=1 \mathrm{~mA}$		-	-1.5	-	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	
Reverse Recovery Time, $\mathrm{trr}_{\text {rr }}$	$\mathrm{I}_{\mathrm{F}}=2 \mathrm{~mA}, \mathrm{I}_{\mathrm{R}}=2 \mathrm{~mA}$		-	50	-	ns	
Diode Capacitance, C_{D}			See Fig. 5			pF	
Diode Anode-to-Substrate Capacitance, CDAI			See Fig. 6			pF ${ }^{\prime}$	
Diode Cathode-to-Substrate Capacitance, $\mathrm{C}_{\mathrm{DCI}}$			See Fig. 7			pF	
Magnitude of Cathode-to-Anode Current Ratio, $\\|_{\text {FC }} /{ }^{\text {FAl }}$	$\mathrm{I}_{\mathrm{FA}}=1 \mathrm{~mA}$	DS $=10 \mathrm{~V}$	0.9	0.96	-		

Fig. $2-D C$ forward voltage drop vs. forward current.

Fig. 3 - DC forward voltage drop vs. ambient temperature.

Fig. 4 - Diode offset voltage vs. magnitude of anode current.

Fig. 6 - Diode anode-to-substrate capacitance vs. reverse voltage.

Fig. 8 - Forward (cathode) current vs. forward (anode) current.

Fig. 5 - Diode capacitance vs. cathode-toanode reverse voltage.

Fig. 7 - Diode cathode-to-substrate capacitance vs. cathode-to-substrate $D C$ reverse voltage.

Fig. 9 - DC leakage current vs. ambient temperature.

High-Voltage Transistor Arrays

Features:

- Matched general-purpose transistors
- VBE matched $\pm 5 \mathrm{mV}$ max.
- Operation from DC to 120 MHz (CA3146AE, E)
- Low-noise figure: 3.2 dB typ. at 1 kHz (CA3146AE, E)
- High IC: 75 mA max. (CA3183AE, E)

Applications:

- General use in signal processing systems in DC through VHF range
- Custom designed differential amplifiers
- Temperature compensated amplifiers
- Lamp and relay drivers (CA3183AE, E)
- Thyristor firing (CA3183AE, E)

The CA3146AE, CA3146E, CA3183AE, and CA3183E* are general-purpose high-voltage silicon n-p-n transistor arrays on a common monolithic substrate.

Types CA3146AE and CA3146E consist of five transistors with two of the transistors connected to form a differentiallyconnected pair. These types are recommended for low-power applications in the DC through VHF range. Both types are supplied in a 14 -lead dual-in-line plastic package and operate over the ambient temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Additionally, the CA3146 is supplied in a 14 -lead Small Outline package (M suffix). (CA3146AE and CA3146E are high-voltage versions of the popular predecessor type САЗО46.)

Types CA3183AE and CA3183E consist of five high-current transistors with independent connections for each transistor. In addition two of these transistors (Q1 and Q2) are matched at low-current (i.e. 1 mA) for applications where offset parameters are of special importance. A special substrate
terminal is also included for greater flexibility in circuit design. Both types are supplied in a 16 -lead dual-in-line plastic package and operate over the ambient temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Additionally, the CA3183 is supplied in a 14-lead Small Outline package (M suffix). (CA3183AE and CA3183E are high-voltage versions of the popular predecessor type САЗО83.)

The types with an " A " suffix are premium versions of their non-"A" counterparts and feature tighter control of breakdown voltages making them more suitable for higher voltage applications.
For detailed application information, see companion Application Note, ICAN-5296 "Application of the CA3018 Integrated Circuit Transistor Array."
*Formerly Developmental Types Nos.
CA3146AE - TA6084
CA3183AE
CA3146E

TYPE	$\mathrm{P}^{\mathbf{\circ}}{ }^{\circ}$ MAX. mW	${ }^{1} \mathrm{C}$ MAX. mA	$v_{\text {CEO }}$ MAX. V	$\mathrm{v}_{\mathrm{CBO}}$ MAX. v	$V_{C E}$ sat. at 10 mA TYP. V	$\begin{gathered} h_{\mathrm{FEE}} \\ \text { at } 1 \mathrm{~mA}, \\ \& \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V} \\ \mathrm{TYP} . \end{gathered}$	DIFF. PAIR AT 1 mA		T_{A} Range (OPERATING) ${ }^{\circ} \mathrm{C}$
							v_{10} max. mV	$1 / 2$ $M A X$ $\mu \mathrm{A}$	
VALUES APPLY FOR EACH TRANSISTOR									
CA3146AE	300	50	40	50	0.33	95	± 5	2	$-40-+85$
CA3146E	300	50	30	40	0.33	95	± 5	2	$-40-+85$
CA3183AE	500	75	40	50	0.16	75	± 5	2.5	$-40-+85$
CA3183E	500	75	30	40	0.16	75	± 5	2.5	$-40-+85$

[^60]MAXIMUM RATINGS, Absolute-Maximum Values at $T_{A}=250 \mathrm{C}$
POWER DISSIPATION:
Any one transistor -
СА3146AE, СА3146E . 300 mW

Total package -
Up to $55^{\circ} \mathrm{C}$ (CA3146AE, CA3146E, CA3183AE, CA3183E)
750 mW
Above to $55^{\circ} \mathrm{C}$ (CA3146AE, CA3146E, CA3183AE, CA3183E) . Derate linearly $6.67 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
AMBIENT TEMPERATURE RANGE:
Operating -

Storage (all types) . 65 to $+150^{\circ} \mathrm{C}$
The following ratings apply for each transistor in the device:
COLLECTOR-TO-EMITTER VOLTAGE ($V_{C E O}$):
САЗ146АЕ, САЗ183АЕ... 40 V
CA3146E, CA3183E30 V
COLLECTOR-TO-BASE VOLTAGE (VCBO): CA3146AE, CA3183AE 50 V
CA3146E, CA3183E 40 V
COLLECTOR-TO-SUBSTRATE VOLTAGE ($\mathrm{V}_{\mathrm{CIO}}$): : CA3146AE, CA3183AE 50V
CA3146E, CA3183E 40V
EMITTER-TO-BASE VOLTAGE (VEBO) all types V
COLLECTOR CURRENT -
CA3146AE, CA3146E 50 mA
CAN:Oご․ ?5mA.
BASE CURRENT (IB) - CA3183AE, CA3183E 20 mA

- The collector of each transistor is isolated from the substrate by an integral diode. The substrate must be connected to a voltage which is more negative than any collector voltage in order to maintain isolation between transistor action. To avoid undesired coupling between transistors, the substrate terminal should be maintained at either $D C$ or signal (AC) ground. A suitable bypass capacitor can be used to establish a signal ground.

Figure 1 -Schematic diagrams of high-voltage arrays.

COMPARISON OF RELATED PREDECESSOR TYPE WITH TYPES IN THIS DATA BULLETIN

	DATA FILENO.	$\mathrm{V}_{\text {CEO }}$ MIN.	$\begin{aligned} & \mathrm{V}_{\mathrm{CBO}} \\ & \text { MIN. } \end{aligned}$	v_{CE} sat. TYP.V	$V_{B E}$ TYP. V	$\underset{\text { MAX. } \mathrm{mA}}{\text { IC }}$	$\begin{gathered} \mathrm{C}_{\mathrm{CB}} \\ \text { TYP. } \mathrm{pF} \end{gathered}$	$\underset{\text { TYP. }}{\substack{\mathrm{C}_{\mathrm{CI}}}}$	$\begin{gathered} \mathrm{C}_{E B} \\ \text { TYP. } \mathrm{pF} \end{gathered}$
				${ }^{\prime} \mathrm{C}=10 \mathrm{~mA}$	$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$				
САЗО46	341	15	20	0.23	0.715	50	0.58	2.8	0.6
CA3146AE		40	50	0.33	0.730	50	0.37	2.2	0.7
CA3146E		30	40	0.33	0.730	50	0.37	2.2	0.7
	481	15	20	$\mathrm{I}^{\text {C }}=50 \mathrm{~mA}$	$\mathrm{I}^{\prime} \mathrm{C}=10 \mathrm{~mA}$	100	-	-	-
СА3083				0.4	0.74				
CA3183AE		40	50	1.7	0.75	75			-
CA3183E		30	40	1.7	0.75	75	-	-	-

STATIC ELECTRICAL CHARACTERISTICS - CA3146 Series

DYNAMIC ELECTRICAL CHARACTERISTICS - CA3146 Series

CHARACTERISTICS	$\begin{aligned} & \text { SYM- } \\ & \text { BOL } \end{aligned}$	TEST CONDITIONS		CA3146AE			CA3146E			UNITS
		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	Typ. Char. Curve Fig.No.							
				Min.	Typ.	Max.	Min.	Typ.	Max.	
Low Frequency Noise Figure	NF	$\begin{aligned} & \mathrm{f}=1 \mathrm{kHz}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}, \\ & \mathrm{I}^{\mathrm{C}=100 \mu \mathrm{~A} \text {, Source }} \\ & \text { resistance }=1 \mathrm{k} \Omega \end{aligned}$	14	\cdots	3.25	-	-	3.25	-	dB
Low-Frequency, Small-Signal Equivalent-Circuit Characteristics: Foward-Current Transfer Ratio	h_{fe}	$\begin{aligned} & f=1 \mathrm{kHz}, V_{C E}=5 \mathrm{~V}, \\ & \mathrm{I}=1 \mathrm{~mA} \end{aligned}$	16	-	100	-	-	100	-	-
Short-Circuit Input Impedance	$\mathrm{h}_{\text {ie }}$		16	-	2.7	-	-	3.5	-	k Ω
Open-Circuit Output Impedance	hoe		16	-	15.6	-	-	15.6	-	$\mu \mathrm{mho}$
Open-Circuit Reverse Voltage Transfer Ratio	$\mathrm{h}_{\text {re }}$		16	-	1.8×10^{-4}	-	-	1.8×10^{-4}	-	-
Admittance Characteristics: Foward Transfer Admittance	$Y_{\text {fe }}$	$\begin{aligned} & f=1 \mathrm{MHz}, V_{C E}=5 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA} \end{aligned}$	17	-	31-1 1.5	-	--	$31 . j 1.5$	-	mmho
Input Admittance	Y_{ie}		18	-	0.35+j0.04	-	-	$0.3+\mathrm{j} 0.04$	-	mmho
Output Admittance	$Y_{\text {oe }}$		19	-	$0.001+\mathrm{j} 0.03$	-	--	0.001+j0.03	-	mmho
Reverse Transfer Admittance	$Y_{\text {re }}$		20		See curve			See curve		mmho
Gain-Bandwidth Product	${ }^{\text {f }}$	$V_{C E}=5 \mathrm{~V}, \mathrm{I}^{\prime}=3 \mathrm{~mA}$	21	300	500	-	300	500	-	MHz
Emitter-to-Base Capacitance	CEb	$V_{E B}=5 V, I_{E}=u$	\angle	-	U. 10	-	-	0.70	-	ni'
Collector-to-Base Capacitance	${ }^{\text {CBB }}$	$V_{C B}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0$	22	-	0.37	-	-	0.37	-	pF
Collector-to-Substrate Capacitance	C_{Cl}	$\mathrm{V}_{\mathrm{Cl}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0$	22	-	2.2	-	-	2.2	-	pF

STATIC ELECTRICAL CHARACTERISTICS - CA3183 Series

CHARACTERISTICS	SYMBOL	TEST CONDITIONS		LIMITS						UNITS
		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	Typ. Char Curve Fig. No.	CA3183AE			CA3183E			
				Min.	Typ.	Max.	Min.	Typ.	Max.	
For Each Transistor:										
Collector-to-Base Breakdown Voltage	$v_{\text {(BR) }}{ }^{\text {CBO }}$	${ }^{\prime} \mathrm{C}=100 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{E}}=0$	-	50	-	-	40	-	-	v
Collector-to-Emitter Breakdown Voltage	$V_{\text {(BR)CEO }}$	$I^{\prime}=1 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0$	-	40	-	-	30	-	-	V
Collector-to-Substrate Breakdown Voltage	$V_{\text {(BR) }}{ }^{\text {cio }}$	$\begin{aligned} & I_{C I}=100 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=0, \\ & \mathrm{I}_{\mathrm{E}}=0 \end{aligned}$	-	50	-	-	40	-	-	V
Emitter-to-Base Breakdown Voltage	$V_{\text {(BR)EBO }}$	$I_{E}=500 \mu \mathrm{~A}, \mathrm{I} C=0$	-	5	-	-	5	-	-	v
Collector-Cutoff Current	'CEO	$V_{C E}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0$	23	-	-	10	-	-	10	$\mu \mathrm{A}$
Collector-Cu:aff Current	${ }^{\text {I CBO }}$	$V_{C B}=10 \mathrm{~V}, 1_{E}=0$	24	-	-	1	-	-	1	$\mu \mathrm{A}$
\qquad	hfe	$\mathrm{V}_{\text {CE }}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}$	25,26	40	-	-	40	-	-	-
		$\mathrm{V}_{\text {CE }}=5 \mathrm{~V}, 1_{\mathrm{C}}=50 \mathrm{~mA}$	-	40	-	-	40	-	-	
Base-to-Emitter Voltage	$V_{B E}$	$\mathrm{V}_{\mathrm{CE}}=3 \mathrm{~V}, \mathrm{IC}=10 \mathrm{~mA}$	27	0.65	0.75	0.85	0.65	0.75	0.85	V
Collector-to-Emitter Saturation Voltage	${ }^{*} \mathrm{~V}_{\mathrm{CEsat}}$	$I^{\prime} \mathrm{C}=50 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=5 \mathrm{~mA}$	28	-	1.7	3.0	-	1.7	3.0	V
For Transistors Q1 and Q2 (As a Differential Amplifier):										
Absolute Input Offset Voltage	$\left\|v_{10}\right\|$	$V_{C E}=3 \mathrm{~V}, \mathrm{I}^{\prime}=1 \mathrm{~mA}$	29	-	0.47	5	-	0.47	5	mV
Absolute Input Offset Current	$\|110\|$		30	-	0.78	2.5	-	0.78	2.5	$\mu \mathrm{A}$

[^61]TYPICAL STATIC CHARACTERISTICS CURVES - CA3146 SERIES

Fig. $2-{ }^{-}$CEO vs. T_{A} for any transistor.

Fig. $5-V_{B E}$ vs. T_{A} for any transistor.

Fig. $3-I_{\text {CBO }}$ vs. T_{A} for any transistor.

Fig. 6- $V_{C E}$ sat vs. IC for any transistor.

Fig. 4 - hFE vs. IC for any transistor.

Fig. $10-V_{10}$ vs. T_{A} for 01 and 02 .

Fig. $11-V_{B E}$ and V_{10} vs. I_{E} for 01 and 02.

Fig. 12 - IIO vs. IC (Q1 and Q2) for types CA3146AE and CA3146E.

TYPICAL DYNAMIC CHARACTERISTICS CURVES (FOR ANY TRANSISTOR) - CA3146 SERIES

Fig. $13-$ NF vs. $I_{C} @ R_{S}=500 \Omega$.

Fig. $16-h_{f e}, h_{i e}, h_{o g}, h_{r e}$ vs. $I^{\text {ress }}$.

Fig. $19-y_{o e}$ vs. f.

Fig. $14-N F$ vs. $I_{C} @ R_{S}=1 k \Omega$.

Fig. $17-y_{f e}$ vs. f.

Fig. $20-y_{r e}$ vs. f.

Fig. $22-C_{E B}, C_{C B}, C_{C I}$ vs. bias voltage

TYPICAL STATIC CHARACTERISTICS CURVES - CA3183 SERIES

Fig. $23-I_{\text {CEO }}$ vs. T_{A} for any transistor.

Fig. $25-h_{F E}$ vs. T_{A} for any transistor.

Fig. 27 VBE vs. IC for any transistor.

Fig. 29 - $\left|V_{10}\right|$ vs. IC for differential amplifier (01 and Q2).

Fig. $24-I_{\text {CBO }}$ vs. T_{A} for any transistor.

Fig. $26-h_{\text {FE }}$ vs. IC for any transistor.

Fig. $28-V_{C E}$ sat vs. IC for any transistor.

Fig. $30-|/ 10|$ vs. IC for differential amplifier (Q1 and Q2).

Arrays
CA3227, CA3246

May 1990

High-Frequency N-P-N Transistor Arrays

For Low-Power Applications at Frequencies up to 1.5 GHz

Features:

■ Gain-bandwidth product ($f \mathrm{~T}$) $>3 \mathrm{GHz}$

- Five transistors on a common substrate

Applications:

- VHF amplifiers
- VHF mixers
- Multifunction combinations-RF/mixer/oscillator
- IF converter
- IF amplifiers
- Sense amplifiers
- Synthesizers
- Synchronous detectors
- Cascade amplifiers

The CA3227E and CA3246E* consist of five general purpose silicon n-p-n transistors on a common monolithic substrate. Each of the transistors exhibits a value of f_{T} in excess of 3 GHz , making them useful from dc to 1.5 GHz . The monolithic construction of these devices provides close electrical and thermal matching of the five transistors.

The CA3227 is supplied in a 16 -lead Small Outline package (M suffix) and in 16-lead dual-in-line plastic package (E suffix). The CA3246 is supplied in a 14 -lead Small Outline package (M suffix) and in a 14 -lead dual-in-line plastic package (E suffix).
*Formerly RCA Development Nos. TA10854 and TA10855, respectively.

MAXIMUM RATINGS, Absolute-Maximum Values at $T_{A}=25^{\circ} \mathrm{C}$

Total Package:
For T_{A} up to $\mathrm{75}^{\circ} \mathrm{C}$... 425 mW For $T_{A}>75^{\circ} \mathrm{C}$ Derate Linearly at $6.67 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
AMBIENT TEMPERATURE RANGE:
Operating
-55 to $+125^{\circ} \mathrm{C}$
Storage
-65 to $+150^{\circ} \mathrm{C}$
LEAD TEMPERATURE (DURING SOLDERING):

The following ratings apply for each transistor in the device:
COLLECTOR-TO-EMITTER VOLTAGE, VCEO ... 8 V

COLLECTOR-TO-SUBSTRATE VOLTAGE, $\mathrm{V}_{\text {CIO§ }}$... 20 V

[^62]STATIC ELECTRICAL CHARACTERISTICS at TA $=25^{\circ} \mathrm{C}$

CHARACTERISTIC	SYMBOL	TEST CONDITIONS		LIMITS			UNITS
				Min.	Typ.	Max.	
For Each Transistor:							
Collector-to-Base Breakdown Voltage	$V_{(B R) C B O}$	$I^{\prime}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{E}}=0$		12	20	-	V
Collector-to-Emitter Breakdown Voltage	$V_{\text {(BR) }}$ CEO	$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0$		8	10	-	V
Collector-to-Substrate Breakdown Voltage	$V(B R) C I O$	$\begin{gathered} \mathrm{I}_{\mathrm{C} 1}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=0, \\ \mathrm{I}_{\mathrm{E}}=0 \end{gathered}$		20	-	-	V
Emitter-Cutoff-Current ${ }^{\circ}$	IEBO	$\mathrm{V}_{\mathrm{EB}}=4.5 \mathrm{~V}, \mathrm{I}^{\text {C }}=0$		-	-	10	$\mu \mathrm{A}$
Collector-Cutoff-Current	ICEO	$V_{C E}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0$		-	-	1	$\mu \mathrm{A}$
Collector-Cutoff-Current	ICBO	$\mathrm{V}_{C B}=8 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$		-	-	100	n A
DC Forward-Current Transfer Ratio	hFE	$\mathrm{V}_{\text {CE }}=6 \mathrm{~V}$	$I^{\prime}=10 \mathrm{~mA}$	-	110	-	
			$\mathrm{I}^{\prime} \mathrm{C}=1 \mathrm{~mA}$	40	150	-	
			$\mathrm{I}^{\mathrm{C}} \mathrm{C}=0.1 \mathrm{~mA}$	-	150	-	
Base-to-Emitter Voltage	V_{BE}	$\mathrm{V}_{\text {CE }}=6 \mathrm{~V}$	$\mathrm{I}^{\prime}=1 \mathrm{~mA}$	0.62	0.71	0.82	V
Collector-to-Emitter Saturation Voltage	$\mathrm{V}_{\text {CE }}$ (sat)	$\mathrm{I}^{\prime}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=1 \mathrm{~mA}$		-	0.13	0.50	V
Base-to-Emitter Saturation Voltage	$V_{B E}$ (sat)	$\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=1 \mathrm{~mA}$		0.74	-	0.94	V

- On small-geometry, high-frequency transistors, it is very good practice never to take the Emitter Base Junction into reverse breakdown. To do so may permanently degrade the $h_{\text {FE }}$. Hence, the use of $I_{\text {EBO }}$ rather than $\mathrm{V}_{(B R)}$ EBO. These devices are also susceptible to damage by electrostatic discharge and transients in the circuits in which they are used. Moreover, CMOS handling procedures should be employed.

Fig. 1 - Schematic diagram of CA3227

TOP VIEW

Fig. 2 - Schematic diagram of CA3246

DYNAMIC ELECTRICAL CHARACTERISTICS at $\mathbf{T A}_{\mathbf{A}}=25^{\circ} \mathrm{C}, 200 \mathrm{MHz}$, Common Emitter Typical Values Intended Only for Design Guidance

SPECIAL ANALOG CIRCUITS

PAGE
SPECIAL ANALOG CIRCUITS DATA SHEETS
CA 555, C Timer 8-3
HA 2546 Two Quadrant, Voltage Output Multiplier 8-9
HA 2547 Two Quadrant, Current Output Multiplier 8-19
HA 5002 Wideband, High Slew Rate Buffer 8-26
HA 5033 Video Buffer 8-33
ICL 8013 Low Power Bipolar 8-42
ICL 8038 Precision Waveform Generator/NCO 8-51
ICL 8048 Log Amplifier 8-60
ICL 8049 Antilog Amplifier 8-60
ICM 7242 Long-Range Fixed Timer 8-70
ICM 7555 General Purpose Timer 8-76
ICM 7556 Dual General Purpose Timer 8-76
LM 555C Timer 8-3

CA555, CA555C, LM555C*

May 1990

Timers

For Timing Delays \& Oscillator Applications in Commercial, Industrial, and Military Equipment

Features:

- Accurate timing from microseconds through hours
- Astable and monostable operation
- Adjustable duty cycle
- Output capable of sourcing or sinking up to 200 mA
- Output capable of driving TTL devices
- Normally ON and OFF outputs
- High-temperature stability - $0.005 \% / \mathrm{C}$
- Directly interchangeable with SE555, NE555, MC1555, and MC1455

Applications:

- Precision timing
- Sequential timing
- Time-delay generation
- Pulse generation
- Pulse-width and position modulation
- Pulse detector

The CA555 and CA555C are highly stable timers for use in precision timing and oscillator applications. As timers, these monolithic integrated circuits are capable of producing accurate time delays for periods ranging from microseconds through hours. These devices are also useful for astable oscillator operation and can maintain an accurately controlled free-running frequency and duty cycle with only two external resistors and one capacitor.

The circuits of the CA555 and CA555C may be triggered by the falling edge of the wave-form signal, and the output of these circuits can source or sink up to a 200-milliampere current or drive TTL circuits.

The CA555 and CA555C are supplied in standard 8-lead TO-5 style packages (T suffix), 8-lead TO-5 style packages with dual-in-line formed leads (DIL-CAN, S suffix), 8-lead Small Outline package (M suffix), 8 -lead dual-in-line plastic packages (MINI-DIP, E suffix), and in chip form (H suffix). These types are direct replacement for industry types in packages with similar terminal arrangements e.g. SE555 and

NE555, MC1555 and MC1455, respectively. The CA555 type circuits are intended for applications requiring premium electrical performance. The CA555C type circuits are intended for applications requiring less stringent electrical characteristics.

Fig. 1 - Functional diagram of the CA555 series.

MAXIMUM RATINGS, Absolute-Maximum Values:


```
DEVICE DISSIPATION:
```



```
    Above TA = 550
AMBIENT TEMPERATURE RANGE:
    OPERATING
        CA555 .......................................................................................................................................... - 55 to +12500
        CA555C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . to to 700
    STORAGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - 65 to +15000C
LEAD TEMPERATURE (During Soldering):
```


*Technical Data on LM Branded types is identical to the corresponding CA Branded types.

[^63]ELECTRICAL CHARACTERISTICS, At $T_{A}=25^{\circ} \mathrm{C}, V^{+}=5$ to 15 V unless otherwise specified

CHARACTERISTIC	TEST CONDITIONS	LIMITS						UNITS
		CA555			CA555C			
		Min.	Typ.	Max.	Min.	Typ.	Max.	
DC Supply Voltage, V^{+}		4.5	-	18	4.5	-	16	V
DC Supply Current (Low State)*, 1^{+}	$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=\infty \end{aligned}$	-	3	5	-	3	6	mA
	$\begin{aligned} & \mathrm{V}^{+}=15 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=\infty \end{aligned}$	_	10	12	-	10	15	mA
Threshold Voltage, $V_{\text {TH }}$		-	(2/3) V^{+}	-	-	(2/3) V^{+}	-	V
Trigger Voltage	$\mathrm{V}^{+}=5 \mathrm{~V}$	1.45	1.67	1.9	-	1.67	-	V
	$\mathrm{V}^{+}=15 \mathrm{~V}$	4.8	5	5.2	-	5	-	
Trigger Current		-	0.5	-	-	0.5	-	$\mu \mathrm{A}$
Threshold Current ${ }^{\text {4 }}$, ITH		-	0.1	0.25	-	0.1	0.25	$\mu \mathrm{A}$
Reset Voltage		0.4	0.7	1.0	0.4	0.7	1.0	\checkmark
Reset Current		-	0.1	-	-	0.1	-	mA
Control Voltage Level	$\mathrm{V}^{+}=5 \mathrm{~V}$	2.9	3.33	3.8	2.6	3.33	4	V
	$\mathrm{V}^{+}=15 \mathrm{~V}$	9.6	10	10.4	9	10	11	V
Output Voltage Drop: Low State, VOL	$\begin{gathered} \mathrm{V}^{+}=5 \mathrm{~V} \\ \text { ISINK }=5 \mathrm{~mA} \end{gathered}$	-	-	-	-	0.25	0.35	V
	ISINK $=8 \mathrm{~mA}$	-	0.1	0.25	-	-	-	
	$\begin{aligned} \mathrm{V}^{+} & =15 \mathrm{~V} \\ \mathrm{I} \text { INK } & =10 \mathrm{~mA} \end{aligned}$	-	0.1	0.15	-	0.1	0.25	
	ISINK $=50 \mathrm{~mA}$	-	0.4	0.5	-	0.4	0.75	
	ISINK $=100 \mathrm{~mA}$	-	2.0	2.2	-	2.0	2.5	
	ISINK $=200 \mathrm{~mA}$	-	2.5	-	-	2.5	-	
High State, V_{OH}	$\begin{gathered} \mathrm{V}^{+}=5 \mathrm{~V} \\ \text { ISOURCE }=100 \mathrm{~mA} \end{gathered}$	3.0	3.3	-	2.75	3.3	-	V
	$\begin{gathered} \mathrm{V}^{+}=15 \mathrm{~V} \\ \text { ISOURCE }=100 \mathrm{~mA} \end{gathered}$	13.0	13.3	-	12.75	13.3	-	
	ISOURCE $=200 \mathrm{~mA}$	-	12.5	-	-	12.5	-	
Timing Error (Monostable): Initial Accuracy	$\begin{aligned} & R_{1}, R_{2} \\ = & 1 \text { to } 100 \mathrm{k} \Omega \\ \mathrm{C}= & 0.1 \mu \mathrm{~F} \end{aligned}$ Tested at $\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \\ & \mathrm{~V}^{+}=15 \mathrm{~V} \end{aligned}$	-	0.5	2	-	1	-	\%
Frequency Drift with Temperature		-	30	100	-	50	-	$\begin{aligned} & \mathrm{p} / \mathrm{m} / \\ & { }^{\circ} \mathrm{C} \end{aligned}$
Drift with Supply Voltage		-	0.05	0.2	-	0.1	-	\%/V
Output Rise Time, t_{r}		-	100	-	-	100	-	ns
Output Fall Time, $\mathrm{tf}^{\text {f }}$		-	100	-	-	100	-	ns

* When the output is in a high state, the de supply current is typically 1 mA less than the low-state value.

4. The threshold current will determine the sum of the values of R_{1} and R_{2} to be used in

Fig. 16 (astable operation): the maximum total $R_{1}+R_{2}=20 \mathrm{M} \Omega$.

Fig. 2 - Minimum pulse width vs. minimum trigger voltage.

Fig. 3 - Supply current vs. supply voltage.

Fig. 4 - Schematic diagram of the CA555 and CA555C.

b. TO-5 style package

TO-5 style package with formed leads

Fig. 5 - Terminal assignment diagrams.

Fig. 6 - Output voltage drop (high state) vs. source current.

Fig. 8 - Output voltage-fow state vs. sink current at $V^{+}=10 \mathrm{~V}$.

Fig. 10 - Delay time vs. supply voltage.

Fig. 7 - Output voltage-low state vs. sink current at $V^{+}=5 V$.

Fig. 9 - Output voltage-fow state vs. sink current at $\mathrm{V}^{+}=15 \mathrm{~V}$.

Fig. 11 - Delav time vs. temperature.

Fig. 12 - Propagation delay time vs. trigger voltage.

TYPICAL APPLICATIONS

Reset Timer（Monostable Operation）

Fig． 13 shows the CA555 connected as a reset timer．In this mode of operation capacitor C_{T} is initially held discharged by a transistor on the integrated circuit．Upon closing the ＂start＂switch，or applying a negative trigger pulse to terminal 2，the integral timer flip－ flop is＂set＂and releases the short circuit across $\mathrm{C}_{\boldsymbol{T}}$ which drives the output voltage ＂high＂（relay energized）．The action allows the voltage across the capacitor to increase exponentially with the time constant $t=$ $\mathrm{R}_{1} \mathrm{C}_{\mathrm{T}}$ ．When the voltage across the capacitor equals $2 / 3 \mathrm{~V}^{+}$，the comparator resets the flip－flop which in turn discharges the capaci－ tor rapidly and drives the output to its low state．

all resistance values are in ohms

Fig． 13 －Reset timer（monostable operation）．

Since the charge rate and threshold level of the comparator are both directly propor－ tional to V^{+}，the timing interval is relatively independent of supply voltage variations． Typically，the timing varies only 0.05% for a 1 volt change in V^{+}．
Applying a negative pulse simultaneously to the reset terminal（4）and the trigger terminal （2）during the timing cycle discharges C_{T} and causes the timing cycle to restart．Momen－ tarily closing only the reset switch during the timing interval discharges C_{T} ，but the timing cycle does not restart：
Fig． 14 shows the typical waveforms gener－ ated during this mode of operation，and Fig． 15 gives the family of time delay curves with variations in R_{1} and C_{T} ．

Repeat Cycle Timer（Astable Operation）

Fig． 16 shows the CA555 connected as a repeat cycle timer．In this mode of oper－ ation，the total period is a function of both R_{1} and R_{2} ；

Fig． 14 －Typical waveforms for reset timer．

Fig． 15 －Time delay vs．resistance and capacitance．

Fig． 16 －Repeat cycle timer（astable operation）．

$$
\begin{aligned}
T & =0.693\left(R_{1}+2 R_{2}\right) C_{T}=t_{1}+t_{2} \\
\text { where } t_{1} & =0.693\left(R_{1}+R_{2}\right) C_{T} \\
\text { and } t_{2} & =0.693\left(R_{2}\right) C_{T}
\end{aligned}
$$

The duty cycle is：

$$
\frac{t_{2}}{t_{1}+t_{2}}=\frac{R_{2}}{R_{1}+2 R_{2}}
$$

Typical waveforms generated during this mode of operation are shown in Fig． 17. Fig． 18 gives the family of curves of free running frequency with variations in the value of $\left(R_{1}+2 R_{2}\right)$ and C_{T} ．

Top Trace: Output voltage ($2 \mathrm{~V} / \mathrm{div}$. and $0.5 \mathrm{~ms} / \mathrm{div}$.
Bottom Trace: Capacitor voltaye: (1 V/ div. and $0.5 \mathrm{~ms} / \mathrm{div}$.)

Fig. 17 - Typical waveforms for repeat cycle timer.

Fig. 18 - Free running frequency of repeat cycle timer with variation in capacitance and resistance.

Wideband Two Quadrant Analog Multiplier

Features

- High Speed Voltage Output 300V/ $\mu \mathrm{s}$
- Low Multiplication Error 1.6\%
- Input Bias Currents $1.2 \mu \mathrm{~A}$
- Signal Input Feedthrough - 52 dB
- Wide Signal Bandwidth . 30MHz
- Wide Control Bandwidth........................ 17MHz

Applications

- Military Avionics
- Missile Guidance Systems
- Medical Imaging Displays
- Video Mixers
- Sonar AGC Processors
- Radar Signal Conditioning
- Voltage Controlled Amplifier
- Vector Generator

Description

The HA-2546 is a monolithic, high speed, two quadrant, analog multiplier constructed in the Harris Dielectrically Isolated High Frequency Process. The high frequency performance of the HA-2546 rivals the best analog multipliers currently available including hybrids.

The HA-2546 has a voltage output with a 30 MHz signal bandwidth, $300 \mathrm{~V} / \mu \mathrm{s}$ slew rate and a 17 MHz control input bandwidth. High bandwidth and slew rate make this part an ideal component for use in video systems. The suitability for precision video applications is demonstrated further by the 0.1 dB gain tolerance at $5 \mathrm{MHz}, 1.6 \%$ multiplication error, -52 dB feedthrough and differential inputs with $1.2 \mu \mathrm{~A}$ bias currents. The HA-2546 also has low differential gain (0.1\%) and phase $\left(0.1^{\circ}\right)$ errors.

The HA-2546 is well suited for AGC circuits as well as mixer applications for sonar, radar, and medical imaging equipment. The voltage output of the HA-2546 simplifies many designs by eliminating the current-to-voltage conversion stage required for current output multipliers.

The HA-2546-9 has guaranteed operation from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. The HA-2546-5 has guaranteed operation from $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$. The HA-2546 is available in a 16 pin Ceramic DIP. For MIL-STD-883 compliant product and LCC packages consult the HA-2546/883 datasheet.

Pinout

HA1-2546 (CERAMIC DIP)

Simplified Schematic

Absolute Maximum Ratings (Note 1)		Operating Temperature Range						
Voltage Between V+ and V-Terminals Differential Input Voltage. Output Current \qquad		HA-2546-9 HA-2546-5 Storage Tem perature Range $\begin{aligned} & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C} \\ & \cdots 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+75^{\circ} \mathrm{C} \\ & -65^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+150^{\circ} \mathrm{C} \end{aligned}$ Maximum Junction						
Electrical Specifications $\mathrm{V}+=15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{~K}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, Unless Otherwise Specified								
PARAMETER	TEMP	HA-2546-9			HA-2546-5			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
MULTIPLIER PERFORMANCE								
Multiplication Error (Note 2)	$+25^{\circ} \mathrm{C}$	-	1.6	3	-	1.6	3	\%
	Full	-	3.0	7	-	3.0	7	\%
Muitiplication Error Drift	Full	-	-	-	-	-	-	\%/ ${ }^{\circ} \mathrm{C}$
Differential Gain (Note 3,11)	$+25^{\circ} \mathrm{C}$	-	0.1	0.2	-	0.1	0.2	\%
Differential Phase (Note 3,11)	$+25^{\circ} \mathrm{C}$	-	0.1	0.3	-	0.1	0.3	Deg.
Gain Tolerance (Note 6,11)								
DC to 5 MHz	$+25^{\circ} \mathrm{C}$	-	0.1	0.2	-	0.1	0.2	dB
5 MHz to 8 MHz	$+25^{\circ} \mathrm{C}$	-	0.18	0.3	-	0.18	0.3	dB
Scale Factor Error	Full	-	0.7	5.0	-	0.7	5.0	\%
1\% Amplitude Bandwidth Error	$+25^{\circ} \mathrm{C}$	-	6	-	-	6	-	MHz
1\% Vector Bandwidth Error	$+25^{\circ} \mathrm{C}$	-	260	-	-	260	-	kHz
THD + N (Note 4)	$+25^{\circ} \mathrm{C}$		0.03	-	-	0.03	-	\%
Voltage Noise (Note 17)								
$\mathrm{f}_{\mathrm{O}}=10 \mathrm{~Hz}$	$+25^{\circ} \mathrm{C}$	-	400	-	-	400	-	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
$\mathrm{f}_{\mathrm{O}}=100 \mathrm{~Hz}$	$+25{ }^{\circ} \mathrm{C}$	-	150	-	-	150	-	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
$\mathrm{f}_{0}=1 \mathrm{kHz}$	$+25^{\circ} \mathrm{C}$	-	75	-	-	75	-	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Common Mode Range	$+25{ }^{\circ} \mathrm{C}$	-	± 9	-	-	± 9	-	Volts
SIGNAL INPUT, VY								
Input Offset Voltage	$+25^{\circ} \mathrm{C}$	-	3	10	-	3	10	mV
	Full	-	8	20	-	8	20	mV
Average Offset Voltage Drift	Full	-	45	-	-	45	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Bias Current	$+25^{\circ} \mathrm{C}$	-	7	15	-	7	15	$\mu \mathrm{A}$
	Full	-	10	15	-	10	15	$\mu \mathrm{A}$
Input Offset Current	$+25^{\circ} \mathrm{C}$	-	0.7	2	-	0.7	2	$\mu \mathrm{A}$
	Full	-	1.0	3	-	1.0	3	$\mu \mathrm{A}$
Differential Input Resistance	$+25^{\circ} \mathrm{C}$	-	720	-	-	720	-	$\mathrm{k} \Omega$
Small Signal Bandwidth (-3dB) (Note 6)	$+25^{\circ} \mathrm{C}$	-	30	-	-	30	-	MHz
Full Power Bandwidth (Note 5)	$+25^{\circ} \mathrm{C}$	-	9.5	-	-	9.5	-	$\begin{gathered} \mathrm{MHz} \\ \mathrm{~dB} \\ \mathrm{~dB} \end{gathered}$
Feedthrough (Note 15)	$+25^{\circ} \mathrm{C}$	-	-52	-	-	-52	-	
CMRR (Note 7)	Full	60	78	-	60	78	-	
V_{Y} TRANSIENT RESPONSE (Note 12)								
Slew Rate (Note 8) Rise Time (Note 9) Overshoot (Note 9) Propagation Delay Setting Time (Note 8) 0.1\%	+250	-	300	-	-	300	-	V/us
	$+25^{\circ} \mathrm{C}$	-	11	-	-	11	-	
	$+25^{\circ} \mathrm{C}$	-	17	-	-	17	-	\%
	$+25{ }^{\circ} \mathrm{C}$	-	25200	-	-	25	-	ns
	$+25^{\circ} \mathrm{C}$			-		200	-	ns

Electrical Specifications (Continued) $V+=15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{~K}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, Unless Otherwise Specified

PARAMETER	TEMP	HA-2546-9			HA-2546-5			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
CONTROL INPUT, VX								
Input Offset Voltage	$+25^{\circ} \mathrm{C}$	-	0.3	2	-	0.3	2	mV
	Full	-	3	20	-	3	20	mV
Average Offset Voltage Drift	Full	-	10	-	-	10	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Bias Current	$+25^{\circ} \mathrm{C}$	-	1.2	2	-	1.2	2	$\mu \mathrm{A}$
	Full	-	1.8	5	-	1.8	5	$\mu \mathrm{A}$
Input Offset Current	$+25^{\circ} \mathrm{C}$	\cdots	0.3	2	-	0.3	2	$\mu \mathrm{A}$
	Full	-	0.4	3	-	0.4	3	$\mu \mathrm{A}$
Differential Input Resistance	$+25^{\circ} \mathrm{C}$	-	360	-	-	360	-	$\mathrm{k} \Omega$
Small Signal Bandwidth (-3dB) (Note 13)	$+25^{\circ} \mathrm{C}$	-	17	-	-	17	-	MHz
Feedthrough (Note 16)	$+25^{\circ} \mathrm{C}$	-	-40	-	-	-40	-	dB
Common Mode Rejection Ratio (Note 19)	$+25^{\circ} \mathrm{C}$	-	80	-	-	80	-	dB
V_{X} TRANSIENT RESPONSE (Note 12)								
Slew Rate (Note 19)	$+25^{\circ} \mathrm{C}$	-	95		-	95	-	$\mathrm{v} / \mu \mathrm{s}$
Rise Time (Note 20)	$+25^{\circ} \mathrm{C}$	-	20	-	-	20	-	ns
Overshoot (Note 20)	$+25^{\circ} \mathrm{C}$	-	17	-	-	17	-	\%
Propagation Delay	$+25^{\circ} \mathrm{C}$	-	50	-	-	50	-	ns
Settling Time (Note 19) 0.1\%	$+25^{\circ} \mathrm{C}$	-	200	-	-	200	-	ns
V_{Z} CHARACTERISTICS								
Input Offset Voltage (Note 17)	$+25^{\circ} \mathrm{C}$	-	4	15	-	4	15	mV
	Full	-	8	20	-	8	20	mV
Open Loop Gain	$+25^{\circ} \mathrm{C}$	-	70	-	-	70	-	dB
Differential Input Resistance	$+25^{\circ} \mathrm{C}$	-	900	-	-	900	-	$\mathrm{k} \Omega$
OUTPUT CHARACTERISTICS								
Output Voltage Swing (Note 18)	Full	-	± 6.25	-	-	± 6.25	-	Volts
Output Current	Fuil	± 20	± 45	-	± 20	± 45	-	mA
Output Resistance	$+25^{\circ} \mathrm{C}$	-	1	-	1	-	-	Ω
POWER SUPPLY								
PSRR (Note 10)	Full	58	63	-	58	63	-	dB
Supply Current	Full	-	23	29	-	23	29	mA

NOTES:

1. Absolute maximum ratings are limiting values, applied individually, beyond which the servicability of the circuit may be impaired. Functional operation under any of these conditions is not necessarily implied.
2. Error is percent of full scale, $1 \%=50 \mathrm{mV}$.
3. $f_{O}=3.58 \mathrm{MHz} / 4.43 \mathrm{MHz}, V_{Y}=300 \mathrm{mVp}-\mathrm{p}, 0$ to $t \mathrm{Vdc}$ offset, $\mathrm{V}_{X}=2 \mathrm{~V}$.
4. $f_{0}=10 \mathrm{kHz}, \mathrm{V}_{Y}=1 \mathrm{Vrms}, \mathrm{V}_{X}=2 \mathrm{~V}$.
5. $V_{X}=2 V$, Full Power Bandwidth calculated by equation:

$$
\text { FPBW }=\frac{\text { Slew Rate }}{2 \pi V_{\text {peak }}}, V_{\text {peak }}=5 \mathrm{~V}
$$

6. $v_{X}=2 v$.
7. $V_{Y}=0$ to $\pm 5 \mathrm{~V}, V_{X}=2 \mathrm{~V}$.
8. $V_{O U T}= \pm 5 \mathrm{~V}, V_{X}=2 \mathrm{~V}$.
9. $V_{\text {OUT }}=0$ to $\pm 100 \mathrm{mV}, V_{X}=2 V$.
10. $\mathrm{V}_{\mathrm{S}}= \pm 12 \mathrm{~V}$ to $\pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{Y}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{X}}=2 \mathrm{~V}$.
11. Guaranteed by characterization and not 100% tested,
12. See Test Circuit.
13. $V_{Y}=5 \mathrm{~V}, V_{X-}=-1 \mathrm{~V}$.
14. $f_{O}=5 \mathrm{MHz}, V_{X}=0, V_{Y}=200 \mathrm{mVrms}$.
15. $f_{0}=100 \mathrm{kHz}, v_{Y}=0, v_{X+}=200 \mathrm{mVrms}, v_{X-}=-0.5 \mathrm{~V}$.
16. $V_{X}=V_{Y}=0$.
17. $V_{X}=2.5 \mathrm{~V}, V_{Y}= \pm 5 \mathrm{~V}$.
18. $V_{X}=0$ to $2 V, V_{Y}=5 \mathrm{~V}$.
19. $V_{X}=0$ to $200 \mathrm{mV}, V_{Y}=5 \mathrm{~V}$.

Test Circuits

LARGE AND SMALL SIGNAL RESPONSE TEST CIRCUIT

Vy LARGE SIGNAL RESPONSE
Vertical Scale: 5V/Div. Horizontal Scale: 50ns/Div.

VX LARGE SIGNAL RESPONSE
Vertical Scale: 2V/Div. Horizontal Scale: 50ns/Div.

IN

Vy SMALL SIGNAL RESPONSE
Vertical Scale: $100 \mathrm{mV} / \mathrm{Div}$. Horizontal Scale: $50 \mathrm{~ns} / D i v$.

VX SMALL SIGNAL RESPONSE
Vertical Scale: $200 \mathrm{mV} /$ Div. Horizontal Scale: $50 \mathrm{~ns} / D i v$.

Typical Performance Curves $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, See test circuit for multiplier configuration

V_{X} GAIN AND PHASE vS FREQUENCY
$R_{L}=1 \mathrm{~K}, \mathrm{~V}_{\mathrm{X}}+=200 \mathrm{mVrms}, \mathrm{V}_{\mathrm{Y}}=5 \mathrm{Vdc}, \mathrm{V}_{\mathrm{X}^{-}}=-1 \mathrm{Vdc}$

VY FEEDTHROUGH vs FREQUENCY

Typical Performance Curves (Continued) $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, See test circuit for multiplier configuration.
NOISE CHARACTERISTICS
$V_{X}=O V, V_{Y}=O V$

OFFSET VOLTAGE vs TEMPERATURE

OUTPUT VOLTAGE SWING vs TEMPERATURE

$\mathbf{V}_{\mathbf{X}}$ OFFSET AND BIAS CURRENT vs TEMPERATURE

VY CMRR vs FREQUENCY
$\mathrm{V}_{\mathrm{Ycm}}=200 \mathrm{mVrms}$

Typical Performance Curves (Continued) $\mathrm{V}_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, See test circuit for multiplier configuration
V_{X} COMMON MODE REJECTION RATIO vs FREQUENCY
$V_{X}=200 \mathrm{mVrms}$

SUPPLY CURRENT vs TEMPERATURE

PSRR vs TEMPERATURE

PSRR vs FREQUENCY
$V_{Y}=V_{X}=O V$

SIGNAL/CONTROL CMRR vs TEMPERATURE

Typical Performance Curves (Continued) $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, See test circuit for multiplier configuration

WORST CASE MULTIPLICATION ERROR vs TEMPERATURE

GAIN VARIATION vs FREQUENCY
$R_{L}=1 \mathrm{~K}, \mathrm{~V}_{\mathrm{X}}=2 \mathrm{Vdc}, \mathrm{V}_{\mathrm{Y}}=200 \mathrm{mVrms}$

OUTPUT VOLTAGE SWING vs LOAD RESISTANCE $\mathrm{f}_{\mathrm{O}}=10 \mathrm{kHz}, \mathrm{V}_{\mathrm{X}}=2 \mathrm{Vdc}, \mathrm{THD}<0.1 \%$

SCALE FACTOR vs TEMPERATURE

SLEW RATE vs TEMPERATURE

Typical Performance Curves (Continued) $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, See test circuit for multiplier contiguration

Applications Information

Theory of Operation

The HA-2546 is a two quadrant multiplier with one differential signal channel, $V_{Y_{+}}$and $V_{Y_{-}}$, one differential control channel, V_{X} and V_{X}, and one differential input, $\mathrm{V}_{\mathrm{Z}+}$ and V_{Z-}, to complete the feedback of the output amplifier. Figure 1 shows a detailed functional block diagram of the HA-2546. The differential voltages of channels V_{X} and V_{Y} are converted to differential currents. These currents are then multiplied in a circuit similar to a Gilbert Cell multiplier, producing a differential current product. The differential voltage of V_{Z} is converted to a differential current which sums with the product currents. The differential "product/ sum" currents are converted to a single-ended current then converted to a voltage output by a transimpedance amplifier.

FIGURE 1.

The open loop transfer equation for the HA-2546 is:

$$
\begin{gathered}
V_{\text {OUT }}=A\left[\frac{\left(V_{X+}-V_{X-}\right)\left(V_{Y+}-V_{Y-}\right)}{S F}-\left(V_{Z_{+}}-V_{Z-}\right)\right], \text { where } \\
A=\text { Output Amplifier Open Loop Gain } \\
S F=\text { Scale Factor } \\
V_{X}, V_{Y}, V_{Z}=\text { Differential Inputs }
\end{gathered}
$$

The scale factor is used to maintain the output of the multiplier within the normal operating range of $\pm 5 \mathrm{~V}$. The scale factor can be defined by the user by way of an optional external resistor, REXT, and the Gain Adjust pins, Gain Adjust A (GA A), Gain Adjust B (GA B), and Gain Adjust C (GA C). The scale factor is determined as follows:

$$
\begin{aligned}
S F= & 2, \text { when GA B is shorted to GAC } \\
S F \approx & 1.2^{*} R_{E X T}, \text { when } R_{E X T} \text { is connected } \\
& \text { between } G A A \text { and } G A C\left(R_{E X T} \text { is in } k \Omega\right) \\
S F \approx & 1.2^{*}\left(R_{E X T}+1.667 \mathrm{k} \Omega\right), \text { when REXT } \\
& \text { is connected to GA B and GAC (REXT is in } \mathrm{k} \Omega)
\end{aligned}
$$

The scale factor can be adjusted from 2 to 5 . It should be noted that any adjustments to the scale factor will affect the $A C$ performance of the control channel, V_{X}. The normal input operating range of V_{X} is equal to the scale factor voltage.

The typical multiplier configuration is shown in Figure 2. The ideal transfer function for this configuration is:
$V_{\text {OUT }}=\left\{\begin{aligned} \frac{\left(v_{X_{+}}-v_{X-}\right)}{2}\left(v_{Y_{+}}-v_{Y_{-}}\right)+v_{Z_{-}} & , \text {when }\left(v_{X_{+}}-v_{X_{-}}\right) \geq 0 \\ 0 & , \text { when }\left(v_{X_{+}}-v_{X_{-}}\right)<0\end{aligned}\right.$

Applications Information (Continued)

The V_{X} pin is usually connected to ground so that when $\mathrm{V}_{\mathrm{X}}+\mathrm{is}$ negative there is no signal at the output, i.e. two quadrant operation. If the V_{X} input is a negative going signal the V_{X+} pin maybe grounded and the V_{X-} pin used as the input.
The V_{Y} - terminal is usually grounded allowing V_{Y+} to swing ± 5 volts. The $\mathrm{V}_{\mathrm{Z}+}$ terminal is usually connected directly to VOUT to complete the feedback loop of the output amplifier while V_{Z} - is grounded. The scale factor is normally set to 2 by connecting GA B to GA C. Therefore the transfer function becomes:

$$
V_{\text {OUT }}=\frac{\left(V_{X+}\right)\left(V_{Y-}\right)}{2}
$$

The multiplication error is trimmed to be minimum at full scale, $\mathrm{V}_{\mathrm{X}}=2 \mathrm{~V}$ and $\mathrm{V}_{Y}=5 \mathrm{~V}$. When $\mathrm{V}_{Y}=5 \mathrm{~V}$, the worst case multiplication error occurs when $V_{X} \approx 0.65 \mathrm{~V}$. See Typical Performance Curves.

Operation At Reduced Supply Voltages

The HA-2546 will operate over a range of supply voltages, ± 8 to ± 15 volts. Use of supply voltages below ± 12 volts will cause degradation of electrical parameters.

Offset Adjustment

The signal channel offset voltage may be nulled by using a 20K potentiometer between $\mathrm{V}_{\text {YIO }}$ Adjust pins A and B and connecting the wiper to $-\mathrm{V}_{\mathrm{S}}$. Reducing the signal channel offset voltage will reduce $V_{X} A C$ feedthrough and improve the multiplication error. Output offset voltage can also be nulled by connecting V_{Z} - to the wiper of a potentiometer which is tied between +V and -V .

Capacitive Drive Capability

When driving capacitive loads >20 pF a 50Ω resistor should be connected between $\mathrm{V}_{\text {OUT }}$ and V_{Z}, using V_{Z} as the output (see Figure 2). This will prevent the multiplier from going unstable due to the pole created by the load capacitor and reduce gain peaking at higher frequencies.

Die Characteristics

Transistor Count . 87
Die Dimensions $79.9 \times 119.7 \times 19$ mils $(2030 \times 3040 \times 480 \mu \mathrm{~m})$
Substrate Potential* V-
Process . High Frequency, Bipolar, DI
\qquad
Thermal Constants (${ }^{\circ} \mathrm{C} / \mathrm{W}$) $\quad \theta_{\mathrm{ja}} \quad \theta_{\mathrm{jc}}$
HA1-2546............................... 7617

* The substrate maybe left floating (Insulating Die Mount) or it may be on a conductor at V - potential.

Figure 2.

Wideband Two Quadrant
 Analog Multiplier

Features

- Low Multiplication Error 1.6%
- Input Bias Currents . 1.2 $2 \mu \mathrm{~A}$
- Signal Input Feedthrough @ 5MHz -50dB
- Wide Signal Bandwidth 100 MHz
- Wide Control Bandwidth

22 MHz

Applications

- Military Avionics
- Miccile Guidance Svstems
- Medical Imaging Displays
- Video Mixers
- Sonar AGC Processors
- Radar Signal Conditioning
- Voltage Controlled Amplifier
- Vector Generator

Description

The HA-2547 is a monolithic, high speed, two quadrant, analog multiplier constructed in Harris' Dielectrically Isolated High Frequency Process. The high frequency performance of the HA-2547 rivals the best analog multipliers currently available including hybrids.
The single-ended current output of the HA-2547 has a 100 MHz signal bandwidth ($\mathrm{R}_{\mathrm{L}}=50 \Omega$) and a 22 MHz control input bandwidth. High bandwidth and low distortion make this part an ideal component in video systems. The suitability for precision video applications is demonstrated further by low multiplication error (1.6%), low feedthrough $(-50 \mathrm{~dB})$, and differential inputs with low bias currents $(1.2 \mu \mathrm{~A})$. The HA-2547 is also well suited for mixer circuits as well as AGC applications for sonar, radar, and medical imaging equipment.
The current output of the HA-2547 allows it to achieve higher bandwidths than voltage output multipliers. An internal feedback resistor is provided to give an accurate current-to-voltage conversion and is trimmed to give a full scale output voltage of ± 5 volts. The HA- 2547 is not limited to multiplication applications only; frequency doubling and power detection are also possible.
The HA-2547-9 has guaranteed operation from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, while the HA-2547-5 has guaranteed operation from $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$. The HA-2547 is available in a 16 pin Ceramic DIP. For MIL-STD-883 compliant product and LCC packages consult the HA-2547/883 datasheet.

Schematic

[^64]Copyright © Harris Corporation 1990

Absolute Maximum Ratings (Note 1)	
Voltage Between V+ and V-Terminals	35 V
Differential Input Voltage.	. 6 V
Output C̣urrent	3 mA

Operating Temperature Range
HA-2547-9.................................. . $-40^{\circ} \mathrm{C} \leq T_{A} \leq+85^{\circ} \mathrm{C}$ HA-2547-5...................................... $0^{\circ} \mathrm{C} \leq T_{A} \leq+75^{\circ} \mathrm{C}$ Storage Temperature Range $65^{\circ} \mathrm{C} \leq T_{A} \leq+150^{\circ} \mathrm{C}$ Maximum Junction Temperature.

Electrical Specifications $+\mathrm{V}=+15 \mathrm{~V},-\mathrm{V}=-15 \mathrm{~V}, \mathrm{RZ}_{\mathrm{Z}}$ (Pin 10) Grounded, Unless Otherwise Specified

PARAMETER	TEMP	HA-2547-9			HA-2547-5			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
MULTIPLIER PERFORMANCE								
Multiplication Error (Note 2)	$+25^{\circ} \mathrm{C}$	-	1.6	3	-	1.6	3	\%FS
	Full	-	3.0	7	-	3.0	7	\%FS
Multiplication Error Drift	Full	-	0.003	-	-	0.003	-	\%/ ${ }^{\circ} \mathrm{C}$
Scale Factor Error	Full	-	0.7	5	-	0.7	5	\%
THD + N (Note 3)	$+25^{\circ} \mathrm{C}$	-	0.03	-	-	0.03	-	\%
Output Offset Voltage (Note 4)	$+25^{\circ} \mathrm{C}$	-	6	15	-	6	15	mV
	Fuil	-	14	20	-	14	20	mV
Average Offset Voltage Drift	Full	-	-	-	-	-	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
SIGNAL INPUT, V_{Y}								
Input Offset Voltage	$+25^{\circ} \mathrm{C}$	-	4	10	-	4	10	mV
	Full	-	8	20	-	8	20	mV
Average Offset Voltage Drift	Full	-	35	-	-	35	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Bias Current	$+25^{\circ} \mathrm{C}$	-	7	15	-	7	15	$\mu \mathrm{A}$
	Full	-	10	15	-	10	15	$\mu \mathrm{A}$
Input Offset Current	$+25^{\circ} \mathrm{C}$	-	0.7	2	-	0.7	2	$\mu \mathrm{A}$
	Full	-	1.0	3	-	1.0	3	$\mu \mathrm{A}$
Input Differential Resistance	$+25^{\circ} \mathrm{C}$	-	720	-	-	720	-	$\mathrm{k} \Omega$
Small Signal Bandwidth (-3dB) (Notes 5, 10)	$+25^{\circ} \mathrm{C}$	-	100	-	-	100	-	MHz
Feedthrough (Note 13)	$+25^{\circ} \mathrm{C}$	-	-50	-	-	-50	-	dB
Differential Input Range	$+25^{\circ} \mathrm{C}$	± 5	-	-	± 5	-	-	Volts
Common Mode Range	$+25^{\circ} \mathrm{C}$	-	± 9	-	-	± 9	-	Volts
CMRR (Note 6)	Full	60	78	-	60	78	-	dB
VY TRANSIENT RESPONSE								
Rise Time (Note 15)	$+25^{\circ} \mathrm{C}$	-	5	-	-	5	-	ns
Propagation Delay	$+25^{\circ} \mathrm{C}$	-	3	-	-	3	-	ns
CONTROL INPUT, V_{X}								
Input Offset Voltage	$+25^{\circ} \mathrm{C}$	-	1	2	-	1	2	mV
	Full	-	2	20	-	2	20	mV
Average Offset Voltage Drift	Full	-	12	-	-	12	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Bias Current	$+25^{\circ} \mathrm{C}$	-	1.2	2	-	1.2	2	$\mu \mathrm{A}$
	Full	-	1.8	5	-	1.8	5	$\mu \mathrm{A}$
Input Offset Current	$+25^{\circ} \mathrm{C}$	-	0.3	2	-	0.3	2	$\mu \mathrm{A}$
	Full	-	0.4	3	-	0.4	3	$\mu \mathrm{A}$
Input Differential Resistance	$+25^{\circ} \mathrm{C}$	-	360	-	-	360	-	$k \Omega$
Small Signal Bandwidth (-3dB) (Notes 5, 10)	$+25^{\circ} \mathrm{C}$	-	22	-	-	22	-	MHz
Feedthrough (Note 14)	$+25^{\circ} \mathrm{C}$	-	-40	-	-	-40	-	dB
Input Range (Note 12)	Full	+2	-	-	+2	-	-	Volts
Common Mode Range	$+25^{\circ} \mathrm{C}$	-	± 9	-	-	± 9	-	Volts
CMMR (Note 7)	$+25^{\circ} \mathrm{C}$	-	75	-	-	75	-	dB
V_{X} TRANSIENT RESPONSE								
Rise Time (Note 16)	$+25^{\circ} \mathrm{C}$	-	15	-	-	15	-	ns
Propagation Delay	$+25^{\circ} \mathrm{C}$	-	25	-	-	25	-	ns
OUTPUT CHARACTERISTICS								
Full Scale Output Voltage (Note 8)	Full	-	± 6.25	-	-	± 6.25	-	Volts
Full Scale Output Current (Note 11)	$+25^{\circ} \mathrm{C}$	-	2	-	-	2	-	mA
Output Resistance	$+25^{\circ} \mathrm{C}$	-	4	-	-	4	-	$\mathrm{M} \Omega$
POWER SUPPLY								
PSRR (Note 9)	Full	58	63	-	58	63	-	dB
${ }^{\text {ICC }}$	Fuill	-	20	29	-	20	29	mA

NOTES:

1. Absolute maximum ratings are limiting values, applied individually, beyond which the servicability of the circuit may be impaired. Functiona operation under any of these conditions is not necessarily implied
2. Error is percent of full scale, $1 \%=50 \mathrm{mV}$.
3. $f_{O}=10 \mathrm{kHz}, V_{Y}=1 \mathrm{Vrms}, V_{X}=2 \mathrm{~V}$.
4. $V_{X}=O V, V_{Y}=O V$.
5. $R_{L}=50 \Omega$.
6. $V_{Y}=0$ to $\pm 5 \mathrm{~V}, V_{X}=2 \mathrm{~V}$.
7. $V_{X}=0$ to $2 V, V_{Y}=5 \mathrm{~V}$.
8. $V_{Y}= \pm 5, V_{X}=2.5 V$.
9. $\mathrm{V}_{\mathrm{S}}= \pm 12 \mathrm{~V}$ to $\pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{Y}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{X}}=2 \mathrm{~V}$
10. Guaranteed by sample test and not 100% tested.
11. Output current tolerance is $\pm 20 \%$.
12. Scale Factor $=2$. See Applications Information.
13. $f_{0}=5 \mathrm{MHz}, V_{X}=0, V_{Y}=200 \mathrm{mV}$ rms. Relative to full scale output.
14. $\mathrm{f}_{\mathrm{O}}=5 \mathrm{MHz}, \mathrm{V}_{Y}=0, \mathrm{~V}_{X^{+}}=200 \mathrm{mVrms}, \mathrm{V}_{X^{-}}=-0.5 \mathrm{~V}$. Relative to full scale output.
15. $V_{Y}= \pm 5 V, V_{X}=2 V, R_{L}=50 \Omega$.
16. $V_{X}=0$ to $2 \mathrm{~V}, \mathrm{~V}_{\mathrm{Y}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega$.

Test Circuits
AC AND TRANSIENT RESPONSE TEST CIRCUIT

V_{Y} TRANSIENT RESPONSE
Vertical Scale: Top 5V/Div Bottom: $100 \mathrm{mV} /$ Div Horizontal Scale: $20 n s / D i v$

V_{X} TRANSIENT RESPONSE
Vertical Scale: Top 1V/Div Bottom: $50 \mathrm{mV} /$ Div Horizontal Scale: $50 \mathrm{~ns} /$ Div

Typical Performance Curves $\mathrm{v}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25{ }^{\circ} \mathrm{C}$
V_{Y} vs FREQUENCY
$V_{Y}=200 \mathrm{mVrms}, \quad V_{X}=2 \mathrm{~V}, \quad R_{\mathrm{L}}=50 \mathrm{~V}$

V_{Y} FEEDTHROUGH vs FREQUENCY
$V_{Y}=200 \mathrm{mVrms}, \quad V_{X}=0, R_{L}=50 \Omega$

VARIOUS V_{Y} FREQUENCY RESPONSES
$V_{Y}=200 \mathrm{mVrms}, \quad R_{L}=50 \Omega$

\mathbf{V}_{X} vs FREQUENCY
$\mathrm{V}_{\mathrm{X}+}=100 \mathrm{mVrms}, \quad \mathrm{V}_{\mathrm{X}_{-}}=-1 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{Y}}=5 \mathrm{~V}, \quad \mathrm{R}_{\mathrm{L}}=50 \Omega$

V_{X} FEEDTHROUGH vs FREQUENCY
$V_{X+}=200 \mathrm{mVrms}, \quad V_{X-}=0.5 \mathrm{~V}, \quad V_{Y}=0 \mathrm{~V}, R_{L}=50 \Omega$

VARIOUS V_{X} FREQUENCY RESPONSES
$V_{X+}=100 \mathrm{mVrms}, \quad V_{X-}=-1 V, R_{L}=50 \Omega$

Typical Performance Curves (Continued) $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

OUTPUT VOLTAGE SWING vs TEMPERATURE

SIGNAL/CONTROL CMRR vs TEMPERATURE

OFFSET VOLTAGE vs TEMPERATURE

$\mathbf{V}_{\mathbf{X}}$ OFFSET/BIAS CURRENT vs TEMPERATURE

PSRR vs TEMPERATURE

HA-2547

Typical Performance Curves (Continued) $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

ICC vs TEMPERATURE

WORST CASE MULTIPLICATION ERROR vs TEMPERATURE

MULTIPLICATION ERROR vs $\mathbf{V}_{\mathbf{X}}$
$V_{Y}=+5 \mathrm{~V}$ and -5 V

SCALE FACTOR vs TEMPERATURE

MULTIPLICATON ERROR vs TEMPERATURE

$$
V_{X}=2 V, \quad V_{Y}=5 V
$$

Die Characteristics

Die Dimensions …................ $79.9 \times 119.7 \times 19$ mils$(2030 \times 3040 \times 480 \mu \mathrm{~m})$		
Substrate Potential*		
Process High Frequency, Bipolar, D		
Passivation		
Thermal Constants (${ }^{\circ} \mathrm{C} / \mathrm{W}$)	$\theta_{\text {ja }}$	$\theta_{\text {jc }}$
HA1 -2547.	76	17.3

* The substrate maybe left floating (Insulating Die Mount) or it may be on a conductor at V - potential.

Applications Information

Theory of Operation

The HA-2547 is a current output, two quadrant multiplier with one differential signal channel, V_{Y+} and V_{Y-}, and one differential control channel, V_{X} and V_{X}. Figure 1 shows a detailed functional block diagram of the HA-2547. The differential voltages of channels V_{X} and V_{Y} are converted to differential currents. These differential currents are then multiplied in a circuit similar to a Gilbert Cell multiplier, producing a differential current product. The differential product currents are then converted to a single-ended output current which is typically $2 \mathrm{~mA}, \pm 20 \%$ at full scale $\left(V_{X}=2 \mathrm{~V}, \mathrm{~V}_{\mathrm{Y}}= \pm 5 \mathrm{~V}\right.$). A trimmed internal scaling resistor, R_{Z}, is designed to convert the output current to an accurate voltage by grounding R_{Z} (pin 10). R_{Z} is trimmed such that at full scale output current the voltage drop across R_{Z} will be ± 5.0 volts.

The transfer equation for the HA-2547 is:

$$
\begin{aligned}
\mathrm{IOUT} & \approx \frac{\left(\mathrm{~V}_{\mathrm{X}}+-\mathrm{V}_{\mathrm{X}}\right)\left(\mathrm{V}_{\mathrm{Y}+}-\mathrm{V}_{\mathrm{Y}}\right)(0.4 \mathrm{~mA})}{\mathrm{SF}}, \text { where } \\
\mathrm{SF} & =\text { Scale Factor } \\
\mathrm{V}_{\mathrm{X}}, \mathrm{~V}_{\mathrm{Y}} & =\text { Differential Inputs }
\end{aligned}
$$

The scale factor is used to maintain the output of the multiplier within the normal operating range of $\pm 5 \mathrm{~V}$. The scale factor can be defined by the user by way of an optional external resistor, REXT, and the Gain Adjust pins: Gain Adjust A (GA A), Gain Adjust B (GA B), and Gain Adjust C (GA C). The scale factor is determined as follows:
$S F=2$, when $G A B$ is shorted to $G A C$
$\mathrm{SF} \approx(1.2)\left(R_{E X T}\right)$, when $R_{E X T}$ is connected between GA A and GA C (REXT is in $k \Omega$)
$S F \approx(1.2)\left(R_{E X T}+1.667 \mathrm{k} \Omega\right)$, when REXT is connected to GA B and GA C (REXT is in $k \Omega$).
The scale factor can be adjusted from 2 to 5 . It should be noted that any adjustments to the scale factor will affect the AC performance of the control channel, V_{X}. The normal input operating range of V_{X} is equal to the scale factor value.

A typical multiplier configuration is shown in Figure 2. The ideal transfer function for this configuration is shown below, illustrating two quadrant operation:

$$
V_{\text {OUT }}=\frac{\left(V_{X+}-V_{X-}\right)\left(V_{Y+}-V_{Y}\right)}{2} \quad, \text { when }\left(V_{X+}-V_{X-}\right) \geq 0
$$

The V_{X-} pin is usually connected to ground so that when $V_{X}+$ is negative there is no signal at the output, i.e. two quadrant operation. If the V_{X} input is a negative going signal the $V_{X}+$ pin maybe grounded and the V_{X} pin used as the input. The V_{Y} - terminal is usually grounded allowing $\mathrm{V}_{\mathrm{Y}}+$ to swing ± 5 volts. RZ is normally used as a feedback resistor for an external op amp to provide an accurate current-to-voltage conversion. The scale factor is normally set to 2 by connecting GA B to GA C. Therefore, the transfer function becomes:

$$
V_{\text {OUT }}=\frac{\left(V_{X+}\right)\left(V_{Y+}\right)}{2}
$$

The multiplication error is trimmed to be minimum at full scale, $V_{X}=2 V$ and $V_{Y}= \pm 5 \mathrm{~V}$. When $V_{Y}= \pm 5 \mathrm{~V}$, the worst
 typical performance curves).

Operation At Various Supply Voltages

The HA-2547 will operate over a range of supply voltages, ± 8 to ± 15 volts. Use of supply voltages below ± 12 volts will cause degradation of electrical parameters.

Offset Adjustment

The signal channel offset voltage may be nulled by using a 20K potentiometer between $V_{Y I O}$ Adjust pins A and B and connecting the wiper to $-\mathrm{V}_{\mathrm{S}}$. Reducing the signal channel offset voltage will reduce $V_{X} A C$ feedthrough and improve the multiplication error. Output offset voltage can also be nulled by connecting V_{Z} - to the wiper of a potentiometer which is tied between +V and -V .

HA-5002

Monolithic, Wideband, High Slew Rate, High Output Current Buffer

May 1990

Features

- Voltage Gain .0 .995
- High Input Impedance . 3000k Ω
- Low Output Impedance 3Ω
- Very High Slew Rate \qquad
- Very Wide Bandwidth
.. \qquad
- High Output Current 10 Hz
- Pulsed Output Current \qquad 400 mA
- Monolithic Construction

Description

The HA-5002 is a monolithic, wideband, high slew rate, high output current, buffer amplifier.

Utilizing the advantages of the Harris D.I. technologies, the HA-5002 current buffer offers $1300 \mathrm{~V} / \mu \mathrm{sec}$ slew rate with 110 MHz of bandwidth. The $\pm 200 \mathrm{~mA}$ output current capability is enhanced by a 3Ω output impedance.
The monolithic HA-5002 will replace the hybrid LHOOO2 with corresponding performance increases. These characteristics range from the $3000 \mathrm{k} \Omega$ input impedance to the increased output voltage swing. Monolithic design technologies have

Applications
- Line Driver
- Data Acquisition
- 110MHz Buffer
- High Power Current Booster
- High Power Current Source
- Sample and Holds
- Radar Cable Driver
- Video Products

allowed a more precise buffer to be developed with more than an order of magnitude smaller gain error.

The HA-5002 will provide many present hybrid users with a higher degree of reliability and at the same time increase overall circuit performance.
The HA-5002 is available in an 8 pin SOIC package, an 8 pin Metal Can, and 8 pin Ceramic and Plastic Mini-DIPs. For the military grade product, refer to the HA-5002/883 Data Sheet.

Pinouts

HA9P5002 (SOIC)

HA7-5002 (CERAMIC DIP)
HA3-5002 (PLASTIC DIP) TOP VIEW

HA2-5002 TO-99 (METAL CAN) TOP VIEW

LCC Package Available for HA-5002/883. See HA-5002/883 Data Sheet

Schematic

Absolute Maximum Ratings (Note 1)	
Voltage Between V+ and V-pins	44V
Input Voltage..	. Equal to Supplies
Output Current	. Continuous $\pm 200 \mathrm{~mA}$
Output Current. .	(50ms On, 1s Off) $\pm 400 \mathrm{~mA}$
Internal Power Dissipation (Note 2)	
TO-99 (+250 ${ }^{\circ} \mathrm{C}$)	.1.13W
Mini-DIP ($+25^{\circ} \mathrm{C}$)	.1.22W
Plastic DIP ($+25^{\circ} \mathrm{C}$)1.88W

Operating Temperature Range

Maximum Junction Temperature. $+175^{\circ} \mathrm{C}$ HA-5002-2 . $-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}$

HA-5002-9................................. $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+85^{\circ} \mathrm{C}$
Storage Temperature Range $\ldots5^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+150^{\circ} \mathrm{C}$

Electrical Specifications $V_{\text {SUPPLY }}= \pm 12 \mathrm{~V}$ to $\pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=50 \Omega, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$, Unless Otherwise Specified.

PARAMETER	TEMP	HA-5002-2			HA-5002-5, -9			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
INPUT CHARACTERISTICS								
Offset Voltage Average Offset Voltage Drift Bias Current Input Resistance Input Noise Voltage ($10 \mathrm{~Hz}-1 \mathrm{MHz}$)	$\begin{gathered} +25^{\circ} \mathrm{C} \\ \text { Full } \\ \text { Full } \\ +25^{\circ} \mathrm{C} \\ \text { Full } \\ \text { Full } \\ +25^{\circ} \mathrm{C} \end{gathered}$	- - - - - 1.5 -	$\begin{gathered} 5 \\ 10 \\ 30 \\ 2 \\ 3.4 \\ 3 \\ 4 \end{gathered}$	20 30 - 7 10 -	- - - - - 1.5	$\begin{gathered} 5 \\ 10 \\ 30 \\ 2 \\ 2.4 \\ 3 \\ 4 \end{gathered}$	$\begin{gathered} 20 \\ 30 \\ - \\ 7 \\ 10 \\ - \\ - \end{gathered}$	$\begin{gathered} \mathrm{mV} \\ \mathrm{mV} \\ \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ \mu \mathrm{~A} \\ \mu \mathrm{~A} \\ \mathrm{M} \Omega \\ \mu \mathrm{Vp}-\mathrm{p} \end{gathered}$
TRANSFER CHARACTERISTICS								
Voltage Gain (Note 7) $\begin{aligned} & R_{\mathrm{L}}=100 \Omega \\ & R_{\mathrm{L}}=1 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \end{aligned}$ -3dB Bandwidth (Note 4) AC Current Gain	$\begin{aligned} & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \\ & \text { Full } \\ & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \end{aligned}$		$\begin{gathered} 0.971 \\ 0.995 \\ - \\ 110 \\ 40 \end{gathered}$	-	$\begin{gathered} - \\ - \\ 0.980 \\ - \end{gathered}$	$\begin{gathered} 0.971 \\ 0.995 \\ - \\ 110 \\ 40 \end{gathered}$	-	V/N VN VN MHz A/mA
OUTPUT CHARACTERISTICS								
Output Voltage Swing $\begin{aligned} & R_{\mathrm{L}}=100 \Omega \\ & R_{\mathrm{L}}=1 \mathrm{k} \Omega \text { (Note } 3 \text {) } \\ & R_{\mathrm{L}}=1 \mathrm{k} \Omega \text { (Note } 5 \text {) } \end{aligned}$ Output Resistance Harmonic Distortion (Note 6)	$\begin{aligned} & +25^{\circ} \mathrm{C} \\ & \text { Full } \\ & \text { Full } \\ & \text { Full } \\ & +25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \pm 10 \\ & \pm 10 \\ & \pm 10 \end{aligned}$	$\begin{gathered} \pm 10.7 \\ \pm 13.5 \\ \pm 10.5 \\ 3 \\ <0.005 \end{gathered}$		± 10 ± 10 ± 10 -	$\begin{gathered} \pm 11.2 \\ \pm 13.9 \\ \pm 10.5 \\ 3 \\ <0.005 \end{gathered}$	- - - 10 -	$\begin{aligned} & V \\ & V \\ & V \\ & \Omega \\ & \% \end{aligned}$
TRANSIENT RESPONSE								
Full Power Bandwidth (Note 8) Rise Time Propagation Delay Overshoot Slew Rate Settling Time to 0.1%	$\begin{aligned} & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \end{aligned}$	- - - - 1.0 -	$\begin{gathered} 11 \\ 3.6 \\ 2 \\ 30 \\ 1.3 \\ 50 \end{gathered}$	- - - - - -	- - - - 1.0 -	$\begin{gathered} 11 \\ 3.6 \\ 2 \\ 30 \\ 1.3 \\ 50 \end{gathered}$	-	MHz ns ns \% V / ns ns
POWER REQUIREMENTS								
Supply Current Power Supply Rejection Ratio (Note 9)	$+25^{\circ} \mathrm{C}$ Full Full	- - 54	8.3 - 64	- 10 -	- - 54	8.3 - 64	- 10 -	mA mA dB

NOTES:

1. Absolute maximum ratings are limiting values, applied individually beyond which the serviceability of the circuit may be impaired. Functional operability under any of these conditions is not necessarily implied.
2. See thermal constants data in Die Characteristics section.
3. $V_{S U P P L Y}= \pm 15 \mathrm{~V}$
4. $V_{\mathrm{IN}}=1 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$
5. $V_{\text {SUPPLY }}= \pm 12 \mathrm{~V}$
6. $V_{I N}=1 V_{R M S} ; f=10 \mathrm{kHz}$.
7. $V_{\text {OUT }}= \pm 10 \mathrm{~V}$
8. $V_{\text {OUT }}=10 \mathrm{Vp-p}$
9. $\Delta V_{\text {SUPPLY }}=10 \mathrm{~V}$

Operating Instructions

Layout Considerations

The wide bandwidth of the HA-5002 necessitates that high frequency circuit layout procedures be followed. Failure to follow these guidelines can result in marginal performance.
Probably the most crucial of the RF/video layout rules is the use of a ground plane. A ground plane provides isolation and minimizes distributed circuit capacitance and inductance which will degrade high frequency performance.

Other considerations are proper power supply bypassing and keeping the input and output connections as short as possible which minimizes distributed capacitance and reduces board space.

Power Supply Decoupling

For optimal device performance, it is recommended that the positive and negative power supplies be bypassed with capacitors to ground. Ceramic capacitors ranging in value from 0.01 to $0.1 \mu \mathrm{~F}$ will minimize high frequency variations in supply voltage, while low frequency bypassing requires larger valued capacitors since the impedance of the capacitor is dependent on frequency.

It is also recommended that the bypass capacitors be connected close to the HA-5002 (preferably directly to the supply pins).

FREE AIR POWER DISSIPATI JN

Test Circuits

COAXIAL CABLE DRIVER - 50Ω SYSTEM

HA-5002

Test Circuits

LARGE AND SMALL SIGNAL RESPONSE

$R_{S}=50 \Omega$ $R_{L}=100 \Omega$

$\mathrm{R}_{\mathbf{S}}=50 \Omega$
$R_{\mathrm{L}}=1 \mathrm{k} \Omega$

SMALL SIGNAL WAVEFORMS

$R_{S}=50 \Omega$
$R_{L}=1 k \Omega$

$R_{S}=50 \Omega$
$R_{\mathrm{L}}=1 \mathrm{k} \Omega$

Typical Performance Curves

GAIN/PHASE vs. FREQUENCY
$V_{C C}= \pm 15 \mathrm{~V}, R_{L}=1 \mathrm{~K}, R_{S}=50 \Omega$

VOLTAGE GAIN vs. TEMPERATURE
$V_{C C}= \pm 15 \mathrm{~V}, R_{\text {LOAD }}=100 \Omega$

OFFSET VOLTAGE vs. TEMPERATURE
$V_{C C}= \pm 15 \mathrm{~V}$

GAIN/PHASE vs. FREQUENCY
$V_{C C}= \pm 15 \mathrm{~V}, R_{\mathrm{L}}=50 \Omega, R_{\mathrm{S}}=50 \Omega$

VOLTAGE GAIN vs. TEMPERATURE
$V_{C C}= \pm 15 \mathrm{~V}, R_{\text {LOAD }}=1 \mathrm{k} \Omega$

BIAS CURRENT vs. TEMPERATURE
$V_{C C}= \pm 15 \mathrm{~V}$

Typical Performance Curves (Continued)

MAXIMUM OUTPUT VOLTAGE vs. TEMPERATURE
$V_{C C}= \pm 15 \mathrm{~V}, R_{\text {LOAD }}=100 \Omega$

SUPPLY CURRENT vs. SUPPLY VOLTAGE
IOUT $=$ UMA

VOUT MAXIMUM vs. VSUPPLY
RLOAD $=100 \Omega$

SUPPLY CURRENT vs. TEMPERATURE
$V_{C C}= \pm 15 \mathrm{~V}$, IOUT $=0 \mathrm{~mA}$

INPUT/OUTPUT IMPEDANCE vs. FREQUENCY Vrr. $= \pm 15 \mathrm{~V}$

Typical Performance Curves (Continued)

SLEW RATE vs. SUPPLY VOLTAGE

GAIN ERROR vs. INPUT VOLTAGE

Typical Applications

OPERATION AT REDUCED SUPPLY LEVELS

The HA-5002 can operate at supply voltage levels as low as $\pm 5 \mathrm{~V}$ and lower. Output swing is directly affected as well as slight reductions in slew rate and bandwidth.

SHORT CIRCUIT PROTECTION

The Output current can be limited by using the following circuit:

CAPACITIVE LOADING

The HA-5002 will drive large capacitive loads without oscillation but peak current limits should not be exceeded. Following the formula $\mathrm{I}=\mathrm{Cdv} / \mathrm{dt}$ implies that the slew rate or the capacitive load must be controlled to keep peak current below the maximum or use the current limiting approach as shown. The HA-5002 can become unstable with small capacitive loads (50 pF) if certain precautions are not taken. Stability is enhanced by any one of the following: a source resistance in series with the input of 50Ω to 1 K ; increasing capacitive load to 150 pF or greater; decreasing CLOAD to 20 pF of less; adding an output resistor of 10Ω to 50Ω; or adding feedback capacitance of 50 pF or greater. Adding source resistance generally yields the best results.

Die Characteristics

Transistor Count ... 27
Die Dimensions $80 \times 81 \times 19$ mils $(2030 \mu \mathrm{~m} \times 2050 \mu \mathrm{~m} \times 480 \mu \mathrm{~m})$
Substrate Potential* . V-
Process Bipolar-DI
Thermal Constants $\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right) \quad \theta_{\mathrm{ja}} \quad \theta_{\mathrm{jc}}$

HA7-5002 Ceramic Mini-DIP	123	46
HA3-5002 Plastic DIP	80	20
HA2-5002 Metal Can	133	40
HA9P5002 SOIC	160	42

*The substrate may be left floating (Insulating Die Mount) or it may be mounted on a conductor at V -potential.

Features

- Differential Phase Error 0.1 Degree
- Differential Gain Error 0.1%
- High Slew Rate . 1300V/ hs
- Wide Bandwidth (Small Signal) 250MHz
- Wide Power Bandwidth DC to 65 MHz
- Fast Rise Time

3ns

- High Output Drive $\pm 8 \mathrm{~V}$ With 100Ω Load
- Wide Power Supply Range $\pm 5 \mathrm{~V}$ to $\pm 16 \mathrm{~V}$
- Replace Costly Hybrids

Description

The HA-5033 is a unity gain monolithic I.C. designed for any application requiring a fast, wideband buffer. Featuring a handwidth of 250 MHz and outsanding differential phase/ gain characteristics, this high performance voltage follower is an excellent choice for video circuit design. Other features, which include a minimum slew rate of $1000 \mathrm{~V} / \mu \mathrm{s}$ and high output drive capability, make the HA-5033 applicable for line driver and high speed data conversion circuits.

Applications

- Video Buffer
- High Frequency Buffer
- Isolation Buffer
- High Speed Line Driver
- Impedance Matching
- Current Boosters
- High Speed A/D Input Buffers
- For Further Application Ideas, See App. Note 548

The high performance of this product is a result of the Harris Dielectric Isolation process. A major feature of this process is that it produces both PNP and NPN high frequency transistors which makes wide bandwiatn designs, sucil as ïic HA-5033, practical. Alternative process methods typically produce a lower $A C$ performance.
The HA-5033 is available in a 12 pin (TO-8) Metal Can or an 8 pin Plastic Mini-DIP. SOIC packaging is also available with -5 and -9 temperature options.

Pinouts

HA2-5033 (TO-8 METAL CAN) TOP VIEW

[^65]Copyright © Harris Corporation 1990

Absolute Maximum Ratings (Note 1)				Operating Temperature Ranges					
Internal Power Dissipation (Note 2) Storage Temperature Range $65^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+150^{\circ} \mathrm{C}$									
Electrical Specifications $V_{S U P P L Y}= \pm 12 \mathrm{~V}, \mathrm{R}_{S}=50 \Omega, \mathrm{R}_{\mathrm{L}}=100 \Omega, C_{L}=10 \mathrm{pF}$, Unless Otherwise Specified.									
PARAMETER	TEMP	HA-5033-2			HA-5033-5			NOTE 10	UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	MAX	
INPUT CHARACTERISTICS									
Offset Voltage	$+25^{\circ} \mathrm{C}$Full	-	5	1525	-	5	15 25	15 30	$\mathrm{mV}$$\mathrm{mV}$$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
		-	6		-	6	25	30	
Average Offset Voltage Drift	Full	-	33	-	-	33	-	-	
Bias Current	$+25^{\circ} \mathrm{C}$	-	20	35	-	20	35	35	$\mu \mathrm{A}$
	Full	-	30	50	-	30	50	50	$\mu \mathrm{A}$
Input Resistance	$+25^{\circ} \mathrm{C}$	-	1.5	-	-	1.5	-	-	$\mathrm{M} \Omega$
input Capacitance	$+25^{\circ} \mathrm{C}$	-	1.6	-	-	1.6	-	-	pF
Input Noise Voltage (Note 3)	$+25^{\circ} \mathrm{C}$	-	20	-	-	20	-	-	$\mu \mathrm{Vp}$-p
TRANSFER CHARACTERISTICS									
Voltage Gain									
$R_{L}=100 \Omega$	$+25^{\circ} \mathrm{C}$	0.93	-	-	0.93	-	-	-	V/N
$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	$+25^{\circ} \mathrm{C}$	0.93	0.99	-	0.93	0.99	-	-	V/V
$\begin{gathered} \mathrm{RL}=100 \Omega \\ -3 \mathrm{~dB} \text { Bandwidth } \end{gathered}$	Full	0.92	-	-	0.92	-	-	-	V/V
	$+25^{\circ} \mathrm{C}$	-	250	-	-	250	-	-	MHz
OUTPUT CHARACTERISTICS									
Output Voltage Swing									
$R_{L}=100 \Omega$	Full	+8	± 10	-	± 8	± 10	-	-	V
$R_{L}=1 \mathrm{k} \Omega$ (Note 4)	Full	± 11	± 12	-	± 11	± 12	-	-	V
Output Current	$+25^{\circ} \mathrm{C}$	± 80	± 100	-	± 80	± 100	-	-	mA
Output Resistance	$+25^{\circ} \mathrm{C}$	-	5	-	-	5	-	-	Ω
Full Power Bandwidth									
(Note 5)	$+25^{\circ} \mathrm{C}$	-	65	-	-	65	-	-	MHz
(Note 7)	$+25^{\circ} \mathrm{C}$	15.9	-	-	15.9	-	-	-	MHz
TRANSIENT RESPONSE									
Rise Time (Note 6)	$+25^{\circ} \mathrm{C}$	-	3	-	-	3	-	-	ns
Propagation Delay	$+25^{\circ} \mathrm{C}$	-	1	-	-	1	-	-	ns
Overshoot	$+25^{\circ} \mathrm{C}$	-	10	-	-	10	-	-	\%
Slew Rate (Note 7)	$+25^{\circ} \mathrm{C}$	1	1.3	-	1	1.3	-	-	V / ns
Settling Time to 0.1\%	$+25^{\circ} \mathrm{C}$	-	50	-	-	50	-	-	ns
Differential Phase Error (Note 8)	$+25^{\circ} \mathrm{C}$	-	0.1	-	-	0.1	-	-	Degree
Differential Gain Error (Note 8)	$+25^{\circ} \mathrm{C}$	-	0.1	-	-	0.1	-	-	\%
POWER SUPPLY CHARACTERISTICS									
Supply Current	$+25^{\circ} \mathrm{C}$	-	21	25	-	21			mA
	Full	-	21	30	-	21	30	30	mA
Power Supply Rejection Ratio Harmonic Distortion (Note 9)	Full	54	-	-	54.	-	-	-	dB
	$+25^{\circ} \mathrm{C}$		<0.1	-	-	<0.1	-	-	\%
NOTES:									
1. Absolute maximum ratings are limiting values, applied individually beyond which the serviceability of the circuit may be impaired. Functional operability under any of these conditions is not necessarily implied. 2. TO-8: $\theta_{\mathrm{ja}}=101^{\circ} \mathrm{C} / \mathrm{W}, \theta_{\mathrm{jc}}=33^{\circ} \mathrm{C} / \mathrm{W}$ Recommended heat sinks for the TO-8: Thermalioy 2240A, $\theta_{\text {sa }}=27^{\circ} \mathrm{C} / \mathrm{W}$, IERC Up-TO-8-48CB, $\theta_{\text {sa }}=10^{\circ} \mathrm{C} / \mathrm{W}$. Mini-DIP: $\theta_{\mathrm{ja}}=91^{\circ} \mathrm{C} / \mathrm{W}, \theta_{\text {sa }}=40^{\circ} \mathrm{C} / \mathrm{W}$.				8. Differential gain and phase error are non-linear signal distortions found in video systems and are defined as follows: Differential gain error is defined as the change in amplitude at the color subcarrier frequency as the picture signal is varied from blanking to white level. Differential phase error is defined as the change in the phase of the color subcarrier as the picture signal is varied from blanking to white level. Differential gain and					
4. $\pm \mathrm{V}_{\text {SUPPLY }}= \pm 15 \mathrm{~V}$				Vector					
5. $\mathrm{V}_{\text {OUT }}=1 \mathrm{~V}_{\text {RMS }}, R_{\mathrm{L}}=1 \mathrm{k} \Omega$				9. $\mathrm{V}_{\mathbb{I N}}=1 \mathrm{~V}_{\mathrm{RMS}}$					
6. $\mathrm{V}_{\text {OUT }}=500 \mathrm{mV}$				10. Typical and minimum specification for the -9 version are the same as					
7. $\pm \mathrm{V}_{\text {SUPPLY }}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$.				those f	e -5	n.			

Operating Instructions

Layout Considerations

The wide bandwidth of the HA-5033 necessitates that high frequency circuit layout procedures be followed. Failure to follow these guidelines can result in marginal performance.

Probably the most crucial of the RF/video layout rules is the use of a ground plane. A ground plane provides isolation and minimizes distributed circuit capacitance and inductance which will degrade high frequency performance. This ground plane shielding can also incorporate the metal case of the HA-5033 since pin \#2 is internally tied to the package. This feature allows the user to make metal to metal contact between the ground plane and the package, which extends shielding, provides additional heat sinking and eliminates the use of a socket, IC sockets contribute inter-lead capacitance which limits device bandwidth and should be avoided.
For the epoxy Mini-DIP, pin 6 can be tied to either supply, grounded, or simply not used. But to optimize device
performance and improve isolation, it is recommended that this pin be grounded.
Other considerations are proper power supply bypassing and keeping the input and output connections as short as possible which minimizes distributed capacitance and reduces board space.

Power Supply Decoupling

For optimum device performance, it is recommended that the positive and negative power supplies be bypassed with capacitors to ground. Ceramic capacitors ranging in value from 0.01 to $0.1 \mu \mathrm{~F}$ will minimize high frequency variations in supply voltage. Solid tantalum capacitors $1 \mu \mathrm{~F}$ or larger will optimize low frequency performance.
It is also recommended that the bypass capacitors be connected close to the HA-5033 (preferably directly to the supply pins).

Tost Circuits

SLEW RATE AND SETTLING TIME

SETTLING TIME

NOTE: Measured on both positive and negative transitions.

Test Circuits (Continued)

+0.5V PULSE RESPONSE
$T_{A}=+25^{\circ} \mathrm{C}, R_{S}=50 \Omega, R_{L}=100 \Omega$

Typical Performance Curves

INPUT OFFSET VOLTAGE vs. TEMPERATURE vs. SUPPLY VOLTAGE

INPUT BIAS CURRENT vs. TEMPERATURE vs. SUPPLY VOLTAGE

Typical Performance Curves (Continued) SUPPLY CURRENT vs. temperature vs. supply voltage

SLEW RATE vs. TEMPERATURE

SLEW RATE vs. LOAD CAPACITANCE ($\mathrm{R}_{\mathrm{L}}=100 \Omega$)

GAIN ERROR vs. INPUT VOLTAGE

Typical Performance Curves (Continued)

Y - PARAMETERS PHASE vs. FREQUENCY

Y-PARAMETER MAGNITUDE vs. frequency

* Siemens $=\Omega-1$

POWER SUPPLY REJECTION RATIO vs. FREQUENCY

TOTAL HARMONIC DISTORTION vs. FREQUENCY

Typical Performance Curves (Continued)

TOTAL HARMONIC DISTORTION vs. RMS INPUT VOLTAGE

MAXIMUM POWER DISSIPATION vS.
AMBIENT TEMPERATURE

OUTPUT VOLTAGE SWING vs. LOAD RESISTANCE vs. SUPPLY VOLTAGE

OUTPUT SWING vs. FREQUENCY*

Typical Performance Curves (Continued)

HA-5033 SOA, TO-8, NO SINK
$T_{J}=+175, I_{C C}=30 \mathrm{~mA}, V_{C C}= \pm 15, \theta_{\mathrm{ja}}=101^{\circ} \mathrm{C} / \mathrm{W}$

HA-5033, TO-8, AAVID $5792 \theta_{\text {sa }}=25^{\circ} \mathrm{C} / \mathrm{W}$
$T_{J}=+175, I_{C C}=30 \mathrm{~mA}, V_{C C}= \pm 15, \theta_{\mathrm{jc}}=33^{\circ} \mathrm{C} / \mathrm{W}$

* This curve was obtained by noting the output voltage necessary to produce an observable distortion for a given frequency. If higher distortion is acceptable, then a higher output voltage for a given frequency can be obtained.
However, operating the HA-5033 with increased distortion (to the right of curve shown), will also be accompanied by an increase in supply current. The resulting increase in chip temperature must be considered and heat sinking will be necessary to prevent thermal runaway.
This characteristic is the result of the output transistor operation. If the signal amplitude or signal frequency or both are increased beyond the curve shown, the NPN, PNP output transistors will approach a condition of being simultaneously on. Under this condition, thermal runaway can occur.

Typical Applications (Also See Application Note 548)
VIDEO COAXIAL LINE DRIVER - 50V SYSTEM

POSITIVE PULSE RESPONSE
$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{S}}=50 \Omega, \mathrm{R}_{\mathrm{M}}=\mathrm{R}_{\mathrm{L}}=50 \Omega$
$V_{O}=V_{I N}\left(\frac{R_{L}}{R_{L}+R_{M}}\right)=1 / 2 V_{I N}$

NEGATIVE PULSE RESPONSE
$T_{A}=+25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{S}}=50 \Omega, \mathrm{R}_{\mathrm{M}}=\mathrm{RL}=50 \Omega$
$V_{O}=V_{I N}\left(\frac{R_{L}}{R_{L}+R_{M}}\right)=1 / 2 V_{I N}$

Typical Applications (Continued)

VIDEO GAIN BLOCK

Die Characteristics
Transistor Count
Die Dimensions $50 \times 66 \times 19$ mils $1270 \times 1660 \times 480 \mu \mathrm{~m})$
Substrate Potential* V-
Process . High Frequency Bipolar-DI
Passivation \qquad Nitride
*The substrate may be left floating (Insulating Die Mount) or it may be mounted on a conductor at V -potential.

GENERAL DESCRIPTION

The ICL8013 is a four quadrant analog multiplier whose output is proportional to the algebraic product of two input signals. Feedback around an internal op-amp provides level shifting and can be used to generate division and square root functions. A simple arrangement of potentiometers may be used to trim gain accuracy, offset voltage and feedthrough performance. The high accuracy, wide bandwidth, and increased versatility of the ICL8013 make it ideal for all multiplier applications in control and instrumentation systems. Applications include RMS measuring equipment, frequency doublers, balanced modulators and demodulators, function generators, and voltage controlled amplifiers.

FEATURES

- Accuracy of $\pm 0.5 \%$ ("A" Version)
- Full $\pm 10 \mathrm{~V}$ Input Voltage Range
- 1MHz Bandwidth
- Uses Standard $\pm 15 \mathrm{~V}$ Supplies
- Built-in Op Amp Provides Level Shifting, Division and Square Root Functions

ORDERING INFORMATION

$\begin{array}{c}\text { Part } \\ \text { Number }\end{array}$	$\begin{array}{c}\text { Multiplication } \\ \text { Error }\end{array}$	$\begin{array}{c}\text { Temperature } \\ \text { Range }\end{array}$	Package
ICL8013AM TX	$\pm 0.5 \%$		
ICL8013BM TX	$\pm 1 \%$		
ICL8013CM TX	$\pm 2 \%$		
ICL8013AC TX	$\pm 5 \%$		
ICL8013BC TX	$\pm 1 \%$		
ICL8013CC TX	$\pm 2 \%$		

-55^{\circ} \mathrm{C} to+125^{\circ} \mathrm{C}\end{array}\right]\)| |
| :--- |

ABSOLUTE MAXIMUM RATINGS

Supply Voltage	8 V
Power Dissipation (Note 1)	500 mW
Input Voltages	
$\left(X_{\text {IN }}, Y_{\text {IN }}, Z_{\text {IN }}, X_{\text {OS }}, Y_{\text {OS }}, Z_{\text {OS }}\right)$	$V_{\text {SUPPLY }}$

NOTE 1: Derate at $6.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for operation at ambient temperature above $75^{\circ} \mathrm{C}$.
NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS (Unless otherwise specified $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {SUPPLY }}= \pm 15 \mathrm{~V}$, Gain and Offset Potentiometers Externally Trimmed)

Parameter		Test Conditions	ICL8013A			ICL8013B			ICL8013C			Units	
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max			
Multiplier Function					$\frac{\mathrm{XY}}{10}$			$\frac{X Y}{10}$			$\frac{X Y}{10}$		
Multiplication Error		$\begin{aligned} & -10<X<10 \\ & -10<Y<10 \end{aligned}$			0.5			1.0			2.0	\% Full Scale	
Divider Function				$\frac{102}{x}$			$\frac{10 Z}{X}$			$\frac{107}{x}$			
Division Error		$\begin{aligned} & X=-10 \\ & X=-1 \end{aligned}$		$\begin{aligned} & \hline \overline{4} . \overline{3} \\ & 1.5 \end{aligned}$			$\begin{aligned} & 0.5 \\ & 1.5 \end{aligned}$			$\begin{aligned} & \mathrm{n} .3 \\ & 1.5 \end{aligned}$		\% Full Scale \% Full Scale	
Feedthrough		$\begin{aligned} & X=0, Y= \pm 10 \mathrm{~V} \\ & Y=0, X= \pm 10 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 50 \\ & 50 \\ & \hline \end{aligned}$			$\begin{array}{\|l\|} \hline 100 \\ 100 \\ \hline \end{array}$			$\begin{aligned} & 200 \\ & 150 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$	
Non-Linearity	X Input	$\begin{aligned} & \mathrm{X}=20 \mathrm{~V}_{\mathrm{p}-\mathrm{p}} \\ & \mathrm{Y}= \pm 10 \mathrm{Vdc} \end{aligned}$		± 0.5			± 0.5			± 0.8		\%	
	Y Input	$\begin{aligned} & \mathrm{Y}=20 \mathrm{~V}_{\mathrm{p}-\mathrm{p}} \\ & \mathrm{X}= \pm 10 \mathrm{Vdc} \end{aligned}$		± 0.2			± 0.2			± 0.3		\%	
Frequency Response Small Signal Bandwidth (-3 dB)				1.0			1.0			1.0		MHz	
Full Power Bandwidth				750			750			750		kHz	
Slew Rate				45			45			45		$\mathrm{V} / \mu \mathrm{s}$	
1\% Amplitude Error				75			75			75		kHz	
1% Vector Error(0.5° Phase Shift)				5			5			5		kHz	
Settling Time (to $\pm 2 \%$ of Final Value) Overload Recovery (to $\pm 2 \%$ of Final Value)		$V_{i N}= \pm 10 \mathrm{~V}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$			$\begin{aligned} & 1 \\ & 1 \end{aligned}$			$\begin{aligned} & 1 \\ & 1 \end{aligned}$		$\mu \mathrm{S}$ $\mu \mathrm{s}$	
Output Noise		5 Hz to 10 kHz 5 Hz to 5 MHz		$\begin{gathered} 0.6 \\ 3 \\ \hline \end{gathered}$			$\begin{gathered} 0.6 \\ 3 \end{gathered}$			$\begin{gathered} 0.6 \\ 3 \\ \hline \end{gathered}$		mV rms mV rms	
Input Resistance	X Input	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$		10			10			10		$\mathrm{M} \Omega$	
	Y Input			6			6			6		$\mathrm{M} \Omega$	
	Z Input			36			36			36		$\mathrm{k} \Omega$	
Input Bias Current	X or Y Input	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$		2	5			7.5			10	$\mu \mathrm{A}$	
	Z Input			25			25			25		$\mu \mathrm{A}$	
Power Supply Variation	Multiplication Error			0.2			0.2			0.2		\%/\%	
	Output Offset				50			75			100	mV / V	
	Scale Factor			0.1			0.1			0.1		\%/\%	
Quiescent Current				3.5	6.0		3.5	6.0		3.5	6.0	mA	

Operating Temperature Range:
ICL8013XC $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
ICL8013XM $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range $\ldots \ldots \ldots . .-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec)........... $.300^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (Unless otherwise specified $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {SUPPLY }}= \pm 15 \mathrm{~V}$, Gain and Offset Potentiometers Externally Trimmed) (Continued)

Parameter		Test Conditions	ICL8013A			ICL8013B			ICL8013C			Units	
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max			
The Following Specifications Apply Over the Operating Temperature Ranges													
Multiplication Error			$\begin{aligned} & -10 V<X_{I N}<10 V \\ & -10 V<Y_{I N}<10 V \end{aligned}$		1.5			2			3		\% Full Scale
Average Temperature Coefficients	Accuracy			0.06			0.06			0.06		\%/ ${ }^{\circ} \mathrm{C}$	
	Output Offset			0.2			0.2			0.2		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	
	Scale Factor			0.04			0.04			0.04		\%/ ${ }^{\circ} \mathrm{C}$	
Input Bias Current	X or Y Input	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$			5			5			10	$\mu \mathrm{A}$	
	Z Input				25			25			35	$\mu \mathrm{A}$	
Input Voltage (X, Y, or Z)					± 10			± 10			± 10	V	
Output Voltage Swing		$\begin{aligned} & R_{L} \geq 2 k \Omega \\ & C_{L}<1000 \mathrm{pF} \end{aligned}$		± 10			± 10			± 10		V	

0325-3
Figure 3: Differential Amplifier

Figure 4: Transconductance Multiplier

DETAILED DESCRIPTION

The fundamental element of the ICL8013 multiplier is the bipolar differential amplifier of Figure 3.
The small signal differential voltage gain of this circuit is given by

$$
A_{V}=\frac{V_{\text {OUT }}}{V_{I N}}=\frac{R_{L}}{r_{e}}
$$

Substituting $r_{e}=\frac{1}{g_{m}}=\frac{k T}{q_{E}}$

$$
V_{\text {OUT }}=V_{I N} \frac{R_{L}}{r_{e}}=V_{I N} \cdot \frac{q_{E} R_{L}}{k T}
$$

The output voltage is thus proportional to the product of the input voltage $\mathrm{V}_{I N}$ and the emitter current I_{E}. In the simple transconductance multiplier of Figure 4, a current source comprising Q_{3}, D_{1}, and R_{Y} is used. If V_{Y} is large compared with the drop across D_{1}, then

$$
\begin{gathered}
I_{D} \sim \frac{V_{Y}}{R_{Y}}=2 I_{E} \text { and } \\
V_{\text {OUT }}=\frac{q R_{L}}{k T R_{Y}}\left(V_{X} \bullet V_{Y}\right)
\end{gathered}
$$

There are several difficulties with this simple modulator:
1: $\quad V_{Y}$ must be positive and greater than V_{D}.
2: Some portion of the signal at V_{X} will appear at the output unless $\mathrm{I}_{\mathrm{E}}=0$.
3: $\quad V_{X}$ must be a small signal for the differential pair to be linear.
4: The output voltage is not centered around ground.
The first problem relates to the method of converting the V_{Y} voltage to a current to vary the gain of the V_{X} differential pair. A better method, Figure 5, uses another differential pair but with considerable emitter degeneration. In this cir-
cuit the differential input voltage appears across the common emitter resistor, producing a current which adds or subtracts from the quiescent current in either collector. This type of voltage to current converter handles signals from 0 volts to ± 10 volts with excellent linearity.

The second problem is called feedthrough; i.e. the product of zero and some finite input signal does not produce zero output voltage. The circuit whose operation is illustrated by Figures 6A, B, and C overcomes this problem and forms the heart of many multiplier circuits in use today.

This circuit is basically two matched differential pairs with cross coupled collectors. Consider the case shown in 6A of exactly equal current sources biasing the two pairs. With a small positive signal at $V_{I N}$, the collector current of Q_{1} and Q_{4} will increase but the collector currents of Q_{2} and Q_{3} will decrease by the same amount. Since the collectors are cross coupled the current through the load resistors remains unchanged and independent of the V_{IN} input voltage.

0325-6
Figure 6A: Input Signal with Balanced Current Sources $\Delta V_{\text {OUT }}=0 V$

In Figure 6B, notice that with $\mathrm{V}_{\mathbb{I}}=0$ any variation in the ratio of biasing current sources will produce a common mode voltage across the load resistors. The differential output voltage will remain zero. In Figure 6C we apply a differential input voltage with unbalanced current sources. If $I_{E 1}$ is twice ${ }_{E 2}$, the gain of differential pair Q_{1} and Q_{2} is twice the gain of pair Q_{3} and Q_{4}. Therefore, the change in cross coupled collector currents will be unequal and a differential output voltage will result. By replacing the separate biasing current sources with the voltage to current converter of Figure 5 we have a balanced multiplier circuit capable of four quadrant operation (Figure 7).

0325-7
Figure 6B: No Input Signal with Unbalanced Current Sources $\Delta V_{\text {OUT }}=0 V$

0325-8
Figure 6C: Input Signal with Unbalanced Current Sources, Differential Output Voltage

This circuit of Figure 7 still has the problem that the input voltage V_{iN} must be small to keep the differential amplifier in the linear region. To be able to handle large signals, we need an amplitude compression circuit.

0325-10
Figure 8A: Current Gain Cell

Figure 4 showed a current source formed by relying on the matching characteristics of a diode and the emitter base junction of a transistor. Extension of this idea to a differential circuit is shown in Figure 8A. In a differential pair, the input voltage splits the biasing current in a logarithmic ratio. (The usual assumption of linearity is useful only for small signals.) Since the input to the differential pair in Figure 8A is the difference in voltage across the two diodes, which in turn is proportional to the log of the ratio of drive currents, it follows that the ratio of diode currents and the ratio of collector currents are linearly related and independent of amplitude. If we combine this circuit with the voltage to current converter of Figure 5, we have Figure 8B. The output of the differential amplifier is now proportional to the input voltage over a large dynamic range, thereby improving linearity while minimizing drift and noise factors.
The complete schematic is shown in Figure 9. The differential pair Q_{3} and Q_{4} form a voltage to current converter whose output is compressed in collector diodes Q_{1} and Q_{2}. These diodes drive the balanced cross-coupled differential amplifier $Q_{7} / Q_{8} Q_{14} / Q_{15}$. The gain of these amplifiers is modulated by the voltage to current converter Q_{9} and Q_{10}. Transistors Q_{5}, Q_{6}, Q_{11}, and Q_{12} are constant current sources which bias the voltage to current converter. The output amplifier comprises transistors Q_{16} through Q_{27}.

MULTIPLICATION

In the standard multiplier connection, the Z terminal is connected to the op amp output. All of the modulator output current thus flows through the feedback resistor R27 and produces a proportional output voltage.

0325-13
Figure 10A: Multiplier Block Diagram

Multiplier Trimming Procedure

1. Set $X_{I N}=Y_{I N}=O V$ and adjust $Z_{O S}$ for zero Output.
2. Apply a $\pm 10 \mathrm{~V}$ low frequency ($\leq 100 \mathrm{~Hz}$) sweep (sine or triangle) to $Y_{I N}$ with $X_{I N}=0 V$, and adjust $X_{O S}$ for minimum output.
3. Apply the sweep signal of Step 2 to $X_{I N}$ with $Y_{I N}=O V$ and adjust $Y_{O S}$ for minimum Output.
4. Readjust $Z_{O S}$ as in Step 1, if necessary.
5. With $X_{I N}=10.0 \mathrm{VDC}$ and the sweep signal of Step 2 applied to $Y_{\text {IN }}$, adjust the Gain potentiometer for Output $=Y_{I N}$. This is easily accomplished with a differential scope plug-in $(A+B)$ by inverting one signal and adjusting Gain control for (Output- $\mathrm{Y}_{\mathfrak{N}}$) $=$ Zero.

Figure 10B: Actual Circuit Connection

DIVISION

If the Z terminal is used as an input, and the output of the op-amp connected to the Y input, the device functions as a divider. Since the input to the op-amp is at virtual ground, and requires negligible bias current, the overall feedback forces the modulator output current to equal the current produced by Z.

$$
\begin{aligned}
\text { Therefore } I_{O} & =X_{I N} \bullet Y_{I N}=\frac{Z_{I N}}{R}=10 Z_{I N} \\
\text { Since } Y_{I N} & =E_{\text {OUT }}, E_{O U T}=\frac{10 Z_{I N}}{X_{I N}}
\end{aligned}
$$

Note that when connected as a divider, the X input must be a negative voltage to maintain overall negative feedback.

0325-15
Figure 11A: Division Block Diagram

0325-16
Figure 11B: Actual Circuit Connection

Divider Trimming Procedure

1. Set trimming potentiometers at mid-scale by adjusting voltage on pins 7, 9 and $10\left(\mathrm{X}_{\mathrm{OS}}, \mathrm{Y}_{\mathrm{OS}}, \mathrm{Z}_{\mathrm{OS}}\right)$ for zero volts.
2. With $Z_{I N}=O V$, trim $Z_{O S}$ to hold the Output constant, as $X_{I N}$ is varied from -10 V through -1 V .
3. With $Z_{I N}=0 \mathrm{~V}$ and $\mathrm{X}_{\mathrm{IN}}=-10.0 \mathrm{~V}$ adjust $Y_{O S}$ for zero Output voltage.
4. With $Z_{I N}=X_{I N}$ (and/or $Z_{I N}=-X_{I N}$) adjust $X_{O s}$ for minimum worst-case variation of Output, as $X_{\text {IN }}$ is varied from -10 V to -1 V .
5. Repeat Steps 2 and 3 if Step 4 required a large initial adjustment.
6. With $Z_{I N}=X_{I N}\left(\right.$ and $/$ or $\left.Z_{I N}=-X_{I N}\right)$ adjust the gain control until the output is the closest average around $+10.0 \mathrm{~V}\left(-10 \mathrm{~V}\right.$ for $\left.\mathrm{Z}_{I N}=-\mathrm{X}_{\mathrm{IN}}\right)$ as X_{IN} is varied from -10 V to -3 V .

SQUARING

The squaring function is achieved by simply multiplying with the two inputs tied together. The squaring circuit may also be used as the basis for a frequency doubler since $\cos ^{2} \omega t=1 / 2(\cos 2 \omega t+1)$.

0325-18
Figure 12B: Actual Circuit Connection

SQUARE ROOT

Tying the X and Y inputs together and using overall feedback from the Op Amp results in the square root function. The output of the modulator is again forced to equal the current produced by the Z input.

$$
\begin{gathered}
\mathrm{I}_{\mathrm{O}}=X_{I N} \bullet Y_{I N}=\left(-E_{\text {OUT }}\right)^{2}=10 Z_{I N} \\
E_{\text {OUT }}=-\sqrt{10 Z_{\mathbb{I N}}}
\end{gathered}
$$

The output is a negative voltage which maintains overall negative feedback. A diode in series with the Op Amp output prevents the latchup that would otherwise occur for negative input voltages.

0325-19
Figure 13A: Square Root Block Diagram

Figure 13B: Actual Circuit Connection

Square Root Trimming Procedure

1. Connect the ICL8013 in the Divider configuration.
2. Adjust $Z_{O S}, Y_{O S}, X_{O S}$, and Gain using Steps 1 through 6 of Divider Trimming Procedure.
3 Convert to the Sauare Root configuration by connecting $X_{I N}$ to the Output and inserting a diode between Pin 4 and the Output node.
3. With $Z_{I N}=0 V$ adjust $Z_{O S}$ for zero Output voltage.

VARIABLE GAIN AMPLIFIER

Most applications for the ICL8013 are straight forward variations of the simple arithmetic functions described above. Although the circuit description frequently disguises the fact, it has already been shown that the frequency doubler is nothing more than a squaring circuit. Similarly the variable gain amplifier is nothing more than a multiplier, with the input signal applied at the X input and the control voltage applied at the Y input.

TYPICAL APPLICATIONS

TYPICAL PERFORMANCE CHARACTERISTICS

NONLINEARITY AS A FUNCTION OF FREQUENCY

FEEDTHROUGH AS A FUNCTION OF FREQUENCY

0325-27

DEFINITION OF TERMS

Multiplication/Division Error: This is the basic accuracy specification. It includes terms due to linearity, gain, and offset errors, and is expressed as a percentage of the full scale output.
Feedthrough: With either input at zero, the output of an ideal multiplier should be zero regardless of the signal applied to the other input. The output seen in a non-ideal multiplier is known as the feedthrough.

Nonlinearity: The maximum deviation from the best straight line constructed through the output data, expressed as a percentage of full scale. One input is held constant and the other swept through its nominal range. The nonlinearity is the component of the total multiplication/division error which cannot be trimmed out.

ICL8038 Precision Waveform Generator/Voltage Controlled Oscillator

GENERAL DESCRIPTION

The ICL8038 Waveform Generator is a monolithic integrated circuit capable of producing high accuracy sine, square, triangular, sawtooth and pulse waveforms with a minimum of external components. The frequency (or repetition rate) can be selected externally from .001 Hz to more than 300 kHz using either resistors or capacitors, and frequency modulation and sweeping can be accomplished with an external voltage. The ICL8038 is fabricated with advanced monolithic technology, using Schottky-barrier diodes and thin film resistors, and the output is stable over a wide range of temperature and supply variations. These devices may be interfaced with phase locked loop circuitry to reduce temperature drift to less than $250 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.

FEATURES

- Low Frequency Drift With Temperature $-250 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
- Simultaneous Sine, Square, and Triangle Wave Outputs
- Low Distortion - 1\% (Sine Wave Output)
- High Linearity - $\mathbf{0 . 1 \%}$ (Triangle Wave Output)
- Wide Operating Frequency Range -0.001 Hz to 300kHz
- Variable Duty Cycle - 2\% to 98\%
- High Level Outputs - TTL to 28V
- Easy to Use - Just A Handful of External Components Required

ORDERING INFORMATION

Part Number	Stability	Temp. Range	Package
ICL8038CCPD	$250 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ typ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14 pin DIP
ICL8038CCJD	$250 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ typ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14 pin CERDIP
ICL8038BCJD	$180 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ typ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14 pin CERDIP
ICL8038ACJD	$120 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ typ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14 pin CERDIP
ICL8038BMJD*	$350 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \max$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	14 pin CERDIP
ICL8038AMJD*	$250 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \max$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	14 pin CERDIP

*Add $/ 883 \mathrm{~B}$ to part number if 883 processing is required.

[^66]
ABSOLUTE MAXIMUM RATINGS

Supply Voltage (V^{-}to V^{+}) 36 V
Power Dissipation(1) . 750 mW
Input Voltage (any pin) V^{-}to V^{+}
Input Current (Pins 4 and 5) 25mA
Output Sink Current (Pins 3 and 9) 25mA

Storage Temperature Range $\ldots-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Operating Temperature Range:

8038AM, 8038BM $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ $8038 \mathrm{AC}, 8038 \mathrm{BC}, 8038 \mathrm{CC} \ldots \ldots \ldots \ldots .0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10sec) $300^{\circ} \mathrm{C}$

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

NOTE 1: Derate ceramic package at $12.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for ambient temperatures above $100^{\circ} \mathrm{C}$.
ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\text {SUPPLY }}= \pm 10 \mathrm{~V}$ or $+20 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$, Test Circuit Unless Otherwise Specified)

Symbol	General Characteristics	8038CC			8038BC(BM)			8038AC(AM)			Units
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
$V_{\text {SUPPLY }}$	Supply Voltage Operating Range										
$\mathrm{V}+$	Single Supply	+10		$+30$	$+10$		30	+10		30	V
$\mathrm{V}^{+}, \mathrm{V}^{-}$	Dual Supplies	± 5		± 15	± 5		± 15	± 5		± 15	V
ISUPPLY	Supply Current (V $\left.\mathrm{V}_{\text {SUPPLY }}= \pm 10 \mathrm{~V}\right)^{(2)}$										
	8038AM, 8038BM					12	15		12	15	mA
	8038AC, 8038BC, 8038CC		12	20		12	20		12	20	mA
Frequency Characteristics (all waveforms)											
$\mathrm{f}_{\text {max }}$	Maximum Frequency of Oscillation	100			100			100			kHz
$\mathrm{f}_{\text {sweep }}$	Sweep Frequency of FM Input		10			10			10		kHz
	Sweep FM Range(3)		35:1			35:1			35:1		
	FM Linearity 10:1 Ratio		0.5			0.2			0.2		\%
$\Delta \dagger / \Delta T$	Frequency Drift With Temperature(5) $8038 \mathrm{AC}, \mathrm{BC}, \mathrm{CC} 0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$		250			180			120		$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
	$8038 \mathrm{AM}, \mathrm{BM},-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$						350			250	
$\Delta f / \Delta V$	Frequency Drift With Supply Voltage (Over Supply Voltage Range)		0.05			0.05			0.05		\%/V

Output Characteristics

lolk	Square-Wave Leakage Current ($\mathrm{V}_{9}=30 \mathrm{~V}$)			1			1			1	$\mu \mathrm{A}$
$\mathrm{V}_{\text {SAT }}$	Saturation Voltage ($\mathrm{ISINK}=2 \mathrm{~mA}$)		0.2	0.5		0.2	0.4		0.2	0.4	V
t_{r}	Rise Time ($\mathrm{R}_{\mathrm{L}}=4.7 \mathrm{k} \Omega$)		180			180			180		ns
t_{f}	Fall Time ($\mathrm{R}_{\mathrm{L}}=4.7 \mathrm{k} \Omega$)		40			40			40		ns
$\Delta \mathrm{D}$	Typical Duty Cycle Adjust (Note 6)	2		98	2		98	2		98	\%
$V_{\text {TRIANGLE }}$	Triangle/Sawtooth/Ramp Amplitude ($\mathrm{R}_{\text {TRI }}=100 \mathrm{k} \Omega$)	0.30	0.33		0.30	0.33		0.30	0.33		$\mathrm{xV}_{\text {SUPPLY }}$
	Linearity		0.1			0.05			0.05		\%
Z ${ }_{\text {OUT }}$	Output Impedance (lout $=5 \mathrm{~mA}$)		200			200			200		Ω
$V_{\text {SINE }}$	Sine-Wave Amplitude ($\mathrm{R}_{\mathrm{SINE}}=100 \mathrm{k} \Omega$)	0.2	0.22		0.2	0.22		0.2	0.22		XV $\mathrm{S}_{\text {SUPPLY }}$
THD	THD ($\left.\mathrm{R}_{\mathrm{S}}=1 \mathrm{M} \Omega\right)^{(4)}$		2.0	5		1.5	3		1.0	1.5	\%
THD	THD Adjusted (Use Figure 6)		1.5			1.0			0.8		\%

NOTES: 2. R_{A} and R_{B} currents not included.
3. $V_{S U P P L Y}=20 \mathrm{~V} ; \mathrm{R}_{\mathrm{A}}$ and $\mathrm{R}_{\mathrm{B}}=10 \mathrm{k} \Omega$, $\mathrm{f} \cong 10 \mathrm{kHz}$ nominal; can be extended 1000 to 1 . See figures 7 a and 7 b .
4. $82 \mathrm{k} \Omega$ connected between pins 11 and 12 , Triangle Duty Cycle set at 50%. (Use R_{A} and R_{B}.)
5. Figure 3, pins 7 and 8 connected, $V_{\text {SuPPLY }}= \pm 10 \mathrm{~V}$. See Typical Curves for T.C. vs $V_{\text {SUPPLY }}$.
6. Not tested, typical value for design purposes only.

TEST CONDITIONS

Parameter		$\mathbf{R}_{\mathbf{A}}$	$\mathbf{R}_{\mathbf{B}}$	$\mathbf{R}_{\mathbf{L}}$	C_{1}	SW ${ }_{1}$	Measure
Supply Current		$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	3.3 nF	Closed	Current into Pin 6
Sweep FM Range(1)		$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	3.3 nF	Open	Frequency at Pin 9
Frequency Drift with Temperature		$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	3.3 nF	Closed	Frequency at Pin 3
Frequency Drift with Supply Voltage ${ }^{(2)}$		$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	3.3 nF	Closed	Frequency at Pin 9
Output Amplitude: (Note 4)	Sine	$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	3.3 nF	Closed	Pk-Pk output at Pin 2
	Triangle	$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	3.3 nF	Closed	Pk-Pk output at Pin 3
Leakage Current (off)(3)		$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$		3.3 nF	Closed	Current into Pin 9
Saturation Voltage (on) ${ }^{(3)}$		$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$		3.3 nF	Closed	Output (low) at Pin 9
Rise and Fall Times (Note 5)		$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	$4.7 \mathrm{k} \Omega$	3.3 nF	Closed	Waveform at Pin 9
Duty Cycle Adjust: (Note 5)	MAX	$50 \mathrm{k} \Omega$	$\sim 1.6 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	3.3 nF	Closed	Waveform at Pin 9
	MIN	$\sim 25 \mathrm{k} \Omega$	$50 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	3.3 nF	Closed	Waveform at Pin 9
Triangle Waveform Linearity		$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	3.3 nF	Closed	Waveform at Pin 3
Total Hermonir Distortion		$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	3.3 nF	Closed	Waveform at Pin 2

NOTES: 1. The hi and lo frequencies can be obtained by connecting pin 8 to pin 7 (f_{hi}) and then connecting pin 8 to pin 6 (f_{l}). Otherwise apply Sweep Voltage at pin $8\left(2 / 3 V_{\text {SUPPLY }}+2 V\right) \leq V_{\text {SWEEP }} \leq V_{\text {SUPPLY }}$ where $V_{\text {SUPPLY }}$ is the total supply voltage. In Figure 7 b , pin 8 should vary between 5.3 V and 10 V with respect to ground.
2. $10 \mathrm{~V} \leq \mathrm{V}+\leq 30 \mathrm{~V}$, of $\pm 5 \mathrm{~V} \leq \mathrm{V}_{\text {SUPPLY }} \leq \pm 15 \mathrm{~V}$.
3. Oscillation can be hatted by forcing pin 10 to +5 voits or -5 volts.
4. Output Amplitude is tested under static conditions by forcing pin 10 to 5.0 V then to -5.0 V .
5. Not tested; for design purposes only.

DEFINITION OF TERMS:

Supply Voltage (VSUPPLY). The total supply voltage from V+ to V^{-}
Supply Current. The supply current required from the power supply to operate the device, excluding load currents and the currents through R_{A} and R_{B}.
Frequency Range. The frequency range at the square wave output through which circuit operation is guaranteed.
Sweep FM Range. The ratio of maximum frequency to minimum frequency which can be obtained by applying a sweep voltage to pin 8 . For correct operation, the sweep voltage should be within the range

$$
\left(2 / 3 V_{\text {SUPPLY }}+2 \mathrm{~V}\right)<\mathrm{V}_{\text {SWEEP }}<\mathrm{V}_{\text {SUPPLY }}
$$

FM Linearity. The percentage deviation from the best-fit straight line on the control voltage versus output frequency curve.
Output Amplitude. The peak-to-peak signal amplitude appearing at the outputs.
Saturation Voltage. The output voltage at the collector of Q_{23} when this transistor is turned on. It is measured for a sink current of 2 mA .
Rise and Fall Times. The time required for the square wave output to change from 10% to 90%, or 90% to 10%, of its final value.

Triangle Waveform Linearity. The percentage deviation from the best-fit straight line on the rising and falling triangle waveform.
Total Harmonic Distortion. The total harmonic distortion at the sine-wave output.

TYPICAL PERFORMANCE CHARACTERISTICS

0326-7

0326-9

0326-12

Performance of the Square-Wave Output

Performance of Triangle-Wave Output

0326-10
Performance of Sine-Wave Output

26-8

0326-6

0326-14

Figure 4: Phase Relationship of Waveforms

DETAILED DESCRIPTION

(See Figure 1)

An external capacitor C is charged and discharged by two current sources. Current source \# 2 is switched on and off by a flip-flop, while current source \#1 is on continuously. Assuming that the flip-flop is in a state such that current source \#2 is off, and the capacitor is charged with a current I, the voltage across the capacitor rises linearily with time. When this voltage reaches the level of comparator \#1 (set at $2 / 3$ of the supply voltage), the flip-flop is triggered, changes states, and releases current source \#2. This current source normally carries a current 21 , thus the capacitor is discharged with a net-current I and the voltage across it drops linearly with time. When it has reached the level of comparator \#2 (set at $1 / 3$ of the supply voltage), the flip-flop is triggered into its original state and the cycle starts again.
Four waveforms are readily obtainable from this basic generator circuit. With the current sources set at I and 21 respectively, the charge and discharge times are equal. Thus a triangle waveform is created across the capacitor and the flip-flop produces a square-wave. Both waveforms are fed to buffer stages and are available at pins 3 and 9 .
The levels of the current sources can, however, be selected over a wide range with two external resistors. Therefore, with the two currents set at values different from I and 21 , an asymmetrical sawtooth appears at terminal 3 and pulses with a duty cycle from less than 1% to greater than 99% are available at terminal 9.
The sine-wave is created by feeding the triangle-wave into a non-linear network (sine-converter). This network provides a decreasing shunt-impedance as the potential of the triangle moves toward the two extremes.

WAVEFORM TIMING

The symmetry of all waveforms can be adjusted with the external timing resistors. Two possible ways to accomplish this are shown in Figure 5. Best results are obtained by keeping the timing resistors R_{A} and R_{B} separate (a). R_{A} controls the rising portion of the triangle and sine-wave and une i slaie ui iut syuaie-wāve.

The magnitude of the triangle-waveform is set at $1 / 3 \mathrm{~V}_{\text {SUP }}$. PLY ; therefore the rising portion of the triangle is,

$$
t_{1}=\frac{\mathrm{C} \times \mathrm{V}}{\mathrm{I}}=\frac{\mathrm{C} \times 1 / 3 \times V_{\text {SUPPLY }} \times R_{A}}{0.22 \times V_{\text {SUPPLY }}}=\frac{R_{A} \times C}{0.66}
$$

The falling portion of the triangle and sine-wave and the 0 state of the square-wave is:
$\mathrm{t}_{2}=\frac{\mathrm{C} \times \mathrm{V}}{\mathrm{I}}=\frac{\mathrm{C} \times \frac{1}{3} V_{\text {SUPPLY }}}{2(0.22) \frac{V_{\text {SUPPLY }}}{R_{B}}-0.22 \frac{V_{\text {SUPPLY }}}{R_{A}}}=\frac{R_{A} R_{B} C}{0.66\left(2 R_{A}-R_{B}\right)}$
Thus a 50% duty cycle is achieved when $R_{A}=R_{B}$.
If the duty-cycle is to be varied over a smail range about 50% only, the connection shown in Figure 5b is slightly more convenient.

With two separate timing resistors, the frequency is given by

$$
f=\frac{1}{t_{1}+t_{2}}=\frac{1}{\frac{R_{A} C}{0.66}\left(1+\frac{R_{B}}{2 R_{A}-R_{B}}\right)}
$$

or, if $R_{A}=R_{B}=R$

$$
f=\frac{0.33}{R C}(\text { for Figure } 5 a)
$$

Figure 5: Possible Connections for the External Timing Resistors

Neither time nor frequency are dependent on supply voltage, even though none of the voltages are regulated inside the integrated circuit. This is due to the fact that both currents and thresholds are direct, linear functions of the supply voltage and thus their effects cancel.

To minimize sine-wave distortion the $82 \mathrm{k} \Omega$ resistor between pins 11 and 12 is best made variable. With this arrangement distortion of less than 1% is achievable. To reduce this even further, two potentiometers can be connected as shown in Figure 6; this configuration allows a typical reduction of sine-wave distortion close to 0.5%.

SELECTING $\mathbf{R A}_{A}, \mathbf{R}_{\mathrm{B}}$ and \mathbf{C}

For any given output frequency, there is a wide range of RC combinations that will work, however certain constraints are placed upon the magnitude of the charging current for optimum performance. At the low end, currents of less than $1 \mu \mathrm{~A}$ are undesirable because circuit leakages will contribute significant errors at high temperatures. At higher currents ($1>5 \mathrm{~mA}$), transistor betas and saturation voltages will contribute increasingly larger errors. Optimum performance will, therefore, be obtained with charging currents of $10 \mu \mathrm{~A}$ to 1 mA . If pins 7 and 8 are shorted together, the magnitude of the charging current due to R_{A} can be calculated from:

$$
I=\frac{R_{1} \times\left(V^{+}-V^{-}\right)}{\left(R_{1}+R_{2}\right)} \times \frac{1}{R_{A}}=\frac{0.22\left(V^{+}-V^{-}\right)}{R_{A}}
$$

R_{1} and R_{2} are shown in Figure 13.
A similar calculation holds for R_{B}.
The capacitor value should be chosen at the upper end of its possible range.

WAVEFORM OUT LEVEL CONTROL AND POWER SUPPLIES

The waveform generator can be operated either from a single power-supply (10 to 30 Volts) or a dual power-supply (± 5 to ± 15 Volts). With a single power-supply the average levels of the triangle and sine-wave are at exactly one-half of the supply voltage, while the square-wave alternates between V^{+}and ground. A split power supply has the advantage that all waveforms move symmetrically about ground.

The square-wave output is not committed. A load resistor can be connected to a different power-supply, as long as the applied voltage remains within the breakdown capability of the waveform generator (30 V). In this way, the squarewave output can be made TTL compatible (load resistor connected to +5 Volts) while the waveform generator itself is powered from a much higher voltage.

(b)

0326-21
Figure 7: Connections for Frequency Modulation (a) and Sweep (b)

FREQUENCY MODULATION AND SWEEPING

The frequency of the waveform generator is a direct function of the DC voltage at terminal 8 (measured from V^{+}). By altering this voltage, frequency modulation is performed. For small deviations (e.g. $\pm 10 \%$) the modulating signal can be applied directly to pin 8 , merely providing DC decoupling with a capacitor as shown in Figure 7a. An external resistor between pins 7 and 8 is not necessary, but it can be used to increase input impedance from about $8 \mathrm{k} \Omega$ (pins 7 and 8 connected together), to about ($\mathrm{R}+8 \mathrm{k} \Omega$).

For larger FM deviations or for frequency sweeping, the modulating signal is applied between the positive supply voltage and pin 8 (Figure 7b). In this way the entire bias for the current sources is created by the modulating signal, and a very large (e.g. 1000:1) sweep range is created ($f=0$ at $\mathrm{V}_{\text {sweep }}=0$). Care must be taken, however, to regulate the supply voltage; in this configuration the charge current is no longer a function of the supply voltage (yet the trigger thresholds still are) and thus the frequency becomes dependent on the supply voltage. The potential on Pin 8 may be swept down from V^{+}by ($1 / 3 V_{\text {SUPPLY }}-2 \mathrm{~V}$).

APPLICATIONS

The sine wave output has a relatively high output impedance ($1 \mathrm{k} \Omega$ Typ). The circuit of Figure 8 provides buffering, gain and amplitude adjustment. A simple op amp follower could also be used.
With a dual supply voltage the external capacitor on Pin 10 can be shorted to ground to halt the ICL8038 oscillation. Figure 9 shows a FET switch, diode ANDed with an input strobe signal to allow the output to always start on the same slope.

To obtain a 1000:1 Sweep Range on the ICL8038 the voltage across external resistors R_{A} and R_{B} must decrease to nearly zero. This requires that the highest voltage on con-

Figure 8: Sine Wave Output Buffer Amplifiers
trol Pin 8 exceed the voltage at the top of R_{A} and R_{B} by a few hundred millivolts. The Circuit of Figure 10 achieves this by using a diode to lower the effective supply voltage on the ICL8038. The large resistor on pin 5 helps reduce duty cycle variations with sweep.

The linearity of input sweep voltage versus output frequency can be significantly improved by using an op amp as shown in Figure 11.

USE IN PHASE-LOCKED LOOPS

Its high frequency stability makes the ICL8038 an ideal building block for a phase-locked loop as shown in Figure 12. In this application the remaining functional blocks, the

0326-23
Figure 9: Strobe-Tone Burst Generator

Figure 10: Variable Audio Oscillator, 20 Hz to 20 kHz

0326-25
Figure 11: Linear Voltage Controlled Oscillator
phase-detector and the amplifier, can be formed by a number of available IC's (e.g. MC4344, NE562, HA2800, HA2820)
In order to match these building blocks to each other, two steps must be taken. First, two different supply voltages are used and the square wave output is returned to the supply of the phase detector. This assures that the VCO input voltage will not exceed the capabilities of the phase detector. If a smaller VCO signal is required, a simple resistive voltage divider is connected between pin 9 of the waveform generator and the VCO input of the phase-detector.

Second, the DC output level of the amplifier must be made compatible to the DC level required at the FM input of the waveform generator ($\mathrm{pin} 8,0.8 \mathrm{~V}^{+}$). The simplest solution here is to provide a voltage divider to $\mathrm{V}^{+}\left(\mathrm{R}_{1}, \mathrm{R}_{2}\right.$ as shown) if the amplifier has a lower output level, or to ground if its level is higher. The divider can be made part of the lowpass filter.

This application not only provides for a free-running frequency with very low temperature drift, but it also has the unique feature of producing a large reconstituted sinewave signal with a frequency identical to that at the input.

For further information, see Harris Application Note A013, "Everything You Always Wanted to Know About The ICL8038."

GENERAL DESCRIPTION
The 8048 is a monolithic logarithmic a mplifercapable of handling six decades of current input, or hree decades ${ }_{5}$? voltage input. It is fully temperature conthensaycu and is nominally designed to provide 1 volt of outht for each decade change of input. For increased flexibilit) the scalautctor, reference current and offset voltage aremethernally adjustable.

The 8049 is the antilogarithmic counterpart of the 8048; it

- 120dB Dynamic Current Range (8048)
- 60dB Dynamic Voitage Range (8048 \& 8049)
- Dual JFET-Input Op-Amps nominally generates one decade of output voltage for each 1 volt change at the input.

ORDERING INFORMATION

Part Number	Error $\left(\mathbf{2 5}{ }^{\circ} \mathrm{C}\right)$	Temperature Range	Package
ICL8048BCJE	30 mV	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Pin CERDIP
ICL8048CCJE	60 mV	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Pin CERDIP
ICL8049BCJE	10 mV	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Pin CERDIP
ICL8049CCJE	25 mV	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Pin CERDIP

Figure 1: Functional Diagram

0313-3
Figure 2: Pin Configurations (Outline Dwg JE)

[^67]ABSOLUTE MAXIMUM RATINGS (ICL8048)
Supply Voltage . $\pm 18 \mathrm{~V}$
IIN (Input Current) . 2mA
IREF (Reference Current) 2mA
Voltage between Offset Null and $\mathrm{V}^{+} \ldots$.
Power Dissipation . 750mW
Operating Temperature Range $\ldots0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Output Short Circuit Duration Indefinite Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10sec) $300^{\circ} \mathrm{C}$

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS (ICL8048) $V_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\text {REF }}=1 \mathrm{~mA}$, scale factor adjusted
for $1 \mathrm{~V} /$ decade unless otherwise specified.

Parameter	Test Conditions	8048BC			8048CC			Units
		Min	Typ	Max	Min	Typ	Max	
Dynamic Range $\begin{aligned} & I_{\mathbb{N}}(1 n A-1 m A) \\ & V_{\mathbb{I N}}(10 m V-10 V) \end{aligned}$	$\mathrm{R}_{\text {IN }}=10 \mathrm{k} \Omega$	$\begin{aligned} & 120 \\ & 60 \end{aligned}$			$\begin{gathered} 120 \\ 60 \end{gathered}$			$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
Error, \% of Full Scale	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 1_{1 /}=1 \mathrm{nA}$ to 1 mA		. 20	0.5		. 25	1.0	\%
Error, \% of Full Scale	$\begin{aligned} & T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}, \\ & \mathrm{l}_{\mathrm{m}!}=1 \mathrm{nA} \text { to } 1 \mathrm{~mA} \end{aligned}$. 60	1.25		. 80	2.5	\%
Error, Absolute Value	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{l}_{1 \mathrm{~N}}=1 \mathrm{nA}$ to 1 mA		12	30		14	60	mV
Error, Absolute Value	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{N}}=1 \mathrm{nA} \text { to } 1 \mathrm{~mA} \end{aligned}$		36	75		50	150	mV
Temperature Coefficient of $\mathrm{V}_{\text {OUT }}$	$\mathrm{I}_{\mathrm{N}}=1 \mathrm{nA}$ to 1 mA		0.8			0.8		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Power Supply Rejection Ratio	Referred to Output		2.5			2.5		mV / V
Offset Voltage (A_{1} \& A_{2})	Before Nulling		15	25		15	50	mV
Wideband Noise	At Output, for $\mathrm{I}_{\mathrm{IN}}=100 \mu \mathrm{~A}$		250			250		$\mu \mathrm{V}$ (RMS)
Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	± 12	± 14		± 12	± 14		V
	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	± 10	± 13		± 10	± 13		V
Power Consumption			150	200		150	200	mW
Supply Current			5	6.7		5	6.7	mA

TYPICAL PERFORMAN TRANSFER FUNCTION FOR VOLTAGE INPUTS

0313-5
MAXIMUM ERROR VOLTAGE AT THE OUTPUT AS A FUNCTION OF

TRANSFER FUNCTION FOR CURRENT INPUTS

0313-6
MAXIMUM ERROR VOLTAGE AT THE OUTPUT AS A FUNCTION OF INPUT VOLTAGE

SMALL SIGNAL BANDWIDTH AS A FUNCTION OF INPUT CURRENT

0313-7
SMALL SIGNAL VOLTAGE GAIN AS A FUNCTION OF INPUT VOLTAGE FOR

0313-10

ABSOLUTE MAXIMUM RATINGS (ICL8049)

Supply Voltage $\pm 18 \mathrm{~V}$
$\mathrm{V}_{\text {IN }}$ (Input Voltage) . $\pm 15 \mathrm{~V}$
IREF (Reference Current) 2mA
Voltage between Offset Null and $\mathrm{V}+\ldots$.
Power Dissipation
750 mW
NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
ELECTRICAL CHARACTERISTICS (ICL8049) $\quad \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\text {REF }}=1 \mathrm{~mA}$, scale factor adjusted for 1 decade (out) per volt (in), unless otherwise specified.

Parameter	Test Conditions	8049BC			8049CC			Units
		Min	Typ	Max	Min	Typ	Max	
Dynamic Range (VOUT)	$V_{\text {OUT }}=10 \mathrm{mV}$ to 10 V	60			60			dB
Error, Absolute Value	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 0 \mathrm{~V} \leq \mathrm{V}_{1 \mathrm{~N}} \leq 2 \mathrm{~V}$		3	15		5	25	mV
Error, Absolute Value	$\begin{aligned} & T_{A}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}, \\ & 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 3 \mathrm{~V} \end{aligned}$		20	75		30	150	mV
Temperature Coefficient, Referred to $\mathrm{V}_{\text {IN }}$	$\mathrm{V}_{\text {IN }}=3 \mathrm{~V}$		0.38			0.55		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Power Supply Rejection Ratio	Referred to Input, for $\mathrm{V}_{\mathrm{N}}=0 \mathrm{~V}$		2.0			2.0		$\mu \mathrm{V} / \mathrm{V}$
Offset Voltage (A_{1} \& A_{2})	Before Nulling		15	25		15	50	mV
Wideband Noise	Referred to Input, for $V_{1 N}=0 \mathrm{~V}$		26			26		$\mu \mathrm{V}$ (RMS)
Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	± 12	± 14		± 12	± 14		V
	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	± 10	± 13		± 10	± 13		V
Power Consumption			150	200		150	200	mW
Supply Current			5	6.7		5	6.7	mA

TYPICAL PERFORMANCE CHARACTERISTICS

TRANSFER FUNCTION

Operating Temperature Range
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ Output Short Circuit Duration . Indefinite Storage Temperature Range $\ldots \ldots \ldots . .-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10sec) $300^{\circ} \mathrm{C}$

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

0313-13

ICL8048 DETAILED DESCRIPTION

The ICL8048 relies for its operation on the well-known exponential relationship between the collector current and the base-emitter voltage of a transistor:

$$
\begin{equation*}
I_{C}=I_{S}\left[e q V_{B E} / k T_{-1}\right] \tag{1}
\end{equation*}
$$

For base-emitter voltages greater than 100 mV , Eq. (1) becomes

$$
\begin{equation*}
\mathrm{I}_{\mathrm{C}}=\mathrm{I}_{\mathrm{S}} \mathrm{QV} \mathrm{~V}_{\mathrm{BE}} / \mathrm{kT} \tag{2}
\end{equation*}
$$

From Eq. (2), it can be shown that for two identical transistors operating at different collector currents, the V_{BE} difference ($\Delta \mathrm{V}_{\mathrm{BE}}$) is given by:

$$
\begin{equation*}
\Delta V_{B E}=-2.303 \times \frac{\mathrm{kT}}{\mathrm{q}} \log _{10}\left[\frac{\mathrm{I}_{\mathrm{C}}}{\mathrm{I}_{\mathrm{C}}}\right] \tag{3}
\end{equation*}
$$

Referring to Figure 3, it is clear that the potential at the collector of Q_{2} is equal to the $\Delta V_{B E}$ between Q_{1} and Q_{2}. The output voltage is $\Delta V_{B E}$ multiplied by the gain of A_{2} :
$V_{\text {OUT }}=-2.303\left(\frac{R_{1}+R_{2}}{R_{2}}\right)\left(\frac{k T}{q}\right) \log _{10}\left[\frac{l_{I N}}{l_{\text {REF }}}\right]$
The expression $2.303 \times \frac{\mathrm{kT}}{\mathrm{q}}$ has a numerical value of 59 mV at $25^{\circ} \mathrm{C}$; thus in order to generate 1 volt/decade at the output, the ratio $\left(R_{1}+R_{2}\right) / R_{2}$ is chosen to be 16.9. For this scale factor to hold constant as a function of temperature, the $\left(R_{1}+R_{2}\right) / R_{2}$ term must have a $1 / T$ characteristic to compensate for kT / q.
In the ICL8048 this is achieved by making R_{1} a thin film resistor, deposited on the monolithic chip. It has a nominal value of $15.9 \mathrm{k} \Omega$ at $25^{\circ} \mathrm{C}$, and its temperature coefficient is carefully designed to provide the necessary compensation.

0313-14 Resistor R_{2} is external and should be a low T.C. type; it should have a nominal value of $1 \mathrm{k} \Omega$ to provide $1 \mathrm{volt} / \mathrm{dec}-$ ade, and must have an adjustment range of $\pm 20 \%$ to allow for production variations in the absolute value of R_{1}.

ICL8048 OFFSET AND SCALE FACTOR ADJUSTMENT

A log amp, unlike an op-amp, cannot be offset adjusted by simply grounding the input. This is because the log of zero approaches minus infinity; reducing the input current to zero starves Q_{1} of collector current and opens the feedback loop around A_{1}. Instead, it is necessary to zero the offset voltage of A_{1} and A_{2} separately, and then to adjust the scale factor. Referring to Figure 3, this is done as follows:

1) Temporarily connect a $10 \mathrm{k} \Omega$ resistor $\left(R_{0}\right)$ between pins 2 and 7. With no input voltage, adjust R_{4} until the output of A_{1} (pin 7) is zero. Remove R_{0}.
Note that for a current input, this adjustment is not necessary since the offset voltage of A_{1} does not cause any error for current-source inputs.
2) Set $_{I_{N}}=I_{\text {REF }}=1 \mathrm{~mA}$. Adjust R_{5} such that the output of A_{2} (pin 10) is zero.
3) Set $I_{I N}=1 \mu A, I_{\text {REF }}=1 \mathrm{~mA}$. Adjust R_{2} for $V_{O U T}=3$ volts (for a 1 volt/decade scale factor) or 6 volts (for a 2 volt/decade scale factor).
Step \#3 determines the scale factor. Setting $\mathrm{I}_{\mathbb{N}}=1 \mu \mathrm{~A}$ optimizes the scale factor adjustment over a fairly wide dynamic range, from 1 mA to 1 nA . Clearly, if the 8048 is to be used for inputs which only span the range $100 \mu \mathrm{~A}$ to 1 mA , it would be better to set $\mathrm{I}_{\mathrm{N}}=100 \mu \mathrm{~A}$ in Step \#3. Similarly, adjustment for other scale factors would require different $l_{I N}$ and $V_{\text {OUT }}$ values.

Figure 3: ICL8048 Offset and Scale Factor Adjustment

ICL8049 DETAILED DESCRIPTION

The ICL8049 relies on the same logarithmic properties of the transistor as the ICL8048. The input voltage forces a specific $\Delta V_{B E}$ between Q_{1} and Q_{2} (Figure 4). This $V_{B E}$ difference is converted into a difference of collector currents by the transistor pair. The equation governing the behavior of the transistor pair is derived from (2) on the previous page and is as follows:

$$
\frac{\mathrm{I}_{\mathrm{C}_{1}}}{\mathrm{I}_{\mathrm{C}_{2}}}=\exp \left[\frac{\mathrm{q} \Delta \mathrm{~V}_{B E}}{\mathrm{kT}}\right]
$$

When numerical values for q / kT are put into this equation, it is found that a $\Delta V_{B E}$ of 59 mV (at $25^{\circ} \mathrm{C}$) is required to change the collector current ratio by a factor of ten. But for ease of application, it is desirable that a 1 volt change at the input generate a tenfold change at the output. The required input attenuation is achieved by the network comprising R_{1} and R_{2}. In order that scale factors other than one decade per volt may be selected, R_{2} is external to the chip. It should have a value of $1 \mathrm{k} \Omega$, adjustable $\pm 20 \%$, for one decade per volt. R_{1} is a thin film resistor deposited on the monolithic chip; its temperature characteristics are chosen to compensate the temperature dependence of equation 5 , as explained on the previous page.

The overall transfer function is as follows:
$\frac{\text { louT }^{\text {OUT }}}{\mathrm{I}_{\text {REF }}}=\exp \left[\frac{-\mathrm{R}_{2}}{\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)} \times \frac{\mathrm{q} \mathrm{V}_{\text {IN }}}{\mathrm{kT}}\right]$
Substituting $\mathrm{V}_{\text {OUT }}=\mathrm{l}_{\text {OUT }} \times \mathrm{R}_{\text {OUT }}$ gives:
$V_{\text {OUT }}=R_{\text {OUT }} I_{\text {REF }} \exp \left[\frac{-R_{2}}{\left(R_{1}+R_{2}\right)} \times \frac{q V_{\text {IN }}}{k T}\right]$

For voltage references equation 7 becomes
$V_{\text {OUT }}=V_{\text {REF }} \times \frac{R_{\text {OUT }}}{R_{\text {REF }}} \exp \left[\frac{-R_{2}}{\left(R_{1}+R_{2}\right)} \times \frac{q V_{\text {IN }}}{k T}\right]$

ICL8049 OFFSET AND SCALE FACTOR ADJUSTMENT

As with the log amplifier, the antilog amplifier requires three adjustments. The first step is to null out the offset voltage of A_{2}. This is accomplished by reverse biasing the base-emitter of $Q_{2} . A_{2}$ then operates as a unity gain buffer with a grounded input. The second step forces $\mathrm{V}_{\mathbb{I N}}=0$; the output is adjusted for $\mathrm{V}_{\text {OUT }}=10 \mathrm{~V}$. This step essentially "anchors" one point on the transfer function. The third step applies a specific input and adjusts the output to the correct voltage. This sets the scale factor. Referring to Figure 4, the exact procedure for 1 decade/volt is as follows:

1) Connect the input (pin \#16) to +15 V . This reverse biases the base-emitter of Q_{2}. Adjust R_{7} for $\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$. Disconnect the input from +15 V .
2) Connect the input to Ground. Adjust R_{4} for $V_{\text {OUT }}=10 \mathrm{~V}$. Disconnect the input from Ground.
3) Connect the input to a precise 2 V supply and adjust R_{2} for $V_{\text {OUT }}=100 \mathrm{mV}$.
The procedure outlined above optimizes the performance over a 3 decade range at the output (i.e., Vout from 10 mV to 10 V). For a more limited range of output voltages, for example 1 V to 10 V , it would be better to use a precise 1 volt supply and adjust for $\mathrm{V}_{\text {OuT }}=1 \mathrm{~V}$. For other scale factors and/or starting points, different values for R_{2} and $R_{\text {REF }}$ will be needed, but the same basic procedure applies.

0313-16
Figure 4: ICL8049 Offset and Scale Factor Adjustment

APPLICATIONS INFORMATION

ICL8048 Scale Factor Adjustment

The scale factor adjustment procedures outlined previously for the ICL8048 and ICL8049, are primarily directed towards setting up 1 volt ($\Delta \mathrm{V}_{\text {OUT }}$) per decade ($\Delta \mathrm{I}_{\mathrm{IN}}$ or $\Delta \mathrm{V}_{\text {IN }}$) for the log amp, or one decade ($\Delta V_{\text {OUT }}$) per volt ($\Delta V_{\text {IN }}$) for the antilog amp.
This corresponds to $K=1$ in the respective transfer functions:
Log Amp: $V_{\text {OUT }}=-K \log _{10}\left[\frac{l_{\text {IN }}}{I_{\text {REF }}}\right]$
Antilog Amp: $V_{\text {OUT }}=R_{\text {OUT }} I_{\text {REF }} 10 \frac{-V_{\text {IN }}}{\mathrm{K}}$
By adjusting R_{2} (Figure 3 and Figure 4) the scale factor " K " in equation 9 and 10 can be varied. The effect of changing K is shown graphically in Figure 5 for the log amp, and Figure 6 for the antilog amp. The nominal value of R_{2} required to give a specific value of K can be determined from equation 11. It should be remembered that R_{1} has a $\pm 20 \%$ tolerance in absolute value, so that allowance shall be made for adjusting the nominal value of R_{2} by $\pm 20 \%$.

$$
\begin{equation*}
\mathrm{R}_{2}=\frac{94.1}{(\mathrm{~K}-.059)} \Omega \tag{11}
\end{equation*}
$$

ICL8048 Automatic Offset Nulling Circuit

The ICL8048 is fundamentally a logarithmic current amplifier. It can be made to act as a voltage amplifier by placing a
resistor between the current input and the voltage source but, since $\mathbb{I}_{\mathbb{N}}=\left(\mathrm{V}_{\mathrm{IN}}-\mathrm{V}_{\text {OFFSET }}\right) / \mathrm{R}_{\mathbb{I}}$, this conversion is accurate only when $\mathrm{V}_{\mathbb{N}}$ is much greater than the offset voltage. A substantial reduction of $V_{\text {OFFSET }}$ would allow voltage operation over a 120 dB range.
Figure 101 shows the ICL8048 in an automatic offset nulling configuration using the ICL7650S. The extremely low offset voltage of the ICL7650S forces its non-inverting input (and thus pin 2 of the ICL8048) to the same potential as its inverting input by nulling the first stage of the log amp. Since $V_{\text {OFFSET }}$ is now within a few microvolts of ground potential, $\mathrm{R}_{\text {IN }}$ can perform its voltage to current conversion much more accurately, and without an offset trimmer pot. Step 1 of the offset and scale factor adjustment is eliminated, simplifying calibration.
NOTE: The ICL7650S op amp has a maximum supply voltage of ± 8 volts. The ICL8048 will operate at this voltage, but I REF must be limited to 200 microamps or less for proper calibration and operation. Best performance will be achieved when the ICL7560S has a $\pm 3-8 \mathrm{~V}$ supply and the ICL8048 is at its recommended $\pm 15 \mathrm{~V}$ supply. See A053 for a method of powering the ICL7650S from a $\pm 15 \mathrm{~V}$ source.

Frequency Compensation

Although the op-amps in both the ICL8048 and the ICL8049 are compensated for unity gain, some additional frequency compensation is required. This is because the log transistors in the feedback loop add to the loop gain. In the 8048, 150pF should be connected between Pins 2 and 7 (Figure 3). In the 8049, 200pF between Pins 3 and 7 is recommended (Figure 4).

EFFECT OF VARYING "K" ON THE ANTILOG AMPLIFIER

0313-17
Figure 5
-

Figure 6

Error Analysis

Performing a meaningful error analysis of a circuit containing log and antilog amplifiers is more complex than dealing with a similar circuit involving only op-amps. In this data sheet every effort has been made to simplify the analysis task, without in any way compromising the validity of the resultant numbers.

The key difference in making error calculations in log/antilog amps, compared with op-amps, is that the gain of the former is a function of the input signal level. Thus, it is nec-
essary, when referring errors from output to input, or vice versa, to check the input voltage level, then determine the gain of the circuit by referring to the graphs given in the Typical Performance Characteristics section.

The various error terms in the log amplifier, the ICL8048, are Referred To the Output (RTO) of the device. The error terms in the antilog amplifier, the ICL8049, are Referred To the input (RTI) of the device. The errors are expressed in this way because in the majority of systems a number of log amps interface with an antilog amp, as shown in Figure 8.

Figure 8
0313-19
It is very straightforward to estimate the system error at node (A) by taking the square root of the sum-of-the squares of the errors of each contributing block.

$$
\text { Total Error }=\sqrt{x^{2}+y^{2}+z^{2}} \text { at }(A)
$$

If required, this error can be referred to the system output through the voltage gain of the antilog circuit, using the voltage gain versus input voltage plot.

The numerical values of x, y, and z in the above equation are obtained from the maximum error voltage plots. For example, with the ICL8048BC, the maximum error at the output is 30 mV at $25^{\circ} \mathrm{C}$. This means that the measured output will be within 30 mV of the theoretical transfer function, provided the unit has been adjusted per the procedures described previously. Figure 9 illustrates this point.

To determine the maximum error over the operating temperature range, the 0 to $70^{\circ} \mathrm{C}$ absolute error values given in the table of electrical characteristics should be used. For intermediate temperatures, assume a linear increase in the error between the $25^{\circ} \mathrm{C}$ value and the $70^{\circ} \mathrm{C}$ value.

For the antilog amplifier, the only difference is that the error refers to the input, i.e., the horizontal axis. It will be noticed that the maximum error voltage of the ICL8049, over the temperature range, is strongly dependent on the input voltage. This is because the output amplifier, A_{2}, has an offset voltage drift which is directly transmitted to the output. When this error is referred to the input, it must be divided by the voltage gain, which is input voltage dependent. At $\vee_{\mathbb{N}}=3 \mathrm{~V}$, for example, errors at the output are multiplied by $1 / .023(=43.5)$ when referred to the input.

TRANSFER FUNCTION FOR CURRENT INPUTS

Figure 9

It is important to note that both the ICL8048 and the ICL8049 require positive values of $I_{\text {REF }}$, and the input (ICL8048) or output (ICL8049) currents (or voltages) respectively must also be positive. Application of negative $\mathrm{I}_{\mathbb{N}}$ to the ICL8048 or negative I IREF to either circuit will cause malfunction, and if maintained for long periods, would lead to device degradation. Some protection can be provided by placing a diode between pin 7 and ground.

SETTING UP THE REFERENCE CURRENT

In both the ICL8048 and the ICL8049 the input current reference pin (lREF) is not a true virtual ground. For the ICL8048, a fraction of the output voltage is seen on Pin 16 (Figure 3). This does not constitute an appreciable error provided $\mathrm{V}_{\text {REF }}$ is much greater than this voltage. A 10 V or 15 V reference satisfies this condition. For the ICL8049, a fraction of the input voltage appears on Pin 3 (Figure 4), placing a similar restraint on the value of $V_{\text {REF }}$.

Alternatively, IREF can be provided from a true current source. One method of implementing such a current source is shown in Figure 10.

LOG OF RATIO CIRCUIT, DIVISION

The 8048 may be used to generate the log of a ratio by modulating the $I_{\text {REF }}$ input. The transfer function remains the same, as defined by equation 9 :
$V_{\text {OUT }}=-K \log _{10}\left[\frac{\mathrm{I}_{\mathrm{IN}}}{\mathrm{I}_{\text {REF }}}\right]$
Clearly it is possible to perform division using just one ICL8048, followed by an ICL8049. For multiplication, it is generally necessary to use two log amps, summing their outputs into an antilog amp.

To avoid the problems caused by the lefer input not being a true virtual ground (discussed in the previous section), the circuit of Figure 10 is again recommended if the I REF input is to be modulated.

ICL8048/ICL8049

DEFINITION OF TERMS

In the definitions which follow, it will be noted that the various error terms are referred to the output of the log amp , and to the input of the antilog amp. The reason for this is explained on the previous page.

DYNAMIC RANGE The dynamic range of the ICL8048 refers to the range of input voltages or currents over which the device is guaranteed to operate. For the ICL8049 the dynamic range refers to the range of output voltage over which the device is guaranteed to operate.

ERROR, ABSOLUTE VALUE The absolute error is a measure of the deviation from the theoretical transfer function, after performing the offset and scale factor adjustments as outlined, (ICL8048) or (ICL8049). It is expressed in mV and referred to the linear axis of the transfer function plot. Thus, in the case of the ICL8048, it is a measure of the deviation from the theoretical output voltage for a given input current or voltage. For the ICL8049 it is a measure of the deviation from the theoretical input voltage required to generate a specific output voltage.
The absolute error specification is guaranteed over the dynamic range.
$F R R \cap R$ \% $\cap F F I I I I . S C, A I F$ The errnr as a nersentage of full scale can be obtained from the following relationship:

TEMPERATURE COEFFICIENT OF V VUT OR $V_{I N}$ For the ICL8048 the temperature coefficient refers to the drift with temperature of $\mathrm{V}_{\text {OUT }}$ for a constant input current.

For the ICL8049 it is the temperature drift of the input voltage required to hold a constant value of VOUT.
POWER SUPPLY REJECTION RATIO The ratio of the voltage change in the linear axis of the transfer function ($V_{\text {OUT }}$ for the ICL8048, $\mathrm{V}_{\text {IN }}$ for the ICL8049) to the change in the supply voltage, assuming that the \log axis is held constant.
WIDEBAND NOISE For the ICL8048, this is the noise occurring at the output under the specified conditions. In the case of the ICL8049, the noise is referred to the input.
SCALE FACTOR For the log amp, the scale factor (K) is the voltage change at the output for a decade (i. e. 10:1) change at the input. For the antilog amp, the scale factor is the voltage change required at the input to cause a one decade change at the output. See equations 9 and 10.

APPLICATION NOTES

For further applications assistance, see
A007 "The ICL8048/8049 Monolithic Log-Antilog Amplifiers"

$$
\text { Error, \% of Full Scale }=\frac{100 \times \text { Error, absolute value }}{\text { Full Scale Output Voltage }}
$$

GENERAL DESCRIPTION

The ICM7242 is a CMOS timer/counter circuit consisting of an RC oscillator followed by an 8 -bit binary counter. It will replace the 2242 in most applications, with a significant reduction in the number of external components.
Three outputs are provided. They are the oscillator output, and buffered outputs from the first and eighth counters.

ORDERING INFORMATION

Part Number	Temperature Range	Package
ICM7242IPA	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 pin MINI-DIP
ICM 7242 CBA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 pin S.O.I.C.

FEATURES

- Replaces The 2242 in Most Applications
- Timing From Microseconds to Days
- Cascadeable
- Monostable or Astable Operation
- Wide Supply Voltage Range: 2-16 volts
- Low Supply Current: 115μ A © 5 volts

Figure 2: Functional Diagram

[^68]ABSOLUTE MAXIMUM RATINGS
Supply Voltage ($V_{D D}$ to $V_{S S}$) . 18 V
Input Voltage [1]
Terminals (Pins 5, 6, 7, 8) $\ldots\left(\mathrm{V}_{\mathrm{SS}}-0.3 \mathrm{~V}\right)$ to $\left(\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}\right)$
Maximum continuous output current
(each output) \qquad . 50 mA
Power Dissipation ${ }^{[2]}$. 200 mW
Operating Temperature Range
ICM7242I

ICM7242C $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range $\ldots \ldots \ldots . .-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10sec)
............... $300^{\circ} \mathrm{C}$

NOTES: 1. Due to the SCR structure inherent in the CMOS process, connecting any terminal to voltages greater than $V_{D D}$ or less than $V_{S S}$ may cause destructive device latchup. For this reason, it is recommended that no inputs from external sources not operating on the same supply be applied to the device before its supply is established and, that in multiple supply systems, the supply to the ICM7242 be turned on first.
2. Derate at $-2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.

ELECTRICAL CHARACTERISTICS

($\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{R}=10 \mathrm{k} \Omega, \mathrm{C}=0.1 \mu \mathrm{~F}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$ unless otherwise specified.)

Symbol	Parameter	Test Conditions	Min	Typ	Max	Units
$V_{D D}$	Guaranteed Supply Voltage		2		16	\checkmark
טu:	Supply Curront	Reqot Operating, $\mathrm{R}=10 \mathrm{k} \Omega, \mathrm{C}=0.1 \mu \mathrm{~F}$ Operating, $R=1 \mathrm{M} \Omega, \mathrm{C}=0.1 \mu \mathrm{~F}$ TB Inhibited, RC Connected to $V_{S S}$		$\begin{aligned} & 125 \\ & 340 \\ & 220 \\ & 225 \end{aligned}$	$\begin{aligned} & 800 \\ & 600 \end{aligned}$	"A $\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
	Timing Accuracy			5		\%
$\Delta f / \Delta T$	RC Oscillator Frequency Temperature Drift	Independent of RC Components		250		ppm $/{ }^{\circ} \mathrm{C}$
$V_{\text {OtB }}$	Time Base Output Voitage	$\begin{aligned} & I_{\text {SOURCE }}=100 \mu \mathrm{~A} \\ & \mathrm{I}_{\text {SINK }}=1.0 \mathrm{~mA} \end{aligned}$		$\begin{gathered} 3.5 \\ 0.40 \\ \hline \end{gathered}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
ItBLK	Time Base Output Leakage Current	RC= Ground			25	$\mu \mathrm{A}$
$V_{\text {TRIG }}$	Trigger Input Voltage	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \end{aligned}$		$\begin{array}{r} 1.6 \\ 3.5 \\ \hline \end{array}$	$\begin{aligned} & 2.0 \\ & 4.5 \end{aligned}$	V
$\mathrm{V}_{\text {RST }}$	Reset Input Voltage	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \end{aligned}$		$\begin{array}{r} 1.3 \\ 2.7 \\ \hline \end{array}$	$\begin{aligned} & 2.0 \\ & 4.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
$I_{\text {TRIG }}$, IRST	Trigger/Reset Input Current			10		$\mu \mathrm{A}$
f_{t}	Max Count Toggle Rate	$\left.\begin{array}{l}V_{D D}=2 \mathrm{~V} \\ V_{D D}=5 \mathrm{~V} \\ V_{D D}=15 \mathrm{~V}\end{array}\right\} \quad$ Counter/Divider Mode 50% Duty Cycle Input with Peak to Peak Voltages Equal to $V_{D D}$ and $v_{S S}$	2	$\begin{gathered} 1 \\ 6 \\ 13 \end{gathered}$		MHz MHz MHz
$\mathrm{V}_{\text {SAT }}$	Output Saturation Voltage	All Outputs except TB Output $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{l}_{\mathrm{OUT}}=3.2 \mathrm{~mA}$		0.22	0.4	V
Isource	Output Sourcing Current 7242	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & \text { Terminals } 2 \& 3, V_{O U T}=1 \mathrm{~V} \end{aligned}$		300		$\mu \mathrm{A}$
C_{t}	MIN Timing Capacitor (Note 1)		10			pF
R_{t}	Timing Resistor Range (Note 1)	$V_{D D}=2-16 \mathrm{~V}$	1 K		22M	Ω

NOTE: 1. For Design only, not tested.

0360-3
NOTE: OUTPUTS $\div 2^{1}$ AND $\div 2^{8}$ ARE INVERTERS AND HAVE ACTIVE PULLUPS.
Figure 3: Test Circuit

TYPICAL PERFORMANCE CHARACTERISTICS

SUPPLY CURRENT AS A
FUNCTION OF SUPPLY VOLTAGE

SUPPLY VOLTAGE (V)

RECOMMENDED RANGE OF TIMING COMPONENT VALUES FOR ACCURATE TIMING

DIMENSIONS IN INCHES AND MILLIMETERS
0360-5

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

NORMALIZED FREQUENCY STABILITY IN THE ASTABLE MODE AS A FUNCTION OF TEMPERATURE

0360-10
DISCHARGE OUTPUT CURRENT AS A FUNCTION OF DISCHARGE OUTPUT VOLTAGE

NORMALIZED FREQUENCY STABILITY IN THE ASTABLE MODE AS A FUNCTION OF SUPPLY VOLTAGE

0360-9

MAXIMUM DIVIDER FREQUENCY vs. SUPPLY VOLTAGE

0360-11

OUTPUT SATURATION CURRENT AS A FUNCTION OF OUTPUT SATURATION VOLTAGE

OPERATING CONSIDERATIONS

Shorting the RC terminal or output terminals to $V_{D D}$ may exceed dissipation ratings and/or maximum DC current limits (especially at high supply voltages).
There is a limitation of 50 pF maximum loading on the TB 1/O terminal if the timebase is being used to drive the counter section. If higher value loading is used, the counter sections may miscount.

For greatest accuracy, use timing component values shown in the graph under typical performance characteristics. For highest frequency operation it will be desirable to use very low values for the capacitor; accuracy will decrease for oscillator frequencies in excess of 200 KHz .

The timing capacitor should be connected between the RC pin and the positive supply rail, V_{DD}, as shown in Figure 3. When system power is turned off, any charge remaining on the capacitor will be discharged to ground through a large internal diode between the RC node and $\mathrm{V}_{\text {SS }}$. Do NOT reference the timing capacitor to ground, since there is no high-current path in this direction to safely discharge the capacitor when power is turned off. The discharge current from such a configuration could potentially damage the device.

When driving the counter section from an external clock, the optimum drive waveform is a square wave with an amplitude equal to supply voltage. If the clock is a very slow ramp triangular, sine wave, etc., it will be necessary to "square up" the waveform; this can be done by using two CMOS inverters in series, operating from the same supply voltage as the ICM7242.

The ICM7242 is a non-programmable timer whose principal applications will be very low frequency oscillators and long range timers; it makes a much better low frequency oscillator/timer than a 555 or ICM7555, because of the onchip 8 -bit counter. Also, devices can be cascaded to produce extremely low frequency signals.

Because outputs will not be AND'd, output inverters are used instead of open drain N -channel transistors, and the external resistors used for the 2242 will not be required for the ICM7242. The ICM7242 will, however, plug into a socket for the 2242 having these resistors.

The timing diagram for the ICM7242 is shown in Figure 4. Assuming that the device is in the RESET mode, which occurs on powerup or after a positive signal on the RESET terminal (if TRIGGER is low), a positive edge on the trigger input signal will initiate normal operation. The discharge

transistor turns on, discharging the timing capacitor C , and all the flip-flops in the counter chain change states. Thus, the outputs on terminals 2 and 3 change from high to low states. After 128 negative timebase edges, the $\div 2^{8}$ output returns to the high state.

To use the 8 -bit counter without the timebase, terminal 7 (RC) should be connected to ground and the outputs taken from terminals 2 and 3 .

0360-15
Figure 5: Using the ICM7242 as a Ripple Counter (Divider)

The ICM7242 may be used for a very low frequency square wave reference. For this application the timing components are more convenient than those that would be required by a 555 timer. For very low frequencies, devices may be cascaded (see Figure 6).

0360-16
Figure 6: Low Frequency Reference (Oscillator)
For monostable operation the $\div 2^{8}$ output is connected to the RESET terminal. A positive edge on TRIGGER initiates the cycle (NOTE: TRIGGER overrides RESET).

The ICM7242 is superior in all respects to the 2242 except for initial accuracy and oscillator stability. This is primarily due to the fact that high value p^{-}resistors have been used on the ICM7242 to provide the comparator timing points.

0360-17
Figure 7: Monostable Operation

COMPARING THE ICM7242 WITH THE 2242

	ICM7242	2242
a. Operating Voltage	2-16V	4-15V
b. Operating Temp. Range	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C} 0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	
c. Supply Current		
$V_{D D}=5 \mathrm{~V}$	0.7mA Max.	7mA Max.
d. Pullup Resistors		
TB Output	No	Yes
$\div 2$ Output	No	Yes
$\div 256$ Output	No	Yes
e. Toggle Rate	3.0 MHz	0.5 MHz
f. Resistor to Inhibit		
Oscillator	No	Yes
g. Resistor in Series		
Monostable Operation	No	Yes
h. Capacitor TB		
Tēriminal fú		
HF Operation	No	Sometimes

By selection of R and C, a wide variety of sequence timing can be realized. A typical flow chart for a machine tool controller could be as follows:

Figure 8
By cascading devices, use of low cost CMOS AND/OR gates and appropriate RC delays between stages, numerous sequential control variations can be obtained. Typical applications include injection molding machine controllers, phonograph record production machines, automatic sequencers (no metal contacts or moving parts), milling machine controllers, process timers, automatic lubrication systems, etc.

SEQUENCE TIMING

Figure 9: Sequence Timer

GENERAL DESCRIPTION

The ICM7555/6 are CMOS RC timers providing significantly improved performance over the standard SE/NE555/6 and 355 timers, while at the same time being direct replacements for those devices in most applications. Improved parameters include low supply current, wide operating supply voltage range, low THRESHOLD, TRIGGER and RESET currents, no crowbarring of the supply current during output transitions, higher frequency performance and no requirement to decouple CONTROL VOLTAGE for stable operation.

Specifically, the ICM7555/6 are stable controllers capable of producing accurate time delays or frequencies. The ICM7556 is a dual ICM7555, with the two timers operating independently of each other, sharing only V^{+}and GND. In the one shot mode, the pulse width of each circuit is precisely controlled by one external resistor and capacitor. For astable operation as an oscillator, the free running frequency and the duty cycle are both accurately controlled by two external resistors and one capacitor. Unlike the regular bipolar 555/6 devices, the CONTROL VOLTAGE terminal need not be decoupled with a capacitor. The circuits are triggered and reset on falling (negative) waveforms, and the output inverter can source or sink currents large enough to drive TTL loads, or provide minimal offsets to drive CMOS loads.

ORDERING INFORMATION

Part Number	Temperature Range	Package
ICM7555CBA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Lead SOIC
ICM7555IPA	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 Lead MiniDip
ICM7555ITV	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	TO-99 Can
ICM7555MTV*	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	TO-99 Can
ICM7556IPD	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 Lead Plastic DIP
ICM7556MJD*	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	14 Lead CERDIP

ICM7555/ICM7556 General Purpose Timer

FEATURES

- Exact Equivalent in Most Cases for SE/NE555/556 or TLC555/556
- Low Supply Current - 60 μ A Typ. (ICM7555) 120 μ A Typ. (ICM7556)
- Extremely Low Trigger, Threshold and Reset Currents - 20pA Typical
- High Speed Operation - 1 MHz Typical
- Wide Operation Supply Voltage Range Guaranteed 2 to 18 Volts
- Normal Reset Function - No Crowbarring of Supply During Output Transition
- Can Be Used With Higher Impedance Timing Elements Than Regular 555/6 for Longer RC Time Constants
- Timing From Microseconds Through Hours
- Operates in Both Astable and Monostable Modes
- Adjustable Duty Cycle
- High Output Source/Sink Driver Can Drive TTL/ CMOS
- Typical Temperature Stability of $\mathbf{0 . 0 0 5 \%}$ Per ${ }^{\circ} \mathrm{C}$ at $25^{\circ} \mathrm{C}$
- Outputs Have Very Low Offsets, HI and LO

APPLICATIONS

- Precision Timing
- Pulse Generation
- Sequential Timing
- Time Delay Generation
- Pulse Width Modulation
- Pulse Position Modulation
- Missing Pulse Detector
${ }^{*}$ Add $/ 883 \mathrm{~B}$ to part number if 883 B processing is desired.

0363-1
This Functional Diagram reduces the circuitry down to its simplest equivalent components. Tie down unused inputs. $\mathrm{R}=100 \mathrm{k} \Omega, \pm 20 \%$ typ.
Figure 1: Functional Diagram

[^69]| ABSOLUTE MAXIMUM RAT | |
| :---: | :---: |
| Supply Voltage +18 Volts Input Voltage: Trigger, | |
| | |
| Control Voltage, Threshold, $\ldots . \mathrm{V}++0.3 \mathrm{~V}$ to $\mathrm{GND}-0.3 \mathrm{~V}$ Reset ${ }^{[1]}$ | |
| Output Current 100 mA | |
| Power Dissipation[2] ICM7556 ICM7555 | |
| Storage Temperature $\ldots-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ | |
| Lead Temperature (Soldering, 10sec) $+300^{\circ} \mathrm{C}$ | |
| Operating Temperature Range ${ }^{[2]}$ | |
| ICM7555/6 CX $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | |
| ICM7555/6 IX . $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | |
| ICM7555/6 MX $-55^{\circ} \mathrm{C}$ to $+125^{\circ}$ | |

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

(OUTLINE DRAWING TV)

(OUTLINE DRAWING PA)

(OUTLINE DRAWING JD, PD)
0363-2
Figure 2: Pin Configuration (Top View)

NOTES 1: Due to the SCR structure inherent in the CMOS process used to fabricate these devices, connecting any terminal to a voltage greater than $\mathrm{V}++0.3 \mathrm{~V}$ or less than $\mathrm{V}^{-}-0.3 \mathrm{~V}$ may cause destructive latchup. For this reason it is recommended that no inputs from external sources not operating from the same power supply be applied to the device before its power-supply is established. In multiple systems, the supply of the ICM7555/6 must be turned on first.
2: Junction temperatures should not exceed $135^{\circ} \mathrm{C}$ and the power dissipation must be limited to 20 mW at $125^{\circ} \mathrm{C}$. Below $125^{\circ} \mathrm{C}$ power dissipation may be increased to 300 mW at $25^{\circ} \mathrm{C}$. Derating factor is approximately $3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}(7556)$ or $2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}(7555)$.

ICM7555/ICM7556

ICM7555

ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Test Conditions	$\begin{gathered} \text { ICM7555C,I,M } \\ \hline \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ \hline \end{gathered}$			ICM7555M			Units
						$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$			
			Min	Typ	Max	Min	Typ	Max	
1^{+}	Static Supply Current	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{aligned} & 40 \\ & 60 \end{aligned}$	$\begin{aligned} & 200 \\ & 300 \end{aligned}$			$\begin{aligned} & 300 \\ & 300 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
	Monostable Timing Accuracy	$R A=10 \mathrm{k}, \mathrm{C}=0.1 \mu \mathrm{~F}, \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}$		2		858		1161	$\begin{gathered} \% \\ \mu \mathrm{~S} \\ \hline \end{gathered}$
	Drift with Temp*	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \\ & \hline \end{aligned}$					$\begin{aligned} & 150 \\ & 200 \\ & 250 \\ & \hline \end{aligned}$		$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
	Drift with Supply*	$V_{D D}=5$ to 15 V		0.5			0.5		\%/V
	Astable Timing Accuracy	$R A=R B=10 k, C=0.1 \mu \mathrm{~F}, \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}$		2		1717		2323	$\begin{gathered} \% \\ \mu \mathrm{~S} \end{gathered}$
	Drift with Temp*	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \\ & \hline \end{aligned}$					$\begin{aligned} & 150 \\ & 200 \\ & 250 \\ & \hline \end{aligned}$		$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ ppm $/{ }^{\circ} \mathrm{C}$ ppm $/{ }^{\circ} \mathrm{C}$
	Drift with Supply*	$V_{D D}=5 \mathrm{~V}$ to 15 V		0.5			0.5		$\% / V$
$V_{\text {TH }}$	Threshold Voltage	$V_{D D}=15 \mathrm{~V}$	62	67	71	61		72	$\% \mathrm{~V}_{\mathrm{DD}}$
$\mathrm{V}_{\text {TRIG }}$	Trigger Voltage	$V_{D D}=15 \mathrm{~V}$	28	32	36	27		37	$\% V_{D D}$
ITRIG	Trigger Current	$V_{D D}=15 \mathrm{~V}$			10			50	nA
$I_{\text {TH }}$	Threshold Current	$V_{D D}=15 \mathrm{~V}$			10			50	nA
V_{CV}	Control Voltage	$V_{D D}=15 \mathrm{~V}$	62	67	71	61		72	$\% V_{D D}$
$\mathrm{V}_{\text {RST }}$	Reset Voltage	$V_{D D}=2$ to 15 V	0.4		1.0	0.2		1.2	V
IRST	Reset Current	$V_{D D}=15 \mathrm{~V}$			10			50	nA
IDIS	Discharge Leakage	$V_{D D}=15 \mathrm{~V}$			10			50	nA
V_{OL}	Output Voltage Drop	$\begin{aligned} & V_{D D}=15 \mathrm{~V}, I_{\text {sink }}=20 \mathrm{~mA} \\ & V_{D D}=5 \mathrm{~V}, I_{\text {sink }}=3.2 \mathrm{~mA} \end{aligned}$		$\begin{aligned} & 0.4 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 0.4 \\ & \hline \end{aligned}$			$\begin{gathered} 1.25 \\ 0.5 \\ \hline \end{gathered}$	$\begin{aligned} & V \\ & V \end{aligned}$
V_{OH}	Output Voltage Drop	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{I}_{\text {source }}=0.8 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{I}_{\text {source }}=0.8 \mathrm{~mA} \end{aligned}$	$\begin{array}{\|c} 14.3 \\ 4.0 \end{array}$	$\begin{array}{\|c} 14.6 \\ 4.3 \end{array}$		$\begin{gathered} 14.2 \\ 3.8 \end{gathered}$			$\begin{aligned} & V \\ & V \end{aligned}$
$\mathrm{V}_{\text {DIS }}$	Discharge Output Voltage Drop	$\begin{aligned} & V_{D D}=5 \mathrm{~V}, I_{\text {SINK }}=15 \mathrm{~mA} \\ & V_{D D}=15 \mathrm{~V}, I_{\text {sink }}=15 \mathrm{~mA} \end{aligned}$		0.2	0.4			$\begin{aligned} & 0.6 \\ & 0.4 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
v+	Supply Voltage*	Functional Oper.	2.0		18.0	3.0		16.0	V
t_{R}	Output Rise Time*	$R L=10 \mathrm{M}, \mathrm{CL}=10 \mathrm{pF}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$		75					ns
t_{F}	Output Fall Time*	$R L=10 \mathrm{M}, \mathrm{CL}=10 \mathrm{pF}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$		75					ns
$\mathrm{f}_{\text {MAX }}$	Oscillator Frequency*	$\begin{aligned} & V_{D D}=5 \mathrm{~V}, \mathrm{RA}=470 \Omega, \\ & \mathrm{RB}=270 \Omega \mathrm{C}=200 \mathrm{pF} \end{aligned}$		1				-	MHz

*These parameters are based upon characterization data and are not tested.

ICM7556
ELECTRICAL CHARACTERISTICS
$T_{A}=25^{\circ} \mathrm{C}$, unless otherwise specified.

Symbol	Parameter	Test Conditions	$\begin{gathered} \text { ICM7556I,M } \\ T_{A}=25^{\circ} \mathrm{C} \end{gathered}$			ICM7556M			Units
						$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$			
			Min	Typ	Max	Min	Typ	Max	
$1+$	Static Supply Current	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \end{aligned}$		$\begin{array}{\|c\|} \hline 80 \\ 120 \end{array}$	$\begin{aligned} & 400 \\ & 600 \end{aligned}$			$\begin{aligned} & 600 \\ & 600 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
	Monostable Timing Accuracy	$R A=10 \mathrm{k}, \mathrm{C}=0.1 \mu \mathrm{~F}, \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}$		2		858		1161	$\begin{gathered} \% \\ \mu \mathrm{~S} \end{gathered}$
	Drift with Temp*	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \\ & \hline \end{aligned}$					$\begin{aligned} & 150 \\ & 200 \\ & 250 \end{aligned}$		ppm $/{ }^{\circ} \mathrm{C}$ $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
	Drift with Supply*	$V_{D D}=5 \mathrm{~V}$ to 15 V		0.5			0.5		\%/V
	Astable Timing Accuracy	$\mathrm{RA}=\mathrm{RB}=10 \mathrm{k}, \mathrm{C}=0.1 \mu \mathrm{~F}, \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}$		2		1717		2323	$\begin{gathered} \% \\ \mu \mathrm{~S} \\ \hline \end{gathered}$
	Drift with Temp*	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \\ & \hline \end{aligned}$					$\begin{aligned} & 150 \\ & 200 \\ & 250 \end{aligned}$		$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ ppm $/{ }^{\circ} \mathrm{C}$
	Drift with Supply*	$V_{D D}=5 \mathrm{~V}$ to 15 V		0.5			0.5		\% V
$\mathrm{V}_{\text {TH }}$	Threshold Voltage	$V_{D D}=15 \mathrm{~V}$	62	67	71	61		72	$\% V_{D D}$
$\mathrm{V}_{\text {TRIG }}$	Trigger Voltage	$V_{D D}=15 \mathrm{~V}$	28	32	36	27		37	$\% V_{D D}$
ITRIG	Trigger Current	$V_{D D}=15 \mathrm{~V}$			10			50	nA
ITH	Threshold Current	$V_{D D}=15 \mathrm{~V}$			10			50	nA
V_{CV}	Control Voltage	$V_{D D}=15 \mathrm{~V}$	62	67	71	61		72	$\% V_{D D}$
$\mathrm{V}_{\text {RST }}$	Reset Voltage	$V_{D D}=2 \mathrm{~V}$ to 15 V	0.4		1.0	0.2		1.2	V
IRST	Reset Current	$V_{D D}=15 \mathrm{~V}$			10			50	nA
IDIS	Discharge Leakage	$V_{D D}=15 \mathrm{~V}$			10			50	nA
V_{OL}	Output Voltage Drop	$\begin{aligned} & V_{D D}=15 \mathrm{~V}, I_{\text {sink }}=20 \mathrm{~mA} \\ & V_{D D}=5 \mathrm{~V}, I_{\text {sink }}=3.2 \mathrm{~mA} \end{aligned}$		$\begin{aligned} & 0.4 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 0.4 \end{aligned}$			$\begin{gathered} 1.25 \\ 0.5 \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
V_{OH}	Output Voltage Drop	$\begin{aligned} & V_{D D}=15 \mathrm{~V}, I_{\text {source }}=0.8 \mathrm{~mA} \\ & V_{D D}=5 \mathrm{~V}, I_{\text {source }}=0.8 \mathrm{~mA} \end{aligned}$	$\begin{gathered} 14.3 \\ 4.0 \end{gathered}$	$\begin{gathered} 14.6 \\ 4.3 \end{gathered}$		$\begin{gathered} 14.2 \\ 3.8 \\ \hline \end{gathered}$			$\begin{aligned} & V \\ & v \end{aligned}$
$V_{\text {DIS }}$	Discharge Output Voltage Drop	$\begin{aligned} & V_{\mathrm{DD}}=5 \mathrm{~V}, I_{\text {sink }}=15 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V}, I_{\text {sink }}=15 \mathrm{~mA} \\ & \hline \end{aligned}$		0.2	0.4			$\begin{aligned} & 0.6 \\ & 0.4 \\ & \hline \end{aligned}$	$\begin{aligned} & v \\ & v \end{aligned}$
$\mathrm{V}+$	Supply Voltage*	Functional Oper.	2.0		18.0	3.0		16.0	V
t_{R}	Output Rise Time*	$R L=10 \mathrm{M}, \mathrm{CL}=10 \mathrm{pF}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$		75					ns
t_{F}	Output Fall Time*	$R L=10 \mathrm{M}, \mathrm{CL}=10 \mathrm{pF}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$		75					ns
$\mathrm{f}_{\text {MAX }}$	Oscillator Frequency*	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{RA}=470 \Omega, \\ & \mathrm{RB}=270 \Omega, \mathrm{C}=200 \mathrm{pF} \end{aligned}$		1					MHz

[^70]
TYPICAL PERFORMANCE CHARACTERISTICS

0363-4

0363-7
NORMALIZED FREQUENCY STABILITY IN THE ASTABLE MODE AS A FUNCTION OF SUPPLY VOLTAGE

0363-10

SUPPLY CURRENT AS A FUNCTION OF SUPPLY VOLTAGE

0363-8

DISCHARGE OUTPUT CURRENT AS A FUNCTION OF DISCHARGE OUTPUT VOLTAGE

0363-11

OUTPUT SOURCE CURRENT AS A FUNCTION OF OUTPUT VOLTAGE

0363-6
OUTPUT SINK CURRENT AS A FUNCTION OF OUTPUT VOLTAGE

0363-9

0363-12

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

NORMALIZED FREQUENCY
STABILITY IN THE ASTABLE MODE AS A FUNCTION OF TEMPERATURE

0363-13

APPLICATION NOTES GENERAL

The ICM7555/6 devices are, in most instances, direct replarements for the NF/SE 555/6 devices. However, it is possible to effect economies in the external component count using the ICM7555/6. Because the bipolar 555/6 devices produce large crowbar currents in the output driver, it is necessary to decouple the power supply lines with a good capacitor close to the device. The 7555/6 devices produce no such transients. See Figure 3.

0363-16
Figure 3: Supply Current Transient Compared with a Standard Bipolar 555 During an Output Transition

The ICM7555/6 produces supply current spikes of only $2-3 \mathrm{~mA}$ instead of $300-400 \mathrm{~mA}$ and supply decoupling is normally not necessary. Secondly, in most instances, the CONTROL VOLTAGE decoupling capacitors are not required since the input impedance of the CMOS comparators on chip are very high. Thus, for many applications 2 capacitors can be saved using an ICM7555, and 3 capacitors with an ICM7556.

FREE RUNNING FREQUENCY AS A

FREQUENCY (Hz)

TIME DELAY IN THE MONOSTABLE MODE AS A FUNCTION OFRA AND C

POWER SUPPLY CONSIDERATIONS

Although the supply current consumed by the ICM7555/6 devices is very low, the total system supply can be high unless the timing components are high impedance. Therefore, use high values for R and low values for C in Figures 4 and b.

OUTPUT DRIVE CAPABILITY

The output driver consists of a CMOS inverter capable of driving most logic families including CMOS and TTL. As such, if driving CMOS, the output swing at all supply voltages will equal the supply voltage. At a supply voltage of 4.5 volts or more the ICM7555/6 will drive at least 2 standard TTL loads.

ASTABLE OPERATION

The circuit can be connected to trigger itself and free run as a multivibrator, see Figure 4. The output swings from rail to rail, and is a true 50% duty cycle square wave. (Trip points and output swings are symmetrical). Less than a 1% frequency variation is observed, over a voltage range of +5 to +15 V .

$$
f=\frac{1.44}{R C}
$$

The timer can also be connected as shown in Figure 4b. In this circuit, the frequency is:

$$
f=1.44 /\left(R_{A}+2 R_{B}\right) C
$$

The duty cycle is controlled by the values of R_{A} and R_{B}, by the equation:

$$
D=R_{B} /\left(R_{A}+2 R_{B}\right)
$$

MONOSTABLE OPERATION

In this mode of operation, the timer functions as a oneshot. Initially the external capacitor (C) is held discharged by a transistor inside the timer. Upon application of a negative TRIGGER pulse to pin 2, the internal flip flop is set which releases the short circuit across the external capacitor and drives the OUTPUT high. The voltage across the capacitor now increases exponentially with a time constant $t=R_{A} C$. When the voltage across the capacitor equals $2 / 3 \vee+$, the comparator resets the flip flop, which in turn discharges the capacitor rapidly and also drives the OUTPUT to its low state. TRIGGER must return to a high state before the OUTPUT can return to a low state.

$$
t_{\text {output }}=-\ln (1 / 3) R_{A} C=1.1 R_{A} C
$$

CONTROL VOLTAGE

The CONTROL VOLTAGE terminal permits the two trip voltages for the THRESHOLD and TRIGGER internal comparators to be controlled. This provides the possibility of oscillation frequency modulation in the astable mode or even inhibition of oscillation, depending on the applied voltage. In the monostable mode, delay times can be changed by varying the applied voltage to the CONTROL VOLTAGE pin.

RESET

The $\overline{\text { RESET }}$ terminal is designed to have essentially the same trip voltage as the standard bipolar 555/6, i.e. 0.6 to 0.7 volts. At all supply voltages it represents an extremely high input impedance. The mode of operation of the RESET function is, however, much improved over the standard bipolar 555/6 in that it controls only the internal flip flop, which in turn controls simultaneously the state of the OUTPUT and DISCHARGE pins. This avoids the multiple threshold problems sometimes encountered with slow falling edges in the bipolar devices.

Figure 5: Monostable Operation

,

Figure 6: Equivalent Circuit

ICM7555/ICM7556

TRUTH TABLE

Threshold Voltage	Trigger Voltage	RESET	Output	Discharge Switch
DON'T CARE	DON'T CARE	LOW	LOW	ON
$>2 / 3\left(V^{+}\right)$	$>1 / 3\left(\mathrm{~V}^{+}\right)$	HIGH	LOW	ON
$<2 / 3\left(V^{+}\right)$	$>1 / 3\left(\mathrm{~V}^{+}\right)$	HIGH	STABLE	STABLE
DON'T CARE	$<1 / 3\left(\mathrm{~V}^{+}\right)$	HIGH	HIGH	OFF

NOTE: $\overline{\operatorname{RESET}}$ will dominate all other inputs: $\overline{\text { TRIGGER }}$ will dominate over THRESHOLD.

HARRIS QUALITY AND RELIABILITY

PAGE
INTRODUCTION 9-3
THE ROLE OF THE QUALITY ORGANIZATION 9-3
THE IMPROVEMENT PROCESS 9-3
DESIGNING FOR MANUFACTURABILITY 9-5
HARRIS SEMICONDUCTOR STANDARD PROCESS FLOWS 9-6
 0Ω
AVERAGE OUTGOING QUALITY (AOQ) 9-9
Incoming Materials 9-9
Training 9-9
MANUFACTURING SCIENCE - CAM, JIT 9-11
Computer Aided Manufacturing (CAM) 9-11
Just In Time (JIT) 9-11
MEASUREMENT 9-12
Analytical Services Laboratory 9-12
Calibration Laboratory 9-12
Failure Analysis Laboratory 9-12
RELIABILITY 9-12
Reliability Assessment and Enhancement 9-12
Qualifications 9-13
In-Line Reliability Monitors 9-13
Failure Analysis 9-13
RELIABILITY FUNDAMENTALS 9-13
Failure Rate Primer 9-14
Failure Rate Calculations 9-14
Acceleration Factors 9-14
Activation Energy 9-15
Qualification Procedures 9-16

Harris Quality \& Reliability

Introduction

Success in the integrated circuit industry means more than simply meeting or exceeding the demands of today's market. It also includes anticipating and accepting the challenges of the future. It results from a process of continuing improvement and evolution, with perfection as the constant goal.
Harris Semiconductor's commitment to supply only top value integrated circuits has made quality improvement a mandate for every person in our work force - from circuit designer to manufacturing operator, from hourly employee to corporate executive. Price is no longer the only determinant in marketplace competition. Quality, reliability, and performance enjoy significantly increased importance as measures of value in integrated circuits.

Quality in integrated circuits cannot be added on or considered after the fact. It begins with the development of capable process tochnolngy and product design. It continues in manufacturing, through effective controls at each process or step. It culminates in the delivery of products which meet or exceed the expectations of the customer.

The Role of The Quality Organization

The emphasis on building quality into the design and manufacturing processes of a product has resulted in a significant refocus of the role of the Quality organization. In addition to facilitating the development of SPC and DOX programs and working with manufacturing to establish control charts, Quality professionals are involved in the measurement of equipment capability, standardization of inspection equipment and processes, procedures for chemical controls, analysis of inspection data and feedback to the manufacturing areas, coordination of efforts for process and product improvement, optimization of environmental or raw materials quality, and the development of quality improvement programs with vendors.

At critical manufacturing operations, process and product quality is analyzed through random statistical sampling and product monitors. The Quality organization's role is changing from policing quality to leadership and coordination of quality programs or
procedures through auditing, sampling, consulting, and managing Quality Improvement projects.

To support specific market requirements, or to ensure conformance to military or customer specifications, the Quality organization still performs many of the conventional quality functions (e.g., group testing for military products or wafer lot acceptance). But, true to the philosophy that quality is everyone's job, much of the traditional on-line measurement and control of quality characteristics is where it belongs - with the people who make the product. The Quality organization is there to provide leadership and assistance in the deployment of quality techniques, and to monitor progress.

The Improvement Process

FIGURE 1. STAGES OF STATISTICAL QUALITY TECHNOLOGY
Harris Semiconductor's quality methodology is evolving through the stages shown in Figure 1. In 1981 we embarked on a program to move beyond Stage I, and we are currently in the transition from Stage II to Stage III, as more and more of our people become involved in quality activities. The traditional "quality" tasks of screening, inspection, and testing are being replaced by more effective and efficient methods, putting new tools into the hands of all employees. Table 1 illustrates how our quality systems are changing to meet today's needs.

TABLE 1. TYPICAL ON-LINE MANUFACTURING/QUALITY FUNCTIONS

AREA	FUNCTION	MANUFACTURING CONTROLS	QA/QC MONITOR AUDIT
Wafer Fab	- JAN Self-Audit - Environmental - Room/Hood Particulates - Temperature/Humidity - Water Quality - Product - Junction Depth - Sheet Resistivities - Defect Density - Critical Dimensions - Visual Inspection - Lot Acceptance - Process - Film Thickness - Implant Dosages - Capacitance Voltage Changes - Conformance to Specification - Equipment - Repeatability - Profiles - Calibration - Preventive Maintenance	X X x x x X X x x x x X X x	x x x x $\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \\ & \mathrm{x} \\ & \mathrm{x} \\ & \mathrm{x} \\ & \mathrm{x} \\ & \mathrm{x} \\ & \mathrm{x} \\ & \mathrm{x} \\ & \mathrm{x} \\ & \mathrm{x} \\ & \mathrm{x} \end{aligned}$ x x x
Assembly	- JAN Self-Audit - Environmental - Room/Hood Particulates - Temperature/Humidity - Water Quality - Product - Documentation Check - Dice Inspection - Wire Bond Pull Strength/Controls - Die Sear Controls - Pre-Seal Visual - Fine/Gross Leak - PIND Test - Lead Finish Visuals, Thickness - Die Shear - Solderability - Process - Operator Quality Performance - Saw Controls - Die Attach Temperatures - Seal Parameters - Seal Temperature Profile - Sta-Bake Profile - Temp Cycle Chamber Temperature - ESD Protection - Plating Bath Controls - Mold Parameters	x x x x x x x x x x x	X X X X X X X X X X X X X X X X X
Test	- JAN Self-Audit - Temperature/Humidity - ESD Controls - Temperature Test Calibration - Test System Calibration - Test Procedures - Control Unit Compliance - Lot Acceptance Conformance - Group A Lot Acceptance	$\begin{aligned} & x \\ & x \\ & x \\ & x \\ & x \\ & x \\ & x \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$ x x
Probe	- JAN Self-Audit - Wafer Repeat Correlation - Visual Requirements - Documentation - Process Performance	$\begin{aligned} & x \\ & x \\ & x \\ & x \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \\ & \mathrm{x} \\ & \mathrm{x} \end{aligned}$

TABLE 1. TYPICAL ON-LINE MANUFACTURING/QUALITY FUNCTIONS (CONTINUED)

AREA	FUNCTION	MANUFACTURING CONTROLS	QA/QC MONITOR AUDIT
Burn-In	- JAN Self-Audit - Functionality Board Check - Oven Temperature Controls - Procedural Conformance	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	x x
Brand	- JAN Self-Audit - ESD Controls - Brand Permanency - Temperature/Humidity - Procedural Conformance	$\begin{aligned} & \mathrm{X} \\ & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \\ & \mathrm{x} \\ & \mathrm{x} \\ & \mathrm{x} \end{aligned}$
QCl Inspection	- JAN Self-Audit - Group B Conformance - Group C and D Conformance		$\begin{aligned} & x \\ & x \\ & x \end{aligned}$

Designing For Manufacturability

Assuring quality and reliability in integrated circuits begins with good product and process design. This has alwajo becn e etrongth in Herric Somiennductor's quality approach. We have a very long lineage of high reliability, high performance products that have resulted from our commitment to design excellence. All Harris products are designed to meet the stringent quality and reliability requirements of the most demanding end equipment applications, from military and space to industrial and telecommunications. The application of new tools and methods has allowed us to continuously upgrade the design process.

Each new design is evaluated throughout the development cycle to validate the capability of the new product to meet the end market performance, quality, and reliability objectives.

The validation process has four major components:

1. Design simulation/optimization
2. Layout verification
3. Product demonstration
4. Reliability assessment.

Harris designers have an extensive set of very powerful Computer-Aided Design (CAD) tools to create and optimize product designs (see Table 2).

TABLE 2. APPROACH AND IMPACT OF STATISTICAL QUALITY TECHNOLOGY

	STAGE	APPROACH	IMPACT
!	Predunt Screening	- Strose and Tost - Defective Prediction	- Limited Qualitv - Costly - After-The-Fact
11	Process Control	- Statistical Process Control - Just-In-Time Manufacturing	- Identifies Variability - Reduces Costs - Real Time
III	Process Optimization	- Design of Experiments - Process Simulation	- Minimizes Variability - Before-The-Fact
IV	Product Optimization	- Design for Producibility - Product Simulation	- Insensitive to Variability - Designed-In Quality - Optimal Results

Special Testing

Harris Semiconductor offers several standard screen flows to support a customer's need for additional testing and reliability assurance. These flows include environmental stress testing, burn-in, and electrical testing at temperatures other than $+25^{\circ} \mathrm{C}$. The flows shown on pages 9-6 and 9-7 indicate the Harris standard screening processes. In addition, Harris can supply products tested to customer specifications both for electrical requirements and for non-standard environmental stress screening. Consult your field sales representative for details.

(Continued)

(2) $-55^{\circ} \mathrm{C} \mathrm{TO}+125^{\circ} \mathrm{C}$
(3) Burn-In test temperatures can be increased and time reduced per regression tables in Mil-Std-883, Method 1015.

TABLE 3. SUMMARIZING CONTROL APPLICATIONS

FAB		
- Diffusion - Junction Depth - Sheet Resistivities - Oxide Thickness - Implant Dose Calibration - Uniformity	- Thin Film - Film Thickness - Uniformity - Refractive Index - Film Composition	- Photo Resist - Critical Dimension - Resist Thickness - Etch Rates - Measurement Equipment - Critical Dimension - Film Thickness - 4 Point Probe - Ellipsometer
ASSEMBLY		
- Pre-Seal - Die Prep Visuals - Yields - Die Attach Heater Block - Die Shear - Wire Pull - Saw Blade Wear - Pre-Cap Visuals	- Post-Seal - Internal Package Moisture - Tin Plate Thickness - PIND Defect Rate - Solder Thickness - Leak Tests - Module Rm. Solder Pot Temp. - Seal - Temperature Cycle	- Measurement - XRF - Radiation Counter - Thermocouples - GM-Force Measurement
TEST		
	- Handlers/Test Systems - Defect Pareto Charts - Lot \% Defective - ESD Failures per Month	- Monitor Failures - Lead Strengthening Quality - After Burn-In PDA
OTHER		
- IQC - Vendor Performance - Material Criteria - Quality Levels	- Environment - Water Quality - Clean Room Control	- IQC Measurement/Analysis - XRF - ADE - 4 Point Probe - Chemical Analysis Equipment

Controlling and Improving the Manufacturing Process - SPC/DOX

Statistical process control (SPC) is the basis for quality control and improvement at Harris Semiconductor. Harris manufacturing people use over 1,000 Shewhart control charts to determine the normal variabilities in processes, materials, and products. Critical process variables are measured and control limits are plotted on the control charts. Appropriate action is taken if the charts show that a variable is outside the process control limits or indicates a trend toward the limit. These same control charts are powerful tools for use in reducing variations in processing, materials, and products. Table 3 lists some typical manufacturing applications of control charts at Harris Semiconductor.

But SPC is only part of the solution. Processes which operate in statistical control are not always capable of meeting engineering requirements. The conventional way of dealing with this in the semiconductor industry has been to implement 100% screening or inspection steps to remove defects, but these techniques are insufficient to meet today's demands for the highest reliability and perfect quality performance.

Harris still uses screening and inspection to "grade" products and to satisfy specific customer requirements for burn-in, multiple temperature test insertions, environmental screening, and visual inspection as val-ue-added testing options. However, inspection and screening are limited in their ability to reduce product
defects to the levels expected by today's buyers. In addition, screening and inspection have an associated expense, which raises product cost.

Harris engineers are, instead, using Design of Experiments (DOX), a scientifically disciplined mechanism for evaluating and implementing improvements in product processes, materials, equipment, and facilities. These improvements are aimed at reducing the number of defects by studying the key variables controlling the process, and optimizing the procedures or design to yield the best result. This approach is a more time-

TABLE 4. HARRIS I.C. DESIGN TOOLS

	PRODUCTS	
DESIGN STEP	ANALOG	DIGITAL
Functional Simulation	Slice	Silos Proteous Socrates
Parametric Simulation	Slice Monte Carlo	Slice
Schematic Capture	Note 1	Daisy SDA-Mass Comp
Functional Checking	Note 1	SDA-LVS
Rules Checking	Calma-DRC	Harris Dash
Parasitic Extraction	Note 1	SDA-LVS

NOTE 1. Tools are in Development.
consuming method of achieving quality perfection, but a better product results from the efforts, and the basic causes of product nonconformance can be eliminated.

SPC, DOX, and design for manufacturability, coupled with our 100% test flows, combine in a product assurance program that delivers the quality and reliability performance demanded for today and for the future.

Average Outgoing Quality (AOQ)

Average Outgoing Quality is a yardstick for our success in quality manufacturing. The average outgoing electrical defective is determined by randomly sampling units from each iot and is measured in parts per million (PPM). The current procedures and sampling plans outlined in MIL-STD-883 and MIL-$\mathrm{M}-38510$ are used by our quality inspectors.

FIGURE 2. DEFECTIVE PARTS PER MILLION

The focus on this quality parameter has resulted in a continuous improvement over the past three years. AOQ has improved from 1,000 PPM to less than 100 PPM, and the goal for 1989 is to continue improvement toward a goal of 0 PPM.

Training

The basis of a successful transition from conventional quality programs to more effective, total involvement is training. Extensive training of personnel involved in product manufacturing began in 1984 at Harris, with a comprehensive development program in statistical methods. Using the resources of the University of Tennessee, private consultants, and internally developed programs, training of over 2,000 engineers, supervisors, and operators/technicians has been completed.
Nearly 1,000 operators, 100 supervisors, and more than 800 engineers have been trained in SPC methods, providing them with tools to improve the overall level of uniformity of Harris products. Almost 300 engineers have received training in $\bar{\sim}$ methods: learning to evaluate changes in process operations, set up new processes, select or accept new equipment, evaluate materials, select vendors, compare two or more pieces of equipment, and compare two or more process techniques.
Over the past four years, Harris has also deployed a comprehensive training program for hourly operators and supervisors in job requirements and functional skills. All hourly manufacturing employees participate (see Table 5).

TABLE 5. SUMMARY OF TRAINING PROGRAMS

COURSE	AUDIENCE	LENGTH	TOPICS COVERED
SPC	Manufacturing Operators	8 Hours	Basic Philosophy, Statistical Calculations Graphing Techniques, Pareto Charts, Control Charts
SPC	Manufacturing Supervisors	21 Hours	Basic Philosophy, Statistical Calculations Graphing Techniques, Pareto Charts, Control Charts, Testing for Inspector Agreement, Cause \& Effect Diagrams, $1 \& 2$ Sample Methods
SPC	Engineers and Managers	48 Hours	Basic Philosophy, Graphical Methods, Control Charts, Rational Subgrouping, Variance Components, $\& 2$ Sample Methods, Pareto Charts, Cause \& Effect Diagrams
DOX (Design of Experiments)	Engineers and Managers	88 Hours	Factorial Designs, Fractional Factorial Designs, Blocking Designs, Variance Components, Computer Usage, Normal Probability Plotting
RSM (Response Surface Methods)	Engineers and Managers	40 Hours	Steepest Ascent, Central Composite Designs, Box-Behnken Designs, Computer Usage, Contour Plotting, Second Order Response Surfaces
Continuous Improvement Methods	Manufacturing Supervisors	12 Hours	Basic Philosophy, Pareto Analysis, Imagineering, Run Charts, Cause \& Effect Diagrams, Histograms, Ideas of Control Charts
SPC- The Essentials	Department-Level Work Groups	20 Hours	Basic Philosophy, of Continous Improvement, Imagineering Pareto Charts, Cause \& Effect Diagrams, Flow Charts, Graphical Display, Control Charts, Ideas of Experiment

Incoming Materials

With statistical procedures in place to improve quality in the manufacturing operation, the impact of silicon, chemicals, gases, and other materials used in processing the product has become more measurable. Quality and consistency are important; it is logical to feed the manufacturing line with materials manufactured by vendors using equivalent statistical controls.

In order to ensure optimum quality of materials purchased from vendors, Harris initiated and coordinated an aggressive program to link key suppliers to our manufacturing operations. This network is formed by certifying strategic vendors who meet the highest
quality standards while demonstrating a commitment to the use of statistical controls in their manufacturing operations.

SPC seminars, development of open working relationships, understanding of manufacturing needs and vendor capabilities, and continual improvement programs are all part of the certification process. Certified suppliers have passed stringent quality and SPC audits, while continuing to supply material with 100% conformance to Harris requirements.
In addition to the certification process, Harris has worked to promote improved quality in the performance of all our qualified vendors, who must meet rigorous incoming inspection criteria (see Table 6).

TABLE 6. INCOMING QUALITY CONTROL MATERIAL QUALITY CONFORMANCE

MATERIAL	INCOMING INSPECTIONS	VENDOR DATA REQUIREMENTS
Silicon	- Resistivity - Crystal Orientation - Dimensions - Edge Conditions - Taper - Thickness - Total Thickness Variation - Backside Criteria - Oxygen - Carbon	- Equipment Capability Control Charts - Oxygen - Resistivity - Control Charts Related to - Emhanced Gettering - Total Thickness Variation - Total Indicated Reading - Particulates - Certificate of Analysis for all Critical Parameters
Chemicals/Photoresists/ Gases	- Chemicals - Assay - Major Contaminants - Molding Compounds - Spiral Flow - Thermal Characteristics - Gases - Impurities - Photoresists - Viscosity - Film Thickness - Solids - Pinholes	- Certificate of Analysis on all Critical Parameters - Control Charts - Assay - Contaminants - Water - Selected Parameters - Control Charts - Assay - Contaminants - Control Charts on - Photospeed - Thickness - UV Absorbance - Filterability - Water - Contaminants
Thin Film Materials	- Assay - Selected Contaminants	- Control Charts - Assay - Contaminants - Dimensional Characteristics - Certificate of Analysis for all Critical Parameters
Assembly Materials	- Visual Inspection - Physical Dimension Checks - Lead Integrity - Glass Composition - Bondability - Intermetallic Layer Adhesion - lonic Contaminants - Thermal Characteristics - Lead Coplanarity - Plating Thickness - Hermeticity	- Certificate of Analysis - Process Control Charts on Outgoing Product Checks and In-Line Process Controls

Manufacturing Science－CAM，JIT

In addition to SPC and DOX as key tools to control the product and processes，Harris is deploying other management mechanisms in the factory．On first examination，these tools appear to be directed more at schedules and capacity．However，they have a sig－ nificant impact on quality results．

Computer Aided Manufacturing（CAM）

CAM is a computer based inventory and productivity management tool which allows personnel to quickly identify production line problems and take corrective action．In addition，CAM improves scheduling and allows Harris to more quickly respond to changing customer requirements and aids in managing work in process（WIP）and inventories．

The use of CAM has resulted in significant improve－ ments in many areas．Better wafer lot tracking has facilitated a number of process improvements by cor－ relating yields to process variables．In several places CAM has greatly improved capacity utilzation through better planning and scheduling．Queues have been reduced and cycle times have been shortened －in some cases by as much as a factor of 2.

The most dramatic benefit has been the reduction of WIP inventory levels，in one area by 500% ．This re－ sults in fewer lots in the area and a resulting quality improvement．In wafer fab，defect rates are lower be－ cause wafers spend less time in production areas awaiting processing．Lower inventory also improves morale and brings a more orderly flow to the area． CAM facilitates all of these advantages．

Just In Time（JIT）

A key adjunct to the CAM activity is Just In Time（JIT） material management．This is more than an inventory reduction technique：in many cases it involves reorganization of facilities and people．The essential concept is to form work units that are responsible for doing the whole job rather than bits of it．An employee has control over equipment，maintenance，cleanli－ ness，scheduling，material，quality，and improve－ ments．

In one Harris example，a photoresist flow consisting of several steps was previously organized in the clas－ sical departmentalized way．The inspection and etch areas were in different serial locations from the depo－ sition and alignment areas．Work piled up at the slowest operation（inspection），and quality problems detected there were decoupled from the areas prod－ ucing them by 20 to 30 feet and at least one day． Rework rates were very high；scrap was いïãここかさab！c．
When the area was reorganized into GT（group tech－ nology）cells（a basic concept of JIT），the inspection and alignment areas were physically coupled and people were organized into teams．The whole job（fin－ ished，defect－free wafers）was assigned to the GT cell （see Figure 3）．Rework rates decreased 70% ，scrap rates decreased 45% ，and probe yields increased by 50% ．This is only one of hundreds of examples of how JIT has improved our factory performance．
The JIT program／system works．This cultural change is vital and the benefits derived are impressive．

Figure 3．group technology cell

Measurement

Analytical Services Laboratory

Harris facilities, engineering, manufacturing, and product assurance are supported by the Analytical Services Laboratory. Organized into chemical or microbeam analysis methodology, staff and instrumentation from both labs cooperate in fully integrated approaches necessary to complete analytical studies. The capabilities of each area are shown below.

SPECTROSCOPIC METHODS: Colorimetry, Optical Emission, Ultraviolet Visible, Fourier Transform-Infrared, Flame Atomic Absorption, Furnace Organic Carbon Analyzer, Mass Spectrometer.

CHROMATOGRAPHIC METHODS: Gas Chromatography, Ion Chromatography.

THERMAL METHODS: Differential Scanning Colorimetry, Thermogravimetric Analysis, Thermomechanical Analysis.

PHYSICAL METHODS: Profilometry, Microhardness, Rheometry.

CHEMICAL METHODS: Volumetric, Gravimetric, Specific Ion Electrodes.

ELECTRON MICROSCOPE: Transmission Electron Microscopy, Scanning Electron Microscope.

X-RAY METHODS: Energy Dispersive X-ray Analysis (SEM), Wavelength Dispersive X-ray Analysis (SEM), X-ray Fluorescence Spectrometry, X-ray Diffraction Spectrometry.

SURFACE ANALYSIS METHODS: Scanning Auger Microprobe, Electron Spectroscope/Chemical Analysis, Secondary Ion Mass Spectrometry, Ion Scattering Spectrometry, Ion Microprobe.

The department also maintains ongoing working arrangements with commercial, university, and equipment manufacturers' technical service laboratories, and can obtain any materials analysis in cases where instrumental capabilities are not available in our own facility.

Calibration Laboratory

Another important resource in the product assurance system is Harris Semiconductor's Calibration Lab. This area is responsible for calibrating the electronic, electrical, electro/mechanical, and optical equipment used in both the production and engineering areas. The accuracy of instruments used at Harris in calibration is traceable to the National Bureau of Standards. The lab maintains a system which conforms to the current revision of MIL-STD-45662, "Calibration System Requirements."

Each instrument requiring calibration is assigned a calibration interval based upon stability, purpose, and degree of use. The equipment is labeled with an identification tag on which is specified both the date of the last calibration and of the next required calibration. The Calibration Lab reports on a regular basis to each user department. Equipment out of calibration is taken out of service until calibration is performed. The Quality organization performs periodic audits to assure proper control in the using areas. Statistical procedures are used where applicable in the calibration process.

Fallure Analysis Laboratory

The Failure Analysis Laboratory's capabilities encompass the isolation and identification of all failure modes/failure mechanisms, preparing comprehensive technical reports, and assigning appropriate corrective actions. Research vital to understanding the basic physics of the failure is also undertaken.

Failure analysis is a method of enhancing product reliability and determining corrective action. It is the final and crucial step used to isolate potential reliability problems that may have occurred during reliability stressing. Accurate analysis results are imperative to assess effective corrective actions. To ensure the integrity of the analysis, correlation of the failure mechanism to the initial electrical failure is essential.

A general failure analysis procedure has been established in accordance with the current revision of MIL-STD-883, Section 5003. The analysis procedure was designed on the premise that each step should provide information on the failure without destroying information to be obtained from subsequent steps. The exact steps for an analysis are determined as the situation dictates. Records are maintained by laboratory personnel and contain data, the failure analyst's notes, and the formal Product Analysis Report.

Reliability

Reliability Assessment and Enhancement

At Harris Semiconductor, reliability is built into every product by emphasizing quality throughout manufacturing. This starts by ensuring the excellence of the design, layout, and manufacturing process. The quality of the raw materials and workmanship is monitored using statistical process control (SPC) to preserve the reliability of the product. The primary and ultimate goal of these efforts is to provide full performance to the product specification throughout its useful life. Product reliability is maintained through the following sources: Qualifications, In-Line Reliability Monitors, Failure Analysis.

Qualifications

Qualifications at Harris de-emphasize the sole dependence on production product which is only available late in the development cycle. The focus is primarily on the use of test vehicles to establish design ground rules for the product and the process that will eliminate any wearout mechanisms during the useful life of the product. However, to comply with the military requirements concerning reliability, product qualifications are performed.

In-line Reliability Monitors

In-line reliability monitors provide immediate feedback to manufacturing regarding the quality of workmanship, quality of raw materials, and the ultimate reliability implications. The rudimentary implementation of this monitoring is the "First Line of Defense," which is a pass/fail acceptance procedure based on control charts and trend analysis. The second level of monitoring is referred to as the "Early Warning System" and incorporates wafer level reliability concepts for extensive diagnostic and characterization capabilities of various components that may impact the device reliability or stability. The quick feedback from these schemes allows more accurate correlation to process steps and corrective actions.

Failure Analysis

Failure analysis of various product failures provides a means for determining critical failure mechanisms. This information is used to identify those mechanism that should be detectable by qualification procedures or in-line monitors. Failure analysis involves elaborate confirmation of the failure mechanism creating the product malfunction.

Reliability Fundamentals

Reliability, by its nature, is a mixture of engineering and probability statistics. This combination has derived a vocabulary of terms essential for describing the reliability of a device or system. Since reliability involves a measurement of time, it is necessary to accelerate the failures which may occur. This, then, introduces terms like "activation energy" and "acceleration factor," which are needed to relate results of stressing to normal operating conditions (see Table 7). Also, to assess product reliability requires faitures. Therefore, only a statistical sample can be used to determine the model of the failure distribution for the entire population of product.

TABLE 7. FAILURE RATE PRIMER
GLOSSARY OF TERMS

TERMS/DEFINITION	UNITS/DESCRIPTION
FAILURE RATE λ For Semiconductors, usually expressed in FITs. Represents useful life failure rate (which implies a constant failure rate). FITs are not applicable for infant mortality or wearout failure rate expressions.	FIT - Failure In Time 1 FIT-1 failure in 10^{9} device hours. Equivalent to $0.0001 \% / 1000$ hours FITs = \# Failures $\times 10^{9} \times \mathrm{m}$ \# Devices x \# hours stress x AF m - Factor to establish Confidence Interval 10^{9} - Establishes in terms of FITs AF - Acceleration Factor at temperature for a given failure mechanism
MTTF - Mean Time To Failure For semiconductors, MTTF is the average or mean life expectancy of a device. If an exponential distribution is assumed then the mean time to fail of the population will be when 63% of the parts have failed.	Mean Time is measured usually in hours or years. 1 Year $=8760$ hours When working with a constant failure rate the MTTF can be calculated by taking the reciprocal of the failure rate. MTTF $=1 / \lambda$ (exponential model) Example: $=10$ FITs at $+55^{\circ} \mathrm{C}$ $\text { The MTTF is: } \begin{aligned} \text { MTTF } & =1 / \lambda=0.1 \times 10^{9} \text { hours } \\ & =100 \mathrm{M} \text { hours } \end{aligned}$
CONFIDENCE INTERVAL (C. ו.) Establishes a Confidence Interval for failure rate predictions. Usually the upper limit is most significant in expressing failure rates.	Example: "10 FITs @ a 95\% C. I. @ $55^{\circ} \mathrm{C}$ " means only that you are 95\% certain the the FITs <10 at $+55^{\circ} \mathrm{C}$ use conditions.

Failure Rate Calculations

Reliability data for products may be composed of several different failure mechanisms and requires careful combining of diverse failure rates into one comprehensive failure rate. Calculating the failure rate is further complicated because failure mechanisms are thermally accelerated at varying rates and thereby have differing accelerating factors. Additionally, this data is usually obtained a variety of life tests at unique stress temperatures. The equation below accounts for these considerations and then inserts a statistical factor to obtain the confidence interval for the failure rate.

$$
\begin{aligned}
& F I T=\left(\begin{array}{llll}
\sum_{i=1}^{B} & \frac{x_{i}}{} & & \\
\sum_{j=1}^{K} & & & \\
& A F_{i j}
\end{array}\right) \times 10^{9} \quad x M \\
& B=\# \text { of distinct possible failure mechanisms } \\
& K=\# \text { of life tests being combined } \\
& X_{i}=\quad \# \text { of failures for a given failure mechanism } \\
& i=1,2, \ldots B \\
& T D G_{j}=\text { Total device hours of test time } \\
& \text { (unaccelerated) for Life Testj } \\
& \mathrm{AF}_{\mathrm{ij}}=\text { Acceleration factor for appropriate failure } \\
& \text { mechanism } i=1,2, \ldots \mathrm{~K} \\
& M=\text { Statistical factor for calculating the upper } \\
& \text { confidence limit (} M \text { is a function of the total } \\
& \text { number of failures and an estimate of the } \\
& \text { standard deviation of the failure rates) }
\end{aligned}
$$

In the failure rate calculation, Acceleration Factors $\left(\mathrm{AF}_{\mathrm{ij}}\right)$ are used to derate the failure rate from thermally accelerated Life Test conditions to a failure rate indicative of use temperatures. Though no standards exist, a temperature of $+55^{\circ} \mathrm{C}$ has been popular and allows some comparison of product failure rates. All Harris Semiconductor Reliability Reports will derate to $+55^{\circ} \mathrm{C}$ at both the 60\% and 95% confidence intervals.

Acceleration Factors

The Acceleration Factors (AF) are determined from the Arrhenius Equation. This equation is used to describe physiochemical reaction rates and is an appropriate model for expressing the thermal acceleration of semiconductor failure mechanisms.

$A F=$ Acceleration Factor

$$
\begin{aligned}
\mathrm{E}_{\mathrm{a}} & =\text { Thermal Activation Energy in } \mathrm{eV} \text { from Table } 8 \\
\mathrm{~K} & =\text { Boltzmann's Constant }\left(8.62 \times 10^{-5} \mathrm{eV} / \mathrm{OK}\right)
\end{aligned}
$$

Both $T_{\text {use }}$ and $T_{\text {stress }}$ (in degrees Kelvin) include the internal temperature rise of the device and therefore represent the junction temperature. With the use of the Arrhenius Equation, the thermal Activation Energy (E_{a}) term is a major influence on the result. This term is usually empirically derived and can vary widely.

figure 5. destructive

Activation Energy

To determine the Activation Energy (E_{a}) of a mechanism (see Table 8) you must run at least two (preferably more) tests at different stresses (temperature and/or voltage). The stresses will provide the time to failure (Tf) for the populations which will allow the simultaneous solution for the Activation Energy by putting the experimental results into the following equations.

Then, by subtracting the two equations, the Activation Energy becomes the only variable, as shown.
$\ln \left(t_{f 1}\right)-\ln \left(t_{f}\right)=E_{a} / k(1 / T 1-1 / T 2)$
$E_{a}=K^{*}\left(\left(\ln \left(t_{f 1}\right)-\ln \left(t_{f}\right)\right) /(1 / T 1-1 / T 2)\right)$
The Activation Energy may be estimated by graphical analysis plots. Plotting In time and In temperature then provides a convenient nomogram that solves (estimates) the Activation Energy.

Table 9 is a summary of military generic groups by process descriptions.

All Harris Reliability Reports from qualifications and Group C1 (all high temperature operating life tests) will provide the data on all factors necessary to calculate and verify the reported failure rate (in FITs) using the methods outlined in this primer.

TABLE 8. FAILURE MECHANISM

FAILURE MECHANISM	ACTIVATION ENERGY	SCREENING AND ItSIINGMETMUUニ̃LこG:	CONTROI MFTHODOLOGY
Oxide Defects	0.3-0.5eV	High temperature operating life (HTOL) and voltage stress. Defect density test vehicles.	Statistical Process Control of oxide parameters, defect density control, and voltage stress testing.
Silicon Defects (Bulk)	$0.3-0.5 \mathrm{eV}$	HTOL \& voltage stress screens.	Vendor Statistical Quality Control programs, and Statistical Process Control on thermal processes.
Corrosion	0.45 eV	Highly accelerated stress tesing (HAST)	Passivation dopant control, hermetic seal control, improved mold compounds, and producthandling.
Assembly Defects	$0.5-0.7 \mathrm{eV}$	Temperature cycling, temperature and mechanical shock, and environmental stressing.	Vendor Statistical Quality Control programs, Statistcal Process Control of assembly processes proper handling methods.
Electromigration - Al Line - Contact	$\begin{aligned} & 0.6 \mathrm{eV} \\ & 0.9 \mathrm{eV} \end{aligned}$	Test vehicle characterizations at highly elevated temperatures.	Design ground rules, wafer process statistical process steps, photoresist, metals and passivation
Mask Defects/ Photoresist Defects	0.7 eV	Mask FAB comparator, print checks, defect density monitor in $F A B$, voltage stress test and HTOL.	Clean room control, clean mask, pellicles Statistical Process Control or photoresist/etch processes.
Contamination	1.0 eV	$\mathrm{C}-\mathrm{V}$ stress at oxide/interconnect, wafer FAB device stress test (EWS) and HTOL.	Statistical Process Control of C-V data, oxide/ interconnect cleans, high integrity glassivation and clean assembly processes.
Charge Injection	1.3 eV	HTOL \& oxide characterization.	Design ground rules, wafer level Statistical Process Control and critical dimensionsfor oxides.

Qualification Procedures

New products are reliably introduced to market by the proper use of design techniques and strict adherence to process layout ground rules. Each design is reviewed from its conception through early production to ensure compliance to minimum failure rate standards. Ongoing monitoring of reliability performance is accomplished through compliance to 883C and standard Quality Conformance Inspection as defined in Method 5005.

New process/product qualifications have two major requirements imposed. First is a check to verify the proper use of process methodology, design tech-
niques, and layout ground rules. Second is a series of stress tests designed to accelerate failure mechanisms and demonstrate the reliability of integrated circuits.

From the earliest stages of a new product's life, the design phase, through layout, and in every step of the manufacturing process, reliability is an integral part of every Harris Semiconductor product. This kind of attention to detail "from the ground up" is the reason why our customers can expect the highest quality for any application.
table 9. high temperature operating life test summary
GROUP C

GENERIC GROUP	GROUP NAME	PROCESS DESCRIPTION	QUANTITY	QUANTITY FAILURE	HOURS @ $\mathbf{1 2 5}^{\circ} \mathrm{C}$	FAILURE RATE FITs @ $55^{\circ} \mathrm{C}$ 60\% Cl
D-49-3	Op. Amplifiers	Std. Linear, DI w/NiCr resistors	3482	6	3,215,708	62
D-49-4	Op. Amplifiers	Std. Linear, DI w/NiCr resistors	324	1	429,945	17
D-53	High Voltage Op. Amplifiers	High voltage DI	315	0	284,943	20
D-56	Data Acquisition	High beta high frequency, $\mathrm{DI}, \mathrm{NiCr}$	1022	5	1,868,349	100
F-103	Telecommunications	SAJIIVA	199	0	403,960	5
F-81-3	A/D Converters	SAJIIVA	201	0	183,222	10
F-81-4	A/D Converters	SAJIIVA	217	1.	328,000	12
F-82	Switches \& Mux	DI AI Gate \& Si Gate MOS	121	0	82,836	23
F-99-3	Active Filters	SAJIIVA	196	1	184,262	24
F-99-4	Active Filters	SAJIIVA	407	1	470,324	9
G-85	Op. Amplifiers	Std. Linear, MOS, \& High Frequency JFET	532	1	535,728	11
G-86	Comparators	Combination, Std. Linear \& MOS	154	0	153,400	25
G-94-3	Switches \& Mux	DI AI \& Si Gate Linear CMOS	4351	41	7,443,054	103
G-94-4	Switches \& Mux	DI AI \& Si Gate Linear CMOS	906	0	889,816	20
C-41-4	CMOS RAMs	SAJI CMOS	2418	19	2,247,526	31
C-41-5	CMOS RAMs	SAJI CMOS	1104	10	1,105,094	53
C-42-4	CMOS PROMs \& HPALs	SAJI CMOS	2645	28	4,074,728	61
C-105-4	Microprocessor and Peripherals	SAJI CMOS	3638	12	4,099,002	17

NOTE: All infant mortality failures (up to 168 hours or equivalent) have been removed from products sampled.

FIGURE 6. NEW PROCESS PRODUCT DEVELOPMENT AND LIFE CYCLE

APPLICATION NOTE ABSTRACTS

AN\#	TITLE
509	A Simple Comparator Using The HA-2620
514	The HA-2400 PRAM Four Channel Operational Amplifier
515	Operational Amplifier Stability: Input Capacitance Considerations
517	Applications of a Monolithic Sample and Hold/ Gated Op Amp
519	Operational Amplifiers Noise Prediction.
525	HA-5190/5195 Fast Settling Operational Amplifier
526	HA-5190/5195 Video Applications
538	Monolithic Sample/Hold Combines Speed and Precision
540	HA-5170 Precision Low Noise J-FET Input Operational Amplifier
541	Using HA-2539/2540 Very High Slew-Rate Wideband Operational Amplifiers
544	Micropower Op Amp Family, HA-514X, HA-515X

Abstract

S Performance characteristics, application schematics, output parameter control methods.

HA-2400 PRogrammable Analog Microcircuit description, frequency compensation, applications (analog multiplexer, non-inverting programmable gain amplifier, inverting programmable gain amplifier, programmable attenuator, programmable adder-subtractor, píā̄e sélocter, phase detoctor, ejmehronous rostifior, halancad modulator. intearator. ramp generator, track and hold, sample and hold, sine wave oscillator, multivibrator, active filter, programmable power supply, comparator, multiplying D/A converter).

Input capacitance and stability, capacitive feedback compensation, guidelines for compensation requirements.

General Sample and Hold information and fourteen specific applications, including filtered Sample \& Hold DAC de-glitcher, Integrate-Hold-Reset, gated op amp, etc.

Noise model and equations, procedure for computing total output noise, example, broadband noise measurement, spot noise prediction techniques, typical spot noise curves, popcorn noise discussion.

Internal schematic, prototyping considerations, frequency compensation, performance enhancement methods, applications.

Video applications, video response tests, S / N ratio measurements, power supply requirements temperature considerations, design hints, prototyping tips, RF AGC amplifier, DC gain controlled video amplifier.

Description and electrical specifications for the HA-5320 Sample/Hold Amplifiers, explanation of errors sources, and HA-5320 applications.

Internal design and technology, J-FET noise discussion, trimming of offset voltage, single op amp Instrumentation Amplifier, sine wave oscillator, high impedance transducer interface, current source/sink and current sense circuits.

Prototyping considerations, output short circuit protection, offset voltage adjustment, frequency compensation, composite amplifier scheme, DC error reduction, boosting output current, increasing output signal swing, cascade amplifier, video gain block, high frequency oscillator, wideband signal splitter.

Operation, noise performance, applications (remote sensor loop transmitter, charge pool power supply, low power microphone preamplifier, AGC with squelch control, Wein bridge oscillator, bar code scanner, monostable multivibrator).

Application Note Abstracts (continued)

AN\#	TITLE	ABSTRACTS
546	A Method of Calculating HA-2625 Gain Bandwidth Product vs. Temperature	A method of calculating Gain Bandwidth product performance versus temperature for the HA-2625 Op Amp.
548	A Designer's Guide for the HA-5033 Video Buffer	Operation, video performance, video parameter specifications, Y parameters, applications (flash converter pre-driver, coaxial line driver, video gain block, high speed sample and hold, audio drivers, crystal oscillator).
550	Using the HA-2541	Prototyping guidelines, thermal considerations and heat sinking, performance enhancements, applications (Wein bridge oscillator, high power gain stage, video stage with clamp, multiplexer/demultiplexer, disk drive write amplifier, gain programmable amp, composite amp).
551	Recommended Test Procedures for Operational Amplifiers	Operational amplifier test procedures for offset voltage, bias current, offset current, power supply rejection ratio, common mode rejection ratio, output voltage swing, output current, open loop gain, slew rate, full power bandwidth, transient response, settling time, GBP, phase margin, noise voltage and current, and channel seperation.
552	Using the HA-2542	Prototyping guidelines, thermal considerations and heat sinking, performance enhancements, applications (multi-channel security system, unbalanced coaxial driver, flash converter driver, programmable power supply, bridge load driver, high current stage, differential line driver, DC motor speed control).
553	Using the HA-5147/ 5137/5127	Construction and operation, low noise design applications (instrumentation amplifier bridge sensor, multiplexer, precision threshold detector, audio driver, NAB amplifier, multivibrator, programmable gain stage, log amp, professional mixer).
554	Low Noise Family HA-5101/5102/5104/ 5111/5112/5114	Low noise design, operation, applications (Electronic scales, programmable attentuator, Baxandal circuit, RIAA amplifier, NAB preamplifier, microphone amplifier, standard and simple biquads, professional mixer.
555	Ultra Low Bias Amplifier, HA-5180	Construction, layout hints, low noise design, applications (Sample and Hold, precision sample and hold, pH probe, light sensor, photo diode sensor, precision integrator, time, atomic particle counter circuit).
556	Thermal Safe-Operating-Areas for High Current Op Amps	Thermal management equations and curves indicating areas of VOUT and IOUT safe operation. Also, the effects of packaging and heat sinking are examined.
A007	Using the 8048/8049 Monolithic Log-Anti-Log Amplifier	Describes in detait the operation of the 8048 logarithmetic amplifier, and its counterpart, the 8049 anti-log amp.
A011	A Precision Four Quadrant Multiplier The 8013	Describes, in detail, the operation of the 8013 analog multiplier. Included are multiplication, division, and square root applications.
A013	Everything You Always Wanted to Know About the 8038	This note includes 17 of the most asked questions regarding the use of the 8038.
A027	Power Supply Design Using the ICL8211 and ICL8212	Explains the operation of the ICL8211/12 and describes various power supply configurations. Included are positive and negative voltage regulators, constant current source, programmable current source, current limiting, voltage crowbarring, power supply window detector, etc.
A051	Principles and Applications of the ICL7660 CMOS Voltage Converter	Describes internal operation of the ICL7660. Includes a wide range of possible applications.
A053	The ICL7650-A New Era in Glitch-Free Chopper Stabilizer Amplifiers	A brief discussion of the internal operation of the ICL7650, followed by an extensive applications section including amplifiers, comparators, log-amps, pre-amps, etc.

Application Note Abstracts (continued)

AN\#	title	ABSTRACTS
ICAN5015	СА3010	Discussion of internal operation and applications.
ICAN5213	CA3015	Discussion of internal operation and applications.
ICAN5269	FM Receivers	Discusses integrated circuits for FM broadcast receivers
ICAN5290	General Purpose Op Amps	Discusses various uses of op amps
ICAN5296	CA3018	Transistor Array
ICAN5337	CA3028	RF amplifiers in the HF and VHF ranges.
ICAN5380	FM IF Amplifiers	Discusses differential amplifier configurations.
ICAN5766	CA3020	Multipurpose wideband power amplifiers
ICAN6048	СА3094	Programmable power switch/amplifier.
ICAN6077	САЗ094	OTA with power capability.
ICAN6157	CA3085	Monolithic voltage regulators.
ICAN6182	СА3059	Zero-voltage switches.
ICAN6386	CA3130	Understanding BiMOS op amps.
ICAN6459	CA3130	Why and now to use üne DiiviÓ un ainilp.
ICAN6525	IC Handling	Guide to IC handling.
ICAN6668	CA3080	High performance OTA.
ICAN6669	CA3240	BiMOS op amp mates directly to sýstem sensors.
ICAN6732	Noise Measurement	Measurement of burst noise and "popcorn" noise in ICs.
ICAN6818	CA3280	OTA simplifies complex analog designs.
ICAN6915	CA1524	Pulse-width modulators.
ICAN7127	CA3420	BiMOS amplifier circumvents low voltage limitations.
ICAN7174	CA1524	Pulse-width modulator in an electronic scale.
ICAN7304	SCR Protection	Discusses SCR Protection Circuits for ICs.
ICAN8636	Video Devices	Discusses advanced video speed switches, multiplexers, crosspoints and buffer amplifiers.
ICAN8707	CA3450	Single chip video line driver-high speed op amp.
ICAN8811	CA5470	BiMOS-E process enhances quad op amp.
ICE-402	Operating Considerations	Discusses operating considerations for solid state devices.
MM2540		
MM5102	Spice Operational	Describes the macro-model for these HA-type op amps. Includes a schematic, the
MM5104	Amplifier	SPICE net listing, and simulation curves. Available in a kit which includes a diskette
$\begin{aligned} & \text { MM5112 } \\ & \text { MM5114 } \end{aligned}$	Macro-Models	compatible with SPICE and all application notes.
MM5190		

PACKAGING INFORMATION

PAGE

CA-TYPE PACKAGE CODES . 11-6
CA-TYPE PACKAGE OUTLINES
11-7
HA/HFA/HV-TYPE PACKAGE CODES . 11-12

ICL/ICM-TYPE PACKAGE CODES . 11-17
ICL/ICM-TYPE PACKAGE OUTLINES . 11-18

SOIC Packaging Information

Commercial Signal Processing Linear Products Offered in SOIC

This table is provided as a guide for selecting devices which are available in Small Outline Packages. Enhanced electrical grades of these devices are available, or planned, as standard offerings. Devices in development at the time of printing are included for
future consideration, and are denoted by an '*'. Please consult your nearest Harris Sales Office, Representative or Distributor for the most current information on packaging and availability.

LINEAR SOIC PRODUCT OFFERINGS

PRODUCT	DESCRIPTION	LEAD COUNT	BODY WIDTH (MILS)	OPERATING TEMPERATURE (${ }^{\circ} \mathrm{C}$)			
				0/+70	$-25 /+85$	-40/+85	$-55 /+125$
SINGLE OPERATIONAL AMPLIFIERS							
САЗ078	Micropower Bipolar	8	150	X	-	-	X
САЗ080	Transconductance Amplifier	8	150	X	-	-	X
CA3100	Broadband BiMOS	8	150	-	-	x	-
CA3130	General Purpose BiMOS	8	150	-	-	X	-
CA3140	General Purpose BiMOS	8	150	-	-	-	X
CA3260*	General Purpose BiMOS	8	150	-	-	-	X
CA3440*	Nano Power BiMOS	8	150	-	-	-	X
CA3450*	High Speed High Output	16	300	-	-	-	-
CA5130	General Purpose +5 V BiMOS	8	150	-	X	-	X
CA5130A*	General Purpose +5 V BiMOS	8	150	-	-	-	X
CA5160*	General Purpose +5V BiMOS	8	150	-	-	-	X
CA5420*	Low Bias +5V BiMOS	8	150	-	-	-	X
HA-2505*	General Purpose	8	150	X	-	X	-
HA-2515*	High Slew Rate	8	150	X	-	X	-
HA-2525*	High Slew Rate	8	150	X	-	X	-
HA-2529*	High Slew Rate High Output	8	150	X	-	x	-
HA-2539	Broadband High Slew Rate	14	150	X	-	x	-
HA-2540	Broadband Fast Settling	14	150	X	-	X	-
HA-2541*	Broadband Unity Gain	14	150	X	-	-	-
HA-2542 *	Broadband High Output	14	150	X	-	-	-
HA-2544	Video Unity Gain	8	150	X	-	X	-
HA-2548*	Precision High Speed	8	150	X	-	-	-
HA-2605	General Purpose	8	150	X	-	x	-
HA-2625	Broadband	8	150	X	-	X	-
HA-5004*	100 MHz Current Feedback	14	150	X	-	-	-
HA-5101	Low Noise Unity Gain	8	150	X	-	X	-
HA-5111	Low Noise Broadband	8	150	X	-	X	-
HA-5127*	Low Noise Precision	8	150	X	-	-	-
HA-5137 *	Low Noise Precision	8	150	X	-	-	-
HA-5141	Low Power Bipolar	8	150	X	-	X	-
HA-5147*	Precision Broadband	8	150	x	-	-	-
HA-5221*	Broadband Precision	8	150	X	-	x	-
HA-5195	Fast Settling Wideband	14	150	X	-	X	-
HFA-0001*	Ultra High Slew Rate	16	300	x	-	x	-
HFA-0002*	Ultra Wideband Low Noise	8	150	x	-	x	-
HFA-0005*	Ultra Wideband Unity Gain	8	150	x	-	X	-
ICL7611	Prog. Low Power CMOS	8	150	x	-	-	-
ICL7612	Prog. Low Power CMOS	8	150	x	-	-	-
ICL7650S*	Chopper-Stabilized	14	150	X	x	-	-
ICL7652S*	Chopper-Stab. Low Noise	14	150	x	X	-	-
ICL8021	Prog. Low Power Bipolar	8	150	X	-	-	-

[^71]
SOIC Packaging Information

LINEAR SOIC PRODUCT OFFERINGS（Continued）

PRODUCT	DESCRIPTION	LEAD COUNT	BODY WIDTH （MILS）	OPERATING TEMPERATURE（ ${ }^{\circ} \mathrm{C}$ ）			
				0／＋70	－25／＋85	－40／＋85	$-55 /+125$
DUAL OPERATIONAL AMPLIFIERS							
CA158	General Purpose	8	150	－	－	－	X
CA258	General Purpose	8	150	－	X	－	－
CA358	General Purpose	8	150	X	－	－	－
CA2904	General Purpose	8	150	－	－	X	－
CA3240＊	General Purpose BiMOS	16	300	－	X	－	－
CA3280	Transconductance Amplifier	20	300	X	－	－	X
CA5260	Generas Purpose＋5V BiMOS	8	150	－	－	－	X
HA－5102	Low Noise Unity Gain	16	300	X	－	X	－
HA－5112	Low Noise Broadband	16	300	X	－	X	－
HA－5142	Low Power Bipolar	16	300	X	－	X	－
HA－5クワク＊	Broadband Precision	16	300	X	－	X	－
ICL7621	Low Power CMOS	8	150	X	－	－	－
QUAD OPERATIONAL AMPLIFIERS							
CA124	General Purpose	14	150	－	－	－	X
CA224	General Purpose	14	150	－	－	X	－
CA324	General Purpose	14	150	X	－	－	－
CA5470	Broadband＋5V BiMOS	14	150	－	－	－	X
HA－4741	General Purpose	16	300	X	－	X	－
HA－5104	Low Noise Unity Gain	16	300	X	－	X	－
HA－5114	Low Noise Broadband	16	300	X	－	X	－
HA－5134＊	Precision Low Noise	16	300	x	－	－	－
HA－5144	Low Power Bipolar	16	300	X	－	X	－
LM2902	General Purpose	14	150	－	－	X	－
DIFFERENTIAL AMPLIFIERS							
CA3028	Differential／Cascode	8	150	－	－	－	X
САЗ053	Differential／Cascode	8	150	－	－	－	X
CA3102	Dual High Frequency	14	150	－	－	－	X
VIDEO BUFFER／CURRENT AMPLIFIERS							
HA－5002	High Slew Rate	8	150	X	－	X	－
HA－5033	Broadband High Slew Rate	8	150	X	－	X	－
COMPARATORS							
CA139	General Purpose	14	150	－	－	－	X
CA239	General Purpose	14	150	－	X	－	－
CA339	General Purpose	14	150	X	－	－	－
CA3290＊	Low Power BiMOS	14	150	－	－	－	X
HA－4905＊	130ns Bipolar Quad	16	300	X	－	－	－
LM2901	General Purpose	14	150	－	－	X	－
LM3302	General Purpose	14	150	－	－	X	－

[^72]
SOIC Packaging Information

LINEAR SOIC PRODUCT OFFERINGS (Continued)

PRODUCT	DESCRIPTION	LEAD COUNT	BODY WIDTH (MILS)	OPERATING TEMPERATURE (${ }^{\circ} \mathrm{C}$)			
				0/+70	$-25 /+85$	-40/+85	$-55 /+125$
SAMPLE \& HOLDS							
HA-2425*	$3.2 \mu \mathrm{~s}$ Monolithic S/H	14	150	X	-	-	-
HA-5320*	1.0ヶs Precision Monolithic	14	150	X	-	-	-
HA-5330*	$0.5 \mu \mathrm{~s}$ Precision Monolithic	14	150	X	-	-	-
HA-5340*	$0.7 \mu \mathrm{~s}$ Low Distortion Monolithic	14	150	X	-	X	-
ARRAYS							
CA3039	General Purpose Diode	14	150	-	-	-	X
САЗ046	General Purpose N-P-N Transistor	14	150	-	-	-	x
САЗ081	High Current N-P-N Transistor	16	300	-	-	-	X
САЗО82	High Current N-P-N Transistor	16	300	-	-	-	X
САЗ083	High Current N-P-N Transistor	16	300	-	-	-	X
САЗ086	General Purpose N-P-N Transistor	14	150	-	-	-	x
САЗ096	N-P-N/P-N-P Transistor	16	300	-	-	-	X
CA3127	High Frequency $\mathrm{N}-\mathrm{P}-\mathrm{N}$ Transistor	16	300	-	-	-	X
CA3146	High Voltage N-P-N Transistor	14	150	-	-	x	-
CA3183	High Voltage N-P-N Transistor	16	300	-	-	X	-
CA3227	High Frequency $\mathrm{N}-\mathrm{P}-\mathrm{N}$ Transistor	16	300	-	-	-	X
CA3246*	High Frequency N-P-N Transistor	14	150	-	-	X	-
POWER MANAGEMENT ICs							
САЗ094	Prog. Power Switch/Amplifier	8	150	-	-	-	X
ICL7660	CMOS Voltage Converter	8	150	X	-	-	-
ICL7660S	CMOS Voltage Converter	8	150	X	X	-	-
ICL7662*	CMOS High Voltage Converter	8	150	X	-	-	-
ICL7663S	CMOS Prog. Pos. Voltage Reg.	8	150	X	X	-	-
ICL7665S	CMOS Over/Under Voltage Det.	8	150	X	X	-	-
ICL7665SA *	CMOS Over/Under Voltage Det.	8	150	X	X	-	-
ICL7667	Dual Power MOS Driver	8	150	x	-	-	-
ICL7673	Battery Backup Switch	8	150	X	-	-	-
ICL8211	Programmable Voltage Detector	8	150	X	-	-	-
ICL8212	Programmable Voltage Detector	8	150	X	-	-	-
SPECIAL ANALOG FUNCTION ICs							
CA555	555 Timer	8	150	X	-	-	X
HA-2406	4 Channel Multiplexed Amplifier	16	300	x	-	x	-
HA-2546*	Wideband Analog Multiplier	16	300	X	-	X	-
ICM7555	CMOS General Purpose Timer	8	150	X	X	-	-
ICM7556 *	Dual ICM7555 Timer	14	150	-	X	-	-

* Product in Development, Lead Count and Body Dimensions may Change.

FOR PRODUCTS WITH PREFIX OF:	THE SOIC PACKAGE CODE IS:	THE TAPE AND REEL CODE IS:
'CA'	'M' Suffix	'M96' Suffix
'HA' or 'HFA'	' 9 ' Prefix	'-T' Suffix
'ICL' or 'ICM'	'B' Suffix	'-T' Suffix

CA-Type Packaging Information

Linear (CA Series)

Linear ICs are available in a wide variety of package designs. These packages are identified by suffix letters indicated in the chart below. When ordering Linear devices, it is important that the appropriate suffix letter be affixed to the type number as indicated on the price schedule.

PACKAGE	CA SERIES
Dual-In-Line Ceramic	D
Dual-In-Line Plastic	E
Frit-Seal Dual-In-Line Ceramic	F
Quad-In-Line Plastic	Q
Dual-In-Line Formed Lead TO-5	S
TO-5 Style Package	T
Small Outline (SO) Plastic	M

Extra Value Screening

Linear product with extra value screening has an X added to the standard type number in the price list, and is also branded as such. A white dot will indicate location of Pin 1.
Example:
A CA3080E with Extra Value screening is designated CA3080EX in the price list. It is branded CA3080EX plus a white dot at pin number 1 .

Tape \& Reel for Small-Outline Packages

With the introduction of small-outline packages, Harris now offers its customers the convenient tape and reel style packaging. Small-outline devices, which can be tape and reeled, are denoted with the suffix "M96" or "AM96" in the linear and high speed logic product lines. Devices must be ordered in multiples of quantities listed below. Any returns must be full and unopened reels.

LEAD COUNT	TAPE WIDTH IN mm	REEL SIZE INCHES	DEVICES PER REEL
8	12	13	2500
14	16	13	2500
16	16	13	2500
20	24	13	1000
24	24	13	1000

Package Outlines

Dual-In-Line Frit-Seal Ceramic Packages

NOTES:
Refer to Rules for Dimensioning (JEDEC Publication No. 95) for Axial Lead Product Outlines.

1. When this device is supplied solder-dipped, the maximum lead thickness (narrow portion) wili not exceed 0.013 in . $\mathbf{0 . 3 3}$ mm).
2. Leads within 0.005 In . $\mathbf{0 . 1 2 \mathrm { mm } \text {) radius of True Position (TP) }}$ at gauge plane with maximum material condition and unit Installed.
3. éa appiles in zone \mathbf{L}_{2} when unit installed.
4. a applles to spread leads prior to installation.
5. N is the maximum quantity of lead positions.
6. N_{1} ls the quantity of allowable missing leads.
(F) Suffix (JEDEC MO-001-AB)

14-Lead Dual-In-Line
Frit-Seal Ceramic Package

SYMBOL	INCHES		MILLIMETERS		NOTES
	MIN.	MAX.	MIN.	MAX.	
A	0.155	0.200	3.94	5.08	
A_{1}	0.020	0.050	0.51	1.27	
B	0.014	0.020	0.356	0.508	
B_{1}	0.050	0.065	1.27	1.65	
C	0.008	0.012	0.204	0.304	1
D	0.745	0.770	18.93	19.55	
E	0.300	0.325	7.62	8.25	
E_{1}	0.240	0.260	6.10	6.60	
e_{1}	0.100 TP		2.54 TP		2
$\mathbf{e}_{\mathbf{A}}$	0.300 TP		7.62 TP		2, 3
L	0.125	0.150	3.18	3.81	
L_{2}	0.000	0.030	0.00	0.76	
a	$0{ }^{\circ}$	15°	$0{ }^{\circ}$	15°	4
N	14		14		5
N_{1}	0		0		6
Q_{1}	0.040	0.075	1.02	1.90	
S	0.065	0.090	1.66	2.28	

(F) Suffix (JEDEC MO-001-AC)

16-Lead Dual-in-Line
Frit-Seal Ceramic Package

SYMBOL	INCHES		MILLIMETERS		NOTES
	MIN.	MAX.	MIN.	MAX.	
A	0.155	0.200	3.94	5.08	
A_{1}	0.020	0.050	0.51	1.27	
B	0.014	0.020	0.356	0.508	
B_{1}	0.035	0.065	0.89	1.65	
C	0.008	0.012	0.204	0.304	1
D	0.745	0.785	18.93	19.93	
E	0.300	0.325	7.62	8.25	
E_{1}	0.240	0.260	6.10	6.60	
e_{1}		TP		P	2
${ }^{\circ} \mathrm{A}$		TP			2, 3
L	0.125	0.150	3.18	3.81	
L_{2}	0.000	0.030	0.00	0.76	
a	$0{ }^{\circ}$	15°	0°	15°	4
N					5
N_{1}					6
Q_{1}	0.040	0.075	1.02	1.90	
s	0.015	0.060	0.39	1.52	

92CM-15967R4
(F) Suffix

18-Lead Dual-In-Line
Frit-Seal Ceramic Package

SYMBOL	INCHES		MILLIMETERS		NOTES
	MIN.	MAX.	MIN.	MAX.	
A	0.155	0.200	3.94	5.08	
A_{1}	0.020	0.050	0.508	1.27	
B	0.014	0.020	0.356	0.508	
B_{1}	0.035	0.065	0.89	1.65	
C	0.008	0.012	0.204	0.304	1
D	0.845	0.885	21.47	22.47	
E_{1}	0.240	0.260	6.10	6.60	
e_{1}	0.100 TP		2.54 TYP		2
e_{A}	0.300 TP		7.62 TYP		2, 3
L	0.125	0.150	3.18	3.81	
α		15°	0°	15°	4
N	18		18		5
N_{1}	0		0		6
S	0.015	0.060	0.39	1.52	

Package Outlines

Dual-In-Line Plastic Packages

(E) Suffix (JEDEC MS-001-AB)

8-Lead Dual-In-Line Plastic Package

SYMBOL	INCHES		MILLIMETERS		NOTES
	MIN.	MAX.	MIN.	MAX.	
A	-	0.210	-	5.33	9
A_{1}	0.015	-	0.39	-	9
A_{2}	0.115	0.195	2.93	4.95	
B	0.014	0.022	0.356	0.558	
B_{1}	0.045	0.070	1.15	1.77	3
C	0.008	0.015	0.204	0.381	
D	0.348	0.430	8.84	10.92	4
D_{1}	0.005	-	0.13	-	12
E	0.300	0.325	7.62	8.25	5
E_{1}	0.240	0.280	6.10	7.11	6, 7
e		BSC			8
${ }^{\mathbf{e}}{ }_{\text {A }}$		BSC			9
${ }^{\text {e }}$ B	-	0.430	-	10.92	10
L	0.115	0.160	2.93	4.06	9
N					11

92CS-39998
(E) Suffix (JEDEC MS-001-AC)

14-Lead Dual-In-Line Plastic Package

SYMBOL	INCHES		MILLIMETERS		NOTES
	MIN.	MAX.	MIN.	MAX.	
A	-	0.210	-	5.33	9
A_{1}	0.015	-	0.39	-	9
A_{2}	0.115	0.195	2.93	4.95	
B	0.014	0.022	0.356	0.558	
B_{1}	0.045	0.070	1.15	1.77	3
c	0.008	0.015	0.204	0.381	
D	0.725	0.795	18.42	20.19	4
D_{1}	0.005	-	0.13	-	12
E	0.300	0.325	7.62	8.25	5
E_{1}	0.240	0.280	6.10	7.11	6,7
e		BSC			8
${ }^{\text {e }}$ A		BSC			9
${ }^{\text {e }}$ B	-	0.430	-	10.92	10
L	0.115	0.160	2.93	4.06	9
N					11

(E) Suffix (JEDEC MS-001-AA)

16-Lead Dual-In-Line Plastic Package

SYMBOL	INCHES		MILLIMETERS		NOTES
	MIN.	MAX.	MIN.	MAX.	
A	-	0.210	-	5.33	9
A_{1}	0.015	-	0.39	-	9
A_{2}	0.115	0.195	2.93	4.95	
B	0.014	0.022	0.356	0.558	
B_{1}	0.045	0.070	1.15	1.77	3
C	0.008	0.015	0.204	0.381	
D	0.745	0.840	18.93	21.33	4
D_{1}	0.005	-	0.13	-	12
E	0.300	0.325	7.62	8.25	5
E_{1}	0.240	0.280	6.10	7.11	6,7
e		BSC			8
${ }^{\text {e }}$ A		BSC			9
${ }^{\text {e }}$ B	-	0.430	-	10.92	10
L	0.115	0.160	2.93	4.06	9
N	16		16		11

92CS-39900

Notes:

1. Refer to JEDEC Publicatlon No. 95 JEDEC Reglstered and Standard Outilines for Solid State Products, for rules and general Information concerning registered and standard outllnes, in Section 2.2.
2. Protrusions (flash) on the base plane surface shall not exceed 0.010 in . (0.25 mm).
3. The dimension shown is for full leads. "Half" leads are optional at lead positions

$$
1, N, \frac{N}{2} \frac{N}{2}+1
$$

4. Dimension D does not Include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.010 in . (0.25 mm).
5. E is the dimension to the outside of the leads and is measured with the leads perpendicular to the base plane (zero lead spread).
6. Dimension E_{1} does not include mold flash or protrusions.
7. Package body and leads shall be symmetrical around center line shown in end view.
8. Lead spacing e shall be non-cumulative and shall be measured at the lead tip. This measurement shall be made before insertion into gauges, boards or sockets.
9. This is a basic instalied dimension. Measurement shall be made with the device installed in the seating plane gauge (JEDEC Outline No. GS-3, seating plane gauge). Leads shall be in true position within 0.010 in . (0.25 mm) diameter for dimension eA.
10. eB is the dimension to the outside of the leads and is measured at the lead tips before the device is Installed. Negative lead spread is not permitted.
11. N is the maximum number of lead positions.
12. Dimension D_{1} at the left end of the package must equal dimension D_{1} at the right end of the package within 0.030 In. (0.76 mm).
13. Pointed or rounded lead tips are preferred to ease insertion.
14. For automatic insertion, any ralsed irregularity on the top surface (step, mesa, etc.) shall be symmetrical about the lateral and longitudinal package centerlines.

Package Outlines

Small-Outline (SO) Packages

(M) SUFFIX (JEDEC MS-012AA)

R-I ead Dual-In-Line
Surface-Mount Plastic Package

SYMBOL	INCHES		MILLIMETERS		NOTES
	MIN.	MAX.	MIN.	MAX.	
A	0.0532	0.0688	1.35	1.75	
A $_{1}$	0.0040	0.0098	0.10	0.25	
B	0.0138	0.0192	0.35	0.49	
C	0.0075	0.0098	0.19	0.25	
D	0.1890	0.1968	4.80	5.00	4
E	0.1497	0.1574	3.80	4.00	4
E	0.050	BSC	1.27		BSC
H	0.2284	0.2440	5.80	6.20	
h	0.0099	0.0196	0.25	0.50	5
L	0.016	0.050	0.40	1.27	6
N		8		8	7
\propto	0°	8	8°	0	8

Notes: 1, 2, 3, 8, 9
92CS-39432
(M) SUFFIX (JEDEC MS-012AC)

16-Lead Dual-In-Line
Surface-Mount Plastic Package

SYMBOL	INCHES		MILLIMETERS		NOTES
	MIN.	MAX.	MIN.	MAX.	
A	0.0532	0.0688	1.35	1.75	
A $_{1}$	0.0040	0.0098	0.10	0.25	
B	0.0138	0.0192	0.35	0.49	
C	0.0075	0.0098	0.19	0.25	
D	0.3859	0.3937	9.80	10.00	4
E	0.1497	0.1574	3.80	4.00	4
E	0.050 BSC	1.27		BSC	
H	0.2284	0.2440	5.80	6.20	
h	0.0099	0.0196	0.25	0.50	5
L	0.016	0.050	0.40	1.27	6
N		16		16	
\propto	0°	8	8°	0	8

Notes: 1, 2, 3, 8, 9
92CS-38925R1

NOTES:

1. Refer to applicable symbol list.
2. Dimensioning and lolerancing per ANSI Y14.5M-1982.
3. "T" is a reference datum.
4. "D" and "E" are reference datums and do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .15 mm (. 006 in .).
5. The chamfer on the body is optional. If it is not present, a visual index feature must be located within the cross hatched area.
6. " L " is the length of terminal for soldering to a substrate.
7. "N" is the number of terminal positions.
8. Terminal numbers are shown for reference only.
9. Controlling dimensions: MILLIMETERS.
(M) SUFFIX (JEDEC MS-012AB)

14-Lead Dual-In-Line
Surface-Mount Plastic Package

SYMBOL	INCHES		MILLIMETERS		NOTES
	MIN.	MAX.	MIN.	MAX.	
A	0.0532	0.0688	1.35	1.75	
A $_{1}$	0.0040	0.0098	0.10	0.25	
B	0.0138	0.0192	0.35	0.49	
C	0.0075	0.0098	0.19	0.25	
D	0.3367	0.3444	8.55	8.75	4
E	0.1497	0.1574	3.80	4.00	4
E	0.050 BSC	1.27 BSC			
H	0.2284	0.2440	5.80	6.20	
h	0.0099	0.0196	0.25	0.50	5
L	0.016	0.050	0.40	1.27	6
N		14		14	7
\propto	0°	8	8	0°	8°

Notes: 1, 2, 3, 8, 9
92CS-38924R1
(M) SUFFIX (JEDEC MS-013AA)

16-Lead Dual-In-Line
Surface-Mount Plastic Package

SYMBOL	INCHES		MILLIMETERS		NOTES
	MIN.	MAX.	MIN.	MAX.	
A	0.0926	0.1043	2.35	2.65	
A $_{1}$	0.0040	0.0118	0.10	0.30	
B	0.0138	0.0192	0.35	0.49	
C	0.0091	0.0125	0.23	0.32	
D	0.3977	0.4133	10.10	10.50	4
E	0.2914	0.2992	7.40	7.60	4
e	0.050 BSC	1.27		BSC	
H	0.394	0.419	10.00	10.65	
h	0.010	0.029	0.25	0.75	5
L	0.016	0.050	0.40	1.27	6
N		16		16	7
\propto	0°	8	8°	0	8

Notes: 1, 2, 3, 8, 9
92CS-39433

Package Outlines

TO-5 Style Packages

NOTES:
Refer to Rules for Dimensloning (JEDEC Publlcation No. 95) for Axial Lead Product Outlines.

1. Leads at gauge plane within 0.007 In . $\mathbf{(0 . 1 7 8 \mathrm { mm })}$ radius of True Position (TP) at maximum material condition.
2. ϕB applies between L_{1} and $L_{2} . \phi B_{2}$ applies between L_{2} and 0.500 in . (12.70 mm) from seating plane. Dlameter is uncontrolled in L_{1} and beyond 0.500 in . (12.70 mm).
3. Measure from Max. ϕ D.
4. N_{1} is the quantly of allowable missing leads.
5. N is the maximum quantity of lead positions.
(T) Suffix (JEDEC MO-006-AF) 10-Lead TO-5 Style

SYMBOL	INCHES		MILLIMETERS		NOTES
	MIN.	MAX.	MIN.	MAX.	
a	0.230 TP		5.84 TP		2
A_{1}	0	0	0	0	
A_{2}	0.165	0.185	4.19	4.70	
ϕ_{B}	0.016	0.019	0.407	0.482	3
$\phi \mathrm{B}_{1}$	0	0	0	0	
$\phi \mathrm{B}_{2}$	0.016	0.021	0.407	0.533	3
$\phi \mathrm{D}$	0.335	0.370	8.51	9.39	
$\phi \mathrm{D}_{1}$	0.305	0.335	7.75	8.50	
F_{1}	0.020	0.040	0.51	1.01	
J	0.028	0.034	0.712	0.863	
k	0.029	0.045	0.74	1.14	4
L_{1}	0.000	0.050	0.00	1.27	3
L_{2}	0.250	0.500	6.4	12.7	3
L_{3}	0.500	0.562	12.7	14.27	3
α					
N					6
N_{1}					5

(T) Suffix (JEDEC MO-002-AL) 8-Lead TO-5 Style

SYMBOL	INCHES		MILLIMETERS		NOTES
	MIN.	MAX.	MIN.	MAX.	
a	0.200 TP		5.88 TP		2
A_{1}	0.010	0.050	0.26	1.27	
A_{2}	0.165	0.185	4.20	4.69	
ϕ_{B}	0.016	0.019	0.407	0.482	3
$\phi \mathrm{B}_{1}$	0.125	0.160	3.18	4.06	
$\phi \mathrm{B}_{2}$	0.016	0.021	0.407	0.482	3
$\phi \mathrm{D}$	0.335	0.370	8.51	9.39	
$\phi \mathrm{D}_{1}$	0.305	0.335	7.75	8.50	
F_{1}	0.020	0.040	0.51	1.01	
J	0.028	0.034	0.712	0.863	
k	0.029	0.045	0.74	1.14	4
L_{1}	0.000	0.050	0.00	1.27	3
L_{2}	0.250	0.500	6.4	12.7	3
L_{3}	0.500	0.562	12.7	14.27	3
a					
N					6
N_{1}					5

(T) Suffix (JEDEC MO-006-AG) 12-Lead TO-5 Style

SYMBOL	INCHES		MILLIMETERS		NOTES
	MIN.	MAX.	MIN.	MAX.	
a	0.230 TP		5.84 TP		2
A_{1}	0	0	0	0	
A_{2}	0.165	0.185	4.19	4.70	
ϕ_{B}	0.016	0.019	0.407	0.482	3
$\phi \mathrm{B}_{1}$	0	0	0	0	
$\phi \mathrm{B}_{2}$	0.016	0.021	0.407	0.533	3
$\phi \mathrm{D}$	0.335	0.370	8.51	9.39	
$\phi \mathrm{D}_{1}$	0.305	0.335	7.75	8.50	
F_{1}	0.020	0.040	0.51	1.01	
J	0.028	0.034	0.712	0.863	
k	0.029	0.045	0.74	1.14	4
L_{1}	0.000	0.050	0.00	1.27	3
L_{2}	0.250	0.500	6.4	12.7	3
L_{3}	0.500	0.562	12.7	14.27	3
α					
N					6
N_{1}					5

Package Outlines

(S) Suffix

8-Lead TO-5 Style with Dual-In-Line Formed Leads (DILCAN)

HA/HFA/HV-Type Packaging Information

Package Outlines

$\begin{aligned} & \text { PKG } \\ & \text { CODE } \end{aligned}$	LEAD COUNT	$\underset{A}{\text { DIM }}$	$\underset{\text { A1 }}{\text { DIM }}$	$\underset{\text { B }}{\substack{\text { M } \\ \hline}}$	$\begin{gathered} \text { DIM } \\ \text { B1 } \end{gathered}$	$\underset{\mathrm{DIM}}{\mathrm{C}}$	$\begin{gathered} \text { DIM } \\ \text { D } \end{gathered}$	$\underset{\mathrm{EIM}}{\mathrm{DIM}}$	$\underset{\text { DIM }}{\substack{\text { DIM } \\ \hline}}$	$\underset{e}{\text { DIM }}$	$\underset{\mathrm{L} \text { DIM }}{\text { Din }}$	$\begin{gathered} \text { DIM } \\ \text { L1 } \end{gathered}$	$\begin{gathered} \text { DIM } \\ \mathbf{S} \end{gathered}$	$\begin{gathered} \text { DIM } \\ \text { S1 } \end{gathered}$	$\begin{gathered} \text { DIM } \\ 0 \end{gathered}$	$\begin{gathered} \text { DIM } \\ \alpha \end{gathered}$
1-	$\begin{gathered} 8 \\ \text { SSI } \end{gathered}$	$\frac{-}{.200}$	$\frac{.140}{.160}$	$\frac{.016}{.023}$	$\frac{.050}{.065}$	$\frac{.008}{.015}$	$\frac{.375}{.395}$	$\frac{.245}{.265}$	$\frac{.290}{.310}$	$\frac{.100}{\text { BSC }}$	$\frac{.125}{.150}$	$\frac{.150}{-}$	$\frac{-}{.055}$. 005	$\frac{.015}{.060}$	$\frac{0^{\circ}}{15^{\circ}}$
$1-$	$\begin{gathered} 14 \\ \text { MSI } \end{gathered}$	$\frac{-}{.200}$	$\frac{.140}{.170}$	$\frac{.016}{.023}$	$\frac{.050}{.065}$	$\frac{.008}{.015}$	$\frac{.753}{}$. 265	$\frac{.290}{.310}$	$\frac{.100}{\text { BSC }}$	$\frac{.125}{.180}$	$\underline{.150}$	$\stackrel{-}{.098}$	$\frac{.005}{-}$	$\frac{.015}{.060}$	$\frac{0^{\circ}}{150}$
1-	$\begin{gathered} 14 \\ i \end{gathered}$	$\frac{-}{.200}$	$\frac{.140}{.75}$	$\frac{.016}{.023}$. 050	$\frac{.008}{0.5}$	$\frac{.753}{795}$	$\frac{.285}{.305}$	$\frac{.300}{320}$	$\frac{.100}{\text { BSC }}$	$\frac{.125}{18 n}$	$\xrightarrow{.150}$	$\frac{-}{\text { nas }}$	$\frac{.005}{-}$	$\frac{.015}{060}$	$\frac{0^{\circ}}{150}$
1-	$\begin{aligned} & 16^{*} \\ & \text { MSI } \end{aligned}$	$\frac{-}{.200}$	$\frac{.140}{.170}$	$\frac{.016}{.023}$. 0.050^{*}	$\frac{.008}{.015}$	$\frac{.753}{785}$	$\frac{.265}{.285}$	$\frac{.290}{.310}$	$\frac{.100}{\text { BSC }}$	$\frac{.125}{.180}$. 150	$\frac{-}{.080}$	$\underline{.005}$	$\frac{.015}{.060}$	$\frac{00}{15^{\circ}}$
1-	$\begin{aligned} & \text { 16* } \\ & \text { LSI } \end{aligned}$	$\frac{-}{.200}$	$\frac{.140}{170}$	$\frac{.016}{} .023$. 0.060^{*}	$\frac{.008}{.015}$	$\frac{.753}{785}$	$\frac{.285}{.305}$	$\frac{.300}{320}$	$\frac{.100}{\text { BSC }}$	$\frac{.125}{.180}$	$\frac{.150}{-}$	$\frac{-}{.080}$. 005	$\frac{.015}{.060}$	$\frac{0^{\circ}}{150}$

*End leads are half leads where B remains the same and B1 is $\frac{0.035}{0.045}$
**Solder dip finish add +0.003 inches

1- .300 SIDEBRAZE DUAL-IN-LINE

PKG CODE	LEAD COUNT	$\underset{\text { A }}{\text { DIM }}$	$\begin{gathered} \text { DIM } \\ \text { A1 } \end{gathered}$	$\begin{gathered} \text { DIM } \\ \text { B } \end{gathered}$	$\begin{gathered} \text { DIM } \\ \text { B1 } \end{gathered}$	$\begin{gathered} \text { DIM } \\ \text { C } \end{gathered}$	$\begin{gathered} \text { DIM } \\ \text { D } \end{gathered}$	$\underset{E}{\text { DIM }}$	DIM E1	$\begin{gathered} \text { DIM } \\ e \end{gathered}$	$\underset{L}{\text { DIM }}$	$\begin{gathered} \text { DIM } \\ \text { L1 } \end{gathered}$	$\begin{gathered} \text { DIM } \\ \mathbf{S} \end{gathered}$	$\begin{gathered} \text { DIM } \\ \text { S1 } \end{gathered}$	$\begin{gathered} \text { DIM } \\ \mathbf{Q} \end{gathered}$
1-	8	$\underline{.101}$	-	. 016	. 040	. 008	. 380	. 280	. 290	. 100	. 125	. 150	. 015	-	. 005
	LSI	. 150	-	. 023	. 060	. 015	. 400	. 300	. 310	BSC	180	-	. 060	. 055	-
1-	14	. 101	$-$. 016	. 040	. 008	. 738	. 280	. 290	. 100	. 125	. 150	$\underline{.015}$	-	. 005
	LSI	. 150	-	. 023	. 060	. 015	. 758	. 300	. 310	BSC	. 180	-	. 060	. 098	-

Package Outlines

$3-$.300 PLASTIC DUAL-IN-LINE

$\begin{aligned} & \text { PKG } \\ & \text { CODE } \end{aligned}$	LEAD COUNT	$\begin{gathered} \text { DIM } \\ \text { A1 } \end{gathered}$	$\begin{gathered} \text { DIM } \\ \text { B } \end{gathered}$	$\begin{gathered} \text { DIM } \\ \text { B1 } \end{gathered}$	$\begin{gathered} \text { DIM } \\ \text { C } \end{gathered}$	$\underset{\text { D }}{\text { DIM }}$	$\underset{\mathrm{E}}{\mathrm{DIM}}$	$\begin{aligned} & \text { DIM } \\ & \text { E1 } \end{aligned}$	$\underset{e}{\text { DIM }}$	$\begin{gathered} \text { DIM } \\ L \end{gathered}$	$\begin{gathered} \text { DIM } \\ \mathbf{S} \end{gathered}$	DIM $\mathbf{0}$	$\begin{gathered} \text { DIM } \\ \alpha \end{gathered}$
$3-$	8	. 125	. 016	. 050	. 008	. 370	. 245	. 290	. 090	. 110	. 030	. 020	0^{0}
		. 140	. 023	. 070	. 015	. 390	. 265	. 310	. 110	. 150	. 050	. 040	15°
$3-$	14	. 125	. 016	. 050	. 008	. 750	. 245	. 290	. 090	. 110	. 030	. 020	0°
		. 140	. 023	. 070	. 015	. 770	. 265	. 310	. 110	. 150	. 050	. 040	15°
$3-$	16*	. 125	. 016	. 050	. 008	. 750	. 245	. 290	. 090	. 110	. 025	. 020	00
		. 140	. 023	. 070	. 015	. 770	. 265	. 310	. 110	. 150	. 035	. 040	150

*End leads are half leads where B remains the same and B1 is $\frac{0.035}{0.045}$
**Soider dip finish add +0.003 inches

2- TO-99 METAL CAN

PKG CODE	LEAD COUNT	DIM \mathbf{A}	DIM ϕ B	DIM $\phi \mathrm{D}$	DIM \boldsymbol{e}	DIM \mathbf{F}	DIM K	DIM K1	DIM \mathbf{L}	DIM \mathbf{Q}
$2-$	8 TO-99	$\frac{.165}{.185}$	$\frac{.016}{.018}$	$\frac{.345}{.365}$	$\frac{.190}{.210}$	$\frac{.020}{.040}$	$\frac{.028}{.034}$	$\frac{.028}{.040}$	$\frac{.505}{.550}$	$\frac{.015}{.040}$

*Solder dip finish add +0.003 inches

Package Outlines

2- TO-8 METAL CAN

PKG CODE	LEAD COUNT	DIM \mathbf{A}	DIM $\phi \mathrm{B}$	DIM $\phi \mathrm{D}$	DIM \mathbf{e}	DIM \mathbf{F}	DIM K	DIM K1	DIM \mathbf{L}	DIM \mathbf{Q}
$2-$	12	$\frac{.130}{120}$	$\frac{.016}{.021}$	$\frac{.585}{.615}$	$\frac{.400}{\text { BSC }}$	$\frac{.100}{\text { BSC }}$	$\frac{.020}{.040}$	$\frac{.027}{.034}$	$\frac{.027}{.045}$	$\frac{.500}{.550}$

4P PLASTIC LEADED CHIP CARRIER

PKG CODE	LEAD COUNT	DIM \mathbf{A}	DIM B	DIM B1	DIM D/E	DIM D1/E1	DIM e	DIM \mathbf{Q}
$4 P$	20	$\frac{.165}{.180}$	$\frac{.013}{.021}$	$\frac{.026}{.032}$	$\frac{.385}{.395}$	$\frac{.350}{.356}$	$\frac{.050}{\text { BSC }}$	$\frac{.020}{-}$

Package Outlines

9P Small-Outline (SO) Packages

JEDEC MS-012AA
8-Lead Dual-In-Line
Surface-Mount Plastic Package

SYMBOL	INCHES		MILLIMETERS		NOTES
	MIN.	MAX.	MIN.	MAX.	
A	0.0532	0.0688	1.35	1.75	
A_{1}	0.0040	0.0098	0.10	0.25	
B	0.0138	0.0192	0.35	0.49	
C	0.0075	0.0098	0.19	0.25	
D	0.1890	0.1968	4.80	5.00	4
E	0.1497	0.1574	3.80	4.00	4
e	0.050 BSC		1.27 BSC		
H	0.2284	0.2440	5.80	6.20	
h	0.0099	0.0196	0.25	0.50	5
L	0.016	0.050	0.40	1.27	6
$\begin{aligned} & \mathrm{N} \\ & \alpha \end{aligned}$	8		0°	8°	7

Notes: 1, 2, 3, 8, 9
92CS-39432

JEDEC MS-012AC

16-Lead Dual-In-Line, Narrow Body
Surface-Mount Plastic Package

SYMBOL	INCHES		MILLIMETERS		NOTES
	MIN.	MAX.	MIN.	MAX.	
A	0.0532	0.0688	1.35	1.75	
A_{1}	0.0040	0.0098	0.10	0.25	
B	0.0138	0.0192	0.35	0.49	
C	0.0075	0.0098	0.19	0.25	
D	0.3859	0.3937	9.80	10.00	4
E	0.1497	0.1574	3.80	4.00	4
e	0.050 BSC		1.27 BSC		
H	0.2284	0.2440	5.80	6.20	
h	0.0099	0.0196	0.25	0.50	5
L-	0.016	0.050	0.40	1.27	6
N	16		16		7
\propto	0°	8°	0°	8°	

Notes: 1, 2, 3, 8, 9
92CS-38925R1

NOTES:

1. Refer to applicable symbol list.
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
3. " T " is a reference datum.
4. "D" and "E" are reference datums and do not include mold flash or protrusions. Mold fiash or protrusions shall not exceed .15 mm (. 006 in .).
5. The chamfer on the body is optional. It it is not present, a visual index feature must be located within the cross hatched area.
6. " L " is the length of terminal for soldering to a substrate.
7. "N" is the number of terminal positions.
8. Terminal numbers are shown for reference only.
9. Controlling dimensions: MILLIMETERS.

JEDEC MS-012AB
14-Lead Dual-In-Line
Surface-Mount Plastic Package

SYMBOL	INCHES		MILLIMETERS		NOTES
	MIN.	MAX.	MIN.	MAX.	
A	0.0532	0.0688	1.35	1.75	
A $_{1}$	0.0040	0.0098	0.10	0.25	
B	0.0138	0.0192	0.35	0.49	
C	0.0075	0.0098	0.19	0.25	
D	0.3367	0.3444	8.55	8.75	4
E	0.1497	0.1574	3.80	4.00	4
E	0.050 BSC	1.27. BSC			
H	0.2284	0.2440	5.80	6.20	
h	0.0099	0.0196	0.25	0.50	5
L	0.016	0.050	0.40	1.27	6
N		14		14	7
\propto	0	0°	8°		

Notes: 1, 2, 3, 8, 9
92CS-38924R1

JEDEC MS-013AA
16-Lead Dual-In-Line, Wide Body Surface-Mount Plastlc Package

SYMBOL	INCHES		MILLIMETERS		NOTES
	MIN.	MAX.	MIN.	MAX.	
A	0.0926	0.1043	2.35	2.65	
A_{1}	0.0040	0.0118	0.10	0.30	
B	0.0138	0.0192	0.35	0.49	
C	0.0091	0.0125	0.23	0.32	
D	0.3977	0.4133	10.10	10.50	4
E	0.2914	0.2992	7.40	7.60	4
e	0.050 BSC		1.27 BSC		
H	0.394	0.419	10.00	10.65	
h	0.010	0.029	0.25	0.75	5
L	0.016	0.050	0.40	1.27	6
N	16		16		7
\propto	0°	8°	0°	8°	

Notes: 1, 2, 3, 8, 9 92CS-39433

ICL/ICM-Type Packaging Information

Ordering Information

Device Family Prefixes

PREFIX	DEVICE FAMILY
ICL	Linear IC
ICM	Microperipheral IC
LM	National Semiconductor Alternate Source

Temperature Range Designators

SUFFIX	TEMPERATURE RANGE
C	Commercial: $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
1	Industrial: Either $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ or $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Specified on Datasheet)
M	Military: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Package Type Designators

surrix	FACíAGE
B	Small Outline IC (SOIC)
J	Ceramic Dual-In-Line
P	Plastic Dual-In-Line
T	TO-99, TO-100

Pin Count Designator

SUFFIX	PIN COUNT	DIAMETER
A	8	
B	10	
C	12	
D	14	
E	16	
V	8	$(0.200 "$ pin circle, isolated case $)$
W	10	$(0.230 "$ pin circle, isolated case $)$
X	10	$(0.230 "$ pin circle, case to pin 5$)$
Y	8	$(0.200 "$ pin circle, case to pin 4$)$
Z	8	$(0.230 "$ pin circle, case to pin 5$)$

Part Numbering System

All Intersil Part Numbers consist of a Device Family Prefix, a Basic Numeric Part Number, and an Option Suffix, as follows:

1,2OR 3 DIGIT PREFIX	3, 4 OR 5 DIGIT UNIQUEDEVICE NUMBER	3OR 4 DIGITOPTION SUFFIX

Package Outlines

All dimensions given in $\frac{\text { inches }}{\text { (millimeters) }}$

Package Outlines

[^73]
Package Outlines

Package Outlines

PD

 14 LEAD PLASTIC DUAL-IN-LINE

Package Outlines

SALES OFFICE INFORMATION

A complete and current listing of all Harris Sales, Representative and Distributor locations worldwide is available. Please order the "Harris Sales Listing" from the Literature Center (see page i).

HARRIS COUNTRY HEADQUARTERS LOCATIONS:
U.S. HEADQUARTERS

Harris Semiconductor 1301 Woody Burke Road
Melbourne, Florida 32902
TEL: (407) 724-3000

SOUTH ASIA

Harris Semiconductor H.K. Ltd
13/F Fourseas Building
208-212 Nathan Road
Tsimshatsui, Kowloon
Hong Kong
TEL: (852) 3-723-6339

EUROPEAN HEADQUARTERS
Harris Semiconductor
Mercure Centre
Rue de la Fusse 100
Brussels, Belgium 1130
TEL: (32) 2-246-2111

NORTH ASIA
Harris K.K.
Shinjuku NS Bldg. Box 6153
2-4-1 Nishi-Shinjuku
Shinjuku-Ku, Tokyo 163 Japan
TEL: 81-3-345-8911

HARRIS TECHNICAL ASSISTANCE AVAILABILITY:

We're Backing You Up With Products, Support, And Solutions!

ASICs

- Full-Custom
- Semicustom
- Gate Arrays
- Standard Cell
- Analog
- Mixed Signal
- ASIC Design Systems

Digital

- CMOS Microprocessors and Peripherals
- CMOS Microcontrollers
- CMOS Logic
- CMOS Memories

Power Products

- Power MOSFETs
- IGBTs
- Bipolar Discretes
- Transient Voltage Suppressors
- Opto Devices
- Power Rectifiers

Microwave

- GaAs FETs
- GaAs MMICs
- Foundry Services

Military/Aerospace Products

- Microprocessors and Peripherals
- Memories
- Analog ICs
- Digital ICs
- Discrete Power
- Bipolar
- MOSFET
- Rad-Hard ICs

Military/Aerospace Programs

- COMSEC Programs
- Strategic and Space Programs
- Military ASIC Programs

Signal Processing

- Linear
- Custom Linear
- Data Conversion
- Interface
- Analog Switches
- Multiplexers
- Filters
- DSP
- Telecom

Intelligent Power

- Power ICs
- Power ASICs
- Hybrid Programmable Switches
- Intelligent Power Modules
- Full-Custom High Voltage ICs

[^0]: 2. Electrical equivalency; denoted by the following: $I=$ Identical, $F E=$ Functional Equivalent,
 $E=$ Enhanced Harris product meets all competitor specifications and exceeds several.
[^1]: NOTES: 1. A "*" in this column indicates that primary pins are pin-to-pin, but secondary or optional function pins are not.
 2. Electrical equivalency; denoted by the following: I = Identical, $F E=$ Functional Equivalent, $E=$ Enhanced Harris product meets all competitor specifications and exceeds several.

[^2]: 2. Electrical equivalency; denoted by the following: $\mathrm{I}=$ Identical, $\mathrm{FE}=$ Functional Equivalent,

 E $=$ Enhanced Harris product meets all competitor specifications and exceeds several.

[^3]: *See Packaging Section

[^4]: *See Packaging Section

[^5]: Output frequency at each output transistor is half OSC frequency when each output is used separately and is equal to the OSC frequency

[^6]: \neq Required voltage change at Term. 13 to either turn OFF the triac when ON or turn ON the triac when OFF.

 * Pulse duration in 50 Hz applications is approximately 15% longer than shown in Fig. 8(b).
 - The values given in the Electrical Characteristics Chart at 120 V also apply for operation at input voltages of 208/230 V, and 277 V, except for Pulse Duration. However, the series resistor (RS) must have the indicated value, shown in the chart in Fig. 1, for the specified input voltage.

[^7]: CAUTION: This Product Does Not Provide Isolation From the AC Line

[^8]: HARRIS SEMICONDUCTOR'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^9]: HARRIS SEMICONDUCTOR'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

 302166-002

[^10]: HARRIS SEMICONDUCTOR'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHAL亡 BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^11]: harris semiconductor's sole and exclusive warranty obligation with respect to this product shall be that stated in the warranty article of the CONDItion of sale. The warranty shall be exclusive and shall be in lieu of all other warranties, express, implied or statutory, including the implied WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^12]: harris semiconductor's sole and exclusive warranty obligation with respect to this product shall be that stated in the warranty article of the CONDITION OF SALE. THE WARRANTY SHALL be EXCLuSive and SHALL be in lieu of all other warranties, express, impled or statutory, including the impled WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.
 NOTE: All typical values have been characterized but are not tested.

[^13]: *Technical Data on LM Branded types is identical to the corresponding CA Branded types.

[^14]: *Technical Data on L.M Branded types is identical to the corresponding CA Branded types.

[^15]: *Technical Data on LM Branded types is identical to the corresponding CA Branded types.

[^16]: $D C$ Supply Voltage (between V^{+}and V^{-}terminals):
 CA741C, CA747C^, CA748C, CA1458. 36 V
 CA741, CA7474, CA748, CA1558. 44 V
 Differential Input Voltage . $\pm 30 \mathrm{~V}$
 DC Input Voltage* . ± 15 V
 Output Short-Circuit Duration . Indefinite
 Device Dissipation:
 Up to $70^{\circ} \mathrm{C}$ (CA741C, CA748C) 500 mW
 Up to $75^{\circ} \mathrm{C}$ (CA741, CA748) 500 mW
 Up to $30^{\circ} \mathrm{C}(\mathrm{CA} 747)$. 800 mW
 Up to $25^{\circ} \mathrm{C}(\mathrm{CA} 747 \mathrm{C})$. 800 mW
 Up to $30^{\circ} \mathrm{C}$ (CA1558) . 680 mW
 Up to $25^{\circ} \mathrm{C}$ (CA1458) . 680 mW
 For Temperatures Indicated Above Derate linearly $6.67 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

 Ambient Temperature Range:
 Operating - CA741, CA747E, CA748, CA1558.
 -55 to $+125^{\circ} \mathrm{C}$
 CA741C, CA747C, CA748C, CA1458. 0 to $+70^{\circ} \mathrm{C}^{\dagger}$
 Storage
 -65 to $+150^{\circ} \mathrm{C}$

 Lead Temperature (During Soldering):
 At distance $1 / 16 \pm 1 / 32$ inch $(1.59 \pm 0.79 \mathrm{~mm})$ from case for 10 seconds max.
 $265{ }^{\circ} \mathrm{C}$

 * If Supply Voltage is less than ± 15 volts, the Absolute Maximum input Voltage is equal to the Supply Voltage
 - Voltage values apply for each of the dual operational amplifiers.
 \dagger All types in any package style can be operated over the temperature range of -55 to $+125^{\circ} \mathrm{C}$, although the published limits for certain electrical specifications apply only over the temperature range of 0 to $+70^{\circ} \mathrm{C}$.

[^17]: * Refer to Figs. 8 through 12 for Measurement and Symbol Information.

[^18]: Fig. 38 - 12-watt amplifier circuit featuring true complementary-symmetry output stage with CA3094 in driver stage.

[^19]: *". Digital-to-Analog Conversion Using the RCA-CD4007A COS/MOS IC', Application Note ICAN-6080.

[^20]: * Short circuit may be applied to ground or to either supply.

[^21]: * ICAN-6668 "Applications of the CA3080 and CA3080A High-Performance Operational Transconductance Amplifiers".

[^22]: - "Operational Amplifiers Design and Applications", J. G. Graeme, McGraw-Hill Book Company, page 308 - ''Negative Immittance Converter Circuits"'.

[^23]: * "Digital-to-Analog Conversion Using the RCACD4007A COS/MOS $1 C^{\prime \prime}$, Application Note ICAN-6080.

[^24]: * AT 220 V OPERATION, triac ShOULD BE T23000,
 RS $=18 \mathrm{~K}, 5 \mathrm{w}$

[^25]: *"OTA Obsoletes Op Amp," by C.F. Wheatley and H.A. Wittlinger, NEC Proceedings, December, 1969.

[^26]: *Short circuit may be applied to ground or to either supply

[^27]: *Formerly Dev. Type No. TA10590.

[^28]: Copyright © Harris Corporation 1990

[^29]: *"Digital-to-Analog Conversion Using the RCA-CD4007A CMOS IC", Application Note ICAN-6080.

[^30]: *"Digital-to-Analog Conversion Using the RCA-CD4007A CMOS IC", Application Note ICAN-6080.

[^31]: -The maximum limit represents the levels ohtainable on high-speed automatic test equipment.
 Typical values are obtained under laboratory conditions.

[^32]: *Formerly Dev. No. TA5807X and TA6029 respectively.

[^33]: - If Supply Voltage is less than ± 15 volts, the Absolute Maximum Input Voltage is equal to the Supply Voltage
 - Short circuit may be applied to ground or to either supply.

[^34]: 10. This parameter value is based on design calculations.
 11. Full Power Bandwidth guaranteed based on slew rate measurement using: FPBW $=$ S.R./2rVpeak.
 12. $\mathrm{V}_{\mathrm{OUT}}= \pm 5 \mathrm{~V}$.
[^35]: CAUTION:These devices are sensitive to electronic discharge. Proper IC handling procedures should be followed.

[^36]: CAUTION: These devices are sensitive to electrostatic discharge. Proper I.C. handling procedures should be followed.

[^37]: CAUTION: These devices are sensitive to electrostatic discharge. Proper IC handling procedures should be followed.

[^38]: CAUTION: These devices are sensitive to electrostatic discharge. Proper I.C. handing procedures should be followed.

[^39]: *The substrate may be left floating (Insulating Die Mount) or it may be

[^40]: CAUTION: These devices are sensitive to electrostatic discharge. Proper I.C. handling procedures should be followed.

[^41]: Tested Offset Adjustment is $\left|\mathrm{V}_{\mathrm{OS}}+1 \mathrm{mV}\right|$ minimum referred to output. Typical range is $\pm 10 \mathrm{mV}$ with $\mathrm{R}_{\mathrm{T}}=100 \mathrm{k} \Omega$.

[^42]: CAUTION: These devices are sensitive to electrostatic discharge. Proper I.C. handling procedures should be followed.

[^43]: *HA-5101 No Connect

[^44]: CAUTION: These devices are sensitive to electrostatic discharge. Proper I.C. handling procedures should be followed.

[^45]: 1. Absolute maximum ratings are limiting values, applied individually, beyond which the serviceability of the circuit may be impaired. Functional operability under any of these conditions is not necessarily implied.
 2. For differential input voltages greater than 0.7 V , the input current must be limited to 25 mA to protect the back-to-back input diodes.
 3. This parameter value is based upon design calculations.
 4. Refer to Typical Performance section of the data sheet.
 5. Sample tested.
 6. $\mathrm{V}_{\mathrm{OUT}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{~K} \Omega$
[^46]: harris semiconductor's sole and exclusive warranty obligation with respect to this product shall be that stated in the warranty article of the CONDITION OF SALE THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE \mathbb{N} LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^47]: HARRIS SEMICONDUCTOR'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

 NOTE: All typical values have been characterized but are not tested.

[^48]: NOTE 1: Not tested; guaranteed by design and process.

[^49]: HARRIS SEMICONDUCTOR, 2450 Walsh Avenue, Santa Clara, Ca. 95051
 Printed in U.S.A. © Copyright 1990, Harris Corporation, All Rights Reserved
 HARRIS SEMICONDUCTOR'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^50]: *Technical Data on LM Branded types is identical to the corresponding CA Branded types

[^51]: * Inputs must not go more negative than -0.3 V .
 ${ }^{\text {A }}$ Short circuits from the output to V^{+}can cause excessive heating and eventual destruction. The maximum output current independent of V^{+}is approximately 20 mA .

[^52]: * See Packaging Section

[^53]: * $\pm 15 \mathrm{~V}$ and $\pm 12 \mathrm{~V}$ supplies trace the same line within the width of the line, therefore only one line is shown.

[^54]: * Does not apply to CA3053

[^55]: Copyright © Harris Corporation 1990

[^56]: *The collector of each transistor in the CA3086 is isolated from the substrate by an integral diode. The substrate (terminal 13) must be connected to the most negative point in the external circuit to maintain isolation between transistors and to provide for normal transistor action. To avoid undesirable coupling between transistors, the substrate (terminal 13) should be maintained at either DC or signal (AC) ground. A suitable bypass capacitor can be used to establish a signal ground.

[^57]: *Formerly Dev. No. TA6281.

[^58]: * $\mathrm{V}_{\mathrm{T}}=\mathrm{V}_{\mathrm{P}}-\mathrm{V}_{\mathrm{S}}$ (Fig. 22)

[^59]: *The collector of each transistor of the CA3127 is isolated from the substrate by an integral diode. The substrate (terminal 5) must be connected to the most negative point in the external circuil to maintain isolation between transistors and to provide for normal transistor action.

[^60]: - Caution on Total Package Power Dissipation: The maximum total package dissipation rating for the CA3146 and CA3183 Series circuits is 750 mW at temperatures up to $+55^{\circ} \mathrm{C}$, then derate linearly at $6.67 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

[^61]: - A maximum dissipation of 5 transistors $\times 150 \mathrm{~mW}=750 \mathrm{~mW}$ is possible for a particular application.

[^62]: § The collector of each transistor of these devices is isolated from the substrate by an integral diode. The substrate (terminal 5/CA3227E and terminal 13/CA3246E) must be connected to the most negative point in the external circuit to maintain isolation between transistors and to provide for normal transistor action.

[^63]: Copyright © Harris Corporation 1990

[^64]: CAUTION: These devices are sensitive to electrostatic discharge. Proper I.C. handing procedures should be foliowed.

[^65]: CAUTION: These devices are sensitive to electrostatic discharge. Proper I.C. handing procedures should be followed.

[^66]: HARRIS SEMICONDUCTOR'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^67]: HARRIS SEMICONDUCTOR'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

 302800-002

[^68]: harris semiconductor's sole and exclusive warranty obligation with respect to this product shall be that stated in the warranty article of the Condition of sale. the warranty shall be exclusive and shall be in lieu of all other warranties, express, impled or statutory, including the implied WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^69]: HARRIS SEMICONDUCTOR'S SOLE AND EXCLUSIVE WARRANTY OBLIGATION WITH RESPECT TO THIS PRODUCT SHALL BE THAT STATED IN THE WARRANTY ARTICLE OF THE CONDITION OF SALE. THE WARRANTY SHALL BE EXCLUSIVE AND SHALL BE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR USE.

[^70]: *These parameters are based upon characterization data and are not tested.

[^71]: * Product in Development, Lead Count and Body Dimensions may change.

[^72]: ＊Product in Development，Lead Count and Body Dimensions may change．

[^73]: All dimensions given in $\frac{\text { inches }}{\text { (millimeters) }}$

