

Digital Signal Processing

HARRIS

HARRIS SEMICONDUCTOR DSP PRODUCTS

This digital signal processing databook represents the full line of Harris Semiconductor DSP products for commercial and military applications and supersedes previously published DSP material under the Harris, GE, RCA or Intersil names. For a complete listing of all Harris Semiconductor products, please refer to the Product Selection Guide (SPG-201R; ordering information below).

For complete, current and detailed technical specifications on any Harris device please contact the nearest Harris sales, representative or distributor office; or direct literature requests to:

```
Harris Semiconductor Literature Department
    P.O. Box 883, MS CB1-28
    Melbourne, FL 32901
                                    (407) 724-3739
                            FAX 407-724-3937
```

For general information regarding Harris Semiconductor and its products, call 1-800-4-HARRIS

U.S. HEADQUARTERS

Harris Semiconductor 1301 Woody Burke Road Melbourne, Florida 32902
TEL: (407) 724-3000

SOUTH ASIA
Harris Semiconductor H.K. Ltd
13/F Fourseas Building
208-212 Nathan Road
Tsimshatsui, Kowloon
Hong Kong
TEL: (852) 3-723-6339

EUROPEAN HEADQUARTERS
Harris Semiconductor
Mercure Centre
Rue de la Fusse 100
1130 Brussels, Belgium
TEL: (32) 2-246-2111
NORTH ASIA
Harris K.K.
Shinjuku NS Bldg. Box 6153
2-4-1 Nishi-Shinjuku
Shinjuku-Ku, Tokyo 163 Japan
TEL: 81-03-3345-8911

Harris Semiconductor products are sold by description only. All specifications in this product guide are applicable only to packaged products; specifications for die are available upon request. Harris reserves the right to make changes in circuit design, specifications and other information at any time without prior notice. Accordingly, the reader is cautioned to verify that information in this publication is current before placing orders. Reference to products of other manufacturers are solely for convenience of comparison and do not imply total equivalency of design, performance, or otherwise.

in HARRIS

FOR COMMERCIAL AND MILITARY APPLICATIONS

General Information

1-D Filters 3

2-D Filters

Signal Synthesizers

DIGITAL SIGNAL PROCESSING PRODUCT TECHNICAL ASSISTANCE

For technical assistance on the Harris products listed in this databook, please contact Field Applications Engineering staff available at one of the following Harris Sales Offices:

UNITED STATES

CALIFORNIA	Costa Mesa	714-433-0600
	San Jose.	408-922-0977
	Woodland Hills	818-992-0686
FLORIDA	Melbourne	. 407-724-3576
GEORGIA	Norcross...	404-246-4660
ILLINOIS	Itasca	. 708-250-0070
MASSACHUSETTS	Burlington	. 617-221-1850
NEW JERSEY	Mt. Laurel	. 609-727-1909
	Rahway.....	. 201-381-4210
TEXAS	Dallas	. 214-733-0800

INTERNATIONAL

FRANCE	Paris 33-1-346-54090
GERMANY	Munich 49-8-963-8130
ITALY	Milano 39-2-262-22127
JAPAN	Tokyo 81-3-345-8911
SWEDEN	Stockholm 46-8-623-5220
U.K.	Camberley 44-2-766-86886

For literature requests, please contact Harris at 407-724-3739.

GENERAL INFORMATION

ALPHA NUMERIC PRODUCT INDEX

PAGE
$\mathrm{DECI} \bullet \mathrm{MATE}{ }^{\mathrm{TM}}$ Harris HSP43220 Decimating Digital Filter Development Software 3-31
HMA510 16×16-Bit CMOS Parallel Multiplier Accumulator 2-29
HMA510/883 16×16-Bit CMOS Parallel Multiplier Accumulator 2-36
HMU16/HMU17 16×16-Bit CMOS Parallel Multipliers 2-3
HMU16/883 16×16-Bit CMOS Parallel Multiplier 2-13
HMU17/883 16×16-Bit CMOS Parallel Multiplier 2-21
HSP43168 Dual FIR Filter 3-102
HSP43220 Decimating Digital Filter 3-3
HSP43220/883 Decimating Digital Filter 3-23
HSP43481 Digital Filter 3-81
HSP43481/883 Digital Filter 3-96
HSP43881 Digital Filter 3-58
HSP43881/883 Digital Filter 3-73
HSP43891 Digital Filter 3-35
HSP43891/883 Digital Filter 3-50
HSP45102 12 Bit Numerically Controlled Oscillator 5-43
HSP45106 16 Bit Numerically Controlled Oscillator 5-26
HSP45106/883 16 Bit Numerically Controlled Oscillator 5-36
HSP45116 Numerically Controlled Oscillator/Modulator 5-3
HSP45116/883 Numerically Controlled Oscillator/Modulator 5-18
HSP45240 Address Sequencer 6-3
HSP45240/883 Address Sequencer 6-14
HSP45256 Binary Correlator 6-33
HSP48901 3×3 Image Filter 4-26
HSP48908 Two Dimensional Convolver 4-3
HSP48908/833 Two Dimensional Convolver 4-19
HSP9501 Programmable Data Buffer 6-21
HSP9520/9521 Multilevel Pipeline Register 6-28
ISP9520/9521
DECI • MATE ${ }^{\text {Tw }}$ is a Trademark of Harris Corporation
MULTIPLIERS PAGE
HMA510 16×16-Bit CMOS Parallel Multiplier Accumulator 2-29
HMA510/883 16×16-Bit CMOS Parallel Multiplier Accumulator 2-36
HMU16/HMU17 16×16-Bit CMOS Parallel Multipliers 2-3
HMU16/883 16×16-Bit CMOS Parallel Multiplier 2-13
HMU17/883 $\quad 16 \times 16$-Bit CMOS Parallel Multiplier 2-21
ONE DIMENSIONAL FILTERS
DECI •MATE Harris HSP43220 Decimating Digital Filter Development Software 3-31
HSP43168 Dual FIR Filter 3-102
HSP43220 Decimating Digital Filter 3-3
HSP43220/883 Decimating Digital Filter 3-23
HSP43481 Digital Filter 3-81
HSP43481/883 Digital Filter 3-96
HSP43881 Digital Filter 3-58
HSP43881/883 Digital Filter 3-73
HSP43891 Digital Filter 3-35
HSP43891/883 Digital Filter 3-50
TWO DIMENSIONAL FILTERS
HSP48901 3×3 Image Filter 4-26
HSP48908 Two Dimensional Convolver 4-3
HSP48908/833 Two Dimensional Convolver 4-19
SIGNAL SYNTHESIZERS
HSP45102 12 Bit Numerically Controlled Oscillator 5-43
HSP45106 16 Bit Numerically Controlled Oscillator 5-26
HSP45106/883 16 Bit Numerically Controlled Oscillator 5-36
HSP45116 Numerically Controlled Oscillator/Modulator 5-3
HSP45116/883 Numerically Controlled Oscillator/Modulator 5-18
SPECIAL FUNCTION
HSP45240 Address Sequencer 6-3
HSP45240/883 Address Sequencer 6-14
HSP45256 Binary Correlator 6-33
HSP9501 Programmable Data Buffer 6-21
HSP9520/9521 Multilevel Pipeline Register 6-28

MULTIPLIERS

		PAGE
DATA SHEETS		
HMU16/HMU17	16×16-Bit CMOS Parallel Multipliers	2-3
HMU16/883	16×16-Bit CMOS Parallel Multiplier	2-13
HMU17/883	16×16-Bit CMOS Parallel Multiplier	2-21
HMA510	16×16-Bit CMOS Parallel Multiplier Accumulator	2-29
HMA510/883	16×16-Bit CMOS Parallel Multiplier Accumulator	2-36

Features

- 16×16-Bit Parallel Multiplier with Full 32-Bit Product
- High-Speed (35ns) Clocked Multiply Time
- Low Power Operation:
- ICCSB $=500 \mu \mathrm{~A}$ Maximum
- ICCOP $=7.0 \mathrm{~mA}$ Maximum @ 1 MHz
- Supports Two's Complement, Unsigned Magnitude and Mixed Mode Multiplication
- HMU16 is Compatible with the AM29516, LMU16, IDT7216 and the CY7C516
- HMU17 is Compatible with the AM29517, LMU17, IDT7217 and the CY7C517
- TTL Compatible Inputs/Outputs
- Three-State Outputs
- Available in a Ceramic 68 Pin Grid Array (PGA) and 68 Pin Plastic Leaded Chip Carrier (PLCC)

Applications

- Fast Fourier Transform Analysis
- Digital Filtering
- Graphic Display Systems
- Image Processing
- Radar and Sonar
- Speech Synthesis and Recognition

Description

The HMU16/HMU17 are high speed, low power CMOS 16×16-bit multipliers ideal for fast, real time digital signal processing applications.

The X and Y operands along with their mode controls (TCX and TCY) have 17-bit input registers. The mode controls independently specify the operands as either two's complement or unsigned magnitude format, thereby allowing mixed mode multiplication operations.

Two 16-bit output registers are provided to hold the most and least significant halves of the result (MSP and LSP). For asynchronous output these registers may be made transparent through the use of the feedthrough control (FT).

Additional inputs are provided for format adjustment and rounding. The format adjust control (FA) allows the user to select either a left. shifted 31-bit product or a full 32-bit product, whereas the round control (RND) provides the capability of rounding the most significant portion of the result.

The HMU16 has independent clocks (CLKX, CLKY, CLKL, CLKM) associated with each of these registers to maximize throughput and simplify bus interfacing. The HMU17 has only a single clock input (CLK), but makes use of three register enables (ENX, ENY and ENP). The ENX and ENY inputs control the X and Y input registers, while ENP controls both the MSP and LSP output registers. This configuration facilitates the use of the HMU17 for microprogrammed systems.

The two halves of the product may be routed to a single 16-bit three-state output port via a multiplexer, and in addition, the LSP is connected to the Y -input port through a separate three-state buffer.

All outputs of the HMU16/HMU17 multipliers also offer threestate control for multiplexing results onto multi-use busses.

CERAMIC 68 PIN GRID ARRAY (PGA)
TOP VIEW

\therefore \%	N/C	X13	X15	RND	TCY	v_{cc}	GND	FT	$\overline{O E P}$	
X11	X12	X14	$\frac{\text { CLKX }}{\text { (ENX) }}$	TCX	V_{cc}	GND	MSPSEL	$\overline{\text { FA }}$	$\frac{\text { CLKM }}{\text { (ENP) }}$	N/C
X9	X10	$\mathbf{P 3 0 /}$ P31/ $\mathbf{P 1 4}$ $\mathbf{P 1 5}$								
x7	X8	(${ }^{\text {a }}$ (P28/								$\begin{aligned} & \mathrm{P} 29 / \\ & \mathrm{P} 13 \end{aligned}$
X5	X6	68 LEAD PIN GRID ARRAY TOP VIEW							$\begin{aligned} & \text { P26/ } \\ & \text { P10 } \end{aligned}$	$\begin{gathered} \text { P27! } \\ \text { P11 } \end{gathered}$
X3	X4								$\begin{gathered} \text { P24/ } \\ \text { P8 } \end{gathered}$	$\begin{gathered} \text { P25/ } \\ \text { P9 } \end{gathered}$
X1	X2	\cdots							$\begin{aligned} & \text { P221 } \\ & \text { P6 } \end{aligned}$	$\begin{gathered} \mathrm{P} 23 / \\ \mathrm{P} 7 \end{gathered}$
OEL	x0	-							$\begin{gathered} \mathrm{P} 201 \\ \mathrm{P4} \end{gathered}$	$\begin{gathered} \text { P21/ } \end{gathered}$
$\frac{\text { CLKY }}{(E N Y)}$	$\begin{aligned} & \text { CLKL } \\ & \text { (CLK) } \end{aligned}$								$\begin{aligned} & \text { P18/ } \\ & \text { P2 } \end{aligned}$	$\begin{gathered} \text { P19/ } \\ \text { P3 } \end{gathered}$
N/C	$\begin{aligned} & \text { Yol } \\ & \text { PO } \end{aligned}$	$\begin{aligned} & \text { Y2 } \\ & \text { 22 } \end{aligned}$	$\begin{aligned} & \text { Y4/ } \\ & \text { P4 } \end{aligned}$	$\begin{aligned} & \text { Y6/ } \\ & \text { P6 } \end{aligned}$	$\begin{aligned} & \text { Y8/ } \\ & \text { P8 } \end{aligned}$	$\begin{aligned} & \mathrm{Y} 10 / \\ & \mathrm{P} 10 \end{aligned}$	$\begin{aligned} & \mathrm{Y} 121 \\ & \mathrm{P} 12 \end{aligned}$	$\begin{aligned} & \text { Y14/ } \\ & \text { P14 } \end{aligned}$	$\begin{aligned} & \text { P16/ } \\ & \text { PO } \end{aligned}$	$\underset{\text { P1 }}{\text { P1 }}$
	$\begin{aligned} & \mathrm{Y}_{\mathrm{P} 1 /} \end{aligned}$	$\begin{aligned} & \text { Y3/ } \\ & \text { P3 } \end{aligned}$	$\begin{aligned} & \text { Y5\% } \\ & \text { P5 } \end{aligned}$	$\begin{aligned} & Y 71 \\ & \text { P7 } \end{aligned}$	$\begin{aligned} & \text { Y9/ } \\ & \text { P9 } \end{aligned}$	$\begin{aligned} & \mathrm{Y} 11 / \\ & \mathrm{P} 11 \end{aligned}$	$\begin{aligned} & Y 13 / \\ & \text { P13 } \end{aligned}$	$\begin{aligned} & Y \\ & \text { P15 } \end{aligned}$	N/C	.:

68 PIN PLASTIC LEADED CHIP CARRIER (PLCC)
TOP VIEW

Functional Block Diagram

HMU17

Pin Description

SYMBOL	PLCC PIN NUMBER	TYPE	DESCRIPTION
V_{CC}	1,68		V_{CC}. The +5 V power supply pins. $\mathrm{A} 0.1 \mu \mathrm{~F}$ capacitor between the V_{CC} and GND pins is recommended.
GND	2, 3	:	GND. The device ground.
X0-X15	47-59, 61-63	1	X-Input Data. These 16 data inputs provide the multiplicand which may be in two's complement or unsigned magnitude format.
$\begin{aligned} & \hline \text { YO-Y15/ } \\ & \text { PO-P15 } \end{aligned}$	27-42	1/0	Y-Input/LSP Output Data. This 16-Bit port is used to provide the multiplier which may be in two's complement or unsigned magnitude format. It may also be used for output of the Least Significant Product (LSP).
$\begin{aligned} & \text { P16-P31/ } \\ & \text { P0-P15 } \end{aligned}$	10-25	0	Output Data. This 16-Bit port may provide either the MSP (P16-31) or the LSP (PO-15).
TCY, TCX	66,67	1	Two's Complement Control. Input data is interpreted as two's complement when this control is HIGH. A LOW indicates the data is to be interpreted as unsigned magnitude format.
FT	5	1	Feedthrough Control. When this control is HIGH, both the MSP and LSP registers are transparent. When LOW, the registers are latched by their associated clock signals.
FA	6	1	Format Adjust Control. A full 32-bit product is selected when this control line is HIGH. A LOW on this control line selects a left shifted 31-bit product with the sign bit replicated in the LSP. This control is normally HIGH except for certain two's complement integer and fractional applications.
RND	65	1	Round Control. When this control is HIGH, a one is added to the Most Significant Bit (MSB) of the LSP. This position is dependent on the FA control; FA = HIGH indicates RND adds to the 2-15 bit (P15), and FA = LOW indicates RND adds to the 2-16 bit (P14).
$\overline{\text { MSPSEL }}$	4	1	Output Multiplexer Control. When this control is LOW, the MSP is available for output at the dedicated output port, and the LSP is available at the Y -input/LSP output port. When MSPSEL is HIGH, the LSP is available at both ports and the MSP is not available for output.
$\overline{O E L}$	46	1	Y-In/PO-15 Qutput Port Three-state Control. When $\overline{\text { OEL }}$ is HIGH, the output drivers are in the high impedance state. This state is required for Y -data input. When $\overline{\mathrm{OEL}}$ is LOW, the port is enabled for LSP output.
$\overline{\text { OEP }}$	7	1	P16-31/PO-15 Output Port Three-state Control. A LOW on this control line enables the output port. When $\overline{\mathrm{OEP}}$ is HIGH, the output drivers are in the high impedance state.
The following Pin Descriptions apply to the HMU16 only.			
CLKX	64	1	X-Register Clock. The rising edge of this clock loads the X -data input register along with the TCX and RND registers.
CLKY	44	1	Y-Register Clock. The rising edge of this clock loads the Y-data input register along with the TCY and RND registers.
CLKM	8	1	MSP Register Clock. The rising edge of CLKM loads the most significant product (MSP) register.
CLKL	45	1	LSP Register Clock. The rising edge of CLKL loads the least significant product (LSP) register.
The following Pin Descriptions apply to the HMU17 only.			
CLK	45	1	Olock. The rising edge of this clock will load all enabled registers.
$\overline{\text { ENX }}$	64	1	X-Register Enable. When $\overline{E N X}$ is LOW, the X-register is enabled; X-input data and TCX will be latched at the rising edge of CLK. When $\overline{\mathrm{ENX}}$ is high, the X -register is in a hold mode.
$\overline{\text { ENY }}$	44	1	Y-Register Enable. $\overline{\mathrm{ENY}}$ enables the Y-register. (See $\overline{\mathrm{ENX}}$).
$\overline{E N P}$	8	1	Product Register Enable. $\overline{\mathrm{ENP}}$ enables the product register. Both the MSP and LSP sections are enabled by $\overline{\mathrm{ENP}}$. (See $\overline{\mathrm{ENX}}$).

Functional Description

The HMU16/HMU17 are high speed 16×16-bit multipliers designed to perform very fast multiplication of two 16-bit binary numbers. The two 16 -bit operands (X and Y) may be independently specified as either two's complement or unsigned magnitude format by the two's complement controls (TCX and TCY). When either of these control lines is LOW, the respective operand is treated as an unsigned 16-bit value; and when it is HIGH, the operand is treated as a signed value represented in two's complement format. The operands along with their respective controls are latched at the rising edge of the associated clock signal. The HMU16 accomplishes this through the use of independent clock inputs for each of the input registers (CLKX and CLKY), while the HMU17 utilizes a single clock signal (CLK) along with the X and Y register enable inputs (ENX and ENY).

Input controls are also provided for rounding and format adjustment of the 32-bit product. The Round input (RND) is provided to accomodate rounding of the most significant portion of the product by adding one to the Most Significant Bit (MSB) of the LSP register. The position of the MSB is dependent on the state of the Format Adjust Control (See Pin Descriptions and Multiplier Input/Output Format Tables). The Round input is latched into the RND register whenever either of the input registers is clocked. The Format Adjust control $(\overline{\mathrm{FA}})$ allows the product output to be formatted. When the $\overline{F A}$ control is HIGH, a full 32-bit product is output; and when $\overline{F A}$ is LOW, a left-shifted 31-bit product is output with the sign bit replicated in bit position 15 of the LSP. The $\overline{F A}$ control must be HIGH for unsigned magnitude, and mixed mode multiplication
operations. It may be LOW for certain two's complement integer and fractional operations only (See Multiplier Input/ Output Formats Table).

The HMU16/HMU17 multipliers are equipped with two 16-bit output registers (MSP and LSP) which are provided to hold the most and least significant portions of the resultant product respectively. The HMU16 uses independent clocks (CLKM and CLKL) for latching the two output registers, while the HMU17 uses a single clock input (CLK) along with the Product Latch Enable (ENP). The MSP and LSP registers may also be made transparent for asynchronous output through the use of the Feedthrough control (FT).

There are two output configurations which may be selected when using the HMU16/HMU17 multipliers. The first configuration allows the simultaneous access of the most and least significant halves of the product. When the $\overline{\text { MSPSEL }}$ input is LOW, the Most Significant Product will be available at the dedicated output port (P16-31/PO-15). The Least Significant Product is simultaneously available at the bi-directional port shared with the Y -inputs (YO-15/PO-15) through the use of the LSP output enable ($\overline{\mathrm{OEL}}$). The other output configuration involves multiplexing the MSP and LSP registers onto the dedicated output port through the use of the MSPSEL control. When the MSPSEL control is LOW, the Most Significant Product will be available at the dedicated output port; and when MSPSEL is HIGH, the Least Significant Product will be available at this port. This configuration allows access of the entire 32-bit product by a 16-bit wide system bus.

Multiplier Input/Output Formats Table

FRACTIONAL TWO'S COMPLEMENT NOTATION

* In this format an overflow occurs in the attempted multiplication of the two's complement number 1,000 . . 0 with $1,000 \ldots 0$ yielding an erroneous product of -1 in the fraction case and -2^{30} in the integer case.

FRACTIONAL UNSIGNED MAGNITUDE NOTATION

FRACTIONAL MIXED MODE NOTATION

Multiplier Input/Output Formats Table (Continued)
INTEGER TWO'S COMPLEMENT NOTATION

* In this format an overflow occurs in the attempted multiplication of the two's complement number 1,000 . . 0 with $1,000 \ldots 0$ yielding an erroneous product of -1 in the fraction case and -2^{30} in the integer case.

INTEGER UNSIGNED MAGNITUDE NOTATION

INTEGER MIXED MODE NOTATION

Absolute Maximum Ratings

Operating Conditions


```
Operating Temperature Range ........................................................................0
```

D.C. Electrical Specifications $\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}+5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\right.$ to $+70^{\circ} \mathrm{C}$)

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
V_{IH}	Logical One Input Voltage	2.0	-	V	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$
$V_{\text {IL }}$	Logical Zero Input Voltage	-	0.8	V	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$
V_{OH}	Output High Voltage	2.6	-	V	$\mathrm{IOH}=-400 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V}$
V_{OL}	Output Low Voltage	-	0.4	V	$\mathrm{IOL}=+4.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V}$
1	Input Leakage Current	-10	10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or $\mathrm{GND}, \mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$
10	Output or I/O Leakage Current	-10	10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}$ or $\mathrm{GND}, \mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$
I'ccsb	Standby Power Supply Current	-	500	$\mu \mathrm{A}$	$V_{1}=V_{C C} \text { or } G N D, V_{C C}=5.25 \mathrm{~V}$ Outputs Open
I'COP	Operating Power Supply Current	-	7.0	mA	$\begin{aligned} & V_{1}=V_{C C} \text { or } G N D, V_{C C}=5.25 \mathrm{~V} \\ & f=1 \mathrm{MHz} \text { (Note } 1) \end{aligned}$

Capacitance $\left(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, Note 2)

SYMBOL	PARAMETER	TYPICAL	UNITS	TEST CONDITIONS
$\mathrm{C}_{\mathbb{I N}}$	Input Capacitance	15	pF	Frequency $=1 \mathrm{MHz}$. All measurements referenced to device Ground.
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	10	pF	
$\mathrm{C}_{\mathbb{I} / \mathrm{O}}$	I/O Capacitance	10	pF	

NOTES:

1. Operating Supply Current is proportional to frequency, Typical rating is $5 \mathrm{~mA} / \mathrm{MHz}$.
2. Not tested, but characterized at initial design and at major process/ design changes.
A.C. Electrical Specifications $\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}+5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\right.$ to $+70^{\circ} \mathrm{C}$, Note 3)

SYMBOL	PARAMETER	HMU16/HMU17-35		HMU16/HMU17-45		UNITS	TEST CONDITIONS
		MIN	MAX	MIN	MAX		
TMUC	Unclocked Multiply Time	-	55	-	70	ns	
T_{MC}	Clocked Multiply Time	-	35	-	45	ns	
TS	X, Y, RND Setup Time	15	-	18	-	ns	
T_{H}	X, Y, RND Hold Time	2	-	2	-	ns	
TPWH	Clock Pulse Width High	10	-	15	-	ns	
TPWL	Clock Pulse Width Low	10	-	15	-	ns	
TPDSEL	$\overline{\text { MSPSEL }}$ to Product Out	-	22	-	25	ns	
TPDP	Output Clock to P	-	22	-	25	ns	
TPDY	Output Clock to Y	-	22	-	25	ns	
TENA	3-State Enable Time	-	22	-	25	ns	Note 1
TDIS	3-State Disable Time	-	22	-	25	ns	
TSE	Clock Enable Setup Time (HMU17 only)	15	-	15	-	ns	
THE	Clock Enable Hold Time (HMU17 only)	2	-	2	-	ns	
THCL	Clock Low Hold Time CLKXY Relative to CLKML (HMU16 only)	0	-	0	-	ns	Note 2
T_{R}	Output Rise Time	-	8	-	8	ns	From 0.8 V to 2.0 V
T_{F}	Output Fall Time	-	8	-	8	ns	From 2.0 V to 0.8 V

NOTES:

1. Transition is measured at $\pm 200 \mathrm{mV}$ from steady state voltage with loading specified in Figure 1, $\mathrm{V}_{1}=1.5 \mathrm{~V}, \mathrm{R}_{1}=500 \Omega$ and $\mathrm{C}_{1}=40 \mathrm{pF}$
2. To ensure the correct product is entered in the output registers, new data may not be entered into the input registers before the output registers have been clocked.
3. For A.C. Test load, Refer to Figure 1, with $\mathrm{V}_{1}=2.4 \mathrm{~V}, \mathrm{R}_{1}=500 \Omega$ and $\mathrm{C}_{1}=40 \mathrm{pF}$

A.C. Test Circuit

* Includes Stray and Jig Capacitance
A.C. Testing Input, Output Waveforms

A.C. Testing: All parameters tested as per test circuit. Input rise and fall times are driven at $1 \mathrm{~ns} / \mathrm{V}$.

Timing Diagram

HMU16 TIMING DIAGRAM

three state control

HMU17 TIMING DIAGRAM

16×16-Bit CMOS Parallel Multiplier

Features

- This Circuit is Processed in Accordance to Mil-Std883 and is Fully Conformant Under the Provisions of Paragraph 1.2.1.
- 16×16-Bit Parallel Multiplier with Full 32-Bit Product
- High-Speed (45ns) Clocked Multiply Time
- Low Power CMOS Operation:
- $\operatorname{ICCSB}=\mathbf{5 0 0} \mu \mathrm{A}$ Maximum
- ICCOP $=7.0 \mathrm{~mA}$ Maximúm @ 1 MHz
- HMU16 is compatible with the AM29516, LMU16, IDT7216, and the CY7C516
- Supports Two's Complement, Unsigned Magnitude and Mixed Mode Multiplication
- TTL Compatible Inputs/Outputs
- Three-State Outputs
- Available in a 68 Lead Pin Grid Array Package

Description

The HMU16 is a high speed, low power CMOS 16×16-bit parallel multiplier ideal for fast, real time digital signal processing applications. The $16-$ bit X and Y operands may be independently specified as either two's complement or unsigned magnitude format, thereby allowing mixed mode multiplication operations.

Additional inputs are provided to accommodate format adjustment and rounding of the 32-bit product. The Format Adjust control allows the user to select a 31-bit product with the sign bit replicated in the LSP. The Round control provides for rounding the most significant portion of the result by adding one to the most significant bit of the LSP.

Two 16-bit output registers (MSP and LSP) are provided to hold the most and least significant portions of the result, respectively. These registers may be made transparent for asynchronous operation through the use of the feedthrough control (FT). The two halves of the product may be routed to a single 16-bit three-state output port via the output multiplexer control, and in addition, the LSP is connected to the Y -input port through a separate three-state buffer.

The HMU16 utilizes independent clock signals (CLKX, CLKY, CLKL, CLKM) to latch the input operands and output product registers. This configuration maximizes throughput and simplifies bus interfacing. All outputs of the HMU16 also offer three-state control for multiplexing onto multi-use system busses.

Absolute Maximum Ratings

Supply Voltage \qquad Input or Output Voltage Applied \qquad GND........+8.0 V
Storage Temperature Range . GND-0.5V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
Junction Temperature . $+175^{\circ} \mathrm{C}$
Lead Temperature (Soldering 10 sec) . $300^{\circ} \mathrm{C}$
ESD Classification

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Operating Conditions

Operating Voltage Range . +4.5 V to +5.5 V
Operating Temperature Range $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

TABLE 1. HMU16/883 D.C. ELECTRICAL PERFORMANCE CHARACTERISTICS
Device Guaranteed and 100\% Tested

PARAMETER	SYMBOL	CONDITIONS	GROUP A SUBGROUPS	TEMPERATURE	LIMITS		UNITS
					MIN	MAX	
Logical One Input Voltage	V_{IH}	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	1, 2, 3	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	2.2	-	V
Logical Zero Input Voltage	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	1, 2, 3	$-55^{\circ} \mathrm{C} \leq \mathrm{T} \mathrm{A} \leq+125^{\circ} \mathrm{C}$	-	0.8	V
Output HIGH Voltage	V_{OH}	$\begin{aligned} & \mathrm{IOH}=-400 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}(\text { Note } 1) \end{aligned}$	1,2,3	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	2.6	-	V
Output LOW Voltage	V_{OL}	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=+4.0 \mathrm{~mA} \\ & \left.\mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { (Note } 1\right) \end{aligned}$	1, 2, 3	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	-	0.4	V
Input Leakage Current	1	$\begin{aligned} & V_{I N}=V_{C C} . \text { or GND } \\ & V_{C C}=5.5 \mathrm{~V} \end{aligned}$	1,2,3	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	-10	+10	$\mu \mathrm{A}$
Output or I/O Leakage Current	10	$\begin{aligned} & V_{\text {OUT }}=V_{C C} \text { or } G N D \\ & V_{C C}=5.5 \mathrm{~V} \end{aligned}$	1, 2, 3	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	-10	+10	$\mu \mathrm{A}$
Standby Power Súpply Current	ICCsB	$V_{I N}=V_{C C}$ or GND, $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, Outputs Open	1, 2, 3	$-55^{\circ} \mathrm{C} \leq \mathrm{T} \mathrm{A} \leq+125^{\circ} \mathrm{C}$	-	500	$\mu \mathrm{A}$
Operating Power Supply Current	${ }^{\text {I CCOP }}$	$\begin{aligned} & f=1.0 \mathrm{MHz} \\ & V_{I N}=V_{C C} \text { or GND } \\ & V_{C C}=5.5 \mathrm{~V} \text { (Note 2) } \end{aligned}$	1, 2, 3	$-55^{\circ} \mathrm{C} \leq \top \mathrm{A} \leq+125^{\circ} \mathrm{C}$	-	7.0	mA
Functional Test	FT	(Note 3)	7,8	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	-	-	

NOTES:

1. Interchanging of force and sense conditions is permitted.
2. Operating Supply Current is proportional to frequency, typical rating is $5 \mathrm{~mA} / \mathrm{MHz}$.

Reliability Information

Thermal Resistance	$\theta_{\text {ja }}$	$\theta_{\text {jc }}$
Ceramic PGA Package	$42.69^{\circ} \mathrm{C} / \mathrm{W}$	$10.0^{\circ} \mathrm{C} / \mathrm{W}$
Maximum Package Powe Ceramic PGA Package	$+125^{\circ} \mathrm{C}$	1.17 Watt
Gate Count		500 Gates

TABLE 2. HMU16/883 A.C. ELECTRICAL. PERFORMANCE CHARACTERISTICS
Device Guaranteed and 100\% Tested

PARAMETER	SYMBOL	(NOTE 1) CONDITIONS	GROUP A SUBGROUPS	TEMPERATURE	-45		-60		UNITS
					MIN	MAX	MIN	MAX	
Unclocked Multiply Time	TMUC		9, 10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T} \mathrm{A} \leq+125^{\circ} \mathrm{C}$	-	70	-	90	ns
Clocked Multiply Time	$\mathrm{T}_{\text {MC }}$		9, 10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\text {A }} \leq+125^{\circ} \mathrm{C}$	-	45	-	60	ns
X, Y, RND Setup Time	Ts		9, 10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	18	-	20	-	ns
Clock HIGH Pulse Width	TPWH		9, 10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T} \mathrm{A} \leq+125^{\circ} \mathrm{C}$	15	-	20	-	ns
Clock LOW Pulse Width	TPWL		9, 10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T} \mathrm{A} \leq+125^{\circ} \mathrm{C}$	15	-	20	-	ns
MSPSEL to Product Out	TPDSEL		9, 10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	-	25	-	30	ns
Output Clock to P	TPDP		9, 10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	-	25	-	30	ns
Output Clock to Y	TPDY		9, 10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	-	25	-	30	ns
3-State Enable Time	TENA	(Note 2)	9, 10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	-	25	-	30	ns
Clock Low Hold Time CLKXY Relative to CLKML	THCL	(Note 3)	9, 10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T} \mathrm{A} \leq+125^{\circ} \mathrm{C}$	0	-	0	-	ns

NOTES:

1. AC Testing as follows: Input levels OV and 3.0 V , Timing reference levels $=1.5 \mathrm{~V}$, Input rise and fall times driven at $1 \mathrm{~ns} / \mathrm{V}$, Output load per test load circuit, with $\mathrm{V}_{1}=2.4 \mathrm{~V}, \mathrm{R}_{1}=500 \Omega$ and $\mathrm{C}_{\mathrm{L}}=40 \mathrm{pF}$.
2. Transition is measured at $\pm 200 \mathrm{mV}$ from steady state voltage, Output loading per test load circuit, with $\mathrm{V}_{1}=1.5 \mathrm{~V}, \mathrm{R}_{1}=500 \Omega$ and $\mathrm{C}_{\mathrm{L}}=40 \mathrm{pF}$.
3. To ensure the correct product is entered in the output registers, new data may not be entered into the input registers before the output registers have been clocked.

TABLE 3. HMU16/883 ELECTRICAL PERFORMANCE CHARACTERISTICS

PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	-45		-60		UNITS
					MIN	MAX	MIN	MAX	
Input Capacitance	$\mathrm{ClN}_{\text {IN }}$	$\mathrm{v}_{\mathrm{CC}}=\text { Open, } \mathrm{f}=1 \mathrm{MHz}$ All Measurements are referenced to device GND.	1	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-	15	-	15	pF
Output Capacitance	$\mathrm{C}_{\text {OUT }}$		1	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-	10	-	10	pF
I/O Capacitance	$\mathrm{Cl}_{1 / \mathrm{O}}$		1	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-	10	-	10	pF
X, Y, RND Hold Time	TH		1,2	$-55^{\circ} \mathrm{C} \leq T_{A} \leq+1.25^{\circ} \mathrm{C}$	3	-	3	-	ns
3-State Disable Time	TDIS		1,2,3	$-55^{\circ} \mathrm{C} \leq \mathrm{T} \mathrm{A} \leq+125^{\circ} \mathrm{C}$	-	25	-	30	ns
Output Rise Time	T_{R}	From 0.8V to 2.0 V	1,2,4	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	-	10	-	10	ns
Output Fall Time	T_{F}	From 2.0 V to 0.8 V	1,2,4	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	-	10	-	10	ns

NOTES: 1. The parameters listed in table 3 are controlled via design or process parameters and are not directly tested. These parameters are characterized upon initial design and after major process and/or design changes.
2. Guaranteed, but not 100% tested.
3. Transition is measured at $\pm 200 \mathrm{mV}$ from steady state voltage, Output loading per test load circuit, with $\mathrm{V}_{1}=1.5 \mathrm{~V}, \mathrm{R}_{1}=500 \Omega$ and $C_{L}=40 \mathrm{pF}$.
4. Loading is as specified in the test load circuit, with $\mathrm{V}_{1}=2.4 \mathrm{~V}$, $R_{1}=500 \Omega$ and $C_{L}=40 \mathrm{pF}$.
table 4. APPLICABLE SUBGROUPS

CONFORMANCE GROUPS	METHOD	SUBGROUPS
Initial Test	$100 \% / 5004$	-
Interim Test	$100 \% / 5004$	-
PDA	100%	1
Final Test	100%	$2,3,8 \mathrm{~A}, 8 \mathrm{~B}, 10,11$
Group A	-	$1,2,3,7,8 \mathrm{~A}, 8 \mathrm{~B}, 9,10,11$
Groups C \&D	Samples $/ 5005$	$1,7,9$

Timing Waveforms

SET-UP AND HOLD TIME
THREE-STATE CONTROL TIMING DIAGRAM

Test Load Circuit

*Includes Stray and Jig Capacitance

HMU16/883

Burn-In Circuit

$\begin{aligned} & \text { PGA } \\ & \text { PIN } \end{aligned}$	PIN NAME	BURN-IN SIGNAL	$\begin{aligned} & \text { PGA } \\ & \text { PIN } \end{aligned}$	PIN NAME	BURN-IN SIGNAL	PGA PIN	PIN NAME	BURN-IN SIGNAL	$\begin{aligned} & \text { PGA } \\ & \text { PIN } \end{aligned}$	PIN NAME	BURN-IN SIGNAL
B6	X4	F6	F1	Y9/P9	F11	K7	P10/P26	$\mathrm{v}_{\mathrm{CC} / 2}$	E11	RND	F1
A6	X3	F5	G2	Y10/P10	F12	L7	P11/P27	$\mathrm{v}_{\mathrm{CC} / 2}$	D10	CLKX	FO
B5	X2	F4	G1	Y11/P11	F13	K8	P12/P28	$\mathrm{v}_{\mathrm{CC} / 2}$	D11	X15	F3
A5	X1	F3	H2	Y12/P12	F14	L8	P13/P29	$\mathrm{V}_{\mathrm{CC} / 2}$	C10	X14	F2
B4	X0	F2	H1	Y13/P13	F15	K9	P14/P30	$\mathrm{v}_{\mathrm{CC}} / 2$	C11	X13	F15
A4	$\overline{O E L}$	v_{CC}	J2	Y14/P14	F4	L9	P15/P31	$\mathrm{v}_{\mathrm{CC} / 2}$	B10	X12	F14
B3	CLKL	FO	J1	Y15/P15	F5	K10	CLKM	FO	A10	X11	F13
A3	CLKY	FO	K2	P0/P16	$\mathrm{V}_{\mathrm{Cc} / 2}$	K11	$\overline{\text { OEP }}$	F1	B9	X10	F12
B2	YO/PO	F2	L2	P1/P17	$\mathrm{V}_{\mathrm{cc}} / 2$	J10	$\overline{\text { FA }}$	F14	A9	X9	F11
B1	Y1/P1	F3	K3	P2/P18	$\mathrm{V}_{\mathrm{CC}} / 2$	J11	FT	F15	B8	X8	F10
C2	Y2/P2	F4	L3	P3/P19	$\mathrm{V}_{\mathrm{cc} / 2}$	H10	MSPSEL	F14	A8	X7	F9
C1	Y3/P3	F5	K4	P4/P20	$\mathrm{v}_{\mathrm{CC}} / 2$	H11	GND	GND	B7	X6	F8
D2	Y4/P4	F6	L4	P5/P21	$\mathrm{V}_{\mathrm{CC}} / 2$	G10	GND	GND	A7	X5	F7
D1	Y5/P5	F7	K5	P6/P22	$\mathrm{V}_{\mathrm{CC} / 2}$	G11	$V_{C C}$	$V_{\text {CC }}$	A2	N.C.	NONE
E2	Y6/P6	F8	L5	P7/P23	$\mathrm{v}_{\mathrm{CC}} / 2$	F10	$V_{\text {cc }}$	$\mathrm{V}_{\text {CC }}$	K1	N.C.	NONE
E1	Y7/P7	F9	K6	P8/P24	$\mathrm{v}_{\mathrm{CC} / 2}$	F11	TCY	F15	L10	N.C.	NONE
F2	Y8/P8	F10	L6	P9/P25	$\mathrm{V}_{\mathrm{Cc}} / 2$	E10	TCX	F15	B11	N.C.	NONE

notes:

1. $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}+0.5 \mathrm{~V} /-0.0 \mathrm{~V}$ with $0.1 \mu \mathrm{~F}$ decoupling capacitor to GND .
2. $F O=100 \mathrm{kHz}, \mathrm{F}_{1}=F 0 / 2, F 2=F 1 / 2, \ldots \ldots .$.
3. $47 \mathrm{k} \Omega$ toad resistors used on all pins except V_{CC} and GND (Pin-Grid identifiers F10, G10, G11 and H11).

Die Characteristics

DIE DIMENSIONS:
$179 \times 169 \times 19 \pm 1$ mils
METALLIZATION:
Type: $\mathrm{Si}-\mathrm{Al}$ or $\mathrm{Si}-\mathrm{Al}-\mathrm{Cu}$
Thickness: $8 \mathrm{k} \AA$
GLASSIVATION:
Type: Nitrox
Thickness: $10 \mathrm{~K} \AA$

Metallization Mask Layout

DIE ATTACH:

Material: Si-Au Eutectic Alloy
Temperature: Ceramic PGA - $420^{\circ} \mathrm{C}$ (Max)
WORST CASE CURRENT DENSITY: $1.2 \times 10^{5} \mathrm{~A} / \mathrm{cm}^{2}$

Packaging ${ }^{\dagger}$

68 PIN CERAMIC PIN GRID ARRAY

LEAD MATERIAL: Type B
LEAD FINISH: Type C
PACKAGE MATERIAL: Ceramic, $\mathrm{Al}_{2} \mathrm{O}_{3} 90 \%$ PACKAGE SEAL:

Material: Gold/Tin
Temperature: $320^{\circ} \mathrm{C} \pm 10^{\circ} \mathrm{C}$
Method: Furnace Braze

INTERNAL LEAD WIRE:
Material: Aluminum
Diameter: 1.25 Mil
Bonding Method: Ultrasonic Wedge COMPLIANT OUTLINE: 38510 P-AC

Features

- This Circuit is Processed in Accordance to Mil-Std-883 and is Fully Conformant Under the Provisions of Paragraph 1.2.1.
- 16×16-Bit Parallel Multiplier with Full 32-Bit Product
- High-Speed (45ns) Clocked Multiply Time
- Low Power CMOS Operation:
- ICCSB $=500 \mu$ A Maximum
- $I_{C C O P}=7.0 \mathrm{~mA}$ Maximum @ 1 MHz
- HMU17 is compatible with the AM29517, LMU17, IDT7217, and the CY7C517
- Supports Two's Complement, Unsigned Magnitude and Mixed Mode Multiplication
- TTL Compatible Inputs/Outputs
- Three-State Outputs
- Available in a 68 Lead Pin Grid Array Package

Description

The HMU17 is a high speed, low power CMOS 16×16-bit parallel multiplier ideal for fast, real time digital signal processing applications. The 16-bit X and Y operands may be independently specified as either two's complement or unsigned magnitude format, thereby allowing mixed mode multiplication operations.

Additional inputs are provided to accommodate format adjustment and rounding of the 32-bit product. The Format Adjust control allows the user the option of selecting a 31-bit product with the sign bit replicated LSP. The Round control is provided to accommodate rounding of the most significant portion of the result. This is accomplished by adding one to the most significant bit of the LSP.

Two 16-bit output registers (MSP and LSP) are provided to hold the most and least significant portions of the result, respectively. These registers may be made transparent for asynchronous operation through the use of the feedthrough control (FT). The two halves of the product may be routed to a single 16-bit three-state output port via the output multiplexer control, and in addition, the LSP is connected to the Y-input port through a separate three-state buffer.

The HMU17 utilizes a single clock signal (CLK) along with three register enables (ENX, ENY, and ENP) to latch the input operands and the output product registers. The ENX and ENY inputs enable the X and Y input registers, while ENP enables both the LSP and MSP output registers. This configuration facilitates the use of the HMU17 for micro-programmed systems.

All outputs of the HMU17 also offer three-state control for multiplexing onto multi-use system busses.

Functional Diagram

Absolute Maximum Ratings

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Operating Conditions

Operating Voltage Range
+4.5 V to +5.5 V
Operating Temperature Range $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

TABLE 1. HMU16/883 D.C. ELECTRICAL PERFORMANCE CHARACTERISTICS
Device Guaranteed and 100\% Tested

PARAMETER	SYMBOL	CONDITIONS	GROUP A SUBGROUPS	TEMPERATURE	LIMITS		UNITS
					MIN	max	
Logical One Input Voltage	V_{IH}	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	1, 2, 3	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	2.2	-	V
Logical Zero Input Voltage	$V_{\text {IL }}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	1, 2, 3	$-55^{\circ} \mathrm{C} \leq \mathrm{T} \mathrm{A} \leq+125^{\circ} \mathrm{C}$	-	0.8	V
Output HIGH Voltage	V_{OH}	$\begin{aligned} & \mathrm{IOH}=-400 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}(\text { Note } 1) \end{aligned}$	1, 2, 3	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	2.6	-	v
Output LOW Voltage	V_{OL}	$\begin{aligned} & \mathrm{IOL}_{\mathrm{O}}=+4.0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}(\text { Note } 1) \end{aligned}$	1, 2, 3	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	-	0.4	V
Input Leakage Current	I	$\begin{aligned} & V_{I N}=V_{C C} \text { or } G N D \\ & V_{C C}=5.5 \mathrm{~V} \end{aligned}$	1, 2, 3	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	-10	+10	$\mu \mathrm{A}$
Output or l/O Leakage Current	10	$\begin{aligned} & V_{\text {OUT }}=V_{C C} \text { or } G N D \\ & V_{C C}=5.5 \mathrm{~V} \end{aligned}$	1, 2, 3	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	-10	+10	$\mu \mathrm{A}$
Standby Power Supply Current	${ }^{\text {I CcsB }}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$ or GND , $V_{C C}=5.5 \mathrm{~V}$, Outputs Open	1, 2, 3	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	-	500	$\mu \mathrm{A}$
Operating Power Supply Current	ICCOP	$\begin{aligned} & f=1.0 \mathrm{MHz}, \\ & V_{I N}=V_{C C} \text { or GND } \\ & V_{C C}=5.5 \mathrm{~V} \text { (Note 2) } \end{aligned}$	1, 2, 3	$-55^{\circ} \mathrm{C} \leq \mathrm{T} \mathrm{A} \leq+125^{\circ} \mathrm{C}$	-	7.0	mA
Functional Test	FT	(Note 3)	7,8	$-55^{\circ} \mathrm{C} \leq \mathrm{T} \mathrm{A} \leq+125^{\circ} \mathrm{C}$	-	-	

NOTES:

1. Interchanging of force and sense conditions is permitted.
2. Operating Supply Current is proportional to frequency, typical rating is $5 \mathrm{~mA} / \mathrm{MHz}$.

Reliability Information

Thermal Resistance	$\theta_{\text {ja }}$	$\theta_{\text {jc }}$
Ceramic PGA Package	$42.69{ }^{\circ} \mathrm{C} / \mathrm{W}$	$10.0^{\circ} \mathrm{C} / \mathrm{W}$
Maximum Package Powe	$+125^{\circ} \mathrm{C}$	
Ceramic PGA Package		1.17 Watt
Gate Count		500 Gates

TABLE 2. HMU17/883 A.C. ELECTRICAL PERFORMANCE CHARACTERISTICS
Device Guaranteed and 100% Tested

PARAMETER	SYMBOL	(NOTE 1) CONDITIONS	GROUP A SUBGROUPS	TEMPERATURE	-45		-60		UNITS
					MIN	MAX	MIN	MAX	
Unclocked Multiply Time	TMUC		9, 10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	-	70	-	90	ns
Clocked Multiply Time	T_{MC}		9, 10, 11	$-55^{\circ} \mathrm{C} \leq T \mathrm{~A} \leq+125^{\circ} \mathrm{C}$	-	45	-	60	ns
X, Y, RND Setup Time	Ts		9, 10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125{ }^{\circ} \mathrm{C}$	18	-	20	-	ns
Clock HIGH Pulse Width	${ }^{\text {TPWH }}$		9, 10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T}^{\prime} \leq+125^{\circ} \mathrm{C}$	15	-	20	-	ns
Clock LOW Pulse Width	TPWL		9, 10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T}^{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	15	-	20	-	ns
MSPSEL to Product Out	TPDSEL		9, 10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T}^{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	-	25	-	30	ns
Output Clock to P	TPDP		9, 10, 11	$-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}$	-	25	-	30	ns
Output Clock to Y	TPDY		9, 10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T}^{\prime} \leq+125^{\circ} \mathrm{C}$	-	25	-	30	ns
3-State Enable Time	TENA	(Note 2)	9, 10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	-	25	-	30	ns
Clock Enable Setup	TSE		9,10,11	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	15	-	15	-	ns

NOTES:

1. AC Testing as follows: Input levels OV and 3.0 V , Timing reference levels $=1.5 \mathrm{~V}$, Input rise and fall times driven at $1 \mathrm{~ns} / \mathrm{V}$, Output load per test load circuit, with $\mathrm{V}_{1}=2.4 \mathrm{~V}, \mathrm{R}_{1}=500 \Omega$ and $\mathrm{C}_{\mathrm{L}}=40 \mathrm{pF}$.
2. Transition is measured at $\pm 200 \mathrm{mV}$ from steady state voltage, Outpu loading per test load circuit, with $V_{1}=1.5 \mathrm{~V}, \mathrm{R}_{1}=500 \Omega$ and $\mathrm{C}_{\mathrm{L}}=40 \mathrm{pF}$.

TABLE 3. HMU17/883 ELECTRICAL PERFORMANCE CHARACTERISTICS

PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	-45		-60		UNITS
					MIN	MAX	MIN	MAX	
Input Capacitance	$\mathrm{CIN}^{\text {N }}$	$\mathrm{V}_{\mathrm{CC}}=$ Open, $\mathrm{f}=1 \mathrm{MHz}$ All Measurements are referenced to device GND.	1	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-	15	-	15	pF
Output Capacitance	COUT		1	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-	10	-	10	pF
I/O Capacitance	$\mathrm{C}_{1 / \mathrm{O}}$		1	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-	10	-	10	pF
X, Y, RND Hold Time	T_{H}		1,2	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	3	-	3	-	ns
3-State Disable Time	T DIS		1, 2, 3	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	-	25	-	30	ns
Clock Enable Hold Time	THE		1, 2,3	$-55^{\circ} \mathrm{C} \leq \mathrm{T} \mathrm{A} \leq+125^{\circ} \mathrm{C}$	3	-	3	-	ns
Output Rise Time	TR	From 0.8 V to 2.0 V	1,2,4	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	-	10	-	10	ns
Output Fall Time	$\mathrm{T}_{\text {F }}$	From 2.0 V to 0.8 V	1,2,4	$-55^{\circ} \mathrm{C} \leq \mathrm{T}^{\prime} \leq+125^{\circ} \mathrm{C}$	-	10	-	10	ns

NOTES:

1. The parameters listed in Table 3 are controlled via design or process parameters and are not directly tested. These parameters are characterized upon initial design and after major process and/or design changes.
2. Guaranteed, but not 100% tested.
3. Transition is measured at $\pm 200 \mathrm{mV}$ from steady state voltage, Output loading per test load circuit, with $\mathrm{V}_{1}=1.5 \mathrm{~V}, \mathrm{R}_{1}=500 \Omega$ and $\mathrm{C}_{\mathrm{L}}=40 \mathrm{pF}$.
4. Loading is as specified in the test load circuit, with $\mathrm{V}_{1}=2.4 \mathrm{~V}, \mathrm{R}_{1}=500 \Omega$ and $C_{L}=40 p F$.

TABLE 4. APPLICABLE SUBGROUPS

CONFORMANCE GROUPS	METHOD	SUBGROUPS
Initial Test	$100 \% / 5004$	-
Interim Test	$100 \% / 5004$	-
PDA	100%	1
Final Test	100%	$2,3,8 \mathrm{~A}, 8 \mathrm{~B}, 10,11$
Group A	-	$1,2,3,7,8 \mathrm{~A}, 8 \mathrm{~B}, 9,10,11$
Groups C \&D	Samples $/ 5005$	$1,7,9$

Timing Waveforms

THREE-STATE CONTROL TIMING DIAGRAM

Test Load Circuit

[^0]
Burn-In Circuit

$\begin{aligned} & \text { PGA } \\ & \text { PIN } \end{aligned}$	PIN NAME	BURN-IN SIGNAL	$\begin{aligned} & \text { PGA } \\ & \text { PIN } \end{aligned}$	$\begin{aligned} & \text { PIN } \\ & \text { NAME } \end{aligned}$	BURN-IN SIGNAL	$\begin{aligned} & \text { PGA } \\ & \text { PIN } \end{aligned}$	PIN NAME	BURN-IN SIGNAL	$\begin{aligned} & \text { PGA } \\ & \text { PIN } \end{aligned}$	PIN NAME	BURN-IN SIGNAL
B6	X4	F6	F1	Y9/P9	F11	K7	P10/P26	$\mathrm{v}_{\mathrm{CC} / 2}$	E11	RND	F1
A6	X3	F5	G2	Y10/P10	F12	L7	P11/P27	$\mathrm{V}_{\mathrm{CC}} / 2$	D10	ENX	FO
B5	X2	F4	G1	Y11/P11	F13	K8	P12/P28	$\mathrm{v}_{\mathrm{CC} / 2}$	D11	X15	F3
A5	X1	F3	H2	Y12/P12	F14	L8	P13/P29	$\mathrm{v}_{\mathrm{CC}} / 2$	C10	X14	F2
B4	X0	F2	H1	Y13/P13	F15	K9	P14/P30	$\mathrm{v}_{\mathrm{CC} / 2}$	C11	X13	F15
A4	$\overline{\text { OEL }}$	V_{CC}	J2	Y14/P14	F4	L9	P15/P31	$\mathrm{V}_{\mathrm{CC} / 2}$	B10	X12	F14
B3	CLK	FO	J1	Y15/P15	F5	K10	ENP	FO	A10	X11	F13
A3	$\overline{\text { ENY }}$	FO	K2	PO/P16	$\mathrm{v}_{\mathrm{CC} / 2}$	K11	$\overline{\text { OEP }}$	F1	B9	X10	F12
B2	YO/PO	F2	L2	P1/P17	$\mathrm{V}_{\mathrm{CC}} / 2$	J10	$\overline{F A}$	F14	A9	X9	F11
B1	Y1/P1	F3	K3	P2/P18	$\mathrm{V}_{\mathrm{CC} / 2}$	J11	FT	F15	B8	X8	F10
C2	Y2/P2	F4	L3	P3/P19	$\mathrm{V}_{\mathrm{CC}} / 2$	H10	MSPSEL	F14	A8	X7	F9
C1	Y3/P3	F5	K4	P4/P20	$\mathrm{V}_{\mathrm{CC} / 2}$	H11	GND	GND	B7	X6	F8
D2	Y4/P4	F6	L4	P5/P21	$\mathrm{V}_{\mathrm{CC} / 2}$	G10	GND	GND	A7	X5	F7
D1	Y5/P5	F7	K5	P6/P22	$\mathrm{v}_{\mathrm{CC} / 2}$	G11	$V_{C C}$	$V_{C C}$	A2	N.C.	NONE
E2	Y6/P6	F8	L5	P7/P23	$\mathrm{v}_{\mathrm{CC} / 2}$	F10	$V_{C C}$	$V_{C C}$	K1	N.C.	NONE
E1	Y7/P7	F9	K6	P8/P24	$\mathrm{V}_{\mathrm{CC} / 2}$	F11	TCY	F15	L10	N.C.	NONE
F2	Y8/P8	F10	L6	P9/P25	$\mathrm{V}_{\mathrm{CC}} / 2$	E10	TCX	F15	B11	N.C.	NONE

NOTES:

1. $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}+0.5 \mathrm{~V} /-0.0 \mathrm{~V}$ with $0.1 \mu \mathrm{~F}$ decoupling capacitor to GND.
2. $F O=100 \mathrm{kHz}, F 1=F 0 / 2, F 2=F 1 / 2, \ldots \ldots \ldots$
3. $47 \mathrm{k} \Omega$ load resistors used on all pins except $V_{C C}$ and GND (Pin-Grid identifiers F10, G10, G11 and H11).

Die Characteristics

DIE DIMENSIONS:
$179 \times 169 \times 19 \pm 1$ mils
METALLIZATION:
Type: $\mathrm{Si}-\mathrm{Al}$ or $\mathrm{Si}-\mathrm{Al}-\mathrm{Cu}$
Thickness: $8 \mathrm{k} \AA$
GLASSIVATION:
Type: Nitrox
Thickness: 10k \AA
Metallization Mask Layout

DIE ATTACH:

Material: Si-Au Eutectic Alloy
Temperature: Ceramic PGA - $420^{\circ} \mathrm{C}$ (Max)
WORST CASE CURRENT DENSITY: $1.2 \times 10^{5} \mathrm{~A} / \mathrm{cm}^{2}$

Packaging ${ }^{\dagger}$

68 PIN CERAMIC PIN GRID ARRAY

LEAD MATERIAL: Type B
LEAD FINISH: Type C
PACKAGE MATERIAL: Ceramic, $\mathrm{Al}_{2} \mathrm{O}_{3} 90 \%$
PACKAGE SEAL:
Material: Gold/Tin
Temperature: $320^{\circ} \mathrm{C} \pm 10^{\circ} \mathrm{C}$ Method: Furnace Braze

INTERNAL LEAD WIRE:

Material: Aluminum
Diameter: 1.25 Mil
Bonding Method: Ultrasonic Wedge
COMPLIANT OUTLINE: 38510 P-AC

HMA510

16×16-Bit CMOS Parallel
 Multiplier Accumulator

Features

- 16×16-bit Parallel Multiplication with Accummulation to a 35-Bit Result
- High-Speed (45ns) Multiply Accumulate Time
- Low Power CMOS Operation:
- $\operatorname{ICCSB}=500 \mu \mathrm{~A}$ Maximum
- $\operatorname{ICCOP}=7.0 \mathrm{~mA}$ Maximum @ 1.0 MHz
- HMA510 is Compatible with the CY7C510 and the IDT7210
- Supports Two's Complement or Unsigned Magnitude Operations
- TTL Compatible Inputs/Outputs
- Three-State Outputs
- Available in 68 Pin Plastic Leaded Chip Carrier (PLCC) and 68 Lead Pin Grid Array (PGA)

Description

The HMA510 is a high speed, low power CMOS 16×16-bit parallel multiplier accumulator capable of operating at 45ns clocked multiply-accumulate cycles. The 16-bit X and Y operands may be specified as either two's complement or unsigned magnitude format. Additional inputs are provided for the accumulator functions which include: loading the accumulator with the current product, adding or subtracting the accumulator contents and the current product, and preloading the accumulator registers from the external inputs.

All inputs and outputs are registered. The registers are all positive edge triggered, and are latched on the rising edge of the associated clock signal. The 35-bit accumulator output register is broken into three parts. The 16-bit least significant product (LSP), the 16 -bit most significant product (MSP), and the 3-bit extended product (XTP) registers. The XTP and MSP registers have dedicated output ports, while the LSP register shares the Y-inputs in a multiplexed fashion. The entire 35-bit accumulator output register may be preloaded at any time through the use of the bidirectional output ports and the preloaded control.

Block Diagram

HMA510 PLCC

HMA510 CERAMIC PGA

Pin Descriptions

NAME	PLCC PIN NUMBER	TYPE	DESCRIPTION
V_{CC}	17-20		The +5 V power supply pins. $0.1 \mu \mathrm{~F}$ capacitors between the V_{CC} and GND pins are recommended.
GND	53,54		The device ground.
X0-X15	1-10, 63-68	1	X-Input Data. These 16 data inputs provide the multiplicand which may be in two's complement or unsigned magnitude format.
$\begin{aligned} & \text { YO-Y15/ } \\ & \text { PO-P15 } \end{aligned}$	45-52, 55-62	1/0	Y-Input/LSP Output Data. This 16 -bit port is used to provide the multiplier which may be in two's complement or unsigned magnitude format. It may also be used for output of the Least Significant Product (PO-P15) or for preloading the LSP register.
P16-P3	29-44	1/0	MSP Output Data. This 16-Bit port is used to provide the Most Significant Product Output (P16-P31). It may also be used to preload the MSP register.
P32-P34	26-28	1/0	XTP Output Data. This 3-Bit port is used to provide the Extended Product Output (P32-P34). It may also be used to preload the XTP register.
TC	21	1	Two's Complement Control. Input data is interpreted as two's complement when this control is HIGH. A LOW indicates the data is to be interpreted as unsigned magnitude format. This control is latched on the rising edge of CLKX or CLKY.
ACC	14	1	Accumulate Control. When this control is HIGH, the accumulator output register contents are added to or subtracted from the current product, and the result is stored back into the accumulator output register. When LOW, the product is loaded into the accumulator output register overwriting the current contents. This control is also latched on the rising edge of CLKX or CLKY.
SUB	13	1	Subtract Control. When both SUB and ACC are HIGH, the accumulator register contents are subtracted from the current product. When ACC is HIGH and SUB is LOW, the accumulator register contents and the current product are summed. The SUB control input is latched on the rising edge of CLKX or CLKY.
RND	12	1	Round Control. When this control is HIGH, a one is added to the most significant bit of the LSP. When LOW, the product is unchanged.
PREL	23	1	Preload Control. When this control is HIGH, the three bidirectional ports may be used to preload the accumulator registers. The three-state controls ($\overline{\mathrm{OEX}}, \overline{\mathrm{OEM}}$, $\overline{O E L})$ must be HIGH, and the data will be preloaded on the rising edge of CLKP. When this control is LOW, the accumulator registers function in a normal manner.
$\overline{\text { OEL }}$	11	1	Y-Input/LSP Output Port Three-state Control. When $\overline{\mathrm{OEL}}$ is HIGH, the output drivers are in the high impedance state. This state is required for Y -data input or preloading the LSP register. When $\overline{O E L}$ is LOW, the port is enabled for LSP output.
$\overline{\text { OEM }}$	24	1	MSP Output Port Three-state Control. A LOW on this control line enables the port for output. When $\overline{O E M}$ is HIGH, the output drivers are in the high impedance state. This control must be HIGH for preloading the MSP register.
$\overline{\mathrm{OEX}}$	22	1	XTP Output Port Three-state Control. A LOW on this control line enables the port for output. When $\overline{\mathrm{OEX}}$ is HIGH, the output drivers are in the high impedance state. This control must be HIGH for preloading the XTP register.
CLKX	15	1	X-Register Clock. The rising edge of this clock latches the X-data input register along with the TC, ACC, SUB and RND inputs.
CLKY	16	1	Y -Register Clock. The rising edge of this clock latches the Y -data input register along with the TC, ACC, SUB and RND inputs.
CLKP	25	1	Product Register Clock. The rising edge of CLKP latches the LSP, MSP and XTP registers. If the preload control is active, the data on the I/O ports is loaded into these registers. If preload is not active, the accumulated product is loaded into the the registers.

Functional Description

The HMA510 is a high speed 16×16-bit multiplier accumulator (MAC). It consists of a 16-bit parallel multiplier follower by a 35-bit accumulator. All inputs and outputs are registered and are latched on the rising edge of the associated clock signal. The HMA510 is divided into four sections: the input section, the multiplier array, the accumulator and the output/preload section.

The input section has two 16-bit operand input registers for the X and Y operands which are latched on the rising edge of CLKX and CLKY respectively. A four bit control register (TC, RND, ACC, SUB) is also included and is latched from either of the input clock signals.

The 16×16 multiplier array produces the 32-bit product of the input operands. Two's complement or unsigned magnitude operation can be selected by the use of the TC control. The 32-bit result may also be rounded through the use of the RND control. In this case, a ' 1 ' is added to the MSB of the LSP (bit P15). The 32-bit product is zero-filled or sign-extened as appropriate and passed as a 35-bit number to the accumulator section.

The accumulator functions are controlled by the ACC, SUB and PREL control inputs. Four functions may be selected: the accumulator may be loaded with the current product; the product may be added to the accumulator contents; the accumulator contents may be subtracted from the current product; or the accumulator may be loaded from the bidirectional ports. The accumulator registers are updated at the rising edge of the CLKP signal.

The output/preload section contains the accumulator/ output register and the bidirectional ports. This section is controlled by the signals PREL, $\overline{O E X}, \overline{O E M}$ and $\overline{O E L}$. When PREL is high, the output buffers are in a high impedance state. When one of the controls $\overline{\mathrm{OEX}}, \overline{\mathrm{OEM}}$ or $\overline{\mathrm{OEL}}$ are also high, data present at the outputs will be preloaded into the associated register on the rising edge of CLKP. When PREL is low, the signals $\overline{\mathrm{OEX}}, \overline{\mathrm{OEM}}$ and $\overline{\mathrm{OEL}}$ are enable controls for their respective three-state output ports.

PRELOAD FUNCTION TABLE

			OUTPUT REGISTERS			
	$\overline{O E X}$	$\overline{\text { OEM }}$	$\overline{\text { OEL }}$	XTP	MSP	LSP
0	0	0	0	Q	Q	Q
0	0	0	1	Q	Q	Z
0	0	1	0	Q	Z	Q
0	0	1	1	Q	Z	Z
0	1	0	0	Z	Q	Q
0	1	0	1	Z	Q	Z
0	1	1	0	Z	Z	Q
0	1	1	1	Z	Z	Z
1	0	0	0	Z	Z	Z
1	0	0	1	Z	Z	$P L$
1	0	1	0	Z	$P L$	Z
1	0	1	1	Z	$P L$	$P L$
1	1	0	0	$P L$	Z	Z
1	1	0	1	$P L$	Z	$P L$
1	1	1	0	$P L$	$P L$	Z
1	1	1	1	$P L$	$P L$	$P L$

$\mathbf{Z}=$ Output Buffers at High Impedance (Disabled).
Q = Output Buffers at LOW Impedance. Contents of Output Register Available Through Output Ports.
$\mathrm{PL}=$ Output disabled. Preload data supplied to the output pins will be loaded into the register at the rising edge of CLKP.

ACCUMULATOR FUNCTION TABLE

PREL	ACC	SUB	P	OPERATION
L	L	X	Q	Load
L	H	L	Q	Add
L	H	H	Q	Subtract
H	X	X	PL	Preload

INPUT FORMATS

Fractional Two's Complement Input

\mathbf{X}																Y															
1514	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
$\begin{aligned} & -20 \\ & -20 \\ & (\mathrm{Sign}) \end{aligned}$							2-7	2-8	2-9			-12			2-15	$\begin{gathered} -2^{2} \\ (\mathrm{Sig} \end{gathered}$	$2-1$					2-6	2-7	2-8	29	-1	-11	-12			2-15

Integer Two's Complement Input

Unsigned Fractional Input

Unsigned Integer Input

OUTPUT FORMATS

Two's Complement Fractional Output

(Sign)
Two's Complement Integer Output

Unsigned Fractional Output

Unsigned Integer Output
XTP
MSP

$\begin{array}{lll}34 & 33 & 32\end{array} \quad$| 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

LSP

| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $\begin{array}{llllllllllllll}215 & 214 & 213 & 212 & 2^{11} & 2^{10} & 2^{9} & 2^{8} & 2^{7} & 26 & 2^{5} & 2^{4} & 2^{3} & 2^{2}\end{array} 2^{1} \quad 2^{0}$

Operating Conditions

Operating Voltage Range
+4.75 V to +5.25 V
Operating Temperature Range
$.0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Reliability Information

$\theta_{\text {ja }}$
. $42^{\circ} \mathrm{C} / \mathrm{W}$ (PLCC), $42.69^{\circ} \mathrm{C} / \mathrm{W}$ (PGA)
ic . $15.1^{\circ} \mathrm{C} / \mathrm{W}$ (PLCC), $10.0^{\circ} \mathrm{C} / \mathrm{W}$ (PGA)
Maximum Package Power Dissipation at $70^{\circ} \mathrm{C}$.1.7W (PLCC)
2.46/W (PGA)
D.C. Electrical Specifications ($\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN	MAX	UNITS	TEST CONDITIONS
Logical One Input Voltage	V_{IH}	2.0	-	V	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$
Logical Zero Input Voltage	V_{IL}	-	0.8	V	$\mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V}$
Output HIGH Voltage	V_{OH}	2.6	-	V	$\mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V}$
Output LOW Voltage	V_{OL}	-	0.4	V	$\mathrm{I}_{\mathrm{OL}}=+4.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V}$
Input Leakage Current	I	-10	10	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$ or $\mathrm{GND}, \mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$
Output or I/O Leakage Current	I_{O}	-10	10	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{CC}}$ or $\mathrm{GND}, \mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$
Standby Power Supply Current	$\mathrm{I}_{\mathrm{CCSB}}$	-	500	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$ or $\mathrm{GND}, \mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$, Outputs Open
Operating Power Supply Current	$\mathrm{I}_{\mathrm{CCOP}}$	-	7.0	mA	$\mathrm{f}=1.0 \mathrm{MHz}, \mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{CC}}$ or GND $\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}(\mathrm{Note} 1)$

Capacitance $\left(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, Note 2)

PARAMETER	SYMBOL	MIN	MAX	UNITS	TEST CONDITIONS	
Input Capacitance	$\mathrm{C}_{\text {IN }}$	-	10	pF	FREQ $=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=$ Open all Measurements are Referenced to Device Ground.	
Output Capacitance	$\mathrm{C}_{\text {OUT }}$	-	10	pF		
I/O Capacitance	$\mathrm{C}_{\mathrm{I} / \mathrm{O}}$	-	15	pF		

NOTES:

1. Operating Supply Current is proportional to frequency, typical rating is $5.0 \mathrm{~mA} / \mathrm{MHz}$.
2. Not tested, but characterized at initial design and at major process/design changes.
A.C. Electrical Specifications ($V_{C C}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	HMA510-45		HMA510-55		UNITS	TEST CONDITIONS
		MIN	MAX	MIN	MAX		
Multiply Accumulate Time	TMA	-	45	-	55	ns	
Output Delay	T_{D}	-	25	-	30	ns	
3-State Enable Time	TENA	-	25	-	30	ns	Note 1
3-State Disable Time	TDIS	-	25	-	30	ns	Note 1
Input Setup Time	TS	18	-	20	-	ns	
Input Hold Time	T_{H}	2	-	2	-	ns	
Clock High Pulse Width	TPWH	15	-	20	-	ns	.
Clock Low Pulse Width	TPWL	15	-	20	-	ns	
Output Rise Time	T_{R}	-	8	-	8	ns	From 0.8 V to 2.0 V
Output Fall Time	T_{F}	-	8	-	8	ns	From 2.0 V to 0.8 V

NOTES:

1. Transition is measured at $\pm 200 \mathrm{mV}$ from steady state voltage with loading \quad 2. For A.C. Test load, refer to A.C. Test Circuit with $\mathrm{V}_{1}=2.4 \mathrm{~V}, \mathrm{R}_{1}=500 \Omega$ specified in A.C. Test Circuit; $V_{1}=1.5 \mathrm{~V}, \mathrm{R}_{1}=500 \Omega$ and $\mathrm{C}_{\mathrm{L}}=40 \mathrm{pF}$.
and $C_{L}=40 \mathrm{pF}$.

A.C. Test Circuit

*Includes Stray and Jig Capacitance
A.C. Testing Input, Output Waveforms

A.C. Testing: All Parameters tested as per test circuit. Input rise and fall times are driven at $1 \mathrm{~ns} / \mathrm{V}$.

Timing Diagram

SET-UP AND HOLD TIME

HMA510 TIMING DIAGRAM

THREE STATE CONTROL

PRELOAD TIMING DIAGRAM

16×16-Bit CMOS Parallel
 Multiplier Accumulator

Description

The HMA510/883 is a high speed, low power CMOS 16×16-bit parallel multiplier accumulator capable of operating at 55 ns clocked multiply-accumulate cycles. The 16-bit X and Y operands may be specified as either two's complement or unsigned magnitude format. Additional inputs are provided for the accumulator functions which include: loading the accumulator with the current product, adding or subtracting the accumulator contents and the current product, and preloading the accumulator registers from the external inputs.

All inputs and outputs are registered. The registers are all positive edge triggered, and are latched on the rising edge of the associated clock signal. The 35-bit accumulator output register is broken into three parts. The 16-bit least significant product (LSP), the 16-bit most significant product (MSP), and the 3-bit extended product (XTP) registers. The XTP and MSP registers have dedicated output ports, while the LSP register shares the Y-inputs in a multiplexed fashion. The entire 35-bit accumulator output register may be preloaded at any time through the use of the bidirectional output ports and the preloaded control.

Block Diagram

\begin{abstract}
Absolute Maximum Ratings
Supply Voltage
e.

Input or Output Voltage Applied +8.0 V

Storage Temperature Range
Junction Temperature . $+175^{\circ} \mathrm{C}$
Lead Temperature (Soldering 10 sec) 300 ${ }^{\circ} \mathrm{C}$
ESD Classification
CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Reliability Information

Operating Conditions

Operating Voltage Range . +4.5 V to +5.5 V
Operating Temperature Range $\ldots \ldots \ldots \ldots \ldots . .-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
TABLE 1. HMA510/883 D.C. ELECTRICAL PERFORMANCE CHARACTERISTICS
Device Guaranteed and 100\% Tested

PARAMETER	SYMBOL	CONDITIONS	GROUP A SUBGROUPS	TEMPERATURE	LIMITS		UNITS
					MIN	MAX	
Logical One Input Voltage	V_{IH}	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	1,2,3	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	2.2	-	V
Logical Zero Input Voltage	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	1, 2, 3	$-55^{\circ} \mathrm{C} \leq \mathrm{T} \mathrm{A} \leq+125^{\circ} \mathrm{C}$	-	0.8	V
Output HIGH Voltage	V_{OH}	$\begin{aligned} & \mathrm{IOH}_{\mathrm{OH}}=-400 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}(\text { Note } 1) \end{aligned}$	1,2,3	$-55^{\circ} \mathrm{C} \leq \mathrm{T} \mathrm{A} \leq+125^{\circ} \mathrm{C}$	2.6	-	v
Output LOW Voltage	V_{OL}	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=+4.0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}(\text { Note } 1) \end{aligned}$	1, 2, 3	$-55^{\circ} \mathrm{C} \leq \mathrm{T} \mathrm{A} \leq+125^{\circ} \mathrm{C}$	-	0.4	v
Input Leakage Current	1	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \\ & \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V} \end{aligned}$	1, 2, 3	$-55^{\circ} \mathrm{C} \leq \mathrm{T} \mathrm{A} \leq+125^{\circ} \mathrm{C}$	-10	+10	$\mu \mathrm{A}$
Output or I/O Leakage Current	10	$\begin{aligned} & \mathrm{V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \\ & \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V} \end{aligned}$	1, 2, 3	$-55^{\circ} \mathrm{C} \leq \mathrm{T} \mathrm{A} \leq+125^{\circ} \mathrm{C}$	-10	+10	$\mu \mathrm{A}$
Standby Power Supply Current	${ }^{\prime} \mathrm{CCSB}$	$V_{I N}=V_{C C}$ or GND, $V_{C C}=5.5 \mathrm{~V}$, Outputs Open	1, 2, 3	$-55^{\circ} \mathrm{C} \leq \mathrm{T} \mathrm{S} \leq+125^{\circ} \mathrm{C}$	-	500	$\mu \mathrm{A}$
Operating Power Supply Current	${ }^{\prime} \mathrm{CCOP}$	$\begin{aligned} & f=1.0 \mathrm{MHz}, \\ & V_{I N}=V_{C C} \text { or GND } \\ & \left.V_{C C}=5.5 \mathrm{~V} \text { (Note } 2\right) \end{aligned}$	1, 2, 3	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	-	7.0	mA
Functional Test	FT	(Note 3)	7,8	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	-	-	

NOTES:

1. Interchanging of force and sense conditions is permitted.
2. Operating Supply Current is proportional to frequency, typical rating is $5 \mathrm{~mA} / \mathrm{MHz}$.

Specifications HMA510/883

TABLE 2. HMA510/883 A.C. ELECTRICAL PERFORMANCE CHARACTERISTICS
Device Guaranteed and 100% Tested

PARAMETER	SYMBOL	(NOTE 1) CONDITIONS	GROUP A SUBGROUPS	TEMPERATURE	-55		-65		-75		UNITS
					MIN	Max	MIN	MaX	MIN	MAX	
Multiply Accumulate Time	TMA		9, 10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125{ }^{\circ} \mathrm{C}$	-	55	-	65	-	75	ns
Input Setup Time	Ts		9,10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	20	-	25	-	25	-	ns
Clock HIGH Pulse Width	TPWH		9, 10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T} \mathrm{A} \leq+125^{\circ} \mathrm{C}$	20	-	25	-	25	-	ns
Clock LOW Pulse Width	TPWL	\cdots	9, 10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	20	-	25	-	25	-	ns
Output Delay	$T_{\text {D }}$		9, 10, 11	$-55^{\circ} \mathrm{C} \leq T \mathrm{~A} \leq+125^{\circ} \mathrm{C}$	-	30	-	35	-	35	ns
3-State Enable Time	TENA	(Note 2)	9, 10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	-	30	-	30	-	35	ns

NOTES:

1. AC Testing as follows: Input levels $O \mathrm{~V}$ and 3.0 V (OV and 3.2 V for clock inputs). Timing reference levels $=1.5 \mathrm{~V}$, Input rise and fall times driven at $1 \mathrm{~ns} / \mathrm{V}$, Output load per test load circuit, with $\mathrm{V}_{1}=2.4 \mathrm{~V}, \mathrm{R}_{1}=500 \Omega$ and $C_{L}=40 \mathrm{pF}$.
2. Transition is measured at $\pm 200 \mathrm{mV}$ from steady state voltage, Output loading per test load circuit, with $V_{1}=1.5 \mathrm{~V}, \mathrm{R}_{1}=500 \Omega$ and $\mathrm{C}_{\mathrm{L}}=40 \mathrm{pF}$.

TABLE 3. HMA510/883 ELECTRICAL PERFORMANCE CHARACTERISTICS

PARAMETER	SYMBOL	CONDITIONS	NOTE	TEMPERATURE	-55		-65		-75		UNITS
					MIN	MAX	MIN	MAX	MIN	MAX	
Input Capacitance	$\mathrm{Cln}_{\text {IN }}$	$\mathrm{V}_{\mathrm{CC}}=$ Open, $\mathrm{f}=1 \mathrm{MHz}$ All measurements are referenced to device GND.	1	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-	10	-	10	-	10	pF
Output Capacitance	COUT		1	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-	10	-	10	-	10	pF
I/O Capacitance	$\mathrm{C}_{1 / \mathrm{O}}$		1	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-	15	-	15	-	15	pF
Input Hold Time	T_{H}		1	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	3	-	3	-	3	-	ns
3-State Disable Time	${ }^{\text {T DIS }}$		1	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	-	30	-	30	-	30	ns
Output Rise Time	T_{R}	From 0.8 V to 2.0 V	1	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	-	10	-	10	-	10	ns
Output Fall Time	T_{F}	From 2.0 V to 0.8 V	1	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	-	10	-	10	-	10	ns

NOTE:

1. The parameters listed in Table 3 are controlled via design or process parameters and are not directly tested. These parameters are characterized upon initial design and after major process and/or design changes.

TABLE 4. APPLICABLE SUBGROUPS

CONFORMANCE GROUPS	METHOD	SUBGROUPS
Initial Test	$100 \% / 5004$	-
Interim Test	$100 \% / 5004$	-
PDA	100%	1
Final Test	100%	$2,3,8 A, 8 B, 10,11$
Group A	-	$1,2,3,7,8 A, 8 B, 9,10,11$
Groups C \&D	Samples/5005	$1,7,9$

Test Load Circuit

*Includes Stray and Jig Capacitance
A.C. Testing Input, Output Waveform

A.C. Testing: All Parameters tested as per test circuit. Input rise and fall times are driven at $1 \mathrm{~ns} / \mathrm{V}$.

Timing Diagram

SET-UP AND HOLD TIME

HMA510 TIMING DIAGRAM

THREE STATE CONTROL

PRELOAD TIMING DIAGRAM

Burn-In Circuit

$\begin{aligned} & \text { PGA } \\ & \text { PIN } \end{aligned}$	PIN NAME	BURN-IN SIGNAL	$\begin{aligned} & \text { PGA } \\ & \text { PIN } \end{aligned}$	$\begin{gathered} \text { PIN } \\ \text { NAME } \end{gathered}$	BURN-IN SIGNAL	$\begin{aligned} & \text { PGA } \\ & \text { PIN } \end{aligned}$	$\begin{gathered} \text { PIN } \\ \text { NAME } \end{gathered}$	BURN-IN SIGNAL	$\begin{aligned} & \text { PGA } \\ & \text { PIN } \end{aligned}$	$\begin{gathered} \text { PIN } \\ \text { NAME } \end{gathered}$	BURN-IN SIGNAL
B6	X6	F1	F1	Y9/P9	F2	K7	P26	$\mathrm{V}_{\mathrm{CC} / 2}$	E11	ACC	F1
A6	X5	F2	G2	Y10/P10	F3	L7	P27	$\mathrm{v}_{\mathrm{CC} / 2}$	D10	SUB	F2
B5	X4	F3	G1	Y11/P11	F5	K8	P28	$\mathrm{v}_{\mathrm{CC} / 2}$	D11	RND	F3
A5	X3	F4	H2	Y12/P12	F4	L8	P29	$\mathrm{v}_{\mathrm{Cc} / 2}$	C10	$\overline{O E L}$	V_{CC}
B4	X2	F5	H1	Y13/P13	F4	K9	P30	$\mathrm{v}_{\mathrm{CC} / 2}$	C11	X15	F8
A4	X1	F6	J2	Y14/P14	F8	L9	P31	$\mathrm{V}_{\mathrm{CC} / 2}$	B10	X14	F9
B3	X0	F7	J1	Y15/P15	F9	K10	P32	$\mathrm{v}_{\mathrm{CC}} / 2$	A10	X13	F10
A3	Yo/PO	F8	K2	P16	$\mathrm{v}_{\mathrm{CC} / 2}$	K11	P33	$\mathrm{V}_{\mathrm{CC} / 2}$	B9	X12	F11
B2	Y1/P1	F9	L2	P17	$\mathrm{v}_{\mathrm{CC} / 2}$	J10	P34	$\mathrm{v}_{\mathrm{CC}} / 2$	A9	X11	F12
B1	Y2/P2	F10	K3	P18	$\mathrm{v}_{\mathrm{CC} / 2}$	J11	CLKP	FO	B8	X10	F13
C2	Y3/P3	F11	L3	P19	$\mathrm{V}_{\mathrm{CC} / 2}$	H10	$\overline{\text { OEM }}$	GND	A8	X9	F14
C1	Y4/P4	F12	K4	P20	$\mathrm{v}_{\mathrm{CC}} / 2$	H11	PREL	F6	B7	x 8	F15
D2	Y5/P5	F13	L4	P21	$\mathrm{v}_{\mathrm{Cc} / 2}$	G10	$\overline{O E X}$	GND	A7	X7	F7
D1	Y6/P6	F14	K5	P22	$\mathrm{v}_{\mathrm{cc} / 2}$	G11	TC	F5	A2	N.C.	N.C.
E2	Y7/P7	F15	L5	P23	$\mathrm{V}_{\mathrm{CC} / 2}$	F10	$V_{C C}$	$V_{C C}$	K1	N.C.	N.C.
E1	GND	GND	K6	P24	$\mathrm{v}_{\mathrm{CC} / 2}$	F11	CLKY	FO	L10	N.C.	N.C.
F2	Y8/P8	F1	L6	P25	$\mathrm{v}_{\mathrm{CC}} / 2$	E10	CLKX	FO	B11	N.C.	N.C.

NOTES:

1. $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}+0.5 \mathrm{~V} /-0.0 \mathrm{~V}$ with $0.1 \mu \mathrm{~F}$ decoupling capacitor to GND
2. $47 \mathrm{k} \Omega$ load resistors used on all pins except V_{CC} and GND (Pin-Grid identifiers F10, G10, G11 and H11)
3. $F O=100 \mathrm{kHz}, F 1=F 0 / 2, F 2=F 1 / 2, \ldots \ldots \ldots, 10 \%$
4. $\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}-1 \mathrm{~V} \pm 0.5 \mathrm{~V}(\mathrm{Min}), \mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$ (Max)

Die Characteristics

DIE DIMENSIONS:
$184 \times 176 \times 19 \pm 1$ mils
METALLIZATION:
Type: Si-Al
Thickness: $8 \mathrm{k} \AA$
GLASSIVATION:
Type: Nitrox
Thickness: 10k \AA
Metallization Mask Layout

Packaging ${ }^{\dagger}$

68 PIN CERAMIC PGA

LEAD MATERIAL: Type B
LEAD FINISH: Type C
PACKAGE MATERIAL: Ceramic $\mathrm{Al}_{2} \mathrm{O}_{3} 90 \%$
PACKAGE SEAL:
Material: Gold/Tin
Temperature: $320^{\circ} \mathrm{C} \pm 10^{\circ} \mathrm{C}$
Method: Furnace Braze

INTERNAL LEAD WIRE:

Material: Aluminum
Diameter: 1.25 Mil
Bonding Method: Ultrasonic Wedge
COMPLIANT 38510 OUTLINE: P-AC

ONE DIMENSIONAL FILTERS

PAGE
DATA SHEETS

HSP43220	Decimating Digital Filter	3-3
HSP43220/883	Decimating Digital Filter	3-23
DECI - MATE	Harris HSP43220 Decimating Digital Filter Development Software	3-31
HSP43891	Digital Filter	3-35
HSP43891/883	Digital Filter	3-50
HSP43881	Digital Filter	3-58
HSP43881/883	Digital Filter	3-73
HSP43481	Digital Filter .	3-81
HSP43481/883	Digital Filter	3-96

Features

- Single Chip Narrow Band Filter with up to $96 d B$ Attenuation
- DC to 33 MHz Clock Rate
- 16 Bit 2's Complement Input
- 20 Bit Coefficients in FIR
- 24 Bit Extended Precision Output
- Programmable Decimation up to a Maximum of 16,384
- Standard 16 Bit Microprocessor Interface
- Filter Design Software Available DECI•MATE ${ }^{\text {m }}$
- Available in 84 Pin PGA and PLCC

Applications

- Very Narrow Band Filters
- Zoom Spectral Analysis
- Channelized Receivers
- Large Sample Rate Converter
- Instrumentation
- 512 Tap Symmetric FIR filtering

Description

The HSP43220 Decimating Digital Filter is a linear phase low pass decimation filter which is optimized for filtering narrow band signals in a broad spectrum of a signal processing applications. The HSP43220 offers a single chip solution to signal processing application which have historically required several boards of IC's. This reduction in component count results in faster development times as well as reduction of hardware costs.

The HSP43220 is implemented as a two stage filter structure. As seen in the block diagram, the first stage is a high order decimation filter (HDF) which utilizes an efficient decimation (sample rate reduction) technique to obtain decimation up to 1024 through a coarse low-pass filtering process. The HDF provides up to 96 dB aliasing rejection in the signal pass band. The second stage consists of a finite impulse response (FIR) decimation filter structured as a transversal FIR filter with up to 512 symmetric taps which can implement filters with sharp transition regions. The FIR can perform further decimation by up to 16 if required while preserving the 96 dB aliasing attenuation obtained by the HDF. The combined total decimation capability is 16,384 .
The HSP43220 accepts 16 bit parallel data in 2's complement format at sampling rates up to 33MSPS. It provides a 16 bit microprocessor compatible interface to simplify the task of programming and three-state outputs to allow the connection of several IC's to a common bus. The HSP43220 also provides the capability to bypass either the HDF or the FIR for additional flexibility.

Block Diagram

DECI • MATE ${ }^{\text {ww }}$ is a registered trademark of Harris Corporation.
IBM PC ${ }^{\mathrm{mw}}, \mathrm{XT}^{\text {w" }}, \mathrm{AT}^{\mathrm{Tw}}, \mathrm{PS} / 2^{\mathrm{Tw}}$ are registered trademarks of International Business Machines, Inc.

Package Pinouts

84 PIN GRID ARRAY (PGA)

84 PLASTIC LEADED CHIP CARRIER (PLCC)

Pin Description

NAME	PLCC PIN	TYPE	DESCRIPTION
V_{CC}	$\begin{gathered} 13,28,42,45, \\ 60,75,78 \\ \hline \end{gathered}$		The +5 V power supply pins.
GND	$\begin{gathered} \hline 11,29,43,46, \\ 61,74,77 \\ \hline \end{gathered}$		The device ground.
CK_IN	76	I	Input sample clock. Operations in the HDF are synchronous with the rising edge of this clock signal. The maximum clock frequency is 33 MHz . CK_IN is synchronous with FIR__CK and thus the two clocks may be tied together if required, or CK__IN can be divided down from FIR__CK. CK_IN is a CMOS level signal.
FIR_CK	44	I	Input clock for the FIR filter. This clock must be synchronous with CK_IN. Operations in the FIR are synchronous with the rising edge of this clock signal. The maximum clock frequency is 33 MHz . FIR__CK is a CMOS level signal.
DINO-15	1-10,79-84	1	Input Data bus. This bus is used to provide the 16-bit input data to the HSP43220. The data must be provided in a synchronous fashion, and is latched on the rising edge of the CK_ IN signal. The data bus is in 2's complement fractional format.
C__BUSO-15	21-27, 30-38	1	Control Input bus. This input bus is used to load all the filter parameters. The pins WR\#, CS\# and AO, A1 are used to select the destination of the data on the Control bus and write the Control bus data into the appropriate register as selected by AO and A1.
DATA_OUT	$\begin{gathered} 48-59,62-73 \\ 0-23 \end{gathered}$	0	Output Data bus. This 24-Bit output port is used to provide the filtered result in 2's complement format. The upper 8 bits of the output, DATA __OUT16-23 will provide extension or growth bits depending on the state of OUT__SELH and whether the FIR has been put in bypass mode. Output bits DATA__OUTO-15 will provide bits 2^{0} through 2^{-15} when the FIR is not bypassed and will provide the bits 2^{-16} through 2^{-31} when the FIR is in bypass mode.
DATA __RDY	47	0	An active high output strobe that is synchronous with FIR__CK that indicates that the result of the just completed FIR cycle is available on the data bus.
RESET\#	16	I	RESET\# is an asynchronous signal which requires that the input clocks CK__IN and FIR__CK are active when RESET\# is asserted. RESET\# disables the clock divider and clears all of the internal data registers in the HDF. The FIR filter data path is not initialized. The control register bits that are cleared are F__BYP, H__STAGES, and H__DRATE. The F__DIS bit is set.
WR \#	19	1	Write strobe. WR\# is used for loading the internal registers of the HSP43220. When CS\# and WR\# are asserted, the rising edge of WR\# will latch the C__BUSO-15 data into the register specified by AO and A1.
CS\#	20	I	Chip Select. The Chip Select input enables loading of the internal registers. When CS\# and WR\# are low, the AO and A1 address lines are decoded to determine the destination of the data on C__BUSO-15. The rising edge of WR\# then loads the appropriate register as specified by AO and A1.
A0, A1	18,17	1	Control Register Address. These lines are decoded to determine which control register is the destination for the data on C__BUSO-15. Register loading is controlled by the AO and A1, WR\# and CS\# inputs.
ASTARTIN\#	15	1	ASTARTIN\# is an asynchronous signal which is sampled on the rising edge of CK__IN. It is used to put the DDF in operational mode. ASTARTIN\# is internally synchronized to CK__IN and is used to generate STARTOUT\#.
STARTOUT\#	12	0	STARTOUT\# is a pulse generated from the internally synchronized version of ASTARTIN\#. It is provided as an output for use in multi-chip configurations to synchronously start multiple HSP43220's. The width of STARTOUT\# is equal to the period of CK__IN.
STARTIN\#	14	1	STARTIN\# is a synchronous input. A high to low transition of this signal is required to start the part. STARTIN\# is sampled on the rising edge of CK_IN. This synchronous signal can be used to start single or multiple HSP43220's.
OUT__SELH	39	1	Output Select. The OUT__SELH input controls which bits are provided at output pins DATA_OUT16-23. A HIGH on this control line selects bits 28 through 21 from the accumulator output. A LOW on this control line selects bits 2^{-16} through 2-23 from the accumulator output. Processing is not interrupted by this pin.
OUT__ENP\#	40	1	Output Enable. The OUT_ENP\# input controls the state of the lower 16 bits of the output data bus, DATA_OUTO-15. A LOW on this control line enables the lower 16 bits of the output bus. When OUT__ENP\# is HIGH, the output drivers are in the high impedance state. Processing is not interrupted by this pin.
OUT__ENX\#	41	I	Output Enable. The OUT__ENX\# input controls the state of the upper 8 bits of the output data bus, DATA_OUT16-23. A LOW on this control line enables the upper 8 bits of the output bus. When OUT__ENX\# is HIGH, the output drivers are in the high impedance state. Processing is not interrupted by this pin.

The HDF

The first filter section is called the High Order Decimation Filter (HDF) and is optimized to perform decimation by large factors. It implements a low pass filter using only adders and delay elements instead of a large number of multiplier/ accumulators that would be required using a standard FIR filter.

The HDF is divided into 4 sections: the HDF filter section, the clock divider, the control register logic and the start logic (Figure 1).

Data Shifter

After being latched into the Input Register the data enters the Data Shifter. The data is positioned at the output of the shifter to prevent errors due to overflow occurring at the output of the HDF. The number of bits to shift is controlled by H

GROWTH.

Integrator Section

The data from the shifter goes to the Integrator section. This is a cascade of 5 integrator (or accumulator) stages, which implement a low pass filter. Each accumulator is
implemented as an adder followed by a register in the feed forward path. The integrator is clocked by the sample clock, CK_IN as shown in Figure 2. The bit width of each integrator stage goes from 66 bits at the first integrator down to 26 bits at the output of the fifth integrator. Bit truncation is performed at each integrator stage because the data in the integrator stages is being accumulated and thus is growing, therefore the lower bits become insignificant, and can be truncated without losing significant data.
There are three signals that control the integrator section; they are H__STAGES, H__BYP and RESET\#. In Figure 2 these control signals have been decoded and are labelled INT__EN1 - INT__EN5. The order of the filter is loaded via the control bus and is called H__STAGES. H__STAGES is decoded to provide the enables for each integrator stage. When a given integrator stage is selected, the feedback path is enabled and the integrator accumulates the current data sample with the previous sum. The integrator section can be put in bypass mode by the H__BYP bit. When H_BYP or RESET\# is asserted, the feedback paths in all integrator stages are cleared.

HDF FILTER SECTION

FIGURE 1. HIGH ORDER DECIMATION FILTER

FIGURE 2. INTEGRATOR

Decimation Register

The output of the Integrator section is latched into the Decimation Register by CK_DEC. The output of the Decimation register is cleared when RESET\# is asserted. The HDF decimation rate $=\mathrm{H} _$DRATE +1 , which is defined as Hdec for convenience.

Comb Filter Section

The output of the Decimation Register is passed to the Comb Filter Section. The Comb section consists of 5 cascaded Comb filters or differentiators. Each Comb filter section calculates the difference between the current and previous integrator output. Each Comb filter consists of a register which is clocked by CK_DEC, followed by an subtractor, where the subtractor calculates the difference between the input and output of the register. Bit truncations are done at each stage as shown in Figure 3. The first stage bit width is 26 bits and the output of the fifth stage is 19 bits.
There are three signals that control the Comb Filter; H_ STAGES, H_BYP and RESET\#. In Figure 3 these control signals are decoded as COMB__EN1 - COMB__EN5. The order of the Comb filter is controlled by H__STAGES, which is programmed over the control bus. H_BYP is used to put the comb section in bypass mode. RESET\# causes the register output in each Comb stage to be cleared. The H_{-} BYP and RESET\# control pins, when asserted force the output of all registers to zero so data is passed through the subtractor unaltered. When the H__STAGES control bits enable a given stage the output of the register is subtracted from the input.
It is important to note that the Comb filter section has a speed limitation. The input sampling rate divided by the decimation factor in the HDF (CK_IN/Hdec) should not exceed 4 MHz . Violating this condition causes the output of the filter to be incorrect. When the HDF is put in bypass mode this limitation does not apply. Equation 1.0 describes the relationship between F_TAPS, F__DRATE, H__DRATE, CK_IN and FIR__CK.

Rounder

The filter accuracy is limited by the 16 bit data input. To maintain the maximum accuracy, the output of the comb is rounded to 16 bits.

The Rounder performs a symmetric round of the 19 bit output of the last Comb stage. Symmetric rounding is done to prevent the synthesis of a OHz spectral component by the rounding process and thus causing a reduction in spurious free dynamic range. Saturation logic is also provided to prevent roll over from the largest positive value to the most negative value after rounding. The output of the last comb filter stage in the HDF section has a 16 bit integer portion with a 3 bit fractional part in 2 's complement format.

The rounding algorithm is as follows:

POSITIVE NUMBERS	
Fractional Portion Greater Than or Equal to 0.5	Round Up
Fractional Portion Less Than 0.5	Truncate

NEGATIVE NUMBERS	
Fractional Portion Less Than or Equal to 0.5	Round Up
Fractional Portion Greater Than 0.5	Truncate

The output of the rounder is latched into the HDF output register with CK__DEC. CK_DEC is generated by the Clock Divider section. The output of the register is cleared when RESET\# is asserted.

Clock Divider and Control Logic

The clock divider divides CK_IN by the decimation factor Hdec to produce CK__DEC. CK__DEC clocks the Decimation Register, Comb Filter section, HDF output register. In the FIR filter CK_DEC is used to indicate that a new data sample is available for processing. The clock generator is cleared by RESET\# and is not enabled until the DDF is started by an internal start signal (see Start Logic).

The Control Register Logic enables the updating of the Control registers which contain all of the filter parameter data. When WR\# and CS\# are asserted, the control register addressed by bits AO and A1 is loaded with the data on the C_BUS.

FIGURE 3. COMB FILTER

DDF Control Registers

F __Register $(A 1=0, A 0=0)$

Bits TO-T8 are used to specify the number of FIR filter taps. The number entered is one less than the number of taps required. For example, to specify a 511 tap filter F__TAPS would be programmed to 510 .

F__DRATE
Bits DO-D3 are used to specify the amount of FIR decimation. The number entered is one less than the decimation required. For example, to specify decimation of 16, F__DRATE would be programmed to 15 . For no FIR decimation, F_DRATE would be set equal to O. FDRATE +1 is defined as Fdec.

F_ESYM
Bit ESO is used to select the FIR symmetry. F__ESYM is set equal to one to select even symmetry and set equal to zero to select odd symmetry. When F_EESYM is one, data is added in the pre-adder; when it is zero, data is subtracted. Normally set to one.

F__BYP
Bit FBO is used to select FIR bypass mode. FIR bypass mode is selected by setting F_BYP=1. When FIR bypass mode is selected, the FIR is internally set up for a 3 tap even symmetric filter, no decimation (F _DRATE $=0$) and F __OAD is set equal to one to zero one side of the preadder. In FIR bypass mode all FIR filter parameters are ignored, including the contents of the FIR coefficient RAM. In FIR bypass mode the output data is brought output on the lower 16 bits of the output bus DATA_OUT 0-15. To disable FIR bypass mode, F_BYP is set equal to zero. When F__BYP is returned to zero, the coefficients must be reloaded.

F_OAD
Bit FAO is used to select the zero the preadder mode. This mode zeros one of the inputs to the pre-adder. Zero preadder mode is selected by setting F__OAD equal to one. This feature is useful when implementing arbitrary phase filters or can be used to verify the filter coefficients. To disable the Zero Preadder mode F_OAD is set equal to zero.

FIGURE 4

DDF Control Registers (Continued)

FC__Register ($\mathrm{A} 1=0, A 0=1$)

F_CF															
C19	C18	C17	C16	C15	C14	C13	C12	C11	C10	C9	C8	C7	C6	C5	C4
X	x	X	X	X	X	X	X	X	X	X	X	С3	C2	C1	Co
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits C0-C19 represent the coefficient data, where C19 is the MSB. Two writes are required to write each coefficient which is 2's complement fractional format. The first write loads C19 through C4; C3 through CO are loaded on the second write cycle. As the coefficients are written into this register they are formatted into a 20 bit coefficient and written into the Coefficient RAM sequentially starting with address location zero. The coefficients must be loaded sequentially, with the center tap being the last coefficient to be loaded. See coefficient RAM, below.

FIGURE 5
H__Register $1(A 1=1, A O=0)$

RESERVED			F_DIS	F_CLA	H_BYP	H_DRATE									
			FDO	FCO	HBO	R9	R8	R7	R6	R5	R4	R3	R2	R1	Ro
1514		13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits RO-R9 are used to select the amount of decimation in the HDF. The amount of decimation selected is programmed as the required decimation minus one; for instance to select decimation of 1024 H_DRATE is set equal to 1023. HDRATE +1 is defined as Hdec.
H_BYP
Bit HBO is used to select HDF bypass mode. This mode is selected by setting $\mathrm{H} _$_BYP $=1$. When this mode is selected the input data passes through the HDF unfiltered. Internally H__STAGES and H_DRATE are both set to zero and H__GROWTH is set to 50 . H__REGISTER 2 must be reloaded when H__BYP is returned to 0 . To disable HDF bypass mode $\mathrm{H} _$BYP $=0$. In this mode CK_IN must be slower than FIR_CK in order to satisfy equation 1.0.
F_CLA
Bit FCO is used to select the clear accumulator mode in the FIR. This mode is enabled by setting F__CLA=1 and is disabled by setting F __CLA $=0$. In normal operation this bit should be set equal to zero. This mode zeros the feedback path in the accumulator of the multiplier/accumualator (MAC). It also allows the multiplier output to be clocked off the chip by FIR__CK, thus DATA__RDY has no meaning in this mode. This mode can be used in conjunction with the F__OAD bit to read out the FIR coefficients from the coefficient RAM.
F_DIS
Bit FDO is used to select the FIR disable mode. This feature enables the FIR parameters to be changed. This feature is selected by setting F__DIS=1. This mode terminates the current FIR cycle. While this feature is selected, the HDF contines to process data and write it into the FIR data RAM. When the FIR re-programming is completed, the FIR can be re-enabled either by clearing F_DIS, or by asserting one of the start inputs, which automatically clears F__DIS.

FIGURE 6

DDF Control Registers (Continued)

$H_{\text {__Register }} 2(A 1=1, A 0=1)$

Bits NO-N2 are used to select the number of stages or order of the HDF filter. The number that is programmed in is equal to the required number of stages. For a 5 th order filter, H_STAGES would be set equal to 5 .

H_GROWTH

Bits G0-G5 are used to select the proper amount of growth bits. H__GROWTH is calculated using the following equation:
H_GROWTH $=50-$ CEILING $\{\mathrm{H}$ _STAGES $\times \log (\mathrm{Hdec}) /$ $\log (2)\}$
where the CEILING \{ \} means use the next largest integer of the result of the value in brackets and log is the log to the base 10.
The value of H _GROWTH represents the position of the LSB on the output of the data shifter.

FIGURE 7

Start Logic

The Start Logic generates a start signal that is used internally to synchronously start the DDF. If ASTARTIN\# is asserted (STARTIN\# must be tied high) the Start Logic synchronizes it to CK__IN by double latching the signal and generating the signal STARTOUT\#, which is shown in Figure 8. The STARTOUT\# signal is then used to synchronously start other DDFs in a multi-chip configuration (the STARTOUT\# signal of the first DDF would be tied to the STARTIN\# of the second DDF). The NAND gate shown in Figure 8 then passes this synchronized signal to be used on chip to provide a synchronous start. Once started, the chip requires a RESET\# to halt operation.

When STARTIN\# is asserted (ASTARTIN\# must be tied high) the NAND gate passes STARTIN\# which is used to provide the internal start, ISTART, for the DDF. When RESET\# is asserted the internal start signal is held inactive, thus it is necessary to assert either ASTARTIN\# or STARTIN\# in order to start the DDF.

In using ASTARTIN\# or STARTIN\# a high to low transition must be detected by the rising edge of CK__IN, therefore these signals must have been high for more than one CK_IN cycle and then taken low.

RESET \#

Figure 8. START LOGIC

The FIR Section

The second filter in the top level block diagram is a Finite Impulse Response (FIR) filter which performs the final shaping of the signal spectrum and suppresses the aliasing components in the transition band of the HDF. This enables the DDF to implement filters with narrow pass bands and sharp transition bands.

The FIR is implemented in a transversal structure using a single multiplier/accumulator (MAC) and RAM for storage of the data and filter coefficients as shown in Figure 9. The FIR can implement up to 512 symmetric taps and decimation up to 16.

The FIR is divided into 2 sections: the FIR filter section and the FIR control logic.

Coefficient RAM

The Coefficient RAM stores the coefficients for the current FIR filter being implemented. The coefficients are loaded into the Coefficient RAM over the control bus (C__BUS). The coefficients are written into the Coefficient RAM sequentially, starting at location zero. It is only necessary to write one half of the coefficients when symmetric filters are being implemented, where the last coefficient to be written in is the center tap.

The coefficients are loaded into address 01 in two writes. The first write loads the upper 16 bits of the 20 bit coefficient, C4 through C19. The second write loads the lower 4 bits of the coefficient, C0 through C3, where C19 is the MSB. The two 16 bit writes are then formatted into the 20 bit coefficient that is then loaded into the Coefficient RAM starting at RAM address location zero, where the coefficient at this location is the outer tap (or the first coefficient value).

To reload coefficients, the Coefficient RAM Address pointer must be reset to location zero so that the coefficients will be loaded in the order the FIR filter expects. There are two methods that can be used to reset the Coefficient RAM address pointer. The first is to assert RESET\#, which automatically resets the pointer, but also clears the HDF and alters some of the control register bits. (RESET\# does not change any of the coefficient values.) The second method is to set the F__DIS bit in control register H_ REGISTER1. This control bit allows any of the FIR control register bits to be re-programmed, but does not automatically modify any control registers. When the programming is completed, the FIR is re-started by clearing the F__DIS bit or by asserting one of the start inputs (ASTARTIN\# or STARTIN\#). The F__DIS bit allows the filter parameters to be changed more quickly and is thus the recommended reprogramming method.

Data RAM

The Data RAM stores the data needed for the filter calculation. The format of the data is:

where the sign bit is in the 20 location.
The 16 bit output of the HDF Output Register is written into the Data Ram on the rising edge of CK_DEC.

RESET\# initializes the write pointer to the data RAM. After a RESET\# occurs, the output of the FIR will not be valid until the number of new data samples written to the Data RAM equals TAPS.
The filter always operates on the most current sample and the taps-1 previous samples. Thus if the F__DIS bit is set, data continues to be written into the data RAM coming from the HDF section. When the FIR is enabled again the filter will be operating on the most current data samples and thus another transient response will not occur.
The maximum throughput of the FIR filter is limited by the use of a single Multiplier/Accumulator (MAC). The data output from the HDF being clocked into the FIR filter by CK__DEC must not be at a rate that causes an erroneous result being calculated because data is being overwritten.

The equation shown below describes the relationship between, FIR__CK, CK__DEC, the number of taps that can be implemented in the FIR, the decimation rate in the HDF and the decimation rate in the FIR. (In the Design Considerations section of the OPERATIONAL SECTION there is a chart that shows the tradeoffs between these parameters.)

This equation expresses the minimum FIR_CK, called FIR_CK'. FIR_CK must be the smallest integer multiple of $\mathrm{CK} \mathbb{N}$ which is greater than or equal to FIR_CK'. For example, if $C K _I N$ is 15 MHz and equation 1.0 indicates that $\mathrm{FIR}_{\text {_ }} \mathrm{CK}^{\prime}$ is 29 MHz , then FIR_CK must be equal to 30 MHz . Fdec is the decimation rate in the FIR ($\mathrm{Fdec}=\mathrm{F}$ _DRATE +1), where TAPS $=$ the number of taps in the FIR for even length filters and equals the number of taps +1 for odd length filters.

Solving the above equation for the maximum number of taps:
TAPS $=2\left(\frac{\text { FIR_CK Hdec Fdec }}{\text { CK_IN }}-\right.$ Fdec - 4$)$
In using this equation, it must be kept in mind that CK_IN/ Hdec must be less than or equal to 4 MHz (unless the HDF is in bypass mode in which case this limitation in the HDF does not apply). In the OPERATIONAL SECTION under the Design Considerations, there is a table that shows the trade-offs of these parameters. In addition, Harris provides a software package called DECI •MATE ${ }^{m}$ which designs the DDF filter from System specifications.

The registered outputs of the data $R A M$ are added or subtracted in the 17 bit pre-adder. The $F_{\text {_OAD control bit }}$ allows zeros to be input into one side of the pre-adder. This provides the capability to implement non-symmetric filters.

The selection of adding the register outputs for an even symmetric filter or for subtracting the register outputs for odd symmetric filter is provided by the control bit F__ESYM, which is programmed over the control bus. When subtraction is selected, the new data is subtracted from the old data. The 17 bit output of the adder forms one input of the multiplier/accumulator.

A control bit F_CLA provides the capability to clear the feedback path in the accumulator such that multiplier output will not be accumulated, but will instead flow directly to the output register. The bit weightings of the data and coefficients as they are processed in the FIR is shown below.
Input Data (from HDF) 20.2-1 $\ldots 2^{-15}$
Pre-adder Output $2^{1} 2^{0} .2^{-1} \ldots 2^{-15}$
Coefficient $2^{0} .2^{-1} \ldots 2^{-19}$
Accumulator $2^{8} \ldots 2^{0} .2^{1} \ldots 2^{-34}$

FIR Output

The 40 most significant bits of the accumulator are latched into the output register. The lower 3 bits are not brought to the output. The 40 bits out of the output register are selected to be output by a pair of multiplexers. This register is clocked by FIR_CK (see Figure 9).

There are two multiplexers that route 24 of the 40 output bits from the output register to the output pins. The first multiplexer selects the output register bits that will be routed to output pins DATA_OUT16-23 and the second multiplexer selects the output register bits that will be routed to output pins DATA_OUTO-15.
The multiplexers are controlled by the control signal F_{-} BYP and the OUT__SELH pin. F__BYP and OUT__SELH both control the first multiplexer that selects the upper 8 bits of the output bus, DATA __OUT16-23. F__BYP controls the second multiplexer that selects the lower 16 bits of the output bus, DATA __OUTO-15. The output formatter is shown in detail in Figure 10.

FIR Control Logic

The DATA__RDY strobe indicates that new data is available on the output of the FIR. The rising edge of DATA __RDY can be used to load the output data into an external register or RAM.

Data Format

The DDF maintains 16 bits of accuracy in both the HDF and FIR filter stages. The data formats and bit weightings are shown in Figure 11.

Operational Section

Start Configurations

The scenario to put the DDF into operational mode is: reset the DDF by asserting the RESET\# input, configure the DDF over the control bus, and apply a start signal, either by ASTARTIN\# or STARTIN\#. Until the DDF is put in operational mode with a start pulse, the DDF ignores all data inputs.

To use the asynchronous start, an asynchronous active low pulse is applied to the ASTARTIN\# input. ASTARTIN\# is internally synchronized to the sample clock, CK__IN, and generates STARTOUT\#. This signal is also used internally when the asynchronous mode is selected. It puts the DDF in operational mode and allows the DDF to begin accepting data. When the ASTARTIN\# input is being used, the STARTIN\# input must be tied high to ensure proper operation.
To start the DDF synchronously, the STARTIN\# is asserted with a active low pulse that has been externally synchronized to CK__IN. Internally the DDF then uses this start pulse to put the DDF in operate mode and start accepting data inputs. When STARTIN\# is used to start the DDF the ASTARTIN\# input must be tied high to prevent false starts.

FIGURE 9. FIR FILTER

INPUT DATA FORMAT
Fractional Two's Complement Input

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
$2^{0} .2^{-1} 2^{-2}$	2^{-3}	2^{-4}	2^{-5}	2^{-6}	2^{-7}	2^{-8}	2^{-9}	$2^{-10} 2^{-11} 2^{-12}$	$2^{-13} 2^{-14} 2^{-15}$						

FIR COEFFICIENT FORMAT
Fractional Two's Complement Input

19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

OUTPUT DATA FORMAT
Fractional Two's Complement Output
FOR: OUT_SELH = 1
F_BYP $=0$

23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	-
	27	2^{6}	25	24	23	2^{2}	21	20			$2{ }^{-3}$		-5											

FOR: OUT_SELH $=0$
$F _B Y P=0$

| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | |
| :--- |
| 2^{0} | 2^{-1} | 2^{-2} | 2^{-3} | 2^{-4} | 2^{-5} | 2^{-6} | 2^{-7} | 2^{-8} | 2^{-9} | $2^{-10} 2^{-11} 2^{-12} 2^{-13} 2^{-14}$ | 22 | 21 | 20 | 19 | 18 | 17 | 16 |

FOR: OUT_SELH $=\mathbf{X}$

$$
F _B Y P=1
$$

23	22	21	20	19	18	17	16

$2^{-16} 2^{-17} 2_{2}-182^{-19} 2^{-20} 2_{2}^{-21} 2_{2}^{-22} 2_{2}-23$

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

FIGURE 11

Multi-Chip Start Configurations

Since there are two methods to start up the DDF, there are also two configurations that can be used to start up multiple chips.
The first method is shown in Figure 12. The timing of the STARTOUT\# circuitry starts the second DDF on the same clock as the first. If more DDF's are also to be started synchronously, STARTOUT\# is connected to their STARTIN\#'s.

The second method to start up DDF's in a multiple chip configuration is to use the synchronous start scenario.

The STARTIN\# input is wired to all the chips in the chain, and is asserted by a active low synchronous pulse that has been externally synchronized to CK_IN. In this way all DDF's are synchronously started. The ASTARTIN\# input on all the chips is tied high to prevent false starts. The STARTOUT\# outputs are all left unconnected. This configuration is illustrated in Figure 13.

FIGURE 13. SYNCHRONOUS START UP

Chip Set Application

The HSP43220 is ideally suited for narrow band filtering in Communications, Instrumentation and Signal Processing applications. The HSP43220 provides a fully integrated solution to high order decimation filtering.

The combination of the HSP43220 and the HSP45116 (which is a NCOM Numerically Controlled Oscillator/ Modulator) provides a complete solution to digital receivers. The diagram in Figure 14 illustrates this concept.

The HSP45116 down converts the signal of interest to baseband, generating a real component and an imaginary
component. A HSP43220 then performs low pass filtering and reduces the sampling rate of each of the signals.
The system scenario for the use of the DDF involves a narrow band signal that has been over-sampled. The signal is over-sampled in order to capture a wide frequency band containing many narrow band signals. The NCOM is "tuned" to the frequency of the signal of interest and performs a complex down conversion to baseband of this signal, which results in a complex signal centered at baseband. A pair of DDF's then low pass filters the NCOM output, extracting the signal of interest.

FIGURE 14. DIGITAL CHANNELIZER

Design Trade-Off Considerations

Equation 2.0 in the Functional Description section expresses the relationship between the number of TAPS which can be implemented in the FIR as a function of CK_IN, FIR_CK, Hdec, Fdec. Figure 15 provides a
tradeoff of these parameters. For a given speed grade and the ratio of the clocks, and assuming minimum decimation in the HDF, the number of FIR taps that can be implemented is given in equation 2.0.

SPEED GRADE (MHz)	FIR_CK	MIN Hdec	TAPS				
	CK_IN		Fdec $=1$	Fdec $=2$	Fdec $=4$	Fdec $=8$	Fdec $=16$
33	1	9	8	24	56	120	248
25.6	1	7	4	16	40	88	184
15	1	4	*	4	16	40	88
33	2	5	10	28	64	136	280
25.6	2	4	6	20	48	104	216
15	2	2	*	4	16	40	88
33	4	3	14	36	80	168	344
25.6	4	2	6	20	48	104	216
15	4	1	*	4	16	40	88
33	8	2	22	52	112	232	472
25.6	8	1	6	20	48	104	216
15	8	1	6	20	48	104	216

* Filter Not Realizable

FIGURE 15. DESIGN TRADE OFF FOR MINIMUM Hdec

DECI•MATE

Harris provides a development system which assists the design engineer to utilizing this filter. The DECI • MATE software package provides the user with both filter design and simulation environments for filter evaluation and design. These tools are integrated within one standard DSP CAD environment, The Athena Group's Monarch Professional DSP Software package.

The software package is designed specifically for the DDF. It provides all the filter design software for this proprietary architecture. It provides a user-friendly menu driven interface to allow the user to input system level filter requirements. It provides the frequency response curves and a data flow simulation of the specified filter design (Figure 16). It also creates all the information necessary to program the DDF, including a PROM file for programming the control registers.

This software package runs on an $\mathrm{IBM}^{m} \mathrm{PC}^{\mathrm{mw}}, \mathrm{XT}^{\mathrm{m}}, \mathrm{AT}^{\mathrm{m}}$, $\mathrm{PS} / 2^{\text {m }}$ computer or 100% compatible with the following configuration:

HSP43220 DDF FILTER SPECIFICATION

Input Sample Rate	:	33	MHz	Design Mode	AUTO
Output Rate	:	100	kHz	Generate Report	YES
Passband	:	20	kHz	Display Response	LOG
Transition Band	:	7.5	kHz	Save Freq Responses:	YES
Passband Atten		0.5		Save FIR Response	YES
Stopband Atten					

FIR Type : PRECOMP

FIGURE 16. DECI•MATE DESIGN MODULE SCREENS

Absolute Maximum Ratings

```Supply Voltage\(+8.0 \mathrm{~V}\)Input, Output or I/O Voltage Applied . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GND -0.5V to VCC +0.5 CStorage Temperature Range\(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
```

Maximum Package Power Dissipation 2.4W (PLCC) , 3.2W (PGA)
$\theta_{\text {jc }}$ $10.9^{\circ} \mathrm{C} / \mathrm{W}$ (PLCC), $7.2^{\circ} \mathrm{C} / \mathrm{W}$ (PGA)
θ_{ja} $33.8^{\circ} \mathrm{C} / \mathrm{W}$ (PLCC) , $32.9^{\circ} \mathrm{C} / \mathrm{W}$ (PGA)

```Device Count193,000 Transistors
```

Junction Temperature $150^{\circ} \mathrm{C}$ (PLCC),$+175^{\circ} \mathrm{C}$ (PGA)
Lead Temperature (Soldering,Ten Seconds). $+300^{\circ} \mathrm{C}$
ESD Classification Class 1
CAUTION: Stresses above those listed in the "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating

```and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
```


Operating Conditions

\qquadOperating Temperature Range $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
D.C. Electrical Specifications $V_{C C}=+4.75 \mathrm{~V}$ to $+5.25 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%\right), \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

PARAMETER	SYMBOL	MIN	MAX	UNITS	TEST CONDITIONS
Logical One Input Voltage	V_{IH}	2.0	-	V	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$
Logical Zero Input Voltage	V_{IL}	-	0.8	V	$\mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V}$
High Level Clock Input	$\mathrm{V}_{\mathrm{IHC}}$	3.0	-	V	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$
Low Level Clock Input	$\mathrm{V}_{\mathrm{ILC}}$	-	0.8	V	$\mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V}$
Output HIGH Voltage	V_{OH}	2.6	-	V	$\mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$ $\mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V}$
Output LOW Voltage	V_{OL}	-	0.4	V	$\mathrm{I}_{\mathrm{OL}}=+2.0 \mathrm{~mA}$ $\mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V}$
Input Leakage Current	I	-10	10	$\mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$ or GND $\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$
I/O Leakage Current	IO	-10	10	$\mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{CC}}$ or GND $\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$
Standby Power Supply Current	ICCSB	-	500	$\mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$ or GND $\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$, Note 3
Operating Power Supply Current	$\mathrm{I}_{\mathrm{CCOP}}$	-	120	mA	$\mathrm{f}=15 \mathrm{MHz}, \mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{CC}}$ or GND $\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$, Note 1, Note

Capacitance $\left(T_{A}=+25^{\circ} \mathrm{C}\right.$, Note 2)

PARAMETER	SYMBOL	MIN	MAX	UNITS	TEST CONDITIONS
Input Capacitance	$C_{I N}$		12	pF	FREQ $=1 \mathrm{MHz}, \mathrm{V}_{C C}=O$ Open, all measurements are referenced to device ground.
Output Capacitance	C_{O}		10	pF	

NOTES:

1. Power supply current is proportional to operating frequency. Typical rat- \quad 3. Output load per test load circuit and $C_{L}=40 p F$. ing for ${ }^{\mathrm{I}} \mathrm{CCOP}$ is $8 \mathrm{~mA} / \mathrm{MHz}$.
2. Not tested, but characterized at initial design and at major process/design changes.

A.C. Electrical Specifications $\mathrm{V}_{\mathrm{CC}}=+4.75 \mathrm{~V}$ to $+5.25 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

PARAMETER	SYMBOL	-15		-25		-33		UNITS	TEST CONDITIONS
		MIN	MAX	MIN	MAX	MIN	MAX		
Input Clock Frequency	FCK	0	15	0	25.6	0	33	MHz	. .
FIR Clock Frequency	$\mathrm{F}_{\text {FIR }}$	0	15	0	25.6	0	33	MHz	
Input Clock Period	TCK	66	-	39	-	30	-	ns	
FIR Clock Period	$\mathrm{T}_{\text {FIR }}$	66	-	39	-	30	-	ns	
Clock Pulse Width Low	TSPWL	26	-	16	-	13	-	ns	
Clock Pulse Width High	TSPWH	26	-	16	-	13	-	ns	
Clock Skew Between FIR_CK and CK_IN	TSK	0	$\mathrm{T}_{\text {FIR }}{ }^{-25}$	0	$\mathrm{T}_{\text {FIR }}{ }^{-15}$	0	$\mathrm{T}_{\mathrm{FIR}^{-15}}$	ns	
RESET\# Pulse Width Low	TRSPW	${ }^{4 T} \mathrm{CK}$	-	${ }^{4 T} \mathrm{CK}$	-	${ }^{4 T} \mathrm{CK}$	-	ns	
Recovery Time on RESET\#	TRTRS	$8 \mathrm{~T}_{\text {CK }}$	-	${ }^{81}{ }^{\text {CKK }}$	-	$8^{8 T} \mathrm{CK}$	-	ns	
ASTARTIN\# Pulse Width Low	TAST	${ }^{\text {T }}$ CK +10	-	$\mathrm{T}^{\text {CK }}+10$	-	$\mathrm{T}_{\text {CK }}+10$	-	ns	
STARTOUT\# Delay from CK_IN	TSTOD	-	35	-	20	-	18	ns	
STARTIN\# Setup to CK_IN	TSTIC	25	-	15	-	10	-	ns	
Setup Time on DATA_IN	TSET	20	-	15	-	14	-	ns	
Hold Time on All inputs	THOLD	0	-	0	-	0	-	ns	
Write Pulse Width Low	TWL	26	-	15	-	12	-	ns	
Write Pulse Width High	TWH	26	-	20	-	18	-	ns	
Setup Time on Address Bus Before the Rising Edge of Write	TStadd	26	-	20	-	20	-	ns	
Setup Time on Chip Select Before the Rising Edge of Write	TSTCS	26	-	20	-	20	-	ns	
Setup Time on Control Bus Before the Rising Edge of Write	Tstcb	26	-	20	-	20	-	ns	
DATA_RDY Pulse Width Low	TDRPWL	${ }^{2 T_{F I R}-20}$	-	${ }^{2} \mathrm{~T}_{\text {FIR }}{ }^{-10}$	-	${ }^{2 T} \mathrm{FIR}^{-10}$	-	ns	
DATA_OUT Delay Relative to FIR_CK	T FIRDV	-	50	-	35	-	28	ns	
DATA RDY Valid Delay Relative to FIR_CK	${ }^{\text {TFIRDR }}$	-	35	-	25	-	20	ns	
DATA__OUT Delay Relative to OUT__SELH	TOUT	-	25	-	20	-	20	ns	-
Output Enable to Data Out Valid	ToEV	-	15	-	15	-	15	ns	Note 2
Output Disable to Data Out Three State	ToEz	-	15	-	15	-	15	ns	Note 1
Output Rise, Output Fall Times	T_{R}, T_{F}	-	8	-	8	-	6	ns	$\text { from } .8 \mathrm{~V} \text { to } 2 \mathrm{~V} \text {, }$ $\text { Note } 1$

NOTES:

1. Controlled by design or process parameters and not directly tested. Characterized upon initial design and after major process and/or design changes.
2. Transition is measured at $\pm 200 \mathrm{mV}$ from steady state voltage with loading as specified in test load circuit with and $C_{L}=40 \mathrm{pF}$.
3. A.C. Testing is performed as follows: Input levels (CLK Input) 4.0 V and OV Input levels (all. other Inputs) $O V$ and 3.0 V , Timing reference levels $(C L K)=2.0 \mathrm{~V}$, (Others) $=1.5 \mathrm{~V}$, Input rise and fall times driven at $1 \mathrm{~ns} N$, Output load per test load circuit and $C_{L}=40 \mathrm{pF}$.

Test Load Circuit

Switch S1 Open for ICCSB and ${ }^{\text {I CCOP Tests }}$

Timing Waveforms
INPUT TIMING

START TIMING

Timing Waveforms (Continued)

Features

- This Circuit is Processed in Accordance to Mil-Std883 and is Fully Conformant Under the Provisions of Paragraph 1.2.1.
- Single Chip Narrow Band Filter with up to 96dB Attenuation
- DC to 33MHz Clock Rate
- 16 Bit 2's Complement Input
- 20 Bit Coefficients in FIR
- 24 Bit Extended Precision Output
- Programmable Decimation up to a Maximum of 16,384
- Standard 16 Bit Microprocessor Interface
- Filter Design Software Available DECl॰MATE ${ }^{\text {™ }}$
- Available in $\mathbf{8 4}$ Pin PGA

Applications

- Very Narrow Band Filters
- Zoom Spectral Analysis
- Channelized Receivers
- Sample Rate Converter
- Instrumentation
- 512 Tap Symmetric FIR Filtering

Description

The HSP43220/883 Decimatin Di ital Filter is a linear phase low pass decimation filter which is optimized for filterin narrow band si nals in a broad spectrum of a si nal processin applications. The HSP43220/883 offers a sin le chip solution to si nal processin application which have historically required several boards of IC's. This reduction in component count results in faster development times as well as reduction of hardware costs.

The HSP43220/883 is implemented as a two sta e filter structure. As seen in the block dia ram, the first sta \mathbf{e} is a hi h order decimation filter (HDF) which utilizes an efficient decimation (sample rate reduction) technique to obtain decimation up to 1024 throu h a coarse low-pass filterin process. The HDF provides up to 96 dB aliasin rejection in the si nal pass band. The second sta e consists of a finite impulse response (FIR) decimation filter structured as a transversal FIR filter with up to 512 symmetric taps which can implement filters with sharp transition re ions.The FIR can perform further decimation by up to 16 if required while preservin the 96 dB aliasin attenuation obtained by the HDF. The combined total decimation capability is 16,384 .

The HSP43220/883 accepts 16 bit parallel data in 2's complement format at samplin rates up to 30MSPS. It provides a 16 bit microprocessor compatible interface to simplify the task of pro rammin and three-state outputs to allow the connection of several IC's to a common bus. The HSP43220/883 also provides the capability to bypass either the HDF or the FIR for additional flexibility.

Block Diagram

DECI • MATE ${ }^{m 4}$ is a re istered trademark of Harris Corporation.
IBM PC ${ }^{m}, X T^{m}{ }^{m}$, AT $^{m}, ~ P S / 2^{m}$ are re istered trademarks of International Business Machines, Inc.

```
Absolute Maximum RatingsSupply VoltageInput, Output Voltage Applied
```

\qquad

```
                                GND-0.5V to V}\mp@subsup{\textrm{CC}}{}{+}+0.5\textrm{V
Storage Temperature Range . . . . . . . . . . . . . . . - }6\mp@subsup{6}{}{\circ}\textrm{C}\mathrm{ to }+15\mp@subsup{0}{}{\circ}\textrm{C
Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +1750
Lead Temperature (Soldering, Ten Seconds) . . . . . . . . . . . +300 }\mp@subsup{}{}{\circ}\textrm{C
ESD Classification
Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Class 1
```

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Operating Conditions

Operating Voltage Range .+4.5 V to +5.5 V
Operating Temperature Range
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

TABLE 1. D.C. ELECTRICAL PERFORMANCE CHARACTERISTICS
Devices Guaranteed and 100\% Tested

PARAMETER	SYMBOL	CONDITIONS	GROUPA SUBGROUPS	TEMPERATURE	LIMITS		UNITS
					MIN	MAX	
Logical One Input Voltage	V_{IH}	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	1, 2, 3	$-55^{\circ} \mathrm{C} \leq \mathrm{T} \mathrm{S} \leq+125^{\circ} \mathrm{C}$	2.2	-	V
Logical Zero Input Voltage	$\mathrm{V}_{\text {IL }}$	$V_{C C}=4.5 \mathrm{~V}$	1, 2, 3	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	-	0.8	V
Output HIGH Voltage	V_{OH}	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}(\text { Note } 1) \end{aligned}$	1, 2, 3	$-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}$	2.6	-	V
Output LOW Voltage	V_{OL}	$\begin{aligned} & \mathrm{OL}=+2.0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}(\text { Note } 1) \end{aligned}$	1, 2, 3	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	-	0.4	V
Input Leakage Current	1	$\begin{aligned} & v_{I N}=v_{C C} \text { or } G N D \\ & v_{C C}=5.5 \mathrm{~V} \end{aligned}$	1, 2, 3	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	-10	+10	$\mu \mathrm{A}$
Output Leakage Current	10	$\begin{aligned} & V_{O U T}=V_{C C} \text { or GND } \\ & V_{C C}=5.5 \mathrm{~V} \end{aligned}$	1, 2, 3	$-55^{\circ} \mathrm{C} \leq T \mathrm{~A} \leq+125^{\circ} \mathrm{C}$	-10	+10	$\mu \mathrm{A}$
Clock Input High	$\mathrm{V}_{\text {IHC }}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	1,2,3	$-55^{\circ} \mathrm{C} \leq T \mathrm{~A} \leq+125^{\circ} \mathrm{C}$	3.0	-	V
Clock Input Low	VILC	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	1, 2, 3	$-55^{\circ} \mathrm{C} \leq \mathrm{T}^{\prime} \leq+125^{\circ} \mathrm{C}$	-	0.8	V
Standby Power Supply Current	${ }^{\text {I Ccss }}$	$\begin{aligned} & V_{I N}=V_{C C} \text { or } G N D \\ & V_{C C}=5.5 \mathrm{~V}, \\ & \text { Outputs Open } \end{aligned}$	1, 2, 3	$-55^{\circ} \mathrm{C} \leq T \mathrm{~A} \leq+125^{\circ} \mathrm{C}$	-	500	$\mu \mathrm{A}$
Operating Power Supply Current	I'COP	$\begin{aligned} & \mathrm{f}=15.0 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V} \text { (Note 2) } \end{aligned}$	1, 2, 3	$-55^{\circ} \mathrm{C} \leq \mathrm{T} \mathrm{A} \leq+125^{\circ} \mathrm{C}$	-	120.0	mA
Functional Test	FT	(Note 3)	7,8	$-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}$	-	-	

NOTES:

1. Interchanging of force and sense conditions is permitted.
2. Operating Supply Current is proportional to frequency, typical rating is 8 mAMMHz .

Reliability Information

Thermal Resistance .	θ_{ja}	θ_{jc}
Ceramic PGA Package .	$32.9{ }^{\circ} \mathrm{C} / \mathrm{W}$	$7.2{ }^{\circ} \mathrm{C} / \mathrm{W}$
Maximum Package Power Dissipation at $+125^{\circ} \mathrm{C}$		
Ceramic PGA Package .		. 1.52 Watt
Gate Count		48,250 Gates

TABLE 2. A.C. ELECTRICAL PERFORMANCE CHARACTERISTICS
Device Guaranteed and 100\% Tested

PARAMETER	SYMBOL	(NOTE 1) CONDITIONS	GROUP A SUBGROUPS	TEMPERATURE	LIMITS				UNITS
					-15 (15MHz)		-25 (25.6MHz)		
					MIN	MAX	MIN	MAX	
Input Clock Period	TCK		9, 10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	66	-	39	-	ns
FIR Clock Period	$\mathrm{T}_{\text {FIR }}$		9, 10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	66	-	39	-	ns
Clock Pulse Width Low	TSPWL		9, 10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	26	-	16	-	ns
Clock Pulse Width High	TSPWH		9, 10, 11	$-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}$	26	-	16	-	ns
Clock Skew Between FIR__CK and CK_IN	TSK		9, 10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	0	$\begin{aligned} & \mathrm{T}_{\text {FIR }} \\ & -205 \end{aligned}$	0	$\begin{aligned} & \mathrm{T}_{\text {FIR }} \\ & -19 \end{aligned}$	ns
RESET\# Pulse Width Low	TRSPW		9, 10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T}^{\prime} \mathrm{A} \leq+125^{\circ} \mathrm{C}$	${ }^{4}{ }^{\text {T }} \mathrm{CK}$	-	${ }^{4 T} \mathrm{CK}$	-	ns
Recovery Time On RESET\#	TRTRS		9, 10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T} \mathrm{A} \leq+125^{\circ} \mathrm{C}$	${ }^{81} \mathrm{CK}$	-	${ }^{87} \mathrm{CK}$	-	ns
ASTARTIN\# Pulse Width Low	$\mathrm{T}_{\text {AST }}$		9, 10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T} \mathrm{A} \leq+125^{\circ} \mathrm{C}$	$\begin{aligned} & \text { TCK } \\ & +10 \end{aligned}$	-	$\begin{aligned} & T_{C K} \\ & +10 \end{aligned}$	-	ns
STARTOUT\# Delay From CK_IN	TStod		9, 10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T}^{\prime} \mathrm{A} \leq+125^{\circ} \mathrm{C}$	-	35	-	20	ns
STARTIN\# Setup To CK_IN	${ }^{\text {TSTIC }}$		9, 10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T} \mathrm{A} \leq+125^{\circ} \mathrm{C}$	25	-	15	-	ns
Setup Time on DATA_IN	TSET		9, 10, 11	$-55^{\circ} \mathrm{C} \leq T^{\prime} \mathrm{A} \leq+125^{\circ} \mathrm{C}$	20	-	16	-	ns
Hold Time on All Inputs	THOLD		9, 10, 11	$-55^{\circ} \mathrm{C} \leq T^{\prime} \leq+125^{\circ} \mathrm{C}$	0	-	0	-	ns
Write Pulse Width Low	TWL		9, 10,11	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+125^{\circ} \mathrm{C}$	26	-	15	-	ns
Write Pulse Width High	TWH		9, 10,11	$-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}$	26	-	20	-	ns
Setup Time on Address Bus Before the Rising Edge of Write	TSTADD		9,10,11	$-55^{\circ} \mathrm{C} \leq \mathrm{T}^{\prime} \leq+125^{\circ} \mathrm{C}$	28	-	24	-	ns
Setup Time on Chip Select Before the Rising Edge of Write	TSTCS		9, 10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T} \mathrm{A} \leq+125^{\circ} \mathrm{C}$	28	-	24	-	ns
Setup Time on Control Bus Before the Rising Edge of Write	Tstcb		9, 10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	28	-	24	-	ns
DATA_RDY Pulse Width Low	TDRPWL		9, 10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T} \mathrm{A} \leq+125^{\circ} \mathrm{C}$	$\begin{aligned} & { }^{2 T_{\text {FIR }}} \\ & -20 \end{aligned}$	-	$\begin{gathered} 2 T_{\text {FIR }} \\ -10 \\ \hline \end{gathered}$	-	ns
DATA_OUT Delay Relative to FIR_CK	TFIRDV		9, 10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T} \mathrm{A} \leq+125^{\circ} \mathrm{C}$	-	50	-	35	ns
DATA_RDY Valid Delay Relative to FIR_CK	$\mathrm{T}_{\text {FIRDR }}$		9, 10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T} \mathrm{A} \leq+125^{\circ} \mathrm{C}$	-	35	-	25	ns
DATA_OUT Delay Relative to OUT__SELH	TOUT		9, 10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	-	30	-	25	ns
Output Enable to Data Out Valid	Toev	2	9, 10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T} \mathrm{A} \leq+125^{\circ} \mathrm{C}$	-	20	-	20	ns

NOTES:

1. A.C. Testing: Inputs are driven at 3.0 V for a Logic " 1 " and 0.0 V for a Logic " 0 ". Input and output timing measurements are made at 1.5 V for both a Logic " 1 " and " 0 ". Inputs driven at $1 \mathrm{~V} / \mathrm{ns}$. CLK is driven at 4.0 V and OV and measured at 2.0 V .
2. Transition is measured at $\pm 200 \mathrm{mV}$ from steady state voltage with loading as specified by test load circuit and $C_{L}=40 \mathrm{pF}$.

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS

PARAMETERS	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	LIMITS				UNITS
					-15 (15MHz)		-25 (25.6MHz)		
					MIN	MAX	MIN	MAX	
Input Capacitance	$\mathrm{CIN}^{\text {N }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Open, } \\ & \mathrm{f}=1 \mathrm{MHz}, \mathrm{All} \end{aligned}$ measurements are referenced to device GND.	1	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-	12	$*^{-}$	12	pF
Output Capacitance		$\begin{aligned} & V_{C C}=\text { Open, } \\ & f=1 \mathrm{MHz}, \text { All } \end{aligned}$ measurements are referenced to device GND.	1	${ }^{T} A=+25^{\circ} \mathrm{C}$	$\bar{\square}$	10	-	10	pF
Output Disable Delay	ToEz		1,2	$-55^{\circ} \mathrm{C} \leq \mathrm{T}^{\prime} \leq+125^{\circ} \mathrm{C}$	-	20	-	20	ns
Output Rise Time	TOR		1,2	$-55^{\circ} \mathrm{C} \leq \mathrm{T} \mathrm{A} \leq+125^{\circ} \mathrm{C}$	-	8	-	8	ns
Output Fall Time	TOF		1,2	$-55^{\circ} \mathrm{C} \leq \mathrm{T} \mathrm{A} \leq+125^{\circ} \mathrm{C}$	-	8	-	8	ns

NOTES:

1. Parameters listed in Table 3 are controlled via design or process parameters and are not directly tested. These parameters are characterized upon initial design and after major process and/or design changes.
2. Loading is as specified in the test load circuit with $C_{L}=40 \mathrm{pF}$.

TABLE 4. APPLICABLE SUBGROUPS

CONFORMANCE GROUPS	METHOD	SUBGROUPS
Initial Test	$100 \% / 5004$	-
Interim Test	$100 \% / 5004$	-
PDA	100%	1
Final Test	100%	$2,3,8 \mathrm{~A}, 8 \mathrm{~B}, 10,11$
Group A	-	$1,2,3,7,8 \mathrm{~A}, 8 \mathrm{~B}, 9,10,11$
Groups C \&	Samples/5005	$1,7,9$

HSP43220/883
Burn-In Circuit

$\begin{aligned} & \text { PIN } \\ & \text { LEAD } \end{aligned}$	PIN NAME	BURN-IN SIGNAL
A1	GND	GND
A2	DATA_IN 1	F2
A3	DATA__IN 2	F3
A4	DATA_IN 4	F5
A5	DATA__IN 7	F8
A6	DATA_IN 8	F1
A7	DATA_IN 11	F4
A8	DATA_IN 14	F7
A9	$V_{C C}$	$V_{C C}$
A10	GND	GND
A11	GND	GND
B1	STARTIN\#	F15
B2	STARTOUT\#	$\mathrm{V}_{\mathrm{CC} / 2}$
B3	DATA_INO	F1
B4	DATA_IN 3	F4
B5	DATA_IN 6	F7
B6	DATA_IN 13	F6
B7	DATA_IN 12	F5
B8	DATA_IN 16	F8
B9	CK_IN	FO
B10	V_{CC}	V_{CC}
B11	DATA_OUT 1	$\mathrm{V}_{\mathrm{CC} / 2}$

$\begin{aligned} & \text { PIN } \\ & \text { LEAD } \end{aligned}$	PIN NAME	BURN-IN SIGNAL
C1	ASTARTIN\#	F15
C2	V_{CC}	$V_{\text {CC }}$
C5	DATA_IN 5	F6
C6	DATA_IN 9	F2
C7	DATA_IN 10	F3
C10	DATA_OUT O	$\mathrm{V}_{\mathrm{CC} / 2}$
C11	DATA_OUT 2	$\mathrm{V}_{\mathrm{CC}} / 2$
D1	A1	F14
D2	RESET\#	F16
D10	DATA_OUT 3	$\mathrm{V}_{\mathrm{CC} / 2}$
D11	DATA_OUT 4	$\mathrm{V}_{\mathrm{CC} / 2}$
E1	CS\#	F11
E2	WR\#	F11
E3	AO	F13
E9	DATA_OUT 5	$\mathrm{V}_{\mathrm{CC} / 2}$
E10	DATA__OUT 6	$\mathrm{V}_{\mathrm{CC} / 2}$
E11	DATA_OUT 7	$\mathrm{V}_{\mathrm{CC} / 2}$
F1	C__bUS 10	F3
F2	C__BUS 15	F8
F3	C__BUS 14	F7
F9	DATA_OUT9	$\mathrm{V}_{\mathrm{CC} / 2}$
F10	$V_{C C}$	$V_{C C}$

$\begin{aligned} & \text { PIN } \\ & \text { LEAD } \end{aligned}$	PIN NAME	BURN-IN SIGNAL
F11	DATA_OUT 3	$\mathrm{V}_{\mathrm{CC} / 2}$
G1	C__bUS 12	F5
G2	C__bus 11	F4
G3	C_BUS 13	F6
G9	DATA__OUT 10	$\mathrm{V}_{\mathrm{CC} / 2}$
G10	GND	GND
G11	DATA__OUT 11	$\mathrm{v}_{\mathrm{CC} / 2}$
H1	C__BUS 9	F2
H2	V_{CC}	V_{CC}
H10	DATA_OUT 13	$\mathrm{V}_{\mathrm{CC}} / 2$
H11	DATA_OUT 12	$\mathrm{V}_{\mathrm{CC} / 2}$
J1	GND	GND
J2	C_BUS 7	F5
J5	OUT__SELH	F10
J6	GND	GND
J8	FIR_CK	FO
J10	DATA_OUT 16	$\mathrm{V}_{\mathrm{CC} / 2}$
J11	DATA_OUT 14	$\mathrm{v}_{\mathrm{CC}} / 2$
K1	C_BUS 8	F1
K2	C_BUS 5	F6
K3	C_BUS 4	F5
K4	C_BUS 1	F2

NOTES:

1. $\mathrm{V}_{\mathrm{CC}} / 2(2.7 \mathrm{~V} \pm 10 \%)$ used for outputs only.
2. $47 \mathrm{~K} \Omega(\pm 20 \%)$ resistor connected to all pins except V_{CC} and GND.
3. $\mathrm{V}_{\mathrm{CC}}=5.5 \pm 0.5 \mathrm{~V}$.
4. $F 0=100 \mathrm{kHz} \pm 10 \%, F 1=F 0 / 2, F 2=F 1 / 2 \ldots \ldots F 16=F 15 / 2,40 \%-60 \%$ Duty Cycle.
5. Input voltage limits: $\mathrm{V}_{\mathrm{IL}}=0.8$ max, $\mathrm{V}_{\mathrm{IH}}=4.5 \mathrm{~V} \pm 10 \%$.
6. $0.1 \mu \mathrm{~F}(\mathrm{~min})$ capacitor between V_{CC} and GND per position.

Burn-In Circuit (Continued)

PIN LEAD	PIN NAME	BURN-IN SIGNAL
K5	OUT_ENP\#	F9
K6	V_{CC}	V_{CC}
K7	GND	GND
K8	DATA__OUT 22	$\mathrm{V}_{\mathrm{CC}} / 2$
K9	DATA__OUT 19	$\mathrm{V}_{\mathrm{CC}} / 2$
K10	DATA_OUT 17	$\mathrm{V}_{\mathrm{CC}} / 2$

PIN LEAD	PIN NAME	BURN-IN SIGNAL
K11	DATA_OUT 15	$\mathrm{V}_{\text {CC }} / 2$
L1	C__BUS 6	F7
L2	C_BUS 3	F4
L3	C_BUS 2	F3
L4	C__BUS 0	F1
L5	OUT_ENP\#	F9

PIN LEAD	PIN NAME	BURN-IN SIGNAL
L6	DATA_RDY\#	$\mathrm{V}_{\mathrm{CC}} / 2$
L7	V_{CC}	V_{CC}
L8	DATA_OUT 23	$\mathrm{V}_{\mathrm{CC}} / 2$
L9	DATA_OUT 21	$\mathrm{~V}_{\mathrm{CC}} / 2$
L10	DATA_OUT 20	$\mathrm{V}_{\mathrm{CC}} / 2$
L11	DATA_OUT 18	$\mathrm{V}_{\mathrm{CC}} / 2$

NOTES:

1. $\mathrm{V}_{\mathrm{CC}} / 2(2.7 \mathrm{~V} \pm 10 \%)$ used for outputs only.
2. $47 \mathrm{~K} \Omega(\pm 20 \%)$ resistor connected to all pins except $V_{C C}$ and GND.
3. $\mathrm{V}_{\mathrm{CC}}=5.5 \pm 0.5 \mathrm{~V}$.
4. $0.1 \mu \mathrm{~F}(\mathrm{~min})$ capacitor between V_{CC} and GND per position.
5. $F 0=100 \mathrm{kHz} \pm 10 \%, F 1=F 0 / 2, F 2=F 1 / 2 \ldots . F 16=F 15 / 2,40 \%-60 \%$ Duty Cycle.
6. Input voltage limits: $\mathrm{V}_{\mathrm{IL}}=0.8$ max, $\mathrm{V}_{\mathrm{IH}}=4.5 \mathrm{~V} \pm 10 \%$.

Metal Topology

DIE DIMENSIONS:
$348 \times 349.2 \times 19 \pm 1$ mils
METALLIZATION: Type: $\mathrm{Si}-\mathrm{Al}$ or $\mathrm{Si}-\mathrm{Al}-\mathrm{Cu}$ Thickness: 8k \AA
DIE ATTACH:
Material: Silver Glass

Metallization Mask Layout

WORST CASE CURRENT DENSITY:

$1.18 \times 10^{5} \mathrm{~A} / \mathrm{cm}^{2}$
GLASSIVATION:
Type: Nitrox
Thickness: $10 \mathrm{k} \AA$

Packaging ${ }^{\dagger}$

84 PIN CERAMIC PIN GRID ARRAY

LEAD MATERIAL: Type B
LEAD FINISH: Type C
PACKAGE MATERIAL: Ceramic, $\mathrm{Al}_{2} \mathrm{O}_{3} 90 \%$
PACKAGE SEAL:
Material: Gold/Tin
Temperature: $320^{\circ} \mathrm{C} \pm 10^{\circ} \mathrm{C}$
Method: Furnace Braze

INTERNAL LEAD WIRE:

Material: Aluminum
Diameter: 1.25 Mil
Bonding Method: Ultrasonic Wedge
COMPLIANT OUTLINE: 38510 P-AC

Harris HSP43220 Decimating Digital Filter Development Software

Harris DECI • MATE Development Software assists the design engineer to prototype designs for the Harris HSP43220 Decimating Digital filter (DDF). Developed specifically for the DDF, this software consists of three integrated modules: DDF Design, DDF Simulator and DDF PROM. The Design module designs a filter from a set of user specifications for the DDF. The Simulator module models the DDF's internal operation. The PROM module uses the device configuration created by the Design module to build a PROM data file that can be used to store and download the DDF configuration.

DDF System Design

The DDF consists of two stages: a High Decimation Filter (HDF) and a Finite Impulse Response (FIR) filter. Together these provide a unique narrow band, low pass filter. Because of this unique architecture, special software is required to configure the device for a given set of filter parameters. This software uses system level filter parameters (listed below) to perform the trade off analysis and calculate the values for the DDF's configuration registers and FIR coefficients.

Design specifications are supplied by the user in terms of:

1. Input sample frequency
2. Required output sample frequency
3. Passband signal bandwidth
4. Transition bandwidth
5. Amount of attenuation allowed in the passband
6. Amount of stopband attenuation required for signals outside of the band of interest.

This information is entered into a menu screen (See Figure 1), providing immediate feedback on the design validity. The design module calculates the order of the HDF, HDF decimation required, the FIR input data rate, minimum clock frequency for the FIR, FIR order and decimation required in the FIR.

The design module will then generate the FIR filter. Four different methods are provided for the FIR design:

1. A Standard FIR automatically designed by the module using the Parks-McClellan method to compute the coefficients of an equiripple (Chebyshev) filter.
2. Any FIR imported into the Design module from another FIR design program.
3. A precompensated FIR which is automatically designed by the module to compensate for the roll-off in the passband of the HDF frequency response.
4. The FIR may also be bypassed in which case the optimal HDF is designed from the user specifications.

Frequency response curves are then displayed showing the resulting responses in the HDF, FIR and for the entire chip using the given filter design. Figure 2 is a typical display. The user may save this frequency response data for further analysis. The design module also creates a report file documenting the filter design and providing the coefficients and setup register values for programming the device.

DDF Simulator

The simulator provides an accurate simulation of the device before any hardware is built. It can be used to simulate any filter designed with DECI • MATE. The simulator takes into account the fixed point bus widths and pipeline delays for every element in the DDF.
The simulator provides the user with an input signal which can be used to stimulate the filter. This signal is created from the options shown in Table 1. The user can select a pure step, impulse, cosine, chirp, uniform or Gaussian noise as the input signal, or a more complex signal can be generated by combining that data with an option selected from the Signal \#2 column, with the combining operator chosen from the middle column. The user can also import a signal from an outside source.

SIGNAL \#1
Step
Impulse
COSINE
Chirp
Uniform Noise
Gaussian Noise

Step
Impulse
COSINE

Uniform Noise Gaussian Noise

SIGNAL \#2
Step
Impulse
COSINE
Chirp
Uniform Noise
Gaussian Noise

Imported From Outside
Probes are provided to select specific areas to graphically display data values as well as save into data files for further processing. The DDF Simulator has two levels; the DDF Simulator Specification screen and the DDF Simulator Main Screen.

The specification screen (see Figure 3) is used to input the simulation parameters. The users selects display modes in either continuous or decimated format and data formats in either decimal or hexadecimal. The specification screen also provides for selection of the input signal.

The simulator main screen (see Figure 4) defines the simulator test probes and displays the data values per clock cycle. The interactive simulator screen consists of the HSP43220 block diagram, test probes and register contents. The user selects the step size of the input sample clock and also selects the probes to be monitored. The simulator will then clock through the specified number of clock cycles and display the resulting time domain response. Figure 5 shows a typical probe display.

Monarch 2.0 DSP Design Software

DECI•MATE is fully integrated with Monarch 2.0 professional DSP design software. Monarch is a fullfeatured DSP package with FIR IIR filter design and analysis, Two dimensional and Three dimensional viewing, a programmable signal/systems laboratory with $100+$ DSP/ Math functions, extensive fixed-point support and FFTs/ IFFTs. Monarch is available separately from The Athena Group, Inc.

When used with Monarch 2.0, DECI • MATE becomes a full feature design environment for a DSP system. Data can easily be transferred from DECI•MATE modules to the Monarch modules for further analysis.

System Requirements

IBM PC ${ }^{\text {rw }}, \mathrm{XT}^{\text {Tw }}$, AT $^{\text {Tw }}, \mathrm{PS} / 2^{\text {mw }}$ computer or 100% compatible with 640k RAM running MS/PC-DOS 2.0 or higher. One MegaByte of fixed-disk space with $5.25^{\prime \prime}$ or $3.5^{\prime \prime}$ floppy drive. CGA, MCGA, EGA, VGA, 8514, or Hercules graphics adapter. A Math co-processor is strongly recommended.

FIGURE 1. FILTER SPECIFICATION MENU

FIGURE 2. FREQUENCY DISPLAY

E

FIGURE 3. SPECIFICATION MENU

| DESIGN UIEW ANALYSIS ENHAMCETIENTS | CONFIG OSSHELL |
| :---: | :---: | :---: | :---: | :---: |

DDFDES

0
HSP43228 DDF SIMULATOR - MAIN
DDFDES DDFSIT DDFPROM

0
0
θ
\square
out_selh HIGH 308 E 06 out_selh LOW 300600

Step Size	$:$
Number Samples In	
Number Samples Out:	1
	0

FIGURE 4. SIMULATOR - MAIN MENU

FIGURE 5. SIMULATOR PROBE DISPLAY

Features

- Eight Filter Cells
- 0 to 30 MHz Sample Rate
- 9-Bit Coefficients and Signal Data
- 26-Bit Accumulator per Stage
- Filter Lengths Over 1000 Taps
- Shift-and-Add Output Stage for Combining Filter Outputs
- Expandable Coefficient Size, Data Size and Filter Length
- Decimation by 2, 3 or 4
- CMOS Power Dissipation Characteristics

Applications

- 1-D and 2-D FIR Filters
- Radar/Sonar
- Digital Video and Audio
- Adaptive Filters
- Echo Cancellation
- Correlation/Convolution
- Complex Multiply-Add
- Butterfly Computation
- Matrix Multiplication
- Sample Rate Converters

Description

The HSP43891 is a video-speed Digital Filter (DF) designed to efficiently implement vector operations such as FIR digital filters. It is comprised of eight filter cells cascaded internally and a shift and add output stage, all in a single integrated circuit. Each filter cell contains a 9x9 two's complement multiplier, three decimation registers and a 26-bit accumulator. The output stage contains an additional 26-bit accumulator which can add the contents of any filter cell accumulator to the output stage accumulator shifted right by 8 bits. The HSP43891 has a maximum sample rate of 30 MHz . The effective multiply-accumulate (mac) rate is 240 MHz . The HSP43891 DF can be configured to process expanded coefficient and word sizes. Multiple DFs can be cascaded for larger filter lengths without degrading the sample rate or a single DF can process larger filter lengths at less than 30 MHz with multiple passes. The architecture permits processing filter lengths of over 1000 taps with the guarantee of no overflows. In practice, most filter coefficients are less than 1.0, making even larger filter lengths possible. The DF provides for 8-bit unsigned or 9-bit two's complement arithmetic, independently selectable for coefficients and signal data.

Each DF filter cell contains three re-sampling or decimation registers which permit output sample rate reduction at rates of $1 / 2,1 / 3$ or $1 / 4$ the input sample rate. These registers also provide the capability to perform 2-D operations such as matrix multiplication and NxN spatial correlations/ convolutions for image processing applications.

Block Diagram

Pinouts

85 PIN GRID ARRAY (PGA)

84 PIN PLASTIC LEADED CHIP CARRIER (PLCC)

Pin Description

SYMBOL	PIN NUMBER	TYPE	NAME AND FUNCTION
V_{CC}	$\begin{gathered} \mathrm{B} 1, \mathrm{~J} 1, \mathrm{~A} 3, \\ \mathrm{~K} 4, \mathrm{L7}, \mathrm{~A} 10, \\ \mathrm{~F} 10, \mathrm{D} 11 \end{gathered}$		+5 power supply input
$\mathrm{v}_{\text {SS }}$	$\begin{gathered} \text { A1, F1, E2, } \\ \text { K3, K6, L9, } \\ \text { A11, E11, } \\ \text { H11 } \end{gathered}$		Power supply ground input.
CLK	G3	1	The CLK input provides the DF system sample clock. The maximum clock frequency is 30 MHz .
DINO-8	$\begin{gathered} A 5-8, \\ \text { B5-7 } \\ \text { C6, C7 } \end{gathered}$	1	These nine inputs are the data sample input bus. Nine-bit data samples are synchronously loaded through these pins to the X register of each filter cell of the DF simultaneously. The $\overline{\text { DIENB }}$ signal enables loading, which is synchronous on the rising edge of the clock signal. The data samples can be either 9-bit two's complement or 8-bit unsigned values. For 9-bit two's complement values, DIN8 is the sign bit. For 8-bit unsigned values, DIN8 must be held at logical zero.
$\overline{\text { DIENB }}$	C5	1	A low on this input enables the data sample input bus (DINO-8) to all the filter cells. A rising edge of the CLK signal occurring while DIENB is low will load the X register of every filter cell with the 9 -bit value present on DINO-8. A high on this input forces all the bits of the data sample input bus to zero; a rising CLK edge when DIENB is high will load the X register of every filter cell with all zeros. This signal is latched inside the device, delaying its effect by one clock internal to the device. Therefore it must be low during the clock cycle immediately preceding presentation of the desired data on the DINO-8 inputs. Detailed operation is shown in later timing diagrams.
CINO-8	```A9, B9-11, C10, C11, D10, E9, E10```	1	These nine inputs are used to input the 9-bit coefficients. The coefficients are synchronously loaded into the C register of filter CELLO if a rising edge of CLK occurs while CIENB is low. The CIENB signal is delayed by one clock as discussed below. The coefficients can be either 9-bit two's complement or 8-bit unsigned values. For 9-bit two's complement values, CIN8 is the sign bit. For 8-bit unsigned values, CIN8 must be held at logical zero.
ALIGN PIN	C3		Used for aligning chip on socket or printed circuit board. This pin must be left as a no connect in circuit.
$\overline{\text { CIENB }}$	B8	1	A low on this input enables the C register of every filter cell and the D (decimation) registers of every filter cell according to the state of the DCMO-1 inputs. A rising edge of the CLK signal occurring while CIENB is low will load the C register and appropriate D registers with the coefficient data present at their inputs. This provides the mechanism for shifting coefficients from cell to cell through the device. A high on this input freezes the contents of the C register and the D registers, ignoring the CLK signal. This signal is latched and delayed by one clock internal to the DF. Therefore it must be low during the clock cycle immediately preceding presentation of the desired coefficient on the CINO-8 inputs. Detailed operation is shown in later timing diagrams.
COUTO-8	$\begin{aligned} & \mathrm{B} 2, \mathrm{~B} 3, \mathrm{C} 1, \\ & \mathrm{D} 1, \mathrm{E} 1, \mathrm{C} 2, \\ & \mathrm{D} 2, \mathrm{~F} 2, \mathrm{E} 3 \end{aligned}$	0	These nine three-state outputs are used to output the 9-bit coefficients from filter CELLT. These outputs are enabled by the COENB signal low. These outputs may be tied to the CINO-8 inputs of the same DF to recirculate to coefficients, or they may be tied to the CINO-8 inputs of another DF to cascade DFs for longer filter lengths.
$\overline{\text { COENB }}$	A2	1	A low on the $\overline{\text { COENB }}$ input enables the COUTO-8 outputs. A high on this input places all these outputs in their high impedance state.
DCMO-1	L1, G2	1	These two inputs determine the use of the internal decimation registers as follows:
			DCM1 ${ }^{\text {D }}$ DCMO DECIMATION FUNCTION 4
			0 0 Decimation registers not used
			0 1 One decimation register is used
			1 0 Two decimation registers are used
			1 1 Three decimation registers are used

Pin Description (Continued)

SYMBOL	PIN NUMBER	TYPE	NAME AND FUNCTION
$\begin{aligned} & \text { DCMO-1 } \\ & \text { (Cont.) } \end{aligned}$	L1, G2	1	The coefficients pass from cell to cell at a rate determined by the number of decimation registers used. When no decimation registers are used, coefficients move from cell to cell on each clock. When one decimation register is used, coefficients move from cell to cell on every other clock, etc. These signals are latched and delayed by one clock internal to the device.
SUMO-25	$\begin{aligned} & \text { J2, J5-8, } \\ & \text { J10, K2, } \\ & \text { K5-11 } \\ & \text { L2-6, L8, } \\ & \text { L10, L11 } \end{aligned}$	0	These 26 three-state outputs are used to output the results of the internal filter cell computations. Individual filter cell results or the result of the shift-and-add output stage can be output. If an individual filter cell result is to be output, the ADRO-2 signals select the filter cell result. The SHADD signal determines whether the selected filter cell result or the output stage adder result is output. The signals SENBH and SENBL enable the most significant and least significant bits of the SUMO-25 result respectively. Both SENBH and SENBL may be enabled simultaneously if the system has a 26-bit or larger bus. However individual enables are provided to facilitate use with a 16-bit bus.
$\overline{\text { SENBH }}$	K1	1	A low on this input enables result bits SUM16-25. A high on this input places these bits in their high impedance state.
$\overline{\text { SENBL }}$	E11	1	A low on this input enables result bits SUMO-15. A high on this input places these bits in their high impedance state.
ADRO-2	G1, H1, H2	1	These three inputs select the one cell whose accumulator will be read through the output bus (SUMO-25) or added to the output stage accumulator. They also determine which accumulator will be cleared when ERASE is low. These inputs are latched in the DF and delayed by one clock internal to the device. If ADRO-2 remains at the same address for more than one clock, the output at SUMO-25 will not change to reflect any subsequent accumulator updates in the addressed cell. Only the result available during the first clock, when ADRO-2 selects the cell, will be output. This does not hinder normal operation since the ADRO-2 lines are changed sequentially. This feature facilitates the interface with slow memories where the output is required to be fixed for more than one clock.
SHADD	F3	1	The SHADD input controls the activation of the shift and add operation in the output stage. This signal is latched on chip and delayed by one clock internal to the device. Detailed explanation is given in the DF Output Stage section.
$\overline{\text { RESET }}$	A4	1	A low on this input synchronously clears all the internal registers, except the cell accumulators It can be used with ERASE to also clear all the accumulators simultaneously. This signal is latched in the DF and delayed by one clock internal to the device.
ERASE	B4	1	A low on this input synchronously clears the cell accumulator selected by the ADRO-2 signals. If $\overline{\operatorname{RESET}}$ is also low simultaneously, all cell accumulators are cleared.

Functional Description

The Digital Filter Processor (DF) is composed of eight filter cells cascaded together and an output stage for combining or selecting filter cell outputs (See Block Diagram). Each filter cell contains a multiplier-accumulator and several registers (Figure 1). Each 9-bit coefficient is multiplied by a 9 -bit data sample, with the result added to the 26 -bit accumulator contents. The coefficient output of each celliscascaded to the coefficient input of the next cell to its right.

DF Filter Cell

A 9-bit coefficient (CINO-8) enters each cell through the C register on the left and exits the cell on the right as signals COUTO-8. The coefficients may move directly from the C register to the output, exiting the cell on the clock following its entrance. When decimation is selected the coefficient exit is delayed by 1,2 or 3 clocks by passing through one or more decimation registers (D1, D2 or D3).
The combination of D registers through which the coefficient passes is determined by the state of DCMO and DCM1. The output signals (COUTO-8) are connected to the CINO-8 inputs of the next cell to its right. The COENB input signal enables the COUTO-8 outputs of the right most cell to the COUTO-8 pins of the device.
The C and D registers are enabled for loading by $\overline{C I E N B}$. Loading is synchronous with CLK when CIENB is low. Note that CIENB is latched internally. It enables the register for loading after the next CLK following the onset of CIENB low. Actual loading occurs on the second CLK following the onset of $\overline{\text { CIENB }}$ low. Therefore $\overline{\text { CIENB }}$ must be low during the clock cycle immediately preceding presentation of the coefficient on the CINO-8 inputs. In most basic FIR operations, $\overline{\text { CIENB }}$ will be low throughout the process, so this latching and delay sequence is only important during the initialization phase. When $\overline{\text { CIENB }}$ is high, the coefficients are frozen.

These registers are cleared synchronously under control of

The output of the C register ($\mathrm{C} 0-8$) is one input to 9×9 multiplier.
The other input to the 9×9 multiplier comes from the output of the X register. This register is loaded with a data sample from the device input signals DINO-8 discussed above. The X register is enabled for loading by DIENB. Loading is synchronous with CLK when DIENB is low. Note that DIENB is latched internally. It enables the register for loading after the next CLK following the onset of DIENB low. Actual loading occurs on the second CLK following the onset of DIENB low; therefore, DIENB must be low during the clock cycle immediately preceding presentation of the data sample on the DINO-8 inputs. In most basic FIR operations, DIENB will be low throughout the process, so this latching and delay sequence is only important during the initialization phase. When DIENB is high, the X register is loaded with all zeros.

The multiplier is pipelined and is modeled as a multiplier core followed by two pipeline registers, MREGO and MREG1 (Figure 1). The multiplier output is sign extended and input as one operand of the 26-bit adder. The other adder operand is the output of the 26-bit accumulator. The
adder output is loaded synchronously into both the accumulator and the TREG.
The TREG loading is disabled by the cell select signal, CELLn, where n is the cell number. The cell select is decoded from the ADRO-2 signals to generate the TREG load enable. The cell select is inverted and applied as the load enable to the TREG. Operation is such that the TREG is loaded whenever the cell is not selected. Therefore, TREG is loaded every clock except the clock following cell selection. The purpose of the TREG is to hold the result of a sum-ofproducts calculation during the clock when the accumulator is cleared to prepare for the next sum-of-products calculation. This allows continuous accumulation without wasting clocks.

The accumulator is loaded with the adder output every clock unless it is cleared. It is cleared synchronously in two ways. When $\overline{\text { RESET }}$ and ERASE are both low, the accumulator is cleared along with all other registers on the device. Since ERASE and RESET are latched and delayed one clock internally, clearing occurs on the second CLK following the onset of both ERASE and RESET low.
The second accumulator clearing mechanism clears a single accumulator in a selected cell. The cell select signal, CELLn, decoded from ADRO-2 and the ERASE signal enable clearing of the accumulator on the next CLK.
The ERASE and $\overline{\operatorname{RESET}}$ signals clear the DF internal registers and states as follows:

$\overline{\text { ERASE }}$	$\overline{\text { RESET }}$	CLEARING EFFECT
1	1	No clearing occurs, internal state remains same.
1	0	$\overline{\text { RESET only active, all registers except }}$ accumulators are cleared, including the internal pipeline registers.
0	1	ERASE only active, the accumulator whose address is given by the ADRO-2 inputs is cleared.
0	0	Both $\overline{R E S E T}$ and $\overline{\text { ERASE active, all }}$ accumulators as well as all other registers are cleared.

The DF Output Stage

The output stage consists of a 26-bit adder, 26-bit register, feedback multiplexer from the register to the adder, an output multiplexer and a 26-bit three-state driver stage (Figure 2).
The 26-bit output adder can add any filter cell accumulator result to the 18 most significant bits of the output buffer. This result is stored back in the output buffer. This operation takes place in one clock period. The eight LSBs of the output buffer are lost. The filter cell accumulator is selected by the ADRO-2 inputs.
The 18 MSBs of the output buffer actually pass through the zero mux on their way to the output adder input. The zero mux is controlled by the SHADD input signal and selects either the output buffer 18 MSBs or all zeros for the adder input. A low on the SHADD input selects zero. A high on the SHADD input selects the output buffer MSBs, thus activating the shift-and-add operation. The SHADD signal is latched and delayed by one clock internally.

FIGURE 1. HSP43891 DF FILTER CELL

FIGURE 2. HSP43891 DFP OUTPUT STAGE

The 26 least significant bits (LSBs) from either a cell accumulator or the output buffer are output on the SUMO-25 bus. The output mux determines whether the cell accumulator selected by ADRO-2 or the output buffer is output to the bus. This mux is controlled by the SHADD input signal. Control is based on the state of the SHADD during two successive clocks; in other words, the output mux selection contains memory. If SHADD is low during a clock cycle and was low during the previous clock, the output mux selects the contents of the filter cell accumulator addressed by ADRO-2. Otherwise the output mux selects the contents of the output buffer.

If the ADRO-2 lines remain at the same address for more than one clock, the output at SUMO-25 will not change to reflect any subsequent accumulator updates in the addressed cell. Only the result available during the first clock when ADRO-2 selects the cell will be output.

This does not hinder normal FIR operation since the ADRO-2 lines are changed sequentially. This feature facilitates the interface with slow memories where the output is required to be fixed for more than one clock.

The SUMO-25 output bus is controlled by the $\overline{\text { SENBH }}$ and $\overline{\text { SENBL }}$ signals. A low on SENBL enables bits SUMO-15. A low on SENBH enables bits SUM16-25. Thus all 26 bits can be output simultaneously if the external system has a 26-bit or larger bus. If the external system bus is only 16 bits, the bits can be enabled in two groups of 16 and 10 bits (sign extended).

DF Arithmetic

Both data samples and coefficients can be represented as either 8-bit unsigned or 9-bit two's complement numbers. The 9×9 bit multiplier in each cell expects 9 -bit two's complement operands. The binary format of 8-bit two's complement is shown below. Note that if the most significant or sign bit is held at logical zero, the 9-bit two's complement multiplier can multiply 8-bit unsigned operands. Only the upper (positive) half of the two's complement binary range is used.

The multiplier output is 18 bits and the accumulator is 26 bits. The accumulator width determines the maximum possible number of terms in the sum of products without overflow. The maximum number of terms depends also on the number system and the distribution of the coefficient and data values. Then maximum numbers of terms in the sum products are:

NUMBER SYSTEM	MAX \# OF TERMS	
	8-BIT	9-BIT
Two unsigned vectors	1032	N/A
Two two's complement vectors:		
- Two positive vectors	2080	1032
- Negative vectors	2047	1024
- One positive and one negative vector	2064	1028
One unsigned 8 bit vector and one two's		
complement vector:		
- Postive two's complement vector	1036	1032
- Negative two's complement vector	1028	1028

For practical FIR filters, the coefficients are never all near maximum value, so even larger vectors are possible in practice.

Basic FIR Operation

A simple, 30 MHz 8 -tap filter example serves to illustrate more clearly the operation of the DF. The sequence table (Table 1) shows the results of the multiply accumulate in each cell after each clock. The coefficient sequence, Cn , enters the DF on the left and moves from left to right through the cells. The data sample sequence, Xn , enters the DF from
the top, with each cell receiving the same sample simultaneously. Each cell accumulates the sum of products for one output point. Eight sums of products are calculated simultaneously, but staggered in time so that a new output is available every system clock.

TABLE 1. HSP $4389130 \mathrm{MHz}, 8$-TAP FIR FILTER SEQUENCE

CLK	CELL 0	CELL 1	CELL 2	CELL 3	CELL 4	CELL 5	CELL 6	CELL 7	SUM/CLR
0	$C_{7} \times{ }_{0}$	0	0	0	-	-	-	-	-
1	$+C_{6} \times x_{1}$	$\mathrm{C}_{7} \times \mathrm{X}_{1}$	0	0	-	-	-	-	-
2	$+\mathrm{C}_{5} \times \mathrm{X}_{2}$.	$+C_{6} \times{ }^{2}$	$\mathrm{C}_{7} \times \mathrm{X}_{2}$	0	-	-	-	-	-
3	$+C_{4} \times{ }^{2}$	$+\mathrm{C}_{5} \times \mathrm{X}_{3}$	$+\mathrm{C}_{6} \times \mathrm{X}_{3}$	$\mathrm{C}_{7} \times \mathrm{X}_{3}$	-	-	-	-	-
4	$+\mathrm{C}_{3} \times \mathrm{X}_{4}$	$+C_{4} \times \mathrm{X}_{4}$	$+C_{5} \times \mathrm{X}_{4}$	$+C_{6} \times \mathrm{X}_{4}$	$\mathrm{C}_{7} \times \mathrm{X}_{4}$	-	-	-	-
5	$+C_{2} \times{ }^{2}$	$+C_{3} \times{ }_{5}$	$+C_{4} \times X_{5}$	$+C_{5} \times X_{5}$	$+C_{6} \times X_{5}$	$\mathrm{C}_{7} \times \mathrm{X}_{5}$	-	-	-
6	$+\mathrm{C}_{1} \times \mathrm{X}_{6}$	$+C_{2} \times{ }^{6}$	$+C_{3} \times x_{6}$	$+C_{4} \times \mathrm{X}_{6}$	$+C_{5} \times X_{6}$	$+\mathrm{C}_{6} \times \mathrm{X}_{6}$	$\mathrm{C}_{7} \times \mathrm{X}_{6}$	-	-
7	$+C_{0} \times{ }_{7}$	$+C_{1} \times{ }_{7}$	$+\mathrm{C}_{2} \times \mathrm{X}_{7}$	$+C_{3} \times{ }^{1}$	$+\mathrm{C}_{4} \times \mathrm{X}_{7}$	$+\mathrm{C}_{5} \times \mathrm{X}_{7}$	$+\mathrm{C}_{6} \times \mathrm{X}_{7}$	$\mathrm{C}_{7} \times \mathrm{X}_{7}$	Cell 0 (Y7)
8	$\mathrm{C}_{7} \times \mathrm{X}_{8}$	$+C_{0} \times{ }^{\text {a }}$	$+C_{1} \times{ }^{1}$	$+\mathrm{C}_{2} \times \mathrm{X}_{8}$	$+\mathrm{C}_{3} \times \mathrm{X}_{8}$	$+\mathrm{C}_{4} \times \mathrm{X}_{8}$	$+\mathrm{C}_{5} \times \mathrm{X}_{8}$	$+\mathrm{C}_{6} \times \mathrm{X}_{8}$	Cell 1 (Y8)
9	$+C_{6} \times{ }^{\prime}$	$\mathrm{C}_{7} \times \mathrm{X}_{9}$	$+C_{0} \times{ }^{\prime}$	$+^{+}{ }_{1} \times{ }^{\prime}$	$+\mathrm{C}_{2} \times \mathrm{X}_{9}$	$+\mathrm{C}_{3} \times \mathrm{X}_{9}$	$+\mathrm{C}_{4} \times \mathrm{X}_{9}$	$+\mathrm{C}_{5} \times \mathrm{X}_{9}$	Cell 2 (Y9)
10	$+C_{5} \times \mathrm{X}_{10}$	$+C_{6} \times \mathrm{X}_{10}$	$\mathrm{C}_{7} \times \mathrm{X}_{10}$	$+C_{0} \times{ }_{10}$	$+C_{1} \times{ }^{10}$	$+\mathrm{C}_{2} \times \mathrm{X}_{10}$	$+\mathrm{C}_{3} \times \mathrm{X}_{10}$	$+\mathrm{C}_{4} \times \mathrm{X}_{10}$	Cell 3 (Y10)
11	$+\mathrm{C}_{4} \times \mathrm{X}_{11}$	$+\mathrm{C}_{5} \times \mathrm{X}_{11}$	$+C_{6} \times{ }_{11}$	$\mathrm{C}_{7} \times \mathrm{X}_{11}$	$+C_{0} \times \mathrm{X}_{11}$	$+C_{1} \times{ }_{11}$	$+\mathrm{C}_{2} \times \mathrm{X}_{11}$	$+C_{3} \times{ }_{11}$	Cell 4 (Y11)
12	$+\mathrm{C}_{3} \times \mathrm{X}_{12}$	$+C_{4} \times{ }_{12}$	$+\mathrm{C}_{5} \times \mathrm{X}_{12}$	$+\mathrm{C}_{6} \times \mathrm{X}_{12}$	$\mathrm{C}_{7} \times \mathrm{X}_{12}$	$+C_{0} \times{ }_{12}$	$+C_{1} \times{ }_{12}$	$+\mathrm{C}_{2} \times \mathrm{X}_{12}$	Cell 5 (Y12)
13	$+\mathrm{C}_{2} \times \mathrm{X}_{13}$	$+C_{3} \times{ }_{13}$	$+\mathrm{C}_{4} \times \mathrm{X}_{13}$	$+\mathrm{C}_{5} \times \mathrm{X}_{13}$	$+C_{6} \times \mathrm{X}_{13}$	$\mathrm{C}_{7} \times \mathrm{X}_{13}$	$+C_{0} \times{ }_{13}$	$+\mathrm{C}_{1} \times \mathrm{X}_{13}$	Cell 6 (Y13)
14	$+C_{1} \times{ }_{14}$	$+\mathrm{C}_{2} \times \mathrm{X}_{14}$	$+C_{3} \times{ }_{14}$	$+\mathrm{C}_{4} \times \mathrm{X}_{14}$	$+C_{5} \times{ }_{14}$	$+C_{6} \times \mathrm{X}_{14}$	$+C_{7} \times{ }_{14}$	$+\mathrm{C}_{0} \times \mathrm{X}_{14}$	Cell 7 (Y14)
15	$+\mathrm{C}_{0} \times \mathrm{X}_{15}$	$+\mathrm{C}_{1} \times \mathrm{X}_{15}$	$+\mathrm{C}_{2} \times \mathrm{X}_{15}$	$+C_{3} \times \mathrm{X}_{15}$	$+C_{4} \times \mathrm{X}_{15}$	$+C_{5} \times \mathrm{X}_{15}$	$+\mathrm{C}_{6} \times \mathrm{X}_{15}$	$\mathrm{C}_{7} \times \mathrm{X}_{15}$	Cell 0 (Y15)

FIGURE 3. HSP43891 30MHz, 8-TAP FIR FILTER APPLICATION SCHEMATIC

Detailed operation of the DF to perform a basic 8-tap, 9-bit coefficient, 9-bit data, 30 MHz FIR filter is best understood by observing the schematic (Figure 3) and timing diagram (Figure 4). The internal pipeline length of the DF is four (4) clock cycles, corresponding to the register levels CREG (or XREG), MREGO, MREG1, and TREG (Figures 1 and 2). Therefore the delay from presentation of data and coefficients at the DINO-8 and CINO-8 inputs to a sum appearing at the SUMO-25 output is: $k+$ Td, where $k=$ filter length and $T d=4$, the internal pipeline delay of the DF.

After the pipeline has filled, a new output sample is available every clock. The delay to last sample output from last sample input is Td.
The output sums, Yn , shown in the timing diagram are derived from the sum-of-products equation:
$Y(n)=C(0) \times X(n)+C(1) \times X(n-1)+C(2) \times X(n-2)+C(3)$ $x X(n-3)+C(4) \times X(n-4)+C(5) \times X(n-5)+C(6) \times X(n-6)$ $+C(7) \times X(n-7)$

$$
\left|c_{7}\right| c_{6}\left|c_{5}\right| c_{4}\left|c_{3}\right| c_{2}\left|c_{1}\right| c_{0}\left|c_{7}\right| c_{6}\left|c_{5}\right| c_{4}\left|c_{3}\right| c_{2}\left|c_{1}\right| c_{0}\left|c_{7}\right| c_{6}\left|c_{5}\right|
$$

$\overline{\text { CIENB }}$ TRZA

$$
Y_{N}=\sum_{K=0} C_{K} \times X_{N-K}
$$

FIGURE 4. HSP43891 30MHz, 8-TAP FIR FILTER TIMING

FIGURE 5. HSP43891 30 MHz , 16-TAP FIR FILTER CASCADE APPLICATION SCHEMATIC

Extended FIR Filter Length

Filter lengths greater that eight taps can be created by either cascading together multiple DF devices or "reusing" a single device. Using multiple devices, an FIR filter of over 1000 taps can be constructed to operate at a 30 MHz sample rate. Using a single device clocked at 30 MHz , an FIR filter of over 500 taps can be constructed to operate at less than a 30 MHz sample rate. Combinations of these two techniques are also possible.

Cascade Configuration

To design a filter length $L>8, L / 8$ DFs are cascaded by connecting the COUTO-8 outputs of the (i)th DF to the CINO-8 inputs of the ($i+1$)th DF. The DINO-8 inputs and SUMO-25 outputs of all the DFs are also tied together. A specific example of two cascaded DFs illustrates the technique (Figure 5). Timing (Figure 6) is similar to the simple 8-tap FIR, except the ERASE and SENBL/SENBH signals must be enabled independently for the two DFs in order to clear the correct accumulators and enable the SUMO-25 output signals at the proper times.

DATA SEQUENCE TABLE 2.
INPUT $\quad X_{30} \ldots X_{9}, X_{8}, x_{22} \ldots X_{1}, x_{0}$
COEFFICIENT SEQUENCE
INPUT $C_{0} \ldots C_{14}, C_{15}, 0 \ldots 0, C_{0} \ldots C_{14}, C_{15} \longrightarrow$ HSP43891 $\longrightarrow \ldots 0, Y_{30} \ldots Y_{23}, 0 \ldots 0, Y_{22} \ldots Y_{15}, 0 \ldots 0$

CLK	CELL 0	CELL 1	CELL 2	CELL 3	CELL 4	CELL 5	CELL 6	CELL 7	SUM/CLR
6	$\mathrm{C}_{15} \times \mathrm{X}_{0}$	0	0	0	-	-	-	-	-
7	$+C_{14} \times x_{1}$	$\mathrm{C}_{15} \times \mathrm{X}_{1}$	0	0	-	-	-	-	-
8	$+C_{13} \times x_{2}$		$\mathrm{C}_{15} \times \mathrm{X}_{2}$	0	-	-	-	- .	-
9	$+\mathrm{C}_{12} \times \mathrm{x}_{3}$			$\mathrm{c}_{15} \times \mathrm{X}_{3}$	-	-	-	-	-
10	$+C_{11} \times{ }^{4}$			$+C_{14} \times x_{4}$	$\mathrm{C}_{15} \times \mathrm{X}_{4}$	-	-	-	-
11	$+\mathrm{C}_{10} \times \mathrm{X}_{5}$			$+C_{13} \times x_{5}$		$c_{15} \times{ }_{5}$	-	-	-
12	$+\mathrm{C}_{9} \times \mathrm{X}_{6}$			$+C_{12} \times x_{6}$			$\mathrm{c}_{15} \times \mathrm{X}_{6}$	-	-
13	$+\mathrm{C}_{8} \times \mathrm{X}_{7}$			$+C_{11} \times{ }^{2}$				$\mathrm{C}_{15} \times \mathrm{X}_{7}$	-
14	$+C_{7} \times x_{8}$			$+C_{10} \times x_{8}$				$+C_{14} \times{ }^{1}$	\cdots -
15	$+\mathrm{C}_{6} \times \mathrm{X}_{9}$			$+\mathrm{C}_{9} \times \mathrm{X}_{9}$				$+\mathrm{C}_{13} \times \mathrm{X}_{9}$. -
16	$+\mathrm{C}_{5} \times \mathrm{X}_{10}$			$+c_{8} \times \mathrm{X}_{10}$				$+C_{12} \times{ }_{10}$	-
17	$+\mathrm{C}_{4} \times \mathrm{X}_{11}$			$+C_{7} \times \mathrm{X}_{11}$				$+C_{11} \times \mathrm{X}_{11}$	-
18	$+c_{3} \times x_{12}$			$+\mathrm{C}_{6} \times \mathrm{X}_{12}$				$+C_{10} \times{ }_{12}$	-
19	$+\mathrm{C}_{2} \times \mathrm{X}_{13}$			$+C_{5} \times \mathrm{X}_{13}$				$+C_{9} \times \mathrm{X}_{13}$	-
20	$+C_{1} \times x_{14}$			$+\mathrm{C}_{4} \times \mathrm{X}_{14}$				$+C_{8} \times \mathrm{X}_{14}$	-
21	$+\mathrm{C}_{0} \times \mathrm{X}_{15}$	\downarrow		$+c_{3} \times x_{15}$				$+C_{7} \times{ }_{15}$	Cell O(Y15)
22	0	$\mathrm{c}_{0} \times \mathrm{X}_{16}$	\downarrow	$+C_{2} \times \mathrm{X}_{16}$				$+\mathrm{C}_{6} \times \mathrm{X}_{16}$	Cell 1(Y16)
23	0	0	$\mathrm{C}_{0} \times \mathrm{X}_{17}$	$+C_{1} \times{ }_{17}$				$+C_{5} \times \mathrm{X}_{17}$	Cell 2(Y17)
24	0	0	0	$+C_{0} \times{ }_{18}$	\downarrow			$+\mathrm{C}_{4} \times \mathrm{X}_{18}$	Cell 3(Y18)
25	0	0	0	0	$\mathrm{C}_{0} \times \mathrm{X}_{19}$	\downarrow		$+C_{3} \times{ }_{19}$	Cell 4(Y19)
26	0	0	0	0	0	$\mathrm{C}_{0} \times \mathrm{X}_{20}$	\downarrow	$+\mathrm{C}_{2} \times \mathrm{X}_{20}$	Cell 5(Y20)
27	0	0	0	0	0	0	$\mathrm{c}_{0} \times \mathrm{X}_{21}$	$+\mathrm{C}_{1} \times \mathrm{X}_{21}$	Cell 6(Y21)
28	0	0	0	0	0	0	0	$+\mathrm{C}_{0} \times \mathrm{X}_{22}$	Cell 7(Y22)
29	$\mathrm{C}_{15} \times \mathrm{X}_{8}$	0	0	0	0	0	0	0	-
30	$+\mathrm{C}_{14} \times \mathrm{X}_{9}$	$+C_{15} \times{ }_{9}$	${ }^{0}{ }^{0} \times{ }^{\text {a }}$	0	0	0	0	0	-
31	$+\mathrm{C}_{13} \times \mathrm{X}_{10}$		$+C_{15} \times{ }_{10}$			0	0	0	-
32 33	+ $\mathrm{C}_{12} \times \mathrm{X}_{11}$			$+\mathrm{C}_{15} \times \mathrm{X}_{11}$		0	0	0	-
33 34				I	$+\mathrm{C}_{15} \times \mathrm{X}_{12}$	0 $+C_{15} \times \mathrm{X}_{12}$	0	0	-
35						${ }^{+C_{15} \times \times_{12}}$	$+C_{15} \times{ }^{\text {x }}$	0	-
36	+ $\mathrm{C}_{8} \times \mathrm{X}_{15}$						+15× ${ }^{14}$	$\mathrm{C}_{15} \times \mathrm{X}_{15}$	-
37	$+C_{7} \times x_{16}$							$+\mathrm{C}_{14} \times \mathrm{X}_{16}$	-
38	$+\mathrm{C}_{6} \times \mathrm{X}_{17}$							$+\mathrm{C}_{13} \times \mathrm{X}_{17}$	-
39	$+C_{5} \times{ }^{18}$							$+\mathrm{C}_{12} \times \mathrm{X}_{18}$	-
40	$+\mathrm{C}_{4} \times \mathrm{X}_{19}$							$+\mathrm{C}_{11} \times \mathrm{X}_{19}$	-
41	$+C_{3} \times{ }^{20}$							$+\mathrm{C}_{10} \times{ }^{20}$	-
42	$+C_{2} \times{ }_{21}$							$+\mathrm{C}_{9} \times \mathrm{X}_{21}$	\therefore -
43	$+\mathrm{C}_{1} \times \times_{22}$							+C8× ${ }^{2}$	-10\%23)
44	$+C_{0} \times{ }^{23}$	\downarrow						$+C_{7} \times x_{23}$	Cell O(Y23)
45	0	$c_{0} \times x_{23}$						$+C_{6} \times \times_{24}$	Cell 1(Y24)
46	$\begin{array}{r}0 \\ \hline\end{array}$	0	$\mathrm{c}_{0} \times \mathrm{X}_{25}$	$\stackrel{\downarrow}{\downarrow}$				$+C_{5} \times{ }^{25}$	Cell 2(Y25)
47	0	0	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\mathrm{C}_{0} \times \mathrm{X}_{26}$		1		$+C_{4} \times X_{26}$	Cell 3(Y26) Cell 4(Y27)
48	0	0		0	$\mathrm{C}_{0} \times \mathrm{X}_{27}$	\downarrow	\downarrow	$+C_{3} \times{ }_{27}$	Cell 4(Y27)

FIGURE 6. HSP43891 16-TAP 30MHz FILTER TIMING USING TWO CASCADED HSP43891s

Single DF Configuration

Using a single DF, a filter of length $L>8$ can be constructed by processing in L/8 passes, as illustrated in Table 2, for a 16-tap FIR. Each pass is composed of $T p=7+L$ cycles and computes eight output samples. In pass i, the sample with indices $i^{*} 8$ to $i^{*} 8+(\mathrm{L}-1)$ enter the DINO-8 inputs. The coefficients $\mathrm{C}_{0}-\mathrm{C}_{\mathrm{L}}-1$ enter the CINO-8 inputs, followed by seven zeros. As these zeros are entered, the result samples are output and the accumulators reset. Initial filing of the pipeline is not shown in this sequence table. Filter outputs can be put through a FIFO to even out the sample rate.

Extended Coefficient and Data Sample Word Size

The sample and coefficient word size can be extended by utilizing several DFs in parallel to get the maximum sample rate or a single DF with resulting lower sample rates. The technique is to compute partial products of 9×9 and com-
bine these partial products by shifting and adding to obtain the final result. The shifting and adding can be accomplished with external adders (at full speed) or with the DF's shift-and-add mechanism contained in its output stage (at reduced speed).

Decimation/Resampling

The HSP43891 DF provides a mechanism for decimating by factors of 2,3 , or 4 . From the DF filter cell block diagram (Figure 1), note the three D registers and two multiplexers in the coefficient path through the cell. These allow the coefficients to be delayed by 1, 2, or 3 clocks through the cell. The sequence table (Table 3) for a decimate-by-twofilter illustrates the technique (internal cell pipelining ignored for simplicity).
Detailed timing for a 30 MHz input sample rate, 15 MHz output sample rate (i.e., decimate-by-two), 16-tap FIR filter, including pipelining, is shown in Figure 7. This filter requires only a single HSP43891 DF.

TABLE 3. HSP43891 16-TAP DECIMATE-BY-TWO FIR FILTER SEQUENCE; 30MHz IN, 15MHz OUT

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \& \begin{tabular}{l}
DATA
QUENCE \\
input \\
FFICIENT QUENCE INPUT
\end{tabular} \& \(. . x_{2}, x_{1}\),

c_{15}, c_{0}, \& x_{0}
$\ldots c_{13},{ }^{2}$ \& 15 \& HSP43891. \& $\rightarrow \ldots Y_{19}$ \& $-Y_{17},-, Y_{1}$ \& \&

\hline CLK \& CELLO \& CELL 1 \& CELL 2 \& CELL 3 \& CELL 4 \& CELL 5 \& CELL 6 \& CELL 7 \& SUM/CLR

\hline 6 \& $\mathrm{C}_{15} \times \mathrm{X}_{0}$ \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& -

\hline 7 \& $+\mathrm{C}_{14} \times \mathrm{X}_{1}$ \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& -

\hline 8 \& $+\mathrm{C}_{13} \times \mathrm{X}_{2}$ \& $\mathrm{C}_{15} \times \mathrm{X}_{2}$ \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& -

\hline 9 \& $+\mathrm{C}_{12} \times \mathrm{X}_{3}$ \& $+\mathrm{C}_{14} \times \mathrm{X}_{3}$ \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& -

\hline 10 \& $+\mathrm{C}_{11} \times \mathrm{X}_{4}$ \& $+\mathrm{C}_{13} \times \mathrm{X}_{4}$ \& $\mathrm{C}_{15} \times \mathrm{X}_{4}$ \& 0 \& 0 \& 0 \& 0 \& 0 \& -

\hline 11 \& $+\mathrm{C}_{10} \times \mathrm{X}_{5}$ \& $+\mathrm{C}_{12} \times \mathrm{X}_{5}$ \& $+C_{14} \times{ }^{5}$ \& 0 \& 0 \& 0 \& 0 \& 0 \& -

\hline 12 \& $+\mathrm{C}_{9} \times \mathrm{X}_{6}$ \& $+\mathrm{C}_{11} \times \mathrm{X}_{6}$ \& $+C_{13} \times \mathrm{X}_{6}$ \& $\mathrm{C}_{15} \times \mathrm{X}_{6}$ \& 0 \& 0 \& 0 \& 0 \& -

\hline 13 \& $+\mathrm{C}_{8} \times \mathrm{X}_{7}$ \& $+\mathrm{C}_{10} \times \mathrm{X}_{7}$ \& $+C_{12} \times x_{7}$ \& $+C_{14} \times X_{7}$ \& 0 \& 0 \& 0 \& 0 \& -

\hline 14 \& $+C_{7} \times X_{8}$ \& $+\mathrm{C}_{9} \times \mathrm{X}_{8}$ \& $+\mathrm{C}_{11} \times \mathrm{X}_{8}$ \& $+C_{13} \times \mathrm{X}_{8}$ \& $\mathrm{C}_{15} \times \mathrm{X}_{8}$ \& 0 \& 0 \& 0 \& -

\hline 15 \& $+\mathrm{C}_{6} \times \mathrm{X}_{9}$ \& $+C_{8} \times \mathrm{X}_{9}$ \& $+\mathrm{C}_{10} \times \mathrm{X}_{9}$ \& $+\mathrm{C}_{12} \times \mathrm{X}_{9}$ \& $+\mathrm{C}_{14} \times \mathrm{X}_{9}$ \& 0 \& 0 \& 0 \& -

\hline 16 \& $+\mathrm{C}_{5} \times \mathrm{X}_{10}$ \& $+\mathrm{C}_{7} \times \mathrm{X}_{10}$ \& $+\mathrm{C}_{9} \times \mathrm{X}_{10}$ \& $+\mathrm{C}_{11} \times \mathrm{X}_{10}$ \& $+C_{13} \times X_{10}$ \& $\mathrm{C}_{15} \times \mathrm{X}_{10}$ \& 0 \& 0 \& -

\hline 17 \& $+\mathrm{C}_{4} \times \mathrm{X}_{11}$ \& $+C_{6} \times \mathrm{X}_{11}$ \& $+C_{8} \times \mathrm{X}_{11}$ \& $+\mathrm{C}_{10} \times \mathrm{X}_{11}$ \& $+\mathrm{C}_{12} \times \mathrm{X}_{11}$ \& $+\mathrm{C}_{14} \times \mathrm{X}_{11}$ \& 0 \& 0 \& -

\hline 18 \& $+C_{3} \times \mathrm{X}_{12}$ \& $+\mathrm{C}_{5} \times \mathrm{X}_{12}$ \& $+C_{7} \times{ }^{12}$ \& $+\mathrm{C}_{9} \times \mathrm{X}_{12}$ \& $+\mathrm{C}_{11} \times \mathrm{X}_{12}$ \& $+\mathrm{C}_{13} \times \mathrm{X}_{12}$ \& $\mathrm{C}_{15} \times \mathrm{X}_{12}$ \& 0 \& -

\hline 19 \& + $\mathrm{C}_{2} \times \mathrm{X}_{13}$ \& $+\mathrm{C}_{4} \times \mathrm{X}_{13}$ \& $+\mathrm{C}_{6} \times \mathrm{X}_{13}$ \& $+C_{8} \times{ }_{13}$ \& $+\mathrm{C}_{10} \times \mathrm{X}_{13}$ \& $+\mathrm{C}_{12} \times \mathrm{X}_{13}$ \& $+\mathrm{C}_{14} \times \mathrm{X}_{13}$ \& 0 \& -

\hline 20 \& $+\mathrm{C}_{1} \times \mathrm{X}_{14}$ \& $+\mathrm{C}_{3} \times \mathrm{X}_{14}$ \& $+\mathrm{C}_{5} \times \mathrm{X}_{14}$ \& $+C_{7} \times{ }_{14}$ \& $+\mathrm{C}_{9} \times \mathrm{X}_{14}$ \& $+C_{11} \times{ }_{14}$ \& $+C_{13} \times \mathrm{X}_{14}$ \& $\mathrm{C}_{15} \times \mathrm{X}_{14}$ \& -

\hline 21 \& $+\mathrm{C}_{0} \times \mathrm{X}_{15}$ \& $+\mathrm{C}_{2} \times \mathrm{X}_{15}$ \& $+C_{4} \times{ }_{15}$ \& $+\mathrm{C}_{6} \times \mathrm{X}_{15}$ \& $+C_{8} \times{ }_{15}$ \& $+\mathrm{C}_{10} \times \mathrm{X}_{15}$ \& $+\mathrm{C}_{12} \times \mathrm{X}_{15}$ \& $+\mathrm{C}_{14} \times \mathrm{X}_{15}$ \& Cell O(Y15)

\hline 22 \& $\mathrm{C}_{15} \times \mathrm{X}_{16}$ \& $+\mathrm{C}_{1} \times \mathrm{X}_{16}$ \& $+C_{3} \times \mathrm{X}_{16}$ \& $+C_{5} \times \mathrm{X}_{16}$ \& $+C_{7} \times{ }_{16}$ \& $+\mathrm{C}_{9} \times \mathrm{X}_{16}$ \& $+C_{11} \times{ }_{16}$ \& $+C_{13} \times X_{16}$ \& -

\hline 23 \& $+\mathrm{C}_{14} \times \mathrm{X}_{17}$ \& $+\mathrm{C}_{0} \times \mathrm{X}_{17}$ \& $+\mathrm{C}_{2} \times \mathrm{X}_{17}$ \& $+C_{4} \times \mathrm{X}_{17}$ \& $+\mathrm{C}_{6} \times \mathrm{X}_{17}$ \& $+C_{8} \times \mathrm{X}_{17}$ \& $+\mathrm{C}_{10} \times \mathrm{X}_{17}$ \& $+C_{12} \times \mathrm{X}_{17}$ \& Ceil 1(Y17)

\hline 24 \& $+\mathrm{C}_{13} \times \mathrm{X}_{18}$ \& $\mathrm{C}_{15} \times \mathrm{X}_{18}$ \& $+C_{1} \times{ }_{18}$ \& $+C_{3} \times \mathrm{X}_{18}$ \& $+\mathrm{C}_{5} \times \mathrm{X}_{18}$ \& $+C_{7} \times \mathrm{X}_{18}$ \& $+\mathrm{C}_{9} \times \mathrm{X}_{18}$ \& $+C_{11} \times \mathrm{X}_{18}$ \& - -

\hline 25 \& $+C_{12} \times{ }_{19}$ \& $+\mathrm{C}_{14} \times \mathrm{X}_{19}$ \& $+\mathrm{C}_{0} \times \mathrm{X}_{19}$ \& $+\mathrm{C}_{2} \times \mathrm{X}_{19}$ \& $+C_{4} \times{ }_{19}$ \& $+\mathrm{C}_{6} \times \mathrm{X}_{19}$ \& $+\mathrm{C}_{8} \times \mathrm{X}_{19}$ \& $+\mathrm{C}_{10} \times \mathrm{X}_{19}$ \& Cell 2(Y19)

\hline 26 \& $+\mathrm{C}_{11} \times \mathrm{X}_{20}$ \& $+C_{13} \times{ }_{20}$ \& $\mathrm{C}_{15} \times \mathrm{X}_{20}$ \& $+C_{1} \times \times_{20}$ \& $+C_{3} \times{ }^{20}$ \& $+C_{5} \times{ }^{20}$ \& $+C_{7} \times{ }^{20}$ \& $+\mathrm{C}_{9} \times \mathrm{x}_{20}$ \& -

\hline 27 \& $+\mathrm{C}_{10} \times \mathrm{X}_{21}$ \& $+\mathrm{C}_{12} \times \mathrm{X}_{21}$ \& $+C_{14} \times{ }_{21}$ \& $+C_{0} \times{ }_{21}$ \& $+C_{2} \times{ }^{21}$ \& $+C_{4} \times{ }_{21}$ \& $+\mathrm{C}_{6} \times \mathrm{X}_{21}$ \& $+C_{8} \times{ }_{21}$ \& Cell 3(Y21)

\hline 28 \& $+\mathrm{C}_{9} \times \mathrm{X}_{22}$ \& $+\mathrm{C}_{11} \times \mathrm{X}_{22}$ \& $+C_{13} \times{ }_{22}$ \& $\mathrm{C}_{15} \times \mathrm{X}_{22}$ \& $+C_{1} \times{ }_{22}$ \& $+C_{3} \times{ }_{22}$ \& $+C_{5} \times{ }^{22}$ \& $+C_{7} \times{ }^{12}$ \& -

\hline 29 \& $+\mathrm{C}_{8} \times \mathrm{X}_{23}$ \& $+\mathrm{C}_{10} \times \mathrm{X}_{23}$ \& $+\mathrm{C}_{12} \times \mathrm{X}_{23}$ \& $+C_{14} \times \mathrm{X}_{23}$ \& $+C_{0} \times{ }_{23}$ \& $+\mathrm{C}_{2} \times \mathrm{X}_{23}$ \& $+\mathrm{C}_{4} \times \mathrm{X}_{23}$ \& $+\mathrm{C}_{6} \times \mathrm{X}_{23}$ \& Cell 4(Y23)

\hline 30 \& $+\mathrm{C}_{7} \times \mathrm{X}_{24}$ \& $+\mathrm{C}_{9} \times \mathrm{X}_{24}$ \& $+\mathrm{C}_{11} \times \mathrm{X}_{24}$ \& $+\mathrm{C}_{13} \times \mathrm{X}_{24}$ \& $+\mathrm{C}_{15} \times \mathrm{X}_{24}$ \& $+C_{1} \times{ }_{24}$ \& $+\mathrm{C}_{3} \times \mathrm{X}_{24}$ \& $+C_{5} \times{ }_{24}$ \& -

\hline 31 \& $+\mathrm{C}_{6} \times \mathrm{X}_{25}$ \& $+\mathrm{C}_{8} \times \mathrm{X}_{25}$ \& $+\mathrm{C}_{10} \times \mathrm{X}_{25}$ \& $+\mathrm{C}_{12} \times \mathrm{X}_{25}$ \& $+\mathrm{C}_{14} \times \mathrm{X}_{25}$ \& $+C_{0} \times{ }_{25}$ \& $+\mathrm{C}_{2} \times \mathrm{X}_{25}$ \& $+\mathrm{C}_{4} \times \mathrm{X}_{25}$ \& Cell 5(Y25)

\hline 32 \& $+\mathrm{C}_{5} \times \mathrm{X}_{26}$ \& $+\mathrm{C}_{7} \times \mathrm{X}_{26}$ \& $+\mathrm{C}_{9} \times \mathrm{X}_{26}$ \& $+\mathrm{C}_{11} \times \mathrm{X}_{26}$ \& $+C_{13} \times \mathrm{X}_{26}$ \& $+\mathrm{C}_{15} \times \mathrm{X}_{26}$ \& $+\mathrm{C}_{1} \times \mathrm{X}_{26}$ \& $+C_{3} \times{ }_{26}$ \& -

\hline 33 \& $+\mathrm{C}_{4} \times \mathrm{X}_{27}$ \& $+C_{6} \times{ }_{27}$ \& $+C_{8} \times \mathrm{X}_{27}$ \& $+\mathrm{C}_{10} \times \mathrm{X}_{27}$ \& $+\mathrm{C}_{12} \times \mathrm{X}_{27}$ \& $+C_{14} \times{ }_{27}$ \& $+C_{0} \times \mathrm{X}_{27}$ \& $+\mathrm{C}_{2} \times \mathrm{X}_{27}$ \& Cell 6(Y27)

\hline 34 \& $+C_{3} \times \mathrm{X}_{28}$ \& $+C_{5} \times{ }_{28}$ \& $+C_{7} \times \mathrm{X}_{28}$ \& $+\mathrm{C}_{9} \times \mathrm{X}_{28}$ \& $+C_{11} \times \mathrm{X}_{28}$ \& $+C_{13} \times{ }_{28}$ \& $+\mathrm{C}_{15} \times \mathrm{X}_{28}$ \& $+\mathrm{C}_{1} \times \mathrm{X}_{28}$ \& -

\hline 35 \& $+\mathrm{C}_{2} \times \mathrm{X}_{29}$ \& $+\mathrm{C}_{4} \times \mathrm{X}_{29}$ \& $+C_{6} \times \mathrm{X}_{29}$ \& $+\mathrm{C}_{8} \times \mathrm{X}_{29}$ \& $+\mathrm{C}_{10} \times \mathrm{X}_{29}$ \& $+C_{12} \times{ }_{29}$ \& $+\mathrm{C}_{14} \times \mathrm{X}_{29}$ \& $+C_{0} \times{ }^{29}$ \& Cell 7(Y29)

\hline 36 \& $+\mathrm{C}_{1} \times \mathrm{X}_{30}$ \& $+C_{3} \times \mathrm{X}_{30}$ \& $+C_{5} \times x_{30}$ \& $+C_{7} \times{ }^{30}$ \& $+\mathrm{C}_{9} \times \mathrm{X}_{30}$ \& $+C_{11} \times X_{30}$ \& $+C_{13} \times{ }^{30}$ \& $\mathrm{C}_{15} \times \mathrm{X}_{30}$ \& -

\hline 37 \& $+\mathrm{C}_{0} \times \mathrm{X}_{31}$ \& $+C_{2} \times{ }^{3}$ \& $+C_{4} \times{ }^{31}$ \& $+C_{6} \times x_{31}$ \& $+\mathrm{C}_{8} \times \mathrm{X}_{31}$ \& $+C_{10} \times{ }^{31}$ \& $+C_{12} \times \mathrm{X}_{31}$ \& $+\mathrm{C}_{14} \times \mathrm{X}_{31}$ \& Cell 8(Y31)

\hline
\end{tabular}

FIGURE 7. HSP43891 16-TAP DECIMATE-BY-TWO FIR FILTER TIMING; 30MHz IN, 15 MHz OUT

Absolute Maximum Ratings

Supply Voltage	8.0V
Input, Output Voltage	GND -0.5V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
Storage Temperature.	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
ESD	Class 1
Maximum Package Power Dissipation at $70^{\circ} \mathrm{C}$	2.4W (PLCC), 2.88W (PGA)
$\theta_{\text {jc }}$	$11.1^{\circ} \mathrm{C} / \mathrm{W}$ (PLCC), $7.78{ }^{\circ} \mathrm{C} / \mathrm{W}$ (PGA)
$\theta_{\text {ja }}$	$33.7{ }^{\circ} \mathrm{C} / \mathrm{W}$ (PLCC), $34.66^{\circ} \mathrm{C} / \mathrm{W}$ (PGA)
Gate Count	... 17763
Junction Temperature	. $150^{\circ} \mathrm{C}$ (PLCC), $175^{\circ} \mathrm{C}$ (PGA)
Lead Temperature (Soldering 10s).	. $300^{\circ} \mathrm{C}$
CAUTION: Stresses above those listed in the "Absol and operation of the device at these or any other co	age to the device. This is a stress only rating ections of this specification is not implied.

Operating Conditions

```
Operating Voltage Range
5V }\pm5
Operating Temperature Range
00}\textrm{C}\mathrm{ to +70%}\textrm{C
```

D.C. Electrical Specifications

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
I'cop	Power Supply Current	-	160	mA	$v_{C C}=M a x$ CLK Frequency 20 MHz Note 1, Note 3
ICCsB	Standby Power Supply Current	-	500	$\mu \mathrm{A}$	$\mathrm{V}_{\text {CC }}=$ Max, Note 3
1	Input Leakage Current	-10	10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=$ Max, Input $=0 \mathrm{~V}$ or V_{CC}
10	Output Leakage Current	-10	10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$, Input $=0 \mathrm{~V}$ or V_{CC}
V_{IH}	Logical One Input Voltage	2.0	-	V	$\mathrm{V}_{\mathrm{CC}}=$ Max
$\mathrm{V}_{\text {IL }}$	Logical Zero Input Voltage		0.8	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}$
V_{OH}	Logical One Output Voltage	2.6	-	V	$\mathrm{IOH}=-400 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$
V_{OL}	Logical Zero Output Voltage	-	0.4	V	$\mathrm{I}^{\mathrm{OL}}=2 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$
VIHC	Clock Input High	$\mathrm{V}_{\mathrm{CC}}-0.8$	-	V	$\mathrm{V}_{\mathrm{CC}}=$ Max
VILC	Clock Input Low	-	0.8	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}$
$\mathrm{C}_{\text {IN }}$	$\begin{array}{lr}\text { Input Capacitance } & \text { PLCC } \\ & \text { PGA }\end{array}$	-	$\begin{aligned} & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$	CLK Frequency 1 MHz All measurements referenced
COUT	Output Capacitance PLCC	-	$\begin{aligned} & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$	

NOTES: 1. Operating supply current is proportional to frequency. Typical rating is $8 \mathrm{~mA} / \mathrm{MHz}$.
2. Controlled via design or process parameters and not directly tested. Characterized upon initial design and after major process and/or design changes.
3. Output load per test load circuit and $C_{L}=40 \mathrm{pF}$.
A.C. Electrical Specifications $\quad V_{C C}=5 \mathrm{~V} \pm 5 \%, T_{A}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	-20 (20MHz)		-25 (25.6 MHz)		-30 (30MHz)		UNITS	TEST CONDITIONS
		MIN	MAX	MIN	MAX	MIN	MAX		
TCP	Clock Period	50	-	39	-	33	-	ns	
TCL	Clock Low	20	-	16	-	13	-	ns	
T_{CH}	Clock High	20	-	16	-	13	-	ns	
TIS	Input Setup	16	-	14.	-	13	-	ns	
TIH	Input Hold	0	-	0	-	0	-	ns	
TODC	CLK to Coefficient Output Delay	-	24	-	20	-	18	ns	
Toed	Output Enable Delay	-	20	-	15	-	15	ns	
TODD	Output Disable Delay	-	20	-	15	-	15	ns	Note 1
TODS	CLK to SUM Output Delay	-	27	-	25	-	21	ns	
TOR	Output Rise	-	6	-	6	-	6	ns	Note 1
TOF	Output Fall	-	6	-	6	-	6	ns	Note 1

NOTE: 1. Controlled by design or process parameters and not directly tested. Characterized upon initial design and after major process and/or design changes.

Test Load Circuit

Switch S1 Open for ICCSB and ICCOP Tests

Waveforms

CLOCK AC PARAMETERS

SUMO-25, COUTO-8, OUTPUT DELAYS

ENABLE

OUTPUT ENABLE, DISABLE TIMING

* Input includes: DINO-7, CINO-7, $\overline{\text { DIENB }}, \overline{\text { CIENB }}, \overline{\text { ERASE }}, \overline{\text { RESET }}$ DCMO-1, ADRO-1, TCS, TCCI, SHADD INPUT SETUP AND HOLD

RISE AND FALL TIMES

A.C. Testing: Inputs are driven at 3.0V for a Logic "1" and O.0V for a Logic " O ". Input and output timing measurements are made at 1.5 V for both a Logic " 1 " and " 0 ". Inputs driven at $1 \mathrm{~V} / \mathrm{ns}$. CLK is driven at $\mathrm{V}_{\mathrm{CC}}-0.4$ and OV and measured at 2.5 V .
A.C. TESTING INPUT, OUTPUT WAVEFORM

Features

- This Circuit is Processed in Accordance to Mil-Std-883C and is Fully Conformant Under the Provisions of Paragraph 1.2.1
- O to 25.6MHz Sample Rate
- Eight Filter Cells
- 9-Bit Coefficients and Signal Data
- Low Power CMOS Operation
- ICCSB $=500 \mu \mathrm{~A}$ Maximum
- ICCOP $=160 \mu \mathrm{~A}$ Maximum @ 20MHz
- 26-Bit Accumulator per Stage
- Filter Lengths Up to 1032 Taps
- Shift-and-Add Output Stage for Combining Filter Outputs
- Expandable Coefficient Size, Data Size and Filter Length
- Decimation by 2, 3 or 4

Applications

- 1-D and 2-D FIR Filters
- Radar/Sonar
- Digital Video and Audio
- Adaptive Filters
- Echo Cancellation
- Correlation/Convolution
- Complex Multiply-Add
- Butterfly Computation
- Matrix Multiplication
- Sample Rate Converters

Description

The HSP43891/883 is a video-speed Digital Filter (DF) designed to efficiently implement vector operations such as FIR digital filters. It is comprised of eight filter cells cascaded internally and a shift and add output stage, all in a single integrated circuit. Each filter cell contains a 9x9 two's complement multiplier, three decimation registers and a 26-bit accumulator. The output stage contains an additional 26-bit accumulator which can add the contents of any filter cell accumulator to the output stage accumulator shifted right by 8 bits. The HSP43891/883 has a maximum sample rate of 25.6 MHz . The effective multiply-accumulate (mac) rate is 204 MHz . The HSP43891/883 DF can be configured to process expanded coefficient and word sizes. Multiple DFs can be cascaded for larger filter lengths without degrading the sample rate or a single DF can process larger filter lengths at less than 25.6 MHz with multiple passes. The architecture permits processing filter lengths of over 1000 taps with the guarantee of no overflows. In practice, most filter coefficients are less than 1.0, making even larger filter lengths possible. The DF provides for 8-bit unsigned or 9-bit two's complement arithmetic, independently selectable for coefficients and signal data.

Each DF filter cell contains three re-sampling or decimation registers which permit output sample rate reduction at rates of $1 / 2,1 / 3$ or $1 / 4$ the input sample rate. These registers also provide the capability to perform 2-D operations such as matrix multiplication and NxN spatial correlations/convolutions for image processing applications.

Block Diagram

Pinouts

85 PIN GRID ARRAY (PGA)

Supply Voltage . +8.0 V
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, Ten Seconds) $+300^{\circ} \mathrm{C}$
ESD Classification . Class 1

Reliability Information

Thermal Resistance
Ceramic PGA Package $34.66^{\circ} \mathrm{C} / \mathrm{W} \quad 7.78^{\circ} \mathrm{C} / \mathrm{W}$
Maximum Package Power Dissipation at $+125^{\circ} \mathrm{C}$
Ceramic PGA Package
1.44 Watt

Gate Count

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Operating Conditions

Operating Voltage Range . +4.5 V to +5.5 V
Operating Temperature Range...............$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

TABLE 1. HSP43891/883 D.C. ELECTRICAL PERFORMANCE CHARACTERISTICS
Devices Guaranteed and 100\% Tested

PARAMETER	SYMBOL	CONDITIONS	GROUP A SUBGROUPS	TEMPERATURE	LIMITS		UNITS
					MIN	MAX	
Logical One Input Voltage	V_{IH}	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	1, 2, 3	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	2.2	-	V
Logical Zero Input Voltage	V_{IL}.	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	1,2,3	$-55^{\circ} \mathrm{C} \leq \mathrm{T} \mathrm{A} \leq+125^{\circ} \mathrm{C}$	-	0.8	V
Output HIGH Voltage	V_{OH}	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}(\text { Note } 1) \end{aligned}$	1, 2, 3	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	2.6	-	V
Output LOW Voltage	V_{OL}	$\begin{aligned} & \mathrm{IOL}=+2.0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}(\text { Note } 1) \end{aligned}$	1, 2, 3	$-55^{\circ} \mathrm{C} \leq \mathrm{T} \mathrm{A} \leq+125^{\circ} \mathrm{C}$	-	0.4	v
Input Leakage Current	1	$\begin{aligned} & V_{I N}=V_{C C} \text { or } G N D \\ & V_{C C}=5.5 \mathrm{~V} \end{aligned}$	1, 2, 3	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	-10	+10	$\mu \mathrm{A}$
Output Leakage Current	10	$\begin{aligned} & V_{\text {OUT }}=V_{C C} \text { or GND } \\ & V_{C C}=5.5 \mathrm{~V} \end{aligned}$	1, 2, 3	$-55^{\circ} \mathrm{C} \leq \mathrm{T}^{\prime} \mathrm{A} \leq+125^{\circ} \mathrm{C}$	-10	+10	$\mu \mathrm{A}$
Clock Input High	$\mathrm{V}_{1} \mathrm{HC}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	1, 2, 3	$-55^{\circ} \mathrm{C} \leq T^{\prime}$ S $\leq+125^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{CC}}-0.8$	-	V
Clock Input Low	$\mathrm{V}_{\text {ILC }}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	1,2,3	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+125^{\circ} \mathrm{C}$	-	0.8	V
Standby Power Supply Current	I'csb	$\begin{aligned} & V_{I N}=V_{C C} \text { or } G N D \\ & V_{C C}=5.5 \mathrm{~V}, \\ & \text { Outputs Open } \end{aligned}$	1,2,3	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	-	500	$\mu \mathrm{A}$
Operating Power Supply Current	ICCOP	$\begin{aligned} & \mathrm{f}=20.0 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V} \text { (Note 2) } \end{aligned}$	1, 2, 3	$-55^{\circ} \mathrm{C} \leq \mathrm{T} \mathrm{A} \leq+125^{\circ} \mathrm{C}$	-	160.0	mA
Functional Test	FT	(Note 3)	7,8	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	-	-	

NOTES: 1. Interchanging of force and sense conditions is permitted.
2. Operating Supply Current is proportional to frequency, typical rating is $8 \mathrm{~mA} / \mathrm{MHz}$.
3. Tested as follows: $f=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{IH}}=2.6, \mathrm{~V}_{\mathrm{IL}}=0.4, \mathrm{~V}_{\mathrm{OH}} \geq 1.5 \mathrm{~V}$, $\mathrm{V}_{\mathrm{OL}} \leq 1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IHC}}=\mathrm{V}_{\mathrm{CC}}-0.4 \mathrm{~V}$, and $\mathrm{V}_{\mathrm{ILC}}=0.4 \mathrm{~V}$.

TABLE 2. HSP43891/883 A.C. ELECTRICAL PERFORMANCE CHARACTERISTICS
Device Guaranteed and 100\% Tested

PARAMETER	SYMBOL	CONDITIONS	GROUP A SUBGROUPS	TEMPERATURE	-20 (20MHz)		-25 (25.6MHz)		UNITS
					MIN	MAX	MIN	MAX	
Clock Period	$\mathrm{T}_{\text {CP }}$	Note 1	9, 10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	50	-	39	-	ns
Clock Low	${ }^{T} \mathrm{CL}$	Note 1	9, 10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+125^{\circ} \mathrm{C}$	20	-	16	-	ns
Clock High	${ }^{\text {T }}$ CH	Note 1	9, 10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+125^{\circ} \mathrm{C}$	20	-	16	-	ns
Input Setup	TIS	Note 1	9, 10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	20	-	17	-	ns
Input Hold	T_{IH}	Note 1	9, 10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+125^{\circ} \mathrm{C}$	0	-	0	-	ns
CLK to Coefficient Output Delay	TODC	Note 1	9, 10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	-	24	-	20	ns
Output Enable Delay	ToEd	Note 1	9, 10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	-	20	-	15	ns
CLK to SUM Output Delay	TODS	Note 1	9, 10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	-	31	-	25	ns

NOTE: 1. Loading is as specified in the test load circuit with $C_{L}=40 \mathrm{pF}$.

TABLE 3. HSP43891/883 A.C. ELECTRICAL PERFORMANCE CHARACTERISTICS

PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	-20 (20MHz)		-25 (25.6MHz)		UNITS
					MIN	MAX	MIN	MAX	
Input Capacitance	$\mathrm{CIN}_{\text {I }}$	$v_{C C}=O p e n, f=1 \mathrm{MHz}$ All measurements are referenced to device GND.	1	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-	15	-	15	pF
Output Capacitance	COUT		1	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-	15	-	15	pF
Output Disable Delay	TODD		1,2	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	-	20	-	15	ns
Output Rise Time	TOR		1,2	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	-	7	-	6	ns
Output Fall Time	TOF		1,2	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+125^{\circ} \mathrm{C}$	-	7	-	6	ns

NOTES: 1. The parameters listed in Table 3 are controiled via design or process parameters and are not directly tested. These parameters are characterized upon initial design and after major process and/or design changes.
2. Loading is as specified in the test load circuit, $\mathrm{C}_{\mathrm{L}}=40 \mathrm{pF}$.

TABLE 4. APPLICABLE SUBGROUPS

CONFORMANCE GROUPS	METHOD	SUBGROUPS
Initial Test	$100 \% / 5004$	-
Interim Test	$100 \% / 5004$	-
PDA	100%	1
Final Test	100%	$2,3,8 \mathrm{~A}, 8 \mathrm{~B}, 10,11$
Group A	-	$1,2,3,7,8 \mathrm{~A}, 8 \mathrm{~B}, 9,10,11$
Groups C \& D	Samples/5005	$1,7,9$

HSP43891/883

Burn-In Circuit

$\begin{aligned} & \text { QFP } \\ & \text { LEAD } \end{aligned}$	PIN NAME	BURN-IN SIGNAL	$\begin{aligned} & \text { QFP } \\ & \text { LEAD } \end{aligned}$	PIN NAME	BURN-IN SIGNAL	QFP LEAD	PIN NAME	BURN-IN SIGNAL	$\begin{aligned} & \text { QFP } \\ & \text { LEAD } \end{aligned}$	PIN NAME	BURN-IN SIGNAL
1	SUM23	$\mathrm{V}_{\mathrm{CC} / 2}$	22	SUM6	$\mathrm{v}_{\mathrm{CC} / 2}$	43	V_{CC}	V_{CC}	64	V_{CC}	V_{CC}
2	SUM22	$\mathrm{V}_{\mathrm{CC} / 2}$	23	$\mathrm{V}_{\text {SS }}$	GND	44	CIN8	F9	65	COUT5	$\mathrm{v}_{\mathrm{CC} / 2}$
3	V_{CC}	V_{CC}	24	SUM5	$\mathrm{V}_{\mathrm{CC}} / 2$	45	CIENB	F10	66	COUT4	$\mathrm{v}_{\mathrm{CC}} / 2$
4	SuM21	$\mathrm{v}_{\mathrm{CC} / 2}$	25	SUM4	$\mathrm{v}_{\mathrm{CC} / 2}$	46	DINO	FO	67	COUT3	$\mathrm{v}_{\mathrm{CC}} / 2$
5	SUM20	$\mathrm{v}_{\mathrm{CC} / 2}$	26	$V_{C C}$	V_{CC}	47	DIN1	F1	68	COUT2	$\mathrm{V}_{\mathrm{CC} / 2}$
6	SUM19	$\mathrm{V}_{\mathrm{CC} / 2}$	27	SUM3	$\mathrm{v}_{\mathrm{CC}} / 2$	48	DIN2	F2	69	$V_{S S}$	GND
7	SUM18	$\mathrm{VCC}^{\text {/2 }}$	28	SUM2	$\mathrm{v}_{\mathrm{CC} / 2}$	49	DIN3	F3	70	COUT1	$\mathrm{V}_{\mathrm{CC} / 2}$
8	$V_{S S}$	GND	29	SUM1	$\mathrm{V}_{\mathrm{CC} / 2}$	50	DIN4	F4	71	COUTO	$\mathrm{V}_{\mathrm{CC} / 2}$
9	SUM17	$\mathrm{V}_{\mathrm{CC} / 2}$	30	Sum0	$\mathrm{V}_{\mathrm{CC} / 2}$	51	DIN5	F5	72	SHADD	F9
10	SUM16	$\mathrm{v}_{\mathrm{CC} / 2}$	31	$\mathrm{v}_{\text {SS }}$	GND	52	DIN6	F6	73	CLK	FO
11	$V_{\text {CC }}$	$V_{C C}$	32	SENBL	F10	53	DIN7	F8	74	ADDR2	F2
12	SUM15	$\mathrm{v}_{\mathrm{CC}} / 2$	33	CINO	FO	54	DIN8	F7	75	DCMO	F5
13	SUM14	$\mathrm{v}_{\mathrm{CC} / 2}$	34	CIN1	F1	55	DIENB	F10	76	VSS	GND
14	SUM13	$\mathrm{V}_{\mathrm{CC}} / 2$	35	$\mathrm{V}_{\text {CC }}$	$V_{\text {CC }}$	56	RESET	F11	77	ADDR1	F1
15	SUM12	$\mathrm{v}_{\mathrm{CC} / 2}$	36	CIN2	F2	57	ERASE	F10	78	ADDR0	FO
16	$V_{S S}$	GND	37	CIN3	F3	58	$V_{\text {CC }}$	V_{CC}	79	$V_{C C}$	$V_{C C}$
17	SUM11	$\mathrm{V}_{\mathrm{CC}} / 2$	38	CIN4	F4	59	COENB	F10	80	SENBH	F10
18	SUM10	$\mathrm{v}_{\mathrm{CC} / 2}$	39	CIN5	F5	60	couts	$\mathrm{V}_{\mathrm{CC}} / 2$	81	SUM25	$\mathrm{V}_{\mathrm{CC} / 2}$
19	SUM9	$\mathrm{V}_{\mathrm{CC}} / 2$	40	VSS	GND	61	VSS	GND	82	DCM1	F6
20	SUM8	$\mathrm{VCC} / 2$	41	CIN6	F6	62	COUT7	$\mathrm{VCC} / 2$	83	Sum24	$\mathrm{V}_{\mathrm{CC} / 2}$
21	SUM7	$\mathrm{v}_{\mathrm{cc}} / 2$	42	CIN7	F7	63	COUT6	$\mathrm{V}_{\mathrm{CC} / 2}$	84	VSS	GND

NOTES: 1. $\mathrm{V}_{\mathrm{CC}} / 2(2.7 \mathrm{~V} \pm 10 \%)$ used for outputs only.
2. $47 \mathrm{~K} \Omega(\pm 20 \%)$ resistor connected to all pins except $V_{C C}$ and GND.
3. $V_{C C}=5.5 \pm 0.5 \mathrm{~V}$.
4. $0.1 \mu \mathrm{~F}$ (min) capacitor between V_{CC} and GND per position.
5. $F 0=100 \mathrm{KHz} \pm 10 \%, F 1=F 0 / 2, F 2=F 1 / 2 \ldots, F 11=F 10 / 2$, $40 \%-60 \%$ Duty Cycle.
6. Input voltage limits: $V_{I L}=0.8 \mathrm{~V}$ max., $V_{I H}=4.5 \mathrm{~V} \pm 10 \%$

Burn-In Circuit

$\begin{aligned} & \text { PGA } \\ & \text { PIN } \end{aligned}$	PIN NAME	BURN-IN SIGNAL	$\begin{aligned} & \text { PGA } \\ & \text { PIN } \end{aligned}$	PIN NAME	BURN-IN SIGNAL	$\begin{aligned} & \text { PGA } \\ & \text { PIN } \end{aligned}$	PIN NAME	BURN-IN SIGNAL	$\begin{aligned} & \text { PGA } \\ & \text { PIN } \end{aligned}$	$\begin{aligned} & \text { PIN } \\ & \text { NAME } \end{aligned}$	BURN-IN SIGNAL
A1	$V_{\text {SS }}$	GND	C1	COUT5	$\mathrm{v}_{\mathrm{CC} / 2}$	F10	V_{CC}	V_{CC}	K4	V_{CC}	V_{CC}
A2	COENB	F10	C2	COUT6	$\mathrm{V}_{\mathrm{CC} / 2}$	F11	$V_{S S}$	GND	K5	SUM19	$\mathrm{V}_{\mathrm{CC} / 2}$
A3	V_{CC}	V_{CC}	C3	ALIGN	NC	G1	ADR2	F2	K6	$\mathrm{V}_{\text {SS }}$	GND
A4	RESET	F11	C5	$\overline{\text { DIENB }}$	F10	G2	DCMO	F5	K7	SUM15	$\mathrm{V}_{\mathrm{CC} / 2}$
A5	DIN7	F8	C6	DIN5	F5	G3	CLK	FO	K8	SUM12	$\mathrm{V}_{\mathrm{CC} / 2}$
A6	DIN6	F6	C7	DIN4	F4	G9	SUM1	$\mathrm{V}_{\mathrm{CC} / 2}$	K9	SUM10	$\mathrm{V}_{\mathrm{CC} / 2}$
A7	DIN3	F3	C10	CIN5	F5	G10	SUM3	$\mathrm{V}_{\mathrm{CC} / 2}$	K10	SUM8	$\mathrm{v}_{\mathrm{CC} / 2}$
A8	DINO	FO	C11	CIN3	F3	G11	SUM2	$\mathrm{V}_{\mathrm{CC} / 2}$	K11	SUM6	$\mathrm{v}_{\mathrm{CC} / 2}$
A9	CIN8/TCCI	F8	D1	COUT3	$\mathrm{V}_{\mathrm{CC} / 2}$	H1	ADR1	F1	L1	DCM1	F6
A10	V_{CC}	$\mathrm{V}_{\text {CC }}$	D2	COUT4	$\mathrm{V}_{\mathrm{CC} / 2}$	H2	ADRO	FO	L2	SUM23	$\mathrm{V}_{\mathrm{CC} / 2}$
A11	$\mathrm{V}_{\text {SS }}$	GND	D10	CIN2	F2	H10	SUM5	$\mathrm{V}_{\mathrm{CC} / 2}$	L3	SUM22	$\mathrm{V}_{\mathrm{CC} / 2}$
B1	V_{CC}	$V_{C C}$	D11	V_{CC}	$\mathrm{V}_{\text {CC }}$	H11	SUM4	$\mathrm{v}_{\mathrm{CC} / 2}$	L4	SUM21	$\mathrm{V}_{\mathrm{cc} / 2}$
B2	COUT7	$\mathrm{V}_{\mathrm{CC}} / 2$	E1	COUT1	$\mathrm{V}_{\mathrm{CC} / 2}$	J1	V_{CC}	V_{CC}	L5	SUM18	$\mathrm{V}_{\mathrm{CC} / 2}$
B3	COUT8/\| TCCO	$\mathrm{v}_{\mathrm{cc}} / 2$	E2	$\mathrm{V}_{\text {SS }}$	GND	J2	SUM25	$\mathrm{V}_{\mathrm{CC} / 2}$	L6	SUM14	$\mathrm{V}_{\mathrm{CC} / 2}$
			E3	COUT2	$\mathrm{V}_{\mathrm{CC} / 2}$	J5	SUM20	$\mathrm{v}_{\mathrm{CC} / 2}$	L7	$\mathrm{V}_{\text {CC }}$	V_{CC}
B4	ERASE	F10	E9	CIN1	F1	J6	SUM17	$\mathrm{V}_{\mathrm{CC} / 2}$	L8	SUM13	$\mathrm{V}_{\mathrm{CC} / 2}$
B5	DIN8/TCS	F7	E10	CINO	FO	J7	SUM16	$\mathrm{V}_{\mathrm{CC} / 2}$	L9	$V_{\text {SS }}$	GND
B6	DIN1	F1	E11	SENBL	F10	$J 10$	SUM7	$\mathrm{V}_{\mathrm{CC} / 2}$	L10	SUM11	$\mathrm{V}_{\mathrm{CC} / 2}$
B7	DIN2	F2	F1	VSS	GND	J11	VSS	GND	L11	SUM9	$\mathrm{v}_{\mathrm{CC} / 2}$
B8	CIENB	F10	F2	CUTO	$\mathrm{V}_{\mathrm{CC} / 2}$	K1	$\overline{\text { SENBH }}$	F10			
B9	CIN7	F7	F3	SHADD	F9	K2	SUM24	$\mathrm{V}_{\mathrm{CC} / 2}$			
B10	CIN6	F6	F9	SUMO	$\mathrm{V}_{\mathrm{CC}} / 2$	K3	$\mathrm{V}_{\text {SS }}$	GND			
B11	CIN4	F4									

NOTES: 1. $\mathrm{V}_{\mathrm{CC}} / 2(2.7 \mathrm{~V} \pm 10 \%)$ used for outputs only.
2. $47 \mathrm{~K} \Omega(\pm 20 \%)$ resistor connected to all pins except $V_{C C}$ and GND.
3. $V_{C C}=5.5 \pm 0.5 \mathrm{~V}$.
4. $0.1 \mu \mathrm{~F}(\mathrm{~min})$ capacitor between V_{CC} and GND per position
5. $F 0=100 \mathrm{KHz} \pm 10 \%, F 1=F 0 / 2, F 2=F 1 / 2 \ldots \ldots, F 11=F 10 / 2$, 40\% - 60\% Duty Cycle.
6. Input voltage limits: $\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$ max., $\mathrm{V}_{\mathrm{IH}}=4.5 \mathrm{~V} \pm 10 \%$

Metallization Topology

DIE DIMENSIONS:

$328 \times 283 \times 19 \pm 1$ mils
METALLIZATION:
Type: Si - Al or $\mathrm{Si}-\mathrm{Al}-\mathrm{Cu}$
Thickness: $8 \mathrm{k} \AA$
GLASSIVATION:
Type: Nitrox
Thickness: 10k \AA
DIE ATTACH:
Material: Gold/Silicon Eutectic Alloy (PGA) Silver/Glass (QFP)

WORST CASE CURRENT DENSITY:
$1.2 \times 10^{5} \mathrm{~A} / \mathrm{cm}^{2}$

Metallization Mask Layout

Packaging ${ }^{\dagger}$

85 PIN GRID ARRAY (PGA)

LEAD MATERIAL: Type B
LEAD FINISH: Type A
PACKAGE MATERIAL: Ceramic, 90% Alumina PACKAGE SEAL:

Material: Glass Frit
Temperature: $450^{\circ} \mathrm{C} \pm 10^{\circ} \mathrm{C}$
Method: Furnace Seal
84 PIN QUAD FLATPACK (QFP)

LEAD MATERIAL: Type B
LEAD FINISH: Type A
PACKAGE MATERIAL: Ceramic, 90% Alumina PACKAGE SEAL:

Material: Glass Frit
Temperature: $450^{\circ} \mathrm{C} \pm 10^{\circ} \mathrm{C}$
Method: Furnace Seal

INTERNAL LEAD WIRE:
Material: Aluminum
Diameter: 1.25 Mil
Bonding Method: Ultrasonic
COMPLIANT OUTLINE: 38510C-G6

INTERNAL LEAD WIRE:

Material: Aluminum
Diameter: 1.25 Mil
Bonding Method: Ultrasonic
COMPLIANT OUTLINE: 38510P-AC

Features

- Eight Filter Cells
- 0 to 30 MHz Sample Rate
- 8-Bit Coefficients and Signal Data
- 26-Bit Accumulator Per Stage
- Filter Lengths Over 1000 Taps
- Shift and Add Output Stage for Combining Filter Outputs
- Expandable Coefficient Size, Data Size and Filter Length
- Decimation by 2, 3 or 4 .
- CMOS Power Dissipation Characteristics

Applications

- 1-D and 2-D FIR Filters
- Radar/Sonar
- Digital Video and Audio
- Adaptive Filters
- Echo Cancellation
- Correlation/Convolution
- Complex Multiply-Add
- Butterfly Computation
- Matrix Multiplication
- Sample Rate Converters

Description

The HSP43881 is a video speed Digital Filter (DF) designed to efficiently implement vector operations such as FIR digital filters. It is comprised of eight filter cells cascaded internally and a shift and add output stage, all in a single integrated circuit. Each filter cell contains a 8×8 bit multiplier, three decimation registers and a 26-bit accumulator. The output stage contains an additional 26-bit accumulator which can add the contents of any filter cell accumulator to the output stage accumulator shifted right by 8 bits. The HSP43881 has a maximum sample rate of 30 MHz . The effective multiply accumulate (mac) rate is 240 MHz . The HSP43881 DF can be configured to process expanded coefficient and word sizes. Multiple DFs can be cascaded for larger filter lengths without degrading the sample rate or a single DF can process larger filter lengths at less than 30 MHz with multiple passes. The architecture permits processing filter lengths of over 1000 taps with the guarantee of no overflows. In practice, most filter coefficients are less than 1.0, making even larger filter lengths possible. The DF provides for 8-bit unsigned or two's complement arithmetic, independently selectable for coefficients and signal data.
Each DF filter cell contains three resampling or decimation registers which permit output sample rate reduction at rates of $1 / 2,1 / 3$ or $1 / 4$ the input sample rate. These registers also provide the capability to perform 2-D operations such as matrix multiplication and NxN spatial correlations/convolutions for image processing applications.

Block Diagram

NOTE: An overbar on a signal name represents an active LOW signal.

Pin Description

SYMBOL	PIN NUMBER	TYPE	NAME AND FUNCTION
V_{Cc}	A3, A10, B1, D11, F10, J1, K4, L7		+5V Power Supply Input
$\mathrm{V}_{\text {SS }}$	$\begin{gathered} \text { A1, A11, E2, F1, } \\ \mathrm{E} 11, \mathrm{H} 11, \mathrm{~K} 3, \\ \mathrm{~K} 6, \mathrm{~L} 9 \end{gathered}$		Power Supply Ground Input
CLK	G3	1	The CLK input provides the DF system sample clock. The maximum clock frequency is is 30 MHz .
DINO-7	$\begin{gathered} \text { A5-8, B6-7, } \\ \text { C6-7 } \end{gathered}$	I	These eight inputs are the data sample input bus. Eight bit data samples are synchronously loaded through these pins to the X register of each filter cell simultaneously. The DIENB signal enables loading, which is synchronous on the rising edge of the clock signal.
TCS	B5	I	The TCS input determines the number system interpretation of the data input samples on pins DINO-7 as follows: TCS $=$ Low \rightarrow Unsigned Arithmetic TCS $=$ High \rightarrow Two's Complement Arithmetic The TCS signal is synchronously loaded into the X register in the same way as the DINO-7 inputs.
DIENB	C5	1	A low on this enables the data sample input bus (DINO-7) to all the filter cells. A rising edge of the CLK signal occurring while DIENB is low will load the X register of every filter cell with the 8 bit value present on DINO-7. A high on this input forces all the bits of the data sample input bus to zero; a rising CLK edge when DIENB is high will load the X register of every filter cell with all zeros. This signal is latched inside the DF, delaying its effect by one clock internal to the DF. Therefore, it must be low during the clock cycle immediately preceding presentation of the desired data on the DINO-7 inputs. Detailed operation is shown in later timing diagrams.
CINO-7	$\begin{gathered} \text { B9-11, C10-11, } \\ \text { D10, E9-10 } \end{gathered}$	1	These eight inputs are used to input the 8 bit coefficients. The coefficients are synchronously synchronously loaded into the C register of filter CELL 0 if a rising edge of CLK occurs while $\overline{C I E N B}$ is low. The $\overline{C I E N B}$ signal is delayed by one clock as discussed below.
TCCI	A9	1	The TCCI input determines the number system interpretation of the coefficient inputs on pins CINO-7 as follows: TCCI $=$ LOW \rightarrow Unsigned Arithmetic TCCI $=\mathrm{HIGH} \rightarrow$ Two's Complement Arithmetic The TCCI signal is synchronously loaded into the C register in the same way as the CINO-7 inputs.
$\overline{\text { CIENB }}$	B8	1	A low on this input enable the C register of every filter cell and the D registers (decimation) of every filter cell according to the state of the DCMO-1 inputs. A rising edge of the CLK signal occurring while CIENB is low will load the C register and appropriate D registers with the coefficient data present at their inputs. This privides the mechanism for shifting the coefficients from cell to cell through the device. A high on this input freezes the contents of the C register and the D registers, ignoring the CLK signal. This signal is latched and delayed by one clock internal to the DF. Therefore, it must be low during the clock cycle immediately preceding presentation of the desired coefficient on the CINO-7 inputs. Detailed operation is shown in the Timing Diagrams section.
COUTO-7	$\begin{gathered} \mathrm{B} 2, \mathrm{C} 1-2, \mathrm{D} 1-2 \\ \mathrm{E} 1, \mathrm{E} 3, \mathrm{~F} 2 \end{gathered}$	0	These eight three-state outputs are used to output the 8 bit coefficients from filter cell 7. These outputs are enabled by the COENB signal low. These outputs may be tied to the CINO-7 inputs of the same DF to recirculate the coefficients, or they may be tied to the CINO-7 inputs of another DF to cascade DFs for longer filter lengths.
TCCO	B3	0	The TCCO three-state output determines the number system representation of the coefficients output on COUTO-7. It tracks the TCCI signal to this same DF. It should be tied to the TCCI input of the next DF in a cascade of DFs for increased filter lengths. This signal is enabled by COENB low.
$\overline{\text { COENB }}$	A2	I	A low on the $\overline{\text { COENB }}$ input enables the COUTO-7 and the TCCO output. A high on this input places all these outputs in their high impedance state.

Pin Description (Continued)

SYMBOL	PIN NUMBER	TYPE	NAME FUNCTION
DCMO-1	G2, L1	1	These two inputs determine the use of the internal decimation registers as follows: The coefficients pass from cell to cell at a rate determined by the number of decimation registers used. When no decimation registers are used, coefficients move from cell to cell on each clock. When one decimation register is used, coefficients move from cell to cell on every other clock, etc. These signals are latched and delayed by one clock internal to the DF.
SUMO-25	$\begin{aligned} & \mathrm{J} 2, \mathrm{~J} 5-8, \\ & \mathrm{~J} 10, \mathrm{~K} 2, \\ & \mathrm{~K} 5-11, \\ & \mathrm{~L} 2-6, \mathrm{~L} 8, \\ & \mathrm{~L} 10-11 \end{aligned}$	0	These 26 three-state outputs are used to output the results of the internal filter cell computations. Individual filter cell results or the result of the shift-and-add output stage can be output. If an individual filter cell result is to be output, the ADRO-2 signals select the filter cell result. The SHADD signal determines whether the selected filter cell result or the output stage adder result is output. The signals $\overline{\text { SENBH }}$ and $\overline{\text { SENBL }}$ enable the most significant and least significant bits of the SUMO-25 result, respectively. Both SENBH and SENBL may be enabled simultaneously if the system has a 26 bit or larger bus. However, individual enables are provided to facilitate use with a 16 bit bus.
$\overline{\text { SENBH }}$	K1	1	A low on this input enables result bits SUM16-25. A high on this input places these bits in their high impedance state.
$\overline{\text { SENBL }}$	E11	1	A low on this input enables result bits SUMO-15. A high on this input places these
ADRO-2	G1, H1-2	1	These inputs select the one cell whose accumulator will be read through the output bus (SUMO-25) or added to the output stage accumulator. They also determine which accumulator will be cleared when ERASE is low. For selection of which accumulator to read through the output bus (SUM0-25) or which to add of the output stage accumulator, these inputs are latched in the DF and delayed by one clock internal to the device. If the ADRO-2 lines remain at the same address for more than one clock, the output at SUMO-25 will not change to reflect any subsequent accumulator updates in the addressed cell. Only the result available during the first clock, when ADRO-1 selects the cell, will be output. This does not hinder normal operation since the ADRO-1 lines are changed sequentially. This feature facilitates the interface with slow memories where the output is required to be fixed for more than one clock.
SHADD	F3	1	The SHADD input controls the activation of the shift-and-add operation in the output stage. This signal is latched in the DF and delayed by one clock internal to the device. A detailed explanation is given in the DF Output Stage section.
RESET	A4	I	A low on this input synchronously clears all the internal registers, except the cell accumulators. It can be used with ERASE to also clear all the accumulators simultaneously. This signal is latched in the DF and delayed by one clock internal to the DF.
ERASE	B4	1	A low on this input synchronously clears the cell accumulator selected by the ADRO-1 signals. If $\overline{R E S E T}$ is also low simultaneously, all cell accumulators are cleared.
ALIGNPIN	C3		Used for aligning chip in socket or printed circuit board. Must be left as a no connect in circuit.

Functional Description

The Digital Filter Processor (DF) is composed of eight filter cells cascaded together and an output stage for combining or selecting filter cell outputs (See Block Diagram). Each filter cell contains a multiplier-accumulator and several registers (Figure 1). Each 8-bit coefficient is multiplied by a 8- bit data sample, with the result added to the 26 -bit accumulator contents. The coefficient output of each cell is cascaded to the coefficient input of the next cell to its right.

DF Filter Cell

A 8-bit coefficient (CINO-7) enters each cell through the C register on the left and exits the cell on the right as signals COUTO-7. The coefficients may move directly from the C register to the output, exiting the cell on the clock following its entrance. When decimation is selected the coefficient exit is delayed by 1,2 or 3 clocks by passing through one or more decimation registers (D1, D2 or D3).

The combination of D registers through which the coefficient passes is determined by the state of DCM0 and DCM1. The output signals (COUTO-7) are connected to the CINO-7 inputs of the next cell to its right. The COENB input signal enables the COUTO-7 outputs of the right most cell to the COUTO-7 pins of the device.
The C and D registers are enabled for loading by $\overline{C I E N B}$. Loading is synchronous with CLK when CIENB is low. Note that CIENB is latched internally. It enables the register for loading after the next CLK following the onset of CIENB low. Actual loading occurs on the second CLK following the onset of $\overline{C I E N B}$ low. Therefore $\overline{\text { CIENB }}$ must be low during the clock cycle immediately preceding presentation of the coefficient on the CINO-7 inputs. In most basic FIR operations, CIENB will be low throughout the process, so this latching and delay sequence is only important during the initialization phase. When $\overline{\text { CIENB }}$ is high, the coefficients are frozen.
These registers are cleared synchronously under control of $\overline{R E S E T}$, which is latched and delayed exactly like CIENB.
The output of the C register ($\mathrm{CO}-8$) is one input to 8×8 multiplier.
The other input to the 8×8 multiplier comes from the output of the X register. This register is loaded with a data sample from the device input signals DINO-7 discussed above. The X register is enabled for loading by DIENB. Loading is synchronous with CLK when DIENB is low. Note that DIENB is latched internally. It enables the register for loading after the next CLK following the onset of DIENB low. Actual loading occurs on the second CLK following the onset of DIENB low; therefore, $\overline{\text { DIENB }}$ must be low during the clock cycle immediately preceding presentation of the data sample on the DINO-7 inputs. In most basic FIR operations, DIENB will be low throughout the process, so this latching and delay sequence is only important during the initialization phase. When DIENB is high, the X register is loaded with all zeros.
The multiplier is pipelined and is modeled as a multiplier core followed by two pipeline registers, MREGO and MREG1 (Figure 1). The multiplier output is sign extended and input as one operand of the 26-bit adder. The other
adder operand is the output of the 26-bit accumulator. The adder output is loaded synchronously into both the accumulator and the TREG.
The TREG loading is disabled by the cell select signal, CELLn, where n is the cell number. The cell select is decoded from the ADRO-2 signals to generate the TREG load enable. The cell select is inverted and applied as the load enable to the TREG. Operation is such that the TREG is loaded whenever the cell is not selected. Therefore, TREG is loaded every clock except the clock following cell selection. The purpose of the TREG is to hold the result of a sum-ofproducts calculation during the clock when the accumulator is cleared to prepare for the next sum-of-products calculation. This allows continuous accumulation without wasting clocks.
The accumulator is loaded with the adder output every clock unless it is cleared. It is cleared synchronously in two ways. When $\overline{R E S E T}$ and ERASE are both low, the accumulator is cleared along with all other registers on the device. Since ERASE and $\overline{\operatorname{RESET}}$ are latched and delayed one clock internally, clearing occurs on the second CLK following the onset of both ERASE and RESET low.
The second accumulator clearing mechanism clears a single accumulator in a selected cell. The cell select signal, CELLn, decoded from ADRO-2 and the ERASE signal enable clearing of the accumulator on the next CLK. The $\overline{E R A S E}$ and $\overline{R E S E T}$ signals clear the DF internal registers and states as follows:

$\overline{\text { ERASE }}$	$\overline{\text { RESET }}$	CLEARING EFFECT
1	1	No clearing occurs, internal state remains same
1	0	$\overline{\text { RESET only active, all registers except }}$ accumulators are cleared, including the internal pipeline registers.
0	1	ERASE only active, the accumulator whose address is given by the ADRO-2 inputs is cleared.
0	0	Both $\overline{\text { RESET }}$ and ERASE active, all accumulators as well as all other registers are cleared.

The DF Output Stage

The output stage consists of a 26-bit adder, 26-bit register, feedback multiplexer from the register to the adder, an output multiplexer and a 26-bit three-state driver stage (Figure 2).
The 26-bit output adder can add any filter cell accumulator result to the 18 most significant bits of the output buffer. This result is stored back in the output buffer. This operation takes place in one clock period. The eight LSBs of the output buffer are lost. The filter cell accumulator is selected by the ADRO-2 inputs.
The 18 MSBs of the output buffer actually pass through the zero mux on their way to the output adder input. The zero mux is controlled by the SHADD input signal and selects either the output buffer 18 MSBs or all zeros for the adder input. A low on the SHADD input selects zero. A high on the SHADD input selects the output buffer MSBs, thus activating the shift-and-add operation. The SHADD signal is latched and delayed by one clock internally.

FIGURE 1. HSP43881 FILTER CELL

FIGURE 2. HSP43881 DF OUTPUT STAGE

The 26 least significant bits (LSBs) from either a cell accumulator or the output buffer are output on the SUMO- 25 bus. The output mux determines whether the cell accumulator selected by ADRO-2 or the output buffer is output to the bus. This mux is controlled by the SHADD input signal. Control is based on the state of the SHADD during two successive clocks; in other words, the output mux selection contains memory. If SHADD is low during a clock cycle and was low during the previous clock, the output mux selects the contents of the filter cell accumulator addressed by ADRO-2. Otherwise the output mux selects the contents of the output buffer.

If the ADRO-2 lines remain at the same address for more than one clock, the output at SUMO-25 will not change to reflect any subsequent accumulator updates in the addressed cell. Only the result available during the first clock when ADRO-2 selects the cell will be output. This does not hinder normal FIR operation since the ADRO-2 lines are changed sequentially. This feature facilitates the interface with slow memories where the output is required to be fixed for more than one clock.

The SUMO-25 output bus is controlled by the SENBH and SENBL signals. A low on SENBL enables bits SUMO-15. A low on SENBH enables bits SUM16-25. Thus all 26 bits can be output simultaneously if the external system has a 26 -bit or larger bus. If the external system bus is only 16 bits, the bits can be enabled in two groups of 16 and 10 bits (sign extended).

DF Arithmetic

Both data samples and coefficients can be represented as either unsigned or two's complement numbers. The TCS and TCCI inputs determine the type of arithmetic representation. Internally all values are represented by a 9 -bit two's complement number. The value of the additional ninth bit depends on the arithmetic representation selected. For two's complement arithmetic, the sign is extended into the ninth bit. For unsigned arithmetic, bit 9 is 0 .

The multiplier output is 18 bits and the accumulator is 26 bits. The accumulator width determines the maximum possible number of terms in the sum of products without overflow. The maximum number of terms depends also on the number system and the distribution of the coefficient and data values. Then maximum numbers of terms in the sum products are:

NUMBER SYSTEM	MAX \# OF TERMS
Two unsigned vectors	1032
Two two's complement:	2080
- Two positive vectors	
- Negative vectors	
- One positive and one negative vector	2047
One unsigned and one two's complement vector: - Positive two's complement vector - Negative two's complement vector	2064

For practical FIR filters, the coefficients are never all near maximum value, so even larger vectors are possible in practice.

Basic FIR Operation

A simple, 30 MHz 8 -tap filter example serves to illustrate more clearly the operation of the DF. The sequence table (Table 1) shows the results of the multiply accumulate in each cell after each clock. The coefficient sequence, Cn , enters the DF on the left and moves from left to right through the cells. The data sample sequence, Xn , enters the DF from the top, with each cell receiving the same sample simultaneously. Each cell accumulates the sum of products for one output point. Eight sums of products are calculated simultaneously, but staggered in time so that a new output is available every system clock.

TABLE 1. HSP43881 30MHz, 8 TAP FIR FILTER SEQUENCE

CLK	CELL 0	CELL 1	CELL 2	CELL 3	CELL 4	CELL 5	CELL 6	CELL 7	SUM/CLR
0	$\mathrm{C}_{7} \times \mathrm{X}_{0}$	0	0	0					-
1	$+\mathrm{C}_{6} \times \mathrm{x}_{1}$	$\mathrm{C}_{7} \times \mathrm{X}_{1}$	0	0					-
2	$+C_{5} \times \mathrm{X}_{2}$	$+\mathrm{C}_{6} \times \mathrm{x}_{2}$	$\mathrm{C}_{7} \times \mathrm{X}_{2}$	0					-
3	$+\mathrm{C}_{4} \times \mathrm{X}_{3}$	$+\mathrm{C}_{5} \times \mathrm{X}_{3}$	$+C_{6} \times{ }^{3}$	$\mathrm{C}_{7} \times \mathrm{X}_{3}$					-
4	$+C_{3} \times \mathrm{X}_{4}$	$+C_{4} \times X_{4}$	$+C_{5} \times \mathrm{X}_{4}$	$+\mathrm{C}_{6} \times \mathrm{X}_{4}$	$\mathrm{C}_{7} \times \mathrm{X}_{4}$				-
5	$+\mathrm{C}_{2} \times \mathrm{X}_{5}$	$\mathrm{C}_{3} \times{ }^{5}$	$+C_{4} \times{ }^{2}$	$+\mathrm{C}_{5} \times \mathrm{X}_{5}$	$+\mathrm{C}_{6} \times \mathrm{X}_{5}$	$\mathrm{C}_{7} \times \mathrm{X}_{5}$			-
6	$+\mathrm{C}_{1} \times \mathrm{x}_{6}$	$+\mathrm{C}_{2} \times \mathrm{X}_{6}$	$+C_{3} \times x_{6}$	$+\mathrm{C}_{4} \times \mathrm{X}_{6}$	$+\mathrm{C}_{5} \times \mathrm{X}_{6}$	$+C_{6} \times x_{6}$	$\mathrm{C}_{7} \times \mathrm{X}_{6}$		-
7	$+C_{0} \times{ }_{7}$	$+C_{1} \times{ }^{1}$	$+\mathrm{C}_{2} \times \mathrm{X}_{7}$	$+C_{3} \times{ }^{1}$	$+\mathrm{C}_{4} \times \mathrm{X}_{7}$	$+\mathrm{C}_{5} \times \mathrm{X}_{7}$	$+\mathrm{C}_{6} \times \mathrm{X}_{7}$	$\mathrm{C}_{7} \times \mathrm{X}_{7}$	Cell 0 (Y7)
8	$\mathrm{C}_{7} \times \mathrm{X}_{8}$	$+C_{0} \times{ }_{8}$	$+\mathrm{C}_{1} \times \mathrm{X}_{8}$	$+\mathrm{C}_{2} \times \mathrm{X}_{8}$	$+C_{3} \times{ }^{1}$	$+\mathrm{C}_{4} \times \mathrm{X}_{8}$	$+\mathrm{C}_{5} \times \mathrm{X}_{8}$	$+\mathrm{C}_{6} \times \mathrm{X}_{8}$	Cell 1 (Y8)
9	$+\mathrm{C}_{6} \times \mathrm{x}_{9}$	$\mathrm{C}_{7} \times{ }^{1}$	$+C_{0} \times{ }^{1}$	$+\mathrm{C}_{1} \times \mathrm{X}_{9}$	$+\mathrm{C}_{2} \times \mathrm{X}_{9}$	$+\mathrm{C}_{3} \times \mathrm{X}_{9}$	$+C_{4} \times{ }^{1} 9$	$+C_{5} \times{ }^{1}$	Cell 2 (Y9)
10	$+C_{5} \times{ }^{10}$	$+C_{6} \times x_{10}$	$\mathrm{C}_{7} \times \mathrm{X}_{10}$	$+C_{0} \times{ }_{10}$	$+C_{1} \times{ }_{10}$	$+C_{2} \times{ }_{10}$	$+\mathrm{C}_{3} \times \mathrm{X}_{10}$	$+C_{4} \times \mathrm{X}_{10}$	Cell 3 (Y10)
11	$+\mathrm{C}_{4} \times \mathrm{X}_{11}$	$+C_{5} \times \mathrm{X}_{11}$	$+C_{6} \times{ }^{11}$	$\mathrm{C}_{7} \times \mathrm{X}_{11}$	$+C_{0} \times{ }_{11}$	$+C_{1} \times{ }_{11}$	$+\mathrm{C}_{2} \times \mathrm{X}_{11}$	$+c_{3} \times \mathrm{X}_{11}$	Cell 4 (Y11)
12	$+C_{3} \times x_{12}$	$+C_{4} \times \mathrm{X}_{12}$	$+\mathrm{C}_{5} \times \mathrm{X}_{12}$	$+\mathrm{C}_{6} \times \mathrm{x}_{12}$	$\mathrm{C}_{7} \times \mathrm{X}_{12}$	$+C_{0} \times x_{12}$	$+C_{1} \times{ }_{12}$	$+\mathrm{C}_{2} \times \mathrm{X}_{12}$	Cell 5 (Y12)
13	$+\mathrm{C}_{2} \times \mathrm{X}_{13}$	$+C_{3} \times{ }_{13}$	$+\mathrm{C}_{4} \times \mathrm{X}_{13}$	$+\mathrm{C}_{5} \times \mathrm{X}_{13}$	$+\mathrm{C}_{6} \times \mathrm{x}_{13}$	$\mathrm{C}_{7} \times \mathrm{X}_{13}$	$+\mathrm{C}_{0} \times \mathrm{X}_{13}$	$+\mathrm{C}_{1} \times \mathrm{X}_{13}$	Cell 6 (Y13)
14	$+\mathrm{C}_{1} \times \mathrm{X}_{14}$	$+\mathrm{C}_{2} \times \mathrm{X}_{14}$	$+C_{3} \times{ }_{14}$	$+\mathrm{C}_{4} \times \mathrm{X}_{14}$	$+\mathrm{C}_{5} \times \mathrm{X}_{14}$	$+\mathrm{C}_{6} \times \mathrm{X}_{14}$	$+\mathrm{C}_{7} \times \mathrm{X}_{14}$	$+C_{0} \times{ }_{14}$	Cell 7 (Y14)
15	$+c_{0 \times 15}$	$+C_{1} \times{ }_{15}$	$+\mathrm{C}_{2} \times \mathrm{X}_{15}$	$+C_{3} \times{ }_{15}$	$+C_{4} \times{ }_{15}$	$+C_{5} \times{ }_{15}$	$+\mathrm{C}_{6} \times \mathrm{X}_{15}$	$\mathrm{C}_{7} \times{ }^{15}$	Cell 0 (Y15)

FIGURE 3. HSP43881 30MHz, 8 TAP FIR FILTER APPLICATION SCHEMATIC

Detailed operation of the DF to perform a basic 8-tap, 8-bit coefficient, 8-bit data, 30 MHz FIR filter is best understood by observing the schematic (Figure 3) and timing diagram (Figure 4). The internal pipeline length of the DF is four (4) clock cycles, corresponding to the register levels CREG (or XREG), MREGO, MREG1, and TREG (Figures 1 and 2). Therefore the delay from presentation of data and coefficients at the DINO-7 and CINO-7 inputs to a sum appearing at the SUMO-25 output is:
$k+T d$
where
$k=$ filter length
$T d=4$, the internal pipeline delay of DF
After the pipeline has filled, a new output sample is available every clock. The delay to last sample output from last sample input is Td.

The output sums, Yn , shown in the timing diagram are derived from the sum-of-products equation:
$\mathrm{Y}(\mathrm{n})=\mathrm{C}(0) \times \mathrm{X}(\mathrm{n})+\mathrm{C}(1) \times \mathrm{X}(\mathrm{n}-1)+\mathrm{C}(2) \times \mathrm{X}(\mathrm{n}-2)+\mathrm{C}(3)$ $x X(n-3)+C(4) \times X(n-4)+C(5) \times X(n-5)+C(6) \times X(n-6)$ $+C(7) \times X(n-7)$

Extended FIR Filter Length

Filter lengths greater that eight taps can be created by either cascading together multiple DF devices or "reusing" a single device. Using multiple devices, an FIR filter of over 1000 taps can be constructed to operate at a 30 MHz sample rate. Using a single device clocked at 30 MHz , an FIR filter of over 1000 taps can be constructed to operate at less than a 30 MHz sample rate. Combinations of these two techniques are also possible.

FIGURE 4. HSP43881 30MHz, 8 TAP FIR FILTER TIMING

FIGURE 5. HSP43881 $30 \mathrm{MHz}, 16$ TAP FIR FILTER CASCADE APPLICATION SCHEMATIC.

Cascade Configuration

To design a filter length $L>8, L / 8$ DFs are cascaded by connecting the COUTO-7 outputs of the (i)th DF to the CINO-7 inputs of the ($i+1$)th DF. The DINO-7 inputs and SUMO-25 outputs of all the DFs are also tied together. A specific example of two cascaded DFs illustrates the technique (Figure 5). Timing (Figure 6) is similar to the simple 8-tap FIR, except the ERASE and SENBL/SENBH
signals must be enabled independently for the two DFs in order to clear the correct accumulators and enable the SUMO-25 output signals at the proper times.

Single DF Configuration

Using a single DF, a filter of length $L>8$ can be constructed by processing in L/8 passes as illustrated in the following table (Table 2) for a 16-tap FIR. Each pass is composed of

TABLE 2. HSP43881 16-TAP FIR FILTER SEQUENCE USING A SINGLE DF

CLK	CELL 0	CELL 1	CELL 2	CELL 3	CELL 4	CELL 5	CELL 6	CELL 7	SUM/CLR
6	$\mathrm{C}_{15} \times \mathrm{X}_{0}$	0	0	0					-
7	$+\mathrm{C}_{14} \times \mathrm{X}_{1}$	$\mathrm{C}_{15} \times \mathrm{X}_{1}$	0	0					-
8	$+C_{13} \times x_{2}$		$\mathrm{C}_{15} \times \mathrm{X}_{2}$	0					-
9	$+\mathrm{C}_{12} \times \mathrm{X}_{3}$			$\mathrm{C}_{15} \times \mathrm{X}_{3}$					-
10	$+\mathrm{C}_{11} \times \mathrm{X}_{4}$			$+\mathrm{C}_{14} \times \mathrm{x}_{4}$	$\mathrm{C}_{15} \times \mathrm{X}_{4}$				-
11	$+\mathrm{C}_{10} \times \mathrm{X}_{5}$			$+\mathrm{C}_{13} \times \mathrm{X}_{5}$		$\mathrm{c}_{15} \times \mathrm{X}_{5}$			-
12	$+\mathrm{C}_{9} \times \mathrm{X}_{6}$			$+\mathrm{C}_{12} \times \mathrm{X}_{6}$			$\mathrm{C}_{15} \times \mathrm{X}_{6}$		-
13	$+C_{8} \times{ }_{7}$			$+\mathrm{C}_{11} \times \mathrm{x}_{7}$				$\mathrm{C}_{15} \times{ }^{\text {P }}$	-
14	$+C_{7} \times{ }_{8}$			$+\mathrm{C}_{10} \times \mathrm{X}_{8}$				$+\mathrm{C}_{14} \times \mathrm{X}_{8}$	-
15	$+C_{6} \times x_{9}$			$+\mathrm{C}_{9} \times \mathrm{X}_{9}$				$+\mathrm{C}_{13} \times \mathrm{X}_{9}$	-
16	$+C_{5} \times \mathrm{X}_{10}$			$+C_{8} \times x_{10}$				$+\mathrm{C}_{12} \times \mathrm{X}_{10}$	-
17	$+\mathrm{C}_{4} \times \mathrm{X}_{11}$			$+C_{7} \times{ }^{11}$				$+\mathrm{C}_{11} \times \mathrm{X}_{11}$	-
18	$+\mathrm{C}_{3} \times \mathrm{X}_{12}$			$+\mathrm{C}_{6} \times \mathrm{x}_{12}$				$+\mathrm{C}_{10} \times \mathrm{X}_{12}$	-
19	$+\mathrm{C}_{2} \times \mathrm{X}_{13}$			$+\mathrm{C}_{5} \times \mathrm{X}_{13}$				$+C_{9} \times{ }_{13}$	-
20	$+\mathrm{C}_{1} \times \mathrm{X}_{14}$			$+\mathrm{C}_{4} \times \mathrm{X}_{14}$				$+\mathrm{C}_{8} \times \mathrm{X}_{14}$	-
21	$+\mathrm{C}_{0} \times \mathrm{X}_{15}$	\downarrow		$+C_{3} \times x_{15}$				$+C_{7} \times{ }^{15}$	CELLO (Y15)
22	0	$\mathrm{C}_{0} \times \mathrm{X}_{16}$	\downarrow	$+\mathrm{C}_{2} \times \mathrm{X}_{16}$				$+\mathrm{C}_{6} \times \mathrm{X}_{16}$	CELL 1 (Y16)
23	0	0	$\mathrm{C}_{0} \times \mathrm{X}_{17}$	$+\mathrm{C}_{1} \times \mathrm{X}_{17}$				$+\mathrm{C}_{5} \times \mathrm{X}_{17}$	CELL 2 (Y17)
24	0	0	0	$+\mathrm{C}_{0} \times \mathrm{X}_{18}$	\downarrow			$+\mathrm{C}_{4} \times \mathrm{X}_{18}$	CELL 3(Y18)
25	0	0	0	0	$\mathrm{C}_{0} \times \mathrm{X}_{19}$	\downarrow		$+\mathrm{C}_{3} \times \mathrm{X}_{19}$	CELL 4 (Y19)
26	0	0	0	0	0	$\mathrm{c}_{0} \times \mathrm{X}_{20}$	\downarrow	$+\mathrm{C}_{2} \times \mathrm{X}_{20}$	CELL 5(Y20)
27	0	0	0	0	0	0	$\mathrm{C}_{0} \times \mathrm{X}_{21}$	$+\mathrm{C}_{1} \times \mathrm{X}_{21}$	CELL 6 (Y21)
28	0	0	0	0	0	0	0	$+C_{0} \times{ }_{22}$	CELL 7 (Y22)
29	$\mathrm{C}_{15} \times \mathrm{X}_{8}$	0	0	0	0	0	0	0	-
30	$+\mathrm{C}_{14} \times \mathrm{X}_{9}$	$\mathrm{c}_{15} \times \mathrm{X}_{9}$	0	0	0	0	0	0	-
31	$+C_{13} \times{ }^{10}$		$\mathrm{C}_{15} \times \mathrm{X}_{10}$	0	0	0	0	0	-
32	$+c_{12} \times \mathrm{X}_{11}$			$\mathrm{c}_{15} \times \mathrm{X}_{11}$	0	0	0	0	-
33	$+C_{11} \times \mathrm{X}_{12}$				$c_{15} \times \mathrm{X}_{12}$	0	0	0	-
34	$+\mathrm{C}_{10} \times \mathrm{X}_{13}$					$\mathrm{c}_{15} \times \mathrm{X}_{13}$	0	0	-
35	$+\mathrm{Cg}_{9} \times \mathrm{X}_{14}$						$\mathrm{c}_{15} \times \mathrm{X}_{14}$	0	-
36	$+\mathrm{C}_{8} \times \mathrm{X}_{15}$							$\mathrm{C}_{15} \times \mathrm{X}_{15}$	-
37	$+C_{7} \times{ }^{16}$							$+\mathrm{C}_{14} \times \mathrm{X}_{16}$	-
38	$+C_{6} \times \times_{17}$							$+C_{13} \times \times_{17}$	-
39	$+\mathrm{C}_{5} \times \mathrm{X}_{18}$							$+\mathrm{C}_{12} \times \mathrm{X}_{18}$	-
40	$+C_{4} \times{ }_{19}$							$+C_{11} \times \mathrm{X}_{19}$	-
41	$+C_{3} \times x_{20}$							$+\mathrm{C}_{10} \times \mathrm{X}_{20}$	-
42	$+\mathrm{C}_{2} \times \mathrm{X}_{21}$							$+c_{9} \times{ }_{21}$	-
43	$+\mathrm{C}_{1} \times \mathrm{X}_{22}$							$+C_{8} \times x_{22}$	-
44	$+c_{0} \times x_{23}$	\downarrow						$+C_{7} \times \times_{23}$	CELLO(Y23)
45	0	$\mathrm{C}_{0} \times{ }_{24}$	\downarrow					$+C_{6} \times x_{24}$	CELL 1 (Y24)
46	0	0	$\mathrm{C}_{0} \times \mathrm{X}_{25}$	\downarrow				$+C_{5} \times \mathrm{X}_{25}$	CELL 2 (Y25)
47	0	0	0	$\mathrm{C}_{0} \times{ }^{2} 26$	\downarrow			$+C_{4} \times{ }_{26}$	CELL3(Y26)
48	0	0	0	0	$\mathrm{C}_{0} \times \mathrm{X}_{27}$	\checkmark	\downarrow	$+c_{3} \times{ }_{27}$	CELL 4(Y27)

$\mathrm{Tp}=7+\mathrm{L}$ cycles and computes eight output samples. In pass i, the sample with indices $\mathrm{i}^{*} 8$ to $\mathrm{i}^{*} 8+(\mathrm{L}-1)$ enter the DINO-7 inputs. The coefficients $C_{0}-C_{L}-1$ enter the CINO-7 inputs, followed by seven zeros. As these zeros are entered, the result samples are output and the accumulators reset. Initial filing of the pipeline is not shown in this sequence table. Filter outputs can be put through a FIFO to even out the sample rate.

Extended Coefficient and Data Sample Word Size

The sample and coefficient word size can be extended by utilizing several DFs in parallel to get the maximum sample rate or a single DF with resulting lower sample rates. The technique is to compute partial products of 8×8 and combine these partial products by shifting and adding to obtain the final result. The shifting and adding can be
accomplished with external adders (at full speed) or with the DF's shift-and-add mechanism contained in its output stage (at reduced speed).

Decimation/Resampling

The HSP43881 DF provides a mechanism for decimating by factors of 2,3 , or 4 . From the DF filter cell block diagram (Figure 1), note the three D registers and two multiplexers in the coefficient path through the cell. These allow the coefficients to be delayed by 1,2 , or 3 clocks through the cell. The sequence table (Table 3) for a decimate-by-two- filter illustrates the technique (internal cell pipelining ignored for simplicity).

Detailed timing for a 30 MHz input sample rate, 15 MHz output sample rate (i.e., decimate-by-two), 16-tap FIR filter, including pipelining, is shown in Figure 7. This filter requires only a single HSP43881 DF.

FIGURE 6. HSP43881 16-TAP 30MHz FIR FILTER TIMING USING TWO CASCADED HSP43881s

TABLE 3. HSP43881 16-TAP DECIMATE-BY-TWO FIR FILTER SEQUENCE; 30 MHz IN, 15 MHz OUT

CLK	CELL 0	CELL 1	CELL 2	CELL 3	CELL 4	CELL 5	CELL 6	CELL 7	SUM/CLR
6	$\mathrm{C}_{15} \times \mathrm{X}_{0}$	0	0	0	0	0	0	0	-
7	$+\mathrm{C}_{14} \times \mathrm{X}_{1}$	0	0	0	0	0	0	0	-
8	$+\mathrm{C}_{13} \times \mathrm{X}_{2}$	$\mathrm{C}_{15} \times \mathrm{X}_{2}$	0	0	0	0	0	0	-
9	$+\mathrm{C}_{12} \times \mathrm{x}_{3}$		0	0	0	0	0	0	-
10	$+\mathrm{C}_{11} \times \mathrm{X}_{4}$		$\mathrm{C}_{15} \times \mathrm{X}_{4}$	0	0	0	0	0	-
11	$+\mathrm{C}_{10} \times \mathrm{X}_{5}$			0	0	0	0	0	-
12	$+\mathrm{C}_{9} \times \mathrm{X}_{6}$			$\mathrm{c}_{15} \times \mathrm{X}_{6}$	0	0	0	0	-
13	$+C_{8} \times \mathrm{X}_{7}$				0	0	0	0	-
14	$+C_{7} \times{ }^{4}$				$c_{15} \times{ }_{8}$	0	0	0	-
15	$+\mathrm{C}_{6} \times \mathrm{X}_{9}$					0	0	0	-
16	$+\mathrm{C}_{5} \times \mathrm{X}_{10}$					$\mathrm{c}_{15} \times \mathrm{X}_{10}$	0	0	-
17	$+\mathrm{C}_{4} \times \mathrm{X}_{11}$						0	0	-
18	$+c_{3} \times x_{12}$						$c_{15} \times{ }_{12}$	0	-
19	$+\mathrm{C}_{2} \times \mathrm{X}_{13}$							0	-
20	$+C_{1} \times \mathrm{X}_{14}$							$\mathrm{C}_{15} \times \mathrm{X}_{14}$	-
21	$+\mathrm{C}_{0} \times \mathrm{X}_{15}$							$+C_{14} \times \mathrm{X}_{15}$	CELLO(Y15)
22	$\mathrm{C}_{15} \times \mathrm{X}_{16}$							$+\mathrm{C}_{13} \times \mathrm{X}_{16}$	- ${ }^{-}$
23	$+\mathrm{C}_{14} \times \mathrm{X}_{17}$							$+\mathrm{C}_{12} \times \mathrm{X}_{17}$	CELL 1 (Y17)
24	$+\mathrm{C}_{13} \times \mathrm{X}_{18}$							$+\mathrm{C}_{11} \times \mathrm{X}_{18}$	-
25	$+\mathrm{C}_{12} \times \mathrm{X}_{19}$							$+\mathrm{C}_{10} \times \mathrm{X}_{19}$	CELL 2 (Y19)
26	$+\mathrm{C}_{11} \times \mathrm{X}_{20}$							$+\mathrm{C}_{9} \times \mathrm{X}_{20}$	-
27	$+\mathrm{C}_{10} \times \mathrm{X}_{21}$							$+\mathrm{C}_{8} \times \mathrm{X}_{21}$	CELL 3 (Y21)
28	$+\mathrm{C}_{9} \times \mathrm{X}_{22}$							$+\mathrm{C}_{7} \times \mathrm{X}_{22}$	-
29	$+\mathrm{C}_{8} \times \mathrm{X}_{23}$							$+\mathrm{C}_{6} \times{ }_{23}$	CELL 4 (Y23)
30	$+C_{7} \times{ }^{24}$							$+\mathrm{C}_{5} \times \mathrm{X}_{24}$	-
31	$+\mathrm{C}_{6} \times \mathrm{X}_{25}$							$+\mathrm{C}_{4} \times{ }^{25}$	CELL 5 (Y25)
32	$+\mathrm{C}_{5} \times \mathrm{X}_{26}$							$+\mathrm{C}_{3} \times \mathrm{X}_{26}$	(
33	$+\mathrm{C}_{4} \times \mathrm{X}_{27}$							$+\mathrm{C}_{2} \times \mathrm{X}_{27}$	CELL 6 (Y27)
34	$+C_{3} \times{ }^{28}$							$+\mathrm{C}_{1} \times \times 28$	-
35	$+\mathrm{C}_{2} \times \mathrm{X}_{29}$							$+\mathrm{C}_{0} \times \mathrm{X}_{29}$	CELL 7 (Y29)
36	$+\mathrm{C}_{1} \times \mathrm{X}_{30}$	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	$\mathrm{c}_{15} \times \mathrm{X}_{30}$	-
37	$+\mathrm{C}_{0} \times \mathrm{X}_{31}$	$+\mathrm{C}_{14} \times \mathrm{X}_{31}$	$+C_{14} \times \mathrm{X}_{31}$	$+C_{14} \times \mathrm{X}_{31}$	$+C_{14} \times \times_{31}$	$+C_{14} \times \times_{31}$	$+C_{14} \times \times_{31}$	$+C_{14} \times \times_{31}$	CELL 8 (Y31)
\downarrow	\downarrow								

FIGURE 7. HSP43881 16-TAP DECIMATE-BY-TWO FIR FILTER TIMING; $30 \mathrm{MHz} \operatorname{IN}, 15 \mathrm{MHz}$ OUT

Absolute Maximum Ratings


```
Input, Output Voltage
GND -0.5V to VCC +0.5V
Storage Temperature.
                            -650}\textrm{C}\mathrm{ to }+15\mp@subsup{0}{}{\circ}\textrm{C
ESD
                            Class }
Maximum Package Power Dissipation at 700} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.4W (PLCC), 2.88W (PGA)
0jc ........................................................................................... . 11.10
```



```
Gate Count
                            17763
Junction Temperature
150}\mp@subsup{}{}{\circ}\textrm{C}\mathrm{ (PLCC), 175}\mp@subsup{}{}{\circ}\textrm{C}\mathrm{ (PGA)
Lead Temperature (Soldering 10s)
300%
CAUTION: Stresses above those listed in the "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
```


Operating Conditions

```
Operating Voltage Range
\(5 \mathrm{~V} \pm 5 \%\)
Operating Temperature Range
\(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\)
```


D.C. Electrical Specifications

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
ICCOP	Power Supply Current	-	160	mA	$v_{C C}=M a x$ CLK Frequency 20 MHz Note 1, Note 3
ICCSB	Standby Power Supply Current	-	500	$\mu \mathrm{A}$	$\mathrm{V}_{\text {CC }}=$ Max, Note 3
1	Input Leakage Current	-10	10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=$ Max, Input $=0 \mathrm{~V}$ or $\mathrm{V}_{\text {CC }}$
10	Output Leakage Current	-10	10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=$ Max, Input $=0 \mathrm{~V}$ or V_{CC}
V_{IH}	Logical One Input Voltage	2.0	-	V	$\mathrm{V}_{\text {CC }}=$ Max
$\mathrm{V}_{\text {IL }}$	Logical Zero Input Voltage		0.8	v	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}$
V_{OH}	Logical One Output Voltage	2.6	-	V	$\mathrm{I}^{\mathrm{OH}}=-400 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$
V_{OL}	Logical Zero Output Voltage	-	0.4	V	$\mathrm{I}^{\mathrm{OL}}=2 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$
$\mathrm{V}_{\text {IHC }}$	Clock Input High	$\mathrm{V}_{\mathrm{CC}}-0.8$	-	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$
VILC	Clock Input Low	-	0.8	V	$\mathrm{V}_{\text {CC }}=\mathrm{Min}$
$\mathrm{CIN}^{\text {N }}$	Input Capacitance PLCC PGA	-	$\begin{aligned} & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$	CLK Frequency 1 MHz All measurements referenced
COUT	Output Capacitance PLCC	-	$\begin{aligned} & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \text { Note } 2$

NOTES:

1. Operating supply current is proportional to frequency. Typical rating is $8 \mathrm{~mA} / \mathrm{MHz}$.
2. Controlled via design or process parameters and not directly tested. Characterized upon initial design and after major process and/or design changes.
3. Output load per test load circuit and $C_{L}=40 \mathrm{pF}$.
A.C. Electrical Specifications $V_{C C}=5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	-20 (20MHz)		-25 (25.6MHz)		$-30(30 \mathrm{MHz})$		UNITS	TEST CONDITIONS
		MIN	MAX	MIN	MAX	MIN	MAX		
TCP	Clock Period	50	-	39	-	33	-	ns	
TCL	Clock Low	20	-	16	-	13	-	ns	
${ }^{\text {T }} \mathrm{CH}$	Clock High	20	-	16	-	13	-	ns	
TIS	Input Setup	16	-	14	-	13	-	ns	
T_{H}	Input Hold	0	-	0	-	0	-	ns	
TODC	CLK to Coefficient Output Delay	-	24	-	20	-	18	ns	
Toed	Output Enable Delay	-	20	-	15	-	15	ns	
TODD	Output Disable Delay	-	20	-	15	-	15	ns	Note 1
TODS	CLK to SUM Output Delay	-	27	-	25	-	21	ns	
TOR	Output Rise	-	6	-	6	-	6	ns	Note 1
TOF	Output Fall	-	6	-	6	-	6	ns	Note 1

NOTE:

1. Controlled by design or process parameters and not directly tested. Characterized upon initial design and after major process and/or design changes.

Test Load Circuit

Switch S1 Open for ICCSB and ICCOP Tests

Waveforms

CLOCK AC PARAMETERS

* SUMO-25, COUTO-7, TCCO are assumed not to be in high-impedance state

SUMO-25, COUTO-7, TCCO OUTPUT DELAYS

OUTPUT ENABLE, DISABLE TIMING

OUTPUT RISE AND FALL TIMES

A.C. Testing: Inputs are driven at 3.0 V for Logic " 1 " and 0.0 V for Logic " 0 ". Input and output timing measurements are made at 1.5 V for both a Logic "1" and " 0 ". CLK is driven at VCC -0.4 and OV and measured at 2.5 V . All inputs driven at $1 \mathrm{~V} / \mathrm{ns}$
A.C. TESTING INPUT, OUTPUT WAVEFORM

HARRIS HSP43881/883

Features

- This Circuit is Processed in Accordance to Mil-Std883C and is Fully Conformant Under the Provisions of Paragraph 1.2.1.
- 0 to $\mathbf{2 5 . 6 M H z}$ Sample Rate
- Eight Filter Cells
- 8-Bit Coefficients and Signal Data
- Low Power CMOS Operation
- ICCSB 500μ A Maximum
- ICCOP $160 \mu \mathrm{~A}$ Maximum @ 20 MHz
- 26-Bit Accumulator Per Stage
- Filter Lengths Up to 1032 Taps
- Shift and Add Output Stage for Combining Filter Outputs
- Expandable Coefficient Size, Data Size and Filter Length
- Decimation by 2, 3 or $\mathbf{4}$

Applications

- 1-D and 2-D FIR Filters
- Radar/Sonar
- Digital Video and Audio
- Adaptive Filters
- Echo Cancellation
- Correlation/Convolution
- Complex Multiply-Add
- Butterfly Computation
- Matrix Multiplication
- Sample Rate Converters

Description

The HSP43881/883 is a video speed Digital Filter (DF) designed to efficiently implement vector operations such as FIR digital filters. It is comprised of eight filter cells cascaded internally and a shift and add output stage, all in a single integrated circuit. Each filter cell contains a 8×8 bit multiplier, three decimation registers and a 26 -bit accumulator. The output stage contains an additional 26-bit accumulator which can add the contents of any filter cell accumulator to the output stage accumulator shifted right by 8 bits. The HSP43881/883 has a maximum sample rate of 25.6 MHz . The effective multiply accumulate (mac) rate is 204 MHz . The HSP43881/883 DF can be configured to process expanded coefficient and word sizes. Multiple DFs can be cascaded for larger filter lengths without degrading the sample rate or a single DF can process larger filter lengths at less than 25.6 MHz with multiple passes. The architecture permits processing filter lengths of over 1000 taps with the guarantee of no overflows. In practice, most filter coefficients are less than 1.0, making even larger filter lengths possible. The DF provides for 8-bit unsigned or two's complement arithmetic, independently selectable for coefficients and signal data.
Each DF filter cell contains three resampling or decimation registers which permit output sample rate reduction at rates of $1 / 2,1 / 3$ or $1 / 4$ the input sample rate. These registers also provide the capability to perform 2-D operations such as matrix multiplication and NxN spatial correlations/convolutions for image processing applications.

Block Diagram

Pinouts

85 PIN GRID ARRAY (PGA)

84 LEAD CERAMIC QUAD FLATPACK PACKAGE

Note: An overbar on a signal name represents an active LOW signal.

Reliability Information

Thermal Resistance	θ_{ja}	$\theta_{\text {jc }}$
Ceramic PGA Package	$34.66^{\circ} \mathrm{C} / \mathrm{W}$	$7.78{ }^{\circ} \mathrm{C} / \mathrm{W}$
Maximum Package Powe Ceramic PGA Package	$t+125^{\circ} \mathrm{C}$	1.44 Watt
Gate Count		1762 Gates

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Operating Conditions

Operating Voltage Range . +4.5 V to +5.5 V
Operating Temperature Range
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
TABLE 1. HSP43881/883 D.C. ELECTRICAL PERFORMANCE CHARACTERISTICS
Devices Guaranteed and 100\% Tested

PARAMETER	SYMBOL	CONDITIONS	GROUPA SUBGROUPS	TEMPERATURE	LIMITS		UNITS
					MIN	MAX	
Logical One Input Voltage	V_{IH}	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	1,2,3	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	2.2	-	V
Logical Zero Input Voltage	V_{IL}	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	1,2,3	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	-	0.8	v
Output HIGH Voltage	V_{OH}	$\begin{aligned} & \mathrm{IOH}_{\mathrm{OH}}=-400 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}(\text { Note } 1) \end{aligned}$	1,2,3	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	2.6	-	v
Output LOW Voltage	V_{OL}	$\begin{aligned} & \mathrm{IOL}=+2.0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}(\text { Note } 1) \end{aligned}$	1,2,3	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	-	0.4	V
Input Leakage Current	1	$\begin{aligned} & V_{I N}=V_{C C} \text { or } G N D \\ & V_{C C}=5.5 V \end{aligned}$	1,2,3	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	-10	+10	$\mu \mathrm{A}$
Output Leakage Current	${ }^{1}$	$\begin{aligned} & \mathrm{V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \\ & \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V} \\ & \hline \end{aligned}$	1,2,3	$-55^{\circ} \mathrm{C} \leq \mathrm{T} \mathrm{A} \leq+125^{\circ} \mathrm{C}$	-10	+10	$\mu \mathrm{A}$
Clock Input High	$\mathrm{V}_{1 H C}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	1,2,3	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{CC}}-0.8$	-	V
Clock Input Low	$\mathrm{V}_{\text {ILC }}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	1,2,3	$-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}$	-	0.8	V
Standby Power Supply Current	${ }^{\text {I CcsB }}$	$\begin{aligned} & V_{I N}=V_{C C} \text { or } G N D \\ & V_{C C}=5.5 \mathrm{~V}, \\ & \text { Outputs Open } \end{aligned}$	1, 2, 3	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	-	500	$\mu \mathrm{A}$
Operating Power Supply Current	ICCOP	$\begin{aligned} & f=20.0 \mathrm{MHz} \\ & v_{C C}=5.5 \mathrm{~V} \text { (Note 2) } \end{aligned}$	1,2,3	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	-	160.0	mA
Functional Test	FT	(Note 3)	7, 8	$-55^{\circ} \mathrm{C} \leq \mathrm{T} \mathrm{A} \leq+125^{\circ} \mathrm{C}$	-	-	

NOTES:

1. Interchanging of force and sense conditions is permitted.
2. Operating Supply Current is proportional to frequency, typical rating is $8.0 \mathrm{~mA} / \mathrm{MHz}$.
3. Tested as follows: $f=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{IH}}=2.6, \mathrm{~V}_{\mathrm{IL}}=0.4, \mathrm{VOH} \geq 1.5 \mathrm{~V}$, $\mathrm{V}_{\mathrm{OL}} \leq 1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IHC}}=\mathrm{V}_{\mathrm{CC}}-0.4 \mathrm{~V}$, and $\mathrm{V}_{\mathrm{ILC}}=0.4 \mathrm{~V}$.

TABLE 2. HSP43881/883 A.C. ELECTRICAL PERFORMANCE CHARACTERISTICS
Device Guaranteed and 100% Tested

PARAMETER	SYMBOL	CONDITIONS	GROUP A SUBGROUPS	TEMPERATURE	-20 (20MHz)		-25 (25.6MHz)		UNITS
					MIN	MAX	MIN	MAX	
Clock Period	T_{CP}	Note 1	9, 10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	50	-	39	-	ns
Clock Low	TCL	Note 1	9, 10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	20	-	16	-	ns
Clock High	${ }^{\text {T }}$ CH	Note 1	9, 10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	20	-	16	-	ns
Input Setup	$\mathrm{T}_{\text {IS }}$	Note 1	9, 10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T} \mathrm{S} \leq+125^{\circ} \mathrm{C}$	20	-	17	-	ns
Input Hold	T_{IH}	Note 1	9, 10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	0	-	0	-	ns
CLK to Coefficient Output Delay	TODC	Note 1	9, 10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T} \mathrm{A} \leq+125^{\circ} \mathrm{C}$	-	24	-	20	ns
Output Enable Delay	TOED	Note 1	9, 10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	-	20	-	15	ns
CLK to SUM Output Delay	TODS	Note 1	9, 10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	-	31	-	25	ns

NOTE: 1. Loading is as specified in the test load circuit with $C_{L}=40 \mathrm{pF}$.

TABLE 3. HSP43881/883 A.C. ELECTRICAL PERFORMANCE CHARACTERISTICS

PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	-20		-25		UNITS
					MIN	MAX	MIN	MAX	
Input Capacitance	C_{IN}	$\mathrm{V}_{\mathrm{CC}}=$ Open, $\mathrm{f}=1 \mathrm{MHz}$ All measurements are referenced to device GND.	1	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-	15	-	15	pF
Output Capacitance	Cout		1	$T_{A}=+25^{\circ} \mathrm{C}$	-	15	-	15	pF
Output Disable Delay	TODD		1,2	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	-	20	-	15	ns
Output Rise Time	TOR		1,2	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	-	7	-	6	ns
Output Fall Time	TOF		1,2	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	-	7	-	6	ns

NOTES:

1. The parameters listed in Table 3 are controlled via design or process parameters and are not directly tested. These parameters are characterized upon initial design and after major process and/or design changes.
2. Loading is as specified in the test load circuit, $C_{L}=40 \mathrm{pF}$.

TABLE 4. APPLICABLE SUBGROUPS

CONFORMANCE GROUPS	METHOD	SUBGROUPS
Initial Test	$100 \% / 5004$	-
Interim Test	$100 \% / 5004$	-
PDA	100%	1
Final Test	100%	$2,3,8 \mathrm{~A}, 8 \mathrm{~B}, 10,11$
Group A	-	$1,2,3,7,8 \mathrm{~A}, 8 \mathrm{~B}, 9,10,11$
Groups C \& D	Samples $/ 5005$	$1,7,9$

Burn-In Circuit

$\begin{aligned} & \text { QFP } \\ & \text { LEAD } \end{aligned}$	PIN NAME	BURN-IN SIGNAL	QFP LEAD	PIN NAME	BURN-IN SIGNAL	$\begin{aligned} & \text { QFP } \\ & \text { LEAD } \end{aligned}$	PIN NAME	BURN-IN SIGNAL	QFP LEAD	PIN NAME	BURN-IN SIGNAL
1	SUM23	$\mathrm{V}_{\mathrm{CC} / 2}$	22	SUM6	$\mathrm{V}_{\mathrm{CC} / 2}$	43	$\mathrm{V}_{\text {CC }}$	V_{CC}	64	V_{CC}	V_{CC}
2	SUM22	$\mathrm{V}_{\mathrm{CC} / 2}$	23	$\mathrm{V}_{\text {SS }}$	GND	44	$\overline{\text { TCCI }}$	F9	65	COUT5	$\mathrm{V}_{\mathrm{CC} / 2}$
3	V_{CC}	V_{CC}	24	SUM5	$\mathrm{V}_{\mathrm{CC}} / 2$	45	CIENB	F10	66	COUT4	$\mathrm{V}_{\mathrm{CC} / 2}$
4	SUM21	$\mathrm{V}_{\mathrm{CC} / 2}$	25	SUM4	$\mathrm{V}_{\mathrm{CC} / 2}$	46	DINO	FO	67	COUT3	$\mathrm{V}_{\mathrm{CC} / 2}$
5	SUM20	$\mathrm{V}_{\mathrm{CC} / 2}$	26	V_{CC}	$V_{C C}$	47	DIN1	F1	68	COUT2	$\mathrm{V}_{\mathrm{CC} / 2}$
6	SUM19	$\mathrm{V}_{\mathrm{CC} / 2}$	27	SUM3	$\mathrm{V}_{\mathrm{CC}} / 2$	48	DIN2	F2	69	$V_{S S}$	GND
7	SUM18	$\mathrm{V}_{\mathrm{CC}} / 2$	28	SUM2	$\mathrm{V}_{\mathrm{CC}} / 2$	49	DIN3	F3	70	COUT1	$\mathrm{V}_{\mathrm{CC} / 2}$
8	VSS	GND	29	SUM1	$\mathrm{V}_{\mathrm{CC} / 2}$	50	DIN4	F4	71	COUTO	$\mathrm{V}_{\mathrm{CC} / 2}$
9	SUM17	$\mathrm{V}_{\mathrm{CC} / 2}$	30	SUMO	$\mathrm{V}_{\mathrm{CC} / 2}$	51	DIN5	F5	72	SHADD	F9
10	SUM16	$\mathrm{V}_{\mathrm{CC} / 2}$	31	$V_{S S}$	GND	52	DIN6	F6	73	CLK	FO
11	VCC	$V_{C C}$	32	$\overline{\text { SENBL }}$	F10	53	DIN7	F8	74	ADDR2	F2
12	SUM15	$\mathrm{V}_{\mathrm{CC} / 2}$	33	CINO	FO	54	TCS	F7	75	DCMO	F5
13	SUM14	$\mathrm{V}_{\mathrm{CC} / 2}$	34	CIN1	F1	55	$\overline{\text { DIENB }}$	F10	76	$V_{S S}$	GND
14	SUM13	$\mathrm{V}_{\mathrm{CC} / 2}$	35	V_{CC}	V_{CC}	56	RESET	F11	77	ADDR1	F1
15	SUM12	$\mathrm{V}_{\mathrm{CC} / 2}$	36	CIN2	F2	57	ERASE	F10	78	ADDRO	FO
16	$V_{S S}$	GND	37	CIN3	F3	58	$V_{C C}$	V_{CC}	79	$V_{C C}$	V_{CC}
17	SUM11	$\mathrm{V}_{\mathrm{CC} / 2}$	38	CIN4	F4	59	$\overline{\text { COENB }}$	F10	80	SENBH	F10
18	SUM10	$\mathrm{V}_{\mathrm{CC} / 2}$	39	CIN5	F5	60	TCCO	$\mathrm{V}_{\mathrm{CC} / 2}$	81	SUM25	$\mathrm{V}_{\mathrm{CC} / 2}$
19	SUM9	$\mathrm{V}_{\mathrm{CC} / 2}$	40	VSS	GND	61	VSS	GND	82	DCM1	F6
20	SUM8	$\mathrm{V}_{\mathrm{CC} / 2}$	41	CIN6	F6	62	COUT7	$\mathrm{V}_{\mathrm{CC} / 2}$	83	SUM24	$\mathrm{V}_{\mathrm{CC}} / 2$
21	SUM7	$\mathrm{V}_{\mathrm{CC} / 2}$	42	CIN7	F7	63	COUT6	$\mathrm{V}_{\mathrm{Cc} / 2}$	84	$V_{S S}$	GND

NOTES: 1. $\mathrm{V}_{\mathrm{CC}} / 2(2.7 \mathrm{~V} \pm 10 \%)$ used for outputs only.
2. $47 \mathrm{~K} \Omega(\pm 20 \%)$ resistor connected to all pins except $V_{C C}$ and GND.
3. $V_{C C}=5.5 \pm 0.5 \mathrm{~V}$.
4. $0.1 \mu \mathrm{~F}(\mathrm{~min})$ capacitor between V_{C} and GND per position.
5. $F 0=100 \mathrm{KHz} \pm 10 \%, F 1=F 0 / 2, F 2=F 1 / 2 \ldots, F 11=F 10 / 2$, 40\% - 60\% Duty Cycle.
6. Input voltage limits: $\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$ max, $\mathrm{V}_{\mathrm{IH}}=4.5 \mathrm{~V} \pm 10 \%$

Burn-In Circuit

HSP43881/883 PIN GRID ARRAY (PGA)

$\left\lvert\, \begin{gathered} \text { PGA } \\ \text { PIN } \end{gathered}\right.$	PIN NAME	BURN-IN SIGNAL	PGA PIN	PIN NAME	BURN-IN SIGNAL	$\begin{aligned} & \text { PGA } \\ & \text { PIN } \end{aligned}$	PIN NAME	BURN-IN SIGNAL	$\begin{array}{\|l\|} \text { PGA } \\ \text { PIN } \end{array}$	PIN NAME	BURN-IN SIGNAL
A1	$V_{S S}$	GND	C1	COUT5	$\mathrm{V}_{\mathrm{CC}} / 2$	F10	V_{CC}	$V_{\text {CC }}$	K4	$V_{C C}$	$V_{C C}$
A2	COENB	F10	C2	COUT6	$\mathrm{V}_{\mathrm{CC}} / 2$	F11	$V_{S S}$	GND	K5	SUM19	$\mathrm{V}_{\mathrm{CC}} / 2$
A3	$V_{\text {cc }}$	V_{CC}	C3	ALIGN	NC	G1	ADR2	F2	K6	$V_{S S}$	GND
A4	FESET	F11	C5	DIENB	F10	G2	DCMO	F5	K7	SUM15	$\mathrm{V}_{\mathrm{CC} / 2}$
A5	DIN7	F8	C6	DIN5	F5	G3	CLK	FO	K8	SUM12	$\mathrm{v}_{\mathrm{CC} / 2}$
A6	DIN6	F6	C7	DIN4	F4	G9	SUM1	$\mathrm{V}_{\mathrm{CC} / 2}$	K9	SUM10	$\mathrm{V}_{\mathrm{CC} / 2}$
A7	DIN3	F3	C10	CIN5	F5	G10	SUM3	$\mathrm{v}_{\mathrm{CC} / 2}$	K10	SUM8	$\mathrm{v}_{\mathrm{CC} / 2}$
A8	DINO	FO	C11	CIN3	F3	G11	SUM2	$\mathrm{V}_{\mathrm{CC} / 2}$	K11	SUM6	$\mathrm{v}_{\mathrm{CC} / 2}$
A9	CIN8/TCCI	F8	D1	COUT3	$\mathrm{V}_{\mathrm{CC} / 2}$	H1	ADR1	F1	L1	DCM1	F6
A10	$V_{C C}$	$V_{C C}$	D2	COUT4	$\mathrm{V}_{\mathrm{CC} / 2}$	H2	ADRO	FO	L2	SUM23	$\mathrm{V}_{\mathrm{CC} / 2}$
A11	$V_{S S}$	GND	D10	CIN2	F2	H10	SUM5	$\mathrm{V}_{\mathrm{CC} / 2}$	L3	SUM22	$\mathrm{v}_{\mathrm{CC} / 2}$
B1	$V_{C C}$	$V_{C C}$	D11	V_{CC}	V_{CC}	H11	SUM4	$\mathrm{V}_{\mathrm{CC} / 2}$	L4	SUM21	$\mathrm{V}_{\mathrm{CC}} / 2$
B2	COUT7	$\mathrm{V}_{\mathrm{CC}} / 2$	E1	COUT1	$\mathrm{V}_{\mathrm{CC} / 2}$	J1	V_{CC}	$V_{C C}$	L5	SUM18	$\mathrm{V}_{\mathrm{CC} / 2}$
B3	COUT8/TCCO	$\mathrm{v}_{\mathrm{CC} / 2}$	E2	VSS	GND	J2	SUM25	$\mathrm{V}_{\mathrm{CC} / 2}$	L6	SUM14	$\mathrm{V}_{\mathrm{CC} / 2}$
B4	ERASE	F10	E3	COUT2	$\mathrm{VCC}^{\text {/2 }}$	J5	SUM20	$\mathrm{v}_{\mathrm{CC} / 2}$	L7	$\mathrm{V}_{\text {CC }}$	$V_{C C}$
B5	DIN8/TCS	F7	E9	CIN1	F1	J6	SUM17	$\mathrm{V}_{\mathrm{CC} / 2}$	L8	SUM13	$\mathrm{V}_{\mathrm{CC} / 2}$
B6	DIN1	F1	E10	CINO	FO	J7	SUM16	$\mathrm{V}_{\mathrm{CC} / 2}$	L9	$V_{S S}$	GND
B7	DIN2	F2	E11	SENBL	F10	$J 10$	SUM7	$\mathrm{V}_{\mathrm{CC}} / 2$	L10	SUM11	$\mathrm{V}_{\mathrm{CC} / 2}$
B8	CIENB	F10	F1	$\mathrm{V}_{\text {SS }}$	GND	J11	$V_{\text {SS }}$	GND	L11	SuM9	$\mathrm{V}_{\mathrm{CC} / 2}$
B9	CIN7	F7	F2	COUTO	$\mathrm{V}_{\mathrm{CC} / 2}$	K1	SENBH	F10			
B10	CIN6	F6	F3	SHADD	F9	K2	SUM24	$\mathrm{V}_{\mathrm{CC} / 2}$			
B11	CIN4	F4	F9	SUMO	VCC/2	K3	$\mathrm{V}_{\text {SS }}$	GND			

NOTES:

1. $\mathrm{V}_{\mathrm{CC}} / 2(2.7 \mathrm{~V} \pm 10 \%)$ used for outputs only.
2. $0.1 \mu \mathrm{~F}(\mathrm{~min})$ capacitor between V_{CC} and GND per device.
3. $47 \mathrm{~K} \Omega(\pm 20 \%)$ resistor connected to all pins except V_{CC} and GND .
4. $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \pm 0.5 \mathrm{~V}$.
5. $\mathrm{FO}=100 \mathrm{kHz} \pm 10 \%, F 1=F 0 / 2, F 2=F 1 / 2 \ldots, F 11=F 10 / 2,40 \%-60 \%$ Duty Cycle.
6. Input voltage Limits: $\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$ Max, $\mathrm{V}_{\mathrm{IH}}=4.5 \mathrm{~V} \pm 10 \%$

Die Characteristics

DIE DIMENSIONS:
$328 \times 283 \times 19 \pm 1$ mils
METALLIZATION:
Type: $\mathrm{Si}-\mathrm{Al}$ or $\mathrm{Si}-\mathrm{Al}-\mathrm{Cu}$
Thickness: $8 \mathrm{k} \AA$
GLASSIVATION:
Type: Nitrox
Thickness: $10 \mathrm{k} \AA$

DIE ATTACH:

Material: $\mathrm{Si}-\mathrm{Au}$ Eutectic Alloy (PGA)
Silver Glass (QFP)
WORST CASE CURRENT DENSITY: $1.2 \times 10^{5} \mathrm{~A} / \mathrm{cm}^{2}$

Metallization Mask Layout

HSP43881/883

$\sum_{n}^{\infty} \stackrel{n}{\infty} \sum_{n}^{n} \sum_{n}^{n}>$
第
$\sum_{i=1}^{\sim} \sum_{\substack{0}}^{\infty}$
SENBL
등
$\frac{\underset{2}{2}}{0}$
$\frac{\mathrm{Z}}{\mathrm{Z}}$
SELECT
츨

Packaging ${ }^{\dagger}$

85 PIN CERAMIC PIN GRID ARRAY (PGA)

LEAD MATERIAL: Type B
LEAD FINISH: Type C
PACKAGE MATERIAL: Ceramic, 90% Alumina
PACKAGE SEAL:
Material: Gold/Tin
Temperature: $320^{\circ} \mathrm{C} \pm 10^{\circ} \mathrm{C}$
Method: Furnace Seal

INTERNAL LEAD WIRE:
Material: Aluminum
Diameter: 1.25 Mil
Bonding Method: Ultrasonic
COMPLIANT OUTLINE: 38510 P-AC

84 PIN QUAD FLATPACK (QFP)

LEAD MATERIAL: Type B
LEAD FINISH: Type C
PACKAGE MATERIAL: Ceramic, 90% Alumina
PACKAGE SEAL:
Material: Gold/Tin
Temperature: $320^{\circ} \mathrm{C} \pm 10^{\circ} \mathrm{C}$
Method: Furnace Braze

INTERNAL LEAD WIRE:

Material: Aluminum
Diameter: 1.25 Mil
Bonding Method: Ultrasonic Wedge
COMPLIANT OUTLINE: 38510 C-G6

Features

- Four Filter Cells
- 0 to 30MHz Sample Rate
- 8 Bit Coefficients and Signal Data
- 26 Bit Accumulator per Stage
- Filter Lengths Up to 1032 Tap
- Shift-And-Add Output Stage for Combining Filter Outputs
- Expandable Coefficient Size, Data Size and Filter Length
- Decimation by 2, 3 or 4
- CMOS Power Dissipation Characteristics

Applications

- 1-D and 2-D FIR Filters
- Radar/Sonar
- Digital Video and Audio
- Adaptive Filters
- Echo Cancellation
- Correlation/Convolution
- Complex Multiply-Add
- Butterfly Computation
- Matrix Multiplication
- Sample Rate Converters

Description

The HSP43481 is a video-speed Digital Filter (DF) designed to efficiently implement vector operations such as FIR digital filters. It is comprised of four filter cells cascaded internally and a shift-and-add output stage, all in a single integrated circuit. Each filter cell contains an 8×8 multiplier, three decimation registers and a 26 bit accumulator which can add the contents of any filter cell accumulator to the output stage accumulator shifted right by eight bits. The HSP43481 has a maximum sample rate of 30 MHz . The effective multiply-accumulate (MAC) rate is 120 MHz .
The HSP43481 can be configured to process expanded coefficient and word sizes. Multiple devices can be cascaded for larger filter lengths without degrading the sample rate or a single device can process larger filter lengths at less than 30 MHz with multiple passes. The architecture permits processing filter lengths of over 1000 taps with the guarantee of no overflows. In practice, most filter coefficients are less than 1.0, making even larger filter lengths possible. The HSP43481 provides for unsigned or two's complement arithmetic, independently selectable for coefficients and signal data.
Each DF filter cell contains three resampling or decimation registers which permit output sample rate reduction at rates of $1 / 2,1 / 3$ or $1 / 4$ the input sample rate. These registers also provide the capability to perform 2-D operations such as NxN spatial correlations/convolutions for image processing applications.

Block Diagram

Pin Description

SYMBOL	PIN NUMBER	TYPE	NAME AND FUNCTION
V_{CC}	61		+5V Power Supply Input
$\mathrm{V}_{\text {SS }}$	27		Power Supply Ground Input
CLK	19	1	The CLK input provides the DF system sample clock. The maximum clock frequency is is 30 MHz .
DINO-7	$\begin{gathered} 64-68 \\ 1-3 \end{gathered}$	1	These eight inputs are the data sample input bus. Eight bit data samples are synchronously loaded through these pins to the X register of each filter cell simultaneously. The $\overline{\text { DIENB }}$ signal enables loading, which is synchronous on the rising edge of the clock signal.
TCS	4	1	The TCS input determines the number system interpretation of the data input samples on pins DINO-7 as follows: TCS $=$ Low \rightarrow Unsigned Arithmetic TCS $=$ High \rightarrow Two's Complement Arithmetic The TCS signal is synchronously loaded into the X register in the same way as the DINO-7 inputs.
$\overline{\text { DIENB }}$	5	I	A low on this enables the data sample input bus (DINO-7) to all the filter cells. A rising edge of the CLK signal occurring while DIENB is low will load the X register of every filter cell with the 8 bit value present on DINO-7. A high on this input forces all the bits of the data sample input bus to zero; a rising CLK edge when $\overline{\text { DIENB }}$ is high will load the X register of every filter cell with all zeros. This signal is latched inside the DF , delaying its effect by one clock internal to the DF. Therefore, it must be low during the clock cycle immediately preceding presentation of the desired data on the DINO-7 inputs. Detailed operation is shown in later timing diagrams.
CINO-7	53-60	1	These eight inputs are used to input the 8 bit coefficients. The coefficients are synchronously synchronously loaded into the C register of filter Cell 0 if a rising edge of CLK occurs while CIENB is low. The CIENB signal is delayed by one clock as discussed below.
TCCI	62	1	The TCCI input determines the number system interpretation of the coefficient inputs on pins CINO-7 as follows: TCCI $=$ LOW \rightarrow Unsigned Arithmetic TCCI $=$ HIGH \rightarrow Two's Complement Arithmetic The TCCI signal is synchronously loaded into the C register in the same way as the CINO-7 inputs.
$\overline{\text { CIENB }}$	63	1	A low on this input enable the C register of every filter cell and the D registers (decimation) of every filter cell according to the state of the DCMO-1 inputs. A rising edge of the CLK signal occurring while CIENB is low will load the C register and appropriate D registers with the coefficient data present at their inputs. This privides the mechanism for shifting the coefficients from cell to cell through the device. A high on this input freezes the contents of the C register and the D registers, ignoring the CLK signal. This signal is latched and delayed by one clock internal to the DF. Therefore, it must be low during the clock cycle immediately preceding presentation of the desired coefficient on the CINO-7 inputs. Detailed operation is shown in the Timing Diagrams section.
COUTO-7	10-17	0	These eight three-state outputs are used to output the 8 bit coefficients from filter cell 7. These outputs are enabled by the COENB signal low. These outputs may be tied to the CINO-7 inputs of the same DF to recirculate the coefficients, or they may be tied to the CINO-7 inputs of another DF to cascade DFs for longer filter lengths.
TCCO	9	0	The TCCO three-state output determines the number system representation of the coefficients output on COUTO-7. It tracks the TCCI signal to this same DF. It should be tied to the TCCI input of the next DF in a cascade of DFs for increased filter lengths. This signal is enabled by COENB low.

Pin Descriptions

SYMBOL	PIN NUMBER	TYPE	NAME FUNCTION
$\overline{\text { COENB }}$	8	1	A low on the COENB input enables the COUTO-7 and the TCCO output. A high on this input places all these outputs in their high impedance state.
DCMO-1	20-21	I	These two inputs determine the use of the internal decimation registers as follows: The coefficients pass from cell to cell at a rate determined by the number of decimation registers used. When no decimation registers are used, coefficients move from cell to cell on each clock. When one decimation register is used, coefficients move from cell to cell on every other clock, etc. These signals are latched and delayed by one clock internal to the DF.
SUMO-25	$\begin{aligned} & 25,26, \\ & 28-51 \end{aligned}$	0	These 26 three-state outputs are used to output the results of the internal filter cell computations. Individual filter cell results or the result of the shift-and-add output stage can be output. If an individual filter cell result is to be output, the ADRO- 1 signals select the filter cell result. The SHADD signal determines whether the selected filter cell result or the output stage adder result is output. The signals SENBH and $\overline{\text { SENBL }}$ enable the most significant and least significant bits of the SUMO-25 result, respectively. Both SENBH and SENBL may be enabled simultaneously if the system has a 26 bit or larger bus. However, individual enables are provided to facilitate use with a 16 bit bus.
$\overline{\text { SENBH }}$	24	1	A low on this input enables result bits SUM16-25. A high on this input places these bits in their high impedance state.
$\overline{\text { SENBL }}$	52	I	A low on this input enables result bits SUMO-15. A high on this input places these bits on their high impedance state.
ADRO-1	22, 23	1	These two inputs select the one cell whose accumulator will be read through the output bus (SUMO-25) or added to the output stage accumulator. They also determine which accumulator will be cleared when ERASE is low. For selection of which accumulator to read through the output bus (SUMO-25) or which to add of the output stage accumulator, these inputs are latched in the DF and delayted by one clock internal to the device. If the ADRO-1 lines remain at the same address for more than one clock, the output at SUMO-25 will not change to reflect any subsequent accumulator updates in the addressed cell. Only the result available during the first clock, when ADRO-1 selects the cell, will be output. This does not hinder normal operation since the ADRO-1 lines are changed sequentially. This feature facilitates the interface with slow memories where the output is required to be fixed for more than one clock.
SHADD	18	1	The SHADD input controls the activation of the shift-and-add operation in the output stage. This signal is latched in the DF and delayed by one clock internal to the device. A detailed explanation is given in the DF Output Stage section.
$\overline{\text { RESET }}$	6	1	A low on this input synchronously clears all the internal registers, except the cell accumulators. It can be used with ERASE to also clear all the accumulators simultaneously. This signal is latched in the DF and delayed by one clock internal to the DF.
$\overline{\text { ERASE }}$	7	1	A low on this input synchronously clears the cell accumulator selected by the ADRO-1 signals. If RESET is also low simultaneously, all cell accumulators are cleared.

Functional Description

The Digital Filter (DF) is composed of four filter cells cascaded together and an output stage for combining or selecting filter cell outputs (see Block Diagram). Each filter cell contains a multiplier-accumulator and several registers (Figure 1). Each 8 bit coefficient is multiplied by a 8 bit data sample, with the result added to the 26 bit accumulator contents. The coefficient output of each cell is cascaded to the coefficient input of the next cell to its right.

DF Filter Cell

An 8 bit coefficient (CINO-7, TCCI) enters each cell through the C register on the left and exits the cell on the right as signals COUTO-7 and TCCO. The coefficients may move directly from the C register to the output, exiting the cell on the clock following its entrance. When decimation is selected the coefficient exit is delayed by 1,2 or 3 clocks by passing through one or more decimation registers (D1, D2 or D3).

The combination of D registers through which the coefficient passes is determined by the state of DCMO and DCM1. The output signals (COUTO-7, TCCO) are connected to the CINO-7 and TCCI of the next cell to its right. The COENB input signal enables the COUTO-7 and TCCO outputs of the right-most cell to the COUTO-7 and TCCO pins of the DF.
The C and D registers are enabled for loading by CIENB. Loading is synchronous with CLK when CIENB is low. Note that CIENB is latched internally. It enables the register for loading after the next CLK following the onset of CIENB low. Actual loading occurs on the second CLK following the onset of CIENB low. Therefore, CIENB must be low during the clock cycle immediately preceding presentation of the coefficient on the CINO-7 inputs. In most basic FIR operations, CIENB will be low throughout the process, so this latching and delay sequence is only important during the initialization phase. When CIENB is high, the coefficients are frozen.

These registers are cleared synchronously under control of $\overline{R E S E T}$, which is latched and delayed exactly like CIENB.
The output of the C register is one input of the multiplier.
The other input of the multiplier comes from the output of the X register. This register is loaded with a data sample from the DF input signals. DINO-7 and TCS discussed above. The X register is enabled for loading by DIENB. Loading is synchronous with CLK when DIENB is low. Note that DIENB is latched internally. It enables the register for loading after the next CLK following the onset of DIENB low. Therefore, $\overline{\text { DIENB }}$ must be low during the clock cycle immediately preceding presentation of the sample on the DINO-7 inputs. In most basic FIR operations, $\overline{\text { DIENB }}$ will be low throughout the process, so this latching and delay sequence is only important during the initialization phase. When DIENB is high, the X register is loaded with all zeros.

The multiplier is pipelined and is modeled as a multiplier core followed by two pipeline registers, MREGO and MREG1. The multiplier output is sign extended and input as one operand of the 26 bit adder. The other adder operand is the output of the 26 bit accumulator. The adder output
is loaded synchronously into both the accumulator and the TREG.

The TREG loading is disabled by the cell select signal, Celln, where n is the cell number. The cell select is decoded from the ADRO-1 signals to generate the TREG load enable. The cell select is inverted and applied as the load enable to the TREG. Operation is such that the TREG is loaded whenever the cell is not selected. Therefore, TREG is loaded every other clock except the clock following cell selection. The purpose of the TREG is to hold the result of a sum-ofproducts calculation during the clock when the accumulator is cleared to prepare for the next sum-of-products calculation. This allows continuous accumulation without wasting clocks.

The accumulator is loaded with the adder output every clock unless it is cleared. It is cleared synchronously in two ways. When $\overline{\text { RESET }}$ and ERASE are both low, the accumulator is cleared along with all other registers in the DF. Since both ERASE and RESET are latched and delayed one clock internally, clearing occurs on the second CLK following the onset of both ERASE and RESET low.

The second accumulator clearing mechanism clears a single accumulator in a selected cell. The cell select signal, Celln, decoded from ADRO-1 and ERASE signal, Celln enable clearing of the accumulator on the next CLK.
The ERASE and RESET signals clear the DF internal registers and states as follows:

$\overline{\text { ERASE }}$	$\overline{\text { RESET }}$	CLEARING EFFECT
1	1	No clearing occurs, internal state remains same.
1	0	$\overline{\text { RESET only active, all registers except }}$ accumulators are cleared, including the internal pipeline registers.
0	1	$\overline{\text { ERASE }}$ only active, the accumulator whose address is given by the ADRO-1 inputs is cleared.
0	0	Both $\overline{\text { RESET and } \overline{\text { ERASE }} \text { active, all }}$ accumulators as well as all other reg- isters are cleared.

The DF Output Stage

The output stage consists of a 26 bit adder, 26 bit register, feedback multiplexer from the register to the adder, an output multiplexer and a 26 bit three-state driver stage (Figure 2).
The 26 bit output adder can add any filter cell accumulator result to the 18 most significant bits of the outupt buffer. This operation takes place in one clock period. The eight LSBs are lost. The filter cell accumulator is selected by the ADRO-1 inputs.
The 18 MSBs of the output buffer actually pass through the zero mux on their way to the output adder input. The zero mux is controlled by the SHADD input signal and selects either the 18 MSBs of the output buffer or all zeros for the adder input. A low on the SHADD input selects zero. A high on the SHADD input selects the output buffer MSBs, thus activating the shift-and-add operation. SHADD signal is latched and delayed by one clock internally.

FIGURE 1. HSP43481 FILTER CELL

FIGURE 2. HSP43481 OUTPUT STAGE

The 26 Least Significant Bits (LSBs) from either a cell accumulator or the output buffer are output on the SUMO-25 bus. The output mux determines whether the cell accumulator selected by ADRO-1 or the output buffer is output to the bus. The mux is controlled by the SHADD input signal. Control is based on the state of the SHADD during two successive clocks; in other words, the output mux selection contains memory. If SHADD is low during a clock cycle and was low during the previous clock, the output mux selects the contents of the filter cell accumulator addressed by ADRO-1. Otherwise the output mux selects the contents of the output buffer.

If the ADRO-1 lines remain at the same address for more than one clock, the output at SUMO-25 will not change to reflect any subsequent accumulator updates in the addressed cell. Only the result available during the first clock when ADRO-1 selects the cell will be output. This does not hinder normal FIR operations since the ADRO-1
lines are changed sequentially. This feature facilitates the interface wtith slow memories where the output is required to be fixed for more than one clock.

The SUMO-25 output bus is controlled by the $\overline{\text { SENBH }}$ and $\overline{\text { SENBL }}$ signals. A low on SENBL enables bits SUMO-15. A low on SENBH enables bits SUM16-25. Thus all 26 bits can be output simultaneously if the external system has a 26 bit or larger bus. If the external system bus is only 16 bits, the bits can be enabled in two groups of 16 and 9 bits (sign extended).

DF Arithmetic

Both data samples and coefficients can be represented as either unsigned or two's complement numbers. The TCS and TCCI input signals determine the type of arithmetic representation. Internally all values are represented by a 9 bit two's complement number. The value of the additional ninth bit depends on arithmentic representation selected. For two's complement arithmetic, the sign is extended into the ninth bit. For unsigned arithmetic, bit 9 is 0.

The multiplier output is 18 bits and the accumulator is 26 bits. The accumulator width determines the maximum possible number of terms in the sum-of-products without overflow. The maximum number of terms depends also on the number system and the distribution of the coefficient and data values. As a worst case assume the coefficients and data samples are always at their absolute maximum values.

Then the maximum numbers of terms in the sum products are:

NUMBER SYSTEM	MAX \# OF TERMS
Two unsigned vectors	1032
Two two's complement vectors:	
- Two positive vectors	2080
- Two negative vectors	2047
- One positive and one negative vector	2064
One unsigned and one two's complement	
vector:	1036
- Positive two's complement vector	1028

For practical FIR filters, the coefficients are never all near maximum value, so even larger vectors are possible in practice.

Basic FIR Operation

A simple 30 MHz 4 tap filter example serves to illustrate more clearly the operation of the DF. Table 1 shows the results of the multiply accumulate in each cell after each clock. The coefficient sequence, Cn, enters the DF on the left and moves from left to right through the cells. The data sample sequence, Xn , enters the DF from the top, with each cell receiving the same sample simultaneously. Each cell
accumulates the sum-of-products for one output point. Four sums-of-products are calculated simultaneously, but staggered in time so that a new output is available every system clock.
Detailed operation of the DF to perform a basic 4 tap, 8 bit coefficient, 8 bit data, 30 MHz FIR filter is best understood by observing the schematic (Figure 3) and timing diagram

TABLE 1. $25 \mathrm{MHz}, 4$ TAP FIR FILTER SEQUENCE

CLK	CELLO	CELL 1	CELL 2	CELL 3	SUM/CLR
0	$C_{3} \times{ }_{0}$	0	0	0	-
1	$+\mathrm{C}_{2} \times \mathrm{X}_{1}$	$\therefore C_{3} \times x_{1}$	0	0	-
2	$+\mathrm{C}_{1} \times \mathrm{X}_{2}$	+ $\mathrm{C}_{2} \times \mathrm{X}_{2}$	$\mathrm{C}_{3} \times \mathrm{X}_{2}$	0	-
3	$+\mathrm{C}_{0} \times \mathrm{X}_{3}$	$+\mathrm{C}_{1} \times \mathrm{X}_{3}$	$+\mathrm{C}_{2} \times \mathrm{X}_{3}$	$\mathrm{C}_{3} \times \mathrm{X}_{3}$	Cell $\mathrm{O}\left(\mathrm{Y}_{3}\right)$
4	$\mathrm{C}_{3} \times \mathrm{X}_{4}$	$+\mathrm{C}_{0} \times \mathrm{X}_{4}$	$+C_{1} \times{ }_{4}$	$+\mathrm{C}_{2} \times \mathrm{X}_{4}$	Cell $1\left(\mathrm{Y}_{4}\right)$
5	$+\mathrm{C}_{2} \times \mathrm{X}_{5}$	$\mathrm{C}_{3} \times{ }_{5}$	$+C_{0} \times{ }_{5}$	$+\mathrm{C}_{1} \times \mathrm{X}_{5}$	Cell $2\left(Y_{5}\right)$
6	$+C_{1} \times x_{6}$	$+\mathrm{C}_{2} \times \mathrm{X}_{6}$	$\mathrm{C}_{3} \times \mathrm{X}_{6}$	$+C_{0} \times x_{6}$	Cell $3\left(\gamma_{6}\right)$
7	$+\mathrm{C}_{0} \times \mathrm{X}_{7}$	+ $+\mathrm{C}_{1} \times \mathrm{X}_{7}$	$+\mathrm{C}_{2} \times \mathrm{X}_{7}$	$\mathrm{C}_{3} \times \mathrm{X}_{7}$	Cell $\mathrm{O}\left(\mathrm{Y}_{7}\right)$

FIGURE 3. 30 MHz , 4 TAP FIR FILTER APPLICATION SCHEMATIC
(Figure 4). The internal pipeline length of the DF is four (4) clock cycles, corresponding to the register levels CREG (or XREG), MREGO, MREG1, and TREG (Figures 1 and 2). Therefore, the delay from presentation of data and coefficients at the DINO-7 and CINO-7 inputs to a sum appearing at the SUMO-25 output is:
$\mathrm{k}+\mathrm{Td}$ where
$k=$ filter length
$T d=4$, the internal pipeline delay of DF

After the pipeline has filled, a new output sample is available every clock. The delay to last sample output from last sample input is Td.

The output sums, $\mathrm{Y}(\mathrm{n})$, shown in the timing diagram are derived from the sum-of-products equation:
$Y(n)=C(0) \times X(n)+C(1) \times X(n-1)+C(2) \times X(n-2)+C(3) \times X(n-3)$

FIGURE 4. 30 MHz 4 TAP FILTER TIMING

FIGURE 5. 30 MHz 8 TAP FILTER USING TWO CASCADED HSP43481s

Extended FIR Filter Length

Filter lengths greater than four taps can be created by either cascading together multiple DFs or "reusing" a single DF. Using multiple devices, an FIR filter of over 1024 taps can be constructed to operate at a 30 MHz sample rate. Using a single DF clocked at 30 MHz , an FIR filter of over 1024 taps can be constructed to operate at less than a 30 MHz sample rate. Combinations of these two techniques are also possible.

Cascade Configuration

To design a filter length $L>4$, L/4 DFs are cascaded by connecting the COUTO-7 outputs of the (i)th DF to the CINO-7 inputs of the $(i+1)$ th DF. The DINO-7 inputs and SUMO-25 outputs of all the DFs are siso tied together. A specific example of two cascaded DFs illustrates the technique (Figure 5). Timing (Figure 6) is similar to the simple 4 tap FIR, except the ERASE and SENBL/SENBH signals must be enabled independently of the two DFs in order to clear the correct accumuiators and enable the SUMO-25 output signals at the proper times.

Single DF Configuration

Using a DF, a filter of length $L>4$ can be constructed by processing in $\mathrm{L} / 4$ passes as illustrated in Table 2 for an 8 tap FIR, Each pass is composed of $T p=7+L$ cycles and computes four output samples. In pass i, the samples with indices ix 4 to $\mathrm{i} \times 4+(L+2)$ enter the DINO-7 inputs. The coefficients $\mathrm{C}_{0}-\mathrm{C}_{\mathrm{L}-1}$ enter the CINO-7 inputs, followed by three zeros. As these zeros are entered, the result samples are output and the accumulators reset. Initial filling of the pipeline is not shown in this sequence table. Filter outputs can be put through a FIFO to even out the sample rate.

Extended Coefficient And Data Sample Word Size

The sample and coefficient word size can be extended by utilizing several DFs in parallel to get the maximum sample rate or a single DF with resulting lower sample rates. The technique is to compute partial products of 8×8 and combine these partial products by shifting and adding to obtain the final result. The shifting and adding can be accomplished with external adders (for full speed) or with the DFs shift-and-add mechanism contained in its output stage (at reduced speed).

TABLE 2. 8 TAP FIR FILTER SEQUENCE USING SINGLE DF

CLK	CELL 0	CELL 1	CELL 2	CELL 3	SUM/CLR
0	$\mathrm{C}_{7} \times \mathrm{X}_{0}$	0	0	0	-
1	$+C_{6} \times{ }_{1}$	$\mathrm{C}_{7} \times \mathrm{X}_{1}$	0	0	-
2	$+\mathrm{C}_{5} \times \mathrm{X}_{2}$	$+\mathrm{C}_{6} \times \mathrm{X}_{2}$	$\mathrm{C}_{7} \times \mathrm{X}_{2}$	0	. -
3	$+\mathrm{C}_{4} \times \mathrm{X}_{3}$	$+\mathrm{C}_{5} \times \mathrm{X}_{3}$	$+\mathrm{C}_{6} \times \mathrm{X}_{3}$	$\mathrm{C}_{7} \times \mathrm{X}_{3}$	-
4	$+\mathrm{C}_{3} \times \mathrm{X}_{4}$	$+\mathrm{C}_{4} \times \mathrm{X}_{4}$	$+\mathrm{C}_{5} \times \mathrm{X}_{4}$	$+\mathrm{C}_{6} \times \mathrm{X}_{4}$	-
5	$+\mathrm{C}_{2} \times \mathrm{X}_{5}$	$+\mathrm{C}_{3} \times \mathrm{X}_{5}$	$+\mathrm{C}_{4} \times \mathrm{X}_{5}$	$+\mathrm{C}_{5} \times \mathrm{X}_{5}$	-
6	$+C_{1} \times{ }^{6}$	$+\mathrm{C}_{2} \times \mathrm{X}_{6}$	$+C_{3} \times x_{6}$	$+\mathrm{C}_{4} \times \mathrm{X}_{6}$	-
7	$+\mathrm{C}_{0} \times \mathrm{X}_{7}$	$+\mathrm{C}_{1} \times \mathrm{X}_{7}$	$+C_{2} \times{ }^{1}$	$+\mathrm{C}_{3} \times \mathrm{X}_{7}$	Cell $\mathrm{O}\left(Y_{7}\right)$
8	0	$+\mathrm{C}_{0} \times \mathrm{X}_{8}$	$+\mathrm{C}_{1} \times \mathrm{X}_{8}$	$+\mathrm{C}_{2} \times \mathrm{X}_{8}$	Cell $1\left(\mathrm{Y}_{8}\right)$
9	0	0	$+\mathrm{C}_{0} \times \mathrm{X}_{9}$	$+\mathrm{C}_{1} \times \mathrm{X}_{9}$	Cell $2\left(\mathrm{Y}_{9}\right)$
10	0	0	0	$+\mathrm{C}_{0} \times \mathrm{X}_{10}$	Cell $3\left(Y_{10}\right)$
11	$\mathrm{C}_{7} \times \mathrm{X}_{4}$	0	0	0	- -
12	$+\mathrm{C}_{6} \times \mathrm{X}_{5}$	$\mathrm{C}_{7} \times \mathrm{X}_{5}$	0	0	-
13	$+\mathrm{C}_{5} \times \mathrm{X}_{6}$	$+\mathrm{C}_{6} \times \mathrm{X}_{6}$	$\mathrm{C}_{7} \times \mathrm{X}_{6}$	0	-
14	$+\mathrm{C}_{4} \times \mathrm{X}_{7}$	$+\mathrm{C}_{5} \times \mathrm{X}_{7}$	$+\mathrm{C}_{6} \times \mathrm{x}_{7}$	$\mathrm{C}_{7} \times \mathrm{X}_{7}$	-
15	$+C_{3} \times{ }_{8}$	$+\mathrm{C}_{4} \times \mathrm{X}_{8}$	$+\mathrm{C}_{5} \times \mathrm{X}_{8}$	$+\mathrm{C}_{6} \times \mathrm{X}_{8}$	-
16	$+\mathrm{C}_{2} \times \mathrm{X}_{9}$	$+\mathrm{C}_{3} \times \mathrm{X}_{9}$	$+\mathrm{C}_{4} \times \mathrm{X}_{9}$	$+\mathrm{C}_{5} \times \mathrm{X}_{9}$	-
17	$+C_{1} \times{ }_{10}$	$+\mathrm{C}_{2} \times \mathrm{X}_{10}$	$+C_{3} \times{ }^{10}$	$+C_{4} \times{ }_{10}$	-
18	$+c_{0 \times 11}$	$+\mathrm{C}_{1} \times \mathrm{X}_{11}$	$+C_{2} \times{ }_{111}$	$+C_{3} \times{ }_{11}$	Cell O $\left(Y_{11}\right)$
19	0	$+\mathrm{C}_{0} \times \mathrm{X}_{12}$	$+C_{1} \times{ }_{12}$	$+\mathrm{C}_{2} \times \mathrm{X}_{12}$	Cell $1\left(Y_{12}\right)$
20	0	0	$+\mathrm{C}_{0} \times{ }_{13}$	$+\mathrm{C}_{1} \times \mathrm{X}_{13}$	Cell $2\left(Y_{13}\right)$
21	0	0	0	$+\mathrm{C}_{0} \times \mathrm{X}_{14}$	Cell $3\left(Y_{14}\right)$

FIGURE 6. 30 MHz 8 TAP FIR FILTER TIMING

Decimation/Resampling

The HSP43481 provides a mechanism for decimating by factors of 2,3 or 4 . From the DF filter cell block diagram (Figure 1), note the three D registers and two multiplexers in the coefficient pass through the cell. These allow the coefficients to be delayed by 1,2 or 3 clocks through the cell. The
sequence table (Table 3) for a decimate-by-two filter illustrates the technique.
Detailed timing for a 30 MHz input sample rate, 15 MHz output sample rate (i.e., decimate-by-two), 8 tap FIR filter, including pipelining, is shown in Figure 7.

TABLE 3. 8 TAP DECIMATE-BY-TWO FIR FILTER SEQUENCE, $30 \mathrm{MHz} \operatorname{IN}, 15 \mathrm{MHz}$ OUT

CLK	CELL 0	CELL 1	CELL 2	CELL 3	SUM/CLR
0	$\mathrm{C}_{7} \times \mathrm{X}_{0}$	0			-
1	$+\mathrm{C}_{6} \times \mathrm{X}_{1}$	0			-
2	$+C_{5} \times{ }^{2}$	$\mathrm{C}_{7} \times \mathrm{X}_{2}$			-
3	$+\mathrm{C}_{4} \times \mathrm{X}_{3}$	$+\mathrm{C}_{6} \times \mathrm{X}_{3}$			-
4	$+C_{3} \times \mathrm{X}_{4}$	$+\mathrm{C}_{5} \times \mathrm{X}_{4}$	$\mathrm{C}_{7} \times \mathrm{X}_{4}$		- .
5	$+\mathrm{C}_{2} \times \mathrm{X}_{5}$	$+C_{4} \times \mathrm{X}_{5}$	$+C_{6} \times x_{5}$		-
6	$+\mathrm{C}_{1} \times \mathrm{X}_{6}$	$+\mathrm{C}_{3} \times \mathrm{X}_{6}$	$+\mathrm{C}_{5} \times \mathrm{X}_{6}$	$+C_{7} \times X_{6}$	-
7	$+\mathrm{C}_{0} \times \mathrm{X}_{7}$	$+\mathrm{C}_{2} \times \mathrm{X}_{7}$	$+\mathrm{C}_{4} \times \mathrm{X}_{7}$	$+\mathrm{C}_{6} \times \mathrm{X}_{7}$	Cell $0\left(Y_{7}\right)$
8	$\mathrm{C}_{7} \times \mathrm{X}_{8}$	$+\mathrm{C}_{1} \times \mathrm{X}_{8}$	$+\mathrm{C}_{3} \times \mathrm{X}_{8}$	$+\mathrm{C}_{5} \times \mathrm{X}_{8}$	Cell $\mathrm{O}\left(\mathrm{Y}_{7}\right)$
9	$+\mathrm{C}_{6} \times \mathrm{X}_{9}$	$+\mathrm{Co}_{0 \times} \times$	$+\mathrm{C}_{2} \times \mathrm{X}_{9}$	$+\mathrm{C}_{4} \times \mathrm{X}_{9}$	Cell $1(\mathrm{Yg})$
10	$+\mathrm{C}_{5} \times \mathrm{X}_{10}$	$\mathrm{C}_{7} \times \mathrm{X}_{10}$	$+\mathrm{C}_{1} \times \mathrm{X}_{10}$	$+\mathrm{C}_{3} \times \mathrm{X}_{10}$	Cell $1\left(\mathrm{Y}_{9}\right)$
11	$+\mathrm{C}_{4} \times \mathrm{X}_{11}$	$+\mathrm{C}_{6} \times \mathrm{X}_{11}$	$+\mathrm{C}_{0} \times \mathrm{X}_{11}$	$+\mathrm{C}_{2} \times \mathrm{X}_{11}$	Cell $2\left(Y_{11}\right)$
12	$+\mathrm{C}_{3} \times \mathrm{X}_{12}$	$+\mathrm{C}_{5} \times \mathrm{X}_{12}$	$\mathrm{C}_{7} \times \mathrm{X}_{12}$	$+\mathrm{C}_{1} \times \mathrm{X}_{12}$	Cell $2\left(Y_{11}\right)$
13	$+\mathrm{C}_{2} \times \mathrm{X}_{13}$	$+\mathrm{C}_{4} \times \mathrm{X}_{13}$	$+\mathrm{C}_{6} \times \mathrm{X}_{13}$	$+\mathrm{C}_{0} \times \mathrm{X}_{13}$	Cell $3\left(Y_{13}\right)$
14	$+\mathrm{C}_{1} \times \mathrm{X}_{14}$	$+\mathrm{C}_{3} \times \mathrm{X}_{14}$	$+\mathrm{C}_{5} \times \mathrm{X}_{14}$	$\mathrm{C}_{7} \times \mathrm{X}_{14}$	Cell $3\left(Y_{13}\right)$
15	$+\mathrm{C}_{0} \times \mathrm{X}_{15}$	$+\mathrm{C}_{2} \times \mathrm{X}_{15}$	+ $\mathrm{C}_{4} \times \mathrm{X}_{15}$	$+\mathrm{C}_{6} \times \mathrm{X}_{15}$	Cell $\mathrm{O}\left(\mathrm{Y}_{15}\right)$

FIGURE 7. 8 TAP DECIMATE-BY-TWO FIR FILTER TIMING, $30 \mathrm{MHz} \operatorname{IN}, 15 \mathrm{MHz}$ OUT

Absolute Maximum Ratings

```
Supply Voltage\(+8.0 \mathrm{~V}\)
```

Input, Output Voltage GND -0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$

```Storage Temperature\(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\)
ESD
Maximum Package Power Dissipation at 700}\textrm{C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.9W (PLCC), 2.6W (PGA)
0jc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15.0W/0C (PLCC), 9.92W/0C (PGA)
0ja
43.0W/}\mp@subsup{}{}{\circ}\textrm{C}(PLCC),38.44W/0C (PGA
Gate Count
9371
Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150年年 (PLCC), 1750
Lead Temperature (Soldering 10s)
300%
CAUTION: Stresses above those listed in the "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
```


Operating Conditions

```
Operating Voltage Range
\(5 \mathrm{~V} \pm 5 \%\)
Operating Temperature Ranges \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\)
```


D.C. Electrical Specifications

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
ICCOP	Power Supply Current	-	110	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ CLK Frequency 20 MHz Note 1, Note 3
ICCsB	Standby Power Supply Current	-	500	$\mu \mathrm{A}$	$\mathrm{V}_{\text {CC }}=$ Max, Note 3
1	Input Leakage Current	-10	10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=$ Max, Input $=0 \mathrm{~V}$ or $\mathrm{V}_{\text {CC }}$
10	Output Leakage Current	-10	10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=$ Max, Input $=0 \mathrm{~V}$ or V_{CC}
V_{IH}	Logical One Input Voltage	2.0	-	V	$\mathrm{V}_{\text {CC }}=$ Max
V_{IL}	Logical Zero Input Voltage		0.8	v	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}$
V_{OH}	Logical One	2.6	-	V	$\mathrm{I}^{\mathrm{OH}}=-400 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$
V_{OL}	Logical Zero Output Voltage	-	0.4	V	$\mathrm{I}^{\mathrm{OL}}=2 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$
$\mathrm{V}_{\text {IHC }}$	Clock Input High	$\mathrm{V}_{\text {cc }}-0.8$	-	V	$\mathrm{V}_{\mathrm{CC}}=$ Max
$\mathrm{V}_{\text {ILC }}$	Clock Input Low	-	0.8	V	$\mathrm{V}_{\mathrm{CC}}=$ Min
$\mathrm{CIN}^{\text {N }}$	Input Capacitance $\begin{array}{r}\text { PLCC } \\ \\ \text { PGA }\end{array}$	-	$\begin{aligned} & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$	CLK Frequency 1 MHz All Measurements
COUT	Output Capacitance PLCC		$\begin{aligned} & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & \mathrm{pF} \\ & \mathrm{pF} \end{aligned}$	Referenced to GND $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ Note 2

NOTES: 1. Operating supply current is proportional to frequency. Typical rating is $5.5 \mathrm{~mA} / \mathrm{MHz}$.
2. Controlled via design or process parameters and not directly tested. Characterized upon initial design and after major process and/or design changes.
3. Output load per test circuit and $C_{L}=40 \mathrm{pF}$.
A.C. Electrical Specifications Characterized Over Commercial Temperature Range $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	-20 (20MHz)		-25 (25.6MHz)		-30 (30MHz)		UNITS	TEST CONDITIONS
		MIN	MAX	MIN	MAX	MIN	MAX		
TCP	Clock Period	50	-	39	-	33	-	ns	
TCL	Clock Low	20	-	16	-	13	-	ns	
T_{CH}	Clock High	20	-	16	-	13	-	ns	
TIS	Input Setup	16	-	14	-	13	-	ns	
TIH	Input Hold	0	-	0	-	0	-	ns	
TODC	CLK to Coefficient Output Delay	-	26	-	22	-	19	ns	
Toed	Output Enable Delay	-	20	-	15	-	15	ns	
TODD	Output Disable Delay	-	20	-	15	-	15	ns	Note 1
TODS	CLK to SUM Output Delay	-	30	-	26	-	21	ns	
TOR	Output Rise	-	6	-	6	-	6	ns	Note 1
TOF	Output Fall	-	6	-	6	-	6	ns	Note 1

NOTE: 1. Controlled by design or process parameters and not directly tested. Characterized upon initial design and after major process and/or design changes.

Test Load Circuit

Switch S1 Open for ICCSB and ICCOP Tests

Waveforms

CLOCK AC PARAMETERS

* Input includes: DINO-7, CINO-7, DIENB, CIENB, ERASE, RESET, DCMO-1, ADRO-1, TCS, TCCI, SHADD

INPUT SETUP AND HOLD

A.C. Testing: Inputs are driven at 3.0 V for a Logic " 1 " and 0 V for a Logic " 0 ". input and output timing measurements are made at 1.5 V for both a Logic "1" and " 0 ". Inputs are driven at $1 \mathrm{~V} / \mathrm{ns}$. CLK is driven at $\mathrm{V}_{\mathrm{CC}}-0.4$ and 0.0 V and measured at 2.5 V .
A.C. TESTING INPUT, OUTPUT WAVEFORM

HSP43481/883

Features

- This Circuit is Processed in accordance to Mil-Std-883C and is Fully Conformant Under the Provisions of Paragraph 1.2.1
- 0 to 25.6MHz Sample Rate
- Four Filter Cells
- 8 Bit Coefficients and Signal Data
- Low Power CMOS Operation
- ICCSB $=500 \mu \mathrm{~A}$ Maximum
- $I_{C C O P}=110 \mu \mathrm{~A}$ Maximum @ 20 MHz
- 26 Bit Accumulator Per Stage
- Filter Lengths Up To 1032 Taps
- Shift-And-Add Output Stage for Combining Filter Outputs
- Expandable Coefficient Size, Data Size and Filter Length
- Decimation by 2, 3 or 4

Applications

- 1-D and 2-D FIR Filters
- Radar/Sonar
- Digital Video and Audio
- Adaptive Filters
- Echo Cancellation
- Correlation/Convolution
- Complex Multiply-Add
- Butterfly Computation
- Matrix Multiplication
- Sample Rate Converters

Description

The HSP43481/883 is a video-speed Digital Filter (DF) designed to efficiently implement vector operations such as FIR digital filters. It is comprised of four filter cells cascaded internally and a shift-andadd output stage, all in a single integrated circuit. Each filter cell contains an 8×8 multiplier, three decimation registers and a 26 bit accumulator which can add the contents of any filter cell accumulator to the output stage accumulator shifted right by eight bits. The HSP43481/883 has a maximum sample rate of 25.6 MHz . The effective multiply-accumulate (MAC) rate is 102 MHz .

The HSP43481/883 can be configured to process expanded coefficient and word sizes. Multiple devices can be cascaded for larger filter lengths without degrading the sample rate or a single device can process larger filter lengths at less than 25.6 MHz with multiple passes. The architecture permits processing filter lengths of over 1000 taps with the guarantee of no overflows. In practice, most filter coefficients are less than 1.0, making even larger filter lengths possible. The HSP43481/883 provides for unsigned or two's complement arithmetic, independently selectable for coefficients and signal data.

Each DF filter cell contains three resampling or decimation registers which permit output sample rate reduction at rates of $1 / 2,1 / 3$ or $1 / 4$ the input sample rate. These registers also provide the capability to perform 2-D operations such as NxN spatial correlations/convolutions for image processing applications.

Block Diagram

\begin{abstract}
Absolute Maximum Ratings
Supply Voltage \qquad
Stora
.... $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, Ten Seconds) $+300^{\circ} \mathrm{C}$
ESD Classification
Class 1
CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Reliability Information

Operating Conditions

Operating Voltage Range . +4.5 V to +5.5 V
Operating Temperature Range $. \ldots \ldots \ldots \ldots5^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
TABLE 1. HSP43481/883 D.C. ELECTRICAL PERFORMANCE CHARACTERISTICS
Devices Guaranteed and 100\% Tested

PARAMETER	SYMBOL	CONDITIONS	GROUP A SUBGROUPS	TEMPERATURE	LIMITS		UNITS
					MIN	MAX	
Logical One Input Voltage	V_{IH}	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	1, 2, 3	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	2.2	-	V
Logical Zero Input Voltage	V_{IL}	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	1, 2, 3	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	-	0.8	V
Output HIGH Voltage	V_{OH}	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}(\text { Note } 1) \end{aligned}$	1, 2, 3	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	2.6	-	v
Output LOW Voltage	V_{OL}	$\begin{aligned} & \mathrm{l}_{\mathrm{OL}}=+2.0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}(\text { Note } 1) \end{aligned}$	1, 2, 3	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	-	0.4	V
Input Leakage Current	1	$\begin{aligned} & V_{I N}=V_{C C} \text { or } G N D \\ & V_{C C}=5.5 \mathrm{~V} \end{aligned}$	1,2,3	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	-10	+10	$\mu \mathrm{A}$
Output Leakage Current	10	$\begin{aligned} & \mathrm{V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \\ & \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V} \end{aligned}$	1,2,3	$-55^{\circ} \mathrm{C} \leq \mathrm{T} \mathrm{A} \leq+125^{\circ} \mathrm{C}$	-10	+10	$\mu \mathrm{A}$
Clock Input High	VIHC	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	1, 2, 3	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	$V_{\text {cc }}-0.8$	-	V
Clock Input Low	VILC	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	1,2,3	$-55^{\circ} \mathrm{C} \leq \mathrm{T} \mathrm{S} \leq+125^{\circ} \mathrm{C}$	-	0.8	V
Standby Power Supply Current	${ }^{\text {I CCSB }}$	$\begin{aligned} & V_{I N}=V_{C C} \text { or } G N D \\ & V_{C C}=5.5 \mathrm{~V}, \\ & \text { Outputs Open } \\ & \hline \end{aligned}$	1, 2, 3	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	-	500	$\mu \mathrm{A}$
Operating Power Supply Current	ICCOP	$\begin{aligned} & \mathrm{f}=20.0 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V} \text { (Note 2) } \end{aligned}$	1, 2, 3	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	-	110.0	mA
Functional Test	FT	(Note 3)	7,8	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	-	-	

NOTES: 1. Interchanging of force and sense conditions is permitted.

[^1]TABLE 2. HSP43481/883 A.C. ELECTRICAL PERFORMANCE CHARACTERISTICS
Device Guaranteed and 100\% Tested

PARAMETER	SYMBOL	CONDITIONS	GROUP A SUBGROUPS	TEMPERATURE	-20 (20MHz)		-25 (25.6MHz)		UNITS
					MIN	MAX	MIN	MAX	
Clock Period	TCP	Note 1	9, 10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	50	-	39	-	ns
Clock Low	T_{CL}	Note 1	9, 10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	20	-	16	-	ns
Clock High	T_{CH}	Note 1	9, 10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	20	-	16	-	ns
Input Setup	TIS	Note 1	9, 10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	20	-	17	-	ns
Input Hold	TIH	Note 1	9, 10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T} \mathrm{S} \leq+125^{\circ} \mathrm{C}$	0	-	0	-	ns
CLK to Coefficient Output Delay	TODC	Note 1	9, 10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T}^{\prime} \leq+125^{\circ} \mathrm{C}$	-	24	-	20	ns
Output Enable Delay	ToED	Note 1	9, 10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T}^{\prime} \leq+125^{\circ} \mathrm{C}$	-	20	-	15	ns
CLK to SUM Output Delay	TODS	Note 1	9, 10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T} \mathrm{A} \leq+125^{\circ} \mathrm{C}$	-	31	-	25	ns

NOTE: 1. Loading is as specified in the test load circuit with $C_{L}=40 \mathrm{pF}$.

TABLE 3. HSP43481/883 A.C. ELECTRICAL PERFORMANCE CHARACTERISTICS

PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	-20 (20MHz)		-25 (25.6MHz)		UNITS
					MIN	MAX	MIN	MAX	
Input Capacitance	$\mathrm{CIN}_{\text {N }}$	$\mathrm{V}_{\mathrm{cc}}=\text { Open, } \mathrm{f}=1 \mathrm{MHz}$ All measurements are referenced to device GND.	1	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-	15	-	15	pF
Output Capacitance	COUT		1	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-	15	-	15	pF
Output Disable Delay	TODD		1,2	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	-	20	-	15	ns
Output Rise Time	TOR		1,2	$-55^{\circ} \mathrm{C} \leq T \mathrm{~A} \leq+125^{\circ} \mathrm{C}$	-	7	-	6	ns
Output Fall Time	TOF		1,2	$-55^{\circ} \mathrm{C} \leq \mathrm{T} \mathrm{S} \leq+125^{\circ} \mathrm{C}$	-	7	-	6	ns

NOTES: 1. The parameters listed in Table 3 are controlled via design or process parameters and are not directly tested. These parameters are characterized upon initial design and after major process and/or design changes.
2. Loading is as specified in the test load circuit, $C_{L}=40 \mathrm{pF}$.

TABLE 4. APPLICABLE SUBGROUPS

CONFORMANCE GROUPS	METHOD	SUBGROUPS
Initial Test	$100 \% / 5004$	-
Interim Test	$100 \% / 5004$	-
PDA	100%	1
Final Test	100%	$2,3,8 A, 8 B, 10,11$
Group A	-	$1,2,3,7,8 A, 8 B, 9,10,11$
Groups C \& D	Samples/5005	$1,7,9$

HSP43481/883

Burn-In Circuit

$\begin{aligned} & \text { PGA } \\ & \text { PIN } \end{aligned}$	PIN NAME	BURN-IN SIGNAL	$\begin{aligned} & \text { PGA } \\ & \text { PIN } \end{aligned}$	PIN NAME	BURN-IN SIGNAL	$\begin{aligned} & \text { PGA } \\ & \text { PIN } \end{aligned}$	PIN NAME	BURN-IN SIGNAL	PGA PIN	PIN NAME	BURN-IN SIGNAL
K1	TCCO	$\mathrm{V}_{\mathrm{CC} / 2}$	C2	$\overline{\text { CIENB }}$	F10	B6	SUMO	$\mathrm{v}_{\mathrm{CC} / 2}$	H10	SUM19	$\mathrm{v}_{\mathrm{CC} / 2}$
J1	ERASE	F10	B2	CIN6	F6	A6	SENBL	F10	G10	SUM17	$\mathrm{v}_{\mathrm{CC} / 2}$
H1	RESET	F11	A2	CIN7	F7	L7	CLK	FO	F10	SUM15	$\mathrm{V}_{\mathrm{CC} / 2}$
G1	TCS	F7	L3	COUT5	$\mathrm{v}_{\mathrm{CC} / 2}$	K7	DCM1	F6	E10	VSS	GND
F1	DIN5	F5	K3	COUT6	$\mathrm{v}_{\mathrm{CC} / 2}$	B7	Sum2	$\mathrm{v}_{\mathrm{CC} / 2}$	D10	SUM12	$\mathrm{V}_{\mathrm{CC} / 2}$
E1	DIN3	F3	B3	CIN4	F4	A7	SUM1	$\mathrm{V}_{\mathrm{CC} / 2}$	C10	SUM10 ${ }^{\text {* }}$	$\mathrm{V}_{\mathrm{CC} / 2}$
D1	DIN1	F1	A3	CIN5	F5	L8	ADDR1	F1	B10	SUM8	$\mathrm{v}_{\mathrm{CC} / 2}$
C1	DINO	FO	L4	COUT3	$\mathrm{v}_{\mathrm{CC} / 2}$	K8	DCMO	F5	A10	SUM7	$\mathrm{V}_{\mathrm{CC} / 2}$
B1	TCCI	F8	K4	COUT4	$\mathrm{V}_{\mathrm{CC} / 2}$	B8	Sum4	$\mathrm{v}_{\mathrm{CC} / 2}$	K11	SUM23	$\mathrm{V}_{\mathrm{CC}} / 2$
L2	COUT7	$\mathrm{v}_{\mathrm{CC} / 2}$	B4	CIN2	F2	A8	SUM3	$\mathrm{v}_{\mathrm{CC} / 2}$	J11	SUM22	$\mathrm{v}_{\mathrm{CC} / 2}$
K2	$\overline{\text { COENB }}$	F10	A4	CIN3	F3	L9	ADDRO	FO	H11	SUM20	$\mathrm{V}_{\mathrm{CC} / 2}$
J2	V_{CC}	V_{CC}	L5	COUT1	$\mathrm{V}_{\mathrm{CC}} / 2$	K9	SENBH	F10	G11	SUM18	$\mathrm{v}_{\mathrm{CC} / 2}$
H2	$\overline{\text { DIENB }}$	F10	K5	COUT2	$\mathrm{v}_{\mathrm{CC} / 2}$	B9	SUM6	$\mathrm{v}_{\mathrm{CC} / 2}$	F11	SUM16	$\mathrm{v}_{\mathrm{CC} / 2}$
G2	DIN7	F8	B5	CINO	FO	A9	SUM5	$\mathrm{v}_{\mathrm{CC} / 2}$	E11	SUM14	$\mathrm{v}_{\mathrm{CC} / 2}$
F2	DIN6	F6	A5	CIN1	F1	L10	SUM25	$\mathrm{V}_{\mathrm{CC} / 2}$	D11	SUM13	$\mathrm{v}_{\mathrm{CC} / 2}$
E2	DIN4	F4	L6	COUTO	$\mathrm{v}_{\mathrm{CC} / 2}$	K10	SUM24	$\mathrm{v}_{\mathrm{CC}} / 2$	C11	SUM11	$\mathrm{v}_{\mathrm{CC} / 2}$
D2	DIN2	F2	K6	SHADD	F9	J10	SUM21	$\mathrm{v}_{\mathrm{CC} / 2}$	B11	SUM9	$\mathrm{v}_{\mathrm{CC} / 2}$

NOTES: 1. $\mathrm{V}_{\mathrm{CC}} / 2(2.7 \mathrm{~V} \pm 10 \%)$ used for outputs only.
2. $47 \mathrm{~K} \Omega(\pm 20 \%)$ resistor connected to all pins except $V_{C C}$ and GND.
3. $\mathrm{V}_{\mathrm{CC}}=5.5 \pm 0.5 \mathrm{~V}$.
4. $0.1 \mu \mathrm{~F}$ (min) capacitor between V_{CC} and GND per position.
5. $\mathrm{FO}=100 \mathrm{KHz} \pm 10 \%, F 1=F 0 / 2, F 2=F 1 / 2 \ldots, F 11=F 10 / 2$, 40\% - 60\% Duty Cycle.
6. Input voltage limits: $\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$ max., $\mathrm{V}_{\mathrm{IH}}=4.5 \mathrm{~V} \pm 10 \%$.

Metallization Topology

DIE DIMENSIONS:

$253 \times 230 \times 19 \pm 1$ mils
METALLIZATION:
Type: Si - Al or Si - Al-Cu
Thickness: 8kA
GLASSIVATION:
Type: Nitrox
Thickness: 10k \AA
DIE ATTACH:
Material: Gold/Silicon Eutectic Alloy
WORST CASE CURRENT DENSITY:
$1.2 \times 10^{5} \mathrm{~A} / \mathrm{cm}^{2}$
Metallization Mask Layout
HSP43481/883

Packaging ${ }^{\dagger}$
68 PIN CERAMIC PIN GRID ARRAY

LEAD MATERIAL: Type B
LEAD FINISH: Type C
PACKAGE MATERIAL: Ceramic, $\mathrm{Al}_{2} \mathrm{O}_{3} 90 \%$ PACKAGE SEAL:

Material: Gold/Tin
Temperature: $320^{\circ} \mathrm{C} \pm 10^{\circ} \mathrm{C}$
Method: Furnace Braze

INTERNAL LEAD WIRE:
Material: Aluminum
Diameter: 1.25 Mil
Bonding Method: Ultrasonic Wedge COMPLIANT OUTLINE: 38510 P-AC

ADVANCE INFORMATION

Features

- Two Internally Cascadable 8 Tap FIR Filters
- 10 Bit Data \& Coefficients
- Programmable Decimation to 16
- Programmable Rounding on Output
- Mixed Mode Arithmetic
- Saturation Logic
- 32 Programmable Coefficient Sets
- Up To: 256 FIR Taps, 16×16 2-D Kernels, 10×20 Data and Coefficients
- Standard Microprocessor Interface
- 40MHz Operation
- Available in 84 Pin PGA and PLCC Packages

Applications

- 1-D, 2-D Filtering
- Complex Filtering
- Polyphase Filtering
- Adaptive Filtering

Description

The HSP43168 Dual FIR Filter is a high speed compute engine tailored to exploit the symmetry in FIR coefficients. By pre-adding the data samples common to a particular filter coefficient, two independent 8 -tap FIR cells are implemented using only 4 multipliers per cell. These cells are internally cascadable to provide either a single chip 16-tap FIR filter or an 8-tap asymmetric filter at full speed. In an alternative configuràtion, the Dual can be configured as two independent filters fed by two different data streams. In this configuration, complex filtering and 2-D convolution are made possible.

Decimation of up to 16 is supported by on board decimation registers. These registers allow the user to boost the effective number of filter taps from 2 to 16 times. Further, these registers provide the delay necessary for fractional data rate conversion and 2-D filtering with kernels to 16×16.

The flexibility of the Dual is further enhanced by 32 sets of user programmable coefficients. Each set of 8 coefficients is user selectable. Toggling between coefficient sets further simplifies applications like data rate conversion or adaptive filtering.

The HSP43168 is a low power fully static design implemented in an advanced CMOS process. The configuration of the device is controlled through a standard microprocessor interface. All inputs/outputs, with the exception of clock, are TTL compatible. The Dual is available in 84 pin PGA and PLCC packages.

Block Diagram

TWO DIMENSIONAL FILTERS

PAGE
DATA SHEETS
HSP48908 Two Dimensional Convolver .. 4-3
HSP48908/833
Two Dimensional Convolver
4-19
HSP4890
3×3 Image Filter
4-26

Features

- Single Chip 3x3 Kernel Convolution
- Programmable On-Chip Row Buffers
- DC to 32 MHz Clock Rate
- Cascadable for Larger Kernels and Images
- On-Chip 8-Bit ALU
- Dual Coefficient Mask Registers, Switchable in a Single Clock Cycle
- 8-Bit Signed or Unsigned Input and Coefficient Data
- 20-Bit Extended Precision Output
- Standard $\mu \mathrm{P}$ Interface
- TTL Compatible Inputs/Outputs
- Low Power CMOS
- Available in 84 Pin PGA and PLCC Packages

Applications

- Image Filtering
- Edge Detection
- Adaptive Filtering
- Real Time Video Filters
- Image Warping

Description

The Harris HSP48908 is a high speed Two Dimensional Convolver which provides a single chip implementation of a video data rate 3×3 kernel convolution on two dimensional data. It eliminates the need for external data storage through the use of the on-chip row buffers which are programmable for row lengths up to 1024 pixels.
There are internal register banks for storing two independent 3×3 filter kernels, thus facilitating the implementation of adaptive filters and multiple filter operations on the same data. The pixel data path also includes an on-chip ALU for performing real-time arithmetic and logical pixel point operations.
Data is provided to the HSP48908 in a raster scan noninterlaced fashion, and is internally buffered on images up to 1024 pixels wide for the 3×3 convolution operation. Images with larger rows and convolution with larger kernel sizes can be accommodated by using external row buffers and/or multiple HSP48908s. Coefficient and pixel input data are 8-bit signed or unsigned integers, and the 20 bit convolver output guarantees no overflow for kernel sizes up to 4×4. Larger kernel sizes can be implemented however, since the filter coefficients will normally be less than their maximum 8-bit values.

The HSP48908 is manufactured using an advanced CMOS process, and is a low power fully static design. The configuration of the device is controlled through a standard microprocessor interface and all inputs/outputs are TTL compatible. The 2-D convolver is available in 84 pin PGA and PLCC packages.

Package Pinouts

Block Diagram

Pin Descriptions

NAME	PLCC PIN	TYPE	DESCRIPTION
V_{CC}	21, 42, 63, 84		The +5 V power supply pins. $0.1 \mu \mathrm{~F}$ capacitors between the V_{CC} and GND pins are recommended.
GND	$\begin{gathered} 19,48,54,61 \\ 69,76,82 \end{gathered}$		The device ground.
CLK	20	1	Input and System clock. Operations are synchronous with the rising edge of this clock signal.
DINO-7	1-8	1	Pixel Data input bus. This bus is used to provide the 8 -bit pixel input data to the HSP48908. The data must be provided in a synchronous fashion, and is latched on the rising edge of the CLK signal.
CINO-9	9-18	1	Coefficient Input bus. This input bus is used to load the Coefficient Mask register(s), the Initialization register, the Row Buffer length register and the ALU microcode. It may also be used to provide a second operand input to the ALU. The definition of the CINO-9 bits is defined by the register address bits AO-2. The CINO-9 data is loaded to the addressed register through the use of the CS\# and LD\# inputs.
DOUTO-19	$\begin{gathered} 49-53,55-60, \\ 62,64-68, \\ 70-72 \end{gathered}$	0	Output Data bus. This 20-Bit output port is used to provide the convolution result. The result is the sum of products of the input data samples and their corresponding coefficients. The Cascade inputs CASIO-15 may also be added to the result by selecting the appropriate cascade mode in the Initialization register.
CASIO-15	29-41, 43-45	1	Cascade Input bus. This bus is used for cascading multiple HSP48908s to allow convolution with larger kernels or row sizes. It may also be used to interface to external row buffers. The function of this bus is determined by the Cascade Mode bit (Bit 0) of the Initialization register. When this bit is set to a ' 0 ', the value on CASIO-15 is left shifted and added to DOUTO-19. The amount of the shift is determined by bits 7-8 of the Initialization register. While this mode is intended primarily for cascading, it may also be used to add an offset value, such as to increase the brightness of the convolved image. When the Cascade mode bit is set to a ' 1 ', this bus is used for interfacing to external row buffers. In this mode the bus is divided into two 8 -bit busses (CASIO-7 and CASI8-15), thus allowing two additional pixel data inputs. The cascade data is sent directly to the internal multiplier array which allows for larger row sizes without using multiple HSP48908s.
CASOO-7	73-75,77-81	0	Cascade Output bus. This bus is used primarily during cascading to handle larger frames and/or kernel sizes. This output data is the data on DINO-7 delayed by twice the programmed internal row buffer length.
FRAME\#	46	I	Frame\# is an asynchronous new frame or vertical sync input. A low on this input resets all internal circuitry except for the Coefficient, ALU, AMC, EOR and INT registers. Thus, after a Frame\# reset has occurred, a new frame of pixels may be convolved without reloading these registers.
EALU	28	1	Enable ALU Input. This control line gates the clock to the ALU Register. When it is high, the data on CINO-7 is loaded on the next rising clock edge. When EALU is low, the last value loaded remains in the ALU register.
HOLD	22	1	The Hold Input is used to gate the clock from all of the internal circuitry of the HSP48908. This signal is synchronous, is sampled on the rising edge of CLK and takes effect on the following cycle. While this signal is active (high), the clock will have no effect on the HSP48908 and internal data will remain undisturbed.
RESET\#	47	1	Reset is an asynchronous signal which resets all internal circuitry of the HSP48908. All outputs are forced low in the reset state.
OE\#	83	I	Output Enable. The OE\# input controls the state of the Output Data bus (DOUTO-19). A LOW on this control line enables the port for output. When OE\# is HIGH, the output drivers are in the high impedance state. Processing is not interupted by this pin.

Pin Descriptions (Continued)

NAME	PLCC PIN	TYPE	
AO-2	$25-27$	I	DESCRIPTION Control Register Address. These lines are decoded to determine which register in the control logic is the destination for the data on the CINO-9 inputs. Register loading is controlled by the AO-2,LD\# and CS\# inputs.
LD\#	23	1	Load Strobe. LD\# is used for loading the internal registers of the HSP48908. When CS\# and LD\# are active, the rising edge of LD\# will latch the CINO-7 data into the register specified by AO-2.
CS\#	24	1	Chip Select. The Chip Select input enables loading of the internal registers. When CS\# is low, the AO-2 address lines are decoded to determine the meaning of the data on the CINO-7 bus. The rising edge of LD\# will then load the addressed register.

Functional Description

The HSP48908 two-dimensional convolver performs convolution of 3×3 filter kernels. It accepts the image data in raster scan, non-interlaced format, convolves it with the filter kernel and outputs the filtered image. The input and filter kernel data are both 8-bits, while the output data is 20bits to prevent overflow during the convolution operation. The HSP48908 has internal storage for two 3×3 filter kernels and is capable of buffering two 1024×8-bit rows for true single chip operation at video frame rates. An 8-bit ALU in the input pixel data path allows the user to perform arithmetic and logical operations on the input data in real time during the convolution. Multiple devices can also be cascaded together for larger kernel convolution, larger frame sizes and increased precision.

Image data is input to the convolver via the DINO-7 bus. The data is then operated on by the ALU, stored in the row buffers and convolved with the 3×3 array of filter coefficients. The resultant output data is then latched into the output register. The row buffers are preprogrammed to the length of one row of the input image to enable the user to input the image data one pixel at a time in raster scan format without having to provide external storage.

Initialization of the convolver is done using the CINO-7 bus to load configuration data, such as the filter kernel(s) and the length of the row buffers. The address lines AO-2 are used to address the internal registers for initialization. The configuration data is loaded using the AO-2, CINO-9, CS\# and LD\# controls as address, data, chip select and write enable, respectively. This interface is compatible with standard microprocessors without the use of any additional glue logic.
Filtered image data comes out of the convolver over the DOUTO-19 bus. This output bus is 20-bits wide to provide room for growth during the convolution operation. The 20-bit bus will allow the use of up to 4×4 kernels (using multiple 48908's) without overflow. However, in practical applications, much larger kernel sizes can be implemented without overflow since the filter coefficients are typically much smaller than 8-bit full scale values. DOUTO-19 is also a registered, three state bus to facilitate cascading multiple chips and to allow the HSP48908 to reside on a standard microprocessor system bus.

Multiple convolvers can also be cascaded together for kernel sizes larger than 3×3 and for convolution on images with row lengths longer than 1024 pixels. The maximum kernel size is dependent upon the magnitude of the image data and the coefficients in a given application; care must always be taken with very large kernel sizes to prevent overflow of the 20 -bit output.

Data Input

Image data coming into the 2D Convolver passes through a programmable pipeline delay before being sent to the ALU. The amount of delay (1 to 4 clock cycles) is set in the initialization register during configuration setup (See Control Logic). Delays greater than one are used primarily in cascading multiple HSP48908s to align data sequences for proper output (See Operation).

Arithmetic Logic Unit

The on-chip ALU provides the user with the capability of performing pixel point operations on incoming image data. Depending on the instruction in the ALU microcode register, the ALU can perform any one of 19 arithmetic and logical functions, and shift the resulting number left or right by up to 3 bits. Tables 1 and 2 show the available ALU functions and the 10-bit associated microcode to be loaded into the ALU microcode register. Note that the shifts take place on the output of the ALU and are completely independent of the logical or arithmetic operation being performed. The first input (A) of the ALU is taken from the pixel input bus (DINO-7). The second input (B) is taken from the ALU Register. The ALU Register is loaded via the CINO-7 bus while the EALU control line is valid (see EALU).

TABLE 1. ALU SHIFT OPERATIONS

ALU MICROCODE REGISTER			
REGISTER BIT			
$\mathbf{9}$	$\mathbf{8}$	$\mathbf{7}$	
0	0	0	No Shift (Default)
0	0	1	Shift Right 1
0	1	0	Shift Right 2
0	1	1	Shift Right 3
1	0	0	Shift Left 1
1	0	1	Shift Left 2
1	1	0	Shift Left 3
1	1	1	Not Valid

TABLE 2. ALU PIXEL OPERATIONS

REGISTER BIT							OPERATION
6	5	4	3	2	1	0	
0	0	0	0	0	0	0	Logical (00000000)
1	1	1	1	0	0	0	Logical (11111111)
0	0	1	1	0	0	0	Logical (A) (Default)
0	1	0	1	0	0	0	Logical (B)
1	1	0	0	0	0	0	Logical (A\#)
1	0	1	0	0	0	0	Logical (B\#)
0	1	1	0	0	0	1	Arithmetic ($A+B$)
1	0	0	1	0	1	0	Arithmetic ($A-B$)
1	0	0	1	1	0	0	Arithmetic ($B-A$)
0	0	0	1	0	0	0	Logical (A AND B)
0	0	1	0	0	0	0	Logical (AND B\#)
0	1	0	0	0	0	0	Logical (A\# AND B)
0	1	1	1	0	0	0	Logical (A OR B)
1	0	1	1	0	0	0	Logical (A OR B\#)
1	1	0	1	0	0	0	Logical (A\# OR B)
1	1	1	0	0	0	0	Logical (A NAND B)
1	0	0	0	0	0	0	Logical (A NOR B)
0	1	1	0	0	0	0	Logical (A XOR B)
1	0	0	1	0	0	0	Logical (A XNOR B)

EALU

The EALU control pin enables loading of the ALU Register. While the EALU line is high, the data on CINO-7 is latched into the ALU Register on the rising edge of CLK. When EALU goes low, the current value in the ALU register is held until EALU is again asserted. Note that the ALU loading operation makes use of the CINO-7 inputs, but is completely independent of CS\# and LD\#. Therefore, in order to prevent overwriting an internal register, care must be taken to ensure that CS\# and LD\# are not active during an EALU cycle.

Programmable Row Buffers

The programmable row buffers are used for buffering raster input data for the convolution operation. They can be thought of as programmable shift registers which can each store up to 1024 8-bit values, thus delaying each pixel by up to 1024 clock cycles. Functionally, each row buffer can be represented as a set of registers connected as a $1024 \times$ 8 -bit serial shift register. The output of each buffer can be
represented by the equation $Q=D(n-r)$, where Q is the row buffer output, D is the buffer input, n is the current clock cycle and r is the preprogrammed row length of the input image. Since the two buffers are connected in series, the data at the cascade outputs (CASO0-7) is delayed by two row delays and may be used for cascading multiple convolvers for larger kernel sizes and/or row lengths. The programmable row buffers can also be bypassed by selecting the appropriate cascade mode in the initialization register. This mode allows the use of external row buffers for convolving with row lengths longer than 1024 pixels.

8-Bit Multiplier Array

The multiplier array consists of nine 8×8 multipliers. Each multiplier forms the product of a filter coefficient with a corresponding pixel in the input image. Input and coefficient data may be in either two's complement or unsigned integer format. The nine coefficients form a 3×3 filter kernel which is multiplied by the input pixel data and summed to form a sum of products for implementation of the convolution operation as shown below:

INPUT DATA		FILTER KERNEL	
P1	$P 2$	$P 3$	ABC
P4	P5	P6	DEF
P7	$P 8$	$P 9$	G HI
OUTPUT $=$	$(A \times P 1)+(B \times P 2)+(C \times P 3)$		
	$+(D \times P 4)+(E \times P 5)+(F \times P 6)$		
	$+(G \times P 7)+(H \times P 8)+(I \times P 9)$		

Control Logic

The control logic (Figure 1) contains the ALU Microcode Register, the Initialization Register, the Row Length Register, and the Coefficient Registers. The control logic is updated by placing data on the CINO-9 bus and using the AO-2, CS\# and LD\# control lines to write to the addressed register (see Address Decoder). All of the control logic registers are loaded with their default values on RESET\#, and are unaffected by FRAME\#.

ALU Microcode Register

The ALU microcode register is used to store the command word for the ALU. The ALU command word is a 10-bit instruction divided into two fields: the lower 7 bits determine the ALU operation and the upper 3 bits specify the number of shifts which occur. The ALU command words are defined in Tables 1 and 2 (See ALU section).

FIGURE 1. CONTROL LOGIC BLOCK DIAGRAM

Initialization Register

The initialization register is used to appropriately configure the convolver for a particular application. It is loaded through the use of the CINO-7 bus along with the CS\# and LD\# inputs. Bit 0 defines the type of cascade mode to be used; Bits 1 and 2 select the number of delays to be included in the input pixel data path; Bits 3 and 4 define the input and coefficient data format; Bits 5 and 6 determine the type of rounding to occur on the DOUTO-19 bus; Bits 7 and 8 define the shift applied to the cascade input data. The complete definition of the initialization register bits is given in Table 3.

TABLE 3. INITIALIZATION REGISTER DEFINITION

INITIALIZATION REGISTER		
BIT 0		FUNCTION = CASCADE MODE
01		Multiplier input from internal row buffers Multiplier input from external buffers
2 BIT 1		FUNCTION = INPUT DATA DELAY
	$\begin{aligned} & 0 \\ & 1 \\ & 0 \end{aligned}$	No data delay registers used One data delay register used Two data delay registers used Three data delay registers used
BIT 3		FUNCTION = INPUT DATA FORMAT
		Unsigned integer format Two's complement format
BIT 4		FUNCTION = COEFFICIENT DATA FORMAT
		Unsigned integer format Two's complement format
6 BIT 5		FUNCTION = OUTPUT ROUNDING
0 0 1	0 1 0	No Rounding Round to 16 bits (i.e. DOUT19-4) Round to 8 bits (i.e. DOUT19-12) Not Valid
8 BIT 7		FUNCTION = CASIO-15 INPUT SHIFT
0 0 1 1	0	No Shift Shift CASIO-15 left two Shift CASIO-15 left four Shift CASIO-15 left eight

Row Length Register

The row length register is used to store the programmed number of delays for the internal row buffers. The programmed delay is set equal to the row length (r) of the input image. The input pixel data is stored in the row buffers to allow corresponding pixels of adjacent rows to be synchronously sent to the mutiplier array for the convolution operation. The row length register is programmable with values from 0 to 1023, with 0 defined as a row length of 1024. Row lengths of 1 or 2 lead to meaningless results for a 3×3 kernel convolution, while a row length of 3 defines a 1×9 filter (See Operation section). The Row Length register is written through the use of AO-2, CS\# and LD\#. Once the row length register has been loaded, the convolver must be reset before a new row length can be entered; failure to toggle RESET\# before reloading the Row Length Register may result in the new value being ignored.

Coefficient Registers (CREGO, CREG1)

The control logic contains two coefficient register banks, CREGO and CREG1. Each of these register banks is capable of storing nine 8-bit filter coefficient values (3×3 Kernel). The output of the registers are connected to the coefficient input of the corresponding multiplier in the 3×3 multiplier array (designated A through I). The register bank to be used for the convolution is selectable by writing to the appropriate address (See address decoder). All registers in a given bank are enabled simultaneously, and one of the banks is always active.

For most applications, only one of the register banks is necessary. The user can simply load CREGO after power up, and use it for the entire convolution operation. (CREGO is the default register). The alternate register bank allows the user to maintain two sets of filter coefficients and switch between them in real time. The coefficient masks are loaded via the CIN bus by using AO-2, CS\# and LD\#. The selection of the particular register bank to be used in processing is also done by writing to the appropriate address (See address decoder). For example, if CREGO is being used to provide coefficients to the multipliers, CREG1 can be updated at a low rate by an external processor; then, at the proper time, CREG1 can be selected, so that the new coefficient mask is used to process the data. Thus, no clock cycles have been lost when changing between alternate $3 x$ 3 filter kernels.
The nine coefficients must be loaded sequentially over the CINO-7 bus from A to I. The address of CREGO or CREG1 is placed on AO-2, and then the nine coefficients are written to the corresponding coefficient register one at a time by using the CS\# and LD\# inputs.

Address Decoder

The address decoder (See Figure 1) is used for writing to the control logic of the HSP48908. Loading an internal register is done by selecting the destination register with the AO-2 address lines, placing the data on CINO-9, and asserting the CS\# and LD\# control lines. When either CS\# or LD\# goes high, the data on the CINO-9 lines is latched into the addressed register. The address map for the AO-2 bus is shown in Table 4.
While loading of the control logic registers is asynchronous to CLK, the target register in the control logic is being read synchronous to the internal clock. Therefore, care must be taken when modifying the convolver setup parameters during processing to avoid changing the contents of the registers near a rising edge of CLK. The required setup time relative to CLK is given by the specification TLCS. For example, in order to change the active coefficient register from CREGO to CREG1 during an active convolution operation, a write will be performed to the address for selecting CREG1 for internal processing ($A 2-0=110$). In order to provide proper uninterrupted operation, LD\# should be deasserted at least TLCS prior to the next rising edge of CLK. Failure to meet this setup time may result in unpredictable results on the output of the convolver for one clock cycle. Keep in mind that this requirement applies only to the case where changes are being made in the control logic during an active convolution operation. In a typical convolver configuration routine, this specification would not be applicable.

TABLE 4. ADDRESS MAP

CONTROL LOGIC ADDRESS MAP	
A2-0	Function
000	Load Row Length Register (RLR)
010	Load ALU Microcode Register (AMC)
011	Load Coefficient Register 0 (CREGO)
100	Load Coefficient Register 1 (CREG1)
101	Select CREGO for Internal Processing
110	Select CREG1 for Internal Processing
111	No Operation

Cascade I/O

Cascade Input

The cascade input lines (CASIO-15) have two primary functions. The first is used to allow convolutions with kernel sizes larger than 3×3. This can be implemented by connecting the DOUT bus of one convolver to the cascade inputs of another. The second function is for convolution on images wider than 1024 pixels. This type of operation can be implemented by using external row buffers to supply the pixel input data to the CASIO-15 inputs. The cascade input functions are determined by Initialization Register bit 0. When this bit is set to a ' 0 ', the cascade input data is added
to the convolver output. In this manner, multiple convolvers can be used to implement larger kernel convolution. When Initialization Register bit 0 is a ' 1 ', the data on CASIO-15 is divided into two 8-bit portions and is sent to the 3×3 multiplier array (Refer to Block Diagram). This mode of operation allows the use of external row buffers for convolution of images with row sizes larger than 1024. Examples of these configurations are given in the Operations section of this specification.

The data on the cascade inputs (CASIO-15) can also be left shifted by $0,2,4$, or 8 bits. The amount of shift is determined by bits 7 and 8 of the Initialization Register (See Table 3). CASIO-15 is shifted by the specified number of bits and is added to the 20 -bit output DOUT 0-19. The shifting function provides a method for cascading multiple HSP48908s and allowing a selectable amount of output growth while maximizing the resolution of the convolver result.

The cascade inputs can also be used as a simple way to add an offset to the convolved image. Bit 0 of the configuration register would be set to ' 0 ', and the desired offset placed on the CASIO-15 inputs. While multiple offets can be used and changed during the convolution operation, note that the required data setup and hold times with respect to CLK (TDS and TDH) must be met.

Cascade Output

The cascade output lines (CASOO-7) are outputs from the second row buffer. Data at these outputs is the input pixel data delayed by two times the preprogrammed value in the row length register. The cascade outputs are used to cascade multiple convolvers by connecting the cascade outputs of one device to the data inputs of another (See Operation section).

Control Signals

HOLD

The HOLD control input provides the ability to disable internal clock and stop all operations temporarily. HOLD is sampled on the rising edge of CLK and takes effect during the following clock cycle (Refer to Figure 2). This signal can be used to momentarily ignore data at the input of the convolver while maintaining its current output data and operational state.

FIGURE 2. HOLD OPERATION

RESET\#

The RESET\# signal initializes all internal flip flops and registers in the HSP48908. It is an asynchronous signal, and the convolver will remain in the reset state as long as RESET\# is asserted. On reset, all internal registers are set to zero or their default values, and all outputs are forced low. Following a reset, the default values in the internal registers will define the following mode of operation: internal row buffers used, line length $=1024$, no input data delay, logical A operation: output of ALU $=$ A input (DINO-7) output rounding and unsigned input data format.

The convolver can be reset at any time, but must be reset before updating the Row Length register in order to provide proper operation.

FRAME\#

This FRAME\# input initializes all internal flip flops and registers except for the coefficient, ALU, ALU microcode, row length, and initialization registers. It is used to reset the convolver between video frames and eliminates the need to re-initialize the entire convolver or reload the coefficients. FRAME\# is an asynchronous input and may occur at any time. However, it must be deasserted at least TFS ns prior to the rising clock edge that is to begin operation for the next frame. While FRAME\# is asserted, the registers and flipflops will remain in the reset state.

Operation

The HSP48908 has three basic modes of operation: single chip mode, operation with external row buffers and multiple devices cascaded together for larger convolution kernels and/or longer row lengths. The mode of operation is defined by the contents of the initialization register, and can be modified at any time by a microprocessor or other external means.

Single Chip Mode

A single HSP48908 can be used to perform 3×3 convolution on 8-bit image data with row lengths up to 1024. A block diagram of this configuration is shown in Figure 3. In this mode of operation, the image data is input into the DINO-7 bus in a raster scan order starting with the upper left pixel. To perform the convolution operation, a group of nine image pixels is multiplied by the 3×3 array of filter coefficients and their products are summed and sent to the output. For the example in Figure 3, the pixel value in the output image at location (m, n) is given by:
$\begin{aligned} &\text { POUT(m, } n)\left(A \times P_{m-1, n-1}\right) \\ &+\left(B \times P_{m-1, n}\right)+\left(C \times P_{m-1, n+1}\right) \\ &+\left(D \times P_{m, n-1)}+\left(E \times P_{m, n}\right)+\left(F \times P_{m, n+1}\right)\right. \\ &++\left(G \times P_{m+1, n-1}\right)+\left(H \times P_{m+1, n}\right)+\left(\left(P_{m+1, n+1)}\right)\right.\end{aligned}$
This process is continually repeated until the last pixel of the last row of the image has been input. It can then start again with the first row of the next frame. The FRAME\# pin is used to clear the row buffers, multiplier input latches and DOUTO-19 registers between frames.

The setup for single chip operation is straightforward. After reset, the convolver is configured for row lengths of 1024 pixels, no input data delay, no ALU pixel point operations, no output rounding, and an unsigned input format. The user can change this default setup by loading new values into the ALU microcode, initialization and row length registers. RESET\# also clears the coefficient registers and CREGO is selected for internal processing. The user can now load the coefficients one at a time from A to I via the CINO-7 inputs and the LD\# and CS\# control lines.
Multiple filter kernels can also be used on the same image data using the dual coefficient registers CREGO and CREG1. This type of filtering is used when the characteristics of the input pixel data change over the image in such a way that no single filter produces satisfactory results for the entire image. In order to filter such an image, the characteristics of the filter itself must change while the image is being processed. The HSP48908, can perform this function with the use of an external processor. The processor is used to calculate the required new filter coefficients, loads them into the coefficient register not in use, and selects the newly loaded coefficient register at the proper time. The first coefficient register can then be loaded with new coefficients in preparation for the next change. This can be carried out with no interruption in processing, provided that the new register is selected synchronous to the convolver CLK signal.

The HSP48908 can also operate as a one dimensional 9 tap FIR filter by programming the row buffer length register with a value of 3 and setting the initialization register bit 0 to a ' 0 '. This configuration will provide for nine sequential input values in the input to be multiplied by the coefficient values in the selected coefficient register and provide the proper filtered output. The equation for the output then becomes:

FIGURE 3. 3×3 KERNEL ON AN 8-BIT, $1024 \times$ N IMAGE

Use Of External Row Buffers

External row buffers may be used when frames with row sizes larger than 1024 pixels are desired. To use the HSP48908 in this mode, the cascade mode control bit (bit 0) of the initialization register is set to ' 1 ' to allow the data on the cascade inputs CASIO-15 to go to the multiplier array. The inputs of one external row buffer (such as the HSP9500) are connected to the input data in parallel with the DINO-7 lines of the convolver; and its outputs are connected to the CASIO-7 inputs (See Figure 4). A second external row buffer is connected between the outputs of the first row buffer and the CASI8-15 inputs of the convolver. The convolution operation can then be performed by the HSP48908 in the same manner as the single chip mode. The row length in this configuration is limited only by the maximum length of the external row buffers. Note that when using the convolver in this configuration, the programmable input data delays and ALU will only operate on the data entering the DINO-7 inputs (i.e. the bottom row of the 3×3 sum of products). If higher order filters or pixel point operations are required when using external row buffers, these functions must be implemented externally by the user.

FIGURE 4. USING EXTERNAL ROW BUFFERS WITH THE HSP48908

Cascading Multiple HSP48908's

Multiple HSP48908s are capable of being cascaded to perform convolution on images with row lengths longer than 1024 pixels and with kernel sizes larger than 3×3. Figure 5 illustrates the use of two HSP48908s to perform a 3×3 kernel convolution on a $2 \mathrm{~K} \times \mathrm{N}$ frame. In this case, the cascade mode control bit (Bit O) of both initialization registers are set to a ' 0 '. The loading of the coefficients is

3×3 FILTER KERNEL	COEFFICIENT MASKS	
	CONVOLVER \#1	CONVOLVER \#2
ABC	DEF	ABC
DEF	000	000
GHI	GHI	000

FIGURE 5. 3×3 KERNEL CONVOLUTION ON A 2K x N IMAGE
accomplished just as before. However, the 3×3 mask is divided into two portions for proper convolution output as follows: Convolver \#1 = DEFOOOGHI and Convolver \#2 = ABC000000.

The same configuration can be used to perform 3×5 convolution on a $1 \mathrm{~K} \times \mathrm{N}$ frame simply by setting up the coefficients of the convolvers to implement the 3×5 mask as indicated below:

3×5 FILTER KERNEL	COEFFICIENT MASKS	
	CONVOLVER \#1	CONVOLVER \#2
ABC	GHI	ABC
DEF	JKL	DEF
GHI	MNO	000
JKL		
MNO		

In addition to larger frames, larger kernels can also be addressed through cascadability. An example of the configuration for a 5×5 kernel convolution on a $1 \mathrm{~K} \times \mathrm{N}$ frame is shown in Figure 6. Note that in this configuration, convolver \#2 incorporates a 3 clock cycle delay ($z-3$) and convolvers 3 and 4 incorporate 2 clock cycle delays ($z-2$) at their pixel inputs. These delays are required to ensure proper data alignment in the final sum of products output of the cascaded convolvers. The number of delays required at the pixel input is programmable through the use of bits 1 and 2 of the initialization register (Refer to Table 3).

5×5	CONVOLVER FILTERKERNEL	
ABCDE	OKL	OAB
FGHIJ	OPQ	OFG
KLMNO	OUV	OOO
PQRST		
UVWXY	MNO	CDE
	RST	HIJ
	WXY	OOO

FIGURE 6. 5×5 KERNEL CONVOLUTION ON A $1 \mathrm{~K} \times$ N IMAGE

In any of the cascade configurations, only 16 bits of the 20bit output (DOUTO-19) can be connected to the 16 cascade inputs (CASIO-15) of another convolver. Which 16 bits are chosen depends upon the amount of growth expected at the convolver output. The amount of growth is dependent on the input pixel data and the coefficients selected for the convolution operation. The maximum possible growth is calculated in advance by the user, and the convolvers are set up to appropriately shift the cascade input data through the use of bits 7 and 8 of the initialization register (See Cascade $1 / O$). Refering to Figure 6, if the maximum growth out of convolver \#1 extends into bit 16 or 17, then DOUT2-17 are connected to the cascade inputs of convolver \#3, which is programmed to shift the input data left by two bits. Likewise, if the data out of convolver \#3 grows into bit 18 or 19, then DOUT4-19 are connected to the CASIO-15 inputs of convolver \#2, which is programmed to shift the input left by 4 bits.

Cascading For Row Sizes Larger Than 1024

Combining large images with large kernels is accomplished by implementing external row buffers, external data delay registers and external adders. Figure 7 illustrates a circuit
for implementation of a 5×5 convolution on a $2 \mathrm{~K} \times \mathrm{N}$ image. The 5×5 coefficient mask is again distributed among the four HSP48908's. The width of the DOUT path to be used in this case is dependent on the amount of resolution required and the amount of growth expected at the output.

Frame Rate

The total time to process an image is given by the formula:
$T=R \times C / F$
where:
$T=$ time to process a frame
$R=$ number of rows in the image
$\mathrm{C}=$ number of pixels in a row
$F=$ clock rate of the HSP48908
Note that the size of the kernel does not enter into the equation. Convolvers cascaded for larger kernels or larger frame sizes, as in the examples shown, process the image in the same amount of time as a single HSP48908 convolving the image with a 3×3 kernel. Therfore, there is no performance degradation when cascading multiple HSP48908s.

FIGURE 7. 5×5 KERNEL CONVOLUTION ON A 2K x N IMAGE

Absolute Maximum Ratings

Supply Voltage	8.0V
Input, Output or I/O Voltage Applied	GND -0.5V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Package Power Dissipation @ $70^{\circ} \mathrm{C}$. 2.46 W (PLCC), 3.04W (PGA)
Thermal Impedance Junction To Case (θ_{jc})	$10.26^{\circ} \mathrm{C} / \mathrm{W}$ (PLCC), $7.73{ }^{\circ} \mathrm{C} / \mathrm{W}$ (PGA)
Thermal Impedance Junction To Ambient (θ_{j})	. $32.47^{\circ} \mathrm{C} / \mathrm{W}$ (PLCC), $34.56^{\circ} \mathrm{C} / \mathrm{W}$ (PGA)
Gate Count	190,000 Transistors
Maximum Junction Temperature (T_{J})	$150^{\circ} \mathrm{C}$ (PLCC), $175^{\circ} \mathrm{C}$ (PGA)
Lead Temperature (Soldering, Ten Seconds)	$+300^{\circ} \mathrm{C}$
ESD Classification	Clas

CAUTION: Stresses above those listed in the "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Operating Conditions
Operating Voltage Range

```
+4.75 V to +5.25 V
```

Operating Temperature Range
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
D.C. Electrical Specifications $\left(V_{C C}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$

PARAMETER	SYMBOL	MIN	MAX	UNITS	TEST CONDITIONS
Logical One Input Voltage	$\mathrm{V}_{1 \mathrm{H}}$	2.0	-	V	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$
Logical Zero Input Voltage	$\mathrm{V}_{\text {IL }}$	-	0.8	V	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$
High Level Clock Input	$\mathrm{V}_{\mathrm{IHC}}$	3.0	-	V	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$
Low Level Clock Input	VILC	-	0.8	V	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$
Output HIGH Voltage	V_{OH}	2.6	-	V	$\mathrm{I}^{\circ} \mathrm{CH}=-400 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V}$
Output LOW Voltage	V_{OL}	-	0.4	V	$\mathrm{I}_{\mathrm{OL}}=+2.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V}$
Input Leakage Current	1	-10	10	$\mu \mathrm{A}$	$\mathrm{V}_{1 N}=\mathrm{V}_{\mathrm{CC}}$ or $\mathrm{GND}, \mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$
1/O Leakage Current	10	-10	10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$ or GND
Standby Power Supply Current	${ }^{\text {I CCSB }}$	-	500	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{I N}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND}, \mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{~V} \text {, } \\ & \text { Outputs Open } \end{aligned}$
Operating Power Supply Current	' CCOP	-	160	mA	$\begin{aligned} & f=20 \mathrm{MHz}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \text { or GND } \\ & \text { Note } 1 \end{aligned}$

Capacitance ($T_{A}=+25^{\circ} \mathrm{C}$, Note 2)

PARAMETER	SYMBOL	MIN	MAX	UNITS	TEST CONDITIONS
Input Capacitance	C_{IN}	-	10	pF	FREQ $=1 . \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=$ Open, all measurements are referenced to device ground.
Output Capacitance	C_{O}	-	12	pF	

NOTES: 1. Power supply current is proportional to operating frequency. Typical rating for $\mathrm{I}_{\mathrm{CCOP}}$ is $8.0 \mathrm{~mA} / \mathrm{MHz}$.
2. Not tested, but characterized at initial design and at major process/design changes.
A.C. Electrical Specifications $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	-32 (32MHz)		-20 (20MHz)		UNITS	TEST CONDITIONS
		MIN	MAX	MIN	MAX		
Clock Period	TCYCLE	31	-	50	-	ns	
Clock Pulse Width High	TPWH	12	-	20	-	ns	
Clock Pulse Width Low	TPWL	13	-	20	-	ns	
Data Input Setup Time	TDS	13	-	14	-	ns	
Data Input Hold Time	TDH	0	-	0	-	ns	\cdots
Clock to Data Out	TOUT	-	16	-	22	ns	
Address Setup Time	TAS	13	-	13	-	ns	
Address Hold Time	$\mathrm{T}_{\text {AH }}$	0	-	0	-	ns	" ${ }^{\text {a }}$
Configuration Data Setup Time	$\mathrm{T}_{\text {CDS }}$	14	-	16	-	ns	
Configuration Data Hold Time	TCDH	0	-	0	-	ns	
LD\# Pulse Width	TLPW	12	-	20	-	ns	
LD\# Setup Time	TLCS	25	-	30	-	ns	Note 1
CINO-7 Setup to CLK	TCS	14	-	16	-	ns	
CS\# Setup To LD\#	TCSS	0	-	0	-	ns	.
CINO-7 Hold Time From CLK	T_{CH}	0	-	0	-	ns	
CS\# Hold From LD\#	$\mathrm{TCSH}^{\text {ch }}$	0	-	0	-	ns	"n
RESET\# Pulse Width	TRPW	31	-	50	-	ns	
FRAME\# Setup To Clock	TFS	21	-	25	-	ns	Note 2
FRAME\# Pulse Width	T ${ }_{\text {FPW }}$	31	-	50	-	ns	
EALU Setup Time	TES	12	-	14	-	ns	
EALU Hold Time	TEH	0	-	0	-	ns	
HOLD Setup Time	THS	11	-	12	-	ns	
HOLD Hold Time	THH	1	-	1	-	ns	
Output Enable Time	TEN	-	16	-	22	ns	Note 3
Output Disable Time	TOZ	-	28	-	32	ns	Note 5
Output Rise Time	T_{R}	-	6	-	6	ns	From 0.8 to 2.0 V Note 5
Output Fall Time	T_{F}	-	6	-	6	ns	From 2.0 to 0.8 V Note 5

NOTES: 1. This specification applies only to the case where the HSP48908 is being written to during an active convolution cycle. It must be met in order to acheive predictable results at the next rising clock edge. In most applications; the configuration data and coefficients are loaded asynchronously and the TLCS specification may be disregarded.
2. While FRAME\# is an asynchronous signal, it must be deasserted a minimum of TFS ns prior to the rising clock edge which is to begin loading pixel data for a new frame.
3. Transition is measured at $\pm \mathbf{2 0 0} \mathbf{~ m V}$ from steady state voltage with loading as specified in test load circuit with $C_{L}=40 p F$.
4. A.C. Testing is performed as follows: Input levels (CL.K Input) 4.0 and OV, Input levels (All other Inputs) OV and 3.0 V , Timing reference levels $(C L K)=2.0 \mathrm{~V}$, (Others) $=1.5 \mathrm{~V}$, Input rise and fall times driven at $1 \mathrm{~ns} / \mathrm{V}$, Output load per test load circuit with $\mathrm{C}_{\mathrm{L}}=40 \mathrm{pF}$. Output transition is measured at $\mathrm{V}_{\mathrm{OH}} \geq 1.5 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{OL}} \leq 1.5 \mathrm{~V}$.
5. Controlled via design or process parameters and not directly tested. Characterized upon initial design and after major process and/or design changes.

Test Load Circuit

Switch S1 Open for ICCSB and ICCOP Tests
Timing Waveforms

Timing Waveforms (Continued)

Features

- This Circuit is Processed in accordance to Mil-Std883C and is Fully Conformant Under the Provisions of Paragraph 1.2.1
- Single Chip 3×3 Kernel Convolution
- Programmable On-Chip Row Buffers
- DC to 27 MHz Clock Rate
- Cascadable for Larger Kernels and Images
- On-Chip 8-Bit ALU
- Dual Coefficient Mask Registers, Switchable in a Single Clock Cycle
- 8-Bit Signed or Unsigned Input and Coefficient Data
- 20-Bit Extended Precision Output
- Standard $\mu \mathrm{P}$ Interface
- TTL Compatible Inputs/Outputs
- Low Power CMOS
- Available in 84 Pin PGA Package

Applications

- Image Filtering
- Edge Detection
- Adaptive Filtering
- Real Time Video Filters
- Image Warping

Description

The Harris HSP48908/883 is a high speed Two Dimensional Convolver which provides a single chip implementation of a video data rate 3×3 kernel convolution on two dimensional data. It eliminates the need for external data storage through the use of the on-chip row buffers which are programmable for row lengths up to 1024 pixels.
There are internal register banks for storing two independent 3×3 filter kernels, thus facilitating the implementation of adaptive filters and multiple filter operations on the same data. The pixel data path also includes an on-chip ALU for performing real-time arithmetic and logical pixel point operations.

Data is provided to the HSP48908/883 in a raster scan noninterlaced fashion, and is internally buffered on images up to 1024 pixels wide for the 3×3 convolution operation. Images with larger rows and convolution with larger kernel sizes can be accommodated by using external row buffers and/or multiple HSP48908/883's. Coefficient and pixel input data are 8-bit signed or unsigned integers, and the 20 bit convolver output guarantees no overflow for kernel sizes up to 4×4. Larger kernel sizes can be implemented however, since the filter coefficients will normally be less than their maximum 8-bit values.

The HSP48908/883 is manufactured using an advanced CMOS process, and is a low power fully static design. The configuration of the device is controlled through a standard microprocessor interface and all inputs/outputs are TTL compatible. The 2-D convolver is available in 84 pin PGA package.

Pinout

HSP48908/883 (PGA)
TOP VIEW


```
Absolute Maximum Ratings
Supply Voltage
Input, Output or I/O Voltage Applied .... GND-0.5V to V VC+0.5V
Storage Temperature Range .................. -650}\mp@subsup{}{}{\circ}\textrm{C}\mathrm{ to +150}\mp@subsup{}{}{\circ}\textrm{C
Junction Temperature ................................... . +1750
Lead Temperature (Soldering 10 sec) ...................+300
ESD Classification ......................................... Class 1
CAUTION: Absolute maximum ratings are limiting values, applied individually beyond which the serviceability of the circuit may be impaired. Functional operability under any of these conditions is not necessarily implied.
```


Recommended Operating Conditions

Operating Temperature Range
$5^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating Voltage Range +4.5 V to +5.5 V

TABLE 1. D.C. ELECTRICAL PERFORMANCE CHARACTERISTICS

D.C. PARAMETERS	SYMBOL	CONDITIONS	GROUP A SUBGROUP	TEMPERATURE	LImits		UNITS
					MIN	MAX	
Logical 1 Input Voltage	V_{IH}	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	1,2,3	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	2.2	-	V
Logical 0 Input Voltage	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	1, 2, 3	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	-	0.8	V
Clock Input High	$\mathrm{V}_{\text {IHC }}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	1,2,3	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	3.0	-	V
Clock Input Low	VILC	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	1,2,3	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	-	0.8	v
Output HIGH Voltage	V_{OH}	$\begin{aligned} & \mathrm{OH}=-400 \mathrm{~mA} \\ & \mathrm{VCC}=4.5 \mathrm{~V} \\ & \text { (Note 1) } \end{aligned}$	1, 2, 3	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	2.6	-	V
Output LOW Voltage	V_{OL}	$\begin{aligned} & \mathrm{IOL}=+2.0 \mathrm{~mA} \\ & \mathrm{VCC}=4.5 \mathrm{~V} \\ & \text { (Note 1) } \end{aligned}$	1, 2, 3	$-55^{\circ} \mathrm{C} \leq \mathrm{T}^{\prime} \leq+125^{\circ} \mathrm{C}$	-	0.4	v
Input Leakage Current	1	$\begin{aligned} & V_{I N}=V_{C C} \text { or } G N D \\ & V_{C C}=5.5 \mathrm{~V} \end{aligned}$	1, 2, 3	$-55^{\circ} \mathrm{C} \leq \mathrm{T} \mathrm{A} \leq+125^{\circ} \mathrm{C}$	-10	+10	$\mu \mathrm{A}$
Output or I/O Leakage Current	10	$\begin{aligned} & V_{\text {OUT }}=V_{C C} \text { or GND } \\ & V_{C C}=5.5 \mathrm{~V} \end{aligned}$	1, 2, 3	$-55^{\circ} \mathrm{C} \leq \mathrm{T}^{\prime} \leq+125^{\circ} \mathrm{C}$	-10	+10	$\mu \mathrm{A}$
Standby Power Supply Current	${ }^{\text {I CCsB }}$	$\begin{aligned} & V_{I N}=V_{C C} \text { or GND } \\ & V_{C C}=5.5 \mathrm{~V} \\ & \text { Outputs Open (Note 4) } \end{aligned}$	1,2,3	$-55^{\circ} \mathrm{C} \leq \mathrm{T} \mathrm{A} \leq+125^{\circ} \mathrm{C}$	-	500	$\mu \mathrm{A}$
Operating Power Supply Current	ICCOP	$\begin{aligned} & f=20.0 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V} \\ & \text { Outputs Open, } \\ & \text { (Notes 2, 4) } \end{aligned}$	1,2,3	$-55^{\circ} \mathrm{C} \leq \mathrm{T} \mathrm{A} \leq+125^{\circ} \mathrm{C}$	-	160.0	mA
Functional Test	FT	(Notes 3, 4)	7,8	$-55^{\circ} \mathrm{C} \leq \mathrm{T} \mathrm{A} \leq+125^{\circ} \mathrm{C}$	-	-	-

NOTES: 1. Interchanging of force and sense conditions is permitted.
2. Operating Supply Current is proportional to frequency, typical rating is $8.0 \mathrm{~mA} / \mathrm{MHz}$.
3. Tested as follows: $f=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{IH}}=2.6, \mathrm{~V}_{\mathrm{IL}}=0.4, \mathrm{~V}_{\mathrm{OH}} \geq 1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}} \leq 1.5 \mathrm{~V}$, $V_{\mathrm{IHC}}=3.4 \mathrm{~V}$, and $\mathrm{V}_{\mathrm{ILC}}=0.4 \mathrm{~V}$.
4. Loading is a specified in the test load circuit with $C_{L}=40 \mathrm{pF}$.

HSP48908/883

TABLE 2. A.C. ELECTRICAL PERFORMANCE CHARACTERISTICS
Device Tested at: $\mathrm{V}_{\mathrm{C}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ (Note 4)

PARAMETERS	SYMBOL	CONDITIONS	GROUP A SUBGROUP	TEMPERATURE	LIMITS				UNITS
					-27 (27MHz)		-20 (20MHz)		
					MIN	MAX	MIN	MAX	
Clock Period	TCYCLE		9, 10,11	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	37	-	50	-	ns
Clock Pulse Width High	TPWH		9, 10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	15	-	20	-	ns
Clock Pulse Width Low	TPWL		9, 10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	15	-	20	-	ns
Data Input Setup Time	TDS		9, 10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+125^{\circ} \mathrm{C}$	16	-	17	-	ns
Data Input Hold Time	TDH		9, 10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	0	-	0	-	ns
Clock to Data Out	TOUT		9, 10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+125^{\circ} \mathrm{C}$	-	19	-	28	ns
Address Setup Time	TAS		9, 10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	15	-	15	-	ns
Address Hold Time	$\mathrm{T}_{\text {AH }}$		9, 10, 11	$-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}$	0	-	0	-	ns
Configuration Data Setup Time	$\mathrm{T}_{\text {CDS }}$		9, 10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	17	-	20	-	ns
Configuration Data Hold Time	$\mathrm{T}_{\mathrm{CDH}}$		9, 10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	0	-	0	-	ns
LD\# Pulse Width	TLPW		9, 10, 11	$-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}$	15	-	20	-	ns
LD\# Setup Time	TLCS	Note 1	9, 10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+125^{\circ} \mathrm{C}$	30	-	37	-	ns
CIN7-0 Setup to CLK	TCS		9, 10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+125^{\circ} \mathrm{C}$	17	-	20	-	ns
CIN7-0 Hold from CLK	${ }^{\text {T }} \mathrm{CH}$		9, 10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+125^{\circ} \mathrm{C}$	0	-	0	-	ns
CS\# Setup to LD\#	TCSS		9, 10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+125^{\circ} \mathrm{C}$	0	-	0	-	ns
CS\# Hold from LD\#	TCSH		9, 10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125{ }^{\circ} \mathrm{C}$	0	-	0	-	ns
RESET\# Pulse Width	TRPW		9, 10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+125^{\circ} \mathrm{C}$	37	-	50	-	ns
FRAME\# Setup to CLK	TFS	Note 2	9, 10, 11	$-55^{\circ} \mathrm{C} \leq T^{\prime} \leq+125^{\circ} \mathrm{C}$	25	-	30	-	ns
FRAME\# Pulse Width	TFPW		9, 10, 11	$-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}$	37	-	50	-	ns
EALU Setup Time	TES		9, 10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+125^{\circ} \mathrm{C}$	15	-	17	-	ns
EALU Hold Time	TEH		9, 10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	0	-	0	-	ns
HOLD Setup Time	THS		9, 10, 11	$-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}$	13	-	14	-	ns
HOLD Hold Time	THH		9, 10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	2	-	2	-	ns
Output Enable Time	TEN	Note 3	9, 10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	-	19	-	28	ns

NOTES: 1. This specification applies only to the case where the HSP48908/ 883 is being written to during an active convolution cycle. It must be met in order to achieve predictable results at the next rising clock edge. In most applications, the configuration data and coefficients are loaded asynchronously and the TLCS specification may be disregarded.
2. While FRAME\# is an asynchronous signal, it must be deasserted a minimum of TFS $_{\text {ns }}$ nsior to the rising clock edge which is to begin loading pixel data for a new frame.
3. Transition is measured at $\pm 200 \mathrm{mV}$ from steady state voltage with loading as specified in test load circuit with $C_{L}=40 p F$.
4. A.C. Testing is performed as follows: Input levels (CLK Input) 4.0 V and OV , Input levels (All other Inputs) OV and 3.0V, Timing Reference Levels $(C L K)=2.0 \mathrm{~V}$, (Others) $=1.5 \mathrm{~V}$, Input rise and fall times driven at $1 \mathrm{~ns} / \mathrm{V}$, Output load per test load circuit with $C_{L}=40 \mathrm{pF}$. Output transition is measured at $\mathrm{V}_{\mathrm{OH}} \geq 1.5 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{OL}} \leq 1.5 \mathrm{~V}$.

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS

PARAMETERS	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	LIMITS				UNITS
					-27		-20		
					MIN	MAX	MIN	MAX	
Input Capacitance	C_{IN}	$\begin{aligned} & V_{C C}=\text { Open, } \\ & f=1 \mathrm{MHz}, \text { All } \end{aligned}$ measurements are referenced to device GND.	1	$T_{A}=+25^{\circ} \mathrm{C}$	-	10	-	10	pF
Output Capacitance	Co^{0}	$\begin{aligned} & v_{C C}=\text { Open, } \\ & f=1 \mathrm{MHz}, \text { Ali } \end{aligned}$ measurements are referenced to device GND.	1	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-	12	-	12	pF
Output Disable Time	TOZ	*	1,2	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	-	35	-	40	ns
Output Rise Time	T_{R}	From 0.8 V to 2.0 V	1,2	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	-	6	-	6	ns
Output Fall Time	T_{F}	From 2.0 V to 0.8 V	1,2	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	-	6	-	6	ns

NOTES: 1. Parameters listed in Table 3 are controlled via design or process
2. Loading is as specified in the test load circuit with $\mathrm{C}_{\mathrm{L}}=40 \mathrm{pF}$. parameters and are not directly tested. These parameters are characterized upon initial design and after major process and/or design changes.

TABLE 4. ELECTRICAL TEST REQUIREMENTS

CONFORMANCE GROUPS	METHOD	SUBGROUPS
Initial Test	$100 \% / 5004$	-
Interim Test	$100 \% / 5004$	-
PDA	100%	1
Final Test	100%	$2,3,8 \mathrm{~A}, 8 \mathrm{~B}, 10,11$
Group A	-	$1,2,3,7,8 \mathrm{~A}, 8 \mathrm{~B}, 9,10,11$
Groups C \& D	Samples $/ 5005$	$1,7,9$

Test Load Circuit

Switch S1 Open for ICCSB and ICCOP Tests

Burn-In Circuit

PIN NAME	PGA PIN	BURN-IN SIGNAL
CIN2	A1	F13
CINO	A2	F12
DIN7	A3	F7
DIN5	A4	F5
DIN2	A5	F2
DIN1	A6	F1
OE	A7	F10
CASO. 1	A8	$\mathrm{V}_{\mathrm{CC} / 2}$
CASO. 3	A9	$\mathrm{V}_{\mathrm{CC}} / 2$
CASO. 4	A10	$\mathrm{V}_{\mathrm{CC}} / 2$
CASO. 6	A11	$\mathrm{V}_{\mathrm{CC}} / 2$
CIN5	B1	F12
CIN3	B2	F13
CIN1	B3	F12
DIN6	B4	F6
DIN3	B5	F3
CASO. 0	B6	$\mathrm{V}_{\mathrm{CC}} / 2$
GND	B7	GND
CASO. 2	B8	$V_{C C / 2}$
GND	B9	GND
CASO. 5	B10	$V_{C C / 2}$
POUTO	B11	$V_{C C / 2}$
CIN6	C1	F13
CIN4	C2	F13
DIN4	C5	F4
DINO	C6	FO
V_{CC}	C7	$V_{C C}$
CASO. 7	C10	$\mathrm{V}_{\mathrm{CC} / 2}$

PGA BURN-IN SCHEMATIC

PIN NAME	$\begin{aligned} & \text { PGA } \\ & \text { PIN } \end{aligned}$	BURN-IN SIGNAL	PIN NAME	$\begin{aligned} & \text { PGA } \\ & \text { PIN } \end{aligned}$	BURN-IN SIGNAL
POUT1	C11	$\mathrm{V}_{\mathrm{CC}} / 2$	CASI. 13	J2	F5
CIN8	D1	F14	CASI. 5	J5	F5
CIN7	D2	F12	CASI. 2	J6	F2
POUT2	D10	$\mathrm{V}_{\mathrm{CC}} / 2$	CASI. 1	J7	F1
GND	D11	GND	POUT14	J10	$\mathrm{V}_{\mathrm{CC}} / 2$
CLK	E1	FO	POUT12	J11	$\mathrm{V}_{\mathrm{CC}} / 2$
GND	E2	GND	CASI. 14	K1	F6
CIN9	E3	F14	CASI. 11	K2	F3
POUT3	E9	$\mathrm{v}_{\mathrm{CC} / 2}$	CASI. 10	K3	F2
POUT4	E10	$\mathrm{V}_{\mathrm{CC} / 2}$	CASI. 7	K4	F7
POUT5	E11	$\mathrm{v}_{\mathrm{CC} / 2}$	CASI. 4	K5	F4
A1	F1	F13	$V_{C C}$	K6	V_{Cc}
$V_{C C}$	F2	V_{CC}	FRAME	K7	F15
HOLD	F3	F14	POUT19	K8	$\mathrm{V}_{\mathrm{CC} / 2}$
POUT7	F9	$\mathrm{v}_{\mathrm{CC} / 2}$	POUT16	K9	$\mathrm{V}_{\mathrm{CC}} / 2$
POUT9	F10	$\mathrm{v}_{\mathrm{Cc} / 2}$	GND	K10	GND
POUT6	F11	$\mathrm{v}_{\mathrm{cc} / 2}$	POUT13	K11	$\mathrm{V}_{\mathrm{CC}} / 2$
CS	G1	F12	CASI. 12	L1	F4
A2	G2	F14	CASI. 9	L2	F1
LOAD	G3	F11	CASI. 8	L3	FO
$V_{C C}$	G9	V_{Cc}	CASI. 6	L4	F6
GND	G10	GND	CASI. 3	L5	F3
POUT8	G11	$\mathrm{V}_{\mathrm{CC} / 2}$	RESET	L6	F16
AO	H1	F12	CASI. 0	L7	FO
EALU	H2	F8	GND	L8	GND
POUT11	H10	$\mathrm{v}_{\mathrm{CC}} / 2$	POUT18	L9	$\mathrm{V}_{\mathrm{CC}} / 2$
POUT10	H11.	$\mathrm{v}_{\mathrm{CC} / 2}$	POUT17	L10	$\mathrm{V}_{\mathrm{CC}} / 2$
CASI. 15	J1	F7	POUT15	L11	$\mathrm{V}_{\mathrm{CC}} / 2$

NOTES: 1. $\mathrm{V}_{\mathrm{CC}} / 2(2.7 \mathrm{~V} \pm 10 \%)$ used for outputs only.
4. $0.1 \mu \mathrm{~F}(\mathrm{~min})$ capacitor between V_{CC} and GND per position.
2. $47 \mathrm{~K} \Omega(\pm 20 \%)$ resistor connected to all pins except $V_{C C}$ and GND.
3. $\mathrm{V}_{\mathrm{CC}}=5.5 \pm 0.5 \mathrm{~V}$.
5. $F 0=100 \mathrm{kHz} \pm 10 \%, F 1=F 0 / 2, F 2=F 1 / 2 \ldots$ F11 $=F 10 / 2$ 40-60\% Duty Cycle.
6. Input Voltage Limits: $\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$ max., $\mathrm{V}_{\mathrm{IH}}=4.5 \mathrm{~V} \pm 10 \%$

Die Characteristics

DIE DIMENSIONS:
$341 \times 322 \times 19 \pm 1$ mils
METALLIZATION:
Type: $\mathrm{Si}-\mathrm{Al}$ or $\mathrm{Si}-\mathrm{Al}-\mathrm{Cu}$
Thickness: $15.9 \mathrm{k} \AA$
WORST CASE CURRENT DENSITY:
$2 \times 10^{5} \mathrm{~A} / \mathrm{cm}^{2}$

GLASSIVATION:
Type: Nitrox
Thickness: 10k \AA
DIE ATTACH:
Material: Silver Glass
Temperature: Ceramic PGA - $440^{\circ} \mathrm{C}$ (Max)

Metallization Mask Layout

HSP48908/883

Packaging ${ }^{\dagger}$

84 LEAD PIN GRID ARRAY (PGA)

LEAD MATERIAL: Type B
LEAD FINISH: Type C
PACKAGE MATERIAL: Ceramic, $90 \% \mathrm{Al}_{2} \mathrm{O}_{3}$
PACKAGE SEAL:
Material: Gold/Tin
Temperature: $320^{\circ} \mathrm{C} \pm 10^{\circ} \mathrm{C}$
Method: Furnace Braze

INTERNAL LEAD WIRE:
Material: Aluminum
Diameter: 1.25 Mil
Bonding Method: Ultrasonic Wedge COMPLIANT 38510 OUTLINE: P-AC

3×3 Image Filter

Features

- DC to 30 MHz Clock Rate
- Configurable for 1-D and 2-D Correlation/ Convolution.
- Dual Coefficient Mask Registers, Switchable in a Single Clock Cycle
- Two's Complement or Unsigned 8-Bit Input Data and Coefficients
- 20 Bit Extended Precision Output
- Standard $\mu \mathbf{P}$ Interface
- TTL Compatible Inputs/Outputs
- Low Power CMOS
- Available in 68 Pin PGA and PLCC Packages

Applications

- Image Filtering
- Edge Detection/Enhancement
- Pattern Matching
- Real Time Video Filters

Description

The Harris HSP48901 is a high speed 9-Tap FIR Filter which utilizes 8-bit wide data and coefficients. It can be configured as a one dimensional (1-D) 9-Tap filter for a variety of signal processing applications, or as a two dimensional (2-D) filter for image processing. In the 2-D configuration, the device is ideally suited for implementing 3×3 kernel convolution. The 30 MHz clock rate allows a large number of image sizes to be processed within the required frame time for real-time video.

Data is provided to the HSP48901 through the use of programmable data buffers such as the HSP9500 or any other programmable shift register. Coefficient and pixel input data are 8-bit signed or unsigned integers, and the 20 bit extended output guarantees no overflow will occur during the filtering operation.

There are two internal register banks for storing independent 3×3 filter kernels, thus facilitating the implementation of adaptive filters and multiple filter operations on the same data.

The configuration of the HSP48901 Image Filter is controlled through a standard microprocessor interface and all inputs and outputs are TTL compatible. The HSP48901 is available in 68 pin PGA and PLCC packages.

Block Diagram

HSP48901

Pin Descriptions

NAME	PLCC PIN	TYPE	DESCRIPTION
V_{CC}	9, 27, 45, 61		The +5 V power supply pins. $0.1 \mu \mathrm{~F}$ capacitors between the V_{CC} and GND pins are recommended.
GND	18,29, 38, 56		The device ground.
CLK	28	1	Input and System clock. Operations are synchronous with the rising edge of this clock signal.
DIN1(0-7)	1-8	1	Pixel Data Input bus \#1. These inputs are used to provide 8-bit pixel data to the HSP48901. The data must be provided in a synchronous fashion, and is latched on the rising edge of the CLK signal. The DIN1(0-7) inputs are also used to input data when operating in the 9 Tap FIR mode.
DIN2(0-7)	10-17	1	Pixel Data Input bus \#2. Same as above. These inputs should be grounded when operating in the 1D mode.
DIN3(0-7)	19-26	1	Pixel Data Input bus \#3. Same as above. These inputs should be grounded when operating in the 1D mode.
CINO-7	30-37	1	Coefficient Data Input bus. This input bus is used to load the Coefficient Mask register(s) and the Initialization register. The register to be loaded is defined by the register address bits AO-2. The CINO-7 data is loaded to the addressed register through the use of the LD\# input.
DOUTO-19	$\begin{gathered} 46-55,57-60, \\ 62-67 \end{gathered}$	0	Output Data bus. This 20-Bit output port is used to provide the convolution result. The result is the sum of products of the input data samples and their corresponding coefficients.
FRAME\#	44	1	Frame\# is an asynchronous new frame or vertical sync input. A low on this input resets all internal circuitry except for the Coefficient and INT registers. Thus, after a Frame\# reset has occurred, a new frame of pixels may be convolved without reloading these registers.
HOLD	40	1	The Hold Input is used to gate the clock from all of the internal circuitry of the HSP48901. This signal is synchronous, is sampled on the rising edge of CLK and takes effect on the following cycle. While this signal is active (high), the clock will have no effect on the HSP48901 and internal data will remain undisturbed.
AO-2	41-43	1	Control Register Address. These lines are decoded to determine which register in the control logic is the destination for the data on the CINO-7 inputs. Register loading is controlled by the AO-2 and LD\# inputs.
LD\#	39	1	Load Strobe. LD\# is used for loading the internal registers of the HSP48901. The rising edge of LD\# will latch the CINO-7 data into the register specified by AO-2. The Address on AO-2 must be set up with respect to the falling edge of LD\# and must be held with respect to the rising edge of LD\#.

Functional Description

The HSP48901 can perform convolution of a 3×3 filter kernel with 8-bit image data. It accepts the image data in a raster scan, non-interlaced format, convolves it with the filter kernel and outputs the filtered image. The input and filter kernel data are both 8-bits, while the output data is 20-bits to prevent overflow during the convolution operation. Image data is input via the DIN1, DIN2, and DIN3 busses. This data would normally be provided by programmable data buffer such as the HSP9500 as illustrated in the operations section of this specification. The data is then convolved with the 3×3 array of filter coefficients. The resultant output data is then stored in the output register. The HSP48901 may also be used in a one-dimensional mode. In this configuration, it functions as a 1-D 9-tap FIR filter. Data would be input via the DIN1(0-7) bus for operation in this mode.

Initialization of the convolver is done using the CINO-7 bus to load configuration data and the filter kernel(s). The address lines AO-2 are used to address the internal registers for initialization. The configuration data is loaded using the AO-2, CINO-7 and LD\# controls as address, data and write enable, respectively. This interface is compatible with standard microprocessors without the use of any additional glue logic.

Filtered image data is output from the convolver over the DOUTO-19 bus. This output bus is 20-bits wide to provide room for growth during the convolution operation.

8-Bit Multiplier Array

The multiplier array consists of nine 8×8 multipliers. Each multiplier forms the product of a filter coefficient with a corresponding pixel in the input image. Input and coefficient data may be in either two's complement or unsigned integer format. The nine coefficients form a 3×3 filter kernel which is multiplied by the input pixel data and summed to form a sum of products for implementation of the convolution operation as shown below:

FILTER KERNEL			INPUT DATA		
A	B	C	P1	P2	P3
D	E	F	P4	P5	P6
G	H	I	P7	P8	P9

OUTPUT $=(\mathrm{A} \times \mathrm{P} 1)+(\mathrm{B} \times \mathrm{P} 2)+(\mathrm{C} \times \mathrm{P} 3)$
$+(\mathrm{D} \times \mathrm{P} 4)+(\mathrm{E} \times \mathrm{P} 5)+(\mathrm{F} \times \mathrm{P} 6)$
$+(G \times P 7)+(H \times P 8)+(1 \times P 9)$

Control Logic

The control logic (Figure 1) contains the Initialization Register and the Coefficient Registers. The control logic is updated by placing data on the CINO-7 bus and using the AO-2 and LD\# control lines to write to the addressed register (see Address Decoder). All of the control logic registers are unaffected by FRAME\#.

FIGURE 1. CONTROL LOGIC BLOCK DIAGRAM

Initialization Register

The initialization register is used to appropriately configure the convolver for a particular application. It is loaded through the use of the CINO-7 bus along with the LD\# input. Bit 0 defines the input data and coefficients format (unsigned or two's complement); Bit 1 defines the mode of operation (1-D or 2-D); and Bits 2 and 3 determine the type of rounding to occur on the DOUTO-19 bus; The complete definition of the initialization register bits is given in Table 1.

TABLE 1. INITIALIZATION REGISTER DEFINITION

INITIALIZATION REGISTER		
BIT 0		FUNCTION = Input \& Coefficient Data Format
0		Unsigned Integer format
1		Two's complement format
BIT 1		FUNCTION = Operating Mode
0		1-D 9-tap filter
1		2-D 3×3 filter
3 BIT		FUNCTION = Output Rounding
0		No Rounding
0		Round to 16 bits (i.e. DOUT4-19)
1		Round to 8 bits (i.e. DOUT12-19)
1		Not Valid

Coefficient Registers (CREGO, CREG1)

The control logic contains two coefficient register banks, CREGO and CREG1. Each of these register banks is capable of storing nine 8-bit filter coefficient values (3×3 Kernel). The output of the registers are connected to the coefficient input of the corresponding multiplier in the 3×3 multiplier array (designated A through I). The register bank to be used for the convolution is selectable by writing to the approprite address (See address decoder). All registers in a given bank are enabled simultaneously, and one of the banks is always active.

For most applications, only one of the register banks is necessary. The user can simply load CREGO after power up; and use it for the entire convolution operation. (CREGO is the default register). The alternate register bank allows the user to maintain two sets of filter coefficients and switch between them in real time. The coefficient masks are loaded via the CINO-7 bus by using AO-2 and LD\#. The selection of the particular register bank to be used in processing is also done by writing to the appropriate address (See address decoder). For example, if CREGO is being used to provide coefficients to the multipliers, CREG1 can be updated at a low rate by an external processor; then, at the proper time, CREG1 can be selected, so that the new coeffi-
cient mask is used to process the data. Thus, no clock cycles have been lost when changing between alternate 3×3 filter kernels.

The nine coefficients must be loaded sequentially over the CINO-7 bus from A to I. The address of CREG0 or CREG1 is placed on AO-2, and then the coefficients are written to the corresponding coefficient register one at a time by using the LD\# input.

Address Decoder

The address decoder (See Figure 1) is used for writing to the control logic of the HSP48901. Loading an internal register is done by selecting the destination register with the AO-2 address lines, placing the data on CINO-7, and asserting LD\# control line. When LD\# goes high, the data on CINO-7 is latched into the addressed register. The address map for the AO-2 bus is shown in Table 2.
While loading of the control logic registers is asynchronous to CLK, the target register in the control logic is being read synchronous to the internal clock. Therefore, care must be taken when modifying the convolver setup parameters during processing to avoid changing the contents of the registers near a rising edge of CLK. The required setup time relative to CLK is given by the specification TLCS. For example, in order to change the active coefficient register from CREGO to CREG1 during an active convolution operation, a write will be performed to the address for selecting CREG1 for internal processing ($\mathrm{AO}-2=110$). In order to provide proper uninterrupted operation, LD\# should be deasserted at least TLCS prior to the next rising edge of CLK. Failure to meet this setup time may result in unpredictable results on the output of the convolver. Keep in mind that this requirement applies only to the case where changes are being made in the control logic during an active convolution operation. In a typical convolver configuration routine, where the configuration data is loaded prior to the actual convolution operation, this specification would not apply.

TABLE 2. ADDRESS MAP

CONTROL LOGIC ADDRESS MAP			
A			
2	1	0	
0	0	0	Reserved for future use
0	0	1	Reserved for future use
0	1	0	Load Coefficient Register 0 (CREGO)
0	1	1	Load Coefficient Register 1 (CREG1)
1	0	0	Load Initialization Register (INT)
1	0	1	Select CREG0 for Internal Processing
1	1	0	Select CREG1 for Internal Processing
1	1	1	No Operation

Control Signals

Hold

The HOLD control input provides the ability to disable internal clock and stop all operations temporarily. HOLD is sampled on the rising edge of CLK and takes effect during the following clock cycle (Refer to Figure 2). This signal can be used to momentarily ignore data at the input of the convolver while maintaining its current output data and operational state.

FIGURE 2. HOLD OPERATION

FRAME\#

The FRAME\# input initializes all internal flip flops and registers except for the coefficient and initialization registers. It is used as a reset between video frames and eliminates the need to re-initialize the entire HSP48901 or reload the coefficients. The registers and flip flops will remain in a reset state as long as FRAME\# is active. FRAME\# is an asynchronous input and may occur at any time. However, it must be deasserted at least tFS ns prior to the rising clock edge that is to begin operation for the next frame in order to ensure the new pixel data is properly loaded.

Operation

A single HSP48901 can be used to perform 3×3 convolution on 8-bit image data. A block diagram of this configuration is shown in Figure 3. The inputs of an external data buffer (such as the HSP9500) are connected to the input data in parallel with the DIN1(0-7) lines; the outputs of the data buffer are connected to the DIN2(0-7) bus. A second external data buffer is connected between the outputs of the first buffer and the DIN3(0-7) inputs. To perform the convolution operation, a group of nine image pixels is multiplied by the 3×3 array of filter coefficients and their products are summed and sent to the output. For the example in figure 3, the pixel value in the output image at location m, n is given by:

$$
\begin{aligned}
\operatorname{DOUT}(m, n)= & A \times P m-1, n-1+B \times P m-1, n+C \times P m-1, n+1 \\
& +D \times P m, n-1+E \times P m, n+F \times P m, n+1 \\
& +G \times P m+1, n-1+H \times P m+1, n+I \times P m+1, n+1
\end{aligned}
$$

This process is continually repeated until the last pixel of the last row of the image has been input. It can then start again with the first row of the next frame. The FRAME\# pin is used to clear the internal multiplier registers and DOUTO-19 registers between frames. The row length of the image to be convolved is limited only by the maximum length of the external data buffers.

The setup is straightforward. The user must first setup the HSP48901 by loading a new value into the initialization register. The coefficients can now be loaded one at a time from A to I via the CINO-7 coefficient bus, and the AO-2 and LD\# control lines.

FILTER KERNEL

IMAGE DATA

FIGURE 3. 3×3 KERNEL ON AN 8-BIT IMAGE

Multiple filter kernels can also be used on the same image data using the dual coefficient registers CREGO and CREG1. This type of filtering is used when the characteristics of the input pixel data change over the image in such a way that no one filter produces satisfactory results for the entire image. In order to filter such an image, the characteristics of the filter itself must change while the image is being processed. The HSP48901 can perform this function with the use of an external processor. The processor is used to calculate the required new filter coefficients, loads them into the coefficient register not in use, and selects the newly loaded coefficient register at the proper time. The first coefficient register can then be loaded with new coefficients in preparation for the next change. This can be carried out with no interruption in processing, provided that the new register is selected synchronous to the convolver CLK signal.

The HSP48901 can also operate as a one dimensional 9 tap FIR filter by programming the initialization register to 1-D mode (i.e. INT bit $1=$ ' 0 '). This configuration will provide for nine sequential input values to be multiplied by the coefficient values in the selected coefficient register and provide the proper filtered output. The input bus to be used when operating in this mode is the $\operatorname{DIN1}(0-7)$ inputs.

The equation for the output in the 1-D 9-tap FIR case becomes:

$$
\begin{aligned}
\text { DOUTn }= & A \times D n-8+B \times D n-7+C \times D n-6+D \times D n-5 \\
& +E \times D n-4+F \times D n-3+G \times D n-2+H \times D n-1 \\
& +I \times D n
\end{aligned}
$$

Frame Rate

The total time to process an image is given by the formula:

$$
T=R \times C / F
$$

where: $\quad T=$ Time to process a frame
$R=$ number of rows in the image
$\mathrm{C}=$ number of pixels in a row
$F=$ clock rate of the HSP48901

Absolute Maximum Ratings

```
Supply Voltage
+8.0V
Input, Output or I/O Voltage Applied . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GND -0.5V to V VCC +0.5V
Storage Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -650
Gate Count . . . . . . . r. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13,594 Gates
Junction Temperature (TJ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +150年 (PLCC), +1750
Lead Temperature (Soldering, Ten Seconds) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +3000'C
ESD Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Class 1
CAUTION: Stresses above those listed in the "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating
and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
```


Operating Conditions

```
Operating Voltage Range
+4.75V to +5.25V
```

Operating Temperature Range . $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
D.C. Electrical Specifications $N_{C C}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN	MAX	UNITS	TEST CONDITIONS
Logical One Input Voltage	V_{IH}	2.0	-	V	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$
Logical Zero Input Voltage	V_{IL}	-	0.8	V	$\mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V}$
High Level Clock Input	$\mathrm{V}_{\mathrm{IHC}}$	V_{CC} -0.8	-	V	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$
Low Level Clock Input	$\mathrm{V}_{\mathrm{ILC}}$	-	0.8	V	$\mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V}$
Output HIGH Voltage	V_{OH}	2.6	-	V	$\mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V}$
Output LOW Voltage	V_{OL}	-	0.4	V	$\mathrm{I}_{\mathrm{OL}}=+2.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V}$
Input Leakage Current	I	-10	10	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$ or GND, V
I/O Leakage Current $=5.25 \mathrm{~V}$					

Capacitance ($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, Note 2)

PARAMETER	SYMBOL	MIN	MAX	UNITS	TEST CONDITIONS
Input Capacitance	C_{IN}	-	10	pF	FREQ $=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=$ Open, all measurements are referenced to device ground.
Output Capacitance	C_{O}	-	15	pF	

NOTES: 1. Power supply current is proportional to operating frequency. Typical rating for $I_{C C O P}$ is $6 \mathrm{~mA} / \mathrm{MHz}$.
2. Not tested, but characterized at initial design and at major process/design changes.
A.C. Electrical Specifications $\quad \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	-30 (30MHz)		-20 (20MHz)		UNITS	TEST CONDITIONS
		MIN	MAX	MIN	MAX		
Clock Period	TCYCLE	33	-	50	-	ns	
Clock Pulse Width High	TPWH	13	-	20	-	ns	
Clock Pulse Width Low	TPWL	13	-	20	-	ns	
Data Input Setup Time	TDS	14	-	16	-	ns	
Data Input Hold Time	TDH	0	-	0	-	ns	
Clock to Data Out	TOUT	-	21	-	30	ns	
Address Setup Time	TAS	5	-	5	-	ns	
Address Hold Time	$\mathrm{T}_{\text {AH }}$	2	-	2	-	ns	
Configuration Data Setup Time	TCS	10	-	12	-	ns	
Configuration Data Hold Time	T_{CH}	0	-	0	-	ns	
LD\# Pulse Width	TLPW	13	-	20	-	ns	
LD\# Setup Time	TLCS	28	-	40	-	ns	Note 1
HOLD Setup Time	THS	10	-	12	-	ns	
HOLD Hold Time	THH	0	-	0	-	ns	
FRAME\# Pulse Width	TFPW	TCYCLE	-	TCYCLE	-	ns	
FRAME\# Setup Time	TFS	28	-	40	-	ns	Note 2
Output Rise Time	T_{R}	-	8	-	8	ns	From 0.8 V to 2.0 V
Output Fall Time	T_{F}	-	8	-	8	ns	From 2.0 V to 0.8 V

NOTES:

1. This specification applies only to the case where a change in the active coefficient register is being selected during a convolution operation. It must be met in order to achieve predictable results at the next rising clock edge. In most applications, this selection will be made asynchronously, and the TLCS specification may be disregarded.
2. While FRAME\# is asynchronous with respect to CLK, it must be deasserted a minimum of $\mathrm{T}_{\text {FS }}$ ns prior to the rising clock edge which is to begin loading new pixel data for the next frame.
3. A.C. Testing is performed as follows: Input levels (CLK Input) $=\mathrm{V}_{\mathrm{CC}}-0.4 \mathrm{~V}$ and OV ; Input levels (All other Inputs) $=0 \mathrm{~V}$ to 3.0 V ; Input timing reference levels: $(C L K)=2.5 \mathrm{~V}$, (Others) $=1.5 \mathrm{~V}$; Other timing references: $\mathrm{V}_{\mathrm{OH}} \geq 1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}} \leq 1.5 \mathrm{~V}$; Input rise and fall times driven at $1 \mathrm{~ns} / \mathrm{V}$; Output load per test load circuit with $\mathrm{C}_{\mathrm{L}}=40 \mathrm{pF}$.

Test Load Circuit

Switch S1 Open for ICCSB and ICCOP Tests

Timing Waveforms

FUNCTIONAL TIMING

CONFIGURATION TIMING

SYNCHRONOUS LOAD TIMING

hOLD TIMING

FRAME\# TIMING

DATA SHEETS

HSP45116	Numerically Controlled Oscillator/Modulator	5-3
HSP45116/883	Numerically Controlled Oscillator/Modulator	5-18
HSP45106	16 Bit Numerically Controlled Oscillator	5-26
HSP45106/883	16 Bit Numerically Controlled Oscillator	5-36
HSP45102		5-43

Features

- NCO and CMAC on One Chip
- $15 \mathrm{MHz}, 25.6 \mathrm{MHz}, 33 \mathrm{MHz}$ Versions
- 32-bit Frequency Control
- 16-bit Phase Modulation
- 16-bit CMAC
- 0.008 Hz Tuning Resolution at 33 MHz
- Spurious Frequency Components <-90dBc
- Fully Static CMOS
- 145 Pin PGA

Applications

- Frequency Synthesis
- Modulation - AM, FM, PSK, FSK, QAM
- Demodulation, PLL
- Phase Shifter
- Fast Fourier Transforms (FFT)
- Polar to Cartesian Conversions

Description

The Harris HSP45116 combines a high performance quadrature numerically controlled oscillator (NCO) and a high speed 16-bit Complex Multiplier/Accumulator (CMAC) on a single IC. This combination of functions allows a complex vector to be multiplied by the internally generated (cos, sin) vector for quadrature modulation and demodulation. As shown in the block diagram, the HSP45116 is divided into three main sections. The Phase/Frequency Control Section (PFCS) and the Sine/Cosine Section together form a complex NCO. The CMAC multiplies the output of the Sine/ Cosine Section with an external complex vector.

The inputs to the Phase/Frequency Control Section consist of a microprocessor interface and individual control lines. The phase resolution of the PFCS is 32 bits, which results in frequency resolution better than 0.008 Hz at 33 MHz . The output of the PFCS is the argument of the sine and cosine. The spurious free dynamic range of the complex sinusoid is greater than 90 dBc .

The output vector from the Sine/Cosine Section is one of the inputs to the Complex Multiplier/Accumulator. The CMAC multiplies this (cos, \sin) vector by an external complex vector and can accumulate the result. The resulting complex vectors are available through two 20-bit output ports which maintain the 90 dB spectral purity. This result can be accumulated internally to implement an accumulate and dump filter.

A quadrature down converter can be implemented by loading a center frequency into the Phase/Frequency Control Section. The signal to be downconverted is the Vector Input of the CMAC, which multiplies the data by the rotating vector from the Sine/Cosine Section. The resulting complex output is the down converted signal.

Block Diagram

TOP VIEW

A	BOTM															A
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	
	$V_{\text {cc }}$	GND	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 10 \\ & 12 \end{aligned}$	$\begin{aligned} & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 10 \\ & 18 \end{aligned}$	$V_{\text {cc }}$	GND	$\underset{16}{\operatorname{IMIN}}$	$\underset{15}{\mid M I N}$	$\underset{11}{\text { IMIN }}$	$\underset{9}{\operatorname{IMIN}}$	$\underset{8}{\text { IMIN }}$	${\underset{4}{\mathrm{M}} \mathrm{~N}}^{2}$	$\mathrm{V}_{\mathbf{C C}}$	
B	10	$\begin{gathered} 10 \\ 5 \end{gathered}$	$\begin{gathered} 10 \\ 7 \end{gathered}$	$\begin{gathered} 10 \\ 8 \end{gathered}$	$\begin{aligned} & 10 \\ & 11 \end{aligned}$	$\begin{aligned} & 10 \\ & 14 \end{aligned}$	$\begin{aligned} & 10 \\ & 16 \end{aligned}$	$\begin{aligned} & 10 \\ & 19 \end{aligned}$	$\begin{gathered} \text { IMIN } \\ 14 \end{gathered}$	$\underset{13}{ }$	$\underset{10}{\text { IMIN }}$	$\underset{7}{\text { IMIN }}$	${ }_{5}^{\text {IMIN }}$	$\underset{1}{\text { IMIN }}$	GND	B
C	$\begin{aligned} & \text { RO } \\ & 18 \end{aligned}$	10	10 4	$\begin{gathered} 10 \\ 6 \end{gathered}$	$\begin{gathered} 10 \\ 9 \end{gathered}$	$\begin{aligned} & 10 \\ & 13 . \end{aligned}$	$\begin{aligned} & 10 \\ & 17 \end{aligned}$	$\begin{array}{\|c\|} \hline \text { IMIN } \\ 18 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { IMIN } \\ 17 \end{array}$	$\begin{array}{\|c} \mathrm{IMIN} \\ 12 \end{array}$	$\underset{6}{\text { IMIN }}$	${ }_{3}{ }_{3}$	$\begin{array}{\|c} \text { IMIN } \\ 2 \end{array}$	$\begin{gathered} \text { RIN } \\ 18 \end{gathered}$	$\begin{aligned} & \text { RIN } \\ & 15 \end{aligned}$	C
D	$\begin{aligned} & \text { RO } \\ & 17 \end{aligned}$	$\begin{gathered} \text { RO } \\ 19 \end{gathered}$	$\begin{gathered} 10 \\ 3 \end{gathered}$									INDEX	$\begin{gathered} \text { IMIN } \\ 0 \end{gathered}$	$\begin{gathered} \text { RIN } \\ 17 \end{gathered}$	$\begin{gathered} \text { RIN } \\ 13 \end{gathered}$	D
E	RO 15	$\begin{aligned} & \text { RO } \\ & 16 \end{aligned}$	10 0										$\begin{gathered} \text { RIN } \\ 16 \end{gathered}$	$\begin{gathered} \text { RIN } \\ 14 \end{gathered}$	$\begin{gathered} \operatorname{RiN} \\ 10 \end{gathered}$	E
F	$\begin{aligned} & \text { RO } \\ & 11 \end{aligned}$	$\begin{aligned} & \text { RO } \\ & 13 \end{aligned}$	$\begin{aligned} & \text { RO } \\ & 14 \end{aligned}$										$\begin{gathered} \text { RIN } \\ 12 \end{gathered}$	$\begin{array}{r} \text { RIN } \\ 11 \end{array}$	$\underset{7}{\operatorname{RIN}}$	F
G	$\begin{aligned} & \text { RO } \\ & 10 \end{aligned}$	$\begin{aligned} & \text { RO } \\ & 12 \end{aligned}$	$\begin{gathered} \text { RO } \\ 9 \end{gathered}$										$\begin{gathered} \text { RIN } \\ 8 \end{gathered}$	$\underset{9}{\text { RIN }}$	V_{cc}	G
H	GND	$\begin{gathered} \text { RO } \\ 7 \end{gathered}$	$\begin{gathered} \text { RO } \\ 8 \end{gathered}$										$\underset{5}{\text { RIN }}$	$\underset{6}{\text { RIN }}$	GND	H
J	$\mathrm{V}_{\mathbf{C C}}$	RO	$\begin{gathered} \text { RO } \\ 5 \end{gathered}$										RIN	$\underset{1}{\operatorname{RIN}}$	$\underset{3}{\text { RIN }}$	J
K	$\begin{gathered} \text { RO } \\ 6 \end{gathered}$	$\begin{gathered} \text { RO } \\ 2 \end{gathered}$	$\begin{gathered} \text { RO } \\ 1 \end{gathered}$										SH_{1}	$\underset{0}{\text { RIN }}$	$\underset{2}{\text { RIN }}$	K
L	$\begin{gathered} \text { RO } \\ 3 \end{gathered}$	$\begin{gathered} \text { DET } \\ 1 \end{gathered}$	$\begin{gathered} \text { PACO } \\ \# \end{gathered}$										Reythe \#	ACC	$\underset{\mathbf{O}}{\mathrm{SH}}$	L
M	$\begin{gathered} \text { RO } \\ 0 \end{gathered}$	$\begin{aligned} & \text { OEI } \\ & \not Z \end{aligned}$	oerrext										$\underset{1}{\text { MOD }}$	$\begin{gathered} \text { PEAK } \\ \# \end{gathered}$	$\begin{gathered} \text { ENPH } \\ \text { REG } \\ \# \end{gathered}$	M
N	$\begin{gathered} \text { DET } \\ 0 \end{gathered}$	$\begin{gathered} \text { OEIEXT } \\ \# \end{gathered}$		$\begin{array}{\|c\|} \hline \text { outmux } \\ 1 \end{array}$	$\begin{aligned} & \hline \mathbf{C} \\ & 2 \end{aligned}$	$\begin{aligned} & \mathrm{C} \\ & \mathbf{8} \end{aligned}$	$\begin{gathered} \mathbf{C} \\ 13 \end{gathered}$	$\begin{gathered} C \\ 14 \end{gathered}$	$\begin{gathered} A D \\ D \end{gathered}$	$\begin{gathered} \text { modpl } \\ 12 \mathrm{PI} \\ \nexists 7 \end{gathered}$	$\begin{gathered} \text { ENCF } \\ \text { REG } \\ \not \sharp \end{gathered}$	$\begin{gathered} \text { LOAD } \\ \# \end{gathered}$	$\begin{array}{\|c} \text { MOD } \\ 0 \end{array}$	BINFMT \#	$\begin{aligned} & \text { ENOF } \\ & \text { REG } \\ & \text { \# } \end{aligned}$	N
P	GND	$\begin{gathered} \text { OER } \\ \# \end{gathered}$	$\begin{gathered} C \\ 1 \end{gathered}$	$\begin{aligned} & C \\ & 3 \end{aligned}$	$\begin{aligned} & C \\ & 6 \end{aligned}$	$\begin{aligned} & \hline \mathrm{C} \\ & 9 \end{aligned}$	$\begin{gathered} \text { C } \\ 10 \end{gathered}$	$\begin{gathered} C \\ 15 \end{gathered}$	$\begin{gathered} A D \\ 1 \end{gathered}$	$\begin{aligned} & \text { CS } \\ & \# \end{aligned}$	entireg \#	CLBOFR \#	PMSEL	PACI \#	$\begin{gathered} \text { TICO } \\ \# \end{gathered}$	P
Q	$\mathrm{V}_{\text {cc }}$	$\begin{aligned} & C \\ & 0 \end{aligned}$	$\begin{aligned} & C \\ & 4 \end{aligned}$	$\begin{aligned} & \mathrm{C} \\ & 5 \end{aligned}$	$\begin{aligned} & C \\ & 7 \end{aligned}$	$\begin{gathered} C \\ 11 \end{gathered}$	$\begin{gathered} \mathrm{C} \\ 12 \end{gathered}$	GND:	V_{CC}	$\begin{gathered} \text { WR } \\ \text { \# } \end{gathered}$	CLK	$\begin{aligned} & \text { ENI } \\ & \# \end{aligned}$	ENPHAC \#	GND	Vcc	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	

Pin Description

NAME	NUMBER	TYPE	\quad DESCRIPTION					
VCC	A1, A9, A15, G1, J15, Q1, Q7, Q15		+5 Power supply input					
GND	A8, A14, B1, H1, H15, P15, Q2, Q8		Power supply ground input					
C0-15	N8-11, P8-13, Q9-14	I	Control input bus for loading phase and frequency data into the PFCS. C15 is the MSB.					
AD0-1	N7, P7	I	Address pins for selecting destination of Co-15 data	$	$	CS\#	P6	I
:---:	:---:	:---						
WR\#	Q6	Chip select (Active Low)						

Pin Description (Continued)

NAME	NUMBER	TYPE	DESCRIPTION
PACI\#	P2	1	Phase accumulator carry input. (Active low) A low on this pin causes the phase accumulator to increment by one in addition to the values in the phase accumulator register and frequency adder.
PACO\#	L13	0	Phase accumulator carry output. Active low and registered by CLK. A low on this output indicates that the phase accumulator has overflowed, i.e., the end of one sine/cosine cycle has been reached.
TICO\#	P1	0	Time interval accumulator carry output. Active low, registered by CLK. This output goes low when a carry is generated by the time interval accumulator. This function is provided to time out control events such as synchronizing register clocking to data timing.
RINO-18	$\begin{gathered} \text { C1, C2, D1, D2, } \\ \text { E1-3, F1-3, } \\ \text { G2, G3, H2, } \\ \text { H3, J1-3, K1, K2 } \end{gathered}$	1	Real input data bus. This is the external real component into the complex multiplier. The bus is clocked into the real input data register by CLK when ENI\# is asserted.
IMINO-18	$\begin{gathered} \text { A2-7, B2-7, } \\ \text { C3-8, D3 } \end{gathered}$	I	Imaginary input data bus. This is the external imaginary component into the complex multiplier. The bus is clocked into the real input data register by CLK when ENI\# is asserted.
SHO-1	K3, L1	1	Shift control inputs. These lines control the input shifters of the RIN and IIN inputs of the complex multiplier. The shift controls are common to the shifters on both of the busses.
ACC	L2	1	Accumulate/dump control. This input controls the complex accumulators and their holding registers. When high, the accumulators accumulate and the holding registers are disabled. When low, the feedback in the accumulators is zeroed to cause the accumulators to load. The holding registers are enabled to clock in the results of the accumulation. This input is registered by CLK.
BINFMT\#	N2	I	This input is used to convert the two's complement output to offset binary (unsigned) for applications using D/A converters. When low, bits RO19 and IO19 are inverted from the internal two's complement representation. This input is registered by CLK.
PEAK\#	M2	1	This input enables the peak detect feature of the block floating point detector. When high, the maximum bit growth in the output holding registers is encoded and output on the DETO-1 pins. When the PEAK\# input is asserted, the block floating point detector output will track the maximum growth in the holding registers, including the data in the holding registers at the time that PEAK\# is activated.
OUTMUXO-1	N12, N13	1	These inputs select the data to be output on ROO-19 and 1O0-19.
ROO-19	C15, D14, D15 E14, E15, F13-15, G13-15, H13, H14, J13, J14, K13-15, L15, M15	0	Real output data bus. These three state outputs are controlled by OER\# and OEREXT\#. OUTMUXO-1 select the data output on the bus.
100-19	$\begin{aligned} & \text { A10-13, B8-15, } \\ & \text { C9-14, D13, E13 } \end{aligned}$	0	Imaginary output data bus. These three state outputs are controlled by OEI\# and OEIEXT\#. OUTMUXO-1 select the data output on the bus.
DETO-1	N15, L14	0	These output pins indicate the number of bits of growth in the accumulators. While PEAK\# is low, these pins indicate the peak growth. The detector examines bits 15-18, real and imaginary accumulator holding registers and bits $30-33$ of the real and imaginary CMAC holding registers. The bits indicate the largest growth of the four registers.
OER\#	P14	1	Three state control for bits ROO-15. Outputs are enabled when the line is low.
OEREXT\#	M13	1	Three state control for bits RO16-19. Outputs are enabled when the line is low.
OEI\#	M14	1	Three state control for bits 100-15. Outputs are enabled when the line is low.
OEIEXT\#	N14	I	Three state control for bits IO16-19. Outputs are enabled when the line is low.

Functional Description

The Numerically Controlled Oscillator/Modulator (NCOM) produces a digital complex sinusoid waveform whose amplitude, phase and frequency are controlled by a set of input command words. When used as a Numerically Controlled Oscillator (NCO), it generates 16 bit sine and cosine vectors at a maximum sample rate of 33 MHz . The NCOM can be preprogrammed to produce a constant (CW) sine and cosine output for Direct Digital Synthesis (DDS) applications. Alternatively, the phase and frequency inputs can be updated in real time to produce a FM, PSK, FSK, or MSK modulated waveform. The Complex Multiplier/ Accumulator (CMAC) can be used to multiply this waveform by an input signal for AM and QAM signals. By stepping the phase input, the output of the ROM becomes an FFT twiddle factor; when data is input to the Vector Inputs (see Block Diagram), the NCOM calculates an FFT butterfly.

As shown in the Block Diagram, the NCOM consists of three parts: Phase and Frequency Control Section (PFCS), Sine/Cosine Generator, and CMAC. The PFCS stores the phase and frequency inputs and uses them to calculate the phase angle of a rotating complex vector. The Sine/Cosine Generator performs a lookup on this phase and outputs the appropriate values for the sine and cosine. The sine and cosine form one set of inputs to the CMAC, which multiplies them by the input vector to form the modulated output.

Phase and Frequency Control Section

The phase and frequency of the internally generated sine and cosine are controlled by the PFCS (Figure 1). The PFCS generates a 32 bit word that represents the current phase of the sine and cosine waves being generated: the Sine/ Cosine Argument. Stepping this phase angle from 0 through full scale $\left(2^{32}-1\right)$ corresponds to the phase angle of a sinusoid starting at 0° and advancing around the unit circle counterclockwise. The PFCS automatically increments the phase by a preprogrammed amount on every rising edge of the external clock. The frequency of the two sinusoid is determined by the number of clocks it takes for the phase to step through its full range. For example, if the NCOM is clocked at 30 MHz , and the PFCS is programmed with an incremental phase of $\pi / 2$, it takes 4 clocks for the phase to step through a full cycle; the output frequency is $30 \mathrm{MHz} / 4$, or 7.5 MHz .

The PFCS is divided into 2 sections: the Phase Accumulator uses the data on $\mathrm{CO}-15$ to compute the phase angle that is the input to the Sine/Cosine Section (Sine/Cosine Argument); the Time Accumulator supplies a pulse to mark the passage of a preprogrammed period of time.

The Phase Accumulator and Time Accumulator work on the same principle: a 32 bit word is added to the contents of a 32 bit accumulator register every clock cycle; when the sum
causes the adder to overflow, the accumulation continues with the 32 bits of the adder going into the accumulator register. The overflow bit is used as an output to indicate the timing of the accumulation overflows. In the Time Accumulator, the overflow bit generates TICO\#, the Time Accumulator carry out (which is the only output of the Time Accumulator). In the Phase Accumulator, the overflow is inverted to generate the Phase Accumulator Carry Out, PACO\#.

The output of the Phase Accumulator goes to the Phase Adder, which adds an offset to the top 16 bits of the phase. This 32 bit number forms the argument of the sine and cosine, which is passed to the Sine/Cosine Generator.
Both accumulators are loaded 16 bits at a time over the $\mathrm{C} 0-15$ bus. Data on $\mathrm{C} 0-15$ is loaded into one of the three input registers when CS\# and WR\# are low. The data in the Most Significant Input Register and Least Significant Input Register forms a 32 bit word that is the input to the Center Frequency Register, Offset Frequency Register and Time Accumulator. These registers are loaded by enabling the proper register enable signal; for example, to load the Center Frequency Register, the data is loaded into the LS and MS Input Registers, and ENCFREG\# is set to zero; the next rising edge of CLK will pass the registered version of ENCFREG\#, R.ENCFREG\#, to the clock enable of the Center Frequency Register; this register then gets loaded on the following rising edge of CLK. The contents of the Input Registers will be continuously loaded into the Center Frequency Register as long as R.ENCFREG\# is low.

The Phase Register is loaded in a similar manner. Assuming PMSEL is low, the contents of the Phase Input Register is loaded into the Phase Register on every rising clock edge that R.ENPHREG is low. If PMSEL is high, MODO-1 supply the two most significant bits into the Phase Register (MOD1 is the MSB) and the least significant 14 bits are loaded with 0. When PMSEL is high, MODO-1 are used to generate a Quad Phase Shift Keying (QPSK) signal (Table 2).

TABLE 1. ADO-1 DECODING

AD1	ADO	CS\#	WR\#	FUNCTION
0	0	0	\uparrow	Load least significant bits of frequency input
0	1	0	\uparrow	Load most significant bits of frequency input
1	0	0	\uparrow	Load phase register
1	1	X	X	Reserved
X	X	1	X	Reserved

The Phase Accumulator consists of registers and adders that compute the value of the current phase at every clock. It has three inputs: Center Frequency, which corresponds to the carrier frequency of a signal; Offset Frequency, which is the deviation from the Center Frequency; and Phase, which is a 16 bit number that is added to the current phase for

PSK modulation schemes. These three values are used by the Phase Accumulator and Phase Adder to form the phase of the internally generated sine and cosine.

The sum of the values in Center and Offset Frequency Registers corresponds to the desired phase increment (modulo 2^{32}) from one clock to the next. For example, loading both registers with zero will cause the Phase Accumulator to add zero to its current output; the output of the PFCS will remain at its current value; i.e., the output of the NCOM will be a DC signal. If a hexadecimal 00000001 is loaded into the Center Frequency Control Register, the output of the PFCS will increment by one after every clock. This will step through every location in the Sine/Cosine Generator, so that the output will be the lowest frequency above DC that can be generated by the NCOM, i.e., the clock frequency divided by 2^{32}. If the input to the Center Frequency Control Register is hex 80000000 , the PFCS will step through the Generator with half of the maximum step size, so that frequency of the output waveform will be half of the sample rate.

The operation of the Offset Frequency Control Register is identical to that of the Center Frequency Control Register; having two separate registers allows the user to generate an FM signal by loading the carrier frequency in the Center Frequency Control Register and updating the Offset Frequency Control Register with the value of the frequency offset - the difference between the carrier frequency and the frequency of the output signal. A logic low on CLROFR\# disables the output of the Offset Frequency Register without clearing the contents of the register.

TABLE 2. MODO-1 DECODE

MOD1	MODO	PHASE SHIFT (DEGREES)
0	0	0
0	1	90
1	0	270
1	1	180

Initializing the Phase Accumulator Register is done by putting a low on the LOAD\# line. This zeroes the feedback path to the accumulator, so that the register is loaded with the current value of the phase increment summer on the next clock.
The final phase value going to the Generator can be adjusted using MODPI/2PI\# to force the range of the phase to be 00 to 1800 (modulo π) or 00 to 3600 (modulo 2π). Modulo 2π is the mode used for modulation, demodulation, direct digital synthesis, etc. Modulo π is used to calculate FFTs. This is explained in greater detail in the Applications section.

The Phase Register adds an offset to the output of the Phase Accumulator. Since the Phase Register is only 16 bits, it is added to the top 16 bits of the Phase Accumulator.

The Time Accumulator consists of a register which is incremented on every clock. The amount by which it increments is loaded into the Input Registers and is latched into the Time Accumulator Register on rising edges of CLK while ENTIREG\# is low. The output of the Time Accumulator is the accumulator carry out, TICO\#. TICO\# can be used as a timer to enable the periodic sampling of the output of the NCOM. The number programmed into this register equals $2^{32} \times$ CLK period/desired time interval. TICO\# is disabled and its phase is initialized by zeroing the feedback path of the accumulator with RBYTILD\#.

Sine/Cosine Section

The Sine/Cosine Section (Figure 2) converts the output of the PFCS into the appropriate values for the sine and cosine. It takes the most significant 20 bits of the PFCS output and passes them through a look up table to form the 16 bit sine and cosine inputs to the CMAC.

Figure 2. Sine/cosine section
The 20 bit word maps into 2π radians so that the angular resolution is $2 \pi / 220$. An address of zero corresponds to 0 radians and an address of hex FFFFF corresponds to $2 \pi-$ ($2 \pi / 2^{20}$) radians. The outputs of the Generator section are 2 's complement sine and cosine values. The sine and cosine outputs range from hexadecimal 8001, which represents -1 , to $7 F F F$, which represents +1 . Note that the normal range for two's complement numbers is 8000 to 7FFF; the output range of the NCOM is scaled by one so that it is symmetric about 0 .
The sine and cosine values are computed to reduce the amount of ROM needed. The magnitude of the error in the computed value of the vector is less than -90.2 dB . The error in the sine or cosine alone is approximately 2 dB better.

If RBYTILD\# is low, the output of the PFCS goes directly to the inputs of the CMAC. If the real and imaginary inputs of the CMAC are programmed to hex 7FFF and 0 respectively, then the output of the PFCS will appear on output bits 0 through 15 of the NCOM with the output multiplexers set to bring out the most significant bits of the CMAC output (OUTMUX $=00$). The most significant 16 bits out of the PFCS appears on IOUTO-15 and the least significant bits come out on ROUTO-15.

Complex Multiplier/Accumulator

The CMAC (Figure 3) performs two types of functions: complex multiplication/accumulation for modulation and demodulation of digital signals, and the operations necessary to implement an FFT butterfly. Modulation and demodulation are implemented using the complex multiplier and its associated accumulator; the rest of the circuitry in this section, i.e., the complex accumulator, input shifters and growth detect logic are used along with the complex multiplier/accumulator for FFTs. The complex multiplier performs the complex vector multiplication on the output of the Sine/Cosine Section and the vector represented by the real and imaginary inputs RIN and IIN. The two vectors are combined in the following manner:
ROUT $=\operatorname{COS} \times$ RIN - SIN $\times \operatorname{IIN}$
IOUT $=\operatorname{COS} \times \operatorname{IIN}+\operatorname{SIN} \times \operatorname{RIN}$
RIN and IIN are latched into the input registers and passed through the shift stages. Clocking of the input registers is enabled with a low on ENI\#. The amount of shift on the latched data is programmed with $\mathrm{SHO}-1$ (Table 3). The output of the shifters is sent to the CMAC and the auxiliary accumulators.

TABLE 3. INPUT SHIFT SELECTION

SH1	SHO	SELECTED BITS
0	0	RINO-15, IMINO-15
0	1	RIN1-16, IMIN1-16
1	0	RIN2-17, IMIN2-17
1	1	RIN3-18, IMIN3-18

The 33 bit real and imaginary outputs of the Complex Multiplier are latched in the Multiplier Registers and then go through the accumulator section of the CMAC. If the ACC line is high, the feedback to the accumulators is enabled; a low on ACC zeroes the feedback path, so that the next set of real and imaginary data out of the complex multiplier is stored in the CMAC Output Registers.
The data in the CMAC Output Registers goes to the Multiplexer, the output of which is determined by the OUTMUXO- 1 lines (Table 4). BINFMT\# controls whether the output of the Multiplexer is presented in two's complement or unsigned format; BINFMT\# $=0$ inverts ROUT19 and IOUT19 for unsigned output, while BINFMT\# $=1$ selects two's complement.

TABLE 4. OUTPUT MULTIPLEXER SELECTION

OUT MUX 1	OUT MUX 0	RO16-19	RO0-15	1016-19	$100-15$
0	0	Real CMAC $31-34$	Real CMAC $15-30$	Imag CMAC $31-34$	Imag CMAC $15-30$
0	1	Real CMAC $31-34$	O,Real CMAC $0-14$	Imag CMAC $31-34$	0, Imag CMAC $0-14$
1	0	Real Acc $16-19$	Real Acc $0-15$	Imag Acc $16-19$	Imag Acc $0-15$
1	1	Reserved	Reserved	Reserved	Reserved

FIGURE 3. COMPLEX MULTIPLIER/ACCUMULATOR; ALL REGISTERS CLOCKED BY CLK

The Complex Accumulator duplicates the accumulator in the CMAC. The input comes from the data shifters, and its 20 bit complex output goes to the Multiplexer. ACC controls whether the accumulator is enabled or not. OUTMUXO-1 determines whether the accumulator output appears on ROUT and IOUT.

The Growth Detect circuitry outputs a two bit value that signifies the amount of growth on the data in the CMAC and Complex Accumulator. Its output, DETO-1, is encoded as shown in Table 5. If PEAK\# is low, the highest value of DETO-1 is latched in the Growth Detect Output Register.

The relative weighting of the bits at the inputs and outputs of the CMAC is shown in figure 4. Note that the binary point of the sine and cosine is to the right of the most significant bit,
while the binary point of ROUT and IOUT is to the right of the fifth most significant bit. These CMAC external input and output busses are aligned with each other to facilitate cascading NCOM's for FFT applications.

TABLE 5. GROWTH ENCODING

DET 1	DET 0	NUMBER OF BITS OF GROWTH ABOVE 20
0	0	0
0	1	1
1	0	2
1	1	3

SIN/COS INPUT

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
$-2^{0} .2^{-1}$	2^{-2}	2^{-3}	2^{-4}	2^{-5}	2^{-6}	2^{-7}	2^{-8}	2^{-9}	2^{-10}	2^{-11}	2^{-12}	2^{-13}	2^{-14}	2^{-15}	

Radix Point

COMPLEX MULTIPLIER/ACCUMULATOR INPUT (RIN, IIN)
$\mathrm{SH}=00$

| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $\mathbf{- 2}^{-2} \mathbf{i}^{-1} \quad 2^{-2} \quad 2^{-3} \quad 2^{-4} \quad 2^{-5} \quad 2^{-6} \quad 2^{-7} \quad 2^{-8} \quad 2^{-9} \quad 2^{-10} \quad 2^{-11} \quad 2^{-12} \quad 2^{-13} \quad 2^{-14} \quad 2^{-15}$ Radix Point

COMPLEX MULTIPLIER/ACCUMULATOR OUTPUT (ROUT, IOUT)

OUTMUX = 00

19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
$\mathbf{- 2}^{4}$	2^{3}	2^{2}	2^{1}	$2^{0} .^{2-1}$	2^{-2}	2^{-3}	2^{-4}	2^{-5}	2^{-6}	2^{-7}	2^{-8}	2^{-9}	2^{-10}	2^{-11}	2^{-12}	2^{-13}	2^{-14}	2^{-15}	
Radix Point																			

COMPLEX MULTIPLIER/ACCUMULATOR OUTPUT (ROUT, IOUT)

OUTMUX = 01

19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
-24	2^{3}	22	21	-16	17	-18	19	2	-21	2	2	2	2	2	2	-2	-2	-30	0

COMPLEX ACCUMULATOR OUTPUT (ROUT, IOUT)

OUTMUX $=10$

Figure 4. Bit weighting

Applications

The NCOM can be used for Amplitude, Phase and Frequency modulation, as well as in variations and combinations of these techniques, such as QAM. It is most effective in applications requiring multiplication of a rotating complex sinusoid by an external vector. These include AM and QAM modulators and digital receivers. The NCOM implements AM and QAM modulation on a single chip, and is a element in demodulation, where it performs complex down conversion. It can be combined with the Harris HSP43220 Decimating Digital Filter to form the front end of a digital receiver.

Modulation/Demodulation

Figure 5 shows a block diagram of an AM modulator. In this example, the phase increment for the carrier frequency is loaded into the center frequency register, and the modulating input is clocked into the real input of the CMAC, with the imaginary input set to 0 . The modulated output is obtained at the real output of the CMAC. With a sixteen bit, two's complement signal input, the output will be a 16 bit real number, on ROUTO-15 (with OUTMUX $=00$).

FIGURE 5. 'AMPLITUDE MODULATION

By replacing the real input with a complex vector, a similar setup can generate QAM signals (Figure 6). In this case, the carrier frequency is loaded into the center frequency register as before, but the modulating vector now carries both amplitude and phase information. Since the input vector and the internally generated sine and cosine waves are both 16 bits, the number of states is only limited by the characteristics of the transmission medium and by the analog electronics in the transmitter and receiver.

The phase and amplitude resolution for the Sine/Cosine section (16 bit output), delivers a spectral purity of greater than 90 dBc . This means that the unwanted spectral components due to phase uncertainty (phase noise) will te greater than 90dB below the desired output (dBc, decibels below the carrier). With a 32 bit phase accumulator in the Phase/

FIGURE 6. QUADRATURE AMPLITUDE MODULATION (QAM)

Frequency Control Section, the frequency tuning resolution equals the clock frequency divided by 2^{32}. For example, a 25 MHz clock gives a tuning resolution of 0.006 Hz .

The NCOM also works with the HSP43220 Decimating Digital Filter to implement down conversion and low pass filtering in a digital receiver (Figure 7). The NCOM performs complex down conversion on the wideband input signal by multiplying the input vector and the internally generated complex sinusoid. The resulting signal has components at twice the center frequency and at DC. Two HSP43220's, one each on the real and imaginary outputs of the HSP45116, perform low pass filtering and decimation on the down converted data, resulting in a complex baseband signal.

FIGURE• 7. CHANNELIZED RECEIVER CHIP SET

FFT Butterfly

Figure 8 shows a Fast Fourier Transform (FFT) implementation. The FFT is a highly efficient way of calculating the Discrete Fourier Transform [1]. The basic building block in FFTs is called the butterfly. The butterfly calculation involves adding complex numbers and multiplying by complex sinusoids. The Phase/Frequency Control Section and Sine/Cosine Generator provide the complex sinusoids and the CMAC performs the complex multiplies and adds.

FIGURE 8. RADIX-2 FFT BUTTERFLY

The NCOM circuit shown implements the butterfly shown in Figure 9. The two complex inputs A and B produce two complex outputs A^{\prime} and B^{\prime} using the equations $A^{\prime}=A+B$, $B^{\prime}=(A-B) W^{k}$ where $W^{k}=e^{-j w k}=\cos (w k)+j \sin (w k)$. Two clock cycles are required to calculate the butterfly. A is clocked into the chip first and then B is clocked in. The complex accumulator in the CMAC section adds A and B. The

CMAC calculates ($A-B)^{W^{k}}$ as $A W^{k}+B\left(-W^{k}\right) .-W^{k}$ is generated by phase shifting the ROM address 180 degrees using the phase modulation inputs. For radix-2 decimation in frequency FFTs, the phase of the complex sinusoid starts at 0 degrees and increments by a fixed step size (for each pass) after each butterfly. The phase/frequency section is initialized to 0 degrees and the frequency control loaded with the appropriate phase step size for the pass. The resulting words, A^{\prime} and B^{\prime}, are held in output registers and multiplexed through the output pins for writing to memory. Using a single NCOM clocked at 25 MHz , a 1024 point radix-2 FFT can be computed in (CLK period) $x\left(\mathrm{Nlog}_{2} \mathrm{~N}\right)$, or 410 microseconds.

FIGURE 9. DECIMATION BY FREQUENCY BUTTERFLY

Circuitry is included to implement block floating point FFTs. In block floating point, an exponent is generated for an entire block of data. To implement block floating point, the maximum bit growth during a set of calculations is detected. The number of bits of growth is used to adjust the block's exponent and to scale the block on the next set of calculations to maintain a desired number of bits of precision. This technique requires less memory than true floating point and yields better performance than fixed point implementations, though its resolution does not meet that of true floating point implementations.

References

[1] Oppenheim, A. V. and Schafer, R. W., Discrete Time Signal Processing, Prentice Hall

Absolute Maximum Ratings


```
Storage Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - -650
```



```
Component Count . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................ 103,000 Transistors
```



```
Lead Temperature (Soldering, Ten Seconds) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +3000}\textrm{C
ESD Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Class . }
CAUTION: Stresses above those listed in the "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and
operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
```


Operating Conditions

```
Operating Voltage Range
+4.75V to +5.25V
Operating Temperature Range
\(.0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\)
```


D.C. Electrical Specifications

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
V_{IH}	Logical One Input Voltage	2.0	-	V	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$
V_{IL}	Logical Zero Input Voltage	-	0.8	V	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$
$\mathrm{V}_{\text {IHC }}$	High Level Clock Input	3.0	-	V	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$
VILC	Low Level Clock Input	-	0.8	V	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$
V_{OH}	Output HIGH Voltage	2.6	-	V	$\mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V}$
V_{OL}	Output LOW Voltage	-	0.4	V	$\mathrm{l}_{\mathrm{OL}}=+2.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V}$
1	Input Leakage Current	-10	10	$\mu \mathrm{A}$	$\mathrm{V}_{1 N}=\mathrm{V}_{\text {CC }}$ or GND, $\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$
10	I/O Leakage Current	-10	10	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND}, \\ & \mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{~V} \end{aligned}$
${ }^{\text {I CCSB }}$	Standby Power Supply Current	-	500	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{I N}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \\ & \mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \text { Note } 3 \end{aligned}$
ICCOP	Operating Power Supply Current	-	150	mA	$f=15 \mathrm{MHz}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND}$ $V_{C C}=5.25 \mathrm{~V} \text {, Notes } 1 \text { and } 3$

Capacitance ($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, Note 2)

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
$\mathrm{C}_{\text {IN }}$	Input Capacitance	-	15	pF	FREQ $=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=$ Open, All measurements are referenced to device ground
C_{O}	Output Capacitance	-	15	pF	

NOTES:

[^2]
A.C. Electrical Specifications (Note 1)

SYMBOL	PARAMETER	-15 (15 MHz)		-25 (25.6 MHz)		-33 (33MHz)		UNITS	TEST CONDITIONS
		MIN	MAX	MIN	MAX	MIN	MAX		
T_{CP}	CLK Period	66		39		30		ns	
T_{CH}	CLK High	26		15		12		ns	
T_{CL}	CLK Low	26		15		12		ns	
TWL	WR\# Low	26		15		12		ns	
TWH	WR\# High	26		15		12		ns	
${ }^{\text {TAWS }}$	Set-up Time; ADO-1, CS\# to WR\# going high	18		13		13		ns	
${ }^{\text {TAWH }}$	Hold Time; ADO, AD1, CS\# from WR\# going high	0		0		0		ns	
Tcws	Set-up Time CO-15 from WR\# going high	20		15		15		ns	
${ }^{\text {T }}$ WWH	Hold Time C0-15 from WR\# going high	0		0		0		ns	
TWC	Set-up time WR\# high to CLK high	20		16		12		ns	Note 3
${ }^{\text {TMCS }}$	Set-up Time MODO-1 to CLK going high	20		15		15		ns	
$\mathrm{T}_{\mathrm{MCH}}$	Hold Time MODO-1 from CLK going high	0		0		0		ns	
TPCS	Set-up Time PACI\# to CLK going high	25		15		11		ns	
${ }^{\text {TPCH }}$	Hold Time PACI\# from CLK going high	0		0		0		ns	
TECS	Set-up ENPHREG\#,ENCFREG\#, ENOFREG\#, ENPHAC\#, ENTIREG\#, CLROFR\#, PMSEL, LOAD\#, ENI\#, ACC, BINFMT\#, PEAK\#, MODPI/2PI\#, SHO-1, RBYTILD\# from CLK going high	18		12		12		ns	
${ }^{T}$ ECH	Hold Time ENPHREG\#, ENCFREG\# ENOFREG\#,ENPHAC\#, ENTIREG\#, CLROFR\#, PMSEL, LOAD\#, ENI\#, ACC, BINFMT\#, PEAK\#, MODPI/2PI\#,SHO-1, RBYTILD\# from CLK going high	0		0		0		ns	
TDS	Set-up Time RINO-18, IMINO-18 to CLK going high	18		12		12		ns	
TDH	Hold Time RINO-18, IMINO-18 from CLK going high	0		0		0		ns	
TDO	CLK to Output Delay ROO-19, 100-19		40		24		19	ns	
TDEO	CLK to Output Delay DETO-1		40		27		20	ns	
TPO	CLK to Output Delay PACO\#		30		20		12	ns	
TTO	CLK to Output Delay TICO\#		30		20		12	ns	
ToE	Output Enable Time OER\#, OEI\#, OEREXT\#, OEIEXT\#		25		20		20	ns	
$\mathrm{T}_{\text {MD }}$	OUTMUXO-1 to Output Delay		40		28		26	ns	
TOD	Output disable time		20		15		15	ns	Note 2
$\mathrm{T}_{\text {RF }}$	Output rise, fall time		8		8		6	ns	Note 2

NOTES:

1. A.C. testing is performed as follows: Input levels (CLK Input) 4.0 V and OV ; Input levels (all other inputs) OV and 3.0V; Timing reference levels (CLK) 2.0V; All others 1.5 V . Input rise and fall times driven at $1 \mathrm{~ns} / \mathrm{N}$. Output load per test load circuit with switch closed and $\mathrm{C}_{\mathrm{L}}=40 \mathrm{pF}$. Output transition is measured at $\mathrm{V}_{\mathrm{OH}} \geq 1.5 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{OL}} \leq 1.5 \mathrm{~V}$.
2. Controlled via design or process parameters and not directly tested. Characterized upon initial design and after major process and/or design changes.
3. Applicable only when outputs are being monitered and ENCFREG\#, ENPHREG\#, or ENTIREG\# is active.

Waveforms

CONTROL BUS TIMING

INPUT AND OUTPUT TIMING

Waveforms (Continued)

OUTPUT ENABLE, DISABLE TIMING

mULTIPLEXER TIMING

OUTPUT RISE AND FALL TIMES

Test Load Circuit

Switch S1 open for ICCSB and ICCOP tests EQUIVALENT CIRCUIT

Numerically Controlled Oscillator/Modulator

Features

- This Circuit is Processed in Accordance to Mil-Std-883 and is Fully Conformant Under the Provisions of Paragraph 1.2.1
- NCO and CMAC on One Chip
- 15MHz and 25.6MHz Versions
- 32-bit Frequency Control
- 16-bit Phase Modulation
- 16-bit CMAC
- 0.006 Hz Tuning Resolution at 25.6 MHz
- Spurious Frequency Components <-90dBc
- Fully Static CMOS
- 145 Pin PGA

Applications

- Frequency Synthesis
- Modulation - AM, FM, PSK, FSK, QAM
- Demodulation, PLL
- Phase Shifter
- Fast Fourier Transforms (FFT)
- Polar to Cartesian Conversions

Description

The Harris HSP45116/883 combines a high performance quadrature numerically controlled oscillator (NCO) and a high speed 16-bit Complex Multiplier/Accumulator (CMAC) on a single IC. This combination of functions allows a complex vector to be multiplied by the internally generated (cos, \sin) vector for quadrature modulation and demodulation. As shown in the block diagram, the HSP45116/883 is divided into three main sections. The Phase/Frequency Control Section (PFCS) and the Sine/Cosine Section together form a complex NCO. The CMAC multiplies the output of the Sine/Cosine Section with an external complex vector.

The inputs to the Phase/Frequency Control Section consist of a microprocessor interface and individual control lines. The phase resolution of the PFCS is 32 bits, which results in frequency resolution better than 0.006 Hz at 25.6 MHz . The output of the PFCS is the argument of the sine and cosine. The spurious free dynamic range of the complex sinusoid is greater than 90 dBc .

The output vector from the Sine/Cosine Section is one of the inputs to the Complex Multiplier/Accumulator. The CMAC multiplies this (cos, \sin) vector by an external complex vector and can accumulate the result. The resulting complex vectors are available through two 20-bit output ports which maintain the 90 dB spectral purity. This result can be accumulated internally to implement an accumulate and dump filter.

A quadrature down converter can be implemented by loading a center frequency into the Phase/Frequency Control Section. The signal to be downconverted is the Vector Input of the CMAC, which multiplies the data by the rotating vector from the Sine/Cosine Section. The resulting complex output is the down converted signal.

Block Diagram

Absolute Maximum Ratings

Reliability Information

Thermal Resistance	$\theta_{\text {ja }}$,
Ceramic PGA Package	$23.1^{\circ} \mathrm{C} / \mathrm{W}$	$8.3^{\circ} \mathrm{C} / \mathrm{W}$
Maximum Package Power Dissipation at $+125^{\circ} \mathrm{C}$		
Ceramic PGA Package		2.16 Watt

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Operating Conditions

Operating Voltage Range . +4.5 V to +5.5 V
Operating Temperature Range...............$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

TABLE 1. HSP45116/883 D.C. ELECTRICAL PERFORMANCE CHARACTERISTICS
Device Guaranteed and 100% Tested

PARAMETER	SYMBOL	CONDITIONS	GROUP A SUBGROUPS	TEMPERATURE	LIMITS		UNITS
					MIN	MAX	
Logical One Input Voltage	V_{IH}	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	1, 2, 3	$-55^{\circ} \mathrm{C} \leq \mathrm{T} \mathrm{A} \leq+125^{\circ} \mathrm{C}$	2.2	-	V
Logical Zero Input Voltage	VIL	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	1, 2, 3	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	-	0.8	V
Logical One Input Voltage Clock	$\mathrm{V}_{\mathrm{IHC}}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	1,2,3	$-55^{\circ} \mathrm{C} \leq \mathrm{T} \mathrm{A} \leq+125^{\circ} \mathrm{C}$	3.0	-	V
Logical Zero Input Voltage Clock	$\mathrm{V}_{\text {ILC }}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	1,2,3	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	-	0.8	V
Output HIGH Voltage	V_{OH}	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}(\text { Note } 1) \end{aligned}$	1, 2, 3	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	2.6	-	V
Output LOW Voltage	V_{OL}	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=+2.0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}(\text { Note } 1) \end{aligned}$	1, 2, 3	$-55^{\circ} \mathrm{C} \leq \mathrm{T} \mathrm{A} \leq+125^{\circ} \mathrm{C}$	-	0.4	V
Input Leakage Current	1	$\begin{aligned} & V_{I N}=V_{C C} \text { or } G N D \\ & V_{C C}=5.5 \mathrm{~V} \end{aligned}$	1, 2, 3	$-55^{\circ} \mathrm{C} \leq T_{\text {A }} \leq+125^{\circ} \mathrm{C}$	-10	+10	$\mu \mathrm{A}$
Output or I/O Leakage Current	10	$\begin{aligned} & V_{\text {OUT }}=V_{C C} \text { or GND } \\ & V_{C C}=5.5 \mathrm{~V} \end{aligned}$	1, 2, 3	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	-10	+10	$\mu \mathrm{A}$
Standby Power Supply Current	ICCsB	$\begin{aligned} & \mathrm{V}_{I N}=\mathrm{V}_{\mathrm{CC}} \text { or GND, } \\ & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \\ & \text { (Note 4) } \end{aligned}$	1, 2, 3	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	-	500	$\mu \mathrm{A}$
Operating Power Supply Current	${ }^{\text {I CCOP }}$	$\begin{aligned} & \mathrm{f}=15 \mathrm{MHz}, \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \text { or GND } \\ & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}(\text { Notes } 2,4) \end{aligned}$	1, 2, 3	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	-	150	mA
Functional Test	FT	(Note 3)	7,8	$-55^{\circ} \mathrm{C} \leq \mathrm{T}^{\prime} \mathrm{A} \leq+125^{\circ} \mathrm{C}$	-	-	

NOTES:

1. Interchanging of force and sense conditions is permitted.
2. Operating Supply Current is proportional to frequency, typical rating is $10 \mathrm{~mA} / \mathrm{MHz}$.
3. Tested as follows: $f=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{IH}}$ (clock inputs) $=3.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}$ (all other inputs) $=2.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}} \geq 1.5 \mathrm{~V}$, and $\mathrm{V}_{\mathrm{OL}} \leq 1.5 \mathrm{~V}$.
4. Output per test load circuit with switch open and $C_{L}=40 \mathrm{pF}$.

TABLE 2. HSP45116/883 ELECTRICAL PERFORMANCE CHARACTERISTICS
Device Guaranteed and 100\% Tested

PARAMETER	SYMBOL	(NOTE 1) CONDITIONS	GROUP A SUBGROUPS	TEMPERATURE	-15(15MHz)		-25 (25.6MHz)		UNITS
					MIN	MAX	MIN	MAX	
CLK Period	${ }^{T} \mathrm{CP}$		9,10,11	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	66	-	39	-	ns
CLK High	${ }^{\text {T }} \mathrm{CH}$		9, 10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T} \mathrm{A} \leq+125^{\circ} \mathrm{C}$	26	-	15	-	ns
CLK Low	TCL		9, 10, 11	$-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}$	26	-	15	-	ns
WR\# Low	TWL		9, 10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	26	-	15	-	ns
WR\# High	TWH		9,10,11	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	26	-	15	-	ns
Set-up Time; AD0-1, CS\# to WR\# going high	${ }^{\text {TAWS }}$		9, 10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	20	-	18	-	ns
Hold Time; ADO, AD1, CS\# from WR\# going high	${ }^{\text {T }}$ AWH		9,10,11	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	0	-	0	-	ns
Set-up Time C0-15 from WR\# going high	TCWS		9,10,11	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	20	-	18	-	ns
Hold Time CO-15 from WR\# going high	${ }^{\text {T }}$ CWH		9,10,11	$-55^{\circ} \mathrm{C} \leq \mathrm{T} \mathrm{A} \leq+125^{\circ} \mathrm{C}$	0	-	0	-	ns
Set-up Time WR\# to CLK high	TWC	(Note 2)	9, 10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	20	-	16	-	ns
Set-up Time MODO-1 to CLK going high	TMCS		9,10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T} \mathrm{A} \leq+125^{\circ} \mathrm{C}$	20	-	18	-	ns
Hold Time MODO-1 from CLK going high	${ }^{\text {T MCH }}$		9, 10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T} \mathrm{A} \leq+125^{\circ} \mathrm{C}$	0	-	0	-	ns
Set-up Time PACI\# to CLK going high	TPCS		9,10,11	$-55^{\circ} \mathrm{C} \leq \mathrm{T} \mathrm{A} \leq+125^{\circ} \mathrm{C}$	25	-	18	-	ns
Hold Time PACI\# from CLK going high	${ }^{T} \mathrm{PCH}$		9, 10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T} \mathrm{A} \leq+125^{\circ} \mathrm{C}$	0	-	0	-	ns
Set-up Time ENPHREG\# ENCFRCTL\#, ENPHAC\#, ENTICTL\# CLROFR\#, PMSEL\#, LOAD\#, ENI\#, ACC, BINFMT\#, PEAK\#, MODPI/2PI\#, SHO-1, RBYTILD\# from CLK going high	TECS		$9,10,11$	$-55^{\circ} \mathrm{C} \leq \mathrm{T} \mathrm{A} \leq+125^{\circ} \mathrm{C}$	20	-	15	-	ns
Hold Time ENPHREG\#, ENCFRCTL\#, ENPHAC\#, ENTICTL\# CLROFR\#, PMSEL\#, LOAD\#, ENI\#, ACC, BINFMT\#, PEAK\#, MODPI/2PI\#, SHO-1, RBYTILD\# from CLK going high	TECH	.	9,10,11	$-55^{\circ} \mathrm{C} \leq \mathrm{T} \mathrm{A} \leq+125^{\circ} \mathrm{C}$	0	-	0	-	ns
Set-up Time RINO-18, IMINO-18 to CLK going high	TDS		9, 10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T} \mathrm{A} \leq+125^{\circ} \mathrm{C}$	20	-	15	-	ns
Hold Time RINO-18, IMINO-18, to CLK going high	${ }^{T}$ DH		9, 10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T} \mathrm{A} \leq+125{ }^{\circ} \mathrm{C}$	0	-	0	-	ns

TABLE 2. HSP45116/883 ELECTRICAL PERFORMANCE CHARACTERISTICS
Device Guaranteed and 100% Tested

PARAMETER	SYMBOL	(NOTE 1) CONDITIONS	GROUP A SUBGROUPS	TEMPERATURE	-15		-25		UNITS
					MIN	MAX	MIN	MAX	
CLK to Output Delay ROO-19, IOO-19	TDO		9,10,11	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	40	-	25	-	ns
CLK to Output Delay DETO-1	TDEO		9,10,11	$-55^{\circ} \mathrm{C} \leq \mathrm{T} \mathrm{A} \leq+125^{\circ} \mathrm{C}$	40	-	27	-	ns
CLK to Output Delay PACO\#	TPO		9,10,11	$-55^{\circ} \mathrm{C} \leq \mathrm{T} \mathrm{A} \leq+125^{\circ} \mathrm{C}$	30	-	20	-	ns
CLK to Output Delay TICO\#	TTO		$9,10,11$	$-55^{\circ} \mathrm{C} \leq \mathrm{T} \mathrm{A} \leq+125^{\circ} \mathrm{C}$	-	30	-	20	ns
Output Enable Time OER\#, OEI\#, OEREXT\#, OEIEXT\#	TOE	(Note 3)	9,10,11	$-55^{\circ} \mathrm{C} \leq \mathrm{T} \mathrm{A} \leq+125^{\circ} \mathrm{C}$	-	25	-	20	ns
OUTMUXO-1 to Output Delay	TMD		9,10,11	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	-	40	-	28	ns

NOTES:

1. A.C. testing is performed as follows: Input levels (CLK Input) 4.0 V and OV ; Input levels (all other inputs) 3.0V and OV; Timing reference levels (CLK) 2.0 V ; All others 1.5 V . Input rise and fall times driven at $1 \mathrm{~ns} N$. Output load per test load circuit with switch closed and $\mathrm{C}_{\mathrm{L}}=40 \mathrm{pF}$. Output transition is measured at $\mathrm{V}_{\mathrm{OH}} \geq 1.5 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{OL}} \leq 1.5 \mathrm{~V}$.
2. Applicable only when outputs are being monitored and ENCFREG\#, ENPHREG\#, or ENTIREG\# is active.
3. Transition is measured at $\pm 200 \mathrm{mV}$ from steady state voltage, Output loading per test load circuit, with switch closed and $C_{L}=40 \mathrm{pF}$.

TABLE 3. HSP45116 ELECTRICAL PERFORMANCE CHARACTERISTICS

PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	-15		-25		UNITS
					MIN	MAX	MIN	MAX	
Input Capacitance	C_{IN} Cout	$\mathrm{VCC}=\text { Open, } \mathrm{f}=1 \mathrm{MHz}$ All measurements are referenced to device GND.	1	$-55^{\circ} \mathrm{C} \leq \mathrm{T} \mathrm{A} \leq+125^{\circ} \mathrm{C}$	-	15	-	15	pF
Output Capacitance			1	$-55^{\circ} \mathrm{C} \leq \mathrm{T} \mathrm{A} \leq+125^{\circ} \mathrm{C}$	-	15	-	15	pF
Output Disable Time	TOD		1	$-55^{\circ} \mathrm{C} \leq \mathrm{T} \mathrm{A} \leq+125^{\circ} \mathrm{C}$	-	20	-	15	ns
Output Rise Time	T_{R}	From 0.8 V to 2.0 V	1	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	-	8	-	8	ns
Output Fall Time	$\mathrm{T}_{\text {F }}$	From 2.0 V to 0.8 V	1	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	-	8	-	8	ns

NOTES:

1. The parameters in Table 3 are controlled via design or process parameters and not directly tested. Characterized upon initial design and after major process and/or design changes.

TABLE 4. APPLICABLE SUBGROUPS

CONFORMANCE GROUPS	METHOD	SUBGROUPS
Initial Test	$100 \% / 5004$	-
Interim Test	$100 \% / 5004$	-
PDA	100%	1
Final Test	100%	$2,3,8 \mathrm{~A}, 8 \mathrm{~B}, 10,11$
Group A	-	$1,2,3,7,8 \mathrm{~A}, 8 \mathrm{~B}, 9,10,11$
Groups C \& D	Samples $/ 5005$	$1,7,9$

Burn-In Circuit

	1	2	3	4	5	6	7	8.	9	10	11	12	13	14	15	A
A	v_{cc}	$\underset{4}{\text { IMIN }}$	$\underset{8}{\operatorname{IMIN}}$	$\underset{9}{\text { IMIN }}$	IMIN_{11}	$\begin{gathered} \text { IMIN } \\ 15 \end{gathered}$	$\underset{16}{\text { IMIN }}$	GND	v_{Cc}	$\begin{aligned} & 10 \\ & 18 \end{aligned}$	$\begin{aligned} & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & \text { 1o } \\ & 12 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	GND	$v_{\text {cc }}$	
B	GND	$\underset{1}{\operatorname{Imin}}$	$\begin{array}{\|c} \hline \text { IMIN } \\ 5 \end{array}$	$\underset{7}{\operatorname{IMIN}}$	$\underset{10}{\mathrm{IM} \text { IN }}$	$\begin{gathered} \text { IMIN } \\ 13 \end{gathered}$	$\begin{gathered} \text { IMIN } \\ 14 \end{gathered}$	$\begin{aligned} & 10 \\ & 19 \end{aligned}$	$\begin{aligned} & 10 \\ & 16 \end{aligned}$	$\begin{aligned} & 10 \\ & 14 \end{aligned}$	$\begin{aligned} & 10 \\ & 11 \end{aligned}$	$\begin{gathered} 10 \\ 8 \end{gathered}$	$\begin{gathered} 10 \\ 7 \end{gathered}$	$\begin{gathered} 10 \\ 5 \end{gathered}$	$\begin{gathered} 10 \\ 2 \end{gathered}$	B
c	$\begin{gathered} \text { RIN } \\ 15 \end{gathered}$	$\begin{gathered} \text { RIN } \\ 18 \end{gathered}$	$\underset{2}{2 M I N}$	$\begin{array}{\|c} \hline \text { IMIN } \\ 3 \end{array}$	$\underset{6}{\text { IMIN }}$	$\begin{array}{\|c\|c\|} \hline \text { MIN } \\ \hline \end{array}$	$\begin{array}{\|c} \hline \text { IMIN } \\ 17 \end{array}$	$\begin{array}{\|c} \operatorname{limin} \\ 18 \end{array}$	$\begin{aligned} & 10 \\ & 17 \end{aligned}$	$\begin{aligned} & 10 \\ & 13 \end{aligned}$	$\begin{gathered} 10 \\ 9 \end{gathered}$	$\begin{gathered} 10 \\ 6 \end{gathered}$	10	$\begin{gathered} 10 \\ 1 \end{gathered}$	$\begin{aligned} & \text { RO } \\ & 18 \end{aligned}$	c
D	$\begin{aligned} & \text { RIN } \\ & 13 \end{aligned}$	$\begin{gathered} \text { RIN } \\ 17 \end{gathered}$	$\underset{0}{\text { IMIN }}$	index	145 LEAD PIN GRID ARRAY TOP VIEW								10 3	$\begin{aligned} & \text { RO } \\ & 19 \end{aligned}$	$\begin{aligned} & \text { RO } \\ & 17 \end{aligned}$	D E
E	$\begin{gathered} \text { RIN } \\ 10 \end{gathered}$	$\begin{gathered} \text { RIN } \\ \hline 14 \end{gathered}$	$\begin{aligned} & \text { RIN } \\ & \mathbf{1 6} \end{aligned}$										10	$\begin{aligned} & \text { RO } \\ & 16 \end{aligned}$	$\begin{aligned} & \text { RO } \\ & 15 \end{aligned}$	
F	$\underset{7}{\operatorname{RIN}}$	$\begin{aligned} & \text { RIN } \\ & 11 \end{aligned}$	$\begin{gathered} \text { RIN } \\ 12 \end{gathered}$										$\begin{aligned} & \text { RO } \\ & 14 \end{aligned}$	$\begin{aligned} & \hline \text { RO } \\ & 13 \end{aligned}$	$\begin{aligned} & \text { RO } \\ & 11 \end{aligned}$	F
G	$v_{C C}$	$\underset{9}{\text { RIN }}$	$\begin{gathered} \text { RiN } \\ \hline \end{gathered}$										$\begin{gathered} \text { RO } \\ 9 \end{gathered}$	$\begin{aligned} & \text { RO } \\ & 12 \end{aligned}$	$\begin{aligned} & \text { RO } \\ & 10 \end{aligned}$	G
H	GND	$\underset{6}{\text { RIN }}$	RIN										$\begin{gathered} \text { RO } \\ 8 \end{gathered}$	$\begin{gathered} \text { RO } \\ 7 \end{gathered}$	GND	H
J	${ }_{3}^{\text {RIN }}$	$\stackrel{\text { RIN }}{1}$	$\begin{gathered} \text { RIN } \\ 4 \end{gathered}$										RO	$\begin{gathered} \text { RO } \\ 4 \end{gathered}$	v_{Cc}	J
K	$\begin{gathered} \text { RIN } \\ 2 \end{gathered}$	RIN	$\begin{gathered} \mathrm{SH} \\ 1 \end{gathered}$										$\begin{gathered} \text { RO } \\ 1 \end{gathered}$	$\begin{gathered} \text { RO } \\ 2 \end{gathered}$	$\begin{gathered} \text { RO } \\ 6 \end{gathered}$	K
L	$\begin{gathered} \mathrm{SH} \\ \mathrm{O} \end{gathered}$	ACC	$\begin{gathered} \text { RBYTLID } \\ \# \end{gathered}$										$\underset{\neq}{\text { PACO }}$	$\begin{gathered} \text { DET } \\ 1 \end{gathered}$	$\begin{gathered} \text { RO } \\ 3 \end{gathered}$	L
M	$\begin{aligned} & \text { ENPW } \\ & \text { ReG } \\ & \neq 7 \end{aligned}$	$\begin{gathered} \text { PEAK } \\ \# \end{gathered}$	$\begin{gathered} \text { MOD } \\ 1 \end{gathered}$										oenexi \#	$\begin{aligned} & \text { OEI } \\ & \# \end{aligned}$	$\begin{gathered} \text { RO } \\ 0 \end{gathered}$	M
N	$\begin{gathered} \text { ENOF } \\ \text { ficig } \\ \text { \#\# } \end{gathered}$	$\begin{gathered} \text { Binimi } \\ \# \# \end{gathered}$	$\begin{gathered} \text { MOD } \\ 0 \end{gathered}$	$\begin{gathered} \mathrm{LOAD} \\ \# \end{gathered}$	$\begin{aligned} & \text { ENCF } \\ & \text { RNCG } \\ & + \end{aligned}$	$\begin{array}{\|c} \text { MODPA } \\ \text { 12P1 } \\ \# \end{array}$	$\begin{gathered} A D \\ 0 \end{gathered}$	$\begin{gathered} \hline c \\ 14 \end{gathered}$	$\begin{gathered} c \\ 13 \end{gathered}$	$\begin{gathered} \bar{C} \\ 8 \end{gathered}$	$\begin{aligned} & \mathrm{C} \\ & \hline \end{aligned}$	$\underset{1}{\text { Müx }}$	$\begin{gathered} \text { OH- } \\ \operatorname{mux} \\ 0 \end{gathered}$	$\begin{gathered} \text { OELITI } \\ \# 7 \end{gathered}$	$\begin{gathered} \hline \text { DET } \\ 0 \end{gathered}$	N
P	$\begin{gathered} \text { TICO } \\ \# \end{gathered}$	$\begin{array}{\|c} \mathrm{PACI} \\ \# \end{array}$	pmsEL	cliorn \#	enturec $\not \#$	$\begin{aligned} & \text { cs } \\ & \# \end{aligned}$	$\begin{gathered} \text { AD } \\ 1 \end{gathered}$	$\begin{gathered} c \\ 15 \end{gathered}$	$\begin{gathered} c \\ 10 \end{gathered}$	$\begin{aligned} & \mathrm{C} \\ & 9 \end{aligned}$	$\begin{aligned} & \mathrm{C} \\ & 6 \end{aligned}$	$\begin{aligned} & \mathbf{C} \\ & \mathbf{3} \end{aligned}$	c	OER \#\#	GND	P
0	V_{CG}	GND	ENIPIIAC \#	ENI	cle	$\begin{aligned} & \text { WR } \\ & \text { \# } \end{aligned}$	$\mathrm{v}_{\text {GC }}$	GND	c 12	$\begin{gathered} \hline \mathrm{C} \\ 11 \end{gathered}$	$\begin{aligned} & \hline \mathbf{c} \\ & 7 \end{aligned}$	$\begin{aligned} & \hline \mathrm{G} \\ & 5 \end{aligned}$	$\begin{aligned} & \mathrm{C} \\ & 4 \end{aligned}$	$\begin{aligned} & \mathbf{c} \\ & \mathbf{o} \end{aligned}$	v_{Cc}	Q
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	

Burn-In Circuit (Continued)

$\begin{aligned} & \text { PGA } \\ & \text { PIN } \end{aligned}$	PIN NAME	BURN-IN SIGNAL	$\begin{aligned} & \text { PGA } \\ & \text { PIN } \end{aligned}$	PIN NAME	BURN-IN SIGNAL	$\begin{aligned} & \text { PGA } \\ & \text { PIN } \end{aligned}$	PIN NAME	BURN-IN SIGNAL	$\begin{aligned} & \text { PGA } \\ & \text { PIN } \end{aligned}$	PIN NAME	BURN-IN SIGNAL
D3	IMIN(0)	F4	Q3	ENPHAC\#	F1	K14	$\mathrm{RO}(2)$	$\mathrm{V}_{\mathrm{CC}} / 2$	A10	IO(18)	$\mathrm{v}_{\mathrm{CC}} / 2$
C2	RIN(18)	F9	P5	ENTIREG\#	F4	L15	$\mathrm{RO}(3)$	$\mathrm{V}_{\mathrm{CC} / 2}$	B8	IO(19)	$\mathrm{v}_{\mathrm{CC}} / 2$
D2	RIN(17)	F8	Q4	ENI\#	F1	J14	RO(4)	$\mathrm{v}_{\mathrm{CC}} / 2$	C8	$\operatorname{IMIN}(18)$	F9
E3	RIN(16)	F7	N6	MODPI/2PI\#	F16	J13	RO(5)	$\mathrm{V}_{\mathrm{CC}} / 2$	C7	$\operatorname{IMIN}(17)$	F8
C1	RIN(15)	F6	P6	CS\#	F2	K15	RO(6)	$\mathrm{v}_{\mathrm{CC} / 2}$	A7	$\operatorname{IMIN}(16)$	F7
E2	RIN(14)	F5	Q5	CLK	FO	H14	$\mathrm{RO}(7)$	$\mathrm{V}_{\mathrm{CC} / 2}$	A6	$\operatorname{IMIN}(15)$	F6
D1	RIN(13)	F4	P7	AD(1)	F4	H13	$\mathrm{RO}(8)$	$\mathrm{v}_{\mathrm{CC} / 2}$	B7	$\operatorname{IMIN}(14)$	F5
F3	RIN(12)	F16	N7	AD(0)	F3	G13	RO(9)	$\mathrm{v}_{\mathrm{CC} / 2}$	B6	$\operatorname{IMIN}(13)$	F4
F2	RIN(11)	F15	Q6	WR\#	F1	G15	RO(10)	$\mathrm{V}_{\mathrm{CC} / 2}$	C6	$\operatorname{IMIN}(12$	F16
E1	RIN(10)	F14	P8	C(15)	GND	F15	RO(11)	$\mathrm{V}_{\mathrm{CC} / 2}$	A5	$\operatorname{IMIN}(11)$	F15
G2	RIN(9)	F13	N8	C(14)	GND	G14	RO(12)	$\mathrm{V}_{\mathrm{CC} / 2}$	B5	$\operatorname{IMIN}(10)$	F14
G3	RIN(8)	F12	N9	C(13)	GND	F14	RO(13)	$\mathrm{V}_{\mathrm{CC} / 2}$	A4	$\operatorname{IMIN}(9)$	F13
F1	RIN(7)	F11	Q9	C(12)	GND	F13	RO(14)	$\mathrm{V}_{\mathrm{CC} / 2}$	A3	$\operatorname{IMIN}(8)$	F12
H2	RIN(6)	F10	Q10	C(11)	GND	E15	RO(15)	$\mathrm{V}_{\mathrm{CC} / 2}$	B4	$\operatorname{IMIN}(7)$	F11
H3	RIN(5)	F9	P9	C(10)	GND	E14	RO(16)	$\mathrm{V}_{\mathrm{CC}} / 2$	C5	$\operatorname{IMIN}(6)$	F10
J3	RIN(4)	F8	P10	C(9)	GND	D15	RO(17)	$\mathrm{v}_{\mathrm{CC} / 2}$	B3	$\operatorname{IMIN}(5)$	F9
J1	RIN(3)	F7	N10	C(8)	GND	C15	RO(18)	$\mathrm{v}_{\mathrm{CC} / 2}$	A2	$\operatorname{IMIN}(4)$	F8
K1	RIN(2)	F6	Q11	C(7)	GND	D14	RO(19)	$\mathrm{v}_{\mathrm{CC} / 2}$	C4	IMIN(3)	F7
J2	RIN(1)	F5	P11	C(6)	GND	E13	10(0)	$\mathrm{V}_{\mathrm{CC} / 2}$	C3	$\operatorname{IMIN}(2)$	F6
K2	RIN(0)	F4	Q12	C(5)	GND	C14	$10(1)$	$\mathrm{v}_{\mathrm{CC} / 2}$	B2	$\operatorname{IMIN}(1)$	F5
K3	$\mathrm{SH}(1)$	F3	Q13	C(4)	GND	B15	1O(2)	$\mathrm{v}_{\mathrm{CC} / 2}$	A1	$V_{C C}$	None
L1	$\mathrm{SH}(\mathrm{O})$	F2	P12	C(3)	GND	D13	$10(3)$	$\mathrm{V}_{\mathrm{CC} / 2}$	A9	V_{CC}	V_{CC}
L2	ACC	F4	N11	C(2)	GND	C13	10(4)	$\mathrm{v}_{\mathrm{CC} / 2}$	A15	V_{CC}	None
M1	ENPHREG\#	F16	P13	C(1)	GND	B14	10(5)	$\mathrm{v}_{\mathrm{cc} / 2}$	G1	V_{CC}	$V_{\text {CC }}$
N1	ENOFREG\#	F4	Q14	C(0)	V_{CC}	C12	10(6)	$\mathrm{v}_{\mathrm{CC} / 2}$	J15	$V_{\text {CC }}$	$V_{\text {CC }}$
M2	PEAK\#	F8	N12	OUTMUX(1)	F11	B13	$10(7)$	$\mathrm{V}_{\mathrm{CC} / 2}$	Q1	V_{CC}	None
L3	RBYTILD\#	F16	N13	OUTMUX(0)	F10	B12	10(8)	$\mathrm{V}_{\mathrm{CC}} / 2$	Q7	V_{CC}	V_{CC}
N2	BINFMT\#	F4	P14	OER\#	FO	C11	10(9)	$\mathrm{V}_{\mathrm{CC}} / 2$	Q15	V_{CC}	None
P1	TICO\#	$\mathrm{V}_{\mathrm{CC} / 2}$	M13	OEREXT\#	FO	A13	10(10)	$\mathrm{V}_{\mathrm{CC}} / 2$	A8	GND	GND
M3	MOD(1)	GND	N14	OEIEXT\#	FO	B11	10(11)	$\mathrm{V}_{\mathrm{CC} / 2}$	A14	GND	None
N3	MOD(0)	GND	M14	OEI\#	FO	A12	10(12)	$\mathrm{V}_{\mathrm{CC} / 2}$	B1	GND	None
P2	PACI\#	F4	L13	PACO\#	$\mathrm{v}_{\mathrm{CC} / 2}$	C10	IO(13)	$\mathrm{V}_{\mathrm{CC}} / 2$	H1	GND	GND
N4	LOAD\#	F15	N15	DETO	$\mathrm{v}_{\mathrm{CC} / 2}$	B10	1O(14)	$\mathrm{v}_{\mathrm{CC}} / 2$	H15	GND	GND
P3	PMSEL	F1	L14	DET1	$\mathrm{V}_{\mathrm{CC} / 2}$	A11	$10(15)$	$\mathrm{V}_{\mathrm{CC} / 2}$	P15	GND	None
P4	CLROFR\#	F4	M15	RO(0)	$\mathrm{v}_{\mathrm{CC} / 2}$	B9	10(16)	$\mathrm{V}_{\mathrm{CC}} / 2$	Q2	GND	None
N5	ENCFREG\#	F4	K13	RO(1)	$\mathrm{v}_{\mathrm{CC} / 2}$	C9	10(17)	$\mathrm{V}_{\mathrm{CC}} / 2$	Q8	GND	GND

NOTES:

1. $47 \mathrm{~K} \Omega(\pm 20 \%)$ resistor connected to all pins except $V_{C C}$ and GND
2. $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \pm 0.5 \mathrm{~V}$ with $0.1 \mu \mathrm{~F}(\mathrm{~min})$ capacitor between V_{CC} and $G N D$ per position
3. $F O=100 \mathrm{kHz} \pm 10 \%, F 1=F 0 / 2, F 2=F 1 / 2 \ldots, F 11=F 10 / 2,40 \%$ to 60\% duty cycle
4. Input Voltage limits: $\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$ max, $\mathrm{V}_{\mathrm{IH}}=4.5 \mathrm{~V} \pm 10 \%$

Die Characteristics

DIE DIMENSIONS:
$350 \times 353 \times 19 \pm 1$ mils
METALLIZATION:
Type: Si-Al or $\mathrm{Si}-\mathrm{Al}-\mathrm{Cu}$
Thickness: $15.9 \mathrm{k} \AA$
GLASSIVATION:
Type: Nitrox
Thickness: $10 \mathrm{k} \AA$

DIE ATTACH:
Material: Silver Glass
Temperature: Ceramic PGA - $440^{\circ} \mathrm{C}$ (Max)

Metallization Mask Layout
HSP45116/883

Packaging ${ }^{\dagger}$

145 LEAD PIN GRID ARRAY

NOIES:
© INCREASE MAXIMUM LIMIT BY OO3" WHEN SOLDER DIP OR TIN PLATE LEAD FINISH APPLIES
2. ACTUAL STANDOFF CONFIGURATION MAY VARY. STANDOFFS SHOULD BE LOCATED ON THE PIN MATRIX DIAGONALS.
3. THERE MUST BE AN AI CORNER IDENTFIER ON BOTH TOP AND BOTTOM SURFACES. ID TMPE IS OPTIONAL and may consist of notches, metallized markings OR OTHER FEATURES.

LEAD MATERIAL: Type B
LEAD FINISH: Type A
PACKAGE MATERIAL: Ceramic, 90% Alumina
PACKAGE SEAL:
Material: Glass Frit
Temperature: $450^{\circ} \mathrm{C} \pm 10^{\circ} \mathrm{C}$
Method: Furnace Seal

INTERNAL LEAD WIRE:
Material: Aluminum
Diameter: 1.25 Mil
Bonding Method: Ultrasonic
COMPLIANT OUTLINE: 38510 P-AC

HARRIS

Features

- $25.6 \mathrm{MHz}, 33 \mathrm{MHz}, 40 \mathrm{MHz}$ Versions
- 32-Bit Center and Offset Frequency Control
- 16-Bit Phase Control
- 8 Level PSK Supported Through Three Pin Interface
- Simultaneous 16 Bit Sine and Cosine Outputs
- Output in Two's Complement or Offset Binary
- $<0.01 \mathrm{~Hz}$ Tuning Resolution at 40 MHz
- Serial or Parallel Outputs
- Spurious Frequency Components $<-90 \mathrm{dBc}$
- 16 Bit Microprocessor Compatible Control Interface
- 85 Pin PGA, 84 Pin PLCC

Applications

- Direct Digital Synthesis
- Quadrature Signal Generation
- Modulation - FM, FSK, PSK (BPSK, QPSK, 8PSK)
- Precision Signal Generation

Description

The Harris HSP45106 is a high performance 16-bit quadrature numerically controlled oscillator (NCO16). The NCO16 simplifies applications requiring frequency and phase agility such as frequency-hopped modems, PSK modems, spread spectrum communications, and precision signal generators. As shown in the block diagram, the HSP45106 is divided into a Phase/Frequency Control Section (PFCS) and a Sine/Cosine Section.

The inputs to the Phase/Frequency Control Section consist of a microprocessor interface and individual control lines. The frequency resolution is 32 bits, which provides for resolution of better than 0.01 Hz at 40 MHz . User programmable center frequency and offset frequency registers give the user the capability to perform phase coherent switching between two sinusoids of different frequencies. Further, a programmable phase control register allows for phase control of better than 0.0060°. In applications requiring up to 8-level PSK, three discrete inputs are provided to simplify implementation.

The output of the PFCS is a 32-bit phase which is input to the Sine/Cosine Section for conversion into sinusoidal amplitude. The outputs of the sine/cosine section are two 16 -bit quadrature signals. The spurious free dynamic range of this complex vector is greater than 90 dBc .

For added flexibility when using the NCO16 in conjunction with DAC's, a choice of either parallel of serial outputs with either two's complement or offset binary encoding is provided. In addition, a synchronization signal is available which signals serial word boundaries.

Block Diagram

Pinouts

Pin Description

NAME	PGA PIN NUMBER	TYPE	DESCRIPTION
V_{CC}	$\begin{gathered} \text { B5, D11, F1, } \\ \text { K7, K10 } \end{gathered}$		+5 power supply pin.
GND	$\begin{gathered} \text { A9, D2, E10, } \\ \text { K4, L11 } \end{gathered}$		Ground
C0-15	$\begin{aligned} & A 1-8, B 3-4 \\ & B 6-8, C 5-7 \end{aligned}$	1	Control input bus for loading phase, frequency, and timer data into the PFCS. CO is LSB.
AO-2	A10, B9-10	1	Address pins for selecting destination of $\mathrm{CO}-15$ data (Table 2).
CS\#	E11	1	Chip select (Active low). Enables data to be written into control registers by WR\#.
WR\#	E9	1	Write enable (Active low). Data is clocked into the register selected by AO-2 on the rising edge of WR \# when CS\# is low.
CLK	K9	1	Clock. All registers, except the control registers clocked with WR\#, are clocked (when enabled) by the rising edge of CLK.
ENPOREG\#	F10	I	Phase Offset Register Enable (Active low). Registered on chip by CLK. When active, after being clocked onto chip, ENPOREG\# enables the clocking of data into the Phase Offset Register. Allows ROM address to be updated regardless of ENPHAC\#.
ENOFREG\#	F9	I	Offset Frequency Register Enable (Active low). Registered on chip by CLK. When active, after being clocked onto chip, ENOFREG\# enables the clocking of data into the Offset Frequency Register.
ENCFREG\#	F11	1	Center Frequency Register Enable (Active low). Registered on chip by CLK. When active, after being clocked onto chip, ENCFREG\# enables the clocking of data into the Center Frequency Register.
ENPHAC\#	H11	1	Phase Accumulator Register Enable (Active low). Registered on chip by CLK. When active, after being clocked onto chip, ENPHAC\#enables the clocking of data into the Phase Accumulator Register.
ENTIREG\#	G11	1	Timer Increment Register Enable (Active low). Registered on chip by CLK. When active, after being clocked onto chip, ENTIREG\# enables the clocking of data into the Timer Increment Register.
INHOFR\#	G9	1	Inhibit Offset Frequency Register Output (active low). Registered on chip by CLK. When active, after being clocked onto chip, INHOFR\# zeroes the data path from the Offset Frequency Register to the Frequency Adder. New data can be still clocked into the Offset Frequency Register. INHOFR\# does not affect the contents of the register.
INITPAC\#	$J 11$	1	Initialize Phase Accumulator (Active low). Registered on chip by CLK. Zeroes the feedback path in the Phase Accumulator. Does not clear the Phase Accumulator Register.
MODO-2	$\begin{gathered} \text { B11, } \\ \text { C10-11 } \end{gathered}$	1	Modulation Control Inputs. When selected with the PMSEL line, these bits add an offset of $0,45,90$, $135,180,225,270$, or 315 degrees to the current phase (i.e., modulate the output). The lower 13 bits of the phase control are set to zero. These bits are registered when the Phase Offset Register is enabled.
PMSEL	A11	1	Phase Modulation Select input. Registered on chip by CLK. This input determines the source of the data clocked into the Phase Offset Register. When high, the Phase Input Register is selected. When low, the external modulation pins (MODO-2) control the three most significant bits of the Phase Offset Register and the 13 least significant bits are set to zero.
PACI\#	H10	1	Phase Accumulator Carry Input (Active low). Registered on chip by CLK.
INITTAC\#	G10	1	Initialize Timer Accumulator (Active low). This input is registered on chip by CLK. When active, after being clocked onto chip, INITTAC\# enables the clocking of data into the Timer increment Register, and also zeroes the feedback path in the Timer Accumulator.
TEST	D10	1	Test select input. Registered on chip by CLK. This input is active high. When active, this input enables test busses to the outputs instead of the sine and cosine data.
PAR/SER\#	J10	1	Parallel/Serial Output Select. This input is registered on chip by CLK. When low, the sine and cosine outputs are in serial mode. The output shift registers will load in new data after ENPHAC\# goes low and will start shifting the data out after ENPHAC\# goes high. When this input is high, the output registers are loaded every clock and no shifting takes place.
BINFMT\#	K11	1	Format. This input is registered on chip by CLK. When low, the MSB of the SIN and COS are inverted to form an offset binary (unsigned) number.
OES\#	K2	1	Three-state control for bits SINO-15. Outputs are enabled when OES\# is low.
OEC\#	J2	1	Three-state control for bits COSO-15. Outputs are enabled when OEC\# is low.
TICO\#	B2	0	Timer Accumulator Carry Output. Active low, registered. This output goes low when a carry is generated by the Timer Accumulator.

Pin Description (Continued)

NAME	PGA PIN NUMBER	TYPE	
DACSTRB\#	L1	O	DAC Strobe (Actove low). In serial mode, this output will go low when the first bit of a new output word is valid at the shift register output.
SINO-15	J5-7, K3, K5-6, K8, L2-10	O	Sine output data. When parallel mode is enabled, data is output on SINO-15. When serial mode is enabled, output data bits are shifted out of SIN15 and SINO. The bit stream on SIN 15 is provided MSB first while the bit stream on SINO is provided LSB first.
COS0-15	B1, C1-2, D1, E1-3, F2-3, G1-3, H1-2, J1, K1	O	Cosine output data. When parallel mode is enabled, data is output on COSO-15. When serial mode is enabled, output data bits are shifted out of COS15 and COSO. The bit stream on COS15 is provided LSB first.
Index Pin	C3		Used to align chip in socket or on circuit board. Must be left as a no connect in circuit.

Functional Description

The 16-bit Numerically Controlled Oscillator (NCO16) produces a digital complex sinusoid waveform whose frequency and phase are controlled through a standard microprocessor interface and discrete inputs. The NCO16 generates 16 -bit sine and cosine vectors at a maximum sample rate of 40 MHz . The NCO 16 can be preprogrammed to produce a constant (CW) sine and cosine output for Direct Digital Synthesis (DDS) applications. Alternatively, the phase and frequency inputs can be updated in real time to produce a FM, PSK, FSK, or MSK modulated waveform. To simplify PSK generation, a 3 pin interface is provided to support modulation of up to 8 levels.

As shown in the Block Diagram, the NCO16 is comprised of a Phase and Frequency Control Section (PFCS) and Sine/ Cosine Section. The PFCS stores the phase and frequency control inputs and uses them to calculate the phase angle of a rotating complex vector. The Sine/Cosine Section performs a lookup on this phase and generates the appropriate amplitude values for the sine and cosine. These quadrature outputs may be configured as serial or parallel with either two's complement or offset binary format.

Phase/Frequency Control Section

The phase and frequency of the quadrature outputs are controlled by the PFCS (Figure 1). The PFCS generates a 32 bit word which represents the instantaneous phase ($\mathrm{Sin} / \mathrm{Cos}$ argument) of the sine and cosine waves being generated. This phase is incremented on the rising edge of each CLK by the preprogrammed amounts in the phase and frequency control registers. As the instantaneous phase steps from 0 through full scale (232-1), the phase of the quadrature outputs proceeds from 0^{0} around the unit circle counter clockwise.

The PFCS is comprised of a Phase Accumulator Section, Phase Offset adder, Input Section, and a Timer Accumulator Section. The Phase Accumulator computes the instantaneous phase angle from user programmed values in the Center and Offset Frequency Registers. This angle is then fed into the Phase Offset adder where it is offset by the preprogrammed value in the Phase Offset Register. The Input Section routes data from a microprocessor compatible control bus and discrete input signals into the appropriate configuration registers. The Timer Accumulator
supplies a pulse to mark the passage of a user programmed period of time.

Input Section

The Input Section loads the data on C0-15 into one of the seven input registers, the LSB and MSB Center Frequency Input Registers, the LSB and MSB Offset Frequency Registers, the LSB and MSB Timer Input Registers, and the Phase Input Register. The destination depends on the state of AO-2 when CS\# and WR\# are low (Table 1).

TABLE 1

A2-O DECODING						
A2	A1	AO	CS\#	WR\#	FUNCTION	
0	0	0	0	\uparrow	Load least significant bits of Center Frequency input.	
0	0	1	0	\uparrow	Load most significant bits of Center Frequency input.	
0	1	0	0	\uparrow	Load least significant bits of Offset Frequency input.	
0	1	1	0	\uparrow	Load most significant bits of Offset Frequency input.	
1	0	0	0	\uparrow	Load least significant bits of Timing Interval input.	
1	0	1	0	\uparrow	Load most significant bits of Timing Interval input.	
1	1	0	0	\uparrow	Load Phase Register	
1	1	1	0	\uparrow	Reserved	
X	x	x	1	x	Input Disabled	

Once the input registers have been loaded, the control inputs ENCFREG\#, ENOFREG\#, ENTIREG\#, ENCTIREG\#, and ENPOREG\# will allow the input registers to be downloaded to the PFCS control registers with the input CLK. The control inputs are latched on the rising edge of CLK and the control registers are updated on the rising edge of the following CLK. For example, to load the Center Frequency Register, the data is loaded into the LSB and MSB Center Frequency Input Register, and ENCFREG\# is set to zero; the next rising edge of CLK will pass the registered version of ENCFREG\#, R.ENCFREG\#, to the

clock enable of the Center Frequency Register; this register then gets loaded on the following rising edge of CLK. The contents of the input registers are downloaded to the control registers every clock if the control inputs are enabled.

Phase Accumulator Section

The Phase Accumulator adds the 32 bit output of the Frequency Adder with the contents of a 32 bit Phase Accumulator Register on every clock cycle. When the sum causes the adder to overflow, the accumulation continues with the least significant 32 bits of the result.

Initializing the Phase Accumulator Register is done by putting a low on the INITPAC\# and ENPHAC\# lines. This zeroes the feedback path to the accumulator, so that the register is loaded with the current value of the Frequency Adder on the next clock.
The frequency of the quadrature outputs is based on the number of clock cycles required to step from 0 to full scale. The number of steps required for this transition depends on the phase increment calculated by the frequency adder. For example, if the Center and Offset Frequency registers are programmed such that the output of the Frequency Adder is 40000000 hex, the Phase Accumulator will step the phase from 0 to 360 degrees every 4 clock cycles. Thus, for a 30 MHz CLK, the quadrature outputs will have a frequency of $30 / 4 \mathrm{MHz}$ or 7.5 MHz . In general, the frequency of the quadrature output is determined by $N \times F C L K / 2^{32}$, where N is the output of the Frequency Adder and FCLK is the frequency of CLK.

The Frequency Adder sums the contents of both the Center and Offset Frequency Registers to produce a phase increment. By enabling INHOFR\#, the output of the Offset Frequency Register is disabled so that the output frequency is determined from the Center Frequency Register alone. For BFSK modems, INHOFR\# can be asserted/ de-asserted to toggle the quadrature outputs between two programmed frequencies. Note: enabling/disabling INHOFR\# preserves the contents of the Offset Frequency Register.

Phase Offset Adder

The output of the Phase Accumulator goes to the Phase Offset Adder, which adds the 16 bit contents of the Phase Offset Register to the 16 MSB's of the phase. The resulting 32-bit number forms the instantaneous phase which is fed to the Sine/Cosine Section.

The user has the option of loading the Phase Offset Registers with the contents of the Phase Input Register or the MODO-2 inputs depending on the state of PMSEL. When PMSEL is high, the contents of the Phase Input Register are loaded. If PMSEL is low, MODO-2 encode the upper 3 bits of the Phase Offset Register while the lower 13 bits are cleared. The MODO-2 inputs simplify PSK modulation by providing a 3 input interface to phase modulate the carrier as shown in Table 2. The control input ENPOREG\# acts as a clock enable and must be low to enable clocking of data into the Phase Offset Register.

TABLE 2

MOD2-O DECODING			
MOD2	MOD1	MODO	PHASE SHIFT (DEGREES)
0	0	0	0
0	0	1	45
0	1	0	90
0	1	1	135
1	0	0	270
1	0	1	315
1	1	0	180
1	1	1	225

Timer Accumulator Section
The Timer Accumulator consists of a register which is incremented on every clock. The amount by which it increments is loaded into the Timer Increment Input Registers and is latched into the Timer Increment Register on rising edges of CLK while ENTIREG\# is low. The output of the Timer Accumulator is the accumulator carry out, TICO\#. TICO\# can be used as a timer to enable the periodic sampling of the output of the NCO-16. The number programmed into this register equals ($2^{32} \times$ CLK period)/ (desired time interval).

Sine/Cosine Section

The Sine/Cosine Section (Figure 2) converts the instantaneous phase from the PFCS Section into the appropriate amplitude values for the sine and cosine outputs. It takes the most significant 20 bits of the PFCS output and passes them through a Sine/Cosine look up to form the 16 bit quadrature outputs. The sine and cosine values are computed to reduce the amount of ROM needed. The magnitude of the error in the computed value of the complex vector is less than -90.2 dB . The error in the sine or cosine alone is approximately 2 dB better. The 20 bit phase word maps into 2π radians so that the angular resolution is $(2 \pi) / 2^{20}$. An address of zero corresponds to 0 radians and an address of hex FFFFF corresponds to $2 \pi-\left((2 \pi) / 2^{20}\right)$ radians. The outputs of the Sine/Cosine Section are two's complement sine and cosine values. The ROM contents have been scaled by $\left(2^{16-1}\right) /\left(2^{16}+1\right)$ for symmetry about zero.
To simplify interfacing with D/A converters, the format of the sine/cosine outputs may be changed to offset binary by enabling BINFMT\#. When BINFMT\# is enabled, The MSB of the Sine and Cosine outputs (SIN15 and COS15 when the outputs are in parallel mode) are inverted. Depending upon the state of BINFMT\#, the output is centered around midscale and ranges from 8001 H to 7FFFH (two's complement mode) or 0001H to FFFFH (offset binary mode).
Serial output mode may is chosen by enabling PAR/SER\#. In this mode the user loads the output shift registers with Sine/Cosine ROM output by enabling ENPHAC\#. After ENPHAC\# goes inactive the data is shifted out serially. For
example, to clock out one 16 bit sine/cosine output, ENPHAC\# would be active for one cycle to load the output shift register, and would then go inactive for the following 15 cycles to clock the remaining bits out. Output bit streams are provided in formats with either MSB first or LSB first. The MSB first format is available on the SIN15 and COS15 output pins. The LSB first format is available on the SINO and COSO output pins. In MSB first format, zero's follow the LSB if a new output word is not loaded into the shift register. In LSB first format, the sine extension bit follows the MSB if
a new data word is not loaded. The output signal DACSTRB\# is provided to signal the first bit of a new output word is valid (Figure 3). Note: all unused pins of SINO-15 and COSO-15 should be left floating.
A test mode is supplied which enables the user to access the phase input to the Sine/Cosine ROM. If TEST and PAR/ SER\# are both high, the 28 MSB 's of the phase input to the Sine/Cosine Section are made available on SINO-15 and COS4-15. The SINO-15 outputs represent the MSW of the address.

FIGURE 2. SINE/COSINE BLOCK DIAGRAM

FIGURE 3. SERIAL OUTPUT I/O TIMING DIAGRAM

Absolute Maximum Ratings

Operating Conditions

D.C. Electrical Specifications

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
V_{IH}	Logical One Input Voltage	2.0	-	v	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$
$\mathrm{V}_{\text {IL }}$	Logical Zero Input Voltage	-	0.8	v	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$
$\mathrm{V}_{\text {IHC }}$	High Level Clock Input	3.0	-	V	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$
VILC	Low Level Clock Input	-	0.8	V	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$
V_{OH}	Output HIGH Voltage	2.6	-	V	$\mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V}$
V_{OL}	Output LOW Voltage	-	0.4	V	$\mathrm{l}_{\mathrm{OL}}=+2.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V}$
1	Input Leakage Current	-10	10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$ or GND, $\mathrm{V}_{\text {CC }}=5.25 \mathrm{~V}$
10	I/O Leakage Current	-10	10	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND}, \\ & \mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{~V} \end{aligned}$
${ }^{\prime} \mathrm{CCSB}$	Standby Power Supply Current	-	500	$\mu \mathrm{A}$	$\begin{aligned} & V_{I N}=V_{C C} \text { or GND } \\ & V_{C C}=5.25 \mathrm{~V}, \text { Note } 3 \end{aligned}$
${ }^{\text {I CCOP }}$	Operating Power Supply Current	-	256	mA	$\begin{aligned} & f=25.6 \mathrm{MHz}, V_{I N}=V_{C C} \text { or GND } \\ & V_{C C}=5.25 \mathrm{~V}, \text { Notes } 1 \text { and } 3 \end{aligned}$

Capacitance ($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, Note 2)

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
C_{IN}	Input Capacitance	-	10	pF	FREQ $=1 \mathrm{MHz}, \mathrm{V}_{\text {CC }}=$ Open, All measurements are referenced to device ground
CO_{O}	Output Capacitance	-	10	pF	

NOTES:

1. Power supply current is proportional to operating frequency. Typical 3. Output load per test load circuit with switch open and $\mathrm{C}_{\mathrm{L}}=40 \mathrm{pF}$. rating for $\mathrm{I} C \mathrm{COP}$ is $10 \mathrm{~mA} / \mathrm{MHz}$.
2. Not tested, but characterized at initial design and at major process/design changes.
A.C. Electrical Specifications (Note 1)

SYMBOL	PARAMETER	25.6 MHz		33MHz		40MHz		COMMENTS
		MIN	MAX	MIN	Max	MIN	max	
T_{CP}	CLK Period	39	-	30	-	25	-	ns
T_{CH}	CLK High	15	-	12	-	10	-	ns
TCL	CLK Low	15	-	12	-	10	-	ns
TWP	WR\# Period	39	-	30	-	25	-	ns
TWH	WR\# High	15	-	12	-	10	-	ns
TWL	WR\# Low	15	-	12	-	10	-	ns
TAWS	Set-up Time AO-2, CS\# to WR\# going high	13	-	13	-	12	-	ns
TAWH	Hold Time AO-2, CS\# from WR\# going high	1	-	1	-	1	-	ns
${ }^{\text {T }}$ CWs	Set-up Time C0-15 to WR\# going high	15	-	15	-	12	-	ns
TCWH	Hold Time CO-15 from WR\# going high	0	-	0	-	0	-	ns
TwC	Set-up time WR\# high to CLK high	16	-	12	-	10	-	ns, Note 2
TMCS	Set-up Time MODO-2 to CLK going high	15	-	15	-	12	-	ns
$\mathrm{T}_{\text {MCH }}$	Hold Time MODO-2 from CLK going high	0	-	0	-	0	-	ns
TECS	Set-up Time ENPOREG\#, ENOFREG\#, ENCFREG\#, ENPHAC\#, ENTIREG\#, INHOFR\#, PMSEL\#, INITPAC\#, BINFMT\#, TEST, PAR/SER\#, PACI\#, INITTAC\# to CLK going high	12	-	12	-	12	-	ns
TECH	Hold Time ENPOREG\#, ENOFREG\#, ENCFREG\#, ENPHAC\#, ENTIREG\#, INHOFR\#, PMSEL\#, INITPAC\#, BINFMT\#, TEST,PAR/SER\# , PACI\#, INITTAC\# from CLK going high	0	-	0	-	0	-	ns
$\mathrm{T}_{\text {DO }}$	CLK to Output Delay SINO-15, COSO-15, TICO\#	-	18	-	15	-	13	ns
TDSO	CLK to Output Delay DACSTRB\#	2	18	2	15	2	13	ns
TOE	Output Enable Time	-	12	-	12	-	12	ns
TOD	Output Disable Time	-	15	-	15	-	13	ns, Note 3
TRF	Output rise, fall time	-	8	-	8	-	8	ns, Note 3

NOTES:

1. A.C. testing is performed as follows: Input levels (CLK Input) 4.0V and OV; Input levels (all other inputs) OV and 3.0 V ; Timing reference levels (CLK) 2.0 V ; All others 1.5 V . Input rise and fall times driven at $1 \mathrm{~ns} / \mathrm{V}$. Output load per test load circuit with switch closed and $C_{L}=40 \mathrm{pF}$. Output transition is measured at $\mathrm{V}_{\mathrm{OH}} \geq 1.5 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{OL}} \leq 1.5 \mathrm{~V}$.
2. If ENOFREG\#, ENCFREG\#, ENTIREG\#, OR ENPOREG\# are active care must be taken to not violate set-up and hold times to these registers when writing data into the chip via the $\mathrm{C} 0-15$ port.
3. Controlled via design or process parameters and not directly tested. Characterized upon initial design and after major process and/or changes.

A.C. Test Load Circuit

Waveforms

OUTPUT ENABLE, DISABLE TIMING

OUTPUT RISE AND FALL TIMES

Features

- This Circuit is Processed in Accordance to Mil-Std883 and is Fully Conformant Under the Provisions of Paragraph 1.2.1
- 25.6MHz and 33 MHz Versions
- 32-Bit Center and Offset Frequency Control
- 16-Bit Phase Control
- 8 Level PSK Supported Through Three Pin Interface
- Simultaneous 16 Bit Sine and Cosine Outputs
- Output in Two's Complement or Offset Binary
- $<0.01 \mathrm{~Hz}$ Tuning Resolution at 33 MHz
- Serial or Parallel Outputs
- Spurious Frequency Components < -90dBc
- 16 Bit Microprocessor Compatible Control Interface
- 85 Pin PGA

Applications

- Direct Digital Synthesis
- Quadrature Signal Generation
- Modulation - FM, FSK, PSK (BPSK, QPSK, 8PSK)
- Precision Signal Generation

Description

The Harris HSP45106/883 is a high performance 16-bit quadrature numerically controlled oscillator (NCO16). The NCO16 simplifies applications requiring frequency and phase agility such as frequency-hopped modems, PSK modems, spread spectrum communications, and precision signal generators. As shown in the block diagram, the HSP45106/883 is divided into a Phase/Frequency Control Section (PFCS) and a Sine/Cosine Section.

The inputs to the Phase/Frequency Control Section consist of a microprocessor interface and individual control lines. The frequency resolution is 32 bits, which provides for resolution of better than 0.01 Hz at 33 MHz . User programmable center frequency and offset frequency registers give the user the capability to perform phase coherent switching between two sinusoids of different frequencies. Further, a programmable phase control register allows for phase control of better than 0.0060 . In applications requiring up to 8 level PSK, three discrete inputs are provided to simplify implementation.
The output of the PFCS is a 32-bit phase argument which is input to the sine/cosine section for conversion into sinusoidal amplitude. The outputs of the sine/cosine section are two 16-bit quadrature signals. The spurious free dynamic range of this complex vector is greater than 90 dBc .

For added flexibility when using the NCO16 in conjunction with DAC's, a choice of either parallel of serial outputs with either two's complement or offset binary encoding is provided. In addition, a synchronization signal is available which signals serial word boundaries.

Block Diagram

Absolute Maximum Ratings

Reliability Information

Thermal Resistance $\theta_{\mathrm{ja}} \quad \theta_{\mathrm{jc}}$

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Operating Conditions

Operating Voltage Range . .+4.5 V to +5.5 V
Operating Temperature Range $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

TABLE 1. HSP45106/883 D.C. ELECTRICAL PERFORMANCE CHARACTERISTICS
Devices Guaranteed and 100\% Tested

PARAMETER	SYMBOL	CONDITIONS	GROUPA SUBGROUPS	TEMPERATURE	LIMITS		UNITS
					MIN	max	
Logical One Input Voltage	$\mathrm{V}_{1 \mathrm{H}}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	1,2,3	$-55^{\circ} \mathrm{C} \leq \mathrm{T} \mathrm{A} \leq+125^{\circ} \mathrm{C}$	2.2	-	V
Logical Zero Input Voltage	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	1,2,3	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	-	0.8	v
Output HIGH Voltage	V_{OH}	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}(\text { Note } 1) \end{aligned}$	1,2,3	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	2.6	-	v
Output LOW Voltage	VOL	$\begin{aligned} & \mathrm{IOL}=+2.0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}(\text { Note } 1) \end{aligned}$	1, 2, 3	$-55^{\circ} \mathrm{C} \leq \mathrm{T} \mathrm{A} \leq+125^{\circ} \mathrm{C}$	-	0.4	v
Input Leakage Current	1	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \\ & \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V} \end{aligned}$	1,2,3	$-55^{\circ} \mathrm{C} \leq \mathrm{T} \mathrm{A} \leq+125^{\circ} \mathrm{C}$	-10	+10	$\mu \mathrm{A}$
Output Leakage Current	10	$\begin{aligned} & \mathrm{V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \\ & \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V} \end{aligned}$	1,2,3	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	-10	+10	$\mu \mathrm{A}$
Clock Input High	$\mathrm{V}_{1 H C}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	1,2,3	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	3.0	-	V
Clock Input Low	$\mathrm{V}_{\text {ILC }}$	$\mathrm{V}_{\text {CC }}=4.5 \mathrm{~V}$	1,2,3	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	-	0.8	v
Standby Power Supply Current	${ }^{\prime} \mathrm{CCSB}$	$\begin{aligned} & V_{I N}=V_{C C} \text { or } G N D \\ & V_{C C}=5.5 \mathrm{~V}, \\ & \text { (Note 4) } \end{aligned}$	1, 2, 3	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	-	500	$\mu \mathrm{A}$
Operating Power Supply Current	ICCOP	$\begin{aligned} & f=25.6 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}(\text { Notes 2, 4) } \end{aligned}$	1, 2, 3	$-55^{\circ} \mathrm{C} \leq \mathrm{T} \mathrm{A} \leq+125^{\circ} \mathrm{C}$	-	256	mA
Functional Test	FT	(Note 3)	7,8	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	-	-	-

NOTES:

1. Interchanging of force and sense conditions is permitted.
2. Operating Supply Current is proportional to frequency, typical rating is $10 \mathrm{~mA} / \mathrm{MHz}$.
3. Tested as follows: $f=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{IH}}=2.6, \mathrm{~V}_{\mathrm{IL}}=0.4, \mathrm{~V}_{\mathrm{OH}} \geq 1.5 \mathrm{~V}$, $\mathrm{V}_{\mathrm{OL}} \leq 1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IHC}}=3.4 \mathrm{~V}$, and $\mathrm{V}_{\mathrm{ILC}}=0.4 \mathrm{~V}$.
4. Loading is as specified in the test load circuit with $C_{L}=40 \mathrm{pF}$.

TABLE 2. A.C. ELECTRICAL PERFORMANCE CHARACTERISTICS
Device Guaranteed and 100\% Tested.

PARAMETERS	SYMBOL	(NOTE 1) CONDITIONS	GROUP A SUBGROUP	TEMPERATURE	LIMITS				UNITS
					$\begin{gathered} -25 \\ (25.6 \mathrm{MHz}) \\ \hline \end{gathered}$		$\begin{gathered} -33 \\ \text { (33MHz) } \end{gathered}$		
					MIN	MAX	MIN	MAX	
CLK Period	TCP		9, 10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	39	-	30	-	ns
CLK High	T_{CH}		9, 10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	15	-	12	-	ns
CLK Low	TCL		9, 10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	15	-	12	-	ns
WR\# Period	TWP		9, 10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	39	-	30	-	ns
WR\# High	TWH		9, 10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+125^{\circ} \mathrm{C}$	15	-	12	-	ns
WR\# Low	TWL		9, 10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	15	-	12	-	ns
Set-up Time AO-2, CS\# to WR\# going high	${ }^{\text {T AWS }}$		9, 10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	13	-	13	-	ns
Hold Time AO-2; CS\# from WR\# going high	${ }^{\text {T AWH }}$		9, 10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T} \mathrm{A} \leq+125^{\circ} \mathrm{C}$	2	-	2	-	ns
Set-up Time CO-15 to WR\# going high	TCws		9, 10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	15	-	15	-	ns
Hold Time CO-15 from WR \# going high	${ }^{\text {T }} \mathrm{CWH}$		9, 10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T} \mathrm{A} \leq+125^{\circ} \mathrm{C}$	1	-	1	-	ns
Set-up Time WR\# high to CLK high	TwC	Note 3	9, 10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	16	-	12	-	ns
Set-up Time MODO-2 to CLK going high	TMCS		9, 10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	15	-	15	-	ns
Hold Time MODO-2 from CLK going high	$\mathrm{T}_{\mathrm{MCH}}$		9, 10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	1	-	1	-	ns
Set-up Time ENPOREG\#, ENOFREG\#, ENCFREG\#, ENPHAC\#, ENTIREG\#, INHOFR\#, PMSEL\#,INITPAC\#, BINFMT\#, TEST, PAR/SER\#, PACI\#, INITTAC\# to CLK going high	TECS		9, 10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T} \mathrm{A} \leq+125^{\circ} \mathrm{C}$	12	-	12	-	ns
Hold Time ENPOREG\#, ENOFREG\#, ENCFREG\#, ENPHAC\#, ENTIREG\#, INHOFR\#, PMSEL\#,INITPAC\#, BINFMT\#, TEST, PAR/SER\#, PACI\#, INITTAC\# from CLK going high	$\mathrm{T}_{\mathrm{ECH}}$		9, 10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T}^{\prime} \mathrm{A} \leq+125^{\circ} \mathrm{C}$	1	-	1	-	ns
CLK to Output Delay SINO-15, COSO-15, TICO\#	TDO		9, 10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	-	18	-	15	ns
CLK to Output Delay DACSTRB\#	TDSO		9, 10, 11	$-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}$	2	18	2	15	ns
Output Enable Time	TOE	Note 2	9, 10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	-	12	-	12	ns

NOTES:

1. A.C. Testing: Inputs are driven to 3.0 V for a Logic " 1 " and 0.0 V for a Logic " 0 ". Input and output timing measurements are made at 1.5 V for both a Logic " 1 " and " 0 ". Inputs driven at $1 \mathrm{~V} / \mathrm{ns}$. CLK is driven at 4.0 V and 0 V and measured at 2.0 V . Output load per test load circuit with switch closed and $C_{L}=40 \mathrm{pF}$..
2. Transition is measured at $\pm 200 \mathrm{mV}$ from steady state voltage with loading as specified by test load circuit and $C_{L}=40 p F$.
3. If ENOFRCTL\#, ENCFRCTL\#, ENTICTL\# or ENPHREG\# are active, care must be taken to not violate set-up and hold times to these registers when writing data into the chip via the $\mathrm{C} 0-15$ port.

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS

PARAMETERS	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	Limits				UNITS
					-25 (25.6MHz)		-33 (33MHz)		
					MIN	MAX	MIN	MAX	
Input Capacitance	C_{IN}	$\begin{aligned} & v_{C C}=\text { Open, } \\ & f=1 \mathrm{MHz}, A l l \end{aligned}$ measurements are referenced to device GND.	1	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-	10	-	10	pF
Output Capacitance	COUT	$\begin{aligned} & V_{C C}=\text { Open, } \\ & f=1 \mathrm{MHz}, \mathrm{All} \end{aligned}$ measurements are referenced to device GND.	1	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-	10	-	10	pF
Output Disable Delay	ToEz		1,2	$-55^{\circ} \mathrm{C} \leq \mathrm{T} \mathrm{A} \leq+125^{\circ} \mathrm{C}$	-	15	-	15	ns
Output Rise Time	TOR	From 0.8 V to 2.0 V	1,2	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	-	8	-	8	ns
Output Fall Time	ToF	From 2.0 V to 0.8 V	1,2	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	-	8	-	8	ns

NOTES:

1. Parameters listed in Table 3 are controlled via design or process parameters and are not directly tested. These parameters are characterized upon initial design and after major process and/or design changes.
2. Loading is as specified in the test load circuit with switch closed and $C_{L}=40 \mathrm{pF}$.
table 4. electrical test requirements

CONFORMANCE GROUPS	METHOD	SUBGROUPS
Initial Test	$100 \% / 5004$	-
Interim Test	$100 \% / 5004$	-
PDA	100%	1
Final Test	100%	$2,3,8 \mathrm{~A}, 8 \mathrm{~B}, 10,11$
Group A	-	$1,2,3,7,8 \mathrm{~A}, 8 \mathrm{~B}, 9,10,11$
Groups C \& D	Samples/5005	$1,7,9$

Burn-In Circuit
HSP45 106/883 PIN GRID ARRAY (PGA)

$\begin{aligned} & \text { PGA } \\ & \text { PIN } \end{aligned}$	$\begin{aligned} & \text { PIN } \\ & \text { NAME } \end{aligned}$	BURN-IN SIGNAL	$\left\lvert\, \begin{aligned} & \text { PGA } \\ & \text { PIN } \end{aligned}\right.$	$\begin{aligned} & \text { PIN } \\ & \text { NAME } \end{aligned}$	BURN-IN SIGNAL	$\left\lvert\, \begin{aligned} & \text { PGA } \\ & \text { PIN } \end{aligned}\right.$	$\begin{aligned} & \text { PIN } \\ & \text { NAME } \end{aligned}$	$\begin{aligned} & \text { BURN-IN } \\ & \text { SIGNAL } \end{aligned}$	$\left\lvert\, \begin{aligned} & \text { PGA } \\ & \text { PIN } \end{aligned}\right.$	PIN NAME	BURN-IN SIGNAL
A1	Co	F7	B11	MOD1	F13	F9	ENOFREG\#	F8	K2	OES\#	F14
A2	C2	F7	C1	COS13	$\mathrm{V}_{\mathrm{CC}} / 2$	F10	ENPOREG\#	F4	K3	SIN15	$\mathrm{V}_{\mathrm{CC} / 2}$
A3	C3	F7	C2	COS15	$\mathrm{V}_{\mathrm{CC}} / 2$	F11	ENCFREG\#	F7	K4	GND	GND
A4	C5	F8	C5	C6	F8	G1	COS5	$\mathrm{V}_{\mathrm{CC} / 2}$	K5	SIN10	$\mathrm{V}_{\mathrm{CC} / 2}$
A5	C7	F8	C6	C9	F10	G2	COS4	$\mathrm{V}_{\mathrm{CC} / 2}$	K6	SIN8	$\mathrm{V}_{\mathrm{CC} / 2}$
A6	C8	F10	C7	C10	F10	G3	COS6	$\mathrm{V}_{\mathrm{CC} / 2}$	K7	V_{CC}	V_{CC}
A7	C11	F10	C10	MODO	F12	G9	INHOFR\#	F11	K8	SIN2	$\mathrm{V}_{\mathrm{CC} / 2}$
A8	C14	F11	C11	MOD2	F14	G10	INITTAC\#	F13	K9	CLK	FO
A9	GND	GND	D1	COS12	$\mathrm{V}_{\mathrm{CC}} / 2$	G11	ENTIREG\#	F12	K10	V_{CC}	V_{CC}
A10	AO	F8	D2	GND	GND	H1	cos3	$\mathrm{V}_{\mathrm{CC}} / 2$	K11	BINFMT\#	F6
A11	PMSEL	F14	D10	TEST	F14	H2	COS2	$\mathrm{v}_{\mathrm{CC} / 2}$	L1	DACSTRB\#	$\mathrm{v}_{\mathrm{CC} / 2}$
B1	COS14	$\mathrm{v}_{\mathrm{CC} / 2}$	D11	V_{CC}	$V_{\text {CC }}$	H10	PACI\#	F11	L2	SIN14	$\mathrm{v}_{\mathrm{CC} / 2}$
B2	TICO\#	$\mathrm{V}_{\mathrm{CC}} / 2$	E1	COS9	$\mathrm{v}_{\mathrm{CC}} / 2$	H11	ENPHAC\#	F10	L3	SIN13	$\mathrm{v}_{\mathrm{CC} / 2}$
B3	C1	F7	E2	COS10	$\mathrm{v}_{\mathrm{CC} / 2}$	J1	COS1	$\mathrm{V}_{\mathrm{CC}} / 2$	L4	SIN12	$\mathrm{V}_{\mathrm{CC} / 2}$
B4	C4	F8	E3	COS11	$\mathrm{V}_{\mathrm{CC} / 2}$	J2	OEC\#	F14	L5	SIN9	$\mathrm{v}_{\mathrm{CC} / 2}$
B5	V_{CC}	V_{CC}	E9	WR\#	F4	J5	SIN11	$\mathrm{V}_{\mathrm{CC}} / 2$	L6	SIN4	$\mathrm{V}_{\mathrm{CC}} / 2$
B6	C13	F11	E10	GND	GND	J6	SIN7	$v_{\text {cc/2 }}$	L7	SIN5	$\mathrm{v}_{\mathrm{CC} / 2}$
87	C12	F11	E11	CS\#	F6	J7	SIN6	$\mathrm{V}_{\mathrm{cC}} / 2$	L8	SIN3	$\mathrm{V}_{\mathrm{CC} / 2}$
B8	C15	F11	F1	V_{CC}	$V_{\text {ce }}$	J10	PAR/SER\#	F13	L9	SIN1	$\mathrm{V}_{\mathrm{CC} / 2}$
B9	A1	F7	F2	COS8	$\mathrm{v}_{\mathrm{CC} / 2}$	J11	INITPAC\#	F12	L10	SINO	$\mathrm{V}_{\mathrm{CC} / 2}$
B10	A2	F10	F3	COS7	$\mathrm{V}_{\mathrm{CC}} / 2$	K1	coso	$\mathrm{V}_{\mathrm{CC}} / 2$	L11	GND	GND

NOTES:

1. $\mathrm{V}_{\mathrm{CC}} / 2(2.7 \mathrm{~V} \pm 10 \%)$ used for outputs only.
2. $0.1 \mu \mathrm{~F}(\mathrm{~min})$ capacitor between V_{CC} and GND per position.
3. $47 \mathrm{~K} \Omega(\pm 20 \%)$ resistor connected to all pins except $V_{C C}$ and GND.
4. $\mathrm{FO}=100 \mathrm{kHz} \pm 10 \%, \mathrm{~F} 1=\mathrm{FO} / 2, \mathrm{~F} 2=\mathrm{F} 1 / 2 \ldots, F 11=\mathrm{F} 10 / 2,40 \%-60 \%$
5. $V_{C C}=5.5 \mathrm{~V} \pm 0.5 \mathrm{~V}$. Duty Cycle.
6. Input voltage limits: $\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V} \operatorname{Max} \quad \mathrm{~V}_{\mathrm{IH}}=4.5 \mathrm{~V} \pm 10 \%$

Die Characteristics

DIE DIMENSIONS:
$251 \times 240 \times 19 \pm 1$ mils
METALLIZATION:
Type: $\mathrm{Si}-\mathrm{Al}$ or $\mathrm{Si}-\mathrm{Al}-\mathrm{Cu}$
Thickness: $8 \mathrm{k} \AA$
GLASSIVATION:
Type: Nitrox
Thickness: $10 \mathrm{k} \AA$
Metallization Mask Layout

Packaging ${ }^{\dagger}$

LEAD MATERIAL: Type B
LEAD FINISH: Type C
PACKAGE MATERIAL: Ceramic, $\mathrm{Al}_{2} \mathrm{O}_{3} 90 \%$
PACKAGE SEAL:
Material: Gold/Tin
Temperature: $320^{\circ} \mathrm{C} \pm 10^{\circ} \mathrm{C}$
Method: Furnace Braze

INTERNAL LEAD WIRE:

Material: Aluminum
Diameter: 1.25 Mil
Bonding Method: Ultrasonic Wedge COMPLIANT OUTLINE: 38510 P-AC

HSP45102

PRELIMINARY

May 1991

Features

- $33 \mathrm{MHz}, 40 \mathrm{MHz}, 50 \mathrm{MHz}$ Versions
-32-Bit Frequency Control
- Binary FSK Modulation
- Quadrature Phase Modulation
- Serial Frequency Load
- 12-Bit Sine Output
- Offset Binary Output Format
- 0.012 Hz Tuning Resolution at 50 MHz
- Spurious Frequency Components <-69dBc
- Fully Static CMOS
- Available in 28 Pin DIP and 28 Pin SOIC
- Low Cost

Applications

- Direct Digital Synthesis
- Modulation - QPSK and FSK

12-Bit Numerically Controlled Oscillator

Description

The Harris HSP45102 is a 12 bit Numerically Controlled Oscillator (NCO12) for Direct Digital Synthesis Applications where low cost is important. As shown in the block diagram, the chip consists of a Frequency Control Section, a 32 bit phase accumulator, a phase offset adder and a Sine ROM.

Two frequency control words are loaded serially, MSB or LSB first. A single control pin, SEL__L/M\#, selects which word is used to determine the output frequency. This pin is toggled for FSK modulation. The output of the Frequency Control Section is two 32 bit phase increments to the Phase Accumulator, of which one is selected using SEL__L/M\#.

Two pins are provided for phase modulation. These two bits, PO-1, are encoded and added to the top two bits of the phase accumulator to offset the phase in 90° increments.

The 13 bit output of the Phase Offset Adder is mapped to the sine wave amplitude via the Sine ROM. The output data format is offset binary to simplify interfacing to D/A converters. Spurious frequency components in the output sinusoid are less than -69 dBc .

The NCO12 has applications as a Direct Digital Synthesizer and modulator in low cost digital radios, satellite terminals, and function generators.

Block Diagram

Pinout

Pin Description

NAME	PIN NUMBER	TYPE	
VCC	8,22		+5V power supply pin.
GND	$7,15,21$		Ground
PO-1	19,20	I	Phase modulation inputs. (become active after a pipeline delay of four clocks). A phase shift of 0, 90, 180, or 270 degrees can be selected (Table 1).
CLK	16	I	NCO clock. (CMOS level)
SCLK	14	I	This pin clocks the frequency control shift register.
SEL_L/M\#	9	I	A high on this input selects the least significant 32 bits of the 64 bit frequency register as the input to the phase accumulator; a low selects the most significant 32 bits.
SFTEN\#	10	I	The active low input enables the shifting of the frequency register.
MSB/LSB\#	11	I	This input selects the shift direction of the frequency register. A low on this input shifts in the data LSB first; a high shifts in the data MSB first.
ENPHAC\#	12	I	This pin, when low, enables the clocking of the Phase Accumulator. This input has a pipe- line delay of four clocks.
SD	13	I	Data on this pin is shifted into the frequency register by the rising edge of SCLK when SFTEN\# is low.
TXFR\#	17	I	This active low input is clocked onto the chip by CLK and becomes active after a pipeline delay of four clocks. When low, the frequency control word selected by SEL_L/M\# is transferred from the frequency register to the phase accumulator's input register.
LOAD\#	18	I	This input becomes active after a pipeline delay of five clocks. When low, the feedback in the phase accumulator is zeroed.
OUTO-11	$1-6,23-28$	O	Output data. OUTO is LSB.

All inputs are TTL level, with the exception of CLK.
\# sign designates active low signals.

Functional Description

The NCO12 produces a 12 bit sinusoid whose frequency and phase are digitally controlled. The frequency of the sine wave is determined by one of two 32 bit words. Selection of the active word is made by SEL__L/M\#. The phase of the output is controlled by the two bit input PO-1, which is used to select a phase offset of $0^{\circ}, 90^{\circ}, 180^{\circ}$, or 270°.

As shown in the Block Diagram, the NCO12 consists of a Frequency Control Section, a Phase Accumulator, a Phase Offset Adder and a Sine ROM. The Frequency Control section serially loads the frequency control word into the frequency register. The Phase Accumulator and Phase Offset Adder compute the phase angle using the frequency control word and the two phase modulation inputs. The Sine ROM generates the sine of the computed phase angle. The format of the 12 bit output is offset binary.

Frequency Control Section

The Frequency Control Section (Figure 1), serially loads the frequency data into a 64 bit, bidirectional shift register. The shift direction is selected with the MSB/LSB\# input. When this input is high, the frequency control word on the SD input is shifted into the register MSB first. When MSB/LSB\# is low the data is shifted in LSB first. The register shifts on the rising edge of SCLK when SFTEN\# is low. The timing of these signals is shown in Figure 2.
The 64 bits of the frequency register are sent to the Phase Accumulator Section where 32 bits are selected to control the frequency of the sinusoidal output.

Phase Accumulator Section

The phase accumulator and phase offset adder compute the phase of the sine wave from the frequency control word and the phase modulation bits PO-1. The architecture is shown in Figure 1. The most significant 13 bits of the 32 bit phase accumulator are summed with the two bit phase offset to generate the 13 bit phase input to the Sine Rom. A value of 0 corresponds to 0°, a value of 1000 hexadecimal corresponds to a value of 180°.

The phase accumulator advances the phase by the amount programmed into the frequency control register. The output frequency is equal to N^{\star} Fclk/232, where N is the selected

32 bits of the frequency control word. For example, if the control word is 20000000 hexadecimal and the clock frequency is 30 Mhz , then the output frequency would be Fclk/8 or 3.75 Mhz .

The frequency control multiplexer selects the least significant 32 bits from the 64 bit frequency control register when SEL__L/M\# is high, and the most significant 32 bits when SEL_L/M\# is low. When TXFR\# is asserted, the 32 bits selected by the frequency control multiplexer are clocked into the phase accumulator input register. At each clock, the contents of this register are summed with the current contents of the accumulator to step to the new phase. The phase accumulator stepping may be inhibited by holding ENPHAC\# high. The phase accumulator may be loaded with the value in the input register by asserting LOAD\#, which zeroes the feedback to the phase accumulator.

The phase adder sums the encoded phase modulation bits PO-1 and the output of the phase accumulator to offset the phase by $0,90,180$ or 270 degrees. The two bits are encoded to produce the phase mapping shown in Table 1. This phase mapping is provided for direct connection to the in-phase and quadrature data bits for QPSK modulation.

TABLE 1

PO-1 CODING		
P1	P0	PHASE SHIFT (DEGREES)
0	0	0
0	1	90
1	0	270
1	1	180

ROM Section

The ROM section generates the 12 bit sine value from the 13 bit output of the phase adder. The output format is offset binary and ranges from 001 to FFF hexadecimal, centered around 800 hexadecimal.

FIGURE 1. NCO-12 FUNCTIONAL BLOCK DIAGRAM

FIGURE 2. I/O TIMING

Absolute Maximum Ratings

```
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.0V 
```



```
Storage Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -650
Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +150年年
Lead Temperature (Soldering, Ten Seconds) . ......................................................................... 3000
```



```
CAUTION: Stresses above those listed in the "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
```


Operating Conditions

> Operating Voltage Range
> +4.75 V to +5.25 V
> Operating Temperature Range
> $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

D.C. Electrical Specifications

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
V_{IH}	Logical One Input Voltage	2.0	-	V	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$
V_{IL}	Logical Zero Input Voltage	-	0.8	v	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$
$\mathrm{V}_{\mathrm{IHC}}$	High Level Clock Input	3.0	-	V	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$
VILC	Low Level Clock Input	-	0.8	v	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$
V_{OH}	Output HIGH Voltage	2.6	-	v	$\mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V}$
V_{OL}	Output LOW Voltage	-	0.4	V	$\mathrm{l}^{\mathrm{OL}}=+2.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V}$
1	Input Leakage Current	-10	10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ or GND, $\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$
10	I/O Leakage Current	-10	10	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND}, \\ & \mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{~V} \end{aligned}$
${ }^{\prime} \mathrm{CcsB}$	Standby Power Supply Current	-	500	$\mu \mathrm{A}$	$\begin{aligned} & V_{I N}=V_{C C} \text { or } G N D \\ & V_{C C}=5.25 \mathrm{~V}, \text { Note } 3 \end{aligned}$
ICCOP	Operating Power Supply Current	-	TBD	mA	$f=33 M H z, V_{I N}=V_{C C} \text { or } G N D$ $V_{C C}=5.25 \mathrm{~V}$, Notes 1 and 3

Capacitance ($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, Note 2)

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
C_{IN}	Input Capacitance	-	10	pF	FREQ $=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=$ Open, All measurements are referenced to device ground
C_{O}	Output Capacitance	-	10	pF	

NOTES:

1. Power supply current is proportional to operating frequency. Typical 3. Output load per test load circuit with switch open and $C_{L}=40 p F$. rating for ICCOP is $10 \mathrm{~mA} / \mathrm{MHz}$.
2. Not tested, but characterized at initial design and at major process/design changes.
A.C. Electrical Specifications (Note 1)

SYMBOL	PARAMETER	-33 (33MHz)		-40 (40MHz)		-50 (50 MHz)		COMMENTS
		MIN	MAX	MIN	MAX	MIN	MAX	
TCP	Clock Period	30	-	25	-	20	-	ns
${ }^{\text {T }} \mathrm{CH}$	Clock High	12	-	10	-	8	-	ns
TCL	Clock Low	12	-	10	-	8	-	ns
TSW	SCLK High/Low	16	-	14	-	13	-	ns
TDS	Set-up Time SD to SCLK going high	15	-	13	-	12	-	ns
TDH	Hold Time SD from SCLK going high	0	-	0	-	0	-	ns
TMS	Set-up Time SFTEN\#, MSB/LSB\# to SCLK going high	18	-	15	-	12	-	ns
T_{MH}	Hold Time SFTEN\#, MSB/LSB\# from SCLK going high	0	-	0	-	0	-	ns
TSS	Set-up Time SCLK high to CLK going high	23	-	20	-	15	-	ns, Note 2
TPS	Set-up Time PO-1 to CLK going high	18	-	15	-	12	-	ns
TPH	Hold Time PO-1 from CLK going high	0	-	0	-	0	-	ns
TES	Set-up Time LOAD\#, TXFR\#, ENPHAC\#, SEL_L/M\# to CLK going high.	18	-	15	-	12	-	ns
TEH	Hold Time LOAD\#, TXFR\#, ENPHAC\#, SEL_L/M\# from CLK going high	0	-	0	-		-	ns
$\mathrm{TOH}^{\text {O }}$	CLK to Output Delay	2	20	2	16	2	12	ns
$\mathrm{T}_{\text {RF }}$	Output Rise, Fall Time	TBD	-	TBD	-	TBD	-	ns, Note 3

notes

1. A.C. testing is performed as follows: Input levels (CLK Input) 4.0 V and $0 \mathrm{~V}_{i}$ Input levels (all other inputs) OV and 3.0V; Timing reference levels (CLK) 2.0 V ; All others 1.5 V . Input rise and fall times driven at $1 \mathrm{~ns} / \mathrm{V}$. Output load per test load circuit with switch closed and $C_{L}=40 \mathrm{pF}$. Output transition is measured at $\mathrm{V}_{\mathrm{OH}} \geq 1.5 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{OL}} \leq 1.5 \mathrm{~V}$.
2. If TXFR\# is active, care must be taken to not violate set-up and hold times as data from the shift registers may not have settled before CLK occurs.
3. Controlled via design or process parameters and not directly tested. Characterized upon initial design and after major process and/or design changes.

A.C. Test Load Circuit

Switch S1 open for $\mathrm{I}_{\mathrm{CCSB}}$ and $\mathrm{I}_{\mathrm{CCOP}}$

Waveforms

SPECIAL FUNCTION

PAGE

DATA SHEETS

HSP45240 Address Sequencer 6-3
HSP45240/883 Address Sequencer 6-14
HSP9501Programmable Data Buffer6-21
HSP9520/9521 Multilevel Pipeline Register 6-28
ISP9520/9521
HSP45256Binary Correlator6-33

HARRIS

Features

- Block Oriented 24-Bit Sequencer
- Configurable as Two Independent 12-Bit Sequencers
- 24×24 Crosspoint Switch
- Programmable Delay on 12 Outputs
- Multi-Chip Synchronization Signals
- Standard $\mu \mathrm{P}$ Interface
- TTL Compatible Inputs/Outputs
- 100pF Drive on Outputs
- DC to 50MHz Clock Rate
- Available in 68 Pin PGA and PLCC Packages

Applications

- 1-D, 2-D Filtering
- Pan/Zoom Addressing
- FFT Processing
- Matrix Math Operations

Description

The Harris HSP45240 is a high speed Address Sequencer which provides specialized addressing for functions like FFT's,1-D and 2-D filtering, matrix operations, and image manipulation. The sequencer supports block oriented addressing of large data sets up to 24 bits at clock speeds up to 50 MHz .

Specialized addressing requirements are met by using the onboard 24×24 crosspoint switch. This feature allows the mapping of the 24 address bits at the output of the address generator to the 24 address outputs of the chip. As a result, bit reverse addressing, such as that used in FFT's, is made possible.

A single chip solution to read/write addressing is also made possible by configuring the HSP45240 as two 12-bit sequencers. To compensate for system pipeline delay, a programmable delay is provided on 12 of the address outputs.

The HSP45240 is manufactured using an advanced CMOS process, and is a low power fully static design. The configuration of the device is controlled through a standard microprocessor interface and all inputs/outputs, with the exception of clock, are TTL compatible. The Sequencer is available in 68 pin PGA and PLCC packages.

Block Diagram

Pin Descriptions

NAME	TYPE	PLCC PIN NUMBER	DESCRIPTION
V_{CC}	1	$\begin{gathered} 6,24,34,41 \\ 49,55,68 \end{gathered}$	+5 V power supply pin.
GND	1	$\begin{gathered} 3,9,18,22 \\ 38,46,52 \\ 58,65 \end{gathered}$	GROUND
RST\#	1	25	RESET: The "RST\#" signal is a TTL, asynchronous input which causes the switch to be configured in a 1:1 mode. After "RST\#" has been asserted and then taken away, it will take 26 clocks to configure the switch. During the 26 clocks after rstB has been de-asserted, "WR\#" will be disabled to the chip. The clock must be running during reset.
CLK	1	23	CLOCK: The "CLK" signal is a CMOS input which provides the basic timing for address generation.
WR\#	1	19	WRITE: This asynchronous input is used to clock the data on DO-6 into the address counter or the switch and configuration registers.
CS\#	1	21	CHIP SELECT: A "low" on this input enables the data on DO-6 to be clocked into the address counter or the switch and configuration registers. This input is synchronous to "WR\#".
AO	1	20	Address 0 : AO being High enables DO-5 to be written to the Address Counter, AO being Low enables DO-5 to be written to the Configuration Registers. This signal is synchronous to "WR\#".
D0-6	1	11-17	DATA BUS: The Data Bus lines are input only, and are used to input address and data to the configuration registers for the switch and sequencer. These are latched inputs, and are synchronous to "WR\#".
OEH\#	1	28	OUTPUT ENABLE HIGH: This asynchronous input is used to enable the output buffers for OUT12-23.
OEL\#	1	29	OUTPUT ENABLE LOW: This asynchronous input is used to enable the output buffers for OUTO-11.
STARTIN\#	1	31	START-IN: This synchronous input is used for synchronizing several of these chips together. This pin is tied to "STARTOUT\#" of a master sequencer chip when cascading two or more chips together.
DLYBLK	1	30	DELAY BLOCK: This synchronous input is sampled every clock. If it is "high" at the end of a block, the next block of addresses will not be sequenced until this line goes "low". The sequence will be resumed 5 clocks after "DLYBLK" has been de-asserted.
OUTO-23	0	$\begin{gathered} 39,40,42,45, \\ 47,48,50,51, \\ 53,54,56,57, \\ 59,62-64,66, \\ 67,1,2,4,5, \\ 7,8 \end{gathered}$	OUTPUT BUS: Addresses that are being generated are output on this bus. Output "OUTO-11" have a user programmable delay. This bus can be tristated with "OEH\#" and "OEL\#".
BLOCKDONE\#	0	36	BLOCK DONE: This output is used as a flag for completion of a block of addresses within a sequence. It is valid for one clock when the end of a block is reached within a sequence, and will remain low when a sequence is completed.
DONE\#	0	37	DONE: This output is used as a flag for completion of a sequence of addresses. If the chip is programmed in Continuous Mode, this signal will never become active. If One-Shot mode with Restart is selected, the flag will go active for one clock and then go inactive.
ADDVAL\#	0	33	ADDRESS VALID: This output is used as a flag to indicate when the first valid address is available at the output pads.
STARTOUT\#	0	32	START-OUT: This output is used for synchronizing several of these chips together. When an internal "start" has been generated or a restart, this signal will pulse "low". This signal is tied to "STARTIN\#" of slave sequencer chips.
BUSY\#	0	35	This output will go low, and stay low during a reset to the chip. While this signal is low, all writes to the chip will be disabled. This signal will go inactive 26 clocks after "RST\#" goes high.

Functional Description

The Address Sequencer is a 24-bit programmable address generator. As shown in the Block Diagram, the sequencer consists of 4 functional blocks: the start circuitry, the sequence generator, the crosspoint switch, and the processor interface. The addresses produced by the sequence generator are input into the crosspoint switch. The crosspoint switch maps 24 bits of address input to a 24 bit output. This allows for addressing schemes like "bitreverse" addressing for FFT's. A programmable delay block is provided to allow the MSW of the output to be skewed from the LSW. This feature may be used to compensate for processor pipeline delay when the sequence generator is configured as two independent 12 bit sequencers. Address Sequencer operation is controlled by values loaded into configuration registers associated with the sequence generator, crosspoint switch, and start circuitry. The configuration registers are loaded through the processor interface.

Start Circuitry

The start circuitry receives configuration data from the processor interface and is responsible for providing the "START" signal to the sequence generator block. The "START" is produced internally throught the processor interface, externally by the "STARTIN\#" input, or from a restart issued by the sequence generator. If programmed for delay, internal/external "START" and restarts for the sequence generator can be delayed from 1 to 31 clocks.

The start circuitry is also responsible for producing the output signal "ADDVAL\#" which flags when the first valid address is available at the pads. In addition, the multi-chip synchronization signal "STARTOUT\#" is asserted by this block.

All of the configuration registers for the switch, sequencer generator, and start ciruitry are double buffered. This gives the user the ability to load configuration data for the next address sequence while the current address sequence is being completed. An external or internally generated "START" or restart causes the configuration data to be downloaded into current-state registers.

Sequence Generator

The address sequencer is designed to provide addressing for blocks of data. The number of samples in each block must be programmed, as well as the number of blocks, the address separation of each block, and the address separation within the blocks. Overlapping block addressing is supported for such applications as FIR filtering. In addition, continuous or single pass addressing is supported.

As shown in Figure 1, the Sequence Generator is divided into an address generation block and a control block. The address generation block performs the addition required to produce the next address in the sequence. The control block governs which register is muxed through to the adder and register loading.

At the begining of a sequence, the contents of the start address register and a " 0 " are muxed to the adder. The result of this addition produces the first address of the first block of the sequence. This value is stored in the "block start address" register by an enable generated from the control
block. The muxes are then configured to feed back the adder output along with the contents of the "step size" register for generation of the next address.

When "block size" number of addresses have been generated, the block is complete and the "blockdone" signal is asserted. At this point, the muxes are configured to pass the contents of the "block start address" and "block step size"" registers. The corresponding addition produces the first address of the next block. This address is stored in the "block start address" register, and the muxes are configured to feed back the adder output along with the contents of "step size" register.
The address sequence is complete when the programmed "number of blocks" have been generated. At this point the "done" and "block done" signals are asserted. In addition, the sequencer generator either halts or restarts addressing depending upon the mode of operation.

The sequence generator is configured by programming five 24-bit registers associated with address generation and one 6-bit register associated with mode of operation. The configuration registers holding the address generation parameters contain the following:

1) Start Address
2) Block Size - Number of addresses generated per block
3) Number of Blocks to Address (minimum 1)
4) Address Increment Between Blocks
5) Address Increment

The user must also program the mode control register for one of the following:

1) One-Shot mode without Restart: The address sequence is generated one time and and halts. Upon completion of the final block of addresses, the output "DONE\#" is asserted and the sequence generator halts until another start is written to the chip.

FIGURE 1. SEQUENCE GENERATOR BLOCK
2) One-Shot mode with Restart: This mode is the same as One-Shot Mode without Restart with the exception that sequencing automatically restarts when an address sequence has been completed. Once the final block of addresses has been generated the "DONE\#" signal is asserted and the sequence generator restarts.
3) Continuous Mode: The sequencer generator never terminates operation. Instead, address sequencing continues with the configured address and block increments. The "DONE\#" signal is never asserted since the end of an address sequence is never reached.

The mode control Register must also be configured to specify whether the sequence generator is to be run in dual sequencer mode and whether there is an output delay between the 12 MSB's and the 12 LSB's. In dual sequencer mode the carry from the 12 LSB's to the 12 MSB's in the adder is suppressed to allow for two independent address sequences. The programmable delay between the 12 MSB's and the 12 LSB's is provided to compensate for pipeline delay when operating in dual sequencer mode.
The generation of a "START" externally, internally, or by a restart causes all six configuration registers of the sequence generator to be loaded with the current contents of the configuration registers in the processor interface. This double buffer architecture allows the user to load the configuration parameters for the next address sequence while the current sequence is being generated. The various configuration registers are discussed more fully in the Processor Interface section.
The "DLYBLK" input can be used to halt the generation of an address sequence at the end of any block of addresses within that sequence. On every clock the "DLYBLK" input is sampled. If "DLYBLK" is "high" on the completion of an address block, sequencing of the next block of addresses will be halted until "DLYBLK" goes "low". If "DLYBLK" is asserted at the end of the last block of addresses in a sequence, address sequencing will be resumed 5 clocks after "DLYBLK" has been de-asserted. In all other cases, sequencing will be resumed 4 clocks after "DLYBLK" is de-asserted.

Crosspoint Switch

The crosspoint switch is responsible for reordering the address bits output by the sequence generator. The switch allows any one of its 24 inputs to be independently connected to anyone of its 24 outputs. The crosspoint switch outputs can be driven by only one input, however, one input can drive any number of switch outputs. If none of the inputs are mapped to a particular output bit, that output will be "low".
The input to output map is configured through the processor interface. The i/o map is stored in a bank of 24 configuration registers. Each register corresponds to one output bit. The output bit is mapped to the input via a value, 0 to 23 , stored in the register. After power-up, the user has the option of configuring the switch in 1:1 mode by using the reset input, "RST\#". In 1:1 mode the cross-point switch
outputs are in the same order as the input. More details on configuring the switch registers are contained in the Processor Interface section.

Processor Interface

The Processor Interface block is responsible for decoding data written on address/data for the start, sequencer, or switch blocks. The "WR\#" input is used to clock data into selected register, and "CS\#" is used to enable the data to the register.

A register is configured by first writing the address of the register and then writing the data. Table 1 shows the structure of data and addresses inputs for all of the configuration registers. Addresses are distinguished from data by a "1" on "AO".

TABLE 1.

REGISTER ADDRESSES								
	AO	D6	D5	D4	D3	D2	D1	D0
Switch Output Registers	1	x	0	n	n	n	n	n
Sequencer Starting Address	1	x	1	0	0	0	n	n
Sequencer Block Size	1	x	1	0	0	1	n	n
Sequencer Number of Blocks	1	x	1	0	1	0	n	n
Sequencer Block Address Increment	1	x	1	0	1	1	n	n
Sequencer Address Increment	1	x	1	1	0	0	n	n
Mode Control	1	x	1	1	0	1	0	0
Test Control	1	x	1	1	0	1	0	1
Start Delay Control	1	x	1	1	0	1	1	0
Address Sequencer "START"	1	x	1	1	1	1	1	1
	DATA WORDS							

Table 1 " x " means "don't care", and " n " denotes bits which are decoded as an address in address registers and data in data registers.

The user has the option of using an auto address increment mode when writing data. By writing a " 1 " in the "D6" data location the write address is automatically incremented for continuous writing of data. This saves the user of having to alternate between writing address and data. For example, the crosspoint switch can be configured in 25 writes (one write for the start address of the switch registers, and 24 for the i/o mapping). Similarly, the sequence generator can be configured in 21 writes (one for the start address, and 20 for the configuration registers).
The i/o mapping registers for the Switch are accessed by decoding five address bits. The addresses 0 to 23 select the
mapping registers for outputs 0 through 23 respectively. Addresses greater than 23 are ignored. The mapping registers are loaded by writing a six bit data word, "DO-6". However, only bits "DO-4" are decoded to select which switch input is mapped to the corresponding output. If "DO-4" represents a value greater than 23, the corresponding output will always be " 0 ".

Each of the configuration registers for the Sequencer block are 24 bits. As a result, four writes of six bits each are required to load the register. The placement of the data value within the configuration register is determined by two address bits. A value of 3 places the data word in the 6 MSB's while a value of 0 places the data word in the 6 LSB's.

Mode Control Register

The Mode Control Register is used to control the operation of the sequence generator. In addition, it also controls the output delay between the MSW and the LSW of the output. The following tables illustrate the structure of the mode control register.

TABLE 2. MODE CONTROL REGISTER FORMAT

ADDRESS LOCATION: 1×110100					
D5	D4	D3	D2	D1	D0
OD2	OD1	ODO	DS	M1	M0

ODx - Output Delay: Delays the output of the LSW from the MSW by the following number of clocks.

OD2	OD1	ODO	
0	0	0	Output Delay of 0
0	0	1	Output Delay of 1
0	1	0	Output Delay of 2
0	1	1	Output Delay of 3
1	0	0	Output Delay of 4
1	0	1	Output Delay of 5
1	1	0	Output Delay of 6
1	1	1	Output Delay of 7

DS - Dual Sequencer Enable: Allows two independent 12-bit sequences to be generated.

0	A 24-bit sequence is generated.
1	Two 12-bit sequences are generated.

Mx - Mode: Sequencer Mode. During reset, this register will be reset to all zeroes. This will configure the chip as a 24-bit sequencer with zero delays on the outputs. The chip will also be in one-shot mode without restart.

M1	M0	
0	0	One-Shot Mode without Restart
0	1	One-Shot Mode with Restart
1	x	Continuous Mode $(x=$ don't care $)$

Start Delay Control Register

The Start Delay Control Register is used to configure the start circuitry for delayed starts from 1 to 31 clock cycles. Internal "START", external "START", and restarts will be delay by the programmed amount. The structure of the Start Delay Control Register is shown in Table 3.
TABLE 3. START DELAY CONTROL REGISTER FORMAT

ADDRESS LOCATION: $\mathbf{1 \times 1 1 0 1 1 0}$					
D5	D4	D3	D2	D1	D0
SDE	SD4	SD3	SD2	SD1	SD0

SDE - Start Delay Enable: Enables "START" to be delayed by the programmed amount. When Start Delay is enabled, a minimum of " 1 " is required for the programmed delay.

0	Start Delay is Disabled.
1	Start Delay is Enabled.

SDx - Start Delay: Delays the "START" by the decoded number of clocks.

SD4	SD3	SD2	SD1	SD0	
0	0	0	0	1	Start Delay of 1
0	0	0	1	0	Start Delay of 2
0	0	0	1	1	Start Delay of 3
1	1	1	1	1	Start Delay of 31

During reset, this register will be reset to all zeros. This will bring the chip up in a mode with Start Delay disabled.

Test Control Register

A Test Control Register is provided to configure the sequence generator to produce test sequences. In this mode, the sequence generator can be configured to multiplex out the contents of the down counters in the sequence generator control circuitry, Figure 2. These counters are used to determine when a block or sequence is complete. As shown in Figures 1 and 2, the MSW or LSW in the down counters is multiplexed to the MSW of the address

FIGURE 2. SEQUENCE GENERATOR CONTROL
generator output. In addition, a test mode is provided in which the sequence generator performs a shifting operation on the contents of the start address register. The structure of the Test Control Register is shown in Table 4.

TABLE 4. TEST CONTROL REGISTER FORMAT

ADDRESS LOCATION: 1×110101					
D 5	D4	D3	D2	D1	D0
xx	xx	SE	COE	CS1	CSO

Bits "D5" and "D6" are currently not used.
SE - Shifter Enable: Input to crosspoint switch is generated by shifting Start Address Register one bit per clock.

0	Sequence Generator Functions Normally
1	Sequence Generator Functions as Shift Register

COE - Counter Output Enable: Enable contents of down counters in the sequence generator control circuitry to be muxed to the 12 MSB's of the address generator output.

0	Disable Muxing of down counters
$\mathbf{1}$	Enable Muxing of down counters

CS - Counter Select: Selects which 12-bit word of the down counters is muxed to the MSW of the address generator output.

CS1	CSO	
0	0	Select Counter \#1, bits 0-11
0	1	Select Counter \#1, bits 12-23
1	0	Select Counter \#2, bits 0-11
1	1	Select Counter \#2, bits 12-23

During reset, this register will be reset to all zeroes. This will bring the chip up in the mode with all of the test features disabled.

Applications

Image Processing

The application shown in Figure 3 uses the HSP45240 Address Sequencer to satisfy the addressing requirements for a simple image processing system. In this example the controller configures the sequencers to generate specialized addressing sequences for reading and writing the frame buffers. A typical mode of operation for this system might be to perform edge detection on a sub-section of an image stored in the frame buffer. In this application, data is fed to the 2-D Convolver by the address sequence driving the input frame buffer.

A graphical interpretation of sub-image addressing is shown in Figure 4. Each dot in the figure corresponds to an image pixel stored in memory. It is assumed that the pixel values are stored by row. For example, the first 16 memory locations would contain the first row of pixel values. The 17th memory location would contain the first pixel of the second row.

FIGURE 3. IMAGE PROCESSING SYSTEM

FIGURE 4. SEQUENCER SUB-IMAGE ADDRESSING
The sub-image address sequence shown in Figure 3 is generated by configuring the sequence generator with the following:

1. Start Address
$=35$
2. Step Size
$=1$
3. Block Size
$=8$
4. Block Step Size
$=16$
5. Number of Blocks $=8$

In this example the start address corresponds to the address of the first pixel of the first row. The row length corresponds to the Block Size which is programmed to 8. Within the block, consecutive addresses are generated by programming the Step Size to 1 . At the completion of first block of addresses, the Block Step Size of 16 is added to the Start Address to generate the address of the first pixel of the second row. Finally, 8 rows of addressing are generated by setting the Number of Blocks to 8 .
In this application, the sub-image is processed one time and then a new sub-image area is chosen. As a result, the Mode Control Register would be configured for One-Shot mode without Restart. Also, the Start Delay Control register of the Sequencer driving the output frame buffer would be configured with a start delay to compensate for the pipeline delay introduced by the 2-D Convolver. Finally, the crosspoint switch would be configured in 1:1 mode so that the sequence generator output has a 1 to 1 mapping to the chip output.
For applications requiring decimation of the original image, the Step Size could be increased to provide addressing which skips over pixels along a row. Similary, the Block Step Size could be increased such that pixel rows are skipped.

FFT Processing

The application shown in Figure 5 depicts the architecture of a simplified radix 2 FFT processor. In this application the Address Sequencer drives a memory bank which feeds the arithmetic processor with data. In a radix 2 implementation, the arithmetic processor takes two complex data inputs and produces two results. These results are then stored in the registers from which the data came. This type of implementation is referred to as an "in place" FFT algorithm.
The arithmetic processing unit performs an operation know as the radix 2 butterfly which is shown graphically in Figure 6. In this diagram the node in the center of the butterfly represents summing point while the arrow represents a multiplication point. The flow of an FFT computation is described by diagrams comprised of many butterflies as shown in Figure 7.
The FFT processing shown in Figure 7 consists of three stages of radix 2 butterfly computation. The read/write addressing, expressed in binary, for each stage is shown in Table 5. The specialized addressing required here is produced by using the crosspoint switch to map the address bits from the sequence generator to the chip output.
The mapping for the sequencer's crosspoint switch is determined, by inspecting the addressing for each stage. For example, the first stage of addressing is generated by configuring the crosspoint switch so that bit 0 of the switch input is mapped to bit 2 of the switch output, bit 1 of the switch input is mapped to bit 0 of the output, and bit 2 of the switch input is mapped to bit 1 of the switch output. The remainder of the switch I/O map is configured 1:1, i.e. bit 3 of the switch input is mapped to bit 3 of the switch output. Under this configuration, a sequence generator output of $0,1,2,3,4,5,6,7$ will produce a crosspoint switch output of $0,4,1,5,2,6,3,7$. The switch maps for the other stages as well as a map for the bit-reverse addressing of the FFT result is given in Table 5.
The serial count required as input for the crosspoint switch is generated by configuring the sequence generator with the following:

1. Start Address
$=0$
2. Step Size $=$
3. Block Size
$=8$
4. Block Step Size
$=0$
5. Number of Blocks $=1$

Under this configuration the sequence generator will produce a count from 0 to 7 in increments of 1 . The FFT length corresponds to the Block Size, in this case 8.
The serial count from the sequence generator is converted into the desired addressing sequence by applying the appropriate map to the crosspoint switch. In this application, the switch mapping changes for each stage of the FFT computation. Thus, while one address sequence is being completed, the crosspoint switch is being configured for the next stage of FFT addressing. When one stage of addressing is complete, the new switch configuration is loaded into the current state registers by an internal or externally generated start or restart.
The crosspoint switch is configured for the first stage of addressing by writing a 0 to switch output register 2, a 2 to switch output register 1, and a 0 to switch output register 2. These values are loaded by first writing the address of
switch output register 0 and then loading data using auto-address increment mode (see Table 1). The remaining registers are assumed to be configured in $1: 1$ mode as a result of a prior "RESET". The second and third stages of addressing are generated by reconfiguring the above three registers.

The Address Sequencer can be configured in dual sequencer mode to provide both read and write addressing for each butterfly. Since 2 independent 12 bit sequences can be generated by the Address Sequencer, it can be used to provide read/write addressing for FFT's up to 4096 points. The programmable delay between the MSW and LSW of the Sequencer output is used to compensate for the pipeline delay associated with the arithmetic processor.

TABLE 5. FFT ADDRESSING BY COMPUTATIONAL STAGE

STAGE 1 R/W ADDR.	STAGE 2 R/W ADDR.	STAGE 3 R/W ADDR.	OUTPUT ADDRESSING	
000	000	000	000	
100	010	001	100	
001	001	010	010	
101	011	011	110	
010	100	100	001	
110	110	101	101	
011	101	110	011	
111	111	111	111	
SWITCH MAPPING				
O21				

FIGURE 5. FFT PROCESSOR

$\mathrm{N}=\mathrm{FFT}$ LENGTH

$$
W_{N}^{k}=e^{-j \frac{2 \pi K}{N}}
$$

FIGURE 6. BUTTERFLY FOR DECIMATION-IN-FREQUENCY

FIGURE 7. COMPLETE EIGHT-POINT IN-PLACE DECIMATION-IN-FREQUENCY FFT

Absolute Maximum Ratings

```
Supply Voltage
```



```
Maximum Package Power Dissipation at +700}\textrm{C}............................................ 1.86W (PLCC), 2.84W (PGA)
0ic ...........................................................................0.0
0ja .........................................................................0.0
Gate Count ......................................................................................... }8388\mathrm{ Gates 
Junction Temperature . ............................................................ +1500
Lead Temperature (Soldering, Ten Seconds) .................................................................... +3000
ESD Classification .............................................................................................................................
```

CAUTION: Stresses above those listed in the "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating.and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Operating Conditions

```
Operating Voltage Range
                                +5.0V }\pm5
Operating Temperature Range
00}\textrm{C}\mathrm{ to +70
```

D. C. Electrical Specifications $\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}+5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$

PARAMETER	SYMBOL	MIN	MAX	UNITS	TEST CONDITIONS
Logical One Input Voltage	V_{IH}	2.0	-	v	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$
Logical Zero Input Voltage	$\mathrm{V}_{\text {IL }}$	-	0.8	V	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$
High Level Clock Input	$\mathrm{V}_{\text {IHC }}$	3.0	-	V	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$.
Low Level Clock Input	$\mathrm{V}_{\text {ILC }}$	-	0.8	V	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$
Output HIGH Voltage	V_{OH}	2.6	-	V	$\mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V}$
Output LOW Voltage	$\mathrm{VOL}^{\text {L }}$	-	0.4	V	$\mathrm{I}_{\mathrm{OL}}=+2.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V}$
Input Leakage Current	1	-10	10	$\mu \mathrm{A}$	$\mathrm{V}_{1} \mathrm{~F}=\mathrm{V}_{\text {CC }}$ or GND, $\mathrm{V}_{\text {CC }}=5.25 \mathrm{~V}$
I/O Leakage Current	10	-10	10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$ or $\mathrm{GND}, \mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$
Standby Power Supply Current	I'CCSB	-	500	$\mu \mathrm{A}$	$\begin{aligned} & V_{I N}=V_{C C} \text { or } G N D, \\ & V_{C C}=5.25 V, \text { Outputs open } \end{aligned}$
Operating Power Supply Current	ICCOP	-	99	mA	$\begin{aligned} & f=33 \mathrm{MHz} \\ & \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\mathrm{CC}} \text { or GND, } \mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \\ & \text { Outputs Open, (Note 1) } \end{aligned}$
Input Capacitance	$\mathrm{CIN}_{\text {I }}$	-	10	pF	$f=1 \mathrm{MHz}, \mathrm{~V}_{\mathrm{CC}}=\text { Open, }$
Output Capacitance	Co	-	10	pF	

NOTES:

1. Power supply current is proportional to operating frequency. Typical rating for ICCOP is $3 \mathrm{~mA} / \mathrm{MHz}$.
2. Not tested, but characterized at initial design and at major process/design changes.
A. C. Electrical Specifications ($\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}+5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$) (Note 2)

\therefore PARAMETER	SYMBOL	-33 (33MHz)		-40 (40MHz)		PRELMMINAAY $50(50 \mathrm{MHz})$		UNIT	TEST CONDITIONS
		MIN	MAX	MIN	MAX	Mins.	MAx		
Clock Period :	; TCP	30	-	25	-	20	«*	ns	
Clock Pulse Width High	${ }^{\text {T }} \mathrm{CH}$	12	-	10	-	8	\%	ns	
Clock Pulse Width Low	TCL	12	-	10	-	8	".	ns	
Setup Time DO-6 to WR\# High	TDS	14	-	13	-	\%	\%\%/	ns	
Hold Time DO-6 from WR\# High	TDH	0	-	0	-	\#,	\#\#s\%	ns	
Set-up Time AO, CS\#, to WR\# Low	TAS	5	-	5	-	¢	\#\#k	ns	\because
Hold Time AO, CS\#, from WR\# High	$\mathrm{T}_{\text {AH }}$	0	-	0	-	®		ns	-ํ,
Pulse Width for WR\# Low	TWRL	13	-	12	-	10	\$	ns	
Pulse Width for WR\# High	TWRH	13	-	12	-	10	«	ns	
WR\# Cycle Time	TWP	30	-	25	-	20	๕	ns	
Set-up Time STARTIN\#, DLYBLK, to Clock High	TIS	12	-	10	-	8\%	"/	ns	\because
Hold Time STARTIN\#, DLYBLK, to Clock High	T_{IH}	0	- -	0	-	-	\#\#』	ns
Clock to Output Prop. Delay on OUTO-23	TPDO	-	15	-	13	«	\%	ns	
Clock to Output Prop. Delay on STARTOUT\#, BLKDONE\#,DONE\#, ADDVAL\#, and BUSY\#	TPDS	-					12	ns	, \%
Output Enable Time	TEN	-	20	-	15	*	13	ns	-
Output Disable Time	TOD	-	20	-	15	\%	13	ns	Note 1
Output Rise/Fall Time	TORF	-	5	-	3	*	${ }^{3}$	ns	Note 1
RST\# Low Time	TRST	2 Clock Cycles)						ns	

NOTE:

1. Controlled by design or process parameters and not directly tested. Characterized upon initial design and after major process and/or design changes.
2. A.C. Testing is performed as follows: Input levels (CLK Input) $=4.0 \mathrm{~V}$ and OV; Input levels (All other inputs) $=\mathrm{OV}$ and 3.0 V ; Input timing reference levels: $(C L K)=2.0 \mathrm{~V}$, (Others) $=1.5 \mathrm{~V}$; Output timing references: $\mathrm{V}_{\mathrm{OH}} \geq 1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}} \leq 1.5 \mathrm{~V}$; Input rise and fall times driven at $1 \mathrm{~ns} / \mathrm{N}$.
A.C. Test Load Circuit

*Test Head Capacitance
Switch S1 Open for ICCSB and ICCOP Tests.

Timing Diagrams

ADDRESS/CHIP SELECT SETUP AND HOLD

INPUT SETUP AND HOLD

OUTPUT ENABLE, DISABLE TIMING

DATA SETUP AND HOLD

WR\# AC PARAMETERS

OUTPUT PROPOGATION DELAY

OUTPUT RISE AND FALL TIMING

Features

- This Circuit is Processed in Accordance to Mil-Std883 and is Fully Conformant Under the Provisions of Paragraph 1.2.1.
- Block Oriented 24-Bit Sequencer
- Configurable as Two Independent 12-Bit Sequencers
- 24×24 Crosspoint Switch
- Programmable Delay on 12 Outputs
- Muliti-Chip Synchronization Signals
- Standard $\mu \mathrm{P}$ Interface
- TTL Compatible Inputs/Outputs
- 100pF Drive on Outputs
- DC to 40MHz Clock Rate
- Available in 68 Pin PGA Package

Applications

- 1-D, 2-D Filtering
- Pan/Zoom Addressing
- FFT Processing
- Matrix Math Operations

Description

The Harris HSP45240 is a high speed Address Sequencer which provides specialized addressing for functions like FFT's, 1-D and 2-D filtering, matrix operations, and image manipulation. The sequencer supports block oriented addressing of large data sets up to 24 bits at clock speeds up to 40 MHz .

Specialized addressing requirements are met by using the onboard 24×24 crosspoint switch. This feature allows the mapping of the 24 address bits at the output of the address generator to the 24 address outputs of the chip. As a result, bit reverse addressing, such as that used in FFT's, is made possible.

A single chip solution to read/write addressing is also made possible by configuring the HSP45240 as two 12-bit sequencers. To compensate for system pipeline delay, a programmable delay is provided on 12 of the address outputs.

The HSP45240 is manufactured using an advanced CMOS process, and is a low power fully static design. The configuration of the device is controlled through a standard microprocessor interface and all inputs/outputs, with the exception of clock, are TTL compatible. The Sequencer is available in a 68 pin PGA package.

Block Diagram

Reliability Information
Thermal Resistance

Maximum Package Power Dissipation at $+125^{\circ} \mathrm{C}$
Ceramic PGA Package
. 1.35 Watt
Gate Count
8,388 Gates

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Operating Conditions

Operating Voltage Range . \qquad
Operating Temperature Range .+4.5 V to +5.5 V $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

TABLE 1. D.C. ELECTRICAL PERFORMANCE CHARACTERISTICS
Devices Guaranteed and 100\% Tested

PARAMETER	SYMBOL	CONDITIONS	GROUP A SUBGROUPS	TEMPERATURE	LIMITS		UNITS
					MIN	MAX	
Logical One Input Voltage	V_{IH}	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	1,2,3	$-55^{\circ} \mathrm{C} \leq \mathrm{T}^{\prime} \mathrm{S} \leq+125^{\circ} \mathrm{C}$	2.2	-	V
Logical Zero Input Voltage	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	1, 2, 3	$-55^{\circ} \mathrm{C} \leq \mathrm{T} \mathrm{A} \leq+125^{\circ} \mathrm{C}$	-	0.8	v
Output HIGH Voltage	v_{OH}	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}(\text { Note } 1) \end{aligned}$	1, 2, 3	$-55^{\circ} \mathrm{C} \leq \mathrm{T}^{\prime} \leq+125^{\circ} \mathrm{C}$	2.6	-	V
Output LOW Voltage	$\mathrm{V}_{\text {OL }}$	$\begin{aligned} & \mathrm{IOL}=+2.0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}(\text { Note } 1) \end{aligned}$	1, 2, 3	$-55^{\circ} \mathrm{C} \leq \mathrm{T}^{\prime} \leq+125^{\circ} \mathrm{C}$	-	0.4	V
Input Leakage Current	1	$\begin{aligned} & V_{I N}=V_{C C} \text { or } G N D \\ & V_{C C}=5.5 V \end{aligned}$	1, 2, 3	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	-10	+10	$\mu \mathrm{A}$
Output Leakage Current	10	$\begin{aligned} & V_{\text {OUT }}=V_{C C} \text { or GND } \\ & V_{\mathrm{CC}}=5.5 \mathrm{~V} \end{aligned}$	1, 2, 3	$-55^{\circ} \mathrm{C} \leq \mathrm{T}^{\text {A }} \leq+125^{\circ} \mathrm{C}$	-10	+10	$\mu \mathrm{A}$
Clock Input High	$\mathrm{V}_{\mathrm{IHC}}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	1,2,3	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	3.0	-	V
Clock Input Low	$\mathrm{V}_{\text {ILC }}$	$\mathrm{V}_{\text {CC }}=4.5 \mathrm{~V}$	1,2,3	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	-	0.8	V
Standby Power Supply Current	${ }^{\text {I CCSB }}$	$\begin{aligned} & V_{I N}=V_{C C} \text { or } G N D \\ & V_{C C}=5.5 \mathrm{~V}, \\ & \text { Outputs Open } \end{aligned}$	1, 2, 3	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	-	500	$\mu \mathrm{A}$
Operating Power Supply Current	ICCOP	$\begin{aligned} & f=33 \mathrm{MHz} \\ & \left.\mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V} \text { (Note } 2\right) \end{aligned}$	1,2,3	$-55^{\circ} \mathrm{C} \leq \mathrm{T} \mathrm{A} \leq+125^{\circ} \mathrm{C}$	-	99	mA
Functional Test	FT	(Note 3)	7,8	$-55^{\circ} \mathrm{C} \leq \mathrm{T} \mathrm{A} \leq+125^{\circ} \mathrm{C}$	-	-	

NOTES:

1. Interchanging of force and sense conditions is permitted.
2. Operating Supply Current is proportional to frequency, typical rating is $3 \mathrm{~mA} / \mathrm{MHz}$.
3. Tested as follows: $\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{IH}}=2.6, \mathrm{~V}_{\mathrm{IL}}=0.4, \mathrm{~V}_{\mathrm{OH}} \geq 1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}} \leq$ $1.5 \mathrm{~V}, \mathrm{~V}_{\text {IHC }}=3.4 \mathrm{~V}$, and $\mathrm{V}_{\mathrm{ILC}}=0.4 \mathrm{~V}$.

TABLE 2. A.C. ELECTRICAL PERFORMANCE CHARACTERISTICS
Device Guaranteed and 100\% Tested

PARAMETERS	SYMBOL	CONDITIONS	GROUP A SUBGROUP	TEMPERATURE	LIMITS				UNITS
					-33 (33MHz)		-40 (40MHz)		
					MIN	MAX	MIN	MAX	
Clock Period	${ }^{\text {T }}$ CP		9, 10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	30	-	25	-	ns
Clock Pulse Width High	T_{CH}		9, 10, 11	$-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}$	12	-	10	-	ns
Clock Pulse Width Low	T_{CL}		9, 10, 11	$-55^{\circ} \mathrm{C} \leq T^{\prime} \leq+125^{\circ} \mathrm{C}$	12	-	10	-	ns
Setup Time D0-6 to WR\# High	TDS		9, 10, 11	$-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}$	16	-	14	-	ns
Hold Time D0-6 from WR\# Low	TDH		9, 10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	0	-	0	-	ns
Set-up Time AO, CS\#, to WR \# Low	TAS		9, 10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T} \mathrm{A} \leq+125^{\circ} \mathrm{C}$	5	-	5	-	ns
Hold Time AO, CS\#, from WR\# High	$\mathrm{T}_{\text {AH }}$		9, 10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T} \mathrm{A} \leq+125^{\circ} \mathrm{C}$	0	-	0	-	ns
Pulse Width for WR\# Low	TWRL		9, 10, 11	$-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}$	14	-	12	-	ns
Pulse Width for WR\# High	TWRH		9, 10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	14	-	12	-	ns
WR\# Cycle Time	TWP		9,10,11	$-55^{\circ} \mathrm{C} \leq T_{A} \leq+125^{\circ} \mathrm{C}$	30	-	25	-	ns
Set-up Time STARTIN\#, DLYBLK, to Clock High	TIS		9, 10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T} \mathrm{A} \leq+125^{\circ} \mathrm{C}$	12	-	10	-	ns
Hold Time STARTIN\#, DLYBLK, to Clock High	T_{IH}		9,10,11	$-55^{\circ} \mathrm{C} \leq \mathrm{T} \mathrm{A} \leq+125^{\circ} \mathrm{C}$	0	-	0	-	ns
Clock to Output Prop. Delay on OUTO-23	TPDO		9, 10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T} \mathrm{S} \leq+125^{\circ} \mathrm{C}$	-	16	-	14	ns
Clock to Output Prop. Delay on STARTOUT\#, BLKDONE\#,DONE\#, ADVAL\#, and BUSY\#	TPDS		9, 10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	-	16	-	14	ns
Output Enable Time	TEN	Note 2	9, 10, 11	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	-	20	-	15	ns
RST\# Low Time	$T_{\text {RST }}$		9, 10, 11	$-55^{\circ} \mathrm{C} \leq \top \mathrm{A} \leq+125^{\circ} \mathrm{C}$	2 Clock Cycles				ns

NOTES:

1. A.C. Testing; Inputs are driven at 3.0 V for Logic " 1 " and 0.0 V for a Logic " 0 ". Input and output timing measurements are made at 1.5 V for both a logic " 1 " and '" 0 ". Inputs driven at $1 \mathrm{~V} / \mathrm{ns}$. CLK is driven at 4.0 V and OV and measured at 2.0 V .
[^3]TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS

PARAMETERS	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	Limits				UNITS
					-33 (33MHz)		-40 (40MHz)		
					MIN	MAX	MIN	MAX	
Input Capacitance	C_{IN}	$V_{C C}=$ Open, $f=1 \mathrm{MHz}$, All measurements are referenced to device GND.	1	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-	10	-	10	pF
Output Capacitance	COUT	$\mathrm{V}_{\mathrm{CC}}=\text { Open, }$ $\mathrm{f}=1 \mathrm{MHz}, \mathrm{All}$ measurements are referenced to device GND.	1	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-	10	-	10	pF
Output Disable Delay	ToEz		1,2	$-55^{\circ} \mathrm{C} \leq \mathrm{T}^{\prime} \mathrm{S} \leq+125^{\circ} \mathrm{C}$	-	20	-	15	ns
Output Rise Time	TOR		1,2	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	-	5	-	3	ns
Output Fall Time	ToF		1,2	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	-	5	-	3	ns

NOTES: 1. Parameters listed in Table 3 are controlled via design or process
2. Loading is as specified in the test load circuit with $C_{L}=40 \mathrm{pF}$. parameters and are not directly tested. These parameters are characterized upon initial design and after major process and/or design changes.

TABLE 4. ELECTRICAL TEST REQUIREMENTS

CONFORMANCE GROUPS	METHOD	SUBGROUPS
Initial Test	$100 \% / 5004$	-
Interim Test	$100 \% / 5004$	-
PDA	100%	1
Final Test	100%	$2,3,8 A, 8 B, 10,11$
Group A	-	$1,2,3,7,8 A, 8 B, 9,10,11$
Groups C \& D	Samples $/ 5005$	$1,7,9$

HSP45240/883
Burn-In Circuit

PGA PIN	PIN NAME	BURN-IN SIGNAL	PGA PIN	PIN NAME	BURN-IN SIGNAL	$\begin{aligned} & \text { PGA } \\ & \text { PIN } \end{aligned}$	PIN NAME	BURN-IN SIGNAL	$\left\|\begin{array}{l} \mathrm{PGA} \\ \mathrm{PIN} \end{array}\right\|$	$\begin{aligned} & \text { PIN } \\ & \text { NAME } \end{aligned}$	BURN-IN SIGNAL
A2	GND	GND	B9	OUT14	$\mathrm{V}_{\mathrm{CC} / 2}$	F11	OUT8	$\mathrm{v}_{\mathrm{CC} / 2}$	K6	BUSYB	$\mathrm{v}_{\mathrm{CC} / 2}$
A3	OUT23	$\mathrm{v}_{\mathrm{CC} / 2}$	C1	D2	F10	G1	CSB	F5	K7	DONEB	$\mathrm{V}_{\mathrm{CC} / 2}$
A4	V_{CC}	V_{CC}	C2	D1	F9	G2	AO	F6	K8	OUTO	$\mathrm{v}_{\mathrm{CC} / 2}$
A5	OUT20	$\mathrm{v}_{\mathrm{CC} / 2}$	C10	GND	GND	G10	OUT6	$\mathrm{v}_{\mathrm{CC} / 2}$	K9	$\mathrm{v}_{\text {cc }}$	$v_{C C}$
A6	OUT19	$\mathrm{v}_{\mathrm{cC} / 2}$	C11	OUT12	$\mathrm{V}_{\mathrm{CC} / 2}$	G11	OUT7	$\mathrm{v}_{\mathrm{CC} / 2}$	K11	OUT3	$\mathrm{V}_{\mathrm{CC} / 2}$
A7	$V_{C C}$	$V_{C C}$	D1	D4	F12	H1	CLK	FO	L2	OEHB	F13
A8	OUT16	$\mathrm{v}_{\mathrm{CC}} / 2$	D2	D3	F11	H2	GND	GND	L3	DLYBLK	F11
A9	OUT15	$\mathrm{v}_{\mathrm{CC} / 2}$	D10	OUT10	$\mathrm{v}_{\mathrm{CC} / 2}$	H10	OUT5	$\mathrm{v}_{\mathrm{CC} / 2}$	L4	STARTOUTB	$\mathrm{V}_{\mathrm{CC} / 2}$
A10	OUT13	$\mathrm{V}_{\mathrm{cc} / 2}$	D11	OUT11	$\mathrm{V}_{\mathrm{CC} / 2}$	H11	$V_{C C}$	$V_{\text {CC }}$	L5	$\mathrm{V}_{\text {CC }}$	V_{CC}
B1	Do	F8	E1	D6	F7	J1	RSTB	F14	L6	BLOCKDONEB	$\mathrm{V}_{\mathrm{CC} / 2}$
B3	OUT22	$\mathrm{v}_{\mathrm{CC} / 2}$	E2	D5	F13	J2	$V_{\text {CC }}$	$V_{\text {CC }}$	L7	GND	GND
B4	OUT21	$\mathrm{v}_{\mathrm{CC} / 2}$	E10	OUT9	$\mathrm{v}_{\mathrm{CC} / 2}$	J10	GND	GND	L8	OUT1	$\mathrm{V}_{\mathrm{CC} / 2}$
B5	GND	GND	E11	V_{CC}	V_{CC}	J11	OUT4	$\mathrm{v}_{\mathrm{CC} / 2}$	L9	OUT2	$\mathrm{v}_{\mathrm{cc} / 2}$
B6	OUT18	$\mathrm{V}_{\mathrm{CC} / 2}$	F1	WRB	F4	K3	OELB	F12			
B7	OUT17	$\mathrm{V}_{\mathrm{CC}} / 2$	F2	GND	GND	K4	STARTINB	F6			
B8	GND	GND	F10	GND	GND	K5	ADVALB	$\mathrm{v}_{\mathrm{cc} / 2}$			

NOTES:

1. $\mathrm{V}_{\mathrm{CC}} / 2(2.7 \mathrm{~V} \pm 10 \%)$ used for outputs only.
2. $0.1 \mu \mathrm{~F}(\mathrm{~min})$ capacitor between V_{CC} and GND per position.
3. $47 \mathrm{~K} \Omega(\pm 20 \%)$ resistor connected to all pins except $V_{C C}$ and GND.
4. $V_{C C}=5.5 \pm 0.5 \mathrm{~V}$.
5. $F 0=100 \mathrm{KHz} \pm 10 \%, F 1=F 0 / 2, F 2=F 1 / 2 \ldots, F 11=F 10 / 2,40 \%-$ 60\% Duty Cycle.
6. Input voltage limits: $\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$ max., $\mathrm{V}_{\mathrm{IH}}=4.5 \mathrm{~V} \pm 10 \%$.

Metallization Topology

DIE DIMENSIONS:
$186 \times 222 \times 19 \pm 1$ mils
METALLIZATION:
Type: Si - Al or $\mathrm{Si}-\mathrm{Al}-\mathrm{Cu}$
Thickness: $8 \mathrm{k} \AA$
GLASSIVATION:
Type: Nitrox
Thickness: $10 \mathrm{k} \AA$
DIE ATTACH:
Material: Silver/Glass
WORST CASE CURRENT DENSITY:
$1.8 \times 10^{5} \mathrm{~A} / \mathrm{cm}^{2}$
Metallization Mask Layout

Packaging ${ }^{\dagger}$

LEAD MATERIAL: Type B
LEAD FINISH: Type C
PACKAGE MATERIAL: Ceramic, $\mathrm{Al}_{2} \mathrm{O}_{3} 90 \%$
PACKAGE SEAL:
Material: Gold/Tin
Temperature: $320^{\circ} \mathrm{C} \pm 10^{\circ} \mathrm{C}$
Method: Furnace Braze

INTERNAL LEAD WIRE:

Material: Aluminum
Diameter: 1.25 Mil
Bonding Method: Ultrasonic Wedge COMPLIANT OUTLINE: 38510 P-AC

Features

- DC to 30 MHz Operating Frequency
- Programmable Buffer Length from 2 to 1281 Words
- Supports Data Words to 10-Bits
- Clock Select Logic for Positive or Negative Edge System Clocks
- Data Recirculate or Delay Modes of Operation
- Expandable Data Word Width or Buffer Length
- Three-State Outputs
- TTL Compatible Inputs/Outputs
- Low Power CMOS
- Available in 44 Pin PLCC Package

Applications

- Sample Rate Conversion
- Data Time Compression/Expansion
- Software Controlled Data Alignment
- Programmable Serlal Data Shifting
- Audio/Speech Data Processing

Video/Image Processing

- 1-H Delay Line of 910 NTSC, 1135 PAL or 1280 Samples:
- High Resolution Monitor Delay Line
- Comb Filter Designs
- Progressive Scanning Display
- TV Standards Conversion
- Image Processing

Description

The HSP9501 is a 10-Bit wide programmable data buffer designed for use in high speed digital systems. Two different modes of operation can be selected through the use of the MODSEL input. In the delay mode, a programmable data pipeline is created which can provide 2 to 1281 clock cycles of delay between the input and output data. In the data recirculate mode, the output data path is internally routed back to the input to provide a programmable circular buffer.

The length of the buffer or amount of delay is programmed through the use of the 11-bit length control input port (LCO-10) and the length control enable (LCEN\#). An 11 -bit value is applied to the LCO-10 inputs, LCEN\# is asserted, and the next selected clock edge loads the new count value into the length control register. The delay path of the HSP9501 consists of two registers with a programmable delay RAM between them, therefore, the value programmed into the length control register is the desired length -2 . The range of values which can be programmed into the length control register are from 0 to 1279, which in turn results in an overall range of programmable delays from 2 to 1281.

Clock select logic is provided to allow the use of a positive or negative edge system clock as the CLK input to the HSP9501. The active edge of the CLK input is controlled through the use of the CLKSEL input. All synchronous timing (i.e. data setup, hold and output delays) are relative to the clock edge selected by CLKSEL. An additional clock enable input (CLKEN\#) provides a means of disabling the internal clock and holding the existing contents temporarily. All outputs of the HSP9501 are three-state outputs to allow direct interfacing to system or multi-use busses.

The HSP9501 is recommended for digital video processing or any applications which require a programmable delay or circular data buffer.

Pinout

Block Diagram

Pin Descriptions

NAME	PIN NUMBER	TYPE	DESCRIPTION
$\mathrm{V}_{\text {CC }}$	12,34		The +5 V power supply pin. A $0.1 \mu \mathrm{~F}$ capacitor between the V_{CC} and GND pin is recommended.
GND	13,33		The device ground.
CLK	1	1	Input Clock. This clock signal is used to control the data movement through the programmable buffer. It is also the signal which latches the input data, length control word and mode select. Input setup and hold times with respect to the clock must be met for proper operation.
DIO-9	$\begin{gathered} 27,29-32, \\ 35-39 \end{gathered}$	1	Data Inputs. This 10-bit input port is used to provide the input data. When MODSEL is low, data on the DIO-9 inputs is latched on the clock edge selected by CLKSEL.
DOO-9	$\begin{aligned} & 7-11, \\ & 14-18 \end{aligned}$	0	Data Outputs. This 10-bit port provides the output data from the internal delay registers. Data latched into the DIO-9 inputs will appear at the DOO-9 outputs on the Nth clock cycle, where N is the total delay programmed.
LCO-10	$\begin{aligned} & 20-26, \\ & 41-44 \end{aligned}$	1	Length Control Inputs. These inputs are used to specify the number of clock cycles of delay between the DIO-9 inputs and the DOO-9 outputs. An integer value between 0 and 1279 is placed on the LCO-10 inputs, and the total delay length (N) programmed is the LCO-10 value plus 2 . In order to properly load an active length control word, the value must be presented to the LCO-10 inputs and LCEN\# must be asserted during an active clock edge selected by CLKSEL.
LCEN\#	6	1	Length Control Enable. LCEN\# is used in conjuction with LC0-10 and CLK to load a new length control word. An 11-bit value is loaded on the LCO-10 inputs, LCEN\# is asserted, and the next selected clock edge will load the new count value. Since this operation is synchronous, LCEN\# must meet the specified setup/hold times with respect to CLK for proper operation.
OE\#	19	1	Output Enable. This input controls the state of the DOO-9 output port. A low on this control line enables the port for output. When OE\# is high, the output drivers are in the high impedance state. Internal latching or transfer of data is not affected by this input.
MODSEL	40	I	Mode Select. This input is used to control the mode of operation of the HSP9501. A low on MODSEL causes the device to latch new data at the DIO-9 inputs on every clock cycle, and operate as a programmable pipeline register. When MODSEL is high, the HSP9501 is in the recirculate mode, and will operate as a programmable length circular buffer. This control signal may be used in a synchronous fashion during device operation, however, care must be taken to ensure the required setup/hold times with respect to CLK are met.
CLKSEL	5	I	Clock Select Control. This input is used to determine which edge of the CLK signal is used for controlling all internal events. A low on CLKSEL selects the negative going edge, therefore, all setup, hold, and output delay times are with respect to the negative edge of CLK. When CLKSEL is high, the positive going edge is selected and all synchronous timing is with respect to the positive edge of the CLK signal.
CLKEN\#	2	1	Clock Enable. This control signal can be used to enable or disable the CLK input. When low, the CLK input is enabled and will operate in a normal fashion. A high on CLKEN\# will disable the CLK input and will "hold" all internal operations and data. This control signal may also be used in a synchronous fashion, however, setup and hold requirements with respect to CLK must be met for proper device operation.

Functional Description

The HSP9501 is a 10 -bit wide programmable length data buffer. The length of delay is programmable from 2 to 1281 delays in single delay increments.
Data into the delay line may be selected from the data input bus (DIO-9) or as recirculated output, depending on the state of the mode select (MODSEL) control input.

Mode Select

The MODSEL control pin selects the source of the data moving into the delay line. When MODSEL is low, the data input bus (DIO-9) is the source of the data. When MODSEL is high, the output of the HSP9501 is routed back to the input to form a circular buffer.

The MODSEL control line is latched at the input by the CLK signal. The edge which latches this control signal is determined by the CLKSEL control line. In either case, the MODSEL line is latched on one edge of the CLK signal with the following edge moving data into and through the HSP9501. Refer to the functional timing waveforms for specific timing references.

Clock Select Logic

The clock select logic is provided to allow the use of positive or negative edge system clocks. The active edge of the CLK input to the HSP9501 is controlled through the use of the CLKSEL input.

When CLKSEL is low, the negative going edge of CLK is used to control all internal operations. A high on CLKSEL selects the positive going edge of CLK.

All synchronous timing (i.e. setup, hold and output propagation delay times are relative to the CLK edge selected by CLKSEL. Functional timing waveforms for each state of CLKSEL are provided (refer to timing waveforms for details).

Delay Path Control

The HSP9501 buffer length is programmable from 2 to 1281 data words in one word increments. The minimum number of delays which can be programmed is two, consisting of the input and output buffer registers only.

The Length control inputs (LCO-10) are used to set the length of the programmable delay ram which can vary in length from 0 to 1279. The total length of the HSP9501 data buffer will then be equal to the programmed value on LCO-10 plus 2. The programmed delay is established by the 11-bit integer value of the LCO-10 inputs with LC10 as the MSB and LCO as the LSB.

For example,

LC10	9	8	7	6	5	4	3	2	1	LC0
0	0	0	0	1	0	0	0	0	0	1

programs a length value of $2^{6}+2^{0}=65$. The total length of the delay will be $65+2$ or 67 delays.

Table 1 indicates several programming values. The decimal value placed on LCO-10 must not exceed 1279. Controlled operation with larger values is not guaranteed.

Values on LCO-10 are latched on the CLK edge selected by the CLKSEL control line, when LCEN\# is active. LC0-10 and LCEN\# must meet the specified setup and hold times relative to the selected CLK edge for proper device operation.

TABLE 1. LENGTH CONTROL PROGRAMMING EXAMPLES

LC10	LC9											
2^{10}	2^{9}	2^{8}	2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	$\mathbf{2}^{2}$	$\mathbf{2 1}^{1}$	$\mathbf{2 0}^{20}$	PROGRAMMED LENGTH	TOTAL LENGTH N
0	0	0	0	0	0	0	0	0	0	0	0	2
0	0	0	0	1	1	1	0	1	1	0	118	120
0	1	1	0	0	1	0	1	0	0	0	808	810
1	0	0	0	0	0	1	1	0	0	1	1049	1051
1	0	0	1	1	1	1	1	1	1	1	1279	1281

Absolute Maximum Ratings

Operating Conditions

D.C. Electrical Specifications ($\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}+5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$, Commercial)

PARAMETER	SYMBOL	MIN	MAX	UNITS	TEST CONDITIONS
Logical One Input Voltage	V_{IH}	2.0	-	V	$V_{C C}=5.25 \mathrm{~V}$
Logical Zero Input Voltage	$\mathrm{V}_{\text {IL }}$	-	0.8	V	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$
Output HIGH Voitage	V_{OH}	2.4	-	V	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V} \\ & \hline \end{aligned}$
Output LOW Voltage	VOL	-	0.4	V	$\begin{aligned} & \mathrm{l} \mathrm{OL}=+4.0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V} \\ & \hline \end{aligned}$
Input Leakage Current	1	-10	10	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{GND} \text { or } \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{~V} \\ & \hline \end{aligned}$
Output Leakage Current	10	-10	10	$\mu \mathrm{A}$	$\begin{aligned} & V_{\mathrm{OUT}}=\mathrm{GND} \text { or } \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{~V} \\ & \hline \end{aligned}$
Standby Current	ICCsB	-	500	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{I N}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND}, \mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{~V} \\ & \text { Outputs open } \end{aligned}$
Operating Power Supply Current	ICCOP	-	125	mA	$\begin{aligned} & f=25 \mathrm{MHz}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \\ & \mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{~V} \text {, Outputs open } \end{aligned}$

A.C. Electrical Specifications $\left(V_{C C}=5.0 \mathrm{~V}+5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\right.$ to $+70^{\circ} \mathrm{C}$, Commercial)

PARAMETER	SYMBOL	PRELIMINARY30		-25		UNITS	TEST CONDITIONS
		MIN	MAX	MIN	MAX		
Clock Period	$\mathrm{T}_{\text {CP }}$	33	-	40	-	ns	
Clock Pulse Width High	TPWH	13	*	15	-	ns	
Clock Pulse Width Low	TPWL	13	?	15	-	ns	
Data Input Setup Time	TDS	10	\#	12	-	ns	
Data Input Hold Time	TDH	${ }^{2}$	\$	2	-	ns	
Output Enable Time	TENA	»	20	-	25	ns	
Output Disable Time	TDIS	$\stackrel{ }{\text { ¢ }}$	20	-	25	ns	Note 1
CLKEN\# to Clock Setup	TES	10	\$	12	-	ns	
CLKEN\# to Clock Hold	TEH	${ }^{2}$	\$	2	-	ns	
LCO-10 Setup Time	TLS	10	»	13	-	ns	
LC0-10 Hold Time	TLH	2	-	2	-	ns	
LCEN\# to Clock Setup	TLES	10	²	13	-	ns	
LCEN\# to Clock Hold	TLEH	2	\$	2	-	ns	
MODSEL Setup Time	$\mathrm{T}_{\text {MS }}$	10	«	13	-	ns	
MODSEL Hold Time	T_{MH}	2	¢	2	-	ns	
Clock to Data Out	TOUT	*	18	-	22	ns	
Output Hold from Clock	TOH	4	\$	4	-	ns	

NOTES:

1. Controlled by design or process parameters and not directly tested. Characterized upon initial design and after major process and/or design changes.
2. A.C. Testing is performed as follows: Input levels: OV and 3.0 V , Timing reference levels $=1.5 \mathrm{~V}$, Input rise and fall times driven at $1 \mathrm{~ns} / \mathrm{V}$, Output load $C_{L}=40 p F$.

Switch S1 Open for ICCSB and ICCOP Tests

Timing Waveforms

FUNCTIONAL TIMING (CLKSEL = LOW)

INTERNAL CLOCK

CLKEN\# TIMING (CLKSEL = LOW)

LENGTH CONTROL TIMING (CLKSEL = LOW)

Timing Waveforms (Continued)

FUNCTIONAL TIMING (CLKSEL: $=$ HIGH)

CLKEN\# TIMING (CLKSEL $=$ HIGH)

LENGTH CONTROL TIMING (CLKSEL = HIGH)

Features

- Four 8-Bit Registers
- Hold, Transfer and Load Instructions
- Single 4-Stage or Dual-2 Stage Pipelining
- All Register Contents Available at Output
- Fully TTL Compatible
- Three-State Outputs
- High Speed, Low Power CMOS
- Available in 24 Pin Dual-In-Line and SOIC Packages

Applications

- Array Processor
- Digital Signal Processor
- A/D Buffer
- Telecommunication
- Byte Wide Shift Register
- Mainframe Computers

Description

These devices are multilevel pipeline registers implemented using a low power CMOS process. They are pin for pin compatible replacements for industry standard multilevel pipeline registers such as the L29C520 and L29C521. The HSP9520 and HSP5921 are direct replacements for the AM29520/21 and WS59520/21.

They consist of four 8-bit registers which are dual ported. They can be configured as a single four level pipeline or a dual two level pipeline. A single 8-bit input is provided, and the pipelining configuration is determined by the instruction code input to the 10 and 11 inputs (see instruction control).

The contents of any of the four registers is selectable at the multiplexed outputs through the use of the S0 and S1 multiplexer control inputs (see register select). The output is 8 -bits wide and is three-stated through the use of the OE\# input.

The '9520 and '9521 differ only in the way data is loaded into and between the registers in dual two-level operation. In the '9520, when data is loaded into the first level the existing data in the first level is moved to the second level. In the '9521, loading the first level simply causes the current data to be overwritten. Transfer of data to the second level is achieved using the single four level mode ($11,10=$ ' 0 '). This instruction also causes the first level to be,loaded. The HOLD instruction ($11,10=$ ' 1 ') provides a means of holding the countents of all registers.

Pinout

HSP9520/HSP9521 (24 PIN SOIC)
'9520/'9521 (24 PIN DIP) TOP VIEW

Block Diagram

Pin Descriptions

NAME	DIP PIN	TYPE	DESCRIPTION
$V_{\text {CC }}$	24		The +5 V power supply pin. A $0.1 \mu F$ capacitor between the VCC and GND pin is recommended.
GND	12		The device ground.
CLK	11	1	Input Clock. Data is latched on the low to high transition of this clock signal. Input setup and hold times with respect to the clock must be met for proper operation.
D0-7	$3-10$	1	Data Input Port. These inputs are used to supply the 8 bits of data which will be latched into the selected register on the next rising clock edge.
YO-7	$21-14$	0	Data Output Port. This 8-bit port provides the output data from the four internal registers. They are provided in a multiplexed fashion, and are controlled via the multiplexer control inputs (SO and S1).
$10, I 1$	1,2	1	Instruction Control Inputs. These inputs are used to provide the instruction code which determines the internal register pipeline configuration. Refer to the Instruction Control Table for the specific codes and their associated configurations.
SO,S1	23,22	1	Multiplexer Control Inputs. These inputs select which of the four internal registers' contents will be available at the output port. Refer to the Register Select Table for the codes to select each register.
OE\#	13	I	Output Enable. This input controls the state of the output port (YO-Y7). A LOW on this control line enables the port for ouput. When OE\# is HIGH, the output drivers are in the high impedance state. Internal latching or transfer of data is not affected by this pin.

Absolute Maximum Ratings

Supply Voltage . +8.0 V
Input or Output Voltage Applied GND -0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
Storage Temperature Range................
Junction Temperature . $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, Ten Seconds) $+300^{\circ} \mathrm{C}$

Operating Conditions

Operating Voltage Range . +4.75 V to +5.25 V
Operating Temperature Range $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Reliability Information
\qquad

Maximum Package Power Dissipation 1.5 W
D.C. Electrical Specifications ($\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN	MAX	UNITS	TEST CONDITIONS
Logical One Input Voltage	V_{IH}	2.0	-	V	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$
Logical Zero Input Voltage	V_{IL}	-	0.8	V	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$
Output HIGH Voltage	V_{OH}	2.4	-	V	$\mathrm{I}_{\mathrm{OH}}=-6.5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V}$
Output LOW Voltage	V_{OL}	-	0.5	V	$\mathrm{I}_{\mathrm{OL}}=+20.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V}$
Input Leakage Current	1	-10	10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{CC}}$ or $\mathrm{GND}, \mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$
Output Leakage Current	10	-10	10	$\mu \mathrm{A}$	$\begin{aligned} & V_{O U T}=V_{C C} \text { or } G N D \\ & V_{C C}=5.25 \mathrm{~V} \end{aligned}$
Standby Power Supply Current	${ }^{\prime} \mathrm{Ccss}$	-	500	$\mu \mathrm{A}$	$\begin{aligned} & V_{I N}=V_{C C} \text { or GND } \\ & V_{C C}=5.25 V \text { Outputs Open } \end{aligned}$
Operating Power Supply Current	I'COP	-	12	mA	$f=5.0 \mathrm{MHz}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND}$ $V_{C C}=5.25 \mathrm{~V}$, Ouputs Open

A.C. Electrical Specifications ($\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN	MAX	UNITS	TEST CONDITIONS (Note 2)
Clock to Data Out	$\mathrm{T}_{\text {PD }}$	-	22	ns	
Mux Select to Data Out	TSELD	-	20	ns	
Input Setup Time (D0-7/10-7)	Ts	10	-	ns	
Input Hold Time (DO-7/10-7)	T_{H}	3	-	ns	
Output Enable Time	TENA	-	21	ns	
Output Disable Time	T DIS	-	15	ns	Note 1
Clock Pulse Width	TPW	10	-	ns	,

NOTES:

1. Controlled by design or process parameters and not directly tested. Characterized upon initial design and after major design and/or process changes.
2. A.C. Testing is performed as follows: Input levels: OV and 3.0 V , Timing reference levels $=1.5 \mathrm{~V}$, Input rise and fall times driven at $1 \mathrm{~ns} / \mathrm{V}$, Output load $C_{L}=40 \mathrm{pF}$.

Absolute Maximum Ratings

Operating Conditions

Operating Voltage Range . +4.75 V to +5.25 V
Operating Temperature Range................ $.0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
D.C. Electrical Specifications ($\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN	MAX	UNITS	TEST CONDITIONS
Logical One Input Voltage	$\mathrm{V}_{1 \mathrm{H}}$	2.0	-	v	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$
Logical Zero Input Voltage	$\mathrm{V}_{\text {IL }}$	-	0.8	V	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$
Output HIGH Voltage	V_{OH}	2.4	-	V	$\mathrm{I}_{\mathrm{OH}}=-2.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V}$
Output LOW Voltage	$\mathrm{VOL}_{\text {OL }}$	-	0.5	V	$\mathrm{IOL}=+12.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V}$
Input Leakage Current	1	-10	10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{GND}$ or $\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$
Output Leakage Current	10	-10	10	$\mu \mathrm{A}$	$\begin{aligned} & V_{O U T}=V_{C C} \text { or } G N D \\ & V_{C C}=5.25 \mathrm{~V} \end{aligned}$
Standby Power Supply Current	ICCsB	-	500	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$ or GND $\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$ Outputs Open
Operating Power Supply Current	ICCOP	-	12	mA	$\begin{aligned} & f=5.0 \mathrm{MHz}, \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\mathrm{CC}} \text { or GND } \\ & \mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V} \text {, Ouputs Open } \end{aligned}$

A.C. Electrical Specifications $\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\right.$ to $+70^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	MIN	MAX	UNITS	TEST CONDITIONS (Note 2)
Clock to Data Out	TPD	-	25	ns	
Mux Select to Data Out	TSELD	-	25	ns	
Input Setup Time (D0-7, 10-1)	Ts	15	-	ns	
Input Hold Time (DO-7, 10-1)	T_{H}	3	-	ns	
Output Enable Time	TENA	-	25	ns	
Output Disable Time	T DIS	-	20	ns	Note 1
Clock Pulse Width	TPW	13	-	ns	

NOTES:

1. Controlled by design or process parameters and not directly tested. Characterized upon initial design and after major design and/or process changes.
2. A.C. Testing is performed as follows: Input levels: OV and 3.0 V , Timing reference levels $=1.5 \mathrm{~V}$, Input rise and fall times driven at $1 \mathrm{~ns} / \mathrm{N}$, Output load $\mathrm{C}_{\mathrm{L}}=40 \mathrm{pF}$.

Timing Waveform

TABLE 1. INSTRUCTION CONTROL

TABLE 2. REGISTER SELECT

$S 1$	$S 0$	$\prime 9520$ OR'9521
0	0	B 2
0	1	B 1
1	0	A 2
1	1	A 1

HARRIS

Features

- Reconfigurable 256 Stage Binary Correlator
- 1-Bit Reference x 1, 2, 4, 8 Bit Data
- Configurable as 2 Separate Correlators
- Separate Data, Control and Reference Inputs
- Standard Microprocessor Interface
- Configurable for 1-D and 2-D Correlation
- Double Buffered Mask and Reference Register
- Programmable Output Delay
- Offset Register
- 85 Pin PGA, 84 Pin PLCC
- 20 MHz , 25.6MHz, 33MHz Versions

Applications

- Radar/Sonar Applications
- Spread Spectrum Communications
- Synchronization
- Pattern/Character Recognition
- Error Correction Coding

Description

The HSP45256 is a low cost, high speed, 256-tap binary correlator. The correlator taps may be configured to perform 1-D and 2-D correlations of selectable precision and window size. Because of this flexibility, the Binary Correlator is ideally suited for $1-\mathrm{D}$ applications, such as radar, as well as 2-D applications, such as character recognition. In addition, multiple HSP45256's are easily cascaded if extended precision and/or window size is required.

The heart of the Binary Correlator consists of a set of eight 32-tap stages. These eight filter stages may be internally cascaded to process $1,2,4$, or 8 -bit input data with a 1 -bit reference. Depending on the precision of the input data, the size of the correlation window can vary from 8×32 to $1 \times$ 256. The HSP45256 can also be configured for operation as two separate correlators with data precision of 1,2 , or 4 bits and window sizes from 4×32 to 1×128. A mask register is provided which allows the user to prevent any subset of the 256 correlation taps from contributing to the correlation score.

The output of the correlation array feeds the weight and sum logic where a user selectable bit weighting is applied to determine the correlation score. For added flexibility, an offset register is provided which allows the user to add a programmed value to the correlation score. This result is then passed through a user programmable delay stage to the cascade summer. The delay stage simplifies the cascading of multiple correlators by compensating for the latency of previous stages.

The Binary Correlator is configured by writing a set of control registers via a standard microprocessor interface. To simplify operation, both the control and reference registers are double buffered. This allows the user to load new mask and reference data while the current correlation is being completed.

Block Diagram

APPLICATION NOTES

PAGEAPPLICATION NOTE NUMBER
AN116 Extended Digital Filter Configurations 7-3
AN9102 Noise Aspects of Applying Advanced CMOS Semiconductors 7-13

Harris Signal Processing

EXTENDED DIGITAL FILTER CONFIGURATIONS

Introduction

Harris HSP43891/881/481 Digital Filters (DFs) perform high speed sum-of-products operations. These video speed devices operate at 30 MHz , offering substantial improvement in processing speed over other available technology. Throughputs in excess of 30 MHz are achieved using multiple devices.

The DF data sheet explains how multiple DFs can be easily cascaded to achieve long filters with 8 bit data and coefficients. This note presents extensions of the basic cascaded configuration for:

- Designing Extended Length Filters Using a Single Device (the Number of Taps Exceeds the Number of Cells).
- Implementing Higher Precision (Greater Than 8 or 9 Bits) Full Speed Designs Using Multiple Devices.
- Implementing Higher Precision Designs Using a Single Device.

It is assumed that the reader has a basic knowledge of filter design and some digital hardware experience. Readers who require more detailed information on the electrical characteristics of the DF family devices should refer to the Harris DF engineering data sheets. Harris also provides a comprehensive set of hardware and software development tools.

The Finite Impulse Response Filter

The finite impulse response (FIR) filter is simply a finitelength sum-of-products digital filter. Each output sample is a weighted sum of the new input value and the L-1 previous
inputs, where L is the order of the filter. With the tapped delay line architecture (Figure 1) the filter coefficients remain fixed while the input data shifts from cell to cell on each clock cycle.

The DF's architecture (Figure 2) is different from the traditional tapped delay line filter. In the DF the filter coefficients shift from cell to cell with each clock cycle. As each new data sample becomes available it is distributed to all of the cells at the same time. In addition, every DF cell contains its own multiplier and accumulator. This allows each cell to maintain an independent sum-of-products in its accumulator. A new output value becomes available on each clock cycle by properly sequencing the filter coefficients through the cells.

FIGURE 1. DIRECT FORM REPRESENTATION OF FIR FILTER

FIGURE 2. DF CELL DIAGRAM

Each cell's accumulator is cleared after its contents are output. This allows accumulation of the next sum-of-products to begin. Note that the filter coefficients enter from the left, shifting one cell to the right with each clock cycle.

A single device may be used to implement filters with a large number of coefficients. In this case the number of filter taps will exceed the number of DF cells. This requires manipulating the input data and filter coefficient sequences, maintaining the proper sum-of-products in each cell's accumulator. This implementation is described in greater detail in the following section.

Eight Tap Filter With a Four Cell Device

A simple example is the best way to demonstrate how data and coefficients are properly sequenced. Table 1 illustrates the situation when an eight tap filter is computed in a single 4 cell HSP43481. The table lists information in six columns. The first column shows the initial 21 clock cycles, which is enough to evaluate the example. The next four columns represent the actions taking place in each of the four DF cells as a function of the clock. The final column shows the output results, also a function of the clock.

Within the filter cell are internal pipeline delays. The result is a startup delay of three CLKs before the data and coefficients present at the input of the DF are processed and stored in the accumulator of the first cell. This delay is not
relevant to the sequential operation of the DF and will be ignored in subsequent discussions (also ignored in Table 1).

The basic computational sequence is shown below:
CLK 0 - Initial data point X_{0} is made available to all four cells. At the same time coefficient C_{7} enters Cell 0.

- The First Product $\left(C_{7} \times X_{0}\right)$ is Computed and Stored in Accumulator of Cell 0 .
CLK $1-X_{1}$ is made available to all four cells. At the same time coefficient C_{6} enters Cell 0 , shifting C_{7} to Cell 1.
- The Accumulator of Cell 0 is Updated With the Additional Term $\mathrm{C}_{6} \times \mathrm{X}_{1}$.
- The Product $C_{7} \times X_{1}$ is Computed and Stored in Accumulator of Cell 1.
CLK $2-X_{2}$ is made available to all four cells. At the same time coefficient C_{5} enters Cell 0 , shifting C_{7} to Cell 2 and C_{6} to Cell 1.
- The Accumulator of Cell 0 is Updated With the Additional Term $\mathrm{C}_{5} \times \mathrm{X}_{2}$.
- The Accumulator of Cell 1 is Updated With the Additional Term $\mathrm{C}_{6} \times \mathrm{X}_{2}$.
- The Product $C_{7} \times X_{2}$ is Computed and Stored in Accumulator of Cell 2.

TABLE 1. HSP434818 TAP FIR FILTER SEQUENCE USING SINGLE 4 CELL DEVICE

CLK	CELL 0	CELL 1	CELL 2	CELL 3	SUM/CLR
0	$\mathrm{C}_{7} \times \mathrm{X}_{0}$	0	0	0	-
1	$+C_{6} \times \mathrm{X}_{1}$	$\mathrm{C}_{7} \times \mathrm{X}_{1}$	0	0	-
2	$+\mathrm{C}_{5} \times \mathrm{X}_{2}$	$+C_{6} \times{ }_{2}$	$\mathrm{C}_{7} \times \mathrm{X}_{2}$	0	-
3	$+\mathrm{C}_{4} \times \mathrm{X}_{3}$	$+C_{5} \times{ }^{3}$	$+\mathrm{C}_{6} \times{ }^{3}$	$\mathrm{C}_{7} \times \mathrm{X}_{3}$	-
4	$+\mathrm{C}_{3} \times \mathrm{X}_{4}$	$+\mathrm{C}_{4} \times \mathrm{X}_{4}$	$+\mathrm{C}_{5} \times \mathrm{X}_{4}$	$+\mathrm{C}_{6} \times \mathrm{X}_{4}$	-
5	$+\mathrm{C}_{2} \times \mathrm{X}_{5}$	$+C_{3} \times{ }^{5}$	$+C_{4} \times{ }_{5}$	$+C_{5} \times{ }_{5}$	-
6	$+\mathrm{C}_{1} \times \mathrm{X}_{6}$	$+\mathrm{C}_{2} \times \mathrm{X}_{6}$	$+\mathrm{C}_{3} \times \mathrm{X}_{6}$	$+\mathrm{C}_{4} \times \mathrm{X}_{6}$	-
7	$+C_{0} \times{ }_{7}$	$+C_{1} \times{ }^{4}$	$+\mathrm{C}_{2} \times \mathrm{X}_{7}$	$+C_{3} \times x_{7}$	Cell 0 (Y7)
8	0	$+\mathrm{C}_{0} \times{ }_{8}$	$+\mathrm{C}_{1} \times \mathrm{X}_{8}$	$+\mathrm{C}_{2} \times \mathrm{X}_{8}$	Cell $1\left(Y_{8}\right)$
9	0	$\therefore 0$	$+\mathrm{C}_{0} \times{ }^{\prime}{ }_{9}$	$+C_{1} \times{ }_{9}$	Cell $2\left(Y_{9}\right)$
10	0	0	0	$+\mathrm{C}_{0} \times \mathrm{X}_{10}$	Cell $3\left(Y_{10}\right)$
11	$\mathrm{C}_{7} \times \mathrm{X}_{4}$	0	0	0	-
12	$+\mathrm{C}_{6} \times \mathrm{X}_{5}$	$\mathrm{C}_{7} \times \mathrm{X}_{5}$	0	0	-
13	$+C_{5} \times X_{6}$	$+C_{6} \times \mathrm{X}_{6}$	$\mathrm{C}_{7} \times \mathrm{X}_{6}$	0	-
14	$+C_{4} \times x_{7}$	$+C_{5} \times{ }_{7}$	$+C_{6} \times x_{7}$	$\mathrm{C}_{7} \times \mathrm{X}_{7}$	-
15	$+C_{3} \times x_{8}$	$+\mathrm{C}_{4} \times{ }^{8}$	$+\mathrm{C}_{5} \times \mathrm{X}_{8}$	$+\mathrm{C}_{6} \times \mathrm{X}_{8}$	-
16	$+\mathrm{C}_{2} \times \mathrm{X}_{9}$	$+\mathrm{C}_{3} \times \mathrm{X}_{9}$	$+\mathrm{C}_{4} \times \mathrm{X}_{9}$	$+\mathrm{C}_{5} \times \mathrm{X}_{9}$	-
17	$+\mathrm{C}_{1} \times \mathrm{X}_{10}$	$+\mathrm{C}_{2} \times \mathrm{X}_{10}$	${ }^{+} C_{3} \times \mathrm{X}_{10}$	$+C_{4} \times \mathrm{X}_{10}$	- ${ }^{-}$
18	$+\mathrm{C}_{0} \times \mathrm{X}_{11}$	$+\mathrm{C}_{1} \times \mathrm{X}_{11}$	$+\mathrm{C}_{2} \times \mathrm{X}_{11}$	$+C_{3} \times{ }_{11}$	Cell $0\left(Y_{11}\right)$
19	0	$+\mathrm{C}_{0} \times \mathrm{X}_{12}$	$+\mathrm{C}_{1} \times \mathrm{X}_{12}$	$+\mathrm{C}_{2} \times \mathrm{X}_{12}$	Cell $1\left(Y_{12}\right)$
20	0	0	$+\mathrm{C}_{0} \times \mathrm{X}_{13}$	$+\mathrm{C}_{1} \times \mathrm{X}_{13}$	Cell $2\left(Y_{13}\right)$
21	0	0	0	$+\mathrm{C}_{0} \times \mathrm{X}_{14}$	Cell $3\left(\mathrm{Y}_{14}\right)$

This process continues until eight taps have been computed and accumulated in each cell. This happens first in Cell 0, followed one CLK later by Cell 1, two CLKs later by Cell 2, and three CLKs later by Cell 3. Output points become available after each cell accumulates the sum of eight taps in the order given above.

After Cell 3's output becomes available, we are ready to begin work on the next four output points. We can cycle the eight filter coefficients in the same fashion as before but the input data is out of sequence. Before computing the fifth output point the DF requires X_{4} to be available at the data input. Since X_{4} passed by seven CLKs ago (during CLK 4) some method of storing the previous seven data points is necessary.

In order to access the previous seven data values they must have been originally stored in some form of sequential memory. FIFOs work very well and will be discussed in the next section. Starting with CLK 11 the taps once more begin to accumulate in each of the four cells.

The result of re-accessing data after every four output points is to lower the effective throughput. The output rate drops about fifty percent to a rate of four output points for every eleven CLKs.

L Tap Filter With an N Cell Device Where L>N

The example above leads to the more general case of implementing an L tap filter with an N cell device ($L>N$). When an L tap filter is implemented using an N cell DF (where $L>N$), the DF computes a block of N filter output samples at a time. Between these output blocks there are L-1 CLK cycles during which no valid output points are available. Therefore, generating a block of N output points requires $\mathrm{L}+\mathrm{N}-1$ CLKs. During these $L+N-1$ CLKs there are $L+N-1$ new input samples being clocked into the DIN (Data IN) port.

It can be seen from Table 1 that N outputs are read out of the DF during the last N CLKs of each L+N-1 CLK sequence. After inputting the first L data samples $N-1$ CLKs are required to flush the coefficients from the cells. The final $\mathrm{L}-1$ of the previous $\mathrm{L}+\mathrm{N}-1$ input samples must be re-submitted at the input port. After the outputs are read out an additional $L+N-1$ samples are fed in and the process repeats itself until no more data is available.
In this paper, throughput is defined as the average rate at which outputs are computed by the DF. When the number of taps exceeds the number of filter cells, the necessity to re-access the data stream determines the maximum throughput. The generalized performance of an L tap, 8×8 FIR filter is shown below. Let:
$L=$ Number of taps
$N=$ Number of filter cells in DF
$R=$ Maximum clock rate of $\operatorname{DF}(20,25.6$, or 30 MHz$)$
$F_{S}=$ Desired throughput (MHz) where $R>F_{S}$

If L, N, and R are known then:
$F_{S}=N \times R /(L+N-1)$
If L, R, and F_{S} are known then:
$N=F_{S}(L-1) /\left(R-F_{S}\right)$
Since there are either four (HSP43481) or eight (HSP43881) cells in each DF, the required number of DFs can be computed as:
\# of 4 cell DFs $=\mathrm{N} / 4$ (round up to next integer value)
\# of 8 cell DFs $=$ N/8 (round up to next integer value)
An example design with $L=128$ taps, $F_{S}=5 \mathrm{MHz}$, and $\mathrm{R}=20 \mathrm{MHz}$ would yield:
$N=5 \times 127 / 15=43$ cells
\# of 4 cell DFs $=43 / 4=11$
$\#$ of 8 cell DFs $=43 / 8=6$
Optimum arrangement $=40 / 8+3 / 4=$ Five 8 cell and one 4 cell DFs.
The sequencing of the input data can be realized in various ways, with the simplest design using FIFOs. Figure 3 shows the block diagram of a design using an eight cell DF. The input data buffered in two FIFOs (each must have threestate outputs).
An 8 bit counter is configured to count modulo $L+N-1$. To initialize the system, the first L-1 data samples are passed through FIFO \#1 and written into FIFO \#2. While this occurs N more samples are clocked into FIFO \#1. Following that a repetitive steady state sequence begins as shown below:

1. Clock the first L-1 samples from FIFO \#2 into the DF.
2. Clock N samples from FIFO \#1 into the DF.
3. Clock the last L-1 samples of the sequence in steps 1 and 2 back into FIFO \#2.
4. Clock the next N samples into FIFO \#1 concurrently with steps 1-3.
This sequence of steps 1 through 4 can be repeated ad infinitum.
The output data is available in blocks of N points separated by L-1 CLK cycles. FIFO \#3 acts as a rate buffer for the output and is optional. The coefficient memory contains the L coefficients followed by the necessary $\mathrm{N}-1$ zeros.
A design example using the above technique might include a 57 tap filter with a sample rate of 2.5 MHz . This can be done with a single 8 cell device operating at 20 MHz .

Higher Precision Filters and Correlators

Several digital filtering applications require wider wordwidth calculations to maintain precision. The DFs are designed to be flexible in creating filters with input precision levels of 8 , $16,24,32$ bits or greater.
The first step is to restructure the data and/or coefficients into 8 bit quantities which can be processed by the DF.

FIGURE 3. BLOCK DIAGRAM OF AN 8 CELL DF CONFIGURED TO IMPLEMENT EXTENDED FILTER LENGTHS (UP TO 249 TAPS)

These quantities are used to form the partial products of the larger multiplication involving the full precision data and coefficients. An example of segmenting the partial products of a 16×8 multiplication (16 bit coefficients and 8 bit data) would be:
$C(16$ bit $)=C_{H} \times 2^{8}+C_{L} \times 2^{0}$
$\mathrm{X}(8 \mathrm{bit})=\mathrm{X} \times 2^{0}$
$H=$ High Order Byte
L = Low Order Byte
Consequently,

$$
\begin{aligned}
C \times X & =\left(C_{H} \times 2^{8}+C_{L} \times 2^{0}\right) \times \times 2^{0} \\
& =C_{H} X \times 2^{8}+C_{L} \times \times 2^{0}
\end{aligned}
$$

The process of convolution or correlation requires repeated multiply and accumulate operations. The resulting partial output word widths are a function of the number of MAC operations and of the coefficient scaling. Although each partial product is only 16 bits wide, the sum of the partial products in the output stage is allowed to accumulate up to a maximum width of 26 bits.

Care must be taken when combining the upper and lower partial sums-of-products into each complete output result. Figure 5 illustrates how the upper and lower sums of partial products for each output point must be re-combined. Sign extension must be used if more than 26 bits are required from the output stage representing the least significant sum of partial products.

Two separate techniques can be used in determining higher precision results:

1. Use separate DFs, combining the two partial products using external adders.

- Throughput equals the clock rate of the DF.

2. Accumulate the two partial products in separate cells of a single DF.

- The SHADD (SHift and ADD) feature of the output adder allows the data to be properly aligned and combined.
- Throughput is determined by the number of taps, partial products, and DF cells, as well as the clock rate of the DF.

The equations describing the filtering operation are the same for either technique and can be given as:

$$
y(n)=\sum_{i=0}^{N-1} C(i) X(n-i)
$$

However: $\quad\left(\mathrm{C}_{\mathrm{H}} \times 2^{8}+\mathrm{C}_{\mathrm{L}}\right) \mathrm{X}=\mathrm{C}_{\mathrm{H}} \times \times 2^{8}+\mathrm{C}_{\mathrm{L}} \mathrm{X}$
Therefore: $y(n)=\sum_{i=0}^{N-1} C_{H}(i) X(n-i) \times 2^{8}+\sum_{i=0}^{N-1} C_{L}(i) X(n-1)$
Assuming the coefficients are represented as two's complement numbers, the least significant byte has to be treated as a positive (unsigned) number. The TCCI input of the DF is used to take care of this.

Word-Size Extension at Full Speed

Full performance filters with extended precision data and/or coefficients are easily designed. This is achieved by computing the partial products in separate DFs and combining their results with external adders. When external adders are used the system performance is limited only by the throughput of the DF itself.
The filter equations listed directly above can be expanded into their partial products and grouped for processing. An
expansion of the first four output points resulting from the convolution of 16 bit coefficient and 8 bit data is shown in Table 2.
In this case, for a 4 tap filter, each device accumulates four partial products at once, one in each cell. The output adder combines these partial products into the proper result. The sequence table (Table 2) shows the results of the multiply accumulate operations for one device (DFO).

Figure 4 is a block diagram that directly implements the grouping given above. DFO is generating the $C_{L} X$ partial products while DF1 is generating the partial products for CH_{H}. The two 8×8 partial products are generated in separate DFs and combined with an external adder. Notice that the lower and upper coefficients bytes are separated and used to supply different DFs. Using this design the throughput is limited only by the DF (up to 30 MHz).

The adder stage of Figure 4 merits further discussion. Each 4 cell DF has 26 output lines (SUMO-25). Therefore, if all the available bits were preserved we would have a 34 bit sum as shown in Figure 5. However, many designs require only 16 output bits. Which 16 bits are selected depends on the coefficient scaling and the input signal level.

TABLE 2. HSP43481 4 TAP SINGLE PARTIAL PRODUCT FIR FILTER

$$
\begin{aligned}
& y(3)=C_{H}(0) X(3) \times 2^{8}+C_{L}(0) X(3) \\
&+C_{H}(1) X(4) \times 2^{8}+C_{L}(1) X(4) \\
&+C_{H}(2) X(5) \times 2^{8}+C_{L}(2) X(5) \\
&+C_{H}(3) X(6) \times 2^{8}+C_{L}(3) X(6) \\
& \text { DFO }
\end{aligned}
$$

etc.

$$
\begin{aligned}
& y(2)=C_{H} \\
& \text { (0) } \mathrm{X}(2) \times 2^{8}+C_{L}(0) \\
& \text { (0) } X(2) \\
& +\mathrm{C}_{\mathrm{H}}(1) \mathrm{X}(3) \times 2^{8}+\mathrm{C}_{\mathrm{L}}(1) \mathrm{X}(3) \\
& +\mathrm{C}_{\mathrm{H}}(2) \mathrm{X}(4) \times 2^{8}+\mathrm{CL}_{\mathrm{L}} \\
& \text { (2) } X(4) \\
& +\mathrm{C}_{\mathrm{H}}(3) \mathrm{X}(5) \times 2^{8}+\mathrm{CL}_{\mathrm{L}}(3) \mathrm{X}(5) \\
& \begin{array}{cc}
\text { DF1 } & \text { DFO } \\
\text { Cell } 2 & \text { Cell } 2
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& y(1)=C_{H}(0) X(1) \times 2^{8}+C_{L}(0) X(1) \\
& +\mathrm{C}_{\mathrm{H}}(1) \mathrm{X}(2) \times 2^{8}+\mathrm{C}_{\mathrm{L}}(1) \mathrm{X}(2) \\
& +\mathrm{CH}_{\mathrm{H}}(2) \mathrm{X}(3) \times 2^{8}+\mathrm{C}_{\mathrm{L}}(2) \mathrm{X}(3)
\end{aligned}
$$

CLK	CELL 0	CELL 1	CELL 2	CELL 3	OUTPUT
0	$\mathrm{C}_{\text {L3 }} \times \mathrm{X}_{\text {LO }}$	0	0	0	
1	$+C_{L 2} \times X_{L 1}$	$\mathrm{C}_{\mathrm{L} 3} \times \mathrm{X}_{\mathrm{L} 1}$	0	0	
2	$+C_{L 1} \times X_{L 2}$	$+\mathrm{C}_{\mathrm{L} 2} \times \mathrm{X}_{\mathrm{L} 2}$	$\mathrm{C}_{\mathrm{L} 3} \times \mathrm{X}_{\mathrm{L} 3}$	0	
3	$+\mathrm{CLO}_{\text {L }} \times \mathrm{XL}_{\text {L }}$	$+\mathrm{C}_{\mathrm{L} 1} \times \mathrm{X}_{\text {L3 }}$	$+\mathrm{C}_{\mathrm{L} 2} \times \mathrm{X}_{\mathrm{L} 3}$	$\mathrm{C}_{\text {L3 }} \times \mathrm{X}_{\text {L3 }}$	Cell 0 (YL3)
4	$\mathrm{C}_{\mathrm{L} 3} \times \mathrm{X}_{\mathrm{L} 4}$	$+\mathrm{C}_{\text {LO }} \times \mathrm{X}_{\text {L4 }}$	$+\mathrm{C}_{\mathrm{L} 1} \times \mathrm{X}_{\mathrm{L} 4}$	$+\mathrm{C}_{\mathrm{L} 2} \times \mathrm{X}_{\mathrm{L} 4}$	Cello (YL4)
5	$+_{\text {C }}{ }_{L 2} \times{ }_{\text {L }}$	$\mathrm{C}_{\mathrm{L} 3} \times \mathrm{X}_{\mathrm{L} 5}$	$+\mathrm{C}_{\text {LO }} \times \times_{\text {L5 }}$	$+C_{L 1} \times X_{L 5}$	Cell $0\left(Y_{L} 5\right)$
6	$+\mathrm{C}_{\mathrm{L} 1} \times \mathrm{X}_{\mathrm{L} 6}$	$+\mathrm{C}_{\mathrm{L} 2} \times \mathrm{X}_{\mathrm{L} 6}$	$\mathrm{C}_{\mathrm{L} 3} \times \mathrm{X}_{\mathrm{L} 6}$	$+\mathrm{CLO}_{\text {L }} \times \mathrm{X}_{\text {L6 }}$	Cell 0 (YL6)
7	$+\mathrm{C}_{\mathrm{LO}} \times \mathrm{XL}_{\mathrm{L} 7}$	$+\mathrm{C}_{\mathrm{L} 1} \times \mathrm{X}_{\mathrm{L} 7}$	$+\mathrm{C}_{\mathrm{L} 2} \times \mathrm{X}_{\mathrm{L} 7}$	$\mathrm{C}_{\mathrm{L} 3} \times \mathrm{X}_{\mathrm{L} 7}$	Cell 0 (YL7)

FIGURE 4. BLOCK DIAGRAM OF A 30MHz, 4 TAP, 16×8 FIR FILTER

FIGURE 5. IDEAL OUTPUT STAGE ADDER

The results for the 16×8 example can be extended to the general case of more than four taps. Let:
$L=$ Number of taps
$N=$ Total number of filter cells required
$R=$ Maximum clock rate of DF (20, 25.6, or 30 MHz)
$\mathrm{F}_{\mathrm{S}}=$ Desired throughput (MHz)
For a full speed ($F_{S}=R$) 16×8 design: $N=2 L$
There are either four (HSP43481) or eight (HSP43881) cells in each DF. Therefore, the number of DFs can be computed as: \# of 4 cell DFs $=2 \times$ [L/4 (rounded up to next integer value)] \# of 8 cell DFs $=2 \times[\mathrm{L} / 8$ (rounded up to next integer value)]
An example design with $L=15$ taps and $F_{S}=R=25 \mathrm{MHz}$ would yield:
\# of 4 cell DFs $=2 \times[15 / 4]=8$
\# of 8 cell DFs $=2 \times[15 / 8]=4$

Word-Size Extension Using One Device

The second technique for extending the word width accumulates the partial products in separate cells of a
single device. An expansion of the first four output points resulting from the convolution of 16 bit coefficient and 8 bit data is shown below.
The groupings are the same as in the earlier case using multiple DFs. However, in this case individual cells within one DF are responsible for generating the partial products. This method of processing eliminates the need for an external adder in exchange for lower throughput.
The sequence table (Table 3) shows the results of the multiply accumulate operation for the separate cells of a 4 tap 16×8 FIR filter. Cells 1 and 3 accumulate the partial products $\mathrm{C}_{\mathrm{H}} \times$. Cells 0 and 2 accumulate the partial products $C_{L} X$.
After computing and outputting the first result Cell 0 is ready to accumulate the next partial products. At this point (CLK 11) Cell 0 needs to re-access X_{2}, which was last available during CLK 5. In order to accomplish this a temporary storage, sequential memory (such as a FIFO) is necessary. The design of Figure 6 shows such a FIFO based design.

$$
\begin{aligned}
\mathrm{y}(1) & =\mathrm{C}_{\mathrm{H}}(0) \mathrm{X}(1) \times 2^{8}+\mathrm{C}_{\mathrm{L}}(0) \mathrm{X}(1) \\
& +\mathrm{C}_{\mathrm{H}}(1) \mathrm{X}(2) \times 2^{8}+\mathrm{CL}_{\mathrm{L}}(1) \mathrm{X}(2) \\
& +\mathrm{C}_{\mathrm{H}}(2) \mathrm{X}(3) \times 2^{8}+\mathrm{C}_{\mathrm{L}}(2) \mathrm{X}(3) \\
& +\mathrm{C}_{\mathrm{H}}(3) \mathrm{X}(4) \times 2^{8}+\mathrm{C}_{\mathrm{L}}(3) \mathrm{X}(4) \\
& \xrightarrow[\text { Cell 3 }]{ } \text { 2 }
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{y}(3) & =\mathrm{C}_{\mathrm{H}}(0) \mathrm{X}(3) \times 2^{8}+\mathrm{C}_{\mathrm{L}}(0) \mathrm{X}(3) \\
& +\mathrm{CH}_{\mathrm{H}}(1) \mathrm{X}(4) \times 2^{8}+\mathrm{C}_{\mathrm{L}}(1) \mathrm{X}(4) \\
& +\mathrm{CH}_{\mathrm{H}}(2) \mathrm{X}(5) \times 2^{8}+\mathrm{CL}^{(2) X(5)} \\
& +\mathrm{CH}_{\mathrm{H}(3) \mathrm{X}(6) \times 2^{8}}^{\mathrm{CL}_{\mathrm{L}}(3) \mathrm{X}(6)}
\end{aligned}
$$

TABLE 3. HSP43481 4 TAP, 16×8 FIR FILTER SEQUENCE
INPUT DATA
SEQUENCE
COEFFICIENT
SEQUENCE $\mathrm{C}_{\mathrm{L} 3}, \mathrm{C}_{\mathrm{H} 3}, \mathrm{O}, \mathrm{o}, \mathrm{C}_{\mathrm{LO}}, \mathrm{C}_{\mathrm{HO}}, \mathrm{C}_{\mathrm{L} 1}, \mathrm{C}_{\mathrm{H} 1}, \mathrm{C}_{\mathrm{L} 2}, \mathrm{C}_{\mathrm{H} 2}, \mathrm{C}_{\mathrm{L} 3}, \mathrm{C}_{\mathrm{H} 3} \longrightarrow \mathrm{DF}$ $Y(5) \ldots Y(4) \ldots Y(3)$

CLK	CELLL 0	CELL 1	CELL 2	CELL 3	OUTPUT
0	$\mathrm{CH}_{3} \times 0$	-	-	-	-
1	$\mathrm{C}_{\mathrm{L} 3} \times \mathrm{X}_{0}$	$\mathrm{CH}_{3} \times \mathrm{X}_{0}$	-	-	-
2	$\mathrm{C}_{\mathrm{H} 2} \times \mathrm{O}$	$\mathrm{C}_{\mathrm{L} 3} \times 0$	$\mathrm{CH}_{3} \times 0$	-	-
3	$+\mathrm{CL}_{2} \times \mathrm{X}_{1}$	$+\mathrm{C}_{\mathrm{H} 2} \times \mathrm{X}_{1}$	$\mathrm{C}_{\mathrm{L} 3} \times \mathrm{X}_{1}$	$\mathrm{CH}_{3} \times \mathrm{X}_{1}$	-
4	$\mathrm{C}_{\mathrm{H} 1} \times 0$	$\mathrm{C}_{\mathrm{L} 2} \times 0$	$\mathrm{C}_{\mathrm{H} 2} \times \mathrm{O}$	$\mathrm{C}_{\mathrm{L} 3} \times 0$	
5	$+\mathrm{C}_{\mathrm{L} 1} \times \mathrm{X}_{2}$	$+\mathrm{C}_{\mathrm{H} 1} \times \times_{2}$	$+\mathrm{C}_{\mathrm{L} 2} \times \mathrm{X}_{2}$	$+\mathrm{CH}_{\mathrm{H} 2} \times \mathrm{X}_{2}$	-
6	CHO O	$\mathrm{C}_{\mathrm{L} 1} \times 0$	$\mathrm{C}_{\mathrm{H} 1} \times 0$	$\mathrm{CL}_{\mathrm{L} 2} \times 0$	-
7		$+\mathrm{C}_{\mathrm{HO}} \times \mathrm{X}_{3}$	$+\mathrm{C}_{\mathrm{L} 1} \times \mathrm{X}_{3}$	$+\mathrm{C}_{\mathrm{H} 1} \times \mathrm{X}_{3}$	$Y_{L}(3)$
8	0×0	$\mathrm{CLO}_{\text {¢ }} \mathrm{O}$	$\mathrm{C}_{\mathrm{HO}} \times \mathrm{O}$	$\mathrm{C}_{\mathrm{L} 1} \times 0$	-
9	$0 \times{ }^{0}$	$0 \times \times 4$	$+\mathrm{CLO}_{\text {¢ }} \mathrm{X}_{4}$	$+\mathrm{CHO}_{\mathrm{HO}} \times{ }_{4}$	$\mathrm{Y}_{\mathrm{H}}(3)$
10	$\mathrm{CH}_{3} \times 0$	0×0	0×0	$\mathrm{C}_{\mathrm{LO}} \times \mathrm{O}$	-
11	$\mathrm{C}_{\mathrm{L} 3} \times \mathrm{X}_{2}$	$\mathrm{CH}_{3} \times \mathrm{X}_{2}$	$0 \times{ }_{2}$	$0 \times \times 2$	$Y_{L}(4)$
12	$\mathrm{C}_{\mathrm{H} 2} \times 0$	$\mathrm{C}_{\mathrm{L} 3} \times 0$	$\mathrm{C}_{\mathrm{H} 3} \times 0$	0×0	-
13	$+\mathrm{C}_{\mathrm{L} 2} \times \mathrm{X}_{3}$	$+\mathrm{C}_{\mathrm{H} 2} \times \mathrm{X}_{3}$	$\mathrm{C}_{\mathrm{L} 3} \times \mathrm{X}_{3}$	$\mathrm{C}_{\mathrm{H} 3} \times \mathrm{X}_{3}$	$Y_{H}(4)$
14	$\mathrm{C}_{\mathrm{H} 1} \times 0$	$\mathrm{C}_{\mathrm{L} 2} \times 0$	$\mathrm{C}_{\mathrm{H} 2} \times \mathrm{O}$	$\mathrm{C}_{\mathrm{L} 3} \times 0$	-
15	$+\mathrm{C}_{\mathrm{L} 1} \times \mathrm{X}_{4}$	$+\mathrm{C}_{\mathrm{H} 1} \times \mathrm{X}_{4}$	$+\mathrm{C}_{\mathrm{L} 2} \times \mathrm{X}_{4}$	$+\mathrm{C}_{\mathrm{H} 2} \times \mathrm{X}_{4}$	-
16	$\mathrm{C}_{\mathrm{HO}} \times 0$	$\mathrm{C}_{\mathrm{L} 1} \times 0$	$\mathrm{C}_{\mathrm{H} 1} \times 0$	$\mathrm{C}_{\mathrm{L} 2} \times 0$	-
17	$+\mathrm{CLO}_{\text {L }} \times \mathrm{X}_{5}$	$+\mathrm{CHO}_{\mathrm{HO}} \times \mathrm{X}_{5}$	$+\mathrm{C}_{\mathrm{L} 1} \times \mathrm{X}_{5}$	$+\mathrm{CH}_{1} \times{ }^{\text {K }}$	$Y_{L}(5)$
18	0×0	$\mathrm{C}_{\mathrm{LO}} \times 0$	$\mathrm{C}_{\mathrm{HO}} \times \mathrm{O}$	$\mathrm{C}_{\mathrm{L} 1} \times 0$	-
19	$0 \times{ }_{6}$	$0 \times \mathrm{X} 6$	$+\mathrm{C}_{\text {Lo }} \times \mathrm{X}_{6}$	$+\mathrm{C}_{\mathrm{HO}} \times \mathrm{X}_{6}$	$\mathrm{Y}_{\mathrm{H}}(5)$
20	$\mathrm{C}_{\mathrm{H} 3} \times 0$	0×0	0×0	$\mathrm{C}_{\mathrm{LO}} \times 0$	-
21	$\mathrm{C}_{\mathrm{L} 3} \times \mathrm{X}_{4}$	$\mathrm{C}_{\mathrm{H} 3} \times \mathrm{X}_{4}$	$0 \times{ }^{4}$	$0 \times \times 4$	$Y_{L}(6)$
22	$\mathrm{C}_{\mathrm{H} 2} \times 0$	$\mathrm{C}_{\mathrm{L} 3} \times 0$	$\mathrm{CH}_{3} \times 0$	0×0	-
23	$+\mathrm{C}_{\mathrm{L} 2} \times \mathrm{X}_{5}$	$+\mathrm{CH}_{\mathrm{H} 2} \times \mathrm{X}_{5}$	$\mathrm{CL}_{\mathrm{L}} \times \mathrm{X}_{5}$	$\mathrm{C}_{\mathrm{H} 3} \times \mathrm{X}_{5}$	$\mathrm{Y}_{\mathrm{H}}(6)$
24	$\mathrm{C}_{\mathrm{H} 1 \times 0}$	$\mathrm{C}_{\mathrm{L} 2} \times 0$	$\mathrm{C}_{\mathrm{H} 2} \times \mathrm{O}$	$\mathrm{C}_{\mathrm{L} 3} \times 0$	-
25	$+\mathrm{C}_{\mathrm{L} 1} \times \mathrm{X}_{6}$	$+\mathrm{C}_{\mathrm{H} 1} \times \mathrm{X}_{6}$	$+\mathrm{C}_{\mathrm{L} 2} \times \mathrm{X}_{6}$	$+\mathrm{CH}_{2} \times \mathrm{X}_{6}$	-

FIGURE 6. 16x8 4 TAP FIR FILTER BLOCK DIAGRAM

In order to interlace the necessary zeros between data samples we must toggle the DIENB control line. This line is driven low when passing a valid data sample to the X register and set high when loading the X register with zero. The sequencing of the input data through the FIFOs is similar to the example given in Figure 3.
The output stage (Figure 7) plays a key role in determining the final results. In the output stage there are several control signals. The most important signals controlling the output stage are SHADD (SHift and ADD), ADRO-1 (cell AdDRess), SENBL (Sum0-15 ENaBled), and SENBH (Sum16-25 ENaBled). SENBL and SENBH are always asserted in this example, enabling the three-state output buffer and allowing the external register to clock in data at the proper time. SHADD and ADRO-1 are used to control the flow of data through the output stage.
The contents of a selected cell (ADRO-1) are routed to two separate locations within the output stage; the 26 bit adder and the output mux. From the output mux the 26 bit cell
contents are available to the outside world as either the 16 LSBs (SENBL), 10 MSBs (SENBH), or all 26 bits ($\overline{\text { SENBL }}+\overline{\text { SENBH }})$.

The 26 bit adder feeding the output buffer has two possible inputs. The first input represents the contents of the selected cell. The zero mux determines whether the other input to the adder is zero or the 18 MSBs of the output buffer. A high on the SHADD input selects the 18 MSBs of the output buffer and a low on the SHADD input selects zero. The results from the adder are immediately stored in the output buffer.

Data reaches the three-state buffer by one of two separate paths. The first path routes the data directly from the cell result multiplexer through the output multiplexer and onto the output bus. The second path is from the cell result multiplexer, through the adder, and finally onto the output bus. Both of these routes will be used in order to create the final result from the partial products.

FIGURE 7. DF OUTPUT STAGE

After the partial products are made available to the output bus they are stored in temporary registers. This allows the two sections of the final result to be combined properly. Following this the full result may be stored directly into some form of memory. Figure 6 shows a block diagram illustrating the complete concept.

The following summary describes the sequence of events listed in Table 3 (also refer to Figures 6 and 7).

CLK 0-5

- Each Cell Is Accumulating Partial Product Data
- SHADD Not Asserted

CLK 6

- Cell 0 Selected (ADRO-1 $=0$)
- Erase Accumulator of Cell 0 ($\overline{\text { ERASE }}=0$)
- SHADD Not Asserted

CLK 7

- Cell 0 Contents Added to Zero and Available at Input to Output Buffer
- Cell 0 Contents Available at SUMO-15
- Cell 1 Selected (ADRO-1 = 1)
- Erase Accumulator of Cell 1 ($\overline{\text { ERASE }}=0$)
- SHADD Not Asserted

CLK 8

- External 8 Bit Register Clock Asserted. Lower 8 Bits of SUM0-15 (Least Significant Byte of $Y(3)$) Entered Into External 8 Bit Register
- Cell 0 Contents Entered Into Output Buffer
- Cell 1 Contents Added to Zero and Available at Input to Output Buffer
- SHADD Asserted

CLK 9

- Shift Cell 0 Contents Down 8 Bits and Add to Contents of Cell 1 (Output Buffer). This 16 Bit Value Becomes Available at SUMO-15
- SHADD Not Asserted

CLK 10

- External 16 Bit Register Clock Asserted. All 16 Bits of SUMO-15 (Most Significant Word of Y(3)) Entered Into External 16 Bit Register
- Cell 2 Selected (ADRO-1 = 2)
- Erase Accumulator of Cell 2 ($\overline{\text { ERASE }}=0$)
- SHADD Not Asserted

CLK 11

- Cell 2 Contents Added to Zero and Available at Input to Output Buffer
- Cell 2 Contents Available at SUMO-15
- Cell 3 Selected (ADRO-1 = 3)
- Erase Accumulator of Cell 3 ($\overline{\text { ERASE }}=0$)
- Write Y(3) Into Output FIFO (Optional)
- SHADD Not Asserted

CLK 12

- External 8 Bit Register Clock Asserted. Lower 8 Bits of SUMO-15 (Least Significant Byte of $\mathrm{Y}(4)$) Entered Into External 8 Bit Register
- Cell 2 Contents Entered Into Output Buffer
- Cell 3 Contents Added to Zero and Available at Input to Output Buffer
- SHADD Asserted

CLK 13

- Shift Cell 2 Contents Down 8 Bits and Add to Contents of Cell 3 (Output Buffer). This 16 Bit Value Becomes Available at SUMO-15
- SHADD Not Asserted

CLK 14

- External 16 Bit Register Clock Asserted. All 16 Bits of SUMO-15 (Most Significant Word of Y(4)) Entered Into External 16 Bit Register
- SHADD Not Asserted

This same pattern repeats until the input data is exhausted. Note that the value stored in the External Register must be stored elsewhere before the low byte of the next output value is sequenced.
The performance specifications for the' 16×8 filter are listed below.

> - 2 Outputs/10 CLKS $=1$ Output/5.0 CLKS
> $=200 \mathrm{~ns} /$ Output (25.6 MHz Device)
> $=5 \mathrm{MHz}$ Throughput (25.6 MHz Device)

The results for the 16×8 design used in this implementation can be extended to the general case. Let:
$L=$ Number of taps
$\mathrm{F}_{\mathrm{S}}=$ Sample rate (MHz)
N2 = Number of 2 cell groups
$R=$ Maximum clock rate of $\operatorname{DF}(20,25.6$, or 30 MHz$)$
($\mathrm{R}>\mathrm{F}_{\mathrm{S}}$)
Then: $\quad F_{s}=(N 2 \times R) /(2 L+2(N 2-1))$

$$
\left.N 2=2 F_{S}(L-1) / R-2 F_{S}\right)
$$

Harris Signal Processing

NOISE ASPECTS OF APPLYING ADVANCED CMOS SEMICONDUCTORS

By: R. Kenneth Keenan, Ph.D. and David F. Bennett

Introduction and Summary

This report is about noise aspects of high-speed logic, with a focus on Advanced CMOS semiconductor applications. The present report pertains to supression of ringing for both short and long traces, with experimental evidence provided for long traces.
Although termination and decoupling techniques cited here minimize ringing for all semiconductor technologies (AC/ ACT, LSTTL, HCMOS, AS, etc.), external resistive termination is usually not required for slower semiconductor technologies. Decoupling is an important aspect of design for all semiconductor technologies.

The preferred termination technique is a resistor, R_{T}, equal in value to the trace's characteristic impedance, Z_{O}, in series with a trace at the driving end of that trace. For AC/ $A C T$, series termination results in a modest (1 ns to 3 ns) increase in propagation and transition times. The increase in transition times incurred with series termination helps to minimize interference generation.

The length of traces with distributed loading to which series termination can be applied is limited by the increased transition times at intermediate points along those traces.

For long traces with distributed loading, AC shunt termination-a resistor in series with a small-value capacitor-is used from a trace to ground at the receiving end of a trace. The value of the capacitor depends on clock frequency, but it is typically 50 pF to 200 pF . Larger values result in improved pulse fidelity at the expense of increased power dissipation in the terminating resistor. At the expense of a capacitor, AC shunt termination consumes much less power than purely resistive shunt termination. AC shunt termination does not appear to materially effect propagation and transition times, except insofar as it removes the ringing contributing to shorter transition and propagation times.

Series Termination with a Single Receiver

Resistive Termination

Figure 1 illustrates the waveforms at the receiver for the case of no termination and for the case where the line is terminated at the driver end of the line. The termination resistor is 80Ω, approximately equal to the 78Ω characteristic impedance of the line on the board. In this and all succeeding Figures, the line is 12 inches long.

[^4]
Application Note 9102

Zero and five-volt reference lines are shown in each of the above oscillograms. It is clear from Figure 1 that termination assists in reducing both the undershoot for the low-to-high transition and the overshoot for the high-to-low transition. The noise immunity limits for CMOS are given in Table 1.
tABLE 1. NOISE IMMUNITIES AND MARGINS

D.C. SPECIFICATION	VOLTAGE LEVEL (V)
Maximum Low-Level Input Voltage (Max $\left.\mathrm{V}_{\mathrm{IL}}\right)$	0.8
Minimum High-Level Input Voltage $\left(\mathrm{Min} \mathrm{V}_{\mathrm{IH}}\right)$	2.0
Maximum Low-Level Output Voltage (Max $\left.\mathrm{V}_{\mathrm{OL}}\right)$	0.4
Minimum High-Level Output Voltage $\left(\right.$ Min $\left.\mathrm{V}_{\mathrm{OH}}\right)$	2.4
Low-Level Noise Margin $\left(\mathrm{V}_{\mathrm{NML}}=\mathrm{V}_{\mathrm{IL}}-\mathrm{V}_{\mathrm{OL}}\right)$	0.4
High-Level Noise Margin $\left.\mathrm{V}_{\mathrm{NMH}}=\mathrm{V}_{\mathrm{OH}}-\mathrm{V}_{\mathrm{IH}}\right)$	0.4

For the unterminated line in Figure 1, the maximum $\mathrm{V}_{\mathrm{IL}} 0.8 \mathrm{~V}$ is breached. Therefore, CMOS gates driven with the unterminated-line (upper) waveform in Figure 1 can mistake the "bump" between $t=20 \mathrm{~ns}$ and $\mathrm{t}=30 \mathrm{~ns}$ for a "high". Thus, for the unterminated-line waveform, CMOS gates are subject to logic errors. The terminated line rings less and provides a signal which is well within the noise immunity limits for AC/ACT.

The relative sensitivity of the value of termination resistor was assesed. Figure 2 illustrates experimental results.

From Figure 2, the pulse waveform is marginally improved for termination resistance greater than the characteristic impedance, but it becomes more unterminated-like when a terminating resistance less than the characteristic impedance is used.
Table 1 summarizes the effects of terminating resistance on transition times and propagation delays. The propagation delay of the line, 1.8 ns , has been subtracted from the experimentally-measured propagation delay in the data in Table 1. The propagation delay was measured as illustrated in Figure 3.

FIGURE 2. SENSITIVITY OF PULSE TO TERMINATING RESISTANCE

FIGURE 3. MEASUREMENTS

TABLE 2. SUMMARY OF TRANSITION TIMES AND PROPAGATION DELAYS

$*$ $\mathbf{R}_{\mathbf{T}}$ (Ω)	TRANSISTION TIMES $(\mathbf{n s})$		PROPAGATION DELAYS $(\mathbf{n s})$	
	$\mathbf{t}_{\mathbf{r}}$	$\mathbf{t f}_{\mathbf{f}}$	$\mathbf{t}_{\text {pih }}$	$\mathbf{t}_{\mathbf{p h i}}$
0	4.0	2.6	3.1	5.0
30	4.6	3.6	3.8	6.0
$80\left(=\mathrm{Z}_{\mathrm{O}}\right)$	5.4	5.8	4.8	8.0
130	8.4	7.4	5.6	10.6

Transition times are measured in the conventions 10\%/90\% and $90 \% / 10 \%$, and, similarly, propagation delay is measured between the 50% points of the waveforms.

Termination with a resistor equal to the characteristic impedance of the line adds 1.7 ns to 3.0 ns to the propagation delays and increases the transition times. From the perspective of the emissions problems discussed in Section 9.0, an increase in transition times is good. However, increased propagation delays may be undesirable from a functional standpoint. With AC/ACT, some termination resistance must be used to prevent ringing which could exceed the noise immunity limits.

Shunt Termination with a Single Receiver

AC shunt termination is a means of approximating a resistive termination without incurring the power dissipation of resistive termination. In laptop computers, power drain is a battery life issue. In computers and other powerlinepowered digital equipment, power drain causes heat dissipation and implies a diminution in reliability. CMOS, in spite of its speed, consumes relatively little power while operating and near zero power while in standby (or high-Z) states. Therefore, in a total power "budget", it is important to consider the power dissipation of termination resistors.

Figure 4 illustrates the effects of AC shunt termination for two different values of capacitors.
In designing an AC shunt termination, the value of the resistor is equal to the characteristic impedance of the line: $R_{T}=Z_{O}$. To allow for complete charging and discharging of the terminating capacitor $\left(C_{1}\right)$ during one-half the clock period: $\mathrm{C}_{1}<1 / 6 \mathrm{Z}_{\mathrm{O}} \mathrm{f} \mathrm{C}$. Then the power dissipated in R_{T} is $\mathrm{V}_{C C}{ }^{2} \mathrm{f}_{\mathrm{C}} \mathrm{C}_{1}$ (see Table 7). For the present case of $\mathrm{f}_{\mathrm{C}}=12 \mathrm{MHz}$, and $\mathrm{Z}_{\mathrm{O}}=80 \Omega, \mathrm{C}_{1}<1 / 6 \mathrm{Z}_{\mathrm{Of}}=$ 174 pF . At the extreme, where $\mathrm{C}_{1 \rightarrow \infty}$, the power dissipation approaches that of a resistive terminator: $\mathrm{V}_{\mathrm{CC}}{ }^{2} / 2 \mathrm{Z}_{\mathrm{O}}$ for a 50% duty cycle clock.

For the case $\mathrm{C}_{1}=56 \mathrm{pF}$, the power dissipation in the terminating resistor is relatively small: 16.8 mW . For the case $\mathrm{C}_{1}=560 \mathrm{pF}$, the power dissipation approaches that of a resistive terminator: 156 mW (the power dissipation in the driver is approximately 30 mW). However, the waveform with $\mathrm{C}_{1}=560 \mathrm{pF}$ is somewhat better than that with $\mathrm{C}_{1}=56 \mathrm{pF}$. In shunt termination, one is always trading power dissipation in the terminating resistor for pulse fidelity.
Table 3 summarizes propagation and transition times for $A C$ shunt termination.

TABLE 3. PROPAGATION AND TRANSITION TIMES

TERMINATION	TRANSISTION TIMES (ns)		PROPAGATION DELAYS (ns)	
	$\mathbf{t}_{\mathbf{r}}$	$\mathbf{t}_{\mathbf{f}}$	$\mathbf{t}_{\mathbf{p i h}}$	$\mathbf{t}_{\mathbf{p h i}}$
None	4.0	2.6	3.1	5.0
$80 \Omega / 56 \mathrm{pF}$	5.0	4.2	4.6	7.2
$80 \Omega / 560 \mathrm{pF}$	5.8	4.6	4.2	7.0

AC shunt termination at the sending end (only) was not tried. However, in the context of distributed loads with both ends of the bus AC shunt terminated, the driving-end termination did not improve the waveform.

Ch. 1

- 2.000 volts/div

Timebase $=10.0 \mathrm{~ns} / \mathrm{div}$

Since computer bus lines may be in the active high state for relatively long periods of time, the DC blocking capacitor, C_{1} (56pF and 560 pF in Figure 4), can be of considerable benefit when driving CMOS logic. However, when driving bipolar logic, the current required by the inputs of driven gates can total much more than that required by a terminating resistor without a DC blocking capacitor. Then, AC termination offers insignificant advantages over conventional resistive termination.

Terminations Applicable to Distributed Loads

Description of Board with Simulated Load

The circuit shown in Figure 5 is the simulated load used along the bus-like structure on the test board. It is patterned after the equivalent input curcuitry. The inductor was formed by a small loop of wire.

FIGURE 5. SIMULATED CMOS LOAD
The average value of the input capacitance of a CMOS gate is 7.5 pF . That value was not available, so 5 pF capacitors were used. The above load was distributed along one of the bus traces at points shown in Figure 6. The diodes are 1N914's, high-speed silicon types.

FIGURE 6. DISTRIBUTION OF SIMULATED LOADS ALONG BUS TRACE

The measurements and waveforms cited below were made at the gate four inches from the driver and at the gate at the end of the line. The points designated by arrows in the figure are referred to as the "intermediate gate" and "end gate" in the measurements to follow. In all cases, the waveform at the end gate was the worst case with respect to ringing.
When a load is distributed along a trace, the characteristic impedance of that trace is modified in accordance with [2, p. 148]
$Z_{O}=Z_{\infty} /[1+$ distributed load capacitance on line/ capacitance of line] ${ }^{1 / 2}$
$Z_{\infty}=$ Characteristic impedance of line without distributed loading.

In the case of the test board, the capacitance along the unloaded line of $0.72 \mathrm{pF} / \mathrm{in} . \times 12 \mathrm{in} .=8.6 \mathrm{pF}$, and the distributed load, including that at the last gate, was ($4 \times 5 \mathrm{pF}$) $+7.5 \mathrm{pF}=27.5 \mathrm{pF}$. Then, $\mathrm{Z}_{\mathrm{O}}=80 /[1+27.5 \mathrm{pF} / 8.6 \mathrm{pF}]^{1 / 2} \approx$ 40Ω.

Series Termination

Figure 7 illustrates waveforms along the line for unterminated lines, with and without distributed loading, and for the series-terminated line with $R_{T}=Z_{O}$. It is clear from a comparison of the top two oscillograms that the presence of distributed loading-even without terminationtends to smooth the waveforms. At least in part, this is probably due to the diodes in the simulated loads, which are also present in CMOS input gates.

Distributed loading increases line propagation delays by the same factor by which the characteristic impedance is decreased, which is a factor of approximately two in the present case. Propagation delay measurements were taken as indicated in Figure 2, with $2 \times 1.8=3.6 \mathrm{~ns}$ subtracted from the measured propagation delays to provide the "distributed load" propagation times in Tables 4 and 5.

The problem with using series termination with distributed loading is that the waveform along the line will tend to become a three-level waveform [2, p. 53]. This tendency is clear in the third oscillogram from the top in Figure 7. Thus, in Table 5 the transition times at the intermediate point on the line are greater than those at the end of the line given in Table 4. If the bus was longer, the "kink" at a line voltage of 2.5 volts would be more noticeable. However, in the present case, transition times are great enough to smooth the otherwise sharp three-level waveform. In some applications, an increase in transition times may be acceptable, and the extra component in the form of the capacitor necessary for AC shunt termination-which does not "three-level" the waveform along the bus-is not necessary. AC shunt termination is discussed in the next section.

FIGURE 7. WAVEFORMS FOR DISTRIBUTED LOADING

TABLE 4. TRANSITION AND PROPAGATION TIMES-END GATE

$\begin{aligned} & \mathbf{R}_{\mathbf{T}} \\ & (\Omega) \\ & \hline \end{aligned}$	TRANSISTION TIMES (ns)		PROPAGATION DELAYS (ns)	
	t_{r}	tf_{f}	$t_{\text {pih }}$	$t_{\text {phi }}$
0 (No Dist. load)	4.0	2.6	3.1	5.0
0 (Dist. load only)	4.4	3.6	4.4	6.4
$40\left(=Z_{\mathrm{O}}\right)+$ Dist. load	4.8	5.2	5.2	7.8

TABLE 5. TRANSITION TIMES-INTERMEDIATE GATE

$\begin{aligned} & \mathbf{R}_{\mathbf{T}} \\ & (\Omega) \end{aligned}$	TRANSISTION TIMES (ns)		PROPAGATION DELAYS (ns)	
	t_{r}	t_{f}	${ }^{\text {p }}$ ih	$t_{\text {phi }}$
0 (Dist. load only)	6.6	5.6	Not measured	
$40\left(=Z_{\mathrm{O}}\right)+$ Dist. load	8.0	7.8	Not measured	

AC Shunt Termination

This termination technique was previously explored in the context of a single load. For the case of loads distributed along a single line, the advantage of shunt termination is that the tendency toward a three-level waveform with series termination is absent. Figure 8 illustrates the waveforms obtained with AC shunt termination. As previously discussed, the corrected (for distributed loading) value of the characteristic impedance is 40Ω.
The discussion of trading off waveform integrity for power dissipation also applies here. The power consumed by
the terminating resistor when $C=560 \mathrm{pF}$ is substantially greater than when $\mathrm{C}=56 \mathrm{pF}$.

Table 6 summarizes propagation and transition time data. As in the preceding section, gate propagation delay $=$ measured delay -3.6ns.

TABLE 6. SUMMARY OF TRANSITION TIMES AND PROPAGATION DELAYS

$\begin{aligned} & \mathbf{R}_{\mathbf{T}} \\ & (\Omega) \end{aligned}$	TRANSISTION T!MES (ns)		PROPAGATION DELAYS (ns)	
	T_{R}	T_{F}	TPLH	TPHL
$40 \Omega / 56 \mathrm{pF}$				
End Gate	6.0	6.0	3.3	4.4
Int Gate	9.0	8.3	Not measured	
40ת/560pF				
End Gate	8.0	8.3	3.7	8.0
Int Gate	8.8	9.0	Not measured	

As is evident from a comparison of Tables 5 and 6, shunt termination with a small capacitor (56 pF) does not extract as much propagation delay "penalty" as does series termination-nor does a 56 pF shunt termination cause a tendency toward a three-level waveform on the bus. With a 560pF capacitor, the waveform is better in the sense that there is less ringing, but, as indicated earlier, the power dissipation of the terminating resistor is substantially increased.

From a comparison of Figures 7 and 8, series termination appears to suppress ringing better than shunt terminationat least that shunt termination where, in order to reduce power consumed by termination resistors, the value of the capacitor is relatively small. Also, the increased transition times associated with series termination are very desirable from the standpoint of minimizing both ringing and ground bounce.

Termination Techniques

Table 7 illustrates termination techniques which can be used at the receiving end of a trace; C_{l} is the input capacitance of the driven semiconductor. The first three techniques require that the characteristic impedance of the trace structure be well-defined and constant along the trace run, which is complicated when a trace is to be run on both interior and exterior layers of a PCB.
Diode termination allows uncontrolled impedance-such as that obtained on a two-sided board where the trace-toground trace spacing is variable-but requires more expensive components than other techniques. In effect, CMOS input circuitry is a mixture of the series and diode termination techniques shown in Table 7.
In Table 7, the Termination Dissipation has been computed by assuming a (worst-case) $O \Omega$ source resistance. The power dissipation expressions apply to use of the terminating networks at either end of the line. For example, the expression given for the dissipation of a series termination applies whether the termination is used on the sending (proper) end of the line or the receiving (improper) end of the line.

Series termination has been analyzed in some detail. For use at either the receiving or sending end, maximum clock frequency is determined by assuming that, after a high-tolow transition, the input capacitor, C_{I}, must discharge to a voltage below 5% of $V_{C C}$ before the next clock low-to-high transition. This requires that three $\mathrm{Z}_{\mathrm{O}} \mathrm{C}_{\mid}$time constants occur during one-half of the clock period, which leads to the clock-frequency limitation shown for series termination in Table 7.

The relatively large power consumed in termination resistors can be a problem. AC shunt termination, as defined in Table 7 and used in Figures 4 and 8, provides a worthwhile low-power alternative, to be applied at the receiving end of a trace. In AC shunt termination, pulse fidelity is traded off for power dissipation: the larger the value of the DC blocking capacitor, C1, the better the pulse, but the higher the power consumption of the terminating resistor.
In the limit as the value of C1 is made very large, the power dissipation of the terminating network approaches that of purely resistive termination. The improved pulse fidelity with larger values of C 1 is apparent from Figure 8. The maximum value of C 1 which still permits adequate charging/ discharging of the shunt termination network over one-half of the clock cycle is $C_{1}<1 / 6{ }^{\circ} \mathrm{C} Z_{O}$; this inverse clock-frequency limitation is given in the "Max f^{c} " column of Table 7. However, for $\mathrm{Cl}_{1 \gg 1 / 6 f \mathrm{C}}^{\mathrm{C}} \mathrm{O}$, the network is slow enough that full charging never occurs, the network begins to approach a purely resistive shunt terminator, and clock frequencies are limited only by the driver.
AC shunt termination should be used whenever the DC drive capability of the driving device is approached via heavy TTL loading.

Decoupling CMOS

Clock-related noise on the V_{CC} bus can arise if too few decoupling capacitors are used [5, p.3.11-1]. It
is recommended that all board layouts allow for one decoupling capacitor per semiconductor package. However, it is sometimes possible to remove some of the decoupling capacitors after a working prototype is developed. This is best done experimentally while carefully monitoring emissions, particularly at frequencies less than 200 MHz . At those frequencies, cable radiation dominates radiated emissions spectra. Assuming good grounding, cable radiation is an accurate indicator of $V_{C C}$ bus contamination.

On large ($>50-\mathrm{pin}$) devices with more than one $\mathrm{V}_{\mathrm{CC}} \mathrm{pin}$, use one decoupling capacitor at each VCC pin. In these cases, then, more than one decoupling capacitor per semiconductor package is recommended.

Choosing the Value of a Decoupling Capacitor

A simplified diagram of the equivalent circuit for the output of a Harris CMOS device is shown in Figure 10. When the circuit shown transitions from low to high, switch S1 connects to terminal A and current is drawn from the $V_{C C}$ bus to charge the capacitor. On a high to low transition, the switch connects to B ; current is sourced by the capacitor as it discharges into ground through S 1 . Note that the switch is, in the ideal case, a "break before make" circuit, so that no current is drawn from A to B as $S 1$ changes state - a common source of current consumption in early CMOS logic.

Departures from ideality include the totem-pole effect: for time intervals which are smaller than the transition time, both the upper (PMOS) and lower (NMOS) transistors are partially "on". Then, during both the low-to-high and high-to-low transitions, there is a pulse of current drawn from the $V_{C C}$ bus. This is in addition to the current pulse required-and predicted by the model-for the charging of C_{S} when making the low-to-high transition. Also, the internal gates-those which precede the output gate-require both totem-pole and charging currents (charging currents for internal gates are much smaller than that required for the output gate, as the source capacitance associated with those gates is on the order of tens of femptofarads [1 femptofarad $=10^{-15}$ farad]).

A decoupling capacitor is the V_{CC} bus for the purpose of supplying current during transitions. The inductance of a $V_{C C}$ trace or plane precludes those sources from supplying all of the rapidly-changing current required during a transition. Between clock pulse transitions, a trace or plane supplies recharge current to decoupling capacitors. Recharging can take place over the much longer time of one-half of the clock period.

A value of $0.1 \mu \mathrm{~F}$ will adequately decouple all known $A C / A C T$ glue logic and VLSI circuits (even heavily loaded/fanned out), but the use of that relatively large value should be resisted in order to maintain the highest possible self-resonant frequency of the decoupling capacitor. Use $0.001 \mu \mathrm{~F}$ and $0.01 \mu \mathrm{~F}$, not so much for reduced cost as for the purpose of increasing the self-resonant frequency of the decoupling capacitor.

FIGURE 8. WAVEFORMS FOR AC SHUNT TERMINATION
table 7. receiving end termination techniques

TERMINATION	MAX ${ }^{\text {c }}$ C	TERMINATION DISSIPATION	PULSE INTEGRITY	NOTES
	$\frac{1}{6 \mathrm{Z}_{\mathrm{O}} \mathrm{C}_{1}}\left(\begin{array}{l} \left(667 \mathrm{MHz}^{\star}\right) \end{array}\right.$	Very Low: $\begin{aligned} & p=V_{C C^{2}} f_{C} C_{1} \\ & (3.8 \mathrm{~mW}) \end{aligned}$	Improves with small $\mathrm{Z}_{\mathrm{O}}, \mathrm{C}_{1}$	Transition times increased. Want Low Z_{O}
	Driver-Limited	Very High: $\frac{V_{C C^{2}}}{2 Z_{O}}(250 \mathrm{~mW})$	Good Reflected \% $=\frac{4.4 Z_{O} C_{1}}{r_{r}-4.4 Z_{O} C_{1}}$	Drive current $=\frac{V_{C C}}{Z_{O}}=(100 \mathrm{~mA})$
$\text { AC Shunt (Controlled } Z_{O} \text {) }$	$\frac{1}{6 Z_{O} C_{1}}$	Low to Moderate, increasing with C_{1} $P=V_{C C^{2}} f_{C} C_{1}$ (75 mW , about same as device)	Best with largest possible value of $C_{1}=1 / 6 Z_{O f}{ }^{f}$ Intergrity improves with C_{1}	Must use low-ESL C_{1} with short leads Want Low Z_{O}
Diode (Uncontrolled ZO)	Driver-Limited	Low	Good with highspeed Schotky diodes or built-in protection diodes of some semiconductors	External diodes costly

[^5]

FIGURE 9. RESISTIVE TERMINATION IS USED IN MOST STANDARD BUSES

FIGURE 10. EQUIVALENT CIRCUIT FOR CMOS OUTPUT
The Equivalent Series Inductance (ESL) of a Decoupling Capacitor
The equivalent series inductance (ESL) of a decoupling capacitor and the inductance of the leads/planes used to connect the decoupling capacitor to a semiconductor package should be as small as economics and manufacturing practicalities permit. This decreases both ringing and emissions. It is shown in [5, pp. 3.9-7 through 3.9-10] that maximum attenuation of noise on the power bus occurs at the self-resonant frequency of the decoupling capacitor. To have that attenuation occur at frequencies where ringing and emissions suppression is otherwise difficult (generally 35 MHz to 90 MHz) using a capacitor value chosen according to the previous section requires ESL's less than 10 nH . Surface-mount ("chip") capacitors on a multilayer board with both V_{CC} and ground planes are particularly desirable.

The ESL of a decoupling capacitor is at least as important as its capacitance. Above the self-resonant frequency of a decoupling capacitor which provides filtering; that inductance should be as small as manufacturing techniques and economy permit.

Placement of Decoupling Capacitor on a Board

A decoupling capacitor should always be placed on that end of the semiconductor package which points toward the power entry point on a board. One of the purposes of decoupling is to minimize $V_{C C}$ noise at the power-entry point, and the filtration implied by a decoupling capacitor should be between the semiconductor package and the power entry point.

Conclusions and Recommendations

Use Multilayer Boards

The inductances associated with two-sided boards are often too large for successful application of high speed

CMOS circuits. Two-sided boards designed from an RF standpoint could be used, but the low component density associated with such boards is inconsistent with most contemporary system design requirements.

The "Best" Termination Technique: Series Resistor at Driving End

When loads do not require much DC current, as with CMOS inputs, the preferred termination technique for a single load and large class of multiple distributed loads is a terminating resistor at the driving end of the trace. The value of the terminating resistor, R_{T}, is ideally equal to the characteristic impedance of the driven trace, Z_{O}, as modified by any distributed loading. The correction for distributed loading is given in equation 1.

Reduction of the value of a series terminating resistor from $\mathrm{R}_{\mathrm{T}}=\mathrm{Z}_{\mathrm{O}}$ leads to decreased propagation and transition times. However, for even zero-length traces, reduction of RT eventually leads to ringing. Although the internal diodes in the input circuitry of Harris CMOS tend to limit ringing, noise immunity problems can still occur.

Increasing the value of the terminating resistor beyond Z_{O} tends to further enhance the smoothness of the pulse but can lead to undesirable increases in propagation delays. The resulting increased transition times tend to suppress emissions.

For driving-end series termination with distributed loading on lines 12 inches long, transition times at intermediate loads are doubled relative to those at the end of the bus. Longer buses lead to even greater increases in transition times at intermediate bus points. Should this not be tolerable, the alternative AC shunt termination discussed below should be used.

An Alternative Termination Technique

In the above case and/or when a resistively-terminated bus and/or heavy TTL loads are to be driven by CMOS gates, AC shunt termination should be considered as an alternative to putely resistive termination.

At least for the driven-end terminated case considered in this report, AC shunt termination does not appear quite as effictive as sending-end series termination in suppressing ringing.

When terminating high-speed traces, SIP resistors and capacitors should be avoided. The equivalent series inductance (ESL) is too large in many applications. Discrete SMD's are preferred to minimize ESL.

Minimize Power Bus Ringing to Minimize Interference

To minimize ringing on the power bus, it is recommended that CMOS devices which handle high-frequency periodic signals be carefully decoupled from the power bus. Specific decoupling recommendations have been provided in this report.

Bibliography

[1] R.K. Keenan, FCC Emissions and Power Bus Noise (Second Edition), Pinellas Park, Florida: TKC, February 1988.
[2] William R. Blood, Jr., MECL System Design Handbook (Fourth Edition, Rev. 1), Phoenix, Arizona: Motorola Inc., 1988.
[3] RCA/GE/Harris Semiconductor, GE Solid State Data Book (for) RCA Advanced CMOS Logic ICs, Somerville, N.J.: GE Corporation, 1987.
[4] J.D. Kraus, Electromagnetics (Third Edition), New York: McGraw Hill, 1984.
[5] R.K. Keenan, Decoupling and Layout of Digital Printed Circuits, Pinellas Park, Florida: TKC, 1987.
[6] R.K. Keenan, Digital Design for Interference Specifications, Pinellas Park, Florida: TKC, 1983.
[7] H.H. Skilling, Electrical Engineering Circuits, New York: Wiley, 1958.

HARRIS QUALITY AND RELIABILITY

PAGE
INTRODUCTION 8-3
THE ROLE OF THE QUALITY ORGANIZATION 8-3
THE IMPROVEMENT PROCESS 8-3
HARRIS STANDARD FLOWS 8-3
MEASUREMENT 8-6
Analytical Services Laboratory 8-6
Calibration Laboratory 8-6
FIELD RETURN PRODUCT ANALYSIS SYSTEM 8-6
Failure Analysis Laboratory 8-7
PFAST Action Request Form 8-8
RELIABILITY 8-9
Reliability Assessment and Enhancement 8-9
Qualifications 8-9
In-Line Reliability Monitors 8-9
PRODUCT/PACKAGE RELIABILITY MONITORS 8-9
Matrix I, II, III 8-9
RELIABILITY FUNDAMENTALS 8-9
Failure Rate Calculations 8-9
Accelleration Factors 8-11
Activation Energy 8-12
QUALIFICATION PROCEDURES 8-12
Document Control 8-13
/883 DATA SHEET HIGHLIGHTS 8-13
GENERAL TEST PHILOSOPHY 8-15
NON-STANDARD PRODUCT OFFERINGS 8-15
IC HANDLING PROCEDURES 8-16
Handling Rules 8-16
ESD HANDLING PROCEDURES 8-17
Measures of Protection and Prevention 8-17
Technical Brief \#52 - Electrostatic Discharge Control 8-18

Harris Quality \& Reliability

Introduction

Success in the integrated circuit industry means more than simply meeting or exceeding the demands of today's market. It also includes anticipating and accepting the challenges of the future. It results from a process of continuing improvement and evolution, with perfection as the constant goal.

Harris Semiconductor's commitment to supply only top value integrated circuits has made quality improvement a mandate for every person in our work force - from circuit designer to manufacturing operator, from hourly employee to corporate executive. Price is no longer the only determinant in marketplace competition. Quality, reliability, and performance enjoy significantly increased importance as measures of value in integrated circuits.

Quality in integrated circuits cannot be added on or considered after the fact. It begins with the development of capable process technology and product design. It continues in manufacturing, through effective controls at each process or step. It culminates in the delivery of products which meet or exceed the expectations of the customer.

The Role of The Quality Organization

The emphasis on building quality into the design and manufacturing processes of a product has resulted in a significant refocus of the role of the Quality organization. In addition to facilitating the development of SPC and DOX programs and working with manufacturing to establish control charts, Quality professionals are involved in the measurement of equipment capability, standardization of inspection equipment and processes, procedures for chemical controls, analysis of inspection data and feedback to the manufacturing areas, coordination of efforts for process and product improvement, optimization of environmental or raw materials quality, and the development of quality improvement programs with vendors.

At critical manufacturing operations, process and product quality is analyzed through random statistical sampling and product monitors. The Quality organization's role is changing from policing quality to leadership and coordination of quality programs or procedures through auditing, sampling, consulting, and managing Quality Improvement projects.
To support specific market requirements, or to ensure conformance to military or customer specifications, the Quality organization still performs many of the conventional quality functions (e.g., group testing for military products or wafer lot acceptance). But, true to the philosophy that quality is everyone's job, much of the traditional on-line measurement and control of quality characteristics is where it belongs - with the people who make the product. The

Quality organization is there to provide leadership and assistance in the deployment of quality techniques, and to monitor progress.

The Improvement Process

FIGURE 1. STAGES OF STATISTICAL QUALITY TECHNOLOGY
Harris Semiconductor's quality methodology is evolving through the stages shown in Figure 1. In 1981 we embarked on a program to move beyond Stage I, and we are currently in the transition from Stage II to Stage III, as more and more of our people become involved in quality activities. The traditional "quality" tasks of screening, inspection, and testing are being replaced by more effective and efficient methods, putting new tools into the hands of all employees. Table 1 illustrates how our quality systems are changing to meet today's needs.

Harris Standard Flows

Harris Semiconductor offers a variety of standard product flows which cover the myriad of application environmentsour customers experience. These flows run the gamut of low cost commercial parts to fully qualified JAN microcircuits. All of these grades have one thing in common. They result from meticulous attention to quality, starting with design decisions made during product development and ending with the labeling of shipping containers for delivery to our customers. The standard flows offered are:

Commercial: Electrical performance guaranteed from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

1883: Mil-Std-883-compliant product: contact the factory or local Harris Sales Office for details on availability and specifications

Details of the individual process requirements are contained in the flow charts on the following pages.

(1) Example for a PGA Package Part

Advantages of Standard Flows
Wherever feasible, and in accordance with good value engineering practice, the IC user should specify device grades based on one of the five standard Harris manufacturing flows. These are more than adequate for the overwhelming majority of applications and may be utilized quite effectively if the user engineer bases designs on the standard data sheet, military drawing or slash sheet (as applicable) electrical limits.
Some of the more important advantages gained by using standard as opposed to custom flows are as follows:

- Lower cost than the same or an equivalent flow executed on a custom basis. This results from the higher efficiency achieved with a constant product flow and the elimination of such extra cost items as special fixturing, test programs, additional handling and added documentation.
- Faster delivery. The manufacturer often can supply many items from inventory and, in any case, can establish and
maintain a better product flow when there is no need to restructure process and/or test procedures.
- Increased confidence in the devices. A continuing flow of a given product permits the manufacturer to mointor trends which may bear on end-product performance or reliability and to implement corrective action, if necessary.
- Reduction of risk. Since each product is processed independent of specific customer orders, the manufacturer absorbs production variability within its scheduling framework without major impact on deliveries. In a custom flow, a lot failure late in the production cycle can result in significant delays in delivery due to the required recycling time.
Despite the advantages of using standard flows, there are cases where a special or custom flow is mandatory to meet design or other requirements. In such cases, the Harris Marketing groups stand ready to discuss individual customer needs and, where indicated, to accomodate appropriate custom flows.

Measurement

Analytical Services Laboratory

Harris facilities, engineering, manufacturing, and product assurance are supported by the Analytical Services Laboratory. Organized into chemical or microbeam analysis methodology, staff and instrumentation from both labs cooperate in fully integrated approaches necessary to complete analytical studies. The capabilities of each area are shown below.

SPECTROSCOPIC METHODS: Colorimetry, Optical Emission, Ultraviolet Visible, Fourier Transform-Infrared, Flame Atomic Absorption, Furnace Organic Carbon Analyzer, Mass Spectrometer.

CHROMATOGRAPHIC METHODS: Gas Chromatography, Ion Chromatography.

THERMAL METHODS: Differential Scanning Colorimetry, Thermogravimetric Analysis, Thermomechanical Analysis.

PHYSICAL METHODS: Profilometry, Microhardness, Rheometry.

CHEMICAL METHODS: Volumetric, Gravimetric, Specific Ion Electrodes.

ELECTRON MICROSCOPE: Transmission Electron Microscopy, Scanning Electron Microscope.

X-RAY METHODS: Energy Dispersive X-ray Analysis (SEM), Wavelength Dispersive X-ray Analysis (SEM), X-ray Fluorescence Spectrometry, X-ray Diffraction Spectrometry.

SURFACE ANALYSIS METHODS: Scanning Auger Microprobe, Electron Spectroscope/Chemical Analysis, Secondary Ion Mass Spectrometry, Ion Scattering Spectrometry, Ion Microprobe.

The department also maintains ongoing working arrangements with commercial, university, and equipment manufacturers' technical service laboratories, and can obtain any materials analysis in cases where instrumental capabilities are not available in our own facility.

Calibration Laboratory

Another important resource in the product assurance system is Harris Semiconductor's Calibration Lab. This area is responsible for calibrating the electronic, electrical, electro/mechanical, and optical equipment used in both the production and engineering areas. The accuracy of instruments used at Harris in calibration is traceable to the National Bureau of Standards. The lab maintains a system which conforms to the current revision of MIL-STD-45662, "Calibration System Requirements."

Each instrument requiring calibration is assigned a calibration interval based upon stability, purpose, and degree of use. The equipment is labeled with an identification tag on which is specified both the date of the last calibration and of the next required calibration. The Calibration Lab reports on a regular basis to each user department. Equipment out of calibration is taken out of
service until calibration is performed. The Quality organization performs periodic audits to assure proper control in the using areas. Statistical procedures are used where applicable in the calibration process.

Field Return Product Analysis System

The purpose of this system is to enable Harris' Field Sales and Quality operations to properly route, track and respond to our customers' needs as they relate to product analysis.

The Product Failure Analysis Solution Team (PFAST) consists of the group of people who must act together to provide timely, accurate and meaningful results to customers on units returned for analysis. This team includes the salesman or applications engineer who gets the parts from the customer, the PFAST controller who coordinates the response, the Product or Test Engineering people who obtain characterization and/or test data, the analysts who failure analyze the units, and the people who provide the ultimate corrective action. It is the coordinated effort of this team, through the system described in this document that will drive the Customer responsiveness and continuous improvement that will keep Harris on the forefront of the semiconductor business.

The system and procedures define the processing of product being returned by the customer for analysis performed by Product Engineering, Reliability Failure Analysis and/or Quality Engineering. This system is designed for processing "sample" returns, not entire lot returns or lot replacements.

The philosophy is that each site analyzes its own product. This applies the local expertise to the solutions and helps toward the goal of quick turn time.

Goals: quick, accurate response, uniform deliverable (consistent quality) from each site, traceability.

The PFAST system is summarized in the following steps:

1) Customer calls the sales rep about the unit(s) to return.
2) Fill out PFAST Action Request - see the PFAST form in this section. This form is all that is required to process a Field Return of samples for failure analysis. This form contains essential information necessary to perform root cause analysis. (See Figure 2).
3) The units must be packaged in a manner that prevents physical damage and prevents ESD. Send the units and PFAST form to the appropriate PFAST controller. This location can be determined at the field sales office or rep using "look-up" tables in the PFAST document.
4) The PFAST controller will log the units and route them to ATE testing for data log.
5) Test results will be reviewed and compared to customer complaint and a decision will be made to route the failure to the appropriate analytical group.
6) The customer will be contacted with the ATE test results and interim findings on the analysis. This may relieve a line down situation or provide a rapid disposition of material. The customer contact is valuable in analytical process to insure root cause is found.
7) A report will be written and sent directly to the customer with copies to sales, rep, responsible individuals with corrective actions and to the PFAST controller so that the records will capture the closure of the cycle.
8) Each report will contain a feedback form (stamped and preaddressed) so that the PFAST team can assess their performance based on the customers assessment of quality and cycle time.
9) The PFAST team objectives are to have a report in the customers hands in 28 days, or 14 days based on agreements. Interim results are given realtime.

Failure Analysis Laboratory

The Failure Analysis Laboratory's capabilities encompass the isolation and identification of all failure modes/failure mechanisms, preparing comprehensive technical reports, and assigning appropriate corrective actions. Research vital to understanding the basic physics of the failure is also undertaken.

FIGURE 3. NON-DESTRUCTIVE

Failure analysis is a method of enhancing product reliability and determining corrective action. It is the final and crucial step used to isolate potential reliability problems that may have occurred during reliability stressing. Accurate analysis results are imperative to assess effective corrective actions. To ensure the integrity of the analysis, correlation of the failure mechanism to the initial electrical failure is essential.

A general failure analysis procedure has been established in accordance with the current revision of MIL-STD-883, Section 5003. The analysis procedure was designed on the premise that each step should provide information on the failure without destroying information to be obtained from subsequent steps. The exact steps for an analysis are determined as the situation dictates. (See Figures 3 and 4). Records are maintained by laboratory personnel and contain data, the failure analyst's notes, and the formal Product Analysis Report.

FIGURE 4. DESTRUCTIVE

PFAST ACTION REQUEST

Date:

Additional Comments:

Reliability

Reliability Assessment and Enhancement

At Harris Semiconductor, reliability is built into every product by emphasizing quality throughout manufacturing. This starts by ensuring the excellence of the design, layout, and manufacturing process. The quality of the raw materials and workmanship is monitored using statistical process control (SPC) to preserve the reliability of the product. The primary and ultimate goal of these efforts is to provide full performance to the product specification throughout its useful life. Product reliability is maintained through the following sources: Qualifications, In-Line Reliability Monitors, Failure Analysis.

Qualifications

Qualifications at Harris de-emphasize the sole dependence on production product which is only available late in the development cycle. The focus is primarily on the use of test vehicles to establish design ground rules for the product and the process that will eliminate any wearout mechanisms during the useful life of the product. However, to comply with the military requirements concerning reliability, product qualifications are performed. (See Figure 5).

In-line Reliability Monitors

In-line reliability monitors provide immediate feedback to manufacturing regarding the quality of workmanship, quality of raw materials, and the ultimate reliability implications. The rudimentary implementation of this monitoring is the "First Line of Defense," which is a pass/ fail acceptance procedure based on control charts and trend analysis. The second level of monitoring is referred to as the "Early Warning System" and incorporates wafer level reliability concepts for extensive diagnostic and characterization capabilities of various components that may impact the device reliability or stability. The quick feedback from these schemes allows more accurate correlation to process steps and corrective actions.

Product/Package Reliability Monitors

Reliability of finished product is monitored extensively under a program called Matrix I, II, III monitor. All major technologies are monitored.
Matrix I - Has a higher sampling size and rate per week and uses short duration test, usually less than 48 hours to assess day to day, week to week reliability. High volume types are prevalent in this data. Stresses - Operating Life, Static Life and HAST. $\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Matrix II - Longer duration test, much like requalification. The sample sizes are reduced in number and frequency, yet meet or exceed the JEDEC Standard 29. Stresses Operating Life, Storage, THB, Autoclave, Temp Cycle, and Thermal Shock.
Matrix III - Package specific test. Tests Solderability, Lead Fatigue, Physical Dimensions, Brand Adhesion, Flammability, Bond Pull, Constant Acceleration, and Hermeticity.
Data from these Monitor Stress Test provides the following information:

- Routine reliability monitoring of products by die technology and package styles.
- Data base for determining FIT Rates and Failures Mode trends used drive Continuous Improvement.
- Major source of reliability data for customers.
- Customers have used this data to qualify Harris products.

Reliability Fundamentals

Reliability, by its nature, is a mixture of engineering and probability statistics. This combination has derived a vocabulary of terms essential for describing the reliability of a device or system. Since reliability involves a measurement of time, it is necessary to accelerate the failures which may occur. This, then, introduces terms like "activation energy" and "acceleration factor," which are needed to relate results of stressing to normal operating conditions (see Table 1). Also, to assess product reliability requires failures. Therefore, only a statistical sample can be used to determine the model of the failure distribution for the entire population of product.

Failure Rate Calculations

Reliability data for products may be composed of several different failure mechanisms and requires careful combining of diverse failure rates into one comprehensive failure rate. Calculating the failure rate is further complicated because failure mechanisms are thermally accelerated at varying rates and thereby have differing accelerating factors. Additionally, this data is usually obtained a variety of life tests at unique stress temperatures. The equation below accounts for these considerations and then inserts a statistical factor to obtain the confidence interval for the failure rate.

$$
\begin{aligned}
& \text { FIT }=\left(\begin{array}{cccc}
B & X_{i} & & \\
\sum_{i=1} & \sum_{j=1}^{K} & & \\
& & & \\
& & A F_{i j}
\end{array}\right) \times 10^{9} \quad \times M \\
& B=\text { \# of distinct possible failure mechanisms } \\
& K=\text { \# of life tests being combined } \\
& X_{i}=\# \text { of failures for a given failure mechanism } \\
& i=1,2, \ldots B \\
& \mathrm{TDG}_{\mathrm{j}}=\text { Total device hours of test time (unaccelerated) for } \\
& \text { Life Test }{ }_{j} \\
& A F_{i j}=\text { Acceleration factor for appropriate failure mecha- } \\
& \text { nism } i=1,2, \ldots K \\
& M=\text { Statistical factor for calculating the upper confi- } \\
& \text { dence limit (} M \text { is a function of the total number of } \\
& \text { failures and an estimate of the standard deviation } \\
& \text { of the failure rates) }
\end{aligned}
$$

In the failure rate calculation, Acceleration Factors $\left(\mathrm{AF}_{\mathrm{ij}}\right)$ are used to derate the failure rate from thermally accelerated Life Test conditions to a failure rate indicative of use temperatures. Though no standards exist, a temperature of $+55^{\circ} \mathrm{C}$ has been popular and allows some comparison of product failure rates. All Harris Semiconductor Reliability Reports will derate to $+55^{\circ} \mathrm{C}$ at both the 60% and 95% confidence intervals.

FIGURE 5. NEW PROCESS PRODUCT DEVELOPMENT AND LIFE CYCLE

Acceleration Factors

The Acceleration Factors (AF) are determined from the Arrhenius Equation. This equation is used to describe physiochemical reaction rates and is an appropriate model for expressing the thermal acceleration of semiconductor failure mechanisms.

$\mathrm{AF}=$ Acceleration Factor
$\mathrm{E}_{\mathrm{a}}=$ Thermal Activation Energy in eV from Table 8
$K=$ Boltzmann's Constant ($8.62 \times 10^{-5} \mathrm{eV} /{ }^{\circ} \mathrm{K}$)

Both $T_{\text {use }}$ and $T_{\text {stress }}$ (in degrees Kelvin) include the internal temperature rise of the device and therefore represent the junction temperature. With the use of the Arrhenius Equation, the thermal Activation Energy $\left(\mathrm{E}_{\mathrm{a}}\right)$ term is a major influence on the result. This term is usually empirically derived and can vary widely.

TABLE 1. FAILURE RATE PRIMER

GLOSSARY OF TERMS

TERMS/DEFINITION	UNITS/DESCRIPTION
FAILURE RATE λ For Semiconductors, usually expressed in FITs. Represents useful life failure rate (which implies a constant failure rate). FITs are not applicable for infant mortality or wearout failure rate expressions.	FIT - Failure In Time 1 FIT - 1 failure in 10^{9} device hours. Equivalent to $0.0001 \% / 1000$ hours FITs = \# Failures $\times 10^{9} \times \mathrm{m}$ \# Devices x \# hours stress x AF m - Factor to establish Confidence Interval 10^{9} - Establishes in terms of FITs AF - Acceleration Factor at temperature for a given failure mechanism
MTTF - Mean Time To Failure For semiconductors, MTTF is the average or mean life expectancy of a device. If an exponential distribution is assumed then the mean time to fail of the population will be when 63% of the parts have failed.	Mean Time is measured usually in hours or years. 1 Year = 8760 hours When working with a constant failure rate the MTTF can be calculated by taking the reciprocal of the failure rate. MTTF $=1 / \lambda$ (exponential model) Example: $=10$ FITs at $+55^{\circ} \mathrm{C}$ The MTTF is: $M T T F=1 / \lambda=0.1 \times 10^{9}$ hours $=100 \mathrm{M}$ hours
CONFIDENCE INTERVAL (C. I.) Establishes a Confidence Interval for failure rate predictions. Usually the upper limit is most significant in expressing failure rates.	Example: "10 FITs @ a 95\% C. I. @ $55^{\circ} \mathrm{C}$ " means only that you are 95\% certain the the FITs <10 at $+55^{\circ} \mathrm{C}$ use conditions.

Activation Energy

To determine the Activation Energy $\left(\mathrm{E}_{\mathrm{a}}\right)$ of a mechanism (see Table 2) you must run at least two (preferably more) tests at different stresses (temperature and/or voltage). The stresses will provide the time to failure (Tf) for the populations which will allow the simultaneous solution for the Activation Energy by putting the experimental results into the following equations.

Then, by subtracting the two equations, the Activation Energy becomes the only variable, as shown.
$\ln \left(\mathrm{t}_{\mathrm{f} 1}\right)-\ln \left(\mathrm{t}_{\mathrm{f} 2}\right)=\mathrm{E}_{\mathrm{a}} / \mathrm{k}(1 / \mathrm{T} 1-1 / \mathrm{T} 2)$
$E_{a}=K^{*}\left(\left(\ln \left(t_{f}\right)-\ln \left(t_{f}\right)\right) /(1 / T 1-1 / T 2)\right)$
The Activation Energy may be estimated by graphical analysis plots. Plotting In time and In temperature then provides a convenient nomogram that solves (estimates) the Activation Energy.
Table 3 is a summary for the $L 7$ process.
All Harris Reliability Reports from qualifications and Group C1 (all high temperature operating life tests) will provide the
data on all factors necessary to calculate and verify the reported failure rate (in FITs) using the methods outlined in this primer.

Qualification Procedures

New products are reliably introduced to market by the proper use of design techniques and strict adherence to process layout ground rules. Each design is reviewed from its conception through early production to ensure compliance to minimum failure rate standards. Ongoing monitoring of reliability performance is accomplished through compliance to 883C and standard Quality Conformance Inspection as defined in Method 5005.
New process/product qualifications have two major requirements imposed. First is a check to verify the proper use of process methodology, design techniques, and layout ground rules. Second is a series of stress tests designed to accelerate failure mechanisms and demonstrate the reliability of integrated circuits.
From the earliest stages of a new product's life, the design phase, through layout, and in every step of the manufacturing process, reliability is an integral part of every Harris Semiconductor product. This kind of attention to detail "from the ground up" is the reason why our customers can expect the highest quality for any application.

TABLE 2. FAILURE MECHANISM

FAILURE MECHANISM	ACTIVATION ENERGY	SCREENING AND TESTING METHODOLOGY	CONTROL METHODOLOGY
Oxide Defects	$0.3-0.5 \mathrm{eV}$	High temperature operating life (HTOL) and voltage stress. Defect density test vehicles.	Statistical Process Control of oxide parameters, defect density control, and voltage stress testing.
Silicon Defects (Bulk)	$0.3-0.5 \mathrm{eV}$	HTOL \& voltage stress screens.	Vendor Statistical Quality Control programs, and Statistical Process Control on thermal processes.
Corrosion	0.45 eV	Highly accelerated stress tesing (HAST)	Passivation dopant control, hermetic seal control, improved mold compounds, and product handling.
Assembly Defects	$0.5-0.7 \mathrm{eV}$	Temperature cycling, temperature and mechanical shock, and environmental stressing.	Vendor Statistical Quality Control programs, Statistcal Process Control of assembly processes proper handling methods.
Electromigration - Al Line - Contact	$\begin{aligned} & 0.6 e \mathrm{~V} \\ & 0.9 \mathrm{eV} \end{aligned}$	Test vehicle characterizations at highly elevated temperatures.	Design ground rules, wafer process statistical process steps, photoresist, metals and passivation
Mask Defects/ Photoresist Defects	0.7 eV	Mask FAB comparator, print checks, defect density monitor in $F A B$, voltage stress test and HTOL.	Clean room control, clean mask, pellicles Statistical Process Control or photoresist/etch processes.
Contamination	$1.0 \mathrm{eV}$	C-V stress at oxide/interconnect, wafer FAB device stress test (EWS) and HTOL.	Statistical Process Control of C-V data, oxide/ interconnect cleans, high integrity glassivation and clean assembly processes.
Charge Injection	1.3 eV	HTOL \& oxide characterization.	Design ground rules, wafer level Statistical Process Control and critical dimensions for oxides.

TABLE 3. HIGH TEMPERATURE OPERATING LIFE TEST SUMMARY

GENERIC GROUP	GROUP NAME	PROCESS DESCRIPTION	QUANTITY	QUANTITY FAILURE	HOURS @ 125	FAILURE RATE FITs
@ 55						

Harris High Reliability Product Specification Highlights

Harris Semiconductor is a leading supplier of high reliability integrated circuits to the military and aerospace community and takes pride in offering products tailored to the most demanding applications requirements. Our Manufacturing facilities are JAN-Certified to MIL-M-38510 and provide JAN-qualified and MIL-STD-883 compliant products as standard data book items. This DSP Data Book contains detailed information on high-reliability integrated circuits presently available from Harris Semiconductor.
The intent of the /883 data sheet is to provide to our customers a clear understanding of the testing being performed in conformance with MIL-STD-883 requirements. Additionally, it is our intent to provide the most effective and comprehensive testing feasible.

Document Control

Harris has established each of the /883 data sheets as an internally revised controlled document. Any product revision or modification must be approved and signed-off throughout the manufacturing and engineering sections. Harris has made every effort to ensure accuracy of the information in this data book through quality control methods. Harris reserves the right to make changes to the products contained in this data book to improve performance, reliability and producibility. Each data sheet will use the printed date as the revision control identification. Contact Harris for the latest available specifications and performance data.

/883 Data Sheet High/ights

Each specific /883 data sheet documents the features, description, pinouts, tested electrical parameters, test circuits, burn-in circuits, die characteristics, packaging and design information. The following are notes and clarifications that will help in applying the information provided in the data sheet.
Absolute Maximum Ratings: These ratings are provided as maximum stress ratings and should be taken into consideration during system design to prevent conditions which may cause permanent damage to the device. Operation of the device at or above the "Absolute Maximum Ratings" is not intended, and extended exposure may affect the device reliability.

Reliability Information: Each /883 data sheet contains thermal information relating to the package and die. This information is intended to be used in system design for determining the expected device junction temperatures for overall system reliability calculations.
Packaging: Harris utilizes MIL-M-38510, Appendix C for packages used for /883 products. The mechanical dimensions and materials used are shown for each individual product to complete each data sheet as a self contained document.
D.C. and A.C. Electrical Parameters: Tables 1 and 2 define the D.C. and A.C. Electrical Parameters that are 100% tested in production to guarantee compliance to MIL-STD-883. The subgroups used are defined in MIL-STD-883, Method 5005 and designated under the provisions of Paragraph 1.2.1a. Test Conditions and Test Circuits are provided for specific parameter testing.

Table 3 provides additional device limits that are guaranteed by characterization of the device and are not directly tested in production. Characterization takes place at initial device design and after any major process or design changes. The characterization data is on file and available demonstrating the test limits established.
Table 4 provides a summary of the test requirements and the applicable MIL-STD-883 subgroups.

Burn-in Circuits: The Burn-in circuits defined in the individual data sheets are those used in the actual production process. Burn-in is conducted per MIL-STD883, Method 1015.

Design Information Sections: Harris provides an additional Design Information Section in many of the data sheets to assist in system application and design. This information may be in the form of applications circuits, typical device parameters, or additional device related user information such as programming information. While this information cannot be guaranteed, it is based on actual characterization of the product and is representative of the data sheet device.

Harris' High Reliability Products are all produced in accordance with military specifications and standards, primarily MIL-M-38510 (General Specifications for Microcircuits) and MIL-STD-883 (Test Methods and Procedures for Microelectronics).

MIL-STD-883 contains test methods and procedures for various electrical, mechanical and environmental tests as well as requirements for screening, qualification and quality conformance inspection. Method 5004 of MIL-STD-883 lists the 100% screening tests which are required for each of the product assurance classes defined above.
Following the device screening, samples are removed from the production lot(s) for Quality Conformance Inspection testing. This testing is divided into four inspection groups: $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D , which are performed at prescribed intervals per MIL-M-38510 to assure the processes are in control and to ensure the continued quality level of the product being produced.

Group A electrical inspection involves dynamic, static, functional and switching tests at maximum, minimum and room operating temperatures. Sample sizes and specific tests performed depend upon the particular product assurance class chosen. Electrical test sampling is performed on all subgroups as defined in MIL-STD-883, Method 5005.

Group B inspection includes tests for marking permanency, internal visual and mechanical correctness, bond strength, and solderability. It is intended to provide assurance of the absence of lot-to-lot fabrication and manufacturing variances. Group B tests are again defined in test Method 5005.

Group C is oriented toward die integrity and consists of operating life testing as defined in MIL-STD-883, Method 5005.

Group D environmental testing is provided to verify die and package reliability. Among the Group D tests are lead integrity, hermeticity, temperature cycling, thermal and mechanical shock, and constant acceleration.

MIL-M-38510 requires that Group A and Group B inspection be performed on each lot, while Group C inspection must be done every 3 months and Group D every 6 months to be in compliance with MIL-M-38510 JAN requirements. To limit the amount of testing, MIL-M-38510 allows the multitude of micro- circuits to be grouped by technology, commonly known as "generic families". Thus, one group C performed will cover all parts included in that generic family for three months. For Group D, which is package related, although there are some restrictions, one Group D performed on a 24-pin ceramic dual-in-line packaged part will cover all devices in the same package regardless of the technology group.

For MIL-STD-883 products, Groups A and B are required on each lot, Groups C and D are required every 52 weeks by generic die family and package fabricated and manufactured from the same plant as the die and package represented.

General Test Philosophy

The general philosophy for test set development is to supply test software that guarantees the high performance and quality of the products being designed and manufactured by Harris. The general final test set includes a guardbanded initial test program and a QA test program for the quality test step. Characterization software is an additional test program that parametrically measures and records the performance of the device under test. This test set is used to evaluate the performance of a product and to determine the acceptability of non-standard Source Control Drawings. BSPEC and RSPEC test programs are custom final test programs written to conform to customer specifications.

The general test development strategy is to develop software using a "shell" programming technique which creates standard test program flows, and reduces test development and execution times. Statistically derived guardbands are utilized in the "shell" programs to null out test system variability. High performance hardware interface designs are incorporated for maximized test effectiveness, and efficient fault graded vector sets are utilized for functional and AC testing.

The initial step in generating the test set is the test vector generation. The test vectors are the binary stimulus applied to the device under test to functionally test the operation of the product. The vectors are developed against a behavioral model that is a software representation of the device functionality. The output of the behavioral model can be translated directly to ATE test vectors or prepared for CAD simulation.

The philosophy in the generation of test vectors is to develop efficient fault graded patterns with a goal of greater than 90% fault coverage. There is no intent to generate a worst case or best case noise vector set. The intent is to maximize fault coverage through efficient vector use. Generally only one vector set will be required to enable complete test coverage within a given test program.

Exceptions to this would be vector generation to test certain identified critical AC speed paths or DC vectors for testing VIH/VIL parameters. These vector sets typically will not increase fault coverage and can not be substituted for fault graded vector sets.
The ultimate goal for testing all /883 products is data sheet compliancy, thoroughness, and quality of testing. By taking this approach to test set generation, Harris is capable of supplying high performance semiconductors of the highest quality to the marketplace.

Non-Standard Product Offerings

Harris understands the need for customer generated Source Control Drawings with non-standard parameter and/or screening requirements. A Customer Engineering Department is responsible for efficiently expediting your SCDs through a comprehensive review process. The Customer Engineering Group compares your SCD to its closest equivalent grade device type and works closely with the Product Engineer, Manufacturing Engineer, Design Engineer, or applicable individual to compare Harris' screening ability against your non-standard requirement(s). For product processed to non-standard requirements, a unique part number suffix is assigned.

Harris shares the military's objective to utilize standards wherever possible. We recommend using our $/ 883$ data sheet as the guideline for your SCD's. In instances where an available military specification or Harris /883 datasheet is inappropriate, it is Harris' sincerest wish to work closely with the buyer in establishing an acceptable procurement document. For this reason, the customer is requested to contact the nearest Harris Sales Office or Representative before finalizing the Source Control Drawing. Harris looks forward to working with the customer prior to implementation of the formal drawing so that both parties may create a mutually acceptable procurement document.

IC Handling Procedures

Harris IC processes are designed to produce the most rugged products on the market. However, no semiconductor is immune from damage resulting from the sudden application of many thousands of volts of static electricity. While the phenomenon of catastrophic failure of devices containing MOS transistors or capacitors is well known, even bipolar circuits can be damaged by static discharge, with altered electrical properties and diminished reliability. None of the common IC internal protection networks operate quickly enough to positively prevent damage.

It is suggested that all semiconductors be handled, tested, and installed using standard "MOS handling techniques" of proper grounding of personnel and equipment. Parts and subassemblies should not be in contact with untreated plastic bags or wrapping material. High impedance IC inputs wired to a P.C. connector should have a path to ground on the card.

HANDLING RULES

Since the introduction of integrated circuits with MOS structures and high quality junctions, a safe and effective means of handling these devices has been of primary importance. One method employed to protect gate oxide structures is to incorporate input protection diodes directly on the monolithic chip. However, there is no completely foolproof system of chip input protection in existence in the industry. In addition, most compensation networks in linear circuits are located at high impedance nodes, where protection networks would disturb normal circuit operation. If static discharge occurs at sufficient magnitude (2 kV or more), some damage or degradation will usually occur. It has been found that handling equipment and personnel can generate static potentials in excess of 10 kV in a low humidity environment. Thus it becomes necessary for additional measures to be implemented to eliminate or reduce static charge. It is evident, therefore, that proper handling procedures or rules should be adopted.

Elimination or reduction of static charge can be accomplished as follows:

- Use static-free work stations. Static-dissipative mats on work benches and floor, connected to common point ground through a $1 \mathrm{M} \Omega$ resistor, help eliminate static build-up and discharge. Do not use metallic surfaces.
- Ground all handling equipment.
- Ground all handling personnel with a conductive bracelet through $1 \mathrm{M} \Omega$ to ground (the $1 \mathrm{M} \Omega$ resistor will prevent electroshock injury to personnel). Transient product personnel should wear grounding heel straps when conductive flooring is present.
- Smocks and clothing of certain insulating materials (notably nylon) should not be worn in areas where devices are handled. These materials, highly dielectric in nature, will hold, or aid in the generation of a static charge. Where they cannot be eliminated, natural materials such as cotton should be used to minimize charge generation capacity. Conductive smocks are also available as an alternative.
- Control relative humidity to as high a level as practical. 50% is generally considered sufficient. (Operations should cease if R.H. falls below 25\%).
- lonized air blowers reduce charge build-up in areas where grounding is not possible or practical.
- Devices should be in conductive static-shielded containers during all phases of transport. Leads may be shorted by tubular metallic carriers, conductive foam, or foil.
- In automated handling equipment, the belts, chutes, or other surfaces should be of conducting non-metal material. If this is not possible, ionized air blowers or ionizing bars may be a good alternative.

ESD Handling Procedures

Harris has developed a static control program that enables employees to detect problems generated by static electricity whether on site, in transit, or in the field. Controlling the requirements, methods, materials, and training for static protection of our products is ongoing and updated with new developments in electrostatic prevention. Harris has responded with controls and procedures as part of daily operations to be followed in all areas.

The challenge is to insure all electrostatic control procedures are followed throughout the system - from manufacturing through end use. Unprotected integrated circuits can be destroyed or functionally altered by merely passing them through the electrostatic field of something as simple as Styrofoam ${ }^{\text {TN }}$ or human contact.

Measures of Protection and Prevention

When handling static sensitive devices, three standard procedures must be followed:

1. Prior to any handling of static-sensitive components, the individual must be properly grounded.
2. All static-sensitive components must be handled at static safeguarded work stations.
3. Containers and packing materials that are static-protective must be used when transporting all static-sensitive components.

Special handling equipment (static-safeguarded work stations, conductive wrist straps, static-protected packaging, ionized air blowers) should be used to reduce damaging effects of electrostatic fields and charges.

Static-safeguarded work station is an area that is free from all damaging electricity, including people. To accomplish this, static on conductors and nonconductors must be controlled.

Controlling electrically conductive items can be accomplished by bonding and grounding techniques. The human body is considered a conductor of electricity and is by far the greatest generator of static electricity. Personnel handling ICs must use con- ductive wrist straps to ground themselves. Simple body moves act like a variable capacitor, and can create static charges. In addition, conductive clothing is recommended for minimizing electrostatic build up.

Static protective packaging prevents electric field from influencing or damaging ICs. An effective static-protective package exhibits three types of features:

1. Antistatic protection that prevents triboelectric or frictional charging,
2. Dielectric protection that insulates discharging, and
3. Shielding or Faraday cage protection that prevents transient field penetration.

Harris uses only packaging that exhibits all three features. Employees are required to adhere to the same static-protective packaging techiques during handling and shipment to assure device integrity is maintained.

Ionized air blowers aid in neutralizing charges on nonconductors such as synthetic clothing, plastics, and Styrofoam ${ }^{\mathrm{TN}}$. The blowers are placed at the work site and in close proximity to the IC handling area, since nonconductors do not lose or drain charges using normal grounding techniques.

By using wrist straps, static-protected work stations and static-protected containers, Harris product quality is maintained throughout the product cycle.

FIGURE 2. STATIC-SAFEGUARDED WORK STATION

NOTE 1. All electrical equipment on the conductive table top must be hard grounded and isolated from the table top.
2. Earth ground is not computer ground or RF ground or any other limited ground:

ELECTROSTATIC DISCHARGE CONTROL A GUIDE TO HANDLING INTEGRATED CIRCUITS

This paper discusses methods and materials recommended for protection of ICs against ESD damage or degradation during manufacturing operations vulnerable to ESD exposure. Areas of concern include dice prep and handling, dice and package inspection, packing, shipping, receiving, testing, assembly and all operations where ICs are involved.
All integrated circuits are sensitive to electrostatic discharge (ESD) to some degree. Since the introduction of integrated circuits with MOS structures and high quality junctions, safe and effective means of handling these devices have been of primary importance.
If static discharge occurs at a sufficient magnitude, 2 kV or greater, some damage or degradation will usually occur. It has been found that handling equipment and personnel can generate static potentials in excess of 10kV in a low humidity environment; thus it becomes necessary for additional measures to be implemented to eliminate or reduce static charge. Avoiding any damage or degradation by ESD when handling devices during the manufacturing flow is therefore essential.

ESD Protection and Prevention Measures

One method employed to protect gate oxide structures is to incorporate input protection diodes directly on the monolithic chip. However, there is no completely foolproof system of chip input protection in existence in the industry.
In areas where ICs are being handled, certain equipment should be utilized to reduce the damaging effects of ESD. Typically, equipment such as grounded work stations, conductive wrist straps, conductive floor mats, ionized air blowers and conductive packaging materials are included in the IC handling environment. Any time an individual intends to handle an IC, in any way, they must insure they have been grounded to eliminate circuit damage.
Grounding personnel can, practically, be performed by two methods. First, grounded wrist straps which are usually made of a conductive material, such as Velostat or metal. A resistor value of 1 megohm ($1 / 2$ watt) in series with the strap to ground completes a discharge path for ESD when the operator wears the strap in contact with the skin. Another method is to insure direct physical contact with a grounded, conductive work surface.
This consists of a conductive surface like Velostat, covering the work area. The surface is connected to a 1 megohm ($1 / 2$ watt) resistor in series with ground.

In addition to personnel grounding, areas where work is being performed with ICs, should be equipped with an ionized air blower. lonized air blowers force positive and negative ions simultaneously over the work area so that any nonconductors that are near the work surface would have their static charge neutralized before it would cause device damage or degradation.
Relative humidity in the work area should be maintained as high as practical. When the work environment is less than $40 \% \mathrm{RH}$, a static build-up condition can exist on nonconductors allowing stored charges to remain near the ICs causing possible static electricity discharge to ICs.
Integrated circuits that are being shipped or transported require special handling and packaging materials to eliminate ESD damage. Dice or packaged devices should be in conductive carriers during all phases of transport and handling. Leads of packaged devices can be shorted by tubular metalic carriers, conductive foam or foil.

Do's and Don'ts for: Integrated Circuit Handling

 Do'sDo keep paper; nonconductive plastic, plastic foams and films or cardboard off the static controlled conductive bench top. Placing devices, loaded sticks or loaded burn-in boards on top of any of these materials effectively insulates them from ground and defeats the purpose of the static controlled conductive surface.
Do keep hand creams and food away from static controlled conductive work surfaces. If spilled on the bench top, these materials will contaminate and increase the resistivity of the work area.
Do be especially careful when using soldering guns around conductive work surfaces. Solder spills and heat from the gun may melt and damage the conductive mat.
Do check the grounded wrist strap connections daily. Make certain they are snugly fitted before starting work with the product.
Do put on grounded wrist strap before touching any devices. This drains off any static build-up from the operator.
Do know the ESD caution symbols.
Do remove devices or loaded sticks from shielding bags only when grounded via wrist strap at grounded work station. This also applies when loading or removing devices from the antistatic sticks or the loading on or removing from the burn-in boards.

Do wear grounded wrist straps in direct contact with the bare skin - never over clothing.

Do use the same ESD control with empty burn-in boards as with loaded boards if boards contain permanently mounted ICs as part of driver circuits.
Do insure electrical test equipment and solder irons at an ESD control station are grounded and only uninsulated metal hand tools be used. Ordinary plastic solder suckers and other plastic assembly aids shall not be used.
Do use ionizing air blowers in static controlled areas when the use of plastic (nonconductive) materials cannot be avoided.

Don'ts

Don't allow anyone not grounded to touch devices, loaded sticks or loaded burn-in boards. To be grounded they must be standing on a conductive floor mat with conductive heel straps attached to footwear or must wear a grounded wrist strap.

Don't touch the devices by the pins or leads unless grounded since most ESD damage is done at these points.
Don't handle devices or loaded sticks during transport from work station to work station unless protected by shielding bags. These items must never be directly handled by anyone not grounded.
Don't use freon or chlorinated cleaners at a grounded work area.

Don't wax grounded static controlled conductive floor and bench top mats. This would allow build-up of an insulating layer and thus defeating the purpose of a conductive work surface.

Don't touch devices or loaded sticks or loaded burn-in boards with clothing or textiles even though grounded wrist strap is worn. This does not apply if conductive coats are worn.

Don't allow personnel to be attached to hard ground. There must always be 1 megohm series resistance (1/2 watt between the person and the ground).

Don't touch edge connectors of loaded burn-in boards or empty burn-in boards containing permanently mounted
driver circuits when not grounded. This also applies to burn-in programming cards containing ICs.

Don't unload stick on a metal bench top allowing rapid discharge of charged devices.
Don't touch leads. Handle devices by their package even though grounded.
Don't allow plastic "snow or peanut" polystyrene foam or other high dielectric materials to come in contact with devices or loaded sticks or loaded burn-in boards.
Don't allow rubber/plastic floor mats in front of static controlled work benches.

Don't solvent-clean devices when loaded in antistatic sticks since this will remove antistatic inner coating from sticks.

Don't use antistatic sticks for more than one throughput process. Used sticks should not be reused unless recoated.

Recommended Maintenance Procedures

Daily:

Perform visual inspection of ground wires and terminals on floor mats, bench tops, and grounding receptacles to ensure that proper electrical connections via 1 megohm resistor ($1 / 2$ watt) exist.

Clean bench top mats with a soft cloth or paper towel dampened with a mild solution of detergent and water.

Weekly:

Damp mop conductive floor mats to remove any accumulated dirt layer which causes high resistivity.

Annually:

Replace nuclear elements for ionized air blowers.
Review ESD protection procedures and equipment for updating and adequacy.

Static Controlled Work Station

The figure below shows an example of a work bench properly equipped to control electro-static discharge. Note that the wrist strap is connected to a 1 megohm resistor. This resistor can be omitted in the setup if the wrist strap has a 1 megohm assembled on the cable attached.

PACKAGING AND ORDERING INFORMATION

PAGE
PACKAGING AVAILABILITY 9-2
PACKAGE OUTLINES 9-3
ORDERING INFORMATION 9-9

Package Availability

Package Outlines

NOTE: All Dimensions Are $\frac{\text { Min }}{\text { Max }}$, Dimensions Are In Inches.

Package Outlines

T1

CERAMIC 68 PIN GRID ARRAY (PGA)

NOTE: All Dimensions Are $\frac{\text { Min }}{\text { Max }}$, Dimensions Are In Inches.

84 LEAD PIN GRID ARRAY (PGA)

Package Outlines

85 PIN GRID ARRAY (PGA)

NOTE: All Dimensions Are $\frac{\mathrm{Min}}{\mathrm{Max}}$, Dimensions Are In Inches.

145 PIN GRID ARRAY (PGA)

0			
P			
N			
M	(ㅇ) (ㅇ) (ㅇ (ㅇ) © ©		
L	(0) (0) (0) (0) (0) (0)		
k	(0) (0) (0) (0) (0) (0)	. BSC	
J	(0) (0) (0) (0) (0) (0)		
	(o) (o)- - - - - - - (0) - (0)		$\frac{1.560}{1.590}$
G	(0) (0) (0) (o) (0) (0)	$\begin{aligned} & 1.400 \\ & B S C \end{aligned}$	
F			
E	(0) (0) (0) PIN ${ }^{\text {(}) ~(0) ~(0) ~}$		
0	(0) (0) (0) (0) (0) ©		
c			
B			
A	(0) (o) (o) (0) (0) (0) (0) (0) (0) (0) (0) (0) ©)	1	1
	$\left.\begin{array}{lllll}1 & 2 & 3 & 4\end{array}\right]\left[\begin{array}{ccccccccccc}5 \\ 5 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\ \\ \varnothing .080 & \mathrm{MAX} & & & & .003 & \mathrm{MIN} & \end{array}\right]$		

\triangle INCREASE MAXIMUM LIMIT BY .OO3" WHEN SOLDER DIP OR TIN PLATE LEAD FINISH APPLIES.
2. ACTUAL STANDOFF CONFIGURATION MAY VARY. STANDOFFS SHOULD BE LOCATED ON THE PIN MATRIX DIAGONALS.
3. THERE MUST BE AN A1 CORNER IDENTIFIER ON BOTH IOP AND BOTTOM SURFACES. ID TYPE IS OPTIONAL AND MAY CONSIST OF NOTCHES, METALLIZED MARKINGS OR OTHER FEATURES

NOTE: All Dimensions Are $\frac{\text { Min }}{\text { Max }}$, Dimensions Are In Inches.

NOTE: All Dimensions Are $\frac{\text { Min }}{\text { Max }}$, Dimensions Are In Inches.

Ordering Information

Product Code

Harris products are designated by a "Product Code". This code includes designators for the product family, device type, performance grade, temperature grade and package style. An example of the Product Code is shown below:

HARRIS PRODUCT CODE EXAMPLE

For Valid Option Configurations, See Available Product Code, Next Page.

Available Product Codes

DEVICE TYPE	PACKAGE	TEMPERATURE	SPEED	SCREENING
HMA510	J	C	-45, -55	
	G	C	-55	
	G	M	-55, -65, -75	/883
HMU16/17	J	C	-35, -45	
	G	C	-35, -45	
	G	M	-45, -60	1883
HSP43220	J	C	-15, -25, -33	
	G	C	-15, -25, -33	
	G	M	-15,-25	1883
HSP43481	J	C	-20, -25, -30	
	G	C	-20, -25, -30	
	G	M	-20,-25	/883
HSP43881/891	J	c	-20, -25, -30	
	G	C	-20, -25, -30	
	G	M	-20, -25	/883
	Q	M	-20, -25	/883
HSP45102	P	C	-33, -40, -50	
	S	C	-33, -40, -50	
HSP45106	J	C	-25, -33, -40	
	G	c	-25, -33, -40	
	G	M	-25,-33	/883
HSP45116	G	C	-15, -25,-33	
	G	M	-15,-25	/883
HSP45240	J	c	-33, -40, -50	
	G	C	-33, -40, -50	
	G	M	-33, -40	1883
HSP48901	J	C	-20,-30	
	G	C	-20, -30	
HSP48908	J	c	-20, -32	
	G	c	-20,-32	
	G	M	-20, -27	1883
HSP9501	J	C	-25, -30	

DEVICE TYPE	TEMPERATURE	PACKAGE	SPEED	SCREENING
HSP9520/21	C	P,S		
ISP9520/21	C	PX,SX		

SALES OFFICE INFORMATION

A complete and current listing of all Harris Sales, Representative and Distributor locations worldwide is available. Please order the "Harris Sales Listing" from the Literature Center (see page i).

HARRIS HEADQUARTER LOCATIONS BY COUNTRY :

U.S. HEADQUARTERS

Harris Semiconductor 1301 Woody Burke Road Melbourne, Florida 32902
TEL: (407) 724-3000

SOUTH ASIA
Harris Semiconductor H.K. Ltd
13/F Fourseas Building
208-212 Nathan Road
Tsimshatsui, Kowloon Hong Kong
TEL: (852) 3-723-6339

EUROPEAN HEADQUARTERS

Harris Semiconductor
Mercure Centre
Rue de la Fusse 100
1130 Brussels, Belgium
TEL: (32) 2-246-21.11

NORTH ASIA
Harris K.K.
Shinjuku NS BIdg. Box 6153
2-4-1 Nishi-Shinjuku
Shinjuku-Ku, Tokyo 163 Japan
TEL: (81) 03-3345-8911

HARRIS TECHNICAL ASSISTANCE AVAILABILITY:

UNITED STATES

	CALIFORNIA	Costa Mesa 714-433-0600 San Jose. 8182-0977 Woodland Hills
	FLORIDA	Melbourne 407-724-3576
	GEORGIA	Norcross 404-246-4660
	ILLINOIS	Itasca 708-250-0070
	MASSACHUSETTS	Burlington 617-221-1850
	NEW JERSEY	Mt. Laurel . 609-727-1909 201-381-4210
	TEXAS	Dallas 214-733-0800
INTERNATIONAL		
	FRANCE	Paris 33-1-346-54090
	GERMANY	Munich 49-8-963-8130
	ITALY	Milano 39-2-262-22127
	JAPAN	Tokyo 81-03-3345-8911
	SWEDEN	Stockholm 46-8-623-5220
	U.K.	Camberley 44-2-766-86886

We're Backing You Up with Products, Support, and Solutions!

Signal Processing

- Linear
- Custom Linear
- Data Conversion
- Interface
- Analog Switches
- Multiplexers
- Filters
- DSP
- Telecom

Digital

- CMOS Microprocessors and Peripherals
- CMOS Microcontrollers
- CMOS Logic

ASICs

- Full-Custom
- Analog Semicustom
- Mixed-Signal
- ASIC Design Software

Power Products

- Power MOSFETs
- IGBTS
- Bipolar Discretes
- Transient Voltage Suppressors
- Opto Devices
- Power Rectifiers

Intelligent Power

- Power ICs
- Power ASICs
- Hybrid Programmable Switches
- Full-Custom High Voltage ICs

Microwave

- GaAs FETs
- GaAs MMICs
- Foundry Services

Military/Aerospace Products

- Microprocessors and

Peripherals

- Mémories
- Analog 1CS
- Digital ICS
- Discrete Power

Bipolar
MOSFET

- RadHard IGs

Military/Aerospace Programs

- COMSEC Programs
- Strategic and Space

Programs

- Military ASIC Programs

SEMM CO N D U C TO R

[^0]: *Includes Stray and Jig Capacitance

[^1]: 2. Operating Supply Current is proportional to frequency, typical rating is $5.5 \mathrm{~mA} / \mathrm{MHz}$.
[^2]: 1. Power supply current is proportional to operating frequency. Typical
 2. Output load per test load circuit with switch open and $C_{L}=40 \mathrm{pF}$. rating for ICCOP is $10 \mathrm{~mA} / \mathrm{MHz}$.
 3. Not tested, but characterized at initial design and at major process/design changes.
[^3]: 2. Transition is measured at $\pm 200 \mathrm{mV}$ from steady state voltage with loading as specified by test load circuit and $C_{L}=40 \mathrm{pF}$.
[^4]: This work was supported by Harris Semiconductor (Harris) and The Keenan Corporation (TKC). The authors thank the external reviewers, Mr. Richard E. Funk, Manager, Applications Engineering, Harris Semiconductor, and Dr. Leonard Rosi, EMC Engineer, of Hewlett-Packard's Corvallis Workstation Operation, for their helpful comments.

[^5]: * Examples are for $Z_{O}=50, C_{1}=5 p F, V_{C C}=5, f_{C}=30 \mathrm{MHz}$, Duty Cycle $=50 \%$

