uo!̣s!nbov eqea

 Data Acquisition

 Data Acquisition 1894

 1894}

A/D CONVERTERS

New Data Acquisition Products (connmoad)

A/D CONVERTERS

H11171

8-BIT 4OMSPS VIDEO DIA CONVERTER
(Page 8-57)

- THROUGHPUT . 40MHz
- INL... . . ± 1.0 LSB
- DNL . ± 0.5 LSB
- POWER CONSUMPTION . 80mW
- TTL COMPATIBLE INPUTS

SWITCHES AND MUXs

DG401, DG403, DG405 HIGH SPEED DUAL, SWITCHES	DG411, DG412, DG413 PRECISION QUAD SPST SWITCHES
(Page 9-42)	(Page 9-44)
- ON-RESISTANCE \qquad $.45 \Omega$ - FAST SWITCHING - ON . 150ns - OFF . 60ns - ULTRA LOW POWER \qquad $<35 \mu \mathrm{~W}$ - PDIP AND SOIC PACKAGES	- ON-RESISTANCE. - FAST SWITCHING - ON . 175ns - OFF. - ULTRA LOW POWER. - SINGLE SUPPLY CAPABILITY
DG441, DG442 QUAD SPST SWITCHES	DG444, DG445 LOW COST QUAD SPST SWITCHES
(Page 9-53)	(Page 9-63)
- ON-RESISTANCE \qquad $.85 \Omega$ - FAST SWITCHING - ON . 250ns - OFF (DG441) . 120ns - LOW POWER \qquad $<1.6 \mathrm{~mW}$ - INTERNAL VOLTAGE REFERENCE - UPGRADE FOR DG201A, DG202	- ON-RESISTANCE. - FAST SWITCHING - ON . 250 . - OFF (DG444). 120ns - ULTRA LOW POWER. \qquad .$<35 \mu \mathrm{~W}$ - UPGRADE FOR DG211, DG212 EXERS
DG406, DG407 $16 \mathrm{CH} / 8 \mathrm{CH}$ DIFFERENTIAL MULTIPLEXERS	DG408, DG409 $8 \mathrm{CH} / 4$ CH DIFFERENTIAL MULTIPLEXERS
(Page 10-15)	(Page 10-17)
- ON-RESISTANCE $\text { . } 100 \Omega$ - FAST SWITCHING - TRANSITION . 300 ns - OFF . 150ns - LOW POWER \qquad $<0.5 \mathrm{~mW}$ - UPGRADE FOR DG506A, DG507A	- ON-RESISTANCE. - FAST SWITCHING - TRANSITION. $250 n s$ - OFF . 150ns - LOW POWER \qquad .<2.25mW - UPGRADE FOR DG508A, DG509A
DG458, FAULT PROTECTE (Page - ANALOG RANGE \qquad - ON-RESISTANCE . \qquad - OVERVOLTAGE PROTECT - TTL AND CMOS COMPATIBL - PINOUT COMPATIBLE WIT	DG459 D MULTIPLEXERS 10-31) \qquad BLE INPUTS H DG508ADG509A

New Data Acquisition Products (conntuas)
INTERFACE
HIN230, HIN241
RS-232, 5 S OV TRANSCEIVERS
(Page 11-3)

HARRIS PART NUMBER	POWER SUPPLY	$\begin{aligned} & \text { NO. OF } \\ & \text { RS-232 } \\ & \text { DRIVERS } \end{aligned}$	$\begin{gathered} \text { NO. OF } \\ \text { RS-232 } \\ \text { RECEIVERS } \end{gathered}$	NO. OF EXTERNAL $1 \mu F$ CAPACITORS	SHUTDOWN	TRI-STATE	$\begin{gathered} \text { NO. OF } \\ \text { PINS/ } \\ \text { PACKAGE } \end{gathered}$
HIN230	+5.0V	5	0	4	YES	NO	20
HIN231	$\begin{gathered} +5.0 \mathrm{~V} \text { and } 7.5 \mathrm{~V} \\ \text { to }+13.2 \mathrm{~V} \end{gathered}$	2	2	2	NO	NO	16
HIN232	+5.0V	2	2	4	NO	NO	16
HIN234	+5.0V	4	0	4	NO	NO	16
HIN236	+5.0V	4	3	4	YES	YES	24
HIN237	+5.0V	4	3	4	NO	NO	24
HIN238	+5.0V	4	4	4	NO	NO	24
HIN239	$\begin{gathered} +5.0 \mathrm{~V} \text { and } 7.5 \mathrm{~V} \\ \text { to }+13.2 \mathrm{~V} \end{gathered}$	3	5	2	NO	YES	24
HIN240	+5.0V	5	5	4	YES	YES	44
HIN241	+5.0V	4	5	4	YES	YES	28

THE NEW HARRIS SEMICONDUCTOR

In December 1988, Harris Semiconductor acquired the General Electriic Solid State division, thereby adding former GE, RCA, and Intersil devices to the Harris Semiconductor line.

This Data Acquisition Databook represents the full line of Harris Semiconductor Data Acquisition products for commercial applications and supersedes all previously published Harris Data Acquisition databooks under the Harris, GE, RCA or Intersil names. For a complete listing of all Harris Semiconductor products, please refer to the Product Selection Guide (PSG-201S; ordering information below).

For complete, current and detailed technical specifications on any Harris devices please contact the nearest Harris sales, representative or distributor office; or direct literature requests to:

Harris Semiconductor Literature Department P.O. Box 883, MS 53-204 Palm Bay, FL 32902
TEL: 1-800-442-7747
FAX: (407) 724-7240
See Section 18 for Data Sheets Available on AnswerFAX
See Technical Assistance Listing on Page viii

U.S. HEADQUARTERS

Harris Semiconductor
P. O. Box 883, Mail Stop 53-210

Melbourne, FL 32902
TEL: 1-800-442-7747
(407) 729-4984

FAX: (407) 729-5321

ASIA

Harris Semiconductor PTE Ltd.
No. 1 Tannery Road
Cencon 1, \#09-01
Singapore 1334
TEL: (65) 748-4200
FAX: (65) 748-0400

EUROPEAN HEADQUARTERS
Harris Semiconductor
Mercure Center
100, Rue de la Fusee
1130 Brussels, Belgium
TEL: 3227242111
FAX: 3227242205

All Harris Semiconductor products are manufactured, assembled and tested under ISO9000 quality system certifications

Copyright © Harris Corporation 1994
(All Rights Reserved)
Printed in USA, 1/1994

> Harris Semiconductor products are sold by description only. All specifications in this product guide are applicable only to packaged products; specifications for die are available upon request. Harris reserves the right to make changes in circuit design, specifications and other information at any time without prior notice. Accordingly, the reader is cautioned to verify that information in this publication is current before placing orders. Reference to products of other manufacturers are solely for convenience of comparison and do not imply total equivalency of design, performance, or otherwise.

DATA ACQUISITION PRODUCTS

FOR COMMERCIAL AND INDUSTRIAL APPLICATIONS

General Information
A/D Converters - Display
A/D Converters - IntegratingA/D Converters - SAR
A/D Converters - Subranging7
D/A ConvertersMultiplexers10
Communication Interface 11
Display Drivers 12
Counters With Display Drivers/Timebase Generators 13
Special Purpose 14
Harris Quality And Reliability 15
Application Note Abstracts 16
Packaging Information 17
Datasheets By FAX, Harris AnswerFAX 18
Sales Offices 19

TECHNICAL ASSISTANCE

For technical assistance on the Harris products listed in this databook, please contact the Field Applications Engineering staff available at one of the following Harris Sales Offices:

UNITED STATES		
CALIFORNIA	Calabasas	818-878-7955
	Costa Mesa	. 714-433-0600
	San Jose	. . 408-985-7322
FLORIDA	Palm Bay	. 407-729-4984
GEORGIA	Duluth.	. . . 404-476-2035
ILLINOIS	Schaumburg.	. $708-240-3480$
INDIANA	Carmel	. . . 317-843-5180
MASSACHUSETTS	Burlington .	. .617-221-1850
NEW JERSEY	Voorhees	. 609-751-3425
NEW YORK	Hauppauge.	. 516-342-0291
	Wappingers Falls	. 914-298-1920
TEXAS	Dallas . .	. 214-733-0800
INTERNATIONAL		
FRANCE	Paris	33-1-346-54046
GERMANY	Munich	. . 49-89-63813-0
HONG KONG	Kowloon	. . . 852-723-6339
ITALY	Milano. .	. . 39-2-262-0761
JAPAN	Tokyo	. 81-3-3265-7571
KOREA	Seoul	. . 82-2-551-0931
SINGAPORE	Singapore.	. . . 65-748-4200
TAIWAN	Taipei	. 886-2-716-9310
UNITED KINGDOM	Camberley	. 44-1276-686886

For literature requests, please contact Harris at 1-800-442-7747 (1-800-4HARRIS) or call Harris AnswerFAX for immediate fax service at 407-724-7800

GENERAL INFORMATION

ALPHA NUMERIC PRODUCT INDEX

PAGE
AD590 2 Wire Current Output Temperature Transducer 14-3
AD7520 10-Bit, 12-Bit Multiplying D/A Converters 8-5
AD7521 10-Bit, 12-Bit Multiplying D/A Converters 8-5
AD7523 8-Bit Multiplying D/A Converters 8-13
AD7530 10-Bit, 12-Bit Multiplying D/A Converters 8-5
AD7531 10-Bit, 12-Bit Multiplying D/A Converters 8-5
AD7533 8 -Bit Multiplying D/A Converters 8-13
AD7541 12-Bit Multiplying D/A Converter 8-21
AD7545 12-Bit Buffered Multiplying CMOS DAC. 8-28
ADC0802 8 -Bit μ P Compatible AD Converters 5-3
ADC0803 8-Bit μ P Compatible AD Converters 5-3
ADC0804 8-Bit μ P Compatible ADD Converters 5-3
CA3161 BCD to Seven Segment Decoder/Driver 12-3
CA3162 AD Converter for 3-Digit Display 2-5
CA3304 CMOS Video Speed 4-Bit Flash A/D Converter 6-5
CA3306 CMOS Video Speed 6-Bit Flash A/D Converter 6-16
CA3310 CMOS 10-Bit A/D Converter with Internal Track and Hold 5-19
CA3310A CMOS 10-Bit ADD Converter with Internal Track and Hold 5-19
CA3318C CMOS Video Speed 8-Bit Flash A/D Converter 6-31
CA3338 CMOS VIdeo Speed 8-BIt R2R D/A Converter 8-35
CA3338A CMOS Video Speed 8-Bit R2R D/A Converter 8-35DG181 High-Speed Driver with JFET Switch (AnswerFAX Only) Document \# 3114 See Section 18DG182High-Speed Driver with JFET Switch (AnswerFAX Only) Document \# 3114 See Section 18High-Speed Driver with JFET Switch (AnswerFAX Only) Document \# 3114 See Section 18High-Speed Driver with JFET Switch (AnswerFAX Only) Document \# 3114 See Section 18High-Speed Driver with JFET Switch (AnswerFAX Only) Document \# 3114 See Section 18

NOTE: Bold Type Designates a New Product from Harris.

ALPHA NUMERIC PRODUCT INDEX (Continued)

PAGE
DG188 High-Speed Driver with JFET Switch (AnswerFAX Only) Document \# 3114 See Section 18 DG190 DG191 High-Speed Driver with JFET Switch (AnswerFAX Only) Document \# 3114 See Section 18 High-Speed Driver with JFET Switch (AnswerFAX Only) Document \# 3114 See Section 18 CMOS Dual/Quad SPST Analog Switches 9-13
DG200
CMOS Dual/Quad SPST Analog Switches 9-13
DG201
Quad SPST CMOS Analog Switches 9-21
DG201A
9-21
DG202 Quad SPST CMOS Analog Switches
9-25
DG211 SPST 4 Channel Analog Switch 9-25
DG212 SPST 4 Channel Analog Switch 9-25
DG300A TTL Compatible CMOS Analog Switches 9-30
DG301A TTL Compatible CMOS Analog Switches 9-30
DG302A TTL Compatible CMOS Analog Switches 9-30
DG303A TTL Compatible CMOS Analog Switches 9-30
DG308A Quad Monolithic SPST CMOS Analog Switches 9-37
DG309 Quad Monolithic SPST CMOS Analog Switches. 9-37
DG401 Monolithic CMOS Analog Switches 9-42
DG403 Monolithic CMOS Analog Switches 9-42
DG405 Monolithic CMOS Analog Switches 9-42
DG406 Single 16-Channel/Differential 8-Channel CMOS Analog Multiplexers 10-15
DG407 Single 16-Channel/Differential 8-Channel CMOS Analog Multiplexers 10-15
DG408 Single 8-Channel/Differential 4-Channel CMOS Analog Multiplexers 10-17
DG409 Single 8-Channel/Differential 4-Channel CMOS Analog Multiplexers 10-17
DG411 Monolithic Quad SPST CMOS Analog Switches $9-44$
DG412 Monolithic Quad SPST CMOS Analog Switches 9-44
DG413 Monolithic Quad SPST CMOS Analog Switches 9-44
DG441 Monolithic Quad SPST CMOS Analog Switches 9-53
DG442 Monolithic Quad SPST CMOS Analog Switches 9-53
DG444 Monolithic Quad SPST CMOS Analog Switches 9-63
DG445 Monolithic Quad SPST CMOS Analog Switches 9-63
DG458 Single 8-Channel/Differential 4-Channel Fault Protected Analog Multiplexers 10-31
DG459 Single 8-Channel/Differential 4-Channel Fault Protected Analog Multiplexers 10-31
DG506A CMOS Analog Multiplexers 10-41
DG507A CMOS Analog Multiplexers 10-41
DG508A CMOS Analog Multiplexers 10-41

ALPHA NUMERIC PRODUCT INDEX (Continued)

PAGE
DG509A CMOS Analog Multiplexers 10-41
DG526 Analog CMOS Latchable Multiplexers 10-54
DG527 Analog CMOS Latchable Multiplexers 10-54
DG528 Analog CMOS Latchable Multiplexers 10-54
DG529 Analog CMOS Latchable Multiplexers 10-54
HA7210 Low Power Crystal Oscillator 13-3
HI-DAC80V 12-Bit, Low Cost, Monolithic D/A Converter 8-50
HI-DAC85V 12-Bit, Low Cost, Monolithic D/A Converter 8-50
HIN230 +5V Powered RS-232 Transmitters/Receivers. 11-3
HIN231 +5V Powered RS-232 Transmitters/Receivers. 11-3
HIN232 +5V Powered RS-232 Transmitters/Recelvers. 11-3
HIN233 +5V Powered RS-232 Transmitters/Recelvers. 11-3
HIN234 +5V Powered RS-232 Transmitters/Recelvers. 11-3
HIN235 +5V Powered RS-232 Transmitters/Recelvers. 11-3
HIN236 +5V Powered RS-232 Transmitters/Recelvers. 11-3
HIN237 +5V Powered RS-232 Transmitters/Receivers. 11-3
HIN238 +5V Powered RS-232 Transmitters/Receivers. 11-3
HIN239 +5V Powered RS-232 Transmitters/Recelvers. 11-3
HIN240 +5V Powered RS-232 Transmitters/Receivers. 11-3
HIN241 +5V Powered RS-232 Transmitters/Receivers. 11-3
HI-200 DuaVQuad SPST CMOS Analog Switches 9-73
HI-201 Dual/Quad SPST CMOS Analog Switches 9-73
HI-201HS High Speed Quad SPST CMOS Analog Switch 9-82
HI-222 High Frequency/Video Switch (AnswerFAX Only) Document \# 3124 See Section 18
HI-300 CMOS Analog Switches 9-93
HI-301 CMOS Analog Switches 9-93
HI-302 CMOS Analog Switches 9-93
HI-303 CMOS Analog Switches 9-93
HI-304 CMOS Analog Switches 9-93
HI-305 CMOS Analog Switches 9-93
HI-306 CMOS Analog Switches 9-93
HI-307 CMOS Analog Switches 9-93
HI-381 CMOS Analog Switches 9-103
HI-382 CMOS Analog Switches 9-103

ALPHA NUMERIC PRODUCT INDEX (Continued)

PAGE
HI-383 CMOS Analog Switches 9-103
HI-384 CMOS Analog Switches 9-103
HI-385 CMOS Analog Switches 9-103
HI-386 CMOS Analog Switches 9-103
HI-387 CMOS Analog Switches 9-103
HI-388 CMOS Analog Switches 9-103
HI-389 CMOS Analog Switches 9-103
HI-390 CMOS Analog Switches 9-103
HI-506 Single 16 Channel CMOS Analog Multiplexer 10-78
HI-506A 16 Channel CMOS Analog MUX with Active Overvoltage Protection 10-95
HI-507 Differential 8 Channel CMOS Analog Multiplexer 10-78
HI-507A Differential 8 Channel CMOS Analog MUX with Active Overvoltage Protection 10-95
HI-508 Single 8 Channel CMOS Analog Multiplexer 10-78
HI-508A 8 Channel CMOS Analog MUX with Active Overvoltage Protection 10-95
HI-509 Differential 4 Channel CMOS Analog Multiplexer 10-78
HI-509A Differential 4 Channel CMOS Analog MUX with Active Overvoltage Protection 10-95
HI-516 16 Channel/Differential 8 Channel CMOS High Speed Analog Multiplexer. 10-109
HI-518 8 ChanneVVifferential 4 Channel CMOS High Speed Analog Multiplexer. 10-116
HI-524 4 Channel Wideband and Video Multiplexer 10-123
HI-539 Monolithic, 4 Channel, Low Level, Differential Multiplexer 10-129
HI-546 Single 16 Channel CMOS Analog MUX with Active Overvoltage Protection. 10-140
HI-547 Differential 8 CMOS Analog MUX with Active Overvoltage Protection 10-140
HI-548 Single 8 Channel CMOS Analog MUX with Active Overvoltage Protection. 10-140
HI-549 Differential 4 Channel CMOS Analog MUX with Active Overvoltage Protection 10-140
HI-562A 12-Bit High Speed Monolithic D/A Converter (AnswerFAX Only) Document \# 3580See Section 18
HI-565A High Speed Monolithic D/A Converter with Reference 8-42
HI-574A Complete 12-Bit AD Converter with Microprocessor Interface 5-34
HI-674A Complete 12-Bit AD Converter with Microprocessor Interface 5-34
HI-774 Complete 12-Bit AD Converter with Microprocessor Interface 5-34
HI1166 8-Bit, 250MSPS Flash AD Converter 6-43
HI1171 8-Bit, 40MSPS High Speed D/A Converter 8-57
HI1175 8-Bit, 20MSPS Flash AD Converter 7-3
HI1176 8-Bit, 20MSPS Flash AD Converter. 7-12
HI1276 8-Bit, 500MSPS Flash AD Converter 6-54

ALPHA NUMERIC PRODUCT INDEX (Continued)

		PAGE
H11386	8-Blt, 75MSPS Flash ADD Converter. .	6-64
Hi1396	8-Blt, 125MSPS Flash ADD Converter. .	6-72
HI-1818A	Low Resistance Single 8 Channel CMOS Analog Multiplexer. .	10-70
HI-1828A	Low Resistance Differential 4 Channel CMOS Analog Multiplexer .	10-70
HI-5040	CMOS Analog Switches	9-110
HI-5041	CMOS Analog Switches	9-110
HI-5042	CMOS Analog Switches	9-110
HI-5043	CMOS Analog Switches	9-110
HI-5044	CMOS Analog Switches	9-110
HI-5045	CMOS Analog Switches .	9-110
HI-5046	CMOS Analog Switches .	9-110
HI-5047	CMOS Analog Switches .	9-110
HI-5048	CMOS Analog Switches .	9-110
HI-5049	CMOS Analog Switches, .	9-110
HI-5050	CMOS Analog Switches .	9-110
Hi-5051	CMOS Analog Switches .	9-110
HI-5046A	CMOS Analog Switches .	9-110
HI-5047A	CMOS Analog Switches	9-110
HI-5700	8-Bit, 20MSPS Flash AD Converter	6-81
H1-5701	6-Bit, 30MSPS Flash AD Converter. .	6-93
H15800	12-Bit, 3MSPS Sampling ADD Converter .	7-23
H15810	CMOS 10رs 12-Bit Sampling AD Converter with Internal Track and Hold.	5-52
H15812	CMOS 20رs 12-Bit Sampling AD Converter with Internal Track and Hoid.	5-65
H15813	CMOS 3.3V, 25 $\boldsymbol{4}$ s 12-Bit Sampling ADD Converter with Internal Track and Hold	5-79
HI7131	3 $1 / 2$ Digit Low Power, High CMRR LCD/LED Display Type AD Converter	2-12
H17133	3½ Digit Low Power, High CMRR LCD/LED Display Type ADD Converter	2-12
H17151	10-Bit High Speed A/D Converter with Track and Hold (AnswerFAX Only) Document \# 3099 See Section 18	
HI7152	10-Bit High Speed AD Converter with Track and Hold (AnswerFAX Only) Document \# 3100 See Section 18	
H1-7153	8 Channel, 10-Bit High Speed Sampling AD Converter .	7-37
HI-7159A	Microprocessor Compatible 51/2 Digit AD Converter .	3-3
H17190	24-Bit High Precision Sigma-Delta AD Converter .	4-3
HI20201	10/8-Bit, 160MSPS Uitra High Speed D/A Converter .	8-65
HI20203	10/8-Bit, 160MSPS Ulitra High Speed D/A Converter	8-65

ALPHA NUMERIC PRODUCT INDEX (Continued)

PAGE
ICL232 +5V Powered Dual RS-232 Transmitter/Receiver 11-8
ICL7106 3½ Digit LCD/LED Display A/D Converter 2-33
ICL7107 $31 / 2$ Digit LCD/LED Display A/D Converter 2-33
ICL7109 12-Bit Microprocessor Compatible A/D Converter. 3-17
ICL7112 12-Bit High-Speed CMOS μ P-Compatible AD Converter (AnswerFAX Only) Document \# 3639 See Section 18
ICL7115 14-Bit High Speed CMOS μ P-Compatible AVD Converter (AnswerFAX Only) Document \#3101 See Section 18
ICL7116 3½ Digit LCD/LED Display A/D Converter with Display Hold 2-46
ICL7117 3½ Digit LCD/LED Display A/D Converter with Display Hold 2-46ICL7121 16-Bit Multiplying Microprocessor-Compatible D/A Converter (AnswerFAX Only)Document \# 3112 See Section 183½ Digit Low Power Single-Chip AD Converter (AnswerFAX Only) Document \# 3084See Section 18
ICL7129 4½ Digit LCD Single-Chip AND Converter 2-58
ICL7134 14-Bit Multiplying μ P-Compatible D/A Converter AnswerFAX Only) Document \# 3113 See Section 18
ICL7135 4½ Digit BCD Output AND Converter 3-40
ICL7136 $31 / 2$ Digit LCD/LED Low Power Display AD Converter with Overrange Recovery 2-68
ICL7137 $3 ½$ Digit LCD/LED Low Power Display AD Converter with Overrange Recovery 2-68
ICL7139 $3 \frac{3}{4}$ Digit Autoranging Multimeter 2-83
ICL7149 $33 / 4$ Digit Autoranging Multimeter 2-83
ICL8052/ICL71C03 Precision $4 \frac{1 ⁄ 2}{2}$ Digit AND Converter (AnswerFAX Only) Document \# 3081 See Section 18 ICL8068/ICL71C03 Precision 4 ½ Digit AND Converter (AnswerFAX Only) Document \# 3081 See Section 18 ICL8052/ICL7104 14/16-Bit μ P-Compatible, 2-Chip AD Converter (AnswerFAX Only) Document \# 3091 See Section 18
ICL8068/ICL7104 14/16-Bit μ P-Compatible, 2-Chip ADD Converter (AnswerFAX Only) Document \# 3091 See Section 18
ICL8069 Low Voltage Reference 14-13
ICM7170 $\mu \mathrm{P}$-Compatible Real-Time Clock 14-17
ICM7211 4-Digit ICM7211 (LCD) and ICM7212 (LED) Display Drive 12-6
ICM7212 4-Digit ICM7211 (LCD) and ICM7212 (LED) Display Drive 12-6
ICM7213 One Second/One Minute Timebase Generator 13-16
ICM7216A 8-Digit Multi-Function Frequency Counter/Timer 13-22
ICM7216B 8-Digit Multi-Function Frequency Counter/Timer 13-22
ICM7216D 8-Digit Multi-Function Frequency Counter/Timer 13-22
ICM7217 4-Digit LED Display Programmable Up/Down Counter 13-39

ALPHA NUMERIC PRODUCT INDEX (Continued)

		PAGE
ICM7224	41⁄2 Digit LCD Display Counter	13-57
ICM7226A	8-Digit Multi-Function Frequency Counter/Timers .	13-64
ICM7226B	8-Digit Multi-Function Frequency Counter/Timers .	13-64
ICM7228	8-Digit μ P Compatible LED Display Decoder Driver .	12-19
ICM7231	Numeric/Alphanumeric Triplexed LCD Display Driver .	12-37
ICM7232	Numeric/Alphanumeric Triplexed LCD Display Driver .	12-37
ICM7243	8-Character μ P-Compatible LED Display Decoder Driver. .	12-52
ICM7249	$5 \frac{1}{2}$ Digit LCD μ-Power Event/Hour Meter.	13-82
IH401A	QUAD Varafet Analog Switch (AnswerFAX Only) Document \# 3128 See Section 18	
IH5009	Virtual Ground Analog Switch (AnswerFAX Only) Document \# 3129 See Section 18	
IH5012	Virtual Ground Analog Switch (AnswerFAX Only) Document \# 3129 See Section 18	
IH5014	Virtual Ground Analog Switch (AnswerFAX Only) Document \# 3129 See Section 18	
IH5016	Virtual Ground Analog Switch (AnswerFAX Only) Document \# 3129 See Section 18	
IH5017	Virtual Ground Analog Switch (AnswerFAX Only) Document \# 3129 See Section 18	
IH5018	Virtual Ground Analog Switch (AnswerFAX Only) Document \# 3129 See Section 18	
IH5019	Virtual Ground Analog Switch (AnswerFAX Only) Document \# 3129 See Section 18	
IH5020	Virtual Ground Analog Switch (AnswerFAX Only) Document \# 3129 See Section 18	
IH5022	Virtual Ground Analog Switch (AnswerFAX Only) Document \# 3129 See Section 18	
IH5024	Virtual Ground Analog Switch (AnswerFAX Only) Document \# 3129 See Section 18	
IH5043	Dual SPDT CMOS Analog Switch.	9-121
IH5052	Quad CMOS Analog Switch .	9-128
IH5053	Quad CMOS Analog Switch	9-128
IH5140	High-Level CMOS Analog Switch .	9-134
IH5141	High-Level CMOS Analog Switch .	9-134
IH5142	High-Level CMOS Analog Switch .	9-134
IH5143	High-Level CMOS Analog Switch .	9-134
IH5144	High-Level CMOS Analog Switch .	9-134
IH5145	High-Level CMOS Analog Switch .	9-134
IH5151	Dual SPDT CMOS Analog Switch. .	9-147
IH5341	Dual SPST, Quad SPST CMOS RF/Video Switches. .	9-155
IH5352	Dual SPST, Quad SPST CMOS RFNideo Switches. .	9-155
IH6108	8-Channel CMOS Analog Multiplexer (AnswerFAX Only) Document \# 3156 See Section 18	
IH6201	Dual CMOS Driver/voltage Translator (AnswerFAX Only) Document \# 3136 See Section 18	
IH6208	4-Channel Differential CMOS Analog Multiplexer (AnswerFAX Only) Document \# 3157 See Section 18	

PRODUCT INDEX BY FAMILY

PAGE
AVD CONVERTERS - DISPLAY
CA3162 AD Converter for 3-Digit Display. 2-5
HI7131, HI7133 3½ Diglt Low Power, High CMRR LCD/LED Display Type AD Converter 2-12
ICL7106, ICL7107 3½ Digit LCD/LED Display AD Converter 2-33
ICL7116, ICL7117 $3 ½$ Digit LCD/LED Display AND Converter with Display Hold 2-46
ICL7126 $\quad 311 / 2$ Digit Low Power Single-Chip AD Converter (AnswerFAX Only) Document \# 3084 See Section 18
ICL7129 4½ Digit LCD Single-Chip AVD Converter. 2-58
ICL7136, ICL7137 3½ Digit LCD/LED Low Power Display ADD Converter with Overrange Recovery 2-68
ICL7139, ICL7149 $3 \frac{3}{4}$ Digit Autoranging Multimeter 2-83
ICL8052/ICL71C03, Precision 4 ½ Digit AND Converter (AnswerFAX Only) Document \# 3081 See Section 18 ICL8068/ICL71C03
A/D CONVERTERS - FLASH
CA3304 CMOS Video Speed 4-Bit Flash AVD Converter 6-5
CA3306 CMOS Video Speed 6-Bit Flash ADD Converter 6-16
CA3318C CMOS Video Speed 8-Bit Flash AVD Converter 6-31
HI1166 8-Bit, 250MSPS Flash AD Converter 6-43
H11276 8-Bit, 500MSPS Flash AD Converter 6-54
HI1386 8-Bit, 75MSPS Flash AD Converter. 6-64
HI1396 8-Bit, 125MSPS Flash A/D Converter 6-72
HI-5700 8-Bit, 20MSPS Flash A/D Converter 6-81
HI-5701 6-Bit, 30MSPS Flash AD Converter 6-93
A/D CONVERTERS - INTEGRATING
HI-7159A Microprocessor Compatible 5 $\frac{1}{2}$ Digit AND Converter 3-3
ICL7109 12-Bit Microprocessor Compatible AND Converter. 3-17
ICL7135 $4 \frac{1}{2}$ Digit BCD Output AND Converter 3-40
ICL8052/ICL7104, 14/16-Bit μ P-Compatible, 2-Chip A/D Converter (AnswerFAX Only) Document \# 3091
ICL8068/ICL7104 See Section 18

[^0]
PRODUCT INDEX BY FAMILY (Continued)

A/D CONVERTERS - SAR
ADC0802, ADC0803, 8-Bit μ P Compatible AD Converters 5-3
ADC0804
CA3310, CA3310A CMOS 10-Bit AD Converter with Internal Track and Hold 5-19
HI-574A, Complete 12-Bit AD Converter with Microprocessor Interface 5-34
H15810 CMOS 10~s 12-Bit Sampling ADD Converter with Internal Track and Hold 5-52
H15812 CMOS 20ر8 12-Bit Sampling ADD Converter with Internal Track and Hold 5-65
HI5813 CMOS 3.3V, 25 $\boldsymbol{\mu s}$ 12-Bit Sampling AND Converter with Internal Track and Hold 5-79Hi7152 10-Bit High Speed ADD Converter with Track and Hold (AnswerFAX Only) Document \# 3100See Section 18HI7151 10-Bit High Speed AD Converter with Track and Hold (AnswerFAX Only) Document \# 3099See Section 18
ICL7112 12-Bit High-Speed CMOS μ P-Compatible AD Converter (AnswerFAX Only) Document \# 3639 See Section 18
ICL7115 14-Bit High Speed CMOS μ P-Compatible AD Converter (AnswerFAX Only) Document \# 3101 See Section 18
A/D CONVERTERS - SIGMA-DELTA
HI7190 24-Bit High Precision Sigma-Delta AD Converter 4-3
A/D CONVERTERS - SUBRANGING
HI1175 8-Bit, 20MSPS Flash AD Converter 7-3
HI1176 8-Bit, 20MSPS Flash AD Converter 7-12
HI5800 12-Bit, 3MSPS Sampling AD Converter 7-23
HI-7153 8 Channel, 10-Bit High Speed Sampling AND Converter 7-37
COMMUNICATION INTERFACE
HIN230 thru +5V Powered RS-232 Transmitters/Recelvers. 11-3
HIN241
ICL232 +5V Powered Dual RS-232 Transmitter/Receiver $11-8$

[^1]
PRODUCT INDEX BY FAMILY (Continued)

PAGE
COUNTERS WITH DISPLAY DRIVERS/TIMEBASE GENERATORS
HA7210 Low Power Crystal Oscillator 13-3
ICM7213 One Second/One Minute Timebase Generator 13-16
ICM7216A, 8-Digit Multi-Function Frequency Counter/Timer 13-22
ICM7216B, ICM7216D
ICM7217 4-Digit LED Display Programmable Up/Down Counter 13-39
ICM7224 $4 \frac{1}{2}$ Digit LCD Display Counter 13-57
ICM7226A, ICM7226B8-Digit Multi-Function Frequency Counter/Timers 13-64
ICM7249 $\quad 5^{1} \frac{1}{2}$ Digit LCD μ-Power Event/Hour Meter 13-82
D/A CONVERTERS
AD7520, AD7530, 10-Bit, 12-Bit Multiplying D/A Converters 8-5
AD7521, AD7531AD7523, AD7533 8-Bit Multiplying D/A Converters8-13
AD7541 12-Bit Multiplying D/A Converter 8-21
AD7545 12-Bit Buffered Multiplying CMOS DAC. 8-28
CA3338, CA3338A CMOS Video Speed 8-Bit R2R D/A Converter 8-35
HI-562A 12-Bit High Speed Monolithic D/A Converter (AnswerFAX Only) Document \# 3580 See Section 18
HI-565A High Speed Monolithic D/A Converter with Reference 8-42
HI-DAC80V, 12-Bit, Low Cost, Monolithic D/A Converter 8-50
HI-DAC85V
HI1171 8-Bit, 40MSPS High Speed D/A Converter 8-57
HI20201, HI20203 10/8-Bit, 160MSPS Ultra High Speed D/A Converter 8-65
ICL7121 16-Bit Multiplying Microprocessor-Compatible D/A Converter (AnswerFAX Only) Document \# 3112 See Section 18
ICL7134 14-Bit Multiplying μ P-Compatible D/A Converter AnswerFAX Only) Document \# 3113
See Section 18
DISPLAY DRIVERS
CA3161 BCD to Seven Segment Decoder/Driver 12-3
ICM7211, ICM7212 4-Digit ICM7211 (LCD) and ICM7212 (LED) Display Drive 12-6
ICM7228 8-Digit μ P Compatible LED Display Decoder Driver 12-19
ICM7231, ICM7232 Numeric/Alphanumeric Triplexed LCD Display Driver 12-37
ICM7243 8-Character μ P-Compatible LED Display Decoder Driver 12-52

PRODUCT INDEX BY FAMILY (Continued)

PAGE

MULTIPLEXERS
DG406, DG407 Single 16-Channel/Differentlal 8-Channel CMOS Analog Multiplexers 10-15
DG408, DG409 Single 8-Channel/Differential 4-Channel CMOS Analog Multiplexers 10-17
DG458, DG459 Single 8-Channel/Differential 4-Channel Fault Protected Analog Multiplexers 10-31
DG506A, DG507A, CMOS Analog Multiplexers 10-41
DG508A, DG509A
Analog CMOS Latchable Multiplexers 10-54
DG526, DG527, -
DG528, DG529
HI-1818A, HI-1828A Low Resistance, Single 8 Channel and Differential 4 Channel CMOS Analog Multiplexers 10-70
HI-506, HI-507, Single 16 and 8/Differential 8 and 4 Channel CMOS Analog Multiplexers 10-78
HI-508, HI-509HI-506A, HI-507A, 16 Channel, 8 Channel, Differential 8 and Differential 4 Channel CMOS AnalogHI-508A, HI-509A MUXs with Active Overvoltage Protection10-95
HI-516 16 Channel/Differential 8 Channel CMOS High Speed Analog Multiplexer. 10-109
HI-518 8 ChanneV/Differential 4 Channel CMOS High Speed Analog Multiplexer 10-116
HI-524 4 Channel Wideband and Video Multiplexer 10-123
HI-539 Monolithic, 4 Channel, Low Level, Differential Multiplexer. 10-129
HI-546, HI-547, Single 16 and 8, Differential 8 and 4 Channel CMOS Analog MUXs with Active HI-548, HI-549 Overvoltage Protection 10-140IH6108 8-Channel CMOS Analog Multiplexer (AnswerFAX Only) Document \#3156 See Section 18IH6208 4-Channel Differential CMOS Analog Multiplexer (AnswerFAX Only) Document \# 3157See Section 18
SPECIAL PURPOSE
AD590 2 Wire Current Output Temperature Transducer 14-3
ICL8069 Low Voltage Reference 14-13
ICM7170 $\mu \mathrm{P}$-Compatible Real-Time Clock 14-17

[^2]
PRODUCT INDEX BY FAMILY (Continued)

PAGE
SWITCHES
DG181 thru DG191 High-Speed Driver with JFET Switch (AnswerFAX Only) Document \# 3114 See Section 18 DG200, DG201 CMOS Dual/Quad SPST Analog Switches 9-13
DG201A, DG202 Quad SPST CMOS Analog Switches 9-21
DG211, DG212 SPST 4 Channel Analog Switch 9-25
DG300A, DG301A, TTL Compatible CMOS Analog Switches 9-30
DG302A, DG303A
DG308A, DG309 Quad Monolithic SPST CMOS Analog Switches 9-37
DG401, DG403, Monolithic CMOS Analog Switches 9-42
DG405
DG411, DG412, Monolithic Quad SPST CMOS Analog Switches 9-44
DG413
DG441, DG442 Monolithic Quad SPST CMOS Analog Switches 9-53
DG444, DG445 Monolithic Quad SPST CMOS Analog Switches 9-63
HI-200, HI-201 DualQuad SPST CMOS Analog Switches 9-73
HI-201HS High Speed Quad SPST CMOS Analog Switch 9-82
HI-222
HI-300 thru
High Frequency/Video Switch (AnswerFAX Only) Document \# 3124 See Section 18
CMOS Analog Switches 9-93
HI-307
HI-381 thru CMOS Analog Switches 9-103
HI-390HI-5040 thru CMOS Analog Switches9-110
HI-5051, HI-5046Aand HI-5047AIH401A QUAD Varafet Analog Switch (AnswerFAX Only) Document \# 3128 See Section 18
IH5009 thru IH5012, Virtual Ground Analog Switch (AnswerFAX Only) Document \# 3129 See Section 18IH5014, IH5016 thruIH5020, IH5022,IH5024
IH5043 Dual SPDT CMOS Analog Switch. 9-121
IH5052, IH5053 Quad CMOS Analog Switch 9-128
IH5140 thru IH5145 High-Level CMOS Analog Switch 9-134
IH5151 Dual SPDT CMOS Analog Switch 9-147
IH5341, IH5352 Dual SPST, Quad SPST CMOS RF/Nideo Switches 9-155
IH6201 Dual CMOS Driver/voltage Translator (AnswerFAX Only) Document \# 3136 See Section 18

LINEAR AND TELECOM PRODUCTS

COMPARATORS DATA SHEETS

CA139, CA239,
CA339, LM339
CA3098 Programmable Schmitt Trigger - with Memory Dual Input Precision Level Detectors
CA3290 BiMOS Dual Voltage Comparator with MOSFET Input, Bipolar Output
HA-4900, HA-4902, Precision Quad Comparator
HA-4905
HFA-0003, Ultra High Speed Comparator
HFA-0003L
Quad Voltage Comparators for Industrial, Commercial and Military Applications

DIFFERENTIAL AMPLIFIERS DATA SHEETS

CA3028, CA3053 DifferentiaVCascode Amplifiers for Commercial and Industrial Equipment from DC to $\mathbf{1 2 0 M H z}$
CA3049, CA3102 Dual High Frequency Differential Amplifiers For Low Power Applications Up 500MHz
CA3054 Transistor Array - Dual Independent Differential Amp for Low Power Applications from DC to 120 MHz

OPERATIONAL AMPLIFIERS DATA SHEETS
CA124, CA224, Quad Operational Amplifiers for Commercial, Industrial, and Military Applications
CA324, LM324*, LM2902*

CA158, CA258, Dual Operational Amplifiers for Commercial Industrial, and Military Applications
CA358, CA2904, LM358*, LM2904*

CA741, CA1458, CA1558, LM741*, LM1458*, LM1558*
CA3020 Multipurpose Wide-Band Power Amps Military, Industrial and Commercial Equipment at Frequency Up to

CA3060 Operational Transconductance Amplifier Arrays
CA3078 Micropower Operational Amplifier
CA3080 Operational Transconductance Amplifier (OTA)
CA3094 Programmable Power Switch/Amplifier for Control and General Purpose Applications
CA3100 Wideband Operational Amplifier
CA3130 BiMOS Operational Amplifier with MOSFET Input/CMOS Output
CA3140 BiMOS Operational Amplifier with MOSFET Input/Bipolar Output
CA3160 BiMOS Operational Amplifiers with MOSFET InputCMOS Output
CA3193 BiCMOS Precision Operational Amplifiers
CA3240 Dual BiMOS Operational Amplifier with MOSFET Input/Bipolar Output
CA3260 BiMOS Operational Amplifier with MOSFET Input/CMOS Output
CA3280 Dual Variable Operational Amplifier

NOTE: Bold Type Designates a New Product from Harris.

LINEAR AND TELECOM PRODUCTS (Continued)

OPERATIONAL	AMPLIFIERS DATA SHEETS (Continued)
CA3420	Low Supply Voltage, Low Input Current BiMOS Operational Amplifiers
CA3440	Nanopower BiMOS Operational Amplifier
CA3450	Video Line Driver, High Speed Operational Amplifier
CA5130	BiMOS Microprocessor Operational Amplifier with MOSFET Input/CMOS Output
CA5160	BiMOS Microprocessor Operational Amplifiers with MOSFET Input/CMOS Output
CA5260	BiMOS Microprocessor Operational Amplifiers with MOSFET Input/CMOS Output
CA5420	Low Supply Voltage, Low Input Current BiMOS Operational Amplifier
CA5470	Quad Microprocessor BiMOS-E Operational Amplifiers with MOSFET Input/Bipolar Output
$\begin{aligned} & \text { HA-2400, HA-2404, } \\ & \text { HA-2405 } \end{aligned}$	PRAM Four Channel Programmable Amplifiers
HA-2406	Digitally Selectable Four Channel Operational Amplifier
HA-2444	Selectable, Four Channel Video Operational Amplifier
$\begin{aligned} & \text { HA-2500, HA-2502, } \\ & \text { HA-2505 } \end{aligned}$	Precision High Slew Rate Operational Amplifiers
$\begin{aligned} & \text { HA-2510, HA-2512, } \\ & \text { HA-2515 } \end{aligned}$	High Slew Rate Operational Amplifiers
$\begin{aligned} & \text { HA-2520, HA-2522, } \\ & \text { HA-2525 } \end{aligned}$	Uncompensated High Slew Rate Operational Amplifiers
HA-2529	Uncompensated, High Slew Rate High Output Current, Operational Amplifier
HA-2539	Very High Slew Rate Wideband Operational Amplifier
HA-2540	Wideband, Fast Settling Operational Amplifier
HA-2541	Wideband, Fast Settling, Unity Gain Stable, Operational Amplifier
HA-2542	Wideband, High Slew Rate, High Output Current Operational Amplifier
HA-2544	Video Operational Amplifier
HA-2548	Precision, High Slew Rate, Wideband Operational Amplifier
$\begin{aligned} & \text { HA-2600, HA-2602, } \\ & \text { HA-2605 } \end{aligned}$	Wideband, High Impedance Operational Amplifiers
$\begin{aligned} & \text { HA-2620, HA-2622, } \\ & \text { HA-2625 } \end{aligned}$	Very Wideband, Uncompensated Operational Amplifiers
HA-2640, HA-2645	High Voltage Operational Amplifiers
HA-2705	Low Power, High Performance Operational Amplifier
HA-2839	Very High Slew Rate Wideband Operational Amplifier
HA-2840	Very High Slew Rate Wideband Operational Amplifier
HA-2841	Wideband, Fast Setting, Unity Gain Stable, Video Operational Amplifier
HA-2842	Wideband, High Slew Rate, High Output Current, Video Operational Ámplifier
HA-2850	Low Power, High Slew Rate Wideband Operational Amplifier

NOTE: Bold Type Designates a New Product from Harris.

LINEAR AND TELECOM PRODUCTS (Continued)

OPERATIONAL AMPLIFIERS DATA SHEETS (Continued)

HA-4741	Quad Operational Amplifier	
HA-5002	Monolithic, Wideband, High Slew Rate, High Output Current Buffer	
HA-5004	100MHz Current Feedback Amplifier	
HA-5020	100MHz Current Feedback Video Amplifier	
HA5022, HA5024	Dual, Quad 100MHz Video Current Feedback Amplifier with Disable	
HA5023, HA5025	Dual, Quad 100MHz Video Current Feedback Amplifier	Γ
HA-5033	Video Buffer	z
HA-5101, HA-5111	Low Noise, High Performance Operational Amplifiers	$\frac{\square}{\mathbb{C}}$
HA-5102, HA-5104, HA-5112, HA-5114	Low Noise, High Performance Operational Amplifiers	
HA-5127	Ultra-Low Noise Precision Operational Amplifier	
HA-5130, HA-5135	Precision Operational Amplifiers	
HA-5134	Precision Quad Operational Amplifier	
HA-5137	Ultra-Low Noise Precision Wideband Operational Amplifier	
HA-5142, HA-5144	DuaVQuad Ultra-Low Power Operational Amplifiers	
HA-5147	Ultra-Low Noise Precision High Slew Rate Wideband Operational Amplifier	
HA-5160, HA-5162	Wideband, JFET Input High Slew Rate, Uncompensated, Operational Amplifiers	
HA-5170	Precision JFET Input Operational Amplifier	
HA-5177	Ultra-Low Offset Voltage Operational Amplifier	
HA-5190, HA-5195	Wideband, Fast Settling Operational Amplifiers	
HA-5221, HA-5222	Low Noise, Wideband Precision Operational Amplifiers	
HA5232, HA5234	Precision Dual and Quad Operational Amplifiers	
HFA-0001	Ultra High Slew Rate Operational Amplifier	
HFA-0002	Low Noise Wideband Operational Amplifier	
HFA-0005	High Slew Rate Operational Amplifier	
HFA1100, HFA1120	Ultra High-Speed Current Feedback Amplifiers	
HFA1105, HFA1106, HFA1135, HFA1145	High-Speed, Low Power, Current Feedback Operational Amplifiers	
HFA1110	750MHz Low Distortion Unity Gain, Closed Loop Buffer	
HFA1112	Ultra High-Speed Closed Loop Buffer Amplifier	
HFA1113	High-Speed, Output Clamping Closed Loop Buffer	
HFA1130	Output Clamping, Ultra High-Speed Current Feedback Amplifier	
ICL7611, ICL7612	ICL76XX Series Low Power CMOS Operational Amplifiers	
$\begin{aligned} & \text { ICL7621, ICL7641, } \\ & \text { ICL7642 } \end{aligned}$	ICL76XX Series Low Power CMOS Operational Amplifiers	
ICL7650S	Super Chopper-Stabilized Operational Amplifier	

NOTE: Bold Type Designates a New Product from Harris.

LINEAR AND TELECOM PRODUCTS (Continued)

SAMPLE AND HOLD AMPLIFIER DATA SHEETS

HA-2420,
HA-2425
HA-5320
HA-5330
HA-5340
HA5350, HA5351
HA5352

Fast Sample and Hold Amplifiers

High Speed Precision Monolithic Sample and Hold Amplifier
Very High Speed Precision Monolithic Sample and Hold Amplifier
High Speed, Low Distortion, Precision Monolithic Sample and Hold Amplifier
Ultra Fast (50ns) Sample and Hold Amplifiers
Ultra Fast (50ns) Dual Sample and Hold Amplifier

SPECIAL ANALOG CIRCUITS DATA SHEETS

CA555, LM555	Timers for Timing Delays and Oscillator Applications in Commercial, Industrial and Military Equipment
CA1391, CA1394	TV Horizontal Processors
CA3089	FM IF System
CA3126	TV Chroma Processor
CA3189	FM IF System
CA3194	Single Chip PAL Luminance/Chroma Processor
CA3217	Single Chip TV Chroma/Luminance Processor
CA3256	BiMOS Analog Video Switch and Amplifier
CD22402	Sync Generator for TV Applications and Video Processing Systems
HA-2546	Wideband Two Quadrant Analog Multiplier
HA-2547	Wideband Two Quadrant Analog Multiplier
HA-2556	Wideband Four Quadrant Current Output Analog Multiplier
HA-2557	Low Power Crystal Oscillator
HA7210	Ultra High-Speed Monolithic Pin Driver
HFA5250	Four Quadrant Analog Multiplier
ICL8013	Precision Waveform Generator/Voltage Controlled Oscillator
ICL8038	Log/Antilog Amplifiers
ICL8048, ICL8049	Long Range Fixed Timer
ICM7242	General Purpose Timers
ICM7555, ICM7556	Litage Output Analog Multiplier

TELECOMMUNICATIONS DATA SHEETS

CD22100	CMOS 4×4 Crosspoint Switch with Control Memory High-Voltage Type (20V Rating)
CD22101, CD22102	CMOS $4 \times 4 \times 2$ Crosspoint Switch with Control Memory
CD22103A	CMOS HDB3 (High Density Bipolar 3) Transcoder for 2.048/8.448 Mb/s Transmission Applications
CD22202, CD22203	5V Low Power DTMF Receiver

NOTE: Bold Type Designates a New Product from Harris.

LINEAR AND TELECOM PRODUCTS (Contunued)

TELECOMMUNICATIONS DATA SHEETS (Continued)

CD22204 5V Low Power Subscriber DTMF Receiver
CD22301 Monolithic Pan Repeater
CD22354A, CMOS Single-Chip, Full-Feature PCM CODEC
CD22357A
CD22M3493
$12 \times 8 \times 1$ BIMOS-E Crosspoint Switch
CD22M3494
CD22859
$16 \times 8 \times 1$ BIMOS-E Crosspoint Switch

CD74HC22106,
Monolithic Silicon COS/MOS Dual-Tone Multifrequency Tone Generator

CD74HCT22106
HC-5502B SLC Subscriber Line Interface Circult
HC-5504B SLC Subscriber Line Interface Circult
HC-5504DLC SLIC Subscriber Line Interface Circuit
HC-5509A1 SLC Subscriber Line Interface Circult
HC-5509B SLIC Subscriber Line Interface Circult
HC-5524 SLIC Subscriber Line Interface Circuit
HC-5560 PCM Transcoder
HC-55536 Continuous Variable Slope Delta-Demodulator (CVSD)
HC-55564 Continuously Variable Slope Delta-Modulator (CVSD)

TRANSISTOR ARRAY DATA SHEETS

СА3018
CA3039
CA3045, CA3046
CA3081, СА3082
CA3083
CA3086 General Purpose N-P-N Transistor Array
CA3096 N-P-N/P-N-P Transistor Array
CA3127 High Frequency N-P-N Transistor Array
CA3141 High-Voltage Diode Array For Commercial, Industrial \& Military Applications
СА3146, САЗ183
High-Voltage Transistor Arrays
CA3227, CA3246 High-Frequency N-P-N Transistor Arrays For Low-Power Applications at Frequencies Up to 1.5 GHz
HFA3046, HFA3096, Ultra High Frequency Transistor Array HFA3127, HFA3128

General Purpose Transistor Arrays
Diode Array
General Purpose N-P-N Transistor Arrays
General Purpose High Current N-P-N Transistor Arrays
General Purpose High Current N-P-N Transistor Array

NOTE: Bold Type Designates a New Product from Harris.

dIGITAL SIGNAL PROCESSING PRODUCTS

MULTIPLIERS	
HMA510	16×16-Bit CMOS Parallel Multiplier Accumulator
HMA510/883	16×16-Bit CMOS Parallel Multiplier Accumulator
HMU16/HMU17	16×16-Bit CMOS Parallel Multipliers
HMU16/883	16×16-Bit CMOS Parallel Multiplier
HMU17/883	16×16-Bit CMOS Parallel Multiplier
ONE DIMENSIONAL FILTERS	
HSP43168	Dual FIR Filter
HSP43168/883	Dual FIR Filter
HSP43216	Halfband Filter
HSP43220	Decimating Digital Filter
HSP43220/883	Decimating Digital Filter
HSP43481	Digital Filter
HSP43481/883	Digital Filter
HSP43881	Digital Filter
HSP43881/883	Digital Filter
HSP43891	Digital Filter
HSP43891/883	Digital Filter
TWO DIMENSIONAL FILTERS	
HSP48901	3×3 Image Filter
HSP48908	Two Dimensional Convolver
HSP48908/833	Two Dimensional Convolver
SIGNAL SYNTHESIZERS	
HSP45102	12-Bit Numerically Controlled Oscillator
HSP45106	16 -Bit Numerically Controlled Oscillator
HSP45106/883	16 -Bit Numerically Controlled Oscillator
HSP45116	Numerically Controlled Oscillator/Modulator
HSP45116/883	Numerically Controlled Oscillator/Modulator
HSP50016	Digital Down Converter

DIGITAL SIGNAL PROCESSING PRODUCTS (Continued)

SPECIAL FUNCTION

HSP45240	Address Sequencer
HSP45240/883	Address Sequencer
HSP45256	Binary Correlator
HSP45256/833	Binary Correlator
HSP48410	Histogrammer/Accumulating Buffer
HSP9501	Programmable Data Buffer
HSP9520/9521,	Multilevel Pipeline Register
ISP9520/9521	

DEVELOPMENT TOOLS

DECI • MATE	Harris HSP43220 Decimating Digital Filter Development Software
HSP-EVAL	DSP Evaluation Platform
HSP45116-DB	HSP46116 Daughter Board

/883 Data Sheet Format -In the interest of conserving space, data sheets for /883 qualified products have been printed without the Pinouts, Pin Description, Waveforms, AC Test Load Circuit and Design Information sections. The information sections can be obtained from the corresponding portion of the commercial data sheet.

A/D CONVERTERS - DISPLAY

		PAGE
AD CONVERTERS - DISPLAY SELECTION GUIDE		
ANALOG	DIGITAL CONVERTERS WITH DISPLAY OUTPUTS	2-2
AD CONVERTERS - DISPLAY DATA SHEETS		
CA3162	AD Converter for 3-Digit Display	2-5
H17131, HI7133	3 $1 / 2$ Digit Low Power, High CMRR LCD/LED Display Type AD Converter. .	2-12
$\begin{aligned} & \text { ICL7106, } \\ & \text { ICL7107 } \end{aligned}$	31⁄2 Digit LCD/LED Display AND Converter.	2-33
$\begin{aligned} & \text { ICL7116, } \\ & \text { ICL7117 } \end{aligned}$	$31 / 2$ Digit LCD/LED Display AD Converter with Display Hold	2-46
ICL7129	41/2 Digit LCD Single-Chip ADD Converter	2-58
$\begin{aligned} & \text { ICL7136, } \\ & \text { ICL7137 } \end{aligned}$	3½ Digit LCD/LED Low Power Display AD Converter with Overrange Recovery.	2-68
$\begin{aligned} & \text { ICL7139, } \\ & \text { ICL7149 } \end{aligned}$	$33 / 4$ Digit Autoranging Multimeter .	2-83

[^3]
ANALOG TO DIGITAL CONVERTERS WITH DISPLAY OUTPUTS

(NOTES 2, 3) DEVICE	SUFFIX CODES	DISPLAY TYPE	$\begin{aligned} & \text { DISPLAY } \\ & \text { DRIVE } \end{aligned}$	CONVERSION TYPE	CONVERSION $\text { TIME } \mu \mathrm{s}$	TECHNOLOGY	RANGE MIN	LINEARITY COUNTS	FEATURES
3 DIGIT WITH LED DRIVERS									
CA3162A	E	$B C D$	Common Anode	Integrating	10,250	Bipolar-JI	$\begin{gathered} +999 \mathrm{mV} \text { to - } \\ 99 \mathrm{mV} \end{gathered}$	± 1	BCD to 7 Segment Converter, 2 Chip Set Makes a Complete DPM. Analog to Digital
CA3162	E, EX	$B C D$	Common Anode	Integrating		Bipolar-JI	$\begin{gathered} +999 \mathrm{mV} \text { to - } \\ 99 \mathrm{mV} \end{gathered}$	± 1	Over-Range Indication, "-": Negative OverRange Display.
$3^{1 / 1 / 2}$ DIGIT WITH LED/LCD DRIVERS									
H17131	CM44	LCD	Direct Drive	Auto-Zero Integrating	333 Typ	CMOS-J	$\pm 0.2 \mathrm{~V}$	± 1	High Common Mode Front End No Over-Range Hangover
H77131	CPL	LCD	Direct Drive	Auto-Zero Integrating	333 Typ	CMOS-J	$\pm 0.2 \mathrm{~V}$	± 1	
H17133	CM44	LED	Common Anode	Auto-Zero Integrating	333 Typ	CMOS-J	$\pm 0.2 \mathrm{~V}$	± 1	High Common Mode Front End No Over-Range Hangover
H17133	CPL	LED	Common Anode	Auto-Zero Integrating	333 Typ	CMOS-J	$\pm 0.2 \mathrm{~V}$	± 1	
ICL7106	CM44	LCD	Direct Drive	Auto-Zero Integrating	333 Typ	CMOS-J	$\pm 0.2 \mathrm{~V}$	± 1	Low Cost, MQFP
ICL7106	CPL	LCD	Direct Drive	Auto-Zero Integrating	333 Typ	CMOS-JI	$\pm 0.2 \mathrm{~V}$	± 1	
ICL7106R	CPL	LCD	Direct Drive	Auto-Zero Integrating	333 Typ	CMOS-J	$\pm 0.2 \mathrm{~V}$	± 1	Low Cost, PDIP Reversed Leads
ICL7107	CM44	LED	Common Anode	Auto-Zero Integrating	333 Typ	CMOS-J	$\pm 0.2 \mathrm{~V}$	± 1	Low Cost, MQFP
ICL7107	CPL	LED	Common Anode	Auto-Zero Integrating	333 Typ	CMOS-J	$\pm 0.2 \mathrm{~V}$	± 1	
ICL7107R	CPL	LED	Common Anode	Auto-Zero Integrating	333 Typ	CMOS-J	$\pm 0.2 \mathrm{~V}$	± 1	Low Cost, PDIP Reversed Leads
ICL7116	CM44	LCD	Direct Drive	Auto-Zero Integrating	333 Typ	CMOS-J	$\pm 0.2 \mathrm{~V}$	± 1	ICL7106 with Display Hold Function, MQFP
ICL7116	CPL	LCD	Direct Drive	Auto-Zero Integrating	333 Typ	CMOS-J	$\pm 0.2 \mathrm{~V}$	± 1	

ANALOG TO DIGITAL CONVERTERS WITH DISPLAY OUTPUTS (Continued)

(NOTES 2, 3) DEVICE	SUFFIX CODES	DISPLAY TYPE	DISPLAY DRIVE	CONVERSION TYPE	CONVERSION TIME $\mu \mathrm{s}$	TECHNOLOGY	RANGE MIN	LINEARITY COUNTS	FEATURES
ICL7117	CPL	LCD	Direct Drive	Auto-Zero Integrating	333 Typ	CMOS-J	$\pm 0.2 \mathrm{~V}$	± 1	ICL7107 with Display Hold Function
ICL7136	CM44	LCD	Direct Drive	Auto-Zero Integrating	333 Typ	CMOS-JI	$\pm 0.2 \mathrm{~V}$	± 1	Low Power Version of ICL7106, MQFP
ICL7136	CPL	LCD	Direct Drive	Auto-Zero Integrating	333 Typ	CMOS-JI	$\pm 0.2 \mathrm{~V}$	± 1	
ICL7136R	CPL	LCD	Direct Drive	Auto-Zero Integrating	333 Typ	CMOS-JI	$\pm 0.2 \mathrm{~V}$	± 1	Low Power Version of ICL7106 Reversed Leads
ICL7137	CPL	LED	Common Anode	Auto-Zero	333 Typ	CMOS-JI	$\pm 0.2 \mathrm{~V}$	± 1	Low Power Version of ICL7107
3/3/4 DIGIT WITH LCD DRIVERS									
ICL7139	CPL	LCD	Duplex	Auto Zero	400	CMOS-J	$\pm 0.4 \mathrm{~V}$	± 1	13 Ranges, Autoranging Multimeter, AC Internal
ICL7149	CM44	LCD	Duplex	Auto-Zero Integrating	400	CMOS-J	$\pm 0.4 \mathrm{~V}$	± 1	18 Ranges, Autoranging Multimeter, AC External, MQFP
ICL7149	CPL	LCD	Duplex	Auto-Zero Integrating	400	CMOS-J	$\pm 0.4 \mathrm{~V}$	± 1	
$4 \frac{1}{2} 2$ DIGIT WITH LCD DRIVERS									
ICL7129	CM44	LCD	Triplexed	Auto-Zero Integrating	500	CMOS-JI	$\pm 0.2 \mathrm{~V}$	± 1 Typ	$10 \mu \mathrm{~V}$ Resolution. 1X, 10X Range Selection, MQFP
ICL7129	CPL	LCD	Triplexed	Auto-Zero Integrating	500	CMOS-JI	$\pm 0.2 \mathrm{~V}$	± 1 Typ	
ICL7129R	CPL	L.CD	Triplexed	Auto-Zero Integrating	500	CMOS-JI	$\pm 0.2 \mathrm{~V}$	± 1 Typ	$10 \mu \mathrm{~V}$ Resolution. 1X, 10X Range Selection, PDIP Reversed Leads

SEMICONDUCTOR

A/D Converter for 3-Digit Display

Features

- Dual Slope AD Conversion
- Multiplexed BCD Display
- Ultra Stable Internal Band Gap Voltage Reference
- Capable of Reading 99mV Below Ground with Single Supply
- Differential Input
- Internal Timing - No External Clock Required
- Choice of Low Speed (4Hz) or High Speed (96Hz) Conversion Rate
- "Hold" Inhibits Conversion but Maintains Delay
- Overrange Indication
- "EEE" for Reading Greater than +999mV, "-" for Reading More Negative than -99 mV When Used With CA3161E
- BCD-to-Seven-Segment Decoder/Driver
- Extended Temperature Range Version Available

Description

The CA3162E and CA3162AE are I^{2} L monolithic AD converters that provide a 3 digit multiplexed BCD output. They are used with the CA3161E BCD-to-Seven-Segment Decoder/Driver* and a minimum of external parts to implement a complete 3 digit display. The CA3162AE is identical to the CA3162E except for an extended operating temperature range.

* The CA3161E is described in Display Drivers section of this data book.

Ordering Information

PART NUMBER	TEMPERATURE RANGE	PACKAGE
CA3162E	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Lead Plastic DIP
CA3162AE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Lead Plastic DIP

Pinout

$$
\begin{aligned}
& \text { CA3162 (PDIP) } \\
& \text { TOP VIEW }
\end{aligned}
$$

Functional Block Diagram

Absolute Maximum Ratings

DC Supply Voltage (Between Pins 7 \& 14). +7 V
Input Voltage (Pin 10 or 11 to Ground)............................15V
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering 10s). $+300^{\circ} \mathrm{C}$

Thermal Information

mal Resistance	$\theta_{\text {JA }}$
Plastic DIP Package	$90^{\circ} \mathrm{CNW}$
Operating Temperature Range	
CA3162E	. 0 to $+75^{\circ} \mathrm{C}$
CA3162AE.	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Maximum Power Dissipation	
Plastic DIP Package	0.67W
Junction Temperature	$+150^{\circ} \mathrm{C}$

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Electrical Specifications $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}+=5 \mathrm{~V}$, Zero Pot Centered, Gain Pot $=2.4 \mathrm{k} \Omega$ Unless Otherwise Specified

PARAMETERS	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Operating Supply Voltage Range, V_{+}		4.5	5	5.5	V
Supply Current, 1+	100ks to V+ on Pins 3, 4, 5	-	-	17	mA
Input Impedance, Z_{1}		-	100	-	M Ω
Input Bias Current, $\mathrm{I}_{1 \mathrm{~B}}$	Pins 10 and 11	-	-80	-	nA
Unadjusted Zero Offset	$\mathrm{V}_{11}-\mathrm{V}_{10}=0 \mathrm{~V}$, Read Decoded Output	-12	-	+12	mV
Unadjusted Gain	$\mathrm{V}_{11}-\mathrm{V}_{10}=900 \mathrm{mV}$, Read Decoded Output	846	-	954	mV
Linearity	Notes 1 and 2	-1	-	+1	Count
Conversion Rate Slow Mode	$\operatorname{Pin} 6=$ Open or GND	-	4	-	Hz
Fast Mode	Pin $6=5 \mathrm{~V}$	-	96	-	Hz
Conversion Control Voltage (Hold Mode) at Pin 6		0.8	1.2	1.6	V
Common Mode Input Voltage Range, $\mathrm{V}_{\text {ICR }}$	Notes 3, 4	-0.2	-	+0.2	V
BCD Sink Current at Pins 1, 2, 15, 16	$V_{B C D} \geq 0.5 \mathrm{~V}$, at Logic Zero State	0.4	1.6	-	mA
Digit Select Sink Current at Pins 3, 4, 5	$\mathrm{V}_{\text {DIGIT }}$ Select $=4 \mathrm{~V}$ at Logic Zero State	1.6	2.5	-	mA
Zero Temperature Coefficient	$\mathrm{V}_{1}=0 \mathrm{~V}$, Zero Pot Centered	-	10	-	$\mu \mathrm{V} / \mathrm{V}$
Gain Temperature Coefficient	$\mathrm{V}_{1}=900 \mathrm{mV}$, Gain Pot $=2.4 \mathrm{k} \Omega$	-	0.005	-	\% ${ }^{\circ} \mathrm{C}$

NOTES:

1. Apply zero volts across V_{11} to V_{10}. Adjust zero potentiometer to give 000 mV reading. Apply 900 mV to input and adjust gain potentiometer to give 900 mV reading.
2. Linearity is measured as a difference from a straight line drawn through zero and positive full scale. Limits do not include ± 0.5 count bit digitizing error.
3. For applications where low input pin 10 is not operated at pin 7 potential, a return path of not more than $100 \mathrm{k} \Omega$ resistance must be provided for input bias currents.
4. The common mode input voltage above ground cannot exceed +0.2 V if the full input signal range of 999 mV is required at pin 11 . That is, pin 11 may not operate higher than 1.2 V positive with respect to ground or 0.2 V negative with respect to ground. If the maximum input signal is less than 999 mV , the common mode input voltage may be raised accordingly.

Timing Diagram

FIGURE 1. HIGH SPEED MODE

Detailed Description

The Functional Block Diagram of the CA3162E shows the V/I converter and reference current generator, which is the heart of the system. The V/l converter converts the input voltage applied between pins 10 and 11 to a current that charges the integrating capacitor on pin 12 for a predetermined time interval. At the end of the charging interval, the V / I converter is disconnected from the integrating capacitor, and a band gap
reference constant current source of opposite polarity is connected. The number of clock counts that elapse before the charge is restored to its original value is a direct measure of the signal induced current. The restoration is sensed by the comparator, which in turn latches the counter. The count is then multiplexed to the BCD outputs.

The timing for the CA3162E is supplied by a 786 Hz ring oscillator, and the input at pin 6 determines the sampling rate. A 5 V input provides a high speed sampling rate $(96 \mathrm{~Hz})$, and grounding or floating pin 6 provides a low speed (4 Hz) sampling rate. When pin 6 is fixed at +1.2 V (by placing a 12 K resistor between pin 6 and the +5 V supply) a "hold" feature is available. While the CA3162E is in the hold mode, sampling continues at 4 Hz but the display data are latched to the last reading prior to the application of the 1.2 V . Removal of the 1.2V restores continuous display changes. Note, however, that the sampling rate remains at 4 Hz .

Figure 1 shows the timing of sampling and digit select pulses for the high speed mode. Note that the basic ADD conversion process requires approximately 5 ms in both modes.
The "EEE" or "---" displays indicate that the range of the system has been exceeded in the positive or negative direction, respectively. Negative voltages to -99 mV are displayed with the minus sign in the MSD. The BCD code is 1010 for a negative overrange (---) and 1011 for a positive overrange (EEE).

FIGURE 2. BASIC DIGITAL READOUT SYSTEM USING THE CA3162E AND THE CA3161E

CA3162E Liquid Crystal Display (LCD) Application

Figure 3 shows the CA3162E in a typical LCD application. LCDs may be used in favor of LED displays in applications requiring lower power dissipation, such as battery-operated equipment, or when visibility in high-ambient-light conditions is desired.

Multiplexing of LCD digits is not practical, since LCDs must be driven by an AC signal and the average voltage across each segment is zero. Three CD4056B liquid-crystal decoder/drivers are therefore used. Each CD4056B contains an input latch so that the BCD data for each digit may be latched into the decoder using the inverted digit-select outputs of the CA3162E as strobes.

The capacitors on the outputs of inverters G3 and G4 filter out the decode spikes on the MSD and NSD signals. The capacitors and pull-up resistors connected to the MSD, NSD
and LSD outputs are there to shorten the digit drive signal thereby providing proper timing for the CD4056B latches.

Inverters G1 and G2 are used as an astable multivibrator to provide the AC drive to the LCD backplane. Inverters G3, G4 and G5 are the digit-select inverters and require pull-up resistors to interface the open-collector outputs of the CA3162E to CMOS logic. The BCD outputs of the CA3162E may be connected directly to the corresponding CD4056B inputs (using pull-up resistors). In this arrangement, the CD4056B decodes the negative sign (-) as an " L " and the positive overload indicator (E) as an "H".

The circuit as shown in Figure 3 using G7, G8 and G9 will decode the negative sign $(-)$ as a negative sign (-), and the positive overload indicator (E) as " H ".

FIGURE 3. TYPICAL LCD APPLICATION

CA3162E Common-Cathode, LED Display Application

Figure 4 shows the CA3162E connected to a CD4511B decode/driver to operate a common-cathode LED display. Unlike the CA3161E, the CD4511B remains blank for all BCD codes greater than nine. After 999 mV the display blanks rather than displaying EEE, as with the CA3161E. When displaying negative voltage, the first digit remains blank, instead of (-), and during a negative or positive overrange the display blanks.

The additional logic shown within the dotted area of Figure 4 restores the negative sign $(-)$, allowing the display of negative numbers as low as -99 mV . Negative overrange is indicated by a negative sign (-) in the MSD position. The rest of the display is blanked. During a positive overrange, only segment b of the MSD is displayed. One inverter from the CD4049B is used to operate the decimal points. By connecting the inverter input to either the MSD or NSD line either DP1 or DP2 will be displayed.

FIGURE 4. TYPICAL COMMON-CATHODE LED APPLICATION

Die Characteristics

DIE DIMENSIONS:
$101 \times 124 \times 20 \pm 1$ mils
METALLIZATION:
Type: Al
Thickness: $17.5 \mathrm{k} \AA \pm 2.5 \mathrm{k} \AA$
GLASSIVATION:
Type: 3\% PSG
Thickness: $13 \mathrm{k} \AA \pm 2.5 \mathrm{k} \AA$

Metallization Mask Layout

3 $1 / 2$ Digit Low Power, High CMRR LCD/LED Display Type A/D Converter

Features

- 120 dB CMRR Equal to ± 0.01 Count/V of Common Mode Voltage Error
- Fast Recovery from Input Overrange Results "Correct First-Reading" After Overload
- Guaranteed 0000 Reading for OV Input
- True Polarity at Zero for Precise Null Detection
- 1pA Input Current, Typical
- True Differential Input and Reference
- Single or Dual Supply Operation Capability
- Direct LCD Display Drive - HI7131
- Direct LED Display Drive - Hi7133
- Low Noise, $15 \mu \mathrm{Vp}$-p Without Hysteresis or Overrange Hangover
- Low Power Dissipation, Guaranteed Less Than 1mW, Results $\mathbf{8 0 0 0}$ Hours Typical 9V Battery Life
- No Additional Active Components Required

Applications

- Handheld Instruments
- Basic Measurements: Voltage, Current, Resistance Pressure, Temperature, Fluid Flow and Level, pH, Weight, Light Intensity
- DMM's and DPM's

Description

The Harris HI7131 and HI7133 are $3 \frac{1}{2}$ digit A/D converters that have been optimized for superior DC Common Mode Rejection (CMRR) when used with a split $\pm 5 \mathrm{~V}$ supply or a single 9V battery. The HI7131 contains all the necessary active components on a single IC to directly interface an LCD (Liquid Crystal Display). The supply current is under $100 \mu \mathrm{~A}$ and is ideally suited for battery operation. The HI7133 contains all the necessary active components on a single IC to directly interface an LED (Light Emitting Diode).

The HI7131 and HI7133 feature high accuracy performance like, 120 dB of CMRR, auto-zero to less than $10 \mu \mathrm{~V}$ of offset, fast recovery from over load, zero drift of less than $1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$, input bias current of 10 pA maximum, and rollover error of less than one count. A true differential signal and reference inputs are useful features in all systems, but gives the designer an advantage when measuring load cells, strain gauges and other bridge-type transducers.

The HI7131 and HI7133 are supplied in a 40 lead plastic DIP and a 44 lead metric plastic quad flatpack package.

Ordering Information

PART NUMBER	TEMPERATURE RANGE	PACKAGE
HI7131CPL	$0^{\circ} \mathrm{C} \leq T_{A} \leq+70^{\circ} \mathrm{C}$	40 Lead Plastic DIP
HI7131CM44	$0^{\circ} \mathrm{C} \leq T_{A} \leq+70^{\circ} \mathrm{C}$	44 Lead MQFP
HI7133CPL	$0^{\circ} \mathrm{C} \leq T_{A} \leq+70^{\circ} \mathrm{C}$	40 Lead Plastic DIP
HI7133CM44	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq+70^{\circ} \mathrm{C}$	44 Lead MQFP

FIGURE 1. TYPICAL APPLICATION CIRCUIT

FIGURE 2. TEST CIRCUIT

Thermal Information

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
ACCURACY					
Zero Input Reading	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$	-000	± 000	+000	Reading
Ratiometric Reading	$\begin{aligned} & V_{\text {INHI }}=V_{\text {REFHI }} \\ & V_{\text {INLO }}=V_{\text {REFLO }}=V_{\text {COMMON }} \\ & V_{\text {REFHI }}-V_{\text {REFLO }}=100.0 \mathrm{mV} \end{aligned}$	999	$\begin{aligned} & 999 / \\ & 1000 \end{aligned}$	1001	Reading
Rollover Error	$\mathrm{V}_{\text {IN }}= \pm 199 \mathrm{mV}$	-	± 0.2	± 1	Count
Linearity Error	FSR $=200 \mathrm{mV}$ or 2 V (Note 4, 7)	-	± 0.2	± 1	Count
Zero Input Reading Drift	$\mathrm{V}_{\mathrm{IN}}=\mathrm{OV}$ Over Full Temperature Range (Note 4, 7)	-	± 0.2	$\begin{gathered} \pm 1 \\ \pm 0.01 \end{gathered}$	$\mu \mathrm{V}{ }^{\circ} \mathrm{C}$ Count ${ }^{\circ} \mathrm{C}$
Scale Factor Temperature Coefficient	$V_{I N}=199 \mathrm{mV}$, Over Full Temperature Range, Reference Drift Not Included (Note 4, 7)	-	± 1	$\begin{gathered} \pm 5 \\ \pm 0.01 \end{gathered}$	$\mathrm{ppm}{ }^{\circ} \mathrm{C}$ Count ${ }^{\circ} \mathrm{C}$
Equivalent Input Noise (PK-PK value not exceeded 95% of the times)	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}($ Note 4, 7)	-	$\begin{gathered} 15 \\ 0.15 \end{gathered}$	-	$\begin{aligned} & \mu \mathrm{V} \\ & \text { Count } \end{aligned}$
INPUT					
Common Mode Voltage Sensitivity	$\mathrm{V}_{\mathrm{CM}}= \pm 1 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}($ Note 4, 5, 7, 8)	-	-	$\begin{gathered} 1 \\ 0.01 \end{gathered}$	$\begin{gathered} \mu \mathrm{V} N \\ \text { Count/V } \end{gathered}$
Input Leakage Current	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}($ Note 4, 7)	-	1	10	DA
Overload Recovery Period	$\mathrm{V}_{\text {IN }}$ Changing from $\pm 10 \mathrm{~V}$ to 0 V (Note 4, 7)	-	-	1	Conversion Cycle
COMMON PIN					
COMMON Pin Voltage (With respect to V+, i.e. V^{+}- $\mathrm{V}_{\text {COMMON }}$)	$V+$ to $V-=10 \mathrm{~V}$	2.4	2.8	3.2	V
COMMON Pin Voltage Temperature Coefficient	$V+$ to $V-=10 \mathrm{~V}$ (Note 4, 7)	-	150	-	ppm $/{ }^{\circ} \mathrm{C}$
COMMON Pin Sink Current	+0.1V Change on $\mathrm{V}_{\text {COMMON }}$ (Note 4)	-	3	-	mA
COMMON Pin Source Current	-0.1 V Change on $\mathrm{V}_{\text {common }}$ (Note 4)	-	1	-	$\mu \mathrm{A}$

Electrical Specifications (Notes $4,5,6) T_{A}=25^{\circ} \mathrm{C}$. Device is Tested in the Circuit Shown in Figure 2.
Full Scale Range (FSR) $=200.0 \mathrm{mV}$, Unless Otherwise Specified. (Continued)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
DISPLAY DRIVER (HI7131)					
PK-PK Segment Drive Voltage	$\mathrm{V}+$ to $\mathrm{V}-=10 \mathrm{~V}$	4	5	6	V
PK-PK Backplane Drive Voltage		4	5	6	V
POWER SUPPLY (Nominal Supply Voltage; V+ to V- = 10V)					
Supply Current (Does not include COMMON pin current)	$\begin{aligned} & \left.V_{I N}=O V \text { (Note } 9\right) \\ & \text { Oscillator Frequency }=16 \mathrm{kHz} \end{aligned}$	-	70	100	$\mu \mathrm{A}$
Power Dissipation Capacitance	VS Clock Frequency (Note 4, 7)	-	40	-	pF
DISPLAY DRIVER (HI7133)					
Segment Sink Current (Except Pins 19 and 20)	$\begin{aligned} & \mathrm{V}+=+5.0 \mathrm{~V} \\ & \text { Driver Pin Voltage }=3.0 \mathrm{~V} \end{aligned}$	5	8.5	-	mA
Pin 19 Sink Current		10	16	-	mA
Pin 20 Sink Current		4	7	-	mA
POWER SUPPLY (Nominal Supply Voltage; $\mathrm{V}+=+5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V}$ both respect to GND pin)					
V+Supply Current (Note 9)	$V_{\mathbb{I N}}=0 \mathrm{~V}$ Oscillator Frequency $=16 \mathrm{kHz}$ Does not include COMMON pin and display current	-	70	100	$\mu \mathrm{A}$
V-Supply Current (Note 4, 9)		-	40	-	$\mu \mathrm{A}$
Power Dissipation Capacitance	Versus Clock Frequency (Note 4, 7)	-	40	-	pF

NOTES:

1. Input voitages may exceed the supply voltages provided the input current is limited to $\pm 100 \mu \mathrm{~A}$.
2. TEST pin is connected to internally generated digital ground through a 500Ω resistor (See text for TEST pin description).
3. Dissipation rating assumes device is mounted with all leads soldered to printed circuit board.
4. All typical values have been characterized but not tested.
5. See "Parameters Definition" section.
6. Count is equal to one number change in the least significant digit of the display.
7. Parameter not tested on a production basis, guaranteed by design and/or characterization.
8. See "Differential Input" section.
9. 48 kHz oscillator increases current by $20 \mu \mathrm{~A}$ (typ).

Design Information Summary Sheet

- OSCILLATOR FREQUENCY

```
\(\mathfrak{f}_{\mathrm{OSC}} \approx 0.45 / \mathrm{RC}_{(\mathrm{OSC})}\)
\(\mathrm{C}_{\mathrm{OSC}} \geq 50 \mathrm{pF}\)
\(R_{\text {OSC }}>50 \mathrm{k} \Omega\)
\(\mathrm{C}_{\mathrm{OSC}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{OSC}}=180 \mathrm{k} \Omega ; \mathrm{f}_{\mathrm{OSC}}\) Typ. \(=48 \mathrm{kHz}\)
```

- CLOCK FREQUENCY
$f_{\text {CLOCK }}=f_{\text {OSO }} 4$
- CLOCK PERIOD
$t_{\text {CLOCK }}=1 / \mathrm{f}_{\text {CLOCK }}$
- CONVERSION CYCLE
$\mathrm{T}_{\mathrm{CYC}}=4000 \times \mathrm{t}_{\text {CLOCK }}=16000 \times \mathrm{t}_{\mathrm{OSC}}$
For $\mathrm{f}_{\mathrm{Osc}}=40 \mathrm{kHz} ; \mathrm{T}_{\mathrm{CYC}}=400 \mathrm{~ms}$
- SIGNAL INTEGRATION PERIOD
$\mathrm{T}_{\text {INT }}=1000 \times \mathrm{t}_{\text {CLOCK }}$
- 60/50Hz REJECTION CRITERIA
$\mathrm{T}_{\mathrm{INT}} / \mathrm{t}_{60 \mathrm{~Hz}}$ or $\mathrm{T}_{\mathrm{INT}} / \mathrm{t}_{50 \mathrm{~Hz}}=$ integer
- OPTIMUM FULL SCALE ANALOG INPUT RANGE
$V_{\text {INFS }}=200 \mathrm{mV}$ to 2 V
- INPUTS VOLTAGE RANGE
$(\mathrm{V}-+\mathrm{IV})<\mathrm{V}_{\text {INLO }}$ or $\mathrm{V}_{\text {INHI }}<(\mathrm{V}+-\mathrm{IV})$
- MAXIMUM INTEGRATION CURRENT
$I_{\text {INTmax }}=V_{\text {INFS }} / R_{\text {INT }}$
Maximum integration current should be the maximum buffer output current with no nonlinearity effect.
Maximum Buffer Output Current $=1 \mu \mathrm{~A}$
- INTEGRATOR MAXIMUM OUTPUT VOLTAGE SWING
$\mathrm{V}_{\mathrm{INT} \mathrm{max}}=\left(\mathrm{T}_{\mathrm{INT}}\right)\left(\mathrm{I}_{\mathrm{INT} \text { max }}\right) / \mathrm{C}_{\text {INT }}$
$(\mathrm{V}-+0.5)<\mathrm{V}_{\text {INTmax }}<(\mathrm{V}+-0.5)$
Typical $\mathrm{V}_{\text {INTmax }}=2 \mathrm{~V}$
- INTEGRATING RESISTOR
$R_{I N T}=V_{I_{N F S}} / I_{I_{N T} \text { max }}$
- INTEGRATING CAPACITOR
$\mathrm{C}_{\text {INT }}=\left(\mathrm{T}_{\mathrm{INT}}\right)\left(\mathrm{I}_{\mathrm{INT}_{\text {max }}}\right) / \mathrm{V}_{\text {INTmax }}$
- AUTO-ZERO CAPACITOR VALUE
$0.01 \mu \mathrm{~F}<\mathrm{C}_{A Z}<1.0 \mu \mathrm{~F}$
- REFERENCE CAPACITOR VALUE $0.1 \mu \mathrm{~F}<\mathrm{C}_{\text {REF }}<1.0 \mu \mathrm{~F}$
- REFERENCE INPUTS VOLTAGE RANGE V - < $\mathrm{V}_{\text {REFLO }}$ or $\mathrm{V}_{\text {REFHI }}<\mathrm{V}_{+}$
- REFERENCE VOLTAGE
$\mathrm{V}_{\text {REF }}=\mathrm{V}_{\text {INFS }} / 2$
- COMMON PIN VOLTAGE
$\mathrm{V}_{\text {COMMON }}=\mathrm{V}_{+}-2.8$, Typical, $\mathrm{V}_{\text {COMMON }}$ is regulated and can be used as a reference. It is biased between $V+$ and V - and regulation is lost at ($\mathrm{V}+-\mathrm{V}_{-}$) $<6.8 \mathrm{~V}$. $\mathrm{V}_{\text {COMMON }}$ pin does not have sink capability and can be externally pulled down to lower voltages.
- DISPLAY TYPE

LCD, Non-Multiplexed

- POWER SUPPLY, V+TO V

Single +9 V or $\pm 5 \mathrm{~V}$ Nominal, +5 V to +12 V Functional

- DISPLAY READING

Reading $=1000 \times\left(V_{\mathbb{N}} / V_{\text {REF }}\right)$
Maximum Reading $=1999$, for $\mathrm{V}_{\mathbb{I N}}=1.999 \times \mathrm{V}_{\mathrm{REF}}$

Typical Integrator Amplifier Output Waveform (INT Pin)

NOTE: 1 Count = 1 Clock Cycle $=4$ Oscillator Cycle

HI7131, HI7133
Pin Description

PIN NUMBER		NAME	FUNCTION	DESCRIPTION
40 PIN DIP	$\begin{gathered} 44 \text { PIN } \\ \text { FLATPACK } \end{gathered}$			
1	8	V+	SUPPLY	Power Supply
2	9	D1	OUTPUT	Driver Pin for Segment " D " of the display units digit
3	10	C1	OUTPUT	Driver Pin for Segment "C" of the display units digit
4	11	B1	OUTPUT	Driver Pin for Segment "B" of the display units digit
5	12	A1	OUTPUT	Driver Pin for Segment "A" of the display units digit
6	13	F1	OUTPUT	Driver Pin for Segment " F " of the display units digit
7	14	G1	OUTPUT	Driver Pin for Segment "G" of the display units digit
8	15	E1	OUTPUT	Driver Pin for Segment " E " of the display units digit
9	16	D2	OUTPUT	Driver Pin for Segment "D" of the display tens digit
10	17	C2	OUTPUT	Driver Pin for Segment " C " of the display tens digit
11	18	B2	OUTPUT	Driver Pin for Segment " B " of the display tens digit
12	19	A2	OUTPUT	Driver Pin for Segment "A" of the display tens digit
13	20	F2	OUTPUT	Driver Pin for Segment " F " of the display tens digit
14	21	E2	OUTPUT	Driver Pin for Segment " E " of the display tens digit
15	22	D3	OUTPUT	Driver pin for segment " D " of the display hundreds digit
16	23	B3	OUTPUT	Driver pin for segment "B" of the display hundreds digit
17	24	F3	OUTPUT	Driver pin for segment " F " of the display hundreds digit
18	25	E3	OUTPUT	Driver pin for segment " E " of the display hundreds digit
19	26	AB4	OUTPUT	Driver pin for both "A" and "B" segments of the display thousands digit
20	27	POL	OUTPUT	Driver pin for the negative sign of the display
21	28	BP/GND	OUTPUT	Driver pin for the LCD backplane/Power Supply Ground
22	29	G3	OUTPUT	Driver pin for segment " G " of the display hundreds digit
23	30	A3	OUTPUT	Driver pin for segment " A " of the display hundreds digit
24	31	C3	OUTPUT	Driver pin for segment " C " of the display hundreds digit
25	32	G2	OUTPUT	Driver pin for segment " G " of the display tens digit
26	34	V	SUPPLY	Negative power supply
27	35	INT	OUTPUT	Integrator amplifier output. To be connected to integrating capacitor
28	36	BUFF	OUTPUT	Input buffer amplifier output. To be connected to integrating resistor
29	37	A-Z	INPUT	Integrator amplifier input.To be connected to auto-zero capacitor
$\begin{aligned} & 30 \\ & 31 \end{aligned}$	$\begin{aligned} & 38 \\ & 39 \end{aligned}$	$\begin{aligned} & \hline \mathbb{N} \text { LO } \\ & \mathbb{N} \mathrm{HI} \end{aligned}$	INPUT	Differential inputs. To be connected to input voltage to be measured. LO \& HI designators are for reference and do not imply that LO should be connected to lower potential, e.g. for negative inputs IN LO has a higher potential than IN HI.
32	40	COMMON	SUPPLY/ OUTPUT	Internal voltage reference output
$\begin{aligned} & 33 \\ & 34 \\ & \hline \end{aligned}$	$\begin{aligned} & 41 \\ & 42 \end{aligned}$	C $\mathrm{C}_{\text {REF }+}$		Connection pins for reference capacitor
$\begin{aligned} & 35 \\ & 36 \end{aligned}$	$\begin{aligned} & 43 \\ & 44 \end{aligned}$	REF LO REF HI	INPUT	Input pins for reference voltage to the device. REF HI should be positive reference to REF LO.
37	3	TEST	INPUT	Display test. Turns on all segments when tied to $\mathrm{V}+$.
$\begin{aligned} & 38 \\ & 39 \\ & 40 \\ & \hline \end{aligned}$	$\begin{aligned} & 4 \\ & 6 \\ & 7 \end{aligned}$	$\begin{aligned} & \text { OSC3 } \\ & \text { OSC2 } \\ & \text { OSC1 } \end{aligned}$	OUTPUT OUTPUT INPUT	Device clock generator circuit connection pins

Definition of Specifications

Count

A Count is equal to one number change in the least significant digit of the display. The analog size of a count referred to ADC input is:

$$
\text { Analog Count Size }=\frac{\text { Full Scale Range }}{\text { Max Reading }+1}
$$

Max reading +1 for a $31 / 2$ digit display is 2000 (1999+1).

Zero Input Reading

The reading of the ADC display when input voltage is zero and there is no common mode voltage, i.e. the inputs are shorted to COMMON pin.

Ratiometric Reading

The reading of the ADC display when input voltage is equal to reference voltage, i.e. IN HI tied to REF HI and IN LO tied to REF LO and COMMON pins. The accuracy of reference voltage is not important for this test.

Rollover Error

Difference in the absolute value reading of ADC display for equal magnitude but opposite polarity inputs. The input voltage should be close to full scale, which is the worst case condition.

Linearity

Deviation of the ADC transfer function (output reading versus input voltage transfer plot) from the best straight line fitted to ADC transfer plot.

Scale Factor Temperature Coefficient

The rate of change of the slope of ADC transfer function due to the change of temperature.

Equivalent Input Noise

The total random uncertainty of the ADC for converting a fixed input value to an output reading. This uncertainty is referred to input as a noise source which produces the equivalent effect. It is given for zero input and is expressed as p-p noise value and submultiples of Counts.

Overload Recovery Period

A measure of how fast the ADC will display an accurate reading when input changes from an overload condition to a value within the range. This is given as the number of conversion cycles required after the input goes within the range.

Theory of Operation

The HI7131 and HI7133 are dual-slope integrating type A/D converters. As the name implies, its output represents the integral or average of the input signal. A basic block diagram of a dual-slope integrating converter is shown in Figure 3. A conventional conversion cycle has two distinct phases:
First, the input signal is integrated for a fixed interval of time. This is called the signal integration phase. In this phase the input of the integrator is connected to the input signal through the switch. During this time, charge builds up on $\mathrm{C}_{\mathrm{INT}}$ which is proportional to the input voltage.

The next phase is to discharge $\mathrm{C}_{\mathrm{INT}}$. This is called reference integration or deintegration phase, with the use of a fixed reference voltage. The time it takes to discharge the $\mathrm{C}_{\mathrm{INT}}$ is directly proportional to the input signal. This time is converted to a digital readout by means of a BCD counter, driven by a clock oscillator. During this phase, the integrator input is connected to an opposite polarity reference voltage through the switch to discharge $\mathrm{C}_{\mathrm{INT}}$.

Notice that during the integration phase, the rate of charge built up on the capacitor is proportional to the level of the input signal, and there is a fixed period of time to integrate the input. However, during the discharge cycle the rate of discharge is fixed and there is a variable time period for complete discharge
A $3 \frac{1}{2}$ digit BCD counter is shown in the block diagram, the period of integration is determined by 1000 counts of this counter. Just prior to a measurement, the counter is reset to zero and $\mathrm{C}_{\mathrm{INT}}$ has no charge. At the beginning of the measurement, the control logic enables the counter and the integrator input is connected to the input node. Charge begins accumulating on $\mathrm{C}_{\mathrm{INT}}$ and the output of the integrator moves down or up respectively for positive or negative inputs. This process continues until the counter reaches 1000 counts. This will signal the control logic for the start of the deintegrating cycle. The control logic resets the counter and connects the integrator input to a reference voltage opposite to that of the input signal. The charge accumulated on $\mathrm{C}_{\mathbb{I N T}}$ is now starting to be removed and the counter starts to count up again. As soon as all the charge is removed, the output of the integrator reaches 0 volts. This is detected by the comparator and the control logic is signaled for the end of a measurement cycle. At this time the number accumulated in the counter is the representation of the input signal. This number will be stored on the latches and displayed until the end of the next measurement cycle.

Figure 3 shows a typical waveform of the integrator output for 2 different positive input values and the associated representation of the counter output for those inputs. $\mathrm{T}_{\text {INT }}$ is the time period of integrating phase. t_{1} and t_{2} are the end of measurement for 2 different inputs.
The dual slope integrating technique puts the primary responsibility for accuracy on the reference voltage. The values of $\mathrm{R}_{\mathrm{INT}}$ and $\mathrm{C}_{\mathrm{INT}}$ and the clock frequency (fick) are not important, provided they are stable during each conversion cycle. This can be expressed mathematically as follows:
$\Delta V_{I N T}=\frac{1}{R_{I N T} C_{I N T}} \int_{0}^{T_{I N T}} v_{I N} d t=\frac{1}{R_{I N T} C_{I N T}} \int_{0}^{T_{\text {DEINT }}} V_{\text {REF }} d t$

$\overline{V_{I N}}$: Input Average Value During Integration Time
$\mathrm{T}_{\text {INT }}=1000\left(\frac{1}{\mathrm{f}_{\text {CLK }}}\right)$
${ }^{\mathrm{t}_{\text {DEINT }}}=$ Accumulated Counts $\left(\frac{1}{\mathrm{f}_{\text {CLK }}}\right)$
Accumulated Counts $=1000 \frac{\overline{V_{I N}}}{\mathrm{~V}_{\text {REF }}}=$ Display Reading

It can be seen that the output reading of the ADC is only proportional to the ratio of $V_{\text {IN }}$ over $V_{\text {REF }}$ The last equation also
demonstrates that for the maximum display reading (i.e. 1999) we will have $\mathrm{V}_{\mathbb{I N}}=1.999 \mathrm{~V}_{\text {REF }}$ This implies that in this configuration the full scale range of the converter is twice its reference voltage.

The inherent advantages of integrating A/D converters are; very small nonlinearity error, no possibility of missing codes and good high frequency noise rejection.

Furthermore, the integrating converter has extremely high normal mode rejection of frequencies whose periods are an integral multiple of the integrating period ($\mathrm{T}_{\mathrm{INT}}$). This feature can be used to reject the line frequency related noises which are riding on input voltage by appropriate selection of clock frequency. This is shown in Figure 4.

FIGURE 4. NOISE REJECTION FOR INTEGRATING TYPE A/D CONVERTER

FIGURE 5A. HI7131 AND HI7133 ANALOG SECTION FUNCTIONAL DIAGRAM

FIGURE 5. HI7131, HI7133 vs ICL7136, ICL7137 ANALOG SECTIONS

HI7131/33 vs ICL7136/37

Figure 5 shows the analog front end block diagram of both HI7131/33 and ICL7136/37. The difference is the common reference voltage generator connection and 2 extra analog switches in the ICL7136. The HI7131 architecture uses the INLO as the reference point of the integrator (non-inverting input of the integrator amplifier) in all the phases of the conversion cycle. The ICL7136 uses INLO as a reference point only during integration cycle and COMMON pin is used as the integrator reference point during auto-zero, deintegrate, and zero integrate phases.

The circuit configuration of the HI7131 results in a superior 120 dB rejection of DC common mode on the inputs. However, the H17131 has reduced AC common mode noise rejection, since the noise on the INLO input can cause errors during the deintegration phase.

The circuit configuration of the ICL7136 is unaffected by the AC noise riding on the inputs, but the DC common mode rejection on the input is only 86 dB .

Analog Section Description

Figure 5-A shows a simplified diagram of the analog section of the HI7131 and H17133. The circuit performs basic phases of dual slope integration. Furthermore, the device incorporates 2 additional phases called "Auto-Zero" and "Zero Integrate". The device accepts differential input signals and reference voltages. Also, there is a reference voltage generator which sets the COMMON pin 2.8 volts below the $\mathrm{V}+$ supply. A complete conversion cycle is divided into the following four phases:

1. Auto-Zero (A/Z)
2. Signal Integrate (INT)
3. Deintegrate or Reference Integrate (DE土)
4. Zero Integrate (ZI)

Digitally controlled analog switches direct the appropriate signals for each phase of the conversion.

Auto-Zero Phase

During auto-zero three things occur. First, IN HI is disconnected from the device internal circuitry and internally shorted to IN LO. Second, the reference capacitor is charged to the reference voltage. Third, a feedback loop is closed around the system to charge the auto-zero capacitor C_{AZ} and integrating capacitor $\mathrm{C}_{\mathrm{INT}}$ to compensate for offset voltages in the buffer amplifier, integrator, and comparator. Since the comparator is included in the loop, the AZ accuracy is limited only by the noise of the system. In any case, the offset referred to the input is less than $10 \mu \mathrm{~V}$.

Signal Integrate Phase

During signal integrate the auto-zero loop is opened and the internal INPUT HIGH is connected to the external pins. The converter then integrates the differential voltage between IN HI and IN LO for a fixed time. This differential voltage can be within a wide input common mode range: up to one volt from either supply. At the end of this phase, the polarity of the integrated signal is determined.

Deintegrate Phase

During this phase the IN LO and the internal INPUT HIGH are connected across the previously charged reference capacitor. The bridge type circuitry within the chip ensures that the capacitor will be connected with the correct polarity to cause the integrator output to return to zero. The time required for the output to return to zero is proportional to the input signal. As specified before, the digital reading displayed is:

$$
\text { DIGITAL READING }=1000\left(\frac{v_{I N H I}-v_{\text {INLO }}}{v_{\text {REFHI }}-v_{\text {REFLO }}}\right)
$$

Zero Integrate Phase

This phase is provided to eliminate overrange hangover and causes fast recovery from heavy overrange. During this phase a feedback loop is closed around the system by connecting comparator output to internal INPUT HIGH. This will discharge the integrator capacitor $\left(\mathrm{C}_{\mathrm{INT}}\right)$, causing the integrator output return to zero. During this phase the reference capacitor is also connected to reference input, charging to the reference voltage.

A typical integrator output voltage during different phases is shown on the "Design Information Summary Sheet". This integrator output is for negative inputs and is referred to INLO. For positive inputs the integrator output will go negative.

Digital Section Description

Figure 6 shows the block diagram of the digital section of the HI7131. The diagram shows the clock generator, control logic, counters, latches and display decoder drivers. An internal digital ground is generated from a 6V Zener diode and a large \mathbf{P} channel source follower. This supply is capable of absorbing the relatively large capacitive currents when the LCD backplane (BP) and segment drivers are switched.

Display Drivers

A typical segment output driver consists of P and N channel MOSFETs.

An LCD consists of a backplane (BP) and segments. BP covers the whole area under the segments. Because of the nature of the LCD's, they should be driven by square-waves. The BP frequency is the clock frequency divided by 800 . For three readings/second this is a 60 Hz square-wave with a nominal amplitude of 5 V . The segments are driven at the same frequency and amplitude and are in phase with BP when OFF, but out of phase when ON. In all cases negligible DC voltage exists across the segments. The polarity indication is "ON" for negative analog inputs. If INLO and INHI are reversed, this indication can be reversed also, if desired.

The HI7131 is a direct display drive (versus multiplexed) and each segment in each digit has its own segment driver. The display font and the segment assignment on the display are also shown in Figure 6.
Figure 6 shows the block diagram of the digital section of the HI7133. The diagram shows the clock generator, control logic, counters, latches and display decoder drivers. The supply rails of the digital circuitry are V+ and GND.

Display Drivers

A typical segment output consists of a P and an N channel MOSFET. This configuration is designed to drive common anode LED displays. The nominal sink current for each segment is 8 mA , a typical value for instrument size common anode LED displays. The driver for the thousand digit is twice as big as other segments and can sink 16 mA since it is actually driving 2 segments. The sink current for the polarity driver is 7 mA . The polarity driver is on for negative inputs. The HI7133 is a direct display drive (versus multiplexed) and each segment in each digit has its own segment driver. The display font and the segment assignment on the display are also shown in Figure 7.

Clock Generator

The clock generator circuit basically includes 2 CMOS inverters and a divide by 4 counter. It is designed to be used in 2 different basic configurations.

FIGURE 6. DIGITAL SECTION

1. An External Oscillator Driving OSC 1.
2. An RC Oscillator Using All 3 Oscillator Circuit Pins.

These are shown in Figure 7.

FIGURE 7. CLOCK CIRCUITS

The oscillator output frequency is divided by 4 before it clocks the rest of the digital section. Notice that there are 2 separate frequencies which are referred to as; oscillator frequency (fosc) and clock frequency (fcLK) with the relation of:
$f_{\text {CLK }}=\frac{{ }^{\text {f }} \text { OSC }}{4}$
To achieve maximum rejection of 60 Hz pickup, the signal integrate cycle should be a multiple of 60 Hz . For 60 Hz rejection Oscillator frequencies of, $120 \mathrm{kHz}, 80 \mathrm{kHz}, 60 \mathrm{kHz}, 48 \mathrm{kHz}$, $40 \mathrm{kHz}, 331 / 3 \mathrm{kHz}$, etc. should be selected. For 50 Hz rejection, oscillator frequencies of, $100 \mathrm{kHz}, 662 / 3 \mathrm{kHz}, 50 \mathrm{kHz}$, 40 kHz , etc. would be suitable. Note that 40 kHz (2.5 readings/ second) will reject both 50 and 60 Hz (also 400 and 440 Hz).
For the RC oscillator configuration the relationship between oscillator frequency, R and C values are:
${ }^{\mathrm{f}_{\mathrm{OSC}}} \approx \frac{0.45}{\mathrm{R}_{\mathrm{OSC}}{ }^{\mathrm{C}_{\text {OSC }}}}$

(R in Ohms and C in Farads)

System Timing

As it has been mentioned, the oscillator output is divided by 4 prior to clocking the digital section and specifically, the internal decade counters. The control logic looks at the counter outputs and comparator output (see analog section) to form the appropriate timing for 4 phases of conversion cycle.

The total length of a conversion cycle is equal to 4000 counts and is independent of the input signal magnitude or full scale range. Each phase of the conversion cycle has the following length:

Auto-Zero Phase

100 counts in case an overrange is detected. 990 to 2990 counts for normal conversion. For those inputs which are less than full scale, the deintegrate length is less than 2000 counts. Those extra counts on deintegrate phase are assigned to auto-zero phase to keep the conversion cycle constant.

Signal Integrate Phase

1000 counts, a fixed period of time. The time of integration can be calculated as:
$T_{I N T}=1000\left(\frac{1}{f_{\text {CLK }}}\right)=4000\left(\frac{1}{{ }_{\mathrm{f}}^{\mathrm{OSC}}}\right)$

Deintegrate Phase

0 to 2000 counts, variable length phase depending on the input voltage.

Zero Integrate Phase

10 counts in case of normal conversion. 900 counts in case an overrange is detected.

Functional Considerations of Device Pins

COMMON Pin

The COMMON pin is the device internal reference generator output.

The COMMON pin sets a voltage that is about 2.8 V less than the V_{+}supply rail. This voltage ($\mathrm{V}_{+}-\mathrm{V}_{\text {сомmon }}$) is the on-chip reference which can be used for setting converter reference voltage.

Within the IC, the COMMON pin is tied to an N-channel transistor capable of sinking up to 3 mA of current and still keeping COMMON voltage within the range. However, there is only $1 \mu \mathrm{~A}$ of source current capability. The COMMON pin can be used as a virtual ground in single supply applications when the external analog signals need a reference point in between the supply rails. If higher sink and source current capability is needed for virtual ground a unity gain op-amp can be used as a buffer.

Differential Inputs (IN LO, IN HI)

The input can accept differential voltages anywhere within the common mode range of the input amplifier, or specifically from 1.0 volts below the positive supply to 1.0 volt above the negative supply. In this range, the system has a CMRR of 120dB (typical). However, care must be exercised to assure the integrator output does not saturate. This is illustrated in Figure 8, which shows how common mode voltage affects maximum swing on the integrator output. Figure 8 shows the circuit configuration during conversion. In this figure, common mode voltage is considered as a voltage on the IN LO pin referenced to ($\mathrm{V}_{+}-\mathrm{V}_{-}$)/2, which is usually the GND in a dual supply system.

A worst case condition would be a large positive commonmode voltage with a near full scale negative differential input voltage. The negative input signal drives the integrator positive when most of its swing has been used up by the positive common mode voltage. For these critical applications the integrator output swing can be reduced to less than the recommended 2 V full scale swing with little loss of accuracy. The integrator output can swing to within 0.3 volts of either supply without loss of linearity.

INTEGRATOR OUTPUT WITH IN LO TOO CLOSE TO POSITIVE SUPPLY RAIL (NEGATIVE INPUT)
FIGURE 8. COMMON MODE VOLTAGE CONSIDERATION
Differential Reference (REF HI, REF LO) and Reference Capacitor Pins ($\mathrm{C}_{\text {REF }}{ }^{+}, \mathrm{C}_{\text {REF }}{ }^{-}$).
As was discussed in the analog section (Figure 5), the differential reference pins are connected across the reference capacitor (connected to pins $\mathrm{C}_{\text {REF }}{ }^{+}$and $\mathrm{C}_{\text {REF }}{ }^{-}$) to charge it during the zero integrate and the auto-zero phase. Then the reference capacitor is used as either a positive or negative reference during the deintegrate phase. The reference capacitor acts as a flying capacitor between the reference voltage and integrator inputs in the deintegrate phase.
The common mode voltage range for the reference inputs is $\mathrm{V}+$ to V -. The reference voltage can be generated anywhere within the power supply range of the converter. The main source of rollover error is reference common mode voltage caused by the reference capacitor losing or gaining charge to or from stray capacitance on its nodes. If there is a large common mode voltage, the reference capacitor can gain charge (increase voltage) when called upon to deintegrate a positive signal but lose charge (decrease voltage) when called up to deintegrate a negative input signal. This change
in reference for positive or negative input voltage will give a rollover error. However, by selecting the reference capacitor such that it is large enough in comparison to the stray capacitances, this error can be held to less than 0.5 counts worst case. See the "Component Value Selection" section for autozero capacitor value.

TEST Pin

The TEST pin serves two functions. It is coupled to the internally generated digital ground through an effective 500Ω resistor. Thus, it can be used as the digital ground for external digital circuits such as segment drivers for decimal points or any other annunciator the user may want to include on the LCD display. For these applications the external digital circuit should be supplied between V_{+}and TEST pin. Figures 9 and 10 show such an application. In Figure 9 a MOSFET transistor is used to invert the BP signal to drive the decimal point. The MOSFET can be any general purpose type with a threshold voltage less than 3.5 V and ON resistance less than 500Ω Figure 10 uses an CMOS IC XOR gate to generate controllable decimal point drives. No more than a 1 mA load should be applied to TEST pin by any external digital circuitry.

FIGURE 9. SIMPLE INVERTER FOR FIXED DECIMAL POINT DRIVE

FIGURE 10. EXCLUSIVE "OR" GATE FOR DECIMAL POINTS AND ANNUNCIATORS DRIVE

The second function of the TEST pin is the "lamp test". When the TEST pin is pulled high (to $V+$) all segments will be turned on and the display should read -1888. The test pin will sink about 10 mA under these conditions.
CAUTION: In the lamp test mode, the segments have a constant DC voltage (no square-wave). This may burn the LCD display if maintained for extended periods.

Component Selection

Integrating resistors and capacitors ($\mathrm{R}_{\mathrm{INT},} \mathrm{C}_{\mathrm{INT}}$): A guideline to achieving the best performance from an integrating A/D converter is to try to reduce the value of $\mathrm{R}_{\mathbb{I N T}}$, increase the value of $\mathrm{C}_{\text {INT }}$, while having the highest possible voltage swing at the output of the integrator. This will reduce the sensitivity of the circuit to noise and leakage currents. In addition to these guidelines the circuit limitations should also be considered.

To determine $\mathrm{R}_{\mathrm{INT}}$, the imposed circuit limitation is the maximum output drive current of the buffer amplifier (see Figure 5) while maintaining its linearity. This current for the buffer amplifier is about $1 \mu \mathrm{~A}$. The $\mathrm{R}_{\mathbb{I N T}}$ resistor can be calculated from the expression:
$R_{I N T}=\frac{V_{I N} \text { (Full Scale) }}{1 \mu A}$

The standard optimum values for $\mathrm{R}_{\text {INT }}$ are $180 \mathrm{k} \Omega$ for 200 mV full scale and $1.8 \mathrm{M} \Omega$ for 2 V full scale. Type of resistor and its absolute value is not critical to the accuracy of conversion, as was discussed previously.

The integrating capacitor should be selected to yield the maximum allowable voltage range to the integrator output (INT pin). The maximum allowable range does not saturate the integrator output. The integrator output can swing up or down to 0.3 V from either supply rail and still maintain its linearity.

A nominal $\pm 2 \mathrm{~V}$ maximum range is optimum. The maximum range values are selected in order to leave enough room for all the component and circuit tolerances and for a reasonable common mode voltage range. The $\mathrm{C}_{\mathrm{INT}}$ value can now be calculated as:
$C_{\text {INT }}=\frac{T_{\text {INT }}{ }^{1} \text { INT }}{V_{\text {INTMAX }}}$

Where $\mathrm{T}_{\text {INT }}$ depends on clock frequency and was discussed before and $\mathrm{I}_{\mathbb{N} T}$ is expressed as:
$I_{I N T}=\frac{V_{I N}(\text { Full Scale })}{R_{I N T}}$

For 48 kHz nominal oscillator frequency (12 kHz clock internal frequency), $\mathrm{R}_{\mathrm{INT}}$ equals $180 \mathrm{k} \Omega$ for $1.8 \mathrm{M} \Omega$ for the above mentioned swing, the optimum value for $\mathrm{C}_{\mathrm{INT}}$ is $0.047 \mu \mathrm{~F}$.

An additional requirement of the integrating capacitor is to choose low dielectric absorption. This will minimize the converter's rollover, linearity and gain error. Furthermore, the integrating capacitor should also have low leakage current. Different types of capacitors are adequate for this application; polypropylene capacitors provide undetectable errors at reasonable cost and size. The absolute value of $\mathrm{C}_{\text {INT }}$ does not have any effect on accuracy.

Auto-Zero Capacitor ($\mathrm{C}_{\text {AZ }}$)

The value of the auto-zero capacitor has some influence on the noise of the converter. A larger value C_{Az} has less sensitivity to noise. For 200 mV full scale (resolution of $100 \mu \mathrm{~V}$), where noise is important, a $0.47 \mu \mathrm{~F}$ or greater is recommended. On the 2 V full scale, (resolution of 1 mV), a $0.047 \mu \mathrm{~F}$ capacitor is adequate for low noise.

The auto-zero capacitor should be a low leakage type to hold the voltage during conversion cycle. A mylar or polypropylene capacitor is recommended for C_{AZ}.

Reference Capacitor (CREF)

As discussed earlier, the input to the integrator during the deintegrate phase is the voltage at the reference capacitor. The sources of error related to the reference capacitor are stray capacitances at the C CREF terminals, and the leakage currents. Where a large common mode voltage exists for $V_{\text {REF }}$ the stray capacitances increase the rollover error by absorbing or pumping charge onto $\mathrm{C}_{\text {REF }}$ when positive or negative inputs are measured. Leakage of the capacitor itself or leakages through circuit boards will drop the voltage across $\mathrm{C}_{\text {REF }}$ and cause gain and rollover errors. The circuit boards should be designed to minimize stray capacitances and should be well cleaned to reduce leakage currents.

A $0.1 \mu \mathrm{~F}$ capacitor for $\mathrm{C}_{\mathrm{REF}}$ should work properly for most applications. When common mode voltage exists or at higher temperatures (where device leakage currents increase) a $1.0 \mu \mathrm{~F}$ reference capacitor is recommended to reduce errors. The $\mathrm{C}_{\text {REF }}$ capacitor can be any low leakage type, a mylar capacitor is adequate.

Those applications which have variable reference voltage should also use a low dielectric absorption capacitor such as polypropylene, for example, a ratiometric measurement of resistance.

Oscillator Components

When an RC type of oscillator is desired, the oscillator frequency is approximately expressed by:
OSC $=\frac{0.45}{R C}$
(R in Ohms and C in Farads), where $R>50 \mathrm{k} \Omega$ and $C>50 \mathrm{pF}$. For 40 kHz frequency which gives 2.5 readings per second, use 100 k and 100 pF or use $180 \mathrm{k} \Omega$ and 50 pF for lower power loss.

There is a typical variation of about 5% between oscillator frequencies of different parts. The oscillator frequency will decrease 1% for each $+25^{\circ} \mathrm{C}$ rise. For those applications in which normal mode rejection of 60 Hz or 50 Hz line frequency is critical, a crystal or a precision external oscillator should be used.

Reference Voltage Selection

For a full scale reading the input signal is required to be twice the reference voltage. To be more precise, the full scale reading (± 1999) takes place when the input is 1.999 times the $V_{\text {REF }} . V_{\text {REF }}$ is the potential difference between REF HI and REF LO inputs. Thus, for the nominal 200 mV and 2 V ranges, $\mathrm{V}_{\text {REF }}$ should be 100 mV and 1 V respectively.

In many applications where the ADD is connected to a transducer, there will exist a scale factor other than unity between the input voltage and the digital reading. For instance, in a weighing system, the designer might like to have a full scale reading when the voltage from the transducer is 0.682 V . Instead of dividing the input down to 200.0 mV , the designer should use the input voltage directly and adjust the $\mathrm{V}_{\text {REF }}$ for 0.341 V . Suitable values for integrating resistor and capacitor would be $620 \mathrm{k} \Omega$ and $0.047 \mu \mathrm{~F}$. This makes the system slightly quieter and also avoids a divider network on the input.

The on-chip voltage reference ($\mathrm{V}_{+}-\mathrm{V}_{\text {COMMON }}$) is normally used to provide the converter reference voltage. However, some applications may desire to use an external reference generator. Various possible schemes exist for reference voltage settings. Figure 11 shows the normal way of using onchip reference and also a way of using external reference. The value of resistors on both circuit depends on the converter input voltage range. Refer to "Typical Applications" section for various schemes.

Typical Applications

The HI7131 and HI7133 AND Converters may be used in a wide variety of configurations. The following application circuits show some of the possibilities, and serves to illustrate the exceptional versatility of these devices.

The following application notes contain very useful information on understanding and applying these parts and are available from Harris Semiconductor.

A016

Selecting ADD Converters
A017
The Integrating AD Converter

A018

Do's and Don'ts of Applying ADD Converters

A032

Understanding the Auto-Zero and Common Mode Performance of the ICL7106/7/9 Family

A052
Tips for Using Single-Chip $31 / 2$ Digit A/D Converters

FIGURE 11. HI7131 TYPICAL REFERENCE CIRCUITS

Typical Applications

Values shown are for 200 mV full-scale, 3 readings/sec., floating supply voltage (9 V battery).

FIGURE 12. HI7131 AND HI7133 USING THE INTERNAL REFERENCE

For 1 reading/sec., change $C_{\mathrm{C}_{\mathrm{N}}}, R_{\text {OSC }}$ to values of Figure 12.

FIGURE 14. RECOMMENDED COMPONENT VALUES FOR 2.000V FULL-SCALE, 3 READINGS PER SEC

IN LO is tied to supply GND establishing the correct common-mode voltage. COMMON acts as a pre-regulator for the reference. Values shown are for 1 reading/sec.

FIGURE 13. HI7131 AND HI7133 WITH AN EXTERNAL BANDGAP REFERENCE (1.2V TYPE)

An external reference must be used in this application, since the voltage between $\mathrm{V}+$ and V - is insufficient for correct operation of the internal reference. COMMON holds the IN LO almost at the middle of the supply, $\approx 2.7 \mathrm{~V}$.
FIGURE 15. HI7131 AND HI7133 OPERATED FROM SINGLE+5V SUPPLY

Typical Applications (Continued)

The resistor values within the bridge are determined by the desired sensitivity.

FIGURE 16A. HI7131 AND HI7133 MEASURING RATIOMETRIC VALUES OF QUAD LOAD CELL

FIGURE 16B. CIRCUIT FOR DEVELOPING UNDERRANGE AND OVERRANGE SIGNALS FROM HI7133 OUTPUTS

Typical Applications (Continued)

A silicon diode-connected transistor has a temperature coefficient of about $-2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$. Calibration is achieved by placing the sensing transistor in ice water and adjusting the zeroing potentiometer for a 000.0 reading. The sensor should then be placed in boiling water and the scale-factor potentiometer adjusted for a 100.0 reading. See AD590 data sheets for alternative circuits.

FIGURE 17A. HI7131 AND HI7133 USED AS A DIGITAL CENTIGRADE THERMOMETER

FIGURE 17B. AC TO DC CONVERTER AND HI7133 FOR RMS DISPLAY FIGURE 17.

Typical Applications (Continued)

Test is used as a common-mode reference level to ensure compatibility with most op amps.
FIGURE 18. AC TO DC CONVERTER WITH HI7131 AND HI7133

FIGURE 19. CIRCUIT FOR DEVELOPING UNDERRANGE AND OVERRANGE SIGNALS FROM HI7131 OUTPUTS

Die Characteristics

DIE DIMENSIONS:
127×149 Mils
METALLIZATION:
Type: AI
Thickness: $10 \mathrm{k} \AA \pm 1 \mathrm{k} \AA$
GLASSIVATION:
Type: PSG Nitride
Thickness: $15 \mathrm{k} \AA \pm 3 \mathrm{k} \AA$
WORST CASE CURRENT DENSITY:
$9.1 \times 10^{4} \mathrm{Alcm}^{2}$

Metallization Mask Layout

HI7131, HI7133

ICL7106, ICL7107

3½ Digit LCD/LED Display A/D Converter

Features

- Guaranteed Zero Reading for OV Input on All Scales
- True Polarity at Zero for Precise Null Detection
- 1pA Typical Input Current
- True Differential Input and Reference, Direct Display Drive
- LCD ICL7106
- LED ICL7107
- Low Noise - Less Than $15 \mu \mathrm{Vp}$-p
- On Chip Clock and Reference
- Low Power Dissipation - Typically Less Than 10mW
- No Additional Active Circults Required
- New Small Outline Surface Mount Package Available

Ordering Information

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ICL7106CPL	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	40 Lead Plastic DIP
ICL7106RCPL	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	40 Lead Plastic DIP (Note 1)
ICL7106CM44	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	44 Lead Metric Plastic Quad Flatpack
ICL7107CPL	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	40 Lead Plastic DIP
ICL7107RCPL	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	40 Lead Plastic DIP (Note 1)
ICL7107CM44	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	44 Lead Metric Plastic Quad Flatpack

Description

The Harris ICL7106 and ICL7107 are high performance, low power $3 \frac{1}{2}$ digit A/D converters. Included are seven segment decoders, display drivers, a reference, and a clock. The ICL7106 is designed to interface with a liquid crystal display (LCD) and includes a multiplexed backplane drive; the ICL7107 will directly drive an instrument size light emitting diode (LED) display.

The ICL7106 and ICL7107 bring together a combination of high accuracy, versatility, and true economy. It features auto-zero to less than $10 \mu \mathrm{~V}$, zero drift of less than $1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$, input bias current of 10 pA max., and rollover error of less than one count. True differential inputs and reference are useful in all systems, but give the designer an uncommon advantage when measuring load cells, strain gauges and other bridge type transducers. Finally, the true economy of single power supply operation (ICL7106), enables a high performance panel meter to be built with the addition of only 10 passive components and a display.

NOTE: 1. " R " indicates device with reversed leads.

Pinouts

Absolute Maximum Ratings

Supply Voltage
ICL7106, V+ to V- .
ICL7107, $\mathrm{V}+$ to GND
ICL7107, V- to GND
Analog Input Voltage (Either Input) (Note 1) V+ to V-
Reference Input Voltage (Either Input) $\mathrm{V}+$ to V -
Clock Input
ICL7106
TEST to V_{+}
ICL7107 GND to V $_{+}$

Thermal Information

Thermal Resistance (MAX, See Note 1) $\theta_{\text {JA }}$ 40 Pin Plastic Package . $50^{\circ} \mathrm{C} / \mathrm{N}$
44 Pin MQFP Package $80^{\circ} \mathrm{CW}$
Maximum Power Dissipation
ICL7106. . 1.0 W

ICL7107
1.2W

Operating Temperature Range $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range. $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering 10s Max) $+265^{\circ} \mathrm{C}$
Junction Temperature . $+150^{\circ} \mathrm{C}$

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Electrical Specifications (Note 3)

PARAMETERS	TEST CONDITIONS	MIN	TYP	MAX	UNIT
SYSTEM PERFORMANCE					
Zero Input Reading	$\mathrm{V}_{\mathrm{IN}}=0.0 \mathrm{~V}$, Full-Scale $=200 \mathrm{mV}$	-000.0	± 000.0	$+000.0$	Digital Reading
Ratiometric Reading	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {REF }}, \mathrm{V}_{\text {REF }}=100 \mathrm{mV}$	999	$\begin{aligned} & 999 / \\ & 1000 \end{aligned}$	1000	Digital Reading
Rollover Error	$-V_{I N}=+V_{I N} \cong 200 \mathrm{mV}$ Difference in Reading for Equal Positive and Negative Inputs Near Full-Scale	-	± 0.2	± 1	Counts
Linearity	Full-Scale $=200 \mathrm{mV}$ or Full-Scale $=2 \mathrm{~V}$ Maximum Deviation from Best Straight Line Fit (Note 5)	-	± 0.2	± 1	Counts
Common Mode Rejection Ratio	$\mathrm{V}_{\text {CM }}=1 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$, Full-Scale $=200 \mathrm{mV}$ (Note 5)	\bullet	50	-	$\mu \mathrm{V} / \mathrm{N}$
Noise	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$, Full-Scale $=200 \mathrm{mV}$ (Pk-Pk Value Not Exceeded 95\% of Time)	-	15	-	$\mu \mathrm{V}$
Leakage Current Input	$\mathrm{V}_{\mathrm{IN}}=0$ (Note 5)	-	1	10	pA
Zero Reading Drift	$\mathrm{V}_{\text {IN }}=0,0^{\circ}<\mathrm{T}_{\mathrm{A}}<+70^{\circ} \mathrm{C}$ (Note 5)	-	0.2	1	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Scale Factor Temperature Coefficient	$\mathrm{V}_{\text {IN }}=199 \mathrm{mV}, 0^{\circ}<\mathrm{T}_{\mathrm{A}}<+70^{\circ} \mathrm{C}$, (Ext. Ref. Oppm/ ${ }^{\circ} \mathrm{C}$) (Note 5)	-	1	5	ppm ${ }^{\circ} \mathrm{C}$
End Power Supply Character V+ Supply Current	$\mathrm{V}_{\text {IN }}=0$ (Does Not Include LED Current for ICL7107)	-	0.8	1.8	mA
End Power Supply Character V-Supply Current	ICL7107 Only	-	0.6	1.8	mA
COMMON Pin Analog Common Voltage	$25 \mathrm{k} \Omega$ Between Common and Positive Supply (With Respect to + Supply)	2.4	2.8	3.2	V
Temperature Coefficient of Analog Common	$25 \mathrm{k} \Omega$ Between Common and Positive Supply (With Respect to + Supply)	-	80	-	ppm ${ }^{\circ} \mathrm{C}$
DISPLAY DRIVER ICL7106 ONLY					
Pk-Pk Segment Drive Voltage Pk-Pk Backplane Drive Voltage	$\mathrm{V}+=$ to $\mathrm{V}-=9 \mathrm{~V}$, (Note 4)	4	5	6	V

Electrical Specifications (Note 3) (Continued)

PARAMETERS	TEST CONDITIONS	MIN	TYP	MAX	UNIT
ICL7107 ONLY	$V+=5 \mathrm{~V}$, Segment Voltage $=3 \mathrm{~V}$				
Segment Sinking Current (Except Pin 19 and 20)		5	8	-	mA
Pin 19 Only		10	16	-	mA
Pin 20 Only		4	7	-	mA

NOTES:

1. Input voltages may exceed the supply voltages provided the input current is limited to $\pm 100 \mu \mathrm{~A}$.
2. Dissipation rating assumes device is mounted with all leads soldered to printed circuit board.
3. Unless otherwise noted, specifications apply to both the ICL7106 and ICL7107 at $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{f}_{\mathrm{CLOCK}}=48 \mathrm{kHz}$. ICL7106 is tested in the circuit of Figure 1. ICL7107 is tested in the circuit of Figure 2.
4. Back plane drive is in phase with segment drive for 'off' segment, 180° out of phase for 'on' segment. Frequency is 20 times conversion rate. Average DC component is less than 50 mV .
5. Not tested, guaranteed by design.

Typical Applications and Test Circuits

$C_{1}=0.1 \mu \mathrm{~F}$
$C_{2}=0.47 \mu \mathrm{~F}$
$\mathrm{C}_{3}=0.22 \mu \mathrm{~F}$
$\mathrm{C}_{4}=100 \mathrm{pF}$
$\mathrm{C}_{5}=0.02 \mu \mathrm{~F}$
$R_{1}=24 \mathrm{k} \Omega$
$\mathrm{R}_{2}=47 \mathrm{k} \Omega$
$R_{3}=100 \mathrm{k} \Omega$
$R_{4}=1 \mathrm{k} \Omega$
$R_{5}=1 \mathrm{M} \Omega$

FIGURE 1. ICL7106 TEST CIRCUIT AND TYPICAL APPLICATION WITH LCD DISPLAY COMPONENTS SELECTED FOR 200mV FULL. SCALE

FIGURE 2. ICL7107 TEST CIRCUIT AND TYPICAL APPLICATION WITH LED DISPLAY COMPONENTS SELECTED FOR 200mV FUL. SCALE

Design Information Summary Sheet

- OSCILLATOR FREQUENCY
$\mathrm{f}_{\mathrm{OSC}}=0.45 / \mathrm{RC}$
$\mathrm{C}_{\mathrm{OSC}}>50 \mathrm{pF} ; \mathrm{R}_{\mathrm{OSC}}>50 \mathrm{~K} \Omega$
fosc Typ. $=48 \mathrm{KHz}$
- OSCILLATOR PERIOD
$t_{\text {OSC }}=$ RC/0.45
- INTEGRATION CLOCK FREQUENCY
$f_{\text {CLOCK }}=f_{\text {OSO }} / 4$
- INTEGRATION PERIOD
$\mathrm{t}_{\mathrm{NT}}=1000 \times\left(4 / \mathrm{f}_{\mathrm{OSC}}\right)$
- 60/50Hz REJECTION CRITERION
$\mathrm{t}_{\mathrm{INT}} / \mathrm{t}_{60 \mathrm{~Hz}}$ or $\mathrm{t}_{\mathrm{INT}} / \mathrm{t}_{60 \mathrm{~Hz}}=$ Integer
- OPTIMUM INTEGRATION CURRENT
$\mathrm{I}_{\mathrm{INT}}=4.0 \mu \mathrm{~A}$
- FULL-SCALE ANALOG INPUT VOLTAGE
$V_{\text {INFS }}$ Typically $=200 \mathrm{mV}$ or 2.0 V
- INTEGRATE RESISTOR

$$
R_{I N T}=\frac{V_{I N F S}}{I_{I N T}}
$$

- INTEGRATE CAPACITOR

$$
c_{I N T}=\frac{\left(t_{I N T}\right)\left(I_{I N T}\right)}{v_{I N T}}
$$

- INTEGRATOR OUTPUT VOLTAGE SWING

$$
v_{I N T}=\frac{\left(t_{I N T}\right)\left({ }^{(} \mathrm{INT}^{\prime}\right)}{C_{I N T}}
$$

- VINT MAXIMUM SWING:

$$
\left(\mathrm{V}_{-}+0.5 \mathrm{~V}\right)<\mathrm{V}_{I N T}<(\mathrm{V}+-0.5 \mathrm{~V}), \mathrm{V}_{I N T} \text { typically }=2.0 \mathrm{~V}
$$

- DISPLAY COUNT

COUNT $=1000 \times \frac{V_{\text {IN }}}{V_{\text {REF }}}$

- CONVERSION CYCLE $t_{\text {CYC }}=t_{\text {CLOCK }} \times 4000$
$t_{\text {CYC }}=t_{\text {OSC }} \times 16,000$
when $\mathrm{f}_{\mathrm{OSC}}=48 \mathrm{KHz}$; $\mathrm{t}_{\mathrm{CYC}}=333 \mathrm{~ms}$
- COMMON MODE INPUT VOLTAGE
$(\mathrm{V}-+1.0 \mathrm{~V})<\mathrm{V}_{\mathbb{N}}<\left(\mathrm{V}_{+}-0.5 \mathrm{~V}\right)$
- AUTO-ZERO CAPACITOR $0.01 \mu \mathrm{~F}<\mathrm{C}_{A Z}<1.0 \mu \mathrm{~F}$
- REFERENCE CAPACITOR
$0.1 \mu \mathrm{~F}<\mathrm{C}_{\text {REF }}<1.0 \mu \mathrm{~F}$
- $V_{\text {com }}$

Biased between Vi and V-.

- $\mathrm{V}_{\text {COM }} \cong \mathrm{V}_{+-2.8} \mathrm{~V}$

Regulation lost when $\mathrm{V}+$ to V - $<\cong 6.8 \mathrm{~V}$.
If $\mathrm{V}_{\mathrm{COM}}$ is externally pulled down to $(\mathrm{V}+$ to $\mathrm{V}-) / 2$, the $\mathrm{V}_{\mathrm{COM}}$ circuit will turn off.

- ICL7106 POWER SUPPLY: SINGLE 9V $V_{+}-\mathrm{V}-=9 \mathrm{~V}$
Digital supply is generated internally
$\mathrm{V}_{\mathrm{GND}} \cong \mathrm{V}+-4.5 \mathrm{~V}$
- ICL7106 DISPLAY: LCD Type: Direct drive with digital logic supply amplitude.
- ICL7107 POWER SUPPLY: DUAL $\pm 5.0 \mathrm{~V}$
$\mathrm{V}+=+5.0 \mathrm{~V}$ to GND
$\mathrm{V}-=-5.0 \mathrm{~V}$ to GND
Digital Logic and LED driver supply $\mathrm{V}+$ to GND
- ICL7107 DISPLAY: LED

Type: Non-Multiplexed Common Anode

Typical Integrator Amplifier Output Waveform (INT Pin)

Detailed Description

Analog Section

Figure 3 shows the Analog Section for the ICL7106 and ICL7107. Each measurement cycle is divided into three phases. They are (1) auto-zero (A-Z), (2) signal integrate (INT) and (3) de-integrate (DE).

Auto-Zero Phase

During auto-zero three things happen. First, input high and low are disconnected from the pins and internally shorted to analog COMMON. Second, the reference capacitor is charged to the reference voltage. Third, a feedback loop is closed around the system to charge the auto-zero capacitor $\mathrm{C}_{A Z}$ to compensate for offset voltages in the buffer amplifier, integrator, and comparator. Since the comparator is included in the loop, the A-Z accuracy is limited only by the noise of the system. In any case, the offset referred to the input is less than $10 \mu \mathrm{~V}$.

Signal Integrate Phase

During signal integrate, the auto-zero loop is opened, the internal short is removed, and the internal input high and low are connected to the external pins. The converter then integrates the differential voltage between IN HI and IN LO for a fixed time. This differential voltage can be within a wide common mode range: up to IV from either supply. If, on the other hand, the input signal has no return with respect to the converter power supply, IN LO can be tied to analog COMMON to establish the correct common mode voltage. At the end of this phase, the polarity of the integrated signal is determined.

De-Integrate Phase

The final phase is de-integrate, or reference integrate. Input low is internally connected to analog COMMON and input high is connected across the previously charged reference capacitor. Circuitry within the chip ensures that the capacitor will be connected with the correct polarity to cause the integrator output to return to zero. The time required for the output to return to zero is proportional to the input signal. Specifically the digital reading displayed is:

$$
\text { DISPLAY COUNT }=1000\left(\frac{V_{I N}}{V_{R E F}}\right)
$$

Differential Input

The input can accept differential voltages anywhere within the common mode range of the input amplifier, or specifically from 0.5 V below the positive supply to 1.0 V above the negative supply. In this range, the system has a CMRR of 86 dB typical. However, care must be exercised to assure the integrator output does not saturate. A worst case condition would be a large positive common mode voltage with a near full-scale negative differential input voltage. The negative input signal drives the integrator positive when most of its swing has been used up by the positive common mode voltage. For these critical applications the integrator output swing can be reduced to less than the recommended 2V fullscale swing with little loss of accuracy. The integrator output can swing to within 0.3 V of either supply without loss of linearity.

FIGURE 3. ANALOG SECTION OF ICL7106 AND ICL7107

Differential Reference

The reference voltage can be generated anywhere within the power supply voltage of the converter. The main source of common mode error is a roll-over voltage caused by the reference capacitor losing or gaining charge to stray capacity on its nodes. If there is a large common mode voltage, the reference capacitor can gain charge (increase voltage) when called up to de-integrate a positive signal but lose charge (decrease voltage) when called up to de-integrate a negative input signal. This difference in reference for positive or negative input voltage will give a roll-over error. However, by selecting the reference capacitor such that it is large enough in comparison to the stray capacitance, this error can be held to less than 0.5 count worst case. (See Component Value Selection.)

Analog COMMON

This pin is included primarily to set the common mode voltage for battery operation (ICL7106) or for any system where the input signals are floating with respect to the power supply. The COMMON pin sets a voltage that is approximately 2.8 V more negative than the positive supply. This is selected to give a minimum end-of-life battery voltage of about 6V. However, analog COMMON has some of the attributes of a reference voltage. When the total supply voltage is large enough to cause the zener to regulate ($>7 \mathrm{~V}$), the COMMON voltage will have a low voltage coefficient $(0.001 \% N)$, low output impedance ($\cong 15 \Omega$), and a temperature coefficient typically less than $80 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.
The limitations of the on chip reference should also be recognized, however. With the ICL7107, the internal heating which results from the LED drivers can cause some degradation in performance. Due to their higher thermal resistance, plastic parts are poorer in this respect than ceramic. The combination of reference Temperature Coefficient (TC), internal chip dissipation, and package thermal resistance can increase noise near full-scale from $25 \mu \mathrm{~V}$ to $80 \mu \mathrm{Vp}$-p. Also the linearity in going from a high dissipation count such as 1000 (20 segments on) to a low dissipation count such as 1111(8 segments on) can suffer by a count or more. Devices with a positive TC reference may require several counts to pull out of an over-range condition. This is because over-range is a low dissipation mode, with the three least significant digits blanked. Similarly, units with a negative TC may cycle between over-range and a non-overrange count as the die alternately heats and cools. All these problems are of course eliminated if an external reference is used.
The ICL7106, with its negligible dissipation, suffers from none of these problems. In either case, an external reference can easily be added, as shown in Figure 4.

Analog COMMON is also used as the input low return during auto-zero and de-integrate. If IN LO is different from analog COMMON, a common mode voltage exists in the system and is taken care of by the excellent CMRR of the converter. However, in some applications IN LO will be set at a fixed known voltage (power supply common for instance). In this application, analog COMMON should be tied to the same point, thus removing the common mode voltage from the
converter. The same holds true for the reference voltage. If reference can be conveniently tied to analog COMMON, it should be since this removes the common mode voltage from the reference system.
Within the IC, analog COMMON is tied to an N channel FET that can sink approximately 30 mA of current to hold the voltage 2.8 V below the positive supply (when a load is trying to pull the common line positive). However, there is only $10 \mu \mathrm{~A}$ of source current, so COMMON may easily be tied to a more negative voltage thus overriding the internal reference.

FIGURE 4B.
FIGURE 4. USING AN EXTERNAL REFERENCE

TEST

The TEST pin serves two functions. On the ICL7106 it is coupled to the internally generated digital supply through a 500Ω resistor. Thus it can be used as the negative supply for externally generated segment drivers such as decimal points or any other presentation the user may want to include on the LCD display. Figures 5 and 6 show such an application. No more than a 1 mA load should be applied.

FIGURE 5. SIMPLE INVERTER FOR FIXED DECIMAL POINT

The second function is a "lamp test". When TEST is pulled high (to $\mathrm{V}+$) all segments will be turned on and the display should read "1888". The TEST pin will sink about 15 mA under these conditions.

CAUTION: In the lamp test mode, the segments have a constant DC voltage (no square-wave). This may burn the LCD display if maintained for extended periods.

FIGURE 6. EXCLUSIVE 'OR’ GATE FOR DECIMAL POINT DRIVE

Digital Section

Figures 7 and 8 show the digital section for the ICL7106 and ICL7107, respectively. In the ICL7106, an internal digital ground is generated from a 6V Zener diode and a large Pchannel source follower. This supply is made stiff to absorb the relative large capacitive currents when the back plane (BP) voltage is switched. The BP frequency is the clock frequency divided by 800 . For three readings/second this is a 60 Hz square wave with a nominal amplitude of 5 V . The segments are driven at the same frequency and amplitude and are in phase with BP when OFF, but out of phase when ON. In all cases negligible DC voltage exists across the segments.

Figure 8 is the Digital Section of the ICL7107. It is identical to the ICL7106 except that the regulated supply and back plane drive have been eliminated and the segment drive has been increased from 2 mA to 8 mA , typical for instrument size common anode LED displays. Since the 1000 output (pin 19) must sink current from two LED segments, it has twice the drive capability or 16 mA .
In both devices, the polarity indication is "on" for negative analog inputs. If IN LO and IN HI are reversed, this indication can be reversed also, if desired.

FIGURE 7. ICL7106 DIGITAL SECTION

FIGURE 8. ICL7107 DIGITAL SECTION

System Timing

Figure 9 shows the clocking arrangement used in the ICL7106 and ICL7107. Two basic clocking arrangements can be used:

1. An external oscillator connected to pin 40.
2. An R-C oscillator using all three pins.

The oscillator frequency is divided by four before it clocks the decade counters. It is then further divided to form the three convert-cycle phases. These are signal integrate (1000 counts), reference de-integrate (0 to 2000 counts) and autozero (1000 to 3000 counts). For signals less than full-scale, auto-zero gets the unused portion of reference de-integrate. This makes a complete measure cycle of 4,000 counts (16,000 clock pulses) independent of input voltage. For three readings/second, an oscillator frequency of 48 kHz would be used.

To achieve maximum rejection of 60 Hz pickup, the signal integrate cycle should be a multiple of 60 Hz . Oscillator frequencies of $240 \mathrm{kHz}, 120 \mathrm{kHz}, 80 \mathrm{kHz}, 60 \mathrm{kHz}, 48 \mathrm{kHz}$, $40 \mathrm{kHz}, 331 / 3 \mathrm{kHz}$, etc. should be selected. For 50 Hz rejection, Oscillator frequencies of $200 \mathrm{kHz}, 100 \mathrm{kHz}, 66^{2} / 3 \mathrm{kHz}$, $50 \mathrm{kHz}, 40 \mathrm{kHz}$, etc. would be suitable. Note that 40 kHz (2.5 readings/second) will reject both 50 Hz and 60 Hz (also 400 Hz and 440 Hz).

FIGURE 9. CLOCK CIRCUITS

Component Value Selection

Integrating Resistor

Both the buffer amplifier and the integrator have a class A output stage with $100 \mu \mathrm{~A}$ of quiescent current. They can supply $4 \mu \mathrm{~A}$ of drive current with negligible nonlinearity. The integrating resistor should be large enough to remain in this very linear region over the input voltage range, but small enough that undue leakage requirements are not placed on the PC board. For 2V full-scale, $470 \mathrm{k} \Omega$ is near optimum and similarly a $47 \mathrm{k} \Omega$ for a 200 mV scale.

Integrating Capacitor

The integrating capacitor should be selected to give the maximum voltage swing that ensures tolerance buildup will not saturate the integrator swing (approximately. 0.3 V from either supply). In the ICL7106 or the ICL7107, when the analog COMMON is used as a reference, a nominal +2 V fullscale integrator swing is fine. For the ICL7107 with +5 V supplies and analog COMMON tied to supply ground, a $\pm 3.5 \mathrm{~V}$ to +4 V swing is nominal. For three readings/second (48 kHz clock) nominal values for $\mathrm{C}_{\mathrm{INT}}$ are $0.22 \mu \mathrm{~F}$ and $0.10 \mu \mathrm{~F}$, respectively. Of course, if different oscillator frequencies are used, these values should be changed in inverse proportion to maintain the same output swing.

An additional requirement of the integrating capacitor is that it must have a low dielectric absorption to prevent roll-over errors. While other types of capacitors are adequate for this application, polypropylene capacitors give undetectable errors at reasonable cost.

Auto-Zero Capacitor

The size of the auto-zero capacitor has some influence on the noise of the system. For 200 mV full-scale where noise is very important, a $0.47 \mu \mathrm{~F}$ capacitor is recommended. On the 2 V scale, a $0.047 \mu \mathrm{~F}$ capacitor increases the speed of recovery from overload and is adequate for noise on this scale.

Reference Capacitor

A $0.1 \mu \mathrm{~F}$ capacitor gives good results in most applications. However, where a large common mode voltage exists (i.e. the REF LO pin is not at analog COMMON) and a 200 mV scale is used, a larger value is required to prevent roll-over error. Generally $1.0 \mu \mathrm{~F}$ will hold the roll-over error to 0.5 count in this instance.

Oscillator Components

For all ranges of frequency a $100 \mathrm{k} \Omega$ resistor is recommended and the capacitor is selected from the equation $f=\frac{0.45}{R C}$ For 48 kHz Clock (3 Readings/second),
$C=100 \mathrm{pF}$

Reference Voltage

The analog input required to generate full-scale output (2000 counts) is: $\mathrm{V}_{\mathbb{N}}=2 \mathrm{~V}_{\text {REF }}$. Thus, for the 200 mV and 2 V scale, $V_{\text {REF }}$ should equal 100 mV and 1 V , respectively. However, in many applications where the ADD is connected to a transducer, there will exist a scale factor other than unity between the input voltage and the digital reading. For instance, in a weighing system, the designer might like to have a full-scale reading when the voltage from the transducer is 0.662 V . Instead of dividing the input down to 200 mV , the designer should use the input voltage directly and select $\mathrm{V}_{\text {REF }}=0.341 \mathrm{~V}$. Suitable values for integrating resistor and capacitor would be $120 \mathrm{k} \Omega$ and $0.22 \mu \mathrm{~F}$. This makes the system slightly quieter and also avoids a divider network on the input. The ICL7107 with $\pm 5 \mathrm{~V}$ supplies can accept input signals up to $\pm 4 \mathrm{~V}$. Another advantage of this system occurs when a digital reading of zero is desired for $\mathrm{V}_{\mathbb{I}} \neq 0$. Temperature and weighing systems with a variable fare are examples. This offset reading can be conveniently generated by connecting the voltage transducer between IN HI and COMMON and the variable (or fixed) offset voltage between COMMON and IN LO.

ICL7107 Power Supplies

The ICL7107 is designed to work from $\pm 5 \mathrm{~V}$ supplies. However, if a negative supply is not available, it can be generated from the clock output with 2 diodes, 2 capacitors, and an inexpensive I.C. Figure 10 shows this application. See ICL7660 data sheet for an alternative.

In fact, in selected applications no negative supply is required. The conditions to use a single +5 V supply are:

1. The input signal can be referenced to the center of the common mode range of the converter.
2. The signal is less than $\pm 1.5 \mathrm{~V}$.
3. An external reference is used.

FIGURE 10. GENERATING NEGATIVE SUPPLY FROM +5 V

Typical Applications

The ICL7106 and ICL7107 may be used in a wide variety of configurations. The circuits which follow show some of the possibilities, and serve to illustrate the exceptional versatility of these AD converters.

The following application notes contain very useful information on understanding and applying this part and are available from Harris semiconductor.

Application Notes

A016 "Selecting AVD Converters"
A017 "The Integrating AD Converter"
A018 "Do's and Don'ts of Applying AND Converters"
A023 "Low Cost Digital Panel Meter Designs"
A032 "Understanding the Auto-Zero and Common Mode Performance of the ICL7106/7/9 Family"
A046 "Building a Battery-Operated Auto Ranging DVM with the ICL7106"
A052 "Tips for Using Single Chip 3 ½ Digit ADD Converters"

Typical Applications

Values shown are for 200 mV full-scale, 3 readings/sec., floating supply voltage (9 V battery).

FIGURE 11. ICL7106 USING THE INTERNAL REFERENCE

Values shown are for 200 mV full-scale, 3 readings/sec. IN LO may be tied to either COMMON for inputs floating with respect to supplies, or GND for single ended inputs. (See discussion under Analog COMMON.)

FIGURE 12. ICL7107 USING THE INTERNAL REFERENCE

Typical Applications (Continued)

IN LO is tied to supply COMMON establishing the correct common mode voltage. If COMMON is not shorted to GND, the input voltage may float with respect to the power supply and COMMON acts as a pre-regulator for the reference. If COMMON is shorted to GND, the input is single ended (referred to supply GND) and the pre-regulator is overridden.

FIGURE 13. ICL7107 WITH AN EXTERNAL BAND-GAP REFERENCE (1.2V TYPE)

FIGURE 15. ICL7106 AND ICL7107: RECOMMENDED COMPONENT VALUES FOR 2.0V FULL-SCALE

Since low TC zeners have breakdown voltages $\sim 6.8 \mathrm{~V}$, diode must be plasced across the total supply (10V). As in the case of Figure 14 , IN LO may be tied to either COMMON or GND

FIGURE 14. ICL7107 WITH ZENER DIODE REFERENCE

An external reference must be used in this application, since the voltage between $\mathrm{V}+$ and V - is insufficient for correct operation of the internal reference.

FIGURE 16. ICL7107 OPERATED FROM SINGLE +5V

FIGURE 16. ICL7107 OPERATED FRON SINGLE +5V

Typical Applications (Continued)

The resistor values within the bridge are determined by the desired sensitivity.

FIGURE 17. ICL7107 MEASUREING RATIOMETRIC VALUES OF QUAD LOAD CELL

FIGURE 19. CIRCUIT FOR DEVELOPING UNDERRANGE AND OVERRANGE SIGNAL FROM ICL7106 OUTPUTS

A silicon diode-connected transistor has a temperature coefficient of about $-2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$. Calibration is achieved by placing the sensing transistor in ice water and adjusting the zeroing potentiometer for a 000.0 reading. The sensor should then be placed in boiling water and the scale-factor potentiometer adjusted for a 100.0 reading.

FIGURE 18. ICL. 7106 USED AS A DIGITAL CENTIGRADE THERMOMETER

FIGURE 20. CIRCUIT FOR DEVELOPING UNDERRANGE AND OVERRANGE SIGNALS FROM ICL7107 OUTPUT

Typical Applications (Continued)

Test is used as a common-mode reference level to ensure compatibility with most op amps.
FIGURE 21. AC TO DC CONVERTER WITH ICL7106

FIGURE 22. DISPLAY BUFFERING FOR INCREASED DRIVE CURRENT

3 $1 / 2$ Digit LCD/LED
 Display A/D Converter with Display Hold

Ordering Information

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ICL7116CPL	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	40 Lead Plastic DIP
ICL7116CM44	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	44 Lead Metric Plastic Quad Flatpack
ICL7117CPL	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	40 Lead Plastic DIP

$\begin{array}{c}\text { PART } \\ \text { NUMBER }\end{array}$	$\begin{array}{c}\text { TEMPERATURE } \\ \text { RANGE }\end{array}$	PACKAGE
ICL7116CPL	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	40 Lead Plastic DIP
ICL7116CM44	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	44 Lead Metric Plastic Quad Flatpack
ICL7117CPL	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	40 Lead Plastic DIP

Features

- HOLD Reading Input Allows Indefinite Display Hold
- Guaranteed Zero Reading for OV Input
- True Polarity at Zero for Precise Null Detection
- 1pA Typical Input Current
- Direct Display Drive
- LCD ICL7116
- LED ICL7117
- Low Noise - Less Than $15 \mu \mathrm{Vp}-\mathrm{p}$ (Typ)
- On Chip Clock and Reference
- Low Power Dissipation - Typically Less Than 10 mW
- No Additional Active Circuits Required
- Small Outline Surface Mount Package Available

Description

The Harris ICL7116 and ICL7117 are high performance, low power $3 \frac{1}{2}$ digit ADD converters. Included are seven segment decoders, display drivers, a reference, and a clock. The ICL7116 is designed to interface with a liquid
crystal display (LCD) and includes a multiplexed backclock. The ICL7116 is designed to interface with a liquid
crystal display (LCD) and includes a multiplexed backplane drive. The ICL7117 will directly drive an instrument size, light emitting diode (LED) display.
The ICL7116 and ICL7117 have all of the features of the ICL7106 and ICL7107 with the addition of a HOLD Reading input. With this input, it is possible to make a measurement and retain the value on the display indefinitely. To make room for this feature the reference low input has been connected to Common internally rather than being fully differential. These circuits retain the accuracy, versatility, and true economy of
the ICL7106 and ICL7107. They feature auto-zero to retain the accuracy, versatility, and true economy of
the ICL7106 and ICL7107. They feature auto-zero to less than $10 \mu \mathrm{~V}$, zero drift of less than $1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$, input bias current of 10pA maximum, and roll over error of less than one count. The versatility of true differential input is of particular advantage when measuring load cells, strain gauges and other bridge-type transducers. And finally, the true economy of single power supply operation (ICL7116) enables a high performance panel meter to be built with the addition of only eleven passive components and a display.

Pinouts

Absolute Maximum RatingsSupply Voltage
ICL7116, $\mathrm{V}+$ to V - 15 V
ICL7117, $\mathrm{V}+$ to GND 6V
ICL7117, V- to GND -9V
Analog Input Voltage (Either Input) (Note 1) $\mathrm{V}+$ to V
Reference Input Voltage (Either Input) $\mathrm{V}+$ to V -
Clock Input
ICL7116 TEST to V_{+}
ICL7117 GND to V_{+}

Thermal Information

Thermal Resistance (MAX, See Note 1)	θ_{J}
40 Lead Plastic Package.	$50^{\circ} \mathrm{C} / \mathrm{N}$
	$80^{\circ} \mathrm{CN}$

44 Lead MQFP Package $80^{\circ} \mathrm{CN}$
Maximum Power Dissipation (Note 1)
ICL7116 1.0W
ICL7117 1.2 W
Operating Temperature Range $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering 10s Max) $+300^{\circ} \mathrm{C}$
Junction Temperature $+150^{\circ} \mathrm{C}$

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Electrical Specifications (Notes 2,3) $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{f}_{\text {CLOCK }}=48 \mathrm{kHz}, \mathrm{V}_{\text {REF }}=100 \mathrm{mV}$

PARAMETERS	TEST CONDITIONS	MIN	TYP	MAX	UNITS
SYSTEM PERFORMANCE					
Zero Input Reading	$\mathrm{V}_{\text {IN }}=0.0 \mathrm{~V}$, Full-Scale $=200 \mathrm{mV}$	-000.0	± 000.0	+000.0	Digital Reading
Ratiometric Reading	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {REF }}, \mathrm{V}_{\text {REF }}=100 \mathrm{mV}$	999	$\begin{aligned} & 999 / \\ & 1000 \end{aligned}$	1000	Digital Reading
Rollover Error	$-\mathrm{V}_{\text {IN }}=+\mathrm{V}_{\text {IN }} \cong 195 \mathrm{mV}$ Difference in Reading for Equal Positive and Negative Inputs Near Full-Scale	-	± 0.2	± 1	Counts
Linearity	Full-Scale $=200 \mathrm{mV}$ or Full-Scale $=2 \mathrm{~V}$ Maximum Deviation from Best Straight Line Fit (Note 5)	-	± 0.2	± 1	Counts
Common Mode Rejection Ratio	$\mathrm{V}_{\mathrm{CM}}= \pm 1 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$, Full-Scale $=200 \mathrm{mV}$ (Note 5)	-	50	-	$\mu \mathrm{V} / \mathrm{N}$
Noise	$V_{I N}=O V \text {, Full-Scale }=200 \mathrm{mV}(\text { Pk-Pk Value Not Ex- }$ ceeded 95\% of Time) (Note 5)	-	15	\bullet	$\mu \mathrm{V}$
Leakage Current Input	$\mathrm{V}_{\mathrm{IN}}=0$ (Note 5)	-	1	10	pA
Zero Reading Drift	$\mathrm{V}_{\text {IN }}=0,0^{\circ}<\mathrm{T}_{\mathrm{A}}<+70^{\circ} \mathrm{C}$ (Note 5)	-	0.2	1	$\mu \mathrm{V}{ }^{\circ} \mathrm{C}$
Scale Factor Temperature Coefficient	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=199 \mathrm{mV}, 0^{\circ}<\mathrm{T}_{\mathrm{A}}<+70^{\circ} \mathrm{C}, \\ & \text { (Note 5) } \end{aligned}$	-	1	5	ppm/ ${ }^{\circ} \mathrm{C}$
V+ Supply Current	$\mathrm{V}_{\mathrm{IN}}=0$ (Does Not Include LED Current for ICL7117)	-	0.8	1.8	mA
V-Supply Current	ICL7117 Only	-	0.6	1.8	mA
COMMON Pin Analog Common Voltage	25k Ω Between Common and Positive Supply (With Respect to + Supply)	2.4	2.8	3.2	V
Temperature Coefficient of Analog Common	25k Ω Between Common and Positive Supply (With Respect to + Supply) (Note 5)	-	80	\bullet	ppm/ ${ }^{\circ} \mathrm{C}$
DISPLAY DRIVER ICL7116 ONLY					
Pk-Pk Segment Drive Voltage Pk-Pk Backplane Drive Voltage	$\mathrm{V}+=$ to $\mathrm{V}-=9 \mathrm{~V}$, (Note 4)	4	5	6	V
ICL7117 ONLY					
Segment Sinking Current (Except Pin 19 and 20)	$\mathrm{V}+=5 \mathrm{~V}$, Segment Voltage $=3 \mathrm{~V}$	5	8	-	mA
Pin 19 Only		10	16	-	mA
Pin 20 Only		4	7	-	mA

NOTES:

1. Dissipation rating assumes device is mounted with all leads soldered to printed circuit board.
2. Input voltages may exceed the supply voltages provided the input current is limited to $\pm 100 \mu \mathrm{~A}$.
3. Unless otherwise noted, specifications apply to both the ICL7116 and ICL7117. ICL7116 is tested in the circuit of Figure 1. ICL7117 is tested in the circuit of Figure 2.
4. Back plane drive is in phase with segment drive for 'off' segment, 180° out of phase for 'on' segment. Frequency is 20 times conversion rate. Average DC component is less than 50 mV .
5. Not tested, guaranteed by design.

Typical Applications and Test Circuits

FIGURE 1. ICL7116 TEST CIRCUIT AND TYPICAL APPLICATION WITH LCD DISPLAY COMPONENTS SELECTED FOR 200mV FULLSCALE

FIGURE 2. ICL7117 TEST CIRCUIT AND TYPICAL APPLICATION WITH LED DISPLAY COMPONENTS SELECTED FOR 200mV FULLSCALE

Design Information Summary Sheet

- OSCILLATOR FREQUENCY
$\mathrm{f}_{\mathrm{OSC}}=0.45 / \mathrm{RC}$
$\mathrm{C}_{\mathrm{OSC}}>50 \mathrm{pF} ; \mathrm{R}_{\mathrm{OSC}}>50 \mathrm{~K} \Omega$
$f_{\text {fosc }}$ Typ. $=48 \mathrm{KHz}$
- OSCILLATOR PERIOD
$\mathrm{t}_{\mathrm{OSC}}=\mathrm{RC} / 0.45$
- INTEGRATION CLOCK FREQUENCY
$f_{\text {CLOCK }}=$ fosd $^{\prime} 4$
- INTEGRATION PERIOD
$\mathrm{t}_{\text {INT }}=1000 \times\left(4 / \mathrm{f}_{\mathrm{OSC}}\right)$
- $60 / 50 \mathrm{~Hz}$ REJECTION CRITERION
$\mathrm{t}_{\mathrm{INT}} / \mathrm{t}_{60 \mathrm{~Hz}}$ or $\mathrm{t}_{\mathrm{INT}} / \mathrm{t}_{50 \mathrm{~Hz}}=$ Integer
- OPTIMUM INTEGRATION CURRENT $\mathrm{I}_{\text {INT }}=4.0 \mu \mathrm{~A}$
- FULL-SCALE ANALOG INPUT VOLTAGE
$\mathrm{V}_{\text {INFS }}$ Typically $=200 \mathrm{mV}$ or 2.0V
- INTEGRATE RESISTOR
$R_{\text {INT }}=\frac{V_{\text {INFS }}}{I_{\text {INT }}}$
- INTEGRATE CAPACITOR
$C_{\text {INT }}=\frac{\left(t_{I N T}\right)\left(I_{I N T}\right)}{V_{I N T}}$
- INTEGRATOR OUTPUT VOLTAGE SWING
$V_{I N T}=\frac{\left(t_{I N T}\right)\left(I_{I N T}\right)}{C_{I N T}}$
- $\mathrm{V}_{\text {INT }}$ MAXIMUM SWING:
$(\mathrm{V}-+1.0 \mathrm{~V})<\mathrm{V}_{\text {INT }}<(\mathrm{V}+-0.5 \mathrm{~V}), \mathrm{V}_{\text {INT }}$ typically $=2.0 \mathrm{~V}$
- DISPLAY COUNT

COUNT $=1000 \times \frac{V_{\text {IN }}}{V_{\text {REF }}}$

- CONVERSION CYCLE
$t_{\text {CYC }}=t_{\text {CLOCK }} \times 4000$
$t_{\text {CYC }}=t_{\text {OSC }} \times 16,000$
when $\mathrm{f}_{\mathrm{OSC}}=48 \mathrm{KHz} ; \mathrm{t}_{\mathrm{CYC}}=333 \mathrm{~ms}$
- COMMON MODE INPUT VOLTAGE
$(\mathrm{V}-+1.0 \mathrm{~V})<\mathrm{V}_{\mathbb{N}}<(\mathrm{V}+-0.5 \mathrm{~V})$
- AUTO-ZERO CAPACITOR $0.01 \mu \mathrm{~F}<\mathrm{C}_{A Z}<1.0 \mu \mathrm{~F}$
- REFERENCE CAPACITOR
$0.1 \mu \mathrm{~F}<\mathrm{C}_{\text {REF }}<1.0 \mu \mathrm{~F}$
- $V_{\text {com }}$

Biased between V+ and V-.

- $V_{\text {COM }} \cong V+-2.8 \mathrm{~V}$

Regulation lost when $\mathrm{V}+$ to $\mathrm{V}-<\cong 6.8 \mathrm{~V}$.
If $\mathrm{V}_{\mathrm{COM}}$ is externally pulled down to $(\mathrm{V}+$ to $\mathrm{V}-) / 2$,
the $\mathrm{V}_{\text {COM }}$ circuit will turn off.

- ICL7116 POWER SUPPLY: SINGLE 9V
$\mathrm{V}+-\mathrm{V}-=9 \mathrm{~V}$
Digital supply is generated internally
$\mathrm{V}_{\text {TEST }} \cong \mathrm{V}+-4.5 \mathrm{~V}$
- ICL7116 DISPLAY: LCD

Type: Direct drive with digital logic supply amplitude.

- ICL7117 POWER SUPPLY: DUAL $\pm 5.0 \mathrm{~V}$
$\mathrm{V}+=+5.0 \mathrm{~V}$ to GND
$\mathrm{V}-=-5.0 \mathrm{~V}$ to GND
Digital Logic and LED driver supply $\mathrm{V}+$ to GND
- ICL7117 DISPLAY: LED

Type: Non-Multiplexed Common Anode

Typical Integrator Amplifier Output Waveform (INT Pin)

Pin Description

PIN NUMBER		NAME	FUNCTION	DESCRIPTION
40 PIN DIP	$\begin{aligned} & 44 \text { PIN } \\ & \text { FLATPACK } \end{aligned}$			
1	8	HLDR	INPUT	Display Hold Control
2	9	D1	OUTPUT	Driver Pin for Segment "D" of the display units digit
3	10	C1	OUTPUT	Driver Pin for Segment "C" of the display units digit
4	11	B1	OUTPUT	Driver Pin for Segment "B" of the display units digit
5	12	A1	OUTPUT	Driver Pin for Segment " A " of the display units digit
6	13	F1	OUTPUT	Driver Pin for Segment "F" of the display units digit
7	14	G1	OUTPUT	Driver Pin for Segment " G " of the display units digit
8	15	E1	OUTPUT	Driver Pin for Segment " E " of the display units digit
9	16	D2	OUTPUT	Driver Pin for Segment "D" of the display tens digit
10	17	C2	OUTPUT	Driver Pin for Segment "C" of the display tens digit
11	18	B2	OUTPUT	Driver Pin for Segment "B" of the display tens digit
12	19	A2	OUTPUT	Driver Pin for Segment "A" of the display tens digit
13	20	F2	OUTPUT	Driver Pin for Segment " F " of the display tens digit
14	21	E2	OUTPUT	Driver Pin for Segment " E " of the display tens digit
15	22	D3	OUTPUT	Driver pin for segment " D " of the display hundreds digit
16	23	B3	OUTPUT	Driver pin for segment " B " of the display hundreds digit
17	24	F3	OUTPUT	Driver pin for segment "F" of the display hundreds digit
18	25	E3	OUTPUT	Driver pin for segment " E " of the display hundreds digit
19	26	AB4	OUTPUT	Driver pin for both "A" and "B" segments of the display thousands digit
20	27	POL	OUTPUT	Driver pin for the negative sign of the display
21	28	BP/GND	OUTPUT	Driver pin for the LCD backplane/Power Supply Ground
22	29	G3	OUTPUT	Driver pin for segment " G " of the display hundreds digit
23	30	A3	OUTPUT	Driver pin for segment " A " of the display hundreds digit
24	31	C3	OUTPUT	Driver pin for segment " C " of the display hundreds digit
25	32	G2	OUTPUT	Driver pin for segment "G" of the display tens digit
26	34	V-	SUPPLY	Negative power supply
27	35	INT	OUTPUT	Integrator amplifier output. To be connected to integrating capacitor
28	36	BUFF	OUTPUT	Input buffer amplifier output. To be connected to integrating resistor
29	37	A-Z	INPUT	Integrator amplifier input.To be connected to auto-zero capacitor
$\begin{aligned} & 30 \\ & 31 \end{aligned}$	$\begin{aligned} & 38 \\ & 39 \end{aligned}$	$\begin{aligned} & \text { IN LO } \\ & \text { IN HI } \end{aligned}$	INPUT	Differential inputs. To be connected to input voltage to be measured. LO \& HI designators are for reference and do not imply that LO should be connected to lower potential, e.g. for negative inputs IN LO has a higher potential than IN HI.
32	40	COMMON	SUPPLY/ OUTPUT	Internal voltage reference output.
$\begin{aligned} & 33 \\ & 34 \end{aligned}$	$\begin{aligned} & 41 \\ & 42 \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\text {REF }} \\ & \mathrm{C}_{\text {REF }}{ }^{+} \end{aligned}$		Connection pins for reference capacitor.
$\begin{aligned} & 35 \\ & 36 \\ & \hline \end{aligned}$	$\begin{aligned} & 43 \\ & 44 \end{aligned}$	$\begin{gathered} V_{+} \\ \text {REF } \mathrm{HI} \end{gathered}$	SUPPLY	Power Supply
37	3	TEST	INPUT	Display test. Turns on all segments when tied to V_{+}.
$\begin{aligned} & 38 \\ & 39 \\ & 40 \end{aligned}$	$\begin{aligned} & 4 \\ & 6 \\ & 7 \end{aligned}$	$\begin{aligned} & \text { OSC3 } \\ & \text { OSC2 } \\ & \text { OSC1 } \end{aligned}$	OUTPUT OUTPUT INPUT	Device clock generator circuit connection pins

Detailed Description

Analog Section

Figure 3 shows the Analog Section for the ICL7116 and ICL7117. Each measurement cycle is divided into three phases. They are (1) auto-zero (A-Z), (2) signal integrate (INT) and (3) de-integrate (DE).

Auto-Zero Phase

During auto-zero three things happen. First, input high and low are disconnected from the pins and internally shorted to analog COMMON. Second, the reference capacitor is charged to the reference voltage. Third, a feedback loop is closed around the system to charge the auto-zero capacitor $\mathrm{C}_{A Z}$ to compensate for offset voltages in the buffer amplifier, integrator, and comparator. Since the comparator is included in the loop, the A-Z accuracy is limited only by the noise of the system. In any case, the offset referred to the input is less than $10 \mu \mathrm{~V}$.

Signal Integrate Phase

During signal integrate, the auto-zero loop is opened, the internal short is removed, and the internal input high and low are connected to the external pins. The converter then integrates the differential voltage between IN HI and IN LO for a fixed time. This differential voltage can be within a wide common mode range: up to 1 V from either supply. If, on the other hand, the input signal has no return with respect to the converter power supply, IN LO can be tied to analog COMMON to establish the correct common mode voltage. At the end of this phase, the polarity of the integrated signal is determined.

De-Integrate Phase

The final phase is de-integrate, or reference integrate. Input low is internally connected to analog COMMON and input high is connected across the previously charged reference
capacitor. Circuitry within the chip ensures that the capacitor will be connected with the correct polarity to cause the integrator output to return to zero. The time required for the output to return to zero is proportional to the input signal. Specifically the digital reading displayed is
DISPLAY COUNT $=1000\left(\frac{V_{\text {IN }}}{V_{\text {REF }}}\right)$.

Differential Input

The input can accept differential voltages anywhere within the common mode range of the input amplifier, or specifically from 0.5 V below the positive supply to 1.0 V above the negative supply. In this range, the system has a CMRR of 86 dB typical. However, care must be exercised to assure the integrator output does not saturate. A worst case condition would be a large positive common mode voltage with a near full-scale negative differential input voltage. The negative input signal drives the integrator positive when most of its swing has been used up by the positive common mode voltage. For these critical applications the integrator output swing can be reduced to less than the recommended 2 V full-scale swing with little loss of accuracy. The integrator output can swing to within 0.5 V of either supply without loss of linearity.

Differential Reference

The reference voltage can be generated anywhere within the power supply voltage of the converter. The main source of common mode error is a roll-over voltage caused by the reference capacitor losing or gaining charge to stray capacity on its nodes. If there is a large common mode voltage, the reference capacitor can gain charge (increase voltage) when called up to de-integrate a positive signal but lose charge (decrease voltage) when called up to de-integrate a negative input signal. This difference in reference for positive or negative input voltage will give a roll-over error. However, by

FIGURE 3. ANALOG SECTION OF ICL7116 AND ICL7117
selecting the reference capacitor such that it is large enough in comparison to the stray capacitance, this error can be held to less than 0.5 count worst case. (See Component Value Selection.)

Analog COMMON

This pin is included primarily to set the common mode voltage for battery operation (ICL7116) or for any system where the input signals are floating with respect to the power supply. The COMMON pin sets a voltage that is approximately 2.8 V less than the positive supply. This is selected to give a minimum end-of-life battery voltage of about 6.8 V . However, analog COMMON has some of the attributes of a reference voltage. When the total supply voltage is large enough to cause the zener to regulate ($>6.8 \mathrm{~V}$), the COMMON voltage will have a low voltage coefficient $(0.001 \% / \mathrm{N})$, low output impedance ($\cong 15 \Omega$), and a temperature coefficient typically less than $80 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.
The limitations of the on chip reference should also be recognized, however. With the ICL7117, the internal heating which results from the LED drivers can cause some degradation in performance. Due to their higher thermal resistance, plastic parts are poorer in this respect than ceramic. The combination of reference Temperature Coefficient (TC), internal chip dissipation, and package thermal resistance can increase noise near full-scale from $25 \mu \mathrm{~V}$ to $80 \mu \mathrm{Vp}-\mathrm{p}$. Also the linearity in going from a high dissipation count such as 1000 (20 segments on) to a low dissipation count such as 1111(8 segments on) can suffer by a count or more. Devices with a positive TC reference may require several counts to pull out of an over-range condition. This is because over-range is a low dissipation mode, with the three least significant digits blanked. Similarly, units with a negative TC may cycle between over range and a non-over range count as the die alternately heats and cools. All these problems are of course eliminated if an external reference is used.

The ICL7116, with its negligible dissipation, suffers from none of these problems. In either case, an external reference can easily be added, as shown in Figure 4.

Analog COMMON is also used as the input low return during auto-zero and de-integrate. If IN LO is different from analog COMMON, a common mode voltage exists in the system and is taken care of by the excellent CMRR of the converter. However, in some applications IN LO will be set at a fixed known voltage (power supply common for instance). In this application, analog COMMON should be tied to the same point, thus removing the common mode voltage from the converter. The same holds true for the reference voltage. If reference can be conveniently tied to analog COMMON, it should be since this removes the common mode voltage from the reference system.

Within the IC, analog COMMON is tied to an N channel FET that can sink approximately 30 mA of current to hold the voltage 2.8 V below the positive supply (when a load is trying to pull the common line positive). However, there is only $10 \mu \mathrm{~A}$ of source current, so COMMON may easily be tied to a more negative voltage thus overriding the internal reference.

(B)

FIGURE 4. USING AN EXTERNAL REFERENCE

TEST

The TEST pin serves two functions. On the ICL7116 it is coupled to the internally generated digital supply through a 500Ω resistor. Thus it can be used as the negative supply for externally generated segment drivers such as decimal points or any other annunciator the user may want to include on the LCD display. Figures 5 and 6 show such an application. No more than a 1 mA load should be applied.

FIGURE 5. SIMPLE INVERTER FOR FIXED DECIMAL POINT
The second function is a "lamp test". When TEST is pulled high (to $\mathrm{V}+$) all segments will be turned on and the display should read "-1888". The TEST pin will sink about 5mA under these conditions.

CAUTION: On the ICL7116, in the lamp test mode, the segments have a constant DC voltage (no square-wave) and may burn the LCD display if left in this mode for several minutes.

FIGURE 6. EXCLUSIVE 'OR' GATE FOR DECIMAL POINT DRIVE

HOLD Reading Input

The HLDR input will prevent the latch from being updated when this input is at logic " 1 ". The chip will continue to make A/D conversions, however, the results will not be updated to the internal latches until this input goes low. This input can be left open or connected to TEST (ICL7116) or GROUND (ICL7117) to continuously update the display. This input is CMOS compatible, and has a 70k Ω (See Figure 7) typical resistance to either TEST (ICL7116) or GROUND (ICL7117).

Digital Section

Figures 7 and 8 show the digital section for the ICL7116 and ICL7117, respectively. In the ICL7116, an internal digital ground is generated from a 6 V Zener diode and a large P channel source follower. This supply is made stiff to absorb the relative large capacitive currents when the back plane (BP) voltage is switched. The BP frequency is the clock frequency divided by 800 . For three readings/second this is a 60 Hz square wave with a nominal amplitude of 5 V . The segments are driven at the same frequency and amplitude and are in phase with BP when OFF, but out of phase when ON. In all cases negligible DC voltage exists across the segments.
Figure 8 is the Digital Section of the ICL7117. It is identical to the ICL7116 except that the regulated supply and back plane drive have been eliminated and the segment drive has been increased from 2 mA to 8 mA , typical for instrument size common anode LED displays. Since the 1000 output (pin 19) must sink current from two LED segments, it has twice the drive capability or 16 mA .
In both devices, the polarity indication is "on" for negative analog inputs. If IN LO and IN HI are reversed, this indication can be reversed also, if desired.

FIGURE 7. ICL7116 DIGITAL SECTION

FIGURE 8. ICL7117 DIGITAL SECTION

System Timing

Figure 9 shows the clocking arrangement used in the ICL7116 and ICL7117. Two basic clocking arrangements can be used:

1. An external oscillator connected to pin 40.
2. An R-C oscillator using all three pins.

The oscillator frequency is divided by four before it clocks the decade counters. It is then further divided to form the three convert-cycle phases. These are signal integrate (1000 counts), reference de-integrate (0 to 2000 counts) and autozero (1000 counts to 3000 counts). For signals less than fullscale, auto-zero gets the unused portion of reference deintegrate. This makes a complete measure cycle of 4,000 counts (16,000 clock pulses) independent of input voltage. For three readings/second, an oscillator frequency of 48 kHz would be used.

To achieve maximum rejection of 60 Hz pickup, the signal integrate cycle should be a multiple of 60 Hz . Oscillator frequencies of $240 \mathrm{kHz}, 120 \mathrm{kHz}, 80 \mathrm{kHz}, 60 \mathrm{kHz}, 48 \mathrm{kHz}$, $40 \mathrm{kHz}, 331 / 3 \mathrm{kHz}$, etc. should be selected. For 50 Hz rejection, Oscillator frequencies of $200 \mathrm{kHz}, 100 \mathrm{kHz}, 66^{2} / 3 \mathrm{kHz}$, $50 \mathrm{kHz}, 40 \mathrm{kHz}$, etc. would be suitable. Note that 40 kHz (2.5 readings/second) will reject both 50 Hz and 60 Hz (also 400 Hz and 440 Hz).

FIGURE 9. CLOCK CIRCUITS

Component Value Selection

Integrating Resistor

Both the buffer amplifier and the integrator have a class A output stage with $100 \mu \mathrm{~A}$ of quiescent current. They can supply $4 \mu \mathrm{~A}$ of drive current with negligible nonlinearity. The integrating resistor should be large enough to remain in this very linear region over the input voltage range, but small enough that undue leakage requirements are not placed on the PC board. For 2 V full-scale, $470 \mathrm{k} \Omega$ is near optimum and similarly a $47 \mathrm{k} \Omega$ for a 200 mV scale.

Integrating Capacitor

The integrating capacitor should be selected to give the maximum voltage swing that ensures tolerance buildup will not saturate the integrator swing (approximately. 0.5 V from either supply). In the ICL7116 or the ICL7117, when the analog COMMON is used as a reference, a nominal +2 V fullscale integrator swing is fine. For the ICL7117 with +5 V supplies and analog COMMON tied to supply ground, a $\pm 3.5 \mathrm{~V}$ to +4 V swing is nominal. For three readings/second (48 kHz clock) nominal values for $\mathrm{C}_{\mathbb{N} T}$ are $0.22 \mu \mathrm{~F}$ and $0.10 \mu \mathrm{~F}$, respectively. Of course, if different oscillator frequencies are used, these values should be changed in inverse proportion to maintain the same output swing.

An additional requirement of the integrating capacitor is that it must have a low dielectric absorption to prevent roll-over errors. While other types of capacitors are adequate for this application, polypropylene capacitors give undetectable errors at reasonable cost.

Auto-Zero Capacitor

The size of the auto-zero capacitor has some influence on the noise of the system. For 200 mV full-scale where noise is very important, a $0.47 \mu \mathrm{~F}$ capacitor is recommended. On the 2 V scale, a $0.047 \mu \mathrm{~F}$ capacitor increases the speed of recovery from overload and is adequate for noise on this scale.

Reference Capacitor

A $0.1 \mu \mathrm{~F}$ capacitor gives good results in most applications. Generally $1.0 \mu \mathrm{~F}$ will hold the roll-over error to 0.5 counts in this instance.

Oscillator Components

For all ranges of frequency a $100 \mathrm{k} \Omega$ resistor is recommended and the capacitor is selected from the equation

$$
f=\frac{0.45}{R C} \text { For } 48 \mathrm{kHz} \text { Clock (3 Readings/second), } C=100 \mathrm{pF}
$$

Reference Voltage

The analog input required to generate full-scale output (2000 counts) is: $\mathrm{V}_{\mathbb{N}}=2 \mathrm{~V}_{\text {REF }}$. Thus, for the 200 mV and 2 V scale, $V_{\text {REF }}$ should equal 100 mV and 1 V , respectively. However, in
many applications where the ADD is connected to a transducer, there will exist a scale factor other than unity between the input voltage and the digital reading. For instance, in a weighing system, the designer might like to have a full-scale reading when the voltage from the transducer is 0.682 V . Instead of dividing the input down to 200 mV , the designer should use the input voltage directly and select $\mathrm{V}_{\text {REF }}=0.341 \mathrm{~V}$. Suitable values for integrating resistor and capacitor would be $120 \mathrm{k} \Omega$ and $0.22 \mu \mathrm{~F}$. This makes the system slightly quieter and also avoids a divider network on the input. The ICL7117 with $\pm 5 \mathrm{~V}$ supplies can accept input signals up to $\pm 4 \mathrm{~V}$. Another advantage of this system occurs when a digital reading of zero is desired for $\mathrm{V}_{\mathbb{I}} \neq 0$. Temperature and weighing systems with a variable fare are examples. This offset reading can be conveniently generated by connecting the voltage transducer between \mathbb{N} HI and COMMON and the variable (or fixed) offset voltage between COMMON and IN LO.

ICL7117 Power Supplies

3. The ICL7117 is designed to work from $\pm 5 \mathrm{~V}$ supplies.

However, if a negative supply is not available, it can be generated from the clock output with 2 diodes, 2 capacitors, and an inexpensive I.C. Figure 10 shows this application. See ICL7660 data sheet for an alternative.

FIGURE 10. GENERATING NEGATIVE SUPPLY FROM +5 V
In fact, in selected applications no negative supply is required. The conditions to use a single +5 V supply are:

1. The input signal can be referenced to the center of the common mode range of the converter.
2. The signal is less than $\pm 1.5 \mathrm{~V}$.
3. An external reference is used.

Typical Applications

The ICL7116 and ICL7117 may be used in a wide variety of configurations. The circuits which follow show some of the possibilities, and serve to illustrate the exceptional versatility of these A/D converters.

The following application notes contain very useful information on understanding and applying this part and are available from Harris semiconductor.

Typical Applications

Values shown are for 200 mV full-scale, 3 readings/sec., floating supply voltage (9 V battery).

FIGURE 11. ICL7116 USING THE INTERNAL REFERENCE

Application Notes

A016 "Selecting AVD Converters"
A017 "The Integrating ADD Converter"
A018 "Do's and Don'ts of Applying ADD Converters"
A023 "Low Cost Digital Panel Meter Designs"
A032 "Understanding the Auto-Zero and Common Mode Performance of the ICL7116/7/9 Family"

A046 "Building a Battery-Operated Auto Ranging DVM with the ICL7116"

A047 "Games People Play with Harris' AD Converters," edited by Peter Bradshaw
A052 "Tips for Using Single Chip 3 ½ Digit A/D Converters"

Values shown are for 200 mV full-scale, 3 readings/sec. IN LO may be tied to either COMMON for inputs floating with respect to supplies, or GND for single ended inputs. (See discussion under Analog COMMON.)

FIGURE 12. ICL7117 USING THE INTERNAL REFERENCE

Typical Applications (Continued)

FIGURE 13. ICL7116 AND ICL7117: RECOMMENDED COMPONENT VALUES FOR 2.0V FULL-SCALE

The resistor values within the bridge are determined by the desired sensitivity.

FIGURE 15. ICL7117 MEASUREING RATIOMETRIC VALUES OF QUAD LOAD CELL

An external reference must be used in this application, since the voltage between $\mathrm{V}+$ and V - is insufficient for correct operation of the internal reference.

FIGURE 14. ICL7117 OPERATED FROM SINGLE +5V SUPPLY

A silicon diode-connected transistor has a temperature coefficient of about $-2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$. Calibration is achieved by placing the sensing transistor in ice water and adjusting the zeroing potentiometer for a 000.0 reading. The sensor should then be placed in boiling water and the scale-factor potentiometer adjusted for a 100.0 reading.

FIGURE 16. ICL7116 USED AS A DIGITAL CENTIGRADE THERMOMETER

HARRIS
SEMICONDUCTOR

4½ Digit LCD Single-Chip A/D Converter

Features

- $\pm 19,999$ Count A/D Converter Accurate to ± 4 Count
- $10 \mu \mathrm{~V}$ Resolution on $\mathbf{2 0 0 m V}$ Scale
- 110dB CMRR
- Direct LCD Display Drive
- True Differential Input and Reference
- Low Power Consumption
- Decimal Point Drive Outputs
- Overrange and Underrange Outputs
- Low Battery Detection and Indication
- 10:1 Range Change Input

Ordering Information

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ICL7129CPL	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	40 Lead Plastic DIP
ICL7129RCPL	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	40 Lead Plastic DIP (Note 1)
ICL7129CM44	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	44 Lead Metric Plastic Quad Flatpack

NOTE:

1. " R " indicates device with reversed leads.

Description

The Harris ICL7129 is a very high performance $4 \frac{1}{2}$-digit analog-to-digital converter that directly drives a multiplexed liquid crystal display. This single chip CMOS integrated circuit requires only a few passive components and a reference to operate. It is ideal for high resolution hand-held digital multimeter applications.

The performance of the ICL7129 has not been equaled before in a single chip AVD converter. The successive integration technique used in the ICL7129 results in accuracy better than 0.005% of full-scale and resolution down to $10 \mu \mathrm{~V} /$ count.
The ICL7129, drawing only 1 mA from a 9V battery, is well suited for battery powered instruments. Provision has been made for the detection and indication of a "LOW/BATTERY" condition. Autoranging instruments can be made with the ICL7129 which provides overrange and underrange outputs and $10: 1$ range changing input. The ICL7129 instantly checks for continuity, giving both a visual indication and a logic level output which can enable an external audible transducer. These features and the high performance of the ICL7129 make it an extremely versatile and accurate instrument-on-a-chip.

Pinouts

Functional Block Diagram

Typical Application Schematic

Absolute Maximum Ratings

Supply Voltage 15 V
Reference Voltage (REF HI or REF LO) V + to V Input Voltage (Note 1), IN HI or IN LO V+ to VVIISP. .DGND -0.3V to V_{+} Digital Input Pins

$$
1,2,19,20,21,22,27,37,38,39,40
$$

Storage Temperature Range
Lead Temperature (Soldering 10s) \qquad $+300^{\circ} \mathrm{C}$
CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Electrical Specifications $\quad \mathrm{V}$ - to $\mathrm{V}+=9 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=1.00 \mathrm{~V} . \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}_{\mathrm{CLK}}=120 \mathrm{kHz}$, Unless Otherwise Specified.

PARAMETERS	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Zero Input Reading	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, 200 \mathrm{mV}$ Scale	-0000	0000	+0000	Counts
Zero Reading Drift	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}, 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+70^{\circ} \mathrm{C}$	-	± 0.5	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Ratiometric Reading	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {REF }}=1000 \mathrm{mV}$, RANGE $=2 \mathrm{~V}$	9996	9999	10000	Counts
Range Change Accuracy	$\mathrm{V}_{\text {IN }}=0.10000 \mathrm{~V}$ on Low, Range $=$ $V_{\text {iN }}=1.0000 \mathrm{~V}$ on High Range	0.9999	1.0000	1.0001	Ratio
Rollover Error	$-V_{\text {IN }}=+V_{\text {IN }}=199 \mathrm{mV}$	\bullet	1.5	3.0	Counts
Linearity Error	200 mV Scale	-	1.0	-	Counts
Input Common-Mode Rejection Ratio	$\mathrm{V}_{\mathrm{CM}}=1.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}, 200 \mathrm{mV}$ Scale	-	110	-	dB
Input Common-Mode Voltage Range	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}, 200 \mathrm{mV}$ Scale	\bullet	$\begin{aligned} & (\mathrm{V}-)+1.5 \\ & (\mathrm{~V}+)-1.0 \end{aligned}$	\bullet	V
Noise (p-p Value not Exceeding 95\% of Time)	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V} 200 \mathrm{mV}$ Scale	\bullet	14	-	$\mu \mathrm{V}$
Input Leakage Current	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$, Pin 32, 33	-	1	10	pA
Scale Factor Tempco	$\begin{aligned} & \mathrm{V}_{\text {IN }}=199 \mathrm{mV} 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+70^{\circ} \mathrm{C} \\ & \text { External } \mathrm{V}_{\text {REF }}=0 \mathrm{Oppm}{ }^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	\bullet	2	7	ppm/ ${ }^{\circ} \mathrm{C}$
COMMON Voltage	V+ to Pin 28	2.8	3.2	3.5	V
COMMON Sink Current	Δ Common $=+0.1 \mathrm{~V}$	\bullet	0.6	-	mA
COMMON Source Current	Δ Common $=-0.1 \mathrm{~V}$	-	10	-	$\mu \mathrm{A}$
DGND Voltage	$\mathrm{V}+$ to Pin $36, \mathrm{~V}+$ to $\mathrm{V}-=9 \mathrm{~V}$	4.5	5.3	5.8	V
DGND Sink Current	$\Delta \mathrm{DGND}=+0.5 \mathrm{~V}$	-	1.2	-	mA
Supply Voltage Range	V+ to V- (Note 3)	6	9	12	V
Supply Current Excluding COMMON Current	$\mathrm{V}+$ to V - $=9 \mathrm{~V}$	-	1.0	1.5	mA
Clock Frequency	(Note 3)	-	120	360	kHz
$\mathrm{V}_{\text {DISP }}$ Resistance	$\mathrm{V}_{\text {DISP }}$ to V_{+}	-	50	-	k Ω
Low Battery Flag Activation Voltage	$V+$ to V-	6.3	7.2	7.7	V
CONTINUITY Comparator Threshold Voltages	$V_{\text {OUT }}$ Pin $27=\mathrm{HI}$	100	200	-	mV
	$\mathrm{V}_{\text {OUT }}$ Pin $27=$ LO	\bullet	200	400	mV
Pull-Down Current	Pins 37, 38, 39	-	2	10	$\mu \mathrm{A}$
"Weak Output" Current Sink/Source	Pin 20, 21 Sink/Source	-	3/3	-	$\mu \mathrm{A}$
	Pin 27 Sink/Source	-	3/9	-	$\mu \mathrm{A}$
Pin 22 Source Current		-	40	-	$\mu \mathrm{A}$
Pin 22 Sink Current		-	3	-	$\mu \mathrm{A}$

NOTE:

1. Input voltages may exceed the supply voltages provided that input current is limited to 1400 mA . Currents above this value may result in valid display readings but will not destroy the device if limited to $\pm 1 \mathrm{~mA}$.
2. Dissipation ratings assume device is mounted with all leads soldered to printed circuit board.
3. Device functionality is guaranteed at the stated Min/Max limits. However, accuracy can degrade under these conditions.

Pin Descriptions

PIN	SYMBOL	DESCRIPTION
1	OSC ${ }_{1}$	Input to first clock inverter.
2	OSC_{3}	Output of second clock inverter.
3	ANNUNCIATOR DRIVE	Backplane squarewave output for driving annunciators.
4	$\mathrm{B}_{1}, \mathrm{C}_{1}, \mathrm{CONT}$	Output to display segments.
5	A_{1}, G_{1}, D_{1}	Output to display segments.
6	$\mathrm{F}_{1}, \mathrm{E}_{1}, \mathrm{DP}_{1}$	Output to display segments.
7	$\mathrm{B}_{2}, \mathrm{C}_{2}$, LO BATT	Output to display segments.
8	A_{2}, G_{2}, D_{2}	Output to display segments.
9	$F_{2}, E_{2}, \mathrm{DP}_{2}$	Output to display segments.
10	$\mathrm{B}_{3}, \mathrm{C}_{3}, \mathrm{MINUS}$	Output to display segments.
11	A_{3}, G_{3}, D_{3}	Output to display segments.
12	F_{3}, E_{3}, D_{3}	Output to display segments.
13	$\mathrm{B}_{4}, \mathrm{C}_{4}, \mathrm{BC}_{5}$	Output to display segments.
14	$\mathrm{A}_{4}, \mathrm{D}_{4}, \mathrm{G}_{4}$	Output to display segments.
15	$F_{4}, E_{4}, D P_{4}$	Output to display segments.
16	BP_{3}	Backplane \#3 output to display.
17	BP_{2}	Backplane \#2 output to display.
18	BP_{1}	Backplane \#1 output to display.
19	$V_{\text {DISP }}$	Negative rail for display drivers.
20	DP 4 /OR	INPUT: When HI, turns on most significant decimal point. OUTPUT: Pulled HI when result count exceeds $\pm 19,999$.
21	DP ${ }_{3} / \mathrm{UR}$	INPUT: Second most significant decimal point on when HI. OUTPUT: Pulled HI when result count is less than $\pm 1,000$.
22	$\overline{\text { LATCH/HOLD }}$	INPUT: When floating, A/D converter operates in the free-run mode. When pulled HI , the last displayed reading is held. When pulled LO, the result counter contents are shown incrementing during the de-integrate phase of cycle. OUTPUT: Negative going edge occurs when the data latches are updated. Can be used for converter status signal.

PIN	SYMBOL	DESCRIPTION
23	V -	Negative power supply terminal.
24	V+	Positive power supply terminal, and positive rail for display drivers.
25	INT IN	Input to integrator amplifier.
26	INT OUT	Output of integrator amplifier.
27	CONTINUITY	INPUT: When LO, continuity flag on the display is off. When HI, continuity flag is on. OUTPUT: HI when voltage between inputs is less than +200 mV . LO when voltage between inputs is more than +200 mV .
28	COMMON	Sets common-mode voltage of 3.2 V below V+ for DE, 10X, etc. Can be used as pre-regulator for external reference.
29	$\mathrm{C}_{\text {REF+ }}$	Positive side of external reference capacitor.
30	$\mathrm{C}_{\text {REF }}$.	Negative side of external reference capacitor.
31	BUFFER	Output of buffer amplifier.
32	IN LO	Negative input voltage terminal.
33	IN HI	Positive input voltage terminal.
34	REF HI	Positive reference voltage input terminal.
35	REF LO	Negative reference voltage input terminal.
36	DGND	Ground reference for digital section.
37	RANGE	$3 \mu \mathrm{~A}$ pull-down for 200 mV scale. Pulled HIGH externally for 2V scale.
38	DP_{2}	Internal $3 \mu \mathrm{~A}$ pull-down. When HI , decimal point 2 will be on.
39	DP ${ }_{1}$	Internal $3 \mu \mathrm{~A}$ pull-down. When HI , decimal point 1 will be on.
40	OSC2	Output of first clock inverter. Input of second clock inverter.

Detailed Description

The ICL7129 is a uniquely designed single chip AD converter. It features a new "successive integration" technique to achieve $10 \mu \mathrm{~V}$ resolution on a 200 mV full-scale range. To achieve this resolution a 10:1 improvement in noise performance over previous monolithic CMOS AVD converters was accomplished. Previous integrating converters used an external capacitor to store an offset correction voltage. This technique worked well but greatly increased the equivalent noise bandwidth of the converter. The ICL7129 removes this source of error (noise) by not using an auto-zero capacitor. Offsets are cancelled using digital techniques instead. Savings in external parts cost are realized as well as improved noise performance and elimination of a source of electromagnetic and electrostatic pick-up.
In the overall Functional Block Diagram of the ICL7129 the heart of this AVD converter is the sequence counter/decoder which drives the control logic and keeps track of the many separate phases required for each conversion cycle. The sequence counter is constantly running and is a separate counter from the up/down results counter which is activated only when the integrator is de-integrating. At the end of a conversion the data remaining in the results counter is latched, decoded and multiplexed to the liquid crystal display.

The analog section block diagram shown in Figure 1 includes all of the analog switches used to configure the voltage sources and amplifiers in the different phases of the cycle. The input and reference switching schemes are very similar to those in other less accurate integrating A/D converters. There are 5 basic configurations used in the full conversion cycle. Figure 2 illustrates a typical waveform on the integrator output. INT, INT ${ }_{1}$, and INT_{2} all refer to the signal integrate phase where the input voltage is applied to the integrator amplifier via the buffer amplifier. In this phase, the integrator ramps over a fixed period of time in a direction opposite to the polarity of the input voltage.
$D E_{1}, D E_{2}$, and $D E_{3}$ are the de-integrate phases where the reference capacitor is switched in series with the buffer amplifier and the integrator ramps back down to the level it started from before integrating. However, since the de-integrate phase can terminate only at a clock pulse transition, there is always a small overshoot of the integrator past the starting point. The ICL7129 amplifies this overshoot by 10 and DE_{2} begins. Similarly DE_{2} 's overshoot is amplified by 10 and $D E_{3}$ begins. At the end of $D E_{3}$ the results counter holds a number with $51 / 2$ digits of resolution. This was obtained by feeding counts into the results counter at the $31 / 2$ digit level during $D E_{1}$, into the $41 / 2$ digit level during $D E_{2}$ and the $51 / 2$ digit level for DE_{3}. The effects of offset in the buffer,

FIGURE 1. ANALOG BLOCK DIAGRAM

FIGURE 2. INTEGRATOR WAVEFORM FOR NEGATIVE INPUT VOLTAGE SHOWING SUCCESSIVE INTEGRATION PHASES AND RESIDUE VOLTAGE
integrator, and comparator can now be cancelled by repeating this entire sequence with the inputs shorted and subtracting the results from the original reading. For this phase INT_{2} switch is closed to give the same common-mode voltage as the measurement cycle. This assures excellent CMRR. At the end of the cycle the data in the up/down results counter is accurate to 0.02% of full-scale and is sent to the display driver for decoding and multiplexing.

COMMON, DGND, and "Low Battery"

The COMMON and DGND (Digital GrouND) outputs of the ICL7129 are generated from internal zener diodes (Figure 3). COMMON is included primarily to set the com-mon-mode voltage for battery operation or for any system where the input signals float with respect to the power supplies. It also functions as a pre-regulator for an external precision reference voltage source. The voltage between DGND and V_{+}is the supply voltage for the logic section of the ICL7129 including the display multiplexer and drivers. Both COMMON and DGND are capable of sinking current from external loads, but caution should be taken to ensure that these outputs are not overloaded. Figure 4 shows the connection of external logic circuitry to the ICL7129. This connection will work providing that the supply current requirements of the logic do not exceed the current sink capability of the DGND pin. If more supply current is required, the buffer in Figure 5 can be used to keep the loading on DGND to a minimum. COMMON can source approximately $12 \mu \mathrm{~A}$ while DGND has no source capability.

FIGURE 3. BIASING STRUCTURE FOR COMMON AND DGND

FIGURE 4. DGND SINK CURRENT

FIGURE 5. BUFFERED DGND
The "LOW BATTERY" annunciator of the display is turned on when the voltage between $\mathrm{V}+$ and V - drops below 7.2V typically. The exact point at which this occurs is determined by the 6.3V zener diode and the threshold voltage of the n -channel transistor connected to the V - rail in Figure 3. As the supply voltage decreases, the n-channel transistor connected to the V-rail eventually turns off and the "LOW BATTERY" input to the logic section is pulled HIGH, turning on the "LOW BATTERY" annunciator.

VO Ports

Four pins of the ICL7129 can be used as either inputs or outputs. The specific pin numbers and functions are described in the Pin Description table. If the output function of the pin is not desired in an application it can easily be overridden by connecting the pin to $\mathrm{V}+(\mathrm{HI})$ or DGND (LO). This connection will not damage the device because the output impedance of these pins is quite high. A simplified schematic of these input/output pins is shown in Figure 6. Since there is approximately $500 \mathrm{k} \Omega$ in series with the output driver, the pin (when used as an output) can only drive very light loads such as 4000 series, 74CXX type CMOS logic, or other high input impedance devices. The output drive capability of these four pins is limited to $3 \mu \mathrm{~A}$, nominally, and the input switching threshold is typically DGND +2 V .

FIGURE 6. "WEAK OUTPUT"

$\overline{\text { LATCH/HOLD, Overrange, and Underrange Timing }}$

The $\overline{\text { LATCH/HOLD output (pin 22) will be pulled low during }}$ the last 100 clock cycles of each full conversion cycle. During this time the final data from the ICL7129 counter is latched and transferred to the display decoder and multiplexer. The conversion cycle and LATCH/HOLD timing are directly related to the clock frequency. A full conversion cycle takes 30,000 clock cycles which is equivalent to 60,000 oscillator cycles. OverRange (OR pin 20) and UnderRange
(UR pin 21) outputs are latched on the falling edge of LATCH/HOLD and remain in that state until the end of the next conversion cycle. In addition, digits 1 through 4 are blanked during overrange. All three of these pins are "weak outputs" and can be overridden with external drivers or pullup resistors to enable their input functions as described in the Pin Description table.

Instant Continulty

A comparator with a built-in 200 mV offset is connected directly between INPUT HI and INPUT LO of the ICL7129 (Figure 7). The CONTINUITY output (pin 27) will be pulled high whenever the voltage between the analog inputs is less than 200 mV . This will also turn on the "CONTINUITY" annunciator on the display. The CONTINUITY output may be used to enable an external alarm or buzzer, thereby giving the ICL7129 an audible continuity checking capability.

FIGURE 7. "INSTANT CONTINUITY" COMPARATOR AND OUTPUT STRUCTURE

Since the CONTINUITY output is one of the four "weak outputs" of the ICL7129, the "continuity" annunciator on the display can be driven by an external source if desired. The continuity function can be overridden with a pull-down resistor connected between CONTINUITY pin and DGND (pin 36).

Display Configuration

The ICL7129 is designed to drive a triplexed liquid crystal display. This type of display has three backplanes and is driven in a multiplexed format similar to the ICM7231 display driver family. The specific display format is shown in Figure 8. Notice that the polarity sign, decimal points, "LOW BATTERY", and "CONTINUITY" annunciators are directly driven by the ICL7129. The individual segments and annunciators are addressed in a manner similar to row-column addressing. Each backplane (row) is connected to one-third of the total number of segments. BP1 has all F, A, and B segments of the four least significant digits. BP2 has all of the C, E, and G segments. BP3 has all D segments, decimal points, and annunciators. The segment lines (columns) are connected in groups of three bringing all segments of the display out on just 12 lines.

Annunciator Drive

A special display driver output is provided on the ICL7129 which is intended to drive various kinds of annunciators on custom multiplexed liquid crystal displays. The ANNUNCIATOR DRIVE output (pin 3) is a squarewave signal running at the backplane frequency, approximately 100 Hz . This signal swings from $V_{\text {DISP }}$ to V_{+}and is in sync with the three backplane outputs BP1, BP2, and BP3. Figure 9 shows these four outputs on the same time and voltage scales.

Any annunciator associated with any of the three backplanes can be turned on simply by connecting it to the ANUNCIATOR DRIVE pin. To turn an annunciator off connect if to its backplane. An example of a display and annunciator drive scheme is shown in Figure 10.

FIGURE 8. TRIPLEXED LIQUID CRYSTAL DISPLAY LAYOUT FOR ICL7129
BP1
 $\mathrm{BP2} \square \square$
BP3

ON SEG.

FIGURE 9. TYPICAL BACKPLANE AND ANNUNCIATORDRIVE WAVEFORMS

FIGURE 10. MULTIMETER EXAMPLE SHOWING USE OF ANNUNCIATOR DRIVE OUTPUT

Display Temperature Compensation

For most applications an adequate display can be obtained by connecting $\mathrm{V}_{\text {DISP }}$ (pin 19) to DGND (pin 36). In applications where a wide temperature range is encountered, the voltage drive levels for some triplexed liquid crystal displays may need to vary with temperature in order to maintain good display contrast and viewing angle. The amount of tempera-
ture compensation will depend upon the type of liquid crystal used. Display manufacturers can supply the temperature compensation requirements for their displays. Figure 11 shows two circuits that can be adjusted to give a temperature compensation of $\approx+10 \mathrm{mV}{ }^{\circ} \mathrm{C}$ between $\mathrm{V}+$ and $\mathrm{V}_{\text {DISP }}$ The diode between DGND and $V_{\text {DISP }}$ should have a low turn-on voltage to assure that no forward current is injected into the chip if $\mathrm{V}_{\text {DISP }}$ is more negative than DGND.

Component Selection

There are only three passive components around the ICL7129 that need special consideration in selection. They are the reference capacitor, integrator resistor, and integrator capacitor. There is no auto-zero capacitor like that found in earlier integrating A/D converter designs.

The integrating resistor is selected to be high enough to assure good current linearity from the buffer amplifier and integrator and low enough that PC board leakage is not a problem. A value of $150 \mathrm{k} \Omega$ should be optimum for most applications. The integrator capacitor is selected to give an optimum integrator swing at full-scale. A large integrator swing will reduce the effect of noise sources in the comparator but will affect rollover error if the swing gets too close to the positive rail $(\approx 0.7 \mathrm{~V})$. This gives an optimum swing of $\approx 2.5 \mathrm{~V}$ at fullscale. For a $150 \mathrm{k} \Omega$ integrating resistor and 2 conversions per second the value is $0.10 \mu \mathrm{~F}$. For different conversion rates, the value will change in inverse proportion. A second requirement for good linearity is that the capacitor have low dielectric absorption. Polypropylene caps give good performance at a reasonable price. Finally the foil side of the cap should be connected to the integrator output to shield against pickup.
The only requirement for the reference cap is that it be low leakage. In order to reduce the effects of stray capacitance, a $1.0 \mu \mathrm{~F}$ value is recommended.

Clock Oscillator

The ICL7129 achieves its digital range changing by integrating the input signal for 1000 clock pulses (2,000 oscillator cycles) on the 2 V scale and 10,000 clock pulses on the 200 mV scale. To achieve complete rejection of 60 Hz on both scales, an oscillator frequency of 120 kHz is required, giving two conversions per second.

FIGURE 11. TWO METHODS FOR TEMPERATURE COMPENSATING THE LIQUID CRYSTAL DISPLAY

In low resolution applications, where the converter uses only $31 / 2$ digits and $100 \mu \mathrm{~V}$ resolution, an R-C type oscillator is adequate. In this application a C of 51 pF is recommended and the resistor value selected from $\mathrm{f}_{\mathrm{OSC}}=0.45 /$ RC. However, when the converter is used to its full potential (4 $1 / 2$ digits and $10 \mu \mathrm{~V}$ resolution) a crystal oscillator is recommended to prevent the noise from increasing as the input signal is increased due to frequency jitter of the R-C oscillator. Both RC and crystal oscillator circuits are shown in Figure 12.

FIGURE 12. RC AND CRYSTAL OSCILLATOR CIRCUITS

Powering the ICL7129

The ICL7129 may be operated as a battery powered hand-held instrument or integrated into larger systems that have more sophisticated power supplies. Figures 13, 14, and 15 show various powering modes that may be used with the ICL7129.

The standard supply connection using a 9V battery is shown in the Typical Application Schematic.
The power connection for systems with +5 V and -5 V supplies available is shown in Figure 13. Notice that measurements are with respect to ground. COMMON is also tied to INLO to remove any common-mode voltage swing on the integrator amplifier inputs.

FIGURE 13. POWERING THE ICL7129 FROM +5V AND -5V

It is important to notice that in Figure 13, digital ground of the ICL7129 (DGND pin 36) is not directly connected to power supply ground. DGND is set internally to approximately 5 V less than the $V+$ terminal and is not intended to be used as a power input pin. It may be used as the ground reference for external logic, as shown in Figure 4 and 5. In Figure 4, DGND is used as the negative supply rail for external logic provided that the supply current for the external logic does not cause excessive loading on DGND. The DGND output can be buffered as shown in Figure 5. Here, the logic supply current is shunted away from the ICL7129 keeping the load on DGND low. This treatment of the DGND output is necessary to insure compatibility when the external logic is used to intertace directly with the logic inputs and outputs of the ICL7129.
When a battery voltage between 3.8 V and 6 V is desired for operation, a voltage doubling circuit should be used to bring the voltage on the ICL7129 up to a level within the power supply voltage range. This operating mode is shown in Figure 14.

FIGURE 14. POWERING THE ICL7129 FROM A 3.8V TO 6V BATTERY
Again measurements are made with respect to COMMON since the entire system is floating. Voltage doubling is accomplished by using an ICL7660 CMOS voltage converter and two inexpensive electrolytic capacitors. The same principle applies in Figure 15 where the ICL7129 is being used in a system with only a single +5 V power supply. Here measurements are made with respect to power supply ground.

FIGURE 15. POWERING THE ICL7129 FROM A SINGLE POLARITY POWER SUPPLY

A single polarity power supply can be used to power the ICL7129 in applications where battery operation is not appropriate or convenient only if the power supply is isolated from system ground. Measurements must be made with respect to COMMON or some other voltage within its input common-mode range

Voltage References

The COMMON output of the ICL7129 has a temperature coefficient of $\pm 80 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ typically. This voltage is only suitable as a reference voltage for applications where ambient temperature variations are expected to be minimal. When the ICL7129 is used in most environments, other voltage references should be considered. The diagram in the Typical Application Schematic and Figure 15 show the ICL8069 1.2 V band-gap voltage source used as the reference for the ICL7129, and the COMMON output as its pre-regulator. The reference voltage for the ICL7129 is set to 1.000 V for both 2 V and 200 mV full-scale operation

Multiple Integration A/D Converter Equations

Oscillator Frequency

$$
\begin{aligned}
& \mathrm{f}_{\mathrm{OSC}}=0.45 / \mathrm{RC} \\
& \mathrm{C}_{\mathrm{OSC}}>50 \mathrm{pF} ; \mathrm{R}_{\mathrm{OSC}}>50 \mathrm{k} \Omega
\end{aligned}
$$

$\mathrm{f}_{\mathrm{OSc}}$ typ. $=120 \mathrm{kHz}$
or
$\mathrm{f}_{\mathrm{OSC}}=120 \mathrm{kHz}$ Crystal (Recommended)
Oscillator Period

$$
\mathrm{t}_{\mathrm{OsC}}=1 / \mathrm{fosc}
$$

Integration Clock Period
$t_{\text {CLOCK }}=2^{*}$ tosc
Integration Period

$$
\begin{array}{ll}
t_{\text {INT }(2 \mathrm{~V})}=1000^{*} \mathrm{t}_{\text {CLOCK }} & (\text { Range }=1) \\
\mathrm{t}_{\mathrm{INT}(200 \mathrm{mV})}=10,000^{*} \mathrm{t}_{\text {CLOCK }} & (\text { Range }=0)
\end{array}
$$

$60 / 50 \mathrm{~Hz}$ Rejection Criterion

$$
t_{\mathrm{INT}} / \mathrm{t}_{60 \mathrm{~Hz}} \text { or } \mathrm{t}_{\mathrm{INT} / t_{50 \mathrm{~Hz}}=\text { Integer }}
$$

Optimum Integration Current
$\mathrm{I}_{\mathrm{INT}}=13 \mu \mathrm{~A}$
Full Scale Analog Input Voltage
$\mathrm{V}_{\text {INFS }}$ Typically $=200 \mathrm{mV}$ or 2.0 V

Integrate Resistor

$$
\mathrm{R}_{\mathbb{I N T}}=\mathrm{V}_{\mathbb{I N F S} / I_{\mathbb{N T}} .}
$$

$$
\mathrm{R}_{\mathbb{I N T}} \text { Typ. }=150 \mathrm{k} \Omega
$$

Integrate Capacitor

$$
c_{I N T}=\frac{\left(t_{I N T}\right)\left(l_{I N T}\right)}{V_{I N T}}
$$

Integrator Output Voltage Swing

$$
V_{I N T}=\frac{\left(t_{I N T}\right)\left(I_{I N T}\right)}{c_{I N T}}
$$

$\mathrm{V}_{\mathrm{INT}}$ Maximum Swing: $\quad(\mathrm{V}-+0.5 \mathrm{~V})<\mathrm{V}_{\mathbb{I N T}}<(\mathrm{V}+-0.7 \mathrm{~V})$ Display Count

COUNT $=10,000 \times \frac{V_{I N}}{V_{\text {REF }}}($ Range $=1)$
$(2.0 V$ Range $)$
$\begin{aligned} & \text { COUNT }=10,000 \\ & (200 \mathrm{mV} \text { Range })\end{aligned} \times \frac{\mathrm{V}_{\text {IN }} \times 10}{\mathrm{~V}_{\text {REF }}}($ Range $=0)$
Minimum $V_{\text {REF: }} 500 \mathrm{mV}$
Common Mode Input Voltage

$$
(V-+1.0 V)<V_{\mathbb{I N}}<(V+-0.5 V)
$$

Auto Zero Capacitor: C_{AZ} not used
Reference Capacitor: $0.1 \mu \mathrm{~F}<\mathrm{C}_{\text {REF }}<1.0 \mu \mathrm{~F}$
$V_{\text {COM }}$ Biased Between V+ and V-. $V_{\text {COM }} \cong V+-2.9 \mathrm{~V}$
Regulation lost when $\mathrm{V}+$ to $\mathrm{V}-<\cong 6.4 \mathrm{~V}$.
If $\mathrm{V}_{\text {COM }}$ is externally pulled down to $(\mathrm{V}+$ to $\mathrm{V}-) / 2$, the $\mathrm{V}_{\text {COM }}$ circuit will turn off.
Power Supply: Single 9V

$$
V+-V-=9 V
$$

Digital supply is generated internally
$\mathrm{V}_{\mathrm{GND}} \cong \mathrm{V}_{+}-4.5 \mathrm{~V}$
Display: Triplexed LCD
Continuity Output On if

$$
V_{I N H I} \text { to } V_{I N L O}<200 \mathrm{mV}
$$

Conversion Cycle (In Both Ranges)
$t_{\text {CYC }}=t_{\text {CLOCK }} \times 30,000$

ICL7136, ICL7137

3½ Digit LCD/LED Low Power Display A/D Converter with Overrange Recovery

Features

- First Reading Overrange Recovery in One Conversion Period
- Guaranteed Zero Reading for OV Input on All Scales
- True Polarity at Zero for Precise Null Detection
- 1pA Typical Input Current
- True Differential Input and Reference, Direct Display Drive
- LCD ICL7136
- LED ICL7137
- Low Noise - Less Than $15 \mu \mathrm{Vp}$-p
- On Chip Clock and Reference
- No Additional Active Circuits Required
- Low Power - Less Than 1mW
- Small Outline Surface Mount Package Available
- Drop-In Replacement for ICL7126, No Changes Needed

Ordering Information

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ICL7136CPL	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	40 Lead Plastic DIP
ICL7136RCPL	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	40 Lead Plastic DIP (Note 1)
ICL7136CM44	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	44 Lead Metric Plastic Quad Flatpack
ICL7137CPL	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	40 Lead Plastic DIP
ICL7137RCPL	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	40 Lead Plastic DIP (Note 1)
ICL7137CM44	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	44 Lead Metric Plastic Quad Flatpack

NOTE: 1. " R " indicates device with reversed leads.

Description

The Harris ICL7136 and ICL7137 are high performance, low power $3 \frac{1}{2}$ digit AD converters. Included are seven segment decoders, display drivers, a reference, and a clock. The ICL7136 is designed to interface with a liquid crystal display (LCD) and includes a multiplexed backplane drive; the ICL7137 will directly drive an instrument size, light emitting diode (LED) display.
The ICL7136 and ICL7137 bring together a combination of high accuracy, versatility, and true economy. It features auto-zero to less than $10 \mu \mathrm{~V}$, zero drift of less than $1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$, input bias current of 10 pA max., and rollover error of less than one count. True differential inputs and reference are useful in all systems, but give the designer an uncommon advantage when measuring load cells, strain gauges and other bridge type transducers. Finally, the true economy of single power supply operation (ICL7136), enables a high performance panel meter to be built with the addition of only 10 passive components and a display.

The ICL7136 and ICL7137 are improved versions of the ICL7126, eliminating the overrange hangover and hysteresis effects, and should be used in its place in all applications. It can also be used as a plug-in replacement for the ICL7106 in a wide variety of applications, changing only the passive components.

Pinouts

Absolute Maximum Ratings
Supply Voltage
ICL7136，V＋to V－ 15 V
ICL7137， $\mathrm{V}+$ to GND 6V
ICL7137，V－to GND ．－9V
Analog Input Voltage（Either Input）（Note 1） $\mathrm{V}+$ to V
Reference Input Voltage（Either Input） $V+$ to V
Clock Input
ICL7136 ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．TEST to V_{+}
ICL7137 GND to V_{+}

Thermal Information

Thermal Resistance	$\theta_{\text {JA }}$
40 Lead PDIP	$50^{\circ} \mathrm{C}$
44 Lead MQFP Packag	$80^{\circ} \mathrm{CW}$

ICL7136 0．6W
ICL7137 0．8W
Operating Temperature Range $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature（Soldering 10s Max） $+300^{\circ} \mathrm{C}$
Junction Temperature $+150^{\circ} \mathrm{C}$

CAUTION：Stresses above those listed in＂Absolute Maximum Ratings＂may cause permanent damage to the device．This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied．

Electrical Specifications（Note 3）

PARAMETERS	TEST CONDITIONS	MIN	TYP	MAX	UNITS
SYSTEM PERFORMANCE					
Zero Input Reading	$\mathrm{V}_{\mathrm{IN}}=0.0 \mathrm{~V}$, Full－Scale $=200 \mathrm{mV}$	－000．0	± 000.0	＋000．0	Digital Reading
Ratiometric Reading	$\mathrm{V}_{\mathbb{N}}=\mathrm{V}_{\text {REF }}, \mathrm{V}_{\text {REF }}=100 \mathrm{mV}$	999	$\begin{aligned} & 999 / \\ & 1000 \end{aligned}$	1000	Digital Reading
Rollover Error	$-V_{I N}=+V_{I N} \cong 200 \mathrm{mV}$ Difference in Reading for Equal Positive and Negative Inputs Near Full－Scale	－	± 0.2	± 1	Counts
Linearity	Full－Scale $=200 \mathrm{mV}$ or Full－Scale $=2 \mathrm{~V}$ Maximum Deviation from Best Straight Line Fit（Note 5）	－	± 0.2	± 1	Counts
Common Mode Rejection Ratio	$\mathrm{V}_{\mathrm{CM}}= \pm 1 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$ ，Full－Scale $=200 \mathrm{mV}$（Note 5）	－	50	－	$\mu \mathrm{V} / \mathrm{N}$
Noise	$\mathrm{V}_{\mathbb{I}}=$ OV，Full－Scale $=200 \mathrm{mV}$（Pk－Pk Value Not Exceeded 95\％of Time）（Note 5）	－	15	－	$\mu \mathrm{V}$
Leakage Current Input	$\mathrm{V}_{1 \mathrm{~N}}=0$（Note 5）	－	1	10	PA
Zero Reading Drift	$\mathrm{V}_{\text {IN }}=0,0^{\circ}<\mathrm{T}_{\mathrm{A}}<+70^{\circ} \mathrm{C}$（Note 5）	－	0.2	1	$\mu \mathrm{V}{ }^{\circ} \mathrm{C}$
Scale Factor Temperature Coefficient	$\mathrm{V}_{\mathrm{IN}}=199 \mathrm{mV}, 0^{\circ}<\mathrm{T}_{\mathrm{A}}<+70^{\circ} \mathrm{C}$ ，（Ext．Ref．Oppm ${ }^{\circ} \mathrm{C}$ ） （Note 5）	－	1	5	ppm／${ }^{\circ} \mathrm{C}$
COMMON Pin Analog Common Voltage	$25 \mathrm{k} \Omega$ Between Common and Positive Supply（With Respect to＋Supply）	2.4	2.8	3.2	V
Temperature Coefficient of Analog Common	25k Ω Between Common and Positive Supply（With Respect to＋Supply）（Note 5）	－	150	－	ppm／${ }^{\circ} \mathrm{C}$
ICL7136					
V＋Supply Current	$\mathrm{V}_{\text {IN }}=0$（Does Not Include Common Current） 16 kHz Oscillator（Note 6）	－	70	100	$\mu \mathrm{A}$
ICL7137					
V＋Supply Current	$\mathrm{V}_{1 \mathrm{I}}=0$（Does Not Include Common Current） 16 kHz	\bullet	70	200	$\mu \mathrm{A}$
V－Supply Current	Oscillator（Note 6）	－	40	－	$\mu \mathrm{A}$
DISPLAY DRIVER ICL7136 ONLY					
Pk－Pk Segment Drive Voltage Pk－Pk Backplane Drive Voltage	$\mathrm{V}+=$ to $\mathrm{V}-=9 \mathrm{~V}$ ，（Note 4）	4	5	6	V
ICL7137 ONLY					
Segment Sinking Current （Except Pin 19 and 20）	$\mathrm{V}+=5 \mathrm{~V}$ ，Segment Voltage $=3 \mathrm{~V}$	5	8	－	mA
Pin 19 Only		10	16	－	mA
Pin 20 Only		4	7	－	mA

NOTES：
1．Input voltages may exceed the supply voltages provided the input current is limited to $\pm 100 \mu \mathrm{~A}$ ．
2．Dissipation rating assumes device is mounted with all leads soldered to printed circuit board．
3．Unless otherwise noted，specifications apply to both the ICL7136 and ICL7137 at $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{f}_{\mathrm{C}} \mathrm{COCK}=48 \mathrm{kHz}$ ．ICL7136 is tested in the circuit of Figure 1．ICL7137 is tested in the circuit of Figure 2.
4．Back plane drive is in phase with segment drive for＇off＇segment， 180° out of phase for＇on＇segment．Frequency is 20 times conversion rate．Average DC component is less than 50 mV ．
5．Not tested，guaranteed by design．
6． 48 kHz oscillator increases current by $20 \mu \mathrm{~A}$（TYP）．

Typical Applications and Test Circuits

FIGURE 1. ICL7136 TEST CIRCUIT \& TYPICAL APPLICATION WITH LCD DISPLAY COMPONENTS SELECTED FOR 200mV FULL-SCALE

FIGURE 2. ICL7137 TEST CIRCUIT \& TYPICAL APPLICATION WITH LED DISPLAY COMPONENTS SELECTED FOR 200 mV FULL-SCALE

Design Information Summary Sheet

- OSCILLATOR FREQUENCY
$\mathrm{f}_{\mathrm{OSC}}=0.45 / \mathrm{RC}$
$\mathrm{C}_{\mathrm{OSC}}>50 \mathrm{pF} ; \mathrm{R}_{\mathrm{OSC}}>50 \mathrm{~K} \Omega$
$\mathrm{f}_{\text {Osc }}$ Typ. $=48 \mathrm{KHz}$
- OSCILLATOR PERIOD
tosc $=$ RC/0.45
- INTEGRATION CLOCK FREQUENCY
$f_{\text {CLOCK }}=\mathrm{f}_{\mathrm{OSO}}{ }^{14}$
- INTEGRATION PERIOD
$\mathrm{t}_{\mathrm{INT}}=1000 \times\left(4 / \mathrm{f}_{\mathrm{OSC}}\right)$
- 60/50Hz REJECTION CRITERION
$\mathrm{t}_{\mathrm{NT}} / \mathrm{t}_{6 \mathrm{OHz}}$ or $\mathrm{t}_{\mathrm{NT} / \mathrm{t}_{50 \mathrm{HZ}}=\text { Integer }}$
- OPTIMUM INTEGRATION CURRENT $\mathrm{I}_{\text {INT }}=1.0 \mu \mathrm{~A}$
- FULL-SCALE ANALOG INPUT VOLTAGE
$V_{\text {INFS }}$ Typically $=200 \mathrm{mV}$ or 2.0 V
- INTEGRATE RESISTOR
$R_{\text {INT }}=\frac{V_{\text {INFS }}}{I_{\text {INT }}}$
- INTEGRATE CAPACITOR
$C_{I N T}=\frac{\left(t_{I N T}\right)\left(I_{I N T}\right)}{V_{I N T}}$
- INTEGRATOR OUTPUT VOLTAGE SWING
$V_{I N T}=\frac{\left(t_{I N T}\right)\left(I_{I N T}\right)}{C_{I N T}}$
- $V_{\text {INT }}$ MAXIMUM SWING:
$(\mathrm{V}-+0.5 \mathrm{~V})<\mathrm{V}_{\text {INT }}<(\mathrm{V}+-0.5 \mathrm{~V}), \mathrm{V}_{\text {INT }}$ typically $=2.0 \mathrm{~V}$
- DISPLAY COUNT

COUNT $=1000 \times \frac{V_{\text {IN }}}{V_{\text {REF }}}$

- CONVERSION CYCLE
$t_{\text {CYC }}=t_{\text {CLOCK }} \times 4000$
$t_{\text {CYC }}=t_{\text {OSc }} \times 16,000$
when $\mathrm{f}_{\mathrm{OSC}}=48 \mathrm{KHz} ; \mathrm{t}_{\mathrm{CYC}}=333 \mathrm{~ms}$
- COMMON MODE INPUT VOLTAGE
$(\mathrm{V}-+1.0 \mathrm{~V})<\mathrm{V}_{\mathbb{N}}<(\mathrm{V}+-0.5 \mathrm{~V})$
- AUTO-ZERO CAPACITOR
$0.01 \mu \mathrm{~F}<\mathrm{C}_{A Z}<1.0 \mu \mathrm{~F}$
- REFERENCE CAPACITOR
$0.1 \mu \mathrm{~F}<\mathrm{C}_{\text {REF }}<1.0 \mu \mathrm{~F}$
- $V_{\text {COM }}$

Biased between V+ and V-.

- $\mathrm{V}_{\text {com }} \cong \mathrm{V}_{+}-\mathbf{2 . 8 V}$

Regulation lost when $\mathrm{V}+$ to V - < $\cong 6.8 \mathrm{~V}$.
If $\mathrm{V}_{\mathrm{COM}}$ is externally pulled down to $(\mathrm{V}+$ to $\mathrm{V}-) / 2$,
the $\mathrm{V}_{\text {COM }}$ circuit will turn off.

- ICL7136 POWER SUPPLY: SINGLE 9V
$\mathrm{V}+-\mathrm{V}-=9 \mathrm{~V}$
Digital supply is generated internally
$\mathrm{V}_{\text {TEST }} \cong \mathrm{V}+-4.5 \mathrm{~V}$
- ICL7136 DISPLAY: LCD

Type: Direct drive with digital logic supply amplitude.

- ICL7137 POWER SUPPLY: DUAL $\pm 5.0 \mathrm{~V}$
$\mathrm{V}_{+}=+5.0 \mathrm{~V}$ to GND
$\mathrm{V}-=-5.0 \mathrm{~V}$ to GND
Digital Logic and LED driver supply $\mathrm{V}+$ to GND
- ICL7137 DISPLAY: LED

Type: Non-Multiplexed Common Anode

Typical Integrator Amplifier Output Waveform (INT Pin)

ICL7136, ICL7137

Pin Description

PIN NUMBER		NAME	FUNCTION	DESCRIPTION
40 PIN DIP	44 PIN FLATPACK			
1	8	V+	SUPPLY	Power Supply
2	9	D1	OUTPUT	Driver Pin for Segment " D " of the display units digit
3	10	C1	OUTPUT	Driver Pin for Segment "C" of the display units digit
4	11	B1	OUTPUT	Driver Pin for Segment "B" of the display units digit
5	12	A1	OUTPUT	Driver Pin for Segment "A" of the display units digit
6	13	F1	OUTPUT	Driver Pin for Segment " F " of the display units digit
7	14	G1	OUTPUT	Driver Pin for Segment " G " of the display units digit
8	15	E1	OUTPUT	Driver Pin for Segment " E " of the display units digit
9	16	D2	OUTPUT	Driver Pin for Segment "D" of the display tens digit
10	17	C2	OUTPUT	Driver Pin for Segment "C" of the display tens digit
11	18	B2	OUTPUT	Driver Pin for Segment "B" of the display tens digit
12	19	A2	OUTPUT	Driver Pin for Segment "A" of the display tens digit
13	20	F2	OUTPUT	Driver Pin for Segment "F' of the display tens digit
14	21	E2	OUTPUT	Driver Pin for Segment "E" of the display tens digit
15	22	D3	OUTPUT	Driver pin for segment "D" of the display hundreds digit
16	23	B3	OUTPUT	Driver pin for segment " B " of the display hundreds digit
17	24	F3	OUTPUT	Driver pin for segment " F " of the display hundreds digit
18	25	E3	OUTPUT	Driver pin for segment " E " of the display hundreds digit
19	26	AB4	OUTPUT	Driver pin for both " A " and " B " segments of the display thousands digit
20	27	POL	OUTPUT	Driver pin for the negative sign of the display
21	28	BP/GND	OUTPUT	Driver pin for the LCD backplane/Power Supply Ground
22	29	G3	OUTPUT	Driver pin for segment " G " of the display hundreds digit
23	30	A3	OUTPUT	Driver pin for segment "A" of the display hundreds digit
24	31	C3	OUTPUT	Driver pin for segment " C " of the display hundreds digit
25	32	G2	OUTPUT	Driver pin for segment " G " of the display tens digit
26	34	V	SUPPLY	Negative power supply
27	35	INT	OUTPUT	Integrator amplifier output. To be connected to integrating capacitor
28	36	BUFF	OUTPUT	Input buffer amplifier output. To be connected to integrating resistor
29	37	A-Z	INPUT	Integrator amplifier input.To be connected to auto-zero capacitor
$\begin{aligned} & 30 \\ & 31 \end{aligned}$	$\begin{aligned} & 38 \\ & 39 \end{aligned}$	IN LO IN HI	INPUT	Differential inputs. To be connected to input voltage to be measured. LO \& HI designators are for reference and do not imply that LO should be connected to lower potential, e.g. for negative inputs IN LO has a higher potential than IN HI.
32	40	COMMON	SUPPLY/ OUTPUT	Internal voltage reference output.
$\begin{aligned} & 33 \\ & 34 \\ & \hline \end{aligned}$	$\begin{aligned} & 41 \\ & 42 \end{aligned}$	CREF. $\mathrm{C}_{\text {REF }+}$		Connection pins for reference capacitor.
$\begin{aligned} & 35 \\ & 36 \end{aligned}$	$\begin{aligned} & 43 \\ & 44 \end{aligned}$	REF LO REF HI	INPUT	Input pins for reference voltage to the device. REF HI should be positive reference to REF LO.
37	3	TEST	INPUT	Display test. Turns on all segments when tied to V+.
$\begin{aligned} & 38 \\ & 39 \\ & 40 \end{aligned}$	$\begin{aligned} & 4 \\ & 6 \\ & 7 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { OSC3 } \\ & \text { OSC2 } \\ & \text { OSC1 } \end{aligned}$	OUTPUT OUTPUT INPUT	Device clock generator circuit connection pins

Detailed Description

Analog Section

Figure 3 shows the Analog Section for the ICL7136 and ICL7137. Each measurement cycle is divided into four phases. They are (1) auto-zero (A-Z), (2) signal integrate (INT) and (3) de-integrate (DE), (4) zero integrate (ZI).

Auto-Zero Phase

During auto-zero three things happen. First, input high and low are disconnected from the pins and internally shorted to analog COMMON. Second, the reference capacitor is charged to the reference voltage. Third, a feedback loop is closed around the system to charge the auto-zero capacitor $\mathrm{C}_{A Z}$ to compensate for offset voltages in the buffer amplifier, integrator, and comparator. Since the comparator is included in the loop, the A-Z accuracy is limited only by the noise of the system. In any case, the offset referred to the input is less than $10 \mu \mathrm{~V}$.

Signal Integrate Phase

During signal integrate, the auto-zero loop is opened, the internal short is removed, and the internal input high and low are connected to the external pins. The converter then integrates the differential voltage between IN HI and IN LO for a fixed time. This differential voltage can be within a wide common mode range: up to 1V from either supply. If, on the other hand, the input signal has no return with respect to the converter power supply, IN LO can be tied to analog COMMON to establish the correct common mode voltage. At the end of this phase, the polarity of the integrated signal is determined.

De-Integrate Phase

The final phase is de-integrate, or reference integrate. Input low is internally connected to analog COMMON and input high is connected across the previously charged reference
capacitor. Circuitry within the chip ensures that the capacitor will be connected with the correct polarity to cause the integrator output to return to zero. The time required for the output to return to zero is proportional to the input signal. Specifically the digital reading displayed is
DISPLAY READING $=1000\left(\frac{V_{I N}}{V_{\text {REF }}}\right)$.

Zero Integrator Phase

The final phase is zero integrator. First, input low is shorted to analog COMMON. Second, the reference capacitor is charged to the reference voltage. Finally, a feedback loop is closed around the system to IN HI to cause the integrator output to return to zero. Under normal conditions, this phase lasts for between 11 to 140 clock pulses, but after a "heavy" overrange conversion, it is extended to 740 clock pulses.

Differential Input

The input can accept differential voltages anywhere within the common mode range of the input amplifier, or specifically from 0.5 V below the positive supply to 1.0 V above the negative supply. In this range, the system has a CMRR of 86 dB typical. However, care must be exercised to assure the integrator output does not saturate. A worst case condition would be a large positive common mode voltage with a near full-scale negative differential input voltage. The negative input signal drives the integrator positive when most of its swing has been used up by the positive common mode voltage. For these critical applications the integrator output swing can be reduced to less than the recommended 2 V full-scale swing with little loss of accuracy. The integrator output can swing to within 0.3 V of either supply without loss of linearity.

FIGURE 3. ANALOG SECTION OF ICL7136 AND ICL7137

Differential Reference

The reference voltage can be generated anywhere within the power supply voltage of the converter. The main source of common mode error is a roll-over voltage caused by the reference capacitor losing or gaining charge to stray capacity on its nodes. If there is a large common mode voltage, the reference capacitor can gain charge (increase voltage) when called up to de-integrate a positive signal but lose charge (decrease voltage) when called up to de-integrate a negative input signal. This difference in reference for positive or negative input voltage will give a roll-over error. However, by selecting the reference capacitor such that it is large enough in comparison to the stray capacitance, this error can be held to less than 0.5 count worst case. (See Component Value Selection.)

Analog COMMON

This pin is included primarily to set the common mode voltage for battery operation (ICL7136) or for any system where the input signals are floating with respect to the power supply. The COMMON pin sets a voltage that is approximately 2.8 V more negative than the positive supply. This is selected to give a minimum end-of-life battery voltage of about 6.8V. However, analog COMMON has some of the attributes of a reference voltage. When the total supply voltage is large enough to cause the zener to regulate ($>7 \mathrm{~V}$), the COMMON voltage will have a low voltage coefficient ($0.001 \% N$), low output impedance ($\cong 15 \Omega$), and a temperature coefficient typically less than $150 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.

The limitations of the on chip reference should also be recognized, however. With the ICL7137, the internal heating which results from the LED drivers can cause some degradation in performance. Due to their higher thermal resistance, plastic parts are poorer in this respect than ceramic. The combination of reference Temperature Coefficient (TC), internal chip dissipation, and package thermal resistance can increase noise near full-scale from $25 \mu \mathrm{~V}$ to $80 \mu \mathrm{Vp}-\mathrm{p}$. Also the linearity in going from a high dissipation count such as 1000 (20 segments on) to a low dissipation count such as 1111(8 segments on) can suffer by a count or more. Devices with a positive TC reference may require several counts to pull out of an over range condition. This is because over-range is a low dissipation mode, with the three least significant digits blanked. Similarly, units with a negative TC may cycle between over range and a non-over range count as the die alternately heats and cools. All these problems are of course eliminated if an external reference is used.

The ICL7136, with its negligible dissipation, suffers from none of these problems. In either case, an external reference can easily be added, as shown in Figure 4.

Analog COMMON is also used as the input low return during auto-zero and de-integrate. If IN LO is different from analog COMMON, a common mode voltage exists in the system and is taken care of by the excellent CMRR of the converter. However, in some applications IN LO will be set at a fixed known voltage (power supply common for instance). In this application, analog COMMON should be tied to the same point, thus removing the common mode voltage from the
converter. The same holds true for the reference voltage. If reference can be conveniently tied to analog COMMON, it should be since this removes the common mode voltage from the reference system.

Within the IC, analog COMMON is tied to an N channel FET that can sink approximately 3 mA of current to hold the voltage 2.8 V below the positive supply (when a load is trying to pull the common line positive). However, there is only $10 \mu \mathrm{~A}$ of source current, so COMMON may easily be tied to a more negative voltage thus overriding the internal reference.

FIGURE 4. USING AN EXTERNAL REFERENCE

TEST

The TEST pin serves two functions. On the ICL7136 it is coupled to the internally generated digital supply through a 500Ω resistor. Thus it can be used as the negative supply for externally generated segment drivers such as decimal points or any other presentation the user may want to include on the LCD display. Figures 5 and 6 show such an application. No more than a 1 mA load should be applied.

FIGURE 5. SIMPLE INVERTER FOR FIXED DECIMAL POINT

The second function is a "lamp test". When TEST is pulled high (to V_{+}) all segments will be turned on and the display should read "-1888". The TEST pin will sink about 5mA under these conditions.

CAUTION: On the ICL7136, in the lamp test mode, the segments have a constant DC voltage (no square-wave) and may burn the LCD display if left in this mode for several minutes.

FIGURE 6. EXCLUSIVE 'OR’ GATE FOR DECIMAL POINT DRIVE

Digital Section

Figures 7 and 8 show the digital section for the ICL7136 and ICL7137, respectively. In the ICL7136, an internal digital ground is generated from a 6 V Zener diode and a large P channel source follower. This supply is made stiff to absorb the relative large capacitive currents when the back plane (BP) voltage is switched. The BP frequency is the clock frequency divided by 800 . For three readings/second this is a 60 Hz square wave with a nominal amplitude of 5 V . The segments are driven at the same frequency and amplitude and are in phase with BP when OFF, but out of phase when ON. In all cases negligible DC voltage exists across the segments.
Figure 8 is the Digital Section of the ICL7137. It is identical to the ICL7136 except that the regulated supply and back plane drive have been eliminated and the segment drive has been increased from 2 mA to 8 mA , typical for instrument size common anode LED displays. Since the 1000 output (pin 19) must sink current from two LED segments, it has twice the drive capability or 16 mA .
In both devices, the polarity indication is "on" for negative analog inputs. If IN LO and IN HI are reversed, this indication can be reversed also, if desired.

THREE INVERTERS ONLY ONE INVERTER SHOWN FOR CLARITY

FIGURE 8. ICL7137 DIGITAL SECTION

System Timing

Figure 9 shows the clocking arrangement used in the ICL7136 and ICL7137. Two basic clocking arrangements can be used:

1. An external oscillator connected to pin 40.
2. An R-C oscillator using all three pins.

The oscillator frequency is divided by four before it clocks the decade counters. It is then further divided to form the three convert-cycle phases. These are signal integrate (1000 counts), reference de-integrate (0 to 2000 counts) and autozero (1000 to 3000 counts). For signals less than full-scale, auto-zero gets the unused portion of reference de-integrate. This makes a complete measure cycle of 4,000 counts (16,000 clock pulses) independent of input voltage. For three readings/second, an oscillator frequency of 48 kHz would be used.

To achieve maximum rejection of 60 Hz pickup, the signal integrate cycle should be a multiple of 60 Hz . Oscillator frequencies of $240 \mathrm{kHz}, 120 \mathrm{kHz}, 80 \mathrm{kHz}, 60 \mathrm{kHz}, 48 \mathrm{kHz}$, $40 \mathrm{kHz}, 33^{1} / 3 \mathrm{kHz}$, etc. should be selected. For 50 Hz rejection, Oscillator frequencies of $200 \mathrm{kHz}, 100 \mathrm{kHz}, 66 \frac{2}{3} \mathrm{kHz}$, $50 \mathrm{kHz}, 40 \mathrm{kHz}$, etc. would be suitable. Note that 40 kHz (2.5 readings/second) will reject both 50 Hz and 60 Hz (also 400 Hz and 440 Hz).

FIGURE 9. CLOCK CIRCUITS

Component Value Selection

Integrating Resistor

Both the buffer amplifier and the integrator have a class A output stage with $100 \mu \mathrm{~A}$ of quiescent current. They can supply $1 \mu \mathrm{~A}$ of drive current with negligible nonlinearity. The integrating resistor should be large enough to remain in this very linear region over the input voltage range, but small enough that undue leakage requirements are not placed on the PC board. For 2 V full-scale, $1.8 \mathrm{M} \Omega$ is near optimum and similarly a $180 \mathrm{k} \Omega$ for a 200 mV scale.

Integrating Capacitor

The integrating capacitor should be selected to give the maximum voltage swing that ensures tolerance buildup will not saturate the integrator swing (approximately. 0.3V from either supply). In the ICL7136 or the ICL7137, when the analog COMMON is used as a reference, a nominal +2 V fullscale integrator swing is fine. For the ICL7137 with +5 V supplies and analog COMMON tied to supply ground, a $\pm 3.5 \mathrm{~V}$ to +4 V swing is nominal. For three readings/second (48 kHz clock) nominal values for $\mathrm{C}_{\text {INT }}$ are $0.047 \mu \mathrm{~F}$ and $0.5 \mu \mathrm{~F}$, respectively. Of course, if different oscillator frequencies are used, these values should be changed in inverse proportion to maintain the same output swing.

An additional requirement of the integrating capacitor is that it must have a low dielectric absorption to prevent roll-over errors. While other types of capacitors are adequate for this application, polypropylene capacitors give undetectable errors at reasonable cost.

Auto-Zero Capacitor

The size of the auto-zero capacitor has some influence on the noise of the system. For 200 mV full-scale where noise is very important, a $0.47 \mu \mathrm{~F}$ capacitor is recommended. On the 2 V scale, a $0.047 \mu \mathrm{~F}$ capacitor increases the speed of recovery from overload and is adequate for noise on this scale.

Reference Capacitor

A $0.1 \mu \mathrm{~F}$ capacitor gives good results in most applications. However, where a large common mode voltage exists (i.e. the REF LO pin is not at analog COMMON) and a 200 mV scale is used, a larger value is required to prevent roll-over error. Generally $1.0 \mu \mathrm{~F}$ will hold the roll-over error to 0.5 count in this instance.

Oscillator Components

For all ranges of frequency a $180 \mathrm{k} \Omega$ resistor is recommended and the capacitor is selected from the equation $f=\frac{0.45}{R C}$ For 48 kHz Clock (3 Readings/second),
$C=50 \mathrm{pF}$

Reference Voltage

The analog input required to generate full-scale output (2000 counts) is: $\mathrm{V}_{\mathbb{I N}}=2 \mathrm{~V}_{\text {REF }}$ Thus, for the 200 mV and 2 V scale, $V_{\text {REF }}$ should equal 100 mV and 1 V , respectively. However, in many applications where the A/D is connected to a transducer, there will exist a scale factor other than unity between the input voltage and the digital reading. For instance, in a weighing system, the designer might like to have a full-scale reading when the voltage from the transducer is 0.662 V . Instead of dividing the input down to 200 mV , the designer should use the input voltage directly and select $\mathrm{V}_{\text {REF }}=0.341 \mathrm{~V}$. Suitable values for integrating resistor and capacitor would be $330 \mathrm{k} \Omega$ and $0.047 \mu \mathrm{~F}$. This makes the system slightly quieter and also avoids a divider network on the input. The ICL7137 with $\pm 5 \mathrm{~V}$ supplies can accept input signals up to $\pm 4 \mathrm{~V}$. Another advantage of this system occurs when a digital reading of zero is desired for $\mathrm{V}_{\mathbb{I}} \neq 0$. Temperature and weighing systems with a variable fare are examples. This offset reading can be conveniently generated by connecting the voltage transducer between IN HI and COMMON and the variable (or fixed) offset voltage between COMMON and IN LO.

ICL7137 Power Supplies

The ICL7137 is designed to work from $\pm 5 \mathrm{~V}$ supplies. However, if a negative supply is not available, it can be generated from the clock output with 2 diodes, 2 capacitors, and an inexpensive I.C. Figure 10 shows this application. See ICL7660 data sheet for an alternative.
In fact, in selected applications no negative supply is required. The conditions to use a single +5 V supply are:

1. The input signal can be referenced to the center of the common mode range of the converter.
2. The signal is less than $\pm 1.5 \mathrm{~V}$.
3. An external reference is used.

FIGURE 10. GENERATING NEGATIVE SUPPLY FROM +5 V

Typical Applications

The ICL7136 and ICL7137 may be used in a wide variety of configurations. The circuits which follow show some of the possibilities, and serve to illustrate the exceptional versatility of these ADD converters.

The following application notes contain very useful information on understanding and applying this part and are available from Harris semiconductor.

Typical Applications

Values shown are for 200 mV full-scale, 3 readings/sec., floating supply voltage (9 V battery).

FIGURE 11. ICL7136 USING THE INTERNAL REFERENCE

Application Notes

A016 "Selecting AD Converters"
A017 "The Integrating A/D Converter"
A018 "Do's and Don'ts of Applying AVD Converters"
A023 "Low Cost Digital Panel Meter Designs"
A032 "Understanding the Auto-Zero and Common Mode Performance of the ICL7136/7/9 Family"
A046 "Building a Battery-Operated Auto Ranging DVM with the ICL7136"
A052 "Tips for Using Single Chip 3 ½ Digit ADD Converters"

Values shown are for 200 mV full-scale, 3 readings/sec. IN LO may be tied to either COMMON for inputs floating with respect to supplies, or GND for single ended inputs. (See discussion under Analog COMMON.)

FIGURE 12. ICL7137 USING THE INTERNAL REFERENCE

Typical Applications (Continued)

IN LO is tied to supply COMMON establishing the correct common mode voltage. If COMMON is not shorted to GND, the input voltage may float with respect to the power supply and COMMON acts as a pre-regulator for the reference. If COMMON is shorted to GND, the input is single ended (referred to supply GND) and the pre-regulator is overridden.
FIGURE 13. ICL7137 WITH AN EXTERNAL BAND-GAP REFERENCE (1.2V TYPE)

FIGURE 15. ICL7136 AND ICL7137: RECOMMENDED COMPONENT VALUES FOR 2.0V FULL-SCALE

Since low TC zeners have breakdown voltages $\sim 6.8 \mathrm{~V}$, diode must be plasced across the total supply (10V). As in the case of Figure 14, IN LO may be tied to either COMMON or GND

FIGURE 14. ICL7137 WITH ZENER DIODE REFERENCE

An external reference must be used in this application, since the voltage between $\mathrm{V}+$ and V - is insufficient for correct operation of the internal reference.

FIGURE 16. ICL7137 OPERATED FROM SINGLE +5V

Typical Applications (Continued)

The resistor values within the bridge are determined by the desired sensitivity.

FIGURE 17. ICL7137 MEASUREING RATIOMETRIC VALUES OF QUAD LOAD CELL

FIGURE 19. CIRCUIT FOR DEVELOPING UNDERRANGE AND OVERRANGE SIGNAL FROM ICL7136 OUTPUTS

A silicon diode-connected transistor has a temperature coefficient of about $-2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$. Calibration is achieved by placing the sensing transistor in ice water and adjusting the zeroing potentiometer for a 000.0 reading. The sensor should then be placed in boiling water and the scale-factor potentiometer adjusted for a 100.0 reading. * Value depends on clock frequency.

FIGURE 18. ICL7136 USED AS A DIGITAL CENTIGRADE THERMOMETER

FIGURE 20. CIRCUIT FOR DEVELOPING UNDERRANGE AND OVERRANGE SIGNALS FROM ICL7137 OUTPUT

Typical Applications (Continued)

Test is used as a common-mode reference level to ensure compatibility with most op amps.
FIGURE 21. AC TO DC CONVERTER WITH ICL7136

Die Characteristics

DIE DIMENSIONS:

127×149 Mils
METALLIZATION:
Type: AI
Thickness: $10 \mathrm{k} \AA \pm 1 \mathrm{k} \AA$
GLASSIVATION:
Type: PSG Nitride
Thickness: $15 \mathrm{k} \AA \pm 3 \mathrm{k} \AA$
WORST CASE CURRENT DENSITY:
$9.1 \times 10^{4} \mathrm{~A}^{2} \mathrm{~cm}^{2}$

Metallization Mask Layout

ICL7136, ICL7137

HARRIS
SEMICONDUCTOR

3 ${ }^{3} / 4$ Digit
 Autoranging Multimeter

Features

- 13 Ranges - ICL7139
- 4 DC Voltage $\mathbf{4 0 0 m V}, 4 \mathrm{~V}, 40 \mathrm{~V}, 400 \mathrm{~V}$
- 1 AC Voltage 400 V
- 4 DC Current $4 \mathrm{~mA}, 40 \mathrm{~mA}, 400 \mathrm{~mA}, 4 \mathrm{~A}$
- 4 Resistance $4 \mathrm{k} \Omega, 40 \mathrm{k} \Omega, 400 \mathrm{k} \Omega, 4 \mathrm{M} \Omega$
- 18 Ranges - ICL7149
- 4 DC Voltage $400 \mathrm{mV}, 4 \mathrm{~V}, 40 \mathrm{~V}, 400 \mathrm{~V}$
- 2 AC Voltage with Optional AC Circuit
- 4 DC Current $4 \mathrm{~mA}, 40 \mathrm{~mA}, 400 \mathrm{~mA}, 4 \mathrm{~A}$
- 4 AC Current with Optional AC Circuit
- 4 Resistance $4 \mathrm{k} \Omega, 40 \mathrm{k} \Omega, 400 \mathrm{k} \Omega, 4 \mathrm{M} \Omega$
- Autoranging - First Reading is Always on Correct Range
- On-Chip Duplex LCD Display Drive Including Three Decimal Points and 11 Annunciators
- No Additional Active Components Required
- Low Power Dissipation - Less than 20mW - 1000 Hour Typical Battery Life
- Display Hold Input
- Continuity Output Drives Piezoelectric Beeper
- Low Battery Annunciator with On-Chip Detection
- Guaranteed Zero Reading for OV Input on All Ranges

Description

The Harris ICL7139 and ICL7149 are high performance, low power, auto-ranging digital multimeter ICs. Unlike other autoranging multimeter ICs, the ICL7139 and ICL7149 always display the result of a conversion on the correct range. There is no "range hunting" noticeable in the display. The unit will autorange between the four different ranges. A manual switch is used to select the 2 high group ranges. DC current ranges are 4 mA and 40 mA in the low current group, and 400 mA and 4 A in the high current group. Resistance measurements are made on 4 ranges, which are divided into two groups. The low resistance ranges are $4 / 40 \mathrm{k} \Omega$ The high resistance ranges are $0.4 / 4 \mathrm{M} \Omega$ Resolution on the lowest range is 1Ω

Ordering Information

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ICL7139CPL	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	40 Lead Plastic DIP
ICL7149CPL	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	40 Lead Plastic DIP
ICL7149CM44	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	44 Lead Surface Mount (MQFP)

Pinouts

ICL7139 AND ICL7149 (PDIP) TOP VIEW

ICL7149 (MaFP)
TOP VIEW

Functional Block Diagram

Absolute Maximum Ratings
Supply Voltage (V+ to V-) 15V
Reference Input Voltage ($\mathrm{V}_{\mathrm{REF}}$ to COM). $3 V$
Analog Input Current (IN + Current or $\operatorname{IN}+$ Voltage) $100 \mu \mathrm{~A}$Clock Input Swing
\qquad . $\mathrm{V}+$ to $\mathrm{V}+-3$Storage Temperature Range$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering 10s). $+300^{\circ} \mathrm{C}$

Thermal Information

Thermal Resistance	$\theta_{\text {JA }}$
PDIP	$50^{\circ} \mathrm{C} / \mathrm{W}$
MQFP	$80^{\circ} \mathrm{CM}$
Maximum Power Dissipation	
Plastic Package.	. 800 mW
Operating Temperature Range	to $+70^{\circ} \mathrm{C}$
Junction Temperature	$+150^{\circ} \mathrm{C}$

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Electrical Specifications $\quad \mathrm{V}_{+}=9 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\text {REF }}$ adjusted for -3.700 reading on DC volts, test circuit as shown in Figure 3. Crystal $=120 \mathrm{kHz}$. (See Figure 14)

PARAMETERS	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Zero Input Reading	$\mathrm{V}_{\text {IN }}$ or $\mathrm{I}_{\mathbb{N}}$ or $\mathrm{R}_{\text {IN }}=0.00$	-00.0	-	+00.0	$\mathrm{V}, \mathrm{l}, \Omega$
Linearity (Best Straight Line) (Note 6)	(Notes 1 and 8)	-1	-	+1	Counts
Accuracy DC V, 400 V Range Only	(Notes 1 and 8)	-	-	± 1	$\%$ of RDG ± 1
Accuracy DC V, 400V Range Excluded	(Notes 1 and 8)	-	-	± 0.30	$\%$ of RDG ± 1
Accuracy $\Omega, 4 \mathrm{~K}$ and 400K Range	(Notes 1 and 8)	-	-	± 0.75	$\%$ of RDG ± 8
Accuracy $\Omega, 4 \mathrm{~K}$ and 4M Range	(Notes 1 and 8)	-	-	± 1	$\%$ of RDG ± 9
Accuracy DC I, Unadjusted for FS	(Notes 1 and 8)	-	-	± 0.75	$\%$ of RDG ± 1
Accuracy DC I, Adjusted for FS	(Notes 1 and 8)	-	± 0.2	-	$\%$ of RDG ± 1
Accuracy AC V	At 60Hz (Notes 5, 7, and 8)	-	± 2	-	\% of RDG
Open Circuit Voltage for Ω Measurements	$\mathrm{R}_{\text {UNKNOWN }}=$ Infinity	-	$\mathrm{V}_{\text {REF }}$	-	V
Noise	$\mathrm{V}_{\text {IN }}=0, \mathrm{DC} \mathrm{V}$ (Note 2, 95\% of Time)	-	0.1	-	LSB
Noise	$\mathrm{V}_{\text {IN }}=0, \mathrm{ACV}$ (Note 2, 95% of Time)	-	4	-	LSB
Supply Current	$\mathrm{V}_{\mathrm{IN}}=0, \mathrm{DC}$ Voltage Range	-	1.5	2.4	mA
Analog Common (with Respect to $\mathrm{V}+$)	$\mathrm{I}_{\text {Common }}<10 \mu \mathrm{~A}$	2.7	2.9	3.1	V
Temperature Coefficient of Analog Common	$\mathrm{I}_{\text {Cоммол }}<10 \mu \mathrm{~A}$, Temp. $=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	-	-100	-	ppm/ ${ }^{\circ} \mathrm{C}$
Output Impedance of Analog Common	$I_{\text {COMMON }}<10 \mu \mathrm{~A}$	-	1	10	Ω
Backplane/Segment Drive Voltage	Average DC < 50mV	2.8	3.0	3.2	V
Backplane/Segment Display Frequency		-	75	-	Hz
Switch Input Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}+$ to V - (Note 3)	-50	-	+50	$\mu \mathrm{A}$
Switch Input Levels (High Trip Point)		$\mathrm{V}+-0.5$	-	V+	V
Switch Input Levels (Mid Trip Point)		V - + 3	-	V+-2.5	V
Switch Input Levels (Low Trip Point)		V -	-	$\mathrm{V}-+0.5$	V
Beeper Output Drive (Rise or Fall Time)	$C_{\text {LOAD }}=10 \mathrm{nF}$	-	25	100	$\mu \mathrm{s}$
Beeper Output Frequency		-	2	-	kHz
Continuity Detect	Range $=$ Low $\Omega, \mathrm{V}_{\text {REF }}=1.00 \mathrm{~V}$	-	1.5	-	k Ω
Power Supply Functional Operation	$V+$ to V-	7	9	11	V
Low Battery Detect	V+ to V- (Note 4)	6.5	7	7.5	V

NOTE:

1. Accuracy is defined as the worst case deviation from ideal input value including: offset, linearity, and rollover error.
2. Noise is defined as the width of the uncertainty window (where the display will flicker) between two adjacent codes.
3. Applies to pins 17-20.
4. Analog Common falls out of regulation when the Low Battery Detect is asserted, however the ICL7139 and ICL7149 will continue to operate correctly with a supply voltage above 7 V and below 11 V .
5. For 50 Hz use a 100 kHz crystal.
6. Guaranteed by design, not tested.
7. ICL7139 only.
8. $\mathrm{RDG}=$ Reading

Timing Waveform

FIGURE 1. LINE FREQUENCY CYCLES (1 CYCLE = 1000 INTERNAL CLOCK PULSES $\mathbf{=} \mathbf{2 0 0 0}$ OSCILLATION CYCLES)

Pin Descriptions

VO	PIN NUMBER	DESCRIPTION
0	1	Segment Driver POL/AC
0	2	Backplane 2
0	3	Backplane 1
1	4	V+
1	5	V-
1	6	Reference Input
0	7	Lo Ω
0	8	Hi Ω
$1 / O$	9	Deintegrate
$1 / O$	10	Analog Common
1	11	Int I
1	12	Int V/ Ω
1	13	Triple Point
1	14	Auto Zero Capacitor (CAZ $)$
1	15	Integrate Capacitor $\left(C_{I N T}\right)$
0	16	Beeper Output
1	17	mA/ $/ \mathrm{A}$
1	18	$\Omega \Omega / \mathrm{A}$
1	19	Hi Ω DC/Lo Ω AC

VO	PIN NUMBER	DESCRIPTION
1	20	Hold
0	21	Oscillator Out
1	22	Oscillator In
0	23	Segment DRIVER K/m
0	24	Segment Driver Ω / A
0	25	Segment Driver M $\Omega / \mu \mathrm{A}$
0	26	Segment Driver Lo BatN
0	27	Segment Driver $\mathrm{B}_{0} / \mathrm{C}_{0}$
0	28	Segment Driver $\mathrm{A}_{0} / \mathrm{D}_{0}$
0	29	Segment Driver $\mathrm{G}_{0} / \mathrm{E}_{0}$
0	32	Segment Driver A_{1} / D_{1}
0	33	Segment Driver $\mathrm{G}_{1} / \mathrm{E}_{1}$
0	34	Segment Driver $\mathrm{F}_{1} / \mathrm{DP}_{1}$
0	35	Segment Driver $\mathrm{B}_{2} / \mathrm{C}_{1}$
0	39	Segment Driver $\mathrm{B}_{3} / \mathrm{C}_{3}$
0	40	Segment Driver $\mathrm{ADG}_{3} / \mathrm{E}_{3}$

NOTE: For segment drivers, segments are listed as (segment for backplane 1)/(segment for backplane 2). Example: pin 27; segment B_{0} is on backplane 1 , segment C_{0} is on backplane 2.

Detailed Description

General

The Functional Block Diagram shows the digital section which includes all control logic, counters, and display drivers. The digital section is powered by $\mathrm{V}+$ and Digital Common, which is about 3 V below $\mathrm{V}+$. The oscillator is also in the digital section. Normally 120 kHz for rejection of 60 Hz AC interference and 100 kHz for rejection of 50 Hz AC should be used. The oscillator output is divided by two to generate the internal master clock. The analog section contains the integrator, comparator, reference section, analog buffers, and several analog switches which are controlled by the digital logic. The analog section is powered from V+ and V-.

FIGURE 2. DISPLAY SEGMENT NOMENCLATURE

DC Voltage Measurement

Autozero

Only those portions of the analog section which are used during DC voltage measurements are shown in Figure 3. As shown in the timing diagram (Figure 1), each measurement starts with an autozero (AZ) phase. During this phase, the integrator and comparator are configured as unity gain buffers and their non-inverting inputs are connected to Common. The output of the integrator, which is equal to its offset, is stored on C_{AZ} - the autozero capacitor. Similarly, the offset of the comparator is stored in $\mathrm{C}_{\mathbb{N T T}}$. The autozero cycle equals 1000 clock cycles which is one 60 Hz line cycle with a 120 kHz oscillator, or one 50 Hz line cycle with a 100 kHz oscillator.

Range 1 Integrate

The ICL7139 and ICL7149 perform a full autorange search for each reading, beginning with range 1. During the range 1 integrate period, internal switches connect the INT V/ Ω terminal to the Triple Point (Pin 13). The input signal is integrated for 10 clock cycles, which are gated out over a period of 1000 clock cycles to ensure good normal mode rejection of $A C$ line interference.

FIGURE 3. DETAILED CIRCUIT DIAGRAM FOR DC VOLTAGE MEASUREMENT

Range 1 Deintegrate

At the beginning of the deintegrate cycle, the polarity of the voltage on the integrator capacitor ($\mathrm{C}_{\mathbb{I N T}}$) is checked, and either the DEINT+ or DEINT- is asserted. The integrator capacitor $\mathrm{C}_{\mathbb{I N T}}$ is then discharged with a current equal to $\mathrm{V}_{\mathrm{REF}} / \mathrm{R}_{\mathrm{DEINT}}$. The comparator monitors the voltage on $\mathrm{C}_{\text {INT }}$. When the voltage on $\mathrm{C}_{\mathbb{N} T}$ is reduced to zero (actually to the V_{OS} of the comparator), the comparator output switches, and the current count is latched. If the $\mathrm{C}_{\mathrm{INT}}$ voltage zero-crossing does not occur before 4000 counts have elapsed, the overload flag is set. "OL" (overload) is then displayed on the LCD. If the latched result is between 360 and 3999, the count is transferred to the output latches and is displayed. When the count is less than 360, an underrange has occurred, and the ICL7139 and ICL7149 then switch to range 2 - the 40V scale.

Range 2

The range 2 measurement begins with an autozero cycle similar to the one that preceded range 1 integration. Range 2 cycle length however, is one AC line cycle, minus 360 clock cycles. When performing the range 2 cycle, the signal is integrated for 100 clock cycles, distributed throughout one line cycle. This is done to maintain good normal mode rejection. Range 2 sensitivity is ten times greater than range 1 (100 vs 10 clock cycle integration) and the full scale voltage of range 2 is 40 V . The range 2 deintegrate cycle is identical to the range 1 deintegrate cycle, with the result being displayed only for readings greater than 360 counts. If the reading is below 360 counts, the ICL7139 and ICL7149 again asserts the internal underrange signal and proceeds to range 3.

Range 3

The range 3 V or 4 V full scale measurement is identical to the range 2 measurement, except that the input signal is integrated during the full 1000 clock cycles (one line frequency cycle). The result is displayed if the reading is greater than 360 counts. Underrange is asserted, and a range 4 measurement is performed if the result is below 360 counts.

Range 4

This measurement is similar to the range 1,2 and 3 measurements, except that the integration period is 10,000 clock cycles (10 line cycles) long. The result of this measurement is transferred to the output latches and displayed even if the reading is less than 360.

Autozero

After finding the first range for which the reading is above 360 counts, the display is updated and an autozero cycle is entered. The length of the autozero cycle is variable which results in a fixed measurement period of 24,000 clock cycles (24 line cycles).

DC Current

Figure 4 shows a simplified block diagram of the analog section of the ICL7139 and ICL7149 during DC current measurement. The DC current measurements are very similar to DC voltage measurements except: 1) The input voltage is developed by passing the input current through a 0.1Ω (HI current ranges), or 9.9Ω (LOW current ranges)

FIGURE 4. DETAILED CIRCUIT DIAGRAM FOR DC CURRENT MEASUREMENT
current sensing resistor; 2) Only those ranges with 1000 and 10,000 clock cycles of integration are used; 3) The $\mathrm{R}_{\text {INT }}$ I resistor is $1 \mathrm{M} \Omega$, rather than the $10 \mathrm{M} \Omega$ value used for the RINTV resistor.
By using the lower value integration resistor, and only the 2 most sensitive ranges, the voltage drop across the current sensing resistor is 40 mV maximum on the 4 mA and 400 mA ranges; 400 mV maximum on the 40 mA and 4 A scales. With some increase in noise, these "burden" voltages can be reduced by lowering the value of both the current sense resistors and the $\mathrm{R}_{\mathbb{I N T}}$, resistor proportionally. The DC current measurement timing diagram is similar to the DC voltage measurement timing diagram, except in the DC current timing diagram, the first and second integrate and deintegrate phases are skipped.

AC Voltage Measurement for ICL7139

As shown in Figure 5, the AC input voltage is applied directly to the ICL7139 input resistor. No separate AC to DC conversion circuitry is needed. The AC measurement cycle is begun by disconnecting the integrator capacitor and using the integrator as an autozeroed comparator to detect the
positive-going zero crossing. Once synchronized to the AC input, the autozero loop is closed and a normal integrate/ deintegrate cycle begins. The ICL7139 resynchronizes itself to the AC input prior to every reading. Because diode D4 is in series with the integrator capacitor, only positive current from the integrator flows into the integrator capacitor, $\mathrm{C}_{\mathrm{INT}}$. Since the voltage on $\mathrm{C}_{\mathrm{INT}}$ is proportional to the half-wave rectified average AC input voltage, a conversion factor must be applied to convert the reading to RMS. This conversion factor is $\pi / 2 \sqrt{2}=1.1107$, and the system clock is manipulated to perform the RMS conversion. As a result the deintegrate and autozero cycle times are reduced by 10%.

AC Voltage Measurement for ICL7149

The ICL7149 is designed to be used with an optional AC to DC voltage converter circuit. It will autorange through two voltage ranges (400 V and 40 V), and the AC annunciator is enabled. A typical averaging AC to DC converter is shown in Figure 6, while an RMS to DC converter is shown in Figure 7. AC current can also be measured with some simple modifications to either of the two circuits in Figures 6 and 7.

FIGURE 5. DETAILED CIRCUIT DIAGRAM FOR AC VOLTAGE MEASUREMENT FOR ICL7139 ONLY

FIGURE 6. AC VOLTAGE MEASUREMENT USING OPTIONAL AVERAGING CIRCUIT

FIGURE 7. AC VOLTAGE MEASUREMENT USING OPTIONAL RMS CONVERTER CIRCUIT

FIGURE 8. DETAILED CIRCUIT DIAGRAM FOR RATIOMETRIC Ω MEASUREMENT

Ratiometric Ω Measurement

The ratiometric Ω measurement is performed by first integrating the voltage across an unknown resistor, R_{X}, then effectively deintegrating the voltage across a known resistor ($\mathrm{R}_{\mathrm{KNOWN} 1}$ or $\mathrm{R}_{\mathrm{KNOWN} 2}$ of Figure 8). The shunting effect of $\mathrm{R}_{\text {INTV }}$ does not affect the reading because it cancels exactly between integration and deintegration. Like the current measurements, the Ω measurements are split into two sets of ranges. LO Ω measurements use a $10 \mathrm{k} \Omega$ reference resistor, and the full scale ranges are $4 \mathrm{k} \Omega$ and $40 \mathrm{k} \Omega \mathrm{HI} \Omega$ measurements use a $1 \mathrm{M} \Omega$ reference resistor, and the full scale ranges are $0.4 \mathrm{M} \Omega$ and $4 \mathrm{M} \Omega$ The measurement phases and timing are the same as the measurement phases and timing for DC current except: 1) During the integrate phases the input voltage is the voltage across the unknown resistor R_{X}, and; 2) During the deintegrate phases, the input voltage is the voltage across the reference resistor $\mathrm{R}_{\mathrm{KNOWN} 1}$ or $\mathrm{R}_{\mathrm{KNOWN} 2}$.

Continuity Indication

When the ICL7139 and ICL7149 are in the LO Ω measurement mode, the continuity circuit of Figure 9 will be active. When the voltage across R_{X} is less than approximately 100 mV , the beeper output will be on. When $\mathrm{R}_{\mathrm{KNO}}$. wn is $10 \mathrm{k} \Omega$ the beeper output will be on when R_{X} is less than $1 \mathrm{k} \Omega$

FIGURE 9. CONTINUITY BEEPER DRIVE CIRCUIT

Common Voltage

The analog and digital common voltages of the ICL7139 and ICL7149 are generated by an on-chip resistor/zener/diode combination, shown in Figure 10. The resistor values are chosen so the coefficient of the diode voltage cancels the positive temperature coefficient of the zener voltage. This voltage is then buffered to provide the analog common and the digital common voltages. The nominal voltage between $\mathrm{V}+$ and analog common is 3 V . The analog common buffer can sink about 20 mA , or source 0.01 mA , with an output impedance of 10Ω A pullup resistor to $V+$ may be used if more sourcing capability is desired. Analog common may be used to generate the reference voltage, if desired. tal in a Pierce oscillator configuration, as shown in Figure 11, and requires no other external components. The crystal eliminates the need to trim the oscillator frequency. An external signal may be capacitively coupled in OSC IN, with a signal level between 0.5 V and 3 V pk-pk. Because the OSC

FIGURE 10. ANALOG AND DIGITAL COMMON VOLTAGE GENERATOR CIRCUIT

Oscillator

The ICL7139 and ICL7149 use a parallel resonant-type crys-

OUT pin is not designed to drive large external loads, loading on this pin should not exceed a single CMOS input. The oscillator frequency is internally divided by two to generate the ICL7139 and ICL7149 clock. The frequency should be 120 kHz to reject 60 Hz AC signals, and 100 kHz to reject 50 Hz signals.

FIGURE 11. INTERNAL OSCILLATOR CIRCUIT DIAGRAM

Display Drivers

Figure 12 shows typical LCD Drive waveforms, RMS ON, and RMS OFF voltage calculations. Duplex multiplexing is used to minimize the number of connections between the ICL7139 and ICL7149 and the LCD. The LCD has two separate backplanes. Each drive line can drive two individual segments, one referenced to each backplane. The ICL7139 and ICL7149 drive $3^{3} / 4$ 7-segment digits, 3 decimal points, and 11 annunciators. Annunciators are used to indicate polarity, low battery condition, and the range in use. Peak drive voltage across the display is approximately 3 V . An LCD with approximately 1.4V RMS threshold voltage should be used. The third voltage level needed for duplex drive waveforms is generated through an on-chip resistor string. The DC component of the drive waveforms is guaranteed to be less than 50 mV .

Ternary Input

The $\Omega /$ Volts/Amps logic input is a ternary, or 3 -level input. This input is internally tied to the common voltage through a high-value resistor, and will go to the middle, or "Volts" state, when not externally connected. When connected to V -, approximately $5 \mu \mathrm{~A}$ of current flows out of the input. In this case, the logic level is the "Amps", or low state. When connected to V_{+}, about $5 \mu \mathrm{~A}$ of current flows into the input. Here, the logic level is the " Ω ", or high state. For other pins, see Table 2.

TABLE 2. TERNARY INPUTS CONNECTIONS

PIN NUMBER	V_{+}	OPEN OR COM	V-
17	mA	$\mu \mathrm{~A}$	Test
18	Ω	V	Amps
19	Hi $/ \mathrm{DC}$	Lo $/$ AC	Test
20	Hold	Auto	Test

Component Selection

For optimum performance while maintaining the low-cost advantages of the ICL7139 and ICL7149, care must be taken when selecting external components. This section reviews specifications and performance effects of various external components.

FIGURE 12. DUPLEXED LCD DRIVE WAVEFORMS

Integrator Capacitor, $\mathbf{C l N T}_{\text {IN }}$

As with all dual-slope integrating convertors, the integration capacitor must have low dielectric absorption to reduce linearity errors. Polypropylene capacitors add undetectable errors at a reasonable cost, while polystyrene and polycarbonate may be used in less critical applications. The ICL7139 and ICL7149 are designed to use a 3.3 nF $(0.0033 \mu \mathrm{~F}) \mathrm{C}_{\mathbb{I N T}}$ with an oscillator frequency of 120 kHz and an $\mathrm{R}_{\text {INTV }}$ of $10 \mathrm{M} \Omega$ With a 100 kHz oscillator frequency (for 50 Hz line frequency rejection), $\mathrm{C}_{\mathrm{INT}}$ and $\mathrm{R}_{\text {INTV }}$ affects the voltage swing of the integrator. Voltage swing should be as high as possible without saturating the integrator. Saturation occurs when the integrator output is within IV of either V+ or V -. Integrator voltage swing should be about $\pm 2 \mathrm{~V}$ when using standard component values. For different $\mathrm{R}_{\text {INTV }}$ and oscillator frequencies the value of $\mathrm{C}_{\mathbf{I N T}}$ can be calculated from:

$$
\begin{aligned}
\mathrm{C}_{\text {INT }} & =\frac{(\text { Integrate Time }) \times \text { (Integrate Current })}{(\text { Desired Integrator Swing) }} \\
& =\frac{\left(10,000 \times 2 \times \text { Oscillator Period) } \times 0.4 \mathrm{~V} / \mathrm{R}_{\text {INTV }}\right.}{(2 \mathrm{~V})}
\end{aligned}
$$

Integrator Resistors

The normal values of the $R_{\mathbb{N T T} V}$ and $R_{\mathbb{I N T},}$ resistors are $10 \mathrm{M} \Omega$ and $1 \mathrm{M} \Omega$ respectively. Though their absolute values are not critical, unless the value of the current sensing resistors are trimmed, their ratio should be $10: 1$, within 0.05%. Some carbon composition resistors have a large voltage coefficient which will cause linearity errors on the 400V scale. Also, some carbon composition resistors are very noisy. The class " A " output of the integrator begins to have nonlinearities if required to sink more than $70 \mu \mathrm{~A}$ (the sourcing limit is much higher). Because $\mathrm{R}_{\mathbb{I N T}}$ v drives a virtual ground point, the input impedance of the meter is equal to $\mathrm{R}_{\text {INT V }}$.

Deintegration Resistor, R REINT

Unlike most dual-slope AD converters, the ICL7139 and ICL7149 use different resistors for integration and deintegration. $\mathrm{R}_{\text {DEINT }}$ should normally be the same value as $\mathrm{R}_{\mathbb{I N T}} \mathrm{v}$, and have the same temperature coefficient. Slight errors in matching may be corrected by trimming the reference voltage.

Autozero Capacitor, $\mathrm{C}_{\text {AZ }}$

The $C_{A Z}$ is charged to the integrator's offset voltage during the autozero phases, and subtracts that voltage from the input signal during the integrate phases. The integrator thus appears to have zero offset voltage. Minimum $C_{A Z}$ value is determined by: 1) Circuit leakages; 2) $\mathrm{C}_{A Z}$ self-discharge; 3) Charge injection from the internal autozero switches. To avoid errors, the C_{AZ} voltage change should be less than $1 / 10$ of a count during the 10,000 count clock cycle integration period for the 400 mV range. These requirements set a lower limit of $0.047 \mu \mathrm{~F}$ for $\mathrm{C}_{A Z}$ but $0.1 \mu \mathrm{~F}$ is the preferred value. The upper limit on the value of $C_{A Z}$ is set by the time constant of the autozero loop, and the 1 line cycle time period allotted to autozero. $\mathrm{C}_{A Z}$ may be several 10s of $\mu \mathrm{F}$ before approaching this limit.

The ideal $\mathrm{C}_{A Z}$ is a low leakage polypropylene or Teflon capacitor. Other film capacitors such as polyester, polystyrene, and polycarbonate introduce negligible errors. If a few seconds of settling time upon power-up is acceptable, the $\mathrm{C}_{A Z}$ may be a ceramic capacitor, provided it does not have excessive leakage.

Ω Measurement Resistors

Because the ICL7139 and ICL7149 use a ratiometric Ω measurement technique, the accuracy of Ω reading is primarily determined by the absolute accuracy of the R RNOWN 1 and $R_{\text {KNOWN2 } 2}$. These should normally be $10 \mathrm{k} \Omega$ and $1 \mathrm{M} \Omega$, with an absolute accuracy of at least 0.5%.

Current Sensing Resistors

The 0.1Ω and 9.9Ω current sensing resistors convert the measured current to a voltage, which is then measured using $\mathrm{R}_{\text {INT I }}$. The two resistors must be closely matched, and the ratio between $\mathrm{R}_{\text {INT }}$ I and these two resistors must be accurate - normally 0.5%. The 0.1Ω resistor must be capable of handling the full scale current of 4 amps , which requires it to dissipate 1.6 watts.

Continulty Beeper

The Continuity Beeper output is designed to drive a piezoelectric transducer at 2 kHz (using a 120 kHz crystal), with a voltage output swing of $\mathrm{V}+$ to V -. The beeper output off state is at the $V+$ rail. When crystals with different frequencies are used, the frequency needed to drive the transducer can be calculated by dividing the crystal frequency by 60.

Display

The ICL7139 and ICL7149 use a custom, duplexed drive display with range, polarity, and low battery annunciators. With a 3V peak display voltage, the RMS ON voltage will be 2.37V minimum; RMS OFF voltage will be 1.06 V maximum. Because the display voltage is not adjustable, the display should have a 10% ON threshold of about 1.4 V . Most display manufacturers supply a graph that shows contrast versus RMS drive voltage. This graph can be used to determine what the contrast ratio will be when driven by the ICL7139 and ICL7149. Most display thresholds decrease with increasing temperature. The threshold at the maximum operating temperature should be checked to ensure that the "off" segments will not be turned "on" at high temperatures.

Crystal

The ICL7139 and ICL7149 are designed to use a parallel resonant 120 kHz or 100 kHz crystal with no additional external components. The $\mathrm{R}_{\mathbf{S}}$ parameter should be less than $25 \mathrm{k} \Omega$ to ensure oscillation. Initial frequency tolerance of the crystal can be a relatively loose 0.05%.

Switches

Because the logic input draws only about $5 \mu \mathrm{~A}$, switches driving these inputs should be rated for low current, or "dry" operations. The switches on the external inputs must be able to reliably switch low currents, and be able to handle voltages in excess of 400V AC.

Reference Voltage Source

A voltage divider connected to $\mathrm{V}+$ and Common is the simplest source of reference voltage. While minimizing external component count, this approach will provide the same voltage tempco as the ICL7139 and ICL7149 Common - about 100PPM $/{ }^{\circ} \mathrm{C}$. To improve the tempco, an ICL8069 bandgap reference may be used (see Figure 13). The reference voltage source output impedance must be $\leq \mathrm{R}_{\text {DEINT }} / 4000$.

FIGURE 13. EXTERNAL VOLTAGE REFERENCE CONNECTION TO ICL7139 AND ICL7149

Applications, Examples, and Hints

A complete autoranging $3 \frac{3}{4}$ digit multimeter is shown in Figure 14. The following sections discuss the functions of specific components and various options.

Meter Protection

The ICL7139 and ICL7149 and their external circuitry should be protected against accidental application of 110/220V AC line voltages on the Ω and current ranges. Without the necessary precautions, both the ICL7139 and ICL7149 and their external components could be damaged under such fault conditions. For the current ranges, fast-blow fuses should be used between S5A in Figure 14 and the 0.1Ω and 9.9Ω shunt resistors. For the Ω ranges, no additional protection circuitry is required. However, the $10 \mathrm{k} \Omega$ resistor connected to pin 7 must be able to dissipate 1.2 W or 4.8 W for short periods of time during accidental application of 110 V or 220 V AC line voltages respectively.

NOTES:

1. Crystal is a Statek or SaRonix CX-IV type.
2. Multimeter protection components have not been shown.
3. Display is from LXD, part number 38D8R02H (or equivalent).
4. Beeper is from muRata, part number PKM24-4AO (or equivalent).

FIGURE 14. BASIC MULTIMETER APPLICATION CIRCUIT FOR ICL7139 AND ICL7149

Printed Circuit Board Layout Considerations

Particular attention must be paid to rollover performance, leakages, and guarding when designing the PCB for a ICL7139 and ICL7149 based multimeter.

FIGURE 15. PC BOARD LAYOUT

Rollover Performance, Leakages, and Guarding

Because the ICL7139 and ICL7149 system measures very low currents, it is essential that the PCB have low leakage. Boards should be properly cleaned after soldering. Areas of particular importance are: 1) The INT V/ Ω and INT I Pins; 2) The Triple Point; 3) The R DEINT and the $C_{A Z}$ pins.
The conversion scheme used by the ICL7139 and ICL7149 changes the common mode voltage on the integrator and the capacitors $\mathrm{C}_{A Z}$ and $\mathrm{C}_{\mathbb{I N T}}$ during a positive deintegrate cycle. Stray capacitance to ground is charged when this occurs, removing some of the charge on $\mathrm{C}_{\mathrm{INT}}$ and causing rollover error. Rollover error increases about 1 count for each
picofarad of capacitance between $\mathrm{C}_{\mathrm{A} Z}$ or the Triple Point and ground, and is seen as a zero offset for positive voltages. Rollover error is not seen as gain error.
The rollover error causes the width of the +0 count to be larger than normal. The ICL7139 and ICL7149 will thus read zero until several hundred $\mu \mathrm{V}$ are applied in the positive direction. The ICL7139 and ICL7149 will read -1 when approximately $-100 \mu \mathrm{~V}$ is applied.
The rollover error can be minimized by guarding the Triple Point and $C_{A Z}$ nodes with a trace connected to the $C_{\mathbb{N}_{N T}}$ pin, (see Figure 15) which is driven by the output of the integrator. Guarding these nodes with the output of the integrator reduces the stray capacitance to ground, which minimizes the charge error on $\mathrm{C}_{\mathbb{I N T}}$ and $\mathrm{C}_{A Z}$. If possible, the guarding should be used on both sides of the PC board.

Stray Pickup

While the ICL7139 and ICL7149 have excellent rejection of line frequency noise and pickup in the DC ranges, any stray coupling will affect the AC reading. Generally, the analog circuitry should be as close as possible to the ICL7139 and ICL7149. The analog circuitry should be removed or shielded from any 120V AC power inputs, and any AC sources such as LCD drive waveforms. Keeping the analog circuit section close to the ICL7139 and ICL7149 will also help keep the area free of any loops, thus reducing magnetically coupled interference coming from power transformers, or other sources.

A/D CONVERTERS - INTEGRATING

PAGE

AD CONVERTERS - INTEGRATING DATA SHEETS
HI-7159A Microprocessor Compatible 5½ Digit AND Converter. 3-3
ICL7109 12-Bit Microprocessor Compatible A/D Converter . 3-17
ICL7135 $\quad 4 \frac{1}{2}$ Digit BCD Output AND Converter . 3-40

NOT RECOMMENDED FOR NEW DESIGN

December 1993

Features

- $\pm 200,000$ Count AD Converter
- 2V Full Scale Reading With $10 \mu \mathrm{~V}$ Resolution
- 15 Conversions Per Second in $5 \frac{1}{2}$ Digit Mode
- 60 Conversions Per Second in $\mathbf{4} / \mathbf{2}$ Digit Mode
- Serial or Parallel Interface Modes
- Four Selectable Baud Rates
- Differential Analog Input
- Differential Reference Input
- Digital Autozero

Applications

- Weigh Scales
- Part Counting Scales
- Laboratory Instruments
- Process Control/Monitoring
- Energy Management
- Seismic Monitoring

Microprocessor Compatible 5 $1 / 2$ Digit A/D Converter

Description

The Harris HI-7159A is a monolithic A/D converter that uses a unique dual slope technique which allows it to resolve input changes as small as 1 part in $200,000(10 \mu \mathrm{~V})$ without the use of critical external components. Its digital autozeroing feature virtually eliminates zero drift over temperature. The device is fabricated in Harris' proprietary low noise BiMOS process, resulting in exceptional linearity and noise performance. The HI-7159A's resolution can be switched between a high resolution 200,000 count ($5 \frac{1}{2}$ digit) mode, and a high speed 20,000 count ($4 \frac{1}{2}$ digit) mode without any hardware modifications. In the $4 / 2$ digit uncompensated mode, speeds of 60 conversions per second can be achieved. The HI-7159A is designed to be easily interfaced with most microprocessors through either of its three serial and one parallel interface modes. In the serial modes, any one of four common baud rates is available.

Ordering Information

PART NUMBER	TEMPERATURE RANGE	PACKAGE
H $33-7159 \mathrm{~A}-5$	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	28 Lead Plastic DIP

Pinout

HI-7159A
(PDIP)
TOP VIEW

Functional Block Diagram

Absolute Maximum Ratings

Supply Voltage

Thermal Information

Thermal Resistance
Plastic DIP Package
$.55^{\circ} \mathrm{C} / \mathrm{N}$
Operating Temperature . $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Maximum Power Dissipation ($+25^{\circ} \mathrm{C}$) 300mW
Derate Above $+70^{\circ} \mathrm{C}$ by $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Junction Temperature
$+150^{\circ} \mathrm{C}$

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Electrical Specifications Test Conditions: $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V}, \mathrm{D}_{\mathrm{GND}}=0 \mathrm{~V}, \mathrm{~A}_{\mathrm{GND}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{REFH}}=+1.00000 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}} L 0=A G N D$, $f_{C L O C K}=2.40 \mathrm{MHz}, \mathrm{R}_{\text {INT }}=400 \mathrm{k} \Omega, \mathrm{C}_{\text {INT }}=0.01 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{INLO}}=A_{G N D} \mathrm{C}_{\mathrm{REF}}=1.0 \mu \mathrm{~F}, 5^{1 / 2}$ Digit Compensated Mode, Unless Otherwise Specified.

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Integral Non-Linearity, INL	$0.0 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq+2.0 \mathrm{~V}$ (Notes 1, 2, 3, 4)	-	± 0.0015	± 0.0035	\% FS
	$-2.0 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 0.0 \mathrm{~V}$ (Notes 1, 2, 3, 4)	-	± 0.0015	± 0.0035	\% FS
Ratiometric Reading	$\mathrm{V}_{\text {IN H }}=\mathrm{V}_{\text {REF HI }}=1.00000 \mathrm{~V}$	99997	100000	100003	Counts
Zero Error, ZE	$\mathrm{V}_{\text {IN HI }}=0.00000 \mathrm{~V}$	-	0	± 1	Counts
Voltage Range of $\mathrm{V}_{\text {IN LO }}$ Input (pin 13), $\mathrm{V}_{\text {INLO }}$	$-2 \mathrm{~V} \leq \mathrm{V}_{\text {IN HI }}-\mathrm{V}_{\text {INLO }} \leq 2 \mathrm{~V}$	-1	-	1	V
Voltage Range of $\mathrm{V}_{\text {IN HI }}$ Input (pin 12), $\mathrm{V}_{\text {IN HI }}$	$-2 \mathrm{~V} \leq \mathrm{V}_{\text {INHI }}-\mathrm{V}_{\text {INLO }} \leq 2 \mathrm{~V}$	$\mathrm{V}_{\mathrm{IN} \text { LO-2 }} \mathbf{V}$	-	$\mathrm{V}_{\text {INLO }}+2 \mathrm{~V}$	V
Common Mode Rejection, CMR	$\mathrm{V}_{\text {IN HI }}=\mathrm{V}_{\text {IN LO }}=-3 \mathrm{~V}$ to +3 V	-	3	-	Counts
Input Leakage Current, $\mathrm{I}_{\text {N }}$	Pins 9, 10, 12, 13, $\mathrm{V}_{\mathrm{IN}}=+3 \mathrm{~V},-3 \mathrm{~V}$	-	-	± 1	nA
Input Capacitance, $\mathrm{C}_{\mathbf{N}}$	Pins 9, 10, 12, 13	-	5	\bullet	pF
Noise (Peak-to-Peak value, not exceeded 95% of time), e_{N}		-	± 1	-	Counts
Zero Drift, $\mathrm{T}_{\text {c(zE) }}$	$\mathrm{V}_{\text {IN HI }}=0.00000 \mathrm{~V}$	-	0	-	Counts ${ }^{\circ} \mathrm{C}$
Full Scale Error Tempco, ${ }_{\text {C(FSE) }}$	$\mathrm{V}_{\text {IN H }}= \pm 2.00000 \mathrm{~V}$	-	± 0.1	-	Counts ${ }^{\circ} \mathrm{C}$
Supply Range, $\mathbf{V}_{\text {SUPPLY }}$ $v_{c c}$		+4.75	+5.0	+5.5	V
V_{EE}		-4.75	-5.0	-5.5	\checkmark
$\mathrm{V}_{\text {cc }}$ Supply Current, Icc		-	-	10	mA
$\mathrm{V}_{\text {EE }}$ Supply Current, IEE		-	-	4.5	mA
Digital GND Current, ${ }_{\text {DGND }}$		-	-	5.5	mA
Analog GND Current, ${ }_{\text {AGND }}$		-	+3	-	$\mu \mathrm{A}$
$\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\text {EE }}$ Power Supply Rejection, PSR	$\begin{aligned} & V_{I N H I}=V_{\text {REF HI }}=1.00000 \mathrm{~V} \\ & V_{C C}=+4.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-4.75 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} \\ & =+5.50 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5.50 \mathrm{~V} \end{aligned}$	-	3	-	Counts
Guard Driver Pins 5, 8 Output Current, Iogd	$\mathrm{V}_{\text {IN }}($ pins 9,10$)=+3 \mathrm{~V},-3 \mathrm{~V}$	± 10	-	-	$\mu \mathrm{A}$

NOTES:

1. All typical values have been characterized but are not production tested.
2. Not production tested, guaranteed by design and characterization.
3. Reference adjusted for correct full-scale reading.
4. $V_{I N}=V_{I N H I}-V_{I N L O}$

Digital Performance, DC Characteristics Test Conditions: $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V}, \mathrm{D}_{\mathrm{GND}}=0 \mathrm{~V}, \mathrm{~A}_{\mathrm{GND}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{REFHI}}=+1.00000 \mathrm{~V}$, $V_{\text {REF LO }}=A_{\text {GND }} f_{\text {CLOCK }}=2.40 \mathrm{MHZ}, R_{I N T}=400 \mathrm{k} \Omega, C_{I N T}=0.01 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\text {INLO }}$ $=A_{G N D} C_{\text {REF }}=1.0 \mu \mathrm{~F}, 5^{1 / 2}$ Digit Compensated Mode, Unless Otherwise Specified

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Input Low Voltage, $\mathrm{V}_{\text {IL }}$	Pins 15-25, 28	-	-	0.8	V
Input High Voltage, V_{IH}	Pins 15-25, 28	2.0	-	-	v
Output Low Voltage, V_{OL}	Pins 16, 18-25, $\mathrm{IOL}=1.6 \mathrm{~mA}$	-	-	0.4	V
Output High Voltage, V_{OH}	Pins 16, 18-25, $\mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$	2.4	-	-	V
Tri-State Leakage Current, Pins 18-25, loL	All Digital Drivers In High Impedance State, Parallel Mode. CS = V_{Cc}, $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}$	\bullet	-	± 10	$\mu \mathrm{A}$
Leakage, Pins 15-17, 28, I_{N}	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}$	-	-	± 1	$\mu \mathrm{A}$
Input Capacitance, $\mathrm{C}_{\text {IN }}$	Pins 15, 17-25, 28	-	5	-	pF
	Pin 16	-	10	-	pF
Input Pullup Current (Pins 18-25), IPU	Pins 18-25 at $D_{G N D}$ SEL = $\mathrm{D}_{\mathrm{GND}}$ (Serial Modes)	-	-5	-	$\mu \mathrm{A}$

AC Characteristics $\left(T_{A}=0^{\circ} \mathrm{C}\right.$ to $+75^{\circ} \mathrm{C}$) Test Conditions: $\mathrm{V}_{\mathrm{CC}}=+4.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5.00 \mathrm{~V}$ (Note 3), $\mathrm{D}_{\mathrm{GND}}=0 \mathrm{~V}, \mathrm{~A}_{\mathrm{GND}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{INLO}}=\mathrm{A}_{\mathrm{GND}}$, $\mathrm{V}_{\text {REF HI }}=+1.00000 \mathrm{~V}, \mathrm{~V}_{\text {REF LO }}=A_{\text {GND }}, \mathrm{f}_{\mathrm{CLOCK}}=2.40 \mathrm{MHZ}, \mathrm{R}_{\text {INT }}=400 \mathrm{k} \Omega, \mathrm{C}_{\text {INT }}=0.01 \mu \mathrm{~F}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=4 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=$ $V_{\mathrm{OH}}=1.5 \mathrm{~V}, \mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}<10 \mathrm{~ns}, 5 \frac{1}{2}$ Digit Compensated Mode, Unless Otherwise Specified

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
$\overline{\text { CS }}$ Setup/Hold of $\overline{W R}, \mathrm{~T}_{1}$		0	-	-	ns
$\overline{\text { WR }}$ Setup of Data $\mathrm{In}, \mathrm{T}_{\mathbf{2}}$		50	-	-	ns
		150	-	-	ns
Data Hold After $\overline{W R}, T_{4}$		20	-	-	ns
$\overline{\mathrm{CS}}$ Setup/Hold of $\overline{\mathrm{RD}}, \mathrm{T}_{5}$	(Note 2)	25	-	-	ns
$\overline{\mathrm{RD}}$ to Data Out, T_{6}	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{O}}=1.5 \mathrm{~V}$	-	-	100	ns
$\overline{\mathrm{RD}}$ to High Z State, T_{7}		-	-	70	ns
$\overline{\mathrm{WR}}$ to $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}$ to $\overline{\mathrm{WR}}, \mathrm{T}_{\mathrm{A}}$	(Note 2)	5/fiock	-	-	s
$\overline{\mathrm{RD}}$ to $\overline{\mathrm{WR}}, \mathrm{T}_{\mathrm{B}}$	(Note 2)	200	-	-	ns
RXD Setup of Data In, $\mathrm{T}_{\mathbf{C}}$	(Note 2)	60	-	-	ns
Data Hold After EXT CLK, T_{D}		40	-	-	ns
EXT CLK to data out, T_{E}		-	-	300	ns
$\overline{\text { CS }}$ Setup of TXD, T_{F}		100	-	-	ns

NOTES:

1. All typical values have been characterized but are not production tested.
2. Not production tested, guaranteed by design and characterization.
3. All AC characteristics are guaranteed for $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} 15 \%, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V} 15 \%$, over $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$.

Timing Waveforms

FIGURE 1A. WRITE

FIGURE 1B. WRITE TO READ CYCLE

figure 1c. Write to write crcle

FIGURE 1D. READ

FIGURE 1E. READ TO WRITE CYCLE

FIGURE 1. PARALLEL MODE TIMING

FIGURE 2A. SERIAL MODE 0 TIMING

FIGURE 2B. SERIAL MODE TIMING
NOTE: All input timing shown is defined at 50% points.

Pin Description

Pin Description (Continued)

Theory of Operation

The $\mathrm{HI}-7159 \mathrm{~A}$ attains its $5 \frac{1}{2}$ digit resolution through the use of multiple integrations per conversion, creating an effective integrator swing greater than the supply rails, and a successive integration technique used to measure the residue on the integrator capacitor to $5 \frac{1}{2}$ digit accuracy.
In the $5 \frac{1}{2}$ digit mode, the input voltage is integrated and reference de-integrated four times. This results in a count with the same effective resolution as a single integration with four times the integrator swing amplitude. In this manner effective integrator swings of $\pm 12 \mathrm{~V}$ or greater can be achieved with $\pm 5 \mathrm{~V}$ supplies. The four integrations are spaced so that common-mode signals whose frequency is an integer multiple of $f_{\text {CRYSTAL }} / 40,000$ are rejected. In the $4 \frac{1}{2}$ digit mode, only one input integration is performed, thus the minimum frequency for common-mode rejection becomes ficrystal $/ 10,000$.
These first four integrations measure the input voltage to an resolution of $3 \frac{1}{2}$ digits, or $1 \mathrm{mV} /$ count. To achieve $5 \frac{1}{2}$ digit accuracy ($10 \mu \mathrm{~V} /$ count), the error voltage remaining on the integrator capacitor (representing the over-shoot of the integrator due to comparator delay and clock quantization) must be measured and subtracted from the $3 \frac{1}{2}$ digit result. This is accomplished by multiplying the residue by a factor of 10 , then integrating and reference de-integrating the error. This error is subtracted from the $3 \frac{1}{2}$ digit result, yielding a $4 \frac{1}{2}$ digit accurate result. The error remaining from this step is then multiplied by 10 and subtracted, and the process is repeated a third time to achieve an internal accuracy of $6 \frac{1}{2}$ digits. This result is rounded to $5 \frac{1}{2}$ digits and transferred to the holding register, where it can be accessed by the user through one of the three communications modes.

Conversion Types

The HI-7159A offers the user a choice of three different conversion types. They are: (1) the converter's internal off-set voltage, measured by internally connecting $\mathrm{V}_{\mathbb{I N H I}}$ and $\mathrm{V}_{\mathbb{I N} \text { LO }}$ to $\mathrm{A}_{\text {GND }}$ and doing a conversion (Error Only Mode); (2) the input voltage ($\mathrm{V}_{\mathbb{N} \text { HI }}$ minus $\mathrm{V}_{\mathbb{I N}}$ LO) including the converter's internal offset (Uncompensated Mode); and (3) the input voltage including internal offset errors, minus the internal offset errors (Compensated Mode). This last measurement is a digital subtraction of an Error Only conversion from an Uncompensated conversion, and is the default conversion type. Since a Compensated conversion consists of two conversions, it takes twice as long to perform as the first two types.

Under some conditions, it may be desirable to increase the conversion rate without loss of resolution or accuracy. Since the short term drift of the internal offset error is slight when temperature is controlled, it is not always necessary to convert the error voltage once for every input voltage conversion. It is possible for the host processor to do an error conversion periodically, store the result, and subtract the error from a stream of uncompensated input conversions with its own internal ALU. In this way the conversion rate can be effectively doubled.

Communication Modes

The HI-7159A AD converter receives instructions from and transmits data to the user host processor through one of four communication modes. The modes are: parallel microprocessor (Parallel); synchronous serial (Serial Mode 0); serial non-addressed (Serial Mode 1); and serial addressed (Serial Mode 2). The mode is determined by the states of the SEL, SMS0, and SMS1 pins as shown in Table 1.

The parallel mode allows the converter to be attached directly to a microprocessor data bus. Data is read and written to the device under control of the microprocessor's $\overline{\mathrm{RD}}$, $\overline{\mathrm{WR}}$ and $\overline{\mathrm{CS}}$ signals. Serial Mode 0 permits high speed serial data transfer at up to 1 megabits/sec. Serial Mode 1 reads and writes industry standard serial data packets consisting of 1 start bit, 8 data bits, 1 parity bit (EVEN), and 1 stop bit, at one of 4 hardware selectable baud rates. Serial Mode 2 is identical to Serial Mode 1 with the addition of addressing capabilities which allow up to 32 HI-7159As to share the same serial line, with each assigned a unique address.

TABLE 1. COMMUNICATION MODE SELECTION

COMMUNICATION MODE	SEL PIN 28	SM S0 PIN 18	SM S1 PIN19
Parallel	V_{CC}	N/A	N/A
Serial 0	$\mathrm{D}_{\mathrm{GND}}$	$\mathrm{D}_{\mathrm{GND}}$	$\mathrm{D}_{\mathrm{GND}}$
Serial 1	$\mathrm{D}_{\mathrm{GND}}$	$\mathrm{D}_{\mathrm{GND}}$	V_{CC}
Serial 2	$\mathrm{D}_{\mathrm{GND}}$	V_{CC}	$\mathrm{D}_{\mathrm{GND}}$

All four modes follow the same interface protocol: a request or a command is sent from the host to the HI-7159A, and the converter responds with the requested data and, in the case of a command, begins a new conversion.

Parallel Mode Operation

The parallel communication mode (Figure 3) is selected when SEL (pin 28) is high. Pins $18-25$ become the eight bidirectional data bits, PO-P7. Pins 15, 16, and 17 respectively
 parameters for the parallel mode are shown in Figure 1.

Serial Mode 0

Serial Mode 0 is the high speed synchronous serial interface, directly compatible with the MCS-51 series of microcontrollers. It is enabled by tying SEL (pin 28), SMSO (pin 18) and SMS1 (pin 19) low (Figure 4A). Pin 16 is the bi-direction serial data path, and pin 15 is the data clock input. Data sent to the HI-7159A is latched on the rising edge of the serial clock. See Figure 2A for detailed timing information.

Only 8 databits are used in this mode-no start, stop, or parity bits are transmitted or received. $\overline{\mathrm{CS}}$ must either be tied to $\mathrm{D}_{\mathrm{GND}}$ or pulled low to access the device. The SADO - SAD3 and BRSO BRS1 pins are unused in this mode and should be tied high.

Serial Mode 1

Serial Mode 1 is selected by tying SMS0 (pin 18) low, SMS1 (pin 19) high, and SEL (pin 28) low (Figure 4B). In this mode the HI-7159A interface emulates a UART, reading and writing data in serial data packets of 1 start bit, 8 data bits, 1 parity bit (EVEN), and 1 stop bit. The baud rate is determined by the state of BRS0 and BRS1 (pins 24 and 25) as shown in Table 2. Pin 15 becomes the serial receiver pin (RXD) and pin 16 the serial transmitter pin (TXD). $\overline{\mathrm{CS}}$ (pin 17) remains a chip select and must either be tied to $D_{G N D}$ or pulled low (see Figure 2B) to access the device. SADOSAD3 (pins 20-23) are unused in this mode and should be tied high.

TABLE 2. BAUD RATE SELECTION FOR MODES 1 AND 2

FIGURE 3. PARALLEL MODE CONFIGURATION

Design Hints for Operating in the Parallel Mode

1. Always read the status byte twice to make sure that it is cleared.
2. Make sure the status byte is cleared before issuing a command to change modes.
3. Read each digit pair five times before reading the next byte to ensure that the output data is correct.
4. Use a watchdog timer to monitor conversion time. If conversion time is either too long or too short, re-issue the conversion command.

FIGURE 4A. SERIAL MODE 0

FIGURE 4B. SERIAL MODE 1

FIGURE 4C. SERIAL MODE 2
FIGURE 4. SERIAL MODE CONFIGURATIONS

Serial Mode 2

Serial Mode 2 is selected by tying SEL (pin 28) low, SMSO (pin 18) high, and SMS1 (pin 19) low, as shown in Figure 4C. This mode of operation is identical to Serial Mode 1, except that each device now has one of 32 unique addresses determined by the state of pins 20-23 and 17, as shown in Table 3. This allows multiple HI-7159As to be attached to the same pair of serial lines.
When the microprocessor sends out an Address Byte (Table 4) that matches one of the HI-7159As' hardwired addresses, that particular HI-7159A is selected for all further I/O until another Address Byte with a different address is transmitted.
TABLE 3. HARDWARE ADDRESS SELECTION FOR MODE 2

PIN 17	PIN 23	PIN 22	PIN 21	PIN 20
B4 (MSB)	B3	B2	B1	B0 (LSB)

Reading the HI-7159A

Despite the wide variety of interface options available on the HI-7159A, the procedure for communicating with it is essentially the same in all four modes. (Serial Mode 2 differs from the rest in two respects: the chip to be communicated with must first be sent an address byte to select it, and the digit bytes are sent one by one, for a total of six bytes, instead of in pairs.) There are two types of bytes that can be sent to the converter, commands and requests. A command byte (Table 5) sets the parameters of and initiates a conversion. Those parameters are: continuity of the conversion (single or continuous), resolution ($5 \frac{1}{2}$ or $4 \frac{1}{2}$ digits), and type of conversion (Compensated, Uncompensated, or Error Only). Bit D0 $=0$ indicates that this is a command byte and a new conversion(s) should be started.

A request byte (Table 6) asks for either the status of the converter or the result of a conversion. All bits of a request should be set to 0 except D3, D2, and D0. D3 and D2 determine the type of request (status or digit pair), and $D 0=1$ indicates to the HI-7159A that this is a request byte. Serial Mode 2 uses a slightly modified request byte, shown in Table 7, allowing it to individually select each of the six digit bytes.
Upon receipt of a request, the HI -7159A will respond with either a status or a digit byte. The status byte (Table 8) returns the current state of the converter. Bit D6 = 1 indicates that a new conversion has been completed since the last time the status byte was read. Bit D6 is cleared after it is read. Bit D4 shows the current continuity (single or continuous). Bit D3 indicates the resolution ($51 / 2$ or $41 / 2$ digits) of the conversion, and bits D2 and D1 indicate the type (Compensated, Uncompensated, or Error Only). Bit D0 $=0$ indicates that there was no parity error detected in the last request byte.
The three digit bytes (Table 9) each contain two nibbles representing two digits of the conversion. The sixth nibble contains the MSD (most significant digit), polarity ($1=$ positive) and overrange ($1=0$ verrange) information. In Serial Mode 2 the digits (Table 10) are requested and received individually, so a total of six requests and six reads is necessary to obtain all $5^{1 / 2}$ digits.

HI-7159A

TABLE 4. SERIAL MODE 2 ADDRESS BYTE FORMAT (SENT TO HL-7159A)

ADDRESS BIT	(RESERVED)		(MSB)			(LSB)	
D 7	D 6	D 5	D 4	D 3	D 2	D	
1	0	0	B 4	B 3	B 2	B 1	B 0

TABLE 5. COMMAND BYTE FORMAT (SENT TO HL7159A)

(RESERVED)			CONTINUITY		RESOLUTION		CONVERSION TYPE			COMMAND BIT
D7	D6	D5		D4		D3		D2	D1	DO
0	0	0	Single	0	$5^{1 / 2}$	1	Comp	1	1	0
			Continuous	1	$41 / 2$	0	Uncomp	1	0	
							Error Only	0	1	

TABLE 6. REQUEST BYTE FORMAT, PARALLEL AND SERIAL MODE 1 (SENT TO HL-7159A)

(RESERVED)				BYTE REQUEST			(RESERVED)	REQUEST BIT
D7	D6	D5	D4		D3	D2	D1	D0
0	0	0	0	Digit Pair 0, 1	0	0	0	1
				Digit Pair 2, 3	0	1		
				Digit Pair 4, 5	1	0		
				Converter Status	1	1		

TABLE 7. REQUEST BYTE FORMAT, SERIAL MODE 2 (SENT TO HI-7159A)

(RESERVED)				BYtE REQUEST				REQUEST BIT
D7	D6	D5	D4		D3	D2	D1	DO
0	0	0	0	Digit 0	0	0	0	1
				Digit 1	0	0	1	
				Digit 2	0	1	0	
				Digit 3	0	1	1	
				Digit 4	1	0	0	
				Digit 5	1	0	1	
				Converter Status	1	1	0	

TABLE 8. STATUS BYTE FORMAT (RECEIVED FROM HL-7159A)

(*)	CONVERTER UPDATE STATUS		(*)	CONTINUITY		RESOLUTION		CONVERSION TYPE			PARITY ERROR	
D7		D6	D5		D4		D3		D2	D1		D0
0	No Update	0	0	Single	0	$51 / 2$	1	Comp	1	1	No	0
	Updated	1		Continuous	1	$41 / 2$	0	Uncomp	1	0	Yes	1
								Error	0	1		

(* $=$ Reserved)

TABLE 9. DIGIT BYTE FORMAT, PARALLEL AND SERIAL MODE 1 (RECEIVED FROM HL7159A)

DIGIT BYTE	D7	D6	D5	D4	D3	D2	D1	D0
Digit Pair 0,1	MSB1	Overrange$(1=O R)$	MSB5	LSB1	MSB0			LSBO
Digit Pair 2, 3	MSB3			LSB3	MSB2			LSB2
Digit Pair 4, 5	$\begin{aligned} & \text { Polarity } \\ & (1=\text { POS }) \end{aligned}$			LSB5	MSB4			LSB4

TABLE 10. DIGIT BYTE FORMAT, SERIAL MODE 2 (RECEIVED FROM HL-7159A)

DIGIT BYTE	D7	D6	D5	D4	D3	D2	D1	D0
Digits 0-4	0	0	1	1	MSB		LSB	
Digit 5	0	0	1	1	Polarity $(1=$ POS $)$	Overrange $(1=O R)$	MSB	LSB

Single Conversion Mode

The suggested algorithm for reading the HI-7159A in its single conversion mode of operation is shown in Figure 5. Essentially it consists of initiating a conversion, waiting until the conversion is complete, and then reading the results. Since no further conversions take place, the data may be read out at any time and at any speed. This is the most straightforward method of reading the HI-7159A.

Continuous Conversion Mode

Once a command byte is sent to the HI-7159A initiating the continuous conversion mode, the output data registers will be updated continuously after every conversion. This makes obtaining a valid reading more difficult, since the possibility exists that the current data could be overwritten by a new conversion before all the digit bytes are read. To prevent this, the status byte should be read before and after the data is read from the converter, to ensure that the converter has not updated during the reads. This is demonstrated in Figure 6.

FIGURE 5. READING THE HL-7159A IN THE SINGLE CONVERSION MODE

FIGURE 6. READING THE HI-7159A IN THE CONTINUOUS CONVERSION MODE

Due to the wide range of baud rates available in the serial modes, some of the lower baud rates will take longer to transfer the output data than it takes to perform a conversion. In these cases the continuous mode should not be used. Table 11 shows the percentage of the total conversion time that it takes to read all the data from the converter for the two serial modes. These are best case numbers, assuming that the bytes are transmitted and received end-to-end. An asterisk indicates that it is impossible to get all the data out within one conversion. Percentages in the 20-50\% range indicate that it is possible to get valid data out with very tight code. In all cases the status byte should be checked before and after the reading to ensure data integrity.

TABLE 11. SERIAL MODES $\frac{1}{2}$

BAUD RATE	CONVERSION TYPE			
	$\begin{aligned} & 5^{1 / 2} \\ & \text { COMP } \end{aligned}$	$\begin{gathered} 5^{1 / 2} \\ \text { UNCOMP } \end{gathered}$	$\begin{gathered} 4 \frac{1}{2} \\ \text { COMP } \end{gathered}$	$\begin{gathered} 4^{1 / 2} 2 \\ \text { UNCOMP } \end{gathered}$
300	**	**	**	**
1200	54\%/*	***	**	***
9600	7\%/13\%	14\%/25\%	27\% 50%	54\%/*
19200	4\%7\%	7\%/13\%	14\%/25\%	27\%/50\%

Crystal Oscillator

The HI-7159A uses a single pin crystal oscillator design (Figure 7). The crystal is connected between pin 27 and VCC; no load capacitors or other components are necessary. The user has a choice of crystal frequencies: 2.4576 MHz or 2.4 MHz . An off-the-shelf 2.4576 MHz crystal works well and provides baud rates of exactly 19.2k, 9600 , 1200, and 300. However its total integration period will be 16.28 ms , or 0.39 ms shorter than a 60 Hz cycle. This effectively reduces the normal mode AC rejection.

FIGURE 7. SINGLE-PIN OSCILLATOR
A 2.4 MHz crystal results in an integration period of 16.67 ms , exactly the length of one 60 Hz AC cycle. Normal mode AC rejection is greatest at this frequency. At 2.4 MHz , however, the Baud rates will be off by -2.34%. This error is not large enough to cause any errors with most peripherals, and only applies to operation in Serial Modes 1 and 2. Communication in Serial Mode 0 and the Parallel Mode is independent of the crystal frequency. For this mode a 2.4 MHz crystal is recommended.

While the oscillator was designed to operate at 2.0 MHz 2.5 MHz , the HI-7159A itself will operate reliably down to less than 600 kHz when driven with an external clock. Benefits at lower clock frequencies include reduced rollover error (gain error for negative input voltages) and lower noise. The baud rates mentioned throughout this datasheet correspond to a crystal frequency of 2.4576 MHz . At 1.2 MHz , the actual baud rates will be half the speed they were at 2.4 MHz , i.e. 9600 , 4800,600 and 150 baud. At 600 kHz they will be one-fourth.

It may also be possible to directly program the host's serial hardware for operation at nonstandard baud rates, allowing HI-7159A operation at any arbitrary frequency. For example: 50 Hz AC rejection requires a 2.00 MHz clock. At this frequency the " 9600 " baud rate becomes 7812.5 baud. The host's UART must be programmed with the proper divider to operate at this baud rate. The data clock (see Figure 2) is defined as 16 times the baud rate, so the data clock of this configuration would be 125 kHz . The data clock can also be determined by dividing the oscillator (clock) frequency by the correct divider from Table 12.

TABLE 12. CRYSTAL DIVIDER RATIOS

BAUD RATE SELECTED	CRYSTAL DIVIDER
$" 300 "$	512
$" 1200 "$	128
$" 9600 "$	16
$" 19200 "$	8

The following equation determines the divider needed to operate the HI-7159A at any given crystal frequency:
$\frac{{ }^{f} \text { CLOCK }^{(7159 A)}}{\text { Divider (7159A) }}=\frac{{ }^{\text {f }}{ }^{\text {CRYSTAL }}{ }^{\text {(Host UART) }}}{\text { Divider (Host UART) }}=$ Data Clock
Once determined, the new divider must be written directly to the Host's UART. Most PC compatibles use an 8250 UART with a 1.8432 MHz crystal, so the proper divider for the 2 MHz example given above would be 15 . Again, these considerations apply only to Serial Modes 1 and 2. Parallel and Serial Mode 0 communication rates are independent of crystal frequency.

Conversion Time

The conversion time of the HI-7159A is a function of the crystal frequency and the type of conversion being made. The conversion times for $\mathrm{f}_{\text {CLOCK }}=2.4 \mathrm{MHz}$ are shown in Table 13. At other clock frequencies the times may be calculated from the following formula:
${ }^{\mathrm{t}} \mathrm{CONV}=\frac{\mathrm{C}}{\mathrm{f}_{\text {CLOCK }}}$
where the constant \mathbf{C} is determined from Table 13.
TABLE 13. CONVERSION TIMES

	CONVERSION TYPE			
	$5^{1 / 2} / 2$ COMP	$5^{1 / 2}$ UNCOMP	$4^{1} / 2$ COMP	$4^{1} / 2$ UNCOMP
	133 ms	66.7 ms	33.3 ms	16.7 ms
	320,000	160,000	80,000	40,000

Component Selection

Three external passive components must be chosen for the HI7159A: the integrating capacitor ($\mathrm{C}_{\mathrm{INT}}$), the integrating resistor ($\mathrm{R}_{\mathrm{INT}}$), and the reference capacitor ($\mathrm{C}_{\mathrm{REF}}$). They are chosen based on the crystal frequency, the reference voltage ($V_{\text {REF }}$), and the desired integrating current. Figure 8 illustrates the ana\log components necessary for the $\mathrm{HI}-7159 \mathrm{~A}$ to function.

FIGURE 8. ANALOG COMPONENTS AND INPUTS
TABLE 14. RECOMMENDED COMPONENT VALUES vs CLOCK FREQUENCY

$\boldsymbol{f}_{\text {CLOCK }}$	$\mathbf{R}_{\text {INT }}$	$\mathbf{C}_{\text {INT }}$	$\mathbf{C}_{\text {REF }}$
2.4 MHz	$400 \mathrm{k} \Omega$	$0.01 \mu \mathrm{~F}$	$1.0 \mu \mathrm{~F}$
1.2 MHz	$360 \mathrm{k} \Omega$	$0.022 \mu \mathrm{~F}$	$2.2 \mu \mathrm{~F}$
600 kHz	$330 \mathrm{k} \Omega$	$0.047 \mu \mathrm{~F}$	$4.7 \mu \mathrm{~F}$

NOTE: $\mathrm{C}_{\text {INT }}$ MUST be a high quality polypropylene capacitor or performance may be degraded.

The reference capacitor and integrating components can either be selected from Table 14, or calculated from the following equations.
$\mathrm{C}_{\text {REF }}$ acts as a voltage source at different times during a conversion. Its value is determined by two considerations: it must be small enough to be fully charged from its discharged state at power-on; yet it also must be large enough to supply current to the circuit during conversion without significantly drooping from its initial value. For 2.4 MHz operation, a $1 \mu \mathrm{~F}$ capacitor is recommended. The equation for other frequencies is:
$C_{\text {REF }}=\frac{2.5}{{ }^{\text {CLOCK }}}$
The values of $\mathrm{R}_{\mathbb{I N T}}$ and $\mathrm{C}_{\mathbb{N T} T}$ are selected by choosing the maximum integration current and the maximum integrator output voltage swing. The maximum integration current and voltage swing occurs when $\mathrm{V}_{\mathbb{I N}}=$ full scale $=2 X \mathrm{~V}_{\text {REF }}$. The recommended integration current for the HI-7159A is $5 \mathrm{~mA}-10 \mathrm{~mA}$. This will help determine the value of $\mathrm{R}_{\mathrm{INT} \text {, since }}$
$I_{I N T}=\frac{V_{I N}}{R_{I N T}}$ so $R_{I N T}=\frac{V_{I N}}{I_{I N T}}$
where $V_{I N}=V_{I N H I}-V_{I N L O}=2 \times V_{\text {REF }}$.

Therefore values of $R_{I N T}$ should be between $200 \mathrm{k} \Omega$ and $400 \mathrm{k} \Omega$ The exact value of $\mathrm{R}_{\mathbf{I N T}}$ may be altered to get the exact integrator swing desired after choosing a standard capacitor value for $\mathrm{C}_{\text {INT }}$.
The most critical component in any integrating AD converter is the integrating capacitor, $\mathrm{C}_{\mathrm{INT}}$. For a converter of this resolution, it is imperative that this component perform as closely to an ideal capacitor as possible. Any amount of leakage or dielectric absorption will manifest itself as linearity errors. For this reason $\mathrm{C}_{\mathrm{INT}}$ must be a high quality polypropylene capacitor. Use of any other type may degrade performance. The value of $\mathrm{C}_{\mathrm{INT}}$ is determined by the magnitude of the desired maximum integrator output voltage swing as shown below:
$V_{S W I N G}=\frac{\left(V_{I N}\right)\left(t_{I N T}\right)}{\left(R_{I N T}\right)\left(C_{I N T}\right)}$
Solving for $\mathrm{C}_{\text {INT }}$ yields:
$c_{I N T}=\frac{\left(V_{I N}\right)\left(t_{I N T}\right)}{\left(R_{I N T}\right)\left(V_{S W I N G}\right)}$
where $\mathrm{V}_{\text {SWING }}$ is the maximum output voltage swing of the integrator, $\mathrm{V}_{\mathbb{I N}}$ is the full scale input voltage ($\mathrm{V}_{\text {IN HI }}-\mathrm{V}_{\mathbb{I N} \text { LO }}$) to the converter (equal to $2 \times \mathrm{V}_{\mathrm{REF}}$), and $\mathrm{t}_{\mathrm{INT}}$ is the time in which $\mathrm{V}_{\mathbb{I N}}$ is integrated. The best results are achieved when the maximum integrator output voltage is made as large as possible, yet still less than the nonlinear region in the vicinity of the power supply limit. A full scale output swing of about 3.0V provides the greatest accuracy and linearity.

NOTE: The integrator is auto-zeroed to the voltage at $\mathrm{V}_{\text {IN LO }}$. If ${ }_{\text {INLO }}$ is negative with respect to $A_{G N D}$, the integrator will have I $V_{\text {INLO }} \mid$ less headroom for positive input voltages (inputs where $\mathrm{V}_{\text {IN HI }}-\mathrm{V}_{\text {IN LO }}>$ 0). If $V_{\text {INLO }}$ is positive with respect to $A_{G N D}$, the integrator will have I $V_{I N}$ LO l less headroom for negative input voltages (inputs where $V_{\mathbb{I N}}$ $\mathrm{HI}^{-}-\mathrm{V}_{\text {INLO }}<0$). In most applications $\mathrm{V}_{\text {IN LO }}$ is at or near $\mathrm{A}_{\text {GND }}$ and the above equations will be adequate. In applications where $\mathrm{V}_{\text {IN LO }}$ may be more than 0.1 V away from $\mathrm{A}_{\mathrm{GND}}$, it should be included in the integrator swing considerations. The following formula combines all the above considerations:
$\left|v_{I N L O}-\frac{\left(v_{I N H I}-v_{\text {IN LO }}\right)(10,000)}{\left(R_{I N T}\right)\left(C_{I N T}\right)\left(f{ }_{O S C}\right)}\right| \leq 3.0 V$

Gain Error Adjustments

While the HI-7159A has a very linear transfer characteristic in both the positive and negative directions, the slope of the line is slightly greater for negative inputs than for positive. This results in the transfer characteristic shown in Figure 9. One end point of this curve, typically the positive side, can be adjusted to zero error by trimming the reference voltage. The other (negative) side will have a fixed gain error. This error can be removed in software by multiplying all negative readings by a scale factor, determined by dividing the ideal full scale reading ($-200,000$ counts) by the actual full scale reading when $\mathrm{V}_{\mathbb{I N}}=-2.00000 \mathrm{~V}$.

FIGURE 9. TYPICAL HI-7159A TRANSFER CHARACTERISTIC

$C_{\text {REF }}$ Guard Pins

Depending on the polarity of the input signal, either the negative or the positive terminal of the reference capacitor will be connected to $A_{G N D}$ to provide the correct polarity for reference deintegration. In systems where $\mathrm{V}_{\text {REF }}$ lo is tied to analog ground, the reference capacitor is effectively shifted down by I $\mathrm{V}_{\text {REF }}$ I for positive input voltages, and is not shifted at all for negative input voltages. This shift can cause some charge on the reference capacitor to be lost due to stray capacitance between the reference capacitor leads and ground traces or other fixed potentials on the board. The reference voltage will now be slightly smaller for positive inputs. This difference in reference voltages for positive and negative inputs appears as rollover error.

The HI-7159A provides two guard ring outputs to minimize this effect. Each guard ring output is a buffered version of the voltage at its respective $\mathrm{C}_{\text {REF }}$ pin. If the traces going to the $\mathrm{C}_{\text {REF }}$ pins and under $\mathrm{C}_{\text {REF }}$ itself are surrounded by their corresponding guard rings, no charge will be lost as $\mathrm{C}_{\text {REF }}$ is moved. Figure 10 shows two slightly different patterns. The first one is for capacitors of symmetrical construction, the second is for capacitors with outside foils (one end of the capacitor is the entire outside.

(5) CREF- GUard
(6) CREF-
(7) $\mathrm{C}_{\text {REF+ }}$
(8) $\mathrm{C}_{\text {REF }+}$ GUARD

(5) CREF- GUARD
(6) CREF-
(7) CREF+
(8) CREF + GUARD

FIGURE 10. TYPICAL GUARD RING LAYOUT

Die Characteristics

DIE DIMENSIONS:
$5817 \mu \mathrm{~m} \times 3988 \mu \mathrm{~m}$
METALLIZATION:
Type: SiAl
Thickness: $10 \mathrm{k} \AA \pm 1 \mathrm{k} \AA$
GLASSIVATION:
Type: PSG/Nitride
Thickness: $15 \mathrm{k} \AA \pm 1 \mathrm{k} \AA$

Metallization Mask Layout
HI-7159A

ICL7109

12-Bit Microprocessor Compatible A/D Converter

Features

- 12 Bit Binary (Plus Polarity and Overrange) Dual Slope Integrating Analog-to-Digital Converter
- Byte-Organized TTL Compatible Tri-State Outputs and UART Handshake Mode for Simple Paraliel or Serial Interfacing to Microprocessor Systems
- RUN/ $\overline{H O L D}$ Input and STATUS Output Can Be Used to Monitor and Control Conversion Timing
- True Differential Input and Differential Reference
- Low Noise - Typically $15 \mu \mathbf{V}_{\text {p-p }}$
- 1pA Typical Input Current
- Operates At Up to 30 Conversions/Sec
- On-Chip Oscillator Operates with Inexpensive 3.58MHz TV Crystal Giving 7.5 Conversions/Sec for 60 Hz Rejection. May Also Be Used with An RC Network Oscillator for Other Clock Frequencies

Description

The ICL7109 is a high performance, CMOS, low power integrating AD converter designed to easily interface with microprocessors.

The output data (12 bits, polarity and overrange) may be directly accessed under control of two byte enable inputs and a chip select input for a single parallel bus interface. A UART handshake mode is provided to allow the ICL7109 to work with industry-standard UARTs in providing serial data transmission. The RUN/ $\overline{H O L D}$ input and STATUS output allow monitoring and control of conversion timing.

The ICL7109 provides the user with the high accuracy, low noise, low drift versatility and economy of the dual-slope integrating ADD converter. Features like true differential input and reference, drift of less than $1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$, maximum input bias current of 10pA, and typical power consumption of 20 mW make the ICL7109 an attractive per-channel alternative to analog multiplexing for many data acquisition applications.

Ordering Information

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ICL7109MDL	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	40 Lead Side Brazed Ceramic DIP
ICL7109IDL	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	40 Lead Side Brazed Ceramic DIP
ICL7109IJL	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	40 Lead Ceramic DIP
ICL7109CPL	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	40 Lead Plastic DIP
ICL7109MDL $883 B$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	40 Lead Side Brazed Ceramic DIP
ICL7109IPL	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	40 Lead Plastic DIP

Pinout

Absolute Maximum Ratings	
Positive Supply Voltage (GND to V_{+})	+6.2V
Negative Supply Voltage (GND to V-).	-9V
Analog Input Voltage (Either Input) (Note 1).	$\mathrm{V}+$ to V -
Reference Input Voltage (Either Input) (Note 1)	$V+$ to V-
Digital Input Voltage	$(\mathrm{V}+$) $+0.3 \mathrm{~V}$
Pins 2-27 (Note 2)	GND -0.3V
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering 10s Max)	$+300^{\circ} \mathrm{C}$
Junction Temperature (PDIP Package).	$+150^{\circ} \mathrm{C}$
(CDIP Package)	$+175^{\circ} \mathrm{C}$

Thermal Information

Thermal Resistance	$\theta_{\text {JA }}$	θ_{Jc}
CDIP Package	$45^{\circ} \mathrm{C} / \mathrm{W}$	$8^{\circ} \mathrm{CNW}$
CDIP Package (ICL71091JL)	$45^{\circ} \mathrm{C} / \mathrm{W}$	$15^{\circ} \mathrm{C}$ N
PDIP Package .	$50^{\circ} \mathrm{CN}$	-
Operating Temperature Range		
M Suffix	- 55°	$0+125^{\circ} \mathrm{C}$
1 Suffix	-25	to $+85^{\circ} \mathrm{C}$
C Suffix		to $+75^{\circ} \mathrm{C}$

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Analog Electrical Specifications $\mathrm{V}+=+5 \mathrm{~V}, \mathrm{~V}=-5 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}_{\mathrm{CLK}}=3.58 \mathrm{MHz}$, Unless Otherwise Specified

PARAMETERS	TEST CONDITIONS	MIN	TYP	MAX	UNIT
SYSTEM PERFORMANCE					
Oscillator Output Current High, O_{OH}	$V_{\text {OUT }}=2.5 \mathrm{~V}$	-	1	-	mA
Low, O_{OL}	$V_{\text {OUT }}=2.5 \mathrm{~V}$	-	1.5	-	mA
Buffered Oscillator Output Current $\text { High, } \mathrm{BO}_{\mathrm{OH}}$	$\mathrm{V}_{\text {OUT }}=2.5 \mathrm{~V}$	-	2	-	mA
Low, $\mathrm{BO}_{\text {OL }}$	$\mathrm{V}_{\text {OUT }}=2.5 \mathrm{~V}$	-	5	-	mA
Zero Input Reading	$\mathrm{V}_{\mathrm{IN}}=0.0000 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=204.8 \mathrm{mV}$	-0000	± 0000	+0000	Counts
Ratiometric Error	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {REF }}, \mathrm{V}_{\text {REF }}=204.8 \mathrm{mV}$ (Note 7)	-3	-	0	Counts
Non-Linearity	Full Scale $=409.6 \mathrm{mV}$ to 2.048 mV Maximum Deviation from Best Straight Line Fit, Over Full Operating Temperature Range (Notes 4 and 6)	-1	± 0.2	+1	Counts
Rollover Error	Full Scale $=409.6 \mathrm{mV}$ to 2.048 V Difference in Reading for Equal Positive and Negative Inputs Near Full-Scale (Notes 5 and 6), $\mathrm{R}_{1}=0 \Omega$	-1	± 0.2	+1	Counts
Linearity	Full-Scale $=200 \mathrm{mV}$ or Full-Scale $=2 \mathrm{~V}$ Maximum Deviation from Best Straight Line Fit (Note 4)	-	± 0.2	± 1	Counts
Common Mode Rejection Ratio, CMRR	$\mathrm{V}_{\mathrm{CM}}= \pm 1 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=$ OV, Full-Scale $=409.6 \mathrm{mV}$	-	50	-	$\mu \mathrm{V} N$
Input Common Mode Range, VCMR	Input HI, Input LO, Common (Note 4)	$\begin{aligned} & \text { (V-) } \\ & +2.0 \end{aligned}$	-	$\begin{aligned} & (V+) \\ & -2.0 \end{aligned}$	V
Noise, eN	$\begin{aligned} & V_{\mathbb{I N}}=0 \mathrm{~V}, \text { Full-Scale }=409.6 \mathrm{mV} \\ & (P-\mathrm{P} \text { Value Not Exceeded } 95 \% \text { of Time }) \end{aligned}$	-	15	-	$\mu \mathrm{V}$
Leakage Current Input, Iluk	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$, All Devices at $+25^{\circ} \mathrm{C}$ (Note 4)	-	1	10	pA
ICL7109CPL	$0^{\circ} \mathrm{C} \leq T_{A} \leq+70^{\circ} \mathrm{C}$ (Note 4)	-	20	100	pA
ICL7109IDL	$-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ (Note 4)	-	100	250	PA
ICL7109MDL	$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$	-	2	100	nA
Zero Reading Drift	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{R}_{1}-0 \Omega$ (Note 4)	-	0.2	1	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Scale Factor Temperature Coefficient	$\mathrm{V}_{\mathrm{IN}}=408.9 \mathrm{mV}=>7770_{8}$ Reading Ext. Ref. Oppm ${ }^{\circ} \mathrm{C}$ (Note 4)	-	1	5	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$

Analog Electrical Specifications $\mathrm{V}+=+5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}_{\mathrm{CLK}}=3.58 \mathrm{MHz}$, Unless Otherwise Specified (Continued)

PARAMETERS	TEST CONDITIONS	MIN	TYP	MAX	UNIT
REFERENCE VOLTAGE					
Ref Out Voltage, $\mathrm{V}_{\text {REF }}$	Referred to $\mathrm{V}+$, $25 \mathrm{k} \Omega$ Between V+ and REF OUT	-2.4	-2.8	-3.2	V
Ref Out Temperature Coefficient	25k Between V+ and REF OUT (Note 4)	-	80	-	ppm ${ }^{\circ} \mathrm{C}$
POWER SUPPLY CHARACTERISTICS					
Supply Current $\mathrm{C}+$ to GND, $1+$	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$, Crystal Osc 3.58MHz Test Circuit	\bullet	700	1500	$\mu \mathrm{A}$
Supply Current V+ to V-, ISUPP	Pins 2 -21, 25, 26, 27, 29; Open	-	700	1500	$\mu \mathrm{A}$

Digital Electrical Specifications $\mathrm{V}+=+5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, Unless Otherwise Specified.

PARAMETERS	TEST CONDITIONS	MIN	TYP	MAX	UNIT
DIGITAL OUTPUTS					
Output High Voltage, V_{OH}	$\mathrm{I}_{\text {OUt }}=100 \mu \mathrm{~A}$ Pins $2-16,18,19,20$	3.5	4.3	-	V
Output Low Voltage, V_{OL}	$\mathrm{l}_{\text {OUT }}=1.6 \mathrm{~mA}$ Pins $2-16,18,19,20$	-	± 0.20	± 0.40	V
Output Leakage Current	Pins 3-16 High Impedance	-	± 0.01	± 1	$\mu \mathrm{A}$
Control I/O Pullup Current	Pins $18,19,20 \mathrm{~V}_{\text {OUT }}=\mathrm{V}_{+}-3 \mathrm{~V}$ MODE Input at GND (Note 4)	-	5	-	$\mu \mathrm{A}$
Control I/O Loading	$\overline{\text { HBEN }}$ Pin 19 LBEN Pin 18 (Note 4)	-	-	50	pF
DIGITAL INPUTS					
Input High Voltage, V_{IH}	Pins 18-21, 26, 27 Referred to GND	3.0	-	-	V
Input Low Voltage, $\mathrm{V}_{\text {IL }}$	Pins 18-21, 26, 27 Referred to GND	-	-	1	V
Input Pull-Up Current	Pins 26, $27 \mathrm{~V}_{\text {OUT }}=(\mathrm{V}+)^{\text {- }} 3 \mathrm{~V}$	-	5	\bullet	$\mu \mathrm{A}$
Input Pull-Up Current	Pins 17, $24 \mathrm{~V}_{\text {OUT }}=(\mathrm{V}+)^{\text {- }} 3 \mathrm{~V}$	-	25	-	$\mu \mathrm{A}$
Input Pull-Down Current	Pin $21 \mathrm{~V}_{\text {OUT }}=\mathrm{GND}+3 \mathrm{~V}$	-	5	\bullet	$\mu \mathrm{A}$
TIMING CHARACTERISTICS					
MODE Input Pulse Width, $\mathrm{t}_{\text {w }}$	(Note 4)	50	-	-	ns

NOTES:

1. Input voltages may exceed the supply voltages provided the input current is limited to $\pm 100 \mu \mathrm{~A}$.
2. Due to the SCR structure inherent in the process used to fabricate these devices, connecting any digital inputs or outputs to voltages greater than $\mathrm{V}+$ or less than GND may cause destructive device latchup. For this reason it is recommended that no inputs from sources other than the same power supply be applied to the ICL7109 before its power supply is established, and that in multiple supply systems the supply to the ICL7109 be activated first.
3. This limit refers to that of the package and will not be obtained during normal operation.
4. This parameter is not production tested, but is guaranteed by design.
5. Roll-over error for $T_{A}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ is ± 10 counts maximum.
6. A full scale voltage of 2.048 V is used because a full scale voltage of 4.096 V exceeds the devices Common Mode Voltage Range.
7. For Cerdip package the Ratiometric error can be -4 (Minimum).

Pin Description

PIN	SYMBOL	DESCRIPTION		
1	GND	Digital Ground, OV. Ground return for all digital logic.		
2	STATUS	Output High during integrate and deintegrate until data is latched. Output Low when analog section is in Auto-Zero configuration.		
3	POL	Polarity - HI for positive input.		Tri-State output data bits
4	OR	Overrange - HI if overranged.		Tri-State output data bits
5	B12	Bit 12	(Most Significant Bit)	Tri-State output data bits
6	B11	Bit 11	High = True	Tri-State output data bits
7	B10	Bit 10	High = True	Tri-State output data bits
8	B9	Bit 9	High = True	Tri-State output data bits
9	B8	Bit 8	High = True	Tri-State output data bits
10	B7	Bit 7	High = True	Tri-State output data bits
11	B6	Bit 6	High = True	Tri-State output data bits
12	B5	Bit 5	High = True	Tri-State output data bits
13	B4	Bit 4	High = True	Tri-State output data bits
14	B3	Bit 3	High = True	Tri-State output data bits
15	B2	Bit 2	High = True	Tri-State output data bits
16	B1	Bit 1	(Least Significant Bit)	Tri-State output data bits
17	TEST	Input High - Normal Operation. Input Low - Forces all bit outputs high. Note: This input is used for test purposes only. Tie high if not used.		
18	LBEN	Low Byte Enable - With Mode (Pin 21) low, and CE/LOAD (Pin 20) low, taking this pin low activates low order byte outputs B1 through B8. With Mode (Pin 21) high, this pin serves as a low byte flag output used in handshake mode. See Figures 7, 8, 9.		
19	HBEN	High Byte Enable - With Mode (Pin 21) low, and CE/LOAD (Pin 20) low, taking this pin low activates high order byte outputs B9 through B12, POL, OR. With Mode (Pin 21) high, this pin serves as a high byte flag output used in handshake mode. See Figures 7, 8, 9.		
20	$\overline{\text { CE/LOAD }}$	Chip Enable Load - With Mode (Pin 21) low. $\overline{\text { CE/LOAD }}$ serves as a master output enable. When high, B1 through B12, POL, OR outputs are disabled. With Mode (Pin 21) high, this pin serves as a load strobe used in handshake mode. See Figures 7, 8, 9.		
21	MODE	inputs directly controlling byte outputs. Input Pulsed High - Causes immediate entry into handshake mode and output of data as in Figure 9. Input High - Enables CE/LOAD (Pin 20), $\overline{\text { HBEN }}$ (Pin 19), and $\overline{\mathrm{LBEN}}$ (Pin 18) as outputs, handshake mode will be entered and data output as in Figures 7 and 8 at conversion completion.		
22	OSC IN	Oscillator Input		
23	OSC OUT	Oscillator Output		

Pin Description (Continued)

PIN	SYMBOL	DESCRIPTION
24	OSC SEL	Oscillator Select - Input high configures OSC IN, OSC OUT, BUF OSC OUT as RC oscillator - clock will be same phase and duty cycle as BUF OSC OUT. Input low configures OSC IN, OSC OUT for crystal oscillator - clock frequency will be $1 / 58$ of frequency at BUF OSC OUT.
25	BUF OSC OUT	Buffered Oscillator Output
26	RUN/HOLD	Input High - Conversions continuously performed every 8192 clock pulses. Input Low - Conversion in progress completed, converter will stop in Auto-Zero 7 counts before integrate.
27	SEND	Input - Used in hndshake mode to indicate ability of an external device to accept data. Connect to +5 V if not used.
28	V -	Analog Negative Supply - Nominally -5V with respect to GND (Pin 1).
29	REF OUT	Reference Voltage Output - Nominally 2.8 V down from $\mathrm{V}+$ (Pin 40).
30	BUFFER	Buffer Amplifier Output.
31	AUTO-ZERO	Auto-Zero Node - Inside foil of $\mathrm{C}_{\text {AZ }}$ -
32	INTEGRATOR	Integrator Output - Outside foil of $\mathrm{C}_{\text {INT }}$.
33	COMMON	Analog Common - System is Auto-Zeroed to COMMON.
34	INPUT LO	Differential Input Low Side.
35	INPUT HI	Differential Input High Side.
36	REF IN +	Differential Reference Input Positive.
37	REF CAP +	Reference Capacitor Positive.
38	REF CAP-	Reference Capacitor Negative.
39	REF $\mathrm{IN}^{\text {- }}$	Differential Reference Input Negative.
40	V+	Positive Supply Voltage - Nominally +5 V with respect to GND (Pin1).

NOTE: All digital levels are positive true.

Design Information Summary Sheet

- OSCILLATOR FREQUENCY
$f^{\prime}{ }^{\prime}=0.45 / R C$
$\mathrm{C}_{\mathrm{OSC}}>50 \mathrm{pF} ; \mathrm{R}_{\mathrm{OSC}}>50 \mathrm{~K} \Omega$
fosc Typ. $=60 \mathrm{kHz}$
or
fosc Typ. $=3.58 \mathrm{MHz}$ Crystal
- OSCILLATOR PERIOD
$t_{\text {OSC }}=$ RC/0.45
$t^{\text {OSC }}=1 / 3.58 \mathrm{MHz}$ (Crystal)
- INTEGRATION CLOCK FREQUENCY
$\mathrm{f}_{\text {CLOCK }}=\mathrm{f}_{\mathrm{OSC}}$ (RC Mode)
$\mathrm{f}_{\text {CLOCK }}=\mathrm{f}_{\text {osd }} / 58$ (Crystal)
$t_{\text {CLOCK }}=1 /{ }^{\text {CLOCK }}$
- INTEGRATION PERIOD
$\mathrm{t}_{\text {INT }}=2048 \times \mathrm{t}_{\text {CLOCK }}$
- 60/50Hz REJECTION CRITERION $\mathrm{t}_{\mathrm{INT}} / \mathrm{t}_{60 \mathrm{~Hz}}$ or $\mathrm{t}_{\mathrm{INT} / \mathrm{t}_{50 \mathrm{~Hz}}=\text { Integer }}$
- OPTIMUM INTEGRATION CURRENT
$\mathrm{I}_{\mathrm{INT}}=20.0 \mu \mathrm{~A}$
- FULL-SCALE ANALOG INPUT VOLTAGE
$V_{\text {INFS }}$ Typically $=200 \mathrm{mV}$ or 2.0V
- INTEGRATE RESISTOR
$R_{\text {INT }}=\frac{V_{\text {INFS }}}{I_{\text {INT }}}$
- INTEGRATE CAPACITOR
$C_{\text {INT }}=\frac{\left(t_{\text {INT }}\right)\left(I_{\text {INT }}\right)}{V_{\text {INT }}}$
- INTEGRATOR OUTPUT VOLTAGE SWING
$v_{I N T}=\frac{\left(\mathrm{t}_{\mathrm{I}_{N T}}\right)\left(\mathrm{I}_{\mathrm{INT}}\right)}{\mathrm{C}_{\mathrm{INT}}}$
- $V_{\text {INT }}$ MAXIMUM SWING
$(\mathrm{V}-+0.5 \mathrm{~V})<\mathrm{V}_{\text {INT }}<(\mathrm{V}+-0.5 \mathrm{~V})$
$\mathrm{V}_{\text {INT }}$ Typically $=2.0 \mathrm{~V}$
- DISPLAY COUNT

COUNT $=2048 \times \frac{V_{I N}}{V_{R E F}}$

- CONVERSION CYCLE
$t_{\text {CYC }}=t_{\text {CLOCK }} \times 8192$
(In Free Run Mode, Run $/ \overline{\mathrm{HOLD}}=1$)
when $\mathrm{f}_{\text {CLOCK }}=60 \mathrm{kHz}, \mathrm{t}_{\mathrm{CYC}}=133 \mathrm{~ms}$
- COMMON MODE INPUT VOLTAGE $(\mathrm{V}-+2.0 \mathrm{~V})<\mathrm{V}_{\mathbb{N}}<(\mathrm{V}+-2.0 \mathrm{~V})$
- AUTO-ZERO CAPACITOR
$0.01 \mu \mathrm{~F}<\mathrm{C}_{A Z}<1.0 \mu \mathrm{~F}$
- REFERENCE CAPACITOR
$0.1 \mu \mathrm{~F}<\mathrm{C}_{\text {REF }}<1.0 \mu \mathrm{~F}$
- $\mathbf{V}_{\text {REF }}$

Biased between V+ and V-
$V_{\text {REF }} \cong V_{+}-2.8 \mathrm{~V}$
Regulation lost when $\mathrm{V}+$ to $\mathrm{V}-\leq 6.4 \mathrm{~V}$.
If $V_{\text {REF }}$ is not used, float output pin.

- POWER SUPPLY: DUAL $\pm 5.0 \mathrm{~V}$

V $+=+5.0$ to GND
V- $=-5.0$ to GND

- OUTPUT TYPE

Binary Amplitude with Polarity and Overrange Bits
Tips: Always tie TEST pin HIGH.
Don't leave any inputs floating.

Typical Integrator Amplifier Output Waveform (INT Pin)

FIGURE 1A. TYPICAL CONNECTION DIAGRAM UART INTERFACE-TO TRANSMIT LATEST RESULT, SEND ANY WORD TO UART

FIGURE 1B. TYPICAL CONNECTION DIAGRAM PARALLEL INTERFACE WITH 8048 MICROCOMPUTER
FIGURE 1.

Detailed Description

Analog Section

Figure 2 shows the equivalent circuit of the Analog Section for the ICL7109. When the RUN/HOLD input is left open or connected to $\mathrm{V}+$, the circuit will perform conversions at a rate determined by the clock frequency (8192 clock periods per cycle). Each measurement cycle is divided into three phases as shown in Figure 3. They are (1) auto-zero (A-Z), (2) signal integrate (INT) and (3) de-integrate (DE).

Auto-Zero Phase

During auto-zero three things happen. First, input high and low are disconnected from the pins and internally shorted to analog COMMON. Second, the reference capacitor is charged to the reference voltage. Third, a feedback loop is closed around the system to charge the auto-zero capacitor $\mathrm{C}_{A Z}$ to compensate for offset voltages in the buffer amplifier, integrator, and comparator. Since the comparator is included in the loop, the A-Z accuracy is limited only by the noise of the system. In any case, the offset referred to the input is less than $10 \mu \mathrm{~V}$.

Signal Integrate Phase

During signal integrate, the auto-zero loop is opened, the internal short is removed, and the internal input high and low are connected to the external pins. The converter then integrates the differential voltage between IN HI and IN LO for a fixed time. This differential voltage can be within a wide common mode range of the inputs. At the end of this phase, the polarity of the integrated signal is determined.

De-Integrate Phase

The final phase is de-integrate, or reference integrate. Input low is internally connected to analog COMMON and input high is connected across the previously charged (during auto-zero) reference capacitor. Circuitry within the chip ensures that the capacitor will be connected with the correct polarity to cause the integrator output to return to zero crossing (established in Auto-Zero) with a fixed slope. The time required for the output to return to zero is proportional to the input signal.

Differential Input

The input can accept differential voltages anywhere within the common mode range of the input amplifier, or specifically from 1.0 V below the positive supply to 1.5 V above the negative supply. In this range, the system has a CMRR of 86 dB typical. However, care must be exercised to assure the integrator output does not saturate. A worst case condition would be a large positive common mode voltage with a near full-scale negative differential input voltage. The negative input signal drives the integrator positive when most of its swing has been used up by the positive common mode voltage. For these critical applications the integrator output swing can be reduced to less than the recommended 4 V fullscale swing with little loss of accuracy. The integrator output can swing to within 0.3 V of either supply without loss of linearity.

FIGURE 2. ANALOG SECTION OF ICL7109

The ICL7109 has, however, been optimized for operation with analog common near digital ground. With power supplies of +5 V and -5 V , this allows a 4 V full scale integrator swing positive or negative thus maximizing the performance of the analog section.

Differential Reference

The reference voltage can be generated anywhere within the power supply voltage of the converter. The main source of common mode error is a roll-over voltage caused by the reference capacitor losing or gaining charge to stray capacity on its nodes. If there is a large common mode voltage, the reference capacitor can gain charge (increase voltage) when called up to deintegrate a positive signal but lose charge (decrease voltage) when called up to deintegrate a negative input signal. This difference in reference for positive or negative input voltage will give a roll-over error. However, by selecting the reference capacitor large enough in comparison to the stray capacitance, this error can be held to less than 0.5 count worst case. (See Component Value Selection.)
The roll-over error from these sources is minimized by having the reference common mode voltage near or at analog COMMON.

Component Value Selection

For optimum performance of the analog section, care must be taken in the selection of values for the integrator capacitor and resistor, auto-zero capacitor, reference voltage, and conversion rate. These values must be chosen to suit the particular application.

The most important consideration is that the integrator output swing (for full-scale input) be as large as possible. For example, with $\pm 5 \mathrm{~V}$ supplies and COMMON connected to GND, the normal integrator output swing at full scale is $\pm 4 \mathrm{~V}$. Since the integrator output can go to 0.3 V from either supply without significantly affecting linearity, a 4 V integrator output swing allows 0.7 V for variations in output swing due to component value and oscillator tolerances. With $\pm 5 \mathrm{~V}$ supplies and a common mode range of $\pm 1 \mathrm{~V}$ required, the component values should be selected to provide $\pm 3 \mathrm{~V}$ integrator output swing. Noise and roll-over will be slightly worse than in the $\pm 4 \mathrm{~V}$ case. For larger common mode voltage ranges, the integrator output swing must be reduced further. This will increase both noise and roll-over errors. To improve the performance, supplies of $\pm 6 \mathrm{~V}$ may be used.

Integrating Resistor

Both the buffer amplifier and the integrator have a class A output stage with $100 \mu \mathrm{~A}$ of quiescent current. They supply $20 \mu \mathrm{~A}$ of drive current with negligible nonlinearity. The integrating resistor should be large enough to remain in this very linear region over the input voltage range, but small enough that undue leakage requirements are not placed on the PC board. For 409.6 mV fullscale, $200 \mathrm{k} \Omega$ is near optimum and similarly a $20 \mathrm{k} \Omega$ for a 409.6 mV scale. For other values of full scale voltage, $\mathrm{R}_{\mathrm{INT}}$ should be chosen by the relation

$$
R_{I N T}=\frac{\text { full scale voltage }}{20 \mu \mathrm{~A}}
$$

Integrating Capacitor

The integrating capacitor $\mathrm{C}_{\mathbb{N} T}$ should be selected to give the maximum voltage swing that ensures tolerance build-up will not saturate the integrator swing (approximately. 0.3 V from either supply). For the ICL7 109 with $\pm 5 \mathrm{~V}$ supplies and analog common connected to GND, a $\pm 3.5 \mathrm{~V}$ to $\pm 4 \mathrm{~V}$ integrator output swing is nominal. For $7 \frac{1}{2}$ conversions per second $(61.72 \mathrm{kHz}$ clock frequency) as provided by the crystal oscillator, nominal values for $\mathrm{C}_{\mathbb{I N T}}$ and $\mathrm{C}_{A Z}$ are $0.15 \mu \mathrm{~F}$ and $0.33 \mu \mathrm{~F}$, respectively. If different clock frequencies are used, these values should be changed to maintain the integrator output swing. In general, the value $\mathrm{C}_{\mathrm{INT}}$ is given by

$$
\mathrm{C}_{\mathrm{INT}}=\frac{(2048 \times \text { clock period })(20 \mu \mathrm{~A})}{\text { integrator output voltage swing }}
$$

An additional requirement of the integrating capacitor is that it have low dielectric absorption to prevent roll-over errors. While other types of capacitors are adequate for this application, polypropylene capacitors give undetectable errors at The integrating capacitor should have a low dielectric absorption to prevent roll-over errors. While other types may be adequate for this application, polypropylene capacitors give undetectable errors at reasonable cost up to $+85^{\circ} \mathrm{C}$. Teflon(8) capacitors are recommended for the military temperature range. While their dielectric absorption characteristics vary somewhat from unit to unit, selected devices should give less than 0.5 count of error due to dielectric absorption.

Auto-Zero Capacitor

The size of the auto-zero capacitor has some influence on the noise of the system: a smaller physical size and a larger capacitance value lower the overall system noise. However, $\mathrm{C}_{A Z}$ cannot be increased without limits since it, in parallel with the integrating capacitor forms an R-C time constant that determines the speed of recovery from overloads and the error that exists at the end of an auto-zero cycle. For 409.6 mV full scale where noise is very important and the integrating resistor small, a value of $\mathrm{C}_{A Z}$ twice $\mathrm{C}_{I N T}$ is optimum. Similarly for 4.096 V full scale where recovery is more important than noise, a value of $C_{A Z}$ equal to half of $C_{I N T}$ is recommended.

For optimal rejection of stray pickup, the outer foil of $C_{A Z}$ should be connected to the R-C summing junction and the inner foil to pin 31. Similarly the outer foil of $\mathrm{C}_{\mathbb{I N T}}$ should be connected to pin 32 and the inner foil to the R-C summing junction. Teflon, or equivalent, capacitors are recommended above $+85^{\circ} \mathrm{C}$ for their low leakage characteristics.

Reference Capacitor

A $1 \mu \mathrm{~F}$ capacitor gives good results in most applications. However, where a large reference common mode voltage exists (i.e., the reference low is not at analog common) and a 409.6 mV scale is used, a large value is required to prevent roll-over error. Generally $10 \mu \mathrm{~F}$ will hold the roll-over error to 0.5 count in this instance. Again, Teflon, or equivalent capacitors should be used for temperatures above $+85^{\circ} \mathrm{C}$ for their low leakage characteristics.

Reference Voltage

The analog input required to generate a full scale output of 4096 counts is $\mathrm{V}_{\mathbb{N}}=2 \mathrm{~V}_{\text {REF }}$. For normalized scale, a reference of 2.048 V should be used for a 4.096 V full scale, and 204.8 mV should be used for a 0.4096 V full scale. However, in many applications where the ADD is sensing the output of a transducer, there will exist a scale factor other than unity between the absolute output voltage to be measured and a desired digital output. For instance, in a weighing system, the designer might like to have a full scale reading when the voltage from the transducer is 0.682 V . Instead of driving the input down to 409.6 mV , the input voltage should be measured directly and a reference voltage of 0.341 V should be used. Suitable values for integrating resistor and capacitor are $33 \mathrm{k} \Omega$ and $0.15 \mu \mathrm{~F}$. This avoids a divider on the input. Another advantage of this system occurs when a zero reading is desired for non-zero input. Temperature and weight measurements with an offset or tare are examples. The offset may be introduced by connecting the voltage output of the transducer between common and analog high, and the offset voltage between common and analog low, observing polarities carefully. However, in processor-based systems using the ICL7109, it may be more efficient to perform this type of scaling or tare subtraction digitally using software.

Reference Sources

The stability of the reference voltage is a major factor in the overall absolute accuracy of the converter. The resolution of the ICL7109 at 12 bits is one part in 4096, or 244ppm. Thus if the reference has a temperature coefficient of $80 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ (onboard reference) a temperature difference of $3^{\circ} \mathrm{C}$ will introduce a one-bit absolute error.
For this reason, it is recommended that an external highquality reference be used where the ambient temperature is not controlled or where high-accuracy absolute measurements are being made.

The ICL7109 provides a REFerence OUTput (pin 29) which may be used with a resistive divider to generate a suitable reference voltage. This output will sink up to about 20 mA without significant variation in output voltage, and is provided with a pullup bias device which sources about $10 \mu \mathrm{~A}$. The output voltage is nominally 2.8 V below $\mathrm{V}+$, and has a temperature coefficient of $\pm 80 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ typ. When using the onboard reference, REF OUT (pin 29) should be connected to REF- (pin 39), and REF+ should be connected to the wiper of a precision potentiometer between REF OUT and $\mathrm{V}+$. The circuit for a 204.8 mV reference is shown in the test circuit. For a 2.048 mV reference, the fixed resistor should be removed, and a $25 \mathrm{k} \Omega$ precision potentiometer between REF OUT and $V+$ should be used.

Note that if pins 29 and 39 are tied together and pins 39 and 40 accidentally shorted (e.g., during testing), the reference supply will sink enough current to destroy the device. This can be avoided by placing a $1 \mathrm{k} \Omega$ resistor in series with pin 39.

Detailed Description

Digital Section

The digital section includes the clock oscillator and scaling circuit, a 12-bit binary counter with output latches and TTL-compatible tri-state output drivers, polarity, overrange and control logic, and UART handshake logic, as shown in Figure 4.
Throughout this description, logic levels will be referred to as "low" or "high". The actual logic levels are defined in the Electrical Specifications Table. For minimum power consumption, all inputs should swing from GND (low) to V+ (high). Inputs driven from TTL gates should have $3-5 \mathrm{k} \Omega$ pullup resistors added for maximum noise immunity.

FIGURE 3. CONVERSION TIMING (RUN/ $\overline{H O L D}$ PIN HIGH)

MODE Input

The MODE input is used to control the output mode of the converter. When the MODE pin is low or left open (this input is provided with a pulldown resistor to ensure a low level when the pin is left open), the converter is in its "Direct" output mode, where the output data is directly accessible under the control of the chip and byte enable inputs. When the MODE input is pulsed high, the converter enters the UART handshake mode and outputs the data in two bytes, then returns to "direct" mode. When the MODE input is left high, the converter will output data in the handshake mode at the end of every conversion cycle. (See section entitled "Handshake Mode" for further details).

STATUS Output

During a conversion cycle, the STATUS output goes high at the beginning of Signal Integrate (Phase II), and goes low one-half clock period after new data from the conversion has been stored in the output latches. See Figure 3 for of this timing. This signal may be used as a "data valid" flag (data never changes while STATUS is low) to drive interrupts, or for monitoring the status of the converter.

RUNHOLD Input

When the RUN/ $\overline{H O L D}$ input is high, or left open, the circuit will continuously perform conversion cycles, updating the output latches after zero crossing during the Deintegrate (Phase III)

FIGURE 4. DIGITAL SECTION

FIGURE 5. RUN/TOLD OPERATION
portion of the conversion cycle (See Figure 3). In this mode of operation, the conversion cycle will be performed in 8192 clock periods, regardless of the resulting value.
If RUN/ $\overline{H O L D}$ goes low at any time during Deintegrate (Phase III) after the zero crossing has occurred, the circuit will immediately terminate Deintegrate and jump to Auto-Zero. This feature can be used to eliminate the time spent in Deintegrate after the zero-crossing. If RUN/HOLD stays or goes low, the converter will ensure minimum Auto-Zero time, and then wait in Auto-Zero until the RUN/HOLD input goes high. The converter will begin the Integrate (Phase II) portion of the next conversion (and the STATUS output will go high) seven clock periods after the high level is detected at RUN/HOLD. See Figure 5 for details.

Using the RUN/HOLD input in this manner allows an easy "convert on demand" interface to be used. The converter may be held at idle in auto-zero with RUN/HOLD low. When RUN/ HOLD goes high the conversion is started, and when the STATUS output goes low the new data is valid (or transferred to the UART; see Handshake Mode). RUN/HOLD may now be taken low which terminates deintegrate and ensures a minimum Auto-Zero time before the next conversion.
Alternately, RUN/ $\overline{\mathrm{HOLD}}$ can be used to minimize conversion time by ensuring that it goes low during Deintegrate, after zero crossing, and goes high after the hold point is reached. The required activity on the RUN/ $\overline{\text { HOLD }}$ input can be provided by connecting it to the Buffered Oscillator Output. In this mode the conversion time is dependent on the input value measured. Also refer to Harris Application Note ANO32 for a discussion of the effects this will have on Auto-Zero performance.
If the RUN/ $\overline{H O L D}$ input goes low and stays low during AutoZero (Phase I), the converter will simply stop at the end of Auto-Zero and wait for RUN/FOLD to go high. As above, Integrate (Phase II) begins seven clock periods after the high level is detected.

Direct Mode

When the MODE pin is left at a low level, the data outputs (bits 1 through 8 low order byte, bits 9 through 12, polarity and over-range high order byte) are accessible under control of the byte and chip enable terminals as inputs. These three inputs are all active low, and are provided with pullup resistors to ensure an inactive high level when left open. When the chip enable input is low, taking a byte enable input low will allow the outputs of that byte to become active (tri-stated on). This allows a variety of parallel data accessing techniques to be used, as shown in the section entitled "Interfacing." The timing requirements for these outputs are shown in Figure 6 and Table 1.

It should be noted that these control inputs are asynchronous with respect to the converter clock - the data may be accessed at any time. Thus it is possible to access the latches while they are being updated, which could lead to erroneous data. Synchronizing the access of the latches with the conversion cycle by monitoring the STATUS output will prevent this. Data is never updated while STATUS is low.

TABLE 1. DIRECT MODE TIMING REQUIREMENTS
(See Note 4 of Electrical Specifications)

DESCRIPTION	SYMBOL	MIN	TYP	MAX	UNITS
Byte Enable Width	t $_{\text {BEA }}$	350	220	-	ns
Data Access Time from Byte Enable	t DAB	-	210	350	ns
Data Hold Time from Byte Enable	t DHB	-	150	300	ns
Chip Enable Width	t $_{\text {CEA }}$	400	260	-	ns
Data Access Time from Chip Enable	tDAC	-	260	400	ns
Data Hold Time from Chip Enable	t DHC	-	240	400	ns

FIGURE 6. DIRECT MODE OUTPUT TIMING

Handshake Mode

The handshake output mode is provided as an alternative means of interfacing the ICL7109 to digital systems where the AD converter becomes active in controlling the flow of data instead of passively responding to chip and byte enable inputs. This mode is specifically designed to allow a direct interface between the ICL7109 and industry-standard UARTs (such as the Harris IM6402/3) with no external logic required. When triggered into the handshake mode, the ICL7109 provides all the control and flag signals necessary to sequentially transfer two bytes of data into the UART and initiate their transmission in serial form. This greatly eases the task and reduces the cost of designing remote data acquisition stations using serial data transmission.

Entry into the handshake mode is controlled by the MODE pin. When the MODE terminal is held high, the ICL7109 will enter the handshake mode after new data has been stored in the output latches at the end of a conversion (See Figures 7 and 8). The MODE terminal may also be used to trigger entry into the handshake mode on demand. At any time during the conversion cycle, the low to high transition of a short pulse at the MODE input will cause immediate entry into the handshake mode. If this pulse occurs while new data is being stored, the entry into handshake mode is delayed until the data is stable. While the converter is in the handshake mode, the MODE input is ignored, and although conversions will still be performed, data updating will be inhibited (See Figure 9) until the converter completes the output cycle and clears the handshake mode.

When the converter enters the handshake mode, or when the MODE input is high, the chip and byte enable terminals become TTL-compatible outputs which provide the control signals for the output cycle (See Figures 7, 8, and 9).
In handshake mode, the SEND input is used by the converter as an indication of the ability of the receiving device (such as a UART) to accept data.

Figure 7 shows the sequence of the output cycle with SEND held high. The handshake mode (internal MODE high) is entered after the data latch pulse, and since MODE remains high the $\overline{C E / L O A D}, \overline{L B E N}$ and $\overline{H B E N}$ terminals are active as outputs. The high level at the SEND input is sensed on the same high to low internal clock edge that terminates the data latch pulse. On the next low to high internal clock edge the $\overline{\mathrm{CE}}$ $\overline{\text { LOAD }}$ and the HBEN outputs assume a low level, and the highorder byte (bits 9 through 12, POL, and OR) outputs are enabled. The $\overline{C E R O A D}$ output remains low for one full internal clock period only, the data outputs remain active for $1 \frac{1}{2}$ internal clock periods, and the high byte enable remains low for two clock periods. Thus the CE/LOAD output low level or low to high edge may be used as a synchronizing signal to ensure valid data, and the byte enable as an output may be used as a byte identification flag. With SEND remaining high the converter completes the output cycle using CE/LOAD and $\overline{\text { LBEN }}$ while the low order byte outputs (bits 1 through 8) are activated. The handshake mode is terminated when both bytes are sent.

$=$ DON'T CARE -cecere = TRLSTATE HIGH IMPEDANCE
A. A. = tri-state with puluvp

FIGURE 7. HANDSHAKE WITH SEND HELD HIGH

Figure 8 shows an output sequence where the SEND input is used to delay portions of the sequence, or handshake to ensure correct data transfer. This timing diagram shows the relationships that occur using an industry-standard IM6402/3 CMOS UART to interface to serial data channels. In this interface, the SEND input to the ICL7109 is driven by the TBRE (Transmitter Buffer Register Empty) output of the UART, and the CE/LOAD terminal of the ICL7109 drives the TBRL (Transmitter Buffer Register Load) input to the UART. The data outputs are paralleled into the eight Transmitter Buffer Register inputs.

Assuming the UART Transmitter Buffer Register is empty, the SEND input will be high when the handshake mode is entered after new data is stored. The $\overline{C E / L O A D}$ and $\overline{\text { HBEN }}$ terminals will go low after SEND is sensed, and the high order byte outputs become active. When $\overline{C E / L O A D}$ goes high at the end of one clock period, the high order byte data is clocked into the UART Transmitter Buffer Register. The UART TBRE output will now go low, which halts the output cycle with the HBEN output low, and the high order byte outputs active. When the UART has transferred that data to the Transmitter Register and cleared the Transmitter Buffer Register, the TBRE returns high. On the next ICL7109 internal clock high to low edge, the high order byte outputs are disabled, and one-half internal clock later, the $\overline{\text { HBEN }}$ output returns high. At the same time,
the CE/LOAD and LBEN outputs go low, and the low order byte outputs become active. Similarly, when the $\overline{C E / L O A D}$ returns high at the end of one clock period, the low order data is clocked into the UART Transmitter Buffer Register, and TBRE again goes low. When TBRE returns to a high it will be sensed on the next ICL7109 internal clock high to low edge, disabling the data outputs. One-half internal clock later, the handshake mode will be cleared, and the CE/LOAD, $\overline{\text { HBEN }}$ and LBEN terminals return high and stay inactive (as long as MODE stays high).

With the MODE input remaining high as in these examples, the converter will output the results of every conversion except those completed during a handshake operation. By triggering the converter into handshake mode with a low to high edge on the MODE input, handshake output sequences may be performed on demand. Figure 9 shows a handshake output sequence triggered by such an edge. In addition, the SEND input is shown as being low when the converter enters handshake mode. In this case, the whole output sequence for the first (high order) byte is similar to the sequence for the second byte. This diagram also shows the output sequence taking longer than a conversion cycle. Note that the converter still makes conversions, with the STATUS output and RUN/ $\overline{H O L D}$ input functioning normally. The only difference is that new data will not be latched when in handshake mode, and is therefore lost.

FIGURE 8. HANDSHAKE - TYPICAL UART INTERFACE TIMING

Oscillator

The ICL7109 is provided with a versatile three terminal oscillator to generate the internal clock. The oscillator may be overdriven, or may be operated with an RC network or crystal. The OSCILLATOR SELECT input changes the internal configuration of the oscillator to optimize it for RC or crystal operation.

When the OSCILLATOR SELECT input is high or left open (the input is provided with a pullup resistor), the oscillator is configured for RC operation, and the internal clock will be of the same frequency and phase as the signal at the BUFFERED OSCILLATOR OUTPUT. The resistor and capacitor should be connected as in Figure 10. The circuit will oscillate at a frequency given by $f=0.45 /$ RC. A $100 \mathrm{k} \Omega$ resistor is recommended for useful ranges of frequency. For optimum 60 Hz line rejection, the capacitor value should be chosen such that 2048 clock periods is close to an integral multiple of the 60 Hz period (but should not be less than 50 pF).
When the OSCILLATOR SELECT input is low a feedback device and output and input capacitors are added to the oscillator. In this configuration, as shown in Figure 11, the oscillator will operate with most crystals in the 1 MHz to 5 MHz range with no external components. Taking the OSCILLATOR SELECT input low also inserts a fixed +58 divider circuit between the BUFFERED OSCILLATOR OUTPUT and the internal clock. Using an inexpensive 3.58 MHz TV crystal, this division ratio provides an integration time given by:
$\mathrm{T}_{\text {INT }}=$ (2048 clock periods) $\times\left(\mathrm{T}_{\text {CLOCK }}\right)=33.18 \mathrm{~ms}$ where

$$
\mathrm{T}_{\text {CLOCK }}=\frac{58}{3.58 \mathrm{MHZ}}
$$

This time is very close to two 60 Hz periods or 33 ms . The error is less than one percent, which will give better than 40 dB 60 Hz rejection. The converter will operate reliably at conversion rates of up to 30 per second, which corresponds to a clock frequency of 245.8 kHz .

If at any time the oscillator is to be overdriven, the overdriving signal should be applied at the OSCILLATOR INPUT, and the OSCILLATOR OUTPUT should be left open. The internal clock will be of the same frequency, duty cycle, and phase as the input signal when OSCILLATOR SELECT is left open. When OSCILLATOR SELECT is at GND, the clock will be a factor of 58 below the input frequency.
When using the ICL7109 with the IM6403 UART, it is possible to use one 3.58 MHz crystal for both devices. The BUFFERED OSCILLATOR OUTPUT of the ICL7109 may be used to drive the OSCILLATOR INPUT of the UART, saving the need for a second crystal. However, the BUFFERED OSCILLATOR OUTPUT does not have a great deal of drive capability, and when driving more than one slave device external buffering should be used.

Test Input

When the TEST input is taken to a level halfway between V_{+} and GND, the counter output latches are enabled, allowing the counter contents to be examined anytime.
When the RUN/HOLD is low and the TEST input is connected to GND, the counter outputs are all forced into the high state, and the internal clock is disabled. When the RUN/ HOLD returns high and the TEST input returns to the $\frac{1}{2}\left(\mathrm{~V}_{+}\right.$ - GND) voltage (or to V_{+}) and one clock is applied, all the counter outputs will be clocked to the low state. This allows easy testing of the counter and its outputs.

FIGURE 9. HANDSHAKE TRIGGERED BY MODE

FIGURE 10. RC OSCILLATOR

FIGURE 11. CRYSTAL OSCILLATOR

FIGURE 12. DIRECT MODE CHIP AND BYTE ENABLE COMBINATIONS

FIGURE 13. TRLSTATE SEVERAL ICL7109'S TO A SMALL BUS

FIGURE 14. FULL-TIME PARALLEL INTERFACE TO 8040/80/85 MICROPROCESSORS

FIGURE 15. FULL-TIME PARALLEL INTERFACE TO 8048/80/85 MICROPROCESSORS WITH INTERRUPT

Test Circuit

${ }^{*} R_{\text {INT }}=20 \mathrm{k} \Omega$ FOR 0.2V REF
=200k Ω FOR 2.0V REF

Typical Applications

Direct Mode Interfacing

Figure 12 shows some of the combinations of chip enable and byte enable control signals which may be used when interfacing the ICL7109 to parallel data lines. The CE/LOAD input may be tied low, allowing either byte to be controlled by its own enable as in Figure 12A. Figure 12B shows a configuration where the two byte enables are connected together. In this configuration, the CE/LOAD serves as a chip enable, and the HBEN and LBEN may be connected to GND or serve as a second chip enable. The 14 data outputs will all be enabled simultaneously. Figure 12C shows the HBEN and LBEN as flag inputs, and CE/LOAD as a master enable, which could be the READ strobe available from most microprocessors.

Figure 13 shows an approach to interfacing several ICL7109s to a bus, connecting the HBEN and LBEN signals of several converters together, and using the $\overline{C E / L O A D}$ inputs (perhaps decode from an address) to select the desired converter.

Some practical circuits utilizing the parallel tri-state output capabilities of the ICL7109 are shown in Figures 14 through 19. Figure 14 shows a straightforward application to the Intel 8048/80/85 microprocessors via an 8255PPI, where the ICL7109 data outputs are active at all times. The I/O ports of an 8155 may be used in the same way. This interface can be used in a read-anytime mode, although a read performed while the data latches are being updated will lead to scrambled data. This will occur very rarely, in the proportion of setup skew times to conversion time. One way to overcome this is to read the STATUS output as well, and if it is high, read the data again after a delay of more than $1 / 2$ converter clock period. If STATUS is now low, the second reading is correct, and if it is still high, the first reading is correct. Alternatively, this timing problem is completely avoided by using a read-after-update sequence, as shown in Figure 15. Here the high to low transition of the STATUS output drives an interrupt to
the microprocessor causing it to access the data latches. This application also shows the RUN/ $\overline{H O L D}$ input being used to initiate conversions under software control.

A similar interface to Motorola MC6800 or Rockwell R650X systems is shown in Figure 16. The high to low transition of the STATUS output generates an interrupt via the Control Register B CB1 line. Note that CB2 controls the RUN/ $\overline{H O L D}$ pin through Control Register B, allowing software-controlled initiation of conversions in this system as well.
The tri-state output capability of the ICL7109 allows direct interfacing to most microprocessor busses. Examples of this are shown in Figures 17 and 18. It is necessary to carefully consider the system in this type of interface, to be sure that requirements for setup and hold times, and minimum pulse widths are met. Note also the drive limitations on long buses. Generally this type of interface is only favored if the memory peripheral address density is low so that simple address decoding can be used. Interrupt handling can also require many additional components, and using an interface device will usually simplify the system in this case.

Handshake Mode Interfacing

The handshake mode allows ready interface with a wide variety of external devices. For instance, external latches may be clocked by the rising edge of $\overline{C E / L O A D}$, and the byte enables may be used as byte identification flags or as load enables.
Figure 19 shows a handshake interface to Intel microprocessors again using an 8255PPI. The handshake operation with the 8255 is controlled by inverting its Input Buffer Full (IBF) flag to drive the SEND input to the ICL7109, and using the $\overline{C E / L O A D}$ to drive the 8255 strobe. The internal control register of the PPI should be sent in MODE 1 for the port used. If the ICL7109 is in handshake mode and the 8255 IBF flag is low, the next word will be strobed into the port. The strobe will cause IBF to go high (SEND goes low), which will keep the enable byte outputs active. The PPI will generate an interrupt which when executed will result in the data being

FIGURE 16. FULL-TIME PARALLEL INTERFACE TO MC680X OR MCS650X MICROPROCESSORS
read. When the byte is read, the IBF will be reset low, which causes the ICL7109 to sequence into the next byte. This figure shows the MODE input to the ICL7109 connected to a control line on the PPI. If this output is left high, or tied high separately, the data from every conversion (provided the data access takes less time than a conversion) will be sequenced in two bytes into the system.
If this output is made to go from low to high, the output sequence can be obtained on demand, and the interrupt may be used to reset the MODE bit. Note that the RUN/ $\overline{H O L D}$ input to the ICL7109 may also be obtained on command under software control. Note that one port of the 8255 is not used, and can service another peripheral device. the same arrangement can also be used with the 8155.

Figure 20 shows a similar arrangement with the MC6800 or MCS650X microprocessors; except that both MODE and RUN/ $\overline{H O L D}$ are tied high to save port outputs.

The handshake mode is particularly convenient for directly interfacing to industry standard UARTs (such as the Harris IM6402 or Western Digital TR1602) providing a minimum component count means of serially transmitting converted data. A typical UART connection is shown in Figure 1A. In this circuit, any word received by the UART causes the UART DR (Data Ready) output to go high. This drives the MODE input to the ICL7109 high, triggering the ICL7109 into handshake mode. The high order byte is output to the UART first, and when the UART has transferred the data to the Transmitter Register, TBRE (SEND) goes high again, LBEN will go high, driving the UART DRR (Data Ready Reset) which will signal the end of the transfer of data from the ICL7109 to the UART.

Figure 21 shows an extension of the one converter one UART scheme to several ICL7109s with one UART. In this circuit, the word received by the UART (available at the RBR outputs when DR is high) is used to select which converter will handshake with the UART. With no external components, this scheme will allow up to eight ICL7109s to interface with one UART. Using a few more components to decode the received word will allow up to 256 converters to be accessed on one serial line.

The applications of the ICL7109 are not limited to those shown here. The purposes of these examples are to provide a starting point for users to develop useful systems and to show some of the variety of interfaces and uses of the combination. In particular the uses of the STATUS, RUN/HOLD, and MODE signals may be mixed.
The following application notes contain very useful information on understanding and applying this part and are available from Harris Semiconductor.

Application Notes

A016 "Selecting ADD Converters"
A017 "The Integrating ADD Converter"
A018 "Do's and Don'ts of Applying ADD Converters"
A030 "The ICL7104 - A Binary Output AND Converter for Microprocessors"

A032 "Understanding the Auto-Zero and Common Mode Performance of the ICL7106/7/9 Family"

FIGURE 17. DIRECT INTERFACE - ICL7109 TO 8080/8085

FIGURE 18. DIRECT ICL7109 - MC680X BUS INTERFACE

FIGURE 19. HANDSHAKE INTERFACE - ICL7109 TO 8048, 80/85

FIGURE 20. HANDSHAKE INTERFACE - ICL7109 TO MC6800, MCS650X

FIGURE 21. MULTIPLEXING CONVERTERS WITH MODE INPUT

Die Characteristics

DIE DIMENSIONS:
(122×135)mils $\times 525 \mu \mathrm{~m} \pm 25 \mu \mathrm{~m}$ Thick
METALLIZATION:
Type: Alum
Thickness: $10 \mathrm{k} \AA \pm 1 \mathrm{k} \AA$
GLASSIVATION:
Type: Nitride/Silox Sandwich
Thickness: 8k \AA Nitride over 7k \AA Silox

Metallization Mask Layout

4 $1 / 2$ Digit BCD
 Output A/D Converter

Features

- Accuracy Guaranteed to ± 1 Count Over Entire ± 20000 Counts (2.0000V Full Scale)
- Guaranteed Zero Reading for OV Input
- 1pA Typical Input Leakage Current
- True Differential Input
- True Polarity at Zero Count for Precise Null Detection
- Single Reference Voltage Required
- Overrange and Underrange Signals Available for Auto-Range Capability
- All Outputs TTL Compatible
- Blinking Outputs Gives Visual Indication of Overrange
- Six Auxiliary Inputs/Outputs are Available for InterfacIng to UARTs, Microprocessors, or Other Circultry
- Multiplexed BCD Outputs

Description

The Harris ICL7135 precision AV converter, with its multiplexed BCD output and digit drivers, combines dual-slope conversion reliability with ± 1 in 20,000 count accuracy and is ideally suited for the visual display DVMDPM market. The 2.0000V full scale capability, auto-zero, and auto-polarity are combined with true ratiometric operation, almost ideal differential linearity and true differential input. All necessary active devices are contained on a single CMOS IC, with the exception of display drivers, reference, and a clock.

The ICL7135 brings together an unprecedented combination of high accuracy, versatility, and true economy. It features auto-zero to less than $10 \mu \mathrm{~V}$, zero drift of less than $1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$, input bias current of 10pA max., and rollover error of less than one count. The versatility of multiplexed BCD outputs is increased by the addition of several pins which allow it to operate in more sophisticated systems. These include STROBE, OVERRANGE, UNDERRANGE, RUN/HOLD and BUSY lines, making it possible to interface the circuit to a microprocessor or UART.

Ordering Information

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ICL7135CPI	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	28 Lead Plastic DIP

Pinout

Typical Application Schematic

Specifications ICL7135

Absolute Maximum Ratings

Supply Voltage $\begin{array}{r}\text { V+ . } 6 \text {. } 6 \mathrm{~V} \\ \text { V- . }\end{array}$
Analog input Voltage (Either Input) (Note 1). V+ to V-
Reference Input Voltage (Either Input).
Clock Input Voltage. .
Lead Temperature (Soldering 10s Max).
CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Electrical Specifications $\mathrm{V}_{+}=+5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}_{\mathrm{CLK}}$ Set for 3 Readings/s, Unless Otherwise Specified

PARAMETERS	TEST CONDITIONS	MIN	TYP	MAX	UNITS
ANALOG (Notes 3, 4)					
Zero Input Reading	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=1.000 \mathrm{~V}$	-00000	+00000	+00000	Counts
Ratiometric Error (Note 4)	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {REF }}=1.000 \mathrm{~V}$	-3	-1	0	Counts
Linearity Over \pm Full Scale (Error of Reading from Best Straight Line)	$-2 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq+2 \mathrm{~V}$	-	0.5	1	LSB
Differential Linearity (Difference Between Worse Case Step of Adjacent Counts and Ideal Step)3	$-2 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq+2 \mathrm{~V}$	-	0.01	-	LSB
Rollover Error (Difference in Reading for Equal Positive and Negative Voltage Near Full Scale)	$-V_{\mathbb{I}} \equiv+V_{\mathbb{N}} \approx 2 \mathrm{~V}$	-	0.5	1	LSB
Noise (P-P Value Not Exceeded 95\% of Time), eN	$\mathrm{V}_{\mathbb{I}}=0 \mathrm{~V}$, Full scale $=2.000 \mathrm{~V}$	-	15	-	$\mu \mathrm{V}$
Input Leakage Current, ILK	$\mathrm{V}_{\mathbb{N}}=0 \mathrm{~V}$	-	1	10	PA
Zero Reading Drift (Note 7)	$\mathrm{V}_{\mathbb{N}}=0 \mathrm{~V}, 0^{\circ} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$	-	0.5	2	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Scale Factor Temperature Coefficient, TC (Notes 5 and 7)	$V_{\mathbb{N}}=+2 \mathrm{~V}, 0^{\circ} \leq T_{A} \leq+70^{\circ} \mathrm{C}$ Ext. Ref. Oppm ${ }^{\circ} \mathrm{C}$	-	2	5	ppm/ ${ }^{\circ} \mathrm{C}$
DIGITAL INPUTS					
Clock In, Run/Hold (See Figure 2)					
$\mathrm{V}_{\text {INH }}$		2.8	2.2	-	V
$\mathrm{V}_{\text {INL }}$		-	1.6	0.8	V
IINL	$\mathrm{V}_{1 \text { IN }}=0 \mathrm{~V}$	-	0.02	0.1	mA
IINH	$\mathrm{V}_{\mathrm{IN}}=+5 \mathrm{~V}$	-	0.1	10	$\mu \mathrm{A}$

DIGITAL OUTPUTS					
All Outputs, V_{OL}	$\mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA}$	-	0.25	0.40	V
$\mathrm{B}_{1}, \mathrm{~B}_{2}, \mathrm{~B}_{4}, \mathrm{~B}_{8}, \mathrm{D}_{1}, \mathrm{D}_{2}, \mathrm{D}_{3}, D_{4}, D_{5}, \mathrm{~V}_{\mathrm{OH}}$	$\mathrm{IOH}_{\mathrm{OH}}=-1 \mathrm{~mA}$	2.4	4.2	-	V
BUSY, STROBE, OVERRANGE, UNDERRANGE, POLARITY, V_{OH}	$\mathrm{l}_{\mathrm{OH}}=-10 \mu \mathrm{~A}$	4.9	4.99	-	V

+5V Supply Range, V+		+4	+5	+6	V
-5V Supply Range, V-		-3	-5	-8	V
+5V Supply Current, I+	$\mathrm{f}_{\mathrm{C}}=0$	-	1.1	3.0	mA
-5V Supply Current, I-	$\mathrm{f}_{\mathrm{C}}=0$	-	0.8	3.0	mA
Power Dissipation Capacitance, $\mathrm{C}_{\text {PD }}$	vs Clock Frequency	-	40	-	pF
CLOCK					
Clock Frequency (Note 6)		DC	2000	1200	kHz

NOTES:

1. Input voltages may exceed the supply voltages provided the input current is limited to $+100 \mu \mathrm{~A}$.
2. Dissipation rating assumes device is mounted with all leads soldered to printed circuit board.
3. Tested in $4 \frac{1}{2}$ digit (20.000 count) circuit shown in Figure 3. (Clock frequency 120 kHz .)
4. Tested with a low dielectric absorption integrating capacitor, the $27 W$ INT. OUT resistor shorted, and RINT $=0$. See Component Value Selection Discussion.
5. The temperature range can be extended to $+70^{\circ} \mathrm{C}$ and beyond as long as the auto-zero and reference capacitors are increased to absorb the higher leakage of the ICL7135.
6. This specification relates to the clock frequency range over which the ICL7135 will correctly perform its various functions See "Max Clock Frequency" section for limitations on the clock frequency range in a system.
7. Parameter guaranteed by design or characterization. Not production tested.

FIGURE 1．ICL7135 TEST CIRCUIT

FIGURE 2．ICL7135 DIGITAL LOGIC INPUT

FIGURE 3．ANALOG SECTION OF ICL7135

Detailed Description

Analog Section

Figure 3 shows the Block Diagram of the Analog Section for the ICL7135. Each measurement cycle is divided into four phases. They are (1) auto-zero (AZ), (2) signal-integrate (INT), (3) de-integrate (DE) and (4) zero-integrator (ZI).

Auto-Zero Phase

During auto-zero three things happen. First, input high and low are disconnected from the pins and internally shorted to analog COMMON. Second, the reference capacitor is charged to the reference voltage. Third, a feedback loop is closed around the system to charge the auto-zero capacitor $\mathrm{C}_{A Z}$ to compensate for offset voltages in the buffer amplifier, integrator, and comparator. Since the comparator is included in the loop, the AZ accuracy is limited only by the noise of the system. In any case, the offset referred to the input is less than $10 \mu \mathrm{~V}$.

SIgnal Integrate Phase

During signal integrate, the auto-zero loop is opened, the internal short is removed, and the internal input high and low are connected to the external pins. The converter then integrates the differential voltage between IN HI and IN LO for a fixed time. This differential voltage can be within a wide common mode range; within one volt of either supply. If, on the other hand, the input signal has no return with respect to the converter power supply, IN LO can be tied to analog COMMON to establish the correct common-mode voltage. At the end of this phase, the polarity of the integrated signal is latched into the polarity F / F.

De-Integrate Phase

The third phase is de-integrate or reference integrate. Input low is internally connected to analog COMMON and input high is connected across the previously charged reference capacitor. Circuitry within the chip ensures that the capacitor will be connected with the correct polarity to cause the integrator output to return to zero. The time required for the output to return to zero is proportional to the input signal. Specifically the digital reading displayed is:
OUTPUT COUNT $=10,000\left(\frac{V_{I N}}{V_{\text {REF }}}\right)$

Zero Integrator Phase

The final phase is zero integrator. First, input low is shorted to analog COMMON. Second, a feedback loop is closed around the system to input high to cause the integrator output to return to zero. Under normal condition, this phase lasts from 100 to 200 clock pulses, but after an overrange conversion, it is extended to 6200 clock pulses.

Differential Input

The input can accept differential voltages anywhere within the common mode range of the input amplifier; or specifically from 0.5 V below the positive supply to 1 V above the negative supply. In this range the system has a CMRR of 86 dB typical. However, since the integrator also swings with the common mode voltage, care must be exercised to assure the integrator output does not saturate. A worst case condition would be a
large positive common-mode voltage with a near full-scale negative differential input voltage. The negative input signal drives the integrator positive when most of its swing has been used up by the positive common mode voltage. For these critical applications the integrator swing can be reduced to less than the recommended 4 V full scale swing with some loss of accuracy. The integrator output can swing within 0.3 V of either supply without loss of linearity.

Analog COMMON

Analog COMMON is used as the input low return during autozero and de-integrate. If IN LO is different from analog COMMON, a common mode voltage exists in the system and is taken care of by the excellent CMRR of the converter. However, in most applications IN LO will be set at a fixed known voltage (power supply common for instance). In this application, analog COMMON should be tied to the same point, thus removing the common mode voltage from the converter. The reference voltage is referenced to analog COMMON.

Reference

The reference input must be generated as a positive voltage with respect to COMMON, as shown in Figure 4.

Digital Section

Figure 5 shows the Digital Section of the ICL7135. The ICL7135 includes several pins which allow it to operate conveniently in more sophisticated systems. These include:

Run/FOLD (Pin 25)

When high (or open) the ADD will free-run with equally spaced measurement cycles every 40,002 clock pulses. If taken low, the converter will continue the full measurement cycle that it is doing and then hold this reading as long as R / \bar{H} is held low. A short positive pulse (greater than 300 ns) will now initiate a new measurement cycle, beginning with between 1 and 10,001 counts of auto zero. If the pulse occurs before the full measurement cycle (40,002 counts) is completed, it will not be recognized and the converter will simply complete the measurement it is doing. An external indication that a full measurement cycle has been completed is that the first strobe pulse (see below) will occur 101 counts after the end of this cycle. Thus, if Run/HOLD is low and has been low for at least 101 counts, the converter is holding and ready to start a new measurement when pulsed high.

STROBE (Pin 26)

This is a negative going output pulse that aids in transferring the BCD data to external latches, UARTs, or microprocessors. There are 5 negative going STROBE pulses that occur in the center of each of the digit drive pulses and occur once and only once for each measurement cycle starting 101 clock pulses after the end of the full measurement cycle. Digit 5 (MSD) goes high at the end of the measurement cycle and stays on for 201 counts. In the center of this digit pulse (to avoid race conditions between changing BCD and digit drives) the first STROBE pulse goes negative for $1 / 2$ clock pulse width. Similarly, after digit 5, digit 4 goes high (for 200 clock pulses) and 100 pulses later the STROBE goes negative for the second time. This continues through digit 1
(LSD) when the fifth and last $\overline{\text { STROBE }}$ pulse is sent. The digit drive will continue to scan (unless the previous signal was overrange) but no additional $\overline{\text { STROBE }}$ pulses will be sent until a new measurement is available.

BUSY (Pin 21)

BUSY goes high at the beginning of signal integrate and stays high until the first clock pulse after zerocrossing (or after end of measurement in the case of an overrange). The internal latches are enabled (i.e., loaded) during the first clock pulse after busy and are latched at the end of this clock pulse. The circuit automatically reverts to auto-zero when not BUSY, so it may also be considered a (ZI + AZ) signal. A very simple means for transmitting the data down a single wire pair from a remote location would be to AND BUSY with clock and subtract 10,001 counts from the number of pulses received - as mentioned previously there is one "NO-count" pulse in each reference integrate cycle.

OVERRANGE (Pin 27)

This pin goes positive when the input signal exceeds the range $(20,000)$ of the converter. The output F/F is set at the end of BUSY and is reset to zero at the beginning of reference integrate in the next measurement cycle.
UNDERRANGE (Pin 28)
This pin goes positive when the reading is 9% of range or less. The output F/F is set at the end of BUSY (if the new reading is 1800 or less) and is reset at the beginning of signal integrate of the next reading.

POLARITY (Pin 23)

This pin is positive for a positive input signal. It is valid even for a zero reading. In other words, +0000 means the signal is positive but less than the least significant bit. The converter can be used as a null detector by forcing equal frequency of $(+)$ and $(-)$ readings. The null at this point should be less than 0.1 LSB . This output becomes valid at the beginning of reference integrate and remains correct until it is revalidated for the next measurement.

Digit Drives (Pins 12,17,18,19 and 20)

Each digit drive is a positive going signal that lasts for 200 clock pulses. The scan sequence is $D_{5}(M S D), D_{4}, D_{3}, D_{2}$, and D_{1} (LSD). All five digits are scanned and this scan is continuous unless an overrange occurs. Then all digit drives are blanked from the end of the strobe sequence until the beginning of Reference Integrate when D_{5} will start the scan again. This can give a blinking display as a visual indication of overrange.
BCD (Pins 13, 14, 15 and 16)
The Binary coded Decimal bits $\mathrm{B}_{8}, \mathrm{~B}_{4}, \mathrm{~B}_{2}$, and B_{1} are positive logic signals that go on simultaneously with the digit driver signal.

FIGURE 4A.

FIGURE 4B.
FIGURE 4. USING AN EXTERNAL REFERENCE

FIGURE 5. DIGITAL SECTION OF THE ICL7135

Component Value Selection

For optimum performance of the analog section, care must be taken in the selection of values for the integrator capacitor and resistor, auto-zero capacitor, reference voltage, and conversion rate. These values must be chosen to suit the particular application.

Integrating Resistor

The integrating resistor is determined by the full scale input voltage and the output current of the buffer used to charge the integrator capacitor. Both the buffer amplifier and the integrator have a class A output stage with $100 \mu \mathrm{~A}$ of quiescent current. They can supply $20 \mu \mathrm{~A}$ of drive current with negligible non-linearity. Values of $5 \mu \mathrm{~A}$ to $40 \mu \mathrm{~A}$ give good results, with a nominal of $20 \mu \mathrm{~A}$, and the exact value of integrating resistor may be chosen by

$$
R_{I N T}=\frac{\text { full scale voltage }}{20 \mu \mathrm{~A}}
$$

Integrating Capacitor

The product of integrating resistor and capacitor should be selected to give the maximum voltage swing which ensures that the tolerance built-up will not saturate the integrator swing (approx. 0.3 V from either supply). For $\pm 5 \mathrm{~V}$ supplies and analog COMMON tied to supply ground, a $\pm 3.5 \mathrm{~V}$ to $\pm 4 \mathrm{~V}$ full scale integrator swing is fine, and $0.47 \mu \mathrm{~F}$ is nominal. In general, the value of $C_{\mathbb{N} T}$ is given by
$C_{\text {INT }}=\left(\frac{[10,000 \times \text { clock period }] \times I_{\text {INT }}}{\text { integrator output voltage swing }}\right)$
$=\frac{(10,000) \text { (clock period) }(20 \mu \mathrm{~A})}{\text { integrator output voltage swing }}$
A very important characteristic of the integrating capacitor is that it has low dielectric absorption to prevent roll-over or ratiometric errors. A good test for dielectric absorption is to use the capacitor with the input tied to the reference.
This ratiometric condition should read half scale 0.9999 , and any deviation is probably due to dielectric absorption. Polypropylene capacitors give undetectable errors at reasonable cost. Polystyrene and polycarbonate capacitors may also be used in less critical applications.

Auto-Zero and Reference Capacitor

The physical size of the auto-zero capacitor has an influence on the noise of the system. A larger capacitor value reduces system noise. A larger physical size increases system noise. The reference capacitor should be large enough such that stray capacitance to ground from its nodes is negligible.

The dielectric absorption of the reference cap and auto-zero cap are only important at power-on or when the circuit is recovering from an overload. Thus, smaller or cheaper caps can be used here if accurate readings are not required for the first few seconds of recovery.

Reference Voltage

The analog input required to generate a full-scale output is $\mathbf{V}_{\mathbb{N}}=\mathbf{2} \mathrm{V}_{\mathrm{REF}}$.

The stability of the reference voltage is a major factor in the overall absolute accuracy of the converter. For this reason, it is recommended that a high quality reference be used where high-accuracy absolute measurements are being made.

Rollover Resistor and Diode

A small rollover error occurs in the ICL7135, but this can be easily corrected by adding a diode and resistor in series between the INTegrator OUTput and analog COMMON or ground. The value shown in the schematics is optimum for the recommended conditions, but if integrator swing or clock frequency is modified, adjustment may be needed. The diode can be any silicon diode such as 1N914. These components can be eliminated if rollover error is not important and may be altered in value to correct other (small) sources of rollover as needed.

Max Clock Frequency

The maximum conversion rate of most dual-slope AD converters is limited by the frequency response of the comparator. The comparator in this circuit follows the integrator ramp with a $3 \mu \mathrm{~s}$ delay, and at a clock frequency of $160 \mathrm{kHz}(6 \mu \mathrm{~s}$ period) half of the first reference integrate clock period is lost in delay. This means that the meter reading will change from 0 to 1 with a $50 \mu \mathrm{~V}$ input, 1 to 2 with a $150 \mu \mathrm{~V}$ input, 2 to 3 with a $250 \mu \mathrm{~V}$ input, etc. This transition at mid-point is considered desirable by most users; however, if the clock frequency is increased appreciably above 160 kHz , the instrument will flash " 1 " on noise peaks even when the input is shorted.

For many dedicated applications where the input signal is always of one polarily, the delay of the comparator need not be a limitation. Since the non-linearity and noise do not increase substantially with frequency, clock rates of up to $\sim 1 \mathrm{MHz}$ may be used. For a fixed clock frequency, the extra count or counts caused by comparator delay will be constant and can be subtracted out digitally.
The clock frequency may be extended above 160 kHz without this error, however, by using a low value resistor in series with the integrating capacitor. The effect of the resistor is to introduce a small pedestal voltage on to the integrator output at the beginning of the reference integrate phase. By careful selection of the ratio between this resistor and the integrating resistor (a few tens of ohms in the recommended circuit), the comparator delay can be compensated and the maximum clock frequency extended by approximately a factor of 3. At higher frequencies, ringing and second order breaks will cause significant non-linearities in the first few counts of the instrument. See Application Note AN017.

The minimum clock frequency is established by leakage on the auto-zero and reference caps. With most devices, measurement cycles as long as 10 sec give no measurable leakage error.

To achieve maximum rejection of 60 Hz pickup, the signal integrate cycle should be a multiple of 60 Hz . Oscillator frequencies of $300 \mathrm{kHz}, 200 \mathrm{kHz}, 150 \mathrm{kHz}, 120 \mathrm{kHz}, 100 \mathrm{kHz}$, $40 \mathrm{kHz}, 33-1 / 3 \mathrm{kHz}$, etc. should be selected. For 50 Hz rejection, oscillator frequencies of $250 \mathrm{kHz}, 166-2 / 3 \mathrm{kHz}, 125 \mathrm{kHz}$, 100 kHz , etc. would be suitable. Note that 100 kHz (2.5 readings/second) will reject both 50 Hz and 60 Hz .

The clock used should be free from significant phase or frequency jitter. Several suitable low-cost oscillators are shown in the Typical Applications section. The multiplexed output means that if the display takes significant current from the logic supply, the clock should have good PSRR.

Zero-Crossing Flip-Flop

The flip-flop interrogates the data once every clock pulse after the transients of the previous clock pulse and half-clock pulse have died down. False zero-crossings caused by clock pulses are not recognized. Of course, the flip-flop delays the true zero-crossing by up to one count in every instance, and if a correction were not made, the display would always be one count too high. Therefore, the counter is disabled for one clock pulse at the beginning of phase 3 . This one-count delay compensates for the delay of the zero-crossing flipflop, and allows the correct number to be latched into the display. Similarly, a one-count delay at the beginning of phase 1 gives an overload display of 0000 instead of 0001 . No delay occurs during phase 2, so that true ratiometric readings result.

FIGURE 6. TIMING DIAGRAM FOR OUTPUTS

Evaluating The Error Sources

Errors from the "ideal" cycle are caused by:

1. Capacitor droop due to leakage.
2. Capacitor voltage change due to charge "suck-out" (the reverse of charge injection) when the switches turn off.
3. Non-linearity of buffer and integrator.
4. High-frequency limitations of buffer, integrator, and comparator.
5. Integrating capacitor non-linearity (dielectric absorption).
6. Charge lost by $C_{\text {REF }}$ in charging $C_{S T R A Y}$.
7. Charge lost by $C_{A Z}$ and $C_{I_{N T}}$ to charge $C_{S T R A Y}$.

Each error is analyzed for its error contribution to the converter in application notes listed on the back page, specifically Application Note AN017 and Application Note AN032.

Noise

The peak-to-peak noise around zero is approximately $15 \mu \mathrm{~V}$ (pk-to-pk value not exceeded 95% of the time). Near full scale, this value increases to approximately $30 \mu \mathrm{~V}$. Much of the noise originates in the auto-zero loop, and is proportional to the ratio of the input signal to the reference.

Analog And Digital Grounds

Extreme care must be taken to avoid ground loops in the layout of ICL7135 circuits, especially in high-sensitivity circuits. It is most important that return currents from digital loads are not fed into the analog ground line.

Power Supplies

The ICL7135 is designed to work from $\pm 5 \mathrm{~V}$ supplies. However, in selected applications no negative supply is required. The conditions to use a single +5 V supply are:

1. The input signal can be referenced to the center of the common mode range of the converter.
2. The signal is less than $\pm 1.5 \mathrm{~V}$.

See "differential input" for a discussion of the effects this will have on the integrator swing without loss of linearity.

Typical Applications

The circuits which follow show some of the wide variety of possibilities and serve to illustrate the exceptional versatility of this AD converter.
Figure 7 shows the complete circuit for a $4 \frac{1}{2}$ digit ($\pm 2.000 \mathrm{~V}$) full scale) AD with LED readout using the ICL8069 as a 1.2V temperature compensated voltage reference. It uses the band-gap principal to achieve excellent stability and low noise at reverse currents down to $50 \mu \mathrm{~A}$. The circuit also shows a typical R-C input filter. Depending on the application, the time-constant of this filter can be made faster, slower, or the filter deleted completely. The $1 / 2$ digit LED is
driven from the 7 segment decoder, with a zero reading blanked by connecting a D_{5} signal to RBI input of the decoder. The 2-gate clock circuit should use CMOS gates to maintain good power supply rejection.
A suitable circuit for driving a plasma-type display is shown in Figure 8. The high voltage anode driver buffer is made by Dionics. The 3 AND gales and caps driving "BI" are needed for interdigit blanking of multiple-digit display elements, and can be omitted if not needed. The $2.5 \mathrm{k} \Omega \& 3 \mathrm{k} \Omega$ resistors set the current levels in the display. A similar arrangement can be used with Nixie ${ }^{\text {® }}$ tubes.

The popular LCD displays can be interfaced to the outputs of the ICL7135 with suitable display drivers, such as the ICM7211A as shown in Figure 9. A standard CMOS 4030 QUAD XOR gate is used for displaying the $1 / 2$ digit, the polarity, and an "overrange" flag. A similar circuit can be used with the ICL7212A LED driver and the ICM7235A vacuum fluorescent driver with appropriate arrangements made for the "extra" outputs. Of course, another full driver circuit could be ganged to the one shown if required. This would be useful if additional annunciators were needed. The Figure shows the complete circuit for a $4 \frac{1}{2}$ digit ($\pm 2.000 \mathrm{~V}$) AD.

Figure 10 shows a more complicated circuit for driving LCD displays. Here the data is latched into the ICM7211 by the STROBE signal and "Overrange" is indicated by blanking the 4 full digits.

A problem sometimes encountered with both LED and plasma-type display driving is that of clock source supply line variations. Since the supply is shared with the display, any variation in voltage due to the display reading may cause clock supply voltage modulation. When in overrange the display alternates between a blank display and the 0000 overrange indication. This shift occurs during the reference integrate phase of conversion causing a low display reading just after overrange recovery. Both of the above circuits have considerable current flowing in the digital supply from drivers, etc. A clock source using an LM311 voltage comparator with positive feedback (Figure 11) could minimize any clock frequency shift problem.
The ICL7135 is designed to work from $\pm 5 \mathrm{~V}$ supplies. However, if a negative supply is not available, it can be generated with an ICL7660 and two capacitors (Figure 12).

Interfacing with UARTs and Microprocessors

Figure 13 shows a very simple interface between a free- running ICL7135 and a UART. The five STROBE pulses start the transmission of the five data words. The digit 5 word is $0000 \times X X X$, digit 4 is $1000 \times X X X$, digit 3 is $0100 \times X X X$, etc. Also the polarity is transmitted indirectly by using it to drive the Even Parity Enable Pin (EPE). If EPE of the receiver is held low, a parity flag at the receiver can be decoded as a positive signal, no flag as negative. A complex arrangement is shown in Figure 14. Here the UART can instruct the AVD to begin a measurement sequence by a word on RRI. The BUSY signal resets the Data Ready Reset (DRR). Again STROBE starts the transmit sequence. A quad 2 input multiplexer is used to superimpose polarity, over-range, and under-range onto the D_{5} word since in this instance it is known that $B_{2}=B_{4}=B_{8}=0$.

For correct operation it is important that the UART clock be fast enough that each word is transmitted before the next STROBE pulse arrives. Parity is locked into the UART at load time but does not change in this connection during an output stream.

Circuits to interface the ICL7135 directly with three popular microprocessors are shown in Figure 15 and Figure 16. The 8080/8048 and the MC6800 groups with 8 bit buses need to have polarity, over-range and under-range multiplexed onto the Digit 5 Sword - as in the UART circuit. In each case the microprocessor can instruct the AD when to begin a measurement and when to hold this measurement.

Application Notes

A016 "Selecting ADD Converters"
A017 "The Integrating AD Converters"
A018 "Do's and Don'ts of Applying AD Converters"
A023 "Low Cost Digital Panel Meter Designs"
A028 "Building an Auto-Ranging DMM Using the 8052A 7103A AD Converter Pair"
A030 "The ICL7104 - A Binary Output AD Converter for Microprocessors"

A032 "Understanding the Auto-Zero and Common Mode Performance of the ICL7106 Family"
R005 "Interfacing Data Converters \& Microprocessors"

1. FOR FINER RESOLUTION ON SCALE FACTOR ADJUST, USE A 10 TURN POT OR A SMALL POT IN SERIES WITH A FIXED RESISTOR.

FIGURE 7. $4 ½$ DIGIT ADD CONVERTER WITH A MULTIPLEXED COMMON ANODE LED DISPLAY

FIGURE 8. ICL7135 PLASMA DISPLAY CIRCUIT

FIGURE 9. LCD DISPLAY WITH DIGIT BLANKING ON OVERRANGE

FIGURE 10. DRIVING LCD DISPLAYS

FIGURE 11. LM311 CLOCK SOURCE

FIGURE 12. GENERATING A NEGATIVE SUPPLY FROM $+5 V$

FIGURE 13. ICL7135 TO UART INTERFACE

FIGURE 15. ICL7135 TO MC6800, MCS650X INTERFACED

FIGURE 14. COMPLEX ICL7135 TO UART INTERFACE

FIGURE 16. ICL7135 TO MCS-48, -80, 85 INTERFACE

Design Information Summary Sheet

- CLOCK INPUT

The ICL7135 does not have an internal oscillator. It requires an external clock.
$f_{\text {CLOCK }}$ typ $=120 \mathrm{KHz}$

- CLOCK PERIOD
$\mathbf{t}_{\text {CLOCK }}=1 /$ CLOCK $^{\text {Cl }}$
- INTEGRATION PERIOD
$\mathrm{t}_{\text {INT }}=10,000 \times \mathrm{t}_{\text {CLOCK }}$
- 60/50Hz REJECTION CRITERION
$\mathrm{t}_{\mathrm{INT}} / \mathrm{t}_{60 \mathrm{~Hz}}$ or $\mathrm{t}_{\mathrm{INT}} / \mathrm{t}_{50 \mathrm{~Hz}}=$ Interger
- OPTIMUM INTEGRATION CURRENT
$I_{I_{N T}}=20.0 \mu \mathrm{~A}$
- FULL-SCALE ANALOG INPUT VOLTAGE
$V_{\text {INFS }}$ Typically $=200 \mathrm{mV}$ or 2.0 V
- INTEGRATE RESISTOR
$R_{\text {INT }}=\frac{V_{\text {INFS }}}{I_{\text {INT }}}$
- INTEGRATE CAPACITOR
$c_{I N T}=\frac{\left(t_{I N T}\right)\left(I_{I N T}\right)}{V_{I N T}}$
- INTEGRATOR OUTPUT VOLTAGE SWING
$V_{I N T}=\frac{\left(t_{I N T}\right)\left(I_{I N T}\right)}{c_{I N T}}$
$V_{\text {INT }}$ MAXIMUM SWING:
$(\mathrm{V}-+0.5)<\mathrm{V}_{\text {INT }}<\left(\mathrm{V}_{+}-0.5 \mathrm{~V}\right)$
$\mathrm{V}_{\text {INT }}$ Typically $=2.7 \mathrm{~V}$
- DISPLAY COUNT COUNT $=10,000 \times \frac{V_{I N}}{V_{\text {REF }}}$
- CONVERSION CYCLE
$t_{\text {CYC }}=t_{\text {CLOCK }} \times 40002$
when $\mathrm{f}_{\mathrm{CLOCK}}=120 \mathrm{kHz}, \mathrm{t}_{\mathrm{CYC}}=333 \mathrm{~ms}$
- COMMON MODE INPUT VOLTAGE
$(\mathrm{V}-+1.0 \mathrm{~V})<\mathrm{V}_{\mathrm{IN}}<(\mathrm{V}+-0.5 \mathrm{~V})$
- AUTO-ZERO CAPACTTOR $0.01 \mu \mathrm{~F}<\mathrm{C}_{A Z}<1.0 \mu \mathrm{~F}$
- REFERENCE CAPACITOR
$0.1 \mu \mathrm{~F}<\mathrm{C}_{\text {REF }}<1.0 \mu \mathrm{~F}$
- POWER SUPPLY: DUAL $\pm 5.0 \mathrm{~V}$

V+=+5.0 to GND
V- $=-5.0$ to GND

- OUTPUT TYPE

4 BCD Nibbles with Polarity and Overrange Bits
There is no internal reference available on the ICL7135. An external reference is required due to the ICL7135's $4 \frac{1}{2}$ digit resolution.

Typical Integrator Amplifier Output Waveform (INT Pin)

Die Characteristics

DIE DIMENSIONS:
($120 \times 130 \mathrm{mils}$) $\times 525 \pm 25 \mu \mathrm{~m}$
METALLIZATION:
Type: Al
Thickness: $10 \mathrm{k} \AA \pm 1 \mathrm{k} \AA$
GLASSIVATION:
Type: Nitride/Silox Sandwich
Thickness: 8k Nitride over 7k Silox

Metallization Mask Layout

A/D CONVERTERS - SIGMA-DELTA

PAGE
AD CONVERTERS - SIGMA-DELTA DATA SHEET
HI7190 24-Bit High Precision Sigma-Delta AD Converter.

NOTE: Bold Type Designates a New Product from Harris.

ADVANCE INFORMATION

December 1993

Features

- 24-Bit Resolution with No Missing Code
- 0.0007\% Integral Non-Linearity
- 20 mV to $\mathbf{\pm 2} \mathbf{2} \mathbf{5}$ Full Scale Input Ranges
- Dual $\pm 5 \mathrm{~V}$, Single $\mathbf{+ 5 V}$, or Battery Operation
- Internal PGIA with Gains of 1X-128X
- Serial Data VO Interface
- Differential Analog and Reference Input
- Internal or System Auto-Calibration
- -120dB Rejection of $\mathbf{6 0 H z}$

Applications

- Weigh Scales
- Medical Patient Monitoring
- Seismic Monitoring
- Part Counting Scales
- Motion Control
- Magnetic Field Monitoring
- Intruder Detection
- Laboratory Instrumentation
- Process Control and Measurement

Description

The Harris HI7190 is a monolithic instrumentation AD converter that uses a Sigma-Delta modulation technique. Both the signal and reference inputs are fully differential for maximum flexibility and performance. An internal Programmable Gain Instrumentation Amplifier (PGIA) provides input gains up to 128X, eliminating the need for external pre-amplifiers. The on-demand converter auto-calibrate function is capable of removing offset and gain errors existing in external and internal circuitry. The device can operate from 5 V supplies and from a single +5 V supply and can operate from a battery. The on-board, user programmable digital filter provides over 120 dB of 60 Hz noise rejection and allows fine tuning of resolution and conversion speed.

The HI7190 contains a serial I/O port, and is compatible with most synchronous transfer formats, including both the Motorola/Harris 6805/11 series SPI and Intel 8051 series SSR protocols. A sophisticated set of commands gives the user control over calibration, PGIA gain, device selection, sleep mode, and other options.

Ordering Information

PART NUMBER	TEMPERATURE RANGE	PACKAGE
HI7190IP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 Lead Plastic DIP
HI71901J	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 Lead Ceramic DIP
H171901B	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 Lead Small Outline Package (SOIC)

Pinout

A/D CONVERTERS - SAR
PAGE
AD CONVERTERS - SAR DATA SHEETS
ADC0802, $\quad 8$-Bit $\mu \mathrm{P}$ Compatible AND Converters 5-3
ADC0803ADC0804
CA3310, CMOS 10-Bit AD Converter with Internal Track and Hold 5-19
CA3310A
Complete 12-Bit AD Converter with Microprocessor Interface 5-34
HI-574A
HI5810 CMOS 10 $\mathbf{~ s}$ 12-Bit Sampling AND Converter with Internal Track and Hold 5-52
H15812 CMOS 20 $\mathbf{~ s}$ s 12-Bit Sampling ADD Converter with Internal Track and Hold 5-65
HI5813 CMOS 3.3V, 25 μ s 12-Bit Sampling AD Converter with Internal Track and Hold 5-79

NOTE: Bold Type Designates a New Product from Harris.

Features

－80C48 and 80C80／85 Bus Compatible－No Interfacing Logic Required
－Conversion Time＜100 $\mathbf{\mu}$
－Easy Interface to Most Microprocessors
－Will Operate in a＂Stand Alone＂Mode
－Differential Analog Voltage Inputs
－Works with Bandgap Voltage References
－TTL Compatible Inputs and Outputs
－On－Chip Clock Generator
－OV to 5V Analog Voltage Input Range（Single＋5V Supply）
－No Zero－Adjust Required

Description

The ADC0802 family are CMOS 8－Bit successive approxi－ mation AD converters which use a modified potentiometric ladder and are designed to operate with the 8080A control bus via three－state outputs．These converters appear to the processor as memory locations or I／O ports，and hence no interfacing logic is required．
The differential analog voltage input has good common－ mode－rejection and permits offsetting the analog zero－input－ voltage value．In addition，the voltage reference input can be adjusted to allow encoding any smaller analog voltage span to the full 8－Bits of resolution．

Ordering Information

PART NUMBER	ERROR	EXTERNAL CONDITIONS	TEMPERATURE RANGE	PACKAGE
ADC0802LCN	$\pm 1 / 2$ LSB	$\mathrm{V}_{\text {REF }} / 2=2.500 \mathrm{~V}_{\mathrm{DC}}$（No Adjustments）	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	20 Lead Plastic DIP
ADC0802LCD	$\pm{ }^{3 / 4} \mathrm{LSB}$		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 Lead Ceramic DIP
ADC0802LD	± 1 LSB		$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	20 Lead Ceramic DIP
ADC0803LCN	$\pm 1 / 2$ LSB	$\mathrm{V}_{\text {REF }}$／2 Adjusted for Correct Full－Scale Reading	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	20 Lead Plastic DIP
ADC0803LCD	$\pm{ }^{3 / 4} \mathrm{LSB}$		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 Lead Ceramic DIP
ADC0802LCWM	± 1 LSB		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 Lead SOIC（W）
ADC0803LD	± 1 LSB		$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	20 Lead Ceramic DIP
ADC0804LCN	± 1 LSB	$\mathrm{V}_{\mathrm{REF}} / 2=2.500 \mathrm{~V}_{\mathrm{DC}}$（No Adjustments）	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	20 Lead Plastic DIP
ADC0804LCD	± 1 LSB		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 Lead Ceramic DIP

Pinout

ADC0802，ADC0803，ADC0804 （PDIP，CDIP） TOP VIEW	
cs^{1}	$\mathrm{V}^{10} \mathrm{~V}_{+} \mathrm{OR} \mathrm{V}_{\text {REF }}$
的 2	190CLR
WE ${ }^{\text {a }}$	（18） $\mathrm{DB}_{0}($ LSB）
cLKin ${ }^{\text {a }}$	$17{ }^{\text {D }}{ }_{1}$
INTR 5	${ }^{16} \mathrm{DB}_{2}$
$v_{\mathbb{W}}(+)$	閶 BB_{3}
$V_{\text {w }}(-){ }^{\text {7 }}$	${ }^{1410} \mathrm{DB}_{4}$
agno ${ }^{\text {a }}$	${ }^{13} \mathrm{DB}_{5}$
	句 DB_{6}
dano 10	团 DB_{7}（

Typical Application Schematic

Functional Diagram


```
Absolute Maximum Ratings
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.5V
Voltage at Any Input . . . . . . . . . . . . . . . . . . . . . - 0.3V to (V+
Storage Temperature Range . . . . . . . . . . . . . . . . -65' C to +150
Lead Temperature (Soldering, 10s)
    +300%
```


Thermal Information

Thermal Resistance	$\theta_{\text {JA }}$	θ_{Jc}
Plastic DIP Package	$125^{\circ} \mathrm{C} / \mathrm{W}$	
Ceramic DIP Package	$70^{\circ} \mathrm{C} / \mathrm{W}$	$20^{\circ} \mathrm{CN}$
SOIC Package	$120^{\circ} \mathrm{CN}$	-
Operating Temperature		
ADC0802/03LD .	$-55^{\circ} \mathrm{C}$	+ $+125^{\circ} \mathrm{C}$
ADC0802/03/04LCD	-40	to $+85^{\circ} \mathrm{C}$
ADC0802/03/04LCN	0	to $+70^{\circ} \mathrm{C}$
ADC0803LCWM		to $+85^{\circ} \mathrm{C}$
Junction Temperature		
Ceramic Package		$+175^{\circ} \mathrm{C}$
Plastic Package .		$+150^{\circ} \mathrm{C}$

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Electrical Specifications (Notes 1, 7)

PARAMETERS	TEST CONDITIONS	MIN	TYP	MAX	UNITS
CONVERTER SPECIFICATIONS $\mathrm{V}+=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and $\mathrm{f}_{\mathrm{CLK}}=640 \mathrm{kHz}$, Unless Otherwise Specified					
Total Unadjusted Error ADC0802	$\mathrm{V}_{\mathrm{REF}} / 2=2.500 \mathrm{~V}$	-	-	$\pm 1 / 2$	LSB
ADC0803	$\mathrm{V}_{\text {REF }}$ /2 Adjusted for Correct FullScale Reading	-	-	$\pm 1 / 2$	LSB
ADC0804	$\mathrm{V}_{\text {REP }}$ 2 $=2.500 \mathrm{~V}$	-	-	± 1	LSB
$\mathrm{V}_{\text {REF }} / 2$ Input Resistance	Input Resistance at Pin 9	1.0	1.3	-	k Ω
Analog Input Voltage Range	(Note 2)	GND-0.05	-	$(\mathrm{V}+)^{+0.05}$	V
DC Common-Mode Rejection	Over Analog Input Voltage Range	-	$\pm 1 / 18$	$\pm 1 / 8$	LSB
Power Supply Sensitivity	$\mathrm{V}+=5 \mathrm{~V} \pm 10 \%$ Over Allowed Input Voltage Range	-	$\pm 1 / 16$	$\pm 1 / 8$	LSB
CONVERTER SPECIFICATIONS $\mathrm{V}+=5 \mathrm{~V}, 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$ and $\mathrm{f}_{\text {cLK }}=640 \mathrm{kHz}$, Unless Otherwise Specified					
Total Unadjusted Error ADC0802	$\mathrm{V}_{\text {REF }} / 2=2.500 \mathrm{~V}$	-	-	$\pm 1 / 2$	LSB
ADC0803	$\mathrm{V}_{\text {REF }} / 2$ Adjusted for Correct FullScale Reading	-	\bullet	$\pm 1 / 2$	LSB
ADC0804	$\mathrm{V}_{\text {REF }} / 2=2.500 \mathrm{~V}$	-	-	± 1	LSB
$\mathrm{V}_{\text {REF }}$ /2 Input Resistance	Input Resistance at Pin 9	1.0	1.3	-	$\mathrm{k} \Omega$
Analog Input Voltage Range	(Note 2)	GND-0.05	-	$(\mathrm{V}+)^{+0.05}$	V
DC Common-Mode Rejection	Over Analog Input Voltage Range	-	$\pm 1 / 8$	$\pm 1 / 4$	LSB
Power Supply Sensitivity	$\mathrm{V}+=5 \mathrm{~V} \pm 10 \%$ Over Allowed Input Voltage Range	-	$\pm{ }^{1 / 16}$	$\pm 1 / 8$	LSB
CONVERTER SPECIFICATIONS $\mathrm{V}+=5 \mathrm{~V},-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ and $\mathrm{f}_{\text {CLK }}=640 \mathrm{kHz}$, Unless Otherwise Specified					
Total Unadjusted Error ADC0802	$\mathrm{V}_{\text {REF }} / 2=2.500 \mathrm{~V}$	-	-	$\pm{ }^{3} / 4$	LSB
ADC0803	$V_{\text {REE }}$ /2 Adjusted for Correct FullScale Reading	-	-	$\pm{ }^{3 / 4}$	LSB
ADC0804	$\mathrm{V}_{\text {REF }} / 2=2.500 \mathrm{~V}$	-	-	± 1	LSB
$\mathrm{V}_{\text {REF }} / 2$ Input Resistance	Input Resistance at Pin 9	1.0	1.3	-	$\mathrm{k} \Omega$
Analog Input Voltage Range	(Note 2)	GND-0.05	-	$(\mathrm{V}+)^{+0.05}$	V
DC Common-Mode Rejection	Over Analog Input Voltage Range	-	$\pm 1 / 8$	$\pm 1 / 4$	LSB
Power Supply Sensitivity	V+=5V $\pm 10 \%$ Over Allowed Input Voltage Range	-	$\pm 1 / 16$	$\pm 1 / 8$	LSB

Electrical Specifications (Notes 1,7) (Continued)

PARAMETERS	TEST CONDITIONS	MIN	TYP	MAX	UNITS
CONVERTER SPECIFICATIONS $\mathrm{V}+=5 \mathrm{~V},-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ and $\mathrm{f}_{\text {CLK }}=640 \mathrm{kHz}$, Unless Otherwise Specified					
Total Unadjusted Error ADC0802	$\mathrm{V}_{\text {REF }} / 2=2.500 \mathrm{~V}$	-	-	± 1	LSB
ADC0803	$\mathrm{V}_{\text {REF }} / 2$ Adjusted for Correct FullScale Reading	-	-	± 1	LSB
$\mathrm{V}_{\text {REF }}$ /2 Input Resistance	Input Resistance at Pin 9	1.0	1.3	-	k Ω
Analog input Voltage Range	(Note 2)	GND-0.05	-	$(\mathrm{V}+)^{+0.05}$	V
DC Common-Mode Rejection	Over Analog Input Voltage Range	-	$\pm 1 / 8$	$\pm 1 / 4$	LSB
Power Supply Sensitivity	V+=5V $\pm 10 \%$ Over Allowed Input Voltage Range	\bullet	$\pm 1 / 8$	$\pm 1 / 4$	LSB
AC TIMING SPECIFICATIONS $\mathrm{V}_{+}=\mathbf{5 V}$, and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, Unless Otherwise Specified					
Clock Frequency, $\mathrm{f}_{\mathrm{cLK}}$	$\mathrm{V}+=6 \mathrm{~V}$ (Note3)	100	640	1280	kHz
	$\mathrm{V}+=5 \mathrm{~V}$	100	640	800	kHz
Clock Periods per Conversion (Note 4), $\mathrm{t}_{\text {Conv }}$		62	-	73	clocks/conv
Conversion Rate In Free-Running Mode, CR	$\overline{\mathrm{INTR}}$ tied to $\overline{\mathrm{WR}}$ with $\overline{\mathrm{CS}}=\mathbf{0 V}$, $\mathrm{f}_{\mathrm{CLK}}=640 \mathrm{kHz}$	-	-	8888	conv/s
Width of WR Input (Start Pulse Width), $\mathrm{t}_{\text {W(WR) }}$	$\overline{\mathrm{CS}}=0 \mathrm{~V}$ (Note 5)	100	-	-	ns
Access Time (Delay from Falling Edge of $\overline{R D}$ to Output Data Valid), $t_{A C C}$	$C_{L}=100 \mathrm{pF}$ (Use Bus Driver IC for larger C_{L})	\bullet	135	200	ns
Tri-State Control (Delay from Rising Edge of $\overline{\mathrm{RD}}$ to $\mathrm{HI}-\mathrm{Z}$ State), $\mathrm{t}_{1 \mathrm{H}}$, t_{OH}	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \\ & \text { (See Tri-State Test Circuits) } \end{aligned}$	-	125	250	ns
Delay from Falling Edge of $\overline{\mathrm{WR}}$ to Reset of INTR, $\mathbf{t}_{\text {WI }}, \mathrm{t}_{\text {II }}$		-	300	450	ns
Input Capacitance of Logic Control Inputs, C_{IN}		\bullet	5	-	pF
Tri-State Output Capacitance (Data Buffers), $\mathrm{C}_{\text {out }}$		-	5	-	pF
DC DIGITAL LEVELS AND DC SPECIFICATIONS $\mathrm{V}_{+}=5 \mathrm{~V}$, and $T_{\text {MIN }} \leq T_{A} \leq T_{\text {MAX }}$, Unless Otherwise Specified					
CONTROL INPUTS (Note 6)					
Logic "1" Input Voltage (Except Pin 4 CLK IN), $V_{\text {INH }}$	$\mathrm{V}+=5.25 \mathrm{~V}$	2.0	-	V+	V
Logic "0" Input Voltage (Except Pin 4 CLK IN), $V_{\text {INL }}$	$\mathrm{V}+=4.75 \mathrm{~V}$	\bullet	${ }^{-}$	0.8	V
CLK IN (Pin 4) Positive Going Threshold Voltage, $\mathrm{V}+\mathrm{cLK}$	\cdots	2.7	3.1	3.5	V
CLK IN (Pin 4) Negative Going Threshold Voltage, V-clk		1.5	1.8	2.1	V
CLK IN (Pin 4) Hysteresis, V_{H}		0.6	1.3	2.0	V
Logic "1" Input Current (All Inputs), $\mathrm{I}_{\mathrm{NHI}}$	$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}$	-	0.005	1	$\mu \mathrm{A}$
Logic "0" Input Current (All Inputs), I INLO	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$	-1	-0.005	\bullet	$\mu \mathrm{A}$
Supply Current (Includes Ladder Current), I+	$\begin{aligned} & \mathrm{f}_{\mathrm{CLK}}=640 \mathrm{kHz}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \text { and } \overline{\mathrm{CS}} \\ & =\mathrm{HI} \end{aligned}$	-	1.3	2.5	mA

Electrical Specifications (Notes 1,7) (Continued)

PARAMETERS	TEST CONDITIONS	MIN	TYP	MAX	UNITS
DC DIGITAL LEVELS AND DC SPECIFICATIONS $\mathrm{V}_{+}=5 \mathrm{~V}$, and $\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {MAX }}$, Unless Otherwise Specified (Continued)					
DATA OUTPUTS AND INTR					
Logic "0" Output Voltage, $\mathrm{V}_{\text {OL }}$	$\begin{aligned} & I_{0}=1.6 \mathrm{~mA} \\ & V_{+}=4.75 \mathrm{~V} \end{aligned}$	-	-	0.4	V
Logic "1" Output Voltage, V_{OH}	$\begin{aligned} & \mathrm{l}_{0}=-360 \mu \mathrm{~A} \\ & \mathrm{~V}+=4.75 \mathrm{~V} \end{aligned}$	2.4	-	-	V
Tri-State Disabled Output Leakage (All Data Buffers), Lo	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	-3	-	-	$\mu \mathrm{A}$
	$\mathrm{V}_{\text {OUT }}=5 \mathrm{~V}$	-	-	3	$\mu \mathrm{A}$
Output Short Circuit Current, Isource	$\mathrm{V}_{\text {OUT }}$ Short to Gnd $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	4.5	6	-	mA
Output Short Circuit Current, $I_{\text {SINK }}$	$\mathrm{V}_{\text {OUT }}$ Short to $\mathrm{V}+\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	9.0	16	-	mA

NOTES:

1. All voltages are measured with respect to GND, unless otherwise specifled. The separate AGND point should always be wired to the DGND, being careful to avoid ground loops.
2. For $\mathrm{V}_{1 \mathrm{~N}(-)} \geq \mathrm{V}_{\text {IN(+) }}$ the digital output code will be 00000000 . Two on-chip diodes are tied to each analog input (see Block Diagram) which will forward conduct for analog input voltages one diode drop below ground or one diode drop greater than the V+ supply. Be careful, during testing at low $\mathrm{V}+$ levels (4.5 V), as high level analog inputs (5 V) can cause this input diode to conduct-especially at elevated temperatures, and cause errors for analog inputs near full-scale. As long as the analog $\mathrm{V}_{\mathbf{I N}}$ does not exceed the supply voltage by more than 50 mV , the output code will be correct. To achieve an absolute OV to 5 V input voltage range will therefore require a minimum supply voltage of 4.950 V over temperature variations, initial tolerance and loading.
3. With $\mathrm{V}_{+}=6 \mathrm{~V}$, the digital logic interfaces are no longer TTL compatible.
4. With an asynchronous start pulse, up to 8 clock periods may be required before the internal clock phases are proper to start the conversion process.
5. The $\overline{\mathrm{CS}}$ input is assumed to bracket the $\overline{\mathrm{WR}}$ strobe input so that timing is dependent on the $\overline{\mathrm{WR}}$ pulse width. An arbitrarily wide pulse width will hold the converter in a reset mode and the start of conversion is initiated by the low to high transition of the WR pulse (see Timing Diagrams).
6. CLK IN (pin 4) is the input of a Schmitt trigger circuit and is therefore specified separately.
7. None of these ADs requires a zero-adjust. However, if an all zero code is desired for an analog input other than 0.0 V , or if a narrow full-scale span exists (for example: 0.5 V to 4.0 V full-scale) the $\mathrm{V}_{\mathbb{N}(-)}$ input can be adjusted to achieve this. See Zero Error on page 13 of this data sheet.

Timing Waveforms

FIGURE 1A. $\mathbf{t}_{\mathbf{1}}$

FIGURE 1C. t_{OH}

FIGURE 1B. $\mathbf{t}_{\mathbf{1 H}}, \mathrm{C}_{\mathrm{L}}=\mathbf{1 0 p F}$

FIGURE 1D. $\mathrm{t}_{\mathrm{OH}}, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$

FIGURE 1. TRI-STATE CIRCUITS AND WAVEFORMS

ADC0802, ADC0803, ADC0804

Typical Performance Curves

FIGURE 2. LOGIC INPUT THRESHOLD VOLTAGE vS SUPPLY VOLTAGE

FIGURE 4. CLK IN SCHMITT TRIP LEVELS vs SUPPLY VOLTAGE

FIGURE 6. FULL SCALE ERROR vs fclk

FIGURE 3. DELAY FROM FALLING EDGE OF $\overline{\operatorname{RD}}$ TO OUTPUT DATA VALID vs LOAD CAPACITANCE

FIGURE 5. $\mathbf{I}_{\text {CLK }}$ vs CLOCK CAPACITOR

FIGURE 7. EFFECT OF UNADJUSTED OFFSET ERROR

Typical Performance Curves (Continued)

FIGURE 8. OUTPUT CURRENT vs TEMPERATURE

FIGURE 9. POWER SUPPLY CURRENT vS TEMPERATURE

Timing Diagrams

FIGURE 10A. START CONVERSION

FIGURE 10B. OUTPUT ENABLE AND RESET INTR

FIGURE 11B. ACCURACY $= \pm 1 / 2$ LSB
FIGURE 11. CLARIFYING THE ERROR SPECS OF AN A/D CONVERTER

Understanding A/D Error Specs

A perfect AD transfer characteristic (staircase wave-form) is shown in Figure 11A. The horizontal scale is analog input voltage and the particular points labeled are in steps of 1 LSB (19.53 mV with 2.5 V tied to the $\mathrm{V}_{\mathrm{REF}} / 2$ pin). The digital output codes which correspond to these inputs are shown as $D-1, D$, and $D+1$. For the perfect AVD, not only will center-value (A - 1, A, A +1, ...) analog inputs produce the correct output digital codes, but also each riser (the transitions between adjacent output codes) will be located $\pm 1 / 2$ LSB away from each centervalue. As shown, the risers are ideal and have no width. Correct digital output codes will be provided for a range of analog input voltages which extend $\pm 1 / 2$ LSB from the ideal centervalues. Each tread (the range of analog input voltage which provides the same digital output code) is therefore 1 LSB wide.

The error curve of Figure 11B shows the worst case transfer function for the ADC0802. Here the specification guarantees that if we apply an analog input equal to the LSB analog voltage center-value, the AD will produce the correct digital code.

Next to each transfer function is shown the corresponding error plot. Notice that the error includes the quantization uncertainty of the ADD. For example, the error at point 1 of Figure 11 A is $+1 / 2$

LSB because the digital code appeared $1 / 2$ LSB in advance of the center-value of the tread. The error plots always have a constant negative slope and the abrupt upside steps are always 1 LSB in magnitude, unless the device has missing codes.

Detailed Description

The functional diagram of the ADC0802 series of A/D converters operates on the successive approximation principle (see Application Notes ANO16 and ANO2O for a more detailed description of this principle). Analog switches are closed sequentially by successive-approximation logic until the analog differential input voltage $\left[\mathrm{V}_{\mathbb{N}(+)}-\mathrm{V}_{\mathbb{I N}(-)}\right]$ matches a voltage derived from a tapped resistor string across the reference voltage. The most significant bit is tested first and after 8 comparisons (64 clock cycles), an 8 -bit binary code (1111 1111 = full-scale) is transferred to an output latch.

The normal operation proceeds as follows. On the high-tolow transition of the WR input, the internal SAR latches and the shift-register stages are reset, and the $\overline{\text { NTR }}$ output will be set high. As long as the $\overline{\mathrm{CS}}$ input and $\overline{\mathrm{WR}}$ input remain low, the AVD will remain in a reset state. Conversion will start from 1 to 8 clock periods after at least one of these inputs makes a low-to-high transition. After the requisite number of
clock pulses to complete the conversion, the $\overline{\operatorname{INTR}}$ pin will make a high-to-low transition. This can be used to interrupt a processor, or otherwise signal the availability of a new conversion. A $\overline{\mathrm{RD}}$ operation (with $\overline{\mathrm{CS}}$ low) will clear the $\overline{\mathrm{NTR}}$ line high again. The device may be operated in the free-running mode by connecting $\overline{\operatorname{NTR}}$ to the $\overline{\mathrm{WR}}$ input with $\overline{\mathrm{CS}}=0$. To ensure start-up under all possible conditions, an external $\overline{W R}$ pulse is required during the first power-up cycle. A con-version-in-process can be interrupted by issuing a second start command.

Digital Operation

The converter is started by having $\overline{\mathrm{CS}}$ and $\overline{\mathrm{WR}}$ simultaneously low. This sets the start flip-flop (F/F) and the resulting " 1 " level resets the 8 -bit shift register, resets the Interrupt (INTR) F/F and inputs a "1" to the D flip-flop, DFF1, which is at the input end of the 8-bit shift register. Internal clock signals then transfer this " 1 " to the Q output of DFF1. The AND gate, G1, combines this "1" output with a clock signal to provide a reset signal to the start F / F. If the set signal is no longer present (either $\overline{W R}$ or $\overline{C S}$ is a " 1 "), the start F/F is reset and the 8 -bit shift register then can have the "1" clocked in, which starts the conversion process. If the set signal were to still be present, this reset pulse would have no effect (both outputs of the start F/F would be at a "1" level) and the 8-bit shift register would continue to be held in the reset mode. This allows for asynchronous or wide $\overline{\mathrm{CS}}$ and $\overline{W R}$ signals.
After the " 1 " is clocked through the 8 -bit shift register (which completes the SAR operation) it appears as the input to DFF2. As soon as this " 1 " is output from the shift register, the AND gate, G2, causes the new digital word to transfer to the Tri-State output latches. When DFF2 is subsequently clocked, the \bar{Q} output makes a high-to-low transition which causes the INTR F/F to set. An inverting buffer then supplies the INTR output signal.
When data is to be read, the combination of both $\overline{\mathrm{CS}}$ and $\overline{\mathrm{RD}}$ being low will cause the INTR F/F to be reset and the tri-state output latches will be enabled to provide the 8-bit digital outputs.

Digital Control Inputs

The digital control inputs ($\overline{\mathrm{CS}}, \overline{\mathrm{RD}}$, and $\overline{\mathrm{WR}}$) meet standard TTL logic voltage levels. These signals are essentially equivalent to the standard AVD Start and Output Enable control signals, and are active low to allow an easy interface to microprocessor control busses. For non-microprocessor based applications, the $\overline{\mathrm{CS}}$ input (pin 1) can be grounded and the standard AND Start function obtained by an active low pulse at the $\overline{W R}$ input (pin 3). The Output Enable function is achieved by an active low pulse at the $\overline{R D}$ input (pin 2).

Analog Operation

The analog comparisons are performed by a capacitive charge summing circuit. Three capacitors (with precise ratioed values) share a common node with the input to an auto-zeroed comparator. The input capacitor is switched between $\mathrm{V}_{\mathbb{N}(+)}$ and $\mathrm{V}_{\mathbb{N}(-)}$, while two ratioed reference capacitors are switched between taps on the reference voltage
divider string. The net charge corresponds to the weighted difference between the input and the current total value set by the successive approximation register. A correction is made to offset the comparison by $1 / 2$ LSB (see Figure 11A).

Analog Differential Voltage Inputs and Common-Mode Rejection

This AD gains considerable applications flexibility from the ana\log differential voltage input. The $\mathrm{V}_{\mathbb{N}(-)}$ input (pin 7) can be used to automatically subtract a fixed voltage value from the input reading (tare correction). This is also useful in $4 \mathrm{~mA}-20 \mathrm{~mA}$ current loop conversion. In addition, common-mode noise can be reduced by use of the differential input.
The time interval between sampling $V_{\mathbb{I N (+)}}$ and $V_{\mathbb{I N (-)}}$ is $4 \frac{1}{2}$ clock periods. The maximum error voltage due to this slight time difference between the input voltage samples is given by:
$\Delta V_{E}(\mathrm{MAX})=\left(\mathrm{V}_{\mathrm{P}}\right)\left(2 \pi \mathrm{f}_{\mathrm{CM}}\right)\left[\frac{4.5}{\mathrm{f}_{\mathrm{CLK}}}\right]$
where:
ΔV_{E} is the error voltage due to sampling delay
V_{P} is the peak value of the common-mode voltage
$f_{C M}$ is the common-mode frequency
For example, with a 60 Hz common-mode frequency, $f_{C M}$, and a 640 kHz AD clock, $\mathrm{f}_{\text {CLK }}$, keeping this error to $1 / 4 \mathrm{LSB}$ $(\sim 5 \mathrm{mV})$ would allow a common-mode voltage, V_{p}, given by:
$V_{P}=\frac{\left[\Delta V_{E(M A X)}\left(f_{C L K}\right)\right]}{\left(2 \pi{ }_{\mathrm{CM}}\right)(4.5)}$
or
$V_{P}=\frac{\left(5 \times 10^{-3}\right)\left(640 \times 10^{3}\right)}{(6.28)(60)(4.5)} \cong 1.9 \mathrm{~V}$
The allowed range of analog input voltage usually places more severe restrictions on input common-mode voltage levels than this.

An analog input voltage with a reduced span and a relatively large zero offset can be easily handled by making use of the differential input (see Reference Voltage Span Adjust).

Analog Input Current

The internal switching action causes displacement currents to flow at the analog inputs. The voltage on the on-chip capacitance to ground is switched through the analog differential input voltage, resulting in proportional currents entering the $\mathrm{V}_{\mathbb{N}(+)}$ input and leaving the $\mathrm{V}_{\mathbb{I N}(-)}$ input. These current transients occur at the leading edge of the internal clocks. They rapidly decay and do not inherently cause errors as the on-chip comparator is strobed at the end of the clock perlod.

Input Bypass Capacitors

Bypass capacitors at the inputs will average these charges and cause a DC current to flow through the output resistances of the analog signal sources. This charge pumping action is worse for continuous conversions with the $\mathrm{V}_{\mathbb{I N}(+)}$ input voltage
at full-scale. For a 640 kHz clock frequency with the $\mathrm{V}_{\mathrm{IN}(+)}$ input at 5 V , this DC current is at a maximum of approximately $5 \mu \mathrm{~A}$. Therefore, bypass capacitors should not be used at the analog inputs or the $\mathbf{V}_{\text {REF }} / \mathbf{2}$ pin for high resistance sources ($>1 \mathrm{k} \Omega$). If input bypass capacitors are necessary for noise filtering and high source resistance is desirable to minimize capacitor size, the effects of the voltage drop across this input resistance, due to the average value of the input current, can be compensated by a full-scale adjustment while the given source resistor and input bypass capacitor are both in place. This is possible because the average value of the input current is a precise linear function of the differential input voltage at a constant conversion rate.

Input Source Resistance

Large values of source resistance where an input bypass capacitor is not used will not cause errors since the input currents settle out prior to the comparison time. If a lowpass filter is required in the system, use a low-value series resistor ($\leq 1 \mathrm{k} \Omega$) for a passive RC section or add an op amp RC active low-pass filter. For low-source-resistance applications ($\leq 1 \mathrm{k} \Omega$), a $0.1 \mu \mathrm{~F}$ bypass capacitor at the inputs will minimize EMI due to the series lead inductance of a long wire. A 100Ω series resistor can be used to isolate this capacitor (both the \mathbf{R} and \mathbf{C} are placed outside the feedback loop) from the output of an op amp, if used.

Stray Pickup

The leads to the analog inputs (pins 6 and 7) should be kept as short as possible to minimize stray signal pickup (EMI). Both EMI and undesired digital-clock coupling to these inputs can cause system errors. The source resistance for these inputs should, in general, be kept below $5 \mathrm{k} \Omega$. Larger values of source resistance can cause undesired signal pickup. Input bypass capacitors, placed from the analog inputs to ground, will eliminate this pickup but can create analog scale errors as these capacitors will average the transient input switching currents of the AVD (see Analog Input Current). This scale error depends on both a large source resistance and the use of an input bypass capacitor. This error can be compensated by a full-scale adjustment of the AVD (see Full-Scale Adjustment) with the source resistance and input bypass capacitor in place, and the desired conversion rate.

Reference Voltage Span Adjust

For maximum application flexibility, these ADs have been designed to accommodate a $5 \mathrm{~V}, 2.5 \mathrm{~V}$ or an adjusted voltage reference. This has been achieved in the design of the IC as shown in Figure 12.
Notice that the reference voltage for the IC is either $1 / 2$ of the voltage which is applied to the $\mathrm{V}+$ supply pin, or is equal to the voltage which is externally forced at the $\mathrm{V}_{\text {REF }} / 2$ pin. This allows for a pseudo-ratiometric voltage reference using, for the $\mathrm{V}+$ supply, a 5 V reference voltage. Alternatively, a voltage less than 2.5 V can be applied to the $\mathrm{V}_{\text {REF }} / 2$ input. The internal gain to the $\mathrm{V}_{\text {REF }} / 2$ input is 2 to allow this factor of 2 reduction in the reference voltage.

Such an adjusted reference voltage can accommodate a reduced span or dynamic voltage range of the analog input voltage. If the analog input voltage were to range from 0.5 V to
3.5 V , instead of 0 V to 5 V , the span would be 3 V . With 0.5 V applied to the $\mathrm{V}_{\mathbb{N}(-)}$ pin to absorb the offset, the reference voltage can be made equal to $1 / 2$ of the 3 V span or 1.5 V . The AD now will encode the $\mathrm{V}_{\mathbb{N}(+)}$ signal from 0.5 V to 3.5 V with the 0.5 V input corresponding to zero and the 3.5 V input corresponding to full-scale. The full 8 bits of resolution are therefore applied over this reduced analog input voltage range. The requisite connections are shown in Figure 13. For expanded scale inputs, the circuits of Figures 14 and 15 can be used.

Figure 12. THE Vreference DESiGN ON the ic

FIGURE 13. OFFSETTING THE ZERO OF THE ADC0802 AND PERFORMING AN INPUT RANGE (SPAN) ADJUSTMENT

FIGURE 14. HANDLING $\pm 10 \mathrm{~V}$ ANALOG INPUT RANGE

FIGURE 15. HANDLING $\pm 5 \mathrm{~V}$ ANALOG INPUT RANGE

Reference Accuracy Requirements

The converter can be operated in a pseudo-ratiometric mode or an absolute mode. In ratiometric converter applications, the magnitude of the reference voltage is a factor in both the output of the source transducer and the output of the A/D converter and therefore cancels out in the final digital output code. In absolute conversion applications, both the initial value and the temperature stability of the reference voltage are important accuracy factors in the operation of the A/D converter. For $V_{\text {REF }} / 2$ voltages of 2.5 V nominal value, initial errors of $\pm 10 \mathrm{mV}$ will cause conversion errors of ± 1 LSB due to the gain of 2 of the $\mathrm{V}_{\mathrm{REF}} / 2$ input. In reduced span applications, the initial value and the stability of the $\mathrm{V}_{\text {REF }} / 2$ input voltage become even more important. For example, if the span is reduced to 2.5 V , the analog input LSB voltage value is correspondingly reduced from 20 mV (5 V span) to 10 mV and 1 LSB at the $\mathrm{V}_{\text {REF }} / 2$ input becomes 5 mV . As can be seen, this reduces the allowed initial tolerance of the reference voltage and requires correspondingly less absolute change with temperature variations. Note that spans smaller than 2.5 V place even tighter requirements on the initial accuracy and stability of the reference source.

In general, the reference voltage will require an initial adjustment. Errors due to an improper value of reference voltage appear as full-scale errors in the AVD transier function. IC voltage regulators may be used for references if the ambient temperature changes are not excessive.

Zero Error

The zero of the AVD does not require adjustment. If the minimum analog input voltage value, $\mathrm{V}_{\mathbb{N}(M \mathbb{N})}$, is not ground, a zero offset can be done. The converter can be made to output 00000000 digital code for this minimum input voltage by biasing the AD $V_{I N(-)}$ input at this $V_{I N(M I N)}$ value (see Applications section). This utilizes the differential mode operation of the A/D.

The zero error of the AD converter relates to the location of the first riser of the transfer function and can be measured by grounding the $\mathrm{V}_{\mathbb{N}(-)}$ input and applying a small magnitude positive voltage to the $\mathrm{V}_{\mathbb{I N}(+)}$ input. Zero error is the difference between the actual DC input voltage which is necessary to just cause an output digital code transition from 00000000 to 0000 0001 and the ideal $1 / 2$ LSB value ($1 / 2$ LSB $=9.8 \mathrm{mV}$ for $\mathrm{V}_{\text {REF }} / 2=$ 2.500 V).

Full-Scale Adjust

The full-scale adjustment can be made by applying a differential input voltage which is $1 \frac{1}{2}$ LSB down from the desired analog full-scale voltage range and then adjusting the magnitude of the $\mathrm{V}_{\text {REF }} / 2$ input (pin 9) for a digital output code which is just changing from 11111110 to 1111 1111. When offsetting the zero and using a span-adjusted $\mathrm{V}_{\text {REF }} / 2$ voltage, the full-scale adjustment is made by inputting $V_{\text {MIN }}$ to the $V_{\mathbb{I N}(-)}$ input of the $A D$ and applying a voltage to the $V_{\mathbb{I N (+)}}$ input which is given by:
$V_{I N(+)}{ }^{\text {f}}$ SADJ $=V_{M A X}-1.5\left[\frac{\left(V_{M A X}-V_{M I N}\right)}{256}\right]$,
where:
$V_{\text {MAX }}=$ the high end of the analog input range
and
$V_{\text {MIN }}=$ the low end (the offset zero) of the analog range. (Both are ground referenced.)

Clocking Option

The clock for the A/D can be derived from an external source such as the CPU clock or an external RC network can be added to provide self-clocking. The CLK \mathbb{N} (pin 4) makes use of a Schmitt trigger as shown in Figure 16.

FIGURE 16. SELF-CLOCKING THE ADD

Heavy capacitive or DC loading of the CLK R pin should be avoided as this will disturb normal converter operation. Loads less than 50 pF , such as driving up to 7 AD converter clock inputs from a single CLK R pin of 1 converter, are allowed. For larger clock line loading, a CMOS or low power TTL buffer or PNP input logic should be used to minimize the loading on the CLK R pin (do not use a standard TTL buffer).

Restart During a Conversion

If the AVD is restarted ($\overline{\mathrm{CS}}$ and $\overline{\mathrm{WR}}$ go low and return high) during a conversion, the converter is reset and a new conversion is started. The output data latch is not updated if the conversion in progress is not completed. The data from the previous conversion remain in this latch.

Continuous Conversions

In this application, the $\overline{\mathrm{CS}}$ input is grounded and the $\overline{\mathrm{WR}}$ input is tied to the $\overline{\text { INTR }}$ output. This $\overline{\text { WR }}$ and $\overline{\text { NTR }}$ node should be momentarily forced to logic low following a powerup cycle to insure circuit operation. See Figure 17 for details.

FIGURE 17. FREE-RUNNING CONNECTION

Driving the Data Bus

This CMOS AVD, like MOS microprocessors and memories, will require a bus driver when the total capacitance of the data bus gets large. Other circultry, which is tied to the data bus, will add to the total capacitive loading, even in tri-state (high-impedance mode). Back plane bussing also greatly adds to the stray capacitance of the data bus.

There are some alternatives available to the designer to handle this problem. Basically, the capacitive loading of the data bus slows down the response time, even though DC specifications are still met. For systems operating with a relatively slow CPU clock frequency, more time is available in which to establish proper logic levels on the bus and therefore higher capacitive loads can be driven (see Typical Performance Curves).

At higher CPU clock frequencies time can be extended for I/ 0 reads (and/or writes) by inserting wait states (8080) or using clock-extending circuits (6800).

Finally, if time is short and capacitive loading is high, external bus drivers must be used. These can be tri-state buffers (low power Schottky is recommended, such as the 74LS240 series) or special higher-drive-current products which are designed as bus drivers. High-current bipolar bus drivers with PNP inputs are recommended.

Power Supplies

Noise spikes on the V_{+}supply line can cause conversion errors as the comparator will respond to this noise. A lowinductance tantalum filter capacitor should be used close to the converter $V+$ pin, and values of $1 \mu \mathrm{~F}$ or greater are recommended. If an unregulated voltage is available in the system, a separate 5 V voltage regulator for the converter (and other analog circuitry) will greatly reduce digital noise on the V+ supply. An ICL7663 can be used to regulate such a supply from an input as low as 5.2 V .

Wiring and Hook-Up Precautions

Standard digital wire-wrap sockets are not satisfactory for breadboarding with this A/D converter. Sockets on PC boards can be used. All logic signal wires and leads should be grouped and kept as far away as possible from the analog signal leads. Exposed leads to the analog inputs can cause undesired digital noise and hum pickup; therefore, shielded leads may be necessary in many applications.
A single-point analog ground should be used which is separate from the logic ground points. The power supply bypass capacitor and the self-clockIng capacitor (if used) should both be returned to digital ground. Any $\mathrm{V}_{\mathrm{REF}} / 2$ bypass capacitors, analog input filter capacitors, or input signal shielding should be returned to the analog ground point. A test for proper grounding is to measure the zero error of the AND converter. Zero errors in excess of $1 / 4$ LSB can usually be traced to improper board layout and wiring (see Zero Error for measurement). Further information can be found in Application Note ANO18.

Testing the A/D Converter

There are many degrees of complexity associated with testing an ADD converter. One of the simplest tests is to apply a known analog input voltage to the converter and use LEDs to display the resulting digital output code as shown in Figure 18.

For ease of testing, the $\mathrm{V}_{\text {REF }} / 2$ (pin 9) should be supplied with 2.560 V and a $V+$ supply voltage of 5.12 V should be used. This provides an LSB value of 20 mV .

If a full-scale adjustment is to be made, an analog input voltage of $5.090 \mathrm{~V}\left(5.120-1 \frac{1}{2} \mathrm{LSB}\right)$ should be applied to the $\mathrm{V}_{\mathbb{I N}(+)}$ pin with the $\mathrm{V}_{\mathbb{I N (-)}}$ pin grounded. The value of the $\mathrm{V}_{\mathrm{REF}} / 2$ input voltage should be adjusted until the digital output code is just changing from 11111110 to 1111 1111. This value of $\mathrm{V}_{\text {REF }} /$ 2 should then be used for all the tests.
The digital-output LED display can be decoded by dividing the 8 bits into 2 hex characters, one with the 4 most-significant bits (MS) and one with the 4 least-significant bits (LS). The output is then interpreted as a sum of fractions times the full-scale voltage: $V_{\text {OUT }}=\left(\frac{M S}{16}+\frac{L S}{256}\right)(5.12) V$.

FIGURE 18. BASIC TESTER FOR THE AD
For example, for an output LED display of 10110110 , the MS character is hex B (decimal 11) and the LS character is hex (and decimal) 6, so
$V_{\text {OUT }}=\left(\frac{11}{16}+\frac{6}{256}\right)(5.12)=3.64 \mathrm{~V}$
Figures 19 and 20 show more sophisticated test circuits.

FIGURE 19. A/D TESTER WITH ANALOG ERROR OUTPUT. THIS CIRCUIT CAN BE USED TO GENERATE "ERROR PLOTS" OF FIGURE 11.

FIGURE 20. BASIC "DIGITAL" AD TESTER

Typical Applications

Interfacing 8080/85 or Z-80 Microprocessors
This converter has been designed to directly interface with 8080/85 or Z-80 Microprocessors. The tri-state output capability of the AD eliminates the need for a peripheral interface device, although address decoding is still required to generate the appropriate $\overline{\mathrm{CS}}$ for the converter. The AD can be mapped into memory space (using standard memoryaddress decoding for $\overline{\mathrm{CS}}$ and the MEMR and MEMW strobes) or it can be controlled as an I/O device by using the $\overline{\mathrm{I} O R}$ and $\overline{\mathrm{IOW}}$ strobes and decoding the address bits AO \rightarrow A7 (or address bits A8 \rightarrow A15, since they will contain the same 8-bit address information) to obtain the $\overline{\mathrm{CS}}$ input. Using the I/O space provides 256 additional addresses and may allow a simpler 8-bit address decoder, but the data can only be input to the accumulator. To make use of the additional memory reference instructions, the AD should be mapped into memory space. See ANO20 for more discussion of memory-mapped vs I/O-mapped interfaces. An example of an ADD in I/O space is shown in Figure 21.
The standard control-bus signals of the $8080(\overline{\mathrm{CS}}, \overline{\mathrm{RD}}$ and $\overline{W R}$) can be directly wired to the digital control inputs of the ADD, since the bus timing requirements, to allow both starting the converter, and outputting the data onto the data bus, are met. A bus driver should be used for larger microprocessor systems where the data bus leaves the PC board and/or must drive capacitive loads larger than 100pF.

It is useful to note that in systems where the AND converter is 1 of 8 or fewer I/O-mapped devices, no address-decoding circuitry is necessary. Each of the 8 address bits (AO to A7) can be directly used as $\overline{C S}$ inputs, one for each I/O device.

Interfacing the Z-80 and 8085

The Z-80 and 8085 control buses are slightly different from that of the 8080. General $\overline{R D}$ and $\overline{W R}$ strobes are provided and separate memory request, $\overline{M R E Q}$, and I/O request, $\overline{\text { IORQ, signals have to be combined with the generalized }}$ strobes to provide the appropriate signals. An advantage of operating the AND in I/O space with the Z-80 is that the CPU will automatically insert one wait state (the $\overline{R D}$ and $\overline{W R}$ strobes are extended one clock period) to allow more time for the I/O devices to respond. Logic to map the A/D in I/O space is shown in Figure 22. By using $\overline{M R E Q}$ in place of IORQ, a memory-mapped configuration results.

Additional I/O advantages exist as software DMA routines are available and use can be made of the output data transfer which exists on the upper 8 address lines (A8 to A15) during I/O input instructions. For example, MUX channel selection for the AD can be accomplished with this operating mode.

The 8085 also provides a generalized $\overline{\mathrm{RD}}$ and $\overline{\mathrm{WR}}$ strobe, with an IO/M line to distinguish I/O and memory requests. The circuit of Figure 22 can again be used, with $10 / \bar{M}$ in place of $\overline{\text { IORQ }}$ for a memory-mapped interface, and an extra inverter (or the logic equivalent) to provide $\overline{\mathrm{IO}} / \mathrm{M}$ for an I/Omapped connection.

Interfacing 6800 Microprocessor Derivatives (6502, etc.)

The control bus for the 6800 microprocessor derivatives does not use the $\overline{\mathrm{RD}}$ and $\overline{\mathrm{WR}}$ strobe signals. Instead it employs a single $R \bar{W}$ line and additional timing, if needed, can be derived from the $\$ 2$ clock. All I/O devices are memorymapped in the 6800 system, and a special signal, VMA, indicates that the current address is valid. Figure 23 shows an interface schematic where the A/D is memory-mapped in the 6800 system. For simplicity, the $\overline{\mathrm{CS}}$ decoding is shown using $1 / 2$ DM8092. Note that in many 6800 systems, an already decoded $\overline{4 / 5}$ line is brought out to the common bus at pin 21. This can be tied directly to the $\overline{\mathrm{CS}}$ pin of the AD, provided that no other devices are addressed at HEX ADDR: 4XXX or 5XXX.

In Figure 24 the ADC0802 series is interfaced to the MC6800 microprocessor through (the arbitrarily chosen) Port B of the MC6820 or MC6821 Peripheral Interface Adapter (PIA). Here the $\overline{\mathrm{CS}}$ pin of the ADD is grounded since the PIA is already memory-mapped in the MC6800 system and no $\overline{C S}$ decoding is necessary. Also notice that the AD output data lines are connected to the microprocessor bus under program control through the PIA and therefore the AD $\overline{\mathrm{RD}}$ pin can be grounded.

Application Notes

Some applications bulletins that may be found useful are listed here:

AN016 "Selecting AD Converters"

AN018 "Do's and Don'ts of Applying AND Converters"
AN020 "A Cookbook Approach to High Speed Data Acquisition and Microprocessor Interfacing"

AN030 "The ICL7104 - A Binary Output AD Converter for Microprocessors"

FIGURE 21. ADC0802 TO 8080A CPU INTERFACE

* NUMBERS IN PARENTHESES REFER TO MC6800 CPU PINOUT. * NUMBERS OR LETTERS IN BRACKETS REFER TO STANDARD MC6800 SYSTEM COMMON BUS CODE.

FIGURE 22. MAPPING THE ADD AS AN VO DEVICE FOR USE WITH THE Z-80 CPU

FIGURE 24. ADC0802 TO MC6820 PIA INTERFACE

Die Characteristics

DIE DIMENSIONS:

($101 \times 93 \mathrm{mils}$) $\times 525 \times 25 \mu \mathrm{~m}$
METALLIZATION:
Type: AI
Thickness: $10 \mathrm{k} \AA \pm 1 \mathrm{k} \AA$
GLASSIVATION:
Type: Nitride over Silox Nitride Thickness: $8 \mathrm{k} \AA$
Silox Thickness: 7kA

Metallization Mask Layout

ADC0802, ADC0803, ADC0804

Features

- CMOS Low Power (15mW Typ.)
- Single Supply Voltage (3V to 6V)
- 13 μ s Conversion Time
- Bullt-In Track and Hold
- Rail-to-Rall Input Range
- Latched Tri-state Output Drivers
- Microprocessor-Compatible Control Lines
- Internal or External Clock

Applications

- Fast, No-Droop, Sample and Hold
- Voice Grade Digital Audio
- DSP Modems
- Remote Low Power Data Acquisition Systems
- $\mu \mathrm{P}$ Controlled Systems

Description

The Harris CA3310 is a fast, low power, 10-bit successive approximation analog-to-digital converter, with microprocessor-compatible outputs. It uses only a single 3 V to 6 V supply and typically draws just 3 mA when operating at 5 V . It can accept full rail-to-rail input signals, and features a built-in track and hold. The track and hold will follow high bandwidth input signals, as it has only a 100 ns (typical) input time constant.
The ten data outputs feature full high-speed CMOS tri-state bus driver capability, and are latched and held through a full conversion cycle. Separate 8 MSB and 2 LSB enables, a data ready flag, and conversion start and ready reset inputs complete the microprocessor interface.
An internal, adjustable clock is provided and is available as an output. The clock may also be driven from an external source.

Ordering Information

PART NUMBER	LINEARITY (INL, DNL)	TEMPERATURE RANGE	PACKAGE
CA3310E	$\pm 0.75 \mathrm{LSB}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24 Lead Plastic DIP
CA3310AE	$\pm 0.5 \mathrm{LSB}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24 Lead Plastic DIP
CA3310M	$\pm 0.75 \mathrm{LSB}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24 Lead Plastic SOIC
CA3310AM	$\pm 0.5 \mathrm{LSB}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24 Lead Plastic SOIC
CA3310D	$\pm 0.75 \mathrm{LSB}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	24 Lead Ceramic DIP
CA3310AD	$\pm 0.5 \mathrm{LSB}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	24 Lead Ceramic DIP

Pinout

Functional Block Diagram

Typical Application Schematics

INPUT RANGE	R1	R2	R3	R4	R5
OV TO 2.5V	4.99 K	9.09 K	OPEN	4.99 K	9.09 K
OV TO 5 V	4.99 K	4.53 K	OPEN	4.99 K	4.53 K
OV TO 10V	10 K	4.53 K	OPEN	10 K	4.53 K
-2.5 V TO +2.5 V	4.99 K	9.09 K	9.09 K	4.99 K	4.53 K
-5 V TO +5 V	10 K	9.09 K	9.09 K	10 K	4.53 K

Thermal Information

Thermal Resistance	$\theta_{\text {JA }}$	θ_{Jc}
Plastic Package.	$75^{\circ} \mathrm{C} / \mathrm{N}$	$\stackrel{-}{\square}$
Ceramic DIP Package	$58^{\circ} \mathrm{C} / \mathrm{W}$	11CN
SOIC Package.	$75^{\circ} \mathrm{C} / \mathrm{W}$	-
Junction Temperature		
Plastic Package.		$+150^{\circ} \mathrm{C}$
Sidebrazed Package		

Sidebrazed Package
$+175^{\circ} \mathrm{C}$

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Electrical Specifications $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{AA}^{+}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}^{+}}=4.608 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=\mathrm{V}_{\mathrm{AA}^{-}}=\mathrm{V}_{\mathrm{REF}^{-}}=\mathrm{GND}, \mathrm{CLK}=$ External 1 MHz (Unless Otherwise Specified.)

PARAMETER		TEST CONDITIONS	LIMITS			UNITS	
		MIN	TYP	MAX			
ACCURACY: SEE TEXT FOR DEFINITIONS							
Resolution				10	\bullet	\bullet	Bits
Differential Linearity Error	CA3310		\bullet	± 0.5	± 0.75	LSB	
	CA3310A		\bullet	± 0.25	± 0.5	LSB	
Integral Linearity Error	CA3310		-	± 0.5	± 0.75	LSB	
	CA3310A		\bullet	± 0.25	± 0.5	LSB	
Gain Error	CA3310		\bullet	± 0.25	± 0.5	LSB	
	CA3310A		\bullet	-	± 0.25	LSB	
Offset Error	CA3310		\bullet	± 0.25	± 0.5	LSB	
	CA3310A		-	-	± 0.25	LSB	

ANALOG OUTPUT					
Input Resistance	In Series with Input Sample Capacitors	\bullet	330	\bullet	Ω
Input Capacitance	During Sample State	-	300	-	pF
Input Capacitance	During Hold State	-	20	-	pF
Input Current	At $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {REF }}+=5 \mathrm{~V}$	-	-	+300	$\mu \mathrm{A}$
	At $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {REF }}-=0 \mathrm{~V}$	\bullet	\bullet	-100	$\mu \mathrm{A}$
Static Input Current	$\begin{aligned} & \text { STRT }=\mathrm{V}_{+}, \text {CLK }=\mathrm{V}_{+} \\ & \text {At } \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {REF }}+=5 \mathrm{~V} \end{aligned}$	-	\bullet	1	$\mu \mathrm{A}$
	At $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {REF }}-=0 \mathrm{~V}$	-	-	-1	$\mu \mathrm{A}$
Input + Full-Scale Range	(Note 2)	$\mathrm{V}_{\text {REF }}{ }^{-1}$	-	$\mathrm{V}_{\mathrm{DD}}+0.3$	V
Input - Full-Scale Range	(Note 2)	$\mathrm{v}_{\mathrm{ss}}-0.3$	-	$\mathrm{V}_{\text {REF }}+-1$	V
Input Bandwidth	From Input RC Time Constant	-	1.5	-	MHz
DIGITAL INPUTS: DRST, OEL, OEM, STRT, CLK					
High-Level Input Voltage	Over $\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}$ to 6V (Note 2)	70	-	-	$\begin{aligned} & \hline \% \text { of } \\ & V_{D D} \end{aligned}$

Electrical Specifications $\quad T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{AA}^{+}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}+=4.608 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=\mathrm{V}_{\mathrm{AA}^{-}}=\mathrm{V}_{\mathrm{REF}}=\mathrm{GND}, \mathrm{CLK}=$ External 1 MHz (Unless Otherwise Specified.) (Continued)

PARAMETER	TEST CONDITIONS	LIMITS			UNITS
		MIN	TYP	MAX	
Low-Level Input Voitage	Over $\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}$ to 6 V (Note 2)	-	-	30	$\begin{aligned} & \% \text { of } \\ & V_{D D} \end{aligned}$
Input Leakage Current	Except CLK	-	\bullet	± 1	$\mu \mathrm{A}$
Input Capacitance	(Note 2)	-	-	10	pF
Input Current	CLK Only (Note 2)	-	\bullet	± 400	$\mu \mathrm{A}$
DIGITAL OUTPUTS: D0 - D9, DRDY					
High-Level Output Voltage	$I_{\text {SOURCE }}=-4 \mathrm{~mA}$	4.6	-	\bullet	V
Low-Level Output Voltage	$\mathrm{I}_{\text {SINK }}=6 \mathrm{~mA}$	-	-	0.4	V
Tri-state Leakage	Except DRDY	-	-	± 1	$\mu \mathrm{A}$
Output Capacitance	Except DRDY (Note 2)	-	\bullet	20	pF
CLK OUTPUT					
High-Level Output Voltage	$I_{\text {SOURCE }}=100 \mu \mathrm{~A}$ (Note 2)	4	-	-	V
Low-Level Output Voltage	$\mathrm{I}_{\text {SINK }}=100 \mu \mathrm{~A}$ (Note 2)	-	-	1	V
TIMING					
Clock Frequency	Internal, CLK and $\mathrm{R}_{\text {EXT }}$ Open	200	300	400	kHz
	Internal, CLK Shorted to R ${ }_{\text {EXT }}$	600	800	1000	kHz
	External, Applied to CLK: Max. (Note 2)	-	4	2	MHz
	Min.	100	10	\bullet	kHz
Clock Pulse Width, T $_{\text {LOW }}, \mathrm{T}_{\text {HIGH }}$	External, Applied to CLK: See figure 1 (Note 2)	100	-	-	ns
Conversion Time		13	-	-	$\mu \mathrm{s}$
Aperture Delay, T_{D} APR	See Figure 1	-	100	\bullet	ns
Clock to Data Ready Delay, T $^{\text {d }}$ DRDY	See Figure 1	-	150	\bullet	ns
Clock to Data Ready Delay, $\mathrm{T}_{\mathrm{D} 2}$ DRDY	See Figure 1	-	250	-	ns
Clock to Data Delay, T_{D} Data	See Figure 1	\bullet	200	\bullet	ns
Start Removal Time, T_{R} STRT	See Figures 3 and 4 (Note 1)	\bullet	-120	\bullet	ns
Start Setup Time, TSU STRT	See Figure 4	\bullet	160	\bullet	ns
Start Pulse Width, ${ }_{\text {W }}$ STRT	See Figures 3 and 4	-	10	-	ns
Start to Data Ready Delay, $\mathrm{T}_{\mathrm{D} 3}$ DRDY	See Figures 3 and 4	-	170	-	ns
Clock Delay from Start, T_{D} CLK	See Figure 3	\bullet	200	-	ns
Ready Reset Removal Time, $\mathrm{T}_{\text {R }}$ DRST	See Figure 50 (Note 1)	-	-80	\bullet	ns
Ready Reset Pulse Width, $\mathrm{T}_{\text {W }}$ DRST	See Figure 5	-	10	\bullet	ns
Ready Reset to Data Ready Delay, $T_{D 4}$ DRDY	See Figure 5	-	35	-	ns
Output Enable Delay, $\mathrm{T}_{\text {EN }}$	See Figure 2	\bullet	40	\bullet	ns

Electrical Specifications $\quad T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{AA}^{+}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}{ }^{+}=4.608 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=\mathrm{V}_{\mathrm{AA}}{ }^{-}=\mathrm{V}_{\mathrm{REF}}=\mathrm{GND}, \mathrm{CLK}=$ External 1 MHz (Unless Otherwise Specified.) (Continued)

PARAMETER	TEST CONDITIONS	LIMITS			UNITS
		MIN	TYP	MAX	
Output Disable Delay, TIIS	See Figure 2	-	50	-	ns
SUPPLIES					
Supply Operating Range, V_{DD} or V_{AA}	(Note 2)	3	-	6	V
Supply Current, $I_{\text {DD }}+I_{\text {AA }}$	See Figures 14, 15	-	3	8	mA
Supply Standby Current	Clock Stopped During Cycle 1	-	3.5	-	mA
Analog Supply Rejection	At 120Hz, See Figure 13	\bullet	25	\bullet	mV / V
Reference Input Current	See Figure 10	-	160	-	$\mu \mathrm{A}$
TEMPERATURE DEPENDENCY					
Offset Drift	At 0 to 1 Code Transition	-	-4	\bullet	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Gain Drift	At 1022 to 1023 Code Transition	-	-6	\bullet	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Internal Clock Speed	See Figure 7	-	-0.5	-	\%/ ${ }^{\circ} \mathrm{C}$

NOTE:

1. A (-) removal time means the signal can be removed after the reference signal.
2. Parameter not tested, but guaranteed by design or characterization.

Timing Diagrams

FIGURE 1. FREE RUNNING, STRT TIED LOW, DRST TIED HIGH

Timing Diagrams (Continued)

FIGURE 2. OUTPUT ENABLE/DISABLE TIMING DIAGRAM

FIGURE 3. STRT PULSED LOW, DRST TIED HIGH, INTERNAL CLOCK

FIGURE 4. STRT PULSED LOW, DRST TIED HIGH, EXTERNAL CLOCK

Timing Diagrams (Continued)

FIGURE 5. DRST PULSED LOW, STRT TIED HIGH

Typical Performances Curves

FIGURE 6. INTERNAL CLOCK FREQUENCY vs EXTERNAL RESISTANCE

FIGURE 8. PEAK INPUT CURRENT vs INPUT VOLTAGE

FIGURE 7. INTERNAL CLOCK FREQUENCY vs TERMPERATURE AND SUPPLY VOLTAGE

FIGURE 9. AVERAGE INPUT CURRENT vS INPUT VOLTAGE

Typical Performances Curves (Continued)

FIGURE 10. $\mathbf{V}_{\text {REF }}+$ CURRENT vs $\mathbf{V}_{\text {REF }}+$ VOLTAGE

FIGURE 12. NORMALIZED GAIN, OFFSET, INTEGRAL AND DIFFERENTIAL LINEARITY ERRORS vs CLOCK SPEED

FIGURE 14. SUPPLY CURRENT vs CLOCK FREQUENCY

FIGURE 11. NORMALIZED GAIN, OFFSET, INTEGRAL AND DIFFERENTIAL LINEARITY ERRORS vs REFERENCE VOLTAGE

FIGURE 13. V_{AA} SUPPLY SENSITIVITY

FIGURE 15. SUPPLY CURRENT vs TEMPERATURE

CA3310, CA3310A

TABLE 1. PIN DESCRIPTION

PIN NUMBER	NAME	DESCRIPTION
1-10	D0 - D9	Tri-state outputs for data bits representing 2^{0} (LSB) through 2^{9} (MSB).
11	DRDY	Output flag signifying new data is available. Goes high at end of clock period 13, goes low when new conversion started. Also reset asynchronously by DRST.
12	$\mathrm{V}_{\text {Ss }}$	Digital ground.
13	DRST	Active low input, resets DRDY.
14	OEM	Active low input, tri-state enable of D2-D9.
15	OEL	Active low input, tri-state enable of D0, D1.
16	$\mathrm{V}_{A A^{-}}$	Analog ground.
17	$\mathrm{V}_{\mathrm{AA}^{+}}$	Analog + supply.
18	$\mathrm{V}_{\text {feF }}{ }^{-}$	Reference input voitage, sets 0 code (-) end of input range.
19	STRT	Active low start conversion input. Recognized after end of clock period 13.
20	CLK	Clock input or output. Conversion functions are synchronous to high-going edge.
21	$\mathrm{R}_{\mathrm{EXT}}$	Clock adjust input when using internal clock.
22	$\mathrm{V}_{\text {REF }}{ }^{+}$	Reference input voltage, set 1023 code (+) end of input range.
23	$\mathrm{V}_{\text {IN }}$	Analog input.
24	$V_{D D}$	Digital + supply.

TABLE 2. OUTPUT CODES

CODE	INPUT VOLTAGE (NOTE 1) $\left(V_{\text {REF }+}-V_{\text {REF }-}\right)=4.608 V$ (V)	$\begin{array}{\|c\|} \text { MSB } \\ \text { D9 } \end{array}$	D8	BINARY OUTPUT CODE						D1	$\begin{gathered} \text { LSB } \\ \text { D0 } \end{gathered}$	DECIMAL COUNT
$\text { LSB }=\frac{\left(V_{\text {REF }+}-v_{\text {REF. }}\right)}{1024}$				D7	D6	D5	D4	D3	D2			
Zero	0.000	0	0	0	0	0	0	0	0	0	0	0
1 LSB	0.0045	0	0	0	0	0	0	0	0	0	1	1
$1 / 4\left(V_{\text {REF }}+-\mathrm{V}_{\text {REF }}\right)$	1.152	0	1	0	0	0	0	0	0	0	0	256
$1 / 2\left(V_{\text {REF }}+-\mathrm{V}_{\text {REF }}\right)$	2.304	1	0	0	0	0	0	0	0	0	0	512
$3 / 4$ ($\mathrm{VEFF}^{+}-\mathrm{V}_{\text {REF }}$ -	3.456	1	1	0	0	0	0	0	0	0	0	768
($\mathrm{V}_{\text {REF }}+-\mathrm{V}_{\text {REF }}$ - - 1 LSB	4.6035	1	1	1	1	1	1	1	1	1	1	1023

NOTE:

1. The voltages listed above are the ideal centers of each output code shown as a function of its associated reference voltage.

Device Operation

The CA3310 is a CMOS 10-bit analog-to-digital converter that uses capacitor-charge balancing to successively approximate the analog input. A binarily weighted capacitor network forms the D-to-A "Heart" of the device. See the Functional Diagram of the CA3310.

The capacitor network has a common node which is connected to a comparator. The second terminal of each capacitor is individually switchable to the input, $\mathrm{V}_{\text {REF }}+$ or $\mathrm{V}_{\text {REF }}{ }^{-}$.

During the first three clock periods of a conversion cycle, the switchable end of every capacitor is connected to the input. The comparator is being auto-balanced at its trip point, thus setting the voltage at the capacitor common node.
During the fourth period, all capacitors are disconnected from the input, the one representing the MSB (D9) is connected to the $\mathrm{V}_{\text {REF }}+$ terminal, and the remaining capacitors to $\mathrm{V}_{\mathrm{REF}}$-. The capacitor-common node, after the charges balance out, will represent whether the input was above or below $\frac{1}{2}$ of ($V_{\text {REF }}+-V_{\text {REF }}$).

At the end of the fourth period, the comparator output is stored and the MSB capacitor is either left connected to $\mathrm{V}_{\text {REF }}+$ (if the comparator was high) or returned to $\mathrm{V}_{\text {REF }}{ }^{-}$. This allows the next comparison to be at either $3 / 4$ or $1 / 4$ of ($\mathrm{V}_{\text {REF }}{ }^{+}-\mathrm{V}_{\mathrm{REF}}{ }^{-}$).
At the end of periods 5 through 12, capacitors representing the next to MSB (D8) through the next to LSB (D1) are tested, the result stored, and each capacitor either left at $\mathrm{V}_{\mathrm{REF}}+$ or at $\mathrm{V}_{\mathrm{REF}}-$.
At the end of the 13th period, when the LSB (DO) capacitor is tested, D0 and all the previous results are shifted to the output registers and drivers. The capacitors are reconnected to the input, the comparator returns to the balance state, and the data-ready output goes active. The conversion cycle is now complete.

Clock

The CA3310 can operate either from its internal clock or from one externally supplied. The CLK pin functions either as the clock output or input. All converter functions are synchronous with the rising edge of the clock signal.

Figure 16 shows the configuration of the internal clock. The clock output drive is low power: if used as an output, it should not have more than 1 CMOS gate load applied, and wiring capacitance should be kept to a minimum.

FIGURE 16. CLOCK CIRCUITRY

The $R_{E X T}$ pin allows adjusting of the internal clock frequency by connecting a resistor between $\mathrm{R}_{\mathrm{EXT}}$ and CLK. Figure 6 shows the typical relationship between the resistor and clock speed, while Figure 7 shows clock speed versus temperature and supply voltage.
The internal clock will shut down if the ADD is not restarted after a conversion. This is described under Control Timing. The clock could also be shut down with an open collector driver applied to the CLK pin. This should only be done during the sample portion (the first three periods) of a conversion cycle, and might be useful for using the device as a digital sample and hold: this is described further under Applications.

If an external clock is supplied to the CLK pin, it must have sufficient drive to overcome the internal clock source. The external clock can be shut off, but again only during the sample portion of a conversion cycle. At other times, it must be above the minimum frequency shown in the specifications.

If the internal or external clock was shut off during the conversion time (clock cycles 4 through 13) of the A/D, the output might be invalid due to balancing capacitor droop.

An external clock must also meet the minimum TLOW and $\mathrm{T}_{\text {HIGH }}$ times shown in the specifications. A violation may cause an internal miscount and invalidate the results.

Control Signals

The CA3310 may be synchronized from an external source by using the STRT (Start Conversion) input to initiate conversions, or if STRT is tied low, may be allowed to free-run. In the free-running mode, illustrated in Figure 1, each conversion takes 13 clock periods.

The input is tracked from clock period 1 through period 3, then disconnected as the successive approximation takes place. After the start of the next period 1 (specified by T_{D} data), the output is updated.

The DRDY (Data Ready) status output goes high (specified by $T_{D 1}$ DRDY) after the start of clock period 1, and returns low (specified by $\mathrm{T}_{\mathrm{D} 2}$ DRDY) after the start of clock period 2. DRDY may also be asynchronously reset by a low on DRST (to be discussed later).
If the output data is to be latched externally by the DRDY signal, the trailing edge of DRDY should be used: there is no guaranteed set-up time to the leading edge.
The 10 output data bits are available in parallel on threestate bus driver outputs. When low, the OEM input enables the most significant byte (D2 through D9) while the OEL input enables the two least significant bits (D0, D1). TEN and $T_{\text {DIS }}$ specify the output enable and disable times, respectively. See Figure 2.

When the STRT input is used to initiate conversions, operation is slightly different depending on whether an internal or external clock is used.

Figure 3 illustrates operation with an internal clock. If the STRT signal is removed (at least T_{R} STRT) before clock period 1, and is not reapplied during that period, the clock will shut off after entering period 2 . The input will continue to track the DRDY output will remain high during this time.

A low signal applied to STRT (at least Tw STRT wide) can now initiate a new conversion. The STRT signal (after a delay of $T_{D 3}$ DRDY) will cause the DRDY flag to drop, and (after a delay of T_{D} CLK) cause the clock to restart.

Depending on how long the clock was shut off, the low portion of clock period 2 may be longer than during the remaining cycles.

The input will continue to track until the end of period 3, the same as when free-running.

Figure 4 illustrates the same operation as above, but with an external clock. If STRT is removed (at least T_{R} STRT) before clock period 1, and not reapplied during that period, the clock will continue to cycle in period 2. A low signal applied to STRT will drop the DRDY flag as before, and with the first positive-going clock edge that meets the TSU STRT set-up time, the converter will continue with clock period 3.

The DRDY flag output, as described previously, goes active at the start of period 1, and drops at the start of period 2 or upon a new STRT command, whichever is later. It may also be controlled with the DRST (Data Ready Reset) input. Figure 5 depicts this operation.

DRST must be removed (at least T_{R} DRST) before the start of period 1 to allow DRDY to go high. A low level on DRST (at least T_{W} DRST wide) will (after a delay of $T_{D 4}$ DRDY) drop DRDY.

Analog Input

The analog input pin is a predominantly capacitive load that changes between the track and hold periods of a conversion cycle. During hold, clock period 4 through 13, the input loading is leakage and stray capacitance, typically less than $0.1 \mu \mathrm{~A}$ and 20 pF .

At the start of input tracking, clock period 1, some charge is dumped back to the input pin. The input source must have low enough impedance to dissipate the charge by the end of the tracking period. The amount of charge is dependent on supply and input voltages. Figure 8 shows typical peak input currents for various supply and input voltages, while Figure 9 shows typical average input currents. The average current is also proportional to clock frequency, and should be scaled accordingly.

During tracking, the input appears as approximately a 300pF capacitor in series with 330Ω, for a 100 ns time constant. A full-scale input swing would settle to $1 / 2$ LSB $\left(\frac{1}{2048}\right)$ in 7RC time constants. Doing continuous conversions with a 1 MHz clock provides 3μ s of tracking time, so up to 1000Ω of external source impedance (400ns time constant) would allow proper settling of a step input.

If the clock was slower, or the converter was not restarted immediately (causing a longer sample lime), a higher source impedance could be used.

The CA3310s low-input time constant also allows good tracking of dynamic input waveforms. The sampling rate with a 1 MHz clock is approximately 80 kHz . A Nyquist rate (${ }^{\text {SAM PLE }} / 2$) input sine wave of 40 kHz would have negligible attenuation and a phase lag of only 1.5 degrees.

Accuracy Specifications

The CA3310 accepts an analog input between the values of $\mathrm{V}_{\text {REF }}$ - and $\mathrm{V}_{\text {REF }}+$, and quantizes it into one of 2^{10} or 1024 output codes. Each code should exist as the input is varied through a range of $1 / 1024 \mathrm{X}\left(\mathrm{V}_{\text {REF }}+-\mathrm{V}_{\text {REF }}-\right)$, referred to as 1 LSB of input voltage. A differential linearity error, illustrated in Figure 17, occurs if an output code occurs over other than the ideal (1 LSB) input range. Note that as long as the error does not reach -1 LSB, the converter will not miss any codes.

FIGURE 17. DIFFERENTIAL LINEARITY ERROR

The CA3310 output should change from a code of 000_{16} to 001_{16} at an input voltage of ($\mathrm{V}_{\text {REF }}{ }^{-+1}$ LSB). It should also change from a code of $3 \mathrm{FE}_{16}$ to $3 \mathrm{FF}_{16}$ at an input of ($\mathrm{V}_{\mathrm{REF}}{ }^{+}$ -1 LSB). Any differences between the actual and expected input voltages that cause these transitions are the offset and gain errors, respectively. Figure 18 illustrates these errors.

As the input voltage is increased linearly from the point that causes the 000_{16} to 001_{16} transition to the point that causes the $3 \mathrm{FE}_{16}$ to $3 F F_{16}$ transition, the output code should also increase linearly. Any deviation from this input- to-output correspondence is integral linearity error, illustrated in Figure 19.
Note that the integral linearity is referenced to a straight line drawn through the actual end points, not the ideal end points. For absolute accuracy to be equal to the integral linearity, the gain and offset would have to be adjusted to ideal.

Offset and Gain Adjustments

The $\mathrm{V}_{\text {REF }}+$ and $\mathrm{V}_{\text {REF }}$ - pins, references for the two ends of the analog input range, are the only means of doing offset or gain adjustments. In a typical system, the $\mathrm{V}_{\text {REF }}$ - might be returned to a clean ground, and offset adjustment done on an input amplifier. $\mathbf{V}_{\text {REF }}+$ would then be adjusted for gain.
$V_{\text {REF }}$ - could be raised from ground to adjust offset or to accommodate an input source that can't drive down to ground. There are current pulses that occur, however, during the successive approximation part of a conversion cycle, as the charge-balancing capacitors are switched between $\mathrm{V}_{\text {REF }}$ -

FIGURE 18. GAIN AND OFFSET ERROR

19

FIGURE19. NORMALIZED GAIN, OFFSET, INTEGRAL AND DIFFERENTIAL LINEARITY ERRORS vs REFERENCE VOLTAGE
and $\mathrm{V}_{\text {REF }}+$. For that reason, $\mathrm{V}_{\text {REF }}$ and $\mathrm{V}_{\text {REF }}+$ should be well bypassed. Figure 10 shows peak and average $\mathrm{V}_{\text {REF }}+$ current.

Other Accuracy Effects

Linearity, offset, and gain errors are dependent on the magnitude of the full-scale input range, $\mathrm{V}_{\text {REF }}{ }^{+}-\mathrm{V}_{\text {REF }}$. Figure 11 shows how these errors vary with full-scale range.

The clocking speed is a second factor that affects conversion accuracy. Figure 12 shows the typical variation of linearity, offset, and gain errors versus clocking speed.

Gain and offset drift due to temperature are kept very low by means of auto-balancing the comparator. The specifications show typical offset and gain dependency on temperature.
There is also very little linearity change with temperature, only that caused by the slight slowing of CMOS with increasing temperature. At $+85^{\circ} \mathrm{C}$, for instance, the ILE and DLE would be typically those for a 20% faster clock than at $+25^{\circ} \mathrm{C}$.

Power Supplies and Grounding

$\mathrm{V}_{\mathrm{DD}}(+)$ and $\mathrm{V}_{\mathrm{SS}}(\mathrm{GND})$ are the digital supply pins: they operate all internal logic and the output drivers. Because the output drivers can cause fast current spikes in the $V_{D D}$ and $V_{S S}$ lines, $\mathrm{V}_{\text {SS }}$ should have a low impedance path to digital ground and $V_{D D}$ should be well bypassed.
Except for $V_{D D}+$, which is a substrate connection to $V_{D D}$, all pins have protection diodes connected to V_{DD} and V_{SS} : input transients above V_{DD} or below V_{SS} will get steered to the digital supplies. Current on these pins must be limited by external means to the values specified under maximum ratings.

The $\mathrm{V}_{\mathrm{AA}}+$ and $\mathrm{V}_{\mathrm{AA}^{-}}$terminals supply the charge-balancing comparator only. Because the comparator is autobalanced between conversions, it has good low frequency supply rejection. It does not reject well at high frequencies, however: V_{AA} - should be returned to a clean analog ground, and $\mathrm{V}_{\mathrm{AA}}+$ should be RC decoupled from the digital supply.
There is approximately 50Ω of substrate impedance between V_{DD} and $\mathrm{V}_{\mathrm{AA}}+$. This can be used, for example, as part of a low-pass RC filter to attenuate switching supply noise. A 10pF capacitor from $\mathrm{V}_{\mathrm{AA}}+$ to ground would attenuate 30 kHz noise by approximately 40 dB . Note that back-toback diodes should be placed from V_{DD} to $\mathrm{V}_{\mathrm{AA}}+$ to handle supply to capacitor turn-on or turn-off current spikes.

Figure 16 shows $V_{A A}+$ supply rejection versus frequency. Note that the frequency to be rejected scales with the clock: the 100 Hz rejection with a 100 kHz clock would be roughly equivalent to the 1 kHz rejection with a 1 MHz clock.

The supply current for the CA3310 is dependent on clock frequency, supply voltage, and temperature. Figure 14 shows the typical current versus frequency and voltage, while Figure 15 shows it versus temperature and voltage. Note that if stopped in auto-balance, the supply current is typically somewhat higher than if free-running. See Specifications.

Applications Circuits

Differential Input AD System

As the CA3310 accepts a unipolar positive-analog input, the accommodation of other ranges requires additional circuitry. The input capacitance and the input energy also force using a low-impedance source for all but slow speed use. Figure 20 shows the CA3310 with a reference, input amplifier, and input-scaling resistors for several input ranges.

The ICL7663S regulator was chosen as the reference, as it can deliver less than 0.25 V input-to-output (dropout) voltage and uses very little power. As high a reference as possible is generally desirable, resulting in the best linearity and rejection of noise at the CA3310.

The tantalum capacitor sources the $\mathrm{V}_{\text {REF }}$ current spikes during a conversion cycle. This relieves the response and peak current requirements of the reference.
The CA3140 operational amplifier provides good slewing capability for high bandwidth input signals and can quickly settle the energy that the CA3310 outputs at its $\mathrm{V}_{\mathbf{I N}}$ terminal. It can also drive close to the negative supply rail.

If system supply sequencing or an unknown input voltage is likely to cause the operational amplifier to drive above the V_{DD} supply, a diode clamp can be added from pin 8 of the operational amplifier to the V_{DD} supply. The minus drive current is low enough not to require protection.

With a 2 MHz clock ($\sim 150 \mathrm{kHz}$ sampling), Nyquist criteria would give a maximum input bandwidth of 75 kHz . The resistor values chosen are low enough to not seriously degrade system bandwidth (an operational amplifier settling) at that clock frequency. If AD clock frequency and bandwidth requirements are lower, the resistor values (and input impedance) can be made correspondingly higher.

The AD system would generally be calibrated by tying $\mathrm{V}_{\mathbb{N}^{-}}$to ground and applying a voltage to $\mathrm{V}_{\mathbb{N}}+$ that is $0.5 \mathrm{LSB}(1 / 2048$ of full-scale range) above ground. The operational amplifier offset should be adjusted for an output code dithering between $00{ }_{16}$ and 001_{16} for unipolar use, or $\mathbf{1 0 0}_{16}$ and 101_{16} for bipolar use. The gain would then be adjusted by applying a voltage that is 1.5 LSB below the positive full scale input, and adjusting the reference for an output dithering between $3 \mathrm{FE}_{16}$ and $3 \mathrm{FF}_{16}$.
Note that RI through R5 should be very well matched, as they affect the common-mode rejection of the AV system. Also, if R2 and R3 are not matched, the offset adjust of the operational amplifier may not have enough adjustment range in bipolar systems.

The common-mode input range of the system is set by the supply voltage available to the operational amplifier. The range that can be applied to the $\mathrm{V}_{\mathbb{N}^{-}}$terminal can be calculated by:
$\left(\frac{R 4}{R 5}+1\right) \quad V_{\mathbb{N}^{-}}$for the most negative
$\left(\frac{R 4}{R 5}+1\right)(V I N+-2.5 V)-\left(\frac{R 4}{R 5}\right) V_{\text {REF }}+$ for the most positive

Single +5V Supply

If only a single +5 V supply is available, an ICL7660 can be used to provide approximately +8 V and -4 V to the operational amplifier. Figure 20 shows this approach. Note that the converter and associated capacitors should be grounded to the digital supply. The 100Ω in series with each supply at the operational amplifier isolates digital and analog grounds.

Digital Sample and Hold

With a minimum of external logic, the CA3310 can be made to wait at the verge of ending a sample. A start pulse will then, after the internal aperture delay, capture the input and finish the conversion cycle. Figure 21 illustrates this application.

The CA3310 is connected as if to free run. The Data Ready signal is shifted through a CD74HC175, and at the low-going clock edge just before the sample would end, is used to hold the clock low.

The same signal, active high, is available to indicate the CA3310 is ready to convert. A low pulse to reset the CD74HC175 will now release the clock, and the sample will
end as it goes positive. Ten cycles later, the conversion will be complete, and DRDY will go active.

Operating and Handling Considerations

1. Handling

All inputs and outputs of Harris CMOS devices have a network for electrostatic protection during handling. Recommended handling practices for CMOS devices are described in ICAN-6526, "Guide to Better Handling and Operatlon of CMOS Integrated Circuits".

2. Operating

Operating Voltage

During operation near the maximum supply voltage limit, care should be taken to avoid or suppress power supply turn-on and turn-off transients, power supply ripple, or ground noise; any of these conditions must not cause V_{DD} $V_{\text {SS }}$ to exceed the absolute maximum rating.

Input Signals

To prevent damage to the input protection circuit, input signals should never be greater than $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ nor less than $\mathrm{V}_{\mathrm{ss}}-0.3 \mathrm{~V}$. Input currents must not exceed 20mA even when the power supply is off.

Unused Inputs

A connection must be provided at every input terminal. All unused Input terminals must be connected to either $V_{D D}$ or $V_{S S}$, whichever is appropriate.

Output Short Circults

Shorting of outputs to $V_{D D}$ or $V_{S S}$ may damage CMOS devices by exceeding the maximum device dissipation.

FIGURE 21. DIGITAL TRACK-AND-HOLD BLOCK DIAGRAM

Complete 12-Bit AD Converter with Microprocessor Interface

Features

- Complete 12-Bit A/D Converter with Reference and Clock
- Full 8-, 12- or 16-Bit Microprocessor Bus Interface
- 150ns Bus Access Time
- No Missing Codes Over Temperature
- Minimal Setup Time for Control Signals
- Fast Conversion Times
- 25 $\mu \mathrm{s}$ Max (HI-574A)
- 15 $\mu \mathrm{s} \operatorname{Max}$ (HI-674A)
- $9 \mu \mathrm{~s} \operatorname{Max}$ (HI-774)
- Digital Error Correction (HI-774)
- Low Noise, via Current-Mode Signal Transmission Between Chips
- Byte Enable/Short Cycle (AO Input)
- Guaranteed Break-Before-Make Action, Eliminating Bus Contention During Read Operation. Latched by Start Convert Input (To Set the Conversion Length)
- $\pm 12 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$ Operation

Applications

- Military and Industrial Data Acquisition Systems
- Electronic Test and Scientific Instrumentation
- Process Control Systems

Description

The $\mathrm{HI}-\mathrm{X74(A)}$ is a complete 12-bit Analog-to-Digital Converter, including a +10 V reference clock, tri-state outputs and a digital interface for microprocessor control. Successive approximation conversion is performed by two monolithic dice housed in a 28 lead package. The bipolar analog die features the Harris Dielectric Isolation process, which provides enhanced AC performance and freedom from latch-up.
Custom design of each IC (bipolar analog and CMOS digital) has yielded improved performance over existing versions of this converter. The voltage comparator features high PSRR plus a high speed current-mode latch, and provides precise decisions down to 0.1 LSB of input overdrive. More than $2 X$ reduction in noise has been achieved by using current instead of voltage for transmission of all signals between the analog and digital IC's. Also, the clock oscillator is current controlled for excellent stability over temperature.
The HI-X74(A) offers standard unipolar and bipolar input ranges, laser trimmed for specified linearity, gain and offset accuracy. The low noise buried zener reference circuit is trimmed for minimum temperature coefficient.

Power requirements are +5 V and $\pm 12 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$, with typical dissipation of 385 mW (HI-574A674A) and 390 mW (HI-774) at 12V. All models are available in sidebrazed DIP, PDIP, and LCC. For additional HI-Rel screening including 160 hour burnin, specify "-8" suffix. For MIL-STD-883 compliant parts, request $\mathrm{HI}-574 \mathrm{~A} 883, \mathrm{HI}-674 \mathrm{~A} 883$, and $\mathrm{HI}-774 / 883$ data

HI-574A, HI-674A, HI-774
Ordering Information

PART NUMBER	INL.	TEMPERATURE RANGE	PACKAGE
H13-574AJN-5	± 1.0 LSB	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	28 Lead Plastic DIP
HI3-574AKN-5	± 0.5 LSB	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	28 Lead Plastic DIP
HI3-574ALN-5	± 0.5 LSB	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	28 Lead Plastic DIP
H11-574AJD-5	± 1.0 LSB	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	28 Lead Ceramic DIP
HI1-574AKD-5	± 0.5 LSB	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	28 Lead Ceramic DIP
HI1-574ALD-5	± 0.5 LSB	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	28 Lead Ceramic DIP
H11-574ASD-2	± 1.0 LSB	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	28 Lead Ceramic DIP
HI1-574ATD-2	± 0.5 LSB	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	28 Lead Ceramic DIP
H11-574AUD-2	± 0.5 LSB	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	28 Lead Ceramic DIP
H11-574ASD/883	± 1.0 LSB	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	28 Lead Ceramic DIP
H11-574ATD/883	± 0.5 LSB	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	28 Lead Ceramic DIP
H11-574AUD/883	± 0.5 LSB	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	28 Lead Ceramic DIP
H14-574ASE/883	± 1.0 LSB	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	44 Lead Ceramic LCC
H14-574ATE/883	± 0.5 LSB	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	44 Lead Ceramic LCC
H14-574AUE/883	± 0.5 LSB	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	44 Lead Ceramic LCC
HI3-674AJN-5	± 1.0 LSB	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	28 Lead Plastic DIP
HI3-674AKN-5	± 0.5 LSB	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	28 Lead Plastic DIP
HI3-674ALN-5	± 0.5 LSB	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	28 Lead Plastic DIP
HI1-674AJD-5	± 1.0 LSB	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	28 Lead Ceramic DIP
H11-674AKD-5	± 0.5 LSB	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	28 Lead Ceramic DIP
H11-674ALD-5	± 0.5 LSB	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	28 Lead Ceramic DIP
H11-674ASD-2	± 1.0 LSB	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	28 Lead Ceramic DIP
HI1-674ATD-2	± 0.5 LSB	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	28 Lead Ceramic DIP
H11-674AUD-2	± 0.5 LSB	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	28 Lead Ceramic DIP
H11-674ASD/883	± 1.0 LSB	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	28 Lead Ceramic DIP
H11-674ATD/883	± 0.5 LSB	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	28 Lead Ceramic DIP
HI1-674AUD/883	± 0.5 LSB	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	28 Lead Ceramic DIP
H14-674ASE/883	$\pm 1.0 \mathrm{LSB}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	44 Lead Ceramic LCC
H14-674ATE/883	± 0.5 LSB	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	44 Lead Ceramic LCC
H14-674AUE/883	$\pm 0.5 \mathrm{LSB}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	44 Lead Ceramic LCC
H13-774J-5	± 1.0 LSB	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	28 Lead Plastic DIP
H13-774K-5	± 0.5 LSB	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	28 Lead Plastic DIP
H11-774J-5	$\pm 1.0 \mathrm{LSB}$	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	28 Lead Ceramic DIP
H11-774K-5	± 0.5 LSB	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	28 Lead Ceramic DIP
H11-774L-5	± 0.5 LSB	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	28 Lead Ceramic DIP
H11-774S-2	± 1.0 LSB	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	28 Lead Ceramic DIP
H11-774T-2	± 0.5 LSB	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	28 Lead Ceramic DIP
H11-774U-2	± 0.5 LSB	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	28 Lead Ceramic DIP
H11-774S/883	± 1.0 LSB	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	28 Lead Ceramic DIP
H11-774T/883	± 0.5 LSB	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	28 Lead Ceramic DIP
H11-774U/883	± 0.5 LSB	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	28 Lead Ceramic DIP
H14-774S/883	± 1.0 LSB	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	44 Lead Ceramic LCC
H14-774T/883	± 0.5 LSB	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	44 Lead Ceramic LCC
H14-774U/883	± 0.5 LSB	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	44 Lead Ceramic LCC

Functional Block Diagram

* "Nibble" is a 4 bit digital word

Absolute Maximum Ratings

Supply Voltage
V_{cc} to Digital Common. OV to +16.5 V
V_{EE} to Digital Common . OV to -16.5 V
$V_{\text {LOGIC }}$ to Digital Common. OV to +7 V
Analog Common to Digital Common. $\pm 1 \mathrm{~V}$
Control Inputs
(CE, $\overline{\mathrm{CS}}, \mathrm{A}_{0}, 12 / \overline{8}, \mathrm{R} / \overline{\mathrm{C}}$) to Digital Common.-0.5V to $\mathrm{V}_{\text {LOGIC }}+0.5 \mathrm{~V}$
Analog inputs
(REFIN, BIPOFF, 10VIN) to Analog Common. $\pm 16.5 \mathrm{~V}$
20VIN to Analog Common . $\mathbf{\pm} 24 \mathrm{~V}$
REFOUT Indefinite short to Common, momentary short to V_{Cc} Operating Temperature Range

HI3-574AxN-5, H11-574AxD-5	C to $+75^{\circ} \mathrm{C}$
HI3-674AxN-5, HI1-674AxD-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
HI3-774xN-5, H11-774xD-5.	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
HI1-574AxD-2, HI1-674AxD-2,	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range	
Hi3-574AxN-5.	$-40^{\circ} \mathrm{C}<\mathrm{T}_{A}<+85^{\circ} \mathrm{C}$
HI3-674AxN-5.	$-40^{\circ} \mathrm{C}<T_{A}<+85^{\circ} \mathrm{C}$
HI3-774xN-5.	$-40^{\circ} \mathrm{C}<T_{A}<+85^{\circ} \mathrm{C}$
HI1-574AxD-2, HI1-574AxD-5	. $65^{\circ} \mathrm{C}<\mathrm{T}_{A}<+150^{\circ} \mathrm{C}$
HI1-674AxD-2, HI1-674AxD-5	. $65^{\circ} \mathrm{C}<\mathrm{T}_{A}<+150^{\circ} \mathrm{C}$
HI1-774xD-2, H11-774xD-5	. $65^{\circ} \mathrm{C}<\mathrm{T}_{A}<+150^{\circ} \mathrm{C}$
ead Temperature (Soldering, 1	$300^{\circ} \mathrm{C}$

HI3-674AxN-5, H11-674AxD-5 $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
HI3-774xN-5, HI1-774xD-5 $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
HIT-574AxD-2, HI1-674AxD-2, H11-774xD-2 . . . $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range

Thermal Information

Thermal Resistance	$\theta_{\text {JA }}$
H13-574AxN-5	$65^{\circ} \mathrm{C} / \mathrm{W}$
HI3-674AxN-5	$65^{\circ} \mathrm{C} / \mathrm{W}$
H13-774xN-5	$65^{\circ} \mathrm{C} / \mathrm{N}$
Power Dissipation at $+75^{\circ} \mathrm{C}$ (Note 1)	
H33-574AxN-5	1000mW
Hi3-674AxN-5	1000 mW
Hi3-774xN-5	1000 mW
H11-574AxD-x	2080mW
HI1-674AxD-2, HI1-674AxD-5	2083mW
HI1-774xD-2, HI1-774xD-5	2083mW
H14-574AxE-x	2270 mW
Transistor Count	
HI-574A, HI-674A	. 1117
HI-774	2117
Junction Temperature	
HI3-574AxN-5, H13-674AxN-5, H13-774xN-5.	$+150^{\circ} \mathrm{C}$
HI1-574AxD-2, H11-574AxD-5.	$+175^{\circ} \mathrm{C}$
HI1-674AxD-2, HI1-674AxD-5.	$+175^{\circ} \mathrm{C}$
HI1-774xD-2, HI1-774xD-5	$+175{ }^{\circ}$

DYNAMIC CHARACTERISTICS				
Resolution (Max)	12	12	12	Bits
Linearity Error $+25^{\circ} \mathrm{C}$ (Max)	± 1	$\pm 1 / 2$	$\pm 1 / 2$	LSB
$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ (Max)	± 1	$\pm 1 / 2$	$\pm 1 / 2$	LSB
Max resolution for which no missing codes is guaranteed $+25^{\circ} \mathrm{C} \quad \mathrm{Hl}-574 \mathrm{~A}, \mathrm{HI}-674 \mathrm{~A}$	12	12	12	Bits
H1-774	11	12	12	Bits
$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {maX }} \quad \mathrm{Hl}-574 \mathrm{~A}, \mathrm{Hl}-674 \mathrm{~A}$	11	12	12	Bits
H1-774	11	12	12	Bits
Unipolar Offset (Max) Adjustable to Zero	± 2	± 1.5	± 1	LSB
Bipolar Offset (Max) $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V} \text { (Adjustable to Zero) }$	± 4	± 4	± 3	LSB
$\mathrm{V}_{\text {IN }}=-10 \mathrm{~V}$	± 0.15	± 0.1	± 0.1	\% of F.S.
Full Scale Calibration Error $+25^{\circ} \mathrm{C}$ (Max), with fixed 50Ω resistor from REF OUT to REF IN (Adjustable to Zero)	± 0.25	± 0.25	± 0.15	\% of F.S.
$\mathrm{T}_{\text {Min }}$ to $\mathrm{T}_{\text {max }}\left(\right.$ No adjustment at $+25^{\circ} \mathrm{C}$)	± 0.475	± 0.375	± 0.20	\% of F.S.
$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MaX }}$ (With adjustment to zero $+25^{\circ} \mathrm{C}$)	± 0.22	± 0.12	± 0.05	\% of F.S.

Specifications Hl-574A, HI-674A, HI-774
$D C$ and Transfer Accuracy Specifications Typical at $+25^{\circ} \mathrm{C}$ with $\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}$ or $+12 \mathrm{~V}, \mathrm{~V}_{\mathrm{LOGIC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}$ or -12 V , Unless Otherwise Specified (Continued)

PARAMETERS	TEMPERATURE RANGE $-5\left(0^{\circ} \mathrm{C}\right.$ to $\left.+75^{\circ} \mathrm{C}\right)$			UNITS
	J SUFFIX	K SUFFIX	L SUFFIX	
Temperature Coefficients Guaranteed Max change, $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ (Using internal reference)				
Unipolar Offset HI-574A, HI-674A	± 2	± 1	± 1	LSB
H1-774	± 2	± 1	± 1	LSB
Bipolar Offset Hl-574A, HI-674A	± 2	± 1	± 1	LSB
HI-774	± 2	± 2	± 1	LSB
Full Scale Calibration HI-574A, HI-674A	± 9	± 2	± 2	LSB
HI-774	± 9	± 5	± 2	LSB
Power Supply Rejection Max change in Full Scale Calibration $+13.5 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}<+16.5 \mathrm{~V} \text { or }+11.4 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}<+12.6 \mathrm{~V}$	± 2	± 1	± 1	LSB
+4.5 V < $\mathrm{V}_{\text {LOGIC }}<+5.5 \mathrm{~V}$	$\pm 1 / 2$	$\pm 1 / 2$	$\pm 1 / 2$	LSB
$-16.5 \mathrm{~V}<\mathrm{V}_{\mathrm{EE}}<-13.5 \mathrm{~V}$ or $-12.6 \mathrm{~V}<\mathrm{V}_{\mathrm{EE}}<-11.4 \mathrm{~V}$	± 2	± 1	± 1	LSB
ANALOG INPUTS				
Bipolar	-5 to +5			V
	-10 to +10			V
Unipolar	0 to +10			V
	0 to +20			V
Input Impedance 10 V Span $5 \mathrm{~K}, \pm 25 \%$				Ω
20 V Span	10K, $\pm 25 \%$			Ω
POWER SUPPLIES				
Operating Voltage Range				V
V_{Cc}	+11.4 to +16.5			V
V_{EE}	-11.4 to -16.5			V
Operating Current ILOGIC 7 Typ, 15 Max				mA
$\mathrm{I}_{\mathrm{CC}}+15 \mathrm{~V}$ Supply	11 Typ, 15 Max			mA
$\mathrm{IEE}^{\text {-15V }}$ Supply	21 Typ, 28 Max			mA
Power Dissipation$\pm 15 \mathrm{~V},+15 \mathrm{~V}$				mW
$\pm 12 \mathrm{~V},+5 \mathrm{~V}$	385 Typ			mW
Internal Reference Voltage $T_{\text {MIN }}$ to $T_{\text {MAX }}$		$0.00 \pm 0.05 \mathrm{Ma}$		V
Output current, available for external loads (External load should not change during conversion).	2.0 Max			mA

Specifications HI-574A, HI-674A, HI-774
DC and Transfer Accuracy Specifications Typical at $+25^{\circ} \mathrm{C}$ with $\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}$ or $+12 \mathrm{~V}, \mathrm{~V}_{\text {LOGIC }}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}$ or -12 V , Unless Otherwise Specified

PARAMETERS	TEMPERATURE RANGE$-2\left(-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}\right)$			UNITS
	S SUFFIX	T SUFFIX	U SUFFIX	
DYNAMIC CHARACTERISTICS				
Resolution (Max)	12	12	12	Bits
Linearity Error $+25^{\circ} \mathrm{C}$	± 1	$\pm 1 / 2$	$\pm 1 / 2$	LSB
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ (Max)	± 1	± 1	± 1	LSB
Max resolution for which no missing codes is guaranteed $+25^{\circ} \mathrm{C}$ HI-574A, HI-674A	12	12	12	Bits
HI-774	11	12	12	Bits
$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }} \quad \mathrm{HI}-574 \mathrm{~A}, \mathrm{HI}-674 \mathrm{~A}$	11	12	12	Bits
Hi-774	11	12	12	Bits
Unipolar Offset (Max) Adjustable to Zero HI-574A, HI-674A	± 2	± 1.5	± 1	LSB
HI-774	± 2	± 2	± 1	LSB
Bipolar Offset (Max) $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V} \text { (Adjustable to Zero) }$	± 4	± 4	± 3	LSB
$\mathrm{V}_{\text {IN }}=-10 \mathrm{~V}$	± 0.15	± 0.1	± 0.1	\% of F.S.
Full Scale Calibration Error $+25^{\circ} \mathrm{C}$ (Max), with fixed 50Ω resistor from REF OUT to REF IN (Adjustable to Zero)	± 0.25	± 0.25	± 0.15	\% of F.S.
$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ (No adjustment at $+25^{\circ} \mathrm{C}$)	± 0.75	± 0.50	± 0.275	\% of F.S.
$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ (With adjustment to zero $+25^{\circ} \mathrm{C}$)	± 0.50	± 0.25	± 0.125	\% of F.S.
Temperature Coefficients Guaranteed Max change, $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ (Using internal reference)				
Bipolar Offset	± 2	± 2	± 1	LSB
Full Scale Calibration	± 20	± 10	± 5	LSB
Power Supply Rejection Max change in Full Scale Calibration				
$+4.5 \mathrm{~V}<\mathrm{V}_{\text {LOGIC }}<+5.5 \mathrm{~V}$	$\pm 1 / 2$	$\pm 1 / 2$	$\pm 1 / 2$	LSB
$-16.5 \mathrm{~V}<\mathrm{V}_{\mathrm{EE}}<-13.5 \mathrm{~V}$ or $-12.6 \mathrm{~V}<\mathrm{V}_{\mathrm{EE}}<-11.4 \mathrm{~V}$	± 2	± 1	± 1	LSB
ANALOG INPUTS				
Bipolar	-5 to +5			V
	-10 to +10			V
Unipolar	$0 \text { to }+10$			V
	0 to +20			V

DC and Transfer Accuracy Specifications Typical at $+25^{\circ} \mathrm{C}$ with $\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}$ or $+12 \mathrm{~V}, \mathrm{~V}_{\mathrm{LOGIC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}$ or -12 V , Unless Otherwise Specified (Continued)

PARAMETERS	TEMPERATURE RANGE$-2\left(-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}\right)$			UNITS
	S SUFFIX	T SUFFIX	U SUFFIX	
Input Impedance 10V Span	5K, $\pm 25 \%$			Ω
20 V Span	10K, $\pm 25 \%$			Ω
POWER SUPPLIES				
Operating Voltage Range $V_{\text {LOGIC }}$	+4.5 to +5.5			V
$\mathrm{V}_{\text {cc }}$	+11.4 to +16.5			V
V_{EE}	-11.4 to -16.5			V
Operating Current Itogic	7 Typ, 15 Max			mA
$\mathrm{I}_{\mathrm{CC}}+15 \mathrm{~V}$ Supply	11 Typ, 15 Max			mA
$\mathrm{I}_{\mathrm{EE}}-15 \mathrm{~V}$ Supply	21 Typ, 28 Max			mA
Power Dissipation $\pm 15 \mathrm{~V},+15 \mathrm{~V}$	515 Typ, 720 Max			mW
$\pm 12 \mathrm{~V},+5 \mathrm{~V}$	385 Typ			mW
Internal Reference Voltage $T_{\text {MIN }} \text { to } T_{\text {MAX }}$	$+10.00 \pm 0.05 \mathrm{Max}$			V
Output current, available for external loads (External load should not change during conversion).	2.0 Max			mA

Digital Specifications All Models, Over Full Temperature Range

Timing Specifications (HI-574A) $+25^{\circ} \mathrm{C}$, Note 2, Unless Otherwise Specified

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS
CONVERT MODE					
tosc	STS Delay from CE	-	-	200	ns
$t_{\text {HEC }}$	CE Puise Width	50	-	-	ns
$t_{\text {ssc }}$	$\overline{\mathrm{CS}}$ to CE Setup	50	-	-	ns
trsc	$\overline{\mathrm{CS}}$ Low During CE High	50	-	-	ns
$t_{\text {SRC }}$	R/C to CE Setup	50	-	-	ns
$t_{\text {HRC }}$	R/C Low During CE High	50	-	-	ns
$t_{\text {SAC }}$	A_{0} to CE Setup	0	-	-	ns
thac $^{\text {c }}$	A_{0} Valid During CE High	50	-	-	ns
t_{c}	Conversion Time \quad 12-Bit Cycle $T_{\text {MIN }}$ to $T_{\text {MAX }}$	15	20	25	μs
	8-Bit Cycle $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {Max }}$	10	13	17	μs
READ MODE					
$t_{\text {DD }}$	Access Time from CE	-	75	150	ns
HD	Data Valid After CE Low	25	-	-	ns
$t_{\text {HL }}$	Output Float Delay	-	100	150	ns
$t_{\text {SSR }}$	$\overline{\mathrm{CS}}$ to CE Setup	50	-	-	ns

Timing Specifications (HI-674A) $+25^{\circ} \mathrm{C}$, Note 2, Unless Otherwise Specified

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS
CONVERT MODE					
$t_{\text {DSC }}$	STS Delay from CE	-	-	200	ns
$t_{\text {HEC }}$	CE Pulse Width	50	-	-	ns
${ }_{\text {tssc }}$	$\overline{C S}$ to CE Setup	50	-	-	ns
thsc	$\overline{\text { CS Low During CE High }}$	50	-	-	ns
${ }_{\text {t }}^{\text {SRC }}$	$\mathrm{R} / \overline{\mathrm{C}}$ to CE Setup	50	-	-	ns
$t_{\text {HRC }}$	R/C Low During CE High	50	-	\bullet	ns
$\mathrm{t}_{\text {SAC }}$	A_{0} to CE Setup	0	-	-	ns
$\mathrm{thac}^{\text {c }}$	A_{0} Valid During CE High	50	-	-	ns
t_{c}	Conversion Time \quad 12-Bit Cycle $T_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	9	12	15	μs
	8 8-Bit Cycle T Min $^{\text {a }}$ to $T_{\text {max }}$	6	8	10	$\mu \mathrm{s}$
READ MODE					
$t_{D D}$	Access Time from CE	-	75	150	ns
tho	Data Valid After CE Low	25	-	-	ns
t_{HL}	Output Float Delay	-	100	150	ns
${ }_{\text {tSSR }}$	$\overline{C S}$ to CE Setup	50	-	-	ns
$\mathrm{t}_{\text {SRR }}$	$\mathrm{R} / \overline{\mathrm{C}}$ to CE Setup	0	\bullet	-	ns
$\mathrm{t}_{\text {SAR }}$	A_{0} to CE Setup	50	\bullet	-	ns
$t_{\text {HSR }}$	$\overline{\text { CS }}$ Valid After CE Low	0	-	-	ns
$t_{\text {HRR }}$	R/CI High After CE Low	0	-	-	ns
$t_{\text {HAR }}$	A ${ }_{0}$ Valid After CE Low	50	-	-	ns
$t_{\text {HS }}$	STS Delay After Data Valid	25	-	850	ns

Timing Specifications (HI-774) $+25^{\circ} \mathrm{C}$, Into a load with $\mathrm{R}_{\mathrm{L}}=3 \mathrm{k} \Omega$ and $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, Note 2, Unless Otherwise Specified

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS
CONVERT MODE					
$t_{\text {DSC }}$	STS Delay from CE	-	100	200	ns
$t_{\text {HEC }}$	CE Pulse Width	50	30	-	ns
${ }_{\text {tssc }}$	$\overline{C S}$ to CE Setup	50	20	-	ns
${ }_{\text {HSC }}$	$\overline{\text { CS Low During CE High }}$	50	20	-	ns
$\mathrm{t}_{\text {SRC }}$	$\mathrm{R} / \overline{\mathrm{C}}$ to CE Setup	50	0	-	ns
$t_{\text {HRC }}$	R/C Low During CE High	50	20	-	ns
${ }_{\text {t }}^{\text {SAC }}$	A_{0} to CE Setup	0	0	-	ns
$\mathrm{thac}^{\text {che }}$	A_{0} Valid During CE High	50	30	-	ns
t_{c}	Conversion Time \quad 12-Bit Cycle $\mathrm{T}_{\text {MiN }}$ to $\mathrm{T}_{\text {MAX }}(-5)$	-	8.0	9	$\mu \mathrm{s}$
	8 -Bit Cycle $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {max }}(-5)$	-	6.4	6.8	$\mu \mathrm{s}$
	12-Bit Cycle $\mathrm{T}_{\text {Min }}$ to $\mathrm{T}_{\text {MAX }}(-2)$	-	9	11	$\mu \mathrm{s}$
	8 -Bit Cycle TMIN $^{\text {to }} \mathrm{T}_{\text {MAX }}(-2)$	-	6.8	8.3	$\mu \mathrm{s}$
READ MODE					
$t_{\text {D }}$	Access Time from CE	-	75	150	ns
Hid	Data Valid After CE Low	25	35	-	ns

NOTE:

1. Dissipation rating assumes device is mounted with all leads soldered to printed circuit board.
2. Time is measured from 50% level of digital transitions. Tested with a 50 pF and $3 \mathrm{k} \Omega$ load.

Pin Description

PIN	SYMBOL	DESCRIPTION
1	$V_{\text {LOGIC }}$	Logic supply pin (+5 V)
2	12/8	Data Mode Select - Selects between 12-bit and 8 -bit output modes.
3	$\overline{\text { CS }}$	Chip Select - Chip Select high disables the device.
4	A_{0}	Byte Address/Short Cycle - See Table 1 for operation.
5	R/C	Read/Convert - See Table 1 for operation.
6	CE	Chip Enable - Chip Enable low disables the device.
7	V_{cc}	Positive Supply ($+12 \mathrm{~V} /+15 \mathrm{~V}$)
8	REF OUT	+10V Reference
9	AC	Analog Common
10	REFIN	Reference Input
11	$V_{E E}$	Negative Supply (-12V/-15V).
12	BIP OFF	Bipolar Offset
13	10V Input	10 V Input - Used for 0 V to 10 V and -5V to +5 V input ranges.
14	20 V Input	20 V Input - Used for OV to 20 V and -10V to +10 V input ranges.
15	DC	Digital Common
16	DB0	Data Bit 0 (LSB)
17	DB1	Data Bit 1
18	DB2	Data Bit 2
19	DB3	Data Bit 3
20	DB4	Data Bit 4
21	DB5	Data Bit 5
22	DB6	Data Bit 6
23	DB7	Data Bit 7
24	DB8	Data Bit 8
25	DB9	Data Bit 9
26	DB10	Data Bit 10
27	DB11	Data Bit 11 (MSB)
28	STS	Status Bit - Status high implies a conversion is in progress.

Definitions of Specifications

LInearity Error

Linearity error refers to the deviation of each individual code from a line drawn from "zero" through "full scale". The point used as "zero" occurs $1 / 2$ LSB (1.22 mV for 10 V span) before the first code transition (all zeros to only the LSB "on"). "Full scale" is defined as a level $1 \frac{1}{2}$ LSB beyond the last code transition (to all ones). The deviation of a code from the true straight line is measured from the middle of each particular code.
The HI-X74(A)K and L grades are guaranteed for maximum nonlinearity of $\pm \frac{1}{2}$ LSB. For these grades, this means that an analog value which falls exactly in the center of a given code width will result in the correct digital output code. Values nearer the upper or lower transition of the code width may produce the next upper or lower digital output code. The HI-X74(A)J is guaranteed to ± 1 LSB max error. For this grade, an analog value which falls within a given code width will result in either the correct code for that region or either adjacent one.

Note that the linearity error is not user-adjustable.

Differential Linearity Error (No Missing Codes)

A specification which guarantees no missing codes requires that every code combination appear in a monotonic increasing sequence as the analog input level is increased. Thus every code must have a finite width. For the $\mathrm{HI}-\mathrm{X} 74(\mathrm{~A}) \mathrm{K}$ and L grades, which guarantee no missing codes to 12-bit resolution, all 4096 codes must be present over the entire operating temperature ranges. The $\mathrm{HI}-\mathrm{X74}(\mathrm{~A}) \mathrm{J}$ grade guarantees no missing codes to 11 -bit resolution over temperature; this means that all code combinations of the upper 11 bits must be present; in practice very few of the 12-bit codes are missing.

Unipolar Offset

The first transition should occur at a level $1 / 2$ LSB above analog common. Unipolar offset is defined as the deviation of the actual transition from that point. This offset can be adjusted as discussed on the following pages. The unipolar offset temperature coefficient specifies the maximum change of the transition point over temperature, with or without external adjustment.

Bipolar Offset

Similarly, in the bipolar mode, the major carry transition (0111 11111111 to 100000000000) should occur for an analog value $1 / 2$ LSB below analog common. The bipolar offset error and temperature coefficient specify the initial deviation and maximum change in the error over temperature.

Full Scale Calibration Error

The last transition (from 111111111110 to 11111111 1111) should occur for an analog value $1 \frac{1}{2}$ LSB below the nominal full scale (9.9963 V for 10.000 V full scale). The full scale calibration error is the deviation of the actual level at the last transition from the ideal level. This error, which is typically 0.05 to 0.1% of full scale, can be trimmed out as shown in Figures 2 and 3. The full scale calibration error over temperature is given with and without the initial error trimmed out. The temperature coefficients for each grade indicate the maximum change in the full scale gain from the initial value using the internal 10 V reference.

Temperature Coefficients

The temperature coefficients for full-scale calibration, unipolar offset, and bipolar offset specify the maximum change from the initial $\left(+25^{\circ} \mathrm{C}\right)$ value to the value at $\mathrm{T}_{\text {MIN }}$ or $\mathrm{T}_{\text {MAX }}$.

Power Supply Rejection

The standard specifications for the HI-X74A assume use of +5.00 and ± 15.00 or ± 12.00 volt supplies. The only effect of power supply error on the performance of the device will be a small change in the full scale calibration. This will result in a linear change in all lower order codes. The specifications show the maximum change in calibration from the initial value with the supplies at the various limits.

Code Width

A fundamental quantity for ADD converter specifications is the code width. This is defined as the range of analog input values for which a given digital output code will occur. The nominal value of a code width is equivalent to 1 least significant bit (LSB) of the full scale range or 2.44 mV out of 10 V for a 12-bit ADC.

Quantization Uncertainty

Analog-to-digital converters exhibit an inherent quantization uncertainty of $\pm 1 / 2$ LSB. This uncertainty is a fundamental characteristic of the quantization process and cannot be reduced for a converter of given resolution.

Left-justified Data

The data format used in the $\mathrm{HI}-\mathrm{X74}(\mathrm{~A})$ is left-justified. This means that the data represents the analog input as a fraction of full-scale, ranging from 0 to $\frac{4095}{4096}$. This implies a binary point to the left of the MSB.

Applying the HI-X74(A)

For each application of this converter, the ground connections, power supply bypassing, analog signal source, digital timing and signal routing on the circuit board must be optimized to assure maximum performance. These areas are reviewed in the following sections, along with basic operating modes and calibration requirements.

Physical Mounting and Layout Considerations

Layout

Unwanted, parasitic circuit components, (L, R, and C) can make 12 bit accuracy impossible, even with a perfect AD converter. The best policy is to eliminate or minimize these parasitics through proper circuit layout, rather than try to quantify their effects.

The recommended construction is a double-sided printed circuit board with a ground plane on the component side. Other techniques, such as wire-wrapping or point-to-point wiring on vector board, will have an unpredictable effect on accuracy.

In general, sensitive analog signals should be routed between ground traces and kept well away from digital lines. If analog and digital lines must cross, they should do so at right angles.

Power Supplies

Supply voltages to the $\mathrm{HI}-\mathrm{X} 74(\mathrm{~A})(+15 \mathrm{~V},-15 \mathrm{~V}$ and $+5 \mathrm{~V})$ must be "quiet" and well regulated. Voltage spikes on these lines can affect the converter's accuracy, causing several LSBs to flicker when a constant input is applied. Digital noise and spikes from a switching power supply are especially troublesome. If switching supplies must be used, outputs should be carefully filtered to assure "quiet" DC voltage at the converter terminals.

Further, a bypass capacitor pair on each supply voltage terminal is necessary to counter the effect of variations in supply current. Connect one pair from pin 1 to 15 (V LOGIC supply), one from pin 7 to 9 (V_{Cc} to Analog Common) and one from pin 11 to 9 (V_{EE} to Analog Common). For each capacitor pair, a $10 \mu \mathrm{~F}$ tantalum type in parallel with a $0.1 \mu \mathrm{~F}$ ceramic type is recommended.

Ground Connections

Pins 9 and 15 should be tied together at the package to guarantee specified performance for the converter. In addition, a wide PC trace should run directly from pin 9 to (usually) +15 V common, and from pin 15 to (usually) the +5 V Logic Common. If the converter is located some distance from the system's "single point" ground, make only these connections to pins 9 and 15: Tie them together at the package, and back to the system ground with a single path. This path should have low resistance. (Code dependent currents flow in the $\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\text {EE }}$ and $\mathrm{V}_{\text {LOGIC }}$ terminals, but not through the HI-X74(A)'s Analog Common or Digital Common).

Analog Signal Source

HI-574A and HI-674A

The device chosen to drive the HI-X74A analog input will see a nominal load of $5 \mathrm{k} \Omega$ (10 V range) or $10 \mathrm{k} \Omega$ (20 V range). However, the other end of these input resistors may change $\pm 400 \mathrm{mV}$ with each bit decision, creating abrupt changes in current at the analog input. Thus, the signal source must maintain its output voltage while furnishing these step changes in load current, which occur at $1.6 \mu \mathrm{~s}$ and 950 ns intervals for the HI574A and HI-674A respectively. This requires low output impedance and fast settling by the signal source.

The output impedance of an op amp, for example, has an open loop value which, in a closed loop, is divided by the loop gain available at a frequency of interest. The amplifier should have acceptable loop gain at 600 KHz for use with the HI-X74A. To check whether the output properties of a signal source are suitable, monitor the HI-X74A's input (pin 13 or 14) with an oscilloscope while a conversion is in progress. Each of the twelve disturbances should subside in $1 \mu \mathrm{~s}$ or less for the $\mathrm{Hl}-574 \mathrm{~A}$ and 500 ns or less for the HI-674A. (The comparator decision is made about $1.5 \mu \mathrm{~s}$ and 850 ns after each code change from the SAR for the HI-574A and HI-674A, respectively.)
If the application calls for a Sample/Hold to precede the converter, it should be noted that not all Sample/Holds are compatible with the HI-574A in the manner described above. These will require an additional wideband buffer amplifier to lower their output impedance. A simpler solution is to use the Harris HA-5320 Sample/Hold, which was designed for use with the HI-574A.

HI-774

The device driving the $\mathrm{HI}-774$ analog input will see a nominal load of $5 \mathrm{k} \Omega$ (10 V range) or $10 \mathrm{k} \Omega$ (20 V range). However, the other end of these input resistors may change as much as $\pm 400 \mathrm{mV}$ with each bit decision. These input disturbances are caused by the internal DAC changing codes which causes a glitch on the summing junction. This creates abrupt changes in current at the analog input causing a "kick back" glitch from the input. Because the algorithm starts with the MSB, the first glitches will be the largest and get smaller as the conversion proceeds. These glitches can occur at 350ns intervals so an op amp with a low output impedance and fast setting is desirable. Ultimately the input must settle to within the window of Figure 1 at the bit decision points in order to achieve 12 bit accuracy.

The HI-774 differs from the most high-speed successive approximation type ADC's in that it does not require a high performance buffer or sample and hold. With error correction the input can settle while the conversion is underway, but only during the first $4.8 \mu \mathrm{~s}$. The input must be within 10.76% of the final value when the MSB decision is made. This occurs approximately 650ns after the conversion has been initiated. Digital error correction also loosens the bandwidth requirements of the buffer or sample and hold. As long as the input "kick back" disturbances settle within the window of Figure 1 the device will remain accurate. The combined effect of settling and the "kick back" disturbances must remain in the Figure 1 window.
If the design is being optimized for speed, the input device should have closed loop bandwidth to 3 MHz , and a low output impedance (calculated by dividing the open loop output resistance by the open loop gain). If the application requires a high speed sample and hold the Harris HA-5330 or HA-5320 are recommended.

In any design the input (pin 13 or 14) should be checked during a conversion to make sure that the input stays within the correctable window of Figure 1.

Digital Error Correction

HI-774

The HI-774 features the smart successive approximation register (SSAR ${ }^{\text {M }}$) which includes digital error correction. This has the advantage of allowing the initial input to vary within $a+31$ to -32 LSB window about the final value. The input can move during the first $4.8 \mu \mathrm{~s}$, after which it must remain stable within $\pm 1 / 2$ LSB. With this feature a conversion can start before the input has settled completely; however, it must be within the window as described in Figure 1.

The conversion cycle starts by making the first 8 -bit decisions very quickly, allowing the internal DAC to settle only to 8-bit accuracy. Then the converter goes through two error correction cycles. At this point the input must be stable within $\pm 1 / 2$ LSB. These cycles correct the 8-bit word to 12 -bit accuracy for any errors made (up to +16 or -32 LSBs). This is up one count or down two counts at 8 -bit resolution. The converter then continues to make the 4 LSB decisions, settling out to 12 -bit accuracy. The last four bits can adjust the code in the positive direction by up to 15 LSBs. This results
in a total correction range of +31 to -32 LSBs. When an 8-bit conversion is performed, the input must settle to within $\pm 1 / 2$ LSB at 8 bit resolution (which equals ± 8 LSBs at 12-bit resolution).
With the HI-774 a conversion can be initiated before the input has completely settled, as long as it meets the constraints of the Figure 1 window. This allows the user to start conversion up to $4.8 \mu \mathrm{~s}$ earlier than with a typical analog to digital converter. A typical successive approximation type ADC must have a constant input during a conversion because once a bit decision is made it is locked in and cannot change.

FIGURE 1. HI-774 ERROR CORRECTION WINDOW vs TIME

†When driving the 20V (pin 14) input, minimize capacitance on pin 13.
FIGURE 2. UNIPOLAR CONNECTIONS

tWhen driving the 20 V (pin 14) input, minimize capacitance on pin 13.
FIGURE 3. BIPOLAR CONNECTIONS

Range Connections and Calibration Procedures

The $\mathrm{HI}-\mathrm{X74}(\mathrm{~A})$ is a "complete" AD converter, meaning it is fully operational with addition of the power supply voltages, a Start Convert signal, and a few external components as shown in Figure 2 and Figure 3. Nothing more is required for most applications.

Whether controlled by a processor or operating in the standalone mode, the $\mathrm{HI}-\mathrm{X74}(\mathrm{~A})$ offers four standard input ranges: 0 V to $+10 \mathrm{~V}, 0 \mathrm{~V}$ to $+20 \mathrm{~V}, \pm 5 \mathrm{~V}$ and $\pm 10 \mathrm{~V}$. The maximum errors for gain and offset are listed under Specifications. If required, however, these errors may be adjusted to zero as explained below. Power supply and ground connections have been discussed in an earlier section.

Unipolar Connections and Calibration

Refer to Figure 2. The resistors shown* are for calibration of offset and gain. If this is not required, replace R2 with a 50Ω, 1% metal film resistor and remove the network on pin 12. Connect pin 12 to pin 9 . Then, connect the analog signal to pin 13 for the 0 V to 10 V range, or to pin 14 for the 0 V to 20 V range. Inputs to +20 V (5 V over the power supply) are no problem - the converter operates normally.

Calibration consists of adjusting the converter's most negative output to its ideal value (offset adjustment), then, adjusting the most positive output to its ideal value (gain adjustment). To understand the procedure, note that in principle, one is setting the output with respect to the midpoint of an increment of analog input, as denoted by two adjacent code changes. Nominal value of an increment is one LSB. However, this approach is impractical because nothing "hap-
pens" at a midpoint to indicate that an adjustment is complete. Therefore, calibration is performed in terms of the observable code changes instead of the midpoint between code changes.

For example, midpoint of the first LSB increment should be positioned at the origin, with an output code of all O's. To do this, apply an input of $+1 / 2$ LSB $(+1.22 \mathrm{mV}$ for the 10 V range; +2.44 mV for the 20 V range). Adjust the Offset potentiometer R1 until the first code transition flickers between 00000000 0000 and 000000000001.

Next, perform a Gain Adjust at positive full scale. Again, the ideal input corresponding to the last code change is applied. This is $1 \frac{1}{2}$ LSB's below the nominal full scale (+9.9963 V for 10V range; +19.9927V for 20V range). Adjust the Gain potentiometer R2 for flicker between codes 111111111110 and 111111111111.

Bipolar Connections and Calibration

Refer to Figure 3. The gain and offset errors listed under Specifications may be adjusted to zero using potentiometers R1 and R2*. If this isn't required, either or both pots may be replaced by a $50 \Omega, 1 \%$ metal film resistor.

Connect the Analog signal to pin 13 for a $\pm 5 \mathrm{~V}$ range, or to pin 14 for a $\pm 10 \mathrm{~V}$ range. Calibration of offset and gain is similar to that for the unipolar ranges as discussed above. First apply a DC input voltage $1 / 2$ LSB above negative full scale (i.e., -4.9988 V for the $\pm 5 \mathrm{~V}$ range, or -9.9976 V for the $\pm 10 \mathrm{~V}$ range). Adjust the offset potentiometer R1 for flicker between output codes 000000000000 and 00000000 0001. Next, apply a DC input voltage $1 \frac{1}{2}$ LSB's below positive full scale (+4.9963 V for $\pm 5 \mathrm{~V}$ range; +9.9927 V for $\pm 10 \mathrm{~V}$ range). Adjust the Gain potentiometer R2 for flicker between codes 111111111110 and 111111111111.
*The 100Ω potentiometer R2 provides Gain Adjust for the 10 V and 20 V ranges. In some applications, a full scale of 10.24 V (LSB equals 2.5 mV) or 20.48 V (LSB equals 5.0 mV) is more convenient. For these, replace R2 by a $50 \Omega, 1 \%$ metal film resistor. Then, to provide Gain Adjust for the 10.24 V range, add a 200Ω potentiometer in series with pin 13 . For the 20.48 V range, add a 500Ω potentiometer in series with pin 14.

Controlling the HI -X74(A)

The HI-X74(A) includes logic for direct interface to most microprocessor systems. The processor may take full control of each conversion, or the converter may operate in the "stand-alone" mode, controlled only by the R/C input. Full control consists of selecting an 8 or 12 bit conversion cycle, initiating the conversion, and reading the output data when ready-choosing either 12 bits at once or 8 followed by 4 , in a left-justified format. The five control inputs are all TTU CMOS-compatible: ($12 / \overline{8}, \overline{\mathrm{CS}}, \mathrm{A}_{0}, \mathrm{R} / \overline{\mathrm{C}}$ and CE). Table 1 illustrates the use of these inputs in controlling the converter's operations. Also, a simplified schematic of the internal control logic is shown in Figure 7.

"Stand-Alone Operation"

The simplest control interface calls for a singe control line connected to R/C. Also, CE and $12 / \overline{8}$ are wired high, $\overline{\mathrm{CS}}$ and A_{0} are wired low, and the output data appears in words of 12 bits each.

The R / \bar{C} signal may have any duty cycle within (and including) the extremes shown in Figures 8 and 9 . In general, data may be read when R / \bar{C} is high unless STS is also high, indicating a conversion is in progress. Timing parameters particular to this mode of operation are listed below under "StandAlone Mode Timing".

HL-574A STAND-ALONE MODE TIMING

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS
$\mathrm{t}_{\text {HRL }}$	Low R/C Pulse Width	50	-	-	ns
tos	STS Delay from R/C	-	-	200	ns
$\mathrm{t}_{\text {HDR }}$	Data Valid after R/CL Low	25	-	-	ns
H_{HS}	STS Delay after Data Valid	300	-	1200	ns
thri	High R/E Pulse Width	150	-	-	ns
$t_{\text {DDR }}$	Data Access Time	-	-	150	ns

Time is measured from 50% level of digital transitions. Tested with a 50 pF and $3 \mathrm{k} \Omega$ load.

HI-674A STAND-ALONE MODE TIMING

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS
$\mathrm{t}_{\text {HRL }}$	Low RIVC Pulse Width	50	-	-	ns
$t_{\text {DS }}$	STS Delay from R/C	-	-	200	ns
$t_{\text {HDR }}$	Data Valid after R/C Low	25	-	-	ns
$t_{\text {HS }}$	STS Delay after Data Valid	25	-	850	ns
$\mathrm{t}_{\text {HRH }}$	High R/C ${ }_{\text {C }}$ Pulse Width	150	-	-	ns
$t_{\text {DDP }}$	Data Access Time	-	-	150	ns

Time is measured from 50% level of digital transitions. Tested with a 50 pF and $3 \mathrm{k} \Omega$ load.

H1-774 STAND-ALONE MODE TIMING

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS
$\mathrm{t}_{\text {HRL }}$	Low R/C ${ }_{\text {Pulse Width }}$	50	-	-	ns
$t_{\text {DS }}$	STS Delay from R/C	-	-	200	ns
$\mathrm{t}_{\mathrm{HDR}}$	Data Valid after R/C Low	20	-	-	ns
ths	STS Delay after Data Valid	-	-	850	ns
HRH	High R/E Pulse Width	150	-	-	ns
$t_{\text {DDR }}$	Data Access Time	-	-	150	ns

Conversion Length

A Convert Start transition (see Table 1) latches the state of A_{0}, which determines whether the conversion continues for 12 bits (A_{0} low) or stops with 8 -bits (A_{0} high). If all 12-bits are read following an 8-bit conversion, the last three LSB's will read ZERO and DB3 will read ONE. A_{0} is latched because it is also involved in enabling the output buffers (see "Reading the Output Data"). No other control inputs are latched.

TABLE 1. TRUTH TABLE FOR HI-X74(A) CONTROL INPUTS

$\mathbf{C E}$	$\overline{\mathbf{C S}}$	$\mathbf{R / C}$	$12 \sqrt{8}$	A_{0}	OPERATION
0	X	X	X	X	None
X	1	X	X	X	None
\uparrow	0	0	X	0	Initiate 12 bit conversion
\uparrow	0	0	X	1	Initiate 8 bit conversion
1	\downarrow	0	X	0	Initiate 12 bit conversion
1	\downarrow	0	X	1	Initiate 8 bit conversion
1	0	\downarrow	X	0	Initiate 12 bit conversion
1	0	\downarrow	X	1	Initiate 8 bit conversion
1	0	1	1	X	Enable 12 bit Output
1	0	1	0	0	Enable 8 MSB's Only
1	0	1	0	1	Enable 4 LSB's Plus 4 Trailing Zeroes

Conversion Start

A conversion may be initiated as shown in Table 1 by a logic transition on any of three inputs: CE, $\overline{C S}$ or R/C. The last of the three to reach the correct state starts the conversion, so one, two or all three may be dynamically controlled. The nominal delay from each is the same, and if necessary, all three may change state simultaneously. To assure that a particular input controls the start of conversion, the other two should be set up at least 50ns earlier, however. See the HI-774 Timing Specifications, Convert mode.

This variety of $\mathrm{HI}-\mathrm{X74}(\mathrm{~A})$ control modes allows a simple interface in most system applications. The Convert Start timing relationships are illustrated in Figure 4.
The output signal STS indicates status of the converter by going high only while a conversion is in progress. While STS is high, the output buffers remain in a high impedance state and data cannot be read. Also, an additional Start Convert will not reset the converter or reinitiate a conversion while STS is high.

Reading the Output Data

The output data buffers remain in a high impedance state until four conditions are met: R/C high, STS low, CE high and $\overline{\mathrm{CS}}$ low. At that time, data lines become active according to the state of inputs $12 / \overline{8}$ and A_{0}. Timing constraints are illustrated in Figure 5.

The $12 / \overline{8}$ input will be tied high or low in most applications, though it is fully TTLCMOS-compatible. With $12 / 8$ high, all 12 output lines become active simultaneously, for interface to a 12 -bit or 16 -bit data bus. The A_{o} input is ignored.
With $12 / \overline{8}$ low, the output is organized in two 8 -bit bytes, selected one at a time by A_{0}. This allows an 8 -bit data bus to be connected as shown in Figure 6. A_{0} is usually tied to the least significant bit of the address bus, for storing the HIX74(A) output in two consecutive memory locations. (With A_{0} low, the 8 MSB's only are enabled. With A_{0} high, 4 MSB's are disabled, bits 4 through 7 are forced low, and the 4 LSB's are enabled). This two byte format is considered "left justified data", for which a decimal (or binary!) point is assumed to the left of byte 1 :

Further, A_{0} may be toggled at any time without damage to the converter. Break-before-make action is guaranteed between the two data bytes, which assures that the outputs strapped together in Figure 6 will never be enabled at the same time.

A read operation usually begins after the conversion is complete and STS is low. For earliest access to the data however, the read should begin no later than ($t_{D D}+t_{H S}$) before STS goes low. See Figure 5.

See HI-774 Timing Specifications for more information.
FIGURE 4. CONVERT START TIMING

See HI-774 Timing Specifications for more information.
FIGURE 5. READ CYCLE TIMING

FIGURE 6. INTERFACE TO AN 8 BIT DATA BUS

FIGURE 7. HL-774 CONTROL LOGIC

FIGURE 8. LOW PULSE FOR R/C - OUTPUTS ENABLED AFTER CONVERSION

FIGURE 9. HIGH PULSE FOR R/C̄ - OUTPUTS ENABLED WHILE R/्̄C HIGH, OTHERWISE HIGH-Z

Die Characteristics

DIE DIMENSIONS:
Analog: $3070 \mathrm{~mm} \times 4610 \mathrm{~mm}$
Digital: $1900 \mathrm{~mm} \times 4510 \mathrm{~mm}$
METALLIZATION:
Digital Type: Nitrox
Thickness: $10 \mathrm{k} \AA \pm 2 \mathrm{k} \AA$
Metal 1: AL SiCu
Thickness: $8 \mathrm{k} \AA \pm 1 \mathrm{k} \AA$
Metal 2: AlSiCu
Thickness: $16 \mathrm{k} \AA \pm 2 \mathrm{k} \AA$
AnalogType: AI
Thickness: $16 k \AA \pm 2 k \AA$

GLASSIVATION:

Type: Nitride Over Silox
Nitride Thickness: $3.5 \mathrm{k} \AA \pm 0.5 \mathrm{k} \AA$
Silox Thickness: $12 \mathrm{k} \AA \pm 1.5 \mathrm{k} \AA$
WORST CASE CURRENT DENSITY:
$1.3 \times 10^{5} \mathrm{Ncm}^{2}$

Metallization Mask Layout
HI-574A, HI-674A, HI-774

HARRIS
SEMICONDUCTOR

CMOS 10 1 s 12-Bit Sampling A/D Converter with

Features

- 10 s S Conversion Time
- 100KSPS Throughput Rate
- Built-In Track and Hold
- Single +5V Supply Voltage
- 40mW Maximum Power Consumption
- Internal or External Clock
- 1MHz Input Bandwidth -3dB

Applications

- Remote Low Power Data Acquisition Systems
- Digital Audio
- DSP Modems
- General Purpose DSP Front End
- $\mu \mathrm{P}$ Controlled Measurement Systems
- Process Controls
- Industrial Controls

Description

The HI5810 is a fast, low power, 12-bit successive approximation ana-log-to-digital converter. It can operate from a single 3 V to 6 V supply and typically draws just 1.9 mA when operating at 5 V . The HI5810 features a built-in track and hold. The conversion time is as low as $10 \mu \mathrm{~s}$ with a 5 V supply.

The twelve data outputs feature full high speed CMOS tri-state bus driver capability, and are latched and held through a full conversion cycle. The output is user selectable: (i.e.), 12-bit, 8-bit (MSBs), and/or 4-bit (LSBs). A data ready flag, and conversion-start input complete the digital interface.
An internal clock is provided and is available as an output. The clock may also be over-driven by an external source.
The HI5810 is rated over the full industrial temperature range and is offered in 24 lead narrow body Plastic DIP, narrow body Ceramic DIP, and Plastic SOIC packages.

Ordering Information

PART NUMBER	NL (LSB) (MAXOVER TEMP.)	TEMP. RANGE	PACKAGE

Pinout

Functional Block Diagram

Electrical Specifications $V_{D D}=V_{A A^{+}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}^{+}}=+4.608 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=\mathrm{V}_{\mathrm{AA}^{-}}=\mathrm{V}_{\mathrm{REF}}{ }^{-}=\mathrm{GND}, \mathrm{CLK}=$ External 1.5MHz, Unless Otherwise Specified. (Continued)

PARAMETER	TEST CONDITION	$+25^{\circ} \mathrm{C}$			$-40^{\circ} \mathrm{C}$ TO $+85^{\circ} \mathrm{C}$		UNITS
		MIN	TYP	MAX	MIN	MAX	
Spurious Free Dynamic Range, SFDR J	$\begin{aligned} & f_{S}=\text { Internal Clock, } f_{I_{N}}=1 \mathrm{kHz} \\ & f_{S}=1.5 \mathrm{MHz}, \mathrm{f}_{\mathrm{IN}}=1 \mathrm{kHz} \end{aligned}$	-	$\begin{aligned} & 75.4 \\ & 69.2 \end{aligned}$	-	-	-	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
K	$\begin{aligned} & f_{S}=\text { Internal Clock, } f_{I N}=1 \mathrm{kHz} \\ & f_{S}=1.5 \mathrm{MHz}, f_{\mathrm{IN}}=1 \mathrm{kHz} \end{aligned}$	-	$\begin{aligned} & 80.9 \\ & 70.7 \end{aligned}$	-	-	-	$\begin{aligned} & d B \\ & d B \end{aligned}$
ANALOG INPUT							
Input Current, Dynamic	At $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {REF }}+\mathrm{O}$	-	± 125	± 150	-	± 150	$\mu \mathrm{A}$
Input Current, Static	Conversion Stopped	-	± 0.6	± 10	-	± 10	$\mu \mathrm{A}$
Input Bandwidth -3dB		-	1	-	-	-	MHz
Reference Input Current		-	160	-	-	-	$\mu \mathrm{A}$
Input Series Resistance, $\mathrm{R}_{\mathbf{S}}$	In Series with Input $\mathrm{C}_{\text {SAMPLE }}$	-	420	-	-	-	Ω
Input Capacitance, $\mathrm{C}_{\text {SAMPLE }}$	During Sample State	-	380	-	-	-	pF
Input Capacitance, $\mathrm{C}_{\text {HOL }}$	During Hold State	-	20	-	-	-	pF
DIGITAL INPUTS $\overline{\text { OEL, }} \overline{\text { OEM }}$, $\overline{\text { STRT }}$							
High-Level Input Voltage, $\mathrm{V}_{1 \mathrm{H}}$		2.4	-	-	2.4	-	V
Low-Level Input Voltage, V_{IL}		-	-	0.8	-	0.8	v
Input Leakage Current, IIL	Except CLK, $\mathrm{V}_{\text {IN }}=0 \mathrm{~V}, 5 \mathrm{~V}$	-	-	± 10	-	± 10	$\mu \mathrm{A}$
Input Capacitance, $\mathrm{C}_{\text {IN }}$		-	10	-	-	-	pF
DIGITAL OUTPUTS							
High-Level Output Voltage, V_{OH}	$I_{\text {SOURCE }}=-400 \mu \mathrm{~A}$	4.6	-	-	4.6	-	V
Low-Level Output Voltage, V_{OL}	$\mathrm{I}_{\text {SINK }}=1.6 \mathrm{~mA}$	-	-	0.4	-	0.4	V
Tri-state Leakage, loz	Except DRDY, $\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}, 5 \mathrm{~V}$	-	-	± 10	-	± 10	$\mu \mathrm{A}$
Output Capacitance, $\mathrm{C}_{\text {OUT }}$	Except DRDY	-	20	-	-	-	pF
CLOCK							
High-Level Output Voltage, V_{OH}	$I_{\text {SOURCE }}=-100 \mu \mathrm{~A}$ (Note 2)	4	-	-	4	-	V
Low-Level Output Voltage, V_{OL}	$\mathrm{I}_{\text {SINK }}=100 \mu \mathrm{~A}$ (Note 2)	-	-	1	-	1	V
Input Current	CLK Only, $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, 5 \mathrm{~V}$	-	-	± 5	-	± 5	mA
TIMING							
Conversion Time ($\mathrm{t}_{\mathrm{CONV}}+\mathrm{t}_{\mathrm{ACQ}}$) (Includes Acquisition Time)		10	-	-	10	-	$\mu \mathrm{s}$
Clock Frequency	Internal Clock, (CLK = Open)	200	300	400	150	500	kHz
	External CLK (Note 2)	0.05	-	2.0	-	-	MHz
Clock Pulse Width, tow, $^{\text {L }}$ t ${ }_{\text {HIGH }}$	External CLK (Note 2)	100	-	-	100	-	ns

Electrical Specifications $\quad V_{D D}=V_{A A^{+}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}{ }^{+}=+4.608 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=\mathrm{V}_{\mathrm{AA}}{ }^{-}=\mathrm{V}_{\mathrm{REF}}{ }^{-}=\mathrm{GND}, \mathrm{CLK}=$ External 1.5MHz, Unless Otherwise Specified. (Continued)

PARAMETER	TEST CONDITION	$+25^{\circ} \mathrm{C}$			$-40^{\circ} \mathrm{C}$ TO $+85^{\circ} \mathrm{C}$		UNITS
		MIN	TYP	MAX	MIN	MAX	
Aperture Delay, t_{D} APR	(Note 2)	-	35	50	-	70	ns
Clock to Data Ready Delay, $\mathrm{t}_{\mathrm{D} 1}$ DRDY	(Note 2)	-	105	150	-	180	ns
Clock to Data Ready Delay, $\mathrm{t}_{\mathrm{D} 2}$ DRDY	(Note 2)	-	100	160	-	195	ns
Start Removal Time, $\mathrm{t}_{\mathrm{R}} \overline{\text { STRT }}$	(Note 2)	75	30	-	75	-	ns
Start Setup Time, ${ }_{\text {su }}$ STRT	(Note 2)	85	60	-	100	-	ns
Start Pulse Width, ${ }_{\text {t }} \overline{\text { STRT }}$	(Note 2)	10	4	-	15	-	ns
Start to Data Ready Delay, $\mathrm{t}_{\text {D }}$ DRDY	(Note 2)	-	65	105	-	120	ns
Clock Delay from Start, $t_{\text {D }} \overline{\text { STRT }}$	(Note 2)	-	60	-	-	-	ns
Output Enable Delay, t_{EN}	(Note 2)	-	20	30	-	50	ns
Output Disabled Delay, ${ }_{\text {tois }}$	(Note 2)	-	80	95	-	120	ns
POWER SUPPLY CHARACTERISTICS							
Supply Current, $\mathrm{I}_{\mathrm{DD}}+\mathrm{l}_{\text {AA }}$		-	2.6	8	-	8.5	mA

NOTES:

1. Dissipation rating assumes device is mounted with all leads soldered to printed circuit board.
2. Parameter guaranteed by design or characterization, not production tested.

Timing Diagrams

$\overline{O E L}=\overline{\mathrm{OEM}}=\mathrm{V}_{\mathrm{SS}}$

FIGURE 1. CONTINUOUS CONVERSION MODE

FIGURE 2. SINGLE SHOT MODE EXTERNAL CLOCK

Timing Diagrams (Continued)

FIGURE 3. SINGLE SHOT MODE INTERNAL CLOCK

FIGURE 4. OUTPUT ENABLE/DISABLE TIMING DIAGRAM

FIGURE 5. TIMING LOAD CIRCUIT

Typical Performance Curves

FIGURE 6. INL vs TEMPERATURE

FIGURE 7. OFFSET ERROR vs TEMPERATURE

Typical Performance Curves (Continued)

FIGURE 8. DNL vs TEMPERATURE

FIGURE 10. SUPPLY CURRENT vs TEMPERATURE

FIGURE 9. FULL SCALE ERROR vs TEMPERATURE

FIGURE 11. FFT SPECTRUM

FIGURE 12. INTERNAL CLOCK FREQUENCY vs TEMPERATURE

TABLE 1. PIN DESCRIPTION

PIN No.	NAME	description
1	DRDY	Output flag signifying new data is available. Goes high at end of clock period 15. Goes low when new conversion is started.
2	D0	Bit-0 (Least significant bit, LSB)
3	D1	Bit-1
4	D2	Bit-2
5	D3	Bit-3
6	D4	Bit-4
7	D5	Bit-5
8	D6	Bit-6
9	D7	Bit-7
10	D8	Bit-8
11	D9	Bit-9
12	$\mathrm{V}_{\text {ss }}$	Digital ground, (0V).
13	D10	Bit-10
14	D11	Bit-11 (Most significant bit, MSB)
15	OEM	Tri-state enable for D4-D11. Active low input.
16	$\mathrm{V}_{\text {A }}{ }^{-}$	Analog ground, (OV).
17	$\mathrm{V}_{\mathrm{AA}^{+}}$	Analog positive supply. (+5V) (See text)
18	V_{IN}	Analog input.
19	$\mathrm{V}_{\text {REF }}+$	Reference voltage positive input, sets 4095 code end of input range.
20	$\mathrm{V}_{\mathrm{fEF}}$ -	Reference voltage negative input, sets 0 code end of input range.
21	STRT	Start conversion input active low, recognized after end of clock period 15.
22	CLK	CLK input or output. Conversion functions are synchronized to positive going edge. (See text)
23	OEL	Tri-state enable for DO D3. Active low input.
24	V_{DD}	Digital positive supply (+5V).

Theory of Operation

HI5810 is a CMOS 12-bit Analog-to-Digital Converter that uses capacitor charge balancing to successively approximate the analog input. A binarily weighted capacitor network forms the ADD heart of the device. See the block diagram for the H15810.
The capacitor network has a common node which is connected to a comparator. The second terminal of each capacitor is individually switchable to the input, $\mathrm{V}_{\mathrm{REF}}$ or $\mathrm{V}_{\mathrm{REF}}{ }^{-}$.

During the first three clock periods of a conversion cycle, the switchable end of every capacitor is connected to the input and the comparator is being auto balanced at the capacitor common node.

During the fourth period, all capacitors are disconnected from the input; the one representing the MSB (D11) is connected to the $\mathrm{V}_{\mathrm{REF}}+$ terminal; and the remaining capacitors to $\mathrm{V}_{\text {REF }}$-. The capacitor common node, after the charges balance out, will indicate whether the input was above $1 / 2$ of ($\mathrm{V}_{\text {REF }}+\mathrm{V}_{\text {REF }}$). At the end of the fourth period, the comparator output is stored and the MSB capacitor is either left connected to $\mathrm{V}_{\text {REF }}+$ (if the comparator was high) or returned to $\mathrm{V}_{\text {REF }}$-. This allows the next comparison to be at either $3 / 4$ or $1 / 4$ of ($\left.V_{\text {REF }^{+}}-V_{\text {REF }}{ }^{-}\right)$.
At the end of periods 5 through 14, capacitors representing D10 through D1 are tested, the result stored, and each capacitor either left at $\mathrm{V}_{\text {REF }}+$ or at $\mathrm{V}_{\text {REF }}{ }^{-}$.
At the end of the 15th period, when the LSB (DO) capacitor is tested, (DO) and all the previous results are shifted to the output registers and drivers. The capacitors are reconnected to the input, the comparator returns to the balance state, and the data ready output goes active. The conversion cycle is now complete.

Analog Input

The analog input pin is a predominately capacitive load that changes between the track and hold periods of the conversion cycle. During hold, clock period 4 through 15, the input loading is leakage and stray capacitance, typically less than $5 \mu \mathrm{~A}$ and 20 pF .
At the start of input tracking, clock period 1, some charge is dumped back to the input pin. The input source must have low enough impedance to dissipate the current spike by the end of the tracking period as shown in Figure 13. The amount of charge is dependent on supply and input voltages. The average current is also proportional to clock frequency.

$$
\text { CONDITIONS: } \begin{aligned}
V_{D D} & =V_{A A}+=5.0 \mathrm{~V}, V_{\text {REF }}+=4.608 \mathrm{~V} \\
\mathrm{~V}_{\mathrm{IN}} & =4.608 \mathrm{~V}, \mathrm{CLK}=750 \mathrm{kHz}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}
\end{aligned}
$$

FIGURE 13. TYPICAL ANALOG INPUT CURRENT

As long as these current spikes settle completely by end of the signal acquisition period, converter accuracy will be preserved. The analog input is tracked for 3 clock cycles. With an external clock of 1.5 MHz the track period is $2 \mu \mathrm{~s}$.
A simplified analog input model is presented in Figure 14. During tracking, the AND input $\left(\mathrm{V}_{\mathbb{N}}\right)$ typically appears as a 380 pF capacitor being charged through a 420Ω internal switch resistance. The time constant is 160 ns . To charge this capacitor from an external "zero Ω " source to 0.5 LSB (1/8192), the charging time must be at least 9 time constants or $1.4 \mu \mathrm{~s}$. The maximum source impedance ($\mathrm{R}_{\text {SOURCE }} \mathrm{Max}$) for a $2 \mu \mathrm{~s}$ acquisition time settling to within 0.5 LSB is 164Ω.

If the clock frequency was slower, or the converter was not restarted immediately (causing a longer sample time), a higher source impedance could be tolerated.

FIGURE 14. ANALOG INPUT MODEL IN TRACK MODE

Reference Input

The reference input $\mathrm{V}_{\text {REF }}{ }^{+}$should be driven from a low impedance source and be well decoupled.
As shown in Figure 15, current spikes are generated on the reference pin during each bit test of the successive approximation part of the conversion cycle as the charge balancing capacitors are switched between $\mathrm{V}_{\text {REF }}$ - and $\mathrm{V}_{\text {REF }}+$ (clock periods 5-14). These current spikes must settle completely during each bit test of the conversion to not degrade the accuracy of the converter. Therefore $\mathrm{V}_{\mathrm{REF}}+$ and $\mathrm{V}_{\mathrm{REF}}-$ should be well bypassed. Reference input $\mathrm{V}_{\text {REF }}$ - is normally connected directly to the analog ground plane. If $\mathrm{V}_{\text {REF }}$ - is biased for nulling the converters offset it must be stable during the conversion cycle.

FIGURE 15. TYPICAL REFERENCE INPUT CURRENT

The HI5810 is specified with a 4.608 V reference, however, it will operate with a reference down to 3 V having a slight degradation in performance.

Full Scale and Offset Adjustment

In many applications the accuracy of the HI5810 would be sufficient without any adjustments. In applications where accuracy is of utmost importance full scale and offset errors may be adjusted to zero.
The $\mathrm{V}_{\text {REF }}+$ and $\mathrm{V}_{\text {REF }}-$ pins reference the two ends of the analog input range and may be used for offset and full scale adjustments. In a typical system the $\mathrm{V}_{\text {REF }}$ - might be returned to a clean ground, and the offset adjustment done on an input amplifier. $\mathrm{V}_{\mathrm{REF}}+$ would then be adjusted to null out the full scale error. When this is not possible, the $\mathrm{V}_{\text {REF }}$ - input can be adjusted to null the offset error, however, $\mathrm{V}_{\text {REF }}$ - must be well decoupled.
Full scale and offset error can also be adjusted to zero in the signal conditioning amplifier driving the analog input $\left(\mathrm{V}_{\mathbb{N}}\right)$.

Control Signal

The H15810 may be synchronized from an external source by using the STRT (Start Conversion) input to initiate conversion, or if STRT is tied low, may be allowed to free run. Each conversion cycle takes 15 clock periods.
The input is tracked from clock period 1 through period 3, then disconnected as the successive approximation takes place. After the start of the next period 1 (specified by T_{D} data), the output is updated.

The DRDY (Data Ready) status output goes high (specified by $T_{D 1} D R D Y$) after the start of clock period 1, and returns low (specified by $\left.T_{D 2} D R D Y\right)$ after the start of clock period 2.

The 12 data bits are available in parallel on tri-state bus driver outputs. When low, the $\overline{O E M}$ input enables the most significant byte (D4 through D11) while the $\overline{\mathrm{OEL}}$ input enables the four least significant bits (DO-D3). $T_{E N}$ and $T_{D I S}$ specify the output enable and disable times.

If the output data is to be latched externally, either the trailing edge of data ready or the next falling edge of the clock after data ready goes high can be used.

When STRT input is used to initiate conversions, operation is slightly different depending on whether an internal or external clock is used.

Figure 3 illustrates operation with an internal clock. If the STRT signal is removed (at least $T_{R} \overline{\text { STRT }}$) before clock period 1 , and is not reapplied during that period, the clock will shut off after entering period 2 . The input will continue to track and the DRDY output will remain high during this time.
A low signal applied to $\overline{\text { STRT }}$ (at least $T_{W} \overline{S T R T}$ wide) can now initiate a new conversion. The STRT signal (after a delay of ($\left.T_{D} \overline{S T R T}\right)$) causes the clock to restart.

Depending on how long the clock was shut off, the low portion of clock period 2 may be longer than during the remaining cycles.

The input will continue to track until the end of period 3, the same as when free running.

Figure 2 illustrates the same operation as above but with an external clock. If $\overline{S T R T}$ is removed (at least $T_{B} \overline{S T R T}$) before clock period 2, a low signal applied to STRT will drop the DRDY flag as before, and with the first positive going clock edge that meets the ($T_{\text {SUSTRT }}$) setup time, the converter will continue with clock period 3.

Clock

The HI5810 can operate either from its internal clock or from one externally supplied. The CLK pin functions either as the clock output or input. All converter functions are synchronized with the rising edge of the clock signal.

Figure 16 shows the configuration of the internal clock. The clock output drive is low power: if used as an output, it should not have more than 1 CMOS gate load applied, and stray wiring capacitance should be kept to a minimum.

The internal clock will shut down if the AD is not restarted after a conversion. The clock could also be shut down with an open collector driver applied to the CLK pin. This should only be done during the sample portion (the first three clock periods) of a conversion cycle, and might be useful for using the device as a digital sample and hold.

If an external clock is supplied to the CLK pin, it must have sufficient drive to overcome the internal clock source. The external clock can be shut off, but again, only during the sample portion of a conversion cycle. At other times, it must be above the minium frequency shown in the specifications. In the above two cases, a further restriction applies in that the clock should not be shut off during the third sample period for more than 1 ms . This might cause an internal charge pump voltage to decay.

If the internal or external clock was shut off during the conversion time (clock cycles 4 through 15) of the AND, the output might be invalid due to balancing capacitor droop.

An external clock must also meet the minimum TLOW and $T_{\text {HIGH }}$ times shown in the specifications. A violation may cause an internal miscount and invalidate the results.

FIGURE 16. INTERNAL CLOCK CIRCUITRY

Power Supplies and Grounding

$V_{D D}$ and $V_{S S}$ are the digital supply pins: they power all internal logic and the output drivers. Because the output drivers can cause fast current spikes in the $V_{D D}$ and $V_{S S}$ lines, $V_{S S}$ should have a low impedance path to digital ground and $V_{D D}$ should be well bypassed.

Except for $\mathrm{V}_{A A}+$, which is a substrate connection to V_{DD}, all pins have protection diodes connected to $V_{D D}$ and $V_{S S}$. Input transients above $V_{D D}$ or below $V_{S S}$ will get steered to the digital supplies.

The $\mathrm{V}_{\mathrm{AA}^{+}}$and $\mathrm{V}_{\mathrm{AA}^{-}}$terminals supply the charge balancing comparator only. Because the comparator is autobalanced between conversions, it has good low frequency supply rejection. It does not reject well at high frequencies however; $\mathrm{V}_{\mathrm{AA}^{-}}$should be returned to a clean analog ground and $\mathrm{V}_{\mathrm{AA}^{+}}$ should be RC decoupled from the digital supply as shown in Figure 17.
There is approximately 50Ω of substrate impedance between V_{DD} and $\mathrm{V}_{A A^{+}}$. This can be used, for example, as part of a low pass RC filter to attenuate switching supply noise. A $10 \mu \mathrm{~F}$ capacitor from $\mathrm{V}_{\mathrm{AA}}{ }^{+}$to ground would attenuate 30 kHz noise by approximately 40 dB . Note that back-to-back diodes should be placed from V_{DD} to $\mathrm{V}_{\mathrm{AA}}+$ to handle supply to capacitor turn-on or turn-off current spikes.

Dynamic Performance

Fast Fourier Transform (FFT) techniques are used to evaluate the dynamic performance of the ADD. A low distortion sine wave is applied to the input of the A/D converter. The input is sampled by the AD and its output stored in RAM. The data is than transformed into the frequency domain with a 4096 point FFT and analyzed to evaluate the converters dynamic performance such as SNR and THD. See typical performance characteristics.

Signal-To-Noise Ratio

The signal to noise ratio (SNR) is the measured RMS signal to RMS sum of noise at a specified input and sampling frequency. The noise is the RMS sum of all except the fundamental and the first five harmonic signals. The SNR is dependent on the number of quantization levels used in the converter. The theoretical SNR for an N-bit converter with no differential or integral linearity error is: $S N R=(6.02 \mathrm{~N}+1.76)$ dB . For an ideal 12 -bit converter the SNR is 74 dB . Differential and integral linearity errors will degrade SNR.

$$
\text { SNR }=10 \log \frac{\text { Sinewave Signal Power }}{\text { Total Noise Power }}
$$

Signal-To-Noise + Distortion Ratio

SINAD is the measured RMS signal to RMS sum of noise plus harmonic power and is expressed by the following.

$$
\text { SINAD }=10 \log \frac{\text { Sinewave Signal Power }}{\text { Noise + Harmonic Power (2nd - 6th) }}
$$

Effective Number of Bits

The effective number of bits (ENOB) is derived from the SINAD data;

$$
\mathrm{ENOB}=\frac{\text { SINAD }-1.76}{6.02}
$$

Total Harmonic Distortion

The total harmonic distortion (THD) is the ratio of the RMS sum of the second through sixth harmonic components to the fundamental RMS signal for a specified input and sampling frequency.

THD $=10 \log \frac{\text { Total Harmonic Power (2nd }-6 \text { th Harmonic) }}{\text { Sinewave Signal Power }}$

Spurious-Free Dynamic Range

The spurious-free dynamic range (SFDR) is the ratio of the fundamental RMS amplitude to the RMS amplitude of the next largest spur or spectral component. If the harmonics are buried in the noise floor it is the largest peak.

TABLE 2. CODE TABLE

CODE DESCRIPTION	INPUT VOLTAGE \dagger $\begin{gathered} \mathrm{V}_{\mathrm{REF}}+=4.608 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{REF}}= \end{gathered}$ (V)	DECIMAL COUNT	BINARY OUTPUT CODE											
			MSB										LSB	
			D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
Full Scale (FS)	4.6069	4095	1	1	1	1	1	1	1	1	1	1	1	1
FS - 1 LSB	4.6058	4094	1	1	1	1	1	1	1	1	1	1	1	0
$3 / 4 \mathrm{FS}$	3.4560	3072	1	1	0	0	0	0	0	0	0	0	0	0
$1 / 2 \mathrm{FS}$	2.3040	2048	1	0	0	0	0	0	0	0	0	0	0	0
$1 / 4 \mathrm{FS}$	1.1520	1024	0	1	0	0	0	0	0	0	0	0	0	0
1 LSB	0.001125	1	0	0	0	0	0	0	0	0	0	0	0	1
Zero	0	0	0	0	0	0	0	0	0	0	0	0	0	0

\dagger The voltages listed above represent the ideal lower transition of each output code shown as a function of the reference voltage.

FIGURE 17. GROUND AND SUPPLY DECOUPLING

Die Characteristics

DIE DIMENSIONS:
$3200 \mu \mathrm{~m} \times 3940 \mu \mathrm{~m}$
METALLIZATION:
Type: Al Si
Thickness: $11 \mathrm{k} \AA \pm 1 \mathrm{k} \AA$
GLASSIVATION:
Type: PSG
Thickness: $13 \mathrm{k} \AA \pm 2.5 \mathrm{k} \AA$
WORST CASE CURRENT DENSITY:
$1.84 \times 10^{5} \mathrm{Acm}^{2}$
Metallization Mask Layout

HARRRS
HI5812

CMOS 20 $\mathbf{~ s}$ 12-Bit Sampling A/D Converter with Internal Track and Hold

Features

- $20 \mu \mathrm{~s}$ Conversion Time
- 50KSPS Throughput Rate
- Bullt-In Track and Hold
- Guaranteed No Missing Codes Over Temperature
- Single +5V Supply Voltage
- 25mW Maximum Power Consumption
- Internal or External Clock

Applications

- Remote Low Power Data Acquisition Systems
- Digital Audio
- DSP Modems
- General Purpose DSP Front End
- $\mu \mathrm{P}$ Controlled Measurement System
- Professional Audio Positioner/Fader

Description

The HI5812 is a fast, low power, 12-bit successive approximation ana-log-to-digital converter. It can operate from a single 3 V to 6 V supply and typically draws just 1.9 mA when operating at 5 V . The HI5812 features a built-in track and hold. The conversion time is as low as $15 \mu \mathrm{~s}$ with a 5 V supply.

The twelve data outputs feature full high speed CMOS tri-state bus driver capability, and are latched and held through a full conversion cycle. The output is user selectable: (i.e.) 12-bit, 8-bit (MSBs), and/or 4bit (LSBs). A data ready flag, and conversion-start inputs complete the digital interface.

An internal clock is provided and is available as an output. The clock may also be over-driven by an external source.

The HI5812 is rated over the full industrial temperature range and is offered in 24 lead narrow body Plastic DIP, narrow body Ceramic DIP, and Plastic SOIC packages.

Ordering Information

PART NUMBER	INL (LSB) (MAX OVER TEMP.)	TEMP. RANGE	PACKAGE
HI5812JIP	± 1.5	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24 Lead Plastic DIP
H15812KIP	± 1.0	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24 Lead Plastic DIP
HI5812JIB	± 1.5	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24 Lead Plastic SOIC
H58812KIB	± 1.0	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24 Lead Plastic SOIC
HI5812JIJ	± 1.5	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24 Lead Ceramic DIP
HI5812KIJ	± 1.0	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24 Lead Ceramic DIP

Pinout

H15812	SOIC)
DRDY 1	24 VDO
(LSB) DO 2	23 OEL
D1 3	22 CLK
D2 4	21 STRT
D3 5	$20 \mathrm{~V}_{\text {REF }}$
D4 6	$19 \mathrm{~V}_{\text {REF }}{ }^{+}$
D5 7	$18 \mathrm{~V}_{\mathbf{N}}$
D6 8	$17 \mathrm{~V}_{\text {AA }}$
D7 9	$16 \mathrm{~V}_{\text {AA }}$
D8 10	15 OEM
D9 11	14 D11 (MSB)
$v_{\text {ss }} 12$	13 D 10

Functional Block Diagram

Absolute Maximum Ratings

Supply Voltage

Thermal Information

Thermal Resistance	$\theta_{\text {JA }}$
Plastic DIP	$80^{\circ} \mathrm{C} / \mathrm{N}$
Plastic SOIC	$75^{\circ} \mathrm{C} / \mathrm{N}$
Package Power Diss	
Plastic DIP.	. 0.810 W
Plastic SOIC	0.870W
Power Dissipation D	
Plastic DIP.	$12 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Plastic SOIC	$13 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Electrical Specifications $\quad \mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{AA}^{+}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}{ }^{+}=+4.608 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=\mathrm{V}_{\mathrm{AA}}{ }^{-}=\mathrm{V}_{\mathrm{REF}}=\mathrm{GND}, \mathrm{CLK}=$ External 750kHz, Unless Otherwise Specified.

PARAMETER		TEST CONDITION	$+25^{\circ} \mathrm{C}$			$-40^{\circ} \mathrm{C}$ TO $+85^{\circ} \mathrm{C}$		UNITS
			MIN	TYP	MAX	MIN	MAX	
ACCURACY								
Resolution			12	-	-	12	-	Bits
Integral Linearity Error, INL (End Point)	J		-	-	± 1.5	-	± 1.5	LSB
	K		-	-	± 1.0	-	± 1.0	LSB
Differential Linearity Error, DNL	J		-	-	± 2.0	-	± 2.0	LSB
	K		-	-	± 1.0	\bullet	± 1.0	LSB
Gain Error, FSE (Adjustable to Zero)	J		-	-	± 3.0	-	± 3.0	LSB
	K		-	-	± 2.5	-	± 2.5	LSB
Offset Error, VOS (Adjustable to Zero)	J		-	-	± 2.0	-	± 2.0	LSB
	K		-	-	± 1.0	\bullet	± 1.0	LSB
Power Supply Rejection, PSRR Offset Error PSRR Gain Error PSRR		$\begin{aligned} & V_{R E F}=4 V \\ & V_{D D}=V_{A A}+=5 \mathrm{~V} \pm 5 \% \\ & V_{D D}=V_{A A}+=5 \mathrm{~V} \pm 5 \% \end{aligned}$	-	$\begin{aligned} & - \\ & 0.1 \\ & 0.1 \end{aligned}$	$\begin{gathered} - \\ \pm 0.5 \\ \pm 0.5 \end{gathered}$	-	$\begin{gathered} - \\ \pm 0.5 \\ \pm 0.5 \end{gathered}$	LSB
DYNAMIC CHARACTERISTICS								
Signal to Noise Ratio, SINAD RMS Signal	J	$\begin{aligned} & f_{S}=\text { Internal Clock, } f_{I_{N}}=1 \mathrm{kHz} \\ & f_{S}=750 \mathrm{kHz}, f_{\mathbb{I N}}=1 \mathrm{kHz} \end{aligned}$	-	$\begin{aligned} & 68.8 \\ & 69.2 \end{aligned}$	\bullet	-	-	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
RMS Noise + Distortion	K	$\begin{aligned} & f_{S}=\text { Internal Clock, } f_{I N}=1 \mathrm{kHz} \\ & f_{S}=750 \mathrm{kHz}, f_{\mathrm{IN}_{\mathrm{N}}}=1 \mathrm{kHz} \end{aligned}$	-	$\begin{aligned} & 71.0 \\ & 71.5 \end{aligned}$	-	-	\bullet	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
Signal to Noise Ratio, SNR RMS Signal RMS Noise	J	$\begin{aligned} & f_{S}=\text { Internal Clock, } f_{I_{N}}=1 \mathrm{kHz} \\ & f_{S}=750 \mathrm{kHz}, \mathrm{f}_{\mathbb{N}}=1 \mathrm{kHz} \end{aligned}$	-	$\begin{aligned} & 70.5 \\ & 71.1 \end{aligned}$	-	-	-	dB dB
	K	$\begin{aligned} & f_{S}=\text { Internal Clock, } f_{\mathbb{N}}=1 \mathrm{kHz} \\ & f_{S}=750 \mathrm{kHz}, f_{\mathrm{IN}_{\mathrm{N}}}=1 \mathrm{kHz} \end{aligned}$	-	$\begin{aligned} & 71.5 \\ & 72.1 \end{aligned}$	-	-	-	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$

Electrical Specifications $\quad \mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{AA}^{+}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}{ }^{+}=+4.608 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=\mathrm{V}_{\mathrm{AA}}{ }^{-}=\mathrm{V}_{\mathrm{REF}}{ }^{-}=\mathrm{GND}, \mathrm{CLK}=$ External 750 kHz , Unless Otherwise Specified. (Continued)

PARAMETER	TEST CONDITION	$+25^{\circ} \mathrm{C}$			$-40^{\circ} \mathrm{C}$ TO $+85^{\circ} \mathrm{C}$		UNITS
		MIN	TYP	MAX	MIN	MAX	
$\begin{array}{lc}\text { Total Harmonic Distortion, THD } & \text { J } \\ & \\ & \text { K }\end{array}$	$\begin{aligned} & f_{S}=\text { Internal Clock, } f_{N}=1 \mathrm{kHz} \\ & f_{S}=750 \mathrm{kHz}, f_{I_{N}}=1 \mathrm{kHz} \end{aligned}$	-	$\begin{aligned} & -73.9 \\ & -73.8 \end{aligned}$	-	-	-	$\begin{aligned} & \mathrm{dBc} \\ & \mathrm{dBc} \end{aligned}$
	$\begin{aligned} & f_{S}=\text { Internal Clock, } f_{I_{N}}=1 \mathrm{kHz} \\ & f_{S}=750 \mathrm{kHz}, f_{\mathrm{IN}_{\mathrm{N}}}=1 \mathrm{kHz} \end{aligned}$		$\begin{aligned} & -80.3 \\ & -79.0 \end{aligned}$	-	-	-	dBc dBc
Spurious Free Dynamic Range, SFDR	$\begin{aligned} & f_{S}=\text { Internal Clock, } f_{N}=1 \mathrm{kHz} \\ & f_{S}=750 \mathrm{kHz}, f_{\mathrm{IN}}=1 \mathrm{kHz} \end{aligned}$	-	$\begin{aligned} & -75.4 \\ & -75.1 \end{aligned}$	-	-	-	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
	$\begin{aligned} & f_{S}=\text { Internal Clock, } f_{i N}=1 \mathrm{kHz} \\ & f_{S}=750 \mathrm{kHz}, \mathrm{f}_{\mathrm{IN}}=1 \mathrm{kHz} \end{aligned}$	-	$\begin{aligned} & -80.9 \\ & -79.6 \end{aligned}$	-	-	-	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
ANALOG INPUT							
Input Current, Dynamic	At $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {REF }}+$, 0 V	-	± 50	± 100	-	± 100	$\mu \mathrm{A}$
Input Current, Static	Conversion Stopped	-	± 0.4	± 10	-	± 10	$\mu \mathrm{A}$
Input Bandwidth -3dB		-	1	-	-	-	MHz
Reference Input Current		-	160	-	-	-	$\mu \mathrm{A}$
Input Series Resistance, $\mathbf{R}_{\mathbf{S}}$	In Series with Input $\mathrm{C}_{\text {SAMPLE }}$	-	420	-	-	-	Ω
Input Capacitance, $\mathrm{C}_{\text {SAMPLE }}$	During Sample State	-	380	-	-	-	pF
Input Capacitance, $\mathrm{C}_{\text {HOL }}$	During Hold State	-	20	-	-	-	pF
DIGITAL INPUTS $\overline{\text { OEL, }} \overline{\text { OEM }}, \overline{\text { STRT }}$							
High-Level Input Voltage, V_{IH}		2.4	-	-	2.4	-	V
Low-Level Input Voltage, V_{IL}		-	-	0.8	-	0.8	V
Input Leakage Current, IIL	Except CLK, $\mathrm{V}_{\mathbf{I N}}=0 \mathrm{~V}, 5 \mathrm{~V}$	-	-	± 10	-	± 10	$\mu \mathrm{A}$
Input Capacitance, $\mathrm{C}_{\text {IN }}$		-	10	-	-	-	pF
DIGITAL OUTPUTS							
High-Level Output Voltage, V_{OH}	$I_{\text {SOURCE }}=-400 \mu \mathrm{~A}$	4.6	-	-	4.6	-	V
Low-Level Output Voltage, V_{OL}	$\mathrm{I}_{\text {SINK }}=1.6 \mathrm{~mA}$	-	-	0.4	-	0.4	V
Tri-state Leakage, loz	Except DRDY, $\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}, 5 \mathrm{~V}$	-	-	± 10	-	± 10	$\mu \mathrm{A}$
Output Capacitance, $\mathrm{C}_{\text {OUT }}$	Except DRDY	-	20	-	-	-	pF
CLOCK							
High-Level Output Voltage, V_{OH}	$I_{\text {SOURCE }}=-100 \mu \mathrm{~A}$ (Note 2)	4	-	-	4	-	V
Low-Level Output Voltage, V_{OL}	$\mathrm{I}_{\text {SINK }}=100 \mu \mathrm{~A}$ (Note 2)	-	-	1	-	1	V
Input Current	CLK Only, $\mathrm{V}_{\text {IN }}=0 \mathrm{~V}, 5 \mathrm{~V}$	-	-	± 5	-	± 5	mA
TIMING							

Electrical Specifications $\quad \mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{AA}}{ }^{+}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}{ }^{+}=+4.608 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=\mathrm{V}_{\mathrm{AA}}{ }^{-}=\mathrm{V}_{\mathrm{REF}}{ }^{-}=\mathrm{GND}, \mathrm{CLK}=$ External 750 kHz , Unless Otherwise Specified. (Continued)

PARAMETER	TEST CONDITION	$+25^{\circ} \mathrm{C}$			$-40^{\circ} \mathrm{C}$ TO $+85^{\circ} \mathrm{C}$		UNITS
		MIN	TYP	MAX	MIN	MAX	
Conversion Time ($\mathrm{t}_{\mathrm{CONV}}+\mathrm{t}_{\mathrm{ACQ}}$) (Includes Acquisition Time)		20	-	-	20	-	$\mu \mathrm{s}$
Clock Frequency	Internal Clock, (CLK = Open)	200	300	400	150	500	kHz
	External CLK (Note 2)	0.05	2	1.5	0.05	1.5	MHz
Clock Pulse Width, $\mathrm{t}_{\text {LOW, }}$, $\mathrm{t}_{\text {HIGH }}$	External CLK (Note 2)	100	-	-	100	-	ns
Aperture Delay, $t_{\text {D }}$ APR	(Note 2)	-	35	50	-	70	ns
Clock to Data Ready Delay, $\mathrm{t}_{\mathrm{D} 1}$ DRDY	(Note 2)	-	105	150	-	180	ns
Clock to Data Ready Delay, $\mathrm{t}_{\mathrm{D} 2}$ DRDY	(Note 2)	-	100	160	-	195	ns
Start Removal Time, $\mathrm{t}_{\mathrm{R}} \overline{\text { STRT }}$	(Note 2)	75	30	-	75	-	ns
Start Setup Time, $\mathrm{t}_{\text {Su }} \overline{\text { STRT }}$	(Note 2)	85	60	-	100	-	ns
Start Pulse Width, $\mathrm{t}_{\text {w }} \overline{\text { STRT }}$	(Note 2)	10	4	-	15	-	ns
Start to Data Ready Delay, $\mathrm{t}_{\mathrm{D} 3}$ DRDY	(Note 2)	-	65	105	-	120	ns
Clock Delay from Start, $\mathrm{t}_{\mathrm{D}} \overline{\text { STRT }}$	(Note 2)	-	60	-	-	-	ns
Output Enable Delay, t_{EN}	(Note 2)	-	20	30	-	50	ns
Output Disabled Delay, $\mathrm{t}_{\text {DIS }}$	(Note 2)	-	80	95	-	120	ns
POWER SUPPLY CHARACTERISTICS							
Supply Current, $\mathrm{I}_{\mathrm{DD}}+\mathrm{I}_{\mathrm{AA}}$		-	1.9	5	-	8	mA

NOTE:

1. Dissipation rating assumes device is mounted with all leads soldered to printed circuit board.
2. Parameter guaranteed by design or characterization, not production tested.

Timing Diagrams

$\overline{\mathrm{OEL}}=\overline{\mathrm{OEM}}=\mathrm{V}_{\mathrm{SS}}$
FIGURE 1. CONTINUOUS CONVERSION MODE

FIGURE 2. SINGLE SHOT MODE EXTERNAL CLOCK

Timing Diagrams (Continued)

FIGURE 3. SINGLE SHOT MODE INTERNAL CLOCK

FIGURE 4A.

FIGURE 4B.

FIGURE 4. OUTPUT ENABLE/DISABLE TIMING DIAGRAM

FIGURE 5. GENERAL TIMING LOAD CIRCUIT

Typical Performance Curves

FIGURE 6. INL vs TEMPERATURE

FIGURE 8. DNL vs TEMPERATURE

FIGURE 10. FULL SCALE ERROR vs TEMPERATURE

FIGURE 7. OFFSET VOLTAGE vs TEMPERATURE

FIGURE 9. ACCURACY vs REFERENCE VOLTAGE

FIGURE 11. POWER SUPPLY REJECTION vs TEMPERATURE

Typical Performance Curves（Continued）

FIGURE 12．SUPPLY CURREN vs TEMPERATURE

FIGURE 14．INTERNAL CLOCK FREQUENCY vs TEMPERATURE

FIGURE 16．TOTAL HARMONIC DISTORTION vs INPUT FREQUENCY

FIGURE 13．FFT SPECTRUM

FGURE 15．EFFECTIVE BITS vs INPUT FREQUENCY

FIGURE 17．SIGNAL NOISE RATIO vs INPUT FREQUENCY

TABLE 1. PIN DESCRIPTION

PIN NO.	NAME	DESCRIPTION
1	DRDY	Output flag signifying new data is available. Goes high at end of clock period 15. Goes low when new conversion is started.
2	D0	Bit-0 (Least significant bit, LSB)
3	D1	Bit-1
4	D2	Bit-2
5	D3	Bit-3
6	D4	Bit-4
7	D5	Bit-5
8	D6	Bit-6
9	D7	Bit-7
10	D8	Bit-8
11	D9	Bit-9
12	$\mathrm{V}_{\text {ss }}$	Digital ground, (0V).
13	D10	Bit-10
14	D11	Bit-11 (Most significant bit, MSB)
15	$\overline{\text { OEM }}$	Tri-state enable for D4-D11. Active low input.
16	$\mathrm{V}_{\text {AA }}{ }^{-}$	Analog ground, (0V).
17	$\mathrm{V}_{\mathrm{AA}^{+}}$	Analog positive supply. (+5V) (See text)
18	V_{IN}	Analog input.
19	$\mathrm{V}_{\text {REF }}{ }^{+}$	Reference voltage positive input, sets 4095 code end of input range.
20	$\mathrm{V}_{\text {REF }}$	Reference voltage negative input, sets 0 code end of input range.
21	STRT	Start conversion input active low, recognized after end of clock period 15.
22	CLK	CLK input or output. Conversion functions are synchronized to positive going edge. (See text)
23	$\overline{O E L}$	tri-state enable for DO D3. Active low input.
24	VDD	Digital positive supply (+5 V).

Theory of Operation

HI5812 is a CMOS 12-Bit Analog-to-Digital Converter that uses capacitor-charge balancing to successively approximate the analog input. A binarily weighted capacitor network forms the AVD heart of the device. See the block diagram for the HI5812.
The capacitor network has a common node which is connected to a comparator. The second terminal of each capacitor is individually switchable to the input, $\mathrm{V}_{\text {REF }}+$ or $V_{\text {REF }}$.

During the first three clock periods of a conversion cycle, the switchable end of every capacitor is connected to the input and the comparator is being auto-balanced at the capacitor common node.

During the fourth period, all capacitors are disconnected from the input; the one representing the MSB (D11) is connected to the $\mathrm{V}_{\text {REF }}{ }^{+}$terminal; and the remaining capacitors to $\mathrm{V}_{\text {REF }}$-. The capacitor-common node, after the charges balance out, will indicate whether the input was above $1 / 2$ of ($\left.\mathrm{V}_{\text {REF }}+-\mathrm{V}_{\text {REF }}\right)$. At the end of the fourth period, the comparator output is stored and the MSB capacitor is either left connected to $\mathrm{V}_{\text {REF }}$ (if the comparator was high) or returned to $\mathrm{V}_{\text {REF }}$-. This allows the next comparison to be at either $3 / 4$ or $1 / 4$ of ($V_{\text {REF }}{ }^{+}-V_{\text {REF }}{ }^{-}$).
At the end of periods 5 through 14, capacitors representing D10 through D1 are tested, the result stored, and each capacitor either left at $\mathrm{V}_{\text {REF }}+$ or at $\mathrm{V}_{\text {REF }}$ -
At the end of the 15th period, when the LSB (DO) capacitor is tested, (DO) and all the previous results are shifted to the output registers and drivers. The capacitors are reconnected to the input, the comparator returns to the balance state, and the data-ready output goes active. The conversion cycle is now complete.

Analog Input

The analog input pin is a predominately capacitive load that changes between the track and hold periods of the conversion cycle. During hold, clock period 4 through 15, the input loading is leakage and stray capacitance, typically less than $5 \mu \mathrm{~A}$ and 20 pF .

At the start of input tracking, clock period 1, some charge is dumped back to the input pin. The input source must have low enough impedance to dissipate the current spike by the end of the tracking period as shown in Figure 18. The amount of charge is dependent on supply and input voltages. The average current is also proportional to clock frequency.

FIGURE 18. TYPICAL ANALOG INPUT CURRENT

As long as these current spikes settle completely by end of the signal acquisition period, converter accuracy will be preserved. The analog input is tracked for 3 clock cycles. With an external clock of 750 kHz the track period is $4 \mu \mathrm{~s}$.

A simplified analog input model is presented in Figure 19. During tracking, the ADD input $\left(V_{\mathbb{I N}}\right)$ typically appears as a 380 pF capacitor being charged through a 420Ω internal switch resistance. The time constant is 160 ns . To charge this capacitor from an external "zero Ω " source to 0.5 LSB (1/8192), the charging time must be at least 9 time constants or $1.4 \mu \mathrm{~s}$. The maximum source impedance ($R_{\text {SOURCE }}$ Max) for a $4 \mu \mathrm{~s}$ acquisition time settling to within 0.5 LSB is 750Ω

If the clock frequency was slower, or the converter was not restarted immediately (causing a longer sample time), a higher source impedance could be tolerated.

FIGURE 19. ANALOG INPUT MODEL IN TRACK MODE

Reference Input

The reference input $V_{\text {REF }}{ }^{+}$should be driven from a low impedance source and be well decoupled.

As shown in Figure 20, current spikes are generated on the reference pin during each bit test of the successive approximation part of the conversion cycle as the charge-balancing capacitors are switched between $\mathrm{V}_{\text {REF }}{ }^{-}$and $\mathrm{V}_{\text {REF }}{ }^{+}$(clock periods 5-14). These current spikes must settle completely during each bit test of the conversion to not degrade the accuracy of the converter. Therefore $\mathrm{V}_{\mathrm{REF}}{ }^{+}$and $\mathrm{V}_{\text {REF }}-$ should be well bypassed. Reference input $\mathrm{V}_{\text {REF }}$ - is normally connected directly to the analog ground plane. If $\mathrm{V}_{\text {REF }}$ - is biased for nulling the converters offset it must be stable during the conversion cycle.

CONDITIONS: $\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{AA}^{+}}=5.0 \mathrm{~V}, \mathrm{~V}_{\text {REF }}{ }^{+}=4.608 \mathrm{~V}$,

$$
V_{I N}=2.3 \mathrm{~V}, \mathrm{CLK}=750 \mathrm{kHz}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}
$$

FIGURE 20. TYPICAL REFERENCE INPUT CURRENT

The HI5812 is specified with a 4.608 V reference, however, it will operate with a reference down to 3 V having a slight degradation in performance. A typical graph of accuracy vs reference voltage is presented.

Full Scale and Offset Adjustment

In many applications the accuracy of the HI5812 would be sufficient without any adjustments. In applications where accuracy is of utmost importance full scale and offset errors may be adjusted to zero.
The $\mathrm{V}_{\text {REF }}+$ and $\mathrm{V}_{\text {REF }}$ - pins reference the two ends of the analog input range and may be used for offset and full scale adjustments. In a typical system the $\mathrm{V}_{\text {REF }}$ - might be returned to a clean ground, and the offset adjustment done on an input amplifier. $\mathrm{V}_{\text {REF }}+$ would then be adjusted to null out the full scale error. When this is not possible, the $\mathrm{V}_{\text {REF }}$ - input can be adjusted to null the offset error, however, $\mathrm{V}_{\text {REF }}$ - must be well decoupled.

Full scale and offset error can also be adjusted to zero in the signal conditioning amplifier driving the analog input ($\mathrm{V}_{\mathbb{N}}$).

Control Signal

The HI5812 may be synchronized from an external source by using the STRT (Start Conversion) input to initiate conversion, or if STRT is tied low, may be allowed to free run. Each conversion cycle takes 15 clock periods.

The input is tracked from clock period 1 through period 3, then disconnected as the successive approximation takes place. After the start of the next period 1 (specified by T_{D} data), the output is updated.

The DRDY (Data Ready) status output goes high (specified by $T_{D 1}$ DRDY) after the start of clock period 1, and returns low (specified by $T_{D 2} D R D Y$) after the start of clock period 2.

The 12 data bits are available in parallel on tri-state bus driver outputs. When low, the $\overline{\text { OEM }}$ input enables the most significant byte (D4 through D11) while the $\overline{\mathrm{OEL}}$ input enables the four least significant bits (DO - D3). $T_{E N}$ and $T_{D I S}$ specify the output enable and disable times.

If the output data is to be latched externally, either the trailing edge of data ready or the next falling edge of the clock after data ready goes high can be used.
When STRT input is used to initiate conversions, operation is slightly different depending on whether an internal or external clock is used.

Figure 3 illustrates operation with an internal clock. If the $\overline{\text { STRT }}$ signal is removed (at least $\mathrm{T}_{\mathrm{R}} \overline{\text { STRT }}$) before clock period 1, and is not reapplied during that period, the clock will shut off after entering period 2 . The input will continue to track and the DRDY output will remain high during this time.
A low signal applied to $\overline{\operatorname{STRT}}$ (at least $T_{W} \overline{S T R T}$ wide) can now initiate a new conversion. The STRT signal (after a delay of ($\left.T_{D} \overline{S T R T}\right)$) causes the clock to restart.

Depending on how long the clock was shut off, the low portion of clock period 2 may be longer than during the remaining cycles.

The input will continue to track until the end of period 3, the same as when free running.

Figure 2 illustrates the same operation as above but with an external clock. If STRT is removed (at least $T_{R} \overline{S T R T}$) before clock period 2, a low signal applied to STRT will drop the DRDY flag as before, and with the first positive-going clock edge that meets the ($T_{S U} \overline{S T R T}$) setup time, the converter will continue with clock period 3.

Clock

The HI5812 can operate either from its internal clock or from one externally supplied. The CLK pin functions either as the clock output or input. All converter functions are synchronized with the rising edge of the clock signal.

Figure 21 shows the configuration of the internal clock. The clock output drive is low power: if used as an output, it should not have more than 1 CMOS gate load applied, and stray wiring capacitance should be kept to a minimum.

The internal clock will shut down if the AVD is not restarted after a conversion. The clock could also be shut down with an open collector driver applied to the CLK pin. This should only be done during the sample portion (the first three clock periods) of a conversion cycle, and might be useful for using the device as a digital sample and hold.

If an external clock is supplied to the CLK pin, it must have sufficient drive to overcome the internal clock source. The external clock can be shut off, but again, only during the sample portion of a conversion cycle. At other times, it must be above the minium frequency shown in the specifications. In the above two cases, a further restriction applies in that the clock should not be shut off during the third sample period for more than 1 ms . This might cause an internal charge-pump voltage to decay.

If the internal or external clock was shut off during the conversion time (clock cycles 4 through 15) of the ADD, the output might be invalid due to balancing capacitor droop.

An external clock must also meet the minimum TLow and $\mathrm{T}_{\text {HIGH }}$ times shown in the specifications. A violation may cause an internal miscount and invalidate the results.

FIGURE 21. INTERNAL CLOCK CIRCUITRY

Power Supplies and Grounding

$V_{D D}$ and $V_{S S}$ are the digital supply pins: they power all internal logic and the output drivers. Because the output drivers can cause fast current spikes in the $V_{D D}$ and $V_{S S}$ lines, V_{SS} should have a low impedance path to digital ground and $V_{D D}$ should be well bypassed.

Except for $\mathrm{V}_{A A^{+}}$, which is a substrate connection to V_{DD}, all pins have protection diodes connected to $V_{D D}$ and $V_{S S}$. Input transients above V_{DD} or below V_{SS} will get steered to the digital supplies.
The $\mathrm{V}_{\mathrm{AA}^{+}}$and $\mathrm{V}_{\mathrm{AA}^{-}}$terminals supply the charge-balancing comparator only. Because the comparator is autobalanced between conversions, it has good low-frequency supply rejection. It does not reject well at high frequencies however; $\mathrm{V}_{\mathrm{AA}^{-}}$should be returned to a clean analog ground and $\mathrm{V}_{\mathrm{AA}^{+}}$ should be RC decoupled from the digital supply as shown in Figure 22.

There is approximately 50Ω of substrate impedance between V_{DD} and $\mathrm{V}_{\mathrm{AA}}+$. This can be used, for example, as part of a low-pass RC filter to attenuate switching supply noise. A $10 \mu \mathrm{~F}$ capacitor from $\mathrm{V}_{\mathrm{AA}^{+}}$to ground would attenuate 30 kHz noise by approximately 40 dB . Note that back-to-back diodes should be placed from $V_{D D}$ to $V_{A A}+$ to handle supply to capacitor turn-on or turn-off current spikes.

Dynamic Performance

Fast Fourier Transform (FFT) techniques are used to evaluate the dynamic performance of the A/D. A low distortion sine wave is applied to the input of the A/D converter. The input is sampled by the ADD and its output stored in RAM. The data is than transformed into the frequency domain with a 4096 point FFT and analyzed to evaluate the converters dynamic performance such as SNR and THD. See typical performance characteristics.

Signal-To-Noise Ratio

The signal to noise ratio (SNR) is the measured RMS signal to RMS sum of noise at a specified input and sampling frequency. The noise is the RMS sum of all except the fundamental and the first five harmonic signals. The SNR is dependent on the number of quantization levels used in the converter. The theoretical SNR for an N-bit converter with no differential or integral linearity error is: $\mathrm{SNR}=(6.02 \mathrm{~N}+1.76)$ dB . For an ideal 12 -bit converter the SNR is 74 dB . Differential and integral linearity errors will degrade SNR.

$$
\text { SNR = } 10 \mathrm{log} \frac{\text { Sinewave Signal Power }}{\text { Total Noise Power }}
$$

Signal-To-Noise + Distortion Ratio

SINAD is the measured RMS signal to RMS sum of noise plus harmonic power and is expressed by the following.

$$
\text { SINAD }=10 \log \frac{\text { Sinewave Signal Power }}{\text { Noise }+ \text { Harmonic Power (2nd }-6 \text { th })}
$$

Effective Number of Bits

The effective number of bits (ENOB) is derived from the SINAD data;

$$
\mathrm{ENOB}=\frac{\text { SINAD }-1.76}{6.02}
$$

Total Harmonic Distortion

The total harmonic distortion (THD) is the ratio of the RMS sum of the second through sixth harmonic components to the fundamental RMS signal for a specified input and sampling frequency.

$$
\text { THD }=10 \log \frac{\text { Total Harmonic Power (2nd - 6th Harmonic) }}{\text { Sinewave Signal Power }}
$$

Spurious-Free Dynamic Range

The spurious-free dynamic range (SFDR) is the ratio of the fundamental RMS amplitude to the RMS amplitude of the next largest spur or spectral component. If the harmonics are buried in the noise floor it is the largest peak.

SFDR $=10 \log \frac{\text { Sinewave Signal Power }}{\text { Highest Spurious Signal Power }}$

TABLE 2. CODE TABLE

\dagger The voltages listed above represent the ideal lower transition of each output code shown as a function of the reference voltage.

FIGURE 22. GROUND AND SUPPLY DECOUPLING

Die Characteristics

DIE DIMENSIONS:
$3200 \mu \mathrm{~m} \times 3940 \mu \mathrm{~m}$

METALLIZATION:

Type: AlSi
Thickness: $11 \mathrm{k} \AA \pm 1 \mathrm{k} \AA$

GLASSIVATION:

Type: PSG
Thickness: $13 \mathrm{k} \AA \begin{aligned} & \\ & 2.5 \mathrm{k} \AA \\ & \AA\end{aligned}$
WORST CASE CURRENT DENSITY:
$1.84 \times 10^{5} \mathrm{Acm}^{2}$
Metallization Mask Layout
H15812

CMOS 3.3V, 25 μ s 12-Bit Sampling A/D Converter

Features

- $25 \mu \mathrm{~s}$ Conversion Time
- 40KSPS Throughput Rate
- Built-In Track and Hold
- Single +3.3V Supply Voltage
- 3.3mW Maximum Power Consumption $\left(+25^{\circ} \mathrm{C}\right)$

Applications

- Remote Low Power Data Acquisition Systems
- Battery Operated Systems
- Pen Based PC Handheld Scanners
- DSP Modems
- General Purpose DSP Front End
- $\mu \mathrm{P}$ Controlled Measurement Systems
- PCMCIA Type II Compliant
- PC Based Industrial Controls/DAQ Systems

Description

The HI5813 is a 3.3 V , very low power, 12-bit successive approximation analog-to-digital converter. It can operate from a single 3 V to 6 V supply and typically draws a maximum of 1.0 mA (at $+25^{\circ} \mathrm{C}$) when operating at 3.3V. The HI5813 features a built-in track and hold. The conversion time is as low as $25 \mu \mathrm{~s}$ with a 3.3 V supply.

The twelve data outputs feature full high speed CMOS tri-state bus driver capability, and are latched and held through a full conversion cycle. The output is user selectable: (i.e.) 12-bit, 8 -bit (MSBs), and/ or 4 -bit (LSBs). A data ready flag and conversion start input complete the digital interface.
The HI5813 is rated over the full industrial temperature range and is offered in 24 lead narrow body Plastic DIP, narrow body Ceramic DIP, and Plastic SOIC packages.

Ordering Information

PART NUMBER	INL (LSB) (MAXOVER TEMP.)	TEMP. RANGE	PACKAGE
HI5813JIP	± 4.0	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24 Lead Plastic DIP
HI5813KIP	± 2.5	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24 Lead Plastic DIP
HI5813JIB	± 4.0	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24 Lead Plastic SOIC
HI5813KIB	± 2.5	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24 Lead Plastic SOIC
HI5813JIJ	± 4.0	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24 Lead Ceramic DIP
HI5813KIJ	± 2.5	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24 Lead Ceramic DIP

Pinout

H 5813 (PDIP, CDIP, SOIC) TOP VIEW

DRDY 1	24.10
(LSB) DO 2	23 OEL
D1 3	22.10
D2 4	21 STRT
D3 5	$20 \mathrm{~V}_{\text {REF }}$
D4 6	19 VREF+
D5 7	18 V IN
D6 8	$17 \mathrm{~V}_{A A^{+}}$
D7 9	$16 \mathrm{~V}_{\text {AA }}$
D8 10	15 OEM
D9 11	14 D11 (MSB)
$\mathrm{V}_{\text {SS }} 12$	13 D10

Functional Block Diagram

 CLK $=500 \mathrm{kHz}$ (K suffix), Unless Otherwise Specified. (Continued)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	MIN	MAX	UNITS

ANALOG INPUT							
Input Current, Dynamic	At $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {REF }}+$, OV	-	± 50	± 100	-	± 100	$\mu \mathrm{A}$
Input Current, Static	Conversion Stopped	-	± 0.4	± 10	-	± 10	$\mu \mathrm{A}$
Input Bandwidth -3dB		-	1		-	-	MHz
Reference Input Current		-	160	-	-	-	$\mu \mathrm{A}$
Input Series Resistance, $\mathbf{R}_{\mathbf{S}}$	In Series with Input $C_{\text {SAMPLE }}$	-	420	-	-	-	Ω
Input Capacitance, $\mathrm{C}_{\text {SAMPLE }}$	During Sample State	-	380	-	-	-	pF
Input Capacitance, $\mathrm{C}_{\text {HOLD }}$	During Hold State	-	20	-	-	-	pF

DIGITAL INPUTS $\overline{O E L}, \overline{O E M}, \overline{\text { STRT }}$

High-Level Input Voltage, V_{IH}		2.4	-	-	2.4	-	V
Low-Level Input Voltage, V_{IL}		-	-	0.8	-	0.8	V
Input Leakage Current, I_{IL}	Except $\mathrm{CLK}, \mathrm{V}_{\mathbb{N}}=0 \mathrm{~V}, 5 \mathrm{~V}$	-	-	± 10		± 10	$\mu \mathrm{~A}$
Input Capacitance, $\mathrm{C}_{\mathbb{N}}$		-	10		-	-	pF

DIGITAL OUTPUTS	
High-Level Output Voltage, V_{OH}	$I_{\text {SOURCE }}=-400 \mu \mathrm{~A}$
Low-Level Output Voltage, V_{OL}	$I_{\text {SINK }}=1.6 \mathrm{~mA}$
Tri-State Leakage, I_{OZ}	Except DRDY, $\mathrm{V}_{\mathrm{OUT}}=0 \mathrm{~V}$, 3.3 V
Output Capacitance, $\mathrm{C}_{\text {OUT }}$	Except DRDY

2.6	-	-	2.6	-	V	
-	-	0.4	-	0.4	V	
-	-	± 10	-	± 10	$\mu \mathrm{~A}$	
	-	20	-	-	-	pF

TIMING

Conversion Time ($\mathrm{t}_{\mathrm{CONV}}+\mathrm{t}_{\mathrm{ACQ}}$) (Includes Acquisition Time)		25	-	-	25	-	$\mu \mathrm{s}$
		30	-	-	30	-	$\mu \mathrm{s}$
Clock Frequency	(Note 2)	0.05	-	0.75	0.05	0.75	MHz
Clock Pulse Width, $\mathrm{t}_{\text {LOW, }} \mathrm{t}_{\text {HIGH }}$	(Note 2)	100	-	-	100	-	ns
Aperture Delay, t_{D} APR	(Note 2)	-	35	50	-	70	ns
Clock to Data Ready Delay, $t_{\text {d }}$ DRDY	(Note 2)	-	180	210	-	240	ns
Clock to Data Ready Delay, t_{D2} DRDY	(Note 2)	-	180	220	-	250	ns
Start Removal Time, t_{R} STRT	(Note 2)	75	30	-	75	-	ns
Start Setup Time, $\mathrm{t}_{\mathbf{S}} \overline{\text { STRT }}$	(Note 2)	85	60	-	30	-	ns

Electrical Specifications $\quad V_{D D}=V_{A A^{+}}=V_{R E F^{+}}=3.3 V, V_{S S}=V_{A A^{-}}=V_{\text {REF }}=G N D, C L K=600 \mathrm{kHz}$ (J suffix $)$, CLK $=500 \mathrm{kHz}$ (K suffix), Unless Otherwise Specified. (Continued)

PARAMETER	TEST CONDITIONS	$+25^{\circ} \mathrm{C}$			$-40^{\circ} \mathrm{C}$ TO $+85^{\circ} \mathrm{C}$		UNITS
		MIN	TYP	MAX	MIN	MAX	
Start Pulse Width, $\mathrm{t}_{\text {W }} \overline{\text { STRT }}$	(Note 2)	-	15	25	-	25	ns
Start to Data Ready Delay, $\mathrm{t}_{\mathrm{D} 3}$ DRDY	(Note 2)	-	110	130	-	160	ns
Output Enable Delay, $\mathrm{t}_{\text {EN }}$	(Note 2)	-	65	75	-	80	ns
Output Disabled Delay, $\mathrm{t}_{\text {DIS }}$	(Note 2)	-	95	110	-	130	ns
POWER SUPPLY CHARACTERISTICS							
Supply Current, $\mathrm{I}_{\mathrm{DD}}+\mathrm{I}_{\text {AA }}$		-	0.5	1	-	2.5	mA

NOTES:

1. Dissipation rating assumes device is mounted with all leads soldered to printed circuit board.
2. Parameter guaranteed by design or characterization, not production tested.

Timing Diagrams

$\overline{\mathrm{OEL}}=\overline{\mathrm{OEM}}=\mathrm{V}_{\text {SS }}$
FIGURE 1. CONTINUOUS CONVERSION MODE

Timing Diagrams (Continued)

FIGURE 2. SINGLE SHOT MODE

FIGURE 3A.

FIGURE 3B.

FIGURE 3. OUTPUT ENABLE/DISABLE TIMING DIAGRAM

FIGURE 4. GENERAL TIMING LOAD CIRCUIT

FREQUENCY
FIGURE 5. FFT SPECTRUM

Typical Performance Curves

FIGURE 6. INL vs TEMPERATURE

FIGURE 8. OFFSET ERROR vs TEMPERATURE

FIGURE 10. SUPPLY CURRENT vs TEMPERATURE

FIGURE 7. DNL vs TEMPERATURE

FIGURE 9. FULL SCALE ERROR vs TEMPERATURE

FIGURE 11. DNL vs SUPPLY VOLTAGE

TABLE 1. PIN DESCRIPTION

PIN \#	NAME	DESCRIPTION
1	DRDY	Output flag signifying new data is available. Goes high at end of clock period 15. Goes low when new conversion is started.
2	D0	Bit-0 (Least significant bit, LSB)
3	D1	Bit-1
4	D2	Bit-2
5	D3	Bit-3
6	D4	Bit-4
7	D5	Bit-5
8	D6	Bit-6
9	D7	Bit-7
10	D8	Bit-8
11	D9	Bit-9
12	$\mathrm{V}_{\text {ss }}$	Digital ground, (OV).
13	D10	Bit-10
14	D11	Bit-11 (Most significant bit, MSB)
15	OEM	Tri-state enable for D4-D11. Active low input.
16	$\mathrm{V}_{\text {AA }}{ }^{-}$	Analog ground, (OV).
17	$\mathrm{V}_{\mathrm{AA}^{+}}$	Analog positive supply. (+3.3V) (See text)
18	V_{IN}	Analog input.
19	$\mathrm{V}_{\text {REF }}{ }^{+}$	Reference voltage positive input, sets 4095 code end of input range.
20	$\mathrm{V}_{\text {REF }}$	Reference voltage negative input, sets 0 code end of input range.
21	$\overline{\text { STRT }}$	Start conversion input active low, recognized after end of clock period 15.
22	CLK	CLK input. Conversion functions are synchronized to positive going edge. (See text)
23	$\overline{O E L}$	Tri-state enable for D0-D3. Active low input.
24	V_{DD}	Digital positive supply (+3.3V).

Theory of Operation

HI5813 is a CMOS 12-Bit Analog-to-Digital Converter that uses capacitor charge balancing to successively approximate the analog input. A binary weighted capacitor network forms the AD heart of the device. See the block diagram for the HI5813.

The capacitor network has a common node which is connected to a comparator. The second terminal of each capacitor is individually switchable to the input, $\mathrm{V}_{\text {REF }}+$ or $V_{\text {REF }}$ -

During the first three clock periods of a conversion cycle, the switchable end of every capacitor is connected to the input and the comparator is being auto balanced at the capacitor common node.

During the fourth period, all capacitors are disconnected from the input; the one representing the MSB (D11) is connected to the $\mathrm{V}_{\mathrm{REF}}+$ terminal; and the remaining capacitors to $\mathrm{V}_{\text {REF }}$-. The capacitor common node, after the charges balance out, will indicate whether the input was above $1 / 2$ of ($\mathrm{V}_{\text {REF }}+-\mathrm{V}_{\text {REF }}$). At the end of the fourth period, the comparator output is stored and the MSB capacitor is either left connected to $\mathrm{V}_{\text {REF }}+$ (if the comparator was high) or returned to $V_{\text {REF }}$. This allows the next comparison to be at either $3 / 4$ or $1 / 4$ of ($\left.V_{\text {REF }}+-V_{\text {REF }}-\right)$.
At the end of periods 5 through 14, capacitors representing D10 through D1 are tested, the result stored, and each capacitor either left at $\mathrm{V}_{\mathrm{REF}}+$ or at $\mathrm{V}_{\text {REF }}-$.
At the end of the 15th period, when the LSB (DO) capacitor is tested, (DO) and all the previous results are shifted to the output registers and drivers. The capacitors are reconnected to the input, the comparator returns to the balance state, and the data ready output goes active. The conversion cycle is now complete.

Analog Input

The analog input pin is a predominately capacitive load that changes between the track and hold periods of the conversion cycle. During hold, clock period 4 through 15, the input loading is leakage and stray capacitance, typically less than $5 \mu \mathrm{~A}$ and 20 pF .

At the start of input tracking, clock period 1, some charge is dumped back to the input pin. The input source must have low enough impedance to dissipate the current spike by the end of the tracking period. The amount of charge is dependent on supply and input voltages. The average current is also proportional to clock frequency.
As long as these current spikes settle completely by end of the signal acquisition period, converter accuracy will be preserved. The analog input is tracked for 3 clock cycles. With a clock of 500 kHz the track period is $6 \mu \mathrm{~s}$.
A simplified analog input model is presented in Figure 12. During tracking, the AD input ($\mathrm{V}_{\mathbf{I N}}$) typically appears as a 380 pF capacitor being charged through a 420Ω internal switch resistance. The time constant is 160 ns . To charge this capacitor from an external "zero Ω " source to 0.5 LSB (1/8192), the charging time must be at least 9 time constants or $1.4 \mu \mathrm{~s}$. The maximum source impedance ($R_{\text {SOURCE }}$ Max) for a $6 \mu \mathrm{~s}$ acquisition time settling to within 0.5 LSB is $1.3 \mathrm{k} \Omega$

If the clock frequency was slower, or the converter was not restarted immediately (causing a longer sample time), a higher source impedance could be tolerated.

$$
R_{\text {SOURCE (MAX) }}=\frac{-t_{A C Q}}{C_{\text {SAMPLE }} \ln \left[2^{-(\mathrm{N}+1)}\right]}-R_{\text {SW }}
$$

FIGURE 12. ANALOG INPUT MODEL IN TRACK MODE

Reference Input

The reference input $\mathrm{V}_{\mathrm{REF}}{ }^{+}$should be driven from a low impedance source and be well decoupled.
Current spikes are generated on the reference pin during each bit test of the successive approximation part of the conversion cycle as the charge balancing capacitors are switched between $\mathrm{V}_{\text {REF }}$ - and $\mathrm{V}_{\text {REF }}{ }^{+}$(clock periods 5-14). These current spikes must settle completely during each bit test of the conversion to not degrade the accuracy of the converter. Therefore $\mathrm{V}_{\text {REF }}{ }^{+}$and $\mathrm{V}_{\text {REF }}{ }^{-}$should be well bypassed. Reference input $V_{\text {REF }}$ - is normally connected directly to the analog ground plane. If $\mathrm{V}_{\text {REF }}$ - is biased for nulling the converters offset it must be stable during the conversion cycle.

Full Scale and Offset Adjustment

In many applications the accuracy of the HI5813 would be sufficient without any adjustments. In applications where accuracy is of utmost importance full scale and offset errors may be adjusted to zero.

The $\mathrm{V}_{\text {REF }}+$ and $\mathrm{V}_{\text {REF }}$ - pins reference the two ends of the analog input range and may be used for offset and full scale adjustments. In a typical system the $\mathrm{V}_{\text {REF- }}$ might be returned to a clean ground, and the offset adjustment done on an input amplifier. $V_{\text {REF }}+$ would then be adjusted to null out the full scale error. When this is not possible, the $\mathrm{V}_{\text {REF }}$ - input can be adjusted to null the offset error, however, $\mathrm{V}_{\text {REF }}$ - must be well decoupled.
Full scale and offset error can also be adjusted to zero in the signal conditioning amplifier driving the analog input ($\mathrm{V}_{\mathbb{I}}$).

Control Signal

The HI5813 may be synchronized from an external source by using the STRT (Start Conversion) input to initiate conversion, or if STRT is tied low, may be allowed to free run. Each conversion cycle takes 15 clock periods.

The input is tracked from clock period 1 through period 3, then disconnected as the successive approximation takes place. After the start of the next period 1 (specified by T_{D} data), the output is updated.

The DRDY (Data Ready) status output goes high (specified by $T_{D 1}$ DRDY) after the start of clock period 1, and returns low (specified by $\mathrm{T}_{\mathrm{D} 2} \mathrm{DRDY}$) after the start of clock period 2.
The 12 data bits are available in parallel on tri-state bus driver outputs. When low, the $\overline{\mathrm{OEM}}$ input enables the most significant byte (D4 through D11) while the $\overline{\mathrm{OEL}}$ input enables the four least significant bits (D0-D3). $T_{E N}$ and $T_{D I S}$ specify the output enable and disable times.

If the output data is to be latched externally, either the trailing edge of data ready or the next falling edge of the clock after data ready goes high can be used.
Figure 2 shows operation of the HI5813 when the STRT pin is used to initate a conversion. If $\overline{\text { STRT }}$ is taken high at least T_{R} STRT before clock period 1 and is not reapplied during that period, the converter will stay in the track mode and the

DRDY output will remain high. A low signal applied to $\overline{\text { STRT }}$ will bring the DRDY flag low and the conversion will continue with clock period 3 on the first positive going clock edge that meets the $\mathrm{T}_{\text {SU }} \overline{S T R T}$ setup time.

Clock

The clock used to drive the HI5813 can range in frequency from 50 kHz up to 750 kHz . All converter functions are synchronized with the rising edge of the clock signal. The clock can be shut off only during the sample (track) portion of the conversion cycle. At other times it must be above the minimum frequency shown in the specifications. In the above two cases, a further restriction applies in that the clock should not be shut off during the third sample period for more than 1 ms . This might cause an internal charge pump voltage to decay.
If the clock is shut off during the conversion time (clock cycles 4 through 15) of the A/D, the output might be invalid due to balancing capacitor droop.
The clock must also meet the minimum $\mathrm{T}_{\text {LOW }}$ and $\mathrm{T}_{\text {HIGH }}$ times shown in the specifications. A violation may cause an internal miscount and invalidate the results.

Power Supplies and Grounding

$V_{D D}$ and $V_{S S}$ are the digital supply pins: they power all internal logic and the output drivers. Because the output drivers can cause fast current spikes in the $V_{D D}$ and $V_{S S}$ lines, $V_{S S}$ should have a low impedance path to digital ground and $V_{D D}$ should be well bypassed.

Except for $\mathrm{V}_{\mathrm{AA}}{ }^{+}$, which is a substrate connection to V_{DD}, all pins have protection diodes connected to $V_{D D}$ and $V_{S S}$. Input transients above $V_{D D}$ or below $V_{S S}$ will get steered to the digital supplies.

The $\mathrm{V}_{A A^{+}}$and $\mathrm{V}_{\mathrm{AA}^{-}}$terminals supply the charge balancing comparator only. Because the comparator is autobalanced between conversions, it has good low frequency supply rejection. It does not reject well at high frequencies however; $\mathrm{V}_{\mathrm{AA}^{-}}$should be returned to a clean analog ground and $\mathrm{V}_{\mathrm{AA}^{+}}$ should be RC decoupled from the digital supply as shown in Figure 10.

There is approximately 50Ω of substrate impedance between $V_{D D}$ and $V_{A A}+$. This can be used, for example, as part of a low pass RC filter to attenuate switching supply noise. A $10 \mu \mathrm{~F}$ capacitor from $\mathrm{V}_{\mathrm{AA}}+$ to ground would attenuate 30 kHz noise by approximately 40 dB . Note that back to back diodes should be placed from V_{DD} to $\mathrm{V}_{\mathrm{AA}}+$ to handle supply to capacitor turn-on or turn-off current spikes.

Dynamic Performance

Fast Fourier Transform (FFT) techniques are used to evaluate the dynamic performance of the AD. A low distortion sine wave is applied to the input of the A/D converter. The input is sampled by the AVD and its output stored in RAM. The data is than transformed into the frequency domain with a 4096 point FFT and analyzed to evaluate the converters dynamic performance such as SNR and THD. See typical performance characteristics.

Signal-To-Noise Ratio

The signal to noise ratio (SNR) is the measured RMS signal to RMS sum of noise at a specified input and sampling frequency. The noise is the RMS sum of all except the fundamental and the first five harmonic signals. The SNR is dependent on the number of quantization levels used in the converter. The theoretical SNR for an N -bit converter with no differential or integral linearity error is: SNR $=(6.02 \mathrm{~N}+$ 1.76)dB. For an ideal 12 -bit converter the SNR is 74 dB . Differential and integral linearity errors will degrade SNR.

$$
\text { SNR }=10 \log \frac{\text { Sinewave Signal Power }}{\text { Total Noise Power }}
$$

Signal-To-Noise + Distortion Ratio

SINAD is the measured RMS signal to RMS sum of noise plus harmonic power and is expressed by the following.

$$
\text { SINAD }=10 \log \frac{\text { Sinewave Signal Power }}{\text { Noise + Harmonic Power (2nd - 6th) }}
$$

Effective Number of Bits

The effective number of bits (ENOB) is derived from the SINAD data;

$$
\text { ENOB }=\frac{\text { SINAD }-1.76}{6.02}
$$

Total Harmonic Distortion

The total harmonic distortion (THD) is the ratio of the RMS sum of the second through sixth harmonic components to the fundamental RMS signal for a specified input and sampling frequency.

Spurious-Free Dynamic Range

The spurious-free dynamic range (SFDR) is the ratio of the fundamental RMS amplitude to the rms amplitude of the next largest spur or spectral component. If the harmonics are buried in the noise floor it is the largest peak.

HI5813

TABLE 2. CODE TABLE

CODE DESCRIPTION	$\begin{gathered} \text { INPUT } \\ \text { VOLTAGE } \dagger \\ \mathbf{V}_{\text {REF }}+=3.3 \mathrm{~V} \\ \mathbf{V}_{\text {REF }}=0.0 \mathrm{O} \\ \text { (V) } \end{gathered}$	DECIMAL COUNT	BINARY OUTPUT CODE											
			MSB LSB											
			D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	DO
Full Scale (FS)	3.2992	4095	1	1	1	1	1	1	1	1	1	1	1	1
FS - 1 LSB	3.2984	4094	1	1	1	1	1	1	1	1	1	1	1	0
$3 / 4$ FS	2.4750	3072	1	1	0	0	0	0	0	0	0	0	0	0
$1 / 2 \mathrm{FS}$	1.6500	2048	1	0	0	0	0	0	0	0	0	0	0	0
$1 / 4 \mathrm{FS}$	0.8250	1024	0	1	0	0	0	0	0	0	0	0	0	0
1 LSB	0.00080566	1	0	0	0	0	0	0	0	0	0	0	0	1
Zero	0	0	0	0	0	0	0	0	0	0	0	0	0	0

\dagger The voltages listed above represent the ideal lower transition of each output code shown as a function of the reference voltage.

FIGURE 13. GROUND AND SUPPLY DECOUPLING

Die Characteristics

DIE DIMENSIONS:

$3200 \mu \mathrm{~m} \times 3940 \mu \mathrm{~m}$
METALLIZATION:
Type: AISi
Thickness: $11 \mathrm{k} \AA \pm 1 \mathrm{k} \AA$
GLASSIVATION:
Type: PSG
Thickness: $13 \mathrm{k} \AA \pm 2.5 \mathrm{k} \AA$
WORST CASE CURRENT DENSITY:
$1.84 \times 10^{5} \mathrm{Alm}^{2}$

Metallization Mask Layout

PAGE
AND CONVERTERS - FLASH SELECTION GUIDE 6-2
AD CONVERTERS - FLASH DATA SHEETS
CA3304 CMOS Video Speed 4-Bit Flash ADD Converter 6-5
CA3306 CMOS Video Speed 6-Bit Flash A/D Converter 6-16
CA3318C CMOS Video Speed 8-Bit Flash AD Converter 6-31
HI1166 8-Bit, 250MSPS Flash AD Converter 6-43
HI1276 8-Bit, 500MSPS Flash ADD Converter 6-54
HI1386 8-Blt, 75MSPS Flash AD Converter 6-64
HI1396 8-Bit, 125MSPS Flash AVD Converter 6-72
HI-5700 8-Bit, 20MSPS Flash AVD Converter. 6-81
HI-5701 6-Bit, 30MSPS Flash AD Converter 6-93

NOTE: Bold Type Designates a New Product from Harris.

4-BIT FLASH A/D CONVERTER

DEVICE	SUFFIX CODE	OUTPUTS	CONVERSION	CONVERSION TIME (ns)	TECHNOLOGY	RANGE MIN (V)	$\begin{aligned} & \text { INL } \\ & \text { (LSB) } \end{aligned}$	$\begin{aligned} & \text { DNL } \\ & \text { (LSB) } \end{aligned}$	FEATURES
CA3304A	D	Parallel, Binary, 4-Bit Latch, Three-State	Flash	40	cMOS-s.o.s.	2.0	± 0.125	± 0.125	Low Power - 25 mW Typ at 25 MSPS
CA3304A	E						± 0.125	± 0.125	
САЗ304	D						± 0.25	± 0.25	
CA3304	E						± 0.25	± 0.25	

6-BIT FLASH A/D CONVERTER

DEVICE	SUFFIX CODE	MIL SPEC	OUTPUTS	CONVERSION	CONVERSION TIME (ns)	TECHNOLOGY	RANGE MIN (V)	$\begin{aligned} & \text { INL } \\ & \text { (LSB) } \end{aligned}$	DNL (LSB)	FEATURES
CA3306A	D		Parallel, Binary, 6-Bit Latch, ThreeState	Flash	67	cmos-s.o.s.	5.0	± 0.25	± 0.25	Low Power - 70 mW Typ at 15 MSPS, $1 \mathrm{k} \Omega$ Ladder Resistance, Replaces Micropower MP7682
CA3306A	E				67			± 0.25	± 0.25	
САЗ306	D				67			± 0.5	± 0.5	
САЗ306	E				67			± 0.5	± 0.5	
СА3306	M				67			± 0.5	± 0.5	
САЗ306	J3				100			± 0.5	± 0.5	
CA3306C	D				100			± 0.5	± 0.5	
CA3306C	E				100			± 0.5	± 0.5	
CA3306C	M				100			± 0.5	± 0.5	
CA3306C	J3				100			± 0.5	± 0.5	
HI3-5701K	-5	H11-5701T/883			33	cmos-J	4.0	± 1.25	± 0.6	Low cost MP7682 Second Source
HI9P5701K	-5	H11-5701T/883			33			± 1.25	± 0.6	
HI3-5701B	-9	H11-5701T/883			33			± 1.25	± 0.6	
HI9P5701B	-9	H11-5701T/883			33			± 1.25	± 0.6	

8-BIT FLASH A/D CONVERTER

DEVICE	SUFFIX CODE	MIL SPEC	OUTPUTS	CONVERSION	$\begin{aligned} & \text { CONVERSION } \\ & \text { TIME (ns) } \end{aligned}$	BAND WIDTH (MHz)	TECHNOLOGY	RANGE $\operatorname{MIN}(\mathrm{V})$	$\begin{gathered} \text { INL } \\ \text { (LSB) } \end{gathered}$	DNL (LSB)	FEATURES
CA3318C	D		Parallel, Binary, 3-Bit Latch, Three-State	Flash	67	2.5	CMOS-S.O.S.	6.4	± 1.5	$\pm 1.0-0.8$	Lowest Power 8-Bit
CA3318C	E				67	2.5	CMOS-S.O.S.	6.4	± 1.5	$\pm 1.0-0.8$	Flash
CA3318C	M				67	2.5	CMOS-S.O.S.	6.4	± 1.5	$\pm 1.0-0.8$	
HI3-5700J	-5	HI1-5700S/883			50	18	CMOS-JI	4	± 2.0	± 0.9	MP7684 Second
H19P5700J	-5	HI1-5700S/883			50	18	CMOS-JI	4	± 2.0	± 0.9	Source
HI3-5700A	-9	H11-5700S/883			50	18	CMOS-JI	4	± 2.0	± 0.9	
H19P5700A	-9	HI1-5700S/883			50	18	CMOS-JI	4	± 2.0	± 0.9	
HI1386JCP			Parallel, Binary, 8-Bit Latch		13	150	Bipolar	2	± 0.5	± 0.5	High Performance Low Power 580 mW Typ at 75 MSPS
HI1386AIL					13	150	Bipolar	2	± 0.5	± 0.5	
HI1396JCJ					8	200	Bipolar	2	± 0.5	± 0.5	High Performance Low Power 870mW Typ at 125 MSPS
HI1396AIL					8	200	Bipolar	2	± 0.5	± 0.5	
HI1396JCP					8	200	Bipolar	2	± 0.5	± 0.5	
HI1166AIL					4	250	Bipolar	2	± 0.5	± 0.5	High Performance Low Power 1.4W Typ at 250 MSPS
HI1276AIL					2.5	300	Bipolar	2	± 0.5	± 0.5	High Performance Low Power 2.2W Typ at 500 MSPS

CMOS Video Speed
 \section*{\title{
CMOS Video Speed 4-Bit Flash AD Converter
}} 4-Bit Flash AD Converter
}}

Features

- CMOS/SOS Low Power with Video Speed (25mW Typ.)
- Parallel Conversion Technique
- Single Power Supply Voltage (3V to 7.5V)
- 25MHz Sampling Rate (40ns Conversion Time) at 5V Supply
- 4-Bit Latched Tri-State Output with Overflow and Data Change Outputs
- $1 / 8$ LSB Maximum Nonlinearity (A Version)
- Inherent Resistance to Latch-Up Due to SOS Process
- Bipolar Input Range with Optional Second Supply
- Wide Input Bandwidth (25MHz Typ.)

Applications

- TV Video Digitizing (Industrial/Security)
- High Speed AVD Conversion
- Ultrasound Signature Analysis
- Transient Signal Analysis
- High Energy Physics Research
- General-Purpose Hybrid ADCs
- Optical Character Recognition
- Radar Pulse Analysis
- Motion Signature Analysis
- Robot Vision

Description

The Harris CA3304 is a CMOS parallel (FLASH) analog-todigital converter designed for applications demanding both low-power consumption and high speed digitization. Digitizing at 25 MHz , for example, requires only about 35 mW .
The CA3304 operates over a wide, full-scale signal input voltage range of 0.5 V up to the supply voltage. Power consumption is as low as 10 mW , depending upon the clock frequency selected.

The intrinsic high conversion rate makes the CA3304 types ideally suited for digitizing high speed signals. The overflow bit makes possible the connection of two or more CA3304s in series to increase the resolution of the conversion system. A series connection of two CA3304s may be used to produce a 5 -bit, 25 MHz converter. Operation of two CA3304s in parallel doubles the conversion speed (i.e., increases the sampling rate from 25 MHz to 50 MHz . A data change pin indicates when the present output differs from the previous, thus allowing compaction of data storage.
Sixteen paralleled auto-balanced voltage comparators measure the input voltage with respect to a known reference to produce the parallel-bit outputs in the CA3304. Fifteen comparators are required to quantize all input voltage levels in this 4-bit converter, and the additional comparator is required for the overflow bit.

Ordering Information

PART NUMBER	LINEARITY (INL, DNL)	SAMPLING RATE	TEMPERATURE RANGE	PACKAGE
CA3304E	$\pm 0.25 \mathrm{LSB}$	$25 \mathrm{MHz}(40 \mathrm{~ns})$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Lead Plastic DIP
CA3304AE	$\pm 0.125 \mathrm{LSB}$	$25 \mathrm{MHz}(40 \mathrm{~ns})$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Lead Plastic DIP
CA3304M	$\pm 0.25 \mathrm{LSB}$	$25 \mathrm{MHz}(40 \mathrm{~ns})$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Lead Plastic SOIC (W)
CA3304AM	$\pm 0.125 \mathrm{LSB}$	$25 \mathrm{MHZ} \mathrm{(40ns)}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Lead Plastic SOIC (W)
CA3304D	$\pm 0.25 \mathrm{LSB}$	$25 \mathrm{MHz}(40 \mathrm{~ns})$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
CA3304AD	$\pm 0.125 \mathrm{LSB}$	$25 \mathrm{MHz}(40 \mathrm{~ns})$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead Ceramic DIP

Pinout

| CA3304 (CDIP, PDIP, SOIC) | |
| :--- | :--- | :--- | :--- | :--- |
| TOP VIEW | |
| BIT 1 (LSB) | 1 |
| BIT 2 | 2 |
| BIT 3 | $\boxed{3}$ |
| BIT 4 | 4 |

Specifications CA3304, CA3304A

Absolute Maximum Ratings

Thermal Resistance	$\theta^{\text {JA }}$	${ }^{\text {Jc }}$
CA3304D.	$80^{\circ} \mathrm{CM}$	$16^{\circ} \mathrm{C} / \mathrm{W}$
CA3304E	$100^{\circ} \mathrm{C} / \mathrm{N}$	-
CA3304M.	$100^{\circ} \mathrm{C} / \mathrm{W}$	-
Maximum Power Dissipation.		241 mW
Junction Temperature		
Ceramic Package		$+175^{\circ} \mathrm{C}$
Plastic Package.		$+150^{\circ} \mathrm{C}$
Operating Temperature		
CA3304D..	-55°	10 $+125^{\circ} \mathrm{C}$
CA3304E, CA3304M	-40	to $+85^{\circ} \mathrm{C}$

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Recommended Operating Conditions

Recommended Supply Voltage Range (V_{DD} or $\mathrm{V}_{A A^{+}}$) 3 V to 7.5 V Recommended $\mathrm{V}_{A A^{-}}$Voltage Range $\ldots . . \ldots . \mathrm{V}_{S S}-2.5 \mathrm{~V}$ to $\mathrm{V}_{S S}+1 \mathrm{~V}$ Recommended $\mathrm{V}_{\mathrm{AA}}+$ Voltage Range $\ldots . .$.

Electrical Specifications $\quad T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{REF}}{ }^{+}=2 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{AA}^{+}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{AA}}{ }^{-}=\mathrm{V}_{\mathrm{REF}}=\mathrm{V}_{\mathrm{SS}}=\mathrm{GND}, \mathrm{f}_{\mathrm{CLK}}=25 \mathrm{MHz}$ Unless Otherwise Specified

PARAMETERS			TEST CONDITIONS	MIN	TYP	MAX	UNITS
SYSTEM PERFORMANCE							
Resolution				4	-	-	Bits
Input Errors	Integral Linearity Error	CA3304A		-	± 0.1	± 0.125	LSB
		CA3304		-	± 0.125	± 0.25	LSB
	Differential Linearity Error	CA3304A		-	± 0.1	± 0.125	LSB
		САЗ304		\bullet	± 0.125	± 0.25	LSB
	Offset Error (Unadjusted)	CA3304A		-	-	± 0.75	LSB
		CA3304		-	-	± 1.0	LSB
	Gain Error (Unadjusted)	CA3304A		\bullet	-	± 0.75	LSB
		CA3304		-	-	± 1.0	LSB

DYNAMIC CHARACTERISTICS (Input Signal Level 0.5dB Below Full Scale)						
Conversion Timing	Aperture Delay		-	3	-	ns
Signal to Noise Ratio (SNR)$=$ RMS Signal		$\mathrm{F}_{\mathrm{S}}=25 \mathrm{MHz}, \mathrm{f}_{\mathrm{IN}}=100 \mathrm{kHz}$	-	23.7	\bullet	dB
		$\mathrm{F}_{\mathrm{S}}=25 \mathrm{MHz}, \mathrm{f}_{\text {IN }}=5 \mathrm{MHz}$	-	23.6	-	dB
Signal to Noise Ratio (SINAD) RMS Signal		$\mathrm{F}_{\mathrm{S}}=25 \mathrm{MHz}, \mathrm{f}_{\mathrm{IN}}=100 \mathrm{kHz}$	\bullet	23.4	-	dB
		$\mathrm{F}_{\mathrm{S}}=25 \mathrm{MHz}, \mathrm{f}_{\mathrm{I}}=5 \mathrm{MHz}$	-	22.8	-	dB
Total Harmonic Distortion, THD		$\mathrm{F}_{\mathrm{S}}=25 \mathrm{MHz}, \mathrm{f}_{\mathrm{IN}}=100 \mathrm{kHz}$	-	-34.5	-	dBc
		$\mathrm{F}_{\mathrm{S}}=25 \mathrm{MHz}, \mathrm{f}_{\text {IN }}=5 \mathrm{MHz}$	-	-31.0	-	dBc
Effective Number of Bits (ENOB)		$\mathrm{F}_{\mathrm{S}}=25 \mathrm{MHz}, \mathrm{f}_{\mathrm{IN}}=100 \mathrm{kHz}$	\bullet	3.67	-	Bits
		$\mathrm{F}_{\mathrm{S}}=25 \mathrm{MHz}, \mathrm{f}_{\mathrm{N}}=5 \mathrm{MHz}$	\bullet	3.57	-	Bits
ANALOG INPUTS						
Input Range	Full Scale Input Range	(Notes 1, 4)	0.5	\bullet	$\mathrm{V}_{\text {AA }}$	V
Input Loading	Input Capacitance		-	10	-	pF
	Input Current	$\mathrm{V}_{\text {IN }}=2.0 \mathrm{~V}$ (Note 2)	\bullet	150	200	$\mu \mathrm{A}$
Allowable Input Bandwidth		(Note 4)	-	25	$\mathrm{f}_{\mathrm{CLK}}{ }^{12}$	MHz
-3dB Input Bandwidth			-	40	-	MHz

Electrical Specifications $\quad T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{REF}}{ }^{+}=2 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{AA}^{+}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{AA}^{-}}=\mathrm{V}_{\mathrm{REF}}{ }^{-}=\mathrm{V}_{\mathrm{SS}}=\mathrm{GND}, \mathrm{f}_{\mathrm{CLK}}=25 \mathrm{MHz}$ Unless Otherwise Specified (Continued)

PARAMETERS			TEST CONDITIONS	MIN	TYP	MAX	UNITS
REFERENCE INPUTS							
Input Range	$\mathrm{V}_{\text {REF }}+$ Range		(Note 4)	$\mathrm{V}_{\mathrm{A}^{-}+0.5}$	-	$\mathrm{V}_{\text {AA }}{ }^{+}$	V
	$\mathrm{V}_{\text {REF }}$-Range		(Note 4)	$\mathrm{V}_{A A^{-}}$	-	$\mathrm{V}_{\text {AA }}+-0.5$	V
Input Loading	Resistor Ladder Impedance		$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}, \mathrm{CLK}=$ Low	640	-	960	Ω
DIGITAL INPUTS							
Digital Input	Maximum $\mathrm{V}_{\text {IN }}$, Low	CLOCK	(Notes 3, 4)	-	-	$0.3 \times \mathrm{V}_{\text {AA }}$	V
		$\overline{\mathrm{CE} 1, ~ C E 2}$	(Note 4)	-	-	$0.3 \times \mathrm{V}_{\mathrm{DD}}$	V
	Minimum $\mathrm{V}_{\text {IN }}$, High	CLOCK	(Notes 3, 4)	$0.7 \times \mathrm{V}_{\text {AA }}$	-	-	V
		$\overline{\mathrm{CE1}}, \mathrm{CE} 2$	(Note 4)	$0.7 \times V_{\text {DD }}$	-	-	V
	Input Leakage, Except CLK		$\mathrm{V}=0 \mathrm{~V}, 5 \mathrm{~V}$	-	-	± 1	$\mu \mathrm{A}$
	Input Leakage, CLK		(Note 3)	-	± 100	± 150	$\mu \mathrm{A}$
DIGITAL OUTPUTS							
Digital Outputs	Output Low (Sink) Current		$\mathrm{V}_{0}=0.4 \mathrm{~V}$	6	-	-	mA
	Output High (Source) Current		$\mathrm{V}_{0}=4.6 \mathrm{~V}$	-3	-	-	mA
	Tri-State Leakage Current		$\mathrm{V}_{0}=0 \mathrm{~V}, 5 \mathrm{~V}$	-	± 0.2	± 5	$\mu \mathrm{A}$
TIMING CHARACTERISTICS							
Conversion Timing	Maximum Conversion Speed		CLK = Square Wave	25	35	-	MSPS
	Auto-Balance Time ($\dagger 1$)			20	-	-	ns
	Sample Time ($\phi 2$)			20	-	5000	ns
Output Timing	Data Valid Delay		(Note 4)	-	30	40	ns
	Data Hold Time		(Note 4)	15	25	-	ns
	Output Enable Time			-	15	-	ns
	Output Disable Time			-	10	-	ns
POWER SUPPLY CHARACTERISTICS							
Device Current, $\mathrm{I}_{\text {AA }}$			Continuous Clock	-	5.5	-	mA
			Continuous $\mathbf{\phi}^{2}$	-	0.4	-	mA
			Continuous $\phi 1$	-	2	-	mA
Device Current, $\mathrm{IDD}^{\text {d }}$			Continuous Clock	-	1.5	-	mA
	$\begin{aligned} & \mathrm{V}_{\mathrm{AA}}+=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=\overline{\mathrm{CE1}}=\mathrm{V}_{\mathrm{AA}^{-}}=\mathrm{CLK} \\ & =\mathrm{GND} \end{aligned}$		Continuous ¢ 2	-	5	10	mA
	$\mathrm{V}_{\mathrm{AA}^{+}}=7 \mathrm{~V}$		Continuous ${ }^{\text {1 }} 1$	-	5	20	mA

NOTES:

1. Full scale input range, $\mathrm{V}_{\text {REF }}+-\mathrm{V}_{\text {REF }}$, may be in the range of 0.5 V to $\mathrm{V}_{A A^{+}}-\mathrm{V}_{\mathrm{AA}}$ - volts. Linearity errors increase at lower full scale ranges, however.
2. Input current is due to energy transferred to the input at the start of the sample period. The average value is dependent on input and V_{DD} voltage.
3. The CLK input is a CMOS inverter with a $50 \mathrm{k} \Omega$ feedback resistor. It operates from the $V_{A A}+$ and $V_{A A}$ - supplies. It may be $A C$-coupled with a 1 V peak-to-peak minimum source.
4. Parameter not tested, but guaranteed by design or characterization.

Pin Description

PIN NUMBER	NAME	DESCRIPTION
1	Bit 1	Bit 1 (LSB)
2	Bit 2	Bit 2
3	Bit 3	Bit 3 Output Data Bits
4	Bit 4	Bit 4 (MSB) (High = True)
5	DC	Data Change
6	OF	Overflow
7	CE2	Tri-state output enable input, active low. See the Chip Enable Truth Table.
8	$\mathrm{V}_{\text {S }}$	Digital Ground
9	CE1	Tri-state output enable input, active high. See the Chip Enable Truth Table.
10	$\mathrm{V}_{\mathrm{AA}^{+}}$	Analog power supply, +5 V
11	$\mathrm{V}_{\text {IN }}$	Analog signal input
12	$\mathrm{V}_{\text {REF }}{ }^{+}$	Reference Voltage Positive Input
13	$\mathrm{V}_{\text {REF }}{ }^{-}$	Reference Voltage Negative Input
14	$\mathrm{V}_{\mathrm{AA}^{-}}$	Analog Ground
15	CLK	Clock Input
16	$V_{D D}$	Digital Power Supply, +5 V

CHIP ENABLE TRUTH TABLE

CE1	CE2	BIT 1-BIT 4	DC, OF
0	1	Valid	Valid
1	1	Tri-State	Valid
X	0	Tri-State	Tri-State

$X=$ Don't Care
tABLE 1. OUTPUT CODE TABLE

	INPUT VOLTAGE (V)					OUTPUT CODE					DECIMAL COUNT
$\begin{gathered} \text { CODE } \\ \text { DESCRIPTION } \end{gathered}$	$\begin{aligned} & \mathbf{V}_{\text {REF }}=1 \mathrm{iV} \\ & \mathbf{V}_{\text {REF }}=-1 \mathrm{~V} \end{aligned}$	$\begin{gathered} 1.6 \mathrm{~V} \\ 0 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 2 \mathrm{~V} \\ & \mathrm{OV} \end{aligned}$	$\begin{gathered} 3.2 \mathrm{~V} \\ \mathrm{oV} \\ \hline \end{gathered}$	$\begin{gathered} 4.8 \mathrm{~V} \\ \mathrm{OV} \end{gathered}$	OF	B4	B3	B2	B1	
Zero	-1.000	0	0	0	0	0	0	0	0	0	0
1 LSB	-0.875	0.1	0.125	0.2	0.3	0	0	0	0	1	1
2 LSB	-0.750	0.2	0.250	0.4	0.6	0	0	0	1	0	2
-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-
1/2 Full Scale -1 LSB	-0.125	0.7	0.875	1.4	2.1	0	0	1	1	1	7
$1 / 2$ Full Scale	0	0.8	1.000	1.6	2.4	0	1	0	0	0	8
$1 / 2$ Full Scale +1 LSB	0.125	0.9	1.125	1.8	2.7	0	1	0	0	1	9
-		-		-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-
Full Scale-1 LSB	0.750	1.4	1.750	2.8	4.2	0	1	1	1	0	14
Full Scale	0.875	1.5	1.875	3.0	4.5	0	1	1	1	1	15
Overflow	1.000	1.6	2.000	3.2	4.8	1	1	1	1	1	31
Step Size	0.125	0.1	0.125	0.2	0.3						

NOTES:

1. The voltages listed are the ideal centers of each output code shown as a function of its associated reference voltage See Ideal Transfer Curve Figure 6. The output code should exist for an input equal to the ideal center voltage $\pm 1 / 2$ of the step size.

Functional Diagram

*Cascaded Auto Balance (CAB)
NOTE: $\overline{C E 1}$ and CE2 inputs and data outputs have standard CMOS protection networks to $V_{D D}$ and $V_{S S}$. Analog inputs and clock have standard $C M O S$ protection networks to $\mathrm{V}_{A A^{+}}$and $\mathrm{V}_{A A^{-}}$.

Timing Diagrams

FIGURE 1. TIMING DIAGRAM

FIGURE 2. OUTPUT ENABLE/DISABLE TIMING

Timing Diagrams (Continued)

FIGURE 3A.
With $\phi 2$ as standby state (fastest method, but standby limited to $5 \mu \mathrm{~s}$ maximum)

With $\phi 1$ as standby state (indefinite standby, double pulse needed)

FIGURE 3B.
FIGURE 3 B

FIGURE 3C.
With $\phi 2$ as standby state (indefinite standby, lower power than 3B)
FIGURE 3. PULSE-MODE TIMING DIAGRAMS

Typical Performance Curves

FIGURE 4. DATA DELAY vs TEMPERATURE

FIGURE 5. DEVICE CURRENT vs SAMPLE FREQUENCY

FIGURE 6. NON-LINEARITY vs TEMPERATURE

FIGURE 8. NON-LINEARITY vs SAMPLE FREQUENCY

FIGURE 10. EFFECTIVE BITS vs INPUT FREQUENCY

figure 7. NON-LINEARITY vs REFERENCE VOLTAGE

FIGURE 9. EFFECTIVE BITS vs TEMPERATURE

FIGURE 11. DEVICE CURRENT vs TEMPERATURE

Typical Performance Curves (Continued)

FIGURE 12A. TYPICAL CA3304 UNIPOLAR CIRCUIT CONFIGURATION

FIGURE 12B. TYPICAL CA3304 BIPOLAR CIRCUIT CONFIGURATION
FIGURE 12.

Description

Device Operation

A sequential parallel technique is used by the CA3304 converter to obtain its high speed operation. The sequence consists of the "Auto Balance" phase and the "Sample Unknown" phase (Refer to the circuit diagram). Each conversion takes one clock cycle. \dagger The "Auto Balance" ($\phi 1$) occurs during the Low period of the clock cycle, and the "Sample Unknown" ($\phi 2$) occurs during the High period of the clock cycle.
\dagger This device requires only a single-phase clock. The terminology of $\phi 1$ and $\phi 2$ refers to the High and Low periods of the same clock.

During the "Auto Balance" phase, a transmission-gate switch is used to connect each of 16 commutating capacitors to their associated ladder reference tap. Those tap voltages will be as follows:

$$
\begin{aligned}
V_{\text {TAP }}(N) & =\left[\left(V_{\text {REF }} / 16\right) \times N\right]-\left[V_{\text {REF }} /(2 \times 16)\right] \\
& =V_{\text {REF }}[(2 N-1) / 32] \\
\text { Where: } V_{\text {TAP }}(N) & =\text { Reference ladder tap voltage at point } N . \\
V_{\text {REF }} & =\text { Voltage across } V_{\text {REF }}-\text { to } V_{\text {REF }}+ \\
N & =\text { Tap number }(1 \text { through } 16)
\end{aligned}
$$

The other side of the capacitor is connected to a singlestage inverting amplifier whose output is shorted to its input by a switch. This biases the amplifier at its intrinsic trip point, which is approximately $\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}\right) / 2$. The capacitors now charge to their associated tap voltages, priming the circuit for the next phase.

In the "Sample Unknown" phase, all ladder tap switches are opened, the comparator amplifiers are no longer shorted, and $\mathrm{V}_{\mathbb{N}}$ is switched to all 16 capacitors. Since the other end of the capacitor is now looking into an effectively open circuit, any voltage that differs from the previous tap voltage will appear as a voltage shift at the comparator amplifiers. All comparators whose tap voltages were lower than V_{IN} will drive the comparator outputs to a "low" state. All comparators whose tap voltages were higher than $V_{I N}$ will drive the comparator outputs to a "high" state. A second, capacitorcoupled, auto-zeroed amplifier further amplifies the outputs.

The status of all these comparator amplifiers are stored at the end of this phase ($\phi 2$), by a secondary latching amplifier stage. Once latched, the status of the 16 comparators is decoded by a 16 to 5 bit decode array and the results are clocked into a storage register at the rising edge of the next $\$ 2$.

If the input is greater than $31 / 32 \times V_{\text {REF }}$, the overflow output will go "high". (The bit outputs will remain high). If the output differs from that of the previous conversion, the data change output will go "high".
A tri-state buffer is used at the output of the 7 storage registers which are controlled by two chip-enable signals. CE1 will independently disable B1 through B4 when it is in a high state. CE2 will independently disable B1 through B4 and the OF and DC buffers when it is in the low state.

Continuous Clock Operation

One complete conversion cycle can be traced through the CA3304 via the following steps. (Refer to timing diagram Figure 3). The rising edge of the clock input will start a "sample" phase. During this entire "High" state of the clock, the 16 comparators will track the input voltage and the 16 latches will track the comparator outputs. At the falling edge of the clock, all 16 comparator outputs are captured by the 16 latches. This ends the "sample" phase and starts the "auto balance" phase for the comparators. During this "Low" state of the clock the output of the latches propagates through the decode array and a 6-bit code appears at the D inputs of the output registers. On the next rising edge of the clock, this 6-bit code is shifted into the output registers and appears with time delay t_{D} as valid data at the output of the tri-state drivers. This also marks the start of a new "sample" phase, thereby repeating the conversion process for this next cycle.

Pulse Mode Operation

For sampling high speed nonrecurrent or transient data, the converter may be operated in a pulse mode in one of three ways. The fastest method is to keep the converter in the Sample Unknown phase, $\phi 2$, during the standby state. The device can now be pulsed through the Auto Balance phase with as little as 20 ns . The analog value is captured on the leading edge of $\phi 1$ and is transferred into the output registers on the trailing edge of $\phi 1$. We are now back in the standby state, $\phi 2$, and another conversion can be started within 20ns, but not later than 5μ s due to the eventual droop of the commutating capacitors. Another advantage of this method is that it has the potential of having the lowest power drain. The larger the time ratio between $\phi 2$ and $\phi 1$, the lower the power consumption. (See Timing Diagram Figure 3A).

The second method uses the Auto Balance phase, $\phi 1$, as the standby state. In this state the converter can stay indefinitely waiting to start a conversion. A conversion is performed by strobing the clock input with two $\$ 2$ pulses. The first pulse starts a Sample Unknown phase and captures the analog value in the comparator latches on the trailing edge. A second $\$ 2$ pulse is needed to transfer the date into the output registers. This occurs on the leading edge of the second pulse. The conversion now takes place in 40 ns , but the repetition rate may be as slow as desired. The disadvantage to this method is the slightly higher device dissipation due to the low ratio of $\phi 2$ to $\phi 1$. (See Timing Diagram Figure 3B).

For applications requiring both indefinite standby and lowest power, standby can be in the $\$ 2$ (Sample Unknown) state with two $\phi 1$ pulses to generate valid data (see Figure 3C). The conversion process now takes 60ns. [Note that the above numbers do not include the t_{D} (Output Delay) time.]

Increased Accuracy

In most case the accuracy of the CA3304 should be sufficient without any adjustments. In applications where accuracy is of utmost importance, two adjustments can be made to obtain better accuracy; i.e., offset trim and gain trim.

Offset Trim

In general offset correction can be done in the preamp circuitry by introducing a DC shift to $\mathrm{V}_{\mathbb{I}}$ or by the offset trim of the op amp. When this is not possible the $V_{\text {REF }}$-input can be adjusted to produce an offset trim.

The theoretical input voltage to produce the first transition is $1 / 2$ LSB. The equation is as follows:

$$
\begin{aligned}
\mathrm{V}_{\text {IN }}(0 \text { to } 1 \text { transition }) & =1 / 2 \mathrm{LSB}=1 / 2\left(\mathrm{~V}_{\mathrm{REF}} / 16\right) \\
& =\mathrm{V}_{\mathrm{REF}} / 32
\end{aligned}
$$

Adjust offset by applying this input voltage and adjusting the $\mathrm{V}_{\text {REF }}$ - voltage or input amplifier offset until an output code alternating between 0 and 1 occurs.

Gain Trim

In general the gain trim can also be done in the preamp circuitry by introducing a gain adjustment for the op-amp. When this is not possible, then a gain adjustment circuit should be made to adjust the reference voltage. To perform this trim, V_{iN} should be set to the 15 to overflow transition. That voltage is $1 / 2$ LSB less than $\mathrm{V}_{\text {REF }}+$ and is calculated as follows:

$$
\begin{aligned}
\mathrm{V}_{\mathbb{N}}(15 \text { to } 16 \text { transition }) & =\mathrm{V}_{\text {REF }}-\mathrm{V}_{\text {REF }} / 32 \\
& =\mathrm{V}_{\text {REF }}(31 / 32)
\end{aligned}
$$

To perform the gain trim, first do the offset trim and then apply the required $\mathrm{V}_{\text {IN }}$ for the 15 to overflow transition. Now adjust $\mathrm{V}_{\text {REF }}+$ until that transition occurs on the outputs.

Layout, Input And Supply Considerations

The CA3304 should be mounted on a ground-planed, printed-circuit board, with good high-frequency decoupling capacitors mounted as close as possible. If the supply is noisy, decouple $V_{A A}+$ with a resistor as shown in Figure 12A. The CA3304 outputs current spikes to its input at the start of the auto-balance and sample clock phases. A low impedance source, such as a locally-terminated 50Ω coax cable, should be used to drive the input terminal. A fastsettling buffer such as the HA-5033, HA-5242, or CA3450 should be used if the source is high impedance. The $V_{\text {REF }}$ terminals also have current spikes, and should be well bypassed.

Care should be taken to keep digital signals away from the analog input, and to keep digital ground currents away from the analog ground. If possible, the analog ground should be connected to digital ground only at the САЗ304.

Bipolar Operation

The CA3304, with separate analog $\left(\mathrm{V}_{\mathrm{AA}^{+}}, \mathrm{V}_{\mathrm{AA}^{-}}\right)$and digital ($\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{SS}}$) supply pins, allows true bipolar or negative input operation. The $\mathrm{V}_{A A^{-}}$pin may be returned to a negative supply (observing maximum voltage ratings to $\mathrm{V}_{A A^{+}}$or V_{DD} and recommended rating to $V_{S S}$), thus allowing the $V_{\text {REF }}{ }^{-}$ potential also to be negative. Figure 12B shows operation with an input range of -1 V to +1 V . Similarly, $\mathrm{V}_{\mathrm{AA}}+$ and $\mathrm{V}_{\text {REF }}+$ could be maintained at a higher voltage than $V_{D D}$, for an input range above the digital supply.

Digital Input And Output Levels

The clock input is a CMOS inverter operating from and with logic input levels determined by the V_{AA} supplies. If $\mathrm{V}_{\mathrm{AA}}+$ or $\mathrm{V}_{A^{-}}$- are outside the range of the digital supplies, it may be necessary to level shift the clock input to meet the required 30% to 70% of $V_{A A}$ input swing. Figure $12 B$ shows an example for a negative $V_{A A}$ -

An alternate way of driving the clock is to capacitively couple the pin from a source of at least IV peak-to-peak. An internal $50 \mathrm{k} \Omega$ feedback resistor will keep the DC level at the intrinsic trip point. Extremely non-symmetrical clock waveforms should be avoided, however.

The remaining digital inputs and outputs are referenced to V_{DD} and V_{SS}. If TTL or other lower voltage sources are to drive the CA3304, either pull-up resistors or CD74HCT series "QMOS" buffers are recommended.

5-Bit Resolution

To obtain 5-bit resolution, two CA3304s can be wired together. Necessary ingredients include an open-ended ladder network, an overflow indicator, tri-state outputs, and chip-enable controls - all of which are available on the CA3304.

The first step for connecting a 5 -bit circuit is to totem-pole the ladder networks, as illustrated in Figure 13. Since the absolute-resistance value of each ladder may vary, external trim of the mid-reference voltage may be required.

The overflow output of the lower device now becomes the fifth bit. When it goes high, all counts must come from the upper device. When it goes low, all counts must come from the lower device. This is done simply by connecting the lower overflow signal to the $\overline{C E 1}$ control of the lower A/D converter and the CE2 control of the upper A/D converter. The tri-state outputs of the two devices (bits 1 through 4) are now connected in parallel to complete the circuitry.

Definitions

Dynamic Performance Definitions

Fast Fourier Transform (FFT) techniques are used to evaluate the dynamic performance of the CA3304. A low distortion sine wave is applied to the input, it is sampled, and the output is stored in RAM. The data is then transformed into the frequency domain with a 4096 point FFT and analyzed to evaluate the dynamic performance of the A/D. The sine wave input to the part is -0.5 dB down from fullscale for all these tests.

Signal-to-Noise (SNR)

SNR is the measured RMS signal to RMS noise at a specified input and sampling frequency. The noise is the RMS sum of all of the spectral components except the fundamental and the first five harmonics.

Signal-to-Noise + Distortion Ratio (SINAD)

SINAD is the measured RMS signal to RMS sum of all other spectral components below the Nyquist frequency excluding DC.

Effective Number of Bits (ENOB)

The effective number of bits (ENOB) is derived from the SINAD data. ENOB is calculated from:

$$
\text { ENOB }=\left(\text { SINAD }-1.76+V_{\text {CORR }}\right) / 6.02
$$

where: $\quad V_{\text {CORR }}=0.5 \mathrm{~dB}$

Total Harmonic Distortion (THD)

THD is the ratio of the RMS sum of the first 5 harmonic components to the RMS value of the measured input signal.

Operating and Handling Considerations

1. Handling

All inputs and outputs of CMOS devices have a network for electrostatic protection during handling. Recommended handling practices for CMOS devices are described in ICAN-6525. "Guide to Better Handling and Operation of CMOS Integrated Circuits."

2. Operating

Operating Voltage

During operation near the maximum supply voltage limit, care should be taken to avoid or suppress power supply turn-on and turn-off transients, power supply ripple, or ground noise; any of these conditions must not cause the power supply voltages to exceed the absolute maximum rating.

Input Signals

To prevent damage to the input protection circuit, input signals should never be greater than $V_{D D}$ or $V_{A A}+$ nor less than $V_{S S}$ or $\mathrm{V}_{A A^{-}}$(depending upon which supply the protection network is referenced. See Maximum Ratings). Input currents must not exceed 20 mA even when the power supply is off.

Unused Inputs

A connection must be provided at every input terminal. All unused input terminals must be connected to either V_{DD} or V_{SS}, whichever is appropriate.

Output Short Circuits

Shorting of outputs to any supply potential may damage CMOS devices by exceeding the maximum device dissipation.

FIGURE 13. TYPICAL CA3304 5-BIT CONFIGURATION

FIGURE 14. IDEAL TRANSFER CURVE

CA3306
 \title{
CMOS Video Speed
 \title{
CMOS Video Speed

 6-Bit Flash A/D Converter
}

 6-Bit Flash A/D Converter
}

Features

- CMOS Low Power with Video Speed (70mW Typ.)
- Parallel Conversion Technique
- Signal Power Supply Voltage (3V to 7.5V)
- 15MHz Sampling Rate with Single 5V Supply
- 6-Bit Latched Tri-State Output with Overflow Bit
- Pin-for-Pin Retrofit for the CA3300

Applications

- TV Video Digitizing
- Ultrasound Signature Analysis
- Transient Signal Analysis
- High Energy Physics Research
- High Speed Oscilloscope Storage/Display
- General Purpose Hybrid ADCs
- Optical Character Recognition
- Radar Pulse Analysis
- Motion Signature Analysis
- Robot Vision

Description

The CA3306 family are CMOS parallel (FLASH) analog-to-digital converters designed for applications demanding both low power consumption and high speed digitization. Digitizing at 15 MHz , for example, requires only about 50 mW .
The CA3306 family operates over a wide, full scale signal input voltage range of 1 V up to the supply voltage. Power consumption is as low as 15 mW , depending upon the clock frequency selected. The CA3306 types may be directly retrofitted into CA3300 sockets, offering improved linearity at a lower reference voltage and high operating speed with a 5 V supply.
The intrinsic high conversion rate makes the CA3306 types ideally suited for digitizing high speed signals. The overflow bit makes possible the connection of two or more CA3306s in series to increase the resolution of the conversion system. A series connection of two CA3306s may be used to produce a 7 -bit high speed converter. Operation of two CA3306s in parallel doubles the conversion speed (i.e., increases the sampling rate from 15 MHz to 30 MHz).

Sixty-four paralleled auto balanced comparators measure the input voltage with respect to a known reference to produce the parallel bit outputs in the CA3306. Sixty-three comparators are required to quantize all input voltage levels in this 6 -bit converter, and the additional comparator is required for the overflow bit.

Ordering Information

PART NUMBER	LINEARITY (INL, DNL)	SAMPLING RATE	TEMPERATURE RANGE	PACKAGE
CA3306E	$\pm 0.5 \mathrm{LSB}$	$15 \mathrm{MHz}(67 \mathrm{~ns})$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	18 Lead Plastic DIP
CA3306AE	$\pm 0.25 \mathrm{LSB}$	$15 \mathrm{MHz}(67 \mathrm{~ns})$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	18 Lead Plastic DIP
CA3306CE	$\pm 0.5 \mathrm{LSB}$	$10 \mathrm{MHz}(100 \mathrm{~ns})$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	18 Lead Plastic DIP
CA3306M	$\pm 0.5 \mathrm{LSB}$	$15 \mathrm{MHz}(67 \mathrm{~ns})$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 Lead Plastic SOIC
CA3306CM	$\pm 0.5 \mathrm{LSB}$	$10 \mathrm{MHz}(100 \mathrm{~ns})$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 Lead Plastic SOIC
CA3306D	$\pm 0.5 \mathrm{LSB}$	$15 \mathrm{MHz}(67 \mathrm{~ns})$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	18 Lead Ceramic DIP
CA3306AD	$\pm 0.25 \mathrm{LSB}$	$15 \mathrm{MHz}(67 \mathrm{~ns})$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	18 Lead Ceramic DIP
CA3306CD	$\pm 0.5 \mathrm{LSB}$	$10 \mathrm{MHz}(100 \mathrm{~ns})$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	18 Lead Ceramic DIP
CA3306J3	$\pm 0.5 \mathrm{LSB}$	$15 \mathrm{MHz}(67 \mathrm{~ns})$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	20 Lead LCC
CA3306J3	$\pm 0.5 \mathrm{LSB}$	$10 \mathrm{MHz}(100 \mathrm{~ns})$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	20 Lead LCC

Pinouts

CA3306 (PDIP, CDIP)
TOP VIEW

(MSB) $\mathrm{B6} 1$	$18 \mathrm{B5}$
OVERFLOW 2	17) 34
$\mathrm{v}_{\mathrm{ss}} 3$	16 REF CENTER
$\mathrm{v}_{\mathrm{z}} 4$	15 B3
CE2 5	$14 \mathrm{B2}$
CE2 6	$13 \mathrm{B1}$ (LSB)
CLK 7	$12 \mathrm{~V}_{D D}$
Phase 8	$11 \mathrm{v}_{\text {IN }}$
$\mathrm{V}_{\text {REF }}+9$	$10 \mathrm{~V}_{\mathrm{REF}}$ -

CA3306 (SOIC)
TOP VIEW

(MSB) $\mathrm{B6} 1$	2085
OVERFLOW 2	$19 \mathrm{B4}$
$\mathrm{v}_{\mathrm{ss}}{ }^{3}$	18 REF CENTER
$V_{s s}[4$	$17 \mathrm{B3}$
V_{2} [5]	$16 \mathrm{B2}$
CE2 6	$15 \mathrm{B1}$ (LSB)
CE1 7	$14 v_{D D}$
CLK 8	$13 \mathrm{~V} \mathrm{~V}_{\text {d }}$
phase 9	12 V
$\mathrm{V}_{\text {REF }}+10$	$11 \mathrm{~V}_{\text {REF }}$ -

CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper I.C. Handling Procedures.

Functional Block Diagram

Typical Application Circuit

Absolute Maximum Ratings

DC Supply Voltage Range, V_{DD} Voltage Referenced to $\mathrm{V}_{\text {SS }}$ Terminal. 0.5 V to +8.5 V Input Voltage Range
All Inputs Except Zener. -0.5 V to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$
DC Input Current
CLK, PH, CE1, CE2, $\mathrm{V}_{\mathbf{I N}}$.
.$\pm 20 \mathrm{~mA}$
Storage Temperature Range
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering 10s).
Lead Temperature (Soldering 10s). $+300^{\circ} \mathrm{C}$

Thermal Information

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Operating Conditions

Electrical Specifications $\quad T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}+=4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=\mathrm{V}_{\text {REF }}=\mathrm{GND}$, Clock $=15 \mathrm{MHz}$ Square Wave for CA3306 or CA3306A, 10MHz for CA3306C

PARAMETERS	TEST CONDITIONS	MIN	TYP	MAX	UNITS
SYSTEM PERFORMANCE					
Resolution		6	-	-	Bits
Integral Linearity Error, INL		-	± 0.25	± 0.5	LSB
		-	± 0.2	± 0.25	LSB
Differential Linearity Error, DNL		-	± 0.25	± 0.5	LSB
		-	± 0.2	± 0.25	LSB
Offset Error (Unadjusted)	(Note 1)	\bullet	± 0.5	± 1	LSB
		-	± 0.25	± 0.5	LSB
Gain Error (Unadjusted)	(Note 2)	-	± 0.5	± 1	LSB
		-	± 0.25	± 0.5	LSB
Gain Temperature Coefficient		-	+0.1	-	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Offset Temperature Coefficient		-	-0.1	-	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
DYNAMIC CHARACTERISTICS (Input Signal Level 0.5dB Below Full Scale)					
Maximum Conversion Speed		10	13	\bullet	MSPS
		15	20	-	MSPS
Maximum Conversion Speed	(Note 4)$\phi 1, \phi 2 \geq$ Minimum	12	-	-	MSPS
		18	-	-	MSPS
Allowable Input Bandwidth	(Note 4)	DC	-	$\mathrm{f}_{\text {clock/2 }}$	MHz
-3dB Input Bandwidth		-	30	-	MHz
$\begin{array}{r} \text { Signal to Noise Ratio (SNR) } \\ =\frac{\text { RMS Signal }}{\text { RMS Noise }} \end{array}$	$\mathrm{F}_{\mathrm{S}}=15 \mathrm{MHz}, \mathrm{f}_{\mathrm{IN}}=100 \mathrm{kHz}$	-	34.6	-	dB
	$\mathrm{F}_{\mathrm{S}}=15 \mathrm{MHz}, \mathrm{f}_{\mathrm{IN}}=5 \mathrm{MHz}$	-	33.4	-	dB
Signal to Noise Ratio (SINAD) $=\frac{\text { RMS Signal }}{\text { RMS Noise }+ \text { Distortion }}$	$\mathrm{F}_{\mathrm{S}}=15 \mathrm{MHz}, \mathrm{f}_{\mathrm{IN}}=100 \mathrm{kHz}$	-	34.2	-	dB
	$\mathrm{F}_{\mathrm{S}}=15 \mathrm{MHz}, \mathrm{f}_{\text {IN }}=5 \mathrm{MHz}$	-	29.0	-	dB
Total Harmonic Distortion, THD	$\mathrm{F}_{\mathrm{S}}=15 \mathrm{MHz}, \mathrm{f}_{\mathrm{I}}=100 \mathrm{kHz}$	-	-46.0	-	dBc
	$\mathrm{F}_{\mathrm{S}}=15 \mathrm{MHz}, \mathrm{f}_{\mathrm{N}}=5 \mathrm{MHz}$	-	-30.0	-	dBc
Effective Number of Bits (ENOB)	$\mathrm{F}_{\mathrm{S}}=15 \mathrm{MHz}, \mathrm{f}_{\mathrm{IN}}=100 \mathrm{kHz}$	-	5.5	-	Bits
	$\mathrm{F}_{\mathrm{S}}=15 \mathrm{MHz}, \mathrm{f}_{\mathrm{IN}}=5 \mathrm{MHz}$	-	4.5	-	Bits

Specifications CA3306, CA3306A, CA3306C

Electrical Specifications $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}+=4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=\mathrm{V}_{\mathrm{REF}}{ }^{-}=\mathrm{GND}$, Clock $=15 \mathrm{MHz}$ Square Wave for CA3306 or CA3306A, 10MHz for CA3306C (Continued)

NOTES:

1. OFFSET ERROR is the difference between the input voltage that causes the 00 to 01 output code transition and $\left(\mathrm{V}_{\text {REF }}+-\mathrm{V}_{\mathrm{REF}}-\mathrm{l} / 128\right.$.
2. GAIN ERROR is the difference the input voltage that causes the $3 F_{16}$ to overflow output code transition and $\left(V_{\text {REF }}+-V_{\text {REF }}\right) \times 127 / 128$.
3. The total input voltage range, set by $\mathrm{V}_{\mathrm{REF}}+$ and $\mathrm{V}_{\text {REF }}$, may be in the range of 1 to $\left(\mathrm{V}_{\mathrm{DD}}+1\right) \mathrm{V}$.
4. Parameter not tested, but guaranteed by design or characterization.

Timing Waveforms

FIGURE 1. INPUT-TO-OUTPUT

FIGURE 2. OUTPUT ENABLE

FIGURE 3. PULSE MODE

Typical Performance Curves

FIGURE 4. TYPICAL $I_{D D}$ AS A FUNCTION OF $V_{D D}$

FIGURE 6. TYPICAL NON-LINEARITY AS A FUNCTION OF CLOCK SPEED

FIGURE 8. TYPICAL PEAK INPUT CURRENT AS A FUNCTION OF INPUT VOLTAGE

FIGURE 5. TYPICAL MAXIMUM AMBIENT TEMPERATURE AS A FUNCTION OF SUPPLY VOLTAGE

FIGURE 7. TYPICAL NON-LINEARITY AS A FUNCTION OF REFERENCE VOLTAGE

FIGURE 9. TYPICAL AVERAGE INPUT CURRENT AS A FUNCTION OF INPUT VOLTAGE

Typical Performance Curves (Continued)

FIGURE 10. TYPICAL MAXIMUM CLOCK FREQUENCY AS A FUNCTION OF SUPPLY VOLTAGE

FIGURE 12. DATA DELAY vs TEMPERATURE

FIGURE 14. I_{DD} vs TEMPERATURE

FIGURE 11. DEVICE CURRENT vs SAMPLE FREQUENCY

FIGURE 13. ENOB vs TEMPERATURE

FIGURE 15. NON-LINEARITY vs TEMPERATURE

Typical Performance Curves (Continued)

FIGURE 18. ENOB vS INPUT FREQUENCY

Pin Descriptions

PIN NUMBER		NAME	DESCRIPTION
DIP	SOIC		
1	1	B6	Bit 6, Output (MSB).
2	2	OF	Overfiow, Output.
3	3, 4	$\mathrm{V}_{\text {ss }}$	Digital Ground.
4	5	VZ	Zener Reference Output.
5	6	CE2	Tri-State Output Enable Input, Active Low. See Table 1.
6	7	$\overline{\mathrm{CE1}}$	Tri-State Output Enable Input, Active High. See Table 1.
7	8	CLK	Clock Input.
8	9	Phase	Sample clock phase control input. When PHASE is low, "Sample Unknown" occurs when the clock is low and "Auto Balance" occurs when the clock is high (see text).
9	10	$\mathrm{V}_{\text {REF }}{ }^{+}$	Reference Voltage Positive Input.
10	11	$\mathrm{V}_{\text {REF }}{ }^{\text {- }}$	Reference Voltage Negative Input.
11	12	$\mathrm{V}_{\text {IN }}$	Analog Signal Input.
12	13, 14	$V_{D D}$	Power Supply, +5V.
13	15	B1	Bit 1, Output (LSB).
14	16	B2	Bit 2, Output.
15	17	B3	Bit 3, Output.
16	18	REF(CTR)	Reference Ladder Midpoint.
17	19	B4	Bit 4, Output.
18	20	B5	Bit 5, Output.

TABLE 1. CHIP ENABLE TRUTH TABLE

$\overline{\text { CE1 }}$	CE2	B1-B6	OF
0	1	Valid	Valid
1	1	Tri-State	Valid
X	0	Tri-State	Tri-State

> X = Don't care

TABLE 2. OUTPUT CODE TABLE

CODE DESCRIPTION	(NOTE 1) INPUT VOLTAGE				BINARY OUTPUT CODE (LSB)							DECIMAL COUNT
	$\begin{aligned} & V_{\text {REF }} \\ & 6.40 \\ & (V) \end{aligned}$	$\begin{gathered} V_{\mathrm{REF}} \\ 5.12 \end{gathered}$ (V)	$\begin{aligned} & V_{\text {REF }} \\ & 4.80 \end{aligned}$ (V)	$\begin{aligned} & \mathrm{V}_{\mathrm{REF}} \\ & 3.20 \end{aligned}$ (V)	OF	B6	B5	B4	B3	B2	B1	
Zero	0.00	0.00	0.00	0.00	0	0	0	0	0	0	0	0
1 LSB	0.10	0.08	0.075	0.05	0	0	0	0	0	0	1	1
2 LSB	0.20	0.16	0.15	0.10	0	0	0	0	0	1	0	2
-								-				-
-								-				-
\bullet								-				-
1/2 Full Scale - 1 LSB	3.10	2.48	2.325	1.55	0	0	1	1	1	1	1	31
$1 / 2$ Full Scale	3.20	2.56	2.40	1.60	0	1	0	0	0	0	0	32
$1 / 2$ Full Scale + 1 LSB	3.30	2.64	2.475	1.65	0	1	0	0	0	0	1	33
-								-				-
-												-
-								-				-
Full Scale-1 LSB	6.20	4.96	4.65	3.10	0	1	1	1	1	1	0	62
Full Scale	6.30	5.04	4.725	3.15	0		1	1	1	1	1	63
Overflow	6.40	5.12	4.80	3.20	1	1	1	1	1	1	1	127

NOTE:

1. The voltages listed above are the ideal centers of each output code shown as a function of its associated reference voltage.

Device Operation

A sequential parallel technique is used by the CA3306 converter to obtain its high speed operation. The sequence consists of the "Auto Balance" phase $\phi 1$ and the "Sample Unknown" phase $\$ 2$. (Refer to the circuit diagram.) Each conversion takes one clock cycle.* With the phase control low, the "Auto Balance" ($\phi 1$) occurs during the High period of the clock cycle, and the "Sample Unknown" ($\$ 2$) occurs during the low period of the clock cycle.

During the "Auto Balance" phase, a transmission-gate switch is used to connect each of 64 commutating capacitors to their associated ladder reference tap. Those tap voltages will be as follows:
$\begin{aligned} \mathrm{V}_{\text {TAP }}(\mathrm{N}) & =\left[\left(\mathrm{V}_{\mathrm{REF}} / 64\right) \times N\right]-\left[\mathrm{V}_{\mathrm{REF}} /(2 \times 64)\right] \\ & =\mathrm{V}_{\mathrm{REF}}[(2 \mathrm{~N}-1) / 126]\end{aligned}$
Where: $\mathrm{V}_{\text {TAP }}(\mathrm{N})=$ reference ladder tap voltage at point N
$\mathrm{V}_{\text {REF }}=$ voltage across $\mathrm{V}_{\text {REF }}$ - to $\mathrm{V}_{\text {REF }}+$
$\mathrm{N}=$ tap number (1 through 64)

* This device requires only a single-phase clock The terminology of $\phi 1$ and $\phi 2$ refers to the High and Low periods of the same clock.

The other side of the capacitor is connected to a singlestage inverting amplifier whose output is shorted to its input by a switch. This biases the amplifier at its intrinsic trip point, which is approximately, $\left(V_{D D}-V_{S S}\right) / 2$. The capacitors now charge to their associated tap voltages, priming the circuit for the next phase.

In the "Sample Unknown" phase, all ladder tap switches are opened, the comparator amplifiers are no longer shorted, and $V_{\mathbb{N}}$ is switched to all 64 capacitors. Since the other end of the capacitor is now looking into an effectively open circuit, any voltage that differs from the previous tap voltage will appear as a voltage shift at the comparator amplifiers. All comparators whose tap voltages were lower than $\mathrm{V}_{\mathbb{N}}$ will drive the comparator outputs to a "low" state. All comparators whose tap voltages were higher than $\mathrm{V}_{\mathbb{I}}$ will drive the comparator outputs to a "high" state. A second, capacitorcoupled, auto-zeroed amplifier further amplifies the outputs.

The status of all these comparator amplifiers are stored at the end of this phase ($\phi 2$), by a secondary latching amplifier stage. Once latched, the status of the 64 comparators is decoded by a 64-bit 7-bit decode array and the results are clocked into a storage register at the rising edge of the next $\$ 2$.

A tri-state buffer is used at the output of the 7 storage registers which are controlled by two chip-enable signals. CE1 will independently disable 81 through 86 when it is in a high state. CE2 will independently disable B1 through B6 and the OF buffers when it is in the low state (Table 1).

To facilitate usage of this device a phase-control input is provided which can effectively complement the clock as it enters the chip. Also, an on-board zener is provided for use as a reference voltage.

Continuous Clock Operation

One complete conversion cycle can be traced through the CA3306 via the following steps. (Refer to timing diagram, Figure 1.) With the phase control in a "High" state, the rising edge of the clock input will start a "sample" phase. During this entire "High" state of the clock, the 64 comparators will track the input voltage and the 64 latches will track the comparator outputs. At the falling edge of the clock, after the specified aperture delay, all 64 comparator outputs are captured by the 64 latches. This ends the "sample" phase and starts the "auto balance" phase for the comparators. During this "Low" state of the clock the output of the latches propagates through the decode array and a 7 -bit code appears at the D inputs of the output registers. On the next rising edge of the clock, this 7 bit code is shifted into the output registers and appears with time delay to as valid data at the output of the tri-state drivers. This also marks the start of a new "sample" phase, thereby repeating the conversion process for this next cycle.

Pulse Mode Operation

For sampling high speed nonrecurrent or transient data, the converter may be operated in a pulse mode in one of three ways. The fastest method is to keep the converter in the Sample Unknown phase, $\phi 2$, during the standby state. The device can now be pulsed through the Auto Balance phase with a single pulse. The analog value is captured on the leading edge of $\phi 1$ and is transferred into the output registers on the trailing edge of $\phi 1$. We are now back in the standby state, $\phi 2$, and another conversion can be started, but not later than $5 \mu \mathrm{~s}$ due to the eventual droop of the commutating capacitors. Another advantage of this method is that it has the potential of having the lowest power drain. The larger the time ratio between $\phi 2$ and $\phi 1$, the lower the power consumption. (See Timing Waveform, Figure 3.)
The second method uses the Auto Balance phase, $\phi 1$, as the standby state. In this state the converter can stay indefinitely waiting to start a conversion. A conversion is performed by strobing the clock input with two $\phi 2$ pulses. The first pulse starts a Sample Unknown phase and captures the analog value in the comparator latches on the trailing edge. A second $\phi 2$ pulse is needed to transfer the data into the output registers. This occurs on the leading edge of the second pulse. The conversion now takes slightly longer, but the repetition rate may be as slow as desired. The disadvantage to this method is the higher device dissipation due to the low ratio of $\phi 2$ to $\phi 1$. (See Timing Waveform, Figure 3B.)
For applications requiring both indefinite standby and lowest power, standby can be in the $\$ 2$ (Sample Unknown) state with two $\phi 1$ pulses to generate valid data (see Figure 3C). Valid data now appears two full clock cycles after starting the conversion process.

Analog Input Considerations

The CA3306 input terminal is characterized by a small capacitance (see Specifications) and a small voltage-dependent current (See Typical Performance Curves). The signalsource impedance should be kept low, however, when operating the CA3306 at high clock rates.

The CA3306 outputs a short (less than 10ns) current spike of up to several mA amplitude (See Typical Performance Curves) at the beginning of the sample phase. (To a lesser extent, a spike also appears at the beginning of auto balance.) The driving source must recover from the spike by the end of the same phase, or a loss of accuracy will result.

A locally terminated 50Ω or 75Ω source is generally sufficient to drive the CA3306. If gain is required, a high speed, fast settling operational amplifier, such as the HA-5033, HA-2542, or HA5020 is recommended.

Digital Input And Output Interfacing

The two chip-enable and the phase-control inputs are standard CMOS units. They should be driven from less than 0.3 $x V_{D D}$ to at least $0.7 \times V_{D D}$. This can be done from 74HC series CMOS (QMOS), TTL with pull-up resistors, or, if V_{DD} is greater than the logic supply, open collector or open drain drivers plus pull-ups. (See Figure 20.)

The clock input is more critical to timing variations, such as $\phi 1$ becoming too short, for instance. Pull-up resistors should generally be avoided in favor of active drivers. The clock input may be capacitively coupled, as it has an internal $50 \mathrm{k} \Omega$ feedback resistor on the first buffer stage, and will seek its own trip point. A clock source of at least $1 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ is adequate, but extremely non-symmetrical waveforms should be avoided.

The output drivers have full rail-to-rail capability. If driving CMOS systems with $V_{D D}$ below the $V_{D D}$ of the CA3306, a CD74HC4050 or CD74HC4049 should be used to step down the voltage. If driving LSTTL systems, no step-down should be necessary, as most LSTTLs will take input swings up to 10 V to 15 V .

Although the output drivers are capable of handling typical data bus loading, the capacitor charging currents will produce local ground disturbances. For this reason, an external bus driver is recommended.

Increased Accuracy

In most cases the accuracy of the CA3306 should be sufficient without any adjustments. In applications where accuracy is of utmost importance, three adjustments can be made to obtain better accuracy; i.e., offset trim, gain trim, and midpoint trim.

Offset Trim

In general offset correction can be done in the preamp circuitry by introducing a DC shift to $V_{\mathbb{I N}}$ or by the offset trim of the operational amplifier. When this is not possible the $\mathrm{V}_{\text {REF }}-$ input can be adjusted to produce an offset trim. The theoretical input voltage to produce the first transition is $1 / 2$ LSB. The equation is as follows:
$\mathrm{V}_{\mathbb{I N}}(0$ to 1 transition $)=1 / 2 \mathrm{LSB}=1 / 2\left(\mathrm{~V}_{\mathrm{REF}} / 64\right)$

$$
=V_{\mathrm{REF}} / 128
$$

If $\mathrm{V}_{\mathbb{N}}$ for the first transition is less than the theoretical, then a single-turn 50Ω pot connected between $\mathrm{V}_{\mathrm{REF}}$ - and ground will accomplish the adjustment. Set $\mathrm{V}_{\mathbb{N}}$ to $1 / 2$ LSB and trim the pot until the 0 to 1 transition occurs.

If $\mathrm{V}_{\text {IN }}$ for the first transition is greater than the theoretical, then the 50Ω pot should be connected between $V_{\text {REF }}$ and a negative voltage of about 2 LSBs. The trim procedure is as stated previously.

Gain Trim

In general the gain trim can also be done in the preamp circuitry by introducing a gain adjustment for the operational amplifier. When this is not possible, then a gain adjustment circuit should be made to adjust the reference voltage. To perform this trim, $\mathrm{V}_{\mathbb{N}}$ should be set to the 63 to overflow transition. That voltage is $1 / 2$ LSB less than $\mathrm{V}_{\text {REF }}+$ and is calculated as follows:

$$
\begin{aligned}
\mathrm{V}_{\mathrm{IN}}(63 \text { to } 64 \text { transition }) & =\mathrm{V}_{\text {REF }}-\mathrm{V}_{\mathrm{REF}} / 128 \\
& =\mathrm{V}_{\mathrm{REF}}(127 / 128)
\end{aligned}
$$

To perform the gain trim, first do the offset trim and then apply the required $V_{I N}$ for the 63 to overtlow transition. Now adjust $\mathrm{V}_{\text {REF }}+$ until that transition occurs on the outputs.

Midpoint Trim

The reference center (RC) is available to the user as the midpoint of the resistor ladder. To trim the midpoint, the offset and gain trims should be done first. The theoretical transition from count 31 to 32 occurs at $31 \frac{1}{2}$ LSBs. That voltage is as follows:

$$
\begin{aligned}
\mathrm{V}_{\mathrm{IN}}(31 \text { to } 32 \text { transition }) & =31.5\left(\mathrm{~V}_{\mathrm{REF}} / 64\right) \\
& =\mathrm{V}_{\mathrm{REF}}(63 / 128)
\end{aligned}
$$

An adjustable voltage follower can be connected to the RC pin or a $2 k$ pot can be connected between $\mathrm{V}_{\text {REF }}+$ and $\mathrm{V}_{\text {REF }}{ }^{-}$ with the wiper connected to RC. Set $V_{i N}$ to the 31 to 32 transition voltage, then adjust the voltage follower or the pot until the transition occurs on the output bits.

The Reference Center point can also be used to create unique transfer functions. The user must remember, however, that there is approximately 120Ω in series with the RC pin.

Applications

7-Bit Resolution

To obtain 7-bit resolution, two CA3306s can be wired together. Necessary ingredients include an open-ended ladder network, an overtlow indicator, tri-state outputs, and chip-enabler controls - all of which are available on the CA3306.

The first step for connecting a 7-bit circuit is to totem-pole the ladder networks, as illustrated in Figure 17. Since the absolute resistance value of each ladder may vary, external trim of the mid-reference voltage may be required.
The overflow output of the lower device now becomes the seventh bit. When it goes high, all counts must come from the upper device. When it goes low, all counts must come from the lower device. This is done simply by connecting the lower overflow signal to the $\overline{\mathrm{CE}}$ control of the lower A/D converter and the CE2 control of the upper AND converter. The tri-state outputs of the two devices (bits 1 through 6) are now connected in parallel to complete the circuitry.

Doubled Sampling Speed

The phase control and both positive and negative true chip enables allow the parallel connection of two CA3306s to double the sampling speed. Figure 18 shows this configuration. One converter samples on the positive phase of the clock, and the second on the negative. The outputs are also alternately enabled. Care should be taken to provide a near square-wave clock it operating at close to the maximum clock speed for the devices.

8-Bit to 12-Bit Conversion Techniques

To obtain 8-bit to 12-bit resolution and accuracy, use a feedforward conversion technique. Two AVD converters will be needed to convert up to 11 bits; three ADD converters to convert 12 bits. The high speed of the CA3306 allows 12-bit conversions in the 500ns to 900 ns range.

The circuit diagram of a high-speed 12-bit AD converter is shown in Figure 19. In the feed-forward conversion method two sequential conversions are made. Converter A first does a coarse conversion to 6 bits. The output is applied to a 6-bit D/A converter whose accuracy level is good to 12 bits. The D/A converter output is then subtracted from the input voltage, multiplied by 32, and then converted by a second flash A/D converter, which is connected in a 7-bit configuration. The answers from the first and second conversions are added together with bit 1 of the first conversion overlapping bit 7 of the second conversion.

When using this method, take care that:

- The linearity of the first converter is better than $1 / 2$ LSB.
- An offset bias of 1 LSB (1/64) is subtracted from the first conversion since the second converter is unipolar.
- The D/A converter and its reference are accurate to the total number of bits desired for the final conversion (the AVD converter need only be accurate to 6 bits).
The first converter can be offset-biased by adding a 20Ω resistor at the bottom of the ladder and increasing the reference voltage by 1 LSB. If a 6.4 V reference is used in the system, for example, then the first CA3306 will require a 6.5 V reference.

Definitions

Dynamic Performance Definitions

Fast Fourier Transform (FFT) techniques are used to evaluate the dynamic performance of the converter. A low distortion sine wave is applied to the input, it is sampled, and the output is stored in RAM. The data is then transformed into the frequency domain with a 4096 point FFT and analyzed to evaluate the dynamic performance of the ADD. The sine wave input to the part is -0.5 dB down from fullscale for all these tests.

Signal-to-Noise (SNR)

SNR is the measured RMS signal to RMS noise at a specified input and sampling frequency. The noise is the RMS sum of all of the spectral components except the fundamental and the first five harmonics.

Signal-to-Noise + Distortion Ratio (SINAD)

SINAD is the measured RMS signal to RMS sum of all other spectral components below the Nyquist frequency excluding DC.

Effective Number of Bits (ENOB)

The effective number of bits (ENOB) is derived from the SINAD data. ENOB is calculated from:

$$
\text { ENOB }=\left(\mathrm{SINAD}-1.76+\mathrm{V}_{\text {CORR }}\right) / 6.02
$$

where: $\quad V_{\text {CORR }}=0.5 \mathrm{~dB}$

Total Harmonic Distortion (THD)

THD is the ratio of the RMS sum of the first 5 harmonic components to the RMS value of the measured input signal.

Operating and Handling Considerations

1. Handling

All inputs and outputs of Harris CMOS devices have a network for electrostatic protection during handling. Recommended handling practices for CMOS devices are described in AN6525. "Guide to Better Handling and Operation of CMOS Integrated Circuits."

2. Operating
 Operating Voltage

During operation near the maximum supply voltage limit, care should be taken to avoid or suppress power supply turn-on and turn-off transients, power supply ripple, or ground noise; any of these conditions must not cause $V_{D D}$ $V_{S S}$ to exceed the absolute maximum rating.

Input Signals

To prevent damage to the input protection circuit, input signals should never be greater than V_{DD} nor less than V_{SS}. Input currents must not exceed 20 mA even when the power supply is off. The zener (pin 4) is the only terminal allowed to exceed $V_{D D}$.

Unused Inputs

A connection must be provided at every input terminal. All unused input terminals must be connected to either $V_{D D}$ or V_{SS}, whichever is appropriate.

Output Short Circuits

Shorting of outputs to $V_{D D}$ or $V_{S S}$ may damage CMOS devices by exceeding the maximum device dissipation.

Application Circuits

FIGURE 17. TYPICAL CA3306 7-BIT RESOLUTION CONFIGURATION

Application Circuits (Continued)

FIGURE 18. TYPICAL CA3306 6-BIT RESOLUTION CONFIGURATION WITH DOUBLE SAMPLING RATE CAPABILITY

Application Circuits (Continued)

FIGURE 19. TYPICAL CA3306, 800 ns , 12 -BIT ADC SYSTEM

CA3306 OUTPUTS
TYPICAL FOR:
B1
B2
B3
B4
B5
B6
OF

FIGURE 20. 5V LOGIC INTERFACE CIRCUIT FOR $V_{D D}>5.5 \mathrm{~V}$

CMOS Video Speed 8-Bit Flash AD Converter

Features

- CMOS Low Power with SOS Speed (150mW Typ.)
- Paraliel Conversion Technique
- 15MHz Sampling Rate (67ns Conversion Time)
- 8-Bit Latched Tri-State Output with Overflow Bit
- ± 1 LSB Accuracy (Typ.)
- Single Supply Voltage (4V to 7.5V)
- 2 Units in Series Allow 9-Bit Output
- 2 Units in Parallel Allow 30MHz Sampling Rate

Applications

- TV Video Digitizing (Industrial/Security/Broadcast)
- High-Speed AD Conversion
- Ultrasound Signature Analysis
- Transient Signal Analysis
- High Energy Physics Research
- High Speed Oscilloscope Storage/Display
- General Purpose Hybrid ADCs
- Optical Character Recognition
- Radar Pulse Analysis
- Motion Signature Analysis
- $\mu \mathbf{P}$ Data Acquisition Systems

Description

The CA3318C is a CMOS parallel (FLASH) analog-to-digital converter designed for applications demanding both low power consumption and high speed digitization.
The CA3318 operates over a wide full scale input voltage range of 4 V up to 7.5 V with maximum power consumption depending upon the clock frequency selected. When operated from a 5 V supply at a clock frequency of 15 MHz , the typical power consumption of the CA3318 is 150 mW .

The intrinsic high conversion rate makes the CA3318 ideally suited for digitizing high speed signals. The overflow bit makes possible the connection of two or more CA3318s in series to increase the resolution of the conversion system. A series connection of two CA3318s may be used to produce a 9 -bit high speed converter. Operation of two CA3318s in parallel doubles the conversion speed (i.e., increases the sampling rate from 15 MHz to 30 MHz).

256 paralleled auto balanced voltage comparators measure the input voltage with respect to a known reference to produce the parallel bit outputs in the CA3318.

255 comparators are required to quantize all input voltage levels in this 8 -bit converter, and the additional comparator is required for the overflow bit.

Ordering Information

PART NUMBER	LINEARITY (INL)	SAMPLING RATE	TEMPERATURE RANGE	PACKAGE
CA3318CE	$\pm 1.5 \mathrm{LSB}$	$15 \mathrm{MHz}(67 \mathrm{~ns})$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24 Lead Plastic DIP
CA3318CM	$\pm 1.5 \mathrm{LSB}$	$15 \mathrm{MHz}(67 \mathrm{~ns})$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24 Lead Plastic SOIC
CA3318CD	$\pm 1.5 \mathrm{LSB}$	$15 \mathrm{MHz}(67 \mathrm{~ns})$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24 Lead Ceramic DIP

Pinout

Functional Block Diagram


```
Absolute Maximum Ratings
```



```
    (Referenced to \mp@subsup{V}{SS}{}}\mathrm{ or }\mp@subsup{V}{MA}{}\mathrm{ - Terminal, Whichever is More
    Negative)
Input Voltage Range
    CE2 and CE1 .................... VM- - 0.5V to V VD + 0.5V
    Clock, Phase, V}\mp@subsup{\textrm{V}}{\mathrm{ REF }-,}{},1/2\mathrm{ Ref. . . ....... V VAA
    Clock, Phase, V REF -, 1/4 Ref. .......... V Vss-0.5V to V VD + 0.5V
    VIN
Output Voltage Range, ................. V VS - 0.5V to V VD + 0.5V
    Bits 1-8, Overflow (Outputs Off)
DC Input Current
    Clock, Phase, CE1, CE2, VIN, Bits 1-8, Overflow
Operating Voltage Range (V }\mp@subsup{V}{DD}{}\mathrm{ or }\mp@subsup{V}{AA}{+}) . . . . . 4V Min to 7.5V Max
Recommended \mp@subsup{V}{AA}{}+\mathrm{ Operating Range}
                                    . VDD }\pm1\textrm{V
Recommended \mp@subsup{V}{AA}{}}\mathrm{ -Operating Range ................. V V SS }\pm1\textrm{V
```



```
Lead Temperature (Soldering 10s). . . . . . . . . . . . . . . . . . . +265`C
```

Absolute Maximum Ratings

DC Supply Voltage Range (V_{DD} or $\mathrm{V}_{\mathbf{M}}{ }^{+}$) $\ldots \ldots \ldots \ldots .$. (Referenced to $\mathrm{V}_{\mathbf{S S}}$ or $\mathrm{V}_{\mathbf{M}}$ - Terminal, Whichever is More Negative)	
Input Voltage Range	
CE2 and C	
Clock	
Clock, Phase, ${ }^{\text {d }}$	0.5V
Output Voltage Range, Bits 1-8, Overflow (Outputs Off)	
DC Input Current $\qquad$$\qquad$$\qquad$..$\pm 20 \mathrm{~mA}$ Clock, Phase, $\overline{\text { CE1 }}, \mathrm{CE} 2, \mathrm{~V}_{1 \mathrm{~N}}$, Bits 1-8, Overflow	
Operating Voltage Range (V_{DD} or $\mathrm{V}_{\mathrm{AA}}+$) $4 \mathrm{4V}$ Min to 7.5 V Max	
Recommended $\mathrm{V}_{\mathbf{A A}}+$ Operating Range	
Recommended $\mathrm{V}_{\mathbf{A}}$ - Operating Rang	
Storage Temperature R	
Lead Temperature (Soldering 10s). .	

Thermal Information


```
CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
```

Electrical Specifications At $+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{AA}^{+}}=\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}{ }^{+}=6.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}{ }^{-}=\mathrm{V}_{\mathrm{M}^{-}}=\mathrm{V}_{\mathrm{SS}}, \mathrm{CLK}=15 \mathrm{MHz}$, All Reference Points Adjusted, Unless Otherwise Specified.

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
SYSTEM PERFORMANCE					
Resolution		8	-	-	Bits
Integral Linearity Error		-	-	± 1.5	LSB
Differential Linearity Error		-	-	+1, -0.8	LSB
Offset Error, Unadjusted	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {REF }}+1 / 2$ LSB	-0.5	4.5	6.4	LSB
Gain Error Unadjusted	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {REF }}+-1 / 2 \mathrm{LSB}$	-1.5	0	1.5	LSB
DYNAMIC CHARACTERISTICS					
Maximum Input Bandwidth	(Note 1) CA3318C	2.5	5.0	-	MHz
Maximum Conversion Speed	CLK = Square Wave	15	17	-	MSPS
Signal to Noise Ratio (SNR) $=\frac{\text { RMS Signal }}{\text { RMSNoise }}$	$\mathrm{F}_{\mathrm{S}}=15 \mathrm{MHz}, \mathrm{f}_{\mathrm{IN}}=100 \mathrm{kHz}$	-	47	-	dB
	$\mathrm{F}_{\mathrm{S}}=15 \mathrm{MHz}, \mathrm{f}_{\text {IN }}=4 \mathrm{MHz}$	-	43	-	dB
Signal to Noise Ratio (SINAD)$=\frac{\text { RMS Signal }}{\text { RMS Nois } \theta+\text { Distortion }}$	$\mathrm{F}_{\mathrm{S}}=15 \mathrm{MHz}, \mathrm{f}_{\mathrm{IN}}=100 \mathrm{kHz}$	-	45	-	dB
	$\mathrm{F}_{\mathrm{S}}=15 \mathrm{MHz}, \mathrm{f}_{\mathrm{IN}}=4 \mathrm{MHz}$	-	35	-	dB
Total Harmonic Distortion, THD	$\mathrm{F}_{\mathrm{S}}=15 \mathrm{MHz}, \mathrm{f}_{\mathrm{IN}}=100 \mathrm{kHz}$	-	-46	-	dBc
	$\mathrm{F}_{\mathrm{S}}=15 \mathrm{MHz}, \mathrm{f}_{\text {IN }}=4 \mathrm{MHz}$	-	-36	-	dBc
Effective Number of Bits (ENOB)	$\mathrm{F}_{\mathrm{S}}=15 \mathrm{MHz}, \mathrm{f}_{\mathrm{IN}}=100 \mathrm{kHz}$	-	7.2	-	Bits
	$\mathrm{F}_{\mathrm{S}}=15 \mathrm{MHz}, \mathrm{f}_{\mathrm{N}}=4 \mathrm{MHz}$	-	5.5	-	Bits
Differential Gain Error	Unadjusted	-	2	-	\%
Differential Phase Error	Unadjusted	-	1	-	\%
ANALOG INPUTS					
Full Scale Range, $\mathrm{V}_{\text {IN }}$ and ($\mathrm{V}_{\text {REF }}+$) - ($\mathrm{V}_{\text {REF }}-$)	Notes 2, 4	4	-	7	V
Input Capacitance, $\mathrm{V}_{\text {IN }}$		-	30	-	pF
Input Current, $\mathrm{V}_{\text {IN }}$, (See Text)	$\mathrm{V}_{\text {IN }}=5.0 \mathrm{~V}, \mathrm{~V}_{\text {REF }}+=5.0 \mathrm{~V}$	-	-	3.5	mA
REFERENCE INPUTS					
Ladder Impedance		270	500	800	Ω

Specifications CA3318C

Electrical Specifications At $+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{AA}^{+}}=\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\text {REF }}{ }^{+}=6.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}^{-}}=\mathrm{V}_{\mathrm{AA}^{-}}=\mathrm{V}_{\mathrm{SS}}, C L K=15 \mathrm{MHz}$, All Reference Points Adjusted, Unless Otherwise Specified. (Continued)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
DIGITAL INPUTS					
Low Level Input Voltage, V_{OL} $\overline{C E 1}, ~ C E 2$	Note 4	-	-	$0.2 \mathrm{~V}_{\mathrm{DD}}$	V
Phase, CLK	Note 4	-	-	$0.2 \mathrm{~V}_{\text {AA }}$	V
High Level Input Voltage, V_{IN} CE1, CE2	Note 4	$0.7 \mathrm{~V}_{\mathrm{DD}}$	-	-	V
Phase, CLK	Note 4	$0.7 \mathrm{~V}_{\text {AA }}$	-	-	V
Input Leakage Current, $I_{\text {I }}$ (Except CLK Input	Note 3	-	± 0.2	± 5	$\mu \mathrm{A}$
Input Capacitance, C_{1}		\bullet	3	\bullet	pF
DIGITAL OUTPUTS					
Output Low (Sink) Current	$\mathrm{V}_{0}=0.4 \mathrm{~V}$	4	10	-	mA
Output High (Source) Current	$\mathrm{V}_{0}=4.5 \mathrm{~V}$	-4	-6	-	mA
Tri-State Output Off-State Leakage Current, I_{Oz}		-	± 0.2	± 5	$\mu \mathrm{A}$
Output Capacitance, C_{0}		-	4	-	pF
TIMING CHARACTERISTICS					
Auto Balance Time ($\phi 1$)		33	-	∞	ns
Sample Time ($\phi 2$)	Note 4	25	-	500	ns
Aperture Delay		-	15	-	ns
Aperture Jitter		\bullet	100	-	ps
Data Valid Time, $T_{\text {D }}$	Note 4	\bullet	50	65	ns
Data Hold Time, T_{H}	Note 4	25	40	-	ns
Output Enable Time, $\mathrm{T}_{\text {EN }}$		-	18	\bullet	ns
Output Disable Time, TII		-	18	-	ns
POWER SUPPLY CHARACTERISTICS					
Device Current ($\left.\mathrm{l}_{\mathrm{DD}}+\mathrm{I}_{\mathrm{A}}\right)$ (Excludes $\mathrm{I}_{\text {REF }}$)	Continuous Conversion (Note 4)	\bullet	30	60	mA
	Auto Balance ($\phi 1$)	-	30	60	mA

NOTES:

1. A full scale sine wave input of greater than $\mathrm{F}_{\text {cLock }} / 2$ or the specified input bandwidth (whichever is less) may cause an erroneous code.

The -3dB bandwidth for frequency response purposes is greater than 30 MHz .
2. $\mathrm{V}_{\text {IN }}$ (Full Scale) or $\mathrm{V}_{\text {REF }}+$ should not exceed $\mathrm{V}_{\mathrm{AA}^{+}}+1.5 \mathrm{~V}$ for accuracy.
3. The clock input is a CMOS inverter with a $50 \mathrm{k} \Omega$ feedback resistor and may be $A C$ coupled with $1 V_{p-p}$ minimum source.
4. Parameter not tested, but guaranteed by design or characterization.

Timing Waveforms

FIGURE 1. INPUT TO OUTPUT TIMING DIAGRAM

Timing Waveforms (Continued)

FIGURE 2. OUTPUT ENABLE TIMING DIAGRAM

FIGURE 3A. STANDBY IN INDEFINITE AUTO BALANCE (SHOWN WITH PHASE = LOW)

FIGURE 3B. STANDBY IN SAMPLE (SHOWN WITH PHASE = LOW)

FIGURE 3. PULSE MODE OPERATION

Typical Performance Curves

FIGURE 4. DEVICE CURRENT vs SAMPLE FREQUENCY

FIGURE 6. ENOB vs TEMPERATURE

FIGURE 8. NON-LINEARITY vs SAMPLE FREQUENCY

FIGURE 5. DEVICE CURRENT vs TEMPERATURE

FIGURE 7. NON-LINEARITY vs TEMPERATURE

FIGURE 9. NON-LINEARITY vs REFERENCE VOLTAGE

Typical Performance Curves (Continued)

FIGURE 10. ENOB vs INPUT FREQUENCY

Pin Descriptions

PIN	NAME	DESCRIPTION	
1	B1	Bit 1 (LSB)	Output Data Bits (High = True)
2	B2	Bit 2	
3	B3	Bit 3	
4	B4	Bit 4	
5	B5	Bit 5	
6	B6	Bit 6	
7	B7	Bit 7	
8	B8	Bit 8 (MSB)	
9	OF	Overfiow	
10	$1 / 4 \mathrm{R}$	Reference Ladder $1 / 4$ Point	
11	$V_{\text {SS }}$	Digital Ground	
12	V_{DD}	Digital Power Supply, +5V	
13	CE2	Tri-State Output Enable Input, Active Low, See Truth Table.	
14	$\overline{\mathrm{CE} 1}$	Tri-State Output Enable Input Active High. See Truth Table.	
15	$\mathrm{V}_{\text {REF }}$	Reference Voltage Negative Input	
16	$\mathrm{V}_{\text {IN }}$	Analog Signal Input	
17	$\mathrm{V}_{\text {AA }}{ }^{-}$	Analog Ground	
18	CLK	Clock Input	
19	PHASE	Sample clock phase control input. When PHASE is low, "Sample Unknown" occurs when the clock is low and "Auto Balance" occurs when the clock is high (see text).	
20	1/2R	Reference Ladder Midpoint	
21	$\mathrm{V}_{\text {IN }}$	Analog Signal Input	
22	$\mathrm{V}_{\text {REF }}{ }^{+}$	Reference Voltage Positive Input	
23	$3 / 4 \mathrm{R}$	Reference Ladder $3 / 4$ Point	
24	$\mathrm{V}_{\text {AA }}{ }^{+}$	Analog Power Supply, +5 V	

CHIP ENABLE TRUTH TABLE

$\overline{\text { CE1 }}$	CE2	B1-B8	OF
0	1	Valid	Valid
$\mathbf{1}$	1	Tri-State	Valid
X	0	Tri-State	Tri-State

$X=$ Don't Care

Theory of Operation

A sequential parallel technique is used by the CA3318 converter to obtain its high speed operation. The sequence consists of the "Auto-Balance" phase, $\phi 1$, and the "Sample Unknown" phase, $\$ 2$. (Refer to the circuit diagram.) Each conversion takes one clock cycle*. With the phase control (pin 19) high, the "Auto-Balance" ($\phi 1$) occurs during the high period of the clock cycle, and the "Sample Unknown" ($\$ 2$) occurs during the low period of the clock cycle.

* The device requires only a single phase clock The terminology of $\phi 1$ and $\phi 2$ refers to the high and low periods of the same clock.
During the "Auto-Balance" phase, a transmission switch is used to connect each of the first set of 256 commutating capacitors to their associated ladder reference tap. Those tap voltages will be as follows:

$$
\begin{aligned}
\mathrm{V}_{\text {TAP }}(\mathrm{N}) & \left.=\left[(\mathrm{N} / 256) \mathrm{V}_{\text {REF }}\right]-(1 / 512) \mathrm{V}_{\text {REF }}\right] \\
& \left.=[(2 \mathrm{~N}-1) / 512] \mathrm{V}_{\mathrm{REF}}\right]
\end{aligned}
$$

Where:

$$
\begin{aligned}
V_{\text {TAP }}(n) & =\text { reference ladder tap voltage at point } n . \\
V_{\text {REF }} & =\text { voltage across } V_{\text {REF }} \text { to } V_{\text {REF }}+ \\
N & =\text { tap number }(1 \text { through } 256)
\end{aligned}
$$

The other side of these capacitors are connected to singlestage amplifiers whose outputs are shorted to their inputs by switches. This balances the amplifiers at their intrinsic trip points, which is approximately $\left(\mathrm{V}_{\mathrm{AA}^{+}}-\mathrm{V}_{\mathrm{AA}^{-}}\right) / 2$. The first set of capacitors now charges to their associated tap voltages.

At the same time a second set of commutating capacitors and amplifiers is also auto-balanced. The balancing of the second-stage amplifier at its intrinsic trip point removes any tracking differences between the first and second amplifier stages. The cascaded auto-balance (CAB) technique, used here, increases comparator sensitivity and temperature tracking.
In the "Sample Unknown" phase, all ladder tap switches and comparator shorting switches are opened. At the same time $\mathrm{V}_{\mathbb{N}}$ is switched to the first set of commutating capacitors. Since the other end of the capacitors are now looking into an effectively open circuit, any input voltage that differs from the previous tap voltage will appear as a voltage shift at the comparator amplifiers. All comparators that had tap voltages greater than V_{IN} will go to a "high" state at their outputs. All comparators that had tap voltages lower than $\mathrm{V}_{\mathbb{I N}}$ will go to a "low" state.

The status of all these comparator amplifiers is AC coupled through the second-stage comparator and stored at the end of this phase ($\phi 2$) by a latching amplifier stage. The latch feeds a second latching stage, triggered at the end of $\phi 1$. This delay allows comparators extra settling time. The status of the comparators is decoded by a 256 to 9 -bit decoder array, and the results are clocked into a storage register at the end of the next $\mathbf{\phi 2}$.

A 3-stage buffer is used at the output of the 9 storage registers which are controlled by two chip-enable signals. CE1 will independently disable $B 1$ through $B 6$ when it is in a high state. CE2 will independently disable B1 through B8 and the OF buffers when it is in the low state.

To facilitate usage of this device, a phase control input is provided which can effectively complement the clock as it enters the chip.

Continuous-Clock Operation

One complete conversion cycle can be traced through the CA3318 via the following steps. (Refer to timing diagram.) With the phase control in a "low" state, the rising edge of the clock input will start a "sample" phase. During this entire "high" state of the clock, the comparators will track the input voltage and the first-stage latches will track the comparator outputs. At the falling edge of the clock, all 256 comparator outputs are captured by the 256 latches. This ends the "sample" phase and starts the "auto-balance" phase for the comparators. During this "low" state of the clock, the output of the latches settles and is captured by a second row of latches when the clock returns high. The second-stage latch output propagates through the decode array, and a 9-bit code appears at the D inputs of the output registers. On the next falling edge of the clock, this 9 -bit code is shifted into the output registers and appears with time delay t_{D} as valid data at the output of the tri-state drivers. This also marks the end of the next "sample" phase, thereby repeating the conversion process for this next cycle.

Pulse-Mode Operation

The CA3318 needs two of the same polarity clock edges to complete a conversion cycle: If, for instance, a negative going clock edge ends sample " N ", then data " N " will appear after the next negative going edge. Because of this requirement, and because there is a maximum sample time of 500ns (due to capacitor droop), most pulse or intermittent sample applications will require double clock pulsing.

If an indefinite standby state is desired, standby should be in auto-balance, and the operation would be as in Figure 3A.
If the standby state is known to last less than 500ns and lowest average power is desired, then operation could be as in Figure 3B.

Increased Accuracy

In most cases the accuracy of the CA3318 should be sufficient without any adjustments. In applications where accuracy is of utmost importance, five adjustments can be made to obtain better accuracy, i.e., offset trim; gain trim; and $1 / 4$, $1 / 2$ and $3 / 4$ point trim.

Offset Trim

In general, offset correction can be done in the preamp circuitry by introducing a dc shift to $\mathrm{V}_{\mathbb{I}}$ or by the offset trim of the op amp. When this is not possible the $\mathrm{V}_{\text {REF- }}$ input can be adjusted to produce an offset trim. The theoretical input voltage to produce the first transition is $1 / 2$ LSB. The equation is as follows:

$$
\begin{aligned}
\mathrm{V}_{\mathbb{I N}}(0 \text { to } 1 \text { transition }) & =1 / 2 \mathrm{LSB}=1 / 2\left(\mathrm{~V}_{\mathrm{REF}} / 256\right) \\
& =\mathrm{V}_{\mathrm{REF}} / 512
\end{aligned}
$$

If $\mathrm{V}_{\mathbb{I}}$ for the first transition is less than the theoretical, then a single-turn 50Ω pot connected between $\mathrm{V}_{\text {REF }}$ - and ground will accomplish the adjustment. Set V_{IN} to $1 / 2$ LSB and trim the pot until the 0-to-1 transition occurs.
If $\mathrm{V}_{\mathbb{N}}$ for the first transition is greater than the theoretical, then the 50Ω pot should be connected between $\mathrm{V}_{\text {REF }}$ - and a negative voltage of about 2 LSB's. The trim procedure is as stated previously.

Gain Trim

In general, the gain trim can also be done in the preamp circuitry by introducing a gain adjustment for the op amp. When this is not possible, then a gain adjustment circuit should be made to adjust the reference voltage. To perform this trim, $\mathrm{V}_{\text {IN }}$ should be set to the 255 to overflow transition. That voltage is $1 / 3$ LSB less than $V_{\text {REF }}+$ and is calculated as follows:

$$
\begin{aligned}
V_{I N}(255 \text { to } 256 \text { transition }) & =V_{\text {REF }}-V_{\text {REF }} / 512 \\
& =V_{\text {REF }}(511 / 512)
\end{aligned}
$$

To perform the gain trim, first do the offset trim and then apply the required $\mathrm{V}_{\mathbb{N}}$ for the 255 to overflow transition. Now adjust $\mathrm{V}_{\text {REF }}+$ until that transition occurs on the outputs.

NOTE：Bypass $\mathrm{V}_{\text {REF }}+$ to analog GND near AD with $0.1 \mu \mathrm{~F}$ ceramic cap．Parts noted should have low temperature drift．

FIGURE 11．TYPICAL VOLTAGE REFERENCE SOURCE FOR

 DRIVING V REF $^{+}$INPUT
$1 / 4$ Point Trims

The $1 / 4,1 / 2$ and $3 / 4$ points on the reference ladder are brought out for linearity adjusting or if the user wishes to create a nonlinear transfer function．The $1 / 4$ points can be driven by the reference drivers shown（Figure 12）or by 2－K pots connected between $\mathrm{V}_{\text {REF }}+$ and $\mathrm{V}_{\text {REF }}$ ．The $1 / 2$（mid－） point should be set first by applying an input of $257 / 512 \mathrm{x}$ （ $\mathrm{V}_{\mathrm{REF}}$ ）and adjusting for an output changing from 128 to 129. Similarly the $1 / 4$ and $3 / 4$ points can be set with inputs of 129／ 512 and $385 / 512 \times\left(\mathrm{V}_{\text {REF }}\right)$ and adjusting for counts of 192 to 193 and 64 to 65 ．（Note that the points are actually $1 / 4, \frac{1}{2}$ and $3 / 4$ of full scale +1 LSB．）

NOTES：
1．All Op Amps $=3 / 4$ CA324E
2．Bypass all reference points to analog ground near A / D with $0.1 \mu \mathrm{~F}$ ceramic caps．
3．Adjust $V_{\text {REF }+}$ first，then $1 / 3,3 / 4$ and $1 / 4$ points．
FIGURE 12．TYPICAL $1 / 4$ POINT DRIVERS FOR ADJUSTING LINEARITY（USE FOR MAXIMUM LINEARITY）

9－Bit Resolution

To obtain 9－bit resolution，two CA3318＇s can be wired together．Necessary ingredients include an open－ended lad－ der network，an overflow indicator，tri－state outputs，and chip－ enable controls－all of which are available on the CA3318．

The first step for connecting a 9－bit circuit is to totem－pole the ladder networks，as illustrated in Figure 13．Since the absolute resistance value of each ladder may vary，external trim of the mid－reference voltage may be required．
The overtlow output of the lower device now becomes the ninth bit．When it goes high，all counts must come from the upper device．When it goes low，all counts must come from the lower device．This is done simply by connecting the lower overtlow signal to the $\overline{\mathrm{CE}}$ control of the lower A／D converter and the CE2 control of the upper A／D converter． The tri－state outputs of the two devices（bits 1 through 8 ）are now connected in parallel to complete the circuitry．The com－ plete circuit for a 9－bit A／D converter is shown in Figure 14.

Grounding／Bypassing

The analog and digital supply grounds of a system should be kept separate and only connected at the AVD．This keeps digital ground noise out of the analog data to be converted． Reference drivers，input amps，reference taps，and the V_{AA} supply should be bypassed at the A／D to the analog side of the ground．See Figure 15 for a block diagram of this con－ cept．All capacitors shown should be low impedance $0.1 \mu \mathrm{~F}$ ceramics and should be mounted as close to the AD as pos－ sible．If $V_{A A}+$ is derived from $V_{D D}$ ，a small（ 10Ω resistor or inductor and additional filtering（ $4.7 \mu \mathrm{~F}$ tantalum）may be used to keep digital noise out of the analog system．

Input Loading

The CA3318 outputs a current pulse to the $\mathrm{V}_{\mathbb{N}}$ terminal at the start of every sample period．This is due to capacitor charging and switch feedthrough and varies with input volt－ age and sampling rate．The signal source must be capable of recovering from the pulse before the end of the sample period to guarantee a valid signal for the A／D to convert． Suitable high speed amplifiers include the HA－5033， HA－2542；and CA3450．Figure 16 is an example of an ampli－ fier which recovers fast enough for sampling at 15 MHz ．

Output Loading

The CMOS digital output stage，although capable of driving large loads，will reflect these loads into the local ground．It is recommended that a local QMOS buffer such as CD74HC541 E be used to isolate capacitive loads．

Definitions

Dynamic Performance Definitions

Fast Fourier Transform（FFT）techniques are used to evaluate the dynamic performance of the converter．A low distortion sine wave is applied to the input，it is sampled，and the output is stored in RAM．The data is then transformed into the frequency domain with a 4096 point FFT and analyzed to evaluate the dynamic performance of the AD．The sine wave input to the part is -0.5 dB down from fullscale for all these tests．

Signal-to-Noise (SNR)

SNR is the measured RMS signal to RMS noise at a specified input and sampling frequency. The noise is the RMS sum of all of the spectral components except the fundamental and the first five harmonics.

Signal-to-Noise + Distortion Ratio (SINAD)
SINAD is the measured RMS signal to RMS sum of all other spectral components below the Nyquist frequency excluding DC.

Effective Number of Bits (ENOB)

The effective number of bits (ENOB) is derived from the SINAD data. ENOB is calculated from:

$$
\text { ENOB }=\left(\text { SINAD }-1.76+V_{\text {CORR }}\right) / 6.02
$$

where: $\quad V_{\text {CORR }}=0.5 \mathrm{~dB}$
Total Harmonic Distortion (THD)
THD is the ratio of the RMS sum of the first 5 harmonic components to the RMS value of the measured input signal.

FIGURE 13. USING TWO CA3318s FOR 9-BIT RESOLUTION

FIGURE 14. TYPICAL CIRCUIT CONFIGURATION FOR THE CA3318 WITH NO LINEARITY ADJUST

FIGURE 15. TYPICAL SYSTEM GROUNDING/BYPASSING

NOTE:

FIGURE 16. TYPICAL HIGH BANDWIDTH AMPLIFIER FOR DRIVING THE CA3318

TABLE 1. OUTPUT CODE TABLE

	INPUT VOLTAGE (NOTE 1)		BINARY OUTPUT CODE									DECIMAL COUNT
CODE DESCRIPTION	$V_{\text {REF }}$ 6.40 V (V)	$V_{\text {REF }}$ 5.12 V (V)	OF	$\begin{gathered} \text { MSB } \\ \text { B8 } \end{gathered}$	B7	B6	B5	B4	B3	B2	$\begin{gathered} \text { LSB } \\ \text { B1 } \\ \hline \end{gathered}$	
Zero	0.00	0.00	0	0	0	0	0	0	0	0	0	0
1 LSB	0.025	0.02	0	0	0	0	0	0	0	0	1	1
2 LSB	0.05	0.04	0	0	0	0	0	0	0	1	0	2
-	-						-					\bullet
-	-	-					\bullet					-
1/4 Full Scale	1.60	1.28	0	0	1	0	0	0	0	0	0	64
-	-	-					\bullet					-
\bullet	-	-					-					\bullet
1/2 Full Scale - 1 LSB	3.175	2.54	0	0	1	1	1	1	1	1	1	127
1/2 Full Scale	3.20	2.56	0	1	0	0	0	0	0	0	0	128
1/2 Full Scale + 1 LSB	3.225	2.58	0	1	0	0	0	0	0	0	1	129
\bullet	-	-					\bullet					-
\bullet	-	-					\bullet					
3/4 Full Scale	4.80	3.84	0	1	1	0	0	0	0	0	0	192
-	\bullet	\bullet					-					-
	-						\bullet					
Full Scale-1 LSB	6.35	5.08	0	1	1	1	1	1	1	1	0	254
Full Scale	6.375	5.10	0	1	1	1	1	1	1	1	1	255
Over Flow	6.40	5.12	1	1	1	1	1	1	1	1	1	511

NOTE: 1. The voltages listed above are the ideal centers of each output code shown as a function of its associated reference voltage.

Reducing Power

Most power is consumed while in the auto-balance state. When operating at lower than 15 MHz clock speed, power can be reduced by stretching the sample ($\phi 2$) time. The constraints are a minimum balance time ($\phi 1$) of 33ns, and a maximum sample time of 500 ns . Longer sample times cause droop in the auto-balance capacitors. Power can also be reduced in the reference string by switching the reference on only during auto-balance.

Clock Input

The Clock and Phase inputs feed buffers referenced to $\mathrm{V}_{\mathrm{AA}^{+}}$ and $\mathrm{V}_{\mathrm{AA}^{-}}$. Phase should be tied to one of these two potentials, while the clock (if DC coupled) should be driven at least from 0.2 to $0.7 \times\left(\mathrm{V}_{\mathrm{AA}^{+}}-\mathrm{V}_{\mathrm{AA}^{-}}\right)$. The clock may also be AC coupled with at least a $1 \mathrm{~V}_{\mathrm{P}-\mathrm{p}}$ swing. This allows TTL drive levels or 5 V QMOS levels when $\mathrm{V}_{\mathrm{AA}}+$ is greater than 5 V .

Features

- Differential Linearity Error ± 0.5 LSB or Less
- Integral Linearity Error ± 0.5 LSB or Less
- Built-In Integral Linearity Compensation Circuit
- Ultra High Speed Operation with Maximum Conversion Rate of 250MSPS (Min.)
- Low Input Capacitance 18pF (Typ.)
- Wide Analog Input Bandwidth 200MHz (Min. for Full-Scale Input)
- Single Power Supply -5.2V
- Low Power Consumption 1400mW (Typ.)
- Low Error Rate
- Capable of Driving 50Ω Loads
- Evaluation Board Available

Applications

- Spectrum Analyzers
- Video Digitizing
- Radar Systems
- Communication Systems
- Direct RF Down-Conversion
- Digital Oscilloscopes

Description

The HI1166 is an 8-bit ultra high speed flash Analog-to-Digital converter IC capable of digitizing analog signals at a maximum rate of 250 MSPS . The digital I/O levels of the converter are compatible with ECL $100 \mathrm{~K} / 10 \mathrm{KH} / 10 \mathrm{~K}$.

The HI1166 is available in the Industrial temperature range and is supplied in a 68 lead ceramic LCC package.

Ordering Information

PART NUMBER	TEMPERATURE RANGE	PACKAGE
HI1166AIL	$-20^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$	68 Lead LCC

Pinout

Functional Block Diagram

Electrical Specifications $\quad T_{A}=+25^{\circ} \mathrm{C}, A V_{E E}=D V_{E E}=-5.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{RT}}, \mathrm{V}_{\mathrm{RTS}}=\mathrm{OV}, \mathrm{V}_{\mathrm{RB}}, \mathrm{V}_{\text {RBS }}=-2 \mathrm{~V}$ (Note 1)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
SYSTEM PERFORMANCE					
Resolution		-	8	-	Bits
Integral Linearity Error, (INL)	$\mathrm{F}_{\mathrm{C}}=250 \mathrm{MSPS}$	-	± 0.3	± 0.5	LSB
Differential Linearity Error, (DNL)	$\mathrm{F}_{\mathrm{C}}=250 \mathrm{MSPS}$	-	± 0.3	± 0.5	LSB
DYNAMIC CHARACTERISTICS					
Signal to Noise Ratio (SINAD)$=\frac{\text { RMS Signal }}{\text { RMS Noise + Distortion }}$	Input $=1 \mathrm{kHz}$, Full Scale $\mathrm{F}_{\mathrm{C}}=250 \mathrm{MHz}$	-	46	-	dB
	Input $=60 \mathrm{MHz}$, Full Scale $\mathrm{F}_{\mathrm{C}}=250 \mathrm{MHz}$	\bullet	37	-	dB
Error Rate	$\begin{aligned} & \text { Input }=50 \mathrm{MHz} \text {, Full Scale } \\ & \text { Error }>16 \mathrm{LSB}, \mathrm{~F}_{\mathrm{C}}=250 \mathrm{MHz} \end{aligned}$	\bullet	-	10^{-9}	TPS (Note 3)
	$\begin{aligned} & \text { Input }=62.499 \mathrm{MHz} \text {, Full Scale } \\ & \text { Error }>16 \mathrm{LSB}, \mathrm{~F}_{\mathrm{C}}=250 \mathrm{MHz} \end{aligned}$	\bullet	10^{-8}	10^{-6}	TPS (Note 3)
Differential Gain Error, DG	NTSC 40IRE Mod. Ramp, $\mathrm{F}_{\mathrm{C}}=250 \mathrm{MSPS}$	-	1.0	-	\%
Differential Phase Error, DP		-	0.5	-	Degree
Overrange Recovery Time		-	1.0	-	ns
Maximum Conversion Rate, F_{C}		250	-	-	MSPS
Aperture Jitter, $T_{\text {AJ }}$		-	9	-	ps
Sampling Delay, $\mathrm{T}_{\text {DS }}$		0.4	1.4	2.4	ns
ANALOG INPUT					
Analog Input Capacitance, $\mathrm{C}_{\text {IN }}$	$\mathrm{V}_{\mathrm{IN}}=1 \mathrm{~V}+0.07 \mathrm{~V}_{\text {RMS }}$	-	18	-	pF
Analog Input Resistance, R IN $^{\text {IN }}$		50	120	-	k Ω
Input Bias Current, $\mathrm{I}_{\text {IN }}$	$\mathrm{V}_{\text {IN }}=-1 \mathrm{~V}$	20	-	450	$\mu \mathrm{A}$
Full Scale Input Bandwidth	$\mathrm{V}_{\text {IN }}=2 \mathrm{~V}_{\text {P.P }}$	200	250	-	MHz

Electrical Specifications $\quad T_{A}=+25^{\circ} \mathrm{C}, A V_{E E}=D V_{E E}=-5.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{RT}} \mathrm{V}_{\mathrm{RTS}}=\mathrm{OV}, \mathrm{V}_{\mathrm{RB}}, \mathrm{V}_{\mathrm{RBS}}=-2 \mathrm{~V}$ (Note 1) (Continued)

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
REFERENCE INPUTS						
Reference Resistance, R REF		-	83	125	182	Ω
Residual Resistance	R1	Note 2	0.1	0.6	2.0	Ω
	R2		300	500	700	Ω
	R3		0.5	2.0	5.0	Ω
	R4		300	500	700	Ω
	R5		0.1	0.6	2.0	Ω
DIGITAL INPUTS						
Logic H Level, $\mathrm{V}_{1 \mathrm{H}}$			-1.13	-	-	V
Logic L Level, $\mathrm{V}_{1 \mathrm{IL}}$			-	-	-1.5	V
Logic H Current, $\mathrm{I}_{1 \mathrm{H}}$		Input Connected to GND	0	-	70	$\mu \mathrm{A}$
Logic L Current, IL		Input Connected to -2V	-50	-	50	$\mu \mathrm{A}$
Input Capacitance			-	4	-	pF
DIGITAL OUTPUTS						
Logic H Level, V_{OH}		$R_{L}=50 \Omega$	-1.0	-	-	V
Logic L Level, V_{OL}		$R_{L}=50 \Omega$	-	-	-1.6	V
TIMING CHARACTERISTICS						
H Pulse Width of Clock, T PW1			1.8	-	-	ns
L Pulse Width of Clock, T PWo			1.8	-	-	ns
Output Rise Time, T_{R}		$R_{L}=50 \Omega$	-	0.6	1.5	ns
Output Fall Time, T_{F}		$R_{L}=50 \Omega$	-	0.6	1.5	ns
Output Delay, $\mathrm{T}_{\text {OD }}$		$R_{L}=50 \Omega$	1.8	2.5	3.2	ns
POWER SUPPLY CHARACTERISTICS						
Supply Current, IEE			-360	-270	-	$m \dot{A}$
Power Consumption, P_{D}		Note 4	-	1.4	1.9	W

NOTES:

1. Electrical Specifications guaranteed within stated operating conditions.
2. See Functional Block Diagram.
3. TPS: Times Per Sample.
4. $P_{D}=I_{E E A} \cdot A V_{E E}+I_{E E D} \cdot D V_{E E}+\frac{\left(V_{R T} \cdot V_{R B}\right)^{2}}{R_{R E F}}$
5. T_{A} is specified in still air and without heatsink. To extend temperature range, appropriate heat management techniques must be employed (See Figure 2).

Timing Diagram

FIGURE 1.

Typical Performance Curves

FIGURE 2. THERMAL RESISTANCE OF THE CONVERTER MOUNTED ON A BOARD

FIGURE 4. $V_{I N}$ PIN INPUT RESISTANCE vs VOLTAGE CHARACTERISTICS

FIGURE 3. $V_{I N}$ PIN CAPACITANCE vs VOLTAGE CHARACTERISTICS

FIGURE 5. $\mathrm{V}_{\mathbb{N}}$ PIN INPUT CURRENT vs VOLTAGE CHARACTERISTICS

FIGURE 6. VIN PIN INPUT CURRENT vs TEMPERATURE CHARACTERISTICS

FIGURE 8. CLK OPEN VOLTAGE vs TEMPERATURE CHARACTERISTICS

FIGURE 10. Vol vs TEMPERATURE CHARACTERISTICS

FIGURE 7. RESISTOR STRING CURRENT vS TEMPERATURE CHARACTERISTICS

FIGURE 9. V_{OH} vs TEMPERATURE CHARACTERISTICS

FIGURE 11. SINAD vS INPUT FREQUENCY RESPONSE CHARACTERISTICS

Typical Performance Curves (Continued)

FIGURE 12. HARMONIC DISTORTION vs INPUT FREQUENCY RESPONSE CHARACTERISTICS

FIGURE 14. ERROR RATE vs CONVERSION RATE

FIGURE 13. MAXIMUM CONVERSION RATE vS TEMPERATURE CHARACTERISTICS

FIGURE 15. ERROR RATE vs CLOCK DUTY CYCLE

FIGURE 16. SUPPLY CURRENT vS TEMPERATURE CHARACTERISTICS

Pin Descriptions

PIN NUMBER	SYMBOL	$v 0$	STANDARD VOLTAGE LEVEL	EQUIVALENT CIRCUIT	DESCRIPTION
4,5	DO, $\overline{\mathrm{DO}}$	0	ECL		LSB and complementary LSB output.
6,7	D1, $\overline{\mathrm{D} 1}$				D1 to D6: Data output
12, 13	D2, $\overline{\mathrm{D} 2}$				D1 to D6: Complementary Data output
14, 15	D3, $\overline{\mathrm{D} 3}$				
19, 20	D4, $\overline{\mathrm{D4}}$				
21, 22	D5, $\overline{\mathrm{D} 5}$				
29, 30	D6, $\overline{\mathrm{D} 6}$				
31, 32	D7, $\overline{\mathrm{D7}}$				MSB complementary MSB data output.
2, 3	OR, $\overline{O R}$				Overrange and complementary overrange output.
1	LINV	1	ECL		Polarity selection for LSBs (refer to the A/D Output Code Table.) Pulled low when left open.
33	MINV	1	ECL		Polarity selection for MSB (refer to the A/D Output Code Table). Pulled low when left open.
35	CLK	1	ECL		CLK Input
34	$\overline{C L K}$				Complementary CLK input. Pulled down to -1.3V when left open.

Pin Descriptions (Continued)

PIN NUMBER	SYMBOL	VO	STANDARD VOLTAGE LEVEL	EQUIVALENT CIRCUIT	DESCRIPTION
64	V_{RT}	1	OV		Analog reference voltage (top) (OV Typ.).
65	$\mathrm{V}_{\text {RTS }}$	0	OV		Reference voltage sense (top).
52	VRM	1	$V_{\text {RB/2 }}$		Reference voltage mid point. Can be used for linearity compensation.
39	$\mathrm{V}_{\text {RBS }}$	0	-2V		Reference voltage sense (bottom).
40	V_{RB}	1	-2V		Analog reference voltage (bottom).
49, 50	$\mathrm{V}_{\text {IN } 2}$	1	$\mathrm{V}_{\text {RTS }}$ to $\mathrm{V}_{\text {RBS }}$		Analog input. All of the pins must be wired externally.
54, 55	$\mathrm{V}_{\mathrm{IN} 1}$				
$\begin{aligned} & 43,48, \\ & 51,53, \\ & 56,61 \end{aligned}$	AGND	-	OV		Analog ground.
$\begin{array}{\|c\|} \hline 37,38, \\ 42,58, \\ 62,66,67 \\ \hline \end{array}$	$\mathrm{AV}_{\mathrm{EE}}$		-5.2V		Analog supply. Internally connected to $\mathrm{DV}_{\mathrm{EE}}$ (resistance: 4Ω to 6Ω).
18	DGND1		OV		Digital ground.
16, 17	DGND2		OV		Digital ground for output drive.
8, 28	DV ${ }_{\text {EE }}$		-5.2V		Digital supply. Internally connected to $\mathrm{AV}_{\mathrm{EE}}$ (resistance: 4Ω to 6Ω).

A/D OUTPUT CODE TABLE

NOTE:

1. $\mathrm{V}_{\mathrm{RT}}=\mathrm{V}_{\mathrm{RTS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{RM}}=-1 \mathrm{~V}$ or open, $\mathrm{V}_{\mathrm{RB}}=\mathrm{V}_{\mathrm{RBS}}=-2 \mathrm{~V}$

Test Circuits

FIGURE 2. MAXIMUM CONVERSION RATE AND DIFFERENTIAL GAIN/PHASE ERROR TEST CIRCUIT

FIGURE 3. INTEGRAL AND DIFFERENTIAL LINEARITY ERROR TEST CIRCUIT

Test Circuits (Continued)

FIGURE 4. POWER SUPPLY AND ANALOG INPUT BIAS CURRENT TEST CIRCUIT

Aperture jitter is defined as follows:
$T_{A J}=\sigma / \frac{\Delta v}{\Delta t}=\sigma /\left(\frac{256}{2} \times 2 \pi f\right)$
FIGURE 5B. APERTURE JITTER TEST METHOD
Where σ (unit: LSB) is the deviation of the output codes when the input frequency is exactly the same as the clock and is sampled at the largest slew rate point.

FIGURE 5. SAMPLING DELAY AND APERTURE JITTER TEST CIRCUIT

HI1276

8-Bit, 500MSPS Flash ADD Converter

Features

- Differential Linearity Error $\mathbf{\pm 0 . 5}$ LSB or Less
- Integral Linearity Error ± 0.7 LSB or Less
- Built-In Integral Linearity Compensation Circuit
- Ultra High Speed Operation with Maximum Conversion Rate of 500MSPS (Min.)
- Low Input Capacitance 20pF (Typ.)
- Wide Analog Input Bandwidth 300MHz (Min. for Full-Scale Input)
- Single Power Supply -5.2V
- Low Power Consumption 2.8W (Typ.)
- Low Error Rate
- Capable of Driving 50Ω Loads
- Evaluation Board Available

Applications

- Radar Systems
- Communication Systems
- Digital Oscilloscopes
- Direct RF Down-Conversion

Description

The HI1276 is a 8-bit ultra high speed flash Analog-to-Digital converter IC capable of digitizing analog signals at a maximum rate of 500 MSPS . The digital I/O levels of this AD converter are compatible with ECL $100 \mathrm{~K} / 10 \mathrm{KH} / 10 \mathrm{~K}$.

The HI1276 is available in the Industrial temperature range and is supplied in a 68 lead ceramic LCC package.

Ordering Information

PART NUMBER	TEMPERATURE RANGE	PACKAGE
HI1276AIL	$-20^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$	68 Lead Ceramic LCC

Functional Block Diagram

Specifications H11276

Operating Conditions (Note 1)

Supply Voltage

$\mathrm{AV}_{\text {EE }}, \mathrm{DV}_{\mathrm{EE}}$	-5.5V to -4.95V
$\mathrm{AV}_{\text {EE }}-\mathrm{DV}_{\text {EE }}$	-0.05V to 0.05V
AGND-DGN	-0.05 V to 0.05V

Reference Input Voltage

$$
\begin{aligned}
& V_{\text {RB }} \\
& -2.2 \mathrm{~V} \text { to }-1.8 \mathrm{~V} \\
& \text { Analog Input Voltage, } \mathrm{V}_{\mathbb{N}} \\
& \text {. } \mathrm{V}_{\mathrm{RB}} \text { to } \mathrm{V}_{\mathrm{RT}}
\end{aligned}
$$

Electrical Specifications $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{AV}_{\mathrm{EE}}=\mathrm{DV}$ EE $=-5.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{RT}}, \mathrm{V}_{\mathrm{RTS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{RB}}, \mathrm{V}_{\mathrm{RBS}}=-2 \mathrm{~V}$ (Note 1)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
SYSTEM PERFORMANCE					
Resolution		-	8	-	Bits
Integral Linearity Error, (INL)	$\mathrm{F}_{\mathrm{C}}=500 \mathrm{MHz}$	-	± 0.3	± 0.7	LSB
Differential Linearity Error, (DNL)	$\mathrm{F}_{\mathrm{C}}=500 \mathrm{MHz}$	-	± 0.3	± 0.5	LSB
DYNAMIC CHARACTERISTICS					
Signal to Noise Ratio (SINAD) RMS Signal	$\begin{aligned} & \text { Input }=1 \mathrm{kHz} \text {, Full Scale } \\ & \mathrm{F}_{\mathrm{C}}=500 \mathrm{MHz} \\ & \hline \end{aligned}$	-	46	-	dB
$\overline{\text { RMS Noise + Distortion }}$	$\begin{aligned} & \text { Input }=100 \mathrm{MHz} \text {, Full Scale } \\ & F_{C}=500 \mathrm{MHz} \end{aligned}$	\bullet	37	\cdots	dB
Error Rate	$\begin{aligned} & \text { Input }=100 \mathrm{MHz}, \text { Full Scale } \\ & \text { Error }>16 \mathrm{LSB}, \mathrm{~F}_{\mathrm{C}}=400 \mathrm{MHz} \\ & \hline \end{aligned}$	-	10^{-11}	10^{-9}	$\begin{gathered} \text { TPS } \\ \text { (Note 3) } \end{gathered}$
	$\begin{aligned} & \text { Input }=125 \mathrm{MHz}, \text { Full Scale } \\ & \text { Error }>16 \mathrm{LSB}, \mathrm{~F}_{\mathrm{C}}=500 \mathrm{MHz} \end{aligned}$	\bullet	10^{-8}	10^{-6}	$\begin{gathered} \text { TPS } \\ \text { (Note 3) } \end{gathered}$
Differential Gain Error, DG	NTSC 40IRE Mod. Ramp, $\mathrm{F}_{\mathrm{C}}=500 \mathrm{MSPS}$	\bullet	1.0	-	\%
Differential Phase Error, DP		-	0.5	-	Degree
Overrange Recovery Time		-	1.0	-	ns
Maximum Conversion Rate, F_{C}		500	-	-	MSPS
Aperture Jitter, $\mathrm{T}_{\text {AJ }}$	Input $=150 \mathrm{MHz}$	-	11	-	ps
Sampling Delay, $T_{\text {DS }}$	Input $=150 \mathrm{MHz}$	0.2	0.8	1.5	ns
ANALOG INPUT					
Analog Input Capacitance, $\mathrm{C}_{\text {IN }}$	$\mathrm{V}_{\mathrm{IN}}=1 \mathrm{~V}+0.07 \mathrm{~V}_{\text {RMS }}$	-	20	-	pF
Analog Input Resistance, $\mathrm{R}_{\text {IN }}$		30	70	-	$\mathrm{k} \Omega$
Input Bias Current, I_{N}	$\mathrm{V}_{\mathrm{IN}}=-1 \mathrm{~V}$	-	-	620	$\mu \mathrm{A}$
Full Scale Input Bandwidth	$\mathrm{V}_{\text {IN }}=2 \mathrm{~V}_{\mathrm{P} . \mathrm{P}}$	300	-	-	MHz
REFERENCE INPUTS					
Reference Resistance, $\mathrm{R}_{\text {REF }}$		70	110	160	Ω
Residual Resistance	Note 2	0.1	0.5	2.0	Ω
		0.5	5.2	10	Ω
		0.5	1.6	5.0	Ω
		0.5	8.7	20	Ω
		0.1	0.5	2.0	Ω

Specifications HI1276

Electrical Specifications $\quad T_{A}=+25^{\circ} \mathrm{C}, A V_{E E}=D V_{E E}=-5.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{RT}}, \mathrm{V}_{\mathrm{RTS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{AB}}, \mathrm{V}_{\mathrm{RBS}}=-2 \mathrm{~V}$ (Note 1) (Continued)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
DIGITAL INPUTS					
Logic H Level, V_{IH}		-1.10	-	-	V
Logic L Level, V_{IL}		-	-	-1.55	V
Logic H Current, I_{H}	Input Connected to -0.8V	-	-	70	$\mu \mathrm{A}$
Logic L Current, $\mathrm{I}_{\text {IL }}$	Input Connected to -1.6V	-50	-	60	$\mu \mathrm{A}$
Input Capacitance		-	6	-	pF
DIGITAL OUTPUTS					
Logic H Level, V_{OH}	$\mathrm{R}_{\mathrm{L}}=50 \Omega$	-1.03	-	-	V
Logic L Level, V_{OL}	$\mathrm{R}_{\mathrm{L}}=50 \Omega$	-	-	-1.58	V
TIMING CHARACTERISTICS					
Clock Duty Cycle		45	50	55	\%
Output Rise Time, T_{R}	$\mathrm{R}_{\mathrm{L}}=50 \Omega, 20 \%$ to 80\%	0.5	0.7	1.0	ns
Output Fall Time, T_{F}	$\mathrm{R}_{\mathrm{L}}=50 \Omega, 80 \%$ to 20\%	0.5	0.7	1.0	ns
Output Delay, $\mathrm{T}_{\text {OD }}$		1.5	1.9	2.3	ns
POWER SUPPLY CHARACTERISTICS					
Supply Current, IEE		-680	-520	\bullet	mA
Power Consumption, P_{D}	Note 4	-	2.8	3.6	W

NOTES:

1. Electrical Specifications guaranteed within stated operating conditions.
2. See Functional Block Diagram.
3. TPS: Times Per Sample.
4. $P_{D}=I_{E E A} \bullet A V_{E E}+I_{E E D} \bullet D V_{E E}+\frac{\left(V_{R T}-V_{R B}\right)^{2}}{R_{R E F}}$
5. T_{A} is specified in still air and without heatsink. To extend temperature range, appropriate heat management techniques must be employed (See Figure 2).

Timing Diagram

FIGURE 1.

Typical Performance Curves

FIGURE 2. THERMAL RESISTANCE MOUNTED ON-BOARD

FIGURE 4. DO PIN HIGH LEVEL VOLTAGE vs TEMPERATURE CHARACTERISTICS

FIGURE 6. DO PIN LEVEL VOLTAGE vs TEMPERATURE CHARACTERISTICS

FIGURE 3. SUPPLY CURRENT vs TEMPERATURE CHARACTERISTICS

FIGURE 5. REGISTER STRING CURRENT vS TEMPERATURE CHARACTERISTICS

FIGURE 7. $\overline{\text { CLK }}$ PIN OPEN VOLTAGE vs TEMPERATURE CHARACTERISTICS

Typical Performance Curves (Continued)

FIGURE 8. SINAD vs INPUT FREQUENCY CHARACTERISTICS

FIGURE 10. ERROR RATE vs CONVERSION FREQUENCY CHARACTERISTICS

FIGURE 9. HARMONIC DISTORTION vs INPUT FREQUENCY CHARACTERISTICS

FIGURE 11. ERROR RATE vs CLOCK DUTY CYCLE CHARACTERISTICS

FIGURE 12. ERROR RATE vs THRESHOLD LEVEL CHARACTERISTICS

Pin Descriptions

PIN NUMBER	SYMBOL	vo	STANDARD VOLTAGE LEVEL	EQUIVALENT CIRCUIT	DESCRIPTION
1	LINV	1	ECL	DGND1	Polarity selection for LSBs (refer to the AD Output Code Table.) Pulled low when left open.
37	MINV				Polarity selection for MSB (refer to the A/D Output Code Table). Pulled low when left open.
6	V_{RT}	1	OV		Analog reference voltage (top) (OV typ.).
5	$\mathrm{V}_{\text {RTS }}$	0	OV		Reference voltage sense (top).
18	$V_{\text {RM }}$	1	$\mathrm{V}_{\mathrm{RB} / 2}$		Reference voltage mid point. Can be used for linearity compensation.
31	$\mathrm{V}_{\text {RBS }}$	0	-2V		Reference voltage sense (bottom).
30	V_{RB}	1	-2V		Analog reference voltage (bottom).
15, 16	$\mathrm{V}_{\text {IN } 1}$	1	$\mathrm{V}_{\text {RTS }}$ to $\mathrm{V}_{\text {RBS }}$		Analog input. All of the pins must
20, 21	$\mathrm{V}_{\text {IN2 }}$				be wired externally.

Pin Descriptions (Continued)

PIN NUMBER	SYMBOL	VO	STANDARD VOLTAGE LEVEL	EQUIVALENT CIRCUIT	DESCRIPTION
35	CLK	1	ECL		CLK Input
36	$\overline{\text { CLK }}$				Complementary CLK input. Pulled down to -1.3V when left open.
38, 39	$\overline{\mathrm{D7}}, \mathrm{D7}$	0	ECL		MSB and complementary MSB data output.
40, 41	$\overline{\mathrm{D}}$, D6				D1 to D6: Data output
46, 47	$\overline{\mathrm{D5}}, \mathrm{D} 5$				D1 to D6: Complementary data output
49, 50	$\overline{\text { D4, }}$ D4				
55, 56	D3, D3				
58,59	$\overline{\mathrm{D} 2}, \mathrm{D} 2$				
63,64	$\overline{\mathrm{D} 1}, \mathrm{D} 1$				
65, 66	$\overline{\mathrm{D}}$, D0				LSB data complementary output LSB data output.
67,68	$\overline{\mathrm{OR}}, \mathrm{OR}$				Overrange and complementary overrange output.
$\begin{gathered} 2,3,7,8, \\ 12,28, \\ 29,33,34 \end{gathered}$	$\mathrm{AV}_{\text {EE }}$	-	-5.2V		Analog supply. Internally connected to $\mathrm{DV}_{\mathrm{EE}}$ (resistance: 4Ω to 6Ω).
$\begin{aligned} & 9,14,17, \\ & 19,22,27 \end{aligned}$	AGND		OV		Analog ground.
$\begin{aligned} & 42,48, \\ & 57,62 \end{aligned}$	DVEE		-5.2V		Digital supply. Internally connected to $\mathrm{AV}_{\mathrm{EE}}$ (resistance: 4Ω to 6Ω).
$\begin{aligned} & 43,51, \\ & 52,61 \end{aligned}$	DGND1		OV		Digital ground.
$\begin{aligned} & 44,53, \\ & 54,60 \end{aligned}$	DGND2 (Note 1)		OV		Digital ground for output drive.
$\begin{gathered} 4,10,11, \\ 13,23, \\ 24,25, \\ 26,32 \end{gathered}$	NC				No connect pins. It is recommended to wire these pins to AGND.
45	NC				No connect pin. It is recommended to wire these pins to DGND.

AND OUTPUT CODE TABLE

NOTE:

1. $\mathrm{V}_{\mathrm{RT}}=\mathrm{V}_{\mathrm{RTS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{RM}}=-1 \mathrm{~V}$ or open, $\mathrm{V}_{\mathrm{RB}}=\mathrm{V}_{\mathrm{RBS}}=-2 \mathrm{~V}$

Test Circuits

FIGURE 2. MAXIMUM CONVERSION RATE AND DIFFERENTIAL GAIN/PHASE ERROR TEST CIRCUIT

FIGURE 3. INTEGRAL AND DIFFERENTIAL LINEARITY ERROR TEST CIRCUIT

Test Circuits (Continued)

FIGURE 4. POWER SUPPLY AND ANALOG INPUT BIAS CURRENT TEST CIRCUIT

Aperture jitter is defined as follows:
$T_{A J}=\sigma / \frac{\Delta v}{\Delta t}=\sigma /\left(\frac{256}{2} \times 2 \pi f\right)$
FIGURE 5A.
FIGURE 5B. APERTURE JITTER TEST METHOD
Where σ (unit: LSB) is the deviation of the output codes when the input frequency is exactly the same as the clock and is sampled at the largest slew rate point.

FIGURE 5. SAMPLING DELAY AND APERTURE JITTER TEST CIRCUIT

Features

- Differential Linearity Error ± 0.5 LSB or Less
- Integral Linearity Error ± 0.5 LSB or Less
- Built-In Integral Linearity Compensation Circuit
- High-Speed Operation with Maximum Conversion Rate of 75MSPS (Min.)
- Low Input Capacitance 17pF (Typ.)
- Wide Analog Input Bandwidth 150MHz (Min. for Full Scale Input)
- Single Power Supply -5.2V
- Low Power Consumption 580mW (Typ.)
- Low Error Rate
- Operable at 50\% Clock Duty Cycle
- Capable of Driving 50Ω Loads
- Evaluation Board Available

Applications

- Video Digitizing
- HDTV (High Definition TV)
- Radar Systems
- Communication Systems
- Direct RF Down-Conversion
- Digital Oscilloscopes

Description

The HI1386 is a 8-bit high-speed flash analog-to-digital converter IC capable of digitizing analog signals at a maximum rate of 75MSPS. The digital I/O levels of this AD converter are compatible with ECL $100 \mathrm{~K} / 10 \mathrm{KH} / 10 \mathrm{~K}$.

The HI1386 is available in the commercial and industrial temperature range and is supplied in 28 lead plastic DIP and 44 lead ceramic LCC packages.

Ordering Information

PART NUMBER	TEMPERATURE RANGE	PACKAGE
Hl1386JCP	$-25^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	28 Lead Plastic DIP
H 11386 AIL	$-25^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$	44 Lead LCC

Functional Block Diagram

Specifications HI1386

Absolute Maximum Ratings $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		Thermal Information		
Supply Voltage ($\mathrm{AV}_{\mathrm{EE}}, \mathrm{DV}_{\mathrm{EE}}$)	-7V to +0.5V	Thermal Resistance	$\theta_{\text {JA }}$	θ_{Jc}
Analog Input Voltage ($\mathrm{V}_{\text {IN }}$)	.-2.7V to +0.5V	HI1386JCP	$58^{\circ} \mathrm{C} / \mathrm{W}$	\cdots
Reference Input Voltage		Hi1386AIL	$45^{\circ} \mathrm{C} / \mathrm{W}$	$11^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{V}_{\mathrm{RT}}, \mathrm{V}_{\mathrm{RB}}, \mathrm{V}_{\text {RM }}$	-2.7V to +0.5 V	Maximum Power Dissipation.		.1.17W
$\mathrm{V}_{\mathrm{RT}}-\mathrm{V}_{\text {RB }} \mathrm{l}$.	.2.5V	Maximum Junction Temperature		
Digital Input Voltage		HI1386AIL		$+175^{\circ} \mathrm{C}$
CLK, CLK, MINV, LINV	-4 V to +0.5 V	H11386JCP		$+150^{\circ} \mathrm{C}$
ICLK-CLKI .	. 2.7 V	Operating Temperature (Note 4)		
V_{RM} Pin Input Current (${ }_{\text {VRM }}$)	-3 mA to +3 mA	H11386JCP (T_{A}).		to $+75^{\circ} \mathrm{C}$
Digital Output Current (ID0 to ID7).	-30mA to 0mA	Hil386AIL (T_{c})	-20°	10 $+100^{\circ} \mathrm{C}$
Storage Temperature Range ($\mathrm{T}_{\text {STG }}$).	$65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$			
Lead Temperature (Soldering 10s).	$\ldots . .300{ }^{\circ} \mathrm{C}$			

Operating Conditions

Supply Voltage		Pulse Width of Clock	
$\mathrm{AV}_{\mathrm{EE}}, \mathrm{DV}_{\mathrm{EE}}$	-5.5V to -4.95V		
$\mathrm{AV}_{\mathrm{EE}} \mathrm{DV}^{\text {D }}$ EE	-0.05V to 0.05V	$\mathrm{T}_{\text {PW1 }}$.	6.6ns Min.
AGND-DGND	-0.05 V to 0.05V	$\mathrm{T}_{\text {PWO }}$.	6.6ns Min.
Reference Input Voltage			
V_{RT}. 0.0 .1 V to 0.1V			
V_{RB}	-2.2V to -1.8V		

Electrical Specifications $\quad \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{AV}_{\mathrm{EE}}=\mathrm{DV}_{\mathrm{EE}}=-5.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{RT}}=\mathrm{OV}, \mathrm{V}_{\mathrm{RB}}=-2 \mathrm{~V}$ (Note 1)

Electrical Specifications $\quad T_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{AV}$ EE $=\mathrm{DV} \mathrm{EE}_{\mathrm{EE}}=-5.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{RT}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{RB}}=-2 \mathrm{~V}$（Note 1）（Continued）

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
DIGITAL INPUTS					
Logic H Level， V_{IH}		－1．13	－	－	V
Logic L Level， V_{IL}		－	－	－1．50	V
Logic H Current， I_{IH}	-0.8 V is Applied to Input	0	－	50	$\mu \mathrm{A}$
Logic L Current， $\mathrm{I}_{\text {IL }}$	-1.6 V is Applied to Input	－50	－	50	$\mu \mathrm{A}$
Input Capacitance		－	7	－	pF
DIGITAL OUTPUTS					
Logic H Level， V_{OH}	$\mathrm{R}_{\mathrm{L}}=620 \Omega$ to $\mathrm{DV}_{\mathrm{EE}}$	－1．03	－	－	V
Logic L Level， V_{OL}	$\mathrm{R}_{\mathrm{L}}=620 \Omega$ to $\mathrm{DV}_{\text {EE }}$	－	－	－1．62	V
TIMING CHARACTERISTICS					
H Pulse Width of Clock，$T_{\text {PW1 }}$		6.6	－	－	ns
L Pulse Width of Clock，$T_{\text {PWo }}$		6.6	\bullet	－	ns
Output Rise Time， T_{R}	$\mathrm{R}_{\mathrm{L}}=620 \Omega$ to $\mathrm{DV}_{\text {EE }}, 20 \%$ to 80%	－	0.9	－	ns
Output Fall Time， T_{F}	$\mathrm{R}_{\mathrm{L}}=620 \Omega$ to $\mathrm{DV}_{E E}, 20 \%$ to 80%	－	2.1	－	ns
Output Delay， $\mathrm{T}_{\text {OD }}$		4.0	6.5	9.0	ns
POWER SUPPLY CHARACTERISTICS					
Supply Current， $\mathrm{I}_{\text {EE }}$		－150	－104	－	mA
Power Consumption， P_{D}	Note 3	－	580	－	mW

NOTES：
1．Electrical Specifications guaranteed within stated operating conditions．
2．TPS：Times Per Sample．
3．$P_{D}=I_{E E} \cdot V_{E E}+\frac{\left(v_{R T}-v_{R B}\right)^{2}}{R_{R E F}}$
4．T_{A} specified in still air and without heat sink．To extend temperature range，appropriate heat management techniques must be employed．

Timing Diagram

FIGURE 1.

Pin Descriptions and I/O Pin Equivalent Circuit

PIN NUMBER		SYMBOL	VO	STANDARD voltage LEVEL	EQUIVALENT CIRCUIT	DESCRIPTION
DIP	LCC					
$\begin{aligned} & 19,21, \\ & 23,25 \end{aligned}$	$\begin{aligned} & 31,33, \\ & 35,37 \end{aligned}$	AGND	-	OV		Analog GND. Used as GND for input buffers and latches of comparators. Isolated from DGND, DGND1, and DGND2.
$\begin{gathered} 18,26, \\ 28 \end{gathered}$	$\begin{gathered} 27,28, \\ 40,41, \\ 44 \end{gathered}$	$\mathrm{AV}_{\mathrm{EE}}$	-	-5.2V		Analog $\mathrm{V}_{\mathrm{EE}}-5.2 \mathrm{~V}$ (Typ.). Internally connected to DV tance: 4Ω to 6Ω). Bypass with $0.1 \mu \mathrm{~F}$ to AGND.
16	23	CLK	1	ECL		CLK Input
15	22	$\overline{\text { CLK }}$				Input complementary to CLK. When open pulled down to -1.3V. Device is operable without CLK input, but use of complementary inputs of CLK and CLK is recommended to obtain stable high speed operation.
3, 12	-	DGND	-	OV		Digital GND (used for internal circuits and output transistors).
-	5,19	DGND1	-	OV		Digital GND (used for internal circuits and output transistors).
-	6, 16	DGND2	-	OV		Digital GND (used for output buffers).
2, 13	4,20	DV EEE	-	-5.2V		Digital V_{EE}. Internally connected to $A V_{E E}$ (resistance: 4Ω to 6Ω). Bypass with $0.1 \mu \mathrm{~F}$ to DGND
4	8	D0	0	ECL		LSB of data outputs. External pull-down resistor is required.
5	9	D1				Data outputs. External pull-down
6	10	D2				
7	11	D3				
8	12	D4				
9	13	D5				
10	14	D6				
11	15	D7				MSB of data outputs. External pull-down resistor is required.

HI1386
Pin Descriptions and I/O Pin Equivalent Circuit (Continued)

PIN NUMBER		SYMBOL	vo	STANDARD VOLTAGE LEVEL	EQUIVALENT CIRCUIT	DESCRIPTION
DIP	LCC					
1	3	LINV	1	ECL		Input pin for D0 (LSB) to D6 output polarity inversion (see A/D Output Code Table). Pulled low when left open.
14	21	MINV	1	ECL		Input pin for D7 (MSB) output polarity inversion (see A/D Output Code Table). Pulled low when left open.
20, 24	32, 36	$\mathrm{V}_{\text {IN }}$	1	V_{RT} to V_{RB}		Analog input pins. These two pins must be connected externally, since they are not internally connected. See Application Note for precautions.
17	26	V_{RB}	1	-2V		Reference voltage (bottom). Typically -2 V . Bypass with a $0.1 \mu \mathrm{~F}$ and $10 \mu \mathrm{~F}$ to AGND.
22	34	$\mathrm{V}_{\text {RM }}$	1	$\mathrm{V}_{\mathrm{R}}{ }^{\text {2 }}$	$\left\{\begin{array}{l}\text { R COMPARATOR } 1\end{array}\right.$	Reference voltage mid point. Can be used as a pin for integral linearity compensation.
27	42	$V_{\text {RT }}$	1	OV		Reference voltage (top) typically OV.

A/D OUTPUT CODE TABLE

$\mathbf{V}_{\text {IN }}$ (Note 1)	STEP	MINV 1 LINV 1		0		1		0	
		D7	D0	D7	D0	D7	D0	D7	D0
OV	01	000••••00		100.....00		011••••11		111•••••11	
		000••••00		$100 \cdot \cdots \cdot 00$		011••••11		$111 \cdot \cdots \cdot 11$	
		000••••01		100....01		011•••10		111••••10	
-1V	127	011•••11		111 • . . 11		$000 \cdot \cdots 00$		$100 \cdots \cdots 00$	
	128	100 • . . 00		000••••00		111•••11		011••••11	
		!		!		!			
	254	111 • - . - 10		011••••10		100. $\cdot \cdots \cdot 01$		$000 \cdot \cdots \cdot 01$	
	255	$111 \cdot \cdots \cdot \cdots 11$		011••••11		$100 \cdot \cdots \cdot \cdot 0$		$000 \cdots \cdots 00$	
-2V		$111 \cdot \cdots \cdots 11$		011••••11		$100 \cdot \cdots \cdot 00$		$000 \cdot \cdots \cdot 00$	

NOTE:

1. $\mathrm{V}_{\mathrm{RT}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{RB}}=-2 \mathrm{~V}$

Test Circuits

FIGURE 2. MAXIMUM CONVERSION RATE TEST CIRCUIT

FIGURE 3. DIFFERENTIAL GAIN AND PHASE ERROR TEST CIRCUIT

FIGURE 4. INTEGRAL AND DIFFERENTIAL LINEARITY ERROR TEST CIRCUIT

Test Circuits (Continued)

FIGURE 5A.
FIGURE 5. ANALOG INPUT BIAS AND POWER SUPPLY CURRENT TEST CIRCUIT

Aperture jitter is defined as follows:

$$
\mathrm{T}_{\mathrm{AJ}}=\sigma / \frac{\Delta v}{\Delta \mathrm{t}}=\sigma /\left(\frac{256}{2} \times 2 \pi \mathrm{f}\right)
$$

FIGURE 6B. APERTURE JITTER TEST METHOD
Where σ (unit: LSB) is the deviation of the output codes when the input frequency is exactly the same as the clock and is sampled at the largest slew rate point.

FIGURE 6. SAMPLING DELAY AND APERTURE JITTER TEST CIRCUIT

HARRIS
SEMICONDUCTOR

December 1993

8-Bit, 125MSPS Flash A/D Converter

Features

- Differential Linearity Error ± 0.5 LSB (Typ.) or Less
- Integral Linearity Error ± 0.5 LSB (Typ.) or Less
- Built-In Integral Linearity Compensation Circuit
- Ultra High Speed Operation with Maximum Conversion Rate of 125MSPS (Min.)
- Low Input Capacitance 18pF (Typ.)
- Wide Analog Input Bandwidth 200MHz (Min. for FullScale Input)
- Single Power Supply -5.2V
- Low Power Consumption 870 mW (Typ.)
- Low Error Rate
- Operable at 50\% Clock Duty Cycle
- Capable of Driving 50Ω Loads
- Evaluation Board Available

Applications

- Video Digitizing
- Communication Systems
- HDTV (High Definition TV)
- Radar Systems
- Direct RF Down-Conversion - Digital Oscilloscopes

Description

The HI1396 is an 8-bit ultra high speed flash analog-to-digital converter IC capable of digitizing analog signals at the maximum rate of 125 MSPS . The digital I/O levels of the converter are compatible with ECL $100 \mathrm{~K} / 10 \mathrm{KH} / 10 \mathrm{~K}$.

The HI1396 is available in the Commercial and Industrial temperature ranges and is supplied in a 68 lead ceramic LCC, 42 lead ceramic DIP and plastic DIP packages.

Ordering Information

PART NUMBER	TEMPERATURE RANGE	PACKAGE
HI1396JCJ	$-20^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	42 Lead Ceramic DIP
HI1396AIL	$-20^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$	68 Lead Ceramic LCC
HI1396JCP	$-20^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	42 Lead Plastic DIP

Functional Block Diagram

Absolute Maximum Ratings $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	
Supply Voltage ($A \mathrm{~V}_{\mathrm{EE}}, \mathrm{DV}_{\mathrm{EE}}$)	-7V
Analog Input Voltage ($\mathrm{V}_{\text {IN }}$)	-2.7 V to +0.5 V
Reference Input Voitage	
$\mathrm{V}_{\mathrm{RT}}, \mathrm{V}_{\mathrm{RB}}, \mathrm{V}_{\mathrm{RM}}$	-2.7V to +0.5V
$\mathrm{IV}_{\text {RT }} \mathrm{V}_{\text {RII }} \mathrm{l}$.	2.5 V
Digital Input Voltage	
CLK, CLK, MINV, LINV	-4V to +0.5 V
ICLK-CLKI	.2.7V
$\mathrm{V}_{\text {RM }}$ Pin Input Current (lvRM)	$-3 m A$ to +3 mA
Digital Output Current (ID0 to ID7).	-30 mA to 0mA
Storage Temperature Range (STG $^{\text {S }}$)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering 10s).	$+300^{\circ} \mathrm{C}$

Thermal Information

Thermal Resistance	$\theta_{\text {JA }}$	θ_{Jc}
HI1396JCP	$52^{\circ} \mathrm{C} / \mathrm{W}$	
HI1396.JCJ.	$36^{\circ} \mathrm{C} / \mathrm{W}$	$12^{\circ} \mathrm{C} / \mathrm{W}$
HI1396AIL	$38^{\circ} \mathrm{C} / \mathrm{W}$	$10^{\circ} \mathrm{C} / \mathrm{N}$

Maximum Power Dissipation Ceramic Package 1.61W Plastic Package. 1.44 W

Operating Temperature (Note 4)

Maximum Junction Temperature
HI1396JCP
$+150^{\circ} \mathrm{C}$
HI1396JCJ, HI1396AIL

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Operating Conditions (Note 1)

Supply Voltage		Analog Input Voltage, V_{IN}	RB to V_{R}
$\mathrm{AV}_{\text {EE }}, \mathrm{DV}_{\text {EE }}$	-5.5V to -4.95V	Pulse Width of Clock	
$\mathrm{AV}_{E E}-\mathrm{DV}_{\text {EE }}$	-0.05 V to 0.05 V	TPW1.	4.Ons Min.
AGND-DGND	-0.05V to 0.05V	TPW0. .	4.Ons Min.
Reference Input Voltage			
$V_{\text {RT }}$. -0.1V to 0.1V		
V_{RB}	-2.2V to -1.8V		

Electrical Specifications $\quad T_{A}=+25^{\circ} \mathrm{C}, A V_{E E}=D V_{E E}=-5.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{RT}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=-2 \mathrm{~V}$ (Note 1)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
SYSTEM PERFORMANCE					
Resolution		8	-	-	Bits
Integral Linearity Error, (INL) HI1396JCJ, HI1396AIL	$\mathrm{F}_{\mathrm{C}}=125 \mathrm{MHz}$	-	-	± 0.5	LSB
HI1396JCP		-	-	± 0.8	LSB
Differential Linearity Error, (DNL) HI1396JCJ, HI1396AIL	$\mathrm{F}_{\mathrm{C}}=125 \mathrm{MHz}$	-	-	± 0.5	LSB
Hi1396JCP		-	-	± 0.7	LSB

ANALOG INPUT	$\mathrm{V}_{\mathbb{I N}}=2 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$	200	-	-	MHz
Input Bandwidth	$\mathrm{V}_{\mathbb{I N}}=1 \mathrm{~V}+0.07 \mathrm{~V}_{\mathrm{RMS}}$	-	18	-	pF
Analog Input Capacitance, $\mathrm{C}_{\mathbb{I N}}$		50	190	-	$\mathrm{k} \Omega$
Analog Input Resistance, $\mathrm{R}_{\mathbb{I N}}$		20	130	400	$\mu \mathrm{~A}$
Input Bias Current, $\mathrm{I}_{\mathbb{N}}$	$\mathrm{V}_{\mathbb{I N}}=-1 \mathrm{~V}$				

REFERENCE INPUTS

Reference Resistance, $\mathrm{R}_{\text {REF }}$			75	110	155	Ω
Offset Voltage E_{OT}	V_{RT}					
E_{OB}	V_{RB}		8	19	32	mV

Electrical Specifications $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{AV}_{\mathrm{EE}}=\mathrm{DV} \mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{RT}}=\mathrm{OV}, \mathrm{V}_{\mathrm{RB}}=-2 \mathrm{~V}$ (Note 1) (Continued)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
DIGITAL INPUTS					
Logic H Level, $\mathrm{V}_{1} \mathrm{H}$		-1.13	-	-	v
Logic L Level, V_{IL}		-	-	-1.50	v
Logic H Current, l_{H}	Input Connected to -0.8V	0	-	50	$\mu \mathrm{A}$
Logic L Current, $\mathrm{I}_{\text {LL }}$	Input Connected to -1.6V	0	-	50	$\mu \mathrm{A}$
Input Capacitance		-	7	-	pF
DIGITAL OUTPUTS					
Logic H Level, V_{OH}	$\mathrm{R}_{\mathrm{L}}=50 \Omega$ to -2 V	-1.10	-	-	V
Logic L Level, V_{OL}	$\mathrm{R}_{\mathrm{L}}=50 \Omega$ to -2 V	-	-	-1.62	V
TIMING CHARACTERISTICS					
Output Rise Time, T_{R}	$\mathrm{R}_{\mathrm{L}}=50 \Omega$ to $-2 \mathrm{~V}, 20 \%$ to 80%	0.5	0.9	1.2	ns
Output Fall Time, T_{F}	$\mathrm{R}_{\mathrm{L}}=50 \Omega$ to $-2 \mathrm{~V}, 20 \%$ to 80%	0.5	1.0	1.3	ns
Output Delay, $\mathrm{T}_{\text {OD }}$		3.0	3.6	4.2	ns
H Pulse Width of Clock, T PW1		4.0	-	-	ns
L Pulse Width of Clock, T $_{\text {PWo }}$		4.0	-	-	ns
DYNAMIC CHARACTERISTICS					
Maximum Conversion Rate, F_{C}	Error Rate $10^{-9} \mathrm{TPS}$ (Note 2)	125	-	-	MSPS
Aperture Jitter, $\mathrm{T}_{\text {AJ }}$		-	10	-	ps
Sampling Delay, $\mathrm{T}_{\text {D }}$		-	1.5	-	ns
Signal to Noise Ratio (SINAD)$=\frac{\text { RMS Signal }}{\text { RMS Noise + Distortion }}$	Input $=1 \mathrm{MHz}$, Full Scale $\mathrm{F}_{\mathrm{C}}=125 \mathrm{MHz}$	-	46	-	dB
	Input $=31.5 \mathrm{MHz}$, Full Scale $\mathrm{F}_{\mathrm{C}}=125 \mathrm{MHz}$	\bullet	40	-	dB
Error Rate	$\begin{aligned} & \text { Input }=31.249 \mathrm{MHz}, \text { Full Scale } \\ & \text { Error }>16 \mathrm{LSB}, \mathrm{~F}_{\mathrm{C}}=125 \mathrm{MHz} \end{aligned}$	\bullet	-	10^{-9}	$\begin{aligned} & \text { TPS } \\ & \text { (Note 2) } \end{aligned}$
Differential Gain Error, DG	NTSC 40IRE Mod. Ramp, $\mathrm{F}_{\mathrm{C}}=125 \mathrm{MSPS}$	-	1.0	-	\%
Differential Phase Error, DP		-	0.5	-	Degree
POWER SUPPLY CHARACTERISTICS					
Supply Current, I_{EE}		-230	-160	-	mA
Power Consumption	Note 3	-	870	-	mW

NOTES:

1. Electrical Specifications guaranteed within stated operating conditions.
2. TPS: Times Per Sample.
3. $\mathrm{P}_{\mathrm{D}}=\mathrm{I}_{\mathrm{EE}} \cdot \mathrm{V}_{\mathrm{EE}}+\frac{\left(\mathrm{V}_{\mathrm{RT}}-\mathrm{V}_{\mathrm{RB}}\right)^{2}}{\mathrm{P}_{\mathrm{REF}}}$
4. T_{A} specified in still air and without heat sink. To extend temperature range, appropriate heat management techniques must be employed.

Timing Diagram

FIGURE 1.

Pin Descriptions and I/O Pin Equivalent Circuit

PIN NUMBER		SYMBOL	vo	STANDARD VOLTAGE LEVEL	EQUIVALENT CIRCUIT	DESCRIPTION
DIP	LCC					
$\begin{aligned} & 29,31, \\ & 33,35 \end{aligned}$	$\begin{aligned} & 49,51, \\ & 53,55 \end{aligned}$	AGND	-	OV		Analog GND. Used as GND for input buffers and latches of comparators. Isolated from DGND1, DGND2.
$\begin{gathered} 1,25, \\ 26,38, \\ 39 \end{gathered}$	$\begin{gathered} 41,42, \\ 62,63, \\ 67 \end{gathered}$	$\mathrm{AV}_{\text {EE }}$	-	-5.2V		Analog $\mathrm{V}_{\text {EE }}-5.2 \mathrm{~V}$ (Typ.). Internally connected to DV ${ }^{\text {EE }}$ (Resistance: 4Ω to 6Ω). Bypass with $0.1 \mu \mathrm{~F}$ to AGND.
21	35	CLK	1	ECL		CLK Input
20	34	$\overline{\text { CLK }}$		-		Input complementary to CLK. When left open pulled down to -1.3 V . Device is operable without CLK input, but use of complementary inputs of CLK and CLK is recommended to obtain stable high speed operation.

Pin Descriptions and I/O Pin Equivalent Circuit (Continued)

Pin Descriptions and I/O Pin Equivalent Circuit (Continued)

PIN NUMBER		SYMBOL	VO	STANDARD VOLTAGE LEVEL	EQUIVALENT CIRCUIT	DESCRIPTION
DIP	LCC					
23	39	$V_{\text {RB }}$	1	-2V		Reference voltage (bottom). Typically -2 V . Bypass with a $0.1 \mu \mathrm{~F}$ and $10 \mu \mathrm{~F}$ to AGND.
32	52	V ${ }_{\text {M }}$	1	$\mathrm{V}_{\mathrm{RB}} / 2$		Reference voltage mid point. Can
41	65	$V_{\text {RT }}$	1	OV		earity compensation. Reference voltage (top) typically OV. When a voltage different from AGND is applied to this pin, bypass with a $0.1 \mu \mathrm{~F}$ and $10 \mu \mathrm{~F}$ to AGND.
$\begin{aligned} & 2,19, \\ & 22,24, \\ & 27,28, \\ & 36,37, \\ & 40,42 \end{aligned}$	1, 2, 4, 6, 9-13, 25-29, 31, 33, 36-38, 40, 43-48, 56-61, 64, 66, 68	NC	-	-		Unused pins. No internal connections have been made to these pins. Connecting them to AGND or DGND on PC board is recommended.

AND OUTPUT CODE TABLE

NOTE:

1. $\mathrm{V}_{\mathrm{RT}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{RB}}=-2 \mathrm{~V}$.

Test Circuits

FIGURE 2. MAXIMUM CONVERSION RATE TEST CIRCUIT

FIGURE 3. DIFFERENTIAL GAIN AND PHASE ERROR TEST CIRCUIT

FIGURE 4. INTEGRAL AND DIFFERENTIAL LINEARITY ERROR TEST CIRCUIT

Test Circuits (Continued)

FIGURE 5A.

FIGURE 5B.

FIGURE 5. ANALOG INPUT BIAS AND POWER SUPPLY CURRENT TEST CIRCUITS

FIGURE 6A.

CLK

Aperture jitter is defined as follows:
$T_{A J}=\sigma / \frac{\Delta v}{\Delta t}=\sigma /\left(\frac{256}{2} \times 2 \pi f\right)$

FIGURE 6B. APERTURE JITTER TEST METHOD
Where σ (unit: LSB) is the deviation of the output codes when the input frequency is exactly the same as the clock and is sampled at the largest slew rate point.

FIGURE 6. SAMPLING DELAY AND APERTURE JITTER TEST CIRCUIT

Features

- 20MSPS with No Missing Codes
- 18MHz Full Power Input Bandwidth
- No Missing Codes Over Temperature
- Sample and Hold Not Required
- Single +5 V Supply Voltage
- CMOS/TTL
- Overflow Bit
- Improved Replacement for MP7684
- Evaluation Board Available
- /883 Version Available

Applications

- Video Digitizing
- Radar Systems
- Medical Imaging
- Communication Systems
- High Speed Data Acquisition Systems

Description

The HI-5700 is a monolithic, 8 bit, CMOS Flash Analog-toDigital Converter. It is designed for high speed applications where wide bandwidth and low power consumption are essential. Its 20MSPS speed is made possible by a parallel architecture which also eliminates the need for an external sample and hold circuit. The HI- 5700 delivers ± 0.5 LSB differential nonlinearity while consuming only 725 mW (typical) at 20MSPS. Microprocessor compatible data output latches are provided which present valid data to the output bus 1.5 clock cycles after the convert command is received. An overflow bit is provided to allow the series connection of two converters to achieve 9 bit resolution.

The HI-5700 is available in Commercial and Industrial temperature ranges and is supplied in 28 lead Plastic DIP and SOIC packages.

Ordering Information

PART NUMBER	TEMPERATURE RANGE	PACKAGE
HI3-5700J-5	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	28 Lead Plastic DIP
HI9P5700J -5	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	28 Lead SOIC
H $13-5700 \mathrm{~A}-9$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 Lead Plastic DIP
HI9P5700A-9	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 Lead SOIC

Pinout

Functional Block Diagram

Absolute Maximum Ratings

Supply Voltage, VDD to GND \qquad (GND - 0.5) < $V_{D D}<+7.0 \mathrm{~V}$ Analog and Reference Input Pins $\left(V_{S S}-0.5\right)<V_{\text {INA }}<\left(V_{D D}+0.5 \mathrm{~V}\right)$
Digital I/O Pins (GND - 0.5) $<\mathrm{V}_{10}<\left(\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}\right)$ Storage Temperature Range $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10s)

Thermal Information

Thermal Resistance	$\theta_{\text {JA }}$	θ_{JC}
Hi3-5700J-5, H13-5700A-9	$55^{\circ} \mathrm{C} / \mathrm{W}$	-
H19P5700J-5, H19P5700A-9	$75^{\circ} \mathrm{C} / \mathrm{W}$	

Maximum Power Dissipation $+70^{\circ} \mathrm{C}$. 1.05 W
Operating Temperature Range
HI3-5700J-5, HI9P5700J-5 $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
HI3-5700A-9, HI9P5700A-9 $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Junction Temperature \qquad $+150^{\circ} \mathrm{C}$

CAUTION: Stresses above those listed in the "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operation section of this specification is not implied.

Electrical Specifications $\quad A V_{D D}=V_{D D}=+5.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{REF}+}=+4.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{REF}-}=\mathrm{GND}=\mathrm{AGND}=0 \mathrm{~V} ; \mathrm{F}_{\mathrm{S}}=$ Specified Clock Frequency at 50\% Duty Cycle; $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$; Unless Otherwise Specified.

PARAMETER	TEST CONDITION	$+25^{\circ} \mathrm{C}$			$\begin{gathered} \text { (NOTE 2) } \\ 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{gathered}$		UNITS
		MIN	TYP	MAX	MIN	MAX	
SYSTEM PERFORMANCE							
Resolution		8			8		Bits
Integral Linearity Error (INL) (Best Fit Method)	$\begin{aligned} & F_{S}=15 \mathrm{MHz}, f_{I_{N}}=D C \\ & F_{S}=20 \mathrm{MHz}, f_{I N}=D C \end{aligned}$		$\begin{aligned} & \pm 0.9 \\ & \pm 1.0 \end{aligned}$	$\begin{gathered} \pm 2.0 \\ \pm 2.25 \end{gathered}$		$\begin{aligned} & \pm 2.25 \\ & \pm 3.25 \end{aligned}$	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \end{aligned}$
Differential Linearity Error (DNL) (Guaranteed No Missing Codes)	$\begin{aligned} & F_{S}=15 \mathrm{MHz}, f_{I N}=D C \\ & F_{S}=20 \mathrm{MHz}, \mathrm{f}_{\mathrm{IN}}=D C \end{aligned}$		$\begin{aligned} & \pm 0.4 \\ & \pm 0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 0.9 \\ & \pm 0.9 \end{aligned}$	*	$\begin{aligned} & \pm 1.0 \\ & \pm 1.0 \end{aligned}$	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \end{aligned}$
Offset Error (VOS)	$\begin{aligned} & F_{S}=15 \mathrm{MHz}, f_{I N}=D C \\ & F_{S}=20 \mathrm{MHz}, f_{I N}=D C \end{aligned}$		$\begin{aligned} & \pm 5.0 \\ & \pm 5.0 \end{aligned}$	$\begin{aligned} & \pm 8.0 \\ & \pm 8.0 \end{aligned}$		$\begin{aligned} & \pm 9.5 \\ & \pm 9.5 \end{aligned}$	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \end{aligned}$
Full Scale Error (FSE)	$\begin{aligned} & F_{S}=15 \mathrm{MHz}, f_{I N}=D C \\ & F_{S}=20 \mathrm{MHz}, f_{\mathrm{IN}}=D C \end{aligned}$		$\begin{aligned} & \pm 0.5 \\ & \pm 0.6 \end{aligned}$	$\begin{aligned} & \pm 4.5 \\ & \pm 4.5 \end{aligned}$		$\begin{aligned} & \pm 8.0 \\ & \pm 8.0 \end{aligned}$	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \end{aligned}$

Maximum Conversion Rate	No Missing Codes	20	25		20		MSPS
Minimum Conversion Rate	No Missing Codes (Note 2)			0.125		0.125	MSPS
Full Power Input Bandwidth	$\mathrm{F}_{\mathrm{s}}=20 \mathrm{MHz}$		18				MHz
Signal to Noise Ratio (SNR) $=\frac{\text { RMS Signal }}{\text { RMS Noise }}$	$\begin{aligned} & F_{\mathrm{S}}=15 \mathrm{MHz}, f_{\mathrm{IN}_{\mathrm{N}}}=100 \mathrm{kHz} \\ & \mathrm{~F}_{\mathrm{S}}=15 \mathrm{MHz}, f_{I N}=3.58 \mathrm{MHz} \\ & F_{\mathrm{S}}=15 \mathrm{MHz}, f_{I N}=4.43 \mathrm{MHz} \\ & F_{\mathrm{S}}=20 \mathrm{MHz}, f_{I N}=100 \mathrm{kHz} \\ & F_{\mathrm{S}}=20 \mathrm{MHz}, f_{I N}=3.58 \mathrm{MHz} \\ & F_{\mathrm{S}}=20 \mathrm{MHz}, f_{\mathrm{IN}_{\mathrm{N}}}=4.43 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & 46.5 \\ & 44.0 \\ & 43.4 \\ & 45.9 \\ & 42.0 \\ & 41.6 \end{aligned}$				$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
Signal to Noise Ratio (SINAD) $=\frac{\text { RMS Signal }}{\text { RMS Noise + Distortion }}$	$\begin{aligned} & \mathrm{F}_{\mathrm{S}}=15 \mathrm{MHz}, f_{I N}=100 \mathrm{kHz} \\ & \mathrm{~F}_{\mathrm{S}}=15 \mathrm{MHz}, f_{I N}=3.58 \mathrm{MHz} \\ & \mathrm{~F}_{\mathrm{S}}=15 \mathrm{MHz}, f_{I N}=4.43 \mathrm{MHz} \\ & \mathrm{~F}_{\mathrm{S}}=20 \mathrm{MHz}, f_{I N}=100 \mathrm{kHz} \\ & F_{S}=20 \mathrm{MHz}, f_{I N}=3.58 \mathrm{MHz} \\ & F_{S}=20 \mathrm{MHz}, f_{I N}=4.43 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & 43.4 \\ & 34.3 \\ & 32.3 \\ & 42.3 \\ & 35.2 \\ & 32.8 \end{aligned}$				$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$ dB
Total Harmonic Distortion	$\begin{aligned} & F_{S}=15 \mathrm{MHz}, f_{I N}=100 \mathrm{kHz} \\ & F_{S}=15 \mathrm{MHz}, f_{I N}=3.58 \mathrm{MHz} \\ & F_{S}=15 \mathrm{MHz}, f_{I N}=4.43 \mathrm{MHz} \\ & F_{S}=20 \mathrm{MHz}, f_{I N}=100 \mathrm{kHz} \\ & F_{S}=20 \mathrm{MHz}, f_{I N}=3.58 \mathrm{MHz} \\ & F_{S}=20 \mathrm{MHz}, f_{I N}=4.43 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & -46.9 \\ & -34.8 \\ & -32.8 \\ & -46.6 \\ & -36.6 \\ & -33.5 \end{aligned}$				dBc dBc dBc dBc dBc dBc
Differential Gain	$\mathrm{F}_{\mathrm{S}}=14 \mathrm{MHz}, \mathrm{f}_{\mathrm{IN}}=3.58 \mathrm{MHz}$		3.5				\%
Differential Phase Error	$\mathrm{F}_{\mathrm{S}}=14 \mathrm{MHz}, \mathrm{f}_{\mathrm{IN}}=3.58 \mathrm{MHz}$		0.9				Degree

Electrical Specifications $\quad A V_{D D}=V_{D D}=+5.0 V^{\prime} V_{\text {REF }++}=+4.0 \mathrm{~V} ; V_{\text {REF }-}=G N D=A G N D=O V ; F_{S}=$ Specified Clock Frequency at 50% Duty Cycle; $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$; Unless Otherwise Specified. (Continued)

PARAMETER	TEST CONDITION	$+25^{\circ} \mathrm{C}$			$\begin{gathered} \text { (NOTE 2) } \\ 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{gathered}$		UNITS
		MIN	TYP	MAX	MIN	MAX	
ANALOG INPUTS							
Analog Input Resistance, R_{IN} Analog Input Capacitance, C_{IN} Analog Input Bias Current, IB	$\begin{aligned} & V_{I N}=4 V \\ & V_{I N}=0 V \\ & V_{I N}=0 \mathrm{~V}, 4 \mathrm{~V} \end{aligned}$	4	$\begin{gathered} 10 \\ 60 \\ \pm 0.01 \end{gathered}$	± 1.0		± 1.0	M Ω pF $\mu \mathrm{A}$
REFERENCE INPUTS							
Total Reference Resistance, R_{L}		250	330		235		Ω
Reference Resistance Tempco, T_{C}			+0.31				$\Omega^{\circ} \mathrm{C}$
DIGITAL INPUTS							
Input Logic High Voltage, V_{IH} Input Logic Low Voltage, V_{IL} Input Logic High Current, IIH Input Logic Low Current, IIL Input Capacitance, $\mathrm{C}_{\text {IN }}$	$\begin{aligned} & V_{I N}=5 \mathrm{~V} \\ & V_{I N}=0 \mathrm{~V} \end{aligned}$	2.0	7	0.8 1.0 1.0	2.0	0.8 1.0 1.0	V V $\mu \mathrm{A}$ $\mu \mathrm{A}$ pF
DIGITAL OUTPUTS							
Output Logic Sink Current, loL Output Logic Source Current, IOH Output Leakage, loz Output Capacitance, Cout	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{O}}=4.5 \mathrm{~V} \\ & \mathrm{CE} 2=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}, 5 \mathrm{~V} \\ & \mathrm{CE} 2=0 \mathrm{~V} \end{aligned}$	$\begin{gathered} 3.2 \\ -3.2 \end{gathered}$	5.0	± 1.0	3.2 -3.2	± 1.0	mA mA $\mu \mathrm{A}$ pF
TIMING CHARACTERISTICS							
Aperture Delay, t_{AP} Aperture Jitter, t_{A} Data Output Enable Time, ten Data Output Disable Time, tDIS Data Output Delay, toD Data Output Hold, t_{H}		10	6 30 18 15 20 20	25 20 25	5	30 25 30	ns ps ns ns ns ns
POWER SUPPLY REJECTION							
Offset Error PSRR, AVOS Gain Error PSRR, \triangle FSE	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \pm 10 \% \\ & V_{D D}=5 \mathrm{~V} \pm 10 \% \end{aligned}$		$\begin{aligned} & \pm 0.1 \\ & \pm 0.1 \end{aligned}$	$\begin{array}{r} \pm 2.75 \\ \pm 2.75 \end{array}$		$\begin{aligned} & \pm 5.0 \\ & \pm 5.0 \end{aligned}$	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \end{aligned}$
POWER SUPPLY CURRENT							
Supply Current, IDD	$\mathrm{F}_{\mathrm{S}}=20 \mathrm{MHz}$		145	180		190	mA

NOTES:

1. Dissipation rating assumes device is mounted with all leads soldered to printed circuit board.
2. Parameter guaranteed by design or characterization and not production tested.

Timing Waveforms

FIGURE 1. INPUT-TO-OUTPUT TIMING

FIGURE 2. OUTPUT ENABLE TIMING

Typical Performance Curves

FIGURE 3. EFFECTIVE NUMBER OF BITS vs $\mathbf{f}_{\mathbf{I}}$

temperature $\left({ }^{\circ} \mathbf{C}\right.$)
FIGURE 5. SNR vs TEMPERATURE

FIGURE 7. INL vs TEMPERATURE

FIGURE 4. EFFECTIVE NUMBER OF BITS vs TEMPERATURE

TEMPERATURE $\left({ }^{\circ} \mathbf{C}\right)$
FIGURE 6. TOTAL HARMONIC DISTORTION vs TEMPERATURE

FIGURE 8. DNL vs TEMPERATURE

Typical Performance Curves (Continued)

FIGURE 9. OFFSET VOLTAGE vs. TEMPERATURE

FIGURE 11. OUTPUT DELAY vS TEMPERATURE

FIGURE 13. SUPPLY CURRENT vS TEMPERATURE

FIGURE 10. FULL SCALE ERROR vs TEMPERATURE

FIGURE 12. POWER SUPPLY REJECTION vS TEMPERATURE

FIGURE 14. SUPPLY CURRENT vS CLOCK \& DUTY CYCLE

TABLE 1. PIN DESCRIPTION

PIN*	NAME	DESCRIPTION
1	CLK	Clock Input
2	D7	Bit 7, Output (MSB)
3	D6	Bit 6, Output
4	D5	Bit 5, Output
5	D4	Bit 4, Output
6	$1 / 4 R$	1/4th Point of Reference Ladder
7	$V_{D D}$	Digital Power Supply
8	GND	Digital Ground
9	$3 / 4 \mathrm{R}$	3/4th Point of Reference Ladder
10	D3	Bit 3, Output
11	D2	Bit 2, Output
12	D1	Bit 1, Output
13	DO	Bit 0, Output (LSB)
14	OVF	Overflow, Output
15	CE2	Tri-State Output Enable Input, Active High. (See Table 2)
16	$\overline{C E 1}$	Tri-State Output Enable Input, Active Low. (See Table 2)
17	$\mathrm{V}_{\text {REF }}+$	Reference Voltage Positive Input
18	$\mathrm{AV}_{\mathrm{DD}}$	Analog Power Supply, +5V
19	AGND	Analog Ground
20	AGND	Analog Ground
21	$\mathrm{AV}_{\mathrm{DD}}$	Analog Power Supply, +5V
22	$1 / 2 R$	$1 / 2$ Point of Reference Ladder
23	$\mathrm{AV}_{\mathrm{DD}}$	Analog Power Supply, +5V
24	AGND	Analog Ground
25	AGND	Analog Ground
26	$\mathrm{AV}_{\text {DD }}$	Analog Power Supply, +5V
27	$\mathrm{V}_{\text {REF }}{ }^{-}$	Reference Voltage Negative Input
28	V_{IN}	Analog Input

TABLE 2. CHIP ENABLE TRUTH TABLE

$\overline{\text { CE1 }}$	CE2	D0-D7	OVF
0	1	Valid	Valid
1	1	Tri-State	Valid
\mathbf{X}	0	Tri-State	Tri-State

X's = Don't Care.

Theory of Operation

The HI-5700 is an 8 bit analog-to-digital converter based on a parallel CMOS "flash" architecture. This flash technique is an extremely fast method of A/D conversion because all bit decisions are made simultaneously. In all, 256 comparators are used in the HI-5700: $\left(2^{8}-1\right)$ comparators to encode the
output word, plus an additional comparator to detect an overflow condition.

The CMOS HI-5700 works by alternately switching between a "Sample" mode and an "Auto Balance" mode. Splitting up the comparison process in this CMOS technique offers a number of significant advantages. The offset voltage of each CMOS comparator is dynamically canceled with each conversion cycle such that offset voltage drift is virtually eliminated during operation. The block diagram and timing diagram illustrate how the HI-5700 CMOS flash converter operates.

The input clock which controls the operation of the HI-5700 is first split into a non-inverting $\phi 1$ clock and an inverting $\phi 2$ clock. These two clocks, in turn, synchronize all internal timing of analog switches and control logic within the converter.

In the "Auto Balance" mode ($\phi 1$), all $\phi 1$ switches close and $\phi 2$ switches open. The output of each comparator is momentarily tied to its own input, self-biasing the comparator midway between GND and V_{DD} and presenting a low impedance to a small input capacitor. Each capacitor, in turn, is connected to a reference voltage tap from the resistor ladder. The Auto Balance mode quickly precharges all 256 input capacitors between the self-bias voltage and each respective tap voltage.
In the "Sample" mode ($\phi 2$), all $\phi 1$ switches open and $\phi 2$ switches close. This places each comparator in a sensitive high gain amplifier configuration. In this open loop state, the input impedance is very high and any small voltage shift at the input will drive the output either high or low. The $\$ 2$ state also switches each input capacitor from its reference tap to the input signal. This instantly transfers any voltage difference between the reference tap and input voltage to the comparator input. All 256 comparators are thus driven simultaneously to a defined logic state. For example, if the input voltage is at mid-scale, capacitors precharged near zero during $\phi 1$ will push comparator inputs higher than the self bias voltage at $\$ 2$; capacitors precharged near the reference voltage push the respective comparator inputs lower than the bias point. In general, all capacitors precharged by taps above the input voltage force a "low" voltage at comparator inputs; those precharged below the input voltage force "high" inputs at the comparators.

During the next $\phi 1$ Auto-Balancing state, comparator output data is latched into the encoder logic block and the first stage of encoding takes place. The following $\phi 2$ state completes the encoding process. The 8 data bits (plus overflow bit) are latched into the output flip-flops at the next falling clock edge. The Overflow bit is set if the input voltage exceeds $\mathrm{V}_{\text {REF }}{ }^{+}-0.5$ LSB. The output bus may be either enabled or disabled according to the state of $\overline{\mathrm{CE}}$ and CE2 (See Table 2). When disabled, output bits assume a high impedance state.
As shown in the timing diagram, the digital output word becomes valid after the second $\phi 1$ state. There is thus a one and a half cycle pipeline delay between input sample and digital output. "Data Output Delay" time indicates the slight time delay for data to become valid at the end of the $\phi 1$ state.

FIGURE 15. TEST CIRCUIT

Applications Information

Voltage Reference

The reference voltage is applied across the resistor ladder between $\mathrm{V}_{\text {REF }}+$ and $\mathrm{V}_{\text {REF }}$-. In most applications, $\mathrm{V}_{\text {REF }}$ - is simply tied to analog ground such that the reference source drives $\mathrm{V}_{\mathrm{REF}}+$. The reference must be capable of supplying enough current to drive the minimum ladder resistance of 235Ω over temperature.

The HI-5700 is specified for a reference voltage of 4.0V, but will operate with voltages as high as the V_{DD} supply. In the case of 4.0 V reference operation, the converter encodes the analog input into a binary output in LSB increments of $\left(\mathrm{V}_{\mathrm{REF}}{ }^{+}-\mathrm{V}_{\mathrm{REF}}-\right.$)/256, or 15.6 mV . Reducing the reference voltage reduces the LSB size proportionately and thus increases linearity errors. The minimum practical reference voltage is about 2.5 V . Because the reference voltage terminals are subjected to internal transient currents during conversion, it is important to drive the reference pins from a low impedance source and to decouple thoroughly. Again, ceramic and tantalum ($0.01 \mu \mathrm{~F}$ and $10 \mu \mathrm{~F}$) capacitors near the package pin are recommended. It is not necessary to decouple the $1 / 4 R, 1 / 2 R$, and $3 / 4 R$ tap point pins for most applications.
It is possible to elevate $\mathrm{V}_{\text {REF }}$ from ground if necessary. In this case, the $\mathrm{V}_{\text {REF }}$ - pin must be driven from a low impedance reference capable of sinking the current through the resistor ladder. Careful decoupling is again recommended.

Digital Control and Interface

The HI-5700 provides a standard high speed interface to external CMOS and TTL logic families. Two chip enable inputs control the tri-state outputs of output bits DO through

D7 and the Overflow (OVF) bit. As indicated in the Truth Table, all output bits are high impedance when CE2 is low, and output bits DO through D7 are independently controlled by $\overline{\mathrm{CE} 1}$.
Although the Digital Outputs are capable of handling typical data bus loading, the bus capacitance charge/discharge currents will produce supply and local group disturbances. Therefore, an external bus driver is recommended.

Clock

The clock should be properly terminated to digital ground near the clock input pin. Clock frequency defines the conversion frequency and controls the converter as described in the "Theory of Operation" section. The Auto Balance $\phi 1$ half cycle of the clock may be reduced to approximately 20 ns ; the Sample $\phi 2$ half cycle may be varied from a minimum of 25 ns to a maximum of $5 \mu \mathrm{~s}$.

Signal Source

A current pulse is present at the analog input $\left(V_{\mathbb{N}}\right)$ at the beginning of every sample and auto balance period. The transient current is due to comparator charging and switch feedthrough in the capacitor array. It varies with the amplitude of the analog input and the converter's sampling rate.
The signal source must absorb these transients prior to the end of the sample period to ensure a valid signal for conversion. Suitable broad band amplifiers or buffers which exhibit low output impedance and high output drive include the HFA-0005, HA-5004, HA-5002, and HA-5003.

The signal source may drive above or below the power supply rails, but should not exceed 0.5 V beyond the rails or damage may occur. Input voltages of -0.5 V to +0.5 LSB are converted to all zeroes; input voltages of $\mathrm{V}_{\text {REF }}+-0.5$ LSB to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$ are converted to all ones with the Overflow bit set.

Full Scale Offset Error Adjustment

In applications where accuracy is of utmost importance, three adjustments can be made; i.e., offset, gain, and reference tap point trims. In general, offset and gain correction can be done in the preamp circuitry.

Offset Adjustment

Offset correction can be done in the preamp driving the converter by introducing a DC component to the input signal. An alternate method is to adjust $V_{\text {REF }}$ to produce the desired offset. It is adjusted such that the 0 to 1 code transition occurs at 0.5 LSB.

Gain Adjustment

In general, full scale error correction can be done in the preamp circuitry by adjusting the gain of the op amp. An alternate method is to adjust the $\mathrm{V}_{\text {REF }}+$ voltage. The reference voltage is the ideal location.

Quarter Point Adjustment

The reference tap points are brought out for linearity adjustment or creating a nonlinear transfer function if desired. It is
not necessary to decouple the $1 / 4 R, 1 / 2 R$, and $3 / 4 R$ tap points in most applications.

Power Supplies

The HI-5700 operates nominally from 5 V supplies but will work from 3 V to 6 V . Power to the device is split such that analog and digital circuits within the $\mathrm{HI}-5700$ are powered separately. The analog supply should be well regulated and "clean" from significant noise, especially high frequency noise. The digital supply should match the analog supply within about 0.5 V and should be referenced externally to the analog supply at a single point. Analog and digital grounds should not be separated by more that 0.5 V . It is recommended that power supply decoupling capacitors be placed as close to the supply pins as possible. A combination of $0.01 \mu \mathrm{~F}$ ceramic and $10 \mu \mathrm{~F}$ tantalum capacitors is recommended for this purpose as shown in the test circuit.

Reducing Power Consumption

Power dissipation in the $\mathrm{Hl}-5700$ is related to clock frequency and clock duty cycle. For a fixed 50% clock duty cycle, power may be reduced by lowering the clock frequency. For a given conversion frequency, power may be reduced by decreasing the Auto-Balance ($\phi 1$) portion of the clock duty cycle. This relationship is illustrated in the performance curves.

TABLE 3. CODE TABLE

CODE DESCRIPTION	INPUT VOLTAGE* $\begin{aligned} & \mathbf{V}_{\text {REF }}=4.0 \mathrm{~V} \\ & \mathrm{~V}_{\text {REF }}= \end{aligned}$ (V)	DECIMAL COUNT	BINARY OUTPUT CODE								
			MSB							LSB	
			OVF	D7	D6	D5	D4	D3	D2	D1	D0
Overflow (OVF)	4.000	511	1	1	1	1	1	1	1	1	1
Full Scale (FS)	3.9766	255	0	1	1	1	1	1	1	1	1
FS - 1 LSB	3.961	254	0	1	1	1	1	1	1	1	0
3/4 FS	2.992	192	0	1	1	0	0	0	0	0	0
1/2 FS	1.992	128	0	1	0	0	0	0	0	0	0
1/4 FS	0.992	64	0	0	1	0	0	0	0	0	0
1 LSB	0.0078	1	0	0	0	0	0	0	0	0	1
Zero	0	0	0	0	0	0	0	0	0	0	0

[^4]
Glossary of Terms

Aperture Delay: Aperture delay is the time delay between the external sample command (the rising edge of the clock) and the time at which the signal is actually sampled. This delay is due to internal clock path propagation delays.
Aperture Jitter: This is the RMS variation in the aperture delay due to variation of internal $\phi 1$ and $\phi 2$ clock path delays and variation between the individual comparator switching times.

Differential Linearity Error (DNL): The differential linearity error is the difference in LSBs between the spacing of the measured midpoint of adjacent codes and the spacing of ideal midpoints of adjacent codes. The ideal spacing of each midpoint is 1.0 LSB. The range of values possible is from -1.0 LSB (which implies a missing code) to greater than +1.0 LSB.

Full Power Input Bandwidth: Full power bandwidth is the frequency at which the amplitude of the fundamental of the digital output word has decreased 3dB below the amplitude of an input sine wave. The input sine wave has a peak-topeak amplitude equal to the reference voltage. The bandwidth given is measured at the specified sampling frequency.
Full Scale Error (FSE): Full Scale Error is the difference between the actual input voltage of the 254 to 255 code transition and the ideal value of $\mathrm{V}_{\text {REF }}+-1.5$ LSB. This error is expressed in LSBs.
Integral Linearity Error (INL): The integral linearity error is the difference in LSBs between the measured code centers and the ideal code centers. The ideal code centers are calculated using a best fit line through the converter's transfer function.

LSB: Least Significant Bit $=\left(\mathrm{V}_{\text {REF }}+-\mathrm{V}_{\text {REF }}-\right)^{256}$. All HI5700 specifications are given for a 15.6 mV LSB size $\mathrm{V}_{\text {REF }}{ }^{+}$ $=4.0 \mathrm{~V}, \mathrm{~V}_{\text {REF }}{ }^{-}=0.0 \mathrm{~V}$.

Offset Error (VOS): Offset error is the difference between the actual input voltage of the 0 to 1 code transition and the ideal value of $\mathrm{V}_{\text {REF }}{ }^{+}+0.5$ LSB, $\mathrm{V}_{\text {OS }}$ Error is expressed in LSBs.

Power Supply Rejection Ratio (PSRR): PSRR is expressed in LSBs and is the maximum shift in code transition points due to a power supply voltage shift. This is measured at the 0 to 1 code transition point and the 254 to 255 code transition point with a power supply voltage shift from the nominal value of 5.0 V .

Signal to Nolse Ratio (SNR): SNR is the ratio in dB of the RMS signal to RMS noise at specified input and sampling frequencies.

Signal to Noise and Distortion Ratio (SINAD): SINAD is the ratio in dB of the RMS signal to the RMS sum of the noise and harmonic distortion at specified input and sampling frequencies.

Total Harmonic Distortion (THD): THD is the ratio in dBc of the RMS sum of the first five harmonic components to the RMS signal for a specified input and sampling frequency.

Die Characteristics

DIE DIMENSIONS:
$154.3 \times 173.2 \times 19 \pm 1 \mathrm{mils}$
METALLIZATION:
Type: Si - Al
Thickness: $11 \mathrm{k} \AA \pm 1 \mathrm{k} \AA$
GLASSIVATION:
Type: SiO_{2}
Thickness: $8 \mathrm{k} \AA \pm 1 \mathrm{k} \AA$
TRANSISTOR COUNT: 8000
SUBSTRATE POTENTIAL (Powered Up): V+

Metallization Mask Layout

HENRRRIS
HI-5701

6-Bit, 30MSPS Flash A/D Converter

Features

- 30 MSPS with No Missing Codes
- 20MHz Full Power Input Bandwidth
- No Missing Codes Over Temperature
- Sample and Hold Not Required
- Single +5V Supply Voltage
- 300mW (Max) Power Dissipation
- CMOS/TTL Compatible
- Overfiow Bit
- Evaluation Board Available
- /883 Version Available

Applications

- Video Digitizing
- Radar Systems
- Communication Systems
- High Speed Data Acquisition Systems

Description

The HI-5701 is a monolithic, 6 bit, CMOS flash Analog-toDigital Converter. It is designed for high speed applications where wide bandwidth and low power consumption are essential. Its 30MSPS speed is made possible by a parallel architecture which also eliminates the need for an external sample and hold circuit. The HI-5701 delivers $\pm 0.7 \mathrm{LSB}$ differential nonlinearity while consuming only 250 mW (typical) at 30MSPS. Microprocessor compatible data output latches are provided which present valid data to the output bus 1.5 clock cycles after the convert command is received. An overflow bit is provided to allow the series connection of two converters to achieve 7 bit resolution.

The HI-5701 is available in Commercial and Industrial temperature ranges and is supplied in 18 lead Plastic DIP and SOIC packages.

Ordering Information

PART NUMBER	TEMPERATURE RANGE	PACKAGE
H13-5701K-5	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	18 Lead Plastic DIP
H19P5701K-5	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	18 Lead SOIC (W)
H $33-5701 \mathrm{~B}-9$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	18 Lead Plastic DIP
H 9 P5701B-9	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	18 Lead SOIC (W)

Pinout
HI-5701
(PDIP, SOIC)
TOP VIEW

Functional Block Diagram

Absolute Maximum Ratings

Supply Voltage, V_{DD} to $\mathrm{V}_{\mathrm{SS}} \ldots \ldots \ldots . .\left(\mathrm{V}_{S S}-0.5\right)<\mathrm{V}_{\mathrm{DD}}<+7.0 \mathrm{~V}$ Analog and Reference Input Pins...... $\left(V_{S S}-0.5\right)<V_{I N A}<\left(V_{D D}+0.5 \mathrm{~V}\right)$ Digital I/O Pins ($\left.\mathrm{V}_{\mathrm{SS}}-0.5\right)<\mathrm{V}_{1 / \mathrm{D}}<\left(\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}\right)$ Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Lead Temperature (Soldering 10s).
$+300^{\circ} \mathrm{C}$

Thermal Information

Thermal Resistance	$\theta_{\text {JA }}$
HI3-5701	$95^{\circ} \mathrm{C} / \mathrm{W}$
H19P5701.	${ }^{95}{ }^{\circ} \mathrm{C} / \mathrm{W}$
Maximum Power Diss	635 mW
Operating Temperatur	
H13-5701-5	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
HI9P5701-9	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Junction Temperatu	$+150^{\circ}$

CAUTION: Stresses above those listed in the "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operation section of this specification is not implied.

Electrical Specifications: $V_{D D}=+5.0 \mathrm{~V} ; \mathrm{V}_{\text {REF }}+=+4.0 \mathrm{~V} ; \mathrm{V}_{\text {REF. }}=\mathrm{V}_{\mathrm{SS}}=\mathrm{GND} ; \mathrm{F}_{\mathrm{S}}=$ Specified Clock Frequency at 50% Duty Cycle; $C_{L}=30 \mathrm{pF}$; Unless Otherwise Specified.

PARAMETER	TEST CONDITIONS	$+25^{\circ} \mathrm{C}$			$\begin{gathered} \text { (NOTE 2) } \\ 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{gathered}$		UNITS
		MIN	TYP	MAX	MIN	MAX	
SYSTEM PERFORMANCE							
Resolution		6	-	-	6	\bullet	Bits
Integral Linearity Error (INL) (Best Fit Line)	$\mathrm{F}_{\mathrm{S}}=20 \mathrm{MHz}$	-	± 0.5	± 1.25	-	± 2.0	LSB
	$\mathrm{F}_{S}=30 \mathrm{MHz}$	-	± 1.5	-	-	-	LSB
Differential Linearity Error (DNL) (Guaranteed No Missing Codes)	$\mathrm{F}_{\mathrm{S}}=20 \mathrm{MHz}$	-	± 0.3	± 0.6	-	± 0.75	LSB
	$\mathrm{F}_{\mathrm{S}}=30 \mathrm{MHz}$	-	± 0.7	-	-		LSB
Offset Error (VOS) (Adjustable to Zero)	$\mathrm{F}_{\mathrm{S}}=20 \mathrm{MHz}$ (Note 2)	-	± 0.5	± 2.0	-	± 2.5	LSB
	$\mathrm{F}_{\mathrm{S}}=30 \mathrm{MHz}$	-	± 0.5	-	-	-	LSB
Full Scale Error (FSE) (Adjustable to Zero)	$\mathrm{F}_{\mathrm{S}}=20 \mathrm{MHz}$ (Note 2)	-	± 0.25	± 2.0	-	± 2.5	LSB
	$\mathrm{F}_{\mathrm{S}}=30 \mathrm{MHz}$	-	± 0.25	-	-	-	LSB

DYNAMIC CHARACTERISTICS

Maximum Conversion Rate	No Missing Codes	30	40	-	30	-	MSPS
Minimum Conversion Rate	No Missing Codes (Note 2)	-	-	0.125	-	0.125	MSPS
Full Power Input Bandwidth	$\mathrm{F}_{\mathrm{S}}=30 \mathrm{MHz}$	-	20	-	-	\bullet	MHz
Signal to Noise Ratio (SNR)$=\frac{\text { RMS Signal }}{\text { RMS Noise }}$	$\mathrm{F}_{\mathrm{S}}=1 \mathrm{MHz}, \mathrm{f}_{\mathrm{IN}}=100 \mathrm{kHz}$	-	36	-	-	-	dB
	$\mathrm{F}_{\mathrm{S}}=30 \mathrm{MHz}, \mathrm{f}_{\text {IN }}=4 \mathrm{MHz}$	-	31	-	\bullet	-	dB
Signal to Noise Ratio (SINAD)$=\frac{\text { RMS Signal }}{\text { RMS Noise + Distortion }}$	$\mathrm{F}_{\mathrm{S}}=1 \mathrm{MHz}, \mathrm{f}_{\mathrm{I}}=100 \mathrm{kHz}$	-	35	-	-	-	dB
	$\mathrm{F}_{\mathrm{S}}=30 \mathrm{MHz}, \mathrm{f}_{\text {IN }}=4 \mathrm{MHz}$	-	30	-	-	-	dB
Total Harmonic Distortion	$\mathrm{F}_{\mathrm{S}}=1 \mathrm{MHz}, \mathrm{f}_{\text {IN }}=100 \mathrm{kHz}$	-	-44	-	-	-	dBc
	$\mathrm{F}_{\mathrm{S}}=30 \mathrm{MHz}, \mathrm{f}_{\text {IN }}=4 \mathrm{MHz}$	-	-38	-	-	-	dBc
Differential Gain	$\mathrm{F}_{\mathrm{S}}=14.32 \mathrm{MHz}, \mathrm{f}_{\mathrm{IN}}=3.58 \mathrm{MHz}$	-	2	-	-	-	\%
Differential Phase	$\mathrm{F}_{\mathrm{S}}=14.32 \mathrm{MHz}, \mathrm{f}_{\mathrm{I}}=3.58 \mathrm{MHz}$	-	2	-	-	-	Degree

Electrical Specifications: $\mathrm{V}_{\mathrm{DD}}=+5.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{REF}}+=+4.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{REF}}=\mathrm{V}_{\mathrm{SS}}=\mathrm{GND} ; \mathrm{F}_{\mathrm{S}}=$ Specified Clock Frequency at 50% Duty Cycle; $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$; Unless Otherwise Specified. (Continued)

PARAMETER	TEST CONDITIONS	$+25^{\circ} \mathrm{C}$			$\begin{gathered} \text { (NOTE 2) } \\ 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{gathered}$		UNITS
		MIN	TYP	MAX	MIN	MAX	
ANALOG INPUTS							
Analog Input Resistance, $\mathrm{R}_{\text {IN }}$	$\mathrm{V}_{\text {IN }}=4 \mathrm{~V}$	-	30	-	-	-	M Ω
Analog Input Capacitance, $\mathrm{C}_{\text {IN }}$	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$	-	20	-	-	-	pF
Analog Input Bias Current, IB	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, 4 \mathrm{~V}$	-	0.01	± 1.0	-	± 1.0	$\mu \mathrm{A}$
REFERENCE INPUTS							
Total Reference Resistance, R_{L}		250	370	-	235	-	Ω
Reference Resistance Tempco, T_{C}		-	+0.266	-	-	-	$\Omega^{\circ} \mathrm{C}$
DIGITAL INPUTS							
Input Logic High Voltage, V_{IH}		2.0	-	-	2.0	-	V
Input Logic Low Voltage, V_{IL}		-	-	-	-	-	V
Input Logic High Current, I_{IH}	$\mathrm{V}_{\text {IN }}=5 \mathrm{~V}$	-	-	1.0	-	1.0	$\mu \mathrm{A}$
Input Logic Low Current, IIL	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$	-	-	1.0	-	1.0	$\mu \mathrm{A}$
Input Capacitance, $\mathrm{C}_{\text {IN }}$		-	7	-	-	-	pF
DIGITAL OUTPUTS							
Output Logic Sink Current, lol	$\mathrm{V}_{0}=0.4 \mathrm{~V}$	3.2	-	-	3.2	-	mA
Output Logic Source Current, I_{OH}	$\mathrm{V}_{\mathrm{O}}=4.5 \mathrm{~V}$	-3.2	-	-	-3.2	-	mA
Output Leakage, Ioff	$C E 2=0 \mathrm{~V}$	-	-	± 1.0	-	± 1.0	$\mu \mathrm{A}$
Output Capacitance, $\mathrm{C}_{\text {OUt }}$	$C E 2=0 \mathrm{~V}$	-	5.0	-	-	-	pF
TIMING CHARACTERISTICS							
Aperture Delay, $\mathrm{t}_{\text {AP }}$		-	6	-	-	\bullet	ns
Aperture Jitter, t_{AJ}		-	30	-	-	\bullet	ps
Data Output Enable Time, t_{EN}	(Note 2)	-	12	20	-	20	ns
Data Output Disable Time, $\mathrm{t}_{\text {II }}$	(Note 2)	-	11	20	-	20	ns
Data Output Delay, tod	(Note 2)	-	14	20	-	20	ns
Data Output Hold, t_{H}	(Note 2)	5	10	-	5	-	ns
POWER SUPPLY REJECTION							
Offset Error PSRR, \triangle VOS	$V_{D D}=5 \mathrm{~V} \pm 10 \%$	-	± 0.1	± 1.0	-	± 1.5	LSB
Gain Error PSRR, \triangle FSE	$V_{D D}=5 V_{ \pm} 10 \%$	-	± 0.1	± 1.0	-	± 1.5	LSB
POWER SUPPLY CURRENT							
Supply Current, $\mathrm{IDD}^{\text {d }}$	$\mathrm{F}_{\mathrm{S}}=30 \mathrm{MHz}$	-	50	60	-	75	mA
NOTES: 1. Dissipation rating assumes device is mounted with all leads soldered to printed circuit board. 2. Parameter guaranteed by design or characterization and not production tested.							

Timing Waveforms

FIGURE 1．INPUT－TO－OUTPUT TIMING

FIGURE 2．OUTPUT ENABLE TIMING

Typical Performance Curves

FIGURE 3. EFFECTIVE NUMBER OF BITS vs f_{IN}

FIGURE 5. SNR vs TEMPERATURE

FIGURE 7. INL vs TEMPERATURE

FIGURE 4. ENOB vs TEMPERATURE

FIGURE 6. TOTAL HARMONIC DISTORTION vS TEMPERATURE

FIGURE 8. DNL vs TEMPERATURE

Typical Performance Curves (Continued)

FIGURE 9. POWER SUPPLY REJECTION vs TEMPERATURE

FIGURE 11. SUPPLY CURRENT vs CLOCK AND DUTY CYCLE

FIGURE 10. SUPPLY CURRENT vs TEMPERATURE

FIGURE 12. EFFECTIVE NUMBER OF BITS vs CLOCK FREQUENCY

TABLE 1. PIN DESCRIPTION

PIN \#	NAME	DESCRIPTION
1	D5	Bit 6, Output (MSB)
2	OVF	Overflow, Output
3	V $_{\text {SS }}$	Digital Ground
4	NC	No Connection
5	CE2	Tri-State Outpui Enable Input, Active High (See Table 2).
6	CE1	Tri-State Output Enable Input, Active Low (See Table 2).
7	CLK	Clock Input
8	PHASE	Sample Clock Phase Control Input. When Phase is Low, Sample Unknown (1 1) Occurs When the Clock is Low and
Auto Balance ($\$$ 2) Occurs When the		
Clock is High (See Text).		

TABLE 2. CHIP ENABLE TRUTH TABLE

$\overline{\text { CE1 }}$	CE2	D0 - D5	OVF
0	1	Valid	Valid
1	1	Tri-State	Valid
X	0	Tri-State	Tri-State

X = Don't Care

Theory of Operation

The HI-5701 is a 6 bit analog-to-digital converter based on a parallel CMOS "flash" architecture. This flash technique is an extremely fast method of ADD conversion because all bit decisions are made simultaneously. In all, 64 comparators are used in the HI-5701; 63 comparators to encode the output word, plus an additional comparator to detect an overflow condition.

The CMOS HI-5701 works by alternately switching between a "Sample" mode and an "Auto Balance" mode. Splitting up the comparison process in this CMOS technique offers a number of significant advantages. The offset voltage of each CMOS comparator is dynamically canceled with each conversion cycle such that offset voltage drift is virtually eliminated during operation. The block diagram and timing diagram illustrate how the HI-5701 CMOS flash converter operates.

The input clock which controls the operation of the HI-5701 is first split into a non-inverting $\phi 1$ clock and an inverting $\phi 2$ clock. These two clocks, in turn, synchronize all internal timing of analog switches and control logic within the converter.

In the "Auto Balance" mode ($\phi 1$), all $\phi 1$ switches close and $\mathbf{~ 2 ~ s w i t c h e s ~ o p e n . ~ T h e ~ o u t p u t ~ o f ~ e a c h ~ c o m p a r a t o r ~ i s ~}$ momentarily tied to its own input, self-biasing the comparator midway between $V_{S S}$ and $V_{D D}$ and presenting a low impedance to a small input capacitor. Each capacitor, in turn, is connected to a reference voltage tap from the resistor ladder. The Auto Balance mode quickly precharges all 64 input capacitors between the self-bias voltage and each respective tap voltage.

In the "Sample" mode ($\phi 2$), all $\phi 1$ switches open and $\phi 2$ switches close. This places each comparator in a sensitive high gain amplifier configuration. In this open loop state, the input impedance is very high and any small voltage shift at the input will drive the output either high or low. The $\phi 2$ state also switches each input capacitor from its reference tap to the input signal. This instantly transfers any voltage difference between the reference tap and input voltage to the comparator input. All 64 comparators are thus driven simultaneously to a defined logic state. For example, if the input voltage is at mid-scale, capacitors precharged near zero during $\phi 1$ will push comparator inputs higher than the self bias voltage at $\$ 2$; capacitors precharged near the reference voltage push the respective comparator inputs lower than the bias point. In general, all capacitors precharged by taps above the input voltage force a "low" voltage at comparator inputs; those precharged below the input voltage force "high" inputs at the comparators.
During the next $\phi 1$ state, comparator output data is latched into the encoder logic block and the first stage of encoding takes place. The following $\phi 2$ state completes the encoding process. The 6 data bits (plus overflow bit) are latched into the output flip-flops at the next falling clock edge. The Overflow bit is set if the input voltage exceeds $\mathrm{V}_{\text {REF }}{ }^{-}-1 / 2 \mathrm{LSB}$. The output bus may be either enabled or disabled according to the state of $\overline{C E 1}$ and CE2 (See Table 2). When disabled, output bits assume a high impedance state.

As shown in the timing diagram, the digital output word becomes valid after the second $\phi 1$ state. There is thus a one and a half cycle pipeline delay between input sample and digital output. "Data Output Delay" time indicates the slight time delay for data to become valid at the end of the $\phi 1$ state. Refer to the Glossary of Terms for other definitions.

FIGURE 13. TEST CIRCUIT

Applications Information

Voltage Reference

The reference voltage is applied across the resistor ladder at the input of the converter, between $\mathrm{V}_{\text {REF }}+$ and $\mathrm{V}_{\text {REF }}$. In most applications, $\mathrm{V}_{\text {REF }}$ - is simply tied to analog ground such that the reference source drives $\mathrm{V}_{\mathrm{REF}}+$. The reference must be capable of supplying enough current to drive the minimum ladder resistance of 235Ω over temperature.

The HI-5701 is specified for a reference voltage of 4.0 V , but will operate with voltages as high as the $V_{D D}$ supply. In the case of 4.0 V reference operation, the converter encodes the analog input into a binary output in LSB increments of $\left(\mathrm{V}_{\text {REF }}{ }^{+}-\mathrm{V}_{\mathrm{REF}}-\right.$)/64, or 62.5 mV . Reducing the reference voltage reduces the LSB size proportionately and thus increases linearity errors. The minimum practical reference voltage is about 2 V . Because the reference voltage terminals are subjected to internal transient currents during conversion, it is important to drive the reference pins from a low impedance source and to decouple thoroughly. Again, ceramic and tantalum ($0.01 \mu \mathrm{~F}$ and $10 \mu \mathrm{~F}$) capacitors near the package pin are recommended. It is not necessary to decouple the $1 / 2 R$ tap point pin for most applications.
It is possible to elevate $\mathrm{V}_{\text {REF }}$ - from ground if necessary. In this case, the $\mathrm{V}_{\text {REF }}$ - pin must be driven from a low impedance reference capable of sinking the current through the resistor ladder. Careful decoupling is again recommended.

Digital Control and Interface

The HI-5701 provides a standard high speed interface to external CMOS and TTL logic families. Four digital inputs are provided to control the function of the converter. The clock and phase inputs control the sample and auto balance modes. The digital outputs change state on the clock phase which begins the sample mode. Two chip enable inputs control the tri-state outputs of output bits D0 through D5 and the Overflow OVF bit. As indicated in Table 2, all output bits
are high impedance when CE2 is low, and output bits DO through D5 are independently controlled by $\overline{\mathrm{CE} 1}$.
Although the Digital Outputs are capable of handling typical data bus loading, the bus capacitance charge/discharge currents will produce supply and local ground disturbances. Therefore, an external bus driver is recommended.

Clock

The clock should be properly terminated to digital ground near the clock input pin. Clock frequency defines the conversion frequency and controls the converter as described in the "Theory of Operation" section. The Auto Balance $\phi 1$ half cycle of the clock may be reduced to 16 ns ; the Sample $\phi 2$ half cycle may be varied from a minimum of 16 ns to a maximum of $8 \mu \mathrm{~s}$.

TABLE 3. PHASE CONTROL

CLOCK	PHASE	INTERNAL GENERATION
0	0	Sample Unknown $(\phi 2)$
0	1	Auto Balance $(\phi 1)$
1	0	Auto Balance $(\phi 1)$
1	1	Sample Unknown $(\phi 2)$

Gain and Offset Adjustment

In applications where accuracy is of utmost importance, three adjustments can be made; i.e., offset, gain, and midpoint trim. In general, offset and gain correction can be done in the preamp circuitry.

Offset Adjustment

The preferred offset correction method is to introduce a DC component to $\mathrm{V}_{\mathbb{I N}}$ of the converter. An alternate method is to adjust the $\mathrm{V}_{\text {REF }}$ - input to produce the desired offset adjustment. The theoretical input voltage to produce the first transition is $1 / 2$ LSB.
$V_{I N}(0$ to 1 transition $)=1 / 2 L S B=1 / 2\left(V_{\text {REF }} / 64\right)=V_{\text {REF }} / 128$

Gain Adjustment

In general, full scale error correction can be done in the preamp circuitry by adjusting the gain of the op amp. An alternate method is to adjust the $\mathrm{V}_{\text {REF }}+$ input voltage. This adjustment is performed by setting $V_{I N}$ to the 63 to overflow transition. The theoretical input voltage to produce the transition is $1 / 2$ LSB less than $\mathrm{V}_{\text {REF }}+$ and is calculated as follows:

$$
\mathrm{V}_{\mathbb{N}}(63 \text { to } 64 \text { transition })=\mathrm{V}_{\text {REF }}-\left(\mathrm{V}_{\mathrm{REF}} / 128\right)=\mathrm{V}_{\text {REF }}(127 / 128) .
$$

To perform the gain trim, first do the offset trim and then apply the required $V_{I N}$ for the 63 to overflow transition. Now adjust $V_{\text {REF }}+$ until that transition occurs on the outputs.

Midpoint Trim

The reference center $(1 / 2 R)$ is available to the user as the midpoint of the resistor ladder. The $1 / 2 R$ point can be used to improve linearity or create unique transfer functions. The offset and gain trims should be done prior to adjusting the midpoint. The theoretical transition from count 31 to 32 occurs at 31.5 LSB's. That voltage is calculated as follows:
V_{IN} (31 to 32 transition) $=31.5\left(\mathrm{~V}_{\text {REF }} / 64\right)=\mathrm{V}_{\text {REF }}(63 / 128)$.
An adjustable voltage follower can be used to drive the $1 / 2 R$ pin. Set $\mathrm{V}_{\text {IN }}$ to the 31 to 32 transition voltage, then adjust the voltage follower until the transition occurs on the output bits.

Signal Source

A current pulse is present at the analog input $\left(\mathrm{V}_{\mathbb{N}}\right)$ at the beginning of every sample and auto balance period. The transient current is due to comparator charging and switch feed through in the capacitor array. It varies with the amplitude of the analog input and the sampling rate.

The signal source must be capable of recovering from the transient prior to the end of the sample period to ensure a valid signal for conversion. Suitable broad band amplifiers or buffers which exhibit low output impedance and high output drive include the HFA-0005, HA-5004, HA-5002, and HA-5033.

The signal source may drive above or below the power supply rails, but should not exceed 0.5 V beyond the rails or damage may occur. Input voltages of -0.5 V to $+1 / 2$ LSB are converted to all zeros; input voltages of $\mathrm{V}_{\text {REF }}+-1 / 2$ LSB to $\mathrm{V}_{\mathrm{DD}}+0.5$ are converted to all ones with the Overflow bit set.

Power Supplies

The HI-5701 operates nominally from 5 V supplies but will function from 3 V to 6 V . The analog supply should be well regulated and "clean" of significant noise, especially high frequency noise. It is recommended that power supply decoupling capacitors be placed as close to the supply pins as possible. A combination of $0.01 \mu \mathrm{~F}$ ceramic and $10 \mu \mathrm{~F}$ tantalum capacitors is recommended for this purpose as shown in the test circuit Figure 13.

Reducing Power Consumption

Power dissipation in the $\mathrm{HI}-5701$ is related to clock frequency and clock duty cycle. For a fixed 50% clock duty cycle, power may be reduced by lowering the clock frequency. For a given conversion frequency, power may be reduced by shortening the Auto Balance $\$ 1$ portion of the clock duty cycle.

TABLE 4. OUTPUT CODE TABLE

[^5]
Glossary of Terms

Aperture Delay: Aperture delay is the time delay between the external sample command (the rising edge of the clock) and the time at which the signal is actually sampled. This delay is due to internal clock path propagation delays.

Aperture Jitter: This is the RMS variation in the aperture delay due to variation of internal $\phi 1$ and $\phi 2$ clock path delays and variation between the individual comparator switching times.

Differential Linearity Error (DNL): The differential linearity error is the difference in LSBs between the spacing of the measured midpoint of adjacent codes and the spacing of ideal midpoints of adjacent codes. The ideal spacing of each midpoint is 1.0 LSB . The range of values possible is from -1.0 LSB (which implies a missing code) to greater than +1.0 LSB.

Full Power Input Bandwidth: Full power bandwidth is the frequency at which the amplitude of the fundamental of the digital output word has decreased 3dB below the amplitude of an input sine wave. The input sine wave has a peak-to-peak amplitude equal to the reference voltage. The bandwidth given is measured at the specified sampling frequency.

Full Scale Error (FSE): Full Scale Error is the difference between the actual input voltage of the 63 to 64 code transition and the ideal value of $\mathrm{V}_{\text {REF }}+-1.5$ LSB. This error is expressed in LSBs.

Integral Linearity Error (INL): The integral linearity error is the difference in LSBs between the measured code centers and the ideal code centers. The ideal code centers are calculated using a best fit line through the converter's transfer function.

LSB: Least Significant Bit $=\left(\mathrm{V}_{\text {REF }}+-\mathrm{V}_{\text {REF }}-\right) / 64$. All HI-5701 specifications are given for a 62.5 mV LSB size $\mathrm{V}_{\text {REF }}{ }^{+}=$ $4.0 \mathrm{~V}, \mathrm{~V}_{\text {REF }^{-}}=0.0 \mathrm{~V}$.

Offset Error (VOS): Offset error is the difference between the actual input voltage of the 0 to 1 code transition and the ideal value of $\mathrm{V}_{\text {REF }}+0.5 \mathrm{LSB}$. VOS error is expressed in LSBs.

Power Supply Rejection Ratio (PSRR): PSRR is expressed in LSBs and is the maximum shift in code transition points due to a power supply voltage shift. This is measured at the 0 to 1 code transition point and the 62 to 63 code transition point with a power supply voltage shift from the nominal value of 5.0 V .

Signal to Noise Ratio (SNR): SNR is the ratio in dB of the RMS signal to RMS noise at specified input and sampling frequencies.

Signal to Noise and Distortion Ratio (SINAD): SINAD is the ratio in dB of the RMS signal to the RMS sum of the noise and harmonic distortion at specified input and sampling frequencies.

Total Harmonic Distortion (THD): THD is the ratio in dBc of the RMS sum of the first five harmonic components to the RMS signal for a specified input and sampling frequency.

Die Characteristics

DIE DIMENSIONS:

$86.6 \times 130.7 \times 19 \pm 1 \mathrm{mils}$
METALLIZATION:
Type: Si - Al
Thickness: $11 \mathrm{k} \AA \pm 1 \mathrm{k} \AA$
GLASSIVATION:
Type: SiO_{2}
Thickness: $8 \mathrm{k} \AA \pm 1 \mathrm{k} \AA$
TRANSISTOR COUNT: 4000
SUBSTRATE POTENTIAL (Powered Up): V+
Metallization Mask Layout
HI-5701

A/D CONVERTERS - SUBRANGING

PAGE
AD CONVERTERS - SUBRANGING SELECTION GUIDE 7-2
AD CONVERTERS - SUBRANGING DATA SHEETS
HI1175 8-Blt, 20MSPS Flash ADD Converter 7-3
HI1176 8-Blt, 20MSPS Flash AD Converter 7-12
H15800 12-Bit, 3MSPS Sampling AD Converter 7-23
HI-7153 8 Channel, 10-Bit High Speed Sampling AND Converter 7-37

[^6]
8-BIT SUBRANGING A/D CONVERTER

DEVICE	SUFFIX CODE	MIL SPEC	OUTPUTS	CONVERSION TYPE	CONVERSION TIME (ns)	BANDWIDTH (MHz)	TECHNOLOGY	RANGE MIN (V)	$\begin{aligned} & \text { INL } \\ & \text { (LSB) } \end{aligned}$	$\begin{gathered} \hline \text { DNL } \\ \text { (LSB) } \end{gathered}$	FEATURES
H11175JCB			Parallel, Binary,	Two-Step	50	18	CMOS	2	± 1.3	± 0.5	Low Power 60mW Typ
H11175JCP			8-Bit Latch, Three-State								at 20 MSPS Internal Reference
H11176JCQ			Parallel, Binary, 8-Bit Latch, Three-State	Two-Step	50	18	CMOS	2	± 1.3	± 0.5	Low Power 60mW Typ at 20 MSPS DC Restore Internal Reference
HI1179JCQ			Parallel, Binary, 8-Bit Latch, Three-State	Two-Step	30	60	CMOS	2	$\begin{gathered} \hline+1.3 \\ -1.0 \end{gathered}$	± 0.5	Low Power 80mW Typ at 35 MSPS DC Restore Internal Reference
HI5714/40CB			Parallel, Binary	Two-Step Folding	25ns	15	HBC10	2	± 0.75	± 0.5	ENOB $=7.8$ Bits
HI5714/60CB					16 ns	15	HBC10	2	± 0.75	± 0.5	High ENOB $=7.7$ Bits
H5714/75CB					13 ns	15	HBC10	2	± 0.75	± 0.5	ENOB $=7.7$ Bits

DEVICE	SUFFIX CODE	MIL SPEC	OUTPUTS	CONVERSION TYPE	CONVERSION TIME ($\mu \mathrm{s}$)	TECHNOLOGY	RANGE MIN (V)	LINEARITY (LSB)	$\begin{aligned} & \hline \text { CLOCK } \\ & \text { TYP } \end{aligned}$	FEATURES
HI5703KCB			Offset Binary, 2's Complement	Pipeline	25ns	BiCMOS	1.25	+1.5	1-40MSPS	Track and Hold, $400 \mathrm{~mW},+5 \mathrm{~V}$, 9+ ENOB
HI5702JCB			Offset Binary, 2's	Pipeline	28ns	BiCMOS	1.25	± 1.5	1-40 MSPS	Track and Hold, $600 \mathrm{~mW},+5 \mathrm{~V}$,
HI5702KCB					25ns					9+ ENOB
HI5710JCQ			Offset Binary, 2's Complement	2 Step Flash	50ns	CMOS	2	± 1.0	$\begin{aligned} & 0.5-20 \\ & \text { MSPS } \end{aligned}$	Track and Hold, $140 \mathrm{~mW},+5 \mathrm{~V}$
HI5705KCB			Offset Binary, 2's Complement	Pipeline	25ns	BiCMOS	1.25	+1.5	1-40MSPS	Low Cost A/D

12-BIT SUBRANGING A/D CONVERTER

DEVICE	SUFFIX CODE	MIL SPEC	OUTPUTS	CONVERSION TYPE	CONVERSION TIME (ns)	TECHNOLOGY	RANGE MIN (V)	$\begin{aligned} & \text { INL } \\ & \text { (LSB) } \end{aligned}$	REFERENCE VOLTAGE	FEATURES
HI5800BID			Parallel, Binary, Three-State, 8-Bit Bus,12-Bit Bus and 16-Bit Bus	Two-Step	330ns	BiCMOS	5	± 1.0	Internal 2.5V	High Performance Sampling A/D, System +11.5 ENOB, V REF Sampling and Hold, 20 MHz BW
HI5800JCD								± 2.0		
HI5800KCD								± 1.0		
HI5804KCB				Pipeline	200ns	BiCMOS	2.3 V	± 2.0	Internal	$-100 \mathrm{MHz} \mathrm{BW}$

H/1175

8-Bit, 20MSPS Flash AVD Converter

Features

- Resolution: 8-Bit ± 0.5 LSB (DNL)
- Maximum Sampling Frequency: 20MSPS
- Low Power Consumption: 60mW (at 20MSPS Typ.) (Reference Current Excluded)
- Built-In Sample and Hold Circuit
- Built-In Reference Voltage Self Blas Circuit
- Tri-State TTL Compatible Output
- Single +5V Power Supply
- Low Input Capacitance: 11pF (Typ.)
- Reference Impedance: 300Ω (Typ.)
- Evaluation Board Available
- Low Cost

Applications

- Video Digitizing
- Image Scanners
- Multimedia
- High Speed Data Acquisition Systems

Pinout

H11175
(PDIP, SOIC)
TOP VIEW

Functional Block Diagram

Typical Application Schematic

$n t n$: Digital GND
NOTE: It is necessary that $A V_{D D}$ and $D V_{D D}$ pins be driven from the same supply. The gain of analog input signal can be changed by adjusting R3.

Specifications H/1175

Absolute Maximum Ratings

Thermal Information

V_{RB} to $\mathrm{V}_{\mathrm{RT}}\left(1.8 \mathrm{~V}_{\mathrm{P} . \mathrm{p}}\right.$ to $\left.A \mathrm{~V}_{\mathrm{DD}}\right)$
Analog Input Voltage, V_{IN}

Tpwo... 25ns (Min.)

Electrical Specifications $\quad \mathrm{F}_{\mathrm{C}}=20 \mathrm{MSPS}, \mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{RB}}=0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{RT}}=2.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (Note 1)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
SYSTEM PERFORMANCE					
Offset Voltage					
EOT		-60	-35	-10	mV
E_{OB}		0	+15	+45	mV
Integral Non-Linearity, (INL)	$\mathrm{F}_{\mathrm{C}}=20 \mathrm{MSPS}, \mathrm{V}_{1 \mathrm{~N}}=0.6 \mathrm{~V}$ to 2.6V	-	± 0.5	± 1.3	LSB
Differential Non-Linearity, (DNL)	$\mathrm{F}_{\mathrm{C}}=20 \mathrm{MSPS}, \mathrm{V}_{\mathrm{IN}}=0.6 \mathrm{~V}$ to 2.6 V	-	± 0.3	± 0.5	LSB
DYNAMIC CHARACTERISTICS					
Signal to Noise Ratio (SINAD)$=\frac{\text { RMS Signal }}{\text { RMS Noise + Distortion }}$	$\mathrm{F}_{\mathrm{S}}=20 \mathrm{MHz}, \mathrm{f}_{\text {IN }}=1 \mathrm{MHz}$	-	46	-	dB
	$\mathrm{F}_{\mathrm{S}}=20 \mathrm{MHz}, \mathrm{f}_{\mathrm{I}}=3.58 \mathrm{MHz}$	-	46	-	dB
Maximum Conversion Speed, F_{C}	$\mathrm{V}_{\text {IN }}=0.6 \mathrm{~V}$ to 2.6V, $\mathrm{F}_{\text {IN }}=1 \mathrm{kHz}$ Ramp	20	30	-	MSPS
Differential Gain Error, DG	NTSC 40 IRE Mod Ramp, $\mathrm{F}_{\mathrm{C}}=14.3 \mathrm{MSPS}$	-	1.0	-	\%
Differential Phase Error, DP		-	0.5	-	Degree
Aperture Jitter, t_{AJ}		-	30	-	ps
Sampling Delay, $\mathrm{t}_{\text {d }}$		-	4	-	ns
ANALOG INPUTS					
Analog Input Bandwidth (-1 dB), BW		-	18	-	MHz
Analog Input Capacitance, $\mathrm{C}_{\text {IN }}$	$\mathrm{V}_{\text {IN }}=1.5 \mathrm{~V}+0.07 \mathrm{~V}_{\text {RMS }}$	-	11	-	pF
REFERENCE INPUT					
Reference Pin Current, $I_{\text {REF }}$		4.5	6.6	8.7	mA
Reference Resistance (V_{RT} to V_{RB}), $R_{\text {REF }}$		230	300	450	Ω

Supply Voltage		Analog Input Voltage, $\mathrm{V}_{\mathrm{IN}} \ldots \ldots \ldots \mathrm{V}_{\mathrm{RB}}$ to $\mathrm{V}_{\mathrm{RT}}\left(1.8 \mathrm{~V}_{\mathrm{P} . \mathrm{P}}\right.$ to $\left.\mathrm{AV}_{\mathrm{DD}}\right)$ Clock Pulse Width	
$\mathrm{AV}^{\text {do }}, \mathrm{AV}_{S S}, \mathrm{DV}_{\mathrm{DD}} \mathrm{DV}_{S S}$	+4.75V to +5.25V		
IDGND-AGNDI.	. 0 mVV to 100 mV	$T_{\text {pwi }}$.	. 25 ns (Min.)
Reference Input Voltage		Tpwo.	25ns (Min.)
$\mathrm{V}_{\mathrm{RB}} \ldots \ldots$.. OV and Above .2 .8 V and Below		

Electrical Specifications $\quad F_{C}=20 \mathrm{MSPS}, \mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{RB}}=0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{RT}}=2.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (Note 1) (Continued)

NOTE:

1. Electrical specifications guaranteed only under the stated operating conditions.

Timing Diagrams

FIGURE 1.
UPPER COMPARATOR BLOCK

LOWER DATA A

DIGITAL OUTPUT

FIGURE 2.

Typical Performance Curves

FIGURE 3. SUPPLY CURRENT vs SUPPLY VOLTAGE

FIGURE 4. SUPPLY CURRENT AND POWER vs SAMPLING RATE

FIGURE 5. DIFFERENTIAL NON-LINEARITY vs INPUT FREQUENCY

Pin Descriptions and Equivalent Circuits

PIN NUMBER	SYMBOL	EQUIVALENT CIRCUIT	DESCRIPTION
1	$\overline{\overline{O E}}$		When $\overline{\mathrm{OE}}=$ Low, Data is valid: When $\overline{\mathrm{OE}}=$ High, DO to D7 pins high impedance.
2,24	DV SS		Digital GND.
3-10	D0 to D7		D0 (LSB) to D7 (MSB) output.
11,13	DV ${ }_{\text {DD }}$		Digital +5 V .
12	CLK		Clock input.
16	$\mathrm{V}_{\text {fTS }}$		Shorted with V_{RT} generates, +2.6 V .
17	V_{RT}	$9^{A V}{ }_{\text {DD }}$	Reference voltage (top).
23	V_{RB}		Reference voltage (bottom).
14, 15, 18	$\mathrm{AV}_{\mathrm{DD}}$		Analog +5 V .
19	$\mathrm{V}_{\text {IN }}$		Analog input.
20, 21	$\mathrm{AV}_{\text {SS }}$		Analog GND.
22	$\mathrm{V}_{\text {RBS }}$		Shorted with V_{RB} generates +0.6 V .

AD OUTPUT CODE TABLE
$\left.\begin{array}{|c|c|ccccc|}\hline \begin{array}{c}\text { INPUT SIGNAL } \\ \text { VOLTAGE }\end{array} & \text { STEP } & & & \text { DIGITAL OUTPUT CODE }\end{array}\right]$

Detailed Description

The HI1175 is a 2-step A/D converter featuring a 4-bit upper comparator group and two lower comparator groups of 4 bits each. The reference voltage can be obtained from the onboard bias generator or be supplied externally. This IC uses an offset canceling type comparator that operates synchronously with an external clock. The operating modes of the part are input sampling (S), hold (H), and compare (C).

The operation of the part is illustrated in Figure 2. A reference voltage that is between $\mathrm{V}_{\mathrm{RT}}-\mathrm{V}_{\mathrm{RB}}$ is constantly applied to the upper 4-bit comparator group. $V_{1}(1)$ is sampled with the falling edge of the first clock by the upper comparator block. The lower block A also samples $V_{1}(1)$ on the same edge. The upper comparator block finalizes comparison data MD(1) with the rising edge of the first clock. Simultaneously the reference supply generates a reference voltage RV(1) that corresponds to the upper results and applies it to the lower comparator block A. The lower comparator block finalizes comparison data LD(1) with the rising edge of the second clock. $\mathrm{MD}(1)$ and $\mathrm{LD}(1)$ are combined and output as OUT(1) with the rising edge of the third clock. There is a 2.5 cycle clock delay from the analog input sampling point to the corresponding digital output data. Notice how the lower comparator blocks A and B alternate generating the lower data in order to increase the overall AVD sampling rate.

Power, Grounding, and Decoupling

To reduce noise effects, separate the analog and digital grounds.

In order to avoid latchup at power up, it is necessary that $A V_{D D}$ and $D V_{D D}$ be driven from the same supply.
Bypass both the digital and analog V_{DD} pins to their respective grounds with a ceramic $0.1 \mu \mathrm{~F}$ capacitor close to the pin.

Analog Input

The input capacitance is small when compared with other flash type AD converters. However, it is necessary to drive the input with an amplifier with sufficient bandwidth and drive capability. In order to prevent parasitic oscillation, it may be necessary to insert a resistor between the output of the amplifier and the AD input.

Reference Input

The range of the AND is set by the voltage between $V_{R T}$ and V_{RB}. The internal bias generator will set $\mathrm{V}_{\mathrm{RTS}}$ to 2.6 V and $V_{\text {RBS }}$ to 0.6 V . These can be used as the part reference by shorting V_{RT} and $\mathrm{V}_{\text {RTs }}$ and V_{RB} to $\mathrm{V}_{\text {RBS }}$. The analog input range of the $A D$ will now be from 0.6 V to 2.6 V and is referred to as Self Bias Mode 1. Self Bias Mode 2 is where \mathbf{V}_{RB} is connected to AGND and V_{RT} is shorted to V_{RT}. The analog input range will now be from OV to 2.4 V .

Test Circuits

FIGURE 6. INTEGRAL AND DIFFERENTIAL NON-LINEARITY ERROR AND OFFSET VOLTAGE TEST CIRCUIT

FIGURE 7. MAXIMUM OPERATIONAL SPEED AND DIFFERENTIAL GAIN AND PHASE ERROR TEST CIRCUIT

HI1176

8-Bit, 20MSPS Flash A/D Converter

Features

- Resolution 8-Bit ± 0.5 LSB (DNL)
- Maximum Sampling Frequency 20MSPS
- Low Power Consumption 60mW (at 20MSPS Typ.) (Reference Current Excluded)
- Built-In Sync Clamp Function
- Built-In Monostable Multivibrator for Clamp Pulse Generation
- Built-In Sync Pulse Polarity Selection Function
- Clamp Pulse Direct Input Possible
- Built-In Clamp ONOFF Function
- Built-In Reference Voltage Self Bias Circuit
- Input CMOS Compatible
- Tri-State TTL Compatible Output
- Single +5V Power Supply
- Low Input Capacitance 11pF (Typ.)
- Reference Impedance 300Ω (Typ.)
- Evaluation Board Available

Applications

- Video Digitizing
- Image Scanners
- Low Cost High Speed Data Acquisition Systems
- Multimedia

Description

The HI1176 is an 8-bit CMOS analog-to-digital converter for video use that features a sync clamp function. The adoption of a 2-step parallel method realizes low power consumption and a maximum conversion speed of 20MSPS.
The HI1176 is available in the Commercial temperature range and is supplied in 32 lead Plastic Metric Quad Flatpack (MQFP) package.

Ordering Information

PART NUMBER	TEMPERATURE RANGE	PACKAGE
H11176JCQ	$-20^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	32 Lead Plastic Metric Quad Flatpack

Pinout

Functional Block Diagram

Typical Application Schematic

WHEN CLAMP IS NOT USED (SELF BIAS USED)

Abstract

Absolute Maximum Ratings Supply Voltage, $V_{D D}$. $7 V$ Digital Input Voltage, CLK. . $V_{D D}$ to $V_{S S}$ Storage Temperature, $\mathrm{T}_{\text {STG }}$ C to $+150^{\circ} \mathrm{C}$

\section*{Thermal Information}

Thermal Resistance θ_{JA} HI1176JCQ . $122^{\circ} \mathrm{C}$ / W Maximum Power Dissipation . 108 mW Maximum Junction Temperature . $+150^{\circ} \mathrm{C}$

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Operating Conditions (Note 1)

Supply Voltage		Analog Input Voltage, $\mathrm{V}_{\mathrm{IN}} \ldots \ldots . . . \mathrm{V}_{\mathrm{RB}}$ to $\mathrm{V}_{\mathrm{RT}}\left(1.8 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}\right.$ to $\left.\mathrm{AV} \mathrm{V}_{\mathrm{DD}}\right)$ Clock Pulse Width	
$\mathrm{AV}_{\mathrm{DD}}, \mathrm{AV}^{\text {SS }}, \mathrm{DV}_{\mathrm{DD}}$, $\mathrm{DV}_{\text {SS }}$	+4.75 V to +5.25 V		
IDGND-AGNDI	. . 0 mV to 100 mV	$\mathrm{T}_{\text {PW1 }}$.	. 25ns (Min.)
Reference Input Voltage		TPWo.	25ns (Min.)
$\mathrm{V}_{\text {RB }}$. OV and Above		
$V_{\text {RT }}$.2.8V and Below		

Electrical Specifications $\mathrm{F}_{\mathrm{C}}=20 \mathrm{MSPS}, \mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{RB}}=0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{RT}}=2.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (Note 1)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
SYSTEM PERFORMANCE					
Offset Voltage					
$\mathrm{E}_{\text {OT }}$		-60	-40	-20	mV
E_{OB}		+20	+40	+60	mV
Integral Non-Linearity, (INL)	$\mathrm{F}_{\mathrm{C}}=20 \mathrm{MSPS}, \mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$ to 2.5 V	-	± 0.5	± 1.3	LSB
Differential Non-Linearity, (DNL)	$\mathrm{F}_{\mathrm{C}}=20 \mathrm{MSPS}, \mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}$ to 2.5 V	-	± 0.3	± 0.5	LSB
DYNAMIC CHARACTERISTICS					
Signal to Noise Ratio (SINAD)	$\mathrm{F}_{\mathrm{S}}=20 \mathrm{MHz}, \mathrm{f}_{\text {IN }}=1 \mathrm{MHz}$	-	46	-	dB
$=\frac{\text { RMS Signal }}{\text { RMS Noise + Distortion }}$	$\mathrm{F}_{\mathrm{S}}=20 \mathrm{MHz}, \mathrm{f}_{\mathrm{N}}=3.58 \mathrm{MHz}$	\bullet	46	-	dB
Maximum Conversion Speed, F $\mathrm{C}_{\text {c }}$	$\mathrm{V}_{\mathbb{N}}=0.5 \mathrm{~V}$ to 2.5V, $\mathrm{F}_{\text {IN }}=1 \mathrm{kHz}$ Ramp	20	35	-	MSPS
Differential Gain Error, DG	NTSC 40 IRE Mod Ramp, $\mathrm{F}_{\mathrm{C}}=14.3 \mathrm{MSPS}$	-	1.0	-	\%
Differential Phase Error, DP		-	0.5	-	Degree
Aperture Jitter, t_{AJ}		-	30	-	ps
Sampling Delay, $\mathrm{t}_{\text {DS }}$		-	4	-	ns
ANALOG INPUTS					
Analog Input Bandwidth (-1 dB), BW		-	18	-	MHz
Analog Input Capacitance, $\mathrm{C}_{\text {IN }}$	$\mathrm{V}_{\text {IN }}=1.5 \mathrm{~V}+0.07 \mathrm{~V}_{\text {RMS }}$	-	11	-	pF
REFERENCE INPUT					
Reference Pin Current, $I_{\text {Ref }}$		4.5	6.6	8.7	mA
Reference Resistance (V_{RT} to V_{RB}), $\mathrm{R}_{\text {REF }}$		230	300	450	Ω

Electrical Specifications $\quad F_{C}=20 \mathrm{MSPS}, \mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{RB}}=0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{RT}}=2.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (Note 1) (Continued)

PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT
INTERNAL VOLTAGE REFERENCES						
Self Bias						
V_{RB}	Short V_{RB} and $\mathrm{V}_{\text {RBS }}$, Short $\mathrm{V}_{\text {RT }}$ and $\mathrm{V}_{\text {RTS }}$		0.48	0.52	0.56	V
$\mathrm{V}_{\mathrm{RT}}-\mathrm{V}_{\mathrm{RB}}$			1.96	2.08	2.22	V
DIGITAL INPUTS						
Digital Input Voltage$V_{I H}$						
			4.0	-	-	v
V_{IL}			-	-	1.0	v
Digital Input Current I_{IH}	$V_{D D}=\operatorname{Max}$.	$\mathrm{V}_{\mathrm{H}}=\mathrm{V}_{\mathrm{DD}}$	-	-	5	$\mu \mathrm{A}$
IIL		$\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$	-	-	5	$\mu \mathrm{A}$
DIGITAL OUTPUTS						
Digital Output Current $\mathrm{IOH}^{\mathrm{OH}}$	$\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{SS}}, \mathrm{V}_{\mathrm{DD}}=\mathrm{Min}$.	$\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DD}}-0.5 \mathrm{~V}$	-1.1	-	-	mA
		$\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$	3.7	-	-	mA
Digital Output Current Iozh	$\overline{O E}=V_{D D}, V_{D D}=M a x$.	$\begin{aligned} & V_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DD}} \\ & \mathrm{~V}_{\mathrm{OL}}=\mathrm{OV} \end{aligned}$	-	-	16	$\mu \mathrm{A}$
Iozl			-	-	16	$\mu \mathrm{A}$
TIMING CHARACTERISTICS						
Output Data Delay, T_{DL}			-	18	30	ns
POWER SUPPLY CHARACTERISTIC						
Supply Current, IDD	$\mathrm{F}_{\mathrm{C}}=20 \mathrm{MSPS}$, NTSC Ramp Wave Input		-	12	18	mA
CLAMP CHARACTERISTICS						
Clamp Offset Voltage, E_{Oc}	$\mathrm{V}_{\text {IN }}=\mathrm{DC}, \mathrm{PWS}=3 \mu \mathrm{sec}$	$\mathrm{V}_{\text {REF }}=0.5 \mathrm{~V}$	0	+20	$+40$	mV
		$\mathrm{V}_{\text {REF }}=2.5 \mathrm{~V}$	-50	-30	-10	mV
Clamp Pulse Width (Sync Pin Input), tcpw	$C=100 \mathrm{pF}, \mathrm{R}=130 \mathrm{k} \Omega$		1.75	2.75	3.75	$\mu \mathrm{s}$
Clamp Pulse Delay, tcpd			-	25	-	ns

NOTE:

1. Electrical specifications guaranteed only under the stated operating conditions.

Timing Diagrams

FIGURE 1.

FIGURE 2.

Typical Performance Curves

FIGURE 3. SUPPLY CURRENT vs SUPPLY VOLTAGE

FIGURE 4. SUPPLY CURRENT AND POWER vs SAMPLING RATE

FIGURE 5. DIFFERENTIAL NON-LINEARITY vs INPUT FREQUENCY

Pin Descriptions

PIN NUMBER	SYMBOL	EQUIVALENT CIRCUIT	DESCRIPTION
$1-8$	DO to D7		DO (LSB) to D7 (MSB) output.
10,11			

Pin Descriptions (Continued)

PIN NUMBER	SYMBOL	EQUIVALENT CIRCUIT	DESCRIPTION
12	CLK		Clock input.
13	SEL		When SEL is low, the falling edge of Pin 14 (sync) triggers the monostable. When SEL is high, the rising edge of Pin 14 (sync) triggers the monostable.
14	SYNC		Trigger pulse input to the monostable multivibrator. Trigger polarity can be controlled by Pin 13 (SEL).
15	PW		When a clamp pulse is generated by the monostable, the pulse width is determined by the external R and C . When the clamp pulse is directly input, it is input to Pin 15 (PW).
16, 19, 20	$\mathrm{AV}_{\text {D }}$		Analog +5 V .
17	$\mathrm{V}_{\text {RTS }}$		When shorted with V_{RT}, generates approx. +2.6 V .
18	$\mathrm{V}_{\text {RT }}$		Reference voltage (top).
24	V_{RB}	(18)	Reference voltage (bottom).

Pin Descriptions (Continued)

PIN NUMBER	SYMBOL	EQUIVALENT CIRCUIT	DESCRIPTION
21	V_{IN}		Analog input.
22, 23	$\mathrm{AV}_{\text {SS }}$		Analog ground.
25	$V_{\text {RBS }}$		When shorted with V_{RB}, generates approx. +0.5 V .
26	$\mathrm{V}_{\text {REF }}$		Clamp reference voltage input.
27	CCP		Integrates the voitage for clamp control.
28, 31	DV ${ }_{\text {s }}$		Digital GND.
29	$\overline{\text { CLE }}$		When $\overline{\text { CLE }}$ is low, clamp function is activated. When CLE is high, clamp function is OFF and only the usual ADD converter function is active. By connecting $\overline{C L E}$ pin to $\mathrm{DV}_{\mathrm{DD}}$ via a several hundred Ω resistance, the clamp pulse can be tested.
30	$\overline{\overline{O E}}$		When $\overline{O E}$ is low, data is valid. When $\overline{\mathrm{OE}}$ is high, DO to D 7 pins are high impedance.

AD OUTPUT CODE TABLE

INPUT SIGNAL VOLTAGE	STEP	DIGITAL OUTPUT CODE							
		MSB			1	1	1	1	LSB
$V_{\text {RT }}$	0	1	1	1					1
-	127	1	0	0	0	0	0	0	0
	128	0	1	1	1	1	1	1	1
						-			
	-								
V_{RB}	255	0	0	0	0	0	0	0	0

Detailed Description

The HI1176 is a 2-step A/D converter featuring a 4-bit upper comparator group and two lower comparator groups of 4 bits each. The reference voltage can obtained from the onboard bias generator or be supplied externally. This IC uses an offset canceling type comparator that operates synchronously with an external clock. The operating modes of the part are input sampling/autozero (S), hold (H), and compare (C).

The operation of the part is illustrated in Figure 2. A reference voltage that is between $\mathrm{V}_{\mathrm{RT}}-\mathrm{V}_{\mathrm{RB}}$ is constantly applied to the upper 4-bit comparator group. $\mathrm{V}_{1}(1)$ is sampled with the falling edge of the first clock by the upper comparator block. The lower block A also samples $V_{1}(1)$ on the same edge. The upper comparator block finalizes comparison data MD(1) with the rising edge of the first clock. Simultaneously the reference supply generates a reference voltage RV(1) that corresponds to the upper results and applies it to the lower comparator block A. The lower comparator block finalizes comparison data $\mathrm{LD}(1)$ with the rising edge of the second clock. MD(1) and $\operatorname{LD}(1)$ are combined and output as OUT(1) with the rising edge of the third clock. There is a 2.5 cycle clock delay from the analog input sampling point to the corresponding digital output data. Notice how the lower comparator blocks A and B alternate generating the lower data in order to increase the overall A/D sampling rate.

Power, Grounding, and Decoupling

To reduce noise effects, separate the analog and digital grounds.
Bypass both the digital and analog V_{DD} pins to their respective grounds with a ceramic $0.1 \mu \mathrm{~F}$ capacitor close to the pin.

Analog Input

The input capacitance is small when compared with other flash type A/D converters. However, it is necessary to drive the input with an amplifier with sufficient bandwidth and drive capability. In order to prevent parasitic oscillation, it may be necessary to insert a resistor between the output of the amplifier and the A/D input.

Reference Input

The range of the A / D is set by the voltage between $V_{R T}$ and V_{RB}. The internal bias generator will set $\mathrm{V}_{\mathrm{RTs}}$ to 2.5 V and $\mathrm{V}_{\text {RBS }}$ to 0.5 V . These can be used as the part reference by shorting $V_{R T}$ and $V_{R T S}$ and $V_{R B}$ to $V_{\text {RBS }}$. The analog input range of the $\mathrm{A} D$ will now be from 0.5 V to 2.5 V . If a V_{RB} below +0.5 V is used the linearity of the part will be degraded.
Bypass V_{RT} and V_{RB} to analog ground with a $0.1 \mu \mathrm{~F}$ capacitor.

Clamp Operation

The HI1176 provides a clamp option that allows the user to clamp a portion of the analog input to a voltage set by the $\mathrm{V}_{\text {REF }}$ pin. The clamp function is enabled by bringing CLE low. An internal monostable multivibrator is provided that can be used to generate the clamp pulses. The monostable pulse width is determined by the external R and C connected to the PW pin. The trigger to the monostable is applied on the SYNC pin. The edge that triggers the monostable is determined by the SEL pin. When SEL is low the falling edge will trigger the monostable and when SEL is high the rising edge will trigger the monostable. Figure 6 shows the H11176 configured for this mode of operation. The clamp pulse is latched by the ADC sampling clock. This is not necessary to the operation of the clamp function but if this is not done then a slight beat might be generated as vertical sag according to the relation between the sampling frequency and the clamp frequency.

The HI1176 can also be configured to operate with an external clamp pulse. In this case a negative going pulse is input to the PW pin. $\mathrm{V}_{\mathbb{I}}$ will now be clamped during the low period of the clamp pulse to the voltage on the $\mathrm{V}_{\text {REF }}$ pin. Figure 7 shows the HI1176 configured for this mode of operation.
Figure 1 illustrates the operation of HI1176 when the clamp function is not used.

Typical Application Circuits

FIGURE 6. PEDESTAL CLAMP IS EXECUTED BY SYNC PULSE (SELF BIAS USED)

FIGURE 7. CLAMP PULSE IS DIRECTLY INPUT (SELF BIAS USED)

Test Circuits

FIGURE 8. INTEGRAL AND DIFFERENTIAL NON-LINEARITY ERROR AND OFFSET VOLTAGE TEST CIRCUIT

FIGURE 9. MAXIMUM OPERATIONAL SPEED AND DIFFERENTIAL GAIN AND PHASE ERROR TEST CIRCUIT

FIGURE 10. DIGITAL OUTPUT CURRENT TEST CIRCUIT

Features

- 3 MSPS Throughput Rate
- 12-Bit, No Missing Codes Over Temperature
- 1.0 LSB Integral Linearity Error
- Buffered Sample and Hold Amplifier
- Precision Voltage Reference
- $\pm 2.5 \mathrm{~V}$ Input Signal Range
- 20MHz Input BW Allows Sampling Beyond Nyquist
- Zero Latency/No Pipeline Delay
- Evaluation Board Available

Applications

- High Speed Data Acquisition Systems
- Medical Imaging
- Radar Signal Analysis
- Document and Film Scanners
- Vibration/Waveform Spectrum Analysis
- Digital Servo Control

Pinout

REF ${ }_{\text {IN }} 1$	40 IRQ
$\mathrm{RO}_{\text {ADJ }} 2$	39 OVF
$\mathrm{RG}_{\text {ADJ }} 3$	$38 \mathrm{AV}_{\mathrm{cc}}$
$\mathrm{AV}_{\mathrm{Cc}} 4$	37 D11 (MSB)
REF ${ }_{\text {OUt }} 5$	36 D10
$\mathrm{V}_{1 \times} 6$	$35 \mathrm{D9}$
AGND 7	34 D8
ADJ +8	33 DV Cc
ADJ- 9	32 DGND
$\mathrm{AV}_{\mathrm{EE}} 10$	31 AGND
$A^{\text {A }}$ cc 11	30 AV EE
AGND 12	29] D7
$\mathrm{AV}_{\mathrm{EE}} 13$	28 D6
$\overline{\text { AO }} 14$	27 D5
CS 15	$26 . \mathrm{D} 4$
$\overline{O E} 16$	25 D3
CONV 17	24 D2
DV EE^{18}	23 D 1
DGND 19	22 DO (LSB)
DV Cc^{20}	$21{ }^{\text {a }}$ (${ }_{\text {c }}$

Description

The HI5800 is a monolithic, 12-bit, sampling Analog-toDigital Converter fabricated in the HBC10 BiCMOS process. It is a complete subsystem containing a sample and hold amplifier, voltage reference, two-step subranging A/D, error correction, control logic, and timing generator. The HI5800 is designed for high speed applications where wide bandwidth, accuracy and low distortion are essential.

Ordering Information

PART NUMBER	LINEARITY	TEMP. RANGE	PACKAGE
HI5800BID	± 1 LSB	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	40 Lead Sidebraze
HI 5800 JCD HI5800KCD	$\pm 2 \mathrm{LSB}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	40 Lead Sidebraze

Functional Block Diagram

Typical Application Schematic

Electrical Specifications $\quad A V_{C C}=+5 \mathrm{~V}, D V_{C C}=+5 \mathrm{~V}, A V_{E E}=-5 \mathrm{~V}, D V_{E E}=-5 \mathrm{~V}$; Internal Reference Used Unless Otherwise Specified

PARAMETER	TEST CONDITION	HI5800 JCM/AID/JCD$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			HI5800KCM/BID/KCD$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
SYSTEM PERFORMANCE								
Resolution		12	-	-	12	-	-	Bits
Integral Linearity Error, INL	$\mathrm{F}_{\mathrm{S}}=3 \mathrm{MHz}, \mathrm{f}_{\mathrm{IN}}=45 \mathrm{~Hz}$ Ramp	-	± 0.7	± 2	-	± 0.7	± 1	LSB
Differential Linearity Error, DNL (Guaranteed No Missing Codes)	$\mathrm{F}_{\mathrm{S}}=3 \mathrm{MHz}, \mathrm{f}_{\mathrm{IN}}=45 \mathrm{~Hz}$ Ramp	-	± 0.5	± 1	-	± 0.4	± 1	LSB
Offset Error, VOS (Adjustable to Zero)	(Note 7)	-	± 2	± 15	-	± 2	± 10	LSB
Full Scale Error, FSE (Adjustable to Zero)	(Note 7)	-	± 2	± 15	-	± 2	± 10	LSB
DYNAMIC CHARACTERISTICS (Input Signal Level 0.5dB below full scale)								
Throughput Rate	No Missing Codes	3.0	-	-	3.0	-	-	MSPS
Signal to Noise Ratio (SNR) $=\frac{\text { RMS Signal }}{\text { RMS Noise }}$	$\begin{aligned} & F_{\mathrm{S}}=3 \mathrm{MHz}, f_{\mathrm{I}_{\mathrm{N}}}=20 \mathrm{kHz} \\ & \mathrm{~F}_{\mathrm{S}}=3 \mathrm{MHz}, \mathrm{f}_{\mathrm{IN}}=1 \mathrm{MHz} \end{aligned}$	66	$\begin{aligned} & 69 \\ & 67 \end{aligned}$	-	$\begin{aligned} & 68 \\ & 67 \end{aligned}$	$\begin{aligned} & 71 \\ & 69 \end{aligned}$	-	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
Signal to Noise Ratio (SINAD) $=\frac{\text { RMS Signal }}{\text { RMS Noise + Distortion }}$	$\begin{aligned} & F_{S}=3 \mathrm{MHz}, \mathrm{f}_{\mathrm{IN}}=20 \mathrm{kHz} \\ & \mathrm{~F}_{\mathrm{S}}=3 \mathrm{MHz}, \mathrm{f}_{\mathrm{IN}}=1 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 66 \\ & 65 \end{aligned}$	$\begin{aligned} & 68 \\ & 67 \end{aligned}$	-	$\begin{aligned} & 68 \\ & 67 \end{aligned}$	$\begin{aligned} & \hline 70 \\ & 68 \end{aligned}$	-	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
Total Harmonic Distortion, THD	$\begin{aligned} & F_{S}=3 \mathrm{MHz}, \mathrm{f}_{\mathrm{IN}}=20 \mathrm{kHz} \\ & \mathrm{~F}_{\mathrm{S}}=3 \mathrm{MHZ}, \mathrm{f}_{\mathrm{IN}}=1 \mathrm{MHz} \end{aligned}$	-	$\begin{aligned} & -74 \\ & -70 \end{aligned}$	$\begin{aligned} & -70 \\ & -68 \end{aligned}$	-	$\begin{aligned} & -82 \\ & -75 \end{aligned}$	$\begin{aligned} & -74 \\ & -70 \end{aligned}$	$\begin{gathered} \mathrm{dBc} \\ \mathrm{dBc} \end{gathered}$
Spurious Free Dynamic Range, SFDR	$\begin{aligned} & F_{S}=3 \mathrm{MHz}, \mathrm{f}_{\mathrm{IN}}=20 \mathrm{kHz} \\ & \mathrm{~F}_{\mathrm{S}}=3 \mathrm{MHz}, \mathrm{f}_{\mathrm{IN}}=1 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 71 \\ & 68 \end{aligned}$	$\begin{aligned} & 76 \\ & 72 \end{aligned}$	-	$\begin{aligned} & 76 \\ & 71 \end{aligned}$	$\begin{aligned} & 84 \\ & 75 \end{aligned}$	-	$\begin{aligned} & \mathrm{dBc} \\ & \mathrm{dBc} \end{aligned}$
Intermodulation Distortion, IMD	$\begin{aligned} & \mathrm{F}_{\mathrm{s}}=3 \mathrm{MHz}, \mathrm{f1}=49 \mathrm{kHz}, \\ & \mathrm{f}_{2}=50 \mathrm{kHz} \end{aligned}$	-	-74	-66	\bullet	-82	-70	dBc
Differential Gain	$\mathrm{F}_{\mathrm{S}}=1 \mathrm{MHz}$	-	0.9	-	-	0.9	-	\%
Differential Phase	$F_{S}=1 \mathrm{MHz}$	-	0.05	-	-	0.05	-	Degrees
Aperture Delay, $\mathrm{t}_{\text {AD }}$		-	12	20	-	12	20	ns
Aperture Jitter, $\mathrm{t}_{\text {AJ }}$		-	10	20	-	10	20	ps

Specifications HI5800

Electrical Specifications $\quad A V_{C C}=+5 \mathrm{~V}, \mathrm{DV} \mathrm{CC}=+5 \mathrm{~V}, A \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V}, \mathrm{DV} \mathrm{EE}=-5 \mathrm{~V}$; Internal Reference Used Unless Otherwise Specified (Continued)

PARAMETER	TEST CONDITION	HI5800JCM/AID/JCD			HI5800KCM/BID/KCD			UNITS
		$\begin{gathered} 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{gathered}$			$\begin{gathered} 0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{gathered}$			
		MIN	TYP	MAX	MIN	TYP	MAX	
ANALOG INPUT								
Input Voltage Range		-	± 2.5	± 2.7	-	± 2.5	± 2.7	V
Input Resistance		1	3	-	1	3	-	M Ω
Input Capacitance		-	5	-	-	5	-	pF
Input Current		-	1	± 10	-	1	± 10	$\mu \mathrm{A}$
Input Bandwidth		-	20	-	-	20	-	MHz
INTERNAL VOLTAGE REFERENCE								
Reference Output Voltage, REFOUT (Loaded)		2.450	2.500	2.550	2.470	2.500	2.530	V
Reference Output Current	Note 5	2	-	-	2	-	-	mA
Reference Temperature Coefficient		-	20	-	-	20	-	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
REFERENCE INPUT								
Reference Input Range		-	2.5	2.6	-	2.5	2.6	V
Reference Input Resistance		-	200	-	-	200	-	Ω
DIGITAL INPUTS								
Input Logic High Voltage, V_{IH}	Note 6	2.0	-	-	2.0	-	-	V
Input Logic Low Voltage, V_{IL}		-	-	0.8	-	-	0.8	V
Input Logic Current, I/L	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, 5 \mathrm{~V}$	-	1.0	± 10	-	1	± 10	$\mu \mathrm{A}$
Digital Input Capacitance, $\mathrm{C}_{\text {IN }}$	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$	-	5.0	-	-	5	-	pF
DIGITAL OUTPUTS								
Output Logic High Voltage, V_{OH}	$\mathrm{I}_{\text {Out }}=-160 \mu \mathrm{~A}$	2.4	4.3	-	2.4	4.3	-	V
Output Logic Low Voltage, V_{OL}	$\mathrm{I}_{\text {OUT }}=3.2 \mathrm{~mA}$	-	0.22	0.4	-	0.22	0.4	\checkmark
Output Logic High Current, $\mathrm{IOH}^{\text {O }}$		-0.160	6	-	-0.160	6	-	mA
Output Logic Low Current, IoL		3.2	6	-	3.2	6	-	mA
Output Tri-state Leakage Current, loz	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}, 5 \mathrm{~V}$	-	± 1	± 10	-	± 1	± 10	$\mu \mathrm{A}$
Digital Output Capacitance, $\mathrm{C}_{\text {OUT }}$		-	10	-	-	10	-	pF
TIMING CHARACTERISTICS								
Minimum CONV Pulse, $\mathrm{t1}$	(Notes 2, 3)	10	-	-	10	-	-	ns
$\overline{\overline{C S}}$ to $\overline{\text { CONV }}$ Setup Time, t 2	(Note 2)	10	-	-	10	-	-	ns
$\overline{\mathrm{CONV}}$ to $\overline{\mathrm{CS}}$ Setup Time, t 3	(Note 2)	0	-	-	0	-	-	ns
Minimum $\overline{\mathrm{OE}}$ Pulse, 14	(Notes 2, 4)	15	-	-	15	-	-	ns
$\overline{\mathrm{CS}}$ to $\overline{\mathrm{OE}}$ Setup Time, 15	(Note 2)	0	-	-	0	-	-	ns

Electrical Specifications $\quad A V_{C C}=+5 \mathrm{~V}, \mathrm{DV}$ CC $=+5 \mathrm{~V}, A \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V}, \mathrm{DV} \mathrm{VE}_{\mathrm{EE}}=-5 \mathrm{~V}$; Internal Reference Used Unless Otherwise Specified (Continued)

PARAMETER	TEST CONDITION	HI5800JCM/AID/JCD$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			H15800KCM/BID/KCD$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
$\overline{\mathrm{OE}}$ to $\overline{\mathrm{CS}}$ Setup Time, 66	(Note 2)	0	-	-	0	-	-	ns
IRQ Delay from Start Convert, 17	(Note 2)	10	20	25	10	20	25	ns
IRQ Pulse Width, 88		190	205	230	190	205	230	ns
Minimum Cycle Time for Conversion, t9		-	-	333	-	333	333	ns
IRQ to Data Valid Delay, 110	(Note 2)	-5	0	+5	-5	0	+5	ns
Minimum $\overline{\mathrm{A} 0}$ Pulse, 111	(Notes 2, 4)	10	-	-	10	-	-	ns
Data Access from $\overline{\mathrm{OE}}$ Low, 112	(Note 2)	10	18	25	10	18	25	ns
LSB, Nibble Delay from $\overline{A O}$ High, t13	(Note 2)	-	10	20	-	10	20	ns
MSB Delay from $\overline{\mathrm{AO}}$ Low, 114	(Note 2)	-	14	20	\bullet	14	20	ns
$\overline{\mathrm{CS}}$ to Float Delay, 115	(Note 2)	10	18	25	10	18	25	ns
Minimum $\overline{\mathrm{CS}}$ Pulse, 116	(Notes 2, 4)	15	-	-	15	-	-	ns
$\overline{\mathrm{CS}}$ to Data Valid Delay, 117	(Note 2)	10	18	25	10	18	25	ns
Output Fall Time, if	(Note 2)	-	5	20	-	5	20	ns
Output Rise Time, tr	(Note 2)	-	5	20	-	5	20	ns
POWER SUPPLY CHARACTERISTICS								
IV cc		-	180	220	-	180	220	mA
$\mathrm{IV}_{\mathrm{EE}}$		-	158	190	\bullet	158	190	mA
IDV ${ }_{\text {cc }}$		-	27	40	\bullet	27	40	mA
IDV EEE		-	2.7	5	-	2.7	5	mA
Power Dissipation		-	1.8	2.2	-	1.8	2.2	W
PSRR	$\mathrm{V}_{\mathrm{CC},}, \mathrm{V}_{\mathrm{EE}} \pm 5 \%$	\bullet	0.01	0.05	-	0.01	0.05	\%/\%

NOTE:

1. Dissipation rating assumes device is mounted with all leads soldered to printed circuit board.
2. Parameter guaranteed by design or characterization and not production tested.
3. Recommended pulse width for $\overline{\mathrm{CONV}}$ is 60 ns .
4. Recommended minimum pulse width is 25 ns .
5. This is the additional current available from the REF OUT pin with the REF $_{\text {OUT }}$ pin driving the REF $_{\text {IN }}$ pin.
6. The $\overline{\mathrm{AO}} \mathrm{pin} \mathrm{V}_{I H}$ at $-40^{\circ} \mathrm{C}$ may exceed 2.0 V by up to 0.4 V at initial power up.
7. Excludes error due to internal reference temperature drift.

Timing Diagrams

FIGURE 1. SINGLE SHOT TIMING

FIGURE 2A. START CONVERSION SETUP TIME

FIGURE 2B. OUTPUT ENABLE SETUP TIME

FIGURE 2.

FIGURE 3. CONTINUOUS CONVERSION TIMING

Typical Performance Curves

FIGURE 4. TYPICAL SNR vs INPUT FREQUENCY

FIGURE 6. TYPICAL SND vs INPUT FREQUENCY

FIGURE 8. TYPICAL EFFECTIVE BITS vs INPUT FREQUENCY

FIGURE 5. TYPICAL THD vs INPUT FREQUENCY

FIGURE 7. TYPICAL SFDR vs INPUT FREQUENCY

FIGURE 9. EFFECTIVE NUMBER OF BITS vs REFERENCE VOLTAGE ($F_{S}=3 \mathrm{MHz}, F_{I N}=20 \mathrm{kHz}$)

Typical Performance Curves (Continued)

FIGURE 10. DIFFERENTIAL NON-LINEARITY

FIGURE 12. FFT SPECTRAL PLOT FOR $F_{I N}=20 \mathrm{kHz}, F_{S}=3 \mathrm{MHz}$

FIGURE 14. FFT SPECTRAL PLOT FOR $F_{\mathbb{I}}=2 \mathrm{MHz}, F_{S}=3 \mathrm{MHz}$

FIGURE 11. INTEGRAL NON-LINEARITY

FIGURE 13. FFT SPECTRAL PLOT FOR $F_{\mathbb{I}}=1 \mathrm{MHz}, F_{S}=3 \mathrm{MHz}$

FIGURE 15. INTERMODULATION DISTORTION PLOT FOR $F_{\text {IN }}=49 \mathrm{kHz}, 50 \mathrm{kHz}$ at $\mathrm{F}_{\mathrm{S}}=3 \mathrm{MHz}$

HI5800

Pin Description

$\begin{aligned} & 44 \text { PIN } \\ & \text { PLCC } \end{aligned}$	$\begin{gathered} 40 \mathrm{PIN} \\ \text { DIP } \end{gathered}$	PIN NAME	PIN DESCRIPTION
2	1	REF ${ }_{\text {IN }}$	External reference input.
3	2	$\mathrm{RO}_{\text {ADJ }}$	DAC offset adjust (Connect to AGND if not used).
4	3	$\mathrm{RG}_{\text {ADJ }}$	DAC gain adjust (Connect to AGND if not used).
5	4	$\mathrm{AV}_{\text {c }}$	Analog positive power supply, +5 V .
6	5	REF ${ }_{\text {OUT }}$	Internal reference output, +2.5 V .
1	-	NC	No connection.
7	6	$\mathrm{V}_{\text {IN }}$	Analog input voltage.
8	7	AGND	Analog ground.
9	8	ADJ+	Sample/hold offset adjust (Connect to AGND if not used).
10	9	ADJ-	Sample/hold offset adjust (Connect to AGND if not used).
11	10	$\mathrm{AV}_{\text {EE }}$	Analog negative power supply, -5 V .
13	11	$\mathrm{AV}_{\text {cc }}$	Analog positive power supply, +5 V .
14	12	AGND	Analog ground.
15	13	$\mathrm{AV}_{\mathrm{EE}}$	Analog negative power supply, -5 V .
16	14	AO	Output byte control input, active low. When low, data is presented as a 12 bit word or the upper byte (D11 - D4) in 8 bit mode. When high, the second byte contains the lower LSBs (D3-D0) with 4 trailing zeroes. See Text.
17	15	CS	Chip Select input, active low. Dominates all control inputs.
12	-	NC	No connection.
18	16	OE	Output Enable input, active low.
19	17	CONV	Convert start input. Initiates conversion on the falling edge. If held low, continuous conversion mode overrides and remains in effect until the input goes high.
20	18	$\mathrm{DV}_{\text {EE }}$	Digital negative power supply, -5V.
21	19	DGND	Digital ground.
22	20	$\mathrm{DV}_{\text {cc }}$	Digital positive power supply, +5 V .
24	21	$\mathrm{AV}_{\mathrm{CC}}$	Analog positive power supply, +5 V .
25	22	D0	Data bit 0, (LSB).
26	23	D1	Data bit 1.
27	24	D2	Data bit 2.
28	25	D3	Data bit 3.
23	-	NC	No connection
29	26	D4	Data bit 4.
30	27	D5	Data bit 5.
31	28	D6	Data bit 6.
32	29	D7	Data bit 7.
33	30	$\mathrm{AV}_{\text {EE }}$	Analog negative power supply, -5V.
35	31	AGND	Analog ground.
36	32	DGND	Digital ground.
37	33	$\mathrm{DV}_{\mathrm{CC}}$	Digital positive power supply, +5 V .
38	34	D8	Data bit 8.
39	35	D9	Data bit 9.
34	-	NC	No connection.
40	36	D10	Data bit 10.
41	37	D11	Data bit 11 (MSB).
42	38	$\mathrm{AV}_{\text {cc }}$	Analog positive power supply, +5 V .
43	39	OVF	Overflow output. Active high when either an overrange or underrange analog input condition is detected.
44	40	IRQ	Interrupt ReQuest output. Goes low when a conversion is complete.

Description

The HI5800 is a 12-bit two step sampling analog to digital converter which uses a subranging technique with digital error correction. As illustrated in the block diagram, it uses a sample and hold front end, 7-bit R-2R D/A converter which is laser trimmed to 14 bits accuracy, a 7-bit BiCMOS flash converter, precision bandgap reference, digital controller and timing generator, error correction logic, output latches and BiCMOS output drivers.

The falling edge of the convert command signal puts the sample and hold $(\mathrm{S} / \mathrm{H})$ in the hold mode and the conversion process begins. At this point the Interrupt Request (IRQ) line is set high indicating that a conversion is in progress. The output of the S/H circuit drives the input of the 7 -bit flash converter through a switch. After allowing the flash to settle, the intermediate output of the flash is stored in the latches which feed the D/A and error correction logic. The D/A reconstructs the analog signal and feeds the gain amplifier whose summing node subtracts the held signal of the S / H and amplifies the residue by 32 . This signal is then switched to the flash for a second pass using the input switch. The output of the second flash conversion is fed directly to the error correction which reconstructs the twelve bit word from the fourteen bit input. The logic also decodes the overflow bit and the polarity of the overflow. The output of the error correction is then gated through the read controller to the output drivers. The data is ready on the bus as soon as the IRQ line goes low.

VO Control Inputs

The converter has four active low inputs ($\overline{C S}, \overline{C O N V}, \overline{O E}$ and $\overline{\mathrm{AO}}$) and fourteen outputs (DO - D11, IRQ and OVF). All inputs and outputs are TTL compatible and will also interface to the newer TTL compatible families. All four inputs are CMOS high input impedance stages and all outputs are BiMOS drivers capable of driving 100pF loads.
In order to initiate a conversion or read the data bus, $\overline{\mathrm{CS}}$ should be held low. The conversion is initiated by the falling edge of the $\overline{\mathrm{CONV}}$ command. The $\overline{\mathrm{OE}}$ input controls the output bus directly and is independent of the conversion process. The data on the bus changes just before the IRQ goes low. Therefore if the $\overline{\mathrm{OE}}$ line is held low all the time, the data on the bus will change just before the IRQ line goes low. The byte control signal $\overline{A O}$ is also independent of the conversion process and the byte can be manipulated anytime. When $\overline{\mathrm{AO}}$ is low the 12 bits and overflow word is read on the bus. The bus can also be hooked up such that the upper byte (D11 D4) is read when $\overline{\mathrm{AO}}$ is low. When $\overline{\mathrm{AO}}$ is high, the lower byte (D3-D0) is output on the same eight pins with trailing zeros.
In order to minimize switching noise during a conversion, byte manipulations done using the $\overline{\mathrm{AO}}$ signal should be done in the single shot mode and $\overline{\mathrm{AO}}$ should be changed during the acquisition phase. For accuracy, allow sufficient time for settling from any glitches before the next conversion.

Once a conversion is started, the converter will complete the conversion and acquisition periods irrespective of the input states. If during these cycles another convert command is issued, it will be ignored until the acquire phase is complete.

Stand Alone Operation

The converter can be operated in a stand alone configuration with bus inputs controlling the converter. The conversion will be started on the negative edge of the convert ($\overline{\mathrm{CONV}}$) pulse as long as this pulse is less than the converter throughput rate. If the converter is given multiple convert commands, it will ignore all but the first command until such time when the acquisition period of the next cycle is complete. At this point it will start a new conversion on the first negative edge of the input command. This allows the converter to be synchronized to a multiple of a faster external clock. The new output data of the conversion is available on the same cycle at the negative edge of the IRQ pulse and is valid until the next negative edge of the IRQ pulse. Data may be accessed at any time during these cycles. It should be noted that if the data bus is kept enabled all the time ($\overline{O E}$ is low), then the data will be updating just before the IRQ goes low. During this time, the data may not be valid for a few nanoseconds.

Continuous Convert Mode

The converter can be operated at its maximum rate by taking the CONV line low (supplying the first negative edge) and holding it low. This enables the continuous convert mode. During this time, at the end of the internal acquisition period, the converter automatically starts a new conversion. The data will be valid between the IRQ negative edges.
Note that there is no pipeline delay on the data. The output data is available during the same cycle as the conversion and is valid until the next conversion ends. This allows data access to both previous and present conversions in the same cycle.

When initiating a conversion or a series of conversions, the last signal ($\overline{\mathrm{CS}}$ and $\overline{\mathrm{CONV}}$) to arrive dominates the function. The same condition holds true for enabling the bus to read the data ($\overline{\mathrm{CS}}$ and $\overline{\mathrm{OE}}$). To terminate the bus operations, the first signal ($\overline{\mathrm{CS}}$ and $\overline{\mathrm{OE}}$) to arrive dominates the function.

Interrupt Request Output

The interrupt request line (IRQ) goes high at the start of each conversion and goes low to indicated the start of the acquisition. During the time that IRQ is high, the internal sample and hold is in hold mode. At the termination of IRQ, the sample and hold switches to acquire mode which lasts approximately 100 ns . If no convert command is issued for a period of time, the sample and hold simply remains in acquire mode tracking the analog input signal until the next conversion cycle is initiated. The IRQ line is the only output that is not tri-stateable.

Analog Input, V_{IN}

The analog input of the HI5800 is coupled into the input stage of the Sample and Hold amplifier. The input is a high impedance bipolar differential pair complete with an ESD protection circuit. Typically it has $>3 \mathrm{M} \Omega$ input impedance. With this high input impedance circuit, the HI5800 is easily interfaced to any type of op-amp without a requirement for a high drive capability. Adequate precautions should be taken while driving the input from high voltage output op-amps to
ensure that the analog input pin is not overdriven above the specified maximum limits. For a +2.5 V reference, the analog input range is $\pm 2.5 \mathrm{~V}$. This input range scales with the value of the external reference voltage if the internal reference is not used. For best performance, the analog ground pin next to the analog input should be utilized for signal return.

Figures 16 and 17 illustrate the use of an input buffer as a level shifter to convert a unipolar signal to the bipolar input used by the HI5800. Figure 16 is an example of a non-inverting buffer that takes a 0 to 2.5 V input and shifts it to $\pm 2.5 \mathrm{~V}$. The gain can be calculated from

$$
V_{\text {OUT }}=\left[1+\frac{R_{2}}{\left(R_{1} \| R_{3}\right)}\right] \times V_{I_{N}}-\left[\frac{R_{1}}{R_{1}+R_{3}}\right] \times V_{\text {OFFSET }}
$$

$$
R_{1} \| R_{3}=\frac{R_{1} R_{3}}{R_{1}+R_{3}}
$$

FIGURE 16. NON-INVERTING BUFFER
Figure 17 is an example of an inverting buffer that level shifts a 0 V to 5 V input to $\pm 2.5 \mathrm{~V}$. Its gain can be calculated from

$$
V_{\text {OUT }}=\left(-R_{2} / R_{1}\right) \times V_{I N}-\left(R_{2} / R_{3}\right) \times V_{\text {OFFSET }}
$$

FIGURE 17. INVERTING BUFFER

Note that the correct op amp must be chosen in order to not degrade the overall dynamic performance of the circuit. Recommended op amps are called out in the figures.

Voltage Reference, REF ${ }_{\text {OUT }}$

The HI5800 has a curvature corrected internal band-gap reference generator with a buffer amplifier capable of driving up to 15 mA . The band-gap and amplifier are trimmed to give +2.50 V . When connected to the reference input pin REF ${ }_{I N}$, the reference is capable of driving up to 2 mA externally. Further loading may degrade the performance of the output voltage. It is recommended that the output of the reference be decoupled with good quality capacitors to reduce the highfrequency noise.

Reference Input, REF $_{\text {IN }}$

The converter requires a voltage reference connected to the $R E F_{\text {IN }} \mathrm{pin}$. This can be the above internal reference or it can be an external reference. It is recommended that adequate high frequency decoupling is provided at the reference input pin in order to minimize overall converter noise.
A user trying to provide an external reference to a H 5800 is faced with two problems. First, the drift of the reference over temperature must be very low. Second, it must be capable of driving the 200Ω input impedance seen at the $R E F_{\mathbb{N}}$ pin of the HI5800. Figure 18 is a recommended circuit for doing this that is capable of $2 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ drift over temperature.

FIGURE 18. EXTERNAL REFERENCE

Supply and Ground Considerations

The HI5800 has separate analog and digital supply and ground pins to help keep digital noise out of the analog signal path. For the best performance, the part should be mounted on a board that provides separate low impedance planes for the analog and digital supplies and grounds. Only connect the two grounds together at one place preferably as close as possible to the part. The supplies should be driven by clean linear regulated supplies. The board should also have good high frequency decoupling capacitors mounted as close as possible to the HI5800.

If the part is powered off a single supply then the analog supply and ground pins should be isolated by ferrite beads from the digital supply and ground pins.
Refer to the Application Note "Using Harris High Speed A/D Converters" (AN9214) for additional suggestions to consider when using the HI5800.

Error Adjustments

For most applications the accuracy of the HI5800 is sufficient without any adjustments. In applications where accuracy is of utmost importance three external adjustments are possible: S/H offset, D/A offset and D/A gain. Figure 19 illustrates the use of external potentiometers to reduce the HI5800 errors to zero.

The D/A offset ($\mathrm{RO}_{\mathrm{ADJ}}$) and S / H offset (ADJ+ and ADJ-) trims adjust the voltage offset of the transfer curve while the D/A gain trim ($R G_{A D J}$) adjusts the tilt of the transfer curve around the curve midpoint (code 2048). The $10 \mathrm{k} \Omega$ potentiometers can be installed to achieve the desired adjustment in the following manner.

FIGURE 19. D/A OFFSET, D/A GAIN AND S/H OFFSET ADJUSTMENTS

Typically only one of the offset trimpots needs to be used. The offset should first be adjusted to get code 2048 centered at a desired DC input voltage such as zero volts. Next the gain trim can be adjusted by trimming the gain pot until the 4094 to 4095 code transition occurs at the desired voltage (2.500V - 1.5 LSBs for a 2.5 V reference). The gain trim can also be done by adjusting the gain pot until the code 0 to 1 transition occurs at a particular voltage $(-2.5 \mathrm{~V}+0.5 \mathrm{LSBs}$ for a 2.5 V reference). If a nonzero offset is needed, then the offset pot can be adjusted after the gain trim is finished. The gain trim is simplified if an offset trim to zero is done first with a nonzero offset trim done after the gain trim is finished. The D/A offset and S/H offset trimpots have an identical effect on the converter except that the S / H offset is a finer resolution trim. The D/A offset and D/A gain typically have an adjustment range of ± 30 LSBs and the S/H offset typically has an adjustment range of ± 20 LSBs.

TABLE 1. I/O TRUTH TABLE

INPUTS				OUTPUT	
$\mathbf{C S}$	CONV	OE	AO	IRQ	
1	X	X	X	X	No operation.
0	0	X	X	X	Continuous convert mode.
0	X	0	0	X	Outputs all 12-bits and OVF or upper byte D11 - D4 in 8 bit mode.
0	X	0	1	X	In 8-bit mode, outputs lower LSBs D3 - DO followed by 4 trailing ze- roes and OVF, (See text).
0	1	X	X	0	Converter is in acquisition mode.
0	X	X	X	1	Converter is busy doing a conversion.
0	X	1	X	X	Data outputs and OVF in high impedance state.

X's = Don't Care

TABLE 2. A/D OUTPUT CODE TABLE

CODE DESCRIPTION$L S B=\frac{2\left(\text { REF }_{\text {IN }}\right)}{4096}$	(NOTE 1) INPUT VOLTAGE $R E F_{I N}=2.5 \mathrm{~V}$ (V)	OUTPUT DATA (OFFSET BINARY)												
		MSB											LSB	
		OVF	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
$\geq+F S$	$\geq+2.5000$	1	1	1	1	1	1	1	1	1	1	1	1	1
+FS - 1LSB	+2.49878	0	1	1	1	1	1	1	1	1	1	1	1	1
+3/4FS	+1.8750	0	1	1	1	0	0	0	0	0	0	0	0	0
+1/2FS	+1.2500	0	1	1	0	0	0	0	0	0	0	0	0	0
+1LSB	+0.00122	0	1	0	0	0	0	0	0	0	0	0	0	1
0	0.0000	0	1	0	0	0	0	0	0	0	0	0	0	0
-1 LSB	-0.00122	0	0	1	1	1	1	1	1	1	1	1	1	1
-1/2FS	-1.2500	0	0	1	0	0	0	0	0	0	0	0	0	0
-3/4FS	-1.8750	0	0	0	1	0	0	0	0	0	0	0	0	0
-FS + 1LSB	-2.49878	0	0	0	0	0	0	0	0	0	0	0	0	1
S-FS	≤-2.5000	1	0	0	0	0	0	0	0	0	0	0	0	0

NOTE:

1. The voltages listed above represent the ideal center of each output code shown as a function of the reference voltage.

If no external adjustments are required the following pins should be connected to analog ground (AGND) for optimum performance: $\mathrm{RO}_{A D J}, \mathrm{RG}_{A D J}, A D J+$, and $A D J$-.

Typical Application Schematic

A typical application schematic diagram for the HI5800 is shown with the block diagram. The adjust pins are shown with $10 \mathrm{~K} \Omega$ potentiometers used for gain and offset adjustments. These potentiometers may be left out and the respective pins should be connected to ground for best untrimmed performance.

Definitions

Static Performance Definitions

Offset, fullscale, and gain all use a measured value of the internal voltage reference to determine the ideal plus and minus fullscale values. The results are all displayed in LSB's.

Offset Error (VOS)

The first code transition should occur at a level $1 / 2$ LSB above the negative fullscale. Offset is defined as the deviation of the actual code transition from this point. Note that this is adjustable to zero.

Fullscale Error (FSE)

The last code transition should occur for a analog input that is $1 \frac{1}{2}$ LSBs below positive fullscale. Fullscale error is defined as the deviation of the actual code transition from this point.

Differential Linearity Error (DNL)

DNL is the worst case deviation of a code width from the ideal value of 1 LSB. The converter is guaranteed for no missing codes over all temperature ranges.

Integral Linearity Error (INL)

INL is the worst case deviation of a code center from a best fit straight line calculated from the measured data.

Power Supply Rejection (PSRR)

Each of the power supplies are moved plus and minus 5% and the shift in the offset and fullscale error is noted. The number reported is the percent change in these parameters versus fullscale divided by the percent change in the supply.

Dynamic Performance Definitions

Fast Fourier Transform (FFT) techniques are used to evaluate the dynamic performance of the HI5800. A low distortion sine wave is applied to the input, it is sampled, and the output is stored in RAM. The data is then transformed into the
frequency domain with a 4096 point FFT and analyzed to evaluate the dynamic performance of the A/D. The sine wave input to the part is -0.5 dB down from fullscale for all these tests. Distortion results are quoted in dBc (decibels with respect to carrier) and DO NOT include any correction factors for normalizing to full scale.

Signal-to-Noise Ratio (SNR)

SNR is the measured rms signal to rms noise at a specified input and sampling frequency. The noise is the rms sum of all of the spectral components except the fundamental and the first five harmonics.

Signal-to-Noise + Distortion Ratio (SINAD)

SINAD is the measured RMS signal to RMS sum of all other spectral components below the Nyquist frequency excluding DC.

Effective Number Of Bits (ENOB)

The effective number of bits (ENOB) is derived from the SINAD data. ENOB is calculated from:

$$
\mathrm{ENOB}=\left(\mathrm{SINAD}-1.76+\mathrm{V}_{\text {CORR }}\right) / 6.02
$$

where: $\quad V_{\text {CORR }}=0.5 \mathrm{~dB}$

Total Harmonic Distortion (THD)

THD is the ratio of the RMS sum of the first 5 harmonic components to the rms value of the measured input signal.

Spurious Free Dynamic Range (SFDR)

SFDR is the ratio of the fundamental RMS amplitude to the RMS amplitude of the next largest spur or spectral component If the harmonics are buried in the noise floor it is the largest peak.

Intermodulation Distortion (IMD)

Nonlinearities in the signal path will tend to generate intermodulation products when two tones, $\mathfrak{f 1}$ and $\mathfrak{f} 2$, are present on the inputs. The ratio of the measured signal to the distortion terms is calculated. The IMD products used to calculate the total distortion are ($\mathrm{f} 2-\mathrm{f} 1$), ($\mathrm{f} 2+\mathrm{f1}$), ($2 \mathrm{f1} 1 \mathrm{f} 2$), ($2 \mathrm{f} 1+\mathrm{f} 2$), ($2 \mathrm{f} 2-$ f1), ($2 f 2+f 1$), ($3 f 1-f 2$), $(3 f 1+f 2),(3 f 2-f 1),(3 f 2+f 1),(2 f 2-2 f 1)$, (2f2+2f1), (2f1), (2f2), (2f1), (2f2), (4f1), (4f2). The data reflects the sum of all the IMD products.

Full Power Input Bandwidth

Full power bandwidth is the frequency at which the amplitude of the fundamental of the digital output word has decreased 3 dB below the amplitude of an input sine wave. The input sine wave has a peak-to-peak amplitude equal to the reference voltage. The bandwidth given is measured at the specified sampling frequency.

Die Characteristics

DIE DIMENSIONS:

$202 \times 283 \times 19 \pm 1 \mathrm{mils}$

METALLIZATION:

Metal 1: Type: AlSiCu, Thickness: $6 K \AA ̊+1500 \mathrm{~N}-750 \AA$
Metal 1: Type: AISiCu, Thickness: $16 K \AA+2500 \mathrm{~A}-1100 \AA$
GLASSIVATION:
Type: Sandwich Passivation - Nitride + Undoped Si Glass (USG)
Thickness: Nitride - 4KA, USG - 8K \AA, Total - $12 \mathrm{~K} \AA \pm 2 K \AA$
TRANSISTOR COUNT: 10K
SUBSTRATE POTENTIAL (POWERED UP): VEE

Metallization Mask Layout

H15800

8 Channel, 10-Bit High Speed
 Sampling A/D Converter

December 1993

Features

- $5 \mu \mathrm{~s}$ Conversion Time
- 8 Channel Input Multiplexer
- 200,000 Channels/Second Throughput Rate
- Over 9 Effective Blts at 20kHz
- No Offset or Gain Adjustments Necessary
- Analog and Reference Inputs Fully Buffered
- On-Chip Track and Hold Amplifier
- μ P Compatible Interface
- 2's Complement Data Output
- 150mW Power Consumption
- Only a Single 2.5V Reference Required for a $\mathbf{\pm 2 . 5 V}$ Input Range
- Out-of-Range Flag
- /883 Version Available

Applications

- $\mu \mathrm{P}$ Controlled Data Acquisition Systems
- DSP
- Avionics
- Sonar
- Process Control
- Automotive Transducer Sensing
- Industrial
- Robotics
- Digital Communications

Description

The HI-7153 is an 8 channel high speed 10 bit A/D converter which uses a Two Step Flash algorithm to achieve through-put rates of 200 kHz . The converter features an 8 channel CMOS analog multiplexer with random channel addressing. A unique switched capacitor technique allows a new input voltage to be sampled while a conversion is taking place.
Internal high speed CMOS buffers at both the analog and reference inputs simplifies interface requirements.
A Track and Hold amplifier is included on the chip, consisting of two high speed amplifiers and an internal hold capacitor, reducing external circuitry.
Microprocessor bus interfacing is simplified by the use of standard Chip Select, Read, and Write control signals. The digital three-state outputs are byte organized for bus interface to 8 or 16 bit systems. An Out-of-Range pin, together with the MSB bit, can be used to indicate an under or over-range condition.

The HI-7153 operates with $\pm 5 \mathrm{~V}$ supplies. Only a single +2.5 V reference is required to provide a bipolar input range from -2.5 V to +2.5 V .

Ordering Information

PART NUMBER	LINEARITY (MAX ILE)	TEMPERATURE RANGE	PACKAGE
HI3-7153J-5	± 1.0 LSB	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	40 Lead Plastic DIP
HI3-7153A-9	± 1.0 LSB	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	40 Lead Plastic DIP
HI1-7153S-2	± 1.0 LSB	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	40 Lead Ceramic DIP

Functional Diagram

Pinouts


```
Absolute Maximum Ratings
Supply Voltage
    V+ to GND (DG/AG/GND) . . . . . . . . . . . . - 0.3V < V + < +5.7V
    V- to GND (DG/AG/GND)
    .5.7V < V-<+0.3V
Analog InputPins (Note 1)
    (AINO}-\mp@subsup{A}{\mathrm{ IN7, }}{},\mp@subsup{V}{\mathrm{ REF }}{})\ldots.............. V-0.3V < V VINA < V++0.3V
Digital I/O Pins (Note 1) ..............DG -0.3V < VVIO}<V++0.3
    (DO - D9, OVR, CLK, \overline{CS},\overline{RD},\overline{WR}, ALE, SMODE, HOLD, EOC,
        HBE, BUS, AO - A2, TEST)
    Htorage Temperature Rang(
Lead Temperature (Soldering 10s)
-65'C to +150 %}\textrm{C
NOTES:
1. Input voltages may exceed the supply voltage, on input or channel at a time, provided the input current is limited to \(\pm 10 \mathrm{~mA}\)
2. Dissipation rating assumes device is mounted with all leads soldered to printed circuit board
CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
```

Electrical Specifications $\mathrm{V}_{+}=+5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=+2.50 \mathrm{~V}, \mathrm{f}_{\mathrm{CLK}}=600 \mathrm{kHz}, \mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}} \leq 25 \mathrm{~ns}, 50 \%$ Duty Cycle. All Typical Values have been Characterized but are Not Tested.

(NOTE 4) PARAMETER	SYMBOL	TEMPERATURE	(NOTE 3) J, A, S GRADE			UNITS
			MIN	TYP	MAX	
ACCURACY						
Resolution (Note 5)	RES	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	10	-	-	Bits
		$\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {MAX }}$	10	-	\bullet	Bits
Integral Linearity Error	ILE	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-	± 0.5	± 1.0	LSB
		$\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {MAX }}$	-	± 0.75	± 1.0	LSB
Differential Linearity Error	DLE	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-	± 0.5	± 1.0	LSB
		$\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\text {A }} \leq \mathrm{T}_{\text {MAX }}$	-	± 0.75	± 1.0	LSB
Bipolar Offset Error	$\mathrm{V}_{\text {OS }}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-	± 1.0	± 2.5	LSB
		$T_{\text {MIN }} \leq T_{A} \leq T_{\text {MAX }}$	-	± 1.5	± 3.0	LSB
Unadjusted Gain Error	FSE	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-	± 1.0	± 2.5	LSB
		$T_{\text {MIN }} \leq T_{A} \leq T_{\text {MAX }}$	-	± 1.5	± 3.0	LSB
Channel to Channel Mismatch		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-	± 0.002	-	LSB
		$\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {MAX }}$	-	± 0.002	-	LSB

NOTES:

1. Input voltages may exceed the supply voltage, one input or channel at a time, provided the input current is limited to 10 mA .
2. Dissipation rating assumes device is mounted with all leads soldered to printed circuit board.
3. See Ordering Information Table.
4. FSR (Full Scale Range) $=2 \times \mathrm{V}_{\text {REF }}\left(5.00 \mathrm{~V}\right.$ at $\left.\mathrm{V}_{\text {REF }}=2.50 \mathrm{~V}\right)$. LSB (Least Significant Bit) $=\mathrm{FSR} / 1024\left(4.88 \mathrm{mV}\right.$ at $\left.\mathrm{V}_{\text {REF }}=2.50 \mathrm{~V}\right)$.
5. Parameter Not tested. Parameter guaranteed by design, simulation, or characterization.
6. $T_{\text {MIN }}$ and $T_{\text {MAX }}$ limits guaranteed by $+25^{\circ} \mathrm{C}$ test.

Electrical Specifications $\quad T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}+=+5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=+2.50 \mathrm{~V}, \mathrm{f}_{\mathrm{CLK}}=600 \mathrm{kHz}, \mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}} \leq 25 \mathrm{~ns}, 50 \%$ Duty Cycle. All Typical Values have been Characterized but are Not Tested.

(NOTE 1) PARAMETER	SYMBOL	CONDITIONS	$+25^{\circ} \mathrm{C}$	UNITS
			TYP	
DYNAMIC CHARACTERISTICS				
Signal to Noise Ratio	SNR	$\mathrm{f}_{\mathrm{IN}}=4.932 \mathrm{kHz}, \pm 2.5 \mathrm{~V}$	59	dB
		$\mathrm{f}_{\mathrm{IN}}=14.697 \mathrm{kHz}, \pm 2.5 \mathrm{~V}$	59	dB
		$\mathrm{f}_{\mathrm{IN}}=24.462 \mathrm{kHz}, \pm 2.5 \mathrm{~V}$	58	dB
		$\mathrm{f}_{\mathrm{IN}}=43.994 \mathrm{kHz}, \pm 2.5 \mathrm{~V}$	56	dB
Signal to Noise + Distortion	SINAD	$\mathrm{f}_{\mathrm{IN}}=4.932 \mathrm{kHz}, \pm 2.5 \mathrm{~V}$	59	dB
		$\mathrm{f}_{\mathrm{IN}}=14.697 \mathrm{kHz}, \pm 2.5 \mathrm{~V}$	58	dB
		$\mathrm{f}_{\mathrm{IN}}=24.462 \mathrm{kHz}, \pm 2.5 \mathrm{~V}$	55	dB
		$\mathrm{f}_{\mathrm{IN}}=43.994 \mathrm{kHz}, \pm 2.5 \mathrm{~V}$	48	dB
Total Harmonic Distortion	THD	$\mathrm{f}_{\mathrm{N}}=4.932 \mathrm{kHz}, \pm 2.5 \mathrm{~V}$	-66	dBc
		$\mathrm{f}_{\mathrm{IN}}=14.697 \mathrm{kHz}, \pm 2.5 \mathrm{~V}$	-61	dBc
		$\mathrm{f}_{\mathrm{IN}}=24.462 \mathrm{kHz}, \pm 2.5 \mathrm{~V}$	-56	dBc
		$\mathrm{f}_{\mathrm{IN}}=43.994 \mathrm{kHz}, \pm 2.5 \mathrm{~V}$	-48	dBc
Spurious-Free Dynamic Range	SFDR	$\mathrm{f}_{\mathrm{N}}=4.932 \mathrm{kHz}, \pm 2.5 \mathrm{~V}$	-76	dB
		$\mathrm{f}_{\mathrm{IN}}=14.697 \mathrm{kHz}, \pm 2.5 \mathrm{~V}$	-77	dB
		$\mathrm{f}_{\mathrm{IN}}=24.462 \mathrm{kHz}, \pm 2.5 \mathrm{~V}$	-77	dB
		$\mathrm{f}_{\mathrm{IN}}=43.994 \mathrm{kHz}, \pm 2.5 \mathrm{~V}$	-74	dB

NOTE:

1. FSR (Full Scale Range) $=2 \times \mathrm{V}_{\text {REF }}\left(5.00 \mathrm{~V}\right.$ at $\left.\mathrm{V}_{\text {REF }}=2.50 \mathrm{~V}\right)$. LSB (Least Significant Bit) $=\mathrm{FSR} / 1024\left(4.88 \mathrm{mV}\right.$ at $\mathrm{V}_{\text {REF }}=2.50 \mathrm{~V}$)

DC Electrical Specifications $\quad T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}+=+5 \mathrm{~V}, \mathrm{~V}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=+2.50 \mathrm{~V}, \mathrm{f}_{\mathrm{CLK}}=600 \mathrm{kHz}, \mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}} \leq 25 \mathrm{~ns}, 50 \%$ Duty Cycle, Unless Otherwise Specified. All Typical Values have been Characterized but are Not Tested.

(NOTE 1) PARAMETER	SYMBOL	CONDITIONS	$+25^{\circ} \mathrm{C}$			$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
ANALOG MULTIPLEXER INPUT												
Input Range	VIR		- $\mathrm{V}_{\text {REF }}$	-	+ $\mathrm{V}_{\text {REF }}$	$-V_{\text {REF }}$	$+\mathrm{V}_{\text {REF }}$	$-V_{\text {REF }}$	$+\mathrm{V}_{\text {REF }}$	- $\mathrm{V}_{\text {REF }}$	$+\mathrm{V}_{\text {REF }}$	V
Input Resistance	$\mathrm{R}_{\text {IN }}$		-	10	-	-	-	-	-	-	-	$\mathrm{M} \Omega$
Input Leakage Current	\|BI	$\mathrm{A}_{\text {IN }}=0 \mathrm{~V}$	-	0.01	100	-	100	-	100	-	100	nA
On Channel Input Capacitance	CAIN(ON)	$A_{I N}=O V \text {, }$ Note 2	-	10	30	-	30	-	30	\bullet	30	pF
Off Channel Input Capacitance	$\mathrm{CA}_{\text {In(OFF) }}$	$\begin{aligned} & A_{I N}=0 \mathrm{~V}, \\ & \text { Note 2 } \end{aligned}$	-	8	20	-	20	-	20	-	20	pF
MUX On-Resistance	$\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$	$\begin{aligned} & \mathrm{A}_{\mathrm{IN}}= \pm 2.5 \mathrm{~V}, \\ & \mathrm{I}_{\mathbb{N}}=100 \mu \mathrm{~A} \end{aligned}$	-	1.1	2.5	-	2.5	-	2.5	-	2.5	K Ω

DC Electrical Specifications $\quad T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{+}=+5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=+2.50 \mathrm{~V}, \mathrm{f}_{\mathrm{CLK}}=600 \mathrm{kHz}, \mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}} \leq 25 \mathrm{~ns}, 50 \%$ Duty Cycle, Unless Otherwise Specified. All Typical Values have been Characterized but are Not Tested. (Continued)

OOTE 1)			$+25^{\circ} \mathrm{C}$			$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$		UNIT	
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	MIN	MAX	MIN	MAX	MIN	MAX		
Greatest Change in $\mathrm{R}_{\text {DS(ON) }}$ Between Any Two Channels	$\Delta \mathrm{R}_{\mathrm{DS} \text { (ON) }}$	$\begin{aligned} & -2.5 \mathrm{~V} \leq \mathrm{A}_{1 \mathrm{~N}} \leq \\ & +2.5 \mathrm{~V} \end{aligned}$	-	2.5	-	-	-	-	-	-	-	\%	
Off-Channel Isolation	OIRR	$F_{I N}=100 \mathrm{kHz},$ Note 4	-	-96	-	-	-	-	-	-	-	dB	
Channel to Channel Isolation	CCRR	$F_{I N}=100 \mathrm{kHz},$ Note 4	-	-83	-	-	-	-	-	-	-	dB	
REFERENCE INPUT													
Reference Input Range	VRR	Note 3	2.2	-	2.6	2.2	2.6	2.2	2.6	2.2	2.6	V	
Reference Input Bias Current	IBR	$\mathrm{V}_{\mathrm{REF}}=+2.50 \mathrm{~V}$	-	0.01	100	-	100	-	100	-	100	nA	
Reference Input Capacitance	CV_{R}	Note 2	-	8	20	-	-	-	-	-	-	pF	
LOGIC INPUTS													
Input High Voltage	V_{IH}		2.4	-	-	2.4	-	2.4	-	2.4	-	V	
Input Low Voltage	$\mathrm{V}_{\text {IL }}$		-	-	0.8	-	0.8	-	0.8	-	0.8	V	N
Logic Input Current	IL_{1}	$\mathrm{V}_{1 \mathrm{~N}}=0 \mathrm{~V},+5 \mathrm{~V}$	-	0.05	1	-	1	-	1	-	1	$\mu \mathrm{A}$	
Input Capacitance	$\mathrm{C}_{\text {IN }}$	Note 2	-	7	17	-	-	-	-	-	-	pF	$\underset{\underline{w}}{\underline{w}}$
LOGIC OUTPUTS													플
Output High Voltage	V_{OH}	$\mathrm{I}_{\mathrm{OH}}=-200 \mu \mathrm{~A}$	2.4	-	-	2.4	-	2.4	-	2.4	-	V	
Output Low Voltage	$\mathrm{V}_{\text {OL }}$	$\mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA}$	-	-	0.4	-	0.4	-	0.4	-	0.4	V	2°

DC Electrical Specifications
$T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{+}=+5 \mathrm{~V}, \mathrm{~V}_{-}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=+2.50 \mathrm{~V}, \mathrm{f}_{\mathrm{CLK}}=600 \mathrm{kHz}, \mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}} \leq 25 \mathrm{~ns}, 50 \%$ Duty Cycle, Unless Otherwise Specified. All Typical Values have been Characterized but are Not Tested. (Continued)

(NOTE 1) PARAMETER	SYMBOL	CONDITIONS	$+25^{\circ} \mathrm{C}$			$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
POWER SUPPLY REJECTION (Continued)												
V+, V- Offset Error	$\triangle \mathrm{VOS}$	$\begin{aligned} & \mathrm{V}+=5 \mathrm{~V}, \\ & \mathrm{~V}-=-4.75 \mathrm{~V}, \\ & -5.25 \mathrm{~V} \end{aligned}$	-	0.15	0.5	-	0.6	-	0.6	-	0.8	LSB
		$\begin{aligned} & \mathrm{V}=-5 \mathrm{~V}, \\ & \mathrm{~V}+=4.75 \mathrm{~V}, \\ & 5.25 \mathrm{~V} \end{aligned}$	-	0.15	0.5	-	0.6	-	0.6	\bullet	0.8	LSB
SUPPLY CURRENTS												
V+ Supply Current	$1+$	$\begin{array}{\|l} \hline \mathrm{V}_{+}=5 \mathrm{~V}, \\ \mathrm{~V}_{-}=-5 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{N}}=0 \mathrm{~V}, \text { Digital } \\ \text { Outputs Are } \\ \text { Unloaded } \end{array}$	-	20	30	-	30	\bullet	30	-	30	mA
V- Supply Current	$1-$		\bullet	-10	-15	-	-15	-	-15	-	-15	mA
GND Current	IGND		-	-8	-	-	-	-	-	-	\bullet	mA
DG Current	IDG		-	-2	-	-	-	-	-	-	-	mA
AG Current	IAG		-	0.02	-	-	-	-	-	-	-	$\mu \mathrm{A}$

NOTES:

1. FSR (Full Scale Range) $=2 \times V_{\text {REF }}\left(5.00 \mathrm{~V}\right.$ at $\left.\mathrm{V}_{\text {REF }}=2.50 \mathrm{~V}\right)$. LSB (Least Significant Bit) $=\mathrm{FSR} / 1024\left(4.88 \mathrm{mV}\right.$ at $\left.\mathrm{V}_{\text {REF }}=2.50 \mathrm{~V}\right)$
2. Parameter Not tested. Parameter guaranteed by design, simulation, or characterization
3. Functionality is guaranteed by negative GAIN ERROR test.
4. Channel Isolation is tested with an input signal of $\pm 2.5 \mathrm{Vp}-\mathrm{p}, 100 \mathrm{kHz}$ and the measured pin is loaded with 100Ω to GND

DC Electrical Specifications $\quad T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{+}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}=-5 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=2.50 \mathrm{~V}, \mathrm{f}_{\text {CLK }}=600 \mathrm{kHz}, \mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}} \leq 25 \mathrm{~ns}, 50 \%$ Duty Cycle, $C_{L}=100 \mathrm{PF}$ (Including Stray for DO-D9, OVR, HOLD), Unless Otherwise Specified. All Typical Values have been Characterized but are Not Tested.

(NOTE 4) PARAMETER	SYMBOL	CONDITIONS	$+25^{\circ} \mathrm{C}$			$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
TIMING CHARACTERISTICS												
Continuous Conversion Time	${ }^{\text {tspS }}$	Note 2	-	-	5	-	5	-	5	-	5	$\mu \mathrm{s}$
		Note 9	60	-	-	60	-	60	-	60	-	$\mu \mathrm{s}$
		Notes 2, 8	-	-	${ }^{3} \mathrm{CLK}$	-	$3^{3} \mathrm{CLLK}$	-	3tclk	-	${ }^{3} \mathrm{CLK}$	$\mu \mathrm{s}$
Conversion Time, First Conversion	tconv	Notes 1, 9	-	-	$\begin{aligned} & 4 \mathrm{t}_{\mathrm{CLK}} \\ & +0.63 \end{aligned}$	-	$\begin{aligned} & 4 \mathrm{t}_{\mathrm{CLK}} \\ & +0.75 \end{aligned}$	-	$\begin{array}{\|l\|} \hline 4 \mathrm{t}_{\mathrm{CLK}} \\ +0.75 \end{array}$	-	$\begin{aligned} & 4 \mathrm{t}^{\mathrm{CLK}} \\ & +0.8 \end{aligned}$	$\mu \mathrm{s}$
Continuous Throughput	${ }^{\text {terc }}$	Note 2	-	-	$\mathrm{t}_{\mathrm{CLK}} / 3$	-	$\mathrm{t}_{\mathrm{CLK}} / 3$	-	$\mathrm{t}_{\text {clk }} / 3$	-	$\mathrm{t}_{\text {CLK }} / 3$	CPS
Clock Period	tclk		-	1/fCLK	-	-	-	-	-	-	-	-
Clock Input Duty Cycle	D	Note 9	45	50	55	45	55	45	55	45	55	\%
ALE Pulse Width	$t_{\text {ALEW }}$	Note 9	30	15	-	40	-	40	-	50	-	ns
Address Setup Time	$t_{\text {AS }}$	Note 9	40	15	-	80	-	80	\bullet	80	-	ns
Address Hold Time	t_{AH}		0	-16	-	0	-	0	-	0	-	ns
WR Pulse Width	${ }^{\text {t WRL }}$	Notes 1, 3, 9	100	20	$\mathrm{t}_{\mathrm{CLK}}{ }^{12}$	100	$\mathrm{t}_{\text {clk }}{ }^{12}$	100	$\mathrm{t}_{\mathrm{CLK}}{ }^{12}$	100	$\mathrm{t}_{\mathrm{CLK}}{ }^{12}$	ns

DC Electrical Specifications
$T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}+=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}-=-5 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=2.50 \mathrm{~V}, \mathrm{f}_{\mathrm{CLK}}=600 \mathrm{kHz}, \mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}} \leq 25 \mathrm{~ns}, 50 \%$ Duty Cycle, $C_{L}=100 \mathrm{pF}$ (Including Stray for DO-D9, OVR, HOLD), Unless Otherwise Specified. All Typical Values have been Characterized but are Not Tested. (Continued)

(NOTE 4) PARAMETER	SYMBOL	CONDITIONS	$+25^{\circ} \mathrm{C}$			$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$		UNIT
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
$\overline{\text { WR }}$ to EOC Low	${ }^{\text {twreoc }}$	Notes 1, 9	-	80	130	-	160	-	160	-	160	ns
$\begin{aligned} & \overline{\mathrm{WR}} \text { to } \overline{\mathrm{HOLD}} \\ & \text { Delay } \end{aligned}$	thold	Notes 1,9	-	80	150	-	170	-	170	-	170	ns
Clock to $\overline{\text { HOLD }}$ Rise Delay	$\mathrm{t}_{\text {CKHR }}$	Note 9	150	265	450	140	500	120	500	120	500	ns
Clock to $\overline{\text { HOLD }}$ Fall Delay	$\mathrm{t}_{\text {CKHF }}$	Notes 2, 9	50	95	200	40	225	40	225	40	225	ns
Clock to EOC High	${ }^{\text {t CKEOC }}$	Notes 1,9	-	460	630	-	750	-	750	-	800	ns
HOLD to DATA Change	${ }^{\text {t }}$ ATA	Notes 2, 9	100	200	350	90	400	90	400	90	400	ns
$\overline{\text { CS }}$ to DATA	t_{CD}	Note 9	-	40	70	-	85	-	85	-	85	ns
HBE to DATA	$t_{A D}$	Note 9	-	30	50	-	70	-	70	-	70	ns
$\overline{\text { RD LOW to Active }}$	$t_{\text {RD }}$	Notes 6, 9	-	70	100	-	125	-	125	-	125	ns
$\overline{\text { RD }}$ HIGH to Inactive	${ }^{\text {t }} \mathrm{X}$	Notes 7, 9	\bullet	30	60	-	70	\bullet	70	-	70	ns
Output Rise Time	$t_{\text {R }}$	Notes 5, 9	-	20	40	-	60	-	60	-	60	ns
Output Fall Time	t_{F}	Notes 5, 9	-	15	30	-	50	-	50	-	50	ns

NOTES:

1. Slow memory mode timing
2. Fast memory or DMA mode of operation, except the first conversion which is equal to $t_{\text {conv }}$
3. Maximum specification to prevent multiple triggering with $\overline{W R}$
4. All input drive signals are specified with $t_{R}=t_{R} \leq 10 \mathrm{~ns}$ and shall swing from 0.4 V to 2.4 V for all timing specifications. A signal is considered to change state as it crosses a 1.4 V threshold (except t_{RD} and t_{RX})
5. t_{R} and t_{F} load is $C_{L}=100 \mathrm{pF}$ (including stray capacitance) to $D G$ and is measured from the $10 \%-90 \%$ point
6. $t_{R D}$ is the time required for the data output level to change by 10% in response to $\overline{R D}$ crossing a voltage level of 1.4 V . High- Z to V_{OH} is measured with $R_{L}=2.5 \mathrm{~K} \Omega$ and $C_{L}=100 \mathrm{pF}$ (including stray) to DG . High-Z to $V_{O L}$ is measured with $R_{L}=2.5 \mathrm{~K} \Omega$ to $V+$ and $C_{L}=100 \mathrm{pF}$ (including stray) to DG
7. t_{RX} is the time required for the data output level to change by 10% in response to $\overline{\mathrm{RD}}$ crossing a voltage level of 1.4 V . V_{OH} to High- Z is measured with $R_{L}=2.5 \mathrm{~K} \Omega$ and $C_{L}=10 p F$ (including stray) to $D G$. $V_{O L}$ to High- Z is measured with $R_{L}=2.5 \mathrm{~K} \Omega$ to $V+$ and $C_{L}=10 \mathrm{pF}$ (including stray) to DG
8. For clock frequencies other than 600 kHz
9. Parameter Not Tested. Parameter guaranteed by design, simulation, or characterization

Timing Diagrams

FAST MEMORY MODE (8 BIT DATA BUS)

CONDITIONS: SMODE $=$ DG. Bus = DG
NOTE: With SMODE = DG, the internal logic diables the output latches from being updated during a read. The EOC output is LOW continuously.

DMA MODE (16 BIT DATA BUS)

CONDITIONS: $\mathrm{SMODE}=\mathrm{V}_{+}, \mathrm{CS}=\mathrm{WR}=\mathrm{RD}=\mathrm{DG}, \mathrm{Bus}=\mathrm{V}_{+}, \mathrm{HBE}=\mathrm{DG}$ or V_{+}
NOTE: EOC output is low continuously

Timing Diagrams (Continued)
SLOW MEMORY MODE (16 BIT DATA BUS)

CONDITIONS: SMODE $=\mathrm{V}+$, $\mathrm{Bus}=\mathrm{V}+\mathrm{HBE}=\mathrm{DG}$ or V_{+}

Typical Dynamic Performance Characteristics

EFFECTIVE NUMBER OF BITS

SIGNAL-TO-NOISE RATIO

TOTAL HARMONIC DISTORTION

PEAK NOISE

SPURIOUS-FREE DYNAMIC RANGE

Typical Dynamic Performance Characteristics (Continued)

FFT SPECTRUMS

NOTES:
INPUT FREQUENCY: 4931 Hz
SAMPLING RATE: 200 kHz
SNR: 59.40 dB
THD: -67.26dB
PEAK NOISE: -75.98 dB
SPURIOUS FREE DYNAMIC RANGE: -68.36 dB
3RD HARMONIC: -77.19 dB

NOTES:
INPUT FREQUENCY: 24462 Hz
SAMPLING RATE: 200 kHz SNR: 58.36 dB THD: -55.59 dB
PEAK NOISE: -76.65 dB
SPURIOUS FREE DYNAMIC RANGE: -57.72 dB 3RD HARMONIC: -64.53 dB

NOTES:
INPUT FREQUENCY: 14697 Hz SAMPLING RATE: 200 kHz

SNR: 58.98 dB
THD: -61.44 dB
PEAK NOISE: -77.29 dB
SPURIOUS FREE DYNAMIC RANGE: -63.42 dB 3RD HARMONIC: -72.44 dB

NOTES:
INPUT FREQUENCY: $\mathbf{4 3 9 9 H z}$ SAMPLING RATE: 200 kHz SNR: 56.26 dB THD: -48.19dB
PEAK NOISE: -74.34 dB
SPURIOUS FREE DYNAMIC RANGE: -48.66 dB
3RD HARMONIC: -62.87 dB

Pin Description

$\begin{aligned} & \text { DIP } \\ & \text { PIN } \end{aligned}$	SYMBOL	DESCRIPTION
1	$\mathrm{V}_{\text {REF }}$	Reference voltage input (+2.50V)
2	AG	Analog ground reference (0V)
3	$A_{\text {INO }}$	Analog input channel 0
4	$\mathrm{A}_{\text {IN1 }}$	Analog input channel 1
5	$\mathrm{A}_{\mathrm{IN} 2}$	Analog input channel 2
6	$\mathrm{A}_{\text {IN3 }}$	Analog input channel 3
7	$\mathrm{A}_{\text {IN4 }}$	Analog input channel 4
8	$A_{\text {IN5 }}$	Analog input channel 5
9	$\mathrm{A}_{\text {IN6 }}$	Analog input channel 6
10	AIN7	Analog input channel 7
11	NC	No connect or tie to V+ only
12	TEST	Test pin. Connect to DG for normal operation
13	A0	Mux address input. (LSB) Active high.
14	A1	Mux address input. (LSB) Active high.
15	A2	Mux address input. (MSB) Active high.
16	ALE	Mux address enable. When high, the latch is transparent. Address data is latched on the falling edge.
17	$\overline{\mathrm{WR}}$	Write input. With $\overline{\mathrm{CS}}$ low, starts conversion when pulsed low; continuous conversions when kept low.
18	$\overline{\mathrm{CS}}$	Chip select input. Active low.
19	$\overline{\mathrm{RD}}$	Read input. With $\overline{\mathrm{CS}}$ low, enables output buffers when pulsed low; outputs updated at the end of conversion.
20	SMODE	Slow memory mode input. Active high.

$\begin{aligned} & \text { DIP } \\ & \text { PIN } \end{aligned}$	SYMBOL	DESCRIPTION
21	BUS	Bus select input. High = all outputs enabled together DO-D9, OVR Low = Outputs enabled by HBE
22	HBE	Byte select (HBE/LBE) input for 8 bit bus. High = High byte select, D8-D9, OVR Low = Low byte select, D0 - D7
23	CLK	Clock input. TTL compatible.
24	DG	Digital ground (OV)
25	EOC	End-of-conversion status. Pulses high at the end-of-conversion.
26	$\overline{\text { HOLD }}$	Start of conversion status. Pulses low at the start-of-conversion.
27	D0	Bit 0 (LSB)
28	D1	Bit 1
29	D2	Bit 2 Output
30	D3	Bit 3 Data
31	D4	Bit 4 Bits
32	D5	Bit 5
33	D6	Bit 6
34	D7	Bit 7
35	D8	Bit 8
36	D9	Bit 9 (MSB)
37	OVR	Out of Range flag. Valid at end of conversion when output exceeds full scale.
38	V+	Positive supply voltage input (+5.0V)
39	GND	Ground return for comparators (0V)
40	V-	Negative supply voltage input (-5.0V)

Detailed Description

The HI-7153 is an 8 channel high speed 10 bit A/D converter which achieves throughput rates of 200 kHz by use of a Two Step Flash algorithm. A pipelined operation has been achieved through the use of switched capacitor techniques which allows the device to sample a new input voltage while a conversion is taking place. The 8 channel multiplexer can be randomly addressed. The $\mathrm{HI}-7153$ requires a single reference input of +2.5 V , which is internally inverted to -2.5 V , thereby allowing an input range of -2.5 V to +2.5 V . The ten bits are two's complement coded. The analog and reference inputs are internally buffered by high speed CMOS buffers, which greatly simplifies the external analog drive requirements for the device.

Analog to Digital

Section The HI-7153 uses a conversion technique which is generally called a "Two Step Flash" algorithm. This algorithm enables very fast conversion rates without the penalty of high power dissipation or high cost. A detailed functional diagram is presented in Figure 1.

The reference input to the $\mathrm{HI}-7153$ is buffered by a high speed CMOS amplifier which is used to drive one end of the resistor string. Another high speed amplifier configured in the inverting unity gain mode inverts the reference voltage with respect to analog ground and forces it onto the other end of the resistor string. Both reference amplifiers are offset trimmed during manufacturing in order to increase the accuracy of the HI-7153 and to simplify its usage.

The input voltage is first converted into a 5 bit result (plus Out of Range information) by the flash converter. This flash converter consists of an array of 33 auto-zeroed comparators which perform a comparison between the input voltage and subdivisions of the reference voltage. These subdivisions of the reference voltage are formed by forcing the reference voltage and its negative on the two ends of a string of 32 resistors.
The 5 bit result of the first flash conversion is latched into the upper five bits of double buffered latches. It is also converted back into an analog signal by choosing the ladder voltage which is closest to but less than the input voltage. The selected voltage (VTAP) is then subtracted from the input voltage. The residual is then amplified by a factor of 32 and referenced to the negative reference voltage (VSCA = 32(VIN - VTAP) + V REF-). This subtraction and amplification operation is performed by a Switched Capacitor amplifier (SCA). The output of the SCA amplifier is between the positive and negative reference voltages and can therefore be digitized by the original 5 bit flash converter (second flash conversion).

The 5 bit result of the second flash conversion is latched into the lower five bits of double buffered latches. At the end of a conversion, 10 bits of data plus an Out of Range bit are latched into the second level of latches and can then be put on the digital output pins.

FIGURE 1. DETAILED BLOCK DIAGRAM

Analog Multiplexer

The multiplexer channel assignments are shown in Table 1 and can be randomly addressed. Address inputs AO-A2 are binary coded and are TTLCMOS compatible. During power up the circuit is initialized and multiplexer channel $A_{\text {INO }}$ is selected. The multiplexer address is transparent when ALE is high and $\overline{\mathrm{CS}}$ is low. The address data is latched on the falling edge of the ALE signal. The multiplexer channel acquisition timing (Timing Diagrams, Slow Memory Mode) occurs approximately 500 ns after the rising edge of $\overline{\mathrm{HOLD}}$. The multiplexer features a typical break-before-make switch action of 44 ns .

Track And Hold

A Track and Hold amplifier has been fully integrated on the front end of the A/D converter. Because of the sampling nature of this A/D converter, the input is required to stay constant only during the first clock cycle. Therefore, the Track and Hold (T/H) amplifier "holds" the input voltage only during the first clock cycle and it acquires the input voltage for the next conversion during the remaining two clock cycles. The high input impedance of the T/H input amplifier simplifies analog interfacing. Input signals up to $\pm \mathrm{V}_{\text {REF }}$ can be directly connected to the A/D without buffering. The T/H amplifier typically settles to within $1 / 4$ LSB in $1.5 \mu \mathrm{~s}$. The A/D output code table is presented in Table 2.

The timing signals for the Track and Hold amplifier are generated internally, and are also provided externally (HOLD) for synchronization purposes.
All of the internal amplifiers are offset trimmed during manufacturing to give improved accuracy and to minimize the number of external components. If necessary, offset error can be adjusted by using digital post correction.

TABLE 1. MULTIPLEXER CHANNEL SELECTION

ADDRESS AND CONTROL INPUTS					ANALOG CHANNEL SELECTED
A2	A1	A0	$\overline{\text { CS }}$	ALE	
0	0	0	0	1	$A_{\text {INo }}$
0	0	1	0	1	$A_{\text {IN } 1}$
0	1	0	0	1	$\mathrm{A}_{\text {IN } 2}$
0	1	1	0	1	$A_{\text {IN3 }}$
1	0	0	0	1	AIN4
1	0	1	0	1	AIN5
1	1	0	0	1	AIN6
1	1	1	0	1	AIN7

FIGURE 2. INTERNAL ADC TIMING DIAGRAM
TABLE 2. A/D OUTPUT CODE TABLE

ANALOG INPUT*		OUTPUT DATA (2'S COMPLEMENT)										
LSB $=2\left(V_{\text {REF }}\right) / 1024$	$\mathrm{V}_{\text {REF }}=2.500 \mathrm{~V}$	OVR	$\begin{gathered} \text { MSB } \\ 9 \end{gathered}$	8	7	6	5	4	3	2	1	LSB 0
$\geq+V_{\text {REF }}$	2.500 to V+ (+OVR)	1	0	0	0	0	0	0	0	0	0	0
$+\mathrm{V}_{\text {REF }}-1$ LSB	2.49512 (+Full Scale)	0	0	1	1	1	1	1	1	1	1	1
+1LSB	0.00488	0	0	0	0	0	0	0	0	0	0	1
0	0.000	0	0	0	0	0	0	0	0	0	0	0
-1LSB	-0.00488	0	1	1	1	1	1	1	1	1	1	1
- $\mathrm{V}_{\text {REF }}$	-2.500 (-Full Scale)	0	1	0	0	0	0	0	0	0	0	0
$\leq-V_{\text {REF }}-1$ LSB	2.50488 to V-(-OVR)	1	1	0	0	0	0	0	0	0	0	0

[^7]
Dynamic Performance

Fast Fourier Transform (FFT) techniques are used to evaluate the dynamic performance for one channel of the ADD system. A low distortion sine wave is applied to the input of the A/D converter. The input is sampled by the AVD and its output stored in RAM. The data is then transformed into the frequency domain with a 4096 point FFT and analyzed to evaluate the converters dynamic performance such as SNR and THD. See typical performance characteristics.

Signal-To-Noise Ratio

The signal to noise ratio (SNR) is the measured rms signal to rms sum of noise at a specified input and sampling frequency. The noise is the rms sum of all except the fundamental and the first five harmonic signals. The SNR is dependent on the number of quantization levels used in the converter. The theoretical SNR for an N-bit converter with no differential or integral linearity error is: $\mathrm{SNR}=\mathbf{(6 . 0 2 N}+$ $1.76) \mathrm{dB}$. For an ideal 10 bit converter the SNR is 62 dB . Differential and integral linearity errors will degrade SNR.

$$
\text { SNR }=10 \log \frac{\text { Sinewave Signal Power }}{\text { Total Noise Power }}
$$

Signal-To-Noise + Distortion Ratio

SINAD is the measured rms signal to rms sum of noise plus harmonic power and is expressed by the following.

$$
\text { SINAD }=10 \log ^{\frac{\text { Sinewave Signal Power }}{\text { Noise }+ \text { Harmonic Power (2nd thru 6th) }}}
$$

Effective Number of Blis

The effective number of bits (ENOB) is derived from the SINAD data;

$$
\mathrm{ENOB}=\frac{\mathrm{SINAD}-1.76}{6.02}
$$

Total Harmonic Distortion

The total harmonic distortion (THD) is the ratio of the RMS sum of the second through sixth harmonic components to the fundamental RMS signal for a specified input and sampling frequency.

Spurious-Free Dynamic Range

The spurious-free dynamic range (SFDR) is the ratio of the fundamental RMS amplitude to the RMS amplitude of the next largest spur or spectral component. It is usually determined by the largest harmonic. However, if the harmonics are buried in the noise floor it is the largest peak.

$$
\text { SFDR }=10 \log \frac{\text { Sinewave Signal Power }}{\text { Highest Spurious Signal Power }}
$$

Clock

The clock input is TTL compatible. The converter will function with clock inputs between 10 kHz and 800 kHz .

Microprocessor Interface

The HI-7153 can be interfaced to microprocessors through the use of standard Write, Read, Chip Select, and HBE control pins. The digital outputs are two's complement coded, three-state gated, and byte organized for bus interface with 8 and 16 bit systems. The digital outputs (D0 - D9, OVR) may be accessed under control of BUS, byte enable input HBE, chip select, and read inputs for a simple parallel bus interface. The microprocessor can read the current data in the output latches in typically 60ns/byte (trd). An over-range pin (OVR) together with the MSB (D9) pin set to either a logic 0 or 1 will indicate a positive or negative over-range condition respectively. All digital output buffers are capable of driving one TTL load. The multiplexer can be interfaced to either multiplexed or separate address and data bus systems.

The HI-7153 can be interfaced to a microprocessor using one of three modes: slow memory, fast memory, or DMA mode.

Slow Memory Mode

In slow memory mode, the conversion will be initiated by the microprocessor by selecting the chip ($\overline{\mathrm{CS}}$) and pulsing WR low. This mode is selected by hardwiring the SMODE pin to V+. Note that the converter will change to the DMA interface mode if the $\overline{W R}$ to $\overline{R D}$ active timing is less than 100ns. The end-of-conversion (EOC) output signals an interrupt for the microprocessor to jump to a read subroutine at the end of conversion. When the 8 bit bus operation is selected, high and low byte data may be accessed in either order. An I/O truth table is presented in Table 3 for the slow memory mode of operation.

Fast Memory Mode

The fast memory mode of operation is selected by tying the SMODE and WR pins to DG. In this mode, the chip performs continuous conversions and only $\overline{\mathrm{CS}}$ and $\overline{\mathrm{RD}}$ are required to read the data. Whenever the SMODE pin is low, WR is independent of $\overline{\mathrm{CS}}$ in starting a conversion cycle. During the first conversion cycle, $\overline{H O L D}$ follows $\overline{W R}$ going low. $\overline{H O L D}$ will be one clock period wide for subsequent conversion cycles.

Data can be read a byte at a time or all 11 bits at once. When the 8 bit bus operation is selected, high and low byte data may be accessed in either order. EOC is continuously low in this mode of operation. The conversion data can be read after $\overline{H O L D}$ has gone low. An I/O truth table is presented in Table 4 for the fast memory mode of operation.

DMA Mode

This is a hardwired mode where the Hl-7153 continuously converts. The user implements hardware to store the results in memory, bypassing the microprocessor. This mode is recognized by the chip when SMODE is connected to V_{+} and $\overline{\mathrm{CS}}, \overline{\mathrm{RD}}, \overline{\mathrm{WR}}$ are connected to DG. When 8 bit bus operation is selected, high and low byte data may be accessed in either order. EOC is continuously low in this mode. The conversion data can be read approximately 300 ns after $\overline{H O L D}$ has gone low. An I/O truth table is presented in Table 5 for the DMA mode of operation.

TABLE 3. SLOW MEMORY MODE VO TRUTH TABLE (SMODE = V +)

$\overline{\mathbf{C S}}$	$\overline{\mathrm{WR}}$	$\overline{\mathrm{RD}}$	BUS	HBE	ALE	FUNCTION
$\mathbf{0}$	$\mathbf{0}$	X	X	X	X	Initiates a conversion.
$\mathbf{0}$	X	X	X	X	$\mathbf{1}$	Selects mux channel. Address data is latched on falling edge of ALE. Latch is transparent when ALE is high.
$\mathbf{1}$	X	X	X	X	X	Disables all chip commands.
$\mathbf{0}$	X	0	1	X	X	Enables D0 - D9 and OVR.
$\mathbf{0}$	X	$\mathbf{0}$	0	0	X	Low byte enable: D0 - D7
$\mathbf{0}$	X	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	X	High byte enable: D8 - D9, OVR
\mathbf{X}	X	1	X	X	X	Disables all outputs (high impedance).

X = Don't Care

TABLE 4. FAST MEMORY MODE VO TRUTH TABLE (SMODE = DG)

CS	$\overline{\text { WR }}$	$\overline{\text { RD }}$	BUS	HBE	ALE	FUNCTION
0	0	X	X	X	X	Continuous conversion, $\overline{\text { WR }}$ may be tied to DG.
0	X	X	X	X	1	Selects mux channel. Address data is latched on falling edge of ALE. Latch is transparent when ALE is high.
1	X	X	X	X	X	Disables all chip commands.
0	X	0	1	X	X	Enables D0-D9 and OVR.
0	X	0	0	0	X	Low byte enable: D0-D7
0	X	0	0	1	X	High byte enable: D8-D9, OVR
X	X	1	X	X	X	Disables all outputs (high impedance).

$\mathrm{X}=$ Don't Care

TABLE 5. DMA MODE VO TRUTH TABLE (SMODE $\left.=V_{+}, \overline{C S}=\overline{W R}=\overline{\operatorname{RD}}=\mathrm{DG}\right)$

BUS	HBE	ALE	FUNCTION
X	X	$\mathbf{1}$	Selects mux channel. Address data is latched on falling edge of ALE. Latch is transparent when ALE is high.
$\mathbf{1}$	X	X	Enables D0 - D9 and OVR.
$\mathbf{0}$	0	X	Low byte enable: D0 - D7
$\mathbf{0}$	1	X	High byte enable: D8 - D9, OVR

X = Don't Care

Optimizing System Performance

The HI-7153 has three ground pins (AG, DG, GND) for improved system accuracy. Proper grounding and bypassing is illustrated in Figure 3. The AG pin is a ground pin and is used internally as a reference ground. The reference input and analog input should be referenced to the analog ground (AG) pin. The digital inputs and outputs should be referenced to the digital ground (DG) pin. The GND pin is a return point for the supply current of the comparator array. The comparator array is designed such that this current is approximately constant at all times and does not vary with input voltage. By virtue of the switched capacitor nature of the comparators, it is necessary to hold GND firmly at zero volts at all times. Therefore, the system ground star connection should be located as close to this pin as possible.

As in any analog system, good supply bypassing is necessary in order to achieve optimum system performance. The power supplies should be bypassed with at least a $20 \mu \mathrm{~F}$ tantalum and a $0.1 \mu \mathrm{~F}$ ceramic capacitor to GND. The reference input should be bypassed with a $0.1 \mu \mathrm{~F}$ ceramic capacitor to AG. The capacitor leads should be as short as possible.

The pins on the HI-7153 are arranged such that the analog pins are well isolated from the digital pins. In spite of this arrangement, there is always some pin-to-pin coupling. Therefore the analog inputs to the device should not be driven from very high output impedance sources. PC board layout should screen the analog and reference inputs with guard rings on both sides of the PC board, connected to AG. Using a solder mask is good practice and helps reduce leakage due to moisture contamination on the PC board.

Applications

Figure 4 illustrates an application where the HI-7153 is used to form a multi-channel data acquisition system. Either slow memory or fast memory modes of operation can be selected. Fast memory mode should be selected for maxi-
mum throughput. The output data is configured for 16 bit bus operation in these applications. By tying BUS to DG and connecting the HBE input to the system address decoder, the output data can be configured for 8 bit bus systems.

FIGURE 3. GROUND AND POWER SUPPLY DECOUPLING

FIGURE 4. MULTL-CHANNEL DATA ACQUISITION SYSTEM

D/A CONVERTERS
PAGE
D/A CONVERTERS SELECTION GUIDES 8-2D/A CONVERTERS DATA SHEETS
AD7520, 10-Bit, 12-Bit Multiplying D/A Converters 8-5
AD7530,AD7521,AD7531
AD7523, 8-Bit Multiplying D/A Converters 8-13
AD7533
AD7541 12-Bit Multiplying D/A Converter. 8-21
AD7545 12-Bit Buffered Multiplying CMOS DAC 8-28
CA3338, CMOS Video Speed 8-Bit R2R D/A Converter 8-35CA3338AHI-565A High Speed Monolithic D/A Converter with Reference8-42
HI-DAC80V, 12-Bit, Low Cost, Monolithic D/A Converter 8-50HI-DAC85V
8-Bit, 40MSPS High Speed D/A Converter 8-57
HIt171
8-65
HI20201, 10/8-Bit, 160MSPS Ultra High Speed D/A Converter

NOTE: Bold Type Designates a New Product from Harris.

digital to analog converters

(NOTES 2, 3) DEVICE	SUFFIX CODES	MIL SPEC	$\begin{aligned} & \text { INL } \\ & \text { LSB } \end{aligned}$	$\begin{aligned} & \text { DNL } \\ & \text { LSB } \end{aligned}$	SETTLING TIME ($\mu \mathrm{s}$)	TECHNOLOGY	MULTIPLYING	OUTPUT I/V	INPUT BUFFER	REFERENCE	FEATURES
8-BIT CMOS											
AD7523J	N		$\pm 1 / 2$	Monotonic	200 Max	CMOS-JI	X	1	No	External	
AD7523K			$\pm 1 / 4$								
AD7523L			$\pm 1 / 8$								
HIGH SPEED 8-BIT											
CA3338A	D	M	$\pm{ }^{3 / 4}$	$\pm 1 / 2$	20 Typ	CMOS-SOS		V	Yes	External	8-Bit Video Speed, Low Glitch
	E										
CA3338	D	M	± 1	$\pm{ }^{3 / 4}$							
	E										
HI1171	JCB		± 1.3	$\pm{ }^{1 / 4}$	25 Typ	CMOS		1	Yes	External	8-Bit Video Speed, Low Glitch, Low Power, Low Cost, 40 MSPS
HI20203	JCB		± 1	$\pm 1 / 2$	4.3 Typ	CMOS	Yes	1	Yes	External	8 -Bit 160 MHz D/A with ECL Inputs,Low Glitch, Low Power
	JCP										
HIGH SPEED 10-BIT											
H55721	$\begin{aligned} & \mathrm{BIB} \\ & \mathrm{BIP} \end{aligned}$		± 0.5	± 0.5	4.5 ns	BiCMOS	Yes	I	Yes	Internal	$10-$ Bit, 125 MHz , Low Glitch, Low Power, TTL/CMOS Inputs
HI20201	JCB		± 1	$\pm{ }^{1 / 2}$	5.2 Typ	CMOS	Yes	1	Yes	External	10-Bit 160 MHz D/A with ECL Inputs, Low Glitch, Low Power
	JCP										
HI3050	JCQ		± 2	$\pm 1 / 2$	-	CMOS		1	Yes	External	Triple DAC, 50 MHz

DIGITAL TO ANALOG CONVERTERS (Continued)

(NOTES 2, 3) DEVICE	SUFFIX CODES	MIL SPEC	$\begin{aligned} & \text { INL } \\ & \text { LSB } \end{aligned}$	$\begin{aligned} & \text { DNL } \\ & \text { LSB } \end{aligned}$	SETTLING TIME ($\mu \mathrm{s}$)	TECHNOLOGY	MULTIPLYING	OUTPUT IN	INPUT BUFFER	REFERENCE	FEATURES
10-BIT CMOS											
AD7520J	D		± 2		500 Typ	CMOS-J	X	1	No	External	Full Input Static Protection
AD7520J	N		± 2								
AD7520K	D		± 1								
AD7520K	N		± 1								
AD7520L	D		$\pm 1 / 2$								
AD7520L	N		$\pm 1 / 2$								
AD7520S	D	AD7520SD/883B	± 2								
AD7520T	D		± 1								
AD7520U	D	AD7520UD/883B	$\pm 1 / 2$								
AD7530J	N		± 2		500 Typ	CMOS-J	X	1	No	External	Full Input Static Protection
AD7530K			± 1								
AD7530L			$\pm 1 / 2$								
AD7533J	N		± 2		800 Max	CMOS-JI	X	1	No	External	Full Input Static Protection
AD7533K			± 1								
AD7533L			$\pm 1 / 2$								
12-BIT CMOS											
H13-DAC80V	-5		$\pm 1 / 2$	$\pm{ }^{3 / 4}$	1.5 Max	Bipolar		V	No	Internal	Low Cost, Internal Op Amp
HI3-DAC85V	-4, -9		$\pm{ }^{1 / 2}$	$\pm 1 / 2$							
HI1-565AJD	-5	HI1-565ASD/883	$\pm 1 / 2$	$\pm 3 / 4$	0.5 Typ	Bipolar-DI		1	No	Internal	
HI1-565AKD		HI1-565ATD/883	$\pm 1 / 4$	$\pm 1 / 2$							
HI1-565ASD	-2		$\pm 1 / 2$	$\pm 3 / 4$							
HI1-565ATD			$\pm 1 / 4$	$\pm 1 / 2$							

DIGITAL TO ANALOG CONVERTERS (Continued)

HARRIS

Features

- AD7520/AD7530 10 Bit Resolution; 8, 9 and 10 Bit Linearity
- AD7521/AD7531 12 Bit Resolution; 8, 9 and 10 Bit Linearity
- Low Power Dissipation of 20mW (Max)
- Low Nonlinearity Tempco at 2ppm of FSR/ ${ }^{\circ} \mathrm{C}$
- Current Settling Time $1.0 \mu \mathrm{~s}$ to $\mathbf{0 . 0 5 \%}$ of FSR
- $\pm 5 \mathrm{~V}$ to +15 V Supply Voltage Range
- TTLCMOS Compatible
- Full Input Static Protection
- /883B Processed Versions Available

Description

The AD7520/AD7530 and AD7521/AD7531 are monolithic, high accuracy, low cost 10 -bit and 12 -bit resolution, multiplying digital-to-analog converters (DAC). Harris' thinfilm on CMOS processing gives up to 10-bit accuracy with TTL/CMOS compatible operation. Digital inputs are fully protected against static discharge by diodes to ground and positive supply.

Typical applications include digital/analog interfacing, multiplication and division, programmable power supplies, CRT character generation, digitally controlled gain circuits, integrators and attenuators, etc.

The AD7530 and AD7531 are identical to the AD7520 and AD7521, respectively, with the exception of output leakage current and feedthrough specifications.

Ordering Information

PART NUMBER	NONLINEARITY	TEMPERATURE RANGE	PACKAGE
AD7520JN, AD7530JN	$0.2 \%(8$-Bit)	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Lead Plastic DIP
AD7520KN, AD7530KN	0.1% (9 -Bit)	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Lead Plastic DIP
AD7521JN, AD7531JN	0.2% (8-Bit)	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	18 Lead Plastic DIP
AD7521KN, AD7531KN	0.1% (9-Bit)	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	18 Lead Plastic DIP
AD7520LN, AD7530LN	0.05% (10-Bit)	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Lead Plastic DIP
AD7521LN, AD7531LN	0.05% (10-Bit)	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	18 Lead Plastic DIP
AD7520JD	$0.2 \%(8$-Bit)	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
AD7520KD	$0.1 \%(9-\mathrm{Bit})$	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
AD7520LD	0.05% (10-Bit)	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
AD7520SD, AD7520SD/883B	$0.2 \%(8-\mathrm{Bit})$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
AD7520TD	$0.1 \%(9-\mathrm{Bit})$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
AD7520UD, AD7520UD/883B	$0.05 \%(10-\mathrm{Bit})$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead Ceramic DIP

Pinouts

AD75	PDIP)
louti 1	18 Rfeedback
lout2 2	$17 \mathrm{~V} \mathrm{~V}_{\text {REF }}$
GND 3	$16 \mathrm{v}_{+}$
BIT 1 (MSB) 4	15 BIT 12 (LSB)
BIT 25	14.11
BIT 36	13 BIT 10
BIT 47	12 BIT 9
BIT 58	11 BIT 8
BIT 69	108 BIT 7

Absolute Maximum Ratings

Supply Voltage (V+ to GND)	+17V
$V_{\text {REF }}$	$\pm 25 \mathrm{~V}$
Digital Input Voltage Range	$\mathrm{V}+$ to GND
Output Voltage Compliance	-100 mV to V+
Storage Temperature	$65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering	$300^{\circ} \mathrm{C}$

Thermal Information

Thermal Resistance	$\theta_{\text {JA }}$	θ_{Jc}
16 Lead Plastic DIP.	$100^{\circ} \mathrm{C} / \mathrm{W}$	-
18 Lead Plastic DIP.	$90^{\circ} \mathrm{C} / \mathrm{W}$	-
16 Lead Ceramic DIP	$80^{\circ} \mathrm{CW}$	$24^{\circ} \mathrm{C} / \mathrm{W}$
Maximum Power Dissipation		
Up to $+75^{\circ} \mathrm{C}$.		450 mW

Operating Temperature

JN, KN, LN Versions	$+70^{\circ} \mathrm{C}$
JD, KD, LD Versions	$25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
SD, TD, UD Versions	$-55^{\circ} \mathrm{C}$ to $+125^{\circ}$

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
The digital control inputs are zener protected; however, permanent damage may occur on unconnected units under high energy electrostatic fields. Keep unused units in conductive foam at all times.
Do not apply voltages higher than $V_{D D}$ or less than GND potential on any terminal except $V_{\text {REF }}$ and $R_{\text {FEEDBACK }}$.
Electrical Specifications $\quad \mathrm{V}_{+}=+15 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=+10 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ Unless Otherwise Specified

PARAMETER		TEST CONDITIONS	AD7520/AD7530			AD7521/AD7531			UNITS	
		MIN	TYP	MAX	MIN	TYP	MAX			
SYSTEM PERFORMANCE (Note 1)										
Resolution				10	10	10	12	12	12	Bits
Nonlinearity	J, S	S Over $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ (Notes 2, 5) (Figure 2)	-	-	$\begin{gathered} \pm 0.2 \\ \text { (8-Bit) } \end{gathered}$	-	-	$\begin{gathered} \pm 0.2 \\ (8-\text { Bit }) \end{gathered}$	$\begin{aligned} & \text { \% of } \\ & \text { FSR } \end{aligned}$	
	K, T	T Over $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ (Figure 2)	-	-	$\begin{gathered} \pm 0.1 \\ (9-\mathrm{Bit}) \end{gathered}$	-	-	$\begin{gathered} \pm 0.1 \\ \text { (9-Bit) } \end{gathered}$	$\begin{aligned} & \% \text { of } \\ & \text { FSR } \end{aligned}$	
	L, U	$-10 \mathrm{~V} \leq \mathrm{V}_{\text {REF }} \leq+10 \mathrm{~V}$ U Over $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ (Figure 2)	-	-	$\begin{gathered} \pm 0.05 \\ \text { (10-Bit) } \end{gathered}$	-	-	$\begin{gathered} \pm 0.05 \\ (10 \text {-Bit) } \end{gathered}$	\% of FSR	
Nonlinearity Tempco		$\begin{aligned} & -10 \mathrm{~V} \leq \mathrm{V}_{\mathrm{REF}} \leq+10 \mathrm{~V} \\ & (\text { Notes } 2,3) \end{aligned}$	-	\bullet	± 2	-	-	± 2	ppm of FSR ${ }^{\circ} \mathrm{C}$	
Gain Error			-	± 0.3	-	-	± 0.3	-	$\begin{aligned} & \text { \% of } \\ & \text { FSR } \end{aligned}$	
Gain Error Tempco			-	-	± 10	-	-	± 10	ppm of FSR ${ }^{\circ} \mathrm{C}$	
Output Leakage Current (Either Output)		Over the Specified Temperature Range	-	-	$\begin{gathered} \pm 200 \\ (\pm 300) \end{gathered}$	-	-	$\begin{gathered} \pm 200 \\ (\pm 300) \end{gathered}$	nA	
DYNAMIC CHARACTERISTICS										
Output Current Settling Time		To 0.05\% of FSR (All Digital Inputs Low To High And High To Low) (Note 3) (Figure 7)	-	1.0	-	\bullet	1.0	-	$\mu \mathrm{s}$	
Feedthrough Error		$V_{\text {REF }}=20 \mathrm{~V}_{\text {P-p, }}, 10 \mathrm{kHz}$ (50 kHz) All Digital Inputs Low (Note 3) (Figure 6)	-	-	10	-	-	10	mV p.p	
REFERENCE INPUT										
Input Resistance		All Digital Inputs High lout1 at Ground	5	10	20	5	10	20	k Ω	
ANALOG OUTPUT										
Output Capacitance	Iouti	All Digital Inputs High (Note 3) (Figure 5)	-	200	-	-	200	-	pF	
	Iout2		-	75	-	-	75	-	pF	
	louti	All Digital Inputs Low (Note 3) (Figure 5)	-	75	-	-	75	-	pF	
	IOUT2		-	200	-	-	200	-	pF	

Electrical Specifications $\quad \mathrm{V}_{+}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=+10 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ Unless Otherwise Specified (Continued)

PARAMETER	TEST CONDITIONS	AD7520/AD7530			AD7521/AD7531			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Output Noise	Both Outputs (Note 3) (Figure 4)	-	Equivalent to $10 \mathrm{k} \Omega$	-	-	Equivalent to $10 \mathrm{k} \Omega$	-	Johnson Noise
DIGITAL INPUTS								
Low State Threshold, $\mathrm{V}_{1 /}$	Over the Specified Temperature Range $\mathrm{V}_{\mathrm{IN}}=\mathrm{OV}$ or +15 V	-	\cdot	0.8	-	-	0.8	V
High State Threshold, V_{IH}		2.4	\bullet	-	2.4	-	-	V
Input Current, $I_{\text {IL }}, I_{\text {IH }}$		-	-	± 1	-	-	± 1	$\mu \mathrm{A}$
Input Coding	See Tables 1 \& 2	Binary/Offset Binary						
POWER SUPPLY CHARACTERISTICS								
Power Supply Rejection	$\mathrm{V}+=14.5 \mathrm{~V}$ to 15.5 V (Note 2) (Figure 3)	\bullet	± 0.005	-	\bullet	± 0.005	-	$\begin{gathered} \% \\ \text { FSR/\% } \end{gathered}$ ΔV_{+}
Power Supply Voltage Range		+5 to +15			+5 to +15			V
$1+$	All Digital Inputs at 0 V or $\mathrm{V}+$ Excluding Ladder Network	-	± 1	-	-	± 1	\bullet	$\mu \mathrm{A}$
	All Digital Inputs High or Low Excluding Ladder Network	-	-	2	-	-	2	mA
Total Power Dissipation	Including the Ladder Network	-	20	-	-	20	-	mW

NOTES:

1. Full scale range (FSR) is 10 V for Unipolar and $\pm 10 \mathrm{~V}$ for Bipolar modes.
2. Using internal feedback resistor $\mathrm{R}_{\text {FEEDBACK }}$.
3. Guaranteed by design, or characterization and not production tested.
4. Accuracy not guaranteed unless outputs at GND potential.
5. Accuracy is tested and guaranteed at $\mathrm{V}+=15 \mathrm{~V}$ only.

Functional Diagram

Switches shown for Digital Inputs "High".
Resistor values are typical.

Pin Descriptions

AD7520/30	AD7521/31	PIN NAME	
1	1	lout1	Current Out summing junction of the R2R ladder network.
2	2	louT2	Current Out virtual ground, return path for the R2R ladder network
3	3	GND	Digital Ground. Ground potential for digital side of D/A.
4	4	Bits 1(MSB)	Most Significant Digital Data Bit
5	5	Bit 2	Digital Bit 2
6	6	Bit 3	Digital Bit 3
7	7	Bit 4	Digital Bit 4
8	8	Bit 5	Digital Bit 5
9	9	Bit 6	Digital Bit 6
10	10	Bit 7	Digital Bit 7
11	11	Bit 8	Digital Bit 8
12	12	Bit 9	Digital Bit 9
13	13	Bit 10	Digital Bit 10 (AD7521/31), Least Significant Digital Data Bit (AD7520/30)
-	14	Bit 11	Digital Bit 11 (AD7521/31)
-	15	Bit 12	Least Significant Digital Data Bit (AD7521/31)
14	16	V+	Power Supply +5 to +15 Volts
15	17	V REF	Voltage Reference Input to set the output range. Supplies the R2R resistor ladder.
16	18	RFEEDBACK	Feedback resistor used for the current to voltage conversion when using and external OP-Amp.

Definition of Terms

Nonlinearity: Error contributed by deviation of the DAC transfer function from a "best straight line" through the actual plot of transfer function. Normally expressed as a percentage of full scale range or in (sub)multiples of 1 LSB.

Resolution: It is addressing the smallest distinct analog output change that a D/A converter can produce. It is commonly expressed as the number of converter bits. A converter with resolution of n bits can resolve output changes of 2^{-N} of the full-scale range, e.g. $2^{-N} V_{\text {REF }}$ for a unipolar conversion. Resolution by no means implies linearity.
Settling Time: Time required for the output of a DAC to settle to within specified error band around its final value (e.g. $1 / 2$ LSB) for a given digital input change, i.e. all digital inputs LOW to HIGH and HIGH to LOW.
Gain Error: The difference between actual and ideal analog output values at full-scale range, i.e. all digital inputs at HIGH state. It is expressed as a percentage of full-scale range or in (sub)multiples of 1 LSB.
Feedthrough Error: Error caused by capacitive coupling from $V_{\text {REF }}$ to $I_{\text {OUT1 }}$ with all digital inputs LOW.
Output Capacitance: Capacitance from $\mathrm{I}_{\text {OUT1 }}$, and $\mathrm{I}_{\text {OUT2 }}$ terminals to ground.

Output Leakage Current: Current which appears on Iout1, terminal when all digital inputs are LOW or on I IOUT2 terminal when all digital inputs are HIGH.

Detailed Description

The AD7520, AD7530, AD7521 and AD7531 are monolithic, multiplying D/A converters. A highly stable thin film R-2R resistor ladder network and NMOS SPDT switches form the basis of the converter circuit, CMOS level shifters permit low
power TTL/CMOS compatible operation. An external voltage or current reference and an operational amplifier are all that is required for most voltage output applications.
A simplified equivalent circuit of the DAC is shown in the Functional Diagram. The NMOS SPDT switches steer the ladder leg currents between lout1 and louT2 buses which must be held either at ground potential. This configuration maintains a constant current in each ladder leg independent of the input code.
Converter errors are further reduced by using separate metal interconnections between the major bits and the outputs. Use of high threshold switches reduce offset (leakage) errors to a negligible level.
The level shifter circuits are comprised of three inverters with positive feedback from the output of the second to the first, see Figure 1. This configuration results in TTUCMOS compatible operation over the full military temperature range. With the ladder SPDT switches driven by the level shifter, each switch is binarily weighted for an ON resistance proportional to the respective ladder leg current. This assures a constant voltage drop across each switch, creating equipotential terminations for the 2R ladder resistors and highly accurate leg currents.

FIGURE 1. CMOS SWITCH

Test Circuits The following test circuits apply for the AD7520．Similar circuits are used for the AD7530，AD7521 and AD7531．

FIGURE 2．NONLINEARITY

FIGURE 4．NOISE

FIGURE 6．FEEDTHROUGH ERROR

FIGURE 3．POWER SUPPLY REJECTION

FIGURE 5．OUTPUT CAPACITANCE

FIGURE 7．OUTPUT CURRENT SETTLING TIME

Applications

Unipolar Binary Operation

The circuit configuration for operating the AD7520 in unipolar mode is shown in Figure 8. Similar circuits can be used for AD7521, AD7530 and AD7531. With positive and negative $\mathrm{V}_{\text {REF }}$ values the circuit is capable of 2-Quadrant multiplication. The "Digital Input Code/Analog Output Value" table for unipolar mode is given in Table 1.

FIGURE 8. UNIPOLAR BINARY OPERATION (2-QUADRANT MULTIPLICATION

TABLE 1. CODE TABLE - UNIPOLAR BINARY OPERATION

DIGITAL INPUT	ANALOG OUTPUT
1111111111	$-\mathrm{V}_{\text {REF }}\left(1-2^{-N}\right)$
1000000001	$-\mathrm{V}_{\text {REF }}\left(1 / 2+2^{-N}\right)$
1000000000	$-\mathrm{V}_{\text {REF }} / 2$
0111111111	$-\mathrm{V}_{\text {REF }}\left(1 / 2-2^{-N}\right)$
0000000001	$-\mathrm{V}_{\text {REF }}\left(2^{-N}\right)$
0000000000	0

NOTES:

1. $\operatorname{LSB}=2^{-N} V_{\text {REF }}$
2. $N=10$ for 7520,7530
$\mathrm{N}=12$ for 7521,7531

Zero Offset Adjustment

1. Connect all digital inputs to GND.
2. Adjust the offset zero adjust trimpot of the output operational amplifier for OV at $\mathrm{V}_{\text {OUT }}$.

Gain Adjustment

1. Connect all digital inputs to $\mathrm{V}+$.
2. Monitor VOUT for a $-\mathrm{V}_{\text {REF }}\left(1-2^{-N}\right)$ reading. ($\mathrm{N}=10$ for AD7520/30 and $N=12$ for AD7521/31).
3. To decrease $V_{\text {OUT }}$, connect a series resistor (0 to 250Ω) between the reference voltage and the $\mathrm{V}_{\text {REF }}$ terminal.
4. To increase $V_{\text {OUT }}$, connect a series resistor (0 to 250Ω) in the IOUT1 amplifier feedback loop.

Bipolar (Offset Binary) Operation

The circuit configuration for operating the AD7520 in the bipolar mode is given in Figure 9. Similar circuits can be used for AD7521, AD7530 and AD7531. Using offset binary digital input codes and positive and negative reference voltage values, 4 -Quadrant multiplication can be realized. The
"Digital Input Code/Analog Output Value" table for bipolar mode is given in Table 2.

FIGURE 9. BIPOLAR OPERATION (4-QUADRANT MULTIPUCATION)
TABLE 2. BIPOLAR (OFFSET BINARY) CODE TABLE

DIGITAL INPUT	ANALOG OUTPUT
1111111111	$-V_{\text {REF }}\left(1-2^{-(N-1)}\right)$
1000000001	$-V_{\text {REF }}\left(2^{-(N-1)}\right)$
1000000000	0
0111111111	$V_{\text {REF }}\left(2^{-(N-1)}\right)$
0000000001	$V_{\text {REF }}\left(1-2^{-(N-1)}\right)$
0000000000	$V_{\text {REF }}$

NOTES:

$$
\begin{array}{ll}
\text { 1. } L S B=2^{-(N-1)} V_{\text {REF }} & \text { 2. } N=10 \text { for } 7520,7521
\end{array}
$$

$N=12$ for 7530,7531
A "Logic 1 " input at any digital input forces the corresponding ladder switch to steer the bit current to louT1 bus. A "Logic 0" input forces the bit current to lout2 bus. For any code the lour1 and lout2 bus currents are complements of one another. The current amplifier at lout2 changes the polarity of lout2 current and the transconductance amplifier at lour1 output sums the two currents. This configuration doubles the output range. The difference current resulting at zero offset binary code, (MSB = "Logic 1", All other bits = "Logic 0 "), is corrected by using an external resistor, ($10 \mathrm{M} \Omega$), from $\mathrm{V}_{\text {REF }}$ to $\mathrm{l}_{\text {OUT2. }}$

Offset Adjustment

1. Adjust $\mathrm{V}_{\mathrm{REF}}$ to approximately +10 V .
2. Connect all digital inputs to "Logic 1 ".
3. Adjust IOUT2 amplifier offset adjust trimpot for $\mathrm{OV} \pm 1 \mathrm{mV}$ at IOUT2 amplifier output.
4. Connect MSB (Bit 1) to "Logic 1" and all other bits to "Logic 0".
5. Adjust $\mathrm{I}_{\mathrm{OUT} 1}$ amplifier offset adjust trimpot for $\mathrm{OV} \pm 1 \mathrm{mV}$ at $\mathrm{V}_{\mathrm{OUT}}$.

Gain Adjustment

1. Connect all digital inputs to $\mathrm{V}+$.
2. Monitor $V_{O U T}$ for a $-V_{\text {REF }}\left(1-2^{(N-1)}\right.$ volts reading. ($N=10$ for AD7520 and AD7530, and N = 12 for AD7521 and AD7531).
3. To increase $V_{\text {OUT }}$, connect a series resistor of up to 250Ω between $V_{\text {OUT }}$ and $R_{\text {FEEDBACK. }}$
4. To decrease $V_{\text {OUt }}$, connect a series resister of up to 250Ω between the reference voltage and the $\mathrm{V}_{\text {REF }}$ terminal.

Die Characteristics

DIE DIMENSIONS:
$101 \times 103 \mathrm{mils}$ ($2565 \times 2616 \mathrm{mic}$ rms)
METALLIZATION:
Type: Pure Aluminum
Thickness: $10 \pm 1 \mathrm{k} \AA$
GLASSIVATION:
Type: PSG/NITRIDE
PSG: $7 \pm 1.4 \mathrm{k} \AA$
NITRIDE: $8 \pm 1.2 \mathrm{k} \AA$
PROCESS: CMOS Metal Gate

Metallization Mask Layout

Die Characteristics

DIE DIMENSIONS:
$101 \times 103 \mathrm{mils}$ ($2565 \times 2616 \mathrm{micrms}$)

METALLIZATION:

Type: Pure Aluminum
Thickness: $10 \pm 1 \mathrm{k} \AA$
GLASSIVATION:
Type: PSG/NITRIDE
PSG: $7 \pm 1.4 \mathrm{k} \AA$
NITRIDE: $8 \pm 1.2 \mathrm{k} \AA$
PROCESS: CMOS Metal Gate

Metallization Mask Layout

AD7523, AD7533

8-Bit Multiplying D/A Converters

Features

- 8, 9 and 10-Bit Linearity
- Low Gain and LInearity Temperature Coefficlents
- Full Temperature Range Operation
- Static Discharge Input Protection
- TTLCMOS Compatible
- +5 V to +15 V Supply Range
- Fast Settling Time: 150 ns Max at $+\mathbf{2 5}{ }^{\circ} \mathrm{C}$
- Four Quadrant Multiplication
- AD7533 Direct AD7520 Equivalent

Description

The AD7523 and AD7533 monolithic, low cost, high performance, 8 -bit and 10-bit accurate, multiplying digital-to-analog converter (DAC), in a 16 pin DIP.
Harris' thin film resistors on CMOS circuitry provide 10-bit resolution (8, 9 and 10-bit accuracy), with TTLCMOS compatible operation.
The AD7523 and AD7533s accurate four quadrant multiplication, full military temperature range operation, full input protection from damage due to static discharge by clamps to V_{+}and GND, and very low power dissipation make it a very versatile converter.

Low noise audio gain controls, motor speed controls, digitally controlled gain and digital attenuators are a few of the wide range of applications of the AD7523 and AD7533.

Ordering Information

PART NUMBER	NONLINEARITY	TEMPERATURE RANGE	PACKAGE
AD7523JN, AD7533JN	$0.2 \%(8-\mathrm{Bit})$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Lead Plastic DIP
AD7523KN, AD7533KN	$0.1 \%(9-\mathrm{Bit})$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Lead Plastic DIP
AD7523LN, AD7533LN	$0.05 \%(10-\mathrm{Bit})$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Lead Plastic DIP

Pinout

AD7523, AD7533 (CDIP, PDIP) TOP VIEW

NOTE:

1. NC for AD7523 only.

Functional Block Diagram

(16)

Switches shown for digital inputs "High"

Absolute Maximum Ratings
Supply Voltage (V+ to GND) . +17V

Digital Input Voltage Range . V+ to GND
Output Voltage Compliance . -100 mV to $\mathrm{V}+$
Storage Temperature
Lead Temperature (Soldering 10s)
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Electrical Specifications $\mathrm{V}_{+}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=+10 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT1}}=\mathrm{V}_{\mathrm{OUT} 2}=0 \mathrm{~V}$, Unless Otherwise Specified

PARAMETER	TEST CONDITIONS	AD7523				AD7533				UNITS
		$\mathrm{T}_{\mathrm{A}}+25^{\circ} \mathrm{C}$		TA MIN-MAX		$\mathrm{T}_{\mathrm{A}}+25^{\circ} \mathrm{C}$		TA MIN-MAX		
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	

SYSTEM PERFORMANCE

Resolution			8	-	8	-	10	-	10	-	Bits
Nonlinearity	J	$\begin{aligned} & -10 \mathrm{~V} \leq \mathrm{V}_{\mathrm{REF}} \leq+10 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT1 }}=\mathrm{V}_{\text {OUT2 } 2}=0 \mathrm{~V} \\ & \text { (Note } 1,2,5 \text {) } \end{aligned}$	-	± 0.2	$\begin{aligned} & \text { \% of } \\ & \text { FSR } \end{aligned}$						
	K, T		-	± 0.1	\% of FSR						
	L		-	± 0.05	\% of FSR						
Monotonicity			Guaranteed				Guaranteed				
Gain Error		All Digital Inputs High (Note 2)	-	± 1.5	-	± 1.8	-	± 1.4	-	± 1.8	\% of FSR
Nonlinearity Tempco		$\begin{aligned} & -10 \mathrm{~V} \leq \mathrm{V}_{\mathrm{REF}} \leq+10 \mathrm{~V} \\ & (\text { Notes } 2,3) \end{aligned}$	-	± 2	ppm of FSR ${ }^{\circ} \mathrm{C}$						
Gain Error Tempco			-	± 10	ppm of $\text { FSR }{ }^{\circ} \mathrm{C}$						
Output Leakage Current (Either Output)		$\mathrm{V}_{\text {OUT } 1}=\mathrm{V}_{\text {OUT2 }}=0$	-	± 50	-	± 200	-	± 50	-	± 200	nA

DYNAMIC CHARACTERISTICS

Power Supply Rejection	$\begin{aligned} & V_{+}=14.0 \mathrm{~V} \text { to } 15.0 \mathrm{~V} \\ & \text { (Note 2) } \end{aligned}$	-	± 0.02	-	± 0.03	-	± 0.005	-	± 0.008	$\begin{gathered} \% \text { of } \\ \text { FSR/\% } \end{gathered}$ $\text { of } \Delta V_{+}$
Output Current Settling Time	To 0.2\% of FSR, $R_{L}=100 \Omega$ (Note 3)	-	150	-	200	-	600	-	800	ns
Feedthrough Error	$\mathrm{V}_{\text {REF }}=20 \mathrm{Vpp}, 200 \mathrm{kHz}$ Sine Wave, All Digital Inputs Low (Note 3)	-	$\pm 1 / 2$	-	± 1	-	± 0.05	-	± 0.1	LSB
REFERENCE INPUTS										
Input Resistance (Pin 15)	All Digital Inputs High lout1 at Ground (Note 3)	5	-	5	-	5	-	5	-	k Ω
		-	20	-	20	-	20	-	20	k Ω
Temperature Coefficient		-	-500	-	-500	-	-300	-	-300	ppm $/{ }^{\circ} \mathrm{C}$

Electrical Specifications $\mathrm{V}_{+}=+15 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=+10 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT1}}=\mathrm{V}_{\mathrm{OUT2}}=0 \mathrm{~V}$, Unless Otherwise Specified (Continued)

PARAMETER	TEST CONDITIONS	AD7523				AD7533				UNITS
		$\mathrm{T}_{\mathrm{A}}+25^{\circ} \mathrm{C}$		T ${ }_{\text {A M }}$ M - MAX		$\mathrm{T}_{\mathrm{A}}+25^{\circ} \mathrm{C}$		TA MIN-MAX		
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
ANALOG OUTPUT										
Output Capacitance	All Digital Inputs High (Note 3)	-	100	-	100	-	100	-	100	pF
		-	30	-	30	-	35	-	35	pF
	All Digital Inputs Low (Note 3)	-	30	-	30	-	35	-	35	pF
		-	100	-	100	-	100	-	100	pF
DIGITAL INPUTS										
Low State Threshold, V_{IL}		-	0.8	-	0.8	-	0.8	-	0.8	V
High State Threshold, V_{IH}		2,4	-	2,4	-	2.4	-	2.4	\bullet	V
Input Current (Low or High), $I_{L}, I_{1 H}$	$V_{1 N}=0 \mathrm{~V}$ or +15 V	-	± 1	$\mu \mathrm{A}$						
Input Coding	See Tables 1 \& 3	Binary/Offset Binary				Binary/Offset Binary				
Input Capacitance	(Note 3)	-	4	-	4	-	4	-	4	pF
POWER SUPPLY CHARACTERISTICS										
Power Supply Voltage Range	(Note 5)	+5 to +16				$+5 \text { to }+16$				V
$1+$	All Digital Inputs High or Low (Excluding Ladder Network)	-	2	-	2.5	-	2	-	2.5	mA

NOTES:

1. Full scale range ($F S R$) is 10 V for unipolar and $\pm 10 \mathrm{~V}$ for bipolar modes.
2. Using internal feedback resistor, $\mathrm{R}_{\text {FEEDBACK }}$
3. Guaranteed by design or characterization and not production tested.
4. Accuracy not guaranteed unless outputs at ground potential.
5. Accuracy is tested and guaranteed at $\mathrm{V}_{+}=+15 \mathrm{~V}$, only.

Definition of Terms

Nonlinearity: Error contributed by deviation of the DAC transfer function from a "best straight line" through the actual plot of transfer function. Normally expressed as a percentage of full scale range or in (sub)multiples of 1 LSB.
Resolution: It is addressing the smallest distinct analog output change that a D/A converter can produce. It is commonly expressed as the number of converter bits. A converter with resolution of n bits can resolve output changes of 2^{-N} of the full-scale range, e.g. $2^{-N} V_{\text {REF }}$ for a unipolar conversion. Resolution by no means implies linearity.
Settling Time: Time required for the output of a DAC to settle to within specified error band around its final value (e.g. 1/2 LSB) for a given digital input change, i.e. all digital inputs LOW to HIGH and HIGH to LOW.

Gain Error: The difference between actual and ideal analog output values at full-scale range, i.e. all digital inputs at HIGH state. It is expressed as a percentage of full-scale range or in (sub)multiples of 1 LSB.

Feedthrough Error: Error caused by capacitive coupling from $V_{\text {REF }}$ to $l_{\text {OUT1 }}$ with all digital inputs LOW.

Output Capacitance: Capacitance from I IUT1, and I IOUT2 terminals to ground.
Output Leakage Current: Current which appears on $\mathrm{I}_{\mathrm{OUT}}$, terminal when all digital inputs are LOW or on lout2 terminal when all digital inputs are HIGH.
For further information on the use of this device, see the following Application Notes:

A002 "Principles of Data Acquisition and Conversion"

A018 "Do's and Don'ts of Applying ADD Converters", by Peter Bradshaw and Skip Osgood

A042 "Interpretation of Data Conversion Accuracy Specifications"

Detailed Description

The AD7523 and AD7533 are monolithic multiplying D/A converters. A highly stable thin film R-2R resistor ladder network and NMOS SPDT switches form the basis of the converter circuit, CMOS level shifters permit low power TTL CMOS compatible operation. An external voltage or current reference and an operational amplifier are all that is required for most voltage output applications.

A simplified equivalent circuit of the DAC is shown in the Functional Diagram. The NMOS SPDT switches steer the ladder leg currents between $\mathrm{I}_{\text {OUT1 }}$ and $\mathrm{l}_{\text {OUT2 }}$ buses which must be held at ground potential. This configuration maintains a constant current in each ladder leg independent of the input code.

Converter errors are further reduced by using separate metal interconnections between the major bits and the outputs. Use of high threshold switches reduce offset (leakage) errors to a negligible level.

The level shifter circuits are comprised of three inverters with positive feedback from the output of the second to the first, see Figure 1. This configuration results in TTLCMOS compatible operation over the full military temperature range. With the ladder SPDT switches driven by the level shifter, each switch is binarily weighted for an ON resistance proportional to the respective ladder leg current. This assures a constant voltage drop across each switch, creating equipotential terminations for the $2 R$ ladder resistors and high accurate leg currents.

FIGURE 1. CMOS SWITCH

Typical Applications

Unipolar Binary Operation - AD7523 (8 Bit DAC)

The circuit configuration for operating the AD7523 in unipolar mode is shown in Figure 2. With positive and negative $\mathrm{V}_{\text {REF }}$ values the circuit is capable of 2-Quadrant multiplication. The "Digital Input Code/Analog Output Value" table for unipolar mode is given in Table 1.

NOTES:

1. R1 and R2 used only if gain adjustment is required.
2. CF1 protects AD7523 and AD7533 against negative transients.

FIGURE 2. UNIPOLAR BINARY OPERATION

TABLE 1. UNIPOLAR BINARY CODE - AD7523

DIGITAL INPUT MSB LSB	ANALOG OUTPUT
11111111	$-V_{\text {REF }}\left(\frac{255}{256}\right)$
10000001	$-V_{\text {REF }}\left(\frac{129}{256}\right)$
10000000	$-V_{\text {REF }}\left(\frac{128}{256}\right)=-\frac{V_{\text {REF }}}{2}$
01111111	$-V_{\text {REF }}\left(\frac{127}{256}\right)$
00000001	$-V_{\text {REF }}\left(\frac{1}{256}\right)$
00000000	$-V_{\text {REF }}\left(\frac{0}{256}\right)=0$

NOTES:

1. $1 \mathrm{LSB}=\left(2^{-8}\right)\left(\mathrm{V}_{\mathrm{REF}}\right)=\left(\frac{1}{256}\right)\left(\mathrm{V}_{\mathrm{REF}}\right)$

Zero Offset Adjustment

1. Connect all digital inputs to GND.
2. Adjust the offset zero adjust trimpot of the output operational amplifier for $0 \mathrm{~V} \pm 1 \mathrm{mV}$ (max) at $\mathrm{V}_{\text {OUT }}$.

Gain Adjustment

1. Connect all digital inputs to $\mathrm{V}+$.
2. Monitor $V_{\text {OUT }}$ for $a-V_{\text {REF }}\left(1-1 / 2^{8}\right)$ reading.
3. To increase $V_{\text {OUT }}$, connect a series resistor, R2, $(O \Omega$ to 250Ω) in the lout1 amplifier feedback loop.
4. To decrease $\mathrm{V}_{\text {OUT }}$, connect a series resistor, $\mathrm{R} 1,(0 \Omega$ to 250Ω) between the reference voltage and the $\mathrm{V}_{\text {REF }}$ terminal.

Unipolar Binary Operation - AD7533 (10 Bit DAC)

The circuit configuration for operating the AD7533 in unipolar mode is shown in Figure 2. With positive and negative $V_{\text {REF }}$ values the circuit is capable of 2-Quadrant multiplication. The "Digital Input Code/Analog Output Value" table for unipolar mode is given in Table 2.

TABLE 2. UNIPOLAR BINARY CODE - AD7533

DIGITAL INPUT MSB LSB	(NOTE 1) NOMINAL ANALOG OUTPUT
1111111111	$-V_{\text {REF }}\left(\frac{1023}{1024}\right)$
1000000001	$-V_{\text {REF }}\left(\frac{513}{1024}\right)$
1000000000	$-V_{\text {REF }}\left(\frac{512}{1024}\right)=-\frac{V_{\text {REF }}}{2}$
0111111111	$-V_{\text {REF }}\left(\frac{511}{1024}\right)$
0000000001	$-V_{\text {REF }}\left(\frac{1}{1024}\right)$
0000000000	$-V_{\text {REF }}\left(\frac{0}{1024}\right)=0$

NOTES:

1. $V_{\text {OUt }}$ as shown in the Functional Diagram.
2. Nominal Full Scale for the circuit of Figure 2 is given by
$F S=-V_{\text {REF }}\left(\frac{1023}{1024}\right)$
3. Nominal LSB magnitude for the circuit of Figure 2 is given by $L S B=V_{\text {REF }}\left(\frac{1}{1024}\right)$

Zero Offset Adjustment

1. Connect all digital inputs to GND.
2. Adjust the offset zero adjust trimpot of the output operational amplifier for $\mathrm{OV} \pm 1 \mathrm{mV}$ (max) at $\mathrm{V}_{\text {OUT }}$.

Gain Adjustment

1. Connect all digital inputs to V_{+}.
2. Monitor $V_{\text {OUT }}$ for a $-V_{\text {REF }}\left(1-1 / 2^{10}\right)$ reading.
3. To increase $V_{\text {OUt }}$, connect a series resistor, R2, ($O \Omega$ to 250Ω) in the lout 1 amplifier feedback loop.
4. To decrease $V_{\text {OUT }}$, connect a series resistor, R1, $(0 \Omega$ to 250Ω) between the reference voltage and the $\mathrm{V}_{\mathrm{REF}}$ terminal.

Bipolar (Offset Binary) Operation - AD7523

The circuit configuration for operating the AD7523 in the bipolar mode is given in Figure 3. Using offset binary digital input codes and positive and negative reference voltage values, Four-Quadrant multiplication can be realized. The "Digital Input Code/Analog Output Value" table for bipolar mode is given in Table 3.)

TABLE 3. BIPOLAR (OFFSET BINARY) CODE - AD7523

DIGITAL INPUT MSB LSB	ANALOG OUTPUT
11111111	$-V_{\text {REF }}\left(\frac{127}{128}\right)$
10000001	$-V_{\text {REF }}\left(\frac{1}{128}\right)$
10000000	0
01111111	$+V_{\text {REF }}\left(\frac{1}{128}\right)$
00000001	$+V_{\text {REF }}\left(\frac{127}{128}\right)$
00000000	$+V_{\text {REF }}\left(\frac{128}{128}\right)$

NOTES:

1. $1 \mathrm{LSB}=\left(2^{-7}\right)\left(\mathrm{V}_{\mathrm{REF}}\right)=\left(\frac{1}{128}\right)\left(\mathrm{V}_{\mathrm{REF}}\right)$

A "Logic 1 " input at any digital input forces the corresponding ladder switch to steer the bit current to lout 1 bus. A "Logic 0 " input forces the bit current to lout2 bus. For any code the

FIGURE 3. BIPOLAR OPERATION (4-QUADRANT MULTIPLICATION)
lout1 and lout2 bus currents are complements of one another. The current amplifier at $\mathrm{I}_{\text {OUT2 }}$ changes the polarity of $\mathrm{I}_{\text {OUT2 }}$ current and the transconductance amplifier at I IUT output sums the two currents. This configuration doubles the output range. The difference current resulting at zero offset binary code, (MSB = "Logic 1", all other bits = "Logic 0 "), is corrected by suing an external resistor, ($10 \mathrm{M} \Omega$), from $\mathrm{V}_{\text {REF }}$ to louta (Figure 3).

Offset Adjustment

1. Adjust $\mathrm{V}_{\text {REF }}$ to approximately +10 V .
2. Connect all digital inputs to "Logic 1".
3. Adjust lout2 amplifier offset adjust trimpot for $\mathrm{OV} \pm 1 \mathrm{mV}$ at Iout2 amplifier output.
4. Connect MSB (Bit 1) to "Logic 1" and all other bits to "Logic 0 ".
5. Adjust lourt ${ }_{1}$ amplifier offset adjust trimpot for $\mathrm{OV} \pm 1 \mathrm{mV}$ at $\mathrm{V}_{\text {OUT }}$.

Gain Adjustment

1. Connect all digital inputs to $\mathrm{V}+$.
2. Monitor $V_{\text {OUT }}$ for $a-V_{\text {REF }}\left(1-1 / 2^{8}\right)$ volts reading.
3. To increase $V_{\text {OUt }}$, connect a series resistor, R2, of up to 250Ω between $V_{\text {OUT }}$ and $R_{\text {FEEDBACK }}$.
4. To decrease $\mathrm{V}_{\text {OUt }}$, connect a series resistor, R 1 , of up to 250Ω between the reference voltage and the $\mathrm{V}_{\mathrm{REF}}$ terminal.

Bipolar (Offset Binary) Operation - AD7533

The circuit configuration for operating the AD7533 in the bipolar mode is given in Figure 3. Using offset binary digital input codes and positive and negative reference voltage values, 4-Quadrant multiplication can be realized. The "Digital Input Code/Analog Output Value" table for bipolar mode is given in Table 4.

A "Logic 1" input at any digital input forces the corresponding ladder switch to steer the bit current to lout1 bus. A "Logic 0 " input forces the bit current to lout2 bus. For any code the lour1 and lout2 bus currents are complements of one another. The current amplifier at lout2 changes the polarity of lout2 current and the transconductance amplifier at $\mathrm{l}_{\mathrm{OUT} 1}$ output sums the two currents. This configuration doubles the output range. The difference current resulting at zero offset binary code, (MSB = "Logic 1", all other bits = "Logic 0 "), is corrected by using an external resistor, ($10 \mathrm{M} \Omega$), from $V_{\text {REF }}$ to $\mathrm{l}_{\text {OUT2 }}$.

TABLE 4. UNIPOLAR BINARY CODE - AD7533

DIGITAL INPUT MSB LSB	(NOTE 1)
1111111111	$-V_{\text {REF }}\left(\frac{511}{512}\right)$
1000000001	$-V_{\text {REF }}\left(\frac{1}{512}\right)$
1000000000	0
0111111111	$+V_{\text {REF }}\left(\frac{1}{512}\right)$
0000000001	$+V_{\text {REF }}\left(\frac{511}{512}\right)$
0000000000	$+V_{\text {REF }}\left(\frac{512}{512}\right)$

NOTES:

1. $V_{\text {OUt }}$ as shown in the Functional Diagram.
2. Nominal Full Scale for the circuit of Figure 6 is given by

$$
F S R=V_{R E F}\left(\frac{1023}{512}\right)
$$

3. Nominal LSB magnitude for the circuit of Figure 3 is given by

$$
\mathrm{LSB}=\mathrm{V}_{\mathrm{REF}}\left(\frac{1}{512}\right)
$$

FIGURE 4. 10-BIT AND SIGN MULTIPLYING DAC

Offset Adjustment

1. Adjust $\mathrm{V}_{\mathrm{REF}}$ to approximately +10 V .
2. Connect all digital inputs to "Logic 1 ".
3. Adjust $\mathrm{I}_{\text {OUT2 }}$ amplifier offset adjust trimpot for $\mathrm{OV} \pm 1 \mathrm{mV}$ at IOUT2 amplifier output.
4. Connect MSB (Bit 1) to "Logic 1" and all other bits to "Logic 0 ".
5. Adjust lout1 amplifier offset adjust trimpot for $0 \mathrm{~V} \pm 1 \mathrm{mV}$ at VOUT.

Gain Adjustment

1. Connect all digital inputs to $\mathrm{V}+$.
2. Monitor $\mathrm{V}_{\text {OUT }}$ for $a-V_{\text {REF }}\left(1-2^{-9}\right)$ volts reading.
3. To increase $V_{\text {OUT }}$, connect a series resistor of up to 250Ω between $V_{\text {OUT }}$ and RFEEDBACK.
4. To decrease $V_{\text {OUT }}$, connect a series resistor of up to 250Ω between the reference voltage and the $\mathrm{V}_{\text {REF }}$ terminal.

FIGURE 5. PROGRAMMABLE FUNCTION GENERATOR

$V_{\text {OUT }}=-V_{\text {IN/D }}$
Where:
$D=\frac{B i t 1}{2^{1}}+\frac{B i t 2}{2^{2}}+\ldots \frac{B i t 8}{2^{2}}$
$\left(0 \leq \mathrm{D} \leq \frac{255}{256}\right)$
FIGURE 6. DIVIDER (DIGITALLY CONTROLLED GAIN)

$V_{\text {OUT }}=V_{\text {REF }}\left[\left(\frac{R_{2}}{R_{1}+R_{2}}\right)-\left(\frac{R_{1} D}{R_{1}+R_{2}}\right)\right]$
Where $D=\frac{\text { Bit } 1}{2^{1}}+\frac{\text { Bit } 2}{2^{2}}+\ldots \frac{\text { Bit } 8}{2^{8}}$
($0 \leq \mathrm{D} \leq \frac{255}{256}$)
FIGURE 7. MODIFIED SCALE FACTOR AND OFFSET

Die Characteristics

DIE DIMENSIONS:
$101 \times 103 \mathrm{mils}$ (2565×2616 micrms)
METALLIZATION:
Type: Pure Aluminum
Thickness: $10 \pm 1 \mathrm{k} \AA$
GLASSIVATION:
Type: PSG/Nitride
PSG: $7 \pm 1.4 \mathrm{k} \AA$
Nitride: $8 \pm 1.2 \mathrm{k} \AA$
PROCESS: CMOS Metal Gate

Metallization Mask Layout

Features

－12－Bit Linearity 0．01\％
－Pretrimmed Gain
－Low Gain and Linearity Tempcos
－Full Temperature Range Operation
－Full Input Static Protection
－TTLCMOS Compatible
－+5 V to +15 V Supply Range
－20mW Low Power Dissipation
－Current Settling Time 1μ s to 0.01% of FSR
－Four Quadrant Multiplication

Description

The AD7541 is a monolithic，low cost，high performance，12－ bit accurate，multiplying digital－to－analog converter（DAC）．

Harris＇wafer level laser－trimmed thin－film resistors on CMOS circuitry provide true 12－bit linearity with TTL／CMOS compat－ ible operation．

Special tabbed－resistor geometries（improving time stability）， full input protection from damage due to static discharge by diode clamps to V_{+}and ground，large $\mathrm{I}_{\text {OUT1 }}$ and $\mathrm{I}_{\mathrm{OUT} 2}$ bus lines（improving superposition errors）are some of the fea－ tures offered by Harris AD7541．

Pin compatible with AD7521，this DAC provides accurate four quadrant multiplication over the full military temperature range．

Ordering Information

PART NUMBER	NONLINEARITY	TEMPERATURE RANGE	PACKAGE
AD7541AD	$0.02 \%(11-\mathrm{Bit})$	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	18 Lead Plastic DIP
AD7541BD	$0.01 \%(12-\mathrm{Bit})$	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	18 Lead Plastic DIP
AD7541JN	$0.02 \%(11-\mathrm{Bit})$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	18 Lead Plastic DIP
AD7541KN	0.01%（12－Bit）	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	18 Lead Plastic DIP
AD7541LN	$0.01 \%(12-\mathrm{Bit})$ Guaranteed Monotonic	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	18 Lead Plastic DIP
AD7541SD	0.02%（11－Bit）	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	18 Lead Plastic DIP
AD7541TD	0.01%（12－Bit）	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	18 Lead Plastic DIP

Pinout

Functional Diagram

Switches shown are for Digital Inputs＂High＂

Absolute Maximum Ratings

Thermal Information

Thermal Resistance Plastic DIP Package	$\begin{gathered} \theta_{\mathrm{jA}} \\ .90^{\circ} \mathrm{C} N \end{gathered}$
Operating Temperature	
JN, KN, LN Versions	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
AD, BD Versions	$.25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
SD, TD Version	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Maximum Power Dissipation	
Plastic DIP Package up to $+70^{\circ} \mathrm{C}$	670mW
Junction Temperature	.$+150^{\circ} \mathrm{C}$

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Electrical Specifications $\mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=+10 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT1} 1}=\mathrm{V}_{\mathrm{OUT} 2}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, Unless Otherwise Specified

		$T_{A}+25^{\circ} \mathrm{C}$			T $_{A}$ MIN-MAX		
PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	MIN	MAX	UNITS

SYSTEM PERFORMANCE

Resolution			12	-	-	12	-	Bits
Nonlinearity	A, S, J	$\begin{aligned} & -10 \mathrm{~V} \leq \mathrm{V}_{\mathrm{REF}} \leq+10 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT1 }}=\mathrm{V}_{\text {OUT } 2}=0 \mathrm{~V} \\ & \text { See Figure } 3 \\ & \text { (Note 4) } \end{aligned}$	-	-	± 0.024	-	± 0.024	\% of FSR
	B, T, K		-	\bullet	± 0.012	-	± 0.012	\% of FSR
	L		-	-	± 0.012	-	± 0.012	\% of FSR
Monotonicity			Guaranteed					
Gain Error		$-10 \mathrm{~V} \leq \mathrm{V}_{\text {REF }} \leq+10 \mathrm{~V}$ (Note 4)	-	-	± 0.3	-	± 0.4	\% of FSR
Output Leakage Current (Either Output)		$\mathrm{V}_{\text {OUT1 }}=\mathrm{V}_{\text {OUT2 }}=0$	-	-	± 50	-	± 200	nA

DYNAMIC CHARACTERISTICS

Power Supply Rejection		$V_{+}=14.5 \mathrm{~V}$ to 15.5 V See Figure 5, (Note 4)	-	-	± 0.005	-	± 0.01	\% of FSRJ\% of $\Delta \mathrm{V}_{+}$
Output Current Settling Time		To 0.1% of FSR See Figure 9, (Note 5)	-	-	1	-	1	$\mu \mathrm{s}$
Feedthrough Error		$\mathrm{V}_{\text {REF }}=20 \mathrm{~V}_{\text {Pp }}, 10 \mathrm{kHz}$ All Digital Inputs Low See Figure 8, (Note 5)	-	-	1	-	1	$m V_{\text {P-P }}$
REFERENCE INPUTS								
Input Resistance		All Digital Inputs High louti at Ground	5	10	20	5	20	k Ω
ANALOG OUTPUT								
Voltage Compliance		Both Outputs, See Maximum Ratings (Note 6)	-100 mV to $\mathrm{V}+$					
Output Capacitance	$\mathrm{C}_{\text {OUT1 }}$	All Digital Inputs High See Figure 7, (Note 5)	-	-	200	-	200	pF
	$\mathrm{C}_{\text {OUT2 }}$		-	-	60	\bullet	60	pF
	$\mathrm{C}_{\text {OUTI }}$	All Digital Inputs Low) See Figure 7, (Note 5)	-	-	60	-	60	pF
	$\mathrm{C}_{\text {OUT2 }}$		\bullet	-	200	\bullet	200	pF
Output Noise (Both Outputs)		See Figure 6	Equivalent to $10 \mathrm{k} \Omega$ Johnson Noise					
DIGITAL INPUTS								
Low State Threshold, $\mathrm{V}_{\text {IL }}$		(Note 1, 5)	-	-	0.8	-	0.8	V
High State Threshold, V_{IH}			2.4	-	-	2.4	-	V

Electrical Specifications $V_{+}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=+10 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT} 1}=\mathrm{V}_{\mathrm{OUT} 2}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, Unless Otherwise Specified (Continued)

PARAMETER	TEST CONDITIONS	$\mathrm{T}_{\mathrm{A}}+25^{\circ} \mathrm{C}$			TA MIN-MAX		UNITS
		MIN	TYP	MAX	MIN	MAX	
Input Current	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ or $\mathrm{V}+$ (Note 5)	-	-	± 1	-	± 1	$\mu \mathrm{A}$
Input Coding	See Tables 1 \& 2 (Note 5)	Binary/Offiset Binary					
Input Capacitance	(Note 5)	-	-	8	-	8	pF
POWER SUPPLY CHARACTERISTICS							
Power Supply Voltage Range	Accuracy is not guaranteed over this range	+5 to +16					V
$1+$	All Digital Inputs High or Low (Excluding Ladder Network)	-	-	2.0	-	2.5	mA
Total Power Dissipation	(Including Ladder Network)	-	20	-	-	-	mW

NOTES:

1. The digital control inputs are zener protected; however, permanent damage may occur on unconnected units under high energy electrostatic fields. Keep unused units in conductive foam at all times.
2. Do not apply voltages higher than V_{DD} or less than $G N D$ potential on any terminal except $\mathrm{V}_{\text {REF }}$ and $\mathrm{R}_{\text {FEEDBACK }}$.
3. Full scale range (FSR) is 10 V for unipolar and $\pm 10 \mathrm{~V}$ for bipolar modes.
4. Using internal feedback resistor, R FEEDBACK
5. Guaranteed by design or characterization and not production tested.
6. Accuracy not guaranteed unless outputs at ground potential.

Definition of Terms

Nonlinearity: Error contributed by deviation of the DAC transfer function from a "best fit straight line" function. Normally expressed as a percentage of full scale range. For a multiplying DAC, this should hold true over the entire $\mathrm{V}_{\text {REF }}$ range.

Resolution: Value of the LSB. For example, a unipolar converter with n bits has a resolution of $L S B=\left(V_{R E F}\right) / 2^{-N}$. A bipolar converter of n bits has a resolution of $L S B=\left(V_{\text {REF }}\right) /$ $2^{-(N-1)}$. Resolution in no way implies linearity.
Settling Time: Time required for the output function of the DAC to settle to within $1 / 2$ LSB for a given digital input stimulus, i.e., 0 to Full Scale.

Gain Error: Ratio of the DAC's operational amplifier output voltage to the nominal input voltage value.
Feedthrough Error: Error caused by capacitive coupling from $V_{\text {REF }}$ to output with all switches OFF.
Output Capacitance: Capacitance from IOUT1, and IOUT2 terminals to ground.
Output Leakage Current: Current which appears on IOut1, terminal when all digital inputs are LOW or on lout2 terminal when all inputs are HIGH.

Detailed Description

The AD7541 is a 12 -bit, monolithic, multiplying D/A converter. A highly stable thin film R-2R resistor ladder network and NMOS SPDT switches form the basis of the converter circuit. CMOS level shifters provide low power TTLCMOS compatible operation. An external voltage or current reference and an operational amplifier are all that is required for most voltage output applications. A simplified equivalent circuit of the DAC is shown on page 1, (Functional Diagram). The NMOS SPDT switches steer the ladder leg currents between louT1 and lout2 buses which must be held at ground potential. This configuration maintains a constant current in each ladder leg independent of the input code. Converter errors are further eliminated by using wider metal interconnections between the major bits and the outputs. Use of high threshold switches reduces the offset (leakage) errors to a negligible level.
Each circuit is laser-trimmed, at the wafer level, to better than 12-bits linearity. For the first four bits of the ladder, special trim-tabbed geometries are used to keep the body of the resistors, carrying the majority of the output current, undisturbed. The resultant time stability of the trimmed circuits is comparable to that of untrimmed units.
The level shifter circuits are comprised of three inverters with a positive feedback from the output of the second to first (Figure 1). This configuration results in TTLCOMS compatible operation over the full military temperature range. With the ladder SPDT switches driven by the level shifter, each switch is binary weighted for an "ON" resistance proportional to the respective ladder leg current. This assures a constant voltage drop across each switch, creating equipotential terminations for the 2R ladder resistor, resulting in accurate leg currents.

FIGURE 1. CMOS SWITCH

Typical Applications

General Recommendations

Static performance of the AD7541 depends on Iouti and lout2 (pin 1 and pin 2) potentials being exactly equal to GND (pin3).

The output amplifier should be selected to have a low input bias current (typically less than $75 n A$), and a low drift (depending on the temperature range). The voltage offset of the amplifier should be nulled (typically less than $\pm 200 \mu \mathrm{~V}$).

The bias current compensation resistor in the amplifier's non-inverting input can cause a variable offset. Non-inverting input should be connected to GND with a low resistance wire.

Ground-loops must be avoided by taking all pins going to GND to a common point, using separate connections.

The V_{+}(pin 18) power supply should have a low noise level and should not have any transients exceeding +17 V .
Unused digital inputs must be connected to GND or $V_{D D}$ for proper operation.

A high value resistor ($\sim 1 \mathrm{M} \Omega$) can be used to prevent static charge accumulation, when the inputs are open-circuited for any reason.

When gain adjustment is required, low tempco (approximately $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$) resistors or trim-pots should be selected.

Unipolar Binary Operation

The circuit configuration for operating the AD7541 in unipolar mode is shown in Figure 2. With positive and negative $V_{\text {REF }}$ values the circuit is capable of 2-Quadrant multiplication. The "Digital Input Code/Analog Output Value" table for unipolar mode is given in Table 1. A Schottky diode (HP5082-2811 or equivalent) prevents IOUT1 from negative excursions which could damage the device. This precaution is only necessary with certain high speed amplifiers.

FIGURE 2. UNIPOLAR BINARY OPERATION (2-QUADRANT MULTIPLICATION)

Zero Offset Adjustment

1. Connect all digital inputs to GND.
2. Adjust the offset zero adjust trimpot of the output operational amplifier for $\mathrm{OV} \pm 0.5 \mathrm{mV}$ (max) at $\mathrm{V}_{\text {OUT }}$.

Gain Adjustment

1. Connect all digital inputs to $V_{D D}$ -
2. Monitor $V_{\text {OUT }}$ for $a-V_{\text {REF }}\left(1-1 / 2{ }^{12}\right)$ reading.
3. To increase $V_{\text {OUT }}$, connect a series resistor, (0Ω to 250Ω), in the lout1 amplifier feedback loop.
4. To decrease $V_{\text {OUt, }}$ connect a series resistor, (0Ω to 250Ω), between the reference voltage and the $\mathrm{V}_{\text {REF }}$ terminal.

TABLE 1. CODE TABLE - UNIPOLAR BINARY OPERATION

DIGITAL INPUT	ANALOG OUTPUT
111111111111	$-V_{\text {REF }}\left(1-1 / 2^{12}\right)$
100000000001	$-V_{\text {REF }}\left(1 / 2+1 / 2^{12}\right)$
100000000000	$-V_{\text {REF }} / 2$
011111111111	$-V_{\text {REF }}\left(1 / 2-1 / 2^{12}\right)$
000000000001	$-V_{\text {REF }}\left(1 / 2^{12}\right)$
000000000000	0

Bipolar (Offset Binary) Operation

The circuit configuration for operating the AD7541 in the bipolar mode is given in Figure 3. Using offset binary digital input codes and positive and negative reference voltage values Four-Quadrant multiplication can be realized. The "Digital Input Code/Analog Output Value" table for bipolar mode is given in Table 2.

A "Logic 1 " input at any digital input forces the corresponding ladder switch to steer the bit current to lout, bus. A "Logic 0" input forces the bit current to lout2 bus. For any code the lout1 and lout2 bus currents are complements of one another. The current amplifier at $\mathrm{I}_{\text {OUT2 }}$ changes the polarity of IOUT2 current and the transconductance amplifier at IOUT1 output sums the two currents. This configuration doubles the output range of the DAC. The difference current resulting at zero offset binary code, (MSB = "Logic 1", All other bits = "Logic 0 "), is corrected by using an external resistive divider, from $V_{\text {REF }}$ to lout2.

Offset Adjustment

1. Adjust $\mathrm{V}_{\mathrm{REF}}$ to approximately +10 V .
2. Set R4 to zero.
3. Connect all digital inputs to "Logic 1".
4. Adjust I Iout 1 amplifier offset zero adjust trimpot for $O \mathrm{~V}$ $\pm 0.1 \mathrm{mV}$ at lout2 amplifier output.
5. Connect a short circuit across R2.
6. Connect all digital inputs to "Logic σ ".
7. Adjust lout2 amplifier offset zero adjust trimpot for $0 \mathrm{~V} \pm 0.1 \mathrm{mV}$ at lout1 amplifier output.
8. Remove short circuit across R2.
9. Connect MSB (Bit 1) to "Logic 1" and all other bits to "Logic 0 ".
10. Adjust R 4 for $\mathrm{OV} \pm 0.2 \mathrm{mV}$ at $\mathrm{V}_{\mathrm{OUT}}$.

NOTE: R1 AND R2 SHOULD BE 0.01%, LOW-TCR RESISTORS

FIGURE 3. BIPOLAR OPERATION (4-QUADRANT MULTIPLICATION)

Test Circuits

FIGURE 4. NONLINEARITY TEST CIRCUIT

FIGURE 5. POWER SUPPLY REJECTION TEST CIRCUIT

FIGURE 6. NOISE TEST CIRCUIT

Test Circuits (Continued)

FIGURE 7. OUTPUT CAPACITANCE TEST CIRCUIT

FIGURE 8. FEEDTHROUGH ERROR TEST CIRCUIT

FIGURE 9. OUTPUT CURRENT SETTLING TIME TEST CIRCUIT

Dynamic Performance

The dynamic performance of the DAC, also depends on the output amplifier selection. For low speed or static applications, AC specifications of the amplifier are not very critical. For high-speed applications slew-rate, settling-time, openloop gain and gain/phase-margin specifications of the amplifier should be selected for the desired performance.

The output impedance of the AD7541 looking into lout1 varies between $10 \mathrm{k} \Omega$ ($\mathrm{R}_{\text {FEEDBACK }}$ alone) and $5 \mathrm{~K} \Omega$ ($\mathrm{R}_{\text {FEEDBACK }}$ in parallel with the ladder resistance).

Similarly the output capacitance varies between the minimum and the maximum values depending on the input code. These variations necessitate the use of compensation capacitors, when high speed amplifiers are used.
A capacitor in parallel with the feedback resistor (as shown in Figure 10) provides the necessary phase compensation to critically damp the output.
A small capacitor connected to the compensation pin of the amplifier may be required for unstable situations causing oscillations. Careful PC board layout, minimizing parasitic capacitances, is also vital.

FIGURE 10. GENERAL DAC CIRCUIT WITH COMPENSATION CAPACITOR, $\mathbf{C}_{\mathbf{C}}$

12-Bit Buffered Multiplying CMOS DAC

Features

- 12-Bit Resolution
- Low Gain T.C. 2ppm ${ }^{\circ} \mathrm{C}$ Typ
- Fast TTLCMOS Compatible Data Latches
- Single +5 V to $+\mathbf{1 5 V}$ Supply
- Low Power
- Low Cost
- /883 Processed Versions Available

Ordering Information

PART NUMBER	TEMPERATURE RANGE	PACKAGE
AD7545JN	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	20 Lead Plastic DIP
AD7545KN	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	20 Lead Plastic DIP
AD7545AN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 Lead Plastic DIP
AD7545BN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 Lead Plastic DIP
AD7545AD	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 Lead Ceramic DIP
AD7545BD	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 Lead Ceramic DIP
AD7545SD	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	20 Lead Ceramic DIP

Description

The AD7545 is a low cost monolithic 12-bit CMOS multiplying DAC with on-board data latches. Data is loaded in a single 12-bit wide word which allows interfacing directly to most 12 -bit and 16 -bit bus systems. Loading of the input latches is under the control of the CS and WR inputs. A logic low on these control inputs makes the input latches transparent allowing direct unbuffered operation of the DAC.

Functional Diagram

Specifications AD7545

Absolute Maximum Ratings	
Supply Voltage（ V_{DD} to DGND）	0．3V，＋17V
Digital Input Voltage to DGND	－0．3V， $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
$\mathrm{V}_{\mathrm{FFB}}, \mathrm{V}_{\mathrm{REF}}$ to DGND	$\pm 25 \mathrm{~V}$
$\mathrm{V}_{\text {PIN } 1}$ to DGND．	－0．3V， $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
AGND to DGND	－0．3V， $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature（Soldering	$+300^{\circ} \mathrm{C}$

Thermal Information

Thermal Resistance	$\theta_{\text {JA }}$	$\theta_{\text {Jc }}$
Ceramic DIP Package	$71^{\circ} \mathrm{C} / \mathrm{W}$	$17^{\circ} \mathrm{CN}$
Plastic DIP Package	$120^{\circ} \mathrm{C} / \mathrm{W}$	－
Operating Temperature		
Commercial（J，K，Grades）		to $+70^{\circ} \mathrm{C}$
Industrial（A，B，Grades）		to $+85^{\circ} \mathrm{C}$
Extended（S Grades）．		（ $+125^{\circ} \mathrm{C}$

CAUTION：Stresses above those listed in＂Absolute Maximum Ratings＂may cause permanent damage to the device．This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied．

Electrical Specifications $\quad T_{A}=$ See Note $1, V_{R E F}=+10 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT} 1}=0 \mathrm{~V}, A G N D=$ DGND，Unless Otherwise Specified

PARAMETER		TEST CONDITIONS	$V_{\text {DD }}=+5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=+15 \mathrm{~V}$			UNITS	
		MIN	TYP	MAX	MIN	TYP	MAX			
STATIC PERFORMANCE										
Resolution				12			12			Bits
Relative Accuracy	J，A，S		－	－	± 2	－	－	± 2	LSB	
	K，B		－	－	± 1	－	－	± 1	LSB	
Differential Nonlinearity	J, A, S	10－Bit Monotonic $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	－	－	± 4	－	－	± 4	LSB	
	K，B	12－Bit Monotonic $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	－	－	± 1	－	－	± 1	LSB	
Gain Error （Using Internal RFB）	J，A，S	DAC Register Loaded with 111111111111	－	－	± 20	－	－	± 25	LSB	
	K，B	Gain Error is Adjustable Using the Circuits of Figure 5 and 6，（Note 2）	－	－	± 10	－	－	± 15	LSB	
Gain Temperature Coefficient Δ Gain／Δ Temperature		Typical Value is $2 \mathrm{ppm}{ }^{\circ} \mathrm{C}$ for $V_{D D}=+5 V$ ，（Note 3）	－	－	± 5	－	－	± 10	ppm ${ }^{\circ} \mathrm{C}$	
DC Supply Rejection Δ Gain／$\Delta V_{D D}$		$\Delta V_{D D}= \pm 5 \%$	0.015	－	0.03	0.01	－	0.02	\％	
Output Leakage Current at OUT1	J，K	$\begin{aligned} & \mathrm{DBO}-\mathrm{DB11}=0 \mathrm{~V} ; \\ & \mathrm{WR}, \mathrm{CS}=0 \mathrm{~V} \\ & \text { (Note 1) } \end{aligned}$	－	－	50	－	－	50	nA	
	A，B		－	－	50	－	－	50	nA	
	S		－	－	200	－	－	200	nA	
DYNAMIC CHARACTERISTICS										
Current Setting Time		To $1 / 2$ LSB OUT1 LOAD $=100 \Omega$ ，DAC output measured from falling edge of $\overline{W R}, \overline{C S}=0 V$ ，（Note 3）	－	－	2	－	－	2	$\mu \mathrm{s}$	
Propagation Delay from Digital Input Change to 90% of Final Analog Output		$\begin{aligned} & \text { OUT1 LOAD }=100 \Omega \\ & \text { CEXT }^{\text {L } 13 \mathrm{pF}} \\ & \text { (Note 3 and 4) } \end{aligned}$	－	－	300	－	－	250	ns	
Digital to Analog Glitch Impulse		$\mathrm{V}_{\text {REF }}=\mathrm{AGND}$	－	400	－	－	250	－	nV sec	
AC Feedthrough At OUT1		$\begin{aligned} & \mathrm{V}_{\mathrm{REF}}= \pm 10 \mathrm{~V}, 10 \mathrm{kHz} \text { Sinewave, } \\ & \text { (Note 5) } \end{aligned}$	－	5	－	－	5	－	$m V_{\text {P－P }}$	
ANALOG OUTPUTS										
Output Capacitance Cout1		$\begin{aligned} & \mathrm{DB} 0-\mathrm{DB} 11=0 \mathrm{~V}, \\ & \mathrm{WR}, \mathrm{CS}=0 \mathrm{~V},(\text { Note 3) } \end{aligned}$	－	－	70	－	－	70	pF	
Cout1		$\begin{aligned} & \mathrm{DBO}-\mathrm{DB} 11=\mathrm{V}_{\mathrm{DD}}, \\ & \mathrm{WR}, \mathrm{CS}=0 \mathrm{~V},(\text { Note 3) } \end{aligned}$	－	－	200	－	－	200	pF	

Specifications AD7545

Electrical Specifications $\quad T_{A}=$ See Note $1, V_{R E F}=+10 \mathrm{~V}, V_{O U T 1}=0 V$, AGND $=D G N D$, Unless Otherwise Specified (Continued)

PARAMETER	TEST CONDITIONS	$\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=+15 \mathrm{~V}$			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
REFERENCE INPUT								
Input Resistance, (Pin 19 to GND)	Input Resistance TC $=-300 \mathrm{ppm}{ }^{\circ} \mathrm{C}$ typ	7	-	-	7	-	-	k Ω
	Typical Input Resistance $=11 \mathrm{k} \Omega$	-	\bullet	25	-	-	25	k Ω
DIGITAL INPUTS								
Input High Voltage, V_{IH}		2.4	-	-	-	\bullet	13.5	V
Input Low Voltage, $\mathrm{V}_{\text {IL }}$		-	-	0.8	-	-	1.5	V
Input Current, $\mathrm{I}_{1 \times}$	$\mathrm{V}_{\text {IN }}=0$ or V_{DD}, (Note 6)	± 1		± 10	± 1		± 10	$\mu \mathrm{A}$ max
Input Capacitance DB0 - DB11	$\mathrm{V}_{\text {IN }}=0$, (Note 3)	-	-	7	-	-	7	pF
$\overline{\mathrm{WR}}, \overline{\mathrm{CS}}$	$\mathrm{V}_{\text {IN }}=0$, (Note 3)	-	-	20	-	-	20	pF
SWITCHING CHARACTERISTICS (Note 3)								
Chip Select to Write Setup Time, tcs	See Figure 1	380	200	-	200	120	-	ns
Chip Select to Write Hold Time, t_{CH}	See Figure 1	0	-	-	0	-	-	ns
Write Pulse Width, ${ }_{\text {WR }}$	$\mathrm{t}_{\mathrm{CS}} \geq \mathrm{t}_{\text {Wh }}, \mathrm{t}_{\mathrm{CH}} \geq 0$, See Figure 1	400	175	-	240	100		ns
Data Setup Time, $\mathrm{t}_{\text {DS }}$	See Figure 1	210	100	-	120	60	-	ns
Data Hold Time, $\mathrm{t}_{\text {DH }}$	See Figure 1	10	-	-	10	-	-	ns
POWER SUPPLY CHARACTERISTICS								
I_{DD}	All Digital Inputs V_{IL} or V_{IH}	-	-	2	-	-	2	mA
	All Digital Inputs $0 V$ or $V_{D D}$ All Digital Inputs OV or V_{DD}	-	$\begin{gathered} 100 \\ 10 \end{gathered}$	500	-	$\begin{gathered} 100 \\ 10 \end{gathered}$	500	$\mu \mathrm{A}$ $\mu \mathrm{A}$

NOTES:

1. Temperature Ranges as follows: J, K versions: $\quad 0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
A, B versions: $-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
S version: $\quad-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$T_{A}=+25^{\circ} \mathrm{C}$ for TYP Specifications. MIN and MAX are measured over the specified operating range.
2. This includes the effect of 5 ppm maximum gain TC .
3. Parameter not tested. Parameter guaranteed by design, simulation, or characterization.
4. $\mathrm{DBO}-\mathrm{DB} 11=0 \mathrm{~V}$ to V_{DD} or V_{DD} to 0 V in plastic and sidebraze package.
5. Feedthrough can be further reduced by connecting the metal lid on the ceramic package to DGND.
6. Logic inputs are MOS gates. Typical input current $\left(+25^{\circ} \mathrm{C}\right)$ is less than 1 nA .
7. Typical values are not guaranteed but reflect mean performance specification. Specifications subject to change without notice.

Timing Diagram

FIGURE 1A. TYPICAL WRITE CYCLE

FIGURE 1B. PREFERRED WRITE CYCLE
FIGURE 1. WRITE CYCLE TIMING DIAGRAM

MODE SELECTION	
WRITE MODE: HOLD MODE: $\overline{C S}$ and $\overline{\text { WR low, DAC responds }}$ to data bus (DB0 - DB11) inputs Either $\overline{\mathrm{CS}}$ or $\overline{\text { WR }}$ high, data bus (DB0 - DB11) is locked out; DAC holds last data present when $\overline{\text { WR }}$ or $\overline{\mathrm{CS}}$ assumed high state.	

NOTES:

1. $V_{D D}=+5 \mathrm{~V} ; \mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=20 \mathrm{~ns}$
2. $V_{D D}=+15 \mathrm{~V} ; \mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=40 \mathrm{~ns}$
3. All input signal rise and fall times measured from 10% to 90% of $V_{D D}$.
4. Timing measurement reference level is $\left(\mathrm{V}_{\mathrm{IH}}+\mathrm{V}_{\mathrm{IL}}\right) / 2$.
5. Since input data latches are transparent for $\overline{\mathrm{CS}}$ and $\overline{\mathrm{WR}}$ both low, it is preferred to have data valid before $\overline{\mathrm{CS}}$ and $\overline{\mathrm{WR}}$ both go low. This prevents undesirable changes at the analog output while the data inputs settle.

Circuit Information - D/A Converter Section

Figure 2 shows a simplified circuit of the D/A converter section of the AD7545. Note that the ladder termination resistor is connected to AGND. R is typically $11 \mathrm{k} \Omega$
The binary weighted currents are switched between the OUT1 bus line and AGND by N-channel switches, thus maintaining a constant current in each ladder leg independent of the switch state. One of the current switches is shown in Figure 3.

FIGURE 2. SIMPLIFIED D/A CIRCUIT OF AD7545

FIGURE 3. N-CHANNEL CURRENT STEERING SWITCH
The capacitance at the OUT1 bus line, Cout1, is code dependent and varies from 70pF (all switches to AGND) to 200pF (all switches to OUT1).

The input resistance at $V_{\text {REF }}$ (Figure 2) is always equal to $R_{L D R}$ ($R_{L D R}$ is the $R / 2 R$ ladder characteristic resistance and is equal to the value "R"). Since $R_{I N}$ at the $V_{\text {REF }}$ pin is constant, the reference terminal can be driven by a reference voltage or a reference current, ac or dc, of positive or negative polarity. (If a current source is used, a low temperature coefficient external $R_{F B}$ is recommended to define scale factor)Circuit InformationDigital Section.
Figure 4 shows the digital structure for one bit. The digital signals CONTROL and CONTROL are generated from $\overline{\mathrm{CS}}$ and $\overline{W R}$.

The input buffers are simple CMOS inverters designed such that when the AD7545 is operated with $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$, the buffers convert TTL input levels (2.4 V and 0.8 V) into CMOS logic levels. When $\mathrm{V}_{\mathbb{I N}}$ is in the region of 2.0 V to 3.5 V the input buffers operate in their linear region and draw current from the power supply. To minimize power supply currents it is recommended that the digital input voltages be as close to the supply rails ($V_{D D}$ and DGND) as is practically possible.
The AD7545 may be operated with any supply voltage in the range $5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 15 \mathrm{~V}$. With $\mathrm{V}_{\mathrm{DD}}=+15 \mathrm{~V}$ the input logic levels are CMOS compatible only, i.e., 1.5 V and 13.5 V .

Application

Output Offset

CMOS current-steering D/A converters exhibit a code dependent output resistance which in turn causes a code dependent amplifier noise gain. The effect is a code dependent differential nonlinearity term at the amplifier output which depends on V_{OS} where V_{OS} is the amplifier input offset voltage. To maintain monotonic operation it is recommended that V_{OS} be no greater than $\left(25 \times 10^{-6}\right)\left(\mathrm{V}_{\mathrm{REF}}\right)$ over the temperature range of operation.

General Ground Management

AC or transient voltages between AGND and DGND can cause noise injection into the analog output. The simplest method of ensuring that voltages at AGND and DGND are equal is to tie AGND and DGND together at the AD7545. In more complex systems where the AGND and DGND connection is on the backplane, it is recommended that two diodes be connected in inverse parallel between the AD7545 AGND and DGND pins (1N914 or equivalent).

Digital Glitches

When $\overline{W R}$ and $\overline{\mathrm{CS}}$ are both low the latched are transparent and the D/A converter inputs follow the data inputs. In some bus systems, data on the data bus is not always valid for the whole period during which $\overline{W R}$ is low and as a result invalid data can briefly occur at the D/A converter inputs during a write cycle. Such invalid data can cause unwanted glitches at the output of the D/A converter. The solution to this problem, if it occurs, is to retime the write pulse ($\overline{\mathrm{WR}}$) so that it only occurs when data is valid.

Another cause of digital glitches is capacitive coupling from the digital lines to the OUT1 and AGND terminals. This should be minimized by isolating the analog pins of the AD7545 (Pins 1, 2, 19, 20) from the digital pins by a ground track run between pins 2 and 3 and between pins 18 and 19 of the AD7545. Note how the analog pins are at one end of the package and separated from the digital pins by V_{DD} and DGND to aid isolation at the board level. On-chip capacitive coupling can also give rise to crosstalk from the digital to analog sections of the AD7545, particularly in circuits with high currents and fast rise and fall times. This type of crosstalk is minimized by using $\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}$. However, great care should be taken to ensure that the +5 V used to power the AD7545 is free from digitally induces noise.

Temperature Coefficients

The gain temperature coefficient of the AD7545 has a maximum value of $5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ and a typical value of $2 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. This corresponds to worst case gain shifts of 2LSBs and 0.8LSBs respectively over a $100^{\circ} \mathrm{C}$ temperature range. When trim resistors R1 and R2 are used to adjust full scale range, the temperature coefficient of R1 and R2 should also be taken into account.

Basic Applications

Figures 5 and 6 show simple unipolar and bipolar circuits using the AD7545. Resistor R1 is used to trim for full scale. Capacitor C1 provides phase compensation and helps prevent overshoot and ringing when using high speed op amps. Note that the circuits of Figures 5 and 6 have constant input impedance at the $\mathrm{V}_{\mathrm{REF}}$ terminal.
The circuit of Figure 5 can either be used as a fixed reference D/A converter so that it provides an analog output voltage in the range $O V$ to $-\mathrm{V}_{\mathrm{IN}}$ (note the inversion introduced by the op amp) or V_{IN} can be an ac signal in which case the circuit behaves as an attenuator (2-Quadrant Multiplier). $\mathrm{V}_{\mathbb{N}}$ can be any voltage in the range $-20 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq+20 \mathrm{~V}$ (provided the op amp can handle such voltages) since $\mathrm{V}_{\text {REF }}$ is permitted to exceed $V_{D D}$. Table 2 shows the code relationship for the circuit of Figure 5.

Figure 6 and Table 3 illustrate the recommended circuit and code relationship for bipolar operation. The D/A function itself uses offset binary code and inverter U_{1} on the MSB line converts 2 's complement input code to offset binary code. If appropriate, inversion of the MSB may be done in software using an exclusive -OR instruction and the inverter omitted. R3, R4 and R5 must be selected to match within 0.01% and they should be the same type of resistor (preferably wire-wound or metal foil), so that their temperature coefficients match. Mismatch of R3 value to R4 causes both offset and full scale error. Mismatch of R5 to R4 and R3 causes full scale error.

The choice of the operational amplifiers in Figure 5 and Figure 6 depends on the application and the trade off between required precision and speed. Below is a list of operational amplifiers which are good candidates for many applications. The main selection criteria for these operational amplifiers is to have low V_{OS}, low V_{OS} drift, low bias current and low settling time.

These amplifiers need to maintain the low nonlinearity and monotonic operation of the D/A while providing enough speed for maximum converter performance.

Operational Amplifiers

HA5127 Ultra Low Noise, Precision
HA5137 Ultra Low Noise, Precision, Wide Band
HA5147 Ultra Low Noise, Precision, High Slew Rate
HA5170 Precision, JFET Input
TABLE 1. RECOMMENDED TRIM RESISTOR VALUES vs GRADES FOR $V_{D D}=+5 \mathrm{~V}$

TRIM RESISTOR	$\mathrm{J}, \mathrm{A}, \mathbf{S}$	K, B
R1	500Ω	200Ω
R2	150Ω	68Ω

TABLE 2. UNIPOLAR BINARY CODE TABLE FOR CIRCUIT OF FIGURE 5

BINARY NUMBER IN DAC			
REGISTER		\quad	ANALOG OUTPUT
:---			
1111			

TABLE 3. 2'S COMPLEMENT CODE TABLE FOR CIRCUIT OF FIGURE 6

DATA INPUT		ANALOG OUTPUT	
0111	1111	1111	$+V_{I N} \bullet\left\{\frac{2047}{2048}\right\}$
0000	0000	0001	$+V_{I N} \bullet\left\{\frac{1}{2048}\right\}$
0000	0000	0000	0 V
1111	1111	1111	$-V_{I N} \bullet\left\{\frac{1}{2048}\right\}$
1000	0000	0000	$-V_{I N} \bullet\left\{\frac{2048}{2048}\right\}$

FIGURE 5. UNIPOLAR BINARY OPERATION

FIGURE 6. BIPOLAR OPERATION (2'S COMPLEMENT CODE)

Die Characteristics

DIE DIMENSIONS:

$121 \times 123 \mathrm{mils}$ ($3073 \times 3124 \mathrm{micrms}$)
METALLIZATION:
Type: Pure Aluminum
Thickness: $10 \pm 1 \mathrm{k} \AA$
GLASSIVATION:
Type: PSG/Nitride
PSG: 7士1.4k \AA
Nitride: $8 \pm 1.2 \mathrm{k} \AA$
PROCESS: CMOS Metal Gate

Metallization Mask Layout

 \title{
CMOS Video Speed
 \title{
CMOS Video Speed 8－Bit R2R D／A Converter
} 8－Bit R2R D／A Converter
}

Features

－CMOS／SOS Low Power
－R2R Output，Segmented for Low＂Glitch＂
－CMOS／TTL Compatible Inputs
－Fast Settling： $20 n s$（Typ）to $\mathbf{1}_{\mathbf{2}}$ LSB
－Feedthrough Latch for Clocked or Unclocked Use
－± 0.5 LSB Accuracy（Typ）
－Data Complement Control
－High Update Rate 50MHz（Typ）
－Unipolar or Bipolar Operation

Applications

－TV／Video Display
－High Speed Oscilloscope Display
－Digital Waveform Generator
－Direct Digital Synthesis

Description

The CA3338 family are CMOS／SOS high speed R2R voltage output digital－to－analog converters．They can operate from a single +5 V supply，at video speeds，and can produce ＂rail－to－rail＂output swings．Internal level shifters and a pin for an optional second supply provide for an output range below digital ground．The data complement control allows the inversion of input data while the latch enable control pro－ vides either feedthrough or latched operation．Both ends of the R2R ladder network are available externally and may be modulated for gain or offset adjustments．In addition，＂glitch＂ energy has been kept very low by segmenting and thermom－ eter encoding of the upper 3 bits．

The CA3338 is manufactured on a sapphire substrate to give low dynamic power dissipation，low output capacitance， and inherent latch－up resistance．

Ordering Information

PART NUMBER	LINEARITY （INL，DNL）	TEMPERATURE RANGE	PACKAGE
CA3338E	$\pm 1.0 \mathrm{LSB}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Lead Plastic DIP
CA3338AE	$\pm 0.75 \mathrm{LSB}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Lead Plastic DIP
CA3338D	$\pm 1.0 \mathrm{LSB}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
CA3338AD	$\pm 0.75 \mathrm{LSB}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
CA3338M	$\pm 1.0 \mathrm{LSB}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Lead Plastic SOIC (W)
CA3338AM	$\pm 0.75 \mathrm{LSB}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Lead Plastic SOIC (W)

Functional Diagram

Die Characteristics

DIE DIMENSIONS:

$2.050 \mu \mathrm{~m} \times 2.200 \mu \mathrm{~m} \times 530 \pm 50 \mu \mathrm{~m}$
METALLIZATION:
Type: Al with 0.8\% Si
Thickness: $11 \mathrm{k} \AA \pm 1 \mathrm{k} \AA$

GLASSIVATION:

Type: 3\% PSG
Thickness: $13 \mathrm{k} \AA \pm 2.6 \mathrm{k} \AA$

Specifications CA3338，CA3338A

Absolute Maximum Ratings	Thermal Information		
DC Supply－Voltage Range ．．．．．．．．．．．．．．．．．．．．．－ 0.5 V to +8 V （ $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}$ or $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{EE}}$ ，whichever is greater）	Thermal Resistance Ceramic DIP Package	$\begin{gathered} \theta_{\mathrm{JA}} \\ 77^{\circ} \mathrm{C} M \end{gathered}$	$\begin{gathered} \theta_{\mathrm{Jc}} \\ 12^{\circ} \mathrm{C} / \mathrm{W} \end{gathered}$
Input Voltage Range	Plastic DIP Package	$100^{\circ} \mathrm{CM}$	－
Digital Inputs（LE，COMP D0－D7）．．．． $\mathrm{V}_{\text {SS }}-0.5 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$	SOIC Package．	$100^{\circ} \mathrm{CM}$	，
Analog Pins（ $\mathrm{V}_{\text {REF }}+$ ， $\mathrm{V}_{\text {REF }}{ }^{-}, \mathrm{V}_{\text {OUT }}$ ）$\ldots \ldots . . \mathrm{V}_{\mathrm{DD}}-8 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$	Maximum Power Dissipation， P_{D}		
DC Input Current	$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$		315 mW
Digital Inputs（LE，COMP，DO－D7）．．．．．．．．．．．．．．．．．．．． 20 mA	Operating Temperature Range（ T_{A} ）		
Recommended Supply Voltage Range．．．．．．．．．．．．． $4.5 \mathrm{5V}$ to 7.5 V	Ceramic Package，D suffix ．．．．．．．．．．．．．．．．．$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		
Storage Temperature Range， $\mathrm{T}_{\text {STG }} \ldots \ldots65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	Plastic Package，E suffix，M suffix．．．．．．．．．．．．．$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		
Lead Temperature（Soldering 10s）．．．．．．．．．．．．．．．．．．．$+300^{\circ} \mathrm{C}$	Junction Temperature		
	Ceramic Package ．．．．．．．．．．．．．．．．．．．．．．．．．．．．$+175^{\circ} \mathrm{C}$		
	Plastic Package ．．．．．．．．．．．．．	Plastic Package ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．+150 ¢	

CAUTION：Stresses above those listed in＂Absolute Maximum Ratings＂may cause permanent damage to the device．This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied．

Electrical Specifications $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}^{+}}=4.608 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=\mathrm{V}_{\mathrm{EE}}=\mathrm{V}_{\mathrm{REF}}{ }^{-}=\mathrm{GND}, \mathrm{LE}$ clocked at $20 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}} \geq 1 \mathrm{M} \Omega$, Unless Otherwise Specified

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
ACCURACY					
Resolution		8	－	－	Bits
Integral Linearity Error CA3338	See Figure 4	－	－	± 1	LSB
CA3338A		－	－	± 0.75	LSB
Differential Linearity Error CA3338	See Figure 4	－	－	± 0.75	LSB
CA3338A		－	－	± 0.5	LSB
Gain Error CA3338	Input Code $=$ FF $_{\text {HEX }}$ ，See Figure 3	－	－	± 0.75	LSB
CA3338A		－	－	± 0.5	LSB
Offset Error	Input Code $=00_{\text {HEX }}$ ；See Figure 3	－	－	± 0.25	LSB
DIGITAL INPUT TIMING					
Update Rate	To Maintain $1 / 2$ LSB Settling	DC	50	－	MHz
Update Rate	$\mathrm{V}_{\text {REF }}{ }^{-}=\mathrm{V}_{\text {EE }}=-2.5 \mathrm{~V}, \mathrm{~V}_{\text {REF }}+=+2.5 \mathrm{~V}$	DC	20	－	MHz
Set Up Time $\mathrm{T}_{\text {SU }}$	For Low Glitch	－	－2	－	ns
Set Up Time $\mathrm{T}_{\text {SU2 }}$	For Data Store	－	8	－	ns
Hold Time T_{H}	For Data Store	－	5	－	ns
Latch Pulse Width T_{W}	For Data Store	\bullet	5	－	ns
Latch Pulse Width T_{W}	$\mathrm{V}_{\text {REF }}{ }^{-}=\mathrm{V}_{\text {EE }}=-2.5 \mathrm{~V}, \mathrm{~V}_{\text {REF }}{ }^{+}=+2.5 \mathrm{~V}$	－	25	－	ns
OUTPUT PARAMETERS R_{L} Adjusted for $1 \mathrm{~V}_{\text {P．p }}$ Output					
Output Delay $\mathrm{T}_{\text {1 }}$	From LE Edge	－	25	－	ns
Output Delay $\mathrm{T}_{\mathrm{D} 2}$	From Data Changing	－	22	－	ns
Rise Time T_{R}	10\％to 90% of Output	－	4	－	ns
Settling Time $\mathrm{T}_{\mathbf{S}}$	10\％to Settling to $1 / 2$ LSB	－	20	－	ns
Output Impedance	$\mathrm{V}_{\text {REF }}{ }^{+}=6 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=6 \mathrm{~V}$	120	160	200	Ω
Glitch Area		－	150	－	pV－s
Glitch Area	$\mathrm{V}_{\text {REF }}{ }^{-}=\mathrm{V}_{\text {EE }}=-2.5 \mathrm{~V}, \mathrm{~V}_{\text {REF }}{ }^{+}=+2.5 \mathrm{~V}$	－	250	－	pV－s

Electrical Specifications $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}{ }^{+}=4.608 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=\mathrm{V}_{\mathrm{EE}}=\mathrm{V}_{\mathrm{REF}}=\mathrm{GND}$, LE clocked at 20MHz, $\mathrm{R}_{\mathrm{L}} \geq 1 \mathrm{M} \Omega$, Unless Otherwise Specified (Continued)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
REFERENCE VOLTAGE					
$\mathrm{V}_{\text {REF }}+$ Range	(+) Full Scale, Note 1	$\mathrm{V}_{\text {REF }}{ }^{+}$+	-	V_{DD}	V
$\mathrm{V}_{\text {REF }}$-Range	$(-)$ Full Scale, Note 1	V_{EE}	-	$\mathrm{V}_{\text {REF }}+-3$	V
$\mathrm{V}_{\text {REF }}+$ Input Current	$\mathrm{V}_{\text {REF }}+=6 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=6 \mathrm{~V}$	- .	40	50	mA
SUPPLY VOLTAGE					
Static $\mathrm{I}_{\text {D }}$ or $\mathrm{I}_{\text {EE }}$	LE = Low, D0-D7 = High	-	100	220	$\mu \mathrm{A}$
	LE = Low, D0 - D7 = Low	\bullet	-	100	$\mu \mathrm{A}$
Dynamic $\mathrm{I}_{\text {DD }}$ or $\mathrm{I}_{\text {EE }}$	$\mathrm{V}_{\text {OUt }}=10 \mathrm{MHz}$, 0 V to 5 V Square Wave	-	20	-	mA
Dynamic $\mathrm{I}_{\text {DD }}$ or $\mathrm{I}_{\text {EE }}$	$\mathrm{V}_{\text {OUT }}=10 \mathrm{MHz}, \pm 2.5 \mathrm{~V}$ Square Wave	-	25	-	mA
V_{DD} Rejection	50 kHz Sine Wave Applied	-	3	-	mV / V
$\mathrm{V}_{\text {EE }}$ Rejection	50 kHz Sine Wave Applied	-	1	-	mV / V

DIGITAL INPUTS DO-D7, LE, COMP

High Level Input Voltage	Note 1	2	-	-	V
Low Level Input Voltage	Note 1	-	-	0.8	V
Leakage Current		-	± 1	± 5	$\mu \mathrm{~A}$
Capacitance		-	5	-	pF
TEMPERATURE COEFFICIENTS					
Output Impedance		-	200	-	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$

NOTE:

1. Parameter not tested. but guaranteed by design or characterization.

Pin Descriptions

PIN	NAME	DESCRIPTION
1	D7	Most Significant Bit $\begin{array}{ll} \\ & \text { Input } \\ & \text { Data } \\ & \text { Bits }\end{array}$
2	D6	
3	D5	
4	D4	
5	D3	
6	D2	
7	D1	
8	$\mathrm{V}_{\text {Ss }}$	Digital Ground
9	D_{0}	Least Significant Bit. Input Data Bit
10	V_{EE}	Analog Ground
11	$V_{\text {REF }}{ }^{-}$	Reference Voltage Negative Input
12	$\mathrm{V}_{\text {OUT }}$	Analog Output
13	$\mathrm{V}_{\text {REF }}{ }^{+}$	Reference Voltage Positive Input
14	COMP	Data Complement Control input. Active High
15	LE	Latch Enable Input. Active Low
16	V_{DD}	Digital Power Supply, +5V

Digital Signal Path

The digital inputs (LE, COMP, and DO - D7) are of TTL compatible HCT High Speed CMOS design: the loading is essentially capacitive and the logic threshold is typically 1.5 V .

The 8 data bits, D0 (weighted 2^{0}) through D7 (weighted 2^{7}), are applied to Exclusive OR gates (see Functional Diagram). The COMP (data complement) control provides the second input to the gates: if COMP is high, the data bits will be inverted as they pass through.

The input data and the LE (latch enable) signals are next applied to a level shifter. The inputs, operating between the levels of $V_{D D}$ and $V_{S S}$, are shifted to operate between $V_{D D}$ and $\mathrm{V}_{\mathrm{EE}} . \mathrm{V}_{\mathrm{EE}}$ optionally at ground or at a negative voltage, will be discussed under bipolar operation. All further logic elements except the output drivers operate from the $V_{D D}$ and $V_{E E}$ supplies.

The upper 3 bits of data, D5 through D7, are input to a 3-to-7 line bar graph encoder. The encoder outputs and DO through D4 are applied to a feedthrough latch, which is controlled by LE (latch enable).

FIGURE 1. DATA TO LATCH ENABLE TIMING

FIGURE 2. DATA AND LATCH ENABLE TO OUTPUT TIMING

Latch Operation

Data is fed from input to output while LE is low: LE should be tied low for non-clocked operation.
Non-clocked operation or changing data while LE is low is not recommended for applications requiring low output "glitch" energy: there is no guarantee of the simultaneous changing of input data or the equal propagation delay of all bits through the converter. Several parameters are given if the converter is to be used in either of these modes: $T_{D 2}$ gives the delay from the input changing to the output changing (10%), while $T_{\text {SU2 }}$ and T_{H} give the set up and hold times (referred to LE rising edge) needed to latch data. See Figures 1 and 2.

Clocked operation is needed for low "glitch" energy use. Data must meet the given $\mathrm{T}_{\mathrm{SU} 1}$ set up time to the LE falling edge, and the T_{H} hold time from the LE rising edge. The delay to the output changing, $T_{D 1}$, is now referred to the LE falling edge.

There is no need for a square wave LE clock; LE must only meet the minimum T_{W} pulse width for successful latch operation. Generally, output timing (desired accuracy of settling) sets the upper limit of usable clock frequency.

Output Structure

The latches feed data to a row of high current CMOS drivers, which in turn feed a modified R2R ladder network.

The " N " channel (pull down) transistor of each driver plus the bottom " 2 R " resistor are returned to $\mathrm{V}_{\text {REF }}$ - this is the (-) fullscale reference. The "P" channel (pull up) transistor of each driver is returned to $\mathrm{V}_{\text {REF }}{ }^{+}$, the (+) full-scale reference.

In unipolar operation, $\mathrm{V}_{\text {REF }}$ would typically be returned to analog ground, but may be raised above ground (see specifications). There is substantial code dependent current that flows from $\mathrm{V}_{\text {REF }}+$ to $\mathrm{V}_{\text {REF }}$ (see $\mathrm{V}_{\text {REF }}+$ input current in specifications), so $V_{\text {REF }}$ - should have a low impedance path to ground.
In bipolar operation, $\mathrm{V}_{\text {REF }}$ - would be returned to a negative voltage (the maximum voltage rating to V_{DD} must be observed). V_{EE}, which supplies the gate potential for the output drivers, must be returned to a point at least as negative as $\mathrm{V}_{\text {REF }}$ - Note that the maximum clocking speed decreases when the bipolar mode is used.

Static Characteristics

The ideal 8-bit D/A would have an output equal to $\mathrm{V}_{\text {REF }}$ - with an input code of $00_{\text {HEX }}$ (zero scale output), and an output equal to $255 / 256$ of $\mathrm{V}_{\text {REF }}{ }^{+}$(referred to $\mathrm{V}_{\text {REF }}{ }^{-}$) with an input code of FF HEX (full-scale output). The difference between $^{\text {Hen }}$ the ideal and actual values of these two parameters are the OFFSET and GAIN errors, respectively; see Figure 3.
If the code into an 8 -bit D/A is changed by 1 count, the output should change by $1 / 255$ (full-scale output-zero scale output). A deviation from this step size is a differential linearity error, see Figure 4. Note that the error is expressed in fractions of the ideal step size (usually called an LSB). Also note that if the (-) differential linearity error is less (in absolute numbers) than 1 LSB, the device is monotonic. (The output will always increase for increasing code or decrease for decreasing code).

If the code into an 8 -bit D / A is at any value, say " N ", the output voltage should be N/255 of the full-scale output (referred to the zero-scale output). Any deviation from that output is an integral linearity error, usually expressed in LSBs. See Figure 4.

Note that OFFSET and GAIN errors do not affect integral linearity, as the linearity is referenced to actual zero and fullscale outputs, not ideal. Absolute accuracy would have to also take these errors into account.

FIGURE 3. D/A OFFSET AND GAIN ERROR

FIGURE 4. D/A INTEGRAL AND DIFFERENTIAL LINEARITY ERROR

Dynamic Characteristics

Keeping the full-scale range ($\mathrm{V}_{\text {REF }}{ }^{+}-\mathrm{V}_{\text {REF }}$) as high as possible gives the best linearity and lowest "glitch" energy (referred to 1V). This provides the best " P " and " N " channel gate drives (hence saturation resistance) and propagation delays. The $\mathrm{V}_{\text {REF }}+$ (and $\mathrm{V}_{\text {REF }}$ - if bipolar) terminal should be well bypassed as near the chip as possible.
"Glitch" energy is defined as a spurious voltage that occurs as the output is changed from one voltage to another. In a binary input converter, it is usually highest at the most significant bit transition ($7 \mathrm{~F}_{\text {HEX }}$ to $80_{\text {HEX }}$ for an 8 bit device), and can be measured by displaying the output as the input code alternates around that point. The "glitch" energy is the area between the actual output display and an ideal one LSB step voltage (subtracting negative area from positive), at either the positive or negative-going step. It is usually expressed in pV-s.
The CA3338 uses a modified R2R ladder, where the 3 most significant bits drive a bar graph decoder and 7 equally weighted resistors. This makes the "glitch" energy at each $1 / 8$ scale transition ($1 \mathrm{~F}_{\text {HEX }}$ to $20_{\text {HEX }}, 3 \mathrm{~F}_{\text {HEX }}$ to $40_{\text {HEX }}$, etc.) essentially equal, and far less than the MSB transition would otherwise display.

For the purpose of comparison to other converters, the output should be resistively divided to 1 V full-scale. Figure 5 shows a typical hook-up for checking "glitch" energy or settling time.

The settling time of the AVD is mainly a function of the output resistance (approximately 160Ω in parallel with the load resistance) and the load plus internal chip capacitance. Both "glitch" energy and settling time measurements require very good circuit and probe grounding: a probe tip connector such as Tektronix part number 131-0258-00 is recommended.

FUNCTION	CONNECTOR	R1	R2	R3	V OUT (PK-PK)
Oscilloscope Display	Probe Tip	82Ω	62Ω	N/C	1V
Match 93Ω Cable	BNC	75	160	93	1 V
Match 75Ω Cable	BNC	18	130	75	1V
Match 50Ω Cable	BNC	Short	75	50	079V

NOTES:

1. $V_{\text {OUT }}(P K)$ is approximate, and will vary as $R_{\text {OUT }}$ of D / A varies.
2. All drawn capacitors are $0.1 \mu \mathrm{~F}$ multilayer ceramic $/ 4.7 \mu \mathrm{~F}$ tantalum.
3. Dashed connections are for unipolar operation. Solid connection are for bipolar operation.

FIGURE 5. CA3338 DYNAMIC TEST CIRCUIT

FIGURE 6. CA3338 AND CA3450 FOR DRIVING MULTIPLE COAXIAL LINES

TABLE 1. OUTPUT VOLTAGE vS INPUT CODE AND VREF

$\begin{gathered} \mathbf{V}_{\mathrm{REF}}+ \\ \mathbf{V}_{\mathrm{REF}} \\ \text { STEP SIZE } \end{gathered}$	$\begin{array}{\|c} 5.12 \mathrm{~V} \\ 0 \\ 0.0200 \mathrm{~V} \end{array}$	$\left\lvert\, \begin{gathered} 5.00 \mathrm{~V} \\ 0 \\ 0.0195 \mathrm{~V} \end{gathered}\right.$	$\begin{array}{\|c} 4.608 \mathrm{~V} \\ 0 \\ 0.0180 \mathrm{~V} \end{array}$	$\begin{gathered} 2.56 \mathrm{~V} \\ -2.56 \mathrm{~V} \\ 0.0200 \mathrm{~V} \end{gathered}$	$\left\lvert\, \begin{gathered} 2.50 \mathrm{~V} \\ -2.50 \mathrm{~V} \\ 0.0195 \mathrm{~V} \end{gathered}\right.$
Input Code					
$111111112=$ FF $_{\text {HEX }}$	5.1000 V	4.9805 V	4.5900 V	2.5400 V	2.4805 V
$111111102=\mathrm{FE}_{\text {HEX }}$	5.0800	4.9610	4.5720	2.5200	2.4610
$10000001_{2}=81_{\text {HEX }}$	2.5800	2.5195	2.3220	0.0200	0.0195
$10000000_{2}=80_{\text {HEX }}$	2.5600	2.5000	2.3040	0.0000	0.0000
011111112 $=7 \mathrm{~F}_{\text {HEX }}$	2.5400	2.4805	2.2860	- 0.0200	-0.0195
-					
-					
$00000001_{2}=01_{\text {HEX }}$	0.0200	0.0195	0.0180	-2.5400	-2.4805
$00000000_{2}=00_{\text {HEX }}$	0.0000	0.0000	0.0000	-2.5600	-2.5000

Applications

The output of the CA3338 can be resistively divided to match a doubly terminated 50Ω or 75Ω line, although peak-to-peak swings of less than 1 V may result. The output magnitude will also vary with the converter's output impedance. Figure 5 shows such an application. Note that because of the HCT input structure, the CA3338 could be operated up to $+7.5 \mathrm{~V} \mathrm{~V}_{\mathrm{DD}}$ and $\mathrm{V}_{\text {REF }}+$ supplies and still accept 0 V to 5 V CMOS input voltages.

If larger voltage swings or better accuracy is desired, a high speed output buffer, such as the HA-5033, HA-2542, or CA3450, can be employed. Figure 6 shows a typical application, with the output capable of driving $\pm 2 \mathrm{~V}$ into multiple 50Ω terminated lines.

Operating and Handling Considerations

1. Handling

All inputs and outputs of CMOS devices have a network for electrostatic protection during handling. Recommended handling practices for CMOS devices are described in AN6525. "Guide to Better Handling and Operation of CMOS Integrated Circuits."
2. Operating

Operating Voltage

During operation near the maximum supply voltage limit, care should be taken to avoid or suppress power supply turn-on and turn-off transients, power supply ripple, or ground noise; any of these conditions must not cause the absolute maximum ratings to be exceeded.

Input Signals

To prevent damage to the input protection circuit, input signals should never be greater than $V_{D D}$ nor less than V_{SS}. input currents must not exceed 20 mA even when the power supply is off.

Unused Inputs

A connection must be provided at every input terminal. All unused input terminals must be connected to either V_{CC} or GND, whichever is appropriate.

High Speed Monolithic D/A Converter with Reference

Features

- 12-Bit DAC and Reference on a Single Chip
- Pin Compatible With AD565A
- Very High Speed: Settles to ± 0.5 LSB in 250 ns , Max. Full Scale Switching Time 30ns, Typ.
- Guaranteed For Operation With $\pm 12 \mathrm{~V}$ Supplies
- Monotonicity Guaranteed Over Temperature
- ± 0.5 LSB Max. Nonlinearity Guaranteed Over Temp
- Low Gain Drift (Max., DAC Plus Ref) 25ppm $/{ }^{\circ} \mathrm{C}$
- Low Power Dissipation 250mW

Applications

- CRT Displays
- High Speed A/D Converters
- Signal Reconstruction
- Waveform Synthesis

Description

The $\mathrm{HI}-565 \mathrm{~A}$ is a fast, 12 bit current output, digital to analog converter. The monolithic chip includes a precision voltage reference, thin-film R2R ladder, reference control amplifier and twelve high speed bipolar current switches.

The Harris dielectric isolation process provides latch free operation while minimizing stray capacitance and leakage currents, to produce an excellent combination of speed and accuracy. Also, ground currents are minimized to produce a low and constant current through the ground terminal, which reduces error due to code dependent ground currents.
HI-565A dice are laser trimmed for a maximum integral nonlinearity error of ± 0.5 LSB at $+25^{\circ} \mathrm{C}$. In addition, the low noise buried zener reference is trimmed both for absolute value and temperature coefficient. Power dissipation is typically 250 mW , with $\pm 15 \mathrm{~V}$ supplies.

The HI-565A is offered in both commercial and military grades. See Ordering Information.

Ordering Information

PART NUMBER	LINEARITY (INL)	LINEARITY (DNL)	TEMPERATURE RANGE	PACKAGE
HI1-565AJD-5	0.50 LSB	0.75 LSB	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	24 Lead Ceramic Side Brazed DIP
HI1-565AKD-5	0.25 LSB	0.50 LSB	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	24 Lead Ceramic Side Brazed DIP
HI1-565ASD-2	0.50 LSB	0.75 LSB	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	24 Lead Ceramic Side Brazed DIP
HI1-565ATD-2	0.25 LSB	0.50 LSB	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	24 Lead Ceramic Side Brazed DIP
HI1-565ASD/883	0.50 LSB	0.50 LSB	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	24 Lead Ceramic Side Brazed DIP
HI1-565ATD/883	0.25 LSB	0.50 LSB	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	24 Lead Ceramic Side Brazed DIP

Pinout

HI-565A (CDIP, SOIC) TOP VIEW

Functional Diagram

Absolute Maximum Ratings

$V_{c c}$ to Power GND OV to +18 V
V_{EE} to Power GND . OV to -18 V
Voltage on DAC Output (Pin 9). 3 V to +12 V
Digital Inputs (Pins 13-24) to Power GND - 1 V to +7.0 V
REF In to REF GND . $\pm 12 \mathrm{~V}$
Bipolar Offset to REF GND. $\pm 12 \mathrm{~V}$
10V Span R to REF GND . $\pm 12 \mathrm{~V}$
20V Span R to REF GND . $\mathbf{\pm 2 4 V}$
REF Out Indefinite Short to Power GND Momentary Short to V_{CC}
Transistor Count 200

Thermal Information

Operating Temperature Range
HI-565AS,T-2 . $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
H1-565AJ, K-5 . $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
Junction Temperature . $175^{\circ} \mathrm{C}$
Storage Temperature Range. $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering 10s) . $+300^{\circ} \mathrm{C}$

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Electrical Specifications $\left(T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}\right.$, Unless Otherwise Specified)

PARAMETER	TEST CONDITIONS	HL-565AJ, HI565AS			HI-565AK, Hi-565AT			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
DATA INPUTS (Pins 13 to 24) (Note 1)								
Input Voltage Bit ON Logic "1"	($T_{\text {MIN }}$ to $T_{\text {MAX }}$)	+2.0	-	+5.5	+2.0	-	+5.5	V
Input Voltage Bit OFF Logic "0"	($T_{\text {MIN }}$ to $T_{\text {MAX }}$)	-	-	+0.8	-	-	+0.8	V
Logic Current Bit ON Logic "1"	($T_{\text {MIN }}$ to $T_{\text {MAX }}$)	-	0.01	+1.0	-	0.01	+1.0	$\mu \mathrm{A}$
Logic Current Bit OFF Logic "0"	($T_{\text {MIN }}$ to $T_{\text {MaX }}$)	-	-2.0	-20	-	-2.0	-20	$\mu \mathrm{A}$
Resolution		12	-	-	12	-	\bullet	Bits
OUTPUT								
Unipolar Current	(All Bits ON)	-1.6	-2.0	-2.4	-1.6	-2.0	-2.4	mA
Bipolar Current	(All Bits ON or OFF)	± 0.8	± 1.0	± 1.2	± 0.8	± 1.0	± 1.2	mA
Resistance	(Exclusive of Span Resistors)	1.8K	2.5 K	3.2K	1.8K	2.5 K	3.2K	Ω
Unipolar Offset at $+25^{\circ} \mathrm{C} \pm 0.07^{\circ} \mathrm{C}$ Over Temperature		-	0.01	0.05	-	0.01	0.05	\% of F.S.
Bipolar Offset at ± 0.2 (T), ± 0.25 (S) Over Temperature	(Figure 2, $\mathrm{R}_{3}=50 \Omega$ Fixed)	-	0.05	0.15	-	0.05	0.1	\% of F.S.
Capacitance		-	20	-	-	20	-	pF
Compliance Voltage	($T_{\text {MIN }}$ to $T_{\text {MaX }}$)	-1.5	-	+10	-1.5	-	+10	V
ACCURACY (Error Relative to Full Scale)								
Integral Non-Linearity	$\begin{aligned} & \left(+25^{\circ} \mathrm{C}\right) \\ & \text { End Point Method } \end{aligned}$	-	$\begin{gathered} \pm 0.25 \\ (0.006) \end{gathered}$	$\begin{gathered} \pm 0.50 \\ (0.012) \end{gathered}$	-	$\begin{gathered} \pm 0.12 \\ (0.003) \end{gathered}$	$\begin{gathered} \pm 0.12 \\ (0.006) \end{gathered}$	$\begin{gathered} \text { LSB } \\ \% \text { of } F . S . ~ \end{gathered}$
Integral Non-Linearity	$\begin{aligned} & \left.\mathrm{T}_{\text {MIN }} \text { to }_{\text {MAX }}\right) \\ & \text { End Point Method } \end{aligned}$	-	$\begin{gathered} \pm 0.50 \\ (0.012) \end{gathered}$	$\begin{gathered} \pm 0.75 \\ (0.018) \end{gathered}$	\bullet	$\begin{gathered} \pm 0.25 \\ (0.006) \end{gathered}$	$\begin{gathered} \pm 0.50 \\ (0.012) \end{gathered}$	$\begin{gathered} \text { LSB } \\ \% \text { of } F . S . ~ \end{gathered}$
Differential Non-Linearity	$+25^{\circ} \mathrm{C}$	-	± 0.50	± 0.75	\bullet	± 0.25	± 0.50	LSB
Differential Non-Linearity	$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			MONOTO	CITY	ARANTE		
TEMPERATURE COEFFICIENTS								
With Internal Reference Unipolar Zero		-	1	2	-	1	2	ppm/ ${ }^{\circ} \mathrm{C}$
With Internal Reference Bipolar Zero		-	5	10	-	5	10	ppm/ ${ }^{\circ} \mathrm{C}$
With Internal Reference Gain (Full Scale)		-	15	40	-	10	25	ppm ${ }^{\circ} \mathrm{C}$

Electrical Specifications $\left(T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}\right.$, Unless Otherwise Specified) (Continued)

PARAMETER	TEST CONDITIONS	HL-565AJ, HI565AS			HH-565AK, HI-565AT			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
With Internal Reference Differential Nonlinearity		-	2	-	-	2	-	ppm/ ${ }^{\circ} \mathrm{C}$
SETTLING TIME TO ± 0.5 LSB								
With High, Z External Load	(Note 2)	-	350	500	-	350	500	ns
With 75		-	150	250	-	150	250	ns
FULL SCALE TRANSITION (From 50\% of Logic Input to 90\% of Analog Output)								
Rise Time		-	15	30	-	15	30	ns
Fall Time		-	30	50	-	30	50	ns
POWER REQUIREMENTS								
$\mathrm{V}_{\text {cc }}$	(+11.4 to +16.5VDC)	-	9.0	11.8	-	9.0	11.8	mA
V_{EE}	(+11.4 to -16.5VDC)	-	-9.5	-14.5	-	-9.5	-14.5	mA
POWER SUPPLY GAIN SENSITIVITY (Note 3)								
V_{cc}	(+11.4 to +16.5VDC)	-	3	10	-	3	10	ppm of F.S. $\%$
V_{EE}	(+11.4 to -16.5VDC)	-	15	25	-	15	25	ppm of F.S. $\%$
PROGRAMMABLE OUTPUT RANGES (See Table 2)								
Unipolar 5	(Note 1)	0 to +5			0 to +5			V
Bipolar 5	(Note 1)	-2.5 to +2.5			-2.5 to +2.5			V
Unipolar 10	(Note 1)	0 to +10			0 to +10			V
Bipolar 10	(Note 1)	-5 to +5			-5 to +5			V
Bipolar 20	(Note 1)	-10 to +10			-10 to +10			V
EXTERNAL ADJUSTMENTS								
Gain Error with Fixed 50』 Resister for R2 (Figure 1)		-	± 0.1	± 0.25	-	± 0.1	± 0.25	\% of F.S.
Bipolar Zero Error with Fixed 50Ω Resister for R3 (Figure 2)		-	± 0.05	± 0.15	-	± 0.05	± 0.1	\% of F.S.
Gain Adjustment Range (Figure 1)		± 0.25	-	-	± 0.25	-	-	\% of F.S.
Bipolar Zero Adjustment Range		± 0.15	-	-	± 0.15	-	-	\% of F.S.
REFERENCE INPUT								
Input Impedance		15K	20K	25K	15K	20K	25K	-
REFERENCE OUTPUT								
Voltage		9.90	10.00	10.10	9.90	10.00	10.10	V
Current (Available for External Loads)		1.5	2.5	-	1.5	2.5	-	mA

NOTES:

1. Guaranteed by characterization or design but not tested over the operating temperature range.
2. See settling time discussion and Figure 3.
3. The Power Supply Gain Sensitivity is tested in reference to a $\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{EE}}$ of $\pm 15 \mathrm{~V}$.

Definitions of Specifications

Digital Inputs

The HI－565A accepts digital input codes in binary format and may be user connected for any one of three binary codes． Straight Binary，Two＇s Complement（Note 1），or Offset Binary，（See Operating Instructions）．

TABLE 1.

	ANALOG OUTPUT		
DIGITAL INPUT	STRAIGHT BINARY	OFFSET BINARY	（NOTE 1） TWO＇S COMPLEMENT
MSB．．．LSB			
$000 \ldots 000$	Zero	－FS （Full Scale）	Zero
$100 \ldots 000$	$1 / 2$ FS	Zero	－FS
$111 \ldots 111$	＋FS－1 LSB	＋FS－1 LSB	Zero－1 LSB
$011 \ldots 111$	1／2FS－1 LSB	Zero－1 LSB	＋FS－1 LSB

NOTE：
1．Invert MSB with external inverter to obtain Two＇s Complement Coding．
Nonlinearity of a D／A converter is an important measure of its accuracy．It describes the deviation from an ideal straight line transfer curve drawn between zero（all bits OFF）and full scale（all bits ON）（End Point Method）．

Differential Nonlinearity for a D／A converter，it is the differ－ ence between the actual output voltage change and the ideal （1 LSB）voltage change for a one bit change in code．A Differ－ ential Nonlinearity of ± 1 LSB or less guarantees monotonicity； i．e．，the output always increases for an increasing input．
Settling Time is the time required for the output to settle to within the specified error band for any input code transition． It is usually specified for a full scale or major carry transition， settling to within ± 0.5 LSB of final value．
Gain Drift is the change in full scale analog output over the specified temperature range，expressed in parts per million of full scale range per ${ }^{\circ} \mathrm{C}$（ ppm of $\mathrm{FSR} /{ }^{\circ} \mathrm{C}$ ）．Gain error is measured with respect to $+25^{\circ} \mathrm{C}$ at high（ T_{H} ）and low（ T_{L} ） temperatures．Gain drift is calculated for both high（ T_{H} $-25^{\circ} \mathrm{C}$ ）and low ranges（ $+25^{\circ} \mathrm{C}-\mathrm{T}_{\mathrm{L}}$ ）by dividing the gain error by the respective change in temperature．The specification is the larger of the two representing worst－case drift．
Offset Drift is the change in analog output with all bits OFF over the specified temperature range expressed in parts per million of full scale range per ${ }^{\circ} \mathrm{C}\left(\mathrm{ppm}\right.$ of $\left.\mathrm{FSR} /{ }^{\circ} \mathrm{C}\right)$ ．Offset error is measured with respect to $+25^{\circ} \mathrm{C}$ at high（ T_{H} ）and low（ T_{L} ） temperatures．Offset Dritt is calculated for both high（ T_{H} $-25^{\circ} \mathrm{C}$ ）and low（ $+25^{\circ} \mathrm{C}-\mathrm{T}_{\mathrm{L}}$ ）ranges by dividing the offset error by the respective change in temperature．The specification given is the larger of the two，representing worst－case drift．

Power Supply Sensitivity is a measure of the change in gain and offset of the D／A converter resulting from a change in -15 V or +15 V supplies．It is specified under DC conditions and expressed as parts per million of full scale range per percent of change in power supply（ppm of FSR／\％）．

Compliance Voltage is the maximum output voltage range that can be tolerated and still maintain its specified accuracy． Compliance Limit implies functional operation only，and makes no claims to accuracy．

Glitch a glitch on the output of a D／A converter is a transient spike resulting from unequal internal ON－OFF switching times．Worst case glitches usually occur at half－scale or the major carry code transition from 011．．． 1 to 100．．． 0 or vice versa．For example，if turn ON is greater than turn OFF for $011 . . .1$ to 100．．．0，an intermediate state of 000．．． 0 exists， such that，the output momentarily glitches toward zero out－ put．Matched switching times and fast switching will reduce glitches considerably．

Detailed Description

Op Amp Selection

The HI－565As current output may be converted to voltage using the standard connections shown in Figures 1 and 2. The choice of operational amplifier should be reviewed for each application，since a significant trade－off may be made between speed and accuracy．
For highest precision，use an HA－5130．This amplifier con－ tributes negligible error，but requires about $11 \mu \mathrm{~s}$ to settle within $\pm 0.1 \%$ following a 10 V step．
The Harris Semiconductor HA－2600 is the best all－around choice for this application，and it settles in $1.5 \mu \mathrm{~s}$（also to $\pm 0.1 \%$ following a 10 V step）．Remember，settling time for the DAC amplifier combination is the square root of $t_{D}{ }^{2}$ plus $t_{A}{ }^{2}$ ， where t_{D}, t_{A} are settling times for the DAC and amplifier．

No－Trim Operation

The HI－565A will perform as specified without calibration adjustments．To operate without calibration，substitute 50Ω resistors for the 100Ω trimming potentiometers：In Figure 1 replace R2 with 50Ω also remove the network on pin 8 and connect 50Ω to ground．For bipolar operation in Figure 2， replace R3 and R4 with 50Ω resistors．
With these changes，performance is guaranteed as shown under Specifications，＂External Adjustments＂．Typical unipo－ lar zero will be ± 0.5 LSB plus the op amp offset．

The feedback capacitor C must be selected to minimize set－ tling time．

Calibration

Calibration provides the maximum accuracy from a con－ verter by adjusting its gain and offset errors to zero．For the HI－565A，these adjustments are similar whether the current output is used，or whether an external op amp is added to convert this current to a voltage．Refer to Table 2 for the volt－ age output case，along with Figure 1 or Figure 2.
Calibration is a two step process for each of the five output ranges shown in Table 2．First adjust the negative full scale （zero for unipolar ranges）．This is an offset adjust which translates the output characteristic，i．e．affects each code by the same amount．

Next adjust positive FS．This is a gain error adjustment，which rotates the output characteristic about the negative FS value．

For the bipolar ranges, this approach leaves an error at the zero code, whose maximum value is the same as for integral nonlinearity error. In general, only two values of output may
be calibrated exactly; all others must tolerate some error. Choosing the extreme end points (plus and minus full scale) minimizes this distributed error for all other codes.

TABLE 2. OPERATING MODES AND CALIBRATION

MODE	CIRCUIT CONNECTIONS				CALIBRATION		
	OUTPUT PRANGE	PIN 10 TO	PIN 11 TO	RESISTOR (R)	APPLY INPUT CODE	ADJUST	$\begin{gathered} \text { TO SET } \\ V_{0} \end{gathered}$
Unipolar (See Figure 1)	0 to +10V	V	Pin 10	1.43K	All O's All 1's	$\begin{aligned} & \hline \text { R1 } \\ & \text { R2 } \end{aligned}$	$\begin{gathered} 0 \mathrm{~V} \\ +9.99756 \mathrm{~V} \end{gathered}$
	0 to +5V	V_{0}	Pin 9	1.1K	All ${ }^{\prime}$'s All 1's	$\begin{aligned} & \hline \text { R1 } \\ & \text { R2 } \end{aligned}$	$\begin{gathered} \mathrm{OV} \\ +4.99878 \mathrm{~V} \end{gathered}$
Bipolar (See Figure 2)	$\pm 10 \mathrm{~V}$	NC	V_{0}	1.69K	All 0 's All 1's	$\begin{aligned} & \text { R3 } \\ & \text { R4 } \end{aligned}$	$\begin{gathered} -10 \mathrm{~V} \\ +9.99512 \mathrm{~V} \end{gathered}$
	$\pm 5 \mathrm{~V}$	V_{0}	Pin 10	1.43K	All 0 's All 1's	$\begin{aligned} & \text { R3 } \\ & \text { R4 } \end{aligned}$	$\begin{gathered} -5 \mathrm{~V} \\ +4.99756 \mathrm{~V} \end{gathered}$
	$\pm 2.5 \mathrm{~V}$	V_{0}	Pin 9	1.1K	All O's All 1's	$\begin{aligned} & \text { R3 } \\ & \text { R4 } \end{aligned}$	$\begin{gathered} -2.5 \mathrm{~V} \\ +2.49878 \mathrm{~V} \end{gathered}$

FIGURE 1. UNIPOLAR VOLTAGE OUTPUT

FIGURE 2. BIPOLAR VOLTAGE OUTPUT

Settling Time

This is a challenging measurement，in which the result depends on the method chosen，the precision and quality of test equipment and the operating configuration of the DAC （test conditions）．As a result，the different techniques in use by converter manufacturers can lead to consistently different results．An engineer should understand the advantage and limitations of a given test method before using the specified settling time as a basis for design．
The approach used for several years at Harris Analog Prod－ ucts Division calls for a strobed comparator to sense final perturbations of the DAC output waveform．This gives the LSB a reasonable magnitude（ $814 \mu \mathrm{~V}$ for the $\mathrm{HI}-565 \mathrm{~A}$ ）， which provides the comparator with enough overdrive to establish an accurate ± 0.5 LSB window about the final set－ tled value．Also，the required test conditions simulate the DACs environment for a common application－use in a suc－ cessive approximation AD converter．Considerable experi－ ence has shown this to be a reliable and repeatable way to measure settling time．
The usual specification is based on a 10 V step，produced by simultaneously switching all bits from off－to－on（ton）or on－to－ off（toff）．The slower of the two cases is specified，as mea－ sured from 50% of the digital input transition to the final entry within a window of ± 0.5 LSB about the settled value．Four measurements characterize a given type of DAC：
（a）$t_{O N}$ ，to final value +0.5 LSB
（b）toN，to final value－0．5 L．SB
（c）toff，to final value +0.5 LSB
（d）$t_{\text {OFF }}$ ，to final value -0.5 LSB

FIGURE 3A．
（Cases（b）and（c）may be eliminated unless the overshoot exceeds 0.5 LSB）．For example，refer to Figure 3 for the measurement of case（d）．

Procedure

As shown in Figure 3B，settling time equals t_{X} plus the com－ parator delay（ $t_{D}=15 \mathrm{~ns}$ ）．To measure t_{X} ：
－Adjust the delay on generator No． 2 for a t_{X} of several microseconds．This assures that the DAC output has set－ tled to its final value．
－Switch on the LSB（＋5V）．
－Adjust the $\mathrm{V}_{\text {LSB }}$ supply for 50% triggering at COMPARATOR OUT．This is indicated by traces of equal brightness on the oscilloscope display as shown in Figure 3B．Note DVM reading．
－Switch the LSB to Pulse（P）．
－Readjust the $\mathrm{V}_{\text {LSB }}$ supply for 50% triggering as before， and note DVM reading．One LSB equals one tenth the dif－ ference in the DVM readings noted above．
－Adjust the V Lse supply to reduce the DVM reading by 5 LSBs（DVM reads 10X，so this sets the comparator to sense the final settled value minus 0.5 LSB）．Comparator output disappears．
－Reduce generator No． 2 delay until comparator output reappears，and adjust for＂equal brightness＂．
－Measure t_{X} from scope as shown in Figure 3B．Settling time equals $t_{X}+t_{D}$ ，i．e．$t_{X}+15 \mathrm{~ns}$ ．

FIGURE 3.

Other Considerations

Grounds

The HI-565A has two ground terminals, pin 5 (REF GND) and pin 12 (PWR GND). These should not be tied together near the package unless that point is also the system signal ground to which all returns are connected. (If such a point exists, then separate paths are required to pins 5 and 12).

The current through pin 5 is near-zero DC (Note 1); but pin 12 carries up to 1.75 mA of code - ependent current from bits 1,2 , and 3 . The general rule is to connect pin 5 directly to the system "quiet" point, usually called signal or analog ground. Connect pin 12 to the local digital or power ground. Then, of course, a single path must connect the analog/signal and digital/power grounds.

Layout

Connections to pin 9 (lout) on the HI-565A are most critical for high speed performance. Output capacitance of the DAC is only 20 pF , so a small change or additional capacitance may alter the op amp's stability and affect settling time. Connections to pin 9 should be short and few. Component leads should be short on the side connecting to pin 9 (as for feedback capacitor C). See the Settling Time section.

Bypass Capacitors

Power supply bypass capacitors on the op amp will serve the $\mathrm{HI}-565 \mathrm{~A}$ also. If no op amp is used, a $0.01 \mu \mathrm{~F}$ ceramic capacitor from each supply terminal to pin 12 is sufficient, since supply current variations are small.

Current Cancellation

Current cancellation is a two step process within the H 1 565A in which code dependent variations are eliminated, then the resulting DC current is supplied internally. First an auxiliary 9 bit R-2R ladder is driven by the complement of the DACs input code. Together, the main and auxiliary ladders draw a continuous 2.25 mA from the internal ground node, regardless of input code. Part of this DC current is supplied by the zener voltage reference, and the remainder is sourced from the positive supply via a current mirror which is laser trimmed for zero current through the external terminal (pin 5).

Die Characteristics

DIE DIMENSIONS:
179mils $\times 107$ mils $\times 19$ mills ± 1 mils
METALLIZATION:
Type: Al
Thickness: $16 k \AA \pm 2 k \AA$
GLASSIVATION:
Type: Nitride Over Silox
Nitride Thickness: $3.5 \mathrm{k} \AA \pm 0.5 \mathrm{k} \AA$
Silox Thickness: $12 \mathrm{k} \AA \pm 1.5 \mathrm{k} \AA$
WORST CASE CURRENT DENSITY: $0.75 \times 10^{5} \mathrm{~A}^{\mathrm{cm}}{ }^{2}$

Transistor Count: 200

Metallization Mask Layout

12-Bit, Low Cost, Monolithic D/A Converter

Features

- DAC 80V/DAC 85V Alternative Source
- Monolithic Construction
- Fast Settling Time 1.5 $\mu \mathrm{s}$ (typ.)
- Guaranteed Monotonicity
- Wafer Laser Trimmed Linearity, Gain, Offset
- Span Resistors On-Chip
- On-Board Reference
- $\pm 12 \mathrm{~V}$ Supply Operation

Applications

- High Speed AVD Converters
- Precision Instrumentation
- CRT Display Generation

Ordering Information

PART NUMBER	TEMPERATURE RANGE	PACKAGE
HI3-DAC80V-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	24 Lead Plastic DIP
HI3-DAC80V-7	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	24 Lead Plastic DIP
HI3-DAC85V-4	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24 Lead Plastic DIP
HI3-DAC85V- 9	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24 Lead Plastic DIP

Description

The HI-DAC80V is a monolithic direct replacement for the popular DAC80 and AD DAC80. The HI-DAC85V is a monolithic direct replacement for the popular DAC85 and AD DAC85 as well as the HI-5685V. Single chip construction along with several design innovations make the HI-DAC80V the optimum choice for low cost, high reliability applications. Harris' unique Dielectric Isolation (DI) processing reduces internal parasitics resulting in fast switching times and minimum glitch. On board span resistors are provided for good tracking over temperature, and are laser trimmed to high accuracy.

Internally the HI-DAC80V/HI-DAC85V eliminates code dependent ground currents by routing current from the positive supply to the internal ground node, as determined by an auxiliary R2R ladder. This results in a cancellation of code dependent ground currents allowing virtually zero variation in current through the package common, pin 21.
The HI-DAC80V is available as a voltage output device which is guaranteed over the $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ temperature range. An extended burn in screening of 96 hours is available in the HI-DAC80V-7 model. The HI-DAC85V is available as a voltage output device which is guaranteed over the $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range. It includes a buried zener reference featuring a low temperature coefficient as well as an on board operational amplifier. The HI-DAC80V requires only two power supplies and will operate in the range of $\pm(11.4 \mathrm{~V}$ to 16.5V).

Pinout

HI-DAC80V/HI-DAC85V
 (PDIP)
 TOP VIEW

Functional Block Diagram

Specifications HI-DAC80V, HI-DAC85V

Electrical Specifications $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{S} \pm 12 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$ (Note 4), Pin 16 to Pin 24, Unless Otherwise Specified (Continued)

PARAMETER	TEST CONDITIONS	HL-DAC80V-5, HI-DAC85V-5			UNITS
		MIN	TYP	MAX	
CONVERSION SPEED					
Settling Time With 10K Feedback	Full Scale Transition All Bits ON to OFF or OFF to ON to $\pm 0.01 \%$ or FSR (Note 2)				
		-	3	-	$\mu \mathrm{s}$
With 5K Feedback		-	1.5	-	$\mu \mathrm{s}$
For 1 LSB Change		-	1.5	-	$\mu \mathrm{s}$
Slew Rate		10	15	-	V/us
INTERNAL REFERENCE					
Output Voltage		6.250	+6.3	6.350	V
Output Impedance		-	1.5	-	Ω
External Current		-	-	+2.5	mA
Tempco of Drift		-	5	-	ppm ${ }^{\circ} \mathrm{C}$

DIGITAL INPUT (Note 2)

Logic Levels Logic " 1 "					
Logic " 0 "	TTL Compatible At $+1 \mu \mathrm{~A}$	+2	-	+5.5	V

POWER SUPPLY SENSITIVITY (Notes 2, 4)

+15 V Supply		-	0.001	0.002	$\% \mathrm{FSR} / \% \mathrm{~V}_{\mathrm{S}}$
-15 V Supply		-	0.001	0.002	$\% \mathrm{FSR} / \% \mathrm{~V}_{\mathrm{S}}$

POWER SUPPLY CHARACTERISTICS (Note 4)

Voltage Range $+V_{S}$	Full Temperature	+11.4	+15	+16.5	V
$-V_{S}$	Full Temperature	-11.4	-15	-16.5	V
Current $+I_{S}$	Full Temperature, $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	-	+12	+15	mA
$-\mathrm{I}_{\mathrm{S}}$	Full Temperature, $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	-	-15	-20	mA

NOTES

1. Adjustable to zero using external potentiometers.
2. See Definitions.
3. FSR is "Full Scale Range: and is 20 V for $\pm 10 \mathrm{~V}$ range, 10 V for $\pm 5 \mathrm{~V}$ range, etc.
4. The $\mathrm{HI}-\mathrm{DAC80V} / \mathrm{HI}-\mathrm{DAC85V}$ will operate with supply voltages as low as $\pm 11.4 \mathrm{~V}$.It is recommended that output voltage range -10 V to +10 V not be used if the supply voltages are less than $\pm 12.5 \mathrm{~V}$.
5. With Gain and Offset errors adjusted to zero at $+25^{\circ} \mathrm{C}$

Definitions of Specifications

Digital Inputs

The HI-DAC80V accepts digital input codes in complementary binary, complementary offset binary, and complementary two's complement binary.

Settling Time

That interval between application of a digital step input, and final entry of the analog output within a specified window about the settled value. Harris Semiconductor usually specifies a unipolar 10 V full scale step, to be measured from 50% of the input digital transition, and a window of $\pm 1 / 2$ LSB about

TABLE 1.

	ANALOG OUTPUT		
DIGITAL INPUT	COMPLEMEN- TARY STRAIGHT BINARY	COMPLE- MENTARY OFFSET BINARY	COMPLE- MENTARY TWO'S COMPLEMENT \dagger
MSB...LSB			
$000 \ldots 000$	+ Full Scale	+ Full Scale	-LSB
$100 \ldots 000$	Mid Scale-1 LSB	-1 LSB	+ Full Scale
$111 \ldots 111$	Zero	- Full Scale	Zero
$011 \ldots 111$	$+1 / 2$ Full Scale	Zero	- Full Scale

\dagger Invert MSB with external inverter to obtain CTC Coding
the final value. The device output is then rated according to the worst (longest settling) case: low to high, or high to low. In a 12 -bit system $\pm 1 / 2$ LSB $= \pm 0.012 \%$ of FSR.

Thermal Drift

Thermal drift is based on measurements at $+25^{\circ} \mathrm{C}$, at high $\left(T_{H}\right)$ and low (T_{L}) temperatures. Drift calculations are made for the high ($\mathrm{T}_{\mathrm{H}}-25^{\circ} \mathrm{C}$) and low ($+25^{\circ} \mathrm{C}-\mathrm{T}_{\mathrm{L}}$) ranges, and the larger of the two values is given as a specification representing worst case drift.

Gain Drift, Offset Drift, Reference Drift and Total Bipolar Drift are calculated in parts per million per ${ }^{\circ} \mathrm{C}$ as follows:
Gain Drift $=\frac{\Delta \mathrm{FSR} / \Delta^{\circ} \mathrm{C}}{\mathrm{FSR}} \times 10^{6}$
Offset Drift $=\frac{\Delta \text { Offset } / \Delta^{\circ} \mathrm{C}}{\text { FSR }} \times 10^{6}$
Reference Drift $=\frac{\Delta \mathrm{V}_{\text {REF }}\left(\Delta^{\circ} \mathrm{C}\right)}{\mathrm{V}_{\mathrm{REF}}} \times 10^{6}$
Total BipolarDrift $=\frac{\Delta \mathrm{V}_{\mathrm{O}} /\left(\Delta^{\circ} \mathrm{C}\right)}{\text { FSR }} \times 10^{\epsilon}$

NOTE: FSR = Full Scale Output Voltage - Zero Scale Output Voltage
$\Delta F S R=F S R\left(T_{H}\right)-F S R\left(+25^{\circ} \mathrm{C}\right)$
or FSR $\left(+25^{\circ} \mathrm{C}\right)$ - FSR (T_{L})
$V_{O}=$ Steady State response to any input code.
Total Bipolar Drift is the variation of output voltage with temperature, in the bipolar mode of operation. It represents the net effect of drift in Gain, Offset, Linearity and Reference Voltage. Total Bipolar Drift values are calculated, based on measurements as explained above. Gain and Offset need not be calibrated to zero at $+25^{\circ} \mathrm{C}$. The specified limits for TBD apply for any input code and for any power supply setting within the specified operating range.

Accuracy

Linearity Error (Short for "Integral Linearity Error." Also, sometimes called "Integral Nonlinearity" and "Nonlinearity".) The maximum deviation of the actual transfer characteristic from an ideal straight line. The ideal line is positioned according to end-point linearity for D/A converter products from Harris Semiconductor, i.e. the line is drawn between the end-points of the actual transfer characteristic (codes $00 . .0$ and 11...1).

Differential Linearity Error The difference between one LSB and the output voltage change corresponding to any two consecutive codes. A Differential Nonlinearity of ± 1 LSB or less guarantees monotonicity.

Monotonicity The property of a D/A converter's transfer function which guarantees that the output derivative will not change sign in response to a sequence of increasing (or decreasing) input codes. That is, the only output response to a code change is to remain constant, increase for Increasing code, or decrease for decreasing code.

Total Error The net output error resulting from all internal effects (primarily non-ideal Gain, Offset, Linearity and Reference Voltage). Supply voltages may be set to any values within the specified operating range. Gain and offset errors must be calibrated to zero at $+25^{\circ} \mathrm{C}$. Then the specified limits for Total Error apply for any input code and for any temperature within the specified operating range.

Power Supply Sensitivity

Power Supply Sensitivity is a measure of the change in gain and offset of the D/A converter resulting from a change in V_{S}, or $+\mathrm{V}_{\mathrm{S}}$ supplies. It is specified under DC conditions and expressed as full scale range percent of change divided by power supply percent change.

Glitch
A glitch on the output of a D/A converter is a transient spike resulting from unequal internal ON-OFF switching times. Worst case glitches usually occur at half-scale i.e. the major carry code transition from $011 . . .1$ to $100 . . .0$ or vice versa. For example, if turn ON is greater than OFF for 011... 1 to 100...0, an intermediate state of $000 . . .0$ exists, such that, the output momentarily glitches toward zero output. Matched switching times and fast switching will reduce glitches considerably. (Measured as one half the Product of duration and amplitude.)

Decoupling and Grounding

For best accuracy and high frequency performance, the grounding and decoupling scheme shown in Figure 1 should be used. Decoupling capacitors should be connected close to the HI-DAC80V/HI-DAC85V (preferably to the device pins) and should be tantalum or electrolytic bypassed with ceramic types for best high frequency noise rejection.

FIGURE 1.

Reference Supply

An internal 6.3 volt reference is provided on board the HI -DAC80V/HI-DAC85V. The voltage (pin 24) is accurate to $\pm 0.8 \%$ and must be connected to the reference input (pin 16) for specified operation. This reference may be used externally, provided current drain is limited to 2.5 mA . An external buffer amplifier is recommended if this reference is to be used to drive other system components. Otherwise, variations in the load driven by the reference will result in gain variations of the HI-DAC80V/HI-DAC85V. All gain adjustments should be made under constant load conditions.

Output Voltage Ranges

TABLE 3. GAIN AND OFFSET CALIBRATIONS

UNIPOLAR CALIBRATION	
Step 1:	Offset Turn all bits OFF (11 . . .1) Adjust R2 for OV out
Step 2:	Gain Turn all bits ON (00 . . . 0) Adjust R1 for FS-1 LSB That is: 4.9988 for 0 to +5 V range 9.9976 for 0 to +10 V range
BIPOLAR CALIBRATION	
Step 1:	Offset Turn all bits OFF ($11 \ldots$) Adjust R2 for Negative FS That is: -10V for $\pm 10 \mathrm{~V}$ range -5 V for $\pm 5 \mathrm{~V}$ range -2.5 V for $\pm 2.5 \mathrm{~V}$ range
Step 2:	Gain Turn all bits ON (00 ... 0) Adjust R1 for positive FS - 1 LSB That is: +9.9951 V for $\pm 10 \mathrm{~V}$ range +4.9976 V for $\pm 5 \mathrm{~V}$ range +2.4988 V for $\pm 2.5 \mathrm{~V}$ range
This Bipolar procedure adjusts the output range end points. The maximum error at zero (half scale) will not exceed the Linearity error. See the "Accuracy" Specifications.	

Die Characteristics

DIE DIMENSIONS:
108×163 mils
METALLIZATION:
Type: AL
Thickness: $16 \mathrm{k} \AA \pm 2 \mathrm{k} \AA$
GLASSIVATION:
Type: Nitride over Silox
Nitride Thickness: $3.5 \mathrm{k} \AA \pm 0.5 \mathrm{k} \AA$
Silox Thickness: $12 \mathrm{k} \AA \pm 1.5 \mathrm{k} \AA$
WORST CASE CURRENT DENSITY:
$0.95 \times 10^{5} \mathrm{Acm}^{2}$
TIE SUBSTRATE TO:
Ground

Metallization Mask Layout

HARRIS
SEMICONDUCTOR

Features

- 40MSPS Throughput Rate
- 8-Bit Resolution
- 0.25 LSB Integral Linearity Error
- Low Glitch Noise
- Single +5V Supply Operation
- Low Power Consumption 80mW (Max)

Applications

- Wireless Telecommunications
- NTSC, PAL, or SECAM
- Signal Reconstruction
- Direct Digital Synthesis
- Imaging
- Presentation and Broadcast Video
- Graphics Displays
- Signal Generators

Description

The HI1171 is an 8 -bit 40 MHz high speed D/A converter. The converter incorporates an 8 bit input data register with blanking capability, and current outputs. The HI1171 features low glitch outputs. The architecture is a current cell arrangement to provide low linearity errors.

The HI1171 is available in a Commercial temperature range and is offered in a 24 lead (200 mil) SOIC plastic package.

Ordering Information

PART NUMBER	TEMPERATURE RANGE	PACKAGE
H11171JCB	$-20^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$	24 Lead SOIC $(200 \mathrm{mil})$

Functional Block Diagram

$\mathbf{A V}_{\mathrm{DD}} \quad \mathrm{AV}_{\mathbf{S S}} \quad \mathrm{DV}_{\mathrm{DD}} \quad \mathrm{DV}_{\mathbf{S S}}$

Electrical Specifications $\quad A V_{D D}=+4.75$ to $+5.25 \mathrm{~V}, D V_{D D}=+4.75$ to $+5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=+2.0 \mathrm{~V}, \mathrm{f}_{\mathrm{S}}=40 \mathrm{MHz}$ ， CLK Pulse Width $=12.5 \mathrm{~ns}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$（Note 4）．

| PARAMETER | TEST CONDITION | MIN | TYP | MAX | UNITS |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| SYSTEM PERFORMANCE | | 8 | - | - | Bits |
| Resolution | $f_{S}=40 \mathrm{MHz}$（End Point） | -0.5 | - | 1.3 | LSB |
| Integral Linearity Error，INL | $\mathrm{f}_{\mathrm{S}}=40 \mathrm{MHz}$ | - | - | ± 0.25 | LSB |
| Differential Linearity Error，DNL | （Note 2） | - | - | 0.125 | LSB |
| Offset Error，$V_{\text {OS }}$ | （Note 2） | - | - | ± 13 | LSB |
| Full Scale Error，FSE（Adjustable to Zero） | | - | 10 | 15 | mA |
| Full Scale Output Current， $\mathrm{I}_{\text {FS }}$ | | 1.9 | 2.0 | 2.1 | V |
| Full Scale Output Voltage， $\mathrm{V}_{\text {FS }}$ | | 0.5 | 2.0 | 2.1 | V |
| Output Voltage Range， $\mathrm{V}_{\text {FSR }}$ | | | | | |

DYNAMIC CHARACTERISTICS

Throughput Rate	See Figure 7	40.0	-	-	MSPS
Glitch Energy，GE	$R_{\text {OUT }}=75 \Omega$	-	30	-	pV－s
Differential Gain，$\Delta \mathrm{A}_{V}$（Note 3）		-	1.2	-	$\%$
Differential Phase，$\Delta \phi$（Note 3）		-	0.5	-	Degree

REFERENCE INPUT

Voltage Reference Input Range		0.5	-	2.0	V
Reference Input Resistance	（Note 3）	1.0	-	-	$\mathrm{M} \Omega$

DIGITAL INPUTS

Input Logic High Voltage， V_{IH}	（Note 3）	3.0	-	-	V
Input Logic Low Voltage， V_{IL}	（Note 3）	-	-	1.5	V
Input Logic Current， $\mathrm{I}_{\mathrm{IL}}, \mathrm{I}_{\mathrm{IH}}$	（Note 3）	-	-	± 5.0	$\mu \mathrm{~A}$
Digital Input Capacitance， C_{IN}	（Note 3）	-	5.0	-	pF

TIMING CHARACTERISTICS

Data Setup Time， $\mathrm{t}_{\text {SU }}$	See Figure 1	5	-	-	ns
Data Hold Time， $\mathrm{t}_{\text {HLD }}$	See Figure 1	10	-	-	ns
Propagation Delay Time， $\mathrm{t}_{\text {PD }}$	See Figure 9	-	10	-	ns
Settling Time， $\mathrm{t}_{\text {SET }}$（to 1／2 LSB）	See Figure 1	-	10	15	ns
CLK Pulse Width， $\mathrm{T}_{\text {PW1 }}$, T $_{\text {PW2 }}$	See Figure 1	12.5	-	-	ns

Electrical Specifications $A V_{D D}=+4.75$ to $+5.25 \mathrm{~V}, D V_{D D}=+4.75$ to $+5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=+2.0 \mathrm{~V}, \mathrm{f}_{\mathrm{S}}=40 \mathrm{MHz}$, CLK Pulse Width $=12.5 \mathrm{~ns}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (Note 4). (Continued)

PARAMETER	TEST CONDITION	MIN	TYP	MAX	UNITS	
POWER SUPPLY CHARACTERISITICS	14.3 MHz, at Color Bar Data Input	-	10.9	11.5	mA	
IAV						
IDV	14.3 MHz, at Color Bar Data Input	-	4.2	4.8	mA	
Power Dissipation	200Ω load at $2 V_{\text {P.p }}$ Output	-	-	80	mW	

NOTES:

1. Dissipation rating assumes device is mounted with all leads soldered to printed circuit board
2. Excludes error due to external reference drift.
3. Parameter guaranteed by design or characterization and not production tested.
4. Electrical specifications guaranteed only under the stated operating conditions.

Timing Diagram

FIGURE 1.

Typical Performance Curves

FIGURE 4. OUTPUT FULL SCALE VOLTAGE vs REFERENCE Voltage

FIGURE 5. OUTPUT RESISTANCE vs GLITCH ENERGY

FIGURE 6. OUTPUT FULL SCALE VOLTAGE vs AMBIENT TEMPERATURE

Pin Description

$\begin{aligned} & 24 \text { PIN } \\ & \text { SOIC } \end{aligned}$	PIN NAME	PIN DESCRIPTION
1-8	$\begin{aligned} & \text { DO(LSB) thru } \\ & \text { D7(MSB) } \end{aligned}$	Digital Data Bit 0, the Least Significant Bit thru Digital Data Bit 7, the Most Significant Bit
9	BLNK	Blanking Line, used to clear the internal data register to the zero condition when High, normal operation when Low.
10, 13	DVss	Digital Ground
11	VB	Voltage Bias, connect a $0.1 \mu \mathrm{~F}$ capacitor to $\mathrm{DV}_{\text {Ss }}$
12	CLK	Data Clock Pin 100 kHz to 40 MHz
14	$\mathrm{AV}_{\text {Ss }}$	Analog Ground
15	$I_{\text {ref }}$	Current Reference, used to set the current range. Connect a resistor to $\mathrm{AV}_{\text {SS }}$ that is 16 times greater than the resistor on Ioutr. (See Typical Applications Circuit)
16	$V_{\text {REF }}$	Input Reference Voltage used to set the output full scale range.
17	VG	Voltage Ground, connect a $0.1 \mu \mathrm{~F}$ capacitor to $\mathrm{AV}_{\mathrm{DD}}$ -
18, 19, 22	AV ${ }_{\text {DD }}$	Analog Supply 4.75 V to 7V
20	Iouti	Current Output Pin.
21	louta	Current Output pin used for a virtual ground connection. Usually connected to $\mathrm{AV}_{\text {ss }}$
23, 24	DV DD	Digital Supply 4.75V to 7V

Detailed Description

The HI1171 is an 8 bit, current out D/A converter. The DAC can convert at 40MSPS and run on a single +5 V supply. The architecture is an encoded, switched current cell arrangement.

Voltage Output Mode

The output current of the H11171 can be converted into a voltage by connecting an external resistor to loutr. To calculate the output resistor use the following equation:

$$
\mathrm{R}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{FS}} / \mathrm{I}_{\mathrm{FS}}
$$

where V_{FS} can range from +0.5 V to +2.0 V and I_{FS} can range from 0 mA to 15 mA

In setting the output current the I IREF pin should have a resistor connected to it that is 16 times greater than the output resistor.

$$
R_{\text {REF }}=16 \times R_{\text {OUT }}
$$

As the values of both R ROUT and $R_{\text {REF }}$ increase, power consumption is decreased, but glitch energy and output settling time is increased.

Clock Phase Relationship

The internal latch is closed when the clock line is high. The latch can be cleared by the BLNK line. When BLNK is set (HIGH) the contents of the internal data latch will be cleared. When BLNK is low data is updated by the CLK.

Noise Reduction

To reduce power supply noise separate analog and digital power supplies should be used with $0.1 \mu \mathrm{~F}$ ceramic capacitors placed as close to the body of the H11171 as possible. The analog ($\mathrm{AV} \mathrm{V}_{\mathrm{SS}}$) and digital ($\mathrm{DV} \mathrm{SS}_{\mathrm{SS}}$) ground returns should be connected together back at the power supply to ensure proper operation from power up.

Test Circuits

FIGURE 7. MAXIMUM CONVERSION SPEED TEST CIRCUIT

FIGURE 8. DC CHARACTERISTICS TEST CIRCUIT

Test Circuits (Continued)

FIGURE 9. PROPAGATION DELAY TIME TEST CIRCUIT

FIGURE 10. SET UP HOLD TIME AND GLITCH ENERGY TEST CIRCUIT

December 1993

10/8-Bit, 160MSPS
Ultra High Speed D/A Converter

Features

- 160MSPS Throughput Rate
- 10 (HI20201) \& 8 (HI20203) Bit Resolution
- 0.5 LSB Differential Linearity Error
- Low Glitch Noise
- Analog Multiplying Function
- Low Power Consumption 420mW
- Evaluation Board Available

Applications

- Wireless Communications
- Signal Reconstruction
- Direct Digital Synthesis
- High Definition Video Systems
- Digital Measurement Systems
- Radar

Description

The HI20201/03 is a 160 MHz ultra high speed D/A converter. The converter is based on an R2R switched current source architecture that includes an input data register with a complement feature and is Emitter Coupled Logic (ECL) compatible.

The HI20201 is a 10 bit accurate D/A with a linearity error of 1 LSB. The HI20203 is an 8 bit accurate D/A with a linearity error of 0.5 LSB.

The HI20201/03 are available in a commercial temperature range and are offered in a 28 lead plastic SOIC (300 mil) and a 28 lead plastic DIP package.

Ordering Information

PART NUMBER	TEMPERATURE RANGE	PACKAGE
HI20201JCB	$-20^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	28 Lead SOIC (300 mil)
HI20203JCB	$-20^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	28 Lead SOIC (300 mil)
HI20201JCP	$-20^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	28 Lead Plastic DIP
HI20203JCP	$-20^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	28 Lead Plastic DIP

Pinout

HI20201, HI20203 (PDIP, SOIC) TOP VIEW

Typical Applications Circuit

Functional Block Diagram

$A V_{E E} \quad A V_{S S} \quad D V_{E E} \quad D V_{S S}$

Absolute Maximum Ratings

Digital Supply Voltage $\mathrm{DV}_{\mathrm{EE}}$ to $\mathrm{DV}_{\text {Ss }}$. -7.0 V

Digital Input Voltage
. +0.3 to $\mathrm{DV}_{\mathrm{EE}} \mathrm{V}$
Reference Input Voltage . 0.3 to $\mathrm{AV}_{E E} \mathrm{~V}$
Output Current . 20 mA
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering 10s)

Thermal Information

Thermal Resistance (Typ, See Note 1)	$\theta_{\text {JA }}$
SOIC Package .	$70^{\circ} \mathrm{C} / \mathrm{N}$
Plastic DIP Package	$60^{\circ} \mathrm{CW}$
Maximum Power Dissipation	
Hi20201JCB	575mW
Hi20203JCB	575 mW
Operating Temperature Range	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
Junction Temperature .	$+150^{\circ} \mathrm{C}$

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Electrical Specifications $A V_{E E}=-4.75$ to $-5.25 \mathrm{~V}, D V_{E E}=-4.75$ to $-5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=A V_{E E}+0.5$ to $A V_{E E}+1.5 \mathrm{~V}, \mathrm{f}_{\mathrm{S}}=160 \mathrm{MHz}$, Logic Levels $\mathrm{V}_{I H}=-1.0$ to $-0.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=-1.9$ to $-1.6 \mathrm{~V} \mathrm{R}_{\text {LOAD }}=\infty, \mathrm{V}_{\text {OUT }}=-1 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (Note 4).

		HI20201JCB/JCP			HI20203JCB/JCP			
	PARAMETER	TEST CONDITION	MIN	TYP	MAX	MIN	TYP	MAX
UNITS								

SYSTEM PERFORMANCE

Resolution		10	-	-	8	-	-	Bits
Integral Linearity Error, INL	$\mathrm{f}_{\mathrm{S}}=160 \mathrm{MHz}$ (End Point)	-	-	± 1.0	-	-	± 0.5	LSB
Differential Linearity Error, DNL	$\mathrm{f}_{\mathrm{S}}=160 \mathrm{MHz}$	-	-	± 0.50	-	-	± 0.50	LSB
Offset Error, $\mathrm{V}_{\text {OS }}$ (Adjustable to Zero)	(Note 3)	-	7	-	-	1.8	-	LSB
Full Scale Error, FSE (Adjustable to Zero)	(Note 3)	-	-	± 102	-	-	± 26	LSB
Full Scale Output Current, $\mathrm{I}_{\text {FS }}$		-	-	20	-	-	20	mA

DYNAMIC CHARACTERISTICS

Throughput Rate	See Figure 11	160	-	-	160	-	-	MSPS
Glitch Energy, GE	$\mathrm{R}_{\text {OUT }}=75 \Omega$	-	15	-	-	15	-	p - -s
REFERENCE INPUT								
Voltage Reference Input Range	With respect to $\mathrm{AV}_{\mathrm{EE}}$	+0.5	-	+1.4	+0.5	-	+1.4	V
Reference Input Current	$\mathrm{V}_{\text {REF }}=-4.58 \mathrm{~V}$	-0.1	-0.4	-3.0	-0.1	-0.4	-3.0	$\mu \mathrm{A}$
Voltage Reference to Output Small Signal Bandwidth	-3dB point 1V p-p Input	-	14.0	-	-	14.0	-	MHz
Output Rise Time, t_{R}	$\mathrm{R}_{\text {LOAD }}=75 \Omega$	-	1.5	-	-	1.5	-	ns
Output Fall Time, t_{F}	$\mathrm{R}_{\text {LOAD }}=75 \Omega$	-	1.5	-	-	1.5	-	ns

DIGITAL INPUTS

Input Logic High Voltage, V_{IH}	(Note 2)	-1.0	-0.89		-1.0	-0.89		V
Input Logic Low Voltage, V_{IL}	$($ Note 2)		-1.75	-1.6		-1.75	-1.6	V
Input Logic Current, $\mathrm{I}_{\mathrm{IL}} \mathrm{I}_{\mathrm{IH}}$ (For D9 thru D6, COMPL)	(Note 2) $\mathrm{V}_{\mathrm{IH}}=-0.89 \mathrm{~V}$ $\mathrm{~V}_{\mathrm{IL}}=-1.75 \mathrm{~V}$	0.1	1.5	6.0	0.1	1.5	6.0	$\mu \mathrm{~A}$
Input Logic Current, $\mathrm{I}_{\mathrm{IL}} \mathrm{I}_{\mathrm{IH}}$ (For D5 thru D0)	(Note 2) $\mathrm{V}_{\mathrm{IH}}=-0.89 \mathrm{~V}$ $\mathrm{~V}_{\mathrm{IL}}=-1.75 \mathrm{~V}$	0.1	0.75	3.0	0.1	0.75	3.0	$\mu \mathrm{~A}$

Electrical Specifications $A V_{E E}=-4.75$ to $-5.25 \mathrm{~V}, \mathrm{DV} V_{E E}=-4.75$ to $-5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=A V_{E E}+0.5$ to $A V_{E E}+1.5 \mathrm{~V}, \mathrm{f}_{\mathrm{S}}=160 \mathrm{MHz}$, Logic Levels $\mathrm{V}_{I H}=-1.0$ to $-0.7 \mathrm{~V}, \mathrm{~V}_{I L}=-1.9$ to $-1.6 \mathrm{~V} \mathrm{R}_{\text {LOAD }}=\infty, \mathrm{V}_{\text {OUT }}=-1 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (Note 4). (Continued)

| PARAMETER | | HI20201JCB/JCP | | | HI20203JCB/JCP | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

TIMING CHARACTERISTICS

Data Setup Time, $\mathrm{t}_{\text {SU }}$	See Figure 11	5	-	-	5	-	-	ns
Data Hold Time, $\mathrm{t}_{\text {HLD }}$	See Figure 11	1	-	-	1	-	-	ns
Propagation Delay Time, $\mathrm{t}_{\text {PD }}$	See Figure 11	-	3.8	-	-	3.8	-	ns
Settling Time, $\mathrm{t}_{\text {SET }}$ (to $1 / 2$ LSB)	See Figure 11	-	5.2	-	-	4.3	-	ns

POWER SUPPLY CHARACTERISITICS

$I_{\text {EE }}$		-60	-75	-90	-60	-75	-90	mA
Power Dissipation	75Ω load	-	420	470	-	420	470	mW

NOTES:

1. Dissipation rating assumes device is mounted with all leads soldered to printed circuit board
2. Parameter guaranteed by design or characterization and not production tested.
3. Excludes error due to reference drift.
4. Electrical specifications guaranteed only under the stated operating conditions.

Timing Diagram

FIGURE 1. LADDER SETTLING TIME FULL POWER BANDWIDTH (LS)

Typical Performance Curves

FIGURE 2. $\mathbf{V}_{\mathrm{O}(\mathrm{FS})}$ RATIO vs ($\mathrm{V}_{\mathrm{REF}} \mathbf{V}_{\mathrm{EE}}$)

FIGURE 4. OUTPUT CHARACTERISTICS vs MULTIPLYING INPUT SIGNAL FREQUENCY

FIGURE 3. FULL SCALE OUTPUT VOLTAGE vs AMBIENT TEMPERATURE

FIGURE 5. GLITCH ENERGY vs CASE TEMPERATURE (FULL SCALE-1023mV)

Pin Description

28 PIN SOIC	PIN NAME	PIN DESCRIPTION
$1-10$	DO (LSB)-D9 (MSB)	Digital Data Bit 0, the Least Significant Bit thru Digital Data Bit 9, the Most Significant Bit.
$11,12,19$, $21-25$	NC	No connect, not used.
13	$\overline{\text { CLK }}$	Negative differential Clock input.
14	CLK	Positive differential Clock input
15	DV $_{\text {EE }}$	Digital (ECL) Power Supply -4.75V to -7V.
16	COMPL	Data Complement Pin. When set to a (ECL) logic High the input data is complemented in the input buffer. When cleared to a (ECL) logic Low the input data is not complemented.
17	DV $_{\text {SS }}$	Digital Ground
18	AV $_{\text {SS }}$	Analog Ground
20	IOUT	Current Output Pin.
26	AV $_{\text {EE }}$	Analog Supply -4.75V to -7V.
27	$\mathrm{~V}_{\text {REF }}$	Input Reference Voltage used to set the output full scale range.
28	AV $_{\text {SS }}$	Analog Ground

Detailed Description

The HI20201 is a 10 bit, current output D/A converter. The DAC can run at 160MSPS and is ECL compatible. The architecture is segmented/R2R combination to reduce glitch and improve linearity.

The HI20203 is an 8 bit, current output D/A converter. The converter has 10 data bits but yields 8 bit performance.

Architecture

The HI2020/031 is a combined R2R/segmented current source design. The 6 least significant bits of the converter are derived by a traditional R2R network to binary weight the 1 mA current sources. The upper 4 most significant bits are implemented as segmented or thermometer encoded current sources. The encoder converts the incoming 4 bits to 15 control lines to enable the most significant current sources. The thermometer encoder will convert binary to individual control lines. See Table 1.

TABLE 1. THERMOMETER ENCODER

MSB	BIT 8	BIT 7	BIT 6	THERMOMETER CODE $\mathbf{1}=\mathbf{O N}, \mathbf{0}=\mathbf{0 F F}$ $\mathbf{I}_{15}-\mathbf{I}_{\mathbf{0}}$
0	0	0	0	000000000000000
0	0	0	1	000000000000001
0	0	1	0	000000000000011
0	0	1	1	000000000000111
0	1	0	0	000000000001111
0	1	0	1	000000000011111
0	1	1	0	000000000111111
0	1	1	1	000000001111111
1	0	0	0	000000011111111
1	0	0	1	000000111111111
1	0	1	0	000001111111111
1	0	1	1	000011111111111
1	1	0	0	000111111111111
1	1	0	1	001111111111111
1	1	1	0	011111111111111
1	1	1	1	111111111111111

The architecture of the HI20201/03 is designed to minimize glitch while providing a manufacturable 10 bit design that does not require laser trimming to achieve good linearity.

Glitch

Glitch is caused by the time skew between bits of the incoming digital data. Typically the switching time of digital inputs are asymmetrical meaning that the turn off time is faster than the turn on time (TTL designs). In an ECL system where the logic levels switch from one non-saturated level to another, the switching times can be considered close to symmetrical. This helps to reduce glitch in the D/A. Unequal delay paths through the device can also cause one current source to change before another. To minimize this the Harris HI20201/ 03 employes an internal register, just prior to the current sources, that is updated on the clock edge. Lastly the worst case glitch usually happens at the major transition i.e. 0111111111 to 100000 0000. But in the HI20201/03 the glitch is moved to the 0000011111 to 1111100000 transition. This is achieved by the split R2R/segmented current source architecture. This decreases the amount of current switching at any one time and makes the glitch practically constant over the entire output range. By making the glitch a constant size over the entire output range this effectively integrates this error out of the end application.

In measuring the output glitch of the HI20201/03 the output is terminated into a 75Ω load. The glitch is measured at the major carry's throughout the DACs output range.

FIGURE 6. HI20201/03 GLITCH TEST CIRCUIT

The glitch energy is calculated by measuring the area under the voltage-time curve. Figure 7 shows the area considered as glitch when changing the DAC output. Units are typically specified in picoVolt-seconds (pV-sec).

FIGURE 7. GLITCH ENERGY

Setting Full Scale

The Full Scale output voltage is set by the Voltage Reference pin (27). The output voltage performance will vary as shown in Figure 2.

The output structure of the HI20201 can handle down to a 75Ω load effectively. To drive a 50Ω load Figure 8 is suggested. Note the equivalent output load is $\sim 75 \Omega$

FIGURE 8. HI20201/03 DRIVING A 50Ω LOAD

Variable Attenuator Capability

The HI20201/03 can be used in a multiplying mode with a variable frequency input on the $\mathrm{V}_{\text {REF }}$ pin. In order for the part to operate correctly a DC bias must be applied and the incoming AC signal should be coupled to the $V_{\text {REF }}$ pin. See Figure 13 for the application circuit. The user must first adjust the DC reference voltage. The incoming signal must be attenuated so as not to exceed the maximum (+1.4 V) and minimum (+0.5 V) reference input. The typical output Small Signal Bandwidth is 14 MHz .

Integral Linearity

The Integral Linearity is measured using the End Point method. In the End Point method the gain is adjusted. A line is then established from the zero point to the end point or Full Scale of the converter. All codes along the transfer curve must fall within an error band of 1 LSB of the line. Figure 10 shows the linearity test circuit.

Differential Linearity

The Differential Linearity is the difference from the ideal step. To guarantee monotonicity a maximum of 1 LSB differential error is allowed. When more than 1 LSB is specified the converter is considered to be missing codes. Figure 10 shows the linearity test circuit.

Clock Phase Relationship

The HI20201/03 are designed to be operated at very high speed (i.e. 160 MHz). The clock lines should be driven with ECL100K logic for full performance. Any external data drivers and clock drivers should be terminated with 50Ω to minimize reflections and ringing.

Internal Data Register

The HI20201/03 incorporates a data register as shown in the Functional Block Diagram. This register is updated on the rising edge of the CLK line. The state of the Complement bit (COMPL) will determine the data coding. See Table 2.

TABLE 2. INPUT CODING TABLE

INPUT CODE	OUTPUT CODE	
	COMPL = 1	COMPL $=0$
0000000000	0	-1
1000000000	-0.5	-0.5
1111111111	-1	0

Thermal Considerations

The temperature coefficient of the full scale output voltage and zero offset voltage depend on the load resistance connected to lout. The larger the load resistor the better (i.e. smaller) the temperature coefficient of the D/A. See Figure 3 in the performance curves section.

Noise Reduction

Digital switching noise must be minimized to guarantee system specifications. Since 1 LSB corresponds to 1 mV for 10 bit resolution, care must be taken in the layout of a circuit board.

Separate ground planes should be used for DV $_{\text {SS }}$ and $\mathrm{AV}_{\text {SS }}$. They should be connected back at the power supply.

Separate power planes should be used for $\mathrm{DV}_{\mathrm{EE}}$ and $\mathrm{AV}_{\mathrm{EE}}$. They should be decoupled with a $1 \mu \mathrm{~F}$ tantalum capacitor and a ceramic $0.047 \mu \mathrm{~F}$ capacitor positioned as close to the body of the IC as possible.

Test Circuits

FIGURE 9. CURRENT CONSUMPTION, INPUT CURRENT AND OUTPUT RESISTANCE

FIGURE 10. DIFFERENTIAL LINEARITY ERROR AND LINEARITY ERROR

Test Circuits (Continued)

FIGURE 11. MAXIMUM CONVERSION RATE, RISE TIME, FALL TIME, PROPAGATION DELAY, SETUP TIME, HOLD TIME AND SETTLING TIME

Measuring Settling Time

Settling time is measured as follows. The relationship between V and $V_{0(F S)}$ as shown in the D/A output waveform in Figure 12 is expressed as

$$
V=V_{0(F S)}\left(1-e^{-t \tau}\right)
$$

The settling time for respective accuracy of 10,9 and 8 -bit is specified as

$$
\begin{aligned}
& \mathrm{V}=0.9995 \mathrm{~V}_{0(\mathrm{FS})} \\
& \mathrm{V}=0.999 \mathrm{~V}_{0(\mathrm{FS})} \\
& \mathrm{V}=0.999 \mathrm{~V}_{0(\mathrm{FS})}
\end{aligned}
$$

which results in the following:

$$
\begin{array}{ll}
t_{S}=7.60 \tau & \text { for } 10 \text {-bit, } \\
t_{S}=6.93 \tau & \text { for } 9 \text {-bit, and } \\
t_{S}=6.24 \tau & \text { for } 8 \text {-bit, }
\end{array}
$$

Rise time (t_{R}) and fall time (t_{F}) are defined as the time interval to slew from 10% to 90% of full scale voltage ($\mathrm{V}_{\mathrm{O}(\mathrm{FS})}$):

$$
\begin{aligned}
& \mathrm{V}=0.1 \mathrm{~V}_{0(\mathrm{FS})} \\
& \mathrm{V}=0.9 \mathrm{~V}_{\text {O(FS) }}
\end{aligned}
$$

and calculated as $t_{R}=t_{F}=2.20 \tau$.

FIGURE 12. D/A OUTPUT WAVEFORM

The settling time is obtained by combining these expressions:

$$
\begin{array}{ll}
t_{S}=3.45 t_{R} & \text { for } 10-\text {-bit, } \\
t_{S}=3.15 t_{R} & \text { for } 9-\text { bit, and } \\
t_{S}=6.24 t_{R} & \text { for } 8 \text {-bit }
\end{array}
$$

Test Circuits (Continued)

FIGURE $13 A$.

FIGURE 13B.

FIGURE $13 C$.

FIGURE 13. MULTIPLYING BANDWIDTH
PAGE
SWITCHES SELECTION GUIDES 9-3
SINGLE POLE SINGLE THROW (SPST, FIGURE 1) 9-3
DUAL SINGLE POLE SINGLE THROW ($2 \times$ SPST, FIGURE 2) 9-3
QUAD SINGLE POLE SINGLE THROW ($4 \times$ SPST, FIGURE 3). 9-5
FOUR POLE SINGLE THROW (4PST, FIGURE 4) 9-6
SINGLE POLE DOUBLE THROW (SPDT, FIGURE 5) 9-7
DUAL SINGLE POLE DOUBLE THROW ($2 \times$ SPDT, FIGURE 6) 9-7
DOUBLE POLE SINGLE THROW (DPST, FIGURE 7) 9-8
DUAL DOUBLE POLE SINGLE THROW ($2 \times$ DPST, FIGURE 8) 9-9
DUAL DOUBLE POLE DOUBLE THROW ($2 \times$ DPDT, FIGURE 9) 9-10
RFNIDEO "T" SWITCHES ("T" SWITCH , FIGURE 10) 9-10
SWITCHES DATA SHEETS
DG200, CMOS Dual/Quad SPST Analog Switches 9-13
DG201
9-21
DG201A, Quad SPST CMOS Analog Switches
DG202
DG211, SPST 4 Channel Analog Switch 9-25
DG212
DG300A, TTL Compatible CMOS Analog Switches 9-30
DG301A,DG302A,DG303A
DG308A, Quad Monolithic SPST CMOS Analog Switches 9-37
DG309
DG401, Monolithic CMOS Analog Switches 9-42DG403,DG405

NOTE: Bold Type Designates a New Product from Harris.

Switches (continued)

PAGE
DG411, Monolithic Quad SPST CMOS Analog Switches 9-44
DG412,DG413
DG441, Monolithic Quad SPST CMOS Analog Switches 9-53
DG442
DG444, Monolithic Quad SPST CMOS Analog Switches 9-63
DG445
HI-200, Dual/Quad SPST CMOS Analog Switches 9-73
HI-201
HI-201HS High Speed Quad SPST CMOS Analog Switch 9-82
HI-300 thru CMOS Analog Switches 9-93
HI-307
HI-381 thru CMOS Analog Switches 9-103
HI-390
HI-5040 thru CMOS Analog Switches 9-110
HI-5051,HI-5046A andHI-5047A
IH5043 Dual SPDT CMOS Analog Switch 9-121
IH5052, Quad CMOS Analog Switch 9-128
IH5053
IH5140 thru High-Level CMOS Analog Switch 9-134
IH5145
IH5151 Dual SPDT CMOS Analog Switch 9-147
IH5341, Dual SPST, Quad SPST CMOS RF/Video Switches 9-155IH5352
NOTE: Bold Type Designates a New Product from Harris.

SINGLE POLE SINGLE THROW (SPST, FIGURE 1)

(NOTES 2, 3) DEVICE	SUFFIX CODES	MIL SPEC	(NOTE 1) $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})} \Omega$ MAX	$\begin{aligned} & \text { SWITCH } \\ & \text { "ON" (V) } \end{aligned}$	SWITCH "OFF" (V)	TECHNOLOGY	$\underset{\text { TYP }}{I_{\text {SOFF }}(\pm n A)}$	$\begin{aligned} & \mathbf{T}_{\text {ON }}\left(n s{ }^{\text {(YYP }}\right. \end{aligned}$	$\begin{aligned} & \mathbf{T}_{\text {OFFF }} \text { (nsP) } \end{aligned}$	FEATURES
H11-5040	-2, -5, -7	HI1-5040/883	75	3.0	0.8	36 V CMOS-DI	0.8	370	280	
IH5140	MJE, CJE, CPE	IH5140MJE/883B	75	2.4	0.8	36 V CMOS-J	5.0	175	150	
H11-0301	-2, -5, -7	H11-0301/883	50	4.0	0.8	44 V CMOS-DI	0.04	210	160	Very Low Leakage, TTL Inputs
H12-0301	-2, -5	H12-0301/883								
Hi3-0301	-5									
H19P0301	-5									
H19P0301	-9									
H11-0305	-2, -5	H11-0305/883	50	11.0	3.5	44 V CMOS-DI	0.04	160	100	CMOS Logic
H12-0305	-2, -5	H12-0305/883								
H13-0305	-5									
H19P0305	-5									
H19P0305	-9									

DUAL SINGLE POLE SINGLE THROW (2 x SPST, FIGURE 2)

(NOTES 2, 3) DEVICE	SUFFIX CODES	MIL SPEC	(NOTE 1) $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})} \Omega$ MAX	SWITCH "ON" (V)	SWITCH "OFF" (V)	TECHNOLOGY	$\begin{gathered} I_{\text {SOFF }}(\pm n A) \\ \text { TYP } \end{gathered}$	$\begin{gathered} \mathbf{T}_{\text {ON }}(n s) \\ \text { TYP } \end{gathered}$	$\begin{gathered} T_{\text {OFF }} \text { (ns) } \\ \text { TYP } \end{gathered}$	FEATURES
DG200	$\begin{gathered} \text { AA, AK } \\ \text { BA, BK } \\ \text { CK } \end{gathered}$	DG200AA $883 B$ DG200AK/883B	80	2.4	0.8	36V CMOS-J	5.0	1000	500	
DG300A	$\begin{aligned} & \text { AA, AK } \\ & \text { BA, BK } \\ & \text { CJ, CK } \end{aligned}$	DG300AAA 883B DG300AAK/883B	50	4.0	0.8	44V CMOS-J	0.1	150	130	
DG401	DJ, DY	DG401AK/883	45	2.4	0.8	44V CMOS-J	-0.01	100	60	Very Low $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$

DUAL SINGLE POLE SINGLE THROW (2 x SPST, FIGURE 2) (Continued)

(NOTES 2, 3) DEVICE	SUFFIX CODES	MIL SPEC	(NOTE 1) $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})} \Omega$ MAX	$\begin{aligned} & \text { SWITCH } \\ & \text { "ON" (V) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { SWITCH } \\ & \text { "OFF" (V) } \end{aligned}$	TECHNOLOGY	$\begin{gathered} I_{\text {SOFF }}(\pm n A) \\ \text { TYP } \end{gathered}$	$\begin{gathered} \mathrm{T}_{\text {ON }}(\mathrm{ns}) \\ \text { TYP } \end{gathered}$	$\begin{gathered} \mathbf{T}_{\text {OFF }} \text { (ns) } \end{gathered}$	FEATURES
H11-0200	-2, -4, -5, -7	H11-0200/883	80	0.8	2.4	44 V CMOS-DI	1.0	240	500	
H12-0200	-2, -4, -5, -7	H12-0200/883								
H13-0200	-5									
HI9P0200	-5, -9									
H11-0300	-2, -5	H11-0300/883	50	4.0	0.8	44V CMOS-DI	0.04	210	160	Very Low Leakage
H12-0300	-2, -5	H12-0300/883								
H13-0300	-5									
H19P0300	- $-5,-9$									
H11-0304	-2, -5	H11-0304/883	50	11.0	3.5	44 V CMOS-DI	0.04	160	100	CMOS Logic Very Low Leakage
H12-0304	-2, -5	H12-0304/883								
H13-0304	-5									
H19P0304	-5, -9									
H11-0381	-2, -5	HI1-0381/883	50	4.0	0.8	44V CMOS-DI	0.04	210	160	Very Low Leakage
H12-0381	-2, -5	H12-0381/883								
H13-0381	-5									
H19P0381	-5, -9									
H11-5041	$-2,-5,-7,-8$	H11-5041/883	75	3.0	0.8	36 V CMOS-DI	0.8	370	280	$10 \Omega \mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ Matching
Hi3-5041	-5									
H11-5048	-2, -5, -7	H11-5048/883	45	3.0	0.8	36 V CMOS-DI	0.8	370	280	$5 \Omega \mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ Matching
H13-5048	-5									
IH5141	CJE, CPE MJE	IH5141MJE/883B	75	2.4	0.8	36V CMOS-J	5.0	150	125	
1H5341	$\begin{aligned} & \text { CPD, ITW, } \\ & \text { MTW } \end{aligned}$	IH5341MTW/883B	75	2.4	0.8	36V CMOS-J	1.0	150	80	RF Video T-Switch

QUAD SINGLE POLE SINGLE THROW ($4 \times \operatorname{SPST}$, FIGURE 3)

(NOTES 2, 3) DEVICE	SUFFIX CODES	MIL SPEC	(NOTE 1) $\mathbf{R}_{\mathrm{DS}(\mathrm{ON})} \Omega$ MAX	SWITCH "ON" (V)	$\begin{aligned} & \text { SWITCH } \\ & \text { "OFF" (V) } \end{aligned}$	TECHNOLOGY	$\begin{gathered} I_{\text {SOFF }}(\pm n A) \\ \text { TYP } \end{gathered}$	$\begin{gathered} \mathrm{T}_{\text {ON }} \text { (ns) } \\ \text { TYP } \end{gathered}$	$\begin{aligned} & \mathbf{T}_{\text {OFF }} \text { (ns) } \\ & \text { TYP } \end{aligned}$	FEATURES
DG201	AK, BK, CJ	DG201AK/883B	100	2.4	0.8	36V CMOS-JI	0.01	480	370	Very Low Leakage
DG201A	AK, BK, CJ, CK	DG201AAK/883B	115 Typ	0.8	2.4	44V CMOS-J	0.01	480	370	Very Low Leakage
DG201A	BY, CY									
DG202	AK, BK, CJ, CK	DG202AK/883B	115 Typ	2.4	0.8	44V CMOS-J	0.01	480	370	
DG211	CJ, CY		150 Typ	0.8	2.4	44V CMOS-JI	0.01	460	360	Low Cost
DG212	CJ, CY		150 Typ	2.4	0.8	44V CMOS-JI	0.01	460	360	Low Cost
DG308A	$\begin{gathered} \mathrm{AK}, \mathrm{BK} \\ \mathrm{CJ}, \mathrm{CK}, \mathrm{CY} \end{gathered}$	DG308AAK/883B	60 Typ	11.0	3.5	44V CMOS-J	0.01	130	90	CMOS Logic, Single or Dual Supply Operation
DG309	$\begin{gathered} \mathrm{AK}, \mathrm{BK}, \\ \mathrm{CJ}, \mathrm{CK}, \mathrm{CY} \end{gathered}$	DG309AK/883B	60 Typ	3.5	11.0	44V CMOS-JI	0.1	130	90	CMOS Logic, Single or Dual Supply Operation
DG411	DJ, DY	DG411AK/883	35	2.4	0.8	44V CMOS-JI	-0.1	110	100	Very Low R ${ }_{\text {DS(ON) }}$
DG412	DJ, DY	DG412AK/883	35	2.4	0.8	44V CMOS-J	-0.1	110	100	Very Low $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$
DG413	DJ, DY	DG413AK/883	35	2.4	0.8	44V CMOS-JI	-0.1	110	100	Very Low $\mathrm{R}_{\text {DS(ON) }}$
DG441	DJ, DY	DG441AK/883	85	2.4	0.8	44V CMOS-JI	0.01	150	90	Low $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$, Low Leakage
DG442	DJ, DY	DG442AK/883	85	2.4	0.8	44V CMOS-J	0.01	150	110	Low $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$, Low Leakage
DG444	DJ, DY		85	2.4	0.8	44V CMOS-J	0.01	150	90	Low $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$, Low Leakage
DG445	DJ, DY		85	2.4	0.8	44V CMOS-JI	0.01	150	110	Low $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$, Low Leakage
HI1-0201	$\begin{gathered} -2,-4,-5 \\ -7,-8 \end{gathered}$	HI1-0201/883	80	0.8	2.4	44V CMOS-DI	2.0	185	220	
HI3-0201	-5									
HI4P0201	-5									
HI9P0201	-5, -9									
		H14-0201/883								

QUAD SINGLE POLE SINGLE THROW (4 x SPST, FIGURE 3) (Continued)

(NOTES 2, 3) DEVICE	SUFFIX CODES	MIL SPEC	(NOTE 1) $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})} \Omega$ MAX	SWITCH "ON" (V)	$\begin{aligned} & \text { SWITCH } \\ & \text { "OFF" (V) } \end{aligned}$	TECHNOLOGY	$\underset{\text { TYP }}{I_{\text {SOFF }}(\pm n A)}$	$\begin{gathered} \mathrm{T}_{\mathrm{ON}}(\mathrm{~ns}) \\ \mathbf{T Y P} \end{gathered}$	$\begin{gathered} T_{\text {OFF }} \text { (ns) } \\ \text { TYP } \end{gathered}$	FEATURES
H11-0201HS	$\begin{gathered} -2,-4,-5, \\ -7,-8 \end{gathered}$	H11-0201HS/883	50	0.8	2.4	33 V CMOS-DI	0.3	30	40	High Speed, Low $\mathrm{R}_{\text {DS(ON) }}$
H13-0201HS	-4, -5									
H14P0201HS	-5									
H19P0201HS	-5, -9									
		H14-0201HS/883								
1H5052	CDE, MDE		80	0.8	2.4	36 V CMOS-J	5.0	1000	500	
1H5053	CDE, MDE		80	2.4	0.8	36V CMOS-J	5.0	1000	500	
1H5352	CPE, IJE, MJE	IH5352MJE/883B	75	2.4	0.8	36 V CMOS-JI	2.0	150	80	RF Video T-Switch
IH5352	CBP, IBP									

FOUR POLE SINGLE THROW (4PST, FIGURE 4)

(NOTES 2, 3) DEVICE	SUFFIX CODES	MIL SPEC	(NOTE 1) $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})} \Omega$ MAX	$\begin{aligned} & \text { SWITCH } \\ & \text { "ON" (V) } \end{aligned}$	SWITCH "OFF" (V)	TECHNOLOGY	$\underset{\text { TYP }}{I_{\text {SOFF }}(\pm n A)}$	$\begin{gathered} \mathrm{T}_{\mathrm{ON}}(\mathrm{~ns}) \\ \mathbf{T Y P} \end{gathered}$	$\begin{gathered} T_{\text {OFF }} \text { (ns) } \\ \text { TYP } \end{gathered}$	FEATURES
H11-5047	-2, -5, -7	H11-5047/883	75	3.0	0.8	36 V CMOS-JI	0.8	370	280	10Ω Max $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ Matching
H13-5047	-5									
HI1-5047A	$-2,-5,-7,-8$	H11-5047A/883	45	3.0	0.8	36 V CMOS-J	0.8	370	280	5Ω Max $\mathrm{R}_{\text {DS(ON) }}$ Matching
H13-5047A	-5									
H14P5047A	-5									

SINGLE POLE DOUBLE THROW (SPDT, FIGURE 5)

(NOTES 2, 3) DEVICE	SUFFIX CODES	MIL SPEC	(NOTE 1) $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})} \Omega$ MAX	SWITCH "ON" (V)	SWITCH "OFF" (V)	TECHNOLOGY	$\underset{T Y P}{I_{\text {SOFF }}(\pm n A)}$	$\begin{gathered} \mathrm{T}_{\text {ON }}(\mathrm{ns}) \\ \mathrm{TYP}^{2} \end{gathered}$	$\begin{gathered} \mathbf{T}_{\text {OFF }}(n s) \\ \text { TYP } \end{gathered}$	FEATURES
DG301A	$\begin{gathered} \mathrm{AA}, \mathrm{AK} \\ \mathrm{BA}, \mathrm{BK} \\ \mathrm{CA}, \mathrm{CJ}, \mathrm{CK} \end{gathered}$	DG301AAAN883B DG301AAK/883B	50	2.4	0.8	44 V CMOS-J	0.1	150	130	Channel 1 "ON", Channel 2 "OFF", TTL Inputs
DG303A	BY, CY									
H11-0387	-2, -5	H11-0387/883	50	4.0	0.8	44 V CMOS-DI	0.04	210	160	Channel 1 "ON",
H12-0387	-2, -5	H12-0387/883								Very Low Leakage
H13-0387	-5									
H19P0387	-5									
H11-5042	$-2,-5,-7$	H11-5042/883	75	3.0	0.8	36 V CMOS-DI	0.8	370	280	Channel $1{ }^{\text {"ON }}$ ",
H13-5042	-5									
H11-5050	$-2,-5,-7$	H11-5050/883	45	3.0	0.8	36 V CMOS-DI	0.8	370	280	Channel 1 "ON",
H13-5050	-5									

DUAL SINGLE POLE DOUBLE THROW ($2 \times$ SPDT, FIGURE 6)

(NOTES 2, 3) DEVICE	SUFFIX CODES	MIL SPEC	(NOTE 1) $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})} \Omega$ MAX	SWITCH "ON" (V)	SWITCH "OFF" (V)	TECHNOLOGY	$\begin{gathered} I_{\text {SOFF }}(\pm \text { ITA }) \\ \text { TYP } \end{gathered}$	$\begin{gathered} \mathbf{T}_{\text {ON }}(\mathrm{ns}) \\ \mathbf{T Y P}^{2} \end{gathered}$	$\begin{gathered} \mathbf{T}_{\text {OfF }}(\mathrm{ns}) \\ \text { TYP } \end{gathered}$	FEATURES
DG403	DJ, DY	DG403AK/883	45	2.4	0.8	44V CMOS-JI	-0.01	100	60	
H11-0303	-2, -5	HI1-0303/883	50	4.0	0.8	44 V CMOS-DI	0.04	210	160	Channel 1 "ON", Channel 2
H13-0303	-5									TTL Inputs
H19P0303	-5, -9									

DUAL SINGLE POLE DOUBLE THROW ($2 \times \operatorname{SPDT}$, FIGURE 6) (Continued)

(NOTES 2, 3) DEVICE	SUFFIX CODES	MIL SPEC	(NOTE 1) $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})} \Omega$ MAX	SWITCH "ON" (V)	$\begin{aligned} & \text { SWITCH } \\ & \text { "OFF" (V) } \end{aligned}$	TECHNOLOGY	$\underset{\text { TYP }}{I_{\text {soff }}(\pm n A)}$	$\begin{gathered} T_{O N}(n s) \\ T_{Y P} \end{gathered}$	$\begin{aligned} & \mathrm{T}_{\text {OFF }}(\mathrm{ns}) \\ & \text { TYP } \end{aligned}$	FEATURES
H11-0307	-2, -5, -7	H11-0307/883	50	11.0	3.5	44 V CMOS-DI	0.04	160	100	Channel 1 "ON", Channel 2 "OFF", Very Low Leakage
H13-0307	-5									
H19P0307	-5, -9									
H11-0390	-2, -5	H11-0390/883	50	4.0	0.8	44 V CMOS-DI	0.04	210	160	Channel 1 "ON", Channel 2 "OFF", Very Low Leakage
H13-0390	-5									
H19P0390	-5, -9									
H11-5043	-2, -5-8	H11-5043/883	75	2.4	0.8	36V CMOS-DI	0.8	370	280	Channel 1 "ON" Channel 2 "OFF" $10 \Omega \mathrm{Max}_{\mathrm{DS}(\mathrm{ON})}$ Matching
H13-5043	-5									
H19P5043	-5, -9									
H11-5051	-2, -5, -7, -8	H11-5051/883	45	3.0	0.8	36 V CMOS-DI	0.84	370	280	Channel 1 "ON" Channel 2 "OFF" 5Ω Max $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ Matching
H13-5051	-5									
Hi4P5051	-5									
H19P5051	-5, -9									
IH5043	$\begin{gathered} \text { CDE, CJE, } \\ \text { CPE, CY, } \\ \text { MJE } \end{gathered}$	IH5043MJE/883B	80	3.0	0.8	36 V MCOS-JI	5.0	1000	500	Channel 1 "ON" Channel 2 "OFF"

DOUBLE POLE SINGLE THROW (DPST, FIGURE 7)

(NOTES 2, 3) DEVICE	SUFFIX CODES	MIL SPEC	(NOTE 1) $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})} \Omega$ MAX	SWITCH "ON" (V)	SWITCH "OFF" (V)	TECHNOLOGY	$\underset{\text { TYP }}{I_{\text {SOFF }}(\pm n A)}$	$\begin{gathered} \mathbf{T}_{\text {ON }}(\mathrm{ns}) \\ \mathbf{T Y P} \end{gathered}$	$\begin{aligned} & \mathbf{T}_{\text {OFF }}^{\text {TYP }} \end{aligned}$	FEATURES
H11-5044	-2, -5, -7	H11-5044/883	75	3.0	0.8	36 V CMOS-DI	0.8	370	280	10Ω Max $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ Matching
HI3-5044	-5									
1H5144	CJE, CPE, MJE	IH5144MJE/883B	75	2.4	0.8	36 V CMOS-J	5.0	250	150	

DUAL DOUBLE POLE SINGLE THROW ($2 \times$ DPST, FIGURE 8)

(NOTES 2, 3) DEVICE	SUFFIX CODES	MIL SPEC	(NOTE 1) $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})} \Omega$ MAX	SWITCH "ON" (V)	$\begin{aligned} & \text { SWITCH } \\ & \text { "OFF" (V) } \end{aligned}$	TECHNOLOGY	$\begin{gathered} I_{\text {SOFF }}(\pm n A) \\ T Y P \end{gathered}$	$\begin{gathered} \mathrm{T}_{\text {ON }}(\mathrm{ns}) \\ \mathrm{TYP}^{2} \end{gathered}$	$\begin{aligned} & \mathrm{T}_{\text {OFFF }}^{\text {TYP }} \end{aligned}$	FEATURES
DG302A	$A K, B K$, CK, CJ	DG302AAK/883B	50	4.0	0.8	44 V CMOS-J	0.1	150	130	TTL Inputs
DG405	DJ, DY	DG405AK/883	45	2.4	0.8	44V CMOS-J	-0.01	100	60	Very Low $\mathrm{R}_{\text {DS(ON) }}$
H11-0302	-2, -5	H11-0302/883	50	4.0	0.8	44V CMOS-DI	0.1	210	160	TTL Inputs
H13-0302	-5									
H19P0302	-5, -9									
H11-0306	-2, -5	HI1-0306/883	50	11.0	3.5	44V CMOS-DI	0.1	160	100	CMOS Logic
H13-0306	-5									
HI9P0306	-5, -9									
H11-0384	-2, -5	H11-0384/883	50	4.0	0.8	44V CMOS-DI	0.04	210	160	Very Low Leakage
H13-0384	-5									
H19P0384	-5, -9									
HI1-5045	$-2,-5,-7$	H11-5045/883	75	4.0	0.8	36 V CMOS-DI	0.04	210	160	Very Low Leakage
HI3-5045	-5									
		H14-5045/883								
H195045	-5, -9									
H11-5049	-2, -5, -7	H11-5049/883	45	3.0	0.8	36V CMOS-DI	0.8	370	280	$5 \Omega \mathrm{R}_{\text {DS(ON) }}$ Matching
HI3-5049	-5									
IH5145	CJE, CPE, MJE	IH5145MJE/883B	75	2.4	0.8	36 V CMOS-J	5.0	150	125	

DUAL DOUBLE POLE DOUBLE THROW ($2 \times$ DPDT, FIGURE 9)

(NOTES 2, 3) DEVICE	$\begin{aligned} & \text { SUFFIX } \\ & \text { CODES } \end{aligned}$	MIL SPEC	(NOTE 1) $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})} \Omega$ MAX	$\begin{aligned} & \text { SWITCH } \\ & \text { "ON" (V) } \end{aligned}$	$\begin{gathered} \text { SWITCH } \\ \text { "OFF" (V) } \end{gathered}$	TECHNOLOGY	$\begin{gathered} I_{\text {soff }}(\pm n A) \\ \operatorname{TYP} \end{gathered}$	$\begin{gathered} \mathbf{T}_{\text {ON }}(\mathrm{ns}) \\ \mathrm{TYP}^{2} \end{gathered}$	$\begin{aligned} & \mathbf{T}_{\text {OFF }}^{\text {TYP }} \end{aligned}$	FEATURES
H11-5046	-2, -5, -7	HI1-5046/883	75	0.8	2.4	36V CMOS-DI	0.8	370	280	Channel 1 "ON" Channel 2 "OFF" 10Ω Max $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ Matching
H33-5046	-5									
H11-5046A	-2, -5, -7	H11-5046AN883	45	3.0	0.8	36V CMOS-DI	0.8	370	280	Channel 1 "ON" Channel 2 "OFF" 5Ω Max $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ Matching
Hi3-5046A	-5									

RF/VIDEO "T" SWITCHES ("T" SWITCH , FIGURE 10)

(NOTES 2, 3) DEVICE	SUFFIX CODES	MIL SPEC	(NOTE 1) $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})} \Omega$ MAX	SWITCH "ON" (V)	$\begin{aligned} & \text { SWITCH } \\ & \text { "OFF" (V) } \end{aligned}$	TECHNOLOGY	$\begin{gathered} I_{\text {soff }}(\pm n A) \\ T Y P \end{gathered}$	$\begin{gathered} \mathbf{T}_{\text {ON }}(\mathrm{ns}) \\ \mathrm{TYP}^{2} \end{gathered}$	$\begin{aligned} & \mathbf{T}_{\text {OFF }} \text { (ns) } \\ & \text { TYP } \end{aligned}$	FEATURES
1H5341	ITW, MTW	IH5341MTW/883B	75	2.4	0.8	36V CMOS-J	1.0	150	80	Dual SPST
1H5341	CPD									
1H5352	IJE, MJE	IH5352MJE/883B	75	2.4	0.8	36V CMOS-J	2.0	150	80	Quad SPST
1H5352	CPE									
1H5352	CBP									
145352	IBP									

NOTES:

1. The $R_{D S(O N)}$ of a CMOS switch varies as a function of supply voltage, analog signal voltage, and temperature. Values shown are maximum (unless noted "Typ" $=$ typical) at $+25^{\circ} \mathrm{C}$. SWITCH "ON" V: Digital Threshold to "CLOSE" a particular switch. (Minimum if greater than "OFF". Maximum if less than "OFF").
SWITCH "OFF" V: Digital Threshold to "OPEN" a particular switch. (Minimum if greater than "ON". Maximum if less than "ON").
$\mathrm{V}_{\mathrm{INL}}$:
VINH.
DG Types - SUFFIX:
A 10 Lead TO-100
J Plastic DIP
K Ceramic DIP
P Ceramic DIP
IH Types - Middle SUFFIX Letter:
J Ceramic DIP
P Plastic DIP
T TO-100 Can
B SOIC
HI Types - PREFIX:
HI1 Ceramic DIP
HI2 Metal Can
HI3 Plastic DIP
H14 Ceramic LCC
HI4P PLCC
HI9P SOIC
2. Temperature Code Suffix: -1: $\quad 0^{\circ}$ to $+200^{\circ} \mathrm{C}$
$-2, \mathrm{~A}$, or M: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
-4 or B: $\quad-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
-5: $\quad 0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ with Burn-In
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ with Burn-In $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ with Burn-In
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ $-9:$ Mil-Std-883, Class B, $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ with Burn-In industrial, $-25^{\circ} \mathrm{C}$ or $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, see data sheet
I:
3. Double Throw switches have one switch ON and the other switch OFF for each input state. See data sheet.
 DG200, DG201

December 1993

CMOS Dual/Quad SPST Analog Switches

Features

- Switches Greater than 28V p_p Signals with ± 15 Supplies
- Break-Before-Make Switching toff 250ns, ton 700ns Typical
- TTL, DTL, CMOS, PMOS Compatible
- Non-Latching with Supply Turn-Off
- Complete Monolithic Construction
- Industry Standard (DG200, DG201)

Applications

- Data Acquisition
- Sample and Hold Circuits
- Operational Amplifier Gain Switching Networks

Description

The DG200 and DG201 solid state analog gates are designed using an improved, high voltage CMOS monolithic technology. They provide ease-of-use and performance advantages not previously available from solid state switches. Destructive latch-up of solid state analog gates has been eliminated by Harris's CMOS technology.

The DG200 and DG201 are completely specification and pinout compatible with the industry standard devices.

Ordering Information

PART NUMBER	TEMPERATURE	PACKAGE
DG200AA	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	10 Pin Metal Can
DG200AK	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	14 Lead Ceramic DIP
DG200BA	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	10 Pin Metal Can
DG200BK	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 Lead Ceramic DIP
DG200CJ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14 Lead Plastic DIP
DG200AA 883B	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	10 Pin Metal Can
DG200AK/883B	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	14 Lead Ceramic DIP
DG201AK	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
DG201BK	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
DG201CJ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Lead Plastic DIP
DG201AK/883B	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead Ceramic DIP

Pinouts
DG200 (CDIP, PDIP) TOP VIEW

DG200
(TO-100 METAL CAN) TOP VIEW

DG201
(CDIP, PDIP) TOP VIEW

Schematic Diagram ($1 / 12$ DG200, $1 / 4$ DG201)

Functional Diagram

DG200, DG201 SWITCH CELL

Absolute Maximum Ratings

V+, V- . $<36 \mathrm{~b}$

$\mathrm{V}_{\text {IN }}$-GND . $<20 \mathrm{C}$
Storage Temperature Range $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering 10s). $+300^{\circ} \mathrm{C}$

Thermal Information

Thermal Resistance	$\theta_{\text {JA }}$	${ }^{\circ} \mathrm{C}$
Ceramic DIP Package	$95^{\circ} \mathrm{C} / \mathrm{W}$	$24^{\circ} \mathrm{C} / \mathrm{W}$
Plastic DIP Package	$100^{\circ} \mathrm{C} / \mathrm{N}$	-
Metal Can Package	$136{ }^{\circ} \mathrm{C} / \mathrm{N}$	$65^{\circ} \mathrm{C} / \mathrm{N}$
Operating Temperature Range		
" ${ }^{\text {" }}$ Suffix	-55°	0 $+125^{\circ} \mathrm{C}$
"B" Suffix	-25	to $+85^{\circ} \mathrm{C}$
"C" Sufix		$0+70^{\circ}$

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Electrical Specifications $\left(T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}\right)$

PARAMETER	TEST CONDITIONS	MILITARY			COMMERCIAL / INDUSTRIAL			UNITS
		$-55^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$	$\begin{gathered} 0^{\circ} \mathrm{C} \text { TO } \\ -25^{\circ} \mathrm{C} \end{gathered}$	+25 ${ }^{\circ} \mathrm{C}$	$\begin{gathered} +70^{\circ} \mathrm{C} \mathrm{TO} \\ +85^{\circ} \mathrm{C} \end{gathered}$	
Input Logic Current, IN(ON)	$\mathrm{V}_{\text {IN }}=0.8 \mathrm{~V}$ ($\left.\mathrm{Notes} 2,3\right)$	± 10	± 1	± 10	-	± 10	± 10	$\mu \mathrm{A}$
Input Logic Current, $I_{\text {N(OFF) }}$	$\mathrm{V}_{\text {IN }}=2.4 \mathrm{~V}($ Notes 2, 3)	± 10	± 1	± 10	-	± 10	± 10	$\mu \mathrm{A}$
Drain-Source On Resistance, $\mathrm{r}_{\mathrm{DS}(\mathrm{ON})}$	$\begin{aligned} & l_{S}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{ANALOG}}= \\ & \pm 10 \mathrm{~V} \end{aligned}$	70	70	100	80	80	100	Ω
Channel-to-Channel $r_{\mathrm{DS}(\mathrm{ON})}$ Match, $\mathrm{r}_{\mathrm{DS}(\mathrm{ON})}$		-	25 (Typ)	-	-	30 (Typ)	-	Ω
Minimum Analog Signal Handling Capability, $\mathrm{V}_{\text {ANALOG }}$		-	$\pm 15 \mathrm{~V}$	\bullet	\bullet	$\pm 15 \mathrm{~V}$	\bullet	V
Switch OFF Leakage Current, $\mathrm{I}_{\text {D(OFF) }}$	$\mathrm{V}_{\text {ANALOG }}=-14 \mathrm{~V}$ to +14 V	-	± 2	100	-	± 5	100	nA
Switch OFF Leakage Current, $I_{\text {S(OFF) }}$	$\mathrm{V}_{\text {ANALOG }}=-14 \mathrm{~V}$ to +14 V	-	± 2	100	-	± 5	100	nA
Switch ON Leakage Current, $I_{\mathrm{D}(\mathrm{ON})}+\mathrm{I}_{\mathrm{S}(\mathrm{ON})}$	$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}=-14 \mathrm{~V}$ to +14 V	-	± 2	200	-	± 10	200	nA
Switch "ON" Time (Note 1), t_{N}	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{~V}_{\text {ANALOG }}= \\ & -10 \mathrm{~V} \text { to }+10 \mathrm{~V} \text { (Figure } 5 \text {) } \end{aligned}$	\bullet	1.0	-	-	1.0	\bullet	$\mu \mathrm{s}$
Switch "OFF" Time, toff	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{~V}_{\text {ANALOG }}= \\ & -10 \mathrm{~V} \text { to }+10 \mathrm{~V} \text { (Figure } 5 \text {) } \end{aligned}$	\bullet	0.5	-	-	0.5	-	$\mu \mathrm{s}$
Charge Injection, $\mathrm{Q}_{(1 \mathrm{~N} .)}$	Figure 6	-	15 (Typ)	-	-	20 (Typ)	-	mV
Minimum Off Isolation Rejection Ratio, OIRR	$\begin{aligned} & f=1 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=100 \Omega, \\ & C_{L} \leq 5 \mathrm{pF} \\ & \text { (Figure 7, Note 1) } \end{aligned}$	-	54 (Typ)	-	-	50 (Typ)	-	dB
+Power Supply Quiescent Current, $\mathrm{I}_{\mathrm{V} 1}$	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ or $\mathrm{V}_{\text {IN }}=5 \mathrm{~V}$	1000	1000	2000	1000	1000	2000	$\mu \mathrm{A}$
-Power Supply Quiescent Current, IV2		1000	1000	2000	1000	1000	2000	$\mu \mathrm{A}$
Minimum Channel to Channel Cross Coupling Rejection Ratio, CCRR	One Channel Off	-	54 (Typ)	-	\bullet	50 (Typ)	-	dB

NOTES:

1. Pull Down Resistor must be $\leq 2 \mathrm{k} \Omega$
2. Typical values are for design aid only, not guaranteed and not subject to production testing.
3. All channels are turned off by high " 1 " logic inputs and all channels are turned on by low " 0 " inputs; however 0.8 V to 2.4 V describes the minimum range for switching properly. Peak input current required for transition is typically $-120 \mu \mathrm{~A}$.
Absolute Maximum Ratings

$V_{\text {REF }}$ to V. $<33 V$
$V_{\text {REF }}$ to $V_{\text {IN }}$. <30V
$V_{\text {REF }}$ to GND. $<20 \mathrm{C}$
$V_{\text {IN }}$ to GND . <20V
Current (Any Terminal) . $<30 \mathrm{~mA}$
Storage Temperature Range $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering 10s)

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Electrical Specifications $\left(T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}\right)$

PARAMETER	TEST CONDITIONS	MILITARY			COMMERCIAL / INDUSTRIAL			UNITS
		$-55^{\circ} \mathrm{C}$	+25 ${ }^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$	$\begin{aligned} & 0^{\circ} \mathrm{C} \mathrm{TO} \\ & -25^{\circ} \mathrm{C} \end{aligned}$	+25 ${ }^{\circ} \mathrm{C}$	$\begin{gathered} +70^{\circ} \mathrm{C} \mathrm{TO} \\ +85^{\circ} \mathrm{C} \end{gathered}$	
Input Logic Current, I IN(ON)	$\mathrm{V}_{\text {IN }}=0.8 \mathrm{~V}$ (Note 1)	10	± 1	10	± 1	± 1	10	$\mu \mathrm{A}$
Input Logic Current, In(off)	$\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}($ Note 1)	10	± 1	10	± 1	± 1	10	$\mu \mathrm{A}$
Drain-Source On Resistance, $\mathrm{r}_{\mathrm{DS}(\mathrm{ON})}$	$\begin{aligned} & I_{S}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{ANALOG}}= \\ & \pm 10 \mathrm{~V} \end{aligned}$	80	80	125	100	100	125	Ω
Channel-to-Channel $\mathrm{r}_{\mathrm{DS}(\mathrm{ON})}$ Match, $\mathrm{r}_{\mathrm{DS}(\mathrm{ON})}$		-	25 (Typ)	\bullet	\bullet	30 (Typ)	\bullet	Ω
Minimum Analog Signal Handling Capability, $V_{\text {ANALOG }}$		-	± 15 (Typ)	-	-	± 15 (Typ)	-	V
Switch OFF Leakage Current, ID(OFF)	$\mathrm{V}_{\text {ANALOG }}=-14 \mathrm{~V}$ to +14 V	\bullet	± 1	100	\bullet	± 5	100	nA
Switch OFF Leakage Current, IS(OFF)	$\mathrm{V}_{\text {ANALOG }}=-14 \mathrm{~V}$ to +14 V	-	± 1	100	-	± 5	100	nA
Switch ON Leakage Current, $I_{D(O N)}+I_{\text {S(ON })}$	$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}=-14 \mathrm{~V}$ to +14 V	\bullet	± 2	200	\bullet	± 5	200	nA
Switch "ON" Time (Note 2), ton	$\begin{aligned} & R_{L}=1 \mathrm{k} \Omega, V_{\text {ANALOG }}= \\ & -10 \mathrm{~V} \text { to }+10 \mathrm{~V} \text { (Figure } 5) \end{aligned}$	-	1.0	\bullet	-	1.0	\bullet	$\mu \mathrm{s}$
Switch "OFF" Time (Note 2), toff	$\begin{aligned} & R_{L}=1 \mathrm{k} \Omega, V_{\text {ANALOG }}= \\ & -10 \mathrm{~V} \text { to }+10 \mathrm{~V} \text { (Figure } 5) \end{aligned}$	\bullet	0.5	-	-	0.5	\bullet	$\mu \mathrm{s}$
Charge Injection, $\mathrm{Q}_{(\text {(NJ.) }}$	Figure 6	-	15 (Typ)	\bullet	\bullet	20 (Typ)	-	mV
Minimum Off Isolation Rejection Ratio, OIRR	$\begin{aligned} & f=1 \mathrm{MHz}, R_{L}=100 \Omega, \\ & C_{L} \leq 5 p F,(\text { Figure } 7) \end{aligned}$	-	54 (Typ)	-	-	50 (Typ)	-	dB
+Power Supply Quiescent Current, I+Q	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathbb{I}}=5 \mathrm{~V}$	2000	1000	2000	2000	1000	2000	$\mu \mathrm{A}$
-Power Supply Quiescent Current, I-a		2000	1000	2000	2000	1000	2000	$\mu \mathrm{A}$
Minimum Channel to Channel Cross Coupling Rejection Ratio, CCRR	One Channel Off	-	54 (Typ)	\bullet	\bullet	50 (Typ)	\bullet	dB

NOTES:

1. Typical values are for design aid only, not guaranteed and not subject to production testing.
2. All channels are turned off by high "1" logic inputs and all channels are turned on by low " 0 " inputs; however 0.8 V to 2.4 V describes the minimum range for switching properly. Peak input current required for transition is typically $-120 \mu \mathrm{~A}$.

Performance Curves

FIGURE 1. $R_{D S(O N)}$ vs V_{D} AND TEMPERATURE

FIGURE 3. $I_{D(O N)}$ vs TEMPERATURE

FIGURE 2. $\mathrm{r}_{\mathrm{DS}(\mathrm{ON})}$ vs V_{D} AND POWER SUPPLY VOLTAGE

FIGURE 4. $I_{\text {S(OFF) }} O R I_{\text {D(OFF) }}$ vS TEMPERATURE

Pin Description

DG200 (14 LEAD DIP)		
PIN	SYMBOL	DESCRIPTION
1	IN $_{2}$	Logic control for switch 2
2	NC	No Connection
3	GND	Ground Terminal (Logic Common)
4	NC	No Connection
5	S_{2}	Source (input) terminal for switch 2
6	D_{2}	Drain (output) terminal for switch 2
7	$\mathrm{~V}_{-}$	Negative power supply terminal
8	$\mathrm{~V}_{\text {REF }}$	Logic reference voltage
9	D_{1}	Drain (output) terminal for switch 1
10	$\mathrm{~S}_{1}$	Source (input) terminal for switch 1
11	NC_{2}	No Connection
12	$\mathrm{~V}_{+}$	Positive power supply terminal (substrate)
13	NC	No Connection
14	$\mathrm{~N}_{1}$	Source (input) terminal for switch 1

DG201 (16 LEAD DIP)		
PIN	SYMBOL	DESCRIPTION
1	IN_{1}	Logic control for switch 1
2	D_{1}	Drain (output) terminal for switch 1
3	$\mathrm{~S}_{1}$	Source (input) terminal for switch 1
4	$\mathrm{~V}-$	Negative power supply terminal
5	GND^{2}	Ground terminal (Logic Common)
6	$\mathrm{~S}_{4}$	Source (input) terminal for switch 4
7	D_{4}	Drain (output) terminal for switch 4
8	IN_{4}	Logic control for switch 4
9	IN_{3}	Logic control for switch 3
10	D_{3}	Drain (output) terminal for switch 3
11	$\mathrm{~S}_{3}$	Source (input) terminal for switch 3
12	$\mathrm{~V}_{\mathrm{REF}}$	Logic reference voltage
13	$\mathrm{~V}_{+}$	Positive power supply terminal (substrate)
14	$\mathrm{~S}_{2}$	Source (input) terminal for switch 2
15	D_{2}	Drain (output) terminal for switch 2
16	IN_{2}	Logic control for switch 2

Test Circuits

NOTE: All channels are turned off by high " 1 " logic inputs and all channels are turned on by low " 0 " inputs; however 0.8 V to 2.4V describes the minimum range for switching properly. Peak input current required for transition is typically $-120 \mu \mathrm{~A}$.

FIGURE 5.

FIGURE 6.

FIGURE 7.

Typical Applications

Using the $V_{\text {REF }}$ Terminal

The DG200 and DG201 have an internal voltage divider setting the TTL threshold on the input control lines for $V+$ equal to +15 V . The schematic shown in Figure 8 with nominal resistor values, gives approximately 2.4 V on the $\mathrm{V}_{\text {REF }}$ pin. As the TTL input signal goes from +0.8 V to $+2.4 \mathrm{~V}, \mathrm{Q} 1$ and Q2 switch states to turn the switch ON and OFF.

FIGURE 8.

If the power supply voltage is less than +15 V , then a resistor must be added between V_{+}and the $\mathrm{V}_{\text {REF }}$ pin, to restore +2.4 V at $\mathrm{V}_{\text {REF }}$ The table shows the value of this resistor for various supply voltages, to maintain TTL compatibility. If CMOS logic levels on a +5 V supply are being used, the threshold shifts are less critical, but a separate column of suitable values is given in the table. For logic swings of -5 V to +5 V , no resistor is needed.

In general, the "low" logic level should be $<0.8 \mathrm{~V}$ to prevent Q1 and Q2 from both being ON together (this will cause incorrect switch function).

TABLE 1.

$V+$ SUPPLY (V)	TTL RESISTOR $(\mathrm{k} \Omega)$	CMOS RESISTOR $(\mathrm{k} \Omega)$
+15	-	-
+12	100	-
+10	51	-
+9	(34)	34
+8	(27)	27
+7	18	18

Metallization Topology

DIE DIMENSIONS:

$74 \times 77 \times 14 \pm 1$ mils
METALLIZATION:
Type: AI
Thickness: $10 \mathrm{k} \AA \pm 1 \mathrm{k} \AA$
GLASSIVATION:

> Type: $\mathrm{SiO}_{2} / \mathrm{Si}_{3} \mathrm{~N}_{4}$
> SiO_{2} Thickness: $7 \mathrm{k} \AA \pm 1.4 \mathrm{k} \AA$
> $\mathrm{Si}_{3} \mathrm{~N}_{4}$ Thickness: $8 \mathrm{k} \AA \pm 1.2 \mathrm{k} \AA$

WORST CASE CURRENT DENSITY: $1 \times 10^{5} \mathrm{~A} \mathrm{~cm}^{2}$

Metallization Mask Layout

Metallization Topology

DIE DIMENSIONS:
$94 \times 101 \times 14 \pm 1$ mils
METALLIZATION:
Type: AI
Thickness: $10 \mathrm{k} \AA \pm 1 \mathrm{k} \AA$
GLASSIVATION:
Type: $\mathrm{SiO}_{2} / \mathrm{Si}_{3} \mathrm{~N}_{4}$
SiO_{2} Thickness: $7 \mathrm{k} \AA \pm 1.4 \mathrm{k} \AA$
$\mathrm{Si}_{3} \mathrm{~N}_{4}$ Thickness: $8 \mathrm{k} \AA \pm 1.2 \mathrm{k} \AA$
WORST CASE CURRENT DENSITY:
$1 \times 10^{5} \mathrm{~A} / \mathrm{cm}^{2}$

Metallization Mask Layout

DG201

DG201A, DG202

Quad SPST CMOS
 Analog Switches

Description

The DG201A (normally open) and DG202 (normally closed) quad SPST analog switches are designed using Harris' 44V CMOS process. These bidirectional switches are latch-proof and feature break-before-make switching. Designed to block signals up to 30 V peak-to-peak in the OFF state, the DG201A and DG202 offer the advantages of low on resistance ($\leq 175 \Omega$), wide input signal range ($\pm 15 \mathrm{~V}$) and provide both TTL and CMOS compatibility.
The DG201A and DG202 are specification and pinout compatible with the industry standard devices.

PART NUMBER	TEMPERATURE RANGE	PACKAGE
DG201AAK	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
DG201ABK	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
DG201AAK/883B	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
DG201ABY	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Lead SOIC (W)
DG201ACK	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
DG201ACJ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Lead Plastic DIP
DG201ACY	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Lead SOIC (W)
DG202AK	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
DG202AK/883B	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
DG202BK	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
DG202CK	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
DG202CJ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Lead Plastic DIP

Features

- $\pm 15 \mathrm{~V}$ Input Signal Range
- Low R ${ }_{\text {DS(ON) }}(\leq 175 \Omega)$
- TTL, CMOS Compatible
- Latch Proof
- True Second Source
- 44V Maximum Supply Ratings
- Logic Inputs Accept Negative Voltages

Ordering Information

DG201A, DG202
(CDIP, PDIP, SOIC)
TOP VIEW

Functional Diagrams

NOTES:

1. Four SPST switches per package.
2. Switches shown for logic " 1 " input

TRUTH TABLE

LOGIC	DG201A	DG202
0	ON	OFF
1	OFF	ON

Logic "0" $\leq 0.8 \mathrm{~V}$, Logic "1" $\geq 2.4 \mathrm{~V}$Absolute Maximum RatingsV+ to V-. 44 V
V- to Ground44V
$\mathrm{V}_{\text {IN }}$ to Ground (Note 1) (V- -2 V), ($\mathrm{V}++2 \mathrm{~V}$)
V_{S} or V_{D} to $V+$ (Note 1)

\qquad
V_{S} or V_{D} to V - (Note 1) $-2,(V++2 V)$
Current, any Terminal Except S or D 30 mA
Continuous Current, S or D 20 mA
Peak Current, S or D (Pulsed at 1ms, 10\% Duty Cycle Max). 70 mA
Lead Temperature (Soldering 10s) $+300^{\circ} \mathrm{C}$
Storage Temperature RangeC Suffix$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
A \& B Suffix. $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Thermal Information

Thermal Resistance	$\theta^{\text {JA }}$	${ }^{\text {Jc }}$
Ceramic DIP Package	$80^{\circ} \mathrm{C} / \mathrm{W}$	$24^{\circ} \mathrm{CN}$
Plastic DIP Package	$100^{\circ} \mathrm{CN}$	-
SOIC Package .	$100^{\circ} \mathrm{CN}$	-
Junction Temperature		
Ceramic DIP Package		
Plastic DIP Package		+150

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Electrical Specifications $\quad \mathrm{V}+=15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{GND}=\mathrm{OV}, \mathrm{T}_{\mathrm{A}}=$ Over Operating Temperature Range

PARAMETERS	TEST CONDITIONS		DG201AA/DG202A			DG201AB, C/DG202B, C			UNITS
			MIN	(NOTE 2) TYP	MAX	MIN	(NOTE 2) TYP	MAX	
DYNAMIC CHARACTERISTICS									
Turn-On Time, ton	See Figure 1		-	480	600	-	480	600	ns
Turn-Off Time, toff	See Figure 1		-	370	450	-	370	450	ns
Charge Injection, Q	$\mathrm{C}_{\mathrm{L}}=1000 \mathrm{pF}, \mathrm{R}_{\mathrm{S}}=0, \mathrm{~V}_{S}=0 \mathrm{~V}$		-	20	-	-	20	-	pC
Source OFF Capacitance, $\mathrm{C}_{\text {S(OFF) }}$	$f=140 \mathrm{kHz}, \mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V}$		-	5.0	\bullet	-	5.0	-	pF
Drain OFF Capacitance, $\mathrm{C}_{\text {D(OFF) }}$	$f=140 \mathrm{kHz}, \mathrm{V}_{\text {IN }}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=0 \mathrm{~V}$		-	5.0	-	-	5.0	-	pF
Channel ON Capacitance, $C_{D(O N)}+c_{S(O N)}$	$\mathrm{f}=140 \mathrm{kHz}, \mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=0 \mathrm{~V}$		-	16	\bullet	\bullet	16	-	pF
OFF Isolation, OIRR	$\begin{aligned} & V_{\mathbb{I N}}=5 \mathrm{~V}, \mathrm{Z}_{\mathrm{L}}=75 \Omega, \mathrm{~V}_{\mathrm{S}}=2.0 \mathrm{~V}, \\ & f=100 \mathrm{kHz} \end{aligned}$		-	70	-	-	70	-	dB
Crosstalk (Channel to Channel), CCRR			-	90	-	-	90	-	dB
INPUT									
Input Current with Voltage High, INH	$\mathrm{V}_{\text {IN }}=2.4 \mathrm{~V}$		-1.0	-0.0004	-	-1.0	-0.0004	-	$\mu \mathrm{A}$
	$\mathrm{V}_{\text {IN }}=15 \mathrm{~V}$		\bullet	0.003	1.0	-	0.003	1.0	$\mu \mathrm{A}$
Input Current with Voltage Low, liNL	$\mathrm{V}_{1 \mathrm{~N}}=0 \mathrm{~V}$		-1.0	-0.0004	\bullet	-1.0	-0.0004	\bullet	$\mu \mathrm{A}$
SWITCH									
Analog Signal Range, $\mathrm{V}_{\text {ANALOG }}$			-15	-	15	-15	-	15	V
Drain Source On Resistance, $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$	$\begin{aligned} & \mathrm{V}_{\mathrm{D}}= \pm 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0.8 \mathrm{~V}(\mathrm{DG201A}) \\ & \mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IN}}=2.4 \mathrm{~V}(\mathrm{DG} 202) \end{aligned}$		-	115	175	-	115	200	Ω
Source OFF Leakage Current, Is(OFF)	$\begin{aligned} & V_{\mathbb{N}}=2.4 \mathrm{~V} \\ & (\mathrm{DG} 201 \mathrm{~A}) \\ & V_{\mathbb{N}}=0.8 \mathrm{~V} \\ & \text { (DG202) } \end{aligned}$	$\mathrm{V}_{\mathrm{S}}=14 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-14 \mathrm{~V}$	-	0.01	1.0	-	0.01	5.0	nA
		$V_{S}=-14 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=14 \mathrm{~V}$	-1.0	-0.02	-	-5.0	-0.02	-	nA
Drain OFF Leakage Current, ldoff)		$\mathrm{V}_{S}=-14 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=14 \mathrm{~V}$	\bullet	0.01	1.0	-	0.01	5.0	nA
		$\mathrm{V}_{S}=14 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-14 \mathrm{~V}$	-1.0	-0.02	-	-5.0	-0.02	-	nA
Drain ON Leakage Current, $l_{\text {D(ON) }}$ (Note 4)	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V} \\ & (\mathrm{DG} 201 \mathrm{~A}) \\ & \mathrm{V}_{\mathbb{I}}=2.4 \mathrm{~V} \\ & \text { (DG202) } \end{aligned}$	$V_{D}=V_{S}=14 \mathrm{~V}$	\bullet	0.1	1.0	-	0.1	5.0	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}=-14 \mathrm{~V}$	-1.0	-0.15	-	-5.0	-0.15	-	$\mu \mathrm{A}$
POWER SUPPLY CHARACTERISTICS									
Positive Supply Current, I+	All Channels ON or OFF		-	0.9	2	-	0.9	2	mA
Negative Supply Current, I-			-1	-0.3	-	-1	-0.3	-	mA

Electrical Specifications $\mathrm{V}_{+}=15 \mathrm{~V}, \mathrm{~V}_{-}=-15 \mathrm{~V}, \mathrm{GND}=\mathrm{OV}, \mathrm{T}_{\mathrm{A}}=$ Over Operating Temperature Range (Continued)

PARAMETERS	TEST CONDITIONS		DG201ANDG202A			DG201AB, C/DG202B, C			UNITS
			MIN	(NOTE 2) TYP	MAX	MIN	(NOTE 2) TYP	MAX	
INPUT									
Input Current with Voltage High, IINH	$\mathrm{V}_{\text {IN }}=2.4 \mathrm{~V}$		-10	-	-	-10	-	-	$\mu \mathrm{A}$
	$\mathrm{V}_{\mathrm{IN}}=15 \mathrm{~V}$		-	-	10	-	-	10	$\mu \mathrm{A}$
Input Current with Voltage Low, IINL.	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$		-10	-	-	-10	-	-	$\mu \mathrm{A}$
SWITCH									
Analog Signal Range, $\mathrm{V}_{\text {ANALOG }}$			-15	-	15	-15	\cdot	15	V
Drain Source On Resistance, $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$	$\begin{aligned} & V_{D}= \pm 10 \mathrm{~V}, \mathrm{~V}_{I N}=0.8 \mathrm{~V}(\mathrm{DG} 201 \mathrm{~A}) \\ & \mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IN}}=2.4 \mathrm{~V}(\mathrm{DG} 202) \end{aligned}$		-	-	250	-	-	250	Ω
Source OFF Leakage Current, $I_{\text {S(OFF) }}$	$\begin{array}{\|l} \mathrm{V}_{\mathbb{N}}=2.4 \mathrm{~V} \\ (\mathrm{DG} 201 \mathrm{~A}) \\ \mathrm{V}_{\mathbb{N}}=0.8 \mathrm{~V} \\ \text { (DG202) } \end{array}$	$\mathrm{V}_{S}=14 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-14 \mathrm{~V}$	\bullet	-	100	\bullet	\bullet	100	nA
		$\mathrm{V}_{\mathrm{S}}=-14 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=14 \mathrm{~V}$	-100	-	-	-100	-	-	nA
Drain OFF Leakage Current, $\mathrm{I}_{\text {(OFF) }}$		$\mathrm{V}_{\mathrm{S}}=-14 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=14 \mathrm{~V}$	-	-	100	-	-	100	nA
		$\mathrm{V}_{S}=14 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-14 \mathrm{~V}$	-100	-	-	-100	-	-	nA
Drain ON Leakage Current, ld(ON) (Note 4)	$\begin{aligned} & V_{I N}=0.8 \mathrm{~V} \\ & (\mathrm{DG201A}) \\ & \mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V} \\ & \text { (DG202) } \end{aligned}$	$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}=14 \mathrm{~V}$	-	\bullet	200	-	-	200	$\mu \mathrm{A}$
		$V_{D}=V_{S}=-14 \mathrm{~V}$	-200	-	-	-200	\bullet	-	$\mu \mathrm{A}$

NOTES:

1. Signals on $\mathrm{V}_{\mathrm{S}}, \mathrm{V}_{\mathrm{D}}$ or V_{IN} exceeding $\mathrm{V}+$ or V - will be clamped by internal diodes. Limit forward diode current to maximum current ratings.
2. Typical values are for design aid only, not guaranteed and not subject to production testing.
3. The algebraic convention whereby the most negative value is a minimum, and the most positive is a maximum, is used in this data sheet.
4. $I_{D(O N)}$ is leakage from driver into ON switch.

Test Circuits

*Logic shown for DG201A, invert for DG202

(REPEAT TEST FOR $\mathbb{N}_{2}, \mathbb{N}_{3}$ AND $\left.\mathbb{N}_{4}\right)$

FIGURE 1. $T_{\text {ON }}$ AND $T_{\text {OFF }}$ SWITCHING TEST

NOTES:

1. $\Delta \mathrm{V}_{\mathrm{O}}=$ Measured voltage error due to charge injection.
2. The error voltage in coulombs is $\Delta Q=C_{L} \times \Delta V_{O}$.

FIGURE 2. CHARGE INJECTION TEST CIRCUIT

FIGURE 3. OFF ISOLATION TEST CIRCUIT

$C=0.001 \mu \mathrm{~F} / / 0.1 \mu \mathrm{~F}$
Chip Capacitors

$$
\mathrm{CCRR}=20 \log \left|\frac{\mathrm{~V}_{\mathrm{S} 1}}{\mathrm{~V}_{\mathrm{D} 2}}\right|
$$

Figure 4. CHANNEL TO CHANNEL CROSSTALK TEST CIRCUIT

Features

- Switches $\pm 15 \mathrm{~V}$ Analog Signals
- TTL Compatibility
- Logic Inputs Accept Negative Voltages
- $R_{\mathrm{ON}} \leq 175 \Omega$

Ordering Information

PART NUMBER	TEMPERATURE RANGE	PACKAGE
DG211CJ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Lead Plastic DIP
DG212CJ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Lead Plastic DIP
DG211CY	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Lead SOIC (N)
DG212CY	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Lead SOIC (N)

Description

The DG211 and DG212 are low cost, CMOS monolithic, Quad SPST analog switches. These can be used in general purpose switching applications for communications, instrumentation, process control and computer peripheral equipment. Both devices provide true bidirectional performance in the ON condition and will block signals to 30V peak-to-peak in the OFF condition. The DG211 and DG212 differ only in that the digital control logic is inverted, as shown in the truth table.

Pinout
DG211, DG212 (PDIP, SOIC) TOP VIEW

$\mathrm{IN}_{1} 1$	$16{ }^{16}$
$\mathrm{D}_{1} 2$	${ }^{15} \mathrm{D}_{2}$
$\mathrm{D}_{1} \underline{2}$	$15 \mathrm{D}_{2}$
$\mathrm{s}_{1} 3$	$14 \mathrm{~S}_{2}$
v- 4	$13 \begin{aligned} & \text { V+ (SUB- } \\ & \text { STRATE) }\end{aligned}$
GND 5	$12 \mathrm{~V} \mathrm{~V}^{(+5 \mathrm{~V})}$
$\mathrm{S}_{4} 6$	$11 \mathrm{~S}_{3}$
$\mathrm{D}_{4} 7$	$10 \mathrm{D}_{3}$
$\mathrm{IN}_{4} 8$	9. IN_{3}

Functional Diagrams

NOTES:

1. Four SPST switches per package.
2. Switches shown for logic "1" input

Schematic Diagram

DG211 ($1 / 4$ AS SHOWN)

Absolute Maximum Ratings

$\mathrm{V}+$ to V -
. . 44V
$\mathrm{V}_{\text {IN }}$ to Ground . V_{+}
V_{L} to Ground. -0.3 V , 25V
V_{S} or V_{D} to V_{+}
.0,-36V
V_{S} or V_{D} to V 0, 36V
$\mathrm{V}+$ to Ground . 25V
V- to Ground .25V
Current, any Terminal Except S or D . 30 mA
Continuous Current, S or D . 20 mA
Peak Current, S or D (Pulsed at 1ms, 10\% Duty Cycle Max). . . . 70 mA Lead Temperature (Soldering 10s). $+300^{\circ} \mathrm{C}$
Storage Temperature Range
$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Thermal Information

Thermal Resistance	$\theta_{\text {JA }}$
Plastic DIP Package	$100^{\circ} \mathrm{C} / \mathrm{W}$
SOIC Package .	$120^{\circ} \mathrm{C} / \mathrm{W}$
Junction Temperature	$+150^{\circ} \mathrm{C}$
Operating Temperature	to $+70^{\circ} \mathrm{C}$

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Electrical Specifications $\quad \mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V}, \mathrm{GND}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

PARAMETERS	TEST CONDITIONS		(NOTE 1) MIN	(NOTE 2) TYP	MAX	UNITS
DYNAMIC CHARACTERISTICS						
Turn-On Time, ton	See Figure 1$V_{S}=10 \mathrm{~V}, R_{L}=1 \mathrm{k} \Omega, C_{L}=35 \mathrm{pF}$		-	460	1000	ns
Turn-Off Time,			-	360	500	ns
			-	450	-	ns
Source OFF Capacitance, $\mathrm{C}_{\text {S(OFF) }}$	$\begin{aligned} & V_{S}=0 V, V_{I N}=5 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz} \text { (Note 2) } \\ & V_{D}=0 \mathrm{~V}, V_{I N}=5 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz} \text { (Note 2) } \\ & V_{D}=V_{S}=0 \mathrm{~V}, V_{I N}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz} \text { (Note 2) } \end{aligned}$		-	5	-	pF
Drain OFF Capacitance, $\mathrm{C}_{\text {D(OFF) }}$			-	5	-	pF
Channel ON Capacitance, $\mathrm{C}_{\mathrm{D}+\mathrm{S}(\mathrm{ON})}$			-	16	\bullet	pF
OFF Isolation, OIRR (Note 4)	$\begin{aligned} & V_{I N}=5 V, R_{L}=1 \mathrm{k} \Omega, C_{L}=15 \mathrm{pF}, V_{S}=1 V_{\text {RMS }} \\ & f=100 \mathrm{kHz} \text { (Note 2) } \end{aligned}$		-	70	-	dB
Crosstalk (Channel to Channel), CCRR			-	90	-	dB
INPUT						
Input Current with Voltage High, $\mathrm{I}_{\text {INH }}$	$\mathrm{V}_{\text {IN }}=2.4 \mathrm{~V}$		-1.0	-0.0004	-	$\mu \mathrm{A}$
	$\mathrm{V}_{\mathrm{IN}}=15 \mathrm{~V}$		-	0.003	1.0	$\mu \mathrm{A}$
Input Current with Voltage Low, $\mathrm{I}_{\text {INL }}$	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$		-1.0	-0.0004	-	$\mu \mathrm{A}$
SWITCH						
Analog Signal Range, $\mathrm{V}_{\text {ANALOG }}$	$\mathrm{V}-=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V}$		-15	-	15	V
Drain Source On Resistance, $\mathrm{R}_{\text {DS(ON) }}$	$\begin{aligned} & V_{D}= \pm 10 \mathrm{~V}, V_{I N}=2.4 \mathrm{~V}(\mathrm{DG212)} \\ & \mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IN}}=0.8 \mathrm{~V}(\mathrm{DG} 211) \end{aligned}$		-	150	175	Ω
Source OFF Leakage Current, $\mathrm{I}_{\text {S(OFF }}$	$\begin{aligned} & V_{I N}=2.4 \mathrm{~V}(\mathrm{DG} 211) \\ & \mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V}(\mathrm{DG} 212) \end{aligned}$	$V_{S}=14 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-14 \mathrm{~V}$	-	0.01	5.0	nA
		$V_{S}=-14 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=14 \mathrm{~V}$	-5.0	-0.02	-	nA
Drain OFF Leakage Current, $I_{\text {d(OFF }}$		$\mathrm{V}_{\mathrm{S}}=-14 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=14 \mathrm{~V}$	-	0.01	5.0	nA
		$\mathrm{V}_{\mathrm{S}}=14 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-14 \mathrm{~V}$	-5.0	-0.02	-	nA
Drain ON Leakage Current, $I_{D(O N)}$ (Note 3)	$\begin{aligned} & V_{S}=V_{D}=-14 \mathrm{~V}, V_{I N}=0.8 \mathrm{~V}(\mathrm{DG} 211) \\ & V_{I N}=2.4 \mathrm{~V}(\mathrm{DG} 212) \end{aligned}$		-	0.1	5.0	nA
			-5.0	-0.15	-	nA

Electrical Specifications $\quad \mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V}, \mathrm{GND}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (Continued)

PARAMETERS	TEST CONDITIONS	(NOTE 1) MIN	(NOTE 2) TYP	MAX	UNITS
POWER SUPPLY CHARACTERISTICS					
Positive Supply Current, 1+	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ and 2.4 V	-	0.1	10	$\mu \mathrm{A}$
Negative Supply Current, I-		\bullet	0.1	10	$\mu \mathrm{A}$
Logic Supply Current, I_{L}		-	0.1	10	$\mu \mathrm{A}$

NOTES:

1. The algebraic convention whereby the most negative value is a minimum, and the most positive is a maximum, is used in this data sheet.
2. For design reference only, not 100% tested.
3. $\mathrm{I}_{\mathrm{D}(\mathrm{ON})}$ is leakage from driver into ON switch.
4. OFF Isolation $=20 \log \frac{V_{S}}{V_{D}}, V_{S}=$ Input to OFF switch, $V_{D}=$ output
5. Switching times only sampled.

Test Circuits

Switch output waveform shown for $\mathrm{V}_{\mathrm{S}}=$ constant with logic input waveform as shown. Note the V_{S} may be + or - as per switching time test circuit. V_{O} is the steady state output with switch on. Feedthrough via gate capacitance may result in spikes at leading and trailing edge of output waveform.

* Logic shown for DG211. Invert for DG212.

FIGURE 1. SWITCHING TIME TEST WAVEFORMS

$$
v_{O}=v_{S} \frac{R_{L}}{R_{L}+R_{D S(O N)}}
$$

FIGURE 2. SWITCHING TIME TEST CIRCUIT

Metallization Topology

DIE DIMENSIONS:
$2159 \mu \mathrm{~m} \times 2235 \mu \mathrm{~m}$
METALLIZATION:
Type: AI
Thickness: $10 \mathrm{k} \AA \pm 1 \mathrm{k} \AA$
GLASSIVATION:
Type: PSG/Nitride
PSG Thickness: $7 \mathrm{k} \AA \pm 1.4 \mathrm{k} \AA$
Nitride Thickness: $8 \mathrm{k} \AA \pm 1.2 \mathrm{k} \AA$
WORST CASE CURRENT DENSITY:
$9.1 \times 10^{4} \mathrm{~A} \mathrm{~cm}^{2}$

Metallization Mask Layout

HARRIS

DG300A, DG301A

SEMICONDUCTOR

TTL Compatible
 CMOS Analog Switches

Features

- Low Power Consumption
- Break-Before-Make Switching toff 130ns, toN 150 ns Typical
- TTL, CMOS Compatible
- Low R DS(ON) $(\leq 50 \Omega)$
- Single Supply Operation
- True Second Source

Description

The DG300A through DG303A family of monolithic CMOS switches are truly compatible second source of the original manufacturer. The switches are latch-proof and are designed to block signals up to $30 V_{\text {p.p }}$ when OFF. Featuring low leakage and low power consumption, these switches are ideally suited for precision application in instrumentation, communication, data acquisition and battery powered applications. Other key features include Break-Before-Make switching, TTL and CMOS compatibility, and low ON resistance. Single supply operation (for positive switch voltages) is possible by connecting V - to OV .

Ordering Information

PART NUMBER	TEMPERATURE	PACKAGE
DG300AAK	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	14 Lead Ceramic DIP
DG301AAK	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	14 Lead Ceramic DIP
DG302AAK	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	14 Lead Ceramic DIP
DG303AAK	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	14 Lead Ceramic DIP
DG300ABK	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 Lead Ceramic DIP
DG301ABK	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 Lead Ceramic DIP
DG302ABK	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 Lead Ceramic DIP
DG303ABK	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 Lead Ceramic DIP
DG300ACK	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14 Lead Ceramic DIP
DG301ACK	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14 Lead Ceramic DIP
DG302ACK	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14 Lead Ceramic DIP
DG303ACK	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14 Lead Ceramic DIP
DG300ACJ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14 Lead Plastic DIP
DG301ACJ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14 Lead Plastic DIP

PART NUMBER	TEMPERATURE	PACKAGE
DG302ACJ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14 Lead Plastic DIP
DG303ACJ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14 Lead Plastic DIP
DG300AAA	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	10 Pin Metal Can
DG301AAA	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	10 Pin Metal Can
DG300ABA	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	10 Pin Metal Can
DG301ABA	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	10 Pin Metal Can
DG300ACA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	10 Pin Metal Can
DG301ACA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	10 Pin Metal Can
DG303ACY	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Lead SOIC (W)
DG300AAA/883B	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	10 Pin Metal Can
DG300AAK/883B	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	14 Lead Ceramic DIP
DG301AAA/883B	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	10 Pin Metal Can
DG301AAK/883B	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	14 Lead Ceramic DIP
DG302AAK/883B	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	14 Lead Ceramic DIP
DG303AAK/883B	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	14 Lead Ceramic DIP

Pinouts and Functional Diagrams

DG300A (METAL CAN)
TOP VIEW ${ }^{+}$(SUBSTRATE AND CASE)

DG300A (CDIP, PDIP) TOP VIEW

TRUTH TABLE

LOGIC	SWITCH
0	OFF
1	ON

Logic " 0 " $\leq 0.8 \mathrm{~V}$, Logic " 1 " $\geq 4.0 \mathrm{~V}$; Two SPST switches per package (switches shown for Logic " 1 " input)

Pinouts and Functional Diagrams (Continued)

DG301A

DG301A (METAL CAN)
TOP VIEW
V_{+}(SUBSTRATE AND CASE)

DG301A (CDIP, PDIP) TOP VIEW

LOGIC	SWITCH 1	SWITCH 2
0	OFF	ON
1	ON	OFF

Logic " 0 " $\leq 0.8 \mathrm{~V}$, Logic " 1 " $\geq 4.0 \mathrm{~V}$; One SPDT switch per package (switches shown for Logic "1" input)

TRUTH TABLE

LOGIC	SWITCH 1 AND 2	SWITCH 3 AND 4
0	OFF	ON
1	ON	OFF

Logic " 0 " $\leq 0.8 \mathrm{~V}$, Logic " 1 " $\geq 4.0 \mathrm{~V}$; Two SPDT switch per package (switches shown for Logic " 1 " input)

Absolute Maximum Ratings

Thermal Information

Thermal Resistance	$\theta_{\text {JA }}$	$\theta_{\text {Jc }}$
SOIC	$100^{\circ} \mathrm{C} / \mathrm{W}$	-
Plastic DIP.	$145{ }^{\circ} \mathrm{C} / \mathrm{W}$	-
Ceramic DIP	$80^{\circ} \mathrm{C} / \mathrm{W}$	$24^{\circ} \mathrm{C} / \mathrm{N}$
Metal Can	$136^{\circ} \mathrm{C} / \mathrm{W}$	$65^{\circ} \mathrm{C}$ W
Junction Temperature		
Ceramic DIP, Metal Can		$+175^{\circ} \mathrm{C}$
Plastic DIP, SOIC		+150 ${ }^{\circ}$

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Operating Conditions

Operating Voltage Range	Input Low Voltage . $0.8 \mathrm{8V}$ MAX
Operating Temperature Range	Input High Voltage. .4.0V MIN
(C Suffix).	Input Rise and Fall Time . <20ns
(B Suffix).	
(A Suffix)......	

Electrical Specifications $\mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

PARAMETER	TEST CONDITION		DG300A - DG303AA			DG300A - DG303AB/C			UNITS
			MIN	(NOTE 6) TYP	MAX	MIN	(NOTE 6) TYP	MAX	
DYNAMIC CHARACTERISTICS									
Turn-ON Time, ${ }_{\text {ON }}$	See Figure 3		-	150	300	-	150	-	ns
Turn-OFF Time, ${ }_{\text {OFF }}$	See Figure 3		-	130	250	-	130	-	ns
Break-Before-Make Interval, tow - toff	See Figure 2, DG301AJDG303A		-	50	-	-	50	-	ns
Charge Injection, Q	$\mathrm{C}_{\mathrm{L}}=10 \mathrm{nF}, \mathrm{R}_{\mathrm{S}}=0, \mathrm{~V}_{\mathrm{S}}=0$		-	3	-	-	3	\bullet	mV
Source OFF Capacitance, $\mathrm{C}_{\mathrm{S} \text { (OFF) }}$	$\begin{aligned} & f=1 \mathrm{MHz}, V_{I N} \\ & =0.8 \mathrm{~V} \text { or } V_{I N}= \\ & 4.0 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{\mathrm{S}}=0$	-	14	-	-	14	-	pF
Drain OFF Capacitance, $\mathrm{C}_{\mathrm{D} \text { (OFF) }}$		$\mathrm{V}_{\mathrm{D}}=0$	-	14	-	-	14	-	pF
Channel ON Capacitance, $C_{D(O N)}+C_{S(O N)}$		$\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=0$	-	40	-	-	40	-	pF
Input Capacitance, $\mathrm{C}_{\text {IN }}$	$f=1 \mathrm{MHz}$	$\mathrm{V}_{\text {IN }}=0$	-	6	-	-	6	-	pF
		$\mathrm{V}_{\text {IN }}=15 \mathrm{~V}$	-	7	\cdot	-	7	-	pF
OFF Isolation (Note 8)	$\begin{aligned} & V_{I N}=0, R_{L}=1 \mathrm{k}, V_{S}=1 V_{\text {RMS }}, \\ & f=500 \mathrm{kHz} \end{aligned}$		-	62	-	-	62	-	dB
Crosstalk (Channel-toChannel)			-	74	-	-	74	-	dB
INPUT									
Input Current with Voltage High, I_{NH}	$\mathrm{V}_{\mathrm{IN}}=5.0 \mathrm{~V}$		-1	-0.001	-	-1	-0.001	-	$\mu \mathrm{A}$
	$\mathrm{V}_{\text {IN }}=15.0 \mathrm{~V}$		-	0.001	1	-	0.001	1	$\mu \mathrm{A}$
Input Current with Voltage Low, IINL	$V_{I N}=0 \mathrm{~V}$		-1	-0.001	-	-1	-0.001	-	$\mu \mathrm{A}$
ANALOG SWITCH									
Analog Signal Range, $V_{\text {ANALOG }}$	$\mathrm{I}_{\mathrm{S}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IN}}=0.8 \mathrm{~V} \text { or } 4 \mathrm{~V}$		-15	-	15	-15	-	15	V

Specifications DG300A, DG301A, DG302A, DG303A

Electrical Specifications $\mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ (Continued)

PARAMETER	TEST CONDITION		DG300A - DG303AA			DG300A - DG303AB/C			UNITS
			MIN	(NOTE 6) TYP	MAX	MIN	(NOTE 6) TYP	MAX	
Drain-Source ON Resistance, $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\mathrm{IN}}=4.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & I_{S}=-10 \mathrm{~mA}, \\ & V_{D}=10 \mathrm{~V} \end{aligned}$	-	30	50	\bullet	30	50	Ω
		$\begin{aligned} & I_{S}=10 \mathrm{~mA}, \\ & V_{D}=-10 \mathrm{~V} \end{aligned}$	-	30	50	-	30	50	Ω
Source OFF Leakage Current, IS(OFF)	$\begin{aligned} & \mathrm{V}_{I N}=0.8 \mathrm{~V} \text { or } \\ & \mathrm{V}_{I N}=4.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & V_{S}=14 \mathrm{~V}, \\ & V_{D}=-14 \mathrm{~V} \end{aligned}$	-	0.1	1	-	0.1	5	nA
		$\begin{aligned} & V_{S}=-14 \mathrm{~V}, \\ & V_{D}=14 \mathrm{~V} \end{aligned}$	-1	-0.1	-	-5	-0.1	-	nA
Drain OFF Leakage Current, $I_{\text {D(OFF) }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\mathrm{IN}}=4.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & V_{S}=-14 \mathrm{~V}, \\ & V_{D}=14 \mathrm{~V} \end{aligned}$	-	0.1	1	-	0.1	5	nA
		$\begin{aligned} & V_{S}=14 \mathrm{~V}, \\ & V_{D}=-14 \mathrm{~V} \end{aligned}$	-1	-0.1	-	-5	-0.1	-	nA
Drain ON Leakage Current, $\mathrm{I}_{\mathrm{D}(\mathrm{ON})}$	$\begin{aligned} & \mathrm{V}_{\text {IN }}=0.8 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\mathrm{IN}}=4.0 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}=14 \mathrm{~V}$	-	0.1	1	-	0.1	5	nA
		$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}=-14 \mathrm{~V}$	-2	-0.1	-	-5	-0.1	-	nA
POWER SUPPLIES									
Positive Supply Current, I+	$\begin{aligned} & \mathrm{V}_{\text {IN }}=4 \mathrm{~V} \text { (One Input) } \\ & \text { (All Others }=0 \text {) } \end{aligned}$		-	0.23	0.5	-	0.23	0.5	mA
Negative Supply Current, -			-10	-0.001	-	-10	-0.001	-	$\mu \mathrm{A}$
Positive Supply Current, 1+	$\mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V}$ (All Inputs)		-	0.001	10	-	0.001	10	$\mu \mathrm{A}$
Negative Supply Current, I-			-10	-0.001	-	-10	-0.001	-	$\mu \mathrm{A}$

Electrical Specifications $\mathrm{V}_{+}=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=$ Over Temperature Range

PARAMETER	TEST CONDITION		DG300A - DG303AA			DG300A - DG303AB/C			UNITS
			MIN	(NOTE 6) TYP	MAX	MIN	(NOTE 6) TYP	MAX	
INPUT									
Input Current with Voltage High, I_{NH}	$\mathrm{V}_{\text {IN }}=5.0 \mathrm{~V}$		-1	-	-	-	-	-	$\mu \mathrm{A}$
	$\mathrm{V}_{\mathrm{IN}}=15.0 \mathrm{~V}$		-	-	1	-	-	-	$\mu \mathrm{A}$
Input Current with Voltage Low, I_{NL}	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$		-1	-	-	-	-	-	$\mu \mathrm{A}$
ANALOG SWITCH									
Analog Signal Range, $\mathrm{V}_{\text {ANALOG }}$	$\mathrm{I}_{\mathrm{S}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IN}}=0.8 \mathrm{~V}$ or 4 V		-15	-	15	-15	\bullet	15	V
Drain-Source ON Resistance, $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$	$\begin{aligned} & \mathrm{V}_{\text {IN }}=0.8 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\mathrm{IN}}=4.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & I_{S}=-10 \mathrm{~mA}, \\ & V_{D}=10 \mathrm{~V} \end{aligned}$	-	\bullet	75	-	-	75	Ω
		$\begin{aligned} & \mathrm{I}_{\mathrm{S}}=10 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{D}}=-10 \mathrm{~V} \\ & \hline \end{aligned}$	-	-	75	-	-	75	Ω
Source OFF Leakage Current, $I_{\text {S(OFF) }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\mathrm{IN}}=4.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=14 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{D}}=-14 \mathrm{~V} \end{aligned}$	-	-	100	-	-	100	nA
		$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=-14 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{D}}=14 \mathrm{~V} \\ & \hline \end{aligned}$	-100	-	-	-100	-	-	nA
Drain OFF Leakage Current, $\mathrm{I}_{\text {D(OFF) }}$	$\begin{aligned} & V_{I N}=0.8 \mathrm{~V} \text { or } \\ & V_{I N}=4.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=-14 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{D}}=14 \mathrm{~V} \\ & \hline \end{aligned}$	-	-	100	-	-	100	nA
		$\begin{aligned} & V_{S}=14 \mathrm{~V}, \\ & V_{D}=-14 \mathrm{~V} \end{aligned}$	-100	-	-	-100	-	-	nA
Drain ON Leakage Current, $\mathrm{I}_{\mathrm{D}(\mathrm{ON})}$	$\begin{aligned} & V_{I N}=0.8 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\mathrm{IN}}=4.0 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}=14 \mathrm{~V}$	-	-	100	-	-	100	nA
		$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}=-14 \mathrm{~V}$	-200	-	-	-200	-	-	nA

Electrical Specifications $\mathrm{V}_{+}=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=$ Over Temperature Range (Continued)

PARAMETER	TEST CONDITION	DG300A - DG303AA			DG300A - DG303AB/C			UNITS
		MIN	(NOTE 6) TYP	MAX	MIN	(NOTE 6) TYP	MAX	
POWER SUPPLIES								
Positive Supply Current, I+	$\begin{aligned} & \mathrm{V}_{\text {IN }}=4 \mathrm{~V}(\text { One Input }) \\ & \text { (All Others }=0 \text {) } \end{aligned}$	-	-	1	-	-	-	mA
Negative Supply Current, 1-		-100	-	-	-	-	-	$\mu \mathrm{A}$
Positive Supply Current, $1+$	$\mathrm{V}_{\text {IN }}=0.8 \mathrm{~V}$ (All Inputs)	-	-	100	-	-	-	$\mu \mathrm{A}$
Negative Supply Current, $1-$		-100	-	-	\bullet	-	\bullet	$\mu \mathrm{A}$

NOTES:

1. Signals on $\mathrm{V}_{\mathrm{S}}, \mathrm{V}_{\mathrm{D}}$ or V_{IN} exceeding $\mathrm{V}+$ or V - will be clamped by internal diodes. Limit diode toward current to maximum current ratings.
2. Device mounted with all leads soldered or welded to $P C$ board.
3. Derate $11 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+75^{\circ} \mathrm{C}$
4. Derate $6.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+25^{\circ} \mathrm{C}$.
5. Derate $6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+75^{\circ} \mathrm{C}$.
6. For design only, not 100% tested.
7. The algebraic convention whereby the most negative value is a minimum, and the most positive value is a maximum, is used in this data sheet.
8. OFF isolation $=20 \log V_{S} V_{D}$, where $V_{S}=$ input to OFF switch, and $V_{D}=$ output.

Pin Description

PIN	SYMBOL	DESCRIPTION
DG300A		
1	NC	No Connection
2	D_{1}	Drain (Output) terminal for Switch 1
3	NC	No Connection
4	S_{1}	Source (Input) terminal for Switch 1
5	NC	No Connection
6	N_{1}	Logic Control for Switch 1
7	GND	Ground Terminal (Logic Common)
8	V -	Negative Power Supply Terminal
9	\mathbb{N}_{2}	Logic Control for Switch 2
10	NC	No Connection
11	NC	No Connection
12	S_{2}	Source (Input) terminal for Switch 2
13	D_{2}	Drain (Output) terminal for Switch 2
14	V+	Positive Power Supply Terminal
DG301A		
1	NC	No Connection
2	D_{1}	Drain (Output) terminal for Switch 1
3	NC	No Connection
4	S_{1}	Source (Input) terminal for Switch 1
5	IN	Logic Control for Switches
6	GND	Ground Terminal (Logic Common)
7	V -	Negative Power Supply Terminal

PIN	SYMBOL	DESCRIPTION
8	NC	No Connection
9	NC	No Connection
10	$\mathrm{~S}_{2}$	Source (Input) terminal for Switch 2
11	NC	No Connection
12	D_{2}	Drain (Output) terminal for Switch 2
13	NC	No Connection
14	$\mathrm{~V}_{+}$	Positive Power Supply Terminal
DG302A,	DG303A	
1	NC_{2}	No Connection
2	$\mathrm{~S}_{3}$	Source (Input) terminal for Switch 3
3	D_{3}	Drain (Output) terminal for Switch 3
4	D_{1}	Drain (Output) terminal for Switch 1
5	$\mathrm{~S}_{1}$	Source (Input) terminal for Switch 1
6	IN_{1}	Logic Control for Switch 1
7	GND_{2}	Ground Terminal (Logic Common)
8	$\mathrm{~V}^{2}$	Negative Power Supply Terminal
9	IN_{2}	Logic Control for Switch 2
10	$\mathrm{~S}_{2}$	Source (Input) terminal for Switch 2
11	D_{2}	Drain (Output) terminal for Switch 2
12	D_{4}	Drain (Output) terminal for Switch 4
13	$\mathrm{~S}_{4}$	Source (Input) terminal for Switch 4
14	$\mathrm{~V}_{+}$	Positive Power Supply Terminal

Test Circuits

FIGURE 1. CHARGE INJECTION TEST CIRCUIT

FIGURE 2. BREAK-BEFORE MAKE TEST CIRCUIT (DG301A, DG303A)

FIGURE 3. $t_{O N}$ and $t_{\text {OFF }}$ TEST CIRCUIT

DG308A, DG309

Quad Monolithic SPST CMOS Analog Switches

Features

- Low Power Consumption
- CMOS Compatible
- $\pm 15 \mathrm{~V}$ Analog Signal Range
- Single or Dual Supply Capability
- Alternate Source

Ordering Information

PART NUMBER	TEMP. RANGE	PACKAGE
DG308AAK	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
DG308ABK	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
DG308ACK	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
DG308ACJ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Lead Plastic DIP
DG308ACY	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Lead SOIC (W)
DG308AAK/883B	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
DG309AK	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
DG309BK	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
DG309CK	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
DG309CJ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Lead Plastic DIP
DG309CY	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Lead SOIC (W)
DG309AK/883B	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead Ceramic DIP

Description

The DG308A and DG309 quad monolithic SPST CMOS switches are latch proof and are designed to block signals up to 30V peak-to-peak when OFF. Featuring low ON resistance, low power consumption, and rail-to-rail analog signal range, these switches are ideally suited for high speed switching applications in communications, instrumentation and process control. The DG308A "normally-closed" and DG309 "normally-open" switches have single and dual supply capability. The input thresholds are CMOS compatible.

The DG308A and DG309 switches are available over commercial, industrial, and military temperature ranges.

Pinout

DG308A, DG309
(CDIP, PDIP, SOIC)
TOP VIEW

Functional Diagrams

NOTES:

1. Four SPST switches per package.
2. Switches shown for logic "1" input

TRUTH TABLE

LOGIC	DG308A	DG309
0	OFF	ON
1	ON	OFF

Logic "0" $\leq 3.5 \mathrm{~V}$, Logic " 1 " $\geq 11 \mathrm{~V}$

Typical Schematic Diagram (One Channel)

Absolute Maximum Ratings

V+ to V-
V- to Ground . -25V
$V_{\text {IN }}$ to Ground (Note 1) . (V- $-2 V$), ($V++2 V$)
V_{S} or V_{D} to V_{+}(Note 1) . +2, (V--2V)
V_{S} or V_{D} to V-(Note 1) .-2, (V+ +2V)
Current, any Terminal Except S or D . 30mA
Continuous Current, S or D . 20mA
Peak Current, S or D (Pulsed at 1ms, 10\% Duty Cycle Max). . . . 70 mA
Lead Temperature (Soldering 10s) . $+300^{\circ} \mathrm{C}$
Storage Temperature Range
C Suffix .
$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
A \& B Suffix.
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Thermal Information

Thermal Resistance	$\theta_{\text {JA }}$	$\theta_{\text {Jc }}$
Ceramic DIP Package	$80^{\circ} \mathrm{C} / \mathrm{N}$	$24^{\circ} \mathrm{C} / \mathrm{N}$
Plastic DIP Package	$100^{\circ} \mathrm{C} / \mathrm{W}$	-
SOIC DIP Package	$100^{\circ} \mathrm{C} / \mathrm{W}$	-
Junction Temperature		
Plastic DIP Package		
Ceramic DIP Package		$75^{\circ} \mathrm{C}$
Operating Temperature Range		
"A" Suffix	$-55^{\circ} \mathrm{C}$	0 $+125^{\circ} \mathrm{C}$
"B" Suffix	. 25°	to $+85^{\circ} \mathrm{C}$
"C" Suffix		to $+70^{\circ} \mathrm{C}$

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Electrical Specifications $\quad \mathrm{V}+=15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

PARAMETERS	TEST CONDITIONS		DG308AA/DG309A			DG308AB/C, DG309B/C			UNITS
			MIN	(NOTE 2) TYP	MAX	MIN	(NOTE 2) TYP	MAX	
DYNAMIC CHARACTERISTICS									
Turn-On Time, ton	See Figure 1		-	130	200	-	130	200	ns
Turn-Off Time, toff	See Figure 1		-	90	150	-	90	150	ns
Charge Injection, Q	$\mathrm{C}_{\mathrm{L}}=1 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{S}}=0, \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V}$		-	-10	-	-	-10	-	pC
Source OFF Capacitance, $\mathrm{C}_{\text {S(OFF) }}$	$\mathrm{f}=140 \mathrm{kHz}$	$\begin{aligned} & V_{S}=0 V \\ & V_{I N}=0 V(\text { DG308A }) \\ & V_{I N}=15 V(D G 309) \end{aligned}$	-	11	-	\bullet	11	\bullet	pF
Drain OFF Capacitance, $\mathrm{C}_{\mathrm{D} \text { (OFF) }}$		$\begin{aligned} & V_{D}=0 V \\ & V_{I N}=0 V(D G 308 A) \\ & V_{I N}=15 V(D G 309) \end{aligned}$	-	8	-	-	8	-	pF
Channel ON Capacitance, $\mathrm{C}_{\mathrm{D}(\mathrm{ON})}+\mathrm{C}_{\mathrm{S}(\mathrm{ON})}$		$\begin{aligned} & V_{S}=V_{D}=0 V \\ & V_{\text {IN }}=15 V(D G 308 A) \\ & V_{\text {IN }}=0 V(D G 309) \end{aligned}$	-	27	-	\bullet	27	-	pF
OFF Isolation, OIRR	$\begin{aligned} & \mathrm{V}_{\text {IN }}=0 \mathrm{~V}(\mathrm{DG308A}) \\ & \mathrm{V}_{\text {IN }}=15 \mathrm{~V}(\mathrm{DG} 309), \mathrm{R}_{\mathrm{L}}=75 \Omega, \\ & \mathrm{~V}_{\mathrm{S}}=2 \mathrm{~V}_{\text {P.P, }} \mathrm{f}=500 \mathrm{kHz} \text { (Note 4) } \end{aligned}$		-	78	-	-	78	-	dB
INPUT									
Input Current with Voltage High, IINH	$V_{\text {IN }}=15 \mathrm{~V}$		-	0.001	1	-	0.001	1	$\mu \mathrm{A}$
Input Current with Voltage Low, IINL	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$		-1.0	-0.001	-	-1.0	-0.001	\bullet	$\mu \mathrm{A}$
SWITCH									
Analog Signal Range, $\mathrm{V}_{\text {ANALOG }}$			-15	-	15	-15	-	15	V
Drain Source ON Resistance, $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$	$\begin{aligned} & \mathrm{V}_{\text {IN }}=11 \mathrm{~V} \\ & (\mathrm{DG} 308 \mathrm{~A}) \\ & \mathrm{V}_{1 N}=3.5 \mathrm{~V} \\ & (\mathrm{DG} 309) \end{aligned}$	$\mathrm{I}_{\mathrm{S}}=-1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{D}}=+10 \mathrm{~V}$	-	60	100	-	60	100	Ω
		$\mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{D}}=-10 \mathrm{~V}$	-	60	100	-	60	100	Ω
Drain ON Leakage Current, $I_{\text {DON })}$		$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{S}=14 \mathrm{~V}$	-	0.1	1	-	0.1	5	nA
		$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}=-14 \mathrm{~V}$	-2	-0.1	-	-5	-0.1	-	nA
Source OFF Leakage Current, $\mathrm{I}_{\text {S(OFF) }}$	$\begin{aligned} & \mathrm{V}_{\text {IN }}=3.5 \mathrm{~V} \\ & (\mathrm{DG} 308 \mathrm{~A}) \\ & \mathrm{V}_{\text {IN }}=11 \mathrm{~V} \\ & (\mathrm{DG} 309) \end{aligned}$	$\mathrm{V}_{S}=14 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-14 \mathrm{~V}$	\cdot	0.1	1	-	0.1	5	nA
		$\mathrm{V}_{\mathrm{S}}=-14 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=14 \mathrm{~V}$	-1	-0.1	-	-5	-0.1	-	nA
Drain OFF Leakage Current, $\mathrm{I}_{\mathrm{D} \text { (OFF) }}$		$\mathrm{V}_{\mathrm{S}}=-14 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=14 \mathrm{~V}$	-	0.1	1	\bullet	0.1	5	nA
		$\mathrm{V}_{S}=14 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-14 \mathrm{~V}$	-1	-0.1	-	-5	-0.1	-	nA
POWER SUPPLY CHARACTERISTICS									
Positive Supply Current, I+	All Channels ON or OFF $V_{I N}=0 \mathrm{~V}$ or 15 V		-	0.001	10	-	0.001	100	$\mu \mathrm{A}$
Negative Supply Current, I-			-10	-0.001	-	-100	-0.001	-	$\mu \mathrm{A}$

Specifications DG308A, DG309

Electrical Specifications $\quad \mathrm{V}+=15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=$ Over Operating Temperature Range

PARAMETERS	TEST CONDITIONS		DG308AADG309A			DG308AB/C, DG309B/C			UNITS
			MIN	(NOTE 2) TYP	MAX	MIN	(NOTE 2) TYP	MAX	
INPUT									
Input Current with Voltage High, INH	$\mathrm{V}_{\mathrm{IN}}=15 \mathrm{~V}$		-	-	1	\bullet	-	1	$\mu \mathrm{A}$
Input Current with Voltage Low, I INL.	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$		-1	-	-	-1	-	\bullet	$\mu \mathrm{A}$
SWITCH									
Analog Signal Range, $\mathrm{V}_{\text {ANALOG }}$			-15	-	15	-15	\bullet	15	V
Drain Source ON Resistance, $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$	$\begin{aligned} & \mathrm{V}_{\text {IN }}=11 \mathrm{~V} \\ & \text { (DG308A) } \\ & \mathrm{V}_{\mathrm{IN}}=3.5 \mathrm{~V} \\ & \text { (DG309) } \end{aligned}$	$\mathrm{I}_{\mathrm{S}}=-1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{D}}=10 \mathrm{~V}$	-	-	150	-	-	125	Ω
		$\mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{D}}=-10 \mathrm{~V}$	-	-	150	-	-	125	Ω
Drain ON Leakage Current, $I_{\text {DON })}$		$V_{D}=V_{S}=14 \mathrm{~V}$	-	-	100	-	-	200	nA
		$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}=-14 \mathrm{~V}$	-200	-	-	-200	-	-	nA
Source OFF Leakage Current, $I_{\text {S(OFF }}$	$\begin{aligned} & \mathrm{V}_{\mathbb{I N}}=3.5 \mathrm{~V} \\ & (\mathrm{DG} 308 \mathrm{~A}) \\ & \mathrm{V}_{\mathbb{I N}}=11 \mathrm{~V} \\ & (\mathrm{DG} 309) \end{aligned}$	$\mathrm{V}_{\mathrm{S}}=14 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-14 \mathrm{~V}$	-	-	100	-	-	100	nA
		$\mathrm{V}_{\mathrm{S}}=-14 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=14 \mathrm{~V}$	-100	-	-	-100	-	-	nA
Drain OFF Leakage Current, ldoff)		$\mathrm{V}_{\mathrm{S}}=-14 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=14 \mathrm{~V}$	-	\bullet	100	-	-	100	nA
		$\mathrm{V}_{S}=14 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-14 \mathrm{~V}$	-100	-	-	-100	-	-	nA
POWER SUPPLY CHARACTERISTICS									
Positive Supply Current, I+	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ or 15 V		-	-	100	-	\bullet	100	$\mu \mathrm{A}$
Negative Supply Current, I-			-100	-	-	-100	-	-	$\mu \mathrm{A}$

NOTES:

1. Signals on V_{S}, V_{D}, or $V_{I N}$ exceeding $V+$ or V - will be clamped by internal diodes. Limit forward diode current to maximum current ratings.
2. Typical values are for design aid only, not guaranteed and not subject to production testing.
3. The algebraic convention whereby the most negative value is a minimum, and the most positive is a maximum, is used in this data sheet.
4. OFF isolation $=20 \log \mathrm{~V}_{\mathrm{D}} \mathrm{V}_{\mathrm{S}}$, where $\mathrm{V}_{\mathrm{S}}=$ input to OFF switch, and $\mathrm{V}_{\mathrm{D}}=$ output.

Test Circuits

FIGURE 1. ton $_{\text {ON }}$ AND toff SWITCHING TEST

Die Characteristics

DIE DIMENSIONS:
$2058 \mu \mathrm{~m} \times 2109 \mu \mathrm{~m}$
METALLIZATION:
Type: AI
Thickness: $10 \mathrm{k} \AA \pm 1 \mathrm{k} \AA$
GLASSIVATION:
Type: PSG Over Nitride
PSG Thickness: $7 \mathrm{k} \AA \pm 1.4 \mathrm{k} \AA$
Nitride Thickness: $8 \mathrm{k} \AA \pm 1.2 \mathrm{k} \AA$
WORST CASE CURRENT DENSITY:
$9.1 \times 10^{4} \mathrm{~A}^{2} \mathrm{~cm}^{2}$

Metallization Mask Layout

Features

- ON-Resistance < 35Ω
- Low Power Consumption ($\mathrm{P}_{\mathrm{D}}<35 \mu \mathrm{~W}$)
- Fast Switching Action
- $\mathrm{t}_{\mathrm{ON}}<150 \mathrm{~ns}$
- $\mathbf{t}_{\text {OFF }}<100 \mathrm{~ns}$
- Low Charge Injection
- DG401 Dual SPST; Same Pinout as HI-5041
- DG403 Dual SPDT; DG190, IH5043, IH5151, HI-5051
- DG405 Dual DPST; DG184, HI-5045, IH5145
- TTL, CMOS Compatible
- Single or Split Supply Operation

Applications

- Audio Switching
- Battery Operated Systems
- Data Acquisition
- Hi-Rel Systems
- Sample and Hold Circuits
- Communication Systems
- Automatic Test Equipment

Description

The DG401, DG403 and DG405 monolithic CMOS analog switches have TTL and CMOS compatible digital inputs.
These switches feature low analog ON resistance (<35 $)$ and fast switch time (ton < 150ns). Low charge injection simplifies sample and hold applications.
The improvements in the DG401/403/405 series are made possible by using a high voltage silicon-gate process. An epitaxial layer prevents the latch-up associated with older CMOS technologies. The 44V maximum voltage range permits controlling 30V peak-to-peak signals. Power supplies may be sin-gle-ended from +5 V to +34 V , or split from $\pm 5 \mathrm{~V}$ to $\pm 17 \mathrm{~V}$.
The analog switches are bilateral, equally matched for AC or bidirectional signals. The ON resistance variation with ana\log signals is quite low over a $\pm 15 \mathrm{~V}$ analog input range. The three different devices provide the equivalent of two SPST (DG401), two SPDT (DG403) or two DPST (DG405) relay switch contacts with CMOS or TTL level activation. The pinout is similar, permitting a standard layout to be used, choosing the switch function as needed.

Ordering Information

PART NUMBER	TEMP. RANGE	PACKAGE
DG401AK/883	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
DG401DJ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Lead Plastic DIP
DG401DY	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Lead SOIC (N)
DG403AK/883	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
DG403DJ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Lead Plastic DIP
DG403DY	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Lead SOIC (N)
DG405AK/883	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
DG405DJ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Lead Plastic DIP
DG405DY	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Lead SOIC (N)

Pinouts

Functional Diagrams Switches Shown for Logic " 1 " Input

Truth Table

LOGIC	DG401	DG403		DG405
	SWITCH	SWITCH 1,2	SWITCH 3,4	SWITCH
0	OFF	OFF	ON	OFF
1	ON	ON	OFF	ON

NOTE: Logic " 0 " $\leq 0.8 \mathrm{~V}$. Logic " 1 " $\geq 2.4 \mathrm{~V}$.

HARRIS

DG411, DG412

SEMICONDUCTOR

Monolithic Quad SPST CMOS
 Analog Switches

Features

- ON-Resistance < 35Ω Max
- Low Power Consumption ($\mathrm{P}_{\mathrm{D}}<35 \mu \mathrm{~W}$)
- Fast Switching Action
- $\mathbf{t}_{\text {ON }}<175 n \mathrm{n}$
- toff <145ns
- Low Charge Injection
- Upgrade from DG211/DG212
- TTL, CMOS Compatible
- Single or Split Supply Operation

Applications

- Audio Switching
- Battery Operated Systems
- Data Acquisition
- Hi-Rel Systems
- Sample and Hold Circuits
- Communication Systems
- Automatic Test Equipment

Ordering Information

PART NO.	TEMP. RANGE	PACKAGE
DG411AK/883	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
DG411DJ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Lead Plastic DIP
DG411DY	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Lead SOIC (N$)$
DG412AK/883	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
DG412DJ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Lead Plastic DIP
DG412DY	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Lead SOIC (N)
DG413AK/883	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
DG413DJ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Lead Plastic DIP
DG413DY	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Lead SOIC (N$)$

Description

The DG411 series monolithic CMOS analog switches are drop-in replacements for the popular DG211 and DG212 series devices. They include four independent single pole throw (SPST) analog switches, TTL and CMOS compatible digital inputs and a voltage reference for logic thresholds.

These switches feature lower analog ON resistance (< 35Ω) and faster switch time (ton < 175ns) compared to the DG211 or DG212. Charge injection has been reduced, simplifying sample and hold applications.

The improvements in the DG411 series are made possible by using a high voltage silicon-gate process. An epitaxial layer prevents the latch-up associated with older CMOS technologies. The 44 V maximum voltage range permits controlling 40 V peak-to-peak signals. Power supplies may be single-ended from +5 V to +34 V , or split from $\pm 5 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$.
The four switches are bilateral, equally matched for AC or bidirectional signals. The ON resistance variation with analog signals is quite low over a $\pm 15 \mathrm{~V}$ analog input range. The switches in the DG411 and DG412 are identical, differing only in the polarity of the selection logic. Two of the switches in the DG413 (\#1 and \#4) use the logic of the DG211 and DG411 (i.e. a logic " 0 " turns the switch ON) and the other two switches use DG212 and DG412 positive logic. This permits independent control of turn-on and turn-off times for SPDT configurations, permitting "break-before-make" or "make-before-break" operation with a minimum of external logic.

Pinout

DG411/12/13
(CDIP, PDIP, SOIC)
TOP VIEW

(NC) NO CONNECTION

Functional Diagrams Four SPST Switches per Package Switches Shown for Logic "1" Input

DG411

DG412

DG413

Typical Schematic Diagram (Typical Channel)

Electrical Specifications (Unipolar Supplies) Test Conditions: $\mathrm{V}_{+}=+12 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=2.4 \mathrm{~V}, 0.8 \mathrm{~V}$ (Note 3), Unless Otherwise Specified

PARAMETER	TEST CONDITIONS	(NOTE 4) TEMP	D SUFFIX $\mathbf{- 4 0}^{\circ} \mathrm{C}$ TO +85 ${ }^{\circ} \mathrm{C}$			UNITS
			(NOTE 5) MIN	(NOTE 6) TYP	(NOTE 5) MAX	
DYNAMIC CHARACTERISTICS						
Turn-ON Time, ${ }_{\text {ON }}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \\ & \mathrm{~V}_{\mathrm{S}}= \pm 8 \mathrm{~V},(\text { See Figure } 7 \text {) } \end{aligned}$	$+25^{\circ} \mathrm{C}$	-	175	250	ns
		Hot	-	-	315	ns
Turn-OFF Time, ${ }_{\text {Off }}$		$+25^{\circ} \mathrm{C}$	-	95	125	ns
		Hot	-	-	140	ns
Break-Before-Make Time Delay	$\begin{aligned} & \text { DG413 Only, } R_{L}=300 \Omega, \\ & C_{L}=35 \mathrm{pF} \end{aligned}$	$+25^{\circ} \mathrm{C}$	-	25	-	ns
Charge Injection, Q	$\begin{aligned} & C_{L}=10 \mathrm{nF}, \mathrm{~V}_{\mathrm{G}}=6.0 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{G}}=0 \Omega \end{aligned}$	$+25^{\circ} \mathrm{C}$	-	25	-	pC
ANALOG SWITCH						
Analog Signal Range, $\mathrm{V}_{\text {ANALOG }}$	Note 7	Full	0	-	12	V
Drain-Source ON Resistance, $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$	$\begin{aligned} & I_{S}=-10 \mathrm{~mA}, V_{D}=3.8 \mathrm{~V}, \\ & \mathrm{~V}+=10.8 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$	-	40	80	Ω
		Full	-	-	100	Ω
POWER SUPPLY CHARACTERISTICS						
Positive Supply Current, I+	$\begin{aligned} & V_{+}=13.2 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V} \text { or } 5 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$	-	0.0001	1	$\mu \mathrm{A}$
		Hot		-	5	$\mu \mathrm{A}$
Negative Supply Current, I-		$+25^{\circ} \mathrm{C}$	-1	-0.0001	-	$\mu \mathrm{A}$
		Hot	-5	-	-	$\mu \mathrm{A}$
Logic Supply Current, I_{L}		$+25^{\circ} \mathrm{C}$	-	-0.0001	1	$\mu \mathrm{A}$
		Hot	-	-	5	$\mu \mathrm{A}$
Ground Current, $\mathrm{I}_{\text {GND }}$		$+25^{\circ} \mathrm{C}$	-1	-0.0001	-	$\mu \mathrm{A}$
		Hot	-5	-	-	$\mu \mathrm{A}$

NOTES:

1. Signals on S_{x}, D_{X}, or $\mathbb{I N}_{x}$ exceeding $V+$ or V - will be clamped by internal diodes. Limit forward diode current to maximum current ratings.
2. All leads welded or soldered to PC Board.
3. $\mathrm{V}_{\mathrm{IN}}=$ input voltage to perform proper function.
4. $\mathrm{Hot}=$ as determined by the operating temperature suffix.
5. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
6. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
7. Guaranteed by design, not subject to production test.

Typical Performance Curves

FIGURE 1. ON-RESISTANCE vs VD AND POWER SUPPLY VOLTAGE

FIGURE 3. LEAKAGE CURRENT vs ANALOG VOLTAGE

FIGURE 5. CHARGE INJECTION vs ANALOG VOLTAGE (V_{D})

FIGURE 2. SWITCHING TIME vs TEMPERATURE

FIGURE 4. SUPPLY CURRENT vs INPUT SWITCHING FREQUENCY

FIGURE 6. CHARGE INJECTION vs ANALOG VOLTAGE (V)

Pin Description

PIN	SYMBOL	DESCRIPTION
1	IN_{1}	Logic control for switch 1
2	D_{1}	Drain (output) terminal for switch 1
3	$\mathrm{~S}_{1}$	Source (input) terminal for switch 1
4	$\mathrm{~V}-$	Negative power supply terminal
5	GND	Ground terminal (Logic Common)
6	$\mathrm{~S}_{4}$	Source (input) terminal for switch 4
7	D_{4}	Drain (output) terminal for switch 4
8	$\mathrm{~N}_{4}$	Logic control for switch 4
9	IN_{3}	Logic control for switch 3
10	D_{3}	Drain (output) terminal for switch 3
11	$\mathrm{~S}_{3}$	Source (input) terminal for switch 3
12	$\mathrm{~V}_{\mathrm{L}}$	Logic reference voltage.
13	$\mathrm{~V}_{+}$	Positive power supply terminal (substrate)
14	$\mathrm{~S}_{2}$	Source (input) terminal for switch 2
15	D_{2}	Drain (output) terminal for switch 2
16	\mathbb{N}_{2}	Logic control for switch 2

LOGIC	DG411	DG412	DG413	
	SWITCH	SWITCH	SWITCH 1,4	SWITCH 2,3
	ON	OFF	OFF	ON
1	OFF	ON	ON	OFF

NOTE: Logic " 0 " $\leq 0.8 \mathrm{~V}$. Logic " 1 " $\geq 2.4 \mathrm{~V}$.

Test Circuits

V_{O} is the steady state output with the switch on. Feedthrough via switch capacitance may result in spikes at the leading and trailing edge of the output waveform.

NOTE:
Logic input waveform is inverted for switches that have the opposite logic sense.

Repeat test for all IN and S.
For load conditions, see Specifications C_{L} (includes fixture and stray capacitance)

$$
v_{O}=v_{S} \frac{R_{L}}{R_{L}+R_{D S(O N)}}
$$

FIGURE 7. SWITCHING TIME

FIGURE 8. BREAK-BEFORE-MAKE

Test Circuits (Continued)

IN N_{X} dependent on switch configuration input polarity determined by sense of switch.

FIGURE 9. CHARGE INJECTION

FIGURE 10. CROSSTALK

FIGURE 11. OFF ISOLATION

FIGURE 12. SOURCE/DRAIN CAPACITANCES

Typical Applications

Single Supply Operation

The DG411/412/413 can be operated with unipolar supplies from 5 V to 44 V . These devices are characterized and tested for unipolar supply operation at 12 V to facilitate the majority of applications. To function properly 12 volts are tied to Pin 13 and 0 volts are tied to Pin 4.

Summing Amplifier

When driving a high impedance, high capacitance load such as shown in Figure 9, where the inputs to the summing amplifier have some noise filtering, it is necessary to have shunt switches for rapid discharge of the filter capacitor, thus preventing offsets from occurring at the output.

NOTE: Pin 12 still requires 5 V for TTL compatible switching.

FIGURE 13. SUMMING AMPLIFIER

Die Characteristics

DIE DIMENSIONS:

$2760 \mu \mathrm{~m} \times 1780 \mu \mathrm{~m} \times 485 \pm 25 \mu \mathrm{~m}$
METALLIZATION:
Type: SiAl
Thickness: $12 \mathrm{k} \AA \pm 1 \mathrm{k} \AA$

GLASSIVATION:

Type: Nitride
Thickness: $8 \mathrm{k} \AA \pm 1 \mathrm{k} \AA$
WORST CASE CURRENT DENSITY:
$1.5 \times 10^{5} \mathrm{~A} / \mathrm{cm}^{2}$

Metallization Mask Layout

DG411, DG412, DG413

> Monolithic Quad SPST CMOS
> Analog Switches

Features

- ON-Resistance 85Ω Max
- Low Power Consumption ($\mathrm{P}_{\mathrm{D}}<1.6 \mathrm{~mW}$)
- Fast Switching Action
- $\mathrm{t}_{\text {ON }}<250 \mathrm{~ns}$
- t $_{\text {OFF }}<120 \mathrm{~ns}$ (DG441)
- ESD Protection > $\pm 2000 \mathrm{~V}$
- Low Charge Injection
- Upgrade from DG201A/DG202
- TTL, CMOS Compatible
- Single or Split Supply Operation

Applications

- Audio Switching
- Battery Operated Systems
- Data Acquisition
- Hi-Rel Systems
- Sample and Hold Circuits
- Communication Systems
- Automatic Test Equipment

Description

The DG441 and DG442 monolithic CMOS analog switches are dropin replacements for the popular DG201A and DG202 series devices. They include four independent single pole single throw (SPST) analog switches, TTL and CMOS compatible digital inputs, and a voltage reference for logic thresholds.
These switches feature lower analog ON resistance ($<85 \Omega$) and faster switch time ($\mathrm{t}_{\mathrm{ON}}<250 \mathrm{~ns}$) compared to the DG201A and DG202. Charge injection has been reduced, simplifying sample and hold applications.
The improvements in the DG441 series are made possible by using a high voltage silicon-gate process. An epitaxial layer prevents the latch-up associated with older CMOS technologies. The 44 V maximum voltage range permits controlling 40 V peak-to-peak signals. Power supplies may be single-ended from +5 V to +34 V , or split from $\pm 5 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$.
The four switches are bilateral, equally matched for AC or bidirectional signals. The ON resistance variation with analog signals is quite low over a $\pm 5 \mathrm{~V}$ analog input range. The switches in the DG441 and DG442 are identical, differing only in the polarity of the selection logic.

Ordering Information

PART NUMBER	TEMPERATURE RANGE	PACKAGE
DG441AK/883	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
DG441DJ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Lead Plastic DIP
DG441DY	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Lead SOIC (N)
DG442AK 8833	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
DG442DJ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Lead Plastic DIP
DG442DY	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Lead SOIC (N)

Pinout

DG441, DG442
(PDIP, CDIP, SOIC) TOP VIEW

Functional Diagrams

SWITCHES SHOWN FOR LOGIC "1" INPUT

Schematic Diagram (One Channel)

Absolute Maximum Ratings

V+ to V-. +44.0 V
GND to V-. 25V
Digital Inputs (Note 1)
(V-) -2 V to $(\mathrm{V}+$) +2 V or 30 mA , Whichever Occurs First
Continuous Current, S or D (Note 1)
$\ldots30 \mathrm{~mA}$
Peak Current, S or D (Note 1) . $\pm 100 \mathrm{~mA}$ (Pulsed 1ms, 10\% Duty Cycle)
Storage Temperature Range (A Suffix) (D Suffix). $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Thermal Information

Thermal Resistance (Note 3)
Plastic DIP Package
Ceramic DIP Package
SOIC Package
Operating Temperature (A Suffix)
(D Suffix) \qquad $55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Junction Temperature (CD
(CDIP) . $+175^{\circ} \mathrm{C}$ $+150^{\circ} \mathrm{C}$

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Operating Conditions

Operating Voltage Range . $55^{\circ} \mathrm{C}$ to +20 V Max $125^{\circ} \mathrm{C}$
Operating Temperature Range. 0.8 V Max

Input High Voltage
. 2.4V Min
Input Rise and Fall Time 20ns

Electrical Specifications

(Dual Supply) Test Conditions: $\mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=2.4 \mathrm{~V}, 0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{ANALOQ}}=\mathrm{V}_{\mathrm{S}}, \mathrm{V}_{\mathrm{D}}$, Unless Otherwise Specified

PARAMETER	TEST CONDITION	(NOTE 2) TEMP	$\begin{gathered} \text { A SUFFIX } \\ -55^{\circ} \mathrm{C} \text { TO }+125^{\circ} \mathrm{C} \end{gathered}$			$\begin{gathered} \text { D SUFFIX } \\ -40^{\circ} \mathrm{C} \text { TO }+85^{\circ} \mathrm{C} \end{gathered}$			UNITS
			MIN	(NOTE 4) TYP	MAX	MIN	(NOTE 4) TYP	MAX	
DYNAMIC CHARACTERISTICS									
Turn-ON Time, $\mathrm{T}_{\text {ON }}$	$\begin{aligned} & R_{1}=1 \mathrm{k} \Omega, C_{L}=35 \mathrm{pF}, \\ & \mathrm{~V}_{\mathrm{S}}= \pm 10 \mathrm{~V}, \end{aligned}$ See Figure 18	$+25^{\circ} \mathrm{C}$	-	150	250	-	150	250	ns
Turn-OFF Time, Toff DG441		$+25^{\circ} \mathrm{C}$	-	90	120	-	90	120	ns
DG442			-	110	170	-	110	170	ns
Charge Injection, Q	$\begin{aligned} & C_{L}=1 \mathrm{nF}, V_{S}=0 \mathrm{~V}, \\ & V_{\mathrm{GEN}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=0 \Omega \end{aligned}$	$+25^{\circ} \mathrm{C}$	-	-1	-	-	-1	-	pC
OFF Isolation	$\begin{aligned} & R_{L}=50 \Omega, C_{L}=5 p F, \\ & f=1 \mathrm{MHz} \end{aligned}$	$+25^{\circ} \mathrm{C}$	-	60	-	-	60	-	dB
Crosstalk (Channel-toChannel)	$\begin{aligned} & R_{L}=50 \Omega, C_{L}=5 p F, \\ & f=1 \mathrm{MHz} \end{aligned}$	$+25^{\circ} \mathrm{C}$	\bullet	-100	-	-	-100	-	dB
Source OFF Capacitance, $\mathrm{C}_{\mathrm{S} \text { (OFF) }}$	$f=1 \mathrm{MHz}$	$+25^{\circ} \mathrm{C}$	-	4	-	-	4	-	pF
Drain OFF Capacitance, $C_{D(\text { OFF })}$	$f=1 \mathrm{MHz}$	$+25^{\circ} \mathrm{C}$	-	4	\bullet	\bullet	4	-	pF
Channel ON Capacitance, $C_{D(O N)}+C_{S(O N)}$	$\mathrm{V}_{\text {ANALOG }}=0$	$+25^{\circ} \mathrm{C}$	-	16	-	-	16	\bullet	pF
ANALOG SWITCH									
Analog Signal Range, $\mathrm{V}_{\text {ANALOG }}$	Note 4	Full	-15	-	15	-15	-	15	V
Drain-Source ON Resistance, $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$	$\begin{aligned} & I_{S}=10 \mathrm{~mA}, V_{D}= \pm 8.5 \mathrm{~V}, \\ & V+=13.5 \mathrm{~V}, \\ & \mathrm{~V}=-13.5 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$	-	50	85	-	50	85	Ω
		Hot	-	-	100	-	-	100	Ω
Switch OFF Leakage Current, I I(OFF)	$\begin{aligned} & V_{+}=16.5 \mathrm{~V}, \mathrm{~V}-=-16.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{D}}= \pm 15.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{S}}=\mp 15.5 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$	-0.5	0.01	0.5	-0.5	0.01	0.5	nA
		Hot	-20	-	20	-20	-	20	nA
Switch OFF Leakage Current, $I_{\text {D(OFF) }}$	$\begin{aligned} & \mathrm{V}_{+}=16.5 \mathrm{~V}, \mathrm{~V}-=-16.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{D}}= \pm 15.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{S}}=\mp 15.5 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$	-0.5	0.01	0.5	-0.5	0.01	0.5	nA
		Hot	-20	-	20	-20	-	20	nA

Electrical Specifications

(Dual Supply) Test Conditions: $\mathrm{V}_{+}=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=2.4 \mathrm{~V}, 0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{ANALOG}}=\mathrm{V}_{\mathrm{S}}, \mathrm{V}_{\mathrm{D}}$, Unless Otherwise Specified (Continued)

PARAMETER	TEST CONDITION	(NOTE 2) TEMP	A SUFFIX$-55^{\circ} \mathrm{C} \text { TO }+125^{\circ} \mathrm{C}$			$\begin{gathered} \text { D SUFFIX } \\ -40^{\circ} \mathrm{C} \text { TO }+85^{\circ} \mathrm{C} \end{gathered}$			UNITS
			MIN	(NOTE 4) TYP	MAX	MIN	(NOTE 4) TYP	MAX	
ANALOG SWITCH (Continued)									
Channel ON Leakage Current, $\mathrm{I}_{\mathrm{D}(\mathrm{ON})}+\mathrm{I}_{\mathrm{S}(\mathrm{ON})}$	$\begin{aligned} & V_{+}=16.5 \mathrm{~V}, \\ & V_{-}=-16.5 \mathrm{~V} \\ & V_{S}=V_{D}= \pm 15.5 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$	-0.5	0.08	0.5	-0.5	0.08	0.5	nA
		Hot	-40	-	40	-40	-	40	nA
DIGITAL CONTROL									
Input Current $\mathrm{V}_{\text {IN }}$ Low, $\mathrm{I}_{\text {IL }}$	$\begin{aligned} & \mathrm{V}_{\text {IN }} \text { Under Test }=0.8 \mathrm{~V} \text {, } \\ & \text { All Others }=2.4 \mathrm{~V} \end{aligned}$	Full	-0.5	-0.00001	0.5	-0.5	-0.00001	0.5	$\mu \mathrm{A}$
Input Current $\mathrm{V}_{\text {IN }}$ High, I_{IH}	$\begin{aligned} & \mathrm{V}_{\text {IN }} \text { Under Test }=2.4 \mathrm{~V}, \\ & \text { All Others }=0.8 \mathrm{~V} \end{aligned}$	Full	-0.5	0.00001	0.5	-0.5	0.00001	0.5	$\mu \mathrm{A}$
POWER SUPPLIES									
Positive Supply Current, I+	$\begin{aligned} & V_{+}=16.5 \mathrm{~V}, \mathrm{~V}-= \\ & -16.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V} \text { or } 5 \mathrm{~V} \end{aligned}$	Full	-	15	100	-	15	100	$\mu \mathrm{A}$
Negative Supply Current, I-		$+25^{\circ} \mathrm{C}$	-1	-0.0001	-	-1	-0.0001	-	$\mu \mathrm{A}$
		Full	-5	-	-	-5	-	-	$\mu \mathrm{A}$
Ground Current, $\mathrm{I}_{\text {GND }}$		Full	-100	-15	-	-100	-15	-	$\mu \mathrm{A}$

Electrical Specifications

(Single Supply) Test Conditions: $\mathrm{V}_{+}=12 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=2.4 \mathrm{~V}, 0.8 \mathrm{~V}$, Unless Otherwise Specified

PARAMETER	TEST CONDITION	(NOTE 2) TEMP	$\begin{gathered} \text { A SUFFIX } \\ -55^{\circ} \mathrm{C} \text { TO }+125^{\circ} \mathrm{C} \end{gathered}$			$\begin{gathered} \text { D SUFFIX } \\ -40^{\circ} \mathrm{C} \mathrm{TO}+85^{\circ} \mathrm{C} \end{gathered}$			UNITS
			MIN	(NOTE 4) TYP	MAX	MIN	(NOTE 4) TYP	MAX	
DYNAMIC CHARACTERISTICS									
Turn-ON Time, $\mathrm{T}_{\text {ON }}$	$R_{L}=1 \mathrm{~K} \Omega, C_{L}=35 \mathrm{pF},$ See Test Circuit, $V_{S}=8 \mathrm{~V}$	$+25^{\circ} \mathrm{C}$	-	300	400	-	300	400	ns
Turn-OFF Time, ${ }_{\text {OFF }}$		$+25^{\circ} \mathrm{C}$	-	60	200	-	60	200	ns
Charge Injection, Q	$\begin{aligned} & C_{L}=1 \mathrm{nF}, \mathrm{~V}_{\mathrm{GEN}}=6 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{GEN}}=0 \Omega \end{aligned}$	$+25^{\circ} \mathrm{C}$	-	2	-	-	2	-	pC
ANALOG SWITCH									
Analog Signal Range, $\mathrm{V}_{\text {ANALOG }}$	Note 4	Full	0	-	12	0	-	12	V
Drain-Source ON-Resistance, $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$	$\begin{aligned} & I_{S}=10 \mathrm{~mA}, V_{D}=3 V, 8 V \\ & V+=10.8 V \end{aligned}$	$+25^{\circ} \mathrm{C}$	-	100	160	-	100	160	Ω
		Full	-	-	200	-	-	200	Ω
POWER SUPPLIES									
Positive Supply Current, It	$\begin{aligned} & \mathrm{V}_{+}=13.2 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V} \text { or } 5 \mathrm{~V} \end{aligned}$	Full	-	15	100	-	15	100	$\mu \mathrm{A}$
Negative Supply Current, 1-		$+25^{\circ} \mathrm{C}$	-1	-0.0001	-	-1	-0.0001	-	$\mu \mathrm{A}$
		Full	-100	-0.0001	-	-100	-0.0001	-	$\mu \mathrm{A}$
Ground Current, $\mathrm{I}_{\text {GND }}$		Full	-100	-15	-	-100	-15	-	$\mu \mathrm{A}$

NOTES:

1. All leads soldered to PC Board.
2. Room: $+25^{\circ} \mathrm{C}$. Cold: A suffix $-55^{\circ} \mathrm{C}$, D suffix $-40^{\circ} \mathrm{C}$. Hot: A suffix $+125^{\circ} \mathrm{C}, \mathrm{D}$ suffix $+85^{\circ} \mathrm{C}$
3. Dissipation rating assumes device is mounted with all leads soldered to printed circuit board.
4. Typical values are for DESIGN AID ONLY, not guaranteed nor production tested.

DG441, DG442

Typical Performance Curves

FIGURE 1. $R_{\text {DS(ON) }}$ vs V_{D} AND POWER SUPPLY VOLTAGE

FIGURE 3. $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ vs V_{D} AND TEMPERATURE (SINGLE 12 V SUPPLY)

FIGURE 5. INPUT CURRENT vS TEMPERATURE

FIGURE 2. $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ vs V_{D} AND TEMPERATURE

FIGURE 4. $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ vs V_{D} AND UNIPOLAR POWER SUPPLY voltáge

FIGURE 6. SUPPLY CURRENT vs TEMPERATURE

Typical Performance Curves (Continued)

FIGURE 7. CROSSTALK AND OFF ISOLATION vs FREQUENCY

FIGURE 9. SWITCHING TIMES vs INPUT VOLTAGE

FIGURE 11. SWITCHING THRESHOLD vs SUPPLY VOLTAGE

FIGURE 8. CHARGE INJECTION vs SOURCE VOLTAGE

FIGURE 10. SOURCEJDRAIN LEAKAGE CURRENTS

FIGURE 12. SOURCE/DRAIN CAPACITANCE vs ANALOG VOLTAGE

Typical Performance Curves (Continued)

FIGURE 13. SOURCE/DRAIN CAPACITANCE vs ANALOG VOLTAGE (SINGLE 12V SUPPLY)

FIGURE 15. SWITCHING TIME vs POWER SUPPLY VOLTAGE (DG441)

FIGURE 14. SOURCE/DRAIN LEAKAGE CURRENTS (SINGLE 12V SUPPLY)

FIGURE 16. SWITCHING TIMES vs INPUT VOLTAGE

FIGURE 17. SWITCHING TIME vs POWER SUPPLY VOLTAGE (DG441)

Pin Description

TRUTH TABLE

LOGIC	$\mathbf{V}_{\mathbf{I N}}$	DG441	DG442
0	$\leq 0.8 \mathrm{~V}$	ON	OFF
1	$\geq 2.4 \mathrm{~V}$	OFF	ON

Test Circuits

V_{O} is the steady state output with the switch on. Feedthrough via switch capacitance may result in spikes at the leading and trailing edge of the output waveform.

NOTE: Logic input waveform is inverted for switches that have the opposite logic sense.

Repeat test for Channels 2, 3 and 4.
For load conditions, see Specifications C_{L} (includes fixture and stray capacitance)

$$
v_{O}=v_{S} \frac{R_{L}}{R_{L}+r_{D S}(O N)}
$$

FIGURE 18B.

FIGURE 18. SWITCHING TIME

FIGURE 19. CHARGE INJECTION

Test Circuits (Continued)

Figure 20. CRosstalk

FIGURE 21. OFF ISOLATION

FIGURE 22. SOURCE/DRAIN CAPACITANCES

Applications
GAIN ERROR IS DETERMINED ONLY BY
THE RESISTOR TOLERANCE. OP AMP OFFSET
AND CMRR WILL LIMIT ACCURACY OF CIRCUIT

$\frac{V_{\text {OUT }}}{V_{\text {IN }}}=\frac{R_{1}+R_{2}+R_{3}+R_{4}}{R_{4}}=100$
WITH SW/ CLOSED
FIGURE 23. PRECISION WEIGHTED RESISTOR PROGRAMMABLE GAIN AMPLIFIER

FIGURE 24. OPEN LOOP SAMPLE AND HOLD

Die Characteristics

DIE DIMENSIONS:
$2160 \mu \mathrm{~m} \times 1760 \mu \mathrm{~m} \times 485 \pm 25 \mu \mathrm{~m}$
METALLIZATION:
Type: CuAl
Thickness: $12 \mathrm{k} \AA \pm 1 \mathrm{k} \AA$
GLASSIVATION:
Type: Nitride
Thickness: $8 \mathrm{k} \AA \pm 1 \mathrm{k} \AA$
WORST CASE CURRENT DENSITY:
$9.1 \times 10^{4} \mathrm{~A}^{\mathrm{cm}}{ }^{2}$

Metallization Mask Layout
DG441, DG442

HARRIS
SEMICONDUCTOR

Monolithic Quad SPST CMOS
 Analog Switches

Features

- ON-Resistance 85Ω Max
- Low Power Consumption ($\mathrm{P}_{\mathrm{D}}<35 \mathrm{~mW}$)
- Fast Switching Action
- $\mathrm{t}_{\mathrm{ON}}<250 \mathrm{~ns}$
- t $_{\text {OFF }}<120 \mathrm{~ns}$ (DG444)
- ESD Protection > $\pm \mathbf{2 0 0 0 V}$
- Low Charge Injection
- Upgrade from DG211/DG212
- TTL, CMOS Compatible
- Single or Split Supply Operation

Applications

- Audio Switching
- Battery Operated Systems
- Data Acquisition
- Hi-Rel Systems
- Sample and Hold Circuits
- Communication Systems
- Automatic Test Equipment

Description

The DG444 and DG445 monolithic CMOS analog switches are dropin replacements for the popular DG211 and DG212 series devices. They include four independent single pole single throw (SPST) analog switches, TTL and CMOS compatible digital inputs and a voltage reference for logic thresholds.

These switches feature lower analog ON resistance ($<85 \Omega$) and faster switch time ($\mathrm{t}_{\mathrm{ON}}<250 \mathrm{~ns}$) compared to the DG211 and DG212. Charge injection has been reduced, simplifying sample and hold applications.
The improvements in the DG444 series are made possible by using a high voltage silicon-gate process. An epitaxial layer prevents the latch-up associated with older CMOS technologies. The 44V maximum voltage range permits controlling $\pm 20 \mathrm{~V}$ signals when operating with $\pm 20 \mathrm{~V}$ power supplies.

The four switches are bilateral, equally matched for AC or bidirectional signals. The ON resistance variation with analog signals is quite low over a $\pm 5 \mathrm{~V}$ analog input range. The switches in the DG444 and DG445 are identical, differing only in the polarity of the selection logic.
Ordering Information

PART NUMBER	TEMPERATURE RANGE	PACKAGE
DG444DJ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Lead Plastic DIP
DG444DY	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Lead SOIC (N)
DG445DJ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Lead Plastic DIP
DG445DY	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Lead SOIC (N)

Functional Diagrams

SWITCHES SHOWN FOR LOGIC "1" INPUT

Typical Schematic Diagram (One Channel)

Absolute Maximum Ratings
V+ to V-. 44V
GND to V - 25 V
$V_{L} \ldots \ldots \ldots \ldots \ldots \ldots \ldots$ (GND - 0.3V) to (V+) + 0.3VDigital Inputs, $\mathrm{V}_{\mathrm{S}}, \mathrm{V}_{\mathrm{D}}$ (Note 1) $\ldots .$. (V-) -2 V to $(\mathrm{V}+)+2 \mathrm{~V}$ or 30 mA ,Whichever Occurs FirstContinuous Current (Any Terminal) . 30 mA
Current, S or D (Pulsed 1ms, 10\% Duty Cycle) 100 mA
Storage Temperature Range (D Suffix) - $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Thermal Information

Thermal Resistance (Note 3)
SOIC Package
$120^{\circ} \mathrm{C} / \mathrm{W}$
Operating Temperature (D Suffix) $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Junction Temperature (PDIP, SOIC)
$+150^{\circ} \mathrm{C}$
$\ldots+150^{\circ} \mathrm{C}$

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Operating Conditions

PARAMETER	TEST CONDITIONS	(NOTE 4) TEMP	D SUFFIX $-40^{\circ} \mathrm{C}$ TO $+85^{\circ} \mathrm{C}$			UNITS
			(NOTE 5) MIN	(NOTE 6) TYP	(NOTE 5) MAX	
DYNAMIC CHARACTERISTICS						
Turn-ON Time, ${ }_{\text {ON }}$	$R_{L}=1 \mathrm{k} \Omega, C_{L}=35 \mathrm{pF}, V_{S}= \pm 10 \mathrm{~V},$ (See Figure 18)	$+25^{\circ} \mathrm{C}$	-	150	250	ns
Turn-OFF Time, Toff DG444		$+25^{\circ} \mathrm{C}$	-	90	120	ns
DG445		$+25^{\circ} \mathrm{C}$	-	110	170	ns
Charge Injection, Q	$\begin{aligned} & C_{L}=1 \mathrm{nF}, V_{S}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GEN}}=0 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{GEN}}=0 \Omega \end{aligned}$	$+25^{\circ} \mathrm{C}$	\bullet	-1	-	pC
OFF Isolation	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$	$+25^{\circ} \mathrm{C}$	\bullet	60	-	dB
Crosstalk (Channel-to-Channel)	Any Other Channel Switches $R_{L}=50 \Omega, C_{L}=5 p F, f=1 \mathrm{MHz}$	$+25^{\circ} \mathrm{C}$	-	100	-	dB
Source OFF Capacitance, $\mathrm{C}_{\text {S(OFF) }}$	$\mathrm{f}=1 \mathrm{MHz}$	$+25^{\circ} \mathrm{C}$	-	4	-	pF
Drain OFF Capacitance, $\mathrm{C}_{\text {D(OFF) }}$	$f=1 \mathrm{MHz}$	$+25^{\circ} \mathrm{C}$	-	4	\bullet	pF
Channel ON Capacitance, $\mathrm{C}_{\mathrm{D}(\mathrm{ON})}+$ $\mathrm{C}_{\mathrm{S}(\mathrm{ON})}$	$\mathrm{V}_{\text {ANALOG }}=0$	$+25^{\circ} \mathrm{C}$	-	16	-	pF
DIGITAL CONTROL						
Input Current $\mathrm{V}_{\text {IN }}$ Low, $\mathrm{I}_{\text {IL }}$	$\begin{aligned} & \mathrm{V}_{\text {IN }} \text { Under Test }=0.8 \mathrm{~V}, \\ & \text { All Others }=2.4 \mathrm{~V} \end{aligned}$	Full	-0.5	-0.00001	0.5	$\mu \mathrm{A}$
Input Current $\mathrm{V}_{\text {IN }}$ High, $\mathrm{I}_{\text {IH }}$	$\begin{aligned} & \mathrm{V}_{\text {IN }} \text { Under Test }=2.4 \mathrm{~V}, \\ & \text { All Others }=0.8 \mathrm{~V} \end{aligned}$	Full	-0.5	0.00001	0.5	$\mu \mathrm{A}$
ANALOG SWITCH						
Analog Signal Range, $\mathrm{V}_{\text {ANALOG }}$		Full	-15	-	15	V
Drain-Source ON Resistance, $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$	$\begin{aligned} & I_{S}=-10 \mathrm{~mA}, V_{D}= \pm 8.5 \mathrm{~V}, \\ & V_{+}=13.5 \mathrm{~V}, V-=-13.5 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$	-	50	85	Ω
		Full	-	-	100	Ω
Switch OFF Leakage Current, $\mathrm{I}_{\text {S(OFF) }}$	$\begin{aligned} & V_{+}=16.5 \mathrm{~V}, \mathrm{~V}-=-16.5 \mathrm{~V}, \\ & V_{D}= \pm 15.5 \mathrm{~V}, V_{S}=\mp 15.5 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$	-0.5	0.01	0.5	nA
		Hot	-20	-	20	nA
Switch OFF Leakage Current, Io(off)	$\begin{aligned} & V_{+}=16.5 \mathrm{~V}, \mathrm{~V}-=-16.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{D}}= \pm 15.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=\mp 15.5 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$	-0.5	0.01	0.5	nA
		Hot	-20	-	20	nA
Channel ON Leakage Current, $I_{D(O N)}+I_{S(O N)}$	$\begin{aligned} & V_{+}=16.5 \mathrm{~V}, \mathrm{~V}-=-16.5 \mathrm{~V} \\ & V_{S}=V_{D}= \pm 15.5 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$	-0.5	0.08	0.5	nA
		Hot	-40	-	40	nA

Electrical Specifications Test Conditions: $\mathrm{V}_{+}=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=5 \mathrm{~V}, \mathrm{~V}_{\mathbb{I}}=2.4 \mathrm{~V}, 0.8 \mathrm{~V}$ (Note 3), Unless Otherwise Specified (Continued)

PARAMETER	TEST CONDITIONS	(NOTE 4) TEMP	D SUFFIX $-40^{\circ} \mathrm{C}$ TO $+85^{\circ} \mathrm{C}$			UNITS
			(NOTE 5) MIN	(NOTE 6) TYP	(NOTE 5) MAX	
POWER SUPPLIES						
Positive Supply Current, 1+	$\begin{aligned} & \mathrm{V}+=16.5 \mathrm{~V}, \mathrm{~V}-=-16.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V} \text { or } 5 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$	-	0.001	1	$\mu \mathrm{A}$
		Hot	-	-	5	$\mu \mathrm{A}$
Negative Supply Current, ו-		$+25^{\circ} \mathrm{C}$	-1	-0.0001	-	$\mu \mathrm{A}$
		Hot	-5	-	-	$\mu \mathrm{A}$
Logic Supply Current, $\mathrm{I}_{\text {L }}$		$+25^{\circ} \mathrm{C}$	-	0.001	1	$\mu \mathrm{A}$
		Hot	-	-	5	$\mu \mathrm{A}$
Ground Current, IGND		$+25^{\circ} \mathrm{C}$	-1	-0.001	-	$\mu \mathrm{A}$
		Hot	-5	-	-	$\mu \mathrm{A}$

Electrical Specifications (Unipolar Supplies) Test Conditions: $\mathrm{V}+=+12 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=2.4 \mathrm{~V}, 0.8 \mathrm{~V}$ (Note 3), Unless Otherwise Specified

PARAMETER	TEST CONDITIONS	(NOTE 4) TEMP	D SUFFIX $-40^{\circ} \mathrm{C}$ TO $+85^{\circ} \mathrm{C}$			UNITS
			(NOTE 5) MIN	(NOTE 6) TYP	(NOTE 5) MAX	
DYNAMIC CHARACTERISTICS						
Turn-ON Time, ${ }_{\text {ON }}$	$R_{L}=1 \mathrm{k} \Omega, C_{L}=35 \mathrm{pF}, \mathrm{~V}_{\mathrm{S}}=8 \mathrm{~V},$ (See Figure 18)	$+25^{\circ} \mathrm{C}$	-	300	400	ns
Turn-OFF Time, ${ }_{\text {OFF }}$		$+25^{\circ} \mathrm{C}$	-	60	200	ns
Charge Injection, Q	$\begin{aligned} & C_{L}=1 \mathrm{nF}, \mathrm{~V}+=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{GEN}}=6 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{GEN}}=0 \Omega \end{aligned}$	$+25^{\circ} \mathrm{C}$	-	2	-	pC
ANALOG SWITCH						
Analog Signal Range, $\mathrm{V}_{\text {analog }}$	(Note 5)	Full	0	-	12	V
Drain-Source ON Resistance, $\mathrm{R}_{\text {DS(ON) }}$	$\begin{aligned} & I_{S}=-10 \mathrm{~mA}, V_{D}=3 \mathrm{~V}, 8 \mathrm{~V} \\ & V_{+}=10.8 \mathrm{~V}, V_{L}=5.25 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$	-	100	160	Ω
		Full	-	-	200	Ω
POWER SUPPLIES						
Positive Supply Current, It	$\mathrm{V}+=13.2 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$ or 5 V	$+25^{\circ} \mathrm{C}$	-	0.001	1	$\mu \mathrm{A}$
		Full	-	-	5	$\mu \mathrm{A}$
Negative Supply Current, 1-	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ or 5 V	$+25^{\circ} \mathrm{C}$	-1	-0.0001	-	$\mu \mathrm{A}$
		Full	-5	-	\bullet	$\mu \mathrm{A}$
Logic Supply Current, $\mathrm{I}_{\text {L }}$	$\mathrm{V}_{\mathrm{L}}=5.25 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$ or 5 V	$+25^{\circ} \mathrm{C}$	-	0.001	1	$\mu \mathrm{A}$
		Full	-	\cdot	5	$\mu \mathrm{A}$
Ground Current, $\mathrm{I}_{\text {GND }}$	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ or 5 V	$+25^{\circ} \mathrm{C}$	-1	-0.001	\bullet	$\mu \mathrm{A}$
		Full	-5	-	-	$\mu \mathrm{A}$

NOTES:

1. Signals on $\mathrm{S}_{\mathrm{x}}, \mathrm{D}_{\mathrm{x}}$, or \mathbb{N}_{x} exceeding $\mathrm{V}+$ or V - will be clamped by internal diodes. Limit forward diode current to maximum current ratings.
2. All leads welded or soldered to PC Board.
3. $\mathrm{V}_{\mathrm{IN}}=$ input voltage to perform proper function.
4. Hot $=$ as determined by the operating temperature suffix.
5. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
6. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
7. Guaranteed by design, not subject to production test.

Typical Performance Curves

FIGURE 1. SWITCHING THRESHOLD vs SUPPLY VOLTAGE

FIGURE 3. INPUT CURRENT vs TEMPERATURE

FIGURE 5. CROSSTALK AND OFF ISOLATION vs FREQUENCY

FIGURE 2. SUPPLY CURRENT vs TEMPERATURE

FIGURE 4. $R_{\text {DS(ON) }}$ vs V_{D} AND TEMPERATURE

FIGURE 6. CHARGE INJECTION vs SOURCE VOLTAGE

Typical Performance Curves (Continued)

FIGURE 7. SOURCE/DRAIN CAPACITANCE vs ANALOG VOLTAGE

FIGURE 9. SWITCHING TIME vs INPUT VOLTAGE

FIGURE 11. SWITCHING TIME vs POWER SUPPLY VOLTAGE (DG445)

FIGURE 8. SOURCE/DRAIN LEAKAGE CURRENTS

FIGURE 10. SWITCHING TIME vS POWER SUPPLY VOLTAGE (DG444)

FIGURE 12. SWITCHING TIME vs input VOLTAGE (DG444)

Typical Performance Curves (Continued)

FIGURE 13. SWITCHING TIME vs INPUT VOLTAGE (DG445)

FIGURE 15. CHARGE INJECTION vs SOURCE VOLTAGE (SINGLE 12V SUPPLY)

FIGURE 14. SWITCHING TIMES vs POWER SUPPLY VOLTAGE

FIGURE 16. SOURCE/DRAIN LEAKAGE CURRENTS (SINGLE 12V SUPPLY

FIGURE 17. SOURCEIDRAIN CAPACITANCE vS ANALOG VOLTAGE (SINGLE 12V SUPPLY)

Pin Description
TRUTH TABLE

PIN	SYMBOL	DESCRIPTION
1	\mathbb{N}_{1}	Logic control for switch 1
2	D_{1}	Drain (output) terminal for switch 1
3	$\mathrm{~S}_{1}$	Source (input) terminal for switch 1
4	$\mathrm{~V}-$	Negative power supply terminal
5	GND	Ground terminal (Logic Common)
6	$\mathrm{~S}_{4}$	Source (input) terminal for switch 4
7	D_{4}	Drain (output) terminal for switch 4
8	$\mathrm{~N}_{4}$	Logic control for switch 4
9	$\mathrm{~N}_{3}$	Logic control for switch 3
10	D_{3}	Drain (output) terminal for switch 3
11	$\mathrm{~S}_{3}$	Source (input) terminal for switch 3
12	$\mathrm{~V}_{\mathrm{L}}$	Logic reference voltage.
13	$\mathrm{~V}_{+}$	Positive power supply terminal (substrate)
14	$\mathrm{~S}_{2}$	Source (input) terminal for switch 2
15	D_{2}	Drain (output) terminal for switch 2
16	$\mathrm{~N}_{2}$	Logic control for switch 2

LOGIC	$\mathbf{V}_{\mathbf{N}}$	DG444	DG445
0	$\leq 0.8 \mathrm{~V}$	ON	OFF
1	$\geq 2.4 \mathrm{~V}$	OFF	ON

Test Circuits

V_{O} is the steady state output with the switch on. Feedthrough via switch capacitance may result in spikes at the leading and trailing edge of the output waveform.

NOTE: Logic input waveform is inverted for switches that have the opposite logic sense.

FIGURE 18A.

Repeat test for Channels 2, 3 and 4.
For load conditions, see Specifications C_{L} (includes fixture and stray capacitance)

$$
v_{O}=v_{S} \frac{R_{L}}{R_{L}+r_{D S}(O N)}
$$

FIGURE 18B.

FIGURE 18. SWITCHING TIME

FIGURE 19. CHARGE INJECTION

Test Circuits (Continued)

FIGURE 20. CROSSTALK

FIGURE 21. OFF ISOLATION

FIGURE 22. SOURCEIDRAIN CAPACITANCES

Typical Applications

GAIN ERROR IS DETERMINED ONLY BY
THE RESISTOR TOLERANCE, OP AMP OFFSET AND CMRR WILL LIMIT ACCURACY OR CIRCUIT
$\frac{V_{\text {OUT }}}{V_{I N}}=\frac{R_{1}+R_{2}+R_{3}+R_{4}}{R_{4}}=100$
WITH SW4 CLOSED
FIGURE 23. PRECISION WEIGHTED RESISTOR PROGRAMMABLE GAIN AMPLIFIER

FIGURE 24. LEVEL SHIFTER

Die Characteristics

DIE DIMENSIONS:

$2160 \mu \mathrm{~m} \times 1760 \mu \mathrm{~m} \times 485 \pm 25 \mu \mathrm{~m}$
METALLIZATION:
Type: CuAl
Thickness: $12 k \AA \pm 1 k \AA$
GLASSIVATION:
Type: Nitride
Thickness: $8 \mathrm{k} \AA \pm 1 \mathrm{k} \AA$
WORST CASE CURRENT DENSITY:
$9.1 \times 10^{4} \mathrm{~A} / \mathrm{cm}^{2}$

Metallization Mask Layout

DG444, DG445

Dual/Quad SPST CMOS Analog Switches

Features

- Analog Voltage Range . $\pm 15 \mathrm{~V}$
- Analog Current Range. 80mA
- Turn-On Time . 240 ns
- Low R R $_{\text {ON }}$. 55Ω
- Low Power Dissipation . $15 m W$
- TTUCMOS Compatible

Applications

- High Frequency Analog Switching
- Sample and Hold Circuits
- Digital Filters
- Operational Amplifier Gain Switching Networks

Functional Diagram

Description

$\mathrm{HI}-200 / \mathrm{HI}-201$ are monolithic devices comprising independently selectable SPST switches which feature fast switching speeds ($\mathrm{HI}-200$ 240ns, and $\mathrm{HI}-201$ 185ns) combined with low power dissipation (15 mW at $+25^{\circ} \mathrm{C}$). Each switch provides low "ON" resistance operation for input signal voltage up to the supply rails and for signal current up to 80 mA . Rugged DI construction eliminates latch-up and substrate SCR failure modes.

All devices provide break-before-make switching and are TTL and CMOS compatible for maximum application versatility. $\mathrm{HI}-200 / \mathrm{HI}-201$ are ideal components for use in high frequency analog switching. Typical applications include signal path switching, sample and hold circuit, digital filters, and operational amplifier gain switching networks.
$\mathrm{HI}-200$ is a dual SPST CMOS analog switch available in DIP and (TO-99) metal cans and is pin compatible with other available "200 series" switches. For Mil-Std-883 compliant parts, request the $\mathrm{HI}-200 / 883$ data sheet.
$\mathrm{HI}-201$ is a quad SPST CMOS analog switch available in DIP and SOIC package and pin compatible with other available "200 series" switches. For Mil-Std-883 compliant parts, request the $\mathrm{HI}-201 / 883$ data sheet.

HI-200, HI-201

Ordering Information

PART NUMBER	TEMPERATURE RANGE	PACKAGE
HI2-0200-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	10 Pin Metal Can
Hi1-0200-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	14 Lead Ceramic DIP
HI2-0200-4	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	10 Pin Metal Can
HI3-0200-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	14 Lead Plastic DIP
HI2-0200-7	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}+96 \mathrm{Hr}$. Burn-In	10 Pin Metal Can
HI1-0200-7	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}+96 \mathrm{Hr}$. Burn-In	14 Lead Ceramic DIP
HI1-0200-2	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	14 Lead Ceramic DIP
HI1-0200-4	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 Lead Ceramic DIP
HI2-0200-2	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	10 Pin Metal Can
HI1-0201-7	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}+96 \mathrm{Hr}$. Burn-In	16 Lead Ceramic DIP
HI1-0201-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
HI1-0201-4	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
HI4P0201-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	20 Lead PLCC
HI9P0201-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	16 Lead SOIC (W)
HI9P0201-9	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Lead SOIC (W)
HI1-0201-2	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
НІ3-0201-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	16 Lead Plastic DIP
HI9P0200-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	14 Lead SOIC (N)
HI9P0200-9	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 Lead SOIC (N)
HI1-0200/883	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	14 Lead Ceramic DIP
HI2-0200/883	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	10 Pin Metal Can
HI1-0201/883	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
H14-0201/883	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	20 Lead CLCC

Schematic Diagrams

tTUCMOS REFERENCE CIRCUIT $\mathrm{V}_{\text {REF }}$ CELL

SWITCH CELL

digital input buffer and level shifter

Absolute Maximum Ratings

Thermal Information

Thermal Resistance	$\theta^{\text {JJa }}$	θ_{jc}
Ceramic DIP Package	$80^{\circ} \mathrm{C} / \mathrm{W}$	$24^{\circ} \mathrm{CM}$
PLCC Package	$80^{\circ} \mathrm{C} / \mathrm{W}$	-
Plastic DIP Package	$100^{\circ} \mathrm{CN}$	
Plastic SOP Package (14 Lead)	$120^{\circ} \mathrm{CM}$	-
Plastic SOP Package (16 Lead)	$100^{\circ} \mathrm{CN}$	-
Metal Can Package .	$136{ }^{\circ} \mathrm{C} / \mathrm{N}$	$65^{\circ} \mathrm{C} / \mathrm{N}$
Operating Temperature Range		
HI-200-2, HI-201-2.	$-55^{\circ} \mathrm{C}$	$0+125^{\circ} \mathrm{C}$
HI-200-4, HI-201-4.	-25	to $+85^{\circ} \mathrm{C}$
HI-200-5, HI-201-5.		to $+75^{\circ} \mathrm{C}$

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Electrical Specifications Supplies $=+15 \mathrm{~V},-15 \mathrm{~V} ; \mathrm{V}_{\mathrm{REF}}=$ Open; V_{AH} (Logic Level High) $=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{AL}}$ (Logic Level Low) $=+0.8 \mathrm{~V}$, Unless Otherwise Specified. $\mathrm{HI}-200-4$ has Same Specifications as $\mathrm{HI}-200-5$ Over $-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Temperature Range

PARAMETER	TEST CONDITIONS	TEMP	$\begin{aligned} & \mathrm{HI}-200-2, \mathrm{HI}-201-2 \\ & -55^{\circ} \mathrm{C} \text { TO }+125^{\circ} \mathrm{C} \end{aligned}$			$\begin{gathered} \mathrm{HI}-200-5, \mathrm{HI} 201-5 \\ 0^{\circ} \mathrm{C} \text { TO }+75^{\circ} \mathrm{C} \end{gathered}$			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	
SWITCHING CHARACTERISTICS									
Break-Before-Make Delay, topen HI-200	(Note 3)	$+25^{\circ} \mathrm{C}$	-	60	-	-	60	-	ns
H1-201		$+25^{\circ} \mathrm{C}$	-	30	-	-	30	-	ns
Switch On Time, ton HI-200		$+25^{\circ} \mathrm{C}$	-	240	500	-	240	-	ns
H-201		$+25^{\circ} \mathrm{C}$	-	185	500	-	185	-	ns
		Full	-	1000	-	-	1000	-	ns
Switch Off Time, toff HI-200		$+25^{\circ} \mathrm{C}$	-	330	500	-	500	-	ns
H1-201		$+25^{\circ} \mathrm{C}$	-	220	500	-	220	-	ns
		Full	-	1000	-	-	1000	-	ns
"Off Isolation" HI-200	(Note 4)	$+25^{\circ} \mathrm{C}$	-	70	-	-	70	-	dB
H1-201		$+25^{\circ} \mathrm{C}$	-	80	-	-	80	-	dB
Input Switch Capacitance, $\mathrm{C}_{\text {S(OFF) }}$		$+25^{\circ} \mathrm{C}$	-	5.5	-	-	5.5	-	pF
Output Switch Capacitance, $\mathrm{C}_{\text {D(OFF) }}$		$+25^{\circ} \mathrm{C}$	-	5.5	-	-	5.5	-	pF
Output Switch Capacitance, $\mathrm{C}_{\mathrm{D} \text { (ON) }}$		$+25^{\circ} \mathrm{C}$	-	11	-	-	11	-	pF
Digital Input Capacitance, C_{A}		$+25^{\circ} \mathrm{C}$	-	5	-	\bullet	5	-	pF
Drain-to-Source Capacitance, C_{D}. S(OFF)		$+25^{\circ} \mathrm{C}$	-	0.5	-	\bullet	0.5	-	pF
DIGITAL INPUT CHARACTERISTICS									
Input Low Threshold, $\mathrm{V}_{\text {AL }}$		Full	-	-	0.8	-	-	0.8	V
Input High Threshold, $\mathrm{V}_{\text {AH }}$		Full	2.4	-	-	2.4	-	-	V
Input Leakage Current (High or Low), I_{A}	(Note 2)	Full	-	-	1.0	-	-	1.0	$\mu \mathrm{A}$

Performance Curves and Test Circuits $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\text {SUPPLY }}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{AH}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{AL}}=0.8 \mathrm{~V}$ and $\mathrm{V}_{\text {REF }}=0$ pen (Continued)

FIGURE 2. ON RESISTANCE vS TEMPERATURE

FIGURE 4A. HI-201 SWITCH LEAKAGE CURRENT vs TEMPERATURE

FIGURE 4.

FIGURE 5A.

FIGURE 3. HI-201 ON RESISTANCE vs ANALOG SIGNAL LEVEL AND POWER SUPPLY VOLTAGE

FIGURE 4B. OFF LEAKAGE CURRENT vs TEMPERATURE

FIGURE 4C. ON LEAKAGE CURRENT vs TEMPERATURE

FIGURE 5. SWITCH CURRENT vs VOLTAGE

Switching Waveforms

FIGURE 6. LOGIC " 0 " = SWITCH ON

FIGURE 7. TTL INPUT

FIGURE 8. OFF ISOLATION vs FREQUENCY

For more information see Application Notes 520, 521, 531, 532 and 557.

Die Characteristics

DIE DIMENSIONS:
$54 \times 79 \times 19$ mils
METALLIZATION:
Type: CuAL
Thickness: $16 k \AA ̊ \pm 2 k \AA$

GLASSIVATION:

Type: Nitride over Silox
Nitride Thickness: $3.5 \mathrm{k} \AA \pm 1 \mathrm{k} \AA$
Silox Thickness: $12 \mathrm{k} \AA \pm 2 \mathrm{k} \AA$
WORST CASE CURRENT DENSITY:
$2 \times 10^{5} \mathrm{~A} / \mathrm{cm}^{2}$ at 25 mA

Metallization Mask Layout

Die Characteristics

DIE DIMENSIONS:
$81 \times 85 \times 19$ mils
METALLIZATION:
Type: CuAl
Thickness: $16 \mathrm{k} \AA \pm 2 \mathrm{k} \AA$
GLASSIVATION:
Type: Nitride over Silox
Nitride Thickness: $3.5 \mathrm{k} \AA \pm 1 \mathrm{k} \AA$
Silox Thickness: $12 \mathrm{k} \AA \pm 2 \mathrm{k} \AA$
WORST CASE CURRENT DENSITY:
$2 \times 10^{5} \mathrm{Alcm}^{2}$ at 25 mA
Metallization Mask Layout

HEARPRIS

High Speed Quad SPST
 CMOS Analog Switch

Features

- Fast Switching Times, $\mathrm{t}_{\mathrm{ON}}=30 \mathrm{~ns}, \mathrm{t}_{\mathrm{OFF}}=40 \mathrm{~ns}$
- Low "ON" Resistance of 30Ω
- Pin Compatible with Standard HI-201
- Wide Analog Voltage Range ($\mathbf{1 1 5 V}$ Supplies) of $\pm 15 \mathrm{~V}$
- Low Charge Injection ($\mathbf{1} 15 \mathrm{~V}$ Supplies) 10pC
- TTL Compatible
- Symmetrical Switching Analog Current Range of 80 mA

Applications

- High Speed Multiplexing
- High Frequency Analog Switching
- Sample and Hold Circuits
- Digital Filters
- Operational Amplifier Gain Switching Networks
- Integrator Reset Circuits

Functional Diagram

LOGIC	SWITCH
0	ON
1	OFF

Description

The HI-201HS is a monolithic CMOS Analog Switch featuring very fast switching speeds and low ON resistance. The integrated circuit consists of four independently selectable SPST switches and is pin compatible with the industry standard $\mathrm{HI}-201$ switch.

Fabricated using silicon-gate technology and the Harris Dielectric Isolation process, this TTL compatible device offers improved performance over previously available CMOS analog switches. Featuring maximum switching times of 50 ns , low ON resistance of 50Ω maximum, and a wide analog signal range, the $\mathrm{HI}-201 \mathrm{HS}$ is designed for any application where improved switching performance, particularly switching speed, is required. (A more detailed discussion on the design and application of the $\mathrm{HI}-201 \mathrm{HS}$ can be found in Application Note 543.)

Ordering Information

PART NUMBER	TEMP. RANGE	PACKAGE
HI1-0201HS-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
HI3-0201HS-4	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Lead Plastic DIP
HI1-0201HS-2	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
HI1-0201HS-4	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
H14P0201HS-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	20 Lead PLCC
HI3-0201HS-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	16 Lead Plastic DIP
H11-0201HS-7	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
H14-0201HS/883	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	20 Lead LCC
HI9P0201HS-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	16 Lead SOIC (W)
H19P0201HS-9	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Lead SOIC (W)
H11-0201HS/883	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
HI1-0201HS -8	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead Ceramic DIP

Pinouts

Schematic Diagrams

TTLCMOS REFERENCE CIRCUIT

SWITCH CELL

DIGITAL INPUT BUFFER AND LEVEL SHIFTER

Absolute Maximum Ratings

Supply Voltage (Between Pins 4 and 13)
Digital Input Voltage (Pins 1, 8, 9, 16)
............ 36V
Analog Input Voltage (One Switch).
$(\mathrm{V}+\mathrm{t}+4 \mathrm{~V},(\mathrm{~V}-)-4 \mathrm{~V}$
Pins 2, 3, 6, 7, 10, 11, 14, 15
$.(\mathrm{V}+)+2.0 \mathrm{~V}$
Peak Current (S or D)
(Pulse at $1 \mathrm{~ms}, 10 \%$ Duty Cycle Max.)
(V) -2.0 V
.50 mA
Continuous Current Any Terminal (Except S or D). 25 mA
Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering 10s).
$+300^{\circ} \mathrm{C}$

Thermal Information

Thermal Resistance Ceramic DIP	$\begin{gathered} \theta_{\mathrm{JA}} \\ 80^{\circ} \mathrm{C} \mathbf{W} \end{gathered}$	$\begin{gathered} \theta_{\mathrm{Jc}} \\ 24^{\circ} \mathrm{C} M \end{gathered}$
Plastic DIP .	$100^{\circ} \mathrm{C} / \mathrm{W}$	-
PLCC.	$80^{\circ} \mathrm{C} / \mathrm{W}$	-
SOIC	$100^{\circ} \mathrm{CN}$	-
Operating Temperature		
HI-201HS-2,-8	. . -55°	0 $+125^{\circ} \mathrm{C}$
HI-201HS-4	. 25	to $+85^{\circ} \mathrm{C}$
HI-201HS-5,-7		to $+75^{\circ} \mathrm{C}$
HI-201HS-9	-40	to $+85^{\circ} \mathrm{C}$
Junction Temperature		
Ceramic Package		$+175^{\circ} \mathrm{C}$
Plastic Package		$+150^{\circ}$

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Electrical Specifications Supplies $=+15 \mathrm{~V},-15 \mathrm{~V} ; \mathrm{V}_{\mathrm{AH}}$ (Logic Level High) $=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{AL}}$ (Logic Level Low) $=+0.8 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, Unless Otherwise Specified

PARAMETER	TEST CONDITIONS	TEMP	HI-201HS-2/-8			HI-201HS-5/-4/-9/-7			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	

SWITCHING CHARACTERISTICS

ton, Switch On Time	(Note 3)	$+25^{\circ} \mathrm{C}$	-	30	50	-	30	50	ns
toffi, Switch Off Time	(Note 3)	$+25^{\circ} \mathrm{C}$	-	40	50	-	40	50	ns
$\mathrm{t}_{\text {OFF2 }}$, Switch Off Time	(Note 3)	$+25^{\circ} \mathrm{C}$	-	150	-	-	150	-	ns
Output Settling Time 0.1\%		$+25^{\circ} \mathrm{C}$	-	180	-	-	180	-	ns
"Off Isolation"	(Note 4)	$+25^{\circ} \mathrm{C}$	-	72	-	-	72	-	dB
Crosstalk	(Note 5)	$+25^{\circ} \mathrm{C}$	-	86	-	-	86	-	dB
Charge Injection	(Note 6)	$+25^{\circ} \mathrm{C}$	-	10	-	-	10	-	pC
$\mathrm{C}_{\text {S(OFF) }}$, Input Switch Capacitance		$+25^{\circ} \mathrm{C}$	-	10	-	-	10	-	pF
$\mathrm{C}_{\mathrm{D} \text { (OFF) }}$, Output Switch Capacitance		$+25^{\circ} \mathrm{C}$	-	10	-	-	10	-	pF
$\mathrm{C}_{\mathrm{D}(\mathrm{ON})}$,		$+25^{\circ} \mathrm{C}$	-	30	-	-	30	-	pF
C_{A}, Digital Input Capacitance		$+25^{\circ} \mathrm{C}$	-	18	-	-	18	-	pF
$\mathrm{C}_{\text {DS(OFF) }}$, Drain-To-Source Capacitance		$+25^{\circ} \mathrm{C}$	-	0.5	-	-	0.5	-	pF

DIGITAL INPUT CHARACTERISTICS

$\mathrm{V}_{\text {AL }}$, Input Low Threshold		Full	-	-	0.8	-	-	0.8	V
$\mathrm{V}_{\text {AH }}$, Input High Threshold		$+25^{\circ} \mathrm{C}$	2.0	-	-	2.0	-	-	V
		Full	2.4	\bullet	-	2.4	-	-	V
I_{AL}, Input Leakage Current (Low)		$+25^{\circ} \mathrm{C}$	-	-200	-	-	-200	\bullet	$\mu \mathrm{A}$
		Full	-	-	-500	-	-	-500	$\mu \mathrm{A}$
IAH, Input Leakage Current (High)	$\mathrm{V}_{\mathrm{AH}}=4.0 \mathrm{~V}$	$+25^{\circ} \mathrm{C}$	-	20	-	-	20	-	$\mu \mathrm{A}$
		Full	-	-	+40	-	-	+40	$\mu \mathrm{A}$

ANALOG SWITCH CHARACTERISTICS

V_{S}, Analog Signal Range		Full	-15	-	+15	-15	-	+15	V
Ron, On Resistance	(Note 2)	$+25^{\circ} \mathrm{C}$	-	30	50	-	30	50	Ω
		Full	-	-	75	\bullet	\bullet	75	Ω
R ${ }_{\text {ON }}$ Match		$+25^{\circ} \mathrm{C}$	-	3	-	-	3	-	\%

Electrical Specifications Supplies $=+15 \mathrm{~V},-15 \mathrm{~V} ; \mathrm{V}_{\mathrm{AH}}$ (Logic Level High) $=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{AL}}$ (Logic Level Low) $=+0.8 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, Unless Otherwise Specified (Continued)

PARAMETER	TEST CONDITIONS	TEMP	HI-201HS-2/-8			HI-201HS-5/-4/-9/-7			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	
$I_{\text {S(OFF), }}$, Off Input Leakage Current		$+25^{\circ} \mathrm{C}$	-	0.3	10	-	0.3	10	nA
		Full	-	-	100	-	-	50	nA
ID(OFF), Off Output Leakage Current		$+25^{\circ} \mathrm{C}$	-	0.3	10	-	0.3	10	nA
		Full	-	-	100	-	-	50	nA
$\mathrm{I}_{\text {(ON) }}$, On Leakage Current		$+25^{\circ} \mathrm{C}$	-	0.1	10	-	0.1	10	nA
		Full	-	-	100	-	-	50	nA
POWER SUPPLY CHARACTERISTICS (Note 7)									
P_{D}, Power Dissipation		$+25^{\circ} \mathrm{C}$	-	120	-	-	120	-	mW
		Full	-	-	240	-	-	240	mW
1+, Current (Pin 13)		$+25^{\circ} \mathrm{C}$	-	4.5	-	-	4.5	-	mA
		Full	-	-	10.0	-	-	10.0	mA
I-, Current (Pin 4)		$+25^{\circ} \mathrm{C}$	-	3.5	-	-	3.5	-	mA
		Full	-	-	6	-	-	6	mA

NOTES:

1. Absolute maximum ratings are limiting values, applied individually, beyond which the serviceability of the circuit may be impaired. Functional operability under any of these conditions is not necessarily implied.
2. $\mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}$, $\mathrm{I}_{\text {OUT }}=1 \mathrm{~mA}$.
3. $R_{L}=1 \mathrm{k} \Omega, C_{L}=35 \mathrm{pF}, \mathrm{V}_{\mathrm{IN}}=+10 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}}=+3 \mathrm{~V}$. (See Switching Waveforms).
4. $V_{A}=3 V, R_{L}=1 \mathrm{k} \Omega, C_{L}=10 \mathrm{pF}, \mathrm{V}_{\mathrm{IN}}=3 \mathrm{~V}_{\mathrm{RMS}}, f=100 \mathrm{kHz}$.
5. $V_{A}=3 V, R_{L}=1 \mathrm{k} \Omega, V_{I N}=3 V_{\text {RMS }}, f=100 \mathrm{kHz}$.
6. $C_{L}=1000 \mathrm{pF}, \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{IN}}=0 \mathrm{~V}, \Delta \mathrm{Q}=\mathrm{C}_{\mathrm{L}} \times \Delta \mathrm{V}_{\mathrm{O}}$.
7. $\mathrm{V}_{\mathrm{A}}=3 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{A}}=0$ for all switches.

Switching Waveforms

FIGURE 1A.

TOP: TTL Input (2V/Div.) BOTTOM: Output (5V/Div.) HORIZONTAL: 100ns/Div.

FIGURE 1B.

FIGURE 1. SWITCH $t_{\text {ON }}$ AND $t_{\text {OFF }}$ TIMES

Typical Performance Curves

FIGURE 2. "ON" RESISTANCE vs ANALOG SIGNAL LEVEL AND TEMPERATURE

FIGURE 4. $I_{\text {s(OFF) }}$ OR $I_{\text {D(OFF) }}$ vs TEMPERATURE \dagger

FIGURE 6. SUPPLY CURRENT vs TEMPERATURE

FIGURE 3. "ON" RESISTANCE vs ANALOG SIGNAL LEVEL AND POWER SUPPLY VOLTAGE

FIGURE 5. $I_{\text {D(ON })}$ vS TEMPERATURE \dagger

FIGURE 7. LEAKAGE CURRENT vs ANALOG INPUT VOLTAGE
\dagger Theoretically, leakage current will continue to decrease below $+25^{\circ} \mathrm{C}$. But due to environmental conditions, leakage measurements below this temperature are not representative of actual switch performance.

Typical Performance Curves (Continued)

FIGURE 8. DIGITAL INPUT LEAKAGE CURRENT vs TEMPERATURE \dagger

FIGURE 10. SWITCHING TIME vs TEMPERATURE

FIGURE 12. SWITCHING TIME vs POSITIVE SUPPLY VOLTAGE

FIGURE 9. LEAKAGE CURRENT vs ANALOG INPUT VOLTAGE

FIGURE 11. SWITCHING TIME vs POSITIVE AND NEGATIVE SUPPLY VOLTAGE

FIGURE 13. SWITCHING TIME vs NEGATIVE SUPPLY VOLTAGE
\dagger Theoretically, leakage current will continue to decrease below $+25^{\circ} \mathrm{C}$. But due to environmental conditions, leakage measurements below this temperature are not representative of actual switch performance.

Typical Performance Curves (Continued)

FIGURE 14. SWITCHING TIME vs INPUT LOGIC AMPLITUDE

FIGURE 16. CHARGE INJECTION vs ANALOG INPUT

FIGURE 18. OFF ISOLATION vs FREQUENCY

FIGURE 15. INPUT SWITCHING THRESHOLD vs POSITIVE AND NEGATIVE SUPPLY VOLTAGES

FIGURE 17. CAPACITANCE vs ANALOG INPUT

FIGURE 19. CROSSTALK vs FREQUENCY

Test Circuit

FIGURE 20. SWITCHING TEST CIRCUIT ($\mathrm{t}_{\text {ON }}, \mathrm{t}_{\text {OFF } 1}, \mathrm{t}_{\text {OFF2 }}$)

Switching Characteristics

Typical delay, $t_{O N}$, toff, settling time and switching transients in this circuit. If R_{L} or C_{L} is increased, there will be corresponding increases in rise and/or fall RC times..

FIGURE 21B.
FIGURE 21. SWITCHING CHARACTERISTICS vs INPUT VOLTAGE

Switching Characteristics (Continued)

FIGURE 22. \mathbf{V}_{0} - OUTPUT SWITCHING WAVEFORMS

Application Information

Logic Compatibility

The HI-201HS is TTL compatible. Its logic inputs (Pins 1, 8, 9,16) are designed to react to digital inputs which exceed a fixed, internally generated TTL switching threshold. The $\mathrm{HI}-201 \mathrm{HS}$ can also be driven with CMOS logic ($\mathrm{OV}-15 \mathrm{~V}$), although the switch performance with CMOS logic will be inferior to that with TTL logic (0V-5V).
The logic input design of the HI-201HS is largely responsible for its fast switching speed. It is a design which features a unique input stage consisting of complementary vertical PNP and NPN bipolar transistors. This design differs from that of the standard HI-201 product where the logic inputs are MOS transistors.

Although the new logic design enhances the switching speed performance, it also increases the logic input leakage currents. Therefore, the $\mathrm{HI}-201 \mathrm{HS}$ will exhibit larger digital input leakage currents in comparison to the standard $\mathrm{HI}-201$ product.

Charge Injection

Charge injection is the charge transferred, through the internal gate-to-channel capacitances, from the digital logic input to the analog output. To optimize charge injection performance for the HI-201HS, it is advisable to provide a TTL logic input with fast rise and fall times.

If the power supplies are reduced from $\pm 15 \mathrm{~V}$, charge injection will become increasingly dependent upon the digital input frequency. Increased logic input frequency will result in larger output error due to charge injection.

Power Supply Considerations

The electrical characteristics specified in this data sheet are guaranteed for power supplies $\pm \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$. Power supply voltages less than $\pm 15 \mathrm{~V}$ will result in reduced switch performance. The following information is intended as a design aid only.

POWER SUPPLY VOLTAGES	SWITCH PERFORMANCE
$\pm 12< \pm \mathrm{V}_{\mathbf{S}} \pm 15 \mathrm{~V}$	Minimal Variation
$\pm \mathrm{V}_{\mathbf{S}}< \pm 12 \mathrm{~V}$	Parametric variation becomes increas- ingly large (increased ON resistance, longer switching times).
$\pm \mathrm{V}_{\mathbf{S}}< \pm 10 \mathrm{~V}$	Not Recommended.
$\pm \mathrm{V}_{\mathbf{S}}> \pm 16 \mathrm{~V}$	Not Recommended.

Single Supply

The switch operation of the $\mathrm{HI}-201 \mathrm{HS}$ is dependent upon an internally generated switching threshold voltage optimized for $\pm 15 \mathrm{~V}$ power supplies. The HI-201HS does not provide the necessary internal switching threshold in a single supply system. Therefore, if single supply operation is required, the $\mathrm{HI}-300$ series of switches is recommended. The $\mathrm{HI}-300$ series will remain operational to a minimum +5 V single supply.

Switch performance will degrade as power supply voltage is reduced from optimum levels ($\pm 15 \mathrm{~V}$). So it is recommended that a single supply design be thoroughly evaluated to ensure that the switch will meet the requirements of the application.

For Further Information See Application Notes 520, 521, $531,532,543$ and 557.

Die Characteristics

DIE DIMENSIONS:

$2440 \mu \mathrm{~m} \times 2860 \mu \mathrm{~m} \times 485 \mu \mathrm{~m} \pm 25 \mu \mathrm{~m}$
METALLIZATION:
Type: CuAl
Thickness: $16 k \AA \pm 2 k \AA$

GLASSIVATION:

Type: Nitride Over Silox Nitride Thickness: $3.5 \mathrm{k} \AA \pm 1 \mathrm{k} \AA$ Silox Thickness: $12 \mathrm{k} \AA \pm 2 \mathrm{k} \AA$

WORST CASE CURRENT DENSITY: $9.5 \times 10^{4} \mathrm{Alcm}^{2}$
Metallization Mask Layout

CMOS Analog Switches

Features

- Analog Signal Range ($\mathbf{1 1 5 \mathrm { V } \text { Supplies }) ~} \pm 15 \mathrm{~V}$
- Low Leakage (Typical at $+25^{\circ} \mathrm{C}$) $\mathbf{4 0 p A}$
- Low Leakage (Typical at $+125^{\circ} \mathrm{C}$) 1nA
- Low On Resistance (Typical at $+25^{\circ} \mathrm{C}$) 35Ω
- Break-Before-Make Delay (Typical) 60ns
- Charge Injection 30pC
- TTL, CMOS Compatible
- Symmetrical Switch Elements
- Low Operating Power 1.0mW (Typical for HI-300-303)

Applications

- Sample and Hold (i.e. Low Leakage Switching)
- Op Amp Gain Switching (l.e. Low On Resistance)
- Portable, Battery Operated Circuits
- Low Level Switching Circuits
- Dual or Single Supply Systems

Description

The HI-300 thru HI-307 series of switches are monolithic devices fabricated using CMOS technology and the Harris dielectric isolation process. These switches feature break-beforemake switching, ($\mathrm{Hl}-301, \mathrm{HI}-303, \mathrm{HI}-305$ and $\mathrm{HI}-307$ only), low and nearly constant ON resistance over the full analog signal range, and low power dissipation, (a few mW for the $\mathrm{HI}-300$ thru $\mathrm{HI}-303$, a few hundred mW for the $\mathrm{HI}-304$ thru $\mathrm{HI}-307$).

The HI-300 thru HI-303 are TTL compatible and have a logic " O " condition with an input less than 0.8 V and a logic " 1 " condition with an input greater than 4.0 V . The $\mathrm{HI}-304$ thru $\mathrm{HI}-307$ switches are CMOS compatible and have a low state with an input less than 3.5 V and a high state with an input greater than 11V. (See pinouts for switch conditions with a logic "1" input.)

All the devices are available in a 14 lead Epoxy or Ceramic DIP. The $\mathrm{HI}-300, \mathrm{HI}-301, \mathrm{HI}-304$ and $\mathrm{HI}-305$ are also available in a 10 pin Metal Can. Each of the switch types are available in either the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ or $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ operating ranges.

Pinouts (Switch States are for a Logic "1" Input)
DUAL SPST HI-300 AND HI-304
TOP VIEWS
(CDIP, PDIP, SOIC)
(METAL CAN)

LOGIC	SWITCH
0	OFF
1	ON

* The substrate and case are internally tied to V-. (The case should not be used as the Vconnection, however.)

SPST HI-301 AND HI-305

GND 7

LOGIC	SW1	SW2
0	OFF	ON
1	ON	OFF

Ordering Information

PART NUMBER	TEMPERATURE RANGE	PACKAGE
H11-0300-2	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	14 Lead Ceramic DIP
HI1-0300-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	14 Lead Ceramic DIP
H12-0300-2	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	10 Pin TO-5 Can
HI2-0300-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	10 Pin TO-5 Can
HI3-0300-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	14 Lead Plastic DIP
H19P0300-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	14 Lead SOIC
H19P0300-9	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 Lead SOIC
HI1-0301-2	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	14 Lead Ceramic DIP
H11-0301-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	14 Lead Ceramic DIP
H12-0301-2	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	10 Pin TO-5 Can
HI2-0301-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	10 Pin TO-5 Can
HI3-0301-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	14 Lead Plastic DIP
HI9P0301-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	14 Lead SOIC
H19P0301-9	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 Lead SOIC
H11-0302-2	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	14 Lead Ceramic DIP
H11-0302-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	14 Lead Ceramic DIP
HI3-0302-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	14 Lead Plastic DIP
H19P0302-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	14 Lead SOIC
H19P0302-9	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 Lead SOIC
H11-0303-2	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	14 Lead Ceramic DIP
H11-0303-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	14 Lead Ceramic DIP
H13-0303-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	14 Lead Plastic DIP
H19P0303-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	14 Lead SOIC
H19P0303-9	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 Lead SOIC

PART NUMBER	TEMPERATURE RANGE	PACKAGE
HI1-0304-2	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	14 Lead Ceramic DIP
HI1-0304-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	14 Lead Ceramic DIP
HI2-0304-2	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	10 Pin TO-5 Can
HI2-0304-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	10 Pin TO-5 Can
HI3-0304-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	14 Lead Plastic DIP
HI9P0304-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	14 Lead SOIC
HI9P0304-9	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 Lead SOIC
HI1-0305-2	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	14 Lead Ceramic DIP
HI1-0305-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	14 Lead Ceramic DIP
HI2-0305-2	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	10 Pin TO-5 Can
HI2-0305-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	10 Pin TO-5 Can
HI3-0305-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	14 Lead Plastic DIP
HI9P0305-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	14 Lead SOIC
HI9P0305-9	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 Lead SOIC
HI1-0306-2	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	14 Lead Ceramic DIP
HI1-0306-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	14 Lead Ceramic DIP
HI3-0306-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	14 Lead Plastic DIP
HI9P0306-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	14 Lead SOIC
HI9P0306-9	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 Lead SOIC
HI1-0307-2	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	14 Lead Ceramic DIP
HII-0307-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	14 Lead Ceramic DIP
HI3-0307-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	14 Lead Plastic DIP
HI19P307-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	14 Lead SOIC
HI9P0307-9	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 Lead SOIC

Functional Block Diagram

TYPICAL SWITCH HL-300 SERIES

Schematic Diagrams

SWITCH CELL

DIGITAL INPUT BUFFER AND LEVEL SHIFTER

Absolute Maximum Ratings

Thermal Information

Thermal Resistance	$\theta_{\text {JA }}$	$\theta_{J c}$
14 Lead Ceramic DIP	$95^{\circ} \mathrm{C} / \mathrm{W}$	$24^{\circ} \mathrm{CN}$
14 Lead Plastic DIP	. $100^{\circ} \mathrm{C} / \mathrm{N}$	-
14 Lead SOIC	$120^{\circ} \mathrm{C} / \mathrm{W}$	-
10 Pin TO-100 Metal Can	$136^{\circ} \mathrm{CN}$	$65^{\circ} \mathrm{CM}$
Maximum Power Dissipation		
Ceramic DIP		588mW
Plastic DIP .		526 mW
Metal Can		435 mW

Operating Temperature Range

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Electrical Specifications Supplies $=+15 \mathrm{~V},-15 \mathrm{~V} ; \mathrm{V}_{\mathbb{I N}}=$ Logic Input. $\mathrm{HI}-300-303$: $\mathrm{V}_{\mathrm{IN}}-$ for Logic " 1 " $=4 \mathrm{~V}$, for Logic " $0^{\prime \prime}=0.8 \mathrm{~V}$. HI-304-307: V_{IN} - for Logic "1" = 11V, for Logic " 0 " $=3.5 \mathrm{~V}$, Unless Otherwise Specified.

PARAMETERS	TEMP	$-55^{\circ} \mathrm{C}$ TO $+125^{\circ} \mathrm{C}$			$0^{\circ} \mathrm{C}$ TO $+75^{\circ} \mathrm{C}$			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
SWITCHING CHARACTERISTICS								
Break-Before-Make Delay, topen (Note 15)	$+25^{\circ} \mathrm{C}$	-	60	-	-	60	-	ns
Switch On Time, ton (Note 13)	$+25^{\circ} \mathrm{C}$	-	210	300	-	210	300	ns
Switch Off Time, toff (Note 13)	$+25^{\circ} \mathrm{C}$	-	160	250	-	160	250	ns
Switch Off Time, ton (Note 14)	$+25^{\circ} \mathrm{C}$	-	160	250	-	160	250	ns
Switch Off Time, toff (Note 14)	$+25^{\circ} \mathrm{C}$	-	100	150	-	100	150	ns
"Off Isolation" (Note 6)	$+25^{\circ} \mathrm{C}$	-	60	-	-	60	-	dB
Charge Injection (Note 7)	$+25^{\circ} \mathrm{C}$	-	3	-	-	3	-	mV
Input Switch Capacitance, $\mathrm{C}_{\text {S(OFF) }}$	$+25^{\circ} \mathrm{C}$	-	16	-	-	16	\bullet	pF
Output Switch Capacitance, $\mathrm{C}_{\text {D(OFF) }}$	$+25^{\circ} \mathrm{C}$	-	14	-	-	14	-	pF
Output Switch Capacitance, $\mathrm{C}_{\mathrm{D} \text { (ON) }}$	$+25^{\circ} \mathrm{C}$	-	35	-	-	35	-	pF
(High) Digital Input Capacitance, $\mathrm{C}_{\text {IN }}$	$+25^{\circ} \mathrm{C}$	-	5	-	-	5	-	pF
(Low) Digital Input Capacitance, $\mathrm{C}_{\mathbb{N}}$	$+25^{\circ} \mathrm{C}$	-	5	-	-	5	-	pF
DIGITAL INPUT CHARACTERISTICS								
Input Low Level, $\mathrm{V}_{\text {INL }}$ (Note 13)	Full	-	-	0.8	-	-	0.8	V
Input High Level, $\mathrm{V}_{\text {INH }}$ (Note 13)	Full	4	-	-	4	-	-	V
Input Low Level, $\mathrm{V}_{\text {INL }}$ (Note 14)	Full	-	-	3.5	-	-	3.5	V
Input High Level, $\mathrm{V}_{\text {INH }}$ (Note 14)	Full	11	-	-	11	-	-	V
Input Leakage Current (Low), $\mathrm{I}_{\text {INL }}$ (Note 5)	Full	-	-	1	-	-	1	$\mu \mathrm{A}$
Input Leakage Current (High), I INH (Note 5)	Full	-	-	1	-	-	1	$\mu \mathrm{A}$
ANALOG SWITCH CHARACTERISTICS								
Analog Signal Range	Full	-15	-	+15	-15	-	+15	V
On Resistance, R R ${ }_{\text {ON }}$ (Note 2)	$+25^{\circ} \mathrm{C}$	-	35	50	-	35	50	Ω
	Full	-	40	75	-	40	75	Ω
Off Input Leakage Current, $\mathrm{I}_{\text {S(OFF) }}$ (Note 3)	$+25^{\circ} \mathrm{C}$	-	0.04	1	-	0.04	5	nA
	Full	-	1	100	-	0.2	100	$n A$

Electrical Specifications Supplies $=+15 \mathrm{~V},-15 \mathrm{~V} ; \mathrm{V}_{\mathrm{IN}}=$ Logic Input. HI-300-303: $\mathrm{V}_{\mathbb{I N}}$ - for Logic "1" $=4 \mathrm{~V}$, for Logic " 0 " $=0.8 \mathrm{~V}$. $\mathrm{HI}-304-307: \mathrm{V}_{\mathrm{IN}}$ - for Logic " 1 " $=11 \mathrm{~V}$, for Logic " 0 " $=3.5 \mathrm{~V}$, Unless Otherwise Specified. (Continued)

PARAMETERS	TEMP	$-55^{\circ} \mathrm{C}$ TO $+125^{\circ} \mathrm{C}$			$0^{\circ} \mathrm{C}$ TO $+75^{\circ} \mathrm{C}$			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Off Output Leakage Current, $\mathrm{I}_{\text {d(OFF) }}$ (Note 3)	$+25^{\circ} \mathrm{C}$	-	0.04	1	-	0.04	5	nA
	Full	-	1	100	-	0.2	100	nA
On Leakage Current, $\mathrm{I}_{\text {(ON) }}$ (Note 4)	$+25^{\circ} \mathrm{C}$	-	0.03	1	-	0.03	5	nA
	Full	-	0.5	100	-	0.2	100	nA
POWER SUPPLY CHARACTERISTICS								
Current, 1+ (Notes 8, 13)	$+25^{\circ} \mathrm{C}$	-	0.09	0.5	-	0.09	0.5	mA
	Full	-	-	1	-	-	1	mA
Current, 1-(Notes 8, 13)	$+25^{\circ} \mathrm{C}$	-	0.01	10	-	0.01	100	$\mu \mathrm{A}$
	Full	-	-	100	-	-	\bullet	$\mu \mathrm{A}$
Current, $1+$ (Notes 9, 13)	$+25^{\circ} \mathrm{C}$	\bullet	0.01	10	-	0.01	100	$\mu \mathrm{A}$
	Full	-	-	100	-	-	-	$\mu \mathrm{A}$
Current, 1-(Notes 9, 13)	$+25^{\circ} \mathrm{C}$	-	0.01	10	-	0.01	100	$\mu \mathrm{A}$
	Full	-	-	100	-	-	-	$\mu \mathrm{A}$
Current, 1+ (Notes 10, 14)	$+25^{\circ} \mathrm{C}$	-	0.01	10	-	0.01	100	$\mu \mathrm{A}$
	Full	-	-	100	-	-	-	$\mu \mathrm{A}$
Current, 1-(Notes 10, 14)	$+25^{\circ} \mathrm{C}$	-	0.01	10	-	0.01	100	$\mu \mathrm{A}$
	Full	-	-	100	-	-	-	$\mu \mathrm{A}$
Current, I+ (Notes 11, 14)	$+25^{\circ} \mathrm{C}$	-	0.01	10	-	0.01	100	$\mu \mathrm{A}$
	Full	-	-	100	-	-	-	$\mu \mathrm{A}$
Current, 1-(Notes 11, 14)	$+25^{\circ} \mathrm{C}$	-	0.01	10	-	0.01	100	$\mu \mathrm{A}$
	Full	-	-	100	-	-	-	$\mu \mathrm{A}$

NOTES:

1. As with all semiconductors, stresses listed under "Absolute Maximum Ratings" may be applied to devices (one at a time) without resulting in permanent damage. This is a stress rating only. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. The conditions listed under "Electrical Specifications" are the only conditions recommended for satisfactory operation.
2. $\mathrm{V}_{\mathrm{S}}= \pm 10 \mathrm{~V}, \mathrm{I}_{\mathrm{OUT}}=\mp 10 \mathrm{~mA}$. On resistance derived from the voltage measured across the switch under the above conditions.
3. $\mathrm{V}_{\mathrm{S}}= \pm 14 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=\mp 14 \mathrm{~V}$.
4. $\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}= \pm 14 \mathrm{~V}$.
5. The digital inputs are diode protected MOS gates and typical leakages of 1 nA or less can be expected.
6. $V_{S}=1 V_{\text {RMS }}, f=500 \mathrm{kHz}, C_{L}=15 \mathrm{pF}, R_{L}=1 \mathrm{~K}$.
7. $V_{S}=0 V, C_{L}=10,000 \mathrm{pF}$, Logic Drive $=5 \mathrm{~V}$ pulse. (HI-300-303) Switches are symmetrical; S and D may be interchanged. Logic Drive $=$ 15 V (HI-304-307).
8. $\mathrm{V}_{\mathrm{IN}}=4 \mathrm{~V}$ (one input) (all other inputs $=0 \mathrm{~V}$).
9. $\mathrm{V}_{\mathrm{iN}}=0.8 \mathrm{~V}$ (all inputs).
10. $V_{I N}=15 \mathrm{~V}$ (all inputs).
11. $V_{I N}=O V$ (all inputs).
12. To drive from DTLTTL circuits, pullup resistors to +5 V supply are recommended.
13. H1-300 thru HI-303 only.
14. HI-304 thru HI-307 only.
15. HI-301, HI-303, HI-305, HI-307 only.

Typical Performance Curves

FIGURE 1. $R_{\text {DS(ON) }}$ vS V_{D} AND TEMPERATURE

FIGURE 3. DEVICE POWER DISSIPATION vS SWITCHING FREQUENCY SINGLE LOGIC INPUT

FIGURE 5. $I_{\text {I(OFF) }}$ OR $I_{\text {D(OFF) }}$ vs TEMPERATURE \dagger

FIGURE 2. $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ vs V_{D} AND POWER SUPPLY VOLTAGE

FIGURE 4. OFF ISOLATION vs FREQUENCY

FIGURE 6. IDON) VS TEMPERATURE \dagger
\dagger The net leakage into the source or drain is the n-channel leakage minus the p-channel leakage. This difference can be positive, negative or zero depending on the analog voltage and temperature, and will vary greatly from unit to unit.

Typical Performance Curves (Continued)

NOTE: If $R_{G E N}, R_{L}$ or C_{L} is increased, there will be proportional increases in rise and/or fall $R C$ times.
FIGURE 7. TYPICAL DELAY, RISE, FALL, SETTLING TIMES AND SWITCHING TRANSIENTS

Typical Performance Curves (Continued)

FIGURE 8. OUTPUT ON CAPACITANCE vs DRAIN VOLTAGE

FIGURE 10. SWITCHING TIME vs TEMPERATURE, HI-300 THRU HI-303

FIGURE 12. SWITCHING TIME vs NEGATIVE SUPPLY VOLTAGE, HI-300 THRU HI-303

FIGURE 9. DIGITAL INPUT CAPACITANCE vs INPUT VOLTAGE

FIGURE 11. SWITCHING TIME vs TEMPERATURE, HI-304 THRU HI-307

FIGURE 13. SWITCHING TIME vs NEGATIVE SUPPLY VOLTAGE, HI-304 THRU HI-307

Typical Performance Curves (Continued)

FIGURE 14. SWITCHING TIME vs POSITIVE SUPPLY VOLTAGE, HI-304 THRU HI-307

FIGURE 15. SWITCHING TIME AND BREAK-BEFORE-MAKE
TIME VS POSITIVE SUPPLY VOLTAGE, HI-300 THRU HI-303

FIGURE 16. INPUT SWITCHING THRESHOLD vs POSITIVE SUPPLY VOLTAGE, HI-300 THRU HI-307

Test Circuits

SWITCH TYPE	VINH
HI-300 thru HI-303	4 V
HI-304 thru HI-307	15 V

SWITCH TYPE	VINH
HI-301, HI-303	5 V
$\mathrm{HI}-305, \mathrm{HI}-307$	15 V

FIGURE 17. SWITCHING TEST CIRCUIT ($t_{\text {ON }}, t_{\text {OFF }}$)

HI-381 thru HI-390

Features

- Analog Signal Range ($\pm 15 \mathrm{~V}$ Supplies) $\pm 15 \mathrm{~V}$
- Low Leakage 40pA
- Low On Resistance 35Ω
- Break-Before-Make Delay 60ns
- Charge Injection 30pC
- TTL Compatible
- Symmetrical Switch Elements
- Low Operating Power 1.0 mW

Applications

- Sample and Hold (i.e. Low Leakage Switching)
- Op Amp Gain Switching (i.e. Low On Resistance)
- Portable, Battery Operated Circuits
- Low Level Switching Circuits
- Dual or Single Supply Systems

Description

The HI-381 thru HI-390 series of switches are monolithic devices fabricated using CMOS technology and the Harris dielectric isolation process. These devices are TTL compatible and are available in four switching configurations. (See device pinout for particular switching function with a logic " 1 " input.)
These switches feature low leakage and supply currents, low and nearly constant ON resistance over the analog signal range, break-before-make switching and low power dissipation.

The HI-381 and HI-387 switches are available in a 14 lead Plastic, Ceramic DIP, or 10 pin Metal Can. The HI-384 and $\mathrm{HI}-390$ are available in a 16 lead Plastic or Ceramic DIP. Each of the indivual switch types are available in the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C},-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, or $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ operating ranges.

Pinouts (Switch States are for a Logic "1" Input)

* The substrate and case are
internally tied to V.. (The case
should not be used as the V -
connection, however.)
*The substrate and case are
internally tied to V-. (The case
should not be used as the V -
connection, however.)
*The substrate and case are
internally tied to V-. (The case
should not be used as the V -
connection, however.)
*The substrate and case are
internally tied to V-. (The case
should not be used as the V -
connection, however.)

LOGIC	SWITCH
0	OFF
1	ON

LOGIC	SW1	SW2
0	OFF	ON
1	ON	OFF

* The substrate and case are internally tied to V-. (The case should not be used as the V connection, however.)

DUAL SPDT HI-390 (CDIP, PDIP, SOIC) TOP VIEW

LOGIC	SW1 SW2	SW3 SW4
0	OFF	ON
1	ON	OFF

Ordering Information

PART NUMBER	TEMPERATURE RANGE	PACKAGE
H\|1-0381-2	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	14 Lead Ceramic DIP
H17-0381-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	14 Lead Ceramic DIP
H11-0381/883	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	14 Lead Ceramic DIP
H12-0381-2	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	10 Pin TO-5 Metal Can
H22-0381-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	10 Pin TO-5 Metal Can
H12-0381/883	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	10 Pin TO-5 Metal Can
H11-0384-2	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
HI1-0384-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
H11-0384/883	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
HI9P0384-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	16 Lead Plastic SOIC (W)
H11-0387-2	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	14 Lead Ceramic DIP
H11-0387-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	14 Lead Ceramic DIP
H12-0387-2	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	10 Pin TO-5 Metal Can
H12-0387-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	10 Pin TO-5 Metal Can
H19P0387-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	14 Lead Plastic SOIC
H11-0390-2	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
H11-0390-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
H11-0390/883	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
H19P0390-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	16 Lead Plastic SOIC (W)
H13-0381-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	14 Lead Plastic DIP
HI9P0381-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	14 Lead Plastic SOIC
H19P0381-9	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 Lead Plastic SOIC
H11-0387/883	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	14 Lead Ceramic DIP
H12-0387/883	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	10 Pin TO-5 Metal Can
H13-0387-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	14 Lead Plastic DIP
H19P0387-9	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 Lead Plastic SOIC
H13-0390-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	16 Lead Plastic DIP
H13-0390-9	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Lead SOIC (W)
HI3-0384-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	16 Lead Plastic DIP
HI3-0384-9	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Lead SOIC (W)

Functional Block Diagram

TYPICAL SWITCH 3XX SERIES

Schematic Diagrams

SWITCH CELL

DIGITAL INPUT BUFFER AND LEVEL SHIFTER

Absolute Maximum Ratings		Thermal Information		
Voltage Between Supplies	44 V ($\pm 22 \mathrm{~V}$)	Thermal Resistance	$\theta_{\text {JA }}$	θ_{Jc}
Digital Input Voltage	$+V_{\text {SUPPLY }}+4 V$	Ceramic DIP Package, 14 Lead.	$95^{\circ} \mathrm{C} / \mathrm{W}$	$24^{\circ} \mathrm{C} M$
	-V ${ }_{\text {SUPPLY }}$-4V	Ceramic DIP Package, 16 Lead.	$80^{\circ} \mathrm{C} / \mathrm{W}$	$24^{\circ} \mathrm{CN}$
Analog Input Voltage	+ $\mathrm{V}_{\text {SUPPLY }}+1.5 \mathrm{~V}$	Plastic DIP Package, 14 Lead.	$100^{\circ} \mathrm{C} / \mathrm{W}$	-
	$-V_{\text {SUPPLY }}-1.5 \mathrm{~V}$	Plastic DIP Package, 16 Lead.	$100^{\circ} \mathrm{C} / \mathrm{W}$	-
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	Plastic SOIC Package, 14 Lead	$120^{\circ} \mathrm{C} / \mathrm{N}$	-
Lead Temperature (Soldering 10s)... $+300^{\circ} \mathrm{C}$	Plastic SOIC Package, 16 Lead	$100^{\circ} \mathrm{C} / \mathrm{W}$	-
		Metal Can Package .	$136^{\circ} \mathrm{CN}$	$65^{\circ} \mathrm{CM}$
		Junction Temperature		
		Ceramic DIP ...		$+175^{\circ} \mathrm{C}$
		Plastic DIP.		$+150^{\circ} \mathrm{C}$
		Plastic SOIC		$+150^{\circ} \mathrm{C}$
		Metal Can		$+175^{\circ} \mathrm{C}$
		Operating Temperature Range		
		HI-3XX-2 - 55°	to $+125^{\circ} \mathrm{C}$
		H1-3XX-5	. 0	to $+75^{\circ} \mathrm{C}$
		H1-3XX-9 .	-40	to $+85^{\circ} \mathrm{C}$

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Electrical Specifications Supplies $=+15 \mathrm{~V},-15 \mathrm{~V} ; \mathrm{V}_{\mathrm{IN}}=$ Logic Input. VIN for Logic "1" $=4 \mathrm{~V}$, for Logic " 0 " $=0.8 \mathrm{~V}$, Unless Otherwise Specified.

PARAMETERS	TEST CONDITIONS	TEMP	HI-3XX-2			H1-3XX-5-9			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	
SWITCHING CHARACTERISTICS									
Break-Before-Make Delay, topen (HI-387/HI-390 Only)		$+25^{\circ} \mathrm{C}$	-	60	\bullet	-	60	-	ns
Switch On Time, ${ }_{\text {Lon }}$		$+25^{\circ} \mathrm{C}$	-	210	300	-	210	300	ns
Switch Off Time, toff		$+25^{\circ} \mathrm{C}$	-	160	250	-	160	250	ns
"Off Isolation"	(Note 5)	$+25^{\circ} \mathrm{C}$	-	60	-	\bullet	60	-	dB
Charge Injection	(Note 6)	$+25^{\circ} \mathrm{C}$	-	3	-	-	3	-	mV
Input Switch Capacitance, $\mathrm{C}_{\text {S(OFF) }}$		$+25^{\circ} \mathrm{C}$	-	16	-	-	16	-	pF
Output Switch Capacitance, $\mathrm{C}_{\text {D(OFF) }}$		$+25^{\circ} \mathrm{C}$	-	14	-	-	14	-	pF
Output Switch Capacitance, $\mathrm{C}_{\mathrm{D} \text { (ON) }}$		$+25^{\circ} \mathrm{C}$	-	35	-	-	35	-	pF
Digital Input Capacitance (High), C_{IN}		$+25^{\circ} \mathrm{C}$	-	5	-	-	5	\bullet	pF
Digital Input Capacitance (Low), $\mathrm{C}_{\text {IN }}$		$+25^{\circ} \mathrm{C}$	-	5	-	-	5	-	pF
DIGITAL INPUT CHARACTERISTICS									
Input Low Level, $\mathrm{V}_{\text {INL }}$		Full	-	-	0.8	\cdot	-	0.8	V
Input High Level, $\mathrm{V}_{\text {INH }}$		Full	4	-	-	4	\bullet	-	V
Input Leakage Current (Low), $\mathrm{I}_{\text {INL }}$	(Note 4)	Full	-	-	1	-	-	1	$\mu \mathrm{A}$
Input Leakage Current (High), $\mathrm{I}_{\text {INH }}$	(Note 4)	Full	-	-	1	-	-	1	$\mu \mathrm{A}$
ANALOG SWITCH CHARACTERISTICS									
Analog Signal Range		Full	-15	-	+15	-15	\bullet	+15	V
On Resistance, R R	(Note 1)	$+25^{\circ} \mathrm{C}$	-	35	50	-	35	50	Ω
		- Full	-	40	75	-	45	75	Ω
Off Input Leakage Current, $\mathrm{I}_{\text {S(OFF }}$	(Note 2)	$+25^{\circ} \mathrm{C}$	-	0.04	1	-	0.04	5	nA
		Full	\bullet	1	100	\bullet	0.2	100	nA
Off Output Leakage Current, $\mathrm{I}_{\text {D(OFF) }}$	(Note 2)	$+25^{\circ} \mathrm{C}$	-	0.04	1	\bullet	0.04	5	nA
		Full	-	1	100	-	0.2	100	nA
On Input Leakage Current, $\mathrm{I}_{\text {S(ON) }}$	(Note 3)	$+25^{\circ} \mathrm{C}$	-	0.03	1	\bullet	0.03	5	nA
		Full	-	0.5	100	-	0.2	100	nA

Electrical Specifications Supplies $=+15 \mathrm{~V},-15 \mathrm{~V} ; \mathrm{V}_{\mathrm{iN}}=$ Logic Input. VIN for Logic " 1 " $=4 \mathrm{~V}$, for Logic $" 0$ " $=0.8 \mathrm{~V}$, Unless Otherwise Specified. (Continued)

PARAMETERS	TEST CONDITIONS	TEMP	H1-3XX-2			H1-3XX-5-9			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	
POWER SUPPLY CHARACTERISTICS									
Current, It	(Note 7)	$+25^{\circ} \mathrm{C}$	-	0.09	0.5	-	0.09	0.5	mA
		Full	-	-	1	-	-	1	mA
Current, I-	(Note 7)	$+25^{\circ} \mathrm{C}$	-	0.01	10	-	0.01	100	$\mu \mathrm{A}$
		Full	-	-	100	-	-	-	$\mu \mathrm{A}$
Current, I+	(Note 8)	$+25^{\circ} \mathrm{C}$	-	0.01	10	-	0.01	100	$\mu \mathrm{A}$
		Full	-	-	100	-	-	-	$\mu \mathrm{A}$
Current, I-	(Note 8)	$+25^{\circ} \mathrm{C}$	-	0.01	10	-	0.01	100	$\mu \mathrm{A}$
		Full	-	-	100	-	-	-	$\mu \mathrm{A}$

NOTES:

1. $\mathrm{V}_{\mathrm{S}}= \pm 10 \mathrm{~V}, \mathrm{l}_{\text {out }}=\mp 10 \mathrm{~mA}$. On resistance derived from the voltage measured across the switch under the above conditions.
2. $V_{S}= \pm 14 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=\mp 14 \mathrm{~V}$.
3. $\mathrm{V}_{\mathrm{s}}=\mathrm{V}_{\mathrm{D}}= \pm 14 \mathrm{~V}$.
4. The digital inputs are diode protected MOS gates and typical leakages of 1 nA or less can be expected.
5. $\mathrm{V}_{\mathrm{S}}=1 \mathrm{~V}_{\mathrm{RMS}}, \mathrm{f}=500 \mathrm{KHz}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{~K}, \mathrm{C}_{\mathrm{L}}=\mathrm{C}_{\text {FIXTURE }}+\mathrm{C}_{\text {PROBE }}$ "off isolation" $=20_{\text {Log }} \mathrm{V}_{S} \mathrm{~V}_{\mathrm{D}}$.
6. $\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=10,000 \mathrm{pF}$, Logic Drive $=5 \mathrm{~V}$ pulse. Switches are symmetrical; S and D may be interchanged.
7. $\mathrm{V}_{\mathrm{I}}=4 \mathrm{~V}$ (one input) (all other inputs $=0 \mathrm{~V}$).
8. $\mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V}$ (all inputs).

Typical Performance Curves

FIGURE 1. R $_{\text {DS(ON) }}$ vs V_{D} AND TEMPERATURE

FIGURE 2. RDS(ON) $^{\text {vs }} \mathrm{V}_{\mathrm{D}}$ AND POWER SUPPLY VOLTAGE

Typical Performance Curves (Continued)

FIGURE 3. DEVICE POWER DISSIPATION vs SWITCHING FREQUENCY (SINGLE LOGIC INPUT)

FIGURE 5. $I_{\text {S(OFF) }}$ OR $\mathrm{I}_{\text {D(OFF }}$ vs TEMPERATURE*

FIGURE 4. OFF ISOLATION vs FREQUENCY

FIGURE 6. $\mathrm{I}_{\mathrm{DON})}$ vs TEMPERATURE*

* The net leakage into the source or drain is the n-channel leakage minus the p-channel leakage. This difference can be positive, negative or zero depending on the analog voltage and temperature, and will vary greatly from unit to unit.

FIGURE 7. OUTPUT ON CAPACITANCE vs DRAIN VOLTAGE

FIGURE 8. DIGITAL INPUT CAPACITANCE vs INPUT VOLTAGE

Typical Performance Curves (Continued)

9G. Vout vs time
NOTE: If $R_{G E N}, R_{L}$ or C_{L} is increased, there will be proportional increases in rise and/or fall $R C$ times.
FIGURE 9. TYPICAL DELAY, RISE, FALL, SETTLING TIMES AND SWITCHING TRANSIENTS

Typical Performance Curves (Continued)

FIGURE 10. SWITCHING TIME vs TEMPERATURE, HI-381 THRU HI-390

FIGURE 12. SWITCHING TIME vs POSITIVE SUPPLY VOLTAGE, HI-381 THRU HI-390

FIGURE 11. SWITCHING TIME vs NEGATIVE SUPPLY VOLTAGE, HI-381 THRU HI-390

FIGURE 13. INPUT SWITCHING THRESHOLD vs POSITIVE SUPPLY VOLTAGE, HI-381 THRU HI-390
$\square \Delta \Delta \square=\square$
SEMICONDUCTOR

HI-5040 thru HI-5051 HI-5046A and HI-5047A

Features

- $\pm 15 \mathrm{~V}$ Wide Analog Signal Range
- Low "ON" Resistance 25Ω (Typical)
- High Current Capability 80mA (Typical)
- Break-Before-Make Swltching
- Turn-On Time 370ns (Typical)
- Turn-Off Time 280ns (Typical)
- No Latch-Up
- Input MOS Gates are Protected from Electrostatic Discharge
- DTL, TTL, CMOS, PMOS Compatible

Applications

- High Frequency Switching
- Sample and Hold
- Digital Filters
- Operational Amplifier Gain Switching

Description

This family of CMOS analog switches offers low resistance switching performance for analog voltages up to the supply rails and for signal currents up to 80 mA . "ON" resistance is low and stays reasonably constant over the full range of operating signal voltage and current. RON remains exceptionally constant for input voltages between +5 V and -5 V and currents up to 50 mA . Switch impedance also changes very little over temperature, particularly between $0^{\circ} \mathrm{C}$ and $+75^{\circ} \mathrm{C}$. R $\mathrm{RON}_{\mathrm{ON}}$ is nominally 25Ω for $\mathrm{HI}-5048$ through $\mathrm{HI}-5051$ and $\mathrm{HI}-5046 \mathrm{~A}$ and $\mathrm{HI}-5047 \mathrm{~A}$ and 50』 for HI-5040 through HI-5047.
All devices provide break-before-make switching and are TTL and CMOS compatible for maximum application versatility. Performance is further enhanced by Dielectric Isolation processing which insures latch-free operation with very low input and output leakage currents $\left(0.8 \mathrm{nA}\right.$ at $\left.+25^{\circ} \mathrm{C}\right)$. This family of switches also features very low power operation $\left(1.5 \mathrm{~mW}\right.$ at $\left.+25^{\circ} \mathrm{C}\right)$.

There are 14 devices in this switch series which are differentiated by type of switch action and value of R_{ON} (see Functional Description). All devices are available in 16 lead DIP packages. The HI-5040 and HI-5050 switches can directly replace $\mathrm{IH}-5040$ series devices except IH5048, and are functionally compatible with the DG180 and DG190 family. Each switch type is available in the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ and $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ performance grades.

Functional Description

PART NUMBER	TYPE	$R_{\text {ON }}$
$\mathrm{HI}-5040$	SPST	50Ω
$\mathrm{HI}-5041$	Dual SPST	50Ω
$\mathrm{HI}-5042$	SPDT	50Ω
$\mathrm{HI}-5043$	Dual SPDT	50Ω
$\mathrm{HI}-5044$	DPST	50Ω
$\mathrm{HI}-5045$	Dual DPST	50Ω
$\mathrm{HI}-5046$	DPDT	50Ω
$\mathrm{HI}-5046 \mathrm{~A}$	DPDT	25Ω
$\mathrm{HI}-5047$	4PST	50Ω
$\mathrm{HI}-5047 \mathrm{~A}$	4PST	25Ω
$\mathrm{HI}-5048$	Dual SPST	25Ω
$\mathrm{HI}-5049$	Dual DPST	25Ω
$\mathrm{HI}-5050$	SPDT	25Ω
$\mathrm{HI}-5051$	Dual SPDT	25Ω

Functional Block Diagram

TYPICAL DIAGRAM

HI-5040 Series

Ordering Information

PART NUMBER	TEMPERATURE RANGE	PACKAGE
H11-5040-7	$\begin{aligned} & 0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \\ &+96 \mathrm{Hr} . \text { Burn-ln } \end{aligned}$	16 Lead Ceramic DIP
H13-5040-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	16 Lead Plastic DIP
H11-5040-2	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
H11-5040-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
HI3-5041-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	16 Lead Plastic DIP
H11-5041-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
H11-5041-2	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
H11-5041-7	$\begin{aligned} & 0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \\ &+ 96 \mathrm{Hr} \text {. Burn-In } \\ & \hline \end{aligned}$	16 Lead Ceramic DIP
H13-5042-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	16 Lead Plastic DIP
H11-5042-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
H11-5042-7	$\begin{aligned} & 0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \\ &+ 96 \mathrm{Hr} \text {. Burn-ln } \\ & \hline \end{aligned}$	16 Lead Ceramic DIP
H11-5042-2	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
H11-5043-7	$\begin{aligned} & 0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \\ &+ 96 \mathrm{Hr} \text {. Burn-In } \\ & \hline \end{aligned}$	16 Lead Ceramic DIP
H11-5043-2	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
HI3-5043-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	16 Lead Plastic DIP
H11-5043-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
H11-5044-7	$\begin{aligned} & 0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \\ &+ 96 \mathrm{Hr} \text {. Burn-ln } \\ & \hline \end{aligned}$	16 Lead Ceramic DIP
H11-5044-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
HI3-5044-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	16 Lead Plastic DIP
H11-5044-2	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
H11-5045-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
H11-5045-7	$\begin{aligned} & 0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \\ &+ 96 \mathrm{Hr} . \text { Burn-In } \\ & \hline \end{aligned}$	16 Lead Ceramic DIP
H11-5045-2	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
HI3-5045-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	16 Lead Plastic DIP
H11-5046-2	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
H11-5046-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
H11-5046-7	$\begin{aligned} & 0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \\ &+ 96 \mathrm{Hr} . \text { Burn-ln } \\ & \hline \end{aligned}$	16 Lead Ceramic DIP
HI3-5046-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	16 Lead Plastic DIP
H11-5046A-7	$\begin{array}{r} 0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \\ +96 \mathrm{Hr} \text {. Burn-ln } \\ \hline \end{array}$	16 Lead Ceramic DIP
HI3-5046A-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	16 Lead Plastic DIP
H11-5046A-2	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
HI1-5046A-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
HI1-5047-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
H11-5047-7	$\begin{aligned} & 0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \\ &+ 96 \mathrm{Hr} . \text { Burn-ln } \\ & \hline \end{aligned}$	16 Lead Ceramic DIP
H11-5047-2	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
HI3-5047-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	16 Lead Plastic DIP
H11-5047A-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
H11-5047A-2	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
H13-5047A-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	16 Lead Plastic DIP
HI1-5047A-7	$\begin{aligned} & 0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \\ &+ 96 \mathrm{Hr} \text {. Burn-In } \\ & \hline \end{aligned}$	16 Lead Ceramic DIP

PART NUMBER	TEMPERATURE RANGE	PACKAGE
H11-5048-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
H11-5048-7	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \\ +96 \mathrm{Hr} . \text { Burn-In } \end{gathered}$	16 Lead Ceramic DIP
HI3-5048-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	16 Lead Plastic DIP
H11-5048-2	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
H11-5049-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
H11-5049-2	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
Hi3-5049-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	16 Lead Plastic DIP
H11-5049-7	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \\ +\quad 96 \mathrm{Hr} . \text { Burn-ln } \\ \hline \end{gathered}$	16 Lead Ceramic DIP
H11-5050-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
H11-5050-2	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
H13-5050-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	16 Lead Plastic DIP
H11-5050-7	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ +96 Hr . Burn-In	16 Lead Ceramic DIP
HI1-5051-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
H11-5051-2	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
H11-5051-7	$\begin{aligned} & 0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \\ + & 96 \mathrm{Hr} . \text { Burn-ln } \end{aligned}$	16 Lead Ceramic DIP
H14P5051-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	20 Lead PLCC
HI3-5051-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	16 Lead Plastic DIP
HI1-5040/883	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
H11-5041/883	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
HI1-5042/883	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
H11-5043/883	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
H11-5044/883	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
H11-5045/883	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
HI1-5046/883	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
H11-5046A/883	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
H11-5047/883	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
H11-5047A/883	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
H11-5048/883	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
H11-5049/883	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
H11-5050/883	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
H11-5051/883	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
H14-5043/883	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	20 Lead CLCC
H14-5045/883	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
H14-5051/883	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
H19P5043-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	16 SOIC (N)
H19P5045-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	16 SOIC (N)
HI9P5049-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	16 SOIC (N)
H19P5051-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	16 SOIC (N)
HI9P5043-9	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 SOIC (N)
H19P5045-9	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 SOIC (N)
H19P5049-9	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 SOIC (N)
HI9P5051-9	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 SOIC (N)

HI-5040 Series
Pin Configurations Switch States are Logic "0" Input

SINGLE CONTROL		
HI-5046 (50 (), HI-5046A (25 Ω)		
DUAL CONTROL		

NOTE: Unused pins may be internally connected. Ground all unused pins.

Switch Functions Switch States are Logic "1" Input

SPST HI-5040 (50 ()	DUAL SPST HI-5041 (50)	SPDT HI-5042 (50 ${ }^{\text {) }}$
DUAL SPDT HI-5043 (50)	DPST HI-5044 (50)	DUAL DPST HI-5045 (50)
DPDT	4PST HI-5047 (50) , HI-5047A (25 ${ }^{\text {) }}$	DUAL SPST HI-5048 (25S)
DUAL DPST HI-5049 (25 Ω)	SPDT HI-5050 (25 Ω)	DUAL SPDT HI-5051 (25S)

Absolute Maximum Ratings	
Supply Voltage (V+, V-)	6 V
V_{R} to Ground	V+, V-
Digital and Analog Input Voltage	$+V_{\text {SUPPLY }}+4 \mathrm{~V},-\mathrm{V}_{\text {SUPPLY }}-4 \mathrm{~V}$
Analog Current (S to D) Continuous.	30 mA
Analog Current (S to D) Peak.	80mA
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering 10s)	$+300^{\circ} \mathrm{C}$

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Electrical Specifications Supplies $=+15 \mathrm{~V},-15 \mathrm{~V} ; \mathrm{V}_{\mathrm{R}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{AH}}($ Logic Level High $)=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{AL}}($ Logic Level Low $)=+0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V}$, Unless Otherwise Specified. For Test Conditions, Consult Performance Characteristics, Unused Pins are Grounded.

PARAMETER	TEST CONDITIONS	TEMP	$-55^{\circ} \mathrm{C}$ To $+125^{\circ} \mathrm{C}$			$0^{\circ} \mathrm{C}$ To $+75^{\circ} \mathrm{C}$			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	
SWITCHING CHARACTERISTICS									
ton, Switch On Time	(Note 4)	$+25^{\circ} \mathrm{C}$	-	370	500	-	370	500	ns
toff, Switch Off Time	(Note 4)	$+25^{\circ} \mathrm{C}$	-	280	500	-	280	500	ns
Charge Injection	(Note 2)	$+25^{\circ} \mathrm{C}$	-	5	20	-	5	-	mV
"Off Isolation"	(Note 3)	$+25^{\circ} \mathrm{C}$	75	80	-	-	80	-	dB
"Crosstalk"	(Note 3)	$+25^{\circ} \mathrm{C}$	80	88	-	-	88	-	dB
$\mathrm{C}_{\text {S(OFF) }}$, Input Switch Capacitance		$+25^{\circ} \mathrm{C}$	-	11	-	-	11	-	pF
$\mathrm{C}_{\text {D(OFF) }}$, Output Switch Capacitance		$+25^{\circ} \mathrm{C}$	-	11	-	-	11	-	pF
$\mathrm{C}_{\mathrm{D}(\mathrm{ON})}$, Output Switch Capacitance		$+25^{\circ} \mathrm{C}$	-	22	-	-	22	-	pF
C_{A}, Digital Input Capacitance		$+25^{\circ} \mathrm{C}$	-	5	-	-	5	-	pF
$\mathrm{C}_{\text {DS(OFF), }}$, Drain-To-Source Capacitance		$+25^{\circ} \mathrm{C}$	-	0.5	-	-	0.5	-	pF
DIGITAL INPUT CHARACTERISTICS									
$\mathrm{V}_{\text {AL }}$, Input Low Threshold		Full	-	-	0.8	-	-	0.8	V
$\mathrm{V}_{\text {AH }}$, Input High Threshold		Full	2.4	-	-	2.4	-	-	V
$\mathrm{I}_{\text {A }}$, Input Leakage Current (High or Low)		Full	-	0.01	1.0	-	0.01	1.0	$\mu \mathrm{A}$
ANALOG SWITCH CHARACTERISTICS									
Analog Signal Range		Full	-15	-	+15	-15	-	+15	V
R_{ON}, On Resistance	(Note 1A)	$+25^{\circ} \mathrm{C}$	-	50	75	-	50	75	Ω
		Full	-	-	150	-	-	150	Ω
$R_{\text {ON }}$, On Resistance	(Note 1B)	$+25^{\circ} \mathrm{C}$	-	25	45	-	25	45	Ω
		Full	-	-	50	-	-	50	Ω
R ${ }_{\text {ON }}$, Channel-to-Channel Match	(Note 1A)	$+25^{\circ} \mathrm{C}$	-	2	10	-	2	10	Ω
R ${ }_{\text {ON, }}$, Channel-to-Channel Match	(Note 1B)	$+25^{\circ} \mathrm{C}$	-	1	5	\cdot	1	5	Ω
$I_{\text {S(OFF) }}=I_{\text {DOFF })}$, Off Input or Output Leakage Current		$+25^{\circ} \mathrm{C}$	-	0.8	2	-	0.8	2	nA
		Full	-	100	200	-	100	200	nA

Electrical Specifications Supplies $=+15 \mathrm{~V},-15 \mathrm{~V} ; \mathrm{V}_{\mathrm{A}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{AH}}$ (Logic Level High) $=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{AL}}$ (Logic Level Low) $=+0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V}$, Unless Otherwise Specified. For Test Conditions, Consult Performance Characteristics, Unused Pins are Grounded. (Continued)

PARAMETER	TEST CONDITIONS	TEMP	$-55^{\circ} \mathrm{C}$ T0 $+125^{\circ} \mathrm{C}$			$0^{\circ} \mathrm{C}$ TO $+75^{\circ} \mathrm{C}$			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	
$\mathrm{I}_{\mathrm{D}(\mathrm{ON})}$, On Leakage Current		$+25^{\circ} \mathrm{C}$	-	0.01	2	-	0.01	2	nA
		Full	-	2	200	-	2	200	nA

POWER REQUIREMENTS

P_{D}, Quiescent Power Dissipation		$+25^{\circ} \mathrm{C}$	-	1.5	-	-	1.5	-	mW
$I_{+}, 1-, L_{L}, I_{R}$		$+25^{\circ} \mathrm{C}$	-	-	0.2	-	-	0.3	mA
I+, +15V Quiescent Current	(Note 4)	Full	-	-	0.3	-	-	0.5	mA
I-, -15V Quiescent Current	(Note 4)	Full	-	-	0.3	-	-	0.5	mA
$\mathrm{L}_{\mathrm{L}}+5 \mathrm{~V}$ Quiescent Current	(Note 4)	Full	-	-	0.3	-	-	0.5	mA
I_{R}, Ground Quiescent Current	(Note 4)	Full	-	-	0.3	-	-	0.5	mA

NOTES:

1. $\mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=\mp 1 \mathrm{~mA}$
A). For HI-5040 thru HI-5047
B). For HI-5048 thru HI-5051, HI-5046A/5047A.
2. $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=10,000 \mathrm{pF}$.
3. $R_{L}=100 \Omega, f=100 \mathrm{kHz}, V_{I N}=2.0 V_{P-P}, C_{L}=5 p F$.
4. $\mathrm{V}_{\mathrm{AL}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{AH}}=5 \mathrm{~V}$.

Switching Waveforms

Top: TTL Input (1V/Div.)
$\mathrm{V}_{\mathrm{AH}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{AL}}=0 \mathrm{~V}$
Bottom: Output (2V/Div.)
Horizontal: 200ns/Div.
FIGURE 1.

Top: CMOS Input (5V/Div.) $\mathrm{V}_{\mathrm{AH}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{AL}}=0 \mathrm{~V}$
Bottom: Output (5V/Div.)
Horizontal: 200ns/Div.
FIGURE 2.

Typical Performance Curves and Test Circuits $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{+}=+15 \mathrm{~V}, \mathrm{~V}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{R}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{AH}}=3.0 \mathrm{~V}$ and $V_{A L}=0.8 \mathrm{~V}$, Unless Otherwise Specified

FIGURE 3. "ON" RESISTANCE vS ANALOG SIGNAL LEVEL, SUPPLY VOLTAGE AND TEMPERATURE

FIGURE 4. "ON" RESISTANCE vs ANALOG SIGNAL LEVEL AND POWER SUPPLY VOLTAGE

FIGURE 5. NORMALIZED "ON" RESISTANCE vs TEMPERATURE

OFF LEAKAGE CURRENT vs TEMPERATURE

ON LEAKAGE CURRENT vs TEMPERATURE

FIGURE 6. ON/OFF LEAKAGE CURRENT vs TEMPERATURE

Typical Performance Curves and Test Circuits
$T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{+}=+15 \mathrm{~V}, \mathrm{~V}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{R}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{AH}}=3.0 \mathrm{~V}$ and $\mathrm{V}_{\mathcal{L}}=0.8 \mathrm{~V}$, Unless Otherwise Specified (Continued)

"ON" RESISTANCE vs ANALOG CURRENT

FIGURE 7. NORMALIZED "ON" RESISTANCE vs ANALOG CURRENT

"OFF" ISOLATION $=20$ LOG $\left(\frac{V_{I N}}{V_{\text {OUT }}}\right)$

FIGURE 8. "OFF" ISOLATION vs FREQUENCY

FIGURE 9. CROSSTALK vs FREQUENCY

Typical Performance Curves and Test Circuits $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{+}=+15 \mathrm{~V}, \mathrm{~V}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{R}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{AH}}=3.0 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{AL}}=0.8 \mathrm{~V}$, Unless Otherwise Specified (Continued)

FIGURE 10. POWER CONSUMPTION vs FREQUENCY
Switching Characteristics

FIGURE 11. ON/OFF SWITCH TIME vS LOGIC LEVEL

FIGURE 12. SWITCHING TIMES FOR POSITIVE DIGITAL TRANSITION

FIGURE 13. SWITCHING TIMES FOR NEGATIVE DIGITAL TRANSITION

Switching Characteristics (Continued)

FIGURE 14. TTL/CMOS REFERENCE CIRCUIT (Note 1)
NOTE:

1. Connect $\mathrm{V}+$ to V_{L} for minimizing power consumption when driving from CMOS circuits.

Switching Characteristics (Continued)

FIGURE 15. SWITCH CELL

NOTES:

1. All n-channel bodies to V-, all p-channel bodies to $V+$ except as shown.
2. For further information refer to Application Notes 520, 521, 531, 532 and 557.

FIGURE 16. DIGITAL INPUT BUFFER AND LEVEL SHIFTER

SEMICONDUCTOR
IH5043

Features

- See HI504X and IH514X for Other Functions
- Dual SPDT
- Switches Greater than $\mathbf{2 0 V}_{\text {Pp }}$ Signals with $\pm 15 \mathrm{~V}$ Supplies
- Quiescent Current Less than 1 mA
- Break-Before-Make Switching toff 200ns, toN $\mathbf{3 0 0 n s}$ Typical
- TTL, DTL, CMOS, PMOS Compatible

Ordering Information

PART NUMBER	TEMPERATURE RANGE	PACKAGE
IH5043MJE	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
IH5043CJE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
IH5043CPE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Lead Plastic DIP
IH5043CY	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Lead SOIC (W)
IH5043MJE/883B	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead Ceramic DIP

Description

The IH5043 analog switch uses an improved, high voltage CMOS monolithic technology. These devices provide ease of use and performance advantages not previously available from solid state switches.

Key performance advantage is TTL compatibility and ultra low power operation. The quiescent current requirement is less than 1mA. Also, the IH5043 guarantees Break-BeforeMake switching, accomplished by extending the toN time (300ns Typ.), so that it exceeds toff time (200ns Typ.). This insures that an ON channel will be turned OFF before an OFF channel can turn ON. The need for external logic required to avoid channel to channel shorting during switching is eliminated.

The IH5043 is a pin-for-pin, improved performance replacement for other analog switches.

Pinout

IH5043
(CDIP, PDIP, SOIC)
TOP VIEW

Functional Block Diagram
FUNCTIONAL DRIVER, TYPICAL DRIVER, GATE ($1 / 2$ AS SHOWN)

Absolute Maximum Ratings

V+ to V-. $<36 \mathrm{C}$
V_{+}to V_{D}. $<30 \mathrm{~V}$
V_{D} to $V_{-} . . .$. $<30 \mathrm{C}$

V_{L} to $V-\ldots . .$. $<33 V$
V_{L} to $V_{\mathbb{I N}}$. 30 a
V to GND. 420 V
VIN to GND . $<20 \mathrm{C}$
Continuous Current (S-D). 30 mA
Peak Current (S-D) . 70 mA
(Puised at $1 \mathrm{~ms}, 10 \%$ duty cycle Max)
Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering 10s)
CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stross only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Electrical Specifications $\quad+25^{\circ} \mathrm{C}, \mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V}$

PER CHANNEL PARAMETERS	TEST CONDITIONS	MILITARY			COMMERCIAL			UNIT
		$-55^{\circ} \mathrm{C}$	+25 ${ }^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+70^{\circ} \mathrm{C}$	
Input Logic Current, $\mathrm{I}_{\text {N(ON) }}$	$\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}$	± 1	± 1	10	± 1	± 1	10	$\mu \mathrm{A}$
Input Logic Current, IIN(OFF)	$\mathrm{V}_{\text {IN }}=0.8 \mathrm{~V}$	± 1	± 1	10	± 1	± 1	10	$\mu \mathrm{A}$
Drain Source On Resistance, $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$	$\begin{aligned} & I_{S}=10 \mathrm{~mA}, V_{\text {ANALOG }}=-10 \mathrm{~V} \\ & \text { to }+10 \mathrm{~V} \end{aligned}$	75	75	150	80	80	130	Ω
Channel to Channel R $\mathrm{DS}_{(\mathrm{ON})}$ Match, $\Delta \mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$		-	25 (Typ)	-	-	30 (Typ)	-	Ω
Minimum Analog Signal Handling Capability, $\mathrm{V}_{\text {ANALOG }}$		-	$\begin{aligned} & \pm 11 \\ & \text { (Typ) } \end{aligned}$	-	-	$\begin{aligned} & \pm 10 \\ & \text { (Typ) } \end{aligned}$	-	V
Switch OFF Leakage Current, 	$\mathrm{V}_{\text {ANALOG }}=-10 \mathrm{~V}$ to +10 V	-	± 1	100	-	± 5	100	nA
Switch On Leakage Current, ${ }^{D}\left(O_{O N}+I_{\text {SON }}\right.$	$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}=-10 \mathrm{~V}$ to +10 V	-	± 2	200	-	± 10	100	nA
Switch "ON" Time, $\mathrm{t}_{\text {ON }}$	$\begin{aligned} & R_{L}=1 \mathrm{k} \Omega, V_{\text {ANALOG }}=-10 \mathrm{~V} \text { to } \\ & +10 \mathrm{~V} \text {, see Figure } 7 \end{aligned}$	\bullet	1000	\bullet	-	1000	-	ns
Switch "OFF" Time, toff	$\begin{aligned} & R_{L}=1 \mathrm{k} \Omega, V_{\text {ANALOG }}=-10 \mathrm{~V} \text { to } \\ & +10 \mathrm{~V} \text {, see Figure } 7 \end{aligned}$	-	500	-	-	500	-	ns
Charge Injection, $\mathrm{Q}_{(\mathrm{INJ})}$	See Figure 8	-	15 (Typ)	-	-	20 (Typ)	-	mV
Minimum Off Isolation Rejection Ratio, OIRR	$\begin{aligned} & f=1 \mathrm{MHz}, R_{L}=100 \Omega, \\ & C_{L} \leq 5 p F, \text { See Figure } 4 \end{aligned}$	-	54 (Typ)	-	-	50 (Typ)	-	dB
V+Power Supply Quiescent Current, $1+a$		± 1	± 1	10	10	10	100	$\mu \mathrm{A}$
V- Power Supply Quiescent Current, $\mathrm{I}_{-}-$	$\left\lvert\, \begin{aligned} & \mathrm{V}_{+}=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V} \end{aligned}\right.$	± 1	± 1	10	10	10	100	$\mu \mathrm{A}$
+5V Supply Quiescent Current, I-LQ		± 1	± 1	10	10	10	100	$\mu \mathrm{A}$
Ground Supply Quiescent Current, $I_{\text {GND }}$		± 1	1	10	10	10	100	$\mu \mathrm{A}$
Minimum Channel to Channel Cross Coupling Rejection Ratio, CCRR	One Channel Off; Any Other Channel Switches as per Figure 3	-	54 (Typ)	-	-	50 (Typ)	-	dB

NOTE:

1. Typical values are for design aid only, not guaranteed and not subject to production testing.

Typical Performance Curves (Per Channel)

FIGURE 1. R $_{\text {DS(ON) }}$ vs $V_{\text {ANALOG }}$

FIGURE 2. R $_{\text {DS(ON) }}$ vs POWER SUPPLY VOLTAGE

FIGURE 3.

FIGURE 4.

Typical Performance Curves (Per Channel) (Continued)

FIGURE 5. POWER SUPPLY QUIESCENT CURRENT vS LOGIC FREQUENCY RATE

FIGURE 6. CHARGE INJECTION vs $\mathrm{V}_{\text {ANALOG }}$ (SEE FIGURE 8)

Test Circuits

FIGURE 7.

FIGURE 8.

Switch states shown are for logic " 1 " input.
FIGURE 9. SWITCHING STATE DIAGRAM

Typical Applications

FIGURE 10. IMPROVED SAMPLE AND HOLD

EXAMPLE: If $-V_{A N A L O G}=-10 V_{D C}$ and $+\mathrm{V}_{\text {ANALOG }}=+10 \mathrm{~V}_{\mathrm{DC}}$ then Ladder Legs are switched between $\pm 10 V_{D C}$, depending upon state of Logic Strobe.

FIGURE 11. USING THE CMOS SWITCH TO DRIVE AN R/2R LADDER NETWORK (2 LEGS)

Typical Applications (Continued)

, Q, variable frequency filter which provides simultaneous Lowpass, Bandpass, and Highpass outputs. With the component values shown, center frequency will be 235 Hz and 23.5 Hz for high and low logic inputs respectively, $Q=100$, and Gain $=100$.

$$
f_{N}=\text { Center Frequency }=\frac{1}{2 \pi R C}
$$

FIGURE 14. INTERFACING WITH CMOS LOGIC

FIGURE 13. INTERFACING WITH TTL OPEN COLLECTOR LOGIC (TYP EXAMPLE FOR + 15 V CASE SHOWN)

FIGURE 15. TTL LOGIC INTERFACE

Die Characteristics

DIE DIMENSIONS:
$1778 \mu \mathrm{~m} \times 1905 \mu \mathrm{~m}$
METALLIZATION:
Type: AI
Thickness: $10 \mathrm{k} \AA \pm 1 \mathrm{k} \AA$
GLASSIVATION:
Type: PSG/Nitride
PSG Thickness: $7 \mathrm{k} \AA \pm 1.4 \mathrm{k} \AA$
Nitride Thickness: $8 \mathrm{k} \AA \pm 1.2 \mathrm{k} \AA$
WORST CASE CURRENT DENSITY: $9.1 \times 10^{4} \mathrm{~A} \mathrm{~cm}^{2}$
Metallization Mask Layout

Features

- Switches Greater Than 20Vpp Signals with $\pm 15 \mathrm{~V}$ Supplies
- Quiescent Current Less Than $10 \mu \mathrm{~A}$
- Break-Before-Make Switching $\mathbf{t}_{\mathrm{OFF}}=500 \mathrm{~ns}, \mathrm{t}_{\mathrm{ON}}=1000 \mathrm{~ns}$ Typical
- TTL, CMOS Compatible
- IH5052 4 Normally Closed Switches
- IH5053 4 Normally Open Switches
- Low $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})} 80 \Omega$ Typical

Ordering Information

PART NUMBER	TEMPERATURE RANGE	PACKAGE
IH5052CDE	$-0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
IH5052MDE	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
IH5053CDE	$-0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
IH5053MDE	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead Ceramic DIP

Pinouts

Switch states shown for logic " 1 " input

Description

The IH5052, IH5053 analog switches use an improved, high voltage CMOS technology, which provides performance advantages not previously available from solid state switches. Key performance advantages are TTL compatibility and ultra low-power operation. The quiescent current requirement is less than $10 \mu \mathrm{~A}$.

The IH5052, IH5053 also guarantees Break-Before-Make switching. This is accomplished by extending the toN time (1000ns) such that it exceeds toff time (500ns). This insures that an ON channel will be turned OFF before an OFF channel can turn ON, and eliminates the need for external logic required to avoid channel to channel shorting during switching. With a logic " 0 " (0.8 V or less) at its control inputs, the IH5052 switches are closed, while the IH5053 switches are closed with a logic " 1 " (2.4 V or more) at its control inputs.

Functional Diagram

Absolute Maximum Ratings		Thermal Information	
$V+$ to V -	<36V	Operating Temperature	
$\mathrm{V}+$ to V_{D}	<30V	M Suffix	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
V_{D} to V -	<30V	C Suffix	. $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
V_{D} to V_{S}	< $\pm 22 \mathrm{~V}$	Junction Temperature	. $+175^{\circ} \mathrm{C}$
V_{L} to V -	<33V		
V_{L} to $V_{\text {IN }}$	<30V		
V_{L} to GND.	<20V		
$V_{1 N}$ to GND	<20V		
Continuous Current (S-D).	. 30 mA		
Peak Current (S-D)................... (Pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle Max)	. 70 mA		
Storage Temperature	$+150^{\circ} \mathrm{C}$		
Lead Temperature (Soldering 10s). . . .	$+300^{\circ} \mathrm{C}$		

Electrical Specifications $\quad T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V}$

PER CHANNEL PARAMETERS	TEST CONDITIONS	M SUFFIX			C SUFFIX			UNITS
		$-55^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+70^{\circ} \mathrm{C}$	
Input Logic Current, $\mathrm{I}_{\mathrm{N}(\mathrm{ON})}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}(\mathrm{IH} 5053) \\ & =0.8 \mathrm{~V}(\mathrm{IH} 5052) \end{aligned}$	10	± 1	10	-	± 10	\bullet	$\mu \mathrm{A}$
Input Logic Current, $\mathrm{I}_{\text {IN(OFF) }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V}(1 \mathrm{H} 5053) \\ & =2.4 \mathrm{~V}(\mathrm{IH} 5052) \end{aligned}$	10	± 1	10	-	± 10	-	$\mu \mathrm{A}$
Drain Source On Resistance, $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$	$\begin{aligned} & I_{\mathrm{S}}=10 \mathrm{~mA}, \\ & \mathrm{~V}_{\text {ANALOG }}=-10 \mathrm{~V} \text { to }+10 \mathrm{~V} \end{aligned}$	75	75	100	80	80	100	Ω
Channel to Channel, $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ Match	(Note 1)	-	25 (Typ)	-	-	30 (Typ)	-	Ω
Minimum Analog Signal Handling Capability, ${ }_{\text {ANALOG }}$	(Note 1)	-	± 11 (Typ)	-	-	$\begin{gathered} \pm 10 \\ \text { (Typ) } \end{gathered}$	-	V
Switch OFF Leakage Current, ${ }^{\text {D(OFF), }}$ IS(OFF)	$\mathrm{V}_{\text {ANALOG }}=-10 \mathrm{~V}$ to +10 V	-	± 1	100	-	± 5	100	nA
Switch On Leakage Current, $I_{D(O N)}+I_{S(O N)}$	$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}=-10 \mathrm{~V}$ to +10 V	-	± 2	200	-	± 10	100	nA
Switch "ON" Time, $\mathrm{t}_{\text {ON }}$	$\begin{aligned} & R_{L}=1 \mathrm{k} \Omega, V_{\text {ANALOG }}= \\ & -10 \mathrm{~V} \text { to }+10 \mathrm{~V} \\ & \text { See Figure } 7 \end{aligned}$	-	500	-	-	1000	-	ns
Switch "OFF" Time, ${ }_{\text {OFF }}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{~V}_{\text {ANALOG }}= \\ & -10 \mathrm{~V} \text { to }+10 \mathrm{~V} \\ & \text { See Figure } 7 \end{aligned}$	-	250	-	-	500	-	ns
Charge Injection, Q(INJ)	See Figure 8 (Note 1)	-	15 (Typ)	-	-	20 (Typ)	-	mV
Minimum Off Isolation Rejection Ratio OIRR	$\begin{aligned} & f=1 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=100 \Omega, C_{\mathrm{L}} \\ & \leq 5 \mathrm{pF} \text { See Figure } 4 \\ & \text { (Note 1) } \end{aligned}$	-	54 (Тур)	-	-	50 (Typ)	-	dB
+ Power Supply Quiescent Current, $1+$	$\begin{aligned} & \mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V} \end{aligned}$	10	10	100	10	10	100	$\mu \mathrm{A}$
- Power Supply Quiescent Current, 1-	$\begin{aligned} & \mathrm{V}_{+}=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V} \end{aligned}$	10	10	100	10	10	100	$\mu \mathrm{A}$
+5V Supply Quiescent Current, IVL	$\begin{aligned} & \mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V} \end{aligned}$	10	10	100	10	10	100	$\mu \mathrm{A}$
Minimum Channel to Channel Cross Coupling Rejection Ratio, CCRR	One Channel Off	-	54 (Typ)	-	-	50 (Typ)	-	dB

NOTE:

1. Typical values are for Design Aid only, not guaranteed nor production tested.

Typical Performance Curves

Figure 1. RDS(ON) $^{\text {vs }} \mathrm{V}_{\text {ANALOG }}$

FIGURE 2. R $_{\text {DS(ON) }}$ vs POWER SUPPLY VOLTAGE

FIGURE 3B.

FIGURE 3. CROSS COUPLING REJECTION vs FREQUENCY

FIGURE 4A.

FIGURE 4B.

FIGURE 4. OFF ISOLATION vs FREQUENCY

Typical Performance Curves (Continued)

TTL LEVEL

FIGURE 5. POWER SUPPLY QUIESCENT CURRENT vs LOGIC FREQUENCY RATE

FIGURE 6. CHARGE INJECTION vs $V_{\text {ANaLog }}$ (SEE FIGURE 8) $C_{L}=10,000 \mathrm{pF}$

Test Circuits

figure 7.

FIGURE 8.

Typical Applications

FIGURE 9. +15V OPEN COLLECTOR TTL INTERFACE TO IH5052/H55053

FIGURE 10. ACTIVE LOW PASS FILTER WITH DIGITALLY SELECTED BREAK FREQUENCY

Typical Applications

FIGURE 11.4-CHANNEL SEQUENCING MUX
TRUTH TABLE (IH5052)

ENABLE		SEQUENCER OUTPUT		SWITCH STATES (- DENOTES OFF)			
		2^{0}	21	SW1	SW2	SW3	SW4
0	0	0	0	-	-	-	\bullet
1	0	0	0	ON	-	-	-
1	1 Pulse	1	0	-	ON	-	-
1	2 Pulses	0	1	-	-	-	-
1	3 Pulses	1	1	-	-	-	ON
1	4 Pulses	0	0	ON	-	-	-

A Latching DPDT Switch

The latch feature insures positive switching action in response to non-repetitive or erratic commands. The A_{1} and A_{2} inputs are normally low. A HIGH input to A_{2} turns S_{1} and $S_{2} O N$, a HIGH to A_{1} turns S_{3} and S_{4} ON. Desirable for use with limit detectors, peak detectors, or mechanical contact closures.

TRUTH TABLE (H5052)

COMMAND		STATE OF SWITCHES AFTER COMMAND	
A_{2}	A_{1}	S_{3} and S_{4}	S_{1} and S_{2}
0	0	Same	Same
0	1	On	Off
1	0	Off	On
1	1	INDETERMINATE	

FIGURE 12. A LATCHING DPDT

High-Level CMOS Analog Switch

Features

- Super Fast Break-Before-Make Switching
- ton $80 n \mathrm{~T}$ Typ, $\mathrm{t}_{\text {OFF }}$ 50ns Typ (SPST Switches)
- Power Supply Currents Less Than $1 \mu \mathrm{~A}$
- OFF Leakages Less Than 100pA at $+25^{\circ} \mathrm{C}$ Typical
- Non-Latching with Supply Turn-Off
- Single Monolithic CMOS Chip
- Plug-In Replacements for IH5040 Family and Part of the DG180 Family to Upgrade Speed and Leakage
- Greater Than $\mathbf{1 M H z}$ Toggle Rate
- Switches Greater Than 20Vp-p Signals with $\pm 15 \mathrm{~V}$ Supplies
- TTL, CMOS Direct Compatibility
- Internal Diode in Series with V+ for Fault Protection

Description

The IH5140 Family of CMOS switches utilizes Harris' latchfree junction isolated processing to build the fastest switches currently available. These switches can be toggled at a rate of greater than 1 MHz with fast ton times (80ns typical) and faster toff times (50 ns typical), guaranteeing break before make switching. This family of switches combines the speed of the hybrid FET DG180 family with the reliability and low power consumption of a monolithic CMOS construction.

Very low quiescent power is dissipated in either the ON or the OFF state of the switch. Maximum power supply current is $10 \mu \mathrm{~A}$ (at $+25^{\circ} \mathrm{C}$) from any supply and typical quiescent currents are in the 10nA which makes these devices ideal for portable equipment and military applications.

The IH5140 Family is completely compatible with TTL (5V) logic, TTL open collector logic and CMOS logic. It is pin compatible with Harris' IH5040 family and part of the DG180/ DG190 family as shown in the switching state diagrams.

Pinouts

Pinouts (Continued)

Ordering Information

PART NUMBER	FUNCTION	TEMPERATURE RANGE	PACKAGE
IH5140MJE	SPST	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
IH5140CJE	SPST	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
IH5140CPE	SPST	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Lead Plastic DIP
IH5141MJE	Dual SPST	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
IH5141CJE	Dual SPST	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
IH5141CPE	Dual SPST	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Lead Plastic DIP
IH5142MJE	SPDT	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
IH5142CJE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Lead Ceramic DIP	
IH5142CPE	SPDT	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Lead Plastic DIP
IH5143MJE	SPDT	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
IH5143CJE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Lead Ceramic DIP	
IH5143CPE	Dual SPDT	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Lead Plastic DIP
IH5144MJE	Dual SPDT	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
IH5144CJE	DPST	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
IH5144CPE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Lead Plastic DIP	
IH5145MJE	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead Ceramic DIP	
IH5145CJE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Lead Ceramic DIP	
IH5145CPE	DPST	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Lead Plastic DIP
IH5140MJE/883B	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead Ceramic DIP	
IH5141MJE/883B	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead Ceramic DIP	
IH5142MJE/883B	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead Ceramic DIP	
IH5143MJE/883B	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead Ceramic DIP	
IH5144MJE/883B	Dual DPST	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
IH5145MJE/883B	Dual DPST	Dual DPST	SPST
	Dual SPST	$05^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead Ceramic DIP

NOTES:

1. For MIL-STD-883 compliant parts, request the $/ 883$ datasheet on the above products.

Functional Block Diagram

TYPICAL DRIVER/GATE - IH5142

Switching State Diagrams

DIP (JE, PE)
SPST IH5140

DIP(JE, PE)
SPDT IH5142

DIP (JE, PE)
DPST IH5144

DIP (JE, PE)
DUAL SPST IH5141

DIP (JE, PE)
DUAL SPDT IH5143

DIP (JE, PE)
DUAL DPST IH5145

Absolute Maximum Ratings	
$\mathrm{V}+$ to V -	. <36V
$\mathrm{V}+$ to V_{D}	. . <30V
V_{0} to V -	. <30V
V_{0} to V_{s}	< 22 V
V_{L} to V -	. $<33 \mathrm{~V}$
V_{L} to V_{IN}.	<30V
V_{L} to GND.	. <20V
$\mathrm{V}_{\text {IN }}$ to GND.	<20V
Current (Any Terminal) .	. 30 mA
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering 10s).	$+300^{\circ} \mathrm{C}$

Thermal Information

Thermal Resistance	$\theta^{\text {JA }}$	$\theta_{\text {Jc }}$
Ceramic DIP Package	$80^{\circ} \mathrm{C} / \mathrm{W}$	$24^{\circ} \mathrm{CN}$
Plastic DIP Package	$100^{\circ} \mathrm{C} / \mathrm{W}$	-
Operating Temperature		
M	-55°	$0+125^{\circ} \mathrm{C}$
C		to $+70^{\circ} \mathrm{C}$
Junction Temperature		
Ceramic DIP Package		$+175^{\circ} \mathrm{C}$
Plastic DIP Package		$+150^{\circ} \mathrm{C}$

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Electrical Specifications $+25^{\circ} \mathrm{C}, \mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V}$

PER CHANNEL PARAMETERS	TEST CONDITIONS	MILITARY			COMMERCIAL			UNITS
		-55 ${ }^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+70^{\circ} \mathrm{C}$	
LOGIC INPUT								
Input Logic Current, $\mathrm{I}_{\text {INH }}$	$\mathrm{V}_{\text {IN }}=2.4 \mathrm{~V}$, Note 1	± 1	± 1	10	-	± 10	10	$\mu \mathrm{A}$
Input Logic Current, l_{NL}	$\mathrm{V}_{\text {IN }}=0.8 \mathrm{~V}$, Note 1	± 1	± 1	10	-	± 10	10	$\mu \mathrm{A}$
SWITCH								
Drain Source On Resistance, $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$	$\begin{aligned} & I_{s}=-10 \mathrm{~mA}, V_{A N A L O G}=-10 \mathrm{~V} \text { to } \\ & +10 \mathrm{~V} \end{aligned}$	50	50	75	75	75	100	Ω
Channel to Channel R DSS(ON) Match, $\Delta R_{\text {DS(ON) }}$		-	25 (Typ)	-	-	30 (Typ)	-	Ω
Minimum Analog Signal Handling Capability, $\mathrm{V}_{\text {ANALOG }}$		-	$\begin{aligned} & \pm 11 \\ & \text { (Typ) } \end{aligned}$	-	-	$\begin{gathered} \pm 10 \\ \text { (Typ) } \\ \hline \end{gathered}$	-	V
Switch OFF Leakage Current, ${ }^{\text {D(OFF) }}{ }^{+1}$ S(OFF)	$\mathrm{V}_{\mathrm{D}}=+10 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=-10 \mathrm{~V}$	-	± 0.5	100	\bullet	± 5	100	nA
	$\mathrm{V}_{\mathrm{D}}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=+10 \mathrm{~V}$	-	± 0.5	100	-	± 5	100	nA
Switch On Leakage Current, $\mathrm{I}_{\mathrm{O}(\mathrm{ON})^{+1}} \mathrm{I}_{\text {(ON }}$	$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}=-10 \mathrm{~V}$ to +10 V	-	± 1	200	\bullet	± 2	200	nA
Minimum Channel to Channel Cross Coupling Rejection Ratio, CCRR	One Channel Off; Any Other Channel Switches, See Performance Characteristics	-	54 (Typ)	-	-	50 (Typ)	-	dB
Switch "ON" Time, ${ }_{\text {ON }}$	See switching time specifications and timing diagrams							
Switch "OFF" Time, toff	See switching time specifications and timing diagrams							
Charge Injection, $\mathrm{Q}_{(1 \mathrm{NJ})}$	See Performance Characteristics	-	10 (Typ)	-	-	15 (Typ)	-	pC
Minimum Off Isolation Rejection Ratio, OIRR	$\begin{aligned} & f=1 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=100 \Omega, \\ & \mathrm{C}_{\mathrm{L}} \leq 5 \mathrm{pF}, \text { See Performance } \\ & \text { Characteristics } \end{aligned}$	-	54 (Typ)	-	-	50 (Typ)	-	dB
SUPPLY								
+ Power Supply Quiescent Current, 1+	$\begin{aligned} & \mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V}, \text { See Performance } \\ & \text { Characteristics } \end{aligned}$	1.0	1.0	10	10	10	100	$\mu \mathrm{A}$
- Power Supply Quiescent Current, I-		1.0	1.0	10	10	10	100	$\mu \mathrm{A}$
+5V Supply Quiescent Current, I_{L}		1.0	1.0	10	10	10	100	$\mu \mathrm{A}$
Ground Supply Quiescent Current, IGND		1.0	1.0	10	10	10	100	$\mu \mathrm{A}$

NOTE:

1. Some channels are turned on by high (1) logic inputs and other channels are turned on by low (0) inputs; however 0.8 V to 2.4 V describes the minimum range for switching properly. Refer to logic diagrams to find logical value of logic input required to produce ON or OFF state.
2. Typical values are for design aid only, not guaranteed and not subject to production testing.

Switching Time Specifications (ton $t_{\text {OFF }}$ are Maximum Specifications and $\mathrm{t}_{\mathrm{ON}}-\mathrm{t}_{\mathrm{OFF}}$ is Minimum Specification)

PART NUMBER	SPECIFICATIONS	TEST CONDITIONS	MILITARY			COMMERCIAL			UNITS
			-55 ${ }^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+70^{\circ} \mathrm{C}$	
IH5140, IH5141	Switch "ON" Time,	Figure 8, Note 2	-	100	-	-	150	-	ns
	Switch "OFF" Time, toff		-	75	-	-	125	-	ns
	Break-Before-Make, $\mathrm{t}_{\text {ON }}$ - $\mathrm{t}_{\text {OFF }}$		-	10	-	-	5	-	ns
	Switch "ON" Time, ton	Figure 7	-	150	-	-	175	-	ns
	Switch "OFF" Time, toff		-	125	-	-	150	-	ns
IH5142, IH5143	Switch "ON" Time, ton	Figure 8, Note 2	-	175	-	-	250	-	ns
	Switch "OFF" Time, toff		-	125	-	-	150	-	ns
	Break-Before-Make, $\mathrm{t}_{\text {ON }}$ - $\mathrm{t}_{\text {OFF }}$		-	10	-	-	5	-	ns
	Switch "ON" Time, ${ }_{\text {ON }}$	Figure 7	-	200	-	-	300	-	ns
	Switch "OFF" Time, toff		-	125	-	-	150	-	ns
	Switch "ON" Time, ${ }^{\text {ON }}$	Figure 2, Note 2	-	175	-	-	250	-	ns
	Switch "OFF" Time, toff		-	125	-	-	150	-	ns
	Break-Before-Make, ton-toff		\bullet	10	-	-	5	-	ns
	Switch "ON" Time, ${ }_{\text {ON }}$	Figure 3, Note 2	-	200	-	-	300	-	ns
	Switch "OFF" Time, toff		-	125	-	-	150	-	ns
	Break-Before-Make, ton - toff		-	10	-	-	5	-	ns
1H5144, IH5145	Switch "ON" Time, ton	Figure 8, Note 2	-	175	-	-	250	-	ns
	Switch "OFF" Time, toff		-	125	\cdot	-	150	-	ns
			-	10	-	-	5	-	ns
	Switch "ON" Time, ton	Figure 7	-	200	-	-	300	-	ns
	Switch "OFF" Time, toff		-	125	-	-	150	-	ns

NOTES:

1. Switching times are measured at 90% points.
2. Typical values are for design aid only, not guaranteed and not subject to production testing.

Typical Performance Curves

FIGURE 1. R DS(ON) vS TEMPERATURE AT $\pm 15 \mathrm{~V},+5 \mathrm{~V}$ SUPPLIES

FIGURE 2. RDS(ON) $^{\text {vS POWER SUPPLIES }}$

Typical Performance Curves (Continuad)

FIGURE 3. "OFF" ISOLATION vs FREQUENCY

FIGURE 4. POWER SUPPLY CURRENTS vs LOGIC STROBE RATE

5B.

FIGURE 5. CHARGE INJECTION vs ANALOG SIGNAL

Typical Performance Curves (Continuod)

6A.

FIGURE 6. CHANNEL TO CHANNEL CROSS COUPLING REJECTION vs FREQUENCY

Test Circuits

FIGURE 7. IH5141 $t_{\text {ON }}$ AND $t_{\text {OFF }}$ ($3 V$ DIGITAL INPUT)

NOTE: SWITCHING TIMES ARE MEASURED AT 90\% POINTS

FIGURE 8. IH5141 ton AND toff (15V DIGITAL INPUT)

Test Circuits (Continued)

9A.
98.

FIGURE 9. IH5143 ton AND toff (15V DIGITAL INPUT)

FIGURE 10. IH5143 ton AND toff (3V DIGITAL INPUT)

Typical Applications

To maximize switching speed on the IH5140 family, TTL open collector logic (15 V with a $1 \mathrm{k} \Omega$ or less collector resistor) should be used. This configuration will result in (SPST) toN and toff times of 80 ns and 50 ns , for signals between -10 V and +10 V . The SPDT and DPST switches are approximately 30ns slower in both ton and toff with the same drive configuration. 15V CMOS logic levels can be used (0 V to +15 V), but propagation delays in the CMOS logic will slow down the switching (typical 50ns $\rightarrow 100 \mathrm{~ns}$ delays).

When driving the IH5140 Family from either +5 V TTL or CMOS logic, switching times run 20 ns slower than if they were driven from +15 V logic levels. Thus t_{ON} is about 105 ns , and tofF 75 ns for SPST switches, and 135 ns and 105ns (ton, toff) for SPDT or DPST switches. The low level drive can be made as fast as the high level drive if $\pm 5 \mathrm{~V}$ strobe levels are used instead of the usual OV $\rightarrow+3.0 \mathrm{~V}$ drive. Pin 13 is taken to -5 V instead of the usual GND and strobe input is taken from +5 V to -5 V levels as shown in Figure 11.

FIGURE 11.
The typical channel of the IH5140 family consists of both P and N-channel MOSFETs. The N-channel MOSFET uses a "Body Puller" FET to drive the body to -15 V ($\pm 15 \mathrm{~V}$ supplies) to get good breakdown voltages when the switch is in the off state (see Figure 12). This "Body Puller" FET also allows the N -channel body to electrically float when the switch is in the
on state producing a fairly constant $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ with different signal voltages. While this "Body Puller" FET improves switch performance, it can cause a problem when analog input signals are present (negative signals only) and power supplies are off. This fault condition is shown in Figure 13.

FIGURE 12.
Current will flow from -10V analog voltage through the drain to body junction of Q1, then through the drain to body junction of Q3 to GND. This means that there is 10V across two forward-biased silicon diodes and current will go to whatever value the input signal source is capable of supplying. If the analog input signal is derived from the same supplies as the switch this fault condition cannot occur. Turning off the supplies would turn off the analog signal at the same time.

FIGURE 13.
This fault situation can also be eliminated by placing a diode in series with the negative supply line (pin 14) as shown in Figure 14. Now when the power supplies are off and a negative input signal is present this diode is reverse biased and no current can flow.

FIGURE 14.

Typical Switching Waveforms (Scale: Vertical $=5 \mathrm{~V} / \mathrm{DVV}$. ., Horizontal $=100 \mathrm{~ns} / \mathrm{DVV}$.)

15A. $-55^{\circ} \mathrm{C}$

15B. $+25^{\circ} \mathrm{C}$

Typical Switching Waveforms (Scale: Vertical = 5V/DIV., Horizontal = $100 \mathrm{~ns} / \mathrm{DIV}$.) (Continued)

15C. $+125^{\circ} \mathrm{C}$
FIGURE 15. TTL OPEN COLLECTOR LOGIC DRIVE (Corresponds to Figure 12)

16A. $-55^{\circ} \mathrm{C}$

16B. $+25^{\circ} \mathrm{C}$

16C. $+125^{\circ} \mathrm{C}$
FIGURE 16. TTL OPEN COLLECTOR LOGIC DRIVE

Typical Switching Waveforms (Scale: Vertical = 5V/DIV., Horizontal $=100 \mathrm{~ns} / \mathrm{DIV}$.$) (Continued)$

FIGURE 17. $\mathbf{+ 2 5}{ }^{\circ} \mathrm{C}$ TTL OPEN COLLECTOR LOGIC DRIVE (Corresponds to Figure 14)

FIGURE 18. $\mathbf{+ 2 5}{ }^{\circ} \mathrm{C}$ TTL OPEN COLLECTOR LOGIC DRIVE (Corresponds to Figure 19)

Typical Applications

FIGURE 19. IMPROVED SAMPLE AND HOLD USING IH5143

EXAMPLE: If $-\mathrm{V}_{\text {ANALOG }}=-10 \mathrm{~V}_{\mathrm{DC}}$ and $+\mathrm{V}_{\text {ANALOG }}=+10 \mathrm{~V}_{\mathrm{DC}}$ then Ladder Legs are switched between $\pm 10 \mathrm{~V}_{\mathrm{DC}}$, depending upon state of Logic Strobe.

FIGURE 20. USING THE CMOS SWITCH TO DRIVE AN R/2R LADDER NETWORK (2 LEGS)

Typical Applications (Continued)

Constant gain, constant Q, variable frequency filter which provides simultaneous Lowpass, Bandpass, and Highpass outputs. With the component values shown, center frequency will be 235 Hz and 23.5 Hz for high and low logic inputs respectively, $Q=100$, and Gain $=100$.

$$
f_{N}=\text { Center Frequency }=\frac{1}{2 \pi R C}
$$

FIGURE 21. DIGITALLY TUNED LOW POWER ACTIVE FILTER

Features

- Low $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ of 25Ω
- Switches Greater than 20V $\mathbf{P - p}$ Signals with $\pm 15 \mathrm{~V}$ Supplies
- Quiescent Current Less than $100 \mu \mathrm{~A}$
- Break-Before-Make Switching toff 120ns Typ.,
$t_{0 N} 200 n s$ Typical
- TTL, CMOS Compatible
- Complete Monolithic Construction
- $\pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$ Supply Range

Pinout

IH5151
(CDIP, PDIP)
TOP VIEW

Description

The IH5151 solid state analog switch is designed using an improved, high voltage CMOS technology.

Key performance advantages in the IH5151 are TTL compatibility and ultra low power operation. $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ switch resistance is typically in the 14Ω to 18Ω area, for signals in the -10 V to +10 V range. Quiescent current is less than $10 \mu \mathrm{~A}$. The IH5151 also guarantees Break-Before-Make switching which is logically accomplished by extending the t_{ON} time (200ns typ.) such that it exceeds toff time (120ns typ.). This insures that an ON channel will be turned OFF before an OFF channel can turn ON. The need for external logic required to avoid channel to channel shorting during switching is thus eliminated.

Ordering Information

PART NUMBER	TEMPERATURE RANGE	PACKAGE
IH5151CPE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Lead Plastic DIP
IH5151CJE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
IH5151MJE	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
IH5151MJE/883B	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead Ceramic DIP

SWITCH STATE SHOWN FOR LOGIC "I" INPUT.

Switching State Diagram

Functional Block Diagram
ONE SET OF SWITCHES SHOWN

Absolute Maximum Ratings		Thermal Information		
$V+$ to V-.	<36V	Thermal Resistance	$\theta_{\text {JA }}$	θ_{Jc}
$V+$ to V_{D}	<30V	Ceramic DIP Package	$77^{\circ} \mathrm{C} / \mathrm{W}$	$23^{\circ} \mathrm{C} W$
V_{D} to V -	<30V	Plastic DIP Package	$100^{\circ} \mathrm{CN}$	-
V_{D} to V_{S}	$< \pm 22 \mathrm{~V}$	Operating Temperature		
V_{L} to V -	. <33V	C Suffix		to $+70^{\circ} \mathrm{C}$
V_{L} to $V_{\text {IN }}$	<30V	M Suffix	. $55^{\circ} \mathrm{C}$	$0+125^{\circ} \mathrm{C}$
V_{L}	<20V	Junction Temperature		
$\mathrm{V}_{\text {in }}$	<20V	Ceramic DIP Package		$+175^{\circ} \mathrm{C}$
Current (Any Terminal)	. 50 mA	Plastic DIP Package $+150^{\circ} \mathrm{C}$
Storage Temperature	+150 ${ }^{\circ} \mathrm{C}$			
Lead Temperature (Soldering 10s).	$+300^{\circ} \mathrm{C}$			

Electrical Specifications $\quad T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V}$

PER CHANNEL PARAMETERS	TEST CONDITIONS	MILITARY			COMMERCIAL			UNITS
		$-55^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	+25 ${ }^{\circ} \mathrm{C}$	$+70^{\circ} \mathrm{C}$	
LOGIC INPUTS								
Input Logic Current, $I_{\text {IN(ON) }}$	$\mathrm{V}_{\text {IN }}=2.4 \mathrm{~V}$ (Note 1)	± 1	± 1	± 10	-	± 1	± 10	$\mu \mathrm{A}$
Input Logic Current, In(off)	$\mathrm{V}_{\text {IN }}=0.8 \mathrm{~V}$ (Note 1)	± 1	± 1	± 10	-	± 1	± 10	$\mu \mathrm{A}$
SWITCH								
Drain Source On Resistance, $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$	$\mathrm{V}_{\mathrm{D}}= \pm 10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA}$	25	25	50	-	30	-	Ω
Channel to Channel R $\mathrm{RS}_{\mathrm{D}(\mathrm{ON})}$ Match, $\Delta \mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$	(Note 2)	-	10 (Typ)	-	-	15 (Typ)	-	Ω
Minimum Analog Signal Handling Capability, $\mathrm{V}_{\text {ANALOG }}$	(Note 2)	-	$\begin{aligned} & \pm 14 \\ & \text { (Typ) } \end{aligned}$	-	-	$\begin{aligned} & \pm 14 \\ & \text { (Typ) } \end{aligned}$	-	V
Switch OFF Leakage Current, $\mathrm{I}_{\mathrm{D} \text { (OFF), }} \mathrm{I}_{\text {S(OFF) }}$	$\mathrm{V}_{\text {ANALOG }}=-10 \mathrm{~V}$ to +10 V	-	± 1.0	100	-	± 2.0	100	nA
Switch On Leakage Current, ${ }^{\mathrm{I}_{(0 \mathrm{ON})^{+}} \mathrm{I}_{\text {SON }}}$	$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}=-10 \mathrm{~V}$ to +10 V	-	± 1.0	100	-	± 2.0	100	nA
Charge Injection, $\mathrm{Q}_{(\text {(NJ) }}$	(Figure 5, Note 2)	-	10 (Typ)	-	-	10 (Typ)	-	mV
Minimum Off Isolation Rejection Ratio, OIRR	$\begin{aligned} & f=1 \mathrm{MHz}, R_{L}=100 \Omega, \\ & C_{L} \leq 5 p F \text { (Figure 3, Note 2) } \end{aligned}$	-	54 (Typ)	-	-	50 (Typ)	-	dB
Switch "On" Time, ${ }_{\text {L }}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{~V}_{\text {ANALOG }}=-10 \mathrm{~V} \\ & (\text { Note 3) } \end{aligned}$	\bullet	-	500	-	-	500	ns
Switch "Off" Time, toff	T0 +10V; (Figure 6, Note 3)	-	-	250	-	-	250	ns
POWER SUPPLY CHARACTERISTICS								
+ Power Supply Quiescent Current, $1+$	$\begin{aligned} & V_{+=+15} \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{R}}=0 \end{aligned}$	10	10	100	\bullet	10	-	$\mu \mathrm{A}$
- Power Supply Quiescent Current, I-		10	10	100	\bullet	10	-	$\mu \mathrm{A}$
+5 V Supply Quiescent Current, I_{L}		10	10	100	-	10	-	$\mu \mathrm{A}$
Ground Supply Quiescent Current, IGND		10	10	100	-	10	-	$\mu \mathrm{A}$
Minimum Channel to Channel Cross Coupling Rejection Ratio, CCRR	(Figure 2, Note 2)	-	54 (Typ)	-	-	50 (Typ)	-	dB

NOTE:

1. Some channels are turned on by high (1) logic inputs and other channels are turned on by low (0) inputs; however 0.8 V to 2.4 V describes the minimum range for switching properly. Refer to logic diagrams to find logical value of logic input required to produce ON or OFF state.
2. Typical values are for design aid only, not guaranteed or production tested.
3. For IH5151 devices, channels which are off for logic input $\geq 2.4 \mathrm{~V}$ (Pins 3 and 4,5 and 6) have slower t_{oN} time, than channels on Pins 1 , 16 and 8,9. This is done so switch will maintain break-before-make action when connected in DT configuration, i.e. Pin 1 connected in Pin 3.

Typical Performance Curves Per Channel

FIGURE 1. R DS(ON) vS ANALOG INPUT VOLTAGE

FIGURE 2A.

FIGURE 2B.

FIGURE 2. CROSS COUPLING REJECTION vs FREQUENCY

FIGURE 3A.

FIGURE 3B.

FIGURE 3. OFF ISOLATION vS FREQUENCY

Typical Performance Curves Per Channel (Continued)

FIGURE 4A.
FIGURE 4. POWER SUPPLY QUIESCENT CURRENT vs LOGIC FREQUENCY RATE

Test Circuits

FIGURE 5. CHARGE INJECTION TEST CIRCUIT

FIGURE 6. SWITCHING TIME TEST CIRCUIT

Typical Applications

Nulling Out Charge Injection

Charge injection (Qinj. on spec. sheet) is caused by gate to drain, or gate to source capacitance of the output switch MOSFETs. The gates of these MOSFETs typically swing from -15 V to +15 V as a rapidly changing pulse; thus this $30 \mathrm{~V}_{\text {P-p }}$ pulse is coupled through gate capacitance to output load capacitance, and the output "step" is a voltage divider from this combination. For example:
Qinject (V_{PP}) $\cong \frac{\mathrm{C}_{\text {GATE }}}{\mathrm{C}_{\text {LOAD }}} \times 30 \mathrm{~V}$ step.
i.e.
$C_{\text {GATE }}=1.5 \mathrm{pF}, C_{\text {LOAD }}=100 \mathrm{pF}$, then
Qinject $\left(V_{P P}\right)=\frac{1.5 \mathrm{pF}}{100 \mathrm{pF}} \times 30 \mathrm{~V}$ step $=45 \mathrm{mV}_{\mathrm{PP}}$
Thus if you are using a switch in a Sample \& Hold application with $\mathrm{C}_{\text {SAMPLE }}=1000 \mathrm{pF}$, a 45 mV P-p "Sample to Hold error step" will occur.
To null this error step out to zero the circuit in Figure 7 can be used.

FIGURE 7. ADJUSTABLE CHARGE INJECTION COMPENSATION CIRCUIT

The circuit in Figure 7 nulls out charge injection effects on switch pins 1 and 16; a similar circuit would be required on switch pins 8 and 9 .

Simply adjust the pot until $\mathrm{V}_{\text {OUT }}=0 \mathrm{mV}_{\text {p-p }}$ pulse, with $\mathrm{V}_{\mathrm{ANALOG}}=0 \mathrm{~V}$.
If you do not desire to do any adjusting, but wish the least amount of charge injection possible, then the circuit in Figure 8 should be used.

FIGURE 8. NO-ADJUST CHARGE INJECTION COMPENSATION CIRCUIT

This configuration will produce a typical charge injection of $V_{\text {OUT }} \pm 10 \mathrm{~m} \mathrm{~V}_{\text {P-p }}$ into the 1000 pF S \& H capacitor shown.

Fault Condition Protection

If your system has analog voltage levels which are independent of the $\pm 15 \mathrm{~V}$ (Power Supplies), and these analog levels can be present when supplies are shut off, you should add fault protection diodes as shown in Figure 9.

If the analog input levels are below $\pm 15 \mathrm{~V}$, the pn junctions of Q13 \& Q15 are reversed biased. However if the $\pm 15 \mathrm{~V}$ supplies are shut off and analog levels are still present, the configuration becomes as shown in Figure 10.

The need for the diodes in this circumstance is shown in Figure 11. If ANALOG INPUT is greater than 1V, then the pn junction of Q15 is forward biased and excessive current will be drawn. The addition of IN914 diodes prevents the fault currents from destroying the switch. A similar event would occur if ANALOG INPUT was less than or equal to -1V, wherein Q13 would become forward biased. The IN914 diodes form a "back to back" diode arrangement with Q13 and Q15 bodies.

This structure provides a degree of overvoltage protection when supplies are on normally, and analog input level exceeds supplies.

This circuit will switch up to about $\pm 8 \mathrm{~V}$ ANALOG overvoltages. Beyond this drain(N) to body (P) breakdown VOLTAGE of Q13 limits overvoltage protection.

FIGURE 9. ADDING DIODES PROTECTS SWITCH

FIGURE 11. FAULT CONDITION WITHOUT PROTECTION DIODES

FIGURE 10. SWITCH WITHOUT PROTECTION DIODES

FIGURE 12. FAULT CONDITION WITH PROTECTION DIODES

Die Characteristics
 DIE DIMENSIONS:
 $2515 \mu \mathrm{~m} \times 3074 \mu \mathrm{~m}$
 METALLIZATION:
 Type: Al
 Thickness: $10 \mathrm{k} \AA \pm 1 \mathrm{k} \AA$
 GLASSIVATION:
 Type: PSG Over Nitride
 PSG Thickness: $7 \mathrm{k} \AA \pm 1.4 \mathrm{k} \AA$
 Nitride Thickness: $8 \mathrm{k} \AA \pm 1.2 \mathrm{k} \AA$
 WORST CASE CURRENT DENSITY:
 $9.1 \times 10^{4} \mathrm{Ncm}^{2}$
 Metallization Mask Layout

IH5151

HEMICONDUCTOR

Dual SPST, Quad SPST CMOS RF/Video Switches

Features

- $\mathrm{R}_{\mathrm{DS}(0 \mathrm{~N})}<75 \Omega$
- Switch Attenuation Varies Less Than 3dB From DC to 100MHz
- "OFF" Isolation > 70dB Typlcal at 10 MHz
- Cross Coupling Isolation $>60 \mathrm{~dB}$ at 10 MHz
- Compatible With TTL, CMOS Logic
- Wide Operating Power Supply Range
- Power Supply Current < $1 \mu \mathrm{~A}$
- "Break-Before-Make" Switching
- Fast Switching (80ns/150ns Typ)

Applications

- Video Switch
- Communications Equipment
- Disk Drives
- Instrumentation
- CATV

Description

The IH5341 (IH5352) is a dual (quad) SPST, CMOS monolithic switch which uses a "Series/Shunt" ("T" switch) configuration to obtain high "OFF" isolation while maintaining good frequency response in the "ON" condition.

Construction of remote and portable video equipment with extended battery life is facilitated by the extremely low current requirements. Switching speeds are typically $\mathrm{t}_{\mathrm{ON}}=150 \mathrm{~ns}$ and $\mathrm{t}_{\mathrm{OFF}}=80 \mathrm{~ns}$. "Break-Before-Make" switching is guaranteed.
Switch "ON" resistance is typically $40 \Omega-50 \Omega$ with $\pm 15 \mathrm{~V}$ power supplies, increasing to typically 175Ω for $\pm 5 \mathrm{~V}$ supplies.

Ordering Information

PART NUMBER	TEMPERATURE RANGE	PACKAGE
IH5341CPD	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	14 Lead Plastic DIP
IH5341ITW	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	10 Pin TO-100 Can
IH5341MTW	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	10 Pin TO-100 Can
IH5341MTW/883B	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	10 Pin TO-100 Can
IH5352CPE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Lead Plastic DIP
IH5352IJE	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
IH5352MJE	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
IH5352MJE/883B	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
IH5352CBP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	20 Lead SOIC
IH5352IBP	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 Lead SOIC

Pinouts

IH5341
(TO-100 CAN) TOP VIEW

IH5352
(CDIP, PDIP)
TOP VIEW

IH5352
(SOIC)
TOP VIEW

Functional Block Diagrams

IH5341

Switches are open for a logic " 0 " control input, and closed for a logic " 1 " control input.

Schematic Diagram (11/21H5341,1/4 1H5352)

Absolute Maximum Ratings

V+ to Ground	V
V - to Ground.	-18V
V_{L} to Ground.	$V+$ to V -
Logic Control Voltage	$V+$ to V -
Analog Input Voltage	$V+$ to V -
Current (Any Terminal)	50 mA
Storage Temperature	$5^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10s)	$+300^{\circ} \mathrm{C}$

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Electrical Specifications $\quad \mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V}, \mathrm{~V}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ Unless Otherwise Specified.

PARAMETER	TEST CONDITIONS		(NOTE 1) TYP	M GRADE DEVICE			VC GRADE DEVICE			UNITS	
			$-55^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$	$\begin{array}{\|c\|} \hline-25^{\circ} \mathrm{CI} \\ 0^{\circ} \mathrm{C} \end{array}$	$+25^{\circ} \mathrm{C}$	$\begin{aligned} & +85^{\circ} \mathrm{CI} \\ & +70^{\circ} \mathrm{C} \end{aligned}$			
DC CHARACTERISTICS											
Supply Voltage Ranges Positive Supply, V_{+}	(Note 3)			5 to 15	-	-	-	-	-	-	V
Logic Supply, V_{L}			5 to 15	-	-	-	-	-	-	V	
Negative Supply, V-			-5 to -15	-	-	-	-	-	-	v	
Switch "ON" Resistance, $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$	$\begin{aligned} & V_{D}= \pm 5 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=10 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq 2.4 \mathrm{~V} \text { (Note 4) } \end{aligned}$		50	75	75	100	75	75	100	Ω	
	$\begin{aligned} & V_{D}= \pm 10 \mathrm{~V}, I_{S}=10 \mathrm{~mA}, \\ & V_{\text {IN }} \geq 2.4 \mathrm{~V} \text { (Note 4) } \end{aligned}$		100	125	125	cd175	150	150	175	Ω	
Switch "ON" Resistance, $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$	$\begin{aligned} & V+=V_{L}=+5 V, V_{I N}=3 V, \\ & V-=-5 V, V_{D}= \pm 3 V, I_{S}=10 \mathrm{~mA} \end{aligned}$		175	250	250	350	300	300	350	Ω	
On Resistance Match Between Channels, $\Delta \mathrm{R}_{\mathrm{D}}$. S(ON)	$\mathrm{I}_{\mathrm{S}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{D}}= \pm 5 \mathrm{~V}$		5	-	-	-	-	-	-	Ω	
Logic " ${ }^{\text {m }}$ Input Voltage, $\mathrm{V}_{1 \mathrm{H}}$			>2.4	-	-	-	-	-	-	V	
Logic "0" Input Voltage, V_{IL}			<0.8	-	-	-	-	-	-	V	
Switch "OFF" Leakage, $\mathrm{I}_{\mathrm{D} \text { (OFF) }}$ or $\mathrm{I}_{\text {S(OFF) }}$	$\begin{aligned} & V_{S D D}= \pm 5 \mathrm{~V} \text { or } \pm 14 \mathrm{~V}, \\ & V_{\text {IN }} \leq 0.8 \mathrm{~V} \\ & \text { (Notes } 2 \text { and } 4 \text {) } \end{aligned}$	IH5341	-	-	± 0.5	50	-	± 1	100	nA	
		1H5352	-	-	± 1	50	-	± 2	100	nA	
Switch "ON" Leakage, $I_{\mathrm{D}(\mathrm{ON})}+\mathrm{I}_{\mathrm{S}(\mathrm{ON})}$	$V_{\text {SID }}= \pm 5 \mathrm{~V}, \mathrm{~V}_{\text {IN }} \geq 2.4 \mathrm{~V}$	IH5341	-	-	± 1	50	-	± 2	100	nA	
	$\mathrm{V}_{\text {SID }}= \pm 14 \mathrm{~V}, \mathrm{~V}_{\text {IN }} \geq 2.4 \mathrm{~V}$		-	-	± 1	100	-	± 2	100	nA	
	$\begin{aligned} & V_{S / D}= \pm 5 \mathrm{~V} \text { or } \pm 14 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}} \leq 0.8 \mathrm{~V} \end{aligned}$	IH5352	-	-	± 1	100	-	± 2	100	nA	
Input Logic Current, $\mathrm{I}_{1 \times}$	$\mathrm{V}_{\text {IN }}>2.4 \mathrm{~V}$ or $<0 \mathrm{~V}$		0.1	± 1	± 1	10	± 1	± 1	10	mA	
Positive Supply Quiescent Current, I+	$V_{\mathbb{I N}}=0 V \text { or }+5 V$		0.1	1	1	10	1	1	10	mA	
Negative Supply Quiescent Current, I-	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ or +5 V		0.1	1	1	10	1	1	10	$\mu \mathrm{A}$	
Logic Supply Quiescent Current, IL	$V_{I N}=0 V \text { or }+5 V$		0.1	1	1	10	1	1	10	$\mu \mathrm{A}$	

Electrical Specifications $\quad \mathrm{V}_{+}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V}, \mathrm{~V}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ Unless Otherwise Specified. (Continued)

PARAMETER	TEST CONDITIONS	(NOTE 1) TYP	M GRADE DEVICE			VC GRADE DEVICE			UNITS
			$-55^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+125^{\circ} \mathrm{C}$	$\begin{gathered} -25^{\circ} \mathrm{Cl} \\ 0^{\circ} \mathrm{C} \end{gathered}$	$+25^{\circ} \mathrm{C}$	$\begin{aligned} & +85^{\circ} \mathrm{Cl} \\ & +70^{\circ} \mathrm{C} \end{aligned}$	
AC CHARACTERISTICS									
Switch "ON" Time, ${ }^{\text {ON }}$		\bullet	-	150	300	-	-	-	ns
Switch "OFF" Time, toff		\bullet	-	80	150	-	-	-	ns
"OFF" Isolation Rejection Ratio, OIRR		-	-	70	-	-	-	-	dB
Cross Coupling Rejection Ratio, CCRR		-	-	60	-	-	-	-	dB
Switch Attenuation 3dB Frequency, $f_{3 \mathrm{~dB}}$		-	-	100	-	-	-	-	MHz

NOTES:

1. Typical values are not tested in production. They are given as a design aid only.
2. Positive and negative voltages applied to opposite sides of switch, in both directions successively.
3. These are the operating voltages at which the other parameters are tested, and are not directly tested.
4. The logic inputs are either greater than or equal to 2.4 V or less than or equal to 0.8 V , as required, for this test.

Typical Performance Curves

FIGURE 1. R RS(ON) vs ANALOG INPUT VOLTAGE WITH $\pm 15 \mathrm{~V}$ POWER SUPPLIES

FIGURE 3. OFF ISOLATION REJECTION vs FREQUENCY (SEE FIGURE 8)

FIGURE 2. R RS(ON) vs ANALOG INPUT LEVEL WITH $\pm 5 \mathrm{~V}$ POWER SUPPLIES

FIGURE 4. CROSS COUPLING REJECTION vs FREQUENCY (SEE FIGURE 9)

Typical Performance Curves (Continued)

FIGURE 5. TYPICAL SWITCH ATTENUATION vs FREQUENCY ($R_{L}=75 \Omega$, SEE FIGURE 10)

Detailed Description

Figure 6 shows the internal circuit of one channel of the IH 5352 . This is identical to the IH5341 "T-Switch" configuration. Here, a shunt switch is closed, and the two series switches are open when the video switch channel is open or off. This provides much better isolation between the input and output terminals than a simple series switch does, especially at high frequencies. The result is excellent off-isolation in the Video and RF frequency ranges when compared to conventional analog switches.

The control input level shifting circuitry is very similar to that of the IH5140 series of Analog Switches, and gives very high speed, guaranteed "Break-Before-Make" action, low static power consumption and TTL compatibility.

NOTE: 1 channel of 4 shown.
FIGURE 6. INTERNAL SWITCH CONFIGURATION

Test Circuits

NOTE: Only one channel shown. Other acts identically.

FIGURE 7B. SWITCHING TIME WAVEFORMS

FIGURE 7.

Test Circuits (Continued)

$V_{I N}= \pm 5 V\left(10 V_{P-P}\right)$ at $f=10 \mathrm{MHz}$
OIRR $=20 \log ^{V_{I N}} V_{\text {OUT }}$

NOTE: Only one channel shown. Other acts identically.
FIGURE 8. OFF ISOLATION TEST CIRCUIT

$$
\begin{aligned}
& V_{\text {IN }}=225 \mathrm{mV}_{\text {RMS }} \text { at } f=10 \mathrm{MHz} \\
& \text { CCRR }=20 \log \frac{V_{\text {IN }}}{V_{\text {OUT }}}
\end{aligned}
$$

FIGURE 9. OFF ISOLATION TEST CIRCUIT

$$
\text { ATTN: }=20 \log \frac{R_{L}}{R_{D S_{(O N)}}+R_{L}}
$$

Nominally, at DC, this ratio is equal to -4 dB . When the attenuation reaches - 1 dB , the frequency at which this occurs is $\mathrm{f}_{3 \mathrm{~dB}}$ NOTE: Only one channel shown. Other acts identically.

FIGURE 10. SWITCH ATTENUATION vs FREQUENCY

Typical Applications

Charge Compensation Techniques

Charge injection results from the signals out of the level translation circuit being coupled through the gate-channel and gate-source/ drain capacitances to the switch inputs and outputs. This feedthrough is particularly troublesome in Sample-and-Hold or Track-and-Hold applications, as it causes a Sample (Track) to Hold offset. The IH5341 devices have a typical injected charge of 30pC50 pC (corresponding to $30 \mathrm{mV}-50 \mathrm{mV}$ in a 1000 pF capacitor), at $\mathrm{V}_{\text {S/D }}$ of about $O \mathrm{~V}$.

This Sample (Track) to Hold offset can be compensated by bringing in a signal equal in magnitude but of the opposite polarity. The circuit of Figure 11 accomplishes this charge injection compensation by using one side of the device as a S \& H (T \& H) switch, and the other side as a generator of a compensating signal. The $1 \mathrm{k} \Omega$ potentiometer allows the user to adjust the net injected charge to exactly zero for any analog voltage in the -5 V to +5 V range.

* Adjust pot for $0 \mathrm{mV}_{\text {P-p }}$ steip at $\mathrm{V}_{\text {OUT }}$ with no analog (AC) signal present.

FIGURE 11. CHARGE INJECTION COMPENSATION

Since individual parts are very consistent in their charge injection, it is possible to replace the potentiometer with a pair of fixed resistors, and achieve less than 5 mV error for all devices without adjustment.

An alternative arrangement, using a standard TTL inverter to generate the required inversion, is shown in Figure 12. The capacitor needs to be increased, and becomes the only method of adjustment. A fixed value of 22 pF is good for analog values referred to ground, while 35 pF is optimum for $A C$ coupled signals referred to -5 V as shown in the figure. The choice of -5 V is based on the virtual disappearance at this analog level of the transient component of switching charge injection. This combination will lead to a virtually "glitch-free" switch.

Overvoltage Protection

If sustained operation with no supplies but with analog signals applied is possible, it is recommended that diodes (such as 1N914) be inserted in series with the supply lines to the IH5341. Such conditions can occur if these signals come from a separate power supply or another location, for example. The diodes will be reverse biased under this type of operation, preventing heavy currents from flowing from the analog source through the IH5341.

The same method of protection will provide over 25 V o vervoltage protection on the analog inputs when the supplies are present. The schematic for this connection is shown in Figure 13.

FIGURE 13. OVERVOLTAGE PROTECTION

FIGURE 12. ALTERNATIVE COMPENSATION CIRCUIT

Die Characteristics

DIE DIMENSIONS:
$2388 \mu \mathrm{~m} \times 2515 \mu \mathrm{~m}$
METALLIZATION:
Type: AI
Thickness: $10 \mathrm{k} \AA \pm 1 \mathrm{k} \AA$
GLASSIVATION:
Type: PSG/Nitride
PSG Thickness: $7 \mathrm{k} \AA \pm 1.4 \mathrm{k} \AA$
Nitride Thickness: $8 \mathrm{k} \AA \pm 1.2 \mathrm{k} \AA$
WORST CASE CURRENT DENSITY:
$9.1 \times 10^{4} \mathrm{~A} \mathrm{~cm}^{2}$
Metallization Mask Layout

Die Characteristics

DIE DIMENSIONS:
$2617 \mu \mathrm{~m} \times 5233 \mu \mathrm{~m}$
METALLIZATION:
Type: Al
Thickness: $10 k \AA \begin{aligned} & \\ & 1 k \AA \\ & \AA\end{aligned}$
GLASSIVATION:
Type: PSG/Nitride
PSG Thickness: $7 \mathrm{k} \AA \pm 1.4 \mathrm{k} \AA$
Nitride Thickness: $8 \mathrm{k} \AA \pm 1.2 \mathrm{k} \AA$
WORST CASE CURRENT DENSITY:
$9.1 \times 10^{4} \mathrm{~A} / \mathrm{cm}^{2}$
Metallization Mask Layout

MULTIPLEXERS

PAGE
MULTIPLEXERS SELECTION GUIDES
SINGLE 1×8 10-2
SINGLE 1×16 10-3
DUAL 1×4 10-4
DUAL 1×8 10-5
LATCHABLE MULTIPLEXERS, μ PROCESSOR COMPATIBLE, SELECT LATCHES 10-6
PROGRAMMABLE CONFIGURATION SINGLE 1 OF 16 OR DIFFERENTIAL 2 OF 8 10-7
PROGRAMMABLE CONFIGURATION SINGLE 1 OF 8 OR DIFFERENTIAL 2 OF 4. 10-7
70V PEAK-TO-PEAK OVERVOLTAGE PROTECTED MULTIPLEXERS 10-7
DIFFERENTIAL INPUT MULTIPLEXERS 10-9
MULTIPLEXERS DATA SHEETS
DG406, DG407 Single 16-ChanneV/Differential 8-Channel CMOS Analog Multiplexers 10-15
DG408, DG409 Single 8-Channel/Differential 4-Channel CMOS Analog Multiplexers 10-17
DG458, DG459 Single 8-Channel/Differential 4-Channel Fault Protected Analog Multiplexers. 10-31
DG506A, DG507A, CMOS Analog Multiplexers 10-41
DG508A, DG509A
DG526, DG527, Analog CMOS Latchable Multiplexers 10-54
DG528, DG529
HI-1818A, Low Resistance, Single 8 Channel and Differential 4 Channel CMOS Analog Multiplexers 10-70
HI-1828A
HI-506, HI-507, Single 16 and 8/Differential 8 and 4 Channel CMOS Analog Multiplexers 10-78
HI-508, HI-509
HI-506A, HI-507A, 16 Channel, 8 Channel, Differential 8 and Differential 4 Channel, CMOS Analog HI-508A, HI-509A MUXs with Active Overvoltage Protection 10-95
HI-516 16 Channel/Differential 8 Channel CMOS High Speed Analog Multiplexer 10-109
HI-518 8 Channel/Differential 4 Channel CMOS High Speed Analog Multiplexer 10-116
HI-524 4 Channel Wideband and Video Multiplexer 10-123
HI-539 Monolithic, 4 Channel, Low Level, Differential Multiplexer 10-129
HI-546, HI-547, Single 16 and 8, Differential 8 and 4 Channel CMOS Analog MUXs with Active HI-548, HI-549 Overvoltage Protection 10-140

TABLE 1. SINGLE 1×8 (FIGURES 1, 2)

(NOTES 2, 3) DEVICE	SUFFIX CODES	MIL SPEC	(NOTE 1) $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ (Ω MAX)	$\begin{gathered} \mathbf{V}_{\text {INH }} \\ \operatorname{MIN}(\mathrm{V}) \end{gathered}$	$\begin{gathered} V_{\text {INL }} \\ \operatorname{MAX}(V) \end{gathered}$	TECHNOLOGY	$\begin{gathered} \mathrm{IDOFF} \\ \operatorname{TYP}(\pm \mathrm{nA}) \end{gathered}$	$\begin{gathered} \mathrm{T}_{\mathrm{ON}} \\ \operatorname{TYP} \text { (ns) } \end{gathered}$	Toff TYP (ns)	FEATURES
DG408	DJ, DY	DG408AK/883	40	2.4	0.8	44V CMOS-JI		115	105	Low R ${ }_{\text {DS(ON) }}$
DG458	DJ, DY	DG458AK/883	1200	2.4	0.8	44V CMOS-JI	0.03	200	250	Fault Protected
DG508A	$\begin{aligned} & \text { AK, BK, BY, } \\ & \text { CJ, CK, CY } \end{aligned}$	DG508AAK/883B	450	2.4	0.8	44 V CMOS-DI	0.3	250	250	-
DG528	$\begin{aligned} & \mathrm{AK}, \mathrm{BK}, \mathrm{BY} \\ & \mathrm{CJ}, \mathrm{CK}, \mathrm{CY} \end{aligned}$	DG528AK/883B	450	2.4	0.8	44V CMOS-JI	0.015	1,000	400	Microprocessor Compatible
HI1-0508	$\begin{gathered} -2,-4,-5,-7 \\ -8,-9 \end{gathered}$	H11-0508/883	400	2.4	0.8	44V CMOS-DI	0.3	250	250	
H13-0508	-5									
H14P0508	-5									
HI9P0508	-5, -9									
		H14-0508/883								
HI1-0508A	-2, -5, -7, -8		1800	4.0	0.8	44 V CMOS-DI	0.1	300	300	Active Overvoltage Protec-
HI3-0508A	-5									tion. See Table 8 (Note 5)
H11-0518	-2, -5, -8, -9		750	2.4	0.8	33 V CMOS-DI	0.015	120	140	Programmable 1 of 8 ,
H13-0518	-5, -9									Differential 2 of 4, Figure 2, See Table 8, (Note 5)
H14-0518	-8									
H14P0518	-5, -9									
H19P0518	-5, -9									
HI1-0548	-2, -4, -5	HI1-0548/883	1800	4.0	0.8	44V CMOS-DI	0.1	300	300	Active Overvoltage Protec-
HI3-0548	-5, -9			.						tion. 7\% R $\mathrm{RS}_{\mathrm{DS}(\mathrm{ON})}$ Matching. See Table 8 (Note 5)
HI4P0548	-5									
H19P0548	-5, -9									
		H14-0548/883								
HI1-1818A	-2, -5, -7	HI1-1818A/883	400	4.0	0.4	40 V CMOS-DI	0.1	300	300	
H13-1818A	-5									
H14P1818A	-5									

TABLE 2. SINGLE 1×16 (FIGURE 3)

(NOTES 2, 3) DEVICE	SUFFIX CODES	MIL SPEC	(NOTE 1) $\mathbf{R}_{\mathrm{DS}(\mathrm{ON})}$ (Ω MAX)	$\begin{gathered} V_{\text {INH }} \\ \operatorname{MIN}(V) \end{gathered}$	$\begin{gathered} V_{\mathbb{I N L}} \\ \operatorname{MAX}(V) \end{gathered}$	TECHNOLOGY	$\begin{gathered} \mathrm{I}_{\text {DOFF }} \\ \operatorname{TYP}(\pm \mathrm{nA}) \end{gathered}$	$\begin{gathered} \mathrm{T}_{\mathrm{ON}} \\ \operatorname{TYP} \text { (ns) } \end{gathered}$	$\begin{gathered} \mathbf{T}_{\text {OFF }} \\ \text { TYP (ns) } \end{gathered}$	FEATURES
DG406	DJ, DY	DG406AK/883	50	2.4	0.8	44V CMOS-JI	0.01	150	70	Low $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$, Low Leakage
DG506A	$A K, B K, B Y$, CJ, CK, CY	DG506AAK/883B	450	2.4	0.8	44 V CMOS-DI	0.3	250	250	
DG526	$A K, B K, B Y$, CJ, CK, CY	DG526AK/883B	400	2.4	0.8	44V CMOS-JI	0.2	700	400	Microprocessor Compatible
HI1-0506	$\begin{gathered} -2,-4,-5,-7 \\ -8,-9 \end{gathered}$	H11-0506/883	400	2.4	0.8	44 V CMOS-DI	0.3	250	250	
Hi3-0506	-5									
H14P0506	-5									
H19P0506	-5, -9									
		H14-0506/883								
H11-0506A	-2, -5, -7, -8		1800	4.0	0.8	44V CMOS-DI	0.1	300	300	Active Overvoltage Protection. See Table 8 (Note 5)
H13-0506A	-5									
H11-0516	-2, -5, -8	H11-0516/883	750	2.4	0.8	33 V CMOS-DI	0.03	120	140	Programmable, 1 of 16, Differential 2 of 8 . See Table 8 (Note 5)
H13-0516	-5									
HI4-0516	-8	H14-0516/883								
HI4P0516	-5									
HI9P0516	-5, -9									
HI1-0546	-2, -4, -5, -7	H11-0546/883	1800	4.0	0.8	44 V CMOS-DI	0.1	300	300	Active Overvoltage Protection. See Table 8 (Note 5) $7 \% \mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ Matching
H13-0546	-5, -9									
HI4P0546	-5									
HI9P0546	-5, -9									
		HI4-0546/883								

TABLE 3. DUAL 1×4 (FIGURE 4)

(NOTES 2, 3) DEVICE	SUFFIX CODES	MIL SPEC	(NOTE 1) $\mathrm{R}_{\mathrm{DS} \text { (ON) }}$ (Ω MAX)	$\begin{gathered} V_{\text {INH }} \\ \operatorname{MIN}(V) \end{gathered}$	$\stackrel{V_{\mathbb{N L}}}{\operatorname{MAX}(V)}$	TECHNOLOGY	$\begin{gathered} \mathrm{I}_{\text {DOFF }} \\ \operatorname{TYP}(\pm \mathrm{nA}) \end{gathered}$	$\begin{gathered} \mathbf{T O N}_{\mathrm{ON}} \\ \operatorname{TYP}(\mathrm{~ns}) \end{gathered}$	$\begin{gathered} \mathbf{T}_{\mathrm{OFF}} \\ \operatorname{TYP} \text { (ns) } \end{gathered}$	FEATURES
DG409	DJ, DY	DG409AK/883	40	2.4	0.8	44V CMOS-J		115	105	Low $\mathrm{R}_{\text {DS(ON) }}$
DG459	DJ, DY	DG459AK/883	1200	2.4	0.8	44V CMOS-J	0.03	200	250	Fault Protected
DG509A	$\mathrm{AK}, \mathrm{BK}, \mathrm{BY}$, CJ, CK, CY	DG509AAK/883B	400	2.4	0.8	44V CMOS-J	0.3	250	250	
DG529	$\mathrm{AK}, \mathrm{BK}, \mathrm{BY}$, CK, CY	DG529K/883B	450	2.4	0.8	44 V CMOS-J	0.008	1000	400	Microprocessor Compatible
H11-0509	$\begin{gathered} -2,-4,-5,-7,-8, \\ -9 \end{gathered}$	H11-0509/883	400	2.4	0.8	44V CMOS-DI	0.3	250	250	
H13-0509	-5									
H14P0509	-5									
H19P0509	-5, -9									
		H14-0509/883								
H11-0509A	-2, -5, -7, -8		1800	4.0	0.8	44V CMOS-DI	- 0.1	300	300	Active Overvoltage Protection, See Table 8 (Note 5)
H13-0509A	-5									
H11-0518	-2, -5, -8, -9		750	2.4	0.8	33 V CMOS-DI	0.015	120	140	Programmable 1 of 8 , Differential 2 of 4, (Figure 2), See Table 7
H13-0518	-5, -9									
H14-0518	-8									
H14P0518	-5, -9									
H19P0518	-5, -9									
H11-0539	-2, -4, -5, -8		850	4.0	0.8	33 V CMOS-DI	0.001	250	160	Low Level Signals, 3\% Max $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ Matching
H13-0539	-5									
H14P0539	-5									

TABLE 3. DUAL 1×4 (FIGURE 4) (Continued)

(NOTES 2, 3) DEVICE	SUFFIX CODES	MIL SPEC	(NOTE 1) $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ (Ω MAX)	$\begin{gathered} V_{\text {INH }} \\ \operatorname{MIN}(V) \end{gathered}$	$\stackrel{V_{\text {INL }}}{\operatorname{MAX}(V)}$	TECHNOLOGY	$\begin{gathered} \quad \begin{array}{c} I_{\text {Doff }} \\ \operatorname{TYP}(\pm n A) \end{array} \end{gathered}$	$\begin{gathered} \mathrm{T}_{\mathrm{ON}} \\ \mathrm{TYP}(\mathrm{~ns}) \end{gathered}$	$\begin{gathered} \mathbf{T}_{\text {OFF }} \\ \operatorname{TYP(ns)} \end{gathered}$	FEATURES
H11-0549	-2, -4, -5	H11-0549/883	1800	4.0	0.8	44V CMOS-DI	0.1	300	300	70V Active Overvoltage Protection, $7 \% \mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ Matching, See Table 8 (Note 5)
H13-0549	-5, -9									
H14P0549	-5									
H19P0549	-5, -9									
		H14-0549/883								
H11-1828A	-2, -5, -7	HI1-1828/883	400	4.0	0.4	40 V CMOS-DI	125 Max	300	300	
H13-1828A	-5									
H14P1828A	-5, -8									
		H14-1828A/883								

TABLE 4. DUAL 1×8 (FIGURE 5)

(NOTES 2, 3) DEVICE	SUFFIX CODES	MIL SPEC	(NOTE 1) $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ (Ω MAX)	$\begin{gathered} \text { VINH } \\ \operatorname{MIN}(\mathrm{V}) \end{gathered}$	$\begin{gathered} V_{\mathbb{N L}} \\ \operatorname{MAX}(V) \end{gathered}$	TECHNOLOGY	$\begin{gathered} \text { IDOFF } \\ \operatorname{TYP}(\pm n A) \end{gathered}$	$\begin{gathered} \mathrm{T}_{\mathrm{ON}} \\ \mathrm{TYP}(\mathrm{~ns}) \end{gathered}$	$\begin{gathered} \mathbf{T}_{\text {OFF }} \\ \operatorname{TYP} \text { (ns) } \end{gathered}$	FEATURES
DG407	DJ, DY	DG407AK/883	50	2.4	0.8	44V CMOS-J	0.01	150	70	Low $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$, Low Leakage
DG507A	$\mathrm{AK}, \mathrm{BK}, \mathrm{BY}$, CJ, CK, CY	DG507AAK883B	450	2.4	0.8	44V CMOS-JI	0.03	250	250	
DG527	$A K, B K, B Y$, CJ, CK, CY	DG527AK/883B	400	2.4	0.8	44V CMOS-JI	0.2	700	400	Microprocessor Compatible
H11-0507	$\begin{gathered} -2,-4,-5,-7,-8 \\ -9 \end{gathered}$	H11-0507/883	400	2.4	0.8	44 V CMOS-DI	0.3	250	250	
H13-0507	-5									
H14P0507	-5									
H19P0507	-5, -9									
		HI4-0507/883								
HI1-0507A	-2, -5, -7, -8		1800	4.0	0.8	44 V CMOS-DI	0.1	300	300	Active Overvoltage Protection, See Table 8 (Note 5)
H13-0507A	-5									

TABLE 4. DUAL 1×8 (FIGURE 5) (Continued)

(NOTES 2, 3) DEVICE	SUFFIX CODES	MIL SPEC	(NOTE 1) $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ (Ω MAX)	$\begin{gathered} V_{\mathbf{I N H}_{1}} \\ \operatorname{MIN}(V) \end{gathered}$	$\begin{gathered} V_{\text {INL }} \\ \operatorname{MAX}(\mathrm{V}) \end{gathered}$	TECHNOLOGY	$\begin{gathered} \mathrm{I}_{\text {DoFF }} \\ \operatorname{TYP}(\pm \mathrm{nA}) \end{gathered}$	$\begin{gathered} \mathrm{T}_{\mathrm{ON}} \\ \mathrm{TYP}(\mathrm{~ns}) \end{gathered}$	$\begin{gathered} \mathbf{T}_{\text {OFF }} \\ \mathrm{TYP}(\mathrm{~ns}) \end{gathered}$	FEATURES
H11-0516	-2, -5, -8	H11-0516/883	750	2.4	0.8	33 V CMOS-DI	0.03	120	140	Programmable, 1 of 16, Differential 2 of 8, See Table 8
H13-0516	-5									
H14-0516	-8	H14-0516/883								
H14P0516	-5									
H19P0516	-5, -9									
H11-0547	-2, -4, -5, -9	H11-0547/883	1800	4.0	0.8	44V CMOS-DI	0.1	300	300	Active Overvoltage Protection, $7 \% \mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ Matching, See Table 8 (Note 5)
H13-0547	-5, -9									
H14P0547	-5									
HI9P0547	-5, -9									
		H14-0547/883								

(NOTES 2, 3) DEVICE	SUFFIX CODES	MIL SPEC	(NOTE 1) $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ (Ω MAX)	$\begin{gathered} V_{\text {INH }} \\ \operatorname{MIN}(V) \end{gathered}$	$\begin{gathered} V_{\text {INL }} \\ \operatorname{MAX}(V) \end{gathered}$	TECHNOLOGY	$\begin{gathered} \mathrm{I}_{\text {DOFF }} \\ \operatorname{TYP}(\pm \mathrm{nA}) \end{gathered}$	$\begin{gathered} \mathrm{T}_{\text {ON }} \\ \operatorname{TYP}(\mathrm{ns}) \end{gathered}$	$\begin{gathered} \mathbf{T}_{\text {OFF }} \\ \operatorname{TYP}(\mathrm{ns}) \end{gathered}$	FEATURES
DG526	AK, BK, CJ, CK	DG526AK/883B	400	2.4	0.8	44V CMOS-JI	0.2	700	400	1 of 16 Channels, Microprocessor Compatible
DG527	AK, BK, CJ, CK	DG527AK/883B	400	2.4	0.8	44V CMOS-JI	0.2	700	400	Differential 1 if 8 Channel, Microprocessor Compatible
DG528	AK, BK, CJ, CK	DG528AK/883B	450	2.4	0.8	44V CMOS-J	0.015	1,000	400	1 of 8 Channels, Microproces- sor Compatible
DG529	AK, BK, CJ, CK	DG529AK/883B	450	2.4	0.8	44V CMOS-J	0.008	1,000	400	Dual 1 of 4 Channel, Microprocessor Compatible

TABLE 6. PROGRAMMABLE CONFIGURATION SINGLE 1 OF 16 OR DIFFERENTIAL 2 OF 8 (FIGURE 6)

(NOTES 2, 3) DEVICE	SUFFIX CODES	MIL SPEC	(NOTE 1) $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ (Ω MAX)	$\begin{gathered} \mathbf{V}_{\text {INH }} \\ \operatorname{MIN}(V) \end{gathered}$	$\begin{gathered} V_{\text {INL }} \\ \operatorname{MAX}(V) \end{gathered}$	TECHNOLOGY	$\begin{gathered} \mathrm{I}_{\text {DOFF }} \\ \operatorname{TYP}(\pm \mathrm{nA}) \end{gathered}$	$\begin{gathered} \mathrm{T}_{\mathrm{ON}} \\ \operatorname{TYP}(\mathrm{~ns}) \end{gathered}$	$\begin{gathered} \mathbf{T}_{\text {OFF }} \\ \operatorname{TYP}(\mathrm{ns}) \end{gathered}$	FEATURES
H11-0516	-2, -5, -8	HIt-0516/883	750	2.4	0.8	33 V CMOS-DI	0.03	120	140	Programmable, 1 of 16,
H13-0516	-5									
H14-0516	-8	H14-0516/883								
H14P0516	-5									
H19P0516	-5, -9									

TABLE 7. PROGRAMMABLE CONFIGURATION SINGLE 1 OF 8 OR DIFFERENTIAL 2 OF 4 (FIGURE 7)

(NOTES 2, 3) DEVICE	SUFFIX CODES	MIL SPEC	(NOTE 1) $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ (Ω MAX)	$\begin{gathered} \text { VINH }^{\prime} \\ \text { MIN }(V) \end{gathered}$	$\begin{gathered} V_{\mathbb{N L}} \\ \operatorname{MAX}(V) \end{gathered}$	TECHNOLOGY	$\begin{gathered} \text { IDOFF } \\ \text { TYP }(\pm n A) \end{gathered}$	$\begin{gathered} \mathbf{T}_{\mathrm{ON}} \\ \mathrm{TYP} \text { (ns) } \end{gathered}$	Toff TYP (ns)	FEATURES
H11-0518	-2, -5, -8, -9		750	2.4	0.8	33 V CMOS-DI	0.015	120	140	Programmable, 1 of 8, Differential 2 of 4
H13-0518	-5, -9									
H14-0518	-8									
HI4P0518	-5, -9									

TABLE 8. 70V PEAK-TO-PEAK OVERVOLTAGE PROTECTED MULTIPLEXERS (NOTE 6)

(NOTES 2, 3) DEVICE	SUFFIX CODES	MIL SPEC	(NOTE 1) $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ (Ω MAX)	$\begin{gathered} \mathbf{V}_{\text {INH }} \\ \operatorname{MIN}(V) \end{gathered}$	$\begin{gathered} V_{\text {INL }} \\ \operatorname{MAX}(V) \end{gathered}$	TECHNOLOGY	$\begin{gathered} \mathrm{I}_{\text {DOFF }} \\ \operatorname{TYP}(\pm \mathrm{nA}) \end{gathered}$	$\begin{gathered} \mathrm{T}_{\text {ON }} \\ \operatorname{TYP}(\mathrm{ns}) \end{gathered}$	$\begin{gathered} \text { TOFF }_{\text {OFF }} \\ \operatorname{TYP}(\mathrm{ns}) \end{gathered}$	NO. OF CHANNELS	FEATURES
H11-0506A	-2, -5, -7		1800	4.0	0.8	44V CMOS-DI	0.1	300	300	1×16	
H13-0506A	-5										
H14-0506A	-8										
H11-0507A	-2, -5, -7		1800	4.0	0.8	44 V CMOS-DI	0.1	300	300	2×8	Differential Inputs
H13-0507A	-5										
H14-0507A	-8										

TABLE 8. 70V PEAK-TO-PEAK OVERVOLTAGE PROTECTED MULTIPLEXERS (NOTE 6) (Continued)

(NOTES 2, 3) DEvice	SUFFIX CODES	MIL SPEC	(NOTE 1) $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ (Ω MAX)	$\begin{gathered} V_{\text {INH }} \\ \operatorname{MIN}(V) \end{gathered}$	$\begin{gathered} V_{I N L} \\ \operatorname{MAX}(V) \end{gathered}$	TECHNOLOGY	$\begin{gathered} \mathrm{I}_{\text {DOFF }} \\ \operatorname{TYP}(\pm \mathrm{nA}) \end{gathered}$	$\begin{gathered} \mathrm{T}_{\mathrm{ON}} \\ \operatorname{TYP}(\mathrm{~ns}) \end{gathered}$	$\begin{gathered} \text { TOFF }_{\text {OF }} \\ \operatorname{TYP}(n s) \end{gathered}$	NO. OF CHANNELS	FEATURES
H11-0508A	-2, -5, -7		1800	4.0	0.8	44V CMOS-DI	0.1	300	300	1×8	
Hi3-0508A	-5										
H14-0508A	-8										
H11-0509A	-2, -5, -7		1800	4.0	0.8	44V CMOS-DI	0.1	300	300	2×4	Differential Inputs
H13-0509A	-5										
H14-0509A	-8										
H11-0546	-2, -4, -5	H11-0546/883	1800	4.0	0.8	44V CMOS-DI	0.1	300	300	1×16	7\% R $\mathrm{RS}_{\text {(ON) }}$ Matching
H13-0546	-5										
H14P0546	-5										
HI9P0546	-5, -9										
		H14-0546/883									
H11-0547		H11-0547/883	1800	4.0	0.8	44 V CMOS-DI	0.1	300	300	2×8	7\% R $\mathrm{RSS}_{\text {(ON) }}$ Matching Differential Inputs
H13-0547	-2, -4, -5										
H14P0547	-5										
H19P0547	-5, -9										
		H14-0547/883									
H11-0548	-2, -4, -5	H11-0548/883	1800	4.0	0.8	44 V CMOS-DI	0.1	300	300	1×8	7\% R $\mathrm{R}_{\text {DS(ON) }}$ Matching
H13-0548	-5										
H14P0548	-5										
Hi9P0548	-5, -9										
		H14-0548/883									

TABLE 8. 70V PEAK-TO-PEAK OVERVOLTAGE PROTECTED MULTIPLEXERS (NOTE 6) (Continued)

(NOTES 2, 3) DEVICE	SUFFIX CODES	MIL SPEC	(NOTE 1) $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ (Ω MAX)	$\begin{gathered} V_{\text {INH }} \\ \operatorname{MIN}(V) \end{gathered}$	$\begin{gathered} V_{\text {INL }} \\ \operatorname{MAX}(V) \end{gathered}$	TECHNOLOGY	$\begin{gathered} \mathrm{I}_{\text {DOFF }} \\ \operatorname{TYP}(\pm \mathrm{nA}) \end{gathered}$	$\begin{gathered} \mathbf{T}_{\text {ON }} \\ \operatorname{TYP} \text { (ns) } \end{gathered}$	$\begin{gathered} \mathbf{T}_{\text {OFF }} \\ \operatorname{TYP(ns)} \end{gathered}$	NO. OF CHANNELS	FEATURES
H11-0549	-2, -4, -5	H11-0549/883	1800	4.0	0.8	44V CMOS-DI	0.1	300	300	2×4	$7 \% R_{\text {DS(ON) }}$ Matching Differential Inputs
H13-0549	-5										
H14P0549	-5										
H19P0549	-5, -9										
		H14-0549/883									

TABLE 9. DIFFERENTIAL INPUT MULTIPLEXERS

(NOTES 2, 3) DEVICE	$\begin{aligned} & \text { SUFFIX } \\ & \text { CODES } \end{aligned}$	MIL SPEC	(NOTE 1) $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ (Ω MAX)	$\begin{gathered} \mathbf{V}_{\text {INH }} \\ \operatorname{MIN}(\mathbf{V}) \end{gathered}$	$\begin{gathered} V_{\text {INL }} \\ \operatorname{MAX}(V) \end{gathered}$	TECHNOLOGY	$\begin{gathered} \mathrm{I}_{\text {DOFF }} \\ \operatorname{TYP}(\pm \mathrm{nA}) \\ \hline \end{gathered}$	$\begin{gathered} \text { TON } \\ \operatorname{TYP}(n s) \end{gathered}$	Toff TYP (ns)	NO. OF CHANNELS	FEATURES
DG507A	$\begin{aligned} & \mathrm{AK}, \mathrm{BK}, \mathrm{BY}, \\ & \mathrm{CJ}, \mathrm{CK}, \mathrm{CY} \end{aligned}$	DG507AAK/883B	450	2.4	0.8	44V CMOS-J	0.03	250	250	8	
DG509A	$\begin{gathered} \hline \mathrm{AK}, \mathrm{BK}, \mathrm{CJ}, \\ \mathrm{CK} \\ \hline \end{gathered}$	DG509AAK/883B	400	2.4	0.8	44V CMOS-JI	0.3	250	250	4	
H11-0507	$\begin{array}{\|c\|} \hline-2,-4,-5,-7,-- \\ 8,-9 \end{array}$	H11-0507/883	400	2.4	0.8	44V CMOS-DI	0.1	250	250	2×8	
H13-0507	-5										
H14P0507	-5										
H19P0507	-5, -9										
		H14-0507/883									
H11-0507A	-2, -5, -7, -8		1800	4.0	0.8	44V CMOS-DI	0.1	300	300	2×8	Active Overvolt-
H13-0507A	- 5										age Protection See Table 8
H14-0507A	-8										(Note 5)
H11-0509	$\begin{array}{\|c\|} \hline-2,-4,-5,-7,- \\ 8,-9 \end{array}$	H11-0509/883	450	2.4	0.8	44V CMOS-DI	0.3	250	250	2×4	
H13-0509	-5										
H14P0509	-5										
H19P0509	-5, -9										
		H14-0509/883									

TABLE 9. DIFFERENTIAL INPUT MULTIPLEXERS (Continued)

(NOTES 2, 3) DEVICE	SUFFIX CODES	MIL SPEC	(NOTE 1) $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ (Ω MAX)	$\begin{gathered} \mathbf{V I N H}_{\text {IN }}(\mathrm{V}) \\ \operatorname{MIN} \end{gathered}$	$\begin{gathered} V_{1 N L} \\ \operatorname{MAX}(V) \end{gathered}$	TECHNOLOGY	$\begin{gathered} \mathrm{I}_{\mathrm{DOFF}} \\ \mathrm{TYP}(\pm \mathrm{nA}) \end{gathered}$	$\begin{gathered} \mathrm{T}_{\mathrm{ON}} \\ \operatorname{TYP} \text { (ns) } \end{gathered}$	$\begin{gathered} \mathrm{T}_{\text {OFF }} \\ \text { TYP (ns) } \end{gathered}$	NO. OF CHANNELS	FEATURES
HI1-0509A	-2, -5, -7, -8		1800	4.0	0.8	44 V CMOS-DI	0.1	300	300	2×4	Active Overvoltage Protection See Table 8 (Note 5)
H13-0509A	-5										
HI4-0509A	-8										
H11-0516	-2, -5, -8	HI1-0516/883	1800	4.0	0.8	33 V CMOS-DI	0.1	500	500	1×16	$7 \% R_{\text {DS(ON) }}$ Matching
H13-0516	-5										
HI4-0516	-8	H14-0516/883									
HI4P0516	-5										
HI9P0516	-5, -9										
H11-0518	-2, -5, -8, -9		750	2.4	0.8	33 V CMOS-DI	0.015	120	140	4	Programmable 1 of 8, Differential 2 of 4, Figure 2, See Table 7
H13-0518	-5, -9										
H14-0518	-8										
H14P0518	-5, -9										
H19P0518	-5, -9										
H11-0539	-2, -4, -5, -8		850	4.0	0.8	33 V CMOS-DI	0.001	250	160	4	Low Level Signals, 3\% Max $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ Matching
H13-0539	-5										
HI4P0539	-5										
HI1-0547	-2, -4, -5, -9	HI1-0547/883	1800	4.0	0.8	44 V CMOS-DI	0.1	300	300	2×8	Active Overvoltage Protection, $7 \% R_{\text {DS(ON })}$ Matching See Table 8 (Note 5)
HI3-0547	-5, -9										
HI4P0547	-5										
H19P0547	-5, -9										
		HI4-0547/883									
HI1-0549	-2, -4, -5	HI1-0549/883	1800	4.0	0.8	44 V CMOS-DI	0.1	300	300	2×4	70V Active Overvoltage Protection, $7 \% \mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ Matching, See Table 8 (Note 5)
H13-0549	-5, -9										
HI4P0549	-5										
H19P0549	-5, -9										
		HI4-0549/883									
HI1-1828A	-2, -5, -7	HI1-1828A/883	400	4.0	0.4	40 V CMOS-DI	125 Max	300	300	2×4	
HI3-1828A	-5	.									
HI4-1828A	-8	HI4-1828A/883									
H14P1828A	-5										

NOTES:

1. The $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ of a CMOS switch varies as a function of supply voltage, analog signal voltage, and temperature. Values shown are maximum (unless noted "Typ" $=$ typical) at $+25^{\circ} \mathrm{C}$. SWITCH "ON" V: Digital Threshold to "CLOSE" a particular switch. (Minimum if greater than "OFF". Maximum if less than "OFF"). Digital Threshold to "OPEN" a particular switch. (Minimum if greater than "ON". Maximum if less than "ON").
$\mathrm{V}_{\mathrm{INL}}$:
$V_{\text {INH: }}$:
Digital Threshold to represent a "Low" select signal. (Maximum, voltage levels greater than this value are not guaranteed to produce a "LOW").
2. Package codes:

DG Types - SUFFIX:

A 10 Lead TO-100 J Plastic DIP
IH Types - Middle SUFFIX Letter:
J Ceramic DIP P Plastic DIP
HI Types - PREFIX:
HI1 Ceramic DIP
HI1 Ceramic DIP HI2 Metal Can
K Ceramic DIP
P Ceramic DIP

HI3 Plastic DIP
B SOIC HI4P PLCC
3. Temperature Code Suffix: -1: $\quad 0^{\circ}$ to $+200^{\circ} \mathrm{C}$
$-2, \mathrm{~A}$, or M: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
-4 or B: $\quad-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
-5: $\quad 0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
C: $\quad 0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ with Burn-In
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ with Burn-In
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Mil-Std-883, Class B, $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ with Burn-In
Industrial, $-25^{\circ} \mathrm{C}$ or $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, see data sheet.
I:
4. Double Throw switches have one switch ON and the other switch OFF for each input state. See data sheet.
5. Overvoltage Protection: Analog Inputs can withstand up to 70 V peak to peak levels, with no channel interaction.
6. Fault Protection: All channels are OFF when supply power is off, up to +25 V inputs. Any channel turns OFF when input exceeds supply rail.

FIGURE 3. 1×16 MULTIPLEXER

A_{3}		
DECODER		
A_{3}	Q	\bar{Q}
H	H	L
L	L	H
V	L	L

FIGURE 2. PROGRAMMABLE

FIGURE 5. DUAL 1×8 MUX
$s_{8 B} s_{7 B} s_{6 B} s_{5 B} s_{4 B} s_{3 B} s_{2 B} s_{1 B} s_{8 A} s_{7 A} s_{6 A} s_{5 A} s_{4 A} s_{3 A} s_{2 A} s_{1 A}$

PRELIMINARY

December 1993

Features

- ON-Resistance 100Ω Max
- Low Power Consumption ($P_{D}<1.2 \mathrm{~mW}$)
- Fast Transition Time (300ns Max)
- Low Charge Injection
- TTL, CMOS Compatible
- Single or Split Supply Operation

Applications

- Battery Operated Systems
- Data Acquisition
- Medical Instrumentation
- Hi-Rel Systems
- Communication Systems
- Automatic Test Equipment

Ordering Information

PART NUMBER	TEMPERATURE RANGE	PACKAGE
DG406DJ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 Lead Plastic DIP
DG406DY	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 Lead SOIC Narrow Body
DG407DJ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 Lead Plastic DIP
DG407DY	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 Lead SOIC Narrow Body

Single 16-Channel/Differential 8-Channel CMOS Analog Multiplexers

Description

The DG406 and DG407 monolithic CMOS analog multiplexers are drop-in replacements for the popular DG506A and DG507A series devices. They each include an array of sixteen analog switches, a TTL and CMOS compatible digital decode circuit for channel selection, a voltage reference for logic thresholds, and an ENABLE input for device selection when several multiplexers are present.
These multiplexers feature lower signal ON resistance (<100 $)$ and faster transition time (trRANS $<250 \mathrm{~ns}$) compared to the DG506A and DG507A. Charge injection has been reduced, simplifying sample and hold applications.

The improvements in the DG406 series are made possible by using a high voltage silicon-gate process. An epitaxial layer prevents the latch-up associated with older CMOS technologies. The 44V maximum voltage range permits controlling 30V peak-to-peak signals when operating with $\pm 15 \mathrm{~V}$ power supplies.

The sixteen switches are bilateral, equally matched for AC or bidirectional signals. The ON resistance variation with analog signals is quite low over a $\pm 5 \mathrm{~V}$ analog input range.

Pinouts

(PDIP, SOIC)

Functional Block Diagrams

DG406

TO DECODER LOGIC CONTROLLING BOTH TIERS OF MUXING

DG407

TO DECODER LOGIC CONTROLLING BOTH TIERS OF MUXING

SEMICONDUCTOR

Single 8-Channel/Differential 4-Channel CMOS Analog Multiplexers

Features

- ON-Resistance 100Ω Maximum ($+25^{\circ} \mathrm{C}$)
- Low Power Consumption ($\mathrm{P}_{\mathrm{D}}<11 \mathrm{~mW}$)
- Fast Switching Action
- $t_{\text {trans }}<250 \mathrm{~ns}$
- $t_{\text {ON/OFF(EN) }}<150 \mathrm{~ns}$
- Low Charge Injection
- Upgrade from DG508A/DG509A
- TTL, CMOS Compatible
- Single or Split Supply Operation

Applications

- Data Acquisition Systems
- Audio Switching Systems
- Automatic Testers
- Hi-Rel Systems
- Sample and Hold Circuits
- Communication Systems
- Analog Selector Switch

Description

The DG408 Single 8-Channel and DG409 Differential 4Channel monolithic CMOS analog multiplexers are drop-in replacements for the popular DG508A and DG509A series devices. They each include an array of eight analog switches, a TTLCMOS compatible digital decode circuit for channel selection, a voltage reference for logic thresholds and an ENABLE input for device selection when several multiplexers are present.

The DG408 and DG409 feature lower signal ON resistance (< 100Ω) and faster switch transition time (tTRANS < 250ns) compared to the DG508A or DG509A. Charge injection has been reduced, simplifying sample and hold applications. The improvements in the DG408 series are made possible by using a high-voltage silicon-gate process. An epitaxial layer prevents the latch-up associated with older CMOS technologies. Power supplies may be single-ended from +5 V to +34 V , or split from $\pm 5 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$.

The analog switches are bilateral, equally matched for AC or bidirectional signals. The ON resistance variation with ana\log signals is quite low over a $\pm 5 \mathrm{~V}$ analog input range.

Ordering Information

PART NUMBER	TEMPERATURE RANGE	PACKAGE
DG408AK/883	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
DG408DJ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Lead Plastic DIP
DG408DY	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Lead SOIC (N)
DG409AK/883	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
DG409DJ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Lead Plastic DIP
DG409DY	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Lead SOIC (N)

Pinouts

Functional Block Diagrams

Absolute Maximum Ratings

$\mathrm{V}+$ to V -
GND to V-
$+44.0 \mathrm{~V}$

Digital Inputs (Note 9)
V-) $-2 V$ to $(V+)+2 V$ or Whichever Occurs First
Current (Any Terminal, Except S or D) 30 mA
Continuous Current, S or D . 20 mA
Peak Current, S or D .40 mA
(Pulsed $1 \mathrm{~ms}, 10 \%$ Duty Cycle)
Storage Temperature Range (D Suffix) \qquad $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Thermal Information

Thermal Resistance	$\theta_{\text {JA }}$	$\theta_{\text {Jc }}$
Ceramic DIP Package	$70^{\circ} \mathrm{C} / \mathrm{W}$	$19^{\circ} \mathrm{CM}$
Plastic DIP Package	$100^{\circ} \mathrm{C} / \mathrm{N}$	-
SOIC (N) Package	$120^{\circ} \mathrm{C} / \mathrm{W}$	-
Operating Temperature Junction Temperature (D		$\begin{aligned} & 0+85^{\circ} \mathrm{C} \\ & +150^{\circ} \mathrm{C} \end{aligned}$

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Electrical Specifications Test Conditions: $\mathrm{V}_{+}=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{AL}}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{AH}}=2.4 \mathrm{~V}$, Unless Otherwise Specified

PARAMETER	TEST CONDITION	(NOTE 9) TEMP	D SUFFIX $\mathbf{- 4 0}^{\circ} \mathrm{C}$ TO $+85^{\circ} \mathrm{C}$			UNITS
			(NOTE 2) MIN	(NOTE 4) TYP	(NOTE 2) MAX	
DYNAMIC CHARACTERISTICS						
Transition Time, ${ }_{\text {TRANS }}$	(See Figure 25)	Full	-	160	250	ns
Break-Before-Make Interval, topen	(See Figure 27)	Room	10	-	-	ns
Enable Turn-ON Time, ton(EN)	(See Figure 26)	Room	-	115	150	ns
		Full	-	-	225	ns
Enable Turn-OFF Time, toff(EN)	(See Figure 26)	Full	-	-	150	ns
Charge Injection, Q	$\mathrm{C}_{\mathrm{L}}=10 \mathrm{nF}, \mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}$	Room	-	20	-	pC
OFF Isolation	$\begin{aligned} & V_{E N}=0 V, R_{L}=1 \mathrm{k} \Omega, \\ & f=100 \mathrm{kHz} \text { (Note } 7 \text {) } \end{aligned}$	Room	-	75	\bullet	dB
Logic Input Capacitance, $\mathrm{C}_{\text {IN }}$	$\mathrm{f}=1 \mathrm{MHz}$	Room	-	8	-	pF
Source OFF Capacitance, $\mathrm{C}_{\text {S(OFF) }}$	$\begin{aligned} & V_{E N}=O V, V_{S}=O V, \\ & f=1 M H z \end{aligned}$	Room	-	11	\bullet	pF
Drain OFF Capacitance, $\mathrm{C}_{\mathrm{D} \text { (OFF) }}$ DG408	$\begin{aligned} & \begin{array}{l} V_{E N}=0 V, V_{D}=0 V \\ f=1 M H z \end{array} \end{aligned}$	Room	-	40	-	pF
DG409		Room	-	20	-	pF
Drain ON Capacitance, $\mathrm{C}_{\mathrm{D}(\mathrm{ON})}$ DG408	$\begin{aligned} & V_{E N}=3 V, V_{D}=0 V, \\ & f=1 M H Z, V_{A}=0 V \text { or } 3 V \end{aligned}$	Room	-	54	-	pF
DG409		Room	-	34	-	pF
ANALOG SWITCH						
Analog Signal Range, $\mathrm{V}_{\text {ANALOG }}$	(Note 3)	Full	-15	-	15	V
Drain-Source ON Resistance, $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$	$\begin{aligned} & \mathrm{V}_{\mathrm{D}}= \pm 10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \\ & \text { (Note 5) } \end{aligned}$	Room	-	40	100	Ω
		Full	-	-	125	Ω
${ }^{\mathrm{D}_{\mathrm{DS}}(\mathrm{ON})}$ Matching Between Channels, Δ^{r} DS(ON)	$\mathrm{V}_{\mathrm{D}}=10 \mathrm{~V},-10 \mathrm{~V}$	Room	-	-	15	Ω
Source OFF Leakage Current, $I_{\text {S(OFF) }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{EN}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}= \pm 10 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{D}}=\mp 10 \mathrm{~V} \end{aligned}$	Room	-0.5	-	0.5	nA
		Full	-50	-	50	nA
Drain OFF Leakage Current, ${ }^{\text {D (OFF) }}$DG408	$\begin{aligned} & V_{E N}=0 \mathrm{~V}, V_{D}= \pm 10 \mathrm{~V}, \\ & V_{S}=\mp 10 \mathrm{~V} \end{aligned}$	Room	-1	-	1	nA
		Full	-100	-	100	nA
DG409	$\begin{aligned} & V_{E N}=0 \mathrm{~V}, V_{D}= \pm 10 \mathrm{~V}, \\ & V_{S}=\mp 10 \mathrm{~V} \end{aligned}$	Room	-1	-	1	nA
		Full	-50	-	50	nA

Electrical Specifications Test Conditions: $\mathrm{V}_{+}=+15 \mathrm{~V}, \mathrm{~V}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{AL}}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{AH}}=2.4 \mathrm{~V}$, Unless Otherwise Specified (Continued)

PARAMETER	TEST CONDITION	(NOTE 9) TEMP	D SUFFIX $-40^{\circ} \mathrm{C}$ TO +85 ${ }^{\circ} \mathrm{C}$			UNITS
			(NOTE 2) MIN	(NOTE 4) TYP	(NOTE 2) MAX	
ANALOG SWITCH (Continued)						
Drain ON Leakage Current, $I_{\text {D(ON) }}$ DG408	$V_{S}=V_{D}= \pm 10 \mathrm{~V}$ Sequence Each Switch ON	Room	-1	-	1	nA
DG409		Full	-100	-	100	nA
		Room	-1	-	1	nA
		Full	-50	-	50	nA
DIGITAL CONTROL						
Logic Input Current, Input Voltage High, I_{AH}	$\mathrm{V}_{\mathrm{A}}=2.4 \mathrm{~V}, 15 \mathrm{~V}$	Full	-10	-	10	$\mu \mathrm{A}$
Logic Input Current, Input Voltage Low, I_{AL}	$\begin{aligned} & \mathrm{V}_{\mathrm{EN}}=0 \mathrm{~V}, 2.4 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{A}}=\mathrm{OV} \end{aligned}$	Full	-10	-	10	$\mu \mathrm{A}$
POWER SUPPLIES						
Positive Supply Current, I+	$V_{E N}=0 V, V_{A}=0 V$	Full	-	-	75	$\mu \mathrm{A}$
Negative Supply Current, I-		Full	-75	-	-	$\mu \mathrm{A}$
Positive Supply Current, It	$\mathrm{V}_{\mathrm{EN}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}}=0 \mathrm{~V}$	Room Full	-	-	$\begin{gathered} 0.5 \\ 2 \end{gathered}$	mA
Negative Supply Current, I-		Full	-500	-	-	$\mu \mathrm{A}$

Electrical Specifications (Single Supply) Test Conditions: $\mathrm{V}+=12 \mathrm{~V}, \mathrm{~V}-=\mathrm{VV}, \mathrm{V}_{\mathrm{AL}}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{AH}}=2.4 \mathrm{~V}$, Unless Otherwise Specified

PARAMETER	TEST CONDITION	(NOTE 9) TEMP	D SUFFIX $-40^{\circ} \mathrm{C}$ TO $+85^{\circ} \mathrm{C}$			UNITS
			(NOTE 2) MIN	(NOTE 4) TYP	(NOTE 2) MAX	
DYNAMIC CHARACTERISTICS						
Switching Time of Multiplexer, $\mathrm{t}_{\text {TRANS }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{S1}}=8 \mathrm{~V}, \mathrm{~V}_{\mathrm{SB}}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}}=2.4 \mathrm{~V} \end{aligned}$	Room	-	180	-	ns
Enable Turn-ON Time, ToN(EN)	$\begin{aligned} & \mathrm{V}_{\mathrm{INH}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{INL}}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{S} 1}=5 \mathrm{~V} \end{aligned}$	Room	-	180	-	ns
Enable Turn-OFF Time, Toff(EN)		Room	\bullet	120	-	ns
Charge Injection, Q	$\begin{aligned} & C_{\mathrm{L}}=10 \mathrm{nF}, \mathrm{~V}_{\mathrm{GEN}}=0 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{GEN}}=0 \Omega \end{aligned}$	Room	-	5	-	pC
ANALOG SWITCH						
Analog Signal Range, $\mathrm{V}_{\text {ANALOG }}$	(Note 3)	Full	0	-	12	V
Drain-Source ON-Resistance, $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$	$\begin{aligned} & \mathrm{V}_{\mathrm{D}}=3 \mathrm{~V}, 10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-1 \mathrm{~mA} \\ & \text { (Note 5) } \end{aligned}$	Room	-	90	-	Ω

NOTES:

1. All leads soldered to PC Board.
2. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
3. Guaranteed by design, not subject to production test.
4. Typical values are for DESIGN AID ONLY, not guaranteed nor production tested.
5. Sequence each switch $O N$.
6. $\Delta r_{D S(O N)}=r_{D S(O N)} M A X-r_{D S(O N)} M I N$.
7. Worst case isolation occurs on channel 4 due to proximity to the drain pin.
8. Signals on S_{X}, D_{X}, or I_{X} exceeding $V+$ or V - will be clamped by internal diodes. Limit forward diode current to maximum current ratings.
9. Room $=+25^{\circ} \mathrm{C}$, Cold and $\mathrm{Hot}=$ as determined by the operating temperature suffix.

Typical Performance Curves

FIGURE 1. INPUT LOGIC CURRENT vs LOGIC INPUT VOLTAGE

FIGURE 3. SOURCEIDRAIN CAPACITANCE vs ANALOG VOLTAGE

FIGURE 5. DRAIN LEAKAGE CURRENT vs SOURCEJDRAIN VOLTAGE (SINGLE 12V SUPPLY)

FIGURE 2. SOURCE/DRAIN CAPACITANCE vS ANALOG VOLTAGE (SINGLE 12V SUPPLY)

FIGURE 4. LOGIC INPUT CURRENT vs TEMPERATURE

FIGURE 6. DRAIN LEAKAGE CURRENT vs SOURCE/DRAIN VOLTAGE

Typical Performance Curves (Continued)

FIGURE 7. SOURCE LEAKAGE CURRENT vs SOURCE VOLTAGE

FIGURE 9. NEGATIVE SUPPLY CURRENT vs SWITCHING FREQUENCY

FIGURE 11. IsUPPLY vs TEMPERATURE (LOG SCALE)

FIGURE 8. INPUT SWITCHING THRESHOLD vs SUPPLY VOLTAGE

FIGURE 10. POSITIVE SUPPLY CURRENT vs SWITCHING FREQUENCY

FIGURE 12. NEGATIVE SUPPLY CURRENT vs TEMPERATURE

Typical Performance Curves (Continued)

FIGURE 13. POSITIVE SUPPLY CURRENT vs TEMPERATURE (DG408)

FIGURE 15. $\mathrm{r}_{\mathrm{DS}(\mathrm{ON})}$ vs V_{D} AND SUPPLY

FIGURE 17. $\mathrm{r}_{\mathrm{DS}(\mathrm{ON})}$ vS V_{S} AND TEMPERATURE

FIGURE 14. CHARGE INJECTION vs ANALOG VOLTAGE VS (DG408, DG409)

FIGURE 16. $\mathrm{r}_{\mathrm{DS}(\mathrm{ON})}$ vs V_{D} (SINGLE SUPPLY)

FIGURE 18. $\mathrm{r}_{\mathrm{DS}(\mathrm{ON})}$ vs V_{S} AND TEMPERATURE (SINGLE SUPPLY)

Typical Performance Curves (Continued)

FIGURE 19. OFF ISOLATION AND CROSSTALK vs FREQUENCY

FIGURE 21. SWITCHING TIME vs BIPOLAR SUPPLY

FIGURE 23. SWITCHING TIME vs $V_{I N}$ (BIPOLAR SUPPLY)

FIGURE 20. SWITCHING TIME vs SINGLE SUPPLY

FIGURE 22. SWITCHING TIME vs $\mathrm{V}_{\text {IN }}$ (SINGLE SUPPLY)

FIGURE 24. INSERTION LOSS vs FREQUENCY

DG408, DG409

Pin Description - (DG408)

PIN	SYMBOL	DESCRIPTION
1	A_{0}	Logic decode input (bit 0, LSB)
2	EN	Enable input
3	$\mathrm{~V}-$	Negative power supply terminal
4	$\mathrm{~S}_{1}$	Source (input) for channel 1
5	$\mathrm{~S}_{2}$	Source (input) for channel 2
6	$\mathrm{~S}_{3}$	Source (input) for channel 3
7	$\mathrm{~S}_{4}$	Source (input) for channel 4
8	D	Drain (output)
9	$\mathrm{~S}_{8}$	Source (input) for channel 8
10	$\mathrm{~S}_{7}$	Source (input) for channel 7
11	$\mathrm{~S}_{6}$	Source (input) for channel 6
12	$\mathrm{~S}_{5}$	Source (input) for channel 5
13	$\mathrm{~V}_{+}$	Positive power supply terminal (substrate)
14	GND	Ground terminal (Logic Common)
15	$\mathrm{~A}_{2}$	Logic decode input (bit 2, MSB)
16	$\mathrm{~A}_{1}$	Logic decode input (bit 1)

TRUTH TABLE DG408

$A_{\mathbf{2}}$	$A_{\mathbf{1}}$	$A_{\mathbf{0}}$	EN	ON SWITCH
X	X	X	0	NONE
0	0	0	1	1
0	0	1	1	2
0	1	0	1	3
0	1	1	1	4
1	0	0	1	5
1	0	1	1	6
1	1	0	1	7
1	1	1	1	8

Pin Description - (DG409)

PIN	SYMBOL	DESCRIPTION
1	A_{0}	Logic decode input (bit 0, LSB)
2	EN	Enable input
3	$\mathrm{~V}-$	Negative power supply terminal
4	$\mathrm{~S}_{1 \mathrm{~A}}$	Source (input) for channel 1a
5	$\mathrm{~S}_{2 \mathrm{~A}}$	Source (input) for channel 2a
6	$\mathrm{~S}_{3 \mathrm{~A}}$	Source (input) for channel 3a
7	$\mathrm{~S}_{4 \mathrm{~A}}$	Source (input) for channel 4a
8	D_{A}	Drain a (output a
9	D_{B}	Drain b (output b)
10	$\mathrm{~S}_{4 \mathrm{~B}}$	Source (input) for channel 4b
11	$\mathrm{~S}_{3 \mathrm{~B}}$	Source (input) for channel 3b
12	$\mathrm{~S}_{2 B}$	Source (input) for channel 2b
13	$\mathrm{~S}_{1 \mathrm{~B}}$	Source (input) for channel 1b
14	$\mathrm{~V}_{+}$	Positive power supply terminal
15	GND	Ground terminal (Logic Common)
16	A_{1}	Logic decode input (bit 1, MSB))

TRUTH TABLE DG409

A_{1}	A_{0}	$E N$	ON SWITCH
X	X	0	NONE
0	0	1	1
0	1	1	2
1	0	1	3
1	1	1	4

NOTES:

1. $V_{A H}$ Logic " 1 " $\geq 2.4 \mathrm{~V}$
2. V_{AL} Logic " 0 " $\leq 0.8 \mathrm{~V}$

Test Circuits

FIGURE 25A.

FIGURE 25B.

FIGURE 25C.
FIGURE 25. TRANSITION TIME

FIGURE 26A.

FIGURE 26B.

FIGURE 26C.
FIGURE 26. $\mathrm{t}_{\text {ON(EN), }}$, $\mathrm{t}_{\text {OFF(EN) }}$

Test Circuits (Continued)

FIGURE 27. BREAK-BEFORE-MAKE INTERVAL

FIGURE 28A.
FIGURE 28B.
FIGURE 28. CHARGE INJECTION

FIGURE 29. OFF ISOLATION

FIGURE 30. CROSSTALK

Test Circuits (Continued)

FIGURE 31. INSERTION LOSS

FIGURE 32. SOURCE/DRAIN CAPACITANCES

Typical Applications

Overvoltage Protection

A very convenient form of overvoltage protection consists of adding two small signal diodes (1N4148, 1N914 type) in series with the supply pins (see Figure 33). This arrangement effectively blocks the flow of reverse currents. It also floats the supply pin above or below the normal $\mathrm{V}+$ or V value. In this case the overvoltage signal actually becomes the power supply of the IC. From the point of view of the chip, nothing has changed, as long as the difference V_{S} - (V-) doesn't exceed -44V. The addition of these diodes will reduce the analog signal range to 1 V below $\mathrm{V}+$ and 1 V above V -, but it preserves the low channel resistance and low leakage characteristics.

Typical application information is for Design Aid Only, not guaranteed and not subject to production testing.

FIGURE 33. OVERVOLTAGE PROTECTION USING BLOCKING DIODES

Die Characteristics

DIE DIMENSIONS:
$1800 \mu \mathrm{~m} \times 3320 \mu \mathrm{~m} \times 485 \pm 25 \mu \mathrm{~m}$
METALLIZATION:
Type: SiAl
Thickness: $12 \mathrm{k} \AA \pm 1 \mathrm{k} \AA$
GLASSIVATION:
Type: Nitride
Thickness: $8 \mathrm{k} \AA \pm 1 \mathrm{k} \AA$
WORST CASE CURRENT DENSITY:
$9.1 \times 10^{4} \mathrm{~A}^{2} \mathrm{~cm}^{2}$

Metallization Mask Layout

Die Characteristics

```
DIE DIMENSIONS:
    1800\mum\times3320\mum}\times485\pm25\mu
METALLIZATION:
    Type: SiAl
    Thickness: 12k\AÅ\pm1k\AA
GLASSIVATION:
    Type: Nitride
    Thickness: 8k\AÅ }\pm1\textrm{k}
WORST CASE CURRENT DENSITY:
    9.1 x 104 A/cm}\mp@subsup{}{}{2
```

Metallization Mask Layout

PRELIMINARY

December 1993

Features

- Fault and Overvoltage Protection
- ON-Resistance < $1.5 \mathrm{k} \Omega\left(+25^{\circ} \mathrm{C}\right)$
- Low Power Consumption ($\mathrm{P}_{\mathrm{D}}<3 \mathrm{~mW}$)
- Fast Switching Action
- $\mathrm{t}_{\mathrm{A}}<500 \mathrm{~ns}$
- t $_{\text {ON/OFF(EN) }}<250 \mathrm{~ns}$
- Fail Safe with Power Loss (No Latch-Up)
- Upgrade from IH5108/IH5208
- TTL, CMOS Compatible Logic

Applications

- Data Acquisition Systems
- Audio Switching Systems
- Automatic Testers
- Hi-Rel Systems
- Sample and Hold Circuits
- Communication Systems
- Analog Selector Switch

Ordering Information

PART NUMBER	TEMPERATURE RANGE	PACKAGE
DG458DJ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Lead Plastic DIP
DG458DY	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Lead SOIC (W)
DG458AK $/ 883$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
DG459DJ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Lead Plastic DIP
DG459DY	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Lead SOIC (W)
DG459AK/883	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead Ceramic DIP

Single 8-Channel/Differential 4-Channel
 Fault Protected Analog Multiplexers

Description

The DG458 Single 8-Channel and DG459 Differential 4-Channel monolithic CMOS analog multiplexers are drop-in replacements for the popular IH5108 and IH5208 series devices. They each include an array of eight analog switches, a series N -channel/P-channel/ N -channel fault protection circuit, a TTL/CMOS compatible digital decode circuit for channel selection, a voltage reference for logic thresholds and an ENABLE input for device selection when several multiplexers are present.

The DG458 and DG459 feature lower signal ON resistance (450Ω typical) and faster switch transition time (200ns typical) compared to the IH5108 or IH5208. The improvements in the DG458 series are made possible by using a high-voltage silicon-gate process. An epitaxial layer prevents the latch-up associated with older CMOS technologies.

The 44V maximum voltage range permits controlling 20 V peak-to-peak signals, while withstanding continuous overvoltages up to $\pm 35 \mathrm{~V}$, providing an open fault circuit.

The analog switches are bilateral, break-before-make, equally matched for AC or bidirectional signals. The ON resistance variation with analog signals is quite low over a $\pm 5 \mathrm{~V}$ analog input range.

Pinouts

DG458 (CDIP, PDIP, SOIC)
TOP VIEW

DG459 (CDIP, PDIP, SOIC) TOP VIEW

Functional Block Diagrams

DG459

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Electrical Specifications $\quad \mathrm{V}_{+}=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{AL}}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{AH}}=2.4 \mathrm{~V}$, Unless Otherwise Specified

PARAMETER	TEST CONDITIONS	(NOTE 1) TEMP	$\begin{gathered} \text { D SUFFIX } \\ -40^{\circ} \mathrm{C} \text { TO }+85^{\circ} \mathrm{C} \end{gathered}$			UNITS
			(NOTE 3) MIN	(NOTE 2) TYP	(NOTE 3) MAX	
DYNAMIC CHARACTERISTICS						
Transition Time, t_{A}	See Figure 15	$+25^{\circ} \mathrm{C}$	-	200	500	ns
Break-Before-Make Time, $\mathrm{t}_{\text {BBM }}$	See Figure 16	$+25^{\circ} \mathrm{C}$	10	45	-	ns
Enable Turn-ON Time, ton(EN)	See Figure 17	$+25^{\circ} \mathrm{C}$	-	140	250	ns
		Full	-	-	500	ns
Enable Turn-OFF Time, toff(EN)		$+25^{\circ} \mathrm{C}$	-	50	250	ns
		Full	-	-	500	ns
Settling Time, $\mathrm{t}_{\text {S }}$	To 0.1\%	$+25^{\circ} \mathrm{C}$	\bullet	1.2	-	$\mu \mathrm{s}$
	To 0.01\%	$+25^{\circ} \mathrm{C}$	-	3.5	-	$\mu \mathrm{s}$
OFF Isolation	$\begin{aligned} & V_{\text {EN }}=0 \mathrm{~V}, R_{\mathrm{L}}=1 \mathrm{k} \Omega \\ & C_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V}_{\text {RMS }}, f=100 \mathrm{kHz} \text { (Note } 7 \text {) } \end{aligned}$	$+25^{\circ} \mathrm{C}$	-	90	-	dB
Logic Input Capacitance, $\mathrm{C}_{\text {IN }}$	$\mathrm{f}=1 \mathrm{MHz}$	$+25^{\circ} \mathrm{C}$	-	5	-	pF
Source OFF Capacitance, $\mathrm{C}_{\text {S(OFF) }}$		$+25^{\circ} \mathrm{C}$	-	5	-	pF
Drain OFF Capacitance, $\mathrm{C}_{\mathrm{D} \text { (OFF) }}$ DG458		$+25^{\circ} \mathrm{C}$	-	15	-	pF
DG459		$+25^{\circ} \mathrm{C}$	-	10	-	pF
Drain ON Capacitance, $\mathrm{C}_{\mathrm{D}(\mathrm{ON})}$ DG458		$+25^{\circ} \mathrm{C}$	-	40	-	pF
DG459		$+25^{\circ} \mathrm{C}$	-	35	-	pF
ANALOG SWITCH						
Analog Signal Range, $\mathrm{V}_{\text {ANALOG }}$	Note 4	Full	-10	\bullet	10	V
Drain-Source ON Resistance, $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$	$\mathrm{V}_{\mathrm{D}}= \pm 9.5 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-1 \mathrm{~mA}($ Note 5$)$	$+25^{\circ} \mathrm{C}$	-	0.45	1.5	$\mathrm{k} \Omega$
		Full	-	-	1.8	$\mathrm{k} \Omega$
	$\mathrm{V}_{\mathrm{D}}= \pm 5 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-1 \mathrm{~mA}$ (Note 5)	$+25^{\circ} \mathrm{C}$	-	180	400	Ω
$\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ Matching Between Channels, $\Delta \mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$	$\mathrm{V}_{\mathrm{D}}=0 \mathrm{~V}, \mathrm{I}_{S}=-1 \mathrm{~mA}$ (Note 6)	$+25^{\circ} \mathrm{C}$	-	6	-	\%
Source Off Leakage Current, $\mathrm{I}_{\text {S(OFF) }}$	$\begin{aligned} & V_{E N}=0 \mathrm{~V}, V_{S}= \pm 10 \mathrm{~V}, \\ & V_{D}=\mp 10 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$	-1	0.03	1	nA
		Full	-50	-	50	nA
Drain Off Leakage Current, $\mathrm{I}_{\text {D(OFF) }}$						

Electrical Specifications $\quad \mathrm{V}_{+}=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{AL}}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{AH}}=2.4 \mathrm{~V}$, Unless Otherwise Specified (Continued)

PARAMETER	TEST CONDITIONS	(NOTE 1) TEMP	$\begin{gathered} \text { D SUFFIX } \\ -40^{\circ} \mathrm{C} \mathrm{TO}+85^{\circ} \mathrm{C} \end{gathered}$			UNITS
			(NOTE 3) MIN	(NOTE 2) TYP	(NOTE 3) MAX	
ANALOG SWITCH (Continued)						
DG458	$\begin{aligned} & V_{E N}=O V, V_{S}=\mp 10 \mathrm{~V}, \\ & V_{D}= \pm 10 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$	-1	0.1	1	nA
		Full	-200	-	200	nA
DG459		$+25^{\circ} \mathrm{C}$	-2	0.1	2	nA
		Full	-100	-	100	nA
Differential Off Drain Leakage Current, IDIFF	DG459 Only	Full	-50	-	50	nA
Drain On Leakage Current, $I_{D(O N)}$ DG458	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}= \pm 10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{AL}}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{AH}}=2.4 \mathrm{~V} \\ & \text { Sequence Each Switch On } \end{aligned}$	$+25^{\circ} \mathrm{C}$	-5	0.1	5	nA
		Full	-200	-	200	nA
DG459		$+25^{\circ} \mathrm{C}$	-5	0.05	5	nA
		Full	-100	-	100	nA
DIGITAL CONTROL						
Input Low Threshold, V_{AL}		Full	-	\bullet	0.8	V
Input Low Threshold, $\mathrm{V}_{\text {AL }}$		Full	2.4	-	-	V
Logic Input Control, $I_{\text {A }}$	$\mathrm{V}_{\mathrm{A}}=2.4 \mathrm{~V}$ or 0.3 V	Full	-	-1	1	$\mu \mathrm{A}$
FAULT						
Output Leakage Current (With Overvoltage), ID(OFF)	$\begin{aligned} & V_{S}= \pm 33 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=0 \mathrm{~V} \\ & \text { (See Figure 14) } \end{aligned}$	$+25^{\circ} \mathrm{C}$	-	0.02	-	nA
		Full	-2000	-	2000	nA
Input Leakage Current (With Overvoltage), $I_{\text {S(OFF) }}$	$\begin{aligned} & V_{S}= \pm 25 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}= \pm 10 \mathrm{~V} \\ & \text { (See Figure 14) } \end{aligned}$	$+25^{\circ} \mathrm{C}$	-10	0.005	10	$\mu \mathrm{A}$
Input Leakage Current (With Power Supplies Off), Is(OfF)	$\begin{aligned} & V_{A}= \pm 25 \mathrm{~V}, V_{\text {SUPS }}=O V \\ & V_{D}=A_{0}=A_{1}=A_{2}=E N=O V \end{aligned}$	$+25^{\circ} \mathrm{C}$	-5	0.001	5	$\mu \mathrm{A}$
POWER SUPPLIES						
Positive Supply Current, I+	$\mathrm{V}_{\mathrm{EN}}=$ High or Low $\mathrm{V}_{\mathrm{A}}=0 \mathrm{~V}$	$+25^{\circ} \mathrm{C}$	-	0.05	0.1	mA
		Full	-	-	0.2	mA
Negative Supply Current, 1-		$+25^{\circ} \mathrm{C}$	-0.1	-0.01	-	mA
		Full	-0.2	-	-	mA
Power Supply Range for Continuous Operation		$+25^{\circ} \mathrm{C}$	± 4.5	-	± 18	V

NOTES:

1. Full $=$ as determined by the operating temperature suffix.
2. Typical values are for Design Aid Only, not guaranteed nor subject to production testing.
3. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
4. When the analog signal exceeds the +13.5 V or $-12 \mathrm{~V} \mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ starts to rise until only leakage currents flow.
5. Electrical Characteristics such as $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ change when supplies other than $\pm 15 \mathrm{~V}$ are used.
6. $\Delta R_{D S(O N)}=\frac{R_{D S(O N)} M A X-R_{D S(O N)} M I N}{\Delta R_{D S(O N)} A V E}$
7. Worst case is channel 4 due to close proximity of input and output leads of package. This parameter varies with package style.

Typical Performance Curves $+25^{\circ} \mathrm{C}$, Unless Otherwise Specified

FIGURE 1. INPUT LEAKAGE vs INPUT VOLTAGE

FIGURE 3. OUTPUT LEAKAGE vs OFF CHANNEL OVERVOLTAGE

FIGURE 5. $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ vs V_{D} AND TEMPERATURE

FIGURE 2. OFF CHANNEL LEAKAGE CURRENT vS INPUT VOLTAGE

FIGURE 4. R $_{\text {DS(ON) }}$ vs INPUT VOLTAGE

FIGURE 6. LEAKAGE CURRENT vs $\mathbf{V}_{\mathbf{S}}, \mathbf{V}_{\mathrm{D}}$

Typical Performance Curves $+25^{\circ} \mathrm{C}$, Unless Otherwise Specified (Continued)

figure 7. LEAKAGE CURRENT vs TEMPERATURE

FIGURE 9. SWITCHING TIMES vs TEMPERATURE

FIGURE 11. OFF ISOLATION AND CROSS TALK vs FREQUENCY3

FIGURE 8. SWITCHING TIMES ($t_{\text {RANS }}, t_{\text {ON }}, t_{\text {OFF }}$) vs $\pm V$ SUPPLIES

FIGURE 10. $Q_{I N J}$ vs $\mathbf{V}_{\mathbf{s}}$

FIGURE 12. LOGIC INPUT SWITCHING THRESHOLD vs \pm V SUPPLIES

Pin Description

PIN	SYMBOL	DESCRIPTION
DG458		
1	A_{0}	Logic decode input (bit 0, LSB)
2	EN	Enable input
3	V-	Negative power supply terminal
4	S_{1}	Source (input) for channel 1
5	S_{2}	Source (input) for channel 2
6	S_{3}	Source (input) for channel 3
7	S_{4}	Source (input) for channel 4
8	D	Drain (output)
9	S_{8}	Source (input) for channel 8
10	S_{7}	Source (input) for channel 7
11	S_{6}	Source (input) for channel 6
12	S_{5}	Source (input) for channel 5
13	V+	Positive power supply terminal (substrate)
14	GND	Ground terminal (Logic Common)
15	A_{2}	Logic decode input (bit 2, MSB)
16	A_{1}	Logic decode input (bit 1)
DG459		
1	A_{0}	Logic decode input (bit 0, LSB)
2	EN	Enable input
3	V-	Negative power supply terminal
4	$S_{1 A}$	Source (input) for channel 1A
5	$\mathrm{S}_{2 \mathrm{~A}}$	Source (input) for channel 2A
6	$\mathrm{S}_{3 \mathrm{~A}}$	Source (input) for channel 3A
7	$\mathrm{S}_{4 \mathrm{~A}}$	Source (input) for channel 4A
8	D_{A}	Drain A (output a)
9	D_{B}	Drain B (output b)
10	$\mathrm{S}_{4 \mathrm{~B}}$	Source (input) for channel 4B
11	$\mathrm{S}_{3 \mathrm{~B}}$	Source (input) for channel 3B
12	$\mathrm{S}_{2 \mathrm{~B}}$	Source (input) for channel 2B
13	S_{18}	Source (input) for channel 1B
14	V+	Positive power supply terminal
15	GND	Ground terminal (Logic Common)
16	A_{1}	Logic decode input (bit 1, MSB)

DG458 TRUTH TABLE

A_{2}	A_{1}	A_{0}	$E N$	ON SWITCH
X	X	X	0	NONE
0	0	0	1	1
0	0	1	1	2
0	1	0	1	3
0	1	1	1	4
1	0	0	1	5
1	0	1	1	6
1	1	0	1	7
1	1	1	1	8

DG459 TRUTH TABLE

A_{1}	A_{0}	$E N$	ON SWITCH
X	X	0	NONE
0	0	1	$1 A, 1 B$
0	1	1	$2 A, 2 B$
1	0	1	$3 A, 3 B$
1	1	1	$4 A, 4 B$

NOTES:

1. V_{AH} Logic "1" $\geq 2.4 \mathrm{~V}$
2. V_{AL} Logic " 0 " $\leq 0.8 \mathrm{~V}$

Detailed Description

The DG458 and DG459 multiplexers are full fault and overvoltage protected for continuous input voltages up to $\pm 35 \mathrm{~V}$ whether or not voltage is applied to the power supply pins ($\mathrm{V}+, \mathrm{V}$-). These multiplexers are built on a high voltage junc-tion-isolated silicon gate CMOS process. Two n-channel and one p-channel MOSFETs are connected in series to form each channel (Figure 13).
Within the normal analog signal range ($\pm 10 \mathrm{~V}$), the $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ variation as a function of analog signal voltage is comparable to that of the classic parallel $n-M O S$ and $p-M O S$ switches.

When the analog signal approaches or exceeds either supply rail, even for an on-channel, one of the three series MOSFETs gets cut off, providing inherent protection against overvoltages even if the multiplexer power supply voltages are lost. This protection is good up to the breakdown voltage of the respective series MOSFETs. Under fault conditions only sub microamp leakage currents can flow in or out of the multiplexer. This not only provides protection for the multiplexer and succeeding circuitry, but it allows normal, undisturbed operation of all other channels. Additionally, in case of power loss to the multiplexer, the loading caused on the transducers and signal sources is insignificant, therefore redundant multiplexers can be used on critical applications such as telemetry and avionics.

13A. OVERVOLTAGE WITH MUX POWER OFF

13B. OVERVOLTAGE WITH MUX POWER ON

FIGURE 13. OVERVOLTAGE PROTECTION

Test Circuits

FIGURE 14. ANALOG INPUT OVERVOLTAGE

FIGURE 15A.

FIGURE 15B.

FIGURE 15. TRANSITION TIME

Test Circuits (Continued)

FIGURE 16A.

FIGURE 16B.

FIGURE 16. BREAK-BEFORE-MAKE TIME

FIGURE 17A.

FIGURE 17B.

FIGURE 17. ENABLE DELAY

Die Characteristics

DIE DIMENSIONS:
$2490 \mu \mathrm{~m} \times 4060 \mu \mathrm{~m} \times 485 \mu \mathrm{~m} \pm 25 \mu \mathrm{~m}$

METALLIZATION:

Type: Si - Al
Thickness: $12 \mathrm{k} \AA \pm 1 \mathrm{k} \AA$
GLASSIVATION:
Type: Nitride
Thickness: $8 \mathrm{k} \AA \pm 1 \mathrm{k} \AA$
WORST CASE CURRENT DENSITY: $9.1 \times 10^{4} \mathrm{~A} \mathrm{~cm}^{2}$

Metallization Mask Layout

DG458

 DG506A, DG507A
SEMICONDUCTOR DG508A, DG509A

Features

- Low Power Consumption
- TTL and CMOS Compatible Address and Enable Inputs
- 44V Maximum Power Supply Rating
- High Latch-Up Immunity
- Break-Before-Make Switching
- Alternate Source

Applications

- Data Acquisition Systems
- Communication Systems
- Signal Multiplexing/Demultiplexing
- Audio Signal Multiplexing

Description

The DG506A, DG507A, DG508A and DG509A are CMOS monolithic 16 -channel/dual 8 -channel and 8 -channel/dual 4 -channel analog multiplexers, which can also be used as demultiplexers. An enable input is provided. When the enable input is high, a channel is selected by the address inputs, and when low, all channels are off.
A channel in the ON state conducts current equally well in both directions. In the OFF state each channel blocks voltages up to the supply rails. The address inputs and the enable input are TTL and CMOS compatible over the full specified operating temperature range.
The DG506A, DG507A, DG508A and DG509A are pinout compatible with the industry standard devices.

Ordering Information

PART NUMBER	TEMP. RANGE	PACKAGE
DG506AAK	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	28 Lead Ceramic DIP
DG506AAK 883 B	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	28 Lead Ceramic DIP
DG506ABK	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 Lead Ceramic DIP
DG506ABY	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 Lead Plastic DIP
DG506ACJ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	28 Lead Plastic DIP
DG506ACK	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	28 Lead Ceramic DIP
DG506ACY	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	28 Lead SOIC
DG507AAK	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	28 Lead Ceramic DIP
DG507AAK/883B	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	28 Lead Ceramic DIP
DG507ABK	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 Lead Ceramic DIP
DG507ABY	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 Lead Plastic DIP
DG507ACJ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	28 Lead Plastic DIP
DG507ACK	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	28 Lead Ceramic DIP
DG507ACY	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	28 Lead SOIC

PART NUMBER	TEMP. RANGE	PACKAGE
DG508AAK	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
DG508AAK 883 B	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
DG508ABK	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
DG508ABY	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Lead Plastic DIP
DG508ACJ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Lead Plastic DIP
DG508ACK	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
DG508ACY	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Lead SOIC (W)
DG509AAK	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
DG509AAK 883 B	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
DG509ABK	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
DG509ABY	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Lead Plastic DIP
DG509ACJ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Lead Plastic DIP
DG509ACK	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
DG509ACY	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Lead SOIC (W)

Pinouts

DG506A (PDIP, CDIP, SOIC) TOP VIEW

DG507A (PDIP, CDIP, SOIC) TOP VIEW

V+ 1	28 DA
$\mathrm{D}_{8} 2$	27 v -
NC 3	$26 \mathrm{~S}_{8 \mathrm{~A}}$
$\mathrm{S}_{88} 4$	$25 \mathrm{~S}_{7 \mathrm{~A}}$
$\mathrm{S}_{78} 5$	$24 \mathrm{~S}_{6 A}$
$\mathrm{S}_{68} 6$	$2 \mathrm{~S}_{5 A}$
$\mathrm{S}_{58} 7$	$2{ }^{2} \mathrm{~S}_{4}$
$\mathrm{S}_{48} 8$	$21 \mathrm{~S}_{3}$
$\mathrm{S}_{38} \mathrm{Q}^{8}$	$20 \mathrm{~s}_{2 A}$
$\mathrm{S}_{28} 10$	$18 \mathrm{~S}_{1 \mathrm{~A}}$
$\mathrm{S}_{18} 11$	18 EN
GND 12	$17 A_{0}$
NC 13	$16 A_{1}$
NC 14	15) A_{2}

DG508A (PDIP, CDIP, SOIC) TOP VIEW

DG509A (PDIP, CDIP, SOIC) TOP VIEW

Functional Block Diagrams

DG506A

4 Line Binary Address Inputs
$\left(\begin{array}{llll}0 & 0 & 0 & 1\end{array}\right)$ and $\mathrm{EN}=5 \mathrm{~V}$
Above example shows channel 2 turned ON.

DG508A

3 Line Binary Address Inputs
(10 1) and EN = 1
Above example shows channel 6 turned ON.

DG507A

3 Line Binary Address Inputs
(000) and $\mathrm{EN}=5 \mathrm{~V}$
Above example shows channels 1_{A} and 1_{B} turned ON .

DG509A

2 Line Binary Address Inputs
(0 0) and EN = 1
Above example shows channels 1_{A} and 1_{B} turned $O N$.

Schematic Diagram

Specifications DG506A, DG507A, DG508A, DG509A

Absolute Maximum Ratings

Thermal Information

Thermal Resistance	$\theta_{\text {JA }}$	$\theta_{\text {Jc }}$
16 Lead Ceramic DIP Package .	$77^{\circ} \mathrm{C} / \mathrm{W}$	$23^{\circ} \mathrm{CM}$
28 Lead Ceramic DIP Package .	$55^{\circ} \mathrm{C} / \mathrm{W}$	$17^{\circ} \mathrm{C} / \mathrm{W}$
16 Lead Plastic DIP Package	$100^{\circ} \mathrm{C} / \mathrm{W}$	-
28 Lead Plastic DIP Package	$60^{\circ} \mathrm{C} / \mathrm{W}$	
16 Lead SOIC (W) Package	$100^{\circ} \mathrm{C} / \mathrm{W}$	
28 Lead SOIC Package .	$70^{\circ} \mathrm{C} / \mathrm{W}$	-
Operating Temperature Range		
C Suffix	. 0^{0}	to $+70^{\circ} \mathrm{C}$
B Suffix	-25	to $+85^{\circ} \mathrm{C}$
A Suffix	$-55^{\circ} \mathrm{C}$	to $+125^{\circ} \mathrm{C}$
Junction Temperature		
Ceramic DIP Package		$+175^{\circ} \mathrm{C}$
Plastic DIP Package		$+150^{\circ} \mathrm{C}$

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Electrical Specifications $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{+}=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=2.4 \mathrm{~V}$, Unless Otherwise Specified

PARAMETERS	TEST CONDITIONS		DG506AA, DG507AA, DG508AA, DG509AA			DG506AB/C, DG507AB/C, DG508AB/C, DG509AB/C			UNITS
			MIN	(NOTE 2) TYP	MAX	MIN	(NOTE 2) TYP	MAX	
DYNAMIC CHARACTERISTICS									
Switching Time of Multiplexer, ttransition	See Figure 3		-	0.6	1	-	0.6	-	$\mu \mathrm{s}$
Break-Before-Make Interval, topen	See Figure 5		-	0.2	-	-	0.2	-	$\mu \mathrm{S}$
Enable Turn-On Time, ton(EN)	See Figure 4		-	1	1.5	-	1	-	$\mu \mathrm{s}$
Enable Turn-Off Time, toff(EN)	See Figure 4		-	0.4	1.0	-	0.4	-	$\mu \mathrm{s}$
Off Isolation, OIRR	$\begin{aligned} & V_{E N}=0 V, R_{L}=1 \mathrm{k} \Omega, C_{L}=15 \mathrm{pF}, V_{S}= \\ & 7 V_{\text {RMS }}, f=500 \mathrm{kHz} \text { (Note 4) } \end{aligned}$		-	68	-	-	68	-	dB
Source Off Capacitance, $\mathrm{C}_{\mathrm{S} \text { (OFF) }}$ DG506A, DG507A	$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{~V}_{\text {EN }}=0 \mathrm{~V}, \mathrm{f}=140 \mathrm{kHz}$		-	6	-	-	6	-	pF
DG508A, DG509A			-	5	-	-	5	-	pF
Drain Off Capacitance, $\mathrm{C}_{\mathrm{D} \text { (OFF) }}$ DG506A	$V_{D}=0 V, V_{E N}=0 V, f=140 \mathrm{kHz}$		-	45	-	-	45	-	pF
DG507A			-	23	-	-	23	-	pF
DG508A			-	25	-	-	25	-	pF
DG509A			-	12	-	-	12	-	pF
Charge Injection, Q DG506A, DG507A	See Figure 6		-	6	-	-	6	-	pC
DG508A, DG509A			-	4	-	-	4	-	pC
INPUT									
Address Input Current, Input Voltage High, I_{AH}	$\mathrm{V}_{\mathrm{A}}=2.4 \mathrm{~V}$		-10	-0.002	-	-10	-0.002	-	$\mu \mathrm{A}$
	$\mathrm{V}_{\mathrm{A}}=15 \mathrm{~V}$		-	0.006	10	-	0.006	10	$\mu \mathrm{A}$
Address Input Current Input Voltage Low, I_{AL}	$\mathrm{V}_{\mathrm{EN}}=2.4 \mathrm{~V}$	$\mathrm{V}_{\mathrm{A}}=0 \mathrm{~V}$	-10	-0.002	-	-10	-0.002	-	$\mu \mathrm{A}$
	$\mathrm{V}_{\text {EN }}=0 \mathrm{~V}$		-10	-0.002	-	-10	-0.0002	-	$\mu \mathrm{A}$

Specifications DG506A, DG507A, DG508A, DG509A
Electrical Specifications $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{+}=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=2.4 \mathrm{~V}$, Unless Otherwise Specified (Continued)

PARAMETERS	TEST CONDITIONS		DG506AA, DG507AA, DG508AA, DG509AA			DG506AB/C, DG507AB/C, DG508AB/C, DG509AB/C			UNTTS
			MIN	(NOTE 2) TYP	MAX	MIN	(NOTE2) TYP	MAX	
SWITCH									
Analog Signal Range, $\mathrm{V}_{\text {ANALOG }}$	(Note 6)		-15	-	+15	-15	-	+15	V
Drain Source On Resistance, $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$	Sequence Each Switch On$\begin{aligned} & \mathrm{V}_{\mathrm{AL}}=0.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{AH}}=2.4 \mathrm{~V} \end{aligned}$	$\begin{aligned} & I_{S}=-200 \mu \mathrm{~A}, \\ & \mathrm{~V}_{\mathrm{D}}=+10 \mathrm{~V} \end{aligned}$	-	270	400	-	270	450	Ω
		$\begin{aligned} & I_{S}=-200 \mu \mathrm{~A}, \\ & \mathrm{~V}_{\mathrm{D}}=-10 \mathrm{~V} \end{aligned}$	-	230	400	-	230	450	Ω
Greatest Change in Drain Source On Resistance Between Channels, $\Delta \mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$	$\begin{aligned} & -10 V \leq V_{S} \leq+10 V \\ & \Delta R_{D S(O N)}=\frac{R_{D S(O N) M A X}-R_{D S(O N) \text { MIN }}}{R_{D S(O N) A V G}} \end{aligned}$		-	6	-	-	6	-	\%
Source Off Leakage Current, I ${ }_{\text {S(OFF) }}$	$\mathrm{V}_{\mathrm{EN}}=0 \mathrm{~V}$	$\mathrm{V}_{\mathrm{S}}=+10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-10 \mathrm{~V}$	-1	0.002	1	-5	0.002	5	nA
		$\mathrm{V}_{\mathrm{S}}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=+10 \mathrm{~V}$	-1	-0.005	1	-5	-0.005	5	nA
Drain Off Leakage Current, ldoff)DG506A	$\mathrm{V}_{\mathrm{EN}}=0 \mathrm{~V}$	$\mathrm{V}_{S}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=+10 \mathrm{~V}$	-10	0.02	10	-20	0.02	20	nA
		$\mathrm{V}_{\mathrm{S}}=+10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-10 \mathrm{~V}$	-10	-0.03	10	-20	-0.03	20	nA
DG507A		$\mathrm{V}_{\mathrm{S}}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=+10 \mathrm{~V}$	-5	0.007	5	-10	0.007	10	nA
		$\mathrm{V}_{\mathrm{S}}=+10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-10 \mathrm{~V}$	-5	-0.015	5	-10	-0.015	10	nA
DG508A		$\mathrm{V}_{\mathrm{S}}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=+10 \mathrm{~V}$	-	0.01	10	-	0.01	20	nA
		$\mathrm{V}_{\mathrm{S}}=+10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-10 \mathrm{~V}$	-10	-0.015	-	-20	-0.015	-	nA
DG509A		$\mathrm{V}_{\mathrm{S}}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=+10 \mathrm{~V}$	-	0.005	10	-	0.005	20	nA
		$\mathrm{V}_{\mathrm{S}}=+10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-10 \mathrm{~V}$	-10	-0.008	-	-20	-0.008	-	nA
Drain On Leakage Current, ${ }^{\mathrm{D}(\mathrm{ON})}$DG506A	(Note 5) Sequence Each Switch On$\begin{aligned} & \mathrm{V}_{\mathrm{AL}}=0.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{AH}}=2.4 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\text {S(ALL) }}=+10 \mathrm{~V}$	-10	0.03	10	-20	0.03	20	nA
		$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\text {S(ALL) }}=-10 \mathrm{~V}$	-10	-0.06	10	-20	-0.06	20	nA
DG507A		$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\text {S(ALL) }}=+10 \mathrm{~V}$	-5	0.015	5	-10	0.015	10	nA
		$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\text {S(ALL) }}=-10 \mathrm{~V}$	-5	-0.03	5	-10	-0.03	10	nA
DG508A		$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\text {S(ALL) }}=+10 \mathrm{~V}$	-	0.015	10	-	0.015	20	nA
		$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\text {S(ALL) }}=-10 \mathrm{~V}$	-10	-0.03	-	-20	-0.03	-	nA
DG509A		$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\text {S(ALL) }}=+10 \mathrm{~V}$	-	0.007	10	-	0.007	20	nA
		$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\text {S(ALL) }}=-10 \mathrm{~V}$	-10	-0.015	-	-20	-0.015	-	nA
POWER SUPPLY CHARACTERISTICS									
Positive Supply Current, It	$\mathrm{V}_{\mathrm{EN}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}}=0 \mathrm{~V}$		-	1.3	2.4	-	1.3	2.4	mA
Negative Supply Current, I-	$\mathrm{V}_{\mathrm{EN}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}}=0 \mathrm{~V}$		-1.5	-0.7	-	-1.5	-0.7	-	mA
Positive Supply Current, I+ Standby	$\mathrm{V}_{\mathrm{EN}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}}=0 \mathrm{~V}$		-	1.3	2.4	-	1.3	2.4	mA
Negative Supply Current, IStandby	$\mathrm{V}_{\mathrm{EN}}=\mathrm{OV}, \mathrm{~V}_{\mathrm{A}}=0 \mathrm{~V}$		-1.5	-0.7	-	-1.5	-0.7	-	mA

Specifications DG506A, DG507A, DG508A, DG509A
Electrical Specifications $T_{A}=$ Over Operating Temperature Range, $\mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=2.4 \mathrm{~V}$, Unless Otherwise Specified

PARAMETERS	TEST CONDITIONS		DG506AA, DG507AA, DG508AA, DG509AA			DG506AB/C, DG507AB/C, DG508AB/C, DG509AB/C			UNITS
			MIN	$\begin{array}{\|c\|} \hline \text { NOTE 2) } \\ \text { TYP } \end{array}$	MAX	MIN	$\begin{gathered} \text { (NOTE 2) } \\ \text { TYP } \end{gathered}$	MAX	
INPUT									
Address Input Current, Input Voltage High, I_{AH}	$\mathrm{V}_{\mathrm{A}}=2.4 \mathrm{~V}$		-30	-	-	-30	-	-	$\mu \mathrm{A}$
	$V_{A}=15 \mathrm{~V}$		-	-	30	-	-	30	$\mu \mathrm{A}$
Address Input Current Input Voltage Low, I_{AL}	$\mathrm{V}_{\mathrm{EN}}=2.4 \mathrm{~V}$	$\mathrm{V}_{\mathrm{A}}=0 \mathrm{~V}$	-30	-	-	-30	-	-	$\mu \mathrm{A}$
	$\mathrm{V}_{\text {EN }}=0 \mathrm{~V}$		-30	-	-	-30	-	-	$\mu \mathrm{A}$
SWITCHING CHARACTERISTICS									
Analog Signal Range, $\mathrm{V}_{\text {ANALOG }}$	(Note 6)		-15	-	+15	-15	-	+15	V
Drain Source On Resistance, $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$	Sequence Each Switch On$\begin{aligned} & V_{\mathrm{AL}}=0.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{AH}}=2.4 \mathrm{~V} \end{aligned}$	$\mathrm{I}_{\mathrm{S}}=-200 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{D}}=+10 \mathrm{~V}$	-	-	500	-	-	550	Ω
		$\mathrm{I}_{S}=-200 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{D}}=-10 \mathrm{~V}$	-	-	500	-	-	550	Ω
Source Off Leakage Current, IS(OFF)	$\mathrm{V}_{\mathrm{EN}}=0 \mathrm{~V}$	$\mathrm{V}_{\mathrm{S}}=+10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-10 \mathrm{~V}$	-	-	50	-	-	50	nA
		$\mathrm{V}_{S}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=+10 \mathrm{~V}$	-50	-	-	-50	-	-	nA
Drain Off Leakage Current, Id(OFF)DG506A	$\mathrm{V}_{\mathrm{EN}}=0 \mathrm{~V}$	$\mathrm{V}_{S}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=+10 \mathrm{~V}$	-	-	300	-	-	300	nA
		$\mathrm{V}_{\mathrm{S}}=+10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-10 \mathrm{~V}$	-300	-	-	-300	-	-	nA
DG507A		$\mathrm{V}_{\mathrm{S}}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=+10 \mathrm{~V}$	-	-	200	-	-	200	nA
		$\mathrm{V}_{\mathrm{S}}=+10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-10 \mathrm{~V}$	-200	-	-	-200	-	-	nA
DG508A		$\mathrm{V}_{\mathrm{S}}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=+10 \mathrm{~V}$	-	-	200	-	-	200	nA
		$\mathrm{V}_{\mathrm{S}}=+10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-10 \mathrm{~V}$	-200	-	-	-200	-	-	nA
DG509A		$\mathrm{V}_{\mathrm{S}}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=+10 \mathrm{~V}$	-	-	100	-	\bullet	100	nA
		$\mathrm{V}_{\mathrm{S}}=+10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-10 \mathrm{~V}$	-100	-	-	-100	-	-	nA
Drain On Leakage Current, ${ }^{\mathrm{D}(\mathrm{ON})}$ DG506A	(Note 5) Sequence Each Switch On $\begin{aligned} & \mathrm{V}_{\mathrm{AL}}=0.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{AH}}=2.4 \mathrm{~V} \end{aligned}$	$V_{D}=V_{\text {S(ALL) }}=+10 \mathrm{~V}$	-	-	300	-	-	300	nA
		$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\text {S(ALL) }}=-10 \mathrm{~V}$	-300	-	-	-300	-	-	nA
DG507A		$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\text {S(ALL) }}=+10 \mathrm{~V}$	-	-	200	-	-	200	nA
		$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\text {S(ALL) }}=-10 \mathrm{~V}$	-200	-	-	-200	-	-	nA
DG508A		$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\text {S(ALL) }}=+10 \mathrm{~V}$	-	-	200	-	-	200	nA
		$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\text {S(ALL) }}=-10 \mathrm{~V}$	-200	-	-	-200	-	-	nA
DG509A		$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S} \text { (ALL) }}=+10 \mathrm{~V}$	-	-	100	-	-	100	nA
		$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\text {S(ALL) }}=-10 \mathrm{~V}$	-100	-	-	-100	-	-	nA

NOTES:

1. Signals on $\mathrm{V}_{\mathrm{S}}, \mathrm{V}_{\mathrm{D}}$ or $\mathrm{V}_{I N}$ exceeding $\mathrm{V}+$ or V - will be clamped by internal diodes. Limit diode forward current to maximum current ratings.
2. Typical values are for design aid only, not guaranteed and not subject to production testing.
3. The algebraic convention whereby the most negative value is a minimum, and the most positive value is a maximum, is used in this data sheet.
4. Off isolation $=20 \log \left|V_{S}\right| / / V_{D} \mid$, where $V_{S}=$ input to Off switch, and $V_{D}=$ output due to V_{S}.
5. $\mathrm{I}_{\mathrm{D}(\mathrm{ON})}$ is leakage from driver into " ON " switch.
6. Parameter not tested. Parameter guaranteed by design or characterization.

Typical Performance Curves

FIGURE 1. R $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ vs ANALOG SIGNAL VOLTAGE vs SUPPLY VOLTAGE

NOTE: 1. Similar connections for DG508A
FIGURE 3A. t $_{\text {transition }}$ SWITCHING TIME TEST CIRCUIT

FIGURE 2. TYPICAL R DS(ON) $^{(O A R I A T I O N ~ W I T H ~ T E M P E R A T U R E ~}$

NOTE: 2. Similar connections for DG509A
figure 3b. ttransition switching time test circuit

FIGURE 3C. t $_{\text {TRANSITION }}$ SWITCHING TIME WAVEFORMS

Typical Performance Curves (Continued)

NOTE: 1. Similar connections for DG508A
FIGURE 4A. ENABLE $\mathrm{t}_{\text {ON }}$ and $\mathrm{t}_{\text {OFF }}$ SWITCHING TIME TEST CIRCUIT

NOTE: 2. Similar connections for DG509A

FIGURE 4B. ENABLE $\mathrm{t}_{\text {ON }}$ and $\mathrm{t}_{\text {OFF }}$ SWITCHING TIME TEST CIRCUIT

FIGURE 4C. ENABLE $t_{\text {ON }}$ and $t_{\text {OFF }}$ SWITCHING TIME WAVEFORMS

NOTE: 3. Similar connections for DG508A, DG509A.
FIGURE 5A. t $_{\text {OPEN }}$ (BREAK-BEFORE-MAKE) SWITCHING TIME TEST CIRCUIT

$\mathrm{t}_{\mathrm{R}}<20 \mathrm{~ns}$
$\mathrm{t}_{\mathrm{F}}<20 \mathrm{~ns}$
FIGURE 5B. topen $^{(B R E A K-B E F O R E-M A K E) ~ S W I T C H I N G ~ T I M E ~}$ WAVEFORMS

Typical Performance Curves (Continued)

NOTE: 1. Similar connections for DG508A
FIGURE 6A. CHARGE INJECTION TEST CIRCUIT

NOTE: 2. Similar connections for DG509A FIGURE 6B. CHARGE INJECTION TEST CIRCUIT

$\Delta \mathrm{V}_{\mathrm{O}}$ is the measured voltage error due to charge injection. The error voltage in Coulombs is $Q=C_{L} \times \Delta V_{O}$.

FIGURE 6C. CHARGE INJECTION WAVEFORMS

Truth Tables

A_{3}	A_{2}	A_{1}	A_{0}	EN	ON SWITCH
X	X	X	X	0	None
0	0	0	0	1	1
0	0	0	1	1	2
0	0	1	0	1	3
0	0	1	1	1	4
0	1	0	0	1	5
0	1	0	1	1	6
0	1	1	0	1	7
0	1	1	1	1	8
1	0	0	0	1	9
1	0	0	1	1	10
1	0	1	0	1	11
1	0	1	1	1	12
1	1	0	0	1	13
1	1	0	1	1	14
1	1	1	0	1	15
1	1	1	1	16	

A_{2}	A_{1}	A_{0}	EN	ON SWITCH
X	X	X	0	None
0	0	0	1	1
0	0	1	1	2
0	1	0	1	3
0	1	1	1	4
1	0	0	1	5
1	0	1	1	6
1	1	0	1	7
1	1	1	1	8

Logic " 0 " $=\mathrm{V}_{\mathrm{AL}}, \mathrm{V}_{\mathrm{ENL}} \leq 0.8 \mathrm{~V}$, Logic " 1 " $=\mathrm{V}_{\mathrm{AH}}, \mathrm{V}_{\mathrm{ENH}} \geq 2.4 \mathrm{~V}$.

Logic " 0 " $=\mathrm{V}_{\mathrm{AL}}, \mathrm{V}_{\mathrm{ENL}} \leq 0.8 \mathrm{~V}$, Logic "1" $=\mathrm{V}_{\mathrm{AH}}, \mathrm{V}_{\mathrm{ENH}} \geq 2.4 \mathrm{~V}$.

A_{2}	A_{1}	A_{0}	EN	ON SWITCH
X	X	X	0	None
0	0	0	1	1
0	0	1	1	2
0	1	0	1	3
0	1	1	1	4
1	0	0	1	5
1	0	1	1	6
1	1	0	1	7
1	1	1	1	8

A_{1}	A_{0}	$E N$	ON SWITCH
X	X	0	None
0	0	1	$1 A, 1 B$
0	1	1	$2 A, 2 B$
1	0	1	$3 A, 3 B$
1	1	1	$4 A, 4 B$

$A_{0}, A_{1}, E N$
Logic " 1 " $=\mathrm{V}_{\mathrm{AH}} \geq 2.4 \mathrm{~V}$, Logic " 0 " $=\mathrm{V}_{\mathrm{AL}} \leq 0.8 \mathrm{~V}$
$A_{0}, A_{1}, A_{2}, E N$
Logic " 1 " $=\mathrm{V}_{\mathrm{AH}} \geq 2.4 \mathrm{~V}$, Logic " 0 " $=\mathrm{V}_{\mathrm{AL}} \leq 0.8 \mathrm{~V}$

Die Characteristics

DIE DIMENSIONS:
$3810 \mu \mathrm{~m} \times 2770 \mu \mathrm{~m}$
METALLIZATION:
Type: AI
Thickness: $10 \mathrm{k} \AA \pm 1 \mathrm{k} \AA$
GLASSIVATION:
Type: PSG/Nitride
Thickness: PSG: $7 \mathrm{k} \AA \pm 1.4 \mathrm{k} \AA$, Nitride: $8 \mathrm{k} \AA \pm 1.2 \mathrm{k} \AA$
WORST CASE CURRENT DENSITY:
$9.1 \times 10^{4} \mathrm{~A} \mathrm{~cm}^{2}$
Metallization Mask Layout

Die Characteristics

DIE DIMENSIONS:

$3810 \mu \mathrm{~m} \times 2770 \mu \mathrm{~m}$
METALLIZATION:
Type: Al
Thickness: $10 \mathrm{k} \AA \pm 1 \mathrm{k} \AA$
GLASSIVATION:
Type: PSG/Nitride
Thickness: PSG: $7 \mathrm{k} \AA \pm 1.4 \mathrm{k} \AA$, Nitride: $8 \mathrm{k} \AA \pm 1.2 \mathrm{k} \AA$
WORST CASE CURRENT DENSITY:
$9.1 \times 10^{4} \mathrm{~A} \mathrm{~cm}^{2}$
Metallization Mask Layout

Die Characteristics

DIE DIMENSIONS:

$3100 \mu \mathrm{~m} \times 2083 \mu \mathrm{~m}$
METALLIZATION:
Type: Al
Thickness: $10 \mathrm{k} \AA \pm 1 \mathrm{k} \AA$
GLASSIVATION:
Type: PSG/Nitride
Thickness: PSG: $7 \mathrm{k} \AA \pm 1.4 \mathrm{k} \AA$, Nitride: $8 \mathrm{k} \AA \pm 1.2 \mathrm{k} \AA$
WORST CASE CURRENT DENSITY:
$9.1 \times 10^{4} \mathrm{~A} / \mathrm{cm}^{2}$
Metallization Mask Layout
DG508A

Die Characteristics

DIE DIMENSIONS:
$3100 \mu \mathrm{~m} \times 2083 \mu \mathrm{~m}$
METALLIZATION:
Type: Al
Thickness: $10 \mathrm{k} \AA \pm 1 \mathrm{k} \AA$
GLASSIVATION:
Type: PSG/Nitride
Thickness: PSG: $7 \mathrm{k} \AA \pm 1.4 \mathrm{k} \AA$, Nitride: $8 \mathrm{k} \AA \pm 1.2 \mathrm{k} \AA$
WORST CASE CURRENT DENSITY:
$9.1 \times 10^{4} \mathrm{~A} / \mathrm{cm}^{2}$
Metallization Mask Layout

DG526, DG527 DG528, DG529

December 1993

Features

- Direct RESET
- TTL and CMOS Compatible Address and Enable Inputs
- 44V Maximum Power Supply Rating
- Break-Before-Make Switching
- Alternate Source

Applications

- Data Acquisition Systems
- Communication Systems
- Automatic Test Equipment
- Microprocessor Controlled System

Analog CMOS Latchable Multiplexers

Description

The DG526, DG527, DG528, and DG529 are CMOS monolithic 16 channel/dual 4 channel analog multiplexers. Each device has on-chip address and control latches to simplify design in microprocessor based applications. The DG526 uses 4 address lines to control its 16 channels; the DG527, DG528 both use 3 address lines to control their 8 channels; and the DG529 uses 2 address lines to control its 4 channels. The enable pin is used to enable the address latches during the $\overline{\text { WR }}$ pulse. It can be hard wired to the logic supply if one of the channels will always be used (except during a reset) or it can be tied to address decoding circuitry for memory mapped operation. The $\overline{\mathrm{RS}}$ pin is used to clear all latches regardless of the state of any other latch or control line. The WR pin is used to transfer the state of the address control lines to their latches, except during a reset or when EN is low.

A channel in the ON state conducts signals equally well in both directions. In the OFF state each channel blocks voltages up to the supply rails. The address inputs, $\overline{\mathrm{WR}}, \overline{\mathrm{RS}}$ and the enable input are TTL and CMOS compatible over the full specified operation temperature range.

Ordering Information

PART NUMBER	TEMPERATURE	PACKAGE
DG526AK	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	28 Lead Ceramic DIP
DG526AK/883B	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	28 Lead Ceramic DIP
DG526BK	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 Lead Ceramic DIP
DG526BY	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 Lead Plastic SOIC
DG526CJ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	28 Lead Plastic DIP
DG526CK	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	28 Lead Ceramic DIP
DG526CY	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	28 Lead Plastic SOIC
DG527AK	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	28 Lead Ceramic DIP
DG527AK/883B	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	28 Lead Ceramic DIP
DG527BK	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 Lead Ceramic DIP
DG527BY	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 Lead Plastic SOIC
DG527CJ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	28 Lead Plastic DIP
DG527CK	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	28 Lead Ceramic DIP
DG527CY	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	28 Lead Plastic SOIC

PART NUMBER	TEMPERATURE	PACKAGE
DG528AK	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	18 Lead Ceramic DIP
DG528AK/883B	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	18 Lead Ceramic DIP
DG528BK	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	18 Lead Ceramic DIP
DG528BY	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	18 Lead Plastic SOIC
DG528CJ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	18 Lead Plastic DIP
DG528CK	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	18 Lead Ceramic DIP
DG528CY	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	18 Lead Plastic SOIC
DG529AK	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	18 Lead Ceramic DIP
DG529AK/883B	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	18 Lead Ceramic DIP
DG529BK	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	18 Lead Ceramic DIP
DG529BY	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	18 Lead Plastic SOIC
DG529CJ	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	18 Lead Plastic DIP
DG529CK	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	18 Lead Ceramic DIP
DG529CY	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	18 Lead Plastic SOIC

Pinouts

| | DG527
 (PDIP, SOIC)
 TOP VIEW |
| :--- | :--- | :--- |

Functional Diagrams
DG526
16 CHANNEL SINGLE ENDED MULTIPLEXER

DG528
8 CHANNEL SINGLE ENDED MULTIPLEXER

DIFFERENTIAL 8 CHANNEL MULTIPLEXER

DG529
DUAL 4 CHANNEL MULTIPLEXER

LOGIC INTERFACE AND LEVEL SHIFTER

DECODER AND SWITCH

Absolute Maximum Ratings

+ +	+44V
V - to Ground	25V
$V_{1 N}$ to Ground (Note 1)	(V--2V), (V++2V)
V_{S} or V_{D} to $\mathrm{V}+$ (Note 1)	+2V, (V-2V)
V_{S} or V_{D} to V - (Note 1)	$-2 \mathrm{~V},(\mathrm{~V}++2 \mathrm{~V})$
Current, Any Terminal Except S or D	30mA
Continuous Current, S or D	.20mA
Peak Current, S or D (Pulsed at 1ms, 10\% Duty Cycle Max)	
Storage Temperature Range	
C Suffix.	$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
A and B Suffix	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
ead Temperature (Soldering 10s)	+300

Thermal Information

Thermal Resistance	$\theta_{\text {JA }}$	θ_{Jc}
18 Lead Plastic DIP Package	$90^{\circ} \mathrm{C} / \mathrm{W}$	
18 Lead Ceramic DIP Package	$75^{\circ} \mathrm{C} / \mathrm{W}$	$22^{\circ} \mathrm{C}$ W
18 Lead SOIC Package .	$95^{\circ} \mathrm{C} / \mathrm{W}$	-
28 Lead Plastic DIP Package	$60^{\circ} \mathrm{C} / \mathrm{W}$	\cdots
28 Lead Ceramic DIP Package	$55^{\circ} \mathrm{C} / \mathrm{W}$	$17^{\circ} \mathrm{C} / \mathrm{N}$
28 Lead SOIC Package.	$70^{\circ} \mathrm{C} / \mathrm{W}$	-
Operating Temperature		
C Suffix	..	to $+70^{\circ} \mathrm{C}$
B Suffix	. . 25	to $+85^{\circ} \mathrm{C}$
A Suffix		to $+125^{\circ} \mathrm{C}$
Junction Temperature		
Ceramic Package		$+175^{\circ} \mathrm{C}$
Plastic Packages		$+150^{\circ} \mathrm{C}$

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Electrical Specifications (Note 3) $\mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{WR}=0 \mathrm{~V}, \mathrm{RS}=2.4 \mathrm{~V}, \mathrm{EN}=2.4 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, Unless Otherwise Specified

PARAMETER		(NOTE 6) TEST CONDITIONS		A SUFFIX			B AND C SUFFIX			UNITS		
		MIN	(NOTE 2) TYP	MAX	MIN	(NOTE 2) TYP	MAX					
DYNAMIC												
Switching Time of Multiplexer, ttransition	$\begin{aligned} & \text { DG526, } \\ & \text { DG527 } \end{aligned}$			See Figure 3 (Note 7)		-	0.65	1	-	0.65	\bullet	$\mu \mathrm{s}$
	$\begin{array}{\|l} \hline \text { DG528, } \\ \text { DG529 } \end{array}$	See Figure 3		-	0.6	1	-	0.6	-	$\mu \mathrm{s}$		
Break-BeforeMake Interval, topen	$\begin{array}{\|l\|} \hline \text { DG526, } \\ \text { DG527 } \end{array}$	See Figure 4		-	0.2	-	\bullet	0.2	-	$\mu \mathrm{s}$		
	$\begin{aligned} & \text { DG528, } \\ & \text { DG529 } \end{aligned}$			-	0.2	-	-	0.2	-	$\mu \mathrm{s}$		
Enable and Write Turn-ON Time, $\mathrm{t}_{\mathrm{ON}}(E N, \overline{W R})$	$\begin{array}{\|l} \text { DG526, } \\ \text { DG527 } \end{array}$	See Figures 1, 6 (Note 7)		-	0.7	1.5	-	0.7	-	$\mu \mathrm{s}$		
	$\begin{array}{\|l\|l} \hline \text { DG528, } \\ \text { DG529 } \end{array}$	See Figures 5, 6 (Note 7)		-	1	1.5	\bullet	1	\bullet	$\mu \mathrm{s}$		
Enable and Reset Turn OFF Time, toff (EN, $\overline{\mathrm{RS}}$)	$\begin{array}{\|l\|l} \hline \text { DG526, } \\ \text { DG527 } \end{array}$	See Figures 2, 7 (Note 7)		-	0.4	1	-	0.4	-	$\mu \mathrm{s}$		
	$\begin{array}{\|l\|} \hline \text { DG528, } \\ \text { DG529 } \end{array}$	See Figures 5, 6 (Note 7)		-	0.4	1	-	0.4	\bullet	$\mu \mathrm{s}$		
Off Isolation, OIRR	$\left\lvert\, \begin{array}{\|l\|l} \hline \text { DG526, } \\ \text { DG527 } \end{array}\right.$	$\begin{aligned} & V_{E N}=0 \mathrm{~V}, \mathrm{R}=1 \mathrm{k} \Omega, C_{L}=15 \mathrm{pF}, \\ & V_{S}=7 \mathrm{~V}_{\mathrm{RMS}}, f=500 \mathrm{kHz} \text { (Note 4) } \end{aligned}$		-	55	-	-	55	-	dB		
	$\begin{array}{\|l\|} \hline \text { DG528, } \\ \text { DG529 } \end{array}$			\bullet	68	\cdot	-	68	-	dB		
Logic Input Capacitance, C_{IN}	$\begin{array}{\|l\|l} \hline \text { DG526, } \\ \text { DG527 } \end{array}$	$\mathrm{f}=1 \mathrm{MHz}$		-	6	-	-	6	-	pF		
	$\begin{array}{\|l\|} \hline \text { DG528, } \\ \text { DG529 } \end{array}$			-	2.5	-	-	2.5	-	pF		
Source OFF Capacitance, $\mathrm{C}_{\text {S(OFF) }}$	$\begin{aligned} & \text { DG526, } \\ & \text { DG527 } \end{aligned}$	$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}$	$\begin{aligned} & V_{E N}=0 V \\ & f=140 \mathrm{kHz} \end{aligned}$	-	10	-	-	10	-	pF		
	$\begin{array}{\|l} \hline \text { DG528, } \\ \text { DG529 } \end{array}$			-	5	-	-	5	-	pF		

Specifications DG526, DG527, DG528, DG529
Electrical Specifications (Note 3) $\mathrm{V}_{+}=+15 \mathrm{~V}, \mathrm{~V}=-15 \mathrm{~V}, \mathrm{GND}=\mathrm{OV}, \mathrm{WR}=\mathrm{OV}, \mathrm{RS}=2.4 \mathrm{~V}, \mathrm{EN}=2.4 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, Unless Otherwise Specified (Continued)

PARAMETER		(NOTE 6) TEST CONDITIONS		A SUFFIX			B AND C SUFFIX			UNITS		
		MIN	(NOTE 2) TYP	MAX	MIN	(NOTE 2) TYP	MAX					
Drain OFF Capacitance, $\mathrm{C}_{\mathrm{D} \text { (OFF)T }}$	DG526			$\mathrm{V}_{\mathrm{D}}=0 \mathrm{~V}$	$\begin{aligned} & V_{E N}=0 V \\ & f=140 \mathrm{kHz} \end{aligned}$	-	65	-	-	65	-	pF
	DG527	-	35			-	-	35	-	pF		
	DG528	-	25			-	-	25	-	pF		
	DG529	-	12			-	-	12	-	pF		
Charge Injection, Q	\| DG526,	See Figure 8		-	6	-	-	6	-	pC		
	$\begin{array}{\|l\|} \hline \text { DG528, } \\ \text { DG529 } \end{array}$			-	4	-	-	4	-	pC		
INPUT												
Address Input Current, Input Voltage High, $I_{A H}$	$\begin{array}{\|l\|l} \hline \text { DG526, } \\ \text { DG527 } \end{array}$	$\mathrm{V}_{\mathrm{A}}=2.4 \mathrm{~V}$		-10	0.02	-	-10	0.02	-	$\mu \mathrm{A}$		
		$\mathrm{V}_{\mathrm{A}}=15 \mathrm{~V}$		-	0.02	10	-	0.02	10	$\mu \mathrm{A}$		
	$\begin{array}{\|l} \text { DG528, } \\ \text { DG529 } \end{array}$	$V_{A}=2.4 \mathrm{~V}$		-10	-0.002	-	-10	-0.002	-	$\mu \mathrm{A}$		
		$\mathrm{V}_{\mathrm{A}}=15 \mathrm{~V}$		-	0.006	10	-	0.006	10	$\mu \mathrm{A}$		
Address Input Current, Input Voltage Low, I_{AL}	$\begin{array}{\|l\|l} \text { DG526 } \\ \text { DG527 } \end{array}$	$\mathrm{V}_{\mathrm{EN}}=2.4 \mathrm{~V}$	$\begin{aligned} & \text { All } V_{A}=0 V, \\ & \overline{\mathrm{RS}}=0 \mathrm{~V}, \\ & \overline{\mathrm{WR}}=0 \mathrm{~V} \end{aligned}$	-10	0.01	-	-10	0.01	-	$\mu \mathrm{A}$		
		$\mathrm{V}_{\mathrm{EN}}=0 \mathrm{~V}$		-10	0.01	-	-10	0.01	-	$\mu \mathrm{A}$		
	$\begin{array}{\|l\|} \hline \text { DG528 } \\ \text { DG529 } \end{array}$	$\mathrm{V}_{\mathrm{EN}}=2.4 \mathrm{~V}$		-10	-0.002	\bullet	-10	-0.002	-	$\mu \mathrm{A}$		
		$\mathrm{V}_{\mathrm{EN}}=0 \mathrm{~V}$		-10	-0.002	-	-10	-0.002	-	$\mu \mathrm{A}$		
SWITCH												
Analog Signal Range, $\mathrm{V}_{\text {ANA:LOG }}$		(Note 7)		-15	-	+15	-15	-	+15	V		
Drain Source ON Resistance, $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$		$\begin{aligned} & \mathrm{V}_{\mathrm{D}}= \pm 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{AL}}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{AH}}=2.4 \mathrm{~V}, \\ & \mathrm{l}_{\mathrm{L}}=-200 \mu \mathrm{~A} \\ & \text { Sequence Each Switch } \mathrm{ON} \end{aligned}$		-	270	400	-	270	450	Ω		
Greatest Change in Drain Source ON Resistance Between Channels, $\Delta R_{\text {DS(ON) }}$		$\begin{aligned} & -10 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq 10 \mathrm{~V} \\ & \Delta \mathrm{R}_{\mathrm{DS}(\mathrm{ON})}=\frac{\mathrm{R}_{\mathrm{DS}(\mathrm{ON}) \text { MAX }}-R_{\mathrm{DS}(\mathrm{ON}) \mathrm{MIN}}}{R_{\mathrm{DS}(\mathrm{ON}) A V G .}} \end{aligned}$		\bullet	6	\bullet	\bullet	6	-	\%		
Source OFF Leakage Current, $I_{\text {S(OFF) }}$	$\begin{aligned} & \hline \text { DG526, } \\ & \text { DG527 } \end{aligned}$	$\mathrm{V}_{\mathrm{EN}}=0 \mathrm{~V}$	$\begin{aligned} & V_{S}= \pm 10 \mathrm{~V}, \\ & V_{D}=\mp 10 \mathrm{~V} \end{aligned}$	-1	0.02	1	-	0.02	$\stackrel{\square}{-}$	nA		
	\| DG528,		$\begin{aligned} & V_{S}= \pm 10 \mathrm{~V}, \\ & V_{D}=\mp 10 \mathrm{~V} \end{aligned}$	-1	-0.005	1	-5	-0.005	5	nA		
Drain OFF Leakage Current, $I_{\text {D(OFF) }}$	DG526	$\mathrm{V}_{\mathrm{EN}}=0 \mathrm{~V}$	$\begin{aligned} & V_{S}= \pm 10 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{D}}=\mp 10 \mathrm{~V} \end{aligned}$	-10	0.2	10	\bullet	0.2	-	nA		
	DG527		$\begin{aligned} & V_{S}= \pm 10 \mathrm{~V}, \\ & V_{D}=\mp 10 \mathrm{~V} \end{aligned}$	-5	0.2	5	-	0.2	-	nA		
	DG528		$\begin{aligned} & V_{S}= \pm 10 \mathrm{~V}, \\ & V_{D}=\mp 10 \mathrm{~V} \\ & \hline \end{aligned}$	-10	-0.015	10	-20	0.015	20	nA		
	DG529		$\begin{aligned} & V_{S}= \pm 10 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{D}}=\mp 10 \mathrm{~V} \end{aligned}$	-10	-0.008	10	-20	0.008	20	nA		
Drain ON Leakage Current, $I_{D(O N)}$	DG526	Sequence Each Switch On $\mathrm{V}_{\mathrm{AL}}=0.8 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{AH}}=2.4 \mathrm{~V}$ (Note 5)	$\begin{aligned} & V_{D}=V_{S(A L L)}= \\ & \pm 10 \mathrm{~V} \end{aligned}$	-10	0.2	10	-	0.2	-	nA		
	DG527		$\begin{aligned} & V_{D}=V_{S(A L L)}= \\ & \pm 10 \mathrm{~V} \end{aligned}$	-5	0.2	5	-	0.2	-	nA		

Specifications DG526, DG527, DG528, DG529
Electrical Specifications (Note 3) $\mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, $\mathrm{WR}=0 \mathrm{~V}, \mathrm{RS}=2.4 \mathrm{~V}, \mathrm{EN}=2.4 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, Unless Otherwise Specified (Continued)

PARAMETER		(NOTE 6) TEST CONDITIONS		A SUFFIX			B AND C SUFFIX			UNITS		
		MIN	(NOTE 2) TYP	MAX	MIN	(NOTE 2) TYP	MAX					
Drain ON Leakage Current, $I_{D(O N)}$ (Continued)	DG528			Sequence Each Switch On $\mathrm{V}_{\mathrm{AL}}=0.8 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{AH}}=2.4 \mathrm{~V}$ (Note 5)	$\begin{aligned} & V_{D}=V_{S(A L L)}= \\ & \pm 10 \mathrm{~V} \end{aligned}$	-10	-0.03	10	-20	-0.03	20	nA
	DG529	$\begin{aligned} & \mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}(\mathrm{ALL)}}= \\ & \pm 10 \mathrm{~V} \end{aligned}$	-10		-0.015	10	-20	-0.015	20	nA		
SUPPLY												
Positive Supply Current, I+	$\begin{array}{\|l\|} \hline \text { DG526, } \\ \text { DG527 } \end{array}$	$\mathrm{V}_{\mathrm{EN}}=0 \mathrm{~V}$	All $\mathrm{V}_{\mathrm{A}}=0 \mathrm{~V}$	-	2.0	3.0	-	2.0	\bullet	mA		
	$\begin{array}{\|l\|l} \text { DG528, } \\ \text { DG529 } \end{array}$			-	-	2.5	-	-	-2.5	mA		
Positive Supply Current, 1-	$\begin{array}{\|l\|} \hline \text { DG526, } \\ \text { DG527 } \end{array}$	$\mathrm{V}_{\mathrm{EN}}=0 \mathrm{~V}$	All $\mathrm{V}_{\mathrm{A}}=0 \mathrm{~V}$	-2.0	-1.2	-	-	-1.2	-	mA		
	$\begin{array}{\|l\|l} \hline \text { DG528, } \\ \text { DG529 } \end{array}$			-1.5	-	-	-1.5	-	-	mA		

Electrical Specifications $\mathrm{T}_{\mathrm{A}}=$ Over Operating Temperature Range, $\mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{WR}=0 \mathrm{~V}$, RS $=2.4 \mathrm{~V}, \mathrm{EN}=2.4 \mathrm{~V}$ Unless Otherwise Specified

PARAMETER		(NOTE 6) TEST CONDITIONS		A SUFFIX			B AND C SUFFIX			UNITS		
		MIN	(NOTE 2) TYP	MAX	MIN	(NOTE 2) TYP	MAX					
INPUT												
Address Input Current Input Voltage High, I_{AH}				$\mathrm{V}_{\mathrm{A}}=2.4 \mathrm{~V}$		-30	-	-	-30	-	-	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{A}}=15 \mathrm{~V}$		-	-	30	-	-	30	$\mu \mathrm{A}$		
Address Input Current, Input Voltage Low, ${ }^{I_{A L}}$	$\begin{array}{\|l\|} \hline \text { DG526, } \\ \text { DG527 } \end{array}$	$\mathrm{V}_{\mathrm{A}}=2.4 \mathrm{~V}$	$\begin{aligned} & V_{A(A L L)}=O V, \\ & \mathrm{RS}=0 \mathrm{~V}, \\ & \overline{\mathrm{WR}}=0 \mathrm{~V} \end{aligned}$	-10	-	-	-	-	-	$\mu \mathrm{A}$		
		$\mathrm{V}_{\mathrm{A}}=0 \mathrm{~V}$		-10	-	-	-	-	-	$\mu \mathrm{A}$		
	$\begin{array}{\|l} \hline \text { DG528, } \\ \text { DG529 } \end{array}$			-30	-	-	-30	-	-	$\mu \mathrm{A}$		
		$\mathrm{V}_{\mathrm{A}}=0 \mathrm{~V}$		-30	-	-	-30	-	-	$\mu \mathrm{A}$		
SWITCH												
Analog Signal Range, $\mathrm{V}_{\text {ANALOG }}$		Note 7		-15	-	+15	-	-	-	\%		
Drain Source ON Resistance, $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$		$\begin{aligned} & \mathrm{V}_{\mathrm{D}}= \pm 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{AL}}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{AH}}=2.4 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{S}}=-200 \mu \mathrm{~A}, \text { Sequence Each Switch ON } \end{aligned}$		-	-	500	-	-	500	Ω		
Source Off Leakage Current, IS(OFF)		$\mathrm{V}_{\mathrm{EN}}=0 \mathrm{~V}$	$\begin{aligned} & V_{S}= \pm 10 \mathrm{~V}, \\ & V_{D}=\mp 10 \mathrm{~V} \end{aligned}$	-50	-	50	-	-	-	nA		
Drain OFF Leakage Current, $I_{\text {D(OFF) }}$	DG526	$\mathrm{V}_{\mathrm{EN}}=\mathrm{OV}$	$\begin{aligned} & V_{S}= \pm 10 \mathrm{~V}, \\ & V_{D}=\mp 10 \mathrm{~V} \end{aligned}$	-300	-	300	-300	-	300	nA		
	DG527			-200	-	200	-200	-	200	nA		
	DG528		$\begin{aligned} & V_{S}=F_{1} 0 \mathrm{~V}, \\ & V_{D}= \pm 10 \mathrm{~V} \end{aligned}$	-200	-	200	-200	-	200	nA		
	DG529			-100	-	100	-100	-	100	nA		
Drain ON Leakage Current, $I_{D(O N)}$	DG526	Sequence Each Switch $\mathrm{On}, \mathrm{V}_{\mathrm{AL}}=0.8 \mathrm{~V}$, $\mathrm{V}_{\mathrm{AH}}=2.4 \mathrm{~V}$ (Note 5)	$\begin{aligned} & V_{D}=V_{S(A L L)} \\ & = \pm 10 \mathrm{~V} \end{aligned}$	-300	-	300	-300	-	300	nA		
	DG527			-200	-	200	-200	-	200	nA		
	DG528			-200	-	200	-200	-	200	nA		
	DG529			-100	-	100	-100	-	100	nA		

Minimum Input Timing Requirements Over Full Temperature Range

PARAMETER	MEASURED TERMINAL	MIN	UNITS
WRITE Pulse Width, $\mathrm{t}_{\text {WW }}$	$\overline{W R}$, See Figure 1	300	ns
A, EN Data Valid After WRITE (Stabilization Time), ${ }_{\text {LW }}$	$A_{0}, A_{1},\left(A_{2}\right), \mathrm{EN}, \overline{W R}$; See Figure 1	180	ns
A, EN Data Valid After WRITE (Hold Time), two	$A_{0}, A_{1},\left(A_{2}\right), E N, \overline{W R}$; See Figure 1	30	ns
RESET Pulse Width, trs	$\overline{\mathrm{RS}},\left(\right.$ Note 6), $\mathrm{V}_{S}=5 \mathrm{~V}$, See Figure 2	500	ns

NOTES:

1. Signals on V_{S}, V_{D} or $V_{I N}$ exceeding $V+$ or V - will be clamped by internal diodes. Limit diode forward current to maximum current ratings.
2. Typical values are for design aid only, not guaranteed and not subject to production testing.
3. The algebraic convention whereby the most negative value is a minimum, and most positive value is a maximum, is used in this datasheet.
4. OFFisolation $=20 \frac{\left|\mathrm{~V}_{\mathrm{S}}\right|}{\left|\mathrm{V}_{\mathrm{D}}\right|}$, where $\mathrm{V}_{\mathrm{S}}=$ input to OFF switch, and $\mathrm{V}_{\mathrm{D}}=$ output due to V_{S}.
5. $I_{D(O N)}$ is leakage from driver into "ON" switch.
6. Period of Reset ($\overline{\mathrm{RS}}$) pulse must be at least 50μ s during or after power ON.
7. Parameter not tested. Parameter guaranteed by design or characterization.

Waveforms and Test Circuits

FIGURE 1. $\overline{\text { WR }}$ TIMING WAVEFORMS

FIGURE 2. $\overline{R S}$ TIMING WAVEFORMS

Waveforms and Test Circuits (Continued)

FIGURE 3A. t transition SWITCHING TIME TEST CIRCUIT

* Similar connections for DG526

FIGURE 3B. t $_{\text {tRANSITION }}$ SWITCHING TIME TEST CIRCUIT

* Similar connections for DG527

FIGURE 3C. t $_{\text {transition }}$ SWITCHING TIME WAVEFORM

FIGURE 4A. Topen (BREAK-BEFORE-MAKE) SWITCHING TIME WAVEFORM

FIGURE 4B. topen (BREAK-BEFORE-MAKE) SWITCHING TIME TEST CIRCUIT

* Similar connections for DG526, DG527

Waveforms and Test Circuits (Continued)

FIGURE 5A. ENABLE ton $^{\text {AND }}$ AND IOFF $^{\text {SWITCHING TIME TEST CIR- }}$ CUIT

* Similar connections for DG526

FIGURE 5B. ENABLE ton $_{\text {AN }}$ AND toff SWITCHING TIME TEST CIRCUIT

* Similar connections for DG527

FIGURE 5C. ENABLE ton $_{\text {AND }}$ toff SWITCHING TIME WAVEFORMS

FIGURE 6A. WRITE ton $^{\text {SWITCHING TIME WAVEFORMS }}$

Waveforms and Test Circuits (Continued)

FIGURE 7A. RESET $\mathrm{t}_{\text {Off }}$ SWITCHING TIME WAVEFORMS

ΔV_{O} is the measured voltage error due to charge injection.
The error voltage in Coulombs is $\mathrm{Q}=\mathrm{C}_{\mathrm{L}} \times \Delta \mathrm{V}_{\mathrm{O}}$.
FIGURE 8A. CHARGE INJECTION WAVEFORMS

FIGURE 9. RDS(ON) $^{\text {VS ANALOG SIGNAL VOLTAGE vS SUPPLY }}$ VOLTAGE

FIGURE 7B. RESET toff SWITCHING TIME TEST CIRCUIT

* Similar connections for DG526, DG527

FIGURE 8B. CHARGE INJECTION TEST CIRCUIT

* Similar connections for DG526, DG527

FIGURE 10. TYPICAL RDS(ON) VARIATION WITH TEMPERATURE

Truth Tables

	A_{3}	A_{2}	A_{1}	A_{0}	EN	$\overline{\mathrm{WR}}$	$\overline{\mathbf{R S}}$	ON SWITCH
Latching	X	X	X	X	X	$\overline{\mathrm{O}}$	1	Maintains Previous Switch State
Reset	X	X	X	X	X	X	0	None (Latch- es Cleared)
Trans- parent Operation	X	X	X	X	0	0	1	None
	0	0	0	0	1	0	1	1
	0	0	0	1	1	0	1	2
0	0	1	0	1	0	1	3	
0	0	0	1	1	1	0	1	4
0	1	0	0	1	0	1	5	
	0	1	0	1	1	0	1	6
0	1	1	0	1	0	1	7	
0	1	1	1	1	0	1	8	
1	0	0	0	1	0	1	9	
1	0	0	1	1	0	1	10	
1	0	1	0	1	0	1	11	
1	0	1	1	1	0	1	12	
1	1	0	0	1	0	1	13	
1	1	0	1	1	0	1	14	
1	1	1	0	1	0	1	15	
1	1	1	1	1	0	1	16	

	A_{2}	A_{1}	A_{0}	EN	$\overline{\mathrm{WR}}$	$\overline{\mathrm{RS}}$	ON SWITCH
Latching	X	X	X	X	$\overline{\mathrm{C}}$	1	Maintains Previous Switch State
Reset	X	X	X	X	X	0	None (Latch- es Cleared)
Trans- parent Operation	X	X	X	0	0	1	None
	0	0	0	1	0	1	1
	0	0	1	1	0	1	2
	0	1	0	1	0	1	3
	0	1	1	1	0	1	4
	1	0	0	1	0	1	5
	1	0	1	1	0	1	6
	1	1	0	1	0	1	7
	1	1	1	1	0	1	8

Logic "1" $=\mathrm{V}_{\mathrm{AH}}, \mathrm{V}_{\mathrm{ENH}} \geq 2.4 \mathrm{~V}$

Logic "0" $=V_{A L}, V_{E N L} \leq 0.8 \mathrm{~V}$

A_{2}	A_{1}	A_{0}	EN	$\overline{\mathrm{WR}}$	$\overline{\mathrm{RS}}$	ON SWITCH
X	X	X	X	\widetilde{r}	1	Maintains Previous Switch Condition
X	X	X	X	X	0	None (Latches Cleared)
X	X	X	0	0	1	None
0	0	0	1	0	1	1
0	0	1	1	0	1	2
0	1	0	1	0	1	3
0	1	1	1	0	1	4
1	0	0	1	0	1	5
1	0	1	1	0	1	6
1	1	0	1	0	1	7
1	1	1	1	0	1	8

DG529

A_{1}	A_{0}	EN	$\overline{\mathrm{WR}}$	$\overline{\mathrm{RS}}$	ON SWITCH
X	X	X	$\widetilde{ }$	1	Maintains Previous Switch Condition
X	X	X	X	0	None (Latches Cleared)
X	X	0	0	1	None
0	0	1	0	1	1
0	1	1	0	1	2
1	0	1	0	1	3
1	1	1	0	1	4

Logic "1": $\mathrm{V}_{\mathrm{AH}} \geq 2.4 \mathrm{~V}$
Logic "0": $\mathrm{V}_{\mathrm{AL}} \leq 0.8 \mathrm{~V}$

Die Characteristics

DIE DIMENSIONS:
$3810 \mu \mathrm{~m} \times 2769 \mu \mathrm{~m}$
METALLIZATION:
Type: AI
Thickness: $10 \mathrm{k} \AA \pm 1 \mathrm{k} \AA$
GLASSIVATION:
Type: PSG Over Nitride PSG Thickness: $7 \mathrm{k} \AA \pm 1.4 \mathrm{k} \AA$ Nitride Thickness: $8 \mathrm{k} \AA \pm 1.2 \mathrm{k} \AA$

WORST CASE CURRENT DENSITY:
$9.1 \times 10^{4} \mathrm{Acm}^{2}$
Metallization Mask Layout

Die Characteristics

DIE DIMENSIONS:
$3810 \mu \mathrm{~m} \times 2769 \mu \mathrm{~m}$

METALLIZATION

Type: Al
Thickness: $10 \mathrm{k} \AA \pm 1 \mathrm{k} \AA$
GLASSIVATION:
Type: PSG Over Nitride PSG Thickness: $7 \mathrm{k} \AA \pm 1.4 \mathrm{k} \AA$
Nitride Thickness: $8 \mathrm{k} \AA \pm 1.2 \mathrm{k} \AA$
WORST CASE CURRENT DENSITY:
$9.1 \times 10^{4} \mathrm{~A}^{2} \mathrm{~cm}^{2}$

Metallization Mask Layout

DG527

Die Characteristics

```
DIE DIMENSIONS:
    3100\mum x 2083\mum
METALLIZATION:
    Type: Al
    Thickness: 10k\AÀ +1k\AA
GLASSIVATION:
    Type: PSG Over Nitride
    PSG Thickness: 7k\AA & 1.4k\AA
    Nitride Thickness: }8\textrm{k}\AA\pm\pm1.2\textrm{k}
WORST CASE CURRENT DENSITY:
    9.1 x 104 A/cm}\mp@subsup{}{}{2
Metallization Mask Layout
```

DG528

Die Characteristics

DIE DIMENSIONS:
$3100 \mu \mathrm{~m} \times 2083 \mu \mathrm{~m}$
METALLIZATION:
Type: Al
Thickness: $10 \mathrm{k} \AA \pm 1 \mathrm{k} \AA$
GLASSIVATION:
Type: PSG Over Nitride PSG Thickness: $7 \mathrm{k} \AA \pm 1.4 \mathrm{k} \AA$
Nitride Thickness: $8 \mathrm{k} \AA \pm 1.2 \mathrm{k} \AA$
WORST CASE CURRENT DENSITY:
$9.1 \times 10^{4} \mathrm{~A} \mathrm{~cm}^{2}$

Metallization Mask Layout

DG529

Low Resistance, Single 8 Channel and Differential 4 Channel CMOS Analog Multiplexers

Features

- Signal Range of +15V
- "ON" Resistance 250Ω
- Input Leakage (Max) 50nA
- Access Time 350ns
- Power Consumption 5mW
- DTLTTL Compatible Address
- $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Operation

Applications

- Data Acquisition Systems
- Precision Instrumentation
- Demultiplexing
- Selector Switch

Description

The HI -1818A and HI -1828A are monolithic high performance CMOS analog multiplexers offering built-in channel selection decoding plus an inhibit (enable) input for disabling all channels. Dielectric Isolation (DI) processing is used for enhanced reliability and performance (see Application Note 521). Substrate leakage and parasitic capacitance are much lower, resulting in extremely low static errors and high throughput rates. Low output leakage (typically 0.1 nA) and low channel ON resistance (250Ω) assure optimum performance in low level or current mode applications.

The HI-1818A is a single-ended 8 channel multiplexer, while the HI-1828A is a differential 4 channel version. Either device is ideally suited for medical instrumentation, telemetry systems, and microprocessor based data acquisition systems.
For MIL-STD-883 compliant parts, request the $\mathrm{HI}-1818 \mathrm{~A}$ 883; HI-1828A/883 data sheet.

HI-1818A, HI-1828A

Ordering Information

PART NUMBER	TEMPERATURE RANGE	PACKAGE
HI3-1818A-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	16 Lead Plastic DIP
HI1-1818A-2	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
HI1-1818A-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
HI1-1818A-7	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C}+96 \text { Hour } \\ \text { Burn-In } \end{gathered}$	16 Lead Ceramic DIP
HI4P1818A-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	20 Lead PLCC
HI1-1818A/883	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
HI1-1828A-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	16 Lead Ceramic DIP

PART NUMBER	TEMPERATURE RANGE	PACKAGE
HI1-1828A-7	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}+96$ Hour Burn-In	16 Lead Ceramic DIP
HI3-1828A-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	16 Lead Plastic DIP
HI4P1828A-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	20 Lead PLCC
HI1-1828A-2	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
HI1-1828A 883	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
HI4-1828A 883	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	20 Lead CLCC
HI4-1828A-8	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	20 Lead CLCC

Functional Diagrams
HI-1818A

HI-1828A

Schematic Diagrams

All N-Channel Bodies to VAll P-Channel Bodies to $\mathrm{V}_{\boldsymbol{+}}$ Unless Otherwise Specified

ADDRESS DECODER

All N - Channel Bodies to V All P-Channel Bodies to V+ A2 or $\overline{A 2}$ not used for HI-1828A

MULTIPLEXER SWITCH

Absolute Maximum Ratings (Note 1)

Thermal Information

Th	$\theta_{\text {JA }}$	$\theta_{\text {Jc }}$
Ceramic DIP Package	$77^{\circ} \mathrm{C} / \mathrm{W}$	$23^{\circ} \mathrm{C} / \mathrm{W}$
Ceramic LCC Package	$75^{\circ} \mathrm{C} / \mathrm{W}$	$20^{\circ} \mathrm{CN}$
Plastic DIP Package	$100^{\circ} \mathrm{CM}$	-
Plastic PLCC Package.	$80^{\circ} \mathrm{C} / \mathrm{W}$	
Operating Temperature Ranges		
HI-1818A/HI-1828A-2, -8.	-55°	to $+125^{\circ} \mathrm{C}$
HI-1818A/HI-1828A-5, -7		to $+75^{\circ} \mathrm{C}$
Junction Temperature		
CDIP, CLCC.		

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Electrical Specifications Supplies $=+15 \mathrm{~V},-15 \mathrm{~V},+5 \mathrm{~V} ; \mathrm{V}_{\mathrm{AL}}=0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{AH}}=4.0 \mathrm{~V}$, Unless Otherwise Specified

PARAMETER	TEST CONDITIONS	TEMP	HI-1818A/1828A -2, -8			HI-1818A/1828A -5, -7			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	
SWITCHING CHARACTERISTICS									
Access Time, T_{A}	(Note 4)	$+25^{\circ} \mathrm{C}$	-	350	500	-	350	-	ns
		Full	-	-	1000	-	-	1000	ns
Break-Before-Make Delay		$+25^{\circ} \mathrm{C}$	-	25	\bullet	-	100	-	ns
$\begin{array}{\|c} \hline \text { Settling Time } \\ 0.1 \% \end{array}$		$+25^{\circ} \mathrm{C}$	-	1.08	-	-	1.08	-	$\mu \mathrm{s}$
0.025 \%		$+25^{\circ} \mathrm{C}$	-	2.8	-	\bullet	2.8	-	$\mu \mathrm{s}$
Channel Input Capacitance, $\mathrm{C}_{\text {IN }}$		$+25^{\circ} \mathrm{C}$	-	4	-	-	4	-	pF
Channel Output Capacitance, $\mathrm{C}_{\text {OUT }}$ HI-1818A		$+25^{\circ} \mathrm{C}$	-	20	-	-	20	-	pF
HI-1828A		$+25^{\circ} \mathrm{C}$	-	10	-	-	10	-	pF
Drain-To-Source Capacitance, $\mathrm{C}_{\text {DS(OFF) }}$		$+25^{\circ} \mathrm{C}$	-	0.6	-	-	0.6	-	pF
Digital Input Capacitance, C_{D}		$+25^{\circ} \mathrm{C}$	-	5	-	-	5	-	pF
Enable Delay (ON), ${ }_{\text {L }}$ (EN(EN)		$+25^{\circ} \mathrm{C}$	-	300	500	-	300	-	ns
		Full	-	-	1000	-	-	1000	ns
Enable Delay (OFF), toff(EN)		$+25^{\circ} \mathrm{C}$	-	300	500	-	300	-	ns
		Full	-	-	1000	-	-	1000	ns
DIGITAL INPUT CHARACTERISTICS									
Input Low Threshold, $\mathrm{V}_{\text {AL }}$		Full	-	\bullet	0.4	-	-	0.4	V
Input High Threshold, $\mathrm{V}_{\text {AH }}$	(Note 3)	Full	4.0	\bullet	-	4.0	-	-	V
Input Leakage Current, I_{A}		Full	-	-	1	\bullet	\bullet	1	$\mu \mathrm{A}$
ANALOG CHANNEL CHARACTERISTICS									
Analog Signal Range, $\mathrm{V}_{\text {IN }}$		Full	-15	-	+15	-15	-	+15	V
ON Resistance, R $\mathrm{R}_{\text {O }}$	(Note 2)	$+25^{\circ} \mathrm{C}$	-	250	400	-	250	400	Ω
		Fuil	-	-	500	-	-	500	Ω
Input Leakage Current, $\mathrm{I}_{\text {S(OFF) }}$		Full	-	-	50	-	-	50	nA
On Channel Leakage Current, ID(ON) HI-1818A		Full	-	-	250	-	-	250	nA
HI-1828A		Full	-	-	125	-	-	125	nA
Output Leakage Current, $I_{\text {D(OFF) }}$$\mathrm{HI}-1818 \mathrm{~A}$		Full	-	-	250	-	-	250	nA
HI-1828A		Full	-	-	125	-	-	125	nA

Electrical Specifications Supplies $=+15 \mathrm{~V},-15 \mathrm{~V},+5 \mathrm{~V} ; \mathrm{V}_{\mathrm{AL}}=0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{AH}}=4.0 \mathrm{~V}$, Unless Otherwise Specified

PARAMETER	TEST CONDITIONS	TEMP	HI-1818A/1828A -2, -8			Hi-1818A/1828A -5, -7			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	
POWER SUPPLY CHARACTERISTICS									
Power Dissipation, P_{D}		Full	-	-	27.5	-	-	27.5	mW
Current, I+		Full	-	-	0.5	-	-	0.5	mA
Current, I-		Full	-	-	1	-	-	1	mA
Current, L_{L}		Full	-	-	1	-	-	1	mA

NOTES:

1. Absolute maximum ratings are limiting values, applied individually, beyond which the serviceability of the circuit may be impaired. Functional operation under any of these conditions is not necessarily implied.
2. $V_{\text {OUT }}= \pm 10 \mathrm{~V}$, IOUT $=\mp 1 \mathrm{~mA}$.
3. To drive from DTLTTL circuits, $1 \mathrm{k} \Omega$ pull-up resistors to +5.0 V supply are recommended.
4. Time measured to 90% of final output level; $\mathrm{V}_{\text {OUT }}=-5.0 \mathrm{~V}$ to +5.0 V , Digital Inputs $=0 \mathrm{~V}$ to +4.0 V .

Switching Waveforms

ENABLE DRIVE

ADDRESS DRIVE

FIGURE 2A.

NOTE: 1. Similar connections for $\mathrm{HI}-1828 \mathrm{~A}$
FIGURE $1 B$.
FIGURE 1. ENABLE DELAY, ton(EN) , $\mathrm{t}_{\mathrm{OFF}(E N)}$

NOTE: 1. Similar connections for $\mathrm{HI}-1828 \mathrm{~A}$
FIGURE 2B.
FIGURE 2C.

FIGURE 2. BREAK-BEFORE-MAKE DELAY, topen

Typical Performance Curves

FIGURE 3. ON RESISTANCE vs ANALOG SIGNAL LEVEL

ON LEAKAGE

* Two measurements per channel:
$+10 \mathrm{~V} /-10 \mathrm{~V}$ and $-10 \mathrm{~V} /+10 \mathrm{~V}$
(Two measurements per device for $\mathrm{I}_{\mathrm{D}(\mathrm{OFF})}$:
$+10 \mathrm{~V} /-10 \mathrm{~V}$ and $-10 \mathrm{~V} /+10 \mathrm{~V}$

FIGURE 5. LEAKAGE CURRENTS vs TEMPERATURE*

figure 4. ON CHANNEL CURRENT vs Voltage

* Similar connection for HI -1828A.

HI-1818A TRUTH TABLE

ADDRESS				"ON" CHANNEL
A_{2}	A_{1}	A_{0}	EN	
L	L	L	L	2
L	L	H	L	3
L	H	L	L	4
L	H	H	L	5
H	L	L	L	7
H	L	H	L	$(H$

HI-1828A TRUTH TABLE

ADDRESS			
A_{1}	A_{0}	$\bar{*}$ "ON	"ON" CHANNEL
L	L	L	1 and 5
L	H	L	2 and 6
H	L	L	3 and 7
H	H	L	4 and 8
X	X	H	None

Die Characteristics

DIE DIMENSIONS:
67.7×103.5 mils
METALLIZATION:
Type: Cu/AI
Thickness: $16 k \AA \pm 2 k \AA$
GLASSIVATION:
Type: Nitride/Silox
Thickness: Silox: $12 \mathrm{k} \AA \pm 2 \mathrm{k} \AA$, Nitride: $3.5 \mathrm{k} \AA \pm 1 \mathrm{k} \AA$
WORST CASE CURRENT DENSITY:
$1.43 \times 10^{5} \mathrm{~A}^{2} \mathrm{~cm}^{2}$ at 25 mA

Metallization Mask Layout

HI-1818A

H-1828A

HARRIS
HI-506, HI-507
SEMICONDUCTOR

Single 16 and 8/Differential 8 and 4 Channel CMOS Analog Multiplexers

Features

- Low On Resistance 180Ω
- Wide Analog Signal Range $\pm 15 \mathrm{~V}$
- TTLCMOS Compatible
- Access Time 250ns
- 44V Maximum Power Supply
- Break-Before-Make Switching
- No Latch-Up
- Replaces DG506ADDG506AA and DG507ADG507AA
- Replaces DG508A/DG508AA and DG509ADG509AA

Applications

- Data Acquisition Systems
- Precision Instrumentation
- Demultiplexing
- Selector Switch

Description

The HI-506/HI-507 and $\mathrm{HI}-508 / \mathrm{HI}-509$ monolithic CMOS multiplexers each include an array of sixteen and eight ana\log switches respectively, a digital decoder circuit for channel selection, voltage reference for logic thresholds, and an enable input for device selection when several multiplexers are present. The Dielectric Isolation (DI) process used in fabrication of these devices eliminates the problem of latchup. DI also offers much lower substrate leakage and parasitic capacitance than conventional junction isolated CMOS (see Application Note AN521).

The switching threshold for each digital input is established by an internal +5 V reference, providing a guaranteed minimum 2.4 V for logic " 1 " and maximum 0.8 V for logic " 0 ". This allows direct interface without pullup resistors to signals from most logic families: CMOS, TTL, DTL and some PMOS. For protection against transient overvoltage, the digital inputs include a series 200Ω resistor and diode clamp to each supply.

The HI-506 is a single 16 channel, the $\mathrm{HI}-507$ is an 8 channel differential, the HI-508 is a single 8 channel and the HI509 is a 4 channel differential multiplexer. The $\mathrm{HI}-506 / \mathrm{HI}-507$ are available in a 28 pin ceramic or plastic DIP, 28 pad leadless chip carrier (LCC), 28 pin plastic leaded chip carrier (PLCC) and 28 lead SOIC packages. The HI-508/HI-509 are available in a 16 pin plastic or ceramic DIP, a 20 pin plastic leaded chip carrier (PLCC), 20 pad ceramic leadless chip carrier (LCC) and 16 lead SOIC packages.

If input overvoltages are present the $\mathrm{HI}-546 / \mathrm{HI}-547 / \mathrm{HI}-548 /$ $\mathrm{HI}-549$ multiplexers are recommended. For further information see Application Notes AN520 and AN521. The HI-506/ $\mathrm{HI}-507 / \mathrm{HI}-508 / \mathrm{HI}-509$ is offered in both commercial and military grades. For additional High Reliability Screening including 160 hour burn-in specify the "- 8 " suffix. For Mil-Std- 883 compliant parts, request the HI-506/883, HI-507/883, HI508/883 or HI-509/883 datasheet

HI-506, HI-507, HI-508, HI-509

Ordering Information

PART NUMBER	TEMPERATURE RANGE	PACKAGE
HI1-0506/883	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	28 Lead Ceramic DIP
HI1-0506-8	Hi-Rel Processing with Burn-In	28 Lead Ceramic DIP
HI1-0506-9	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 Lead Ceramic DIP
H14-0506/883	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	28 Lead Ceramic LCC
H11-0507/883	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	28 Lead Ceramic DIP
H19P0506-9	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 Lead SOIC
HI3-0506-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	28 Lead Plastic DIP
HI1-0506-7	$\begin{aligned} & 0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \\ + & 96 \text { Hour Burn-In } \end{aligned}$	28 Lead Ceramic DIP
HI9P0506-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	28 Lead SOIC
H140506-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	28 Lead PLCC
HI1-0506-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	28 Lead Ceramic DIP
HI1-0506-4	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 Lead Ceramic DIP
HI1-0506-2	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	28 Lead Ceramic DIP
HI1-0507-8	Hi-Rel Processing with Burn-In	28 Lead Ceramic DIP
HI1-0507-9	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 Lead Ceramic DIP
HI4-0507/883	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	28 Lead Ceramic LCC
HI1-0507-4	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 Lead Ceramic DIP
HI4P0507-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	28 Lead PLCC
HI9P0507-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	28 Lead SOIC
HI1-0507-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	28 Lead Ceramic DIP
HI3-0507-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	28 Lead Plastic DIP
HI1-0507-7	$\begin{aligned} & 0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \\ + & 96 \text { Hour Burn-In } \end{aligned}$	28 Lead Ceramic DIP
H19P0507-9	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 Lead SOIC
HI1-0507-2	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	28 Lead Ceramic DIP

PART NUMBER	TEMPERATURE RANGE	PACKAGE
HI1-0508/883	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
HI1-0508-8	Hi -Rel Processing with Burn-In	16 Lead Ceramic DIP
H11-0508-9	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
HI4-0508/883	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	20 Lead Ceramic LCC
HI1-0509/883	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
HI1-0508-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
HI3-0508-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	16 Lead Plastic DIP
HI1-0508-4	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
H11-0508-2	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
HI4P0508-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	20 Lead PLCC
HI1-0508-7	$\begin{aligned} & 0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \\ + & 96 \text { Hour Burn-ln } \end{aligned}$	16 Lead Ceramic DIP
HI9P0508-9	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Lead SOIC (N)
H19P0508-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	16 Lead SOIC (N)
HI1-0509-8	Hi-Rel Processing with Burn-In	16 Lead Ceramic DIP
HI1-0509-9	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
HI4-0509/883	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	20 Lead Ceramic LCC
HI9P0509-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	16 Lead SOIC (N)
H19P0509-9	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Lead SOIC (N)
HI1-0509-4	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
HI1-0509-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
HI3-0509-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	16 Lead Plastic DIP
HI4P0509-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	20 Lead PLCC
HI1-0509-2	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
HI1-0509-7	$\begin{aligned} & 0^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \\ + & 96 \text { Hour Burn-ln } \end{aligned}$	16 Lead Ceramic DIP

Pinouts

(PDIP, CDIP, SOIC)
TOP VIEW

Pinouts (Continued)

Functional Diagrams

HI-508

H1-507

HI-509

Schematic Diagrams

ADDRESS INPUT BUFFER LEVER SHIFTER

Schematic Diagrams (Continued)

Specifications HI－506，HI－507，HI－508，HI－509

Absolute Maximum Ratings
 or 20 mA ，whichever occurs first
Analog Signal Overvoltage（Note 7）

＋ $\mathrm{V}_{\text {S }}$	$+V_{\text {SUPPLY }}+2 V$
Continuous C	．－ SUPPPLY $^{\text {－2V }}$
Peak C	
	部y cycle max）
torage Temperature Range	$65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
ad Temperature（Solderin	30

Thermal Information

Thermal Resistance	$\theta_{\text {JA }}$	θ_{Jc}
16 Lead Ceramic DIP Packages	$80^{\circ} \mathrm{C} / \mathrm{W}$	$24^{\circ} \mathrm{C} / \mathrm{W}$
16 Lead SOIC Packages ．	$115^{\circ} \mathrm{C} / \mathrm{W}$	－
16 Lead Plastic DIP	$100^{\circ} \mathrm{C} / \mathrm{W}$	－
20 Lead Ceramic LCC Packages	$75^{\circ} \mathrm{C} / \mathrm{W}$	$20^{\circ} \mathrm{C} / \mathrm{W}$
20 Lead PLCC．	$80^{\circ} \mathrm{C} / \mathrm{W}$	－
28 Lead Ceramic DIP Packages	$55^{\circ} \mathrm{C} / \mathrm{W}$	$20^{\circ} \mathrm{C} / \mathrm{W}$
28 Lead Plastic DIP Package	$60^{\circ} \mathrm{C} / \mathrm{W}$	－
28 Lead SOIC Package ．	$70^{\circ} \mathrm{C} / \mathrm{W}$	－
28 Lead Ceramic LCC Packages	$60^{\circ} \mathrm{C} / \mathrm{W}$	$11^{\circ} \mathrm{C} / \mathrm{W}$
28 Lead PLCC Packages	$70^{\circ} \mathrm{C} / \mathrm{W}$	－

Operating Temperature Ranges
HI－506／507／508／509－2，－8 ．．．．．．．．．．．．．．．．．．$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
HI－506／507／508／509－4 ．．．．．．．．．．．．．．．．$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
HI－506／507／508／509－5 ．．．．．．．．．．．．．$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature
Ceramic ．．$+175^{\circ} \mathrm{C}$
Plastic ．．．．．．．．．．．．．．．．．．．．．．．．．．．．

CAUTION：Stresses above those listed in＂Absolute Maximum Ratings＂may cause permanent damage to the device．This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied．

Electrical Specifications Supplies $=+15 \mathrm{~V},-15 \mathrm{~V} ; \mathrm{V}_{\mathrm{AH}}$（Logic Level High）$=+2.4 \mathrm{~V} ; \mathrm{V}_{\mathrm{AL}}$（Logic Level Low）$=+0.8 \mathrm{~V}$ ， Unless Otherwise Specified．For Test Conditions，Consult Performance Curves．

PARAMETER	TEST CONDITIONS	TEMP	H1－5XX－2，HI－5XX－8			HL－5XX－4，HI－5XX－5			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	
SWITCHING CHARACTERISTICS									
Access Time， I_{A}	（Note 1）	$+25^{\circ} \mathrm{C}$	－	250	500	－	250	－	ns
		Full	－	－	1000	－	－	1000	ns
Break－Before－Make Delay，topen	（Note 1）	$+25^{\circ} \mathrm{C}$	25	80	－	25	80	－	ns
Enable Delay（ON），ton（EN）	（Note 1）	$+25^{\circ} \mathrm{C}$	－	250	500	－	250	－	ns
		Full	－	－	1000	－	－	1000	ns
Enable Delay（OFF），toff（EN）	（Note 1）	$+25^{\circ} \mathrm{C}$	－	250	500	－	250	－	ns
		Full	－	－	1000	－	－	1000	ns
Settling Time to 0.1% ， t_{s} （ $\mathrm{H}-506$ and $\mathrm{HI}-507$ ）		$+25^{\circ} \mathrm{C}$	－	1.2	－	－	1.2	－	$\mu \mathrm{s}$
Settling Time to 0.01% ， t_{s} （HI－506 and HI－507）		$+25^{\circ} \mathrm{C}$	－	2.4	－	－	2.4	－	$\mu \mathrm{s}$
Settling Time to 0.1% ， t_{s} （HI－508 and HI－509）		$+25^{\circ} \mathrm{C}$	－	360	－	－	360	－	ns
Settling Time to 0.01% ， t_{s} （HI－508 and HI－509）		$+25^{\circ} \mathrm{C}$	－	600	－	－	600	－	ns
＂Off Isolation＂	（Note 5）	$+25^{\circ} \mathrm{C}$	50	68	－	50	68	－	dB
Channel Input Capacitance， $\mathrm{C}_{\text {S（OFF）}}$		$+25^{\circ} \mathrm{C}$	－	10	－	－	10	－	pF
Channel Output Capacitance， $\mathrm{C}_{\mathrm{D} \text {（OFF）}}$（HI－506）		$+25^{\circ} \mathrm{C}$	－	52	－	－	52	－	pF
Channel Output Capacitance， $\mathrm{C}_{\mathrm{D} \text {（OFF）}}$（HI－507）		$+25^{\circ} \mathrm{C}$	－	30	－	－	30	－	pF
Channel Output Capacitance， $\mathrm{C}_{\text {D（OFF）}}$（HI－508）		$+25^{\circ} \mathrm{C}$	－	17	－	－	17	－	pF
Channel Output Capacitance， $\mathrm{C}_{\mathrm{D} \text {（OFF）}}$（HI－509）		$+25^{\circ} \mathrm{C}$	－	12	－	－	12	－	pF
Digital Input Capacitance， C_{A}		$+25^{\circ} \mathrm{C}$	－	6	－	－	6	－	pF

Electrical Specifications Supplies $=+15 \mathrm{~V},-15 \mathrm{~V} ; \mathrm{V}_{\mathrm{AH}}($ Logic Level High $)=+2.4 \mathrm{~V} ; \mathrm{V}_{\mathrm{AL}}$ (Logic Level Low) $=+0.8 \mathrm{~V}$, Unless Otherwise Specified. For Test Conditions, Consult Performance Curves. (Continued)

PARAMETER	TEST CONDITIONS	TEMP	HI-5XX-2, H1-5XX-8			HI-5XX-4, HI-5XX-5			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	
Input to Output Capacitance, CDS(OFF)		$+25^{\circ} \mathrm{C}$	-	0.08	-	-	0.08	-	pF
DIGITAL INPUT CHARACTERISTICS									
Input Low Threshold, $\mathrm{V}_{\text {AL }}$	(Note 1)	Full	-	-	+0.8	-	-	+0.8	V
Input High Threshold, $\mathrm{V}_{\text {AH }}$	(Note 1)	Full	+2.4	-	-	+2.4	-	-	V
Input Leakage Current (High or Low), I	(Notes 1, 4)	Full	-	-	1.0	-	-	1.0	$\mu \mathrm{A}$

ANALOG CHANNEL CHARACTERISTICS

Analog Signal Range, $\mathbf{V}_{\mathbf{S}}$		Full	-15	-	+15	-15	-	+15	V
On Resistance, $\mathrm{R}_{\text {ON }}$	(Notes 1, 2)	$+25^{\circ} \mathrm{C}$	-	180	300	-	180	400	Ω
$\Delta \mathrm{R}_{\text {ON }}$, (Any Two Channels)		$+25^{\circ} \mathrm{C}$	-	5	-	-	5	-	\%
Off Input Leakage Current, Is(OfF)	(Note 3)	$+25^{\circ} \mathrm{C}$	-	0.03	-	-	0.03	-	nA
		Full	-	-	50	-	-	50	nA
Off Output Leakage Current, $l_{\text {D(OFF) }}$	(Note 3)	$+25^{\circ} \mathrm{C}$	-	0.3	\bullet	-	0.3	-	nA
Hi-506		Full	-	-	300	-	-	300	nA
H1-507		Full	-	-	200	-	-	200	nA
H1-508		Full	-	\bullet	200	-	-	200	nA
H1-509		Full	-	-	100	-	-	100	nA
On Channel Leakage Current, $\mathrm{I}_{\mathrm{D}(\mathrm{ON})}$ HI-506	(Note 3)	$+25^{\circ} \mathrm{C}$	-	0.3	-	-	0.3	-	nA
		Full	-	-	300	-	-	300	nA
HI-507		Full	-	-	200	-	-	200	nA
H1-508		Full	-	-	200	-	-	200	nA
HI-509		Full	-	-	100	-	-	100	nA
Differential Off Output Leakage Current, I IIFF (HI-507, HI-509 Only)	(Note 1)	Full	-	-	50	-	-	50	nA

POWER REQUIREMENTS

Current, It, Pin 1 HI-506/HI-507	(Note 6)	Full	-	1.5	3.0	-	1.5	3.0	mA
Current, It, HI-508/HI-509	(Note 6)	Full	-	1.5	2.4	-	1.5	2.4	mA
Current, 1-, Pin $27 \mathrm{HI}-506 / \mathrm{HI}-507$	(Note 6)	Full	-	0.4	1.0	-	0.4	1.0	mA
Current, l-, HI-508/HI-509	(Note 6)	Full	-	0.4	1.0	-	0.4	1.0	mA
Power Dissipation, P_{D} HI-506/HI-507		Full	-	-	60	-	-	60	mW
H1-508/HI-509		Full	-	-	51	-	-	51	mW

NOTES:

1. 100% tested for Dash 8 . Leakage currents not tested at $-55^{\circ} \mathrm{C}$.
2. $V_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=\mp 1 \mathrm{~mA}$.
3. Ten nanoamps is the practical lower limit for high speed measurement in the production test environment.
4. Digital input leakage is primarily due to the clamp diodes (see Schematic). Typical leakage is less than 1 nA at $+25^{\circ} \mathrm{C}$.
5. $V_{E N}=0.8 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{~K}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{V}_{\mathrm{S}}=7 \mathrm{~V}_{\mathrm{RMS}}, \mathfrak{f}=100 \mathrm{kHz}$.
6. $\mathrm{V}_{\mathrm{EN}}, \mathrm{V}_{\mathrm{A}}=0 \mathrm{~V}$ or 2.4 V .
7. Signal voltage at any analog input or output (S or D) will be clamped to the supply rail by internal diodes. Limit the resulting current as shown under absolute maximum ratings. If an overvoltage condition is anticipated (analog input exceeds either power supply voltage), the Harris $\mathrm{HI}-546 / \mathrm{Hl}-547 / \mathrm{HI}-548 / \mathrm{Hl}-549$ multiplexers are recommended.

Performance Curves $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\text {SUPPLY }}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{AH}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{AL}}=0.8 \mathrm{~V}$, Unless Otherwise Specified

FIGURE 1A. TEST CIRCUIT

FIGURE 1B. ON RESISTANCE vs ANALOG INPUT VOLTAGE, TEMPERATURE

FIGURE 1C. NORMALIZED ON RESISTANCE vs SUPPLY VOLTAGE

FIGURE 1. ON RESISTANCE

FIGURE 2A. LEAKAGE CURRENT vs TEMPERATURE

FIGURE 2B. $I_{\text {D(OFF) }}$ TEST CIRCUIT

Performance Curves $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\text {SUPPLY }}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{AH}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{AL}}=0.8 \mathrm{~V}$, Unless Otherwise Specified (Continued)

FIGURE 2. ON RESISTANCE
NOTE:

1. Two measurements per channel: $+10 \mathrm{~V} /-10 \mathrm{~V}$ and $-10 \mathrm{~V} /+10 \mathrm{~V}$. (Two measurements per device for $\mathrm{I}_{\mathrm{D}(\mathrm{OFF})}+10 \mathrm{~V} /-10 \mathrm{~V}$ and $-10 \mathrm{~V} /+10 \mathrm{~V}$)

FIGURE 3. LOGIC THRESHOLD vs POWER SUPPLY VOLTAGE

FIGURE 5A. HI-506/H-507

FIGURE 4. OFF ISOLATION vs FREQUENCY

FIGURE 5B. HI-508/HI-509

FIGURE 5. POWER SUPPLY CURRENT vS TEMPERATURE

Performance Curves $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SUPPLY}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{AH}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{AL}}=0.8 \mathrm{~V}$, Unless Otherwise Specified (Continued)

FIGURE 6A. ON CHANNEL CURRENT vs VOLTAGE

FIGURE 6B. TEST CIRCUIT

FIGURE 6. ON CHANNEL CURRENT vs VOLTAGE

FIGURE 7A. SUPPLY CURRENT vs TOGGLE FREQUENCY

FIGURE 7B. TEST CIRCUIT

FIGURE 7. SUPPLY CURRENT

FIGURE 8A. ACCESS TIME vs LOGIC LEVEL (HIGH)

FIGURE 8B. TEST CIRCUIT

Switching Waveforms

FIGURE 8C. WAVEFORMS

FIGURE 8D. ACCESS TIME

FIGURE 8. ACCESS TIME

\dagger Similar connection for $\mathrm{HI}-507 / \mathrm{HI}-508 / \mathrm{HI}-509$
FIGURE 9A. TEST CIRCUIT

FIGURE 9B. WAVEFORMS

100ns/DIV
FIGURE 9C. BREAK-BEFORE-MAKE DELAY (LOPEN)

FIGURE 9. BREAK-BEFORE-MAKE DELAY (topen)

Switching Waveforms (Continued)

\dagger Similar connection for $\mathrm{HI}-507 / \mathrm{HI}-508 / \mathrm{HI}-509$
FIGURE 10A. TEST CIRCUIT

FIGURE 10B. WAVEFORMS

FIGURE 10C. ENABLE DELAY ton(EN) , $\mathrm{t}_{\mathrm{OFF}(E N)}$

FIGURE 10. ENABLE DELAY

HI-506, HI-507, HI-508, HI-509
Truth Tables

Hl-506					
A $_{3}$	A_{2}	A_{1}	A $_{0}$	EN	"ON" CHANNEL
X	X	X	X	L	None
L	L	L	L	H	1
L	L	L	H	H	2
L	L	H	L	H	3
L	L	H	H	H	4
L	H	L	L	H	5
L	H	L	H	H	6
L	H	H	L	H	7
L	H	H	H	H	8
H	L	L	L	H	9
H	L	L	H	H	10
H	L	H	L	H	11
H	L	H	H	H	12
H	H	L	L	H	13
H	H	L	H	H	14
H	H	H	L	H	15
H	H	H	H	H	16

HI-508

A_{2}	A_{1}	A_{0}	EN	"ON" CHANNEL
X	X	X	L	None
L	L	L	H	1
L	L	H	H	2
L	H	L	H	3
L	H	H	H	4
H	L	L	H	5
H	L	H	H	6
H	H	L	H	7
H	H	H	H	8

HI-509

A_{1}	A_{0}	EN	"ON" CHANNEL PAIR
X	X	L	None
L	L	H	1
L	H	H	2
H	L	H	3
H	H	H	4

HI-507

A_{2}	A_{1}	A_{0}	EN	"ON" CHANNEL
X	X	X	L	None
L	L	L	H	1
L	L	H	H	2
L	H	L	H	3
L	H	H	H	4
H	L	L	H	5
H	L	H	H	6
H	H	L	H	7
H	H	H	H	8

Die Characteristics

DIE DIMENSIONS:
129 mils $\times 82$ mils

METALLIZATION:

Type: CuAl
Thickness: $16 \mathrm{k} \AA \pm 2 \mathrm{k} \AA$

GLASSIVATION:

Type: Nitride/Silox
Nitride Thickness: $3.5 \mathrm{k} \AA \pm 1 \mathrm{k} \AA$
Silox Thickness: $12 \mathrm{k} \AA \pm 2 \mathrm{k} \AA$
WORST CASE CURRENT DENSITY:
$1.4 \times 10^{5} \mathrm{~A} / \mathrm{cm}^{2}$
TRANSISTOR COUNT: 421
PROCESS: CMOS-DI
SUBSTRATE POTENTIAL*: - V $_{\text {SUPPLY }}$

* The substrate appears resistive to the $-V_{\text {SUPPLY }}$ terminal, therefore it may be left floating (Insulating Die Mount) or it may be mounted on a conductor at $-V_{\text {SUPPLY }}$ potential

Metallization Mask Layout

HI-506

HI-507

NOTE: Pad numbers correspond to DIP pin numbers only.

Die Characteristics

DIE DIMENSIONS:

81.9 mils $\times 90.2$ mils

METALLIZATION:

Type: CuAl
Thickness: $16 k \AA \pm 2 k \AA$
GLASSIVATION:
Type: Nitride/Silox
Nitride Thickness: $3.5 \mathrm{k} \AA \pm 1 \mathrm{k} \AA$
Silox Thickness: $12 \mathrm{k} \AA \pm 2 \mathrm{k} \AA$
WORST CASE CURRENT DENSITY:
$1.4 \times 10^{5} \mathrm{~A}^{\mathrm{cm}}{ }^{2}$
TRANSISTOR COUNT: 234
PROCESS: CMOS-DI
SUBSTRATE POTENTIAL*: - ${ }_{\text {SUPPLY }}$

* The substrate appears resistive to the $-\mathrm{V}_{\text {SUPPLY }}$ terminal, therefore it may be left floating (Insulating Die Mount) or it may be mounted on a conductor at $-\mathrm{V}_{\text {SUPPLY }}$ potential

Metallization Mask Layout

NOTE: Pad numbers correspond to DIP pin numbers only.

Features

- Analog Overvoltage 70Vp-p
- No Channel Interaction During Overvoltage
- 44V Maximum Power Supply
- Fail Safe with Power Loss (No Latch-Up)
- Break-Before-Make Switching
- Analog Signal Range $\pm 15 \mathrm{~V}$
- Access Time 500ns
- Power Dissipation 7.5mW

Applications

- Data Acquisition Systems
- Industrial Controls
- Telemetry

Description

The HI-506A, HI-507A, HI-508A and HI-509A are analog multiplexers with active overvoltage protection. Analog input levels may greatly exceed either power supply without damaging the device or disturbing the signal path of other channels. Active protection circuitry assures that signal fidelity is maintained even under fault conditions that would destroy other multiplexers. Analog inputs can withstand constant 70V peak-to-peak levels with $\pm 15 \mathrm{~V}$ supplies. Digital inputs will also sustain continuous faults up to 4 V greater than either supply. In addition, signal sources are protected from short circuiting should multiplexer supply loss occur. Each input presents $1 \mathrm{k} \Omega$ of resistance under this condition. These features make the HI-506A, HI-507A, HI-508A and HI-509A ideal for use in systems where the analog inputs originate from external equipment, or separately powered circuitry. All devices are fabricated with 44 V dielectrically isolated CMOS technology. The HI-506A is a single 16 channel multiplexer, the $\mathrm{HI}-507 \mathrm{~A}$ is an 8 channel differential multiplexer, the $\mathrm{HI}-508 \mathrm{~A}$ is a single 8 channel multiplexer and the $\mathrm{HI}-509 \mathrm{~A}$ is a differential 4 channel multiplexer. If input overvoltage protection is not needed the HI-506/507/508/509 multiplexers are recommended. For further information see Application Notes AN520 and AN521.

The HI-506A/507A devices are available in a 28 lead Plastic or Ceramic DIP and the HI-508A/509A devices are available in a 16 lead Plastic or Ceramic DIP package.

The HI-50XA are offered in industrial/commercial and military grades, additional Hi-Rel screening including 160 hour burn-in is specified by the " 8 " suffix. For Mil-Std-883 compliant parts, request the HI-546/883, $\mathrm{HI}-547 / 883, \mathrm{HI}-548 / 883$ or $\mathrm{HI}-549 / 883$ data sheets.

Ordering Information

PART NUMBER	TEMPERATURE RANGE	PACKAGE
HI1-0506A-2	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	28 Lead Ceramic DIP
HI1-0506A-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	28 Lead Ceramic DIP
HI1-0506A-7	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ +96 Hour Burn-In	28 Lead Ceramic DIP
HI1-0506A-8	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ +160 Hour Burn-In	28 Lead Ceramic DIP
HI3-0506A-5	$+0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	28 Lead Plastic DIP
HI1-0507A-2	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	28 Lead Ceramic DIP
HI1-0507A-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	28 Lead Ceramic DIP
HI1-0507A-7	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ +96 Hour Burn-In	28 Lead Ceramic DIP
HI1-0507A-8	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ +160 Hour Burn-In	28 Lead Ceramic DIP
HI3-0507A-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	28 Lead Plastic DIP

PART NUMBER	TEMPERATURE RANGE	PACKAGE
HI1-0508A-2	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
HI1-0508A-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
HIt-0508A-7	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ +96 Hour Burn-In	16 Lead Ceramic DIP
HI1-0508A-8	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ +160 Hour Burn-In	16 Lead Ceramic DIP
HI3-0508A-5	$+0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	16 Lead Plastic DIP
HI1-0509A-2	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
HI1-0509A-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
HI1-0509A-7	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ +96 Hour Burn-In	16 Lead Ceramic DIP
HI1-0509A-8	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ +160 Hour Burn-In	16 Lead Ceramic DIP
HI3-0509A-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	16 Lead Plastic DIP

Pinouts

$A_{0} 1$	$16 A_{1}$
enable 2	$15{ }^{1} 2$
$-V_{\text {SUPPLY }} 3$	14) GND
IN 14	$13+V_{\text {SUPPLY }}$
IN 25	12 IN 5
IN 36	11 IN 6
IN 47	10 IN 7
OUT 8	9. $1 \times$

$A_{0} \boxed{1}$ ENABLE 2 \square	$16 A_{1}$ 15 GND
- $\mathrm{V}_{\text {SUPPLY }} 3$	$14{ }^{\text {d }}+\mathrm{V}_{\text {SUPPLY }}$
IN 1A 4	13 IN 1B
IN 2A 5	12 IN 2 B
IN 3A 6	11 IN 3B
IN 4A 7	10 IN 4B
OUT A 8	9) OUT B

Functional Diagrams

HI-508A

HI-509A

Schematic Diagrams

ADDRESS INPUT BUFFER AND LEVEL SHIFTER

Schematic Diagrams (Continued)

MULTIPLEX SWITCH

Absolute Maximum Ratings

$\mathrm{V}_{\text {SUPPLY(+) }}$ to $\mathrm{V}_{\text {SUPPLY(-) }}$. +44 V
$\mathrm{V}_{\text {SUPPLY(+) }}$ to GND ... +22 V
$V_{\text {SUPPLY(-) }}$ to GND. $+25 \mathrm{~V}$
Digital Input Overvoltage

Analog Signal Overvoltage

Thermal Information

Thermal Resistance 28 Lead Ceramic DIP Packages	$\theta_{\text {JA }}$	θ_{Jc}
($\mathrm{Hl}-506 \mathrm{~A}, \mathrm{Hl}-507 \mathrm{~A}$)	$20^{\circ} \mathrm{CN}$	$55^{\circ} \mathrm{C} W$
16 Lead Ceramic DIP Packages (HI-508A, HI-509A)	$24^{\circ} \mathrm{CM}$	$80^{\circ} \mathrm{CN}$
28 Lead Plastic DIP Packages (HI-506A, HI-507A)		$60^{\circ} \mathrm{C}$
16 Lead Plastic DIP Packages		
Operating Temperature Ranges		
HI-506A/507A/508A/509A-2, -8 $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ HI-506A/507A/508A/509A-5, $-7 \ldots \ldots . .$. $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$		
Junction Temperature		
Ceramic DIP . $+175^{\circ} \mathrm{C}$		
Plastic DIP. .		+150

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Electrical Specifications Supplies $=+15 \mathrm{~V},-15 \mathrm{~V} ; \mathrm{V}_{\mathrm{REF}} \mathrm{Pin}=$ Open; V_{AH} (Logic Level High) $=+4.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{AL}}$ (Logic Level Low) $=+0.8 \mathrm{~V}$, Unless Otherwise Specified. For Test Conditions, Consult Performance Curves.

PARAMETER	TEMP	H1-50XA-2, -8			HI-50XA-5, -7			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
SWITCHING CHARACTERISTICS								
Access Time, $\mathrm{t}_{\text {A }}$ (Note 1)	$+25^{\circ} \mathrm{C}$	-	0.5	-	-	0.5	-	$\mu \mathrm{s}$
	Full	-	-	1.0	-	-	1.0	$\mu \mathrm{s}$
Break-Before-Make Delay, topen (Note 1)	$+25^{\circ} \mathrm{C}$	25	80	-	25	80	-	ns
Enable Delay (ON), ton(EN) (Note 1)	$+25^{\circ} \mathrm{C}$	-	300	500	-	300	-	ns
	Full	-	-	1000	-	-	1000	ns
Enable Delay (OFF), toff(EN) (Note 1)	$+25^{\circ} \mathrm{C}$	-	300	500	-	300	-	ns
	Full	-	-	1000	-	-	1000	ns
Settling Time to 0.1\%, $\mathrm{t}_{\text {s }}$ (H1-506A and HI-507A)	$+25^{\circ} \mathrm{C}$	-	1.2	-	-	1.2	-	$\mu \mathrm{s}$
Settling Time to 0.01\%, $\mathrm{t}_{\text {s }}$ (HI-506A and HI-507A)	$+25^{\circ} \mathrm{C}$	-	3.5	-	-	3.5	-	$\mu \mathrm{s}$
Settling Time to 0.1\%, ts_{5} (HI-508A and HI-509A)	$+25^{\circ} \mathrm{C}$	-	1.2	-	-	1.2	-	$\mu \mathrm{s}$
Settling Time to 0.01\%, $\mathrm{t}_{\text {s }}$ (HI-508A and HI-509A)	$+25^{\circ} \mathrm{C}$	-	3.5	-	-	3.5	-	$\mu \mathrm{s}$
"Off Isolation" (Note 6)	$+25^{\circ} \mathrm{C}$	50	68	-	50	68	-	dB
Channel Input Capacitance, $\mathrm{C}_{\text {S(OFF) }}$	$+25^{\circ} \mathrm{C}$	-	12	-	-	12	-	pF
Channel Output Capacitance, $\mathrm{C}_{\text {D(OFF) }}$ (HI-506A)	$+25^{\circ} \mathrm{C}$	-	52	-	-	52	-	pF
Channel Output Capacitance, $\mathrm{C}_{\text {D(OFF) }}$ (HI-507A)	$+25^{\circ} \mathrm{C}$	-	30	-	-	30	-	pF
Channel Output Capacitance, $\mathrm{C}_{\text {D(OFF) }}$ ($\mathrm{HI-508A}$)	$+25^{\circ} \mathrm{C}$	-	25	-	-	25	-	pF
Channel Output Capacitance, $\mathrm{C}_{\text {D(OFF) }}$ ($\mathrm{Hl}-509 \mathrm{~A}$)	$+25^{\circ} \mathrm{C}$	-	12	-	-	12	\bullet	pF
Digital Input Capacitance, C_{A}	$+25^{\circ} \mathrm{C}$	-	10	-	\bullet	10	-	pF
Input to Output Capacitance, $\mathrm{C}_{\text {DS(OFF) }}$	$+25^{\circ} \mathrm{C}$	-	0.1	-	-	0.1	-	pF
DIGITAL INPUT CHARACTERISTICS								
Input Low Threshold, TTL Drive, $\mathrm{V}_{\text {AL }}$ (Note 1)	Full	-	-	+0.8	-	-	+0.8	V
Input High Threshold, $\mathrm{V}_{\text {AH }}$ (Notes 1, 8)	Full	+4.0	-	-	+4.0	-	-	V
Input Leakage Current (High or Low), I_{A} (Notes 1,5)	Full	-	-	1.0	-	-	1.0	$\mu \mathrm{A}$
MOS Drive, $\mathrm{V}_{\text {AL }}$, Hl-506A/HI-507A (Note 9)	$+25^{\circ} \mathrm{C}$	-	-	0.8	-	-	0.8	V
MOS Drive, $\mathrm{V}_{\text {AH, }}$, HI-506A/HI-507A (Note 9)	$+25^{\circ} \mathrm{C}$	6.0	-	-	6.0	-	-	V

Electrical Specifications Supplies $=+15 \mathrm{~V},-15 \mathrm{~V} ; \mathrm{V}_{\text {REF }}$ Pin $=$ Open; $\mathrm{V}_{\mathrm{AH}}($ Logic Level High $)=+4.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{AL}}$ (Logic Level Low) $=+0.8 \mathrm{~V}$, Unless Otherwise Specified. For Test Conditions, Consult Performance Curves. (Continued)

PARAMETER	TEMP	HI-50XA-2, -8			HI-50XA-5, 7			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
ANALOG CHANNEL CHARACTERISTICS								
Analog Signal Range, V_{S} (Note 1)	Full	-15	-	+15	-15	-	+15	V
On Resistance, R R ${ }_{\text {ON, }}$ (Notes 1, 2)	$+25^{\circ} \mathrm{C}$	-	1.2	1.5	-	1.5	1.8	$\mathrm{k} \Omega$
	Full	-	1.5	1.8	-	1.8	2.0	$\mathrm{k} \Omega$
Off Input Leakage Current, $\mathrm{I}_{\text {S(OfF) }}$ (Notes 1, 3)	$+25^{\circ} \mathrm{C}$	-	0.03	-	-	0.03	-	nA
	Full	-	-	50	-	-	50	nA
Off Output Leakage Current, $\mathrm{I}_{\text {D(OFF) }}$ (Notes 1, 3) HI-506A HI-507A HI-508A HI-509A	$+25^{\circ} \mathrm{C}$	-	0.1	-	-	0.1	-	nA
	Full	-	-	300	-	-	300	nA
	Full	-	-	200	-	-	200	nA
	Full	-	-	200	-	\bullet	200	nA
	Full	-	-	100	-	-	100	nA
With Input Overvoltage Applied, (ldoFF) (Note 4)	$+25^{\circ} \mathrm{C}$	-	4.0	-	-	4.0	-	nA
	Full	-	-	2.0	-	-	-	$\mu \mathrm{A}$
On Channel Leakage Current, ID(ON) (Notes 1, 3) HI-506A HI-507A HI-508A HI-509A	$+25^{\circ} \mathrm{C}$	-	0.1	-	-	0.1	-	nA
	Full	-	-	300	-	-	300	nA
	Full	-	-	200	-	-	200	nA
	Full	-	-	200	-	-	200	nA
	Full	-	-	100	-	-	100	nA
Differential Off Output Leakage Current, $I_{\text {DIFF, }}$ (HI-507A, HI-509A Only)	Full	-	-	50	-	-	50	nA
POWER REQUIREMENTS								
Current, It, Pin 1 (Notes 1, 7)	Full	-	1.5	2.0	-	1.5	2.0	mA
Current, I+, HI-508A/HI-509A (Notes 1, 7)	Full	\bullet	1.5	2.4	-	1.5	2.0	mA
Current, 1-, Pin 27 (Notes 1, 7)	Full	\bullet	0.02	1.0	\bullet	0.02	1.0	mA
Power Dissipation, P_{D}	Full	-	7.5	-	-	7.5	-	mW

NOTES:

1. 100% tested for Dash 8 . Leakage currents not tested at $-55^{\circ} \mathrm{C}$.
2. $\mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=\mp 100 \mu \mathrm{~A}$.
3. Ten nanoamps is the practical lower limit for high speed measurement in the production test environment.
4. Analog Overvoltage $= \pm 33 \mathrm{~V}$.
5. Digital input leakage is primarily due to the clamp diodes (see Schematic). Typical leakage is less than 1 nA at $+25^{\circ} \mathrm{C}$.
6. $\mathrm{V}_{\mathrm{EN}}=0.8 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{~K}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{V}_{\mathrm{S}}=7 \mathrm{~V}_{\mathrm{RMS}}, \mathrm{f}=100 \mathrm{kHz}$.
7. $V_{E N}, V_{A}=0 V$ or 4.0 V .
8. To drive from DTLTTL Circuits, $1 \mathrm{k} \Omega$ pull-up resistors to +5.0 V supply are recommended.
9. $\mathrm{V}_{\mathrm{REF}}=+10 \mathrm{~V}$.

Performance Curves and Test Circuits $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SUPPLY}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{AH}}=+4 \mathrm{~V}, \mathrm{~V}_{\mathrm{AL}}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=$ Open, Unless Otherwise Specified

FIGURE 1A. TEST CIRCUIT

FIGURE 1B. ON RESISTANCE vS ANALOG INPUT VOLTAGE

FIGURE 1C. NORMALIZED ON RESISTANCE vs SUPPLY VOLTAGE

FIGURE 1. ON RESISTANCE

FIGURE 2A. LEAKAGE CURRENT vs TEMPERATURE
NOTE:

1. Two measurements per channel: $\pm 10 \mathrm{~V}$ and $\mp 10 \mathrm{~V}$. (Two measurements per device for $\mathrm{l}_{\mathrm{D}(\mathrm{OFF})} \pm 10 \mathrm{~V}$ and $\mp 10 \mathrm{~V}$)

FIGURE 2. LEAKAGE CURRENTS

Performance Curves and Test Circuits $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SUPPLY}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{AH}}=+4 \mathrm{~V}, \mathrm{~V}_{\mathrm{AL}}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=$ Open, Unless Otherwise Specified (Continued)

FIGURE 2C. Is(OFF) TEST CIRCUIT (NOTE 1)

FIGURE 2D. ID(On) TEST CIRCUIT (NOTE 1)

NOTE:

1. Two measurements per channel: $\pm 10 \mathrm{~V}$ and $\mp 10 \mathrm{~V}$. (Two measurements per device for $\mathrm{I}_{\mathrm{D}(\mathrm{OFF})} \pm 10 \mathrm{~V}$ and $\mp 10 \mathrm{~V}$)
figure 2. Leakage currents (Continued)

FIGURE 3A. ANALOG INPUT OVERVOLTAGE CHARACTERISTICS

FIGURE 3. OVERVOLTAGE CHARACTERISTICS

FIGURE 4A. ON CHANNEL CURRENT vs VOLTAGE

FIGURE 4B. TEST CIRCUIT

FIGURE 4. ON CHANNEL CURRENT

Performance Curves and Test Circuits $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SUPPLY}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{AH}}=+4 \mathrm{~V}, \mathrm{~V}_{\mathrm{AL}}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=$ Open, Unless Otherwise Specified (Continued)

FIGURE 5A. SUPPLY CURRENT vS TOGGLE FREQUENCY

\dagger Similar connection for HI-507A/HI-508A/HI-509A
FIGURE 5B. TEST CIRCUIT

FIGURE 5. SUPPLY CURRENTS

FIGURE 6A. ACCESS TIME vs LOGIC LEVEL (HIGH)

FIGURE 6B. TEST CIRCUIT

FIGURE 6. ACCESS TIME

Switching Waveforms

FIGURE 7A.

FIGURE 7. ACCESS TIME

Switching Waveforms (Continued)

\dagger Similar connection for HI-507A/HI-508A/HI-509A

FIGURE 8A.

FIGURE 8B.

$100 \mathrm{~ns} /$ DIV

FIGURE 8C.

FIGURE 8. BREAK-BEFORE-MAKE DELAY

\dagger Similar connection for HI-507A/HI-508A/HI-509A

FIGURE 9A.

FIGURE 9B.

FIGURE 9C.

FIGURE 9. ENABLE DELAY ton(EN), $^{\text {, }}$ OFF(EN)

Truth Tables

Hl-506A					
A_{3}	$A_{\mathbf{2}}$	A_{1}	A_{0}	EN	"ON" CHANNEL
X	X	X	X	L	None
L	L	L	L	H	1
L	L	L	H	H	2
L	L	H	L	H	3
L	L	H	H	H	4
L	H	L	L	H	5
L	H	L	H	H	6
L	H	H	L	H	7
L	H	H	H	H	8
H	L	L	L	H	9
H	L	L	H	H	10
H	L	H	L	H	11
H	L	H	H	H	12
H	H	L	L	H	13
H	H	L	H	H	14
H	H	H	L	H	15
H	H	H	H	H	16

HI-508A

$\mathbf{A}_{\mathbf{2}}$	$A_{\mathbf{1}}$	$A_{\mathbf{0}}$	EN	"ON" CHANNEL
X	X	X	L	None
L	L	L	H	1
L	L	H	H	2
L	H	L	H	3
L	H	H	H	4
H	L	L	H	5
H	L	H	H	6
H	H	L	H	7
H	H	H	H	8

HI-509A

A_{1}	A_{0}	EN	"ON" CHANNEL PAIR
X	X	L	None
L	L	H	1
L	H	H	2
H	L	H	3
H	H	H	4

HI-507A

A_{2}	A_{1}	A_{0}	EN	"ON" CHANNEL PAIR
X	X	X	L	None
L	L	L	H	1
L	L	H	H	2
L	H	L	H	3
L	H	H	H	4
H	L	L	H	5
H	L	H	H	6
H	H	L	H	7
H	H	H	H	8

Die Characteristics

DIE DIMENSIONS: 159 mils $\times 83.9$ mils $\times 19$ mils

METALLIZATION:

Type: CuAl
Thickness: $16 \mathrm{k} \AA \pm 2 \mathrm{k} \AA$
GLASSIVATION:
Silox: $12 \mathrm{k} \AA \pm 2 \mathrm{k} \AA$
Nitride: $3.5 \mathrm{k} \AA \pm 1 \mathrm{k} \AA$
WORST CASE CURRENT DENSITY:
$1.4 \times 10^{5} \mathrm{~A} / \mathrm{cm}^{2}$
TRANSISTOR COUNT: 485
PROCESS: CMOS-DI

SUBSTRATE POTENTIAL*: - $\mathrm{V}_{\text {SUPPLY }}$

* The substrate appears resistive to the $-V_{\text {SUPPLY }}$ terminal, therefore it may be left floating (Insulating Die Mount) or it may be mounted on a conductor at $-V_{\text {SUPPLY }}$ potential

Metallization Mask Layout

Die Characteristics

DIE DIMENSIONS: 108 mils $\times 83$ mils

METALLIZATION:

Type: CuAI
Thickness: $16 \mathrm{k} \AA{ }^{2}+2 \mathrm{k} \AA$
GLASSIVATION:
Silox: $12 \mathrm{k} \AA \pm 2 \mathrm{k} \AA$
Nitride: $3.5 \mathrm{k} \AA \pm 1 \mathrm{k} \AA$
WORST CASE CURRENT DENSITY:
$1.4 \times 10^{5} \mathrm{~A} / \mathrm{cm}^{2}$
TRANSISTOR COUNT: 253
PROCESS: CMOS-DI
SUBSTRATE POTENTIAL*: - ${ }_{\text {SUPPLY }}$

* The substrate appears resistive to the $-V_{\text {SUPPLY }}$ terminal, therefore it may be left floating (Insulating Die Mount) or it may be mounted on a conductor at $-V_{\text {SUPPLY }}$ potential

Metallization Mask Layout

HI-508A
HI-509A

16 Channel/Differential 8 Channel CMOS High Speed Analog Multiplexer

Features

- Access Time (Typical) 130ns
- Settling Time 250ns (0.1\%)
- Low Leakage (Typical)
- IS(OFF) 10 pA
- ID(OFF) 30pA
- Low Capacitance (Max)
- $\mathrm{C}_{\mathrm{S} \text { (OFF) }} 10 \mathrm{pF}$
- $C_{D(0 F F)} 25 \mathrm{pF}$
- Off Isolation at 500kHz 55dB (Min)
- Low Charge Injection Error 20mV
- Single Ended to Differential Selectable (SDS)
- Logic Level Selectable (LLS)

Applications

- Data Acquisition Systems
- Precision Instrumentation
- Industrial Control

Description

The HI-516 is a monolithic dielectrically isolated, high speed, high performance CMOS analog multiplexer. It offers unique built-in channel selection decoding plus an inhibit input for disabling all channels. The dual function of address input A_{3} enables the $\mathrm{HI}-516$ to be user programmed either as a single ended 16-channel multiplexer by connecting 'out A ' to 'out B ' and using A_{3} as a digital address input, or as an 8 -channel differential multiplexer by connecting A_{3} to the V - supply. The substrate leakages and parasitic capacitances are reduced substantially by using the Harris Dielectric Isolation process to achieve optimum performance in both high and low level signal applications. The low output leakage current (lDOFF <100 pA at $+25^{\circ} \mathrm{C}$) and fast settling ($\mathrm{t}_{\text {SETTLE }}=800 \mathrm{~ns}$ to 0.01%) characteristics of the device make it an ideal choice for high speed data acquisition systems, precision instrumentation, and industrial process control.

For MIL-STD-883 compliant parts, request the HI-516/883 data sheet.

Ordering Information

PART NUMBER	TEMP. RANGE	PACKAGE
HI4P0516-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	28 Lead PLCC
HI3-0516-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	28 Lead Plastic DIP
$\mathrm{H} 11-0516-5$	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	28 Lead Ceramic DIP
$\mathrm{HI} 1-0516-2$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	28 Lead Ceramic DIP
HI1-0516-8	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	28 Lead Ceramic DIP
HI4-0516-8	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	28 Lead Ceramic LCC
HI9P0516-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	28 Lead SOIC
HI9P0516-9	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 Lead SOIC
H11-0516/883	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	28 Lead Ceramic DIP
HI4-0516/883	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	28 Lead Ceramic LCC

Pinouts

HI-516 (CDIP, PDIP, SOIC)
TOP VIEW

V+ 1	28 OUT A
OUT B 2	27 v -
NC 3	26 IN 818 A
IN 16/8B 4	25 IN 7\%A
iN 15/7B 5	24.156
IN 14/6B 6	23 IN 5/5A
IN 13/58 7	22 IN 4/4A
IN 12/4B 8	21 IN $3 / 3 \mathrm{~A}$
IN 11/3B 9	$20 \mathrm{IN} 2 / 2 \mathrm{~A}$
in 10/2B 10	$19 \mathrm{IN} 1 / \mathrm{A}$
IN 9/1B 11	18 ENABLE
GND 12	$17 A_{0}$
$V_{\text {DD }}$ LLS 13	$16 A_{1}$
$A_{3} /$ SDS 14	$15{ }^{1} 2$

HI-516 (LCC, PLCC)

Functional Block Diagram

A $_{3}$ DECODE		
A_{3}	Q	\bar{Q}
H	H	L
L	L	H
$V-$	L	

Specifications HI-516

Absolute Maximum Ratings (Note 1)	
Voltage Between Supply Pins. 33 V	
Analog Input Voltage	
$+\mathrm{V}_{\text {IN }}$	$+\mathrm{V}_{\text {SUPPLY }}+2 \mathrm{~V}$
$-\mathrm{V}_{\text {IN }}$.	- SUPPLLY $^{\text {-2V }}$
Digital Input Voltage	
TTL Levels Selected ($\mathrm{V}_{\text {DD }} / L L S$ Pin $=$ GND or Open)	
$+\mathrm{V}_{\mathrm{A}}$	+6V
- V_{A}.	-6V
+ A_{3} /SDS	$+V_{\text {SUPPLY }}+2 V$
-A3/SDS -V SUPPLY -2V
CMOS Levels Selected ($\mathrm{V}_{\mathrm{DD}} /$ LLS $\mathrm{Pin}=\mathrm{V}_{\mathrm{DD}}$)	
$+\mathrm{V}_{\mathrm{A}}$.	. $+\mathrm{V}_{\text {SUPPLY }}+2 \mathrm{~V}$
- V_{A} -2V
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering 10s)	$\ldots . . .+300^{\circ} \mathrm{C}$

Thermal Information

Thermal Res	$\theta_{\text {JA }}$	θ_{Jc}
Plastic DIP Package	$60^{\circ} \mathrm{C} / \mathrm{N}$	-
Plastic SOIC Package .	$70^{\circ} \mathrm{C} / \mathrm{W}$	
Plastic PLCC Package.	$70^{\circ} \mathrm{C} / \mathrm{W}$	\bigcirc
Ceramic DIP Package .	$50^{\circ} \mathrm{C} / \mathrm{W}$	$18^{\circ} \mathrm{C} / \mathrm{M}$
Ceramic LCC Package	$60^{\circ} \mathrm{C} / \mathrm{W}$	$8^{\circ} \mathrm{C}$

Junction Temperature
Ceramic DIP, Ceramic LCC . $+175^{\circ} \mathrm{C}$
Plastic DIP, Plastic SOIC, Plastic PLCC $+150^{\circ} \mathrm{C}$
Operating Temperature Ranges
HI-516-2,-8
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
HI-516-5.
. $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
HI-516-9.
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Electrical Specifications Supplies $=+15 \mathrm{~V},-15 \mathrm{~V} ; \mathrm{V}_{\mathrm{AH}}($ Logic Level High $)=+2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{AL}}($ Logic Level Low $)=+0.8 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}} / L L S=\mathrm{GND}$. (Note 1) Unless Otherwise Specified

PARAMETER	TEST CONDITIONS	TEMP	HI-516-2, -8			HI-516-5, -9			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	

ANALOG CHANNEL CHARACTERISTICS

Analog Signal Range, V_{1}	Note 2	Full	-14	-	+14	-15	-	+15	V
On Resistance, R_{ON}	Note 3	$+25^{\circ} \mathrm{C}$	-	620	750	-	620	750	Ω
		Full	-	-	1,000	-	-	1,000	Ω
Off Input Leakage Current, $\mathrm{I}_{\text {S(OFF) }}$		$+25^{\circ} \mathrm{C}$	-	0.01	-	-	0.01	-	nA
		Full	-	-	50	-	-	50	nA
Off Output Leakage Current, $I_{\text {(OFF) }}$		$+25^{\circ} \mathrm{C}$	-	0.03	-	-	0.03	-	nA
		Full	-	-	100	-	-	100	nA
On Channel Leakage Current, $l_{\text {D(ON) }}$		$+25^{\circ} \mathrm{C}$	-	0.04	-	-	0.04	-	nA
		Full	-	-	100	-	-	100	nA

DIGITAL INPUT CHARACTERISTICS

Input Low Threshold, $\mathrm{V}_{\mathrm{AL}}(\mathrm{TTL})$		Full	-	-	0.8	-	-	0.8	V
Input High Threshold, V_{AH} (TTL)		Full	2.4	-	-	2.4	-	-	V
Input Low Threshold, V_{AL} (CMOS)		Full		-	$0.3 \mathrm{~V}_{\mathrm{DD}}$	-	-	$0.3 \mathrm{~V}_{\mathrm{DD}}$	V
Input High Threshold, V_{AH} (CMOS)		Full	$0.7 \mathrm{~V}_{\mathrm{DD}}$	-	-	$0.7 \mathrm{~V}_{\mathrm{DD}}$	-	-	V
Input Leakage Current, I_{AH} (High)		Full	-	-	1	-	-	1	$\mu \mathrm{~A}$
Current, I_{AL} (Low)		Full	-	-	25	-	-	25	$\mu \mathrm{~A}$

SWITCHING CHARACTERISTICS

Access Time, t_{A}		$+25^{\circ} \mathrm{C}$	-	130	175	-	130	175	ns
		Full	-	-	225	-	-	225	ns
Break-Before-Make Delay, topen		$+25^{\circ} \mathrm{C}$	10	20	-	10	20	\bullet	ns
Enable Delay (ON), $\mathrm{t}_{\text {ON(EN) }}$		$+25^{\circ} \mathrm{C}$	-	120	175	-	120	175	ns
Enable Delay (OFF), $\mathrm{t}_{\text {OFF(EN) }}$		$+25^{\circ} \mathrm{C}$	-	140	175	-	140	175	ns
Settling Time 0.1%		$+25^{\circ} \mathrm{C}$	-	250	-	-	250	-	ns
0.01\%		$+25^{\circ} \mathrm{C}$	\bullet	800	-	\bullet	800	-	ns
Charge Injection Error	Note 4	$+25^{\circ} \mathrm{C}$	-	-	20	-	-	20	mV

Electrical Specifications Supplies $=+15 \mathrm{~V},-15 \mathrm{~V} ; \mathrm{V}_{\mathrm{AH}}($ Logic Level High $)=+2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{AL}}($ Logic Level Low $)=+0.8 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}} / L L S=G N D$. (Note 1) Unless Otherwise Specified (Continued)

PARAMETER	TEST CONDITIONS	TEMP	HL-516-2, -8			H1-516-5, -9			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	
SWITCHING CHARACTERISTICS (Continued)									
Off Isolation	Note 5	$+25^{\circ} \mathrm{C}$	55	\bullet	-	55	-	-	dB
Channel Input Capacitance, $\mathrm{C}_{\mathrm{S} \text { (OFF) }}$		$+25^{\circ} \mathrm{C}$	-	-	10	-	-	10	pF
Channel Output Capacitance, $\mathrm{C}_{\mathrm{D} \text { (OFF) }}$		$+25^{\circ} \mathrm{C}$	-	-	25	-	-	25	pF
Digital Input Capacitance, C_{A}		$+25^{\circ} \mathrm{C}$	-	-	10	-	-	10	pF
Input to Output Capacitance, $\mathrm{C}_{\mathrm{DS}(\mathrm{OFF})}$		$+25^{\circ} \mathrm{C}$	-	0.02	-	\bullet	0.02	-	pF
POWER SUPPLY CHARACTERISTICS									
Power Dissipation, PD		Full	-	\bullet	750	\bullet	\bullet	900	mW
I+, Current	Note 6	Full	-	-	25	-	-	30	mA
I-, Current	Note 6.	Full	-	-	25	-	-	30	mA

NOTES:

1. $V_{D D} / L L S$ pin $=$ open or grounded for $T T L$ compatibility. $V_{D D} / L L S$ pin $=V_{D D}$ for $C M O S$ compatibility.
2. At temperatures above $+90^{\circ} \mathrm{C}$, care must be taken to assure $\mathrm{V}_{\text {IN }}$ remains at least 1.0 V below the $\mathrm{V}_{\text {SUPPLY }}$ for proper operation.
3. $\mathrm{V}_{I N}= \pm 10 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=-100 \mu \mathrm{~A}$.
4. $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$, enable input pulse $=3 \mathrm{~V}, \mathrm{f}=500 \mathrm{kHz}$.
5. $\mathrm{V}_{\mathrm{EN}}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V}_{\mathrm{RMS}}, f=500 \mathrm{kHz}, \mathrm{C}_{\mathrm{L}}=40 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{~K}$, Pin 3 grounded.
6. $\mathrm{V}_{\mathrm{EN}}=+2.4 \mathrm{~V}$.

TRUTH TABLE HI-516 Used as a 16-Channel Multiplexer or 8-Channel Differential Multiplexer (Note 1)

USE A_{3} AS DIGITAL ADDRESS INPUT					ON CHANNEL TO	
ENABLE	A_{3}	A_{2}	A_{1}	A_{0}	OUT A	OUT B
L	X	X	X	X	None	None
H	L	L	L	L	1A	None
H	L	L	L	H	2A	None
H	L	L	H	L	3A	None
H	L	L	H	H	4A	None
H	L	H	L	L	5A	None
H	L	H	L	H	6A	None
H	L	H	H	L	7A	None
H	L	H	H	H	8A	None
H	H	L	L	L	None	1B
H	H	L	L	H	None	2B
H	H	L	H	L	None	3B
H	H	L	H	H	None	4B
H	H	H	L	L	None	5B
H	H	H	L	H	None	6B
H	H	H	H	L	None	7B
H	H	H	H	H	None	8B

NOTE:

1. For 16-channel single-ended function, tie 'out A ' to 'out B ', for
dual 8 -channel function use the A_{3} address pin to select be-
tween MUX A and MUXB, where MUX A is selected with A_{3} low.

TRUTH TABLE HI-516 Used as a DIfferential 8-Channel Multiplexer

A_{3} CONNECT TO V- SUPPLY					ON CHANNEL TO	
ENABLE	$\mathrm{A}_{\mathbf{2}}$	$\mathrm{A}_{\mathbf{1}}$	$\mathrm{A}_{\mathbf{0}}$	OUT A	OUT B	
L	X	X	X	None	None	
H	L	L	L	1 A	1 B	
H	L	L	H	2 A	2 B	
H	L	H	L	3 A	3 B	
H	L	H	H	4 A	4 B	
H	H	L	L	5 A	5 B	
H	H	L	H	6 A	6 B	
H	H	H	L	7 A	7 B	
H	H	H	H	8 A	8 B	

Test Circuits

FIGURE 1. ON RESISTANCE vs INPUT SIGNAL LEVEL

FIGURE 3. $I_{\text {S(OFF) }}$ (NOTE 1)

FIGURE 5A.

FIGURE 2. Idoff $_{\text {(NOTE 1) }}$

FIGURE 4. $\mathrm{I}_{\text {(ON) }}$ (NOTE 1)

FIGURE 5B.

Figure 5. ACCESS time
NOTE:

1. Two measurements per channel: $\pm 10 \mathrm{~V}$ and $\mp 10 \mathrm{~V}$. (Two measurements per device for $\mathrm{I}_{\mathrm{D}(\mathrm{OFF})} \pm 10 \mathrm{~V}$ and $\mp 10 \mathrm{~V}$)

Test Circuits (Continued)

FIGURE 6A. ENABLE DRIVE

FIGURE 6B.

FIGURE 6. BREAK-BEFORE-MAKE DELAY (topen)

FIGURE 7A. ENABLE DRIVE

FIGURE 7B.

FIGURE 7. ENABLE DELAY ton(en),$t_{\text {OFF(EN) }}$

FIGURE 8A.

FIGURE 8B.
ΔV_{O} is the measured voltage error due to charge injection. The error voltage in coulombs is $Q=C_{L} \times \Delta V_{O}$

FIGURE 8. CHARGE INJECTION TEST CIRCUIT

Die Characteristics

DIE DIMENSIONS:

$2250 \mu \mathrm{~m} \times 3720 \mu \mathrm{~m} \times 485 \mu \mathrm{~m} \pm 25 \mu \mathrm{~m}$

METALLIZATION:

Type: CuAI
Thickness: $16 \mathrm{k} \AA \pm 2 \mathrm{k} \AA$
GLASSIVATION:
Type: Nitride Over Silox
Nitride Thickness: $3.5 \mathrm{k} \AA \pm 1 \mathrm{k} \AA$
Silox Thickness: $12 \mathrm{k} \AA \pm 2 \mathrm{k} \AA$
WORST CASE CURRENT DENSITY: $1.64 \times 10^{5} \mathrm{~A} / \mathrm{cm}^{2}$

Metallization Mask Layout
HI-516

8 Channel/Differential 4 Channel CMOS High Speed Analog Multiplexer

Features

- Access Time (Typical) 130ns
- Settling Time 250ns (0.1\%)
- Low Leakage (Typical)
- IS(OFF) 10 pA
- ID(OFF) 15pA
- Low Capacitance (Max)
- $\mathrm{C}_{\mathrm{S} \text { (OFF) }} 5 \mathrm{pF}$
- $C_{D(O F F)} 10 \mathrm{pF}$
- Off Isolation at 500kHz 45dB (Min)
- Low Charge Injection Error 25mV
- Single Ended to Differential Selectable (SDS)
- Logic Level Selectable (LLS)

Applications

- Data Acquisition Systems
- Precision Instrumentation
- Industrial Control

Description

The $\mathrm{Hl}-518$ is a monolithic dielectrically isolated, high speed, high performance CMOS analog multiplexer. It offers unique built-in channel selection decoding plus an inhibit input for disabling all channels. The dual function of address input A_{2} enables the $\mathrm{Hl}-518$ to be user programmed either as a single ended 8 -channel multiplexer by connecting 'out A ' to 'out B ' and using A_{2} as a digital address input, or as a 4 -channel differential multiplexer by connecting A_{2} to the V -supply. The substrate leakages and parasitic capacitances are reduced substantially by using the Harris Dielectric Isolation process to achieve optimum performance in both high and low level signal applications. The low output leakage current (ldoff $<100 \mathrm{pA}$ at $+25^{\circ} \mathrm{C}$) and fast settling (tsETTLE $=800$ ns to 0.01%) characteristics of the device make it an ideal choice for high speed data acquisition systems, precision instrumentation, and industrial process control.

Ordering Information

PART NUMBER	TEMP. RANGE	PACKAGE
HI3-0518-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	18 Lead Plastic DIP
HI1-0518-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	18 Lead Ceramic DIP
HI1-0518-2	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	18 Lead Ceramic DIP
HI1-0518-8	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	18 Lead Ceramic DIP
HI4P0518-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	20 Lead Plastic PLCC
HI4-0518-8	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	20 Lead Ceramic LCC
HI1-0518-9	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	18 Lead Ceramic DIP
H13-0518-9	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	18 Lead Plastic DIP
HI4P-0518-9	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 Lead Plastic LCC
HI9P-0518-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	18 Lead SOIC
HI9P-0518-9	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	18 Lead SOIC

Pinouts

Functional Block Diagram

A_{2} DECODE		
A_{2}	Q	\bar{Q}
H	H	L
L	L	H
$V-$	L	L

Electrical Specifications Supplies $=+15 \mathrm{~V},-15 \mathrm{~V} ; \mathrm{V}_{\mathrm{AH}}($ Logic Level High $)=+2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{AL}}($ Logic Level Low $)=+0.8 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}} / \mathrm{LLS}=\mathrm{GND}$. (Note 1), Unless Otherwise Specified. (Continued)

PARAMETER	TEST CONDITIONS	TEMP	HI-518-2, -8			HI-518-5, -9			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	
ANALOG CHANNEL CHARACTERISTICS									
Analog Signal Range, V_{IN}	Note 2	Full	-14		+14	-15	-	+15	V
On Resistance, $\mathrm{R}_{\text {ON }}$	Note 3	$+25^{\circ} \mathrm{C}$	-	480	750	-	480	750	Ω
		Full	-	-	1,000	-	-	1,000	Ω
Off Input Leakage Current, $\mathrm{I}_{\text {S(OFF) }}$		$+25^{\circ} \mathrm{C}$	-	0.01	-	-	0.01	-	nA
		Full	-	-	50	-	-	50	nA
Off Output Leakage Current, Idoff)		$+25^{\circ} \mathrm{C}$	-	0.015	-	-	0.015	-	nA
		Full	\bullet	-	50	-	-	50	nA
On Channel Leakage Current, ${ }^{\mathrm{D}(\mathrm{ON})}$		$+25^{\circ} \mathrm{C}$	-	0.015	-	-	0.015	-	nA
		Full	-	-	50	-	-	50	nA
POWER SUPPLY CHARACTERISTICS									
Power Dissipation, P_{D}		Full	\bullet	-	450	-	-	540	mW
1+, Current	Note 6	Full	\bullet	-	15	-	-	18	mA
1-, Current	Note 6	Full	-	-	15	-	\cdot	18	mA

NOTES:

1. $V_{D D} / L L S$ pin $=$ open or grounded for TTL compatibility. $V_{D D} / L L S$ pin $=V_{D D}$ for $C M O S$ compatibility.
2. At temperatures above $+90^{\circ} \mathrm{C}$, care must be taken to assure $\mathrm{V}_{\text {IN }}$ remains at least 1.0 V below the $\mathrm{V}_{\text {SUPPLY }}$ for proper operation.
3. $\mathrm{V}_{\text {IN }}= \pm 10 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=-100 \mu \mathrm{~A}$.
4. $V_{I N}=0 V, C_{L}=100 \mathrm{pF}$, enable input pulse $=3 V, f=500 \mathrm{kHz}$.
5. $C_{L}=40 \mathrm{pF}, R_{L}=1 \mathrm{k}$. Due to the pin to pin capacitance between $\mathrm{N} 8 / 4 \mathrm{~B}$ and OUT B , channel $8 / 4 \mathrm{~B}$ exhibits 60 dB of OFF isolation under the above test conditions.
6. $\mathrm{V}_{\mathrm{EN}}=+2.4 \mathrm{~V}$.

TRUTH TABLE HI-518 Used as an 8-Channel Multiplexer or 4-Channel Differential Multiplexer

USE A_{2} AS DIGITAL ADDRESS INPUT				ON CHANNEL TO	
ENABLE	A_{2}	A_{1}	A_{0}	OUT A	OUT B
L	X	X	X	None	None
H	L	L	L	1A	None
H	L	L	H	2A	None
H	L	H	L	3A	None
H	L	H	H	4A	None
H	H	L	L	None	1B
H	H	L	H	None	2B
H	H	H	L	None	3B
H	H	H	H	None	4B

TRUTH TABLE HI-518 Used as a Differential 4-Channel Multiplexer

A_{2} CONNECT TO V-SUPPLY			ON CHANNEL TO	
ENABLE	A_{1}	A_{0}	OUT A	OUT B
L	X	X	None	None
H	L	L	1A	1B
H	L	H	2A	2 B
H	H	L	3A	3B
H	H	H	4A	4B

Test Circuits

FIGURE 1. ON RESISTANCE vs INPUT SIGNAL LEVEL

FIGURE 3. $I_{\text {s(OFF) }}$ (NOTE 1)

FIGURE 5A.

FIGURE 2. ID(OFF) (NOTE 1)

FIGURE 4. $\mathrm{I}_{\text {D(ON) }}$ (NOTE 1)

FIGURE 5B.

FIGURE 5. ACCESS TIME
NOTE:

1. Two measurements per channel: $\pm 10 \mathrm{~V}$ and $\mp 10 \mathrm{~V}$. (Two measurements per device for $\mathrm{I}_{\mathrm{D}(\mathrm{OFF})} \pm 10 \mathrm{~V}$ and $\mp 10 \mathrm{~V}$)

Test Circuits (Continued)

FIGURE 6A.

FIGURE 6B.

FIGURE 6. BREAK-BEFORE-MAKE DELAY (toPEN)

FIGURE 7A.
FIGURE 7. ENABLE DELAY ton(EN) , $\mathrm{t}_{\text {OFF(EN) }}$

FIGURE 8A.

FIGURE 8B.
$\Delta \mathrm{V}_{\mathrm{O}}$ is the measured voltage error due to charge injection. The error voltage in coulombs is $Q=C_{L} \times \Delta V_{O}$

FIGURE 8. CHARGE INJECTION TEST CIRCUIT

Die Characteristics

DIE DIMENSIONS:
89×93 mils
METALLIZATION:
Type: Al Cu
Thickness: $16 \mathrm{k} \AA \pm 2 \mathrm{k} \AA$
GLASSIVATION:
Type: Nitride Over Silox
Nitride Thickness: $3.5 \mathrm{k} \AA \pm 1.0 \mathrm{k} \AA$
Silox Thickness: $12 k \AA \pm 2.0 \mathrm{k} \AA$
WORST CASE CURRENT DENSITY: $1.43 \times 10^{5} \mathrm{~A} / \mathrm{cm}^{2}$
TRANSISTOR COUNT: 356
PROCESS: CMOS-DI
SUBSTRATE POTENTIAL*: - $V_{\text {SUPPLY }}$

* The substrate appears resistive to the $-V_{\text {SUPPLY }}$ terminal, therefore it may be left floating (Insulating Die Mount) or it may be mounted on a conductor at $-\mathrm{V}_{\text {SUPpLy }}$ potential

Metallization Mask Layout

4 Channel Wideband and Video Multiplexer

Features

- Crosstalk (10 MHz) < -60dB
- Fast Access Time 150ns
- Fast Settling Time 200ns
- TTL Compatible

Applications

- Wideband Switching
- Radar
- TV Video
- ECM

Ordering Information

PART NUMBER	TEMP. RANGE	PACKAGE
HI1-0524-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	18 Lead Ceramic DIP
$\mathrm{HI} 1-0524-2$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	18 Lead Ceramic DIP
HI4P0524-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	20 Lead PLCC
HI3-0524-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	18 Lead Plastic DIP
$\mathrm{HI} 1-0524-8$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	18 Lead Ceramic DIP
$\mathrm{HI} 4-0524-8$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	20 Lead LCC
$\mathrm{HI} 1-0524 / 883$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	18 Lead Ceramic DIP
$\mathrm{HI} 4-0524 / 883$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	20 Lead LCC

Description

The $\mathrm{HI}-524$ is a four channel CMOS analog multiplexer designed to process single-ended signals with bandwidths up to 10 MHz . The chip includes a 1 of 4 decoder for channel selection and an enable input to inhibit all channels (chip select).
Three CMOS transmission gates are used in each channel, as compared to the single gate in more conventional CMOS multicompared to the single gate in more conventional CMOS multi-
plexers. This provides a double barrier to the unwanted coupling of signals from each input to the output. In addition, Dielectric Isolation (DI) processing helps to insure the Crosstalk is less than -60 dB at 10 MHz .
The HI-524 is designed to operate into a wideband buffer amplifier such as the Harris HA-2541. The multiplexer chip includes two "ON" switches in series, for use as a feedback element with the amplifier. This feedback resistance matches and tracks the the amplifier. This feedback resistance matches and tracks the
channel $R_{\text {ON }}$ resistance, to minimize the amplifier $V_{O S}$ and its variation with temperature.
The HI-524 is well suited to the rapid switching of video and
other wideband signals in telemetry, instrumentation, radar and
The $\mathrm{HI}-524$ is well suited to the rapid switching of video and
other wideband signals in telemetry, instrumentation, radar and video systems.
For MIL-STD-883 compliant parts, request the HI-524/883 data
sheet.
The Hi-524 is a four channel CMOS analog milt u to

Functional Diagram

Absolute Maximum Ratings	
Voltage Between Supplies	33 V
Digital Input Voltage	
$+\mathrm{V}_{\mathrm{A}}$	$+6 \mathrm{~V}$
- V_{A}	-6V
Analog Input Voltage	
$+\mathrm{V}_{\text {IN }}$.	$+\mathrm{V}_{\text {SUPPLY }}+2.0 \mathrm{~V}$
$-\mathrm{V}_{\text {IN }}$	- $\mathrm{V}_{\text {SUPPLY }}$-2.0V
Either Supply to Ground	.16.5V
Storage Temperature	
(CDIP, CLCC)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
(PLCC)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10s)	$\ldots . . .{ }^{\text {a }}+300^{\circ} \mathrm{C}$

Thermal Information

Thermal Resistance	$\theta_{\text {JA }}$	$\theta_{J c}$
Ceramic DIP Package	$80^{\circ} \mathrm{CM}$	$24^{\circ} \mathrm{CN}$
LCC Package.	$75^{\circ} \mathrm{C} / \mathrm{W}$	$20^{\circ} \mathrm{CN}$
Plastic DIP Package	$90^{\circ} \mathrm{C} / \mathrm{W}$	-
PLCC Package	$80^{\circ} \mathrm{C} / \mathrm{W}$	-
Operating Temperature Range		
HI-524-2, -8	-55°	$0+125^{\circ} \mathrm{C}$
HI-524-5.		to $+75^{\circ} \mathrm{C}$
Junction Temperature . $+175^{\circ} \mathrm{C}$		
(CDIP, CLCC) .		+175
(PLCC, PDIP)		+150

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Electrical Specifications Supplies $=+15 \mathrm{~V},-15 \mathrm{~V} ; \mathrm{V}_{\mathrm{AH}}($ Logic Level High $)=+2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{AL}}=($ Logic Level Low $)=+0.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EN}}=+2.4 \mathrm{~V}$, Unless Otherwise Specified

PARAMETER	TEST CONDITIONS	TEMP	H1-524-2/-8			Hi-524-5			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	
SWITCHING CHARACTERISTICS									
Access Time, t_{A}	(Note 5)	$+25^{\circ} \mathrm{C}$	-	150	300	-	150	300	ns
Break-Before-Make Delay,topen	(Note 5)	$+25^{\circ} \mathrm{C}$	-	20	-	-	20	-	ns
Enable Delay (ON), $\mathrm{R}_{\mathrm{L}}=500 \Omega$, $\mathrm{t}_{\text {ON (EN) }}$		$+25^{\circ} \mathrm{C}$	-	180	300	-	180	-	ns
Enable Delay (OFF), $\mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{t}_{\text {OFF }}$ (EN)		$+25^{\circ} \mathrm{C}$	\bullet	180	250	-	180	-	ns
Settling Time (0.1\%)	(Note 5)	$+25^{\circ} \mathrm{C}$	-	200	-	-	200	-	ns
(0.01\%)		$+25^{\circ} \mathrm{C}$	-	600	-	-	600	-	ns
Crosstalk	(Note 6)	$+25^{\circ} \mathrm{C}$	-	-65	-	-	-65	-	dB
Channel Input Capacitance, $\mathrm{C}_{\text {S(OFF) }}$		$+25^{\circ} \mathrm{C}$	-	4	-	-	4	-	pF
Channel Output Capacitance, $\mathrm{C}_{\text {D(OFF) }}$		$+25^{\circ} \mathrm{C}$	-	10	-	-	10	-	pF
Digital Input Capacitance, C_{A}		$+25^{\circ} \mathrm{C}$	-	5	-	-	5	-	pF
DIGITAL INPUT SPECIFICATIONS									
Input Low Threshold (TTL), $\mathrm{V}_{\text {AL }}$		Full	-	-	0.8	-	-	0.8	V
Input High Threshold (TTL), $\mathrm{V}_{\text {AH }}$		Full	2.4	-	-	2.4	-	-	V
Input Leakage Current (High), $\mathrm{I}_{\text {AH }}$		Full	-	0.05	1	-	0.05	1	$\mu \mathrm{A}$
Current (Low), A_{L}		Full	-	-	25	-	-	25	$\mu \mathrm{A}$
ANALOG CHANNEL SPECIFICATIONS									
Analog Signal Range, V_{IN}		Full	-10	-	+10	-10	-	+10	V
On Resistance, R RON	(Note 2)	$+25^{\circ} \mathrm{C}$	-	700	-	-	700	-	Ω
		Full	-	-	1.5	-	-	1.5	K Ω
Off Input Leakage Current, Is (OFF)	(Note 3)	$+25^{\circ} \mathrm{C}$	-	0.2	-	-	0.2	-	nA
		Full	-	-	50	-	-	50	nA
Off Output Leakage Current, $\mathrm{ID}_{\text {(OFF) }}$	(Note 3)	$+25^{\circ} \mathrm{C}$	-	0.2	-	-	0.2	-	nA
		Full	-	-	50	-	-	50	nA
On Channel Leakage Current, $I_{\text {(}}^{\text {(ON) }}$	(Note 3)	$+25^{\circ} \mathrm{C}$	-	0.7	-	-	0.7	-	nA
		Full	-	-	50	\bullet	-	50	nA
3dB Bandwidth	(Note 4)	$+25^{\circ} \mathrm{C}$	-	8	-	-	8	-	MHz

Specifications HI-524

Electrical Specifications Supplies $=+15 \mathrm{~V},-15 \mathrm{~V} ; \mathrm{V}_{\mathrm{AH}}($ Logic Level High $)=+2.4 \mathrm{v}, \mathrm{V}_{\mathrm{AL}}=($ Logic Level Low $)=+0.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EN}}=+2.4 \mathrm{~V}$, Unless Otherwise Specified (Continued)

PARAMETER	TEST CONDITIONS	TEMP	H1-524-2/-8			HI-524-5			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	
POWER SUPPLY CHARACTERISTICS									
Power Dissipation, P_{D}		Full	-	-	750	-	-	750	mW
Current, I+	(Note 7)	Full	-	-	25	\bullet	-	25	mA
Current, I-	(Note 7)	Full	-	\bullet	25	-	-	25	mA

NOTES:

1. Absolute maximum ratings are limiting values, applied individually, beyond which the serviceability of the circuit may be impaired. Functional operation under any of these conditions is not necessarily implied.
2. $\mathrm{V}_{\mathrm{IN}}=O V$; $\mathrm{I}_{\mathrm{OUT}}=100 \mu \mathrm{~A}$ (See Test Circuit 1).
3. $\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V} ; \mathrm{V}_{\mathrm{IN}}= \pm 10 \mathrm{~V}$. (See Test Circuits $2,3,4$)
4. MUX output is buffered with HA-5033 amplifier.
5. 6 V Step, $\pm 3 \mathrm{~V}$ to $\pm 3 \mathrm{~V}$, See Test Circuit 5 .
6. $V_{I N}=10 \mathrm{MHz}, 3 \mathrm{~V}_{\mathrm{P} . \mathrm{P}}$ on one channel, with any other channel selected. (worst case is channel 3 selected with input on channel 4). MUX output is buffered with HA-2541 as shown in Applications section. Terminate all channels with 75Ω.
7. Supply currents vary less than 0.5 mA for switching rates from DC to 2 MHz .

Performance Curves and Test Circuits $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SUPPLY}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{AH}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{AL}}=0.8 \mathrm{~V}$, Unless Otherwise Specified

TEST CIRCUIT 1. ON RESISTANCE

FIGURE 1. ON RESISTANCE vs ANALOG INPUT VOLTAGE

FIGURE 2. ON RESISTANCE vs SUPPLY VOLTAGE

Performance Curves and Test Circuits $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SUPPLY}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{AH}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{AL}}=0.8 \mathrm{~V}$, Unless Otherwise Specified (Continued)

FIGURE 3. LEAKAGE CURRENT vs TEMPERATURE

TEST CIRCUIT 3. LEAKAGE CURRENT (NOTE 1)

TEST CIRCUIT 5. SETTLING TIME, ACCESS TIME, BREAKNOTE: BEFORE-MAKE DELAY (NOTE 2)

1. Two measurements per channel: $\pm 10 \mathrm{~V}$ and $\mp 10 \mathrm{~V}$. (Two measurements per device for $\mathrm{I}_{\mathrm{D}(\mathrm{OFF})} \pm 10 \mathrm{~V}$ and $\mp 10 \mathrm{~V}$)
2. This test requires channel inputs 1 and 4 at the same level.
3. Capacitor value may be selected to optimize AC performance.

Performance Curves and Test Circuits $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\text {SUPPIY }}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{AH}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{AL}}=0.8 \mathrm{~V}$,

 Unless Otherwise Specified (Continued)

FIGURE 5. ACCESS TIME
TABLE 1. TRUTH TABLE

$A_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{0}}$	EN	ON CHANNEL
X	X	L	None
L	L	H	1^{*}
L	H	H	2
H	L	H	3
H	H	H	4

*Channel 1 is shown selected in the Functional Diagram

Typical Applications

Often it is desirable to buffer the H1-524 output, to avoid loading errors due to the channel "ON" resistance:

* Capacitor value may be selected to optimize AC performance.

The buffer amplifier should offer sufficient bandwidth and slew rate to avoid degradation of the anticipated signals. For video switching, the HA-5033 and HA-2542 offer good performance
plus $\pm 100 \mathrm{~mA}$ output current for driving coaxial cables. For general wideband applications, the HA-2541 offers the convenience of unity gain stability plus 90 ns settling (to $\pm 0.1 \%$) and $\pm 10 \mathrm{~V}$ output swing. Also, the HI-524 includes a feedback resistance for use with the HA-2541. This resistance matches and tracks the channel "ON" resistance, to minimize offset voltage due to the buffer's bias currents.
Note that the on-chip feedback element between pins 16 and 18 includes two switches in series, to simulate a channel resistance. These switches open for $\mathrm{V}_{\mathrm{EN}}=$ Low. This allows two or more HI-524's to operate into one HA-2541, with their feedback elements connected in parallel. Thus, only the selected multiplexer provides feedback, and the amplifier remains stable.

All HI-524 DIP package pins labeled 'SIG GND' (pins 3,4, $6,13,15$) should be externally connected to signal ground for best crosstalk performance.
Bypass capacitors ($0.1 \mu \mathrm{~F}$ to $1.0 \mu \mathrm{~F}$) are recommended from each HI-524 supply pin to power ground (pins 1 and 17 to pin 8 DIP package). Locate the buffer amplifier near the HI-524 so the two capacitors may bypass both devices.
If an analog input 1 V or greater is present when supplies are off, a low resistance is seen from that input to a supply line. (For example, the resistance is approximately 160Ω for an input of $-3 V$.) Current flow may be blocked by a diode in each supply line, or limited by a resistor in series with each channel. The best solution, of course, is to arrange that no digital or analog inputs are present when the power supplies are off.

Metallization Topology

DIE DIMENSIONS:

$2250 \mu \mathrm{~m} \times 3720 \mu \mathrm{~m} \times 485 \mu \mathrm{~m} \pm 25 \mu \mathrm{~m}$
METALLIZATION:
Type: Cu AL
Thickness: $16 \mathrm{k} \AA \pm 2 \mathrm{k} \AA$

GLASSIVATION:

Type: Nitride Over Silox
Nitride Thickness: $3.5 \mathrm{k} \AA \pm 1 \mathrm{k} \AA$
Silox Thickness: $12 \mathrm{k} \AA \pm 2 \mathrm{k} \AA$
WORST CASE CURRENT DENSITY: $1.58 \times 10^{5} \mathrm{~A} / \mathrm{cm}^{2}$
Metallization Mask Layout
HI-524

Monolithic, 4 Channel, Low Level, Differential Multiplexer

Features

- Differential Performance, Typical:
- Low $\Delta R_{\text {ON }},+125^{\circ} \mathrm{C}$ \qquad
- Low $\Delta^{\mathrm{I}_{\mathrm{D}(\mathrm{ON}),},+125^{\circ} \mathrm{C} \text {. } 0.6 \mathrm{nA}}$
- Low Δ (Charge Injection) 0.1 .
- Low Crosstalk. -124dB
- Settling Time, $\pm 0.01 \%$. 900 ns
- Wide Supply Range. $\pm 5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$
- Break-Before-Make Switching
- No Latch-Up

Applications

- Low Level Data Acquisition
- Precision Instrumentation
- Test Systems

Description

The Harris HI-539 is a monolithic, four channel, differential multiplexer. Two digital inputs are provided for channel selection, plus an Enable input to disconnect all channels.

Performance is guaranteed for each channel over the voltage range $\pm 10 \mathrm{~V}$, but is optimized for low level differential signals. Leakage current, for example, which varies slightly with input voltage, has its distribution centered at zero input volts.

In most monolithic multiplexers, the net differential offset due to thermal effects becomes significant for low level signals. This problem is minimized in the $\mathrm{HI}-539$ by symmetrical placement of critical circuitry with respect to the few heat producing devices.

Supply voltages are $\pm 15 \mathrm{~V}$ and power consumption is only 2.5 mW .

Ordering Information

PART NUMBER	TEMPERATURE RANGE	PACKAGE
H14P0539-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	20 Lead PLCC
HI1-0539-2	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
HI3-0539-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	16 Lead Plastic DIP
HI1-0539-4	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
H $11-0539-5$	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
HI1-0539-8	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead Ceramic DIP

Absolute Maximum Ratings

Voltage Between Supply Pins (+V, -V)
Voltage From Either Supply to GND. 20V

Digital Input Voltage . $-\mathrm{V} \leq \mathrm{V}_{\mathrm{A}} \leq+\mathrm{V}$
Current (Source or Drain). . 20 mA
Lead Temperature (Soldering 10s). $+300^{\circ} \mathrm{C}$
Storage Temperature Range $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Thermal Information

Thermal Resistance	$\theta_{\text {JA }}$	${ }^{\circ}$
Ceramic DIP Package	$78^{\circ} \mathrm{C} / \mathrm{W}$	$23^{\circ} \mathrm{C} / \mathrm{W}$
Plastic DIP Package	$100^{\circ} \mathrm{C} / \mathrm{W}$	-
Plastic PLCC Package.	$80^{\circ} \mathrm{C} / \mathrm{W}$	-
Operating Temperature Range		
HI-539-2, -8 . $-55^{\circ} \mathrm{C}$ to +125 ${ }^{\circ} \mathrm{C}$		
HI-539-4. $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		
HI-539-5. $0^{\circ} \mathrm{C}$ to +75 ${ }^{\circ} \mathrm{C}$		
Junction Temperature		
Ceramic DIP		$+175^{\circ} \mathrm{C}$
Plastic DIP, Plastic PLCC		$+150^{\circ} \mathrm{C}$

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Electrical Specifications Supplies $= \pm 15 \mathrm{~V} . \mathrm{V}_{\mathrm{EN}}=+4.0 \mathrm{~V} . \mathrm{V}_{\mathrm{AH}}$ (Logic Level High) $=+4.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{AL}}$ (Logic Level Low) $=+0.8 \mathrm{~V}$. See the "Performance Curves". Selected parameters are defined in "Definitions", Unless Otherwise Specified.

PARAMETER	TEST CONDITION	TEMP	HI-539-2, -4, -8,		HI-539-5		UNITS
			TYP	MAX (MIN)	TYP	MAX (MIN)	
SWITCHING CHARACTERISTICS							
Access Time, T_{A}		$+25^{\circ} \mathrm{C}$	250	750	250	750	ns
		Full	-	1,000	-	1,000	ns
Break-Before-Make Delay, Topen		$+25^{\circ} \mathrm{C}$	85	(30)	85	(30)	ns
		Full	-	(30)	-	(30)	ns
Enable Delay On, ${ }_{\text {ON(EN }}$		$+25^{\circ} \mathrm{C}$	250	750	250	750	ns
		Full	-	1,000	-	1,000	ns
Enable Delay Off, Toff(EN)		$+25^{\circ} \mathrm{C}$	160	650	160	650	ns
		Full	-	900	-	900	ns
Settling Time, to $\pm 0.01 \%$		$+25^{\circ} \mathrm{C}$	0.9	-	0.9	-	$\mu \mathrm{s}$
Charge Injection (Output)		Full	3	\cdot	3	-	pC
Δ Charge Injection (Output)		Full	0.1	-	0.1	-	pC
Charge Injection (Input)		Full	10	-	10	-	pC
Differential Crosstalk	Note 3	$+25^{\circ} \mathrm{C}$	124	-	124	-	dB
Single Ended Crosstalk	Note 3	$+25^{\circ} \mathrm{C}$	100	-	100	-	dB
Channel Input Capacitance, $\mathrm{C}_{\text {S(OFF) }}$		Full	5	-	5	-	pF
Channel Output Capacitance, $\mathrm{C}_{\text {D(OFF) }}$		Full	7	-	7	-	pF
Channel On Output Capacitance, $\mathrm{C}_{\mathrm{D}(\mathrm{ON})}$		Full	17	-	17	-	pF
Input to Output Capacitance, C_{DS}	Note 4	Full	0.08	-	0.08	-	pF
Digital Input Capacitance, C_{A}		Full	3	-	3	-	pF
DIGITAL INPUT CHARACTERISTICS							
Input Low Threshold, V_{AL}		Full	-	0.8	\bullet	0.8	V
Input High Threshold, $\mathrm{V}_{\text {AH }}$		Full	-	(4.0)	-	(4.0)	V
Input Leakage Current (High), $\mathrm{I}_{\text {AH }}$		Full	-	1	-	1	$\mu \mathrm{A}$
Input Leakage Current (Low), $\mathrm{I}_{\text {AL }}$		Full	\bullet	1	-	1	$\mu \mathrm{A}$
ANALOG CHANNEL CHARACTERISTICS							
Analog Signal Range, V_{IN}.		Full	-	(-10)/+10	-	(-10)/+10	V
On Resistance, R $\mathrm{R}_{\text {ON }}$	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	$+25^{\circ} \mathrm{C}$	650	850	650	850	Ω
	$\mathrm{V}_{\text {IN }}= \pm 10 \mathrm{~V}$	$+25^{\circ} \mathrm{C}$	700	900	700	900	Ω
	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	Full	950	1.3k	800	1k	Ω
	$\mathrm{V}_{\text {IN }}= \pm 10 \mathrm{~V}$	Full	1.1k	1.4k	900	1.1k	Ω

Specifications HI-539

Electrical Specifications Supplies $= \pm 15 \mathrm{~V} . \mathrm{V}_{\mathrm{EN}}=+4.0 \mathrm{~V} . \mathrm{V}_{\mathrm{AH}}$ (Logic Level High) $=+4.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{AL}}$ (Logic Level Low) $=+0.8 \mathrm{~V}$. See the "Performance Curves". Selected parameters are defined in "Definitions", Unless Otherwise Specified. (Continued)

PARAMETER	TEST CONDITION	TEMP	Hi-539-2, -4, -8,		H1-539-5		UNITS
			TYP	MAX (MIN)	TYP	MAX (MIN)	
(Side A-Side B), $\mathrm{PR}_{\mathrm{ON}}$	$\mathrm{V}_{1 \mathrm{IN}}=0 \mathrm{~V}$	$+25^{\circ} \mathrm{C}$	4.0	24	4.0	24	Ω
	$\mathrm{V}_{\text {IN }}= \pm 10 \mathrm{~V}$	$+25^{\circ} \mathrm{C}$	4.5	27	4.5	27	Ω
	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	Full	4.75	28	4.0	24	Ω
	$\mathrm{V}_{\text {IN }}= \pm 10 \mathrm{~V}$	Full	5.5	33	4.5	27	Ω
Off Input Leakage Current, I ${ }_{\text {S(OFF }}$	Condition OV (Note 1)	$+25^{\circ} \mathrm{C}$	30	-	30	-	pA
	Condition $\pm 10 \mathrm{~V}$ (Note 1)	$+25^{\circ} \mathrm{C}$	100	-	100	-	pA
	Condition OV (Note 1)	Full	2	10	0.2	1	nA
	Condition $\pm 10 \mathrm{~V}$ (Note 1)	Full	5	25	0.5	2.5	nA
(Side A-Side B), $\Delta_{\text {S(OFF) }}$	Condition OV	$+25^{\circ} \mathrm{C}$	3	-	3	-	pA
	Condition $\pm 10 \mathrm{~V}$	$+25^{\circ} \mathrm{C}$	10	-	10	-	pA
	Condition OV	Full	0.2	2	0.02	0.2	nA
	Condition $\pm 10 \mathrm{~V}$	Full	0.5	5	0.05	0.5	nA
Off Output Leakage Current, $I_{\text {D(OFF) }}$	Condition OV (Note 1)	$+25^{\circ} \mathrm{C}$	30	-	30	-	pA
	Condition $\pm 10 \mathrm{~V}$ (Note 1)	$+25^{\circ} \mathrm{C}$	100	-	100	-	pA
	Condition OV (Note 1)	Full	2	10	0.2	1	nA
	Condition $\pm 10 \mathrm{~V}$ (Note 1)	Full	5	25	0.5	2.5	nA
(Side A-Side B), $\Delta_{\text {d }}$ (OFF)	Condition OV	$+25^{\circ} \mathrm{C}$	3	-	3	-	pA
	Condition $\pm 10 \mathrm{~V}$	$+25^{\circ} \mathrm{C}$	10	-	10	\cdot	pA
	Condition OV	Full	0.2	2	0.02	0.2	nA
	Condition $\pm 10 \mathrm{~V}$	Full	0.5	5	0.05	0.5	nA
On Channel Leakage Current, $\mathrm{I}_{\mathrm{D}(\mathrm{ON})}$	Condition OV (Note 1)	$+25^{\circ} \mathrm{C}$	50	-	50	-	pA
	Condition $\pm 10 \mathrm{~V}$ (Note 1)	$+25^{\circ} \mathrm{C}$	150	\cdot	150	\bullet	pA
	Condition OV (Note 1)	Full	5	25	0.5	2.5	nA
	Condition $\pm 10 \mathrm{~V}$ (Note 1)	Full	6	40	0.8	4.0	nA
(Side A-Side B), $\Delta^{\mathrm{I}_{\mathrm{D}(\mathrm{ON})}}$	Condition OV	$+25^{\circ} \mathrm{C}$	10	-	10	-	pA
	Condition $\pm 10 \mathrm{~V}$	$+25^{\circ} \mathrm{C}$	30	\cdot	30	-	pA
	Condition OV	Full	0.5	5	0.05	0.5	nA
	Condition $\pm 10 \mathrm{~V}$	Full	0.6	6	0.08	0.8	nA
Differential Offset Voltage, $\Delta \mathrm{V}_{\text {OS }}$	Note 2	$+25^{\circ} \mathrm{C}$	0.02	-	0.02	-	$\mu \mathrm{V}$
		Full	0.70	\bullet	0.08	\bullet	$\mu \mathrm{V}$
POWER REQUIREMENTS							
Power Dissipation, P_{D}		$+25^{\circ} \mathrm{C}$	2.3	\cdot	2.3	\cdot	mW
		Full	-	45	-	45	mW
Current, 1+		$+25^{\circ} \mathrm{C}$	0.150	-	0.150	-	mA
		Full	-	2.0	-	2.0	mA
Current, I-		$+25^{\circ} \mathrm{C}$	0.001	-	0.001	-	mA
		Full	\cdot	1.0	-	1.0	mA
Supply Voltage Range, $\pm \mathrm{V}$		Full	± 15	$(\pm 5) / \pm 18$	± 15	$(\pm 5) / \pm 18$	V

NOTES:

1. See Figures $2 \mathrm{~B}, 2 \mathrm{C}, 2 \mathrm{D}$. The condition $\pm 10 \mathrm{~V}$ means:
$I_{\text {SOFF }}$ and $I_{\text {D(OFF) }}$:
$\left(V_{S}=+10 \mathrm{~V}, V_{D}=-10 \mathrm{~V}\right)$, then
$\left(\mathrm{V}_{\mathrm{S}}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=+10 \mathrm{~V}\right.$)
$I_{(0 N)}$: +10 V , then -10 V)
2. $\Delta V_{O S}$ (Exclusive of thermocouple effects) $=R_{O N} \Delta l_{D(O N)}+I_{D(O N)} \Delta R_{O N}$. See Applications section for discussion of additional $V_{O S}$ error.
3. $\mathrm{V}_{\mathbb{N}}=1 \mathrm{kHz}, 15 \mathrm{~V}_{\text {p.p }}$ on all but the selected channel. See Figure 7 .
4. Calculated from typical Single-Ended Crosstalk performance.

HI-539

Performance Curves Unless Otherwise Specified $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C},+\mathrm{V}=+15 \mathrm{~V},-\mathrm{V}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{AH}}=+4 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{AL}}=+0.8 \mathrm{~V}$.

FIGURE 1A. ON RESISTANCE TEST CIRCUIT

FIGURE 1C. ON RESISTANCE vs ANALOG INPUT VOLTAGE

FIGURE 1B. ON RESISTANCE vs TEMPERATURE

FIGURE 1D. ON RESISTANCE vs SUPPLY VOLTAGE FIGURE 1. ON RESISTANCE

Performance Curves Unless Otherwise Specified $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C},+\mathrm{V}=+15 \mathrm{~V},-\mathrm{V}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{AH}}=+4 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{AL}}=+0.8 \mathrm{~V}$. (Continued)

FIGURE 2A. LEAKAGE CURRENT vs TEMPERATURE

FIGURE 2C. $I_{\text {S(OFF) }}$ TEST CIRCUIT (NOTE 1)

FIGURE 2B. $\mathrm{I}_{\text {D(OFF) }}$ TEST CIRCUIT (NOTE 1)

FIGURE 2D. $I_{\text {D(ON) }}$ TEST CIRCUIT (NOTE 1)

FIGURE 2. LEAKAGE CURRENT
NOTE:

1. Three measurements $=+10 \mathrm{~V} /-10 \mathrm{~V},-10 \mathrm{~V} /+10 \mathrm{~V}$, and 0 V

Performance Curves Unless Otherwise Specified $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C},+\mathrm{V}=+15 \mathrm{~V},-\mathrm{V}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{AH}}=+4 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{AL}}=+0.8 \mathrm{~V}$. (Continued)

FIGURE 3A. SUPPLY CURRENT vs TOGGLE FREQUENCY

FIGURE 3B. SUPPLY CURRENT TEST CIRCUIT FIGURE 3. SUPPLY CURRENT

FIGURE 4A. ACCESS TIME vs LOGIC LEVEL (HIGH)

FIGURE 4C. ACCESS TIME MEASUREMENT

FIGURE 4B. ACCESS TIME TEST CIRCUIT

FIGURE 4D. ACCESS TIME WAVEFORMS

FIGURE 4. ACCESS TIME

Performance Curves Unless Otherwise Specified $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C},+\mathrm{V}=+15 \mathrm{~V},-\mathrm{V}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{AH}}=+4 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{AL}}=+0.8 \mathrm{~V}$. (Continued)

FIGURE 5A. $t_{\text {OPEN }}$ MEASUREMENT

FIGURE 5B. topen TEST CIRCUIT

FIGURE 5C. topen WAVEFORMS
FIGURE 5. BREAK-BEFORE-MAKE DELAY (topen)

Performance Curves Unless Otherwise Specified $T_{A}=+25^{\circ} \mathrm{C},+\mathrm{V}=+15 \mathrm{~V},-\mathrm{V}=-15 \mathrm{~V}, \mathrm{~V}_{\mathrm{AH}}=+4 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{AL}}=+0.8 \mathrm{~V}$. (Continued)

\dagger Similar connection for side " B "
FIGURE 6A. tom(en), toff(en) MEASUREMENT

FIGURE 6B. Tom(EN), toff(EN) TEST CIRCUIT

FIGURE 6C. $t_{\text {ON(EN), }}$, OFFF(EN) WAVEFORMS

FIGURE 7A. SINGLE-ENDED CROSSTALK TEST CIRCUIT

FIGURE 7B. DIFFERENTIAL CROSSTALK TEST CIRCUIT

FIGURE 7. CROSSTALK

Applications

General

The HI-539 accepts inputs in the range -15 V to +15 V , with performance guaranteed over the $\pm 10 \mathrm{~V}$ range. At these higher levels of analog input voltage it is comparable to the $\mathrm{HI}-509$, and is plug-in compatible with that device (as well as the HI-509A). However, as mentioned earlier, the $\mathrm{HI}-539$ was designed to introduce minimum error when switching low level inputs.

Special care is required in working with these low level signals. The main concern with signals below 100 mV is that noise, offset voltage, and other aberrations can represent a large percentage error. A shielded differential signal path is essential to maintain a noise level below $50 \mu \mathrm{~V}_{\text {RMS }}$.

Low Level Signal Transmission

The transmission cable carrying the transducer signal is critical in a low level system. It should be as short as practical and rigidly supported. Signal conductors should be tightly twisted for minimum enclosed area to guard against pickup of electromagnetic interference, and the twisted pair should be shielded against capacitively coupled (electrostatic) interference. A braided wire shield may be satisfactory, but a lapped foil shield is better since it allows only one tenth as much leakage capacitance to ground per foot. A key requirement for the transmission cable is that it presents a balanced line to sources of noise interference. This means an equal series impedance in each conductor plus an equally distributed impedance from each conductor to ground. The result should be signals equal in magnitude but opposite in phase at any transverse plane. Noise will be coupled in phase to
both conductors, and may be rejected as common mode voltage by a differential amplifier connected to the multiplexer output.
Coaxial cable is not suitable for low level signals because the two conductors (center and shield) are unbalanced. Also, ground loops are produced if the shield is grounded at both ends by standard BNC connectors. If coax must be used, carry the signal on the center conductors of two equallength cables whose shields are terminated only at the transducer end. As a general rule, terminate (ground) the shield at one end only, preferably at the end with greatest noise interference. This is usually the transducer end for both high and low level signals.

Watch Small ΔV Errors

Printed circuit traces and short lengths of wire can add substantial error to a signal even after it has traveled hundreds of feet and arrived on a circuit board. Here, the small voltage drops due to current flow through connections of a few milliohms must be considered, especially to meet an accuracy requirement of 12 -bits or more.

Table 1 is a useful collection of data for calculating the effect of these short connections. (Proximity to a ground plane will lower the values of inductance.)

As an example, suppose the HI-539 is feeding a 12-bit converter system with an allowable error of $\pm 1 / 2$ LSB ($\pm 1.22 \mathrm{mV}$). If the interface logic draws 100 mA from the 5 V supply, this current will produce 1.28 mV across 6 inches of \#24 wire; more than the error budget. Obviously, this digital current must not be routed through any portion of the analog ground return network.

TABLE 1.

WIRE GAGE	EQUIVALENT WIDTH OF P.C. CONDUCTOR (2 oz. Cu)	DC RESISTANCE PER FOOT	INDUCTANCE PER FOOT	IMPEDANCE PER FOOT	
18	$0.47^{\prime \prime}$	0.0064Ω	$0.36 \mu \mathrm{H}$	0.0064Ω	0.0235Ω
20	$0.30^{\prime \prime}$	0.0102Ω	$0.37 \mu \mathrm{H}$	0.0102Ω	0.0254Ω
22	$0.19^{\prime \prime}$	0.0161Ω	$0.37 \mu \mathrm{H}$	0.0161Ω	0.0288Ω
24	$0.12^{\prime \prime}$	0.0257Ω	$0.40 \mu \mathrm{H}$	0.0257Ω	0.0345Ω
26	$0.075^{\prime \prime}$	0.041Ω	$0.42 \mu \mathrm{H}$	0.041Ω	0.0488Ω
28	$0.047^{\prime \prime}$	0.066Ω	$0.45 \mu \mathrm{H}$	0.066Ω	0.0718Ω
30	$0.029^{\prime \prime}$	0.105Ω	$0.49 \mu \mathrm{H}$	0.105Ω	0.110Ω
32	$0.018^{\prime \prime}$	0.168Ω	$0.53 \mu \mathrm{H}$	0.168Ω	0.171Ω

Provide Path For $I_{\text {BIAS }}$

The input bias current for any DC-coupled amplifier must have an external path back to the amplifier's power supply. No such path exists in Figure 8A, and consequently the amplifier output will remain in saturation.

A single large resistor ($1 \mathrm{M} \Omega$ to $10 \mathrm{M} \Omega$) from either signal line to power supply common will provide the required path, but a resistor on each line is necessary to preserve accuracy. A single pair of these bias current resistors on the HI-539 output may be used if their loading effect can be tolerated (each forms a voltage divider with R_{ON}). Otherwise, a resistor pair on each input channel of the multiplexer is required.
The use of bias current resistors is acceptable only if one is confident that the sum of signal plus common-mode voltage will remain within the input range of the multiplexer/amplifier combination.

Another solution is to simply run a third wire from the low side of the signal source, as in Figure 8B. This wire assures a low common-mode voltage as well as providing the path for bias currents. Making the connection near the multiplexer will save wire, but it will also unbalance the line and reduce the amplifier's common-mode rejection.

Differential Offset, $\Delta \mathbf{V}_{\mathbf{O S}}$

There are two major sources of $\Delta \mathrm{V}_{\mathrm{OS}}$. That part due to the expression ($\left.R_{\mathrm{ON}} \Delta l_{\mathrm{D}(\mathrm{ON})}+\mathrm{l}_{\mathrm{D}(\mathrm{ON})} \Delta \mathrm{R}_{\mathrm{ON}}\right)$ becomes significant with increasing temperature, as shown in the Electrical Specifications tables. The other source of offset is the thermocouple effects due to dissimilar materials in the signal path. These include silicon, aluminum, tin, nickel-iron and (often) gold, just to exit the package.
For the thermocouple effects in the package alone, the constraint on $\Delta \mathrm{V}_{\text {OS }}$ may be stated in terms of a limit on the difference in temperature for package pins leading to any channel of the HI-539. For example, a difference of $0.13^{\circ} \mathrm{C}$ produces a $5 \mu \mathrm{~V}$ offset. Obviously, this $\Delta \mathrm{T}$ effect can dominate the $\Delta V_{O S}$ parameter at any temperature unless care is taken in mounting the HI-539 package.

Temperature gradients across the $\mathrm{HI}-539$ package should be held to a minimum in critical applications. Locate the $\mathrm{HI}-539$ far from heat producing components, with any air currents flowing lengthwise across the package.

FIGURE 8A.

FIGURE 8B.
The amplifier in Figure 8A is unusable because its bias currents cannot return to the power supply. Figure 8B shows two alternative paths for these bias currents: either a pair of resistors, or (better) a third wire from the low side of the signal source.

Die Characteristics

DIE DIMENSIONS:
92 mils $\times 100$ mils
METALLIZATION:
Type: Al Cu
Thickness: $16 k \AA \pm 2 k \AA$
GLASSIVATION:
Type: Nitride Over Silox Nitride Thickness: $3.5 \mathrm{k} \AA \pm 1 \mathrm{k} \AA$
Silox Thickness: $12 \mathrm{k} \AA \pm 2.0 \mathrm{k} \AA$
WORST CASE CURRENT DENSITY:
$2.54 \times 10^{5} \mathrm{~A}^{\mathrm{cm}}{ }^{2}$ at 20 mA
TRANSISTOR COUNT: 236
PROCESS: CMOS-DI
SUBSTRATE POTENTIAL*: -V ${ }_{\text {SUPPLY }}$

* The substrate appears resistive to the $-V_{\text {SUPPLY }}$ terminal, therefore it may be left floating (Insulating Die Mount) or it may be mounted on a conductor at $-V_{\text {SUPPLY }}$ potential

Metallization Mask Layout

Single 16 and 8, Differential 8 and 4 Channel CMOS Analog MUXs with Active Overvoltage Protection

Features

- Analog Overvoltage Protection.70V ${ }_{\text {p-p }}$
- No Channel Interaction During Overvoltage
- Guaranteed R $_{\text {ON }}$ Matching
- 44V Maximum Power Supply
- Break-Before-Make Switching
- Analog Signal Range.
- Access Time (Typical) 500ns
- Standby Power (Typical) 7.5 mW

Applications

- Data Acquisition
- Industrial Controls
- Telemetry

Description

The HI-546, HI-547, HI-548 and HI-549 are analog multiplexers with active overvoltage protection and guaranteed RON matching. Analog input levels may greatly exceed either power supply without damaging the device or disturbing the signal path of other channels. Active protection circuitry assures that signal fidelity is maintained even under fault conditions that would destroy other multiplexers.
Analog inputs can withstand constant $70 \mathrm{~V}_{\text {P-p }}$ levels with $\pm 15 \mathrm{~V}$ supplies. Digital inputs will also sustain continuous faults up to 4 V greater than either supply. In addition, signal sources are protected from short circuiting should multiplexer supply loss occur. Each input presents $1 \mathrm{~K} \Omega$ of resistance under this condition. These features make the HI 546, $\mathrm{HI}-547, \mathrm{HI}-548$ and $\mathrm{HI}-549$ ideal for use in systems where the analog inputs originate from external equipment or separately powered circuitry. All devices are fabricated with 44 V Dielectrically Isolated CMOS technology. The HI-546 is a single 16 channel, the HI547 is an 8 channel differential, the $\mathrm{HI}-548$ is a single 8 channel and the HI-549 is a 4 channel differential device. If input overvoltage protection is not needed the HI-506/507/508/509 multiplexers are recommended. For further information see Application Notes 520 and 521. The HI-546 and HI-547 devices are available in a 28 lead Plastic or Ceramic DIP and a 28 pad Ceramic LCC package. The HI-548/549 devices are available in a 16 lead Plastic or Ceramic DIP and a 20 pad Ceramic LCC package.

The HI-546, HI-547, $\mathrm{HI}-548$ and $\mathrm{HI}-549$ are offered in industrial/commercial and military grades. Additional Hi-Rel screening including 160 hour Burn-In is specified by the "-8" suffix. For Mil-Std-883 compliant parts, request the HI-546/883, HI-547/883, HI-548/883 and HI-549/ 883 datasheets.

Ordering Information

PART NUMBER	TEMPERATURE RANGE	PACKAGE
HI1-0546-4	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 Lead Ceramic DIP
HI1-0546-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	28 Lead Ceramic DIP
HI1-0546-2	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	28 Lead Ceramic DIP
HI1-0546/883	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	28 Lead Ceramic DIP
HI3-0546-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	28 Lead Plastic DIP
H $13-0546-9$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 Lead Plastic DIP
HI4-0546/883	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	28 Lead Ceramic LCC
HI4P0546-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	28 Lead PLCC
H19P0546-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	28 Lead Plastic SOIC
HI9P0546-9	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 Lead Plastic SOIC
HI1-0547-2	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	28 Lead Ceramic DIP
HI1-0547-4	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 Lead Ceramic DIP

PART NUMBER	TEMPERATURE RANGE	PACKAGE
HI1-0547-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	28 Lead Ceramic DIP
H11-0547-9	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 Lead Ceramic DIP
HI1-0547/883	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	28 Lead Ceramic DIP
HI3-0547-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	28 Lead Plastic DIP
HI3-0547-9	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 Lead Plastic DIP
H14-0547/883	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	28 Lead Ceramic LCC
H14P0547-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	28 Lead PLCC
HI9P0547-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	28 Lead Plastic SOIC
HI9P0547-9	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 Lead Plastic SOIC

Ordering Information (Continued)

PART NUMBER	TEMPERATURE RANGE	PACKAGE
HI1-0548-2	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
HI1-0548-4	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
HI1-0548-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
HI1-0548/883	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
HI3-0548-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	16 Lead Plastic DIP
HI3-0548-9	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Lead Plastic DIP
HI4-0548/883	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	20 Lead Ceramic LCC
HI4P0548-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	20 Lead Plastic LCC
HI9P0548-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	16 Lead Plastic SOIC
HI9P0548-9	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Pin SOIC (W)

PART NUMBER	TEMPERATURE RANGE	PACKAGE
HI1-0549-2	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
HI1-0549-4	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
HI1-0549-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
HI1-0549/883	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
HI3-0549-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	16 Lead Plastic DIP
HI3-0549-9	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Lead Plastic DIP
HI4-0549/883	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	20 Lead Ceramic LCC
HI4P0549-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	20 Lead Plastic LCC
HI9P0549-5	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	20 Lead Plastic SOIC
HI9P0549-9	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Pin SOIC (W)

Pinouts

HI1-0546 (CDIP), HI3-0546 (PDIP), HI9P0546 (SOIC)

HIT-0547 (CDIP), HI3-0547 (PDIP), H19P0547 (SOIC)

$+V_{\text {SUPPLY }} 1$	28 OUT A
OUT B 2	27 -V SUPPLY
NC 3	26 IN 8A
IN 8B 4	$25.1 N 7 A$
IN 78 5	24 IN 6A
IN 6B 6	23 IN 5A
IN 5B 7	22 IN 4 A
IN 48 8	21 IN 3 A
IN 3B 9	20 IN 2 A
IN 2B 10	19 IN 1 A
IN 18 11	18 enable
GND 12	17 ADDRESS A_{0}
$V_{\text {REF }} 13$	16 ADDRESS A_{1}
Nc 14	15 ADDRESS A_{2}

Pinouts (Continued)

$A_{0} 1$ ENABLE \square	$16 A_{1}$ $15 A_{2}$
- $\mathrm{V}_{\text {SUPPLY }} 3$	14 GND
IN 14	$13+V_{\text {SUPPLY }}$
IN 25	12 IN 5
IN 36	$11{ }^{1 N} 6$
IN 47	10] 1 l 7
OUT 8	9 $1 \mathbb{N}$

HI1-0549 (CDIP)
HI3-0549 (PDIP)
H19P0549 (SOIC) TOP VIEW

> H14-0549 (LCC) HI4P0549 (PLCC) TOP VIEW

Functional Diagrams

Functional Diagrams (Continued)

Schematic Diagrams

HI-546, HI-547, HI-548, HI-549
Schematic Diagrams (Continued)

Thermal Information

Thermal Resistance	$\theta_{\text {JA }}$	θ_{Jc}
Ceramic Packages		
16 Lead DIP.	$80^{\circ} \mathrm{C} / \mathrm{W}$	$24^{\circ} \mathrm{CN}$
28 Lead DIP.	$55^{\circ} \mathrm{C} / \mathrm{W}$	$20^{\circ} \mathrm{CN}$
20 Lead LCC	$75^{\circ} \mathrm{C} / \mathrm{W}$	$20^{\circ} \mathrm{CN}$
28 Lead LCC	$60^{\circ} \mathrm{C} / \mathrm{W}$	$11^{\circ} \mathrm{CN}$

Plastic DIP Packages
28 Lead
$60^{\circ} \mathrm{C} / \mathrm{N}$
16 Lead . $100^{\circ} \mathrm{C}$ W
Plastic PLCC Packages

Plastic PL		
28 Lead	$70^{\circ} \mathrm{C} / \mathrm{W}$	-
20 Lead	$80^{\circ} \mathrm{C} / \mathrm{W}$	-
SOIC		
28 Lead	$70^{\circ} \mathrm{CNW}$	-
16 Lead	$100^{\circ} \mathrm{CN}$	-

Operating Temperature Ranges	
HI-546/547/548/549-2	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
HI-546/547/548/549-4	. . $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
HI-546/547/548/549-5, -7	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
HI-546/547/548/549-9	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Junction Temperature	
Ceramic Package	$+175^{\circ} \mathrm{C}$
Plastic Package	+150 ${ }^{\circ} \mathrm{C}$

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Electrical Specifications Supplies $=+15 \mathrm{~V},-15 \mathrm{~V} ; \mathrm{V}_{\text {REF }}$ Pin $=$ Open; $\mathrm{V}_{\mathrm{AH}}($ Logic Level High $)=+4 \mathrm{~V} ; \mathrm{V}_{\mathrm{AL}}$ (Logic Level Low $)=+0.8 \mathrm{~V}$; Unless Otherwise Specified. For Test Conditions, Consult Performance Curves.

PARAMETER	TEST CONDITION	TEMP	HI-54X-2			HI-54X-4, -5, -9			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	
SWITCHING CHARACTERISTICS									
Access Time, t_{A}		$+25^{\circ} \mathrm{C}$	-	0.5	-	-	0.5	-	$\mu \mathrm{s}$
		Full	-	\bullet	1.0	-	-	1.0	$\mu \mathrm{s}$
Break-Before Make Delay, topen		$+25^{\circ} \mathrm{C}$	25	80	-	25	80	-	ns
Enable Delay (ON), $\mathrm{t}_{\mathrm{ON}(\mathrm{EN})}$		$+25^{\circ} \mathrm{C}$	\bullet	300	500	\bullet	300	-	ns
		Full	-	-	1000	-	-	1000	ns
Enable Delay (OFF), toff(EN)		$+25^{\circ} \mathrm{C}$	\bullet	300	500	-	300	-	ns
		Full	-	-	1000	-	-	1000	ns
Settling Time (0.1\%) (0.01\%)		$+25^{\circ} \mathrm{C}$	-	1.2	-	\bullet	1.2	-	$\mu \mathrm{s}$
		$+25^{\circ} \mathrm{C}$	-	3.5	-	-	3.5	-	μs
"Off Isolation"	Note 5	$+25^{\circ} \mathrm{C}$	50	68	-	50	68	-	dB
Channel Input Capacitance, $\mathrm{C}_{\text {S(OFF) }}$		$+25^{\circ} \mathrm{C}$	-	5	-	-	5	-	pF
Channel Output Capacitance $C_{D(\text { OFF })}$ HI-546		$+25^{\circ} \mathrm{C}$	-	52	-	-	52	-	pF
HI-547		$+25^{\circ} \mathrm{C}$	-	30	-	-	30	-	pF
HI-548		$+25^{\circ} \mathrm{C}$	-	25	-	-	25	-	pF
HI-549		$+25^{\circ} \mathrm{C}$	\bullet	12	-	-	12	-	pF
Input to Output Capacitance, $\mathrm{C}_{\mathrm{DS} \text { (OFF) }}$		$+25^{\circ} \mathrm{C}$	-	0.1	-	-	0.1	-	pF

Specifications HI546, HI-547, HI-548, HI-549
Electrical Specifications Supplies $=+15 \mathrm{~V},-15 \mathrm{~V} ; \mathrm{V}_{\text {REF }}$ Pin $=$ Open; $\mathrm{V}_{\text {AH }}$ (Logic Level High $)=+4 \mathrm{~V} ; \mathrm{V}_{\mathrm{AL}}$ (Logic Level Low) $=+0.8 \mathrm{~V}$; Unless Otherwise Specified. For Test Conditions, Consult Performance Curves. (Continued)

PARAMETER	TEST CONDITION	TEMP	H1-54X-2			HI-54X-4, -5, -9			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	
DIGITAL INPUT CHARACTERISTICS									
Input Low Threshold, TTL Drive, $\mathrm{V}_{\text {AL }}$		Full	-	-	0.8	-	-	0.8	V
Input High Threshold, $\mathrm{V}_{\text {AH }}$	Note 7	Full	4.0	-	-	4.0	-	-	V
MOS Drive (HI-546/547 Only), $\mathrm{V}_{\text {AL }}$	Note 8	$+25^{\circ} \mathrm{C}$	-	-	0.8	-	-	0.8	V
MOS Drive (HI-546/547 Only), $\mathrm{V}_{\text {AH }}$	Note 8	$+25^{\circ} \mathrm{C}$	6.0	-	-	6.0	-	-	v
Input Leakage Current (High or Low), I_{A}	Note 4	Full	-	-	1.0	-	\bullet	1.0	$\mu \mathrm{A}$
ANALOG CHANNEL CHARACTERISTICS									
Analog Signal Range, $\mathrm{V}_{\text {S }}$		Full	-15	-	+15	-15	-	+15	V
On Resistance, Ron,	Note 1	$+25^{\circ} \mathrm{C}$	-	1.2	1.5	-	1.5	1.8	$\mathrm{k} \Omega$
		Full	-	1.5	1.8	-	1.8	2.0	$\mathrm{k} \Omega$
$\Delta \mathrm{R}_{\text {ON }}$, (Any Two Channels)		$+25^{\circ} \mathrm{C}$	-	-	7.0	-	-	7.0	\%
Off Input Leakage Current, $\mathrm{I}_{\text {S(OFF) }}$	Note 2	$+25^{\circ} \mathrm{C}$	-	0.03	-	-	0.03	-	nA
		Full	-	-	50	-	-	50	nA
Off Output Leakage Current, $I_{\text {D(OFF) }}$ HI-546	Note 2	$+25^{\circ} \mathrm{C}$	-	0.1	-	-	0.1	-	nA
		Full	-	-	300	-	-	300	nA
HI-547		Full	-	-	200	-	-	200	nA
H1-548		Full	-	-	200	-	-	200	nA
H-549		Full	-	-	100	-	-	100	nA
With Input Overvoltage Applied, $\mathrm{I}_{\text {D(OFF) }}$	Note 3	$+25^{\circ} \mathrm{C}$	-	4.0	-	-	4.0	-	nA
		Full	-	-	2.0	-	-	-	$\mu \mathrm{A}$
On Channel Leakage Current, $I_{D(O N)}$ HI-546	Note 2	$+25^{\circ} \mathrm{C}$	-	0.1	-	-	0.1	-	nA
		Full	-	-	300	-	-	300	nA
HI-547		Full	-	-	200	-	-	200	nA
HI-548		Full	-	-	200	-	-	200	nA
H1-549		Full	-	-	100	-	-	100	nA
Differential Off Output Leakage Current (HI-547, HI-549 Only), IDIFF		Full	-	-	50	-	-	50	nA
POWER REQUIREMENTS									
Power Dissipation, P_{D}		Full	-	7.5	-	-	7.5	-	mW
Current, 1+	Note 6	Full	-	0.5	2.0	-	0.5	2.0	mA
Current, 1-	Note 6	Full	-	0.02	1.0	-	0.02	1.0	mA

NOTES:

1. $\mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}$, I OUT $=\mp 100 \mu \mathrm{~A}$.
2. 10 nA is the practical lower limit for high speed measurement in the production test environments.
3. Analog Overvoltage $= \pm 33 \mathrm{~V}$.
4. Digital input leakage is primarily due to the clamp diodes (see Schematic). Typical leakage is less than 1 nA at $+25^{\circ} \mathrm{C}$.
5. $\mathrm{V}_{\mathrm{EN}}=0.8 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{~K}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{V}_{\mathrm{S}}=7 \mathrm{~V}_{\mathrm{RMS}}, \mathrm{f}=100 \mathrm{kHz}$.
6. $\mathrm{V}_{\mathrm{EN}}, \mathrm{V}_{\mathrm{A}}=0 \mathrm{~V}$ or 4.0 V .
7. To drive from DTLTTLCircuits, $1 \mathrm{k} \Omega$ pull-up resistors to $+5.0 \mathrm{~V}_{\text {SUPPLY }}$ are recommended.
8. $V_{\text {REF }}=+10 \mathrm{~V}$.

Performance Curves $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\text {SUPPLY }}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{AH}}=+4 \mathrm{~V}, \mathrm{~V}_{\mathrm{AL}}=0.8 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=$ Open, Unless Otherwise Specified

FIGURE 1A. ON RESISTANCE TEST CIRCUIT

FIGURE 1B. ON RESISTANCE vs ANALOG INPUT VOLTAGE

FIGURE 1. ON RESISTANCE

Performance Curves $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\text {SUPPLY }}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{AH}}=+4 \mathrm{~V}, \mathrm{~V}_{\mathrm{AL}}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=$ Open, Unless Otherwise Specified (Continued)

FIGURE 2A. LEAKAGE CURRENT vs TEMPERATURE

FIGURE 2B. $I_{\text {D(OFF }}$ TEST CIRCUIT

FIGURE 2C. $\mathbf{I}_{\text {S(OFF) }}$ TEST CIRCUIT
FIGURE 2D. $I_{D(O N)}$ TEST CIRCUIT
FIGURE 2. LEAKAGE CURRENT
NOTE:

1. Two measurements per channel: $+10 \mathrm{~V} /-10 \mathrm{~V}$ and $-10 \mathrm{~V} /+10 \mathrm{~V}$. (Two measurements per device for $\mathrm{I}_{\mathrm{D}(\mathrm{OFF})}:+10 \mathrm{~V} /-10 \mathrm{~V}$ and $-10 \mathrm{~V} /+10 \mathrm{~V}$)

Performance Curves $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\text {SUPPLY }}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{AH}}=+4 \mathrm{~V}, \mathrm{~V}_{\mathrm{AL}}=0.8 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=$ Open, Unless Otherwise Specified (Continued)

FIGURE 3A. ANALOG INPUT CURRENT AND OUTPUT OFF LEAK- FIGURE 3B. ANALOG INPUT OVERVOLTAGE TEST CIRCUIT AGE CURRENT vS ANALOG INPUT OVERVOLTAGE

FIGURE 3. ANALOG INPUT OVERVOLTAGE CHARACTERISTICS

FIGURE 4A. ON CHANNEL CURRENT vs VOLTAGE
FIGURE 4B. ON CHANNEL CURRENT TEST CIRCUIT FIGURE 4. ON CHANNEL CURRENT

FIGURE 5A. SUPPLY CURRENT vs TOGGLE FREQUENCY

\dagger Similar connection for $\mathrm{HI}-547 / \mathrm{HI}-548 / \mathrm{HI}-549$
FIGURE 5B. SUPPLY CURRENT vs TOGGLE FREQUENCY

FIGURE 5. SUPPLY CURRENT

Performance Curves $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\text {SUPPLY }}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{AH}}=+4 \mathrm{~V}, \mathrm{~V}_{\mathrm{AL}}=0.8 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=$ Open, Unless Otherwise Specified (Continued)

FIGURE 6A. ACCESS TIME vs LOGIC LEVEL (HIGH)

FIGURE 6B. ACCESS TIME TEST CIRCUIT FIGURE 6. ACCESS TIME

Switching Waveforms

Figure 7A. ACCESS time measurement

FIGURE 7B. ACCESS TIME WAVEFORMS

FIGURE 7. ACCESS TIME \dagger
\dagger Refer to Figure 6B for Test Circuit

Switching Waveforms (Continued)

\dagger Similar connection for $\mathrm{HI}-547 / \mathrm{HI}-548 / \mathrm{HI}-549$

FIGURE 8A. BREAK-BEFORE-MAKE DELAY TEST CIRCUIT

FIGURE 8B. BREAK-BEFORE-MAKE DELAY MEASUREMENT

100ns/DIV

FIGURE 8C. BREAK-BEFORE-MAKE DELAY WAVEFORMS

FIGURE 8. BREAK-BEFORE-MAKE DELAY (t OPEN)

\dagger Similar connection for $\mathrm{HI}-547 / \mathrm{HI}-548 / \mathrm{HI}-549$

FIGURE 9A. ENABLE DELAY TEST CIRCUIT

FIGURE 9B. ENABLE DELAY MEASUREMENTS

FIGURE 9C. ENABLE DELAY WAVEFORMS

FIGURE 9. ENABLE DELAY ($\left.\mathrm{t}_{\mathrm{ON}(E N)}, \mathrm{t}_{\mathrm{OFF}(E N)}\right)$

Truth Tables

Hl-546					
A $_{3}$	$A_{\mathbf{2}}$	A_{1}	A_{0}	EN	"ON" CHANNEL
X	X	X	X	L	None
L	L	L	L	H	1
L	L	L	H	H	2
L	L	H	L	H	3
L	L	H	H	H	4
L	H	L	L	H	5
L	H	L	H	H	6
L	H	H	L	H	7
L	H	H	H	H	8
H	L	L	L	H	9
H	L	L	H	H	10
H	L	H	L	H	11
H	L	H	H	H	12
H	H	L	L	H	13
H	H	L	H	H	14
H	H	H	L	H	15
H	H	H	H	H	16

HI-548

A_{2}	A_{1}	A_{0}	EN	"ON" CHANNEL
X	X	X	L	None
L	L	L	H	1
L	L	H	H	2
L	H	L	H	3
L	H	H	H	4
H	L	L	H	5
H	L	H	H	6
H	H	L	H	7
H	H	H	H	8

HI-549

A_{1}	A_{0}	EN	"ON" CHANNEL PAIR
X	X	L	None
L	L	H	1
L	H	H	2
H	L	H	3
H	H	H	4

HI-547

$A_{\mathbf{2}}$	$A_{\mathbf{1}}$	A $_{\mathbf{0}}$	EN	"ON" CHANNEL PAIR
X	X	X	L	None
L	L	L	H	1
L	L	H	H	2
L	H	L	H	3
L	H	H	H	4
H	L	L	H	5
H	L	H	H	6
H	H	L	H	7
H	H	H	H	8

Die Characteristics

DIE DIMENSIONS:

83.9 mils $\times 159$ mils $\times 19$ mils

METALLIZATION:

Type: CuAl
Thickness: $16 k \AA ̊ \pm 2 k \AA$
GLASSIVATION:
Type: Nitride Over Silox Nitride Thickness: $3.5 \mathrm{k} \AA \pm 1 \mathrm{k} \AA$ Silox Thickness: $12 \mathrm{k} \AA \pm 2 \mathrm{k} \AA$

WORST CASE CURRENT DENSITY:
$1.4 \times 10^{5} \mathrm{~A} / \mathrm{cm}^{2}$

TRANSISTOR COUNT:

HI-546: 485
HI-547: 485

PROCESS: CMOS-DI

SUBSTRATE POTENTIAL \dagger : $-V_{\text {SUPPLY }}$
\dagger The substrate appears resistive to the $-V_{\text {SUPPLY }}$ terminal, therefore it may be left floating (Insulating Die Mount) or it may be mounted on a conductor at $-V_{\text {SUPPLY }}$ potential.

Metallization Mask Layout

Die Characteristics

DIE DIMENSIONS:

83 mils $\times 108$ mils $\times 19$ mils

METALLIZATION:

Type: CuAl
Thickness: $16 k \AA ̊ \pm 2 k \AA$
GLASSIVATION:
Type: Nitride Over Silox Nitride Thickness: $3.5 \mathrm{k} \AA \pm 1 \mathrm{k} \AA$
Silox Thickness: $12 \mathrm{k} \AA \pm 2 \mathrm{k} \AA$
WORST CASE CURRENT DENSITY:
$1.4 \times 10^{5} \mathrm{~A} / \mathrm{cm}^{2}$
TRANSISTOR COUNT:
HI-548: 253
HI-549: 253
PROCESS: CMOS-DI

SUBSTRATE POTENTIAL†: - $V_{\text {SUPPLY }}$

\dagger The substrate appears resistive to the $-V_{\text {SUPPLY }}$ terminal, therefore it may be left floating (Insulating Die Mount) or it may be mounted on a conductor at $-V_{\text {SUPPLY }}$ potential.

Metallization Mask Layout

PAGE
COMMUNICATION INTERFACE PRODUCTS DATA SHEETS
HIN230 thru +5V Powered RS-232 Transmitters/Recelvers $11-3$
HIN241
ICL232 +5V Powered Dual RS-232 Transmitter/Receiver 11-8

NOTE: Bold Type Designates a New Product from Harris.

ADVANCE INFORMATION

December 1993

+5V Powered RS-232 Transmitters/Receivers

Features

- Meets All RS-232C and V. 28 Specifications
- Requires Only Single +5V Power Supply
- (+5V and +12V - HIN231 and HIN239)
- Onboard Voltage Doubler/Inverter
- Low Power Consumption
- Low Power Shutdown Function
- Tri-State TTLCMOS Receiver Outputs
- Multiple Drivers
- $\pm 10 \mathrm{~V}$ Output Swing for +5 V Input
- 300 Power-Off Source Impedance
- Output Current Limiting
- TTLCMOS Compatlble
- 30V/ $\mu \mathrm{s}$ Maximum Slew Rate
- Multiple Receivers
- $\pm 30 \mathrm{~V}$ Input Voltage Range
- $3 \mathbf{k} \Omega$ to $7 \mathbf{k} \Omega$ Input Impedance
- 0.5V Hysteresis to Improve Noise Rejection

Description

The HIN230-HIN241 family of RS-232 transmitters/receivers interface circuits meet all EIA RS-232C and V. 28 specifications, and are particularly suited for those applications where $\pm 12 \mathrm{~V}$ is not available. They require a single +5 V power supply (except HIN231 and HIN239) and features onboard charge pump voltage converters which generate +10 V and -10 V supplies from the 5 V supply. The family of devices offer a wide variety of RS232 transmitter/receiver combinations to accommodate various applications (see Selection Table).

The drivers feature true TTLCMOS input compatibility, slew-rate-limited output, and 300Ω power-off source impedance. The receivers can handle up to +30 V , and have a $3 \mathrm{k} \Omega$ to $7 \mathrm{k} \Omega$ input impedance. The receivers also feature hysteresis to greatly improve noise rejection.

Applications

- Any System Requiring RS-232 Communications Port
- Computer - Portable, Mainframe, Laptops
- Peripheral - Printers and Terminals
- Portable Instrumentation
- Modems

Selection Table

PART NUMBER	POWER SUPPLY VOLTAGE	NUMBER OF RS-232 DRIVERS	NUMBER OF RS-232 RECEIVERS	EXTERNAL COMPONENTS	LOW POWER SHUTDOWN TTLRI-STATE	NO. OF LEADS
HIN230	+5 V	5	0	4 Capacitors	YES/NO	20
HIN231	+5 V and +7.5V to 13.2V	2	2	2 Capacitors	NO/NO	16
HIN232	+5 V	2	2	4 Capacitors	NO/NO	16
HIN234	+5 V	4	0	4 Capacitors	NO/NO	16
HIN236	+5 V	4	3	4 Capacitors	YES/YES	24
HIN237	+5 V	5	3	4 Capacitors	NO/NO	24
HIN238	5 V	4	4	4 Capacitors	NO/NO	24
HIN239	+5 V and +7.5V to 13.2V	3	5	2 Capacitors	NO/YES	24
HIN240	+5 V	5	5	4 Capacitors	YES/YES	44
HIN241	$+5 V$	4	4 Capacitors	YES/YES	28	

Ordering Information

PART NUMBER	TEMPERATURE RANGE	PACKAGE
HIN230CB	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	20 Lead SOIC
HIN230IB	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 Lead SOIC
HIN230BY		Die
HIN231CB	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Lead SOIC (W)
HIN231IB	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Lead SOIC (W)
HIN231BY		Die
HIN232CP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Lead Plastic DIP
HIN232CB	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Lead SOIC (W)
HIN232IP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Lead Plastic DIP
HIN232IJ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
HIN232IB	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Lead SOIC (W)
HIN232MJ	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
HIN232BY		Die
HIN234CB	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Lead SOIC (W)
HIN234IB	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Lead SOIC (W)
HIN234BY	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	24 Lead Plastic DIP
HIN236CP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	24 Lead SOIC
HIN236CB	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24 Lead Plastic DIP
HIN236IP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24 Lead SOIC
HIN236IB	Die	
HIN236BY	Die	

PART NUMBER	TEMPERATURE RANGE	PACKAGE
HIN237CP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	24 Lead Plastic DIP
HIN237CB	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	24 Lead SOIC
HIN237IP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24 Lead Plastic DIP
HIN237IB	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24 Lead SOIC
HIN237BY		Die
HIN238CP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	24 Lead Plastic DIP
HIN238CB	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	24 Lead SOIC
HIN238IP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24 Lead Plastic DIP
HIN238IB	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24 Lead SOIC
HIN238BY		Die
HIN239CP	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	24 Lead Plastic DIP
HIN239CB	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	24 Lead SOIC
HIN239IP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24 Lead Plastic DIP
HIN239IB	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24 Lead SOIC
HIN239BY		Die
HIN240CN	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	44 Lead MQFP
HIN240IN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	44 Lead MQFP
HIN241CB	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	28 Lead SOIC
HIN241IB	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 Lead SOIC
HIN241CA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	28 Lead SSOP
HIN241IA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 Lead SSOP

Pin Description

PIN	FUNCTION
V_{cc}	Power Supply Input 5V $\pm 10 \%$
V+	Internally generated positive supply (+10 V nominal), HIN231 and HIN239 requires +7.5 V to +13.2 V .
V-	Internally generated negative supply (-10V nominal).
GND	Ground lead. Connect to OV.
C+	External capacitor (+ terminal) is connected to this lead.
C.	External capacitor (-terminal) is connected to this lead.
C2+	External capacitor (+ terminal) is connected to this lead.
C2-	External capacitor (-terminal) is connected to this lead.
TiN	Transmitter Inputs. These leads accept TTUCMOS levels. An internal $400 \mathrm{~K} \Omega$ pull-up resistor to V_{Cc} is connected to each lead.
Tout	Transmitter Outputs. These are RS-232 levels (nominally $\pm 10 \mathrm{~V}$).
$\mathrm{R}_{\text {IN }}$	Receiver Inputs. These inputs accept RS-232 input levels. An internal $5 K \Omega$ pull-down resistor to GND is connected to each input.
R out	Receiver Outputs. These are TTUCMOS levels.
$\overline{\mathrm{EN}}$	Enable input. This is an active low input which enables the receiver outputs. With $\mathrm{EN}=5 \mathrm{~V}$, the outputs are placed in a high impedance state.
SD	Shutdown Input. With $\mathrm{SD}=5 \mathrm{~V}$, the charge pump is disabled, the receiver outputs are in a high impedance state and the transmitters are shut off.
NC	No Connect. No connections are made to these leads.

Thermal Information

Continuous Total Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$)

Package	$\theta_{\text {JA }}$	θ_{Jc}
Plastic DIP 16 Lead.	. $100^{\circ} \mathrm{C} / \mathrm{W}$	-
Plastic DIP 24 Lead.	. $75^{\circ} \mathrm{C} / \mathrm{W}$	
Plastic SOIC 16 Lead (W)	. $100^{\circ} \mathrm{C} / \mathrm{N}$	-
Plastic SOIC 24 Lead	$85^{\circ} \mathrm{C} / \mathrm{N}$	-
Plastic SOIC 28 Lead	$80^{\circ} \mathrm{CN}$	-
Plastic SSOP 28 Lead.	$100^{\circ} \mathrm{CM}$	-
Plastic MQFP 44 Lead.	$80^{\circ} \mathrm{CN}$	-
16 Lead CERDIP.	$80^{\circ} \mathrm{C} / \mathrm{N}$	$24^{\circ} \mathrm{CNW}$
Storage Temperature Range.		$0+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering 10s)		$+300^{\circ} \mathrm{C}$
Operating Temperature Range		

HIN-XXXCX
. $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
HIN-XXXIX

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Electrical Specifications Test Conditions: $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=$ Operating Temperature Range

PARAMETER	TEST CONDITIONS	LIMITS			UNITS
		MIN	TYP	MAX	
Output Voltage Swing, Tout	Transmitter Outputs, $3 \mathrm{k} \Omega$ to Ground	± 5	± 9	± 10	V
Power Supply Current, Icc	No Load, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, HIN232-233	-	5	10	mA
	HIN230, HIN234-238, HIN240-241	-	7	15	mA
	HIN231, HIN239	-	0.4	1	mA
Shutdown Supply Current, Icc(SD)			1	10	$\mu \mathrm{A}$
Input Logic Low, $\mathrm{T}_{\text {IN }}, \overline{\mathrm{EN}}, \mathrm{V}_{\mathrm{IL}}$	$\mathrm{T}_{\text {IN }}, \overline{\mathrm{EN}}$, Shutdown	-	-	0.8	V
Input Logic High, V_{IH}	$\mathrm{T}_{\text {IN }}$	2.0	-	-	V
	$\overline{\mathrm{EN}}$, Shutdown	2.4	-	-	V
Logic Pullup Current, I_{P}	$T 1_{1 N}, T 2_{1 N}=0 \mathrm{~V}$	-	15	200	$\mu \mathrm{A}$
RS-232 Input Voltage Range, $\mathrm{V}_{\text {IN }}$		-30	-	+30	V
Receiver Input Impedance, $\mathrm{R}_{\text {IN }}$	$\mathrm{V}_{\mathrm{IN}}= \pm 3 \mathrm{~V}$	3.0	5.0	7.0	k Ω
Receiver Input Low Threshold, $\mathrm{V}_{\text {IN }}$ (H-L)	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	0.8	1.2	-	V
Receiver Input High Threshold, $\mathrm{V}_{\text {IN }}$ (L-H)	$\mathrm{V}_{C C}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-	1.7	2.4	V
Receiver Input Hysteresis, $\mathrm{V}_{\text {HYST }}$		0.2	0.5	1.0	V
TTLCMOS Receiver Output Voitage Low, $\mathrm{V}_{\text {OL }}$	$\begin{aligned} & \mathrm{I}_{\text {OUT }}=1.6 \mathrm{~mA} \mathrm{H} / \mathrm{N}\left(231-232 \mathrm{I}_{\text {OUT }}=\right. \\ & 3.2 \mathrm{~mA}) \end{aligned}$	-	0.1	0.4	V
TTUCMOS Receiver Output voltage High, V_{OH}	$\mathrm{I}_{\text {OUT }}=-1.0 \mathrm{~mA}$	3.5	4.6	\bullet	V
Output Enable Time, $\mathrm{t}_{\text {EN }}$	HIN236, 239, 240, 241		400		ns
Output Disable Time, $\mathrm{t}_{\text {DIS }}$	HIN236, 239, 240, 241		250		ns
Propagation Delay, tpd	RS-232 to TTL	-	0.5	\bullet	$\mu \mathrm{s}$
Instantaneous Slew Rate, SR	$\mathrm{C}_{L}=10 \mathrm{pF}, \mathrm{R}_{L}=3 \mathrm{k} \Omega, \mathrm{T}_{A}=+25^{\circ} \mathrm{C}$ (Note 1)	-	-	30	$\mathrm{V} / \mathrm{\mu s}$
Transition Region Slew Rate, $\mathbf{S R}_{\mathbf{T}}$	$R_{L}=3 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=2500 \mathrm{pF}$ Measured from +3 V to -3 V or -3 V to +3 V	-	3	-	$\mathrm{V} / \mathrm{\mu s}$
Output Resistance, Rout	$\mathrm{V}_{\mathrm{CC}}=\mathrm{V}+=\mathrm{V}-=0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}= \pm 2 \mathrm{~V}$	300	-	-	Ω
RS-232 Output Short Circuit Current, Isc	T1 ${ }_{\text {OUT }}$ or T2 ${ }_{\text {OUt }}$ shorted to GND	-	± 10	-	mA

NOTE: 1. Guaranteed by design.

VOLTAGE DOUBLER
VOLTAGE INVERTER

FIGURE 1. CHARGE PUMP

Detailed Description

The HIN230 thru HIN241 family of RS-232 transmitters/ receivers are powered by a single +5 V power supply (except HIN-231 and HIN239), feature low power consumption, and meet all EIA RS232C and V. 28 specifications. The circuit is divided into three sections: the charge pump, transmitter, and receiver.

Charge Pump

An equivalent circuit of the charge pump is illustrated in Figure 1. The charge pump contains two sections: the voltage doubler and the voltage inverter. Each section is driven by a two phase, internally generated clock to generate +10 V and -10 V . The nominal clock frequency is 16 kHz . During phase one of the clock, capacitor C 1 is charged to V_{Cc}. During phase two, the voltage on C 1 is added to V_{CC}. producing a signal across C 3 equal to twice V_{Cc}. At the same time, C 2 is also charged to $2 \mathrm{~V}_{\mathrm{cc}}$, and then during phase one, it is inverted with respect to ground to produce a signal across C 4 equal to $-2 \mathrm{~V}_{\mathrm{Cc}}$. The charge pump accepts input voltages up to 5.5 V . The output impedance of the voltage doubler section (V+) is approximately 200Ω, and the output impedance of the voltage inverter section (V-) is approximately 450Ω A typical application uses $1 \mu \mathrm{~F}$ capacitors for $\mathrm{C} 1-\mathrm{C} 4$, however, the value is not critical. Increasing the values of C1 and C2 will lower the ouput impedance of the voltage doubler and inverter, increasing the values of the reservoir capacitors, C3 and C4, lowers the ripple on the $\mathrm{V}+$ and V supplies.

During shutdown mode (HIN230, 235, 236, 240 and 241), SHUTDOWN control line set to logic " 1 ", the charge pump is turned off, $\mathrm{V}+$ is pulled down to $\mathrm{V}_{\mathrm{CC}}, \mathrm{V}$ - is pulled up to GND , and the supply current is reduced to less than $10 \mu \mathrm{~A}$. The transmitter outputs are disabled and the receiver outputs are placed in the high impedance state.

Transmitters

The transmitters are TTLCMOS compatible inverters which translate the inputs to RS-232 outputs. The input logic threshold is about 26% of V_{Cc}, or 1.3 V for $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$. A logic 1 at the input results in a voltage of between -5 V and V - at the output, and a logic 0 results in a voltage between +5 V and ($\mathrm{V}+-0.6 \mathrm{~V}$). Each transmitter input has an internal $400 \mathrm{k} \Omega$ pullup resistor so any unused input can be left unconnected
and its output remains in its low state. The output voltage swing meets the RS-232C specifications of $\pm 5 \mathrm{~V}$ minimum with the worst case conditions of: all transmitters driving $3 \mathrm{k} \Omega$ minimum load impedance, $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$, and maximum allowable operating temperature. The transmitters have an internally limited output slew rate which is less than $30 \mathrm{~V} / \mu \mathrm{s}$. The outputs are short circuit protected and can be shorted to ground indefinitely. The powered down output impedance is a minimum of 300Ω with $\pm 2 \mathrm{~V}$ applied to the outputs and $V_{C C}=0 \mathrm{~V}$.

FIGURE 2. TRANSMITTER

Recelvers

The receiver inputs accept up to $\pm 30 \mathrm{~V}$ while presenting the required $3 \mathrm{k} \Omega$ to $7 \mathrm{k} \Omega$ input impedance even it the power is off $\left(V_{C C}=0 \mathrm{~V}\right)$. The receivers have a typical input threshold of 1.3 V which is within the $\pm 3 \mathrm{~V}$ limits, known as the transition region, of the RS-232 specifications. The receiver output is OV to V_{CC}. The output will be low whenever the input is greater than 2.4 V and high whenever the input is floating or driven between +0.8 V and -30 V . The receivers feature 0.5 V hysteresis to improve noise rejection. The receiver Enable line $\overline{E N}$, when set to logic " 1 ", (HIN235, 236, 239, 240, and 241) disables the receiver outputs, placing them in the high impedance mode. The receiver outputs are also placed in the high impedance state when in shutdown mode.

FIGURE 3. RECEIVER

ICL232

+5V Powered Dual RS-232
 Transmitter/Receiver

Features

- Meets All RS-232C Specifications
- Requires Only Single +5V Power Supply
- Onboard Voltage Doubler/Inverter
- Low Power Consumption
- 2 Drivers
- $\pm 9 \mathrm{~V}$ Output Swing for +5 V Input
- 300 2 Power-off Source Impedance
- Output Current Limiting
- TTLCMOS Compatible
- 30V/ $\mu \mathrm{s}$ Maximum Slew Rate
- 2 Receivers
- $\pm 30 \mathrm{~V}$ Input Voltage Range
- $3 k \Omega$ to $7 k \Omega$ Input Impedance
- 0.5V Hysteresis to Improve Noise Rejection
- All Critical Parameters are Guaranteed Over the Entire Commercial, Industrial and Military Temperature Ranges

Applications

- Any System Requiring RS-232 Communications Port
- Computer - Portable and Mainframe
- Peripheral - Printers and Terminals
- Portable Instrumentation
- Modems
- Dataloggers

Description

The ICL232 is a dual RS-232 transmitter/receiver interface circuit that meets all EIA RS-232C specifications. It requires a single +5 V power supply, and features two onboard charge pump voltage converters which generate +10 V and -10 V supplies from the 5 V supply.
The drivers feature true TTLCMOS input compatibility, slew-rate-limited output, and 300Ω power-off source impedance. The receivers can handle up to +30 V , and have a $3 \mathrm{k} \Omega$ to $7 \mathrm{k} \Omega$ input impedance. The receivers also have hysteresis to improve noise rejection.

Ordering Information

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ICL232CPE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Lead Plastic DIP
ICL232CJE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
ICL232CBE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Lead SOIC (W)
ICL232IPE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Lead Plastic DIP
ICL232IJE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Lead Ceramic DIP
ICL232IBE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Lead SOIC (W)
ICL232MJE	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 Lead Ceramic DIP

Pinouts

ICL232
(PDIP, CDIP, SOIC)
TOP VIEW

Functional Diagram

Absolute Maximum Ratings	
$V_{\text {cc }}$ to Ground	. . (GND -0.3V) $<\mathrm{V}_{c c}<6 \mathrm{~V}$
V+ to Ground	$\left(\mathrm{V}_{\text {cc }}-0.3 \mathrm{~V}\right)<\mathrm{V}+<12 \mathrm{~V}$
V - to Ground.	$-12 \mathrm{~V}<\mathrm{V}-<(\mathrm{GND}+0.3 \mathrm{~V})$
Input Voltages	
T1 $1_{1 N}, \mathrm{~T}_{1 / \mathrm{N}}$	$(\mathrm{V}-\mathrm{-} .3 \mathrm{~V})<\mathrm{V}_{\mathrm{IN}}<(\mathrm{V}++0.3 \mathrm{~V})$
R1 $1_{\text {IN }}, \mathrm{R}^{\text {IN }}$	$\pm 30 \mathrm{~V}$
Output Voltages	
T1 ${ }_{\text {OUt }}$, T2 ${ }_{\text {out }}$. (V	$-0.3 \mathrm{~V})<\mathrm{V}_{\text {TXOUT }}<(\mathrm{V}++0.3 \mathrm{~V})$
R1out, R2out (GND	0.3V) $<\mathrm{V}_{\text {RXOUT }}<\left(\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}\right)$
Short Circuit Duration	
T1 out, ${ }^{\text {T2 }}$ Out	Continuous
R1 ${ }_{\text {OUT }}$ R2 ${ }_{\text {OUT }}$	Continuous
Storage Temperature Range	. $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering 10s). $+300^{\circ} \mathrm{C}$

Thermal Information

Thermal Resistance	$\theta_{\text {JA }}$	$\theta_{\text {Jc }}$
Ceramic DIP Package	$80^{\circ} \mathrm{C} / \mathrm{W}$	$24^{\circ} \mathrm{CN}$
Plastic DIP Package	$100^{\circ} \mathrm{C} / \mathrm{N}$	-
SOIC Package.	$100^{\circ} \mathrm{C} / \mathrm{N}$	-
Maximum Power Dissipation.		250 mW
Operating Temperature Range		
ICL232C	. 0	to $+70^{\circ} \mathrm{C}$
ICL2321	-4	to $+85^{\circ} \mathrm{C}$
ICL232M	$-55^{\circ} \mathrm{C}$	$0+125^{\circ} \mathrm{C}$

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Electrical Specifications Test Conditions: $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=$ Operating Temperature Range. Test Circuit as in Figure 8 Unless Otherwise Specified

PARAMETER	TEST CONDITIONS	LIMITS			UNITS
		MIN	TYP	MAX	
Transmitter Output Voltage Swing, Tout	T1 out and T2our loaded with $3 \mathrm{k} \Omega$ to Ground	± 5	± 9	± 10	V
Power Supply Current, Icc	Outputs Unloaded, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-	5	10	mA
$\mathrm{T}_{\text {IN }}$, Input Logic Low, $\mathrm{V}_{\text {IL }}$		-	-	0.8	V
$\mathrm{T}_{\text {IN }}$, Input Logic High, $\mathrm{V}_{\text {IH }}$		2.0	-	-	V
Logic Pullup Current, I_{p}	$\mathrm{T} 1_{1 N}, \mathrm{~T} 2_{\text {IN }}=0 \mathrm{~V}$	-	15	200	$\mu \mathrm{A}$
RS-232 Input Voltage Range, $\mathrm{V}_{\text {IN }}$		-30	-	+30	V
Receiver Input Impedance, $\mathrm{RIIN}_{\text {IN }}$	$V_{\text {IN }}= \pm 3 \mathrm{~V}$	3.0	5.0	7.0	k Ω
Receiver Input Low Threshold, $\mathrm{V}_{\text {IN }}$ ($\mathrm{H}-\mathrm{L}$)	$V_{C C}=5.0 \mathrm{~V}, T_{A}=+25^{\circ} \mathrm{C}$	0.8	1.2	-	V
Receiver Input High Threshold, $\mathrm{V}_{\text {IN }}$ (L-H)	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-	1.7	2.4	V
Receiver Input Hysteresis, $\mathrm{V}_{\text {HYST }}$		0.2	0.5	1.0	V
TTLCMOS Receiver Output Voltage Low, V_{OL}	$\mathrm{l}_{\text {OUT }}=3.2 \mathrm{~mA}$	-	0.1	0.4	V
TTLCMOS Receiver Output Voltage High, V_{OH}	$\mathrm{I}_{\text {OUT }}=-1.0 \mathrm{~mA}$	3.5	4.6	-	V
Propagation Delay, tpd	RS-232 to TTL	-	0.5	-	$\mu \mathrm{s}$
Instantaneous Slew Rate, SR	$\begin{aligned} & C_{L}=10 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=3 \mathrm{k} \Omega, \mathrm{~T}_{A}=+25^{\circ} \mathrm{C} \\ & \text { (Notes 1, 2) } \end{aligned}$	-	-	30	V/ $/ \mathrm{s}$
Transition Region Slew Rate, $\mathbf{S R}_{\mathbf{T}}$	$R_{L}=3 \mathrm{k} \Omega, C_{L}=2500 \mathrm{pF}$ Measured from +3 V to -3 V or -3 V to +3 V	-	3	-	V / Ls
Output Resistance, Rout	$\mathrm{V}_{\text {cc }}=\mathrm{V}_{+}=\mathrm{V}-=0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}= \pm 2 \mathrm{~V}$	300	\bullet	-	Ω
RS-232 Output Short Circuit Current, Isc	T1 ${ }_{\text {OUt }}$ or T2 ${ }_{\text {OUt }}$ shorted to GND	-	± 10	-	mA

NOTES:

1. Guaranteed by design.
2. See Figure 4 for definition.

Typical Performance Curves

FIGURE 1. $\mathbf{V}_{\mathbf{+}}$, \mathbf{V} - OUTPUT IMPEDANCES vs $\mathbf{V}_{\mathbf{c c}}$

FIGURE 2. V+, V- OUTPUT VOLTAGES vs LOAD CURRENT

Pin Descriptions

PLASTIC DIP, CERAMIC DIP	SOIC	PIN NAME	DESCRIPTION
1	1	C1+	External capacitor " + " for internal voltage doubler.
2	2	V+	Internally generated +10 V (typical) supply.
3	3	C1-	External capacitor "-" for internal voltage doubler.
4	4	C2+	External capacitor "+" internal voltage inverter.
5	5	C2-	External capacitor "-0 internal voltage inverter.
6	6	V-	Internally generated -10V (typical) supply.
7	7	T2out	RS-232 Transmitter 2 output $\pm 10 \mathrm{~V}$ (typical).
8	8	R2 ${ }_{1 \times}$	RS-232 Receiver 2 input, with internal 5K pulldown resistor to GND.
9	9	R2out	Receiver 2 TTLCMOS output.
10	10	T2 ${ }_{1}$	Transmitter 2 TTLCMOS input, with internal 400 K pullup resistor to V_{cc} -
11	11	T1 ${ }_{1 \times}$	Transmitter 1 TTLCMOS input, with internal 400K pullup resistor to $\mathrm{V}_{\text {cc }}$ -
12	12	R10Ut	Receiver 1 TTLCMOS output.
13	13	R1 ${ }_{1}$	RS-232 Receiver 1 input, with internal 5K pulldown resistor to GND.
14	14	T1out	RS-232 Transmitter 1 output $\pm 10 \mathrm{~V}$ (typical).
15	15	GND	Supply Ground.
16	16	VCC	Positive Power Supply $+5 \mathrm{~V} \pm 10 \%$

Detailed Description

The ICL232 is a dual RS-232 transmitter/receiver powered by a single +5 V power supply which meets all EIA RS232C specifications and features low power consumption. The functional diagram illustrates the major elements of the ICL232. The circuit is divided into three sections: a voltage doubler/inverter, dual transmitters, and dual receivers.

Voltage Converter

An equivalent circuit of the dual charge pump is illustrated in Figure 3.

FIGURE 3. DUAL CHARGE PUMP
The voltage quadrupler contains two charge pumps which use two phases of an internally generated clock to generate +10 V and -10 V . The nominal clock frequency is 16 kHz . During phase one of the clock, capacitor C 1 is charged to V_{cc}. During phase two, the voltage on C 1 is added to V_{CC}, producing a signal across C 2 equal to twice V_{CC}. At the same time, C3 is also charged to $2 \mathrm{~V}_{\mathrm{cc}}$, and then during phase one, it is inverted with respect to ground to produce a signal across C 4 equal to $-2 \mathrm{~V}_{\mathrm{cc}}$. The voltage converter accepts input voltages up to 5.5 V . The output impedance of the doubler ($\mathrm{V}+$) is approximately 200Ω, and the output impedance of the inverter (V-) is approximately 450Ω Typical graphs are presented which show the voltage converters output vs input voltage and output voltages vs load characteristics. The test circuit (Figure 8) uses $1 \mu \mathrm{~F}$ capacitors for C1-C4, however, the value is not critical. Increasing the values of C1 and C2 will lower the output impedance of the voltage doubler and inverter, and increasing the values of the reservoir capacitors, C 3 and C 4 , lowers the ripple on the $\mathrm{V}+$ and V - supplies.

FIGURE 4. SLEW RATE DEFINITION

Transmitters

The transmitters are TTLCMOS compatible inverters which translate the inputs to RS-232 outputs. The input logic threshold is about 26% of V_{CC}, or 1.3 V for $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$. A logic 1 at the input results in a voltage of between -5 V and V - at the output, and a logic 0 results in a voltage between +5 V and ($\mathrm{V}+-0.6 \mathrm{~V}$). Each transmitter input has an internal $400 \mathrm{k} \Omega$ pullup resistor so any unused input can be left unconnected and its output remains in its low state. The output voltage swing meets the RS-232C specification of $\pm 5 \mathrm{~V}$ minimum with the worst case conditions of: both transmitters driving $3 \mathrm{k} \Omega$ minimum load impedance, $\mathrm{V}_{\mathrm{Cc}}=4.5 \mathrm{~V}$, and maximum allowable operating temperature. The transmitters have an internally limited output slew rate which is less than $30 \mathrm{~V} / \mu \mathrm{s}$. The outputs are short circuit protected and can be shorted to ground indefinitely. The powered down output impedance is a minimum of 300Ω with $\pm 2 \mathrm{~V}$ applied to the outputs and $V_{C C}=0 V$.

FIGURE 5. TRANSMITTER

Receivers

The receiver inputs accept up to $\pm 30 \mathrm{~V}$ while presenting the required $3 \mathrm{k} \Omega$ to $7 \mathrm{k} \Omega$ input impedance even it the power is off $\left(V_{c c}=O V\right)$. The receivers have a typical input threshold of 1.3 V which is within the $\pm 3 \mathrm{~V}$ limits, known as the transition region, of the RS-232 specification. The receiver output is OV to V_{CC}. The output will be low whenever the input is greater than 2.4 V and high whenever the input is floating or driven between +0.8 V and -30 V . The receivers feature 0.5 V hysteresis to improve noise rejection.

FIGURE 6. RECEIVER

Average Propagation Delay $=\frac{\mathrm{t}_{\mathrm{HL}}+\mathrm{t}_{\mathrm{PLH}}}{2}$
Figure 7. PROPAGATION DELAY DEFINITION

Test Circuits

FIGURE 8. GENERAL TEST CIRCUIT

Applications

The ICL232 may be used for all RS-232 data terminal and communication links. It is particularly useful in applications where $\pm 12 \mathrm{~V}$ power supplies are not available for conventional RS-232 interface circuits. The applications presented represent typical interface configurations.

A simple duplex RS-232 port with CTS/RTS handshaking is illustrated in Figure 10. Fixed output signals such as DTR (data terminal ready) and DSRS (data signaling rate select) is generated by driving them through a $5 \mathrm{k} \Omega$ resistor connected to $\mathrm{V}+$.

FIGURE 10. SIMPLE DUPLEX RS-232 PORT WITH CTS/RTS HANDSHAKING

In applications requiring four RS-232 inputs and outputs (Figure 11), note that each circuit requires two charge pump capacitors (C1 and C2) but can share common reservoir

FIGURE 9. POWER-OFF SOURCE RESISTANCE CONFIGURATION
capacitors (C3 and C4). The benefit of sharing common reservoir capacitors is the elimination of two capacitors and the reduction of the charge pump source impedance which effectively increases the output swing of the transmitters.

FIGURE 11. COMBINING TWO ICL232s FOR 4 PAIRS OF RS-232 INPUTS AND OUTPUTS

DISPLAY DRIVERSPAGE
DISPLAY DRIVERS DATA SHEETS
CA3161 BCD to Seven Segment Decoder/Driver. 12-3
ICM7211, 4-Digit ICM7211 (LCD) and ICM7212 (LED) Display Drive 12-6
ICM7212
ICM7228 8-Digit μ P Compatible LED Display Decoder Driver 12-19
ICM7231, Numeric/Alphanumeric Triplexed LCD Display Driver 12-37
ICM7232
ICM7243 8-Character μ P-Compatible LED Display Decoder Driver 12.52

Features

- TTL Compatible Input Logic Levels
- 25mA (Typ) Constant Current Segment Outputs
- Eliminates Need for Output Current Limiting Resistors
- Pin Compatible with Other Industry Standard Decoders
- Low Standby Power Dissipation 18mW (Typ)

Ordering Information

PART NUMBER	TEMPERATURE RANGE	PACKAGE
CA3161E	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Lead Plastic DIP

Description

The CA3161E is a monolithic integrated circuit that performs the BCD to seven segment decoding function and features constant current segment drivers. When used with the CA3162E ADD Converter the CA3161E provides a complete digital readout system with a minimum number of external parts.

The CA3161 is supplied in the 16 lead dual in line plastic package (E suffix).

TRUTH TABLE												
BINARY STATE	INPUTS				OUTPUTS							DISPLAY
	2^{3}	2^{2}	$2{ }^{1}$	2^{0}	a	b	c	d	-	1	g	
0	L	L	L	L	L	L	L	L	L	L	H	
1	L	L	L	H	H	L	L	H	H	H	H	1
2	L	L	H	L	L	L	H	L	L	H	L	
3	L	L	H	H	L	L	L	L	H	H	L	
4	L	H	L	L	H	L	L	H	H	L	L	
5	L	H	L	H	L	H	L	L	H	L	L	
6	L	H	H	L	L	H	L	L	L	L	L	
7	L	H	H	H	L	L	L	H	H	H	H	
8	H	L	L	L	L	L	L	L	L	L	L	
9	H	L	L	H	L	L	L	L	H	L	L	
10	H	L	H	L	H	H	H	H	H	H	L	
11	H	L	H	H	L	H	H	L	L	L	L	
12	H	H	L	L	H	L	L	H	L	L	L	1
13	H	H	L	H	H	H	H	L	L	L	H	1
14	H	H	H	L	L	L	H	H	L	L	L	5
15	H	H	H	H	H	H	H	H	H	H	H	BLANK

4-Digit ICM7211 (LCD) and ICM7212 (LED) Display Drive

Features ICM7211 (LCD)

- Four Digit Non-Multiplexed 7 Segment LCD Display Outputs With Backplane Driver
- Complete Onboard RC Oscillator to Generate Backplane Frequency
- Backplane Input/Output Allows Simple Synchronization of Slave-Devices to a Master
- ICM7211 Devices Provide Separate Diglt Select Inputs to Accept Multiplexed BCD Input (Pinout and Functionally Compatible With Siliconix DF411)
- ICM7211M Devices Provide Data and Digit Address Latches Controlied by Chip Select Inputs to Provide a Direct High Speed Processor Interface
- ICM7211 Decodes Binary to Hexadecimal; ICM7211A Decodes Blnary to Code B (0-9, Dash, E, H, L, P, Blank)
- ICM7211A Available in Surface Mount Package

Features ICM7212AM (LED)

- 28 Current-Limited Segment Outputs Provide 4-Digit Non-Multiplexed Direct LED Drive at $>5 \mathrm{~mA}$ Per Segment
- Brightness Input Allows Direct Control of LED Segment Current With a Single Potentiometer or Digitally as a Display Enable
- ICM7212AM Device Provides Same Input Configuration and Output Decoding Options as the ICM7211AM

Description

The ICM7211 (LCD) and ICM7212 (LED) devices constitute a family of non-multiplexed four-digit seven-segment CMOS display decoder-drivers.

The ICM7211 devices are configured to drive conventional LCD displays by providing a complete RC oscillator, divider chain, backplane driver, and 28 segment outputs.

The ICM7212 devices are configured to drive commonanode LED displays, providing 28 current-controlled, low leakage, open-drain n-channel outputs. These devices provide a BRighTness input, which may be used at normal logic levels as a display enable, or with a potentiometer as a continuous display brightness control.

These devices are available with multiplexed or microprocessor input configurations. The multiplexed versions provide four data inputs and four Digit Select inputs. This configuration is suitable for interfacing with multiplexed BCD or binary output devices, such as the ICM7217, ICM7226, and ICL7135. The microprocessor versions provide data input latches and Digit Address latches under control of high-speed Chip Select inputs. These devices simplify the task of implementing a cost-effective alphanumeric seven-segment display for microprocessor systems, without requiring extensive ROM or CPU time for decoding and display updating.

The standard devices will provide two different decoder configurations. The basic device will decode the four bit binary inputs into a seven-segment alphanumeric hexadecimal output. The " A " versions will provide the "Code B" output code, i.e., 0-9, dash, E, H, L, P, blank. Either device will correctly decode true BCD to seven-segment decimal outputs.

Devices in the ICM7211 and ICM7212 family are packaged in a standard 40 lead plastic dual-in-line and 44 lead plastic MQFP packages and all inputs are fully protected against static discharge.

Ordering Information

PART NUMBER	DISPLAY TYPE	DISPLAY DECODING	INPUT INTERFACING	DISPLAY DRIVE TYPE	TEMPERATURE RANGE	PACKAGE
ICM7211IPL	LCD	Hexadecimal	Multiplexed	Direct Drive	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	40 Lead Plastic DIP
ICM7211MIPL	LCD	Hexadecimal	Microprocessor	Direct Drive	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	40 Lead Plastic DIP
ICM7211AIPL	LCD	Code B	Multiplexed	Direct Drive	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	40 Lead Plastic DIP
ICM7211AMIPL	LCD	Code B	Microprocessor	Direct Drive	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	40 Lead Plastic DIP
ICM7211AIM44	LCD	Code B	Multiplexed	Direct Drive	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	44 Lead MQFP Flatpack
ICM7211AMIM44	LCD	Code B	Microprocessor	Direct Drive	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	44 Lead MQFP Flatpack
ICM7212AMIPL	LED	Code B	Microprocessor	Common Anode	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	40 Lead Plastic DIP

Pinouts

ICM7212AM
(PDIP)
TOP VIEW

$\mathrm{V}_{\mathrm{DD}} 1$	40 d 1
e1 2	39 c 1
913	$388{ }^{3}$
114	37 at
BRT 5	$36 v_{s s}$
a2 6	$35 v_{\text {SS }}$
b2 7	34 CHIP SELECT 2
C2 8	33 CHIP SELECT 1
d2 9	32 DIGIT ADRESS BIT 2
e2 10	31 DIGIT ADRESS BIT 1
g2 11	$30 \mathrm{B3} 1$
f2 12	29 B2 DATA
a3 13	28 B1 ${ }^{28}$ INPUTS
b3 14	27 BO
c3 15	2684
d3 16	25) 94
e3 17	24.4
g3 18	23 d4
$f 319$	22 c 4
2420	21 b4

Pinouts (Continued)
ICM7211A
(PLASTIC FLATPACK)
TOP VIEW

Functional Block Diagrams

ICM7211A

Functional Block Diagrams (Continued)

Absolute Maximum Ratings

Supply Voltage ($\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}$) . 6.5 V
Input Voltage (Any Terminal) (Note 1) $\mathrm{V}_{\mathrm{SS}}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Storage Temperature Range $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10s) . $+300^{\circ} \mathrm{C}$
Junction Temperature . $+150^{\circ} \mathrm{C}$
CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Electrical Specifications

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
ICM7211 CHARACTERISTICS (LCD) $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \quad 10 \%, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\text {SS }}=0 \mathrm{~V}$ Unless Otherwise Specified.					
Operating Supply Voltage Range ($\mathrm{V}_{\mathrm{DD}} \cdot \mathrm{V}_{\text {SS }}$), $\mathrm{V}_{\text {SUPPLY }}$		3	5	6	V
Operating Current, IDD	Test circuit, Display blank	-	10	50	$\mu \mathrm{A}$
Oscillator Input Current, Iosci	Pin 36	-	± 2	± 10	$\mu \mathrm{A}$
Segment Rise/Fall Time, $\mathrm{t}_{\mathrm{R}}, \mathrm{t}_{\mathrm{F}}$	$\mathrm{C}_{\mathrm{L}}=200 \mathrm{pF}$	-	0.5	-	$\mu \mathrm{s}$
Backplane Rise/Fall Time, $\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{F}}$	$\mathrm{C}_{\mathrm{L}}=5000 \mathrm{pF}$	-	1.5	-	$\mu \mathrm{s}$
Oscillator Frequency, fosc	Pin 36 Floating	-	19	-	kHz
Backplane Frequency, f_{BP}	Pin 36 Floating	-	150	-	Hz
ICM7212 CHARACTERISTICS (Common Anode LED)					
Operating Supply Voltage Range ($\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\text {SS }}$), $\mathrm{V}_{\text {SUPPLY }}$		4	5	6	V
Operating Current Display Off, ISTBY	Pin 5 (Brightness), Pins 27-34 $\mathrm{V}_{\text {SS }}$	-	10	50	$\mu \mathrm{A}$
Operating Current, I_{DD}	Pin 5 at V_{DD}, Display all 8's	-	200	-	mA
Segment Leakage Current, IsLK	Segment Off	-	± 0.01	± 1	$\mu \mathrm{A}$
Segment On Current, ${ }_{\text {SEG }}$	Segment On, $\mathrm{V}_{0}=+3 \mathrm{~V}$	5	8	-	mA
INPUT CHARACTERISTICS (ICM7211 and ICM7212)					
Logical "1" Input Voltage, V_{1}		4	-	-	V
Logical "0" Input Voltage, $\mathrm{V}_{\text {IL }}$		-	-	1	V
Input Leakage Current, $\mathrm{I}_{\text {ILK }}$	Pins 27-34	-	± 0.01	± 1	$\mu \mathrm{A}$
Input Capacitance, $\mathrm{C}_{\mathbb{N}}$	Pins 27-34	-	5		pF
BP/Brightness Input Leakage, $\mathrm{I}_{\text {BPLK }}$	Measured at Pin 5 with Pin 36 at $\mathrm{V}_{\text {SS }}$	\bullet	± 0.01	± 1	$\mu \mathrm{A}$
BP/Brightness Input Capacitance, $\mathrm{C}_{\text {BPI }}$	All Devices	-	200	-	pF
AC CHARACTERISTICS - MULTIPLEXED INPUT CONFIGURATION					
Digit Select Active Pulse Width, $\mathrm{t}_{\text {WH }}$	Refer to Timing Diagrams	1	-	-	$\mu \mathrm{s}$
Data Setup Time, ${ }_{\text {DS }}$		500	-	-	ns
Data Hold Time, $\mathrm{t}_{\text {DH }}$		200	-	-	ns
Inter-Digit Select Time, $\mathrm{t}_{\text {IDS }}$		2	-	-	$\mu \mathrm{s}$
AC CHARACTERISTICS - MICROPROCESSOR INTERFACE					
Chip Select Active Pulse Width, ${ }_{\text {WL }}$	Other Chip Select either held active, or both driven together	200	\bullet	-	ns
Data Setup Time, ${ }_{\text {DS }}$		100	-	-	ns
Data Hold Time, t_{DH}		10	0	-	ns
Inter-Chip Select Time, tics		2	-	-	$\mu \mathrm{s}$

NOTES:

1. Due to the SCR structure inherent in the CMOS process, connecting any terminal to voltages greater than $V_{D D}$ or less than $V_{S S}$ may cause destructive device latchup. For this reason, it is recommended that no inputs from external sources not operating on the same power supply be applied to the device before its supply is established, and that in multiple supply systems, the supply to the ICM7211 and ICM7212 be turned on first.

Thermal Information

Input Definitions in this table, V_{DD} and V_{SS} are considered to be normal operating input logic levels. Actual input low and high levels are specified under Operating Characteristics. For lowest power consumption, input signals should swing over the full supply.

INPUT	TERMINAL	CONDITIONS	FUNCTION	
B0	27	$V_{D D}=$ Logical One $V_{S S}=$ Logical Zero	Ones (Least Significant)	
B1	28	$V_{D D}=$ Logical One $V_{S S}=$ Logical Zero	Twos	Data Input Bits
B2	29	$V_{D D}=$ Logical One $V_{S S}=$ Logical Zero	Fours	
B3	30	$V_{D D}=$ Logical One $V_{S S}=$ Logical Zero	Eights (Most Significant)	
OSC (LCD Devices Only)	36	Floating or with external capacitor to $V_{D D}$	Oscillator Input	
		$V_{S S}$	Disables BP output devices, allowing segments to be synchronized to an external signal input at the BP terminal (Pin 5)	

ICM7211 Multiplexed-Binary Input Configuration

INPUT	TERMINAL	CONDITIONS	FUNCTION
D1	31	$V_{\text {DD }}=$ Inactive	
D2	32		D1 Digit Select (Least Significant)
D3	33		D2 Digit Select
D4	34		D3 Digit Select

ICM7211M/CM7212M Microprocessor Interface Input Configuration

INPUT	DESCRIPTION	TERMINAL	CONDITIONS	FUNCTION
DA1	Digit Address Bit 1 (LSB)	31	$\begin{array}{\|l\|} \hline V_{D D}=\text { Logical One } \\ V_{S S}=\text { Logical Zero } \\ \hline \end{array}$	DA1 \& DA2 serve as a two bit Digit Address Input DA2, DA1 $=00$ selects D4 DA2, DA1 $=01$ selects D3 DA2, DA1 $=10$ selects D2 DA2, DA1 = 11 selects D1
DA2	Digit Address Bit 2 (MSB)	32	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=\text { Logical One } \\ & \mathrm{V}_{\mathrm{SS}}=\text { Logical Zero } \end{aligned}$	
$\overline{\mathrm{CS} 1}$	Chip Select 1	33	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=\text { Inactive } \\ & \mathrm{V}_{\mathrm{SS}}=\text { Active } \end{aligned}$	When both $\overline{\mathrm{CS}}$ and $\overline{\mathrm{CS}}$ are taken low, the data at the Data and Digit Select code inputs are written into the input latches. On the rising edge of either Chip Select, the data is decoded and written into the output latches.
$\overline{\text { CS2 }}$	Chip Select 2	34	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=\text { Inactive } \\ & \mathrm{V}_{\mathrm{SS}}=\text { Active } \end{aligned}$	

Timing Diagrams

FIGURE 1. MULTIPLEXED INPUT

FIGURE 2. MICROPROCESSOR INTERFACE INPUT

Typical Performance Curves

FIGURE 3. ICM7211 OPERATING SUPPLY CURRENT AS A FUNCTION OF SUPPLY VOLTAGE

FIGURE 4. ICM7211 BACKPLANE FREQUENCY AS A FUNCTION OF SUPPLY VOLTAGE

Typical Performance Curves (Continued)

FIGURE 5. ICM7212 LED SEGMENT CURRENT AS A FUNCTION OF OUTPUT VOLTAGE

FIGURE 6. ICM7212 LED SEGMENT CURRENT AS A FUNCTION OF BRIGHTNESS CONTROL VOLTAGE

FIGURE 7. ICM7212 OPERATING POWER (LED DISPLAY) AS A FUNCTION OF SUPPLY VOLTAGE

Description Of Operation

LCD Devices

The LCD devices in the family (ICM7211, ICM7211A, ICM7211M, ICM7211AM) provide outputs suitable for driving conventional four-digit, seven-segment LCD displays. These devices include 28 individual segment drivers, backplane driver, and a self-contained oscillator and divider chain to generate the backplane frequency.

The segment and backplane drivers each consist of a CMOS inverter, with the n-channel and p-channel devices ratioed to provide identical on resistances, and thus equal rise and fall times. This eliminates any DC component, which could arise from differing rise and fall times, and ensures maximum display life.

The backplane output devices can be disabled by connecting the OSCillator input (pin 36) to $\mathrm{V}_{\text {SS }}$. This allows the 28 segment outputs to be synchronized directly to a signal input at the BP terminal (pin 5). In this manner, several slave devices may be cascaded to the backplane output of one master device, or the backplane may be derived from an external source. This allows the use of displays with characters in multiples of four and a single backplane. A slave device represents a load of approximately 200 pF (comparable to one additional segment). Thus the limitation of the number of devices that can be slaved to one master device backplane driver is the additional load represented by the
larger backplane of displays of more than four digits. A good rule of thumb to observe in order to minimize power consumption is to keep the backplane rise and fall times less than about $5 \mu \mathrm{~s}$. The backplane output driver should handle the backplane to a display of 16 one-half inch characters. It is recommended, if more than four devices are to be slaved together, the backplane signal be derived externally and all the ICM7211 devices be slaved to it. This external signal should be capable of driving very large capacitive loads with short ($1-2 \mu \mathrm{~s}$) rise and fall times. The maximum frequency for a backplane signal should be about 150 Hz although this may be too fast for optimum display response at lower display temperatures, depending on the display type.

The onboard oscillator is designed to free run at approximately 19 kHz at microampere current levels. The oscillator frequency is divided by 128 to provide the backplane frequency, which will be approximately 150 Hz with the oscillator free-running; the oscillator frequency may be reduced by connecting an external capacitor between the OSCillator terminal and $V_{D D}$ -

The oscillator may also be overdriven if desired, although care must be taken to ensure that the backplane driver is not disabled during the negative portion of the overdriving signal (which could cause a D.C. component to the display). This can be done by driving the OSCillator input between the positive supply and a level out of the range where the backplane disable is sensed (about one fifth of the supply voltage above V_{SS}). Another technique for overdriving the oscillator (with a signal swinging the full supply) is to skew the duty cycle of the overdriving signal such that the negative portion has a duration shorter than about one microsecond. The backplane disable sensing circuit will not respond to signals of this duration.

FIGURE 8. DISPLAY WAVEFORMS

LED Devices

The LED device in the family (ICM7212AM) provides outputs suitable for directly driving four-digit, seven-segment com-mon-anode LED displays. These devices include 28 individual segment drivers, each consisting of a low-leakage, current-controlled, open-drain, n-channel transistor.

The drain current of these transistors can be controlled by varying the voltage at the BRtrighTness input (pin 5). The
voltage at this pin is transferred to the gates of the output devices for "on" segments, and thus directly modulates the transistor's "on" resistance. A brightness control can be easily implemented with a single potentiometer controlling the voltage at pin 5, connected as in Figure 9. The potentiometer should be a high value ($100 \mathrm{k} \Omega$ to $1 \mathrm{M} \Omega$) to minimize power consumption, which can be significant when the display is off.

FIGURE 9. BRIGHTNESS CONTROL

The BRighTness input may also be operated digitally as a display enable; when high, the display is fully on, and low fully off. The display brightness may also be controlled by varying the duty cycle of a signal swinging between the two voltages at the BRighTness input.

Note that the LED device has two connections for V_{SS}; both of these pins should be connected. The double connection is necessary to minimize effects of bond wire resistance with the large total display currents possible.

When operating LED devices at higher temperatures and/or higher supply voltages, the device power dissipation may need to be reduced to prevent excessive chip temperatures. The maximum power dissipation is 1 W at $+25^{\circ} \mathrm{C}$, derated linearly above $+35^{\circ} \mathrm{C}$ to 500 mW at $+70^{\circ} \mathrm{C}\left(-15 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\right.$ above $+35^{\circ} \mathrm{C}$). Power dissipation for the device is given by:
$P=\left(V_{\text {SUPP }}-V_{\text {FLED }}\right)\left(I_{\text {SEG }}\right)\left(n_{\text {SEG }}\right)$
where $\mathrm{V}_{\text {FLED }}$ is the LED forward voltage drop, $\mathrm{I}_{\mathrm{SEG}}$ is segment current, and $n_{\text {SEG }}$ is the number of "on" segments. It is recommended that if the device is to be operated at elevated temperatures the segment current be limited by use of the BRighTness input to keep power dissipation within the limits described above.

Input Configurations and Output Codes

The standard devices in the ICM7211 and ICM7212 family accept a four-bit true binary (i.e., positive level = logical one) input at pins 27 thru 30, least significant bit at pin 27 ascending to the most significant bit at pin 30. The ICM7211 and ICM7211M devices decode this binary input into a seven- segment alphanumeric hexadecimal output, while the ICM7211A, ICM7211AM, and ICM7212AM decode the binary input into seven-segment alphanumeric "Code B " output, i.e. 0-9, dash, E, H, L, P, blank. These codes are shown explicitly in Table 1. Either decoder option will
correctly decode true BCD to a seven-segment decimal output.

TABLE 1. OUTPUT CODES

BINARY				HEXADECIMAL ICM7211 ICM7211M	CODE B ICM7211A ICM7212AM
B3	B2	B1	BO		
0	0	0	0	\square	\square
0	0	0	1	1	1
0	0	1	0	\checkmark	\boldsymbol{J}
0	0	1	1	3	3
0	1	0	0	4	4
0	1	0	1	5	5
0	1	1	0	5	5
0	1	1	1	7	7
1	0	0	0	\square	B
1	0	0	1	9	9
1	0	1	0	A	-
1	0	1	1	b	E
1	1	0	0	L	H
1	1	0	1	d	L
1	1	1	0	E	$\boldsymbol{\square}$
1	1	1	1	F	BLANK

These devices are actually mask-programmable to provide any 16 combinations of the seven segment outputs decoded from the four input bits. For large quantity orders custom decoder options can be arranged. Contact the factory for details.

The ICM7211 and ICM7211A devices are designed to accept multiplexed binary or BCD input. These devices provide four separate digit lines (least significant digit at pin 31 ascending to most significant digit at pin 34), each of which when taken to a positive level decodes and stores in the output latches of its respective digit the character corresponding to the data at the input port, pins 27 through 30.

The ICM7211M, ICM7211AM, and ICM7212AM devices are intended to accept data from a data bus under processor control.

In these devices, the four data input bits and the two-bit digit address (DA1 pin 31, DA2 pin 32) are written into input buffer latches when both chip select inputs ($\overline{\mathrm{CS} 1}$ pin 33, $\overline{\mathrm{CS}}$ pin 34) are taken low. On the rising edge of either chip select input, the content of the data input latches is decoded and stored in the output latches of the digit selected by the contents of the digit address latches.

An address of 00 writes into $D 4, D A 2=0, D A 1=1$ writes into D3, DA2 $=1$, DA1 $=0$ writes into D2, and 11 writes into D1. The timing relationships for inputting data are shown in Figure 2, and the chip select pulse widths and data setup and hold times are specified under Operating Characteristics.

FIGURE 10. SEGMENT ASSIGNMENT

Test Circuit

FIGURE 11.

Typical Applications

FIGURE 12. GANGED ICM7211's DRIVING 8-DIGIT LCD DISPLAY

Typical Applications (Continued)

FIGURE 13. 80C48 MICROPROCESSOR INTERFACE

8-Digit μ P Compatible LED Display Decoder Driver

Features

- Improved 2nd Source to Maxim ICM7218
- Fast Write Access Time of 200ns
- Multiple Microprocessor Compatible Versions
- Hexadecimal, Code B and No Decode Modes
- Individual Segment Control with "No Decode" Feature
- Digit and Segment Drivers On-Chip
- Non-Overlapping Digits Drive
- Common Anode and Common Cathode LED Versions
- Low Power CMOS Architecture
- Single 5V Supply

Applications

- Instrumentation
- Test Equipment
- Hand Held Instruments
- Bargraph Displays
- Numeric and Non-Numeric Panel Displays
- High and Low Temperature Environments where LCD Display Integrity is Compromised

Description

The Harris ICM7228 display driver interfaces microprocessors to an 8 digit, 7 segment, numeric LED display. Included on chip are two types of 7 segment decoder, multiplex scan circuitry, LED display segment drivers, LED display digit drivers and an 8-byte static memory as display RAM.

Data can be written to the ICM7228A and ICM7228B's display RAM in sequential 8 digit update or in single digit update format. Data is written to the ICM7228C and ICM7228D display RAM in parallel random access format. The ICM7228A and ICM7228C drive common anode displays. The ICM7228B and ICM7228D drive common cathode displays. All versions can display the RAM data as either Hexadecimal or Code B format. The ICM7228A and ICM7228B incorporate a No Decode mode allowing each bit of each digit's RAM word to drive individual display segments resulting in independent control of all display segments. As a result, bargraph and other irregular display segments and formats can be driven directly by this chip.
The Harris ICM7228 is an alternative to both the Maxim ICM7218 and the Harris ICM7218 display drivers. Notice that the ICM7228A/B has an additional single digit access mode. This could make the Harris ICM7218A/B software incompatible with ICM7228ANB operation.

Ordering Information

PART NUMBER	DATA ENTRY PROTOCOL	DISPLAY TYPE	TEMP. RANGE	PACKAGE
ICM7228AIPI	Sequential	Common Anode	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 Lead Plastic DIP
ICM7228BIPI	Sequential	Common Cathode	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 Lead Plastic DIP
ICM7228CIPI	Random	Common Anode	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 Lead Plastic DIP
ICM7228DIPI	Random	Common Cathode	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 Lead Plastic DIP
ICM7228AIJI	Sequential	Common Anode	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 Lead Ceramic DIP
ICM7228BIJI	Sequential	Common Cathode	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 Lead Ceramic DIP
ICM7228CIJI	Random	Common Anode	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 Lead Ceramic DIP
ICM7228DIJI	Random	Common Cathode	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 Lead Ceramic DIP
ICM7228AIBI	Sequential	Common Cathode	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 Lead SOIC
ICM7228BIBI	Sequential	Common Anode	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 Lead SOIC
ICM7228CIBI	Random	Common Cathode	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 Lead SOIC
ICM7228DIBI	Random	Common Anode	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	28 Lead Ceramic DIP
ICM7228AMJI	Sequential	Common Cathode	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	28 Lead Ceramic DIP
ICM7228BMJI	Sequential	Common Anode	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	28 Lead Ceramic DIP
ICM7228CMJI	Random	Common Cathode	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	28 Lead Ceramic DIP
ICM7228DMJI	Random	Common Anode	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	28 Lead Ceramic DIP
ICM7228AMJI883B	Sequential	Common Cathode	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	28 Lead Ceramic DIP
ICM7228BMJI883B	Sequential	Common Anode	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	28 Lead Ceramic DIP
ICM7228CMJI883B	Random	Common Cathode	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	28 Lead Ceramic DIP
ICM7228DMJI883B	Random			

Pinouts

ICM7228C
(CDIP, PCIP SOIC) COMMON ANODE

TOP VIEW

ICM7228D
(CDIP, PCIP SOIC) COMMON CATHODE

TOP VIEW

Functional Block Diagram

ICM7228A, ICM7228B

ICM7228C, ICM7228D

Absolute Maximum Ratings

Supply Voltage (VDD $\left.-V_{S S}\right)$. 6 V
Digit Output Current . 500 mA
Segment Output Current . 100 mA
Input Voltage (Note 1) (Any Terminal) . . $\left.\mathrm{V}_{\mathrm{SS}}-0.3 \mathrm{~V}\right)<\mathrm{V}_{\mathrm{IN}}<\left(\mathrm{V}_{\mathrm{DD}}+\right.$ 0.3 V)

Storage Temperature Range $-65^{\circ} \mathrm{C}<T_{S}<+160^{\circ} \mathrm{C}$
Lead Temperature (Soldering 10s) . $+300^{\circ} \mathrm{C}$ Junction Temperature

IPI, IJI, IBI Suffix . $+150^{\circ} \mathrm{C}$
MIJI Suffix. $+175^{\circ} \mathrm{C}$

Thermal Information

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Electrical Specifications $V_{D D}=+5.0 \mathrm{~V} \pm 10 \%, V_{S S}=O V$, Unless Otherwise Specified
INDUSTRIAL TEMPERATURE RANGE, IPI, $\mathbf{~ L I}$, LBI DEVICES

PARAMETER	TEST CONDITIONS	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Supply Voltage Range, $\mathrm{V}_{\text {SuPPLY }}$	Operating	4	-	6	4	-	6	V
	Power Down Mode	2	-	-	2	-	-	
Quiescent Supply Current, la	Shutdown, ICM7228A, IMC7228B	-	1	100	-	1	100	$\mu \mathrm{A}$
	Shutdown, 7228C, 7228D	-	2.5	100	-	2.5	100	
Operating Supply Current, $\mathrm{I}_{\text {D }}$	Common Anode, ICM7228A/C Segments $=$ ON Outputs = OPEN	-	200	450	-	200	450	$\mu \mathrm{A}$
	Common Anode, ICM7228ANC Segments = OFF Outputs = OPEN	-	100	450	-	100	450	
	Common Cathode, ICM7228B/D Segments $=$ ON Outputs = OPEN	-	250	450	-	250	450	
	Common Cathode, ICM7228B/D Segments = OFF Outputs = OPEN	-	175	450	-	175	450	
Digit Drive Current, IDIG	Common Anode, ICM7228ANC $V_{\text {OUT }}=V_{D D}-2.0 \mathrm{~V}$	200	-	\bullet	175	-	\bullet	mA
	Common Cathode, ICM7228B/D $v_{\text {OUT }}=V_{\text {SS }}+1.0 \mathrm{~V}$	50	-	-	40	-	\bullet	
Digit Leakage Current, IDLK	Shutdown Mode, $\mathrm{V}_{\text {OUT }}=2.0 \mathrm{~V}$ Common Anode, ICM7228A/C	-	1	100	-	1	100	$\mu \mathrm{A}$
	Shutdown Mode, $\mathrm{V}_{\text {OUT }}=5.0 \mathrm{~V}$ Common Cathode, 7228B/D	-	1	100	-	1	100	
Peak Segment Drive Current, ISEG	Common Anode, ICM7228ANC $V_{\text {OUT }}=V_{\text {SS }}+1.0 \mathrm{~V}$	20	25	-	20	-	-	mA
	Common Cathode, 7228B/D $V_{\text {OUT }}=V_{\text {DD }}-2.0 \mathrm{~V}$	10	12	-	10	-	\bullet	
Segment Leakage Current, IsLk	Shutdown Mode, $\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\mathrm{DD}}$ Common Anode, ICM7228A/C	-	1	50	-	1	50	$\mu \mathrm{A}$
	Shutdown Mode, $\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {SS }}$ Common Cathode, ICM7228B/D	-	1	50	-	1	50	
Input Leakage Current, $\mathrm{I}_{\text {IL }}$	All Inputs except Pin 9 ICM7228C, ICM7228D VIN $=V_{S S}$	\bullet	-	1	-	-	1	$\mu \mathrm{A}$
	All Inputs except Pin 9 ICM7228C, ICM7228D VIN $=5.0 \mathrm{~V}$	-	-	-1	-	-	-1	
Display Scan Rate, $\mathrm{f}_{\text {MUX }}$	Per Digit	\cdot	390	-	-	390	\bullet	Hz
Inter-Digit Blanking Time, I $_{\text {IDB }}$		2	10	\cdot	2	-	\bullet	$\mu \mathrm{s}$

Electrical Specifications $V_{D D}=+5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=\mathrm{OV}$, Unless Otherwise Specified Industrial temperature range, ili, wi, LBI devices (Continued)

PARAMETER	TEST CONDITIONS	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Logical "1" Input Voltage, $\mathrm{V}_{\text {INH }}$	Three Level Input: Pin 9 ICM7228C, ICM7228D Hexadecimal $V_{D D}=5 \mathrm{~V}$	4.2	-	-	4.2	-	\bullet	V
Floating Input, $\mathrm{V}_{\text {INF }}$	Three Level Input: Pin 9 ICM7228C, ICM7228D Code B $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	2.0	-	3.0	2.0	-	3.0	V
Logical "0" Input Voltage, VINL.	Three Level Input: Pin 9 ICM7228C, ICM7228D Shutdown $V_{D D}=5 \mathrm{~V}$	-	-	0.8	-	-	0.8	V
Three Level Input Impedance, $\mathrm{Z}_{\text {IN }}$	$\begin{aligned} & V_{\mathrm{CC}}=5 \mathrm{~V} \\ & \text { Pin } 9 \text { of ICM7228C and ICM7228D } \end{aligned}$	50	-	-	50	-	\bullet	k Ω
Logical "1" Input Voltage, $\mathrm{V}_{1 \mathrm{H}}$	All Inputs except Pin 9 of ICM7228C, ICM7228D $V_{D D}=5 \mathrm{~V}$	2.0	\bullet	-	2.0	-	-	V
Logical "0" Input Voltage, V_{IL}	All Inputs except Pin 9 of ICM7228C, ICM7228D $V_{D D}=5 \mathrm{~V}$	${ }^{-}$	-	0.8	-	-	0.8	V
SWITCHING SPECIFICATIONS $\mathrm{V}_{\mathrm{DD}}=+5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=+0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=+2.4 \mathrm{~V}$								
Write Pulsewidth (Low), $\mathrm{I}_{\text {WL }}$		200	100	\cdot	250	-	\cdot	ns
Write Pulsewidth (High), $\mathrm{t}_{\text {WH }}$		850	540	-	1200	-	-	ns
Mode Hold Time, $\mathrm{t}_{\text {MH }}$	ICM7228A, ICM7228B	0	-65	-	0	-	\cdot	ns
Mode Setup Time, $\mathrm{t}_{\text {MS }}$	ICM7228A, ICM7228B	250	150	-	250	-	-	ns
Data Setup Time, $\mathrm{t}_{\text {DS }}$		250	160	-	250	-	-	ns
Data Hold Time, $\mathrm{t}_{\text {OH }}$		0	-60	\cdot	0	\cdot	\cdot	ns
Digit Address Setup Time, $\mathrm{t}_{\text {AS }}$	ICM7228C, ICM7228D	250	110	-	250	-	-	ns
Digit Address Hold Time, $\mathrm{t}_{\text {AH }}$	ICM7228C, ICM7228D	0	-60	-	0	-	-	ns

Electrical Specifications $V_{D D}=+5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$, Unless Otherwise Specified
MILITARY TEMPERATURE RANGE, MIJI, DEVICES

PARAMETER	TEST CONDITIONS	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Supply Voltage Range, $\mathrm{V}_{\text {SUPPLY }}$	Operating	4	-	6	4	-	6	V
	Power Down Mode	2	\cdot	-	2	-	-	V
Quiescent Supply Current, IQ	Shutdown, ICM7228A, IMC7228B	-	1	100	-	1	100	$\mu \mathrm{A}$
	Shutdown, 7228C, 7228D	-	2.5	100	-	2.5	100	$\mu \mathrm{A}$
Operating Supply Current, $\mathrm{I}_{\text {D }}$	Common Anode, ICM7228ANC Segments $=$ ON Outputs = OPEN	-	200	450	-	200	550	$\mu \mathrm{A}$
	Common Anode, ICM7228A/C Segments = OFF Outputs = OPEN	-	100	450	-	100	450	$\mu \mathrm{A}$
	Common Cathode, ICM7228B/D Segments = ON Outputs = OPEN	-	250	450	-	250	550	$\mu \mathrm{A}$
	```Common Cathode, ICM7228B/D Segments = OFF Outputs = OPEN```	-	175	450	-	175	450	$\mu \mathrm{A}$
Digit Drive Current, IDIG	$\begin{aligned} & \text { Common Anode, } V_{D D}=5 \mathrm{~V} \\ & V_{\text {OUT }}=V_{D D}-2.0 \mathrm{~V} \end{aligned}$	200	-	-	170	-	-	mA
	Common Cathode, $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$ $V_{\text {OUT }}=V_{\text {SS }}+1.0 \mathrm{~V}$	50	-	-	35	-	-	mA

Electrical Specifications $V_{D D}=+5.0 \mathrm{~V} \pm 10 \%, V_{S S}=0 \mathrm{~V}$, Unless Otherwise Specified
MILITARY TEMPERATURE RANGE, MIJI, DEVICES (Continued)

PARAMETER	TEST CONDITIONS	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Digit Leakage Current, IDLK	Shutdown Mode, $\mathrm{V}_{\text {OUT }}=2.0 \mathrm{~V}$ Common Anode, ICM7228A/C	-	1	100	-	1	100	$\mu \mathrm{A}$
	Shutdown Mode, $\mathrm{V}_{\text {OUT }}=5.0 \mathrm{~V}$   Common Cathode, 7228B/D	-	1	100	-	1	100	$\mu \mathrm{A}$
Peak Segment Drive Current, ISEG	Common Anode, ICM7228A/C $V_{\text {OUT }}=V_{S S}+1.0 \mathrm{~V}, V_{D D}=5 \mathrm{~V}$	20	25	-	20	25	-	mA
	Common Cathode, 7228B/D $V_{O U T}=V_{D D}-2.0 \mathrm{~V}, V_{D D}=5 \mathrm{~V}$	10	12	-	10	12	-	mA
Segment Leakage Current, IsLk	Shutdown Mode, $\mathrm{V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{DD}}$ Common Anode, ICM7228A/C	-	1	50	-	1	50	$\mu \mathrm{A}$
	Shutdown Mode, $\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {SS }}$ Common Cathode, ICM7228B/D	-	1	50	-	1	50	$\mu \mathrm{A}$
Input Leakage Current, $\mathrm{ILL}^{\text {L }}$	$\begin{array}{\|l\|} \hline \text { All Inputs except Pin } 9 \\ \text { ICM7228C, ICM7228D } V_{\text {IN }}=V_{\text {SS }} \\ \hline \end{array}$	-	-	1	-	-	1	$\mu \mathrm{A}$
	All Inputs except Pin 9 ICM7228C, ICM7228D ViN $=5.0 \mathrm{~V}$	-	-	-1	-	-	-1	$\mu \mathrm{A}$
Display Scan Rate, $\mathrm{f}_{\text {MUX }}$	Per Digit	-	390	-	-	390		Hz
Inter-Digit Blanking Time, t $_{\text {LDB }}$		2	10	-	2	10		$\mu \mathrm{s}$
Logical "1" Input Voltage, $\mathrm{V}_{\text {INH }}$	Three Level Input: Pin 9 ICM7228C, ICM7228D Hexadecimal $V_{D D}=5 \mathrm{~V}$	4.2	-	${ }^{-}$	4.2	-		V
Floating Input, $\mathrm{V}_{\text {INF }}$	Three Level Input: Pin 9 ICM7228C, ICM7228D Code B $V_{D D}=5 \mathrm{~V}$	2.0	-	3.0	2.4	-	3.0	V
Logical "0" Input Voltage, $\mathrm{V}_{\text {INL }}$	Three Level Input: Pin 9 ICM7228C, ICM7228D Shutdown $V_{D D}=5 \mathrm{~V}$	${ }^{-}$	-	0.8	${ }^{-}$	-	0.4	V
Three Level Input Impedance, $\mathrm{Z}_{\text {IN }}$	$\begin{aligned} & V_{\text {CC }}=5 \mathrm{~V} \\ & \text { Pin } 9 \text { of ICM7228C and ICM7228D } \end{aligned}$	50	-	-	50	-	-	k $\Omega$
Logical "1" Input Voltage, $\mathrm{V}_{\text {IH }}$	All Inputs except   Pin 9 of ICM7228C, ICM7228D $V_{D D}=5 \mathrm{~V}$	2.0	-	-	2.0	-	-	V
Logical "0" Input Voltage, $\mathrm{V}_{\mathrm{IL}}$	All Inputs except   Pin 9 of ICM7228C, ICM7228D $V_{D D}=5 \mathrm{~V}$	$\cdots$	${ }^{-}$	0.8	-	-	0.8	V
SWITCHING SPECIFICATIONS ( $\left.\mathrm{V}_{\mathrm{DD}}=+5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=+0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=+2.4 \mathrm{~V}\right)$								
Write Pulsewidth (Low), $\mathrm{t}_{\text {WL }}$		200	100	-	250	115	-	ns
Write Pulsewidth (High), $\mathrm{t}_{\text {WH }}$		850	540	-	1200	840	-	ns
Mode Hold Time, $\mathrm{t}_{\text {M }}$	ICM7228A, ICM7228B	0	-65	-	0	-65	-	ns
Mode Setup Time, ${ }_{\text {MS }}$	ICM7228A, ICM7228B	250	150	-	250	165	$\cdot$	ns
Data Setup Time, $\mathrm{t}_{\text {DS }}$		250	160	-	250	160	-	ns
Data Hold Time, $\mathrm{t}_{\text {DH }}$		0	-60	-	0	-60	$\cdot$	ns
Digit Address Setup Time, $\mathrm{t}_{\text {AS }}$	ICM7228C, ICM7228D	250	110	-	250	100	$\cdot$	ns
Digit Address Hold Time, $\mathrm{t}_{\text {AH }}$	ICM7228C, ICM7228D	0	-60	$\bullet$	0	-60	-	ns

## NOTES:

1. Due to the SCR structure inherent in the CMOS process used to fabricate these devices, connecting any terminal to a voltage greater then $\mathrm{V}_{D D}$ or less then $\mathrm{V}_{S S}$ may cause destructive device latchup. For this reason, it is recommended that no inputs row sources operating on a different power supply be applied to the device before its own supply is established, and when using multiple supply systems the supply to the ICM7228 should be turned on first.

## Timing Diagrams



FIGURE 1. ICM7228A/B WRITE CYCLE


FIGURE 2. ICM7228ABB SEQUENTIAL 8 DIGIT RAM UPDATE


FIGURE 3. ICM7228C/D WRITE CYCLE


FIGURE 4. DISPLAY DIGITS MULTIPLEX (COMMON ANODE DISPLAY)

## Typical Performance Curves



FIGURE 5. COMMON ANODE DIGIT DRIVER $I_{D I G} v s\left(V_{D D}-V_{D I G}\right)$


FIGURE 7. COMMON CATHODE DIGIT DRIVER $\mathrm{I}_{\text {DIG }}$ vs $V_{\text {DIG }}$


FIGURE 6. COMMON ANODE SEGMENT DRIVER $I_{\text {SEG }} v s \mathbf{V}_{\text {SEG }}$


FIGURE 8. COMMON CATHODE SEGMENT DRIVER $I_{\text {SEG }}$ vs ( $\mathbf{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SEG}}$ )

TABLE 1. ICM7228A PIN ASSIGNMENTS AND DESCRIPTIONS

PIN NO.	NAME	FUNCTION	DESCRIPTION
1	SEG c	Output	LED Display Segments $\mathrm{c}, \mathrm{e}, \mathrm{b}$ and Decimal Point Drive Lines.
2	SEG e		
3	SEG b		
4	DP		
5	$\begin{aligned} & \text { ID6, } \\ & \text { (HEXA } \overline{\text { CODE B }} \text { ) } \end{aligned}$	Input	When "MODE" Low: Display Data Input, Bit 7.   When "MODE" High: Control Bit, Decoding Scheme Selection: High, Hexadecimal Decoding; Low, Code B Decoding.
6	ID5, ( $\overline{\text { DECODE }}$ )	Input	When "MODE" Low: Display Data Input, Bit 6. When "MODE" High: Control Bit, Decode/No Decode Selection: High, No Decode; Low, Decode.
7	ID7,   (DATA COMING)	Input	When "MODE" Low: Display Data Input, Bit 8, Decimal Point Data.   When "MODE" High: Control Bit, Sequential Data Update Select: High, Data Coming; Low, No Data Coming.
8	WRITE	Input	Data Input Will Be Written to Control Register or Display RAM on Rising Edge of WRITE.
9	MODE	Input	Selects Data to Be Loaded to Control Register or Display RAM: High, Loads Control Register; Low, Loads Display RAM.
10	$\begin{aligned} & \text { ID4, } \\ & (\overline{\text { SHUTDOWN }} \end{aligned}$	Input	When "MODE" Low: Display Data Input, Bit 5.   When "MODE" High: Control Bit, Low Power Mode Select: High, Normal Operation; Low, Oscillator and Display Disabled.
11	ID1	Input	When "MODE" Low: Display Data Input, Bit 2.   When "MODE" High and "ID7 (DATA COMING)" Low: Digit Address, Bit 2, Single Digit Update Mode.
12	IDO	Input	When "MODE" Low: Display Data Input, Bit 1.   When "MODE" High and "ID7 (DATA COMING)" Low: Digit Address, LSB, Single Digit Update Mode.
13	ID2	Input	When "MODE" Low: Display Data Input, Bit 3.   When "MODE" High and "ID7 (DATA COMING)" Low: Digit Address, MSB, Single Digit Update Mode.
14	ID3	Input	When "MODE" Low: Display Data Input, Bit 4.   When "MODE" High: RAM Bank Select (Decode Modes Only): High, RAM Bank A; Low, RAM Bank B
15	DIGIT 1	Output	LED Display Digits 1, 2, 5 and 8 Drive Lines.
16	DIGIT 2		
17	DIGIT 5		
18	DIGIT 8		
19	$V_{D D}$	Supply	Device Positive Power Supply Rail.
20	DIGIT 4	Output	LED Display Digits 4, 7, 6 and 3 Drive Lines.
21	DIGIT 7		
22	DIGIT 6		
23	DIGIT 3		
24	SEG f	Output	LED Display Segments f, d, g and a Drive Lines.
25	SEG d		
26	SEG g		
27	SEG a		
28	$\mathrm{V}_{\text {S }}$	Supply	Device Ground or Negative Power Supply Rail.

ICM7228

TABLE 2. ICM7228B PIN ASSIGNMENTS AND DESCRIPTIONS

PIN NO.	NAME	FUNCTION	DESCRIPTION
1	DIGIT 4	Output	LED Display Digits 4, 6, 3 and 1 Drive Lines.
2	DIGIT 6		
3	DIGIT 3		
4	DIGIT 1		
5	$\begin{aligned} & \text { ID6, } \\ & \text { (HEXA } \overline{C O D E B}) \end{aligned}$	Input	When "MODE" Low: Display Data Input, Bit 7. When "MODE" High: Control Bit, Decoding Scheme Selection: High, Hexadecimal Decoding; Low, Code B Decoding.
6	ID5, ( $\overline{\text { DECODE }}$ )	Input	When "MODE" Low: Display Data Input, Bit 6. When "MODE" High: Control Bit, Decode/No Decode Selection: High, No Decode; Low, Decode.
7	ID7,   (DATA COMING)	Input	When "MODE" Low: Display Data Input, Bit 8, Decimal Point Data. When "MODE" High: Control Bit, Sequential Data Update Select: High, Data Coming; Low, No Data Coming.
8	WRITE	Input	Data Input Will Be Written to Control Register or Display RAM on Rising Edge of WRITE.
9	MODE	Input	Selects Data to Be Loaded to Control Register or Display RAM: High, Loads Control Register; Low, Loads Display RAM.
10	$\frac{\text { ID4, }}{(\text { SHUTDOWN })}$	Input	When "MODE" Low: Display Data Input, Bit 5.   When "MODE" High: Control Bit, Low Power Mode Select: High, Normal Operation; Low, Oscillator and Display Disabled.
11	ID1	Input	When "MODE" Low: Display Data Input, Bit 2.   When "MODE" High and "ID7 (DATA COMING)" Low: Digit Address, Bit 2, Single Digit Update Mode.
12	IDO	Input	When "MODE" Low: Display Data Input, Bit 1.   When "MODE" High and "ID7 (DATA COMING)" Low: Digit Address, LSB, Single Digit Update Mode.
13	ID2	Input	When "MODE" Low: Display Data Input, Bit 3.   When "MODE" High and "ID7 (DATA COMING)" Low: Digit Address, MSB, Single Digit Update Mode.
14	ID3	Input	When "MODE" Low: Display Data Input, Bit 4. When "MODE" High: RAM Bank Select (Decode Modes Only): High, RAM Bank A; Low, RAM Bank B.
15	DP	Output	LED Display Decimal Point and Segments a, b, and d Drive Lines
16	SEG a		
17	SEG b		
18	SEG d		
19	$V_{\text {DD }}$	Supply	Device Positive Power Supply Rail.
20	SEG c	Output	LED Display Segments c, e, f and g Drive Lines.
21	SEG e		
22	SEG f		
23	SEG g		
24	DIGIT 8	Output	LED Display Digits 8, 2, 5 and 7 Drive Lines.
25	DIGIT 2		
26	DIGIT 5		
27	DIGIT 7		
28	$\mathrm{V}_{\text {ss }}$	Supply	Device Ground or Negative Power Supply Rail.

ICM7228

TABLE 3. ICM7228C PIN ASSIGNMENTS AND DESCRIPTIONS

PIN NO.	NAME	FUNCTION	DESCRIPTION
1	SEG c	Output	LED Display Segments c, e, band Decimal Point Drive Lines.
2	SEG e		
3	SEG b		
4	DP		
5	DAO	Input	Digit Address Input, Bit 1 LSB.
6	DA1	Input	Digit Address Input, Bit 2.
7	ID7, (INPUT $\overline{D P}$ )	Input	Display Decimal Point Data Input, Negative True.
8	WRITE	Input	Data Input Will Be Written to Display RAM on Rising Edge of WRITE.
9	HEXACODE B/ SHUTDOWN	Input	Three Level Input. Display Function Control: High, Hexadecimal Decoding; Float, Code B Decoding; Low, Oscillator, and Display Disabled.
10	DA2	Input	Digit Address Input, Bit 3, MSB.
11	ID1	Input	Display Data Inputs.
12	IDO		
13	ID2		
14	ID3		
15	DIGIT 1	Output	LED Display Digits 1, 2, 5 and 8 Drive Lines.
16	DIGIT 2		
17	DIGIT 5		
18	DIGIT 8		
19	$\mathrm{V}_{\mathrm{DD}}$	Supply	Device Positive Power Supply Rail.
20	DIGIT 4	Output	LED Display Digits 4, 7, 6 and 3 Drive Lines.
21	DIGIT 7		
22	DIGIT 6		
23	DIGIT 3		
24	SEG f	Output	LED Display Segments f, d, g and a Drive Lines.
25	SEG d		
26	SEG g		
27	SEG a		
28	$\mathrm{V}_{\text {SS }}$	Supply	Device Ground or Negative Power Supply Rail.

ICM7228

TABLE 4. ICM7228D PIN ASSIGNMENTS AND DESCRIPTIONS

PIN NO.	NAME	FUNCTION	DESCRIPTION
1	DIGIT 4	Output	LED Display Digits 4, 6, 3 and 1 Drive Lines.
2	DIGIT 6		
3	DIGIT 3		
4	DIGIT 1		
5	DAO	Input	Digit Address Input, Bit 1 LSB.
6	DA1	Input	Digit Address Input, Bit 2.
7	ID7, (INPUT $\overline{\mathrm{DP}}$ )	Input	Display Decimal Point Data Input, Negative True.
8	WRITE	Input	Data Input Will Be Written to Display RAM on Rising Edge of WRITE.
9	HEXACCODE B/ SHUTDOWN	Input	Three Level Input. Display Function Control: High, Hexadecimal Decoding; Float, Code B Decoding; Low, Oscillator and Display Disabled.
10	DA2	Input	Digit Address Input, Bit 3, MSB.
11	ID1	Input	Display Data Inputs.
12	IDO		
13	ID2		
14	ID3		
15	DP	Output	LED Display Decimal Point and Segments a, b, and d Drive Lines.
16	SEG a		
17	SEG b		
18	SEG d		
19	$V_{D D}$	Supply	Device Positive Power Supply Rail.
20	SEG c	Output	LED Display Segments c, e, f and g Drive Lines.
21	SEG e		
22	SEG f		
23	SEG g		
24	DIGIT 8	Output	LED Display Digits 8, 2, 5 and 7 Drive Lines.
25	DIGIT 2		
26	DIGIT 5		
27	DIGIT 7		
28	$\mathrm{V}_{\text {ss }}$	Supply	Device Ground or Negative Power Supply Rail.

## Detailed Description

## System Interfacing and Data Entry Modes, ICM7228A and ICM7228B

The ICM7228A/B devices are compatible with the architectures of most microprocessor systems. Their fast switching characteristics makes it possible to access them as a memory mapped I/O device with no wait state necessary in most microcontroller systems. All the ICM7228A/B inputs, including MODE, feature a 250 ns minimum setup and Ons hold time with a 200ns minimum WRITE pulse. Input logic levels are TTL and CMOS compatible. Figure 9 shows a generic method of driving the ICM7228A/B from a microprocessor bus. To the microprocessor, each device appears to be 2 separate I/O locations; the Control Register and the Display RAM. Selection between the two is accomplished by the MODE input driven by address line AO. Input data is placed on the IDO-ID7 lines. The WRITE input acts as both a device select and write cycle timing pulse. See Figure 1 and Switching Specifications Table for write cycle timing parameters.
The ICM7228A/B have three data entry modes: Control Register update without RAM update, sequential 8 digit update and single digit update. In all three modes a control word is first written by pulsing the $\overline{\text { WRITE }}$ input while the MODE input is high, thereby latching data into the Control Register. The logic level of individual bits in the Control Register select Shutdown, Decode/No Decode, Hex/Code B, RAM bank AVB and Display RAM digit address as shown in Tables 1 and 2.
The ICM7228A/B Display RAM is divided into 2 banks, called bank A and B. When using the Hexadecimal or code B display modes, these RAM banks can be selected separately. This allows two separate sets of display data to be stored and displayed alternately. Notice that the RAM bank selection is not possible in No-Decode mode, this is because the display data in the No-Decode mode has 8 -bits, but in Decoded schemes (Hex/Code B) is only 4-bits (IDO - ID3 data). It should also be mentioned that the decimal point is
independent of selected bank, a turned on decimal point will remain on for either bank. Selection of the RAM banks is controlled by ID3 input. The ID3 logic level (during Control Register update) selects which bank of the internal RAM to be written to and/or displayed.

## Control Register Update without RAM Update

The Control Register can be updated without changing the display data by a single pulse on the WRITE input, with MODE high and DATA COMING low. If the display is being decoded (Hex/Code B), then the value of ID3 determines which RAM bank will be selected and displayed for all eight digits.

## Sequential 8 Digit Update

The logic state of DATA COMING (ID7) is also latched during a Control Register update. If the latched value of DATA COMING (ID7) is high, the display becomes blanked and a sequential 8 digit update is initiated. Display data can now be written into RAM with 8 successive WRITE pulses, starting with digit 1 and ending with digit 8 (See Figure 2). After all 8 RAM locations have been written to, the display turns on again and the new data is displayed. Additional write pulses are ignored until a new Control Register update is performed. All 8 digits are displayed in the format (Hex/Code B or No Decode) specified by the control word that preceded the 8 digit update. If a decoding scheme (Hex/Code B) is to be used, the value of ID3 during the control word update determines which RAM bank will be written to.

## Single Digit Update

In this mode each digit data in the display RAM can be updated individually without changing the other display data. First, with MODE input high, a control word is written to the Control Register carrying the following information; DATA COMING (ID7) low, the desired display format data on ID4 ID6, the RAM bank selected by ID3 (if decoding is selected) and the address of the digit to be updated on data lines IDO ID2 (See Table 5). A second write to the ICM7228A/B, this time with MODE input low, transfers the data at the IDO - ID7


FIGURE 9. ICM7228A/B MICROPROCESSOR SYSTEM INTERFACING
inputs into the selected digit's RAM location. In single digit update mode, each individual digit's data can be specified independently for being displayed in Decoded or No-Decode mode. For those digits which decoding scheme (Hex/Code B) is selected, only one can be effective at a time. Whenever a control word is written, the specified decoding scheme will be applied to all those digits which selected to be displayed in Decoded mode.

TABLE 5. DIGITS ADDRESS, ICM7228A/B

INPUT DATA LINES			SELECTED DIGIT
1D2	ID2	ID0	
0	0	0	DIGIT1
0	0	1	DIGIT2
0	1	0	DIGIT3
0	1	1	DIGIT4
1	0	0	DIGIT5
1	0	1	DIGIT6
1	1	0	DIGIT7
1	1	1	DIGIT8

System Interfacing, ICM7228C and ICM7228D
The ICM7228C/D devices are directly compatible with the architecture of most microprocessor systems. Their fast switching characteristics make it possible to access them as a memory mapped I/O device with no wait state necessary in most microcontroller systems. All the ICM7228C/D inputs, excluding HEXACODE B/SHUTDOWN, feature a 250 ns minimum setup and Ons hold time with a 200 ns minimum $\overline{\text { WRITE }}$ pulse. Input logic levels are TTL and CMOS compatible. Figure 10 shows a generic method of driving the ICM7228C/D from a microprocessor bus. To the microprocessor, the 8 bytes of the Display RAM appear to be 8 separate I/O locations. Loading the ICM7228C/D is quite similar to a standard memory write cycle. The address of the digit to be updated is placed on lines DAO-DA2, the data to
be written is placed on lines IDO - ID3 and ID7, then a low pulse on WRITE input will transfer the data in. See Figure 3 and Switching Characteristics Table for write cycle timing parameters.

The ICM7228C/D devices do not have any control register, and also they do not provide the No Decode display format. Hexadecimal or Code B character selection and shutdown mode are directly controlled through the three level input at Pin 9, which is accordingly called HEXACODE B/ SHUTDOWN. See Tables 3 and 4 for input and output definitions of the ICM7228C/D devices.

## Display Formats

The ICM7228A and ICM7228B have three possible display formats; Hexadecimal, Code B and No Decode. Table 6 shows the character sets for the decode modes and their corresponding input code.

The display formats of the ICM7228A/B are selected by writing data to bits ID4, ID5 and ID6 of the Control Register (See Table 1 and 2 for input Definitions). Hexadecimal and Code B data is entered via IDO-ID3 and ID7 controls the decimal point.

TABLE 6. DISPLAY CHARACTER SETS

INPUT DATA CODE		DISPLAY CHARACTERS			
ID3	ID2	ID1	IDO	HEXADECIMAL	CODE B
0	0	0	0	0	0
0	0	0	1	1	1
0	0	1	0	2	2
0	0	1	1	3	3
0	1	0	0	4	4
0	1	0	1	5	5



FIGURE 10. ICM7228C/D MICROPROCESSOR SYSTEM INTERFACING

TABLE 6. DISPLAY CHARACTER SETS (Continued)

INPUT DATA CODE		DISPLAY CHARACTERS			
ID3	ID2	ID1	ID0	HEXADECIMAL	CODE B
0	1	1	0	6	6
0	1	1	1	7	7
1	0	0	0	8	8
1	0	0	1	9	9
1	0	1	0	A	-
1	0	1	1	b	E
1	1	0	0	C	H
1	1	0	1	d	L
1	1	1	0	E	P
1	1	1	1	F	(Blank)



FIGURE 10. DIGITS SEGMENT ASSIGNMENTS
The No Decode mode of the ICM7228A and ICM7228B allows the direct segment-by-segment control of all 64 segments driven by the device. In the No Decode mode, the input data directly control the outputs as shown in Table 7.

TABLE 7. NO DECODE SEGMENT LOCATIONS

DATA   INPUT	ID7	ID6	ID5	ID4	ID3	ID2	ID1	ID0
Controlled   Segment	Decimal   Point	a	b	c	e	g	f	d

An input high level turns on the respective segment, except for the decimal point, which is turned on by an input low level on ID7.
The No Decode mode can be used in different applications such as bar graph or status panel driving where each segment controls an individual LED.
The ICM7228C and ICM7228D have only the Hexadecimal and Code B character sets. The HEXACODE B/ $\overline{\text { SHUTDOWN }}$ input, pin 9 , requires a three level input. Pin 9 selects the Hexadecimal format when pulled high, the Code B format when floating or driven to mid-supply, and the shutdown mode when pulled low (See Tables 3 and 4). Table 6 also applies to the ICM7228C/D devices.

## Shutdown and Display Banking

When shutdown, the ICM7228 enters a low power standby mode typically consuming only $1 \mu \mathrm{~A}$ of supply current for the ICM7228A/B and $2.5 \mu \mathrm{~A}$ for the ICM7228C/D. In this mode the ICM7228 turns off the multiplex scan oscillator as well as the digit and segment drivers. However, input data can still be entered when in the shutdown mode. Data is retained in memory even with the supply voltage as low as 2 V .

The ICM7228A/B is shutdown by writing a control word with Shutdown (ID4) low. The ICM7228C/D is put into shutdown mode by driving pin 9, HEXACODE B/SHUTDOWN, Iow.

The ICM7228 operating current with the display blanked is within $100 \mu \mathrm{~A}-200 \mu \mathrm{~A}$ for all versions. All versions of the ICM7228 can be blanked by writing Hex FF to all digits and selecting Code B format. The ICM7228A and ICM7228B can also be blanked by selecting No Decode mode and writing Hex 80 to all digits (See Tables 6 and 7).

## Common Anode Display Drivers, ICM7228A and ICM7228C

The common anode digit and segment driver output schematics are shown in Figure 12. The common anode digit driver output impedance is approximately $4 \Omega$. This provides a nearly constant voltage to the display digits. Each digit has a minimum of 200 mA drive capability. The N -channel segment driver's output impedance of $50 \Omega$ limits the segment current to approximately 25 mA peak current per segment. Both the segment and digit outputs can directly drive the display, current limiting resistors are not required.
Individual segment current is not significantly affected by whether other segments are on or off. This is because the segment driver output impedance is much higher than that of the digit driver. This feature is important in bar graph applications where each bar graph element should have the same brightness, independent of the number of elements being turned on.

## Common Cathode Display Drivers, ICM7228B and ICM7228D

The common cathode digit and segment driver output schematics are shown in Figure 13. The N -channel digit drivers have an output impedance of approximately $15 \Omega$ Each digit has a minimum of 50 mA drive capability. The segment drivers have an output impedance of approximately $100 \Omega$ with typically 10 mA peak current drive for each segment. The common cathode display driver output currents are only $1 / 4$ of the common anode display driver currents. Therefore, the ICM7228A and ICM7228C common anode display drivers are recommended for those applications where high display brightness is desired. The ICM7228B and ICM7228D common cathode display drivers are suitable for driving bubblelensed monolithic 7 segment displays. They can also drive individual LED displays up to 0.3 inches in height when high brightness is not required.

## Display Multiplexing

Each digit of the ICM7228 is on for approximately $320 \mu \mathrm{~s}$, with a multiplexing frequency of approximately 390 Hz . The ICM7228 display drivers provide interdigit blanking. This ensures that the segment information of the previous digit is gone and the information of the next digit is stable before the next digit is driven on. This is necessary to eliminate display ghosting (a faint display of data from previous digit superimposed on the next digit). The interdigit blanking time is $10 \mu \mathrm{~s}$ typical with a guaranteed $2 \mu$ s minimum. The ICM7228 turns off both the digit drivers and the segment drivers during the interdigit blanking period. The digit multiplexing sequence is: D2, D5, D1, D7, D8, D6, D4 and D3. A typical digit's drive pulses are shown on Figure 4.

Due to the display multiplexing, the driving duty cycle for each digit is $12 \%$ ( $100 \times 1 / 8$ ) This means the average current for each segment is $1 / 8$ of its peak current. This must be considered while designing and selecting the displays.

## Driving Larger Displays

If very high display brightness is desired, the ICM7228 display driver outputs can be externally buffered. Figures 14 thru 16 show how to drive either common anode or common cathode displays using the ICM7228 and external driver circuit for higher current displays.

Another method of increasing display currents is to connect two digit outputs together and load the same data into both digits. This drives the display with the same peak current, but the average current doubles because each digit of the display is on for twice as long, i.e., $1 / 4$ duty cycle versus $1 / 8$.


NOTE: When SHUTDOWN goes low INTERDIGIT BLANKING also stays low.

FIGURE 12A. DIGIT DRIVER


FIGURE 12B. SEGMENT DRIVER
FIGURE 12. COMMON ANODE DISPLAY DRIVERS


13A. DIGIT DRIVER


NOTE: When SHUTDOWN goes low INTERDIGIT BLANKING also stays low.

FIGURE 13B. SEGMENT DRIVER
FIGURE 13. COMMON CATHODE DISPLAY DRIVERS


FIGURE 14. DRIVING HIGH CURRENT DISPLAY, COMMON ANODE ICM7228AC TO COMMON ANODE DISPLAY


FIGURE 15. DRIVING HIGH CURRENT DISPLAY, COMMON CATHODE ICM7228B/D TO COMMON CATHODE DISPLAY


FIGURE 16. DRIVING HIGH CURRENT DISPLAY, COMMON CATHODE ICM7228B/D TO COMMON CATHODE DISPLAY

## Three Level Input, ICM7228C and ICM7228D

As mentioned before, pin 9 is a three level input and controls three functions: Hexadecimal display decoding, Code B display decoding and shutdown mode. In many applications, pin 9 will be left open or permanently wired to one state. When pin 9 can not be permanently left in one state, the circuits illustrated in Figure 17 can be used to drive this three level input.


FIGURE 17. ICM7228C/D PIN 9 DRIVE CIRCUITS

## Power Supply Bypassing

Connect a minimum of $47 \mu \mathrm{~F}$ in parallel with $0.1 \mu \mathrm{~F}$ capacitors between $V_{D D}$ and $V_{S S}$ of ICM7228. These capacitors should be placed in close proximity to the device to reduce the power supply ripple caused by the multiplexed LED display drive current pulses.

## Test Circuits



Test Circuits (Continued)


FIGURE 19. FUNCTIONAL TEST CIRCUIT \#2

# Numeric/Alphanumeric Triplexed LCD Display Driver 

## Features

- ICM7231 Drives 8 Digits of 7 Segments with Two Independent Annunciators Per Digit Address and Data Input in Parallel Format
- ICM7232 Drives 10 Digits of 7 Segments with Two Independent Annunciators Per Digit Address and Data Input in Serlal Format
- All Signals Required to Drive Rows and Columns of Triplexed LCD Display are Provided
- Display Voltage Independent of Power Supply
- On-Chip Oscillator Provides All Display Timing
- Total Power Consumption Typically $\mathbf{2 0 0} \mu \mathrm{W}$, Maximum $500 \mu \mathrm{~W}$ at 5 V
- Low-Power Shutdown Mode Retains Data With $5 \mu \mathbf{W}$ Typical Power Consumption at 5V, $1 \mu \mathrm{~W}$ at 2 V
- Direct Interface to High-Speed Microprocessors


## Description

The ICM7231 and ICM7232 family of integrated circuits are designed to generate the voltage levels and switching waveforms required to drive triplexed liquid-crystal displays. These chips also include input buffer and digit address decoding circuitry allowing six bits of input data to be decoded into 64 independent combinations of the output segments of the selected digit.
The family is designed to interface to modern high performance microprocessors and microcomputers and ease system requirements for ROM space and CPU time needed to service a display.

## Ordering Information

PART   NUMBER	TEMPERATURE   RANGE	PACKAGE	NUMBER OF   DIGITS	INPUT   FORMAT
ICM7231 BFIJL	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	40 Lead Ceramic DIP	8 Digit	Parallel
ICM7231 BFIPL	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	40 Lead Plastic DIP	8 Digit	Parallel
ICM7232 AFIJL	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	40 Lead Ceramic DIP	10 Digit	Serial
ICM7232BFIPL	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	40 Lead Plastic DIP	10 Digit	Serial
ICM7232CRIPL	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	40 Lead Plastic DIP	10 Digit	Serial

NOTE:
All versions intended for triplexed LCD displays.

## Pinouts

ICM7231BF
(PDIP)
TOP VIEW

CS

ICM7232AF, BF
(PDIP)
TOP VIEW


ICM7232CR
(PDIP)
TOP VIEW

DATA CLOCK INPUT	40	$V_{D D}$
$V_{\text {DISP }} 2$	39	WRITE INPUT
BP1 3	38	DATA INPUT
BP2 4	37	DATA ACCEPTED OUTPUT
BP3 5	36	$\mathrm{V}_{\text {ss }}$
b1, c1, ant1 6	35	b6, c6, an16
a1, g1, d1 7	34	a6, g6, d6
f1, e1, an21 8	33	f6, e6, an26
b2, c2, an12 9	32	b7, c7, an17
a2, g2, d2 10	31	a7, g7, d7
f2, e2, an22 11	30	tr, e7, an27
b3, c3, an13 12	29	b8, c8, an18
a3, g3, d3 13	28	a8, g8, d8
f3, e3, an23 14	27	f8, a8, an28
b4, c4, an14 15	26	b9, c9, an19
a4, g4, d4 16	25	a9, g9, d9
f4, e4, an24 17	24	f9, e9, an29
b5, c5, an15 18	23	b10, c10, an110
a5, g5, d5 19	22	a10, g10, d10
f5, e5, an25 20	21	f10, e10, an210

Functional Block Diagrams


NOTE: See Figure 13 for display segment connections

## Functional Block Diagrams (Continued)

ICM7232


NOTE: See Figures 13 and 14 for display segment connections.

## Absolute Maximum Ratings

Supply Voltage ( $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}$ ).
.............. 6.5 V
Input Voltage (Note 1)
$V_{S S}-0.3 \leq V_{I N} \leq 6.5$
Display Voltage (Note 1)
$0.3 \leq V_{\text {DISP }} \leq+0.3$
Storage Temperature Range
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature Range . . ....
Lead Temperature (Soldering, 10s) $+300^{\circ} \mathrm{C}$

## Thermal Information

Thermal Resistance	${ }^{8} \mu$	$\theta_{\text {dc }}$
Plastic DIP Package	$50^{\circ} \mathrm{CNW}$	
Ceramic DIP Package	$45^{\circ} \mathrm{CW}$	$15^{\circ} \mathrm{CN}$
Operating Temperature	$-25^{\circ} \mathrm{C}$ to +8	
Junction Temperature		
Ceramic		$+175^{\circ} \mathrm{C}$
Plastic		$+150^{\circ} \mathrm{C}$

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the devica. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Electrical Specifications $\mathrm{V}_{+}=5 \mathrm{~V}+10 \%, \mathrm{~V}_{\mathrm{ss}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, Unless Otherwise Specified

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Power Supply Voltage, $\mathrm{V}_{\mathrm{DD}}$		4.5	$>4$	5.5	V
Data Retention Supply Voltage, $\mathrm{V}_{\mathrm{DD}}$	Guaranteed Retention at 2V	2	1.6	-	V
Logic Supply Current, IDD	Current from $V_{D D}$ to Ground Excluding Display. $V_{\text {DISP }}=2 \mathrm{~V}$	-	30	100	$\mu \mathrm{A}$
Shutdown Total Current, $\mathrm{I}_{\text {S }}$	$V_{\text {DISP }}$ Pin 2 Open	-	1	10	$\mu \mathrm{A}$
Display Voltage Range, $\mathrm{V}_{\text {DISP }}$	$\mathrm{V}_{\text {SS }} \leq \mathrm{V}_{\text {DISP }} \leq \mathrm{V}_{\text {DD }}$	0		$\mathrm{V}_{\mathrm{DD}}$	V
Display Voltage Setup Current, IDISP	$\mathrm{V}_{\text {DISP }}=2 \mathrm{~V}$, Current from $\mathrm{V}_{\text {DD }}$ to $\mathrm{V}_{\text {DISP }}$ On-Chip	-	15	30	$\mu \mathrm{A}$
Display Voltage Setup Resistor Value, $\mathrm{R}_{\text {DISP }}$	One of Three Identical Resistors in String	40	75	-	k $\Omega$
DC Component of Display Signals	(Sample Test Only)	-	$1 / 4$	1	$\%\left(V_{D D}-V_{\text {DISP }}\right)$
Display Frame Rate, $\mathrm{f}_{\text {DISP }}$	See Figure 5	60	90	120	Hz
Input Low Level, $\mathrm{V}_{\mathrm{IL}}$	ICM7231, Pins 30-35, 37-39, 1 ICM7232, Pins 1, 38, 39 (Note 3)	-	-	0.8	V
Input High Level, $\mathrm{V}_{\mathrm{IH}}$		2.0	-	-	V
Input Leakage, lilk		-	0.1	1	$\mu \mathrm{A}$
Input Capacitance, $\mathrm{C}_{\text {IN }}$		$\bullet$	5	$\bullet$	pF
Output Low Level, $\mathrm{V}_{\mathrm{OL}}$	Pin 37, ICM7232, $\mathrm{I}_{\mathrm{OL}}=1 \mathrm{~mA}$,	$\bullet$	-	0.4	V
Output High Level, $\mathrm{V}_{\mathrm{OH}}$	$\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-500 \mu \mathrm{~A}$	4.1	-	$\bullet$	V
Operating Temperature Range, $\mathrm{T}_{\text {OP }}$	Industrial Range	-25	-	+85	${ }^{\circ} \mathrm{C}$

AC Specifications $V_{D D}=5 \mathrm{~V}+10 \% \mathrm{~V}_{\mathrm{Ss}}=0 \mathrm{~V},-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
PARALLEL INPUT (ICM7231) See Figure 1					
Chip Select Pulse Width, $t_{\text {cs }}$	(Note 2)	500	350	-	ns
Address/Data Setup Time, $\mathrm{t}_{\text {S }}$	(Note 2)	200	-	-	ns
Address/Data Hold Time, $\mathrm{t}_{\text {DH }}$	(Note 2)	0	-20	-	ns
Inter-Chip Select Time, tics	(Note 2)	3	-	-	$\mu \mathrm{s}$
SERIAL INPUT (ICM7232) See Figures 2, 3					
Data Clock Low Time, tec	(Note 2)	350	$\bullet$	-	ns
Data Clock High Time, $\mathrm{t}_{\text {CL }}$	(Note 2)	350	$\bullet$	$\bullet$	ns
Data Setup Time, $\mathrm{t}_{\text {DS }}$	(Note 2)	200	-	-	ns
Data Hold Time, $\mathrm{t}_{\text {DH }}$	(Note 2)	0	-20	-	ns
$\overline{\text { Write }}$ Pulse Width, ${ }_{\text {wp }}$	(Note 2)	500	350	-	ns
Write Pulse to Clock at Initialization, ${ }_{\text {WLu }}$	(Note 2)	1.5	-	-	$\mu \mathrm{s}$
Data Accepted Low Output Delay, todL	(Note 2)	-	200	400	ns
Data Accepted High Output Delay, todH	(Note 2)	$\bullet$	1.5	3	$\mu \mathrm{s}$
Write Delay After Last Clock, ${ }_{\text {chws }}$	(Note 2)	350	-	-	ns

Table of Features

TYPE NUMBER	OUTPUT CODE	ANNUNCIATOR LOCATIONS	INPUT	OUTPUT
ICM7231BF	Code B	Both Annunciators on BP3	Parallel Entry, 4-bit Data, 2-bit   Annunciators, 3-bit Address	8 Digits plus   16 Annunciators
ICM7232AF	Hexadecimal	Both Annunciators on BP3	Serial Entry, 4-bit Data, 2-bit   Annunciators, 4-bit Address	10 Digits plus   20 Annunciators
ICM7232BF	Code B	1CM7232CR	Code B	1 Annunciator BP1   1 Annunciator BP3

## Terminal Definitions

TERMINAL	PIN NO.	DESCRIPTION	FUNCTION
ICM7231 PARALLEL INPUT NUMERIC DISPLAY			
AN1	30	Annunciator 1 Control Bit Annunciator 2 Control Bit	See Table 3
AN2	31		
BD0	32	Least SignificantMost Significant $\left\{\begin{array}{l}\text { 4-bit Binary } \\ \text { Data Inputs }\end{array}\right.$	$\begin{aligned} & \text { HIGH = Logical One (1) } \\ & \text { LOW = Logical Zero (0) } \end{aligned}$
BD1	33		
BD2	34		
BD3	35		
A0	37	$\left.\begin{array}{l}\text { Least Significant } \\ \text { Most Significant }\end{array}\right\}$3-bit Digit   Address Inputs	
A1	38		
A2	39		
$\overline{\mathrm{CS}}$	1	Data Input Strobe/Chip Select (Note 3)	Trailing (Positive going) edge latches data, causes data input to be decoded and sent out to addressed digit
ICM7232 SERIAL DATA AND ADDRESS INPUT			
Data Input	38	Data+ Address Shift Register Input	$\begin{aligned} & \text { HIGH = Logical One (1) } \\ & \text { LOW = Logical Zero (0) } \end{aligned}$
$\overline{\text { WRITE }}$ Input	39	Decode, Output, and Reset Strobe	When DATA ACCEPTED Output is LOW, positive going edge of WRITE causes data in shift register to be decoded and sent to addressed digit, then shift register and control logic to be reset. When DATA ACCEPTED Output is HIGH, positive going edge of WRITE triggers reset only.
Data Clock Input	1	Data Shift Register and Control Logic Clock	Positive going edge advances data in shift register. ICM7232: Eleventh edge resets shift register and control logic.
DATA   ACCEPTED   Output	37	Handshake Output	Output LOW when correct number of bits entered into shift register.
ALL DEVICES			
Display Voltage $\mathrm{V}_{\text {DISP }}$	2	Negative end of on-chip resistor string used to generate intermediate voltage levels for display. Shutdown Input.	Display voltage control. When open (or less than 1V from $V_{D D}$ ) chip is shutdown; oscillator stops, all display pins to $\mathrm{V}_{\mathrm{DD}}$.
Common Line Driver Outputs	3,4,5		Drive display commons, or rows
Segment Line Driver Outputs	$\begin{aligned} & 6-29 \\ & 6-35 \end{aligned}$	(On ICM7231) (On ICM7232)	Drive display segments, or columns.
$V_{D D}$	40	Chip Positive Supply	
$V_{\text {SS }}$	36	Chip Negative Supply	

NOTE:

1. Due to the SCR structure inherent in these devices, connecting any display terminal or the display voltage terminal to a voltage outside the power supply to the chip may cause destructive device latchup. The digital inputs should never be connected to a voltage less than -0.3 V below ground, but maybe connected to voltages above $\mathrm{V}_{D D}$ but not more than 6.5 V above $\mathrm{V}_{\mathrm{SS}}$.
2. For Design reference only, not $100 \%$ tested.
3. $\overline{C S}$ has a special "mid-level" sense circuit that establishes a test mode if it is held near 3 V for several ms . Inadvertent triggering of this mode can be avoided by pulling it high when inactive, or ensuring frequent activity

Timing Diagrams


FIGURE 1. ICM7231 INPUT TIMING DIAGRAM


FIGURE 2. ICM7232 ONE DIGIT INPUT TIMING DIAGRAM, WRITING BOTH ANNUNCIATORS

## Timing Diagrams

AN1   ENTER   FIRST	AN2	BD0	BD1	BD2	BD3	A0	A1	A2	A3   ENTER   LAST

ICM7232 WRITE ORDER


FIGURE 3. ICM7232 INPUT TIMING DIAGRAM, LEAVING BOTH ANNUNCIATORS OFF

## ICM7231 Family Description

The ICM7231 drives displays with 8 seven-segment digits with two independent annunciators per digit, accepting six data bits and three digit address bits from parallel inputs controlled by a chip select input. The data bits are subdivided into four binary code bits and two annunciator control bits.
The ICM7232 drives 10 seven-segment digits with two independent annunciators per digit. To write into the display, six bits of data and four bits of digit address are clocked serially into a shift register, then decoded and written to the display.
Input levels are TTL compatible, and the DATA ACCEPTED output on the serial input devices will drive one LSTTL load. The intermediate voltage levels necessary to drive the display properly are generated by an on-chip resistor string, and the output of a totally self-contained on-chip oscillator is used to generate all display timing. All devices in this family have been fabricated using Harris' MAXCMOS® process and all inputs are protected against static discharge.
MAXCMOS $\oplus$ is a registered trademark of Harris Corporation.

## Triplexed ( $1 / 3$ Multiplexed) Liquid Crystal Displays

Figure 4 shows the connection diagram for a typical 7 -segment display with two annunciators such as would be used with an ICM7231 or ICM7232 numeric display driver.

Figure 5 shows the voltage waveforms of the common lines and one segment line, chosen for this example to be the "a, $\mathrm{g}, \mathrm{d}^{\prime \prime}$ segment line. This line intersects with BP1 to form the " $a$ " segment, BP2 to form the " $g$ " segment and BP3 to form the " $d$ " segment. Figure 5 also shows the waveform of the " $a$, g , d" segment line for four different ON/OFF combinations of the " $a$ ", " $g$ " and " $d$ " segments. Each intersection (segment or annunciator) acts as a capacitance from segment line to common line, shown schematically in Figure 6. Figure 7 shows the voltage across the " g " segment for the same four combinations of ON/OFF segments used in Figure 5.



NOTES:

1. $\phi 1, \phi 2, \$ 3,-$ BP High with Respect to Segment.
2. $\phi 1^{\prime}, \phi 2^{\prime}, \phi 3^{\prime}$, - BP Low with Respect to Segment.
3. BP1 Active during $\phi 1$, and $\phi 1^{\circ}$.
4. BP2 Active during $\phi 2$, and $\phi 2^{\circ}$.
5. BP3 Active during $\phi 3$, and $\phi 3^{\circ}$.

FIGURE 5. DISPLAY VOLTAGE WAVEFORMS
The degree of polarization of the liquid crystal material and thus the contrast of any intersection depends on the RMS voltage across the intersection capacitance. Note from Figure 7 that the RMS OFF voltage is always $\mathrm{V}_{\mathrm{p}} / 3$ and that the RMS ON voltage is always $1.92 \mathrm{~V} / 3$.
For a $1 / 3$ multiplexed LCD, the ratio of RMS ON to OFF voltages is fixed at 1.92, achieving adequate display contrast with this ratio of applied RMS voltage makes some demands on the liquid crystal material used.


FIGURE 6. DISPLAY SCHEMATIC



Voltage Contrast Ratio $=\frac{\mathrm{V}_{\mathrm{RMS}} \mathrm{ON}}{\mathrm{V}_{\mathrm{RMS}} \mathrm{OFF}}=\frac{\sqrt{11}}{\sqrt{3}}=1.92$

## NOTES:

1. $\phi 1, \phi 2, \phi 3,-$ BP High with Respect to Segment.
2. $\phi 1^{\prime}, \phi 2^{\prime}, \phi 3^{\prime},-$ BP Low with Respect to Segment.
3. BP1 Active during $\phi 1$, and $\phi 1^{\prime}$.
4. BP2 Active during $\phi 2$, and $\phi 2^{\prime}$.
5. BP3 Active during $\phi 3$, and $\phi 3^{\circ}$.

FIGURE 7. VOLTAGE WAVEFORMS ON SEGMENT $\mathbf{g}\left(\mathbf{V}_{\mathbf{G}}\right)$

Figure 8 shows the curve of contrast versus applied RMS voltage for a liquid crystal material tailored for $\mathrm{V}_{\mathrm{P}}=3.1 \mathrm{~V}$, a typical value for $1 / 3$ multiplexed displays in calculators. Note that the RMS OFF voltage $\mathrm{V}_{\mathrm{p}} / 3=1 \mathrm{~V}$ is just below the "threshold" voltage where contrast begins to increase. This places the RMS ON voltage at 2.1V, which provides about $85 \%$ contrast when viewed straight on.



FIGURE 8. CONTRAST vs APPLIED RMS VOLTAGE
All members of the ICM7231 and ICM7232 family use an internal resistor string of three equal value resistors to generate the voltages used to drive the display. One end of the string is connected on the chip to $V_{D D}$ and the other end (user input) is available at pin 2 ( $V_{\text {DISP }}$ ) on each chip. This allows the display voltage input $\left(V_{\text {DISP }}\right)$ to be optimized for the particular liquid crystal material used. Remember that $\mathrm{V}_{\mathrm{P}}=\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\text {DISP }}$ and should be three times the threshold voltage of the liquid crystal material used. Also it is very important that pin 2 never be driven below $\mathrm{V}_{\mathrm{SS}}$. This can cause device latchup and destruction of the chip.

## Temperature Effects and Temperature Compensation

The performance of the LCD material is affected by temperature in two ways. The response time of the display to changes of applied RMS voltage gets longer as the display temperature drops. At very low temperatures $\left(-20^{\circ} \mathrm{C}\right)$ some displays may take several seconds to change a new character after the new information appears at the outputs. However, for most applications above $0^{\circ} \mathrm{C}$ this will not be a problem with available multiplexed LCD materials, and for low-temperature applications, high-speed liquid crystal materials are available. At high temperature, the effect to consider deals with plastic materials used to make the polarizer.
Some polarizers become soft at high temperatures and permanently lose their polarizing ability, thereby seriously degrading display contrast. Some displays also use sealing materials unsuitable for high temperature use. Thus, when specifying displays the following must be kept in mind: liquid crystal material, polarizer, and seal materials.

A more important effect of temperature is the variation of threshold voltage. For typical liquid crystal materials suitable for multiplexing, the peak voltage has a temperature coefficient of -7 to $-14 \mathrm{mV}{ }^{\circ} \mathrm{C}$. This means that as temperature rises, the threshold voltage goes down. Assuming a fixed value for $V_{\mathrm{A}}$ when the threshold voltage drops below $\mathrm{V}_{\mathrm{p}} / 3$ OFF segments begin to be visible. Figure 9 shows the temperature dependence of peak voltage for the same liquid crystal material of Figure 8.


FIGURE 9. TEMPERATURE DEPENDENCE OF LC THRESHOLD
For applications where the display temperature does not vary widely, $\mathrm{V}_{\mathrm{P}}$ may be set at a fixed voltage chosen to make the RMS OFF voltage, $\mathrm{V}_{\mathrm{P}} / 3$, just below the threshold voltage at the highest temperature expected. This will prevent OFF segments turning ON at high temperature (this at the cost of reduced contrast for ON segments at low temperatures).
For applications where the display temperature may vary to wider extremes, the display voltage $\mathrm{V}_{\text {DISP }}$ (and thus $\mathrm{V}_{\mathrm{P}}$ ) may require temperature compensation to maintain sufficient contrast without OFF segments becoming visible.

## Display Voltage and Temperature Compensation

These circuits allow control of the display peak voltage by bringing the bottom of the voltage divider resistor string out at pin 2 . The simplest means for generating a display voltage suitable to a particular display is to connect a potentiometer from pin 2 to $\mathrm{V}_{\mathrm{SS}}$ as shown in Figure 10. A potentiometer with a maximum value of $200 \mathrm{k} \Omega$ should give sufficient range of adjustment to suit most displays. This method for generating display voltage should be used only in applications where the temperature of the chip and display won't vary more than $\pm 5^{\circ} \mathrm{C}\left( \pm 9^{\circ} \mathrm{F}\right)$, as the resistors on the chip have a positive temperature coefficient, which will tend to increase the display peak voltage with an increase in temperature. The display voltage also depends on the power supply voltage, leading to tighter tolerances for wider temperature ranges.


FIGURE 10. SIMPLE DISPLAY VOLTAGE ADJUSTMENT

Figure 11A shows another method of setting up a display voltage using five silicon diodes in series. These diodes, 1N914 or equivalent, will each have a forward drop of approximately 0.65 V , with approximately $20 \mu \mathrm{~A}$ flowing through them at room temperature. Thus, 5 diodes will give 3.25 V , suitable for a 3 V display using the material properties shown in Figures 4 and 5 . For higher voltage displays, more diodes may be added. This circuit provides reasonable temperature compensation, as each diode has a negative temperature coefficient of $-2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$; five in series gives $-10 \mathrm{mV} /$ ${ }^{\circ} \mathrm{C}$, not far from optimum for the material described.

The disadvantage of the diodes in series is that only integral multiples of the diode voltage can be achieved. The diode voltage multiplier circuit shown in Figure 11B allows fine-tuning the display voltage by means of the potentiometer; it likewise provides temperature compensation since the temperature coefficient of the transistor base-emitter junction (about $-2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ ) is also multipled. The transistor should have a beta of at least 100 with a collector current of $10 \mu \mathrm{~A}$. The inexpensive 2 N 2222 shown in the figure is a suitable device.


FIGURE 11A. STRING OF DIODES


FIGURE 11B. TRANSISTOR-MULTIPLIER
FIGURE 11. DIODE-BASED TEMPERATURE COMPENSATION
For battery operation, where the display voltage is generally the same as the battery voltage (usually $3-4.5 \mathrm{~V}$ ), the chip may be operated at the display voltage, with $\mathrm{V}_{\text {DISP }}$ connected to $\mathrm{V}_{\mathrm{SS}}$. The inputs of the chip are designed such that they may be driven above $\mathrm{V}_{\mathrm{DD}}$ without damaging the chip. This allows, for example, the chip and display to operate at a regulated 3 V , and a microprocessor driving its inputs to operate with a less well controlled 5 V supply. (The inputs should not be driven more than 6.5 V above GND under any circumstances.) This also allows temperature compensation with
the ICL7663S, as shown in Figure 12. This circuit allows independent adjustment of both voltage and temperature compensation.


FIGURE 12. FLEXIBLE TEMPERATURE COMPENSATION

## Description Of Operation

## Parallel Input Of Data And Address (ICM7231)

The parallel input structure of the ICM7231 device is organized to allow simple, direct interfacing to all microprocessors, (see the Functional Block Diagram). In the ICM7231, address and data bits are written into the input latches on the rising edge of the Chip Select input.

The rising edge of the Chip Select also triggers an on-chip pulse which enables the address decoder and latches the decoded data into the addressed digitcharacter outputs. The timing requirements for the parallel input device are shown in Figure 1, with the values for setup, hold, and pulse width times shown in the AC Specifications section. Note that there is a minimum time between Chip Select pulses; this is to allow sufficient time for the on-chip enable pulse to decay, and ensures that new data doesn't appear at the decoder inputs before the decoded data is written to the outputs.

## Serial Input Of Data And Address (ICM7232)

The ICM3232 trades six pins used as data inputs on the ICM7231 for six more segment lines, allowing two more 9segment digits. This is done at the cost of ease in interfacing, and requires that data and address information be entered serially. Refer to Functional Block Diagram and timing diagrams, Figures 2 and 3. The interface consists of four pins: DATA Input, DATA CLOCK Input, WRITE Input and DATA ACCEPTED Output. The data present at the DATA Input is clocked into a shift register on the rising edge of the DATA CLOCK Input signal, and when the correct number of bits has been shifted into the shift register ( 8 in the ICM7232), the DATA ACCEPTED Output goes low. Following this, a low-going pulse at the WRITE input will trigger the chip to decode the data and store it in the output latches of the addressed digit/character. After the data is latched at the outputs, the shift register and the control logic are reset,
returning the DATA ACCEPTED Output high. After this occurs, a pulse at the WRITE input will not change the outputs, but will reset the control logic and shift register, assuring that each data bit will be entered into the correct position in the shift register depending on subsequent DATA CLOCK inputs.

The shift register and control logic will also be reset if too many DATA CLOCK INPUT edges are received; this prevents incorrect data from being decoded. In the ICM7232, the eleventh clock resets the shift register and control logic.

The recommended procedure for entering data is shown in the serial input timing diagram, Figure 2. First, when DATA ACCEPTED is high, send a WRITE pulse. This resets the shift register and control logic and initializes the chip for the data input sequence. Next clock in the appropriate number of correct data and address bits. The DATA ACCEPTED Output may be monitored if desired, to determine when the chip is ready to output the decoded data. When the correct number of bits has been entered, and the DATA ACCEPTED Output is low, a pulse at WRITE will cause the data to be decoded and stored in the latches of the addressed digit/ character. The shift register and control logic are reset, causing DATA ACCEPTED to return high, and leaving the chip ready to accept data for the next digit/character.

Note that for the ICM7232 the eleventh clock resets the shift register and control logic, but the DATA ACCEPTED Output goes low after the eighth clock. This allows the user to abbreviate the data to eight bits, which will write the correct character to the 7 -segment display, but will leave the annunciators off, as shown in Figure 3.
If only AN2 is to be turned on, nine bits are clocked in; if AN1 is to be turned on, all ten bits are used.

The DATA ACCEPTED Output will drive one low-power Schotky TTL input, and has equal current drive capability pulling high or low.

Note that in the serial Input devices, it is possible to address digits/characters which don't exist. As shown in Table 2 when an incorrect address is applied together with a WRITE pulse, none of the outputs will be changed.

## Display Fonts and Output Codes

The standard versions of the ICM7231 and ICM7232 chips are programmed to drive a 7 -segment display plus two annunciators per digit. See Table 3 for annunciator input controls.

The "A" and "B" suffix chips place both annunciators on BP3. The display connections for one digit of this display are shown in Figure 13. The " $A$ " devices decode the input data into a hexadecimal 7 -segment output, while the " $B$ " devices supply Code B outputs (see Table 1).

The "C" devices place the left hand annunciator on BP1 and the right hand annunciator (usually a decimal point) on $\mathrm{BP3}$. (See Figure 14). The "C" devices provide only a "Code B" output for the 7 -segments.

TABLE 1. BINARY DATA DECODING ICM7231 AND ICM7232

CODE INPUT				DISPLAY OUTPUT	
BD3	BD2	BD1	BD0	HEX	CODE B
0	0	0	0		1
0	0	0	1	1	1
0	0	1	0		
0	0	1	1		
0	1	0	0		
0	1	0	1		
0	1	1	0		
0	1	1	1		
1	0	0	0		
1	0	0	1		
1	0	1	0		$\cdots$
1	0	1	1		$\sum$
1	1	0	0		1
1	1	0	1	1	$1$
1	1	1	0		$5$
1	1	1	1		BLANK

TABLE 2. ADDRESS DECODING (ICM7231 AND ICM7232),

CODE INPUT				DISPLAY OUTPUT
ICM7232 ONLY A3	A2	A1	A0	DIGIT SELECTED
0	0	0	0	D1
0	0	0	1	D2
0	0	1	0	D3
0	0	1	1	D4
0	1	0	0	D5
0	1	0	1	D6
0	1	1	0	D7
0	1	1	1	D8
1	0	0	0	D9
1	0	0	1	D10
1	0	1	0	NONE
1	0	1	1	NONE
1	1	0	0	NONE
1	1	0	1	NONE
1	1	1	0	NONE
1	1	1	1	NONE

TABLE 3. ANNUNCIATOR DECODING

CODE   INPUT		DISPLAY OUTPUT	

SEGMENT LINES

segment line connections


FIGURE 13. ICM7231 AND ICM7232 DISPLAY FONTS ("A" AND "B" SUFFIX VERSIONS)


SEGMENT UNE CONNECTIONS


NOTE:

1. Annunciators can be: STOP, GO, $\triangle$ $\uparrow$-arrows that point to information printed around the display opening etc., whatever the designer display opening etc., whatever the designer chooses to incorporate in the liquid crystal display.
FIGURE 14. ICM7231 DISPLAY FONTS ("C" SUFFIX VERSIONS)

## Compatible Displays

Compatible displays are manufactured by: G.E. Displays Inc., Beechwood, Ohio (216) 831-8100 (\#356E3R99HJ)

Epson America Inc., Torrance CA
(Model Numbers LDB726/7/8).
Seiko Instruments USA Inc., Torrance CA
(Custom Displays)
Crystaloid, Hudson, OH

## Typical Applications



NOTE: The annunciators show function and the decimal points indicate the range of the current operation. the system can be efficiently battery operated.

FIGURE 23. 10MHz FREQUENCY/PERIOD POINTER WITH LCD DISPLAY

## Typical Applications (Continued)



FIGURE 24. "FORWARD" PIN ORIENTATION AND DISPLAY CONNECTIONS


FIGURE 17. "REVERSE" PIN ORIENTATION AND DISPLAY CONNECTIONS

# 8-Character $\mu$ P-Compatible LED Display Decoder Driver 

Features

- 14-Segment and 16-Segment Fonts With Decimal Point
- Mask Programmable for Other Font-Sets Up to 64 Characters
- Microprocessor Compatible
- Directly Drives LED Common Cathode Displays
- Cascadable Without Additional Hardware
- Standby Feature Turns Display Off; Puts Chip in Low Power Mode
- Sequentlal Entry or Random Entry of Data Into Display
- Single +5 V Operation
- Character and Segment Drivers, All MUX Scan Circultry, $8 \times 6$ Static Memory and 64-Character ASCII Font Generator Included On-Chip


## Ordering Information

NUMBER	TEMPERATURE   RANGE	PACKAGE
ICM7243AIJL	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	40 Lead Ceramic DIP
ICM7243AIPL	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	40 Lead Plastic DIP
ICM7243BIJL	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	40 Lead Ceramic DIP
ICM7243BIPL	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	40 Lead Plastic DIP

## Description

The ICM7243 is an 8-character alphanumeric display driver and controller which provides all the circuitry required to interface a microprocessor or digital system to a 14 -segment or 16 -segment display. It is primarily intended for use in microprocessor systems, where it minimizes hardware and software overhead. Incorporated on-chip are a 64-character ASCII decoder, $8 \times 6$ memory, high power character and segment drivers, and the multiplex scan circuitry.

6-bit ASCII data to be displayed is written into the memory directly from the microprocessor data bus. Data location depends upon the selection of either Sequential (MODE = 1) or Random access mode ( $M O D E=0$ ). In the Sequentlal Access mode the first entry is stored in the lowest location and displayed in the "left-most" character position. Each subsequent entry is automatically stored in the next higher location and displayed to the immediate "right" of the previous entry. A DISPlay FULL signal is provided after 8 entries; this signal can be used for cascading devices together. A CLeaR pin is provided to clear the memory and reset the location counter. The Random Access mode allows the processor to select the memory address and display digit for each input word.

The character multiplex scan runs whenever data is not being entered. It scans the memory and CHARacter drivers, and ensures that the decoding from memory to display is done in the proper sequence. Intercharacter blanking is provided to avoid display ghosting.


Functional Block Diagram


NOTE:

1. ICM7243A has only one CS and no $\overline{C S}$.

ICM7243B has 15 Segments.

Absolute Maximum Ratings
Supply Voltage $V_{D D}-V_{S S}$ . . . . . . . . . . . . . 6.0 V
Input Voltage (Any Terminal) . . . . . . . . . . . . . $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ to $\mathrm{V}_{\text {Ss }}-0.3 \mathrm{~V}$
CHARacter Output Current. . . . . . . . . . . . . . . . . . . . . . . . . . . . 300 mA
SEGment Output Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 mA
Storage Temperature Range . . . . . . . . . . . . . . . . . $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Lead Temperature (Soldering 10s). . . . . . . . . . . . . . . . . . . . $+300^{\circ} \mathrm{C}$

Thermal Information

Thermal Resistance	$\theta_{\text {JA }}$	$\theta_{\mathrm{Jc}}$
Plastic DIP .	$50^{\circ} \mathrm{C} / \mathrm{W}$	-
Ceramic DIP	$45^{\circ} \mathrm{C} / \mathrm{W}$	$15^{\circ} \mathrm{C} / \mathrm{W}$
Operating Temperature Range		to $+85^{\circ} \mathrm{C}$
Junction Temperature		
Ceramic DIP Package		$+175^{\circ} \mathrm{C}$
Plastic DIP Package		$+150^{\circ} \mathrm{C}$

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

DC Electrical Specifications $V_{D D}=5 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Unless Otherwise Specified

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Supply Voltage ( $\mathrm{V}_{\text {DD }}-\mathrm{V}_{\text {SS }}$ ), $\mathrm{V}_{\text {SUPP }}$		4.75	5.0	5.25	V
Operating Supply Current, $\mathrm{IDD}^{\text {d }}$	$\mathrm{V}_{\text {SUPP }}=5.25 \mathrm{~V}, 10$ Segments ON , All 8 Characters	-	180	-	mA
Quiescent Supply Current, ISTBY	$\begin{aligned} & V_{\text {SUPP }}=5.25 \mathrm{~V}, \text { OSC/OFF Pin }<0.5 \mathrm{~V}, \\ & \mathrm{CS}=\mathrm{V}_{\text {SS }} \end{aligned}$	-	30	250	$\mu \mathrm{A}$
Input High Voltage, $\mathrm{V}_{\mathrm{IH}}$		2	-	-	V
Input Low Voltage, $\mathrm{V}_{1 \mathrm{~L}}$		-	-	0.8	V
Input Current, $\mathrm{I}_{\text {IN }}$		-10	-	+10	$\mu \mathrm{A}$
CHARacter Drive Current, $\mathrm{I}_{\text {CHAR }}$	$\mathrm{V}_{\text {SUPP }}=5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1 \mathrm{~V}$	140	190	-	mA
CHARacter Leakage Current, $\mathrm{I}_{\text {CHLK }}$		-	-	100	$\mu \mathrm{A}$
SEGment Drive Current, ISEG	$\mathrm{V}_{\text {SUPP }}=5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=2.5 \mathrm{~V}$	14	19	-	mA
SEGment Leakage Current, ISLK		-	0.01	10	$\mu \mathrm{A}$
DISPlay FULL Output Low, $\mathrm{V}_{\text {OL }}$	$\mathrm{T}_{\mathrm{OL}}=1.6 \mathrm{~mA}$	-	-	0.4	V
DISPlay FULL Output High, $\mathrm{V}_{\mathrm{OH}}$	$\mathrm{I}_{\mathrm{H}}=100 \mu \mathrm{~A}$	2.4	-	,	V
Display Scan Rate, $\mathrm{f}_{\text {d }}$		-	400	-	Hz

AC Electrical Specifications Drive levels 0.4 V and 2.4 V , timing measured at 0.8 V and $2.0 \mathrm{~V} . \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Unless Otherwise Specified

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
$\overline{\text { WR, }}$ CLeaR Pulse Width Low, ${ }_{\text {WPI }}$		300	250	-	ns
$\overline{\text { WR, }}$ CLeaR Pulse Width High (Note 1), ${ }_{\text {WPH }}$		-	250	-	ns
Data Hold Time, $\mathrm{t}_{\text {DH }}$		0	-100	-	ns
Data Setup Time, $\mathrm{t}_{\text {DS }}$		250	150	-	ns
Address Hold Time, $\mathrm{t}_{\text {AH }}$		125	-	-	ns
Address Setup Time, $\mathrm{t}_{\text {AS }}$		40	15	-	ns
CS, $\overline{\mathrm{CS}}$ Setup Time, $\mathrm{t}_{\text {cs }}$		0	-	-	ns
Pulse Transition Time, $\mathrm{t}_{T}$		-	-	100	ns
SEN Setup Time, ${ }_{\text {SEN }}$		0	-25	-	ns
Display Full Delay, ${ }_{\text {woF }}$		700	480	-	ns

Capacitance

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Input Capacitance, $\mathrm{C}_{\mathrm{IN}}$	(Note 2)	-	5	-	pF
Output Capacitance, $\mathrm{C}_{\mathrm{O}}$	(Note 2)	-	5	-	pF

NOTES:

1. In Sequential mode $\overline{W R}$ high must be $\geq T_{\text {SEN }}+T_{\text {wDF }}$.
2. For design reference only, not tested.

## Timing Waveforms



FIGURE 1. RANDOM ACCESS TIMING


FIGURE 2. SEQUENTIAL ACCESS MODE TIMING (MODE = 1)


FIGURE 3. DISPLAY CHARACTERS MULTIPLEX TIMING DIAGRAM

## Performance Curves



Figure 4. SEGMENT CURRENT vs OUTPUT VOLTAGE


Figure 5. Character current vs ouput voltage

## Pin Descriptions

SIGNAL	PIN	FUNCTION
ICM7243A(B)		
D0 - D5	$\begin{aligned} & 10-15 \\ & (8-13) \end{aligned}$	Six-Bit ASCII Data input pins (active high).
CS, $\overline{\mathrm{CS}}$	$\begin{gathered} 16 \\ (14-16) \end{gathered}$	Chip Select from $\mu \mathrm{P}$ address decoder, etc.
$\bar{W}$	17	WRite pulse input pin (active low). For an active high write pulse, CS can be used, and $\overline{\mathrm{WR}}$ can be used as $\overline{\mathrm{CS}}$.
MODE	31	Selects data entry MODE. High selects Sequential Access (SA) mode where first entry is displayed in "leftmost" character and subsequent entries appear to the "right". Low selects the Random Access (RA) mode where data is displayed on the character addressed via A0-A2 Address pins.
A0/SEN	30	In RA mode it is the LSB of the character Address. In SA mode it is used for cascading devices for displays of more than 8 characters (active high enables device controller).
A1/ CLeaR	29	In RA mode this is the second bit of the address. In SA mode, a low input will CLeaR the Serial Address Counter, the Data Memory and the display.
A2/DISPlay FULLL	28	In RA mode this is the MSB of the Address. In SA mode, the output goes high after eight entries, indicating DISPlay FULL.
OSC/OFF	27	OSCillator input pin. Adding capacitance to $\mathrm{V}_{\mathrm{DD}}$ will lower the internal oscillator frequency. An external oscillator can be applied to this pin. A low at this input sets the device into a (shutdown) mode, shutting OFF the display and oscillator but retaining data stored in memory.
$\underset{\text { DP }}{\text { SEG a SEG } m,}$	$\begin{gathered} 2-9,32-40 \\ (2-7),(32-40) \end{gathered}$	SEGment driver outputs.
CHARacter 1-8	$\begin{aligned} & 18-21, \\ & 23-26 \end{aligned}$	CHARacter driver outputs.

## Test Circuit



FIGURE 6.

## Typical Applications



FIGURE 7. DRIVING TWO ROWS OF CHARACTERS FROM A SERIAL INPUT

## Typical Applications (Continued)



FIGURE 8. MULTICHARACTER DISPLAY USING SEQUENTIAL ACCESS MODE


FIGURE 9A. COMMON CATHODE DISPLAY


FIGURE 9B. COMMON ANODE DISPLAY

FIGURE 9. DRIVING LARGE DISPLAYS

ICM7243

## Typical Applications (Continued)



FIGURE 10. RANDOM ACCESS 32-CHARACTER DISPLAY IN A $80 C 48$ SYSTEM

## Display Font and Segment Assignments



FIGURE 11. ICM7232A 16-SEGMENT CHARACTER FONT WITH DECIMAL POINT

## Display Font and Segment Assignments (Continued)



D5, D4	0	0							$5$		1	1	1	1	1		$\mathrm{A}_{1}$	17
	0	1											17	1	$1$	7	7	
	1	0		$1$	11			A	V	1	1	1	\%	5	/	-	$\square$	1
	1	1	171 $Y / 1$	1	-		$1$			$1$	5	5	-	1	1	-	1	
		D3	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
		D2	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
		D1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
		D0	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

NOTE: Segments a and d appear as 2 segments each, but both halves are driven together.
FIGURE 12. ICM7243B 14-SEGMENT CHARACTER FONT WITH DECIMAL POINT


FIGURE 13. SEGMENT AND CHARACTER DRIVERS OUTPUT CIRCUIT

## Detailed Description

$\overline{\mathbf{W R}}, \overline{\mathbf{C S}}, \mathbf{C S}$ - These pins are immediately functionally ANDed, so all actions described as occurring on an edge of $\overline{W R}$, with CS and $\overline{\mathrm{CS}}$ enabled, will occur on the equivalent (last) enabling or (first) disabling edge of any of these inputs. The delays from CS pins are slightly (about 5 ns) greater than from $\overline{W R}$ or $\overline{\mathrm{CS}}$ due to the additional inverter required on the former.

MODE - The MODE pin input is latched on the falling edge of $\overline{W R}$ (or its equivalent, see above). The location (in Data Memory) where incoming data will be placed is determined either from the Address pins or the Sequential Address Counter. This is controlled by MODE input. MODE also controls the function of A0/SEN, A1/CLR, and A2/DISPlay FULL lines.

Random Access Mode - When the internal mode latch is set for Random Access (RA) (MODE latched low), the Address input on A0, A1 and A2 will be latched by the falling edge of WR (or its equivalent). Subsequent changes on the Address lines will not affect device operation. This allows use of a multiplexed 6-bit bus controlling both address and data, with timing controlled by $\overline{\mathrm{WR}}$.

Sequential Access Mode - If the internal latch is set for Sequential Access (SA), (MODE latched high), the Serial ENable input or SEN will be latched on the falling edge of $\overline{\mathrm{WR}}$ (or its equivalent). The $\overline{\mathrm{CLR}}$ input is asynchronous, and will force-clear the Sequential Address Counter to address 000 (CHARacter 1), and set all Data Memory contents to 100000 (blank) at any time. The DISPlay FULL output will be active in SA mode to indicate the overflow status of the Sequential Address Counter. If this output is low, and SEN is (latched) high, the contents of the Counter will be used to establish the Data Memory location for the Data input. The Counter is then incremented on the rising edge of $\overline{W R}$. If SEN is low, or DISPlay FULL is high, no action will occur. This allows easy "daisy-chaining" of display drivers for multiple character displays in a Sequential Access mode.

Changing Modes - Care must be exercised in any application involving changing from one mode to another. The change will occur only on a falling edge of $\overline{\mathrm{WR}}$ (or its equivalent). When changing mode from Sequential Access to Random Access, note that A2/DISPlay FULL will be an output until WR has fallen low, and an Address drive here could cause a conflict. When changing from Random Access to Sequential Access, $A 1 / \overrightarrow{C L R}$ should be high to avoid inadvertent clearing of the Data Memory and Sequential Address Counter. DISPlay FULL will become active immediately after the rising edge of $\overline{W R}$.

Data Entry - The input Data is latched on the rising edge of $\overline{W R}$ (or its equivalent) and then stored in the Data Memory location determined as described above. The six Data bits can be multiplexed with the Address information on the same lines in Random Access mode. Timing is controlled by the $\overline{W R}$ input.

OSC/OFF - The device includes a relaxation oscillator with an internal capacitor and a nominal frequency of 200 kHz . By adding external capacitance to $\mathrm{V}_{\mathrm{DD}}$ at the OSC/OFF pin, this frequency can be reduced as far as desired. Alternatively, an external signal can be injected on this pin. The oscillator (or external) frequency is pre-divided by 64, and then further divided by 8 in the Multiplex Counter, to drive the CHARacter drive lines (see Figure 3). An inter-character blanking signal is derived from the pre-divider. An additional comparator on the OSC/OFF input detects a level lower than the relaxation oscillator's range, and blanks the display, disables the DISPlay FULL output (if active), and clears the pre-divider and Multiplex Counter. This puts the circuit in a low-power-dissipation mode in which all outputs are effectively open circuits, except for parasitic diodes to the supply lines. Thus a display connected to the output may be driven by another circuit (including another ICM7243) without driver conflicts.
Display Output - The output of the Multiplex Counter is decoded and multiplexed into the address input of the Data Memory, except during WR operations (in Sequential Access mode, with SEN high and DISPlay FULL low), when it scans through the display data. The address decoder also drives the CHARacter outputs, except during the inter-character blanking interval (nominally about $5 \mu \mathrm{~s}$ ). Each CHARacter output lasts nominally about $300 \mu \mathrm{~s}$, and is repeated nominally every 2.5 ms , i.e., at a 400 Hz rate (times are based on internal oscillator without external capacitor).

The 6 bits read from the Data Memory are decoded in the ROM to the 17 ( 15 for ICM7243B) segment signals, which drive the SEGment outputs. Both CHARacter and SEGment outputs are disabled during WR operations (with SEN high and DISPlay FULL Low for Sequential Access mode). The outputs may also be disabled by pulling OSC/OFF low.
The decode pattern from 6 bits to 17 (15) segments is done by a ROM pattern according to the ASCII font shown. Custom decode patterns can be arranged, within these limitations, by consultation with the factory.

## COUNTERS WITH DISPLAY DRIVERS/ TIMEBASE GENERATORS

PAGE
COUNTERS WITH DISPLAY DRIVERS/TIMEBASE GENERATORS DATA SHEETS
HA7210 Low Power Crystal Oscillator ..... 13-3
ICM7213 One Second/One Minute Timebase Generator ..... 13-16
ICM7216A, 8-Digit Multi-Function Frequency Counter/Timer ..... 13-22
ICM7216B,ICM7216D
ICM7217 4-Digit LED Display Programmable Up/Down Counter. ..... 13-39
ICM7224 $4 \frac{1}{2}$ Digit LCD Display Counter. ..... 13-57
ICM7226A, 8-Digit Multi-Function Frequency Counter/Timers ..... 13-64
ICM7226B
ICM7249 $5 \frac{1}{2}$ Digit LCD $\mu$-Power Event/Hour Meter ..... 13-82

NOTE: Bold Type Designates a New Product from Harris.

Low Power Crystal Oscillator

## Features

- Single Supply Operation@ 32kHz $\qquad$
- Operating Frequency Range. . . . . . . . 10kHz to 10 MHz
- Supply Current at 32 kHz . . . . . . . . . . . . . . . . . . . . . . $5 \mu \mathrm{~A}$
- Supply Current at 1MHz . . . . . . . . . . . . . . . . . . . . $130 \mu \mathrm{~A}$
- Drives 2 CMOS Loads
- Only Requires an External Crystal for Operation


## Applications

- Battery Powered Circuits
- Remote Metering
- Embedded Microprocessors
- Palm Top/Notebook PC


## Description

The HA7210 is a very low power crystal-controlled oscillator that can be externally programmed to operate between 10 kHz and 10 MHz . For normal operation it requires only the addition of a crystal. The part exhibits very high stability over a wide operating voltage and temperature range.

The HA7210 also features a disable mode that switches the output to a high impedance state. This feature is useful for minimizing power dissipation during standby and when multiple oscillator circuits are employed.

## Ordering Information

PART   NUMBER	TEMPERATURE   RANGE	PACKAGE
HA7210IP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 Lead Plastic DIP
HA7210IB	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 Lead SOIC
HA7210Y	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	DIE

## Pinout

HA7210
TOP VIEW


FREQUENCY SELECTION TRUTH TABLE

ENABLE	FREQ 1	FREQ 2	OUTPUT RANGE
1	1	1	$10 \mathrm{kHz}-100 \mathrm{kHz}$
1	1	0	$100 \mathrm{kHz}-1 \mathrm{MHz}$
1	0	1	$1 \mathrm{MHz}-5 \mathrm{MHz}$
1	0	0	$5 \mathrm{MHz}-10 \mathrm{MHz}+$
0	$X$	$X$	$H i g h-Z$

## Typical Application Circuit


32.768 kHz MICROPOWER CLOCK OSCILLATOR

## Simplified Block Diagram



ENABLE	FREQ 1	FREQ2	SWITCH	OUTPUT RANGE
1	1	1	S1a, b, c	$10 \mathrm{kHz}-100 \mathrm{kHz}$
1	1	0	S 2	$100 \mathrm{kHz}-1 \mathrm{MHz}$
1	0	1	$S 3$	$1 \mathrm{MHz}-5 \mathrm{MHz}$
1	0	0	$S 4$	$5 \mathrm{MHz}-10 \mathrm{MHz}+$
0	$x$	$x$	$x$	High Impedance

## Specifications HA7210



## Operating Conditions

Operating Temperature (Note 3)
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range . . . . . . . . . . . . . . . . . . . $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
SOIC
$170^{\circ} \mathrm{C} / \mathrm{W}$
Plastic DIP $150^{\circ} \mathrm{C} / \mathrm{W}$

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Electrical Specifications $\quad \mathrm{V}_{\mathrm{SS}}=\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, Unless Otherwise Specified.

PARAMETER	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}$			UNITS
	MIN	TYP	MAX	MIN	TYP	MAX	
$\mathrm{V}_{\text {DD }}$ Supply Range (fosc $=32 \mathrm{kHz}$ )	2	5	7	-	-	-	V
$I_{D D}$ Supply Current $\mathrm{f}_{\mathrm{Osc}}=32 \mathrm{kHz}, \mathrm{EN}=0$ Standby	-	5.0	9.0	-	-	$\bullet$	$\mu \mathrm{A}$
$\mathrm{f}_{\text {OSC }}=32 \mathrm{kHz}, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$ (Note 1), EN = 1, Freq1 $=1$, Freq2 $=1$	$\bullet$	5.2	10.2	-	3.6	6.1	$\mu \mathrm{A}$
$\mathrm{f}_{\mathrm{OSC}}=32 \mathrm{kHz}, \mathrm{C}_{\mathrm{L}}=40 \mathrm{pF}, \mathrm{EN}=1$, Freq1 $=1$, Freq2 $=1$	-	10	15	-	6.5	9	$\mu \mathrm{A}$
$\mathrm{f}_{\text {OSC }}=1 \mathrm{MHz}, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}($ Note 1), $\mathrm{EN}=1$, Freq1 $=0$, Freq2 $=1$	-	130	200	-	90	180	$\mu \mathrm{A}$
$\mathrm{f}_{\text {Osc }}=1 \mathrm{MHz}, \mathrm{C}_{\mathrm{L}}=40 \mathrm{pF}, \mathrm{EN}=1$, Freq1 $=0$, Freq2 $=1$	$\bullet$	270	350	-	180	270	$\mu \mathrm{A}$
$\mathrm{V}_{\mathrm{OH}}$ Output High Voltage (lout $=-1 \mathrm{~mA}$ )	4.0	4.9	-	-	2.8	-	V
$V_{\text {OL }}$ Output Low Voltage ( $\mathrm{l}_{\text {OUT }}=1 \mathrm{~mA}$ )	-	0.07	0.4	-	0.1	$\bullet$	V
$\mathrm{l}_{\mathrm{OH}}$ Output High Current ( $\mathrm{V}_{\text {OUT }} \geq 4 \mathrm{~V}$ )	-	-10	-5	-	-	$\bullet$	mA
$\mathrm{l}_{\text {OL }}$ Output Low Current ( $\mathrm{V}_{\text {OUT }} \leq 0.4 \mathrm{~V}$ )	5.0	10.0	-	-	-	-	mA
Tri-State Leakage Current $\left(V_{\text {OUT }}=0 \mathrm{~V}, 5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C},-40^{\circ} \mathrm{C}\right)$	-	0.1	-	-	-	-	nA
( $\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}, 5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$ )	-	10	-	-	-	$\bullet$	nA
$\mathrm{I}_{\mathbb{N}}$ Enable, Freq1, Freq2 Input Current ( $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {SS }}$ to $\mathrm{V}_{\mathrm{DD}}$ )	-	0.4	1.0	-	-	-	$\mu \mathrm{A}$
$\mathrm{V}_{\text {IH }}$ Input High Voltage Enable, Freq1, Freq2	2.0	$\bullet$	-	-	-	-	V
$\mathrm{V}_{\text {IL }}$ Input Low Voltage Enable, Freq1, Freq2	-	-	0.8	-	-	-	V
Enable Time ( $C_{L}=18 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ )	-	800	-	-	-	-	ns
Disable Time ( $C_{L}=18 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ )	-	90	-	-	-	-	ns
$\mathrm{t}_{\mathrm{H}}$ Output Rise Time ( $10 \%-90 \%$, $\mathrm{f}_{\text {OSC }}=32 \mathrm{kHz}, \mathrm{C}_{\mathrm{L}}=40 \mathrm{pF}$ )	-	12	25	-	12	-	ns
$t_{\text {f }}$ Output Fall Time ( $10 \%-90 \%$, fosc $=32 \mathrm{kHz}, \mathrm{C}_{\mathrm{L}}=40 \mathrm{pF}$ )	-	12	25	-	14	-	ns
Duty Cycle ( $\mathrm{C}_{\mathrm{L}}=40 \mathrm{pF}$ ) fosc $=1 \mathrm{MHz}$, Packaged Part Only (Note 4)	40	54	60	-	-	-	\%
Duty Cycle ( $\mathrm{C}_{\mathrm{L}}=40 \mathrm{pF}$ ) $\mathrm{f}_{\text {Osc }}=32 \mathrm{kHz}$, (See Typical Curves)	-	41	-	-	44	-	\%
Frequency Stability vs. Supply Vottage (fosc $=32 \mathrm{kHz}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$ )	-	1	$\bullet$	-	-	-	ppmN
Frequency Stability vs. Temperature (fosc $=32 \mathrm{kHz}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$ )	$\bullet$	0.1	-	-	-	$\bullet$	ppm/ ${ }^{\circ} \mathrm{C}$
Frequency Stability vs. Load (fosc $=32 \mathrm{kHz}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$ )	-	0.01	-	-	-	-	ppm/pF

NOTES:

1. Calculated using the equation $I_{D D}=I_{D D}($ No Load $)+\left(V_{D D}\right)\left(f_{O S C}\right)\left(C_{J}\right)$
2. Human body model.
3. This product is production tested at $+25^{\circ} \mathrm{C}$ only.
4. Duty cycle will vary with supply voltage, oscillation frequency, and parasitic capacitance on the crystal pins.

## Test Circuits



FIGURE 1
In production the HA7210 is tested with a 32 kHz and a 1 MHz crystal. However for characterization purposes data was taken using a sinewave generator as the frequency determining element, as shown in Figure 1. The $1 V_{\text {p-p }}$ input is a smaller amplitude than what a typical crystal would generate so the transitions are slower. In general the Generator data will show a "worst case" number for IDD, duty cycle, and rise/fall time. The Generator test method is useful for testing a variety of frequencies quickly and provides curves which can be used for understanding performance trends. Data for the HA7210 using crystals has also been taken. This data has been overlaid onto the generator data to provide a reference for comparison.

## Theory of Operation

The HA7210 is a Pierce Oscillator optimized for low power consumption, requiring no external components except for a bypass capacitor and a Parallel Mode Crystal. The Simplified Block Diagram shows the Crystal attached to pins 2 and 3, the Oscillator input and output. The crystal drive circuitry is detailed showing the simple CMOS inverter stage and the P-channel device being used as biasing resistor $\mathbf{R}_{F}$ The inverter will operate mostly in its linear region increasing the amplitude of the oscillation until limited by its transconductance and voltage rails, $\mathrm{V}_{\mathrm{DD}}$ and $\mathrm{V}_{\mathrm{RN}}$. The inverter is self biasing using $R_{F}$ to center the oscillating waveform at the input threshold. Do not interfere with this bias function with external loads or excessive leakage on pin 2. Nominal values for $R_{F}$ are $17 \mathrm{M} \Omega$ in the lowest frequency range to $7 \mathrm{M} \Omega$ in the highest frequency range.

The HA7210 optimizes its power for 4 frequency ranges selected by digital inputs Freq1 and Freq2 as shown in the Block Diagram. Internal pull up resistors on Enable, Freq1 and Freq2 allow the user simply to leave one or all digital inputs not connected for a corresponding " 1 " state. All digital inputs may be left open for 10 kHz to 100 kHz operation.

A current source develops 4 selectable reference voltages through series resistors. The selected voltage, $\mathrm{V}_{\mathrm{RN}}$, is buffered and used as the negative supply rail for the oscillator section of the circuit. The use of a current source in the reference string allows for wide supply variation with minimal
mance. The reduced operating voltage of the oscillator section reduces power consumption and limits transconductance and bandwidth to the frequency range selected. For frequencies at the edge of a range, the higher range may provide better performance.

The crystal oscillator waveform on pin 3 is squared up through a series of inverters to the output drive stage. The Enable function is implemented with a NAND gate in the inverter string, gating the signal to the level shifter and output stage. Also during Disable the output is set to a high impedance state useful for minimizing power during standby and when multiple oscillators are OR'd to a single node.

## Design Considerations

The low power CMOS transistors are designed to consume power mostly during transitions. Keeping these transitions short requires a good decoupling capacitor as close as possible to the supply pins 1 and 4 . A ceramic $0.1 \mu \mathrm{~F}$ is recommended. Additional supply decoupling on the circuit board with $1 \mu \mathrm{~F}$ to $10 \mu \mathrm{~F}$ will further reduce overshoot, ringing and power consumption. The HA7210, when compared to a crystal and inverter alone, will speed clock transition times, reducing power consumption of all CMOS circuitry run from that clock.

Power consumption may be further reduced by minimizing the capacitance on moving nodes. The majority of the power will be used in the output stage driving the load. Minimizing the load and parasitic capacitance on the output, pin 5 , will play the major role in minimizing supply current. A secondary source of wasted supply current is parasitic or crystal load capacitance on pins 2 and 3. The HA7210 is designed to work with most available crystals in its frequency range with no external components required. Two 15pF capacitors are internally switched onto pins 2 and 3 to compensate the oscillator in the 10 kHz to 100 kHz frequency range.
The supply current of the HA7210 may be approximately calculated from the equation:
$I_{D D}=I_{D D}($ Disabled $)+V_{D D} \times F_{O S C} \times C_{L}$
where: $I_{D D}=$ Total supply current $V_{D D}=$ Total voltage from $V_{D D}$ (pin1) to $V_{S S}$ (pin4) $\mathrm{F}_{\text {OSC }}=$ Frequency of Oscillation $C_{L}=$ Output (pin5) load capacitance

## Example \#1:

$V_{D D}=5 V, F_{O S C}=100 \mathrm{kHz}, C_{L}=30 \mathrm{pF}$
$\mathrm{I}_{\mathrm{DD}}($ Disabled $)=4.5 \mu \mathrm{~A}$ (Figure 10)
$\mathrm{I}_{\mathrm{DD}}=4.5 \mu \mathrm{~A}+(5 \mathrm{~V})(100 \mathrm{kHz})(30 \mathrm{pF})=19.5 \mu \mathrm{~A}$
Measured $\mathrm{I}_{\mathrm{DD}}=20.3 \mu \mathrm{~A}$

## Example \#2:

$V_{D D}=5 \mathrm{~V}, \mathrm{~F}_{\mathrm{OSC}}=5 \mathrm{MHz}, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$
$I_{D D}($ Disabled $)=75 \mu \mathrm{~A}$ (Figure 9)
$I_{D D}=75 \mu A+(5 \mathrm{~V})(5 \mathrm{MHz})(30 \mathrm{pF})=825 \mu \mathrm{~A}$
Measured $\mathrm{I}_{\mathrm{DD}}=809 \mu \mathrm{~A}$

## Crystal Selection

For general purpose applications, a Parallel Mode Crystal is a good choice for use with the HA7210. However for applications where a precision frequency is required, the designer needs to consider other factors.

Crystals are available in two types or modes of oscillation, Series and Parallel. Series Mode crystals are manufactured to operate at a specified frequency with zero load capacitance and appear as a near resistive impedance when oscillating. Parallel Mode crystals are manufactured to operate with a specific capacitive load in series, causing the crystal to operate at a more inductive impedance to cancel the load capacitor. Loading a crystal with a different capacitance will "pull" the frequency off its value.
The HA7210 has 4 operating frequency ranges. The higher three ranges do not add any loading capacitance to the oscillator circuit. In the lowest range, 10 kHz to 100 kHz , the HA7210 automatically switches in two 15pF capacitors onto OSC IN (pin2) and OSC OUT (pin3) to eliminate potential start-up problems. These capacitors create an effective crystal loading capacitor equal to the series combination of these two capacitors. For the HA7210, in the lowest range, the effective loading capacitance is 7.5 pF . Therefore the choice for a crystal, in this range, should be a Parallel Mode crystal that requires a 7.5 pF load.

In the higher 3 frequency ranges, the capacitance on pins 2 and 3 will be determined by package and layout parasitics, typically 4 to 5pF. Ideally the choice for crystal should be a Parallel Mode set for 2.5pF load. A crystal manufactured for a different load will be "pulled" from its nominal frequency (see Crystal Pullability).

## Frequency Fine Tuning

Two Methods will be discussed for fine adjustment of the crystal frequency. The first and preferred method (Figure 2), provides better frequency accuracy and oscillator stability than method two (Figure 3). Method one also eliminates start-up problems sometimes encountered with 32 kHz tuning fork crystals.


FIGURE 2

For best oscillator performance, two conditions must be met: the capacitive load must be matched to both the inverter and crystal to provide ideal conditions for oscillation, and the frequency of the oscillator must be adjustable to the desired frequency. In Method two these two goals can be at odds with each other; either the oscillator is trimmed to frequency by de-tuning the load circuit, or stability is increased at the expense of absolute frequency accuracy.

Method one allows these two conditions to be met independently. The two fixed capacitors, $\mathrm{C}_{1}$ and $\mathrm{C}_{2}$, provide the optimum load to the oscillator and crystal. $\mathrm{C}_{3}$ adjusts the frequency at which the circuit oscillates without appreciably changing the load (and thus the stability) of the system. Once a value for $\mathrm{C}_{3}$ has been determined for the particular type of crystal being used, it could be replaced with a fixed capacitor. For the most precise control over oscillator frequency, $C_{3}$ should remain adjustable.

This three capacitor tuning method will be more accurate and stable than method two and is recommended for 32 kHz tuning fork crystals; without it they may leap into an overtone mode when power is initially applied.
Method two has been used for many years and may be preferred in applications where cost or space is critical. Note that in both cases the crystal loading capacitors are connected between the oscillator and $\mathrm{V}_{\mathrm{DD}}$; do not use $\mathrm{V}_{\mathrm{SS}}$ as an AC ground. The Simplified Block Diagram shows that the oscillating inverter does not directly connect to $\mathrm{V}_{\mathrm{SS}}$ but is referenced to $\mathrm{V}_{\mathrm{DD}}$ and $\mathrm{V}_{\mathrm{RN}}$. Therefore $\mathrm{V}_{\mathrm{DD}}$ is the best AC ground available.


FIGURE 3
Typical values of the capacitors in Figure 2 are shown below. Some trial and error may be required before the best combination is determined. The values listed are total capacitance including parasitic or other sources. Remember that in the 10 kHz to 100 kHz frequency range setting the HA7210 switches in two internal 15pF capacitors.

CRYSTAL   FREQUENCY	LOAD CAPS   C1, C2	TRIMMER CAP   C3
32 kHz	33 pF	$5-50 \mathrm{pF}$
1 MHz	33 pF	$5-50 \mathrm{pF}$
2 MHz	25 pF	$5-50 \mathrm{pF}$
4 MHz	22 pF	$5-100 \mathrm{pF}$

## Crystal Pullability

Figure 4 shows the basic equivalent circuit for a crystal and its loading circuit.


FIGURE 4
Where: $\quad C_{M}=$ Motional Capacitance
$L_{M}=$ Motional Inductance
$\mathrm{R}_{\mathrm{M}}=$ Motional Resistance
$\mathrm{C}_{0}=$ Shunt Capacitance
$C_{C L}=\frac{1}{\left(\frac{1}{C_{1}}+\frac{1}{C_{2}}\right)}=$ Equivalent Crystal Load
If loading capacitance is connected to a Series Mode Crystal, the new Parallel Mode frequency of resonance may be calculated with the following equation:

$$
F_{P}=F_{S}\left[1+\frac{C_{M}}{2\left(C_{0}+C_{C L}\right)}\right]
$$

Where: $\quad F_{P}=$ Parallel Mode Resonant Frequency
$F_{S}=$ Series Mode Resonant Frequency

In a similar way, the Series Mode resonant frequency may be calculated from a Parallel Mode crystal and then you may calculate how much the frequency will "pull" with a new load.

## Layout Considerations

Due to the extremely low current (and therefore high impedance) the circuit board layout of the HA7210 must be given special attention. Stray capacitance should be minimized. Keep the oscillator traces on a single layer of the PCB. Avoid putting a ground plane above or below this layer. The traces between the crystal, the capacitors, and the HA7210 OSC pins should be as short as possible. Completely surround the oscillator components with a thick trace of $V_{D D}$ to minimize coupling with any digital signals. The final assembly must be free from contaminants such as solder flux, moisture, or any other potential source of leakage. A good solder mask will help keep the traces free of moisture and contamination over time.

## Further Reading

AI Little "HA7210 Low Power Oscillator: Micropower Clock Oscillator and Op Amps Provide System Shutdown for Battery Circuits". Harris Semiconductor Application Note AN9317.
S. S. Eaton "Timekeeping Advances Through COS/MOS Technology". Harris Semiconductor Application Note ICAN-6086.
E. A. Vittoz et. al. "High-Performance Crystal Oscillator circuits: Theory and Application". IEEE Journal of Solid-State Circuits, Vol. 23, No3, June 1988, pp774-783.
M. A. Unkrich et. al. "Conditions for Start-Up in Crystal Oscillators". IEEE Journal of Solid-State Circuits, Vol. 17, No1, Feb. 1982, pp87-90.

Marvin E. Frerking "Crystal Oscillator Design and Temperature Compensation". New York: Van Nostrand-Reinhold, 1978. Pierce Oscillators Discussed pp56-75.

## Die Characteristics

DIE DIMENSIONS:
$68 \times 64 \times 14 \pm 1$ mils
METALLIZATION:
Type: Si-Al
Thickness: $10 \mathrm{k} \AA \pm 1 \mathrm{k} \AA$

## GLASSIVATION:

Type: Nitride $\left(\mathrm{Si}_{3} \mathrm{~N}_{4}\right)$ Over Silox ( $\mathrm{SiO}_{2}, 3 \%$ Phos)
Silox Thickness: $7 \mathrm{k} \AA \pm 1 \mathrm{k} \AA$
Nitride Thickness: $8 \mathrm{k} \AA \pm 1 \mathrm{k} \AA$
DIE ATTACH:
Material: Silver Epoxy - Plastic DIP and SOIC
SUBSTRATE POTENTIAL: $V_{S S}$
Metallization Mask Layout


## Typical Performance Curves

$C_{L}=40 \mathrm{pF}, \mathrm{FOSC}_{\mathrm{O}}=5 \mathrm{MHz}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=\mathrm{GND}$


FIGURE 5. OUTPUT WAVEFORM ( $\mathrm{C}_{\mathrm{L}}=40 \mathrm{pF}$ )


FIGURE 7. SUPPLY CURRENT vs TEMPERATURE


FIGURE 9. DISABLE SUPPLY CURRENT vs TEMPERATURE


FIGURE 6. OUTPUT WAVEFORM ( $\left.C_{L}=18 p F\right)$


FIGURE 8. SUPPLY CURRENT vs TEMPERATURE


FIGURE 10. DISABLE SUPPLY CURRENT vs TEMPERATURE

[^8]
## Typical Performance Curves (Continued)



FIGURE 11. SUPPLY CURRENT vS FREQUENCY


FIGURE 13. SUPPLY CURRENT vs FREQUENCY


FIGURE 15. DISABLED SUPPLY CURRENT vs FREQUENCY


FIGURE 12. SUPPLY CURRENT vS FREQUENCY


FIGURE 14. SUPPLY CURRENT vs FREQUENCY


FIGURE 16. DISABLE SUPPLY CURRENT vs FREQUENCY

[^9]
## Typical Performance Curves (Continued)



FIGURE 17. DISABLE SUPPLY CURRENT vs FREQUENCY


FIGURE 19. SUPPLY CURRENT vS FREQUENCY


FIGURE 21. SUPPLY CURRENT vS FREQUENCY
$E N=0, F 1=1, F 2=1, C_{L}=18 p F$, GENERATOR* ( $1 V_{P-P}$ )


FIGURE 18. DISABLE SUPPLY CURRENT vs FREQUENCY


FIGURE 20. SUPPLY CURRENT vS FREQUENCY


FIGURE 22. SUPPLY CURRENT vS FREQUENCY

[^10]
## Typical Performance Curves（Continued）

$F_{I N}=5 M H z, F 1=0, F 2=0, C_{L}=30 p F, V_{C C}=5 V$


FIGURE 23．DUTY CYCLE vs TEMPERATURE


FIGURE 25．DUTY CYCLE vs FREQUENCY
$\mathrm{F} 1=0, \mathrm{~F} 2=0$ RECOMMENDED FOR 5 MHz TO 10 MHz RANGE


FIGURE 27．DUTY CYCLE vs FREQUENCY
$\mathrm{F} 1=0, \mathrm{~F} 2=0$ RECOMMENDED FOR 100 kHz TO 1 MHz RANGE


FIGURE 24．DUTY CYCLE vs TEMPERATURE


FIGURE 26．DUTY CYCLE vs FREQUENCY
$F_{1}=0, F 2=1$ RECOMMENDED FOR 1 MHz TO 5 MHz RANGE


FIGURE 28．DUTY CYCLE vs FREQUENCY
$F 1=1, F 2=1$ RECOMMENDED FOR 10 kHz TO 100 kHz RANGE

[^11]Typical Performance Curves (Continued)


FIGURE 29. FREQUENCY CHANGE vs $V_{D D}$ Deviation from 5.0V Frequency


FIGURE 31. RISE/FALL TIME vs TEMPERATURE


FIGURE 33. RISE/FALL TIME vs $C_{L}$


FIGURE 30. EDGE JITTER vs TEMPERATURE


FIGURE 32. RISE/FALL TIME vs TEMPERATURE


FIGURE 34. RISE/FALL TIME vs $V_{\text {CC }}$

* Refer to Test Circuit (Figure 1).

Typical Performance Curves (Continued)


FIGURE 35. TRANSCONDUCTANCE vs FREQUENCY $F 1=0, F 2=0$


FIGURE 37. TRANSCONDUCTANCE vs FREQUENCY $F 1=1, F 2=0$


FIGURE 36. TRANSCONDUCTANCE vs FREQUENCY

$$
F 1=0, F 2=1
$$



FIGURE 38. TRANSCONDUCTANCE vs FREQUENCY
$F 1=1, F 2=1$


FIGURE 39. DUTY CYCLE vs $R_{\mathbf{S}}$ at 32 kHz
NOTE: Figure 39 (Duty Cycle vs $R_{S}$ at 32 kHz ) should only be used for 32 kHz crystals. $R_{S}$ may be used at other frequencies to adjust Duty Cycle but experimentation will be required to find an appropriate value. The $R_{S}$ value will be proportional to the effective series resistance of the crystal being used.

## One Second/One Minute Timebase Generator

## Features

- Guaranteed 2V Operation
- Very Low Current Consumption: Typ. 100 A A at 3V
- All Outputs TTL compatible
- On Chip Oscillator Feedback Resistor
- Oscillator Requires Only 3 External components: Fixed Capacitor, Trim Capacitor, and A Quartz Crystal
- Output Inhibit Function
- 4 Simultaneous Outputs: One Pulse/Sec, One Pulse/ Min, 16 Hz and Composite $1024+16+2 \mathrm{~Hz}$ Outputs
- Test Speed-Up Provides Other Frequency Outputs


## Description

The ICM7213 is a fully integrated micropower oscillator and frequency divider with four buffered outputs suitable for interfacing with most logic families. The power supply may be either a two battery stack (Ni-cad, alkaline, etc.) or a regular power supply greater than 2 V . Depending upon the state of the WIDTH, INHIBIT, and TEST inputs, using a 4.194304 MHz crystal will produce a variety of output frequencies including $2048 \mathrm{~Hz}, 1024 \mathrm{~Hz}, 34.133 \mathrm{~Hz}, 16 \mathrm{~Hz}, 1 \mathrm{~Hz}$, and $1 / 60 \mathrm{~Hz}$ (plus composites).

The ICM7213 utilizes a very high speed low power metal gate CMOS technology which uses 6.4 V zeners between the drains and sources of each transistor and also across the supply terminals. Consequently, the ICM7213 is limited to a 6 V maximum $\mathrm{V}_{\text {SUPPLY, }}$ although a simple dropping network can be used to extend the $\mathrm{V}_{\text {SUPPLY }}$ range well above 6V (See Figure 9).

## Ordering Information

PART   NUMBER	TEMPERATURE   RANGE	PACKAGE
ICM7213IPD	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 Lead Plastic DIP

## Pinout

```
ICM7213
 (PDIP)
TOP VIEW
```



## Functional Block Diagram



## Absolute Maximum Ratings

Supply Voltage ( $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}$ ).
.6.0V
Output Current (Any output) . . . . . . . . . . . . . . . . . . . . . . . . . . 20mA
All Input and Oscillator Voltages. . . . . . . . . . $V_{S S}-0.3 V$ to $V_{D D}+0.3 \mathrm{~V}$
All Output Voltages.................................... $V_{\text {ss }}$ to 6.0 V
Operating Temperature Range. . . . . . . . . . . . . . . . . . $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range . . . . . . . . . . . . . . . . . $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10s)
) . . . . . . . . . . . . . . . . . . $+300^{\circ} \mathrm{C}$

## Thermal Information



CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Electrical Specifications $V_{D D}-V_{S S}=3.0 \mathrm{~V}, \mathrm{f}_{\mathrm{OSC}}=4.194304 \mathrm{MHz}$, Test Circuit, $\mathrm{T}_{A}=25^{\circ} \mathrm{C}$ Unless Otherwise Specified

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Supply Current, $\mathrm{I}_{\text {DD }}$		-	100	140	$\mu \mathrm{A}$
Guaranteed Operating Supply Voltage Range ( $\mathrm{V}_{\mathrm{DD}} \cdot \mathrm{V}_{\mathrm{SS}}$ ), $\mathrm{V}_{\text {SUPPLY }}$	$-20^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+85^{\circ} \mathrm{C}$	2	-	4	V
Output Leakage Current, IoLk	Any output, $\mathrm{V}_{\text {OUT }}=6 \mathrm{~V}$	-	-	10	$\mu \mathrm{A}$
Output Sat. Resistance, Rout	Any output, $\mathrm{I}_{\text {OLK }}=2.5 \mathrm{~mA}$	-	120	200	$\Omega$
Inhibit Input Current, $I_{\text {I }}$	Inhibit terminal connected to $V_{D D}$	-	10	40	$\mu \mathrm{A}$
Test Point Input Current, $I_{\text {TP }}$	Test point terminal connected to $V_{D D}$	-	10	40	$\mu \mathrm{A}$
Width Input Current, $l_{\text {w }}$	Width terminal connected to $\mathrm{V}_{\mathrm{DD}}$	-	10	40	$\mu \mathrm{A}$
Oscillator Transconductance, $\mathrm{g}_{\mathrm{M}}$	$V_{D D}=2 \mathrm{~V}$	100	-	-	$\mu \mathrm{S}$
Oscillator Frequency Range (Note 1), fosc		1	-	10	MHz
Oscillator Stability, $\mathrm{f}_{\text {STAB }}$	$2 \mathrm{~V}<\mathrm{V}_{\mathrm{DD}}<4 \mathrm{~V}$	-	1.0	-	ppm
Oscillator Start Time, $\mathrm{t}_{\mathrm{s}}$		-	0.1	-	s
	$\mathrm{V}_{\mathrm{DD}}=2.0 \mathrm{~V}$	-	0.2	-	s

NOTE:

1. The ICM7213 uses dynamic dividers for high frequency division. As with any dynamic system, information is stored on very small nodal capacitances instead of latches (static system), therefore there is a lower frequency of operation. Dynamic dividers are used to improve the high frequency performance while at the same time significantly decreasing power consumption. At low $V_{\text {SUPPLY }}$, operation at less than 1 MHz is possible.

## Output Definitions

(NOTE 1) INPUT STATES			PIN 12 OUT 1	PIN 13 OUT 2	PIN 2 OUT 3	PIN 14 OUT 4
TEST	INHIBIT	WIDTH				
L	L	L	$16 \mathrm{~Hz} \div 2^{18}$		$1 \mathrm{~Hz}, 7.8 \mathrm{~ms} \div 2^{22}$	$\begin{aligned} & 1 / 60 \mathrm{~Hz}, \text { is } \\ & \div\left(2^{24} \times 3 \times 5\right) \end{aligned}$
L	$L$	H	$16 \mathrm{~Hz} \div 2^{18}$	1024+16+2 $\mathrm{Hz}\left(\div 2^{12} \div 2^{18} \div 2^{21}\right)$ composite	$1 \mathrm{~Hz}, 7.8 \mathrm{~ms} \div 2^{22}$	$1 / 60 \mathrm{~Hz}, 125 \mathrm{~ms}$
L	H	L	$16 \mathrm{~Hz} \div 2^{18}$	$\overline{1024+16} \mathrm{~Hz}\left(\div 2^{12} \div 2^{18}\right)$ composite	OFF	OFF
L	H	H	$16 \mathrm{~Hz} \div 2^{18}$	$\overline{1024+16} \mathrm{~Hz}\left(\div 2^{12} \div 2^{18}\right)$ composite	OFF	See Waveforms
H	L	L	ON	$\overline{4096+1024} \mathrm{~Hz}\left(\div 2^{10} \div 2^{12}\right)$ composite	$2048 \mathrm{~Hz} \div 2^{11}$	$\begin{aligned} & 34.133 \mathrm{~Hz}, 50 \% \text { D.C. } \\ & \div\left(2^{13} \times 5 \times 3\right) \end{aligned}$
H	L	H	ON	$\overline{4096+1024} \mathrm{~Hz}\left(\div 2^{10} \div 2^{12}\right)$ composite	$2048 \mathrm{~Hz} \div 2^{11}$	$\begin{aligned} & 34.133 \mathrm{~Hz}, 50 \% \text { D.C. } \\ & \div\left(2^{13} \times 5 \times 3\right) \end{aligned}$
H	H	L	ON	$1024 \mathrm{~Hz} \div 2^{12}$	ON	OFF
H	H	H	ON	$1024 \mathrm{~Hz} \div 2^{12}$	ON	OFF

NOTE:

1. When TEST and RESET are connected to ground, or left open, all outputs except for OUT 3 and OUT 4 have a $50 \%$ duty cycle.

## Timing Waveforms



FIGURE 1. OUTPUT WAVEFORM


FIGURE 2. EFFECT OF THE INHIBIT (TEST CONNECTED TO $V_{\text {SS }}$ OR LEFT OPEN)

## Typical Performance Curves



FIGURE 3. SUPPLY CURRENT AS A FUNCTION OF TEMPERATURE


FIGURE 4. SUPPLY CURRENT AS A FUNCTION OF SUPPLY VOLTAGE

## Typical Performance Curves



FIGURE 5. OUTPUT CURRENT AS A FUNCTION OF OUTPUT SATURATION VOLTAGE


FIGURE 7. OSCILLATOR STABILITY AS A FUNCTION OF SUPPLY VOLTAGE


FIGURE 6. OSCILLATOR STABILITY AS A FUNCTION OF DEVICE TEMPERATURE


FIGURE 8. WINDOW OF CORRECT OPERATION

## Test Circuit



## Detailed Description

## Supply Voltage Considerations

The ICM7213 may be used to provide various precision outputs with frequencies from 2048 Hz to $1 / 60 \mathrm{~Hz}$ using a 4.194304MHz quartz oscillator, and other output frequencies may be obtained using other quartz crystal frequencies. Since the ICM7213 uses dynamic high frequency dividers for the initial frequency division there are limitations on the $\mathrm{V}_{\text {SUPPLY }}$ range depending on the oscillator frequency. If, for example, a low frequency quartz crystal is selected, the $\mathrm{V}_{\text {SUPPLY }}$ should be selected in the center of the operating window, or approximately 1.7 V .

The $V_{\text {SUPPLY }}$ to the ICM7213 may be derived from a high voltage supply by using a simple resistor divider (if power is of no concern), by using a series resistor for minimum current consumption, or by means of a regulator.

## Outputs

Pull up resistors will generally be required to interface with other logic families. These resistors must be connected between the various outputs and the positive power supply.

## Oscillator Considerations

The oscillator consists of a CMOS inverter and a feedback resistor whose value is dependent on the voltage at the oscillator input and output terminals and the $\mathrm{V}_{\text {SUPPLY }}$ Oscillator stabilities of approximately 0.1 ppm per 0.1 V variation are achievable with a nominal $V_{\text {SUPPLY }}$ of 5 V and a single voltage dropping resistor. The crystal specifications are shown in the Test Circuit.

It is recommended that the crystal load capacitance (CL) be no greater than 22 pF for a crystal having a series resistance equal to or less than $75 \Omega$, otherwise the output amplitude of the oscillator may be too low to drive the divider reliably.

It a very high quality oscillator is desired, it is recommended that a quartz crystal be used having a tight tuning tolerance $\pm 10 \mathrm{ppm}$, a low series resistance (less than 25 $\Omega$ ), a low motional capacitance of 5 mpF and a load capacitance of 20 pF . The fixed capacitor $\mathrm{C}_{\mathrm{IN}}$ should be 30 pF and the oscillator tuning capacitor should range between approximately 16 pF and 60pF.

Use of a high quality crystal will result in typical stabilities of 0.05 ppm per 0.1 V change of $\mathrm{V}_{\text {SUPPLY }}$.

## Control Inputs

The TEST input inhibits the $2^{18}$ output and applies the $2^{9}$ output to the $2^{21}$ divider, thereby permitting a speedup of the testing of the +60 section by a factor of 2048 times. This also results in alternative output frequencies (see table).

The WIDTH input may be used to change the pulse width of OUT 4 from 125ms to 1 s , or to change the state of OUT 4 from ON to OFF during INHIBIT.

See Figures 1 and 2 for output waveforms and effect of control inputs.


FIGURE 9A.


FIGURE 9B.
FIGURE 9. BIASING SCHEMES WITH HIGH VOLTAGE SUPPLIES

## 8-Digit Multi-Function Frequency Counter/Timer

## Features All Versions

- Functions as a Frequency Counter (DC to 10 MHz )
- Four Internal Gate Times: 0.01s, 0.1s, 1s, 10 s in Frequency Counter Mode
- Directly Drives Digits and Segments of Large Multiplexed LED Displays (Common Anode and Common Cathode Versions)
- Single Nominal 5V Supply Required
- Highly Stable Oscillator, Uses 1MHz or 10MHz Crystal
- Internally Generated Decimal Points, Interdigit BlankIng, Leading Zero Blanking and Overflow Indication
- Display Off Mode Turns Off Display and Puts Chip Into Low Power Mode
- Hold and Reset Inputs for Additional Flexibility


## Features ICM7216A and ICM7216B

- Functions Also as a Period Counter, Unit Counter, Frequency Ratio Counter or Time Interval Counter
- 1 Cycle, 10 Cycles, 100 Cycles, 1000 Cycles in Period, Frequency Ratio and Time Interval Modes
- Measures Period From 0.5 $\boldsymbol{\mathrm { s }}$ to 10 s


## Features ICM7216D

- Decimal Point and Leading Zero Banking May Be Externally Selected


## Ordering Information

PART NUMBER	TEMPERATURE   RANGE	PACKAGE
ICM7216ALI	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 Lead Ceramic DIP
ICM 7216 BIPI	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 Lead Plastic DIP
ICM7216DIPI	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 Lead Plastic DIP

The ICM7216A and ICM7216B are fully integrated Timer Counters with LED display drivers. They combine a high frequency oscillator, a decade timebase counter, an 8 -decade data counter and latches, a 7 -segment decoder, digit multiplexers and 8 segment and 8 digit drivers which directly drive large multiplexed LED displays. The counter inputs have a maximum frequency of 10 MHz in frequency and unit counter modes and 2 MHz in the other modes. Both inputs are digital inputs. In many applications, amplification and level shifting will be required to obtain proper digital signals for these inputs.
The ICM7216A and ICM7216B can function as a frequency counter, period counter, frequency ratio ( $f_{A} / f_{B}$ ) counter, time interval counter or as a totalizing counter. The counter uses either a 10 MHz or 1 MHz quartz crystal timebase. For period and time interval, the 10 MHz timebase gives a $0.1 \mu \mathrm{~s}$ resolution. In period average and time interval average, the resolution can be in the nanosecond range. In the frequency mode, the user can select accumulation times of $0.01 \mathrm{~s}, 0.1 \mathrm{~s}$, 1 s and 10 s . With a 10 s accumulation time, the frequency can be displayed to a resolution of 0.1 Hz in the least significant digit. There is 0.2 s between measurements in all ranges.

The ICM7216D functions as a frequency counter only, as described above.
All versions of the ICM7216 incorporate leading zero blanking. Frequency is displayed in kHz . In the ICM7216A and ICM7216B, time is displayed in $\mu \mathrm{s}$. The display is multiplexed at 500 Hz with a $12.2 \%$ duty cycle for each digit. The ICM7216A is designed for common anode displays with typical peak segment currents of 25 mA . The ICM7216B and ICM7216D are designed for common cathode displays with typical peak segment currents of 12 mA . In the display off mode, both digit and segment drivers are turned off, enabling the display to be used for other functions.


CONTROLINPUT $\qquad$ input b 2	28 InPut $A$ 27 hold input
FUNCTIONINPUT 3	26 osc output
DIGIT 1 OUTPUT 4	25 Osc input
DIGIT 3 OUTPUT 5	24 Ext OSC InPut
DIGIT 2 OUTPUT 6	23 DECIMAL POINT
DIGIT 4 OUTPUT 7	$22^{2} \mathrm{SEg} \mathrm{g}$ OUTPUT
$\mathrm{v}_{\mathrm{ss}} 8$	21 SEGe OUtPut
DIGIT 5 OUTPUT 9	20 seg a OUTPUT
digit 6 OUTPut 10	19 SEG d OUTPUT
DIGIT 7 OUTPUT 1	$18 \mathrm{~V}_{D D}$
DIGIT 8 OUTPUT 12	17 SEG b OUTPUT
RESET input 13	16 SEG c OUTPUT
range input 14	15 SEG f OUTPUT

## ICM7216D <br> COMMON CATHODE <br> (PDIP) <br> TOP VIEW

COntrolinput 1	28 inputa
MEASUREMENT TN PROGRESS 2	$27.30 L D$ input
digit 1 OUTPUT 3	26 osc OUtPut
digit 3 OUTPUT 4	25 Osc input
DIGIT 2 OUTPUT 5	24 Ext osc input
digit 4 OUTPUT 6	23 DECIMAL POINT OUTPUT
$\mathrm{v}_{\text {ss }} 7$	$22^{2}$ SEg g output
DIGIT 5 OUTPUT 8	21 SEG e Output
DIGIT 6 OUTPUT ${ }^{\text {g }}$	20 SEGa output
digit 7 OUTPUT 10	19 SEG d OUTPUT
DIGIT 8 OUTPUT 11	18.10
RESET INPUT 12	17 SEG b OUTPUT
EX. DECIMAL POINTINPUT 13	16 SEG C OUTPUT
RANGE input 14	15 SEG f OUTPUT

Functional Block Diagram


NOTES:

1. Function input and input $B$ available on ICM7216A/B only.
2. Ext DP input and MEASUREMENT IN PROGRESS output available on ICM7216D only.

## Specifications ICM7216A, ICM7216B, ICM7216D

Absolute Maximum Ratings	
Maximum Supply Voltage ( $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{S S}$ )	6.5 V
Maximum Digit Output Current.	400 mA
Maximum Segment Output Current	60 mA
Voltage On Any Input or	
Output Terminal (Note 1)	$\left(\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}\right)$ to ( $\left.\mathrm{V}_{\mathrm{SS}}-0.3 \mathrm{~V}\right)$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering 10 s )	$+300^{\circ} \mathrm{C}$

## Thermal Information

ermal Resistance	$\theta_{\text {JA }}$	$\theta_{\text {Jc }}$
Ceramic DIP Package	$55^{\circ} \mathrm{C} / \mathrm{W}$	$20^{\circ} \mathrm{C} / \mathrm{W}$
Plastic DIP Package	$55^{\circ} \mathrm{C} / \mathrm{W}$	-
Junction Temperature		
Ceramic Packages.		$5^{\circ}$
Plastic Packages		$+150^{\circ} \mathrm{C}$
Operating Temperature F		to +85

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Electrical Specifications $\quad V_{D D}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, Unless Otherwise Specified

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
ICM7216A/B					
Operating Supply Current, $\mathrm{I}_{\text {D }}$	Display Off, Unused Inputs to $\mathrm{V}_{\text {ss }}$	-	2	5	mA
Supply Voltage Range ( $\mathrm{V}_{\text {DD }}-\mathrm{V}_{\text {SS }}$ ), $\mathrm{V}_{\text {SUPPLY }}$	INPUT A, INPUT B Frequency at $\mathrm{f}_{\text {MAX }}$	4.75	$\bullet$	6.0	V
Maximum Frequency INPUT A, Pin 28, $\mathrm{f}_{\text {A(MAX }}$	Figure 9, Function = Frequency, Ratio, Unit Counter	10	-	-	MHz
	Function = Period, Time Interval	2.5	-	-	MHz
Maximum Frequency INPUT $\mathrm{B}, \mathrm{Pin} 2, \mathrm{f}_{\mathrm{B} \text { (MAX) }}$	Figure 10	2.5	-	-	MHz
Minimum Separation INPUT A to INPUT B Time Interval Function	Figure 1	250	-	-	ns
Maximum Oscillator Frequency and External Oscillator Frequency, fosc		10	$\bullet$	-	MHz
Minimum External Oscillator Frequency, fosc		-	-	100	kHz
Oscillator Transconductance, $\mathrm{g}_{\mathrm{M}}$	$\mathrm{V}_{\mathrm{DD}}=4.75 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$	2000	-	-	$\mu \mathrm{S}$
Multiplex Frequency, $\mathrm{f}_{\text {MUX }}$	$\mathrm{f}_{\text {OSC }}=10 \mathrm{MHz}$	-	500	-	Hz
Time Between Measurements	$\mathrm{f}_{\mathrm{OSC}}=10 \mathrm{MHz}$	-	200	-	ms
Input Voltages: Pins 2, 13, 25, 27, 28 Input Low Voltage, $\mathrm{V}_{\text {INL }}$		-	-	1.0	V
Input High Voltage, $\mathrm{V}_{\mathbf{I N H}}$		3.5	-	-	V
Input Resistance to $\mathrm{V}_{\mathrm{DD}}$ Pins 13, 24, $\mathrm{R}_{\mathrm{IN}}$	$\mathrm{V}_{1 N}=\mathrm{V}_{\mathrm{DD}}-1.0 \mathrm{~V}$	100	400	-	$\mathrm{k} \Omega$
Input Leakage Pin $27,28,2, \mathrm{I}_{\text {ILK }}$		-	-	20	$\mu \mathrm{A}$
Input Range of Change, $\mathrm{dV}_{1 \mathrm{IN}} / \mathrm{dt}$	Supplies Well Bypassed	-	15	-	$\mathrm{mV} / \mathrm{\mu s}$
ICM7216A					
Digit Driver: Pins 15, 16, 17, 19, 20, 21, 22, 23 High Output Current, $\mathrm{I}_{\mathrm{OH}}$	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\mathrm{DD}}-2.0 \mathrm{~V}$	-140	-180	-	mA
Low Output Current, IOL	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {SS }}+1.0 \mathrm{~V}$	-	0.3	-	mA
Segment Driver: Pins 4, 5, 6, 7, 9,10, 11, 12   Low Output Current, IoL	$V_{\text {OUT }}=V_{\text {SS }}+1.5 \mathrm{~V}$	20	35	-	mA
High Output Current, $\mathrm{IOH}^{\text {H }}$	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\mathrm{DD}}-2.5 \mathrm{~V}$		-100	-	$\mu \mathrm{A}$
Multiplex Inputs: Pins 1,3,14 Input Low Voltage, $\mathrm{V}_{\text {INL }}$		-	-	0.8	V
Input High Voltage, $\mathrm{V}_{\text {INH }}$		2.0	-	-	V
Input Resistance to $\mathrm{V}_{\text {SS }}, \mathrm{R}_{\text {IN }}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}+1.0 \mathrm{~V}$	50	100	-	k $\Omega$

Electrical Specifications $V_{D D}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, Unless Otherwise Specified (Continued)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
ICM7216B					
Digit Driver: Pins 4, 5, 6, 7, 9, 10, 11, 12 Low Output Current, loL	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {SS }}+1.3 \mathrm{~V}$	50	75	-	mA
High Output Current, IOH	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {DD }}-2.5 \mathrm{~V}$	-	-100	-	$\mu \mathrm{A}$
Segment Driver: Pins 15, 16, 17, 19, 20, 21, 22, 23 High Output Current, $\mathrm{I}_{\mathrm{OH}}$	$V_{\text {OUT }}=V_{\text {DD }}-2.0 \mathrm{~V}$	-10	-	-	mA
Leakage Current, ISLK	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {DD }}-2.5 \mathrm{~V}$	-	-	10	$\mu \mathrm{A}$
Multiplex Inputs: Pins 1, 3, 14 Input Low Voltage, $\mathrm{V}_{\mathrm{INL}}$		-	-	$V_{D D}-2.0$	V
Input High Voltage, $\mathrm{V}_{\text {INH }}$		$\mathrm{V}_{\mathrm{DD}}-0.8$	-	-	V
Input Resistance to $\mathrm{V}_{\mathrm{DD}}, \mathrm{R}_{\text {IN }}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {DD }}-2.5 \mathrm{~V}$	100	360	-	$\mathrm{k} \Omega$
ICM7216D					
Operating Supply Current, $I_{\text {DD }}$	Display Off, Unused Inputs to $\mathrm{V}_{\text {SS }}$	-	2	5	mA
Supply Voltage Range ( $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\text {SS }}$ ) , $\mathrm{V}_{\text {SUPPLY }}$	INPUT A Frequency at $\mathrm{f}_{\text {MAX }}$	4.75	-	6.0	V
Maximum Frequency INPUT A, Pin 28, $\mathrm{f}_{\text {A(MAX) }}$	Figure 9	10	-	-	MHz
Maximum Oscillator Frequency and External Oscillator Frequency, fosc		10	$\bullet$	-	MHz
Minimum External Oscillator Frequency, fosc		-	$\bullet$	100	kHz
Oscillator Transconductance, $\mathrm{g}_{\mathrm{M}}$	$\mathrm{V}_{\mathrm{DD}}=4.75 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$	2000	-	-	$\mu \mathrm{S}$
Multiplex Frequency, $\mathrm{f}_{\text {MUX }}$	$\mathrm{f}_{\text {Osc }}=10 \mathrm{MHz}$	-	500	-	Hz
Time Between Measurements	$\mathrm{f}_{\text {osc }}=10 \mathrm{MHz}$	$\bullet$	200	$\bullet$	ms
Input Voltages: Pins 12, 27, 28 Input Low Voltage, $\mathrm{V}_{\text {INL }}$		-	-	1.0	V
Input High Voltage, $\mathrm{V}_{\text {INH }}$		3.5	$\bullet$	-	V
Input Resistance to $\mathrm{V}_{\mathrm{DD}}$ Pins 12, 24, $\mathrm{R}_{\text {IN }}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {DD }}-1.0 \mathrm{~V}$	100	400	-	$\mathrm{k} \Omega$
Input Leakage, Pins 27, 28, ILK $^{\text {L }}$		-	-	20	$\mu \mathrm{A}$
Output Current, Pin 2, $\mathrm{l}_{\mathrm{OL}}$	$\mathrm{V}_{\mathrm{OL}}=+0.4 \mathrm{~V}$	0.36	-	$\bullet$	mA
Output Current, Pin 2, $\mathrm{I}_{\mathrm{OH}}$	$\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DD}}-0.8 \mathrm{~V}$	265	-	-	$\mu \mathrm{A}$
Input Rate of Change, $\mathrm{dV}_{1 \mathbb{N}} / \mathrm{dt}$	Supplies Well Bypassed	$\bullet$	15	-	$\mathrm{mV} / \mu \mathrm{s}$
Digit Driver: Pins 3, 4, 5, 6, 8, 9, 10, 11 Low Output Current, lol	$V_{\text {OUT }}=+1.3 \mathrm{~V}$	50	75	-	mA
High Output Current, $\mathrm{I}_{\mathrm{OH}}$	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {DD }}-2.5 \mathrm{~V}$	-	100	$\bullet$	$\mu \mathrm{A}$
Segment Driver: Pins 15, 16, 17, 19, 20, 21, 22, 23 High Output Current, $\mathrm{I}_{\mathrm{OH}}$	$V_{\text {OUT }}=V_{\text {DD }}-2.0 \mathrm{~V}$	10	15		mA
Leakage Current, ISLK	$V_{\text {OUT }}=V_{\text {DD }}-2.5 \mathrm{~V}$	-	-	10	$\mu \mathrm{A}$
Multiplex Inputs: Pins 1, 13, 14 Input Low Voltage, $\mathrm{V}_{\mathrm{INL}}$		-	-	$V_{D D}-2.0$	V
Input High Voltage, $\mathrm{V}_{\text {INH }}$		$\mathrm{V}_{\mathrm{DD}}-0.8$	$\bullet$	-	V
Input Resistance to $\mathrm{V}_{\mathrm{DD}}, \mathrm{R}_{\text {IN }}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {DD }}-1.0 \mathrm{~V}$	100	360	-	k $\Omega$

## NOTE:

1. The ICM7216 may be triggered into a destructive latchup mode if either input signals are applied before the power supply is applied or if input or outputs are forced to voltages exceeding $\mathrm{V}_{\mathrm{DD}}$ to $\mathrm{V}_{S S}$ by more than 0.3 V .

## Timing Diagram



NOTE:

1. If range is set to 1 event, first and last measured interval will coincide.

FIGURE 1. WAVEFORMS FOR TIME INTERVAL MEASUREMENT (OTHERS ARE SIMILAR, BUT WITHOUT PRIMING PHASE)

## Typical Performance Curves



FIGURE 2. $f_{A}$ (MAX), $f_{B}$ (MAX) AS A FUNCTION OF SUPPLY


FIGURE 3. ICM7216A TYPICAL I IIG vs $V_{D D}-V_{O U T}$

## ICM7216A, ICM7216B, ICM7216D

## Typical Performance Curves (Continued)



FIGURE 4. ICM7216B \& ICM7216D TYPICAL $I_{S E G}$ vs $V_{D D}-V_{O U T}$


FIGURE 6. ICM7216B \& ICM7216D TYPICAL I IIGIT Vs $V_{\text {OUT }}$


FIGURE 5. ICM7216A TYPICAL ISEG vS VOUT


FIGURE 7. ICM7216A TYPICAL I ISEG VS $V_{\text {OUT }}$


FIGURE 8. ICM7216B \& ICM7216D TYPICAL $I_{\text {DIGIT }}$ vs $V_{\text {OUT }}$

## Description

## INPUTS A and B

INPUTS A and B are digital inputs with a typical switching threshold of 2.0 V at $\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$. For optimum performance the peak-to-peak input signal should be at least $50 \%$ of the supply voltage and centered about the switching voltage. When these inputs are being driven from TTL logic, it is desirable to use a pullup resistor. The circuit counts high to low transitions at both inputs. (INPUT B is available only on ICM7216A and ICM7216B).

Note that the amplitude of the input should not exceed the device supply (above the $\mathrm{V}_{\mathrm{DD}}$ and below the $\mathrm{V}_{\mathrm{SS}}$ ) by more than 0.3 V , otherwise the device may be damaged.

## Multiplexed Inputs

The FUNCTION, RANGE, CONTROL and EXTERNAL DECIMAL POINT inputs are time multiplexed to select the function desired. This is achieved by connecting the appropriate Digit driver output to the inputs. The function, range and control inputs must be stable during the last half of each digit output, (typically $125 \mu \mathrm{~s}$ ). The multiplexed inputs are active high for the common anode ICM7216A and active low for the common cathode ICM7216B and ICM7216D.

Noise on the multiplex inputs can cause improper operation. This is particularly true when the unit counter mode of operation is selected, since changes in voltage on the digit drivers can be capacitively coupled through the LED diodes to the multiplex inputs. For maximum noise immunity, a $10 \mathrm{k} \Omega$ resistor should be placed in series with the multiplexed inputs as shown in the application circuits.

Table 1 shows the functions selected by each digit for these inputs.

TABLE 1. MULTIPLEXED INPUT FUNCTIONS

	FUNCTION	DIGIT
FUNCTION INPUT (Pin 3, ICM7216A and B Only)	Frequency	D1
	Period	D8
	Frequency Ratio	D2
	Time Interval	D5
	Unit Counter	D4
	Oscillator Frequency	D3
RANGE INPUT, Pin 14	0.01s/1 Cycle	D1
	0.1s/10 Cycles	D2
	1s/100 Cycles	D3
	10s/1K Cycles	D4
CONTROL INPUT, Pin 1	Display Off	D4 and Hold
	Display Test	D8
	1 MHz Select	D2
	External Oscillator Enable	D1
	External Decimal Point Enable	D3
External DP INPUT (Pin 13, ICM7216D Only)	Decimal point is output for same digit that is connected to this input.	



FIGURE 9. WAVEFORM FOR GUARANTEED MINIMUM $f_{A}$ (MAX) FUNCTION = FREQUENCY, FREQUENCY RATIO, UNIT COUNTER


FIGURE 10. WAVEFORM FOR GUARANTEED MINIMUM $f_{B}$ (MAX) AND $f_{A}$ (MAX) FOR FUNCTION = PERIOD AND TIME INTERVAL

## Function Input

The six functions that can be selected are: Frequency, Period, Time Interval, Unit Counter, Frequency Ratio and Oscillator Frequency. This input is available on the ICM7216A and ICM7216B only.

The implementation of different functions is done by routing the different signals to two counters, called "Main Counter" and "Reference Counter". A simplified block diagram of the device for functions realization is shown in Figure 11. Table 2 shows which signals will be routed to each counter in different cases. The output of the Main Counter is the information which goes to the display. The Reference Counter divides its input by 1, 10, 100 and 1000. One of these outputs will be selected through the range selector and drive the enable input of the Main Counter. This means that the Reference Counter, along with its' associated blocks, directs the Main Counter to begin counting and determines the length of the counting period. Note that Figure 11 does not show the complete functional diagram (See the Functional Block Diagram). After the end of each counting period, the output of the Main Counter will be latched and displayed, then the counter will be reset and a new measurement cycle will begin. Any change in the FUNCTION INPUT will stop the present measurement without updating the display and then initiate a new measurement. This prevents an erroneous first reading after the FUNCTION INPUT is changed. In all cases, the 1-0 transitions are counted or timed.


FIGURE 11. SIMPLIFIED BLOCK DIAGRAM OF FUNCTIONS IMPLEMENTATION

TABLE 2. 7216A/B INPUT ROUTING

FUNCTION	MAIN COUNTER	REFERENCE COUNTER
Frequency ( $f_{A}$ )	Input A	100 Hz (Oscillator $+10^{5}$ or $10^{4}$ )
Period ( $\mathrm{t}_{\mathrm{A}}$ )	Oscillator	Input A
Ratio ( $\mathrm{f}_{\mathrm{A}} / \mathrm{f}_{\mathrm{B}}$ )	Input A	Input B
Time Interval $(A \rightarrow B)$	Oscillator	Input A Input B
Unit Counter (Count A)	Input A	Not Applicable
Osc. Freq. (fosc)	Oscillator	100 Hz (Oscillator $+10^{5}$ or $10^{4}$ )

Frequency - In this mode input A is counted by the Main Counter for a precise period of time. This time is determined by the time base oscillator and the selected range. For the 10 MHz (or 1 MHz ) time base, the resolutions are 100 Hz , $10 \mathrm{~Hz}, 1 \mathrm{~Hz}$ and 0.1 Hz . The decimal point on the display is set for kHz reading.

Period - In this mode, the timebase oscillator is counted by the Main Counter for the duration of $1,10,100$ or 1000 (range selected) periods of the signal at input A. A 10 MHz timebase gives resolutions of $0.1 \mu \mathrm{~s}$ to $0.0001 \mu \mathrm{~s}$ for 1000 periods averaging. Note that the maximum input frequency for period measurement is 2.5 MHz .

Frequency Ratio - In this mode, the input $A$ is counted by the Main Counter for the duration of $1,10,100$ or 1000 (range selected) periods of the signal at input $B$. The frequency at input A should be higher than input B for meaningful result. The result in this case is unitless and its resolution can go up to 3 digits after decimal point.

Time Interval - In this mode, the timebase oscillator is counted by the Main Counter for the duration of a 1-0 transition of input A until a 1-0 transition of input B. This means input $A$ starts the counting and input B stops it. If other ranges, except $0.01 \mathrm{~s} / 1$ cycle are selected the sequence of input $A$ and $B$ transitions must happen 10,100 or 1000 times until the display becomes updated; note this when measur-
ing long time intervals to give enough time for measurement completion. The resolution in this mode is the same as for period measurement. See the Time Interval Measurement section also.

Unit Counter - In this mode, the Main Counter is always enabled. The input $A$ is counted by the Main Counter and displayed continuously.

Oscillator Frequency - In this mode, the device makes a frequency measurement on its timebase. This is a self test mode for device functionality check. For 10 MHz timebase the display will show 10000.0, 10000.00, 10000.000 and Overflow in different ranges.

## Range Input

The RANGE INPUT selects whether the measurement period is made for $1,10,100$ or 1000 counts of the Reference Counter. As it is shown in Table 1, this gives different counting windows for frequency measurement and various cycles for other modes of measurement.

In all functional modes except Unit Counter, any change in the RANGE INPUT will stop the present measurement without updating the display and then initiate a new measurement. This prevents an erroneous first reading after the RANGE INPUT is changed.

## Control Input

Unlike the other multiplexed inputs, to which only one of the digit outputs can be connected at a time, this input can be tied to different digit lines to select combination of controls. In this case, isolation diodes must be used in digit lines to avoid crosstalk between them (see Figure 17). The direction of diodes depends on the device version, common anode or common cathode. For maximum noise immunity at this input, in addition to the 10 K resistor which was mentioned before, a 39pF to 100pF capacitor should also be placed between this input and the $V_{D D}$ or $V_{S S}$ (See Figure 17).
Display Off - To disable the display drivers, it is necessary to tie the D4 line to the CONTROL INPUT and have the HOLD input at $\mathrm{V}_{\mathrm{DD}}$. While in Display Off mode, the segments and
digit drivers are all off, leaving the display lines floating, so the display can be shared with other devices. In this mode, the oscillator continues to run with a typical supply current of 1.5 mA with a 10 MHz crystal, but no measurements are made and multiplexed inputs are inactive. A new measurement cycle will be initiated when the HOLD input is switched to $\mathrm{V}_{\mathrm{SS}}$.

Display Test - Display will turn on with all the digits showing 8 s and all decimal points on. The display will be blanked if Display Off is selected at the same time.

1 MHz Select - The 1 MHz select mode allows use of a 1 MHz crystal with the same digit multiplex rate and time between measurement as with a 10 MHz crystal. This is done by dividing the oscillator frequency by $10^{4}$ rather than $10^{5}$. The decimal point is also shifted one digit to the right in period and time interval, since the least significant digit will be in $\mu \mathrm{s}$ increment rather than $0.1 \mu \mathrm{~s}$ increment.

External Oscillator Enable - In this mode, the signal at EXT OSC INPUT is used as a timebase instead of the on-board crystal oscillator (built around the OSC INPUT, OSC OUTPUT inputs). This input can be used for an external stable temperature compensated crystal oscillator or for special measurements with any external source. The on-board crystal oscillator continues to work when the external oscillator is selected. This is necessary to avoid hang-up problems, and has no effect on the chip's functional operation. If the onboard oscillator frequency is less than 1 MHz or only the external oscillator is used, THE OSC INPUT MUST BE CONNECTED TO THE EXT OSC INPUT providing the timebase has enough voltage swing for OSC INPUT (See Electrical Specifications). If the external timebase is TTL level a pullup resistor must be used for OSC INPUT. The other way is to put a $22 \mathrm{M} \Omega$ resistor between OSC INPUT and OSC OUTPUT and capacitively couple the EXT OSC INPUT to OSC INPUT. This will bias the OSC INPUT at its threshold and the drive voltage will need to be only $2 \mathrm{~V}_{\text {p-p. }}$. The external timebase frequency must be greater than 100 kHz or the chip will reset itself to enable the on-board oscillator.

External Decimal Point Enable - In this mode, the EX DP INPUT is enabled (ICM7216D only). A decimal point will be displayed for the digit that its output line is connected to this input (EX DP INPUT). Digit 8 should not be used since it will override the overflow output. Leading zero blanking is effective for the digits to the left of selected decimal point.

## Hold Input

Except in the unit counter mode, when the HOLD input is at $\mathrm{V}_{\mathrm{DD}}$, any measurement in progress (before STORE goes low) is stopped, the main counter is reset and the chip is
held ready to initiate a new measurement as soon as HOLD goes low. The latches which hold the main counter data are not updated, so the last complete measurement is displayed. In unit counter mode when HOLD input is at $V_{D D}$, the counter is not stopped or reset, but the display is frozen at that instantaneous value. When HOLD goes low the count continues from the new value in the new counter.

## RESET Input

The $\overline{\text { RESET }}$ input resets the main counter, stops any measurement in progress, and enables the main counter latches, resulting in an all zero output. A capacitor to ground will prevent any hang-ups on power-up.

## MEASUREMENT IN PROGRESS

This output is provided in ICM7216D. It stays low during measurements and goes high for intervals between measurements. It is provided for system interfacing and can drive a low power Schottky TTL or one ECL load if the ECL device is powered from the same supply as ICM7216D.

## Decimal Point Position

Table 3 shows the decimal point position for different modes of ICM7216 operation. Note that the digit 1 is the least significant digit. Table 3 is for 10 MHz timebase frequency.

## Overflow Indication

When overflow happens in any measurement it will be indicated on the decimal point of the digit 8 . A separate LED indicator can be used. Figure 12 shows how to connect this indicator.


FIGURE 12. SEGMENT IDENTIFICATION AND DISPLAY FONT
Overflow will be indicated on the decimal point output of digit 8. A separate LED overflow indicator can be connected as follows:

DEVICE	CATHODE	ANODE
ICM7216A	Decimal Point	D8
ICM7216B/D	D8	Decimal Point

TABLE 3. DECIMAL POINT POSITIONS

RANGE	FREQUENCY	PERIOD	FREQUENCY   RATIO	TIME   INTERVAL	UNIT   COUNTER	OSCILLATOR   FREQUUENCY
$0.01 \mathrm{~s} / 1$ Cycle	D2	D2	D1	D2	D1	D2
$0.1 \mathrm{~s} / 10$ Cycle	D3	D3	D2	D3	D1	D3
$1 \mathrm{~s} / 100$ Cycle	D4	D4	D3	D4	D1	D4
$10 \mathrm{~s} / 1 \mathrm{KCycle}$	D5	D5	D4	D5	D1	D5

## Time Interval Measurement

When in the time interval mode and measuring a single event, the ICM7216A and ICM7216B must first be "primed" prior to measuring the event of interest. This is done by first generating a negative going edge on Channel $\mathbf{A}$ followed by a negative going edge on Channel B to start the "measurement interval". The inputs are then primed ready for the measurement. Positive going edges on $A$ and $B$, before or after the priming, will be needed to restore the original condition.

Priming can be easily accomplished using the circuit in Figure 13.


## FIGURE 13. PRIMING CIRCUIT, SIGNALS A \& B BOTH HIGH OR LOW

Following the priming procedure (when in single event or 1 cycle range) the device is ready to measure one (only) event.

When timing repetitive signals, it is not necessary to "prime" the ICM7216A and ICM7216B as the first alternating signal states automatically prime the device. See Figure 1.

During any time interval measurement cycle, the ICM7216A and ICM7216B require 200 ms following $B$ going low to update all internal logic. A new measurement cycle will not take place until completion of this internal update time.

## Oscillator Considerations

The oscillator is a high gain CMOS inverter. An external resistor of $10 \mathrm{M} \Omega$ to $22 \mathrm{M} \Omega$ should be connected between the OSCillator INPUT and OUTPUT to provide biasing. The oscillator is designed to work with a parallel resonant 10 MHz quartz crystal with a static capacitance of 22pF and a series resistance of less than $35 \Omega$

For a specific crystal and load capacitance, the required $\mathrm{g}_{\mathrm{M}}$ can be calculated as follows:
$g_{M}=\omega^{2} C_{I N} C_{O U T} R_{S}\left(1+\frac{C_{O}}{C_{L}}\right)^{2}$
where $C_{L}=\left(\frac{C_{I N} C_{\text {OUT }}}{C_{I N}+C_{\text {OUT }}}\right)$
$\mathrm{C}_{\mathrm{O}}=$ Crystal Static Capacitance
$R_{S}=$ Crystal Series Resistance
$\mathrm{C}_{\mathrm{IN}}=$ Input Capacitance
$\mathrm{C}_{\text {OUT }}=$ Output Capacitance
$\omega=2 \pi f$
The required $g_{M}$ should not exceed $50 \%$ of the $g_{M}$ specified for the ICM7216 to insure reliable startup. The OSCillator INPUT and OUTPUT pins each contribute about 5 pF to $\mathrm{C}_{\text {IN }}$ and $\mathrm{C}_{\text {OUT }}$. For maximum stability of frequency, $\mathrm{C}_{\mathbb{I N}}$ and Cout should be approximately twice the specified crystal static capacitance.

In cases where non decade prescalers are used it may be desirable to use a crystal which is neither 10 MHz or 1 MHz . In that case both the multiplex rate and time between measurements will be different. The multiplex rate is
$f_{M U X}=\frac{f^{\prime} \text { OSC }}{2 \times 10^{4}}$ for 10 MHz mode and $f_{M U X}=\frac{f^{\text {OSC }}}{2 \times 10^{3}}$ for the 1 MHz mode. The time between measurements is $\frac{2 \times 10^{6}}{\text { foSC }}$ in the 10 MHz mode and $\frac{2 \times 10^{5}}{\text { foSC }}$ in the 1 MHz mode.

The crystal and oscillator components should be located as close to the chip as practical to minimize pickup from other signals. Coupling from the EXTERNAL OSCILLATOR INPUT to the OSCILLATOR OUTPUT or INPUT can cause undesirable shifts in oscillator frequency.

## Display Considerations

The display is multiplexed at a 500 Hz rate with a digit time of $244 \mu \mathrm{~s}$. An interdigit blanking time of $6 \mu \mathrm{~s}$ is used to prevent display ghosting (faint display of data from previous digit superimposed on the next digit). Leading zero blanking is provided, which blanks the left hand zeroes after decimal point or any non zero digits. Digits to the right of the decimal point are always displayed. The leading zero blanking will be disabled when the Main Counter overflows.

The ICM7216A is designed to drive common anode LED displays at peak current of 25 mA /segment, using displays with $\mathrm{V}_{\mathrm{F}}=1.8 \mathrm{~V}$ at 25 mA . The average DC current will be over 3 mA under these conditions. The ICM7216B and ICM7216D are designed to drive common cathode displays at peak current of 15 mA segment using displays with $\mathrm{V}_{\mathrm{F}}=1.8 \mathrm{~V}$ at 15 mA . Resistors can be added in series with the segment drivers to limit the display current in very efficient displays, if required. The Typical Performance Curves show the digit and segment currents as a function of output voltage.

To get additional brightness out of the displays, $\mathrm{V}_{\mathrm{DD}}$ may be increased up to 6.0V. However, care should be taken to see that maximum power and current ratings are not exceeded.
The segment and digit outputs in ICM7216's are not directly compatible with either TTL or CMOS logic when driving LEDs. Therefore, level shifting with discrete transistors may be required to use these outputs as logic signals.

## Accuracy

In a Universal Counter crystal drift and quantization effects cause errors. In frequency, period and time interval modes, a signal derived from the oscillator is used in either the Reference Counter or Main Counter. Therefore, in these modes an error in the oscillator frequency will cause an identical error in the measurement. For instance, an oscillator temperature coefficient of $20 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$ will cause a measurement error of $20 \mathrm{PPMM}^{1} \mathrm{C}$.


FIGURE 14. MAXIMUM ACCURACY OF FREQUENCY AND PERIOD MEASUREMENTS DUE TO LIMITATIONS OF QUANTIZATION ERRORS

In addition, there is a quantization error inherent in any digital measurement of $\pm 1$ count. Clearly this error is reduced by displaying more digits. In the frequency mode the maximum accuracy is obtained with high frequency inputs and in period mode maximum accuracy is obtained with low frequency inputs (as can be seen in Figure 14). In time Interval measurements there can be an error of 1 count per interval. As a result there is the same inherent accuracy in all ranges as shown in Figure 15. In frequency ratio measurement can be more accurately obtained by averaging over more cycles of INPUT B as shown in Figure 16.


FIGURE 15. MAXIMUM ACCURACY OF TIME INTERVAL MEASUREMENT DUE TO LIMITATIONS OF QUANTIZATION ERRORS

FIGURE 16. MAXIMUM ACCURACY FOR FREQUENCY RATIO MEASUREMENT DUE TO LIMITATION OF QUANTIZATION ERRORS

## Test Circuit



FIGURE 17. TEST CIRCUIT (ICM7216A SHOWN, OTHERS SIMILAR)

## Typical Applications

The ICM7216 has been designed for use in a wide range of Universal and Frequency counters. In many cases, prescalers will be required to reduce the input frequencies to under 10 MHz . Because INPUT A and INPUT B are digital inputs, additional circuitry is often required for input buffering, amplification, hysteresis, and level shitting to obtain a good digital signal.

The ICM7216A or ICM7216B can be used as a minimum component complete Universal Counter as shown in Figure 18. This circuit can use input frequencies up to 10 MHz at INPUT A and 2 MHz at INPUT B. If the signal at INPUT A has a very low duty cycle it may be necessary to use a 74LS121 monostable multivibrator or similar circuit to stretch the input pulse width to be able to guarantee that it is at least 50ns in duration.

To measure frequencies up to 40 MHz the circuit of Figure 19 can be used. To obtain the correct measured value, it is nec-
essary to divide the oscillator frequency by four as well as the input frequency. In doing this the time between measurements is also lengthened to 800 ms and the display multiplex rate is decreased to 125 Hz .

If the input frequency is prescaled by ten, then the oscillator can remain at 10 MHz or 1 MHz , but the decimal point must be moved one digit to the right. Figure 20 shows a frequency counter with $\mathrm{a}+10$ prescaler and an ICM7216A. Since there is no external decimal point control with the ICM7216A and ICM7216B, the decimal point may be controlled externally with additional drivers as shown in Figure 20. Alternatively, if separate anodes are available for the decimal points, they can be wired up to the adjacent digit anodes. Note that there can be one zero to the left of the decimal point since the internal leading zero blanking cannot be changed. In Figure 21 additional logic has been added to count the input directly in period mode for maximum accuracy. In Figures 20 and 21 , INPUT A comes from $Q_{C}$ of the prescaler rather than $Q_{D}$ to obtain an input duty cycle of $40 \%$.


FIGURE 18. 10 MHz UNIVERSAL COUNTER


FIGURE 19. 40MHz FREQUENCY COUNTER

ICM7216A, ICM7216B, ICM7216D


FIGURE 20. 100 MHz MULTIFUNCTION COUNTER


FIGURE 21. 100MHz FREQUENCY, 2MHz PERIOD COUNTER

ICM7217

## 4-Digit LED Display Programmable Up/Down Counter

## December 1993

## Features

- Four Decade, Presettable Up-Down Counter with Parallel Zero Detect
- Settable Register with Contents Continuously Compared to Counter
- Directly Drives Multiplexed 7 Segment Common Anode or Common Cathode LED Displays
- On-Board Multiplex Scan Oscillator
- Schmitt Trigger On Count Input
- TTL Compatible BCD VO Port, Carryl Borrow, Equal, and Zero Outputs
- Display Blank Control for Lower Power Operation; Quiescent Power Dissipation $<5 \mathrm{~mW}$
- All Terminals Fully Protected Against Static Discharge
- Single 5V Supply Operation


## Description

The ICM7217 is a four digit, presettable up/down counter with an onboard presettable register continuously compared to the counter. The ICM7217 is intended for use in hard-wired applications where thumbwheel switches are used for loading data, and simple SPDT switches are used for chip control.

This circuit provides multiplexed 7 segment LED display outputs, with common anode or common cathode configurations available. Digit and segment drivers are provided to directly drive displays of up to 0.8 inch character height (common anode) at a $25 \%$ duty cycle. The frequency of the onboard multiplex oscillator may be controlled with a single capacitor, or the oscillator may be allowed to free run. Leading zeros can be blanked. The data appearing at the 7 segment and BCD outputs is latched; the content of the counter is transferred into the latches under external control by means of the Store pin.

The ICM7217 (common anode) and ICM7217A (common cathode) versions are decade counters, providing a maximum count of 9999, while the ICM7217B (common anode) and ICM7217C (common cathode) are intended for timing purposes, providing a maximum count of 5959.

This circuit provides 3 main outputs; a CARRY/BORROW output, which allows for direct cascading of counters, a $\overline{\text { ZERO }}$ output, which indicates when the count is zero, and an EQUAL output, which indicates when the count is equal to the value contained in the register. Data is multiplexed to and from the device by means of a tri-state BCD I/O port. The CARRY/ BORROW, EQUAL, $\overline{\text { ZERO }}$ outputs, and the BCD port will each drive one standard TTL load.

To permit operation in noisy environments and to prevent multiple triggering with slowly changing inputs, the count input is provided with a Schmitt trigger.
Input frequency is guaranteed to 2 MHz , although the device will typically run with $f_{I N}$ as high as 5 MHz . Counting and comparing (EQUAL output) will typically run 750 kHz maximum.

## Ordering Information

PART   NUMBER	TEMPERATURE   RANGE	PACKAGE	DISPLAY DRIVER   TYPE	COUNT OPTION/   MAX COUNT
ICM7217AIPI	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 Lead Plastic DIP	Common Cathode	Decade/9999
ICM7217CIPI	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 Lead Plastic DIP	Common Cathode	Timing/5959
ICM7217IJI	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 Lead Ceramic DIP	Common Anode	Decade/9999
ICM7217BLI	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	28 Lead Ceramic DIP	Common Anode	Timing/5959

Pinouts

ICM7217 (PDIP)COMMON ANODE TOP VIEW			ICM7217 (CDIP) COMMON CATHODE TOP VIEW		
		28 $D 1$   27 $D 2$   26 $D 3$   25 $D 4$   24 $V_{D D}$   23 $D I S P L A Y ~ C O N T$	COUNT INPUT $\square$   STORE 9   UP/DOWN 10   LOAD REGISTEROFF 11 LOAD COUNTER/VO OFF 12 $\square$ $\square$	ICM7217A ICM7217C	28 SEG d   SEG $b$   SEG $f$   SEGC   $V_{D D}$   SEGa   SEGe   SEG $g$   DISPLAY CONT.   $V_{s s}$   D1   D2   16. D3   15 D4

Functional Block Diagram


Absolute Maximum Ratings
Supply Voltage ( $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}$ ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 V
Input Voltage (any terminal) .......... ( $\mathrm{V}_{\mathrm{SS}}-0.3$ ) V to $\left(\mathrm{V}_{\mathrm{DD}}+0.3\right) \mathrm{V}$ (Note 2)
Operating Temperature Range . . . . . . . . . . . . . . . . . . $-25^{\circ} \mathrm{O}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range . . . . . . . . . . . . . . . . . . . $65^{\circ} \mathrm{O}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10s) . . . . . . . . . . . . . . . . . . . $+300^{\circ} \mathrm{C}$

## Thermal Information

Thermal Resistance	$\theta_{\text {JA }}$	$\theta_{\text {Jc }}$
Ceramic DIP Package	$55^{\circ} \mathrm{C} / \mathrm{W}$	$20^{\circ} \mathrm{C} / \mathrm{W}$
Plastic DIP Package	$55^{\circ} \mathrm{C} / \mathrm{W}$	-
Junction Temperature		
Plastic Package.		$+150^{\circ} \mathrm{C}$
Ceramic Package		$+175^{\circ} \mathrm{C}$

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Electrical Specifications $\quad V_{D D}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, T_{A}=+25^{\circ} \mathrm{C}$, Display Diode Drop 1.7V, Unless Otherwise Specified

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Supply Current (Lowest Power Mode), IDD (7217)	Display Off, LC, DC, UP/DN,   ST, RS, BCD I/O Floating or at $V_{D D}$ (Note 3)	-	350	500	$\mu \mathrm{A}$
Supply Current, OPERATING, Iop	Common Anode, Display On, all "8's"	140	200	-	mA
Supply Current, OPERATING, IOP	Common Cathode, Display On, all "8's"	50	100	-	mA
V SUPPLY, VDD		4.5	5	5.5	$\checkmark$
Digit Driver Output Current, I DIG	Common Anode, $\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\mathrm{DD}}-2.0 \mathrm{~V}$	140	200	-	mA peak
SEGment Driver Output Current, ISEG	Common Anode, $\mathrm{V}_{\text {OUT }}=+1.5 \mathrm{~V}$	20	35	-	mA peak
Digit Driver, Output Current, IDIG	Common Cathode, $\mathrm{V}_{\text {OUT }}=+1.0 \mathrm{~V}$	-50	-75	-	mA peak
SEGment Driver Output Current, ISEG	Common Cathode $\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\mathrm{DD}}-2 \mathrm{~V}$	-9	-12.5	-	mA peak
$\overline{\mathrm{ST}, \mathrm{RS}, ~ U P / \overline{D N}}$ Input Pullup Current, IP	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}-2 \mathrm{~V}$ (Note 3)	5	25	-	$\mu \mathrm{A}$
3 Level Input Impendance, ZIN		40	-	350	k $\Omega$
BCD I/O Input, High Voltage VBIH	ICM7217 Common Anode (Note 4)	1.5	-	-	V
	ICM7217 Common Cathode (Note 4)	4.40	-	-	V
BCD I/O Input, Low Voltage VBIL	ICM7217 Common Anode (Note 4)	-	-	0.60	V
	ICM7217 Common Cathode (Note 4)	-	-	3.2 V	V
BCD I/O Input, Pullup Current IBPU	ICM7217 Common Cathode $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}-2 \mathrm{~V}$ (Note 3)	5	25	-	$\mu \mathrm{A}$
BCD I/O Input Pulldown Current, IBPD	ICM7217 Common Anode $\mathrm{V}_{\text {IN }}=+2 \mathrm{~V}$ (Note 3)	5	25	-	$\mu \mathrm{A}$
BCD I/O, $\overline{\text { ZERO, }} \overline{\text { EQUAL }}$ Outputs Output High Voltage, VOH	$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$	3.5	-	$\bullet$	V
BCD I/O, CARRY/BORROW ZERO, EQUAL Outputs Output Low Voltage, VOL	$\mathrm{l}_{\mathrm{OL}}=1.6 \mathrm{~mA}$	-	-	0.4	V
Count Input Frequency, $\mathrm{f}_{\mathrm{IN}}$	$-20^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+70^{\circ} \mathrm{C}$	-	5	$\bullet$	MHz
	Guaranteed	0	-	2	MHz
Count Input Threshold, VTH	(Note 5)	-	2	-	V
Count Input Hysteresis, VHYS	(Note 5)	-	0.5	-	V
Count Input LO, VCIL		-	-	0.40	V
Count Input HI, VCIH		3.5	-	-	V
Display Scan Oscillator Frequency, FDS	Free-running (SCAN Terminal Open Circuit)	-	2.5	10	kHz

Switching Specifications $V_{D D}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

PARAMETER	MIN	TYP	MAX	UNIT
UP/DOWN Setup Time, tucs	300	-	-	ns
UP/DOWN Hold Time, tuch	1500	750	-	ns
COUNT Pulse Width High, $\mathrm{t}_{\text {cwh }}$	250	100	-	ns
COUNT Pulse Width Low, $\mathrm{t}_{\text {cwi }}$	250	100	-	ns
COUNT to CARRY/BORROW Delay, $\mathrm{t}_{\text {cb }}$	-	750	-	ns
CARRY/BORROW Pulse Width $\mathrm{t}_{\text {Bw }}$	-	100	-	ns
COUNT to EQUAL Delay, $\mathrm{t}_{\text {CE }}$	-	500	-	ns
COUNT to $\overline{\text { ZERO }}$ Delay, $\mathrm{t}_{\text {cz }}$	-	300	-	ns
RESET Pulse Width, trst	1000	500	-	ns

## NOTES:

1. Due to the SCR structure inherent in the CMOS process used to fabricate these devices, connecting any terminal to a voltage greater than $V_{D D}$ or less than $V_{S S}$ may cause destructive device latchup. For this reason it is recommended that the power supply to the device be established before any inputs are applied and that in multiple systems the supply to the ICM7217 be turned on first.
2. In the ICM7217 the UP/ $\overline{D O W N}, \overline{S T O R E}, \overline{R E S E T}$ and the BCD I/O as inputs have pullup or pulldown devices which consume power when connected to the opposite supply. Under these conditions, with the display off, the device will consume typically $750 \mu \mathrm{~A}$.
3. These voltages are adjusted to allow the use of thumbwheel switches for the ICM7217. Note that a high level is taken as an input logic zero for ICM7217 common-cathode versions.
4. Parameters not tested (Guaranteed by Design).

## Timing Waveforms



FIGURE 1. MULTIPLEX TIMING

## Timing Waveforms



FIGURE 2. COUNT AND OUTPUTS TIMING


## Typical Performance Curves



FIGURE 4. TYPICAL IDIG vs $\mathbf{V}_{+}$


FIGURE 6. TYPICAL ISEG vs $V_{\text {OUT }}$


FIGURE 8. TYPICAL IDIGIT vs Vout


FIGURE 5. TYPICAL ISEG vs $V_{\text {OUt }}$


FIGURE 7. TYPICAL IDIGIT vs $V_{\text {OUT }}$


FIGURE 9. TYPICAL ISEG vs $\mathbf{V}_{\mathrm{DD}}-\mathbf{V}_{\mathrm{OUT}}$

## Detailed Description

## Control Outputs

The CARRY/BORROW output is a positive going pulse occurring typically 500 ns after the positive going edge of the COUNT INPUT. It occurs when the counter is clocked from 9999 to 0000 when counting up and from 0000 to 9999 when counting down. This output allows direct cascading of counters. The CARRY/BORROW output is not valid during load counter and reset operation. When the count is 6000 or higher, a reset generates a CARRY/BORROW pulse.
The EQUAL output assumes a negative level when the contents of the counter and register are equal.
The $\overline{\text { ZERO }}$ output assumes a negative level when the content of the counter is 0000.

The CARRY/BORROW, $\overline{E Q U A L}$ and $\overline{\text { ZERO }}$ outputs will drive a single TTL load over the full range of supply voltage and ambient temperature; for a logic zero, these outputs will sink 1.6 mA at 0.4 V and for a logic one, the outputs will source $>60 \mu \mathrm{~A}$. A $10 \mathrm{k} \Omega$ pull-up resistor to $\mathrm{V}_{\mathrm{DD}}$ on the EQUAL or $\overline{\text { ZERO outputs is recommended for highest speed operation, }}$ and on the CARRY/BORROW output when it is being used for cascading. Figure 2 shows control outputs timing diagram.



FIGURE 10. BRIGHTNESS CONTROL CIRCUITS

TABLE 1. ICM7217 MULTIPLEXED RATE CONTROL

SCAN   CAPACITOR	NOMINAL   OSCILLATOR   FREQUENCY	DIGIT   REPETITION   RATE	SCAN   CYCLE   TIME   (4 DIGITS)
None	2.5 kHz	625 Hz	1.6 ms
20 pF	1.25 kHz	300 Hz	3.2 ms
90 pF	600 Hz	150 Hz	8 ms

The internal oscillator output has a duty cycle of approximately 25:1, providing a short pulse occurring at the oscillator frequency. This pulse clocks the four-state counter which provides the four multiplex phases. The short pulse width is used to delay the digit driver outputs, thereby providing interdigit blanking which prevents ghosting. The digits are scanned from MSD (D4) to LSD (D1). See Figure 1 for the display digit multiplex timing.
During load counter and load register operations, the multiplex oscillator is disconnected from the SCAN input and is allowed to free-run. In all other conditions, the oscillator may be directly overdriven to about 20 kHz , however the external oscillator signal should have the same duty cycle as the internal signal, since the digits are blanked during the time the external signal is at a positive level (see Figure 1). To insure proper leading zero blanking, the interdigit blanking time should not be less than about $2 \mu \mathrm{~s}$. Overdriving the oscillator at less than 200 Hz may cause display flickering.
The display brightness may be altered by varying the duty cycle. Figure 10 shows several variable-duty-cycle oscillators suitable for brightness control at the ICM7217 SCAN input. The inverters should be CMOS CD4000 series and the diodes may be any inexpensive device such as IN914.

## Counting Control, $\overline{\text { STORE, }}$ RESET

As shown in Figure 2, the counter is incremented by the rising edge of the COUNT INPUT signal when UP/DOWN is high. It is decremented when UP/DOWN is low. A Schmitt trigger on the COUNT INPUT provides hysteresis to prevent double triggering on slow rising edges and permits operation in noisy environments. The COUNT INPUT is inhibited during reset and load counter operations.
The STORE pin controls the internal latches and consequently the signals appearing at the 7 -Segment and BCD outputs. Bringing the STORE pin low transfers the contents of the counter into the latches.

The counter is asynchronously reset to 0000 by bringing the RESET pin low. The circuit performs the reset operation by forcing the BCD input lines to zero, and "presetting" all four decades of counter in parallel. This affects register loading; if LOAD REGISTER is activated when the RESET input is low, the register will also be set to zero. The $\overline{\text { STORE, }} \overline{\operatorname{RESET}}$ and UP/DOWN pins are provided with pullup resistors of approximately $75 \mathrm{k} \Omega$.

## BCD VO Pins

The BCD I/O port provides a means of transferring data to and from the device. The ICM7217 versions can multiplex data into the counter or register via thumbwheel switches, depending on inputs to the LOAD COUNTER or LOAD REG-

ISTER pins; (see below). When functioning as outputs, the BCD I/O pins will drive one standard TTL load. Common anode versions have internal pull down resistors and common cathode versions have internal pull up resistors on the four BCD I/O lines when used as inputs.

## LOADing the COUNTER and REGISTER

The BCD I/O pins, the LOAD COUNTER (LC), and LOAD REGISTER (LR) pins combine to provide presetting and compare functions. LC and LR are 3-level inputs, being selfbiased at approximately $1 / 2 \mathrm{~V}_{\mathrm{DD}}$ for normal operation. With both LC and LR open, the BCD I/O pins provide a multiplexed BCD output of the latch contents, scanned from MSD to LSD by the display multiplex.

When either the LOAD COUNTER (Pin 12) or LOAD REGISTER (Pin 11) is taken low, the drivers are turned off and the BCD pins become high-impedance inputs. When LC is connected to $V_{D D}$, the count input is inhibited and the levels at the BCD pins are multiplexed into the counter. When LR is connected to $\mathrm{V}_{\mathrm{DD}}$, the levels at the BCD pins are multiplexed into the register without disturbing the counter. When both are connected to $\mathrm{V}_{\mathrm{DD}}$, the count is inhibited and both register and counter will be loaded.

The LOAD COUNTER and LOAD REGISTER inputs are edge-triggered, and pulsing them high for 500 ns at room temperature will initiate a full sequence of data entry cycle operations (see Figure 3). When the circuit recognizes that either or both of the LC or LR pins input is high, the multiplex oscillator and counter are reset (to D4). The internal oscillator is then disconnected from the SCAN pin and the preset circuitry is enabled. The oscillator starts and runs with a frequency determined by its internal capacitor, (which may vary from chip to chip). When the chip finishes a full 4 digit multiplex cycle (loading each digit from D4 to D3 to D2 to D1 in turn), it again samples the LOAD REGISTER and LOAD COUNTER inputs. If either or both is still high, it repeats the load cycle, if both are floating or low, the oscillator is reconnected to the SCAN pin and the chip returns to normal operation. Total load time is digit "on" time multiplied by 4 . If the Digit outputs are used to strobe the BCD data into the BCD I/ O inputs, the input must be synchronized to the appropriate digit (Figure 3). Input data must be valid at the trailing edge of the digit output.
When LR is connected to GROUND, the oscillator is inhibited, the BCD I/O pins go to the high impedance state, and the segment and digit drivers are turned off. This allows the display to be used for other purposes and minimizes power consumption. In this display off condition, the circuit will continue to count, and the CARRY/BORROW, EQUAL, ZERO, UP/DOWN, $\overline{R E S E T}$ and STORE functions operate as normal. When LC is connected to ground, the BCD I/O pins are forced to the high impedance state without disturbing the counter or register. See "Control Input Definitions" (Table 2) for a list of the pins that function as tri-state self-biased inputs and their respective operations.
Note that the ICM7217 and ICM7217B have been designed to drive common anode displays. The BCD inputs are high true, as are the BCD outputs.


FIGURE 11A. CMOS INVERTER


INPUT B	INPUT A	OUTPUT
High	High	Low
High	Low	Disconnected
Low	High	Disconnected
Low	Low	Disconnected

FIGURE 11C. CMOS OPEN DRAIN


FIGURE 11B. CMOS INVERTER

INPUT B	INPUT A	OUTPUT
High	High	Disconnected
High	Low	Disconnected
Low	High	High
Low	Low	Low

FIGURE 11D. CMOS TRI-STATE BUFFER

FIGURE 11. DRIVING 3-LEVEL INPUTS OF ICM7217


FIGURE 12A. COMMON ANODE


FIGURE 12B. COMMON CATHODE

FIGURE 12. FORCING LEADING ZERO DISPLAY


FIGURE 13A. COMMON ANODE DISPLAY


FIGURE 13B. COMMON CATHODE DISPLAY

FIGURE 13. DRIVING HIGH CURRENT DISPLAYS


FIGỤE 14. LCD DISPLAY INTERFACE (WITH THUMBWHEEL SWITCHES

The ICM7217A and the ICM7217C are used to drive common cathode displays, and the BCD inputs are low true. BCD outputs are high true.

## Notes on Thumbwheel Switches and Multiplexing

As it was mentioned, the ICM7217 is basically designed to be used with thumbwheel switches for loading the data to the device. See Figure 14 and Figure 17.

The thumbwheel switches used with these circuits (both common anode and common cathode) are TRUE BCD coded; i.e. all switches open corresponds to 0000 . Since the thumbwheel switches are connected in parallel, diodes must be provided to prevent crosstalk between digits. In order to maintain reasonable noise margins, these diodes should be specified with low forward voltage drops (IN914). Similarly, if the BCD outputs are to be used, resistors should be inserted in the Digit lines to avoid loading problems.

## Output and Input Restrictions

LOAD COUNTER and LOAD REGISTER operations take 1.6 ms typical ( 5 ms maximum) after LC or LR are released. During this load period the EQUAL and ZERO outputs are
not valid (see Figure 3). Since the Counter and register are compared by XOR gates, loading the counter or register can cause erroneous glitches on the EQUAL and ZERO outputs when codes cross.

LOAD COUNTER or LOAD REGISTER, and RESET input can not be activated at the same time or within a short period of each other. Operation of each input must be delayed 1.6 ms typical ( 5 ms for guaranteed proper operation) relating to the preceding one.

Counter and register can be loaded together with the same value if LC and LR inputs become activated exactly at the same time.

Notice the setup and hold time of UP/DOWN input when it is changing during counting operation. Violation of UP/ DOWN hold time will result in incrementing or decrementing the counter by 1000,100 or 10 where the preceding digit is transitioning from 5 to 6 or 6 to 5 .
The $\overline{\text { RESET }}$ input may be susceptible to noise if its input rise time is greater than about $500 \mu$ s This will present no problems when this input is driven by active devices (i.e., TTL or CMOS logic) but in hardwired systems adding virtually any
capacitance to the $\overline{\operatorname{RESET}}$ input can cause trouble. A simple circuit which provides a reliable power-up reset and a fast rise time on the $\overline{\text { RESET input is shown on Figure } 11 .}$
When using the circuit as a programmable divider (+ by $n$ with equal outputs) a short time delay (about $1 \mu \mathrm{~s}$ ) is needed from the EQUAL output to the RESET input to establish a pulse of adequate duration. (See Figure 16).

When the circuit is configured to reload the counter or register with a new value from the BCD lines (upon reaching EQUAL), loading time will be digit "on" time multiplied by four. If this load time is longer than one period of the input count, a count can be lost. Since the circuit will retain data in the register, the register need only be updated when a new value is to be entered. $\overline{\mathrm{RESET}}$ will not clear the register.


FIGURE 15. POWER ON RESET


FIGURE 16. EQUAL TO $\overline{\operatorname{RESET}}$ DELAY

Test Circuit


## Applications

## 3-level Inputs

ICM7217 has three inputs with 3 -level logic states; High, Low and Disconnected. These inputs are: LOAD REGISTER/OFF, LOAD COUNTER///O OFF and DISPLAY CONT.
The circuits illustrated on Figure 11 can be used to drive these inputs in different applications.

## Fixed Decimal Point

In the common anode versions, a fixed decimal point may be activated by connecting the DP segment lead from the appropriate digit (with separate digit displays) through a $39 \Omega$ series resistor to Ground. With common cathode devices, the DP segment lead should be connected through a $75 \Omega$ series resistor to $\mathrm{V}_{\mathrm{DD}}$.

To force the device to display leading zeroes after a fixed decimal point, use a bipolar transistor and base resistor in a configuration like that shown in Figure 12 with the resistor connected to the digit output driving the DP for left hand DP displays, and to the next least significant digit output for right hand DP display.

## Driving Larger Displays

For displays requiring more current than the ICM7217 can provide, the circuits of Figure 13 can be used.

## LCD Display Interface

The low-power operation of the ICM7217 makes an LCD interface desirable. The Harris ICM7211 4 digit BCD to LCD display driver easily interfaces to the ICM7217 as shown in Figure 14. Total system power consumption is less than 5 mW . System timing margins can be improved by using capacitance to ground to slow down the BCD lines.

The $10 \mathrm{k} \Omega-20 \mathrm{k} \Omega$ resistors on the switch BCD lines serve to isolate the switches during BCD output.

## Unit Counter with BCD Output

The simplest application of the ICM7217 is a 4 digit unit counter (Figure 18). All that is required is an ICM7217, a power supply and a 4 digit display. Add a momentary switch for reset, an SPDT center-off switch to blank the display or view leading zeroes, and one more SPDT switch for up/ down control. Using an ICM7217A with a common-cathode calculator-type display results in the least expensive digital counter/display system available.

## Inexpensive Frequency Counter/ Tachometer

This circuit uses the low power ICM7555 (CMOS 555) to generate the gating, STORE and RESET signals as shown in Figure 19. To provide the gating signal, the timer is configured as an a stable multivibrator, using $R_{A}, R_{B}$ and $C$ to provide an output that is positive for approximately one second and negative for approximately $300 \mu \mathrm{~s}-500 \mu \mathrm{~s}$. The positive waveform time is given by $t_{W P}=0.693\left(R_{A}+R_{B}\right)$ C while the negative waveform is given by two $=0.693 R_{B} C$. The system is calibrated by using a $5 \mathrm{M} \Omega$ potentiometer for $R_{A}$ as a "coarse" control and a $1 \mathrm{k} \Omega$ potentiometer for $R_{B}$ as a "fine" control. CD40106Bs are used as a monostable multivibrator and reset time delay.

## Tape Recorder Position Indicator/controller

The circuit in Figure 20 shows an application which uses the up/down counting feature of the ICM7217 to keep track of tape position. This circuit is representative of the many applications of up/down counting in monitoring dimensional position.

In the tape recorder application, the LOAD REGISTER, $\overline{E Q U A L}$ and ZERO outputs are used to control the recorder. To make the recorder stop at a particular point on the tape, the register can be set with the stop point and the EQUAL output used to stop the recorder either on fast forward, play or rewind.

To make the recorder stop before the tape comes free of the reel on rewind, a leader should be used. Resetting the counter at the starting point of the tape, a few feet from the end of the leader, allows the ZERO output to be used to stop the recorder on rewind, leaving the leader on the reel.

The $1 \mathrm{M} \Omega$ resistor and $0.0047 \mu \mathrm{~F}$ capacitor on the COUNT INPUT provide a time constant of about 5 ms to debounce the reel switch. The Schmitt trigger on the COUNT INPUT of the ICM7217 squares up the signal before applying it to the counter. This technique may be used to debounce switchclosure inputs in other applications.

## Precision Elapsed Time/Countdown Timer

The circuit in Figure 21 uses an ICM7213 precision one minute/one second timebase generator using a 4.1943 MHz crystal for generating pulses counted by an ICM7217B. The thumbwheel switches allow a starting time to be entered into the counter for a preset-countdown type timer, and allow the register to be set for compare functions. For instance, to make a 24 -hour clock with BCD output the register can be preset with 2400 and the EQUAL output used to reset the counter. Note the 10k resistor connected between the LOAD COUNTER terminal and Ground. This resistor pulls the LOAD COUNTER input low when not loading, thereby inhibiting the BCD output drivers. This resistor should be eliminated and SW4 replaced with an SPDT center-off switch if the BCD outputs are to be used.

This technique may be used on any 3 -level input. The $100 \mathrm{k} \Omega$ pullup resistor on the count input is used to ensure proper logic voltage swing from the ICM7213. For a less expensive (and less accurate) timebase, an ICM7555 timer may be used in a configuration like that shown in Figure 19 to generate a 1 Hz reference.

## 8-Digit Up/down Counter

This circuit (Figure 22) shows how to cascade counters and retain correct leading zero blanking. The NAND gate detects whether a digit is active since one of the two segments a or $\bar{b}$ is active on any unblanked number. The flip flop is clocked by the least significant digit of the high order counter, and if this digit is not blanked, the Q output of the flip flop goes high and turns on the NPN transistor, thereby inhibiting leading zero blanking on the low order counter.
It is possible to use separate thumbwheel switches for presetting, but since the devices load data with the oscillator free-running, the multiplexing of the two devices is difficult to synchronize.

## Precision Frequency Counter/Tachometer

The circuit shown in Figure 23 is a simple implementation of a four digit frequency counter, using an ICM7207A to provide the one second gating window and the STORE and RESET signals. In this configuration, the display reads hertz directly. With Pin 11 of the ICM7027A connected to $\mathrm{V}_{\mathrm{DD}}$, the gating time will be 0.1 s ; this will display tens of hertz at the least significant digit. For shorter gating times, an ICM7207 may be used (with a 6.5536 MHz crystal), giving a 0.01 s gating with Pin 11 connected to $\mathrm{V}_{\mathrm{DD}}$, and a 0.1 s gating with Pin 11 open.
To implement a four digit tachometer, the ICM7207A with one second gating should be used. To get the display to read directly in RPM, the rotational frequency of the object to be measured must be multiplied by 60 . This can be done electronically using a phase-locked loop, or mechanically by
using a disc rotating with the object with the appropriate number of holes drilled around its edge to interrupt the light from an LED to a photo-dector. For faster updating, use 0.1 s gating, and multiply the rotational frequency by 600.

## Auto-tare System

This circuit uses the count-up and count-down functions of the ICM7217, controlled via the EQUAL and $\overline{\text { ZERO }}$ outputs, to count in SYNC with an ICL7109A and ICL7109D Converter as shown in Figure 24. By RESETing the ICM7217 on a "tare" value conversion, and STORE-ing the result of a true value conversion, an automatic fare subtraction occurs in the result.

The ICM7217 stays in step with the ICL7109 by counting up and down between 0 and 4095, for 8192 total counts, the same number as the ICL7109 cycle. See applications note No. A047 for more details.

TABLE 2. CONTROL INPUT DEFINITIONS ICM7217

INPUT	TERMINAL	VOLTAGE	FUNCTION
STORE	9	$V_{D D}$ (or floating) $V_{\text {ss }}$	Output Latches Not Updated Output Latches Updated
UP/ $\overline{\text { DOWN }}$	10	$\begin{aligned} & V_{\mathrm{OD}} \text { (or floating) } \\ & \mathrm{V}_{\mathrm{SS}} \end{aligned}$	Counter Counts Up Counter Counts Down
$\overline{\text { RESET }}$	14	$\begin{aligned} & V_{D D} \text { (or floating) } \\ & V_{S S} \end{aligned}$	Normal Operation Counter Reset
$\frac{\text { LOAD COUNTER/ }}{\text { I/O OFF }}$	12	Unconnected   $V_{D D}$   $V_{s s}$	Normal Operation Counter Loaded with BCD data BCD Port Forced to Hi Z Condition
$\begin{aligned} & \text { LOAD REGISTER } \\ & \hline \text { OFF } \end{aligned}$	11	Unconnected $V_{D D}$   $V_{S S}$	Normal Operation   Register Loaded with BCD Data Display Drivers Disabled; BCD Port Forced to Hi Z Condition, mpx Counter Reset to D4; mpx Oscillator Inhibited
DISPLAY CONTrol	23 Common Anode 20 Common Cathode	Unconnected $\begin{aligned} & V_{D D} \\ & V_{S S} \end{aligned}$	Normal Operation   Segment Drivers Disabled Leading Zero Blanking Inhibited



TO BCD INPUTS OF ICM7217, ICM7217B

FIGURE 17. THUMBWHEEL SWITCH/DIODE CONNECTIONS



FIGURE 19 A.


FIGURE $19 B$.
FIGURE 19. INEXPENSIVE FREQUENCY COUNTER


FIGURE 20. TAPE RECORDER POSITION INDICATOR


FIGURE 21. PRECISIONS TIMER


FIGURE 22. 8 DIGIT UP/DOWN COUNTER


FIGURE 23. PRECISION FREQUENCY COUNTER (MHZ MAXIMUM)


FIGURE 24. AUTO-TARE SYSTEM FOR A/D CONVERTER

## 4 $\mathbf{1}_{2}$ Digit LCD Display Counter

## Features

- High Frequency Counting - Guaranteed 15MHz, Typically 25 MHz at 5 V
- Low Power Operation - Typically Less Than $100 \mu \mathrm{~W}$ Quiescent
- STORE and RESET Inputs Permit Operation as Frequency or Period Counter
- True COUNT INHIBIT Disables First Counter Stage
- $\overline{\text { CARRY Output for Cascading Four-Digit Blocks }}$
- Schmitt-Trigger on the COUNT Input Allows Operation in Noisy Environments or with Slowly Changing Inputs
- Leading Zero Blanking INput and OUTput for Correct Leading Zero Blanking with Cascaded Devices
- Provides Complete Onboard Oscillator and Divider Chain to Generate Backplane Frequency, or Backplane Driver May be Disabled Allowing Segments to be Slaved to a Master Backplane Signal


## Pinout

(PDIP, CDIP)
TOP VIEW

$V_{D D} 1$	40	D1
E1 2	39	C1
G1 3	38	B1
F1 4	37	A1
BP 5	36	OSCILLATOR
A2 6	35	$V_{\text {SS }}$
B2 7	34	STORE
C2 8	33	RESET
D2 9	32	COUNT
E2 10	31	COUNT INHIBIT
G2 11	30	LZB OUT
F2 12	29	LZBIN
A3 13	28	CARRY
B3 14	27	$1 / 2$ - DIGIT
C3 15	26	F4
D3 16	25	G4
E3 17	24	E4
G3 18	23	D4
F3 19	22	C4
A4 20	21	B4

## Description

The ICM7224 device is a high-performance CMOS $4 \frac{1}{2}$ digit counter, including decoder, output latch, display driver, count inhibit, leading zero blanking, and reset circuitry.

The counter section provides direct static counting, guaranteed from DC to 15 MHz , using a $5 \mathrm{~V} \pm 10 \%$ supply over the operating temperature range. At normal ambient temperatures, the devices will typically count up to 25 MHz . The COUNT input is provided with a Schmitt trigger to allow operation in noisy environments and correct counting with slowly changing inputs. The COUNT INHIBIT, STORE and RESET inputs allow a direct interface with the ICM7207 and ICM7207A to implement a low cost, low power frequency counter with a minimum component count.

These devices also incorporate several features intended to simplify cascading four-digit blocks. The CARRY output allows the counter to be cascaded, while the Leading Zero Blanking INput and OUTput allows correct Leading Zero Blanking between four-decade blocks. The BackPlane driver of the LCD devices may be disabled, allowing the segments to be slaved to another backplane signal, necessary when using an eight or twelve digit, single backplane display.

These devices provide maximum count of 19999 . The display drivers are not of the multiplexed type and each display segment has its own individual drive pin, providing high quality display outputs.

## Ordering Information

PART NUMBER	TEMPERATURE RANGE	PACKAGE
ICM7224IPL	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	40 Lead Plastic DIP
ICM7224RIPL $\dagger$	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	40 Lead Plastic DIP

[^12]Functional Block Diagram


Absolute Maximum Ratings
Supply Voltage ( $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}$ )....................................... V
Input Voltage (Any Terminal) (Note 1) .... (VDD +0.3 V ) to ( $\mathrm{V}_{\text {SS }}-0.3 \mathrm{~V}$ )
Storage Temperature Range . . . . . . . . . . . . . . . . . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10s) . . . . . . . . . . . . . . . . . . . $+300^{\circ} \mathrm{C}$

## Thermal Information

Thermal Resistance
$\theta_{\mathrm{JA}}$
Plastic Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $50^{\circ} \mathrm{C}$ N
Operating Temperature Range . . . . . . . . . . . . . . . . . . $25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $+150^{\circ} \mathrm{C}$

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Electrical Specifications $V_{D D}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, T_{A}=+25^{\circ} \mathrm{C}$, Unless Otherwise Indicated

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Operating Current, $\mathrm{I}_{\mathrm{DD}}$	Test Circuit, Display Blank	-	10	50	$\mu \mathrm{A}$
Operating Supply Voltage Range ( $V_{D D}-V_{S S}$ ), $V_{\text {SUPPLY }}$		3	-	6	V
OSCILLATOR Input Current, losa	Pin 36	-	$\pm 2$	$\pm 10$	$\mu \mathrm{A}$
Segment Rise/Fall Time, $\mathrm{t}_{\mathrm{f}}, \mathrm{t}_{\mathrm{F}}$	$\mathrm{C}_{\text {LOAD }}=200 \mathrm{pF}$	-	0.5	-	$\mu \mathrm{s}$
BackPlane Rise/Fall Time, $\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{F}}$	$\mathrm{C}_{\text {LOAD }}=5000 \mathrm{pF}$	-	1.5	-	$\mu \mathrm{s}$
Oscillator Frequency, fosc	Pin 36 Floating	-	19	-	kHz
Backplane Frequency, $f_{\mathrm{BP}}$	Pin 36 Floating	-	150	-	Hz
Input Pullup Currents, $I_{p}$	Pins 29, 31,33, 34, $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {DD }}-3 \mathrm{~V}$	-	10	-	$\mu \mathrm{A}$
Input High Voltage, $\mathrm{V}_{\mathrm{IH}}$	Pins 29,31,33,34	3	-	-	V
Input Low Voltage, $\mathrm{V}_{\text {IL }}$	Pins 29,31,33,34	-	-	1	V
COUNT Input Threshold, $\mathrm{V}_{\text {CT }}$		-	2	-	V
$\overline{\text { COUNT Input Hysteresis, } \mathrm{V}_{\mathrm{CH}}}$		$\bullet$	0.5	-	V
Output High Current, $\mathrm{IOH}^{\text {O }}$	$\overline{\text { CARRY }}$ Pin 28   Leading Zero Blanking OUT Pin 30 $V_{\text {OUT }}=V_{D D}-3 V$	-350	-500	-	$\mu \mathrm{A}$
Output Low Current, IoL	$\overline{\text { CARRY }}$ Pin 28   Leading Zero Blanking OUT Pin 30 $V_{\text {OUT }}=+3 \mathrm{~V}$	350	500	-	$\mu \mathrm{A}$
Count Frequency, $\mathrm{f}_{\text {count }}$	$4.5 \mathrm{~V}<\mathrm{V}_{\mathrm{DD}}<6 \mathrm{~V}$	0	-	15	MHz
$\overline{\text { STORE, }} \overline{\text { RESET }}$ Minimum Pulse Width, $\mathrm{t}_{\mathrm{s}}, \mathrm{t}_{\mathrm{p}}$		3	-	-	$\mu s$

NOTE:

1. Due to the SCR structure inherent in the CMOS process, connecting any terminal to voltages greater than $V_{D D}$ or less than $V_{S S}$ may cause destructive device latchup. For this reason, it is recommended that no inputs from sources operating on a different power supply be applied to the device before its supply is established, and that in multiple supply systems, the supply to the ICM7224 be turned on first.

Timing Waveforms


FIGURE 1. ICM7224 DISPLAY WAVEFORMS

## Typical Performance Curves



FIGURE 2. OPERATING SUPPLY CURRENT AS A FUNCTION OF SUPPLY VOLTAGE


FIGURE 4. MAXIMUM COUNT FREQUENCY (TYPICAL) AS A FUNCTION OF SUPPLY VOLTAGE


FIGURE 3. BACKPLANE FREQUENCY AS A FUNCTION OF OSCILLATOR CAPACITOR COSC


FIGURE 5. SUPPLY CURRENT AS A FUNCTION OF COUNT FREQUENCY

TABLE 1. CONTROL INPUT DEFINITIONS

TERMINAL	INPUT	VOLTAGE	FUNCTION
29	Leading Zero Blanking INput	$V_{D D}$ or Floating	Leading Zero Blanking Enabled
		$\mathrm{V}_{\text {ss }}$	Leading Zeroes Displayed
31	COUNT INHIBIT	$V_{D D}$ or Floating	Counter Enabled
		$\mathrm{V}_{\text {ss }}$	Counter Disabled
33	$\overline{\text { RESET }}$	$V_{D D}$ or Floating	Inactive
		$\mathrm{V}_{\text {ss }}$	Counter Reset to 0000
34	$\overline{\text { STORE }}$	$V_{D D}$ or Floating	Output Latches not Updated
		$\mathrm{V}_{\text {SS }}$	Output Latches Updated

## Control Input Definitions

In Table 1, $V_{D D}$ and $V_{S S}$ are considered to be normal operating input logic levels. Actual input low and high levels are specified in the Operating Characteristics. For lowest power consumption, input signals should swing over the full supply.

## Detailed Description

The ICM7224 provides outputs suitable for driving conventional $4 \frac{1}{2}$ digit by seven segment LCD displays. It includes 29 individual segment drivers, a backplane driver, and a selfcontained oscillator and divider chain to generate the backplane frequency (See Functional Block Diagram).
The segment and backplane drivers each consist of a CMOS inverter, with the n-channel and p-channel devices ratioed to provide identical on resistances, and thus equal rise and fall times. This eliminates any D.C. component which could arise from differing rise and fall times, and ensures maximum display life.

The backplane output can be disabled by connecting the OSCILLATOR input (pin 36) to $\mathrm{V}_{\text {Ss }}$. This synchronizes the 29 segment outputs directly with a signal input at the BP terminal (pin 5) and allows cascading of several slave devices to the backplane output of one master device. The backplane may also be derived from an external source. This allows the use of displays with characters in multiples of four and a single backplane. A slave device will represent a load of approximately 200 pF (comparable to one additional segment). The limitation on the number of devices that can be slaved to one master device backplane driver is the additional load represented by the larger backplane of displays of more than four digits, and the effect of that load on the backplane rise and fall times. A good rule of thumb to observe in order to minimize power consumption, is to keep the rise and fall times less than about 5 microseconds. The backplane driver of one device should handle the back-plane to a display of 16 one-half-inch characters without the rise and fall times exceeding $5 \mu$ s (i.e., 3 slave devices and the display backplane driven by a fourth master device). It is recommended that if more than four devices are to be slaved together, that the backplane signal be derived externally and all the ICM7224 devices be slaved to it.

This external backplane signal should be capable of driving very large capacitive loads with short ( $1-2 \mu \mathrm{~s}$ ) rise and fall times. The maximum frequency for a backplane signal should be about 150 Hz , although this may be too fast for optimum display response at lower display temperatures, depending on the display used.
The onboard oscillator is designed to free run at approximately 19 kHz , at microampere power levels. The oscillator frequency is divided by 126 to provide the backplane frequency, which will be approximately 150 Hz with the oscillator free-running. The oscillator frequency may be reduced by connecting an external capacitor between the OSCillator terminal (pin 36) and $\mathrm{V}_{\mathrm{DD}}$; see the plot of oscillator/back-plane frequency in "Typical Performance Curves" for detailed information.

The oscillator may also be overdriven if desired, although care must be taken to insure that the backplane driver is not disabled during the negative portion of the overdriving signal (which could cause a D.C. component to the display). This can be done by driving the OSCILLATOR input between the positive supply and a level out of the range where the backplane disable is sensed, about one fitth of the supply voltage above the negative supply. Another technique for overdriving the oscillator (with a signal swinging the full supply) is to skew the duty cycle of the overdriving signal such that the negative portion has a duration shorter than about one microsecond. The backplane dlsable sensing circuit will not respond to signals of this duration.

## Counter Section

The ICM7224 implements a four-digit ripple carry resettable counter, including a Schmitt trigger on the COUNT input and a CARRY output. Also included is an extra D-type flip-flop, clocked by the CARRY signal which controls the half-digit segment driver. This output driver can be used as either a true half-digit or as an overflow indicator. The counter will increment on the negative-going edge of the signal at the COUNT input, while the CARRY output provides a negativegoing edge following the count which increments the counter from 9999 to 10000. Once the half-digit flip-flop has been clocked, it can only be reset (with the rest of the counter) by a negative level at the RESET terminal, pin 33 . However, the four decades will continue to count in a normal fashion after the half-digit is set, and subsequent $\overline{\text { CARRY }}$ outputs will not be affected.
A negative level at the COUNT INHIBIT input disables the first divide-by-two in the counter chain without affecting its clock. This provides a true inhibit, not sensitive to the state of the COUNT input, which prevents false counts that can result from using a normal logic gate to prevent counting.

Each decade of the counter directly drives a four-to-seven segment decoder which develops the required output data. The output data is latched at the driver. When the STORE pin is low, these latches are updated, and when it is high or floating, the latches hold their contents.

The decoders also include zero detect and blanking logic to provide leading zero blanking. When the Leading Zero Blanking INput is floating or at a positive level, this circuitry is enabled and the device will blank leading zeroes. When it is low, or the half-digit is set, leading zero blanking is inhibited, and zeroes in the four digits will be displayed. The Leading Zero Blanking OUTput is provided to allow cascaded devices to blank leading zeroes correctly. This output will assume a positive level only when all four digits are blanked; this can only occur when the Leading Zero Blanking INput is at a positive level and the half-digit is not set.

For example, in an eight-decade counter with overflow using two ICM7224 devices, the Leading Zero Blanking OUTput of the high order digit would be coninected to the Leading Zero Blanking INput of the low order digit device. This will assure correct leading zero blanking for all eight digits.

The $\overline{\text { STORE, }} \overline{\text { RESET, }} \overline{\text { COUNT INHIBIT, and Leading Zero }}$ Blanking INputs are provided with pullup devices, so that they may be left open when a positive level is desired. The CARRY and Leading Zero Blanking OUTputs are suitable for interfacing to CMOS logic in general, and are specifically designed to allow cascading of the devices in four-digit blocks.

## Applications

Figure 8 shows an 8 digit precision frequency counter. The circuit uses two ICM7224s cascaded to provide an 8 digit display. Backplane output of the second device is disabled and is driven by the first device. The $1 / 2$ digit output of the second device is used for overflow indication. The input signal is fed to the first device and the COUNT input of the second is driven by the CARRY output of the first. Notice that leading zero blanking is controlled on the second device and the LZB OUT of the second one is tied to LZB IN of the first one. An ICM7207A device is used as a timebase generator and frequency counter controller. It generates count window, store and reset signals which are directly compatible with ICM7224 inputs (notice the need for an inverter at COUNT INHIBIT input). The ICM7207A provides two count window signals (1s and 0.1 s gating) for displaying frequencies in Hz or tens of $\mathrm{Hz}(\mathbf{x} 10 \mathrm{~Hz})$.


FIGURE 6. TEST CIRCUIT

(BLANK)

FIGURE 7. SEGMENT ASSIGNMENT AND DISPLAY FONT


FIGURE 8. EIGHT-DIGIT PRECISION FREQUENCY COUNTER

ICM7226A ICM7226B

## 8-Digit Multi-Function Frequency Counter/Timers

## Features

- CMOS Design for Very Low Power
- Output Drivers Directly Drive Both Digits and Segments of Large 8 Digit LED Displays
- Measures Frequencies from DC to 10MHz; Periods from $0.5 \mu \mathrm{~s}$ to 10 s
- Stable High Frequency Oscillator uses either 1 MHz or 10MHz Crystal
- Both Common Anode and Common Cathode Available
- Control Signals Avallable for External Systems Interfacing
- Multiplexed BCD Outputs


## Applications

- Frequency Counter
- Period Counter
- Unit Counter
- Frequency Ratio Counter
- Time Interval Counter


## Ordering Information

PART NUMBER	TEMPERATURE   RANGE	PACKAGE
ICM7226ALJL	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	40 Lead Ceramic DIP
ICM7226BIPL	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	40 Lead Plastic DIP

## Description

The ICM7226 is a fully integrated Universal Counter and LED display driver. It combines a high frequency oscillator, a decade timebase counter, an 8-decade data counter and latches, a 7 -segment decoder, digit multiplexer and segment and digit drivers which can directly drive large LED displays. The counter inputs accept a maximum frequency of 10 MHz in frequency and unit counter modes and 2 MHz in the other modes. Both inputs are digital inputs. In many applications, amplification and level shifting will be required to obtain proper digital signals for these inputs.
The ICM7226 can function as a frequency counter, period counter, frequency ratio ( $f_{A} / f_{B}$ ) counter, time interval counter or as a totalizing counter. The devices require either a 10 MHz or 1 MHz quartz crystal timebase, or if desired an external timebase can also be used. For period and time interval, the 10 MHz timebase gives a $0.1 \mu \mathrm{~s}$ resolution. In period average and time interval average, the resolution can be in the nanosecond range. In the frequency mode, the user can select accumulation times of $0.01 \mathrm{~s}, 0.1 \mathrm{~s}, 1 \mathrm{~s}$ and 10 s . With a 10 s accumulation time, the frequency can be displayed to a resolution of 0.1 Hz . There is 0.2 s between measurements in all ranges. Control signals are provided to enable gating and storing of prescaler data.

Leading zero blanking has been incorporated with frequency display in kHz and time in $\mu \mathrm{s}$. The display is multiplexed at a 500 Hz rate with a $12.2 \%$ duty cycle for each digit. The ICM7226A is designed for common anode displays with typical peak segment currents of 25 mA , and the ICM7226B is designed for common cathode displays with typical segment currents of 12 mA . In the display off mode, both digit drivers and segment drivers are turned off, allowing the display to be used for other functions.

Pinouts


ICM7226B
COMMON CATHODE (PDIP) TOP VIEW


NOTE:

1. For maximum frequency stability, connect to $V_{D D}$ or $V_{S S}$

Functional Block Diagram



Electrical Specifications $V_{D D}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, Unless Otherwise Specified

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Operating Supply Current, $\mathrm{I}_{\text {DD }}$	Display Off, Unused Inputs to $\mathrm{V}_{\text {SS }}$	-	2	5	mA
Supply Voltage Range ( $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}$ ), $\mathrm{V}_{\text {SUPPLY }}$	$-25^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+85^{\circ} \mathrm{C}$, INPUT A, INPUT B Frequency at $\mathrm{f}_{\text {MAX }}$	4.75	-	6.0	V
Maximum Frequency INPUT A, Pin 40, $\mathrm{f}_{\mathrm{A}(\mathrm{MAX})}$	$\begin{aligned} & -25^{\circ} \mathrm{C}<\mathrm{T}_{A}<+85^{\circ} \mathrm{C} \\ & 4.75 \mathrm{~V}<\mathrm{V}_{D D}<6.0 \mathrm{~V} \text {, Figure } 9 \\ & \text { Function = Frequency, Ratio, } \\ & \text { Unit Counter } \end{aligned}$	10	14	-	MHz
	Function $=$ Period, Time Interval	2.5	-	-	MHz
Maximum Frequency INPUT B, Pin 2, $\mathrm{f}_{\mathrm{B} \text { (MAX) }}$	$\begin{aligned} & -25^{\circ} \mathrm{C}<T_{A}<+85^{\circ} \mathrm{C} \\ & 4.75 \mathrm{~V}<\mathrm{V}_{D D}<6.0 \mathrm{~V} \text {, Figure } 10 \\ & \hline \end{aligned}$	2.5	-	-	MHz
Minimum Separation INPUT A to INPUT B, Time Interval Function	$\begin{aligned} -25^{\circ} \mathrm{C} & <\mathrm{T}_{\mathrm{A}}<+85^{\circ} \mathrm{C} \\ 4.75 \mathrm{~V} & <\mathrm{V}_{D D}<6.0 \mathrm{~V} \text {, Figure } 1 \end{aligned}$	250	-	-	ns
Oscillator Frequency and External Oscillator Frequency, fosc	$\begin{aligned} & -25^{\circ} \mathrm{C}<\mathrm{T}_{A}<+85^{\circ} \mathrm{C} \\ & 4.75 \mathrm{~V}<V_{D D}<6.0 \mathrm{~V} \\ & \hline \end{aligned}$	0.1	-	10	MHz
Oscillator Transconductance, $\mathrm{g}_{\mathrm{M}}$	$\mathrm{V}_{\mathrm{DD}}-4.75 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$	2000	-	-	$\mu \mathrm{S}$
Multiplex Frequency, $\mathrm{f}_{\text {MUX }}$	$\mathrm{f}_{\text {OSC }}=10 \mathrm{MHz}$	-	500	-	Hz
Time Between Measurements	$\mathrm{f}_{\text {OSc }}=10 \mathrm{MHz}$	-	200	-	ms
Input Rate of Charge, $\mathrm{dV}_{1 \mathbb{1}} / \mathrm{dt}$	Inputs A, B	-	15	-	$\mathrm{mV} / \mu \mathrm{s}$
Input Voltages: Pins 2, 19, 33, 39, 40, 35 Input Low Voltage, $\mathrm{V}_{\mathrm{IL}}$	$-25^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+85^{\circ} \mathrm{C}$	-	-	1.0	V
Input High Voltage, $\mathrm{V}_{\mathrm{IH}}$		3.5	-	-	V
Pins 2, 39, 40, Input Leakage, A, B, ILLK		-	-	20	$\mu \mathrm{A}$
Input Resistance to $\mathrm{V}_{\mathrm{DD}}$ Pins 19, 33, $\mathrm{R}_{\mathrm{IN}}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}-1.0 \mathrm{~V}$	100	400	-	$\mathrm{k} \Omega$
Input Resistance to $\mathrm{V}_{\text {SS }}$ Pin 31, $\mathrm{R}_{\text {IN }}$	$\mathrm{V}_{\text {IN }}=+1.0 \mathrm{~V}$	50	100	-	$\mathrm{k} \Omega$
Output Current Low Output Current, Pins 3, 5-7, 17, 18, 32, 38, $\mathrm{I}_{\mathrm{OL}}$	$\mathrm{V}_{\mathrm{OL}}=+0.4 \mathrm{~V}$	400	-	-	$\mu \mathrm{A}$
High Output Current, Pins 5-7, 17, 18, 32, $\mathrm{H}_{\mathrm{OL}}$	$\mathrm{V}_{\mathrm{OH}}=+2.4 \mathrm{~V}$	100	-	-	$\mu \mathrm{A}$
High Output Current, Pins 3, 38, $\mathrm{H}_{\mathrm{OL}}$ '	$\mathrm{V}_{\mathrm{OH}}=\mathrm{V}_{\mathrm{DD}}-0.8 \mathrm{~V}$	265	-	-	$\mu \mathrm{A}$
ICM7226A					
Segment Driver: Pins 8-11, 13-16 Low Output Current, I $\mathrm{I}_{\mathrm{L}}$	$\mathrm{V}_{\mathrm{O}}=+1.5 \mathrm{~V}$	25	35	-	mA
High Output Current, $\mathrm{I}_{\mathrm{OH}}$	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{DD}}-1.0 \mathrm{~V}$	-	100	-	$\mu \mathrm{A}$
Multiplex Inputs: Pins 1, 4, 20, 21 Input Low Voltage, $\mathrm{V}_{\mathrm{IL}}$		-	-	0.8	V
Input High Voltage, $\mathrm{V}_{\mathrm{IH}}$		2.0	-	-	V
Input Resistance to $\mathrm{V}_{\text {SS }}, \mathrm{R}_{\text {IN }}$	$\mathrm{V}_{\mathrm{IN}}=+1.0 \mathrm{~V}$	50	100	-	$\mathrm{k} \Omega$

Electrical Specifications $V_{D D}=5.0 \mathrm{~V}, T_{A}=+25^{\circ} \mathrm{C}$, Unless Otherwise Specified (Continued)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Digit Driver: Pins 22-24, 26-30 Low Output Current, $\mathrm{I}_{\mathrm{LL}}$	$\mathrm{V}_{\mathrm{O}}=+1.0 \mathrm{~V}$	-	-0.3	-	mA
High Output Current, $\mathrm{I}_{\mathrm{OH}}$	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{DD}}-2.0 \mathrm{~V}$	150	180	-	mA
ICM7226B					
Segment Driver: Pins 22-24, 26-30 Leakage Current, $I_{L}$	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\text {SS }}$	-	-	10	$\mu \mathrm{A}$
High Output Current, $\mathrm{I}_{\mathrm{OH}}$	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{DD}}-2.0 \mathrm{~V}$	10	15	-	mA
$\begin{gathered} \text { Multiplex Inputs: Pins 1, 4, 20,21 } \\ \text { Input Low Voltage, } \mathrm{V}_{\mathrm{IL}} \\ \hline \end{gathered}$		-	-	$V_{D D}-2.0$	V
Input High Voltage, $\mathrm{V}_{\mathrm{IH}}$		$\mathrm{V}_{\mathrm{DD}}-0.8$	-	-	V
Input Resistance to $\mathrm{V}_{\text {SS }}, \mathrm{R}_{\text {IN }}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}-1.0 \mathrm{~V}$	100	360	-	k $\Omega$
Digit Driver: Pins 8-11, 13-16 Low Output Current, IoL	$\mathrm{V}_{\mathrm{O}}=+1.0 \mathrm{~V}$	50	75	-	mA
High Output Current, $\mathrm{I}_{\mathrm{OH}}$	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{DD}}-2.5 \mathrm{~V}$	-	100	-	$\mu \mathrm{A}$

NOTES:

1. Destructive latchup may occur if input signals are applied before the power supply is established or if inputs or outputs are forced to voltages exceeding $\mathrm{V}_{\mathrm{DD}}$ or $\mathrm{V}_{\mathrm{SS}}$ by 0.3 V .
2. Assumes all leads soldered or welded to PC board and free air flow.
3. Typical values are not tested.

## Timing Waveform



NOTE:

1. If range is set to 1 event, first and last measured interval will coincide.

FIGURE 1. WAVEFORMS FOR TIME INTERVAL MEASUREMENT (OTHERS ARE SIMILAR, BUT WITHOUT PRIMING PHASE)

## Typical Performance Curves



FIGURE 2. ICM7226B TYPICAL $I_{\text {DIGIT }}$ Vs $V_{\text {OUT }}$


FIGURE 4. ICM7226B TYPICAL $I_{\text {SEG }}$ vs $V_{D D}-V_{\text {OUT }}$


FIGURE 6. ICM7226B TYPICAL I DIGIT $\mathbf{V s} \mathbf{V}_{\text {OUT }}$


FIGURE 3. ICM7226A TYPICAL $I_{D I G}$ vs $V_{D D}-V_{\text {OUT }}$


FIGURE 5. ICM7226A TYPICAL ISEG vs $V_{\text {OUt }}$


FIGURE 7. ICM7226A TYPICAL I IEG vs $V_{\text {OUT }}$

## Typical Performance Curves (Continued)



FIGURE 8. $f_{A}$ (MAX), $f_{B}$ (MAX) AS A FUNCTION OF SUPPLY

## Description

## INPUTS A and B

The signal to be measured is applied to INPUT A in frequency period, unit counter, frequency ratio and time interval modes. The other input signal to be measured is applied to INPUT $B$ in frequency ratio and time interval. $f_{A}$ should be higher than $f_{B}$ during frequency ratio.


FIGURE 9. WAVEFORM FOR GUARANTEED MINIMUM $f_{A}$ (MAX) FUNCTION = FREQUENCY, FREQUENCY RATIO, UNIT COUNTER


FIGURE 10. WAVEFORM FOR GUARANTEED MINIMUM $f_{B}$ (MAX) AND $f_{A}($ MAX ) FOR FUNCTION = PERIOD AND TIME INTERVAL

Both inputs are digital inputs with a typical switching threshold of 2.0 V at $\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$ and input impedance of $250 \mathrm{k} \Omega$ For optimum performance, the peak to peak input signal should be at least $50 \%$ of the supply voltage and centered about the switching voltage. When these inputs are being driven from TTL logic, it is desirable to use a pullup resistor. The circuit counts high to low transitions at both inputs

Note that the amplitude of the input should not exceed the device supply (above the $\mathrm{V}_{\mathrm{DD}}$ and below the $\mathrm{V}_{\mathrm{SS}}$ ) by more than 0.3 V , otherwise the device may be damaged.

## Multiplexed Inputs

The FUNCTION, RANGE, CONTROL and EXTERNAL DECIMAL POINT inputs are time multiplexed to select the function desired. This is achieved by connecting the appropriate Digit driver output to the inputs. The function, range and control inputs must be stable during the last half of each digit output, (typically $125 \mu \mathrm{~s}$ ). The multiplexed inputs are active high for the common anode ICM7226A and active low for the common cathode ICM7226B.

Noise on the multiplex inputs can cause improper operation. This is particularly true when the unit counter mode of operation is selected, since changes in voltage on the digit drivers can be capacitively coupled through the LED diodes to the multiplex inputs. For maximum noise immunity, a $10 \mathrm{k} \Omega$ resistor should be placed in series with the multiplexed inputs as shown in the application circuits.

Table 1 shows the functions selected by each digit for these inputs.

TABLE 1. MULTIPLEXED INPUT FUNCTIONS

	FUNCTION	DIGIT
FUNCTION INPUT Pin 4	Frequency	D1
	Period	D8
	Frequency Ratio	D2
	Time Interval	D5
	Unit Counter	D4
	Oscillator Frequency	D3
RANGE INPUT Pin 21	0.01s/1 Cycle	D1
	0.1s/10 Cycles	D2
	1s/100 Cycles	D3
	10s/1K Cycles	D4
	Enable External Range Input	D5
CONTROL INPUT Pin 1	Display Off	D4 and Hold
	Display Test	D8
	1 MHz Select	D2
	External Oscillator Enable	D1
	External Decimal Point Enable	D3
External DP INPUT Pin 20	Decimal point is output for same digit that is connected to this input.	

## Function Input

The six functions that can be selected are: Frequency, Period, Time Interval, Unit Counter, Frequency Ratio and Oscillator Frequency.

The implementation of different functions is done by routing the different signals to two counters, called "Main Counter" and "Reference Counter". A simplified block diagram of the device for functions realization is shown in Figure 11. Table 2 shows which signals will be routed to each counter in different cases. The output of the Main Counter is the information which goes to the display. The Reference Counter divides its input to 1, 10, 100 and 1000. One of these outputs will be selected through the range selector and drive the enable input of the Main Counter. This means that the Reference Counter, along with its' associated blocks, directs the Main Counter to begin counting and determines the length of the counting period. Note that Figure 11 does not show the complete functional diagram (See the Functional Block Diagram). After the end of each counting period, the output of the Main Counter will be latched and displayed, then the counter will be reset and a new measurement cycle will begin. Any change in the FUNCTION INPUT will stop the present measurement without updating the display and then initiate a new measurement. This prevents an erroneous first reading after the FUNCTION INPUT is changed. In all cases, the 1-0 transitions are counted or timed.
table 2. input routing

FUNCTION	MAIN   COUNTER	COUNTER
Frequency $\left(f_{A}\right)$	Input A	100 Hz (Oscillator $\div 10^{5}$ or $10^{4}$ )
Period $\left(t_{A}\right)$	Oscillator	Input A
Ratio $\left(f_{A} / f_{B}\right)$	Input A	Input B
Time Interval   $(A \rightarrow B)$	Oscillator	Input A   Input B
Unit Counter   (Count $A)$	Input A	Not Applicable
Osc. Freq.   $\left(f_{\text {osc }}\right)$	Oscillator	100 Hz (Oscillator $\div 10^{5}$ or $10^{4}$ )



FIGURE 11. SIMPLIFIED BLOCK DIAGRAM OF FUNCTIONS IMPLEMENTATION

Frequency - In this mode input $A$ is counted by the Main Counter for a precise period of time. This time is determined by the time base oscillator and the selected range. For the 10 MHz (or 1 MHz ) time base, the resolutions are 100 Hz , $10 \mathrm{~Hz}, 1 \mathrm{~Hz}$ and 0.1 Hz . The decimal point on the display is set for kHz reading.
Period - In this mode, the timebase oscillator is counted by the Main Counter for the duration of $1,10,100$ or 1000 (range selected) periods of the signal at input A. A 10 MHz timebase gives resolutions of $0.1 \mu \mathrm{~s}$ to $0.0001 \mu \mathrm{~s}$ for 1000 periods averaging. Note that the maximum input frequency for period measurement is 2.5 MHz .
Frequency Ratio - In this mode, the input $\mathbf{A}$ is counted by the Main Counter for the duration of $1,10,100$ or 1000 (range selected) periods of the signal at input $B$. The frequency at input $A$ should be higher than input $B$ for meaningful result. The result in this case is unitless and its resolution can go up to 3 digits after decimal point.

Time Interval - In this mode, the timebase oscillator is counted by the Main Counter for the duration of a 1-0 transition of input A until a 1-0 transition of input B. This means input $A$ starts the counting and input $B$ stops it. If other ranges, except $0.01 \mathrm{~s} / 1$ cycle are selected the sequence of input $A$ and B transitions must happen 10,100 or 1000 times until the display becomes updated; note this when measuring long time intervals to give enough time for measurement completion. The resolution in this mode is the same as for period measurement. See the Time Interval Measurement section also.
Unit Counter - In this mode, the Main Counter is always enabled. The input A is counted by the Main Counter and displayed continuously.
Oscillator Frequency - In this mode, the device makes a frequency measurement on its timebase. This is a self test mode for device functionality check. For 10 MHz timebase the display will show 10000.0, 10000.00, 10000.000 and Overflow in different ranges.

## Range Input

The RANGE INPUT selects whether the measurement period is made for $1,10,100$ or 1000 counts of the Reference Counter or it is controlled by EXT RANGE input. As it is shown in Table 1, this gives different counting windows for frequency measurement and various cycles for other modes of measurement.

In all functional modes except Unit Counter, any change in the RANGE INPUT will stop the present measurement without updating the display and then initiate a new measurement. This prevents an erroneous first reading after the RANGE INPUT is changed.

## Control Input

Unlike the other multiplexed inputs, to which only one of the digit outputs can be connected at a time, this input can be tied to different digit lines to select combination of controls. In this case, isolation diodes must be used in digit lines to avoid crosstalk between them (see Figure 19). The direction of diodes depends on the device version, common anode or common cathode. For maximum noise immunity at this input, in addition to the 10 K resistor which was mentioned
before, a 39 pF to 100 pF capacitor should also be placed between this input and the $\mathrm{V}_{\mathrm{DD}}$ or $\mathrm{V}_{\text {SS }}$ (See Figure 19).
Display Off - To disable the display drivers, it is necessary to tie the D4 line to the CONTROL INPUT and have the HOLD input at $V_{D D}$. While in Display Off mode, the segments and digit drivers are all off, leaving the display lines floating, so the display can be shared with other devices. In this mode, the oscillator continues to run with a typical supply current of 1.5 mA with a 10 MHz crystal, but no measurements are made and multiplexed inputs are inactive. A new measurement cycle will be initiated when the HOLD input is switched to $\mathrm{V}_{\mathrm{SS}}$.
Display Test - Display will turn on with all the digits showing 8s and all decimal points also on. The display will be blanked if Display Off is selected at the same time.

1 MHz Select - The 1 MHz select mode allows use of a 1 MHz crystal with the same digit multiplex rate and time between measurement as with a 10 MHz crystal. This is done by dividing the oscillator frequency by $10^{4}$ rather than $10^{5}$. The decimal point is also shifted one digit to the right in period and time interval, since the least significant digit will be in $\mu \mathrm{s}$ increment rather than $0.1 \mu \mathrm{~s}$ increment.

External Oscillator Enable - In this mode, the signal at EXT OSC INPUT is used as a timebase instead of the on-board crystal oscillator (built around the OSC INPUT, OSC OUTPUT inputs). This input can be used for an external stable temperature compensated crystal oscillator or for special measurements with any external source. The on-board crystal oscillator continues to work when the external oscillator is selected. This is necessary to avoid hang-up problems, and has no effect on the chip's functional operation. If the on-board oscillator frequency is less than 1 MHz or only the external oscillator is used, THE OSC INPUT MUST BE CONNECTED TO THE EXT OSC INPUT providing the timebase has enough voltage swing for OSC INPUT (See Electrical Specifications). If the external timebase is TTL level a pullup resistor must be used for OSC INPUT. The other way is to put a $22 \mathrm{M} \Omega$ resistor between OSC INPUT and OSC OUTPUT and capacitively couple the EXT OSC INPUT to OSC INPUT. This will bias the OSC INPUT at its threshold and the drive voltage will need to be only $2 \mathrm{~V}_{\text {p-p. }}$. The external timebase frequency must be greater than 100 kHz or the chip will reset itself to enable the on-board oscillator.
External Decimal Point Enable - In this mode, the EX DP INPUT is enabled. A decimal point will be displayed for the digit that its output line is connected to this input (EX DP INPUT). Digit 8 should not be used since it will override the overflow output. Leading zero blanking is effective for the digits to the left of selected decimal point.

## Hold Input

Except in the unit counter mode, when the HOLD input is at $\mathrm{V}_{\mathrm{DD}}$, any measurement in progress (before STORE goes low) is stopped, the main counter is reset and the chip is held ready to initiate a new measurement as soon as HOLD goes low. The latches which hold the main counter data are not updated, so the last complete measurement is displayed. In unit counter mode when HOLD input is at $V_{D D}$, the counter is not stopped or reset, but the display is frozen at that instantaneous value. When HOLD goes low the count continues from the new value in the new counter.
$\overline{\text { RST IN Input }}$
The $\overline{\text { RST }}$ IN is provided to reset the Main Counter, stop any measurement in progress, and enable the display latches, resulting in the all zero display. It is suggested to have a capacitor at this input to $\mathrm{V}_{\text {SS }}$ to prevent any hangup problem on power up. See application circuits.

## EXT RANGE Input

This input is provided to select ranges other than those provided in the chip. In any mode of measurement the duration of measurement is determined by the EXT RANGE if this input is enabled. This input is sampled at 10 ms intervals by the 100 Hz reference derived from the timebase. Figure 12 shows the relationship between this input, 100 Hz reference signal and MEAS IN PROGRESS. EXT RANGE can change state anywhere during the period of 100 Hz reference by will be sampled at the trailing edge of the period to start or stop measurement.


FIGURE 12. EXTERNAL RANGE INPUT TO END OF MEASUREMENT IN PROGRESS

This input should not be used for short arbitrary ranges (because of its sampling period), it is provided for very long gating purposes. A way of using the ICM7226 for a short arbitrary range is to feed the gating signal into the INPUT B and run the device in the Frequency Ratio mode. Note that the gating period will be from one positive edge until the next positive edge of INPUT B ( $0.01 \mathrm{~s} / 1$ cycle range).

## MEAS IN PROGRESS, STORE, RST OUT Outputs

These outputs are provided for external system interfacing. MEAS IN PROGRESS stays low during measurements and goes high for intervals between measurements. Figure 13 shows the relationship between these outputs for intervals between measurements. All these outputs can drive a low power Schottky TTL. The MEAS IN PROGRESS can drive one ECL load if the ECL device is powered from the same power supply as the ICM7226.


FIGURE 13. RESET OUT, STORE AND MEASUREMENT IN PROGRESS OUTPUTS BETWEEN MEASUREMENTS

## BCD Outputs

The BCD representation of each display digit is available at the BCD outputs in a multiplexed fashion. See Table 3 for digits truth table. The BCD output of each digit is available when its corresponding digit output is activated. Note that the digit outputs are multiplexed from D8 (MSD) to D1 (LSD). The positive going (ICM7226A, common anode) or the negative going (ICM7226B, common cathode) digit drive signals lag the BCD data by $2 \mu \mathrm{~s}$ to $6 \mu \mathrm{~s}$. This starting edge of each digit drive signal should be used to externally latch the BCD data. Each BCD output drives one low power Schottky TTL load. Leading zero blanking has no effect on the BCD outputs.

TABLE 3. TRUTH TABLE BCD OUTPUTS

NUMBER	$\begin{aligned} & \hline \text { BCD } 8 \\ & \text { PIN } 7 \end{aligned}$	$\begin{gathered} \hline \text { BCD } 4 \\ \text { PIN } 6 \end{gathered}$	$\begin{aligned} & \hline \text { BCD 2 } \\ & \text { PIN } 17 \end{aligned}$	$\begin{aligned} & \hline \text { BCD } 1 \\ & \text { PIN } 18 \end{aligned}$
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1

## BUF OSC OUT Output

The BUFFered OSCillator OUTput is provided for use of the on-board oscillator signal, without loading the oscillator itself. This output can drive one low power Schottky TTL load. Care should be taken to minimize capacitive loading on this pin.

## Decimal Point Position

Table 4 shows the decimal point position for different modes of ICM7226 operation. Note that the digit 1 is the least significant digit. Table is given for 10 MHz timebase frequency.

TABLE 4. DECIMAL POINT POSITIONS

RANGE	FREQUENCY	PERIOD	FREQUENCY   RATIO	TIME   INTERVAL	UNIT   COUNTER	OSCILLATOR   FREQUENCY
$0.01 \mathrm{~s} / 1$ Cycle	D2	D2	D1	D2	D1	D2
$0.1 \mathrm{~s} / 10$ Cycle	D3	D3	D2	D3	D1	D3
$1 \mathrm{~s} / 100$ Cycle	D4	D4	D3	D4	D1	D4
$10 \mathrm{~s} / 1 \mathrm{~K} \mathrm{Cycle}$	D5	D5	D4	D5	D1	D5
External	N/A	N/A	N/A	N/A	N/A	N/A

## Overflow Indication

When overflow happens in any measurement it will be indicated on the decimal point of the digit 8 . A separate LED indicator can be used. Figure 14 shows how to connect this indicator.


LED overflow indicator connections: Overflow ill be indicated on the decimal point output of digit 8.

DEVICE	CATHODE	ANODE
ICM7226A	Decimal Point	D8
ICM7226B	D8	Decimal Point

FIGURE 14. SEGMENT IDENTIFICATION AND DISPLAY FONT

## Time Interval Measurement

When in the time interval mode and measuring a single event, the ICM7226A and ICM7226B must first be "primed" prior to measuring the event of interest. This is done by first generating a negative going edge on Channel $\mathbf{A}$ followed by a negative going edge on Channel B to start the "measurement interval". The inputs are then primed ready for the measurement. Positive going edges on A and B, before or after the priming, will be needed to restore the original condition.
Priming can be easily accomplished using the circuit in Figure 15.


FIGURE 15. PRIMING CIRCUIT, SIGNALS A \& B BOTH HIGH OR LOW

Following the priming procedure (when in single event or 1 cycle range) the device is ready to measure one (only) event.

When timing repetitive signals, it is not necessary to "prime" the ICM7226A and ICM7226B as the first alternating signal states automatically prime the device. See Figure 1.
During any time interval measurement cycle, the ICM7226A and ICM7226B requires 200 ms following $B$ going low to update all internal logic. A new measurement cycle will not take place until completion of this internal update time.

## Oscillator Considerations

The oscillator is a high gain complementary FET inverter. An external resistor of $10 \mathrm{M} \Omega$ or $22 \mathrm{M} \Omega$ should be connected between the oscillator input and output to provide biasing. The oscillator is designed to work with a parallel resonant 10 MHz quartz crystal with a static capacitance of 22 pF and a series resistance of less than $35 \Omega$ Among suitable crystals is the 10 MHz CTS KNIGHTS ISI-002

For a specific crystal and load capacitance, the required $g_{M}$ can be calculated as follows:
$\mathrm{g}_{\mathrm{M}}=\omega^{2} \mathrm{C}_{\text {IN }} \mathrm{C}_{\text {OUT }} \mathrm{R}_{\mathrm{S}}\left(1+\frac{\mathrm{C}_{\mathrm{O}}}{\mathrm{C}_{\mathrm{L}}}\right)^{2}$
where $C_{L}=\left(\frac{C_{\text {IN }} C_{\text {OUT }}}{C_{\text {IN }}+C_{\text {OUT }}}\right)$
$C_{O}=$ Crystal Static Capacitance
$R_{S}=$ Crystal Series Resistance
$\mathrm{C}_{\mathrm{IN}}=$ Input Capacitance
$\mathrm{C}_{\text {OUT }}=$ Output Capacitance
$\omega=2 \pi f$
The required $g_{M}$ should not exceed $50 \%$ of the $g_{M}$ specified for the ICM7226 to insure reliable startup. The OSCillator INPUT and OUTPUT pins each contribute about 4 pF to $\mathrm{C}_{\mathrm{I}}$ and $\mathrm{C}_{\text {OUT }}$. For maximum stability of frequency, $\mathrm{C}_{\mathrm{IN}}$ and Cout should be approximately twice the specified crystal $^{\text {sen }}$ static capacitance.
In cases where non decade prescalers are used, it may be desirable to use a crystal which is neither 10 MHz or 1 MHz . In that case both the multiplex rate and time between measurements will be different. The multiplex rate is
$f_{\text {MUX }}=\frac{f_{\text {OSC }}}{2 \times 10^{4}}$ for 10 MHz mode and $\mathrm{f}_{\text {MUX }}=\frac{\mathrm{f}_{\text {OSC }}}{2 \times 10^{3}}$ for the 1 MHz mode. The time between measurements is $\frac{2 \times 10^{6}}{f_{\text {OSC }}}$ in the 10 MHz mode and $\frac{2 \times 10^{5}}{f_{\text {OSC }}}$ in the 1 MHz mode.

The buffered oscillator output should be used as an oscillator test point or to drive additional logic; this output will drive one low power Schottky TTL load. When the buffered oscillator output is used to drive CMOS or the external oscillator input, a $10 \mathrm{k} \Omega$ resistor should be added from the buffered oscillator output to $\mathrm{V}_{\mathrm{DD}}$ -
The crystal and oscillator components should be located as close to the chip as practical to minimize pickup from other signals. Coupling from the EXTERNAL OSCILLATOR INPUT to the OSCILLATOR OUTPUT or INPUT can cause undesirable shifts in oscillator frequency.

## Display Considerations

The display is multiplexed at a 500 Hz rate with a digit time of $244 \mu \mathrm{~s}$. An interdigit blanking time of $6 \mu \mathrm{~s}$ is used to prevent display ghosting (faint display of data from previous digit superimposed on the next digit). Leading zero blanking is provided, which blanks the left hand zeroes after decimal point or any non zero digits. Digits to the right of the decimal point are always displayed. The leading zero blanking will be disabled when the Main Counter overflows.

The ICM7226A is designed to drive common anode LED displays at peak current of 25 mA segment, using displays with $\mathrm{V}_{\mathrm{F}}=1.8 \mathrm{~V}$ at 25 mA . The average DC current will be greater than 3mA under these conditions. The ICM7226B is designed to drive common cathode displays at peak current of 15 mA segment using displays with $\mathrm{V}_{\mathrm{F}}=1.8 \mathrm{~V}$ at 15 mA . Resistors can be added in series with the segment drivers to limit the display current, if required. The Typical Performance Curves show the digit and segment currents as a function of output voltage for common anode and common cathode drivers.

To increase the light output from the displays, $\mathrm{V}_{\mathrm{DD}}$ may be increased to 6.0 V . However, care should be taken to see that maximum power and current ratings are not exceeded.

The SEGment and Digit outputs in both the ICM7226A and ICM7226B are not directly compatible with either TTL or

CMOS logic. Therefore, level shifting with discrete transistors may be required to use these outputs as logic signals. External latching should be down on the leading edge of the digit signal.

## Accuracy

In a Universal Counter, crystal drift and quantization errors cause errors. In frequency, period and time interval modes, a signal derived from the oscillator is used in either the Reference Counter or Main Counter, and in these modes, an error in the oscillator frequency will cause an identical error in the measurement. For instance, an oscillator temperature coefficient of $20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ will cause a measurement error of $20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.

In addition, there is a quantization error inherent in any digital measurement of $\pm 1$ count. Clearly this error is reduced by displaying more digits. In the frequency mode maximum accuracy is obtained with high frequency inputs and in period mode maximum accuracy is obtained with low frequency inputs. As can be seen in Figure 16. In time interval measurements there can be an error of 1 count per interval. As a result there is the same inherent accuracy in all ranges as shown in Figure 17. In frequency ratio measurement can be more accurately obtained by averaging over more cycles of INPUT B as shown in Figure 18.


FIGURE 17. MAXIMUM ACCURACY OF TIME INTERVAL MEASUREMENT DUE TO LIMITATIONS OF QUANTIZATION ERRORS


FIGURE 18. MAXIMUM ACCURACY FOR FREQUENCY RATIO MEASUREMENT DUE TO LIMITATION OF QUANTIZATION ERRORS

Test Circuit


LED OVERFLOW INDICATOR CONNECTIONS

DEVICE	CATHODE	ANODE
ICM7226A	DP	D8
ICM7226B	D8	DP

NOTE: Overfiow will be indicated on the decimal point output of digit 7.
FIGURE 19.

## Typical Applications

The ICM7226 has been designed as a complete stand alone Universal Counter, or used with prescalers and other circuitry in a variety of applications. Since INPUT A and INPUT $B$ are digital inputs, additional circuitry will be required in many applications, for input buffering, amplification, hysteresis, and level shifting to obtain the required digital voltages. For many applications a FET source follower can be used for input buffering, and an ECL 10116 line receiver can be used for amplification and hysteresis to obtain high impedance input, sensitivity and bandwidth. However, cost and complexity of this circuitry can vary widely, depending upon the sensitivity and bandwidth required. When TTL prescalers or input buffers are used, a pull up resistors to $V_{D D}$ should be used to obtain optimal voltage swing at INPUTS A and B.

If prescalers aren't required, the ICM7226 can be used to implement a minimum component Universal Counter as shown in Figure 20.
For input frequencies up to 40 MHz , the circuit shown in Figure 21 can be used to implement a frequency and period counter. To obtain the correct value when measuring frequency and period, it is necessary to divide the 10 MHz oscillator frequency down to 2.5 MHz . In doing this the time between measurements is lengthened to 800 ms and the display multiplex rate is decreased to 125 Hz .
If the input frequency is prescaled by ten, the oscillator frequency can remain at either 10 MHz or 1 MHz , but the decimal point must be moved. Figure 22 shows use of a +10 prescaler in frequency counter mode. Additional logic has been added to enable the ICM7226 to count the input directly in period mode for maximum accuracy.


FIGURE 20. 10MHz UNIVERSAL COUNTER


FIGURE 21. 40MHz FREQUENCY, PERIOD COUNTER


FIGURE 22. 100MHz MULTI-FUNCTION COUNTER


FIGURE 23. 100MHz FREQUENCY, PERIOD COUNTER

Figure 23 shows the use of a CD4016 analog multiplexer to multiplex the digital outputs back to the FUNCTION Input. Since the CD4016 is a digitally controlled analog transmission gate, no level shifting of the digit output is required. CD4051's or CD4052's could also be used to select the proper inputs for the multiplexed input on the ICM7226 from 2 or 3 bit digital inputs. These analog multiplexers may also be used in systems in which the mode of operation is controlled by a microprocessor rather than directly from front panel switches. TTL multiplexers such as the 74LS153 or 74LS251 may also be used, but some additional circuitry will be required to convert the digit output to TTL compatible logic levels.
The circuit shown in Figure 24 can be used in any of the circuit applications shown to implement a single measurement mode of operation. This circuit uses the STORE output to


FIGURE 24. SINGLE MEASUREMENT CIRCUIT FOR USE WITH ICM7226
put the ICM7226 into a hold mode. The HOLD input can also be used to reduce the time between measurements. The circuit shown in Figure 25 puts a short pulse into the HOLD input a short time after STORE goes low. A new measurement will be initiated at the end of the pulse on the HOLD input. This circuit reduces the time between measurements to about 40 ms from 200 ms ; use of the circuit shown in Figure 25 on the circuit shown in Figure 21 will reduce the time between measurements from 800 ms to about 160 ms .

Using LCD Display
Figure 26 shows the ICM7226 being interfaced to LCD displays, by using its BCD outputs and 8 digit lines to drive two ICM7211 display drivers.


FIGURE 25. CIRCUIT FOR REDUCING TIME BETWEEN MEASUREMENTS


FIGURE 26. 10MHz UNIVERSAL COUNTER SYSTEM WITH LCD DISPLAY

## Features

- Hour Meter Requires Only 4 Parts Total
- Micropower Operation: $<1 \mu \mathrm{~A}$ at 2.8 V Typical
- 10 Year Operation On One Lithium Cell. $\mathbf{2}^{1 / 1} 2$ Year Battery Life with Display Connected
- Directly Drives $5 \frac{1}{2}$ Digit LCD
- 14 Programmable Modes of Operation
- Times Hrs., 0.1 Hrs., 0.01 Hrs., 0.1 Mins.
- Counts 1's, 10's, 100's, 1000's
- Dual Funtion Input Circuit
- Selectable Debounce for Counter
- High-Pass Filter for Timer
- Direct AC Line Triggering with Input Resistor
- Winking "Timer Active" Display Output
- Display Test Feature


## Applications

- AC or DC Hour Meters
- AC or DC Totalizers
- Portable Battery Powered Equipment
- Long Range Service Meters


## Ordering Information

PART NUMBER	TEMPERATURE   RANGE	PACKAGE
ICM7249IPM	$-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	48 Lead Plastic DIP

## Description

The ICM7249 Timer/Counter is intended for long-term bat-tery-supported industrial applications. The ICM7249 typically draws $1 \mu \mathrm{~A}$ during active timing or counting, due to Harris' special low-power design techniques. This allows more than 10 years of continuous operation without battery replacement. The chip offers four timing modes, eight counting modes and four test modes.

The ICM7249 is a 48 lead device, powered by a single DC voltage source and controlled by a 32.768 kHz quartz crystal. No other external components are required. Inputs to the chip are TTL-compatible and outputs drive standard direct drive LCD segments.

## Pinout

ICM7249
(PDIP)
TOP VIEW


## Functional Block Diagram



## Absolute Maximum Ratings

Supply Voltage ( $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}$ ).6 V

Input Voltage, Pins $43-48$ (Note 1) ... ( $\left.V_{S S}-0.3 \mathrm{~V}\right)$ to $\left(V_{D D}+0.3 \mathrm{~V}\right)$
Storage Temperature Range $\ldots \ldots . . . . . . . . . . . . .5^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10s) . . . . . . . . . . . . . . . . . . . . $+300^{\circ} \mathrm{C}$

## Thermal Information

Thermal Resistance
Plastic Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $50^{\circ} \mathrm{C}$ W
Operating Temperature Range .
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $+150^{\circ} \mathrm{C}$

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Electrical Specifications Temperature $=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}$, Unless Otherwise Specified. Typical Specifications Measured at Temperature $=+25^{\circ} \mathrm{C}$ and $\mathrm{V}_{D D}=2.8 \mathrm{~V}$, Unless Otherwise Specified

PARAMETER	TEST CONDITIONS	LIMITS			UNITS
		MIN	TYP	MAX	
Operating Voltage, $\mathrm{V}_{\mathrm{DD}}$	Note 2	2.5	-	5.5	V
Operating Current, $\mathrm{I}_{\mathrm{DD}}$	All Inputs $=\mathrm{V}_{\mathrm{DD}}$ or GND, Note 3 $V_{D D}=2.8 \mathrm{~V}$	-	1.0	10.0	$\mu \mathrm{A}$
	$\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}$	-	4.0	20.0	$\mu \mathrm{A}$
INPUT CURRENT					
C0-C3, $\mathrm{I}_{\mathrm{IN}}$	All Inputs $\mathrm{V}_{\mathrm{DD}}$ or GND $V_{D D}=2.8 \mathrm{~V}$   Note 4	0.0	-	1	$\mu \mathrm{A}$
$\mathrm{S} / \mathrm{S}, \mathrm{I}$ ss		0.5	1.5	3.0	$\mu \mathrm{A}$
DT, $\mathrm{I}_{\text {DT }}$		40.0	-	110	$\mu \mathrm{A}$
INPUT VOLTAGE					
$\begin{gathered} \mathrm{CO}-\mathrm{C} 3, \mathrm{DT}, \mathrm{~S} / \mathrm{S} \\ \mathrm{~V}_{\mathrm{l}} \\ \hline \end{gathered}$		-	-	$0.3 \mathrm{~V}_{\mathrm{DD}}$	V
$\mathrm{V}_{\mathrm{IH}}$		$0.7 \mathrm{~V}_{\mathrm{DD}}$	-	-	v
Segment Output Voltage $v_{\mathrm{OL}}$	$\mathrm{l}_{\mathrm{OL}}=1 \mu \mathrm{~A}$	-	-	0.8	V
$\mathrm{V}_{\mathrm{OH}}$	$\mathrm{I}_{\mathrm{OH}}=1 \mu \mathrm{~A}$	$V_{D D}-0.8$	-	-	V
Backplane Output Voltage $v_{\mathrm{OL}}$	$\mathrm{I}_{\mathrm{OL}}=10 \mu \mathrm{~A}$	-	-	0.8	V
$\mathrm{V}_{\mathrm{OH}}$	$\mathrm{I}_{\mathrm{OH}}=10 \mu \mathrm{~A}$	$V_{D D}-0.8$	$\bullet$	$\bullet$	V
OSCILLATOR STABILITY					
Temperature $=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}$ to 5.5 V		-	0.1	$\bullet$	ppm
Temperature $=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}$ to 5.5 V		-	5	-	ppm
S/S PULSE WIDTH					
High-Pass Filter (Modes 0-3), $T_{H P}$		5	-	10,000	$\mu \mathrm{s}$
Debounce (Modes 4, 6, 8, 10), $\mathrm{T}_{\text {DE }}$		10,000	-	-	$\mu \mathrm{s}$
Without Debounce (Modes 5, 7, 9, 11), $\mathrm{T}_{\mathrm{DE}}$		5	$\bullet$	-	$\mu \mathrm{s}$

## NOTES:

1. Due to the SCR structure inherent in junction-isolated CMOS devices. the circuit can be put in a latchup mode it large currents are injected into device inputs or outputs. For this reason special care should be taken in a system with multiple power supplies to prevent voltages being applied to inputs or outputs before power is applied. If only inputs are affected, latchup also can be prevented by limiting the current into the input terminal to less than 1 mA .
2. Internal reset to 00000 requires a maximum $V_{D D}$ rise time of $1 \mu s$. Longer rise times at power-up may cause improper reset.
3. Operating current is measured with the LCD disconnected, and input current $I_{S S}$ and $I_{D T}$ supplied externally.
4. Inputs $\mathrm{CO}-\mathrm{C} 3$ are latched internally and draw no DC current after switching. During switching. a $90 \mu \mathrm{~A}$ peak current may be drawn for 10 ns .

## Timing Waveforms



FIGURE 1. POWER ON/RESET WAVEFORMS


FIGURE 2. START/STOP INPUT HIGH-PASS FILTERING IN TIMING MODES

## Timing Waveforms (Continued)



FIGURE 3. WINK WAVEFORMS IN TIMING MODES


FIGURE 4. START/STOP INPUT DEBOUNCE FILTERING IN COUNTING MODES


FIGURE 5. WINK WAVEFORMS IN COUNTING MODES

## Timing Waveforms (Continued)



FIGURE 6. DISPLAY TESTING

## Pin Descriptions

PIN	NAME	DESCRIPTION	PIN	NAME	DESCRIPTION
1	b6/c6	Half-Digit LCD Segment Output.	25	e2	Seven-Segment LCD Output.
2	45	Seven-Segment LCD Output.	26	d2	Seven-Segment LCD Output.
3	g5	Seven-Segment LCD Output.	27	c2	Seven-Segment LCD Output.
4	65	Seven-Segment LCD Output.	28	b2	Seven-Segment LCD Output.
5	d5	Seven-Segment LCD Output.	29	a2	Seven-Segment LCD Output.
6	c5	Seven-Segment LCD Output.	30	11	Seven-Segment LCD Output.
7	b5	Seven-Segment LCD Output.	31	91	Seven-Segment LCD Output.
8	a5	Seven-Segment LCD Output.	32	e1	Seven-Segment LCD Output.
9	14	Seven-Segment LCD Output.	33	d1	Seven-Segment LCD Output.
10	94	Seven-Segment LCD Output.	34	c1	Seven-Segment LCD Output.
11	04	Seven-Segment LCD Output.	35	b1	Seven-Segment LCD Output.
12	d4	Seven-Segment LCD Output.	36	a1	Seven-Segment LCD Output.
13	c4	Seven-Segment LCD Output.	37	W	Wink-Segment Output.
14	b4	Seven-Segment LCD Output.	38	BP	Backplane for LCD Reference.
15	a4	Seven-Segment LCD Output.	39	$V_{D D}$	Positive Supply Voltage.
16	+3	Seven-Segment LCD Output.	40	OSC IN	Quartz Crystal Connection
17	g3	Seven-Segment LCD Output.	41	OSC OUT	Quartz Crystal Connection
18	e3	Seven-Segment LCD Output.	42	GND	Supply GRound.
19	d3	Seven-Segment LCD Output.	43	CO	Mode-select Control Input.
20	c3	Seven-Segment LCD Output.	44	C1	Mode-select Control Input.
21	b3	Seven-Segment LCD Output.	45	C2	Mode-select Control Input.
22	a3	Seven-Segment LCD Output.	46	C3	Mode-select Control Input.
23	12	Seven-Segment LCD Output.	47	S/S	Start/Stop Input.
24	g2	Seven-Segment LCD Output.	48	DT	Display Test Input.

TABLE 2. MODE SELECT TABLE

MODE	CONTROL PIN INPUTS				FUNCTION
	C3	C2	C1	C0	
0	0	0	0	0	1 Hour Interval Timer
1	0	0	0	1	0.1 Hour Interval Timer
2	0	0	1	0	0.01 Hour Interval Timer
3	0	0	1	1	0.1 Minute Interval Timer
4	0	1	0	0	1's Counter with Debounce
5	0	1	0	1	1's Counter
6	0	1	1	0	10's Counter with Debounce
7	0	1	1	1	10's Counter
8	1	0	0	0	100's Counter with Debounce
9	1	0	0	1	100's Counter
10	1	0	1	0	1000's Counter with Debounce
11	1	0	1	1	1000's counter
12	1	1	0	0	Test Display Digits
13	1	1	0	1	Internal Test
14	1	1	1	0	Internal Test
15	1	1	1	1	Reset

## Detailed Description

As the Functional Diagram shows the device consists of the following building blocks:

- A 32.768 kHz crystal oscillator with the associated dividers to generate timebase signals for periods of 1s (frequency of 1 Hz ), $6 \mathrm{~s}(1 / 10 \mathrm{~min}$ ) and 36 s ( $1 / 100 \mathrm{hour}$ ), and 32 Hz signal for LCD drivers.
- A debounce/high-pass detect circuit for the $\mathrm{S} / \mathrm{S}$ (Star/Stop) input.
- A chain of cascaded decade counters, 3 decade counters for prescaling and $5^{1 / 2} \mathrm{BCD}$ decade counters for display driving.
- Display control circuitry and BCD to 7 -segment decoder/ drivers.
- A control decoder to select different modes of operation. This is done by routing different signals to the different points in the chain of decade counters.

The control decoder has 4 inputs for selecting 16 possible modes of operation, numbered 0 to 15 . The 16 modes are selected by placing the binary equivalent of the mode number on inputs CO to C 3 . Table 2 shows the control inputs and the modes of operation.
After applying power, the ICM7249 requires a rise time of $T_{A}$ to become active and for oscillation to begin, as shown in Figure 1. The BP (backplane) output changes state once every 512 cycles of the crystal oscillator, resulting in a
square wave of 32 Hz . The display segments drive signal has the same level and frequency as BP. Segments are off when in phase with BP and are on when out of phase with BP.

A non-multiplexed LCD display is used because it is more stable over temperature and allows many standard LCD displays to be used.

## Timer Mode of Operation

In modes 0 to 3 the device functions as an interval timer. In this mode, one of the timebase signals will be routed to the decade counters at a proper point in the chain. Depending on the selected mode the display will be incremented at 0.1 $\mathrm{min}, 0.01$ hour, 0.1 hour or 1 hour rates.

Control of timing function is handled by the $\mathrm{S} / \mathrm{S}$ input. There is a high-pass filtering effect on the $\mathrm{S} / \mathrm{S}$ input in timer modes. Referring to Figure 2, timing is active when either $\mathrm{S} / \mathrm{S}$ is held high for more than 12.5 ms , or if input frequency is 50 Hz to 120 kHz . Driving $\mathrm{S} / \mathrm{S}$ with a frequency between 40 Hz to 50 Hz has an indeterminate effect on timing and should be avoided. Note that the $\mathrm{T}_{\mathrm{HP}}$ intervals shown on Figure 1 are also applied to the intervals when the $\mathrm{S} / \mathrm{S}$ input is low.

## Counter Mode of Operation

In modes 4 to 11 the device functions as an event counter or totalizer. In this mode the $\mathrm{S} / \mathrm{S}$ input will be routed to the decade counters at a proper point in the chain. Each positive transition of the $\mathrm{S} / \mathrm{S}$ will be registered as one count. Depending on the selected mode, the display will be incremented by each pulse, every 10 pulses, every 100 pulses or every 1000 pulses.
In counter modes 4, 6, 8 and 10 the $\mathrm{S} / \mathrm{S}$ input is subjected to debounce filtering. Referring to Figure 4, only the pulses with a frequency of less than 40 Hz are valid and will be counted. Input pulses with a frequency of 50 Hz to 120 kHz are not counted individually, but each burst of input pulses will be counted as one pulse if it lasts at least 12.5 ms . Driving $\mathrm{S} / \mathrm{S}$ with a frequency between 40 Hz to 50 Hz has an indeterminate result and should be avoided.

In counter modes 5, 7, 9 and 11 the $\mathrm{S} / \mathrm{S}$ input is not subjected to any debouncing action and input pulses will be counted up to a frequency of 120 kHz .

## Wink Segment

The wink segment is provided as a annunciator to indicate the ICM7249 is working. It can be connected to any kind of annunciator on an LCD, like the flashing colons in a clock type LCD.
In the timer modes, the wink segment flashes while timing is taking place. The wink segment waveform is shown on Figure 3 for timer modes. On the positive transition of $\mathrm{S} / \mathrm{S}$, the wink output turns off. It remains off for 16 BP cycles and turns back on for another 16 cycles. If timing is still active, this will be repeated, giving a wink flash rate of 1 Hz ; otherwise, the wink segment remains on while timing is not active.
In the counter modes, the wink segment stays on until a pulse occurs on $\mathrm{S} / \mathrm{S}$ input, then it winks off indicating a pulse is counted. This will happen regardless of whether the display is incremented. Figure 5 shows the wink waveform for counter modes. When a count occurs, the wink segment
turns off at the end of the 16th BP cycle and turns back on at the end of the 32nd BP cycle, giving a half-second wink. If the counting occurs more frequently than once a second, the wink output will continue to flash at the constant rate of 1 Hz .


FIGURE 7. DIGITS SEGMENT ASSIGNMENT

## Display Test and Reset

The display may be tested at any time without disturbing operation by pulsing DT high, as seen in Figure 6. On the next positive transition of BP, all the segments turn on and remain on until the end of the 16th BP cycle. This takes a half-second or less. All the segments then turn off for an additional 48 BP cycles (the end of the 64th cycle), after which valid data returns to the display. As long as DT is held high, the segments will remain on.
Additional display testing is provided by using mode 12. In this mode each displayed decade is incremented on each positive transition of $\mathrm{S} / \mathrm{S}$. Modes 13 and 14 are manufacturer testing only.

Mode 15 resets all the decades and internal counters to zero, essentially bringing everything back to power-up status.

## Applications

A typical use of the ICM7249 is seen in Figure 8, the Motor Hour Meter. In this application the ICM7249 is configured as an hours-in-use meter and shows how many whole hours of line voltage have been applied. The resistor network and high-pass filtering allow AC line activation of the S/S input. This configuration, which is powered by a 3 V lithium cell, will operate continuously for $2 \frac{1}{2}$ years. Without the display, which only needs to be connected when a reading is required, the span of operation is extended to 10 years.

When the ICM7249 is configured as an attendance counter, as shown in Figure 9, the display shows each increment. By using mode 2, external debouncing of the gate switch is unnecessary, provided the switch bounce is less than 10 ms .
The 3V lithium battery can be replaced without disturbing operation if a suitable capacitor is connected in parallel with it. The display should be disconnected, if possible, during the procedure to minimize current drain. The capacitor should be large enough to store charge for the amount of time needed to physically replace the battery ( $\Delta t=\Delta V C / I$ ). A $100 \mu \mathrm{~F}$ capacitor initially charged to 3 V will supply a current of $1.0 \mu \mathrm{~A}$ for 50 seconds before its voltage drops to 2.5 V , which is the minimum operating voltage for the ICM7249.

Before the battery is removed, the capacitor should be placed in parallel, across the $\mathrm{V}_{\mathrm{DD}}$ and GND terminals. After the battery is replaced, the capacitor can be removed and the display reconnected.


FIGURE 8. MOTOR HOUR METER


FIGURE 9. ATTENDANCE COUNTER

## SPECIAL PURPOSE DATA SHEETS

AD590 2 Wire Current Output Temperature Transducer ..... 14-3
ICL8069 Low Voltage Reference. ..... 14-13
ICM7170 $\mu \mathrm{P}$-Compatible Real-Time Clock ..... 14-17

SEMICONDUCTOR

## 2 Wire Current Output Temperature Transducer

## Features

- Linear Current Output $1 \mu \mathbf{N}^{\circ} \mathbf{K}$
- Wide Temperature Range $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
- Two-Terminal Device Voltage In/Current Out
- Wide Power Supply Range +4V to +30V
- Sensor Isolation From Case
- Low Cost


## Ordering Information

PART   NUMBER	NON-   LINEAR-   ITY $\left({ }^{\circ} \mathrm{C}\right)$	TEMPERATURE   RANGE	PACKAGE
AD590IH	$\pm 3.0$	$-55^{\circ} \mathrm{C}$ to +   $150^{\circ} \mathrm{C}$	TO- 52
AD590.JH	$\pm 1.5$	$-55^{\circ} \mathrm{C}$ to +   $150^{\circ} \mathrm{C}$	TO-52

## Description

The AD590 is an integrated-circuit temperature transducer which produces an output current proportional to absolute temperature. The device acts as a high impedance constant current regulator, passing $1 \mu \mathrm{~A}{ }^{\circ} \mathrm{K}$ for supply voltages between +4 V and +30 V . Laser trimming of the chip's thin film resistors is used to calibrate the device to $298.2 \mu \mathrm{~A}$ output at $298.2^{\circ} \mathrm{K}\left(+25^{\circ} \mathrm{C}\right)$.

The AD590 should be used in any temperature-sensing application between $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ in which conventional electrical temperature sensors are currently employed. The inherent low cost of a monolithic integrated circuit combined with the elimination of support circuitry makes the AD590 an attractive alternative for many temperature measurement situations. Linearization circuitry, precision voltage amplifiers, resistance measuring circuitry and cold junction compensation are not needed in applying the AD590. In the simplest application, a resistor, a power source and any voltmeter can be used to measure temperature.

In addition to temperature measurement, applications include temperature compensation or correction of discrete components, and biasing proportional to absolute temperature.

The AD590 is particularly useful in remote sensing applications. The device is insensitive to voltage drops over long lines due to its highimpedance current output. Any well insulated twisted pair is sufficient for operation hundreds of feet from the receiving circuitry. The output characteristics also make the AD590 easy to multiplex: the current can be switched by a CMOS multiplexer or the supply voltage can be switched by a logic gate output.

## Pinout



Functional Diagram


Specifications AD590

## Absolute Maximum Ratings $\left(T_{A}+25^{\circ} \mathrm{C}\right)$

Supply Forward Voltage (V+ to V-) . . . . . . . . . . . . . . . . . . . . . . . +44 V
Supply Reverse Voltage (V+ to V-) . . . . . . . . . . . . . . . . . . . . . . . 20 V
Breakdown Voltage (Case to $\mathrm{V}+$ to V -) . . . . . . . . . . . . . . . . . . . $\pm 200 \mathrm{~V}$
Rated Performance Temperature Range TO-52. . $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10s) . . . . . . . . . . . . . . . . . . . $+300^{\circ} \mathrm{C}$
Storage Temperature Range . . . . . . . . . . . . . . . . . . $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Thermal Information
Maximum Package Power Dissipation
TO-52 Package
Oporating Tempe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15mW
Operating Temperature Range . . . . . . . . . . . . . . . . . . $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $+175^{\circ} \mathrm{C}$

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Electrical Specifications Typical Values at $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}+=5 \mathrm{~V}$, Unless Otherwise Specified

PARAMETERS	TEST CONDITIONS	AD5901	AD590J	UNITS
Nominal Output Current at $+25^{\circ} \mathrm{C}\left(+298.2^{\circ} \mathrm{K}\right)$		298.2	298.2	$\mu \mathrm{A}$
Nominal Temperature Coefficient		1.0	1.0	$\mu \mathrm{A}^{\circ} \mathrm{K}$
Calibration Error at $+25^{\circ} \mathrm{C}$	Notes 1, 5	$\pm 10.0 \mathrm{Max}$	$\pm 5.0$ Max	${ }^{\circ} \mathrm{C}$
Absolute Error   Without External Calibration Adjustment	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$, Note 7	$\pm 20.0 \mathrm{Max}$	$\pm 10.0$ Max	${ }^{\circ} \mathrm{C}$
With External Calibration Adjustment		$\pm 5.8$ Max	$\pm 3.0$ Max	${ }^{\circ} \mathrm{C}$
Non-Linearity	Note 6	$\pm 3.0 \mathrm{Max}$	$\pm 1.5 \mathrm{Max}$	${ }^{\circ} \mathrm{C}$
Repeatability	Notes 2, 6	$\pm 0.1 \mathrm{Max}$	$\pm 0.1$ Max	${ }^{\circ} \mathrm{C}$
Long Term Drift	Notes 3, 6	$\pm 0.1$ Max	$\pm 0.1$ Max	${ }^{\circ} \mathrm{C} /$ Month
Current Noise		40	40	$\mathrm{pA} \sqrt{\mathrm{Hz}}$
Power Supply Rejection $+4 \mathrm{~V}<\mathrm{V}+<+5 \mathrm{~V}$		0.5	0.5	$\mu \mathrm{AN}$
$+5 \mathrm{~V}<\mathrm{V}+<+15 \mathrm{~V}$		0.2	0.2	$\mu \mathrm{AN}$
$+15 \mathrm{~V}<\mathrm{V}+<+30 \mathrm{~V}$		0.1	0.1	$\mu \mathrm{A} N$
Case Isolation to Either Lead		$10^{10}$	$10^{10}$	$\Omega$
Effective Shunt Capacitance		100	100	pF
Electrical Turn-On Time	Note1	20	20	$\mu \mathrm{s}$
Reverse Bias Leakage Current	Note 4	10	10	pA
Power Supply Range		+4 to +30	+4 to +30	V

## NOTE:

1. Does not include self heating effects.
2. Maximum deviation between $+25^{\circ} \mathrm{C}$ reading after temperature cycling between $-55^{\circ} \mathrm{C}$ and $+150^{\circ} \mathrm{C}$.
3. Conditions constant +5 V , constant $+125^{\circ} \mathrm{C}$.
4. Leakage current doubles every $+10^{\circ} \mathrm{C}$.
5. Mechanical strain on package may disturb calibration of device.
6. Guaranteed but not tested.
7. $-55^{\circ} \mathrm{C}$ Guaranteed by testing at $+25^{\circ} \mathrm{C}$ and $+150^{\circ} \mathrm{C}$.

## Trimming Out Errors

The ideal graph of current versus temperature for the AD590 is a straight line, but as Figure 1 shows, the actual shape is slightly different. Since the sensor is limited to the range of $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$, it is possible to optimize the accuracy by trimming. Trimming also permits extracting maximum performance from the lower-cost sensors.

The circuit of Figure 2 trims the slope of the AD590 output. The effect of this is shown in Figure 3.

The circuit of Figure 4 trims both the slope and the offset. This is shown in Figure 5. The diagrams are exaggerated to show effects, but it should be clear that these trims can be used to minimize errors over the whole range, or over any selected part of the range. In fact, it is possible to adjust the Igrade device to give less than $0.1^{\circ} \mathrm{C}$ error over the range $0^{\circ} \mathrm{C}$ to $+90^{\circ} \mathrm{C}$ and less than $0.05^{\circ} \mathrm{C}$ error from $+25^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$.


FIGURE 1. TRIMMING OUT ERRORS


FIGURE 2. SLOPE TRIMMING


FIGURE 3. EFFECT OF SLOPE TRIM


FIGURE 5A. UNTRIMMED


FIGURE 5B. TRIM ONE: OFFSET


FIGURE 5C. TRIM TWO: SLOPE


FIGURE 5D. TRIM THREE: OFFSET AGAIN FIGURE 5. EFFECT OF SLOPE AND OFFSET TRIMMING

## Accuracy

Maximum errors over limited temperature spans, with $\mathrm{V}_{\mathrm{S}}=$ +5 V , are listed by device grade in the following tables. The tables reflect the worst-case linearities, which invariably occur at the extremities of the specified temperature range. The trimming conditions for the data in the tables are shown in Figure 2 and Figure 4.
All errors listed in the tables are $\pm^{\circ} \mathrm{C}$. For example, if $\pm 1^{\circ} \mathrm{C}$ maximum error is required over the $+25^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ range (i.e., lowest temperature of $+25^{\circ} \mathrm{C}$ and span of $50^{\circ} \mathrm{C}$ ), then the trimming of a J-grade device, using the single-trim circuit (Figure 2), will result in output having the required accuracy over the stated range. An l-grade device with two trims (Figure 4) will have less than $\pm 0.2^{\circ} \mathrm{C}$ error. If the requirement is for less than $\pm 1.4^{\circ} \mathrm{C}$ maximum error, from $-25^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ ( $100^{\circ}$ span from $-25^{\circ} \mathrm{C}$ ), it can be satisfied by an I-grade device with two trims.


FIGURE 4. SLOPE AND OFFSET TRIMMING

I Grade Maximum Errors, ${ }^{\circ} \mathrm{C}$

NUMBER OF   TRIMS	TEMPERATURE   SPAN $\left({ }^{\circ} \mathrm{C}\right)$	LOWEST TEMPERATURE IN SPAN $\left.{ }^{\circ} \mathbf{C}\right)$								
None	10	-55	-25	0	+25	+50	+75	+100	$+\mathbf{+ 1 2 5}$	
None	25	10.4	9.2	10.0	10.8	11.6	12.4	13.2	14.4	
None	50	10.4	11.0	11.8	12.0	13.8	15.0	16.0		
None	100	15.2	16.0	16.6	17.4	18.8	-	-	-	
None	150	18.4	19.0	19.2	-	-	-	-	-	
None	205	20.0	-	-	-	-	-	-	-	
One	10	0.6	0.4	0.4	0.4	0.4	0.4	0.4	0.6	
One	25	1.8	1.2	1.0	1.0	1.0	1.2	1.6	1.8	
One	50	3.8	3.0	2.0	2.0	2.0	3.0	3.8	-	
One	100	4.8	4.5	4.2	4.2	5.0	-	-	-	
One	150	5.5	4.8	5.5	-	-	-	-	-	
One	205	5.8	-	-	-	-	-	-	-	
Two	10	0.3	0.2	0.1	$($ Note 1$)$	$($ Note 1$)$	0.1	0.2	0.3	
Two	25	0.5	0.3	0.2	$($ Note 1$)$	0.1	0.2	0.3	0.5	
Two	50	1.2	0.6	0.4	0.2	0.2	0.3	0.7	-	
Two	100	1.8	1.4	1.0	2.0	2.5	-	-	-	
Two	150	2.6	2.0	2.8	-	-	-	-	-	
Two	205	3.0	-	-	-	-	-	-	-	

NOTE:

1. 2. Less than $\pm 0.05^{\circ} \mathrm{C}$.

## J Grade Maximum Errors, ${ }^{\circ} \mathrm{C}$

NUMBER OF TRIMS	TEMPERATURE SPAN $\left({ }^{\circ} \mathrm{C}\right)$	LOWEST TEMPERATURE IN SPAN ( ${ }^{\circ} \mathrm{C}$ )							
		-55	-25	0	+25	+50	+75	+100	+125
None	10	4.2	4.6	5.0	5.4	5.8	6.2	6.6	7.2
None	25	5.0	5.2	5.5	5.9	6.0	6.9	7.5	8.0
None	50	6.5	6.5	6.4	6.9	7.3	8.2	9.0	-
None	100	7.7	8.0	8.3	8.7	9.4	-	-	-
None	150	9.2	9.5	9.6	-	-	-	-	-
None	205	10.0	-	-	-	-	-	-	-
One	10	0.3	0.2	0.2	0.2	0.2	0.2	0.2	0.3
One	25	0.9	0.6	0.5	0.5	0.5	0.6	0.8	0.9
One	50	1.9	1.5	+1.0	1.0	1.0	1.5	1.9	-
One	100	2.3	2.2	2.0	2.0	2.3	-	-	-
One	150	2.5	2.4	2.5	-	-	-	-	-
One	205	3.0	-	-	-	-	-	-	-
Two	10	0.1	(Note 1)	0.1					
Two	25	0.2	0.1	(Note 1)	(Note 1)	(Note 1)	(Note 1)	0.1	0.2
Two	50	0.4	0.2	0.1	(Note 1)	(Note 1)	0.1	0.2	(Note 1)
Two	100	0.7	0.5	0.3	0.7	1.0	-	-	-
Two	150	1.0	0.7	1.2	$\bullet$	-	$\bullet$	$\bullet$	-
Two	205	1.6	-	-	-	-	-	-	-

NOTE:

1. Less than $\pm 0.05^{\circ} \mathrm{C}$.

## Notes

1. Maximum errors over all ranges are guaranteed based on the known behavior characteristic of the AD590.
2. For one-trim accuracy specifications, the $205^{\circ} \mathrm{C}$ span is assumed to be trimmed at $+25^{\circ} \mathrm{C}$; for all other spans, it is assumed that the device is trimmed at the midpoint.
3. For the $205^{\circ} \mathrm{C}$ span, it is assumed that the two-trim temperatures are in the vicinity of $+0^{\circ} \mathrm{C}$ and $+140^{\circ} \mathrm{C}$; for all other spans, the specified trims are at the endpoints.
4. In precision applications, the actual errors encountered are usually dependent upon sources of error which are often overlooked in error budgets. These typically include:
a. Trim error in the calibration technique used
b. Repeatability error
c. Long term drift errors

Trim Error is usually the largest error source. This error arises from such causes as poor thermal coupling between the device to be calibrated and the reference sensor; reference sensor errors; lack of adequate time for the device being calibrated to settle to the final temperature; radically different thermal resistances between the case and the surroundings ( $\mathrm{R}_{\theta \mathrm{CA}}$ ) when trimming and when applying the device.

Repeatability Errors arise from a strain hysteresis of the package. The magnitude of this error is solely a function of the magnitude of the temperature span over which the device is used. For example, thermal shocks between $+0^{\circ} \mathrm{C}$ and $+100^{\circ} \mathrm{C}$ involve extremely low hysteresis and result in repeatability errors of less than $\pm 0.05^{\circ} \mathrm{C}$. When the thermalshock excursion is widened to $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$, the device will typlcally exhibit a repeatability error of $\pm 0.05^{\circ} \mathrm{C}( \pm 0.10$ guaranteed maximum).
Long Term Drift Errors are related to the average operating temperature and the magnitude of the thermal-shocks experienced by the device. Extended use of the AD590 at temperatures above $+100^{\circ} \mathrm{C}$ typically results in long-term drift of $\pm 0.03^{\circ} \mathrm{C}$ per month; the guaranteed maximum is $\pm 0.10^{\circ} \mathrm{C}$ per month. Continuous operation at temperatures below $+100^{\circ} \mathrm{C}$ induces no measurable drifts in the device. Besides the effects of operating temperature, the severity of thermal shocks incurred will also affect absolute stability. For ther-mal-shock excursions less than $+100^{\circ} \mathrm{C}$, the drift is difficult to measure $\left(<0.03^{\circ} \mathrm{C}\right)$. However, for $+200^{\circ} \mathrm{C}$ excursions, the device may drift by as much as $\pm 0.10^{\circ} \mathrm{C}$ after twenty such shocks. If severe, quick shocks are necessary in the application of the device, realistic simulated life tests are recommended for a thorough evaluation of the error introduced by such shocks.

## Typical Applications



FIGURE 6A.


FIGURE 6B.
FIGURE 6. SIMPLE CONNECTION. OUTPUT IS PROPORTIONAL TO ABSOLUTE TEMPERATURE


FIGURE 7. LOWEST TEMPERATURE SENSING SCHEME. AVAILABLE CURRENT IS THAT OF THE "COLDEST" SENSOR


FIGURE 8. AVERAGE TEMPERATURE SENSING SCHEME
The sum of the AD590 currents appears across R, which is chosen by the formula: $R=\frac{10 k \Omega}{n}$
$n$ being the number of sensors. See Figure 8.


FIGURE 9. SINGLE SETPOINT TEMPERATURE CONTROLLER
The AD590 produces a temperature-dependent voltage across $R$ ( $C$ is for filtering noise). Setting $R_{2}$ produces a scale-zero voltage. For the celsius scale, make $R=1 \mathrm{k} \Omega$ and $\mathrm{V}_{\text {ZERO }}=0.273 \mathrm{~V}$. For Fahrenheit, $R=1.8 \mathrm{k} \Omega$ and $\mathrm{V}_{\text {ZERO }}=$ 0.460 V . See Figure 9.


FIGURE 10. SIMPLEST THERMOMETER.
Meter displays current output directly in degrees Kelvin. using the AD590J, sensor output is within $\pm 10$ degrees over the entire range. See Figure 10.


FIGURE 11. BASIC DIGITAL THERMOMETER, CELSIUS AND FAHRENHEIT SCALES

	$\mathbf{R}$	$\mathbf{R}_{\mathbf{1}}$	$\mathbf{R}_{\mathbf{2}}$	$\mathbf{R}_{\mathbf{3}}$	$\mathbf{R}_{\mathbf{4}}$	$\mathbf{R}_{\mathbf{5}}$
${ }^{\circ} \mathrm{F}$	9.00	4.02	2.0	12.4	10.0	0
${ }^{\circ} \mathrm{C}$	5.00	4.02	2.0	5.11	5.0	11.8

5
$\sum R_{n}=28 k \Omega$ nominal
$n=1$

## ALL values in $\mathrm{k} \Omega$

The ICL7106 has a $\mathrm{V}_{\mathbb{I N}}$ span of $\pm 2.0 \mathrm{~V}$ and a $\mathrm{V}_{\mathrm{CM}}$ range of ( $V+-0.5$ ) volts to $(V-+1)$ volts. $R$ is scaled to bring each range within $V_{C M}$ while not exceeding $V_{I N}$. $V_{\text {REF }}$ for both scales is 500 mV maximum rending on the celsius range $+199.9^{\circ} \mathrm{C}$ limited by the (short-term) maximum allowable sensor temperature. Maximum reading on the fahrenheit range is $+199.9^{\circ} \mathrm{F}\left(+93.3^{\circ} \mathrm{C}\right)$ limited by the number of display digits. See Figure 11 and notes below.


FIGURE 12. BASIC DIGITAL THERMOMETER, KELVIN SCALE

The Kelvin scale version reads from 0 to $+1999^{\circ} \mathrm{K}$ theoretically, and from $+223^{\circ} \mathrm{K}$ to $+473^{\circ} \mathrm{K}$ actually. The $2.26 \mathrm{k} \Omega$ resistor brings the input within the ICL7106 $\mathrm{V}_{\mathrm{CM}}$ range: 2 qeneralpurpose silicon diodes or an LED may be substituted. See Figure 12 and notes below.


FIGURE 13. BASIC DIGITAL THERMOMETER, KELVIN SCALE WITH ZERO ADJUST

This circuit allows "zero adjustment" as well as slope adjustment. the ICL8069 brings the input within the common-mode range, while the $5 \mathrm{k} \Omega$ pots trim any offset at $+218^{\circ} \mathrm{K}\left(-55^{\circ} \mathrm{C}\right)$, and set the scale factor. See Figure 13 and notes below.
Notes for Figure 11, Figure 12 and Figure 13
Since all 3 scales have narrow $\mathrm{V}_{\mathbb{N}}$ spans, some optimization of ICL7106 components can be made to lower noise and preserve CMR. The table below shows the suggested values. Similar scaling can be used with the ICL7126 and ICL7136.

SCALE	$\mathbf{V}_{\mathbf{I N}}$ RANGE $(V)$	$R_{\mathbf{I N T}}(\mathrm{k} \Omega)$	$C_{A Z}(\mu \mathrm{~F})$
K	0.223 to 0.473	220	0.47
$C$	-0.25 to +1.0	220	0.1
$F$	-0.29 to +0.996	220	0.1

For all:
$C_{\text {REF }}=0.1 \mu \mathrm{~F}$
$\mathrm{C}_{\mathrm{INT}=0.22 \mu \mathrm{~F}, ~}^{\text {l }}$
$\mathrm{C}_{\mathrm{osc}}=100 \mathrm{pF}$
$\mathrm{R}_{\mathrm{OSC}}=100 \mathrm{k} \Omega$


FIGURE 14. CENTIGRADE THERMOMETER $\left(0^{\circ} \mathrm{C}-+100^{\circ} \mathrm{C}\right)$
The ultra-low bias current of the ICL7611 allows the use of large value gain resistors, keeping meter current error under $1 / 2 \%$, and therefore saving the expense of an extra meter driving amplifier. See Figure 14.


FIGURE 15. DIFFERENTIAL THERMOMETER
The $50 \mathrm{k} \Omega$ pot trims offsets in the devices whether internal or external, so it can be used to set the size of the difference interval. this also makes it useful for liquid level detection (where there will be a measurable temperature difference). See Figure 15.


FIGURE 16. COLD JUNCTION COMPENSATION FOR TYPE K THERMOCOUPLE
The reference junction(s) should be in close thermal contact with the AD590 case. V+ must be at least 4V, while ICL8069 current should be set at $1 \mathrm{~mA}-2 \mathrm{~mA}$. Calibration does not require shorting or removal of the thermocouple: set $\mathbf{R}_{1}$ for $\mathrm{V}_{2}=10.98 \mathrm{mV}$. If very precise measurements are needed, adjust $R_{2}$ to the exact Seebeck coefficient for the thermocouple used (measured or from table) note $V_{1}$, and set $R_{1}$ to buck out this voltage (i.e., set $\mathrm{V}_{2}=\mathrm{V}_{1}$ ). For other thermocouple types, adjust values to the appropriate Seebeck coefficient. See Figure 16.


FIGURE 17. MULTIPLEXING SENSORS
If shorted sensors are possible, a series resistor in series with the D line will limit the current (shown as R, above: only one is needed). A six-bit digital word will select one of 64 sensors.

## Die Characteristics

DIE DIMENSIONS:
$37 \times 58 \times 14 \pm 1 \mathrm{mils}$
METALLIZATION:
Type: Aluminum 100\%
Thickness: $15 \mathrm{k} \AA \pm 1 \mathrm{k} \AA$

## GLASSIVATION:

Type: PSG/Nitride
PSG Thickness: $7 \mathrm{k} \AA \pm 1.4 \mathrm{k} \AA$
Nitride Thickness: $8 \mathrm{k} \AA \pm 1.2 \mathrm{k} \AA$

## Metallization Mask Layout



Low Voltage Reference

## Features

- Low Blas Current - $50 \mu \mathrm{~A}$ Min
- Low Dynamic Impedance
- Low Reverse Voltage
- Low Cost


## Description

The ICL8069 is a 1.2 V temperature compensated voltage reference. It uses the band-gap principle to achieve excellent stability and low noise at reverse currents down to $50 \mu \mathrm{~A}$. Applications include analog-to-digital converters, digital-toanalog converters, threshold detectors, and voltage regulators. Its low power consumption makes it especially suitable for battery operated equipment.

Ordering Information

PART NUMBER	MAXIMUM TEMPCO	TEMPERATURE RANGE	PACKAGE
ICL8069CCZR	$0.005 \% /^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	TO-92
ICL8069CCSQ	$0.005 \% /^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	TO-52
ICL8069DCZR	$0.01 \% /^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	TO-92
ICL8069DCSQ	$0.01 \% /^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	TO-52
ICL8069CCBA	$0.005 \% /^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Lead SOIC
ICL8069DCBA	$0.01 \% /^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Lead SOIC
ICL8069CMSQ	$0.005 \% /^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	TO- 52
ICL8069DMSQ	$0.01 \% /^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	TO-52

## Pinouts

ICL8069 (SOIC) TOP VIEW



## Functional Block Diagrams

> SIMPLE REFERENCE (1.2V OR LESS)


BUFFERED 10V REFERENCE USING A SINGLE SUPPLY


DOUBLE REGULATED 100 mV REFERENCE FOR ICL7107 ONE-CHIP DPM CIRCUIT


Absolute Maximum Ratings	
Reverse Voltage	See Note 2
Forward Current	. . 10 mA
Reverse Current	. 10 mA
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10s)	$+300^{\circ} \mathrm{C}$
Junction Temperature	
SOP	.$+150^{\circ} \mathrm{C}$

## Absolute Maximum Ratings

## Thermal Information

Thermal Resistance
SOIC Package
$160^{\circ} \mathrm{C} / \mathrm{W}$
Operating Temperature
ICL8069C
. $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
ICL8069M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Power Dissipation . . . . . . Limited by MAX Forward/Reverse Current

Electrical Specifications $\quad T_{A}=+25^{\circ} \mathrm{C}$ Unless Otherwise Specified

PARAMETERS	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Reverse Breakdown Voltage	$\mathrm{I}_{\mathrm{R}}=500 \mu \mathrm{~A}$	1.20	1.23	1.25	V
Reverse Breakdown Voltage Change	$50 \mu \mathrm{~A} \leq \mathrm{I}_{\mathrm{R}} \leq 5 \mathrm{~mA}$	-	15	20	mV
Reverse Dynamic Impedance	$\mathrm{I}_{\mathrm{R}}=50 \mu \mathrm{~A}$	-	1	2	$\Omega$
	$\mathrm{I}_{\mathrm{R}}=500 \mu \mathrm{~A}$	-	1	2	$\Omega$
Forward Voltage Drop	$\mathrm{I}_{\mathrm{F}}=500 \mu \mathrm{~A}$	-	0.7	1	V
RMS Noise Voltage	$\begin{aligned} & 10 \mathrm{~Hz} \leq \mathrm{F} \leq 10 \mathrm{kHz} \\ & \mathrm{I}_{\mathrm{R}}=500 \mu \mathrm{~A} \end{aligned}$	-	5	-	$\mu \mathrm{V}$
Long Term Stability	$\begin{aligned} & I_{R}=4.75 \mathrm{~mA} \\ & T_{A}=+25^{\circ} \mathrm{C} \end{aligned}$	-	1	-	ppm/kHR
Breakdown Voltage Temperature Coefficient ICL8069C	$\begin{aligned} & I_{R}=500 \mu \mathrm{~A}, T_{A}=\text { Operating } \\ & \text { Temperature Range (Note 3) } \end{aligned}$	-	-	0.005	$\%{ }^{\circ} \mathrm{C}$
ICL8069D		-	-	0.01	$\%{ }^{\circ} \mathrm{C}$
Reverse Current Range	1.18V to 1.27 V	0.050	-	5	mA

NOTES:

1. If circuit strays in excess of 200 pF are anticipated, a $4.7 \mu \mathrm{~F}$ shunt capacitor will ensure stability under all operating conditions.
2. In normal use, the reverse voltage cannot exceed the reference voltage. However when plugging units into a powered-up test fixture, an instantaneous voltage equal to the compliance of the test circuit will be seen. This should not exceed 20 V .
3. For the military part, measurements are made at $+25^{\circ} \mathrm{C},-55^{\circ} \mathrm{C}$, and $+125^{\circ} \mathrm{C}$. The unit is then classified as a function of the worst case TC from $+25^{\circ} \mathrm{C}$ to $-55^{\circ} \mathrm{C}$, or $+25^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

## Typical Performance Curves



FIGURE 1. VOLTAGE CHANGE AS A FUNCTION OF REVERSE CURRENT


FIGURE 2. REVERSE VOLTAGE AS A FUNCTION OF CURRENT


Figure 3. REVERSE VOLTAGE AS A FUNCTION OF TEMPERATURE

$\mu$ P-Compatible Real-Time Clock

## Features

- 8-bit $\mu \mathrm{P}$ Bus Compatible
- Multiplexed or Direct Addressing
- Regulated Oscillator Supply Ensures Frequency Stability and Low Power
- Time From 1/100 Seconds to 99 Years
- Software Selectable $12 / 24$ Hour Format
- Latched Time Data Ensures No Roll Over During Read
- Full Calendar with Automatic Leap Year Correction
- On-Chip Battery Backup Switchover Circuit
- Access Time Less than 300ns
- 4 Programmable Crystal Oscillator Frequencies Over Industrial Temperature Range
- 3 Programmable Crystal Oscillator Frequencies Over Military Temperature Range
- On-Chip Alarm Comparator and RAM
- Interrupts from Alarm and 6 Selectable Periodic Intervals
- Standby Micro-Power Operation: 1.2 A Typical at 3.0V and 32kHz Crystal


## Applications

- Portable and Personal Computers
- Data Logging
- Industrial Control Systems
- Point Of Sale


## Ordering Information

PART NUMBER	TEMPERATURE   RANGE	PACKAGE
ICM7170IPG	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24 Lead Plastic DIP
ICM7170IDG	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24 Lead Ceramic
ICM7170IBG	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24 Lead SOIC
ICM7170MDG	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	24 Lead Ceramic
ICM7170AIPG	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24 Lead Plastic DIP
ICM7170AIDG	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24 Lead Ceramic
ICM7170AIBG	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24 Lead SOIC
ICM7170AMDG	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	24 Lead Ceramic

NOTE: "A" Parts Screened to $<5 \mu \mathrm{~A} \mathrm{I}_{\text {STBY }}$ at 32 kHz

## Description

The ICM7170 real time clock is a microprocessor bus compatible peripheral, fabricated using Harris' silicon gate CMOS LSI process. An 8-bit bidirectional bus is used for the data I/O circuitry. The clock is set or read by accessing the 8 internal separately addressable and programmable counters from $1 / 100$ seconds to years. The counters are controlled by a pulse train divided down from a crystal oscillator circuit, and the frequency of the crystal is selectable with the onchip command register. An extremely stable oscillator frequency is achieved through the use of an on-chip regulated power supply.
The device access time ( $t_{\mathrm{ACC}}$ ) of 300 ns eliminates the need for wait states or software overhead with most microprocessors. Furthermore, an ALE (Address Latch Enable) input is provided for interfacing to microprocessors with a multiplexed address/data bus. With these two special features, the ICM7170 can be easily interfaced to any available microprocessor.
The ICM7170 generates two types of interrupts, periodic and alarm. The periodic interrupt ( $100 \mathrm{~Hz}, 10 \mathrm{~Hz}$, etc.) can be programmed by the internal interrupt control register to provide 6 different output signals. The alarm interrupt is set by loading an on-chip 51-bit RAM that activates an interrupt output through a comparator. The alarm interrupt occurs when the real time counter and alarm RAM time are equal. A status register is available to indicate the interrupt source.
An on-chip Power Down Detector eliminates the need for external components to support the battery back-up function. When a power down or power failure occurs, internal logic switches the on-chip counters to battery back-up operation. Read/write functions become disabled and operation is limited to time-keeping and interrupt generation, resulting in low power consumption.
Internal latches prevent clock roll-over during a read cycle. Counter data is latched on the chip by reading the 100thseconds counter and is held indefinitely until the counter is read again, assuring a stable and reliable time value.

## Pinouts

ICM7170 (PDIP, CDIP)
TOP VIEW

## Functional Block Diagram



## Absolute Maximum Ratings

Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 .8.0V
Power Dissipation (Note 1). . . . . . . . . . . . . . . . . . . . . . . . . . 500mW
Storage Temperature Range . . . . . . . . . . . . . . . . . . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering 10s). . . . . . . . . . . . . . . . . . . . $+300^{\circ} \mathrm{C}$
Input Voltage (Any Terminal) (Note 2) . . . . . V $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ to $\mathrm{V}_{\text {SS }}-0.3 \mathrm{~V}$

## Thermal Information

Thermal Resistance	$\theta_{\text {JA }}$	$\theta_{\mathrm{Jc}}$
Plastic Package.	$75^{\circ} \mathrm{C} / \mathrm{W}$	-
Ceramic DIP Package	$63^{\circ} \mathrm{C} / \mathrm{W}$	$12^{\circ} \mathrm{C} / \mathrm{W}$
SOIC Package.	$75^{\circ} \mathrm{C} / \mathrm{W}$	-
Junction Temperature		
Plastic Package .		$+150^{\circ} \mathrm{C}$
Ceramic Package		$+175^{\circ} \mathrm{C}$

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

DC Electrical Specifications $T_{A}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{D D}+5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{B A C K U P} \mathrm{~V}_{D D}, \mathrm{~V}_{S S}=0 \mathrm{~V}$ Unless Otherwise Specified All $I_{D D}$ specifications include all input and output leakages (ICM7170 and ICM7170A)

PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{V}_{\mathrm{DD}}$ Supply Range, $\mathrm{V}_{\mathrm{DD}}$	$\mathrm{F}_{\text {Osc }}=32 \mathrm{kHz}$		1.9	-	5.5	V
	$\mathrm{F}_{\text {OSC }}=1,2,4 \mathrm{MHz}$		2.6	-	5.5	V
Standby Current, $\mathrm{I}_{\text {STBY }}(1)$	$\begin{aligned} & \text { FOSC }=32 \mathrm{kHz} \\ & \text { Pins } 1-8,15-22 \text { and } 24=V_{D D} \\ & V_{D D}=V_{S S} ; \\ & V_{B A C K U P}=V_{D D}-3.0 \mathrm{~V} \\ & \text { For ICM7100A } \\ & \text { See General Notes } 5 \end{aligned}$	ICM7170	-	1.2	20.0	$\mu \mathrm{A}$
		ICM7170A	-	1.2	5.0	$\mu \mathrm{A}$
Standby Current, $\mathrm{I}_{\text {STBY }}(2)$	$\begin{aligned} & \text { FoSC }=4 \mathrm{MHz} \\ & \text { Pins } 1-8,15-22 \text { and } 24=V_{D D} \\ & V_{D D}=V_{S S} ; \\ & V_{B A C K U P}=V_{D D}-3.0 \mathrm{~V} \end{aligned}$		-	20	150	$\mu \mathrm{A}$
Operating Supply Current, $\mathrm{I}_{\mathrm{DD}(1)}$	$\begin{aligned} & \text { Fosc }=32 \mathrm{kHz} \\ & \text { ReadWrite Operation at } 100 \mathrm{~Hz} \end{aligned}$		-	0.3	1.2	mA
Operating Supply Current, $\mathrm{IDD}^{(2)}$	$\begin{aligned} & \text { Fosc }=32 \mathrm{kHz} \\ & \text { Read/Write Operation at } 1 \mathrm{MHz} \end{aligned}$		-	1.0	2.0	mA
Input Low Voltage (Except Osc.), $\mathrm{V}_{\mathrm{IL}}$	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$		$\bullet$	$\bullet$	0.8	V
Input High Voltage (Except Osc.), $\mathrm{V}_{\mathbf{I H}}$	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$		2.4	-	-	V
Output Low Voltage (Except Osc.), $\mathrm{V}_{\mathrm{OL}}$	$\mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA}$		-	-	0.4	V
Output High Voltage Except INTERRUPT   (Except Osc.), $\mathrm{V}_{\mathrm{OH}}$	$\mathrm{I}_{\mathrm{OH}}=-400 \mu \mathrm{~A}$		2.4	-	-	V
Input Leakage Current, $\mathrm{I}_{\text {IL }}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {DD }}$ or $\mathrm{V}_{\text {SS }}$		-10	0.5	+10	$\mu \mathrm{A}$
Tri-state Leakage Current (D0 - D7), lol(1)	$\mathrm{V}_{0}=\mathrm{V}_{\text {DD }}$ or $\mathrm{V}_{\text {SS }}$		-10	0.5	+10	$\mu \mathrm{A}$
Backup Battery Voltage, $V_{\text {battery }}$	$\mathrm{F}_{\text {OSC }}=1,2,4 \mathrm{MHz}$		2.6	-	$\mathrm{V}_{\mathrm{DD}}-1.3$	V
Backup Battery Voltage, $V_{\text {BATteRy }}$	Fosc $=32 \mathrm{kHz}$		1.9	-	$\mathrm{V}_{\text {DD }}-1.3$	V
Leakage Current INTERRUPT, $\mathrm{I}_{\mathrm{OL}}(2)$	$\mathrm{V}_{0}=\mathrm{V}_{\mathrm{DD}}$	INT SOURCE Connected to $\mathrm{V}_{\text {ss }}$	-	0.5	10	$\mu \mathrm{A}$
CAPACITANCE D0-D7, $\mathrm{C}_{10}$			-	8	-	pF
CAPACITANCE A0-A4, CADDRESS			-	6	-	pF
CAP. $\overline{\mathrm{RD}}, \overline{\mathrm{W}}, \overline{\mathrm{CS}}$ ALE, Control			-	6	-	pF
Total Osc. Input Cap., $\mathrm{C}_{\text {IN }}$ Osc.			-	3	-	pF

AC Electrical Specifications $T_{A}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{BACKUP}}=\mathrm{V}_{\mathrm{DD}}$, D0 - D7 Load Capacitance $=150 \mathrm{pF}, \mathrm{V}_{\mathrm{IL}}=0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2.8 \mathrm{~V}$, Unless Otherwise Specified

PARAMETER	MIN	MAX	UNITS
READ CYCLE TIMING			
READ to DATA Valid, $\mathrm{t}_{\text {RD }}$	-	250	ns
ADDRESS Valid to DATA Valid, $t_{\text {Acc }}$	-	300	ns
READ Cycle Time, teyc	400	-	ns
Read High Time, $\mathrm{t}_{\text {RH }}$	150	-	ns
$\overline{\mathrm{RD}}$ High to Bus Tri-state, $\mathrm{t}_{\text {RH }}$	-	25	ns
ADDRESS to READ Set Up Time, $\mathrm{t}_{\text {As }}$	50	-	ns
ADDRESS HOLD Time After READ, $\mathrm{t}_{\text {AR }}$	0	-	ns
WRITE CYCLE TIMING			
ADDRESS Valid to WRITE Strobe, $\mathrm{t}_{\text {AD }}$	50	-	ns
ADDRESS Hold Time for WRITE, $\mathrm{t}_{\text {wa }}$	0	-	ns
WRITE Pulse Width, Low, twL	100	-	ns
WRITE High Time, ${ }_{\text {WH }}$	300	-	ns
DATA IN to WRITE Set Up Time, tow	100	-	ns
DATA IN Hold Time After WRITE, two	30	-	ns
WRITE Cycle Time, ${ }_{\text {che }}$	400	-	ns
MULTIPLEXED MODE TIMING			
ALE Pulse Width, High, til	50	-	ns
ADDRESS to ALE Set Up Time, $\mathrm{t}_{\text {AL }}$	30	-	ns
ADDRESS Hold Time After ALE, LiA	30	-	ns

NOTE:

1. $T_{A}=25^{\circ} \mathrm{C}$
2. Due to the SCR structure inherent in the CMOS process, connecting any terminal at voltages greater than $V_{D D}$ or less than $V_{S S}$ may cause destructive device latchup. For this reason, it is recommended that no inputs from external sources not operating on the same power supply be applied to the device before its supply is established, and that in multiple supply systems, the supply to the ICM7170 be turned on first.

Timing Diagrams


FIGURE 1. READ CYCLE TIMING FOR NON-MULTIPLEXED BUS (ALE $=V_{I H}, \overline{W R}=V_{I H}$ )


FIGURE 2. WRITE CYCLE TIMING FOR NON-MULTIPLEXED BUS (ALE $\left.=V_{I H}, \overline{R D}=V_{I H}\right)$


FIGURE 3. READ CYCLE TIMING FOR MULTIPLEXED BUS ( $\overline{\mathrm{WR}}=\mathrm{V}_{\mathrm{IH}}$ )

## Timing Diagrams (Continued)



FIGURE 4. WRITE CYCLE TIMING FOR MULTIPLEXED BUS ( $\overline{\mathrm{RD}}=\mathbf{V} \mathbf{V} \boldsymbol{H}$ )

## Pin Description

SIGNAL	PIN NUMBER	SOIC   PIN NUMBER	DESCRIPTION
$\overline{\text { WR }}$	1	19	$\overline{\text { Write Input }}$
ALE	2	20	Address Latch Enable Input
$\overline{\text { CS }}$	3	21	$\overline{\text { Chip Select Input }}$
A4-AO	$4-8$	$22-2$	Address Inputs
OSC OUT	9	3	Oscillator Output
OSC IN	10	4	Oscillator Input
INT SOURCE	11	5	Interrupt Source
$\overline{\text { INTERRUPT }}$	12	6	$\overline{\text { Interrupt Output }}$
$V_{\text {SS }}$ (GND)	13	7	Digital Common
$V_{\text {BACKUP }}$	14	8	Battery Negative Side
DO - D7	$15-22$	$9-16$	Data I/O
$V_{\text {DD }}$	23	17	Positive Digital Supply
$\overline{\text { RD }}$	24	18	$\overline{\text { Read Input }}$

TABLE 1. COMMAND REGISTER FORMAT

COMMAND REGISTER ADDRESS (10001b, 11h) WRITE-ONLY							
D7	D6	D5	D4	D3	D2	D1	D0
n/a	n/a	Norma/Test   Mode	Interrupt   Enable	Run/Stop	$12 / 24$ Hour   Format	Crystal   Frequency	Crystal   Frequency

TABLE 2. COMMAND REGISTER BIT ASSIGNMENTS

D5	TEST BIT	D4	INTERRUPT   ENABLE	D3	RUN/STOP	D2	$24 / 12$ HOUR   FORMAT	D1	D0	CRYSTAL   FREQUENCY
0	Normal Mode	0	Interrupt disabled	0	Stop	0	12 Hour Mode	0	0	32.768 kHz
1	Test Mode	1	Interrupt enable	1	Run	1	24 Hour Mode	0	1	1.048576 MHZ
								1	0	2.097152 MHz
								1	1	4.194304 MHz

TABLE 3. ADDRESS CODES AND FUNCTIONS

ADDRESS						FUNCTION	DATA								VALUE
A4	A3	A2	Al	A0	HEX		D7	D6	D5	D4	D3	D2	D1	D0	
0	0	0	0	0	00	Counter-1/100 seconds	-								0-99
0	0	0	0	1	01	Counter-hours	-	-	-						0-23
						12 Hour Mode	$\dagger$	-	-	$\bullet$					1-12
0	0	0	1	0	02	Counter-minutes	-	-							0-59
0	0	0	1	1	03	Counter-seconds	-	-							0-59
0	0	1	0	0	04	Counter-month	-	-	-	-					1-12
0	0	1	0	1	05	Counter-date	-	-	$\bullet$						1-31
0	0	1	1	0	06	Counter-year	-								0-99
0	0	1	1	1	07	Counter-day of week	-	-	-	-	-				0-6
0	1	0	0	0	08	RAM-1/100 seconds	M								0-99
0	1	0	0	1	09	RAM-hours	-	M	-						0-23
						12 Hour Mode	$\dagger$	M	-	-					1-12
0	1	0	1	0	OA	RAM-minutes	M	-	.	.					0-59
0	1	0	1	1	OB	RAM-seconds	M	-	.	.					0-59
0	1	1	0	0	OC	RAM-month	M	-	-	-					1-12
0	1	1	0	1	OD	RAM-date	M	-	-						1-31
0	1	1	1	0	OE	RAM-year	M								0-99
0	1	1	1	1	OF	RAM-day of week	M	-	-	-	-				0-6
1	0	0	0	0	10	Interrupt Status and Mask Register	+								
1	0	0	0	1	11	Command register	-	-							

NOTES:
Addresses 10010 to 11111 (12h to 1 Fh ) are unused.
' + ' Unused bit for interrupt Mask Register, MSB bit for interrupt Status Register.
' $\because$ Indicates unused bits.
' $\dagger$ ' AM/PM indicator bit in 12 hour format Logic " 0 " indicates AM, logic " 1 " indicates PM
' $M$ ' Alarm compare for particular counter will be enabled if bit is set to logic " 0 "

TABLE 4. INTERRUPT AND STATUS REGISTERS FORMAT

INTERRUPT MASK REGISTER ADDRESS (10000b, 10h) WRITE-ONLY							
D7	D6	D5	D4	D3	D2	D1	D0
NOT USED	DAY	HOUR	MIN	SEC	1/10 SEC	1/100 SEC	ALARM
	$\leftarrow$		Periodic Interrupt Mask Bits			$\rightarrow$	Alarm/Compare Mask Bit
INTERRUPT STATUS REGISTER ADDRESS (10000b, 10h) READ-ONLY							
D7	D6	D5	D4	D3	D2	D1	D0
GLOBAL INTERRUPT	DAY	HOUR	MIN	SEC	1/10 SEC	1/100 SEC	ALARM
Periodic and Alarm Flags	$\leftarrow$		Periodic Interrupt Flags			$\rightarrow$	Alarm Compare Flag

## Detailed Description

## Oscillator

The ICM7170 has an onboard CMOS Pierce oscillator with an internally regulated voltage supply for maximum accuracy, stability, and low power consumption. It operates at any of four popular crystal frequencies: 32.768 kHz , $1.046576 \mathrm{MHz}, 2.097152 \mathrm{MHz}$, and 4.194304 MHz (Note 1). The crystal should be designed for the parallel resonant mode of oscillation. In addition to the crystal, 2 or 3 load capacitors are required, depending on the circuit topology used.

The oscillator output is divided down to 4000 Hz by one of four divider ratios, determined by the two frequency selection bits in the Command Register (D0 and D1 at address 11 H ). This 4000 Hz is then divided down to 100 Hz , which is used as the clock for the counters.

Time and calendar information is provided by 8 consecutive, programmable counters: 100ths of seconds, seconds, minutes, hours, day of week, date, month, and year. The data is in binary format with 8 bits per digit. See Table 3 for address information. Any unused bits are held to a logic "0" during a read and ignored during a write operation.
NOTE:

1. 4.94304 MHz is not available over military temperature range.

## Alarm Compare RAM

On the chip are 51 bits of Alarm Compare RAM grouped into words of different lengths. These are used to store the time, ranging from 10ths of seconds to years, for comparison to the real-time counters. Each counter has a corresponding RAM word. In the Alarm Mode an interrupt is generated when the current time is equal to the alarm time. The RAM
contents are compared to the counters on a word by word basis. If a comparison to a particular counter is unnecessary, then the appropriate ' $M$ ' bit in Compare RAM should be set to logic " 1 ".

The ' $M$ ' bit, referring to Mask bit, causes a particular RAM word to be masked off or ignored during a compare. Table 3 shows addresses and Mask bit information.

## Periodic Interrupts

The interrupt output can be programmed for 6 periodic signals: $100 \mathrm{~Hz}, 10 \mathrm{~Hz}$, once per second, once per minute, once per hour, or once per day. The 100 Hz and 10 Hz interrupts have instantaneous errors of $\pm 2.5 \%$ and $\pm 0.15 \%$ respectively. This is because non-integer divider circuitry is used to generate these signals from the crystal frequency, which is a power of 2 . The time average of these errors over a 1 second period, however, is zero. Consequently, the 100 Hz or 10 Hz interrupts are not suitable as an aid in tuning the oscillator; the 1 second interrupt must be used instead.

## See General Notes 6.

The periodic interrupts can occur concurrently and in addition to alarm interrupts. The periodic interrupts are controlled by bits in the interrupt mask register, and are enabled by setting the appropriate bit to a " 1 " as shown in Table 4. Bits D1 through D6 in the mask register, in conjunction with bits D1 through D6 of the status register, control the generation of interrupts according to Figure 4.

The interrupt status register, when read, indicates the cause of the interrupt and resets itself on the rising edge of the RD signal. When any of the counters having a corresponding bit in the status register increments, that bit is set to a "1" regardless of whether the corresponding bit in the interrupt mask register is set or not.


FIGURE 4. INTERRUPT OUTPUT CIRCUIT

Consequently, when the status register is read it will always indicate which counters have increments and if an alarm compare occurred, since the last time it was read. This requires some special software considerations. If a slow interrupt is enabled (i.e. hourly or daily), the program must always check the slowest interrupt that has been enabled first, because all the other lower order bits in the status register will be set to "1" as well.

Bit D7 is the global interrupt bit, and when set to a " 1 ", indicates that the ICM7170 did indeed generate a hardware interrupt. This is useful when other interrupting devices in addition to the ICM7170 are attached to the system microprocessor, and all devices must be polled to determine which one generated the interrupt.
See General Notes 6.

## Interrupt Operation

The Interrupt Output N-channel MOSFET (Figure 4) is enabled whenever both the Interrupt Enable bit (D4 of the Command Register) and a mask bit (D0 - D6 of the Interrupt Mask Register) are set. The transistor is turned ON when a flag bit is set that corresponds to one of the set mask bits. This also sets the Global Interrupt Flag Bit (D7 of the Interrupt Status Register). It is turned OFF when the Interrupt Status Register is read. An interrupt can occur in both the operational and standby modes of operation.
Since system power is usually applied between $V_{D D}$ and $\mathrm{V}_{\text {SS }}$, the user can connect the Interrupt Source (pin No. 11) to $\mathrm{V}_{\mathrm{SS}}$. This allows the Interrupt Output to turn on only while system powers applied and will not be pulled to $\mathrm{V}_{\text {SS }}$ during standby operation. If interrupts are required only during standby operation, then the interrupt source pin should be connected to the battery's negative side ( $V_{\text {BACKUP }}$ ). In this configuration, for example, the interrupt could be used to turn on power for a cold boot.

## Power Down Detector

The ICM7170 contains an on-chip power down detector that eliminates the need for external components to support the battery-backup switchover function, as shown in Figure 5. Whenever the voltage from the $\mathrm{V}_{\mathrm{SS}}$ pin to the $\mathrm{V}_{\text {BACKUP }}$ pin is less than approximately 1.0 V (the $\mathrm{V}_{\mathrm{TH}}$ of the N -channel MOSFET), the data bus I/O buffers in the ICM7170 are automatically disabled and the chip cannot be read or written to. This prevents random data from the microprocessor being written to the clock registers as the power supply is going down.

Actual switchover to battery operation occurs when the voltage on the $V_{\text {BACKUP }}$ pin is within $\pm 50 \mathrm{mV}$ of $V_{S S}$. This switchover uncertainty is due to the offset voltage of the CMOS comparator that is used to sense the battery voltage. During battery backup, device operation is limited to timekeeping and interrupt generation only, thus achieving micropower current drain. If an external battery-backup switchover circuit is being used with the ICM7170, or if standby battery operation is not required, the $\mathrm{V}_{\text {BACKUP }}$ pin should be pulled up to $\mathrm{V}_{\mathrm{DD}}$ through a 2 K resistor.

## Time Synchronization

Time synchronization is achieved through bit D3 of the Command Register, which is used to enable or disable the 100 Hz clock from the counters. A logic "1" allows the counters to function and a logic " 0 " disables the counters. To accurately set the time, a logic " 0 " should be written into D3 and then the desired times entered into the appropriate counters. The clock is then started at the proper time by writing a logic "1" into D3 of the Command Register.

## Latched Data

To prevent ambiguity while the processor is gathering data from the registers, the ICM7170 incorporates data latches and a transparent transition delay circuit.


FIGURE 5. SIMPLIFIED ICM7170 BATTERY BACKUP CIRCUIT

By accessing the 100ths of seconds counter an internal store signal is generated and data from all the counters is transferred into a 36-bit latch. A transition delay circuit will delay a 100 Hz transition during a READ cycle. The data stored by the latches is then available for further processing until the 100ths of seconds counter is read again. If a $\overline{\mathrm{RD}}$ signal is wider than 0.01 sec ., 100 Hz counts will be ignored.

## Control Lines

The $\overline{\mathrm{RD}}, \overline{\mathrm{WR}}$, and $\overline{\mathrm{CS}}$ signals are active low inputs. Data is placed on the bus from counters or registers when $\overline{\mathrm{RD}}$ is a logic " 0 ". Data is transferred to counters or registers when $\overline{W R}$ is a logic " 0 ". $\overline{\mathrm{RD}}$ and $\overline{W R}$ must be accompanied by a logical " 0 " $\overline{C S}$ as shown in Figures 2 and 3. The ICM7170 will also work satisfactorily with $\overline{\mathrm{CS}}$ grounded. In this mode, access to the ICM7170 is controlled by $\overline{\mathrm{RD}}$ and $\overline{\mathrm{WR}}$ only.
With the ALE (Address Latch Enable) input, the ICM7170 can be interfaced directly to microprocessors that use a multiplexed address/data bus by connecting the address lines AO - A4 to the data lines DO - D4. To address the chip, the address is placed on the bus and ALE is strobed. On the falling edge, the address and $\overline{\mathrm{CS}}$ information is read into the address latch and buffer. $\overline{\mathrm{RD}}$ and $\overline{\mathrm{WR}}$ are used in the same way as on a non-multiplexed bus. If a non-multiplexed bus is used, ALE should be connected to $\mathrm{V}_{\mathrm{DD}}$.

## Test Mode

The test mode is entered by setting D5 of the Command Register to a logic " 1 ". This connects the 100 Hz counter directly to the oscillator's output.

## Oscillator Considerations

Load Design: A new oscillator load configuration, shown in Figure 6, has been found that eliminates start-up problems sometimes encountered with 32 kHz tuning fork crystals.


## FIGURE 6. NEW OSCILLATOR CONFIGURATION

Two conditions must be met for best oscillator performance: the capacitive load must be matched to both the inverter and crystal to provide the ideal conditions for oscillation, and the resonant frequency of the oscillator must be adjustable to the desired frequency. In the original design (Figure 7), these two goals were often at odds with each other; either the oscillator was trimmed to frequency by detuning the load circuit, or stability was increased at the expense of absolute frequency accuracy.


FIGURE 7. ORIGINAL OSCILLATOR CONFIGURATION
The new load configuration (Figure 6) allows these two conditions to be met independently. The two load capacitors, C1 and C2, provide a fixed load to the oscillator and crystal. C3 adjusts the frequency that the circuit resonates at by reducing the effective value of the crystal's motional capacitance, C0. This minute adjustment does not appreciably change the load of the overall system, therefore stability is no longer affected by tuning. Typical values for these capacitors are shown in Table 5. C1 and C2 must always be greater than twice the crystal's recommended load capacitance in order for C 3 to be able to trim the frequency. Some experimentation may be necessary to determine the ideal values of C1 and C2 for a particular crystal.

TABLE 5. TYPICAL LOAD CAPACITOR VALUES

CRYSTAL   FREQUENCY	LOAD CAPS   (C1, C2)	TRIMMER CAP   (C3)
32 kHz	33 pF	$5-50 \mathrm{pF}$
1 MHz	33 pF	$5-50 \mathrm{pF}$
2 MHz	25 pF	$5-50 \mathrm{pF}$
4 MHz	22 pF	$5-100 \mathrm{pF}$

This three capacitor tuning method will be more stable than the original design and is mandatory for 32 kHz tuning fork crystals: without it they may leap into an overtone mode when power is initially applied.
The original two-capacitor circuit (Figure 7) will continue to work as well as it always has, and may continue to be used in applications where cost or space is a critical consideration. It is also easier to tune to frequency since one end of the trimmer capacitor is fixed at the AC ground of the circuit $\left(V_{D D}\right)$, minimizing the disturbance cause by contact between the adjustment tool and the trimmer capacitor. Note that in both configurations the load capacitors are connected between the oscillator pins and $V_{D D}$ - do not use $V_{S S}$ as an AC ground.

Layout: Due to the extremely low current (and therefore high impedance) design of the ICM7170s oscillator, special attention must be given to the layout of this section. Stray capacitance should be minimized. Keep the oscillator traces on a
single layer of the PCB. Avoid putting a ground plane above or below this layer. The traces between the crystal, the capacitors, and the ICM7170 OSC pins should be as short as possible. Completely surround the oscillator components with a thick trace of $V_{D D}$ to minimize coupling with any digital signals. The final assembly must be free from contaminants such as solder flux, moisture, or any other potential sources of leakage. A good solder mask will help keep the traces free of moisture and contamination over time.

## Oscillator Tuning

Trimming the oscillator should be done indirectly. Direct monitoring of the oscillator frequency by probing OSC IN or OSC OUT is not accurate due to the capacitive loading of most probes. One way to accurately trim the ICM7170 is by turning on the 1 second periodic interrupt and trimming the oscillator until the interrupt period is exactly one second. This can be done as follows:

1. Turn on the system. Write a $\mathbf{0 O H}$ to the Interrupt Mask Register (location 10H) to clear all interrupts.
2. Set the Command Register (location 11H) for the appropriate crystal frequency, set the Interrupt Enable and Run/Stop bits to 1 , and set the Test bit to 0 .
3. Write a 08 H to the Interrupt Mask Register to turn on the 1 second interrupt.
4. Write an interrupt handler to read the Interrupt Status Register after every interrupt. This resets the interrupt and allows it to be set again. A software loop that reads the Interrupt Status Register several times each second will accomplish this also.
5. Connect a precision period counter capable of measuring 1 second within the accuracy desired to the interrupt output. If the interrupt is configured as active low, trigger on the falling edge. If the interrupt is active high, trigger on the rising edge. Be sure to measure the period between when the transistor turns ON, and when the transistor turns ON a second later.
6. Adjust C 3 ( C 2 for the two-capacitor load configuration) for an interrupt period of exactly 1.000000 seconds.

## Application Notes

## Digital Input Termination During Backup

To ensure low current drain during battery backup operation, none of the digital inputs to the ICM7170 should be allowed to float. This keeps the input logic gates out of their transition region, and prevents crossover current from flowing which will shorten battery life. The address, data, $\overline{\mathrm{CS}}$, and ALE pins should be pulled to either $V_{D D}$ or $V_{S S}$, and the $\overline{R D}$ and $\overline{W R}$ inputs should be pulled to $V_{D D}$. This is necessary whether the internal battery switchover circuit is used or not.

## IBM/PC Evaluation Circuit

Figure 8 shows the schematic of a board that has been designed to plug into an IBM PC/XT (Note 1.) or compatible computer. In this example $\overline{\mathrm{CS}}$ is permanently tied low and access to the chip is controlled by the $\overline{\mathrm{RD}}$ and $\overline{\mathrm{WR}}$ pins. These signals are generated by U1, which gates the IBMs $\overline{\overline{O R}}$ and $\overline{\mathrm{IOW}}$ with a device select signal from U3, which is functioning as an I/O block address decoder. DS1 selects the interrupt priority.

U5 is used to isolate the ICM7170 from the PC databus for test purposes. It is only required on heavily-loaded TTL databusses - the ICM7170 can drive most TTL and CMOS databusses directly.
Since the IBM PC/XT (Note 1) requires a positive interrupt transition, the ICM7170s interrupt output transistor has been configured as a source follower. As a source follower, the interrupt output signal will swing between OV and 2.5 V . When trimming the oscillator, the frequency counter must be triggered on the rising edge of the interrupt signal.

TABLE 6.

BATTERIES	CRYSTALS		
Panasonic	Saronix	32 kHz	NTF3238
Rayovac	Statek	32 kHz	CX -1V
	Seiko	2 MHz	GT -38

## NOTE:

1. IBM, IBM PC, and IBM XT are trademarks of IBM Corp.


FIGURE 8. IBM PC INTERFACE FOR ICM7170

## General Notes

1. TIME ACCESS - To update the present time registers (Hex 00 07) the $1 / 100$ register must be read first. The 7 real time counter registers (Hours, Minutes, Seconds, Month, Date, Day, and Year) data are latched only if the $1 / 100$ second counter register is read. The $1 / 100$ seconds data itself is not latched. The real time data will be held in the latches until the $1 / 100$ seconds is read again. See the data sheet section on LATCHED DATA. None of the RAM data is latched since it is static by nature.
2. REGULATED OSCILLATOR - The oscillator's power supply is voltage regulated with respect to $\mathrm{V}_{\mathrm{DD}}$. In the 32 kHz mode the regulator's amplitude is $\Sigma \mathrm{Vtn}+\mathrm{Vtp}(\cong 1.8 \mathrm{~V})$. In the 1,2 , and 4 MHz mode the regulator's amplitude is $\Sigma \mathrm{Vtn}+\mathrm{Vtn}+\mathrm{Vtp}$ ( $\equiv 2.6 \mathrm{~V}$ ). As a result, signal conditioning is necessary to drive the oscillator with an external signal. In addition, it is also necessary to buffer the oscillator's signal to drive other external clocks because of its reduced amplitude and offset voltage.
3. INTERNAL BATTERY BACKUP - When the ICM7170 is using its own internal battery backup circuitry, no other circuitry interfaced to the ICM7170 should be active during standby operation. When $V_{D D}(+5 \mathrm{~V})$ is turned off (Standby operation), $V_{D D}$ should equal $V_{S S}=0 V$. All ICM7170 I/O should also equal $V_{S s}$. At this time, the $\mathrm{V}_{\text {BACKup }}$ pin should be 2.8 V to 3.5 V below $\mathrm{V}_{\mathrm{SS}}$ when using a Lithium battery.
4. EXTERNAL BATTERY BACKUP - The ICM7170 may be placed on the same power supply as battery-backed up RAM by keeping the ICM7170 in its operational state and having an external circuit switch between system and backup power for the ICM7170 and the RAM. In this case $\mathrm{V}_{\text {BACKup }}$ should be pulled up to $\mathrm{V}_{\mathrm{DD}}$ through a 2 K resistor. Although the ICM7170 is always "on" in this configuration, its current consumption will typically be less than a microamp greater than that of standby operation at the same supply voltage (See Note 9).

Proper consideration must be given to disabling the ICM7170s and the RAMs I/O before system power is removed. This is important because many microprocessors can generate spurious write signals when their supply falls below their specified operating voltage limits. NANDing CS (or WR) with a POWERGOOD signal will create a $\overline{C S}$ (or $\overline{W R}$ ) that is only valid when system power is within specifications. The POWERGOOD signal should be generated by an accurate supply monitor such as the ICL7665 under/over voltage detector.
An alternate method of disabling the ICM7170's I/O is to pull $\mathrm{V}_{\text {BACKUP }}$ down to under a volt above $\mathrm{V}_{\text {SS }}\left(\mathrm{V}_{\text {SS }}<\mathrm{V}_{\text {BACKUP }}\right.$ <1.0V). This will cause the ICM7170 to internally disable all I/O. Do not allow $V_{\text {BACKup }}$ to equal $V_{S S}$, since this could cause oscillation of the battery backup comparator (See Figure 5). $\mathrm{V}_{\text {BACKUP }}$ $=\mathrm{V}_{\text {SS }}+0.5 \mathrm{~V}$ will disable the I/O and provide enough overdrive for the comparator.
5. ICM7170A PART - The ICM7170A part is binned at final test for a 32.768 kHz maximum current of $5 \mu \mathrm{~A}$. All other specifications remain the same.
6. INTERRUPTS - The Interrupt Status Register (address 10H) always indicates which of the real time counters have been incremented since the last time the register was read. NOTE: This is independent of whether or not any mask bits are set.
The status register is always reset immediately after it is read. If an interrupt from the ICM7170 has occurred since the last time the status register was read, bit D7 of the register will be set. If the source was an alarm interrupt, bit DO will also be set. If the interrupt transistor has been turned on, reading the Interrupt Status Register will reset it.

To enable the periodic interrupt, both the Command Register's Interrupt Enable bit (D4) and at least one bit in the Interrupt Mask Register (D1-D6) must be set to a 1. The periodic interrupt is triggered when the counter corresponding to a mask bit that has been set is incremented. For example, if you enable the 1 second interrupt when the current value in the 100ths counter is 57 , the first interrupt will occur 0.43 seconds later. All subsequent interrupts will be exactly one second apart. The interrupt service routine should then read the Interrupt Status Register to reset the interrupt transistor and, if necessary, determine the cause of the interrupt (periodic, alarm, or non-ICM7170 generated) from the contents of the status register.
To enable the alarm interrupts, both the Command Register's Interrupt Enable bit (D4) and the Interrupt Mask Register's Alarm bit (DO) must be set to a 1. Each time there is an exact match between the values in the alarm register and the values in the real time counters, bits D0 and D7 of the Interrupt Status Register will be set to a 1 and the N -channel interrupt transistor will be turned on. As with a periodic interrupt, the service routine should then read the Interrupt Status Register to reset the interrupt transistor and, since periodic and alarm interrupts may be simultaneously enabled, determine the cause of the interrupt if necessary.
Mask bits: The ICM7170 alarm interrupt compares the data in the alarm registers with the data in the real time registers, ignoring any registers with the mask bit set. For example, if the alarm register is set to 11-23-95 (Month-Day-Year), 10:59:00:00 (Hour-Minutes-Seconds-Hundredths), and DAY $=X X$ (XX $=$ masked off), the alarm will generate a single interrupt at 10:59 on November 23,1995. If the alarm register is set to 11-XX-95, 10:XX:00:00, and DAY = 2 ( 2 = Tuesday); the alarm will generate one interrupt every minute from 10:00-10:59 on every Tuesday in November, 1995.
NOTE: Masking off the 100ths of a second counter has the same effect as setting it to 00.
7. RESISTOR IN SERIES WITH BATTERY - A 2K resistor (R2) must be placed in series with the battery backup pin of the ICM7170. The UL laboratories have requested the resistor to limit the charging and discharging current to the battery. The resistor also serves the purpose of degenerating parasitic SCR action. This SCR action may occur if an input is applied to the ICM7170, outside of its supply voltage range, while it is in the standby mode.
8. $V_{\text {BACKUP }}$ DIODE - Lithium batteries may explode if charged or if discharged at too high a rate. These conditions could occur if the battery was installed backwards or in the case of a gross component failure. A 1N914-type diode placed in series with the battery as shown in Figure 8 will prevent this from occurring. A resistor of $2 \mathrm{M} \Omega$ or so should parallel the diode to keep the $\mathrm{V}_{\text {BACKUP }}$ terminal from drifting toward the $\mathrm{V}_{\text {SS }}$ terminal and shutting off ICM7170 I/O during normal operation.
9. SUPPLY CURRENT - ICM7170 supply current is predominantly a function of oscillator frequency and databus activity. The lower the oscillator frequency, the lower the supply current. When there is little or no activity on the data, address or control lines, the current consumption of the ICM7170 in its operational mode approaches that of the backup mode.
.

## HARRIS QUALITY AND RELIABILITY

PAGE
HARRIS QUALITY ..... 15-3
INTRODUCTION ..... 15-3
THE ROLE OF THE QUALITY ORGANIZATION ..... 15-3
THE IMPROVEMENT PROCESS ..... 15-3
DESIGNING FOR MANUFACTURABILITY ..... 15-3
SPECIAL TESTING ..... 15-5
HARRIS SEMICONDUCTOR STANDARD PROCESSING FLOWS ..... 15-6
CONTROLLING AND IMPROVING THE MANUFACTURING PROCESS - SPC/DOX ..... 15-8
AVERAGE OUTGOING QUALITY (AOQ) ..... 15-9
Training ..... 15-9
Incoming Materials ..... 15-9
CALIBRATION LABORATORY ..... 15-11
MANUFACTURING SCIENCE - CAM, JIT, TPM ..... 15-11
Computer Aided Manufacturing (CAM) ..... 15-11
Just In Time (JIT) ..... 15-11
Total Productive Maintenance (TPM) ..... 15-11
HARRIS RELIABILITY ..... 15-12
PROCESS/PRODUCT/PACKAGE QUALIFICATIONS ..... 15-12
PRODUCT/PACKAGE RELIABITY MONITORS ..... 15-12
FIELD RETURN PRODUCT ANALYSIS SYSTEM. ..... 15-13
FAILURE ANALYSIS LABORATORY. ..... 15-16
ANALYTICAL SERVICES LABORATORY ..... 15-16
RELIABILITY FUNDAMENTALS AND CALCULATION OF FAILURE RATE ..... 15-17
Failure Rate Calculations ..... 15-17
Acceleration Factors ..... 15-18
Activation Energy ..... 15-18

## Introduction

Success in the integrated circuit industry means more than simply meeting or exceeding the demands of today's market. It also includes anticipating and accepting the challenges of the future. It results from a process of continuing improvement and evolution, with perfection as the constant goal.
Harris Semiconductor's commitment to supply only top value integrated circuits has made quality improvement a mandate for every person in our work force - from circuit designer to manufacturing operator, from hourly employee to corporate executive. Price is no longer the only determinant in marketplace competition. Quality, reliability, and performance enjoy significantly increased importance as measures of value in integrated circuits.
Quality in integrated circuits cannot be added on or considered after the fact. It begins with the development of capable process technology and product design. It continues in manufacturing, through effective controls at each process or step. It culminates in the delivery of products which meet or exceed the expectations of the customer.

## The Role of the Quality Organization

The emphasis on building quality into the design and manufacturing processes of a product has resulted in a significant refocus of the role of the Quality organization. In addition to facilitating the development of SPC and DOX, Quality professionals support other continuous improvement tools such as control charts, measurement of equipment capability, standardization of inspection equipment and processes, procedures for chemical controls, analysis of inspection data and feedback to the manufacturing areas, coordination of efforts for process and product improvement, optimization of environmental or raw materials quality, and the development of quality improvement programs with vendors.
At critical manufacturing operations, process and product quality is analyzed through random statistical sampling and product monitors. The Quality organization's role is changing from policing quality to leadership and coordination of quality programs or procedures through auditing, sampling, consulting, and managing Quality Improvement projects.
To support specific market requirements, or to ensure conformance to military or customer specifications, the Quality organization still performs many of the conventional quality functions (e.g., group testing for military products or wafer lot acceptance). But, true to the philosophy that quality is everyone's job, much of the traditional on-line measurement and control of quality characteristics is where it belongs - with the people who make the product. The Quality organization is there to provide leadership and assistance in the deployment of quality techniques, and to monitor progress.

## The Improvement Process



FIGURE 1. STAGES OF STATISTICAL QUALITY TECHNOLOGY
Harris Semiconductor's quality methodology is evolving through the stages shown in Figure 1. In 1981 we embarked on a program to move beyond Stage I, and we are currently in the transition from Stage III to Stage IV, as more and more of our people become involved in quality activities. The traditional "quality" tasks of screening, inspection, and testing are being replaced by more effective and efficient methods, putting new tools into the hands of all employees. Table 1 illustrates how our quality systems are changing to meet today's needs.

## Designing for Manufacturability

Assuring quality and reliability in integrated circuits begins with good product and process design. This has always been a strength in Harris Semiconductor's quality approach. We have a very long lineage of high reliability, high performance products that have resulted from our commitment to design excellence. All Harris products are designed to meet the stringent quality and reliability requirements of the most demanding end equipment applications, from military and space to industrial and telecommunications. The application of new tools and methods has allowed us to continuously upgrade the design process.
Each new design is evaluated throughout the development cycle to validate the capability of the new product to meet the end market performance, quality, and reliability objectives.
The validation process has four major components:

1. Design simulation/optimization
2. Layout verification
3. Product demonstration
4. Reliability assessment.

Harris Quality

TABLE 1. TYPICAL ON-LINE MANUFACTURING/QUALITY FUNCTIONS

AREA	FUNCTION	MANUFACTURING	CONTROLS

Harris Quality

TABLE 1. TYPICAL ON-LINE MANUFACTURING/QUALITY FUNCTIONS (Continued)

AREA	FUNCTION	MANUFACTURING CONTROLS	QAQC MONITOR AUDIT
Test	- JAN Self-Audit   - Temperature/Humidity   - ESD Controls   - Temperature Test Calibration   - Test System Calibration   - Test Procedures   - Control Unit Compliance   - Lot Acceptance Conformance   - Group A Lot Acceptance	$\begin{aligned} & x \\ & x \\ & x \\ & x \end{aligned}$ $x$ $x$	$X$   X   X
Probe	- JAN Self-Audit   - Wafer Repeat Correlation   - Visual Requirements   - Documentation   - Process Performance	$\begin{aligned} & x \\ & x \\ & x \\ & x \end{aligned}$	$x$   $x$   X   X
Burn-In	- JAN Self-Audit   - Functionality Board Check   - Oven Temperature Controls   - Procedural Conformance	$\begin{aligned} & x \\ & x \end{aligned}$	$x$
Brand	- JAN Self-Audit   - ESD Controls   - Brand Permanency   - Temperature/Humidity   - Procedural Conformance	$\begin{aligned} & x \\ & x \\ & x \end{aligned}$	$\begin{aligned} & \hline x \\ & x \\ & x \\ & x \end{aligned}$
QCl Inspection	- JAN Self-Audit   - Group B Conformance   - Group C and D Conformance		$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \\ & \mathrm{x} \end{aligned}$

Harris designers have an extensive set of very powerful Computer-Aided Design (CAD) tools to create and optimize product designs (see Table 2).

TABLE 2. HARRIS I.C. DESIGN TOOLS

DESIGN STEP	PRODUCTS	
	ANALOG	DIGITAL
Functional   Simulation	Cds Spice	Cds Spice   Verilog
Parametric   Simulation	Cds Spice   Monte Cario	Cds Spice
Schematic Capture	Cadence	Cadence
Functional Checking	Cadence	Cadence
Rules Checking	Cadence	Cadence
Parasitic Extraction	Cadence	Cadence

## Special Testing

Harris Semiconductor offers several standard screen flows to support a customer's need for additional testing and reliability assurance. These flows include environmental stress testing, burn-in, and electrical testing at temperatures other than $+25^{\circ} \mathrm{C}$. The flows shown on pages 9-6 and 9-7 indicate the Harris standard processing flows for a Commercial Linear part in PDIP Package. In addition, Harris can supply products tested to customer specifications both for electrical requirements and for nonstandard environmental stress screening. Consult your field sales representative for details.

## Harris Semiconductor Standard Processing Flows


(1) Example for a PDIP Package Part
(2) Example for a Linear Part in PDIP Package


TABLE 3. SUMMARIZING CONTROL APPLICATIONS

FAB		
- Diffusion   - Junction Depth   - Sheet Resistivities   - Oxide Thickness   - Implant Dose Calibration   - Uniformity	- Thin Film   - Film Thickness   - Uniformity   - Refractive Index   - Film Composition	- Photo Resist   - Critical Dimension   - Resist Thickness   - Etch Rates   - Measurement Equipment   - Critical Dimension   - Film Thickness   - 4 Point Probe   - Ellipsometer
ASSEMBLY		
- Pre-Seal   - Die Prep Visuals   - Yields   - Die Attach Heater Block   - Die Shear   - Wire Pull   - Ball Bond Shear   - Saw Blade Wear   - Pre-Cap Visuals	- Post-Seal   - Internal Package Moisture   - Tin Plate Thickness   - PIND Defect Rate   - Solder Thickness   - Leak Tests   - Module Rm. Solder Pot Temp.   - Seal   - Temperature Cycle	- Measurement   - XRF   - Radiation Counter   - Thermocouples   - GM-Force Measurement
TEST		
,	- Handiers/Test System   - Defect Pareto Charts   - Lot \% Defective   - ESD Failures per Month	- Monitor Failures   - Lead Strengthening Quality   - After Burn-In PDA
OTHER		
- IQC   - Vendor Performance   - Material Criteria   - Quality Levels	- Environment   - Water Quality   - Clean Room Control   - Temperature   - Humidity	- IQC Measurement/Analysis   - XRF   - ADE   - 4 Point Probe   - Chemical Analysis Equipment

## Controlling and Improving the Manufacturing Process - SPC/DOX

Statistical process control (SPC) is the basis for quality control and improvement at Harris Semiconductor. Harris manufacturing people use control charts to determine the normal variabilities in processes, materials, and products. Critical process variables and performance characteristics are measured and control limits are plotted on the control charts. Appropriate action is taken if the charts show that an operation is outside the process control limits or indicates a nonrandom pattern inside the limits. These same control charts are powerful tools for use in reducing variations in processing, materials, and products. Table 3 lists some typical manufacturing applications of control charts at Harris Semiconductor.
SPC is important, but still considered only part of the solution. Processes which operate in statistical control are not always capable of meeting engineering requirements. The conventional way of dealing with this in the semiconductor industry has been to implement $100 \%$ screening or inspection steps to remove defects, but these techniques are insufficient to meet today's demands for the highest reliability and perfect quality performance.
Harris still uses screening and inspection to "grade" products and to satisfy specific customer requirements for burn-in, multiple temperature test insertions, environmental screening, and visual inspection as value-added testing options. However, inspection and screening are limited in their ability to
reduce product defects to the levels expected by today's buyers. In addition, screening and inspection have an associated expense, which raises product cost. (See Table 4).

TABLE 4. APPROACH AND IMPACT OF STATISTICAL QUALITY TECHNOLOGY

	Stage	APPROACH	IMPACT
1	Product Screening	- Stress and Test   - Defective Prediction	- Limited Quality   - Costly   - After-The-Fact
11	Process Control	- Statistical Process Control   - Just-In-Time Manufacturing	- Identifies Variability   - Reduces Costs   - Real Time
III	Process Optimization	- Design of Experiments   - Process Simulation	- Minimizes Variability   - Before-The-Fact
IV	Product Optimization	- Design for Producibility   - Product Simulation	- Insensitive to Variability   - Designed-In Quality   - Optimal Results

Harris engineers are, instead, using Design of Experiments (DOX), a scientifically disciplined mechanism for evaluating and implementing improvements in product processes, materials, equipment, and facilities. These improvements are aimed at reducing the number of defects by studying the key variables controlling the process, and optimizing the procedures or design to yield the best result. This approach is a more time-consuming method of achieving quality perfection, but a better product results from the efforts, and the basic causes of product nonconformance can be eliminated. SPC, DOX, and design for manufacturability, coupled with our $100 \%$ test flows, combine in a product assurance program that delivers the quality and reliability performance demanded for today and for the future.

## Average Outgoing Quality (AOQ)

Average Outgoing Quality is a yardstick for our success in quality manufacturing. The average outgoing electrical defective is determined by randomly sampling units from each lot and is measured in parts per million (PPM). The current procedures and sampling plans outlined in JEDEC STD 16, MIL-STD-883 and MIL-I-38535 are used by our quality inspectors.
The focus on this quality parameter has resulted in a continuous improvement to less than 100 PPM, and the goal is to continue improvement toward 0 PPM.

## Training

The basis of a successful transition from conventional quality programs to more effective, total involvement is training. Extensive training of personnel involved in product manufacturing began in 1984 at Harris, with a comprehensive devel-
opment program in statistical methods. Using the resources of Harris statisticians, private consultants, and internally developed programs, training of engineers, supervisors, and operators/technicians has been an ongoing activity in Harris Semiconductor.
Over the past years, Harris has also deployed a comprehensive training program for hourly operators and supervisors in job requirements and functional skills. All hourly manufacturing employees participate (see Table 5).

## Incoming Materials

Improving the quality and reducing the variability of critical incoming materials is essential to product quality enhancement, yield improvement, and cost control. With the use of statistical techniques, the influence of silicon, chemicals, gases and other materials on manufacturing is highly measurable. Current measurements indicate that results are best achieved when materials feeding a statistically controlled manufacturing line have also been produced by statistically controlled vendor processes.
To assure optimum quality of all incoming materials, Harris has initiated an aggressive program, linking key suppliers with our manufacturing lines. This user-supplier network is the Harris Vendor Certification process by which strategic vendors, who have performance histories of the highest quality, participate with Harris in a lined network; the vendor's factory acts as if it were a beginning of the Harris production line.
SPC seminars, development of open working relationships, understanding of Harris' manufacturing needs and vendor capabilities, and continual improvement programs are all part of the certification process. The sole use of engineering limits no longer is the only quantitative requirement of incoming materials.

TABLE 5. SUMMARY OF TRAINING PROGRAMS

COURSE	AUDIENCE	TOPICS COVERED
SPC, Basic	Manufacturing Operators,   Non-Manufacturing   Personnel	Harris Philosophy of SPC, Statistical Definitions, Statistical Calculations,   Problem Analysis Tools, Graphing Techniques, Control Charts
SPC, Intermediate	Manufacturing Supervisors,   Technicians	Harris Philosophy of SPC, Statistical Definitions, Statistical Calculations,   Problem Analysis Tools, Graphing Techniques, Control Charts, Distributions,   Measurement Process Evaluation, Introduction to Capability
SPC, Advanced	Manufacturing Engineers,   Manufacturing Managers	Harris Philosophy of SPC, Statistical Definitions, Statistical Calculations,   Problem Analysis Tools, Graphing Techniques, Control Charts, Distributions,   Measurement Process Evaluation, Advanced Control Charts, Variance Com-   ponent Analysis, Capability Analysis
Design of Experiments   (DOX)	Engineers, Managers	Factorial and Fractional Designs, Blocking Designs, Nested Models, Analysis   of Variance, Normal Probability Plots, Statistical Intervals, Variance Compo-   nent Analysis, Multiple Comparison Procedures, Hypothesis Testing, Model   Assumptions/Diagnostics
Regression	Engineers, Managers	Simple Linear Regression, Multiple Regression, Coefficient Interval Estima-   tion, Diagnostic Tools, Variable Selection Techniques
Response Surface   Methods (RSM)	Engineers, Managers	Steepest Ascent Methods, Second Order Models, Central Composite De-   signs, Contour Plots, Box-Behnken Designs

Specified requirements include centered means, statistical control limits, and the requirement that vendors deliver their products from their own statistically evaluated, in-control manufacturing processes.

In addition to the certification process, Harris has worked to promote improved quality in the performance of all our qualified vendors who must meet rigorous incoming inspection criteria (see Table 6).

TABLE 6. INCOMING QUALITY CONTROL MATERIAL QUALITY CONFORMANCE

MATERIAL	INCOMING INSPECTIONS	VENDOR DATA REQUIREMENTS
Silicon	- Resistivity   - Crystal Orientation   - Dimensions   - Edge Conditions   - Taper   - Thickness   - Total Thickness Variation   - Backside Criteria   - Oxygen   - Carbon	- Equipment Capability Control Charts   - Oxygen   - Resistivity   - Control Charts Related to   - Enhanced Gettering   - Total Thickness Variation   - Total Indicated Reading   - Particulates   - Certificated of Analysis for all Critical Parameters   - Control Charts from On-Line Processing   - Certificate of Conformance
Chemicals/Photoresists/ Gases	- Chemicals   - Assay   - Major Contaminants   - Molding Compounds   - Spiral Flow   - Thermal Characteristics   - Gases   - Impurities   - Photoresists   - Viscosity   - Film Thickness   - Solids   - Pinholes	- Certificate of Analysis on all Critical Parameters   - Certificate of Conformance   - Control Charts from On-Line Processing   - Control Charts   - Assay   - Contaminants   - Water   - Selected Parameters   - Control Charts   - Assay   - Contaminants   - Control Charts on   - Photospeed   - Thickness   - UV Absorbance   - Filterability   - Water   - Contaminants
Thin Film Materials	- Assay   - Selected Contaminants	- Control Charts from On-Line Processing   - Control Charts   - Assay   - Contaminants   - Dimensional Characteristics   - Certificate of Analysis for all Critical Parameters   - Certificate of Conformance
Assembly Materials	- Visual Inspection   - Physical Dimension Checks   - Glass Composition   - Bondability   - Intermetallic Layer Adhesion   - Ionic Contaminants   - Thermal Characteristics   - Lead Coplanarity   - Plating Thickness   - Hermeticity	- Certificate of Analysis   - Certificate of Conformance   - Process Control Charts on Outgoing Product Checks and In-Line Process Controls

## Calibration Laboratory

Another important resource in the product assurance system is a calibration lab in each Harris Semiconductor operation site. These labs are responsible for calibrating the electronic, electrical, electro/mechanical, and optical equipment used in both production and engineering areas. The accuracy of instruments used at Harris is traceable to a national standards. Each lab maintains a system which conforms to the current revision of MIL-STD-45662, "Calibration System Requirements."
Each instrument requiring calibration is assigned a calibration interval based upon stability, purpose, and degree of use. The equipment is labeled with an identification tag on which is specified both the date of the last calibration and of the next required calibration. The Calibration Lab reports on a regular basis to each user department. Equipment out of calibration is taken out of service until calibration is performed. The Quality organization performs periodic audits to assure proper control in the using areas. Statistical procedures are used where applicable in the calibration process.

## Manufacturing Science - CAM, JIT, TPM

In addition to SPC and DOX as key tools to control the product and processes, Harris is deploying other management mechanisms in the factory. On first examination, these tools appear to be directed more at schedules and capacity. However, they have a significant impact on quality results.

## Computer Aided Manufacturing (CAM)

CAM is a computer based inventory and productivity management tool which allows personnel to quickly identify production line problems and take corrective action. In addition, CAM improves scheduling and allows Harris to more quickly respond to changing customer requirements and aids in managing work in process (WIP) and inventories.
The use of CAM has resulted in significant improvements in many areas. Better wafer lot tracking has facilitated a number of process improvements by correlating yields to process variables. In several places CAM has greatly improved capacity utilization through better planning and scheduling. Queues have been reduced and cycle times have been shortened - in some cases by as much as a factor of 2.

The most dramatic benefit has been the reduction of WIP inventory levels, in one area by $500 \%$. This results in fewer lots in the area and a resulting quality improvement. In wafer fab, defect rates are lower because wafers spend less time in production areas awaiting processing. Lower inventory also improves morale and brings a more orderly flow to the area. CAM facilitates all of these advantages.

## Just in Time (JIT)

The major focus of JIT is cycle time reduction and linear production. Significant improvements in these areas result in large benefits to the customer. JIT is a part of the Total Quality Management philosophy at Harris and includes Employee Involvement, Total Quality Control, and the total elimination of waste.

Some key JIT methods used for improvement are sequence of events analysis for the elimination of non-value added activities, demand/pull to improve production flow, TQC check points and Employee Involvement Teams using root cause analysis for problem solving.
JIT implementations at Harris Semiconductor have resulted in significant improvements in cycle time and linearity. The benefits from these improvements are better on time delivery, improved yield, and a more cost effective operation.

JIT, SPC, and TPM are complementary methodologies and used in conjunction with each other create a very powerful force for manufacturing improvement.

## Total Productive Maintenance (TPM)

TPM or Total Productive Maintenance is a specific methodology which utilizes a definite set of principles and tools focusing on the improvement of equipment utilization. It focuses on the total elimination of the six major losses which are equipment failures, setup and adjustment, idling and minor stoppages, reduced speed, process defects, and reduced yield. A key measure of progress within TPM is the overall equipment effectiveness which indicates what percentage of the time is a particular equipment producing good parts. The basic TPM principles focus on maximum equipment utilization, autonomous maintenance, cross functional team involvement, and zero defects. There are some key tools within the TPM technical set which have proven to be very powerful to solve long standing problems. They are initial clean, P-M analysis, condition based maintenance, and quality maintenance.

Utilization of TPM has shown significant increases in utilization on many tools across the Sector and is rapidly becoming widespread and recognized as a very valuable tool to improve manufacturing competitiveness.

The major benefits of TPM are capital avoidance, reduced costs, increased capability, and increased quality. It is also very compatible with SPC techniques since SPC is a good stepping stone to TPM implementation and it is in turn a good stepping stone to JIT because a high overall equipment effectiveness guarantees the equipment to be available and operational at the right time as demanded by JIT.

The reliability operations for Harris Semiconductor are consolidated into three locations; in Palm Bay, Florida, and Research Triangle Park, North Carolina, for integrated circuits products, and Mountaintop, Pennsylvania for Power Discrete Products. This consolidation brought the reliability organizations together to form a team that possesses a broad cross section of expertise in:

- Custom Military
- Automotive ASICs
- Harsh Environment Plastic Packaging
- Advanced Methods for Design for Reliability (DFR)
- Strength in Power Semiconductor
- Chemical/Surface Analysis Capabilities

The reliability focus is customer satisfaction (external and internal) and is accomplished through the development of standards, performance metrics and service systems. These major systems are summarized below:

- A process and product development system which emphasizes getting new products to market over product design. Uses empowered cross functional development teams.
- Standard test vehicles ( 96 in all) for process characterization of wearout failure mechanisms using conventional stresses (for modeling FITs/MTTF) and wafer level reliability characterization during development.
- Common qualification standards and philosophy for all sites and developments.
- Matrix monitor standard - a reliability monitoring system for products in production to insure ongoing reliability and verification of continuous improvement.
- Field return failure analysis system deployed world wide to track and expedite root cause analysis and irreversible corrective actions in a timely manner for our customers. The system is called by the team name PFAST, Product Failure Analysis Solution Team. Failure analysis sites are located in Brussels, Mountaintop, Palm Bay, Singapore, Kuala Lumpur, and Toyko. In order to optimize our response time to the customer all locations are networked for optimum communication, trend analysis, and performance tracking.

Integrated circuits reliability home base is in Palm Bay, Florida. This new facility has consolidated the reliability organization of the standard products divisions reliability group from Palm Bay, Florida; Somerville, New Jersey; Santa Clara, California, and the Military and Aerospace Division in Palm Bay, Florida. This facility contains

- A 9,000 square foot reliability analysis laboratory,
- An 8,000 square foot reliability stress testing facility,
- A 5,000 square foot analytical (chemistry/surface analysis) laboratory,
- A 3,000 square foot of engineering office space.

The facilities are well equipped and manned with highly trained and disciplined analysts. The reliability facilities are JAN certified and certified by a host of customers including major automotive and telecommunications companies.

## Process/Product/Package Qualifications

Qualification activities at Harris begin with the in-depth qualification of new wafer processes. These process qualifications focus on the use of test vehicles to characterize wearout mechanisms for each process. These data are used to establish design ground rules for each process to eliminate wearout failure during the useful life of the product. Products designed within the established ground rules are qualified individually prior to introduction. New package configurations are qualified individually prior to being available for new products. Harris qualification procedures are specified via controlled documentation.

## Product/Package Reliability Monitors

Many of the accelerated stress-tests used during initial reliability qualification are also employed during the routine monitoring of standard production product. Harris' continuing reliability monitoring program consists of three groups of stress tests, labeled Matrix I, II and III. As an example, Table 7 outlines the Matrix tests used to monitor plastic packaged CMOS Logic ICs in Harris' Malaysia assembly plant, where each wafer fab technology is sampled weekly for both Matrix I and II. Matrix I consists of highly accelerated, short duration ( 48 hours or less) tests, which provide real-time feedback on product reliability. Matrix II consists of the more traditional, longer term stress-tests, which are similar to those used for product qualification. Finally, Matrix III, performed monthly on each package style, monitors the mechanical reliability aspects of the package. Any failures occurring on the Matrix monitors are fully analyzed and the failure mechanisms identified, with corrective actions obtained from Manufacturing and Engineering. This information along with all of the test results are routinely transmitted to a central data base in Reliability Engineering, where failure rate trends are analyzed and tracked on an ongoing basis. These data are used to drive product improvements, so as to ensure that failure rates are continuously being reduced over time.

## TABLE 7. PLASTIC PACKAGED CMOS LOGIC ICS MALAYSIA

 RELIABILITY MONITORING TESTSMATRIX I

TEST	CONDITIONS	DURATION	SAMPLE
Bias Life	$+175^{\circ} \mathrm{C}$	48 Hours	40
HAST	$+145^{\circ} \mathrm{C}, 85 \% \mathrm{RH}$	20 Hours	40

TABLE 7. PLASTIC PACKAGED CMOS LOGIC ICS MALAYSIA RELIABILITY MONITORING TESTS (Continued)

MATRIX II

TEST	CONDITIONS	DURATION	SAMPLE
Bias Life	$+125^{\circ} \mathrm{C}$	1000 Hours	50
Dynamic Life	$+125^{\circ} \mathrm{C}$	1000 Hours	50
Biased Humidity	$+85^{\circ} \mathrm{C}, 85 \% \mathrm{RH}$	1000 Hours	50
Autoclave	$15 \mathrm{PSIG},+121^{\circ} \mathrm{C}$,   $100 \% ~ R H$	192 Hours	50
Storage Life	$+150^{\circ} \mathrm{C}$	1000 Hours	50
Temp. Cycle	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	1000 Cycles	50
Thermal Shock	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	1000 Cycles	50

MATRIX III

TEST	CONDITIONS	SAMPLE
Solderability	Mil-Std 883/2003	15
Lead Fatigue	Mil-Std 883/2004	15
Brand Adhesion	Mil-Std 883/2015	20
Flammability	(UL-94 Vertical Burn)	5

## Field Return Product Analysis System

The purpose of this system is to enable Harris' Field Sales and Quality operations to properly route, track and respond to our customers' needs as they relate to product analysis.

The Product Failure Analysis Solution Team (PFAST) consists of the group of people who must act together to provide timely, accurate and meaningful results to customers on units returned for analysis. This team includes the salesman or applications engineer who gets the parts from the customer, the PFAST controller who coordinates the response, the Product or Test Engineering people who obtain characterization and/or test data, the analysts who failure analyze the units, and the people who provide the ultimate corrective action. It is the coordinated effort of this team, through the system described in this document that will drive the Customer responsiveness and continuous improvement that will keep Harris on the forefront of the semiconductor business.

The system and procedures define the processing of product being returned by the customer for analysis performed by Product Engineering, Reliability Failure Analysis and/or Quality Engineering. This system is designed for processing "sample" returns, not entire lot returns or lot replacements.

The philosophy is that each site analyzes its own product. This applies the local expertise to the solutions and helps toward the goal of quick turn time.

Goals: quick, accurate response, uniform deliverable (consistent quality) from each site, traceability.
The PFAST system is summarized in the following steps:

1) Customer calls the sales rep about the unit(s) to return.
2) Fill out PFAST Action Request - see the PFAST form in this section. This form is all that is required to process a Field Return of samples for failure analysis. This form contains essential information necessary to perform root cause analysis. (See Figure 2).
3) The units must be packaged in a manner that prevents physical damage and prevents ESD. Send the units and PFAST form to the appropriate PFAST controller. This location can be determined at the field sales office or rep using "look-up"'tables in the PFAST document.
4) The PFAST controller will log the units and route them to ATE testing for data log.
5) Test results will be reviewed and compared to customer complaint and a decision will be made to route the failure to the appropriate analytical group.
6) The customer will be contacted with the ATE test results and interim findings on the analysis. This may relieve a line down situation or provide a rapid disposition of material. The customer contact is valuable in analytical process to insure root cause is found.
7) A report will be written and sent directly to the customer with copies to sales, rep, responsible individuals with corrective actions and to the PFAST controller so that the records will capture the closure of the cycle.
8) Each report will contain a feedback form (stamped and preaddressed) so that the PFAST team can assess their performance based on the customers assessment of quality and cycle time.
9) The PFAST team objectives are to have a report in the customers hands in 28 days, or 14 days based on agreements. Interim results are given real-time.

Request \#

## PFAST ACTION REQUEST

Date:


The completeness and timely response of the evaluation is directly related to the completeness of the data provided. Please provide all pertinent data. Attach additional sheets if necessary.

## TYPE OF PROBLEM

## DETAILS OF REJECT

(Where appropriate serialize units and specify for each)

1. Incoming Inspection
$\square 100 \%$ Screen Sample Inspection
No. Tested $\qquad$ No. of Rejects $\qquad$ Are results representative of previous lots?

- YES
$\square$ NO
$\square$ Brief description of evaluation
and results attached

2. In Process/Manufacturing Fallure
$\square$ Board Checkout $\square$ System Checkout

- Failed on Turn-on
$\square$ Failed after $\qquad$ hours operation
Was unit retested under incoming inspection
CONDITIONS? $\square$ YES $\square$ NO
$\square$ Brief Description of how failure was isolated TO COMPONENT ATTACHED

3. $\square$ Field Failure

Failed after $\qquad$ HOURS OPERATION
Estimated Failure rate $\qquad$ \% PER 1000 HOURS
End User $\qquad$ LOCATION $\qquad$ Ambient Temperature L C Min. $\qquad$ C

MAX. $\qquad$ C
Rel. Humidity $\qquad$ \%

- END USER FAILURE CORRESPONDENCE ATTACHED

ACTION REQUESTED BY CUSTOMER

Specific Action Requested
Impact of Failed Units on Customer's Situation:

Customer Contacts with Specific Knowledge of Rejects NAME $\qquad$
Position PHONE $\qquad$
$\qquad$
$\qquad$

$$
\text { ric } \quad \text { ( }
$$

Test Conditions Relating to Failure
$\square$ Tester Used (MFGR/MODEL)

- Test Temperature
$\square$ Test Time: $\square$ Continuous Test
$\square$ One Shot ( $\mathrm{T}=$ $\qquad$ SEC)
- DESCRIPTION OF ANY OBSERVED CONDITION TO which failure appears sensitive: $\qquad$

1. DC FAILURES
$\square$ Opens $\square$ Shorts $\square$ Leakage $\square$ Stress $\square$ Power Drain $\square$ Input Level $\square$ Output Level
$\square$ LIST OF FORCING CONDITIONS AND MEASURED results for each pin is attached
$\square$ POWER SUPPLY SEQUENCING ATTACHED
2. ac Failures

List Failing Characteristics $\qquad$

Address of Failing Location (if applicable)

## Attached:

$\square$ List of Power Supply and Driver Levels (Include pictures of waveforms).
$\square$ List of output levels and loading conditions
$\square$ Input and Output Timing Diagrams

- Description of Patterns Used (If not standard patterns, give very complete description including address sequence).

3. $\square$ prom Programming Failures

Address of Failures
Programmer Used (MFG/Model/Rev. No.)
4. $\square$ Physical/Assembly Related Failures

- See Comments Below See Attached

Additional Comments:

FIGURE 2. PFAST ACTION REQUEST

## INSTRUCTIONS FOR COMPLETING PFAST ACTION REQUEST FORM

The purpose of this form is to help us provide you with a more accurate, complete, and timely response to failures which may occur. Accurate and complete information is essential to ensure that the appropriate corrective action can be implemented. Due to this need for accurate and complete information, requests without a completed PFAST Action Request form will be returned.

## Source of Problem:

This section requests the product flow leading to the failure. Mark an " $X$ " in the appropriate boxes up to and including the step which detected the failure. Also mark an " X " in the appropriate box under ARE RESULTS REPRESENTATIVE OF PREVIOUS LOTS? to indicate whether this is a rare failure or a repeated problem.

Example 1. No incoming electrical test was performed, the units were installed onto boards, the boards functioned correctly for two hours and then 1 unit failed. The customer rarely has a failure due to this Harris device.


Example 2. 100 out of the 500 units shipped were tested at incoming and all passed. The units were installed into boards and the boards passed. The boards were installed into the system and the system failed immediately when turned on. There were 3 system failures due to this part. The customer frequently has failures of this Harris device. The 3 units were not retested at incoming.


## Action Requested by Customer:

This section should be completed with the customer's expectations. This information is essential for an appropriate response.
Reason for Electrical Reject:
This section should be completed if the type of failure could be identified. If this information is contained in attached customer correspondence there is no need to transpose onto the PFAST Action Request form.

## PFAST REQUIREMENTS

The value of returning failing products is in the corrective actions that are generated. Failure to meet the following requirements can cause an erroneous conclusion and corrective action; therefore, failure to meet these requirements will result in the request being returned. Contact the local PFAST Coordinator if you have any questions.

Units with conformal coating should include the coating manufacturer and model. This is requested since the coating must be removed in order to perform electrical or hermeticity testing.

1) Units must be returned with proper ESD protection (ESD-safe shipping tubes within shielding box/bag or inserted into conductive foam within shielding box/bag). No tape, paper bags, or plastic bags should be used. This requirement ensures that the devices are not damaged during shipment back to Harris.
2) Units must be intact (lid not removed and at least part of each package lead present). This requirement is in place since the parts must be intact in order to perform electrical test. Also, opening the package can remove evidence of the cause for failure and lead to an incorrect conclusion.
3) Programmable parts (ROMs, PROMS, UVEPROMs, and EEPROMs) must include a master unit with the same pattern. This requirement is to provide the pattern so all failing locations can be identified. A master unit is required if a failure analysis is requested.

FIGURE 2. PFAST ACTION REQUEST (Continued)

## Failure Analysis Laboratory

The Failure Analysis Laboratory's capabilities encompass the isolation and identification of all failure modes/failure mechanisms, preparing comprehensive technical reports, and assigning appropriate corrective actions. Research vital to understanding the basic physics of the failure is also undertaken.

Failure analysis is a method of enhancing product reliability and determining corrective action. It is the final and crucial step used to isolate potential reliability problems that may have occurred during reliability stressing. Accurate analysis results are imperative to assess effective corrective actions. To ensure the integrity of the analysis, correlation of the failure mechanism to the initial electrical failure is essential.

A general failure analysis procedure has been established in accordance with the current revision of MIL-STD-883, Section 5003. The analysis procedure was designed on the premise that each step should provide information on the failure without destroying information to be obtained from subsequent steps. The exact steps for an analysis are determined as the situation dictates. (See Figures 3 and 4). Records are maintained by laboratory personnel and contain data, the failure analyst's notes, and the formal Product Analysis Report.

## Analytical Services Laboratory

Harris facilities, engineering, manufacturing, and product assurance are supported by the Analytical Services Laboratory. Organized into chemical or microbeam analysis methodology, staff and instrumentation from both labs cooperate in fully integrated approaches necessary to


SELECT ANALYSIS PATH
complete analytical studies. The capabilities of each area are shown below.
SPECTROSCOPIC METHODS: Colorimetry, Optical Emission, Ultraviolet Visible, Fourier Transform-Infrared, Flame Atomic Absorption, Furnace Organic Carbon Analyzer, Mass Spectrometer.

CHROMATOGRAPHIC METHODS: Gas Chromatography, Ion Chromatography.
THERMAL METHODS: Differential Scanning Colorimetry, Thermogravimetric Analysis, Thermomechanical Analysis.

PHYSICAL METHODS: Profilometry, Microhardness, Rheometry.
CHEMICAL METHODS: Volumetric, Gravimetric, Specific Ion Electrodes.

ELECTRON MICROSCOPE: Transmission Electron Microscopy, Scanning Electron Microscope.
X-RAY METHODS: Energy Dispersive X-ray Analysis (SEM), Wavelength Dispersive X-ray Analysis (SEM), X-ray Fluorescence Spectrometry, X-ray Diffraction Spectrometry.
SURFACE ANALYSIS METHODS: Scanning Auger Microprobe, Electron Spectroscopy/Chemical Analysis, Secondary Ion Mass Spectrometry, Ion Scattering Spectrometry, Ion Microprobe.
The department also maintains ongoing working arrangements with commercial, university, and equipment manufacturers' technical service laboratories, and can obtain any materials analysis in cases where instrumental capabilities are not available in our own facility.

FIGURE 3. NON-DESTRUCTIVE
Figure 4. DESTRUCTIVE

## Reliability Fundamentals and Calculation of Failure Rate

Table 8 below defines some of the more important terminology used in describing the lifetime of integrated circuits.
Of prime importance is the concept of "failure rate" and the calculation thereof.

## Failure Rate Calculations

Reliability data may be composed of several different failure mechanisms and the combining of potentially diverse failure rates into one comprehensive failure rate is desired. The failure rate calculation is complicated because the failure mechanisms are thermally activated at differing rates. Additionally, this data is usually obtained on a number of life tests performed at unique stress temperatures. The equation below accounts for these considerations along with a statistical factor to obtain the upper confidence level (UCL) for the resulting failure rate.

$$
\lambda=\left[\sum_{i=1}^{\beta} \frac{x_{i}}{\sum_{j=1}^{k} T D H_{j} A F_{i j}}\right] \cdot \frac{M \times 10^{9}}{\sum_{i=1}^{\beta} x_{i}}
$$

where,
$\lambda=$ failure rate in FITs (Number fails in $10^{9}$ device hours)
$\beta=\#$ of distinct possible failure mechanisms
$k=\#$ of life tests being combined
$x_{i}=\#$ of failures for a given failure mechanism $i=1,2, \ldots \beta$
$\mathrm{TDH}_{\mathrm{j}}=$ Total device hours of test time (unaccelerated) for Life Test $\mathrm{j}, \mathrm{j}=1,2,3, \ldots . \mathrm{k}$
$A F_{i j}=$ Acceleration factor for appropriate failure mechanism $i=1,2, \ldots k$

$$
M=\frac{x^{2}(\alpha, 2 r+2)}{2}
$$ where,

$X^{2}=$ chi square factor for $2 r+2$ degrees of freedom $r=$ total number of failures ( $\Sigma x_{i}$ )
$\alpha=$ risk associated with UCL;
i.e. $\alpha=(100-U C L(\%)) / 100$

In the failure rate calculation, Acceleration Factors (AFij) are used to derate the failure rate from the thermally accelerated life test conditions to a failure rate indicative of actual use temperature. Although no standard exists, a temperature of $+55^{\circ} \mathrm{C}$ has been popular. Harris Semiconductor Reliability Reports will derate to $+55^{\circ} \mathrm{C}$ and will express failure rates at $60 \%$ UCL. Other derating temperatures and UCLs are available upon request.

TABLE 8. FAILURE RATE PRIMER

TERMS	DEFINITIONS/DESCRIPTION
Failure Rate $\lambda$	$\begin{array}{l}\text { Measure of failure per unit of time. The failure rate typically decreases slightly over } \\ \text { early life, and then becomes relatively constant over time. The on set of wearout will } \\ \text { show an increasing failure rate, which should occur well beyond useful life. The useful } \\ \text { life failure rate is based on the exponential life distribution }\end{array}$
FIT (Failure In Time)	$\begin{array}{l}\text { Measure of failure rate in } 10^{9} \text { device hours; e.g., } 1 \text { FIT }=1 \text { failure in } 10^{9} \text { device hours, } \\ 100 \text { FITS }=100 \text { failure in } 10^{9} \text { device hours, etc. }\end{array}$
Device Hours	The summation of the number of units in operation multiplied by the time of operation.

lifetime of an individual, MTTF=1 / \lambda, which is the time where 63.2 \% of the population <br>
has failed. Exampled: For \lambda=10 FITS (or 10 E-9/Hr.), MTTF=1 / \lambda=100 million hours.\end{array}\right\}\)

## Acceleration Factors

Acceleration factor is determined from the Arrhenius Equation. This equation is used to describe physiochemical reaction rates and has been found to be an appropriate model for expressing the thermal acceleration of semiconductor failure mechanisms.

$$
A F=\operatorname{EXP}\left[\frac{E_{a}}{k}\left(\frac{1}{T_{\text {use }}}-\frac{1}{T_{\text {stress }}}\right)\right]
$$

where,

$$
\begin{aligned}
\mathrm{AF} & =\text { Acceleration Factor } \\
\mathrm{E}_{\mathrm{a}} & =\text { Thermal Activation Energy }(\text { See Table } 9) \\
\mathrm{k} & =\text { Boltzmann's Constant }\left(8.63 \times 10^{-5} \mathrm{eV} /{ }^{\circ} \mathrm{K}\right)
\end{aligned}
$$

Both $T_{\text {use }}$ and $T_{\text {stress }}$ (in degrees Kelvin) include the internal temperature rise of the device and therefore represent the junction temperature.

## Activation Energy

The Activation Energy ( $\mathrm{E}_{\mathrm{a}}$ ) of a failure mechanism is determined by performing at least two tests at different levels of stress (temperature and/or voltage). The stresses will provide the time to failure ( $t_{f}$ ) for the two (or more) populations thus allowing the simultaneous solution for the activation energy as follows:

$$
\text { In }\left(t_{f 1}\right)=C+\frac{E_{a}}{k T_{1}} \quad \ln \left(t_{f 2}\right)=C+\frac{E_{a}}{k T_{2}}
$$

By subtracting the two equations, and solving for the activation energy, the following equation is obtained:

$$
E_{a}=\frac{k\left[\ln \left(t_{1}\right)-\ln \left(t_{2}\right)\right]}{(1 / T 1-1 / T 2)}
$$

where,

$$
\begin{aligned}
\mathrm{E}_{\mathrm{a}} & =\text { Thermal Activation Energy (See Table 9) } \\
\mathrm{k} & =\text { Boltzmann's Constant }\left(8.63 \times 10^{-5} \mathrm{eV} / \mathrm{K}\right) \\
\mathrm{T}_{1}, \mathrm{~T}_{2} & =\text { Life test temperatures in degrees Kelvin }
\end{aligned}
$$

TABLE 9. FAILURE MECHANISM

FAILURE MECHANISM	ACTIVATION ENERGY	SCREENING AND TESTING METHODOLOGY	CONTROL METHODOLOGY
Oxide Defects	$0.3-0.5 \mathrm{eV}$	High temperature operating life (HTOL) and voltage stress. Defect density test vehicles.	Statistical Process Control of oxide parameters, defect density control, and voltage stress testing.
Silicon Defects (Bulk)	$0.3-0.5 \mathrm{eV}$	HTOL \& voltage stress screens.	Vendor statistical Quality Control programs, and Statistical Process Control on thermal processes.
Corrosion	0.45 eV	Highly accelerated stress testing (HAST)	Passivation dopant control, hermetic seal control, improved mold compounds, and product handling.
Assembly Defects	$0.5-0.7 \mathrm{eV}$	Temperature cycling, temperature and mechanical shock, and environmental stressing.	Vendor Statistical Quality Control programs, Statistical Process Control of assembly processes, proper handling methods.
Electromigration   - Al Line   - Contact	$\begin{aligned} & 0.6 \mathrm{eV} \\ & 0.9 \mathrm{eV} \end{aligned}$	Test vehicle characterizations at highly elevated temperatures.	Design ground rules, wafer process statistical process steps, photoresist, metals and passivation
Mask Defects/   Photoresist Defects	0.7 eV	Mask FAB comparator, print checks, defect density monitor in FAB, voltage stress test and HTOL.	Clean room control, clean mask, pellicles, Statistical Process Control of photoresist/etch processes.
Contamination	1.0 eV	C-V stress at oxide/interconnect, wafer FAB device stress test and HTOL.	Statistical Process Control of C-V data, oxide/interconnect cleans, high integrity glassivation and clean assembly processes.
Charge Injection	1.3 eV	HTOL \& oxide characterization.	Design ground rules, wafer level Statistical Process Control and critical dimensions for oxides.

# DATA ACQUISITION 

## APPLICATION NOTE ABSTRACTS

## AN \#

TITLE

001 Glossary of Data Acquisition Terms

002 Principles of Data and Conversion

004 The IH5009 Analog Switch Series

009 Pick Sample-Holds by Accuracy and Speed and Keep Hold Capacitors in Mind

012 Switching Signals with Semiconductors

016 Selecting ADD Converters

017 The Integrating A/D Converter

018 Do's and Don'ts of Applying A/D Converters

020 A Cookbook Approach to High Speed Data Acquisition and Microprocessor Interfacing

Low Cost Panel Meter Designs

Building an Auto-Ranging DMM with the ICL7103A ICL8052A A/D Converter Pair


#### Abstract

S

Specification definitions, terminology and most often used terms used in the field of data acquisition.

Basic Data Acquisition system design, quantizing theory, sampling theory, data coding, amplifiers and filters, settling time, DAC types, ADC types, reference circuits, analog multiplexers, sample and holds, specifications, and selection criteria.


Circuit operation, logic compatibility, switching speed and crosstalk, and application circuits.

Monolithic considerations, error analysis, droop discussion, capacitor characteristics, deglitching sample and holds, and cascaded sample and hold designs.

Analog switches are fast, low cost, and work well with the high impednace of most signal circuits. Often they can replace reed relays.

Important selection parameters, the integrating converter, the SAR type converter, multiplexed data systems, and a definition of terms.

The dual slope conversion technique, analyzing errors, capacitor induced errors and a noise discussion.

System power routing errors, PCB layout rules, component selection, thermal effects, and maximizing the FSR range of the converter.

High speed system block diagram, layout considerations, multiplexer considerations differential amplifiers, sample and hold amplifier, SAR type ADCs, DAC design, and microprocessor interfacing

Cost advantages of display converters, Evaluation kit usage, display types, capacitors recommended, and proper power supply range.

Basic circuit configuration and operation, decimal point drive, interface to parallel data systems, auto-ranging designs, issues and solutions for proper operation.

## Application Note Abstracts (continued)

AN \#	TITLE	ABSTRACTS
030	ICL7104 A Binary Output AVD Converter for Microprocessors	Interfacing to a digital system in non-handshaking mode, a handshaking mode interface to various processors, performance enhancement techniques, and an auto-zero loop discussion.
032	Understanding the AutoZero and Common Mode Performance of the ICL7106/ 7107/7109 Family	Theory of operation for the four integration phases, CMRR and the common mode voltage effects, the auto-zero loop residual, and in depth error analysis.
042	Interpretation of Data Converter Accuracy Specifications	A Discussion of data converter transfer functions, quantization noise and dynamic range, non-ideal data converter operation, nonlinearity, temperature induced errors, error budgets, layout and grounding rules.
043	Video Analog to Digital Conversion	Comparator based flash converters, quantization noise, the decoder, a 2 stage flash converter, and hybrid considerations.
046	Building a Battery Operated Auto Ranging DVM with the ICL7106	Auto-ranging circuitry design, the input range/resistor divider, an auto-range clock circuit design, power supply requirements, measuring resistance and transconductance, and using the ICL7126 and ICL7107.
047	Games People Play with Harris AD Converters	Various real world applications for AVD converters, LCD annunciator drivers, decimal point drivers, a low battery detect application, blanking the display on low battery detect, controlling LED brightness, instant continuity detector, high voltage display driver, a gas discharge plasma display, DVM circuit, a tachometer design, measuring the gain of a transistor, running off a 1.5 V supply, a simple capacitor meter, and a weighing system
048	Know Your Converter Codes	Analyzing digital codes, ADC and DAC operating basics, Bipolar coding techniques, and coding limitations.
049	Applying the 7109 A/D Converter	A description of the ICL7109s, differential input section, differential reference, digital section and how to measure bridges, and offsets. Interiace examples to parallel processors, serial interfaces and how to replace Voltage to frequency converters.
052	Tips for Using Single Chip 31/2 Digit AD Converters	Some of the more commonly asked questions concerning the $3^{\frac{1}{2}}$ digital display converters ranging from power supply inputs, display types and drive, to timing, ratiometric operation, and component selection. A troubleshooting guide is provided.
054	Display Driver Family Combines Convenience of Use with Microprocessor Interfaceability	Advantages of IC display drivers, non-multiplexed display operation, functional block diagrams, multiplexed display operation, and binary to bar graph display applications circuits.
059	Digital Panel Meter Experiments for the Hobbyist	Discusses the fundamentals of designing a panel meter for measuring, DC Voltages, AC Voltages, resistance measurements, current measurements, temperature measurement, and designing multi-range DVMs.
517	Applications of Monolithic Sample and Hold Amplifiers	General Sample and Hold information and fourteen specific applications, including filtered Sample and Hold DAC de-glitcher Integrate-Hold-Reset, gated op amp, etc.

## Application Note Abstracts (Continuod)

AN \#	TITLE	ABSTRACTS
520	CMOS Analog Multiplexers and Switches; Application Considerations	Switch selection criteria, datasheet definitions, care and feeding of multiplexers and switches, digital interface, practical multiplexer applications alternative to CMOS switches and multiplexers.
521	Getting the Most Out of CMOS Devices for Analog Switching Jobs	CMOS vs bipolar device performances, over voltage and channel interaction conditions, Jl technology and latch-up, floating body JI technology, fool proof CMOS analog multiplexer, other DI benefits.
522	Digital to Analog Converter Terminology	Explains DAC terminology, Resolution Gain Error, Offset Error, Linearity Error, Differential Linearity Error, Drift, Settling Time, etc.
524	Digital to Analog Converter   High Speed ADC   Applications	Use of High Speed DAC's in tracking, servo, and successive approximation Analog to Digital Converters. Design ideas for Data Acquisition Systems.
531	Analog Switch Applications in AVD Data Conversion Systems	System configurations, analog switch types, CMOS switch selection guidelines, alternative uses of CMOS switches.
532	Common Questions Concerning CMOS Analog Switches	Power supply considerations, input overvoltage protection, single supply operation, various questions about Harris DI switches.
534	Additional Information on the HI-300 Series Switch	"ON" resistance, leakage currents, switching speeds, power supply requirements, internal switch operation and schematics, single supply operation, charge injection, power supplies conditions and protective circuitry.
535	Design Considerations for a Data Acquisition System (DAS)	A collection of guidelines for the design of a Data Acquisition System. Includes signal conditioning, transducers, single-ended vs differential signal paths, low level signals, filters Programmable Gain Amplifiers, sampling rate, and computer interfacing.
538	Monolithic Sample/Hold Combines Speed and Precision	Description and electrical specifications for the HA-5320 Sample/Hold Amplifiers, explanation of error sources, and HA-5320 applications.
539	A Monolithic 16-Bit D/A Converter	Detailed description of a 16 bit DAC design and layout. Second order errors sources that contribute to linearity errors are discussed as well as architectural design, ground cancelation effects, setting time measurement techniques, suggested amplifier configurations for voltage output, and data-bus interfacing.
543	New High Speed Switch Offers Sub 50ns Switching Times	Application enhancement using the HI201HS, high speed multiplexers, high speed sample and hold, analog switch and op amp circuitry, integrator with startreset, low pass filter with select break frequency, amplifier with programmable gain, future applications.
557	Recommended Test Procedures for Analog Switches	Description of analog switch test methods employed at Harris Semiconductor.
559	HI-222 Video/HF Switch Optimizes Key Parameters	Description of the key specifications of the HI222 such as, power supply range vs RoN, $T_{O N}$, differential gain and phase errors, switching transients and charge injection, continuous and peak current capability, off isolation, crosstalk and PC board layout.

# Application Note Abstracts (Continued) 

AN \#	TITLE	ABSTRACTS
8759	Low Cost Data Acquisition System Features SPI A/D Converter	Discussions of a typical serial interface system, detailed description of the 68 HC 68 architecture, multiple zone heating system design, digital storage scope design, and microcode for a low cost DAS.
9213	Advantages and Application of Display Integrating ADD Converters	Theory of operation of a dual slope integrating type A/D converter used for bridge measurement, low level sensors and several application circuits including, a capacitance meter, and digital thermometer.
9214	Using Harris High Speed AD Converters	PCB layout, grounding and power considerations for high speed converter board design, suggested voltage reference circuits, analog input buffers, bandwidth considerations, accuracy adjustments, logic family compatibility and interface examples, antialiasing filter theory, multiplexed inputs and input clamping for video signals.
	3	
9215	Using the HI5700 Evaluation Board	Theory of operations discussion for the HI5700, a description and use of the evaluation board, typical performance curve data on the HI5700, board layout and schematics.
9216	Using the HI5701 Evaluation Board	Theory of operations discussion for the H15701, a description and use of the evaluation board, typical performance curve data on the HI5701, board layout and schematics.
9309	Using the HI5800/HI5801 Evaluation Board	HI5800 and HI5801operation and architecture, an evaluation kit description, operating modes, layout and schematics.
9313	Circuit Considerations in Imaging Applications	Discussions of Video formats such as RS170, circuit design considerations, system design, test results and time division multiplexed systems.
9316	Power Supply Considerations for the HI-222 High Frequency Video Switch	A guide to proper power supply sequencing for the HI-222 Video Switch.
9328	Using the HI1166 Evaluation Board	A description of how to use the HI1166, 250MHz, 8-bit AD evaluation board.
9329	Using the HI1176/1171 Evaluation Board	A description of how to use the HI1176/1171 Video A/D and D/A evaluation board.
9330	Using the HI1396 Evaluation Board	A description of how to use the HI1396, 125MHz, 8-bit AD evaluation board.
9331	Using the HI1175 Evaluation Board	A description of how to use the H11175 Video AD evaluation board.
9332	Using the HI1276 Evaluation Board	A description of how to use the HI1276, 500MHz, 8-bit A/D evaluation board.
9333	Using the HI1386 Adapter Board	A description of how to use the HI1386 75MHz 8-bit A/D adaptor board. To be used with HI1396 evaluation board.
9337	Reduce CMOS Multiplexer Troubles through Proper Device Selection	How to deal with output leakage, Overvoltage fault protection techniques, and new architectural designs to provide better fault protection.

## PACKAGING INFORMATION

DATA ACQUISITION PACKAGE SELECTION GUIDE ..... 17-2
DUAL-IN-LINE PLASTIC PACKAGES ..... 17-7
SMALL OUTLINE (SOIC) PLASTIC PACKAGES ..... 17-13
SHRINK SMALL OUTLINE (SSOP) PLASTIC PACKAGES ..... 17-18
PLASTIC LEADED CHIP CARRIER (PLCC) PACKAGES ..... 17-19
METRIC PLASTIC QUAD FLATPACK PACKAGES ..... 17-20
DUAL-IN-LINE FRIT-SEAL CERAMIC PACKAGES ..... 17-23
METAL SEAL DUAL-IN-LINE CERAMIC PACKAGES ..... 17-30
METAL SEAL LEADLESS CERAMIC CHIP CARRIER PACKAGES ..... 17-33
SINGLE-IN-LINE PLASTIC PACKAGES (SIP) ..... 17-40
METAL CAN PACKAGES ..... 17-41

## Data Acquisition Package Selection Guide

## Using the Selection Guide:

The first character of each entry indicates the package type, while the number preceding the decimal point details the package lead count. Except for MQFP, LCC, SIP, and Can packages, the decimal point and succeeding numbers specify the reference package width in inches (e.g. $.15=150 \mathrm{mil}$ width). The entire entry indicates the package table containing the appropriate package dimensions (e.g. 8 lead PDIP dimension are detailed in Table E8.3). The index on page 17-1 lists page numbers for PDIP, SOIC, PLCC, MQFP, CDIP, Sidebraze, LCC, SIP and Can tables.

PART NUMBER	PDIP	$\begin{aligned} & \text { SOIC/ } \\ & \text { SSOP } \end{aligned}$	PLCC	MQFP	CERDIP	SIDEBRAZE	LCC	SIP	CAN
AD590									T3.A
AD7520	E16.3				F16.3				
AD7521	E18.3								
AD7523	E16.3								
AD7530	E16.3								
AD7531	E18.3								
AD7533	E16.3								
AD7541	E18.3								
AD7545	E20.3								
ADC0802	E20.3				F20.3				
ADC0803	E20.3	M20.3			F20.3				
ADC0804	E20.3				F20.3				
CA3161	E16.3								
CA3162	E16.3								
CA3162A	E16.3								
CA3168	E20.3								
CA3168E	E20.3								
CA3304	E16.3	M16.3			F16.3				
CA3306	E18.3	M20.3			F18.3		J20.B		
CA3310	E24.3	M24.3			F24.3				
CA3310A	E24.3	M24.3			F24.3				
CA3318C	E24.6	M24.3			F24.6				
САЗ338	E16.3	M16.3			F16.3				
CA3338A	E16.3	M16.3			F16.3				
CA555	E8.3	M8.15							T8.C
DG200	E14.3				F14.3				T10.B
DG201	E16.3				F16.3				
DG201A	E16.3	M16.3			F16.3				
DG202	E16.3				F16.3				
DG211	E16.3	M16.15							
DG212	E16.3	M16.15							
DG300A	E14.3				F14.3				T10.B
DG301A	E14.3				F14.3				T10.B
DG302A	E14.3				F14.3				
DG303A	E14.3	M16.3			F14.3				



Data Acquisition Package Selection Guide (Continued)

PART NUMBER	PDIP	$\begin{aligned} & \text { SOIC/ } \\ & \text { SSOP } \end{aligned}$	PLCC	MQFP	CERDIP	SIDEBRAZE	LCC	SIP	CAN
DG308A	E16.3	M16.15			F16.3				
DG309	E16.3	M16.15			F16.3				
DG401	E16.3	M16.15			F16.3				
DG403	E16.3	M16.15			F16.3				
DG405	E16.3	M16.15			F16.3				
DG406	E16.3	M16.15							
DG407	E16.3	M16.15							
DG408	E16.3	M16.15			F16.3				
DG409	E16.3	M16.15			F16.3				
DG411	E16.3	M16.15			F16.3				
DG412	E16.3	M16.15			F16.3				
DG413	E16.3	M16.15			F16.3				
DG441	E16.3	M16.15			F16.3				
DG442	E16.3	M16.15			F16.3				
DG444	E16.3	M16.15							
DG445	E16.3	M16.15							
DG506A	E28.6	M28.3			F28.6				
DG507A	E28.6	M28.3			F28.6				
DG508A	E16.3	M16.3			F16.3				
DG509A	E16.3	M16.3			F16.3				
DG526	E28.6	M28.3			F28.6				
DG527	E28.6	M28.3			F28.6				
DG528	E18.3	M18.3			F18.3				
DG529	E18.3	M18.3			F18.3				
HA7210	E8.3	M8.15							
HI-0200	E14.3				F14.3				T10.B
HI-0201	E16.3	M16.15	N20.35		F16.3				
HI-0201-HS	E16.3	M16.3	N20.35		F16.3		J20.A		
HI-0300	E14.3	M14.15			F14.3				T10.B
HI-0301	E14.3	M14.15			F14.3				T10.B
HI-0302	E14.3	M14.15			F14.3				
HI-0303	E14.3	M14.15			F14.3				
HI-0304	E14.3	M14.15			F14.3				T10.B
HI-0305	E14.3	M14.15			F14.3				T10.B
HI-0306	E14.3	M14.15			F14.3				
HI-0307	E14.3	M14.15			F14.3				
HI-0381	E14.3	M14.15			F14.3				T10.B
HI-0384	E16.3	M16.3			F16.3				
HI-0387	E14.3	M14.15			F14.3				T10.B
HI-0390	E16.3	M16.3			F16.3				
HI-0506	E28.6	M28.3	N28.45		F28.6		J28.A		

Data Acquisition Package Selection Guide (Continued)


Data Acquisition Package Selection Guide (Continued)

PART NUMBER	PDIP	$\begin{aligned} & \text { SOIC/ } \\ & \text { SSOP } \end{aligned}$	PLCC	MQFP	CERDIP	SIDE-   BRAZE	LCC	SIP	CAN
HI-5048	E16.3				F16.3				
HI-5049	E16.3	M16.15			F16.3				
HI-5050	E16.3				F16.3				
HI-5051	E16.3	M16.15	N20.35		F16.3		J20.A		
HI-5700	E28.6	M28.3							
HI-5701	E18.3	M18.3							
HI5702		M28.3							
HI5703		M28.3							
HI5710				Q48.7x7-S					
HI5800						D40.6			
HI5810	E24.3	M24.3			F24.3				
H55812	E24.3	M24.3			F24.3				
H5813	E24.3	M24.3			F24.3				
H17131	E40.6			Q44.10x10					
HI7133	E40.6			Q44.10x10					
HI7159A	E28.6								
HI7190	E20.3	M20.3			F20.3				
HI20201	E28.6A-S	M28.3A-S							
HI20203	E28.6A-S	M28.3A-S							
HI-DAC80V	E24.6						.		
HI-DAC85V	E24.6								
HIN230		M20.3							
HIN231		M16.3							
HIN232	E16.3	M16.3			F16.3				
HIN234		M16.3							
HIN236	E24.3	M24.3							
HIN237	E24.3	M24.3							
HIN238	E24.3	M24.3							
HIN239		M24.3							
HIN240				Q44.10×10					
HiN241		$\begin{gathered} \text { M28.3/ } \\ \text { M28.209 } \end{gathered}$							
ICL232	E16.3	M16.3			F16.3				
ICL7106	E40.6			Q44.10x10					
ICL7107	E40.6			Q44.10x10					
ICL7109	E40.6				F40.6	D40.6			
ICL7116	E40.6			Q44.10×10					
ICL7117	E40.6								
ICL7126	E40.6								
ICL71C03	E28.6								
ICL7129	E40.6			Q44.10x10					

Data Acquisition Package Selection Guide (Continued)

$\begin{gathered} \text { PART } \\ \text { NUMBER } \end{gathered}$	PDIP	$\begin{aligned} & \text { SOICl } \\ & \text { SSOP } \end{aligned}$	PLCC	MQFP	CERDIP	SIDEBRAZE	LCC	SIP	CAN
ICL7135	E28.6								
ICL7136	E40.6			Q44.10x10	,				
ICL7137	E40.6			Q44.10x10					
ICL7139	E40.6								
ICL7149	E40.6			Q44.10x10					
ICL8052	E14.3				F14.3	D14.3			
ICL8068					F14.3	D14.3			
ICL8069		M8.15						Z3.05A	T2.A
ICM7170	E24.6	M24.3			F24.6				
ICM7211	E40.6			Q44.10x10					
ICM7212	E40.6								
ICM7213	E14.3								
ICM7216A	E28.6				F28.6				
ICM7216B	E28.6				F28.6				
ICM7216D	E28.6				F28.6				
ICM7217	E28.6				F28.6				
ICM7218									
ICM7224	E40.6								
ICM7226A	E40.6								
ICM7226B					F40.6				
ICM7228	E28.6	M28.3			F28.6				
ICM7231	E40.6				F40.6				
ICM7232	E40.6				F40.6				
ICM7242	E8.3	M8.15							
ICM7243	E40.6				F40.6				
ICM7249	E48.6								
ICM7555	E8.3	M8. 15							T8.C
ICM7556	E14.3				F14.3				
1H5043	E16.3	M16.3			F16.3				
1H5052					F16.3				
1H5053					F16.3				
1H5140	E16.3				F16.3				
1H5141	E16.3				F16.3				
1H5142	E16.3				F16.3				
1H5143	E16.3				F16.3				
IH5144	E16.3				F16.3				
1H5145	E16.3				F16.3				
1H5151	E16.3				F16.3				
1H5341	E14.3								T10.B
1H5352	E16.3	M20.3			F16.3				T10.B

## Package Outlines

## Dual－In－Line Plastic Packages


－B－


NOTES：
1．Controlling Dimensions：INCH．In case of conflict between English and Metric dimensions，the inch dimensions control．
2．Dimensioning and tolerancing per ANSI Y14．5M－1982．
3．Symbols are defined in the＂MO Series Symbol List＂in Section 2.2 of Publication No． 95.

4．Dimensions $A, A 1$ and $L$ are measured with the package seated in JEDEC seating plane gauge GS－3．
5．D，D1，and E1 dimensions do not include mold flash or protru－ sions．Mold flash or protrusions shall not exceed 0.010 inch （ 0.25 mm ）．
6．$E$ and $e_{A}$ are measured with the leads constrained to be per－ pendicular to datum
7．$e_{\mathrm{B}}$ and $\mathrm{e}_{\mathrm{C}}$ are measured at the lead tips with the leads uncon－ strained．$\theta_{\mathrm{C}}$ must be zero or greater．
8．B1 maximum dimensions do not include dambar protrusions． Dambar protrusions shall not exceed 0.010 inch（ 0.25 mm ）．
9．$N$ is the maximum number of terminal positions．
10．Corner leads（1，N，N／2 and N／2＋1）for E8．3，E16．3，E18．3， E28．3，E42．6 will have a B1 dimension of $0.030-0.045$ inch （0．76－1．14mm）．

E8．3（JEDEC MS－001－BA ISSUE D）
8 LEAD DUAL－IN－LINE PLASTIC PACKAGE

SYMBOL	INCHES		MILLIMETERS		NOTES
	MIN	MAX	MIN	MAX	
A	－	0.210	－	5.33	4
A1	0.015	－	0.39	－	4
A2	0.115	0.195	2.93	4.95	－
B	0.014	0.022	0.356	0.558	－
B1	0.045	0.070	1.15	1.77	8，10
C	0.008	0.014	0.204	0.355	－
D	0.355	0.400	9.01	10.16	5
D1	0.005	－	0.13	－	5
E	0.300	0.325	7.62	8.25	6
E1	0.240	0.280	6.10	7.11	5
$\theta$	0.10	SSC		BSC	－
$\mathrm{e}_{\mathrm{A}}$	0.30	SC		BSC	6
$e_{B}$	－	0.430	－	10.92	7
L	0.115	0.150	2.93	3.81	4
N	8		8		9

Rev． 0 12／93

E14．3（JEDEC MS－001－AA ISSUE D） 14 LEAD DUAL－IN－LINE PLASTIC PACKAGE

SYMBOL	INCHES		MILLIMETERS		
	MIN	MAX	MIN	MAX	NOTES
A	-	0.210	-	5.33	4
A1	0.015	-	0.39	-	4
A2	0.115	0.195	2.93	4.95	-
B	0.014	0.022	0.356	0.558	-
B1	0.045	0.070	1.15	1.77	8
C	0.008	0.014	0.204	0.355	-
D	0.735	0.775	18.66	19.68	5
D1	0.005	-	0.13	-	5
E	0.300	0.325	7.62	8.25	6
E1	0.240	0.280	6.10	7.11	5
$\theta$	0.100 BSC		$2.54 ~ B S C$	-	
$e_{A}$	0.300 BSC		7.62 BSC	6	
$e_{B}$	-	0.430	-	10.92	7
L	0.115	0.150	2.93	3.81	4
N	14			14	

Rev． 0 12／93

## Dual-In-Line Plastic Packages (Continued)



NOTES:

1. Controlling Dimensions: INCH. In case of conflict between English and Metric dimensions, the inch dimensions control.
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
3. Symbols are defined in the "MO Series Symbol List" in Section 2.2 of Publication No. 95.
4. Dimensions A, A1 and L are measured with the package seated in JEDEC seating plane gauge GS-3.
5. D, D1, and E1 dimensions do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.010 inch ( 0.25 mm ).
6. $E$ and $e_{A}$ are measured with the leads constrained to be perpendicular to datum -C.
7. $e_{B}$ and $e_{C}$ are measured at the lead tips with the leads unconstrained. $e_{C}$ must be zero or greater.
8. B1 maximum dimensions do not include dambar protrusions. Dambar protrusions shall not exceed 0.010 inch ( 0.25 mm ).
9. N is the maximum number of terminal positions.
10. Corner leads (1, N, N/2 and N/2 + 1) for E8.3, E16.3, E18.3, E28.3, E42.6 will have a B1 dimension of $0.030-0.045$ inch ( $0.76-1.14 \mathrm{~mm}$ ).

E16.3 (JEDEC MS-001-BB ISSUE D) 16 LEAD DUAL-IN-LINE PLASTIC PACKAGE

SYMBOL	INCHES		MILLIMETERS		NOTES
	MIN	MAX	MIN	MAX	
A	$\bullet$	0.210	-	5.33	4
A1	0.015	-	0.39	-	4
A2	0.115	0.195	2.93	4.95	-
B	0.014	0.022	0.356	0.558	-
B1	0.045	0.070	1.15	1.77	8,10
C	0.008	0.014	0.204	0.355	-
D	0.735	0.775	18.66	19.68	5
D1	0.005	-	0.13	-	5
E	0.300	0.325	7.62	8.25	6
E1	0.240	0.280	6.10	7.11	5
e		BSC		BSC	-
$\theta_{\text {A }}$		SC		BSC	6
$\theta_{B}$	-	0.430	-	10.92	7
L	0.115	0.150	2.93	3.81	4
N	16		16		9

Rev. 0 12/93

E18.3 (JEDEC MS-001-BC ISSUE D) 18 LEAD DUAL-IN-LINE PLASTIC PACKAGE

SYMBOL	INCHES		MILLIMETERS		NOTES
	MIN	MAX	MIN	MAX	
A	-	0.210	-	5.33	4
A1	0.015	-	0.39	-	4
A2	0.115	0.195	2.93	4.95	-
B	0.014	0.022	0.356	0.558	-
B1	0.045	0.070	1.15	1.77	8,10
C	0.008	0.014	0.204	0.355	-
D	0.845	0.880	21.47	22.35	5
D1	0.005	-	0.13	-	5
E	0.300	0.325	7.62	8.25	6
E1	0.240	0.280	6.10	7.11	5
e	0.10	SC		BSC	-
$\theta_{\text {A }}$	0.30	SC		BSC	6
$e_{B}$	-	0.430	-	10.92	7
L	0.115	0.150	2.93	3.81	4
N	18		18		9

Rev. 0 12/93

## Dual-In-Line Plastic Packages (Continued)



NOTES:

1. Controlling Dimensions: $\operatorname{INCH}$. In case of conflict between English and Metric dimensions, the inch dimensions control.
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
3. Symbols are defined in the "MO Series Symbol List" in Section 2.2 of Publication No. 95.
4. Dimensions A, A1 and L are measured with the package seated in JEDEC seating plane gauge GS-3.
5. D, D1, and E1 dimensions do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.010 inch ( 0.25 mm ).
6. $E$ and $e_{A}$ are measured with the leads constrained to be perpendicular to datum -C-.
7. $e_{\mathrm{B}}$ and $\theta_{\mathrm{C}}$ are measured at the lead tips with the leads unconstrained. $\theta_{C}$ must be zero or greater.
8. B1 maximum dimensions do not include dambar protrusions. Dambar protrusions shall not exceed 0.010 inch ( 0.25 mm ).
9. N is the maximum number of terminal positions.
10. Corner leads (1, N, N/2 and N/2 + 1) for E8.3, E16.3, E18.3, E28.3, E42.6 will have a B1 dimension of $0.030-0.045$ inch (0.76-1.14mm).

E20.3 (JEDEC MS-001-AD ISSUE D) 20 LEAD DUAL-IN-LINE PLASTIC PACKAGE

SYMBOL	INCHES		MILLIMETERS		NOTES
	MIN	MAX	MIN	MAX	
A	-	0.210	-	5.33	4
A1	0.015	$\bullet$	0.39	-	4
A2	0.115	0.195	2.93	4.95	-
B	0.014	0.022	0.356	0.558	-
B1	0.045	0.070	1.55	1.77	8
C	0.008	0.014	0.204	0.355	-
D	0.980	1.060	24.89	26.9	5
D1	0.005	-	0.13	-	5
E	0.300	0.325	7.62	8.25	6
E1	0.240	0.280	6.10	7.11	5
e	0.100 BSC		2.54 BSC		-
$\theta_{A}$	0.300 BSC		7.62 BSC		6
$\theta_{B}$	-	0.430	-	10.92	7
L	0.115	0.150	2.93	3.81	4
N	20		20		9

Rev. 0 12/93
E24.3 (JEDEC MS-001-AF ISSUE D) 24 LEAD NARROW BODY DUAL-IN-LINE PLASTIC PACKAGE

SYMBOL	INCHES		MILLIMETERS		NOTES
	MIN	MAX	MIN	MAX	
A	-	0.210	-	5.33	4
A1	0.015	-	0.39	-	4
A2	0.115	0.195	2.93	4.95	-
B	0.014	0.022	0.356	0.558	-
B1	0.045	0.070	1.15	1.77	8
C	0.008	0.014	0.204	0.355	-
D	1.230	1.280	31.24	32.51	5
D1	0.005	-	0.13	-	5
E	0.300	0.325	7.62	8.25	6
E1	0.240	0.280	6.10	7.11	5
e	0.10	BSC		BSC	-
$\theta_{A}$	0.3	BSC		BSC	6
$\theta_{B}$	-	0.430	-	10.92	7
L	0.115	0.150	2.93	3.81	4
N	24		24		9

Rev. 0 12/93

## Dual-In-Line Plastic Packages (Continued)



E24.6 (JEDEC MS-011-AA ISSUE B) 24 LEAD DUAL-IN-LINE PLASTIC PACKAGE

SYMBOL	INCHES		MILLIMETERS		NOTES
	MIN	MAX	MIN	MAX	
A	-	0.250	-	6.35	4
A1	0.015	-	0.39	$\bullet$	4
A2	0.125	0.195	3.18	4.95	-
B	0.014	0.022	0.356	0.558	$\bullet$
B1	0.030	0.070	0.77	1.77	8
C	0.008	0.015	0.204	0.381	-
D	1.150	1.290	29.3	32.7	5
D1	0.005	-	0.13	-	5
E	0.600	0.625	15.24	15.87	6
E1	0.485	0.580	12.32	14.73	5
e	0.10	BSC		BSC	$\cdot$
$\theta_{\text {A }}$		SS		BSC	6
$\theta_{B}$	-	0.700	-	17.78	7
L	0.115	0.200	2.93	5.08	4
N	24		24		9

Rev. 0 12/93

E28.6 (JEDEC MS-011-AB ISSUE B) 28 LEAD DUAL-IN-LINE PLASTIC PACKAGE

SYMBOL	INCHES		MILLIMETERS		NOTES
	MIN	MAX	MIN	MAX	
A	$\bullet$	0.250	-	6.35	4
A1	0.015	-	0.39	-	4
A2	0.125	0.195	3.18	4.95	-
B	0.014	0.022	0.356	0.558	-
B1	0.030	0.070	0.77	1.77	8
C	0.008	0.015	0.204	0.381	-
D	1.380	1.565	35.1	39.7	5
D1	0.005	-	0.13	-	5
E	0.600	0.625	15.24	15.87	6
E1	0.485	0.580	12.32	14.73	5
e	0.10	SC		BSC	-
$\mathrm{e}_{\mathrm{A}}$	0.6	SC		BSC	6
$e_{B}$	-	0.700	-	17.78	7
L	0.115	0.200	2.93	5.08	4
N	28		28		9

Rev. 0 12/93

## Dual-In-Line Plastic Packages (Continued)


-B-


NOTES:

1. Controlling Dimensions: INCH. In case of conflict between English and Metric dimensions, the inch dimensions control.
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
3. Symbols are defined in the "MO Series Symbol List" in Section 2.2 of Publication No. 95.
4. Dimensions $A, A 1$ and $L$ are measured with the package seated in JEDEC seating plane gauge GS-3.
5. D, D1, and E1 dimensions do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.010 inch ( 0.25 mm ).
6. $E$ and $e_{A}$ are measured with the leads constrained to be perpendicular to datum -C-.
7. $e_{B}$ and $e_{C}$ are measured at the lead tips with the leads unconstrained. $e_{\mathrm{C}}$ must be zero or greater.
8. B1 maximum dimensions do not include dambar protrusions. Dambar protrusions shall not exceed 0.010 inch ( 0.25 mm ).
9. $N$ is the maximum number of terminal positions.
10. Corner leads (1, N, N/2 and N/2 + 1) for E8.3, E16.3, E18.3, E28.3, E42.6 will have a B1 dimension of $0.030 \cdot 0.045$ inch (0.76-1.14mm).

E40.6 (JEDEC MS-011-AC ISSUE B)
40 LEAD DUAL-IN-LINE PLASTIC PACKAGE

SYMBOL	INCHES		MILLIMETERS		NOTES
	MIN	MAX	MIN	MAX	
A	-	0.250	-	6.35	4
A1	0.015	-	0.39	-	4
A2	0.125	0.195	3.18	4.95	$\bullet$
B	0.014	0.022	0.356	0.558	-
B1	0.030	0.070	0.77	1.77	8
C	0.008	0.015	0.204	0.381	-
D	1.980	2.095	50.3	53.2	5
D1	0.005	-	0.13	-	5
E	0.600	0.625	15.24	15.87	6
E1	0.485	0.580	12.32	14.73	5
$\theta$	0.10	SC		BSC	-
$\theta_{\text {A }}$	0.60	SC		BSC	6
$\theta_{B}$	-	0.700	-	17.78	7
L	0.115	0.200	2.93	5.08	4
N	40		40		9

Rev. 0 12/93
E48.6 (JEDEC MS-011-AD ISSUE B)
48 LEAD DUAL-IN-LINE PLASTIC PACKAGE

SYMBOL	INCHES		MILLIMETERS		NOTES
	MIN	MAX	MIN	MAX	
A	-	0.250	-	6.35	4
A1	0.015	-	0.39	$\bullet$	4
A2	0.125	0.195	3.18	4.95	-
B	0.014	0.022	0.356	0.558	-
B1	0.030	0.070	0.77	1.77	8
C	0.008	0.015	0.204	0.381	-
D	2.385	2.480	60.70	63.1	5
D1	0.005	-	0.13	-	5
E	0.600	0.625	15.24	15.87	6
E1	0.485	0.580	12.32	14.73	5
e	0.1	BSC		BSC	-
$\mathrm{e}_{\mathrm{A}}$		BSC		BSC	6
$\theta_{B}$	-	0.700	-	17.78	7
L	0.115	0.200	2.93	5.08	4
N	48		48		9

Rev. 0 12/93

Package Outlines

## Dual-In-Line Plastic Packages (Continued)



FIGURE 1

E28.6A
28 LEAD DUAL-IN-LINE PLASTIC PACKAGE

SYMBOL	INCHES		MILLIMETERS		NOTES
	MIN	MAX	MIN	MAX	
A	0.178	0.196	4.5	5.0	2
A1	0.020	-	0.50	-	2
B	0.016	0.023	0.40	0.60	-
B1	0.042	0.053	1.05	1.35	-
C	0.008	0.13	0.20	0.35	-
D	1.485	1.503	37.7	38.2	3
E1	0.508	0.523	12.9	13.3	3
e	0.100 BSC		2.54 BSC		-
$\theta_{\text {A }}$	0.600 BSC		15.24 BSC		4
L	0.119	-	3.0	-	2
N	28		28		5
$\alpha$	$0^{\circ}$	$15^{\circ}$	$0^{\circ}$	$15^{\circ}$	

Rev. 0 12/93

E24.4
24 LEAD DUAL-IN-LINE PLASTIC PACKAGE (400 MIL)

SYMBOL	INCHES		MILLIMETERS		NOTES
	MIN	MAX	MIN	MAX	
A	0.142	0.161	3.60	4.10	2
A1	0.020	-	0.50	-	2
B	0.016	0.023	0.40	0.60	
B1	0.042	0.053	1.05	1.35	
C	0.008	0.013	0.20	0.35	
D	1.185	1.204	30.10	30.60	3
E1	0.331	0.346	8.40	8.80	3
e	0.100 BSC		2.54 BSC		
$e_{A}$	0.400 BSC		10.16 BSC		4
L	0.119	-	3.0	-	2
N	24		24		5
$\alpha$	$0^{\circ}$	$15^{\circ}$	$0^{\circ}$	$15^{\circ}$	

Rev. 0 12/93

E42.6A
42 LEAD DUAL-IN-LINE PLASTIC PACKAGE

SYMBOL	INCHES		MILLIMETERS		NOTES
	MIN	MAX	MIN	MAX	
A	0.193	0.212	4.9	5.4	2
A1	0.040	-	1.0	-	2
B	0.018	0.025	0.45	0.65	-
B1	0.046	0.057	1.15	1.45	-
C	0.008	0.013	0.20	0.35	-
D	2.162	2.181	54.9	55.4	3
E1	0.516	0.531	13.1	13.50	3
$\theta$	0.100 BSC		2.54 BSC		-
$\theta_{A}$	0.600 BSC		15.24 BSC		4
L	0.119	-	3.0	-	2
N	42		42		5
$\alpha$	$0^{\circ}$	$15^{\circ}$	$0^{\circ}$	$15^{\circ}$	

Rev. 0 12/93

## NOTES:

1. Controlling Dimensions: MILLIMETER. In case of conflict between English and Metric dimensions, the metric dimensions control.
2. Dimensions A, A1 and L are measured with the package seated in JEDEC seating plane gauge GS-3.
3. D and E1 dimensions do not include mold flash or protrusions.
4. $e_{A}$ is measured with the leads constrained to be perpendicular to base plane.
5. $N$ is the maximum number of terminal positions.

Package Outlines
Small Outline (SOIC) Plastic Packages


NOTES:

1. Symbols are defined in the "MO Series Symbol List" in Section 2.2 of Publication Number 95.
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
3. Dimension " $D$ " does not include mold flash, protrusions or gate burrs. Mold flash, protrusion and gate burrs shall not exceed 0.15 mm ( 0.006 inch) per side.
4. Dimension " $E$ " does not include interlead flash or protrusions. Interlead flash and protrusions shall not exceed 0.25 mm ( 0.010 inch) per side.
5. The chamfer on the body is optional. If it is not present, a visual index feature must be located within the crosshatched area.
6. " $L$ " is the length of terminal for soldering to a substrate.
7. " N " is the number of terminal positions.
8. Terminal numbers are shown for reference only.
9. The lead width " $B$ ", as measured 0.36 mm ( 0.014 inch ) or greater above the seating plane, shall not exceed a maximum value of 0.61 mm ( 0.024 inch)
10. Controlling dimension: MILLIMETER. Converted inch dimensions are not necessarily exact.

M8.15 (JEDEC MS-012-AA ISSUE C)
8 LEAD NARROW BODY SMALL OUTLINE PLASTIC PACKAGE

SYMBOL	INCHES		MILLIMETERS							
A	0.0532	MAX	0.0688	1.35	1.75					
MIN	MAX	-								
B	0.0040	0.0098	0.10	0.25	-					
C	0.013	0.020	0.33	0.51	9					
D	0.1890	0.0098	0.19	0.25	-					
E	0.1497	0.1968	4.80	5.00	3					
$\theta$	0.050 BSC		1.27 BSC		-					
H	0.2284	0.2440	5.80	6.20	-					
h	0.0099	0.0196	0.25	0.50	5					
L	0.016	0.050	0.40	1.27	6					
N	8			8						
$\alpha$	$0^{\circ}$							8	$8^{\circ}$	7

Rev. 0 12/93
M16.15 (JEDEC MS-012-AC ISSUE C)
16 LEAD NARROW BODY SMALL OUTLINE PLASTIC PACKAGE

SYMBOL	INCHES		MILLIMETERS		NOTES	
	MIN	MAX	MIN	MAX		
A	0.0532	0.0688	1.35	1.75	-	
A1	0.0040	0.0098	0.10	0.25	-	
B	0.013	0.020	0.33	0.51	9	
C	0.0075	0.0098	0.19	0.25	-	
D	0.3859	0.3937	9.80	10.00	3	
E	0.1497	0.1574	3.80	4.00	4	
B	0.050 BSC		1.27		BSC	-
H	0.2284	0.2440	5.80	6.20	-	
h	0.0099	0.0196	0.25	0.50	5	
L	0.016	0.050	0.40	1.27	6	
N	16			16		7
$\alpha$	$0^{\circ}$	$8^{\circ}$	$0^{\circ}$	$8^{\circ}$	-	

Rev. 0 12/93

## Small Outline (SOIC) Plastic Packages (Continued)



NOTES:

1. Symbols are defined in the "MO Series Symbol List" in Section 2.2 of Publication Number 95.
2. Dimensioning and tolerancing per ANSI $\mathrm{Y} 14.5 \mathrm{M}-1982$.
3. Dimension " $D$ " does not include mold flash, protrusions or gate burrs. Mold flash, protrusion and gate burrs shall not exceed 0.15 mm ( 0.006 inch) per side.
4. Dimension " $E$ " does not include interlead flash or protrusions. Interlead flash and protrusions shall not exceed 0.25 mm ( 0.010 inch) per side.
5. The chamfer on the body is optional. If it is not present, a visual index feature must be located within the crosshatched area.
6. " $L$ " is the length of terminal for soldering to a substrate.
7. " N " is the number of terminal positions.
8. Terminal numbers are shown for reference only.
9. The lead width " $B$ ", as measured 0.36 mm ( 0.014 inch) or greater above the seating plane, shall not exceed a maximum value of 0.61 mm ( 0.024 inch)
10. Controlling dimension: MILLIMETER. Converted inch dimensions are not necessarily exact.

M16.3 (JEDEC MS-013-AA ISSUE C)
16 LEAD WIDE BODY SMALL OUTLINE PLASTIC PACKAGE

SYMBOL	INCHES		MILLIMETERS		
	MAX	MIN	MAX	NOTES	
A	0.0926	0.1043	2.35	2.65	-
A1	0.0040	0.0118	0.10	0.30	-
B	0.013	0.0200	0.33	0.51	9
C	0.0091	0.0125	0.23	0.32	-
D	0.3977	0.4133	10.10	10.50	3
E	0.2914	0.2992	7.40	7.60	4
e	0.050 BSC		1.27 BSC		-
H	0.394	0.419	10.00	10.65	-
$h$	0.010	0.029	0.25	0.75	5
L	0.016	0.050	0.40	1.27	6
N	16			16	
$\alpha$	$0^{\circ}$		$8^{\circ}$	$0^{\circ}$	$8^{\circ}$

Rev. 0 12/93

## M18.3 (JEDEC MS-013-AB ISSUE C)

 18 LEAD WIDE BODY SMALL OUTLINE PLASTIC PACKAGE| SYMBOL | INCHES |  | MILLIMETERS |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | MAX | MIN | MAX | NOTES |  |
| A | 0.0926 | 0.1043 | 2.35 | 2.65 | - |
| A1 | 0.0040 | 0.0118 | 0.10 | 0.30 | - |
| B | 0.013 | 0.0200 | 0.33 | 0.51 | 9 |
| C | 0.0091 | 0.0125 | 0.23 | 0.32 | - |
| D | 0.4469 | 0.4625 | 11.35 | 11.75 | 3 |
| E | 0.2914 | 0.2992 | 7.40 |  | 7.60 |
| e | 0.050 BSC |  | 1.27 BSC |  | - |
| H | 0.394 | 0.419 | 10.00 | 10.65 | - |
| h | 0.010 | 0.029 | 0.25 | 0.75 | 5 |
| L | 0.016 | 0.050 | 0.40 | 1.27 | 6 |
| N | 18 |  |  | 18 |  |
| $\alpha$ | $0^{\circ}$ | $8^{\circ}$ | $0^{\circ}$ | $8^{\circ}$ | - |

Rev. 0 12/93

Small Outline (SOIC) Plastic Packages (Continued)


NOTES:

1. Symbols are defined in the "MO Series Symbol List" in Section 2.2 of Publication Number 95.
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
3. Dimension " $D$ " does not include mold flash, protrusions or gate burrs. Mold flash, protrusion and gate burrs shall not exceed 0.15 mm ( 0.006 inch ) per side.
4. Dimension " $E$ " does not include interlead flash or protrusions. Interlead flash and protrusions shall not exceed 0.25 mm ( 0.010 inch) per side.
5. The chamfer on the body is optional. If it is not present, a visual index feature must be located within the crosshatched area.
6. " $L$ " is the length of terminal for soldering to a substrate.
7. " N " is the number of terminal positions.
8. Terminal numbers are shown for reference only.
9. The lead width " $B$ ", as measured 0.36 mm ( 0.014 inch) or greater above the seating plane, shall not exceed a maximum value of 0.61 mm ( 0.024 inch )
10. Controlling dimension: MILLIMETER. Converted inch dimensions are not necessarily exact.

M20.3 (JEDEC MS-013-AC ISSUE C)
20 LEAD WIDE BODY SMALL OUTLINE PLASTIC PACKAGE

SYMBOL	INCHES		MILLIMETERS								
	MAX	MIN	MAX	NOTES							
A	0.0926	0.1043	2.35	2.65	-						
A1	0.0040	0.0118	0.10	0.30	-						
B	0.013	0.0200	0.33	0.51	9						
C	0.0091	0.0125	0.23	0.32	-						
D	0.4961	0.5118	12.60	13.00	3						
E	0.2914	0.2992	7.40	7.60	4						
e	0.050 BSC		1.27 BSC		-						
H	0.394	0.419	10.00	10.65	-						
h	0.010	0.029	0.25	0.75	5						
L	0.016	0.050	0.40	1.27	6						
N	20		20		7						
$\alpha$	$0^{\circ}$							$8^{\circ}$	$0^{\circ}$	$8^{\circ}$	-

Rev. 0 12/93
M24.3 (JEDEC MS-013-AD ISSUE C)
24 LEAD WIDE BODY SMALL OUTLINE PLASTIC PACKAGE

SYMBOL	INCHES		MILLIMETERS		
	MIN	MAX	MIN	MAX	
A	0.0926	0.1043	2.35	2.65	-
A1	0.0040	0.0118	0.10	0.30	-
B	0.013	0.020	0.33	0.51	9
C	0.0091	0.0125	0.23	0.32	-
D	0.5985	0.6141	15.20	15.60	3
E	0.2914	0.2992	7.40	7.60	4
e	0.05 BSC		1.27 BSC		-
H	0.394	0.419	10.00	10.65	-
h	0.010	0.029	0.25	0.75	5
L	0.016	0.050	0.40		1.27
N	24		6		
$\alpha$	$0^{\circ}$	$8^{\circ}$	0	$0^{\circ}$	$8^{\circ}$

Rev. 0 12/93

## Package Outlines

## Small Outline (SOIC) Plastic Packages (Continued)



6 0.24 (iN)
NOTES:

1. Dimension " D " does not include mold flash, protrusions or gate burrs.
2. Dimension " $E$ " does not include interlead flash or protrusions.
3. " $L$ " is the length of terminal for soldering to a substrate.
4. " N " is the number of terminal positions.
5. Terminal numbers are shown for reference only.
6. Controlling dimension: MILLIMETER. Converted inch dimensions are not necessarily exact.

M24.2
24 LEAD SMALL OUTLINE PLASTIC PACKAGE (200 MIL)

SYMBOL	INCHES		MILLIMETERS		
	MAX	MIN	MAX	NOTES	
A	0.067	0.088	1.70	2.25	
A1	0.002	0.011	0.05	0.30	
B	0.014	0.021	0.35	0.55	
C	0.006	0.011	0.15	0.30	
D	0.587	0.606	14.9	15.4	1
E	0.205	0.220	5.2	5.6	2
$\theta$	0.050 BSC		1.27 BSC		
H	0.296	0.326	7.5	8.3	
L	0.012	0.027	0.30	0.70	3
N	24			24	
$\alpha$	$0^{\circ}$	$10^{\circ}$	$0^{\circ}$	$10^{\circ}$	-

Rev. 0 12/93

M28.3A
28 LEAD SMALL OUTLINE PLASTIC PACKAGE (300 MIL)

SYMBOL	INCHES		MILLIMETERS		
	MAX	MIN	MAX	NOTES	
A	0.085	0.106	2.15	2.7	-
A1	0.002	0.011	0.05	0.30	-
B	0.014	0.021	0.35	0.55	-
C	0.004	0.009	0.10	0.25	-
D	0.737	0.755	18.7	19.2	1
E	0.296	0.311	7.50	7.90	2
e	0.05 BSC		1.27 BSC		-
H	0.390	0.421	9.90	10.70	-
L	0.012	0.027	0.30	0.70	3
N	28		28		4
$\alpha$	$0^{\circ}$		$10^{\circ}$	$0^{\circ}$	

Rev. 0 12/93

## Small Outline (SOIC) Plastic Packages (Continued)


( $0.25(0.010)(10) \mathrm{C} \mid \mathrm{A}(1) \mathrm{B}$ (3)

M28.3 (JEDEC MS-013-AE ISSUE C) 28 LEAD WIDE BODY SMALL OUTLINE PLASTIC PACKAGE

| SYMBOL | INCHES |  | MILLIMETERS |  | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0.0926 | 0.1043 | 2.35 | 2.65 |  |
| A1 | 0.0040 | 0.0118 | 0.10 | 0.30 | - |
| B | 0.013 | 0.0200 | 0.33 | 0.51 | 9 |
| C | 0.0091 | 0.0125 | 0.23 | 0.32 | - |
| D | 0.6969 | 0.7125 | 17.70 | 18.10 | 3 |
| E | 0.2914 | 0.2992 | 7.40 | 7.60 | 4 |
| $\theta$ | 0.05 BSC |  | 1.27 BSC |  | - |
| H | 0.394 | 0.419 | 10.00 | 10.65 | - |
| h | 0.01 | 0.029 | 0.25 | 0.75 | 5 |
| L | 0.016 | 0.050 | 0.40 | 1.27 | 6 |
| N | 28 |  | 28 |  | 7 |
| $\alpha$ | $0^{\circ}$ | $8^{\circ}$ | $0^{\circ}$ | $8^{\circ}$ | - |

NOTES:
Rev. 0 12/93

1. Symbols are defined in the "MO Series Symbol List" in Section 2.2 of Publication Number 95.
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
3. Dimension " D " does not include mold flash, protrusions or gate burrs. Mold flash, protrusion and gate burrs shall not exceed 0.15 mm ( 0.006 inch ) per side.
4. Dimension " $E$ " does not include interlead flash or protrusions. Interlead flash and protrusions shall not exceed 0.25 mm ( 0.010 inch) per side.
5. The chamfer on the body is optional. If it is not present, a visual index feature must be located within the crosshatched area.
6. " $L$ " is the length of terminal for soldering to a substrate.
7. " N " is the number of terminal positions.
8. Terminal numbers are shown for reference only.
9. The lead width " $B$ ", as measured 0.36 mm ( 0.014 inch ) or greater above the seating plane, shall not exceed a maximum value of 0.61 mm ( 0.024 inch)
10. Controlling dimension: MILLIMETER. Converted inch dimensions are not necessarily exact.

## Shrink Small Outline (SSOP) Plastic Packages



Rev. 0 12/93

## NOTES:

1. Symbols are defined in the "MO Series Symbol List" in Section 2.2 of Publication Number 95.
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
3. Dimension " $D$ " does not include mold flash, protrusions or gate burrs. Mold flash, protrusion and gate burrs shall not exceed 0.20 mm ( 0.0078 inch) per side.
4. Dimension "E" does not include interlead flash or protrusions. Interiead flash and protrusions shall not exceed $0.20 \mathrm{~mm}(0.0078$ inch) per side.
5. The chamfer on the body is optional. If it is not present, a visual index feature must be located within the crosshatched area.
6. " $L$ " is the length of terminal for soldering to a substrate.
7. " $N$ " is the number of terminal positions.
8. Terminal numbers are shown for reference only.
9. The lead width " B ", as measured 0.36 mm ( 0.014 inch ) or greater above the seating plane, shall not exceed a maximum value of 0.51 mm ( 0.020 inch )
10. Controlling dimension: MILLIMETER. Converted inch dimensions are not necessarily exact.

Plastic Leaded Chip Carrier (PLCC) Packages
NOTES:

1. Controlling dimension: $\operatorname{INCH}$. Converted millimeter dimensions are not necessarily exact.
2. Dimensions and tolerancing per ANSI Y14.5M-1982.
3. Dimensions D1 and E1 do not include mold protrusions. Allowable mold protrusion is 0.010 inch ( 0.25 mm ) per side.
4. To be measured at seating plane - -C. contact point.
5. Centerline to be determined where center leads exit plastic body.
6. " $N$ " is the number of terminal positions.

N20.35 (JEDEC MS-018 ISSUE A) 20 LEAD PLASTIC LEADED CHIP CARRIER PACKAGE

SYMBOL	INCHES		MILLIMETERS				
	MIN	MAX	MIN	MAX			
A	0.165	0.180	4.20	4.57	-		
A1	0.090	0.120	2.29	3.04	-		
D	0.385	0.395	9.78	10.03	-		
D1	0.350	0.356	8.89	9.04	3		
D2	0.141	0.169	3.59	4.29	4,5		
E	0.385	0.395	9.78	10.03	-		
E1	0.350	0.356	8.89	9.04	3		
E2	0.141	0.169	3.59	4.29	4,5		
N	20			20			6

Rev. 0 12/93

N28.45 (JEDEC MS-018 ISSUE A) 28 LEAD PLASTIC LEADED CHIP CARRIER PACKAGE

SYMBOL	INCHES		MILLIMETERS				
	MAX	MIN	MAX	NOTES			
A	0.165	0.180	4.20	4.57	-		
A1	0.090	0.120	2.29	3.04	-		
D	0.485	0.495	12.32	12.57	-		
D1	0.450	0.456	11.43	11.58	3		
D2	0.191	0.219	4.86	5.56	4,5		
E	0.485	0.495	12.32	12.57	-		
E1	0.450	0.456	11.43	11.58	3		
E2	0.191	0.219	4.86	5.56	4,5		
N	28			28			6

N44.65 (JEDEC MS-018 ISSUE A)
44 LEAD PLASTIC LEADED CHIP CARRIER PACKAGE

SYMBOL	INCHES		MILLIMETERS				
	MAX	MIN	MAX	NOTES			
A	0.165	0.180	4.20	4.57	-		
A1	0.090	0.120	2.29	3.04	-		
D	0.685	0.695	17.40	17.65	-		
D1	0.650	0.656	16.51	16.66	3		
D2	0.291	0.319	7.40	8.10	4,5		
E	0.685	0.695	17.40	17.65	-		
E1	0.650	0.656	16.51	16.66	3		
E2	0.291	0.319	7.40	8.10	4,5		
N	44			44			6

## Metric Plastic Quad Flatpack Packages



Q32.A
32 LEAD METRIC PLASTIC QUAD FLATPACK PACKAGE

	INCHES		MILLIMETERS		NOTES		
SYMBOL	MIN	MAX	MIN	MAX			
A	0.054	0.072	1.35	1.85	-		
A1	0.000	0.011	0.00	0.30	-		
B	0.008	0.017	0.20	0.45	5		
D	0.347	0.362	8.80	9.20	2		
D1	0.272	0.287	6.90	7.30	3,4		
E	0.347	0.362	8.80	9.20	2		
E1	0.272	0.287	6.90	7.30	3,4		
L	0.012	0.027	0.30	0.70	-		
N	32			32			
O	0.032 BSC			0.80 BSC			-

Rev. 0 12/93

## NOTES:

1. Controlling dimension: MILLIMETER. Converted inch dimensions are not necessarily exact.
2. Dimensions $D$ and $E$ to be determined at seating plane -C .
3. Dimensions D1 and E1 to be determined at datum plane $-\mathrm{H}-$.
4. Dimensions D1 and E1 do not include mold protrusion.
5. Dimension B does not include dambar protrusion.
6. "N" is the number of terminal positions.

## Metric Plastic Quad Flatpack Packages (Continued)



Q44.A (JEDEC MO-108AA-2 ISSUE A) 44 LEAD METRIC PLASTIC QUAD FLATPACK PACKAGE

SYMBOL	INCHES		MILLIMETERS		NOTES
	-	0.093	-	2.35	
A1	0.000	0.010	0.00	0.25	-
A2	0.077	0.083	1.95	2.10	-
B	0.012	0.018	0.30	0.45	6
B1	0.012	0.016	0.30	0.40	-
D	0.510	0.530	12.95	13.45	3
D1	0.390	0.398	9.90	10.10	4,5
E	0.510	0.530	12.95	13.45	3
E1	0.390	0.398	9.90	10.10	4.5
L	0.026	0.037	0.65	0.95	-
N	44			44	
E	0.032 BSC			0.80 BSC	

Rev. 0 12/93
NOTES:

1. Controlling dimension: MILLIMETER. Converted inch dimensions are not necessarily exact.
2. All dimensions and tolerances per ANSI Y14.5M-1982.
3. Dimensions D and E to be determined at seating plane -C .
4. Dimensions D1 and E1 to be determined at datum plane $-\mathrm{H}-$.
5. Dimensions D1 and E1 do not include mold protrusion. Allowable protrusion is 0.25 mm ( 0.010 inch) per side.
6. Dimension $B$ does not include dambar protrusion. Allowable dambar protrusion shall be 0.08 mm ( 0.003 inch) total.
7. " N " is the number of terminal positions.

Metric Plastic Quad Flatpack Packages (Continued)


Q44.B
44 LEAD METRIC PLASTIC QUAD FLATPACK PACKAGE

	INCHES		MILLIMETERS		NOTES						
SYMBOL	MIN	MAX	MIN	MAX							
A	-	0.093	-	2.35	-						
A1	0.000	0.004	0.00	0.10	-						
A2	0.081	0.089	2.05	2.25	-						
B	0.012	0.018	0.30	0.45	6						
D	0.544	0.559	13.80	14.20	3						
D1	0.390	0.398	9.90	10.10	4,5						
E	0.544	0.559	13.80	14.20	3						
E1	0.390	0.398	9.90	10.10	4,5						
L	0.042	0.053	1.05	1.35	-						
N	44			44			7				
$\theta$	0.032 BSC						0.80 BSC				-

Rev. 0 12/93
NOTES:

1. Controlling dimension: MILLIMETER. Converted inch dimensions are not necessarily exact.
2. All dimensions and tolerances per ANSI Y14.5M-1982.
3. Dimensions $D$ and $E$ to be determined at seating plane -C -.
4. Dimensions D1 and E 1 to be determined at datum plane $-\mathrm{H}-$.
5. Dimensions D1 and E1 do not include mold protrusion. Allowable protrusion is 0.25 mm ( 0.010 inch ) per side.
6. Dimension B does not include dambar protrusion. Allowable dambar protrusion shall be 0.08 mm ( 0.003 inch) total.
7. " N " is the number of terminal positions.

## Dual-In-Line Frit-Seal Ceramic Packages



## NOTES:

1. Index area: A notch or a pin one identification mark shall be located adjacent to pin one and shall be located within the shaded area shown. The manufacturer's identification shall not be used as a pin one identification mark.
2. The maximum limits of lead dimensions $b$ and $c$ or $M$ shall be measured at the centroid of the finished lead surfaces, when solder dip or tin plate lead finish is applied.
3. Dimensions b1 and c1 apply to lead base metal only. Dimension $M$ applies to lead plating and finish thickness.
4. Corner leads ( $1, N, N / 2$, and $N / 2+1$ ) may be configured with a partial lead paddle. For this configuration dimension b3 replaces dimension b1.
5. This dimension allows for off-center lid, meniscus, and glass overrun.
6. Dimension $Q$ shall be measured from the seating plane to the base plane.
7. Measure dimension S1 at all four corners.
8. $N$ is the maximum number of terminal positions.
9. Dimensioning and tolerancing per ANSI Y14.5M - 1982.
10. Controlling Dimension: INCH

F14.3 MIL-STD-1835 GDIP1-T14 (D-1, CONFIGURATION A) 14 LEAD DUAL-IN-LINE FRIT-SEAL CERAMIC PACKAGE

SYMBOL	INCHES		MILLIMETERS		NOTES
	MIN	MAX	MIN	MAX	
A	-	0.200	-	5.08	-
b	0.014	0.026	0.36	0.66	2
b1	0.014	0.023	0.36	0.58	3
b2	0.045	0.065	1.14	1.65	-
b3	0.023	0.045	0.58	1.14	4
c	0.008	0.018	0.20	0.46	2
c1	0.008	0.015	0.20	0.38	3
D	-	0.785	-	19.94	5
E	0.220	0.310	5.59	7.87	5
e		SC		BSC	-
OA		SC		BSC	-
eA/2		SC		BSC	-
L	0.125	0.200	3.18	5.08	-
Q	0.015	0.060	0.38	1.52	6
S1	0.005	-	0.13	-	7
S2	0.005	-	0.13	-	-
$\alpha$	$90^{\circ}$	$105^{\circ}$	$90^{\circ}$	$105^{\circ}$	-
aaa	-	0.015	-	0.38	-
bbb	-	0.030	$\cdot$	0.76	-
Ccc	-	0.010	-	0.25	$\bullet$
M	-	0.0015	-	0.038	2
N	14		14		8

F16.3 MLL-STD-1835 GDIP1-T16 (D-2, CONFIGURATION A) 16 LEAD DUAL-IN-LINE FRIT-SEAL CERAMIC PACKAGE

SYMBOL	INCHES		MILLIMETERS		NOTES
	MIN	MAX	MIN	MAX	
A	-	0.200	-	5.08	-
b	0.014	0.026	0.36	0.66	2
b1	0.014	0.023	0.36	0.58	3
b2	0.045	0.065	1.14	1.65	-
b3	0.023	0.045	0.58	1.14	4
c	0.008	0.018	0.20	0.46	2
c1	0.008	0.015	0.20	0.38	3
D	-	0.840	-	21.34	5
E	0.220	0.310	5.59	7.87	5
$\theta$	0.10			BSC	-
eA				BSC	$\cdot$
eA/2	0.15			3SC	-
L	0.125	0.200	3.18	5.08	-
Q	0.015	0.060	0.38	1.52	6
S1	0.005	-	0.13	-	7
S2	0.005	-	0.13	$\bullet$	-
$\alpha$	$90^{\circ}$	$105^{\circ}$	$90^{\circ}$	$10{ }^{\circ}$	-
aaa	-	0.015	-	0.38	$\bullet$
bbb	-	0.030	$\bullet$	0.76	$\bullet$
ccc	-	0.010	$\bullet$	0.25	-
M	-	0.0015	-	0.038	2
N	16		16		8

## Dual-In-Line Frit-Seal Ceramic Packages (Continued)



## NOTES:

1. Index area: A notch or a pin one identification mark shall be located adjacent to pin one and shall be located within the shaded area shown. The manufacturer's identification shall not be used as a pin one identification mark.
2. The maximum limits of lead dimensions $b$ and $c$ or $M$ shall be measured at the centroid of the finished lead surfaces, when solder dip or tin plate lead finish is applied.
3. Dimensions b1 and c1 apply to lead base metal only. Dimension $M$ applies to lead plating and finish thickness.
4. Corner leads ( $1, N, N / 2$, and $N / 2+1$ ) may be configured with a partial lead paddle. For this configuration dimension b3 replaces dimension b1.
5. This dimension allows for off-center lid, meniscus, and glass overrun.
6. Dimension $Q$ shall be measured from the seating plane to the base plane.
7. Measure dimension S1 at all four corners.
8. $N$ is the maximum number of terminal positions.
9. Dimensioning and tolerancing per ANSI Y14.5M-1982.
10. Controlling Dimension: INCH 10. Controling Dimension:

F18.3 MIL-STD-1835 GDIP1-T18 (D-6, CONFIGURATION A) 18 LEAD DUAL-IN-LINE FRIT-SEAL CERAMIC PACKAGE

SYMBOL	INCHES		MILLIMETERS		NOTES
	MIN	MAX	MIN	MAX	
A	-	0.200	-	5.08	-
b	0.014	0.026	0.36	0.66	2
b1	0.014	0.023	0.36	0.58	3
b2	0.045	0.065	1.14	1.65	-
b3	0.023	0.045	0.58	1.14	4
c	0.008	0.018	0.20	0.46	2
c1	0.008	0.015	0.20	0.38	3
D	-	0.960	-	24.38	5
E	0.220	0.310	5.59	7.87	5
$\theta$				BSC	-
eA				BSC	-
eA/2				BSC	-
L	0.125	0.200	3.18	5.08	-
Q	0.015	0.070	0.38	1.78	6
S1	0.005	-	0.13	-	7
S2	0.005	-	0.13	-	-
$\alpha$	$90^{\circ}$	$105^{\circ}$	$90^{\circ}$	$105^{\circ}$	-
aaa	-	0.015	-	0.38	-
bbb	-	0.030	-	0.76	-
CCC	-	0.010	-	0.25	-
M	-	0.0015	-	0.038	2
N	18		18		8

## Dual-In-Line Frit-Seal Ceramic Packages (Continued)



## NOTES:

1. Index area: A notch or a pin one identification mark shall be located adjacent to pin one and shall be located within the shaded area shown. The manufacturer's identification shall not be used as a pin one identification mark.
2. The maximum limits of lead dimensions $b$ and $c$ or $M$ shall be measured at the centroid of the finished lead surfaces, when solder dip or tin plate lead finish is applied.
3. Dimensions b1 and c1 apply to lead base metal only. Dimension $M$ applies to lead plating and finish thickness.
4. Corner leads ( $1, N, N / 2$, and $N / 2+1$ ) may be configured with a partial lead paddle. For this configuration dimension b3 replaces dimension b1.
5. This dimension allows for off-center lid, meniscus, and glass overrun.
6. Dimension $Q$ shall be measured from the seating plane to the base plane.
7. Measure dimension S1 at all four corners.
8. $N$ is the maximum number of terminal positions.
9. Dimensioning and tolerancing per ANSI Y14.5M-1982.
10. Controlling Dimension: INCH

F20.3 MIL-STD-1835 GDIP1-T20 (D-8, CONFIGURATION A) 20 LEAD DUAL-IN-LINE FRIT-SEAL CERAMIC PACKAGE

SYMBOL	INCHES		MILLIMETERS		NOTES
	MIN	MAX	MIN	MAX	
A	-	0.200	-	5.08	-
b	0.014	0.026	0.36	0.66	2
b1	0.014	0.023	0.36	0.58	3
b2	0.045	0.065	1.14	1.65	-
b3	0.023	0.045	0.58	1.14	4
c	0.008	0.018	0.20	0.46	2
c1	0.008	0.015	0.20	0.38	3
D	-	1.060	-	26.92	5
E	0.220	0.310	5.59	7.87	5
e	0.10	SC	2.	BSC	-
OA	0.30	SC		BSC	-
eA/2	0.15	SC		BSC	-
L	0.125	0.200	3.18	5.08	-
Q	0.015	0.070	0.38	1.78	6
S1	0.005	-	0.13	-	7
S2	0.005	-	0.13	-	-
$\alpha$	$90^{\circ}$	$105^{\circ}$	$90^{\circ}$	$105^{\circ}$	-
aaa	-	0.015	-	0.38	-
bbb	-	0.030	-	0.76	-
CCC	-	0.010	-	0.25	-
M	-	0.0015	-	0.038	2
N	20		20		8

## Dual-In-Line Frit-Seal Ceramic Packages (Continued)

F24.3 MIL-STD-1835 GDIP3-T24 (D-9, CONFIGURATION A)


NOTES:

1. Index area: A notch or a pin one identification mark shall be located adjacent to pin one and shall be located within the shaded area shown. The manufacturer's identification shall not be used as a pin one identification mark.
2. The maximum limits of lead dimensions $b$ and $c$ or $M$ shall be measured at the centroid of the finished lead surfaces, when solder dip or tin plate lead finish is applied.
3. Dimensions b1 and c1 apply to lead base metal only. Dimension M applies to lead plating and finish thickness.
4. Corner leads ( $1, N, N / 2$, and $N / 2+1$ ) may be configured with a partial lead paddle. For this configuration dimension b3 replaces dimension b1.
5. This dimension allows for off-center lid, meniscus, and glass overrun.
6. Dimension $Q$ shall be measured from the seating plane to the base plane.
7. Measure dimension S1 at all four corners.
8. $N$ is the maximum number of terminal positions.
9. Dimensioning and tolerancing per ANSI Y14.5M-1982.
10. Controlling Dimension: INCH

24 LEAD DUAL-IN-LINE FRIT-SEAL CERAMIC PACKAGE

	INCHES		MILLIMETERS		
SYMBOL	MIN	MAX	MIN	MAX	NOTES
A	-	0.220	-	5.08	-
b	0.014	0.026	0.36	0.66	2
b1	0.014	0.023	0.36	0.58	3
b2	0.045	0.065	1.14	1.65	-
b3	0.023	0.045	0.58	1.14	4
c	0.008	0.018	0.20	0.46	2
c1	0.008	0.015	0.20	0.38	3
D	-	1.280	-	32.51	5
E	0.220	0.310	5.59	7.87	5
e	0.100 BSC	2.54	BSC	-	
eA	0.300 BSC	7.62 BSC	-		
eA/2	0.150 BSC	3.81 BSC		-	
L	0.125	0.200	3.18	5.08	-
Q	0.015	0.060	0.38	1.52	6
S1	0.005	-	0.13	-	7
S2	0.005	-	0.13	-	-
$\alpha$	$90^{\circ}$	$105^{\circ}$	$90^{\circ}$	$105^{\circ}$	-
aaa	-	0.015	-	0.38	-
bbb	-	0.030	-	0.76	-
ccc	-	0.010	-	0.25	-
M	-	0.0015	-	0.038	2
N		24		24	8

## Package Outlines

## Dual-In-Line Frit-Seal Ceramic Packages (Continued)



NOTES:

1. Index area: A notch or a pin one identification mark shall be located adjacent to pin one and shall be located within the shaded area shown. The manufacturer's identification shall not be used as a pin one identification mark.
2. The maximum limits of lead dimensions $b$ and $c$ or $M$ shall be measured at the centroid of the finished lead surfaces, when solder dip or tin plate lead finish is applied.
3. Dimensions b1 and c1 apply to lead base metal only. Dimension M applies to lead plating and finish thickness.
4. Corner leads ( $1, N, N / 2$, and $N / 2+1$ ) may be configured with a partial lead paddle. For this configuration dimension b3 replaces dimension b1.
5. This dimension allows for off-center lid, meniscus, and glass overrun.
6. Dimension $Q$ shall be measured from the seating plane to the base plane.
7. Measure dimension S1 at all four corners.
8. $N$ is the maximum number of terminal positions.
9. Dimensioning and tolerancing per ANSI Y14.5M - 1982.
10. Controlling Dimension: $\operatorname{INCH}$

F24.6 MIL-STD-1835 GDIP1-T24 (D-3, CONFIGURATION A) 24 LEAD DUAL-IN-LINE FRIT-SEAL CERAMIC PACKAGE

	INCHES		MILLIMETERS		
SYMBOL	MIN	MAX	MIN	MAX	
A	-	0.225	-	5.72	-
b	0.014	0.026	0.36	0.66	2
b1	0.014	0.023	0.36	0.58	3
b2	0.045	0.065	1.14	1.65	-
b3	0.023	0.045	0.58	1.14	4
c	0.008	0.018	0.20	0.46	2
c1	0.008	0.015	0.20	0.38	3
D	-	1.290	-	32.77	5
E	0.500	0.610	12.70	15.49	5
e	0.100 BSC	2.54 BSC	-		
eA	0.600	BSC	15.24	BSC	-
eAV2	0.300 BSC	7.62 BSC		-	
L	0.120	0.200	3.05	5.08	-
Q	0.015	0.075	0.38	1.91	6
S1	0.005	-	0.13	-	7
S2	0.005	-	0.13	-	-
$\alpha$	$90^{\circ}$	$105^{\circ}$	$90^{\circ}$	$105^{\circ}$	-
aaa	-	0.015	-	0.38	-
bbb	-	0.030	-	0.76	-
ccc	-	0.010	-	0.25	-
M	-	0.0015	-	0.038	2
N		24		24	8

## Dual-In-Line Frit-Seal Ceramic Packages (Continued)



## NOTES:

1. Index area: A notch or a pin one identification mark shall be located adjacent to pin one and shall be located within the shaded area shown. The manufacturer's identification shall not be used as a pin one identification mark.
2. The maximum limits of lead dimensions $b$ and $c$ or $M$ shall be measured at the centroid of the finished lead surfaces, when solder dip or tin plate lead finish is applied.
3. Dimensions b1 and c1 apply to lead base metal only. Dimension M applies to lead plating and finish thickness.
4. Corner leads ( $1, N, N / 2$, and $N / 2+1$ ) may be configured with a partial lead paddle. For this configuration dimension b3 replaces dimension b1.
5. This dimension allows for off-center lid, meniscus, and glass overrun.
6. Dimension Q shall be measured from the seating plane to the base plane.
7. Measure dimension S 1 at all four corners.
8. $N$ is the maximum number of terminal positions.
9. Dimensioning and tolerancing per ANSI Y14.5M-1982.
10. Controlling Dimension: INCH

## Dual-In-Line Frit-Seal Ceramic Packages (Continued)



NOTES:

1. Index area: A notch or a pin one identification mark shall be located adjacent to pin one and shall be located within the shaded area shown. The manufacturer's identification shall not be used as a pin one identification mark.
2. The maximum limits of lead dimensions $b$ and $c$ or $M$ shall be measured at the centroid of the finished lead surfaces, when solder dip or tin plate lead finish is applied.
3. Dimensions b1 and c1 apply to lead base metal only. Dimension $M$ applies to lead plating and finish thickness.
4. Corner leads ( $1, N, N / 2$, and $N / 2+1$ ) may be configured with a partial lead paddle. For this configuration dimension b3 replaces dimension b1.
5. This dimension allows for off-center lid, meniscus, and glass overrun.
6. Dimension $Q$ shall be measured from the seating plane to the base plane.
7. Measure dimension S 1 at all four corners.
8. $N$ is the maximum number of terminal positions.
9. Dimensioning and tolerancing per ANSI Y14.5M - 1982.
10. Controlling Dimension: INCH

F40.6 MIL-STD-1835 GDIP1-T40 (D-5, CONFIGURATION A) 40 LEAD DUAL-IN-LINE FRIT-SEAL CERAMIC PACKAGE

SYMBOL	INCHES		MILLIMETERS		NOTES
	MIN	MAX	MIN	MAX	
A	-	0.225	-	5.72	-
b	0.014	0.026	0.36	0.66	2
b1	0.014	0.023	0.36	0.58	3
b2	0.045	0.065	1.14	1.65	-
b3	0.023	0.045	0.58	1.14	4
c	0.008	0.018	0.20	0.46	2
c1	0.008	0.015	0.20	0.38	3
D	$\bullet$	2.096	-	53.24	5
E	0.510	0.620	12.95	15.75	5
e		SC		BSC	-
eA		SC		BSC	-
eA/2		SC		BSC	-
L	0.125	0.200	3.18	5.08	-
Q	0.015	0.070	0.38	1.78	6
S1	0.005	-	0.13	-	7
S2	0.005	-	0.13	-	-
$\alpha$	$90^{\circ}$	$105^{\circ}$	$90^{\circ}$	$105^{\circ}$	-
aaa	-	0.015	-	0.38	-
bbb	-	0.030	-	0.76	-
coc	-	0.010	-	0.25	-
M	-	0.0015	-	0.038	2
N	40		40		8

## Metal Seal Dual-in-Line Ceramic Packages



NOTES:

1. Index area: A notch or a pin one identification mark shall be located adjacent to pin one and shall be located within the shaded area shown. The manufacturer's identification shall not be used as a pin one identification mark.
2. The maximum limits of lead dimensions $b$ and $c$ or $M$ shall be measured at the centroid of the finished lead surfaces, when solder dip or tin plate lead finish is applied.
3. Dimensions b1 and c1 apply to lead base metal only. Dimension $M$ applies to lead plating and finish thickness.
4. Corner leads ( $1, N, N / 2$, and $N / 2+1$ ) may be configured with a partial lead paddle. For this configuration dimension b3 replaces dimension b1.
5. This dimension allows for off-center lid, meniscus, and glass overrun.
6. Dimension $Q$ shall be measured from the seating plane to the base plane.
7. Measure dimension S1 at all four corners.
8. Measure dimension S2 from the top of the ceramic body to the nearest metallization or lead.
9. N is the maximum number of terminal positions.
10. Braze fillets shall be concave.
11. Dimensioning and tolerancing per ANSI Y14.5M-1982.
12. Controlling Dimension: INCH.

D28.6 MIL-STD-1835 CDIP2-T28 (D-10, CONFIGURATION C) 28 LEAD METAL SEAL DUAL-IN-LINE CERAMIC PACKAGE

SYMBOL	INCHES		MILLIMETERS		NOTES
	MIN	MAX	MIN	MAX	
A	-	0.232	-	5.92	-
b	0.014	0.026	0.36	0.66	2
b1	0.014	0.023	0.36	0.58	3
b2	0.045	0.065	1.14	1.65	-
b3	0.023	0.045	0.58	1.14	4
c	0.008	0.018	0.20	0.46	2
c1	0.008	0.015	0.20	0.38	3
D	-	1.490	-	37.85	5
E	0.500	0.610	12.70	15.49	5
e	0.10	SC		BSC	-
OA	0.60	SC		BSC	$\bullet$
eA/2	0.30	SC		BSC	-
L	0.125	0.200	3.18	5.08	-
Q	0.015	0.060	0.38	1.52	6
S1	0.005	-	0.13	-	7
S2	0.005	$\cdot$	0.13	-	8
$\alpha$	$90^{\circ}$	$105^{\circ}$	$90^{\circ}$	$105^{\circ}$	-
aaa	-	0.015	-	0.38	-
bbb	-	0.030	-	0.76	-
ccc	-	0.010	-	0.25	-
M	-	0.0015	-	0.038	2
N	28		28		9

Metal Seal Dual-in-Line Ceramic Packages (Continued)


## NOTES:

1. Index area: A notch or a pin one identification mark shall be located adjacent to pin one and shall be located within the shaded area shown. The manufacturer's identification shall not be used as a pin one identification mark.
2. The maximum limits of lead dimensions $b$ and $c$ or $M$ shall be measured at the centroid of the finished lead surfaces, when solder dip or tin plate lead finish is applied.
3. Dimensions b1 and c1 apply to lead base metal only. Dimension $M$ applies to lead plating and finish thickness.
4. Corner leads ( $1, N, N / 2$, and $N / 2+1$ ) may be configured with a partial lead paddle. For this configuration dimension b3 replaces dimension b1.
5. This dimension allows for off-center lid, meniscus, and glass overrun.
6. Dimension $Q$ shall be measured from the seating plane to the base plane.
7. Measure dimension S1 at all four corners.
8. Measure dimension S2 from the top of the ceramic body to the nearest metallization or lead.
9. $N$ is the maximum number of terminal positions.
10. Braze fillets shall be concave.
11. Dimensioning and tolerancing per ANSI Y14.5M - 1982.
12. Controlling Dimension: INCH .

D40.6 MIL-STD-1835 CDIP2-T40 (D-5, CONFIGURATION C) 40 LEAD METAL SEAL DUAL-IN-LINE CERAMIC PACKAGE

	INCHES		MILLIMETERS		
SYMBOL	MIN	MAX	MIN	MAX	NOTES
A	-	0.225	-	5.72	-
b	0.014	0.026	0.36	0.66	2
b1	0.014	0.023	0.36	0.58	3
b2	0.045	0.065	1.14	1.65	-
b3	0.023	0.045	0.58	1.14	4
c	0.008	0.018	0.20	0.46	2
c1	0.008	0.015	0.20	0.38	3
D	-	2.096	-	53.24	5
E	0.510	0.620	12.95	15.75	5
e	0.100 BSC	2.54	BSC	-	
eA	0.600 BSC	15.24 BSC	-		
eA/2	0.300 BSC	7.62 BSC		-	
L	0.125	0.200	3.18	5.08	-
Q	0.015	0.070	0.38	1.78	6
S1	0.005	-	0.13	-	7
S2	0.005	-	0.13	-	8
$\alpha$	$90^{\circ}$	$105^{\circ}$	$90^{\circ}$	$105^{\circ}$	-
aaa	-	0.015	-	0.38	-
bbb	-	0.030	-	0.76	-
ccc	-	0.010	-	0.25	-
M	-	0.0015	-	0.038	2
N		40		40	9

## Metal Seal Dual-in-Line Ceramic Packages (Continued)



NOTES:

1. Index area: A notch or a pin one identification mark shall be located adjacent to pin one and shall be located within the shaded area shown. The manufacturer's identification shall not be used as a pin one identification mark.
2. The maximum limits of lead dimensions b and c or M shall be measured at the centroid of the finished lead surfaces, when solder dip or tin plate lead finish is applied.
3. Dimensions b1 and c1 apply to lead base metal only. Dimension M applies to lead plating and finish thickness.
4. Corner leads ( $1, \mathrm{~N}, \mathrm{~N} / 2$, and $\mathrm{N} / 2+1$ ) may be configured with a partial lead paddle. For this configuration dimension b3 replaces dimension b1.
5. This dimension allows for off-center lid, meniscus, and glass overrun.
6. Dimension $Q$ shall be measured from the seating plane to the base plane.
7. Measure dimension $S 1$ at all four corners.
8. Measure dimension S 2 from the top of the ceramic body to the nearest metallization or lead.
9. N is the maximum number of terminal positions.
10. Braze fillets shall be concave.
11. Dimensioning and tolerancing per ANSI Y14.5M - 1982.
12. Controlling dimension: INCH .

## Metal Seal Leadless Ceramic Chip Carrier Packages



J20.A MIL-STD-1835 CQCC1-N20 (C-2)
20 PAD METAL SEAL LEADLESS CERAMIC CHIP CARRIER

SYMBOL	INCHES		MILLIMETERS		NOTES
	MIN	MAX	MIN	MAX	
A	0.060	0.100	1.52	2.54	6,7
A1	0.050	0.088	1.27	2.23	7
B	-	-	-	-	4
B1	0.022	0.028	0.56	0.71	2, 4
B2	0.072 REF		1.83 REF		-
B3	0.006	0.022	0.15	0.56	-
D	0.342	0.358	8.69	9.09	-
D1	0.200 BSC		5.08 BSC		-
D2	0.100 BSC		2.54 BSC		-
D3	-	0.358	-	9.09	2
E	0.342	0.358	8.69	9.09	-
E1	0.200 BSC		5.08 BSC		-
E2	0.100 BSC		2.54 BSC		-
E3	-	0.358	-	9.09	2
$\theta$	0.050 BSC		1.27 BSC		-
e1	0.015	-	0.38	-	2
h	0.040 REF		1.02 REF		5
j	0.020 REF		0.51 REF		5
L	0.045	0.055	1.14	1.40	-
L1	0.045	0.055	1.14	1.40	-
L2	0.075	0.095	1.91	2.41	-
L3	0.003	0.015	0.08	0.38	-
ND	5		5		3
NE	5		5		3
N	20		20		3

NOTES:

1. Metallized castellations shall be connected to plane 1 terminals and extend toward plane 2 across at least two layers of ceramic or completely across all of the ceramic layers to make electrical connection with the optional plane 2 terminals.
2. Unless otherwise specified, a minimum clearance of 0.015 inch ( 0.381 mm ) shall be maintained between all metallized features (e.g., lid, castellations, terminals, thermal pads, etc.)
3. Symbol " $N$ " is the maximum number of terminals. Symbols "ND" and "NE" are the number of terminals along the sides of length "D" and "E", respectively.
4. The required plane 1 terminals and optional plane 2 terminals shall be ellectrically connected.
5. The corner shape (square, notch, radius, etc.) may vary at the manufacturer's option, from that shown on the drawing.
6. Chip carriers shall be constructed of a minimum of two ceramic layers.
7. Maximum limits allows for 0.007 inch solder thickness on pads.

Package Outlines
Metal Seal Leadless Ceramic Chip Carrier Packages (Continued)


J20.B
20 PAD METAL SEAL LEADLESS CERAMIC CHIP CARRIER

SYMBOL	INCHES		MILLIMETERS		NOTES
	MIN	MAX	MIN	MAX	
A	0.070	0.097	1.78	2.46	6,7
A1	0.054	0.077	1.37	1.96	7
B	-	-	-	-	-
B1	0.020	0.030	0.51	0.76	2,4
B2	0.072 REF		1.83 REF		-
B3	0.006	0.022	0.15	0.56	-
D	0.342	0.358	8.69	9.09	$\bullet$
D1	0.200 BSC		5.08 BSC		$\bullet$
D2	0.100 BSC		2.54 BSC		-
D3	0.325	0.335	8.26	8.51	2
E	0.342	0.358	8.69	9.09	-
E1	0.200 BSC		5.08 BSC		-
E2	0.100 BSC		2.54 BSC		-
E3	0.325	0.335	8.26	8.51	2
e	0.050 BSC		1.27 BSC		-
e1	0.015	-	0.38	-	2
h	0.040 REF		1.02 REF		5
j	0.020 REF		0.51 REF		5
L	0.042	0.058	1.07	1.47	-
L1	0.042	0.058	1.07	1.47	-
L2	0.075	0.095	1.91	2.41	-
L3	0.003	0.015	0.08	0.38	$\bullet$
ND	5		5		3
NE	5		5		3
N	20		20		3

NOTES:

1. Metallized castellations shall be connected to plane 1 terminals and extend toward plane 2 across at least two layers of ceramic or completely across all of the ceramic layers to make electrical connection with the optional plane 2 terminals.
2. Unless otherwise specified, a minimum clearance of 0.015 inch ( 0.381 mm ) shall be maintained between all metallized features (e.g., lid, castellations, terminals, thermal pads, etc.)
3. Symbol " N " is the maximum number of terminals. Symbols " ND " and "NE" are the number of terminals along the sides of length " $D$ " and " $E$ ", respectively.
4. The required plane 1 terminals and optional plane 2 terminals shall be ellectrically connected.
5. The corner shape (square, notch, radius, etc.) may vary at the manufacturer's option, from that shown on the drawing.
6. Chip carriers shall be constructed of a minimum of two ceramic layers.
7. Maximum limits allows for 0.007 inch solder thickness on pads.

Metal Seal Leadless Ceramic Chip Carrier Packages (Continued)


J28.A MIL-STD-1835 CQCC1-N28
28 PAD METAL SEAL LEADLESS CERAMIC CHIP CARRIER

SYMBOL	INCHES		MILLIMETERS		NOTES
	MIN	MAX	MIN	MAX	
A	0.060	0.100	1.52	2.54	6,7
A1	0.050	0.088	1.27	2.23	7
B	-	-	-	-	
B1	0.022	0.028	0.56	0.71	2, 4
B2	0.072 REF		1.83 REF		
B3	0.006	0.022	0.15	0.56	
D	0.442	0.460	11.23	11.68	
D1	0.300 BSC		7.62 BSC		
D2	0.150 BSC		3.81 BSC		
D3	-	0.460	-	11.68	2
E	0.442	0.460	11.23	11.68	
E1	0.300 BSC		7.62 BSC		
E2	0.150 BSC		3.81 BSC		
E3	-	0.460	-	11.68	2
e	0.050 BSC		1.27 BSC		
e1	0.015	-	0.38	-	2
h	0.040 REF		1.02 REF		5
j	0.020 REF		0.51 REF		5
L	0.045	0.055	1.14	1.40	
L1	0.045	0.055	1.14	1.40	
12	0.075	0.095	1.90	2.41	
L3	0.003	0.015	0.08	0.038	
ND	7		7		3
NE	7		7		3
N	28		28		3

## NOTES:

1. Metallized castellations shall be connected to plane 1 terminals and extend toward plane 2 across at least two layers of ceramic or completely across all of the ceramic layers to make electrical connection with the optional plane 2 terminals.
2. Unless otherwise specified, a minimum clearance of 0.015 inch ( 0.381 mm ) shall be maintained between all metallized features (e.g., lid, castellations, terminals, thermal pads, etc.)
3. Symbol " N " is the maximum number of terminals. Symbols " ND " and " NE " are the number of terminals along the sides of length "D" and " $E$ ", respectively.
4. The required plane 1 terminals and optional plane 2 terminals shall be ellectrically connected.
5. The corner shape (square, notch, radius, etc.) may vary at the manufacturer's option, from that shown on the drawing.
6. Chip carriers shall be constructed of a minimum of two ceramic layers.
7. Maximum limits allows for 0.007 inch solder thickness on pads.

Package Outlines
Metal Seal Leadless Ceramic Chip Carrier Packages (Continued)


J44.A MIL-STD-1835 CQCC1-N44 (C-5) 44 PAD METAL SEAL LEADLESS CERAMIC CHIP CARRIER

SYMBOL	INCHES		MILLIMETERS		NOTES
	MIN	MAX	MIN	MAX	
A	0.064	0.120	1.63	3.05	6,7
A1	0.054	0.088	1.37	2.24	7
B	0.033	0.039	0.84	0.99	4
B1	0.022	0.028	0.561	0.71	2,4
B2	0.072 REF		1.83 REF		-
B3	0.006	0.022	0.15	0.56	-
D	0.640	0.662	16.26	16.81	-
D1	0.500 BSC		12.70 BSC		-
D2	0.250 BSC		6.35 BSC		-
D3	-	0.662	-	16.81	2
E	0.640	0.662	16.26	16.81	-
E1	0.500 BSC		12.70 BSC		-
E2	0.250 BSC		6.35 BSC		-
E3	-	0.662	-	16.81	2
-	0.050 BSC		1.27 BSC		-
e1	0.015	-	0.38	-	2
h	0.040 REF		1.02 REF		5
j	0.020 REF		0.51 REF		5
L	0.045	0.055	1.14	1.40	-
L1	0.045	0.055	1.14	1.40	-
L2	0.075	0.095	1.90	2.41	-
L3	0.003	0.015	0.08	0.38	-
ND	11		11		3
NE	11		11		3
N	44		44		3

NOTES:

1. Metallized castellations shall be connected to plane 1 terminals and extend toward plane 2 across at least two layers of ceramic or completely across all of the ceramic layers to make electrical connection with the optional plane 2 terminals.
2. Unless otherwise specified, a minimum clearance of 0.015 inch ( 0.381 mm ) shall be maintained between all metallized features (e.g., lid, castellations, terminals, thermal pads, etc.)
3. Symbol " N " is the maximum number of terminals. Symbols " ND " and " $N E$ " are the number of terminals along the sides of length "D" and "E", respectively.
4. The required plane 1 terminals and optional plane 2 terminals shall be ellectrically connected.
5. The corner shape (square, notch, radius, etc.) may vary at the manufacturer's option, from that shown on the drawing.
6. Chip carriers shall be constructed of a minimum of two ceramic layers.
7. Maximum limits allows for 0.007 inch solder thickness on pads.

## Metal Seal Leadless Ceramic Chip Carrier Packages (Continued)



J44.B
44 PAD METAL SEAL LEADLESS CERAMIC CHIP CARRIER

SYMBOL	INCHES		MILLIMETERS		NOTES
	MIN	MAX	MIN	MAX	
A	0.067	0.087	1.70	2.20	6,7
A1	0.058	0.072	1.47	1.83	7
B	-	-	-	-	-
B1	0.022	0.028	0.565	0.705	2,4
B3	0.006	0.022	0.15	0.56	-
D	0.640	0.664	16.26	16.86	-
D1	0.500 BSC		12.70 BSC		-
D2	0.250 BSC		6.35 BSC		-
D3	0.484	0.50	12.30	12.70	2
E	0.640	0.664	16.26	16.86	-
E1	0.500 BSC		12.70 BSC		-
E2	0.250 BSC		6.35 BSC		-
E3	0.484	0.500	12.3	12.7	2
e	0.050 BSC		1.27 BSC		-
01	0.015	-	0.38	-	2
h	0.040 REF		1.02 REF		5
j	0.020 REF		0.51 REF		5
L	0.045	0.055	0.614	1.4	-
L1	0.045	0.055	0.614	1.4	-
L2	0.065	0.105	1.66	2.66	-
L3	0.003	0.015	0.08	0.38	-
ND	11		11		3
NE	11		11		3
N	44		44		3

NOTES:

1. Metallized castellations s'ıall be connected to plane 1 terminals and extend toward plana 2 across at least two layers of ceramic or completely across all of the ceramic layers to make electrical connection with the optional plane 2 terminals.
2. Unless otherwise specified, a minimum clearance of 0.015 inch $(0.381 \mathrm{~mm})$ shall be maintained between all metallized features (e.g., lid, castellations, terminals, thermal pads, etc.)
3. Symbol " $N$ " is the maximum number of terminals. Symbols " $N D$ " and "NE" are the number of terminals along the sides of length " $D$ " and " $E$ ", respectively.
4. The required plane 1 terminals and optional plane 2 terminals shall be ellectrically connected.
5. The corner shape (square, notch, radius, etc.) may vary at the manufacturer's option, from that shown on the drawing.
6. Chip carriers shall be constructed of a minimum of two ceramic layers.
7. Maximum limits allows for 0.007 inch solder thickness on pads.

## Package Outlines

## Metal Seal Leadless Ceramic Chip Carrier Packages (Continued)



J68.A
68 PAD METAL SEAL LEADLESS CERAMIC CHIP CARRIER

SYMBOL	INCHES		MILLIMETERS		NOTES
	MIN	MAX	MIN	MAX	
A	0.067	0.087	1.70	2.20	6,7
A1	0.058	0.072	1.47	1.83	7
B	-	-	-	-	-
B1	0.033	0.039	0.85	0.99	2,4
B3	0.006	0.022	0.15	0.56	-
D	0.940	0.965	23.88	24.51	-
D1	0.800 BSC		20.32 BSC		-
D2	0.400 BSC		10.16 BSC		-
D3	0.616	0.632	15.65	16.05	2
E	0.940	0.965	23.88	24.51	-
E1	0.800 BSC		20.32 BSC		$\bullet$
E2	0.400 BSC		10.16 BSC		-
E3	0.616	0.632	15.65	16.05	2
e	0.050 BSC		1.27 BSC		-
e1	0.015	-	0.38	-	2
j	0.040 Ref		1.00 Ref		5
L	0.045	0.055	1.14	1.40	-
L1	0.045	0.055	1.14	1.40	-
$\underline{L}$	0.075	0.095	1.91	2.41	-
L3	0.003	0.015	0.08	0.38	$\cdot$
ND	17		17		3
NE	17		17		3
N	68		68		3

NOTES:

1. Metallized castellations shall be connected to plane 1 terminals and extend toward plane 2 across at least two layers of ceramic or completely across all of the ceramic layers to make electrical connection with the optional plane 2 terminals.
2. Unless otherwise specified, a minimum clearance of 0.015 inch ( 0.381 mm ) shall be maintained between all metallized features (e.g., lid, castellations, terminals, thermal pads, etc.)
3. Symbol " N " is the maximum number of terminals. Symbols " ND " and "NE" are the number of terminals along the sides of length " D " and " E ", respectively.
4. The required plane 1 terminals and optional plane 2 terminals shall be ellectrically connected.
5. The corner shape (square, notch, radius, etc.) may vary at the manufacturer's option, from that shown on the drawing.
6. Chip carriers shall be constructed of a minimum of two ceramic layers.
7. Maximum limits allows for 0.007 inch solder thickness on pads.

## Metal Seal Leadless Ceramic Chip Carrier Packages (Continued)



J68.B
68 PAD METAL SEAL LEADLESS CERAMIC CHIP CARRIER

SYMBOL	INCHES		MILLIMETERS		NOTES
	MIN	MAX	MIN	MAX	
A	0.092	0.118	2.34	3.00	6,7
A1	0.067	0.083	1.71	2.11	7
B	0.033	0.039	0.85	0.99	-
B1	0.033	0.039	0.085	0.99	2,4
B3	0.006	0.022	0.15	0.56	-
D	0.940	0.960	23.88	24.38	-
D1	0.800 BSC		20.32 BSC		-
D2	0.400 BSC		10.16 BSC		-
D3	0.695	0.705	17.65	17.91	2
E	0.940	0.960	23.88	24.38	-
E1	0.800 BSC		20.32 BSC		-
E2	0.400 BSC		10.16 BSC		-
E3	0.695	0.705	17.65	17.91	2
e	0.050 BSC		1.27 BSC		-
01	0.015	-	0.38	-	2
j	0.020 Ref		0.51 Ref		5
L	0.042	0.058	1.07	1.47	-
L1	0.042	0.058	1.07	1.47	-
L2	0.080	0.090	2.03	2.29	-
L3	0.003	0.015	0.08	0.38	-
ND	17		17		3
NE	17		17		3
N	68		68		3

NOTES:

1. Metallized castellations shall be connected to plane 1 terminals and extend toward plane 2 across at least two layers of ceramic or completely across all of the ceramic layers to make electrical connection with the optional plane 2 terminals.
2. Unless otherwise specified, a minimum clearance of 0.015 inch $(0.381 \mathrm{~mm})$ shall be maintained between all metallized features (e.g., lid, castellations, terminals, thermal pads, etc.)
3. Symbol " $N$ " is the maximum number of terminals. Symbols "ND" and "NE" are the number of terminals along the sides of length "D" and "E", respectively.
4. The required plane 1 terminals and optional plane 2 terminals shall be ellectrically connected.
5. The corner shape (square, notch, radius, etc.) may vary at the manufacturer's option, from that shown on the drawing.
6. Chip carriers shall be constructed of a minimum of two ceramic layers.
7. Maximum limits allows for 0.007 inch solder thickness on pads.

## Single-In-Line Plastic Packages (SIP)



NOTES:
Z3.05
3 LEAD PLASTIC SINGLE-IN-LINE PACKAGE

SYMBOL	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
A	0.170	0.195	4.32	4.95
b	0.014	0.020	0.36	0.51
E	0.130	0.155	3.30	3.94
e	0.095	0.105	2.41	2.67
e1	0.045	0.055	1.14	1.40
L	0.500	0.610	12.70	15.49
R	0.085	0.095	2.16	2.41
S1	0.045	0.060	1.14	1.52
W	0.016	0.022	0.41	0.56
D	0.175	0.195	4.45	4.95
$\alpha$	$4^{\circ}$	$6^{\circ}$	$4^{\circ}$	$6^{\circ}$

Rev. 0 12/93

1. Package outline exclusive of any mold flashes dimension.
2. Package outline exclusive of Burr dimension.

Metal Can Packages


NOTES:

1. Measured from maximum diameter of the actual device.
2. Measured from tab centerline.
3. $N$ is number of leads.

T2.A
2 LEAD METAL CAN PACKAGE

	INCHES		MILLIMETERS				
SYMBOL	MIN	MAX	MIN	MAX			
A	0.130	0.150	3.30	3.81	-		
b	0.016	0.019	0.41	0.48	-		
D	0.205	0.22	5.21	5.59	-		
D1	0.180	0.190	4.57	4.83	-		
F	0.010	0.025	0.25	0.64	-		
K	0.033	0.046	0.84	1.17	1		
j	0.033	0.045	0.84	1.14	-		
L	0.500	0.560	12.70	14.22	-		
$\theta$	0.100 BSC		2.54 BSC	-			
e1	-			-			
$\alpha$	45			45			2
N	2		2		3		

T3.A
3 LEAD METAL CAN PACKAGE

SYMBOL	INCHES		MILLIMETERS		
	MAX	MIN	MAX	NOTES	
A	0.130	0.150	3.30	3.81	-
b	0.016	0.019	0.41	0.48	-
D	0.205	0.220	5.21	5.59	-
D1	0.180	0.190	4.57	4.83	-
F	0.010	0.025	0.25	0.64	-
K	0.033	0.048	0.84	1.22	1
j	0.036	0.046	0.91	1.17	-
L	0.500	0.560	12.70	14.22	-
$e$	0.100 BSC		2.54 BSC		-
e1	0.050 BSC		1.27 BSC		-
$\alpha$	45			45	
N	3			3	

NOTES:

1. Measured from maximum diameter of the actual device.
2. Measured from tab centerline.
3. $N$ is number of leads

Metal Can Packages (Continued)


NOTES:

1. (All leads) $\varnothing \mathrm{b}$ applies between L1 and L2. Øb1 applies between L 2 and 0.500 from the reference plane. Diameter is uncontrolled in L1 and beyond 0.500 from the reference plane.

T10.B MLL-STD-1835 MACY1-X10 (A2) 10 LEAD TO-100 METAL CAN

SYMBOL	INCHES		MILLIMETERS		NOTES
	MIN	MAX	MIN	MAX	
A	0.165	0.185	4.19	4.70	-
$\varnothing \mathrm{b}$	0.016	0.019	0.41	0.48	1
Øb1	0.016	0.021	0.41	0.53	1
Øb2	0.016	0.024	0.41	0.61	-
$\varnothing \mathrm{D}$	0.335	0.375	8.51	9.52	-
$\bigcirc \mathrm{D} 1$	0.305	0.335	7.75	8.51	-
ØD2	0.110	0.160	2.79	4.06	-
e	0.230 BSC		5.84 BSC		-
01	0.115 BSC		2.92 BSC		$\cdot$
F	-	0.040	-	1.02	-
k	0.027	0.034	0.69	0.86	-
k1	0.027	0.045	0.69	1.14	2
L	0.500	0.750	12.70	19.05	1
L1	-	0.050	-	1.27	1
12	0.250	-	6.35	-	1
Q	0.010	0.045	0.25	1.14	-
$\alpha$	$36^{\circ} \mathrm{BSC}$		$36^{\circ} \mathrm{BSC}$		3
$\beta$	$36^{\circ} \mathrm{BSC}$		$36^{\circ} \mathrm{BSC}$		3
N	10		10		4

2. Measured from maximum diameter of the product.
3. $\alpha$ is the basic spacing from the centerline of the tab to terminal 1 and $\beta$ is the basic spacing of each lead or lead position ( $N-1$ places) from $\alpha$, looking at the bottom of the package.
4. $N$ is the maximum number of terminal positions.
5. Dimensioning and tolerancing per ANSI 414.5M - 1982.
6. Controlling dimension: $\operatorname{INCH}$.

## DATA ACQUISITION <br> 18

## HOW TO USE HARRIS AnswerFAX

## What is AnswerFAX?

AnswerFAX is Harris' automated fax response system. It gives you on-demand access to a full library of the latest data sheets, application notes, and other information on Harris products.

## What do I need to use AnswerFAX?

Just a fax machine and a touch-tone phone. You can access it 24 hours a day, 7 days a week.

## How does it work?

You call the AnswerFAX number, touch-tone your way through a series of recorded questions, enter the order numbers of the documents you want, and give AnswerFAX a fax number to send them to. You'll have the information you need in minutes. The chart on the next page shows you how.

## How do I find out the order number for the publications I want?

The first time you call AnswerFAX, you should order one or more on-line catalogs of product line information. There are nine catalogs:

- New Products	- Digital Signal Processing (DSP) Products	- Rad Hard Products
- Linear/Telecom Products	- Discrete \& Intelligent Power Products	- CMOS Logic Products
- Data Acquisition Products	- Microprocessor Products	- Application Notes

Once they're faxed to you, you can call back and order the publications themselves by number.

How do I start?
Dial 407-724-7800. That's it.


Please refer to next page for a map to AnswerFAX.

## Your Map to Harris AnswerFAX

A complete AnswerFAX catalog listing is available,


please call 1-800-442-7747 and request document BR-057 (84 pages)

$\checkmark$	PUB. NUMBER	DATA BOOK/DESCRIPTION
	7004	Complete Set of Commercial Harris Data Books
	7005	Complete Set of Commercial and Military Harris Data Books
	DB223B	POWER MOSFETs (1994: $1,328 \mathrm{pp}$ ) This data book contains detailed technical information including standard power MOSFETs (the popular RF-series types, the IRF-series of industry replacement types, and JEDEC types), MegaFETs, logiclevel power MOSFETs (L2FETs), ruggedized power MOSFETs, advanced discrete, high-reliability and radiation-hardened power MOSFETs.
	DB235B	RADIATION HARDENED (1993: 2,232pp) Harris technologies used include dielectric isolation (DI), Silicon-on-Sapphire (SOS), and Silicon-on-Insulator (SOI). The Harris radiation-hardened products include the CD4000, HCS/HCTS and ACS/ ACTS logic families, SRAMs, PROMs, op amps, analog multiplexers, the 80C85/80C86 microprocessor family, analog switches, gate arrays, standard cells and custom devices.
	DB260.2	CDP6805 CMOS MICROCONTROLLERS \& PERIPHERALS (1995: 436pp) This data book represents the full line of Harris Semiconductor CDP6805 products for commercial applications and supersedes previously published CDP6805 data books under the Harris, GE, RCA or Intersil names.
	DB301B	DATA ACQUISITION (1994: 1,104pp) Product specifications on A/D converters (display, integrating, successive approximation, flash); D/A converters, switches, multiplexers, and other products.
	DB302B	DIGITAL SIGNAL PROCESSING (1994: 528pp) Product specifications on one-dimensional and two-dimensional filters, signal synthesizers, multipliers, special function devices (such as address sequencers, binary correlators, histogrammer).
	DB303	MICROPROCESSOR PRODUCTS (1992: 1,156pp) For commercial and military applications. Product specifications on CMOS microprocessors, peripherals, data communications, and memory ICs.
	DB304.1	INTELLIGENT POWER ICs (1994: 946pp) This data book includes a complete set of data sheets for product specifications, application notes with design details for specific applications of Harris products, and a description of the Harris quality and high reliability program.
	DB309. 1	MCT/IGBT/DIODES (1995: 706pp) This MCT/IGBT/Diodes Databook represents the full line of these products made by Harris Semiconductor Discrete Power Products for commercial applications.
	DB314	SIGNAL PROCESSING NEW RELEASES (1995: 690pp) This data book represents the newest products made by Harris Semiconductor Data Acquisition Products, Linear Products, Telecom Products and Digital Signal Processing Products for commercial applications.
	DB450.4	TRANSIENT VOLTAGE SUPPRESSION DEVICES (1995: 400pp) Product specifications of Harris varistors and surgectors. Also, general informational chapters such as: "Voltage Transients - An Overview," "Transient Suppression - Devices and Principles," "Suppression - Automotive Transients."
	DB500B	LINEAR AND TELECOM ICs (1993: 1,312pp) Product specifications for: op amps, comparators, S/H amps, differential amps, arrays, special analog circuits, telecom ICs, and power processing circuits.
	Digital Military	DIGITAL MILITARY (1989: 680pp) Harris CMOS digital iCs - microprocessors, peripherals, data communications and memory - are included in this data book.
	Analog Military	ANALOG MILITARY (1989: 1,264pp) This data book describes Harris' military line of Linear, Data Acquisition, and Telecommunications circuits.
	DB312	ANALOG MILITARY DATA BOOK SUPPLEMENT (1994: 432pp) The 1994 Military Data Book Supplement, combined with the 1989 Analog Military Product Data Book, contain detailed technical information on the extensive line of Harris Semiconductor Linear and Data Acquisition products for Military (MIL-STD-883, DESC SMD and JAN) applications and supersedes all previously published Linear and Data Acquisition Military data books. For applications requiring Radiation Hardened products, please refer to the 1993 Harris Radiation Hardened Product Data Book (document \#DB235B)
	PSG201.22	PRODUCT SELECTION GUIDE (1995: 816pp) Key product information on all Harris Semiconductor devices. Sectioned (Linear, Data Acquisition, Digital Signal Processing, Telecom, Intelligent Power, Discrete Power, Digital Microprocessors and Hi-Rel/Military and Rad Hard) for easy use and includes cross references and alphanumeric part number index.
	SG103	CMOS LOGIC SELECTION GUIDE (1994: 288pp) This product selection guide contains technical information on Harris Semiconductor High Speed 54/74 CMOS Logic Integrated Circuits for commercial, industrial and military applications. It covers Harris' High Speed CMOS Logic HC/HCT Series, AC/ACT Series, BiCMOS Interface Logic FCT Series and CMOS Logic CD4000B Series.

NAME:
MAIL STOP:
PHONE:
FAX:
COMPANY: $\qquad$
ADDRESS:

AnswerFAX Technical Support Application Note Listing

AnswerFAX DOCUMENT NUMBER	PART NUMBER	DESCRIPTION
27007	BR007	Complete Listing of Harris Sales Offices, Representatives and Authorized Distributors World Wide (7 pages)
9001	AN001	Glossary of Data Conversion Terms (6 pages)
9002	ANOO2	Principles of Data Acquisition and Conversion (20 pages)
9004	AN004	The IH5009 Analog Switch Series (9 pages)
9007	AN007	Using the 8048/8049 Log/Antilog Amplifier ( 6 pages)
9009	ANOO9	Pick Sample-Holds by Accuracy and Speed and Keep Hold Capacitors in Mind (7 pages)
9012	AN012	Switching Signals with Semiconductors (4 pages)
9013	AN013	Everything You Always Wanted to Know About the ICL8038 (4 pages)
9016	AN016	Selecting ADD Converters (7 pages)
9017	AN017	The Integrating AD Converter (5 pages)
9018	AN018	Do's and Don'ts of Applying A/D Converters (4 pages)
9020	ANO20	A Cookbook Approach to High Speed Data Acquisition and Microprocessor Interfacing (23 pages)
9023	AN023	Low Cost Digital Panel Meter Designs (5 pages)
9027	AN027	Power Supply Design Using the ICL8211 and 8212 ( 8 pages)
9028	AN028	Build an Auto-Ranging DMM with the ICL7103A8052A AD Converter Pair (6 pages)
9030	ANO30	ICL7104: A Binary Output A/D Converter for Microprocessors (16 pages)
9032	AN032	Understanding the Auto-Zero and Common Mode Performance of the ICL7106/7107/7109 Family (8 pages)
9040	AN040	Using the ICL8013 Four Quadrant Analog Multiplier (6 pages)
9042	AN042	Interpretation of Data Converter Accuracy Specifications (11 pages)
9043	AN043	Video Analog-to-Digital Conversion (6 pages)
9046	AN046	Building a Battery Operated Auto Ranging DVM with the ICL7106 (5 pages)
9047	AN047	Games People Play with Intersil's AND Converter's (27 pages)
9048	AN048	Know Your Converter Codes (5 pages)


AnswerFAX DOCUMENT NUMBER	PART NUMBER	DESCRIPTION
9049	AN049	Applying the 7109 AD Converter (5 pages)
9051	AN051	Principles and Applications of the ICL7660 CMOS Voltage Converter (9 pages)
9052	AN052	Tips for Using Single Chip 3.5 Digit A/D Converters (9 pages)
9053	AN053	The ICL7650 A New Era in Glitch-Free Chopper Stabilized Amplifiers (19 pages)
9054	AN054	Display Driver Family Combines Convenience of Use with Microprocessor Interfaceability (18 pages)
9059	AN059	Digital Panel Meter Experiments for the Hobbyist (7 pages)
9108	AN108	82C52 Programmable UART (12 pages)
9109	AN109	82C59A Priority Interrupt Controller (14 pages)
9111	AN111	Harris 80C286 Performance Advantages Over the 80386 (12 pages)
9112	AN112	80C286/80386 Hardware Comparison (4 pages)
9113	AN113	Some Applications of Digital Signal Processing Techniques to Digital Video (5 pages)
9114	AN114	Real-Time Two-Dimensional Spatial Filtering with the Harris Digital Filter Family (43 pages)
9115	AN115	Digital Filter (DF) Family Overview (6 pages)
9116	AN116	Extended DF Configurations (10 pages)
9120	AN120	Interfacing the 80C286-16 With the 80287-10 (2 pages)
9121	AN121	Harris 80C286 Performance Advantages Over the 80386SX (14 pages)
9400	AN400	Using the HS-3282 ARINC Bus Interface Circuit (6 pages)
9509	AN509	A Simple Comparator Using the HA-2620 (1 page)
9514	AN514	The HA-2400 PRAM Four Channel Operational Amplifier (7 pages)
9515	AN515	Operational Amplifier Stability: Input Capacitance Considerations (2 pages)
9517	AN517	Applications of Monolithic Sample and Hold Amplifier (5 pages)
9519	AN519	Operational Amplifier Noise Prediction (4 pages)


AnswerFAX DOCUMENT NUMBER	PART NUMBER	DESCRIPTION
9520	AN520	CMOS Analog Miltiplexers and Switches; Applications Considerations (9 pages)
9521	AN521	Getting the Most Out of CMOS Devices for Analog Switching Jobs (7 pages)
9522	AN522	Digital to Analog Converter Terminology (3 pages)
9524	AN524	Digital to Analog Converter High Speed ADC Applications (3 pages)
9525	AN525	HA-5190/5195 Fast Settling Operational Amplifier (4 pages)
9526	AN526	Video Applications for the HA-5190/ 5195 (5 pages)
9531	AN531	Analog Switch Applications in A/D Data Conversion Systems (4 pages)
9532	AN532	Common Questions Concerning CMOS Analog Switches (4 pages)
9534	AN534	Additional Information on the $\mathrm{HI}-300$ Series Switch (5 pages)
9535	AN535	Design Considerations for A Data Acquisition System (DAS) (7 pages)
9538	AN538	Monolithic Sample/Hold Combines Speed and Precision ( 6 pages)
9539	AN539	A Monolithic 16-Bit D/A Converter (5 pages)
9540	AN540	HA-5170 Precision Low Noise JFET Input Operation Amplifier (4 pages)
9541	AN541	Using HA-2539 or HA-2540 Very High Slew Rate, Wideband Operational Amplifier (4 pages)
9543	AN543	New High Speed Switch Offers Sub-50ns Switching Times (7 pages)
9544	AN544	Micropower Op Amp Family (6 pages)
9546	AN546	A Method of Calculating HA-2625 Gain Bandwidth Product vs. Temperature (4 pages)
9548	AN548	A Designers Guide for the HA-5033 Video Buffer (12 pages)
9549	AN549	The HC-550X Telephone Subscriber Line Interface Circuits (SLIC) (19 pages)
9550	AN550	Using the HA-2541(6 pages)
9551	AN551	Recommended Test Procedures for Operational Amplifiers (6 pages)
9552	AN552	Using the HA-2542 (5 pages)
9553	AN553	HA-5147/37/27, Ultra Low Noise Amplifiers (8 pages)
9554	AN554	Low Noise Family HA-5101/02/04/11/12/14 (7 pages)


AnswerFAX DOCUMENT NUMBER	PART NUMBER	DESCRIPTION
9556	AN556	Thermal Safe-Operating-Areas for High Current Op Amps (5 pages)
9557	AN557	Recommended Test Procedures for Analog Switches ( 6 pages)
9558	AN558	Using the HV-1205 AC to DC Converter (2 pages)
9559	AN559	HI-222 Video/HF Switch Optimizes Key Parameters (7 pages)
9571	AN571	Using Ring Sync with HC-5502A and HC-5504 SLICs (2 pages)
9573	AN573	The HC-5560 Digital Line Transcoder (6 pages)
9574	AN574	Understanding PCM Coding (3 pages)
9576	AN576	HC-5512 PCM Filter Cleans Up CVSD Codec Signals (2 pages)
9607	AN607	Delta Modulation for Voice Transmission (5 pages)
95290	AN5290	Integrated Circuit Operational Amplifiers (20 pages)
96048	AN6048	Some Applications of A Programmable Power Switch/Amp (12 pages)
96077	AN6077	An IC Operational-TransconductanceAmplifier (OTA) With Power Capability (12 pages)
96157	AN6157	Applications of the CA3085 Series Monolithic IC Voltage Regulators (11 pages)
96182	AN6182	Features and Applications of Integrated Circuit Zero-Voltage Switches (CA3058, CA3059 and CA3079) (31 pages)
96386	AN6386	Understanding and Using the CA3130, CA3130A and CA3130B30A/30B BiMOS Operation Amplifiers (5 pages)
96459	AN6459	Why Use the CMOS Operational Amplifiers and How to Use it (4 pages)
96565	AN6565	Design of Clock Generators For Use With COSMAC Microprocessor CDP1802 (3 pages)
96669	AN6669	FET-Bipolar Monolithic Op Amps Mate Directly to Sensitive Sources (3 pages)
96915	AN6915	Application of CA1524 Series Pulse-Width Modulator ICs (18 pages)
96970	AN6970	Understanding and Using the CDP1855 Multiply/Divide Unit (11 pages)
97063	AN7063	Understanding the CDP1851 Programmable I/O (7 pages)
97174	AN7174	The CA1524E Pulse-Width ModulatorDriver for an Electronic Scale (2 pages)

## AnswerFAX Technical Support Application Note Listing

AnswerFAX DOCUMENT NUMBER	PART NUMBER	DESCRIPTION
97244	AN7244	Understanding Power MOSFETs (4 pages)
97254	AN7254	Switching Waveforms of the L²FET: A 5 Volt Gate-Drive Power MOSFET (8 pages)
97260	AN7260	Power MOSFET Switching Waveforms: A New Insight (7 pages)
97275	AN7275	User's Guide to the CDP1879 and CDP1879C1 CMOS Real-Time Clocks (18 pages)
97326	AN7326	Applications of the CA3228E Speed Control System (16 pages)
97332	AN7332	The Application of Conductivity-Modulated Field-Effect Transistors (5 pages)
97374	AN7374	The CDP1871A Keyboard Encoder (9 pages)
98602	AN8602	The IGBTs - A New High Conductance MOS-Gated Device (3 pages)
98603	AN8603	Improved IGBTs with Fast Switching Speed and High-Current Capability (4 pages)
98610	AN8610	Spicing-Up Spice II Software for Power MOSFET Modeling (8 pages)
98614	AN8614	The CA1523 Variable Interval Pulse Regulator (VIPUR) For Switch Mode Power Supplies (13 pages)
98707	AN8707	The CA3450: A Single-Chip Video Line Driver and High Speed Op Amp (14 pages)
98742	AN8742	Application of the CD22402 Video Sync Generator (4 pages)
98743	AN8743	Micropower Crystal-Controlled Oscillator Design Using CMOS Inverters (8 pages)
98754	AN8754	Method of Measurement of Simultaneous Switching Transient (3 pages)
98756	AN8756	A Comparative Description of the UART (16 pages)
98759	AN8759	Low Cost Data Acquisition System Features SPI ADD Converter (9 pages)
98761	AN8761	User's Guide to the CDP68HC68T1 Real-Time Clock (14 pages)
98811	AN8811	BiMOS-E Process Enhances the CA5470 Quad Op Amp (8 pages)
98818	AN8818	Exceptional Radiation Levels from Sili-con-on-Sapphire Processed HighSpeed CMOS Logic (5 pages)
98820	AN8820	Recommendations for Soldering Terminal Leads to MOV Varistor Discs (2 pages)


AnswerFAX DOCUMENT NUMBER	PART NUMBER	DESCRIPTION
98823	AN8823	CMOS Phase-Locked-Loop Applications Using the CD54/74HC/HCT4046A and CD54/74HC/HCT7046A (23 pages)
98829	AN8829	SP600 and SP601 an HVIC MOSFET/ IGBT Driver for Half-Bridge Topologies (6 pages)
98910	AN8910	An Introduction to Behavioral Simulation Using Harris AC/ACT Logic SmartModels ${ }^{\text {™ }}$ From Logic Automation Inc. (9 pages)
99001	AN9001	Measuring Ground and VCC Bounce in Advanced High Speed (AC/ACT/FCT) CMOS Logic ICs (4 pages)
99002	AN9002	Transient Voltage Suppression in Automotive Vehicles (8 pages)
99003	AN9003	Low-Voltage Metal-Oxide Varistor Protection for Low Voltage ( $\leq 5 \mathrm{~V}$ ) ICs (13 pages)
99010	AN9010	HIP2500 High Voltage ( $500 \mathrm{~V}_{\text {DC }}$ ) HalfBridge Driver IC (8 pages)
99011	AN9011	Synchronous Operation of Harris Rad Hard SOS 64K Asynchronous SRAMs (4 pages)
99101	AN9101	High Current Off Line Power Supply (4 pages)
99102	AN9102	Noise Aspects of Applying Advanced CMOS Semiconductors (9 pages)
99105	AN9105	HVIC/IGBT Half-Bridge Converter Evaluation Circuit (1 page)
99106	AN9106	Special ESD Considerations for the HS65643RH and HS-65647RH Radiation Hardened SOS SRAMs (2 pages)
99108	AN9108	Harris Multilayer Surface Mount Surge Suppressors (10 pages)
99201	AN9201	Protection Circuits for Quad and Octal Low Side Power Drivers (8 pages)
99202	AN9202	Using the HFA1100, HFA1130 Evaluation Fixture (4 pages)
99203	AN9203	Using the H15800 Evaluation Board (13 pages)
99204	AN9204	Tools for Controlling Voltage Surges and Noise (4 pages)
99205	AN9205	Timing Relationships for HSP45240 (2 pages)
99206	AN9206	Correlating on Extended Data Lengths (2 pages)
99207	AN9207	DSP Temperature Considerations (2 pages)
99208	AN9208	High Frequency Power Converters (10 pages)

AnswerFAX Technical Support Application Note Listing

AnswerFAX DOCUMENT NUMBER	PART NUMBER	DESCRIPTION
99209	AN9209	A Spice-2 Subcircuit Representation for Power MOSFETs, Using Empirical Methods (4 pages)
99210	AN9210	A New PSpice Subcircuit for the Power MOSFET Featuring Global Temperature Options (12 pages)
99211	AN9211	Soldering Recommendations for Surface Mount Metal Oxide Varistors and Multilayer Transient Voltage Suppressors (8 pages)
99212	AN9212	HIP5060 Family of Current Mode Control ICs Enhance 1MHz Regulator Performance (7 pages)
99213	AN9213	Advantages and Application of Display Integrating A/D Converters (6 pages)
99214	AN9214	Using Harris High Speed A/D Converters (10 pages)
99215	AN9215	Using the HI-5700 Evaluaton Board (7 pages)
99216	AN9216	Using the HI5701 Evaluation Board (8 pages)
99217	AN9217	High Current Off Line Power Supply (11 pages)
99301	AN9301	High Current Logic Level MOSFET Driver (3 pages)
99302	AN9302	CA3277 Dual 5V Regulator Circuit Applications (9 pages)
99303	AN9303	Upgrading Your Application to the HI7166 or HI7167 (7 pages)
99304	AN9304	ESD and Transient Protection Using the SP720 (5 pages)
99306	AN9306	The New "C" III Series of Metal Oxide Varistors (5 pages)
99307	AN9307	The Connector Pin Varistor for Transient Voltage Protection in Connectors (7 pages)
99309	AN9309	Using the HI5800/HI5801 Evaluation Board (8 pages)
99310	AN9310	Voltage Transients and their Suppression (5 pages)
99311	AN9311	The ABCs of MOVs (3 pages)
99312	AN9312	Suppression of Transients in an Automative Environment (11 pages)
99313	AN9313	Circuit Considerations in Imaging Applications (8 pages)
99314	AN9314	Harris UHF Pin Drivers (4 pages)
99315	AN9315	RF Amplifier Design Using HFA3046/ 3096/3127/3128 Transistor Arrays   (4 pages)


AnswerFAX DOCUMENT NUMBER	PART NUMBER	DESCRIPTION
99316	AN9316	Power Supply Considerations for the HI-222 High Frequency Video Switch (2 pages)
99317	AN9317	Micropower Clock Oscillator and Op Amps Provide System Control for Battery Operated Circuits (2 pages)
99321	AN9321	Single Pulse Unclamped Inductive Switching: A Rating System (5 pages)
99322	AN9322	A Combined Single Pulse and Repetitive UIS Rating System (4 pages)
99323	AN9323	HIP5061 High Efficiency, High Performance, High Power Converter (10 pages)
99327	AN9327	HC-5509A1 Ring Trip Component Selection (9 pages)
99328	AN9328	Using the HI1166 Evaluation Board (9 pages)
99329	AN9329	Using the $\mathrm{H} 11176 / \mathrm{HI} 1171$ Evaluation Board (5 pages)
99330	AN9330	Using the Hil1396 Evaluation Board (9 pages)
99331	AN9331	Using the HI1175 Evaluation Board (4 pages)
99332	AN9332	Using the HI1276 Evaluation Board (10 pages)
99333	AN9333	Using the HI1386 Adapter Board (2 pages)
99334	AN9334	Improving Start-Up Time at 32 kHz for the HA7210 Low Power Crystal Oscillator (2 pages)
99337	AN9337	Reduce CMOS-Multiplexer Troubles Through Proper Device Selection (6 pages)
660001	MM0001	HFA-0001 Spice Operational Amplifier Macro-Model (4 pages)
660002	MM0002	HFA-0002 Spice Operational Amplifier Macro-Model (4 pages)
660005	MM0005	HFA-0005 Spice Operational Amplifier Marco-Model (4 pages)
662500	MM2500	HA2500/02 Spice Operational Amplifier Macro-Model ( 5 pages)
662510	MM2510	HA-2510/12 Spice Operational Amplifier Macro-Model (4 pages)
662520	MM2520	HA-2520/22 Spice Operational Amplifier Macro-Model (4 pages)
662539	MM2539	HA-2539 Spice Operational Amplifier Macro-Model (4 pages)
662540	MM2540	HA-2540 Spice Operational Amplifier Macro-Model (4 pages)

## AnswerFAX Technical Support Application Note Listing

| AnswerFAX <br> DOCUMENT <br> NUMBER | PART <br> NUMBER | DESCRIPTION |
| :--- | :--- | :--- |$|$| 662541 | MM2541 | HA-2541 Spice Operational Amplifier <br> Macro-Model (5 pages) |
| :--- | :--- | :--- |
| 662542 | MM2542 | HA-2542 Spice Operational Amplifier <br> Macro-Model (5 pages) |
| 662544 | MM2544 | HA-2544 Spice Operational Amplifier <br> Macro-Model (5 pages) |
| 662548 | MM2548 | HA-2548 Spice Operational Amplifier <br> Macro-Model (5 pages) |
| 662600 | MM2600 | HA-2600/02 Spice Operational <br> Amplifier Macro-Model (5 pages) |
| 662620 | MM2620 | HA-2620/22 Spice Operational <br> Amplifier Macro-Model (5 pages) |
| 662839 | MM2839 | HA-2839 Spice Operational Amplifier <br> Macro-Model (4 pages) |
| 662840 | MM2840 | HA-2840 Spice Operational Amplifier <br> Macro-Model (4 pages) |
| 662841 | MM2841 | HA-2841 Spice Operational Amplifier <br> Macro-Model (4 pages) |
| 662842 | MM2842 | HA-2842 Spice Operational Amplifier <br> Macro-Model (4 pages) |
| 662850 | MM2850 | HA-2850 Spice Operational Amplifier <br> Macro-Model (4 pages) |
| 665002 | MM5002 | HA-5002 Spice Buffer Amplifier <br> Macro-Model (4 pages) |
| 665004 | HA-5004 Spice Current Feedback <br> Amplifier Macro-Model (4 pages) |  |


AnswerFAX DOCUMENT NUMBER	PART NUMBER	DESCRIPTION
665020	MM5020	HA-5020 Spice Current Feedback Operational Amplifier Macro-Model (4 pages)
665033	MM5033	HA-5033 Spice Buffer Amplifier Macro-Model (4 pages)
665101	MM5101	HA-5101 Spice Operational Amplifier Macro-Model (5 pages)
665102	MM5102	HA-5102 Spice Operational Amplifier Macro-Model (5 pages)
665104	MM5104	HA-5104 Spice Operational Amplifier Macro-Model (5 pages)
665112	MM5112	HA-5112 Spice Operational Amplifier Macro-Model (5 pages)
665114	MM5114	HA-5114 Spice Operational Amplifier Macro-Model ( 5 pages)
665127	MM5127	HA-5127 Spice Operational Amplifier Macro-Model (4 pages)
665137	MM5137	HA-5137 Spice Operational Amplifier Macro-Model (4 pages)
665147	MM5147	HA-5147 Spice Operational Amplifier Macro-Model (4 pages)
665190	MM5190	HA-5190 Spice Operational Amplifier Macro-Model (4 pages)
665221	MM5221	HA-5221/22 Spice Operational Amplifier Macro-Model (4 pages)
797338	MM PWRDEV	Harris Power MOSFET and MCT Spice Model Library (16 pages)

## SALES OFFICES

A complete and current listing of all Harris Sales, Representative and Distributor locations worldwide is available. Please order the "Harris Sales Listing" from the Literature Center (see page i).

## HARRIS HEADQUARTER LOCATIONS BY COUNTRY:

U.S. HEADQUARTERS

Harris Semiconductor P. O. Box 883, Mail Stop 53-210

Melbourne, FL 32902
TEL: 1-800-442-7747
(407) 729-4984

FAX: (407) 729-5321

ASIA
Harris Semiconductor PTE Ltd.
No. 1 Tannery Road
Cencon 1, \#09-01
Singapore 1334
TEL: (65) 748-4200
FAX: (65) 748-0400

## EUROPEAN HEADQUARTERS

Harris Semiconductor
Mercure Center
100, Rue de la Fusee
1130 Brussels, Belgium
TEL: 3227242111

TECHNICAL ASSISTANCE IS AVAILABLE FROM THE FOLLOWING SALES OFFICES

UNITED STATES	CALIFORNIA	Calabasas	. 818-878-7955
		Costa Mesa	. 714-433-0600
		San Jose	. . 408-985-7322
	FLORIDA	Palm Bay	. 407-729-4984
	GEORGIA	Duluth.	. . 404-476-2035
	ILLINOIS	Schaumburg.	. 708-240-3480
	INDIANA	Carmel .	. . 317-843-5180
	MASSACHUSETTS	Burlington.	. 617-221-1850
	NEW JERSEY	Voorhees	. 609-751-3425
	NEW YORK	Hauppauge.	. 516-342-0291
		Wappingers Falls	. . 914-298-1920
	TEXAS	Dallas .	. .214-733-0800
INTERNATIONAL	FRANCE	Paris.	33-1-346-54046
	GERMANY	Munich	49-89-63813-0
	HONG KONG	Kowloon	. . 852-723-6339
	ITALY	Milano.	. 39-2-262-0761
	JAPAN	Tokyo	81-3-3265-7571
	KOREA	Seoul	. 82-2-551-0931
	SINGAPORE	Singapore.	. . 65-748-4200
	TAIWAN	Taipei	886-2-716-9310
	UNITED KINGDOM	Camberley . . .	44-1276-686886

For literature requests, please contact Harris at 1-800-442-7747 (1-800-4HARRIS) or call
Harris AnswerFAX for immediate fax service at 407-724-7800

```
ALABAMA
 Harris Semiconductor
 6 0 0 \text { Boulevard South}
 Suite 103
 Huntsville, AL 35802
 TEL: (205) 883-2791
 FAX: 205 883 2861
 Giesting & Associates
 Suite 15
 4835 University Square
 Huntsville, AL 35816
 TEL: (205) 830-4554
 FAX: 205 8304699
ARIZONA
 Compass Mktg. & Sales, Inc.
 11801 N. Tatum Blvd. #101
 Phoenix, AZ }8502
 TEL: (602) 996-0635
 FAX: 602 996 0586
 2410 W. Ruthrauff, Rd. #110
 Tucson, AZ }8570
 TEL: (520) 292-0222
 FAX: 520 2921008
CALIFORNIA
 Harris Semiconductor
* 1503 So. Coast Drive
 Suite 320
 Costa Mesa, CA 92626
 TEL: (714) 433-0600
 FAX: 7144330682
 Harris Semiconductor
* 3031 Tisch Way
 1 Plaza South
 San Jose, CA 95128
 TEL: (408) 985-7322
 FAX: 408 9857455
 CK Associates
 8333 Clairemont Mesa Blvd.
 Suite }10
 San Diego, CA 92111
 TEL: (619) 279-0420
 FAX:6192797650
 Ewing Foley, Inc.
 185 Linden Avenue
 Auburn, CA }9560
 TEL: (916) 885-6591
 FAX: 916 }885659
 Ewing Foley, Inc.
 10495 Bandley Avenue
 Cupertino, CA 95014-1972
 TEL: (408) 342-1200
 FAX: 408 342 1201
 Vision Technical Sales, Inc.
* 26010 Mureau Road
 Suite }14
 Calabasas, CA }9130
 TEL: (818) 878-7955
 FAX:818 8787965
CANADA
 Blakewood Electronic
 Systems, Inc.
 #201-7382 Winston Street
 Burnaby, BC
 Canada V5A 2G9
 TEL: (604) 444-3344
 FAX: 6044443303
```

[^13]Clark Hurman Associates
Unit 14
20 Regan Road
Brampton, Ontario
Canada L7A IC3
TEL: (905) 840-6066
FAX: 905 840-6091
308 Palladium Drive
Suite 200
Kanata, Ontario
Canada K2B 1A1
TEL: (613) 599-5626
FAX: 6135995707
78 Donegani, Suite 200
Pointe Claire, Quebec
Canada H9R 2V4
TEL: (514) 426-0453
FAX: 5144260455

## COLORADO

Compass Mktg. \& Sales, Inc.
5600 So. Quebec St.
Suite 350D
Greenwood Village, CO 80111
TEL: (303) 721-9663
FAX: 3037210195
CONNECTICUT
Advanced Tech. Sales, Inc.
Westview Office Park
Bldg. 2, Suite 1C
850 N. Main Street Extension
Wallingford, CT 06492
TEL: (508) 664-0888
FAX: 2032848232

## FLORIDA

Harris Semiconductor

* 2401 Palm Bay Rd.

Palm Bay, FL 32905
TEL: (407) 729-4984
FAX: 4077295321
Sun Marketing Group
1956 Dairy Rd.
West Melbourne, FL 32904
TEL: (407) 723-0501
FAX: 4077233845
Sun Marketing Group
905 Northern Dancer Way \#107
Casselberry, FL 32707
TEL: (407) 699-3036
FAX: 4076993075
Sun Marketing Group 4175 East Bay Drive, Suite 128 Clearwater, FL 34624
TEL: (813) 536-5771
FAX: 8135366933
Sun Marketing Group
600 S. Federal Hwy., Suite 218
Deerfield Beach, FL 33441
TEL: (305) 429-1077
FAX: 3054290019

GEORGIA
Giesting \& Associates

* 2434 Hwy. 120, Suite 108 Duluth, GA 30136
TEL: (404) 476-0025
FAX: 4044762405


## ILLINOIS

Harris Semiconductor

* 1101 Perimeter Dr., Suite 600 Schaumburg, IL 60173
TEL: (708) 240-3480
FAX: 7086191511
Oasis Sales
1101 Tonne Road Elk Grove Village, IL 60007
TEL: (708) 640-1850 FAX: 7086409432


## INDIANA

Harris Semiconductor

* 11590 N. Meridian St. Suite 100
Carmel, IN 46032
TEL: (317) 843-5180
FAX: 3178435191
Giesting \& Associates
370 Ridgepoint Dr.
Carmel, IN 46032
TEL: (317) 844-5222
FAX: 3178445861


## IOWA

Oasis Sales
4905 Lakeside Dr., NE
Suite 203
Cedar Rapids, IA 52402
TEL: (319) 377-8738
FAX: 3193778803

## KANSAS

Advanced Tech. Sales, Inc. 601 North Mur-Len, Suite 8 Olathe, KS 66062 TEL: (913) 782-8702
FAX: 9137828641

## KENTUCKY

Giesting \& Associates
204 Pintail Court
P.O. Box 909

Versailles, KY 40383
TEL: (606) 873-2330
FAX: 6068736233

## MARYLAND

New Era Sales, Inc.
890 Airport Pk. Rd, Suite 103
Glen Burnie, MD 21061
TEI: (410) 761-4100
FAX: 410 761-2981
MASSACHUSETTS
Harris Semiconductor

* Six New England Executive Pk. Burlington, MA 01803
TEL: (617) 221-1850
FAX: 6172211866

Advanced Tech Sales, Inc.
348 Park Street, Suite 102
Park Place West
N. Reading, MA 01864

TEL: (508) 664-0888
FAX: 5086645503

## MICHIGAN

Harris Semiconductor

* 27777 Franklin Rd., Suite 460 Southfield, MI 48034
TEL: (810) 746-0800
FAX: 8107460516
Giesting \& Associates
34441 Eight Mile Rd., Suite 113
Livonia, MI 48152
TEL: (810) 478-8106
FAX: 8104776908


## MINNESOTA

Oasis Sales
7805 Telegraph Road
Suite 210
Bloomington, MN 55438
TEL: (612) 941-1917
FAX: 6129415701

## MISSOURI

Advanced Tech. Sales
13755 St. Charles Rock Rd.
Bridgeton, MO 63044
TEL: (314) 291-5003
FAX: 3142917958

## NEBRASKA

Advanced Tech. Sales, Inc. 601 North Mur-Len, Suite 8 Olathe, KS 66062
TEL: (913) 782-8702
FAX: 9137828641

## NEW JERSEY

Harris Semiconductor
Plaza 1000 at Main Street
Suite 104
Voorhees, NJ 08043
TEL: (609) 751-3425
FAX: 6097515911
Harris Semiconductor
724 Route 202
P.O. Box 591

Somerville, NJ 08876
TEL: (908) 685-6150
FAX: 908 685-6140
Tritek Sales, Inc.
One Mall Dr., Suite 410
Cherry Hill, NJ 08002
TEL: (609) 667-0200
FAX: 6096678741

## NEW MEXICO

Compass Mktg. \& Sales, Inc.
4100 Osuna Rd., NE, Suite 109
Albuquerque, NM 87109
TEL: (505) 344-9990
FAX: 5053454848

NEW YORK	NORTH CAROLINA
Harris Semiconductor	Harris Semiconductor
Hampton Business Center	4020 Stirrup Creek Dr.
1611 Rt. 9, Suite U3	Building 2A, MS/2T08
Wappingers Falls, NY 12590	Durham, NC 27703
TEL: (914) 298-0413	TEL: (919) 405-3600
FAX: 9142980425	FAX: 9194053660
Harris Semiconductor	New Era Sales
490 Wheeler Rd, Suite 165B	1215 Jones Franklin Road
Hauppauge, NY 11788-4365	Suite 201
TEL: (516) 342-0291 Analog	Raleigh, NC 27606
TEL: (516) 342-0292 Digital	TEL: (919) 859-4400
FAX: 5163420295	FAX: 9198596167
Foster \& Wager, Inc.	
300 Main Street	OHIO
Vestal, NY 13850	Giesting \& Associates
TEL: (607) 748-5963	P.O. Box 39398
FAX: 6077485965	2854 Blue Rock Rd.
Foster \& Wager, Inc.	Cincinnati, OH 45239
2511 Browncroft Blvd.	TEL: (513) 385-1105
Rochester, NY 14625	FAX: 5133855069
TEL: (716) 385-7744	6324 Tamworth Ct.
FAX: 7165861359	Columbus, OH 43017
Foster \& Wager, Inc.	TEL: (614) 792-5900
7696 Mountain Ash	FAX: 6147926601
Liverpool, NY 13090	6200 SOM Center Rd.
TEL: (315) 457-7954	Suite D-20
FAX: 3154577076	Solon, OH 44139
Trionic Associates, Inc.	TEL: (216) 498-4644
320 Northern Blvd.	FAX: 2164984554
Great Neck, NY 11021	
TEL: (516) 466-2300	
FAX: 5164662319	


OKLAHOMA
Nova Marketing
8421 East 61st Street, Suite P
Tulsa, OK 74133-1928
TEL: (800) 826-8557
TEL: (918) 660-5105
FAX: 9183571091
OREGON
Northwest Marketing Assoc.
6975 SW Sandburg Rd.
Suite 330
Portland, OR 97223
TEL: (503) 620-0441
FAX: 503 684 2541

## PENNSYLVANIA

Giesting \& Associates
471 Walnut Street
Pittsburgh, PA 15238
TEL: (412) 828-3553
FAX: 4128286160

## TEXAS

Harris Semiconductor

* 17000 Dallas Parkway, Suite 205

Dallas, TX 75248
TEL: (214) 733-0800
FAX: 2147330819

Nova Marketing
8310 Capitol of Texas Hwy. Suite 180
Austin, TX 78731
TEL: (512) 343-2321
FAX: 512 343-2487
8350 Meadow Rd., Suite 174
Dallas, TX 75231
TEL: (214) 265-4600
FAX: 2142654668
Corporate Atrium II, Suite 140
10701 Corporate Dr.
Stafford, TX 77477
TEL: (713) 240-6082
FAX: 7132406094

## UTAH

Compass Mktg. \& Sales, Inc.
5 Triad Center, Suite 320
Salt Lake City, UT 84180
TEL: (801) 322-0391
FAX: 801 322-0392
WASHINGTON
Northwest Marketing Assoc.
12835 Bel-Red Road
Suite 330N
Bellevue, WA 98005
TEL: (206) 455-5846
FAX: 2064511130

## WISCONSIN

Oasis Sales
1305 N. Barker Rd.
Brookfield, WI 53005
TEL: (414) 782-6660
FAX: 4147827921

## North American Authorized Distributors and Corporate Offices

Hamilton Hallmark and Zeus are the only authorized North American distributors for stocking and sale of Harris Rad Hard Space products.

Alliance Electronics	Electronics Marketing	Hamilton Hallmark	Zeus Electronics,
7550 E. Redfield Rd.	Corporation (EMC)	10950 W. Washington Blvd.	An Arrow Company
Scottsdale, AZ 85260	1150 West Third Avenue	Culver City, CA 90230	100 Midland Avenue
TEL: (602) 483-9400	Columbus, OH 43212	TEL: (800) 332-8638	Pt. Chester, NY 10573
FAX: (602) 4433898	TEL: (614) 299-4161 FAX: 6142994121	Newark Electronics	TEL. (800) 524-4735
Allied Electronics		4801 N. Ravenswood	
7410 Pebble Dr.	Farnell Electronic Services	Chicago, IL 60640	Obsolete Products:
Ft. Worth, TX 76118	300 North Rivermede Rd.	TEL: (312) 784-5100	Rochester Electronics 10 Malcom Hoyt Drive Newburyport, MA 01950   TEL: (508) 462-9332   FAX: 5084629512
TEL: (800) 433-5700	Concord, Ontario	FAX: 312 275-9596	
Arrow/Schweber Electronics 25 Hub Dr.	Canada L4K 3N6   TEL: (416) 798-4884   FAX: 4167984889	Wyle Electronics (Commercial Products) 3000 Bowers Avenue	
Melville, NY 11747	Gerber Electronics	Santa Clara, CA 95051	
TEL: (800) 777-2776	128 Carnegie Row	TEL: (800) 414-4144	
	Norwood, MA 02062	FAX: 801 226-0210	
	TEL: (617) 769-6000, x156 FAX: 6177628931		

HARRIS
SEMICONDUCTOR

ALABAMA
Arrow/Schweber
Huntsville
TEL: (205) 837-6955
Hamilton Hallmark
Huntsville
TEL: (205) 837-8700
Wyle Electronics
Huntsville
TEL: (205) 830-1119
Zeus, An Arrow Company
Huntsville
TEL: (407) 333-3055
TEL: (800) $52-\mathrm{HI}-\mathrm{REL}$

## ARIZONA

Alliance Electronics, Inc.
Scottsdale
TEL: (602) 483-9400
Arrow/Schweber
Tempe
TEL: (602) 431-0030
Hamilton Hallmark
Phoenix
TEL: (602) 437-1200
Wyle Electronics
Phoenix
TEL: (602) 804-7000
Zeus, An Arrow Company
Tempe
TEL: (408) 629-4789
TEL: (800) 52-HI-REL

## CALIFORNIA

Arrow/Schweber
Calabasas
TEL: (818) 880-9686
Fremont
TEL: (408) 432-7171
irvine
TEL: (714) 587-0404
San Diego
TEL: (619) 565-4800
San Jose
TEL: (408) 441-9700
Hamilton Hallmark
Costa Mesa
TEL: (714) 641-4100
Los Angeles
TEL: (818) 594-0404
Sacramento
TEL: (916) 632-4500
San Diego
TEL: (619) 571-7540
San Jose
TEL: (408) 435-3500
Wyle Electronics
Calabasas
TEL: (818) 880-9000
Irvine
TEL: (714) 789-9953
Rancho Cordova
TEL: (916) 638-5282
San Diego
TEL: (619) 565-9171
Santa Clara
TEL: (408) 727-2500

Zeus, An Arrow Company
San Jose
TEL: (408) 629-4789
TEL: (800) 52 -HI-REL
Irvine
TEL: (714) 921-9000
TEL: (800) $52-\mathrm{HI}-\mathrm{REL}$

## CANADA

Arrow/Schweber
Burnaby, British Columbia
TEL: (604) 421-2333
Dorval, Quebec
TEL: (514) 421-7411
Nepan, Ontario
TEL: (613) 226-6903
Mississagua, Ontario
TEL: (905) 670-7769
Farnell Electronic Services
Burnaby, British Columbia
TEL: (604) 421-6222
Calgary, Alberta
TEL: (403) 273-2780
Concord, Ontario
TEL: (416) 798-4884
V. St. Laurent, Quebec

TEL: (514) 697-8149
Nepean, Ontario
TEL: (613) 596-6980
Winnipeg, Manitoba
TEL: (204) 786-2589
Hamilton Hallmark
Mississagua, Ontario
TEL: (905) 564-6060
Montreal
TEL: (514) 335-1000
Ottawa
TEL: (613) 226-1700
Vancouver, B.C.
TEL: (604) 420-4101
Toronto
TEL:' (905) 564-6060

## COLORADO <br> Arrow/Schweber

Englewood
TEL: (303) 799-0258
Hamilton Hallmark
Denver
TEL: (303) 790-1662
Colorado Springs
TEL: (719) 637-0055
Wyle Electronics
Thornton
TEL: (303) 457-9953
Zeus, An Arrow Company
TEL: (408) 629-4789
TEL: (800) 52-HI-REL

## CONNECTICUT

Alliance Electronics, Inc.
Shelton
TEL: (203) 926-0087
Arrow/Schweber
Wallingford
TEL: (203) 265-7741
Hamilton Hallmark
Danbury
TEL: (203) 271-2844

Zeus, An Arrow Company
TEL: (914) 937-7400
TEL: (800) $52-\mathrm{HI}-\mathrm{REL}$

## FLORIDA

Arrow/Schweber
Deerfield Beach
TEL: (305) 429-8200
Lake Mary
TEL: (407) 333-9300
Hamilton Hallmark
Miami
TEL: (305) 484-5482
Orlando
TEL: (407) 657-3300
Largo
TEL: (813) 541-5016
Wyle Electronics
Fort Lauderdale
TEL: (305) 420-0500
St. Petersburg
TEL: (813) 576-3004
Zeus, An Arrow Company
Lake Mary
TEL: (407) 333-3055
TEL: (800) $52-\mathrm{HI}-\mathrm{REL}$

## GEORGIA Arrow/Schweber

Duluth
TEL: (404) 497-1300
Hamilton Hallmark
Atlanta
TEL: (404) 623-4400
Wyle Electronics
Duluth
TEL: (404) 441-9045
Zeus, An Arrow Company
TEL: (407) 333-3055
TEL: (800) 52-HI-REL

## ILLINOIS

Arrow/Schweber
Itasca
TEL: (708) 250-0500
Hamilton Hallmark
Chicago
TEL: (708) 773-7941
Newark Electronics, Inc.
Chicago
TEL: (312) 907-5436
Wyle Electronics
Addison
TEL: (708) 620-0969
Zeus, An Arrow Company Itasca
TEL: (708) 250-0500
TEL: (800) 52-HI-REL

## INDIANA

Arrow/Schweber
Indianapolis
TEL: (317) 299-2071
Hamilton Hallmark
Carmel
TEL: (317) 575-3500
Zeus, An Arrow Company
TEL: (708) 250-0500
TEL: (800) 52 -HI-REL

## IOWA

Arrow/Schweber
Cedar Rapids
TEL: (319) 395-7230
Hamilton Hallmark
Cedar Rapids
TEL: (319) 362-4757
Zeus, An Arrow Company
TEL: (214) 380-4330
TEL: (800) 52-HI-REL

## KANSAS

Arrow/Schweber
Lenexa
TEL: (913) 541-9542
Hamilton Hallmark
Kansas City
TEL: (913) 888-4747
Zeus, An Arrow Company
TEL: (214) 380-4330
TEL: (800) $52-\mathrm{HI}-\mathrm{REL}$
MARYLAND
Arrow/Schweber
Columbia
TEL: (301) 596-7800
Hamilton Hallmark
Columbia
TEL: (410) 720-3400
Wyle Electronics
Columbia
TEL: (410) 312-4844
Zeus, An Arrow Company
TEL: (914) 937-7400
TEL: (800) $52-\mathrm{HI}-\mathrm{REL}$
MASSACHUSETTS
Arrow/Schweber
Wilmington
TEL: (508) 658-0900
Gerber Electronics
Norwood
TEL: (617) 769-6000
Hamilton Hallmark
Peabody
TEL: (508) 532-9893
Wyle Electronics
Bedford
(617) 271-9953

Zeus, An Arrow Company
Wilmington, MA
TEL: (508) 658-4776
TEL: (800) HI-REL

## MICHIGAN

Arrow/Schweber
Livonia
TEL: (313) 462-2290
Hamilton Hallmark
Plymouth
TEL: (313) 416-5800
Zeus, An Arrow Company
TEL: (708) 250-0500
TEL: (800) 52 -HI-REL

[^14]| MINNESOTA <br> Alliance Electronics, Inc. Burnsville TEL: (612) 891-1813 | $\begin{aligned} & \text { Rochester } \\ & \text { TEL: (716) 427-0300 } \end{aligned}$ | OREGON | WASHINGTON |
| :---: | :---: | :---: | :---: |
|  |  | Almac/Arrow | Almac/Arrow |
|  | Hamilton Hallmark Long Island | Beaverton | Bellevue |
|  |  | TEL: (503) 629-8090 | TEL: (206) 643-9992 |
| TEL: (612) 891-1813 <br> Arrow/Schweber | Hauppauge TEL: (516) 434-7470 | Hamilton Hallmark | Hamilton Hallmark |
| Eden Prarie |  | Portand | Seattle |
| TEL: (612) 941-5280 |  | TEL: (503) 526-6200 | TEL: (206) 882-7000 |
| Hamilton Hallmark | Rochester | Wyle Electronics | Wyle Electronics |
| Minneapolis | TEL: (716) 272-2740 | Beaverton | Redmond |
| TEL: (612) 881-2600 | Zeus, An Arrow Company | TEL: (503) 643-7900 | TEL: (206) 881-1150 |
| Wyle Electronics | Pt. Chester | Zeus, An Arrow Company | Zeus, An Arrow Company |
| Minneapolis | TEL: (914) 937-7400 | TEL: (408) 629-4789 | TEL: (408) 629-4789 |
| TEL: (612) 853-2280 | TEL: (800) $52-\mathrm{HI}-\mathrm{REL}$ | TEL: (800) $52-\mathrm{HI}-\mathrm{REL}$ | TEL: (800) $52-\mathrm{HI}-\mathrm{REL}$ |
| Zeus, An Arrow Company <br> TEL: (214) 380-4330 <br> TEL: (800) $52-\mathrm{HI}-\mathrm{REL}$ | NORTH CAROLINA Arrow/Schweber Raleigh TEL: (919) 876-3132 | PENNSYLVANIA Arrow/Schweber Pittsburgh TEL: (412) 856-9490 | WISCONSIN Arrow/Schweber Brookfield |
|  |  |  |  |
|  |  |  |  |
| MISSOURI |  |  | TEL: (414) 792-0150 |
| Arrow/Schweber | EMC <br> Charlotte <br> TEL: (704) 394-6195 | Hamilton Hallmark Pittsburgh <br> TEL: (800) 332-8638 | Hamilton Hallmark Milwaukee TEL: (414) 780-7200 |
| St. Louis |  |  |  |
| TEL: (314) 567-6888 |  |  |  |
| Hamilton Halimark | Hamilton Hallmark Raleigh TEL: (919) 872-0712 | Zeus, An Arrow Company <br> TEL: (914) 937-7400 <br> TEL: (800) $52-\mathrm{HI}-\mathrm{REL}$ | Wyle Electronics <br> Brookfield <br> TEL: (414) 879-0434 |
| St. Louis |  |  |  |
| TEL: (314) 291-5350 |  |  |  |
| Zeus, An Arrow Company <br> TEL: (214) 380-4330 <br> TEL: (800) $52-\mathrm{HI}-\mathrm{REL}$ | Wyle Electronics <br> Raleigh <br> TEL: (919) 481-3737 <br> TEL: 800-950-9953 | TEXAS <br> Allied Electronics, Inc. <br> Ft. Worth <br> TEL: (800) 433-5700 | Zeus, An Arrow Company <br> TEL: (708) 250-0500 <br> TEL: (800) $52-\mathrm{HI}-\mathrm{REL}$ |
|  |  |  |  |
|  |  |  |  |
| NEW JERSEY <br> Arrow/Schweber Marlton TEL: (609) 596-8000 | Zeus, An Arrow Company <br> TEL: (407) 333-3055 <br> TEL: (800) 52-HI-REL | Arrow/Schweber Austin | Harris Semiconductor Chip Distributors |
|  |  |  |  |
|  |  | TEL: (512) 835-4180 |  |
| Pinebrook <br> TEL: (201) 227-7880 | OHIO Alliance Electronics, Inc. Dayton TEL: (513) 433-7700 | Dallas | Chip Supply, Inc. <br> 7725 N. Orange Blossom Trail |
|  |  | TEL: (214) 380-6464 | Orlando, FL 32810-2696 |
| Hamilton Hallmark Cherry Hill TEL: (609) 424-0110 |  | Houston <br> TEL: (713) 647-6868 | TEL: (407) 298-7100 FAX: (407) 290-0164 |
|  | Arrow/Schweber Solon <br> TEL: (216) 248-3990 | Hamilton Hallmark Austin | Elmo Semiconductor Corp. 7590 North Glenoaks Blvd. |
|  |  |  |  |
| Parsippany <br> TEL: (201) 515-1641 |  |  | Burbank, CA 91504-1052 <br> TEL: (818) 768-7400 <br> FAX: (818) 767-7038 |
|  |  | Dallas |  |
| Wyle Electronics Mt. Laurel <br> TEL: (609) 439-9110 | Centerville <br> TEL: (513) 435-5563 | TEL: (214) 553-4300 | FAX: (818) 767-7038 |
|  | EMC <br> Columbus | Houston <br> TEL: (713) 781-6100 | Minco Technology Labs, Inc. 1805 Rutherford Lane |
| Pine Brook <br> TEL: (201) 882-8358 |  | Wyle Electronics Austin | TEL: (512) 834-2022 |
|  | TEL: (614) 299-4161 |  |  |
| Zeus, An Arrow Company <br> TEL: (914) 937-7400 <br> TEL: (800) $52-\mathrm{HI}-\mathrm{REL}$ | Hamilton Hallmark <br> Cleveland <br> TEL: (216) 498-1100 | TEL: (512) 345-8853 | FAX: (512) 837-6285 |
|  |  | Houston <br> TEL: (713) 879-9953 |  |
|  | Columbus |  | Puerto Rican <br> Authorized Distributor |
| NEW MEXICO <br> Hamilton Hallmark Albuquerque TEL: (505) 828-1058 Zeus, An Arrow Compa y TEL: (408) 629-4789 TEL: (800) $52-\mathrm{HI}-\mathrm{REL}$ | Dayton <br> TEL: (513) 439-6735 | Richardson <br> TEL: (214) 235-9953 | Authorized Distributor |
|  |  | Zeus, An Arrow Company | El Senorail M/S Box 862 |
|  |  | Carrollton <br> TEL: (214) 380-4330 <br> TEL: (800) $52-\mathrm{HI}-\mathrm{REL}$ | San Juan, PR 00926 <br> TEL: (809) 760-1158 <br> FAX: 809 754-4356 |
|  | $\begin{aligned} & \text { Toledo } \\ & \text { TEL: (419) 242-6610 } \end{aligned}$ |  |  |
|  | Wyle Electronics Cleveland TEL: (216) 248-9996 |  |  |
| NEW YORK <br> Alliance Electronics, Inc. |  | UTAH | South American |
|  | Zeus, An Arrow Company <br> TEL: (708) 595-9730 <br> TEL: (800) $52-\mathrm{HI}-\mathrm{REL}$ | Salt Lake City <br> TEL: (801) 973-6913 | Authorized Distributor |
| Huntington |  |  |  |
|  |  | Hamilton Hallmark <br> Salt Lake City | Graftec Electronic Sales Inc. One Boca Place, Suite 305 East 2255 Glades Road |
| Arrow/Schweber <br> Farmingdale <br> TEL: (516) 293-6363 | OKLAHOMA Arrow/Schweber Tulsa | $\begin{aligned} & \text { Salt Lake City } \\ & \text { TEL: (801) 266-2022 } \end{aligned}$ |  |
|  |  | Wyle Electronics Orem | Boca Raton, Florida 33431 <br> TEL: (407) 994-0933 <br> FAX: 407 994-5518 |
| Hauppauge <br> TEL: (516) 231-1000 |  |  |  |
|  | Hamilton Hallmark Tulsa <br> TEL: (918) 254-6110 | West Valley City TEL: (801) 974-9953 | BRASIL <br> Graftec Brasil Ltda. <br> Rua baroneza De ITU 336-5 01231-000 - Sao Paulo - SP <br> TEL: 55-11-826-5407 <br> FAX: 55-11-826-6526 |
| Melville <br> TEL: (516) 391-1276 <br> TEL: (516) 391-1300 <br> TEL: (516) 391-1633 |  |  |  |
|  |  | Zeus, An Arrow Company <br> TEL: (408) 629-4789 <br> TEL: (800) $52-\mathrm{HI}-\mathrm{REL}$ |  |
|  | Zeus, An Arrow Company <br> TEL: (214) 380-4330 <br> TEL: (800) $52-\mathrm{HI}-\mathrm{REL}$ |  |  |
|  |  |  |  |
|  |  |  |  |

[^15]```
European Sales
Headquarters
    Harris S.A.
    Mercure Center
    Rue de la Fusee 100
    B-1130 Brussels, Belgium
    TEL: 32 27242111
    FAX: }322724\mathrm{ 2205/...09
DENMARK
    Delco AS
    Titangade 15
    DK - 2200 Copenhagen N
    TEL: 45 35 82 1200
    FAX:4535821205
```


FINLAND

```
J. Havulinna \& Son
Reinikkalan Kartano
SF - 51200 Kangasniemi
TEL: 35859432031
FAX: 35859432367
```


FRANCE

```
Harris Semiconducteurs SARL
* 2-4, Avenue de l'Europe F - 78941 Velizy Cedex TEL: 33134654080 (Dist) TEL: 33134654027 (Sales) FAX: 33139464054
```


GERMANY

```
Harris Semiconductor GmbH
* Putzbrunnerstrasse 69 D-81739 München
TEL: 4989 63813-0
FAX: 49896377891
```

Harris Semiconductor GmbH
Kieler Strasse 55-59
D-25451 Quickborn
TEL: 49410650 02-04
FAX: 49410668850
Harris Semiconductor GmbH
Wegener Strasse, $5 / 1$
D - 71063 Sindelfingen
TEL: 49703186940
FAX: 497031873849
Ecker Michelstadt GmbH
In den Dorfwiesen 2A
Postfach 3344
D - 64720 Michelstadt
TEL: 4960612233
FAX: 4960615039
Erwin W. Hildebrandt
Nieresch 32
D-48301 Nottuln-Darup
TEL: 4925026065
FAX: 4925021889
FINK Handelsvertretung
Laurinweg, 1
D - 85521 Ottobrunn
TEL: 49896097004
FAX: 49896098170

Hartmut Welte

* Hepbacher Strasse 11A

D - 88677 Markdorf
TEL: 49754472555
FAX: 49754472555

ISRAEL
Aviv Electronics Ltd
Hayetzira Street, 4 Ind. Zone
IS - 43651 Ra'anana
PO Box 2433
IS - 43100 Ra'anana
TEL: 9729983232
FAX: 9729916510

ITALY

Harris SRL

* Viale Fulvio Testi, 126

I-20092 Cinisello Balsamo, (Milan)
TEL: 3922620761 (Disti \& OEM ROSE)
TEL: 3922409501 (Disti \& OEM Italy)
FAX: 39226222158 (ROSE)
NETHERLANDS
Harris Semiconductor SA
Benelux OEM Sales Office
Kouterstraat 6
NL - 5345 AR Oss
TEL: 31412038561
FAX: 31412034419

SPAIN

Elcos S. L.
C/Avda. Europa, 301 B-A
Spain 28224 Pozuelo de Alarcon
Madrid
TEL: 3413523052
FAX: 3413521147

TURKEY

EMPA
Besyol Londra Asfalti
TK - 34630 Sefakoy/ Istanbul
TEL: 9015993050
FAX: 9015993059
UNITED KINGDOM
Harris Semiconductor Ltd

* Riverside Way

Camberley
Surrey GU15 3YQ
TEL: 441276686886
FAX: 441276682323
Laser Electronics
Ballynamoney
Greenore
Co. Louth, Ireland
TEL: 3534273165
FAX: 3534273518
Complementary
Technologies Ltd Redgate Road
South Lancashire, Ind. Estate
Ashton-In-Makerfield
Wigan, Lancs WN4 8DT
TEL: 441942274731
FAX: 441942274732
Stuart Electronics Ltd.
Phoenix House
Bothwell Road
Castlehill, Carluke
Lanarkshire ML8 5UF
TEL: 441555751566
FAX: 441555751562

European Authorized Distributors

AUSTRIA

Avnet E2000 GmbH
Waidhausenstrasse 19
A-1140 Wien
TEL: 4319112847
FAX: 4319113853
EBV Elektronik

* Diefenbachgasse 35/6

A-1150 Wien
TEL: 4318941774
FAX: 4318941775
Eurodis Electronics GmbH
Lamezanstrasse 10
A-1232 Wien
TEL: 431610620
FAX: 43161062151

Spoerle Electronic

Heiligenstädter Str. 52
A-1190 Wien
TEL: 43131872700
FAX: 4313692273

BELGIUM

Diode Spoerle

* Keiberg II

Minervastraat, 14/B2
B-1930 Zaventem
TEL: 3227254660
FAX: 3227254511
EBV Elektronik

* Excelsiorlaan 35B

B-1930 Zaventem
TEL: 3227160010
FAX: 3227208152
Eurodis Texim Electronics

* Avenue des Croix de

Guerre 116
B-1120 Brussels
TEL: 3222474969
FAX: 3222158102

DENMARK

Avnet Nortec
Transformervej, 17
DK - 2730 Herlev
TEL: 4542842000
FAX: 4544921552

Ditz Schweitzer
Vallensbaekvej 41
Postboks 5
DK - 2605 Brondby
TEL: 4542453044
FAX: 4542459206

FINLAND

Avnet Nortec
Italahdenkatu, 18
SF - 00210 Helsinki
TEL: 358061318250
FAX: 35806922326
Bexab
Sinimaentie 10C
P.O. Box 51

SF - 02630 ESPOO
TEL: 358061352690
FAX: 358061352655

FRANCE

3D
ZI des Glaises
6/8 rue Ambroise Croizat
F - 91127 Palaiseau
TEL: 33164472929
FAX: 33164470084

Arrow Electronique

73-79, Rue des Solets
Silic 585
F - 94663 Rungis Cedex
TEL: 33149784978
FAX: 33149780596
Avnet EMG France

* 79, Rue Pierre Semard P.B. 90

F-92322 Chatillon Sous Bagneux
TEL: 33149652500
FAX: 33149652539
CCI Electronique

* 12, Allee de la Vierge Silic 577
F - 94653 Rungis
TEL: 33141807000
FAX: 33146753207
EBV Elektronik
Parc Club de la Haute Maison
16, Rue Galilee
Cite Descartes
F-77420 Champs-sur-Marne
TEL: 33164688609
FAX: 33164682767

* Field Application Assistance Available

| JAPAN
 Harris K.K.
 Kojimachi-Nakata Bldg. 4F 5-3-5 Kojimachi Chiyoda-ku, Tokyo, 102 Japan
 TEL: (81) 3-3265-7571
 TEL: (81) 3-3265-7572 (Sales) | SINGAPORE
 Harris Semiconductor Pte Ltd.
 1, Tannery Road \#09-01
 Cencon 1, Singapore 1334
 TEL: 65-748-4200
 FAX: 65-748-0400 | Applied Component Tech. Corp.
 8F No. 233-1, Pao-Chia Road Hsin Tien City, Taipei Hsien, Taiwan, R.O.C.
 TEL: (886) 29170858
 FAX: (886) 29171895 | TECO Enterprise Co., Ltd. 10FL., No. 292 Min-Sheng W. Rd. Taipei, Taiwan TEL: (886) 2-555-9676 FAX: (886) 2-558-6006 |
| :---: | :---: | :---: | :---: |
| FAX: (81) 3-3265-7575 | | | |
| HONG KONG
 Harris Semiconductor H.K. Ltd.
 13/F Fourseas Building 208-212 Nathan Road Tsimshatsui, Kowloon TEL: (852) 2723-6339 FAX: (852) 2739-8946 TLX: 78043645 | Harris Semiconductor
 Room 1101, No. 142, Sec. 3
 Ming Chuan East Road
 Taipei, Taiwan
 TEL: (886) 2-716-9310
 FAX: (886) 2-715-3029
 TLX: 78525174 | Fu Hsing South Road Taipei, Taiwan
 TEL: (886) 2-705-7266
 FAX: (886) 2-708-7901 | Electronics Source Co., Ltd.
 138 Banmoh Rd.
 Pranakorn, Bangkok 10200
 TEL: 6622264145
 FAX: 6622254985 |
| AUSTRAL | Asian Pacific Authorized Distributors | | Inhwa Company, Ltd.
 Room \#305, Daegyo Bldg., 56-4,
 Wonhyoro-2GA,
 Young San-Ku,
 Seoul 140-113, Korea
 TEL: 822-703-7231
 FAX: 822-703-8711 |
| VSI Electronics Pty, Ltd. Unit C 6-8 Lyon Park Road North Ryde NSW 2113
 TEL: (612) 878-1299
 FAX: (612) 878-1266 | AUSTRALIA
 VSI Electronics Pty, Ltd. Unit C 6-8 Lyon Park Road North Ryde NSW 2113
 TEL: (612) 878-1299 FAX: (612) 878-1266 | INDIA
 Graftec Electronic Sales Inc. 49 J.C. Road, Bangalore-560002 TEL: (91) 80 2233346/2225688 FAX: (91) 802226490 | |
| | | | |
| Plot 54, SEEPZ | CHINA | JAPAN
 Hakuto Co., Ltd.
 1-1-13 Shinjuku Shinjuku-ku
 Tokyo 160
 TEL: 81-3-3355-7615
 FAX: 81-3-3355-7680 | NEW ZEALAND
 Components and Instrumentation NZ, Ltd. 19 Pretoria Street, Lower Hutt P.O. Box 38-099 Wellington TEL: (64) 4-566-3222 FAX: (64) 4-566-2111 |
| Marol Industrial | dal E | | |
| Andheri (E) Bombay 400096 TEL: (91) 22-832-3097 | Room 911-913, Cheva Commercial Centre, | | |
| FAX: (91) 22-836-6682 | 8, Wang Hoi Road, | | |
| KOR | Kowloon, Hong | | |
| Harris Semiconductor YH RM \#419-1 | $\begin{aligned} & \text { TEL: (852) } 2305-3863 \\ & \text { FAX: (852) } 2759-8225 \end{aligned}$ | Jepico Corp.
 Shinjuku Daiichi Seimei Bldg. | |
| Korea Air Terminal Bldg. 159-6, Sam Sung-Dong, Kang Nam-ku, Seoul 135-728, Korea
 TEL: 82-2-551-0931/4
 FAX: 82-2-551-0930 | Means Come Ltd.
 Room 1007, Harbour Centre
 8 Hok Cheung Street
 Hung Hom, Kowloon
 TEL: (852) 2334-8188
 FAX: (852) 2334-8649 | Shinjuku-ku, Tokyo 163
 TEL: 03-3348-0611
 FAX: 03-3348-0623
 Macnica Inc.
 Hakusan High Tech Park | SINGAPORE
 B.B.S Electronics Pte, Ltd.
 1 Genting Link \#05-03 Perfect Indust. Bldg. Singapore 1334
 TEL: (65) 748-8400
 FAX: (65) 748-8466 |
| H.B. Corporation 135-260, 5th/FI, Aju Bldg. | Sunnice Electronics Co., Ltd. Flat F, 5/F, Everest Ind. Ctr. 396 Kwun Tong Road Kowloon
 TEL: (852) 2790-8073
 FAX: (852) 2763-5477 | Midori-ku, Yokohama-shi, | |
| 184-11, Poi-Dong, | | TEL: 045-939-6116 | TAIWAN
 Applied Component Tech. Corp. 8F No. 233-, 1 Pao-Chial Road Hsin Tien City, Taipei Hsein, |
| TEL: 82(02) 579-3495~6, | | FAX: 045-939-6117 | |
| $\begin{gathered} 579-6918 \\ \text { FAX: } 82(02) \\ 579-6919-703 \end{gathered}$ | | Micron, Inc.
 DJK Kouenji Bldg. 5F | |
| Inhwa Company, Ltd. | HONG KONG | 4-26-16, Kouenji-Minami Suginami-Ku, Tokyo 166 | $\begin{aligned} & \text { TEL: (02) } 9170858 \\ & \text { FAX: (02) } 9171895 \end{aligned}$ |
| Room \#305 Daegyo Bldg., | 24/F., Wyler Centre, Phase 2 | TEL: 03-3317-9911 | Galaxy Far East Corporation |
| Wonhyoro-2GA,
 Young San-Ku,
 Seoul 140-113, Korea
 TEL: 822-703-7231
 FAX: 822-703-8711 | 200 Tai Lin Pai Road Kwai Chung New Territories, H.K.
 TEL: (852) 2418-3700
 FAX: (852) 2481-5872 | Okura Electronics Co., Ltd.
 Okura Shoji Bldg.
 2-3-6, Ginza Chuo-ku,
 Tokyo 104 | 8F-6, No. 390, Sec. 1
 Fu Hsing South Road
 Taipei, Taiwan
 TEL: (886) 2-705-7266
 FAX: (886) 2-708-7901 |
| KumOh Electric Co., Ltd.
 203-1, Jangsa-Dong,
 Chongro-ku, Seoul
 TEL: 822-279-3614
 FAX: 822-272-6496 | Inchcape Industrial 10/F, Tower 2, Metroplaza 223 Hing Fong Road Kwai Fong New Territories TEL: (852) 2410-6555 | TEL: 03-3564-6871
 FAX: 03-3564-6870
 Takachiho Koheki Co., Ltd. 1-2-8, Yotsuya
 Shinjuku-ku, Tokyo 160
 TEL: 03-3355-6696 | TECO Enterprise Co., Ltd.
 10FL., No. 292, Min-Sheng W. Rd.
 Taipei, Taiwan
 TEL: (886) 2-555-9676
 FAX: (886) 2-558-6006 |
| NEW ZEALAND | FAX: (852) 2401-2497 | FAX: 03-3357-5034 | THAILAND |
| Components and Instrumentation NZ, Ltd.
 19 Pretoria Street
 Lower Hutt
 P.O. Box 38-099
 Wellington
 TEL: (64) 4-566-3222
 FAX: (64) 4-566-2111 | Kingly International Co., Ltd.
 Flat 03, 16/F, Block A,
 Hi -Tech Ind. Centre
 5-12 Pak Tin Par St.,
 Tsuen Wan
 New Territories, H.K.
 TEL: (852) 2499-3109
 FAX: (852) 2417-0961 | KOREA
 KumOh Electric Co., Ltd. 203-1, Jangsa-Dong, Chongro-ku, Seoul
 TEL: 822-279-3614
 FAX: 822-272-6496 | Electronics Source Co., Ltd.
 138 Banmoh Rd.
 Pranakorn, Bangkok 10200
 TEL: 6622264145
 FAX: 6622254985 |

We're Backing You Up with Products, Support, and Solutions!

Signal Processing

- Linear
- Custom Linear
- Data Conversion
- Interface
- Analog Switches
- Multiplexers
- Filters
- DSP
- Telecom

Power Products

- Power MOSFETs
- IGBTs
- MCTs
- Bipolar
- Transient Voltage Suppressors
- MOVs
- Rectifiers
- Surgectors
- MLVs
- Intelligent Discretes

Intelligent Power

- Power ICs
- Power ASICs
- Hybrid Programmable Switches
- Full-Custom High Voltage ICs

ASICs

- Full-Custom
- Analog Semicustom
- Mixed-Signal
- ASIC Design Software

Digital

- CMOS Microprocessors and Peripherals
- CMOS Microcontrollers
- CMOS Logic

Military/Aerospace Programs

- Strategic and Space Programs
- Military ASIC Programs

Military/Rad-Hard Products

- Logic
- CD 4000
- HCS/HCTS High Speed
- ACS/ACTS Advanced
- Signal Processing
- Multiplexers
- Sample and Holds
- Communication Circuits
- Switches
- Data Converters
- OP AMPs
- Memories
- SRAMs
- PROMs
- Microprocessors and

Peripherals

- Microcontrollers
- Discrete Power
- Bipolar
- N-Channel MOSFETs
- P-Channel MOSFETs
- ASICs
- FPGAs
- ESA SCC 9000 and Class S Screening

HiM HARRIS

$7_{85} \cdot 199^{5}$

[^0]: NOTE: Bold Type Designates a New Product from Harris.

[^1]: NOTE: Bold Type Designates a New Product from Harris.

[^2]: NOTE: Bold Type Designates a New Product from Harris.

[^3]: NOTE: Bold Type Designates a New Product from Harris.

[^4]: * The voltages listed above represent the ideal transition of each output code shown as a function of the reference voltage.

[^5]: * The voltages listed above represent the ideal transition of each output code shown as a function of the reference voltage.

[^6]: NOTE: Bold Type Designates a New Product from Harris.

[^7]: * The voltages listed above are the ideal centers of each output code shown as a function of its associated reference voltage.

[^8]: * Refer to Test Circuit (Figure 1).

[^9]: * Refer to Test Circuit (Figure 1).

[^10]: * Refer to Test Circuit (Figure 1).

[^11]: ＊Refer to Test Circuit（Figure 1）．

[^12]: \dagger " R " Indicates Device With Reversed Leads Configuration.

[^13]: * Field Application Assistance Available

[^14]: * Field Application Assistance Available

[^15]: * Field Application Assistance Available

