ATA
 1 - 4 RELEAS 5^{5}
 1892

H HARRIS

HARRIS SEMICONDUCTOR DATA ACQUISITION NEW PRODUCTS

This supplementary data book contains specifications for new products released since the main Data Acquisition data book last printed in 1991. Included in this supplementary data book is a listing of all products described in the main data book. For a complete listing of all Harris Semiconductor products, please refer to the Product Selection Guide (PSG-201S; ordering information below.)

For complete, current and detailed technical specifications on any Harris devices please contact the nearest Harris sales, representative or distributor office; or direct literature requests to:

Harris Semiconductor Literature Department P.O. Box 883, MS CB1-25 Melbourne, FL 32901
FAX 407-724-3937
U.S. HEADQUARTERS

Harris Semiconductor 1301 Woody Burke Road Melbourne, Florida 32902
TEL: (407) 724-3000

SOUTH ASIA
Harris Semiconductor H.K. Ltd
13/F Fourseas Building
208-212 Nathan Road
Tsimshatsui, Kowloon
Hong Kong
TEL: (852) 723-6339

EUROPEAN HEADQUARTERS
Harris Semiconductor
Mercure Center
100, Rue de la Fusee
1130 Brussels, Belgium
TEL: (32) 22462111
NORTH ASIA
Harris K.K.
Shinjuku NS BIdg. Box 6153
2-4-1 Nishi-Shinjuku
Shinjuku-ku, Tokyo 163-08 Japan
TEL: 81-3-3345-8911

See our specs in CMPS

Copyright © Harris Corporation 1992
(All Rights Reserved)
Printed in USA, 8/1992

DATA ACQUISITION NEW PRODUCTS TECHNICAL ASSISTANCE

For technical assistance on the Harris products listed in this databook, please contact the Field Applications Engineering staff available at one of the following Harris Sales Offices:

UNITED STATES		
CALIFORNIA	Costa Mesa .	714-433-0600
	San Jose . . .	408-985-7322
	Woodland Hills.	.818-985-7322
FLORIDA	Melbourne	407-724-3576
GEORGIA	Duluth	.404-476-0025
ILLINOIS	Schaumburg	.708-240-3480
MASSACHUSETTS	Burlington	.617-221-1850
NEW JERSEY	Mt. Laurel.	.609-727-1909
NEW YORK	Great Neck	.516-829-9441
TEXAS	Dallas. . .	.214-733-0800
INTERNATIONAL		
FRANCE	Paris	33-1-346-54046
GERMANY	Munich.	. 49-8-963-8130
HONG KONG	Kowloon. 852-723-6339
ITALY	Milano . .	39-2-262-22141
JAPAN	Tokyo 81-3-345-8911
KOREA	Seoul........	. 82-2-551-0931
UNITED KINGDOM	Camberley. .	44-2-766-86886

Harris Semiconductor products are sold by description only. All specifications in this product guide are applicable only to packaged products; specifications for die are available upon request. Harris reserves the right to make changes in circuit design, specifications and other information at any time without prior notice. Accordingly, the reader is cautioned to verify that information in this publication is current before placing orders. Reference to products of other manufacturers are solely for convenience of comparison and do not imply total equivalency of design, performance, or otherwise

DATA ACQUISITION NEW PRODUCTS

GENERAL INFORMATION

PAGE
MULTIPLEXERS AND SWITCHES DATA SHEETS
DG401, Monolithic Dual CMOS Analog Switches. 1-9 DG405
DG408, Single 8-Channel/Differential 4-Channel CMOS Analog Multiplexers 1-11
DG409
DG411, Monolithic Quad SPST CMOS Analog Switches 1-13
DG412,DG413
DG441, Monolithic Quad SPST CMOS Analog Switches 1-14
DG442
DG458, Single 8 Channel/Differential 4-Channel Fault Protected Analog Multiplexers 1-15
DG459
AD CONVERTER DATA SHEETS
HI-574A Fast, Complete 12-Bit AND Converter with Microprocessor Interface 1-17
HI-674A $12 \mu \mathrm{~s}$, Complete 12-Bit A/D Converter with Microprocessor Interface 1-28
HI-774 $8 \mu \mathrm{~s}$, Complete 12-Bit A/D Converter with Microprocessor Interface 1-39
HI-5700 8-Bit, 20 MSPS Flash AVD Converter 1-51
HI-5700/883 8-Bit, 20MSPS Flash AD Converter 1-62
HI-5701 6 Bit, 30 MSPS Flash A/D Converter 1-71
HI5800 12-Bit, 3MSPS Sampling A/D Converter 1-82
HI5801 12-Bit, 5MSPS A/D Converter 1-94
HI5812 CMOS 12-Bit Sampling A/D Converter with Internal Track and Hold 1-95
HI-7153/883 8-Channel, 10-Bit, High Speed Sampling AND Converter 1-108
AN9203 Using the HI5800 Evaluation Board 1-120
BR-007 Harris Semiconductor Sales, Representatives and Distributor Locations 1-132
OTHER DATA ACQUISITION PRODUCTS CONTAINED IN MAIN DATA BOOK DB301 1-3

Other Data Acquisition Products Contained in Main Data Acquisition Data Book (DB301.1)

AD590
AD7520
AD7521
AD7523
AD7530
AD7531
AD7533
AD7541
AD7545
ADC0802
ADC0803
ADC0804
CA3161
CA3304
CA3306
CA3310/CA3310A
CA3318C
CA3338
DG180
DG181
DG182
DG183
DG184
DG185
DG186
DG187
DG188
DG189
DG190
DG191
DG200
DG201
DG201A
DG202
DG211
DG212

2-Wire Current Output Temperature Transducer
10-Bit Multiplying D/A Converter
12-Bit Multiplying D/A Converter
8-Bit Multiplying D/A Converter
10-Bit Multiplying D/A Converter
12-Bit Multiplying D/A Converter
10-Bit Multiplying D/A Converter
12-Bit Multiplying D/A Converter
12-Bit Buffered Multiplying CMOS DAC
8-Bit μ P-Compatible A/D Converter
8-Bit $\mu \mathrm{P}$-Compatible A/D Converter
8-Bit μ P-Compatible A/D Converter
BCD to Seven Segment Decoder/Driver
CMOS Video-Speed 4-Bit Flash ADD Converter
CMOS Video-Speed 6-Bit Flash ADD Converter
CMOS 10-Bit ADD Converter with Internal Track and Hold
CMOS Video-Speed 8-Bit Flash AD Converter
CMOS Video-Speed 8-Bit R-2R D/A Converter
Dual SPST 10 Ohm High-Speed Driver with JFET Switch Dual SPST 30 Ohm High-Speed Driver with JFET Switch Dual SPST 75 Ohm High-Speed Driver with JFET Switch

Dual DPST 10 Ohm High-Speed Driver with JFET Switch Dual DPST 30 Ohm High-Speed Driver with JFET Switch Dual DPST 75 Ohm High-Speed Driver with JFET Switch SPDT 10 Ohm High-Speed Driver with JFET Switch SPDT 30 Ohm High-Speed Driver with JFET Switch SPDT 75 Ohm High-Speed Driver with JFET Switch Dual SPDT 10 Ohm High-Speed Driver with JFET Switch Dual SPDT 30 Ohm High-Speed Driver with JFET Switch Dual SPDT 75 Ohm High-Speed Driver with JFET Switch Dual SPST CMOS Analog Switch
Quad SPST CMOS Analog Switch
Quad Monolithic SPST CMOS Analog Switch

Other Data Acquisition Products Contained in Main Data Acquisition Data Book (DB301.1) (continued)

DG300A	Dual SPST TTL Compatible CMOS Analog Switch
DG301A	SPDT TTL Compatible CMOS Analog Switch
DG302A	Dual DPST TTL Compatible CMOS Analog Switch
DG303A	Dual SPDT TTL Compatible CMOS Analog Switch
DG308A	Quad Monolithic SPST CMOS Analog Switch
DG309	Quad Monolithic SPST CMOS Analog Switch
DG506A	16-Channel CMOS Analog Multiplexer.
DG507A	Dual 8-Channel CMOS Analog Multiplexer
DG508A	8-Channel CMOS Analog Multiplexer
DG509A	Dual 4-Channel CMOS Analog Multiplexer
DG526	16-Channel CMOS Latchable Multiplexer
DG527	Dual 8-Channel CMOS Latchable Multiplexer
DG528	8-Channel Latchable Multiplexer
DG529	Dual 4-Channel Latchable Multiplexer
HI-200	Dual SPST CMOS Analog Switch
HI-201	Quad SPST CMOS Analog Switch
HI-201HS	High-Speed Quad SPST CMOS Analog Switch.
HI-222	High Frequency Video Switch
HI-300	Dual SPST CMOS Analog Switch
HI-301	SPDT CMOS Analog Switch
HI-302	Dual DPST CMOS Analog Switch
HI-303	Dual SPDT CMOS Analog Switch
HI-304	Dual SPST CMOS Analog Switch
HI-305	SPDT CMOS Analog Switch
HI-306	Dual DPST CMOS Analog Switch
HI-307	Dual SPDT CMOS Analog Switch
HI-381	Dual SPST CMOS Analog Switch
HI-384	Dual DPST CMOS Analog Switch
HI-387	SPDT CMOS Analog Switch
HI-390	Dual SPDT CMOS Analog Switch
HI-506	Single 16-Channel CMOS Analog Multiplexer 8-Channel CMOS Analog Multiplexer with Active Overvoltage Protection.
HI-506A	Single 16-Channel CMOS Analog Multiplexer with Active Overvoltage Protection
HI-507	Differential 8-Channel CMOS Analog Multiplexer
HI-507A	Differential 8-Channel CMOS Analog Multiplexer with Active Overvoltage Protection
HI-508	Si-508A

Other Data Acquisition Products Contained in Main Data Acquisition Data Book (DB301.1) (continued)

HI-509
HI-509A
HI-516
HI-518
HI-524
HI-539
HI-546
HI-547
HI-548
HI-549
HI-562A
HI-565A
HI-574A
HI-674A
HI-774
HI-1818A
HI-1828A
HI-5040
HI-5041
HI-5042
HI-5043
HI-5044
HI-5045
HI-5046
HI-5046A
HI-5047
HI-5047A
HI-5048
HI-5049
HI-5050
HI-5051
HI-5700
HI-5701
HI-7151
HI-7152
HI-7153

Differential 4-Channel CMOS Analog Multiplexer
Differential 4-Channel CMOS Analog Multiplexer with Active Overvoltage Protection Programmable 16-Channel/Differential 8-Channel CMOS High-Speed Analog Multiplexer Programmable 8-Channel/Differential 4-Channel CMOS High-Speed Analog Multiplexer 4-Channel Wideband and Video Multiplexer Monolithic, 4-Channel, Low Level, Differential Multiplexer Single 16-Channel CMOS Analog Multiplexer with Active Overvoltage Protection Differential 8-Channel CMOS Analog Multiplexer with Active Overvoltage Protection Single 8-Channel CMOS Analog Multiplexer with Active Overvoltage Protection Differential 4-Channel CMOS Analog Multiplexer with Active Overvoltage Protection 12-Bit High-Speed Monolithic D/A Converter High-Speed Monolithic D/A Converter with Reference Fast, Complete 12-Bit A/D Converter with Microprocessor Interface $12 \mu \mathrm{~s}$, Complete 12-Bit AD Converter with Microprocessor Interface $8 \mu \mathrm{~s}$, Complete 12-Bit AD Converter with Microprocessor Interface Low Resistance Single 8-Channel CMOS Analog Multiplexer Low Resistance Differential 4-Channel CMOS Analog Multiplexer SPST CMOS Analog Switch Dual SPST CMOS Analog Switch SPDT CMOS Analog Switch Dual SPDT CMOS Analog Switch DPST CMOS Analog Switch Dual DPST CMOS Analog Switch DPDT CMOS Analog Switch DPDT CMOS Analog Switch 4PST CMOS Analog Switch 4PST CMOS Analog Switch Dual SPST CMOS Analog Switch Dual DPST CMOS Analog Switch SPDT CMOS Analog Switch Dual SPDT CMOS Analog Switch 8-Bit, 20MSPS Flash A/D Converter 6-Bit, 30MSPS Flash AVD Converter 10-Bit High-Speed AD Converter with Track and Hold 10-Bit High-Speed AD Converter with Track and Hold 8-Channel 10-Bit High Speed Sampling AD Converter

Other Data Acquisition Products Contained in Main Data Acquisition Data Book (DB301.1) (continued)

HI-7159A
HI-DAC80V
HI-DAC85V
ICL232
ICL71C03/ICL8052
ICL71C03/ICL8068
ICL7104/ICL8052
ICL7104/ICL8068
ICL7106
ICL7107
ICL7109
ICL7115
ICL7116
ICL7117
ICL7121
ICL7126
ICL7129
ICL7134
ICL7135
ICL7136
ICL7137
ICL7139
ICL7149
ICL8052
ICL8068
ICL8069
ICM7170
ICM7207/A
ICM7208
ICM7209
ICM7211
ICM7212
ICM7213
ICM7216A/B/D
ICM7217
ICM7218
ICM7224

Microprocessor Compatible 5 1/2-Digit A/D Converter
12-Bit, Low Cost Monolithic D/A Converter
12-Bit, Low Cost Monolithic D/A Converter
+5 Volt Powered Dual RS-232 Transmitter/Receiver
Precision 4 1/2-Digit A/D Converter
Precision 4 1/2-Digit A/D Converter 14/16-Bit μ P-Compatible 2-Chip AND Converter 14/16-Bit μ P-Compatible 2-Chip A/D Converter 3 1/2-Digit LCD Single-Chip A/D Converter 3 1/2-Digit LED Single-Chip ADD Converter 12-Bit μ P-Compatible AD Converter 14-Bit High-Speed CMOS μ P-Compatible A/D Converter 3 1/2-Digit with Display Hold Single-Chip AVD Converter 3 1/2-Digit with Display Hold Single-Chip A/D Converter 16-Bit Multiplying Microprocessor-Compatible D/A Converter 3 1/2-Digit Low Power Single-Chip AVD Converter 4 1/2-Digit LCD Single-Chip A/D Converter 14-Bit Multiplying $\mu \mathrm{P}$-Compatible D/A Converter 4 1/2-Digit BCD Output A/D Converter 3 1/2-Digit LCD Low Power A/D Converter 3 1/2-Digit LED Low Power Single-Chip AVD Converter 3 3/4-Digit Autoranging Multimeter Low Cost 3 3/4-Digit Autoranging Multimeter A/D Converter - Low Leakage, Low Noise ADD Converter - Low Leakage, Low Noise Low Voltage Reference μ P-Compatible Real-Time Clock CMOS Timebase Generator 7-Digit LED Display Counter Timebase Generator 4-Digit LCD Display Driver 4-Digit LED Display Driver
One Second/One Minute Timebase Generator 8-Digit Multi-Function Frequency Counter/Timer 4-Digit LED Display Programmable Up/Down Counter 8-Digit LED Multiplexed Display Driver 4 1/2-Digit LCD/LED Display Counter

Other Data Acquisition Products Contained in Main Data Acquisition Data Book (DB301.1) (continuea)

ICM7226A/B
ICM7228
ICM7231
ICM7232
ICM7243
ICM7249
IH401A
IH5009
IH5010
IH5011
IH5012
IH5014
IH5016
IH5017
IH5018
IH5019
IH5020
IH5022
IH5024
IH5043
IH5052
IH5053
IH5140
IH5141
IH5142
IH5143
IH5144
IH5145
IH5151
IH5341
IH5352
IH6108
IH6201
IH6208
IM6654
8-Digit Multi-Function Frequency Counter/Timer 8-Digit LED Multiplexed Display Driver Numeric/Alphanumeric Triplexed LCD Display Driver Numeric/Alphanumeric Triplexed LCD Display Driver 8-Character $\mu \mathrm{P}$-Compatible LED Display Driver 5 1/2-Digit LCD μ-Power Event/Hour Meter Quad Varafet Analog Switch Quad 100 Ohm Virtual Ground Analog Switch Quad 150 Ohm Virtual Ground Analog Switch Quad 100 Ohm Virtual Ground Analog Switch Quad 150 Ohm Virtual Ground Analog Switch Triple 150 Ohm Virtual Ground Analog Switch Triple 150 Ohm Virtual Ground Analog Switch Dual 100 Ohm Virtual Ground Analog Switch Dual 150 Ohm Virtual Ground Analog Switch Dual 100 Ohm Virtual Ground Analog Switch Dual 150 Ohm Virtual Ground Analog Switch Single 150 Ohm Virtual Ground Analog Switch Single 150 Ohm Virtual Ground Analog Switch Dual SPDT 75 Ohm High-Level CMOS Analog Switch Quad SPST CMOS Analog Switch Quad SPST CMOS Analog Switch SPST High-Level CMOS Analog Switch Dual SPST High-Level CMOS Analog Switch SPDT High-Level CMOS Analog Switch
Dual SPDT High-Level CMOS Analog Switch DPST High-Level CMOS Analog Switch Dual DPST High-Level CMOS Analog Switch Dual SPDT High-Level CMOS Analog Switch Dual SPST CMOS RF/Video Switch Quad SPST CMOS RF/Nideo Switch 8-Channel CMOS Analog Multiplexer Dual CMOS Driver/Voltage Translator 4-Channel Differential CMOS Analog Multiplexer 4096-Bit CMOS UV EPROM

PRELIMINARY

July 1992

Features

- ON-Resistance < 35
- Low Power Consumption ($\mathrm{P}_{\mathrm{D}}<35 \mu \mathrm{~W}$)
- Fast Switching Action
- $\mathbf{t}_{\mathrm{ON}}<150 \mathrm{~ns}$
- toff <100ns
- Low Charge Injection
- DG401 Dual SPST; Same Pinout as H15041
- DG403 Dual SPDT; DG190, IH5043, IH5151
- DG405 Dual DPST; DG184, HI5045, IH5145
- TTL, CMOS Compatible
- Single or Split Supply Operation

Benefits

- Low Signal Errors and Distortion
- Reduced Power Supply
- Faster Throughput
- Improved Reliability
- Reduced Pedestal Error
- Simplifies Retrofit
- Simple Interfacing
- Break-Before-Make

Applications

- Audio Switching
- Battery Operated Systems
- Data Acquisition
- Hi-Rel Systems
- Sample and Hold Circuits
- Communication Systems
- Automatic Test Equipment

Description

The DG401, DG403 and DG405 monolithic CMOS analog switches have TTL \& CMOS compatible digital inputs, and a voltage reference for logic thresholds.
These switches feature low analog ON resistance (< 35 2) and fast switch time (ton < 150ns). Low charge injection simplifies sample and hold applications.
The improvements in the DG401/403/405 series are made possible by using a high voltage silicon-gate process. An epitaxial layer prevents the latch-up associated with older CMOS technologies. The 44V maximum voltage range permits controlling 30V peak-to-peak signals. Power supplies may be single-ended from +5 V to +34 V , or split from $\pm 5 \mathrm{~V}$ to $\pm 17 \mathrm{~V}$.

The analog switches are bilateral, equally matched for AC or bidirectional signals. The ON resistance variation with ana\log signals is quite low over a $\pm 15 \mathrm{~V}$ analog input range. The three different devices provide the equivalent of two SPST (DG401), two SPDT (DG403) or two DPST (DG405) relay switch contacts with CMOS or TTL level activation. The pinout is similar, permittng a standard layout to be used, choosing the switch function as needed.

Pinouts Switches Shown for Logic "0" Input

Functional Diagrams Switches Shown for Logic "1" Input

Truth Table

LOGIC	DG401	DG403		DG405
	SWITCH	SWITCH 1,2	SWITCH 3,4	SWITCH
0	OFF	OFF	ON	OFF
1	ON	ON	OFF	ON

NOTE: Logic " 0 " $\leq 0.8 \mathrm{~V}$. Logic "1" $\geq 2.4 \mathrm{~V}$.

PRELIMINARY

July 1992

Single 8-Channel/Differential 4-Channel CMOS Analog Multiplexers

Features

- ON-Resistance 100Ω Maximum $\left(+25^{\circ} \mathrm{C}\right)$
- Low Power Consumption ($\mathrm{P}_{\mathrm{D}}<11 \mathrm{~mW}$)
- Fast Switching Action
- tTRANS < 250ns
- ton/off(EN) < 150ns
- Low Charge Injection
- Upgrade from DG508/DG509
- TTL, CMOS Compatible Logic
- Single or Split Supply Operation

Benefits

- Low Signal Errors and Distortion
- Reduced Power Supply
- Faster Throughput
- Improved Reliability
- Break-Before-Make Switching
- Simplifies Retrofit
- Simple Interfacing

Applications

- Data Acquisition Systems
- Audio Switching Systems
- Automatic Testers
- Hi-Rel Systems
- Sample and Hold Circuits
- Communication Systems
- Analog Selector Switch

Description

The DG408 Single 8-Channel and DB409 Differential 4Channel monolithic CMOS analog multiplexers are drop-in replacements for the popular DG508 and DG509 series devices. They each include an array of eight analog switches, a TTLCMOS compatible digital decode circuit for channel selection, a voltage reference for logic thresholds and an ENABLE input for device selection when several multiplexers are present.

The feature lower signal ON resistance (< 100 $)_{\text {) and faster }}$ switch transition time (ttrans < 250ns) compared to the DG508A or DG509A. Charge injection has been reduced, simplifying sample and hold applications. The improvements in the DG408 series are made possible by using a high-voltage silicon-gate process. An epitaxial layer prevents the latch-up associated with older CMOS technologies.

The 44V maximum voltage range permits controlling 30V peak-to-peak signals. Power supplies may be single-ended from +5 V to +34 V , or split from $\pm 5 \mathrm{~V}$ to $\pm 17 \mathrm{~V}$.

The analog switches are bilateral, equally matched for AC or bidirectional signals. The ON resistance variation with analog signals is quite low over a $\pm 5 \mathrm{~V}$ analog input range.

Pinouts

$A_{0} 1$	$16{ }_{1}$
enable 2	$15 A_{2}$
-V SUPPLY 3	14 GND
IN1 4	13 + $\mathrm{V}_{\text {SUPPLY }}$
IN2 5	12 IN5
IN3 6	11] ${ }^{\text {IN6 }}$
IN4 7	10 IN7
OUT 8	2] IN8

Functional Block Diagrams

Truth Tables

A_{2}	A_{1}	A_{0}	$E N$	ON SWITCH
X	X	X	0	NONE
0	0	0	1	1
0	0	1	1	2
0	1	0	1	3
0	1	1	1	4
1	0	0	1	5
1	0	1	1	6
1	1	0	1	7
1	1	1	1	8

A_{1}	A_{0}	$E N$	ON SWITCH
X	X	0	NONE
0	0	1	1
0	1	1	2
1	0	1	3
1	1	1	4

NOTES:

1. $V_{A H}$ Logic " 1 " $\geq 2.4 \mathrm{~V}$
2. V_{AL} Logic " 0 " $\leq 0.8 \mathrm{~V}$

DG411, DG412 DG413

PRELIMINARY

Monolithic Quad SPST CMOS
 Analog Switches

Features

- ON-Resistance < 35 max
- Low Power Consumption ($\mathrm{P}_{\mathrm{D}}<35 \mu \mathrm{~W}$)
- Fast Switching Action
- $\mathbf{t}_{\mathrm{ON}}<175 \mathrm{~ns}$
- toff <145ns
- Low Charge Injection
- Upgrade from DG201A/DG202
- TTL, CMOS Compatible
- Single or Split Supply Operation

Benefits

- Low Signal Errors and Distortion
- Reduced Power Supply
- Faster Throughput
- Improved Reliability
- Reduced Pedestal Error
- Simplifies Retrofit
- Simple Interfacing
- DG413 has Two NC, Two NO Switches

Applications

- Audio Switching
- Battery Operated Systems
- Data Acquisition
- Hi-Rel Systems
- Sample and Hold Circuits
- Communication Systems
- Automatic Test Equipment

Description

The DG411 series monolithic CMOS analog switches are drop-in replacements for the popular DG201A and DG202 series devices. They include four independent single pole throw (SPST) analog switches, TTL and CMOS compatible digital inputs and a voltage reference for logic thresholds.

These switches feature lower analog ON resistance (< 35』) and faster switch time (ton < 175ns) compared to the DG201A or DG202. Charge injection has been reduced, simplifying sample and hold applications.
The improvements in the DG411 series are made possible by using a high voltage silicon-gate process. An epitaxial layer prevents the latch-up associated with older CMOS technologies. The 44 V maximum voltage range permits controlling 30V peak-to-peak signals. Power supplies may be single-ended from +5 V to +34 V , or split from $\pm 5 \mathrm{~V}$ to $\pm 17 \mathrm{~V}$.
The four switches are bilateral, equally matched for AC or bidirectional signals. The ON resistance variation with analog signals is quite low over a $\pm 15 \mathrm{~V}$ analog input range. The switches in the DG411 and DG412 are identical, differing only in the polarity of the selection logic. Two of the switches in the DG413 (\#1 and \#4) use the logic of the DG201ANDG411 (i.e. a logic " 0 " turns the switch ON) and the other two switches use DG202/DG412 positive logic. This permits independent control of turnon and turn-off times for SPDT configurations, permitting "break-beforemake" or "make-before-break" operation with a minimum of external logic.

Truth Table

LOGIC	DG411	DG412	DG413	
	SWITCH	SWITCH	SWITCH 1, 4	SWITCH 2,3
0	ON	OFF	OFF	ON
1	OFF	ON	ON	OFF

NOTE: Logic " 0 " $\leq 0.8 \mathrm{~V}$. Logic " 1 " $\geq 2.4 \mathrm{~V}$.

Pinout

(NC) NO CONNECTION

Functional Diagrams Four SPST Switches per Package Switches Shown for Logic " 14 " input

DG413

PRELIMINARY
July 1992

Monolithic Quad SPST CMOS Analog Switches

Features

- ON-Resistance 85Ω max
- Low Power Consumption ($\mathrm{P}_{\mathrm{D}}<1.6 \mathrm{~mW}$)
- Fast Switching Action
- $\mathbf{t}_{\mathrm{ON}}<250 \mathrm{~ns}$
- toff < 120ns (DG441)
- Low Charge Injection
- Upgrade from DG201A/DG202
- TTL, CMOS Compatible
- Single or Split Supply Operation

Benefits

- Low Signal Errors and Distortion
- Reduced Power Supply
- Faster Throughput
- Improved Reliability
- Reduced Pedestal Error
- Simplifies Retrofit
- Simple Interfacing

Description

The DG441 and DG442 monolithic CMOS analog switches are drop-in replacements for the popular DG201A and DG202 series devices. They include four independent single pole single throw (SPST) analog switches, TTL and CMOS compatible digital inputs and a voltage reference for logic thresholds.

These switches feature lower analog ON resistance ($<85 \Omega$) and faster switch time (ton < 250ns) compared to the DG201A and DG202. Charge injection has been reduced, simplifying sample and hold applications.

The improvements in the DG441 series are made possible by using a high voltage silicon-gate process. An epitaxial layer prevents the latch-up associated with older CMOS technologies. The 44V maximum voltage range permits controlling 30V peak-to-peak signals. Power supplies may be single-ended from +5 V to +34 V , or split from $\pm 5 \mathrm{~V}$ to $\pm 7 \mathrm{~V}$.
The four switches are bilateral, equally matched for $A C$ or bidirectional signals. The ON resistance variation with ana\log signals is quite low over a $\pm 5 \mathrm{~V}$ analog input range. The switches in the DG441 and DG442 are identical, differing only in the polarity of the selection logic.

Applications

- Audio Switching
- Battery Operated Systems
- Data Acquisition
- Hi-Rel Systems
- Sample and Hold Circuits
- Communication Systems
- Automatic Test Equipment

PRELIMINARY

July 1992

Single 8 Channel/Differential 4-Channel Fault Protected Analog Multiplexers

Features

- Fault and Overvoltage Protection
- ON-Resistance < $1.8 \mathrm{~K} \Omega\left(+25^{\circ} \mathrm{C}\right)$
- Low Power Consumption ($\mathrm{P}_{\mathrm{D}}<6 \mathrm{~mW}$)
- Fast Switching Action
- t $_{\text {TRANS }}<500 \mathrm{~ns}$
- $t_{\text {ON/OFF(EN) }}<250 \mathrm{~ns}$
- Fail Safe with Power Loss (No Latch-Up)
- Upgrade from DG508/DG509
- TTL, CMOS Compatible Logic

Benefits

- Low Signal Errors and Distortion
- Reduced Power Supply
- Faster Throughput
- Improved Reliability
- Break-Before-Make Switching
- Simplifies Retrofit
- Simple Interfacing

Applications

- Data Acquisition Systems
- Audio Switching Systems
- Automatic Testers
- Hi-Rel Systems
- Sample and Hold Circuits
- Communication Systems
- Analog Selector Switch

Description

The DG458 Single 8-Channel and DB459 Differential 4Channel monolithic CMOS analog multiplexers are drop-in replacements for the popular DG508 and DG509 series devices. They each include an array of eight analog switches, a series N -channel/P-channel/ N -channel fault protection circuit, a TTL/CMOS compatible digital decode circuit for channel selection, a voltage reference for logic thresholds and an ENABLE input for device selection when several multiplexers are present.

The feature lower signal ON resistance ($<100 \Omega$) and faster switch transition time (ttrans < 250ns) compared to the DG508A or DG509A. Charge injection has been reduced, simplifying sample and hold applications. The improvements in the DG458 series are made possible by using a high-voltage silicon-gate process. An epitaxial layer prevents the latch-up associated with older CMOS technologies.

The 44 V maximum voltage range permits controlling 20 V peak-to-peak signals, while withstanding continuous overvoltages up to $\pm 35 \mathrm{~V}$, providing an open fault circuit.
The analog switches are bilateral, break-before-make, equally matched for AC or bidirectional signals. The ON resistance variation with analog signals is quite low over a $\pm 5 \mathrm{~V}$ analog input range.

Pinouts

Functional Block Diagrams

Truth Tables

A_{2}	A_{1}	A_{0}	$E N$	ON SWITCH
X	X	X	0	NONE
0	0	0	1	1
0	0	1	1	2
0	1	0	1	3
0	1	1	1	5
1	0	0	1	6
1	0	1	1	7
1	1	0	1	8
1	1	1	1	3

DG459

A_{1}	A_{0}	$E N$	ON SWITCH
X	X	0	NONE
0	0	1	$1 A, 1 B$
0	0	1	$2 A, 2 B$
1	0	1	$3 A, 3 B$
1	1	1	$4 A, 4 B$

NOTES:

1. V_{AH} Logic "1" $\geq 2.4 \mathrm{~V}$
2. V_{AL} Logic " 0 " $\leq 0.8 \mathrm{~V}$

Fast, Complete 12-Bit A/D Converter with Microprocessor Interface

Features

- Complete 12-Bit AD Converter with Reference and Clock
- Full 8-, 12- or 16-Bit Microprocessor Bus Interface
- 150ns Bus Access Time
- No Missing Codes Over Temperature
- Minimal Setup Time for Control Signals
- $25 \mu \mathrm{~s}$ Maximum Conversion Time
- Low Noise, via Current-Mode Signal Transmission Between Chips
- Byte Enable/Short Cycle (AO Input)
- Guaranteed Break-Before-Make Action, Eliminating Bus Contention During Read Operation. Latched by the Start Convert Input (To Set the Conversion Length)
- Improved Second Source for AD574A
- $\pm 12 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$ Operation

Applications

- Military and Industrial Data Acquisition Systems
- Electronic Test and Scientific Instrumentation
- Process Control Systems

Description

The HI-574A is a complete 12-bit Analog-to-Digital Converter, including a +10 V reference, clock, three-state outputs and a digital interface for microprocessor control. Successive approximation conversion is performed by two monolithic dice housed in a 28 pin package. The bipolar analog die feature the Harris Dielectric Isolation process, which provides enhanced AC performance and freedom from latch-up.

Custom design of each IC (bipolar analog and CMOS digital) has yielded improved performance over existing versions of this converter. The voltage comparator features high PSRR plus a high speed current-mode latch, and provides precise decisions down to 0.1LSB of input overdrive. More than 2 X reduction in noise has been achieved by using current instead of voltage for transmission of all signals between the analog and digital IC's. Also, the clock oscillator is current controlled for excellent stability over temperature. The oscillator is trimmed for a nominal conversion time of $20 \pm 1 \mu \mathrm{~s}$.
The HI-574A offers standard unipolar and bipolar input ranges, laser trimmed for specified linearity, gain and offset accuracy. The buried zener reference circuit is trimmed for minimum temperature coefficient.
Power requirements are +5 V and $\pm 12 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$, with typical dissipation of 385 mW at $\pm 12 \mathrm{~V}$. For MIL-STD-883 compliant parts, request the HI-574A/883 data sheet.

Pinout

PLASTIC AND SIDEBRAZE DIP TOP VIEW

Ordering Information

PART NUMBER	INL	TEMP. RANGE	PACKAGE
HI3-574AJN-5	$\pm 1.0 \mathrm{LSB}$	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	28 Pin Plastic DIP
HI3-574AKN-5	$\pm 0.5 \mathrm{LSB}$	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	28 Pin Plastic DIP
HI1-574AJD-5	$\pm 1.0 \mathrm{LSB}$	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	28 Pin Ceramic DIP
HI1-574AKD-5	$\pm 0.5 \mathrm{LSB}$	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	28 Pin Ceramic DIP
HI1-574ALD-5	$\pm 0.5 \mathrm{LSB}$	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	28 Pin Ceramic DIP
HI1-574ASD-2	$\pm 1.0 \mathrm{LSB}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	28 Pin Ceramic DIP
HI1-574ATD-2	$\pm 0.5 \mathrm{LSB}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	28 Pin Ceramic DIP
HI1-574AUD-2	$\pm 0.5 \mathrm{LSB}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	28 Pin Ceramic DIP
HI1-574ASD/883	$\pm 1.0 \mathrm{LSB}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	28 Pin Ceramic DIP
HI1-574ATD/883	$\pm 0.5 \mathrm{LSB}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	28 Pin Ceramic DIP
HI1-574AUD/883	$\pm 0.5 \mathrm{LSB}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	28 Pin Ceramic DIP
HI4-574ASE/883	$\pm 1.0 \mathrm{LSB}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	44 Pin Ceramic LCC
HI4-574ATE/883	$\pm 0.5 \mathrm{LSB}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	44 Pin Ceramic LCC
HI4-574AUE/883	$\pm 0.5 \mathrm{LSB}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	44 Pin Ceramic LCC

Functional Block Diagram

* "Nibble" is a 4 bit digital word

Absolute Maximum Ratings

```
Supply Voltage
    V
    VEE
        OV to -16.5V
    V LOGIC to Digital Common.
        n. . . . . . . .
        .OV to +7V
    Analog Common to Digital Common. . . . . . . . . . . . . . . . . . . . \1V
Control Inputs
    (CE, \overline{CS},\mp@subsup{A}{0}{},12\overline{8},\textrm{R}/\overline{C}) to Digital Common ....-0.5V to V LOGIC+
Analog inputs
    (REFIN, BIPOFF, 10VIN) to Analog Common.............土16.5V
    20VIN to Analog Common
                            \pm24V
REFOUT . . . . . . Indefinite short to Common, momentary short to V VC
Operating Temperature Range
    HI3-574AxN-5, H11-574AxD-5 . . . . . . . . . . . . . . . . 0}\mp@subsup{}{}{\circ}\textrm{C}\mathrm{ to +75
    HI1-574AxD-2 . . . . . . . . . . . . . . . . . . . . . . . . . - 55'0
Junction Temperature
    HI3-574AxN-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +1500
    HI1-574AxD-2, H11-574AxD-5 . . . . . . . . . . . . . . . . . . . +1755
Storage Temperature Range
    H13-574AxN-5 . . . . . . . . . . . . . . . . . . . . - 40 % C < T TA < +85 % C
    HI1-574AxD-2, H11-574AxD-5 .............65
Lead Temperature (Soldering, 10s) . . . . . . . . . . . . . . . . . 300}30
```

Thermal Information

Thermal Resistance	$\theta_{\text {ja }}$	$\theta_{\text {jc }}$
Hi3-574AxN-5	$75^{\circ} \mathrm{C}$ W	-
HI1-574AxD-2, H11-574AxD-5.	$48^{\circ} \mathrm{C} / \mathrm{W}$	$15^{\circ} \mathrm{CN}$
Power Dissipation at $75^{\circ} \mathrm{C}$ (Note 1)		
HI3-574AxN-5		1000 mW
HI1-574AxD-2, H11-574AxD-5.		2083mW
Power Dissipation Derating Factor Above $+75^{\circ} \mathrm{C}$		
H13-574AxN-5		$3.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
H11-574AxD-2, HI1-574AxD-5		.8mW/ ${ }^{\circ} \mathrm{C}$
Transistor Count		

NOTE:

1. Dissipation rating assumes device is mounted with all leads soldered to printed circuit board.

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
$D C$ and Transfer Accuracy Specifications Typical at $+25^{\circ} \mathrm{C}$ with $\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}$ or $+12 \mathrm{~V}, \mathrm{~V}_{\mathrm{LOGIC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}$ or -12 V , Unless Otherwise Specified

PARAMETERS	TEMPERATURE RANGE$-5\left(0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C}\right)$			UNITS
	H1-574AJ	HI-574AK	H1-574AL	
Resolution (max)	12	12	12	Bits
$\begin{aligned} & \text { Linearity Error } \\ & +25^{\circ} \mathrm{C} \text { (Max) } \\ & 0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \text { (Max) } \end{aligned}$	$\begin{aligned} & \pm 1 \\ & \pm 1 \end{aligned}$	$\begin{aligned} & \pm 1 / 2 \\ & \pm 1 / 2 \end{aligned}$	$\begin{aligned} & \pm 1 / 2 \\ & \pm 1 / 2 \end{aligned}$	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \end{aligned}$
```Differential Linearity Error \(+25^{\circ} \mathrm{C}\) (Max resolution for which no missing codes is guaranteed) \(+25^{\circ} \mathrm{C}\) \(T_{\text {MIN }}\) to \(T_{\text {MAX }}\)```	$\begin{aligned} & \pm 1 \\ & 12 \\ & 11 \end{aligned}$	$\begin{aligned} & \pm 1 \\ & 12 \\ & 12 \end{aligned}$	$\begin{gathered} \pm 1 / 2 \\ 12 \\ 12 \end{gathered}$	LSB   Bits   Bits
Unipolar Offset (max) Adjustable to Zero	$\pm 2$	$\pm 1.5$	$\pm 1$	LSB
$\begin{aligned} & \text { Bipolar Offset (max) } \\ & V_{\text {IN }}=0 \mathrm{~V} \text { (Adjustable to Zero) } \\ & V_{\text {IN }}=-10 \mathrm{~V} \end{aligned}$	$\begin{gathered} \pm 4 \\ \pm 0.15 \end{gathered}$	$\begin{gathered} \pm 4 \\ \pm 0.1 \end{gathered}$	$\begin{gathered} \pm 3 \\ \pm 0.1 \end{gathered}$	$\begin{gathered} \text { LSB } \\ \text { \% of F.S. } \end{gathered}$
Full Scale Calibration Error   $+25^{\circ} \mathrm{C}$ (Max), with fixed $50 \Omega$ resistor from REF OUT to REF IN (Adjustable to Zero)   $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ (No adjustment at $+25^{\circ} \mathrm{C}$ )   $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ (With adjustment to zero $+25^{\circ} \mathrm{C}$ )	$\begin{gathered} \pm 0.25 \\ \pm 0.475 \\ \pm 0.22 \end{gathered}$	$\begin{gathered} \pm 0.25 \\ \\ \pm 0.375 \\ 0.12 \end{gathered}$	$\begin{aligned} & \pm 0.15 \\ & \\ & \pm 0.20 \\ & \pm 0.05 \end{aligned}$	\% of F.S.   \% of F.S.   $\%$ of F.S.
Temperature Coefficients   Guaranteed max change, $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ (Using internal reference)   Unipolar Offset   Bipolar Offset   Full Scale Calibration	$\begin{aligned} & \pm 2(10) \\ & \pm 2(10) \\ & \pm 9(45) \end{aligned}$	$\begin{gathered} \pm 1(5) \\ \pm 1(5) \\ \pm 2(10) \end{gathered}$	$\begin{gathered} \pm 1(5) \\ \pm 1(5) \\ \pm 2(10) \end{gathered}$	LSB ( $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ )   LSB ( $\mathrm{ppm}{ }^{\circ} \mathrm{C}$ )   LSB ( $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ )
Power Supply Rejection Max change in Full Scale Calibration $\begin{aligned} & +13.5 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}<+16.5 \mathrm{~V} \text { or }+11.4 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}<+12.6 \mathrm{~V} \\ & +4.5 \mathrm{~V}<\mathrm{V}_{\mathrm{LOGI}}<+5.5 \mathrm{~V} \\ & -16.5 \mathrm{~V}<\mathrm{V}_{\mathrm{EE}}<-13.5 \mathrm{~V} \text { or }-12.6 \mathrm{~V}<\mathrm{V}_{\mathrm{EE}}<-11.4 \mathrm{~V} \end{aligned}$	$\begin{gathered} \pm 2 \\ \pm 1 / 2 \\ \pm 2 \end{gathered}$	$\begin{gathered} \pm 1 \\ \pm 1 / 2 \\ \pm 1 \end{gathered}$	$\begin{gathered} \pm 1 \\ \pm 1 / 2 \\ \pm 1 \end{gathered}$	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \\ & \text { LSB } \end{aligned}$

$D C$ and Transfer Accuracy Specifications Typical at $+25^{\circ} \mathrm{C}$ with $\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}$ or $+12 \mathrm{~V}, \mathrm{~V}_{\mathrm{LOGIC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}$ or -12 V , Unless Otherwise Specified (Continued)

PARAMETERS	TEMPERATURE RANGE $-5\left(0^{\circ} \mathrm{C}\right.$ to $\left.+75^{\circ} \mathrm{C}\right)$			UNITS
	H-574AJ	HI-574AK	HI-574AL	
Analog Inputs Input Ranges				$\begin{aligned} & v \\ & v \end{aligned}$
Unipolar	$\begin{aligned} & 0 \text { to }+10 \\ & 0 \text { to }+20 \end{aligned}$			$\begin{aligned} & \mathrm{V} \\ & \mathrm{v} \end{aligned}$
Input Impedance 10 V Span 20V Span	$\begin{aligned} & 5 K, \pm 25 \% \\ & 10 K, \pm 25 \% \end{aligned}$			$\begin{aligned} & \Omega \\ & \Omega \end{aligned}$
Power Supplies   Operating Voltage Range   $V_{\text {LOGIC }}$   $V_{C C}$   $\mathrm{V}_{\mathrm{EE}}$		$\begin{gathered} +4.5 \text { to }+5.5 \\ +11.4 \text { to }+16.5 \\ -11.4 \text { to }-16.5 \end{gathered}$		$\begin{aligned} & v \\ & v \\ & v \end{aligned}$
Operating Current logic Icc +15 V Supply $I_{\text {EE }}-15 \mathrm{~V}$ Supply		7 Typ, 15 Max 11 Typ, 15 Max 21 Typ, 28 Max		mA   mA   mA
$\begin{gathered} \text { Power Dissipation } \\ \pm 15 \mathrm{~V},+15 \mathrm{~V} \\ \pm 12 \mathrm{~V},+5 \mathrm{~V} \end{gathered}$		$\begin{gathered} 15 \text { Typ, } 720 \mathrm{Ma} \\ 385 \text { Typ } \end{gathered}$		$\begin{gathered} \mathrm{mW} \\ \mathrm{~mW} \end{gathered}$
Internal Reference Voltage   $T_{\text {MIN }}$ to $T_{\text {max }}$   Output current (Note 1), available for external loads (External load should not change during conversion).		$\begin{gathered} 10.00 \pm 0.05 \mathrm{Ma} \\ \text { 2.0 Max } \end{gathered}$		Volts mA

## NOTE:

1. When supplying an external load (not including the ADC ) and operating on $\pm 12 \mathrm{~V}$ supplies, a buffer amplifier must be provided for the Reference Output.
$D C$ and Transfer Accuracy Specifications Typical at $+25^{\circ} \mathrm{C}$ with $\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}$ or $+12 \mathrm{~V}, \mathrm{~V}_{\mathrm{LOGIC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}$ or -12 V , Unless Otherwise Specified

PARAMETERS	TEMPERATURE RANGE$-2\left(+55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}\right)$			UNITS
	H1-574AS	HI-574AT	HI-574AU	
Resolution (max)	12	12	12	Bits
$\begin{aligned} & \text { Linearity Error } \\ & +25^{\circ} \mathrm{C} \text { (Max) } \\ & 0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \text { (Max) } \end{aligned}$	$\begin{aligned} & \pm 1 \\ & \pm 1 \end{aligned}$	$\begin{gathered} \pm 1 / 2 \\ \pm 1 \end{gathered}$	$\begin{gathered} \pm 1 / 2 \\ \pm 1 \end{gathered}$	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \end{aligned}$
```Differential Linearity Error \(+25^{\circ} \mathrm{C}\) (Max resolution for which no missing codes is guaranteed) \(+25^{\circ} \mathrm{C}\) \(T_{\text {MIN }}\) to \(T_{\text {MAX }}\)```	$\begin{aligned} & \pm 1 \\ & 12 \\ & 11 \end{aligned}$	$\begin{aligned} & \pm 1 \\ & 12 \\ & 12 \end{aligned}$	$\begin{gathered} \pm 1 / 2 \\ 12 \\ 12 \\ \hline \end{gathered}$	$\begin{aligned} & \text { LSB } \\ & \text { Bits } \\ & \text { Bits } \end{aligned}$
Unipolar Offset (max) Adjustable to Zero	± 2	± 1.5	± 1	LSB
$\begin{aligned} & \text { Bipolar Offset (max) } \\ & V_{\text {IN }}=0 \mathrm{~V} \text { (Adjustable to Zero) } \\ & V_{I N}=-10 \mathrm{~V} \end{aligned}$	$\begin{gathered} \pm 4 \\ \pm 0.15 \end{gathered}$	$\begin{gathered} \pm 4 \\ \pm 0.1 \end{gathered}$	$\begin{gathered} \pm 3 \\ \pm 0.1 \end{gathered}$	$\begin{gathered} \text { LSB } \\ \text { \% of } F . S . \end{gathered}$
Full Scale Calibration Error $+25^{\circ} \mathrm{C}$ (Max), with fixed 50Ω resistor from REF OUT to REF IN (Adjustable to Zero) $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ (No adjustment at $+25^{\circ} \mathrm{C}$) $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ (With adjustment to zero $+25^{\circ} \mathrm{C}$)	$\begin{aligned} & \pm 0.25 \\ & \\ & \pm 0.75 \\ & \pm 0.50 \end{aligned}$	$\begin{gathered} \pm 0.25 \\ \pm 0.50 \\ 0.25 \end{gathered}$	$\begin{array}{r} \pm 0.15 \\ \pm 0.275 \\ \pm 0.125 \end{array}$	\% of F.S. $\%$ of F.S. $\%$ of F.S.

DC and Transfer Accuracy Specifications Typical at $+25^{\circ} \mathrm{C}$ with $\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}$ or $+12 \mathrm{~V}, \mathrm{~V}_{\mathrm{LOGIC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}$ or -12 V , Unless Otherwise Specified (Continued)

PARAMETERS	TEMPERATURE RANGE$-2\left(+55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}\right)$			UNITS
	HL-574AS	H1-574AT	HI-574AU	
Temperature Coefficients Guaranteed max change, $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ (Using internal reference) Unipolar Offset Bipolar Offset Full Scale Calibration	$\begin{gathered} \pm 2(5) \\ \pm 2(5) \\ \pm 20(50) \end{gathered}$	$\begin{gathered} \pm 1(2.5) \\ \pm 2(5) \\ \pm 10(25) \end{gathered}$	$\begin{gathered} \pm 1(2.5) \\ \pm 1(2.5) \\ \pm 5(12.5) \end{gathered}$	LSB (ppm/ ${ }^{\circ} \mathrm{C}$) LSB ($\mathrm{ppm} /{ }^{\circ} \mathrm{C}$) LSB ($\mathrm{ppm} /{ }^{\circ} \mathrm{C}$)
Power Supply Rejection Max change in Full Scale Calibration $\begin{aligned} & +13.5 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}<+16.5 \mathrm{~V} \text { or }+11.4 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}<+12.6 \mathrm{~V} \\ & +4.5 \mathrm{~V}<\mathrm{V}_{\text {LOGIC }}<+5.5 \mathrm{~V} \\ & -16.5 \mathrm{~V}<\mathrm{V}_{\mathrm{EE}}<-13.5 \mathrm{~V} \text { or }-12.6 \mathrm{~V}<\mathrm{V}_{\mathrm{EE}}<-11.4 \mathrm{~V} \end{aligned}$	$\begin{gathered} \pm 2 \\ \pm 1 / 2 \\ \pm 2 \end{gathered}$	$\begin{gathered} \pm 1 \\ \pm 1 / 2 \\ \pm 1 \end{gathered}$	$\begin{gathered} \pm 1 \\ \pm 1 / 2 \\ \pm 1 \end{gathered}$	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \\ & \text { LSB } \end{aligned}$
Analog Inputs Input Ranges Bipolar		$\begin{gathered} -5 \text { to }+5 \\ -10 \text { to }+10 \end{gathered}$		$\begin{aligned} & \text { v } \\ & \text { v } \end{aligned}$
Unipolar		$\begin{aligned} & 0 \text { to }+10 \\ & 0 \text { to }+20 \end{aligned}$		$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{v} \end{aligned}$
Input Impedance 10V Span 20V Span		$\begin{aligned} & 5 \mathrm{k} \Omega, \pm 25 \% \\ & 10 \mathrm{k} \Omega, \pm 25 \% \end{aligned}$		$\begin{aligned} & \Omega \\ & \Omega \end{aligned}$
Power Supplies Operating Voltage Range $V_{\text {LOGIC }}$ $V_{c c}$ $V_{E E}$		$\begin{gathered} +4.5 \text { to }+5.5 \\ +11.4 \text { to }+16.5 \\ -11.4 \text { to }-16.5 \end{gathered}$		$\begin{aligned} & v \\ & v \\ & v \end{aligned}$
Operating Current logic $\mathrm{I}_{\mathrm{cc}}+15 \mathrm{~V}$ Supply $\mathrm{I}_{\mathrm{EE}}-15 \mathrm{~V}$ Supply		7 Typ, 15 Max 1 Typ, 15 Max 1 Typ, 28 Ma		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$
$\begin{gathered} \text { Power Dissipation } \\ \pm 15 \mathrm{~V},+15 \mathrm{~V} \\ \pm 12 \mathrm{~V},+5 \mathrm{~V} \end{gathered}$		$\begin{gathered} 15 \text { Typ, } 720 \text { Ma } \\ 385 \text { Typ } \\ \hline \end{gathered}$		$\begin{gathered} \mathrm{mW} \\ \mathrm{~mW} \end{gathered}$
```Internal Reference Voltage \(T_{\text {MIN }}\) to \(T_{\text {MAX }}\) Output current available for external loads (External load should not change during conversion).```		$\begin{aligned} & 10.00 \pm 0.05 \mathrm{Ma} \\ & 2.0 \text { Max } \end{aligned}$		Volts mA

Digital Characteristics (Note 1) All Models, Over Full Temperature Range

PARAMETERS	MIN	TYP	MAX
```Logic Inputs (CE, \overline{CS},\textrm{R}/\overline{\textrm{C}},\textrm{AO},12/\overline{8})(Note 2) Logic "1" Logic "0" Current Capacitance```	$\begin{aligned} & +2.4 \mathrm{~V} \\ & -0.5 \mathrm{~V} \\ & -5 \mu \mathrm{~A} \end{aligned}$	$\begin{gathered} \pm 0.1 \mu \mathrm{~A} \\ 5 \mathrm{pF} \end{gathered}$	$\begin{aligned} & +5.5 \mathrm{~V} \\ & +0.8 \mathrm{~V} \\ & +5 \mu \mathrm{~A} \end{aligned}$
Logic Outputs (DB11-DB0, STS) Logic "0" (I $\left.I_{\text {SINK }}-1.6 \mathrm{~mA}\right)$ Logic "1" (ISOURCE $-500 \mu \mathrm{~A}$) Leakage (High Z State, DB11-DB0 Only) Capacitance	$\begin{aligned} & +2.4 \mathrm{~V} \\ & -5 \mu \mathrm{~A} \end{aligned}$	$\begin{gathered} \pm 0.1 \mu \mathrm{~A} \\ 5 \mathrm{pF} \end{gathered}$	$\begin{aligned} & +0.4 \mathrm{~V} \\ & +5 \mu \mathrm{~A} \end{aligned}$

NOTES:

1. See "HI-574A Timing Specifications" for a detailed listing of digital timing parameters.
2. Although this guaranteed threshold is higher than standard TTL (+2.0V), bus loading is much less, i.e., typical input current is only 0.25% of a TTL load.

Timing Specifications $+25^{\circ} \mathrm{C}$, Unless Otherwise Specified

SYMBOL	PARAMETER		MIN	TYP	MAX	UNITS
CONVERT MODE						
$\mathrm{t}_{\text {DSC }}$	STS Delay from CE		-	-	200	ns
$t_{\text {HEC }}$	CE Pulse Width		50	-	-	ns
$\mathrm{t}_{\text {ssc }}$	$\overline{\text { CS }}$ to CE Setup		50	-	-	ns
$\mathrm{t}_{\text {HSC }}$	$\overline{\text { CS Low During CE High }}$		50	-	-	ns
$\mathrm{t}_{\text {SRC }}$	R/C to CE Setup		50	-	-	ns
$\mathrm{t}_{\text {HRC }}$	R/C Low During CE High		50	-	-	ns
$\mathrm{t}_{\text {SAC }}$	A_{0} to CE Setup		0	-	-	ns
$\mathrm{t}_{\mathrm{HAC}}$	A_{0} Valid During CE High		50	-	-	ns
t_{c}	Conversion Time	12 Bit Cycle $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	15	20	25	$\mu \mathrm{s}$
		8 Bit Cycle $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	10	13	17	$\mu \mathrm{s}$
READ MODE						
$t_{\text {DD }}$	Access Time from CE		-	75	150	ns
t_{HD}	Data Valid After CE Low		25	-	-	ns
t_{HL}	Output Float Delay		-	100	150	ns
$\mathrm{t}_{\text {SSR }}$	$\overline{\text { CS }}$ to CE Setup		50	-	-	ns
$t_{\text {SRR }}$	R/C to CE Setup		0	-	-	ns
$\mathrm{t}_{\text {SAR }}$	A_{0} to CE Setup		50	-	-	ns
$\mathrm{t}_{\text {HSR }}$	$\overline{\text { CS }}$ Valid After CE Low		0	-	-	ns
$\mathrm{t}_{\text {HRR }}$	R/İ High After CE Low		0	-	-	ns
$\mathrm{thaR}^{\text {H }}$	A_{0} Valid After CE Low		50	-	-	ns
$t_{\text {HS }}$	STS Delay After Data Valid		300	-	1200	ns

NOTE:

1. Time is measured from 50% level of digital transitions. Tested with a 50 pF and $3 \mathrm{k} \Omega$ load.

Definitions of Specifications

Linearity Error

Linearity error refers to the deviation of each individual code from a line drawn from "zero" through "full scale". The point used as "zero" occurs $1 / 2$ LSB (1.22 mV for 10 V span) before the first code transition (all zeros to only the LSB "on"). "Full scale" is defined as a level $1 \frac{1}{2}$ LSB beyond the last code transition (to all ones). The deviation of a code from the true straight line is measured from the middle of each particular code.

The HI-574AK, AL, AT, and AU grades are guaranteed for maximum nonlinearity of $\pm \frac{1}{2}$ LSB. For these grades, this means that an analog value which falls exactly in the center of a given code width will result in the correct digital output code. Values nearer the upper or lower transition of the code width may produce the next upper or lower digital output code. The HI-574AJ and AS grades are guaranteed to ± 1 LSB max error. For these grades, an analog value which falls within a given code width will result in either the correct code for that region or either adjacent one.
Note that the linearity error is not user-adjustable.

Differential Linearity Error (No Missing Codes)

A specification which guarantees no missing codes requires that every code combination appear in a monotonic increasing
sequence as the analog input level is increased. Thus every code must have a finite width. For the HI-574AK, AL, AT, and AU grades, which guarantee no missing codes to 12 -bit resolution, all 4096 codes must be present over the entire operating temperature ranges. The $\mathrm{Hl}-574 \mathrm{AJ}$ and AS grades guarantee no missing codes to 11-bit resolution over temperature; this means that all code combinations of the upper 11 bits must be present; in practice very few of the 12-bit codes are missing.

Unipolar Offset

The first transition should occur at a level $1 / 2$ LSB above ana\log common. Unipolar offset is defined as the deviation of the actual transition from that point. This offset can be adjusted as discussed on the following pages. The unipolar offset temperature coefficient specifies the maximum change of the transition point over temperature, with or without external adjustment.

Bipolar Offset

Similarly, in the bipolar mode, the major carry transition (0111 11111111 to 100000000000) should occur for an analog value $1 / 2$ LSB below analog common. The bipolar offset error and temperature coefficient specify the initial deviation and maximum change in the error over temperature.

Full Scale Calibration Error

The last transition (from 111111111110 to 11111111 1111) should occur for an analog value $1 \frac{1}{2}$ LSB below the nominal full scale (9.9963 V for 10.000 V full scale). The full scale calibration error is the deviation of the actual level at the last transition from the ideal level. This error, which is typically 0.05 to 0.1% of full scale, can be trimmed out as shown in Figures 1 and 2. The full scale calibration error over temperature is given with and without the initial error trimmed out. The temperature coefficients for each grade indicate the maximum change in the full scale gain from the initial value using the internal 10 V reference.

*When driving the 20V (pin 14) input, minimize capacitance on pin 13.
FIGURE 1. UNIPOLAR CONNECTIONS

Temperature Coefficients

The temperature coefficients for full-scale calibration, unipolar offset, and bipolar offset specify the maximum change from the initial $\left(+25^{\circ} \mathrm{C}\right)$ value to the value at $\mathrm{T}_{\text {MIN }}$ or $\mathrm{T}_{\text {MAX }}$.

Power Supply Rejection

The standard specifications for the HI-574A assume use of +5.00 and ± 15.00 or ± 12.00 volt supplies. The only effect of power supply error on the performance of the device will be a small change in the full scale calibration. This will result in a linear change in all lower order codes. The specifications show the maximum change in calibration from the initial value with the supplies at the various limits.

Code Width

A fundamental quantity for ADD converter specifications is the code width. This is defined as the range of analog input values for which a given digital output code will occur. The nominal value of a code width is equivalent to 1 least significant bit (LSB) of the full scale range or 2.44 mV out of 10 V for a 12-bit ADC.

FIGURE 2. BIPOLAR CONNECTIONS

Quantization Uncertainty

Analog-to-digital converters exhibit an inherent quantization uncertainty of $\pm 1 / 2$ LSB. This uncertainty is a fundamental characteristic of the quantization process and cannot be reduced for a converter of given resolution.

Left-justified Data

The data format used in the HI-574A is left-justified. This means that the data represents the analog input as a fraction of full-scale, ranging from 0 to $\frac{4095}{4096}$. This implies a binary point to the left of the MSB.

Applying the H-574A

For each application of this converter, the ground connections, power supply bypassing, analog signal source, digital timing and signal routing on the circuit board must be optimized to assure maximum performance. These areas are reviewed in the following sections, along with basic operating modes and calibration requirements.

PHYSICAL MOUNTING AND LAYOUT CONSIDERATIONS

Layout

Unwanted, parasitic circuit components, (L, R, and C) can make 12 bit accuracy impossible, even with a perfect AD converter. The best policy is to eliminate or minimize these parasitics through proper circuit layout, rather than try to quantify their effects.

The recommended construction is a double-sided printed circuit board with a ground plane on the component side. Other techniques, such as wire-wrapping or point-to-point wiring on vectorboard, will have an unpredictable effect on accuracy.

In general, sensitive analog signals should be routed between ground traces and kept well away from digital lines. If analog and digital lines must cross, they should do so at right angles.

Power Supplies

Supply voltages to the HI-574A ($+15 \mathrm{~V},-15 \mathrm{~V}$ and +5 V) must be "quiet" and well regulated. Voltage spikes on these lines can affect the converter's accuracy, causing several LSB's to flicker when a constant input is applied. Digital noise and spikes from a switching power supply are especially troublesome. If switching supplies must be used, outputs should be carefully filtered to assure "quiet" DC voltage at the converter terminals.

Further, a bypass capacitor pair on each supply voltage terminal is necessary to counter the effect of variations in supply current. Connect one pair from pin 1 to 15 (VLOGIC supply), one from pin 11 to 9 (V_{CC} to Analog Common) and one from pin 11 to 9 (V_{EE} to Analog Common). For each capacitor pair, a $10 \mu \mathrm{~F}$ tantalum type in parallel with a $0.1 \mu \mathrm{~F}$ ceramic type is recommended.

Ground Connections

The typical HI-574A ground currents are 5.5mADC into pin 9 (Analog Common) and 7mADC out of pin 15 (Digital Common. These pins should be tied together at the package to guarantee specified performance for the converter. In addition, a wide PC trace should run directly from pin 9 to (usually) 15 V common, and from pin 15 to (usually) the +5 V Logic Common. If the converter is located some distance from the system's "single point" ground, make only these connections to pins 9 and 15: Tie them together at the package, and back to the system ground with a single path. This path should have low resistance since it will carry about 1.5 mA of DC current. (Code dependent currents flow in the $\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{EE}}$ and $\mathrm{V}_{\text {LOGIC }}$ terminals, but not through the HI-574A's Analog Common or Digital Common).

ANALOG SIGNAL SOURCE

The device chosen to drive the $\mathrm{HI}-574 \mathrm{~A}$ analog input will see a nominal load of $5 \mathrm{~K} \Omega$ (10 V range) or $10 \mathrm{k} \Omega$ (20 V range). However, the other end of these input resistors may change $\pm 400 \mathrm{mV}$ with each bit decision, creating abrupt changes in current at the analog input. Thus, the signal source must maintain its output voltage while furmishing these step changes in load current, which occur at 1.6μ intervals. This requires low output impedance and fast settling by the signal source.

The output impedance of an op amp, for example, has an open loop value which, in a closed loop, is divided by the loop gain available at a frequency of interest. The amplifier should have acceptable loop gain at 600 KHz for use with the HI-574A. To check whether the output properties of a signal source are suitable, monitor the 574A's input (pin 13 or 14) with an oscilloscope while a conversion is in progress. Each of the twelve disturbances should subside in one microsecond or less. (The comparator decision is made about $1.5 \mu \mathrm{~s}$ after each code change from the SAR).

If the application calls for a Sample/Hold to precede the converter, it should be noted that not all Sample/Holds are com-
patible with the HI-574A in the manner described above. These will require an additional wideband buffer amplifier to lower their output impedance. A simpler solution is to use the Harris HA-5320 Sample/Hold, which was designed for use with the HI-574A.

RANGE CONNECTIONS AND CALIBRATION PROCEDURES

The HI-574A is a "complete" AD converter, meaning it is fully operational with addition of the power supply voltages, a Start Convert signal, and a few external components as shown in Figures 1 and 2. Nothing more is required for most applications.

Whether controlled by a processor or operating in the standalone mode, the $\mathrm{HI}-574 \mathrm{~A}$ offers four standard input ranges: 0 V to $+10 \mathrm{~V}, 0 \mathrm{~V}$ to $+20 \mathrm{~V} \pm 5 \mathrm{~V}$ and $\pm 10 \mathrm{~V}$. The maximum errors for gain and offset are listed under Specifications. If required, however, these errors may be adjusted to zero as explained below. Power supply and ground connections have been discussed in an earlier section.

Unipolar Connections and Calibration

Refer to Figure 1. The resistors shown* are for calibration of offset and gain. If this is not required, replace R2 with a 50Ω, 1% metal film resistor and remove the network on pin 12. Connect pin 12 to pin 9 . Then, connect the analog signal to pin 13 for the 0 V to 10 V range, or to pin 14 for the 0 V to 20 V range. Inputs to +20 V (5 V over the power supply) are no problem - the converter operates normally.

Calibration consists of adjusting the converter's most negative output to its ideal value (offset adjustment), then, adjusting the most positive output to its ideal value (gain adjustment). To understand the procedure, note that in principle, one is setting the output with respect to the midpoint of an increment of analog input, as denoted by two adjacent code changes. Nominal value of an increment is one LSB. However, this approach is impractical because nothing "happens" at a midpoint to indicate that an adjustment is complete. Therefore, calibration is performed in terms of the observable code changes instead of the midpoint between code changes.

For example, midpoint of the first LSB increment should be positioned at the origin, with an output code of all O's. To do this, apply an input of $+1 / 2$ LSB $(+1.22 \mathrm{mV}$ for the 10 V range; +2.44 mV for the 20 V range). Adjust the Offset potentiometer RI until the first code transition flickers between 00000000 0000 and 000000000001.

Next, perform a Gain Adjust at positive full scale. Again, the ideal input corresponding to the last code change is applied. This is $1 \frac{1}{2}$ LSB's below the nominal full scale $(+9.9963 \mathrm{~V}$ for 10V range; +19.9927V for 20 V range). Adjust the Gain potentiometer R2 for flicker between codes 111111111110 and 111111111111.

Bipolar Connections and Calibration

Refer to Figure 2. The gain and offset errors listed under Specifications may be adjusted to zero using potentiometers R1 and R2*. If this isn't required, either or both pots may be replaced by a $50 \Omega, 1 \%$ metal film resistor.

Connect the Analog signal to pin 13 for a $\pm 5 \mathrm{~V}$ range, or to pin 14 for a $\pm 10 \mathrm{~V}$ range. Calibration of offset and gain is similar to that for the unipolar ranges as discussed above. First apply a DC input voltage $1 / 2$ LSB above negative full scale (i.e., -4.9988 V for the $\pm 5 \mathrm{~V}$ range, or -9.9976 V for the $\pm 10 \mathrm{~V}$ range). Adjust the offset potentiometer R1 for flicker between output codes 000000000000 and 000000000001 . Next, apply a DC input voltage $1 \frac{1}{2}$ LSB's below positive full scale (+4.9963 V for $\pm 5 \mathrm{~V}$ range; +9.9927 V for $\pm 10 \mathrm{~V}$ range). Adjust the Gain potentiometer R2 for flicker between codes 1111 11111110 and 111111111111.
*The 100Ω potentiometer R2 provides Gain Adjust for the 10 V and 20 V ranges. In some applications, a full scale of 10.24 V (LSB equals 2.5 mV) or 20.48 V (LSB equals 5.0 mV) is more convenient. For these, replace R2 with a $50 \Omega, 1 \%$ metal film resistor. Then, to provide Gain Adjust for the 10.24 V range, add a 200Ω potentiometer in series with pin 13 . For the 20.48 V range, add a 500Ω potentiometer in series with pin 14.

CONTROLLING THE HI-574A

The HI-574A includes logic for direct interface to most microprocessor systems. The processor may take full control of each conversion, or the converter may operate in the "stand-alone" mode, controlled only by the R/C input. Full control consists of selecting an 8 or 12 bit conversion cycle, initiating the conversion, and reading the output data when ready-choosing either 12 bits at once or 8 followed by 4 in a left-justified format. The five control inputs are all TTLCMOS-compatible: ($12 \overline{8}, \overline{\mathrm{CS}}, \mathrm{A}_{\mathrm{O}}$, R / \bar{C} and $C E)$. Table 1 illustrates the use of these inputs in controlling the converter's operations. Also, a simplified schematic of the internal control logic is shown in Figure 3.

"Stand-Alone Operation"

The simplest control interface calls for a singe control line connected to R \bar{C}. Also, CE and $12 \overline{8}$ are wired high, $\overline{\mathrm{CS}}$ and A_{O} are wired low, and the output data appears in words of 12 bits each.
The $\mathbf{R} / \overline{\mathbf{C}}$ signal may have any duty cycle within (and including) the extremes shown in Figures 4 and 5. In general, data may be read when R/E is high unless STS is also high, indicating a conversion is in progress. Timing parameters particular to this mode of operation are listed below under "StandAlone Mode Timing".

STAND-ALONE MODE TIMING

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS
$\mathrm{t}_{\text {HRL }}$	Low R/C Pulse Width	50	-	-	ns
tos	STS Delay from R/C	-	-	200	ns
HIDR	Data Valid after R'్̄C Low	25	-	-	ns
ths	STS Delay after Data Valid	300	-	1200	ns
HRH	High R/C Puise Width	150	-	-	ns
$\mathrm{t}_{\text {DDR }}$	Data Access Time	-	-	150	ns

Time is measured from $\mathbf{5 0 \%}$ level of digital transitions. Tested with a 50 pF and $3 \mathrm{k} \Omega$ load.

Conversion Length

A Convert Start transition (see Table 1) latches the state of A_{0}, which determines whether the conversion continues for 12 bits (A_{0} low) or stops with 8 bits (A_{0} high). If all 12 bits are read following an 8 bit conversion, the three LSB's will

FIGURE 3. HI-574A CONTROL LOGIC

FIGURE 4. LOW PULSE FOR R/C̄ OUTPUTS ENABLED AFTER CONVERSION

FIGURE 5. HIGH PULSE FOR R/ \bar{C} OUTPUTS ENABLED WHILE R/C HIGH, OTHERWISE HIGH-Z
read ZERO and DB3 will read ONE. A_{0} is latched because it is also involved in enabling the output buffers (see "Reading the Output Data"). No other control inputs are latched.

TABLE 1. TRUTH TABLE FOR HL-574A CONTROL INPUTS

$\mathbf{C E}$	$\overline{\mathbf{C S}}$	$\mathbf{R / C}$	$\mathbf{1 2 / 8}$	$\mathbf{A}_{\mathbf{0}}$	OPERATION
O	X	X	X	X	None
X	1	X	X	X	None
\uparrow	0	0	X	0	Initiate 12 bit conversion
\uparrow	0	0	X	1	Initiate 8 bit conversion
1	\downarrow	0	X	0	Initiate 12 bit conversion
1	\downarrow	0	X	1	Initiate 8 bit conversion
1	0	\downarrow	X	0	Initiate 12 bit conversion
1	0	\downarrow	X	1	Initiate 8 bit conversion
1	0	1	1	X	Enable 12 bit Output
1	0	1	0	0	Enable 8 MSB's Only
1	0	1	0	1	Enable 4 LSB's Plus 4 Trailing

Conversion Start

A conversion may be initiated as shown in Table 1 by a logic transition on any of three inputs: CE, CS or R/C. The last of the three to reach the correct state starts the conversion, so
one, two or all three may be dynamically controlled. The nominal delay from each is the same, and if necessary, all three may change state simultaneously. To assure that a particular input controls the start of conversion, the other two should be set up at least 50 ns earlier, however. See the Hl-574A Timing Specifications, Convert mode.
This variety of $\mathrm{Hl}-574 \mathrm{~A}$ control modes allows a simple interface in most system applications. The Convert Start timing relationships are illustrated in Figure 6.

The output signal STS indicates status of the converter by going high only while a conversion is in progress. While STS is high, the output buffers remain in a high impedance state and data cannot be read. Also, an additional Start Convert will not reset the converter or reinitiate a conversion while STS is high. (However, if A_{0} changes state after a conversion begins, an additional Start Convert signal will latch the new state of A_{0}, possibly causing a wrong cycle length (8 vs . 12 bits) for that conversion).

Reading the Output Data

The output data buffers remain in a high impedance state until four conditions are met: R/C high, STS low, CE high and $\overline{\mathrm{CS}}$ low. At that time, data lines become active according to the state of inputs $12 / \overline{8}$ and A_{0}. Timing constraints are illustrated in Figure 7.

The $12 / \overline{8}$ input will be tied high or low in most applications, though it is fully TTLCMOS-compatible. With $12 / 8$ high, all 12 output lines become active simultaneously, for interface to a 12 or 16 bit data bus. The A_{0} input is ignored.
With $12 / \overline{8}$ low, the output is organized in two 8 bit bytes, selected one at a time by A_{0}. This allows an 8 bit data bus to be connected as shown in Figure 8. A_{0} is usually tied to the least significant bit of the address bus, for storing the HI-574A output in two consecutive memory locations. (With A_{0} low, the 8 MSB's only are enabled. With A_{0} high, 4MSB's are disabled, bits 4 through 7 are forced to zero, and the 4 LSB's are enabled). This two byte format is considered "left justified data", for which a decimal (or binary!) point is assumed to the left of byte 1:

Further, A_{0} may be toggled at any time without damage to the converter. Break-before-make action is guaranteed between the two data bytes, which assures that the outputs strapped together in Figure 8 will never be enabled at the same time.
A read operation usually begins after the conversion is complete and STS is low. For earliest access to the data however, the read should begin no later than ($\mathrm{t}_{\mathrm{DD}}+\mathrm{t}_{\mathrm{HS}}$) before STS goes low. See Figure 7.

Figure 6. CONVERT START TIMING

Figure 7. read cycle timing

FIGURE 8. INTERFACE TO AN 8 BIT DATA BUS

$12 \mu \mathrm{~s}$, Complete 12-Bit A/D Converter with Microprocessor Interface

Features

- Complete 12-Bit AD Converter with Reference and Clock
- Full 8-, 12- or 16-Bit Microprocessor Bus Interface
- 150ns Bus Access Time
- No Missing Codes Over Temperature
- Minimal Setup Time for Control Signals
- $15 \mu \mathrm{~s}$ Maximum Conversion Time
- Low Noise, via Current-Mode Signal Transmission Between Chips
- Byte Enable/Short Cycle (AO Input)
- Guaranteed Break-Before-Make Action, Eliminating Bus Contention During Read Operation. Latched by the Start Convert Input (To Set the Conversion Length)
- Faster Version of the HI-574A
- Same Pinout as the HI-574A
- $\pm 12 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$ Operation

Applications

- Military and Industrial Data Acquisition Systems
- Electronic Test and Scientific Instrumentation
- Process Control Systems

Description

The HI-674A is a complete 12-bit Analog-to-Digital Converter, including a +10 V reference, clock, three-state outputs and a digital interface for microprocessor control. Successive approximation conversion is performed by two monolithic dice housed in a 28 pin package. The bipolar analog die features the Harris Dielectric Isolation process, which provides enhanced AC performance and freedom from latch-up.

Custom design of each IC (bipolar analog and CMOS digital) has yielded improved performance over existing versions of this converter. The voltage comparator features high PSRR plus a high speed current-mode latch, and provides precise decisions down to 0.1 LSB of input overdrive. More than 2 X reduction in noise has been achieved by using current instead of voltage for transmission of all signals between the analog and digital IC's. Also, the clock oscillator is current controlled for excellent stability over temperature. The oscillator is trimmed for a nominal conversion time of $12 \pm 1 \mu \mathrm{~s}$.

The HI-674A offers standard unipolar and bipolar input ranges, laser trimmed for specified linearity, gain and offset accuracy. The buried zener reference circuit is trimmed for minimum temperature coefficient.

Power requirements are +5 V and $\pm 12 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$, with typical dissipation of 385 mW at $\pm 12 \mathrm{~V}$. For MIL-STD-883 compliant parts, request the HI-674AN883 data sheet.

Pinout

PLASTIC AND SIDEBRAZE DIP

 TOP VIEW| +5V SUPPLY, VLocic 1 | 28 | STATUS, STS | |
| :---: | :---: | :---: | :---: |
| DATA MODE SEL, $12 \sqrt{8} 2$ | 27 | DB11, MSB | |
| CHIP SEL, $\overline{\text { CS }} 3$ | 26 | DB10 | |
| BYTE ADDRSHORT CYCLE, A | 25 | DB9 | |
| READ/CONVERT, PIC 5 | 24 | DB8 | |
| CHIP ENABLE, CE 6 | 23 | DB7 | DIGITAL |
| +12V/+15V SUPPLY, $\mathrm{V}_{\mathbf{c c}} 7$ | 22 | DB6 | DATA |
| +10V REF, REF OUT 8 | 21 | DB5 | OUTPUTS |
| COMMON, AC | 20 | DB4 | |
| REFERENCE INPUT 10 | 19 | DB3 | |
| -12V/-15V SUPPLY, VEE 11 | 18 | DB2 | |
| BIPOLAR OFFSET BIP OFF $\mathbf{1 2}$ | 17 | DB1 | |
| 10 V INPUT 13 | 16 | DBO, LSB | |
| 20V InPut 14 | 15 | DIG COMMO | N, DC |

Ordering Information

PART NUMBER	INL	TEMP. RANGE	PACKAGE
HI3-674AJN-5	$\pm 1.0 \mathrm{LSB}$	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	28 Pin Plastic DIP
HI3-674AKN-5	$\pm 0.5 \mathrm{LSB}$	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	28 Pin Plastic DIP
HI1-674AJD-5	$\pm 1.0 \mathrm{LSB}$	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	28 Pin Ceramic DIP
HI1-674AKD-5	$\pm 0.5 \mathrm{LSB}$	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	28 Pin Ceramic DIP
HI1-674ALD-5	$\pm 0.5 \mathrm{LSB}$	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	28 Pin Ceramic DIP
HI1-674ASD-2	$\pm 1.0 \mathrm{LSB}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	28 Pin Ceramic DIP
HI1-674ATD-2	$\pm 0.5 \mathrm{LSB}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	28 Pin Ceramic DIP
HI1-674AUD-2	$\pm 0.5 \mathrm{LSB}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	28 Pin Ceramic DIP
HI1-674ASD/883	$\pm 1.0 \mathrm{LSB}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	28 Pin Ceramic DIP
HI1-674ATD/883	$\pm 0.5 \mathrm{LSB}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	28 Pin Ceramic DIP
HI1-674AUD/883	$\pm 0.5 \mathrm{LSB}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	28 Pin Ceramic DIP
HI4-674ASE/883	$\pm 1.0 \mathrm{LSB}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	44 Pin Ceramic LCC
HI4-674ATE/883	$\pm 0.5 \mathrm{LSB}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	44 Pin Ceramic LCC
HI4-674AUE/883	$\pm 0.5 \mathrm{LSB}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	44 Pin Ceramic LCC

Functional Block Diagram

* "Nibble" is a 4 bit digital word

Absolute Maximum Ratings

Supply Voltage

$V_{\text {cc }}$ to Digital Common.	OV to +16.5 V
$V_{E E}$ to Digital Common.	OV to-16.5V
$V_{\text {Logic }}$ to Digital Common.	. 0 V to +7V
Analog Common to Digital Common.	$\pm 1 \mathrm{~V}$
atrol Inputs	

(CE, $\overline{\mathrm{CS}}, \mathrm{A}_{\mathrm{o}}, 12 / \overline{8}, \mathrm{R} / \overline{\mathrm{C}}$) to Digital Common-0.5V to $\mathrm{V}_{\text {LOGIC }}+0.5 \mathrm{~V}$
Analog Inputs
(REFIN, BIPOFF, 10VIN) to Analog Common. $\pm 16.5 \mathrm{~V}$
20 VIN to Analog Common $\mathbf{\pm 2 4 V}$
REFOUT Indefinite short to Common, momentary short to V_{CC} Operating Temperature Range
HI3-674AxN-5, HI1-674AxD-5 $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
HI1-674AxD-2 . $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Junction Temperature
HI3-674AxN-5 . $+150^{\circ} \mathrm{C}$
HI1-674AxD-2, HI1-674AxD-5 . $+175^{\circ} \mathrm{C}$
Storage Temperature Range
HI3-674AxN-5 . $-40^{\circ} \mathrm{C}<T_{A}<+85^{\circ} \mathrm{C}$
HI1-674AxD-2, HI1-674AxD-5 $65^{\circ} \mathrm{C}<\mathrm{T}_{A}<+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10s) . $300^{\circ} \mathrm{C}$
CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

DC and Transfer Accuracy Specifications Typical at $+25^{\circ} \mathrm{C}$ with $\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}$ or $+12 \mathrm{~V}, \mathrm{~V}_{\text {LOGIC }}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}$ or -12 V , Unless Otherwise Specified

PARAMETERS	TEMPERATURE RANGE $-5\left(0^{\circ} \mathrm{C}\right.$ to $\left.+75^{\circ} \mathrm{C}\right)$			UNITS
	HI-674AJ	HI-674AK	HI-674AL	
Resolution (max)	12	12	12	Bits
$\begin{aligned} & \text { Linearity Error } \\ & +25^{\circ} \mathrm{C} \text { (Max) } \\ & 0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \text { (Max) } \end{aligned}$	$\begin{aligned} & \pm 1 \\ & \pm 1 \end{aligned}$	$\begin{aligned} & \pm 1 / 2 \\ & \pm 1 / 2 \end{aligned}$	$\begin{aligned} & \pm 1 / 2 \\ & \pm 1 / 2 \end{aligned}$	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \end{aligned}$
Differential Linearity Error ```+25}\mp@subsup{}{}{\circ}\textrm{C}\mathrm{ (Max resolution for which no missing codes is guaranteed) +25}\mp@subsup{}{}{\circ}\textrm{C TMIN to TMAX```	$\begin{aligned} & \pm 1 \\ & 12 \\ & 11 \end{aligned}$	$\begin{aligned} & \pm 1 \\ & 12 \\ & 12 \end{aligned}$	$\begin{gathered} \pm 1 / 2 \\ 12 \\ 12 \end{gathered}$	$\begin{aligned} & \text { LSB } \\ & \text { Bits } \\ & \text { Bits } \end{aligned}$
Unipolar Offset (max) Adjustable to Zero	± 2	± 1.5	± 1	LSB
$\begin{aligned} & \text { Bipolar Offset (max) } \\ & V_{\text {IN }}=0 \mathrm{~V} \text { (Adjustable to Zero) } \\ & V_{\text {IN }}=-10 \mathrm{~V} \end{aligned}$	$\begin{gathered} \pm 4 \\ \pm 0.15 \end{gathered}$	$\begin{gathered} \pm 4 \\ \pm 0.1 \end{gathered}$	$\begin{gathered} \pm 3 \\ \pm 0.1 \end{gathered}$	$\begin{gathered} \text { LSB } \\ \% \text { of F.S. } \end{gathered}$
Full Scale Calibration Error $+25^{\circ} \mathrm{C}$ (Max), with fixed 50Ω resistor from REF OUT to REF IN (Adjustable to Zero) $T_{\text {MIN }}$ to $T_{\text {MAX }}$ (No adjustment at $+25^{\circ} \mathrm{C}$) $T_{\text {MIN }}$ to $T_{\text {MAX }}$ (With adjustment to zero $+25^{\circ} \mathrm{C}$)	$\begin{gathered} \pm 0.25 \\ \pm 0.475 \\ \pm 0.22 \end{gathered}$	$\begin{gathered} \pm 0.25 \\ \pm 0.375 \\ 0.12 \end{gathered}$	$\begin{gathered} \pm 0.15 \\ \pm 0.20 \\ 0.05 \end{gathered}$	\% of F.S. $\%$ of F.S. \% of F.S.
Temperature Coefficients Guaranteed max change, $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ (Using internal reference) Unipolar Offset Bipolar Offset Full Scale Calibration	$\begin{aligned} & \pm 2(10) \\ & \pm 2(10) \\ & \pm 9(45) \end{aligned}$	$\begin{gathered} \pm 1(5) \\ \pm 1(5) \\ \pm 2(10) \end{gathered}$	$\begin{gathered} \pm 1(5) \\ \pm 1(5) \\ \pm 2 \text { (10) } \end{gathered}$	LSB ($\mathrm{ppm} /{ }^{\circ} \mathrm{C}$) LSB ($\mathrm{ppm} /{ }^{\circ} \mathrm{C}$) LSB ($\mathrm{ppm} /{ }^{\circ} \mathrm{C}$)
Power Supply Rejection Max change in Full Scale Calibration $\begin{aligned} & +13.5 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}<+16.5 \mathrm{~V} \text { or }+11.4 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}<+12.6 \mathrm{~V} \\ & +4.5 \mathrm{~V}<\mathrm{V}_{\text {LOGIC }}<+5.5 \mathrm{~V} \\ & -16.5 \mathrm{~V}<\mathrm{V}_{\mathrm{EE}}<-13.5 \mathrm{~V} \text { or }-12.6 \mathrm{~V}<\mathrm{V}_{\mathrm{EE}}<-11.4 \mathrm{~V} \end{aligned}$	$\begin{gathered} \pm 2 \\ \pm 1 / 2 \\ \pm 2 \end{gathered}$	$\begin{gathered} \pm 1 \\ \pm 1 / 2 \\ \pm 1 \end{gathered}$	$\begin{gathered} \pm 1 \\ \pm 1 / 2 \\ \pm 1 \end{gathered}$	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \\ & \text { LSB } \end{aligned}$

Specifications HI-674A

$D C$ and Transfer Accuracy Specifications Typical at $+25^{\circ} \mathrm{C}$ with $\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}$ or $+12 \mathrm{~V}, \mathrm{~V}_{\mathrm{LOGIC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}$ or -12 V , Unless Otherwise Specified (Continued)

PARAMETERS	TEMPERATURE RANGE $-5\left(0^{\circ} \mathrm{C}\right.$ to $\left.+75^{\circ} \mathrm{C}\right)$			UNITS
	H1-674AJ	HI-674AK	HI-674AL	
Analog Inputs Input Ranges Bipolar	$\begin{gathered} -5 \text { to }+5 \\ -10 \text { to }+10 \end{gathered}$			$\begin{aligned} & v \\ & v \end{aligned}$
Unipolar	$\begin{aligned} & 0 \text { to }+10 \\ & 0 \text { to }+20 \end{aligned}$			$\begin{aligned} & \mathrm{V} \\ & \mathrm{v} \end{aligned}$
Input Impedance 10V Span 20V Span	$\begin{gathered} 5 K, \pm 25 \% \\ 10 K, \pm 25 \% \end{gathered}$			$\begin{aligned} & \Omega \\ & \Omega \end{aligned}$
Power Supplies Operating Voltage Range $V_{\text {LOGIC }}$ $V_{c c}$ $V_{E E}$	$\begin{gathered} +4.5 \text { to }+5.5 \\ +11.4 \text { to }+16.5 \\ -11.4 \text { to }-16.5 \end{gathered}$			$\begin{aligned} & v \\ & v \\ & v \end{aligned}$
Operating Current logic ICc +15 V Supply $\mathrm{I}_{\mathrm{EE}}-15 \mathrm{~V}$ Supply	7 Typ, 15 Max 11 Typ, 15 Max 21 Typ, 28 Max			mA mA mA
$\begin{gathered} \text { Power Dissipation } \\ \pm 15 \mathrm{~V},+15 \mathrm{~V} \\ \pm 12 \mathrm{~V},+5 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 515 \text { Typ, } 720 \text { Max } \\ & 385 \text { Typ } \end{aligned}$			$\begin{aligned} & \mathrm{mW} \\ & \mathrm{~mW} \end{aligned}$
Internal Reference Voltage $T_{\text {MIN }}$ to $T_{\text {MAX }}$ Output current, available for external loads (External load should not change during conversion).	$\begin{gathered} +10.00 \pm 0.05 \operatorname{Max} \\ 2.0 \text { Max } \end{gathered}$			Volts mA

$D C$ and Transfer Accuracy Specifications Typical at $+25^{\circ} \mathrm{C}$ with $\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}$ or $+12 \mathrm{~V}, \mathrm{~V}_{\mathrm{LOGIC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}$ or -12 V , Unless Otherwise Specified

PARAMETERS	TEMPERATURE RANGE$-2\left(+55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}\right)$			UNITS
	H1-674AS	Hl-674AT	HI-674AU	
Resolution (max)	12	12	12	Bits
$\begin{aligned} & \text { Linearity Error } \\ & +25^{\circ} \mathrm{C} \text { (Max) } \\ & 0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \text { (Max) } \end{aligned}$	$\begin{aligned} & \pm 1 \\ & \pm 1 \end{aligned}$	$\begin{gathered} \pm 1 / 2 \\ \pm 1 \end{gathered}$	$\begin{gathered} \pm 1 / 2 \\ \pm 1 \end{gathered}$	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \end{aligned}$
```Differential Linearity Error \(+25^{\circ} \mathrm{C}\) (Max resolution for which no missing codes is guaranteed) \(+25^{\circ} \mathrm{C}\) \(T_{\text {MIN }}\) to \(T_{\text {MAX }}\)```	$\begin{aligned} & \pm 1 \\ & 12 \\ & 11 \end{aligned}$	$\begin{aligned} & \pm 1 \\ & 12 \\ & 12 \end{aligned}$	$\begin{gathered} \pm 1 / 2 \\ 12 \\ 12 \end{gathered}$	$\begin{aligned} & \text { LSB } \\ & \text { Bits } \\ & \text { Bits } \end{aligned}$
Unipolar Offset (max) Adjustable to Zero	$\pm 2$	$\pm 1.5$	$\pm 1$	LSB
$\begin{aligned} & \text { Bipolar Offset (max) } \\ & V_{\text {IN }}=0 \mathrm{~V} \text { (Adjustable to Zero) } \\ & V_{\text {IN }}=-10 \mathrm{~V} \end{aligned}$	$\begin{gathered} \pm 4 \\ \pm 0.15 \end{gathered}$	$\begin{gathered} \pm 4 \\ \pm 0.1 \end{gathered}$	$\begin{gathered} \pm 3 \\ \pm 0.1 \end{gathered}$	$\begin{gathered} \text { LSB } \\ \% \text { of F.S. } \end{gathered}$
Full Scale Calibration Error   $+25^{\circ} \mathrm{C}$ (Max), with fixed $50 \Omega$ resistor from REF OUT to REF IN   (Adjustable to Zero)   $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ (No adjustment at $+25^{\circ} \mathrm{C}$ )   $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ (With adjustment to zero $+25^{\circ} \mathrm{C}$ )	$\begin{aligned} & \pm 0.25 \\ & \pm 0.75 \\ & \pm 0.50 \end{aligned}$	$\begin{gathered} \pm 0.25 \\ \pm 0.50 \\ 0.25 \end{gathered}$	$\begin{gathered} \pm 0.15 \\ \pm 0.275 \\ \pm 0.125 \end{gathered}$	\% of F.S.   \% of F.S.   $\%$ of F.S.

$D C$ and Transfer Accuracy Specifications Typical at $+25^{\circ} \mathrm{C}$ with $\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}$ or $+12 \mathrm{~V}, \mathrm{~V}_{\mathrm{LOGIC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}$ or -12 V , Unless Otherwise Specified (Continued)

PARAMETERS	TEMPERATURE RANGE$-2\left(+55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}\right)$			UNITS
	H1-674AS	HI-674AT	HI-674AU	
Temperature Coefficients   Guaranteed max change, $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ (Using internal reference)   Unipolar Offset   Bipolar Offset   Full Scale Calibration	$\begin{gathered} \pm 2(5) \\ \pm 2(5) \\ \pm 20(50) \end{gathered}$	$\begin{gathered} \pm 1(2.5) \\ \pm 2(5) \\ \pm 10(25) \end{gathered}$	$\begin{gathered} \pm 1 \text { (2.5) } \\ \pm 1 \text { (2.5) } \\ \pm 5(12.5) \end{gathered}$	LSB (ppm/ ${ }^{\circ} \mathrm{C}$ )   LSB (ppm/ ${ }^{\circ} \mathrm{C}$ )   LSB ( $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ )
Power Supply Rejection   Max change in Full Scale Calibration $\begin{aligned} & +13.5 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}<+16.5 \mathrm{~V} \text { or }+11.4 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}<+12.6 \mathrm{~V} \\ & +4.5 \mathrm{~V}<\mathrm{V}_{\text {LOGIC }}<+5.5 \mathrm{~V} \\ & -16.5 \mathrm{~V}<\mathrm{V}_{\mathrm{EE}}<-13.5 \mathrm{~V} \text { or }-12.6 \mathrm{~V}<\mathrm{V}_{\mathrm{EE}}<-11.4 \mathrm{~V} \end{aligned}$	$\begin{gathered} \pm 2 \\ \pm 1 / 2 \\ \pm 2 \end{gathered}$	$\begin{gathered} \pm 1 \\ \pm 1 / 2 \\ \pm 1 \end{gathered}$	$\begin{gathered} \pm 1 \\ \pm 1 / 2 \\ \pm 1 \end{gathered}$	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \\ & \text { LSB } \\ & \hline \end{aligned}$
$\begin{array}{\|c} \hline \text { Analog Inputs } \\ \text { Input Ranges } \\ \text { Bipolar } \end{array}$	$\begin{gathered} -5 \text { to }+5 \\ -10 \text { to }+10 \end{gathered}$			$\begin{aligned} & \mathbf{v} \\ & \mathbf{v} \end{aligned}$
Unipolar	$\begin{aligned} & 0 \text { to }+10 \\ & 0 \text { to }+20 \end{aligned}$			$\begin{aligned} & \mathrm{V} \\ & \mathrm{v} \end{aligned}$
Input Impedance 10 V Span 20V Span	$\begin{gathered} 5 \mathrm{k} \Omega, \pm 25 \% \\ 10 \mathrm{k} \Omega, \pm 25 \% \end{gathered}$			$\begin{aligned} & \mathbf{\Omega} \\ & \mathbf{\Omega} \end{aligned}$
Power Supplies    Operating Voltage Range +4.5 to +5.5   $V_{\text {LOGIC }}$ +11.4 to +16.5   $V_{\text {CC }}$ -11.4 to -16.5   $V_{\text {EE }}$				$\begin{aligned} & v \\ & v \\ & v \end{aligned}$
Operating Current logic $I_{\text {cc }}+15 \mathrm{~V}$ Supply $\mathrm{I}_{\mathrm{EE}}-15 \mathrm{~V}$ Supply	7 Typ, 15 Max 11 Typ, 15 Max 21 Typ, 28 Max			$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$
$\begin{gathered} \text { Power Dissipation } \\ \pm 15 \mathrm{~V},+15 \mathrm{~V} \\ \pm 12 \mathrm{~V},+5 \mathrm{~V} \end{gathered}$	$\begin{gathered} 515 \text { Typ, } 720 \text { Max } \\ 385 \text { Typ } \\ \hline \end{gathered}$			$\begin{gathered} \mathrm{mW} \\ \mathrm{~mW} \end{gathered}$
Internal Reference Voltage   $T_{\text {MIN }}$ to $T_{\text {MAX }}$   Output current available for external loads (External load should not change during conversion).	$\begin{gathered} +10.00 \pm 0.05 \operatorname{Max} \\ \text { 2.0 Max } \end{gathered}$			Volts mA

Digital Characteristics (Note 1) All Models, Over Full Temperature Range

PARAMETERS	MIN	TYP	MAX
```Logic Inputs (CE, CS, R/C},AO, 12/\overline{8}). (Note 2) Logic "1" Logic "0" Current Capacitance```	$\begin{aligned} & +2.4 \mathrm{~V} \\ & -0.5 \mathrm{~V} \\ & -5 \mu \mathrm{~A} \end{aligned}$	$\begin{gathered} \pm 0.1 \mu \mathrm{~A} \\ 5 \mathrm{pF} \end{gathered}$	$\begin{aligned} & +5.5 \mathrm{~V} \\ & +0.8 \mathrm{~V} \\ & +5 \mu \mathrm{~A} \end{aligned}$
Logic Outputs (DB11-DB0, STS) Logic "0" (I $I_{\text {SINK }}$ - 1.6 mA) Logic "1" (ISOURCE - $500 \mu \mathrm{~A}$) Leakage (High Z State, DB11-DB0 Only) Capacitance	$\begin{gathered} +2.4 \mathrm{~V} \\ -5 \mu \mathrm{~A} \end{gathered}$	$\begin{gathered} \pm 0.1 \mu \mathrm{~A} \\ 5 \mathrm{pF} \end{gathered}$	$\begin{aligned} & +0.4 \mathrm{~V} \\ & +5 \mu \mathrm{~A} \end{aligned}$

NOTES:

1. See "HI-674A Timing Specifications" for a detailed listing of digital timing parameters.
2. Although this guaranteed threshold is higher than standard TTL (+2.0V), bus loading is much less, i.e., typical input current is only 0.25% of a TTL load.

Timing Specifications $+25^{\circ} \mathrm{C}$, Unless Otherwise Specified

SYMBOL	PARAMETER		MIN	TYP	MAX	UNITS
CONVERT MODE						
$t_{\text {dSC }}$	STS Delay from CE		-	-	200	ns
$\mathrm{t}_{\text {HeC }}$	CE Pulse Width		50	-	-	ns
$\mathrm{t}_{\text {ssc }}$	CS to CE Setup		50	-	-	ns
$\mathrm{t}_{\mathrm{HSC}}$	$\overline{\text { CS }}$ Low During CE High		50	-	-	ns
$\mathrm{t}_{\text {SRC }}$	$\mathrm{R} / \overline{\mathrm{C}}$ to CE Setup		50	-	-	ns
$\mathrm{t}_{\text {HRC }}$	$\mathrm{R} / \overline{\mathrm{C}}$ Low During CE High		50	-	-	ns
$\mathrm{t}_{\text {SAC }}$	A_{0} to CE Setup		0	-	-	ns
$\mathrm{t}_{\mathrm{HAC}}$	A_{0} Valid During CE High		50	-	-	ns
t_{C}	Conversion Time	12 Bit Cycle $\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$	9	12	15	$\mu \mathrm{s}$
		8 Bit Cycle $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {Max }}$	6	8	10	$\mu \mathrm{s}$
READ MODE						
$t_{\text {DD }}$	Access Time from CE		-	75	150	ns
$t_{\text {HD }}$	Data Valid After CE Low		25	-	-	ns
$t_{\text {HL }}$	Output Float Delay		-	100	150	ns
$\mathrm{t}_{\text {SSR }}$	$\overline{C S}$ to CE Setup		50	-	-	ns
$t_{\text {SRR }}$	R/ \bar{C} to CE Setup		0	-	-	ns
$t_{\text {SAR }}$	A_{0} to CE Setup		50	-	-	ns
$\mathrm{t}_{\text {HSR }}$	$\overline{\mathrm{CS}}$ Valid After CE Low		0	-	-	ns
$\mathrm{t}_{\text {HRR }}$	R/C/ High After CE Low		0	-	-	ns
$\mathrm{t}_{\text {HAR }}$	Ao Valid After CE Low		50	-	-	ns
$\mathrm{t}_{\text {HS }}$	STS Delay After Data Valid		25	-	850	ns

NOTE:

1. Time is measured from 50% level of digital transitions. Tested with a 50 pF and $3 \mathrm{k} \Omega$ load.

Definitions of Specifications

Linearity Error

Linearity error refers to the deviation of each individual code from a line drawn from "zero" through "full scale". The point used as "zero" occurs $1 / 2$ LSB (1.22 mV for 10 V span) before the first code transition (all zeros to only the LSB "on"). "Full scale" is defined as a level $1 \frac{1}{2}$ LSB beyond the last code transition (to all ones). The deviation of a code from the true straight line is measured from the middle of each particular code.

The HI-674AK, AL, AT, and AU grades are guaranteed for maximum nonlinearity of $\pm \frac{1}{2}$ LSB. For these grades, this means that an analog value which falls exactly in the center of a given code width will result in the correct digital output code. Values nearer the upper or lower transition of the code width may produce the next upper or lower digital output code. The HI-674AJ and AS grades are guaranteed to ± 1 LSB max error. For these grades, an analog value which falls within a given code width will result in either the correct code for that region or either adjacent one.

Note that the linearity error is not user-adjustable.

Differential Linearity Error (No Missing Codes)

A specification which guarantees no missing codes requires that every code combination appear in a monotonic increasing
sequence as the analog input level is increased. Thus every code must have a finite width. For the HI-674AK, AL, AT, and AU grades, which guarantee no missing codes to 12-bit resolution, all 4096 codes must be present over the entire operating temperature ranges. The HI-674AJ and AS grades guarantee no missing codes to 11-bit resolution over temperature; this means that all code combinations of the upper 11 bits must be present; in practice very few of the 12 -bit codes are missing.

Unipolar Offset

The first transition should occur at a level $1 / 2$ LSB above analog common. Unipolar offset is defined as the deviation of the actual transition from that point. This offset can be adjusted as discussed on the following pages. The unipolar offset temperature coefficient specifies the maximum change of the transition point over temperature, with or without external adjustment.

Bipolar Offset

Similarly, in the bipolar mode, the major carry transition (0111 11111111 to 100000000000) should occur for an analog value $1 / 2$ LSB below analog common. The bipolar offset error and temperature coefficient specify the initial deviation and maximum change in the error over temperature.

Full Scale Calibration Error

The last transition (from 111111111110 to 11111111 1111) should occur for an analog value $1 / \frac{2}{2}$ LSB below the nominal full scale (9.9963 V for 10.000 V full scale). The full scale calibration error is the deviation of the actual level at the last transition from the ideal level. This error, which is typically 0.05 to 0.1% of full scale, can be trimmed out as shown in Figures 1 and 2. The full scale calibration error over temperature is given with and without the initial error trimmed out. The temperature coefficients for each grade indicate the maximum change in the full scale gain from the initial value using the internal 10 V reference.

*When driving the 20V (pin 14) input, minimize capacitance on pin 13.
FIGURE 1. UNIPOLAR CONNECTIONS

Temperature Coefficients

The temperature coefficients for full-scale calibration, unipolar offset, and bipolar offset specify the maximum change from the initial $\left(+25^{\circ} \mathrm{C}\right)$ value to the value at $\mathrm{T}_{\text {MIN }}$ or $\mathrm{T}_{\text {MAX }}$.

Power Supply Rejection

The standard specifications for the HI-674A assume use of +5.00 and ± 15.00 or ± 12.00 volt supplies. The only effect of power supply error on the performance of the device will be a small change in the full scale calibration. This will result in a linear change in all lower order codes. The specifications show the maximum change in calibration from the initial value with the supplies at the various limits.

Code Width

A fundamental quantity for AD converter specifications is the code width. This is defined as the range of analog input values for which a given digital output code will occur. The nominal value of a code width is equivalent to 1 least significant bit (LSB) of the full scale range or 2.44 mV out of 10 V for a 12 -bit ADC.

*When driving the 20V (pin 14) input, minimize capacitance on pin 13.
FIGURE 2. BIPOLAR CONNECTIONS

Quantization Uncertainty

Analog-to-digital converters exhibit an inherent quantization uncertainty of $\pm 1 / 2$ LSB. This uncertainty is a fundamental characteristic of the quantization process and cannot be reduced for a converter of given resolution.

Left-justified Data

The data format used in the HI-674A is left-justified. This means that the data represents the analog input as a fraction of full-scale, ranging from 0 to $\frac{4095}{4096}$. This implies a binary point to the left of the MSB.

Applying the HI-674A

For each application of this converter, the ground connections, power supply bypassing, analog signal source, digital timing and signal routing on the circuit board must be optimized to assure maximum performance. These areas are reviewed in the following sections, along with basic operating modes and calibration requirements.

PHYSICAL MOUNTING AND LAYOUT CONSIDERATIONS

Layout

Unwanted, parasitic circuit components, (L, R, and C) can make 12 bit accuracy impossible, even with a perfect AD converter. The best policy is to eliminate or minimize these parasitics through proper circuit layout, rather than try to quantify their effects.
The recommended construction is a double-sided printed circuit board with a ground plane on the component side. Other techniques, such as wire-wrapping or point-to-point wiring on vectorboard, will have an unpredictable effect on accuracy.

In general, sensitive analog signals should be routed between ground traces and kept well away from digital lines. If analog and digital lines must cross, they should do so at right angles.

Power Supplies

Supply voltages to the $\mathrm{HI}-674 \mathrm{~A}(+15 \mathrm{~V},-15 \mathrm{~V}$ and +5 V) must be "quiet" and well regulated. Voltage spikes on these lines can affect the converter's accuracy, causing several LSB's to flicker when a constant input is applied. Digital noise and spikes from a switching power supply are especially troublesome. If switching supplies must be used, outputs should be carefully filtered to assure "quiet" DC voltage at the converter terminals.

Further, a bypass capacitor pair on each supply voltage terminal is necessary to counter the effect of variations in supply current. Connect one pair from pin 1 to 15 (VLOGIC supply), one from pin 11 to 9 (V_{CC} to Analog Common) and one from pin 11 to 9 (V_{EE} to Analog Common). For each capacitor pair, a $10 \mu \mathrm{~F}$ tantalum type in parallel with a $0.1 \mu \mathrm{~F}$ ceramic type is recommended.

Ground Connections

The typical $\mathrm{HI}-674 \mathrm{~A}$ ground currents are 6 mADC into pin 9 (Analog Common) and 3mADC out of pin 15 (Digital Common). These pins should be tied together at the package to guarantee specified performance for the converter. In addition, a wide PC trace should run directly from pin 9 to (usually) 15 V common, and from pin 15 to (usually) the +5 V Logic Common. If the converter is located some distance from the system's "single point" ground, make only these connections to pins 9 and 15: Tie them together at the package, and back to the system ground with a single path. This path should have low resistance since it will carry about 3 mA of DC current. (Code dependent currents flow in the V_{CC}, V_{EE} and $\mathrm{V}_{\text {LOGIC }}$ terminals, but not through the HI-674A's Analog Common or Digital Common).

ANALOG SIGNAL SOURCE

The device chosen to drive the HI-674A analog input will see a nominal load of $5 \mathrm{~K} \Omega$ (10 V range) or $10 \mathrm{k} \Omega$ (20 V range). However, the other end of these input resistors may change $\pm 400 \mathrm{mV}$ with each bit decision, creating abrupt changes in current at the analog input. Thus, the signal source must maintain its output voltage while fumishing these step changes in load current, which occur at 950ns intervals. This requires low output impedance and fast settling by the signal source.

The output impedance of an op amp, for example, has an open loop value which, in a closed loop, is divided by the loop gain available at a frequency of interest. The amplifier should have acceptable loop gain at 1 MHz for use with the HI-674A. To check whether the output properties of a signal source are suitable, monitor the 674A's input (pin 13 or 14) with an oscilloscope while a conversion is in progress. Each of the twelve disturbances should subside in one half microsecond or less. (The comparator decision is made about 850ns after each code change from the SAR).

If the application calls for a Sample/Hold to precede the converter, it should be noted that not all Sample/Holds are com-
patible with the HI-674A in the manner described above. These will require an additional wideband buffer amplifier to lower their output impedance. A simpler solution is to use the Harris HA-5320 Sample/Hold, which was designed for use with the HI-674A.

RANGE CONNECTIONS AND CALIBRATION PROCEDURES

The HI-674A is a "complete" AD converter, meaning it is fully operational with addition of the power supply voltages, a Start Convert signal, and a few external components as shown in Figures 1 and 2 . Nothing more is required for most applications.
Whether controlled by a processor or operating in the standalone mode, the HI-674A offers four standard input ranges: 0 V to $+10 \mathrm{~V}, 0 \mathrm{~V}$ to $+20 \mathrm{~V}, \pm 5 \mathrm{~V}$ and $\pm 10 \mathrm{~V}$. The maximum errors for gain and offset are listed under Specifications. If required, however, these errors may be adjusted to zero as explained below. Power supply and ground connections have been discussed in an earlier section.

Unipolar Connections and Calibration

Refer to Figure 1. The resistors shown* are for calibration of offset and gain. If this is not required, replace R2 with a 50Ω, 1% metal film resistor and remove the network on pin 12. Connect pin 12 to pin 9. Then, connect the analog signal to pin 13 for the 0 V to 10 V range, or to pin 14 for the 0 V to 20 V range. Inputs to +20 V (5 V over the power supply) are no problem - the converter operates normally.

Calibration consists of adjusting the converter's most negative output to its ideal value (offset adjustment), then, adjusting the most positive output to its ideal value (gain adjustment). To understand the procedure, note that in principle, one is setting the output with respect to the midpoint of an increment of analog input, as denoted by two adjacent code changes. Nominal value of an increment is one LSB. However, this approach is impractical because nothing "happens" at a midpoint to indicate that an adjustment is complete. Therefore, calibration is performed in terms of the observable code changes instead of the midpoint between code changes.

For example, midpoint of the first LSB increment should be positioned at the origin, with an output code of all O's. To do this, apply an input of $+1 / 2 \mathrm{LSB}(+1.22 \mathrm{mV}$ for the 10 V range; +2.44 mV for the 20 V range). Adjust the Offset potentiometer RI until the first code transition flickers between 00000000 0000 and 000000000001.

Next, perform a Gain Adjust at positive full scale. Again, the ideal input corresponding to the last code change is applied. This is $1 \frac{1}{2}$ LSB's below the nominal full scale $(+9.9963 \mathrm{~V}$ for 10V range; +19.9927 V for 20V range). Adjust the Gain potentiometer R2 for flicker between codes 111111111110 and 111111111111.

Bipolar Connections and Calibration

Refer to Figure 2. The gain and offset errors listed under Specifications may be adjusted to zero using potentiometers R1 and R2*. If this isn't required, either or both pots may be replaced by a $50 \Omega, 1 \%$ metal film resistor.

Connect the Analog signal to pin 13 for a $\pm 5 \mathrm{~V}$ range, or to pin 14 for a $\pm 10 \mathrm{~V}$ range. Calibration of offset and gain is similar to that for the unipolar ranges as discussed above. First apply a DC input voltage $1 / 2$ LSB above negative full scale (i.e., -4.9988 V for the $\pm 5 \mathrm{~V}$ range, or -9.9976 V for the +10 V range). Adjust the offiset potentiometer R1 for flicker between output codes 000000000000 and 00000000 0001. Next, apply a DC input voltage $1 \frac{1}{2}$ LSB's below positive full scale (+4.9963 V for $\pm 5 \mathrm{~V}$ range; +9.9927 V for $\pm 10 \mathrm{~V}$ range). Adjust the Gain potentiometer R2 for flicker between codes 1111 11111110 and 111111111111.
*The 100Ω potentiometer R2 provides Gain Adjust for the 10V and 20 V ranges. In some applications, a full scale of 10.24 V (LSB equals 2.5 mV) or 20.48 V (LSB equals 5.0 mV) is more convenient. For these, replace R2 by a $50 \Omega, 1 \%$ metal film resistor. Then, to provide Gain Adjust for the 10.24 V range, add a 200Ω potentiometer in series with pin 13. For the 20.48 V range, add a 500Ω potentiometer in series with pin 14.

CONTROLLING THE HI-574A

The $\mathrm{HI}-674 \mathrm{~A}$ includes logic for direct interface to most microprocessor systems. The processor may take full control of each conversion, or the converter may operate in the "standalone" mode, controlled only by the R/C input. Full control consists of selecting an 8 or 12 bit conversion cycle, initiating the conversion, and reading the output data when readychoosing either 12 bits at once or 8 followed by 4, in a leftjustified format. The five control inputs are all TTLCMOScompatible: ($12 / \overline{8}, \overline{\mathrm{CS}}, \mathrm{A}_{0}, \mathrm{R} / \overline{\mathrm{C}}$ and CE). Table 1 illustrates the use of these inputs in controlling the converter's operations. Also, a simplified schematic of the internal control logic is shown in Figure 3.

"Stand-Alone Operation"

The simplest control interface calls for a singe control line connected to R / \bar{C}. Also, CE and $12 / \overline{8}$ are wired high, $\overline{C S}$ and A_{0} are wired low, and the output data appears in words of 12 bits each.
The R / \bar{C} signal may have any duty cycle within (and including) the extremes shown in Figures 4 and 5. In general, data may be read when $\mathrm{R} / \overline{\mathrm{C}}$ is high unless STS is also high, indicating a conversion is in progress. Timing parameters particular to this mode of operation are listed below under "StandAlone Mode Timing".

STAND-ALONE MODE TIMING

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS
thRL	Low R/C Pulse Width	50	-	-	ns
tos	STS Delay from R/C	-	-	200	ns
HIDR	Data Valid after RIVC Low	25	-	-	ns
$\mathrm{ths}^{\text {S }}$	STS Delay after Data Valid	25	-	850	ns
thri	High R/IC Pulse Width	150	-	-	ns
$\mathrm{t}_{\text {DDR }}$	Data Access Time	-	-	150	ns

Time is measured from 50% level of digital transitions. Tested with a 50 pF and $3 \mathrm{k} \Omega$ load.

Conversion Length

A Convert Start transition (see Table 1) latches the state of A_{0}, which determines whether the conversion continues for 12 bits (A_{0} low) or stops with 8 bits (A_{0} high). If all 12 bits are read following an 8 bit conversion, the three LSB's will read zero and DB3 will read ONE. A_{0} is latched because it is

FIGURE 3. HL-674A CONTROL LOGIC

FIGURE 4. LOW PULSE FOR R/C - OUTPUTS ENABLED AFTER CONVERSION

FIGURE 5. HIGH PULSE FOR R/C̄ - OUTPUTS ENABLED WHILE R/ $\overline{\mathbf{C}}$ HIGH, OTHERWISE HIGH-Z
also involved in enabling the output buffers (see "Reading the Output Data"). No other control inputs are latched.

TABLE 1. TRUTH TABLE FOR HH-574A CONTROL INPUTS

$\mathbf{C E}$	$\overline{\mathbf{C S}}$	$\mathbf{R / \overline { C }}$	$\mathbf{1 2 \sqrt { 8 }}$	$\mathbf{A}_{\mathbf{O}}$	OPERATION
O	X	X	X	X	None
X	1	X	X	X	None
\uparrow	0	0	X	0	Initiate 12 bit conversion
\uparrow	0	0	X	1	Initiate 8 bit conversion
1	\downarrow	0	X	0	Initiate 12 bit conversion
1	\downarrow	0	X	1	Initiate 8 bit conversion
1	0	\downarrow	X	0	Initiate 12 bit conversion
1	0	\downarrow	X	1	Initiate 8 bit conversion
1	0	1	1	X	Enable 12 bit Output
1	0	1	0	0	Enable 8 MSB's Only
1	0	1	0	1	Enable 4 LSB's Plus 4 Trailing Zeroes

Conversion Start

A conversion may be initiated as shown in Table 1 by a logic transition on any of three inputs: CE, $\overline{\mathrm{CS}}$ or R/高. The last of the three to reach the correct state starts the conversion, so
one, two or all three may be dynamically controlled. The nominal delay from each is the same, and if necessary, all three may change state simultaneously. To assure that a particular input controls the start of conversion, the other two should be set up at least 50ns earlier, however. See the HI-674A Timing Specifications, Convert mode.

This variety of HI-674A control modes allows a simple interface in most system applications. The Convert Start timing relationships are illustrated in Figure 6.

The output signal STS indicates status of the converter by going high only while a conversion is in progress. While STS is high, the output buffers remain in a high impedance state and data cannot be read. Also, an additional Start Convert will not reset the converter or reinitiate a conversion while STS is high. (However, if A_{0} changes state after a conversion begins, an additional Start Convert signal will latch the new state of A_{0}, possibly causing a wrong cycle length (8 vs. 12 bits) for that conversion).

Reading the Output Data

The output data buffers remain in a high impedance state until four conditions are met: R/ $\overline{\mathrm{C}}$ high, STS low, CE high and $\overline{\mathrm{CS}}$ low. At that time, data lines become active according to the state of inputs $12 / \overline{8}$ and A_{0}. Timing constraints are illustrated in Figure 7.

The $12 / \overline{8}$ input will be tied high or low in most applications, though it is fully TTLCMOS-compatible. With $12 / 8$ high, all 12 output lines become active simultaneously, for interface to a 12 or 16 bit data bus. The A_{0} input is ignored.
With $12 / \overline{8}$ low, the output is organized in two 8 bit bytes, selected one at a time by A_{0}. This allows an 8 bit data bus to be connected as shown in Figure 8. A_{0} is usually tied to the least significant bit of the address bus, for storing the HI-674A output in two consecutive memory locations. (With A_{0} low, the 8 MSB's only are enabled. With A_{0} high, 4MSB's are disabled, bits 4 through 7 are forced to zero, and the 4 LSB's are enabled). This two byte format is considered "left justified data", for which a decimal (or binary!) point is assumed to the left of byte 1:

Further, A_{0} may be toggled at any time without damage to the converter. Break-before-make action is guaranteed between the two data bytes, which assures that the outputs strapped together in Figure 8 will never be enabled at the same time.
A read operation usually begins after the conversion is complete and STS is low. For earliest access to the data however, the read should begin no later than ($t_{D D}+t_{H S}$) before STS goes low. See Figure 7.

FIGURE 6. CONVERT START TIMING

FIGURE 7. READ CYCLE TIMING

FIGURE 8. INTERFACE TO AN 8 BIT DATA BUS

$8 \mu \mathrm{~s}$, Complete 12-Bit A/D Converter with Microprocessor Interface

Features

- Complete 12-Bit A/D Converter with Reference and Clock
- Digital Error Correction
- Full 8-, 12- or 16-Bit Microprocessor Bus Interface
- 150ns Bus Access Time
- No Missing Codes Over Temperature
- Minimal Setup Time for Control Signals
- $9 \mu \mathrm{~s}$ Maximum Conversion Time Over Temperature
- Low Noise, via Current-Mode Signal Transmission Between Chips
- Byte Enable/Short Cycle (AO Input)
- Guaranteed Break-Before-Make Action, Eliminating Bus Contention During Read Operation. Latched by the Start Convert Input (To Set the Conversion Length)
- Faster Version of the HI-574A and HI-674A
- Same Pinout as the HI-574A and HI-674A
- $\pm 12 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$ Operation

Applications

- Industrial Data Acquisition Systems
- Electronic Test and Scientific Instrumentation
- Process Control Systems

Pinout

PLASTIC AND SIDEBRAZE DIP TOP VIEW

+5V SUPPLY, V $\mathrm{V}_{\text {LOGK }} 1$		status, sts	
DATA MODE SEL, 12/8 2		DB11, MSB	
CHIP SEL, CS 3		DB10	
BYTE ADDPRSHORT CYCLE, A_{0}			
READ/CONVERT, RIC 5	24	DB8	
CHIP ENABLE, CE 6		DB7	digital
+12V/+15V SUPPLY, ${ }^{\text {cc }} 7$	22	DB6	DATA
+10V REF, REF OUT 8		D85	OUTPUTS
ANALOG COMMON, AC \qquad		DB4	
REFERENCE INPUT 10		D83	
-12V/-15V SUPPLY, $\mathrm{V}_{\text {EE }} 11$		DB2	
BIPOLAR OFFSET 12			
10 V INPUT 13		DBo, LSB	
20 V INPUT 14	15	dig commo	N, DC

Ordering Information

PART NUMBER	INL	TEMP. RANGE	PACKAGE
HI3-774JN-5	$\pm 1.0 \mathrm{LSB}$	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	28 Pin Plastic DIP
HI3-774KN-5	$\pm 0.5 \mathrm{LSB}$	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	28 Pin Plastic DIP
HI1-774JD-5	$\pm 1.0 \mathrm{LSB}$	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	28 Pin Ceramic DIP
HI1-774KD-5	$\pm 0.5 \mathrm{LSB}$	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	28 Pin Ceramic DIP
HI1-774LD-5	$\pm 0.5 \mathrm{LSB}$	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	28 Pin Ceramic DIP
HI1-774SD-2	$\pm 1.0 \mathrm{LSB}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	28 Pin Ceramic DIP
HI1-774TD-2	$\pm 0.5 \mathrm{LSB}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	28 Pin Ceramic DIP
HI1-774UD-2	$\pm 0.5 \mathrm{LSB}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	28 Pin Ceramic DIP
HI1-774S/883	$\pm 1.0 \mathrm{LSB}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	28 Pin Ceramic DIP
HI1-774T/883	$\pm 0.5 \mathrm{LSB}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	28 Pin Ceramic DIP
HI1-774U/883	$\pm 0.5 \mathrm{LSB}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	28 Pin Ceramic DIP
HI4-774S/883	$\pm 1.0 \mathrm{LSB}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	44 Pin Ceramic LCC
HI4-774T/883	$\pm 0.5 \mathrm{LSB}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	44 Pin Ceramic LCC
HI4-774U/883	$\pm 0.5 \mathrm{LSB}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	44 Pin Ceramic LCC

Functional Block Diagram

* "Nibble" is a 4 bit digital word

Absolute Maximum Ratings

Supply Voltage
V_{CC} to Digital Common. OV to +16.5 V
$V_{E E}$ to Digital Common OV to -16.5V
$V_{\text {LoGic }}$ to Digital Common. . . OV to +7 V
Analog Common to Digital Common $\pm 1 \mathrm{~V}$

Control Inputs

(CE, $\overline{\mathrm{CS}}, \mathrm{A}_{\mathrm{O}}, 12 \overline{8}, \mathrm{~A} / \overline{\mathrm{C}}$) to Digital Common $\ldots . .-0.5 \mathrm{~V}$ to $\mathrm{V}_{\text {LOGIC }}+0.5 \mathrm{~V}$
Analog Inputs
(REFIN, BIPOFF, $10 \mathrm{~V}_{\text {IN }}$) to Analog Common $\pm 16.5 \mathrm{~V}$
$20 \mathrm{~V}_{\text {IN }}$ to Analog Common. $\pm 24 \mathrm{~V}$
REFOUT Indefinite short to Common, momentary short to V_{CC} Operating Temperature Range

HI3-774xN-5, H11-774xD-5 . $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
H11-774xD-2 . $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Junction Temperature
HI3-774xN-5 . $+150^{\circ} \mathrm{C}$
HI1-774xD-2, HI1-774xD-5 . $+175^{\circ} \mathrm{C}$
Storage Temperature Range

```
HI3-774xN-5
``` \(\qquad\)
``` \(-40^{\circ} \mathrm{C}<T_{A}\)
\(<+85^{\circ} \mathrm{C}\)
HI1-774xD-2, H11-774xD-5 . . . . . . . . . . . . . . \(65^{\circ} \mathrm{C}<\mathrm{T}_{A}<+150^{\circ} \mathrm{C}\)
Lead Temperature (Soldering, 10s) . . . . . . . . . . . . . . . . . . . . \(300^{\circ} \mathrm{C}\)
```


Thermal Information

Thermal Resistance	$\theta_{\text {ja }}$	$\theta_{\text {jc }}$
Hi3-774xN-5	$75^{\circ} \mathrm{C} / \mathrm{W}$	-
HI1-774xD-2, H11-774xD-5	$48^{\circ} \mathrm{C} / \mathrm{N}$	$15^{\circ} \mathrm{CM}$
Power Dissipation at $75^{\circ} \mathrm{C}$ (Note 1)		
Hi3-774xN-5		1000 mW
HI1-774xD-2, HI1-774xD-5		2083mW
Power Dissipation Derating Factor Above $+75^{\circ} \mathrm{C}$		
HI3-774xN-5		$3.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
HI1-774xD-2, HI1-774xD-5		.8mW/ ${ }^{\circ} \mathrm{C}$
Transistor Count		21

NOTE:

1. Dissipation rating assumes device is mounted with all leads soldered to printed circuit board.

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

DC and Transfer Accuracy Specifications Typical at $+25^{\circ} \mathrm{C}$ with $\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}$ or +12 V , $\mathrm{V}_{\text {LOGIC }}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}$ or -12 V , Unless Otherwise Specified

PARAMETERS	TEMPERATURE RANGE $-5\left(0^{\circ} \mathrm{C}\right.$ to $\left.+75^{\circ} \mathrm{C}\right)$			UNITS
	HI-774J	H1-774K	H1-774L	
Resolution (max)	12	12	12	Bits
$\begin{aligned} & \text { Linearity Error } \\ & +25^{\circ} \mathrm{C} \text { (Max) } \\ & 0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \text { (Max) } \end{aligned}$	$\begin{aligned} & \pm 1 \\ & \pm 1 \end{aligned}$	$\begin{aligned} & \pm 1 / 2 \\ & \pm 1 / 2 \end{aligned}$	$\begin{aligned} & \pm 1 / 2 \\ & \pm 1 / 2 \end{aligned}$	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \end{aligned}$
Max resolution for which no missing codes is guaranteed $\begin{aligned} & +25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\text {MIN }} \text { to } \mathrm{T}_{\text {MAX }} \end{aligned}$	$\begin{aligned} & 12 \\ & 11 \end{aligned}$	$\begin{aligned} & 12 \\ & 12 \end{aligned}$	$\begin{aligned} & 12 \\ & 12 \end{aligned}$	Bits Bits
Unipolar Offset (max) Adjustable to Zero	± 2	± 1.5	± 1	LSB
$\begin{aligned} & \text { Bipolar Offset (max) } \\ & V_{\text {IN }}=0 \mathrm{~V} \text { (Adjustable to Zero) } \\ & V_{\text {IN }}=-10 \mathrm{~V} \end{aligned}$	$\begin{gathered} \pm 4 \\ \pm 0.15 \end{gathered}$	$\begin{gathered} \pm 4 \\ \pm 0.1 \end{gathered}$	$\begin{gathered} \pm 3 \\ \pm 0.1 \end{gathered}$	$\begin{aligned} & \text { LSB } \\ & \% \text { of F.S. } \end{aligned}$
Full Scale Calibration Error $+25^{\circ} \mathrm{C}$ (Max), with fixed 50Ω resistor from REF OUT to REF IN (Adjustable to Zero) $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ (No adjustment at $+25^{\circ} \mathrm{C}$) $T_{\text {MIN }}$ to $T_{\text {MAX }}$ (With adjustment to zero $+25^{\circ} \mathrm{C}$)	$\begin{gathered} \pm 0.25 \\ \pm 0.475 \\ \pm 0.22 \end{gathered}$	$\begin{gathered} \pm 0.25 \\ \pm 0.375 \\ 0.12 \end{gathered}$	$\begin{gathered} \pm 0.15 \\ \\ \pm 0.20 \\ 0.05 \end{gathered}$	\% of F.S. $\%$ of F.S. \% of F.S.
Temperature Coefficients Guaranteed max change, $T_{\text {MIN }}$ to $T_{\text {MAX }}$ (Using internal reference) Unipolar Offset Bipolar Offset Full Scale Calibration	$\begin{aligned} & \pm 2 \\ & \pm 2 \\ & \pm 9 \end{aligned}$	$\begin{aligned} & \pm 1 \\ & \pm 2 \\ & \pm 5 \end{aligned}$	$\begin{aligned} & \pm 1 \\ & \pm 1 \\ & \pm 2 \end{aligned}$	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \\ & \text { LSB } \end{aligned}$
Power Supply Rejection Max change in Full Scale Calibration $\begin{aligned} & +13.5 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}<+16.5 \mathrm{~V} \text { or }+11.4 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}<+12.6 \mathrm{~V} \\ & +4.5 \mathrm{~V}<\mathrm{V}_{\mathrm{LOGIC}}<+5.5 \mathrm{~V} \\ & -16.5 \mathrm{~V}<\mathrm{V}_{\mathrm{EE}}<-13.5 \mathrm{~V} \text { or }-12.6 \mathrm{~V}<\mathrm{V}_{\mathrm{EE}}<-11.4 \mathrm{~V} \end{aligned}$	$\begin{gathered} \pm 2 \\ \pm 1 / 2 \\ \pm 2 \end{gathered}$	$\begin{gathered} \pm 1 \\ \pm 1 / 2 \\ \pm 1 \end{gathered}$	$\begin{gathered} \pm 1 \\ \pm 1 / 2 \\ \pm 1 \end{gathered}$	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \\ & \text { LSB } \end{aligned}$
Analog inputs Input Ranges Bipolar	$\begin{gathered} -5 \text { to }+5 \\ -10 \text { to }+10 \end{gathered}$			$\begin{aligned} & \mathbf{v} \\ & \mathbf{v} \end{aligned}$

$D C$ and Transfer Accuracy Specifications Typical at $+25^{\circ} \mathrm{C}$ with $\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}$ or $+12 \mathrm{~V}, \mathrm{~V}_{\mathrm{LOGIC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}$ or -12 V , Unless Otherwise Specified (Continued)

PARAMETERS	TEMPERATURE RANGE $-5\left(0^{\circ} \mathrm{C}\right.$ to $\left.+75^{\circ} \mathrm{C}\right)$			UNITS
	H1-774J	H1-774K	H1-774L	
Input Ranges (Continued) Unipolar	$\begin{aligned} & 0 \text { to }+10 \\ & 0 \text { to }+20 \end{aligned}$			$\begin{aligned} & \text { v } \\ & \mathbf{v} \end{aligned}$
Input Impedance 10V Span 20V Span	$\begin{aligned} & 5 K, \pm 25 \% \\ & 10 K, \pm 25 \% \end{aligned}$			$\begin{aligned} & \mathbf{\Omega} \\ & \mathbf{\Omega} \end{aligned}$
Power Supplies Operating Voltage Range $V_{\text {LOGIC }}$ $V_{c c}$ $V_{E E}$	$\begin{gathered} +4.5 \text { to }+5.5 \\ +11.4 \text { to }+16.5 \\ -11.4 \text { to }-16.5 \end{gathered}$			$\begin{aligned} & v \\ & v \\ & v \end{aligned}$
Operating Current logic $I_{\text {CC }}+15 \mathrm{~V}$ Supply $\mathrm{I}_{\mathrm{EE}}-15 \mathrm{~V}$ Supply	7 Typ, 15 Max 11 Typ, 15 Max 21 Typ, 28 Max			$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$
$\begin{gathered} \text { Power Dissipation } \\ \pm 15 \mathrm{~V},+15 \mathrm{~V} \\ \pm 12 \mathrm{~V},+5 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 515 \text { Typ, } 720 \text { Max } \\ & 385 \text { Typ } \end{aligned}$			$\begin{aligned} & \mathrm{mW} \\ & \mathrm{~mW} \end{aligned}$
Internal Reference Voltage $T_{\text {MIN }}$ to $T_{\text {MAX }}$ Output current, available for external loads (External load should not change during conversion).	$\begin{gathered} +10.00 \pm 0.05 \text { Max } \\ \text { 2.0 Max } \end{gathered}$			Volts mA

$D C$ and Transfer Accuracy Specifications Typical at $+25^{\circ} \mathrm{C}$ with $\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}$ or $+12 \mathrm{~V}, \mathrm{~V}_{\mathrm{LOGIC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}$ or -12 V , Unless Otherwise Specified

PARAMETERS	TEMPERATURE RANGE$-2\left(+55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}\right)$			UNITS
	H1-774S	H1-774T	H1-774U	
Resolution (max)	12	12	12	Bits
Linearity Error $+25^{\circ} \mathrm{C}$ (Max) $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ (Max)	$\begin{aligned} & \pm 1 \\ & \pm 1 \end{aligned}$	$\begin{gathered} \pm 1 / 2 \\ \pm 1 \end{gathered}$	$\begin{gathered} \pm 1 / 2 \\ \pm 1 \end{gathered}$	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \end{aligned}$
Max resolution for which no missing codes is guaranteed $+25^{\circ} \mathrm{C}$ $T_{\text {MIN }}$ to $T_{\text {MAX }}$	$\begin{aligned} & 11 \\ & 11 \end{aligned}$	$\begin{aligned} & 12 \\ & 12 \\ & \hline \end{aligned}$	$\begin{aligned} & 12 \\ & 12 \end{aligned}$	Bits Bits
Unipolar Offset (max) Adjustable to Zero	± 2	± 2	± 1	LSB
$\begin{array}{\|l} \hline \text { Bipolar Offset (max) } \\ V_{\text {IN }}=0 \mathrm{~V} \text { (Adjustable to Zero) } \\ V_{\text {IN }}=-10 \mathrm{~V} \\ \hline \end{array}$	$\begin{gathered} \pm 4 \\ \pm 0.15 \end{gathered}$	$\begin{gathered} \pm 4 \\ \pm 0.1 \end{gathered}$	$\begin{gathered} \pm 3 \\ \pm 0.1 \end{gathered}$	LSB $\%$ of F.S.
Full Scale Calibration Error $+25^{\circ} \mathrm{C}$ (Max), with fixed 50Ω resistor from REF OUT to REF IN (Adjustable to Zero) $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ (No adjustment at $+25^{\circ} \mathrm{C}$) $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ (With adjustment to zero $+25^{\circ} \mathrm{C}$)	$\begin{aligned} & \pm 0.25 \\ & \\ & \pm 0.75 \\ & \pm 0.50 \end{aligned}$	$\begin{gathered} \pm 0.25 \\ \pm 0.50 \\ 0.25 \end{gathered}$	$\begin{array}{r} \pm 0.15 \\ \pm 0.275 \\ \pm 0.125 \end{array}$	\% of F.S. $\%$ of F.S. $\%$ of F.S.
```Temperature Coefficients Guaranteed max change, TMIN to TMAX (Using internal reference) Unipolar Offset Bipolar Offset Full Scale Calibration```	$\begin{gathered} \pm 2 \\ \pm 2 \\ \pm 20 \end{gathered}$	$\begin{gathered} \pm 1 \\ \pm 2 \\ \pm 10 \end{gathered}$	$\begin{aligned} & \pm 1 \\ & \pm 1 \\ & \pm 5 \end{aligned}$	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \\ & \text { LSB } \end{aligned}$
$\begin{aligned} & \text { Power Supply Rejection } \\ & \text { Max change in Full Scale Calibration } \\ & +13.5 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}<+16.5 \mathrm{~V} \text { or }+11.4 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}<+12.6 \mathrm{~V} \\ & +4.5 \mathrm{~V}<\mathrm{V}_{\mathrm{LOGIC}}<+5.5 \mathrm{~V} \\ & -16.5 \mathrm{~V}<\mathrm{V}_{\mathrm{EE}}<-13.5 \mathrm{~V} \text { or }-12.6 \mathrm{~V}<\mathrm{V}_{\mathrm{EE}}<-11.4 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{gathered} \pm 2 \\ \pm 1 / 2 \\ \pm 2 \end{gathered}$	$\begin{gathered} \pm 1 \\ \pm 1 / 2 \\ \pm 1 \end{gathered}$	$\begin{gathered} \pm 1 \\ \pm 1 / 2 \\ \pm 1 \end{gathered}$	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \\ & \text { LSB } \end{aligned}$

$D C$ and Transfer Accuracy Specifications Typical at $+25^{\circ} \mathrm{C}$ with $\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}$ or $+12 \mathrm{~V}, \mathrm{~V}_{\mathrm{LOGIC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}$ or -12 V , Unless Otherwise Specified (Continued)

PARAMETERS	TEMPERATURE RANGE$-2\left(+55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}\right)$			UNITS
	H1-774S	HI-774T	HI-774U	
Analog Inputs Input Ranges Bipolar	$\begin{gathered} -5 \text { to }+5 \\ -10 \text { to }+10 \end{gathered}$			$\begin{aligned} & v \\ & v \end{aligned}$
Unipolar   Input Impedance   10V Span   20V Span	$\begin{aligned} & 0 \text { to }+10 \\ & 0 \text { to }+20 \end{aligned}$			$\begin{aligned} & \hline v \\ & v \end{aligned}$
	$\begin{gathered} 5 \mathrm{k} \Omega, \pm 25 \% \\ 10 \mathrm{k} \Omega, \pm 25 \% \end{gathered}$			$\begin{aligned} & \Omega \\ & \Omega \end{aligned}$
Power Supplies   Operating Voltage Range $V_{\text {LOGIC }}$ $V_{C C}$ $V_{E E}$		$\begin{gathered} +4.5 \text { to }+5.5 \\ +11.4 \text { to }+16.5 \\ -11.4 \text { to }-16.5 \end{gathered}$		$\begin{aligned} & v \\ & v \\ & v \end{aligned}$
Operating Current logic $I_{\text {cc }}+15 \mathrm{~V}$ Supply $I_{\text {EE }}-15 \mathrm{~V}$ Supply		7 Typ, 15 Max   1 Typ, 15 Max   1 Typ, 28 Max		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$
$\begin{gathered} \text { Power Dissipation } \\ \pm 15 \mathrm{~V},+15 \mathrm{~V} \\ \pm 12 \mathrm{~V},+5 \mathrm{~V} \end{gathered}$		$\begin{gathered} 5 \text { Typ, } 720 \mathrm{Mz} \\ 385 \text { Typ } \end{gathered}$		$\begin{aligned} & \mathrm{mW} \\ & \mathrm{~mW} \end{aligned}$
Internal Reference Voltage   $T_{\text {MIN }}$ to $T_{\text {MAX }}$   Output current available for external loads (External load should not change during conversion).		$\begin{aligned} & 10.00 \pm 0.05 \mathrm{Mc} \\ & 2.0 \mathrm{Max} \end{aligned}$		Volts mA

Digital Specifications All Models, Over Full Temperature Range

PARAMETERS	MIN	TYP	MAX
```Logic Inputs (CE, \overline{CS}, R/\overline{C}, AO, 412/\overline{8}) Logic "1" Logic "0" Current Capacitance```	$\begin{aligned} & +2.4 \mathrm{~V} \\ & -0.5 \mathrm{~V} \end{aligned}$	$\begin{gathered} \pm 0.1 \mu \mathrm{~A} \\ 5 \mathrm{pF} \end{gathered}$	$\begin{aligned} & +5.5 \mathrm{~V} \\ & +0.8 \mathrm{~V} \\ & \pm 5 \mu \mathrm{~A} \end{aligned}$
```Logic Outputs (DB11-DB0, STS) Logic "0" (I ISINK - 1.6mA) Logic "1" (ISOURCE - 500\muA) Logic "1" (ISOURCE - 10\muA) Leakage (High Z State, DB11-DB0 Only) Capacitance```	$\begin{aligned} & +2.4 \mathrm{~V} \\ & +4.5 \mathrm{~V} \end{aligned}$	$\begin{gathered} \pm 0.1 \mu \mathrm{~A} \\ 5 \mathrm{pF} \end{gathered}$	$\begin{aligned} & +0.4 \mathrm{~V} \\ & \pm 5 \mu \mathrm{~A} \end{aligned}$

Timing Specifications $+25^{\circ} \mathrm{C}$, Unless Otherwise Specified, Into a load with $\mathrm{R}_{\mathrm{L}}=3 \mathrm{k} \Omega$ and $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS
CONVERT MODE					
$t_{\text {DSC }}$	STS Delay from CE	-	100	200	ns
$\mathrm{t}_{\text {HEC }}$	CE Pulse Width	50	30	-	ns
$t_{\text {ssc }}$	$\overline{C S}$ to CE Setup	50	20	-	ns
$\mathrm{t}_{\mathrm{HSC}}$	$\overline{C S}$ Low During CE High	50	20	-	ns
$\mathrm{t}_{\text {SRC }}$	R/C to CE Setup	50	0	-	ns
$\mathrm{t}_{\text {HRC }}$	R/C Low During CE High	50	20	-	ns
$t_{\text {SAC }}$	$A_{0}$ to CE Setup	0	0	-	ns
$\mathrm{t}_{\mathrm{HAC}}$	AO Valid During CE High	50	30	-	ns

Timing Specifications $+25^{\circ} \mathrm{C}$, Unless Otherwise Specified, Into a load with $\mathrm{R}_{\mathrm{L}}=3 \mathrm{k} \Omega$ and $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (Continued)

SYMBOL	PARAMETER		MIN	TYP	MAX	UNITS
$\mathrm{t}_{\mathrm{c}}$	Conversion Time	12 Bit Cycle $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}(-5)$	-	8.0	9	$\mu \mathrm{s}$
		8 Bit Cycle $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}(-5)$	-	6.4	6.8	$\mu \mathrm{s}$
		12 Bit Cycle $T_{\text {MIN }}$ to $T_{\text {MAX }}(-2)$	-	9	11	$\mu \mathrm{s}$
		8 Bit Cycle $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}(-2)$	-	6.8	8.3	$\mu \mathrm{s}$
READ MODE						
$t_{\text {DD }}$	Access Time from CE		-	75	150	ns
$\mathrm{t}_{\mathrm{HD}}$	Data Valid After CE Low		25	35	-	ns
$t_{\text {HL }}$	Output Float Delay		-	70	150	ns
$\mathrm{t}_{\text {SSR }}$	$\overline{\text { CS }}$ to CE Setup		50	0	-	ns
$\mathrm{t}_{\text {SRR }}$	$\mathrm{R} / \overline{\mathrm{C}}$ to CE Setup		0	0	-	ns
$\mathrm{t}_{\text {SAR }}$	$A_{0}$ to CE Setup		50	25	-	ns
$\mathrm{t}_{\text {HSR }}$	CS Valid After CE Low		0	0	-	ns
$\mathrm{t}_{\text {HRR }}$	RJ/̄ High After CE Low		0	0	-	ns
$\mathrm{t}_{\text {HAR }}$	Ao Valid After CE Low		50	25	-	ns
$t_{\text {HS }}$	STS Delay After Data Valid		-	90	300	ns

NOTE:

1. Time is measured from $50 \%$ level of digital transitions, except High $Z$ output conditions which are measured at the $10 \%$ or $90 \%$ point.

## Definitions of Specifications

## Linearity Error

Linearity error refers to the deviation of each individual code from a line drawn from "zero" through "full scale". The point used as "zero" occurs $1 / 2 \mathrm{LSB}(1.22 \mathrm{mV}$ for 10 V span) before the first code transition (all zeros to only the LSB "on"). "Full scale" is defined as a level $1 \frac{1}{2}$ LSB beyond the last code transition (to all ones). The deviation of a code from the true straight line is measured from the middle of each particular code.
The $\mathrm{HI}-774 \mathrm{~K}$ and L grades are guaranteed for maximum nonlinearity of $\pm 1 / 2$ LSB. For these grades, this means that an analog value which falls exactly in the center of a given code width will result in the correct digital output code. Values nearer the upper or lower transition of the code width may produce the next upper or lower digital output code. The HI-774J is guaranteed to $\pm 1$ LSB max error. For this grade, an analog value which falls within a given code width will result in either the correct code for that region or either adjacent one.
Note that the linearity error is not user-adjustable.

## Differential Linearity Error (No Missing Codes)

A specification which guarantees no missing codes requires that every code combination appear in a monotonic increasing sequence as the analog input level is increased. Thus every code must have a finite width. For the $\mathrm{HI}-774 \mathrm{~K}$ and L grades, which guarantee no missing codes to 12 -bit resolution, all 4096 codes must be present over the entire operating temperature ranges. The $\mathrm{Hl}-774 \mathrm{~J}$ grade guarantees no missing codes to 11 -bit resolution over temperature; this means that all code combinations of the upper 11 bits must be present; in practice very few of the 12 -bit codes are missing.

## Unipolar Offset

The first transition should occur at a level $1 / 2$ LSB above analog common. Unipolar offset is defined as the deviation of the
actual transition from that point. This offset can be adjusted as discussed on the following pages. The unipolar offiset temperature coefficient specifies the maximum change of the transition point over temperature, with or without external adjustment.

## Bipolar Offset

Similarly, in the bipolar mode, the major carry transition (0111 11111111 to 100000000000 ) should occur for an ana$\log$ value $1 / 2$ LSB below analog common. The bipolar offset error and temperature coefficient specify the initial deviation and maximum change in the error over temperature.

## Full Scale Calibration Error

The last transition (from 111111111110 to 11111111 1111) should occur for an analog value $1 \frac{1}{2}$ LSB below the nominal full scale ( 9.9963 V for 10.000 V full scale). The full scale calibration error is the deviation of the actual level at the last transition from the ideal level. This error, which is typically 0.05 to $0.1 \%$ of full scale, can be trimmed out as shown in Figures 2 and 3 . The full scale calibration error over temperature is given with and without the initial error trimmed out. The temperature coefficients for each grade indicate the maximum change in the full scale gain from the initial value using the internal 10V reference.

## Temperature Coefficients

The temperature coefficients for full-scale calibration, unipolar offset, and bipolar offset specify the maximum change from the initial $\left(+25^{\circ} \mathrm{C}\right)$ value to the value at $\mathrm{T}_{\text {MIN }}$ or $\mathrm{T}_{\text {MAX }}$.

## Power Supply Rejection

The standard specifications for the HI-774 assume use of +5.00 and $\pm 15.00$ or $\pm 12.00$ volt supplies. The only effect of power supply error on the performance of the device will be a small change in the full scale calibration. This will result in
a linear change in all lower order codes. The specifications show the maximum change in calibration from the initial value with the supplies at the various limits.

## Code Width

A fundamental quantity for AD converter specifications is the code width. This is defined as the range of analog input values for which a given digital output code will occur. The nominal value of a code width is equivalent to 1 least significant bit (LSB) of the full scale range or 2.44 mV out of 10 V for a 12-bit ADC.

## Quantization Uncertainty

Analog-to-digital converters exhibit an inherent quantization uncertainty of $\pm 1 / 2 \mathrm{LSB}$. This uncertainty is a fundamental characteristic of the quantization process and cannot be reduced for a converter of given resolution.

## Left-justified Data

The data format used in the HI-774 is left-justified. This means that the data represents the analog input as a fraction of full-scale, ranging from 0 to $\frac{4095}{4096}$. This implies a binary point to the left of the MSB.

## Applying the HI-774

For each application of this converter, the ground connections, power supply bypassing, analog signal source, digital timing and signal routing on the circuit board must be optimized to assure maximum performance. These areas are reviewed in the following sections, along with basic operating modes and calibration requirements.

## PHYSICAL MOUNTING AND LAYOUT CONSIDERATIONS

## Layout

Unwanted, parasitic circuit components, (L, R, and C) can make 12 bit accuracy impossible, even with a perfect AD converter. The best policy is to eliminate or minimize these parasitics through proper circuit layout, rather than try to quantify their effects.
The recommended construction is a double-sided printed circuit board with a ground plane on the component side. Other techniques, such as wire-wrapping or point-to-point wiring on vectorboard, will have an unpredictable effect on accuracy.
In general, sensitive analog signals should be routed between ground traces and kept well away from digital lines. If analog and digital lines must cross, they should do so at right angles.

## Power Supplies

Supply voltages to the $\mathrm{Hl}-774(+15 \mathrm{~V},-15 \mathrm{~V}$ and $+5 \mathrm{~V})$ must be "quiet" and well regulated. Voltage spikes on these lines can affect the converter's accuracy, causing several LSBs to flicker when a constant input is applied. Digital noise and spikes from a switching power supply are especially troublesome. If switching supplies must be used, outputs should be carefully filtered to assure "quiet" DC voltage at the converter terminals.

Further, a bypass capacitor pair on each supply voltage terminal is necessary to counter the effect of variations in sup-
ply current. Connect one pair from pin 1 to 15 (VLogic supply), one from pin 7 to 9 ( $V_{C C}$ to Analog Common) and one from pin 11 to 9 ( $\mathrm{V}_{\mathrm{EE}}$ to Analog Common). For each capacitor pair, a $10 \mu \mathrm{~F}$ tantalum type in parallel with a $0.1 \mu \mathrm{~F}$ ceramic type is recommended.

## Ground Connections

The typical H -774 ground currents are 6 mADC into pin 9 (Analog Common) and 3mADC out of pin 15 (Digital Common). These pins should be tied together at the package to guarantee specified performance for the converter. In addition, a wide PC trace should run directly from pin 9 to (usually) +15 V common, and from pin 15 to (usually) the +5 V Logic Common. If the converter is located some distance from the system's "single point" ground, make only these connections to pins 9 and 15: Tie them together at the package, and back to the system ground with a single path. This path should have low resistance since it will carry about 3 mA of DC current. (Code dependent currents flow in the $\mathrm{V}_{\mathrm{CC}}$, $\mathrm{V}_{\mathrm{EE}}$ and $\mathrm{V}_{\text {LOGIC }}$ terminals, but not through the HI-774's Analog Common or Digital Common).

## ANALOG SIGNAL SOURCE

The device driving the HI-774 analog input will see a nominal load of $5 \mathrm{~K} \Omega$ ( 10 V range) or $10 \mathrm{k} \Omega$ ( 20 V range). However, the other end of these input resistors may change as much as $\pm 400 \mathrm{mV}$ with each bit decision. These input disturbances are caused by the internal DAC changing codes which causes a glitch on the summing junction. This creates abrupt changes in current at the analog input causing a "kick back" glitch from the input. Because the algorithm starts with the MSB, the first glitches will be the largest and get smaller as the conversion proceeds. These glitches can occur at 350ns intervals so an op amp with a low output impedance and fast settling is desirable. Ultimately the input must settle to within the window of Figure 1 at the bit decision points in order to achieve 12 bit accuracy.

The HI-774 differs from the most high-speed successive approximation type ADC's in that it does not require a high performance buffer or sample and hold. With error correction the input can settle while the conversion is underway, but only during the first $4.8 \mu \mathrm{~s}$. The input must be within $10.76 \%$ of the final value when the MSB decision is made. This occurs approximately 650ns after the conversion has been initiated. Digital error correction also loosens the bandwidth requirements of the buffer or sample and hold. As long as the input "kick back" disturbances settle within the window of Figure 1 the device will remain accurate. The combined effect of settling and the "kick back" disturbances must remain in the Figure 1 window.

If the design is being optimized for speed, the input device should have closed loop bandwidth to 3 MHz , and a low output impedance (calculated by dividing the open loop output resistance by the open loop gain). If the application requires a high speed sample and hold the Harris HA-5330 or HA-5320 are recommended.
In any design the input (pin 13 or 14) should be checked during a conversion to make sure that the input stays within the correctable window of Figure 1.

## DIGITAL ERROR CORRECTION

The HI-774 features the smart successive approximation register (SSAR ${ }^{\text {TM }}$ ) which includes digital error correction. This has the advantage of allowing the initial input to vary within a +31 to -32 LSB window about the final value. The input can move during the first $4.8 \mu \mathrm{~s}$, after which it must remain stable within $\pm 1 / 2$ LSB. With this feature a conversion can start before the input has settled completely; however, it must be within the window as described in Figure 1.
The conversion cycle starts by making the first 8 -bit decisions very quickly, allowing the internal DAC to settle only to 8 -bit accuracy. Then the converter goes through two error correction cycles. At this point the input must be stable within $\pm 1 / 2$ LSB. These cycles correct the 8 -bit word to 12 -bit accuracy for any errors made (up to +16 or -32 bits). This is up
one count or down two counts at 8 -bit resolution. The converter then continues to make the 4LSB decisions, settling out to 12-bit accuracy. The last four bits can adjust the code in the positive direction by up to 15 bits. This results in a total correction range of +31 to -32 bits. When an 8 -bit conversion is performed, the input must settle to within $\pm \frac{1}{2}$ LSB at 8 bit resolution (which equals $\pm 8$ bits at 12 -bit resolution).

With the HI-774 a conversion can be initiated before the input has completely settled, as long as it meets the constraints of the Figure 1 window. This allows the user to start conversion up to $4.8 \mu$ s earlier than with a typical analog to digital converter. A typical successive approximation type ADC must have a constant input during a conversion because once a bit decision is made it is locked in and cannot change.


FIGURE 1. HI-774 ERROR CORRECTION WINDOW vs. TIME


FIGURE 2. UNIPOLAR CONNECTIONS
FIGURE 3. BIPOLAR CONNECTIONS

## RANGE CONNECTIONS AND CALIBRATION PROCEDURES

The HI-774 is a "complete" A/D converter, meaning it is fully operational with addition of the power supply voltages, a Start Convert signal, and a few external components as shown in Figures 2 and 3. Nothing more is required for most applications.

Whether controlled by a processor or operating in the standalone mode, the HI-774 offers four standard input ranges: OV to $+10 \mathrm{~V}, 0 \mathrm{~V}$ to $+20 \mathrm{~V}, \pm 5 \mathrm{~V}$ and $\pm 10 \mathrm{~V}$. The maximum errors for gain and offset are listed under Specifications. If required, however, these errors may be adjusted to zero as explained below. Power supply and ground connections have been discussed in an earlier section.

## Unipolar Connections and Calibration

Refer to Figure 2. The resistors shown* are for calibration of offset and gain. If this is not required, replace R2 with a $50 \Omega$, $1 \%$ metal film resistor and remove the network on pin 12. Connect pin 12 to pin 9 . Then, connect the analog signal to pin 13 for the 0 V to 10 V range, or to pin 14 for the 0 V to 20 V range. Inputs to +20 V ( 5 V over the power supply) are no problem - the converter operates normally.

Calibration consists of adjusting the converter's most negative output to its ideal value (offset adjustment), then, adjusting the most positive output to its ideal value (gain adjustment). To understand the procedure, note that in principle, one is setting the output with respect to the midpoint of an increment of analog input, as denoted by two adjacent code changes. Nominal value of an increment is one LSB. However, this approach is impractical because nothing "happens" at a midpoint to indicate that an adjustment is complete. Therefore, calibration is performed in terms of the observable code changes instead of the midpoint between code changes.

For example, midpoint of the first LSB increment should be positioned at the origin, with an output code of all O's. To do this, apply an input of $+1 / 2$ LSB $(+1.22 \mathrm{mV}$ for the 10 V range; +2.44 mV for the 20 V range). Adjust the Offset potentiometer R1 until the first code transition flickers between 00000000 0000 and 000000000001.

Next, perform a Gain Adjust at positive full scale. Again, the ideal input corresponding to the last code change is applied. This is $1 \frac{1}{2}$ LSB's below the nominal full scale $(+9.9963 \mathrm{~V}$ for 10V range; +19.9927 V for 20 V range). Adjust the Gain potentiometer R2 for flicker between codes 111111111110 and 111111111111.

## Bipolar Connections and Calibration

Refer to Figure 3. The gain and offset errors listed under Specifications may be adjusted to zero using potentiometers R1 and R2*. If this isn't required, either or both pots may be replaced by a $50 \Omega, 1 \%$ metal film resistor.

Connect the Analog signal to pin 13 for a $\pm 5 \mathrm{~V}$ range, or to pin 14 for a $\pm 10 \mathrm{~V}$ range. Calibration of offset and gain is similar to that for the unipolar ranges as discussed above. First
apply a DC input voltage $1 / 2$ LSB above negative full scale (i.e., -4.9988 V for the $\pm 5 \mathrm{~V}$ range, or -9.9976 V for the $\pm 10 \mathrm{~V}$ range). Adjust the offset potentiometer R1 for flicker between output codes 000000000000 and 000000000001 . Next, apply a DC input voltage $1 \frac{1}{2}$ LSB's below positive full scale ( +4.9963 V for $\pm 5 \mathrm{~V}$ range; +9.9927 V for $\pm 10 \mathrm{~V}$ range). Adjust the Gain potentiometer R2 for flicker between codes 1111 11111110 and 111111111111.
*The $100 \Omega$ potentiometer R2 provides Gain Adjust for the 10 V and 20 V ranges. In some applications, a full scale of 10.24 V (LSB equals 2.5 mV ) or 20.48 V (LSB equals 5.0 mV ) is more convenient. For these, replace R2 by a $50 \Omega, 1 \%$ metal film resistor. Then, to provide Gain Adjust for the 10.24 V range, add a $200 \Omega$ potentiometer in series with pin 13 . For the 20.48 V range, add a $500 \Omega$ potentiometer in series with pin 14.

## Controlling the HI-774

The HI-774 includes logic for direct interface to most microprocessor systems. The processor may take full control of each conversion, or the converter may operate in the "standalone" mode, controlled only by the R/C input. Full control consists of selecting an 8 or 12 bit conversion cycle, initiating the conversion, and reading the output data when readychoosing either 12 bits at once or 8 followed by 4 , in a leftjustified format. The five control inputs are all TTLCMOScompatible: ( $12 / \overline{8}, \overline{C S}, A_{0}, R / \bar{C}$ and CE). Table 1 illustrates the use of these inputs in controlling the converter's operations. Also, a simplified schematic of the internal control logic is shown in Figure 4.

## "Stand-Alone Operation"

The simplest control interface calls for a singe control line connected to R/C्C. Also, CE and 12//8 are wired high, $\overline{\mathrm{CS}}$ and $A_{0}$ are wired low, and the output data appears in words of 12 bits each.

The $R / \bar{C}$ signal may have any duty cycle within (and including) the extremes shown in Figures 5 and 6. In general, data may be read when $R / \bar{C}$ is high unless STS is also high, indicating a conversion is in progress. Timing parameters particular to this mode of operation are listed below under "StandAlone Mode Timing".

## STAND-ALONE MODE TIMING

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS
$\mathrm{t}_{\text {HRL }}$	Low P/ $/ \bar{C}$ Pulse Width	50	-	-	ns
$t_{\text {DS }}$	STS Delay from R/C	-	-	200	ns
$\mathrm{t}_{\text {HOR }}$	Data Valid after R/C̄ Low	20	-	-	ns
ths	STS Delay after Data Valid	-	-	850	ns
thri	High R/C Pulse Width	150	-	-	ns
$\mathrm{t}_{\text {DDR }}$	Data Access Time	-	-	150	ns



FIGURE 4. HI-774 CONTROL LOGIC


FIGURE 5. LOW PULSE FOR R/C - OUTPUTS ENABLED AFTER CONVERSION


FIGURE 6. HIGH PULSE FOR R/ $\bar{C}$ - OUTPUTS ENABLED WHILE R/ $\bar{C}$ HIGH, OTHERWISE HIGH-Z

## Conversion Length

A Convert Start transition (see Table 1) latches the state of $A_{0}$, which determines whether the conversion continues for 12 bits ( $A_{0}$ low) or stops with 8 bits ( $A_{0}$ high). If all 12 bits are read following an 8 bit conversion, the last three LSB's will read ZERO and DB3 will read ONE. $A_{0}$ is latched because it is also involved in enabling the output buffers (see "Reading the Output Data"). No other control inputs are latched.

TABLE 1. TRUTH TABLE FOR HI-774 CONTROL INPUTS

$\mathbf{C E}$	$\overline{\mathbf{C S}}$	$\mathbf{R / C}$	$\mathbf{1 2 \sqrt { 8 }}$	$\mathbf{A}_{0}$	OPERATION
O	X	X	X	X	None
X	1	X	X	X	None
$\uparrow$	0	0	X	0	Initiate 12 bit conversion
$\uparrow$	0	0	X	1	Initiate 8 bit conversion
1	$\downarrow$	0	X	0	Initiate 12 bit conversion
1	$\downarrow$	0	X	1	Initiate 8 bit conversion
1	0	$\downarrow$	X	0	Initiate 12 bit conversion
1	0	$\downarrow$	X	1	Initiate 8 bit conversion
1	0	1	1	X	Enable 12 bit Output
1	0	1	0	0	Enable 8 MSB's Only
1	0	1	0	1	Enable 4 LSB's Plus 4 Trailing

## Conversion Start

A conversion may be initiated as shown in Table 1 by a logic transition on any of three inputs: CE, $\overline{\mathrm{CS}}$ or $\mathrm{R} / \overline{\mathrm{C}}$. The last of
the three to reach the correct state starts the conversion, so one, two or all three may be dynamically controlled. The nominal delay from each is the same, and if necessary, all three may change state simultaneously. To assure that a particular input controls the start of conversion, the other two should be set up at least 50ns earlier, however. See the HI-774 Timing Specifications, Convert mode.

This variety of HI-774 control modes allows a simple interface in most system applications. The Convert Start timing relationships are illustrated in Figure 7.

The output signal STS indicates status of the converter by going high only while a conversion is in progress. While STS is high, the output buffers remain in a high impedance state and data cannot be read. Also, an additional Start Convert will not reset the converter or reinitiate a conversion while STS is high.

## Reading the Output Data

The output data buffers remain in a high impedance state until four conditions are met: R/C high, STS low, CE high and $\overline{\mathrm{CS}}$ low. At that time, data lines become active according to the state of inputs $12 / \overline{8}$ and $A_{0}$. Timing constraints are illustrated in Figure 8.

The $12 / \overline{8}$ input will be tied high or low in most applications, though it is fully TTL/CMOS-compatible. With $12 / 8$ high, all 12 output lines become active simultaneously, for interface to a 12 or 16 bit data bus. The $A_{0}$ input is ignored.

With $12 / \overline{8}$ low, the output is organized in two 8 bit bytes, selected one at a time by $A_{0}$. This allows an 8 bit data bus to be connected as shown in Figure 9. $A_{0}$ is usually tied to the least significant bit of the address bus, for storing the HI-774 output in two consecutive memory locations. (With $A_{0}$ low, the 8 MSB's only are enabled. With $A_{0}$ high, 4MSB's are disabled, bits 4 through 7 are forced low, and the 4LSB's are


FIGURE 8. READ CYCLE TIMING

FIGURE 7. CONVERT START TIMING
See HI-774 Timing Specifications for more information
enabled). This two byte format is considered "left justified data", for which a decimal (or binary!) point is assumed to the left of byte 1 :

BYTE 1

between the two data bytes, which assures that the outputs strapped together in Figure 9 will never be enabled at the same time.

A read operation usually begins after the conversion is complete and STS is low. For earliest access to the data however, the read should begin no later than ( $t_{D D}+t_{H S}$ ) before STS goes low. See Figure 8.

Further, $A_{0}$ may be toggled at any time without damage to the converter. Break-before-make action is guaranteed


FIGURE 9. INTERFACE TO AN 8 BIT DATA BUS

8-Bit, 20 MSPS Flash A/D Converter

## Features

- 20MSPS with No Missing Codes
- 18MHz Full Power Input Bandwidth
- No Missing Codes Over Temperature
- Sample and Hold Not Required
- Single +5V Supply Voltage
- CMOS/TTL
- Overflow Bit
- Improved Replacement for MP7684


## Applications

- Video Digitizing
- Radar Systems
- Medical Imaging
- Communication Systems
- High Speed Data Acquisition Systems


## Description

The HI-5700 is a monolithic, 8 bit, CMOS Flash Analog-toDigital Converter. It is designed for high speed applications where wide bandwidth and low power consumption are essential. Its 20MSPS speed is made possible by a parallel architecture which also eliminates the need for an external sample and hold circuit. The HI-5700 delivers $\pm 0.5$ LSB differential nonlinearity while consuming only 725 mW (typical) at 20MSPS. Microprocessor compatible data output latches are provided which present valid data to the output bus 1.5 clock cycles after the convert command is received. An overflow bit is provided to allow the series connection of two converters to achieve 9 bit resolution.

The HI-5700 is available in Commercial and Industrial temperature ranges and is supplied in 28 pin Plastic DIP and SOIC packages.

Pinout


## Ordering Information

PART   NUMBER	TEMPERATURE   RANGE	PACKAGE
HI3-5700J-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	28 Pin Plastic DIP
HI9P5700J-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	28 Pin SOIC
HI3-5700A-9	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 Pin Plastic DIP
H19P5700A -9	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 Pin SOIC

Functional Block Diagram



## Absolute Maximum Ratings

Supply Voltage, $\mathrm{V}_{\mathrm{DD}}$ to GND $\qquad$ (GND - 0.5) $<\mathrm{V}_{\mathrm{DD}}<+7.0 \mathrm{~V}$
Analog and Reference Input Pins. . . $\left(V_{S S}-0.5\right)<V_{I N A}<\left(V_{D D}+0.5 \mathrm{~V}\right)$
Digital I/O Pins . . . . . . . . . . . . . . (GND -0.5 ) $<\mathrm{V}_{1 / \mathrm{O}}<\left(\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}\right)$
Operating Temperature Range
HI3-5700J-5, HI9P5700J-5. $.0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
HI3-5700A-9, HI9P5700A-9 $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $+150^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec.) . . . . . . . . . . . . . . . . . $300^{\circ} \mathrm{C}$
NOTE:

1. Dissipation rating assumes device is mounted with all leads soldered to printed circuit board.

CAUTION: Stresses above those listed in the "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operation section of this specification is not implied.

Electrical Specifications $\quad A V_{D D}=V_{D D}=+5.0 V_{;} V_{\mathrm{REF}_{+}}=+4.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{REF}-}=\mathrm{GND}=\mathrm{AGND}=0 \mathrm{~V} ; \mathrm{F}_{\mathrm{S}}=$ Specified Clock Frequency © $50 \%$ Duty Cycle; $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$; Unless Otherwise Specified.

PARAMETER	TEST CONDITION	$+25^{\circ} \mathrm{C}$			$\begin{gathered} \text { (NOTE 2) } \\ 0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \\ -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{gathered}$		UNITS
		MIN	TYP	MAX	MIN	MAX	
ACCURACY							
Resolution		8			8		Bits
Integral Linearity Error (INL) (Best Fit Method)	$\begin{aligned} & F_{S}=15 \mathrm{MHz}, f_{I N}=D C \\ & F_{S}=20 \mathrm{MHz}, f_{I_{N}}=D C \end{aligned}$		$\begin{aligned} & \pm 0.9 \\ & \pm 1.0 \end{aligned}$	$\begin{gathered} \pm 2.0 \\ \pm 2.25 \end{gathered}$		$\begin{array}{r}  \pm 2.25 \\ \pm 3.25 \end{array}$	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \end{aligned}$
Differential Linearity Error (DNL)   (Guaranteed No Missing Codes)	$\begin{aligned} & F_{S}=15 \mathrm{MHz}, f_{I N}=D C \\ & F_{S}=20 \mathrm{MHz}, f_{I_{N}}=D C \end{aligned}$		$\begin{aligned} & \pm 0.4 \\ & \pm 0.5 \end{aligned}$	$\begin{aligned} & \pm 0.9 \\ & \pm 0.9 \end{aligned}$		$\begin{aligned} & \pm 1.0 \\ & \pm 1.0 \end{aligned}$	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \end{aligned}$
Offset Error (VOS)	$\begin{aligned} & F_{S}=15 \mathrm{MHz}, f_{I N}=D C \\ & F_{S}=20 \mathrm{MHz}, f_{I_{N}}=D C \end{aligned}$		$\begin{aligned} & \pm 5.0 \\ & \pm 5.0 \end{aligned}$	$\begin{array}{r}  \pm 8.0 \\ \pm 8.0 \end{array}$		$\begin{aligned} & \pm 9.5 \\ & \pm 9.5 \end{aligned}$	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \end{aligned}$
Full Scale Error (FSE)	$\begin{aligned} & F_{S}=15 \mathrm{MHz}, f_{I_{N}}=D C \\ & F_{S}=20 \mathrm{MHz}, f_{I_{N}}=D C \end{aligned}$		$\begin{aligned} & \pm 0.5 \\ & \pm 0.6 \end{aligned}$	$\begin{aligned} & \pm 4.5 \\ & \pm 4.5 \end{aligned}$		$\begin{aligned} & \pm 8.0 \\ & \pm 8.0 \end{aligned}$	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \end{aligned}$
DYNAMIC CHARACTERISTICS							
Maximum Conversion Rate	No Missing Codes	20	25		20		MSPS
Minimum Conversion Rate	No Missing Codes (Note 2)			0.125		0.125	MSPS
Full Power Input Bandwidth	$\mathrm{F}_{\mathrm{S}}=20 \mathrm{MHz}$		18				MHz
Signal to Noise Ratio (SNR) $=\frac{\text { RMS Signal }}{\text { RMS Noise }}$	$\begin{aligned} & F_{S}=15 \mathrm{MHz}, f_{I N}=100 \mathrm{kHz} \\ & F_{S}=15 \mathrm{MHz}, f_{I N}=3.58 \mathrm{MHz} \\ & F_{S}=15 \mathrm{MHz}, f_{I N}=4.43 \mathrm{MHz} \\ & F_{S}=20 \mathrm{MHz}, f_{I_{N}}=100 \mathrm{kHz} \\ & F_{S}=20 \mathrm{MHz}, f_{\text {IN }}=3.58 \mathrm{MHz} \\ & F_{S}=20 \mathrm{MHz}, f_{f_{N}}=4.43 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & 46.5 \\ & 44.0 \\ & 43.4 \\ & 45.9 \\ & 42.0 \\ & 41.6 \end{aligned}$				dB   dB   dB   dB   dB   dB
$\begin{aligned} & \text { Signal to Noise Ratio (SINAD) } \\ & \quad=\frac{\text { RMS Signal }}{\text { RMS Noise + Distortion }} \end{aligned}$	$\begin{aligned} & F_{S}=15 \mathrm{MHz}, f_{I_{N}}=100 \mathrm{kHz} \\ & F_{S}=15 \mathrm{MHz}, f_{I_{N}}=3.58 \mathrm{MHz} \\ & F_{S}=15 \mathrm{MHz}, f_{I_{N}}=4.43 \mathrm{MHz} \\ & F_{S}=20 \mathrm{MHz}, f_{I_{N}}=100 \mathrm{kHz} \\ & F_{S}=20 \mathrm{MHz}, f_{I_{N}}=3.58 \mathrm{MHz} \\ & F_{S}=20 \mathrm{MHz}, f_{\mathrm{f}_{\mathrm{N}}}=4.43 \mathrm{MHz} \end{aligned}$	-	$\begin{aligned} & 43.4 \\ & 34.3 \\ & 32.3 \\ & 42.3 \\ & 35.2 \\ & 32.8 \end{aligned}$				dB   dB   dB   dB   dB   dB

Electrical Specifications $\quad A V_{D D}=V_{D D}=+5.0 \mathrm{~V} ; \mathrm{V}_{\text {REF }}=+4.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{REF} .}=\mathrm{GND}=A G N D=O \mathrm{~V}_{\mathrm{F}} \mathrm{F}_{\mathrm{S}}=$ Specified Clock Frequency © $50 \%$ Duty Cycle; $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$; Unless Otherwise Specified. (Continued)

PARAMETER	TEST CONDITION	$+25^{\circ} \mathrm{C}$			$\begin{gathered} \text { (NOTE 2) } \\ 0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \\ -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{gathered}$		UNITS
		MIN	TYP	MAX	MIN	MAX	
Total Harmonic Distortion	$\begin{aligned} & \mathrm{F}_{\mathrm{S}}=15 \mathrm{MHz}, \mathrm{f}_{\mathrm{IN}}=100 \mathrm{kHz} \\ & \mathrm{~F}_{\mathrm{S}}=15 \mathrm{MHz}, \mathrm{f}_{\mathrm{IN}}=3.58 \mathrm{MHz} \\ & \mathrm{~F}_{\mathrm{S}}=15 \mathrm{MHz}, \mathrm{f}_{\mathrm{IN}}=4.43 \mathrm{MHz} \\ & \mathrm{~F}_{\mathrm{S}}=20 \mathrm{MHz}, \mathrm{f}_{\mathrm{IN}}=100 \mathrm{kHz} \\ & \mathrm{~F}_{\mathrm{S}}=20 \mathrm{MHz}, f_{I N}=3.58 \mathrm{MHz} \\ & \mathrm{~F}_{\mathrm{S}}=20 \mathrm{MHz}, f_{\mathrm{IN}}=4.43 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & -46.9 \\ & -34.8 \\ & -32.8 \\ & -46.6 \\ & -36.6 \\ & -33.5 \end{aligned}$				dBc   dBc   dBc   dBc   dBc   dBc
Differential Gain	$\mathrm{F}_{\mathrm{S}}=14 \mathrm{MHz}, \mathrm{f}_{\mathrm{IN}}=3.58 \mathrm{MHz}$		3.5				\%
Differential Phase Error	$\mathrm{F}_{\mathrm{S}}=14 \mathrm{MHz}, \mathrm{f}_{\mathrm{N}}=3.58 \mathrm{MHz}$		0.9				Degree
ANALOG INPUT							
Analog Input Resistance, $\mathrm{R}_{\text {IN }}$ Analog Input Capacitance, $\mathrm{C}_{\mathbb{I}}$ Analog Input Bias Current, IB	$\begin{aligned} & V_{I N}=4 V \\ & V_{I N}=0 V \\ & V_{I N}=0 V, 4 V \end{aligned}$	4	$\begin{gathered} 10 \\ 60 \\ \pm 0.01 \end{gathered}$	$\pm 1.0$		$\pm 1.0$	M $\Omega$   pF   $\mu \mathrm{A}$


REFERENCE INPUT							
Total Reference Resistance, $\mathrm{R}_{\mathrm{L}}$		250	330		235		$\Omega$
Reference Resistance Tempco, $\mathrm{T}_{\mathrm{C}}$			+0.31				$\Omega^{\circ} \mathrm{C}$
DIGITAL INPUTS							
Input Logic High Voltage, $\mathrm{V}_{\mathrm{IH}}$ Input Logic Low Voltage, VIL Input Logic High Current, $\mathrm{I}_{\mathrm{H}}$ Input Logic Low Current, IL Input Capacitance, $\mathrm{C}_{\text {IN }}$	$\begin{aligned} & V_{\text {IN }}=5 \mathrm{~V} \\ & V_{I N}=0 \mathrm{~V} \end{aligned}$	2.0	7	0.8 1.0 1.0	2.0	0.8 1.0 1.0	$V$ $V$ $\mu A$ $\mu A$ $p F$

## DIGITAL OUTPUTS

Output Logic Sink Current, IoL	$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$	3.2			3.2		mA
Output Logic Source Current, $\mathrm{I}_{\mathrm{OH}}$	$\mathrm{V}_{0}=4.5 \mathrm{~V}$	-3.2			-3.2		mA
Output Leakage, loz	$C E 2=0 \mathrm{~V}, \mathrm{~V}_{0}=0 \mathrm{~V}, 5 \mathrm{~V}$			$\pm 1.0$		$\pm 1.0$	$\mu \mathrm{A}$
Output Capacitance, $\mathrm{C}_{\text {OUT }}$	$C E 2=0 \mathrm{~V}$		5.0				pF

TIMING CHARACTERISTICS

Aperture Delay, $\mathrm{t}_{\mathrm{AP}}$   Aperture Jitter, $\mathrm{t}_{\mathrm{A} \mathrm{J}}$ Data Output Enable Time, $t_{E N}$ Data Output Disable Time, $\mathrm{t}_{\mathrm{DI}}$ Data Output Delay, toD Data Output Hold, $t_{H}$		10	6 30 18 15 20 20	25 20 25	5	30 25 30	ns ps ns ns ns ns
POWER SUPPLY REJECTION							
Offset Error PSRR, $\Delta$ VOS Gain Error PSRR, $\triangle$ FSE	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \pm 10 \% \\ & V_{D D}=5 \mathrm{~V} \pm 10 \% \end{aligned}$		$\begin{aligned} & \pm 0.1 \\ & \pm 0.1 \end{aligned}$	$\pm 2.75$ $\pm 2.75$		$\pm 5.0$ $\pm 5.0$	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \end{aligned}$
POWER SUPPLY CURRENT							
Supply Current, IDD	$F_{S}=20 \mathrm{MHz}$		145	180		190	mA

NOTE:
2. Parameter guaranteed by design or characterization and not production tested.

## Timing Waveforms



FIGURE 1. INPUT-TO-OUTPUT TIMING


FIGURE 2. OUTPUT ENABLE TIMING

## Typical Performance Curves

EFFECTIVE NUMBER OF BITS vs fin


SNR vs TEMPERATURE


INL vs TEMPERATURE


EFFECTIVE NUMBER OF BITS vs TEMPERATURE


TOTAL HARMONIC DISTORTION vS TEMPERATURE


TEMPERATURE ( ${ }^{\circ} \mathrm{C}$ )

DNL vs TEMPERATURE


Typical Performance Curves (Continued) offset voltage vs. TEMPERATURE


OUTPUT DELAY vs TEMPERATURE


SUPPLY CURRENT vs TEMPERATURE


FULL SCALE ERROR vs TEMPERATURE


POWER SUPPLY REJECTION vs TEMPERATURE


SUPPLY CURRENT vS CLOCK \& DUTY CYCLE


TABLE 1. PIN DESCRIPTION

PIN *	NAME	DESCRIPTION
1	CLK	Clock Input
2	D7	Bit 7, Output (MSB)
3	D6	Bit 6, Output
4	D5	Bit 5, Output
5	D4	Bit 4, Output
6	1/4R	1/4th Point of Reference Ladder
7	$V_{D D}$	Digital Power Supply
8	GND	Digital Ground
9	3/4R	3/4th Point of Reference Ladder
10	D3	Bit 3, Output
11	D2	Bit 2, Output
12	D1	Bit 1, Output
13	D0	Bit 0, Output (LSB)
14	OVF	Overflow, Output
15	CE2	Three State Output Enable Input, Active High. (See Table 2)
16	$\overline{C E 1}$	Three State Output Enable Input, Active Low. (See Table 2)
17	$\mathrm{V}_{\text {REF }+}$	Reference Voltage Positive Input
18	$\mathrm{AV}_{\mathrm{DD}}$	Analog Power Supply, +5V
19	AGND	Analog Ground
20	AGND	Analog Ground
21	$\mathrm{AV}_{\mathrm{DD}}$	Analog Power Supply, +5V
22	1/2R	1/2 Point of Reference Ladder
23	$\mathrm{AV}_{\mathrm{DD}}$	Analog Power Supply, +5V
24	AGND	Analog Ground
25	AGND	Analog Ground
26	$\mathrm{AV}_{\mathrm{DD}}$	Analog Power Supply, +5V
27	$\mathrm{V}_{\text {REF }}$.	Reference Voltage Negative Input
28	$\mathrm{V}_{\mathrm{IN}}$	Analog Input

## Theory of Operation

The HI-5700 is an 8 bit analog-to-digital converter based on a parallel CMOS "flash" architecture. This flash technique is an extremely fast method of ADD conversion because all bit decisions are made simultaneously. In all, 256 comparators are used in the HI-5700: $\left(2^{8}-1\right)$ comparators to encode the output word, plus an additional comparator to detect an overflow condition.

The CMOS HI-5700 works by alternately switching between a "Sample" mode and an "Auto Balance" mode. Splitting up the comparison process in this CMOS technique offers a number of significant advantages. The offiset voltage of each CMOS comparator is dynamically canceled with each conversion cycle such that offset voltage drift is virtually eliminated during operation. The block diagram and timing diagram illustrate how the HI-5700 CMOS flash converter operates.
The input clock which controls the operation of the HI-5700 is first split into a non-inverting $\phi 1$ clock and an inverting $\phi 2$ clock. These two clocks, in turn, synchronize all internal timing of analog switches and control logic within the converter
In the "Auto Balance" mode ( $\phi 1$ ), all $\phi 1$ switches close and \$2 switches open. The output of each comparator is momentarily tied to its own input, self-biasing the comparator midway between GND and $\mathrm{V}_{\mathrm{DD}}$ and presenting a low impedance to a small input capacitor. Each capacitor, in turn, is connected to a reference voltage tap from the resistor ladder. The Auto Balance mode quickly precharges all 256 input capacitors between the self-bias voltage and each respective tap voltage.

In the "Sample" mode ( $\phi 2$ ), all $\phi 1$ switches open and $\phi 2$ switches close. This places each comparator in a sensitive high gain amplifier configuration. In this open loop state, the input impedance is very high and any small voltage shift at the input will drive the output either high or low. The $\$ 2$ state also switches each input capacitor from its reference tap to the input signal. This instantly transfers any voltage difference between the reference tap and input voltage to the
comparator input. All 256 comparators are thus driven simultaneously to a defined logic state. For example, if the input voltage is at mid-scale, capacitors precharged near zero during $\phi 1$ will push comparator inputs higher than the self bias voltage at $\phi 2$; capacitors precharged near the reference voltage push the respective comparator inputs lower than the bias point. In general, all capacitors precharged by taps above the input voltage force a "low" voltage at comparator inputs; those precharged below the input voltage force "high" inputs at the comparators.
During the next $\phi 1$ Auto-Balancing state, comparator output data is latched into the encoder logic block and the first stage of encoding takes place. The following $\phi 2$ state completes the encoding process. The 8 data bits (plus overflow bit) are latched into the output flip-flops at the next falling clock edge. The Overflow bit is set if the input voltage exceeds $\mathrm{V}_{\text {REF }+}-0.5 \mathrm{LSB}$. The output bus may be either enabled or disabled according to the state of $\overline{\mathrm{CE}}$ and CE2 (See Table 2). When disabled, output bits assume a high impedance state.

As shown in the timing diagram, the digital output word becomes valid after the second $\phi 1$ state. There is thus a one and a half cycle pipeline delay between input sample and digital output. "Data Output Delay" time indicates the slight time delay for data to become valid at the end of the $\phi 1$ state.

## Applications Information

## Voltage Reference

The reference voltage is applied across the resistor ladder between $\mathrm{V}_{\text {REF+ }}$ and $\mathrm{V}_{\text {REF.. }}$ In most applications, $\mathrm{V}_{\text {REF. }}$ is simply tied to analog ground such that the reference source drives $\mathrm{V}_{\text {REF }}$. The reference must be capable of supplying enough current to drive the minimum ladder resistance of $235 \Omega$ over temperature.
The HI-5700 is specified for a reference voltage of 4.0 volts, but will operate with voltages as high as the $\mathrm{V}_{\mathrm{DD}}$ supply. In the case of 4.0 volt reference operation, the converter encodes the analog input into a binary output in LSB increments of ( $\mathrm{V}_{\mathrm{REF}+}-\mathrm{V}_{\mathrm{REF}-}$ )/256, or 15.6 mV . Reducing the reference voltage reduces the LSB size proportionately and thus increases linearity errors. The minimum practical reference voltage is about 2.5 volts. Because the reference voltage terminals are subjected to internal transient currents during conversion, it is important to drive the reference pins from a low impedance source and to decouple thoroughly. Again, ceramic and tantalum ( $0.01 \mu \mathrm{~F}$ and $10 \mu \mathrm{~F}$ ) capacitors near the package pin are recommended. It is not necessary to decouple the $1 / 4 R, 1 / 2 R$, and $3 / 4 R$ tap point pins for most applications.
It is possible to elevate $V_{\text {REF }}$ from ground if necessary. In this case, the $\mathrm{V}_{\text {REF- }}$ pin must be driven from a low impedance reference capable of sinking the current through the resistor ladder. Careful decoupling is again recommended.

## Digital Control and Interface

The HI-5700 provides a standard high speed interface to external CMOS and TTL logic families. Two chip enable inputs control the three-state outputs of output bits D0 through D7 and the Overflow (OVF) bit. As indicated in the Truth Table, all output bits are high impedance when CE2 is low, and output bits D0 through D7 are independently controlled by CE1.
Although the Digital Outputs are capable of handling typical data bus loading, the bus capacitance charge/discharge currents will produce supply and local group disturbances. Therefore, an external bus driver is recommended.

## Clock

The clock should be properly terminated to digital ground near the clock input pin. Clock frequency defines the conversion frequency and controls the converter as described in the "Theory of Operation" section. The Auto Balance $\phi 1$ half cycle of the clock may be reduced to approximately 20ns; the Sample $\phi 2$ half cycle may be varied from a minimum of 25 ns to a maximum of $5 \mu \mathrm{~s}$.

## Signal Source

A current pulse is present at the analog input $\left(\mathrm{V}_{\mathrm{IN}}\right)$ at the beginning of every sample and auto balance period. The transient current is due to comparator charging and switch
feedthrough in the capacitor array. It varies with the amplitude of the analog input and the converter's sampling rate.
The signal source must absorb these transients prior to the end of the sample period to ensure a valid signal for conversion. Suitable broad band amplifiers or buffers which exhibit low output impedance and high output drive include the HFA-0005, HA-5004, HA-5002, and HA-5003.

The signal source may drive above or below the power supply rails, but should not exceed 0.5 V beyond the rails or damage may occur. Input voltages of -0.5 V to +0.5 LSB are converted to all zeroes; input voltages of $\mathrm{V}_{\text {REF }+}-0.5 \mathrm{LSB}$ to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$ are converted to all ones with the Overflow bit set.

## Full Scale Offset Error Adjustment

In applications where accuracy is of utmost importance, three adjustments can be made; i.e., offset, gain, and reference tap point trims. In general, offset and gain correction can be done in the preamp circuitry.

## Offset Adjustment

Offset correction can be done in the preamp driving the converter by introducing a DC component to the input signal. An alternate method is to adjust $\mathrm{V}_{\text {REF }}$ - to produce the desired offiset. It is adjusted such that the 0 to 1 code transition occurs at 0.5LSB.

## Gain Adjustment

In general, full scale error correction can be done in the preamp circuitry by adjusting the gain of the op amp. An alternate method is to adjust the $\mathrm{V}_{\text {REF }}+$ voltage. The reference voltage is the ideal location.

## Quarter Point Adjustment

The reference tap points are brought out for linearity adjustment or creating a nonlinear transfer function if desired. It is not necessary to decouple the $1 / 4 R, 1 / 2 R$, and $3 / 4 R$ tap points in most applications.

## Power Supplies

The HI-5700 operates nominally from 5 volt supplies but will work from 3 volts to 6 volts. Power to the device is split such that anaiog and digital circuits within the HI-5700 are powered separately. The analog supply should be well regulated and "clean" from significant noise, especially high frequency noise. The digital supply should match the analog supply within about 0.5 volts and should be referenced externally to the analog supply at a single point. Analog and digital grounds should not be separated by more that 0.5 volts. It is recommended that power supply decoupling capacitors be placed as close to the supply pins as possible. A combination of $0.01 \mu \mathrm{~F}$ ceramic and $10 \mu \mathrm{~F}$ tantalum capacitors is recommended for this purpose as shown in the test circuit.

## Reducing Power Consumption

Power dissipation in the $\mathrm{HI}-5700$ is related to clock frequency and clock duty cycle. For a fixed $50 \%$ clock duty cycle, power may be reduced by lowering the clock frequency. For a given conversion frequency, power may be reduced by decreasing the Auto-Balance ( $\phi 1$ ) portion of the clock duty cycle. This relationship is illustrated in the performance curves.

TABLE 2. CHIP ENABLE TRUTH TABLE

$\overline{\text { CE1 }}$	CE2	D0-D7	OVF
0	1	Valid	Valid
1	1	Three-State	Valid
$X$	0	Three-State	Three-State

X's = Don't Care.

TABLE 3. CODE TABLE

$\begin{gathered} \text { CODE } \\ \text { DESCRIPTION } \end{gathered}$	INPUT VOLTAGE* $\begin{aligned} V_{\text {REF }}^{+} & =4.0 \mathrm{~V} \\ V_{\text {REF }} & =0.0 \mathrm{~V} \end{aligned}$   (V)	DECIMAL COUNT	BINARY OUTPUT CODE								
			MSB							LSB	
			OVF	D7	D6	D5	D4	D3	D2	D1	D0
Overflow (OVF)	4.000	511	1	1	1	1	1	1	1	1	1
Full Scale (FS)	3.9375	255	0	1	1	1	1	1	1	1	1
FS - 1 LSB	3.875	254	0	1	1	1	1	1	1	1	0
3/4 FS	3.000	192	0	1	1	0	0	0	0	0	0
1/2 FS	2.000	128	0	1	0	0	0	0	0	0	0
1/4 FS	1.000	64	0	0	1	0	0	0	0	0	0
1 LSB	0.0156	1	0	0	0	0	0	0	0	0	1
Zero	0	0	0	0	0	0	0	0	0	0	0

* The voltages listed above represent the ideal transition of each output code shown as a function of the reference voltage.


FIGURE 3. TEST CIRCUIT

## Glossary of Terms

Aperture Delay: Aperture delay is the time delay between the external sample command (the rising edge of the clock) and the time at which the signal is actually sampled. This delay is due to internal clock path propagation delays.
Aperture Jitter: This is the RMS variation in the aperture delay due to variation of internal $\phi 1$ and $\phi 2$ clock path delays and variation between the individual comparator switching times.
Differential Linearity Error (DNL): The differential linearity error is the difference in LSBs between the spacing of the measured midpoint of adjacent codes and the spacing of ideal midpoints of adjacent codes. The ideal spacing of each midpoint is 1.0 LSB . The range of values possible is from -1.0LSB (which implies a missing code) to greater than +1.0LSB.

Full Power Input Bandwidth: Full power bandwidth is the frequency at which the amplitude of the fundamental of the digital output word has decreased 3dB below the amplitude of an input sine wave. The input sine wave has a peak-topeak amplitude equal to the reference voltage. The bandwidth given is measured at the specified sampling frequency.

Full Scale Error (FSE): Full Scale Error is the difference between the actual input voltage of the 254 to 255 code transition and the ideal value of $\mathrm{V}_{\text {REF }+}-1.5 \mathrm{LSB}$. This error is expressed in LSBs.

Integral Linearity Error (INL): The integral linearity error is the difference in LSBs between the measured code centers and the ideal code centers. The ideal code centers are calculated using a best fit line through the converter's transfer function.

LSB: Least Significant Bit $=\left(\mathrm{V}_{\text {REF }_{+}}-\mathrm{V}_{\text {REF }_{-}}\right) / 256$. All HI-5700 specifications are given for a 15.6 mV LSB size $\mathrm{V}_{\text {REF }+}=4.0 \mathrm{~V}$, $\mathrm{V}_{\text {REF- }}=0.0 \mathrm{~V}$.

Offset Error (VOS): Offset error is the difference between the actual input voltage of the 0 to 1 code transition and the ideal value of $\mathrm{V}_{\text {REF. }}+0.5 \mathrm{LSB}, \mathrm{V}_{\mathrm{OS}}$ Error is expressed in LSBs.

Power Supply Rejection Ratio (PSRR): PSRR is expressed in LSBs and is the maximum shift in code transition points due to a power supply voltage shift. This is measured at the 0 to 1 code transition point and the 254 to 255 code transition point with a power supply voltage shift from the nominal value of 5.0 V .

Signal to Noise Ratio (SNR): SNR is the ratio in dB of the RMS signal to RMS noise at specified input and sampling frequencies.

Signal to Noise and Distortion Ratio (SINAD): SINAD is the ratio in dB of the RMS signal to the RMS sum of the noise and harmonic distortion at specified input and sampling frequencies.

Total Harmonic Distortion (THD): THD is the ratio in dBc of the RMS sum of the first five harmonic components to the RMS signal for a specified input and sampling frequency.

## Features

- This Circuit is Processed in Accordance to Mil-Std883 and is Fully Conformant Under the Provisions of Paragraph 1.2.1.
- 20MSPS with No Missing Codes
- 18MHz Full Power Input Bandwidth
- No Missing Codes Over Temperature
- Sample and Hold Not Required
- Single +5 V Supply Voltage
- CMOS/TTL
- Overflow Bit


## Applications

- Video Digitizing
- Radar Systems
- Medical Imaging
- Communication Systems
- High Speed Data Acquisition Systems


## Description

The HI-5700/883 is a monolithic, 8-bit, CMOS Flash Analog-to-Digital Converter. It is designed for high speed applications where wide bandwidth, and low power consumption are essential. Its 20MSPS speed is made possible by a parallel architecture which also eliminates the need for an external sample and hold circuit. The HI-5700/883 delivers $\pm 0.5$ LSB differential nonlinearity while consuming only 725 mW (typical) at 20MSPS. Microprocessor compatible data output latches are provided which present valid data to the output bus 1.5 clock cycles after the convert command is received. An overflow bit is provided to allow the series connection of two converters to achieve 9 bit resolution.

## Ordering Information

PART NUMBER	TEMPERATURE   RANGE	PACKAGE
H $11-5700 \mathrm{~S} / 883$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	28 Pin CERDIP

## Pinout



Functional Block Diagram


## Pin Descriptions

PIN *	NAME	DESCRIPTION
1	CLK	Clock Input
2	D7	Bit 7, Output (MSB)
3	D6	Bit 6, Output
4	D5	Bit 5, Output
5	D4	Bit 4, Output
6	1/4R	1/4th Point of Reference Ladder
7	$V_{\text {D }}$	Digital Power Supply
8	GND	Digital Ground
9	3/4R	3/4th Point of Reference Ladder
10	D3	Bit 3, Output
11	D2	Bit 2, Output
12	D1	Bit 1, Output
13	D0	Bit 0, Output (LSB)
14	OVF	Overflow, Output
15	CE2	Three State Output Enable Input, Active High. (See Truth Table)
16	CE1	Three State Output Enable Input, Active Low. (See Truth Table))
17	$\mathrm{V}_{\text {REF+ }}$	Reference Voltage Positive Input


PIN *	NAME	DESCRIPTION
18	$\mathrm{AV}_{\mathrm{DD}}$	Analog Power Supply, +5V
19	AGND	Analog Ground
20	AGND	Analog Ground
21	$\mathrm{AV}_{\mathrm{DD}}$	Analog Power Supply, +5V
22	1/2R	1/2 Point of Reference Ladder
23	$\mathrm{AV}_{\mathrm{DD}}$	Analog Power Supply, +5V
24	AGND	Analog Ground
25	AGND	Analog Ground
26	$\mathrm{AV}_{\mathrm{DD}}$	Analog Power Supply, +5V
27	$V_{\text {REF }}$.	Reference Voltage Negative Input
28	$\mathrm{V}_{\text {IN }}$	Analog Input

## Chip Enable Truth Table

CE1	CE2	D0-D7	OVF
0	1	Valid	Valid
1	1	Three-State	Valid
$X$	0	Three-State	Three-State

X = Don't Care.

## Absolute Maximum Ratings

Supply Voltage, $\mathrm{V}_{\mathrm{DD}}$ to GND . . . . . . . (GND -0.5 ) < $\mathrm{V}_{\mathrm{DD}}<+7.0 \mathrm{~V}$	
Anaiog and Reference input Pins. . ( $\left.\mathrm{V}_{\text {SS }}-0.5\right)<\mathrm{V}_{\text {INA }}<\left(\mathrm{V}_{\text {DD }}+0.5 \mathrm{~V}\right)$	
Digital I/O Pins . . . . . . . . . . . . . (G)	${ }_{10}<\left(\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}\right)$
Operating Temperature Range	
H11-5700S/883	$55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Junction Temperature	. $+175^{\circ} \mathrm{C}$
Storage Temperature Range	to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec.$)$	$300^{\circ} \mathrm{C}$
sific	Class

## Thermal Information



1. Dissipation rating assumes device is mounted with all leads soldered to printed circuit board.

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS
Device Tested at: $\quad A V_{D D}=V_{D D}=+5.0 \mathrm{~V} ; \mathrm{V}_{\text {REF }+}=+4.0 \mathrm{~V} ; \mathrm{V}_{\text {REF }-}=\mathrm{GND}=\mathrm{AGND}=0 \mathrm{~V} ; \mathrm{F}_{\mathrm{S}}=$ Specified Clock Frequency © $50 \%$ Duty Cycle; $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$; Unless Otherwise Specified.

DC PARAMETERS	SYMBOL	CONDITIONS	GROUP A SUBGROUP	TEMPERATURE	LIMITS		UNIT
					MIN	MAX	
ACCURACY							
Integral Linearity Error (Best Fit Method)	INL	$\mathrm{F}_{\mathrm{S}}=15 \mathrm{MHz}, \mathrm{f}_{\text {in }}=\mathrm{DC}$	1	$+25^{\circ} \mathrm{C}$	$\bullet$	$\pm 2.0$	LSB
			2, 3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	-	$\pm 2.65$	LSB
		$\mathrm{F}_{\mathrm{S}}=20 \mathrm{MHz}, \mathrm{f}_{\text {in }}=\mathrm{DC}$	1	$+25^{\circ} \mathrm{C}$	-	$\pm 2.25$	LSB
			2, 3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	-	$\pm 4.1$	LSB
Differential Linearity Error (Guaranteed No Missing Codes)	DNL	$F_{S}=15 \mathrm{MHz}, \mathrm{f}_{\text {in }}=\mathrm{DC}$	1	$+25^{\circ} \mathrm{C}$	-	$\pm 0.9$	LSB
			2, 3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	-	$\pm 1.0$	LSB
		$\mathrm{F}_{\mathrm{S}}=20 \mathrm{MHz}, \mathrm{f}_{\text {in }}=\mathrm{DC}$	1	$+25^{\circ} \mathrm{C}$	-	$\pm 0.9$	LSB
			2, 3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	-	$\pm 1.0$	LSB
Offset Error   (Adjustable to zero)	VOS	$F_{S}=15 \mathrm{MHz}, \mathrm{f}_{\text {in }}=D C$	1	$+25^{\circ} \mathrm{C}$	-	$\pm 8.0$	LSB
			2, 3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	-	$\pm 9.5$	LSB
		$F_{S}=20 \mathrm{MHz}, \mathrm{f}_{\text {in }}=\mathrm{DC}$	1	$+25^{\circ} \mathrm{C}$	-	$\pm 8.0$	LSB
			2, 3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	-	$\pm 9.5$	LSB
Full Scale Error (Adjustable to zero)	FSE	$F_{S}=15 \mathrm{MHz}, \mathrm{f}_{\text {in }}=D C$	1	$+25^{\circ} \mathrm{C}$	$\bullet$	$\pm 4.5$	LSB
			2, 3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	-	$\pm 8.0$	LSB
		$F_{S}=20 \mathrm{MHz}, \mathrm{f}_{\text {in }}=\mathrm{DC}$	1	$+25^{\circ} \mathrm{C}$	$\bullet$	$\pm 4.5$	LSB
			2, 3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	-	$\pm 8.0$	LSB
ANALOG INPUT							
Analog Input Resistance	$\mathrm{R}_{\text {IN }}$	$\mathrm{V}_{1 \mathrm{~N}}=4 \mathrm{~V}$	1	$+25^{\circ} \mathrm{C}$	4	-	M $\Omega$
			2, 3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	4	-	M $\Omega$
Analog Input Bias Current	$I_{B}$	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, 4 \mathrm{~V}$	1	$+25^{\circ} \mathrm{C}$		$\pm 1.0$	$\mu \mathrm{A}$
			2, 3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$		$\pm 1.0$	$\mu \mathrm{A}$

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)
Device Tested at: $\quad A V_{D D}=V_{D D}=+5.0 V_{;} V_{\text {REF }+}=+4.0 V_{;} V_{\text {REF- }}=G N D=A G N D=0 V ; F_{S}=$ Specified Clock Frequency © $50 \%$ Duty Cycle; $C_{L}=30 \mathrm{pF}$; Unless Otherwise Specified.

DC PARAMETERS	SYMBOL	CONDITIONS	GROUP A SUBGROUP	TEMPERATURE	LIMITS		UNIT
					MIN	MAX	
REFERENCE INPUT							
Total Reference Resistance	$\mathrm{R}_{\mathrm{L}}$		1	$+25^{\circ} \mathrm{C}$	250	-	$\Omega$
			2, 3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	235	-	$\Omega$
DIGITAL INPUTS							
Input High Voltage	$\mathrm{V}_{\mathrm{IH}}$		1	$+25^{\circ} \mathrm{C}$	2.0	-	V
			2, 3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	2.0	-	V
Input Low Voltage	$\mathrm{V}_{\text {IL }}$		1	$+25^{\circ} \mathrm{C}$	-	0.8	V
			2, 3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	-	0.8	V
Logic Input Current	IN	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V},+5 \mathrm{~V}$	1	$+25^{\circ} \mathrm{C}$	-	$\pm 1$	$\mu \mathrm{A}$
			2, 3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	-	$\pm 1$	$\mu \mathrm{A}$
DIGITAL OUTPUTS							
Output Leakage	$\mathrm{l}_{\mathrm{Oz}}$	$C E 2=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}, 5 \mathrm{~V}$	1	$+25^{\circ} \mathrm{C}$	-	$\pm 1.0$	$\mu \mathrm{A}$
			2, 3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	-	$\pm 1.0$	$\mu \mathrm{A}$
Output Logic Source Current	IOH	$\mathrm{V}_{\mathrm{O}}=4.5 \mathrm{~V}$	1	$+25^{\circ} \mathrm{C}$	-3.2	-	mA
			2, 3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	-3.2	$\bullet$	mA
Output Logic Sink Current	loL	$\mathrm{V}_{0}=0.4 \mathrm{~V}$	1	$+25^{\circ} \mathrm{C}$	3.2	-	mA
			2, 3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	3.2	-	mA
POWER SUPPLY REJECTION							
Offset Error PSRR	$\Delta \mathrm{VOS}$	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%$	1	$+25^{\circ} \mathrm{C}$	-	$\pm 2.75$	LSB
			2, 3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	-	$\pm 5.5$	LSB
Gain Error PSRR	$\Delta \mathrm{FSE}$	$V_{D D}=5 V \pm 10 \%$	1	$+25^{\circ} \mathrm{C}$	-	$\pm 2.75$	LSB
			2, 3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	-	$\pm 5.5$	LSB

POWER SUPPLY CURRENT

Supply Current	$\mathrm{I}_{\mathrm{DD}}$	$\mathrm{F}_{\mathrm{S}}=20 \mathrm{MHz}$	1	$+25^{\circ} \mathrm{C}$	-	180	mA
			2,3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	-	190	mA

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS
Device Tested at: $\quad A V_{D D}=V_{D D}=+5.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{REF}+}=+4.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{REF}}=\mathrm{GND}=\mathrm{AGND}=0 \mathrm{~V} ; \mathrm{F}_{\mathrm{S}}=$ Specified Clock Frequency © $50 \%$ Duty Cycle; $C_{L}=30 \mathrm{pF}$; Unless Otherwise Specified.

AC PARAMETER	SYMBOL	CONDITIONS	GROUP A SUBGROUP	TEMPERATURE	LIMITS		UNIT
					MIN	MAX	
Maximum Conversion Rate		No Missing Codes	9	$+25^{\circ} \mathrm{C}$	20	-	MSPS
			10, 11	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	20	-	MSPS
Data Output Enable Time	$t_{\text {EN }}$		9	$+25^{\circ} \mathrm{C}$	-	25	ns
			10, 11	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	-	30	ns
Data Output Disable Time	tols		9	$+25^{\circ} \mathrm{C}$	-	20	ns
			10, 11	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	-	25	ns
Data Output Delay	too		9	$+25^{\circ} \mathrm{C}$	-	25	ns
			10, 11	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	-	30	ns
Data Output Hold	$\mathrm{tH}_{4}$		9	$+25^{\circ} \mathrm{C}$	10	-	ns
			10, 11	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	5	-	ns

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS
Device Characterized at: $\quad A V_{D D}=V_{D D}=+5.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{REF}+}=+4.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{REF}}=\mathrm{GND}=\mathrm{AGND}=\mathrm{OV} ; \mathrm{F}_{\mathrm{S}}=$ Specified Clock Frequency © $50 \%$ Duty Cycle; $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$; Unless Otherwise Specified.

PARAMETER	SYMBOL	CONDITIONS	TEMPERAUTRE	LIMITS		UNIT
				MIN	MAX	
Minimum Conversion Rate		No missing codes	$+25^{\circ} \mathrm{C},+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	-	0.125	MSPS

NOTE:
2. Parameters listed in Table 3 are controlled via design or process parameters and are not directly tested at final production. These parameters are lab characterized upon initial design release, or upon design changes. These parameters are guaranteed by characterization based upon data from multiple production runs which reflect lot to lot and within lot variation.

TABLE 4. ELECTRICAL TEST REQUIREMENTS

MIL-STD-883 TEST REQUIREMENTS	SUBGROUPS (SEE TABLES 1 \& 2)
Interim Electrical Parameters (Pre Burn-In)	1
Final Electrical Test Parameters	$1^{*}, 2,3,9,10,11$
Group A Test Requirements	$1,2,3,9,10,11$
Groups C \& D Endpoints	1

* PDA applies to Subgroup 1 only. No other subgroups are included in PDA.


## Timing Waveforms



FIGURE 1. INPUT-TO-OUTPUT TIMING


FIGURE 2. OUTPUT ENABLE TIMING

## Burn-In Circuit

## H1-5700/883 CERAMIC DIP



## Metallization Topology

DIE DIMENSIONS:
$154.3 \times 173.2 \times 19 \pm 1 \mathrm{mils}$
METALLIZATION:
Type: Si - Al
Thickness: $11 \mathrm{k} \AA \pm 1 \mathrm{k} \AA$

## GLASSIVATION:

Type: $\mathrm{SiO}_{2}$
Thickness: $8 \mathrm{k} \AA \pm 1 \mathrm{k} \AA$
DIE ATTACH:
Material: Gold Silicon Eutectic Alloy
Temperature:Ceramic DIP $-460^{\circ} \mathrm{C}$ (Max)
WORST CASE CURRENT DENSITY: $3.05 \times 10^{4} \mathrm{Alm}^{2}$

## Metallization Mask Layout



## Packaging ${ }^{\dagger}$

28 PIN CERAMIC DIP


- INCREASE MAX LMIT BY . 003 INCHES MEASURED AT CENTER OF FLAT FOR - SOLDER FINISH

LEAD MATERIAL: Type B
LEAD FINISH: Type A
PACKAGE MATERIAL: Ceramic, 90\% Alumina PACKAGE SEAL:

Material: Glass Frit Temperature: $450^{\circ} \mathrm{C} \pm 10^{\circ} \mathrm{C}$ Method: Furnace Seal

INTERNAL LEAD WIRE:
Material: Aluminum
Diameter: 1.25 Mil
Bonding Method: Ultrasonic
COMPLIANT OUTLINE: 38510-D-10

## 6 Bit, 30 MSPS Flash A/D Converter

## Features

- 30 MSPS with No Missing Codes
- 20MHz Full Power Input Bandwidth
- No Missing Codes Over Temperature
- Sample and Hold Not Required
- Single +5V Supply Voltage
- 300mW (Max) Power Dissipation
- CMOSTTTL Compatible
- Overflow Bit


## Applications

- Video Digitizing
- Radar Systems
- Communication Systems
- High Speed Data Acquisition Systems


## Description

The HI-5701 is a monolithic, 6 bit, CMOS flash Analog-toDigital Converter. It is designed for high speed applications where wide bandwidth and low power consumption are essential. Its 30 MSPS speed is made possible by a parallel architecture which also eliminates the need for an external sample and hold circuit. The Hl-5701 delivers $\pm 0.7$ LSB differential nonlinearity while consuming only 250 mW (typical) at 30 MSPS. Microprocessor compatible data output latches are provided which present valid data to the output bus 1.5 clock cycles after the convert command is received. An overflow bit is provided to allow the series connection of two converters to achieve 7 bit resolution.

The HI-5701 is available in Commercial and Industrial temperature ranges and is supplied in 18 pin Plastic DIP and SOIC packages.

## Ordering Information

PART   NUMBER	TEMPERATURE   RANGE	PACKAGE
HI3-5701K-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	18 Pin Plastic DIP
HI9P5701K-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	18 Pin SOIC
HI3-5701B-9	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	18 Pin Plastic DIP
HI9P5701B-9	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	18 Pin SOIC

## Pinout



Functional Block Diagram


## Absolute Maximum Ratings

Supply Voltage, $V_{D D}$ to $V_{S S} \ldots \ldots . . .\left(V_{S S}-0.5\right)<V_{D D}<+7.0 \mathrm{~V}$
Analog and Reference Input Pins. ..... $\left(V_{S S}-0.5\right)<V_{I N A}<\left(V_{D D}+0.5 \mathrm{~V}\right)$
Digital I/O Pins . . . . . . . . . . . . . . ( $\left.\mathrm{V}_{S S}-0.5\right)<\mathrm{V}_{10}<\left(\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}\right)$
Operating Temperature Range
HI3-5701-5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
HI9P5701-9 . . . . . . . . . . . . . . . . . . . . . . . . . . . $40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $+150^{\circ} \mathrm{C}$
Storage Temperature Range . . . . . . . . . . . . . . . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec.) . . . . . . . . . . . . . . . . . 3000 C
NOTE:

1. Dissipation rating assumes device is mounted with all leads soldered to printed circuit board.

CAUTION: Stresses above those listed in the "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operation section of this specification is not implied.

Electrical Specifications: $\mathrm{V}_{\mathrm{DD}}=+5.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{REF}+}=+4.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{REF} .}=\mathrm{V}_{\mathrm{SS}}=\mathrm{GND} ; \mathrm{F}_{\mathrm{S}}=$ Specified Clock Frequency (1) $50 \%$ Duty Cycle; $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$; Unless Otherwise Specified.

PARAMETER	TEST CONDITION	$+25^{\circ} \mathrm{C}$			$\begin{gathered} \text { (NOTE 2) } \\ 0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \\ -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{gathered}$		UNITS
		MIN	TYP	MAX	MIN	MAX	
SYSTEM PERFORMANCE							
Resolution		6			6		Bits
Integral Linearity Error (INL) (Best Fit Line)	$\begin{aligned} & \mathrm{F}_{\mathrm{S}}=20 \mathrm{MHz} \\ & \mathrm{~F}_{\mathrm{S}}=30 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & \pm 0.5 \\ & \pm 1.5 \end{aligned}$	$\pm 1.25$		$\pm 2.0$	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \end{aligned}$
Differential Linearity Error (DNL) (Guaranteed No Missing Codes)	$\begin{aligned} & \mathrm{F}_{\mathrm{S}}=20 \mathrm{MHz} \\ & \mathrm{~F}_{\mathrm{S}}=30 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & \pm 0.3 \\ & \pm 0.7 \end{aligned}$	$\pm 0.6$		$\pm 0.75$	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \end{aligned}$
Offset Error (VOS)   (Adjustable to Zero)	$\begin{aligned} & \mathrm{F}_{\mathrm{S}}=20 \mathrm{MHz}(\text { Note } 2) \\ & \mathrm{F}_{\mathrm{S}}=30 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & \pm 0.5 \\ & \pm 0.5 \end{aligned}$	$\pm 2.0$		$\pm 2.5$	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \end{aligned}$
Full Scale Error (FSE) (Adjustable to Zero)	$\begin{aligned} & \mathrm{F}_{\mathrm{S}}=20 \mathrm{MHz}(\text { Note } 2) \\ & \mathrm{F}_{\mathrm{S}}=30 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & \pm 0.25 \\ & \pm 0.25 \end{aligned}$	$\pm 2.0$		$\pm 2.5$	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \end{aligned}$
DYNAMIC CHARACTERISTICS							
Maximum Conversion Rate	No Missing Codes	30	40		30		MSPS
Minimum Conversion Rate	No Missing Codes (Note 2)			0.125		0.125	MSPS
Full Power Input Bandwidth	$\mathrm{F}_{\mathrm{S}}=30 \mathrm{MHz}$		20				MHz
Signal to Noise Ratio (SNR) $=\frac{\text { RMS Signal }}{\text { RMS Noise }}$	$\begin{aligned} & F_{S}=1 \mathrm{MHz}, f_{I_{N}}=100 \mathrm{kHz} \\ & F_{S}=30 \mathrm{MHz}, f_{\mathrm{I}_{\mathrm{N}}}=4 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & 36 \\ & 31 \end{aligned}$				$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
$\begin{aligned} & \text { Signal to Noise Ratio (SINAD) } \\ & \quad=\frac{\text { RMS Signal }}{\text { RMS Noise + Distortion }} \end{aligned}$	$\begin{aligned} & F_{S}=1 \mathrm{MHz}, f_{\mathrm{I}_{\mathrm{N}}}=100 \mathrm{kHz} \\ & \mathrm{~F}_{\mathrm{S}}=30 \mathrm{MHz}, \mathrm{f}_{\mathrm{IN}}=4 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & 35 \\ & 30 \end{aligned}$				$\mathrm{dB}$ $\mathrm{dB}$
Total Harmonic Distortion	$\begin{aligned} & F_{S}=1 \mathrm{MHz}, f_{I_{N}}=100 \mathrm{kHz} \\ & F_{S}=30 \mathrm{MHz}, \mathrm{f}_{\mathrm{IN}}=4 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & -44 \\ & -38 \end{aligned}$				$\mathrm{dBc}$ $\mathrm{dBc}$
Differential Gain	$\mathrm{F}_{\mathrm{S}}=14.32 \mathrm{MHz}, \mathrm{f}_{\mathrm{N}}=3.58 \mathrm{MHz}$		2				\%
Differential Phase	$\mathrm{F}_{\mathrm{S}}=14.32 \mathrm{MHz}, \mathrm{f}_{\mathrm{N}}=3.58 \mathrm{MHz}$		2				Degree
ANALOG INPUT							

Electrical Specifications: $\mathrm{V}_{\mathrm{DD}}=+5.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{REF}+}=+4.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{REF}}=\mathrm{V}_{\mathrm{SS}}=\mathrm{GND} ; \mathrm{F}_{\mathbf{S}}=$ Specified Clock Frequency © $\mathbf{5 0 \%}$ Duty Cycle; $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$; Unless Otherwise Specified. (Continued)

PARAMETER	TEST CONDITION	$+25^{\circ} \mathrm{C}$			$\begin{gathered} \text { (NOTE 2) } \\ 0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \\ -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{gathered}$		UNITS
		MIN	TYP	MAX	MIN	max	
Analog Input Resistance, $\mathrm{R}_{\text {IN }}$ Analog input Capacitance, $\mathrm{C}_{\mathbb{N}}$ Analog Input Bias Current, IB	$\begin{aligned} & V_{I N}=4 V \\ & V_{I N}=0 V \\ & V_{I N}=0 V, 4 V \end{aligned}$		$\begin{gathered} 30 \\ 20 \\ 0.01 \end{gathered}$	$\pm 1.0$		$\pm 1.0$	$\mathrm{M} \Omega$ pF $\mu \mathrm{A}$
REFERENCE INPUT							
Total Reference Resistance, $\mathrm{R}_{\mathrm{L}}$		250	370		235		$\Omega$
Reference Resistance Tempco, $\mathrm{T}_{\mathrm{C}}$			+0.266				$\Omega /{ }^{\circ} \mathrm{C}$
DIGITAL INPUTS							
Input Logic High Voltage, $\mathrm{V}_{\mathrm{IH}}$ Input Logic Low Voltage, $\mathrm{V}_{\mathrm{IL}}$ Input Logic High Current, $\mathrm{I}_{\mathrm{H}}$ Input Logic Low Current, IIL Input Capacitance, $\mathrm{C}_{\mathrm{IN}}$	$\begin{aligned} & V_{\mathbb{I N}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathbf{I N}}=0 \mathrm{~V} \end{aligned}$	2.0	7	0.8 1.0 1.0	2.0	0.8 1.0 1.0	$V$ $V$ $\mu A$ $\mu A$ PF
DIGITAL OUTPUTS							
Output Logic Sink Current, IOL   Output Logic Source Current, IOH   Output Leakage, loff   Output Capacitance, Cout	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{O}}=4.5 \mathrm{~V} \\ & \mathrm{CE} 2=0 \mathrm{~V} \\ & \mathrm{CE} 2=0 \mathrm{~V} \end{aligned}$	$\begin{gathered} 3.2 \\ -3.2 \end{gathered}$	5.0	$\pm 1.0$	3.2 -3.2	$\pm 1.0$	mA mA $\mu \mathrm{A}$ pF
TIMING CHARACTERISTICS							
Aperture Delay, $\mathrm{t}_{\mathrm{AP}}$   Aperture Jitter, $\mathrm{t}_{\mathrm{A} \mathrm{J}}$   Data Output Enable Time, $\mathrm{t}_{\mathrm{EN}}$   Data Output Disable Time, $\mathrm{t}_{\mathrm{DI}}$   Data Output Delay, too   Data Output Hold, t	(Note 2)   (Note 2)   (Note 2)   (Note 2)	5	6 30 12 11 14 10	20 20 20	5	20 20 20	ns ps ns ns ns ns
POWER SUPPLY REJECTION							
Offset Error PSRR, $\Delta$ VOS Gain Error PSRR, $\triangle$ FSE	$\begin{aligned} & V_{D D}=5 V \pm 10 \% \\ & V_{D D}=5 \mathrm{~V} \pm 10 \% \end{aligned}$		$\begin{aligned} & \pm 0.1 \\ & \pm 0.1 \end{aligned}$	$\begin{aligned} & \pm 1.0 \\ & \pm 1.0 \end{aligned}$		$\begin{aligned} & \pm 1.5 \\ & \pm 1.5 \end{aligned}$	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \end{aligned}$
POWER SUPPLY CURRENT							
Supply Current, IDD	$\mathrm{F}_{\mathrm{S}}=30 \mathrm{MHz}$		50	60		75	mA

NOTE:
2. Parameter guaranteed by design or characterization and not production tested.

## Timing Waveforms



FIGURE 1. INPUT-TO-OUTPUT TIMING


FIGURE 2. OUTPUT ENABLE TIMING

## Typical Performance Curves



ENOB vs TEMPERATURE




INL vs TEMPERATURE


DNL vs TEMPERATURE


## Typical Performance Curves (Continued)



SUPPLY CURRENT vs TEMPERATURE



TABLE 1. PIN DESCRIPTION

PIN \#	NAME	DESCRIPTION
1	D5	Bit 6, Output (MSB)
2	OVF	Overflow, Output
3	$\mathrm{V}_{\text {S }}$	Digital Ground
4	NC	No Connection
5	CE2	Three-State Output Enable Input, Active High (See Table 2).
6	$\overline{\mathrm{CE}}$	Three-State Output Enable Input, Active Low (See Table 2).
7	CLK	Clock Input
8	PHASE	Sample Clock Phase Control Input. When Phase is Low, Sample Unknown ( $\phi 1$ ) Occurs When the Clock is Low and Auto Balance ( $\phi 2$ ) Occurs When the Clock is High (See Text).
9	$\mathrm{V}_{\text {REF+ }}$	Reference Voltage Positive Input
10	$\mathrm{V}_{\text {REF }}$.	Reference Voltage Negative Input
11	$\mathrm{V}_{\mathrm{IN}}$	Analog Signal Input
12	$V_{D D}$	Power Supply, +5V
13	DO	Bit 1, Output (LSB)
14	D1	Bit 2, Output
15	D2	Bit 3, Output
16	1/2 R2	Reference Ladder Midpoint
17	D3	Bit 4, Output
18	D4	Bit 5, Output

## Theory of Operation

The HI-5701 is a 6 bit analog-to-digital converter based on a parallel CMOS "flash" architecture. This flash technique is an extremely fast method of AND conversion because all bit decisions are made simultaneously. In all, 64 comparators are used in the HI-5701; 63 comparators to encode the output word, plus an additional comparator to detect an overflow condition.

The CMOS HI-5701 works by alternately switching between a "Sample" mode and an "Auto Balance" mode. Splitting up the comparison process in this CMOS technique offers a number of significant advantages. The offset voltage of each CMOS comparator is dynamically canceled with each conversion cycle such that offset voltage drift is virtually eliminated during operation. The block diagram and timing diagram illustrate how the HI-5701 CMOS flash converter operates.

The input clock which controls the operation of the HI-5701 is first split into a non-inverting $\phi 1$ clock and an inverting $\phi 2$ clock. These two clocks, in turn, synchronize all internal timing of analog switches and control logic within the converter.

In the "Auto Balance" mode ( $\phi 1$ ), all $\phi 1$ switches close and $\phi 2$ switches open. The output of each comparator is momentarily tied to its own input, self-biasing the comparator midway between $V_{S S}$ and $V_{D D}$ and presenting a low impedance to a small input capacitor. Each capacitor, in turn, is connected to a reference voltage tap from the resistor ladder. The Auto Balance mode quickly precharges all 64 input capacitors between the self-bias voltage and each respective tap voltage.

In the "Sample" mode ( $\phi 2$ ), all $\phi 1$ switches open and $\phi 2$ switches close. This places each comparator in a sensitive high gain amplifier configuration. In this open loop state, the input impedance is very high and any small voltage shift at the input will drive the output either high or low. The $\phi 2$ state also switches each input capacitor from its reference tap to the input signal. This instantly transfers any voltage difference between the reference tap and input voltage to the comparator input. All 64 comparators are thus driven simultaneously to a defined logic state. For example, if the input voltage is at mid-scale, capacitors precharged near zero during $\phi 1$ will push comparator inputs higher than the self bias voltage at $\phi 2$; capacitors precharged near the reference voltage push the respective comparator inputs lower than the bias point. In general, all capacitors precharged by taps above the input voltage force a "low" voltage at comparator inputs; those precharged below the input voltage force "high" inputs at the comparators.

During the next $\phi 1$ state, comparator output data is latched into the encoder logic block and the first stage of encoding takes place. The following $\phi 2$ state completes the encoding process. The 6 data bits (plus overflow bit) are latched into the output flip-flops at the next falling clock edge. The Overflow bit is set if the input voltage exceeds $\mathrm{V}_{\text {REF }+}-1 / 2 \mathrm{LSB}$. The output bus may be either enabled or disabled according to the state of $\overline{C E 1}$ and CE2 (See Table 2). When disabled, output bits assume a high impedance state.

As shown in the timing diagram, the digital output word becomes valid after the second $\phi 1$ state. There is thus a one and a half cycle pipeline delay between input sample and digital output. "Data Output Delay" time indicates the slight time delay for data to become valid at the end of the $\phi 1$ state. Refer to the Glossary of Terms for other definitions.

## Applications Information

## Voltage Reference

The reference voltage is applied across the resistor ladder at the input of the converter, between $\mathrm{V}_{\mathrm{REF}}+$ and $\mathrm{V}_{\mathrm{REF}}$. In most applications, $V_{\text {REF- }}$ is simply tied to analog ground such that the reference source drives $\mathrm{V}_{\text {REF+ }}$. The reference must be capable of supplying enough current to drive the minimum ladder resistance of $\mathbf{2 3 5}$ Ohms over temperature.

The H-5701 is specified for a reference voltage of 4.0 volts, but will operate with voltages as high as the $\mathrm{V}_{\mathrm{DD}}$ supply. In the case of 4.0 volt reference operation, the converter encodes the analog input into a binary output in LSB increments of $\left(\mathrm{V}_{\text {REF+ }}-\mathrm{V}_{\text {REF.- }}\right.$ ) 64 , or 62.5 mV . Reducing the reference voltage reduces the LSB size proportionately and thus increases linearity errors. The minimum practical reference voltage is about 2 volts. Because the reference voltage terminals are subjected to internal transient currents during conversion, it is important to drive the reference pins from a low impedance source and to decouple thoroughly. Again, ceramic and tantalum ( $0.01 \mu \mathrm{~F}$ and $10 \mu \mathrm{~F}$ ) capacitors near the package pin are recommended. It is not necessary to decouple the $1 / 2 R$ tap point pin for most applications.

It is possible to elevate $\mathrm{V}_{\text {REF }}$ - from ground if necessary. In this case, the $V_{\text {REF- }}$ pin must be driven from a low impedance reference capable of sinking the current through the resistor ladder. Careful decoupling is again recommended.

## Digital Control and Interface

The $\mathrm{Hl}-5701$ provides a standard high speed interface to external CMOS and TTL logic families. Four digital inputs are provided to control the function of the converter. The clock and phase inputs control the sample and auto balance modes. The digital outputs change state on the clock phase which begins the sample mode. Two chip enable inputs control the three-state outputs of output bits D0 through D5 and the Overilow OVF bit. As indicated in Table 2, all output bits are high impedance when CE2 is low, and output bits DO through D5 are independently controlled by CE1.

Although the Digital Outputs are capable of handling typical data bus loading, the bus capacitance charge/discharge currents will produce supply and local ground disturbances. Therefore, an external bus driver is recommended.

## Clock

The clock should be properly terminated to digital ground near the clock input pin. Clock frequency defines the conversion frequency and controls the converter as described in the "Theory of Operation" section. The Auto Balance $\phi 1$ half cycle of the clock may be reduced to 16 ns ; the Sample $\phi 2$ half cycle may be varied from a minimum of 16 ns to a maximum of $8 \mu \mathrm{~s}$.

TABLE 2. CHIP ENABLE TRUTH TABLE

$\overline{\text { CE1 }}$	CE2	D0-D5	OVF
0	1	Valid	Valid
1	1	Three-State	Valid
$X$	0	Three-State	Three-State

X = Don't Care

TABLE 3. PHASE CONTROL

CLOCK	PHASE	INTERNAL GENERATION
0	0	Sample Unknown $(\phi 2)$
0	1	Auto Balance $(\phi 1)$
1	0	Auto Balance $(\phi 1)$
1	1	Sample Unknown $(\phi 2)$

## Gain and Offset Adjustment

In applications where accuracy is of utmost importance, three adjustments can be made; i.e., offset, gain, and midpoint trim. In general, offset and gain correction can be done in the preamp circuitry.

## Offset Adjustment

The preferred offiset correction method is to introduce a DC component to $\mathrm{V}_{\mathrm{IN}}$ of the converter. An alternate method is to adjust the $V_{\text {REF }}$. input to produce the desired offset adjustment. The theoretical input voltage to produce the first transition is $1 / 2$ LSB.
$V_{I N}(0$ to 1 transition $)=1 / 2 L S B=1 / 2\left(V_{\text {REF }} / 64\right)=V_{\text {REF }} / 128$

## Gain Adjustment

In general, full scale error correction can be done in the preamp circuitry by adjusting the gain of the op amp. An alternate method is to adjust the $\mathrm{V}_{\text {REF }+}$ input voltage. This adjustment is performed by setting $\mathrm{V}_{\text {IN }}$ to the 63 to overflow transition. The theoretical input voltage to produce the transition is $1 / 2$ LSB less than $\mathrm{V}_{\text {REF+ }}$ and is calculated as follows:

$$
\mathrm{V}_{\mathbb{N}}(63 \text { to } 64 \text { transition })=\mathrm{V}_{\text {REF }}-\left(\mathrm{V}_{\text {REF }} / 128\right)=\mathrm{V}_{\text {REF }}(127 / 128) .
$$

To perform the gain trim, first do the offset trim and then apply the required $\mathrm{V}_{\mathbb{I N}}$ for the 63 to overfiow transition. Now adjust $\mathrm{V}_{\text {REF }+}$ until that transition occurs on the outputs.

## Midpoint Trim

The reference center ( $1 / 2 \mathrm{R}$ ) is available to the user as the midpoint of the resistor ladder. The 1/2R point can be used to improve linearity or create unique transfer functions. The offset and gain trims should be done prior to adjusting the midpoint. The theoretical transition from count 31 to 32 occurs at 31.5 LSB's. That voltage is calculated as follows:

$$
V_{I N}(31 \text { to } 32 \text { transition })=31.5\left(V_{\text {REF }} / 64\right)=V_{R E F}(63 / 128) .
$$

An adjustable voltage follower can be used to drive the $1 / 2 R$ pin. Set $\mathrm{V}_{\text {IN }}$ to the 31 to 32 transition voltage, then adjust the voltage follower until the transition occurs on the output bits.

## Signal Source

A current pulse is present at the analog input $\left(\mathrm{V}_{\mathbf{I N}}\right)$ at the beginning of every sample and auto balance period. The transient current is due to comparator charging and switch feed through in the capacitor array. It varies with the amplitude of the analog input and the sampling rate.

The signal source must be capable of recovering from the transient prior to the end of the sample period to ensure a valid signal for conversion. Suitable broad band amplifiers or buffers which exhibit low output impedance and high output drive include the HFA-0005, HA-5004, HA-5002, and HA-5033.

The signal source may drive above or below the power supply rails, but should not exceed 0.5 V beyond the rails or damage may occur. Input voltages of -0.5 V to $+1 / 2 \mathrm{LSB}$ are converted to all zeros; input voltages of $\mathrm{V}_{\text {REF }+}-1 / 2 \mathrm{LSB}$ to $V_{D D}+0.5$ are converted to all ones with the Overflow bit set.

## Power Supplies

The HI-5701 operates nominally from 5 volt supplies but will function from 3 volts to 6 volts. The analog supply should be
well regulated and "clean" of significant noise, especially high frequency noise. It is recommended that power supply decoupling capacitors be placed as close to the supply pins as possible. A combination of $0.01 \mu \mathrm{~F}$ ceramic and $10 \mu \mathrm{~F}$ tantalum capacitors is recommended for this purpose as shown in the test circuit Figure 4.

## Reducing Power Consumption

Power dissipation in the $\mathrm{HI}-5701$ is related to clock frequency and clock duty cycle. For a fixed 50\% clock duty cycle, power may be reduced by lowering the clock frequency. For a given conversion frequency, power may be reduced by shortening the Auto Balance $\phi 1$ portion of the clock duty cycle.

TABLE 4. OUTPUT CODE TABLE

CODE DESCRIPTION	INPUT VOLTAGE* $\begin{aligned} & V_{\text {REF }_{+}}=4.0 \mathrm{~V} \\ & V_{\text {REF }}=0 \end{aligned}$   (V)	DECIMAL* COUNT	MINARY OUTPUT CODE					BINARY OUTPUT CODE	LSB
			OVF	D5	D4	D3	D2	D1	D0
Overilow (OVF)	4.000	127	1	1	1	1	1	1	1
Full Scale (FS)	3.9375	63	0	1	1	1	1	1	1
FS - 1LSB	3.875	62	0	1	1	1	1	1	0
3/4 FS	3.000	48	0	1	1	0	0	0	0
1/2 FS	2.000	32	0	1	0	0	0	0	0
1/4 FS	1.000	16	0	0	1	0	0	0	0
1LSB	0.0625	1	0	0	0	0	0	0	1
Zero	0	0	0	0	0	0	0	0	0

* The voltages listed above represent the ideal transition of each output code shown as a function of the reference voltage.


## Glossary of Terms

Aperture Delay: Aperture delay is the time delay between the external sample command (the rising edge of the clock) and the time at which the signal is actually sampled. This delay is due to internal clock path propagation delays.
Aperture Jitter: This is the RMS variation in the aperture delay due to variation of internal $\phi 1$ and $\phi 2$ clock path delays and variation between the individual comparator switching times.

Differential Linearity Error (DNL): The differential linearity error is the difference in LSBs between the spacing of the measured midpoint of adjacent codes and the spacing of ideal midpoints of adjacent codes. The ideal spacing of each midpoint is 1.0 LSB . The range of values possible is from -1.0LSB (which implies a missing code) to greater than +1.0LSB.
Full Power Input Bandwidth: Full power bandwidth is the frequency at which the amplitude of the fundamental of the digital output word has decreased 3dB below the amplitude of an input sine wave. The input sine wave has a peak-to-peak amplitude equal to the reference voltage. The bandwidth given is measured at the specified sampling frequency.

Full Scale Error (FSE): Full Scale Error is the difference between the actual input voltage of the 63 to 64 code transition and the ideal value of $\mathrm{V}_{\text {REF }+}-1.5 \mathrm{LSB}$. This error is expressed in LSBs.

Integral Linearity Error (INL): The integral linearity error is the difference in LSBs between the measured code centers and the ideal code centers. The ideal code centers are calculated using a best fit line through the converter's transfer function.

LSB: Least Significant Bit $=\left(\mathrm{V}_{\text {REF }+}-\mathrm{V}_{\text {REF- }}\right) / 64$. All HI-5701 specifications are given for a 62.5 mV LSB size $\mathrm{V}_{\text {REF }+}=4.0 \mathrm{~V}, \mathrm{~V}_{\text {REF- }}=0.0 \mathrm{~V}$.
Offset Error (VOS): Offset error is the difference between the actual input voltage of the 0 to 1 code transition and the ideal value of $\mathrm{V}_{\mathrm{REF}}+0.5 \mathrm{LSB}$. VOS error is expressed in LSBs.

Power Supply Rejection Ratio (PSRR): PSRR is expressed in LSBs and is the maximum shift in code transition points due to a power supply voltage shift. This is measured at the 0 to 1 code transition point and the 62 to 63 code transition point with a power supply voltage shift from the nominal value of 5.0 V .

Signal to Noise Ratio (SNR): SNR is the ratio in dB of the RMS signal to RMS noise at specified input and sampling frequencies.

Signal to Noise and Distortion Ratio (SINAD): SINAD is the ratio in dB of the RMS signal to the RMS sum of the noise and harmonic distortion at specified input and sampling frequencies.

Total Harmonic Distortion (THD): THD is the ratio in dBc of the RMS sum of the first five harmonic components to the RMS signal for a specified input and sampling frequency.


FIGURE 3. TEST CIRCUIT

## PRELIMINARY

## Features

- 3MSPS Throughput Rate
- 12-Bit, No Missing Codes over Temperature
- 1.0LSB Integral Linearity Error
- Buffered Sample and Hold Amplifier
- Precision Voltage Reference
- $\pm 2.5 \mathrm{~V}$ Input Signal Range
- 20MHz Input BW Allows Sampling Beyond Nyquist
- Zero Latency/No Pipeline Delay


## Applications

- High Speed Data Acquisition Systems
- Medical Imaging
- Radar Signal Analysis
- Document and Film Scanners
- Vibration/Waveform Spectrum Analysis
- Digital Servo Control


## Description

The HI5800 is a monolithic, 12-bit, sampling Analog-toDigital Converter fabricated in the HBC10 BiCMOS process. It is a complete subsystem containing a sample and hold amplifier, voltage reference, two-step subranging ADD, error correction, control logic, and timing generator. The HI5800 is designed for high speed applications where wide bandwidth, accuracy and low distortion are essential.

The HI5800 is available in Commercial and Industrial temperature ranges and is offered in a 40 pin Sidebraze and a 44 pin PLCC package.

## Ordering Information

PART   NUMBER	LINEARITY	TEMP.   RANGE	PACKAGE
HI5800AID   H15800BID	$\pm 2$ LSB	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	40 Pin   Sidebraze
H15800   H $15800 \mathrm{KCM}^{*}$	$\pm 2 \mathrm{LSB}$		$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
1 CSB	44 Pin PLCC		

* Consult factory for availability

Pinouts


Functional Block Diagram


## Typical Application Schematic



## Absolute Maximum Ratings

Supply Voltages	
$\mathrm{AV}_{\mathrm{cc}}$ or $\mathrm{DV}_{\mathrm{cc}}$ to GND	+5.5V
$\mathrm{AV}_{E E}$ or $\mathrm{DV}_{E E}$ to GND.	5.5V
$\mathrm{D}_{\mathrm{GND}}$ to $\mathrm{A}_{\text {GND }}$	$\pm 0.3 \mathrm{~V}$
Analog Input Pins	
Reference Input REFIN	+2.75V
Signal Input $\mathrm{V}_{\text {IN }}$.	$\pm\left(\mathrm{REF}_{\text {IN }}+0.2 \mathrm{~V}\right)$
$\mathrm{RO}_{\text {ADJ }}, \mathrm{RG}_{\text {ADJ }}, ~ A D J+, ~ A D J-~$	$\mathrm{V}_{\mathrm{EE}}$ to $\mathrm{V}_{\mathrm{CC}}$
Digital I/O Pins .	GND to $\mathrm{V}_{\mathrm{CC}}$
Operating Temperature Range	
HI5800JCM/KCM	.$^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
HI5800AID/BID.	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Junction Temperature	
H15800JCM/KCM	$+150^{\circ} \mathrm{C}$
HI5800AID/BID.	$+175^{\circ} \mathrm{C}$
Storage Temperature Range	$65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10sec)	$+300^{\circ} \mathrm{C}$

## Thermal Information



## NOTE:

1. Dissipation rating assumes device is mounted with all leads soldered to printed circuit board

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Electrical Specifications $\quad A V_{C C}=+5 \mathrm{~V}, D V_{C C}=+5 \mathrm{~V}, \mathrm{AV}_{\mathrm{EE}}=-5 \mathrm{~V}, \mathrm{DV} \mathrm{EEE}=-5 \mathrm{~V}$; Internal Reference Used. Unless Otherwise Specified.

PARAMETER	TEST CONDITION	$\begin{gathered} \text { H15800JCM/AID } \\ \hline 0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \\ -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{gathered}$			H15800KCM/BID$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
SYSTEM PERFORMANCE								
Resolution		12	-	-	12	-	-	Bits
Integral Linearity Error, INL	$\mathrm{F}_{\mathrm{S}}=3 \mathrm{MHz}, \mathrm{f}_{\mathrm{IN}}=45 \mathrm{~Hz}$ Ramp	-	$\pm 0.7$	$\pm 2$	-	$\pm 0.7$	$\pm 1$	LSB
Differential Linearity Error, DNL (Guaranteed No Missing Codes)	$\mathrm{F}_{\mathrm{S}}=3 \mathrm{MHz}, \mathrm{f}_{\mathrm{I}}=45 \mathrm{~Hz}$ Ramp	$\bullet$	$\pm 0.5$	$\pm 1$	-	$\pm 0.4$	$\pm 1$	LSB
Offset Error, VOS (Adjustable to Zero)	(Note 7)	-	$\pm 2$	$\pm 10$	$\bullet$	$\pm 2$	$\pm 10$	LSB
Full Scale Error, FSE (Adjustable to Zero)	(Note 7)	-	$\pm 2$	$\pm 10$	$\bullet$	$\pm 2$	$\pm 10$	LSB
Gain Error (Adjustable to Zero)		-	$\pm 2$	$\pm 15$	-	$\pm 2$	$\pm 15$	LSB

DYNAMIC CHARACTERISTICS (Input Signal Level 0.5dB below full scale)

Throughput Rate	No Missing Codes	3.0	-	-	3.0	-		MSPS
Signal to Noise Ratio (SNR) $=\frac{\text { RMS Signal }}{\text { RMS Noise }}$	$\begin{aligned} & F_{S}=3 \mathrm{MHz}, \mathrm{f}_{\mathrm{IN}}=20 \mathrm{kHz} \\ & \mathrm{~F}_{\mathrm{S}}=3 \mathrm{MHz}, \mathrm{f}_{\mathrm{IN}}=1 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 66 \\ & 65 \end{aligned}$	$\begin{aligned} & 69 \\ & 67 \end{aligned}$	-	68	71 69	-	$\begin{aligned} & \mathrm{dBC} \\ & \mathrm{dBC} \end{aligned}$
Signal to Noise Ratio (SINAD) $=\frac{\text { RMS Signal }}{\text { RMS Noise }+ \text { Distortion }}$	$\begin{aligned} & F_{S}=3 \mathrm{MHz}, f_{I N}=20 \mathrm{kHz} \\ & \mathrm{~F}_{\mathrm{S}}=3 \mathrm{MHz}, \mathrm{f}_{\mathrm{IN}}=1 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 66 \\ & 65 \end{aligned}$	$\begin{aligned} & 68 \\ & 67 \end{aligned}$	-	68 67	$\begin{aligned} & 70 \\ & 68 \end{aligned}$	-	$\begin{aligned} & \mathrm{dBC} \\ & \mathrm{dBC} \end{aligned}$
Total Harmonic Distortion, THD	$\begin{aligned} & F_{S}=3 \mathrm{MHz}, f_{\mathrm{I}_{\mathrm{N}}}=20 \mathrm{kHz} \\ & \mathrm{~F}_{\mathrm{S}}=3 \mathrm{MHz}, \mathrm{f}_{\mathrm{IN}}=1 \mathrm{MHz} \end{aligned}$	$\bullet$	$\begin{aligned} & -74 \\ & -70 \end{aligned}$	$\begin{aligned} & -70 \\ & -68 \end{aligned}$	-	$\begin{aligned} & -82 \\ & -75 \end{aligned}$	$\begin{aligned} & -74 \\ & -70 \end{aligned}$	$\begin{aligned} & \mathrm{dBc} \\ & \mathrm{dBc} \end{aligned}$
Spurious Free Dynamic Range, SFDR	$\begin{aligned} & F_{S}=3 \mathrm{MHz}, \mathrm{f}_{\mathrm{IN}}=20 \mathrm{kHz} \\ & \mathrm{~F}_{\mathrm{S}}=3 \mathrm{MHz}, \mathrm{f}_{\mathrm{IN}}=1 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 72 \\ & 69 \end{aligned}$	$\begin{aligned} & 76 \\ & 72 \end{aligned}$	-	76 71	$\begin{aligned} & 84 \\ & 75 \end{aligned}$	-	$\begin{aligned} & \mathrm{dBc} \\ & \mathrm{dBc} \end{aligned}$
Intermodulation Distortion, IMD	$\begin{aligned} & F_{S}=3 \mathrm{MHz}, f 1=49 \mathrm{kHz}, \\ & \mathrm{f}_{2}=50 \mathrm{kHz} \end{aligned}$	$\bullet$	. 74	-68	-	-82	-70	dBc

Electrical Specifications $\quad A V_{C C}=+5 \mathrm{~V}, \mathrm{DV}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{AV}_{\mathrm{EE}}=-5 \mathrm{~V}, \mathrm{DV}$ EE $=-5 \mathrm{~V}$; Internal Reference Used. Unless Otherwise Specified. (Continued)

PARAMETER	TEST CONDITION	HI5800JCM/AID$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			$\begin{gathered} \text { H15800KCM/BID } \\ 0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \\ -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{gathered}$			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Differential Gain	$\mathrm{F}_{\mathrm{S}}=1 \mathrm{MHz}$	-	0.9	-	-	0.9	-	\%
Differential Phase	$\mathrm{F}_{\mathrm{S}}=1 \mathrm{MHz}$	-	0.05	-	-	0.05	-	$\begin{array}{\|c} \hline \text { Degree } \\ \mathbf{s} \end{array}$
Aperture Delay, $\mathrm{t}_{\text {AD }}$		-	12	20	-	12	20	ns
Aperture Jitter, $\mathrm{t}_{\text {AJ }}$		$\bullet$	10	20	-	10	20	ps
ANALOG INPUT								
Input Voltage Range		-	$\pm 2.5$	$\pm 2.7$	-	$\pm 2.5$	$\pm 2.7$	V
Input Resistance		10	30	-	10	30	-	M $\Omega$
Input Capacitance		-	5	-	-	5	$\bullet$	pF
Input Current		-	1	$\pm 10$	-	1	$\pm 10$	$\mu \mathrm{A}$
Input Bandwidth		-	20	-	-	20	-	MHz
INTERNAL VOLTAGE REFERENCE								
Reference Output Voltage, REFOUT (Loaded)		2.450	2.500	2.550	2.470	2.500	2.530	Volts
Reference Output Current	Note 5	2	-	-	2	-	-	mA
Reference Temperature Coefficient		-	20		-	20	-	ppm/ ${ }^{\circ} \mathrm{C}$
REFERENCE INPUT								
Reference Input Range		-	2.5	2.6	-	2.5	2.6	V
Reference Input Resistance		$\cdot$	200	-	-	200	-	$\Omega$
DIGITAL INPUTS								
Input Logic High Voltage, $\mathrm{V}_{\mathrm{IH}}$	Note 6	2.0	-	-	2.0	-	-	V
Input Logic Low Voltage, $\mathrm{V}_{\text {IL }}$		$\cdot$	-	0.8	-	-	0.8	V
Input Logic Current, IIL	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, 5 \mathrm{~V}$	$\cdot$	1.0	$\pm 10$	-	1	$\pm 10$	$\mu \mathrm{A}$
Digital Input Capacitance, $\mathrm{Cl}_{\mathrm{N}}$	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$	-	5.0	-	-	5	-	pF
DIGITAL OUTPUTS								
Output Logic High Voltage, $\mathrm{V}_{\mathrm{OH}}$	$\mathrm{l}_{\text {Out }}=-160 \mu \mathrm{~A}$	2.4	4.3	-	2.4	4.3	-	V
Output Logic Low Voltage, $\mathrm{V}_{\mathrm{OL}}$	lout $=3.2 \mathrm{~mA}$	$\cdot$	0.22	0.8	-	0.22	0.8	V
Output Logic High Current, $\mathrm{I}_{\mathrm{OH}}$		-0.160	6	-	-0.160	6	$\bullet$	mA
Output Logic Low Current, loL		3.2	6	-	3.2	6	-	mA
Output 3-state Leakage Current, loz	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}, 5 \mathrm{~V}$	-	$\pm 1$	$\pm 10$	-	$\pm 1$	$\pm 10$	$\mu \mathrm{A}$
Digital Output Capacitance, $\mathrm{C}_{\text {Out }}$		-	10	-	-	10	-	pF
TIMING CHARACTERISTICS								
Minimum CONV Pulse, 11	(Notes 2, 3)	10	-	-	10	-		ns

Electrical Specifications $\quad A V_{C C}=+5 \mathrm{~V}, D V_{C C}=+5 \mathrm{~V}, \mathrm{AV}_{\mathrm{EE}}=-5 \mathrm{~V}, \mathrm{DV}$ 位 $=-5 \mathrm{~V}$; Internal Reference Used. Unless Otherwise Specified. (Continued)

PARAMETER	TEST CONDITION	$\begin{gathered} \text { HI5800JCM/AID } \\ \hline 0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \\ -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{gathered}$			$\begin{gathered} \text { HI5800KCM/BID } \\ \hline 0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \\ -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{gathered}$			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
$\overline{\mathrm{CS}}$ to CONV Setup Time, t 2	(Note 2)	10	-	-	10	-		ns
$\overline{\mathrm{CONV}}$ to $\overline{\mathrm{CS}}$ Setup Time, t ]	(Note 2)	0	-	-	0	-		ns
Minimum $\overline{\mathrm{OE}}$ Pulse, 14	(Notes 2, 4)	15	-	$\bullet$	15	-		ns
$\overline{\mathrm{CS}}$ to $\overline{\mathrm{OE}}$ Setup Time, 55	(Note 2)	0	-	-	0	-		ns
$\overline{\text { OE }}$ to $\overline{\mathrm{CS}}$ Setup Time, t 6	(Note 2)	0	-	-	0	-		ns
IRQ Delay from Start Convert, 17	(Note 2)	10	20	25	10	20	25	ns
IRQ Pulse Width, t		190	205	230	190	205	230	ns
Minimum Cycle Time for Conversion, 19		-	-	333	-	333	333	ns
IRQ to Data Valid Delay, 110	(Note 2)	-5	0	+5	-5	0	+5	ns
Minimum $\overline{A D}$ Pulse, 111	(Notes 2, 4)	10	-	-	10	-	-	ns
Data Access from $\overline{\mathrm{OE}}$ Low, 112	(Note 2)	10	18	25	10	18	25	ns
LSB, Nibble Delay from $\overline{\mathrm{AO}} \mathrm{High}$, t13	(Note 2)	-	10	20	-	10	20	ns
MSB Delay from $\overline{\overline{A O}}$ Low, 114	(Note 2)	-	14	20	-	14	20	ns
$\overline{\mathrm{CS}}$ to Float Delay, 115	(Note 2)	10	18	25	10	18	25	ns
Minimum $\overline{\text { CS }}$ Pulse, 116	(Notes 2, 4)	15	-	-	15	-	-	ns
$\overline{\mathrm{CS}}$ to Data Valid Delay, 117	(Note 2)	10	18	25	10	18	25	ns
Output Fall Time, if	(Note 2)	-	5	20	$\bullet$	5	20	ns
Output Rise Time, tr	(Note 2)	-	5	20	-	5	20	ns
POWER SUPPLY CHARACTERISTICS								
$\mathrm{IV}_{\text {cc }}$		-	180	220	-	180	220	mA
$\mathrm{IV}_{\text {EE }}$		$\bullet$	158	190	$\bullet$	158	190	mA
$1 \mathrm{DV}_{\text {cc }}$		$\bullet$	27	40	$\bullet$	27	40	mA
$\mathrm{IDV}_{\text {EE }}$		-	2.7	5	-	2.7	5	mA
Power Dissipation		-	1.8	2.2	-	1.8	2.2	W
PSRR	$\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{EE}} \pm 5 \%$	-	0.01	0.05	-	0.01	0.05	\%\%

NOTE:
2. Parameter guaranteed by design or characterization and not production tested.
3. Recommended pulse width for $\overline{\mathrm{CONV}}$ is 60 ns .
4. Recommended minimum pulse width is 25 ns .
5. This is the additional current available from the REF Out pin with the REF OUt $^{\text {pin driving the REF }}$ iN pin.
6. The $\overline{\mathrm{AO}}$ pin $\mathrm{V}_{1 \mathrm{H}}$ at $-40^{\circ} \mathrm{C}$ may exceed 2.0 V by up to 0.4 V at initial power up.
7. Excludes error due to internal reference temperature drift.

## Timing Diagrams



FIGURE 1. SINGLE SHOT TIMING


FIGURE 2A. START CONVERSION SETUP TIME


FIGURE 3. CONTINUOUS CONVERSION TIMING

## Typical Performance Curves

TYPICAL SNR vs INPUT FREQUENCY


TYPICAL SND vs INPUT FREQUENCY


TYPICAL EFFECTIVE BITS vS INPUT FREQUENCY


TYPICAL THD vs INPUT FREQUENCY


TYPICAL SPDR vs INPUT FREQUENCY


DIFFERENTIAL GAIN DIFFERENTIAL PHASE TEST OUTPUT


Typical Performance Curves (Continued) DIFFERENTIAL NON-LINEARITY


FFT SPECTRAL PLOT FOR $F_{I N}=20 \mathrm{kHz}, \mathrm{F}_{\mathrm{S}}=3 \mathrm{MHz}$


FFT SPECTRAL PLOT FOR $F_{I N}=2 \mathrm{MHz}, \mathrm{F}_{\mathrm{S}}=3 \mathrm{MHz}$


INTEGRAL NON-LINEARITY


FFT SPECTRAL PLOT FOR $F_{I N}=1 \mathrm{MHz}, F_{S}=3 \mathrm{MHz}$


INTERMODULATION DISTORTION PLOT FOR FIN $=49 \mathrm{kHz}$, 50 kHz at $\mathrm{F}_{\mathrm{S}}=3 \mathrm{MHz}$


HI5800

TABLE 1. PIN DESCRIPTION

$\begin{aligned} & \hline 44 \text { PIN } \\ & \text { PLCC } \end{aligned}$	$\begin{gathered} 40 \text { PIN } \\ \text { DIP } \end{gathered}$	PIN NAME	PIN DESCRIPTION
2	1	REF ${ }_{\text {IN }}$	External reference input.
3	2	$\mathrm{RO}_{\text {ADJ }}$	DAC offset adjust (Connect to AGND if not used).
4	3	$\mathrm{RG}_{\text {ADJ }}$	DAC gain adjust (Connect to AGND if not used).
5	4	$\mathrm{AV}_{\text {cc }}$	Analog positive power supply, +5 V
6	5	REF ${ }_{\text {OUT }}$	Internal reference output, +2.5V.
1	-	NC	No connection.
7	6	$\mathrm{V}_{\text {IN }}$	Analog input voltage.
8	7	AGND	Analog ground.
9	8	ADJ+	Sample/hold offset adjust (Connect to AGND if not used).
10	9	ADJ-	Sample/hold offset adjust (Connect to AGND if not used).
11	10	$\mathrm{AV}_{\text {EE }}$	Analog negative power supply, -5 V
13	11	$\mathrm{AV}_{\text {cc }}$	Analog positive power supply, +5 V
14	12	AGND	Analog ground.
15	13	$\mathrm{AV}_{\text {EE }}$	Analog negative power supply, -5V
16	14	$\overline{\mathrm{AO}}$	Output byte control input, active low. When low, data is presented as a 12 bit word or the upper byte (D11-D4) in 8 bit mode. When high, the second byte contains the lower LSBs (D3-D0) with 4 trailing zeroes. See Text.
17	15	$\overline{\overline{C S}}$	Chip Select input, active low. Dominates all control inputs.
12	-	NC	No connection.
18	16	$\overline{O E}$	Output Enable input, active low.
19	17	$\overline{\text { CONV }}$	Convert start input. Initiates conversion on the falling edge. If held low, continuous conversion mode overrides and remains in effect until the input goes high.
20	18	$\mathrm{DV}_{\mathrm{EE}}$	Digital negative power supply, -5 V .
21	19	DGND	Digital ground.
22	20	$\mathrm{DV}_{\mathrm{Cc}}$	Digital positive power supply, +5 V .
24	21	$\mathrm{AV}_{\mathrm{CC}}$	Analog positive power supply, +5 V .
25	22	D0	Data bit 0, (LSB).
26	23	D1	Data bit 1.
27	24	D2	Data bit 2.
28	25	D3	Data bit 3.
23	$\cdot$	NC	No connection
29	26	D4	Data bit 4.
30	27	D5	Data bit 5.
31	28	D6	Data bit 6.
32	29	D7	Data bit 7.
33	30	$\mathrm{AV}_{\text {EE }}$	Analog negative power supply, -5V.
35	31	AGND	Analog ground.
36	32	DGND	Digital ground.
37	33	$\mathrm{DV}_{\mathrm{cc}}$	Digital positive power supply, +5V.
38	34	D8	Data bit 8.
39	35	D9	Data bit 9.
34	-	NC	No connection.
40	36	D10	Data bit 10.
41	37	D11	Data bit 11 (MSB).
42	38	$\mathrm{AV}_{\text {c }}$	Analog positive power supply, +5 V .
43	39	OVF	Overflow output. Active high when either an overrange or underrange analog input condition is detected.
44	40	IRQ	Interrupt ReQuest output. Goes low when a conversion is complete.

## Detailed Description

The HI5800 is a 12 -bit two step sampling analog to digital converter which uses a subranging technique with digital error correction. As illustrated in the block diagram, it uses a sample and hold front end, 7-bit R-2R D/A converter which is laser trimmed to 14 bits accuracy, a 7 -bit BiCMOS flash converter, precision bandgap reference, digital controller and timing generator, error correction logic, output latches and BiCMOS output drivers.

The falling edge of the convert command signal puts the sample and hold (S/H) in the hold mode and the conversion process begins. At this point the Interrupt Request (IRQ) line is set high indicating that a conversion is in progress. The output of the S/H circuit drives the input of the 7-bit flash converter through a switch. After allowing the flash to settle, the intermediate output of the flash is stored in the latches which feed the D/A and error correction logic. The D/A reconstructs the analog signal and feeds the gain amplifier whose summing node subtracts the held signal of the $\mathrm{S} / \mathrm{H}$ and amplifies the residue by 32. This signal is then switched to the flash for a second pass using the input switch. The output of the second flash conversion is fed directly to the error correction which reconstructs the twelve bit word from the fourteen bit input. The logic also decodes the overflow bit and the polarity of the overflow. The output of the error correction is then gated through the read controller to the output drivers. The data is ready on the bus as soon as the IRQ line goes low.

## VO Control Inputs

The converter has four active low inputs ( $\overline{\mathrm{CS}}, \overline{\mathrm{CONV}}, \overline{\mathrm{OE}}$ and $\overline{\mathrm{AO}}$ ) and fourteen outputs (D0-D11, IRQ and OVF). All inputs and outputs are TTL compatible and will also interface to the newer TTL compatible families. All four inputs are CMOS high input impedance stages and all outputs are BiMOS drivers capable of driving 100pF loads.
In order to initiate a conversion or read the data bus, $\overline{\mathrm{CS}}$ should be held low. The conversion is initiated by the falling edge of the $\overline{\mathrm{CONV}}$ command. The $\overline{\mathrm{OE}}$ input controls the output bus directly and is independent of the conversion process. The data on the bus changes just before the IRQ goes low. Therefore if the $\overline{\mathrm{OE}}$ line is held low all the time, the data on the bus will change just before the IRQ line goes low. The byte control signal $\overline{\mathrm{AO}}$ is also independent of the conversion process and the byte can be manipulated anytime. When $\overline{\mathrm{AO}}$ is low the 12 bits and overflow word is read on the bus. The bus can also be hooked up such that the upper byte (D11 to D4) is read when $\overline{\mathrm{AO}}$ is low. When $\overline{\mathrm{AO}}$ is high, the lower byte (D3 to DO) is output on the same eight pins with trailing zeros.

In order to minimize switching noise during a conversion, byte manipulations done using the $\overline{\mathrm{AO}}$ signal should be done in the single shot mode and $\overline{\mathrm{AO}}$ should be changed during the acquisition phase. For accuracy, allow sufficient time for settling from any glitches before the next conversion.
Once a conversion is started, the converter will complete the conversion and acquisition periods irrespective of the input states. If during these cycles another convert command is issued, it will be ignored until the acquire phase is complete.

## Stand Alone Operation

The converter can be operated in a stand alone configuration with bus inputs controlling the converter. The conversion will be started on the negative edge of the convert (CONV) pulse as long as this pulse is less than the converter throughput rate. If the converter is given multiple convert commands, it will ignore all but the first command until such time when the acquisition period of the next cycle is complete. At this point it will start a new conversion on the first negative edge of the input command. This allows the converter to be synchronized to a multiple of a faster external clock. The new output data of the conversion is available on the same cycle at the negative edge of the IRQ pulse and is valid until the next negative edge of the IRQ pulse. Data may be accessed at any time during these cycles. It should be noted that if the data bus is kept enabled all the time ( $\overline{\mathrm{OE}}$ is low), then the data will be updating just before the IRQ goes low. During this time, the data may not be valid for a few nanoseconds.

## Continuous Convert Mode

The converter can be operated at its maximum rate by taking the CONV line low (supplying the first negative edge) and holding it low. This enables the continuous convert mode. During this time, at the end of the internal acquisition period, the converter automatically starts a new conversion. The data will be valid between the IRQ negative edges.
Note that there is no pipeline delay on the data. The output data is available during the same cycle as the conversion and is valid until the next conversion ends. This allows data access to both previous and present conversions in the same cycle.
When initiating a conversion or a series of conversions, the last signal (CS and CONV) to arrive dominates the function. The same condition holds true for enabling the bus to read the data ( $\overline{\mathrm{CS}}$ and $\overline{\mathrm{OE}}$ ). To terminate the bus operations, the first signal ( $\overline{\mathrm{CS}}$ and $\overline{\mathrm{OE}}$ ) to arrive dominates the function.

## Interrupt Request Output

The interrupt request line (IRQ) goes high at the start of each conversion and goes low to indicated the start of the acquisition. During the time that IRQ is high, the internal sample and hold is in hold mode. At the termination of IRQ, the sample and hold switches to acquire mode which lasts approximately 100 ns . If no convert command is issued for a period of time, the sample and hold simply remains in acquire mode tracking the analog input signal until the next conversion cycle is initiated. The IRQ line is the only output that is not tristateable.

## Analog Input, $\mathbf{V}_{\mathbf{I N}}$

The analog input of the HI5800 is coupled into the input stage of the Sample and Hold amplifier. The input is a high impedance bipolar differential pair complete with an ESD protection circuit. Typically it has $>10 \mathrm{M} \Omega$ input impedance. With this high input impedance circuit, the HI5800 is easily interfaced to any type of op-amp without a requirement for a
high drive capability. Adequate precautions should be taken while driving the input from high voltage output op-amps to ensure that the analog input pin is not overdriven above the specified maximum limits. For a +2.5 V reference, the analog input range is $\pm 2.5 \mathrm{~V}$. This input range scales with the value of the external reference voltage if the internal reference is not used. For best performance, the analog ground pin next to the analog input should be utilized for signal return.

## Voltage Reference, REFOUT

The HI5800 has a curvature corrected internal band-gap reference generator with a buffer amplifier capable of driving up to 15 mA . The band-gap and amplifier are trimmed to give +2.50 V . When connected to the reference input pin REFIN, the reference is capable of driving up to 2 mA externally. Further loading may degrade the performance of the output voltage. It is recommended that the output of the reference be decoupled with good quality capacitors to reduce the highfrequency noise.

## Reference Input, REFIN

The converter requires a voltage reference connected to the REF ${ }_{\text {IN }}$ pin. This can be the above internal reference or it can be an external reference. The REF ${ }_{I N}$ pin is approximately $200 \Omega$ input impedance and care should be taken to ensure that the external reference is capable of driving this input impedance. It is also recommended that adequate high frequency decoupling is provided at the reference input pin in order to minimize overall converter noise.

## Error Adjustments

For most applications the accuracy of the HI5800 is sufficient without any adjustments. In applications where accuracy is of utmost importance three external adjustments are possible: S/H offset, D/A offset and D/A gain. Figure 4 illustrates the use of external potentiometers to reduce the HI5800 errors to zero.
The D/A offset ( $\mathrm{RO}_{\text {ADJ }}$ ) and S/H offset (ADJ+ and ADJ-) trims adjust the voltage offiset of the transfer curve while the D/A gain trim ( $\mathrm{RG}_{\mathrm{ADJ}}$ ) adjusts the tilt of the transfer curve around the curve midpoint (code 2048). The $10 \mathrm{~K} \Omega$ potentiometers can be installed to achieve the desired adjustment in the following manner.
Typically only one of the offset trimpots needs to be used. The offset should first be adjusted to get code 2048 centered at a desired DC input voltage such as zero volts. Next the
gain trim can be adjusted by trimming the gain pot until the 4094 to 4095 code transition occurs at the desired voltage (2.500-1.5LSBs for a 2.5 V reference). The gain trim can also be done by adjusting the gain pot until the code 0 to 1 transition occurs at a particular voltage ( $-2.5+0.5$ LSBs for a 2.5 V reference). If a nonzero offset is needed, then the offset pot can be adjusted after the gain trim is finished. The gain trim is simplified if an offset trim to zero is done first with a nonzero offset trim done after the gain trim is finished. The D/A offset and S/H offset trimpots have an identical effect on the converter except that the $\mathrm{S} / \mathrm{H}$ offset is a finer resolution trim. The D/A offset and D/A gain typically have an adjustment range of $\pm 30$ LSBs and the S/H offset typically has an adjustment range of $\pm 20$ LSBs.
If no external adjustments are required the following pins should be connected to analog ground (AGND) for optimum performance: $\mathrm{RO}_{A D J}, \mathrm{RG}_{A D J}, A D J+$, and $A D J$-.


FIGURE 4. D/A OFFSET, D/A GAIN AND S/H OFFSET ADJUSTMENTS.

## Typical Application Schematic

Figure 5 shows a typical schematic diagram for the HI5800. The adjust pins are shown with $10 \mathrm{~K} \Omega$ potentiometers used for gain and offset adjustments. These potentiometers may be left out and the respective pins should be connected to ground for best untrimmed performance.

TABLE 2. VO TRUTH TABLE

INPUTS				OUTPUT	FUNCTION
$\overline{\mathbf{C S}}$	$\overline{\text { CONV }}$	$\overline{\text { OE }}$	$\overline{\mathrm{AO}}$	IRQ	
1	X	X	X	X	No operation.
0	0	X	X	X	Continuous convert mode.
0	X	0	0	X	Outputs all 12-bits and OVF or upper byte D11-D4 in 8 bit mode.
0	X	0	1	X	In 8 bit mode, outputs lower LSBs D3-DO followed by 4 trailing zeroes and OVF, (See text).
0	1	X	X	0	Converter is in acquisition mode.
0	X	X	X	1	Converter is busy doing a conversion.
0	X	1	X	X	Data outputs and OVF in high impedance state.

[^0]TABLE 3. AN OUTPUT CODE TABLE

CODE DESCRIPTION$\text { LSB } \left.=\frac{2(\text { REF }}{\text { IIN }}\right)$	$\begin{gathered} \text { INPUT } \\ \text { VOLTAGE* } \\ \text { REF }=2.5 \mathrm{~V} \\ (V) \end{gathered}$	OUTPUT DATA (OFFSET BINARY)												
		MSB										LSB		
		OVF	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
2+FS	$\geq+2.5000$	1	1	1	1	1	1	1	1	1	1	1	1	1
+FS - 1LSB	+2.49878	0	1	1	1	1	1	1	1	1	1	1	1	1
+3/4FS	+1.8750	0	1	1	1	0	0	0	0	0	0	0	0	0
+1/2FS	+1.2500	0	1	1	0	0	0	0	0	0	0	0	0	0
+1LSB	+0.00122	0	1	0	0	0	0	0	0	0	0	0	0	1
0	0.0000	0	1	0	0	0	0	0	0	0	0	0	0	0
-1 LSB	-0.00122	0	0	1	1	1	1	1	1	1	1	1	1	1
-1/2FS	-1.2500	0	0	1	0	0	0	0	0	0	0	0	0	0
-3/4FS	-1.8750	0	0	0	1	0	0	0	0	0	0	0	0	0
-FS + 1LSB	-2.49878	0	0	0	0	0	0	0	0	0	0	0	0	1
s-FS	s-2.5000	1	0	0	0	0	0	0	0	0	0	0	0	0

* The voltages listed above represent the ideal center of each output code shown as a function of the reference voltage.


## Definitions

## Static Performance Definitions

Offset, fullscale, and gain all use a measured value of the internal voltage reference to determine the ideal plus and minus fullscale values. The results are all displayed in LSB's.

## Offset Error (VOS)

The first code transition should occur at a level 1/2LSB above the negative fullscale. Offset is defined as the deviation of the actual code transition from this point. Note that this is adjustable to zero.

## Fullscale Error (FSE)

The last code transition should occur for a analog input that is 1 and $1 / 2$ LSB's below positive fullscale. Fullscale error is defined as the deviation of the actual code transition from this point.

## Gain Error

Gain error is calculated by dividing the measured fullscale range by the ideal fullscale range. Note that this is adjustable to zero.

## Differential Linearity Error (DNL)

DNL is the worst case deviation of a code width from the ideal value of 1LSB. The converter is guaranteed for no missing codes over all temperature ranges.

## Integral Linearity Error (INL)

INL is the worst case deviation of a code center from a best fit straight line calculated from the measured data.

## Power Supply Rejection (PSRR)

Each of the power supplies are moved plus and minus $5 \%$ and the shift in the offset and gain error is noted. The number reported is the percent change in these parameters versus fullscale divided by the percent change in the supply.

## Dynamic Performance Definitions

Fast Fourier Transform (FFT) techniques are used to evaluate the dynamic performance of the HI5800. A low distortion sine wave is applied to the input, it is sampled, and the output is stored in RAM. The data is then transformed into the frequency
domain with a 4096 point FFT and analyzed to evaluate the dynamic performance of the A/D. The data is taken with a coherent test system to avoid all the inaccuracies of having to use window functions. The sine wave input to the part is -0.5 db down from fullscale for all these tests. All results are quoted in dBc (decibels with respect to carrier) and DO NOT include any correction factors for normalizing to full scale.

## Signal-to-Noise Ratio (SNR)

SNR is the measured rms signal to rms noise at a specified input and sampling frequency. The noise is the rms sum of all of the spectral components except the fundamental and the first five harmonics.

## Signal-to-Noise + Distortion Ratio (SINAD)

SINAD is the measured rms signal to rms sum of all other spectral components below the Nyquist frequency excluding DC.
Effective Number Of Bits (ENOB)
The effective number of bits (ENOB) is derived from the SINAD data. ENOB is calculated from:

```
ENOB \(=\left(\right.\) SINAD \(\left.-1.76+V_{\text {CORR }}\right) / 6.02\)
```

where: $\quad V_{\text {CORR }}=0.5 \mathrm{~dB}$

## Total Harmonic Distortion (THD)

THD is the ratio of the rms sum of the first 5 harmonic components to the rms value of the measured input signal.

## Spurious Free Dynamic Range (SFDR)

SFDR is the ratio of the fundamental rms amplitude to the rms amplitude of the next largest spur or spectral component if the harmonics are buried in the noise floor it is the largest peak.

## Intermodulation Distortion (IMD)

Nonlinearities in the signal path will tend to generate intermodulation products when two tones, f 1 and $\mathfrak{\mathrm { f }}$, are present on the inputs. The ratio of the measured signal to the distortion terms is calculated. The IMD products used to calculate the total distortion are ( $12-f 1$ ), ( $£ 2+f 1$ ), ( $2 f 1-f 2$ ), ( $2 f 1+f 2$ ), ( $2 f 2-f 1$ ), ( $2 f 2+f 1$ ), ( $3 f 1-f 2$ ), ( $3 f 1+f 2$ ), (3f2-f1), (3f2+f1), (2ł2-2f1), (2ł2+2f1), (2f1), (2f2), (2f1), (2f2), (4f1), (4f2). The data reflects the sum of all the IMD products.

## Features

- 200ns Conversion Time
- 12-Blt No Missing Codes Over Temperature
- 0.5LSB DNL/1.0LSB INL
- High Input Bandwidth
- Precision Voltage Reference
- $\pm 2.5 \mathrm{~V}$ Input Signal Range
- Zero Latency/No Pipeline Delay


## Applications

- High Speed Data Acquisition Systems
- Medical Imaging
- Radar Signal Analysis
- Document and Film Scanners
- Vibration/Waveform Spectrum Analysis
- Digital Servo Control


## Description

The HI5801 is a monolithic, 12-bit, Analog-to-Digital Converter fabricated in the HBC10 BiCMOS process. It is a complete subsystem containing voltage reference, two-step subranging ADD, error correction, control logic, and timing generator. The HI5801 is designed for high speed applications where wide bandwidth, accuracy and low distortion are essential.

The HI5801 is available in Commercial and Industrial temperature ranges and is offered in a 40 pin ceramic DIP and a 44 pin PLCC package.

## Ordering Information

PART NUMBER	LINEARITY	TEMP. RANGE	PACKAGE
Hi5801AIJ	$\pm 2 \mathrm{LSB}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	40 Pin CERDIP
HI5801BIJ	$\pm 1$ LSB	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	40 Pin CERDIP
H55801JCM*	$\pm 2$ LSB	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	44 Pin PLCC
H55801KCM*	$\pm 1$ LSB	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	44 Pin PLCC

* Consult Factory for Availability

Pinout


Functional Block Diagram

$A V_{C C} A V_{E E} \quad D V_{C C} \quad D V_{E E}$ AGND DGND

## CMOS 12-Bit Sampling A/D Converter with

 July 1992
## Features

- 20 $\mathbf{s}$ Conversion Time
- 50KSPS Throughput Rate
- Built-In Track and Hold
- Guaranteed No Missing Codes Over Temperature
- Single +5V Supply Voltage
- 25mW Maximum Power Consumption
- Internal or External Clock


## Applications

- Remote Low Power Data Acquisition Systems
- Digital Audio
- DSP Modems
- General Purpose DSP Front End
- $\mu$ P Controlled Measurement Systems


## Description

The HI5812 is a fast, low power, 12-bit successive approximation analog-to-digital converter. It can operate from a single 3 V to 6 V supply and typically draws just 1.9 mA when operating at 5 V . The HI5812 features a built-in track and hold. The conversion time is as low as $15 \mu \mathrm{~s}$ with a 5 V supply.

The twelve data outputs feature full high speed CMOS threestate bus driver capability, and are latched and held through a full conversion cycle. The output is user selectable: (i.e.) 12-bit, 8-bit (MSB's), and/or 4-bit (LSB's). A data ready flag, and conversion-start inputs complete the digital interface.

An internal clock is provided and is available as an output. The clock may also be over-driven by an external source.

The H15812 is rated over the full industrial temperature range and is offered in 24 lead narrow body Plastic Dip, narrow body CERDIP, and wide body Plastic SOIC packages.

## Pinouts

NARROW PLASTIC DIP AND CERDIP TOP VIEW


WIDE PLASTIC SOIC TOP VIEW


## Ordering Information

	INL   (LSB)   PART   NUMBER	DNL   (BITS)   OVER   TEMP)	OVER   TEMP)	TEMP. RANGE

Functional Block Diagram


Specifications HI5812

Absolute Maximum Ratings


## Thermal Information

Thermal Resistance	Өja	өjc
Plastic DIP.	$51^{\circ} \mathrm{C} / \mathrm{N}$	$21^{\circ} \mathrm{CM}$
Plastic SOIC	$75^{\circ} \mathrm{C} / \mathrm{N}$	$23^{\circ} \mathrm{CM}$
CERDIP.	$50^{\circ} \mathrm{CN}$	$11^{\circ} \mathrm{CN}$
Power Dissipation at $+75^{\circ} \mathrm{C}$ (Note 1)		
Plastic DIP.		1.5 W
Plastic SOIC		1.0 W

Power Dissipation Derating Factor above $+75^{\circ} \mathrm{C}$
Plastic DIP. $.20 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ Plastic SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $13 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
CERDIP.. $.20 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
NOTE: 1. Dissipation rating assumes device is mounted with all leads soldered to printed circuit board.

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Electrical Specifications $\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{AA}_{+}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}_{+}}=+4.608 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=\mathrm{V}_{\mathrm{AA}}=\mathrm{V}_{\mathrm{REF}}=\mathrm{GND}, \mathrm{CLK}=$ External 750 kHz , Unless Otherwise Noted.

PARAMETER	TEST CONDITION	LIMITS					UNITS
		$+25^{\circ} \mathrm{C}$			$\begin{gathered} -40^{\circ} \mathrm{C} \text { to } \\ +85^{\circ} \mathrm{C} \end{gathered}$		
		MIN	TYP	MAX	MIN	MAX	

## ACCURACY

Resolution			12			12		Bits
Integral Linearity Error, INL (End Point)	$J$K				$\pm 1.5$		$\pm 1.5$	LSB
					$\pm 1.0$		$\pm 1.0$	LSB
Differential Linearity Error, DNL No Missing Codes	JK		11			11		Bits
			12			12		Bits
Gain Error, FSE (Adjustable to Zero)	JK				$\pm 3.0$		$\pm 3.0$	LSB
					$\pm 2.5$		$\pm 2.5$	LSB
Offset Error, VOS (Adjustable to Zero)	JK				$\pm 2.0$		$\pm 2.0$	LSB
					$\pm 1.0$		$\pm 1.0$	LSB
Power Supply Rejection, PSRR Offset Error PSRR Gain Error PSRR		$\begin{aligned} & V_{\mathrm{REF}}=4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{AA}^{+}}=5 \mathrm{~V} \pm 5 \% \\ & \mathrm{~V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{AA}^{+}}=5 \mathrm{~V} \pm 5 \% \end{aligned}$		0.1 0.1	$\pm 0.5$ $\pm 0.5$		$\pm 0.5$ $\pm 0.5$	LSB

DYNAMIC CHARACTERISTICS

Signal to Noise Ratio, SINAD RMS Signal RMS Noise + Distortion	J	$\begin{aligned} & f_{S}=\text { Internal Clock, } f_{\mathbb{N}}=1 \mathrm{kHz} \\ & f_{S}=750 \mathrm{kHz}, \mathrm{f}_{\mathrm{IN}}=1 \mathrm{kHz} \end{aligned}$	$\begin{aligned} & 68.8 \\ & 69.2 \end{aligned}$				dB dB
	K	$\begin{aligned} & f_{S}=\text { Internal Clock, } f_{I_{N}}=1 \mathrm{kHz} \\ & f_{S}=750 \mathrm{kHz}, f_{I_{N}}=1 \mathrm{kHz} \end{aligned}$	$\begin{aligned} & 71.0 \\ & 71.5 \end{aligned}$				dB
Signal to Noise Ratio, SNR RMS Signal   RMS Noise	J	$\begin{aligned} & f_{S}=\text { Internal Clock, } f_{\mathbb{N}}=1 \mathrm{kHz} \\ & f_{S}=750 \mathrm{kHz}, f_{\mathrm{IN}_{N}}=1 \mathrm{kHz} \end{aligned}$	$\begin{aligned} & 70.5 \\ & 71.1 \end{aligned}$				dB
	K	$\begin{aligned} & f_{S}=\text { Internal Clock, } f_{I_{N}}=1 \mathrm{kHz} \\ & f_{S}=750 \mathrm{kHz}, f_{I_{N}}=1 \mathrm{kHz} \end{aligned}$	71.5 72.1				dB

 Unless Otherwise Noted. (Continued)

PARAMETER	TEST CONDITION	LIMITS					UNITS
		$+25^{\circ} \mathrm{C}$			$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$		
		MIN	TYP	MAX	MIN	MAX	
Total Harmonic Distortion, THD J	$\begin{aligned} & f_{S}=\text { Internal Clock, } f_{I_{N}}=1 \mathrm{kHz} \\ & f_{S}=750 \mathrm{kHz}, f_{I_{N}}=1 \mathrm{kHz} \end{aligned}$		$\begin{aligned} & -73.9 \\ & -73.8 \end{aligned}$				$\begin{aligned} & \mathrm{dBC} \\ & \mathrm{dBC} \end{aligned}$
	$\begin{aligned} & f_{S}=\text { Internal Clock, } f_{I_{N}}=1 \mathrm{kHz} \\ & f_{S}=750 \mathrm{kHz}, f_{\mathbb{I}}=1 \mathrm{kHz} \end{aligned}$		$\begin{aligned} & -80.3 \\ & -79.0 \end{aligned}$				$\begin{aligned} & \mathrm{dBC} \\ & \mathrm{dBC} \end{aligned}$
Spurious Free Dynamic Range, SFDR	$\begin{aligned} & f_{S}=\text { Internal Clock, } f_{I_{N}}=1 \mathrm{kHz} \\ & \mathrm{f}_{\mathrm{S}}=750 \mathrm{kHz}, \mathrm{f}_{\mathrm{IN}}=1 \mathrm{kHz} \end{aligned}$		$\begin{aligned} & -75.4 \\ & -75.1 \end{aligned}$				$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
	$\begin{aligned} & f_{S}=\text { Internal Clock, } f_{f_{N}}=1 \mathrm{kHz} \\ & f_{S}=750 \mathrm{kHz}, f_{I_{N}}=1 \mathrm{kHz} \end{aligned}$		$\begin{aligned} & -80.9 \\ & -79.6 \end{aligned}$				dB
ANALOG INPUT							
Input Current, Dynamic	At $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {REF }}+, 0 \mathrm{~V}$		$\pm 50$	$\pm 100$		$\pm 100$	$\mu \mathrm{A}$
Input Current, Static	Conversion Stopped		$\pm 0.4$	$\pm 10$		$\pm 10$	$\mu \mathrm{A}$
Input Bandwidth -3dB			1				MHz
Reference Input Current			160				$\mu \mathrm{A}$
Input Series Resistance, $\mathrm{R}_{\mathbf{S}}$	In Series with Input $\mathrm{C}_{\text {SAMPLE }}$		420				$\Omega$
Input Capacitance, $\mathrm{C}_{\text {SAMPLE }}$	During Sample State		380				pF
Input Capacitance, $\mathrm{C}_{\text {HOLD }}$	During Hold State		20				pF

DIGITAL INPUTS OEL, OEM, STRT

High-Level Input Voltage, $\mathrm{V}_{\mathrm{IH}}$		2.4			2.4	V
Low-Level Input Voltage, $\mathrm{V}_{\mathrm{IL}}$				0.8		0.8
Input Leakage Current, $\mathrm{I}_{\mathrm{IL}}$	Except CLK, $\mathrm{V}_{I N}=0 \mathrm{~V}, 5 \mathrm{~V}$	V				
Input Capacitance, $\mathrm{C}_{\mathrm{IN}}$				$\pm 10$		$\pm 10$

DIGITAL OUTPUTS

High-Level Output Voltage, $\mathrm{V}_{\mathrm{OH}}$	$I_{\text {SOURCE }}=-400 \mu \mathrm{~A}$	4.6			4.6		V
Low-Level Output Voltage, $\mathrm{V}_{\mathrm{OL}}$	$\mathrm{I}_{\text {SINK }}=1.6 \mathrm{~mA}$			0.4		0.4	V
Three-state Leakage, $\mathrm{I}_{\mathrm{OZ}}$	Except DRDY, $\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}, 5 \mathrm{~V}$			$\pm 10$		$\pm 10$	$\mu \mathrm{~A}$
Output Capacitance, $\mathrm{C}_{\mathrm{OUT}}$	Except DRDY		20				pF

## CLOCK

High-Level Output Voltage, $\mathrm{V}_{\mathrm{OH}}$	$I_{\text {SOURCE }}=-100 \mu \mathrm{~A}($ Note 2)	4			4		V
Low-Level Output Voltage, $\mathrm{V}_{\mathrm{OL}}$	$\mathrm{I}_{\mathrm{SINK}}=100 \mu \mathrm{~A}($ Note 2)			1		1	V
Input Current	CLK Only, $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, 5 \mathrm{~V}$			$\pm 5$		$\pm 5$	mA

Electrical Specifications $\quad V_{D D}=V_{A_{+}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}++}=+4.608 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=\mathrm{V}_{\mathrm{AA}}=\mathrm{V}_{\mathrm{REF}}=\mathrm{GND}, \mathrm{CLK}=$ External 750kHz, Unless Otherwise Noted. (Continued)

PARAMETER	TEST CONDITION	LIMITS					UNITS
		$+25^{\circ} \mathrm{C}$			$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$		
		MIN	TYP	MAX	MIN	MAX	
TIMING							
Conversion Time ( $t_{\text {CONV }}+t_{\text {ACQ }}$ ) (Includes Acquisition Time)		20			20		$\mu s$
Clock Frequency	Internal Clock, (CLK = Open)	200	300	400	150	500	kHz
	External CLK (Note 2)	0.05	2	1.5	0.05	1.5	MHz
Clock Pulse Width, ${ }_{\text {Low }}$, $\mathrm{t}_{\text {HIGH }}$	External CLK (Note 2)	100			100		ns
Aperture Delay, $t_{\text {d }}$ APR	(Note 2)		35	50		70	ns
Clock to Data Ready Delay, $\mathrm{t}_{1}$ DRDY	(Note 2)		105	150		180	ns
Clock to Data Ready Delay, $\mathrm{t}_{\text {2 }}$ DRDY	(Note 2)		100	160		195	ns
Clock to Data Ready, todATA	(Note 2)		75	110		135	ns
Start Removal Time, $\mathrm{t}_{\mathrm{R}} \overline{\text { STRT }}$	(Note 2)	0	. 75		0		ns
Start Setup Time, $\mathrm{t}_{\mathbf{s} \mathbf{u}} \overline{\text { STRT }}$	(Note 2)	85	60		100		ns
Start Pulse Width, $\mathrm{t}_{\text {W }}$ STRT	(Note 2)	10	4		15		ns
Start to Data Ready Delay, $\mathrm{t}_{\mathrm{D3}}$ DRDY	(Note 2)		65	105		120	ns
Ċlock Delay from Start, $\mathrm{t}_{\mathrm{D}} \overline{\text { STRT }}$	(Note 2)		60				ns
Output Enable Delay, $\mathrm{t}_{\text {EN }}$	(Note 2)		20	30		50	ns
Output Disabled Delay, tois	(Note 2)		80	95		120	ns
POWER SUPPLY CHARACTERISTICS							
Supply Current, $I_{\text {DD }}+I_{\text {AA }}$			1.9	5		8	mA

NOTE:
2. Parameter guaranteed by design or characterization, not production tested.

## Timing Diagrams


$\overline{\mathrm{OEL}}=\overline{\mathrm{OEM}}=\mathrm{V}_{\text {SS }}$
FIGURE 1. CONTINUOUS CONVERSION MODE


FIGURE 2. SINGLE SHOT MODE EXTERNAL CLOCK

## Timing Diagrams (Continued)



FIGURE 3. SINGLE SHOT MODE INTERNAL CLOCK


FIGURE 4. OUTPUT ENABLE/DISABLE TIMING DIAGRAM


FIGURE 5. GENERAL TIMING LOAD CIRCUIT

## Typical Performance Curves

INL vs TEMPERATURE


DNL vs TEMPERATURE


TEMPERATURE $\left({ }^{\circ} \mathrm{C}\right)$

FULL SCALE ERROR vs TEMPERATURE


OFFSET VOLTAGE vs TEMPERATURE


ACCURACY vs REFERENCE VOLTAGE


POWER SUPPLY REJECTION vs TEMPERATURE


## Typical Performance Curves

## SUPPLY CURRENT vs TEMPERATURE



INTERNAL CLOCK FREQUENCY vs TEMPERATURE


TOTAL HARMONIC DISTORTION vs INPUT FREQUENCY


FFT SPECTRUM


EFFECTIVE BITS vs INPUT FREQUENCY


SIGNAL-NOISE RATIO vs INPUT FREQUENCY


TABLE 1. PIN DESCRIPTION

PIN \#	NAME	DESCRIPTION
1	DRDY	Output flag signifying new data is available. Goes high at end of clock period 15. Goes low when new conversion is started.
2	D0	Bit 0 (Least significant bit, LSB)
3	D1	Bit 1
4	D2	Bit 2
5	D3	Bit 3
6	D4	Bit 4
7	D5	Bit 5
8	D6	Bit 6
9	D7	Bit 7
10	D8	Bit 8
11	D9	Bit 9
12	$\mathrm{V}_{\mathrm{ss}}$	Digital ground, (0V).
13	D10	Bit 10
14	D11	Bit 11 (Most significant bit, MSB)
15	OEM	Three-state enable for D4-D11. Active low input.
16	$\mathrm{V}_{\text {AA }}{ }^{-}$	Analog ground, (0V).
17	$\mathrm{V}_{\mathrm{AA}^{+}}$	Analog positive supply. ( +5 V ) (See text)
18	$\mathrm{V}_{\mathrm{IN}}$	Analog input.
19	$\mathrm{V}_{\text {REF }}{ }^{+}$	Reference voltage positive input, sets 4095 code end of input range.
20	$\mathrm{V}_{\text {REF }}$ -	Reference voltage negative input, sets 0 code end of input range.
21	STRT	Start conversion input active low, recognized after end of clock period 15.
22	CLK	CLK input or output. Conversion functions are synchronized to positive going edge. (See text)
23	OEL	Three-state enable for D0-D3. Active low input.
24	$\mathrm{V}_{\mathrm{DD}}$	Digital positive supply ( +5 V ).

## Theory of Operation

HI5812 is a CMOS 12-Bit Analog-to-Digital Converter that uses capacitor-charge balancing to successively approximate the analog input. A binarily weighted capacitor network forms the AD heart of the device. Page 2 shows an illustration of the block diagram for the HI5812.

The capacitor network has a common node which is connected to a comparator. The second terminal of each capacitor is individually switchable to the input, $\mathrm{V}_{\mathrm{REF}}+$ or $V_{\text {REF }}$.

During the first three clock periods of a conversion cycle, the switchable end of every capacitor is connected to the input and the comparator is being auto-balanced at the capacitor common node.
During the fourth period, all capacitors are disconnected from the input; the one representing the MSB (D11) is connected to the $\mathrm{V}_{\mathrm{REF}}$ + terminal; and the remaining capacitors to $\mathrm{V}_{\text {REF }}$. The capacitor-common node, after the charges balance out, will indicate whether the input was above $1 / 2$ of ( $\left.V_{\text {REF }}+V_{\text {REF }}\right)$. At the end of the fourth period, the comparator output is stored and the MSB capacitor is either left connected to $\mathrm{V}_{\text {REF }}$ (if the comparator was high) or returned to $\mathrm{V}_{\text {REF }}$. This allows the next comparison to be at either $3 / 4$ or $1 / 4$ of ( $V_{\text {REF }}+-V_{\text {REF }}-$ ).

At the end of periods 5 through 14, capacitors representing D10 through D1 are tested, the result stored, and each capacitor either left at $\mathrm{V}_{\text {REF }}+$ or at $\mathrm{V}_{\text {REF }}-$.
At the end of the 15 th period, when the LSB (DO) capacitor is tested, (DO) and all the previous results are shifted to the output registers and drivers. The capacitors are reconnected to the input, the comparator returns to the balance state, and the data-ready output goes active. The conversion cycle is now complete.

## Analog Input

The analog input pin is a predominately capacitive load that changes between the track and hold periods of the conversion cycle. During hold, clock period 4 through 15, the input loading is leakage and stray capacitance, typically less than $5 \mu \mathrm{~A}$ and 20 pF .

At the start of input tracking, clock period 1, some charge is dumped back to the input pin. The input source must have low enough impedance to dissipate the current spike by the end of the tracking period as shown in Figure 6. The amount of charge is dependent on supply and input voltages. The average current is also proportional to clock frequency.


Conditions: $\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{AA}_{+}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}_{+}}=4.608 \mathrm{~V}$,

$$
\mathrm{V}_{\mathrm{IN}}=4.608 \mathrm{~V}, \mathrm{CLK}=750 \mathrm{kHz}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}
$$

FIGURE 6. TYPICAL ANALOG INPUT CURRENT

As long as these current spikes settle completely by end of the signal acquisition period, converter accuracy will be preserved. The analog input is tracked for 3 clock cycles. With an external clock of 750 kHz the track period is $4 \mu \mathrm{~s}$.

A simplified analog input model is presented in Figure 7. During tracking, the A/D input ( $\mathrm{V}_{\mathbb{N}}$ ) typically appears as a 380 pF capacitor being charged through a $420 \Omega$ internal switch resistance. The time constant is 160 ns . To charge this capacitor from an external "zero $\Omega$ " source to 0.5LSB (1/8192), the charging time must be at least 9 time constants or $1.4 \mu \mathrm{~s}$. The maximum source impedance ( $R_{\text {SOURCE }}$ Max) for a $4 \mu \mathrm{~s}$ acquisition time settling to within 0.5 LSB is $750 \Omega$.

If the clock frequency was slower, or the converter was not restarted immediately (causing a longer sample time), a higher source impedance could be tolerated.


$$
R_{\text {SOURCE }} \text { (MAX) }=\frac{t_{\text {ACQ }}}{C_{\text {SAMPLE }} \ln \left[2^{-(N+1)}\right]}-R_{\text {SW }}
$$

FIGURE 7. ANALOG INPUT MODEL IN TRACK MODE

## Reference Input

The reference input $\mathrm{V}_{\mathrm{REF}}{ }^{+}$should be driven from a low impedance source and be well decoupled.

As shown in Figure 8, current spikes are generated on the reference pin during each bit test of the successive approximation part of the conversion cycle as the charge-balancing capacitors are switched between $\mathrm{V}_{\text {REF }}$ - and $\mathrm{V}_{\text {REF }}+$ (clock periods 5-14). These current spikes must settle completely during each bit test of the conversion to not degrade the accuracy of the converter. Therefore $\mathrm{V}_{\mathrm{REF}}+$ and $\mathrm{V}_{\mathrm{REF}}{ }^{-}$ should be well bypassed. Reference input $\mathrm{V}_{\text {REF }}$ - is normally connected directly to the analog ground plane. If $\mathrm{V}_{\mathrm{REF}}$ - is biased for nulling the converters offset it must be stable during the conversion cycle.


FIGURE 8. TYPICAL REFERENCE INPUT CURRENT

The HI5812 is specified with a 4.608 V reference, however, it will operate with a reference down to 3V having a slight degradation in performance. A typical graph of accuracy vs reference voltage is presented.

## Full Scale and Offset Adjustment

In many applications the accuracy of the HI5812 would be sufficient without any adjustments. In applications where accuracy is of utmost importance full scale and offset errors may be adjusted to zero.
The $\mathrm{V}_{\text {REF }}+$ and $\mathrm{V}_{\text {REF }}$ pins reference the two ends of the analog input range and may be used for offset and full scale adjustments. In a typical system the $\mathrm{V}_{\text {REF }}$ - might be returned to a clean ground, and the offiset adjustment done on an input amplifier. $\mathrm{V}_{\text {REF }}+$ would then be adjusted to null out the full scale error. When this is not possible, the $\mathrm{V}_{\text {REF }}$ - input can be adjusted to null the offset error, however, $\mathrm{V}_{\text {REF }}$ - must be well decoupled.
Full scale and offset error can also be adjusted to zero in the signal conditioning amplifier driving the analog input ( $\mathrm{V}_{\mathbb{I N}}$ ).

## Control Signal

The H 58812 may be synchronized from an external source by using the STRT (Start Conversion) input to initiate conversion, or if STRT is tied low, may be allowed to free run. Each conversion cycle takes 15 clock periods.
The input is tracked from clock period 1 through period 3 , then disconnected as the successive approximation takes place. After the start of the next period 1 (specified by $T_{D}$ data), the output is updated.
The DRDY (Data Ready) status output goes high (specified by $T_{D_{1}}$ DRDY) after the start of clock period 1, and returns low (specified by $\mathrm{T}_{\mathrm{D} 2} \mathrm{DRDY}$ ) after the start of clock period 2.

The 12 data bits are available in parallel on three-state bus driver outputs. When low, the $\overline{\mathrm{OEM}}$ input enables the most significant byte (D4 through D11) while the $\overline{\mathrm{OEL}}$ input enables the four least significant bits (DO-D3). $\mathrm{T}_{\mathrm{EN}}$ and $\mathrm{T}_{\mathrm{DIS}}$ specify the output enable and disable times.
If the output data is to be latched externally by the DRDY signal, the trailing edge of DRDY should be used: there is no guaranteed setup time.
When STRT input is used to initiate conversions, operation is slightly different depending on whether an internal or external clock is used.

Figure 3 illustrates operation with an internal clock. If the STRT signal is removed (at least $T_{R} \overline{S T R T}$ ) before clock period 1, and is not reapplied during that period, the clock will shut off after entering period 2 . The input will continue to track and the DRDY output will remain high during this time.
A low signal applied to $\overline{\text { STRT }}$ (at least $\mathrm{T}_{\mathrm{W}} \overline{\mathrm{STRT}}$ wide) can now initiate a new conversion. The STRT signal (after a delay of ( $T_{D} C L K$ ) cause the clock to restart.

Depending on how long the clock was shut off, the low portion of clock period 2 may be longer than during the remaining cycles.

The input will continue to track until the end of period 3, the same as when free running.

Figure 2 illustrates the same operation as above but with an external clock. If STRT is removed (at least $T_{R} \overline{S T R T}$ ) before clock period 2, a low signal applied to STRT will drop the DRDY flag as before, and with the first positive-going clock edge that meets the ( $T_{S U} \overline{S T R T}$ ) setup time, the converter will continue with clock period 3.

## Clock

The HI5812 can operate either from its internal clock or from one externally supplied. The CLK pin functions either as the clock output or input. All converter functions are synchronized with the rising edge of the clock signal.

Figure 9 shows the configuration of the internal clock. The clock output drive is low power: if used as an output, it should not have more than 1 CMOS gate load applied, and stray wiring capacitance should be kept to a minimum.

The internal clock will shut down if the ADD is not restarted after a conversion. The clock could also be shut down with an open collector driver applied to the CLK pin. This should only be done during the sample portion (the first three clock periods) of a conversion cycle, and might be useful for using the device as a digital sample and hold.
If an external clock is supplied to the CLK pin, it must have sufficient drive to overcome the internal clock source. The external clock can be shut off, but again, only during the sample portion of a conversion cycle. At other times, it must be above the minium frequency shown in the specifications. In the above two cases, a further restriction applies in that the clock should not be shut off during the third sample period for more than 1 ms . This might cause an internal charge-pump voltage to decay.

If the internal or external clock was shut off during the conversion time (clock cycles 4 through 15) of the A/D, the output might be invalid due to balancing capacitor droop.
An external clock must also meet the minimum $T_{\text {Low }}$ and $\mathrm{T}_{\text {HIGH }}$ times shown in the specifications. A violation may cause an internal miscount and invalidate the results.


FIGURE 9. INTERNAL CLOCK CIRCUITRY

## Power Supplies and Grounding

$V_{D D}$ and $V_{S S}$ are the digital supply pins: they power all internal logic and the output drivers. Because the output drivers can cause fast current spikes in the $V_{D D}$ and $V_{S S}$ lines, $\mathrm{V}_{\mathrm{SS}}$ should have a low impedance path to digital ground and $V_{D D}$ should be well bypassed.

Except for $\mathrm{V}_{\mathrm{AA}}+$, which is a substrate connection to $\mathrm{V}_{\mathrm{DD}}$, all pins have protection diodes connected to $V_{D D}$ and $V_{S S}$. Input transients above $\mathrm{V}_{\mathrm{DD}}$ or below $\mathrm{V}_{\mathrm{SS}}$ will get steered to the digital supplies.
The $\mathrm{V}_{\mathrm{AA}^{+}}$and $\mathrm{V}_{\mathrm{AA}^{-}}$terminals supply the charge-balancing comparator only. Because the comparator is auto-balanced between conversions, it has good low-frequency supply rejection. It does not reject well at high frequencies however; $\mathrm{V}_{\mathrm{AA}^{-}}$should be returned to a clean analog ground and $\mathrm{V}_{\mathrm{AA}^{+}}+$ should be RC decoupled from the digital supply as shown in Figure 10.
There is approximately $50 \Omega$ of substrate impedance between $\mathrm{V}_{\mathrm{DD}}$ and $\mathrm{V}_{A A}+$. This can be used, for example, as part of a low-pass RC filter to attenuate switching supply noise. A $10 \mu \mathrm{~F}$ capacitor from $\mathrm{V}_{\mathrm{AA}}+$ to ground would attenuate 30 kHz noise by approximately 40 dB . Note that back-to-back diodes should be placed from $V_{D D}$ to $V_{A A}+$ to handle supply to capacitor turn-on or turn-off current spikes.

## Dynamic Performance

Fast Fourier Transform (FFT) techniques are used to evaluate the dynamic performance of the A/D. A low distortion sine wave is applied to the input of the A/D converter. The input is sampled by the A/D and its output stored in RAM. The data is than transformed into the frequency domain with a 4096 point FFT and analyzed to evaluate the converters dynamic performance such as SNR and THD. See typical performance characteristics.

## Signal-To-Noise Ratio

The signal to noise ratio (SNR) is the measured rms signal to rms sum of noise at a specified input and sampling frequency. The noise is the rms sum of all except the fundamental and the first five harmonic signals. The SNR is dependent on the number of quantization levels used in the converter. The theoretical SNR for an N-bit converter with no differential or integral linearity error is: $\mathrm{SNR}=(6.02 \mathrm{~N}+1.76)$ dB . For an ideal 12 -bit converter the SNR is 74 dB . Differential and integral linearity errors will degrade SNR.

$$
\text { SNR }=10 \log \frac{\text { Sinewave Signal Power }}{\text { Total Noise Power }}
$$

## Signal-To-Noise + Distortion Ratio

SINAD is the measured rms signal to rms sum of noise plus harmonic power and is expressed by the following.

$$
\text { SINAD }=10 \log \frac{\text { Sinewave Signal Power }}{\text { Noise }+ \text { Harmonic Power (2nd }-6 t h)}
$$

## Effective Number of Bits

The effective number of bits (ENOB) is derived from the SINAD data;

$$
\mathrm{ENOB}=\frac{\mathrm{SINAD}-1.76}{6.02}
$$

## Total Harmonic Distortion

The total harmonic distortion (THD) is the ratio of the rms sum of the second through sixth harmonic components to the fundamental rms signal for a specified input and sampling frequency.

THD $=10 \log \frac{\text { Total Harmonic Power (2nd - 6th Harmonic) }}{\text { Sinewave Signal Power }}$

## Spurious-Free Dynamic Range

The spurious-free dynamic range (SFDR) is the ratio of the fundamental rms amplitude to the rms amplitude of the next largest spur or spectral component. If the harmonics are buried in the noise floor it is the largest peak.


TABLE 3. CODE TABLE

$\begin{gathered} \text { CODE } \\ \text { DESCRIPTION } \end{gathered}$	INPUT VOLTAGE* $\begin{aligned} V_{\mathrm{REF}_{+}} & =4.608 \mathrm{~V} \\ \mathrm{~V}_{\text {REF }} & =0.0 \mathrm{~V} \end{aligned}$   (V)	DECIMAL COUNT	BINARY OUTPUT CODE											
			MSB										LSB	
			D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
Full Scale (FS)	4.6069	4095	1	1	1	1	1	1	1	1	1	1	1	1
FS - 1 LSB	4.6058	4094	1	1	1	1	1	1	1	1	1	1	1	0
3/4 FS	3.4560	3072	1	1	0	0	0	0	0	0	0	0	0	0
1/2 FS	2.3040	2048	1	0	0	0	0	0	0	0	0	0	0	0
1/4 FS	1.1520	1024	0	1	0	0	0	0	0	0	0	0	0	0
1 LSB	0.001125	1	0	0	0	0	0	0	0	0	0	0	0	1
Zero	0	0	0	0	0	0	0	0	0	0	0	0	0	0

* The voltages listed above represent the ideal lower transition of each output code shown as a function of the reference voltage.


FIGURE 10. GROUND AND SUPPLY DECOUPLING

8-Channel, 10-Bit, High Speed<br>Sampling A/D Converter

## Features

- This Circuit is Processed in Accordance to Mil-Std883 and is Fully Conformant Under the Provisions of Paragraph 1.2.1.
- $5 \mu \mathrm{~s}$ Conversion Time
- 8-Channel Input Multiplexer
- 200,000 Channels/Second Throughput Rate
- Over 9 Effective Bits at 20 kHz
- No Offset or Gain Adjustments Necessary
- Analog and Reference Inputs Fully Buffered
- On-Chip Track and Hold Amplifier
- $\mu$ P Compatible Interface, 2's Complement Data Output
- 150mW Power Consumption
- Single 2.5V Reference Required for a $\pm 2.5 \mathrm{~V}$ Input Range
- Out-of-Range Flag


## Applications

- $\mu \mathrm{P}$ Controlled Data Acquisition Systems
- DSP
- Avionics
- Sonic
- Process Control
- Automotive Transducer Sensing
- Industrial
- Robotics
- Digital Communication


## Description

The HI-7153/883 is an 8-channel high speed 10 bit AD converter which uses a Two Step Flash algorithm to achieve throughput rates of 200 kHz . The converter features an 8 channel CMOS analog multiplexer with random channel addressing. A unique switched capacitor technique allows a new input voltage to be sampled while a conversion is taking place.
Internal high speed CMOS buffers at both the analog and reference inputs simplifies interface requirements.
A Track and Hold amplifier is included on the chip, consisting of two high speed amplifiers and an internal hold capacitor which reduces external circuitry.
Microprocessor bus interfacing is simplified by the use of standard Chip Select, Read and Write control signals. The digital three-state outputs are byte organized for bus interface to 8 to 16 bit systems. An Out-of-Range pin, together with the MSB bit, can be used to indicate an under or overrange condition.
The $\mathrm{HI}-7153 / 883$ operates with $\pm 5 \mathrm{~V}$ supplies. Only a single +2.5 V reference is required to provide a bipolar input range from -2.5 V to +2.5 V .

## Ordering Information

PART   NUMBER	LINEARITY   (MAX ILE)	TEMPERATURE   RANGE	PACKAGE
H $11-7153 \mathrm{~S} / 883$	$\pm 1.0 \mathrm{LSB}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	40 Pin Ceramic   DIP

## Pinout



Functional Diagram


## Pin Descriptions

PIN \#	SYMBOL	DESCRIPTION
1	$V_{\text {REF }}$	Reference voltage input ( +2.5 V ).
2	AG	Analog ground reference (0V).
3	$A_{\text {INo }}$	Analog input channel 0.
4	AIN1	Analog input channel 1.
5	$\mathrm{A}_{\text {IN2 }}$	Analog input channel 2.
6	$\mathrm{AlN3}$	Analog input channel 3.
7	AIN4	Analog input channel 4.
8	AIN5	Analog input channel 5.
9	AIN6	Analog input channel 6.
10	AIN7	Analog input channel 7.
11	NC	No connect or tie to V+only.
12	TEST	Test pin. Connect to DG for normal operation.
13	A0	Mux address input. (LSB) Active high.
14	A1	Mux address input. Active high.
15	A2	Mux address input. (MSB) Active high.
16	ALE	Mux address enable. When high, the latch is transparent. Address data is latched on the falling edge.
17	$\bar{W}$	Write input. With $\overline{\mathrm{CS}}$ low, starts conversion when pulsed low; continuous conversions when kept low.
18	$\overline{C S}$	Chip select input. Active low
19	$\overline{\mathrm{RD}}$	Read input. With $\overline{\mathrm{CS}}$ low, enable output buffers when pulsed low; outputs updated at the end of conversion.
20	SMODE	Slow memory mode input. Active high.
21	BUS	Bus select input. $\mathrm{Hlgh}=$ all inputs enabled together D0-D9, OVR Low = Outputs enabled by HBE.
22	HBE	Byte select (HBE/LBE) input for 8-bit bus. High = High byte selece, D0-D7.
23	CLK	Clock input, TTL compatible.
24	DG	Digital ground (0V).


PIN $\#$	SYMBOL	DESCRIPTION
25	EOC	End-of-conversion status. Pulses   high at the end-of-conversion.
26	HOLD	Start of conversion status. Pulses low   at the start-of-conversion.
27	D0	Bit 0 (LSB).
28	D1	Bit 1.
29	D2	Bit 2 Output.
30	D3	Bit 3 Data.
31	D4	Bit 4 Bits.
32	D5	Bit 5.
33	D6	Bit 6.
34	D7	Bit 7.
35	D8	Bit 8.
36	D9	Bit 9 (MSB).
37	OVR	Out of Range flag. Valid at end of con-   version when output exceeds full   scale.
38	V+	Positive supply voltage input (+5V).
39	GND	Ground return for comparators (0V).
40	V-	Negative supply voltage input (-5V).

## Multiplexer Channel Selection

ADDRESS \& CONTROL INPUTS					ANALOG CHANNEL SELECTED
A2	A1	AO	$\overline{\mathbf{C S}}$	ALE	
0	0	0	0	1	$A_{\text {INO }}$
0	0	1	0	1	$A_{\text {IN1 }}$
0	1	0	0	1	$A_{\text {IN2 }}$
0	1	1	0	1	$A_{\text {IN3 }}$
1	0	0	0	1	$A_{\text {IN4 }}$
1	0	1	0	1	$A_{\text {IN5 }}$
1	1	0	0	1	AIN6
1	1	1	0	1	$A_{\text {IN7 }}$

## HI-7153/883

## Truth Tables

SLOW MEMORY MODE VO TRUTH TABLE (SMODE $=\mathbf{V}_{+}$)

$\overline{C S}$	$\overline{\text { WR }}$	$\overline{\text { RD }}$	BUS	HBE	ALE	FUNCTION
0	0	X	X	X	X	Initiates a conversion.
0	X	X	X	X	1	Selects mux channel. Address data is latched on falling edge of ALE. Latch   is transparent when ALE is high.
1	X	X	X	X	X	Disables all chip commands.
0	X	0	1	X	X	Enables D0 - D9 and OVR.
0	X	0	0	0	X	Low byte enable: D0 - D7
0	X	0	0	1	X	High byte enable: D8 - D9, OVR.
X	X	1	X	X	X	Disables all outputs (high impedance).

NOTE: $X=$ don't care.

FAST MEMORY MODE VO TRUTH TABLE (SMODE = DG)

$\overline{\mathbf{C S}}$	$\overline{\mathrm{WR}}$	$\overline{\mathrm{RD}}$	BUS	HBE	ALE	FUNCTION
0	0	X	X	X	X	Continuous conversion, $\overline{\mathrm{WR}}$ may be tied to DG.
0	X	X	X	X	1	Selects mux channel. Address data is latched on falling edge of ALE. Latch   is transparent when ALE is high.
1	X	X	X	X	X	Disables all chip commands.
0	X	0	1	X	X	Enables D0 - D9 and OVR.
0	X	0	0	0	X	Low byte enable: D0 - D7
0	X	0	0	1	X	High byte enable: D8 - D9, OVR.
X	X	1	x	X	x	Disables all outputs (high impedance).

NOTE: $X=$ don't care.

DMA MODE VO TRUTH TABLE (SMODE $\left.=\mathrm{V}_{\mathbf{+}}, \overline{\mathrm{CS}}=\overline{\mathrm{WR}}=\overline{\mathrm{RD}}=\mathrm{DG}\right)$ )

BUS	HBE	ALE	FUNCTION
X	X	1	Selects mux channel. Address data is latched on falling edge of ALE. Latch   is transparent when ALE is high.
1	X	X	Enables D0 - D9 and OVR.
0	0	X	Low byte enable: D0 - D7
0	1	X	High byte enable: D8 - D9, OVR.

NOTE: X = don't care.

## Absolute Maximum Ratings

Supply Voltage
V + to GND (DG/AG/GND) . . . . . . . . . . . . . . . . $-0.3 \mathrm{~V}<\mathrm{V}+<+5.7 \mathrm{~V}$
V- to GND (DG/AG/GND) . . . . . . . . . . . . . . . . . . . 5.7 F < V - <+0.3V
Analog and Reference Inputs
 Digital VO Pins DO-D9, OVR, CLK, $\overline{C S}, \overline{R D}, \overline{W R}, ~ A L E, ~ S M O D E, ~$ HOLD, EOC, HBE, BUS, AO-A2, TEST(DG $-0.3 \mathrm{~V})<\mathrm{V}_{10}<\left(\mathrm{V}_{+}+0.3 \mathrm{~V}\right)$ Operating Temperature Range $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $+175^{\circ} \mathrm{C}$
Storage Temperature Range . . . . . . . . . . . . . . . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature, (Soldering 10 sec) . . . . . . . . . . . . . . . . . . . . $300^{\circ} \mathrm{C}$
ESD Classification
Class 1

## Thermal Information



Power Dissipation Derating Factor Above $+75^{\circ} \mathrm{C}$ HI-7153/883. $39 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Reliability Information
Transistor Count 1460
Worst Case Density $\qquad$
NOTE:

1. Dissipation rating assumes device is mounted with all leads soldered to printed circuit board.

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS
Device Tested at: $\mathrm{V}_{+}=5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=2.50 \mathrm{~V}, \mathrm{f}_{\mathrm{CLK}}=600 \mathrm{kHz}$ with $\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}} \leq 25 \mathrm{~ns}$ and $50 \%$ Duty Cycle, Unless Otherwise Specified.

SYMBOL	DC PARAMETER	CONDITIONS	GROUP A SUBGROUP	TEMPERATURE	LIMITS		UNIT
					MIN	MAX	
ACCURACY							
ILE	Integral Linearity Error (Best Fit Line)		1	$+25^{\circ} \mathrm{C}$	-	$\pm 1.0$	LSB
			2, 3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	$\bullet$	$\pm 1.0$	LSB
DLE	Differential Linearity Error		1	$+25^{\circ} \mathrm{C}$	-	$\pm 1.0$	LSB
			2, 3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	-	$\pm 1.0$	LSB
$\mathrm{V}_{\mathrm{os}}$	Bipolar Offset Error		1	$+25^{\circ} \mathrm{C}$	-	$\pm 2.5$	LSB
			2, 3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	-	$\pm 3.0$	LSB
FSE	Unadjusted Gain Error		1	$+25^{\circ} \mathrm{C}$	$\bullet$	$\pm 2.5$	LSB
			2, 3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	-	$\pm 3.0$	LSB
ANALOG MULTIPLEXER							
IBI	Input Leakage Current	$\mathrm{A}_{\text {IN }}= \pm 2.50 \mathrm{~V}$	1	$+25^{\circ} \mathrm{C}$	$\bullet$	$\pm 100$	nA
			2, 3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	-	$\pm 100$	nA
$\mathrm{R}_{\text {DS(ON) }}$	MUX On-resistance	$\mathrm{I}_{\mathrm{I}}=100 \mu \mathrm{~A}$	1	$+25^{\circ} \mathrm{C}$	-	2.5	$\mathrm{K} \Omega$
			2, 3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	$\bullet$	2.5	$\mathrm{K} \Omega$
REFERENCE INPUT							
IBR	Reference Input Bias Current	$\mathrm{V}_{\text {REF }}=+2.50 \mathrm{~V}$	1	$+25^{\circ} \mathrm{C}$	$\bullet$	$\pm 100$	nA
			2, 3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	$\bullet$	$\pm 100$	nA
LOGIC INPUTS							
$\mathrm{V}_{\mathrm{IH}}$	Input High Voltage		1	$+25^{\circ} \mathrm{C}$	2.4	-	V
			2, 3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	2.4	-	V
$\mathrm{V}_{\text {IL }}$	Input Low Voltage		1	. $+25^{\circ} \mathrm{C}$	-	0.8	V
			2, 3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	-	0.8	V
IIL	Logic Input Current	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V},+5 \mathrm{~V}$	1	$+25^{\circ} \mathrm{C}$	-	$\pm 1$	$\mu \mathrm{A}$
			2, 3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	-	$\pm 1$	$\mu \mathrm{A}$

## Specifications HI-7153/883

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)
Device Tested at: $\mathrm{V}_{+}=5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=2.50 \mathrm{~V}, \mathrm{f}_{\text {CLK }}=600 \mathrm{kHz}$ with $\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}} \leq 25 \mathrm{~ns}$ and $50 \%$ Duty Cycle, Unless Otherwise Specified.

	DC PARAMETER	CONDITIONS	GROUP A SUBGROUP	TEMPERATURE	LIMITS		UNIT
SYMBOL					MIN	MAX	

LOGIC OUTPUTS

$\mathrm{V}_{\mathrm{OH}}$	Output High Voltage	$\mathrm{I}_{\mathrm{OH}}=-200 \mu \mathrm{~A}$	1	$+25^{\circ} \mathrm{C}$	2.4	-	V
			2, 3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	2.4	-	V
$\mathrm{V}_{\mathrm{OL}}$	Output Low Voltage	$\mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA}$	1	$+25^{\circ} \mathrm{C}$	-	0.4	V
			2, 3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	-	0.4	V
10 L	Output Leakage Current	$\begin{aligned} & \overline{\mathrm{RD}}=+5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}, \\ & \mathrm{OV}(\text { Note } 11) \end{aligned}$	1	$+25^{\circ} \mathrm{C}$	-	$\pm 1$	$\mu \mathrm{A}$
			2, 3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	-	$\pm 10$	$\mu \mathrm{A}$

POWER SUPPLY VOLTAGE RANGE

V+	Positive Supply	Functional operation only. (Note 10)	7	$+25^{\circ} \mathrm{C}$	4.5	5.5	V
			8A, 8B	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	4.5	5.5	V
V-	Negative Supply	Functional operation only. (Note 10)	7	$+25^{\circ} \mathrm{C}$	-4.5	-5.5	V
			8A, 8B	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	-4.5	-5.5	V

POWER SUPPLY REJECTION

FSE	V+, V-Gain Error	$\begin{aligned} & \mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=-4.75 \mathrm{~V}, \\ & -5.25 \mathrm{~V} \end{aligned}$	1	$+25^{\circ} \mathrm{C}$	-	$\pm 0.5$	LSB
			2, 3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	$\bullet$	$\pm 0.8$	LSB
		$\begin{aligned} & \mathrm{V}-=-5 \mathrm{~V}, \mathrm{~V}+=4.75 \mathrm{~V}, \\ & 5.25 \mathrm{~V} \end{aligned}$	1	$+25^{\circ} \mathrm{C}$	-	$\pm 0.5$	LSB
			2, 3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	-	$\pm 0.8$	LSB
VOS	V+, V- Offset Error	$\begin{aligned} & \mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=-4.75 \mathrm{~V}, \\ & -5.25 \mathrm{~V} \end{aligned}$	1	$+25^{\circ} \mathrm{C}$	-	$\pm 0.5$	LSB
			2, 3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	-	$\pm 0.8$	LSB
		$\begin{aligned} & \mathrm{V}-=5 \mathrm{~V}, \mathrm{~V}+=4.75 \mathrm{~V}, \\ & 5.25 \mathrm{~V} \end{aligned}$	1	$+25^{\circ} \mathrm{C}$	$\bullet$	$\pm 0.5$	LSB
			2, 3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	-	$\pm 0.8$	LSB

## SUPPLY CURRENT

$1+$	$\mathrm{V}+$ Supply Current	$\mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=5 \mathrm{~V}$	1	$+25^{\circ} \mathrm{C}$	-	30	mA
			2,3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	-	30	mA
$\mathrm{I}-$	V - Supply Current	$\mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=5 \mathrm{~V}$	1	$+25^{\circ} \mathrm{C}$	-	-15	mA
			2,3	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	-	-15	mA

TABLE 2. DC ELECTRICAL PERFORMANCE CHARACTERISTICS
Device Tested at: $\mathrm{V}_{+}=5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=2.50 \mathrm{~V}, \mathrm{f}_{\mathrm{CLK}}=600 \mathrm{kHz}$ with $\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}} \leq 25 \mathrm{~ns}$ and $50 \%$ Duty Cycle, Unless Otherwise Specified.

SYMBOL	AC PARAMETERS	CONDITIONS	GROUP A SUBGROUP	TEMPERATURE	LIMITS		UNITS
					MIN	MAX	
$\mathrm{t}_{\text {SPS }}$	Continuous Conversion Time	(Note 3)	9	$+25^{\circ} \mathrm{C}$		5	$\mu \mathrm{s}$
			10, 11	$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$		5	$\mu \mathrm{s}$

TABLE 3. DC ELECTRICAL PERFORMANCE CHARACTERISTICS
Device Characterized at: $V_{+}=5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=2.50 \mathrm{~V}, \mathrm{f}_{\text {cLK }}=600 \mathrm{kHz}$ with $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}} \leq 25 \mathrm{~ns}$ and $50 \%$ Duty Cycle, Unless Otherwise Specified.

SYMBOL	PARAMETER	NOTES	TEMPERATURE	LIMITS		UNITS
				MIN	MAX	
$\mathrm{t}_{\text {SPS }}$	Continuous Conversion Time	3, 5	$+25^{\circ} \mathrm{C}$	60	5	$\mu \mathrm{s}$
			$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	60	5	$\mu \mathrm{s}$
tconv	Conversion Time, First Conversion	2,5	$+25^{\circ} \mathrm{C}$	-	$4 \mathrm{t}_{\text {cLK }}+0.63$	$\mu \mathrm{s}$
			$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	-	$4 \mathrm{t}_{\text {clk }}+0.8$	$\mu \mathrm{s}$
$t_{\text {ALEW }}$	ALE Pulse Width	5	$+25^{\circ} \mathrm{C}$	30	-	ns
			$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	50	-	ns
$t_{\text {AS }}$	Address Setup Time	5	$+25^{\circ} \mathrm{C}$	40	-	ns
			$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	80	-	ns
$t_{\text {AH }}$	Address Hold Time	5	$+25^{\circ} \mathrm{C}$	0	-	ns
			$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	0	-	ns
${ }^{\text {W WRL }}$	$\overline{\text { WR Pulse Width }}$	5	$+25^{\circ} \mathrm{C}$	100	$\mathrm{tcuk}^{\prime} 2$	ns
			$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	100	$\mathrm{t}_{\mathrm{CLK}} / 2$	ns
$t_{\text {Wreoc }}$	$\overline{\text { WR }}$ to EOC Low	2, 4, 5	$+25^{\circ} \mathrm{C}$	-	130	ns
			$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	-	160	ns
$t_{\text {HOLD }}$	$\overline{\mathrm{WR}}$ to $\overline{\mathrm{HOLD}}$ Delay	2,5	$+25^{\circ} \mathrm{C} 4$	-	150	ns
			$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	-	170	ns
$\mathrm{t}_{\text {CKHR }}$	Clock to $\overline{\text { HOLD }}$ Rise Delay	2,5	$+25^{\circ} \mathrm{C}$	150	450	ns
			$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	120	500	ns
$\mathrm{t}_{\text {cKHF }}$	Clock to $\overline{\text { HOLD }}$ Fall Delay	3,5	$+25^{\circ} \mathrm{C}$	50	200	ns
			$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	40	225	ns
$\mathrm{t}_{\text {CKEOC }}$	Clock to EOC High	2,5	$+25^{\circ} \mathrm{C}$		630	ns
			$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$		800	ns
$\mathrm{t}_{\text {data }}$	to DATA change	3,5	$+25^{\circ} \mathrm{C}$	100	350	ns
			$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	90	400	ns
$\mathrm{t}_{\mathrm{CD}}$	$\overline{\mathrm{CS}}$ to DATA	5	$+25^{\circ} \mathrm{C}$	-	70	ns
			$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	-	85	ns
$\mathrm{t}_{\mathrm{AD}}$	HBE to DATA	5	$+25^{\circ} \mathrm{C}$	-	50	ns
			$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	-	70	ns
$\mathrm{t}_{\mathrm{RD}}$	$\overline{\mathrm{RD}}$ LO to Active	5,7	$+25^{\circ} \mathrm{C}$	-	100	ns
			$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	$\bullet$	125	ns
$\mathrm{t}_{\mathrm{RX}}$	$\overline{\mathrm{RD}} \mathrm{HI}$ to Inactive	5,8	$+25^{\circ} \mathrm{C}$	-	60	ns
			$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	-	70	ns

TABLE 3. DC ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)
Device Characterized at: $\mathrm{V}_{+}=5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=2.50 \mathrm{~V}, \mathrm{f}_{\mathrm{CLK}}=600 \mathrm{kHz}$ with $\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{f}} \leq 25 \mathrm{~ns}$ and $50 \%$ Duty Cycle, Unless Otherwise Specified.

SYMBOL	PARAMETER	NOTES	TEMPERATURE	LIMITS		UNITS
				MIN	MAX	
$\mathrm{t}_{\mathrm{R}}$	Output Rise Time	5,6	$+25^{\circ} \mathrm{C}$	-	40	ns
			$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	-	60	ns
$\mathrm{t}_{\mathrm{F}}$	Output Fall Time	5,6	$+25^{\circ} \mathrm{C}$	-	30	ns
			$+125^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$	-	50	ns

NOTES:
2. Slow memory mode timing.
3. Fast memory or DMA mode of operation, except the first conversion which is equal to $t_{\text {conv }}$.
4. Maximum specification to prevent multiple triggering with .
5. All input drive signal are specified with $\mathrm{tr}=\mathrm{tf} \leq 10 \mathrm{~ns}$ and shall swing from 0.4 V to 2.4 V for all timing specifications. A signal is considered to change state as it crosses a 1.4 V threshold (except tRD \& tRX).
6. $t_{R}$ and $t_{F}$ load is $C_{L}=100 \mathrm{pF}$ (including stray capacitance) to $D G$ and is measured from the $10 \%-90 \%$ point.
7. $\mathrm{t}_{\mathrm{RD}}$ is the time required for the data output level to change by $10 \%$ in response to crossing a voltage level of 1.4 V . High- Z to $\mathrm{V}_{\mathrm{OH}}$ is measured with $R_{L}=2.5 \mathrm{~K} \Omega$ and $C_{L}=10 \mathrm{pF}$ (including stray to $D G$ ).
8. $\mathrm{t}_{\mathrm{RX}}$ is the time required for the data output level to change by $10 \%$ in response to crossing a voltage level of 1.4 V . $\mathrm{V}_{\mathrm{OL}}$ to High- Z is measured with $R_{L}=2.5 \mathrm{~K} \Omega$ to $V+$ and $C_{L}=10 \mathrm{pF}$ (including stray to $D G$ ).
9. Parameters listed in Table 3 are controlled via design or process parameters and are not directly tested at final production. These parameters are lab characterized upon initial design release, or upon design changes. These parameters are guaranteed by characterization based upon data from multiple production runs which reflect lot to lot and within lot variation.
10. Functionality is guaranteed by negative gain error test to $\pm 4$ LSB.
11. Applies to all outputs which three state.

TABLE 4. ELECTRICAL TEST REQUIREMENTS

MIL-STD-883 TEST REQUIREMENTS	SUBGROUPS (SEE TABLES 1 \& 2)
Interim Electrical Parameters (Pre Burn-IN)	$1,7,9$
Final Electrical Test Parameters	$\mathbf{1}^{*}, 2,3,7,8 \mathrm{~A}, 8 \mathrm{~B}, 9,10,11$
Group A Test Requirements	$1,2,3,7,8 \mathrm{~A}, 8 \mathrm{~B}, 9,10,11$
Groups C \& D Endpoints	$1,7,9$

[^1]
## Timing Waveforms



FIGURE 1. FAST MEMORY MODE (8-BIT DATA BUS)

CLOCK


ALE $\qquad$


A0-A2
 $\mathrm{N}+2$ ADDRESS $\mathrm{N}+3$ ADDRESS


CONDITIONS: $\operatorname{SMODE}=\mathrm{V}_{+}, \overline{\mathrm{CS}}=\overline{\mathrm{WR}}=\overline{\mathrm{RD}}=\mathrm{DG}, \mathrm{BUS}=\mathrm{V}_{+}, \mathrm{HBE}=\mathrm{DG}$ OR $\mathrm{V}_{+}$ NOTE: ECO OUTPUT IS LOW CONTINUOUSLY.

FIGURE 2. DMA MODE (16-BIT DATA BUS)

Timing Waveforms (Continued)


FIGURE 3. SLOW MEMORY MODE (16-BIT DATA BUS)

## Burn-In Circuit

H1-7153/883 CERAMIC DIP


NOTES:
R1, R4, R5 $=1 \mathrm{k} \Omega \pm 5 \%, 0.25 \mathrm{~W}$ (Min)
$R 2, R 3=100 \Omega, \pm 5 \%, 0.25 \mathrm{~W}$ (Min)
$F 1=F 0+2, F 2=F 1+2, F 3=F 2+2 \ldots F 12=F 11+2$
C1-C3 $=4.7 \mu \mathrm{~F}, \pm 20 \%$
CLOCK $=450 \mathrm{kHz}( \pm 50 \mathrm{kHz})$ Square Wave With
$50 \%$ Duty Cycle ( $\pm 20 \%$ ), 0 V to 2.5 V

## Metallization Topology

DIE DIMENSIONS:
$179 \times 212 \times 19 \pm 1$ mils

## METALLIZATION:

Type: Si - Al
Thickness: $11 \mathrm{k} \AA \pm 1 \mathrm{k} \AA$
GLASSIVATION:
Type: $\mathrm{SiO}_{2}$
Thickness: $8 \mathrm{k} \AA \pm 1 \mathrm{k} \AA$
DIE ATTACH:
Material: Gold Silicon Eutectic Alloy
Temperature:Ceramic DIP - $460^{\circ} \mathrm{C}$ (Max)
WORST CASE CURRENT DENSITY:
$2.5 \times 10^{4} \mathrm{~A} / \mathrm{cm}^{2}$
Metallization Mask Layout


Packaging ${ }^{\dagger}$


LEAD MATERIAL: Type B
LEAD FINISH: Type A
PACKAGE MATERIAL: Ceramic, $90 \%$ Alumina PACKAGE SEAL:
Material: Glass Frit
Temperature: $450^{\circ} \mathrm{C} \pm 10^{\circ} \mathrm{C}$
Method: Furnace Seal

- INCREASE MAX LuMIT BY 003 INCHES MEASURED AT CENTER OF FLAT FOR SOLDER FINISH

INTERNAL LEAD WIRE:
Material: Aluminum
Diameter: 1.25 Mil
Bonding Method: Ultrasonic COMPLIANT OUTLINE: 38510-D-5

# USING THE HI5800 EVALUATION BOARD 

Author: Kantilal Bacrania and Greg Fisher

## Theory of Operation

Harris Semiconductor's HI5800 is a new twelve bit sampling analog to digital converter which is a monolithic alternative to the many hybrid converters available in the present market. The converter is a completely self-contained subsystem with a sample and hold, a curvature corrected band-gap voltage reference, controller, a 7 bit flash converter, a 14 bit accurate D/A converter (DAC), wide-band gain amplifier, timing generator and I/O drivers. It is designed for applications where high speed and wide bandwidth are essential. It has a conversion time of $\sim 200 \mathrm{~ns}(5 \mathrm{MHz})$ with a throughput rate of 330 ns ( 3 MHz ). The 12 bit performance is guaranteed over temperature with no missing codes.

The HI5800 is powered by +5 V and -5 V supplies with an input range of -2.5 V to +2.5 V . Separate chip select and convert command pins are provided to allow convenient addressing in multiple converter systems. The 12 bit three state output is formatted as offset binary with an overflow bit. The overflow bit indicates over and underflow conditions by a logic high state. The 12 output bits all remain at logic high states for overflow and logic low states for underflow conditions. The digital output bus can be configured to
operate either in a parallel 12 bit mode or in an 8 bit mode where the 8 bit upper byte and 4 bit lower byte are read sequentially. In either case the H15800 output data is available at the end of the conversion cycle with no pipeline delay or latency. Valid data on the output bus is indicated by the logic state of the interrupt request output pin. The converter has fully TTL compatible input buffers for the digital control pins and also has TTL compatible BiCMOS output drivers. The output drivers can drive capacitive loads in excess of 100pF and do not require external data registers for interfacing to a data bus. The converter allows use of the internal +2.5 V reference or an external reference through separate reference output and reference input pins. The voltage appearing on the reference input pin $R E F_{\mathbb{N}}$ is inverted by an internal amplifier to provide the bipolar input range. The sample and hold offset can be externally adjusted through the use of 2 offset pins if desired. External adjustments to the ADC gain at the +2.5 V and -2.5 V ends of the input range are also possible through 2 additional pins provided.


FIGURE 1. HI5800 BLOCK DIAGRAM

The H15800 is a sampling converter which uses a two step subranging conversion technique with digital error correction. A block diagram illustrating the architecture is shown in Figure 1. The converter uses a high input impedance ( $>10 \mathrm{M} \Omega$ ) sample and hold at the front end. During the first pass of the two step conversion process, the sample and hold output is connected through a switch to a seven bit bipolar flash analog to digital converter. The flash converter digitizes the sample and hold output and feeds the result to the 7 bit digital to analog converter and to a 7 bit high byte latch. The output of the DAC, which uses thin film laser trimmed resistors to achieve 14 bit accuracy, is subtracted from the output of the sample and hold amplifier and the difference is amplified by a gain of 32 . The gain of 32 is realized by two cascaded wide bandwidth op amps. The output of the second amplifier is now connected through the switch to the input of the flash converter for the second pass through the flash. This marks the second step of the two step conversion process. The flash converter second pass output is then fed to a seven bit latch which stores the low byte. The error correction logic takes the two 7 bit words from the high and low byte latches and computes the final twelve bit word with overflow detection. The output data is stored in latches which drive tristate output buffers.
The H15800 is controlled with four digital pins: chip select (CS), convert (CONV), Output Enable (OE) and an output byte select ( $\overline{\mathrm{A} O}$ ). Figure 2 shows the functional timing diagram for CS, CONV, and OE and the output bits D11-DO, OVF and output pin IRQ. The $\overline{\mathrm{CS}}$ pin enables the converter when held low. When $\overline{\mathrm{CS}}$ is held high, the output bits are tristated and the converter ignores the states of the other digital control pins. When $\overline{C S}$ is held low, the CONV pin starts the conversion with a negative going edge. In Figure 2, the converter is enabled by driving CS low at time to and a conversion is started by driving CONV low at time t 1 . The converter is disabled with all output bits tristated when $\overline{\mathrm{CS}}$ is held high as shown at times $t 0$ and $t 5$. If the CONV pin is held low after an initial negative going edge, then the
converter will operate in a continuous convert mode with a self timed sample rate of just over 3 MHz . For a synchronous sampling system, the CONV pin can be driven by an externally derived system clock at sampling rates of up to 3 MHz . Once the conversion is started, the converter's controller and timing logic control the entire conversion process until both the present conversion and the next sample and hold acquisition time are complete. At this time, approximately 333 ns after the start of the conversion, the next falling edge of the CONV pin will be recognized and a new conversion started. The Interrupt ReQuest (IRQ) pin allows the user to monitor the conversion process. This signal goes high upon the start of a conversion for about 200ns indicating that the converter is busy with the conversion. The falling edge of the IRQ pin, at time t2 in Figure 2, indicates that the new data is present on the output bus. The converter provides the new data at the end of the current conversion cycle without any pipeline delays. This feature is extremely valuable in continuous servo applications when pipeline latency cannot be tolerated. The output enable pin OE allows the output drivers to be switched between the tristate mode and the data valid mode when the chip is selected. All output pins except for IRQ are tristated with this function. This function is illustrated at time $t 3$ and $t 4$ in Figure 2. The output bus can be switched between the tristate and driven modes at any time during the conversion cycle.
A byte select pin ( $\overline{\mathrm{AO}})$ allows eight bit processors to read the data bus without any need for external logic. The 12 bit output word can be formatted either in a 12 bit parallel mode or in an 8 bit mode with the upper and lower bytes read sequentially. With $\overline{\mathrm{A} 0}$ held low, the 12 data bits will appear on the data pins D11-DO. This is shown in Figure 3 at time $t 1$. Time $t 2$ in Figure 3 shows that when $\overline{A 0}$ is held high, the data pins D11-D4 will now output the data bits D3-D0 followed by 4 trailing zeroes. The data bits D3-D0 still remain on the lower data pins D3-DO. Thus an 8 bit bus can read the 12 bit word through the pins D11-D4 by toggling the $\overline{A 0}$ control pin.


FIGURE 2. HI5800 FUNCTIONAL TIMING DIAGRAM


FIGURE 3. HI5800 DATA BYTE SELECT DIAGRAM

## Description of the Evaluation Board

The evaluation board for the HI5800 is a three layer printed circuit board specifically designed to facilitate quick evaluation of the part. The board as supplied has been fitted with the minimum number of passive components needed to insure low noise functionality of the converter. The I/O can be accessed through a 50 pin ribbon cable connector. All signals except the $\mathrm{V}_{\mathrm{IN}}$ (analog signal input) and the REF ${ }_{I N}$ (External Reference input) are brought out on the edge connector.

## Getting Started

In order to minimize lead inductance, make sure the supply pins and ground are doubly connected on the edge connector. For the ease of use the HI5800 analog and digital power supply pins are wired together on the board and do not require separation for the evaluation board. If desired, the supplies can be hooked up with external wires to the pins marked VEE, VCC and GND with up to 16 gauge wire going to regulated supplies. This is shown in Figure 4.
The four control inputs, $\overline{\mathrm{CS}}, \overline{\mathrm{AO}}, \overline{\mathrm{CONV}}$, and $\overline{\mathrm{OE}}$, are all active low. All four of these inputs are terminated on the board with $50 \Omega$ resistors (R1, R2, R3, R5) to ground. This removes the requirement of pulling the lines low with external signals and also facilitates correct termination with external signal generators. The analog input $\mathrm{V}_{\mathrm{IN}}$ is also terminated with a $50 \Omega$ (R4) resistor near the HI5800 to ground. Only the $\mathrm{V}_{\mathbb{I N}}$ terminal is provided with a BNC connector to interface to the signal source (see Figure 5). If desired, additional BNC connectors can be added to any of the control lines, REF $\mathbb{I N}^{\text {or }}$ IRQ.
Under normal operation, the internal reference can be used by connecting the shorting jumper plug to the top two pins of the connector marked X11, see Figure 5. This will connect the internal 2.5 V reference to the converter reference input. If use of an external reference is desired, then the jumper plug should be connected to the bottom two pins and the external reference is fed to the $R E F_{I N}$ pin on the board.


FIGURE 4.
The reference and three of the power supply points are decoupled with $10 \mu \mathrm{~F}, 0.1 \mu \mathrm{~F}$ and $0.01 \mu \mathrm{~F}$ capacitors in parallel. The board has further decoupling sockets on every supply pin which can be utilized to provide better decoupling in a noisy environment. It is recommended that a good quality $10 \mu \mathrm{~F}, 0.1 \mu \mathrm{~F}$ and $0.01 \mu \mathrm{~F}$ in parallel be added to these points. Figure 6 shows the locations.
The board has jumpers J 1 to J 4 which ground the offset, gain and the sample and hold offset pins. These pins can be used by removing the jumper pins and adding $10 \mathrm{k} \Omega$ potentiometers in the space provided. The board is supplied with the jumpers installed.

An optional dither output pin is provided to monitor the last three Isb's of the converter. The resistors need to be connected in order to exercise this function. The resistor values for these are: R14 = 1k $\Omega, R 12=2 \mathrm{k} \Omega$ and $R 13=4 \mathrm{k} \Omega$. In using dither, the $\mathrm{V}_{\mathrm{IN}}$ is swept with the triangular wave and the oscilloscope X -channel is swept with the same waveform. The Y -channel is connected to the dither out pin. The resultant waveform is shown in Figure 8.

## Application Note 9203



FIGURE 5.


FIGURE 6.

The edge connector carries all the digital input and output signals (see Figure 7). The pins marked NC do not carry any signals. If desired, these pins can be used to feed any of the other pins that are not brought out to the connector. Each of the pins on the left side of the connector is grounded which allows convenient termination if desired.


FIGURE 7.
NOTE: The device is static sensitive and adequate precautions should be taken when handling the part.


FIGURE 8.

## Using the Evaluation Board

The board can be used in a stand alone mode. Make sure the $\pm 5 \mathrm{~V}$ power supplies and ground are present. The input to the converter is $\pm 2.5 \mathrm{~V}$ maximum and is connected to the $\mathrm{V}_{1 \mathrm{~N}}$ connector. The conversion is started by applying a negative going pulse to the convert line. For continuous convert, the CONV line can be held low after the first transition to zero. At the beginning of a conversion, the IRQ line will go high for approximately 200 ns and return to zero. At each of the falling edges of the IRQ signal, new data is available on the bus. The data can be accessed through the edge connector. One of the easy ways to reconstruct the data is by reading the digital outputs with a logic analyzer with charting capability (like the Hewlett Packard 1652) and observing the output states. The IRQ output is used as clock qualifier. This allows the input waveform to be reconstructed and displayed. Also, a high speed 12 -bit digital to analog converter (HI-562A) can be connected to the output bus and the DAC output observed on a scope.

The converter can also be used in a triggered mode where the $\overline{\mathrm{CONV}}$ pulse is a negative going pulse with a pulse width of 25 ns to 300 ns and period of $\geq 330 \mathrm{~ns}$. Again, at each start of conversion, the IRQ will go high for ~200ns. The CONV pulse should go high before the end of the acquisition period which is $\sim 100 \mathrm{~ns}$ after the IRQ goes low. In order to start a new conversion, the CONV line should go negative again. The data can be accessed at any time on the data bus.

The only adjustments on the board are the three potentiometers which can control the offset, gain and the Sample and Hold offset of the converter. The offset and sample/hold offset trims adjust the voltage offset of the transfer curve while the gain trim adjusts the tilt of the transfer curve around the curve midpoint (code 2048). The $10 \mathrm{k} \Omega$ potentiometers can be installed to achieve the desired adjustment in the following manner. The offset trimpot should be adjusted to get code 2048 centered at a desired DC input voltage such as zero volts. Next the gain trim can be adjusted by trimming the gain pot until the 4094 to 4095 code transition occurs at the desired voltage ( $2.500-1.5 \mathrm{LSB}$ for a 2.5 V reference). The gain trim can also be done by adjusting the gain pot until the code 0 to 1 transition occurs at a particular voltage ( -2.5 +0.5 LSBs for a 2.5 V reference). If a nonzero offset is needed, then the offset pot or the sample/hold offset pot can be adjusted after the gain trim is finished. The gain trim is simplified if an offset trim to zero is done first and then a nonzero offset trim is done. The offset and sample/hold offset trimpots have an identical effect on the converter except that the sample/hold offset is a finer resolution trim.

## Pin Description and Typical Evaluation Data

The pin description is presented in Table 1. This is followed by some evaluation curves on typical performance of HI5800.

## Application Note 9203

## TABLE 1. PIN DESCRIPTION

$\begin{aligned} & \hline 44 \text { PIN } \\ & \text { PLCC } \end{aligned}$	40 PIN CERDIP	PIN NAME	PIN DESCRIPTION
2	1	$\mathrm{REF}_{\text {IN }}$	External reference input.
3	2	$\mathrm{RO}_{\text {ADJ }}$	DAC offset adjust.
4	3	$\mathrm{RG}_{\text {ADJ }}$	DAC gain adjust.
5	4	$\mathrm{AV}_{\text {CC }}$	Analog positive power supply, +5 V
6	5	REF ${ }_{\text {OUT }}$	Internal reference output, +2.5V.
1	--	NC	No connection.
7	6	$\mathrm{V}_{\text {IN }}$	Analog input voltage.
8	7	AGND	Analog ground.
9	8	ADJ+	Sample/hold offiset adjust.
10	9	ADJ-	Sample/hold offiset adjust.
11	10	$\mathrm{AV}_{\mathrm{EE}}$	Analog negative power supply, -5V
13	11	$\mathrm{AV}_{\text {cc }}$	Analog positive power supply, +5 V
14	12	AGND	Analog ground.
15	13	$\mathrm{AV}_{\mathrm{EE}}$	Analog negative power supply, -5 V
16	14	$\overline{\mathrm{AO}}$	Output byte control input, active low. When low, data is presented as a 12 bit word or the upper byte (D11-D4) in 8 bit mode. When high, the second byte contains the lower LSB's (D3-D0) with 4 trailing zeroes. See Text.
17	15	$\overline{\mathrm{CS}}$	Chip Select input, active low. Dominates all control inputs.
12	--	NC	No connection.
18	16	OE	Output Enable input, active low.
19	17	$\overline{\text { CONV }}$	Convert start input. Initiates conversion on the falling edge. If held low, continuous conversion mode overrides and remains in effect until the input goes high.
20	18	$\mathrm{DV}_{\text {EE }}$	Digital negative power supply, -5V.
21	19	DGND	Digital ground.
22	20	$\mathrm{DV}_{\mathrm{Cc}}$	Digital positive power supply, +5 V .
24	21	$\mathrm{AV}_{\mathrm{CC}}$	Analog positive power supply, +5 V .
25	22	D0	Data bit 0, (LSB).
26	23	D1	Data bit 1.
27	24	D2	Data bit 2.
28	25	D3	Data bit 3.
23	--	NC	No connection
29	26	D4	Data bit 4.
30	27	D5	Data bit 5.
31	28	D6	Data bit 6.
32	29	D7	Data bit 7.
33	30	$\mathrm{AV}_{\text {EE }}$	Analog negative power supply, -5V.
35	31	AGND	Analog ground.
36	32	DGND	Digital ground.
37	33	$\mathrm{DV}_{\mathrm{CC}}$	Digital positive power supply, +5 V .
38	34	D8	Data bit 8.
39	35	D9	Data bit 9.
34	-	NC	No connection.
40	36	D10	Data bit 10.
41	37	D11	Data bit 11 (MSB).
42	38	$\mathrm{AV}_{\mathrm{CC}}$	Analog positive power supply, +5 V .
43	39	OVF	Overilow output. Active high when either an overrange or underrange analog input conditions is detected.
44	40	IRQ	Interrupt ReQuest output. Goes low when a conversion is complete.

## Typical Performance Curves

TYPICAL SNR vs INPUT FREQUENCY



TYPICAL SPDF vs INPUT FREQUENCY


TYPICAL EFFECTIVE BITS vs INPUT FREQUENCY



FFT SPECTRAL PLOT FOR $\mathrm{F}_{\text {IN }}=\mathbf{2 M H z}, \mathrm{F}_{\mathbf{S}}=\mathbf{3} \mathbf{M H}$


## Silk Screen






$\mathrm{V}_{\mathbf{I N}}$

 ${ }^{\circ}$


CONV


HARPRES
REV 920202 CLB

## Application Note 9203

## Component Side



Power Side (Bottom)



Application Note 9203

## Materials List

Program: PC-FORM VERSION 5.10
Date : Apr 211992
Time : 01:07:27 PM
File In : 5800D.PNL
File Out : 5800D. MAT
Format : P-CAD MATERIALS LIST

ITEM	QTY	PART NAME	REFERENCE DESIGNATOR	DESCRIPTION
1	11	CK06	C1, C3, C5, C6, C8, C11, C14, C15, C17, C19, C21	$\mathrm{VAL}=.01 \mu \mathrm{~F}$
2	11	CK06	C4, C7, C9, C10, C12, C13, C16, C18, C20, C2, C22	$\mathrm{VAL}=.1 \mu \mathrm{~F}$
3	5	RC05	R2, R3, R5, R1, R4	$\mathrm{VAL}=50 \Omega$
4	1	RC05	R12	$\mathrm{VAL}=2 \mathrm{~K}$
5	1	RC05	R13	$\mathrm{VAL}=4 \mathrm{~K}$
6	1	RC05	R14	$V A L=1 \mathrm{~K}$
7	1	50RCONGT	X1	50 PIN RIBBON CONNECTOR
8	11	PCAP	C24, C25, C23, C26, C27, C28, C29, C30, C31, C32, C33	$\mathrm{VAL}=10 \mu \mathrm{~F}$
9	3	TRMPOT	R11, R9, R10	$V A L=10 \mathrm{~K}$
10	8	RBNC	P1, P2, P3, P4, P6, P7, P8, P9, P10	
11	1	3PINJUMP	X11	
12	1	HI5800	U1	

## DATA ACQUISITION NEW PRODUCTS

## SALES OFFICES

A complete and current listing of all Harris Sales, Representative and Distributor locations worldwide is on1-134 through 1-140.
HARRIS HEADQUARTER LOCATIONS BY COUNTRY:

## U.S. HEADQUARTERS

Harris Semiconductor 1301 Woody Burke Road Melbourne, Florida 32902
TEL: (407) 724-3000

SOUTH ASIA
Harris Semiconductor H.K. Ltd 13/F Fourseas Building 208-212 Nathan Road
Tsimshatsui, Kowloon Hong Kong
TEL: (852) 3-723-6339

## EUROPEAN HEADQUARTERS

Harris Semiconductor
Mercure Centre 100 Rue de la Fusse 1130 Brussels, Belgium
TEL: (32) 2-246-21.11

## NORTH ASIA

Harris K.K.
Shinjuku NS Bldg. Box 6153
2-4-1 Nishi-Shinjuku
Shinjuku-Ku, Tokyo 163-08 Japạn
TEL: (81) 03-3345-8911

TECHNICAL FIELD APPLICATION ASSISTANCE AVAILABILITY:

UNITED STATES	CALIFORNIA	Costa Mesa . . . . . . . . . . . . . . . . . . . $414-433-0600$ San Jose . . . . . . . . . . . . . . . . 818-985-7322 Woodland Hills. . . . . . .
	FLORIDA	Melbourne . . . . . . . . . . . . . . . . 407-724-3576
	GEORGIA	Duluth . . . . . . . . . . . . . . . . . . . 404-476-2035
	ILLINOIS	Schaumburg . . . . . . . . . . . . . . 708-240-3499
	MASSACHUSETTS	Burlington. . . . . . . . . . . . . . . . . 617-221-1850
	NEW JERSEY	Mt. Laurel. . . . . . . . . . . . . . . . . 609-727-1909
	NEW YORK	Great Neck. . . . . . . . . . . . . . . . . . . . . . . 916 914-298-9413-0413 Wappingers Falls . . . . . . . .
	TEXAS	Dallas. . . . . . . . . . . . . . . . . . . . 214-733-0800
INTERNATIONAL	FRANCE	Paris. . . . . . . . . . . . . . . . . . . . . 33-1-346-54046
	GERMANY	Munich . . . . . . . . . . . . . . . . . . . 49-8-963-8130
	HONG KONG	Kowloon . . . . . . . . . . . . . . . . . . 852-723-6339
	ITALY	Milano . . . . . . . . . . . . . . . . . . . 39-2-262-0761
	JAPAN	Tokyo . . . . . . . . . . . . . . . . . . . . 81-03-345-8911
	KOREA	Seoul . . . . . . . . . . . . . . . . . . . . 82-2-551-0931
	UNITED KINGDOM	Camberley . . . . . . . . . . . . . . . . 44-2-766-86886




## North American Authorized Distributors

CORPORATE OFFICES
Arrow/Schweber 25 Hub Dr.
Melville, NY 11747
TEL: (516) 391-1300
FAX: 5163911644
Almac Electronics Corp.
14360 S.E. Eastgate Way
Bellevue, WA 98007
TEL: (206) 643-9992
FAX: 2066439709
Anthem
1160 Ridderpark Dr.
San Jose, CA 95131
TEL: (408) 453-1200
FAX: 4084414500

EMC (Electronics Mktg Corp)
1150 West Third Avenue
Columbus, OH 43212
TEL: (614) 299-4161
FAX: 6142994121
Falcon Electronics
5 Higgins Dr.
Milford, CT 06460
TEL: (203) 878-5272
FAX: 2038772010
Gerber Electronics, Inc.
128 Carnegie Row Norwood, MA 02062
TEL: (617) 769-6000
FAX: 6177668931

Hall-Mark Electronics 11333 Pagemill Rd. P.O. Box 222035 Dallas, TX 75243
TEL: (214) 343-5000
FAX: 2143435988
Hamilton/Avnet
10950 W. Washington Blvd.
Culver City, CA 90230
TEL: (310) 558-2000
FAX: 3105582809 (Mil)
FAX: 3105582076 (Com)
ITT Multicomponents 300 North Rivermede Rd.
Concord, Ontario
Canada L4K $2 Z 4$
TEL: (416) 798-4884
FAX: 4167984889

Newark Electronics, Inc.
4801 N. Ravenswood
Chicago, IL 60640
TEL: (312) 784-5100
FAX: $3127845100 \times 3107$
Wyle Laboratories
(Commercial \& Military)
3000 Bowers Avenue
Santa Clara, CA 95051
TEL: (408) 727-2500
FAX: 4087275896

## Obsolete Products

Rochester Electronic
10 Malcom Hoyt Drive
Newburyport, MA 01950
TEL: (508) 462-9332
FAX: 5084629512

ALABAMA Arrow/Schweber Huntsville TEL: (205) 837-6955	Hamilton/Avnet Costa Mesa TEL: (714) 641-6111		ILLINOIS   Anthem Schaumburg TEL: (708) 884-0200
	Costa Mesa		
Hall-Mark	TEL: (714) 641-4100	Arrow/Schweber	Arrow/Schweber
Huntsville	Gardena	Englewood	Itasca
TEL: (205) 837-8700	TEL: (310) 217-2046	TEL: (303) 799-0258	TEL: (708) 250-0500
Hamilton/Avnet	Culver City	Hall-Mark	Hall-Mark
Huntsville	TEL: (310) 558-2000	Englewood	Wood Dale
TEL: (205) 837-7210	Roseville	TEL: (303) 790-1662	TEL: (312) 860-3800
	TEL: (916) 781-6614	Hamilton/Avnet	Hamilton/Avnet
ARIZONA Anthem Tempe TEL: (602) 966-6600	San Diego	Englewood	Bensenville
	TEL: (619) 571-7525	TEL: (303) 799-7800	TEL: (708) 860-8566
		Colorado Springs	Newark
	TEL: (408) 743-3300	TEL: (719) 637-0055	Chicago
Arrow/Schweber   Tempe   TEL: (602) 431-0030	Woodland Hills TEL: (818) 700-6545	Wyle Laboratories Thornton	TEL: (312) 784-5100
		TEL: (303) 457-9953	INDIANA
Hall-Mark   Phoenix   TEL (602) 437-1200	Wyle Laboratories Calabasas   TEL: (818) 880-9000	CONNECTICUT Anthem	Arrow/Schweber Indianapolis
			TEL: (317) 299-2071
Hamilton/Avnet Chandler	Invine   TEL: (714) 863-9953	Waterbury   TEL: (203) 575-15	Hall-Mark
		Arrow/Schweber   Wallingford   TEL: (203) 265-7741	TEL: (317) 872-8875
Wyle Laboratories Phoenix TEL: (602) 437-2088	Rancho Cordova TEL: (916) 638-5282		Hamilton/Avnet
			Carmel
	TEL: (619) 565-9171	Falcon Milford	TEL: (317) 844-9333
	Santa Clara	TEL: (203) 878-5272	IOWA
CALIFORNIA Anthem Chatsworth TEL: (818) 700-1000	TEL: (408) 727-2500	Hall-Mark   Cheshire   TEL: (203) 271-2844   Hamilton/Avnet   Danbury   TEL: (203)743-9799	Arrow/Schweber Cedar Rapids
	CANADA Arrow/Schweber Burnaby, British Columbia TEL: (604) 421-2333		TEL: (319) 395-7230
			Hamilton/Avnet
E. Invine   TEL: (714) 768-4444			Cedar Rapids   TEL: (319) 362-4757
Rocklin   TEL: (916) 624-9744	Dorval, Quebec   TEL: (514) 421-7411	FLORIDA Arrow/Schweber Deerfield Beach TEL: (305) 429-8200	KANSAS Arrow/Schweber
San Diego   TEL: (619) 453-9005	Nepan, Ontario   TEL: (613) 226-6903		Lenexia   TEL: (913)541-9542
San Jose   TEL: (408) 452-2287	Mississagua, Ontario TEL: (416) 670-7769	Lake Mary   TEL: (407) 333-9300	Hall-Mark Lenexa TEI: (913) 888-4747
Arrow/Schweber Calabasas TEL:(818) 880-9686	Hamilton/Avnet Burnaby, B.C. TEL: (604) 420-4101	Hall Mark Casselberry TEL: (407) 830-5855	
Invine   TEL: (714) 454-4372	Mississaugua, Ontario TEL: (416) 564-6060	Largo (813) 541-7440	TEL: (913) 541-7924
San Diego   TEL: (619) 565-4800	Nepean, Ontario   TEL: (613) 727-7501	Pompano Beach   TEL: (305) 971-9280	KENTUCKY   Hamilton/Avnet Lexington
San Jose   TEL: (408) 441-9700   TEL: (408) 432-7171	St. Laurent, Quebec TEL.: (514) 335-1000	Hamilton/Avnet   Ft. Lauderdale   TEL: (305) 733-6300	TEL: (606) 288-4911
	ITT Multicomponents Vancouver TEL: (604) 421-6222		MARYLAND
Hall-Mark   Chatsworth   TEL: (818) 773-4500		St. Petersburg TEL: (813) 573-3930	Anthem
			Columbia
	Calgary, Alberta	Winter Park	TEL: (410) 995-6640
Rocklin   TEL: (916) 624-9781	TEL: (403) 273-2780	TEL: (407) 657-9018	Arrow/Schweber Columbia   TEL: (410) 596-7800
	Concord, Ontario TEL: (416) 798-4884		
San Diego   TEL: (619) 268-1201		Arrow/Schweber Duluth TEL: (404)497-1300	
	Edmonton, Alberta   TEL.: (800) 332-8387		Falcon   Baltimore   TEL: (410) 247-5800
San Jose   TEL: (408) 432-4000			
	V. St. Laurent, Quebec TEL: (514) 335-7697	Hall-Mark Duluth TEL: (404) 623-4400	Hall-Mark   Columbia   TEL: (410) 988-9800
$\begin{aligned} & \text { Ivine } \\ & \text { TEL: (714) 727-6000 } \end{aligned}$	Nepean, Ontario TEL: (613) 596-6980		
	Winnipeg, Manitoba   TEL: (204) 786-8401	Hamilton/Avnet Duluth TEL: (404) 623-5475	Hamilton/Avnet Columbia   TEL: (410) 995-3528


MASSACHUSETTS Anthem Wilmington TEL: (508) 657-5170	Pinebrook	Highland Heights	Hamilton/Avnet
	Hall-Mark	Hall-Mark	TEL: (512) 832-4306
	Parsippany	Worthington	Dallas
	TEL: (201) 515-3000	TEL: (614) 888-3313	TEL: (214) 404-9906
Arrow/Schweber Wilmington   TEL: (508) 658-0900	Moorestown   TEL: (609) 235-1900	Solon TEL: (216) 349-4632	Stafford   TEL: (713) 274-9336
Gerber   Norwood   TEL: (617) 769-6000	Hamilton/Avnet Cherry Hill TEL: (609) 424-0100	Hamilton/Avnet Dayton TEL: (513) 439-6700	Wyle Laboratories Austin   TEL: (512) 345-8853
Hall-Mark   Billerica   TEL: (508) 667-0902	Parsippany	TEL: (513) 439-6721	Houston
	TEL: (201) 515-5300	Columbus	TEL: (713) 879-9953
		TEL: (614) 882-7389	Richardson
Hamilton/Avnet Peabody TEL: (508) 531-7430	NEW MEXICO Hamilton/Avnet	Solon	TEL: (214) 235-9953
	Albuquerque		UTAH
	TEL: (505) 765-1500	OKLAHOMA	Anthem
MICHIGAN   Arrow/Schweber Livonia TEL: (313) 462-2290	NEW YORK	Arrow/Schweber	Salt Lake City TEL: (801) $973-8555$
	Anthem	TEL: (918) 252-7537	Arrow/Schweber
	Commack		Salt Lake City
	TEL: (516) 864-6600	Hail-Mark   Tulsa	TEL: (801) 973-6913
Hall-Mark   Livonia   TEL: (313) 462-1205	Falcon	TEL: (918) 254-6110	Hamilton/Avnet
	Hauppauge   TEL : (516) 7	Hamilton/Avnet	Salt Lake City
Hamilton/Avnet   Novi   TEL: (313) 347-4270	Arrow/Schweber Hauppauge TEL. (516) $231-1000$	Tulsa ${ }^{\text {TEL: }}$ (918) 252-7297	Wyle Laboratories West Valley
$\begin{aligned} & \text { Grandville } \\ & \text { TEL: (616) 531-0345 } \end{aligned}$	TEL: (516) 231-1000	OREGON	TEL: (801) 974-9953
	Rochester TEL: (716) 427-0300	Almac/Arrow   Beaverton	WASHINGTON
MINNESOTAAnthemEden PrairieTEL: (612) 944-5454	Hall-Mark	TEL: (503) 629-8090	Almac/Arrow
	Fairport	Anthem	Bellevue
	TEL: (716) 425-3300	Beaverton	TEL: (206) 643-9992
	Ronkonkoma	TEL: (503) 643-1114	Spokane
Arrow/Schweber   Eden Prarie   TEL: (612) 941-5280	TEL: (516) 737-0600	Hamilton/Avnet	TEL: (509) 924-9500
	Hamilton/Avnet	Beaverton (503) 627-0201	Anthem Bothell
	Syracuse	(503) 627-0201	TEL: (206) 483-1700
Hall-Mark   Bloomington   TEL: (612) 941-2600	TEL.: (315) 434-2426	Wyle Laboratories Beaverton	Hall-Mark
	Hauppauge	TEL: (503) 643-7900	Seattle
	TEL: (516) 434-7490		TEL: (206) 547-0415
Hamilton/Avnet Minnetonka TEL: (612) 932-0600	Rochester	PENNSYLVANIA	TEL: 1-800-548-3976
	TEL: (716) 475-9130	Anthem	FAX: 2066324814
	Westbury	Horsham	Hamilton/Avnet
MISSOURI Arrow/Schweber St. Louis TEL: (314) 567-6888	TEL: (516) 997-6868	TEL: (215) 443-5150	Redmond
	NORTH CAROLINA	Arrow/Schweber	TEL: (206) 881-6697
	Arrow/Schweber	Pittsburgh	Wyle Laboratories
	Raleigh	TEL: (412) 963-6807	Redmond
Hall-Mark   Earth City   TEL: (314) 291-5350   Hamilton/Avnet Chesterfield   TEL: (314) 537-1600	TEL: (919) 876-3132	Hamilton/Avnet	TEL: (206) 881-1150
	EMC	Pittsburgh ( 412 ) 772-1881	WISCONSIN
	Chariotte	TEL: (412) 772-1881	Arrow/Schweber
	(704) 394-6195	TEXAS	Brookfield
	Hall-Mark	Arrow/Schweber	TEL: (414) 792-0150
	Raleigh	Austin	Hall-Mark
	TEL: (919) 878-0712	TEL: (512) 835-4180	New Berlin
NEW HAMPSHIRE Hamilton/Avnet Manchester TEL: (603) 624-9400	Hamilton/Avnet	Dallas	TEL: (414) 797-7844
	Raleigh	TEL: (214) 380-6464	Hamilton/Avnet
	TEL: (919) 878-0819	Houston	Waukesha
	OHIO	TEL: (713) 530-4700	
NEW JERSEY Anthem Pinebrook TEL: (201) 277-7960 Arrow/Schweber Marlton TEL: (609) 596-8000	Arrow/Schweber	Hall-Mark	South American
	Solon	TEL: (512) 258-8848	Authorized Distributor
	Centerill	Dallas	Graftec Electronic Sales Inc.
	TEL: (513) 435-5563	TEL: (214) 343-5000	One Boca Place, Suite 305 East
		TEL: (214) 553-4300	
	Columbus   TEL: (614) 299-4161	Houston   TEL: (713) 781-6100	TEL: (407) 994-0933 FAX: 407 994-5518




European Distributors (Continued)	NORTH ASIA   Sales Headquarters	AUSTRALIA VSI Promark Electronics	SINGAPORE Harris Semiconductor
Sasco GmbH   Hermann-Oberth Strasse 16   D - 8011 Putzbrunn-   Bei-Muenchen   TEL: 498946110   FAX: 49894611270   TWX: 529504	JAPAN	Pty Ltd	Pte Ltd.
		16 Dickson Avenue	105 Boon Keng Road
	Shinjuku NS Bldg. Box 6153	Artarmon NSW 2064	\#01-01 Singapore 1233
	2-4-1 Nishi-Shinjuku	TEL: (61) 2-439-4655	Att: Sales Office
	Japan	FAX: (61) 2-439-6435	TEL: 65-291-0203
	TEL: 81-3-3345-8911   FAX: 81-3-3345-8910	KOREA	TLX: RS36460 RCASIN
Spoerle Electronic KG Max-Planck Strasse 1-3   D-6072 Dreieich   1- Bei-Frankfurt   TEL: 4961033048   FAX: 496103304201   TWX: 417972		Harris Semiconductor YH RM \#4 19-1 4TH FL.	TAIWAN
	SOUTH ASIA	Korea Air Terminal Bldg.	Harris Semiconductor
	Sales Headquarters	159-1, Sam Sung-Dong,	Room 1103
	HONG KONG	Kang Nam-ku, Seoul	600 Ming Chuan East Road
	Harris Semiconductor H.K.	135-728, Korea	Taipei
		TEL.: 82-2-551-0931/4	TEL: 886-2-716-9310
	13/F Fourseas Building	FAX: 82-2-551-0930	FAX: 886-2-715-3029
	Tsimshatsui, Kowloon   TEL: 852-723-6339   FAX: 852-739-8946   TLX: 78043645	Inhwa Company, Ltd. 3 Fir., Suh Kang Bldg. \#789-21, Yoksam-dong, Kangnam-ku, Seoul TEL: 822-554-7341 FAX: 822-557-5043	TLX: 78525174

## Asian Pacific Authorized Distributors

AUSTRALIA
VSI Promark Electronics Pty Ltd 16 Dickson Avenue Artarmon, NSW 2064
TEL.: (61) 2-439-4655
FAX: (61) 2-439-6435
HONG KONG
Dodwell Engineering
7/F, Cavendish Centre
23 Yip Hing Street
Wong Chuk Hang
TEL: (852) 555-4633
FAX: (852) 873-0625
Karin Electronic Supplies
Co., Ltd.
7F, Karin Bldg.
166 Wai Yip Street
Kwun Tong, Kowloon
TEL: (852) 389-8252
FAX: (852) 343-6479
Means Come Ltd.
Room 1007, Harbour Centre 8 Hok Cheung Street Hung Hom, Kowloon TEL: (852) 334-8188
FAX: (852) 334-8649
Sunnice Electronics Co., Ltd.
Flat F, 5/F, Everest Ind. Ctr.
396 Kwun Tong Road
Kowloon,
TEL: (852) 790-8073
FAX: (852) 763-5477
Willas Co., Ltd.
8F, Wing Tai Centre 12 Hing Yip Street Kwun Tong, Kowloon
TEL: (852) 3414281
FAX: (852) 3431229

Electrocon Products, Ltd. 8F, Block B Prosperity Centre 77 Container Port Road Kwai Chung, N.T. TEL: (852) 481-6022 FAX: (852) 481-5804

JAPAN
Hakuto Co., Ltd.
Toranomon Sangyo Bldg. 1-2-29, Toranomon Minato-ku, Tokyo 105
TEL: 03-3225-8910
FAX: 03-3597-8975
Macnica Inc.
Hakusan High Tech Park 1-22-2, Hakusan
Midori-ku, Yokohama-shi,
Kanagawa 226
TEL: 045-939-6116
FAX: 045-939-6117
Jepico Corp.
Shinjuku Daiichi Seimei Bldg.
2-7-1, Nishi-Shinjuku
Shinjuku-ku, Tokyo 163
TEL: 03-3348-0611
FAX: 03-3348-0623
Micron, Inc.
Misuzu Bldg.
4-27-12, Sendagaya,
Shibuya-Ku, Tokyo 151
TEL: 03-3796-1860
FAX: 03-3796-1866
Okura Electronics Co., Ltd. 2-3-6, Ginza Chuo-ku, Tokyo 104
TEL: 03-3564-6871
FAX: 03-3564-6870

Takachiho Koheki Co., Ltd.
1-2-8, Yotsuya
Shinjuku-ku, Tokyo 160
TEL: 03-3355-6696
FAX: 03-3357-5034

## KOREA

KumOh Electric Co., Ltd.
203-1, Jangsa-Dong,
Chongro-ku, Seoul
TEL: 822-279-3614
FAX: 822-272-6496
Inhwa Company, Ltd.
3 Fir., Suh Kang Bldg.
\#789-21, Yoksam-dong,
Kangnam-ku, Seoul
TEL: 822-554-7341
FAX: 822-557-5043
NEW ZEALAND
Components and Instrumentation NZ, Lid.
Semple Street
Porirua, Wellington
P.O. Box 50-548

TEL: (64) 4-237-5632
FAX: (64) 4-237-8392

## PHILIPPINES

Crystalsem, Inc.
216 Ortega Street
San Juan, Metro
Manila 3134
TEL: (632) 79-05-29
TLX: 722-22031 (IMCPH)

SINGAPORE
B.B.S Electronics PTE, Ltd.

1 Genting Link
\#06-03 Perfect Indust. Bldg.
Singapore 1334
TEL: (65) 7488400
FAX: (65) 7488466
Device Electronics PTE, Ltd.
605B MacPherson Road 04-12 Citimac Ind. Complex
Singapore 1336
TEL: (65) 2886455
FAX: (65) 2879197
TAIWAN
Galaxy Far East Corporation
8F-6, No. 390, Sec. 1
Fu Hsing South Road
Taipei, Taiwan
TEL: 886-2-705-7266
FAX: 886-2-708-7901
Acer Sertek Inc.
3F, No. 135, Sec. 2
Chien Kuo N. Road
Taipei, Taiwan
TEL: (886) 2-501-0055
FAX: (886) 2-501-2521
TECO Enterprise Co., Ltd.
10FL., No. 292, Min-Sheng
W. Road, Taipei

Taiwan, ROC
TEL: (886) 2-521-9676
FAX: (886) 2-542-6006

## THAILAND

Grawinner Co., Ltd.
226/227 Phahonyothin Rd.
Phyathai, Bangkok 10400
TEL: (662) 271-8742
FAX: (662) 271-2494

# We're Backing You Up with Products, Support, and Solutions! 

## Signal Procesting

- Linear
- Custom Linear
- Data Conversion
- Interface
- Analog Switiones
- Multiplexers
- Filters
- DSP
- Telecom


## Digital

- CMOS Microprocessors and Peripherals
- CMOS Microcontrollers
- CMOS Logic


## Microwave

- GaAs FETs
- GaAs MMICs
- Foundry Services


## Power Products

- Power MOSFETs
- IGBTS
- Bipolar Discretes
- Transient Voltage Suppressors
- Power Rectifiers

Intelligent Power

- Powerics
- Power ASICs
- Hybrid Programmable Switches
- Full-Custom High Voltage IGs


## ASICs

- Full-Custom
- Analog Semicustom
- Mixed-Signal
- ASIC Design Software

Military/Aeroypace Products

- Microprocessors and Peripherals
- Memories
- Analog ics
- Digital ICs
- Discrete Power
- Bipolar
- MOSFET
- RadHardics

Militar/Acrospace Programs

- COMSEC Programs
- Strategic and Space Programs
- Military ASIC Programs


[^0]:    X's = Don't Care

[^1]:    * PDA applies to Subgroup 1 only. No other subgroups are included in PDA

